From e7b5146c5cff3c0fa1394bc68e20f8a5aaaea529 Mon Sep 17 00:00:00 2001 From: Johannes Ring Date: Mon, 11 Aug 2014 08:57:36 +0100 Subject: [PATCH] Import dolfin_1.4.0+dfsg.orig.tar.gz [dgit import orig dolfin_1.4.0+dfsg.orig.tar.gz] --- .gitignore | 109 + .mailmap | 34 + AUTHORS | 74 + CMakeLists.txt | 1048 + COPYING | 674 + COPYING.LESSER | 165 + ChangeLog | 1296 + INSTALL | 80 + README.rst | 61 + bench/CMakeLists.txt | 33 + bench/README | 23 + bench/bench.py | 110 + bench/common/progress/cpp/CMakeLists.txt | 40 + bench/common/progress/cpp/main.cpp | 46 + bench/common/timing/cpp/CMakeLists.txt | 40 + bench/common/timing/cpp/main.cpp | 58 + bench/fem/assembly/cpp/CMakeLists.txt | 40 + bench/fem/assembly/cpp/forms.h | 99 + bench/fem/assembly/cpp/forms/Elasticity3D.h | 5519 ++ bench/fem/assembly/cpp/forms/Elasticity3D.ufl | 18 + bench/fem/assembly/cpp/forms/NSEMomentum3D.h | 7643 +++ .../fem/assembly/cpp/forms/NSEMomentum3D.ufl | 18 + bench/fem/assembly/cpp/forms/Poisson2DP1.h | 1682 + bench/fem/assembly/cpp/forms/Poisson2DP1.ufl | 6 + bench/fem/assembly/cpp/forms/Poisson2DP2.h | 2428 + bench/fem/assembly/cpp/forms/Poisson2DP2.ufl | 6 + bench/fem/assembly/cpp/forms/Poisson2DP3.h | 3632 + bench/fem/assembly/cpp/forms/Poisson2DP3.ufl | 6 + bench/fem/assembly/cpp/forms/StabStokes2D.h | 5995 ++ bench/fem/assembly/cpp/forms/StabStokes2D.ufl | 11 + bench/fem/assembly/cpp/forms/THStokes2D.h | 10562 +++ bench/fem/assembly/cpp/forms/THStokes2D.ufl | 8 + bench/fem/assembly/cpp/forms/compile.log | 3904 ++ bench/fem/assembly/cpp/main.cpp | 172 + bench/fem/assembly/python/broken | 97 + bench/fem/convergence/cpp/CMakeLists.txt | 40 + bench/fem/convergence/cpp/Poisson2D_1.cpp | 1602 + bench/fem/convergence/cpp/Poisson2D_1.h | 985 + bench/fem/convergence/cpp/Poisson2D_1.ufl | 30 + bench/fem/convergence/cpp/Poisson2D_2.cpp | 2354 + bench/fem/convergence/cpp/Poisson2D_2.h | 985 + bench/fem/convergence/cpp/Poisson2D_2.ufl | 30 + bench/fem/convergence/cpp/Poisson2D_3.cpp | 3566 + bench/fem/convergence/cpp/Poisson2D_3.h | 985 + bench/fem/convergence/cpp/Poisson2D_3.ufl | 30 + bench/fem/convergence/cpp/Poisson2D_4.cpp | 5479 ++ bench/fem/convergence/cpp/Poisson2D_4.h | 985 + bench/fem/convergence/cpp/Poisson2D_4.ufl | 30 + bench/fem/convergence/cpp/Poisson2D_5.cpp | 1805 + bench/fem/convergence/cpp/Poisson2D_5.h | 987 + bench/fem/convergence/cpp/Poisson2D_5.ufl | 30 + bench/fem/convergence/cpp/Poisson3D_1.cpp | 1973 + bench/fem/convergence/cpp/Poisson3D_1.h | 985 + bench/fem/convergence/cpp/Poisson3D_1.ufl | 30 + bench/fem/convergence/cpp/Poisson3D_2.cpp | 3972 ++ bench/fem/convergence/cpp/Poisson3D_2.h | 985 + bench/fem/convergence/cpp/Poisson3D_2.ufl | 30 + bench/fem/convergence/cpp/Poisson3D_3.cpp | 8813 +++ bench/fem/convergence/cpp/Poisson3D_3.h | 985 + bench/fem/convergence/cpp/Poisson3D_3.ufl | 30 + bench/fem/convergence/cpp/Poisson3D_4.cpp | 3054 + bench/fem/convergence/cpp/Poisson3D_4.h | 987 + bench/fem/convergence/cpp/Poisson3D_4.ufl | 30 + bench/fem/convergence/cpp/README | 46 + bench/fem/convergence/cpp/compile.log | 2641 + bench/fem/convergence/cpp/main.cpp | 266 + bench/fem/jit/python/bench_fem_jit_python | 76 + bench/fem/multicore/cpp/CMakeLists.txt | 40 + bench/fem/multicore/cpp/NavierStokes.h | 6836 ++ bench/fem/multicore/cpp/NavierStokes.ufl | 16 + bench/fem/multicore/cpp/Poisson.h | 2051 + bench/fem/multicore/cpp/Poisson.ufl | 8 + bench/fem/multicore/cpp/compile.log | 1409 + bench/fem/multicore/cpp/main.cpp | 184 + bench/fem/speedup/cpp/CMakeLists.txt | 42 + bench/fem/speedup/cpp/Poisson.h | 2584 + bench/fem/speedup/cpp/Poisson.ufl | 31 + bench/fem/speedup/cpp/README | 16 + bench/fem/speedup/cpp/analyse-bench | 90 + bench/fem/speedup/cpp/assemble-poisson.cpp | 72 + bench/fem/speedup/cpp/bench_fem_speedup_cpp | 73 + bench/fem/speedup/cpp/clean.sh | 5 + bench/fem/speedup/cpp/compile.log | 202 + bench/fem/speedup/cpp/solve-poisson.cpp | 119 + bench/fem/speedup/cpp/submit-bench | 62 + bench/function/evaluation/cpp/CMakeLists.txt | 40 + bench/function/evaluation/cpp/P1.h | 1624 + bench/function/evaluation/cpp/P1.ufl | 27 + bench/function/evaluation/cpp/compile.log | 128 + bench/function/evaluation/cpp/main.cpp | 92 + .../bench_function_extrapolation_python | 43 + .../bench_function_interpolation_python | 52 + .../cpp/CMakeLists.txt | 40 + .../bounding_box_tree_build/cpp/main.cpp | 43 + .../cpp/CMakeLists.txt | 40 + .../cpp/main.cpp | 56 + .../cpp/CMakeLists.txt | 40 + .../cpp/main.cpp | 57 + bench/la/cusp/python/bench_la_cusp_python | 90 + bench/la/vector/access/cpp/CMakeLists.txt | 40 + bench/la/vector/access/cpp/main.cpp | 47 + bench/la/vector/assignment/cpp/CMakeLists.txt | 40 + bench/la/vector/assignment/cpp/main.cpp | 44 + bench/logs/bench.log | 151 + bench/logs/milestones.log | 14 + bench/mesh/iteration/cpp/CMakeLists.txt | 40 + bench/mesh/iteration/cpp/main.cpp | 51 + bench/mesh/refinement/cpp/CMakeLists.txt | 40 + bench/mesh/refinement/cpp/main.cpp | 47 + bench/mesh/topology/cpp/CMakeLists.txt | 40 + bench/mesh/topology/cpp/main.cpp | 55 + bench/mesh/unitcube/cpp/CMakeLists.txt | 40 + bench/mesh/unitcube/cpp/main.cpp | 42 + bench/plot.py | 230 + cmake/modules/CheckOpenMP.cmake | 55 + cmake/modules/CorrectWindowsPaths.cmake | 14 + cmake/modules/FindAMD.cmake | 62 + cmake/modules/FindBLAS.cmake | 629 + cmake/modules/FindBLASHeader.cmake | 50 + cmake/modules/FindCGAL.cmake | 132 + cmake/modules/FindCHOLMOD.cmake | 230 + cmake/modules/FindCppUnit.cmake | 69 + cmake/modules/FindEigen3.cmake | 87 + cmake/modules/FindGMP.cmake | 87 + cmake/modules/FindLAPACK.cmake | 350 + cmake/modules/FindMPI.cmake | 660 + cmake/modules/FindMTL4.cmake | 88 + cmake/modules/FindNumPy.cmake | 80 + cmake/modules/FindPETSc.cmake | 363 + cmake/modules/FindPETSc4py.cmake | 82 + cmake/modules/FindPaStiX.cmake | 159 + cmake/modules/FindParMETIS.cmake | 153 + cmake/modules/FindSCOTCH.cmake | 324 + cmake/modules/FindSLEPc.cmake | 270 + cmake/modules/FindSphinx.cmake | 78 + cmake/modules/FindUMFPACK.cmake | 132 + cmake/modules/ResolveCompilerPaths.cmake | 111 + cmake/modules/language_support_v2.cmake | 65 + cmake/post-install/CMakeLists.txt | 22 + cmake/scripts/codeexamples.py | 217 + cmake/scripts/codesnippets.py | 143 + cmake/scripts/copy-swig-files | 59 + cmake/scripts/copy-test-demo-data | 71 + cmake/scripts/download-demo-data | 70 + cmake/scripts/generate-all | 20 + cmake/scripts/generate-cmakefiles | 179 + cmake/scripts/generate-form-files | 81 + cmake/scripts/generate-swig-docstrings | 460 + cmake/scripts/generate-swig-interface | 591 + cmake/templates/DOLFINConfig.cmake.in | 53 + cmake/templates/DOLFINConfigVersion.cmake.in | 16 + cmake/templates/UseDOLFIN.cmake.in | 26 + cmake/templates/cmake_uninstall.cmake.in | 21 + .../templates/dolfin-config-version.cmake.in | 16 + cmake/templates/dolfin-config.cmake.in | 56 + cmake/templates/dolfin-get-demos.in | 34 + cmake/templates/dolfin-version.in | 4 + cmake/templates/dolfin.conf.in | 12 + cmake/templates/dolfin.pc.in | 17 + data/README | 6 + demo/CMakeLists.txt | 32 + demo/cmake.local | 19 + .../auto-adaptive-poisson/common.txt | 138 + .../cpp/AdaptivePoisson.h | 15101 +++++ .../cpp/AdaptivePoisson.ufl | 32 + .../auto-adaptive-poisson/cpp/CMakeLists.txt | 40 + .../auto-adaptive-poisson/cpp/compile.log | 3326 + .../cpp/documentation.rst | 6 + .../auto-adaptive-poisson/cpp/main.cpp | 99 + .../python/demo_auto-adaptive_poisson.py | 64 + .../python/documentation.rst | 151 + .../auto-adaptive-poisson/u_refined.png | Bin 0 -> 39800 bytes .../auto-adaptive-poisson/u_unrefined.png | Bin 0 -> 31880 bytes demo/documented/bcs/aneurysm.xml.gz | Bin 0 -> 703208 bytes demo/documented/bcs/common.txt | 55 + demo/documented/bcs/cpp/CMakeLists.txt | 40 + demo/documented/bcs/cpp/Poisson.h | 2584 + demo/documented/bcs/cpp/Poisson.ufl | 33 + demo/documented/bcs/cpp/compile.log | 202 + demo/documented/bcs/cpp/documentation.rst | 6 + demo/documented/bcs/cpp/main.cpp | 75 + demo/documented/bcs/demo_bcs.png | Bin 0 -> 62820 bytes demo/documented/bcs/python/demo_bcs.py | 66 + demo/documented/bcs/python/documentation.rst | 103 + demo/documented/biharmonic/biharmonic_u.png | Bin 0 -> 35721 bytes demo/documented/biharmonic/common.txt | 83 + demo/documented/biharmonic/cpp/Biharmonic.h | 6644 ++ demo/documented/biharmonic/cpp/Biharmonic.ufl | 50 + demo/documented/biharmonic/cpp/CMakeLists.txt | 40 + demo/documented/biharmonic/cpp/compile.log | 1262 + .../biharmonic/cpp/documentation.rst | 211 + demo/documented/biharmonic/cpp/main.cpp | 100 + .../biharmonic/python/demo_biharmonic.py | 95 + .../biharmonic/python/documentation.rst | 138 + demo/documented/built-in_meshes/common.txt | 16 + .../built-in_meshes/cpp/CMakeLists.txt | 40 + .../built-in_meshes/cpp/documentation.rst | 6 + demo/documented/built-in_meshes/cpp/main.cpp | 94 + .../built-in_meshes/python/boxmesh.png | Bin 0 -> 7418 bytes .../built-in_meshes/python/demo_built-in.py | 82 + .../built-in_meshes/python/documentation.rst | 201 + .../built-in_meshes/python/rectanglemesh.png | Bin 0 -> 3535 bytes .../python/rectanglemesh_left_right.png | Bin 0 -> 4891 bytes .../built-in_meshes/python/unitcubemesh.png | Bin 0 -> 12548 bytes .../python/unitintervalmesh.png | Bin 0 -> 1606 bytes .../built-in_meshes/python/unitsquaremesh.png | Bin 0 -> 4982 bytes .../python/unitsquaremesh_crossed.png | Bin 0 -> 7111 bytes .../python/unitsquaremesh_left.png | Bin 0 -> 4985 bytes .../python/unitsquaremesh_left_right.png | Bin 0 -> 5900 bytes .../cahn-hilliard/cahn-hilliard_c.png | Bin 0 -> 93097 bytes demo/documented/cahn-hilliard/common.txt | 94 + .../cahn-hilliard/cpp/CMakeLists.txt | 40 + .../cahn-hilliard/cpp/CahnHilliard2D.cpp | 4035 ++ .../cahn-hilliard/cpp/CahnHilliard2D.h | 1842 + .../cahn-hilliard/cpp/CahnHilliard2D.ufl | 58 + .../cahn-hilliard/cpp/CahnHilliard3D.cpp | 5195 ++ .../cahn-hilliard/cpp/CahnHilliard3D.h | 1842 + .../cahn-hilliard/cpp/CahnHilliard3D.ufl | 56 + demo/documented/cahn-hilliard/cpp/compile.log | 7060 ++ .../cahn-hilliard/cpp/documentation.rst | 411 + demo/documented/cahn-hilliard/cpp/main.cpp | 193 + .../python/demo_cahn-hilliard.py | 119 + .../cahn-hilliard/python/documentation.rst | 301 + demo/documented/csg-2D/common.txt | 21 + demo/documented/csg-2D/cpp/CMakeLists.txt | 40 + demo/documented/csg-2D/cpp/documentation.rst | 6 + demo/documented/csg-2D/cpp/main.cpp | 76 + demo/documented/csg-2D/csg_boundary.png | Bin 0 -> 3944 bytes demo/documented/csg-2D/csg_mesh.png | Bin 0 -> 16162 bytes demo/documented/csg-2D/python/demo_csg_2D.py | 54 + .../csg-2D/python/documentation.rst | 104 + demo/documented/csg-3D/common.txt | 21 + demo/documented/csg-3D/cpp/CMakeLists.txt | 40 + demo/documented/csg-3D/cpp/documentation.rst | 6 + demo/documented/csg-3D/cpp/main.cpp | 61 + demo/documented/csg-3D/csg3D_boundary.png | Bin 0 -> 20438 bytes demo/documented/csg-3D/csg3D_mesh.png | Bin 0 -> 45855 bytes demo/documented/csg-3D/python/demo_csg-3D.py | 50 + .../csg-3D/python/documentation.rst | 112 + .../eigenvalue/box_with_dent.xml.gz | Bin 0 -> 8836 bytes demo/documented/eigenvalue/common.txt | 40 + demo/documented/eigenvalue/cpp/CMakeLists.txt | 40 + .../eigenvalue/cpp/StiffnessMatrix.h | 2051 + .../eigenvalue/cpp/StiffnessMatrix.ufl | 28 + demo/documented/eigenvalue/cpp/compile.log | 165 + .../eigenvalue/cpp/documentation.rst | 3 + demo/documented/eigenvalue/cpp/main.cpp | 72 + demo/documented/eigenvalue/eigenvalue_x.png | Bin 0 -> 41085 bytes .../eigenvalue/python/demo_eigenvalue.py | 73 + .../eigenvalue/python/documentation.rst | 125 + demo/documented/hyperelasticity/common.txt | 140 + .../hyperelasticity/cpp/CMakeLists.txt | 40 + .../hyperelasticity/cpp/HyperElasticity.h | 7158 ++ .../hyperelasticity/cpp/HyperElasticity.ufl | 64 + .../hyperelasticity/cpp/compile.log | 1487 + .../hyperelasticity/cpp/documentation.rst | 329 + demo/documented/hyperelasticity/cpp/main.cpp | 149 + .../hyperelasticity/hyperelasticity_u0.png | Bin 0 -> 40841 bytes .../hyperelasticity/hyperelasticity_u1.png | Bin 0 -> 42794 bytes .../python/demo_hyperelasticity.py | 99 + .../hyperelasticity/python/documentation.rst | 218 + demo/documented/mesh-generation/common.txt | 14 + demo/documented/mesh-generation/cpp/README | 2 + .../mesh-generation/cpp/documentation.rst | 6 + demo/documented/mesh-generation/cube.off | 16 + .../python/demo_mesh_generation.py | 57 + .../mesh-generation/python/documentation.rst | 141 + .../mesh-generation/python/plot_cubemesh.png | Bin 0 -> 39015 bytes .../python/plot_polygonmesh.png | Bin 0 -> 15635 bytes .../python/plot_tetrahedronmesh.png | Bin 0 -> 21616 bytes .../mesh-generation/tetrahedron.off | 12 + demo/documented/mixed-poisson-dual/common.txt | 75 + .../mixed-poisson-dual/cpp/CMakeLists.txt | 40 + .../mixed-poisson-dual/cpp/MixedPoissonDual.h | 13248 ++++ .../cpp/MixedPoissonDual.ufl | 38 + .../mixed-poisson-dual/cpp/compile.log | 750 + .../mixed-poisson-dual/cpp/documentation.rst | 213 + .../mixed-poisson-dual/cpp/main.cpp | 87 + .../mixed-poisson-dual_sigma.png | Bin 0 -> 31670 bytes .../mixed-poisson-dual_u.png | Bin 0 -> 39242 bytes .../python/demo_mixed-poisson-dual.py | 78 + .../python/documentation.rst | 150 + demo/documented/mixed-poisson/common.txt | 99 + .../mixed-poisson/cpp/CMakeLists.txt | 40 + .../mixed-poisson/cpp/MixedPoisson.h | 6759 ++ .../mixed-poisson/cpp/MixedPoisson.ufl | 37 + demo/documented/mixed-poisson/cpp/compile.log | 493 + .../mixed-poisson/cpp/documentation.rst | 240 + demo/documented/mixed-poisson/cpp/main.cpp | 108 + .../mixed-poisson/mixed-poisson_sigma.png | Bin 0 -> 78506 bytes .../mixed-poisson/mixed-poisson_u.png | Bin 0 -> 34205 bytes .../python/demo_mixed-poisson.py | 94 + .../mixed-poisson/python/documentation.rst | 184 + demo/documented/navier-stokes/common.txt | 91 + .../navier-stokes/cpp/CMakeLists.txt | 40 + .../navier-stokes/cpp/PressureUpdate.h | 7858 +++ .../navier-stokes/cpp/PressureUpdate.ufl | 41 + .../navier-stokes/cpp/TentativeVelocity.h | 7029 ++ .../navier-stokes/cpp/TentativeVelocity.ufl | 45 + .../navier-stokes/cpp/VelocityUpdate.h | 8040 +++ .../navier-stokes/cpp/VelocityUpdate.ufl | 42 + demo/documented/navier-stokes/cpp/compile.log | 3024 + .../navier-stokes/cpp/documentation.rst | 449 + demo/documented/navier-stokes/cpp/main.cpp | 196 + demo/documented/navier-stokes/lshape.xml.gz | Bin 0 -> 3420 bytes .../navier-stokes/navier-stokes_p.png | Bin 0 -> 28878 bytes .../navier-stokes/navier-stokes_u.png | Bin 0 -> 60472 bytes .../python/demo_navier-stokes.py | 141 + .../navier-stokes/python/documentation.rst | 240 + demo/documented/neumann-poisson/common.txt | 99 + .../neumann-poisson/cpp/CMakeLists.txt | 40 + demo/documented/neumann-poisson/cpp/Poisson.h | 4254 ++ .../neumann-poisson/cpp/Poisson.ufl | 36 + .../neumann-poisson/cpp/compile.log | 346 + .../neumann-poisson/cpp/documentation.rst | 6 + demo/documented/neumann-poisson/cpp/main.cpp | 98 + .../neumann-poisson/neumann-poisson_u.png | Bin 0 -> 42812 bytes .../python/demo_neumann-poisson.py | 70 + .../neumann-poisson/python/documentation.rst | 115 + demo/documented/nonlinear-poisson/common.txt | 83 + .../nonlinear-poisson/cpp/CMakeLists.txt | 40 + .../nonlinear-poisson/cpp/NonlinearPoisson.h | 2550 + .../cpp/NonlinearPoisson.ufl | 35 + .../nonlinear-poisson/cpp/compile.log | 494 + .../nonlinear-poisson/cpp/documentation.rst | 6 + .../documented/nonlinear-poisson/cpp/main.cpp | 115 + demo/documented/nonlinear-poisson/cpp/plot.py | 10 + demo/documented/nonlinear-poisson/plot_u.png | Bin 0 -> 25785 bytes .../nonlinear-poisson/plot_u_gradient.png | Bin 0 -> 34141 bytes .../python/demo_nonlinear-poisson.py | 84 + .../python/documentation.rst | 164 + demo/documented/periodic/common.txt | 50 + demo/documented/periodic/cpp/CMakeLists.txt | 40 + demo/documented/periodic/cpp/Poisson.h | 2213 + demo/documented/periodic/cpp/Poisson.ufl | 33 + demo/documented/periodic/cpp/compile.log | 170 + .../documented/periodic/cpp/documentation.rst | 6 + demo/documented/periodic/cpp/main.cpp | 133 + demo/documented/periodic/plot_u.png | Bin 0 -> 58379 bytes .../periodic/python/demo_periodic.py | 89 + .../periodic/python/documentation.rst | 174 + demo/documented/poisson/common.txt | 54 + demo/documented/poisson/cpp/CMakeLists.txt | 40 + demo/documented/poisson/cpp/Poisson.h | 2403 + demo/documented/poisson/cpp/Poisson.ufl | 34 + demo/documented/poisson/cpp/compile.log | 213 + demo/documented/poisson/cpp/documentation.rst | 225 + demo/documented/poisson/cpp/main.cpp | 101 + demo/documented/poisson/poisson_u.png | Bin 0 -> 35484 bytes .../documented/poisson/python/demo_poisson.py | 68 + .../poisson/python/documentation.rst | 157 + demo/documented/singular-poisson/common.txt | 78 + .../singular-poisson/cpp/CMakeLists.txt | 40 + .../documented/singular-poisson/cpp/Poisson.h | 2403 + .../singular-poisson/cpp/Poisson.ufl | 33 + .../singular-poisson/cpp/compile.log | 213 + .../singular-poisson/cpp/documentation.rst | 6 + demo/documented/singular-poisson/cpp/main.cpp | 126 + .../python/demo_singular-poisson.py | 93 + .../singular-poisson/python/documentation.rst | 161 + .../singular-poisson/singular_u.png | Bin 0 -> 45179 bytes demo/documented/stokes-iterative/common.txt | 85 + .../stokes-iterative/cpp/CMakeLists.txt | 40 + demo/documented/stokes-iterative/cpp/Stokes.h | 25833 +++++++ .../stokes-iterative/cpp/Stokes.ufl | 37 + .../cpp/StokesPreconditioner.h | 25227 +++++++ .../cpp/StokesPreconditioner.ufl | 35 + .../stokes-iterative/cpp/compile.log | 2677 + .../stokes-iterative/cpp/documentation.rst | 6 + demo/documented/stokes-iterative/cpp/main.cpp | 184 + .../python/demo_stokes-iterative.py | 114 + .../stokes-iterative/python/documentation.rst | 211 + demo/documented/stokes-mini/common.txt | 71 + demo/documented/stokes-mini/cpp/README | 2 + .../stokes-mini/cpp/documentation.rst | 6 + .../documented/stokes-mini/dolfin_fine.xml.gz | Bin 0 -> 88283 bytes .../stokes-mini/dolfin_fine_subdomains.xml.gz | Bin 0 -> 42459 bytes demo/documented/stokes-mini/plot_p.png | Bin 0 -> 56331 bytes demo/documented/stokes-mini/plot_u.png | Bin 0 -> 60770 bytes .../stokes-mini/python/demo_stokes-mini.py | 87 + .../stokes-mini/python/documentation.rst | 165 + demo/documented/stokes-stabilized/common.txt | 84 + .../stokes-stabilized/cpp/CMakeLists.txt | 40 + .../documented/stokes-stabilized/cpp/Stokes.h | 6386 ++ .../stokes-stabilized/cpp/Stokes.ufl | 40 + .../stokes-stabilized/cpp/compile.log | 941 + .../stokes-stabilized/cpp/documentation.rst | 6 + .../documented/stokes-stabilized/cpp/main.cpp | 120 + demo/documented/stokes-stabilized/cpp/plot.py | 9 + .../stokes-stabilized/dolfin_fine.xml.gz | Bin 0 -> 88283 bytes .../dolfin_fine_subdomains.xml.gz | Bin 0 -> 42459 bytes demo/documented/stokes-stabilized/plot_p.png | Bin 0 -> 49829 bytes demo/documented/stokes-stabilized/plot_u.png | Bin 0 -> 94743 bytes .../python/demo_stokes-stabilized.py | 85 + .../python/documentation.rst | 136 + demo/documented/stokes-taylor-hood/common.txt | 79 + .../stokes-taylor-hood/cpp/CMakeLists.txt | 40 + .../stokes-taylor-hood/cpp/Stokes.h | 11114 ++++ .../stokes-taylor-hood/cpp/Stokes.ufl | 36 + .../stokes-taylor-hood/cpp/compile.log | 738 + .../stokes-taylor-hood/cpp/documentation.rst | 6 + .../stokes-taylor-hood/cpp/main.cpp | 118 + .../documented/stokes-taylor-hood/cpp/plot.py | 9 + .../stokes-taylor-hood/dolfin_fine.xml.gz | Bin 0 -> 88283 bytes .../dolfin_fine_subdomains.xml.gz | Bin 0 -> 42459 bytes .../stokes-taylor-hood/plot_mesh.png | Bin 0 -> 35671 bytes .../plot_mesh_boundaries.png | Bin 0 -> 52672 bytes demo/documented/stokes-taylor-hood/plot_p.png | Bin 0 -> 45135 bytes demo/documented/stokes-taylor-hood/plot_u.png | Bin 0 -> 95531 bytes .../python/demo_stokes-taylorhood.py | 92 + .../python/documentation.rst | 162 + demo/documented/subdomains-poisson/common.txt | 53 + demo/documented/subdomains-poisson/cpp/README | 2 + .../subdomains-poisson/cpp/documentation.rst | 6 + .../python/demo_subdomains-poisson.py | 117 + .../python/documentation.rst | 240 + demo/documented/subdomains/common.txt | 29 + demo/documented/subdomains/cpp/CMakeLists.txt | 40 + .../subdomains/cpp/documentation.rst | 6 + demo/documented/subdomains/cpp/main.cpp | 101 + demo/documented/subdomains/dolfin_fine.xml.gz | Bin 0 -> 88283 bytes .../documented/subdomains/plot_subdomains.png | Bin 0 -> 27143 bytes .../subdomains/python/demo_subdomains.py | 96 + .../subdomains/python/documentation.rst | 165 + .../tensor-weighted-poisson/common.txt | 70 + .../tensor-weighted-poisson/cpp/README | 2 + .../cpp/documentation.rst | 6 + .../python/demo_tensorweighted-poisson.py | 120 + .../python/documentation.rst | 302 + .../python/generate_data.py | 62 + .../tensorweighted-poisson_u.png | Bin 0 -> 59610 bytes .../unitsquare_32_32.xml.gz | Bin 0 -> 21613 bytes .../unitsquare_32_32_c00.xml.gz | Bin 0 -> 6551 bytes .../unitsquare_32_32_c01.xml.gz | Bin 0 -> 6570 bytes .../unitsquare_32_32_c11.xml.gz | Bin 0 -> 6548 bytes .../adaptive-poisson/cpp/CMakeLists.txt | 39 + demo/undocumented/adaptive-poisson/cpp/README | 2 + .../python/demo_adaptive-poisson.py | 104 + .../cpp/AdvectionDiffusion.h | 7538 +++ .../cpp/AdvectionDiffusion.ufl | 40 + .../advection-diffusion/cpp/CMakeLists.txt | 40 + .../advection-diffusion/cpp/Velocity.h | 5113 ++ .../advection-diffusion/cpp/Velocity.ufl | 25 + .../advection-diffusion/cpp/compile.log | 741 + .../advection-diffusion/cpp/main.cpp | 113 + .../advection-diffusion/dolfin_fine.xml.gz | Bin 0 -> 88283 bytes .../dolfin_fine_subdomains.xml.gz | Bin 0 -> 42459 bytes .../dolfin_fine_velocity.xml.gz | Bin 0 -> 375382 bytes .../python/demo_advection-diffusion.py | 127 + demo/undocumented/ale/cpp/CMakeLists.txt | 40 + demo/undocumented/ale/cpp/main.cpp | 60 + demo/undocumented/ale/python/demo_ale.py | 46 + .../channel_with_flap.xml.gz | Bin 0 -> 10417 bytes .../cpp/AdaptiveNavierStokes.h | 55496 ++++++++++++++++ .../cpp/AdaptiveNavierStokes.ufl | 51 + .../cpp/CMakeLists.txt | 40 + .../cpp/compile.log | 21902 ++++++ .../auto-adaptive-navier-stokes/cpp/main.cpp | 130 + .../demo_auto-adaptive-navier-stokes.py | 115 + .../block-matrix/cpp/CMakeLists.txt | 40 + .../block-matrix/cpp/StiffnessMatrix.h | 2121 + .../block-matrix/cpp/StiffnessMatrix.ufl | 31 + .../undocumented/block-matrix/cpp/compile.log | 356 + demo/undocumented/block-matrix/cpp/main.cpp | 69 + .../block-matrix/python/demo_block-matrix.py | 59 + demo/undocumented/built-in/cpp/CMakeLists.txt | 40 + demo/undocumented/built-in/cpp/main.cpp | 74 + .../built-in/python/demo_built-in.py | 69 + .../python/demo_collision-detection.py | 98 + demo/undocumented/coloring/cpp/CMakeLists.txt | 40 + demo/undocumented/coloring/cpp/main.cpp | 66 + .../coloring/python/demo_coloring.py | 52 + .../compiled-extension-module/cpp/README | 2 + .../python/Probe/Probe.cpp | 138 + .../python/Probe/Probe.h | 85 + .../python/demo_compiled-extension-module.py | 42 + .../conditional/cpp/CMakeLists.txt | 40 + .../conditional/cpp/Conditional.h | 2876 + .../conditional/cpp/Conditional.ufl | 44 + demo/undocumented/conditional/cpp/compile.log | 330 + demo/undocumented/conditional/cpp/main.cpp | 76 + .../conditional/python/demo_conditional.py | 77 + .../contact-vi-snes/circle_yplane.geo | 15 + .../contact-vi-snes/circle_yplane.xml.gz | Bin 0 -> 73289 bytes .../contact-vi-snes/cpp/CMakeLists.txt | 40 + .../contact-vi-snes/cpp/HyperElasticity.h | 4932 ++ .../contact-vi-snes/cpp/HyperElasticity.ufl | 62 + .../contact-vi-snes/cpp/compile.log | 537 + .../undocumented/contact-vi-snes/cpp/main.cpp | 152 + .../python/demo_contact-vi-snes.py | 116 + .../contact-vi-tao/circle_yplane.xml.gz | Bin 0 -> 73289 bytes .../contact-vi-tao/cpp/CMakeLists.txt | 40 + .../contact-vi-tao/cpp/Elasticity.h | 4739 ++ .../contact-vi-tao/cpp/Elasticity.ufl | 45 + .../contact-vi-tao/cpp/compile.log | 425 + demo/undocumented/contact-vi-tao/cpp/main.cpp | 133 + .../python/demo_contact-vi-tao.py | 104 + .../undocumented/curl-curl/cpp/CMakeLists.txt | 40 + .../curl-curl/cpp/CurrentDensity.h | 8256 +++ .../curl-curl/cpp/CurrentDensity.ufl | 34 + .../undocumented/curl-curl/cpp/EddyCurrents.h | 8168 +++ .../curl-curl/cpp/EddyCurrents.ufl | 34 + demo/undocumented/curl-curl/cpp/compile.log | 1673 + demo/undocumented/curl-curl/cpp/main.cpp | 135 + .../curl-curl/python/demo_curl-curl.py | 89 + .../cpp/AdvectionDiffusion.h | 9504 +++ .../cpp/AdvectionDiffusion.ufl | 58 + .../dg-advection-diffusion/cpp/CMakeLists.txt | 40 + .../dg-advection-diffusion/cpp/Projection.h | 3325 + .../dg-advection-diffusion/cpp/Projection.ufl | 32 + .../dg-advection-diffusion/cpp/Velocity.h | 5113 ++ .../dg-advection-diffusion/cpp/Velocity.ufl | 26 + .../dg-advection-diffusion/cpp/compile.log | 2743 + .../dg-advection-diffusion/cpp/main.cpp | 120 + .../python/demo_dg-advection-diffusion.py | 101 + .../unitsquare_64_64.xml.gz | Bin 0 -> 84425 bytes .../unitsquare_64_64_velocity.xml.gz | Bin 0 -> 205780 bytes .../dg-poisson/cpp/CMakeLists.txt | 40 + demo/undocumented/dg-poisson/cpp/Poisson.h | 4032 ++ demo/undocumented/dg-poisson/cpp/Poisson.ufl | 55 + demo/undocumented/dg-poisson/cpp/compile.log | 1558 + demo/undocumented/dg-poisson/cpp/main.cpp | 132 + demo/undocumented/dg-poisson/cpp/plot.py | 4 + .../dg-poisson/python/demo_dg-poisson.py | 103 + .../elasticity/cpp/CMakeLists.txt | 40 + demo/undocumented/elasticity/cpp/Elasticity.h | 9652 +++ .../elasticity/cpp/Elasticity.ufl | 54 + demo/undocumented/elasticity/cpp/compile.log | 1968 + demo/undocumented/elasticity/cpp/main.cpp | 197 + demo/undocumented/elasticity/cpp/plot.py | 4 + demo/undocumented/elasticity/gear.xml.gz | Bin 0 -> 500213 bytes .../elasticity/python/demo_elasticity.py | 111 + .../elastodynamics/cpp/CMakeLists.txt | 40 + .../elastodynamics/cpp/DG0_eps_xx.h | 4411 ++ .../elastodynamics/cpp/DG0_eps_xx.ufl | 34 + .../elastodynamics/cpp/ElastoDynamics.h | 6405 ++ .../elastodynamics/cpp/ElastoDynamics.ufl | 77 + .../elastodynamics/cpp/compile.log | 1260 + demo/undocumented/elastodynamics/cpp/main.cpp | 233 + .../elastodynamics/dolfin_fine.xml.gz | Bin 0 -> 88283 bytes .../python/demo_elastodynamics.py | 177 + .../elementplot/python/demo_elementplot.py | 26 + demo/undocumented/eval/cpp/CMakeLists.txt | 40 + demo/undocumented/eval/cpp/Projection.h | 4575 ++ demo/undocumented/eval/cpp/Projection.ufl | 33 + demo/undocumented/eval/cpp/compile.log | 242 + demo/undocumented/eval/cpp/main.cpp | 76 + demo/undocumented/eval/python/demo_eval.py | 52 + .../extrapolation/cpp/CMakeLists.txt | 40 + demo/undocumented/extrapolation/cpp/P1.h | 1267 + demo/undocumented/extrapolation/cpp/P1.ufl | 1 + demo/undocumented/extrapolation/cpp/P2.h | 1986 + demo/undocumented/extrapolation/cpp/P2.ufl | 1 + .../extrapolation/cpp/compile.log | 216 + demo/undocumented/extrapolation/cpp/main.cpp | 67 + .../python/demo_extrapolation.py | 42 + .../functional/cpp/CMakeLists.txt | 40 + demo/undocumented/functional/cpp/EnergyNorm.h | 2424 + .../functional/cpp/EnergyNorm.ufl | 26 + demo/undocumented/functional/cpp/compile.log | 481 + demo/undocumented/functional/cpp/main.cpp | 65 + .../functional/python/demo_functional.py | 50 + .../interpolation/cpp/CMakeLists.txt | 39 + demo/undocumented/interpolation/cpp/README | 2 + .../python/demo_interpolation.py | 63 + .../undocumented/lift-drag/cpp/CMakeLists.txt | 40 + demo/undocumented/lift-drag/cpp/Functionals.h | 2270 + .../lift-drag/cpp/Functionals.ufl | 36 + demo/undocumented/lift-drag/cpp/README | 1 + demo/undocumented/lift-drag/cpp/compile.log | 539 + demo/undocumented/lift-drag/cpp/main.cpp | 78 + .../undocumented/lift-drag/dolfin_fine.xml.gz | Bin 0 -> 88283 bytes .../lift-drag/dolfin_fine_pressure.xml.gz | Bin 0 -> 49720 bytes .../lift-drag/python/demo_lift-drag.py | 64 + .../mesh-quality/cpp/CMakeLists.txt | 40 + demo/undocumented/mesh-quality/cpp/main.cpp | 67 + .../mesh-quality/dolfin_fine.xml.gz | Bin 0 -> 88283 bytes .../mesh-quality/python/demo_mesh-quality.py | 42 + .../cpp/CMakeLists.txt | 40 + .../meshfunction-refinement/cpp/main.cpp | 75 + .../python/demo_mixed-poisson-sphere.py | 76 + .../mixed-poisson-sphere/sphere_16.xml.gz | Bin 0 -> 34606 bytes .../undocumented/multistage-solver/cpp/README | 2 + .../multistage-solver/dolfin_fine.xml.gz | Bin 0 -> 88283 bytes .../dolfin_fine_subdomains.xml.gz | Bin 0 -> 42459 bytes .../dolfin_fine_velocity.xml.gz | Bin 0 -> 375382 bytes .../python/demo_multi-stage-solver.py | 100 + .../cpp/CMakeLists.txt | 40 + .../nonmatching-interpolation/cpp/P1.h | 1267 + .../nonmatching-interpolation/cpp/P1.ufl | 27 + .../nonmatching-interpolation/cpp/P3.h | 3126 + .../nonmatching-interpolation/cpp/P3.ufl | 27 + .../nonmatching-interpolation/cpp/compile.log | 264 + .../nonmatching-interpolation/cpp/main.cpp | 82 + .../python/demo_nonmatching-interpolation.py | 46 + .../nonmatching-projection/cpp/CMakeLists.txt | 40 + .../cpp/P1_projection.h | 5210 ++ .../cpp/P1_projection.ufl | 34 + .../nonmatching-projection/cpp/P3.h | 3126 + .../nonmatching-projection/cpp/P3.ufl | 27 + .../nonmatching-projection/cpp/compile.log | 462 + .../nonmatching-projection/cpp/main.cpp | 84 + .../python/demo_nonmatching-projection.py | 51 + .../optimization/python/demo_optimization.py | 98 + .../overlapping-regions/cpp/README | 2 + .../overlapping-regions/python/README | 2 + .../python/demo_overlapping-regions.py | 75 + .../parallel-refinement/cpp/CMakeLists.txt | 40 + .../parallel-refinement/cpp/main.cpp | 59 + .../python/demo_parallel-refinement.py | 48 + .../parameters/cpp/CMakeLists.txt | 40 + demo/undocumented/parameters/cpp/main.cpp | 119 + .../parameters/cpp/parameters.xml | 8 + .../parameters/python/demo_parameters.py | 161 + .../parameters/python/parameters.xml | 14 + .../petsc4py/python/demo_petsc4py.py | 101 + .../plot-qt/cpp/BoundaryMeshFunction.cpp | 37 + .../plot-qt/cpp/BoundaryMeshFunction.h | 48 + demo/undocumented/plot-qt/cpp/CMakeLists.txt | 102 + demo/undocumented/plot-qt/cpp/CoordLabel.cpp | 49 + demo/undocumented/plot-qt/cpp/CoordLabel.h | 49 + demo/undocumented/plot-qt/cpp/PlotWidget.cpp | 53 + demo/undocumented/plot-qt/cpp/PlotWidget.h | 57 + demo/undocumented/plot-qt/cpp/Plotter.cpp | 108 + demo/undocumented/plot-qt/cpp/Plotter.h | 73 + demo/undocumented/plot-qt/cpp/main.cpp | 96 + demo/undocumented/plot/cpp/CMakeLists.txt | 40 + demo/undocumented/plot/cpp/main.cpp | 129 + demo/undocumented/plot/dolfin_fine.xml.gz | Bin 0 -> 88283 bytes demo/undocumented/plot/python/demo_plot.py | 101 + .../poisson1D-in-2D/cpp/CMakeLists.txt | 40 + .../poisson1D-in-2D/cpp/Poisson.h | 2148 + .../poisson1D-in-2D/cpp/Poisson.ufl | 38 + .../poisson1D-in-2D/cpp/compile.log | 180 + .../undocumented/poisson1D-in-2D/cpp/main.cpp | 140 + .../python/demo_poisson1D-in-2D.py | 114 + .../undocumented/poisson1D/cpp/CMakeLists.txt | 40 + demo/undocumented/poisson1D/cpp/Poisson.h | 2108 + demo/undocumented/poisson1D/cpp/Poisson.ufl | 35 + demo/undocumented/poisson1D/cpp/compile.log | 180 + demo/undocumented/poisson1D/cpp/main.cpp | 109 + .../poisson1D/python/demo_poisson1D.py | 70 + .../cpp/CMakeLists.txt | 39 + .../projection-interpolation/cpp/README | 2 + .../python/demo_projection-interpolation.py | 44 + .../refinement/cpp/CMakeLists.txt | 40 + demo/undocumented/refinement/cpp/main.cpp | 61 + .../refinement/python/demo_refinement.py | 66 + .../restriction/cpp/CMakeLists.txt | 40 + demo/undocumented/restriction/cpp/Poisson.h | 2213 + demo/undocumented/restriction/cpp/Poisson.ufl | 33 + demo/undocumented/restriction/cpp/compile.log | 170 + demo/undocumented/restriction/cpp/main.cpp | 81 + demo/undocumented/restriction/python/README | 2 + .../restriction/python/demo_restriction.py | 79 + .../undocumented/smoothing/cpp/CMakeLists.txt | 39 + demo/undocumented/smoothing/cpp/README | 2 + .../smoothing/python/demo_smoothing.py | 72 + .../spatial-coordinates/cpp/CMakeLists.txt | 40 + .../cpp/SpatialCoordinates.h | 3091 + .../cpp/SpatialCoordinates.ufl | 36 + .../spatial-coordinates/cpp/compile.log | 926 + .../spatial-coordinates/cpp/main.cpp | 83 + .../python/demo_spatial-coordinates.py | 79 + .../python/demo_special_functions.py | 54 + .../sub-function-assignment/cpp/README | 2 + .../python/demo_sub-function-assignment.py | 72 + demo/undocumented/submesh/cpp/CMakeLists.txt | 40 + demo/undocumented/submesh/cpp/main.cpp | 73 + .../submesh/python/demo_submesh.py | 62 + .../sym-dirichlet-bc/cpp/CMakeLists.txt | 40 + .../sym-dirichlet-bc/cpp/Poisson.h | 2403 + .../sym-dirichlet-bc/cpp/Poisson.ufl | 34 + .../sym-dirichlet-bc/cpp/compile.log | 213 + .../sym-dirichlet-bc/cpp/main.cpp | 142 + .../python/demo_sym-dirichlet-bc.py | 75 + .../time-series/cpp/CMakeLists.txt | 40 + demo/undocumented/time-series/cpp/main.cpp | 71 + .../time-series/python/demo_time-series.py | 54 + .../triangulate/cpp/CMakeLists.txt | 40 + demo/undocumented/triangulate/cpp/main.cpp | 60 + .../triangulate/python/demo_triangulate.py | 43 + .../trilinos/python/demo_trilinos.py | 102 + .../undocumented/waveguide/cpp/CMakeLists.txt | 40 + demo/undocumented/waveguide/cpp/Forms.h | 6166 ++ demo/undocumented/waveguide/cpp/Forms.py | 46 + demo/undocumented/waveguide/cpp/Forms.ufl | 31 + demo/undocumented/waveguide/cpp/compile.log | 1249 + demo/undocumented/waveguide/cpp/main.cpp | 108 + .../waveguide/python/demo_waveguide.py | 104 + doc/CMakeLists.txt | 97 + doc/README | 80 + doc/copy_and_split_demo_doc.py | 190 + doc/generate_api_doc.py | 75 + doc/generate_main_index.py | 85 + doc/man/man1/dolfin-convert.1.gz | Bin 0 -> 789 bytes doc/man/man1/dolfin-order.1.gz | Bin 0 -> 305 bytes doc/man/man1/dolfin-plot.1.gz | Bin 0 -> 321 bytes doc/man/man1/dolfin-version.1.gz | Bin 0 -> 236 bytes doc/quick_reference_cpp.rst | 50 + doc/quick_reference_python.rst | 48 + doc/sphinx-common/Makefile | 130 + doc/sphinx-common/README | 5 + doc/sphinx-common/source/conf.py | 230 + doc/sphinx-common/source/index.rst | 0 dolfin/CMakeLists.txt | 423 + .../AdaptiveLinearVariationalSolver.cpp | 133 + .../AdaptiveLinearVariationalSolver.h | 168 + .../AdaptiveNonlinearVariationalSolver.cpp | 130 + .../AdaptiveNonlinearVariationalSolver.h | 169 + dolfin/adaptivity/ErrorControl.cpp | 501 + dolfin/adaptivity/ErrorControl.h | 244 + dolfin/adaptivity/Extrapolation.cpp | 299 + dolfin/adaptivity/Extrapolation.h | 112 + .../GenericAdaptiveVariationalSolver.cpp | 257 + .../GenericAdaptiveVariationalSolver.h | 161 + dolfin/adaptivity/GoalFunctional.cpp | 34 + dolfin/adaptivity/GoalFunctional.h | 67 + dolfin/adaptivity/LocalAssembler.cpp | 204 + dolfin/adaptivity/LocalAssembler.h | 91 + dolfin/adaptivity/TimeSeries.cpp | 404 + dolfin/adaptivity/TimeSeries.h | 206 + dolfin/adaptivity/TimeSeriesHDF5.cpp | 406 + dolfin/adaptivity/TimeSeriesHDF5.h | 165 + dolfin/adaptivity/adapt.cpp | 630 + dolfin/adaptivity/adapt.h | 160 + dolfin/adaptivity/adaptivesolve.cpp | 119 + dolfin/adaptivity/adaptivesolve.h | 91 + dolfin/adaptivity/dolfin_adaptivity.h | 20 + dolfin/adaptivity/marking.cpp | 93 + dolfin/adaptivity/marking.h | 68 + dolfin/ale/ALE.cpp | 136 + dolfin/ale/ALE.h | 62 + dolfin/ale/ALEType.h | 32 + dolfin/ale/HarmonicSmoothing.cpp | 187 + dolfin/ale/HarmonicSmoothing.h | 51 + dolfin/ale/MeshDisplacement.cpp | 116 + dolfin/ale/MeshDisplacement.h | 109 + dolfin/ale/Poisson1D.h | 1407 + dolfin/ale/Poisson1D.ufl | 23 + dolfin/ale/Poisson2D.h | 1682 + dolfin/ale/Poisson2D.ufl | 23 + dolfin/ale/Poisson3D.h | 2051 + dolfin/ale/Poisson3D.ufl | 23 + dolfin/ale/compile.log | 407 + dolfin/ale/dolfin_ale.h | 9 + dolfin/common/Array.h | 122 + dolfin/common/Hierarchical.h | 282 + dolfin/common/IndexSet.h | 135 + dolfin/common/MPI.cpp | 197 + dolfin/common/MPI.h | 682 + dolfin/common/NoDeleter.h | 49 + dolfin/common/RangedIndexSet.h | 108 + dolfin/common/Set.h | 133 + dolfin/common/SubSystemsManager.cpp | 314 + dolfin/common/SubSystemsManager.h | 96 + dolfin/common/Timer.cpp | 59 + dolfin/common/Timer.h | 79 + dolfin/common/UniqueIdGenerator.cpp | 44 + dolfin/common/UniqueIdGenerator.h | 55 + dolfin/common/Variable.cpp | 78 + dolfin/common/Variable.h | 88 + dolfin/common/constants.h | 33 + dolfin/common/defines.cpp | 170 + dolfin/common/defines.h | 86 + dolfin/common/dolfin_common.h | 20 + dolfin/common/dolfin_doc.h | 32 + dolfin/common/init.cpp | 35 + dolfin/common/init.h | 34 + dolfin/common/timing.cpp | 113 + dolfin/common/timing.h | 58 + dolfin/common/types.h | 44 + dolfin/common/unittest.h | 40 + dolfin/common/utils.cpp | 58 + dolfin/common/utils.h | 103 + dolfin/dolfin.h | 39 + dolfin/fem/Assembler.cpp | 428 + dolfin/fem/Assembler.h | 104 + dolfin/fem/AssemblerBase.cpp | 273 + dolfin/fem/AssemblerBase.h | 154 + dolfin/fem/BasisFunction.h | 124 + dolfin/fem/CCFEMAssembler.cpp | 195 + dolfin/fem/CCFEMAssembler.h | 65 + dolfin/fem/CCFEMDofMap.cpp | 314 + dolfin/fem/CCFEMDofMap.h | 221 + dolfin/fem/CCFEMForm.cpp | 124 + dolfin/fem/CCFEMForm.h | 130 + dolfin/fem/DirichletBC.cpp | 1237 + dolfin/fem/DirichletBC.h | 545 + dolfin/fem/DofMap.cpp | 526 + dolfin/fem/DofMap.h | 454 + dolfin/fem/DofMapBuilder.cpp | 1364 + dolfin/fem/DofMapBuilder.h | 176 + dolfin/fem/DomainAssigner.cpp | 69 + dolfin/fem/DomainAssigner.h | 106 + dolfin/fem/Equation.cpp | 67 + dolfin/fem/Equation.h | 84 + dolfin/fem/FiniteElement.cpp | 90 + dolfin/fem/FiniteElement.h | 284 + dolfin/fem/Form.cpp | 394 + dolfin/fem/Form.h | 374 + dolfin/fem/GenericDofMap.h | 183 + dolfin/fem/LinearTimeDependentProblem.cpp | 167 + dolfin/fem/LinearTimeDependentProblem.h | 118 + dolfin/fem/LinearVariationalProblem.cpp | 158 + dolfin/fem/LinearVariationalProblem.h | 114 + dolfin/fem/LinearVariationalSolver.cpp | 211 + dolfin/fem/LinearVariationalSolver.h | 79 + dolfin/fem/LocalSolver.cpp | 138 + dolfin/fem/LocalSolver.h | 58 + dolfin/fem/NonlinearVariationalProblem.cpp | 266 + dolfin/fem/NonlinearVariationalProblem.h | 185 + dolfin/fem/NonlinearVariationalSolver.cpp | 245 + dolfin/fem/NonlinearVariationalSolver.h | 192 + dolfin/fem/OpenMpAssembler.cpp | 631 + dolfin/fem/OpenMpAssembler.h | 83 + dolfin/fem/PointSource.cpp | 143 + dolfin/fem/PointSource.h | 73 + dolfin/fem/SparsityPatternBuilder.cpp | 226 + dolfin/fem/SparsityPatternBuilder.h | 64 + dolfin/fem/SystemAssembler.cpp | 1001 + dolfin/fem/SystemAssembler.h | 172 + dolfin/fem/UFC.cpp | 194 + dolfin/fem/UFC.h | 244 + dolfin/fem/assemble.cpp | 96 + dolfin/fem/assemble.h | 87 + dolfin/fem/dolfin_fem.h | 33 + dolfin/fem/fem_utils.cpp | 138 + dolfin/fem/fem_utils.h | 66 + dolfin/fem/solve.cpp | 120 + dolfin/fem/solve.h | 106 + dolfin/function/CCFEMFunction.cpp | 117 + dolfin/function/CCFEMFunction.h | 106 + dolfin/function/CCFEMFunctionSpace.cpp | 358 + dolfin/function/CCFEMFunctionSpace.h | 303 + dolfin/function/CoefficientAssigner.cpp | 47 + dolfin/function/CoefficientAssigner.h | 66 + dolfin/function/Constant.cpp | 131 + dolfin/function/Constant.h | 147 + dolfin/function/Expression.cpp | 146 + dolfin/function/Expression.h | 168 + dolfin/function/Function.cpp | 765 + dolfin/function/Function.h | 409 + dolfin/function/FunctionAXPY.cpp | 141 + dolfin/function/FunctionAXPY.h | 105 + dolfin/function/FunctionAssigner.cpp | 485 + dolfin/function/FunctionAssigner.h | 161 + dolfin/function/FunctionSpace.cpp | 303 + dolfin/function/FunctionSpace.h | 279 + dolfin/function/GenericFunction.cpp | 202 + dolfin/function/GenericFunction.h | 141 + dolfin/function/LagrangeInterpolator.cpp | 440 + dolfin/function/LagrangeInterpolator.h | 109 + dolfin/function/SpecialFacetFunction.cpp | 53 + dolfin/function/SpecialFacetFunction.h | 85 + dolfin/function/SpecialFunctions.cpp | 75 + dolfin/function/SpecialFunctions.h | 82 + dolfin/function/SubSpace.cpp | 61 + dolfin/function/SubSpace.h | 61 + dolfin/function/assign.cpp | 64 + dolfin/function/assign.h | 62 + dolfin/function/dolfin_function.h | 21 + dolfin/generation/BoxMesh.cpp | 158 + dolfin/generation/BoxMesh.h | 123 + dolfin/generation/CGALMeshBuilder.h | 529 + dolfin/generation/CSGCGALDomain2D.cpp | 345 + dolfin/generation/CSGCGALDomain2D.h | 72 + dolfin/generation/CSGCGALMeshGenerator2D.cpp | 459 + dolfin/generation/CSGCGALMeshGenerator2D.h | 71 + dolfin/generation/CSGCGALMeshGenerator3D.cpp | 238 + dolfin/generation/CSGCGALMeshGenerator3D.h | 79 + dolfin/generation/CSGGeometries3D.cpp | 145 + dolfin/generation/CSGGeometries3D.h | 52 + dolfin/generation/CSGGeometry.cpp | 74 + dolfin/generation/CSGGeometry.h | 73 + dolfin/generation/CSGMeshGenerator.cpp | 103 + dolfin/generation/CSGMeshGenerator.h | 52 + dolfin/generation/CSGOperators.cpp | 167 + dolfin/generation/CSGOperators.h | 196 + dolfin/generation/CSGPrimitive.h | 42 + dolfin/generation/CSGPrimitives2D.cpp | 211 + dolfin/generation/CSGPrimitives2D.h | 198 + dolfin/generation/CSGPrimitives3D.cpp | 168 + dolfin/generation/CSGPrimitives3D.h | 207 + dolfin/generation/EllipseMesh.cpp | 71 + dolfin/generation/EllipseMesh.h | 90 + dolfin/generation/EllipsoidMesh.cpp | 75 + dolfin/generation/EllipsoidMesh.h | 90 + dolfin/generation/GeometryToCGALConverter.cpp | 738 + dolfin/generation/GeometryToCGALConverter.h | 45 + .../ImplicitDomainMeshGenerator.cpp | 215 + .../generation/ImplicitDomainMeshGenerator.h | 65 + dolfin/generation/IntervalMesh.cpp | 114 + dolfin/generation/IntervalMesh.h | 89 + dolfin/generation/PolygonalMeshGenerator.cpp | 116 + dolfin/generation/PolygonalMeshGenerator.h | 61 + dolfin/generation/PolyhedralMeshGenerator.cpp | 340 + dolfin/generation/PolyhedralMeshGenerator.h | 79 + dolfin/generation/PolyhedronUtils.cpp | 635 + dolfin/generation/PolyhedronUtils.h | 67 + dolfin/generation/RectangleMesh.cpp | 228 + dolfin/generation/RectangleMesh.h | 109 + dolfin/generation/Triangulate.cpp | 118 + dolfin/generation/Triangulate.h | 57 + dolfin/generation/UnitCubeMesh.h | 87 + dolfin/generation/UnitIntervalMesh.h | 78 + dolfin/generation/UnitSquareMesh.h | 93 + dolfin/generation/UnitTetrahedronMesh.cpp | 73 + dolfin/generation/UnitTetrahedronMesh.h | 51 + dolfin/generation/UnitTriangleMesh.cpp | 69 + dolfin/generation/UnitTriangleMesh.h | 50 + dolfin/generation/cgal_csg3d.h | 59 + .../generation/cgal_triangulate_polyhedron.h | 218 + dolfin/generation/compute_normal.h | 44 + dolfin/generation/dolfin_generation.h | 29 + dolfin/generation/self_intersect.h | 155 + dolfin/geometry/BoundingBoxTree.cpp | 207 + dolfin/geometry/BoundingBoxTree.h | 246 + dolfin/geometry/BoundingBoxTree1D.h | 173 + dolfin/geometry/BoundingBoxTree2D.h | 215 + dolfin/geometry/BoundingBoxTree3D.h | 257 + dolfin/geometry/CollisionDetection.cpp | 1107 + dolfin/geometry/CollisionDetection.h | 303 + dolfin/geometry/GenericBoundingBoxTree.cpp | 727 + dolfin/geometry/GenericBoundingBoxTree.h | 344 + dolfin/geometry/ImplicitSurface.cpp | 45 + dolfin/geometry/ImplicitSurface.h | 97 + dolfin/geometry/IntersectionTriangulation.cpp | 966 + dolfin/geometry/IntersectionTriangulation.h | 146 + dolfin/geometry/MeshPointIntersection.cpp | 44 + dolfin/geometry/MeshPointIntersection.h | 62 + dolfin/geometry/Point.cpp | 76 + dolfin/geometry/Point.h | 340 + dolfin/geometry/SimplexQuadrature.cpp | 108 + dolfin/geometry/SimplexQuadrature.h | 122 + dolfin/geometry/dolfin_geometry.h | 14 + dolfin/geometry/intersect.cpp | 33 + dolfin/geometry/intersect.h | 50 + dolfin/graph/BoostGraphColoring.h | 123 + dolfin/graph/BoostGraphOrdering.cpp | 194 + dolfin/graph/BoostGraphOrdering.h | 66 + dolfin/graph/Graph.h | 43 + dolfin/graph/GraphBuilder.cpp | 368 + dolfin/graph/GraphBuilder.h | 91 + dolfin/graph/GraphColoring.cpp | 58 + dolfin/graph/GraphColoring.h | 46 + dolfin/graph/GraphOrdering.cpp | 197 + dolfin/graph/GraphOrdering.h | 99 + dolfin/graph/ParMETIS.cpp | 314 + dolfin/graph/ParMETIS.h | 79 + dolfin/graph/SCOTCH.cpp | 444 + dolfin/graph/SCOTCH.h | 80 + dolfin/graph/ZoltanInterface.cpp | 181 + dolfin/graph/ZoltanInterface.h | 100 + dolfin/graph/ZoltanPartition.cpp | 466 + dolfin/graph/ZoltanPartition.h | 99 + dolfin/graph/dolfin_graph.h | 11 + dolfin/io/BinaryFile.cpp | 321 + dolfin/io/BinaryFile.h | 121 + dolfin/io/Encoder.h | 97 + dolfin/io/ExodusFile.cpp | 400 + dolfin/io/ExodusFile.h | 76 + dolfin/io/File.cpp | 244 + dolfin/io/File.h | 275 + dolfin/io/GenericFile.cpp | 361 + dolfin/io/GenericFile.h | 146 + dolfin/io/HDF5Attribute.cpp | 212 + dolfin/io/HDF5Attribute.h | 120 + dolfin/io/HDF5File.cpp | 1386 + dolfin/io/HDF5File.h | 233 + dolfin/io/HDF5Interface.cpp | 406 + dolfin/io/HDF5Interface.h | 616 + dolfin/io/HDF5Utility.cpp | 440 + dolfin/io/HDF5Utility.h | 103 + dolfin/io/RAWFile.cpp | 235 + dolfin/io/RAWFile.h | 61 + dolfin/io/SAX2AttributeParser.h | 83 + dolfin/io/SVGFile.cpp | 128 + dolfin/io/SVGFile.h | 49 + dolfin/io/VTKFile.cpp | 779 + dolfin/io/VTKFile.h | 126 + dolfin/io/VTKWriter.cpp | 414 + dolfin/io/VTKWriter.h | 156 + dolfin/io/X3DFile.cpp | 668 + dolfin/io/X3DFile.h | 104 + dolfin/io/XDMFFile.cpp | 957 + dolfin/io/XDMFFile.h | 163 + dolfin/io/XMLArray.h | 120 + dolfin/io/XMLFile.cpp | 455 + dolfin/io/XMLFile.h | 174 + dolfin/io/XMLFunctionData.cpp | 318 + dolfin/io/XMLFunctionData.h | 61 + dolfin/io/XMLLocalMeshSAX.cpp | 576 + dolfin/io/XMLLocalMeshSAX.h | 141 + dolfin/io/XMLMesh.cpp | 509 + dolfin/io/XMLMesh.h | 89 + dolfin/io/XMLMeshFunction.h | 249 + dolfin/io/XMLMeshValueCollection.h | 179 + dolfin/io/XMLParameters.cpp | 164 + dolfin/io/XMLParameters.h | 60 + dolfin/io/XMLVector.cpp | 144 + dolfin/io/XMLVector.h | 62 + dolfin/io/XYZFile.cpp | 209 + dolfin/io/XYZFile.h | 63 + dolfin/io/base64.cpp | 124 + dolfin/io/base64.h | 5 + dolfin/io/dolfin_io.h | 12 + dolfin/io/pugiconfig.hpp | 69 + dolfin/io/pugixml.cpp | 10250 +++ dolfin/io/pugixml.hpp | 1265 + dolfin/io/xmlutils.cpp | 44 + dolfin/io/xmlutils.h | 41 + dolfin/la/BlockMatrix.cpp | 195 + dolfin/la/BlockMatrix.h | 87 + dolfin/la/BlockVector.cpp | 202 + dolfin/la/BlockVector.h | 111 + dolfin/la/CholmodCholeskySolver.cpp | 353 + dolfin/la/CholmodCholeskySolver.h | 141 + dolfin/la/CoordinateMatrix.cpp | 114 + dolfin/la/CoordinateMatrix.h | 92 + dolfin/la/DefaultFactory.cpp | 139 + dolfin/la/DefaultFactory.h | 84 + dolfin/la/EpetraFactory.cpp | 113 + dolfin/la/EpetraFactory.h | 103 + dolfin/la/EpetraKrylovSolver.cpp | 341 + dolfin/la/EpetraKrylovSolver.h | 138 + dolfin/la/EpetraLUSolver.cpp | 337 + dolfin/la/EpetraLUSolver.h | 123 + dolfin/la/EpetraMatrix.cpp | 814 + dolfin/la/EpetraMatrix.h | 197 + dolfin/la/EpetraVector.cpp | 926 + dolfin/la/EpetraVector.h | 251 + dolfin/la/GenericLUSolver.h | 84 + dolfin/la/GenericLinearAlgebraFactory.h | 124 + dolfin/la/GenericLinearOperator.h | 77 + dolfin/la/GenericLinearSolver.cpp | 65 + dolfin/la/GenericLinearSolver.h | 147 + dolfin/la/GenericMatrix.cpp | 183 + dolfin/la/GenericMatrix.h | 239 + dolfin/la/GenericPreconditioner.h | 66 + dolfin/la/GenericSparsityPattern.h | 129 + dolfin/la/GenericTensor.h | 110 + dolfin/la/GenericVector.h | 289 + dolfin/la/KrylovSolver.cpp | 194 + dolfin/la/KrylovSolver.h | 106 + dolfin/la/LUSolver.cpp | 127 + dolfin/la/LUSolver.h | 111 + dolfin/la/LinearAlgebraObject.h | 192 + dolfin/la/LinearOperator.cpp | 71 + dolfin/la/LinearOperator.h | 85 + dolfin/la/LinearSolver.cpp | 172 + dolfin/la/LinearSolver.h | 115 + dolfin/la/MUMPSLUSolver.cpp | 199 + dolfin/la/MUMPSLUSolver.h | 80 + dolfin/la/Matrix.h | 229 + dolfin/la/PETScBaseMatrix.cpp | 131 + dolfin/la/PETScBaseMatrix.h | 94 + dolfin/la/PETScCuspFactory.cpp | 106 + dolfin/la/PETScCuspFactory.h | 92 + dolfin/la/PETScFactory.cpp | 102 + dolfin/la/PETScFactory.h | 95 + dolfin/la/PETScKrylovSolver.cpp | 716 + dolfin/la/PETScKrylovSolver.h | 198 + dolfin/la/PETScLUSolver.cpp | 495 + dolfin/la/PETScLUSolver.h | 156 + dolfin/la/PETScLinearOperator.cpp | 146 + dolfin/la/PETScLinearOperator.h | 86 + dolfin/la/PETScMatrix.cpp | 668 + dolfin/la/PETScMatrix.h | 205 + dolfin/la/PETScObject.h | 59 + dolfin/la/PETScOptions.cpp | 69 + dolfin/la/PETScOptions.h | 85 + dolfin/la/PETScPreconditioner.cpp | 795 + dolfin/la/PETScPreconditioner.h | 128 + dolfin/la/PETScUserPreconditioner.cpp | 98 + dolfin/la/PETScUserPreconditioner.h | 73 + dolfin/la/PETScVector.cpp | 914 + dolfin/la/PETScVector.h | 258 + dolfin/la/PaStiXLUSolver.cpp | 294 + dolfin/la/PaStiXLUSolver.h | 69 + dolfin/la/SLEPcEigenSolver.cpp | 409 + dolfin/la/SLEPcEigenSolver.h | 240 + dolfin/la/STLFactory.cpp | 28 + dolfin/la/STLFactory.h | 115 + dolfin/la/STLFactoryCSC.cpp | 26 + dolfin/la/STLFactoryCSC.h | 60 + dolfin/la/STLMatrix.cpp | 470 + dolfin/la/STLMatrix.h | 388 + dolfin/la/STLVector.h | 43 + dolfin/la/Scalar.h | 193 + dolfin/la/SparsityPattern.cpp | 492 + dolfin/la/SparsityPattern.h | 150 + dolfin/la/TensorLayout.cpp | 109 + dolfin/la/TensorLayout.h | 111 + dolfin/la/TrilinosPreconditioner.cpp | 278 + dolfin/la/TrilinosPreconditioner.h | 151 + dolfin/la/UmfpackLUSolver.cpp | 518 + dolfin/la/UmfpackLUSolver.h | 119 + dolfin/la/Vector.h | 287 + dolfin/la/VectorSpaceBasis.cpp | 93 + dolfin/la/VectorSpaceBasis.h | 68 + dolfin/la/dolfin_la.h | 76 + dolfin/la/solve.cpp | 316 + dolfin/la/solve.h | 110 + dolfin/la/uBLASDenseMatrix.h | 33 + dolfin/la/uBLASDummyPreconditioner.cpp | 41 + dolfin/la/uBLASDummyPreconditioner.h | 55 + dolfin/la/uBLASFactory.h | 141 + dolfin/la/uBLASILUPreconditioner.cpp | 184 + dolfin/la/uBLASILUPreconditioner.h | 69 + dolfin/la/uBLASKrylovSolver.cpp | 168 + dolfin/la/uBLASKrylovSolver.h | 518 + dolfin/la/uBLASLinearOperator.cpp | 82 + dolfin/la/uBLASLinearOperator.h | 73 + dolfin/la/uBLASMatrix.h | 758 + dolfin/la/uBLASPreconditioner.h | 79 + dolfin/la/uBLASSparseMatrix.h | 33 + dolfin/la/uBLASVector.cpp | 414 + dolfin/la/uBLASVector.h | 290 + dolfin/la/ublas.h | 77 + dolfin/log/Event.cpp | 58 + dolfin/log/Event.h | 75 + dolfin/log/LogLevel.h | 21 + dolfin/log/LogManager.cpp | 24 + dolfin/log/LogManager.h | 50 + dolfin/log/LogStream.cpp | 129 + dolfin/log/LogStream.h | 108 + dolfin/log/Logger.cpp | 437 + dolfin/log/Logger.h | 162 + dolfin/log/Progress.cpp | 165 + dolfin/log/Progress.h | 137 + dolfin/log/README | 44 + dolfin/log/Table.cpp | 356 + dolfin/log/Table.h | 157 + dolfin/log/dolfin_log.h | 13 + dolfin/log/log.cpp | 230 + dolfin/log/log.h | 184 + dolfin/math/Lagrange.cpp | 180 + dolfin/math/Lagrange.h | 105 + dolfin/math/Legendre.cpp | 49 + dolfin/math/Legendre.h | 48 + dolfin/math/basic.cpp | 72 + dolfin/math/basic.h | 49 + dolfin/math/dolfin_math.h | 10 + dolfin/mesh/BoundaryComputation.cpp | 465 + dolfin/mesh/BoundaryComputation.h | 63 + dolfin/mesh/BoundaryMesh.cpp | 82 + dolfin/mesh/BoundaryMesh.h | 86 + dolfin/mesh/Cell.h | 407 + dolfin/mesh/CellType.cpp | 335 + dolfin/mesh/CellType.h | 175 + dolfin/mesh/DistributedMeshTools.cpp | 1062 + dolfin/mesh/DistributedMeshTools.h | 156 + dolfin/mesh/DomainBoundary.h | 52 + dolfin/mesh/DynamicMeshEditor.cpp | 235 + dolfin/mesh/DynamicMeshEditor.h | 116 + dolfin/mesh/Edge.cpp | 68 + dolfin/mesh/Edge.h | 128 + dolfin/mesh/Face.cpp | 130 + dolfin/mesh/Face.h | 84 + dolfin/mesh/Facet.cpp | 98 + dolfin/mesh/Facet.h | 101 + dolfin/mesh/FacetCell.cpp | 59 + dolfin/mesh/FacetCell.h | 58 + dolfin/mesh/IntervalCell.cpp | 308 + dolfin/mesh/IntervalCell.h | 110 + dolfin/mesh/LocalMeshData.cpp | 322 + dolfin/mesh/LocalMeshData.h | 142 + dolfin/mesh/LocalMeshValueCollection.h | 139 + dolfin/mesh/Mesh.cpp | 549 + dolfin/mesh/Mesh.h | 702 + dolfin/mesh/MeshColoring.cpp | 181 + dolfin/mesh/MeshColoring.h | 76 + dolfin/mesh/MeshConnectivity.cpp | 176 + dolfin/mesh/MeshConnectivity.h | 176 + dolfin/mesh/MeshData.cpp | 225 + dolfin/mesh/MeshData.h | 205 + dolfin/mesh/MeshDomains.cpp | 119 + dolfin/mesh/MeshDomains.h | 95 + dolfin/mesh/MeshEditor.cpp | 382 + dolfin/mesh/MeshEditor.h | 362 + dolfin/mesh/MeshEntity.cpp | 154 + dolfin/mesh/MeshEntity.h | 246 + dolfin/mesh/MeshEntityIterator.h | 204 + dolfin/mesh/MeshEntityIteratorBase.h | 169 + dolfin/mesh/MeshFunction.cpp | 67 + dolfin/mesh/MeshFunction.h | 843 + dolfin/mesh/MeshGeometry.cpp | 141 + dolfin/mesh/MeshGeometry.h | 151 + dolfin/mesh/MeshOrdering.cpp | 80 + dolfin/mesh/MeshOrdering.h | 46 + dolfin/mesh/MeshPartitioning.cpp | 545 + dolfin/mesh/MeshPartitioning.h | 299 + dolfin/mesh/MeshQuality.cpp | 135 + dolfin/mesh/MeshQuality.h | 95 + dolfin/mesh/MeshRenumbering.cpp | 267 + dolfin/mesh/MeshRenumbering.h | 68 + dolfin/mesh/MeshSmoothing.cpp | 207 + dolfin/mesh/MeshSmoothing.h | 62 + dolfin/mesh/MeshTopology.cpp | 245 + dolfin/mesh/MeshTopology.h | 174 + dolfin/mesh/MeshTransformation.cpp | 186 + dolfin/mesh/MeshTransformation.h | 76 + dolfin/mesh/MeshValueCollection.h | 625 + dolfin/mesh/PeriodicBoundaryComputation.cpp | 380 + dolfin/mesh/PeriodicBoundaryComputation.h | 74 + dolfin/mesh/PointCell.cpp | 190 + dolfin/mesh/PointCell.h | 112 + dolfin/mesh/Restriction.cpp | 83 + dolfin/mesh/Restriction.h | 118 + dolfin/mesh/SubDomain.cpp | 327 + dolfin/mesh/SubDomain.h | 288 + dolfin/mesh/SubMesh.cpp | 320 + dolfin/mesh/SubMesh.h | 67 + dolfin/mesh/SubsetIterator.h | 137 + dolfin/mesh/TetrahedronCell.cpp | 729 + dolfin/mesh/TetrahedronCell.h | 125 + dolfin/mesh/TopologyComputation.cpp | 366 + dolfin/mesh/TopologyComputation.h | 61 + dolfin/mesh/TriangleCell.cpp | 524 + dolfin/mesh/TriangleCell.h | 118 + dolfin/mesh/Vertex.h | 87 + dolfin/mesh/dolfin_mesh.h | 40 + dolfin/multistage/MultiStageScheme.cpp | 266 + dolfin/multistage/MultiStageScheme.h | 163 + dolfin/multistage/PointIntegralSolver.cpp | 824 + dolfin/multistage/PointIntegralSolver.h | 222 + dolfin/multistage/RKSolver.cpp | 138 + dolfin/multistage/RKSolver.h | 73 + dolfin/multistage/dolfin_multistage.h | 10 + dolfin/nls/NewtonSolver.cpp | 280 + dolfin/nls/NewtonSolver.h | 148 + dolfin/nls/NonlinearProblem.h | 63 + dolfin/nls/PETScSNESSolver.cpp | 660 + dolfin/nls/PETScSNESSolver.h | 168 + dolfin/nls/TAOLinearBoundSolver.cpp | 450 + dolfin/nls/TAOLinearBoundSolver.h | 222 + dolfin/nls/dolfin_nls.h | 11 + dolfin/parameter/GlobalParameters.cpp | 159 + dolfin/parameter/GlobalParameters.h | 193 + dolfin/parameter/Parameter.cpp | 712 + dolfin/parameter/Parameter.h | 336 + dolfin/parameter/Parameters.cpp | 650 + dolfin/parameter/Parameters.h | 307 + dolfin/parameter/dolfin_parameter.h | 10 + dolfin/plot/ExpressionWrapper.cpp | 34 + dolfin/plot/ExpressionWrapper.h | 67 + dolfin/plot/GenericVTKPlottable.h | 116 + dolfin/plot/VTKPlottableCSGGeometry.cpp | 104 + dolfin/plot/VTKPlottableCSGGeometry.h | 67 + dolfin/plot/VTKPlottableDirichletBC.cpp | 104 + dolfin/plot/VTKPlottableDirichletBC.h | 70 + dolfin/plot/VTKPlottableGenericFunction.cpp | 340 + dolfin/plot/VTKPlottableGenericFunction.h | 138 + dolfin/plot/VTKPlottableGenericFunction1D.cpp | 156 + dolfin/plot/VTKPlottableGenericFunction1D.h | 93 + dolfin/plot/VTKPlottableMesh.cpp | 518 + dolfin/plot/VTKPlottableMesh.h | 163 + dolfin/plot/VTKPlottableMeshFunction.cpp | 70 + dolfin/plot/VTKPlottableMeshFunction.h | 80 + dolfin/plot/VTKPlotter.cpp | 839 + dolfin/plot/VTKPlotter.h | 330 + dolfin/plot/VTKWindowOutputStage.cpp | 642 + dolfin/plot/VTKWindowOutputStage.h | 199 + dolfin/plot/dolfin_plot.h | 9 + dolfin/plot/gauss_120.dat | 259 + dolfin/plot/plot.cpp | 172 + dolfin/plot/plot.h | 93 + dolfin/refinement/BisectionRefinement.cpp | 181 + dolfin/refinement/BisectionRefinement.h | 58 + dolfin/refinement/LocalMeshCoarsening.cpp | 436 + dolfin/refinement/LocalMeshCoarsening.h | 71 + dolfin/refinement/LocalMeshRefinement.cpp | 70 + dolfin/refinement/LocalMeshRefinement.h | 49 + dolfin/refinement/ParallelRefinement.cpp | 402 + dolfin/refinement/ParallelRefinement.h | 114 + dolfin/refinement/ParallelRefinement2D.cpp | 302 + dolfin/refinement/ParallelRefinement2D.h | 51 + dolfin/refinement/ParallelRefinement3D.cpp | 424 + dolfin/refinement/ParallelRefinement3D.h | 55 + dolfin/refinement/RegularCutRefinement.cpp | 695 + dolfin/refinement/RegularCutRefinement.h | 94 + dolfin/refinement/RivaraRefinement.cpp | 480 + dolfin/refinement/RivaraRefinement.h | 114 + dolfin/refinement/UniformMeshRefinement.cpp | 109 + dolfin/refinement/UniformMeshRefinement.h | 44 + dolfin/refinement/dolfin_refinement.h | 8 + dolfin/refinement/refine.cpp | 96 + dolfin/refinement/refine.h | 120 + dolfin/swig/CMakeLists.txt | 131 + dolfin/swig/README | 60 + dolfin/swig/adaptivity/docstrings.i | 956 + dolfin/swig/adaptivity/post.i | 38 + dolfin/swig/adaptivity/pre.i | 53 + dolfin/swig/ale/docstrings.i | 121 + dolfin/swig/ale/pre.i | 28 + dolfin/swig/common/docstrings.i | 803 + dolfin/swig/common/post.i | 147 + dolfin/swig/common/pre.i | 91 + dolfin/swig/defines.i | 37 + dolfin/swig/exceptions.i | 73 + dolfin/swig/fem/docstrings.i | 2297 + dolfin/swig/fem/post.i | 195 + dolfin/swig/fem/pre.i | 303 + dolfin/swig/forwarddeclarations.i | 69 + dolfin/swig/function/docstrings.i | 1489 + dolfin/swig/function/import.i | 2 + dolfin/swig/function/post.i | 151 + dolfin/swig/function/pre.i | 220 + dolfin/swig/generation/docstrings.i | 947 + dolfin/swig/generation/post.i | 21 + dolfin/swig/geometry/docstrings.i | 666 + dolfin/swig/geometry/post.i | 42 + dolfin/swig/geometry/pre.i | 50 + dolfin/swig/globalincludes.i | 57 + dolfin/swig/graph/docstrings.i | 76 + dolfin/swig/graph/post.i | 12 + dolfin/swig/io/docstrings.i | 481 + dolfin/swig/io/post.i | 64 + dolfin/swig/io/pre.i | 39 + dolfin/swig/la/Indices.i | 354 + dolfin/swig/la/docstrings.i | 4617 ++ dolfin/swig/la/la_get_set_items.i | 577 + dolfin/swig/la/post.i | 1009 + dolfin/swig/la/pre.i | 352 + dolfin/swig/log/docstrings.i | 400 + dolfin/swig/log/post.i | 90 + dolfin/swig/log/pre.i | 57 + dolfin/swig/math/docstrings.i | 129 + dolfin/swig/mesh/docstrings.i | 3753 ++ dolfin/swig/mesh/post.i | 523 + dolfin/swig/mesh/pre.i | 284 + dolfin/swig/modules/common/CMakeLists.txt | 59 + dolfin/swig/modules/common/dependencies.txt | 1 + dolfin/swig/modules/common/module.i | 114 + dolfin/swig/modules/fem/CMakeLists.txt | 59 + dolfin/swig/modules/fem/dependencies.txt | 1 + dolfin/swig/modules/fem/module.i | 242 + dolfin/swig/modules/function/CMakeLists.txt | 59 + dolfin/swig/modules/function/dependencies.txt | 1 + dolfin/swig/modules/function/module.i | 183 + dolfin/swig/modules/io/CMakeLists.txt | 59 + dolfin/swig/modules/io/dependencies.txt | 1 + dolfin/swig/modules/io/module.i | 161 + dolfin/swig/modules/la/CMakeLists.txt | 59 + dolfin/swig/modules/la/dependencies.txt | 1 + dolfin/swig/modules/la/module.i | 217 + dolfin/swig/modules/mesh/CMakeLists.txt | 59 + dolfin/swig/modules/mesh/dependencies.txt | 1 + dolfin/swig/modules/mesh/module.i | 245 + dolfin/swig/multistage/docstrings.i | 136 + dolfin/swig/multistage/pre.i | 39 + dolfin/swig/nls/docstrings.i | 248 + dolfin/swig/nls/pre.i | 64 + dolfin/swig/parameter/docstrings.i | 562 + dolfin/swig/parameter/post.i | 331 + dolfin/swig/parameter/pre.i | 161 + dolfin/swig/plot/docstrings.i | 232 + dolfin/swig/refinement/docstrings.i | 99 + dolfin/swig/shared_ptr_classes.i | 268 + dolfin/swig/typemaps/array.i | 119 + dolfin/swig/typemaps/includes.i | 32 + dolfin/swig/typemaps/numpy.i | 505 + dolfin/swig/typemaps/primitives.i | 337 + dolfin/swig/typemaps/std_map.i | 218 + dolfin/swig/typemaps/std_pair.i | 255 + dolfin/swig/typemaps/std_set.i | 132 + dolfin/swig/typemaps/std_vector.i | 688 + dolfin/swig/version.i | 35 + scripts/dolfin-convert/dolfin-convert | 131 + scripts/dolfin-convert/test_Triangle.edge | 60 + scripts/dolfin-convert/test_Triangle.ele | 31 + scripts/dolfin-convert/test_Triangle.node | 31 + scripts/dolfin-convert/test_exodus.exo | Bin 0 -> 7180 bytes scripts/dolfin-order/dolfin-order | 60 + scripts/dolfin-order/mesh0.xml.gz | Bin 0 -> 312 bytes scripts/dolfin-order/mesh1.xml.gz | Bin 0 -> 247 bytes scripts/dolfin-plot/dolfin-plot | 149 + scripts/dolfin-plot/mesh.xml.gz | Bin 0 -> 20894 bytes scripts/dolfin-plot/plot_book_elements.sh | 71 + scripts/dolfin-plot/plot_elements.sh | 19 + site-packages/dolfin/__init__.py | 47 + site-packages/dolfin/common/__init__.py | 21 + site-packages/dolfin/common/constants.py | 11 + .../dolfin/common/globalparameters.py.in | 62 + site-packages/dolfin/common/math.py | 18 + site-packages/dolfin/common/memory.py | 48 + site-packages/dolfin/common/plotting.py | 145 + site-packages/dolfin/common/time.py | 65 + .../dolfin/compilemodules/__init__.py | 17 + .../dolfin/compilemodules/compilemodule.py | 472 + .../dolfin/compilemodules/expressions.py | 233 + site-packages/dolfin/compilemodules/jit.py | 126 + .../dolfin/compilemodules/subdomains.py | 235 + .../dolfin/compilemodules/swigimportinfo.py | 301 + site-packages/dolfin/cpp/__init__.py | 82 + site-packages/dolfin/deprecation.py | 36 + site-packages/dolfin/fem/__init__.py | 32 + site-packages/dolfin/fem/adaptivesolving.py | 222 + site-packages/dolfin/fem/assembling.py | 453 + site-packages/dolfin/fem/bcs.py | 185 + .../dolfin/fem/errorcontrolgenerator.py | 103 + site-packages/dolfin/fem/form.py | 298 + site-packages/dolfin/fem/formmanipulations.py | 145 + site-packages/dolfin/fem/interpolation.py | 66 + site-packages/dolfin/fem/norms.py | 266 + site-packages/dolfin/fem/projection.py | 145 + site-packages/dolfin/fem/solving.py | 456 + site-packages/dolfin/functions/__init__.py | 20 + site-packages/dolfin/functions/constant.py | 107 + site-packages/dolfin/functions/expression.py | 837 + site-packages/dolfin/functions/function.py | 688 + .../dolfin/functions/functionspace.py | 674 + .../dolfin/functions/specialfunctions.py | 227 + .../dolfin/functions/ufc_functionspace.py | 32 + .../dolfin/importhandler/__init__.py | 52 + site-packages/dolfin/mesh/__init__.py | 14 + site-packages/dolfin/mesh/ale.py | 185 + .../dolfin/mesh/boundarysubdomainfinder.py | 223 + site-packages/dolfin/mesh/meshes.py | 74 + site-packages/dolfin/mesh/refinement.py | 80 + site-packages/dolfin/mesh/svgtools.py | 104 + site-packages/dolfin/multistage/__init__.py | 12 + .../dolfin/multistage/multistagescheme.py | 750 + .../dolfin/multistage/multistagesolvers.py | 62 + site-packages/dolfin_utils/__init__.py | 0 site-packages/dolfin_utils/commands.py | 42 + .../dolfin_utils/cppparser/CppHeaderParser.py | 2407 + .../dolfin_utils/cppparser/__init__.py | 2 + site-packages/dolfin_utils/cppparser/utils.py | 179 + .../dolfin_utils/documentation/__init__.py | 4 + .../documentation/docstringutils.py | 49 + .../documentation/extractdocumentation.py | 225 + .../documentation/generatecpprst.py | 154 + .../documentation/generatepythonrst.py | 219 + .../documentation/indextemplates.py | 91 + .../dolfin_utils/meshconvert/__init__.py | 0 .../dolfin_utils/meshconvert/abaqus.py | 475 + .../dolfin_utils/meshconvert/meshconvert.py | 1449 + .../dolfin_utils/meshconvert/xml_writer.py | 152 + site-packages/dolfin_utils/ordereddict.py | 127 + site-packages/dolfin_utils/pjobs/__init__.py | 1 + site-packages/dolfin_utils/pjobs/pjobs.py | 230 + site-packages/dolfin_utils/pjobs/sge.py | 99 + site-packages/dolfin_utils/pjobs/slurm.py | 62 + site-packages/dolfin_utils/pjobs/torque.py | 78 + site-packages/fenics/__init__.py | 6 + test/CMakeLists.txt | 58 + test/README | 44 + test/codingstyle/test.py | 136 + test/documentation/README | 1 + test/documentation/test.py | 38 + .../verify_demo_code_snippets.py | 188 + test/memory/dolfin_valgrind.supp | 2483 + test/memory/test.py | 189 + test/regression/README | 7 + test/regression/test.py | 253 + test/system/parallel-assembly-solve/solver.py | 121 + test/system/parallel-assembly-solve/test.py | 53 + test/system/test.py | 52 + .../assembly_derivatives.py | 271 + .../ufl-jit-assemble-chain/form_operations.py | 58 + test/system/ufl-jit-assemble-chain/test.py | 41 + test/test.py | 49 + test/unit/adaptivity/python/TimeSeries.py | 102 + test/unit/adaptivity/python/errorcontrol.py | 131 + test/unit/ale/python/HarmonicSmoothing.py | 112 + test/unit/book/README | 28 + test/unit/book/python/chapter_1.py | 188 + test/unit/book/python/chapter_10.py | 1014 + .../chapter_1_files/dolfin_parameters.xml | 69 + .../nonlinear_poisson/alg_newton_np.py | 111 + .../nonlinear_poisson/pde_newton_np.py | 109 + .../stationary/nonlinear_poisson/picard_np.py | 82 + .../stationary/nonlinear_poisson/vp1_np.py | 105 + .../stationary/nonlinear_poisson/vp2_np.py | 114 + .../stationary/poisson/d1_p2D.py | 45 + .../stationary/poisson/d2_p2D.py | 61 + .../stationary/poisson/d3_p2D.py | 61 + .../stationary/poisson/d4_p2D.py | 82 + .../stationary/poisson/d5_p2D.py | 111 + .../stationary/poisson/d6_p2D.py | 125 + .../stationary/poisson/dn1_p2D.py | 69 + .../stationary/poisson/dn2_p2D.py | 87 + .../stationary/poisson/dn3_p2D.py | 111 + .../stationary/poisson/dn4_p2D.py | 127 + .../stationary/poisson/dnr_p2D.py | 97 + .../stationary/poisson/mat2_p2D.py | 103 + .../stationary/poisson/mat2x_p2D.py | 97 + .../stationary/poisson/membrane1.py | 78 + .../stationary/poisson/membrane1v.py | 80 + .../chapter_1_files/stationary/poisson/paD.py | 53 + .../stationary/poisson/vcp2D.py | 170 + .../transient/diffusion/d1_d2D.py | 59 + .../transient/diffusion/d2_d2D.py | 72 + .../transient/diffusion/demo_sin_daD.sh | 12 + .../transient/diffusion/sin_daD.py | 197 + test/unit/book/python/mesh.xml | 26 + test/unit/book/python/original_tests/README | 5 + test/unit/fem/python/Assembler.py | 679 + test/unit/fem/python/DirichletBC.py | 143 + test/unit/fem/python/DofMap.py | 299 + test/unit/fem/python/FiniteElement.py | 146 + test/unit/fem/python/Form.py | 397 + test/unit/fem/python/LocalSolver.py | 59 + test/unit/fem/python/SystemAssembler.py | 314 + test/unit/fem/python/aneurysm.xml.gz | Bin 0 -> 703208 bytes test/unit/fem/python/manifolds.py | 275 + test/unit/fem/python/solving.py | 95 + test/unit/fem/python/tetrahedron.xml.gz | Bin 0 -> 254 bytes test/unit/function/cpp/CMakeLists.txt | 40 + test/unit/function/cpp/Expression.cpp | 111 + test/unit/function/cpp/Projection.h | 4575 ++ test/unit/function/cpp/Projection.ufl | 33 + test/unit/function/cpp/compile.log | 242 + test/unit/function/python/Constant.py | 86 + .../python/ConstrainedFunctionSpace.py | 168 + test/unit/function/python/Expression.py | 658 + test/unit/function/python/Function.py | 401 + test/unit/function/python/FunctionAssigner.py | 168 + test/unit/function/python/FunctionSpace.py | 158 + .../function/python/LagrangeInterpolator.py | 90 + test/unit/function/python/SpecialFunctions.py | 46 + .../python/nonmatching_interpolation.py | 87 + test/unit/geometry/python/BoundingBoxTree.py | 447 + .../geometry/python/CollisionDetection.py | 159 + test/unit/geometry/python/Intersection.py | 67 + .../python/IntersectionTriangulation.py | 175 + test/unit/geometry/python/Issues.py | 54 + test/unit/graph/python/GraphBuild.py | 40 + test/unit/io/cpp/CMakeLists.txt | 44 + test/unit/io/cpp/XMLLocalMeshData.cpp | 53 + test/unit/io/cpp/XMLMeshData.cpp | 85 + test/unit/io/cpp/XMLMeshValueCollection.cpp | 65 + test/unit/io/cpp/xml_value_collection_ref.xml | 11 + test/unit/io/python/Exodus.py | 90 + test/unit/io/python/HDF5.py | 182 + test/unit/io/python/HDF5Attribute.py | 87 + test/unit/io/python/SVG.py | 45 + test/unit/io/python/X3D.py | 71 + test/unit/io/python/XDMF.py | 239 + test/unit/io/python/XMLLocalMeshData.py | 36 + test/unit/io/python/XMLMesh.py | 123 + test/unit/io/python/XMLMeshFunction.py | 124 + test/unit/io/python/XMLMeshValueCollection.py | 75 + test/unit/io/python/XMLVector.py | 109 + test/unit/io/python/vtk.py | 203 + .../io/python/xml_value_collection_ref.xml | 11 + test/unit/io/snake.xml.gz | Bin 0 -> 95055 bytes test/unit/jit/python/test.py | 81 + test/unit/la/cpp/CMakeLists.txt | 42 + test/unit/la/cpp/LinearOperator.cpp | 136 + test/unit/la/cpp/Vector.cpp | 218 + test/unit/la/cpp/forms/ReactionDiffusion.h | 2214 + test/unit/la/cpp/forms/ReactionDiffusion.ufl | 28 + .../la/cpp/forms/ReactionDiffusionAction.h | 1735 + .../la/cpp/forms/ReactionDiffusionAction.ufl | 26 + test/unit/la/cpp/forms/compile.log | 329 + test/unit/la/python/KrylovSolver.py | 80 + test/unit/la/python/LinearOperator.py | 94 + test/unit/la/python/Matrix.py | 376 + test/unit/la/python/Scalar.py | 44 + test/unit/la/python/Vector.py | 384 + test/unit/la/python/solve.py | 54 + test/unit/la/python/test.py | 372 + test/unit/math/python/test.py | 98 + test/unit/mesh/boxes.xml.gz | Bin 0 -> 16611 bytes test/unit/mesh/cpp/CMakeLists.txt | 44 + test/unit/mesh/cpp/Mesh.cpp | 322 + test/unit/mesh/cpp/MeshFunction.cpp | 97 + test/unit/mesh/cpp/MeshValueCollection.cpp | 187 + test/unit/mesh/python/BoundaryMesh.py | 59 + test/unit/mesh/python/Cell.py | 65 + test/unit/mesh/python/Edge.py | 56 + test/unit/mesh/python/Face.py | 68 + test/unit/mesh/python/Mesh.py | 374 + test/unit/mesh/python/MeshColoring.py | 41 + test/unit/mesh/python/MeshData.py | 40 + test/unit/mesh/python/MeshEditor.py | 52 + test/unit/mesh/python/MeshFunction.py | 131 + test/unit/mesh/python/MeshIterator.py | 148 + test/unit/mesh/python/MeshMarkers.py | 67 + test/unit/mesh/python/MeshQuality.py | 114 + test/unit/mesh/python/MeshTransformation.py | 54 + test/unit/mesh/python/MeshValueCollection.py | 172 + .../python/PeriodicBoundaryComputation.py | 62 + test/unit/mesh/python/SubDomain.py | 100 + test/unit/mesh/python/SubMesh.py | 107 + test/unit/meshconvert/python/data/abaqus.inp | 79 + .../meshconvert/python/data/abaqus_facet.inp | 781 + .../meshconvert/python/data/diffpack_tet.grid | 121 + .../meshconvert/python/data/diffpack_tri.grid | 138 + test/unit/meshconvert/python/data/gmsh.msh | 29 + .../data/gmsh_test_facet_regions_1D_2.geo | 10 + .../data/gmsh_test_facet_regions_1D_2.msh | 32 + .../data/gmsh_test_facet_regions_2D_1.geo | 15 + .../data/gmsh_test_facet_regions_2D_1.msh | 19 + .../data/gmsh_test_facet_regions_2D_2.geo | 15 + .../data/gmsh_test_facet_regions_2D_2.msh | 20 + .../data/gmsh_test_facet_regions_2D_3.geo | 15 + .../data/gmsh_test_facet_regions_2D_3.msh | 21 + .../data/gmsh_test_facet_regions_2D_4.geo | 15 + .../data/gmsh_test_facet_regions_2D_4.msh | 22 + .../data/gmsh_test_facet_regions_3D_1.geo | 39 + .../data/gmsh_test_facet_regions_3D_1.msh | 51 + .../python/data/test_Triangle_3.edge | 118 + .../python/data/test_Triangle_3.ele | 60 + .../python/data/test_Triangle_3.node | 60 + .../unit/meshconvert/python/data/triangle.ele | 161 + .../meshconvert/python/data/triangle.node | 98 + test/unit/meshconvert/python/test.py | 532 + .../multistage/python/PointIntegralSolver.py | 156 + test/unit/multistage/python/RKSolver.py | 105 + test/unit/nls/python/PETScSNESSolver.py | 125 + test/unit/nls/python/TAOLinearBoundSolver.py | 111 + test/unit/nls/python/doughnut.xml.gz | Bin 0 -> 15843 bytes test/unit/parameter/cpp/CMakeLists.txt | 40 + test/unit/parameter/cpp/Parameters.cpp | 124 + test/unit/parameter/python/Parameters.py | 149 + test/unit/python-extras/python/test.py | 49 + test/unit/refinement/python/refine.py | 44 + test/unit/test.py | 153 + utils/emacs/macros | 21 + utils/gid/DOLFIN.bas | 17 + utils/matlab/meshindex.m | 54 + utils/matlab/plotcontroller.m | 35 + utils/matlab/plotslab.m | 173 + utils/matlab/xmlmatrix.m | 72 + utils/matlab/xmlmesh.m | 97 + utils/matlab/xmlvector.m | 58 + utils/octave/README | 28 + utils/octave/pdemesh.m | 29 + utils/octave/pdeplot.m | 230 + utils/octave/pdesurf.m | 26 + utils/python/README | 2 + utils/python/extract2d | 88 + utils/scripts/broken | 6 + utils/scripts/code-formatting | 198 + utils/scripts/dolfinreplace | 141 + utils/scripts/fixme | 6 + utils/scripts/formatcode | 122 + utils/scripts/klocs | 17 + utils/scripts/makedoc | 14 + utils/scripts/notinuse | 23 + utils/scripts/pdebug | 7 + utils/scripts/plotklocs | 88 + utils/swig/dolfin-swig | 156 + utils/system/monitor | 42 + utils/tetgen/dolfin-tetgen | 36 + utils/vim/macros | 6 + utils/xml/convertall | 40 + 1651 files changed, 769939 insertions(+) create mode 100644 .gitignore create mode 100644 .mailmap create mode 100644 AUTHORS create mode 100644 CMakeLists.txt create mode 100644 COPYING create mode 100644 COPYING.LESSER create mode 100644 ChangeLog create mode 100644 INSTALL create mode 100644 README.rst create mode 100644 bench/CMakeLists.txt create mode 100644 bench/README create mode 100644 bench/bench.py create mode 100644 bench/common/progress/cpp/CMakeLists.txt create mode 100644 bench/common/progress/cpp/main.cpp create mode 100644 bench/common/timing/cpp/CMakeLists.txt create mode 100644 bench/common/timing/cpp/main.cpp create mode 100644 bench/fem/assembly/cpp/CMakeLists.txt create mode 100644 bench/fem/assembly/cpp/forms.h create mode 100644 bench/fem/assembly/cpp/forms/Elasticity3D.h create mode 100644 bench/fem/assembly/cpp/forms/Elasticity3D.ufl create mode 100644 bench/fem/assembly/cpp/forms/NSEMomentum3D.h create mode 100644 bench/fem/assembly/cpp/forms/NSEMomentum3D.ufl create mode 100644 bench/fem/assembly/cpp/forms/Poisson2DP1.h create mode 100644 bench/fem/assembly/cpp/forms/Poisson2DP1.ufl create mode 100644 bench/fem/assembly/cpp/forms/Poisson2DP2.h create mode 100644 bench/fem/assembly/cpp/forms/Poisson2DP2.ufl create mode 100644 bench/fem/assembly/cpp/forms/Poisson2DP3.h create mode 100644 bench/fem/assembly/cpp/forms/Poisson2DP3.ufl create mode 100644 bench/fem/assembly/cpp/forms/StabStokes2D.h create mode 100644 bench/fem/assembly/cpp/forms/StabStokes2D.ufl create mode 100644 bench/fem/assembly/cpp/forms/THStokes2D.h create mode 100644 bench/fem/assembly/cpp/forms/THStokes2D.ufl create mode 100644 bench/fem/assembly/cpp/forms/compile.log create mode 100644 bench/fem/assembly/cpp/main.cpp create mode 100755 bench/fem/assembly/python/broken create mode 100644 bench/fem/convergence/cpp/CMakeLists.txt create mode 100644 bench/fem/convergence/cpp/Poisson2D_1.cpp create mode 100644 bench/fem/convergence/cpp/Poisson2D_1.h create mode 100644 bench/fem/convergence/cpp/Poisson2D_1.ufl create mode 100644 bench/fem/convergence/cpp/Poisson2D_2.cpp create mode 100644 bench/fem/convergence/cpp/Poisson2D_2.h create mode 100644 bench/fem/convergence/cpp/Poisson2D_2.ufl create mode 100644 bench/fem/convergence/cpp/Poisson2D_3.cpp create mode 100644 bench/fem/convergence/cpp/Poisson2D_3.h create mode 100644 bench/fem/convergence/cpp/Poisson2D_3.ufl create mode 100644 bench/fem/convergence/cpp/Poisson2D_4.cpp create mode 100644 bench/fem/convergence/cpp/Poisson2D_4.h create mode 100644 bench/fem/convergence/cpp/Poisson2D_4.ufl create mode 100644 bench/fem/convergence/cpp/Poisson2D_5.cpp create mode 100644 bench/fem/convergence/cpp/Poisson2D_5.h create mode 100644 bench/fem/convergence/cpp/Poisson2D_5.ufl create mode 100644 bench/fem/convergence/cpp/Poisson3D_1.cpp create mode 100644 bench/fem/convergence/cpp/Poisson3D_1.h create mode 100644 bench/fem/convergence/cpp/Poisson3D_1.ufl create mode 100644 bench/fem/convergence/cpp/Poisson3D_2.cpp create mode 100644 bench/fem/convergence/cpp/Poisson3D_2.h create mode 100644 bench/fem/convergence/cpp/Poisson3D_2.ufl create mode 100644 bench/fem/convergence/cpp/Poisson3D_3.cpp create mode 100644 bench/fem/convergence/cpp/Poisson3D_3.h create mode 100644 bench/fem/convergence/cpp/Poisson3D_3.ufl create mode 100644 bench/fem/convergence/cpp/Poisson3D_4.cpp create mode 100644 bench/fem/convergence/cpp/Poisson3D_4.h create mode 100644 bench/fem/convergence/cpp/Poisson3D_4.ufl create mode 100644 bench/fem/convergence/cpp/README create mode 100644 bench/fem/convergence/cpp/compile.log create mode 100644 bench/fem/convergence/cpp/main.cpp create mode 100755 bench/fem/jit/python/bench_fem_jit_python create mode 100644 bench/fem/multicore/cpp/CMakeLists.txt create mode 100644 bench/fem/multicore/cpp/NavierStokes.h create mode 100644 bench/fem/multicore/cpp/NavierStokes.ufl create mode 100644 bench/fem/multicore/cpp/Poisson.h create mode 100644 bench/fem/multicore/cpp/Poisson.ufl create mode 100644 bench/fem/multicore/cpp/compile.log create mode 100644 bench/fem/multicore/cpp/main.cpp create mode 100644 bench/fem/speedup/cpp/CMakeLists.txt create mode 100644 bench/fem/speedup/cpp/Poisson.h create mode 100644 bench/fem/speedup/cpp/Poisson.ufl create mode 100644 bench/fem/speedup/cpp/README create mode 100755 bench/fem/speedup/cpp/analyse-bench create mode 100644 bench/fem/speedup/cpp/assemble-poisson.cpp create mode 100755 bench/fem/speedup/cpp/bench_fem_speedup_cpp create mode 100755 bench/fem/speedup/cpp/clean.sh create mode 100644 bench/fem/speedup/cpp/compile.log create mode 100644 bench/fem/speedup/cpp/solve-poisson.cpp create mode 100755 bench/fem/speedup/cpp/submit-bench create mode 100644 bench/function/evaluation/cpp/CMakeLists.txt create mode 100644 bench/function/evaluation/cpp/P1.h create mode 100644 bench/function/evaluation/cpp/P1.ufl create mode 100644 bench/function/evaluation/cpp/compile.log create mode 100644 bench/function/evaluation/cpp/main.cpp create mode 100755 bench/function/extrapolation/python/bench_function_extrapolation_python create mode 100755 bench/function/interpolation/python/bench_function_interpolation_python create mode 100644 bench/geometry/bounding_box_tree_build/cpp/CMakeLists.txt create mode 100644 bench/geometry/bounding_box_tree_build/cpp/main.cpp create mode 100644 bench/geometry/bounding_box_tree_compute_closest_entity/cpp/CMakeLists.txt create mode 100644 bench/geometry/bounding_box_tree_compute_closest_entity/cpp/main.cpp create mode 100644 bench/geometry/bounding_box_tree_compute_entity_collisions/cpp/CMakeLists.txt create mode 100644 bench/geometry/bounding_box_tree_compute_entity_collisions/cpp/main.cpp create mode 100755 bench/la/cusp/python/bench_la_cusp_python create mode 100644 bench/la/vector/access/cpp/CMakeLists.txt create mode 100644 bench/la/vector/access/cpp/main.cpp create mode 100644 bench/la/vector/assignment/cpp/CMakeLists.txt create mode 100644 bench/la/vector/assignment/cpp/main.cpp create mode 100644 bench/logs/bench.log create mode 100644 bench/logs/milestones.log create mode 100644 bench/mesh/iteration/cpp/CMakeLists.txt create mode 100644 bench/mesh/iteration/cpp/main.cpp create mode 100644 bench/mesh/refinement/cpp/CMakeLists.txt create mode 100644 bench/mesh/refinement/cpp/main.cpp create mode 100644 bench/mesh/topology/cpp/CMakeLists.txt create mode 100644 bench/mesh/topology/cpp/main.cpp create mode 100644 bench/mesh/unitcube/cpp/CMakeLists.txt create mode 100644 bench/mesh/unitcube/cpp/main.cpp create mode 100644 bench/plot.py create mode 100644 cmake/modules/CheckOpenMP.cmake create mode 100644 cmake/modules/CorrectWindowsPaths.cmake create mode 100644 cmake/modules/FindAMD.cmake create mode 100644 cmake/modules/FindBLAS.cmake create mode 100644 cmake/modules/FindBLASHeader.cmake create mode 100644 cmake/modules/FindCGAL.cmake create mode 100644 cmake/modules/FindCHOLMOD.cmake create mode 100644 cmake/modules/FindCppUnit.cmake create mode 100644 cmake/modules/FindEigen3.cmake create mode 100644 cmake/modules/FindGMP.cmake create mode 100644 cmake/modules/FindLAPACK.cmake create mode 100644 cmake/modules/FindMPI.cmake create mode 100644 cmake/modules/FindMTL4.cmake create mode 100644 cmake/modules/FindNumPy.cmake create mode 100644 cmake/modules/FindPETSc.cmake create mode 100644 cmake/modules/FindPETSc4py.cmake create mode 100644 cmake/modules/FindPaStiX.cmake create mode 100644 cmake/modules/FindParMETIS.cmake create mode 100644 cmake/modules/FindSCOTCH.cmake create mode 100644 cmake/modules/FindSLEPc.cmake create mode 100644 cmake/modules/FindSphinx.cmake create mode 100644 cmake/modules/FindUMFPACK.cmake create mode 100644 cmake/modules/ResolveCompilerPaths.cmake create mode 100644 cmake/modules/language_support_v2.cmake create mode 100644 cmake/post-install/CMakeLists.txt create mode 100644 cmake/scripts/codeexamples.py create mode 100644 cmake/scripts/codesnippets.py create mode 100755 cmake/scripts/copy-swig-files create mode 100755 cmake/scripts/copy-test-demo-data create mode 100755 cmake/scripts/download-demo-data create mode 100755 cmake/scripts/generate-all create mode 100755 cmake/scripts/generate-cmakefiles create mode 100755 cmake/scripts/generate-form-files create mode 100755 cmake/scripts/generate-swig-docstrings create mode 100755 cmake/scripts/generate-swig-interface create mode 100644 cmake/templates/DOLFINConfig.cmake.in create mode 100644 cmake/templates/DOLFINConfigVersion.cmake.in create mode 100644 cmake/templates/UseDOLFIN.cmake.in create mode 100644 cmake/templates/cmake_uninstall.cmake.in create mode 100644 cmake/templates/dolfin-config-version.cmake.in create mode 100644 cmake/templates/dolfin-config.cmake.in create mode 100644 cmake/templates/dolfin-get-demos.in create mode 100644 cmake/templates/dolfin-version.in create mode 100644 cmake/templates/dolfin.conf.in create mode 100644 cmake/templates/dolfin.pc.in create mode 100644 data/README create mode 100644 demo/CMakeLists.txt create mode 100755 demo/cmake.local create mode 100644 demo/documented/auto-adaptive-poisson/common.txt create mode 100644 demo/documented/auto-adaptive-poisson/cpp/AdaptivePoisson.h create mode 100644 demo/documented/auto-adaptive-poisson/cpp/AdaptivePoisson.ufl create mode 100644 demo/documented/auto-adaptive-poisson/cpp/CMakeLists.txt create mode 100644 demo/documented/auto-adaptive-poisson/cpp/compile.log create mode 100644 demo/documented/auto-adaptive-poisson/cpp/documentation.rst create mode 100644 demo/documented/auto-adaptive-poisson/cpp/main.cpp create mode 100644 demo/documented/auto-adaptive-poisson/python/demo_auto-adaptive_poisson.py create mode 100644 demo/documented/auto-adaptive-poisson/python/documentation.rst create mode 100644 demo/documented/auto-adaptive-poisson/u_refined.png create mode 100644 demo/documented/auto-adaptive-poisson/u_unrefined.png create mode 100644 demo/documented/bcs/aneurysm.xml.gz create mode 100644 demo/documented/bcs/common.txt create mode 100644 demo/documented/bcs/cpp/CMakeLists.txt create mode 100644 demo/documented/bcs/cpp/Poisson.h create mode 100644 demo/documented/bcs/cpp/Poisson.ufl create mode 100644 demo/documented/bcs/cpp/compile.log create mode 100644 demo/documented/bcs/cpp/documentation.rst create mode 100644 demo/documented/bcs/cpp/main.cpp create mode 100644 demo/documented/bcs/demo_bcs.png create mode 100644 demo/documented/bcs/python/demo_bcs.py create mode 100644 demo/documented/bcs/python/documentation.rst create mode 100644 demo/documented/biharmonic/biharmonic_u.png create mode 100644 demo/documented/biharmonic/common.txt create mode 100644 demo/documented/biharmonic/cpp/Biharmonic.h create mode 100644 demo/documented/biharmonic/cpp/Biharmonic.ufl create mode 100644 demo/documented/biharmonic/cpp/CMakeLists.txt create mode 100644 demo/documented/biharmonic/cpp/compile.log create mode 100644 demo/documented/biharmonic/cpp/documentation.rst create mode 100644 demo/documented/biharmonic/cpp/main.cpp create mode 100644 demo/documented/biharmonic/python/demo_biharmonic.py create mode 100644 demo/documented/biharmonic/python/documentation.rst create mode 100644 demo/documented/built-in_meshes/common.txt create mode 100644 demo/documented/built-in_meshes/cpp/CMakeLists.txt create mode 100644 demo/documented/built-in_meshes/cpp/documentation.rst create mode 100644 demo/documented/built-in_meshes/cpp/main.cpp create mode 100644 demo/documented/built-in_meshes/python/boxmesh.png create mode 100644 demo/documented/built-in_meshes/python/demo_built-in.py create mode 100644 demo/documented/built-in_meshes/python/documentation.rst create mode 100644 demo/documented/built-in_meshes/python/rectanglemesh.png create mode 100644 demo/documented/built-in_meshes/python/rectanglemesh_left_right.png create mode 100644 demo/documented/built-in_meshes/python/unitcubemesh.png create mode 100644 demo/documented/built-in_meshes/python/unitintervalmesh.png create mode 100644 demo/documented/built-in_meshes/python/unitsquaremesh.png create mode 100644 demo/documented/built-in_meshes/python/unitsquaremesh_crossed.png create mode 100644 demo/documented/built-in_meshes/python/unitsquaremesh_left.png create mode 100644 demo/documented/built-in_meshes/python/unitsquaremesh_left_right.png create mode 100644 demo/documented/cahn-hilliard/cahn-hilliard_c.png create mode 100644 demo/documented/cahn-hilliard/common.txt create mode 100644 demo/documented/cahn-hilliard/cpp/CMakeLists.txt create mode 100644 demo/documented/cahn-hilliard/cpp/CahnHilliard2D.cpp create mode 100644 demo/documented/cahn-hilliard/cpp/CahnHilliard2D.h create mode 100644 demo/documented/cahn-hilliard/cpp/CahnHilliard2D.ufl create mode 100644 demo/documented/cahn-hilliard/cpp/CahnHilliard3D.cpp create mode 100644 demo/documented/cahn-hilliard/cpp/CahnHilliard3D.h create mode 100644 demo/documented/cahn-hilliard/cpp/CahnHilliard3D.ufl create mode 100644 demo/documented/cahn-hilliard/cpp/compile.log create mode 100644 demo/documented/cahn-hilliard/cpp/documentation.rst create mode 100644 demo/documented/cahn-hilliard/cpp/main.cpp create mode 100644 demo/documented/cahn-hilliard/python/demo_cahn-hilliard.py create mode 100644 demo/documented/cahn-hilliard/python/documentation.rst create mode 100644 demo/documented/csg-2D/common.txt create mode 100644 demo/documented/csg-2D/cpp/CMakeLists.txt create mode 100644 demo/documented/csg-2D/cpp/documentation.rst create mode 100644 demo/documented/csg-2D/cpp/main.cpp create mode 100644 demo/documented/csg-2D/csg_boundary.png create mode 100644 demo/documented/csg-2D/csg_mesh.png create mode 100644 demo/documented/csg-2D/python/demo_csg_2D.py create mode 100644 demo/documented/csg-2D/python/documentation.rst create mode 100644 demo/documented/csg-3D/common.txt create mode 100644 demo/documented/csg-3D/cpp/CMakeLists.txt create mode 100644 demo/documented/csg-3D/cpp/documentation.rst create mode 100644 demo/documented/csg-3D/cpp/main.cpp create mode 100644 demo/documented/csg-3D/csg3D_boundary.png create mode 100644 demo/documented/csg-3D/csg3D_mesh.png create mode 100644 demo/documented/csg-3D/python/demo_csg-3D.py create mode 100644 demo/documented/csg-3D/python/documentation.rst create mode 100644 demo/documented/eigenvalue/box_with_dent.xml.gz create mode 100644 demo/documented/eigenvalue/common.txt create mode 100644 demo/documented/eigenvalue/cpp/CMakeLists.txt create mode 100644 demo/documented/eigenvalue/cpp/StiffnessMatrix.h create mode 100644 demo/documented/eigenvalue/cpp/StiffnessMatrix.ufl create mode 100644 demo/documented/eigenvalue/cpp/compile.log create mode 100644 demo/documented/eigenvalue/cpp/documentation.rst create mode 100644 demo/documented/eigenvalue/cpp/main.cpp create mode 100644 demo/documented/eigenvalue/eigenvalue_x.png create mode 100644 demo/documented/eigenvalue/python/demo_eigenvalue.py create mode 100644 demo/documented/eigenvalue/python/documentation.rst create mode 100644 demo/documented/hyperelasticity/common.txt create mode 100644 demo/documented/hyperelasticity/cpp/CMakeLists.txt create mode 100644 demo/documented/hyperelasticity/cpp/HyperElasticity.h create mode 100644 demo/documented/hyperelasticity/cpp/HyperElasticity.ufl create mode 100644 demo/documented/hyperelasticity/cpp/compile.log create mode 100644 demo/documented/hyperelasticity/cpp/documentation.rst create mode 100644 demo/documented/hyperelasticity/cpp/main.cpp create mode 100644 demo/documented/hyperelasticity/hyperelasticity_u0.png create mode 100644 demo/documented/hyperelasticity/hyperelasticity_u1.png create mode 100644 demo/documented/hyperelasticity/python/demo_hyperelasticity.py create mode 100644 demo/documented/hyperelasticity/python/documentation.rst create mode 100644 demo/documented/mesh-generation/common.txt create mode 100644 demo/documented/mesh-generation/cpp/README create mode 100644 demo/documented/mesh-generation/cpp/documentation.rst create mode 100644 demo/documented/mesh-generation/cube.off create mode 100644 demo/documented/mesh-generation/python/demo_mesh_generation.py create mode 100644 demo/documented/mesh-generation/python/documentation.rst create mode 100644 demo/documented/mesh-generation/python/plot_cubemesh.png create mode 100644 demo/documented/mesh-generation/python/plot_polygonmesh.png create mode 100644 demo/documented/mesh-generation/python/plot_tetrahedronmesh.png create mode 100644 demo/documented/mesh-generation/tetrahedron.off create mode 100644 demo/documented/mixed-poisson-dual/common.txt create mode 100644 demo/documented/mixed-poisson-dual/cpp/CMakeLists.txt create mode 100644 demo/documented/mixed-poisson-dual/cpp/MixedPoissonDual.h create mode 100644 demo/documented/mixed-poisson-dual/cpp/MixedPoissonDual.ufl create mode 100644 demo/documented/mixed-poisson-dual/cpp/compile.log create mode 100644 demo/documented/mixed-poisson-dual/cpp/documentation.rst create mode 100644 demo/documented/mixed-poisson-dual/cpp/main.cpp create mode 100644 demo/documented/mixed-poisson-dual/mixed-poisson-dual_sigma.png create mode 100644 demo/documented/mixed-poisson-dual/mixed-poisson-dual_u.png create mode 100644 demo/documented/mixed-poisson-dual/python/demo_mixed-poisson-dual.py create mode 100644 demo/documented/mixed-poisson-dual/python/documentation.rst create mode 100644 demo/documented/mixed-poisson/common.txt create mode 100644 demo/documented/mixed-poisson/cpp/CMakeLists.txt create mode 100644 demo/documented/mixed-poisson/cpp/MixedPoisson.h create mode 100644 demo/documented/mixed-poisson/cpp/MixedPoisson.ufl create mode 100644 demo/documented/mixed-poisson/cpp/compile.log create mode 100644 demo/documented/mixed-poisson/cpp/documentation.rst create mode 100644 demo/documented/mixed-poisson/cpp/main.cpp create mode 100644 demo/documented/mixed-poisson/mixed-poisson_sigma.png create mode 100644 demo/documented/mixed-poisson/mixed-poisson_u.png create mode 100644 demo/documented/mixed-poisson/python/demo_mixed-poisson.py create mode 100644 demo/documented/mixed-poisson/python/documentation.rst create mode 100644 demo/documented/navier-stokes/common.txt create mode 100644 demo/documented/navier-stokes/cpp/CMakeLists.txt create mode 100644 demo/documented/navier-stokes/cpp/PressureUpdate.h create mode 100644 demo/documented/navier-stokes/cpp/PressureUpdate.ufl create mode 100644 demo/documented/navier-stokes/cpp/TentativeVelocity.h create mode 100644 demo/documented/navier-stokes/cpp/TentativeVelocity.ufl create mode 100644 demo/documented/navier-stokes/cpp/VelocityUpdate.h create mode 100644 demo/documented/navier-stokes/cpp/VelocityUpdate.ufl create mode 100644 demo/documented/navier-stokes/cpp/compile.log create mode 100644 demo/documented/navier-stokes/cpp/documentation.rst create mode 100644 demo/documented/navier-stokes/cpp/main.cpp create mode 100644 demo/documented/navier-stokes/lshape.xml.gz create mode 100644 demo/documented/navier-stokes/navier-stokes_p.png create mode 100644 demo/documented/navier-stokes/navier-stokes_u.png create mode 100644 demo/documented/navier-stokes/python/demo_navier-stokes.py create mode 100644 demo/documented/navier-stokes/python/documentation.rst create mode 100644 demo/documented/neumann-poisson/common.txt create mode 100644 demo/documented/neumann-poisson/cpp/CMakeLists.txt create mode 100644 demo/documented/neumann-poisson/cpp/Poisson.h create mode 100644 demo/documented/neumann-poisson/cpp/Poisson.ufl create mode 100644 demo/documented/neumann-poisson/cpp/compile.log create mode 100644 demo/documented/neumann-poisson/cpp/documentation.rst create mode 100644 demo/documented/neumann-poisson/cpp/main.cpp create mode 100644 demo/documented/neumann-poisson/neumann-poisson_u.png create mode 100644 demo/documented/neumann-poisson/python/demo_neumann-poisson.py create mode 100644 demo/documented/neumann-poisson/python/documentation.rst create mode 100644 demo/documented/nonlinear-poisson/common.txt create mode 100644 demo/documented/nonlinear-poisson/cpp/CMakeLists.txt create mode 100644 demo/documented/nonlinear-poisson/cpp/NonlinearPoisson.h create mode 100644 demo/documented/nonlinear-poisson/cpp/NonlinearPoisson.ufl create mode 100644 demo/documented/nonlinear-poisson/cpp/compile.log create mode 100644 demo/documented/nonlinear-poisson/cpp/documentation.rst create mode 100644 demo/documented/nonlinear-poisson/cpp/main.cpp create mode 100644 demo/documented/nonlinear-poisson/cpp/plot.py create mode 100644 demo/documented/nonlinear-poisson/plot_u.png create mode 100644 demo/documented/nonlinear-poisson/plot_u_gradient.png create mode 100644 demo/documented/nonlinear-poisson/python/demo_nonlinear-poisson.py create mode 100644 demo/documented/nonlinear-poisson/python/documentation.rst create mode 100644 demo/documented/periodic/common.txt create mode 100644 demo/documented/periodic/cpp/CMakeLists.txt create mode 100644 demo/documented/periodic/cpp/Poisson.h create mode 100644 demo/documented/periodic/cpp/Poisson.ufl create mode 100644 demo/documented/periodic/cpp/compile.log create mode 100644 demo/documented/periodic/cpp/documentation.rst create mode 100644 demo/documented/periodic/cpp/main.cpp create mode 100644 demo/documented/periodic/plot_u.png create mode 100644 demo/documented/periodic/python/demo_periodic.py create mode 100644 demo/documented/periodic/python/documentation.rst create mode 100644 demo/documented/poisson/common.txt create mode 100644 demo/documented/poisson/cpp/CMakeLists.txt create mode 100644 demo/documented/poisson/cpp/Poisson.h create mode 100644 demo/documented/poisson/cpp/Poisson.ufl create mode 100644 demo/documented/poisson/cpp/compile.log create mode 100644 demo/documented/poisson/cpp/documentation.rst create mode 100644 demo/documented/poisson/cpp/main.cpp create mode 100644 demo/documented/poisson/poisson_u.png create mode 100644 demo/documented/poisson/python/demo_poisson.py create mode 100644 demo/documented/poisson/python/documentation.rst create mode 100644 demo/documented/singular-poisson/common.txt create mode 100644 demo/documented/singular-poisson/cpp/CMakeLists.txt create mode 100644 demo/documented/singular-poisson/cpp/Poisson.h create mode 100644 demo/documented/singular-poisson/cpp/Poisson.ufl create mode 100644 demo/documented/singular-poisson/cpp/compile.log create mode 100644 demo/documented/singular-poisson/cpp/documentation.rst create mode 100644 demo/documented/singular-poisson/cpp/main.cpp create mode 100644 demo/documented/singular-poisson/python/demo_singular-poisson.py create mode 100644 demo/documented/singular-poisson/python/documentation.rst create mode 100644 demo/documented/singular-poisson/singular_u.png create mode 100644 demo/documented/stokes-iterative/common.txt create mode 100644 demo/documented/stokes-iterative/cpp/CMakeLists.txt create mode 100644 demo/documented/stokes-iterative/cpp/Stokes.h create mode 100644 demo/documented/stokes-iterative/cpp/Stokes.ufl create mode 100644 demo/documented/stokes-iterative/cpp/StokesPreconditioner.h create mode 100644 demo/documented/stokes-iterative/cpp/StokesPreconditioner.ufl create mode 100644 demo/documented/stokes-iterative/cpp/compile.log create mode 100644 demo/documented/stokes-iterative/cpp/documentation.rst create mode 100644 demo/documented/stokes-iterative/cpp/main.cpp create mode 100644 demo/documented/stokes-iterative/python/demo_stokes-iterative.py create mode 100644 demo/documented/stokes-iterative/python/documentation.rst create mode 100644 demo/documented/stokes-mini/common.txt create mode 100644 demo/documented/stokes-mini/cpp/README create mode 100644 demo/documented/stokes-mini/cpp/documentation.rst create mode 100644 demo/documented/stokes-mini/dolfin_fine.xml.gz create mode 100644 demo/documented/stokes-mini/dolfin_fine_subdomains.xml.gz create mode 100644 demo/documented/stokes-mini/plot_p.png create mode 100644 demo/documented/stokes-mini/plot_u.png create mode 100644 demo/documented/stokes-mini/python/demo_stokes-mini.py create mode 100644 demo/documented/stokes-mini/python/documentation.rst create mode 100644 demo/documented/stokes-stabilized/common.txt create mode 100644 demo/documented/stokes-stabilized/cpp/CMakeLists.txt create mode 100644 demo/documented/stokes-stabilized/cpp/Stokes.h create mode 100644 demo/documented/stokes-stabilized/cpp/Stokes.ufl create mode 100644 demo/documented/stokes-stabilized/cpp/compile.log create mode 100644 demo/documented/stokes-stabilized/cpp/documentation.rst create mode 100644 demo/documented/stokes-stabilized/cpp/main.cpp create mode 100644 demo/documented/stokes-stabilized/cpp/plot.py create mode 100644 demo/documented/stokes-stabilized/dolfin_fine.xml.gz create mode 100644 demo/documented/stokes-stabilized/dolfin_fine_subdomains.xml.gz create mode 100644 demo/documented/stokes-stabilized/plot_p.png create mode 100644 demo/documented/stokes-stabilized/plot_u.png create mode 100644 demo/documented/stokes-stabilized/python/demo_stokes-stabilized.py create mode 100644 demo/documented/stokes-stabilized/python/documentation.rst create mode 100644 demo/documented/stokes-taylor-hood/common.txt create mode 100644 demo/documented/stokes-taylor-hood/cpp/CMakeLists.txt create mode 100644 demo/documented/stokes-taylor-hood/cpp/Stokes.h create mode 100644 demo/documented/stokes-taylor-hood/cpp/Stokes.ufl create mode 100644 demo/documented/stokes-taylor-hood/cpp/compile.log create mode 100644 demo/documented/stokes-taylor-hood/cpp/documentation.rst create mode 100644 demo/documented/stokes-taylor-hood/cpp/main.cpp create mode 100644 demo/documented/stokes-taylor-hood/cpp/plot.py create mode 100644 demo/documented/stokes-taylor-hood/dolfin_fine.xml.gz create mode 100644 demo/documented/stokes-taylor-hood/dolfin_fine_subdomains.xml.gz create mode 100644 demo/documented/stokes-taylor-hood/plot_mesh.png create mode 100644 demo/documented/stokes-taylor-hood/plot_mesh_boundaries.png create mode 100644 demo/documented/stokes-taylor-hood/plot_p.png create mode 100644 demo/documented/stokes-taylor-hood/plot_u.png create mode 100644 demo/documented/stokes-taylor-hood/python/demo_stokes-taylorhood.py create mode 100644 demo/documented/stokes-taylor-hood/python/documentation.rst create mode 100644 demo/documented/subdomains-poisson/common.txt create mode 100644 demo/documented/subdomains-poisson/cpp/README create mode 100644 demo/documented/subdomains-poisson/cpp/documentation.rst create mode 100644 demo/documented/subdomains-poisson/python/demo_subdomains-poisson.py create mode 100644 demo/documented/subdomains-poisson/python/documentation.rst create mode 100644 demo/documented/subdomains/common.txt create mode 100644 demo/documented/subdomains/cpp/CMakeLists.txt create mode 100644 demo/documented/subdomains/cpp/documentation.rst create mode 100644 demo/documented/subdomains/cpp/main.cpp create mode 100644 demo/documented/subdomains/dolfin_fine.xml.gz create mode 100644 demo/documented/subdomains/plot_subdomains.png create mode 100644 demo/documented/subdomains/python/demo_subdomains.py create mode 100644 demo/documented/subdomains/python/documentation.rst create mode 100644 demo/documented/tensor-weighted-poisson/common.txt create mode 100644 demo/documented/tensor-weighted-poisson/cpp/README create mode 100644 demo/documented/tensor-weighted-poisson/cpp/documentation.rst create mode 100644 demo/documented/tensor-weighted-poisson/python/demo_tensorweighted-poisson.py create mode 100644 demo/documented/tensor-weighted-poisson/python/documentation.rst create mode 100644 demo/documented/tensor-weighted-poisson/python/generate_data.py create mode 100644 demo/documented/tensor-weighted-poisson/tensorweighted-poisson_u.png create mode 100644 demo/documented/tensor-weighted-poisson/unitsquare_32_32.xml.gz create mode 100644 demo/documented/tensor-weighted-poisson/unitsquare_32_32_c00.xml.gz create mode 100644 demo/documented/tensor-weighted-poisson/unitsquare_32_32_c01.xml.gz create mode 100644 demo/documented/tensor-weighted-poisson/unitsquare_32_32_c11.xml.gz create mode 100644 demo/undocumented/adaptive-poisson/cpp/CMakeLists.txt create mode 100644 demo/undocumented/adaptive-poisson/cpp/README create mode 100755 demo/undocumented/adaptive-poisson/python/demo_adaptive-poisson.py create mode 100644 demo/undocumented/advection-diffusion/cpp/AdvectionDiffusion.h create mode 100644 demo/undocumented/advection-diffusion/cpp/AdvectionDiffusion.ufl create mode 100644 demo/undocumented/advection-diffusion/cpp/CMakeLists.txt create mode 100644 demo/undocumented/advection-diffusion/cpp/Velocity.h create mode 100644 demo/undocumented/advection-diffusion/cpp/Velocity.ufl create mode 100644 demo/undocumented/advection-diffusion/cpp/compile.log create mode 100644 demo/undocumented/advection-diffusion/cpp/main.cpp create mode 100644 demo/undocumented/advection-diffusion/dolfin_fine.xml.gz create mode 100644 demo/undocumented/advection-diffusion/dolfin_fine_subdomains.xml.gz create mode 100644 demo/undocumented/advection-diffusion/dolfin_fine_velocity.xml.gz create mode 100644 demo/undocumented/advection-diffusion/python/demo_advection-diffusion.py create mode 100644 demo/undocumented/ale/cpp/CMakeLists.txt create mode 100644 demo/undocumented/ale/cpp/main.cpp create mode 100644 demo/undocumented/ale/python/demo_ale.py create mode 100644 demo/undocumented/auto-adaptive-navier-stokes/channel_with_flap.xml.gz create mode 100644 demo/undocumented/auto-adaptive-navier-stokes/cpp/AdaptiveNavierStokes.h create mode 100644 demo/undocumented/auto-adaptive-navier-stokes/cpp/AdaptiveNavierStokes.ufl create mode 100644 demo/undocumented/auto-adaptive-navier-stokes/cpp/CMakeLists.txt create mode 100644 demo/undocumented/auto-adaptive-navier-stokes/cpp/compile.log create mode 100644 demo/undocumented/auto-adaptive-navier-stokes/cpp/main.cpp create mode 100644 demo/undocumented/auto-adaptive-navier-stokes/python/demo_auto-adaptive-navier-stokes.py create mode 100644 demo/undocumented/block-matrix/cpp/CMakeLists.txt create mode 100644 demo/undocumented/block-matrix/cpp/StiffnessMatrix.h create mode 100644 demo/undocumented/block-matrix/cpp/StiffnessMatrix.ufl create mode 100644 demo/undocumented/block-matrix/cpp/compile.log create mode 100644 demo/undocumented/block-matrix/cpp/main.cpp create mode 100644 demo/undocumented/block-matrix/python/demo_block-matrix.py create mode 100644 demo/undocumented/built-in/cpp/CMakeLists.txt create mode 100644 demo/undocumented/built-in/cpp/main.cpp create mode 100644 demo/undocumented/built-in/python/demo_built-in.py create mode 100644 demo/undocumented/collision-detection/python/demo_collision-detection.py create mode 100644 demo/undocumented/coloring/cpp/CMakeLists.txt create mode 100644 demo/undocumented/coloring/cpp/main.cpp create mode 100644 demo/undocumented/coloring/python/demo_coloring.py create mode 100644 demo/undocumented/compiled-extension-module/cpp/README create mode 100644 demo/undocumented/compiled-extension-module/python/Probe/Probe.cpp create mode 100644 demo/undocumented/compiled-extension-module/python/Probe/Probe.h create mode 100644 demo/undocumented/compiled-extension-module/python/demo_compiled-extension-module.py create mode 100644 demo/undocumented/conditional/cpp/CMakeLists.txt create mode 100644 demo/undocumented/conditional/cpp/Conditional.h create mode 100644 demo/undocumented/conditional/cpp/Conditional.ufl create mode 100644 demo/undocumented/conditional/cpp/compile.log create mode 100644 demo/undocumented/conditional/cpp/main.cpp create mode 100644 demo/undocumented/conditional/python/demo_conditional.py create mode 100644 demo/undocumented/contact-vi-snes/circle_yplane.geo create mode 100644 demo/undocumented/contact-vi-snes/circle_yplane.xml.gz create mode 100644 demo/undocumented/contact-vi-snes/cpp/CMakeLists.txt create mode 100644 demo/undocumented/contact-vi-snes/cpp/HyperElasticity.h create mode 100644 demo/undocumented/contact-vi-snes/cpp/HyperElasticity.ufl create mode 100644 demo/undocumented/contact-vi-snes/cpp/compile.log create mode 100644 demo/undocumented/contact-vi-snes/cpp/main.cpp create mode 100644 demo/undocumented/contact-vi-snes/python/demo_contact-vi-snes.py create mode 100644 demo/undocumented/contact-vi-tao/circle_yplane.xml.gz create mode 100644 demo/undocumented/contact-vi-tao/cpp/CMakeLists.txt create mode 100644 demo/undocumented/contact-vi-tao/cpp/Elasticity.h create mode 100644 demo/undocumented/contact-vi-tao/cpp/Elasticity.ufl create mode 100644 demo/undocumented/contact-vi-tao/cpp/compile.log create mode 100644 demo/undocumented/contact-vi-tao/cpp/main.cpp create mode 100644 demo/undocumented/contact-vi-tao/python/demo_contact-vi-tao.py create mode 100644 demo/undocumented/curl-curl/cpp/CMakeLists.txt create mode 100644 demo/undocumented/curl-curl/cpp/CurrentDensity.h create mode 100644 demo/undocumented/curl-curl/cpp/CurrentDensity.ufl create mode 100644 demo/undocumented/curl-curl/cpp/EddyCurrents.h create mode 100644 demo/undocumented/curl-curl/cpp/EddyCurrents.ufl create mode 100644 demo/undocumented/curl-curl/cpp/compile.log create mode 100644 demo/undocumented/curl-curl/cpp/main.cpp create mode 100644 demo/undocumented/curl-curl/python/demo_curl-curl.py create mode 100644 demo/undocumented/dg-advection-diffusion/cpp/AdvectionDiffusion.h create mode 100644 demo/undocumented/dg-advection-diffusion/cpp/AdvectionDiffusion.ufl create mode 100644 demo/undocumented/dg-advection-diffusion/cpp/CMakeLists.txt create mode 100644 demo/undocumented/dg-advection-diffusion/cpp/Projection.h create mode 100644 demo/undocumented/dg-advection-diffusion/cpp/Projection.ufl create mode 100644 demo/undocumented/dg-advection-diffusion/cpp/Velocity.h create mode 100644 demo/undocumented/dg-advection-diffusion/cpp/Velocity.ufl create mode 100644 demo/undocumented/dg-advection-diffusion/cpp/compile.log create mode 100644 demo/undocumented/dg-advection-diffusion/cpp/main.cpp create mode 100644 demo/undocumented/dg-advection-diffusion/python/demo_dg-advection-diffusion.py create mode 100644 demo/undocumented/dg-advection-diffusion/unitsquare_64_64.xml.gz create mode 100644 demo/undocumented/dg-advection-diffusion/unitsquare_64_64_velocity.xml.gz create mode 100644 demo/undocumented/dg-poisson/cpp/CMakeLists.txt create mode 100644 demo/undocumented/dg-poisson/cpp/Poisson.h create mode 100644 demo/undocumented/dg-poisson/cpp/Poisson.ufl create mode 100644 demo/undocumented/dg-poisson/cpp/compile.log create mode 100644 demo/undocumented/dg-poisson/cpp/main.cpp create mode 100644 demo/undocumented/dg-poisson/cpp/plot.py create mode 100644 demo/undocumented/dg-poisson/python/demo_dg-poisson.py create mode 100644 demo/undocumented/elasticity/cpp/CMakeLists.txt create mode 100644 demo/undocumented/elasticity/cpp/Elasticity.h create mode 100644 demo/undocumented/elasticity/cpp/Elasticity.ufl create mode 100644 demo/undocumented/elasticity/cpp/compile.log create mode 100644 demo/undocumented/elasticity/cpp/main.cpp create mode 100644 demo/undocumented/elasticity/cpp/plot.py create mode 100644 demo/undocumented/elasticity/gear.xml.gz create mode 100644 demo/undocumented/elasticity/python/demo_elasticity.py create mode 100644 demo/undocumented/elastodynamics/cpp/CMakeLists.txt create mode 100644 demo/undocumented/elastodynamics/cpp/DG0_eps_xx.h create mode 100644 demo/undocumented/elastodynamics/cpp/DG0_eps_xx.ufl create mode 100644 demo/undocumented/elastodynamics/cpp/ElastoDynamics.h create mode 100644 demo/undocumented/elastodynamics/cpp/ElastoDynamics.ufl create mode 100644 demo/undocumented/elastodynamics/cpp/compile.log create mode 100644 demo/undocumented/elastodynamics/cpp/main.cpp create mode 100644 demo/undocumented/elastodynamics/dolfin_fine.xml.gz create mode 100644 demo/undocumented/elastodynamics/python/demo_elastodynamics.py create mode 100644 demo/undocumented/elementplot/python/demo_elementplot.py create mode 100644 demo/undocumented/eval/cpp/CMakeLists.txt create mode 100644 demo/undocumented/eval/cpp/Projection.h create mode 100644 demo/undocumented/eval/cpp/Projection.ufl create mode 100644 demo/undocumented/eval/cpp/compile.log create mode 100644 demo/undocumented/eval/cpp/main.cpp create mode 100644 demo/undocumented/eval/python/demo_eval.py create mode 100644 demo/undocumented/extrapolation/cpp/CMakeLists.txt create mode 100644 demo/undocumented/extrapolation/cpp/P1.h create mode 100644 demo/undocumented/extrapolation/cpp/P1.ufl create mode 100644 demo/undocumented/extrapolation/cpp/P2.h create mode 100644 demo/undocumented/extrapolation/cpp/P2.ufl create mode 100644 demo/undocumented/extrapolation/cpp/compile.log create mode 100644 demo/undocumented/extrapolation/cpp/main.cpp create mode 100644 demo/undocumented/extrapolation/python/demo_extrapolation.py create mode 100644 demo/undocumented/functional/cpp/CMakeLists.txt create mode 100644 demo/undocumented/functional/cpp/EnergyNorm.h create mode 100644 demo/undocumented/functional/cpp/EnergyNorm.ufl create mode 100644 demo/undocumented/functional/cpp/compile.log create mode 100644 demo/undocumented/functional/cpp/main.cpp create mode 100644 demo/undocumented/functional/python/demo_functional.py create mode 100644 demo/undocumented/interpolation/cpp/CMakeLists.txt create mode 100644 demo/undocumented/interpolation/cpp/README create mode 100644 demo/undocumented/interpolation/python/demo_interpolation.py create mode 100644 demo/undocumented/lift-drag/cpp/CMakeLists.txt create mode 100644 demo/undocumented/lift-drag/cpp/Functionals.h create mode 100644 demo/undocumented/lift-drag/cpp/Functionals.ufl create mode 100644 demo/undocumented/lift-drag/cpp/README create mode 100644 demo/undocumented/lift-drag/cpp/compile.log create mode 100644 demo/undocumented/lift-drag/cpp/main.cpp create mode 100644 demo/undocumented/lift-drag/dolfin_fine.xml.gz create mode 100644 demo/undocumented/lift-drag/dolfin_fine_pressure.xml.gz create mode 100644 demo/undocumented/lift-drag/python/demo_lift-drag.py create mode 100644 demo/undocumented/mesh-quality/cpp/CMakeLists.txt create mode 100644 demo/undocumented/mesh-quality/cpp/main.cpp create mode 100644 demo/undocumented/mesh-quality/dolfin_fine.xml.gz create mode 100644 demo/undocumented/mesh-quality/python/demo_mesh-quality.py create mode 100644 demo/undocumented/meshfunction-refinement/cpp/CMakeLists.txt create mode 100644 demo/undocumented/meshfunction-refinement/cpp/main.cpp create mode 100644 demo/undocumented/mixed-poisson-sphere/python/demo_mixed-poisson-sphere.py create mode 100644 demo/undocumented/mixed-poisson-sphere/sphere_16.xml.gz create mode 100644 demo/undocumented/multistage-solver/cpp/README create mode 100644 demo/undocumented/multistage-solver/dolfin_fine.xml.gz create mode 100644 demo/undocumented/multistage-solver/dolfin_fine_subdomains.xml.gz create mode 100644 demo/undocumented/multistage-solver/dolfin_fine_velocity.xml.gz create mode 100644 demo/undocumented/multistage-solver/python/demo_multi-stage-solver.py create mode 100644 demo/undocumented/nonmatching-interpolation/cpp/CMakeLists.txt create mode 100644 demo/undocumented/nonmatching-interpolation/cpp/P1.h create mode 100644 demo/undocumented/nonmatching-interpolation/cpp/P1.ufl create mode 100644 demo/undocumented/nonmatching-interpolation/cpp/P3.h create mode 100644 demo/undocumented/nonmatching-interpolation/cpp/P3.ufl create mode 100644 demo/undocumented/nonmatching-interpolation/cpp/compile.log create mode 100644 demo/undocumented/nonmatching-interpolation/cpp/main.cpp create mode 100644 demo/undocumented/nonmatching-interpolation/python/demo_nonmatching-interpolation.py create mode 100644 demo/undocumented/nonmatching-projection/cpp/CMakeLists.txt create mode 100644 demo/undocumented/nonmatching-projection/cpp/P1_projection.h create mode 100644 demo/undocumented/nonmatching-projection/cpp/P1_projection.ufl create mode 100644 demo/undocumented/nonmatching-projection/cpp/P3.h create mode 100644 demo/undocumented/nonmatching-projection/cpp/P3.ufl create mode 100644 demo/undocumented/nonmatching-projection/cpp/compile.log create mode 100644 demo/undocumented/nonmatching-projection/cpp/main.cpp create mode 100644 demo/undocumented/nonmatching-projection/python/demo_nonmatching-projection.py create mode 100644 demo/undocumented/optimization/python/demo_optimization.py create mode 100644 demo/undocumented/overlapping-regions/cpp/README create mode 100644 demo/undocumented/overlapping-regions/python/README create mode 100644 demo/undocumented/overlapping-regions/python/demo_overlapping-regions.py create mode 100644 demo/undocumented/parallel-refinement/cpp/CMakeLists.txt create mode 100644 demo/undocumented/parallel-refinement/cpp/main.cpp create mode 100644 demo/undocumented/parallel-refinement/python/demo_parallel-refinement.py create mode 100644 demo/undocumented/parameters/cpp/CMakeLists.txt create mode 100644 demo/undocumented/parameters/cpp/main.cpp create mode 100644 demo/undocumented/parameters/cpp/parameters.xml create mode 100644 demo/undocumented/parameters/python/demo_parameters.py create mode 100644 demo/undocumented/parameters/python/parameters.xml create mode 100644 demo/undocumented/petsc4py/python/demo_petsc4py.py create mode 100644 demo/undocumented/plot-qt/cpp/BoundaryMeshFunction.cpp create mode 100644 demo/undocumented/plot-qt/cpp/BoundaryMeshFunction.h create mode 100644 demo/undocumented/plot-qt/cpp/CMakeLists.txt create mode 100644 demo/undocumented/plot-qt/cpp/CoordLabel.cpp create mode 100644 demo/undocumented/plot-qt/cpp/CoordLabel.h create mode 100644 demo/undocumented/plot-qt/cpp/PlotWidget.cpp create mode 100644 demo/undocumented/plot-qt/cpp/PlotWidget.h create mode 100644 demo/undocumented/plot-qt/cpp/Plotter.cpp create mode 100644 demo/undocumented/plot-qt/cpp/Plotter.h create mode 100644 demo/undocumented/plot-qt/cpp/main.cpp create mode 100644 demo/undocumented/plot/cpp/CMakeLists.txt create mode 100644 demo/undocumented/plot/cpp/main.cpp create mode 100644 demo/undocumented/plot/dolfin_fine.xml.gz create mode 100644 demo/undocumented/plot/python/demo_plot.py create mode 100644 demo/undocumented/poisson1D-in-2D/cpp/CMakeLists.txt create mode 100644 demo/undocumented/poisson1D-in-2D/cpp/Poisson.h create mode 100644 demo/undocumented/poisson1D-in-2D/cpp/Poisson.ufl create mode 100644 demo/undocumented/poisson1D-in-2D/cpp/compile.log create mode 100644 demo/undocumented/poisson1D-in-2D/cpp/main.cpp create mode 100644 demo/undocumented/poisson1D-in-2D/python/demo_poisson1D-in-2D.py create mode 100644 demo/undocumented/poisson1D/cpp/CMakeLists.txt create mode 100644 demo/undocumented/poisson1D/cpp/Poisson.h create mode 100644 demo/undocumented/poisson1D/cpp/Poisson.ufl create mode 100644 demo/undocumented/poisson1D/cpp/compile.log create mode 100644 demo/undocumented/poisson1D/cpp/main.cpp create mode 100644 demo/undocumented/poisson1D/python/demo_poisson1D.py create mode 100644 demo/undocumented/projection-interpolation/cpp/CMakeLists.txt create mode 100644 demo/undocumented/projection-interpolation/cpp/README create mode 100644 demo/undocumented/projection-interpolation/python/demo_projection-interpolation.py create mode 100644 demo/undocumented/refinement/cpp/CMakeLists.txt create mode 100644 demo/undocumented/refinement/cpp/main.cpp create mode 100644 demo/undocumented/refinement/python/demo_refinement.py create mode 100644 demo/undocumented/restriction/cpp/CMakeLists.txt create mode 100644 demo/undocumented/restriction/cpp/Poisson.h create mode 100644 demo/undocumented/restriction/cpp/Poisson.ufl create mode 100644 demo/undocumented/restriction/cpp/compile.log create mode 100644 demo/undocumented/restriction/cpp/main.cpp create mode 100644 demo/undocumented/restriction/python/README create mode 100644 demo/undocumented/restriction/python/demo_restriction.py create mode 100644 demo/undocumented/smoothing/cpp/CMakeLists.txt create mode 100644 demo/undocumented/smoothing/cpp/README create mode 100644 demo/undocumented/smoothing/python/demo_smoothing.py create mode 100644 demo/undocumented/spatial-coordinates/cpp/CMakeLists.txt create mode 100644 demo/undocumented/spatial-coordinates/cpp/SpatialCoordinates.h create mode 100644 demo/undocumented/spatial-coordinates/cpp/SpatialCoordinates.ufl create mode 100644 demo/undocumented/spatial-coordinates/cpp/compile.log create mode 100644 demo/undocumented/spatial-coordinates/cpp/main.cpp create mode 100644 demo/undocumented/spatial-coordinates/python/demo_spatial-coordinates.py create mode 100644 demo/undocumented/special-functions/python/demo_special_functions.py create mode 100644 demo/undocumented/sub-function-assignment/cpp/README create mode 100644 demo/undocumented/sub-function-assignment/python/demo_sub-function-assignment.py create mode 100644 demo/undocumented/submesh/cpp/CMakeLists.txt create mode 100644 demo/undocumented/submesh/cpp/main.cpp create mode 100644 demo/undocumented/submesh/python/demo_submesh.py create mode 100644 demo/undocumented/sym-dirichlet-bc/cpp/CMakeLists.txt create mode 100644 demo/undocumented/sym-dirichlet-bc/cpp/Poisson.h create mode 100644 demo/undocumented/sym-dirichlet-bc/cpp/Poisson.ufl create mode 100644 demo/undocumented/sym-dirichlet-bc/cpp/compile.log create mode 100644 demo/undocumented/sym-dirichlet-bc/cpp/main.cpp create mode 100644 demo/undocumented/sym-dirichlet-bc/python/demo_sym-dirichlet-bc.py create mode 100644 demo/undocumented/time-series/cpp/CMakeLists.txt create mode 100644 demo/undocumented/time-series/cpp/main.cpp create mode 100644 demo/undocumented/time-series/python/demo_time-series.py create mode 100644 demo/undocumented/triangulate/cpp/CMakeLists.txt create mode 100644 demo/undocumented/triangulate/cpp/main.cpp create mode 100644 demo/undocumented/triangulate/python/demo_triangulate.py create mode 100644 demo/undocumented/trilinos/python/demo_trilinos.py create mode 100644 demo/undocumented/waveguide/cpp/CMakeLists.txt create mode 100644 demo/undocumented/waveguide/cpp/Forms.h create mode 100644 demo/undocumented/waveguide/cpp/Forms.py create mode 100644 demo/undocumented/waveguide/cpp/Forms.ufl create mode 100644 demo/undocumented/waveguide/cpp/compile.log create mode 100644 demo/undocumented/waveguide/cpp/main.cpp create mode 100644 demo/undocumented/waveguide/python/demo_waveguide.py create mode 100644 doc/CMakeLists.txt create mode 100644 doc/README create mode 100644 doc/copy_and_split_demo_doc.py create mode 100644 doc/generate_api_doc.py create mode 100644 doc/generate_main_index.py create mode 100644 doc/man/man1/dolfin-convert.1.gz create mode 100644 doc/man/man1/dolfin-order.1.gz create mode 100644 doc/man/man1/dolfin-plot.1.gz create mode 100644 doc/man/man1/dolfin-version.1.gz create mode 100644 doc/quick_reference_cpp.rst create mode 100644 doc/quick_reference_python.rst create mode 100644 doc/sphinx-common/Makefile create mode 100644 doc/sphinx-common/README create mode 100644 doc/sphinx-common/source/conf.py create mode 100644 doc/sphinx-common/source/index.rst create mode 100644 dolfin/CMakeLists.txt create mode 100644 dolfin/adaptivity/AdaptiveLinearVariationalSolver.cpp create mode 100644 dolfin/adaptivity/AdaptiveLinearVariationalSolver.h create mode 100644 dolfin/adaptivity/AdaptiveNonlinearVariationalSolver.cpp create mode 100644 dolfin/adaptivity/AdaptiveNonlinearVariationalSolver.h create mode 100644 dolfin/adaptivity/ErrorControl.cpp create mode 100644 dolfin/adaptivity/ErrorControl.h create mode 100644 dolfin/adaptivity/Extrapolation.cpp create mode 100644 dolfin/adaptivity/Extrapolation.h create mode 100644 dolfin/adaptivity/GenericAdaptiveVariationalSolver.cpp create mode 100644 dolfin/adaptivity/GenericAdaptiveVariationalSolver.h create mode 100644 dolfin/adaptivity/GoalFunctional.cpp create mode 100644 dolfin/adaptivity/GoalFunctional.h create mode 100644 dolfin/adaptivity/LocalAssembler.cpp create mode 100644 dolfin/adaptivity/LocalAssembler.h create mode 100644 dolfin/adaptivity/TimeSeries.cpp create mode 100644 dolfin/adaptivity/TimeSeries.h create mode 100644 dolfin/adaptivity/TimeSeriesHDF5.cpp create mode 100644 dolfin/adaptivity/TimeSeriesHDF5.h create mode 100644 dolfin/adaptivity/adapt.cpp create mode 100644 dolfin/adaptivity/adapt.h create mode 100644 dolfin/adaptivity/adaptivesolve.cpp create mode 100644 dolfin/adaptivity/adaptivesolve.h create mode 100644 dolfin/adaptivity/dolfin_adaptivity.h create mode 100644 dolfin/adaptivity/marking.cpp create mode 100644 dolfin/adaptivity/marking.h create mode 100644 dolfin/ale/ALE.cpp create mode 100644 dolfin/ale/ALE.h create mode 100644 dolfin/ale/ALEType.h create mode 100644 dolfin/ale/HarmonicSmoothing.cpp create mode 100644 dolfin/ale/HarmonicSmoothing.h create mode 100644 dolfin/ale/MeshDisplacement.cpp create mode 100644 dolfin/ale/MeshDisplacement.h create mode 100644 dolfin/ale/Poisson1D.h create mode 100644 dolfin/ale/Poisson1D.ufl create mode 100644 dolfin/ale/Poisson2D.h create mode 100644 dolfin/ale/Poisson2D.ufl create mode 100644 dolfin/ale/Poisson3D.h create mode 100644 dolfin/ale/Poisson3D.ufl create mode 100644 dolfin/ale/compile.log create mode 100644 dolfin/ale/dolfin_ale.h create mode 100644 dolfin/common/Array.h create mode 100644 dolfin/common/Hierarchical.h create mode 100644 dolfin/common/IndexSet.h create mode 100644 dolfin/common/MPI.cpp create mode 100644 dolfin/common/MPI.h create mode 100644 dolfin/common/NoDeleter.h create mode 100644 dolfin/common/RangedIndexSet.h create mode 100644 dolfin/common/Set.h create mode 100644 dolfin/common/SubSystemsManager.cpp create mode 100644 dolfin/common/SubSystemsManager.h create mode 100644 dolfin/common/Timer.cpp create mode 100644 dolfin/common/Timer.h create mode 100644 dolfin/common/UniqueIdGenerator.cpp create mode 100644 dolfin/common/UniqueIdGenerator.h create mode 100644 dolfin/common/Variable.cpp create mode 100644 dolfin/common/Variable.h create mode 100644 dolfin/common/constants.h create mode 100644 dolfin/common/defines.cpp create mode 100644 dolfin/common/defines.h create mode 100644 dolfin/common/dolfin_common.h create mode 100644 dolfin/common/dolfin_doc.h create mode 100644 dolfin/common/init.cpp create mode 100644 dolfin/common/init.h create mode 100644 dolfin/common/timing.cpp create mode 100644 dolfin/common/timing.h create mode 100644 dolfin/common/types.h create mode 100644 dolfin/common/unittest.h create mode 100644 dolfin/common/utils.cpp create mode 100644 dolfin/common/utils.h create mode 100644 dolfin/dolfin.h create mode 100644 dolfin/fem/Assembler.cpp create mode 100644 dolfin/fem/Assembler.h create mode 100644 dolfin/fem/AssemblerBase.cpp create mode 100644 dolfin/fem/AssemblerBase.h create mode 100644 dolfin/fem/BasisFunction.h create mode 100644 dolfin/fem/CCFEMAssembler.cpp create mode 100644 dolfin/fem/CCFEMAssembler.h create mode 100644 dolfin/fem/CCFEMDofMap.cpp create mode 100644 dolfin/fem/CCFEMDofMap.h create mode 100644 dolfin/fem/CCFEMForm.cpp create mode 100644 dolfin/fem/CCFEMForm.h create mode 100644 dolfin/fem/DirichletBC.cpp create mode 100644 dolfin/fem/DirichletBC.h create mode 100644 dolfin/fem/DofMap.cpp create mode 100644 dolfin/fem/DofMap.h create mode 100644 dolfin/fem/DofMapBuilder.cpp create mode 100644 dolfin/fem/DofMapBuilder.h create mode 100644 dolfin/fem/DomainAssigner.cpp create mode 100644 dolfin/fem/DomainAssigner.h create mode 100644 dolfin/fem/Equation.cpp create mode 100644 dolfin/fem/Equation.h create mode 100644 dolfin/fem/FiniteElement.cpp create mode 100644 dolfin/fem/FiniteElement.h create mode 100644 dolfin/fem/Form.cpp create mode 100644 dolfin/fem/Form.h create mode 100644 dolfin/fem/GenericDofMap.h create mode 100644 dolfin/fem/LinearTimeDependentProblem.cpp create mode 100644 dolfin/fem/LinearTimeDependentProblem.h create mode 100644 dolfin/fem/LinearVariationalProblem.cpp create mode 100644 dolfin/fem/LinearVariationalProblem.h create mode 100644 dolfin/fem/LinearVariationalSolver.cpp create mode 100644 dolfin/fem/LinearVariationalSolver.h create mode 100644 dolfin/fem/LocalSolver.cpp create mode 100644 dolfin/fem/LocalSolver.h create mode 100644 dolfin/fem/NonlinearVariationalProblem.cpp create mode 100644 dolfin/fem/NonlinearVariationalProblem.h create mode 100644 dolfin/fem/NonlinearVariationalSolver.cpp create mode 100644 dolfin/fem/NonlinearVariationalSolver.h create mode 100644 dolfin/fem/OpenMpAssembler.cpp create mode 100644 dolfin/fem/OpenMpAssembler.h create mode 100644 dolfin/fem/PointSource.cpp create mode 100644 dolfin/fem/PointSource.h create mode 100644 dolfin/fem/SparsityPatternBuilder.cpp create mode 100644 dolfin/fem/SparsityPatternBuilder.h create mode 100644 dolfin/fem/SystemAssembler.cpp create mode 100644 dolfin/fem/SystemAssembler.h create mode 100644 dolfin/fem/UFC.cpp create mode 100644 dolfin/fem/UFC.h create mode 100644 dolfin/fem/assemble.cpp create mode 100644 dolfin/fem/assemble.h create mode 100644 dolfin/fem/dolfin_fem.h create mode 100644 dolfin/fem/fem_utils.cpp create mode 100644 dolfin/fem/fem_utils.h create mode 100644 dolfin/fem/solve.cpp create mode 100644 dolfin/fem/solve.h create mode 100644 dolfin/function/CCFEMFunction.cpp create mode 100644 dolfin/function/CCFEMFunction.h create mode 100644 dolfin/function/CCFEMFunctionSpace.cpp create mode 100644 dolfin/function/CCFEMFunctionSpace.h create mode 100644 dolfin/function/CoefficientAssigner.cpp create mode 100644 dolfin/function/CoefficientAssigner.h create mode 100644 dolfin/function/Constant.cpp create mode 100644 dolfin/function/Constant.h create mode 100644 dolfin/function/Expression.cpp create mode 100644 dolfin/function/Expression.h create mode 100644 dolfin/function/Function.cpp create mode 100644 dolfin/function/Function.h create mode 100644 dolfin/function/FunctionAXPY.cpp create mode 100644 dolfin/function/FunctionAXPY.h create mode 100644 dolfin/function/FunctionAssigner.cpp create mode 100644 dolfin/function/FunctionAssigner.h create mode 100644 dolfin/function/FunctionSpace.cpp create mode 100644 dolfin/function/FunctionSpace.h create mode 100644 dolfin/function/GenericFunction.cpp create mode 100644 dolfin/function/GenericFunction.h create mode 100644 dolfin/function/LagrangeInterpolator.cpp create mode 100644 dolfin/function/LagrangeInterpolator.h create mode 100644 dolfin/function/SpecialFacetFunction.cpp create mode 100644 dolfin/function/SpecialFacetFunction.h create mode 100644 dolfin/function/SpecialFunctions.cpp create mode 100644 dolfin/function/SpecialFunctions.h create mode 100644 dolfin/function/SubSpace.cpp create mode 100644 dolfin/function/SubSpace.h create mode 100644 dolfin/function/assign.cpp create mode 100644 dolfin/function/assign.h create mode 100644 dolfin/function/dolfin_function.h create mode 100644 dolfin/generation/BoxMesh.cpp create mode 100644 dolfin/generation/BoxMesh.h create mode 100644 dolfin/generation/CGALMeshBuilder.h create mode 100644 dolfin/generation/CSGCGALDomain2D.cpp create mode 100644 dolfin/generation/CSGCGALDomain2D.h create mode 100644 dolfin/generation/CSGCGALMeshGenerator2D.cpp create mode 100644 dolfin/generation/CSGCGALMeshGenerator2D.h create mode 100644 dolfin/generation/CSGCGALMeshGenerator3D.cpp create mode 100644 dolfin/generation/CSGCGALMeshGenerator3D.h create mode 100644 dolfin/generation/CSGGeometries3D.cpp create mode 100644 dolfin/generation/CSGGeometries3D.h create mode 100644 dolfin/generation/CSGGeometry.cpp create mode 100644 dolfin/generation/CSGGeometry.h create mode 100644 dolfin/generation/CSGMeshGenerator.cpp create mode 100644 dolfin/generation/CSGMeshGenerator.h create mode 100644 dolfin/generation/CSGOperators.cpp create mode 100644 dolfin/generation/CSGOperators.h create mode 100644 dolfin/generation/CSGPrimitive.h create mode 100644 dolfin/generation/CSGPrimitives2D.cpp create mode 100644 dolfin/generation/CSGPrimitives2D.h create mode 100644 dolfin/generation/CSGPrimitives3D.cpp create mode 100644 dolfin/generation/CSGPrimitives3D.h create mode 100644 dolfin/generation/EllipseMesh.cpp create mode 100644 dolfin/generation/EllipseMesh.h create mode 100644 dolfin/generation/EllipsoidMesh.cpp create mode 100644 dolfin/generation/EllipsoidMesh.h create mode 100644 dolfin/generation/GeometryToCGALConverter.cpp create mode 100644 dolfin/generation/GeometryToCGALConverter.h create mode 100644 dolfin/generation/ImplicitDomainMeshGenerator.cpp create mode 100644 dolfin/generation/ImplicitDomainMeshGenerator.h create mode 100644 dolfin/generation/IntervalMesh.cpp create mode 100644 dolfin/generation/IntervalMesh.h create mode 100644 dolfin/generation/PolygonalMeshGenerator.cpp create mode 100644 dolfin/generation/PolygonalMeshGenerator.h create mode 100644 dolfin/generation/PolyhedralMeshGenerator.cpp create mode 100644 dolfin/generation/PolyhedralMeshGenerator.h create mode 100644 dolfin/generation/PolyhedronUtils.cpp create mode 100644 dolfin/generation/PolyhedronUtils.h create mode 100644 dolfin/generation/RectangleMesh.cpp create mode 100644 dolfin/generation/RectangleMesh.h create mode 100644 dolfin/generation/Triangulate.cpp create mode 100644 dolfin/generation/Triangulate.h create mode 100644 dolfin/generation/UnitCubeMesh.h create mode 100644 dolfin/generation/UnitIntervalMesh.h create mode 100644 dolfin/generation/UnitSquareMesh.h create mode 100644 dolfin/generation/UnitTetrahedronMesh.cpp create mode 100644 dolfin/generation/UnitTetrahedronMesh.h create mode 100644 dolfin/generation/UnitTriangleMesh.cpp create mode 100644 dolfin/generation/UnitTriangleMesh.h create mode 100644 dolfin/generation/cgal_csg3d.h create mode 100644 dolfin/generation/cgal_triangulate_polyhedron.h create mode 100644 dolfin/generation/compute_normal.h create mode 100644 dolfin/generation/dolfin_generation.h create mode 100644 dolfin/generation/self_intersect.h create mode 100644 dolfin/geometry/BoundingBoxTree.cpp create mode 100644 dolfin/geometry/BoundingBoxTree.h create mode 100644 dolfin/geometry/BoundingBoxTree1D.h create mode 100644 dolfin/geometry/BoundingBoxTree2D.h create mode 100644 dolfin/geometry/BoundingBoxTree3D.h create mode 100644 dolfin/geometry/CollisionDetection.cpp create mode 100644 dolfin/geometry/CollisionDetection.h create mode 100644 dolfin/geometry/GenericBoundingBoxTree.cpp create mode 100644 dolfin/geometry/GenericBoundingBoxTree.h create mode 100644 dolfin/geometry/ImplicitSurface.cpp create mode 100644 dolfin/geometry/ImplicitSurface.h create mode 100644 dolfin/geometry/IntersectionTriangulation.cpp create mode 100644 dolfin/geometry/IntersectionTriangulation.h create mode 100644 dolfin/geometry/MeshPointIntersection.cpp create mode 100644 dolfin/geometry/MeshPointIntersection.h create mode 100644 dolfin/geometry/Point.cpp create mode 100644 dolfin/geometry/Point.h create mode 100644 dolfin/geometry/SimplexQuadrature.cpp create mode 100644 dolfin/geometry/SimplexQuadrature.h create mode 100644 dolfin/geometry/dolfin_geometry.h create mode 100644 dolfin/geometry/intersect.cpp create mode 100644 dolfin/geometry/intersect.h create mode 100644 dolfin/graph/BoostGraphColoring.h create mode 100644 dolfin/graph/BoostGraphOrdering.cpp create mode 100644 dolfin/graph/BoostGraphOrdering.h create mode 100644 dolfin/graph/Graph.h create mode 100644 dolfin/graph/GraphBuilder.cpp create mode 100644 dolfin/graph/GraphBuilder.h create mode 100644 dolfin/graph/GraphColoring.cpp create mode 100644 dolfin/graph/GraphColoring.h create mode 100644 dolfin/graph/GraphOrdering.cpp create mode 100644 dolfin/graph/GraphOrdering.h create mode 100644 dolfin/graph/ParMETIS.cpp create mode 100644 dolfin/graph/ParMETIS.h create mode 100644 dolfin/graph/SCOTCH.cpp create mode 100644 dolfin/graph/SCOTCH.h create mode 100644 dolfin/graph/ZoltanInterface.cpp create mode 100644 dolfin/graph/ZoltanInterface.h create mode 100644 dolfin/graph/ZoltanPartition.cpp create mode 100644 dolfin/graph/ZoltanPartition.h create mode 100644 dolfin/graph/dolfin_graph.h create mode 100644 dolfin/io/BinaryFile.cpp create mode 100644 dolfin/io/BinaryFile.h create mode 100644 dolfin/io/Encoder.h create mode 100644 dolfin/io/ExodusFile.cpp create mode 100644 dolfin/io/ExodusFile.h create mode 100644 dolfin/io/File.cpp create mode 100644 dolfin/io/File.h create mode 100644 dolfin/io/GenericFile.cpp create mode 100644 dolfin/io/GenericFile.h create mode 100644 dolfin/io/HDF5Attribute.cpp create mode 100644 dolfin/io/HDF5Attribute.h create mode 100644 dolfin/io/HDF5File.cpp create mode 100644 dolfin/io/HDF5File.h create mode 100644 dolfin/io/HDF5Interface.cpp create mode 100644 dolfin/io/HDF5Interface.h create mode 100644 dolfin/io/HDF5Utility.cpp create mode 100644 dolfin/io/HDF5Utility.h create mode 100644 dolfin/io/RAWFile.cpp create mode 100644 dolfin/io/RAWFile.h create mode 100644 dolfin/io/SAX2AttributeParser.h create mode 100644 dolfin/io/SVGFile.cpp create mode 100644 dolfin/io/SVGFile.h create mode 100644 dolfin/io/VTKFile.cpp create mode 100644 dolfin/io/VTKFile.h create mode 100644 dolfin/io/VTKWriter.cpp create mode 100644 dolfin/io/VTKWriter.h create mode 100644 dolfin/io/X3DFile.cpp create mode 100644 dolfin/io/X3DFile.h create mode 100644 dolfin/io/XDMFFile.cpp create mode 100644 dolfin/io/XDMFFile.h create mode 100644 dolfin/io/XMLArray.h create mode 100644 dolfin/io/XMLFile.cpp create mode 100644 dolfin/io/XMLFile.h create mode 100644 dolfin/io/XMLFunctionData.cpp create mode 100644 dolfin/io/XMLFunctionData.h create mode 100644 dolfin/io/XMLLocalMeshSAX.cpp create mode 100644 dolfin/io/XMLLocalMeshSAX.h create mode 100644 dolfin/io/XMLMesh.cpp create mode 100644 dolfin/io/XMLMesh.h create mode 100644 dolfin/io/XMLMeshFunction.h create mode 100644 dolfin/io/XMLMeshValueCollection.h create mode 100644 dolfin/io/XMLParameters.cpp create mode 100644 dolfin/io/XMLParameters.h create mode 100644 dolfin/io/XMLVector.cpp create mode 100644 dolfin/io/XMLVector.h create mode 100644 dolfin/io/XYZFile.cpp create mode 100644 dolfin/io/XYZFile.h create mode 100644 dolfin/io/base64.cpp create mode 100644 dolfin/io/base64.h create mode 100644 dolfin/io/dolfin_io.h create mode 100644 dolfin/io/pugiconfig.hpp create mode 100644 dolfin/io/pugixml.cpp create mode 100644 dolfin/io/pugixml.hpp create mode 100644 dolfin/io/xmlutils.cpp create mode 100644 dolfin/io/xmlutils.h create mode 100644 dolfin/la/BlockMatrix.cpp create mode 100644 dolfin/la/BlockMatrix.h create mode 100644 dolfin/la/BlockVector.cpp create mode 100644 dolfin/la/BlockVector.h create mode 100644 dolfin/la/CholmodCholeskySolver.cpp create mode 100644 dolfin/la/CholmodCholeskySolver.h create mode 100644 dolfin/la/CoordinateMatrix.cpp create mode 100644 dolfin/la/CoordinateMatrix.h create mode 100644 dolfin/la/DefaultFactory.cpp create mode 100644 dolfin/la/DefaultFactory.h create mode 100644 dolfin/la/EpetraFactory.cpp create mode 100644 dolfin/la/EpetraFactory.h create mode 100644 dolfin/la/EpetraKrylovSolver.cpp create mode 100644 dolfin/la/EpetraKrylovSolver.h create mode 100644 dolfin/la/EpetraLUSolver.cpp create mode 100644 dolfin/la/EpetraLUSolver.h create mode 100644 dolfin/la/EpetraMatrix.cpp create mode 100644 dolfin/la/EpetraMatrix.h create mode 100644 dolfin/la/EpetraVector.cpp create mode 100644 dolfin/la/EpetraVector.h create mode 100644 dolfin/la/GenericLUSolver.h create mode 100644 dolfin/la/GenericLinearAlgebraFactory.h create mode 100644 dolfin/la/GenericLinearOperator.h create mode 100644 dolfin/la/GenericLinearSolver.cpp create mode 100644 dolfin/la/GenericLinearSolver.h create mode 100644 dolfin/la/GenericMatrix.cpp create mode 100644 dolfin/la/GenericMatrix.h create mode 100644 dolfin/la/GenericPreconditioner.h create mode 100644 dolfin/la/GenericSparsityPattern.h create mode 100644 dolfin/la/GenericTensor.h create mode 100644 dolfin/la/GenericVector.h create mode 100644 dolfin/la/KrylovSolver.cpp create mode 100644 dolfin/la/KrylovSolver.h create mode 100644 dolfin/la/LUSolver.cpp create mode 100644 dolfin/la/LUSolver.h create mode 100644 dolfin/la/LinearAlgebraObject.h create mode 100644 dolfin/la/LinearOperator.cpp create mode 100644 dolfin/la/LinearOperator.h create mode 100644 dolfin/la/LinearSolver.cpp create mode 100644 dolfin/la/LinearSolver.h create mode 100644 dolfin/la/MUMPSLUSolver.cpp create mode 100644 dolfin/la/MUMPSLUSolver.h create mode 100644 dolfin/la/Matrix.h create mode 100644 dolfin/la/PETScBaseMatrix.cpp create mode 100644 dolfin/la/PETScBaseMatrix.h create mode 100644 dolfin/la/PETScCuspFactory.cpp create mode 100644 dolfin/la/PETScCuspFactory.h create mode 100644 dolfin/la/PETScFactory.cpp create mode 100644 dolfin/la/PETScFactory.h create mode 100644 dolfin/la/PETScKrylovSolver.cpp create mode 100644 dolfin/la/PETScKrylovSolver.h create mode 100644 dolfin/la/PETScLUSolver.cpp create mode 100644 dolfin/la/PETScLUSolver.h create mode 100644 dolfin/la/PETScLinearOperator.cpp create mode 100644 dolfin/la/PETScLinearOperator.h create mode 100644 dolfin/la/PETScMatrix.cpp create mode 100644 dolfin/la/PETScMatrix.h create mode 100644 dolfin/la/PETScObject.h create mode 100644 dolfin/la/PETScOptions.cpp create mode 100644 dolfin/la/PETScOptions.h create mode 100644 dolfin/la/PETScPreconditioner.cpp create mode 100644 dolfin/la/PETScPreconditioner.h create mode 100644 dolfin/la/PETScUserPreconditioner.cpp create mode 100644 dolfin/la/PETScUserPreconditioner.h create mode 100644 dolfin/la/PETScVector.cpp create mode 100644 dolfin/la/PETScVector.h create mode 100644 dolfin/la/PaStiXLUSolver.cpp create mode 100644 dolfin/la/PaStiXLUSolver.h create mode 100644 dolfin/la/SLEPcEigenSolver.cpp create mode 100644 dolfin/la/SLEPcEigenSolver.h create mode 100644 dolfin/la/STLFactory.cpp create mode 100644 dolfin/la/STLFactory.h create mode 100644 dolfin/la/STLFactoryCSC.cpp create mode 100644 dolfin/la/STLFactoryCSC.h create mode 100644 dolfin/la/STLMatrix.cpp create mode 100644 dolfin/la/STLMatrix.h create mode 100644 dolfin/la/STLVector.h create mode 100644 dolfin/la/Scalar.h create mode 100644 dolfin/la/SparsityPattern.cpp create mode 100644 dolfin/la/SparsityPattern.h create mode 100644 dolfin/la/TensorLayout.cpp create mode 100644 dolfin/la/TensorLayout.h create mode 100644 dolfin/la/TrilinosPreconditioner.cpp create mode 100644 dolfin/la/TrilinosPreconditioner.h create mode 100644 dolfin/la/UmfpackLUSolver.cpp create mode 100644 dolfin/la/UmfpackLUSolver.h create mode 100644 dolfin/la/Vector.h create mode 100644 dolfin/la/VectorSpaceBasis.cpp create mode 100644 dolfin/la/VectorSpaceBasis.h create mode 100644 dolfin/la/dolfin_la.h create mode 100644 dolfin/la/solve.cpp create mode 100644 dolfin/la/solve.h create mode 100644 dolfin/la/uBLASDenseMatrix.h create mode 100644 dolfin/la/uBLASDummyPreconditioner.cpp create mode 100644 dolfin/la/uBLASDummyPreconditioner.h create mode 100644 dolfin/la/uBLASFactory.h create mode 100644 dolfin/la/uBLASILUPreconditioner.cpp create mode 100644 dolfin/la/uBLASILUPreconditioner.h create mode 100644 dolfin/la/uBLASKrylovSolver.cpp create mode 100644 dolfin/la/uBLASKrylovSolver.h create mode 100644 dolfin/la/uBLASLinearOperator.cpp create mode 100644 dolfin/la/uBLASLinearOperator.h create mode 100644 dolfin/la/uBLASMatrix.h create mode 100644 dolfin/la/uBLASPreconditioner.h create mode 100644 dolfin/la/uBLASSparseMatrix.h create mode 100644 dolfin/la/uBLASVector.cpp create mode 100644 dolfin/la/uBLASVector.h create mode 100644 dolfin/la/ublas.h create mode 100644 dolfin/log/Event.cpp create mode 100644 dolfin/log/Event.h create mode 100644 dolfin/log/LogLevel.h create mode 100644 dolfin/log/LogManager.cpp create mode 100644 dolfin/log/LogManager.h create mode 100644 dolfin/log/LogStream.cpp create mode 100644 dolfin/log/LogStream.h create mode 100644 dolfin/log/Logger.cpp create mode 100644 dolfin/log/Logger.h create mode 100644 dolfin/log/Progress.cpp create mode 100644 dolfin/log/Progress.h create mode 100644 dolfin/log/README create mode 100644 dolfin/log/Table.cpp create mode 100644 dolfin/log/Table.h create mode 100644 dolfin/log/dolfin_log.h create mode 100644 dolfin/log/log.cpp create mode 100644 dolfin/log/log.h create mode 100644 dolfin/math/Lagrange.cpp create mode 100644 dolfin/math/Lagrange.h create mode 100644 dolfin/math/Legendre.cpp create mode 100644 dolfin/math/Legendre.h create mode 100644 dolfin/math/basic.cpp create mode 100644 dolfin/math/basic.h create mode 100644 dolfin/math/dolfin_math.h create mode 100644 dolfin/mesh/BoundaryComputation.cpp create mode 100644 dolfin/mesh/BoundaryComputation.h create mode 100644 dolfin/mesh/BoundaryMesh.cpp create mode 100644 dolfin/mesh/BoundaryMesh.h create mode 100644 dolfin/mesh/Cell.h create mode 100644 dolfin/mesh/CellType.cpp create mode 100644 dolfin/mesh/CellType.h create mode 100644 dolfin/mesh/DistributedMeshTools.cpp create mode 100644 dolfin/mesh/DistributedMeshTools.h create mode 100644 dolfin/mesh/DomainBoundary.h create mode 100644 dolfin/mesh/DynamicMeshEditor.cpp create mode 100644 dolfin/mesh/DynamicMeshEditor.h create mode 100644 dolfin/mesh/Edge.cpp create mode 100644 dolfin/mesh/Edge.h create mode 100644 dolfin/mesh/Face.cpp create mode 100644 dolfin/mesh/Face.h create mode 100644 dolfin/mesh/Facet.cpp create mode 100644 dolfin/mesh/Facet.h create mode 100644 dolfin/mesh/FacetCell.cpp create mode 100644 dolfin/mesh/FacetCell.h create mode 100644 dolfin/mesh/IntervalCell.cpp create mode 100644 dolfin/mesh/IntervalCell.h create mode 100644 dolfin/mesh/LocalMeshData.cpp create mode 100644 dolfin/mesh/LocalMeshData.h create mode 100644 dolfin/mesh/LocalMeshValueCollection.h create mode 100644 dolfin/mesh/Mesh.cpp create mode 100644 dolfin/mesh/Mesh.h create mode 100644 dolfin/mesh/MeshColoring.cpp create mode 100644 dolfin/mesh/MeshColoring.h create mode 100644 dolfin/mesh/MeshConnectivity.cpp create mode 100644 dolfin/mesh/MeshConnectivity.h create mode 100644 dolfin/mesh/MeshData.cpp create mode 100644 dolfin/mesh/MeshData.h create mode 100644 dolfin/mesh/MeshDomains.cpp create mode 100644 dolfin/mesh/MeshDomains.h create mode 100644 dolfin/mesh/MeshEditor.cpp create mode 100644 dolfin/mesh/MeshEditor.h create mode 100644 dolfin/mesh/MeshEntity.cpp create mode 100644 dolfin/mesh/MeshEntity.h create mode 100644 dolfin/mesh/MeshEntityIterator.h create mode 100644 dolfin/mesh/MeshEntityIteratorBase.h create mode 100644 dolfin/mesh/MeshFunction.cpp create mode 100644 dolfin/mesh/MeshFunction.h create mode 100644 dolfin/mesh/MeshGeometry.cpp create mode 100644 dolfin/mesh/MeshGeometry.h create mode 100644 dolfin/mesh/MeshOrdering.cpp create mode 100644 dolfin/mesh/MeshOrdering.h create mode 100644 dolfin/mesh/MeshPartitioning.cpp create mode 100644 dolfin/mesh/MeshPartitioning.h create mode 100644 dolfin/mesh/MeshQuality.cpp create mode 100644 dolfin/mesh/MeshQuality.h create mode 100644 dolfin/mesh/MeshRenumbering.cpp create mode 100644 dolfin/mesh/MeshRenumbering.h create mode 100644 dolfin/mesh/MeshSmoothing.cpp create mode 100644 dolfin/mesh/MeshSmoothing.h create mode 100644 dolfin/mesh/MeshTopology.cpp create mode 100644 dolfin/mesh/MeshTopology.h create mode 100644 dolfin/mesh/MeshTransformation.cpp create mode 100644 dolfin/mesh/MeshTransformation.h create mode 100644 dolfin/mesh/MeshValueCollection.h create mode 100644 dolfin/mesh/PeriodicBoundaryComputation.cpp create mode 100644 dolfin/mesh/PeriodicBoundaryComputation.h create mode 100644 dolfin/mesh/PointCell.cpp create mode 100644 dolfin/mesh/PointCell.h create mode 100644 dolfin/mesh/Restriction.cpp create mode 100644 dolfin/mesh/Restriction.h create mode 100644 dolfin/mesh/SubDomain.cpp create mode 100644 dolfin/mesh/SubDomain.h create mode 100644 dolfin/mesh/SubMesh.cpp create mode 100644 dolfin/mesh/SubMesh.h create mode 100644 dolfin/mesh/SubsetIterator.h create mode 100644 dolfin/mesh/TetrahedronCell.cpp create mode 100644 dolfin/mesh/TetrahedronCell.h create mode 100644 dolfin/mesh/TopologyComputation.cpp create mode 100644 dolfin/mesh/TopologyComputation.h create mode 100644 dolfin/mesh/TriangleCell.cpp create mode 100644 dolfin/mesh/TriangleCell.h create mode 100644 dolfin/mesh/Vertex.h create mode 100644 dolfin/mesh/dolfin_mesh.h create mode 100644 dolfin/multistage/MultiStageScheme.cpp create mode 100644 dolfin/multistage/MultiStageScheme.h create mode 100644 dolfin/multistage/PointIntegralSolver.cpp create mode 100644 dolfin/multistage/PointIntegralSolver.h create mode 100644 dolfin/multistage/RKSolver.cpp create mode 100644 dolfin/multistage/RKSolver.h create mode 100644 dolfin/multistage/dolfin_multistage.h create mode 100644 dolfin/nls/NewtonSolver.cpp create mode 100644 dolfin/nls/NewtonSolver.h create mode 100644 dolfin/nls/NonlinearProblem.h create mode 100644 dolfin/nls/PETScSNESSolver.cpp create mode 100644 dolfin/nls/PETScSNESSolver.h create mode 100644 dolfin/nls/TAOLinearBoundSolver.cpp create mode 100644 dolfin/nls/TAOLinearBoundSolver.h create mode 100644 dolfin/nls/dolfin_nls.h create mode 100644 dolfin/parameter/GlobalParameters.cpp create mode 100644 dolfin/parameter/GlobalParameters.h create mode 100644 dolfin/parameter/Parameter.cpp create mode 100644 dolfin/parameter/Parameter.h create mode 100644 dolfin/parameter/Parameters.cpp create mode 100644 dolfin/parameter/Parameters.h create mode 100644 dolfin/parameter/dolfin_parameter.h create mode 100644 dolfin/plot/ExpressionWrapper.cpp create mode 100644 dolfin/plot/ExpressionWrapper.h create mode 100644 dolfin/plot/GenericVTKPlottable.h create mode 100644 dolfin/plot/VTKPlottableCSGGeometry.cpp create mode 100644 dolfin/plot/VTKPlottableCSGGeometry.h create mode 100644 dolfin/plot/VTKPlottableDirichletBC.cpp create mode 100644 dolfin/plot/VTKPlottableDirichletBC.h create mode 100644 dolfin/plot/VTKPlottableGenericFunction.cpp create mode 100644 dolfin/plot/VTKPlottableGenericFunction.h create mode 100644 dolfin/plot/VTKPlottableGenericFunction1D.cpp create mode 100644 dolfin/plot/VTKPlottableGenericFunction1D.h create mode 100644 dolfin/plot/VTKPlottableMesh.cpp create mode 100644 dolfin/plot/VTKPlottableMesh.h create mode 100644 dolfin/plot/VTKPlottableMeshFunction.cpp create mode 100644 dolfin/plot/VTKPlottableMeshFunction.h create mode 100644 dolfin/plot/VTKPlotter.cpp create mode 100644 dolfin/plot/VTKPlotter.h create mode 100644 dolfin/plot/VTKWindowOutputStage.cpp create mode 100644 dolfin/plot/VTKWindowOutputStage.h create mode 100644 dolfin/plot/dolfin_plot.h create mode 100644 dolfin/plot/gauss_120.dat create mode 100644 dolfin/plot/plot.cpp create mode 100644 dolfin/plot/plot.h create mode 100644 dolfin/refinement/BisectionRefinement.cpp create mode 100644 dolfin/refinement/BisectionRefinement.h create mode 100644 dolfin/refinement/LocalMeshCoarsening.cpp create mode 100644 dolfin/refinement/LocalMeshCoarsening.h create mode 100644 dolfin/refinement/LocalMeshRefinement.cpp create mode 100644 dolfin/refinement/LocalMeshRefinement.h create mode 100644 dolfin/refinement/ParallelRefinement.cpp create mode 100644 dolfin/refinement/ParallelRefinement.h create mode 100644 dolfin/refinement/ParallelRefinement2D.cpp create mode 100644 dolfin/refinement/ParallelRefinement2D.h create mode 100644 dolfin/refinement/ParallelRefinement3D.cpp create mode 100644 dolfin/refinement/ParallelRefinement3D.h create mode 100644 dolfin/refinement/RegularCutRefinement.cpp create mode 100644 dolfin/refinement/RegularCutRefinement.h create mode 100644 dolfin/refinement/RivaraRefinement.cpp create mode 100644 dolfin/refinement/RivaraRefinement.h create mode 100644 dolfin/refinement/UniformMeshRefinement.cpp create mode 100644 dolfin/refinement/UniformMeshRefinement.h create mode 100644 dolfin/refinement/dolfin_refinement.h create mode 100644 dolfin/refinement/refine.cpp create mode 100644 dolfin/refinement/refine.h create mode 100644 dolfin/swig/CMakeLists.txt create mode 100644 dolfin/swig/README create mode 100644 dolfin/swig/adaptivity/docstrings.i create mode 100644 dolfin/swig/adaptivity/post.i create mode 100644 dolfin/swig/adaptivity/pre.i create mode 100644 dolfin/swig/ale/docstrings.i create mode 100644 dolfin/swig/ale/pre.i create mode 100644 dolfin/swig/common/docstrings.i create mode 100644 dolfin/swig/common/post.i create mode 100644 dolfin/swig/common/pre.i create mode 100644 dolfin/swig/defines.i create mode 100644 dolfin/swig/exceptions.i create mode 100644 dolfin/swig/fem/docstrings.i create mode 100644 dolfin/swig/fem/post.i create mode 100644 dolfin/swig/fem/pre.i create mode 100644 dolfin/swig/forwarddeclarations.i create mode 100644 dolfin/swig/function/docstrings.i create mode 100644 dolfin/swig/function/import.i create mode 100644 dolfin/swig/function/post.i create mode 100644 dolfin/swig/function/pre.i create mode 100644 dolfin/swig/generation/docstrings.i create mode 100644 dolfin/swig/generation/post.i create mode 100644 dolfin/swig/geometry/docstrings.i create mode 100644 dolfin/swig/geometry/post.i create mode 100644 dolfin/swig/geometry/pre.i create mode 100644 dolfin/swig/globalincludes.i create mode 100644 dolfin/swig/graph/docstrings.i create mode 100644 dolfin/swig/graph/post.i create mode 100644 dolfin/swig/io/docstrings.i create mode 100644 dolfin/swig/io/post.i create mode 100644 dolfin/swig/io/pre.i create mode 100644 dolfin/swig/la/Indices.i create mode 100644 dolfin/swig/la/docstrings.i create mode 100644 dolfin/swig/la/la_get_set_items.i create mode 100644 dolfin/swig/la/post.i create mode 100644 dolfin/swig/la/pre.i create mode 100644 dolfin/swig/log/docstrings.i create mode 100644 dolfin/swig/log/post.i create mode 100644 dolfin/swig/log/pre.i create mode 100644 dolfin/swig/math/docstrings.i create mode 100644 dolfin/swig/mesh/docstrings.i create mode 100644 dolfin/swig/mesh/post.i create mode 100644 dolfin/swig/mesh/pre.i create mode 100644 dolfin/swig/modules/common/CMakeLists.txt create mode 100644 dolfin/swig/modules/common/dependencies.txt create mode 100644 dolfin/swig/modules/common/module.i create mode 100644 dolfin/swig/modules/fem/CMakeLists.txt create mode 100644 dolfin/swig/modules/fem/dependencies.txt create mode 100644 dolfin/swig/modules/fem/module.i create mode 100644 dolfin/swig/modules/function/CMakeLists.txt create mode 100644 dolfin/swig/modules/function/dependencies.txt create mode 100644 dolfin/swig/modules/function/module.i create mode 100644 dolfin/swig/modules/io/CMakeLists.txt create mode 100644 dolfin/swig/modules/io/dependencies.txt create mode 100644 dolfin/swig/modules/io/module.i create mode 100644 dolfin/swig/modules/la/CMakeLists.txt create mode 100644 dolfin/swig/modules/la/dependencies.txt create mode 100644 dolfin/swig/modules/la/module.i create mode 100644 dolfin/swig/modules/mesh/CMakeLists.txt create mode 100644 dolfin/swig/modules/mesh/dependencies.txt create mode 100644 dolfin/swig/modules/mesh/module.i create mode 100644 dolfin/swig/multistage/docstrings.i create mode 100644 dolfin/swig/multistage/pre.i create mode 100644 dolfin/swig/nls/docstrings.i create mode 100644 dolfin/swig/nls/pre.i create mode 100644 dolfin/swig/parameter/docstrings.i create mode 100644 dolfin/swig/parameter/post.i create mode 100644 dolfin/swig/parameter/pre.i create mode 100644 dolfin/swig/plot/docstrings.i create mode 100644 dolfin/swig/refinement/docstrings.i create mode 100644 dolfin/swig/shared_ptr_classes.i create mode 100644 dolfin/swig/typemaps/array.i create mode 100644 dolfin/swig/typemaps/includes.i create mode 100644 dolfin/swig/typemaps/numpy.i create mode 100644 dolfin/swig/typemaps/primitives.i create mode 100644 dolfin/swig/typemaps/std_map.i create mode 100644 dolfin/swig/typemaps/std_pair.i create mode 100644 dolfin/swig/typemaps/std_set.i create mode 100644 dolfin/swig/typemaps/std_vector.i create mode 100644 dolfin/swig/version.i create mode 100755 scripts/dolfin-convert/dolfin-convert create mode 100644 scripts/dolfin-convert/test_Triangle.edge create mode 100644 scripts/dolfin-convert/test_Triangle.ele create mode 100644 scripts/dolfin-convert/test_Triangle.node create mode 100644 scripts/dolfin-convert/test_exodus.exo create mode 100755 scripts/dolfin-order/dolfin-order create mode 100644 scripts/dolfin-order/mesh0.xml.gz create mode 100644 scripts/dolfin-order/mesh1.xml.gz create mode 100755 scripts/dolfin-plot/dolfin-plot create mode 100644 scripts/dolfin-plot/mesh.xml.gz create mode 100755 scripts/dolfin-plot/plot_book_elements.sh create mode 100755 scripts/dolfin-plot/plot_elements.sh create mode 100644 site-packages/dolfin/__init__.py create mode 100644 site-packages/dolfin/common/__init__.py create mode 100644 site-packages/dolfin/common/constants.py create mode 100644 site-packages/dolfin/common/globalparameters.py.in create mode 100644 site-packages/dolfin/common/math.py create mode 100644 site-packages/dolfin/common/memory.py create mode 100644 site-packages/dolfin/common/plotting.py create mode 100644 site-packages/dolfin/common/time.py create mode 100644 site-packages/dolfin/compilemodules/__init__.py create mode 100644 site-packages/dolfin/compilemodules/compilemodule.py create mode 100644 site-packages/dolfin/compilemodules/expressions.py create mode 100644 site-packages/dolfin/compilemodules/jit.py create mode 100644 site-packages/dolfin/compilemodules/subdomains.py create mode 100644 site-packages/dolfin/compilemodules/swigimportinfo.py create mode 100644 site-packages/dolfin/cpp/__init__.py create mode 100644 site-packages/dolfin/deprecation.py create mode 100644 site-packages/dolfin/fem/__init__.py create mode 100644 site-packages/dolfin/fem/adaptivesolving.py create mode 100644 site-packages/dolfin/fem/assembling.py create mode 100644 site-packages/dolfin/fem/bcs.py create mode 100644 site-packages/dolfin/fem/errorcontrolgenerator.py create mode 100644 site-packages/dolfin/fem/form.py create mode 100644 site-packages/dolfin/fem/formmanipulations.py create mode 100644 site-packages/dolfin/fem/interpolation.py create mode 100644 site-packages/dolfin/fem/norms.py create mode 100644 site-packages/dolfin/fem/projection.py create mode 100644 site-packages/dolfin/fem/solving.py create mode 100644 site-packages/dolfin/functions/__init__.py create mode 100644 site-packages/dolfin/functions/constant.py create mode 100644 site-packages/dolfin/functions/expression.py create mode 100644 site-packages/dolfin/functions/function.py create mode 100644 site-packages/dolfin/functions/functionspace.py create mode 100644 site-packages/dolfin/functions/specialfunctions.py create mode 100644 site-packages/dolfin/functions/ufc_functionspace.py create mode 100644 site-packages/dolfin/importhandler/__init__.py create mode 100644 site-packages/dolfin/mesh/__init__.py create mode 100644 site-packages/dolfin/mesh/ale.py create mode 100644 site-packages/dolfin/mesh/boundarysubdomainfinder.py create mode 100644 site-packages/dolfin/mesh/meshes.py create mode 100644 site-packages/dolfin/mesh/refinement.py create mode 100644 site-packages/dolfin/mesh/svgtools.py create mode 100644 site-packages/dolfin/multistage/__init__.py create mode 100644 site-packages/dolfin/multistage/multistagescheme.py create mode 100644 site-packages/dolfin/multistage/multistagesolvers.py create mode 100644 site-packages/dolfin_utils/__init__.py create mode 100644 site-packages/dolfin_utils/commands.py create mode 100644 site-packages/dolfin_utils/cppparser/CppHeaderParser.py create mode 100644 site-packages/dolfin_utils/cppparser/__init__.py create mode 100644 site-packages/dolfin_utils/cppparser/utils.py create mode 100644 site-packages/dolfin_utils/documentation/__init__.py create mode 100644 site-packages/dolfin_utils/documentation/docstringutils.py create mode 100644 site-packages/dolfin_utils/documentation/extractdocumentation.py create mode 100644 site-packages/dolfin_utils/documentation/generatecpprst.py create mode 100644 site-packages/dolfin_utils/documentation/generatepythonrst.py create mode 100644 site-packages/dolfin_utils/documentation/indextemplates.py create mode 100644 site-packages/dolfin_utils/meshconvert/__init__.py create mode 100644 site-packages/dolfin_utils/meshconvert/abaqus.py create mode 100644 site-packages/dolfin_utils/meshconvert/meshconvert.py create mode 100644 site-packages/dolfin_utils/meshconvert/xml_writer.py create mode 100644 site-packages/dolfin_utils/ordereddict.py create mode 100644 site-packages/dolfin_utils/pjobs/__init__.py create mode 100644 site-packages/dolfin_utils/pjobs/pjobs.py create mode 100644 site-packages/dolfin_utils/pjobs/sge.py create mode 100644 site-packages/dolfin_utils/pjobs/slurm.py create mode 100644 site-packages/dolfin_utils/pjobs/torque.py create mode 100644 site-packages/fenics/__init__.py create mode 100644 test/CMakeLists.txt create mode 100644 test/README create mode 100644 test/codingstyle/test.py create mode 100644 test/documentation/README create mode 100644 test/documentation/test.py create mode 100755 test/documentation/verify_demo_code_snippets.py create mode 100644 test/memory/dolfin_valgrind.supp create mode 100644 test/memory/test.py create mode 100644 test/regression/README create mode 100644 test/regression/test.py create mode 100644 test/system/parallel-assembly-solve/solver.py create mode 100644 test/system/parallel-assembly-solve/test.py create mode 100644 test/system/test.py create mode 100644 test/system/ufl-jit-assemble-chain/assembly_derivatives.py create mode 100644 test/system/ufl-jit-assemble-chain/form_operations.py create mode 100644 test/system/ufl-jit-assemble-chain/test.py create mode 100644 test/test.py create mode 100644 test/unit/adaptivity/python/TimeSeries.py create mode 100644 test/unit/adaptivity/python/errorcontrol.py create mode 100644 test/unit/ale/python/HarmonicSmoothing.py create mode 100644 test/unit/book/README create mode 100644 test/unit/book/python/chapter_1.py create mode 100644 test/unit/book/python/chapter_10.py create mode 100644 test/unit/book/python/chapter_1_files/dolfin_parameters.xml create mode 100644 test/unit/book/python/chapter_1_files/stationary/nonlinear_poisson/alg_newton_np.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/nonlinear_poisson/pde_newton_np.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/nonlinear_poisson/picard_np.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/nonlinear_poisson/vp1_np.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/nonlinear_poisson/vp2_np.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/d1_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/d2_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/d3_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/d4_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/d5_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/d6_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/dn1_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/dn2_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/dn3_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/dn4_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/dnr_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/mat2_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/mat2x_p2D.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/membrane1.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/membrane1v.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/paD.py create mode 100644 test/unit/book/python/chapter_1_files/stationary/poisson/vcp2D.py create mode 100644 test/unit/book/python/chapter_1_files/transient/diffusion/d1_d2D.py create mode 100644 test/unit/book/python/chapter_1_files/transient/diffusion/d2_d2D.py create mode 100644 test/unit/book/python/chapter_1_files/transient/diffusion/demo_sin_daD.sh create mode 100644 test/unit/book/python/chapter_1_files/transient/diffusion/sin_daD.py create mode 100644 test/unit/book/python/mesh.xml create mode 100644 test/unit/book/python/original_tests/README create mode 100644 test/unit/fem/python/Assembler.py create mode 100644 test/unit/fem/python/DirichletBC.py create mode 100644 test/unit/fem/python/DofMap.py create mode 100644 test/unit/fem/python/FiniteElement.py create mode 100644 test/unit/fem/python/Form.py create mode 100644 test/unit/fem/python/LocalSolver.py create mode 100644 test/unit/fem/python/SystemAssembler.py create mode 100644 test/unit/fem/python/aneurysm.xml.gz create mode 100644 test/unit/fem/python/manifolds.py create mode 100644 test/unit/fem/python/solving.py create mode 100644 test/unit/fem/python/tetrahedron.xml.gz create mode 100644 test/unit/function/cpp/CMakeLists.txt create mode 100644 test/unit/function/cpp/Expression.cpp create mode 100644 test/unit/function/cpp/Projection.h create mode 100644 test/unit/function/cpp/Projection.ufl create mode 100644 test/unit/function/cpp/compile.log create mode 100644 test/unit/function/python/Constant.py create mode 100644 test/unit/function/python/ConstrainedFunctionSpace.py create mode 100644 test/unit/function/python/Expression.py create mode 100644 test/unit/function/python/Function.py create mode 100644 test/unit/function/python/FunctionAssigner.py create mode 100644 test/unit/function/python/FunctionSpace.py create mode 100644 test/unit/function/python/LagrangeInterpolator.py create mode 100644 test/unit/function/python/SpecialFunctions.py create mode 100644 test/unit/function/python/nonmatching_interpolation.py create mode 100644 test/unit/geometry/python/BoundingBoxTree.py create mode 100644 test/unit/geometry/python/CollisionDetection.py create mode 100644 test/unit/geometry/python/Intersection.py create mode 100644 test/unit/geometry/python/IntersectionTriangulation.py create mode 100644 test/unit/geometry/python/Issues.py create mode 100644 test/unit/graph/python/GraphBuild.py create mode 100644 test/unit/io/cpp/CMakeLists.txt create mode 100644 test/unit/io/cpp/XMLLocalMeshData.cpp create mode 100644 test/unit/io/cpp/XMLMeshData.cpp create mode 100644 test/unit/io/cpp/XMLMeshValueCollection.cpp create mode 100644 test/unit/io/cpp/xml_value_collection_ref.xml create mode 100644 test/unit/io/python/Exodus.py create mode 100644 test/unit/io/python/HDF5.py create mode 100644 test/unit/io/python/HDF5Attribute.py create mode 100644 test/unit/io/python/SVG.py create mode 100644 test/unit/io/python/X3D.py create mode 100644 test/unit/io/python/XDMF.py create mode 100644 test/unit/io/python/XMLLocalMeshData.py create mode 100644 test/unit/io/python/XMLMesh.py create mode 100644 test/unit/io/python/XMLMeshFunction.py create mode 100644 test/unit/io/python/XMLMeshValueCollection.py create mode 100644 test/unit/io/python/XMLVector.py create mode 100644 test/unit/io/python/vtk.py create mode 100644 test/unit/io/python/xml_value_collection_ref.xml create mode 100644 test/unit/io/snake.xml.gz create mode 100644 test/unit/jit/python/test.py create mode 100644 test/unit/la/cpp/CMakeLists.txt create mode 100644 test/unit/la/cpp/LinearOperator.cpp create mode 100644 test/unit/la/cpp/Vector.cpp create mode 100644 test/unit/la/cpp/forms/ReactionDiffusion.h create mode 100644 test/unit/la/cpp/forms/ReactionDiffusion.ufl create mode 100644 test/unit/la/cpp/forms/ReactionDiffusionAction.h create mode 100644 test/unit/la/cpp/forms/ReactionDiffusionAction.ufl create mode 100644 test/unit/la/cpp/forms/compile.log create mode 100644 test/unit/la/python/KrylovSolver.py create mode 100644 test/unit/la/python/LinearOperator.py create mode 100644 test/unit/la/python/Matrix.py create mode 100644 test/unit/la/python/Scalar.py create mode 100644 test/unit/la/python/Vector.py create mode 100644 test/unit/la/python/solve.py create mode 100644 test/unit/la/python/test.py create mode 100644 test/unit/math/python/test.py create mode 100644 test/unit/mesh/boxes.xml.gz create mode 100644 test/unit/mesh/cpp/CMakeLists.txt create mode 100644 test/unit/mesh/cpp/Mesh.cpp create mode 100644 test/unit/mesh/cpp/MeshFunction.cpp create mode 100644 test/unit/mesh/cpp/MeshValueCollection.cpp create mode 100644 test/unit/mesh/python/BoundaryMesh.py create mode 100644 test/unit/mesh/python/Cell.py create mode 100644 test/unit/mesh/python/Edge.py create mode 100644 test/unit/mesh/python/Face.py create mode 100644 test/unit/mesh/python/Mesh.py create mode 100644 test/unit/mesh/python/MeshColoring.py create mode 100644 test/unit/mesh/python/MeshData.py create mode 100644 test/unit/mesh/python/MeshEditor.py create mode 100644 test/unit/mesh/python/MeshFunction.py create mode 100644 test/unit/mesh/python/MeshIterator.py create mode 100644 test/unit/mesh/python/MeshMarkers.py create mode 100644 test/unit/mesh/python/MeshQuality.py create mode 100644 test/unit/mesh/python/MeshTransformation.py create mode 100644 test/unit/mesh/python/MeshValueCollection.py create mode 100644 test/unit/mesh/python/PeriodicBoundaryComputation.py create mode 100644 test/unit/mesh/python/SubDomain.py create mode 100644 test/unit/mesh/python/SubMesh.py create mode 100644 test/unit/meshconvert/python/data/abaqus.inp create mode 100644 test/unit/meshconvert/python/data/abaqus_facet.inp create mode 100644 test/unit/meshconvert/python/data/diffpack_tet.grid create mode 100644 test/unit/meshconvert/python/data/diffpack_tri.grid create mode 100644 test/unit/meshconvert/python/data/gmsh.msh create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_1D_2.geo create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_1D_2.msh create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_2D_1.geo create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_2D_1.msh create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_2D_2.geo create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_2D_2.msh create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_2D_3.geo create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_2D_3.msh create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_2D_4.geo create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_2D_4.msh create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_3D_1.geo create mode 100644 test/unit/meshconvert/python/data/gmsh_test_facet_regions_3D_1.msh create mode 100644 test/unit/meshconvert/python/data/test_Triangle_3.edge create mode 100644 test/unit/meshconvert/python/data/test_Triangle_3.ele create mode 100644 test/unit/meshconvert/python/data/test_Triangle_3.node create mode 100644 test/unit/meshconvert/python/data/triangle.ele create mode 100644 test/unit/meshconvert/python/data/triangle.node create mode 100644 test/unit/meshconvert/python/test.py create mode 100644 test/unit/multistage/python/PointIntegralSolver.py create mode 100644 test/unit/multistage/python/RKSolver.py create mode 100644 test/unit/nls/python/PETScSNESSolver.py create mode 100644 test/unit/nls/python/TAOLinearBoundSolver.py create mode 100644 test/unit/nls/python/doughnut.xml.gz create mode 100644 test/unit/parameter/cpp/CMakeLists.txt create mode 100644 test/unit/parameter/cpp/Parameters.cpp create mode 100644 test/unit/parameter/python/Parameters.py create mode 100644 test/unit/python-extras/python/test.py create mode 100644 test/unit/refinement/python/refine.py create mode 100644 test/unit/test.py create mode 100644 utils/emacs/macros create mode 100644 utils/gid/DOLFIN.bas create mode 100644 utils/matlab/meshindex.m create mode 100644 utils/matlab/plotcontroller.m create mode 100644 utils/matlab/plotslab.m create mode 100644 utils/matlab/xmlmatrix.m create mode 100644 utils/matlab/xmlmesh.m create mode 100644 utils/matlab/xmlvector.m create mode 100644 utils/octave/README create mode 100644 utils/octave/pdemesh.m create mode 100644 utils/octave/pdeplot.m create mode 100644 utils/octave/pdesurf.m create mode 100644 utils/python/README create mode 100755 utils/python/extract2d create mode 100755 utils/scripts/broken create mode 100755 utils/scripts/code-formatting create mode 100755 utils/scripts/dolfinreplace create mode 100755 utils/scripts/fixme create mode 100755 utils/scripts/formatcode create mode 100755 utils/scripts/klocs create mode 100755 utils/scripts/makedoc create mode 100755 utils/scripts/notinuse create mode 100755 utils/scripts/pdebug create mode 100644 utils/scripts/plotklocs create mode 100755 utils/swig/dolfin-swig create mode 100644 utils/system/monitor create mode 100755 utils/tetgen/dolfin-tetgen create mode 100644 utils/vim/macros create mode 100644 utils/xml/convertall diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..7e50772 --- /dev/null +++ b/.gitignore @@ -0,0 +1,109 @@ +# Compiled source +*.o +*.Plo +*.Po +*.lo +*.la +*.a +*.os +*.pyc +*.so +*.pc +*.pyd +*.def +*.dll +*.exe +*.dylib +dolfin/libdolfin.so* + +# FFC generated code in library +dolfin/ale/Poisson*D.h + +# Log files +*.log + +# Install directory +/local +/local.* + +# SWIG generated files +dolfin/swig/**/**/*.py +dolfin/swig/**/**/*.h +dolfin/swig/**/**/*.cc +dolfin/swig/**/**/*.cxx +dolfin/swig/**/**/module.i +dolfin/swig/**/**/dependencies.txt +swigimportinfo.py + +# Documentation +docstrings.i + +# Configuration files +dolfin.conf +dolfin-version +dolfin-config.cmake +DOLFINConfig.cmake +DOLFINConfigVersion.cmake +UseDOLFIN.cmake +dolfin-config-version.cmake + +# Demos and tests +demo_* +test_* +build_demo.* +test/unit/mesh/{cpp,python}/*.{xml,m} +test/unit/parameter/{cpp,python}/*.{xml,xml.gz} +bench/**/**/cpp/forms/*.h +bench/**/**/cpp/*.h +test/unit/**/python/*.xml +test/unit/**/cpp/*.xml + +# FFC generated demo files +demo/**/**/cpp/*.h +demo/pde/cahn-hilliard/cpp/CahnHilliard2D.cpp +demo/pde/cahn-hilliard/cpp/CahnHilliard3D.cpp + +# QT generated code +moc_* + +# Temporaries +*~ + +# Compressed files +*.xz +*.gz +*.zs-old + +# Data files +*.pvd +*.pvtu +*.vtu +*.h5 +*.xdmf +*.bin + +# CMake and Make file +CMakeLists.txt +!/CMakeLists.txt +!dolfin/CMakeLists.txt +!bench/CMakeLists.txt +!dolfin/swig/CMakeLists.txt +!doc/CMakeLists.txt +!demo/CMakeLists.txt +!test/CMakeLists.txt + + +CMakeCache.txt +CMakeFiles +cmake_install.cmake +cmake_uninstall.cmake +Makefile +install_manifest.txt + +# Local build files +/build +/build.*/ + +# OS X files +.DS_Store +.DS_Store? \ No newline at end of file diff --git a/.mailmap b/.mailmap new file mode 100644 index 0000000..1d87877 --- /dev/null +++ b/.mailmap @@ -0,0 +1,34 @@ +# Mapping of commit names to canonical names. This is useful for +# listing contributions from users who have either changed email +# addresses or did not configure their user names correctly at +# time of a commit. +# +# See 'git help shortlog' for details. + +Benjamin Kehlet +Benjamin Kehlet Benjamin Kehlet +Benjamin Kehlet Benjamin Kehlet + +Anders Logg +Anders Logg logg +Anders Logg Anders Logg +Anders Logg Anders Logg +Anders Logg Anders Logg +Anders Logg logg +Anders Logg logg +Anders Logg logg +Anders Logg logg + +Garth N. Wells +Garth N. Wells Garth N. Wells +Garth N. Wells Garth N. Wells +Garth N. Wells Garth N. Wells +Garth N. Wells Garth N. Wells +Garth N. Wells Garth Wells +Garth N. Wells garth +Garth N. Wells garth +Garth N. Wells garth +Garth N. Wells garth +Garth N. Wells garth +Garth N. Wells garth +Garth N. Wells garth diff --git a/AUTHORS b/AUTHORS new file mode 100644 index 0000000..e1afc59 --- /dev/null +++ b/AUTHORS @@ -0,0 +1,74 @@ +Authors/contributors in alphabetical order: + + Ido Akkerman (-) + Martin Sandve Alnæs (C) + Fredrik Bengzon (-) + Jan Blechta (C) + Rolv Erlend Bredesen (C) + Jed Brown (C) + Solveig Bruvoll (C) + Niklas Ericsson (-) + Patrick Farrell (C) + Georgios Foufas (C) + Joachim B Haga (C) + Johan Hake (C) + Jack S. Hale (C) + Rasmus Hemph (-) + David Heintz (-) + Johan Hoffman (C) + Par Ingelstrom (-) + Anders E. Johansen (C) + Johan Jansson (C) + Niclas Jansson (C) + Alexander Jarosch (C) + Kristen Kaasbjerg (C) + Benjamin Kehlet (C) + Arve Knudsen (C) + Karin Kraft (-) + Aleksandra Krusper (-) + Evan Lezar (C) + Dag Lindbo (C) + Glenn Terje Lines (C) + Anders Logg (C) + Nuno Lopes (C) + Kent-Andre Mardal (C) + Andreas Mark (-) + Andre Massing (C) + Lawrence Mitchell (C) + Marco Morandini (C) + Mikael Mortensen (C) + Corrado Maurini (C) + Pablo De Napoli (-) + Harish Narayanan (C) + Andreas Nilsson (-) + Minh Do-Quang (-) + Chris Richardson (!) + Johannes Ring (C) + Marie E. Rognes (C) + John Rudge (-) + Bartosz Sawicki (C) + Nico Schlömer (C) + Kristoffer Selim (C) + Angelo Simone (C) + Ola Skavhaug (C) + Thomas Svedberg (-) + Erik Svensson (C) + Harald Svensson (-) + Andy Terrel (C) + Jim Tilander (C) + Fredrik Valdmanis (C) + Magnus Vikstrøm (C) + Walter Villanueva (-) + Shawn Walker (C) + Garth N. Wells (C) + Ilmar Wilbers (C) + Cian Wilson (C) + Åsmund Ødegård (C) + Kristian Ølgaard (C) + +(C) = copyright form signed +(!) = missing copyright form! +(-) = minor change, copyright form not signed + +Missing credits? Tell us and we will fix it. +Send an email to fenics@fenicsproject.org diff --git a/CMakeLists.txt b/CMakeLists.txt new file mode 100644 index 0000000..5ab15f5 --- /dev/null +++ b/CMakeLists.txt @@ -0,0 +1,1048 @@ +# Top level CMakeLists.txt file for DOLFIN + +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +#------------------------------------------------------------------------------ +# Set project name and version number + +project(DOLFIN) +set(DOLFIN_VERSION_MAJOR "1") +set(DOLFIN_VERSION_MINOR "4") +set(DOLFIN_VERSION_MICRO "0") +set(DOLFIN_VERSION "${DOLFIN_VERSION_MAJOR}.${DOLFIN_VERSION_MINOR}.${DOLFIN_VERSION_MICRO}") + +#------------------------------------------------------------------------------ +# Get GIT changeset, if available + +# Check for git +find_program(GIT_FOUND git) + +if (GIT_FOUND) + # Get the commit hash of the working branch + execute_process(COMMAND git rev-parse HEAD + WORKING_DIRECTORY ${CMAKE_SOURCE_DIR} + OUTPUT_VARIABLE GIT_COMMIT_HASH + OUTPUT_STRIP_TRAILING_WHITESPACE + ) +else() + set(GIT_COMMIT_HASH "unknown") +endif() + +#------------------------------------------------------------------------------ +# General configuration + +# Set CMake options, see `cmake --help-policy CMP000x` +if (COMMAND cmake_policy) + cmake_policy(SET CMP0003 NEW) + cmake_policy(SET CMP0004 OLD) +endif() + +# Set location of our FindFoo.cmake modules +set(DOLFIN_CMAKE_DIR "${DOLFIN_SOURCE_DIR}/cmake" CACHE INTERNAL "") +set(CMAKE_MODULE_PATH "${DOLFIN_CMAKE_DIR}/modules") + +# Make sure CMake uses the correct DOLFINConfig.cmake for tests and demos +set(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH} ${CMAKE_CURRENT_BINARY_DIR}/dolfin) + +#------------------------------------------------------------------------------ +# Configurable options for how we want to build + +option(BUILD_SHARED_LIBS "Build DOLFIN with shared libraries." ON) +option(CMAKE_SKIP_RPATH "Do not add runtime paths when using shared libraries." OFF) +option(CMAKE_INSTALL_RPATH_USE_LINK_PATH "Add paths to linker search and installed rpath." ON) +option(CMAKE_USE_RELATIVE_PATHS "Use relative paths in makefiles and projects." OFF) +option(DOLFIN_AUTO_DETECT_MPI "Detect MPI automatically - turn this off to use the MPI compiler wrappers directly via setting CXX, CXX, FC." ON) +option(DOLFIN_DEBUG_UBLAS "Use extra uBLAS debugging." OFF) +option(DOLFIN_ENABLE_CODE_COVERAGE "Enable code coverage." OFF) +option(DOLFIN_WITH_LIBRARY_VERSION "Build with library version information." ON) +option(DOLFIN_ENABLE_UNIT_TESTS "Enable unit tests." ON) +option(DOLFIN_ENABLE_TESTING "Enable testing." OFF) +option(DOLFIN_ENABLE_BENCHMARKS "Enable benchmark programs." OFF) +option(DOLFIN_ENABLE_DOCS "Enable generation of documentation." ON) +option(DOLFIN_SKIP_BUILD_TESTS "Skip build tests." OFF) +option(DOLFIN_DEPRECATION_ERROR "Turn deprecation warnings into errors." OFF) +#------------------------------------------------------------------------------ +# This should be removed when petsc version > 3.4 is out + +option(DOLFIN_ENABLE_TAO "Enable TAO solver." OFF) + +#------------------------------------------------------------------------------ +# Enable or disable optional packages + +# List optional packages +set(OPTIONAL_PACKAGES "") +list(APPEND OPTIONAL_PACKAGES "OpenMP") +list(APPEND OPTIONAL_PACKAGES "MPI") +list(APPEND OPTIONAL_PACKAGES "PETSc") +list(APPEND OPTIONAL_PACKAGES "PETSc4py") +list(APPEND OPTIONAL_PACKAGES "SLEPc") +list(APPEND OPTIONAL_PACKAGES "Trilinos") +list(APPEND OPTIONAL_PACKAGES "UMFPACK") +list(APPEND OPTIONAL_PACKAGES "CHOLMOD") +list(APPEND OPTIONAL_PACKAGES "PaStiX") +list(APPEND OPTIONAL_PACKAGES "SCOTCH") +list(APPEND OPTIONAL_PACKAGES "ParMETIS") +list(APPEND OPTIONAL_PACKAGES "CGAL") +list(APPEND OPTIONAL_PACKAGES "zlib") +list(APPEND OPTIONAL_PACKAGES "Python") +list(APPEND OPTIONAL_PACKAGES "Sphinx") +list(APPEND OPTIONAL_PACKAGES "HDF5") +list(APPEND OPTIONAL_PACKAGES "VTK") +list(APPEND OPTIONAL_PACKAGES "QT") + +# Add options +foreach (OPTIONAL_PACKAGE ${OPTIONAL_PACKAGES}) + string(TOUPPER "DOLFIN_ENABLE_${OPTIONAL_PACKAGE}" OPTION_NAME) + option(${OPTION_NAME} "Compile with support for ${OPTIONAL_PACKAGE}." ON) +endforeach() + +#------------------------------------------------------------------------------ +# General compiler defintions + +if (DOLFIN_DEPRECATION_ERROR) + list(APPEND DOLFIN_CXX_DEFINITIONS "-DDOLFIN_DEPRECATION_ERROR") +endif() + +#------------------------------------------------------------------------------ +# Package-specific options + +option(CGAL_DISABLE_ROUNDING_MATH_CHECK "Disable rounding math check in CGAL. This permits Valgrind to run." OFF) + +#------------------------------------------------------------------------------ +# Compiler flags + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug Developer MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Check for some compiler flags +include(CheckCXXCompilerFlag) +CHECK_CXX_COMPILER_FLAG(-pipe HAVE_PIPE) +if (HAVE_PIPE) + set(DOLFIN_CXX_DEVELOPER_FLAGS "-pipe ${DOLFIN_CXX_DEVELOPER_FLAGS}") +endif() + +# Add some strict compiler checks +CHECK_CXX_COMPILER_FLAG("-Wall -Werror -pedantic" HAVE_PEDANTIC) +if (HAVE_PEDANTIC) + set(DOLFIN_CXX_DEVELOPER_FLAGS "-Wall -Werror -pedantic ${DOLFIN_CXX_DEVELOPER_FLAGS}") +endif() + +if (CYGWIN OR (WIN32 AND UNIX)) + # Use -std=gnu++11 instead of -std=c++11 on Cygwin to work around + # problem when using vsnprintf. + CHECK_CXX_COMPILER_FLAG(-std=gnu++11 HAVE_STD_GNUPP11) + if (HAVE_STD_GNUPP11) + SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=gnu++11") + else() + CHECK_CXX_COMPILER_FLAG(-std=gnu++0x HAVE_STD_GNUPP0x) + if (HAVE_STD_GNUPP0x) + SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=gnu++0x") + endif() + endif() +else() + CHECK_CXX_COMPILER_FLAG(-std=c++11 HAVE_STD_CPP11) + if (HAVE_STD_CPP11) + SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11") + else() + CHECK_CXX_COMPILER_FLAG(-std=c++0x HAVE_STD_CPP0x) + if (HAVE_STD_CPP0x) + SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x") + endif() + endif() +endif() + +# Debug flags +CHECK_CXX_COMPILER_FLAG(-g HAVE_DEBUG) +if (HAVE_DEBUG) + set(DOLFIN_CXX_DEVELOPER_FLAGS "-g ${DOLFIN_CXX_DEVELOPER_FLAGS}") +endif() + +CHECK_CXX_COMPILER_FLAG(-O2 HAVE_O2_OPTIMISATION) +if (HAVE_O2_OPTIMISATION) + set(DOLFIN_CXX_DEVELOPER_FLAGS "-O2 ${DOLFIN_CXX_DEVELOPER_FLAGS}") +endif() + +# Set 'Developer' build type flags +set(CMAKE_CXX_FLAGS_DEVELOPER "${DOLFIN_CXX_DEVELOPER_FLAGS}" CACHE STRING + "Flags used by the compiler during development." FORCE) + +# Do not debug uBLAS unless requested +if (NOT DOLFIN_DEBUG_UBLAS) + list(APPEND DOLFIN_CXX_DEFINITIONS "-DBOOST_UBLAS_NDEBUG") +endif() + +# FIXME: Do we want to add -DDEBUG to RelWithDebInfo? + +# Add debug definitions +if (CMAKE_BUILD_TYPE STREQUAL "Developer" OR CMAKE_BUILD_TYPE STREQUAL "Debug") + list(APPEND DOLFIN_CXX_DEFINITIONS "-DDEBUG") +endif() + +# Add flags for generating code coverage reports +if (DOLFIN_ENABLE_CODE_COVERAGE AND CMAKE_COMPILER_IS_GNUCXX) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage") + set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -fprofile-arcs -ftest-coverage") +endif() + +# Settings for Intel compilers +if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Intel") + # Use -isystem incluse flag with Intel compiler + set(CMAKE_INCLUDE_SYSTEM_FLAG_CXX "-isystem ") + + # Stop spurious warnings from older Intel compilers + if("${CMAKE_CXX_COMPILER_VERSION}" LESS "13") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -wd654,1125") + set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -wd654,1125") + set(CMAKE_CXX_FLAGS_DEVELOPER "${CMAKE_CXX_FLAGS_DEVELOPER} -wd654,1125") + set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -wd654,1125") + set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -wd654,1125") + endif() +endif() + +# Set system include flags to get around CMake bug on OSX with gcc +# See http://public.kitware.com/Bug/print_bug_page.php?bug_id=10837 +if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU") + set(CMAKE_INCLUDE_SYSTEM_FLAG_CXX "-isystem ") +endif() + +if (APPLE) + set(CMAKE_INCLUDE_SYSTEM_FLAG_CXX "-isystem ") + set(CMAKE_CXX_FLAGS_DEVELOPER "${CMAKE_CXX_FLAGS_DEVELOPER} -Wno-long-long") + set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -Wno-long-long") + set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -Wno-long-long") +endif() + +#------------------------------------------------------------------------------ +# Enable Fortran if available. Used for some configuration tests (e.g. BLAS) + +# This workaround address a CMake bug (http://cmake.org/Bug/view.php?id=9220) +include(language_support_v2) +workaround_9220(Fortran Fortran_language_works) +if (Fortran_language_works) + enable_language(Fortran OPTIONAL) +endif() + +#------------------------------------------------------------------------------ +# Check type sizes + +include(CheckTypeSize) + +# Check size of size_t +check_type_size("size_t" size_t_size) +if (size_t_size) + list(APPEND DOLFIN_CXX_DEFINITIONS "-DDOLFIN_SIZE_T=${size_t_size}") +endif() + +#------------------------------------------------------------------------------ +# Check for MPI and OpenMP + +# FIXME: Should be set CMake to use the MPI compiler wrappers? + +if (DOLFIN_ENABLE_MPI) + if (DOLFIN_AUTO_DETECT_MPI) + find_package(MPI) + if (MPI_CXX_FOUND) + set(MPI_FOUND TRUE) + endif() + else() + # Assume user has set MPI compiler wrappers (via CXX, etc or CMAKE_CXX_COMPILER, etc) + set(MPI_FOUND TRUE) + set(MPI_CXX_FOUND TRUE) + set(MPI_C_FOUND TRUE) + endif() +endif() + +if (DOLFIN_ENABLE_OPENMP) + find_package(OpenMP) + include(CheckOpenMP) + check_openmp_unsigned_int_loop_control_variable(OPENMP_UINT_TEST_RUNS) + if (NOT OPENMP_UINT_TEST_RUNS) + set(OPENMP_FOUND FALSE) + endif() +endif() + +#------------------------------------------------------------------------------ +# Run tests to find required packages + +# Check for Boost +set(BOOST_ROOT $ENV{BOOST_DIR}) +if (BOOST_ROOT) + set(Boost_NO_SYSTEM_PATHS on) +endif() + +# Prevent FindBoost.cmake from looking for system Boost{foo}.cmake files +set(Boost_NO_BOOST_CMAKE true) + +set(Boost_USE_MULTITHREADED $ENV{BOOST_USE_MULTITHREADED}) +set(Boost_ADDITIONAL_VERSIONS 1.48 1.48.0 1.49 1.49.0 1.50 1.50.0) + +find_package(Boost 1.48 QUIET REQUIRED) + +set(DOLFIN_BOOST_COMPONENTS filesystem program_options system thread iostreams) +find_package(Boost COMPONENTS ${DOLFIN_BOOST_COMPONENTS} REQUIRED) + +# Check for required package UFC +find_package(UFC 1.4.0 QUIET HINTS ${UFC_DIR}) +if (NOT UFC_FOUND) + message(FATAL_ERROR "Could not find a configuration file for package UFC that is " + "compatible with requested version 1.4.0.\n" + "Set UFC_DIR to the directory containing a CMake configuration file for UFC.") +else() + message(STATUS "UFC version: ${UFC_VERSION_STRING}") +endif() + +# Check for required package Eigen3 +find_package(Eigen3 3.0.0 REQUIRED) + +# Check for required package LibXml2 +find_package(LibXml2 REQUIRED) + +#------------------------------------------------------------------------------ +# Run tests to find optional packages + +# Note: Check for Python interpreter even when Python is disabled because it +# is used to get the installation path for dolfin_utils +find_package(PythonInterp 2) +if (DOLFIN_ENABLE_PYTHON) + + # Set variables to help find Python library that is compatible with + # interpreter + if (PYTHONINTERP_FOUND) + # Get Python include path from Python interpretter + execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c + "import distutils.sysconfig, sys; sys.stdout.write(distutils.sysconfig.get_python_inc())" + OUTPUT_VARIABLE _PYTHON_INCLUDE_PATH + RESULT_VARIABLE _PYTHON_INCLUDE_RESULT) + + # Get Python library path from interpreter + execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c + "import os, sys, inspect; sys.stdout.write(os.path.split(os.path.split(inspect.getfile(inspect))[0])[0])" + OUTPUT_VARIABLE _PYTHON_LIB_PATH + RESULT_VARIABLE _PYTHON_LIB_RESULT) + + # Set include path, if returned by interpreter + if ("${_PYTHON_INCLUDE_RESULT}" STREQUAL "0") + set(PYTHON_INCLUDE_DIR ${_PYTHON_INCLUDE_PATH}) + endif() + + # Add a search path for Python library based on output from + # interpreter + set(CMAKE_LIBRARY_PATH_SAVE ${CMAKE_LIBRARY_PATH}) + if ("${_PYTHON_LIB_RESULT}" STREQUAL "0") + set(CMAKE_LIBRARY_PATH ${_PYTHON_LIB_PATH}) + endif() + + # Find Pythons libs + find_package(PythonLibs ${PYTHON_VERSION_STRING} EXACT QUIET REQUIRED) + set(CMAKE_LIBRARY_PATH ${CMAKE_LIBRARY_PATH_SAVE}) + endif() + + # If Python is found, check for NumPy and SWIG + if (PYTHONINTERP_FOUND AND PYTHONLIBS_FOUND) + find_package(NumPy REQUIRED) + + find_package(SWIG REQUIRED) + if (${SWIG_VERSION} LESS 2.0) + message(FATAL_ERROR " DOLFIN requires SWIG version 2.0 or greater. You have version ${SWIG_VERSION}. Set DOLFIN_ENABLE_PYTHON to False or install correct SWIG version.") + endif() + include(UseSWIG) + set(PYTHON_FOUND TRUE) + endif() + +endif() + +# Check for PETSc, SLEPc and petsc4py +if (DOLFIN_ENABLE_PETSC) + find_package(PETSc 3.3) + + if (PETSC_FOUND AND DOLFIN_ENABLE_SLEPC) + find_package(SLEPc 3.3) + endif() + + if (PETSC_FOUND AND PYTHON_FOUND AND DOLFIN_ENABLE_PETSC4PY) + find_package(PETSc4py) + if (PETSC4PY_FOUND) + if (NOT ("${PETSC4PY_VERSION_MAJOR}" EQUAL "${PETSC_VERSION_MAJOR}" + AND "${PETSC4PY_VERSION_MINOR}" EQUAL "${PETSC_VERSION_MINOR}")) + message(WARNING "PETSc version ${PETSC_VERSION} and petsc4py version ${PETSC4PY_VERSION} do not match. Disabling petsc4py support") + set(PETSC4PY_FOUND FALSE) + endif() + endif() + endif() + + # Enable PETSc SNES for PETSc verion > 3.3 + if (PETSC_VERSION VERSION_GREATER 3.3.100) + set(PETSC_ENABLE_SNES TRUE) + endif() + + # Enable TAO from PETSc for PETSc verion > 3.4 + if ((PETSC_VERSION VERSION_GREATER 3.4.100) OR (DOLFIN_ENABLE_TAO)) + set(PETSC_ENABLE_TAO TRUE) + endif() + +endif() + +# Check for ParMETIS and SCOTCH +if (DOLFIN_ENABLE_MPI AND MPI_C_FOUND) + if (DOLFIN_ENABLE_PARMETIS) + find_package(ParMETIS 4.0.2) + endif() + + if (DOLFIN_ENABLE_SCOTCH) + find_package(SCOTCH) + endif() +endif() + +# Check for UMFPACK +if (DOLFIN_ENABLE_UMFPACK) + find_package(AMD QUIET) + find_package(BLAS QUIET) + find_package(UMFPACK QUIET) +endif() + +# Check for CHOLMOD +if (DOLFIN_ENABLE_CHOLMOD) + find_package(CHOLMOD QUIET) +endif() + +# Check for HDF5 +if (DOLFIN_ENABLE_HDF5) + if (NOT DEFINED ENV{HDF5_ROOT}) + set(ENV{HDF5_ROOT} "$ENV{HDF5_DIR}") + endif() + find_package(HDF5) + + # Check that HDF5 has parallel support + if (HDF5_FOUND) + if (DOLFIN_ENABLE_MPI) + if (NOT (HDF5_IS_PARALLEL OR HDF5_ENABLE_PARALLEL)) + message(STATUS "HDF5 has been found, but is missing parallel support. It will not be enabled.") + set(HDF5_FOUND false) + endif() + else() + message(STATUS "HDF5 has been found, but MPI support is missing. It will not be enabled.") + set(HDF5_FOUND false) + endif() + endif() +endif() + +# Check for PaStiX +if (DOLFIN_ENABLE_PASTIX) + find_package(PaStiX 5.2.1) +endif() + +# Check for Trilinos and the requires Trilinos packages +if (DOLFIN_ENABLE_TRILINOS) + message(STATUS "Checking for Trilinos") + find_package(Trilinos PATHS ${TRILINOS_DIR} ${Trilinos_DIR} $ENV{TRILINOS_DIR} QUIET) + set(DOLFIN_TRILINOS_PACKAGES "Epetra;Zoltan;ML;Ifpack;Amesos;Belos") + + if ("${Trilinos_VERSION}" VERSION_LESS "11.0.0") + set(Trilinos_FOUND FALSE) + message(STATUS "Unable to find Trilinos (>= 11.0.0)") + endif() + + # Check for required packages + set(DOLFIN_TRILINOS_PACKAGES_FOUND false) + if (Trilinos_FOUND) + message(STATUS " Trilinos version ${Trilinos_VERSION} found. Checking for components") + + # Check that necessary packages are enabled + set(DOLFIN_TRILINOS_PACKAGES_FOUND true) + foreach (required_package ${DOLFIN_TRILINOS_PACKAGES}) + + # Search for required package in list of available packages + list(FIND Trilinos_PACKAGE_LIST ${required_package} required_trilinos_package_index) + if(required_trilinos_package_index EQUAL -1) + set(required_trilinos_package_found false) + else() + set(required_trilinos_package_found true) + endif() + + # Print whether or not package is found + if (required_trilinos_package_found) + message(STATUS " ${required_package} found") + else() + message(STATUS " Trilinos found, but required package ${required_package} not found. Trilinos will be disabled.") + set(DOLFIN_TRILINOS_PACKAGES_FOUND false) + break() + endif() + + endforeach() + + # Add package libraries if all packages have been found + if (DOLFIN_TRILINOS_PACKAGES_FOUND) + message(STATUS " All necessary Trilinos components found. Trilinos will be enabled.") + set(DOLFIN_TRILINOS_DEFINITIONS) + + # Loop over each package + foreach (package ${DOLFIN_TRILINOS_PACKAGES}) + + # Loop over libs and get full path + foreach (lib ${${package}_LIBRARIES}) + find_library(TRILINOS_LIB_${lib} ${lib} PATHS ${${package}_LIBRARY_DIRS} NO_DEFAULT_PATH) + # Also search the default paths + find_library(TRILINOS_LIB_${lib} ${lib}) + if (TRILINOS_LIB_${lib}) + list(APPEND DOLFIN_TRILINOS_LIBRARIES ${TRILINOS_LIB_${lib}}) + endif() + endforeach() + + endforeach() + + # Remove duplicates + list(REVERSE DOLFIN_TRILINOS_LIBRARIES) + list(REMOVE_DUPLICATES DOLFIN_TRILINOS_LIBRARIES) + list(REVERSE DOLFIN_TRILINOS_LIBRARIES) + + endif() + + else() + message(STATUS "Trilinos could not be found") + endif() +endif() + + +# Check for CGAL +if (DOLFIN_ENABLE_CGAL) + find_package(CGAL 4.1) +endif() + +# Check for zlib +if (DOLFIN_ENABLE_ZLIB) + find_package(ZLIB) +endif() + +# Check for cppunit +if (DOLFIN_ENABLE_UNIT_TESTS) + find_package(CppUnit) + + # Older version of CPPUNIT use std::auto_ptr, which is deprecated + if (CPPUNIT_FOUND) + if (${CPPUNIT_VERSION} LESS 1.13.1) + include(CheckCXXCompilerFlag) + CHECK_CXX_COMPILER_FLAG(-Wno-deprecated HAVE_NO_DEPRECATED) + if (HAVE_NO_DEPRECATED) + set(CMAKE_CXX_FLAGS_DEVELOPER "${CMAKE_CXX_FLAGS_DEVELOPER} -Wno-deprecated") + endif() + endif() + endif() + +endif() + +# Check for Sphinx +if (DOLFIN_ENABLE_DOCS AND PYTHON_FOUND) + find_package(Sphinx 1.1.0) +endif() + +# Check for Qt4 +if (DOLFIN_ENABLE_QT) + find_package(Qt4) +endif() + +# Check for VTK +if (DOLFIN_ENABLE_VTK) + find_package(VTK HINTS ${VTK_DIR} $ENV{VTK_DIR}) + set(VTK_VERSION "${VTK_MAJOR_VERSION}.${VTK_MINOR_VERSION}") + if (VTK_FOUND) + if ("${VTK_VERSION}" VERSION_LESS "5.2") + set(VTK_FOUND FALSE) + message(WARNING "Unable to find VTK (>= 5.2)") + else() + message(STATUS "Found VTK: ${VTK_DIR} (found version \"${VTK_VERSION}\")") + endif() + endif() +endif() + +#------------------------------------------------------------------------------ +# Print summary of found and not found optional packages + +# FIXME: Use FeatureSummary.cmake to do this + +# Gather information about which optional packages were found and not found +set(OPTIONAL_PACKAGES_FOUND "") +set(OPTIONAL_PACKAGES_NOT_FOUND "") +set(OPTIONAL_PACKAGES_NOT_ENABLED "") +foreach (OPTIONAL_PACKAGE ${OPTIONAL_PACKAGES}) + string(TOUPPER "${OPTIONAL_PACKAGE}" PKG) + if (${PKG}_FOUND OR ${OPTIONAL_PACKAGE}_FOUND) + list(APPEND OPTIONAL_PACKAGES_FOUND ${PKG}) + elseif (DOLFIN_ENABLE_${PKG}) + list(APPEND OPTIONAL_PACKAGES_NOT_FOUND ${PKG}) + else() + list(APPEND OPTIONAL_PACKAGES_NOT_ENABLED ${PKG}) + endif() +endforeach() + +message(STATUS "") + +# Print information about packages that were found +if (OPTIONAL_PACKAGES_FOUND) + message(STATUS "The following optional packages were found:") + message(STATUS "-------------------------------------------") + foreach (OPTIONAL_PACKAGE ${OPTIONAL_PACKAGES_FOUND}) + string(TOUPPER "${OPTIONAL_PACKAGE}" PKG) + message(STATUS "(OK) ${OPTIONAL_PACKAGE}") + endforeach() + message(STATUS "") +endif() + +# Print information about packages that were not enabled +if (OPTIONAL_PACKAGES_NOT_ENABLED) + message(STATUS "The following optional packages were not enabled:") + message(STATUS "-------------------------------------------------") + foreach (OPTIONAL_PACKAGE ${OPTIONAL_PACKAGES_NOT_ENABLED}) + string(TOUPPER "${OPTIONAL_PACKAGE}" PKG) + message(STATUS "(--) ${OPTIONAL_PACKAGE}") + endforeach() + message(STATUS "") +endif() + +# Print information about packages that were not found +if (OPTIONAL_PACKAGES_NOT_FOUND) + message(STATUS "The following optional packages were not found:") + message(STATUS "-----------------------------------------------") + foreach (OPTIONAL_PACKAGE ${OPTIONAL_PACKAGES_NOT_FOUND}) + string(TOUPPER "${OPTIONAL_PACKAGE}" PKG) + message(STATUS "(**) ${OPTIONAL_PACKAGE}") + endforeach() + message(STATUS "") +endif() + +#------------------------------------------------------------------------------ +# Get installation paths for Python modules (pure and platform-dependent) + +if (PYTHONINTERP_FOUND) + + if (NOT DEFINED DOLFIN_INSTALL_PYTHON_MODULE_DIR) + # Get path for platform-dependent Python modules (since we install a binary libary) + + # Python command string to discover module install location + if (CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT) + set(PYTHON_LIB_DISCOVER_STR "import sys, distutils.sysconfig; sys.stdout.write(distutils.sysconfig.get_python_lib(plat_specific=True))") + else() + set(PYTHON_LIB_DISCOVER_STR "import sys, distutils.sysconfig; sys.stdout.write(distutils.sysconfig.get_python_lib(plat_specific=True, prefix='${CMAKE_INSTALL_PREFIX}'))") + endif() + + # Probe Python interpreter + execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "${PYTHON_LIB_DISCOVER_STR}" + OUTPUT_VARIABLE DOLFIN_INSTALL_PYTHON_MODULE_DIR + ) + set(DOLFIN_INSTALL_PYTHON_MODULE_DIR ${DOLFIN_INSTALL_PYTHON_MODULE_DIR} + CACHE PATH "Python extension module installation directory.") + endif() + + if (NOT DEFINED DOLFIN_INSTALL_PYTHON_PURE_MODULE_DIR) + # Get path for pure Python modules + + # Python command string to discover module install location + if (CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT) + set(PYTHON_LIB_DISCOVER_STR "import sys, distutils.sysconfig; sys.stdout.write(distutils.sysconfig.get_python_lib(plat_specific=False))") + else() + set(PYTHON_LIB_DISCOVER_STR "import sys, distutils.sysconfig; sys.stdout.write(distutils.sysconfig.get_python_lib(plat_specific=False, prefix='${CMAKE_INSTALL_PREFIX}'))") + endif() + + # Probe Pyton interpreter + execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "${PYTHON_LIB_DISCOVER_STR}" + OUTPUT_VARIABLE DOLFIN_INSTALL_PYTHON_PURE_MODULE_DIR + ) + set(DOLFIN_INSTALL_PYTHON_PURE_MODULE_DIR ${DOLFIN_INSTALL_PYTHON_PURE_MODULE_DIR} + CACHE PATH "Python module installation directory.") + endif() + +endif() + +#------------------------------------------------------------------------------ +# Installation of DOLFIN and FEniCS Python modules + +if (DOLFIN_ENABLE_PYTHON AND PYTHON_FOUND) + install(DIRECTORY + ${CMAKE_SOURCE_DIR}/site-packages/dolfin + DESTINATION ${DOLFIN_INSTALL_PYTHON_MODULE_DIR} + USE_SOURCE_PERMISSIONS + COMPONENT RuntimeLibraries + PATTERN "*.in" EXCLUDE + ) + + configure_file(${CMAKE_SOURCE_DIR}/site-packages/dolfin/common/globalparameters.py.in + ${CMAKE_BINARY_DIR}/globalparameters.py @ONLY) + + install(FILES ${CMAKE_BINARY_DIR}/globalparameters.py + DESTINATION ${DOLFIN_INSTALL_PYTHON_MODULE_DIR}/dolfin/common/ + COMPONENT RuntimeLibraries + ) + + install(DIRECTORY + ${CMAKE_SOURCE_DIR}/site-packages/fenics + DESTINATION ${DOLFIN_INSTALL_PYTHON_MODULE_DIR} + USE_SOURCE_PERMISSIONS + COMPONENT RuntimeLibraries + PATTERN "*.in" EXCLUDE + ) +endif() + +#------------------------------------------------------------------------------ +# Installation of dolfin_utils + +if (DOLFIN_INSTALL_PYTHON_MODULE_DIR) + install(DIRECTORY ${CMAKE_SOURCE_DIR}/site-packages/dolfin_utils + DESTINATION ${DOLFIN_INSTALL_PYTHON_PURE_MODULE_DIR} + USE_SOURCE_PERMISSIONS) + + # Add target "install_dolfin_utils" for installing dolfin_utils + # without building and install the rest of DOLFIN + add_custom_target(install_dolfin_utils + COMMAND ${CMAKE_COMMAND} -E copy_directory + "${CMAKE_SOURCE_DIR}/site-packages/dolfin_utils" + "${DOLFIN_INSTALL_PYTHON_MODULE_DIR}/dolfin_utils" + COMMENT "Installing dolfin_utils in ${DOLFIN_INSTALL_PYTHON_MODULE_DIR}/dolfin_utils") +endif() + +#------------------------------------------------------------------------------ +# Installation of docstrings + +#install(DIRECTORY ${CMAKE_SOURCE_DIR}/site-packages/dolfin/docstrings +# DESTINATION ${DOLFIN_INSTALL_PYTHON_MODULE_DIR}/dolfin +# USE_SOURCE_PERMISSIONS) + +#------------------------------------------------------------------------------ +# Installation of DOLFIN library + +# Append the library version information to the library target properties +if (DOLFIN_WITH_LIBRARY_VERSION) + string(REPLACE "+" "" DOLFIN_LIBRARY_VERSION ${DOLFIN_VERSION}) + # This setting of SOVERSION assumes that any API change + # will increment either the minor or major version number. + set(DOLFIN_LIBRARY_PROPERTIES ${DOLFIN_LIBRARY_PROPERTIES} + VERSION ${DOLFIN_LIBRARY_VERSION} + SOVERSION ${DOLFIN_VERSION_MAJOR}.${DOLFIN_VERSION_MINOR} + ) +endif() + +# Set DOLFIN install sub-directories +set(DOLFIN_BIN_DIR "bin" CACHE PATH "Binary installation directory.") +set(DOLFIN_LIB_DIR "lib" CACHE PATH "Library installation directory.") +set(DOLFIN_INCLUDE_DIR "include" CACHE PATH "C/C++ header installation directory.") +set(DOLFIN_PKGCONFIG_DIR "lib/pkgconfig" CACHE PATH "pkg-config file installation directory.") +set(DOLFIN_SHARE_DIR "share/dolfin" CACHE PATH "Shared data installation directory.") +set(DOLFIN_MAN_DIR "share/man" CACHE PATH "Manual page installation directory.") +set(DOLFIN_DOC_DIR "${DOLFIN_SHARE_DIR}/doc" CACHE PATH "DOLFIN Documentation directory.") +set(DOLFIN_ETC_DIR "etc" CACHE PATH "Configuration file directory.") + +# Add source directory +add_subdirectory(dolfin) + +#------------------------------------------------------------------------------ +# Installation of DOLFIN utilities + +set(DOLFIN_UTILITIES + ${DOLFIN_SOURCE_DIR}/scripts/dolfin-convert/dolfin-convert + ${DOLFIN_SOURCE_DIR}/scripts/dolfin-order/dolfin-order + ${DOLFIN_SOURCE_DIR}/scripts/dolfin-plot/dolfin-plot) + +install(FILES ${DOLFIN_UTILITIES} + DESTINATION ${DOLFIN_BIN_DIR} + PERMISSIONS OWNER_WRITE OWNER_READ GROUP_READ WORLD_READ OWNER_EXECUTE GROUP_EXECUTE WORLD_EXECUTE + COMPONENT RuntimeExecutables) + +#------------------------------------------------------------------------------ +# Installation of DOLFIN manual pages + +install(DIRECTORY ${DOLFIN_SOURCE_DIR}/doc/man/ + DESTINATION ${DOLFIN_MAN_DIR} + USE_SOURCE_PERMISSIONS + COMPONENT RuntimeExecutables) + +#------------------------------------------------------------------------------ +# Generate and install helper file dolfin.conf + +# FIXME: Can CMake provide the library path name variable? +if (APPLE) + set(OS_LIBRARY_PATH_NAME "DYLD_LIBRARY_PATH") +else() + set(OS_LIBRARY_PATH_NAME "LD_LIBRARY_PATH") +endif() + +# FIXME: not cross-platform compatible +# Create and install dolfin.conf file +configure_file(${DOLFIN_CMAKE_DIR}/templates/dolfin.conf.in + ${CMAKE_BINARY_DIR}/dolfin.conf @ONLY) +install(FILES ${CMAKE_BINARY_DIR}/dolfin.conf + DESTINATION ${DOLFIN_SHARE_DIR} + COMPONENT Development) + +#------------------------------------------------------------------------------ +# Generate and install helper file dolfin-version + +# FIXME: not cross-platform compatible +# Create and install dolfin-version file +configure_file(${DOLFIN_CMAKE_DIR}/templates/dolfin-version.in + ${CMAKE_BINARY_DIR}/dolfin-version @ONLY) +install(FILES ${CMAKE_BINARY_DIR}/dolfin-version + DESTINATION ${DOLFIN_BIN_DIR} + PERMISSIONS OWNER_WRITE OWNER_READ GROUP_READ WORLD_READ + OWNER_EXECUTE GROUP_EXECUTE WORLD_EXECUTE + COMPONENT RuntimeExecutables) + +#------------------------------------------------------------------------------ +# Generate and install utility script dolfin-get-demos + +configure_file(${DOLFIN_CMAKE_DIR}/templates/dolfin-get-demos.in + ${CMAKE_BINARY_DIR}/dolfin-get-demos @ONLY) +install(FILES ${CMAKE_BINARY_DIR}/dolfin-get-demos + DESTINATION ${DOLFIN_BIN_DIR} + PERMISSIONS OWNER_WRITE OWNER_READ GROUP_READ WORLD_READ OWNER_EXECUTE GROUP_EXECUTE WORLD_EXECUTE + COMPONENT RuntimeExecutables) + + +#------------------------------------------------------------------------------ +# Generate form files for tests, bench, demos and dolfin if not exists +# FIXME: Generate files in Build directory instead, at least for bench, demo and tests + +set(COPY_DEMO_TEST_DEMO_DATA FALSE) +if (NOT EXISTS ${DOLFIN_SOURCE_DIR}/demo/documented/poisson/cpp/Poisson.h) + message(STATUS "") + message(STATUS "Generating form files in demo, test, bench and dolfin directories. May take some time...") + message(STATUS "----------------------------------------------------------------------------------------") + execute_process( + COMMAND ${PYTHON_EXECUTABLE} ${DOLFIN_SOURCE_DIR}/cmake/scripts/generate-form-files + WORKING_DIRECTORY ${DOLFIN_SOURCE_DIR} + RESULT_VARIABLE FORM_GENERATION_RESULT + OUTPUT_VARIABLE FORM_GENERATION_OUTPUT + ERROR_VARIABLE FORM_GENERATION_OUTPUT + OUTPUT_QUIET) + if (FORM_GENERATION_RESULT) + + # Cleanup so download is triggered next time we run cmake + if (EXISTS ${DOLFIN_SOURCE_DIR}/demo/documented/poisson/cpp/Poisson.h) + file(REMOVE ${DOLFIN_SOURCE_DIR}/demo/documented/poisson/cpp/Poisson.h) + endif() + + message(FATAL_ERROR "Generation of form files failed: \n${FORM_GENERATION_OUTPUT}") + endif() + set(COPY_DEMO_TEST_DEMO_DATA TRUE) +endif() + +#------------------------------------------------------------------------------ +# Generate CMakeLists.txt files for tests, bench and demos if not exists +# FIXME: Generate files in Build directory instead? +# NOTE: We need to call this script after generate-formfiles +if (NOT EXISTS ${DOLFIN_SOURCE_DIR}/demo/documented/poisson/cpp/CMakeLists.txt) + message(STATUS "") + message(STATUS "Generating CMakeLists.txt files in demo, test and bench directories") + message(STATUS "-------------------------------------------------------------------") + execute_process( + COMMAND ${PYTHON_EXECUTABLE} ${DOLFIN_SOURCE_DIR}/cmake/scripts/generate-cmakefiles + WORKING_DIRECTORY ${DOLFIN_SOURCE_DIR} + RESULT_VARIABLE CMAKE_GENERATION_RESULT + OUTPUT_VARIABLE CMAKE_GENERATION_OUTPUT + ERROR_VARIABLE CMAKE_GENERATION_OUTPUT + OUTPUT_QUIET) + if (CMAKE_GENERATION_RESULT) + + # Cleanup so download is triggered next time we run cmake + if (EXISTS ${DOLFIN_SOURCE_DIR}/demo/documented/poisson/cpp/CMakeLists.txt) + file(REMOVE ${DOLFIN_SOURCE_DIR}/demo/documented/poisson/cpp/CMakeLists.txt) + endif() + message(FATAL_ERROR "Generation of CMakeLists.txt files failed: \n${CMAKE_GENERATION_OUTPUT}") + endif() + + set(COPY_DEMO_TEST_DEMO_DATA TRUE) +endif() + +#------------------------------------------------------------------------------ +# Check if data is downloaded + +if (NOT EXISTS ${DOLFIN_SOURCE_DIR}/demo/documented/eigenvalue/box_with_dent.xml.gz) + # FIXME: What if we do not have internet connection + message(STATUS "") + message(STATUS "Download demo and test data. May take some time...") + message(STATUS "--------------------------------------------------") + execute_process( + COMMAND ${DOLFIN_SOURCE_DIR}/cmake/scripts/download-demo-data + WORKING_DIRECTORY ${DOLFIN_SOURCE_DIR} + RESULT_VARIABLE DOWNLOAD_DEMO_DATA_RESULT + OUTPUT_VARIABLE DOWNLOAD_DEMO_DATA_OUTPUT + ERROR_VARIABLE DOWNLOAD_DEMO_DATA_OUTPUT + OUTPUT_QUIET) + if (DOWNLOAD_DEMO_DATA_RESULT) + + # Cleanup so download is triggered next time we run cmake + if (EXISTS ${DOLFIN_SOURCE_DIR}/demo/documented/eigenvalue/box_with_dent.xml.gz) + file(REMOVE ${DOLFIN_SOURCE_DIR}/demo/documented/eigenvalue/box_with_dent.xml.gz) + endif() + message(WARNING "Download failed: \n${DOWNLOAD_DEMO_DATA_OUTPUT}") + endif() + set(COPY_DEMO_TEST_DEMO_DATA TRUE) +endif() + +# If data have been generated or downloaded in the demo/bench/test direcories +# we need to copy them to the build directories +# FIXME: We should probably just generate them directly in the build directory... +if (COPY_DEMO_TEST_DEMO_DATA) + message(STATUS "") + message(STATUS "Copying demo and test data to build directory.") + message(STATUS "----------------------------------------------") + execute_process( + COMMAND ${PYTHON_EXECUTABLE} ${DOLFIN_SOURCE_DIR}/cmake/scripts/copy-test-demo-data ${CMAKE_CURRENT_BINARY_DIR} + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + RESULT_VARIABLE COPY_DEMO_DATA_RESULT + OUTPUT_VARIABLE COPY_DEMO_DATA_OUTPUT + ERROR_VARIABLE COPY_DEMO_DATA_OUTPUT + OUTPUT_QUIET) + if (COPY_DEMO_DATA_RESULT) + message(FATAL_ERROR "Copy demo data failed: \n${COPY_DEMO_DATA_OUTPUT}") + endif() +endif() + +#------------------------------------------------------------------------------ +# Add demos and install demo source files and mesh files + +# Add demo but do not add to default target +add_subdirectory(demo EXCLUDE_FROM_ALL) + +# Set make program +if ("${CMAKE_GENERATOR}" STREQUAL "Unix Makefiles") + set(MAKE_PROGRAM "$(MAKE)") +else() + set(MAKE_PROGRAM "${CMAKE_MAKE_PROGRAM}") +endif() + +# Add target "demo" for building the demos +add_custom_target(demo + COMMAND ${MAKE_PROGRAM} + DEPENDS copy_data_test_demo + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/demo") + +# Install the demo source files +install(DIRECTORY demo DESTINATION ${DOLFIN_SHARE_DIR} + FILES_MATCHING + PATTERN "CMakeLists.txt" + PATTERN "*.cpp" + PATTERN "*.ufl" + PATTERN "*.h" + PATTERN "*.py" + PATTERN "*.xml*" + PATTERN "*.off" + PATTERN "CMakeFiles" EXCLUDE) + +# Install meshes (data directory) +install(DIRECTORY data DESTINATION ${DOLFIN_SHARE_DIR}) + +#------------------------------------------------------------------------------ +# Generate documentation + +if (DOLFIN_ENABLE_DOCS) + if (NOT SPHINX_FOUND) + message(STATUS "Disabling generation of documentation because Sphinx is missing.") + else() + add_subdirectory(doc) + endif() +endif() + +#------------------------------------------------------------------------------ +# Add tests and benchmarks + +if (DOLFIN_ENABLE_BENCHMARKS) + # Add bench but do not add to default target + add_subdirectory(bench EXCLUDE_FROM_ALL) + + # Add target "bench" for building benchmarks + add_custom_target(bench + COMMAND ${MAKE_PROGRAM} + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/bench") + + # Copy files needed to run benchmarks in build directory + file(COPY bench DESTINATION ${CMAKE_CURRENT_BINARY_DIR} + FILES_MATCHING + PATTERN "*" + PATTERN "CMakeFiles" EXCLUDE) + + # Add target "run_bench" for running benchmarks + add_custom_target(run_bench + COMMAND ${PYTHON_EXECUTABLE} "bench.py" + DEPENDS bench + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/bench") +endif() + +if (CPPUNIT_FOUND) + # Add test but do not add to default target + add_subdirectory(test EXCLUDE_FROM_ALL) + + # Add target "test" for building tests + add_custom_target(test + COMMAND ${MAKE_PROGRAM} + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/test") +endif() + +if (DOLFIN_ENABLE_TESTING) + + # Add target "run_memorytests" for running memory tests + add_custom_target(copy_data_test_demo + COMMAND ${PYTHON_EXECUTABLE} ${DOLFIN_SOURCE_DIR}/cmake/scripts/copy-test-demo-data ${CMAKE_CURRENT_BINARY_DIR} + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) + + # Add target "run_memorytests" for running memory tests + add_custom_target(run_memorytests + COMMAND ${PYTHON_EXECUTABLE} "test.py" + DEPENDS copy_data_test_demo + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/test/memory") + + # Add target "run_regressiontests" for running regression tests + add_custom_target(run_regressiontests + COMMAND ${PYTHON_EXECUTABLE} "test.py" + DEPENDS copy_data_test_demo demo + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/test/regression") + + # Add target "run_systemtests" for running system tests + add_custom_target(run_systemtests + COMMAND ${PYTHON_EXECUTABLE} "test.py" + DEPENDS copy_data_test_demo + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/test/system") + + # Add target "run_unittests" for running unit tests + add_custom_target(run_unittests + COMMAND ${PYTHON_EXECUTABLE} "test.py" + DEPENDS copy_data_test_demo test + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/test/unit") + + # Add target "run_quicktest" for running only Python unit tests + add_custom_target(run_quicktest + COMMAND ${PYTHON_EXECUTABLE} test.py --only-python + DEPENDS copy_data_test_demo + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/test/unit") + + # Add target "run_doctest" for running documentation tests + add_custom_target(run_doctest + COMMAND ${PYTHON_EXECUTABLE} test.py + DEPENDS copy_data_test_demo + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/test/documentation") + + # Add target "runtests" for running all tests + add_custom_target(runtests + ${PYTHON_EXECUTABLE} "test.py" + DEPENDS copy_data_test_demo demo test + WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/test") +endif() + +#------------------------------------------------------------------------------ +# Add "make uninstall" target + +configure_file( + "${DOLFIN_CMAKE_DIR}/templates/cmake_uninstall.cmake.in" + "${CMAKE_CURRENT_BINARY_DIR}/cmake_uninstall.cmake" + IMMEDIATE @ONLY) + +add_custom_target(uninstall + "${CMAKE_COMMAND}" -P "${CMAKE_CURRENT_BINARY_DIR}/cmake_uninstall.cmake") + +#------------------------------------------------------------------------------ +# Print post-install message + +add_subdirectory(cmake/post-install) + +#------------------------------------------------------------------------------ diff --git a/COPYING b/COPYING new file mode 100644 index 0000000..94a9ed0 --- /dev/null +++ b/COPYING @@ -0,0 +1,674 @@ + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. diff --git a/COPYING.LESSER b/COPYING.LESSER new file mode 100644 index 0000000..fc8a5de --- /dev/null +++ b/COPYING.LESSER @@ -0,0 +1,165 @@ + GNU LESSER GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + + This version of the GNU Lesser General Public License incorporates +the terms and conditions of version 3 of the GNU General Public +License, supplemented by the additional permissions listed below. + + 0. Additional Definitions. + + As used herein, "this License" refers to version 3 of the GNU Lesser +General Public License, and the "GNU GPL" refers to version 3 of the GNU +General Public License. + + "The Library" refers to a covered work governed by this License, +other than an Application or a Combined Work as defined below. + + An "Application" is any work that makes use of an interface provided +by the Library, but which is not otherwise based on the Library. +Defining a subclass of a class defined by the Library is deemed a mode +of using an interface provided by the Library. + + A "Combined Work" is a work produced by combining or linking an +Application with the Library. The particular version of the Library +with which the Combined Work was made is also called the "Linked +Version". + + The "Minimal Corresponding Source" for a Combined Work means the +Corresponding Source for the Combined Work, excluding any source code +for portions of the Combined Work that, considered in isolation, are +based on the Application, and not on the Linked Version. + + The "Corresponding Application Code" for a Combined Work means the +object code and/or source code for the Application, including any data +and utility programs needed for reproducing the Combined Work from the +Application, but excluding the System Libraries of the Combined Work. + + 1. Exception to Section 3 of the GNU GPL. + + You may convey a covered work under sections 3 and 4 of this License +without being bound by section 3 of the GNU GPL. + + 2. Conveying Modified Versions. + + If you modify a copy of the Library, and, in your modifications, a +facility refers to a function or data to be supplied by an Application +that uses the facility (other than as an argument passed when the +facility is invoked), then you may convey a copy of the modified +version: + + a) under this License, provided that you make a good faith effort to + ensure that, in the event an Application does not supply the + function or data, the facility still operates, and performs + whatever part of its purpose remains meaningful, or + + b) under the GNU GPL, with none of the additional permissions of + this License applicable to that copy. + + 3. Object Code Incorporating Material from Library Header Files. + + The object code form of an Application may incorporate material from +a header file that is part of the Library. You may convey such object +code under terms of your choice, provided that, if the incorporated +material is not limited to numerical parameters, data structure +layouts and accessors, or small macros, inline functions and templates +(ten or fewer lines in length), you do both of the following: + + a) Give prominent notice with each copy of the object code that the + Library is used in it and that the Library and its use are + covered by this License. + + b) Accompany the object code with a copy of the GNU GPL and this license + document. + + 4. Combined Works. + + You may convey a Combined Work under terms of your choice that, +taken together, effectively do not restrict modification of the +portions of the Library contained in the Combined Work and reverse +engineering for debugging such modifications, if you also do each of +the following: + + a) Give prominent notice with each copy of the Combined Work that + the Library is used in it and that the Library and its use are + covered by this License. + + b) Accompany the Combined Work with a copy of the GNU GPL and this license + document. + + c) For a Combined Work that displays copyright notices during + execution, include the copyright notice for the Library among + these notices, as well as a reference directing the user to the + copies of the GNU GPL and this license document. + + d) Do one of the following: + + 0) Convey the Minimal Corresponding Source under the terms of this + License, and the Corresponding Application Code in a form + suitable for, and under terms that permit, the user to + recombine or relink the Application with a modified version of + the Linked Version to produce a modified Combined Work, in the + manner specified by section 6 of the GNU GPL for conveying + Corresponding Source. + + 1) Use a suitable shared library mechanism for linking with the + Library. A suitable mechanism is one that (a) uses at run time + a copy of the Library already present on the user's computer + system, and (b) will operate properly with a modified version + of the Library that is interface-compatible with the Linked + Version. + + e) Provide Installation Information, but only if you would otherwise + be required to provide such information under section 6 of the + GNU GPL, and only to the extent that such information is + necessary to install and execute a modified version of the + Combined Work produced by recombining or relinking the + Application with a modified version of the Linked Version. (If + you use option 4d0, the Installation Information must accompany + the Minimal Corresponding Source and Corresponding Application + Code. If you use option 4d1, you must provide the Installation + Information in the manner specified by section 6 of the GNU GPL + for conveying Corresponding Source.) + + 5. Combined Libraries. + + You may place library facilities that are a work based on the +Library side by side in a single library together with other library +facilities that are not Applications and are not covered by this +License, and convey such a combined library under terms of your +choice, if you do both of the following: + + a) Accompany the combined library with a copy of the same work based + on the Library, uncombined with any other library facilities, + conveyed under the terms of this License. + + b) Give prominent notice with the combined library that part of it + is a work based on the Library, and explaining where to find the + accompanying uncombined form of the same work. + + 6. Revised Versions of the GNU Lesser General Public License. + + The Free Software Foundation may publish revised and/or new versions +of the GNU Lesser General Public License from time to time. Such new +versions will be similar in spirit to the present version, but may +differ in detail to address new problems or concerns. + + Each version is given a distinguishing version number. If the +Library as you received it specifies that a certain numbered version +of the GNU Lesser General Public License "or any later version" +applies to it, you have the option of following the terms and +conditions either of that published version or of any later version +published by the Free Software Foundation. If the Library as you +received it does not specify a version number of the GNU Lesser +General Public License, you may choose any version of the GNU Lesser +General Public License ever published by the Free Software Foundation. + + If the Library as you received it specifies that a proxy can decide +whether future versions of the GNU Lesser General Public License shall +apply, that proxy's public statement of acceptance of any version is +permanent authorization for you to choose that version for the +Library. diff --git a/ChangeLog b/ChangeLog new file mode 100644 index 0000000..d8533dc --- /dev/null +++ b/ChangeLog @@ -0,0 +1,1296 @@ +1.4.0 [2014-06-02] + - Feature: Add set_diagonal (with GenericVector) to GenericMatrix + - Fix many bugs associated with cell orientations on manifolds + - Force all global dofs to be ordered last and to be on the last process + in parallel + - Speed up dof reordering of mixed space including global dofs by removing + the latter from graph reordering + - Force all dofs on a shared facet to be owned by the same process + - Add FEniCS ('fenics') Python module, identical with DOLFIN Python module + - Add function Form::set_some_coefficients() + - Remove Boost.MPI dependency + - Change GenericMatrix::compresss to return a new matrix (7be3a29) + - Add function GenericTensor::empty() + - Deprecate resizing of linear algebra via the GenericFoo interfaces + (fixes #213) + - Deprecate MPI::process_number() in favour of MPI::rank(MPI_Comm) + - Use PETSc built-in reference counting to manage lifetime of wrapped PETSc + objects + - Remove random access function from MeshEntityIterator (fixes #178) + - Add support for VTK 6 (fixes #149) + - Use MPI communicator in interfaces. Permits the creation of distributed and + local objects, e.g. Meshes. + - Reduce memory usage and increase speed of mesh topology computation +1.3.0 [2014-01-07] + - Feature: Enable assignment of sparse MeshValueCollections to MeshFunctions + - Feature: Add free function assign that is used for sub function assignment + - Feature: Add class FunctionAssigner that cache dofs for sub function + assignment + - Fix runtime dependency on checking swig version + - Deprecate DofMap member methods vertex_to_dof_map and dof_to_vertex_map + - Add free functions: vertex_to_dof_map and dof_to_vertex_map, and correct the + ordering of the map. + - Introduce CompiledSubDomain a more robust version of compiled_subdomains, + which is now deprecated + - CMake now takes care of calling the correct generate-foo script if so needed. + - Feature: Add new built-in computational geometry library (BoundingBoxTree) + - Feature: Add support for setting name and label to an Expression when + constructed + - Feature: Add support for passing a scalar GenericFunction as default value + to a CompiledExpression + - Feature: Add support for distance queries for 3-D meshes + - Feature: Add PointIntegralSolver, which uses the MultiStageSchemes to solve + local ODEs at Vertices + - Feature: Add RKSolver and MultiStageScheme for general time integral solvers + - Feature: Add support for assigning a Function with linear combinations of + Functions, which lives in the same FunctionSpace + - Added Python wrapper for SystemAssembler + - Added a demo using compiled_extension_module with separate source files + - Fixes for NumPy 1.7 + - Remove DOLFIN wrapper code (moved to FFC) + - Add set_options_prefix to PETScKrylovSolver + - Remove base class BoundarCondition + - Set block size for PETScMatrix when available from TensorLayout + - Add support to get block compressed format from STLMatrix + - Add detection of block structures in the dofmap for vector equations + - Expose PETSc GAMG parameters + - Modify SystemAssembler to support separate assembly of A and b +1.2.0 [2013-03-24] + - Fixes bug where child/parent hierarchy in Python were destroyed + - Add utility script dolfin-get-demos + - MeshFunctions in python now support iterable protocol + - Add timed VTK output for Mesh and MeshFunction in addtion to Functions + - Expose ufc::dofmap::tabulate_entity_dofs to GenericDofMap interface + - Expose ufc::dofmap::num_entity_dofs to GenericDofMap interface + - Allow setting of row dof coordinates in preconditioners (only works with + PETSc backed for now) + - Expose more PETSc/ML parameters + - Improve speed to tabulating coordinates in some DofMap functions + - Feature: Add support for passing a Constant as default value to a + CompiledExpression + - Fix bug in dimension check for 1-D ALE + - Remove some redundant graph code + - Improvements in speed of parallel dual graph builder + - Fix bug in XMDF output for cell-based Functions + - Fixes for latest version of clang compiler + - LocalSolver class added to efficiently solve cell-wise problems + - New implementation of periodic boundary conditions. Now incorporated into + the dofmap + - Optional arguments to assemblers removed + - SymmetricAssembler removed + - Domains for assemblers can now only be attached to forms + - SubMesh can now be constructed without a CellFunction argument, if the + MeshDomain contains marked celldomains. + - MeshDomains are propagated to a SubMesh during construction + - Simplify generation of a MeshFunction from MeshDomains: No need to call + mesh_function with mesh + - Rename dolfin-config.cmake to DOLFINConfig.cmake + - Use CMake to configure JIT compilation of extension modules + - Feature: Add vertex_to_dof_map to DofMap, which map vertex indices to + dolfin dofs + - Feature: Add support for solving on m dimensional meshes embedded in n >= m + dimensions +1.1.0 [2013-01-08] + - Add support for solving singular problems with Krylov solvers (PETSc only) + - Add new typedef dolfin::la_index for consistent indexing with linear algebra + backends. + - Change default unsigned integer type to std::size_t + - Add support to attaching operator null space to preconditioner + (required for smoothed aggregation AMG) + - Add basic interface to the PETSc AMG preconditioner + - Make SCOTCH default graph partitioner (GNU-compatible free license, unlike + ParMETIS) + - Add scalable construction of mesh dual graph for mesh partitioning + - Improve performance of mesh building in parallel + - Add mesh output to SVG + - Add support for Facet and cell markers to mesh converted from Diffpack + - Add support for Facet and cell markers/attributes to mesh converted from + Triangle + - Change interface for auto-adaptive solvers: these now take the goal + functional as a constructor argument + - Add memory usage monitor: monitor_memory_usage() + - Compare mesh hash in interpolate_vertex_values + - Add hash() for Mesh and MeshTopology + - Expose GenericVector::operator{+=,-=,+,-}(double) to Python + - Add function Function::compute_vertex_values not needing a mesh argument + - Add support for XDMF and HDF5 + - Add new interface LinearOperator for matrix-free linear systems + - Remove MTL4 linear algebra backend + - Rename down_cast --> as_type in C++ / as_backend_type in Python + - Remove KrylovMatrix interface + - Remove quadrature classes + - JIT compiled C++ code can now include a dolfin namespace + - Expression string parsing now understand C++ namespace such as std::cosh + - Fix bug in Expression so one can pass min, max + - Fix bug in SystemAssembler, where mesh.init(D-1, D) was not called before assemble + - Fix bug where the reference count of Py_None was not increased + - Fix bug in reading TimeSeries of size smaller than 3 + - Improve code design for Mesh FooIterators to avoid dubious down cast + - Bug fix in destruction of PETSc user preconditioners + - Add CellVolume(mesh) convenience wrapper to Python interface for UFL function + - Fix bug in producing outward pointing normals of BoundaryMesh + - Fix bug introduced by SWIG 2.0.5, where typemaps of templated typedefs + are not handled correctly + - Fix bug introduced by SWIG 2.0.5, which treated uint as Python long + - Add check that sample points for TimeSeries are monotone + - Fix handling of parameter "report" in Krylov solvers + - Add new linear algebra backend "PETScCusp" for GPU-accelerated linear algebra + - Add sparray method in the Python interface of GenericMatrix, requires scipy.sparse + - Make methods that return a view of contiguous c-arrays, via a NumPy array, keep a reference from the object so it wont get out of scope + - Add parameter: "use_petsc_signal_handler", which enables/disable PETSc system signals + - Avoid unnecessary resize of result vector for A*b + - MPI functionality for distributing values between neighbours + - SystemAssembler now works in parallel with topological/geometric boundary search + - New symmetric assembler with ability for stand-alone RHS assemble + - Major speed-up of DirichletBC computation and mesh marking + - Major speed-up of assembly of functions and expressions + - Major speed-up of mesh topology computation + - Add simple 2D and 3D mesh generation (via CGAL) + - Add creation of mesh from triangulations of points (via CGAL) + - Split the SWIG interface into six combined modules instead of one + - Add has_foo to easy check what solver and preconditioners are available + - Add convenience functions for listing available linear_algebra_backends + - Change naming convention for cpp unit tests test.cpp -> Foo.cpp + - Added cpp unit test for GenericVector::operator{-,+,*,/}= for all la backends + - Add functionality for rotating meshes + - Add mesh generation based on NETGEN constructive solid geometry + - Generalize SparsityPattern and STLMatrix to support column-wise storage + - Add interfaces to wrap PaStiX and MUMPS direct solvers + - Add CoordinateMatrix class + - Make STLMatrix work in parallel + - Remove all tr1::tuple and use boost::tuple + - Fix wrong link in Python quick reference. +1.0.0 [2011-12-07] + - Change return value of IntervalCell::facet_area() 0.0 --> 1.0. + - Recompile all forms with FFC 1.0.0 + - Fix for CGAL 3.9 on OS X + - Improve docstrings for Box and Rectangle + - Check number of dofs on local patch in extrapolation +1.0-rc2 [2011-11-28] + - Fix bug in 1D mesh refinement + - Fix bug in handling of subdirectories for TimeSeries + - Fix logic behind vector assignment, especially in parallel +1.0-rc1 [2011-11-21] + - 33 bugs fixed + - Implement traversal of bounding box trees for all codimensions + - Edit and improve all error messages + - Added [un]equality operator to FunctionSpace + - Remove batch compilation of Expression (Expressions) from Python interface + - Added get_value to MeshValueCollection + - Added assignment operator to MeshValueCollection +1.0-beta2 [2011-10-26] + - Change search path of parameter file to ~/.fenics/dolfin_parameters.xml + - Add functions Parameters::has_parameter, Parameters::has_parameter_set + - Added option to store all connectivities in a mesh for TimeSeries (false by default) + - Added option for gzip compressed binary files for TimeSeries + - Propagate global parameters to Krylov and LU solvers + - Fix OpenMp assemble of scalars + - Make OpenMP assemble over sub domains work + - DirichletBC.get_boundary_values, FunctionSpace.collapse now return a dict in Python + - Changed name of has_la_backend to has_linear_algebra_backend + - Added has_foo functions which can be used instead of the HAS_FOO defines + - Less trict check on kwargs for compiled Expression + - Add option to not right-justify tables + - Rename summary --> list_timings + - Add function list_linear_solver_methods + - Add function list_lu_solver_methods + - Add function list_krylov_solver_methods + - Add function list_krylov_solver_preconditioners + - Support subdomains in SystemAssembler (not for interior facet integrals) + - Add option functionality apply("flush") to PETScMatrix + - Add option finalize_tensor=true to assemble functions + - Solver parameters can now be passed to solve + - Remove deprecated function Variable::disp() + - Remove deprecated function logging() + - Add new class MeshValueCollection + - Add new class MeshDomains replacing old storage of boundary markers + as part of MeshData. The following names are no longer supported: + * boundary_facet_cells + * boundary_facet_numbers + * boundary_indicators + * material_indicators + * cell_domains + * interior_facet_domains + * exterior_facet_domains + - Rename XML tag --> + - Rename SubMesh data "global_vertex_indices" --> "parent_vertex_indices" + - Get XML input/output of boundary markers working again + - Get FacetArea working again +1.0-beta [2011-08-11] + - Print percentage of non-zero entries when computing sparsity patterns + - Use ufl.Real for Constant in Python interface + - Add Dirichlet boundary condition argument to Python project function + - Add remove functionality for parameter sets + - Added out typemap for vector of shared_ptr objects + - Fix typemap bug for list of shared_ptr objects + - Support parallel XML vector io + - Add support for gzipped XML output + - Use pugixml for XML output + - Move XML SAX parser to libxml2 SAX2 interface + - Simplify XML io + - Change interface for variational problems, class VariationalProblem removed + - Add solve interface: solve(a == L), solve(F == 0) + - Add new classes Linear/NonlinearVariationalProblem + - Add new classes Linear/NonlinearVariationalSolver + - Ad form class aliases ResidualForm and Jacobian form in wrapper code + - Default argument to variables in Expression are passed as kwargs in the + Python interface + - Add has_openmp as utility function in Python interface + - Add improved error reporting using dolfin_error + - Use Boost to compute Legendre polynolials + - Remove ode code + - Handle parsing of unrecognized command-line parameters + - All const std::vector& now return a read-only NumPy array + - Make a robust macro for generating a NumPy array from data + - Exposing low level fem functionality to Python, by adding a + Cell -> ufc::cell typemap + - Added ufl_cell as a method to Mesh in Python interface + - Fix memory leak in Zoltan interface + - Remove some 'new' for arrays in favour of std::vector + - Added cell as an optional argument to Constant + - Prevent the use of non contiguous NumPy arrays for most typemaps + - Point can now be used to evaluate a Function or Expression in Python + - Fixed dimension check for Function and Expression eval in Python + - Fix compressed VTK output for tensors in 2D +0.9.11 [2011-05-16] + - Change license from LGPL v2.1 to LGPL v3 or later + - Moved meshconverter to dolfin_utils + - Add support for conversion of material markers for Gmsh meshes + - Add support for point sources (class PointSource) + - Rename logging --> set_log_active + - Add parameter "clear_on_write" to TimeSeries + - Add support for input/output of nested parameter sets + - Check for dimensions in linear solvers + - Add support for automated error control for variational problems + - Add support for refinement of MeshFunctions after mesh refinement + - Change order of test and trial spaces in Form constructors + - Make SWIG version >= 2.0 a requirement + - Recognize subdomain data in Assembler from both Form and Mesh + - Add storage for subdomains (cell_domains etc) in Form class + - Rename MeshData "boundary facet cells" --> "boundary_facet_cells" + - Rename MeshData "boundary facet numbers" --> "boundary_facet_numbers" + - Rename MeshData "boundary indicators" --> "boundary_indicators" + - Rename MeshData "exterior facet domains" --> "exterior_facet_domains" + - Updates for UFC 2.0.1 + - Add FiniteElement::evaluate_basis_derivatives_all + - Add support for VTK output of facet-based MeshFunctions + - Change default log level from PROGRESS to INFO + - Add copy functions to FiniteElement and DofMap + - Simplify DofMap + - Interpolate vector values when reading from time series +0.9.10 [2011-02-23] + - Updates for UFC 2.0.0 + - Handle TimeSeries stored backward in time (automatic reversal) + - Automatic storage of hierarchy during refinement + - Remove directory/library 'main', merged into 'common' + - dolfin_init --> init, dolfin_set_precision --> set_precision + - Remove need for mesh argument to functional assembly when possible + - Add function set_output_stream + - Add operator () for evaluation at points for Function/Expression in C++ + - Add abs() to GenericVector interface + - Fix bug for local refinement of manifolds + - Interface change: VariationalProblem now takes: a, L or F, (dF) + - Map linear algebra objects to processes consistently with mesh parition + - Lots of improvemenst to parallel assembly, dof maps and linear algebra + - Add lists supported_elements and supported_elements_for_plotting in Python + - Add script dolfin-plot for plotting meshes and elements from the command-line + - Add support for plotting elements from Python + - Add experimental OpenMP assembler + - Thread-safe fixed in Function class + - Make GenericFunction::eval thread-safe (Data class removed) + - Optimize and speedup topology computation (mesh.init()) + - Add function Mesh::clean() for cleaning out auxilliary topology data + - Improve speed and accuracy of timers + - Fix bug in 3D uniform mesh refinement + - Add built-in meshes UnitTriangle and UnitTetrahedron + - Only create output directories when they don't exist + - Make it impossible to set the linear algebra backend to something illegal + - Overload value_shape instead of dim for userdefined Python Expressions + - Permit unset parameters + - Search only for BLAS library (not cblas.h) +0.9.9 [2010-09-01] + - Change build system to CMake + - Add named MeshFunctions: VertexFunction, EdgeFunction, FaceFunction, FacetFunction, CellFunction + - Allow setting constant boundary conditions directly without using Constant + - Allow setting boundary conditions based on string ("x[0] == 0.0") + - Create missing directories if specified as part of file names + - Allow re-use of preconditioners for most backends + - Fixes for UMFPACK solver on some 32 bit machines + - Provide access to more Hypre preconditioners via PETSc + - Updates for SLEPc 3.1 + - Improve and implement re-use of LU factorizations for all backends + - Fix bug in refinement of MeshFunctions +0.9.8 [2010-07-01] + - Optimize and improve StabilityAnalysis. + - Use own implementation of binary search in ODESolution (takes advantage of + previous values as initial guess) + - Improve reading ODESolution spanning multiple files + - Dramatic speedup of progress bar (and algorithms using it) + - Fix bug in writing meshes embedded higher dimensions to M-files + - Zero vector in uBLASVector::resize() to fix spurious bug in Krylov solver + - Handle named fields (u.rename()) in VTK output + - Bug fix in computation of FacetArea for tetrahedrons + - Add support for direct plotting of Dirichlet boundary conditions: plot(bc) + - Updates for PETSc 3.1 + - Add relaxation parameter to NewtonSolver + - Implement collapse of renumbered dof maps (serial and parallel) + - Simplification of DofMapBuilder for parallel dof maps + - Improve and simplify DofMap + - Add Armadillo dependency for dense linear algebra + - Remove LAPACKFoo wrappers + - Add abstract base class GenericDofMap + - Zero small values in VTK output to avoid VTK crashes + - Handle MeshFunction/markers in homogenize bc + - Make preconditioner selectable in VariationalProblem (new parameter) + - Read/write meshes in binary format + - Add parameter "use_ident" in DirichletBC + - Issue error by default when solvers don't converge (parameter "error_on_convergence") + - Add option to print matrix/vector for a VariationalProblem + - Trilinos backend now works in parallel + - Remove Mesh refine members functions. Use free refine(...) functions instead + - Remove AdapativeObjects + - Add Stokes demo using the MINI element + - Interface change: operator+ now used to denote enriched function spaces + - Interface change: operator+ --> operator* for mixed elements + - Add option 'allow_extrapolation' useful when interpolating to refined meshes + - Add SpatialCoordinates demo + - Add functionality for accessing time series sample times: vector_times(), mesh_times() + - Add functionality for snapping mesh to curved boundaries during refinement + - Add functionality for smoothing the boundary of a mesh + - Speedup assembly over exterior facets by not using BoundaryMesh + - Mesh refinement improvements, remove unecessary copying in Python interface + - Clean PETSc and Epetra Krylov solvers + - Add separate preconditioner classes for PETSc and Epetra solvers + - Add function ident_zeros for inserting one on diagonal for zero rows + - Add LU support for Trilinos interface +0.9.7 [2010-02-17] + - Add support for specifying facet orientation in assembly over interior facets + - Allow user to choose which LU package PETScLUSolver uses + - Add computation of intersection between arbitrary mesh entities + - Random access to MeshEntitiyIterators + - Modify SWIG flags to prevent leak when using SWIG director feature + - Fix memory leak in std::vector typemaps + - Add interface for SCOTCH for parallel mesh partitioning + - Bug fix in SubDomain::mark, fixes bug in DirichletBC based on SubDomain::inside + - Improvements in time series class, recognizing old stored values + - Add FacetCell class useful in algorithms iterating over boundary facets + - Rename reconstruct --> extrapolate + - Remove GTS dependency +0.9.6 [2010-02-03] + - Simplify access to form compiler parameters, now integrated with global parameters + - Add DofMap member function to return set of dofs + - Fix memory leak in the LA interface + - Do not import cos, sin, exp from NumPy to avoid clash with UFL functions + - Fix bug in MTL4Vector assignment + - Remove sandbox (moved to separate repository) + - Remove matrix factory (dolfin/mf) + - Update .ufl files for changes in UFL + - Added swig/import/foo.i for easy type importing from dolfin modules + - Allow optional argument cell when creating Expression + - Change name of Expression argument cpparg --> cppcode + - Add simple constructor (dim0, dim1) for C++ matrix Expressions + - Add example demonstrating the use of cpparg (C++ code in Python) + - Add least squares solver for dense systems (wrapper for DGELS) + - New linear algebra wrappers for LAPACK matrices and vectors + - Experimental support for reconstruction of higher order functions + - Modified interface for eval() and inside() in C++ using Array + - Introduce new Array class for simplified wrapping of arrays in SWIG + - Improved functionality for intersection detection + - Reimplementation of intersection detection using CGAL +0.9.5 [2009-12-03] + - Set appropriate parameters for symmetric eigenvalue problems with SLEPc + - Fix for performance regression in recent uBLAS releases + - Simplify Expression interface: f = Expression("sin(x[0])") + - Simplify Constant interface: c = Constant(1.0) + - Fix bug in periodic boundary conditions + - Add simple script dolfin-tetgen for generating DOLFIN XML meshes from STL + - Make XML parser append/overwrite parameter set when reading parameters from file + - Refinement of function spaces and automatic interpolation of member functions + - Allow setting global parameters for Krylov solver + - Fix handling of Constants in Python interface to avoid repeated JIT compilation + - Allow simple specification of subdomains in Python without needing to subclass SubDomain + - Add function homogenize() for simple creation of homogeneous BCs from given BCs + - Add copy constructor and possibility to change value for DirichletBC + - Add simple wrapper for ufl.cell.n. FacetNormal(mesh) now works again in Python. + - Support apply(A), apply(b) and apply(b, x) in PeriodicBC + - Enable setting spectral transformation for SLEPc eigenvalue solver +0.9.4 [2009-10-12] + - Remove set, get and operator() methods from MeshFunction + - Added const and none const T &operator[uint/MeshEntity] to MeshFunction + - More clean up in SWIG interface files, remove global renames and ignores + - Update Python interface to Expression, with extended tests for value ranks + - Removed DiscreteFunction class + - Require value_shape and geometric_dimension in Expression + - Introduce new class Expression replacing user-defined Functions + - interpolate_vertex_values --> compute_vertex_values + - std::map replaces generated CoefficientSet code + - Cleanup logic in Function class as a result of new Expression class + - Introduce new Coefficient base class for form coefficients + - Replace CellSize::min,max by Mesh::hmin,hmax + - Use MUMPS instead of UMFPACK as default direct solver in both serial and parallel + - Fix bug in SystemAssembler + - Remove support for PETSc 2.3 and support PETSc 3.0.0 only + - Remove FacetNormal Function. Use UFL facet normal instead. + - Add update() function to FunctionSpace and DofMap for use in adaptive mesh refinement + - Require mesh in constructor of functionals (C++) or argument to assemble (Python) +0.9.3 [2009-09-25] + - Add global parameter "ffc_representation" for form representation in FFC JIT compiler + - Make norm() function handle both vectors and functions in Python + - Speedup periodic boundary conditions and make work for mixed (vector-valued) elements + - Add possibilities to use any number numpy array when assigning matrices and vectors + - Add possibilities to use any integer numpy array for indices in matrices and vectors + - Fix for int typemaps in PyDOLFIN + - Split mult into mult and transpmult + - Filter out PETSc argument when parsing command-line parameters + - Extend comments to SWIG interface files + - Add copyright statements to SWIG interface files (not finished yet) + - Add typemaps for misc std::vector in PyDOLFIN + - Remove dependencies on std_vector.i reducing SWIG wrapper code size + - Use relative %includes in dolfin.i + - Changed names on SWIG interface files dolfin_foo.i -> foo.i + - Add function interpolate() in Python interface + - Fix typmaps for uint in python 2.6 + - Use TypeError instead of ValueError in typechecks in typmaps.i + - Add in/out shared_ptr typemaps for PyDOLFIN + - Fix JIT compiling in parallel + - Add a compile_extension_module function in PyDOLFIN + - Fix bug in Python vector assignment + - Add support for compressed base64 encoded VTK files (using zlib) + - Add support for base64 encoded VTK files + - Experimental support for parallel assembly and solve + - Bug fix in project() function, update to UFL syntax + - Remove disp() functions and replace by info(foo, true) + - Add fem unit test (Python) + - Clean up SystemAssembler + - Enable assemble_system through PyDOLFIN + - Add 'norm' to GenericMatrix + - Efficiency improvements in NewtonSolver + - Rename NewtonSolver::get_iteration() to NewtonSolver::iteration() + - Improvements to EpetraKrylovSolver::solve + - Add constructor Vector::Vector(const GenericVector& x) + - Remove SCons deprecation warnings + - Memory leak fix in PETScKrylovSolver + - Rename dolfin_assert -> assert and use C++ version + - Fix debug/optimise flags + - Remove AvgMeshSize, InvMeshSize, InvFacetArea from SpecialFunctions + - Rename MeshSize -> CellSize + - Rewrite parameter system with improved support for command-line parsing, + localization of parameters (per class) and usability from Python + - Remove OutflowFacet from SpecialFunctions + - Rename interpolate(double*) --> interpolate_vertex_values(double*) + - Add Python version of Cahn-Hilliard demo + - Fix bug in assemble.py + - Permit interpolation of functions between non-matching meshes + - Remove Function::Function(std::string filename) + - Transition to new XML io + - Remove GenericSparsityPattern::sort + - Require sorted/unsorted parameter in SparsityPattern constructor + - Improve performance of SparsityPattern::insert + - Replace enums with strings for linear algebra and built-in meshes + - Allow direct access to Constant value + - Initialize entities in MeshEntity constructor automatically and check range + - Add unit tests to the memorycheck + - Add call to clean up libxml2 parser at exit + - Remove unecessary arguments in DofMap member functions + - Remove reference constructors from DofMap, FiniteElement and FunctionSpace + - Use a shared_ptr to store the mesh in DofMap objects + - Interface change for wrapper code: PoissonBilinearForm --> Poisson::BilinearForm + - Add function info_underline() for writing underlined messages + - Rename message() --> info() for "compatibility" with Python logging module + - Add elementwise multiplication in GeneriVector interface + - GenericVector interface in PyDOLFIN now support the sequence protocol + - Rename of camelCaps functions names: fooBar --> foo_bar + Note: mesh.numVertices() --> mesh.num_vertices(), mesh.numCells() --> mesh.num_cells() + - Add slicing capabilities for GenericMatrix interface in PyDOLFIN (only getitem) + - Add slicing capabilities for GenericVector interface in PyDOLFIN + - Add sum to GenericVector interface +0.9.2 [2009-04-07] + - Enable setting parameters for Newton solver in VariationalProblem + - Simplified and improved implementation of C++ plotting, calling Viper on command-line + - Remove precompiled elements and projections + - Automatically interpolate user-defined functions on assignment + - Add new built-in function MeshCoordinates, useful in ALE simulations + - Add new constructor to Function class, Function(V, "vector.xml") + - Remove class Array (using std::vector instead) + - Add vector_mapping data to MeshData + - Use std::vector instead of Array in MeshData + - Add assignment operator and copy constructor for MeshFunction + - Add function mesh.move(other_mesh) for moving mesh according to matching mesh (for FSI) + - Add function mesh.move(u) for moving mesh according to displacement function (for FSI) + - Add macro dolfin_not_implemented() + - Add new interpolate() function for interpolation of user-defined function to discrete + - Make _function_space protected in Function + - Added access to crs data from python for uBLAS and MTL4 backendg +0.9.1 [2009-02-17] + - Check Rectangle and Box for non-zero dimensions + - ODE solvers now solve the dual problem + - New class SubMesh for simple extraction of matching meshes for sub domains + - Improvements of multiprecision ODE solver + - Fix Function class copy constructor + - Bug fixes for errornorm(), updates for new interface + - Interface update for MeshData: createMeshFunction --> create_mesh_function etc + - Interface update for Rectangle and Box + - Add elastodynamics demo + - Fix memory leak in IntersectionDetector/GTSInterface + - Add check for swig version, in jit and compile functions + - Bug fix in dolfin-order script for gzipped files + - Make shared_ptr work across C++/Python interface + - Replace std::tr1::shared_ptr with boost::shared_ptr + - Bug fix in transfinite mean-value interpolation + - Less annoying progress bar (silent when progress is fast) + - Fix assignment operator for MeshData + - Improved adaptive mesh refinement (recursive Rivara) producing better quality meshes +0.9.0 [2009-01-05] + - Cross-platform fixes + - PETScMatrix::copy fix + - Some Trilinos fixes + - Improvements in MeshData class + - Do not use initial guess in Newton solver + - Change OutflowFacet to IsOutflowFacet and change syntax + - Used shared_ptr for underling linear algebra objects + - Cache subspaces in FunctionSpace + - Improved plotting, now support plot(grad(u)), plot(div(u)) etc + - Simple handling of JIT-compiled functions + - Sign change (bug fix) in increment for Newton solver + - New class VariationalProblem replacing LinearPDE and NonlinearPDE + - Parallel parsing and partitioning of meshes (experimental) + - Add script dolfin-order for ordering mesh files + - Add new class SubSpace (replacing SubSystem) + - Add new class FunctionSpace + - Complete redesign of Function class hierarchy, now a single Function class + - Increased use of shared_ptr in Function, FunctionSpace, etc + - New interface for boundary conditions, form not necessary + - Allow simple setting of coefficient functions based on names (not their index) + - Don't order mesh automatically, meshes must now be ordered explicitly + - Simpler definition of user-defined functions (constructors not necessary) + - Make mesh iterators const to allow for const-correct Mesh code +0.8.1 [2008-10-20] + - Add option to use ML multigrid preconditioner through PETSc + - Interface change for ODE solvers: uBLASVector --> double* + - Remove homotopy solver + - Remove typedef real, now using plain double instead + - Add various operators -=, += to GenericMatrix + - Don't use -Werror when compiling SWIG generated code + - Remove init(n) and init(m, n) from GenericVector/Matrix. Use resize and zero instead + - Add new function is_combatible() for checking compatibility of boundary conditions + - Use x as initial guess in Krylov solvers (PETSc, uBLAS, ITL) + - Add new function errornorm() + - Add harmonic ALE mesh smoothing + - Refinements of Graph class + - Add CholmodCholeskySlover (direct solver for symmetric matrices) + - Implement application of Dirichlet boundary conditions within assembly loop + - Improve efficiency of SparsityPattern + - Allow a variable number of smoothings + - Add class Table for pretty-printing of tables + - Add experimental MTL4 linear algebra backend + - Add OutflowFacet to SpecialFunctions for DG transport problems + - Remove unmaintained OpenDX file format + - Fix problem with mesh smoothing near nonconvex corners + - Simple projection of functions in Python + - Add file format: XYZ for use with Xd3d + - Add built-in meshes: UnitCircle, Box, Rectangle, UnitSphere +0.8.0 [2008-06-23] + - Fix input of matrix data from XML + - Add function normalize() + - Integration with VMTK for reading DOLFIN XML meshes produced by VMTK + - Extend mesh XML format to handle boundary indicators + - Add support for attaching arbitrarily named data to meshes + - Add support for dynamically choosing the linear algebra backend + - Add Epetra/Trilinos linear solvers + - Add setrow() to matrix interface + - Add new solver SingularSolver for solving singular (pressure) systems + - Add MeshSize::min(), max() for easy computation of smallest/largest mesh size + - LinearSolver now handles all backends and linear solvers + - Add access to normal in Function, useful for inflow boundary conditions + - Remove GMRES and LU classes, use solve() instead + - Improve solve() function, now handles both LU and Krylov + preconditioners + - Add ALE mesh interpolation (moving mesh according to new boundary coordinates) +0.7.3 [2008-04-30] + - Add support for Epetra/Trilinos + - Bug fix for order of values in interpolate_vertex_values, now according to UFC + - Boundary meshes are now always oriented with respect to outward facet normals + - Improved linear algebra, both in C++ and Python + - Make periodic boundary conditions work in Python + - Fix saving of user-defined functions + - Improve plotting + - Simple computation of various norms of functions from Python + - Evaluation of Functions at arbitrary points in a mesh + - Fix bug in assembling over exterior facets (subdomains were ignored) + - Make progress bar less annoying + - New scons-based build system replaces autotools + - Fix bug when choosing iterative solver from Python +0.7.2 [2008-02-18] + - Improve sparsity pattern generator efficiency + - Dimension-independent sparsity pattern generator + - Add support for setting strong boundary values for DG elements + - Add option setting boundary conditions based on geometrical search + - Check UMFPACK return argument for warnings/errors + - Simplify setting simple Dirichlet boundary conditions + - Much improved integration with FFC in PyDOLFIN + - Caching of forms by JIT compiler now works + - Updates for UFC 1.1 + - Catch exceptions in PyDOLFIN + - Work on linear algebra interfaces GenericTensor/Matrix/Vector + - Add linear algebra factory (backend) interface + - Add support for 1D meshes + - Make Assembler independent of linear algebra backend + - Add manager for handling sub systems (PETSc and MPI) + - Add parallel broadcast of Mesh and MeshFunction + - Add experimental support for parallel assembly + - Use PETSc MPI matrices when running in parallel + - Add predefined functions FacetNormal and AvgMeshSize + - Add left/right/crisscross options for UnitSquare + - Add more Python demos + - Add support for Exodus II format in dolfin-convert + - Autogenerate docstrings for PyDOLFIN + - Various small bug fixes and improvements +0.7.1 [2007-08-31] + - Integrate FFC form language into PyDOLFIN + - Just-in-time (JIT) compilation of variational forms + - Conversion from from Diffpack grid format to DOLFIN XML + - Name change: BoundaryCondition --> DirichletBC + - Add support for periodic boundary conditions: class PeriodicBC + - Redesign default linear algebra interface (Matrix, Vector, KrylovSolver, etc) + - Add function to return Vector associated with a DiscreteFunction +0.7.0-1 [2007-06-22] + - Recompile all forms with latest FFC release + - Remove typedefs SparseMatrix and SparseVector + - Fix includes in LinearPDE + - Rename DofMaps -> DofMapSet +0.7.0 [2007-06-20] + - Move to UFC interface for code generation + - Major rewrite, restructure, cleanup + - Add support for Brezzi-Douglas-Marini (BDM) elements + - Add support for Raviart-Thomas (RT) elements + - Add support for Discontinuous Galerkin (DG) methods + - Add support for mesh partitioning (through SCOTCH) + - Handle both UMFPACK and UFSPARSE + - Local mesh refinement + - Mesh smoothing + - Built-in plotting (through Viper) + - Cleanup log system + - Numerous fixes for mesh, in particular MeshFunction + - Much improved Python bindings for mesh + - Fix Python interface for vertex and cell maps in boundary computation +0.6.4 [2006-12-01] + - Switch from Python Numeric to Python NumPy + - Improved mesh Python bindings + - Add input/output support for MeshFunction + - Change Mesh::vertices() --> Mesh::coordinates() + - Fix bug in output of mesh to MATLAB format + - Add plasticty module (experimental) + - Fix configure test for Python dev (patch from Åsmund Ødegård) + - Add mesh benchmark + - Fix memory leak in mesh (data not deleted correctly in MeshTopology) + - Fix detection of curses libraries + - Remove Tecplot output format +0.6.3 [2006-10-27] + - Move to new mesh library + - Remove dolfin-config and move to pkg-config + - Remove unused classes PArray, PList, Table, Tensor + - Visualization of 2D solutions in OpenDX is now supported (3D supported before) + - Add support for evaluation of functionals + - Fix bug in Vector::sum() for uBLAS vectors +0.6.2-1 [2006-09-06] + - Fix compilation error when using --enable-petsc (dolfin::uBLASVector::PETScVector undefined) +0.6.2 [2006-09-05] + - Finish chapter in manual on linear algebra + - Enable PyDOLFIN by default, use --disable-pydolfin to disable + - Disable PETSc by default, use --enable-petsc to enable + - Modify ODE solver interface for u0() and f() + - Add class ConvectionMatrix + - Readd classes LoadVector, MassMatrix, StiffnessMatrix + - Add matrix factory for simple creation of standard finite element matrices + - Collect static solvers in LU and GMRES + - Bug fixes for Python interface PyDOLFIN + - Enable use of direct solver for ODE solver (experimental) + - Remove demo bistable + - Restructure and cleanup linear algebra + - Use UMFPACK for LU solver with uBLAS matrix types + - Add templated wrapper class for different uBLAS matrix types + - Add ILU preconditioning for uBLAS matrices + - Add Krylov solver for uBLAS sparse matrices (GMRES and BICGSTAB) + - Add first version of new mesh library (NewMesh, experimental) + - Add Parametrized::readParameters() to trigger reading of values on set() + - Remove output of zeros in Octave matrix file format + - Use uBLAS-based vector for Vector if PETSc disabled + - Add wrappers for uBLAS compressed_matrix class + - Compute eigenvalues using SLEPc (an extension of PETSc) + - Clean up assembly and linear algebra + - Add function to solve Ax = b for dense matrices and dense vectors + - Make it possible to compile without PETSc (--disable-petsc) + - Much improved ODE solvers + - Complete multi-adaptive benchmarks reaction and wave + - Assemble boundary integrals + - FEM class cleaned up. + - Fix multi-adaptive benchmark problem reaction + - Small fixes for Intel C++ compiler version 9.1 + - Test for Intel C++ compiler and configure appropriately + - Add new classes DenseMatrix and DenseVector (wrappers for ublas) + - Fix bug in conversion from Gmsh format +0.6.1 [2006-03-28] + - Regenerate build system in makedist script + - Update for new FFC syntax: BasisFunction --> TestFunction, TrialFunction + - Fixes for conversion script dolfin-convert + - Initial cleanups and fixes for ODE solvers + - Numerous small fixes to improve portability + - Remove dolfin:: qualifier on output << in Parameter.h + - Don't use anonymous classes in demos, gives errors with some compilers + - Remove KrylovSolver::solver() + - Fix bug in convection-diffusion demo (boundary condition for pressure), use direct solver + - LinearPDE and NewonSolver use umfpack LU solver by default (if available) when doing direct solve + - Set PETSc matrix type through Matrix constructor + - Allow linear solver and preconditioner type to be passed to NewtonSolver + - Fix bug in Stokes demos (wrong boundary conditions) + - Cleanup Krylov solver + - Remove KrylovSolver::setPreconditioner() etc. and move to constructors + - Remove KrylovSolver::setRtol() etc. and replace with parameters + - Fix remaining name changes: noFoo() --> numFoo() + - Add Cahn-Hilliard equation demo + - NewtonSolver option to use residual or incremental convergence criterion + - Add separate function to nls to test for convergence of Newton iterations + - Fix bug in dolfin-config (wrong version number) +0.6.0 [2006-03-01] + - Fix bug in XML output format (writing multiple objects) + - Fix bug in XML matrix output format (handle zero rows) + - Add new nonlinear PDE demo + - Restructure PDE class to use envelope-letter design + - Add precompiled finite elements for q <= 5 + - Add FiniteElementSpec and factor function for FiniteElement + - Add input/output of Function to DOLFIN XML + - Name change: dof --> node + - Name change: noFoo() --> numFoo() + - Add conversion from gmsh format in dolfin-convert script + - Updates for PETSc 2.3.1 + - Add new type of Function (constant) + - Simplify use of Function class + - Add new demo Stokes + convection-diffusion + - Add new demo Stokes (equal-order stabilized) + - Add new demo Stokes (Taylor-Hood) + - Add new parameter for KrylovSolvers: "monitor convergence" + - Add conversion script dolfin-convert for various mesh formats + - Add new demo elasticity + - Move poisson demo to src/demo/pde/poisson + - Move to Mercurial (hg) from CVS + - Use libtool to build libraries (including shared) +0.5.12 [2006-01-12] + - Make Stokes solver dimension independent (2D/3D) + - Make Poisson solver dimension independent (2D/3D) + - Fix sparse matrix output format for MATLAB + - Modify demo problem for Stokes, add exact solution and compute error + - Change interface for boundary conditions: operator() --> eval() + - Add two benchmark problems for the Navier-Stokes solver + - Add support for 2D/3D selection in Navier-Stokes solver + - Move tic()/toc() to timing.h + - Navier-Stokes solver back online + - Make Solver a subclass of Parametrized + - Add support for localization of parameters + - Redesign of parameter system +0.5.11 [2005-12-15] + - Add script monitor for monitoring memory usage + - Remove meminfo.h (not portable) + - Remove dependence on parameter system in log system + - Don't use drand48() (not portable) + - Don't use strcasecmp() (not portable) + - Remove sysinfo.h and class System (not portable) + - Don't include (not portable) + - Change ::show() --> ::disp() everywhere + - Clean out old quadrature classes on triangles and tetrahedra + - Clean out old sparse matrix code + - Update chapter on Functions in manual + - Use std::map to store parameters + - Implement class KrylovSolver + - Name change: Node --> Vertex + - Add nonlinear solver demos + - Add support for picking sub functions and components of functions + - Update interface for FiniteElement for latest FFC version + - Improve and restructure implementation of the Function class + - Dynamically adjust safety factor during integration + - Improve output Matrix::disp() + - Check residual at end of time step, reject step if too large + - Implement Vector::sum() + - Implement nonlinear solver + - New option for ODE solver: "save final solution" --> solution.data + - New ODE test problem: reaction + - Fixes for automake 1.9 (nobase_include_HEADERS) + - Reorganize build system, remove fake install and require make install + - Add checks for non-standard PETSc component HYPRE in NSE solver + - Make GMRES solver return the number of iterations + - Add installation script for Python interface + - Add Matrix Market format (Haiko Etzel) + - Automatically reinitialize GMRES solver when system size changes + - Implement cout << for class Vector +0.5.10 [2005-10-11] + - Modify ODE solver interface: add T to constructor + - Fix compilation on AMD 64 bit systems (add -fPIC) + - Add new BLAS mode for form evaluation + - Change enum types in File to lowercase + - Change default file type for .m to Octave + - Add experimental Python interface PyDOLFIN + - Fix compilation for gcc 4.0 +0.5.9 [2005-09-23] + - Add Stokes module + - Support for arbitrary mixed elements through FFC + - VTK output interface now handles time-dependent functions automatically + - Fix cout for empty matrix + - Change dolfin_start() --> dolfin_end() + - Add chapters to manual: about, log system, parameters, reference elements, + installation, contributing, license + - Use new template fenicsmanual.cls for manual + - Add compiler flag -U__STRICT_ANSI__ when compiling under Cygwin + - Add class EigenvalueSolver +0.5.8 [2005-07-05] + - Add new output format Paraview/VTK (Garth N. Wells) + - Update Tecplot interface + - Move to PETSc 2.3.0 + - Complete support for general order Lagrange elements in triangles and tetrahedra + - Add test problem in src/demo/fem/convergence/ for general Lagrange elements + - Make FEM::assemble() estimate the number of nonzeros in each row + - Implement Matrix::init(M, N, nzmax) + - Add Matrix::nz(), Matrix::nzsum() and Matrix::nzmax() + - Improve Mesh::disp() + - Add FiniteElement::disp() and FEM::disp() (useful for debugging) + - Remove old class SparseMatrix + - Change FEM::setBC() --> FEM::applyBC() + - Change Mesh::tetrahedrons --> Mesh::tetrahedra + - Implement Dirichlet boundary conditions for tetrahedra + - Implement Face::contains(const Point& p) + - Add test for shape dimension of mesh and form in FEM::assemble() + - Move src/demo/fem/ demo to src/demo/fem/simple/ + - Add README file in src/demo/poisson/ (simple manual) + - Add simple demo program src/demo/poisson/ + - Update computation of alignment of faces to match FFC/FIAT +0.5.7 [2005-06-23] + - Clean up ODE test problems + - Implement automatic detection of sparsity pattern from given matrix + - Clean up homotopy solver + - Implement automatic computation of Jacobian + - Add support for assembly of non-square systems (Andy Terrel) + - Make ODE solver report average number of iterations + - Make progress bar write first update at 0% + - Initialize all values of u before solution in multi-adaptive solver, + not only components given by dependencies + - Allow user to modify and verify a converging homotopy path + - Make homotopy solver save a list of the solutions + - Add Matrix::norm() + - Add new test problem for CES economy + - Remove cast from Parameter to const char* (use std::string) + - Make solution data filename optional for homotopy solver + - Append homotopy solution data to file during solution + - Add dolfin::seed(int) for optionally seeding random number generator + - Remove dolfin::max,min (use std::max,min) + - Add polynomial-integer (true polynomial) form of general CES system + - Compute multi-adaptive efficiency index + - Updates for gcc 4.0 (patches by Garth N. Wells) + - Add Matrix::mult(const real x[], uint row) (temporary fix, assumes uniprocessor case) + - Add Matrix::mult(const Vector& x, uint row) (temporary fix, assumes uniprocessor case) + - Update shortcuts MassMatrix and StiffnessMatrix to new system + - Add missing friend to Face.h (reported by Garth N. Wells) +0.5.6 [2005-05-17] + - Implementation of boundary conditions for general order Lagrange (experimental) + - Use interpolation function automatically generated by FFC + - Put computation of map into class AffineMap + - Clean up assembly + - Use dof maps automatically generated by FFC (experimental) + - Modify interface FiniteElement for new version of FFC + - Update ODE homotopy test problems + - Add cross product to class Point + - Sort mesh entities locally according to ordering used by FIAT and FFC + - Add new format for dof maps (preparation for higher-order elements) + - Code cleanups: NewFoo --> Foo complete + - Updates for new version of FFC (0.1.7) + - Bypass log system when finalizing PETSc (may be out of scope) +0.5.5 [2005-04-26] + - Fix broken log system, curses works again + - Much improved multi-adaptive time-stepping + - Move elasticity module to new system based on FFC + - Add boundary conditions for systems + - Improve regulation of time steps + - Clean out old assembly classes + - Clean out old form classes + - Remove kernel module map + - Remove kernel module element + - Move convection-diffusion module to new system based on FFC + - Add iterators for cell neighbors of edges and faces + - Implement polynomial for of CES economy + - Rename all new linear algebra classes: NewFoo --> Foo + - Clean out old linear algebra + - Speedup setting of boundary conditions (add MAT_KEEP_ZEROED_ROWS) + - Fix bug for option --disable-curses +0.5.4 [2005-03-29] + - Remove option to compile with PETSc 2.2.0 (2.2.1 required) + - Make make install work again (fix missing includes) + - Add support for mixing multiple finite elements (through FFC) + - Improve functionality of homotopy solver + - Simple creation of piecewise linear functions (without having an element) + - Simple creation of piecewise linear elements + - Add support of automatic creation of simple meshes (unit cube, unit square) +0.5.3 [2005-02-26] + - Change to PETSc version 2.2.1 + - Add flag --with-petsc= to configure script + - Move Poisson's equation to system based on FFC + - Add support for automatic creation of homotopies + - Make all ODE solvers automatically handle complex ODEs: (M) z' = f(z,t) + - Implement version of mono-adaptive solver for implicit ODEs: M u' = f(u,t) + - Implement Newton's method for multi- and mono-adaptive ODE solvers + - Update PETSc wrappers NewVector, NewMatrix, and NewGMRES + - Fix initialization of PETSc + - Add mono-adaptive cG(q) and dG(q) solvers (experimental) + - Implementation of new assebly: NewFEM, using output from FFC + - Add access to mesh for nodes, cells, faces and edges + - Add Tecplot I/O interface; contributed by Garth N. Wells +0.5.2 [2005-01-26] + - Benchmarks for DOLFIN vs PETSc (src/demo/form and src/demo/test) + - Complete rewrite of the multi-adaptive ODE solver (experimental) + - Add wrapper for PETSc GMRES solver + - Update class Point with new operators + - Complete rewrite of the multi-adaptive solver to improve performance + - Add PETSc wrappers NewMatrix and NewVector + - Add DOLFIN/PETSc benchmarks +0.5.1 [2004-11-10] + - Experimental support for automatic generation of forms using FFC + - Allow user to supply Jacobian to ODE solver + - Add optional test to check if a dependency already exists (Sparsity) + - Modify sparse matrix output (Matrix::show()) + - Add FGMRES solver in new format (patch from eriksv) + - Add non-const version of quick-access of sparse matrices + - Add linear mappings for simple computation of derivatives + - Add check of matrix dimensions for ODE sparsity pattern + - Include missing cmath in Function.cpp +0.5.0 [2004-08-18] + - First prototype of new form evaluation system + - New classes Jacobi, SOR, Richardson (preconditioners and linear solvers) + - Add integrals on the boundary (ds), partly working + - Add maps from boundary of reference cell + - Add evaluation of map from reference cell + - New Matrix functions: max, min, norm, and sum of rows and columns (erik) + - Derivatives/gradients of ElementFunction (coefficients f.ex.) implemented + - Enable assignment to all elements of a NewArray + - Add functions Boundary::noNodes(), noFaces(), noEdges() + - New class GaussSeidel (preconditioner and linear solver) + - New classes Preconditioner and LinearSolver + - Bug fix for tetrahedral mesh refinement (ingelstrom) + - Add iterators for Edge and Face on Boundary + - Add functionality to Map: bdet() and cell() + - Add connectivity face-cell and edge-cell + - New interface for assembly: Galerkin --> FEM + - Bug fix for PDE systems of size > 3 +0.4.11 [2004-04-23] + - Add multigrid solver (experimental) + - Update manual +0.4.10 + - Automatic model reduction (experimental) + - Fix bug in ParticleSystem (divide by mass) + - Improve control of integration (add function ODE::update()) + - Load/save parameters in XML-format + - Add assembly test + - Add simple StiffnessMatrix, MassMatrix, and LoadVector + - Change dK --> dx + - Change dx() --> ddx() + - Add support for GiD file format + - Add performance tests for multi-adaptivity (both stiff and non-stiff) + - First version of Newton for the multi-adaptive solver + - Test for Newton for the multi-adaptive solver +0.4.9 + - Add multi-adaptive solver for the bistable equation + - Add BiCGSTAB solver (thsv) + - Fix bug in SOR (thsv) + - Improved visual program for OpenDX + - Fix OpenDX file format for scalar functions + - Allow access to samples of multi-adaptive solution + - New patch from thsv for gcc 3.4.0 and 3.5.0 + - Make progress step a parameter + - New function ODE::sparse(const Matrix& A) + - Access nodes, cells, edges, faces by id + - New function Matrix::lump() +0.4.8 + - Add support for systems (jansson and bengzon) + - Add new module wave + - Add new module wave-vector + - Add new module elasticity + - Add new module elasticity-stationary + - Multi-adaptive updates + - Fix compilation error in LogStream + - Fix local Newton iteration for higher order elements + - Init matrix to given type + - Add output of cG(q) and dG(q) weights in matrix format + - Fix numbering of frames from plotslab script + - Add png output for plotslab script + - Add script for running stiff test problems, plot solutions + - Fix bug in MeshInit (node neighbors of node) + - Modify output of sysinfo() + - Compile with -Wall -Werror -pedantic -ansi -std=c++98 (thsv) +0.4.7 + - Make all stiff test problems work + - Display status report also when using step() + - Improve adaptive damping for stiff problems (remove spikes) + - Modify Octave/Matlab format for solution data (speed improvement) + - Adaptive sampling of solution (optional) + - Restructure stiff test problems + - Check if value of right-hand side is valid + - Modify divergence test in AdaptiveIterationLevel1 +0.4.6 + - Save vectors and matrices from Matlab/Octave (foufas) + - Rename writexml.m to xmlmesh.m + - Inlining of important functions + - Optimize evaluation of elements + - Optimize Lagrange polynomials + - Optimize sparsity: use stl containers + - Optimize choice of discrete residual for multi-adaptive solver + - Don't save solution in benchmark proble + - Improve computation of divergence factor for underdamped systems + - Don't check residual on first slab for fixed time step + - Decrease largest (default) time step to 0.1 + - Add missing in TimeStepper + - Move real into dolfin namespace +0.4.5 + - Rename function.h to enable compilation under Cygwin + - Add new benchmark problem for multi-adaptive solver + - Bug fix for ParticleSystem + - Initialization of first time step + - Improve time step regulation (threshold) + - Improve stabilization + - Improve TimeStepper interface (Ko Project) + - Use iterators instead of recursively calling TimeSlab::update() + - Clean up ODESolver + - Add iterators for elements in time slabs and element groups + - Add -f to creation of symbolic links +0.4.4 + - Add support for 3D graphics in Octave using Open Inventor (jj) +0.4.3 + - Stabilization of multi-adaptive solver (experimental) + - Improved non-support for curses (--disable-curses) + - New class MechanicalSystem for simulating mechanical systems + - Save debug info from primal and dual (plotslab.m) + - Fix bug in progress bar + - Add missing include file in Components.h (kakr) + - New function dolfin_end(const char* msg, ...) + - Move numerical differentiation to RHS + - New class Event for limited display of messages + - Fix bug in LogStream (large numbers in floating point format) + - Specify individual time steps for different components + - Compile without warnings + - Add -Werror to option enable-debug + - Specify individual methods for different components + - Fix bug in dGqMethods + - Fix bug (delete old block) in ElementData + - Add parameters for method and order + - New test problem reaction + - New class FixedPointIteration + - Fix bug in grid refinement +0.4.2 + - Fix bug in computation of residual (divide by k) + - Add automatic generation and solution of the dual problem + - Automatic selection of file names for primal and dual + - Fix bug in progress bar (TerminalLogger) + - Many updates of multi-adaptive solver + - Add class ODEFunction + - Update function class hierarchies + - Move functions to a separate directory + - Store multi-adaptive solution binary on disk with cache +0.4.1 + - First version of multi-adaptive solver working + - Clean up file formats + - Start changing from int to unsigned int where necessary + - Fix bool->int when using stdard in Parameter + - Add NewArray and NewList (will replace Array and List) +0.4.0 + - Initiation of the FEniCS project + - Change syntax of mesh files: grid -> mesh + - Create symbolic links instead of copying files + - Tanganyika -> ODE + - Add Heat module + - Grid -> Mesh + - Move forms and mappings to separate libraries + - Fix missing include of DirectSolver.h +0.3.12 + - Adaptive grid refinement (!) + - Add User Manual + - Add function dolfin_log() to turn logging on/off + - Change from pointers to references for Node, Cell, Edge, Face + - Update writexml.m + - Add new grid files and rename old grid files +0.3.11 + - Add configure option --disable-curses + - Grid refinement updates + - Make OpenDX file format work for grids (output) + - Add volume() and diameter() in cell + - New classes TriGridRefinement and TetGridRefinement + - Add iterators for faces and edges on a boundary + - New class GridHierarchy +0.3.10 + - Use new boundary structure in Galerkin + - Make dolfin_start() and dolfin_end() work + - Make dolfin_assert() raise segmentation fault for plain text mode + - Add configure option --enable-debug + - Use autoreconf instead of scripts/preconfigure + - Rename configure.in -> configure.ac + - New class FaceIterator + - New class Face + - Move computation of boundary from GridInit to BoundaryInit + - New class BoundaryData + - New class BoundaryInit + - New class Boundary + - Make InitGrid compute edges + - Add test program for generic matrix in src/demo/la + - Clean up Grid classes + - Add new class GridRefinementData + - Move data from Cell to GenericCell + - Make GMRES work with user defined matrix, only mult() needed + - GMRES now uses only one function to compute residual() + - Change Matrix structure (a modified envelope/letter) + - Update script checkerror.m for Poisson + - Add function dolfin_info_aptr() + - Add cast to element pointer for iterators + - Clean up and improve the Tensor class + - New class: List + - Name change: List -> Table + - Name change: ShortList -> Array + - Make functions in GridRefinement static + - Make functions in GridInit static + - Fix bug in GridInit (eriksv) + - Add output to OpenDX format for 3D grids + - Clean up ShortList class + - Clean up List class + - New class ODE, Equation replaced by PDE + - Add Lorenz test problem + - Add new problem type for ODEs + - Add new module ode + - Work on multi-adaptive ODE solver (lots of new stuff) + - Work on grid refinement + - Write all macros in LoggerMacros in one line + - Add transpose functions to Matrix (Erik) +0.3.9 + - Update Krylov solver (Erik, Johan) + - Add new LU factorization and LU solve (Niklas) + - Add benchmark test in src/demo/bench + - Add silent logger +0.3.8 + - Make sure dolfin-config is regenerated every time + - Add demo program for cG(q) and dG(q) + - Add dG(q) precalc of nodal points and weights + - Add cG(q) precalc of nodal points and weights + - Fix a bug in configure.in (AC_INIT with README) + - Add Lagrange polynomials + - Add multiplication with transpose + - Add scalar products with rows and columns + - Add A[i][j] index operator for quick access to dense matrix +0.3.7 + - Add new Matlab-like syntax like A(i,all) = x or A(3,all) = A(4,all) + - Add dolfin_assert() macro enabled if debug is defined + - Redesign of Matrix/DenseMatrix/SparseMatrix to use Matrix as common interface + - Include missing cmath in Legendre.cpp and GaussianQuadrature.cpp +0.3.6 + - Add output functionality in DenseMatrix + - Add high precision solver to DirectSolver + - Clean up error messages in Matrix + - Make solvers directly accessible through Matrix and DenseMatrix + - Add quadrature (Gauss, Radau, and Lobatto) from Tanganyika + - Start merge with Tanganyika + - Add support for automatic documentation using doxygen + - Update configure scripts + - Add greeting at end of compilation +0.3.5 + - Define version number only in the file configure.in + - Fix compilation problem (missing depcomp) +0.3.4 + - Fix bugs in some of the ElementFunction operators + - Make convection-diffusion solver work again + - Fix bug in integration, move multiplication with the determinant + - Fix memory leaks in ElementFunction + - Add parameter to choose output format + - Make OctaveFile and MatlabFile subclasses of MFile + - Add classes ScalarExpressionFunction and VectorExpressionFunction + - Make progress bars work cleaner + - Get ctrl-c in curses logger + - Remove Settings-classes and use dolfin_parameter() + - Redesign settings to match the structure of the log system + - Add vector functions: Function::Vector + - Add vector element functions: ElementFunction::Vector +0.3.3 + - Increased functionality of curses-based interface + - Add progress bars to log system +0.3.2 + - More work on grid refinement + - Add new curses based log system +0.3.1 + - Makefile updates: make install should now work properly + - KrylovSolver updates + - Preparation for grid refinement + - Matrix and Vector updates +0.3.0 + - Make poisson work again, other modules still not working + - Add output format for octave + - Fix code to compile with g++-3.2 -Wall -Werror + - New operators for Matrix + - New and faster GMRES solver (speedup factor 4) + - Changed name from SparseMatrix to Matrix + - Remove old unused code + - Add subdirectory math containing mathematical functions + - Better access for A(i,j) += to improve speed in assembling + - Add benchmark for linear algebra + - New definition of finite element + - Add algebra for function spaces + - Convert grids in data/grids to xml.gz + - Add iterators for Nodes and Cells + - Change from .hh to .h + - Add operators to Vector class (foufas) + - Add dependence on libxml2 + - Change from .C to .cpp to make Jim happy. + - Change input/output functionality to streams + - Change to new data structure for Grid + - Change to object-oriented API at top level + - Add use of C++ namespaces + - Complete and major restructuring of the code + - Fix compilation error in src/config + - Fix name of keyword for convection-diffusion +0.2.11-1 + - Fix compilation error (`source`) on Solaris +0.2.11 + - Automate build process to simplify addition of new modules + - Fix bug in matlab_write_field() (walter) + - Fix bug in SparseMatrix::GetCopy() (foufas) +0.2.10-1 + - Fix compilation errors on RedHat (thsv) +0.2.10 + - Fix compilation of problems to use correct compiler + - Change default test problems to the ones in the report + - Improve memory management using mpatrol for tracking allocations + - Change bool to int for va_arg, seems to be a problem with gcc > 3.0 + - Improve input / output support: GiD, Matlab, OpenDX +0.2.8 + - Navier-Stokes starting to work again + - Add Navier-Stokes 2d + - Bug fixes +0.2.7 + - Add support for 2D problems + - Add module convection-diffusion + - Add local/global fields in equation/problem + - Bug fixes + - Navier-Stokes updates (still broken) +0.2.6 [2002-02-19] + - Navier-Stokes updates (still broken) + - Output to matlab format +0.2.5 + - Add variational formulation with overloaded operators for systems + - ShapeFunction/LocalField/FiniteElement according to Scott & Brenner +0.2.4 + - Add boundary conditions + - Poisson seems to work ok +0.2.3 + - Add GMRES solver + - Add CG solver + - Add direct solver + - Add Poisson solver + - Big changes to the organisation of the source tree + - Add kwdist.sh script + - Bug fixes +0.2.2: + - Remove curses temporarily +0.2.1: + - Remove all PETSc stuff. Finally! + - Gauss-Seidel cannot handle the pressure equation +0.2.0: + - First GPL release + - Remove all of Klas Samuelssons proprietary grid code + - Adaptivity and refinement broken, include in next release diff --git a/INSTALL b/INSTALL new file mode 100644 index 0000000..88199c1 --- /dev/null +++ b/INSTALL @@ -0,0 +1,80 @@ +Requirements +------------ + +DOLFIN uses CMake for configuration and installation. DOLFIN also +relies on a number of other third-party libraries. Your system will be +probed for these libraries as part of the configuration process. + +Simple build and install +------------------------ + +In the simplest case, just issue the commands + + cmake . + make install + +This will first configure DOLFIN for your system and then compile and +install DOLFIN in your system's default installation direcory, for +example in /usr/local/ or /opt/local/. + +Local installation +------------------ + +It may sometimes be advantageous to install DOLFIN locally as part +of the DOLFIN source tree. To do this, simply type + + ./cmake.local + +This configures, compiles, and install DOLFIN in a directory named +'local' in the DOLFIN source tree. + +(Re-)generating the SWIG interface and docstrings +------------------------------------------------- + +In order to regenerate the SWIG interface and update the +documentation, respectively, run the generator scripts: + + ./cmake/scripts/generate-swig-interface + ./cmake/scripts/generate-swig-docstrings + +Customized builds +----------------- + +To customize the configuration of DOLFIN, it is convenient to use one +of the graphical user interfaces for CMake, such as either ccmake or +cmake-gui. These frontends to CMake allow simple manipulation of +variables that control the configuration of DOLFIN. + +It is often useful to build DOLFIN 'out-of-source' which means that +all files generated by the build process end up in a separate +directory without cluttering the source tree. To make an out-of-source +build for DOLFIN using a graphical interface to CMake, simply type + + mkdir build + cd build + cmake-gui .. + make install + +Building demos and tests +------------------------ + +To build demos, enter the build directory (if any) and type + + make demo + +This will build all demos. To build a specific demo, just name the +demo you want to build, for example the Poisson demo, and type + + make poisson-demo + +Alternatively, you may navigate to the demo directory directly, for +example demo/pde/poisson/cpp and then build the demo using CMake as +above: + + cmake . + make + +Python demos can be run directly by navigating to the directory of the +demo and typing + + python demo.py diff --git a/README.rst b/README.rst new file mode 100644 index 0000000..cc52c6e --- /dev/null +++ b/README.rst @@ -0,0 +1,61 @@ +====== +DOLFIN +====== + +DOLFIN is the C++/Python interface of FEniCS, providing a consistent +PSE (Problem Solving Environment) for ordinary and partial +differential equations. + +Installation +============ + +To build DOLFIN, run:: + + cmake . + make install + +For detailed instructions, see the file INSTALL. + + +License +======= + +DOLFIN is free software: you can redistribute it and/or modify +it under the terms of the GNU Lesser General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version. + +DOLFIN is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public License +along with DOLFIN. If not, see . + + +Contact +======= + +For comments and requests, send an email to the FEniCS mailing list: + + fenics@fenicsproject.org + +For questions and bug reports, visit the FEniCS Q&A page: + + http://fenicsproject.org/qa + +For bug reports, visit the DOLFIN Bitbucket page: + + http://bitbucket.org/fenics-project/dolfin + + +About +===== + +DOLFIN is developed by a group of mathematicians, computational +scientists and engineers distributed around the world. A list of +authors can be found in the file AUTHORS. For more information about +DOLFIN, visit + + http://fenicsproject.org diff --git a/bench/CMakeLists.txt b/bench/CMakeLists.txt new file mode 100644 index 0000000..f68b79d --- /dev/null +++ b/bench/CMakeLists.txt @@ -0,0 +1,33 @@ +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +# FIXME: Temporary fix for whitespace error +cmake_policy(SET CMP0004 OLD) + +# Find DOLFIN config file (not used here, but check that benchmarks will be +# able to find it +find_package(DOLFIN REQUIRED) + +# If config file is found, add all demo sub-directories, else print helper +# message +if (DOLFIN_FOUND) + + # Build list of all cpp directories + file( GLOB_RECURSE list "main.cpp") + list( SORT list ) + string(REGEX REPLACE "/main.cpp" "" list "${list}") + + # Add each C++ code directory + foreach (cpp_dir ${list}) + #message(STATUS "Add C++ benchmark: ${cpp_dir}") + add_subdirectory(${cpp_dir}) + endforeach() + + # Add fem/speedup/cpp manually (no main.cpp so not picked up automatically) + add_subdirectory(fem/speedup/cpp) + +else() + + message(STATUS "Could not locate DOLFINConfig.cmake file. Did you do 'make install' for the DOLFIN library and set the appropriate paths (source /dolfin.conf)?") + +endif() diff --git a/bench/README b/bench/README new file mode 100644 index 0000000..e65d334 --- /dev/null +++ b/bench/README @@ -0,0 +1,23 @@ +This directory (and its sub directories) contain a benchmark suite for +DOLFIN. To run all benchmarks, simply run the script demo.py. + +This script runs all executables/scripts named 'bench' found in the +directory tree and records the result for benchmark found in foo/bar +under the name 'foo-bar' in logs/bench.log. + +Two pieces of information are extracted from each benchmark: + +1. A short description of the benchmark. This is extracted as the +first line of output from the benchmark. + +2. One or more timings. These are extracted from output in the form + + BENCH + BENCH + +If no output is given (or is not given), then the total +running time of the program is recorded. + +Important notice: To run the benchmarks correctly, you need to compile +DOLFIN with option --enable-optimization. Compiling DOLFIN with +--enable-debug will slow down some of the benchmarks considerably. diff --git a/bench/bench.py b/bench/bench.py new file mode 100644 index 0000000..7d18eb1 --- /dev/null +++ b/bench/bench.py @@ -0,0 +1,110 @@ +"Run all benchmarks" + +# Copyright (C) 2010 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Johannes Ring, 2011, 2012 +# +# First added: 2010-03-26 +# Last changed: 2012-03-15 + +import os, sys, time + +failed = [] + +def run_bench(arg, directory, files): + + # Skip directories not containing a benchmark + bench_exec = "bench_" + "_".join(directory.split(os.path.sep)[1:]) + if not bench_exec in files: + return + + # Get name of benchmark + name = directory.replace("./", "").replace("/", "-") + print "Running benchmark %s..." % name + + # Remove old logfile + cwd = os.getcwd() + logfile = os.path.join(cwd, "logs", name + ".log") + try: + os.remove(logfile) + except: + pass + + # Run benchmark + os.chdir(directory) + t0 = time.time() + status = os.system(os.path.join(os.curdir, bench_exec) + " > %s" % logfile) + elapsed_time = time.time() - t0 + + # Change to toplevel directory + os.chdir(cwd) + + # Report timing + if status == 0: + print "Completed in %g seconds\n" % elapsed_time + else: + global failed + failed.append(name) + print "*** Failed\n" + return + + # Get description of benchmark + f = open(logfile) + description = f.read().split("\n")[0] + f.close() + + # Get timings (if any) + f = open(logfile) + run_timings = [("", elapsed_time)] + for line in [line for line in f.read().split("\n") if "BENCH" in line]: + words = [word.strip() for word in line.split(" ")] + # Override total time + if len(words) == 2: + run_timings[0] = ("", float(words[1])) + # Add sub timing + elif len(words) == 3: + run_timings.append((words[1].lower(), float(words[2]))) + f.close() + + # Append to log file + d = time.gmtime() + date = str((d.tm_year, d.tm_mon, d.tm_mday, d.tm_hour, d.tm_min, d.tm_sec)) + f = open(os.path.join("logs", "bench.log"), "a") + for (postfix, timing) in run_timings: + if postfix == "": + n = name + d = description + else: + n = "%s-%s" % (name, postfix) + d = "%s (%s)" % (description, postfix) + f.write('%s %s %g "%s"\n' % (date, n, timing, d)) + + return status == 0 + +# Iterate over benchmarks +os.path.walk(".", run_bench, None) + +# Print summary +if len(failed) == 0: + print "All benchmarks OK" +else: + print "%d benchmark(s) failed:" % len(failed) + for name in failed: + print " " + name + +sys.exit(len(failed)) diff --git a/bench/common/progress/cpp/CMakeLists.txt b/bench/common/progress/cpp/CMakeLists.txt new file mode 100644 index 0000000..81b479e --- /dev/null +++ b/bench/common/progress/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_common_progress_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/common/progress/cpp/main.cpp b/bench/common/progress/cpp/main.cpp new file mode 100644 index 0000000..ad1c6fe --- /dev/null +++ b/bench/common/progress/cpp/main.cpp @@ -0,0 +1,46 @@ +// Copyright (C) 2010 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2010-06-29 +// Last changed: 2010-11-16 + +#include + +using namespace dolfin; + +#define NUM_REPS 5 +#define SIZE 500000000 + +int main(int argc, char* argv[]) +{ + info("Creating progress bar with %d steps (%d repetitions)", + SIZE, NUM_REPS); + + for (int i = 0; i < NUM_REPS; i++) + { + Progress p("Stepping", SIZE); + double sum = 0.0; + for (int j = 0; j < SIZE; j++) + { + sum += 0.1; + p++; + } + dolfin::cout << "sum = " << sum << dolfin::endl; + } + + return 0; +} diff --git a/bench/common/timing/cpp/CMakeLists.txt b/bench/common/timing/cpp/CMakeLists.txt new file mode 100644 index 0000000..9708dd0 --- /dev/null +++ b/bench/common/timing/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_common_timing_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/common/timing/cpp/main.cpp b/bench/common/timing/cpp/main.cpp new file mode 100644 index 0000000..4920e59 --- /dev/null +++ b/bench/common/timing/cpp/main.cpp @@ -0,0 +1,58 @@ +// Copyright (C) 2010 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2010-11-16 +// Last changed: 2010-11-16 + +#include + +using namespace dolfin; + +#define NUM_REPS 10000000 + +int main(int argc, char* argv[]) +{ + info("Timing access and registration of timings (%d repetitions)", NUM_REPS); + + // Access to timer + double sum = 0.0; + double t0 = time(); + double t1 = t0; + Timer timer_function("time() function"); + for (int i = 0; i < NUM_REPS; i++) + { + t0 = time(); + t1 = time(); + sum += t1 - t0; + } + timer_function.stop(); + dolfin::cout << "sum = " << sum << dolfin::endl << dolfin::endl; + + // Test timer + Timer timer_loop("timer start/stop"); + Timer timer_class("Timer class"); + for (int i = 0; i < NUM_REPS; i++) + { + timer_loop.start(); + timer_loop.stop(); + } + timer_class.stop(); + + summary(); + + return 0; +} diff --git a/bench/fem/assembly/cpp/CMakeLists.txt b/bench/fem/assembly/cpp/CMakeLists.txt new file mode 100644 index 0000000..aa8ef15 --- /dev/null +++ b/bench/fem/assembly/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_fem_assembly_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/fem/assembly/cpp/forms.h b/bench/fem/assembly/cpp/forms.h new file mode 100644 index 0000000..6bf6bda --- /dev/null +++ b/bench/fem/assembly/cpp/forms.h @@ -0,0 +1,99 @@ +// Copyright (C) 2008-2009 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2008-07-22 +// Last changed: 2010-05-03 + +#include + +#include "forms/Poisson2DP1.h" +#include "forms/Poisson2DP2.h" +#include "forms/Poisson2DP3.h" +#include "forms/THStokes2D.h" +#include "forms/StabStokes2D.h" +#include "forms/Elasticity3D.h" +#include "forms/NSEMomentum3D.h" + +#define SIZE_2D 256 +#define SIZE_3D 32 + +using namespace dolfin; + +double bench_form(std::string form_name, double (*foo)(Form&)) +{ + if (form_name == "poisson1") + { + UnitSquareMesh mesh(SIZE_2D, SIZE_2D); + Poisson2DP1::FunctionSpace V(mesh); + Poisson2DP1::BilinearForm form(V, V); + return foo(form); + } + else if (form_name == "poisson2") + { + UnitSquareMesh mesh(SIZE_2D, SIZE_2D); + Poisson2DP2::FunctionSpace V(mesh); + Poisson2DP2::BilinearForm form(V, V); + return foo(form); + } + else if (form_name == "poisson3") + { + UnitSquareMesh mesh(SIZE_2D, SIZE_2D); + Poisson2DP3::FunctionSpace V(mesh); + Poisson2DP3::BilinearForm form(V, V); + return foo(form); + } + else if (form_name == "stokes") + { + UnitSquareMesh mesh(SIZE_2D, SIZE_2D); + THStokes2D::FunctionSpace V(mesh); + THStokes2D::BilinearForm form(V, V); + return foo(form); + } + else if (form_name == "stabilization") + { + UnitSquareMesh mesh(SIZE_2D, SIZE_2D); + StabStokes2D::FunctionSpace V(mesh); + Constant h(1.0); + StabStokes2D::BilinearForm form(V, V, h); + return foo(form); + } + else if (form_name == "elasticity") + { + UnitCubeMesh mesh(SIZE_3D, SIZE_3D, SIZE_3D); + Elasticity3D::FunctionSpace V(mesh); + Elasticity3D::BilinearForm form(V, V); + return foo(form); + } + else if (form_name == "navierstokes") + { + UnitCubeMesh mesh(SIZE_3D, SIZE_3D, SIZE_3D); + NSEMomentum3D::FunctionSpace V(mesh); + Constant w(1.0, 1.0, 1.0); + Constant d1(1.0); + Constant d2(1.0); + Constant k(1.0); + Constant nu(1.0); + NSEMomentum3D::BilinearForm form(V, V, w, d1, d2, k, nu); + return foo(form); + } + else + { + error("Unknown form: %s.", form_name.c_str()); + } + + return 0.0; +} diff --git a/bench/fem/assembly/cpp/forms/Elasticity3D.h b/bench/fem/assembly/cpp/forms/Elasticity3D.h new file mode 100644 index 0000000..4df063c --- /dev/null +++ b/bench/fem/assembly/cpp/forms/Elasticity3D.h @@ -0,0 +1,5519 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __ELASTICITY3D_H +#define __ELASTICITY3D_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class elasticity3d_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + elasticity3d_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~elasticity3d_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new elasticity3d_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class elasticity3d_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + elasticity3d_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~elasticity3d_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[9]; + for (unsigned int r = 0; r < 9; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 5: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 6: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 9: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 10: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 11: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[4] = vals[1]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[1]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[8] = vals[2]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[2]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[10] = vals[2]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[11] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + vertex_values[9] = dof_values[3]; + // Evaluate function and change variables + vertex_values[1] = dof_values[4]; + vertex_values[4] = dof_values[5]; + vertex_values[7] = dof_values[6]; + vertex_values[10] = dof_values[7]; + // Evaluate function and change variables + vertex_values[2] = dof_values[8]; + vertex_values[5] = dof_values[9]; + vertex_values[8] = dof_values[10]; + vertex_values[11] = dof_values[11]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 3; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new elasticity3d_finite_element_0(); + break; + } + case 1: + { + return new elasticity3d_finite_element_0(); + break; + } + case 2: + { + return new elasticity3d_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new elasticity3d_finite_element_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class elasticity3d_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + elasticity3d_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~elasticity3d_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new elasticity3d_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class elasticity3d_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + elasticity3d_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~elasticity3d_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 9; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[0][0]; + dofs[5] = offset + c.entity_indices[0][1]; + dofs[6] = offset + c.entity_indices[0][2]; + dofs[7] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[8] = offset + c.entity_indices[0][0]; + dofs[9] = offset + c.entity_indices[0][1]; + dofs[10] = offset + c.entity_indices[0][2]; + dofs[11] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 6; + dofs[5] = 7; + dofs[6] = 9; + dofs[7] = 10; + dofs[8] = 11; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 6; + dofs[5] = 7; + dofs[6] = 8; + dofs[7] = 10; + dofs[8] = 11; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 7; + dofs[6] = 8; + dofs[7] = 9; + dofs[8] = 11; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 8; + dofs[7] = 9; + dofs[8] = 10; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 4; + dofs[2] = 8; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 5; + dofs[2] = 9; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 6; + dofs[2] = 10; + break; + } + case 3: + { + dofs[0] = 3; + dofs[1] = 7; + dofs[2] = 11; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = vertex_coordinates[0]; + dof_coordinates[4][1] = vertex_coordinates[1]; + dof_coordinates[4][2] = vertex_coordinates[2]; + dof_coordinates[5][0] = vertex_coordinates[3]; + dof_coordinates[5][1] = vertex_coordinates[4]; + dof_coordinates[5][2] = vertex_coordinates[5]; + dof_coordinates[6][0] = vertex_coordinates[6]; + dof_coordinates[6][1] = vertex_coordinates[7]; + dof_coordinates[6][2] = vertex_coordinates[8]; + dof_coordinates[7][0] = vertex_coordinates[9]; + dof_coordinates[7][1] = vertex_coordinates[10]; + dof_coordinates[7][2] = vertex_coordinates[11]; + dof_coordinates[8][0] = vertex_coordinates[0]; + dof_coordinates[8][1] = vertex_coordinates[1]; + dof_coordinates[8][2] = vertex_coordinates[2]; + dof_coordinates[9][0] = vertex_coordinates[3]; + dof_coordinates[9][1] = vertex_coordinates[4]; + dof_coordinates[9][2] = vertex_coordinates[5]; + dof_coordinates[10][0] = vertex_coordinates[6]; + dof_coordinates[10][1] = vertex_coordinates[7]; + dof_coordinates[10][2] = vertex_coordinates[8]; + dof_coordinates[11][0] = vertex_coordinates[9]; + dof_coordinates[11][1] = vertex_coordinates[10]; + dof_coordinates[11][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 3; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new elasticity3d_dofmap_0(); + break; + } + case 1: + { + return new elasticity3d_dofmap_0(); + break; + } + case 2: + { + return new elasticity3d_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new elasticity3d_dofmap_1(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class elasticity3d_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + elasticity3d_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~elasticity3d_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius + + + // Array of quadrature weights. + static const double W1 = 0.166666666666667; + // Quadrature points on the UFC reference element: (0.25, 0.25, 0.25) + + // Values of basis functions at quadrature points. + static const double FE0_C0_D001[1][2] = \ + {{-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc9[2] = {8, 11}; + + // Array of non-zero columns + static const unsigned int nzc5[2] = {4, 7}; + + // Array of non-zero columns + static const unsigned int nzc6[2] = {4, 6}; + + // Array of non-zero columns + static const unsigned int nzc10[2] = {8, 10}; + + // Array of non-zero columns + static const unsigned int nzc7[2] = {4, 5}; + + // Array of non-zero columns + static const unsigned int nzc3[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc2[2] = {0, 2}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 3}; + + // Array of non-zero columns + static const unsigned int nzc11[2] = {8, 9}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 144; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 324. + double G[45]; + G[0] = W1*det*(13.4615384615385*K[5]*K[5] + 3.84615384615385*(K[3]*K[3] + K[4]*K[4])); + G[1] = W1*det*(13.4615384615385*K[2]*K[5] + 3.84615384615385*(K[0]*K[3] + K[1]*K[4])); + G[2] = W1*det*(3.84615384615385*K[3]*K[8] + 5.76923076923077*K[5]*K[6]); + G[3] = 9.61538461538461*K[3]*K[5]*W1*det; + G[4] = W1*det*(3.84615384615385*K[2]*K[3] + 5.76923076923077*K[0]*K[5]); + G[5] = W1*det*(3.84615384615385*K[4]*K[8] + 5.76923076923077*K[5]*K[7]); + G[6] = 9.61538461538461*K[4]*K[5]*W1*det; + G[7] = W1*det*(3.84615384615385*K[2]*K[4] + 5.76923076923077*K[1]*K[5]); + G[8] = W1*det*(13.4615384615385*K[5]*K[8] + 3.84615384615385*(K[3]*K[6] + K[4]*K[7])); + G[9] = W1*det*(13.4615384615385*K[2]*K[2] + 3.84615384615385*(K[0]*K[0] + K[1]*K[1])); + G[10] = W1*det*(3.84615384615385*K[0]*K[8] + 5.76923076923077*K[2]*K[6]); + G[11] = W1*det*(3.84615384615385*K[0]*K[5] + 5.76923076923077*K[2]*K[3]); + G[12] = 9.61538461538461*K[0]*K[2]*W1*det; + G[13] = W1*det*(3.84615384615385*K[1]*K[8] + 5.76923076923077*K[2]*K[7]); + G[14] = W1*det*(3.84615384615385*K[1]*K[5] + 5.76923076923077*K[2]*K[4]); + G[15] = 9.61538461538461*K[1]*K[2]*W1*det; + G[16] = W1*det*(13.4615384615385*K[2]*K[8] + 3.84615384615385*(K[0]*K[6] + K[1]*K[7])); + G[17] = W1*det*(13.4615384615385*K[6]*K[6] + 3.84615384615385*(K[7]*K[7] + K[8]*K[8])); + G[18] = W1*det*(13.4615384615385*K[3]*K[6] + 3.84615384615385*(K[4]*K[7] + K[5]*K[8])); + G[19] = W1*det*(13.4615384615385*K[0]*K[6] + 3.84615384615385*(K[1]*K[7] + K[2]*K[8])); + G[20] = 9.61538461538461*K[6]*K[7]*W1*det; + G[21] = W1*det*(3.84615384615385*K[3]*K[7] + 5.76923076923077*K[4]*K[6]); + G[22] = W1*det*(3.84615384615385*K[0]*K[7] + 5.76923076923077*K[1]*K[6]); + G[23] = 9.61538461538461*K[6]*K[8]*W1*det; + G[24] = W1*det*(13.4615384615385*K[3]*K[3] + 3.84615384615385*(K[4]*K[4] + K[5]*K[5])); + G[25] = W1*det*(13.4615384615385*K[0]*K[3] + 3.84615384615385*(K[1]*K[4] + K[2]*K[5])); + G[26] = W1*det*(3.84615384615385*K[4]*K[6] + 5.76923076923077*K[3]*K[7]); + G[27] = 9.61538461538461*K[3]*K[4]*W1*det; + G[28] = W1*det*(3.84615384615385*K[0]*K[4] + 5.76923076923077*K[1]*K[3]); + G[29] = W1*det*(3.84615384615385*K[5]*K[6] + 5.76923076923077*K[3]*K[8]); + G[30] = W1*det*(13.4615384615385*K[0]*K[0] + 3.84615384615385*(K[1]*K[1] + K[2]*K[2])); + G[31] = W1*det*(3.84615384615385*K[1]*K[6] + 5.76923076923077*K[0]*K[7]); + G[32] = W1*det*(3.84615384615385*K[1]*K[3] + 5.76923076923077*K[0]*K[4]); + G[33] = 9.61538461538461*K[0]*K[1]*W1*det; + G[34] = W1*det*(3.84615384615385*K[2]*K[6] + 5.76923076923077*K[0]*K[8]); + G[35] = W1*det*(13.4615384615385*K[7]*K[7] + 3.84615384615385*(K[6]*K[6] + K[8]*K[8])); + G[36] = W1*det*(13.4615384615385*K[4]*K[7] + 3.84615384615385*(K[3]*K[6] + K[5]*K[8])); + G[37] = W1*det*(13.4615384615385*K[1]*K[7] + 3.84615384615385*(K[0]*K[6] + K[2]*K[8])); + G[38] = 9.61538461538461*K[7]*K[8]*W1*det; + G[39] = W1*det*(13.4615384615385*K[4]*K[4] + 3.84615384615385*(K[3]*K[3] + K[5]*K[5])); + G[40] = W1*det*(13.4615384615385*K[1]*K[4] + 3.84615384615385*(K[0]*K[3] + K[2]*K[5])); + G[41] = W1*det*(3.84615384615385*K[5]*K[7] + 5.76923076923077*K[4]*K[8]); + G[42] = W1*det*(13.4615384615385*K[1]*K[1] + 3.84615384615385*(K[0]*K[0] + K[2]*K[2])); + G[43] = W1*det*(3.84615384615385*K[2]*K[7] + 5.76923076923077*K[1]*K[8]); + G[44] = W1*det*(13.4615384615385*K[8]*K[8] + 3.84615384615385*(K[6]*K[6] + K[7]*K[7])); + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 972 + for (unsigned int ip = 0; ip < 1; ip++) + { + + // Number of operations for primary indices: 972 + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc10[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[0]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc11[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[1]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc1[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[2]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc2[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[3]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc3[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[4]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc5[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[5]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc6[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[6]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc7[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[7]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc9[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[8]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc10[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[1]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc11[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[9]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc1[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[10]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc2[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[11]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc3[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[12]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc5[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[13]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc6[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[14]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc7[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[15]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc9[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[16]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc10[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[2]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc11[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[10]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc1[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[17]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc2[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[18]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc3[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[19]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc5[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[20]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc6[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[21]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc7[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[22]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc9[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[23]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc10[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[3]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc11[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[11]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc1[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[18]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc2[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[24]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc3[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[25]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc5[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[26]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc6[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[27]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc7[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[28]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc9[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[29]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc10[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[4]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc11[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[12]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc1[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[19]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc2[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[25]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc3[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[30]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc5[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[31]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc6[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[32]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc7[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[33]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc9[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[34]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc10[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[5]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc11[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[13]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc1[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[20]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc2[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[26]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc3[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[31]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc5[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[35]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc6[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[36]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc7[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[37]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc9[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[38]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc10[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[6]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc11[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[14]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc1[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[21]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc2[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[27]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc3[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[32]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc5[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[36]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc6[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[39]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc7[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[40]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc9[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[41]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc10[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[7]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc11[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[15]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc1[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[22]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc2[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[28]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc3[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[33]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc5[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[37]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc6[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[40]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc7[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[42]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc9[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[43]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc10[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[8]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc11[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[16]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc1[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[23]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc2[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[29]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc3[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[34]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc5[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[38]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc6[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[41]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc7[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[43]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc9[k]] += FE0_C0_D001[0][j]*FE0_C0_D001[0][k]*G[44]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class elasticity3d_form_0: public ufc::form +{ +public: + + /// Constructor + elasticity3d_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~elasticity3d_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "f3ac8c8261535dc44afaf87bd454cefa3cf1b9a9cc2aa252d4e383a25b88800477455a28ad694dfa1f1d8e9c54c5f43c2f973f075540088848aacccf38582cf4"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new elasticity3d_finite_element_1(); + break; + } + case 1: + { + return new elasticity3d_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new elasticity3d_dofmap_1(); + break; + } + case 1: + { + return new elasticity3d_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new elasticity3d_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Elasticity3D +{ + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new elasticity3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new elasticity3d_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new elasticity3d_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new elasticity3d_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/assembly/cpp/forms/Elasticity3D.ufl b/bench/fem/assembly/cpp/forms/Elasticity3D.ufl new file mode 100644 index 0000000..da51224 --- /dev/null +++ b/bench/fem/assembly/cpp/forms/Elasticity3D.ufl @@ -0,0 +1,18 @@ +element = VectorElement("Lagrange", tetrahedron, 1) + +v = TestFunction(element) +u = TrialFunction(element) + +E = 10.0 +nu = 0.3 + +mu = E / (2*(1 + nu)) +lmbda = E*nu / ((1 + nu)*(1 - 2*nu)) + +def epsilon(v): + return 0.5*(grad(v) + (grad(v)).T) + +def sigma(v): + return 2*mu*epsilon(v) + lmbda*tr(epsilon(v))*Identity(len(v)) + +a = inner(grad(v), sigma(u))*dx diff --git a/bench/fem/assembly/cpp/forms/NSEMomentum3D.h b/bench/fem/assembly/cpp/forms/NSEMomentum3D.h new file mode 100644 index 0000000..987d7bb --- /dev/null +++ b/bench/fem/assembly/cpp/forms/NSEMomentum3D.h @@ -0,0 +1,7643 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __NSEMOMENTUM3D_H +#define __NSEMOMENTUM3D_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class nsemomentum3d_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + nsemomentum3d_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~nsemomentum3d_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Lagrange', Domain(Cell('tetrahedron', 3)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + + // Compute subdeterminants + + // Get coordinates and map to the reference (FIAT) element + + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + vertex_values[3] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new nsemomentum3d_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class nsemomentum3d_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + nsemomentum3d_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~nsemomentum3d_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Discontinuous Lagrange', Domain(Cell('tetrahedron', 3)), 0, 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + + // Compute subdeterminants + + // Get coordinates and map to the reference (FIAT) element + + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 2: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[1] = vals[1]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[2] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[0]; + vertex_values[6] = dof_values[0]; + vertex_values[9] = dof_values[0]; + // Evaluate function and change variables + vertex_values[1] = dof_values[1]; + vertex_values[4] = dof_values[1]; + vertex_values[7] = dof_values[1]; + vertex_values[10] = dof_values[1]; + // Evaluate function and change variables + vertex_values[2] = dof_values[2]; + vertex_values[5] = dof_values[2]; + vertex_values[8] = dof_values[2]; + vertex_values[11] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 3; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new nsemomentum3d_finite_element_0(); + break; + } + case 1: + { + return new nsemomentum3d_finite_element_0(); + break; + } + case 2: + { + return new nsemomentum3d_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new nsemomentum3d_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class nsemomentum3d_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + nsemomentum3d_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~nsemomentum3d_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new nsemomentum3d_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class nsemomentum3d_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + nsemomentum3d_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~nsemomentum3d_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[9]; + for (unsigned int r = 0; r < 9; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 5: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 6: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 9: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 10: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 11: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[4] = vals[1]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[1]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[8] = vals[2]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[2]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[10] = vals[2]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[11] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + vertex_values[9] = dof_values[3]; + // Evaluate function and change variables + vertex_values[1] = dof_values[4]; + vertex_values[4] = dof_values[5]; + vertex_values[7] = dof_values[6]; + vertex_values[10] = dof_values[7]; + // Evaluate function and change variables + vertex_values[2] = dof_values[8]; + vertex_values[5] = dof_values[9]; + vertex_values[8] = dof_values[10]; + vertex_values[11] = dof_values[11]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 3; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new nsemomentum3d_finite_element_2(); + break; + } + case 1: + { + return new nsemomentum3d_finite_element_2(); + break; + } + case 2: + { + return new nsemomentum3d_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new nsemomentum3d_finite_element_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class nsemomentum3d_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + nsemomentum3d_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~nsemomentum3d_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Lagrange', Domain(Cell('tetrahedron', 3)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[3]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[3][0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[0][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[0][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new nsemomentum3d_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class nsemomentum3d_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + nsemomentum3d_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~nsemomentum3d_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Discontinuous Lagrange', Domain(Cell('tetrahedron', 3)), 0, 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[3]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 3; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[3][0]; + offset += num_global_entities[3]; + dofs[1] = offset + c.entity_indices[3][0]; + offset += num_global_entities[3]; + dofs[2] = offset + c.entity_indices[3][0]; + offset += num_global_entities[3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[0][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[0][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + dof_coordinates[1][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[1][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[1][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + dof_coordinates[2][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[2][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[2][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 3; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new nsemomentum3d_dofmap_0(); + break; + } + case 1: + { + return new nsemomentum3d_dofmap_0(); + break; + } + case 2: + { + return new nsemomentum3d_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new nsemomentum3d_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class nsemomentum3d_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + nsemomentum3d_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~nsemomentum3d_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new nsemomentum3d_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class nsemomentum3d_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + nsemomentum3d_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~nsemomentum3d_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 9; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[0][0]; + dofs[5] = offset + c.entity_indices[0][1]; + dofs[6] = offset + c.entity_indices[0][2]; + dofs[7] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[8] = offset + c.entity_indices[0][0]; + dofs[9] = offset + c.entity_indices[0][1]; + dofs[10] = offset + c.entity_indices[0][2]; + dofs[11] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 6; + dofs[5] = 7; + dofs[6] = 9; + dofs[7] = 10; + dofs[8] = 11; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 6; + dofs[5] = 7; + dofs[6] = 8; + dofs[7] = 10; + dofs[8] = 11; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 7; + dofs[6] = 8; + dofs[7] = 9; + dofs[8] = 11; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 8; + dofs[7] = 9; + dofs[8] = 10; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 4; + dofs[2] = 8; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 5; + dofs[2] = 9; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 6; + dofs[2] = 10; + break; + } + case 3: + { + dofs[0] = 3; + dofs[1] = 7; + dofs[2] = 11; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = vertex_coordinates[0]; + dof_coordinates[4][1] = vertex_coordinates[1]; + dof_coordinates[4][2] = vertex_coordinates[2]; + dof_coordinates[5][0] = vertex_coordinates[3]; + dof_coordinates[5][1] = vertex_coordinates[4]; + dof_coordinates[5][2] = vertex_coordinates[5]; + dof_coordinates[6][0] = vertex_coordinates[6]; + dof_coordinates[6][1] = vertex_coordinates[7]; + dof_coordinates[6][2] = vertex_coordinates[8]; + dof_coordinates[7][0] = vertex_coordinates[9]; + dof_coordinates[7][1] = vertex_coordinates[10]; + dof_coordinates[7][2] = vertex_coordinates[11]; + dof_coordinates[8][0] = vertex_coordinates[0]; + dof_coordinates[8][1] = vertex_coordinates[1]; + dof_coordinates[8][2] = vertex_coordinates[2]; + dof_coordinates[9][0] = vertex_coordinates[3]; + dof_coordinates[9][1] = vertex_coordinates[4]; + dof_coordinates[9][2] = vertex_coordinates[5]; + dof_coordinates[10][0] = vertex_coordinates[6]; + dof_coordinates[10][1] = vertex_coordinates[7]; + dof_coordinates[10][2] = vertex_coordinates[8]; + dof_coordinates[11][0] = vertex_coordinates[9]; + dof_coordinates[11][1] = vertex_coordinates[10]; + dof_coordinates[11][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 3; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new nsemomentum3d_dofmap_2(); + break; + } + case 1: + { + return new nsemomentum3d_dofmap_2(); + break; + } + case 2: + { + return new nsemomentum3d_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new nsemomentum3d_dofmap_3(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class nsemomentum3d_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + nsemomentum3d_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~nsemomentum3d_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true, true, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius + + + // Array of quadrature weights. + static const double W4[4] = {0.0416666666666667, 0.0416666666666667, 0.0416666666666667, 0.0416666666666667}; + // Quadrature points on the UFC reference element: (0.585410196624969, 0.138196601125011, 0.138196601125011), (0.138196601125011, 0.585410196624969, 0.138196601125011), (0.138196601125011, 0.138196601125011, 0.585410196624969), (0.138196601125011, 0.138196601125011, 0.138196601125011) + + // Values of basis functions at quadrature points. + static const double FE2_C0[4][4] = \ + {{0.138196601125009, 0.585410196624969, 0.138196601125011, 0.138196601125011}, + {0.138196601125009, 0.138196601125011, 0.585410196624969, 0.138196601125011}, + {0.138196601125009, 0.138196601125011, 0.138196601125011, 0.585410196624969}, + {0.585410196624967, 0.138196601125011, 0.138196601125011, 0.138196601125011}}; + + // Array of non-zero columns + static const unsigned int nzc7[4] = {4, 5, 6, 7}; + + // Array of non-zero columns + static const unsigned int nzc3[4] = {0, 1, 2, 3}; + + // Array of non-zero columns + static const unsigned int nzc11[4] = {8, 9, 10, 11}; + + static const double FE2_C0_D001[4][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc10[2] = {4, 5}; + + // Array of non-zero columns + static const unsigned int nzc6[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc14[2] = {8, 9}; + + // Array of non-zero columns + static const unsigned int nzc4[2] = {0, 3}; + + // Array of non-zero columns + static const unsigned int nzc12[2] = {8, 11}; + + // Array of non-zero columns + static const unsigned int nzc13[2] = {8, 10}; + + // Array of non-zero columns + static const unsigned int nzc8[2] = {4, 7}; + + // Array of non-zero columns + static const unsigned int nzc5[2] = {0, 2}; + + // Array of non-zero columns + static const unsigned int nzc9[2] = {4, 6}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 144; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 864. + double G[72]; + G[0] = 0.5*det*w[3][0]*(K[1]*K[1]*w[2][0] + w[0][1]*w[0][1]*w[1][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]) + w[4][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2])); + G[1] = 0.5*det*w[3][0]*(K[1]*K[8]*w[2][0] + w[0][1]*w[0][2]*w[1][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[2] = 0.5*det*w[3][0]*(K[1]*K[5]*w[2][0] + w[0][1]*w[0][2]*w[1][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[3] = 0.5*det*w[3][0]*(K[1]*K[2]*w[2][0] + w[0][1]*w[0][2]*w[1][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2])); + G[4] = 0.5*det*w[3][0]*(K[1]*K[6]*w[2][0] + w[0][0]*w[0][1]*w[1][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[5] = 0.5*det*w[3][0]*(K[1]*K[3]*w[2][0] + w[0][0]*w[0][1]*w[1][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[6] = 0.5*det*w[3][0]*(K[0]*K[1]*w[2][0] + w[0][0]*w[0][1]*w[1][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2])); + G[7] = 0.5*det*w[3][0]*(K[1]*K[7]*w[2][0] + w[0][1]*w[0][1]*w[1][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]) + w[4][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[8] = 0.5*det*w[3][0]*(K[1]*K[4]*w[2][0] + w[0][1]*w[0][1]*w[1][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]) + w[4][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[9] = 0.5*det*w[3][0]*(K[8]*K[8]*w[2][0] + w[0][2]*w[0][2]*w[1][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]) + w[4][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8])); + G[10] = 0.5*det*w[3][0]*(K[5]*K[8]*w[2][0] + w[0][2]*w[0][2]*w[1][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]) + w[4][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[11] = 0.5*det*w[3][0]*(K[2]*K[8]*w[2][0] + w[0][2]*w[0][2]*w[1][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]) + w[4][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[12] = 0.5*det*w[3][0]*(K[6]*K[8]*w[2][0] + w[0][0]*w[0][2]*w[1][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8])); + G[13] = 0.5*det*w[3][0]*(K[3]*K[8]*w[2][0] + w[0][0]*w[0][2]*w[1][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[14] = 0.5*det*w[3][0]*(K[0]*K[8]*w[2][0] + w[0][0]*w[0][2]*w[1][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[15] = 0.5*det*w[3][0]*(K[7]*K[8]*w[2][0] + w[0][1]*w[0][2]*w[1][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8])); + G[16] = 0.5*det*w[3][0]*(K[4]*K[8]*w[2][0] + w[0][1]*w[0][2]*w[1][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[17] = 0.5*det*w[3][0]*(K[5]*K[5]*w[2][0] + w[0][2]*w[0][2]*w[1][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]) + w[4][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5])); + G[18] = 0.5*det*w[3][0]*(K[2]*K[5]*w[2][0] + w[0][2]*w[0][2]*w[1][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]) + w[4][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[19] = 0.5*det*w[3][0]*(K[5]*K[6]*w[2][0] + w[0][0]*w[0][2]*w[1][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[20] = 0.5*det*w[3][0]*(K[3]*K[5]*w[2][0] + w[0][0]*w[0][2]*w[1][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5])); + G[21] = 0.5*det*w[3][0]*(K[0]*K[5]*w[2][0] + w[0][0]*w[0][2]*w[1][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[22] = 0.5*det*w[3][0]*(K[5]*K[7]*w[2][0] + w[0][1]*w[0][2]*w[1][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[23] = 0.5*det*w[3][0]*(K[4]*K[5]*w[2][0] + w[0][1]*w[0][2]*w[1][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5])); + G[24] = 0.5*det*w[3][0]*(K[2]*K[2]*w[2][0] + w[0][2]*w[0][2]*w[1][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]) + w[4][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2])); + G[25] = 0.5*det*w[3][0]*(K[2]*K[6]*w[2][0] + w[0][0]*w[0][2]*w[1][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[26] = 0.5*det*w[3][0]*(K[2]*K[3]*w[2][0] + w[0][0]*w[0][2]*w[1][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[27] = 0.5*det*w[3][0]*(K[0]*K[2]*w[2][0] + w[0][0]*w[0][2]*w[1][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2])); + G[28] = 0.5*det*w[3][0]*(K[2]*K[7]*w[2][0] + w[0][1]*w[0][2]*w[1][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[29] = 0.5*det*w[3][0]*(K[2]*K[4]*w[2][0] + w[0][1]*w[0][2]*w[1][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[30] = 0.5*det*w[3][0]*(K[6]*K[6]*w[2][0] + w[0][0]*w[0][0]*w[1][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]) + w[4][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8])); + G[31] = 0.5*det*w[3][0]*(K[3]*K[6]*w[2][0] + w[0][0]*w[0][0]*w[1][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]) + w[4][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[32] = 0.5*det*w[3][0]*(K[0]*K[6]*w[2][0] + w[0][0]*w[0][0]*w[1][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]) + w[4][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[33] = 0.5*det*w[3][0]*(K[6]*K[7]*w[2][0] + w[0][0]*w[0][1]*w[1][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8])); + G[34] = 0.5*det*w[3][0]*(K[4]*K[6]*w[2][0] + w[0][0]*w[0][1]*w[1][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[35] = 0.5*det*w[3][0]*(K[3]*K[3]*w[2][0] + w[0][0]*w[0][0]*w[1][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]) + w[4][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5])); + G[36] = 0.5*det*w[3][0]*(K[0]*K[3]*w[2][0] + w[0][0]*w[0][0]*w[1][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]) + w[4][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[37] = 0.5*det*w[3][0]*(K[3]*K[7]*w[2][0] + w[0][0]*w[0][1]*w[1][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[38] = 0.5*det*w[3][0]*(K[3]*K[4]*w[2][0] + w[0][0]*w[0][1]*w[1][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5])); + G[39] = 0.5*det*w[3][0]*(K[0]*K[0]*w[2][0] + w[0][0]*w[0][0]*w[1][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]) + w[4][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2])); + G[40] = 0.5*det*w[3][0]*(K[0]*K[7]*w[2][0] + w[0][0]*w[0][1]*w[1][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[41] = 0.5*det*w[3][0]*(K[0]*K[4]*w[2][0] + w[0][0]*w[0][1]*w[1][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[42] = 0.5*det*w[3][0]*(K[7]*K[7]*w[2][0] + w[0][1]*w[0][1]*w[1][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]) + w[4][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8])); + G[43] = 0.5*det*w[3][0]*(K[4]*K[7]*w[2][0] + w[0][1]*w[0][1]*w[1][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]) + w[4][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[44] = 0.5*det*w[3][0]*(K[4]*K[4]*w[2][0] + w[0][1]*w[0][1]*w[1][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]) + w[4][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5])); + G[45] = 0.5*K[2]*det*w[0][1]*w[3][0]; + G[46] = 0.5*K[8]*det*w[0][2]*w[3][0]; + G[47] = 0.5*K[5]*det*w[0][2]*w[3][0]; + G[48] = 0.5*K[2]*det*w[0][2]*w[3][0]; + G[49] = 0.5*K[8]*det*w[0][0]*w[3][0]; + G[50] = 0.5*K[5]*det*w[0][0]*w[3][0]; + G[51] = 0.5*K[2]*det*w[0][0]*w[3][0]; + G[52] = 0.5*K[8]*det*w[0][1]*w[3][0]; + G[53] = 0.5*K[5]*det*w[0][1]*w[3][0]; + G[54] = 0.5*K[0]*det*w[0][1]*w[3][0]; + G[55] = 0.5*K[6]*det*w[0][2]*w[3][0]; + G[56] = 0.5*K[3]*det*w[0][2]*w[3][0]; + G[57] = 0.5*K[0]*det*w[0][2]*w[3][0]; + G[58] = 0.5*K[6]*det*w[0][0]*w[3][0]; + G[59] = 0.5*K[3]*det*w[0][0]*w[3][0]; + G[60] = 0.5*K[0]*det*w[0][0]*w[3][0]; + G[61] = 0.5*K[6]*det*w[0][1]*w[3][0]; + G[62] = 0.5*K[3]*det*w[0][1]*w[3][0]; + G[63] = 0.5*K[1]*det*w[0][1]*w[3][0]; + G[64] = 0.5*K[7]*det*w[0][2]*w[3][0]; + G[65] = 0.5*K[4]*det*w[0][2]*w[3][0]; + G[66] = 0.5*K[1]*det*w[0][2]*w[3][0]; + G[67] = 0.5*K[7]*det*w[0][0]*w[3][0]; + G[68] = 0.5*K[4]*det*w[0][0]*w[3][0]; + G[69] = 0.5*K[1]*det*w[0][0]*w[3][0]; + G[70] = 0.5*K[7]*det*w[0][1]*w[3][0]; + G[71] = 0.5*K[4]*det*w[0][1]*w[3][0]; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 7348 + for (unsigned int ip = 0; ip < 4; ip++) + { + + // Number of operations to compute ip constants: 73 + double I[73]; + // Number of operations: 1 + I[0] = G[0]*W4[ip]; + + // Number of operations: 1 + I[1] = G[1]*W4[ip]; + + // Number of operations: 1 + I[2] = G[2]*W4[ip]; + + // Number of operations: 1 + I[3] = G[3]*W4[ip]; + + // Number of operations: 1 + I[4] = G[4]*W4[ip]; + + // Number of operations: 1 + I[5] = G[5]*W4[ip]; + + // Number of operations: 1 + I[6] = G[6]*W4[ip]; + + // Number of operations: 1 + I[7] = G[7]*W4[ip]; + + // Number of operations: 1 + I[8] = G[8]*W4[ip]; + + // Number of operations: 1 + I[9] = G[9]*W4[ip]; + + // Number of operations: 1 + I[10] = G[10]*W4[ip]; + + // Number of operations: 1 + I[11] = G[11]*W4[ip]; + + // Number of operations: 1 + I[12] = G[12]*W4[ip]; + + // Number of operations: 1 + I[13] = G[13]*W4[ip]; + + // Number of operations: 1 + I[14] = G[14]*W4[ip]; + + // Number of operations: 1 + I[15] = G[15]*W4[ip]; + + // Number of operations: 1 + I[16] = G[16]*W4[ip]; + + // Number of operations: 1 + I[17] = G[17]*W4[ip]; + + // Number of operations: 1 + I[18] = G[18]*W4[ip]; + + // Number of operations: 1 + I[19] = G[19]*W4[ip]; + + // Number of operations: 1 + I[20] = G[20]*W4[ip]; + + // Number of operations: 1 + I[21] = G[21]*W4[ip]; + + // Number of operations: 1 + I[22] = G[22]*W4[ip]; + + // Number of operations: 1 + I[23] = G[23]*W4[ip]; + + // Number of operations: 1 + I[24] = G[24]*W4[ip]; + + // Number of operations: 1 + I[25] = G[25]*W4[ip]; + + // Number of operations: 1 + I[26] = G[26]*W4[ip]; + + // Number of operations: 1 + I[27] = G[27]*W4[ip]; + + // Number of operations: 1 + I[28] = G[28]*W4[ip]; + + // Number of operations: 1 + I[29] = G[29]*W4[ip]; + + // Number of operations: 1 + I[30] = G[30]*W4[ip]; + + // Number of operations: 1 + I[31] = G[31]*W4[ip]; + + // Number of operations: 1 + I[32] = G[32]*W4[ip]; + + // Number of operations: 1 + I[33] = G[33]*W4[ip]; + + // Number of operations: 1 + I[34] = G[34]*W4[ip]; + + // Number of operations: 1 + I[35] = G[35]*W4[ip]; + + // Number of operations: 1 + I[36] = G[36]*W4[ip]; + + // Number of operations: 1 + I[37] = G[37]*W4[ip]; + + // Number of operations: 1 + I[38] = G[38]*W4[ip]; + + // Number of operations: 1 + I[39] = G[39]*W4[ip]; + + // Number of operations: 1 + I[40] = G[40]*W4[ip]; + + // Number of operations: 1 + I[41] = G[41]*W4[ip]; + + // Number of operations: 1 + I[42] = G[42]*W4[ip]; + + // Number of operations: 1 + I[43] = G[43]*W4[ip]; + + // Number of operations: 1 + I[44] = G[44]*W4[ip]; + + // Number of operations: 1 + I[45] = G[45]*W4[ip]; + + // Number of operations: 1 + I[46] = G[46]*W4[ip]; + + // Number of operations: 1 + I[47] = G[47]*W4[ip]; + + // Number of operations: 1 + I[48] = G[48]*W4[ip]; + + // Number of operations: 1 + I[49] = G[49]*W4[ip]; + + // Number of operations: 1 + I[50] = G[50]*W4[ip]; + + // Number of operations: 1 + I[51] = G[51]*W4[ip]; + + // Number of operations: 1 + I[52] = G[52]*W4[ip]; + + // Number of operations: 1 + I[53] = G[53]*W4[ip]; + + // Number of operations: 1 + I[54] = G[54]*W4[ip]; + + // Number of operations: 1 + I[55] = G[55]*W4[ip]; + + // Number of operations: 1 + I[56] = G[56]*W4[ip]; + + // Number of operations: 1 + I[57] = G[57]*W4[ip]; + + // Number of operations: 1 + I[58] = G[58]*W4[ip]; + + // Number of operations: 1 + I[59] = G[59]*W4[ip]; + + // Number of operations: 1 + I[60] = G[60]*W4[ip]; + + // Number of operations: 1 + I[61] = G[61]*W4[ip]; + + // Number of operations: 1 + I[62] = G[62]*W4[ip]; + + // Number of operations: 1 + I[63] = G[63]*W4[ip]; + + // Number of operations: 1 + I[64] = G[64]*W4[ip]; + + // Number of operations: 1 + I[65] = G[65]*W4[ip]; + + // Number of operations: 1 + I[66] = G[66]*W4[ip]; + + // Number of operations: 1 + I[67] = G[67]*W4[ip]; + + // Number of operations: 1 + I[68] = G[68]*W4[ip]; + + // Number of operations: 1 + I[69] = G[69]*W4[ip]; + + // Number of operations: 1 + I[70] = G[70]*W4[ip]; + + // Number of operations: 1 + I[71] = G[71]*W4[ip]; + + // Number of operations: 1 + I[72] = W4[ip]*det; + + + // Number of operations for primary indices: 648 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc10[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[45]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc12[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[46]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc13[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[47]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc14[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[48]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc4[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[49]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc5[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[50]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc6[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[51]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc8[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[52]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc9[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[53]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc10[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[54]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc12[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[55]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc13[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[56]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc14[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[57]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc4[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[58]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc5[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[59]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc6[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[60]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc8[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[61]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc9[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[62]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc10[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[63]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc12[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[64]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc13[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[65]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc14[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[66]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc4[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[67]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc5[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[68]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc6[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[69]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc8[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[70]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc9[k]] += FE2_C0[ip][j]*FE2_C0_D001[ip][k]*I[71]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 972 + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc10[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc12[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc13[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc14[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc4[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc5[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc6[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc8[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc9[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc10[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc12[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc13[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc14[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc4[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc5[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc6[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[14]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc8[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc9[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc10[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc12[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc13[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc14[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc4[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc5[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc6[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[21]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc8[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc9[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[nzc14[j]*12 + nzc10[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc14[j]*12 + nzc12[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[nzc14[j]*12 + nzc13[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[nzc14[j]*12 + nzc14[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[nzc14[j]*12 + nzc4[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[nzc14[j]*12 + nzc5[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[26]; + // Number of operations to compute entry: 3 + A[nzc14[j]*12 + nzc6[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[27]; + // Number of operations to compute entry: 3 + A[nzc14[j]*12 + nzc8[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[nzc14[j]*12 + nzc9[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc10[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc12[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc13[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc14[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc4[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[30]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc5[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc6[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc8[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[33]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc9[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[34]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc10[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc12[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc13[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc14[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[26]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc4[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc5[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[35]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc6[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[36]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc8[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[37]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc9[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[38]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc10[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc12[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[14]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc13[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[21]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc14[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[27]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc4[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc5[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[36]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc6[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[39]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc8[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[40]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc9[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[41]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc10[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc12[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc13[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc14[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc4[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[33]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc5[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[37]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc6[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[40]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc8[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[42]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc9[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[43]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc10[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc12[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc13[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc14[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc4[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[34]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc5[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[38]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc6[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[41]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc8[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[43]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc9[k]] += FE2_C0_D001[ip][j]*FE2_C0_D001[ip][k]*I[44]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc11[k]] += FE2_C0[ip][j]*FE2_C0[ip][k]*I[72]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc3[k]] += FE2_C0[ip][j]*FE2_C0[ip][k]*I[72]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc7[k]] += FE2_C0[ip][j]*FE2_C0[ip][k]*I[72]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class nsemomentum3d_form_0: public ufc::form +{ +public: + + /// Constructor + nsemomentum3d_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~nsemomentum3d_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "d69a102d1ec0bb17129f2bd5fb6684b8b84a3a7486c502489c5b578db04594cdd8d0373c3e186f73647c987ec6172f8f003acb0107e3be6f570f7635ee72840e"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 5; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new nsemomentum3d_finite_element_3(); + break; + } + case 1: + { + return new nsemomentum3d_finite_element_3(); + break; + } + case 2: + { + return new nsemomentum3d_finite_element_1(); + break; + } + case 3: + { + return new nsemomentum3d_finite_element_0(); + break; + } + case 4: + { + return new nsemomentum3d_finite_element_0(); + break; + } + case 5: + { + return new nsemomentum3d_finite_element_0(); + break; + } + case 6: + { + return new nsemomentum3d_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new nsemomentum3d_dofmap_3(); + break; + } + case 1: + { + return new nsemomentum3d_dofmap_3(); + break; + } + case 2: + { + return new nsemomentum3d_dofmap_1(); + break; + } + case 3: + { + return new nsemomentum3d_dofmap_0(); + break; + } + case 4: + { + return new nsemomentum3d_dofmap_0(); + break; + } + case 5: + { + return new nsemomentum3d_dofmap_0(); + break; + } + case 6: + { + return new nsemomentum3d_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new nsemomentum3d_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace NSEMomentum3D +{ + +class CoefficientSpace_d1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_d1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_d1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_d1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_d1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_d1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_d1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_d1() + { + } + +}; + +class CoefficientSpace_d2: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_d2(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_d2(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_d2(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_d2(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_d2(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_d2(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_d2() + { + } + +}; + +class CoefficientSpace_k: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_k(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_k(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_k(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_k() + { + } + +}; + +class CoefficientSpace_nu: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_nu(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_nu(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_nu(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_nu(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_nu(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_nu(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_nu() + { + } + +}; + +class CoefficientSpace_w: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_w(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_w(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_w(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_w(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_w(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_w(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_w() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nsemomentum3d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nsemomentum3d_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_w Form_a_FunctionSpace_2; + +typedef CoefficientSpace_d1 Form_a_FunctionSpace_3; + +typedef CoefficientSpace_d2 Form_a_FunctionSpace_4; + +typedef CoefficientSpace_k Form_a_FunctionSpace_5; + +typedef CoefficientSpace_nu Form_a_FunctionSpace_6; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new nsemomentum3d_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& d1, const dolfin::GenericFunction& d2, const dolfin::GenericFunction& k, const dolfin::GenericFunction& nu): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->w = w; + this->d1 = d1; + this->d2 = d2; + this->k = k; + this->nu = nu; + + _ufc_form = std::shared_ptr(new nsemomentum3d_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr w, std::shared_ptr d1, std::shared_ptr d2, std::shared_ptr k, std::shared_ptr nu): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->w = *w; + this->d1 = *d1; + this->d2 = *d2; + this->k = *k; + this->nu = *nu; + + _ufc_form = std::shared_ptr(new nsemomentum3d_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new nsemomentum3d_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& d1, const dolfin::GenericFunction& d2, const dolfin::GenericFunction& k, const dolfin::GenericFunction& nu): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->w = w; + this->d1 = d1; + this->d2 = d2; + this->k = k; + this->nu = nu; + + _ufc_form = std::shared_ptr(new nsemomentum3d_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr w, std::shared_ptr d1, std::shared_ptr d2, std::shared_ptr k, std::shared_ptr nu): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->w = *w; + this->d1 = *d1; + this->d2 = *d2; + this->k = *k; + this->nu = *nu; + + _ufc_form = std::shared_ptr(new nsemomentum3d_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "w") + return 0; + else if (name == "d1") + return 1; + else if (name == "d2") + return 2; + else if (name == "k") + return 3; + else if (name == "nu") + return 4; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "w"; + case 1: + return "d1"; + case 2: + return "d2"; + case 3: + return "k"; + case 4: + return "nu"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + typedef Form_a_FunctionSpace_2 CoefficientSpace_w; + typedef Form_a_FunctionSpace_3 CoefficientSpace_d1; + typedef Form_a_FunctionSpace_4 CoefficientSpace_d2; + typedef Form_a_FunctionSpace_5 CoefficientSpace_k; + typedef Form_a_FunctionSpace_6 CoefficientSpace_nu; + + // Coefficients + dolfin::CoefficientAssigner w; + dolfin::CoefficientAssigner d1; + dolfin::CoefficientAssigner d2; + dolfin::CoefficientAssigner k; + dolfin::CoefficientAssigner nu; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/assembly/cpp/forms/NSEMomentum3D.ufl b/bench/fem/assembly/cpp/forms/NSEMomentum3D.ufl new file mode 100644 index 0000000..772cdf3 --- /dev/null +++ b/bench/fem/assembly/cpp/forms/NSEMomentum3D.ufl @@ -0,0 +1,18 @@ +element = VectorElement("Lagrange", tetrahedron, 1) + +v = TestFunction(element) +u = TrialFunction(element) + +constant_scalar = FiniteElement("Discontinuous Lagrange", tetrahedron, 0) +constant_vector = VectorElement("Discontinuous Lagrange", tetrahedron, 0) + +w = Coefficient(constant_vector) +d1 = Coefficient(constant_scalar) +d2 = Coefficient(constant_scalar) +k = Coefficient(constant_scalar) +nu = Coefficient(constant_scalar) + +G_a = inner(v, u)*dx + 0.5*k*nu*inner(grad(v), grad(u))*dx + 0.5*k*inner(v, dot(w, grad(u)))*dx +SD_a = d1*0.5*k*dot(dot(w, grad(v)), dot(w, grad(u)))*dx + d2*0.5*k*div(v)*div(u)*dx + +a = G_a + SD_a diff --git a/bench/fem/assembly/cpp/forms/Poisson2DP1.h b/bench/fem/assembly/cpp/forms/Poisson2DP1.h new file mode 100644 index 0000000..d19cb8e --- /dev/null +++ b/bench/fem/assembly/cpp/forms/Poisson2DP1.h @@ -0,0 +1,1682 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __POISSON2DP1_H +#define __POISSON2DP1_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson2dp1_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson2dp1_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp1_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson2dp1_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson2dp1_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson2dp1_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp1_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson2dp1_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2dp1_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2dp1_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp1_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 11 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = -0.5*G0_0_0 - 0.5*G0_1_0; + A[2] = -0.5*G0_0_1 - 0.5*G0_1_1; + A[3] = -0.5*G0_0_0 - 0.5*G0_0_1; + A[4] = 0.5*G0_0_0; + A[5] = 0.5*G0_0_1; + A[6] = -0.5*G0_1_0 - 0.5*G0_1_1; + A[7] = 0.5*G0_1_0; + A[8] = 0.5*G0_1_1; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2dp1_form_0: public ufc::form +{ +public: + + /// Constructor + poisson2dp1_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp1_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "996f902b81205976ede73587192186c9fd9b057164f0036bf925051e4ce236d3afa448345b6b3a7958f9c265483ba7f2701db77c9f0b497566f0fb97007140e6"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson2dp1_finite_element_0(); + break; + } + case 1: + { + return new poisson2dp1_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson2dp1_dofmap_0(); + break; + } + case 1: + { + return new poisson2dp1_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson2dp1_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson2DP1 +{ + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson2dp1_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson2dp1_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/assembly/cpp/forms/Poisson2DP1.ufl b/bench/fem/assembly/cpp/forms/Poisson2DP1.ufl new file mode 100644 index 0000000..cac2a7a --- /dev/null +++ b/bench/fem/assembly/cpp/forms/Poisson2DP1.ufl @@ -0,0 +1,6 @@ +element = FiniteElement("Lagrange", triangle, 1) + +v = TestFunction(element) +u = TrialFunction(element) + +a = dot(grad(v), grad(u))*dx diff --git a/bench/fem/assembly/cpp/forms/Poisson2DP2.h b/bench/fem/assembly/cpp/forms/Poisson2DP2.h new file mode 100644 index 0000000..3920a69 --- /dev/null +++ b/bench/fem/assembly/cpp/forms/Poisson2DP2.h @@ -0,0 +1,2428 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __POISSON2DP2_H +#define __POISSON2DP2_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson2dp2_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson2dp2_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp2_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson2dp2_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson2dp2_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson2dp2_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp2_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson2dp2_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2dp2_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2dp2_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp2_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 49 + // Total number of operations (multiply-add pairs): 60 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_1_0; + A[2] = 0.166666666666667*G0_0_1 + 0.166666666666667*G0_1_1; + A[3] = 0.0; + A[4] = -0.666666666666667*G0_0_1 - 0.666666666666667*G0_1_1; + A[5] = -0.666666666666667*G0_0_0 - 0.666666666666667*G0_1_0; + A[6] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_0_1; + A[7] = 0.5*G0_0_0; + A[8] = -0.166666666666667*G0_0_1; + A[9] = 0.666666666666666*G0_0_1; + A[10] = 0.0; + A[11] = -0.666666666666667*G0_0_0 - 0.666666666666666*G0_0_1; + A[12] = 0.166666666666667*G0_1_0 + 0.166666666666667*G0_1_1; + A[13] = -0.166666666666667*G0_1_0; + A[14] = 0.5*G0_1_1; + A[15] = 0.666666666666666*G0_1_0; + A[16] = -0.666666666666666*G0_1_0 - 0.666666666666666*G0_1_1; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.666666666666666*G0_1_0; + A[20] = 0.666666666666666*G0_0_1; + A[21] = 1.33333333333333*G0_0_0 + 0.666666666666665*G0_0_1 + 0.666666666666665*G0_1_0 + 1.33333333333333*G0_1_1; + A[22] = -1.33333333333333*G0_0_0 - 0.666666666666666*G0_0_1 - 0.666666666666665*G0_1_0; + A[23] = -0.666666666666665*G0_0_1 - 0.666666666666667*G0_1_0 - 1.33333333333333*G0_1_1; + A[24] = -0.666666666666667*G0_1_0 - 0.666666666666667*G0_1_1; + A[25] = 0.0; + A[26] = -0.666666666666666*G0_0_1 - 0.666666666666666*G0_1_1; + A[27] = -1.33333333333333*G0_0_0 - 0.666666666666665*G0_0_1 - 0.666666666666666*G0_1_0; + A[28] = 1.33333333333333*G0_0_0 + 0.666666666666666*G0_0_1 + 0.666666666666666*G0_1_0 + 1.33333333333333*G0_1_1; + A[29] = 0.666666666666665*G0_0_1 + 0.666666666666667*G0_1_0; + A[30] = -0.666666666666667*G0_0_0 - 0.666666666666667*G0_0_1; + A[31] = -0.666666666666667*G0_0_0 - 0.666666666666666*G0_1_0; + A[32] = 0.0; + A[33] = -0.666666666666667*G0_0_1 - 0.666666666666665*G0_1_0 - 1.33333333333333*G0_1_1; + A[34] = 0.666666666666667*G0_0_1 + 0.666666666666665*G0_1_0; + A[35] = 1.33333333333333*G0_0_0 + 0.666666666666667*G0_0_1 + 0.666666666666667*G0_1_0 + 1.33333333333333*G0_1_1; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2dp2_form_0: public ufc::form +{ +public: + + /// Constructor + poisson2dp2_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp2_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "aae0a73595ace2836ec2cfac776b19ebe6bc264a8954a0a93986ca1a90118d4671958a14ba9141ef0d8adc0b7311a7d128634bedabdb1f15360fafef8ee30294"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson2dp2_finite_element_0(); + break; + } + case 1: + { + return new poisson2dp2_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson2dp2_dofmap_0(); + break; + } + case 1: + { + return new poisson2dp2_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson2dp2_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson2DP2 +{ + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp2_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson2dp2_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson2dp2_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/assembly/cpp/forms/Poisson2DP2.ufl b/bench/fem/assembly/cpp/forms/Poisson2DP2.ufl new file mode 100644 index 0000000..62120d5 --- /dev/null +++ b/bench/fem/assembly/cpp/forms/Poisson2DP2.ufl @@ -0,0 +1,6 @@ +element = FiniteElement("Lagrange", triangle, 2) + +v = TestFunction(element) +u = TrialFunction(element) + +a = dot(grad(v), grad(u))*dx diff --git a/bench/fem/assembly/cpp/forms/Poisson2DP3.h b/bench/fem/assembly/cpp/forms/Poisson2DP3.h new file mode 100644 index 0000000..fbaf047 --- /dev/null +++ b/bench/fem/assembly/cpp/forms/Poisson2DP3.h @@ -0,0 +1,3632 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __POISSON2DP3_H +#define __POISSON2DP3_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson2dp3_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson2dp3_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp3_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 10; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[8][3]; + for (unsigned int row = 0; row < 8; row++) + { + for (unsigned int col = 0; col < 3; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[8][8]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 10; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson2dp3_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson2dp3_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson2dp3_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp3_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + 2*num_global_entities[1] + num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 10; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 4; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + 2*c.entity_indices[1][0]; + dofs[4] = offset + 2*c.entity_indices[1][0] + 1; + dofs[5] = offset + 2*c.entity_indices[1][1]; + dofs[6] = offset + 2*c.entity_indices[1][1] + 1; + dofs[7] = offset + 2*c.entity_indices[1][2]; + dofs[8] = offset + 2*c.entity_indices[1][2] + 1; + offset += 2*num_global_entities[1]; + dofs[9] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 5; + dofs[3] = 6; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 7; + dofs[3] = 8; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 4; + break; + } + case 1: + { + dofs[0] = 5; + dofs[1] = 6; + break; + } + case 2: + { + dofs[0] = 7; + dofs[1] = 8; + break; + } + } + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 9; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[5][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[6][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[7][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[7][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[8][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[8][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[9][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson2dp3_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2dp3_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2dp3_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp3_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 205 + // Total number of operations (multiply-add pairs): 216 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.424999999999999*G0_0_0 + 0.424999999999999*G0_0_1 + 0.424999999999999*G0_1_0 + 0.424999999999999*G0_1_1; + A[1] = -0.0875000000000006*G0_0_0 - 0.0875000000000005*G0_1_0; + A[2] = -0.0875000000000005*G0_0_1 - 0.0875000000000006*G0_1_1; + A[3] = -0.0375000000000006*G0_0_0 - 0.0375000000000018*G0_0_1 - 0.0375000000000006*G0_1_0 - 0.0375000000000017*G0_1_1; + A[4] = -0.0375000000000017*G0_0_0 - 0.0375000000000007*G0_0_1 - 0.0375000000000017*G0_1_0 - 0.0375000000000007*G0_1_1; + A[5] = 0.0374999999999997*G0_0_0 - 0.674999999999998*G0_0_1 + 0.0374999999999996*G0_1_0 - 0.674999999999998*G0_1_1; + A[6] = 0.0375000000000017*G0_0_0 + 0.3375*G0_0_1 + 0.0375000000000017*G0_1_0 + 0.3375*G0_1_1; + A[7] = -0.674999999999998*G0_0_0 + 0.0374999999999994*G0_0_1 - 0.674999999999998*G0_1_0 + 0.0374999999999994*G0_1_1; + A[8] = 0.3375*G0_0_0 + 0.037500000000002*G0_0_1 + 0.3375*G0_1_0 + 0.0375000000000018*G0_1_1; + A[9] = 0.0; + A[10] = -0.0875000000000006*G0_0_0 - 0.0875000000000005*G0_0_1; + A[11] = 0.425000000000002*G0_0_0; + A[12] = 0.0874999999999996*G0_0_1; + A[13] = 0.0375000000000018*G0_0_0 + 0.712500000000003*G0_0_1; + A[14] = 0.0374999999999996*G0_0_0 - 0.3*G0_0_1; + A[15] = -0.0375000000000001*G0_0_0; + A[16] = -0.0374999999999996*G0_0_0; + A[17] = 0.337500000000003*G0_0_0 + 0.300000000000003*G0_0_1; + A[18] = -0.675000000000004*G0_0_0 - 0.712500000000003*G0_0_1; + A[19] = 0.0; + A[20] = -0.0875000000000005*G0_1_0 - 0.0875000000000006*G0_1_1; + A[21] = 0.0874999999999996*G0_1_0; + A[22] = 0.425000000000002*G0_1_1; + A[23] = -0.3*G0_1_0 + 0.0374999999999994*G0_1_1; + A[24] = 0.712500000000004*G0_1_0 + 0.0375000000000025*G0_1_1; + A[25] = 0.300000000000003*G0_1_0 + 0.337500000000003*G0_1_1; + A[26] = -0.712500000000004*G0_1_0 - 0.675000000000005*G0_1_1; + A[27] = -0.0374999999999996*G0_1_1; + A[28] = -0.0374999999999994*G0_1_1; + A[29] = 0.0; + A[30] = -0.0375000000000006*G0_0_0 - 0.0375000000000006*G0_0_1 - 0.0375000000000018*G0_1_0 - 0.0375000000000017*G0_1_1; + A[31] = 0.0375000000000018*G0_0_0 + 0.712500000000003*G0_1_0; + A[32] = -0.3*G0_0_1 + 0.0374999999999994*G0_1_1; + A[33] = 1.6875*G0_0_0 + 0.843750000000001*G0_0_1 + 0.843750000000001*G0_1_0 + 1.6875*G0_1_1; + A[34] = -0.3375*G0_0_0 + 0.843749999999998*G0_0_1 - 0.168750000000001*G0_1_0 - 0.3375*G0_1_1; + A[35] = 0.337500000000001*G0_0_0 + 0.16875*G0_0_1 + 0.16875*G0_1_0; + A[36] = 0.3375*G0_0_0 + 0.168750000000001*G0_0_1 + 0.168750000000001*G0_1_0; + A[37] = 0.168750000000004*G0_0_1 + 0.168750000000007*G0_1_0 + 0.337500000000006*G0_1_1; + A[38] = -0.843750000000002*G0_0_1 - 0.843750000000008*G0_1_0 - 1.68750000000001*G0_1_1; + A[39] = -2.025*G0_0_0 - 1.0125*G0_0_1 - 1.0125*G0_1_0; + A[40] = -0.0375000000000017*G0_0_0 - 0.0375000000000017*G0_0_1 - 0.0375000000000007*G0_1_0 - 0.0375000000000007*G0_1_1; + A[41] = 0.0374999999999996*G0_0_0 - 0.3*G0_1_0; + A[42] = 0.712500000000004*G0_0_1 + 0.0375000000000024*G0_1_1; + A[43] = -0.3375*G0_0_0 - 0.168750000000001*G0_0_1 + 0.843749999999998*G0_1_0 - 0.3375*G0_1_1; + A[44] = 1.68750000000001*G0_0_0 + 0.843750000000003*G0_0_1 + 0.843750000000003*G0_1_0 + 1.6875*G0_1_1; + A[45] = 0.337500000000007*G0_0_0 + 0.168750000000007*G0_0_1 + 0.168750000000005*G0_1_0; + A[46] = -1.68750000000001*G0_0_0 - 0.84375000000001*G0_0_1 - 0.843750000000004*G0_1_0; + A[47] = 0.168750000000001*G0_0_1 + 0.168750000000001*G0_1_0 + 0.337500000000002*G0_1_1; + A[48] = 0.168750000000001*G0_0_1 + 0.168749999999999*G0_1_0 + 0.337500000000001*G0_1_1; + A[49] = -1.0125*G0_0_1 - 1.0125*G0_1_0 - 2.025*G0_1_1; + A[50] = 0.0374999999999997*G0_0_0 + 0.0374999999999996*G0_0_1 - 0.674999999999998*G0_1_0 - 0.674999999999998*G0_1_1; + A[51] = -0.0375000000000001*G0_0_0; + A[52] = 0.300000000000003*G0_0_1 + 0.337500000000003*G0_1_1; + A[53] = 0.337500000000001*G0_0_0 + 0.16875*G0_0_1 + 0.16875*G0_1_0; + A[54] = 0.337500000000007*G0_0_0 + 0.168750000000004*G0_0_1 + 0.168750000000007*G0_1_0; + A[55] = 1.6875*G0_0_0 + 0.843750000000003*G0_0_1 + 0.843750000000003*G0_1_0 + 1.6875*G0_1_1; + A[56] = -0.337500000000007*G0_0_0 - 1.18125000000001*G0_0_1 - 0.168750000000007*G0_1_0 - 1.35*G0_1_1; + A[57] = 0.84375*G0_0_1 + 0.843749999999995*G0_1_0; + A[58] = -0.16875*G0_0_1 - 0.168749999999997*G0_1_0; + A[59] = -2.025*G0_0_0 - 1.0125*G0_0_1 - 1.0125*G0_1_0; + A[60] = 0.0375000000000017*G0_0_0 + 0.0375000000000017*G0_0_1 + 0.3375*G0_1_0 + 0.3375*G0_1_1; + A[61] = -0.0374999999999996*G0_0_0; + A[62] = -0.712500000000004*G0_0_1 - 0.675000000000005*G0_1_1; + A[63] = 0.3375*G0_0_0 + 0.168750000000001*G0_0_1 + 0.168750000000001*G0_1_0; + A[64] = -1.68750000000001*G0_0_0 - 0.843750000000004*G0_0_1 - 0.84375000000001*G0_1_0; + A[65] = -0.337500000000007*G0_0_0 - 0.168750000000007*G0_0_1 - 1.18125000000001*G0_1_0 - 1.35*G0_1_1; + A[66] = 1.68750000000001*G0_0_0 + 0.84375000000001*G0_0_1 + 0.843750000000011*G0_1_0 + 1.68750000000001*G0_1_1; + A[67] = -0.168750000000001*G0_0_1 - 0.168749999999997*G0_1_0; + A[68] = -0.168750000000001*G0_0_1 - 0.168750000000004*G0_1_0; + A[69] = 1.01250000000001*G0_0_1 + 1.01250000000001*G0_1_0; + A[70] = -0.674999999999998*G0_0_0 - 0.674999999999998*G0_0_1 + 0.0374999999999994*G0_1_0 + 0.0374999999999994*G0_1_1; + A[71] = 0.337500000000003*G0_0_0 + 0.300000000000003*G0_1_0; + A[72] = -0.0374999999999996*G0_1_1; + A[73] = 0.168750000000007*G0_0_1 + 0.168750000000004*G0_1_0 + 0.337500000000006*G0_1_1; + A[74] = 0.168750000000001*G0_0_1 + 0.168750000000001*G0_1_0 + 0.337500000000002*G0_1_1; + A[75] = 0.843749999999995*G0_0_1 + 0.84375*G0_1_0; + A[76] = -0.168749999999997*G0_0_1 - 0.168750000000001*G0_1_0; + A[77] = 1.6875*G0_0_0 + 0.843750000000002*G0_0_1 + 0.843750000000002*G0_1_0 + 1.6875*G0_1_1; + A[78] = -1.35*G0_0_0 - 0.168750000000007*G0_0_1 - 1.18125000000001*G0_1_0 - 0.337500000000006*G0_1_1; + A[79] = -1.0125*G0_0_1 - 1.0125*G0_1_0 - 2.025*G0_1_1; + A[80] = 0.3375*G0_0_0 + 0.3375*G0_0_1 + 0.037500000000002*G0_1_0 + 0.0375000000000018*G0_1_1; + A[81] = -0.675000000000004*G0_0_0 - 0.712500000000003*G0_1_0; + A[82] = -0.0374999999999994*G0_1_1; + A[83] = -0.843750000000008*G0_0_1 - 0.843750000000002*G0_1_0 - 1.68750000000001*G0_1_1; + A[84] = 0.168749999999999*G0_0_1 + 0.168750000000001*G0_1_0 + 0.337500000000001*G0_1_1; + A[85] = -0.168749999999997*G0_0_1 - 0.16875*G0_1_0; + A[86] = -0.168750000000004*G0_0_1 - 0.168750000000001*G0_1_0; + A[87] = -1.35*G0_0_0 - 1.18125*G0_0_1 - 0.168750000000007*G0_1_0 - 0.337500000000006*G0_1_1; + A[88] = 1.68750000000001*G0_0_0 + 0.843750000000009*G0_0_1 + 0.843750000000009*G0_1_0 + 1.68750000000001*G0_1_1; + A[89] = 1.01250000000001*G0_0_1 + 1.0125*G0_1_0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = -2.025*G0_0_0 - 1.0125*G0_0_1 - 1.0125*G0_1_0; + A[94] = -1.0125*G0_0_1 - 1.0125*G0_1_0 - 2.025*G0_1_1; + A[95] = -2.025*G0_0_0 - 1.0125*G0_0_1 - 1.0125*G0_1_0; + A[96] = 1.01250000000001*G0_0_1 + 1.01250000000001*G0_1_0; + A[97] = -1.0125*G0_0_1 - 1.0125*G0_1_0 - 2.025*G0_1_1; + A[98] = 1.0125*G0_0_1 + 1.01250000000001*G0_1_0; + A[99] = 4.05*G0_0_0 + 2.025*G0_0_1 + 2.025*G0_1_0 + 4.05000000000001*G0_1_1; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2dp3_form_0: public ufc::form +{ +public: + + /// Constructor + poisson2dp3_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson2dp3_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "f9b8ce71238cbeed8abadbc4741d92fef64810352ec67cfe46516d0c7bebacf074a0af32740986f745e0a7c5e2014ad386a492e81c6e7ac63b8b3e2e1bd6577d"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson2dp3_finite_element_0(); + break; + } + case 1: + { + return new poisson2dp3_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson2dp3_dofmap_0(); + break; + } + case 1: + { + return new poisson2dp3_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson2dp3_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson2DP3 +{ + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2dp3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2dp3_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson2dp3_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson2dp3_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/assembly/cpp/forms/Poisson2DP3.ufl b/bench/fem/assembly/cpp/forms/Poisson2DP3.ufl new file mode 100644 index 0000000..b1a90c7 --- /dev/null +++ b/bench/fem/assembly/cpp/forms/Poisson2DP3.ufl @@ -0,0 +1,6 @@ +element = FiniteElement("Lagrange", triangle, 3) + +v = TestFunction(element) +u = TrialFunction(element) + +a = dot(grad(v), grad(u))*dx diff --git a/bench/fem/assembly/cpp/forms/StabStokes2D.h b/bench/fem/assembly/cpp/forms/StabStokes2D.h new file mode 100644 index 0000000..4249298 --- /dev/null +++ b/bench/fem/assembly/cpp/forms/StabStokes2D.h @@ -0,0 +1,5995 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __STABSTOKES2D_H +#define __STABSTOKES2D_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class stabstokes2d_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + stabstokes2d_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stabstokes2d_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stabstokes2d_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class stabstokes2d_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + stabstokes2d_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stabstokes2d_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('triangle', 2)), 1, 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 4: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 5: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[3] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[4] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[3]; + vertex_values[3] = dof_values[4]; + vertex_values[5] = dof_values[5]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stabstokes2d_finite_element_0(); + break; + } + case 1: + { + return new stabstokes2d_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stabstokes2d_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class stabstokes2d_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + stabstokes2d_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stabstokes2d_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + + // Get coordinates and map to the reference (FIAT) element + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stabstokes2d_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class stabstokes2d_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + stabstokes2d_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stabstokes2d_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(VectorElement('Lagrange', Domain(Cell('triangle', 2)), 1, 2, None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None), **{'value_shape': (3,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 7; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 7; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[1][1] = \ + {{0.0}}; + + static const double dmats1[1][1] = \ + {{0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[1][1] = \ + {{1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[1][1] = \ + {{1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + for (unsigned int tu = 0; tu < 1; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + for (unsigned int tu = 0; tu < 1; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 1; s++) + { + for (unsigned int t = 0; t < 1; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 7; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[6]; + for (unsigned int r = 0; r < 6; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 7; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 4: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 5: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 6: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[3] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[4] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[1]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[6] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[3]; + vertex_values[4] = dof_values[4]; + vertex_values[7] = dof_values[5]; + // Evaluate function and change variables + vertex_values[2] = dof_values[6]; + vertex_values[5] = dof_values[6]; + vertex_values[8] = dof_values[6]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stabstokes2d_finite_element_1(); + break; + } + case 1: + { + return new stabstokes2d_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stabstokes2d_finite_element_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stabstokes2d_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + stabstokes2d_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stabstokes2d_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stabstokes2d_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stabstokes2d_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + stabstokes2d_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stabstokes2d_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('triangle', 2)), 1, 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 4; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[0][0]; + dofs[4] = offset + c.entity_indices[0][1]; + dofs[5] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 5; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 5; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 4; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 3; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 4; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 5; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = vertex_coordinates[0]; + dof_coordinates[3][1] = vertex_coordinates[1]; + dof_coordinates[4][0] = vertex_coordinates[2]; + dof_coordinates[4][1] = vertex_coordinates[3]; + dof_coordinates[5][0] = vertex_coordinates[4]; + dof_coordinates[5][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stabstokes2d_dofmap_0(); + break; + } + case 1: + { + return new stabstokes2d_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stabstokes2d_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stabstokes2d_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + stabstokes2d_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stabstokes2d_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[2][0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stabstokes2d_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stabstokes2d_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + stabstokes2d_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stabstokes2d_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(VectorElement('Lagrange', Domain(Cell('triangle', 2)), 1, 2, None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None), **{'value_shape': (3,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0] + num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 7; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 4; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[0][0]; + dofs[4] = offset + c.entity_indices[0][1]; + dofs[5] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[6] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 5; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 5; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 4; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 3; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 4; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 5; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 6; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = vertex_coordinates[0]; + dof_coordinates[3][1] = vertex_coordinates[1]; + dof_coordinates[4][0] = vertex_coordinates[2]; + dof_coordinates[4][1] = vertex_coordinates[3]; + dof_coordinates[5][0] = vertex_coordinates[4]; + dof_coordinates[5][1] = vertex_coordinates[5]; + dof_coordinates[6][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stabstokes2d_dofmap_1(); + break; + } + case 1: + { + return new stabstokes2d_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stabstokes2d_dofmap_3(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stabstokes2d_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stabstokes2d_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stabstokes2d_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W1 = 0.5; + // Quadrature points on the UFC reference element: (0.333333333333333, 0.333333333333333) + + // Values of basis functions at quadrature points. + static const double FE1_C0_D01[1][2] = \ + {{-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc10[2] = {3, 5}; + + // Array of non-zero columns + static const unsigned int nzc11[2] = {3, 4}; + + // Array of non-zero columns + static const unsigned int nzc7[2] = {0, 2}; + + // Array of non-zero columns + static const unsigned int nzc8[2] = {0, 1}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 49; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 31. + double G[11]; + G[0] = - K[3]*W1*det; + G[1] = - K[1]*W1*det; + G[2] = - K[2]*W1*det; + G[3] = - K[0]*W1*det; + G[4] = W1*det*(K[2]*K[2] + K[3]*K[3]); + G[5] = W1*det*(K[0]*K[2] + K[1]*K[3]); + G[6] = W1*det*(K[0]*K[0] + K[1]*K[1]); + G[7] = K[3]*W1*det; + G[8] = K[1]*W1*det; + G[9] = K[2]*W1*det; + G[10] = K[0]*W1*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 128 + for (unsigned int ip = 0; ip < 1; ip++) + { + + // Number of operations for primary indices: 96 + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc10[j]*7 + nzc10[k]] += FE1_C0_D01[0][j]*FE1_C0_D01[0][k]*G[4]; + // Number of operations to compute entry: 3 + A[nzc10[j]*7 + nzc11[k]] += FE1_C0_D01[0][j]*FE1_C0_D01[0][k]*G[5]; + // Number of operations to compute entry: 3 + A[nzc11[j]*7 + nzc10[k]] += FE1_C0_D01[0][j]*FE1_C0_D01[0][k]*G[5]; + // Number of operations to compute entry: 3 + A[nzc11[j]*7 + nzc11[k]] += FE1_C0_D01[0][j]*FE1_C0_D01[0][k]*G[6]; + // Number of operations to compute entry: 3 + A[nzc7[j]*7 + nzc7[k]] += FE1_C0_D01[0][j]*FE1_C0_D01[0][k]*G[4]; + // Number of operations to compute entry: 3 + A[nzc7[j]*7 + nzc8[k]] += FE1_C0_D01[0][j]*FE1_C0_D01[0][k]*G[5]; + // Number of operations to compute entry: 3 + A[nzc8[j]*7 + nzc7[k]] += FE1_C0_D01[0][j]*FE1_C0_D01[0][k]*G[5]; + // Number of operations to compute entry: 3 + A[nzc8[j]*7 + nzc8[k]] += FE1_C0_D01[0][j]*FE1_C0_D01[0][k]*G[6]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 16 + for (unsigned int j = 0; j < 2; j++) + { + // Number of operations to compute entry: 2 + A[nzc10[j]*7 + 6] += FE1_C0_D01[0][j]*G[0]; + // Number of operations to compute entry: 2 + A[nzc11[j]*7 + 6] += FE1_C0_D01[0][j]*G[1]; + // Number of operations to compute entry: 2 + A[nzc7[j]*7 + 6] += FE1_C0_D01[0][j]*G[2]; + // Number of operations to compute entry: 2 + A[nzc8[j]*7 + 6] += FE1_C0_D01[0][j]*G[3]; + } // end loop over 'j' + + // Number of operations for primary indices: 16 + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 2 + A[6*7 + nzc10[k]] += FE1_C0_D01[0][k]*G[7]; + // Number of operations to compute entry: 2 + A[6*7 + nzc11[k]] += FE1_C0_D01[0][k]*G[8]; + // Number of operations to compute entry: 2 + A[6*7 + nzc7[k]] += FE1_C0_D01[0][k]*G[9]; + // Number of operations to compute entry: 2 + A[6*7 + nzc8[k]] += FE1_C0_D01[0][k]*G[10]; + } // end loop over 'k' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stabstokes2d_form_0: public ufc::form +{ +public: + + /// Constructor + stabstokes2d_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stabstokes2d_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "845832555f178bd62e52af471b533420104fdec29b776b5fa528b306ca849ccc8075d74864cbe6ed1ba78590cdf26b764d0b5872412fe2bc489715473f3e3248"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stabstokes2d_finite_element_3(); + break; + } + case 1: + { + return new stabstokes2d_finite_element_3(); + break; + } + case 2: + { + return new stabstokes2d_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stabstokes2d_dofmap_3(); + break; + } + case 1: + { + return new stabstokes2d_dofmap_3(); + break; + } + case 2: + { + return new stabstokes2d_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stabstokes2d_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace StabStokes2D +{ + +class CoefficientSpace_h: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_h(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_h(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_h(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_h(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_h(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_h(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_h() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stabstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stabstokes2d_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_h Form_a_FunctionSpace_2; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 1), h(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new stabstokes2d_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& h): + dolfin::Form(2, 1), h(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->h = h; + + _ufc_form = std::shared_ptr(new stabstokes2d_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr h): + dolfin::Form(2, 1), h(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->h = *h; + + _ufc_form = std::shared_ptr(new stabstokes2d_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 1), h(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new stabstokes2d_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& h): + dolfin::Form(2, 1), h(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->h = h; + + _ufc_form = std::shared_ptr(new stabstokes2d_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr h): + dolfin::Form(2, 1), h(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->h = *h; + + _ufc_form = std::shared_ptr(new stabstokes2d_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "h") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "h"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + typedef Form_a_FunctionSpace_2 CoefficientSpace_h; + + // Coefficients + dolfin::CoefficientAssigner h; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/assembly/cpp/forms/StabStokes2D.ufl b/bench/fem/assembly/cpp/forms/StabStokes2D.ufl new file mode 100644 index 0000000..8975a7d --- /dev/null +++ b/bench/fem/assembly/cpp/forms/StabStokes2D.ufl @@ -0,0 +1,11 @@ +vector = VectorElement("Lagrange", triangle, 1) +scalar = FiniteElement("Discontinuous Lagrange", triangle, 0) +element = vector * scalar + +(v, q) = TestFunctions(element) +(u, p) = TrialFunctions(element) + +h = Coefficient(scalar) +delta = 0.2*h*h + +a = (inner(grad(v), grad(u)) - div(v)*p + q*div(u) + delta*inner(grad(q), grad(p)))*dx diff --git a/bench/fem/assembly/cpp/forms/THStokes2D.h b/bench/fem/assembly/cpp/forms/THStokes2D.h new file mode 100644 index 0000000..fa6ed68 --- /dev/null +++ b/bench/fem/assembly/cpp/forms/THStokes2D.h @@ -0,0 +1,10562 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __THSTOKES2D_H +#define __THSTOKES2D_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class thstokes2d_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + thstokes2d_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~thstokes2d_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new thstokes2d_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class thstokes2d_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + thstokes2d_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~thstokes2d_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[3] = dof_values[7]; + vertex_values[5] = dof_values[8]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new thstokes2d_finite_element_0(); + break; + } + case 1: + { + return new thstokes2d_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new thstokes2d_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class thstokes2d_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + thstokes2d_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~thstokes2d_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new thstokes2d_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class thstokes2d_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + thstokes2d_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~thstokes2d_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (3,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 15; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 15; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 15; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[12]; + for (unsigned int r = 0; r < 12; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 15; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 12: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 13: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 14: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[12] = vals[2]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[13] = vals[2]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[14] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[4] = dof_values[7]; + vertex_values[7] = dof_values[8]; + // Evaluate function and change variables + vertex_values[2] = dof_values[12]; + vertex_values[5] = dof_values[13]; + vertex_values[8] = dof_values[14]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new thstokes2d_finite_element_1(); + break; + } + case 1: + { + return new thstokes2d_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new thstokes2d_finite_element_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class thstokes2d_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + thstokes2d_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~thstokes2d_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new thstokes2d_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class thstokes2d_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + thstokes2d_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~thstokes2d_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new thstokes2d_dofmap_0(); + break; + } + case 1: + { + return new thstokes2d_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new thstokes2d_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class thstokes2d_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + thstokes2d_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~thstokes2d_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new thstokes2d_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class thstokes2d_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + thstokes2d_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~thstokes2d_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (3,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 15; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 8; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[12] = offset + c.entity_indices[0][0]; + dofs[13] = offset + c.entity_indices[0][1]; + dofs[14] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + dofs[6] = 13; + dofs[7] = 14; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + dofs[6] = 12; + dofs[7] = 14; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + dofs[6] = 12; + dofs[7] = 13; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + dofs[2] = 12; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + dofs[2] = 13; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + dofs[2] = 14; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[12][0] = vertex_coordinates[0]; + dof_coordinates[12][1] = vertex_coordinates[1]; + dof_coordinates[13][0] = vertex_coordinates[2]; + dof_coordinates[13][1] = vertex_coordinates[3]; + dof_coordinates[14][0] = vertex_coordinates[4]; + dof_coordinates[14][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new thstokes2d_dofmap_1(); + break; + } + case 1: + { + return new thstokes2d_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new thstokes2d_dofmap_3(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class thstokes2d_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + thstokes2d_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~thstokes2d_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 32 + // Number of operations (multiply-add pairs) for tensor contraction: 282 + // Total number of operations (multiply-add pairs): 317 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*K[0]*(1.0); + const double G0_1 = det*K[2]*(1.0); + const double G1_0 = det*K[1]*(1.0); + const double G1_1 = det*K[3]*(1.0); + const double G2_0 = det*K[0]*(1.0); + const double G2_1 = det*K[2]*(1.0); + const double G3_0 = det*K[1]*(1.0); + const double G3_1 = det*K[3]*(1.0); + const double G4_0_0 = det*K[0]*K[0]*(1.0); + const double G4_0_1 = det*K[0]*K[2]*(1.0); + const double G4_1_0 = det*K[2]*K[0]*(1.0); + const double G4_1_1 = det*K[2]*K[2]*(1.0); + const double G5_0_0 = det*K[0]*K[0]*(1.0); + const double G5_0_1 = det*K[0]*K[2]*(1.0); + const double G5_1_0 = det*K[2]*K[0]*(1.0); + const double G5_1_1 = det*K[2]*K[2]*(1.0); + const double G6_0_0 = det*K[1]*K[1]*(1.0); + const double G6_0_1 = det*K[1]*K[3]*(1.0); + const double G6_1_0 = det*K[3]*K[1]*(1.0); + const double G6_1_1 = det*K[3]*K[3]*(1.0); + const double G7_0_0 = det*K[1]*K[1]*(1.0); + const double G7_0_1 = det*K[1]*K[3]*(1.0); + const double G7_1_0 = det*K[3]*K[1]*(1.0); + const double G7_1_1 = det*K[3]*K[3]*(1.0); + + // Compute element tensor + A[0] = 0.5*G4_0_0 + 0.5*G4_0_1 + 0.5*G4_1_0 + 0.5*G4_1_1 + 0.5*G6_0_0 + 0.5*G6_0_1 + 0.5*G6_1_0 + 0.5*G6_1_1; + A[1] = 0.166666666666667*G4_0_0 + 0.166666666666667*G4_1_0 + 0.166666666666667*G6_0_0 + 0.166666666666667*G6_1_0; + A[2] = 0.166666666666666*G4_0_1 + 0.166666666666666*G4_1_1 + 0.166666666666666*G6_0_1 + 0.166666666666666*G6_1_1; + A[3] = 0.0; + A[4] = -0.666666666666666*G4_0_1 - 0.666666666666666*G4_1_1 - 0.666666666666666*G6_0_1 - 0.666666666666666*G6_1_1; + A[5] = -0.666666666666666*G4_0_0 - 0.666666666666666*G4_1_0 - 0.666666666666666*G6_0_0 - 0.666666666666666*G6_1_0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.166666666666666*G2_0 + 0.166666666666666*G2_1; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.166666666666667*G4_0_0 + 0.166666666666667*G4_0_1 + 0.166666666666667*G6_0_0 + 0.166666666666667*G6_0_1; + A[16] = 0.5*G4_0_0 + 0.5*G6_0_0; + A[17] = -0.166666666666666*G4_0_1 - 0.166666666666666*G6_0_1; + A[18] = 0.666666666666666*G4_0_1 + 0.666666666666666*G6_0_1; + A[19] = 0.0; + A[20] = -0.666666666666666*G4_0_0 - 0.666666666666666*G4_0_1 - 0.666666666666666*G6_0_0 - 0.666666666666666*G6_0_1; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = -0.166666666666667*G2_0; + A[29] = 0.0; + A[30] = 0.166666666666666*G4_1_0 + 0.166666666666666*G4_1_1 + 0.166666666666666*G6_1_0 + 0.166666666666666*G6_1_1; + A[31] = -0.166666666666666*G4_1_0 - 0.166666666666666*G6_1_0; + A[32] = 0.5*G4_1_1 + 0.5*G6_1_1; + A[33] = 0.666666666666666*G4_1_0 + 0.666666666666666*G6_1_0; + A[34] = -0.666666666666666*G4_1_0 - 0.666666666666666*G4_1_1 - 0.666666666666666*G6_1_0 - 0.666666666666666*G6_1_1; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = -0.166666666666666*G2_1; + A[45] = 0.0; + A[46] = 0.666666666666666*G4_1_0 + 0.666666666666666*G6_1_0; + A[47] = 0.666666666666666*G4_0_1 + 0.666666666666666*G6_0_1; + A[48] = 1.33333333333333*G4_0_0 + 0.666666666666665*G4_0_1 + 0.666666666666665*G4_1_0 + 1.33333333333333*G4_1_1 + 1.33333333333333*G6_0_0 + 0.666666666666665*G6_0_1 + 0.666666666666665*G6_1_0 + 1.33333333333333*G6_1_1; + A[49] = -1.33333333333333*G4_0_0 - 0.666666666666666*G4_0_1 - 0.666666666666665*G4_1_0 - 1.33333333333333*G6_0_0 - 0.666666666666666*G6_0_1 - 0.666666666666665*G6_1_0; + A[50] = -0.666666666666666*G4_0_1 - 0.666666666666666*G4_1_0 - 1.33333333333333*G4_1_1 - 0.666666666666666*G6_0_1 - 0.666666666666666*G6_1_0 - 1.33333333333333*G6_1_1; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = -0.166666666666667*G2_0 - 0.166666666666667*G2_1; + A[58] = -0.166666666666667*G2_0 - 0.333333333333333*G2_1; + A[59] = -0.333333333333333*G2_0 - 0.166666666666667*G2_1; + A[60] = -0.666666666666666*G4_1_0 - 0.666666666666666*G4_1_1 - 0.666666666666666*G6_1_0 - 0.666666666666666*G6_1_1; + A[61] = 0.0; + A[62] = -0.666666666666666*G4_0_1 - 0.666666666666666*G4_1_1 - 0.666666666666666*G6_0_1 - 0.666666666666666*G6_1_1; + A[63] = -1.33333333333333*G4_0_0 - 0.666666666666665*G4_0_1 - 0.666666666666666*G4_1_0 - 1.33333333333333*G6_0_0 - 0.666666666666665*G6_0_1 - 0.666666666666666*G6_1_0; + A[64] = 1.33333333333333*G4_0_0 + 0.666666666666666*G4_0_1 + 0.666666666666666*G4_1_0 + 1.33333333333333*G4_1_1 + 1.33333333333333*G6_0_0 + 0.666666666666666*G6_0_1 + 0.666666666666666*G6_1_0 + 1.33333333333333*G6_1_1; + A[65] = 0.666666666666666*G4_0_1 + 0.666666666666666*G4_1_0 + 0.666666666666666*G6_0_1 + 0.666666666666666*G6_1_0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.166666666666667*G2_0 - 0.166666666666666*G2_1; + A[73] = 0.166666666666667*G2_0; + A[74] = 0.333333333333333*G2_0 + 0.166666666666666*G2_1; + A[75] = -0.666666666666666*G4_0_0 - 0.666666666666666*G4_0_1 - 0.666666666666666*G6_0_0 - 0.666666666666666*G6_0_1; + A[76] = -0.666666666666666*G4_0_0 - 0.666666666666666*G4_1_0 - 0.666666666666666*G6_0_0 - 0.666666666666666*G6_1_0; + A[77] = 0.0; + A[78] = -0.666666666666666*G4_0_1 - 0.666666666666666*G4_1_0 - 1.33333333333333*G4_1_1 - 0.666666666666666*G6_0_1 - 0.666666666666666*G6_1_0 - 1.33333333333333*G6_1_1; + A[79] = 0.666666666666666*G4_0_1 + 0.666666666666666*G4_1_0 + 0.666666666666666*G6_0_1 + 0.666666666666666*G6_1_0; + A[80] = 1.33333333333333*G4_0_0 + 0.666666666666667*G4_0_1 + 0.666666666666667*G4_1_0 + 1.33333333333333*G4_1_1 + 1.33333333333333*G6_0_0 + 0.666666666666667*G6_0_1 + 0.666666666666667*G6_1_0 + 1.33333333333333*G6_1_1; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = -0.166666666666666*G2_0 + 0.166666666666667*G2_1; + A[88] = 0.166666666666667*G2_0 + 0.333333333333333*G2_1; + A[89] = 0.166666666666667*G2_1; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.5*G5_0_0 + 0.5*G5_0_1 + 0.5*G5_1_0 + 0.5*G5_1_1 + 0.5*G7_0_0 + 0.5*G7_0_1 + 0.5*G7_1_0 + 0.5*G7_1_1; + A[97] = 0.166666666666667*G5_0_0 + 0.166666666666667*G5_1_0 + 0.166666666666667*G7_0_0 + 0.166666666666667*G7_1_0; + A[98] = 0.166666666666666*G5_0_1 + 0.166666666666666*G5_1_1 + 0.166666666666666*G7_0_1 + 0.166666666666666*G7_1_1; + A[99] = 0.0; + A[100] = -0.666666666666666*G5_0_1 - 0.666666666666666*G5_1_1 - 0.666666666666666*G7_0_1 - 0.666666666666666*G7_1_1; + A[101] = -0.666666666666666*G5_0_0 - 0.666666666666666*G5_1_0 - 0.666666666666666*G7_0_0 - 0.666666666666666*G7_1_0; + A[102] = 0.166666666666666*G3_0 + 0.166666666666666*G3_1; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.166666666666667*G5_0_0 + 0.166666666666667*G5_0_1 + 0.166666666666667*G7_0_0 + 0.166666666666667*G7_0_1; + A[112] = 0.5*G5_0_0 + 0.5*G7_0_0; + A[113] = -0.166666666666666*G5_0_1 - 0.166666666666666*G7_0_1; + A[114] = 0.666666666666666*G5_0_1 + 0.666666666666666*G7_0_1; + A[115] = 0.0; + A[116] = -0.666666666666666*G5_0_0 - 0.666666666666666*G5_0_1 - 0.666666666666666*G7_0_0 - 0.666666666666666*G7_0_1; + A[117] = 0.0; + A[118] = -0.166666666666667*G3_0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.166666666666666*G5_1_0 + 0.166666666666666*G5_1_1 + 0.166666666666666*G7_1_0 + 0.166666666666666*G7_1_1; + A[127] = -0.166666666666666*G5_1_0 - 0.166666666666666*G7_1_0; + A[128] = 0.5*G5_1_1 + 0.5*G7_1_1; + A[129] = 0.666666666666666*G5_1_0 + 0.666666666666666*G7_1_0; + A[130] = -0.666666666666666*G5_1_0 - 0.666666666666666*G5_1_1 - 0.666666666666666*G7_1_0 - 0.666666666666666*G7_1_1; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = -0.166666666666666*G3_1; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.666666666666666*G5_1_0 + 0.666666666666666*G7_1_0; + A[143] = 0.666666666666666*G5_0_1 + 0.666666666666666*G7_0_1; + A[144] = 1.33333333333333*G5_0_0 + 0.666666666666665*G5_0_1 + 0.666666666666665*G5_1_0 + 1.33333333333333*G5_1_1 + 1.33333333333333*G7_0_0 + 0.666666666666665*G7_0_1 + 0.666666666666665*G7_1_0 + 1.33333333333333*G7_1_1; + A[145] = -1.33333333333333*G5_0_0 - 0.666666666666666*G5_0_1 - 0.666666666666665*G5_1_0 - 1.33333333333333*G7_0_0 - 0.666666666666666*G7_0_1 - 0.666666666666665*G7_1_0; + A[146] = -0.666666666666666*G5_0_1 - 0.666666666666666*G5_1_0 - 1.33333333333333*G5_1_1 - 0.666666666666666*G7_0_1 - 0.666666666666666*G7_1_0 - 1.33333333333333*G7_1_1; + A[147] = -0.166666666666667*G3_0 - 0.166666666666667*G3_1; + A[148] = -0.166666666666667*G3_0 - 0.333333333333333*G3_1; + A[149] = -0.333333333333333*G3_0 - 0.166666666666667*G3_1; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = -0.666666666666666*G5_1_0 - 0.666666666666666*G5_1_1 - 0.666666666666666*G7_1_0 - 0.666666666666666*G7_1_1; + A[157] = 0.0; + A[158] = -0.666666666666666*G5_0_1 - 0.666666666666666*G5_1_1 - 0.666666666666666*G7_0_1 - 0.666666666666666*G7_1_1; + A[159] = -1.33333333333333*G5_0_0 - 0.666666666666665*G5_0_1 - 0.666666666666666*G5_1_0 - 1.33333333333333*G7_0_0 - 0.666666666666665*G7_0_1 - 0.666666666666666*G7_1_0; + A[160] = 1.33333333333333*G5_0_0 + 0.666666666666666*G5_0_1 + 0.666666666666666*G5_1_0 + 1.33333333333333*G5_1_1 + 1.33333333333333*G7_0_0 + 0.666666666666666*G7_0_1 + 0.666666666666666*G7_1_0 + 1.33333333333333*G7_1_1; + A[161] = 0.666666666666666*G5_0_1 + 0.666666666666666*G5_1_0 + 0.666666666666666*G7_0_1 + 0.666666666666666*G7_1_0; + A[162] = 0.166666666666667*G3_0 - 0.166666666666666*G3_1; + A[163] = 0.166666666666667*G3_0; + A[164] = 0.333333333333333*G3_0 + 0.166666666666666*G3_1; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = -0.666666666666666*G5_0_0 - 0.666666666666666*G5_0_1 - 0.666666666666666*G7_0_0 - 0.666666666666666*G7_0_1; + A[172] = -0.666666666666666*G5_0_0 - 0.666666666666666*G5_1_0 - 0.666666666666666*G7_0_0 - 0.666666666666666*G7_1_0; + A[173] = 0.0; + A[174] = -0.666666666666666*G5_0_1 - 0.666666666666666*G5_1_0 - 1.33333333333333*G5_1_1 - 0.666666666666666*G7_0_1 - 0.666666666666666*G7_1_0 - 1.33333333333333*G7_1_1; + A[175] = 0.666666666666666*G5_0_1 + 0.666666666666666*G5_1_0 + 0.666666666666666*G7_0_1 + 0.666666666666666*G7_1_0; + A[176] = 1.33333333333333*G5_0_0 + 0.666666666666667*G5_0_1 + 0.666666666666667*G5_1_0 + 1.33333333333333*G5_1_1 + 1.33333333333333*G7_0_0 + 0.666666666666667*G7_0_1 + 0.666666666666667*G7_1_0 + 1.33333333333333*G7_1_1; + A[177] = -0.166666666666666*G3_0 + 0.166666666666667*G3_1; + A[178] = 0.166666666666667*G3_0 + 0.333333333333333*G3_1; + A[179] = 0.166666666666667*G3_1; + A[180] = -0.166666666666666*G0_0 - 0.166666666666666*G0_1; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.166666666666667*G0_0 + 0.166666666666667*G0_1; + A[184] = -0.166666666666667*G0_0 + 0.166666666666666*G0_1; + A[185] = 0.166666666666666*G0_0 - 0.166666666666667*G0_1; + A[186] = -0.166666666666666*G1_0 - 0.166666666666666*G1_1; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.166666666666667*G1_0 + 0.166666666666667*G1_1; + A[190] = -0.166666666666667*G1_0 + 0.166666666666666*G1_1; + A[191] = 0.166666666666666*G1_0 - 0.166666666666667*G1_1; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.166666666666667*G0_0; + A[197] = 0.0; + A[198] = 0.166666666666667*G0_0 + 0.333333333333333*G0_1; + A[199] = -0.166666666666667*G0_0; + A[200] = -0.166666666666667*G0_0 - 0.333333333333333*G0_1; + A[201] = 0.0; + A[202] = 0.166666666666667*G1_0; + A[203] = 0.0; + A[204] = 0.166666666666667*G1_0 + 0.333333333333333*G1_1; + A[205] = -0.166666666666667*G1_0; + A[206] = -0.166666666666667*G1_0 - 0.333333333333333*G1_1; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.166666666666666*G0_1; + A[213] = 0.333333333333333*G0_0 + 0.166666666666667*G0_1; + A[214] = -0.333333333333333*G0_0 - 0.166666666666666*G0_1; + A[215] = -0.166666666666667*G0_1; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.166666666666666*G1_1; + A[219] = 0.333333333333333*G1_0 + 0.166666666666667*G1_1; + A[220] = -0.333333333333333*G1_0 - 0.166666666666666*G1_1; + A[221] = -0.166666666666667*G1_1; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class thstokes2d_form_0: public ufc::form +{ +public: + + /// Constructor + thstokes2d_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~thstokes2d_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "c9e96217bdf0b022e1a9d4f90d63fa9416a1eee23b1a54c975139f2f6b9c7cdd37541ea9b58f1cb326bf42f666b50c6dd5e092cd12a6ee87d8ae82cf4a165465"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new thstokes2d_finite_element_3(); + break; + } + case 1: + { + return new thstokes2d_finite_element_3(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new thstokes2d_dofmap_3(); + break; + } + case 1: + { + return new thstokes2d_dofmap_3(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new thstokes2d_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace THStokes2D +{ + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new thstokes2d_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new thstokes2d_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new thstokes2d_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new thstokes2d_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/assembly/cpp/forms/THStokes2D.ufl b/bench/fem/assembly/cpp/forms/THStokes2D.ufl new file mode 100644 index 0000000..15b8df3 --- /dev/null +++ b/bench/fem/assembly/cpp/forms/THStokes2D.ufl @@ -0,0 +1,8 @@ +vector = VectorElement("Lagrange", triangle, 2) +scalar = FiniteElement("Lagrange", triangle, 1) +element = vector * scalar + +(v, q) = TestFunctions(element) +(u, p) = TrialFunctions(element) + +a = (inner(grad(v), grad(u)) - div(v)*p + q*div(u))*dx diff --git a/bench/fem/assembly/cpp/forms/compile.log b/bench/fem/assembly/cpp/forms/compile.log new file mode 100644 index 0000000..3d9dc37 --- /dev/null +++ b/bench/fem/assembly/cpp/forms/compile.log @@ -0,0 +1,3904 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson2DP1 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0164669 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.0008 seconds + Shape of reference tensor: (3, 3, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.00652909 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000216007 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.0437171 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000373125 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson2DP1.h. + +Compiler stage 5 finished in 0.00056386 seconds. + +FFC finished in 0.0681932 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Elasticity3D + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Vector<3 x CG1(?)>' + Unique sub elements: 'Vector<3 x CG1(?)>, CG1(?)' + + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal Identity. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0137739 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 2 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 2 dofmaps + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {1: {VectorElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, dim=3, quad_scheme=None): {None: {None: {(1, 0, 0): array([[[-1.], + [ 0.], + [ 0.]], + + [[ 1.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [-1.], + [ 0.]], + + [[ 0.], + [ 1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [-1.]], + + [[ 0.], + [ 0.], + [ 1.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]]]), (0, 1, 0): array([[[-1.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 1.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [-1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [-1.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 1.]], + + [[ 0.], + [ 0.], + [ 0.]]]), (0, 0, 0): array([[[ 0.25], + [ 0. ], + [ 0. ]], + + [[ 0.25], + [ 0. ], + [ 0. ]], + + [[ 0.25], + [ 0. ], + [ 0. ]], + + [[ 0.25], + [ 0. ], + [ 0. ]], + + [[ 0. ], + [ 0.25], + [ 0. ]], + + [[ 0. ], + [ 0.25], + [ 0. ]], + + [[ 0. ], + [ 0.25], + [ 0. ]], + + [[ 0. ], + [ 0.25], + [ 0. ]], + + [[ 0. ], + [ 0. ], + [ 0.25]], + + [[ 0. ], + [ 0. ], + [ 0.25]], + + [[ 0. ], + [ 0. ], + [ 0.25]], + + [[ 0. ], + [ 0. ], + [ 0.25]]]), (0, 0, 1): array([[[ -1.00000000e+00], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 1.11022302e-16], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 1.00000000e+00], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ -1.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 1.11022302e-16], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 1.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ -1.00000000e+00]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ 1.11022302e-16]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ 1.00000000e+00]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]]), 'FE0_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D010': array([[ 0., 0., 0., 0., -1., 0., 1., 0., 0., 0., 0., 0.]]), 'FE0_C2_D010': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 1., 0.]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D010': array([[-1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D001': array([[ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE0_C2': array([[ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.25, + 0.25, 0.25, 0.25]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0. , 0.25, 0.25, 0.25, 0.25, 0. , + 0. , 0. , 0. ]]), 'FE0_C0': array([[ 0.25, 0.25, 0.25, 0.25, 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. ]])} + + tables: {'FE0_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]]), 'FE0_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D010': array([[ 0., 0., 0., 0., -1., 0., 1., 0., 0., 0., 0., 0.]]), 'FE0_C2_D010': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 1., 0.]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D010': array([[-1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D001': array([[ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE0_C2': array([[ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.25, + 0.25, 0.25, 0.25]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0. , 0.25, 0.25, 0.25, 0.25, 0. , + 0. , 0. , 0. ]]), 'FE0_C0': array([[ 0.25, 0.25, 0.25, 0.25, 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. ]])} + + name_map: {} + + inv_name_map: {'FE0_C2_D001': 'FE0_C2_D001', 'FE0_C1_D001': 'FE0_C1_D001', 'FE0_C1_D010': 'FE0_C1_D010', 'FE0_C2_D010': 'FE0_C2_D010', 'FE0_C1_D100': 'FE0_C1_D100', 'FE0_C0_D100': 'FE0_C0_D100', 'FE0_C0_D010': 'FE0_C0_D010', 'FE0_C0_D001': 'FE0_C0_D001', 'FE0_C2_D100': 'FE0_C2_D100', 'FE0_C2': 'FE0_C2', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_C0_D001': array([[-1., 1.]]), 'FE0_C0': array([[ 0.25, 0.25, 0.25, 0.25]])} + + QG-utils, psi_tables, name_map: + {'FE0_C2_D001': ('FE0_C0_D001', (9, [8, 11]), False, False), 'FE0_C1_D001': ('FE0_C0_D001', (5, [4, 7]), False, False), 'FE0_C1_D010': ('FE0_C0_D001', (6, [4, 6]), False, False), 'FE0_C2_D010': ('FE0_C0_D001', (10, [8, 10]), False, False), 'FE0_C1_D100': ('FE0_C0_D001', (7, [4, 5]), False, False), 'FE0_C0_D100': ('FE0_C0_D001', (3, [0, 1]), False, False), 'FE0_C0_D010': ('FE0_C0_D001', (2, [0, 2]), False, False), 'FE0_C0_D001': ('FE0_C0_D001', (1, [0, 3]), False, False), 'FE0_C2_D100': ('FE0_C0_D001', (11, [8, 9]), False, False), 'FE0_C2': ('FE0_C0', (8, [8, 9, 10, 11]), False, False), 'FE0_C1': ('FE0_C0', (4, [4, 5, 6, 7]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2, 3]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.133289 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.0188811 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 2 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 2 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: area + Removing unused variable: s + Removing unused variable: lc + Removing unused variable: lb + Removing unused variable: la + Removing unused variable: v2v3 + Removing unused variable: v1v3 + Removing unused variable: v0v3 + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.242237 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000416994 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Elasticity3D.h. + +Compiler stage 5 finished in 0.000925064 seconds. + +FFC finished in 0.409922 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form NSEMomentum3D + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 5 + Coefficients: '[w_0, w_1, w_2, w_3, w_4]' + Coefficient names: '[w, d1, d2, k, nu]' + Unique elements: 'Vector<3 x CG1(?)>, Vector<3 x DG0(?)>, DG0(?)' + Unique sub elements: 'Vector<3 x CG1(?)>, Vector<3 x DG0(?)>, DG0(?), CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 6 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.035696 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 4 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 4 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {4: {VectorElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, dim=3, quad_scheme=None): {None: {None: {(1, 0, 0): array([[[-1., -1., -1., -1.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [-1., -1., -1., -1.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 1., 1., 1., 1.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [-1., -1., -1., -1.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]]]), (0, 1, 0): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 3.88578059e-16, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 3.88578059e-16, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 3.88578059e-16, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]]]), (0, 0, 0): array([[[ 0.1381966, 0.1381966, 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0.5854102, 0.1381966, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0.1381966, 0.5854102, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0.1381966, 0.1381966, 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.5854102, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.5854102, 0.1381966, 0.1381966]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966]]]), (0, 0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.11022302e-16, 1.11022302e-16, 4.99600361e-16, + 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 5.55111512e-17, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.11022302e-16, 1.11022302e-16, 4.99600361e-16, + 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 5.55111512e-17, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.11022302e-16, 1.11022302e-16, 4.99600361e-16, + 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 5.55111512e-17, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]])}}}, VectorElement('Discontinuous Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 0, dim=3, quad_scheme=None): {None: {None: {(0, 0, 0): array([[[ 1., 1., 1., 1.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 1., 1., 1., 1.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 1., 1., 1., 1.]]])}}}, FiniteElement('Discontinuous Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0, 0): array([[ 1., 1., 1., 1.]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE2_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE2_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 4.99600361e-16, 5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]]), 'FE1_C0': array([[ 1., 0., 0.], + [ 1., 0., 0.], + [ 1., 0., 0.], + [ 1., 0., 0.]]), 'FE1_C1': array([[ 0., 1., 0.], + [ 0., 1., 0.], + [ 0., 1., 0.], + [ 0., 1., 0.]]), 'FE1_C2': array([[ 0., 0., 1.], + [ 0., 0., 1.], + [ 0., 0., 1.], + [ 0., 0., 1.]]), 'FE2_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE2_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0. , 0.1381966, + 0.5854102, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.5854102, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.1381966, 0.5854102, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.5854102, + 0.1381966, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ]]), 'FE2_C0': array([[ 0.1381966, 0.5854102, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]]), 'FE2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.5854102, + 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.5854102, 0.1381966, + 0.1381966, 0.1381966]]), 'FE2_C0_D001': array([[ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.99600361e-16, 5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0': array([[ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE2_C2_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.88578059e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]), 'FE2_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.99600361e-16, + 5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C0_D010': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + tables: {'FE2_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE2_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 4.99600361e-16, 5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]]), 'FE1_C0': array([[ 1., 0., 0.], + [ 1., 0., 0.], + [ 1., 0., 0.], + [ 1., 0., 0.]]), 'FE1_C1': array([[ 0., 1., 0.], + [ 0., 1., 0.], + [ 0., 1., 0.], + [ 0., 1., 0.]]), 'FE1_C2': array([[ 0., 0., 1.], + [ 0., 0., 1.], + [ 0., 0., 1.], + [ 0., 0., 1.]]), 'FE2_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE2_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0. , 0.1381966, + 0.5854102, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.5854102, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.1381966, 0.5854102, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.5854102, + 0.1381966, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ]]), 'FE2_C0': array([[ 0.1381966, 0.5854102, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]]), 'FE2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.5854102, + 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.5854102, 0.1381966, + 0.1381966, 0.1381966]]), 'FE2_C0_D001': array([[ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.99600361e-16, 5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0': array([[ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE2_C2_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.88578059e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]), 'FE2_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.99600361e-16, + 5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C0_D010': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + name_map: {} + + inv_name_map: {'FE2_C1_D100': 'FE2_C1_D100', 'FE0': 'FE0', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C2': 'FE1_C2', 'FE2_C0_D100': 'FE2_C0_D100', 'FE2_C2_D100': 'FE2_C2_D100', 'FE2_C1': 'FE2_C1', 'FE2_C0': 'FE2_C0', 'FE2_C2': 'FE2_C2', 'FE2_C0_D001': 'FE2_C0_D001', 'FE2_C2_D001': 'FE2_C2_D001', 'FE2_C2_D010': 'FE2_C2_D010', 'FE2_C1_D001': 'FE2_C1_D001', 'FE2_C0_D010': 'FE2_C0_D010', 'FE2_C1_D010': 'FE2_C1_D010'} + + QG-utils, psi_tables, unique_tables: + {'FE2_C0': array([[ 0.1381966, 0.5854102, 0.1381966, 0.1381966], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966]]), 'FE2_C0_D001': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE0': array([[ 1.], + [ 1.], + [ 1.], + [ 1.]])} + + QG-utils, psi_tables, name_map: + {'FE2_C1_D100': ('FE2_C0_D001', (10, [4, 5]), False, False), 'FE0': ('FE0', (), False, True), 'FE1_C0': ('FE0', (0, [0]), False, True), 'FE1_C1': ('FE0', (1, [1]), False, True), 'FE1_C2': ('FE0', (2, [2]), False, True), 'FE2_C0_D100': ('FE2_C0_D001', (6, [0, 1]), False, False), 'FE2_C2_D100': ('FE2_C0_D001', (14, [8, 9]), False, False), 'FE2_C1': ('FE2_C0', (7, [4, 5, 6, 7]), False, False), 'FE2_C0': ('FE2_C0', (3, [0, 1, 2, 3]), False, False), 'FE2_C2': ('FE2_C0', (11, [8, 9, 10, 11]), False, False), 'FE2_C0_D001': ('FE2_C0_D001', (4, [0, 3]), False, False), 'FE2_C2_D001': ('FE2_C0_D001', (12, [8, 11]), False, False), 'FE2_C2_D010': ('FE2_C0_D001', (13, [8, 10]), False, False), 'FE2_C1_D001': ('FE2_C0_D001', (8, [4, 7]), False, False), 'FE2_C0_D010': ('FE2_C0_D001', (5, [0, 2]), False, False), 'FE2_C1_D010': ('FE2_C0_D001', (9, [4, 6]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.281735 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.0613921 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 4 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Z + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: d_22 + Removing unused variable: d_21 + Removing unused variable: d_20 + Removing unused variable: d_12 + Removing unused variable: d_11 + Removing unused variable: d_10 + Removing unused variable: d_02 + Removing unused variable: d_01 + Removing unused variable: d_00 + Removing unused variable: C2 + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Z + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: d_22 + Removing unused variable: d_21 + Removing unused variable: d_20 + Removing unused variable: d_12 + Removing unused variable: d_11 + Removing unused variable: d_10 + Removing unused variable: d_02 + Removing unused variable: d_01 + Removing unused variable: d_00 + Removing unused variable: C2 + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 4 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: area + Removing unused variable: s + Removing unused variable: lc + Removing unused variable: lb + Removing unused variable: la + Removing unused variable: v2v3 + Removing unused variable: v1v3 + Removing unused variable: v0v3 + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.365535 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000880003 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./NSEMomentum3D.h. + +Compiler stage 5 finished in 0.00142193 seconds. + +FFC finished in 0.747132 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson2DP2 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG2(?)' + Unique sub elements: 'CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0222299 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.00158 seconds + Shape of reference tensor: (6, 6, 2, 2) + Primary multi index: rank = 2 dims = [6, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.00914693 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000267029 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.15273 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000815868 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson2DP2.h. + +Compiler stage 5 finished in 0.00135899 seconds. + +FFC finished in 0.187122 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson2DP3 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG3(?)' + Unique sub elements: 'CG3(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0219939 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 400 entries computed in 0.0029 seconds + Shape of reference tensor: (10, 10, 2, 2) + Primary multi index: rank = 2 dims = [10, 10] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0088861 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000194073 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.191246 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000368834 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson2DP3.h. + +Compiler stage 5 finished in 0.001302 seconds. + +FFC finished in 0.224361 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form StabStokes2D + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[h]' + Unique elements: 'Mixed, DG0(?)>, DG0(?)' + Unique sub elements: 'Mixed, DG0(?)>, DG0(?), Vector<2 x CG1 + (?)>, CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 4 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 1 + quadrature_degree: auto --> 1 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0324228 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 4 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 4 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {1: {FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0): array([[1.0]], dtype=object)}}}, MixedElement(*[VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None)], **{'value_shape': (3,) }): {None: {None: {(0, 1): array([[[-1.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 1.], + [ 0.], + [ 0.]], + + [[ 0.], + [-1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]]]), (1, 0): array([[[-1.], + [ 0.], + [ 0.]], + + [[ 1.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [-1.], + [ 0.]], + + [[ 0.], + [ 1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]]]), (0, 0): array([[[ 0.33333333], + [ 0. ], + [ 0. ]], + + [[ 0.33333333], + [ 0. ], + [ 0. ]], + + [[ 0.33333333], + [ 0. ], + [ 0. ]], + + [[ 0. ], + [ 0.33333333], + [ 0. ]], + + [[ 0. ], + [ 0.33333333], + [ 0. ]], + + [[ 0. ], + [ 0.33333333], + [ 0. ]], + + [[ 0. ], + [ 0. ], + [ 1. ]]])}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1.], + [ 0.]], + + [[ 0.], + [ 0.]], + + [[ 1.], + [ 0.]], + + [[ 0.], + [-1.]], + + [[ 0.], + [ 0.]], + + [[ 0.], + [ 1.]]]), (1, 0): array([[[-1.], + [ 0.]], + + [[ 1.], + [ 0.]], + + [[ 0.], + [ 0.]], + + [[ 0.], + [-1.]], + + [[ 0.], + [ 1.]], + + [[ 0.], + [ 0.]]]), (0, 0): array([[[ 0.33333333], + [ 0. ]], + + [[ 0.33333333], + [ 0. ]], + + [[ 0.33333333], + [ 0. ]], + + [[ 0. ], + [ 0.33333333]], + + [[ 0. ], + [ 0.33333333]], + + [[ 0. ], + [ 0.33333333]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE2_C1_D01': array([[ 0., 0., 0., -1., 0., 1., 0.]]), 'FE2_C1_D10': array([[ 0., 0., 0., -1., 1., 0., 0.]]), 'FE2_C0_D01': array([[-1., 0., 1., 0., 0., 0., 0.]]), 'FE1_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333]]), 'FE2_C0_D10': array([[-1., 1., 0., 0., 0., 0., 0.]]), 'FE2_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0.]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333, 0. ]]), 'FE2_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. , 0. ]]), 'FE2_C2': array([[ 0., 0., 0., 0., 0., 0., 1.]]), 'FE0': array([[1.0]], dtype=object), 'FE1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0_D01': array([[-1., 0., 1., 0., 0., 0.]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.]]), 'FE2_C2_D01': array([[ 0., 0., 0., 0., 0., 0., 0.]])} + + tables: {'FE2_C1_D01': array([[ 0., 0., 0., -1., 0., 1., 0.]]), 'FE2_C1_D10': array([[ 0., 0., 0., -1., 1., 0., 0.]]), 'FE2_C0_D01': array([[-1., 0., 1., 0., 0., 0., 0.]]), 'FE1_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333]]), 'FE2_C0_D10': array([[-1., 1., 0., 0., 0., 0., 0.]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333, 0. ]]), 'FE2_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. , 0. ]]), 'FE2_C2': array([[ 0., 0., 0., 0., 0., 0., 1.]]), 'FE0': array([[1.0]], dtype=object), 'FE1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0_D01': array([[-1., 0., 1., 0., 0., 0.]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.]]), 'FE2_C2_D01': array([[ 0., 0., 0., 0., 0., 0., 0.]])} + + name_map: {'FE2_C2_D01': ['FE2_C2_D10']} + + inv_name_map: {'FE2_C1_D01': 'FE2_C1_D01', 'FE2_C1_D10': 'FE2_C1_D10', 'FE2_C0': 'FE2_C0', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C1_D01': 'FE1_C1_D01', 'FE2_C2_D10': 'FE2_C2_D01', 'FE1_C1_D10': 'FE1_C1_D10', 'FE2_C1': 'FE2_C1', 'FE2_C0_D01': 'FE2_C0_D01', 'FE2_C2': 'FE2_C2', 'FE0': 'FE0', 'FE2_C0_D10': 'FE2_C0_D10', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10', 'FE2_C2_D01': 'FE2_C2_D01'} + + QG-utils, psi_tables, unique_tables: + {'FE1_C0': array([[ 0.33333333, 0.33333333, 0.33333333]]), 'FE0': array([[1.0]], dtype=object), 'FE1_C0_D01': array([[-1., 1.]]), 'FE2_C2_D01': array([[ 0., 0., 0., 0., 0., 0., 0.]])} + + QG-utils, psi_tables, name_map: + {'FE2_C1_D01': ('FE1_C0_D01', (10, [3, 5]), False, False), 'FE2_C1_D10': ('FE1_C0_D01', (11, [3, 4]), False, False), 'FE2_C0': ('FE1_C0', (6, [0, 1, 2]), False, False), 'FE1_C0': ('FE1_C0', (0, [0, 1, 2]), False, False), 'FE1_C1': ('FE1_C0', (3, [3, 4, 5]), False, False), 'FE1_C1_D01': ('FE1_C0_D01', (4, [3, 5]), False, False), 'FE2_C2_D10': ('FE2_C2_D01', (), True, False), 'FE1_C1_D10': ('FE1_C0_D01', (5, [3, 4]), False, False), 'FE2_C1': ('FE1_C0', (9, [3, 4, 5]), False, False), 'FE2_C0_D01': ('FE1_C0_D01', (7, [0, 2]), False, False), 'FE2_C2': ('FE0', (12, [6]), False, True), 'FE0': ('FE0', (), False, True), 'FE2_C0_D10': ('FE1_C0_D01', (8, [0, 1]), False, False), 'FE1_C0_D01': ('FE1_C0_D01', (1, [0, 2]), False, False), 'FE1_C0_D10': ('FE1_C0_D01', (2, [0, 1]), False, False), 'FE2_C2_D01': ('FE2_C2_D01', (), True, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.117329 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.001719 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 4 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 4 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.153051 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000530958 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./StabStokes2D.h. + +Compiler stage 5 finished in 0.000887156 seconds. + +FFC finished in 0.306298 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form THStokes2D + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Mixed, CG1(?)>' + Unique sub elements: 'Mixed, CG1(?)>, Vector<2 x CG2(?)>, CG + 1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0449529 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 4 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 4 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00895 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00602 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00593 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00902 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 900 entries computed in 0.00384 seconds + Shape of reference tensor: (15, 15, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 900 entries computed in 0.0037 seconds + Shape of reference tensor: (15, 15, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 900 entries computed in 0.00388 seconds + Shape of reference tensor: (15, 15, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 900 entries computed in 0.00359 seconds + Shape of reference tensor: (15, 15, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.100885 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000272036 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 4 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 4 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.523609 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000440121 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./THStokes2D.h. + +Compiler stage 5 finished in 0.00141382 seconds. + +FFC finished in 0.672034 seconds. diff --git a/bench/fem/assembly/cpp/main.cpp b/bench/fem/assembly/cpp/main.cpp new file mode 100644 index 0000000..f773ff2 --- /dev/null +++ b/bench/fem/assembly/cpp/main.cpp @@ -0,0 +1,172 @@ +// Copyright (C) 2008-2010 Dag Lindbo, Anders Logg and Ilmar Wilbers +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2008-07-22 +// Last changed: 2011-09-21 + +#include +#include +#include +#include +#include "forms.h" + +using namespace dolfin; + +double assemble_form(Form& form) +{ + // Assemble once + const double t0 = time(); + Matrix A; + Assembler assembler; + assembler.assemble(A, form); + return time() - t0; +} + +double reassemble_form(Form& form) +{ + // Assemble once + Matrix A; + Assembler assembler; + assembler.assemble(A, form); + + // Reassemble + const double t0 = time(); + assembler.reset_sparsity = false; + assembler.assemble(A, form); + return time() - t0; +} + +int main(int argc, char* argv[]) +{ + info("Assembly for various forms and backends"); + set_log_active(false); + + parameters["reorder_dofs_serial"] = false; + + // Forms + std::vector forms; + forms.push_back("poisson1"); + forms.push_back("poisson2"); + forms.push_back("poisson3"); + forms.push_back("stokes"); + forms.push_back("stabilization"); + forms.push_back("elasticity"); + forms.push_back("navierstokes"); + + // Backends + std::vector backends; + backends.push_back("uBLAS"); + backends.push_back("PETSc"); + backends.push_back("Epetra"); + backends.push_back("STL"); + + // Override forms and backends with command-line arguments + if (argc == 3) + { + forms.clear(); + forms.push_back(argv[1]); + backends.clear(); + backends.push_back(argv[2]); + } + else if (argc != 1) + { + std::cout << "Usage: bench [form] [backend]" << std::endl; + exit(1); + } + + // Tables for results + Table t0("Assemble total"); + Table t1("Init dofmap"); + Table t2("Build sparsity"); + Table t3("Init tensor"); + Table t4("Delete sparsity"); + Table t5("Assemble cells"); + Table t6("Overhead"); + Table t7("Reassemble total"); + + // Benchmark assembly + for (unsigned int i = 0; i < forms.size(); i++) + { + std::cout << "Form: " << forms[i] << std::endl; + for (unsigned int j = 0; j < backends.size(); j++) + { + parameters["linear_algebra_backend"] = backends[j]; + parameters["timer_prefix"] = backends[j]; + std::cout << " Backend: " << backends[j] << std::endl; + const double tt0 = bench_form(forms[i], assemble_form); + const double tt1 = timing(backends[j] + t1.title(), true); + const double tt2 = timing(backends[j] + t2.title(), true); + const double tt3 = timing(backends[j] + t3.title(), true); + const double tt4 = timing(backends[j] + t4.title(), true); + const double tt5 = timing(backends[j] + t5.title(), true); + t0(forms[i], backends[j]) = tt0; + t1(forms[i], backends[j]) = tt1; + t2(forms[i], backends[j]) = tt2; + t3(forms[i], backends[j]) = tt3; + t4(forms[i], backends[j]) = tt4; + t5(forms[i], backends[j]) = tt5; + t6(forms[i], backends[j]) = tt0 - tt1 - tt2 - tt3 - tt4 - tt5; + std::cout << " BENCH " << forms[i] << "-" << backends[j] << " " << tt0 << std::endl; + } + } + + // Benchmark reassembly + if (argc == 1) + { + for (unsigned int i = 0; i < forms.size(); i++) + { + std::cout << "Form: " << forms[i] << std::endl; + for (unsigned int j = 0; j < backends.size(); j++) + { + parameters["linear_algebra_backend"] = backends[j]; + parameters["timer_prefix"] = backends[j]; + std::cout << " Backend: " << backends[j] << std::endl; + t7(forms[i], backends[j]) = bench_form(forms[i], reassemble_form); + } + } + } + + // Display results + set_log_active(true); + std::cout << std::endl; info(t0, true); + std::cout << std::endl; info(t1, true); + std::cout << std::endl; info(t2, true); + std::cout << std::endl; info(t3, true); + std::cout << std::endl; info(t4, true); + std::cout << std::endl; info(t5, true); + std::cout << std::endl; info(t6, true); + if (argc == 1) + std::cout << std::endl; info(t7, true); + + /* + // Display LaTeX tables + const bool print_latex = true; + if (print_latex) + { + std::cout << std::endl << t0.str_latex(); + //std::cout << std::endl << t1.str_latex(); + std::cout << std::endl << t2.str_latex(); + std::cout << std::endl << t3.str_latex(); + std::cout << std::endl << t4.str_latex(); + std::cout << std::endl << t5.str_latex(); + std::cout << std::endl << t6.str_latex(); + std::cout << std::endl << t7.str_latex(); + } + */ + + return 0; +} diff --git a/bench/fem/assembly/python/broken b/bench/fem/assembly/python/broken new file mode 100755 index 0000000..2621b08 --- /dev/null +++ b/bench/fem/assembly/python/broken @@ -0,0 +1,97 @@ +# Copyright (C) 2008 Ilmar Wilbers +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2008. +# +# First added: 2008-06-04 +# Last changed: 2008-07-21 + +# Be careful to first run the benchmark once in order for +# the Python extensions to be created, or else the timings +# will not be correct. + +from dolfin import * +from time import time +import sys + +def make_form(name, mesh): + globals()['mesh'] = mesh + execfile("../forms/" + name + '.form', globals()) + try: + return a + except: + print "No object 'a' to return in file %s.form" %name + return None + +def bench_form(form, mesh, reps=1): + totaltime = 0.0 + t0 = time() + A = assemble(form, mesh) + totaltime += time() - t0 + for i in range(reps - 1): + t0 = time() + assemble(form, mesh, tensor=A, reset_sparsity=False) + totaltime += time() - t0 + return totaltime / float(reps) + +def make_mesh(name, dim): + if dim == 3: + N = 32 + mesh = UnitCube(N, N, N) + return mesh + else: + N = 256 + mesh = UnitSquare(N, N) + return mesh + +if __name__ == "__main__": + try: + reps = int(sys.argv[1]) + except: + print 'Usage: %s number_of_repetitions [1]' %sys.argv[0] + reps = 1 + +# Backends +backends = ["uBLAS", "PETSc", "Epetra", "MTL4", "Assembly"] + +# Forms +forms = ["Elasticity3D", + "PoissonP1", + "PoissonP2", + "PoissonP3", + "THStokes2D", + "NSEMomentum3D", + "StabStokes2D"] + +dolfin_set("output destination", "silent") +results = Table("Assembly benchmark") + +for backend in backends: + dolfin_set("linear algebra backend", backend) + for form in forms: + dim = 2 if not form.find("3D") > -1 else 3 + m = make_mesh(form, dim) + a = make_form(form, m) + print "Assembling %s with %s" % (form, backend) + t = bench_form(a, m, reps=reps) + results.set(backend, form, t) + +dolfin_set("output destination", "terminal") +print "" + +results.disp() +summary() diff --git a/bench/fem/convergence/cpp/CMakeLists.txt b/bench/fem/convergence/cpp/CMakeLists.txt new file mode 100644 index 0000000..741ee06 --- /dev/null +++ b/bench/fem/convergence/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_fem_convergence_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} Poisson3D_4.cpp Poisson3D_3.cpp Poisson3D_2.cpp Poisson2D_4.cpp Poisson2D_2.cpp Poisson3D_1.cpp Poisson2D_1.cpp Poisson2D_3.cpp main.cpp Poisson2D_5.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/fem/convergence/cpp/Poisson2D_1.cpp b/bench/fem/convergence/cpp/Poisson2D_1.cpp new file mode 100644 index 0000000..740fbff --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_1.cpp @@ -0,0 +1,1602 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#include "Poisson2D_1.h" + +/// Constructor +poisson2d_1_finite_element_0::poisson2d_1_finite_element_0() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +poisson2d_1_finite_element_0::~poisson2d_1_finite_element_0() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* poisson2d_1_finite_element_0::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; +} + +/// Return the cell shape +ufc::shape poisson2d_1_finite_element_0::cell_shape() const +{ + return ufc::triangle; +} + +/// Return the topological dimension of the cell shape +std::size_t poisson2d_1_finite_element_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the cell shape +std::size_t poisson2d_1_finite_element_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the finite element function space +std::size_t poisson2d_1_finite_element_0::space_dimension() const +{ + return 3; +} + +/// Return the rank of the value space +std::size_t poisson2d_1_finite_element_0::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t poisson2d_1_finite_element_0::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void poisson2d_1_finite_element_0::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void poisson2d_1_finite_element_0::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void poisson2d_1_finite_element_0::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void poisson2d_1_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double poisson2d_1_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void poisson2d_1_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; +} + +/// Interpolate vertex values from dof values +void poisson2d_1_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void poisson2d_1_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void poisson2d_1_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t poisson2d_1_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* poisson2d_1_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* poisson2d_1_finite_element_0::create() const +{ + return new poisson2d_1_finite_element_0(); +} + +/// Constructor +poisson2d_1_dofmap_0::poisson2d_1_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +poisson2d_1_dofmap_0::~poisson2d_1_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* poisson2d_1_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool poisson2d_1_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t poisson2d_1_dofmap_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t poisson2d_1_dofmap_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the global finite element function space +std::size_t poisson2d_1_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t poisson2d_1_dofmap_0::local_dimension() const +{ + return 3; +} + +/// Return the number of dofs on each cell facet +std::size_t poisson2d_1_dofmap_0::num_facet_dofs() const +{ + return 2; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t poisson2d_1_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void poisson2d_1_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void poisson2d_1_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void poisson2d_1_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void poisson2d_1_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t poisson2d_1_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* poisson2d_1_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* poisson2d_1_dofmap_0::create() const +{ + return new poisson2d_1_dofmap_0(); +} + +/// Constructor +poisson2d_1_cell_integral_0_otherwise::poisson2d_1_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson2d_1_cell_integral_0_otherwise::~poisson2d_1_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson2d_1_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson2d_1_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 11 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = -0.5*G0_0_0 - 0.5*G0_1_0; + A[2] = -0.5*G0_0_1 - 0.5*G0_1_1; + A[3] = -0.5*G0_0_0 - 0.5*G0_0_1; + A[4] = 0.5*G0_0_0; + A[5] = 0.5*G0_0_1; + A[6] = -0.5*G0_1_0 - 0.5*G0_1_1; + A[7] = 0.5*G0_1_0; + A[8] = 0.5*G0_1_1; +} + +/// Constructor +poisson2d_1_cell_integral_1_otherwise::poisson2d_1_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson2d_1_cell_integral_1_otherwise::~poisson2d_1_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson2d_1_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson2d_1_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 7 + // Total number of operations (multiply-add pairs): 13 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + + // Compute element tensor + A[0] = 0.0833333333333334*G0_0 + 0.0416666666666667*G0_1 + 0.0416666666666667*G0_2; + A[1] = 0.0416666666666667*G0_0 + 0.0833333333333333*G0_1 + 0.0416666666666666*G0_2; + A[2] = 0.0416666666666667*G0_0 + 0.0416666666666666*G0_1 + 0.0833333333333333*G0_2; +} + +/// Constructor +poisson2d_1_form_0::poisson2d_1_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson2d_1_form_0::~poisson2d_1_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson2d_1_form_0::signature() const +{ + return "996f902b81205976ede73587192186c9fd9b057164f0036bf925051e4ce236d3afa448345b6b3a7958f9c265483ba7f2701db77c9f0b497566f0fb97007140e6"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson2d_1_form_0::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t poisson2d_1_form_0::num_coefficients() const +{ + return 0; +} + +/// Return the number of cell domains +std::size_t poisson2d_1_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson2d_1_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson2d_1_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson2d_1_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson2d_1_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson2d_1_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson2d_1_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson2d_1_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson2d_1_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson2d_1_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson2d_1_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_1_finite_element_0(); + break; + } + case 1: + { + return new poisson2d_1_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson2d_1_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_1_dofmap_0(); + break; + } + case 1: + { + return new poisson2d_1_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson2d_1_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson2d_1_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson2d_1_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson2d_1_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson2d_1_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson2d_1_form_0::create_default_cell_integral() const +{ + return new poisson2d_1_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson2d_1_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson2d_1_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson2d_1_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson2d_1_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +poisson2d_1_form_1::poisson2d_1_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson2d_1_form_1::~poisson2d_1_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson2d_1_form_1::signature() const +{ + return "d29669d54e80ba045b9f6aeb94d0d33237447c2de5977853d51a949f2f7e7c2b30871cf2fd1dd173fdabb4daf7908a96678f21eb4086c6ed052d173bfb7ea232"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson2d_1_form_1::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t poisson2d_1_form_1::num_coefficients() const +{ + return 1; +} + +/// Return the number of cell domains +std::size_t poisson2d_1_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson2d_1_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson2d_1_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson2d_1_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson2d_1_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson2d_1_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson2d_1_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson2d_1_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson2d_1_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson2d_1_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson2d_1_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_1_finite_element_0(); + break; + } + case 1: + { + return new poisson2d_1_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson2d_1_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_1_dofmap_0(); + break; + } + case 1: + { + return new poisson2d_1_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson2d_1_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson2d_1_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson2d_1_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson2d_1_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson2d_1_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson2d_1_form_1::create_default_cell_integral() const +{ + return new poisson2d_1_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson2d_1_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson2d_1_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson2d_1_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson2d_1_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/bench/fem/convergence/cpp/Poisson2D_1.h b/bench/fem/convergence/cpp/Poisson2D_1.h new file mode 100644 index 0000000..a7fe05d --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_1.h @@ -0,0 +1,985 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __POISSON2D_1_H +#define __POISSON2D_1_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson2d_1_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson2d_1_finite_element_0(); + + /// Destructor + virtual ~poisson2d_1_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson2d_1_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson2d_1_dofmap_0(); + + /// Destructor + virtual ~poisson2d_1_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2d_1_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2d_1_cell_integral_0_otherwise(); + + /// Destructor + virtual ~poisson2d_1_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2d_1_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2d_1_cell_integral_1_otherwise(); + + /// Destructor + virtual ~poisson2d_1_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2d_1_form_0: public ufc::form +{ +public: + + /// Constructor + poisson2d_1_form_0(); + + /// Destructor + virtual ~poisson2d_1_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2d_1_form_1: public ufc::form +{ +public: + + /// Constructor + poisson2d_1_form_1(); + + /// Destructor + virtual ~poisson2d_1_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson2D_1 +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson2d_1_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson2d_1_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson2d_1_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson2d_1_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson2d_1_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson2d_1_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson2d_1_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson2d_1_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/convergence/cpp/Poisson2D_1.ufl b/bench/fem/convergence/cpp/Poisson2D_1.ufl new file mode 100644 index 0000000..1f399d5 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_1.ufl @@ -0,0 +1,30 @@ +# Copyright (C) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2006-03-28 +# +# Poisson's equation in 2D for q = 1 + +element = FiniteElement("Lagrange", triangle, 1) + +v = TestFunction(element) +U = TrialFunction(element) +f = Coefficient(element) + +a = v.dx(i)*U.dx(i)*dx +L = v*f*dx diff --git a/bench/fem/convergence/cpp/Poisson2D_2.cpp b/bench/fem/convergence/cpp/Poisson2D_2.cpp new file mode 100644 index 0000000..6af22a2 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_2.cpp @@ -0,0 +1,2354 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#include "Poisson2D_2.h" + +/// Constructor +poisson2d_2_finite_element_0::poisson2d_2_finite_element_0() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +poisson2d_2_finite_element_0::~poisson2d_2_finite_element_0() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* poisson2d_2_finite_element_0::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; +} + +/// Return the cell shape +ufc::shape poisson2d_2_finite_element_0::cell_shape() const +{ + return ufc::triangle; +} + +/// Return the topological dimension of the cell shape +std::size_t poisson2d_2_finite_element_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the cell shape +std::size_t poisson2d_2_finite_element_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the finite element function space +std::size_t poisson2d_2_finite_element_0::space_dimension() const +{ + return 6; +} + +/// Return the rank of the value space +std::size_t poisson2d_2_finite_element_0::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t poisson2d_2_finite_element_0::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void poisson2d_2_finite_element_0::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void poisson2d_2_finite_element_0::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void poisson2d_2_finite_element_0::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void poisson2d_2_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double poisson2d_2_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void poisson2d_2_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; +} + +/// Interpolate vertex values from dof values +void poisson2d_2_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void poisson2d_2_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void poisson2d_2_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t poisson2d_2_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* poisson2d_2_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* poisson2d_2_finite_element_0::create() const +{ + return new poisson2d_2_finite_element_0(); +} + +/// Constructor +poisson2d_2_dofmap_0::poisson2d_2_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +poisson2d_2_dofmap_0::~poisson2d_2_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* poisson2d_2_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool poisson2d_2_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t poisson2d_2_dofmap_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t poisson2d_2_dofmap_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the global finite element function space +std::size_t poisson2d_2_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0] + num_global_entities[1]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t poisson2d_2_dofmap_0::local_dimension() const +{ + return 6; +} + +/// Return the number of dofs on each cell facet +std::size_t poisson2d_2_dofmap_0::num_facet_dofs() const +{ + return 3; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t poisson2d_2_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void poisson2d_2_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void poisson2d_2_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void poisson2d_2_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void poisson2d_2_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t poisson2d_2_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* poisson2d_2_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* poisson2d_2_dofmap_0::create() const +{ + return new poisson2d_2_dofmap_0(); +} + +/// Constructor +poisson2d_2_cell_integral_0_otherwise::poisson2d_2_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson2d_2_cell_integral_0_otherwise::~poisson2d_2_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson2d_2_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson2d_2_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 49 + // Total number of operations (multiply-add pairs): 60 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_1_0; + A[2] = 0.166666666666667*G0_0_1 + 0.166666666666667*G0_1_1; + A[3] = 0.0; + A[4] = -0.666666666666667*G0_0_1 - 0.666666666666667*G0_1_1; + A[5] = -0.666666666666667*G0_0_0 - 0.666666666666667*G0_1_0; + A[6] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_0_1; + A[7] = 0.5*G0_0_0; + A[8] = -0.166666666666667*G0_0_1; + A[9] = 0.666666666666666*G0_0_1; + A[10] = 0.0; + A[11] = -0.666666666666667*G0_0_0 - 0.666666666666666*G0_0_1; + A[12] = 0.166666666666667*G0_1_0 + 0.166666666666667*G0_1_1; + A[13] = -0.166666666666667*G0_1_0; + A[14] = 0.5*G0_1_1; + A[15] = 0.666666666666666*G0_1_0; + A[16] = -0.666666666666666*G0_1_0 - 0.666666666666666*G0_1_1; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.666666666666666*G0_1_0; + A[20] = 0.666666666666666*G0_0_1; + A[21] = 1.33333333333333*G0_0_0 + 0.666666666666665*G0_0_1 + 0.666666666666665*G0_1_0 + 1.33333333333333*G0_1_1; + A[22] = -1.33333333333333*G0_0_0 - 0.666666666666666*G0_0_1 - 0.666666666666665*G0_1_0; + A[23] = -0.666666666666665*G0_0_1 - 0.666666666666667*G0_1_0 - 1.33333333333333*G0_1_1; + A[24] = -0.666666666666667*G0_1_0 - 0.666666666666667*G0_1_1; + A[25] = 0.0; + A[26] = -0.666666666666666*G0_0_1 - 0.666666666666666*G0_1_1; + A[27] = -1.33333333333333*G0_0_0 - 0.666666666666665*G0_0_1 - 0.666666666666666*G0_1_0; + A[28] = 1.33333333333333*G0_0_0 + 0.666666666666666*G0_0_1 + 0.666666666666666*G0_1_0 + 1.33333333333333*G0_1_1; + A[29] = 0.666666666666665*G0_0_1 + 0.666666666666667*G0_1_0; + A[30] = -0.666666666666667*G0_0_0 - 0.666666666666667*G0_0_1; + A[31] = -0.666666666666667*G0_0_0 - 0.666666666666666*G0_1_0; + A[32] = 0.0; + A[33] = -0.666666666666667*G0_0_1 - 0.666666666666665*G0_1_0 - 1.33333333333333*G0_1_1; + A[34] = 0.666666666666667*G0_0_1 + 0.666666666666665*G0_1_0; + A[35] = 1.33333333333333*G0_0_0 + 0.666666666666667*G0_0_1 + 0.666666666666667*G0_1_0 + 1.33333333333333*G0_1_1; +} + +/// Constructor +poisson2d_2_cell_integral_1_otherwise::poisson2d_2_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson2d_2_cell_integral_1_otherwise::~poisson2d_2_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson2d_2_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson2d_2_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 6 + // Number of operations (multiply-add pairs) for tensor contraction: 21 + // Total number of operations (multiply-add pairs): 30 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + + // Compute element tensor + A[0] = 0.0166666666666666*G0_0 - 0.00277777777777778*G0_1 - 0.00277777777777778*G0_2 - 0.0111111111111111*G0_3; + A[1] = -0.00277777777777778*G0_0 + 0.0166666666666667*G0_1 - 0.00277777777777781*G0_2 - 0.0111111111111111*G0_4; + A[2] = -0.00277777777777778*G0_0 - 0.0027777777777778*G0_1 + 0.0166666666666667*G0_2 - 0.0111111111111111*G0_5; + A[3] = -0.0111111111111111*G0_0 + 0.0888888888888888*G0_3 + 0.0444444444444443*G0_4 + 0.0444444444444443*G0_5; + A[4] = -0.0111111111111111*G0_1 + 0.0444444444444443*G0_3 + 0.0888888888888887*G0_4 + 0.0444444444444443*G0_5; + A[5] = -0.0111111111111111*G0_2 + 0.0444444444444443*G0_3 + 0.0444444444444443*G0_4 + 0.0888888888888887*G0_5; +} + +/// Constructor +poisson2d_2_form_0::poisson2d_2_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson2d_2_form_0::~poisson2d_2_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson2d_2_form_0::signature() const +{ + return "aae0a73595ace2836ec2cfac776b19ebe6bc264a8954a0a93986ca1a90118d4671958a14ba9141ef0d8adc0b7311a7d128634bedabdb1f15360fafef8ee30294"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson2d_2_form_0::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t poisson2d_2_form_0::num_coefficients() const +{ + return 0; +} + +/// Return the number of cell domains +std::size_t poisson2d_2_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson2d_2_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson2d_2_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson2d_2_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson2d_2_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson2d_2_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson2d_2_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson2d_2_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson2d_2_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson2d_2_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson2d_2_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_2_finite_element_0(); + break; + } + case 1: + { + return new poisson2d_2_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson2d_2_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_2_dofmap_0(); + break; + } + case 1: + { + return new poisson2d_2_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson2d_2_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson2d_2_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson2d_2_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson2d_2_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson2d_2_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson2d_2_form_0::create_default_cell_integral() const +{ + return new poisson2d_2_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson2d_2_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson2d_2_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson2d_2_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson2d_2_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +poisson2d_2_form_1::poisson2d_2_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson2d_2_form_1::~poisson2d_2_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson2d_2_form_1::signature() const +{ + return "9a0e5d6d194de632408849439b4e348035f5f938271c8f88b18541fec23a6ad6203835eeaaecea00101dc60215cfed9f0ad01e069f415d8073294be2ed9eabe9"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson2d_2_form_1::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t poisson2d_2_form_1::num_coefficients() const +{ + return 1; +} + +/// Return the number of cell domains +std::size_t poisson2d_2_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson2d_2_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson2d_2_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson2d_2_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson2d_2_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson2d_2_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson2d_2_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson2d_2_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson2d_2_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson2d_2_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson2d_2_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_2_finite_element_0(); + break; + } + case 1: + { + return new poisson2d_2_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson2d_2_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_2_dofmap_0(); + break; + } + case 1: + { + return new poisson2d_2_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson2d_2_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson2d_2_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson2d_2_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson2d_2_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson2d_2_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson2d_2_form_1::create_default_cell_integral() const +{ + return new poisson2d_2_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson2d_2_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson2d_2_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson2d_2_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson2d_2_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/bench/fem/convergence/cpp/Poisson2D_2.h b/bench/fem/convergence/cpp/Poisson2D_2.h new file mode 100644 index 0000000..f3236b7 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_2.h @@ -0,0 +1,985 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __POISSON2D_2_H +#define __POISSON2D_2_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson2d_2_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson2d_2_finite_element_0(); + + /// Destructor + virtual ~poisson2d_2_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson2d_2_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson2d_2_dofmap_0(); + + /// Destructor + virtual ~poisson2d_2_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2d_2_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2d_2_cell_integral_0_otherwise(); + + /// Destructor + virtual ~poisson2d_2_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2d_2_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2d_2_cell_integral_1_otherwise(); + + /// Destructor + virtual ~poisson2d_2_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2d_2_form_0: public ufc::form +{ +public: + + /// Constructor + poisson2d_2_form_0(); + + /// Destructor + virtual ~poisson2d_2_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2d_2_form_1: public ufc::form +{ +public: + + /// Constructor + poisson2d_2_form_1(); + + /// Destructor + virtual ~poisson2d_2_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson2D_2 +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson2d_2_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson2d_2_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_2_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson2d_2_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson2d_2_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson2d_2_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson2d_2_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson2d_2_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson2d_2_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/convergence/cpp/Poisson2D_2.ufl b/bench/fem/convergence/cpp/Poisson2D_2.ufl new file mode 100644 index 0000000..589cce9 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_2.ufl @@ -0,0 +1,30 @@ +# Copyright (C) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2006-03-28 +# +# Poisson's equation in 2D for q = 2 + +element = FiniteElement("Lagrange", triangle, 2) + +v = TestFunction(element) +U = TrialFunction(element) +f = Coefficient(element) + +a = v.dx(i)*U.dx(i)*dx +L = v*f*dx diff --git a/bench/fem/convergence/cpp/Poisson2D_3.cpp b/bench/fem/convergence/cpp/Poisson2D_3.cpp new file mode 100644 index 0000000..892aa2e --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_3.cpp @@ -0,0 +1,3566 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#include "Poisson2D_3.h" + +/// Constructor +poisson2d_3_finite_element_0::poisson2d_3_finite_element_0() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +poisson2d_3_finite_element_0::~poisson2d_3_finite_element_0() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* poisson2d_3_finite_element_0::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None)"; +} + +/// Return the cell shape +ufc::shape poisson2d_3_finite_element_0::cell_shape() const +{ + return ufc::triangle; +} + +/// Return the topological dimension of the cell shape +std::size_t poisson2d_3_finite_element_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the cell shape +std::size_t poisson2d_3_finite_element_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the finite element function space +std::size_t poisson2d_3_finite_element_0::space_dimension() const +{ + return 10; +} + +/// Return the rank of the value space +std::size_t poisson2d_3_finite_element_0::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t poisson2d_3_finite_element_0::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void poisson2d_3_finite_element_0::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void poisson2d_3_finite_element_0::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void poisson2d_3_finite_element_0::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[8][3]; + for (unsigned int row = 0; row < 8; row++) + { + for (unsigned int col = 0; col < 3; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[8][8]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void poisson2d_3_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 10; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double poisson2d_3_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void poisson2d_3_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; +} + +/// Interpolate vertex values from dof values +void poisson2d_3_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void poisson2d_3_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void poisson2d_3_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t poisson2d_3_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* poisson2d_3_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* poisson2d_3_finite_element_0::create() const +{ + return new poisson2d_3_finite_element_0(); +} + +/// Constructor +poisson2d_3_dofmap_0::poisson2d_3_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +poisson2d_3_dofmap_0::~poisson2d_3_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* poisson2d_3_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool poisson2d_3_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t poisson2d_3_dofmap_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t poisson2d_3_dofmap_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the global finite element function space +std::size_t poisson2d_3_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0] + 2*num_global_entities[1] + num_global_entities[2]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t poisson2d_3_dofmap_0::local_dimension() const +{ + return 10; +} + +/// Return the number of dofs on each cell facet +std::size_t poisson2d_3_dofmap_0::num_facet_dofs() const +{ + return 4; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t poisson2d_3_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void poisson2d_3_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + 2*c.entity_indices[1][0]; + dofs[4] = offset + 2*c.entity_indices[1][0] + 1; + dofs[5] = offset + 2*c.entity_indices[1][1]; + dofs[6] = offset + 2*c.entity_indices[1][1] + 1; + dofs[7] = offset + 2*c.entity_indices[1][2]; + dofs[8] = offset + 2*c.entity_indices[1][2] + 1; + offset += 2*num_global_entities[1]; + dofs[9] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void poisson2d_3_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 5; + dofs[3] = 6; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 7; + dofs[3] = 8; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void poisson2d_3_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 4; + break; + } + case 1: + { + dofs[0] = 5; + dofs[1] = 6; + break; + } + case 2: + { + dofs[0] = 7; + dofs[1] = 8; + break; + } + } + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 9; + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void poisson2d_3_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[5][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[6][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[7][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[7][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[8][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[8][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[9][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t poisson2d_3_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* poisson2d_3_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* poisson2d_3_dofmap_0::create() const +{ + return new poisson2d_3_dofmap_0(); +} + +/// Constructor +poisson2d_3_cell_integral_0_otherwise::poisson2d_3_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson2d_3_cell_integral_0_otherwise::~poisson2d_3_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson2d_3_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson2d_3_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 205 + // Total number of operations (multiply-add pairs): 216 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.424999999999999*G0_0_0 + 0.424999999999999*G0_0_1 + 0.424999999999999*G0_1_0 + 0.424999999999999*G0_1_1; + A[1] = -0.0875000000000006*G0_0_0 - 0.0875000000000005*G0_1_0; + A[2] = -0.0875000000000005*G0_0_1 - 0.0875000000000006*G0_1_1; + A[3] = -0.0375000000000006*G0_0_0 - 0.0375000000000018*G0_0_1 - 0.0375000000000006*G0_1_0 - 0.0375000000000017*G0_1_1; + A[4] = -0.0375000000000017*G0_0_0 - 0.0375000000000007*G0_0_1 - 0.0375000000000017*G0_1_0 - 0.0375000000000007*G0_1_1; + A[5] = 0.0374999999999997*G0_0_0 - 0.674999999999998*G0_0_1 + 0.0374999999999996*G0_1_0 - 0.674999999999998*G0_1_1; + A[6] = 0.0375000000000017*G0_0_0 + 0.3375*G0_0_1 + 0.0375000000000017*G0_1_0 + 0.3375*G0_1_1; + A[7] = -0.674999999999998*G0_0_0 + 0.0374999999999994*G0_0_1 - 0.674999999999998*G0_1_0 + 0.0374999999999994*G0_1_1; + A[8] = 0.3375*G0_0_0 + 0.037500000000002*G0_0_1 + 0.3375*G0_1_0 + 0.0375000000000018*G0_1_1; + A[9] = 0.0; + A[10] = -0.0875000000000006*G0_0_0 - 0.0875000000000005*G0_0_1; + A[11] = 0.425000000000002*G0_0_0; + A[12] = 0.0874999999999996*G0_0_1; + A[13] = 0.0375000000000018*G0_0_0 + 0.712500000000003*G0_0_1; + A[14] = 0.0374999999999996*G0_0_0 - 0.3*G0_0_1; + A[15] = -0.0375000000000001*G0_0_0; + A[16] = -0.0374999999999996*G0_0_0; + A[17] = 0.337500000000003*G0_0_0 + 0.300000000000003*G0_0_1; + A[18] = -0.675000000000004*G0_0_0 - 0.712500000000003*G0_0_1; + A[19] = 0.0; + A[20] = -0.0875000000000005*G0_1_0 - 0.0875000000000006*G0_1_1; + A[21] = 0.0874999999999996*G0_1_0; + A[22] = 0.425000000000002*G0_1_1; + A[23] = -0.3*G0_1_0 + 0.0374999999999994*G0_1_1; + A[24] = 0.712500000000004*G0_1_0 + 0.0375000000000025*G0_1_1; + A[25] = 0.300000000000003*G0_1_0 + 0.337500000000003*G0_1_1; + A[26] = -0.712500000000004*G0_1_0 - 0.675000000000005*G0_1_1; + A[27] = -0.0374999999999996*G0_1_1; + A[28] = -0.0374999999999994*G0_1_1; + A[29] = 0.0; + A[30] = -0.0375000000000006*G0_0_0 - 0.0375000000000006*G0_0_1 - 0.0375000000000018*G0_1_0 - 0.0375000000000017*G0_1_1; + A[31] = 0.0375000000000018*G0_0_0 + 0.712500000000003*G0_1_0; + A[32] = -0.3*G0_0_1 + 0.0374999999999994*G0_1_1; + A[33] = 1.6875*G0_0_0 + 0.843750000000001*G0_0_1 + 0.843750000000001*G0_1_0 + 1.6875*G0_1_1; + A[34] = -0.3375*G0_0_0 + 0.843749999999998*G0_0_1 - 0.168750000000001*G0_1_0 - 0.3375*G0_1_1; + A[35] = 0.337500000000001*G0_0_0 + 0.16875*G0_0_1 + 0.16875*G0_1_0; + A[36] = 0.3375*G0_0_0 + 0.168750000000001*G0_0_1 + 0.168750000000001*G0_1_0; + A[37] = 0.168750000000004*G0_0_1 + 0.168750000000007*G0_1_0 + 0.337500000000006*G0_1_1; + A[38] = -0.843750000000002*G0_0_1 - 0.843750000000008*G0_1_0 - 1.68750000000001*G0_1_1; + A[39] = -2.025*G0_0_0 - 1.0125*G0_0_1 - 1.0125*G0_1_0; + A[40] = -0.0375000000000017*G0_0_0 - 0.0375000000000017*G0_0_1 - 0.0375000000000007*G0_1_0 - 0.0375000000000007*G0_1_1; + A[41] = 0.0374999999999996*G0_0_0 - 0.3*G0_1_0; + A[42] = 0.712500000000004*G0_0_1 + 0.0375000000000024*G0_1_1; + A[43] = -0.3375*G0_0_0 - 0.168750000000001*G0_0_1 + 0.843749999999998*G0_1_0 - 0.3375*G0_1_1; + A[44] = 1.68750000000001*G0_0_0 + 0.843750000000003*G0_0_1 + 0.843750000000003*G0_1_0 + 1.6875*G0_1_1; + A[45] = 0.337500000000007*G0_0_0 + 0.168750000000007*G0_0_1 + 0.168750000000005*G0_1_0; + A[46] = -1.68750000000001*G0_0_0 - 0.84375000000001*G0_0_1 - 0.843750000000004*G0_1_0; + A[47] = 0.168750000000001*G0_0_1 + 0.168750000000001*G0_1_0 + 0.337500000000002*G0_1_1; + A[48] = 0.168750000000001*G0_0_1 + 0.168749999999999*G0_1_0 + 0.337500000000001*G0_1_1; + A[49] = -1.0125*G0_0_1 - 1.0125*G0_1_0 - 2.025*G0_1_1; + A[50] = 0.0374999999999997*G0_0_0 + 0.0374999999999996*G0_0_1 - 0.674999999999998*G0_1_0 - 0.674999999999998*G0_1_1; + A[51] = -0.0375000000000001*G0_0_0; + A[52] = 0.300000000000003*G0_0_1 + 0.337500000000003*G0_1_1; + A[53] = 0.337500000000001*G0_0_0 + 0.16875*G0_0_1 + 0.16875*G0_1_0; + A[54] = 0.337500000000007*G0_0_0 + 0.168750000000004*G0_0_1 + 0.168750000000007*G0_1_0; + A[55] = 1.6875*G0_0_0 + 0.843750000000003*G0_0_1 + 0.843750000000003*G0_1_0 + 1.6875*G0_1_1; + A[56] = -0.337500000000007*G0_0_0 - 1.18125000000001*G0_0_1 - 0.168750000000007*G0_1_0 - 1.35*G0_1_1; + A[57] = 0.84375*G0_0_1 + 0.843749999999995*G0_1_0; + A[58] = -0.16875*G0_0_1 - 0.168749999999997*G0_1_0; + A[59] = -2.025*G0_0_0 - 1.0125*G0_0_1 - 1.0125*G0_1_0; + A[60] = 0.0375000000000017*G0_0_0 + 0.0375000000000017*G0_0_1 + 0.3375*G0_1_0 + 0.3375*G0_1_1; + A[61] = -0.0374999999999996*G0_0_0; + A[62] = -0.712500000000004*G0_0_1 - 0.675000000000005*G0_1_1; + A[63] = 0.3375*G0_0_0 + 0.168750000000001*G0_0_1 + 0.168750000000001*G0_1_0; + A[64] = -1.68750000000001*G0_0_0 - 0.843750000000004*G0_0_1 - 0.84375000000001*G0_1_0; + A[65] = -0.337500000000007*G0_0_0 - 0.168750000000007*G0_0_1 - 1.18125000000001*G0_1_0 - 1.35*G0_1_1; + A[66] = 1.68750000000001*G0_0_0 + 0.84375000000001*G0_0_1 + 0.843750000000011*G0_1_0 + 1.68750000000001*G0_1_1; + A[67] = -0.168750000000001*G0_0_1 - 0.168749999999997*G0_1_0; + A[68] = -0.168750000000001*G0_0_1 - 0.168750000000004*G0_1_0; + A[69] = 1.01250000000001*G0_0_1 + 1.01250000000001*G0_1_0; + A[70] = -0.674999999999998*G0_0_0 - 0.674999999999998*G0_0_1 + 0.0374999999999994*G0_1_0 + 0.0374999999999994*G0_1_1; + A[71] = 0.337500000000003*G0_0_0 + 0.300000000000003*G0_1_0; + A[72] = -0.0374999999999996*G0_1_1; + A[73] = 0.168750000000007*G0_0_1 + 0.168750000000004*G0_1_0 + 0.337500000000006*G0_1_1; + A[74] = 0.168750000000001*G0_0_1 + 0.168750000000001*G0_1_0 + 0.337500000000002*G0_1_1; + A[75] = 0.843749999999995*G0_0_1 + 0.84375*G0_1_0; + A[76] = -0.168749999999997*G0_0_1 - 0.168750000000001*G0_1_0; + A[77] = 1.6875*G0_0_0 + 0.843750000000002*G0_0_1 + 0.843750000000002*G0_1_0 + 1.6875*G0_1_1; + A[78] = -1.35*G0_0_0 - 0.168750000000007*G0_0_1 - 1.18125000000001*G0_1_0 - 0.337500000000006*G0_1_1; + A[79] = -1.0125*G0_0_1 - 1.0125*G0_1_0 - 2.025*G0_1_1; + A[80] = 0.3375*G0_0_0 + 0.3375*G0_0_1 + 0.037500000000002*G0_1_0 + 0.0375000000000018*G0_1_1; + A[81] = -0.675000000000004*G0_0_0 - 0.712500000000003*G0_1_0; + A[82] = -0.0374999999999994*G0_1_1; + A[83] = -0.843750000000008*G0_0_1 - 0.843750000000002*G0_1_0 - 1.68750000000001*G0_1_1; + A[84] = 0.168749999999999*G0_0_1 + 0.168750000000001*G0_1_0 + 0.337500000000001*G0_1_1; + A[85] = -0.168749999999997*G0_0_1 - 0.16875*G0_1_0; + A[86] = -0.168750000000004*G0_0_1 - 0.168750000000001*G0_1_0; + A[87] = -1.35*G0_0_0 - 1.18125*G0_0_1 - 0.168750000000007*G0_1_0 - 0.337500000000006*G0_1_1; + A[88] = 1.68750000000001*G0_0_0 + 0.843750000000009*G0_0_1 + 0.843750000000009*G0_1_0 + 1.68750000000001*G0_1_1; + A[89] = 1.01250000000001*G0_0_1 + 1.0125*G0_1_0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = -2.025*G0_0_0 - 1.0125*G0_0_1 - 1.0125*G0_1_0; + A[94] = -1.0125*G0_0_1 - 1.0125*G0_1_0 - 2.025*G0_1_1; + A[95] = -2.025*G0_0_0 - 1.0125*G0_0_1 - 1.0125*G0_1_0; + A[96] = 1.01250000000001*G0_0_1 + 1.01250000000001*G0_1_0; + A[97] = -1.0125*G0_0_1 - 1.0125*G0_1_0 - 2.025*G0_1_1; + A[98] = 1.0125*G0_0_1 + 1.01250000000001*G0_1_0; + A[99] = 4.05*G0_0_0 + 2.025*G0_0_1 + 2.025*G0_1_0 + 4.05000000000001*G0_1_1; +} + +/// Constructor +poisson2d_3_cell_integral_1_otherwise::poisson2d_3_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson2d_3_cell_integral_1_otherwise::~poisson2d_3_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson2d_3_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson2d_3_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 10 + // Number of operations (multiply-add pairs) for tensor contraction: 83 + // Total number of operations (multiply-add pairs): 96 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + const double G0_6 = det*w[0][6]*(1.0); + const double G0_7 = det*w[0][7]*(1.0); + const double G0_8 = det*w[0][8]*(1.0); + const double G0_9 = det*w[0][9]*(1.0); + + // Compute element tensor + A[0] = 0.00565476190476194*G0_0 + 0.000818452380952386*G0_1 + 0.000818452380952386*G0_2 + 0.00200892857142856*G0_3 + 0.00200892857142856*G0_4 + 0.00133928571428575*G0_5 + 0.00133928571428575*G0_7 + 0.00267857142857137*G0_9; + A[1] = 0.000818452380952386*G0_0 + 0.00565476190476195*G0_1 + 0.000818452380952387*G0_2 + 0.00133928571428575*G0_3 + 0.00200892857142857*G0_5 + 0.00200892857142857*G0_6 + 0.00133928571428575*G0_8 + 0.00267857142857143*G0_9; + A[2] = 0.000818452380952386*G0_0 + 0.000818452380952387*G0_1 + 0.00565476190476195*G0_2 + 0.00133928571428575*G0_4 + 0.00133928571428575*G0_6 + 0.00200892857142857*G0_7 + 0.00200892857142857*G0_8 + 0.00267857142857141*G0_9; + A[3] = 0.00200892857142856*G0_0 + 0.00133928571428575*G0_1 + 0.0401785714285717*G0_3 - 0.0140624999999999*G0_4 - 0.00401785714285713*G0_5 - 0.0100446428571428*G0_6 - 0.0100446428571428*G0_7 + 0.0200892857142856*G0_8 + 0.0120535714285714*G0_9; + A[4] = 0.00200892857142856*G0_0 + 0.00133928571428575*G0_2 - 0.0140624999999999*G0_3 + 0.0401785714285717*G0_4 - 0.0100446428571428*G0_5 + 0.0200892857142856*G0_6 - 0.00401785714285714*G0_7 - 0.0100446428571428*G0_8 + 0.0120535714285713*G0_9; + A[5] = 0.00133928571428575*G0_0 + 0.00200892857142857*G0_1 - 0.00401785714285713*G0_3 - 0.0100446428571428*G0_4 + 0.0401785714285717*G0_5 - 0.0140624999999999*G0_6 + 0.0200892857142856*G0_7 - 0.0100446428571428*G0_8 + 0.0120535714285715*G0_9; + A[6] = 0.00200892857142857*G0_1 + 0.00133928571428575*G0_2 - 0.0100446428571428*G0_3 + 0.0200892857142856*G0_4 - 0.0140624999999999*G0_5 + 0.0401785714285718*G0_6 - 0.0100446428571428*G0_7 - 0.00401785714285714*G0_8 + 0.0120535714285714*G0_9; + A[7] = 0.00133928571428575*G0_0 + 0.00200892857142857*G0_2 - 0.0100446428571428*G0_3 - 0.00401785714285714*G0_4 + 0.0200892857142856*G0_5 - 0.0100446428571428*G0_6 + 0.0401785714285717*G0_7 - 0.0140624999999999*G0_8 + 0.0120535714285715*G0_9; + A[8] = 0.00133928571428575*G0_1 + 0.00200892857142857*G0_2 + 0.0200892857142856*G0_3 - 0.0100446428571428*G0_4 - 0.0100446428571428*G0_5 - 0.00401785714285714*G0_6 - 0.0140624999999999*G0_7 + 0.0401785714285717*G0_8 + 0.0120535714285714*G0_9; + A[9] = 0.00267857142857137*G0_0 + 0.00267857142857143*G0_1 + 0.00267857142857141*G0_2 + 0.0120535714285714*G0_3 + 0.0120535714285713*G0_4 + 0.0120535714285715*G0_5 + 0.0120535714285714*G0_6 + 0.0120535714285715*G0_7 + 0.0120535714285714*G0_8 + 0.144642857142856*G0_9; +} + +/// Constructor +poisson2d_3_form_0::poisson2d_3_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson2d_3_form_0::~poisson2d_3_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson2d_3_form_0::signature() const +{ + return "f9b8ce71238cbeed8abadbc4741d92fef64810352ec67cfe46516d0c7bebacf074a0af32740986f745e0a7c5e2014ad386a492e81c6e7ac63b8b3e2e1bd6577d"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson2d_3_form_0::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t poisson2d_3_form_0::num_coefficients() const +{ + return 0; +} + +/// Return the number of cell domains +std::size_t poisson2d_3_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson2d_3_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson2d_3_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson2d_3_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson2d_3_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson2d_3_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson2d_3_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson2d_3_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson2d_3_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson2d_3_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson2d_3_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_3_finite_element_0(); + break; + } + case 1: + { + return new poisson2d_3_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson2d_3_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_3_dofmap_0(); + break; + } + case 1: + { + return new poisson2d_3_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson2d_3_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson2d_3_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson2d_3_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson2d_3_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson2d_3_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson2d_3_form_0::create_default_cell_integral() const +{ + return new poisson2d_3_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson2d_3_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson2d_3_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson2d_3_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson2d_3_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +poisson2d_3_form_1::poisson2d_3_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson2d_3_form_1::~poisson2d_3_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson2d_3_form_1::signature() const +{ + return "e9df4208cf9a9694f9dfe09d426820ed0cb5b0778e002b97a27e65b07bf6e3b4a89365b4aa574ef40884cb921f1bcfd437b3f1818546f8cfb73d3918ab3a9c5c"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson2d_3_form_1::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t poisson2d_3_form_1::num_coefficients() const +{ + return 1; +} + +/// Return the number of cell domains +std::size_t poisson2d_3_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson2d_3_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson2d_3_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson2d_3_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson2d_3_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson2d_3_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson2d_3_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson2d_3_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson2d_3_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson2d_3_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson2d_3_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_3_finite_element_0(); + break; + } + case 1: + { + return new poisson2d_3_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson2d_3_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_3_dofmap_0(); + break; + } + case 1: + { + return new poisson2d_3_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson2d_3_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson2d_3_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson2d_3_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson2d_3_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson2d_3_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson2d_3_form_1::create_default_cell_integral() const +{ + return new poisson2d_3_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson2d_3_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson2d_3_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson2d_3_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson2d_3_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/bench/fem/convergence/cpp/Poisson2D_3.h b/bench/fem/convergence/cpp/Poisson2D_3.h new file mode 100644 index 0000000..5dd622a --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_3.h @@ -0,0 +1,985 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __POISSON2D_3_H +#define __POISSON2D_3_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson2d_3_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson2d_3_finite_element_0(); + + /// Destructor + virtual ~poisson2d_3_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson2d_3_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson2d_3_dofmap_0(); + + /// Destructor + virtual ~poisson2d_3_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2d_3_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2d_3_cell_integral_0_otherwise(); + + /// Destructor + virtual ~poisson2d_3_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2d_3_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2d_3_cell_integral_1_otherwise(); + + /// Destructor + virtual ~poisson2d_3_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2d_3_form_0: public ufc::form +{ +public: + + /// Constructor + poisson2d_3_form_0(); + + /// Destructor + virtual ~poisson2d_3_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2d_3_form_1: public ufc::form +{ +public: + + /// Constructor + poisson2d_3_form_1(); + + /// Destructor + virtual ~poisson2d_3_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson2D_3 +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson2d_3_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson2d_3_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_3_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson2d_3_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson2d_3_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson2d_3_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson2d_3_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson2d_3_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson2d_3_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/convergence/cpp/Poisson2D_3.ufl b/bench/fem/convergence/cpp/Poisson2D_3.ufl new file mode 100644 index 0000000..b429748 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_3.ufl @@ -0,0 +1,30 @@ +# Copyright (C) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2006-03-28 +# +# Poisson's equation in 2D for q = 3 + +element = FiniteElement("Lagrange", triangle, 3) + +v = TestFunction(element) +U = TrialFunction(element) +f = Coefficient(element) + +a = v.dx(i)*U.dx(i)*dx +L = v*f*dx diff --git a/bench/fem/convergence/cpp/Poisson2D_4.cpp b/bench/fem/convergence/cpp/Poisson2D_4.cpp new file mode 100644 index 0000000..7847df0 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_4.cpp @@ -0,0 +1,5479 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#include "Poisson2D_4.h" + +/// Constructor +poisson2d_4_finite_element_0::poisson2d_4_finite_element_0() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +poisson2d_4_finite_element_0::~poisson2d_4_finite_element_0() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* poisson2d_4_finite_element_0::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 4, None)"; +} + +/// Return the cell shape +ufc::shape poisson2d_4_finite_element_0::cell_shape() const +{ + return ufc::triangle; +} + +/// Return the topological dimension of the cell shape +std::size_t poisson2d_4_finite_element_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the cell shape +std::size_t poisson2d_4_finite_element_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the finite element function space +std::size_t poisson2d_4_finite_element_0::space_dimension() const +{ + return 15; +} + +/// Return the rank of the value space +std::size_t poisson2d_4_finite_element_0::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t poisson2d_4_finite_element_0::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void poisson2d_4_finite_element_0::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.0, -0.0412393049421161, -0.0238095238095238, 0.0289800294976278, 0.0224478343233825, 0.012960263189329, -0.0395942580610999, -0.0334632556631574, -0.025920526378658, -0.014965222882255, 0.0321247254366312, 0.0283313448138523, 0.023944356611608, 0.0185472188784818, 0.0107082418122104}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.0, 0.0412393049421161, -0.0238095238095238, 0.0289800294976278, -0.0224478343233825, 0.012960263189329, 0.0395942580610999, -0.0334632556631574, 0.025920526378658, -0.014965222882255, 0.0321247254366312, -0.0283313448138523, 0.023944356611608, -0.0185472188784818, 0.0107082418122104}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.0, 0.0, 0.0476190476190476, 0.0, 0.0, 0.038880789567987, 0.0, 0.0, 0.0, 0.0598608915290199, 0.0, 0.0, 0.0, 0.0, 0.0535412090610519}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, 0.131965775814772, -0.0253968253968253, 0.139104141588614, -0.0718330698348239, 0.0311046316543896, 0.0633508128977599, 0.0267706045305259, -0.0622092633087791, 0.0478887132232159, 0.0, 0.0566626896277046, -0.0838052481406279, 0.0834624849531682, -0.0535412090610519}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {-0.0314269680527355, 0.010997147984564, 0.00634920634920636, 0.0, 0.188561808316413, -0.163299316185545, 0.0, 0.0936971158568408, 0.0, -0.0419026240703139, 0.0, 0.0, 0.0838052481406279, -0.139104141588614, 0.107082418122104}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, 0.0439885919382573, 0.126984126984127, 0.0, 0.035916534917412, 0.155523158271948, 0.0, 0.0, 0.103682105514632, -0.011972178305804, 0.0, 0.0, 0.0, 0.0927360943924091, -0.107082418122104}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, -0.131965775814772, -0.0253968253968254, 0.139104141588614, 0.0718330698348239, 0.0311046316543895, -0.0633508128977599, 0.0267706045305259, 0.0622092633087792, 0.0478887132232159, 0.0, -0.0566626896277046, -0.0838052481406278, -0.0834624849531681, -0.0535412090610519}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {-0.0314269680527356, -0.0109971479845643, 0.00634920634920625, 0.0, -0.188561808316413, -0.163299316185545, 0.0, 0.0936971158568409, 0.0, -0.0419026240703138, 0.0, 0.0, 0.0838052481406278, 0.139104141588614, 0.107082418122104}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, -0.0439885919382572, 0.126984126984127, 0.0, -0.0359165349174119, 0.155523158271948, 0.0, 0.0, -0.103682105514632, -0.011972178305804, 0.0, 0.0, 0.0, -0.0927360943924091, -0.107082418122104}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, -0.0879771838765144, -0.101587301587302, 0.0927360943924091, 0.107749604752236, 0.0725774738602423, 0.0791885161221998, -0.013385302265263, -0.0518410527573159, -0.0419026240703139, -0.128498901746525, -0.0566626896277046, -0.011972178305804, 0.00927360943924089, 0.0107082418122104}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {-0.0314269680527352, 0.0, -0.0126984126984127, -0.243432247780074, 0.0, 0.0544331053951817, 0.0, 0.0936971158568408, 0.0, -0.0419026240703139, 0.192748352619787, 0.0, -0.0239443566116079, 0.0, 0.0107082418122104}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, 0.0879771838765144, -0.101587301587302, 0.0927360943924091, -0.107749604752236, 0.0725774738602423, -0.0791885161221998, -0.013385302265263, 0.051841052757316, -0.041902624070314, -0.128498901746525, 0.0566626896277046, -0.011972178305804, -0.00927360943924091, 0.0107082418122104}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.251415744421884, -0.351908735506058, -0.203174603174603, -0.139104141588614, -0.107749604752236, -0.0622092633087791, 0.19005243869328, -0.0267706045305259, 0.124418526617558, 0.155638317975452, 0.0, 0.169988068883114, 0.0838052481406278, -0.0278208283177227, -0.053541209061052}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.251415744421884, 0.351908735506058, -0.203174603174603, -0.139104141588614, 0.107749604752236, -0.0622092633087791, -0.19005243869328, -0.0267706045305259, -0.124418526617558, 0.155638317975452, 0.0, -0.169988068883114, 0.0838052481406278, 0.0278208283177227, -0.0535412090610519}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.251415744421883, 0.0, 0.406349206349206, 0.0, 0.0, -0.186627789926337, 0.0, -0.187394231713682, 0.0, -0.203527031198668, 0.0, 0.0, -0.167610496281256, 0.0, 0.107082418122104}; + + // Compute value(s) + for (unsigned int r = 0; r < 15; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void poisson2d_4_finite_element_0::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 15; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void poisson2d_4_finite_element_0::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 4) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[16][4]; + for (unsigned int row = 0; row < 16; row++) + { + for (unsigned int col = 0; col < 4; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[16][16]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.0, -0.0412393049421161, -0.0238095238095238, 0.0289800294976278, 0.0224478343233825, 0.012960263189329, -0.0395942580610999, -0.0334632556631574, -0.025920526378658, -0.014965222882255, 0.0321247254366312, 0.0283313448138523, 0.023944356611608, 0.0185472188784818, 0.0107082418122104}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.0, 0.0412393049421161, -0.0238095238095238, 0.0289800294976278, -0.0224478343233825, 0.012960263189329, 0.0395942580610999, -0.0334632556631574, 0.025920526378658, -0.014965222882255, 0.0321247254366312, -0.0283313448138523, 0.023944356611608, -0.0185472188784818, 0.0107082418122104}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.0, 0.0, 0.0476190476190476, 0.0, 0.0, 0.038880789567987, 0.0, 0.0, 0.0, 0.0598608915290199, 0.0, 0.0, 0.0, 0.0, 0.0535412090610519}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, 0.131965775814772, -0.0253968253968253, 0.139104141588614, -0.0718330698348239, 0.0311046316543896, 0.0633508128977599, 0.0267706045305259, -0.0622092633087791, 0.0478887132232159, 0.0, 0.0566626896277046, -0.0838052481406279, 0.0834624849531682, -0.0535412090610519}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {-0.0314269680527355, 0.010997147984564, 0.00634920634920636, 0.0, 0.188561808316413, -0.163299316185545, 0.0, 0.0936971158568408, 0.0, -0.0419026240703139, 0.0, 0.0, 0.0838052481406279, -0.139104141588614, 0.107082418122104}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, 0.0439885919382573, 0.126984126984127, 0.0, 0.035916534917412, 0.155523158271948, 0.0, 0.0, 0.103682105514632, -0.011972178305804, 0.0, 0.0, 0.0, 0.0927360943924091, -0.107082418122104}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, -0.131965775814772, -0.0253968253968254, 0.139104141588614, 0.0718330698348239, 0.0311046316543895, -0.0633508128977599, 0.0267706045305259, 0.0622092633087792, 0.0478887132232159, 0.0, -0.0566626896277046, -0.0838052481406278, -0.0834624849531681, -0.0535412090610519}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {-0.0314269680527356, -0.0109971479845643, 0.00634920634920625, 0.0, -0.188561808316413, -0.163299316185545, 0.0, 0.0936971158568409, 0.0, -0.0419026240703138, 0.0, 0.0, 0.0838052481406278, 0.139104141588614, 0.107082418122104}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, -0.0439885919382572, 0.126984126984127, 0.0, -0.0359165349174119, 0.155523158271948, 0.0, 0.0, -0.103682105514632, -0.011972178305804, 0.0, 0.0, 0.0, -0.0927360943924091, -0.107082418122104}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, -0.0879771838765144, -0.101587301587302, 0.0927360943924091, 0.107749604752236, 0.0725774738602423, 0.0791885161221998, -0.013385302265263, -0.0518410527573159, -0.0419026240703139, -0.128498901746525, -0.0566626896277046, -0.011972178305804, 0.00927360943924089, 0.0107082418122104}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {-0.0314269680527352, 0.0, -0.0126984126984127, -0.243432247780074, 0.0, 0.0544331053951817, 0.0, 0.0936971158568408, 0.0, -0.0419026240703139, 0.192748352619787, 0.0, -0.0239443566116079, 0.0, 0.0107082418122104}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.125707872210942, 0.0879771838765144, -0.101587301587302, 0.0927360943924091, -0.107749604752236, 0.0725774738602423, -0.0791885161221998, -0.013385302265263, 0.051841052757316, -0.041902624070314, -0.128498901746525, 0.0566626896277046, -0.011972178305804, -0.00927360943924091, 0.0107082418122104}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.251415744421884, -0.351908735506058, -0.203174603174603, -0.139104141588614, -0.107749604752236, -0.0622092633087791, 0.19005243869328, -0.0267706045305259, 0.124418526617558, 0.155638317975452, 0.0, 0.169988068883114, 0.0838052481406278, -0.0278208283177227, -0.053541209061052}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.251415744421884, 0.351908735506058, -0.203174603174603, -0.139104141588614, 0.107749604752236, -0.0622092633087791, -0.19005243869328, -0.0267706045305259, -0.124418526617558, 0.155638317975452, 0.0, -0.169988068883114, 0.0838052481406278, 0.0278208283177227, -0.0535412090610519}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[15] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[10] = basisvalues[6]*1.75*tmp0 - basisvalues[3]*0.75*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[11] = basisvalues[6]*(3.5 + 4.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[14] = basisvalues[9]*(0.0285714285714286 + Y*1.8) - basisvalues[5]*0.771428571428571; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[13] = basisvalues[8]*(0.285714285714286 + Y*2.0) - basisvalues[4]*0.714285714285714; + basisvalues[12] = basisvalues[7]*(1.02040816326531 + Y*2.57142857142857) - basisvalues[3]*0.551020408163265; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[14] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[13] *= std::sqrt(7.5); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[12] *= std::sqrt(12.5); + basisvalues[6] *= std::sqrt(14.0); + basisvalues[11] *= std::sqrt(17.5); + basisvalues[10] *= std::sqrt(22.5); + + // Table(s) of coefficients + static const double coefficients0[15] = \ + {0.251415744421883, 0.0, 0.406349206349206, 0.0, 0.0, -0.186627789926337, 0.0, -0.187394231713682, 0.0, -0.203527031198668, 0.0, 0.0, -0.167610496281256, 0.0, 0.107082418122104}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212917, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513776, 0.0, 7.83836717690618, 0.0, 0.0, 8.40000000000001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 10.9544511501033, 0.0, 0.0, -3.83325938999965, 0.0, 17.7482393492989, 0.0, 0.553283335172493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.73286382647968, 0.0, 3.3466401061363, 4.36435780471985, 1.56370854789005e-14, -5.07468037933238, 0.0, 17.0084012854152, 0.0, 1.52127765851133, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.44948974278318, 0.0, 0.0, 9.14285714285714, 0.0, 0.0, 0.0, 14.8461497791618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.09838667696593, 0.0, 7.66811580507233, 0.0, 0.0, 10.733126291999, 0.0, 0.0, 0.0, 9.2951600308978, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[15][15] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175279, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.00000000000001, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.30940107675849, 0.0, 8.16496580927727, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872629, -1.49666295470958, 6.83130051063974, -1.05830052442583, 0.305505046330392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749978, 2.19089023002067, 2.52982212813471, 8.08290376865477, 6.26099033699943, -1.80739222823013, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238572, 4.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.0, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.68328157299974, 5.47722557505167, -1.89736659610103, 7.42307488958091, -1.91662969499982, 0.663940002206988, 8.87411967464942, -1.07142857142857, 0.276641667586246, -0.0958314847499896, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.36643191323983, 2.89827534923789, 1.67332005306815, 2.18217890235993, 5.74704893215392, -2.53734018966619, 10.0623058987491, 8.50420064270761, -2.1957751641342, 0.760638829255665, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 1.22474487139159, 3.53553390593274, -7.37711113563318, 4.57142857142858, 1.64957219768465, 0.0, 11.4997781699989, 7.42307488958091, -2.57142857142857, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.54919333848297, 6.64078308635359, 3.83405790253616, 0.0, -6.19677335393187, 5.3665631459995, 0.0, 0.0, 13.4164078649987, 4.6475800154489, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.57770876399968, 0.0, 8.85437744847146, 0.0, 0.0, -3.09838667696594, 0.0, 0.0, 0.0, 16.0996894379985, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[15][15] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 15; t++) + { + for (unsigned int u = 0; u < 15; u++) + { + for (unsigned int tu = 0; tu < 15; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 15; s++) + { + for (unsigned int t = 0; t < 15; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void poisson2d_4_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 15; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 4) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[16]; + for (unsigned int r = 0; r < 16; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 15; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double poisson2d_4_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[4]; + y[1] = 0.75*vertex_coordinates[3] + 0.25*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[4]; + y[1] = 0.25*vertex_coordinates[3] + 0.75*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[4]; + y[1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[4]; + y[1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[2]; + y[1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 11: + { + y[0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[2]; + y[1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 12: + { + y[0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 13: + { + y[0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[4]; + y[1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 14: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void poisson2d_4_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[4]; + y[1] = 0.75*vertex_coordinates[3] + 0.25*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[4]; + y[1] = 0.25*vertex_coordinates[3] + 0.75*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[4]; + y[1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[4]; + y[1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[2]; + y[1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[10] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[2]; + y[1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[12] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[4]; + y[1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[13] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[14] = vals[0]; +} + +/// Interpolate vertex values from dof values +void poisson2d_4_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void poisson2d_4_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void poisson2d_4_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t poisson2d_4_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* poisson2d_4_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* poisson2d_4_finite_element_0::create() const +{ + return new poisson2d_4_finite_element_0(); +} + +/// Constructor +poisson2d_4_dofmap_0::poisson2d_4_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +poisson2d_4_dofmap_0::~poisson2d_4_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* poisson2d_4_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 4, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool poisson2d_4_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t poisson2d_4_dofmap_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t poisson2d_4_dofmap_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the global finite element function space +std::size_t poisson2d_4_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0] + 3*num_global_entities[1] + 3*num_global_entities[2]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t poisson2d_4_dofmap_0::local_dimension() const +{ + return 15; +} + +/// Return the number of dofs on each cell facet +std::size_t poisson2d_4_dofmap_0::num_facet_dofs() const +{ + return 5; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t poisson2d_4_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 3; + break; + } + case 2: + { + return 3; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void poisson2d_4_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + 3*c.entity_indices[1][0]; + dofs[4] = offset + 3*c.entity_indices[1][0] + 1; + dofs[5] = offset + 3*c.entity_indices[1][0] + 2; + dofs[6] = offset + 3*c.entity_indices[1][1]; + dofs[7] = offset + 3*c.entity_indices[1][1] + 1; + dofs[8] = offset + 3*c.entity_indices[1][1] + 2; + dofs[9] = offset + 3*c.entity_indices[1][2]; + dofs[10] = offset + 3*c.entity_indices[1][2] + 1; + dofs[11] = offset + 3*c.entity_indices[1][2] + 2; + offset += 3*num_global_entities[1]; + dofs[12] = offset + 3*c.entity_indices[2][0]; + dofs[13] = offset + 3*c.entity_indices[2][0] + 1; + dofs[14] = offset + 3*c.entity_indices[2][0] + 2; + offset += 3*num_global_entities[2]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void poisson2d_4_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 6; + dofs[3] = 7; + dofs[4] = 8; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 9; + dofs[3] = 10; + dofs[4] = 11; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void poisson2d_4_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 4; + dofs[2] = 5; + break; + } + case 1: + { + dofs[0] = 6; + dofs[1] = 7; + dofs[2] = 8; + break; + } + case 2: + { + dofs[0] = 9; + dofs[1] = 10; + dofs[2] = 11; + break; + } + } + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 12; + dofs[1] = 13; + dofs[2] = 14; + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void poisson2d_4_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.75*vertex_coordinates[3] + 0.25*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[4]; + dof_coordinates[5][1] = 0.25*vertex_coordinates[3] + 0.75*vertex_coordinates[5]; + dof_coordinates[6][0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[5]; + dof_coordinates[7][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[7][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[8][0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[4]; + dof_coordinates[8][1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[5]; + dof_coordinates[9][0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[2]; + dof_coordinates[9][1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[3]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[11][0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[3]; + dof_coordinates[12][0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[4]; + dof_coordinates[12][1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[5]; + dof_coordinates[13][0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[4]; + dof_coordinates[13][1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[5]; + dof_coordinates[14][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[14][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t poisson2d_4_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* poisson2d_4_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* poisson2d_4_dofmap_0::create() const +{ + return new poisson2d_4_dofmap_0(); +} + +/// Constructor +poisson2d_4_cell_integral_0_otherwise::poisson2d_4_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson2d_4_cell_integral_0_otherwise::~poisson2d_4_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson2d_4_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson2d_4_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 599 + // Total number of operations (multiply-add pairs): 610 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.373015873015877*G0_0_0 + 0.373015873015877*G0_0_1 + 0.373015873015877*G0_1_0 + 0.373015873015877*G0_1_1; + A[1] = 0.0566137566137574*G0_0_0 + 0.0566137566137574*G0_1_0; + A[2] = 0.0566137566137574*G0_0_1 + 0.0566137566137575*G0_1_1; + A[3] = 0.0423280423280444*G0_0_0 + 0.0423280423280434*G0_0_1 + 0.0423280423280446*G0_1_0 + 0.0423280423280436*G0_1_1; + A[4] = 0.0423280423280459*G0_0_0 + 0.0423280423280453*G0_0_1 + 0.0423280423280455*G0_1_0 + 0.0423280423280451*G0_1_1; + A[5] = 0.0423280423280438*G0_0_0 + 0.0423280423280449*G0_0_1 + 0.042328042328044*G0_1_0 + 0.0423280423280448*G0_1_1; + A[6] = 0.126984126984126*G0_0_0 - 0.651851851851859*G0_0_1 + 0.126984126984126*G0_1_0 - 0.651851851851859*G0_1_1; + A[7] = 0.0423280423280438*G0_0_0 + 0.467724867724873*G0_0_1 + 0.0423280423280439*G0_1_0 + 0.467724867724874*G0_1_1; + A[8] = -0.0423280423280437*G0_0_0 - 0.245502645502649*G0_0_1 - 0.042328042328044*G0_1_0 - 0.245502645502649*G0_1_1; + A[9] = -0.65185185185186*G0_0_0 + 0.126984126984127*G0_0_1 - 0.65185185185186*G0_1_0 + 0.126984126984127*G0_1_1; + A[10] = 0.467724867724874*G0_0_0 + 0.0423280423280441*G0_0_1 + 0.467724867724873*G0_1_0 + 0.0423280423280439*G0_1_1; + A[11] = -0.245502645502648*G0_0_0 - 0.0423280423280432*G0_0_1 - 0.245502645502648*G0_1_0 - 0.0423280423280434*G0_1_1; + A[12] = -0.0846560846560822*G0_0_0 - 0.0846560846560829*G0_0_1 - 0.0846560846560823*G0_1_0 - 0.0846560846560832*G0_1_1; + A[13] = -0.0846560846560885*G0_0_0 - 0.0846560846560903*G0_0_1 - 0.0846560846560885*G0_1_0 - 0.08465608465609*G0_1_1; + A[14] = -0.0846560846560897*G0_0_0 - 0.0846560846560879*G0_0_1 - 0.0846560846560895*G0_1_0 - 0.0846560846560877*G0_1_1; + A[15] = 0.0566137566137574*G0_0_0 + 0.0566137566137574*G0_0_1; + A[16] = 0.373015873015877*G0_0_0; + A[17] = -0.0566137566137574*G0_0_1; + A[18] = 0.126984126984127*G0_0_0 + 0.778835978835987*G0_0_1; + A[19] = 0.0423280423280435*G0_0_0 - 0.425396825396831*G0_0_1; + A[20] = -0.0423280423280436*G0_0_0 + 0.203174603174605*G0_0_1; + A[21] = 0.0423280423280445*G0_0_0; + A[22] = 0.0423280423280448*G0_0_0; + A[23] = 0.0423280423280436*G0_0_0; + A[24] = -0.245502645502648*G0_0_0 - 0.203174603174604*G0_0_1; + A[25] = 0.467724867724873*G0_0_0 + 0.42539682539683*G0_0_1; + A[26] = -0.651851851851859*G0_0_0 - 0.778835978835987*G0_0_1; + A[27] = -0.084656084656088*G0_0_0; + A[28] = -0.0846560846560835*G0_0_0; + A[29] = -0.0846560846560884*G0_0_0; + A[30] = 0.0566137566137574*G0_1_0 + 0.0566137566137575*G0_1_1; + A[31] = -0.0566137566137574*G0_1_0; + A[32] = 0.373015873015877*G0_1_1; + A[33] = 0.203174603174604*G0_1_0 - 0.0423280423280443*G0_1_1; + A[34] = -0.425396825396829*G0_1_0 + 0.0423280423280436*G0_1_1; + A[35] = 0.778835978835987*G0_1_0 + 0.126984126984128*G0_1_1; + A[36] = -0.203174603174604*G0_1_0 - 0.245502645502648*G0_1_1; + A[37] = 0.425396825396829*G0_1_0 + 0.467724867724873*G0_1_1; + A[38] = -0.778835978835987*G0_1_0 - 0.651851851851859*G0_1_1; + A[39] = 0.0423280423280447*G0_1_1; + A[40] = 0.042328042328046*G0_1_1; + A[41] = 0.0423280423280441*G0_1_1; + A[42] = -0.0846560846560878*G0_1_1; + A[43] = -0.0846560846560897*G0_1_1; + A[44] = -0.0846560846560845*G0_1_1; + A[45] = 0.0423280423280444*G0_0_0 + 0.0423280423280446*G0_0_1 + 0.0423280423280434*G0_1_0 + 0.0423280423280435*G0_1_1; + A[46] = 0.126984126984127*G0_0_0 + 0.778835978835987*G0_1_0; + A[47] = 0.203174603174604*G0_0_1 - 0.0423280423280443*G0_1_1; + A[48] = 1.82857142857145*G0_0_0 + 1.04973544973546*G0_0_1 + 1.04973544973546*G0_1_0 + 2.09947089947092*G0_1_1; + A[49] = -0.660317460317463*G0_0_0 + 0.821164021164033*G0_0_1 - 0.296296296296296*G0_1_0 - 0.761904761904773*G0_1_1; + A[50] = 0.338624338624343*G0_0_0 - 0.44021164021164*G0_0_1 + 0.101587301587301*G0_1_0 + 0.338624338624346*G0_1_1; + A[51] = -0.203174603174608*G0_0_0 - 0.101587301587306*G0_0_1 - 0.101587301587301*G0_1_0; + A[52] = -0.152380952380962*G0_0_0 - 0.0423280423280473*G0_0_1 - 0.0423280423280444*G0_1_0; + A[53] = -0.338624338624343*G0_0_0 - 0.101587301587295*G0_0_1 - 0.101587301587301*G0_1_0; + A[54] = -0.135449735449744*G0_0_0 - 0.237037037037046*G0_0_1 - 0.237037037037042*G0_1_0 - 0.338624338624343*G0_1_1; + A[55] = 0.101587301587313*G0_0_0 + 0.46560846560848*G0_0_1 + 0.465608465608474*G0_1_0 + 0.761904761904771*G0_1_1; + A[56] = -0.13544973544974*G0_0_0 - 1.04973544973546*G0_0_1 - 1.04973544973546*G0_1_0 - 2.09947089947092*G0_1_1; + A[57] = 0.812698412698437*G0_0_0 + 0.338624338624355*G0_0_1 + 0.338624338624345*G0_1_0; + A[58] = -2.43809523809527*G0_0_0 - 1.28677248677251*G0_0_1 - 1.2867724867725*G0_1_0; + A[59] = 0.812698412698423*G0_0_0 + 0.338624338624331*G0_0_1 + 0.33862433862434*G0_1_0; + A[60] = 0.0423280423280459*G0_0_0 + 0.0423280423280455*G0_0_1 + 0.0423280423280453*G0_1_0 + 0.0423280423280451*G0_1_1; + A[61] = 0.0423280423280435*G0_0_0 - 0.425396825396831*G0_1_0; + A[62] = -0.425396825396829*G0_0_1 + 0.0423280423280436*G0_1_1; + A[63] = -0.660317460317462*G0_0_0 - 0.296296296296296*G0_0_1 + 0.821164021164033*G0_1_0 - 0.761904761904773*G0_1_1; + A[64] = 2.45079365079368*G0_0_0 + 0.971428571428586*G0_0_1 + 0.971428571428586*G0_1_0 + 2.45079365079369*G0_1_1; + A[65] = -0.761904761904771*G0_0_0 + 0.821164021164033*G0_0_1 - 0.296296296296298*G0_1_0 - 0.660317460317466*G0_1_1; + A[66] = -0.152380952380965*G0_0_0 - 0.110052910052921*G0_0_1 - 0.110052910052919*G0_1_0 - 0.0677248677248744*G0_1_1; + A[67] = 0.393650793650818*G0_0_0 + 0.196825396825416*G0_0_1 + 0.196825396825406*G0_1_0 + 0.0507936507936562*G0_1_1; + A[68] = 0.761904761904771*G0_0_0 + 0.296296296296289*G0_0_1 + 0.296296296296298*G0_1_0 - 0.0677248677248703*G0_1_1; + A[69] = -0.067724867724876*G0_0_0 - 0.110052910052919*G0_0_1 - 0.110052910052921*G0_1_0 - 0.152380952380965*G0_1_1; + A[70] = 0.0507936507936557*G0_0_0 + 0.196825396825401*G0_0_1 + 0.196825396825414*G0_1_0 + 0.393650793650815*G0_1_1; + A[71] = -0.067724867724869*G0_0_0 + 0.296296296296296*G0_0_1 + 0.296296296296292*G0_1_0 + 0.761904761904774*G0_1_1; + A[72] = 0.406349206349235*G0_0_0 + 0.457142857142891*G0_0_1 + 0.457142857142888*G0_1_0 + 0.406349206349236*G0_1_1; + A[73] = 0.406349206349193*G0_0_0 - 1.16825396825399*G0_0_1 - 1.168253968254*G0_1_0 - 2.8444444444445*G0_1_1; + A[74] = -2.8444444444445*G0_0_0 - 1.168253968254*G0_0_1 - 1.16825396825399*G0_1_0 + 0.406349206349194*G0_1_1; + A[75] = 0.0423280423280438*G0_0_0 + 0.042328042328044*G0_0_1 + 0.0423280423280449*G0_1_0 + 0.0423280423280448*G0_1_1; + A[76] = -0.0423280423280436*G0_0_0 + 0.203174603174605*G0_1_0; + A[77] = 0.778835978835987*G0_0_1 + 0.126984126984128*G0_1_1; + A[78] = 0.338624338624343*G0_0_0 + 0.101587301587301*G0_0_1 - 0.44021164021164*G0_1_0 + 0.338624338624346*G0_1_1; + A[79] = -0.761904761904771*G0_0_0 - 0.296296296296298*G0_0_1 + 0.821164021164033*G0_1_0 - 0.660317460317466*G0_1_1; + A[80] = 2.09947089947092*G0_0_0 + 1.04973544973546*G0_0_1 + 1.04973544973546*G0_1_0 + 1.82857142857145*G0_1_1; + A[81] = -0.338624338624341*G0_0_0 - 0.237037037037042*G0_0_1 - 0.237037037037046*G0_1_0 - 0.135449735449745*G0_1_1; + A[82] = 0.761904761904769*G0_0_0 + 0.465608465608472*G0_0_1 + 0.465608465608478*G0_1_0 + 0.101587301587313*G0_1_1; + A[83] = -2.09947089947092*G0_0_0 - 1.04973544973546*G0_0_1 - 1.04973544973546*G0_1_0 - 0.13544973544974*G0_1_1; + A[84] = -0.101587301587302*G0_0_1 - 0.101587301587307*G0_1_0 - 0.20317460317461*G0_1_1; + A[85] = -0.0423280423280418*G0_0_1 - 0.0423280423280461*G0_1_0 - 0.152380952380962*G0_1_1; + A[86] = -0.101587301587302*G0_0_1 - 0.101587301587297*G0_1_0 - 0.338624338624347*G0_1_1; + A[87] = 0.338624338624346*G0_0_1 + 0.338624338624357*G0_1_0 + 0.81269841269844*G0_1_1; + A[88] = 0.338624338624339*G0_0_1 + 0.338624338624329*G0_1_0 + 0.812698412698428*G0_1_1; + A[89] = -1.2867724867725*G0_0_1 - 1.28677248677251*G0_1_0 - 2.43809523809528*G0_1_1; + A[90] = 0.126984126984126*G0_0_0 + 0.126984126984126*G0_0_1 - 0.65185185185186*G0_1_0 - 0.651851851851859*G0_1_1; + A[91] = 0.0423280423280445*G0_0_0; + A[92] = -0.203174603174604*G0_0_1 - 0.245502645502648*G0_1_1; + A[93] = -0.203174603174608*G0_0_0 - 0.101587301587301*G0_0_1 - 0.101587301587306*G0_1_0; + A[94] = -0.152380952380965*G0_0_0 - 0.110052910052919*G0_0_1 - 0.110052910052921*G0_1_0 - 0.0677248677248743*G0_1_1; + A[95] = -0.338624338624341*G0_0_0 - 0.237037037037046*G0_0_1 - 0.237037037037042*G0_1_0 - 0.135449735449745*G0_1_1; + A[96] = 1.82857142857145*G0_0_0 + 0.778835978835992*G0_0_1 + 0.778835978835992*G0_1_0 + 1.82857142857145*G0_1_1; + A[97] = -0.660317460317465*G0_0_0 - 1.4814814814815*G0_0_1 - 0.364021164021168*G0_1_0 - 1.94708994708997*G0_1_1; + A[98] = 0.338624338624342*G0_0_0 + 0.778835978835985*G0_0_1 + 0.237037037037042*G0_1_0 + 1.01587301587303*G0_1_1; + A[99] = -0.13544973544974*G0_0_0 + 0.914285714285715*G0_0_1 + 0.914285714285721*G0_1_0 - 0.13544973544974*G0_1_1; + A[100] = 0.101587301587312*G0_0_0 - 0.364021164021168*G0_0_1 - 0.364021164021161*G0_1_0 - 0.0677248677248713*G0_1_1; + A[101] = -0.135449735449743*G0_0_0 + 0.101587301587302*G0_0_1 + 0.101587301587299*G0_1_0; + A[102] = -2.43809523809528*G0_0_0 - 1.15132275132276*G0_0_1 - 1.15132275132278*G0_1_0 + 0.135449735449737*G0_1_1; + A[103] = 0.812698412698438*G0_0_0 + 0.474074074074087*G0_0_1 + 0.474074074074093*G0_1_0 + 0.135449735449747*G0_1_1; + A[104] = 0.81269841269843*G0_0_0 + 0.474074074074093*G0_0_1 + 0.474074074074089*G0_1_0 + 0.135449735449746*G0_1_1; + A[105] = 0.0423280423280438*G0_0_0 + 0.0423280423280439*G0_0_1 + 0.467724867724873*G0_1_0 + 0.467724867724874*G0_1_1; + A[106] = 0.0423280423280448*G0_0_0; + A[107] = 0.425396825396829*G0_0_1 + 0.467724867724873*G0_1_1; + A[108] = -0.152380952380962*G0_0_0 - 0.0423280423280444*G0_0_1 - 0.0423280423280473*G0_1_0; + A[109] = 0.393650793650818*G0_0_0 + 0.196825396825406*G0_0_1 + 0.196825396825416*G0_1_0 + 0.0507936507936562*G0_1_1; + A[110] = 0.761904761904769*G0_0_0 + 0.465608465608478*G0_0_1 + 0.465608465608472*G0_1_0 + 0.101587301587313*G0_1_1; + A[111] = -0.660317460317465*G0_0_0 - 0.364021164021168*G0_0_1 - 1.4814814814815*G0_1_0 - 1.94708994708997*G0_1_1; + A[112] = 2.45079365079369*G0_0_0 + 1.4793650793651*G0_0_1 + 1.4793650793651*G0_1_0 + 2.9587301587302*G0_1_1; + A[113] = -0.761904761904769*G0_0_0 - 1.58306878306881*G0_0_1 - 0.465608465608472*G0_1_0 - 1.94708994708997*G0_1_1; + A[114] = -0.0677248677248693*G0_0_0 - 0.364021164021167*G0_0_1 - 0.36402116402116*G0_1_0 + 0.101587301587313*G0_1_1; + A[115] = 0.0507936507936544*G0_0_0 - 0.146031746031745*G0_0_1 - 0.146031746031758*G0_1_0 + 0.0507936507936567*G0_1_1; + A[116] = -0.0677248677248737*G0_0_0 + 0.0423280423280432*G0_0_1 + 0.0423280423280455*G0_1_0; + A[117] = 0.406349206349202*G0_0_0 + 1.57460317460319*G0_0_1 + 1.5746031746032*G0_1_0 - 0.101587301587311*G0_1_1; + A[118] = 0.406349206349225*G0_0_0 - 0.0507936507936589*G0_0_1 - 0.0507936507936557*G0_1_0 - 0.101587301587314*G0_1_1; + A[119] = -2.84444444444451*G0_0_0 - 1.6761904761905*G0_0_1 - 1.67619047619052*G0_1_0 - 0.101587301587313*G0_1_1; + A[120] = -0.0423280423280437*G0_0_0 - 0.042328042328044*G0_0_1 - 0.245502645502649*G0_1_0 - 0.245502645502649*G0_1_1; + A[121] = 0.0423280423280436*G0_0_0; + A[122] = -0.778835978835987*G0_0_1 - 0.651851851851859*G0_1_1; + A[123] = -0.338624338624343*G0_0_0 - 0.101587301587301*G0_0_1 - 0.101587301587295*G0_1_0; + A[124] = 0.761904761904771*G0_0_0 + 0.296296296296298*G0_0_1 + 0.296296296296289*G0_1_0 - 0.0677248677248703*G0_1_1; + A[125] = -2.09947089947092*G0_0_0 - 1.04973544973546*G0_0_1 - 1.04973544973546*G0_1_0 - 0.13544973544974*G0_1_1; + A[126] = 0.338624338624342*G0_0_0 + 0.237037037037042*G0_0_1 + 0.778835978835985*G0_1_0 + 1.01587301587303*G0_1_1; + A[127] = -0.761904761904769*G0_0_0 - 0.465608465608472*G0_0_1 - 1.58306878306881*G0_1_0 - 1.94708994708997*G0_1_1; + A[128] = 2.09947089947092*G0_0_0 + 1.04973544973546*G0_0_1 + 1.04973544973546*G0_1_0 + 1.82857142857145*G0_1_1; + A[129] = 0.101587301587302*G0_0_1 + 0.101587301587298*G0_1_0 - 0.135449735449745*G0_1_1; + A[130] = 0.0423280423280418*G0_0_1 + 0.042328042328046*G0_1_0 - 0.0677248677248755*G0_1_1; + A[131] = 0.101587301587302*G0_0_1 + 0.101587301587306*G0_1_0; + A[132] = -0.338624338624346*G0_0_1 - 0.338624338624342*G0_1_0 + 0.135449735449746*G0_1_1; + A[133] = -0.338624338624339*G0_0_1 - 0.338624338624348*G0_1_0 + 0.135449735449746*G0_1_1; + A[134] = 1.2867724867725*G0_0_1 + 1.28677248677252*G0_1_0 + 0.135449735449738*G0_1_1; + A[135] = -0.65185185185186*G0_0_0 - 0.651851851851859*G0_0_1 + 0.126984126984127*G0_1_0 + 0.126984126984127*G0_1_1; + A[136] = -0.245502645502648*G0_0_0 - 0.203174603174604*G0_1_0; + A[137] = 0.0423280423280447*G0_1_1; + A[138] = -0.135449735449744*G0_0_0 - 0.237037037037042*G0_0_1 - 0.237037037037046*G0_1_0 - 0.338624338624343*G0_1_1; + A[139] = -0.067724867724876*G0_0_0 - 0.110052910052921*G0_0_1 - 0.110052910052919*G0_1_0 - 0.152380952380965*G0_1_1; + A[140] = -0.101587301587307*G0_0_1 - 0.101587301587302*G0_1_0 - 0.20317460317461*G0_1_1; + A[141] = -0.13544973544974*G0_0_0 + 0.914285714285721*G0_0_1 + 0.914285714285715*G0_1_0 - 0.13544973544974*G0_1_1; + A[142] = -0.0677248677248693*G0_0_0 - 0.36402116402116*G0_0_1 - 0.364021164021167*G0_1_0 + 0.101587301587313*G0_1_1; + A[143] = 0.101587301587298*G0_0_1 + 0.101587301587302*G0_1_0 - 0.135449735449745*G0_1_1; + A[144] = 1.82857142857145*G0_0_0 + 0.778835978835991*G0_0_1 + 0.778835978835991*G0_1_0 + 1.82857142857145*G0_1_1; + A[145] = -1.94708994708997*G0_0_0 - 0.364021164021168*G0_0_1 - 1.4814814814815*G0_1_0 - 0.660317460317464*G0_1_1; + A[146] = 1.01587301587303*G0_0_0 + 0.237037037037041*G0_0_1 + 0.778835978835984*G0_1_0 + 0.338624338624343*G0_1_1; + A[147] = 0.135449735449736*G0_0_0 - 1.15132275132278*G0_0_1 - 1.15132275132276*G0_1_0 - 2.43809523809528*G0_1_1; + A[148] = 0.135449735449748*G0_0_0 + 0.47407407407409*G0_0_1 + 0.474074074074094*G0_1_0 + 0.812698412698428*G0_1_1; + A[149] = 0.135449735449745*G0_0_0 + 0.474074074074091*G0_0_1 + 0.474074074074087*G0_1_0 + 0.812698412698441*G0_1_1; + A[150] = 0.467724867724874*G0_0_0 + 0.467724867724873*G0_0_1 + 0.0423280423280441*G0_1_0 + 0.0423280423280439*G0_1_1; + A[151] = 0.467724867724873*G0_0_0 + 0.42539682539683*G0_1_0; + A[152] = 0.042328042328046*G0_1_1; + A[153] = 0.101587301587313*G0_0_0 + 0.465608465608474*G0_0_1 + 0.46560846560848*G0_1_0 + 0.761904761904771*G0_1_1; + A[154] = 0.0507936507936556*G0_0_0 + 0.196825396825414*G0_0_1 + 0.196825396825401*G0_1_0 + 0.393650793650815*G0_1_1; + A[155] = -0.0423280423280461*G0_0_1 - 0.0423280423280418*G0_1_0 - 0.152380952380962*G0_1_1; + A[156] = 0.101587301587312*G0_0_0 - 0.364021164021161*G0_0_1 - 0.364021164021168*G0_1_0 - 0.0677248677248713*G0_1_1; + A[157] = 0.0507936507936544*G0_0_0 - 0.146031746031758*G0_0_1 - 0.146031746031745*G0_1_0 + 0.0507936507936567*G0_1_1; + A[158] = 0.042328042328046*G0_0_1 + 0.0423280423280417*G0_1_0 - 0.0677248677248755*G0_1_1; + A[159] = -1.94708994708997*G0_0_0 - 1.4814814814815*G0_0_1 - 0.364021164021168*G0_1_0 - 0.660317460317464*G0_1_1; + A[160] = 2.9587301587302*G0_0_0 + 1.4793650793651*G0_0_1 + 1.4793650793651*G0_1_0 + 2.45079365079369*G0_1_1; + A[161] = -1.94708994708997*G0_0_0 - 0.465608465608473*G0_0_1 - 1.58306878306881*G0_1_0 - 0.76190476190477*G0_1_1; + A[162] = -0.101587301587311*G0_0_0 + 1.5746031746032*G0_0_1 + 1.57460317460319*G0_1_0 + 0.406349206349198*G0_1_1; + A[163] = -0.101587301587315*G0_0_0 - 1.67619047619052*G0_0_1 - 1.6761904761905*G0_1_0 - 2.84444444444451*G0_1_1; + A[164] = -0.10158730158731*G0_0_0 - 0.0507936507936535*G0_0_1 - 0.050793650793656*G0_1_0 + 0.406349206349228*G0_1_1; + A[165] = -0.245502645502648*G0_0_0 - 0.245502645502648*G0_0_1 - 0.0423280423280432*G0_1_0 - 0.0423280423280434*G0_1_1; + A[166] = -0.65185185185186*G0_0_0 - 0.778835978835987*G0_1_0; + A[167] = 0.042328042328044*G0_1_1; + A[168] = -0.13544973544974*G0_0_0 - 1.04973544973546*G0_0_1 - 1.04973544973546*G0_1_0 - 2.09947089947092*G0_1_1; + A[169] = -0.067724867724869*G0_0_0 + 0.296296296296292*G0_0_1 + 0.296296296296296*G0_1_0 + 0.761904761904774*G0_1_1; + A[170] = -0.101587301587297*G0_0_1 - 0.101587301587302*G0_1_0 - 0.338624338624347*G0_1_1; + A[171] = -0.135449735449743*G0_0_0 + 0.101587301587298*G0_0_1 + 0.101587301587302*G0_1_0; + A[172] = -0.0677248677248737*G0_0_0 + 0.0423280423280455*G0_0_1 + 0.0423280423280432*G0_1_0; + A[173] = 0.101587301587306*G0_0_1 + 0.101587301587302*G0_1_0; + A[174] = 1.01587301587303*G0_0_0 + 0.778835978835984*G0_0_1 + 0.237037037037041*G0_1_0 + 0.338624338624343*G0_1_1; + A[175] = -1.94708994708997*G0_0_0 - 1.58306878306881*G0_0_1 - 0.465608465608473*G0_1_0 - 0.76190476190477*G0_1_1; + A[176] = 1.82857142857145*G0_0_0 + 1.04973544973546*G0_0_1 + 1.04973544973546*G0_1_0 + 2.09947089947092*G0_1_1; + A[177] = 0.135449735449746*G0_0_0 - 0.338624338624338*G0_0_1 - 0.338624338624345*G0_1_0; + A[178] = 0.135449735449737*G0_0_0 + 1.28677248677251*G0_0_1 + 1.2867724867725*G0_1_0; + A[179] = 0.135449735449743*G0_0_0 - 0.338624338624349*G0_0_1 - 0.338624338624339*G0_1_0; + A[180] = -0.0846560846560822*G0_0_0 - 0.0846560846560823*G0_0_1 - 0.0846560846560829*G0_1_0 - 0.0846560846560832*G0_1_1; + A[181] = -0.084656084656088*G0_0_0; + A[182] = -0.0846560846560878*G0_1_1; + A[183] = 0.812698412698437*G0_0_0 + 0.338624338624345*G0_0_1 + 0.338624338624356*G0_1_0; + A[184] = 0.406349206349235*G0_0_0 + 0.457142857142888*G0_0_1 + 0.457142857142891*G0_1_0 + 0.406349206349236*G0_1_1; + A[185] = 0.338624338624356*G0_0_1 + 0.338624338624346*G0_1_0 + 0.81269841269844*G0_1_1; + A[186] = -2.43809523809528*G0_0_0 - 1.15132275132278*G0_0_1 - 1.15132275132276*G0_1_0 + 0.135449735449737*G0_1_1; + A[187] = 0.406349206349202*G0_0_0 + 1.5746031746032*G0_0_1 + 1.57460317460319*G0_1_0 - 0.101587301587311*G0_1_1; + A[188] = -0.338624338624342*G0_0_1 - 0.338624338624346*G0_1_0 + 0.135449735449746*G0_1_1; + A[189] = 0.135449735449736*G0_0_0 - 1.15132275132276*G0_0_1 - 1.15132275132278*G0_1_0 - 2.43809523809528*G0_1_1; + A[190] = -0.10158730158731*G0_0_0 + 1.57460317460319*G0_0_1 + 1.5746031746032*G0_1_0 + 0.406349206349198*G0_1_1; + A[191] = 0.135449735449746*G0_0_0 - 0.338624338624345*G0_0_1 - 0.338624338624338*G0_1_0; + A[192] = 5.68888888888897*G0_0_0 + 2.84444444444447*G0_0_1 + 2.84444444444447*G0_1_0 + 5.68888888888897*G0_1_1; + A[193] = -4.06349206349213*G0_0_0 - 2.03174603174608*G0_0_1 - 2.03174603174606*G0_1_0 - 0.812698412698431*G0_1_1; + A[194] = -0.812698412698436*G0_0_0 - 2.03174603174606*G0_0_1 - 2.03174603174608*G0_1_0 - 4.06349206349214*G0_1_1; + A[195] = -0.0846560846560885*G0_0_0 - 0.0846560846560885*G0_0_1 - 0.0846560846560903*G0_1_0 - 0.08465608465609*G0_1_1; + A[196] = -0.0846560846560835*G0_0_0; + A[197] = -0.0846560846560897*G0_1_1; + A[198] = -2.43809523809527*G0_0_0 - 1.2867724867725*G0_0_1 - 1.28677248677251*G0_1_0; + A[199] = 0.406349206349193*G0_0_0 - 1.168253968254*G0_0_1 - 1.16825396825399*G0_1_0 - 2.8444444444445*G0_1_1; + A[200] = 0.33862433862433*G0_0_1 + 0.338624338624339*G0_1_0 + 0.812698412698428*G0_1_1; + A[201] = 0.812698412698438*G0_0_0 + 0.474074074074093*G0_0_1 + 0.474074074074087*G0_1_0 + 0.135449735449747*G0_1_1; + A[202] = 0.406349206349225*G0_0_0 - 0.0507936507936558*G0_0_1 - 0.0507936507936588*G0_1_0 - 0.101587301587314*G0_1_1; + A[203] = -0.338624338624348*G0_0_1 - 0.338624338624339*G0_1_0 + 0.135449735449746*G0_1_1; + A[204] = 0.135449735449748*G0_0_0 + 0.474074074074094*G0_0_1 + 0.47407407407409*G0_1_0 + 0.812698412698428*G0_1_1; + A[205] = -0.101587301587315*G0_0_0 - 1.6761904761905*G0_0_1 - 1.67619047619052*G0_1_0 - 2.84444444444451*G0_1_1; + A[206] = 0.135449735449737*G0_0_0 + 1.2867724867725*G0_0_1 + 1.28677248677251*G0_1_0; + A[207] = -4.06349206349213*G0_0_0 - 2.03174603174606*G0_0_1 - 2.03174603174608*G0_1_0 - 0.812698412698431*G0_1_1; + A[208] = 5.68888888888897*G0_0_0 + 2.84444444444451*G0_0_1 + 2.84444444444451*G0_1_0 + 5.68888888888901*G0_1_1; + A[209] = -0.812698412698417*G0_0_0 + 1.21904761904764*G0_0_1 + 1.21904761904765*G0_1_0 - 0.812698412698424*G0_1_1; + A[210] = -0.0846560846560898*G0_0_0 - 0.0846560846560895*G0_0_1 - 0.084656084656088*G0_1_0 - 0.0846560846560877*G0_1_1; + A[211] = -0.0846560846560883*G0_0_0; + A[212] = -0.0846560846560845*G0_1_1; + A[213] = 0.812698412698423*G0_0_0 + 0.33862433862434*G0_0_1 + 0.338624338624331*G0_1_0; + A[214] = -2.8444444444445*G0_0_0 - 1.16825396825399*G0_0_1 - 1.168253968254*G0_1_0 + 0.406349206349194*G0_1_1; + A[215] = -1.28677248677251*G0_0_1 - 1.2867724867725*G0_1_0 - 2.43809523809528*G0_1_1; + A[216] = 0.81269841269843*G0_0_0 + 0.474074074074089*G0_0_1 + 0.474074074074093*G0_1_0 + 0.135449735449746*G0_1_1; + A[217] = -2.84444444444451*G0_0_0 - 1.67619047619052*G0_0_1 - 1.6761904761905*G0_1_0 - 0.101587301587313*G0_1_1; + A[218] = 1.28677248677252*G0_0_1 + 1.2867724867725*G0_1_0 + 0.135449735449738*G0_1_1; + A[219] = 0.135449735449745*G0_0_0 + 0.474074074074087*G0_0_1 + 0.474074074074091*G0_1_0 + 0.812698412698441*G0_1_1; + A[220] = -0.10158730158731*G0_0_0 - 0.050793650793656*G0_0_1 - 0.0507936507936534*G0_1_0 + 0.406349206349228*G0_1_1; + A[221] = 0.135449735449743*G0_0_0 - 0.338624338624339*G0_0_1 - 0.338624338624349*G0_1_0; + A[222] = -0.812698412698436*G0_0_0 - 2.03174603174608*G0_0_1 - 2.03174603174606*G0_1_0 - 4.06349206349214*G0_1_1; + A[223] = -0.812698412698417*G0_0_0 + 1.21904761904765*G0_0_1 + 1.21904761904764*G0_1_0 - 0.812698412698424*G0_1_1; + A[224] = 5.68888888888901*G0_0_0 + 2.84444444444451*G0_0_1 + 2.84444444444451*G0_1_0 + 5.68888888888898*G0_1_1; +} + +/// Constructor +poisson2d_4_cell_integral_1_otherwise::poisson2d_4_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson2d_4_cell_integral_1_otherwise::~poisson2d_4_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson2d_4_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson2d_4_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 15 + // Number of operations (multiply-add pairs) for tensor contraction: 205 + // Total number of operations (multiply-add pairs): 223 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + const double G0_6 = det*w[0][6]*(1.0); + const double G0_7 = det*w[0][7]*(1.0); + const double G0_8 = det*w[0][8]*(1.0); + const double G0_9 = det*w[0][9]*(1.0); + const double G0_10 = det*w[0][10]*(1.0); + const double G0_11 = det*w[0][11]*(1.0); + const double G0_12 = det*w[0][12]*(1.0); + const double G0_13 = det*w[0][13]*(1.0); + const double G0_14 = det*w[0][14]*(1.0); + + // Compute element tensor + A[0] = 0.00255731922398588*G0_0 - 0.000238095238095237*G0_1 - 0.000238095238095236*G0_2 - 0.000987654320987651*G0_3 - 0.000105820105820103*G0_4 - 0.000987654320987653*G0_5 + 0.00141093474426806*G0_6 - 0.000705467372134029*G0_7 + 0.00141093474426807*G0_9 - 0.000705467372134032*G0_10 + 0.00141093474426807*G0_12 - 0.00141093474426807*G0_13 - 0.00141093474426807*G0_14; + A[1] = -0.000238095238095237*G0_0 + 0.00255731922398588*G0_1 - 0.000238095238095236*G0_2 + 0.00141093474426807*G0_3 - 0.000705467372134036*G0_4 - 0.00098765432098765*G0_6 - 0.000105820105820106*G0_7 - 0.000987654320987649*G0_8 - 0.000705467372134035*G0_10 + 0.00141093474426807*G0_11 - 0.00141093474426807*G0_12 + 0.00141093474426808*G0_13 - 0.00141093474426807*G0_14; + A[2] = -0.000238095238095236*G0_0 - 0.000238095238095236*G0_1 + 0.00255731922398588*G0_2 - 0.000705467372134034*G0_4 + 0.00141093474426807*G0_5 - 0.000705467372134036*G0_7 + 0.00141093474426807*G0_8 - 0.00098765432098765*G0_9 - 0.000105820105820104*G0_10 - 0.00098765432098765*G0_11 - 0.00141093474426807*G0_12 - 0.00141093474426808*G0_13 + 0.00141093474426805*G0_14; + A[3] = -0.000987654320987651*G0_0 + 0.00141093474426807*G0_1 + 0.0225749559082891*G0_3 - 0.0112874779541446*G0_4 + 0.00677248677248674*G0_5 + 0.00225749559082891*G0_6 + 0.000564373897707235*G0_7 + 0.00451499118165783*G0_8 + 0.00451499118165783*G0_9 - 0.00846560846560843*G0_10 + 0.0112874779541446*G0_11 - 0.00225749559082892*G0_12 + 0.0112874779541446*G0_13 + 0.00225749559082891*G0_14; + A[4] = -0.000105820105820103*G0_0 - 0.000705467372134036*G0_1 - 0.000705467372134034*G0_2 - 0.0112874779541446*G0_3 + 0.0279365079365078*G0_4 - 0.0112874779541446*G0_5 + 0.000564373897707244*G0_6 + 0.000423280423280403*G0_7 - 0.00846560846560841*G0_8 + 0.000564373897707238*G0_9 + 0.00042328042328042*G0_10 - 0.00846560846560842*G0_11 - 0.00677248677248672*G0_12 + 0.00338624338624336*G0_13 + 0.00338624338624339*G0_14; + A[5] = -0.000987654320987653*G0_0 + 0.00141093474426807*G0_2 + 0.00677248677248674*G0_3 - 0.0112874779541446*G0_4 + 0.0225749559082891*G0_5 + 0.00451499118165781*G0_6 - 0.00846560846560842*G0_7 + 0.0112874779541446*G0_8 + 0.0022574955908289*G0_9 + 0.000564373897707236*G0_10 + 0.00451499118165782*G0_11 - 0.00225749559082894*G0_12 + 0.00225749559082891*G0_13 + 0.0112874779541446*G0_14; + A[6] = 0.00141093474426806*G0_0 - 0.000987654320987649*G0_1 + 0.00225749559082891*G0_3 + 0.000564373897707244*G0_4 + 0.00451499118165781*G0_5 + 0.0225749559082891*G0_6 - 0.0112874779541446*G0_7 + 0.00677248677248673*G0_8 + 0.0112874779541446*G0_9 - 0.00846560846560842*G0_10 + 0.00451499118165782*G0_11 + 0.0112874779541446*G0_12 - 0.00225749559082892*G0_13 + 0.00225749559082889*G0_14; + A[7] = -0.000705467372134029*G0_0 - 0.000105820105820106*G0_1 - 0.000705467372134036*G0_2 + 0.000564373897707235*G0_3 + 0.000423280423280404*G0_4 - 0.00846560846560842*G0_5 - 0.0112874779541446*G0_6 + 0.0279365079365078*G0_7 - 0.0112874779541446*G0_8 - 0.00846560846560842*G0_9 + 0.000423280423280421*G0_10 + 0.000564373897707235*G0_11 + 0.00338624338624338*G0_12 - 0.00677248677248674*G0_13 + 0.00338624338624335*G0_14; + A[8] = -0.000987654320987649*G0_1 + 0.00141093474426807*G0_2 + 0.00451499118165783*G0_3 - 0.00846560846560841*G0_4 + 0.0112874779541446*G0_5 + 0.00677248677248673*G0_6 - 0.0112874779541446*G0_7 + 0.0225749559082891*G0_8 + 0.00451499118165782*G0_9 + 0.000564373897707234*G0_10 + 0.00225749559082891*G0_11 + 0.0022574955908289*G0_12 - 0.00225749559082892*G0_13 + 0.0112874779541446*G0_14; + A[9] = 0.00141093474426807*G0_0 - 0.00098765432098765*G0_2 + 0.00451499118165783*G0_3 + 0.000564373897707238*G0_4 + 0.0022574955908289*G0_5 + 0.0112874779541446*G0_6 - 0.00846560846560842*G0_7 + 0.00451499118165782*G0_8 + 0.0225749559082891*G0_9 - 0.0112874779541446*G0_10 + 0.00677248677248673*G0_11 + 0.0112874779541446*G0_12 + 0.00225749559082891*G0_13 - 0.00225749559082891*G0_14; + A[10] = -0.000705467372134032*G0_0 - 0.000705467372134035*G0_1 - 0.000105820105820103*G0_2 - 0.00846560846560843*G0_3 + 0.00042328042328042*G0_4 + 0.000564373897707236*G0_5 - 0.00846560846560842*G0_6 + 0.000423280423280421*G0_7 + 0.000564373897707234*G0_8 - 0.0112874779541446*G0_9 + 0.0279365079365078*G0_10 - 0.0112874779541446*G0_11 + 0.00338624338624338*G0_12 + 0.00338624338624338*G0_13 - 0.00677248677248672*G0_14; + A[11] = 0.00141093474426807*G0_1 - 0.00098765432098765*G0_2 + 0.0112874779541446*G0_3 - 0.00846560846560842*G0_4 + 0.00451499118165781*G0_5 + 0.00451499118165782*G0_6 + 0.000564373897707235*G0_7 + 0.00225749559082891*G0_8 + 0.00677248677248673*G0_9 - 0.0112874779541446*G0_10 + 0.0225749559082891*G0_11 + 0.00225749559082891*G0_12 + 0.0112874779541445*G0_13 - 0.00225749559082891*G0_14; + A[12] = 0.00141093474426807*G0_0 - 0.00141093474426807*G0_1 - 0.00141093474426807*G0_2 - 0.00225749559082892*G0_3 - 0.00677248677248672*G0_4 - 0.00225749559082894*G0_5 + 0.0112874779541446*G0_6 + 0.00338624338624338*G0_7 + 0.0022574955908289*G0_8 + 0.0112874779541446*G0_9 + 0.00338624338624339*G0_10 + 0.00225749559082891*G0_11 + 0.0948148148148144*G0_12 - 0.0135449735449735*G0_13 - 0.0135449735449735*G0_14; + A[13] = -0.00141093474426807*G0_0 + 0.00141093474426808*G0_1 - 0.00141093474426808*G0_2 + 0.0112874779541446*G0_3 + 0.00338624338624335*G0_4 + 0.00225749559082891*G0_5 - 0.00225749559082892*G0_6 - 0.00677248677248674*G0_7 - 0.00225749559082891*G0_8 + 0.00225749559082891*G0_9 + 0.00338624338624338*G0_10 + 0.0112874779541445*G0_11 - 0.0135449735449735*G0_12 + 0.0948148148148145*G0_13 - 0.0135449735449735*G0_14; + A[14] = -0.00141093474426807*G0_0 - 0.00141093474426807*G0_1 + 0.00141093474426805*G0_2 + 0.00225749559082891*G0_3 + 0.00338624338624339*G0_4 + 0.0112874779541446*G0_5 + 0.00225749559082889*G0_6 + 0.00338624338624335*G0_7 + 0.0112874779541446*G0_8 - 0.00225749559082891*G0_9 - 0.00677248677248672*G0_10 - 0.00225749559082891*G0_11 - 0.0135449735449735*G0_12 - 0.0135449735449735*G0_13 + 0.0948148148148144*G0_14; +} + +/// Constructor +poisson2d_4_form_0::poisson2d_4_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson2d_4_form_0::~poisson2d_4_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson2d_4_form_0::signature() const +{ + return "222f0a863535a3588ce6ab48c665de446a824c86571a9a59d472c73dba77ec660d1b8dcc7892fe0c58c718e1c7a90af2de706a8bc3f69e7a6b3ab66be2b83c99"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson2d_4_form_0::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t poisson2d_4_form_0::num_coefficients() const +{ + return 0; +} + +/// Return the number of cell domains +std::size_t poisson2d_4_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson2d_4_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson2d_4_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson2d_4_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson2d_4_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson2d_4_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson2d_4_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson2d_4_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson2d_4_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson2d_4_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson2d_4_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_4_finite_element_0(); + break; + } + case 1: + { + return new poisson2d_4_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson2d_4_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_4_dofmap_0(); + break; + } + case 1: + { + return new poisson2d_4_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson2d_4_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson2d_4_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson2d_4_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson2d_4_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson2d_4_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson2d_4_form_0::create_default_cell_integral() const +{ + return new poisson2d_4_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson2d_4_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson2d_4_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson2d_4_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson2d_4_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +poisson2d_4_form_1::poisson2d_4_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson2d_4_form_1::~poisson2d_4_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson2d_4_form_1::signature() const +{ + return "f268ff49ff08e46f0b767dc659d691059556f5a394d611c73efd7117de4e84bc4367a4620c0cd526d78ad1fdaa841d855a6a739f7d55db7edb1ad0d2150b6c14"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson2d_4_form_1::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t poisson2d_4_form_1::num_coefficients() const +{ + return 1; +} + +/// Return the number of cell domains +std::size_t poisson2d_4_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson2d_4_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson2d_4_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson2d_4_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson2d_4_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson2d_4_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson2d_4_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson2d_4_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson2d_4_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson2d_4_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson2d_4_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_4_finite_element_0(); + break; + } + case 1: + { + return new poisson2d_4_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson2d_4_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_4_dofmap_0(); + break; + } + case 1: + { + return new poisson2d_4_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson2d_4_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson2d_4_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson2d_4_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson2d_4_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson2d_4_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson2d_4_form_1::create_default_cell_integral() const +{ + return new poisson2d_4_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson2d_4_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson2d_4_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson2d_4_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson2d_4_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/bench/fem/convergence/cpp/Poisson2D_4.h b/bench/fem/convergence/cpp/Poisson2D_4.h new file mode 100644 index 0000000..365c416 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_4.h @@ -0,0 +1,985 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __POISSON2D_4_H +#define __POISSON2D_4_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson2d_4_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson2d_4_finite_element_0(); + + /// Destructor + virtual ~poisson2d_4_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson2d_4_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson2d_4_dofmap_0(); + + /// Destructor + virtual ~poisson2d_4_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2d_4_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2d_4_cell_integral_0_otherwise(); + + /// Destructor + virtual ~poisson2d_4_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2d_4_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2d_4_cell_integral_1_otherwise(); + + /// Destructor + virtual ~poisson2d_4_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2d_4_form_0: public ufc::form +{ +public: + + /// Constructor + poisson2d_4_form_0(); + + /// Destructor + virtual ~poisson2d_4_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2d_4_form_1: public ufc::form +{ +public: + + /// Constructor + poisson2d_4_form_1(); + + /// Destructor + virtual ~poisson2d_4_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson2D_4 +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson2d_4_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson2d_4_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_4_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson2d_4_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson2d_4_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson2d_4_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson2d_4_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson2d_4_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson2d_4_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/convergence/cpp/Poisson2D_4.ufl b/bench/fem/convergence/cpp/Poisson2D_4.ufl new file mode 100644 index 0000000..7579b42 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_4.ufl @@ -0,0 +1,30 @@ +# Copyright (C) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2006-03-28 +# +# Poisson's equation in 2D for q = 4 + +element = FiniteElement("Lagrange", triangle, 4) + +v = TestFunction(element) +U = TrialFunction(element) +f = Coefficient(element) + +a = v.dx(i)*U.dx(i)*dx +L = v*f*dx diff --git a/bench/fem/convergence/cpp/Poisson2D_5.cpp b/bench/fem/convergence/cpp/Poisson2D_5.cpp new file mode 100644 index 0000000..62060ee --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_5.cpp @@ -0,0 +1,1805 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no-evaluate_basis: True +// no-evaluate_basis_derivatives: True +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#include "Poisson2D_5.h" + +/// Constructor +poisson2d_5_finite_element_0::poisson2d_5_finite_element_0() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +poisson2d_5_finite_element_0::~poisson2d_5_finite_element_0() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* poisson2d_5_finite_element_0::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 5, None)"; +} + +/// Return the cell shape +ufc::shape poisson2d_5_finite_element_0::cell_shape() const +{ + return ufc::triangle; +} + +/// Return the topological dimension of the cell shape +std::size_t poisson2d_5_finite_element_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the cell shape +std::size_t poisson2d_5_finite_element_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the finite element function space +std::size_t poisson2d_5_finite_element_0::space_dimension() const +{ + return 21; +} + +/// Return the rank of the value space +std::size_t poisson2d_5_finite_element_0::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t poisson2d_5_finite_element_0::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void poisson2d_5_finite_element_0::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ +throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)"); +} + +/// Evaluate all basis functions at given point x in cell +void poisson2d_5_finite_element_0::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 21; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void poisson2d_5_finite_element_0::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ +throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)"); +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void poisson2d_5_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 21; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 5) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[32]; + for (unsigned int r = 0; r < 32; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 21; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double poisson2d_5_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.8*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + y[1] = 0.8*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.6*vertex_coordinates[2] + 0.4*vertex_coordinates[4]; + y[1] = 0.6*vertex_coordinates[3] + 0.4*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.4*vertex_coordinates[2] + 0.6*vertex_coordinates[4]; + y[1] = 0.4*vertex_coordinates[3] + 0.6*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.2*vertex_coordinates[2] + 0.8*vertex_coordinates[4]; + y[1] = 0.2*vertex_coordinates[3] + 0.8*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.8*vertex_coordinates[0] + 0.2*vertex_coordinates[4]; + y[1] = 0.8*vertex_coordinates[1] + 0.2*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.6*vertex_coordinates[0] + 0.4*vertex_coordinates[4]; + y[1] = 0.6*vertex_coordinates[1] + 0.4*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.4*vertex_coordinates[0] + 0.6*vertex_coordinates[4]; + y[1] = 0.4*vertex_coordinates[1] + 0.6*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 10: + { + y[0] = 0.2*vertex_coordinates[0] + 0.8*vertex_coordinates[4]; + y[1] = 0.2*vertex_coordinates[1] + 0.8*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 11: + { + y[0] = 0.8*vertex_coordinates[0] + 0.2*vertex_coordinates[2]; + y[1] = 0.8*vertex_coordinates[1] + 0.2*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 12: + { + y[0] = 0.6*vertex_coordinates[0] + 0.4*vertex_coordinates[2]; + y[1] = 0.6*vertex_coordinates[1] + 0.4*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 13: + { + y[0] = 0.4*vertex_coordinates[0] + 0.6*vertex_coordinates[2]; + y[1] = 0.4*vertex_coordinates[1] + 0.6*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 14: + { + y[0] = 0.2*vertex_coordinates[0] + 0.8*vertex_coordinates[2]; + y[1] = 0.2*vertex_coordinates[1] + 0.8*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 15: + { + y[0] = 0.6*vertex_coordinates[0] + 0.2*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + y[1] = 0.6*vertex_coordinates[1] + 0.2*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 16: + { + y[0] = 0.4*vertex_coordinates[0] + 0.4*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + y[1] = 0.4*vertex_coordinates[1] + 0.4*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 17: + { + y[0] = 0.2*vertex_coordinates[0] + 0.6*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + y[1] = 0.2*vertex_coordinates[1] + 0.6*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 18: + { + y[0] = 0.4*vertex_coordinates[0] + 0.2*vertex_coordinates[2] + 0.4*vertex_coordinates[4]; + y[1] = 0.4*vertex_coordinates[1] + 0.2*vertex_coordinates[3] + 0.4*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 19: + { + y[0] = 0.2*vertex_coordinates[0] + 0.4*vertex_coordinates[2] + 0.4*vertex_coordinates[4]; + y[1] = 0.2*vertex_coordinates[1] + 0.4*vertex_coordinates[3] + 0.4*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 20: + { + y[0] = 0.2*vertex_coordinates[0] + 0.2*vertex_coordinates[2] + 0.6*vertex_coordinates[4]; + y[1] = 0.2*vertex_coordinates[1] + 0.2*vertex_coordinates[3] + 0.6*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void poisson2d_5_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.8*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + y[1] = 0.8*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.6*vertex_coordinates[2] + 0.4*vertex_coordinates[4]; + y[1] = 0.6*vertex_coordinates[3] + 0.4*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.4*vertex_coordinates[2] + 0.6*vertex_coordinates[4]; + y[1] = 0.4*vertex_coordinates[3] + 0.6*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.2*vertex_coordinates[2] + 0.8*vertex_coordinates[4]; + y[1] = 0.2*vertex_coordinates[3] + 0.8*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.8*vertex_coordinates[0] + 0.2*vertex_coordinates[4]; + y[1] = 0.8*vertex_coordinates[1] + 0.2*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.6*vertex_coordinates[0] + 0.4*vertex_coordinates[4]; + y[1] = 0.6*vertex_coordinates[1] + 0.4*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.4*vertex_coordinates[0] + 0.6*vertex_coordinates[4]; + y[1] = 0.4*vertex_coordinates[1] + 0.6*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + y[0] = 0.2*vertex_coordinates[0] + 0.8*vertex_coordinates[4]; + y[1] = 0.2*vertex_coordinates[1] + 0.8*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[0]; + y[0] = 0.8*vertex_coordinates[0] + 0.2*vertex_coordinates[2]; + y[1] = 0.8*vertex_coordinates[1] + 0.2*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[0]; + y[0] = 0.6*vertex_coordinates[0] + 0.4*vertex_coordinates[2]; + y[1] = 0.6*vertex_coordinates[1] + 0.4*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[12] = vals[0]; + y[0] = 0.4*vertex_coordinates[0] + 0.6*vertex_coordinates[2]; + y[1] = 0.4*vertex_coordinates[1] + 0.6*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[13] = vals[0]; + y[0] = 0.2*vertex_coordinates[0] + 0.8*vertex_coordinates[2]; + y[1] = 0.2*vertex_coordinates[1] + 0.8*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[14] = vals[0]; + y[0] = 0.6*vertex_coordinates[0] + 0.2*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + y[1] = 0.6*vertex_coordinates[1] + 0.2*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[15] = vals[0]; + y[0] = 0.4*vertex_coordinates[0] + 0.4*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + y[1] = 0.4*vertex_coordinates[1] + 0.4*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[16] = vals[0]; + y[0] = 0.2*vertex_coordinates[0] + 0.6*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + y[1] = 0.2*vertex_coordinates[1] + 0.6*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[17] = vals[0]; + y[0] = 0.4*vertex_coordinates[0] + 0.2*vertex_coordinates[2] + 0.4*vertex_coordinates[4]; + y[1] = 0.4*vertex_coordinates[1] + 0.2*vertex_coordinates[3] + 0.4*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[18] = vals[0]; + y[0] = 0.2*vertex_coordinates[0] + 0.4*vertex_coordinates[2] + 0.4*vertex_coordinates[4]; + y[1] = 0.2*vertex_coordinates[1] + 0.4*vertex_coordinates[3] + 0.4*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[19] = vals[0]; + y[0] = 0.2*vertex_coordinates[0] + 0.2*vertex_coordinates[2] + 0.6*vertex_coordinates[4]; + y[1] = 0.2*vertex_coordinates[1] + 0.2*vertex_coordinates[3] + 0.6*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[20] = vals[0]; +} + +/// Interpolate vertex values from dof values +void poisson2d_5_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void poisson2d_5_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void poisson2d_5_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t poisson2d_5_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* poisson2d_5_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* poisson2d_5_finite_element_0::create() const +{ + return new poisson2d_5_finite_element_0(); +} + +/// Constructor +poisson2d_5_dofmap_0::poisson2d_5_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +poisson2d_5_dofmap_0::~poisson2d_5_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* poisson2d_5_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 5, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool poisson2d_5_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t poisson2d_5_dofmap_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t poisson2d_5_dofmap_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the global finite element function space +std::size_t poisson2d_5_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0] + 4*num_global_entities[1] + 6*num_global_entities[2]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t poisson2d_5_dofmap_0::local_dimension() const +{ + return 21; +} + +/// Return the number of dofs on each cell facet +std::size_t poisson2d_5_dofmap_0::num_facet_dofs() const +{ + return 6; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t poisson2d_5_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 4; + break; + } + case 2: + { + return 6; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void poisson2d_5_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + 4*c.entity_indices[1][0]; + dofs[4] = offset + 4*c.entity_indices[1][0] + 1; + dofs[5] = offset + 4*c.entity_indices[1][0] + 2; + dofs[6] = offset + 4*c.entity_indices[1][0] + 3; + dofs[7] = offset + 4*c.entity_indices[1][1]; + dofs[8] = offset + 4*c.entity_indices[1][1] + 1; + dofs[9] = offset + 4*c.entity_indices[1][1] + 2; + dofs[10] = offset + 4*c.entity_indices[1][1] + 3; + dofs[11] = offset + 4*c.entity_indices[1][2]; + dofs[12] = offset + 4*c.entity_indices[1][2] + 1; + dofs[13] = offset + 4*c.entity_indices[1][2] + 2; + dofs[14] = offset + 4*c.entity_indices[1][2] + 3; + offset += 4*num_global_entities[1]; + dofs[15] = offset + 6*c.entity_indices[2][0]; + dofs[16] = offset + 6*c.entity_indices[2][0] + 1; + dofs[17] = offset + 6*c.entity_indices[2][0] + 2; + dofs[18] = offset + 6*c.entity_indices[2][0] + 3; + dofs[19] = offset + 6*c.entity_indices[2][0] + 4; + dofs[20] = offset + 6*c.entity_indices[2][0] + 5; + offset += 6*num_global_entities[2]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void poisson2d_5_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 7; + dofs[3] = 8; + dofs[4] = 9; + dofs[5] = 10; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 11; + dofs[3] = 12; + dofs[4] = 13; + dofs[5] = 14; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void poisson2d_5_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 4; + dofs[2] = 5; + dofs[3] = 6; + break; + } + case 1: + { + dofs[0] = 7; + dofs[1] = 8; + dofs[2] = 9; + dofs[3] = 10; + break; + } + case 2: + { + dofs[0] = 11; + dofs[1] = 12; + dofs[2] = 13; + dofs[3] = 14; + break; + } + } + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 15; + dofs[1] = 16; + dofs[2] = 17; + dofs[3] = 18; + dofs[4] = 19; + dofs[5] = 20; + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void poisson2d_5_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.8*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.8*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.6*vertex_coordinates[2] + 0.4*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.6*vertex_coordinates[3] + 0.4*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.4*vertex_coordinates[2] + 0.6*vertex_coordinates[4]; + dof_coordinates[5][1] = 0.4*vertex_coordinates[3] + 0.6*vertex_coordinates[5]; + dof_coordinates[6][0] = 0.2*vertex_coordinates[2] + 0.8*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.2*vertex_coordinates[3] + 0.8*vertex_coordinates[5]; + dof_coordinates[7][0] = 0.8*vertex_coordinates[0] + 0.2*vertex_coordinates[4]; + dof_coordinates[7][1] = 0.8*vertex_coordinates[1] + 0.2*vertex_coordinates[5]; + dof_coordinates[8][0] = 0.6*vertex_coordinates[0] + 0.4*vertex_coordinates[4]; + dof_coordinates[8][1] = 0.6*vertex_coordinates[1] + 0.4*vertex_coordinates[5]; + dof_coordinates[9][0] = 0.4*vertex_coordinates[0] + 0.6*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.4*vertex_coordinates[1] + 0.6*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.2*vertex_coordinates[0] + 0.8*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.2*vertex_coordinates[1] + 0.8*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.8*vertex_coordinates[0] + 0.2*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.8*vertex_coordinates[1] + 0.2*vertex_coordinates[3]; + dof_coordinates[12][0] = 0.6*vertex_coordinates[0] + 0.4*vertex_coordinates[2]; + dof_coordinates[12][1] = 0.6*vertex_coordinates[1] + 0.4*vertex_coordinates[3]; + dof_coordinates[13][0] = 0.4*vertex_coordinates[0] + 0.6*vertex_coordinates[2]; + dof_coordinates[13][1] = 0.4*vertex_coordinates[1] + 0.6*vertex_coordinates[3]; + dof_coordinates[14][0] = 0.2*vertex_coordinates[0] + 0.8*vertex_coordinates[2]; + dof_coordinates[14][1] = 0.2*vertex_coordinates[1] + 0.8*vertex_coordinates[3]; + dof_coordinates[15][0] = 0.6*vertex_coordinates[0] + 0.2*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + dof_coordinates[15][1] = 0.6*vertex_coordinates[1] + 0.2*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + dof_coordinates[16][0] = 0.4*vertex_coordinates[0] + 0.4*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + dof_coordinates[16][1] = 0.4*vertex_coordinates[1] + 0.4*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + dof_coordinates[17][0] = 0.2*vertex_coordinates[0] + 0.6*vertex_coordinates[2] + 0.2*vertex_coordinates[4]; + dof_coordinates[17][1] = 0.2*vertex_coordinates[1] + 0.6*vertex_coordinates[3] + 0.2*vertex_coordinates[5]; + dof_coordinates[18][0] = 0.4*vertex_coordinates[0] + 0.2*vertex_coordinates[2] + 0.4*vertex_coordinates[4]; + dof_coordinates[18][1] = 0.4*vertex_coordinates[1] + 0.2*vertex_coordinates[3] + 0.4*vertex_coordinates[5]; + dof_coordinates[19][0] = 0.2*vertex_coordinates[0] + 0.4*vertex_coordinates[2] + 0.4*vertex_coordinates[4]; + dof_coordinates[19][1] = 0.2*vertex_coordinates[1] + 0.4*vertex_coordinates[3] + 0.4*vertex_coordinates[5]; + dof_coordinates[20][0] = 0.2*vertex_coordinates[0] + 0.2*vertex_coordinates[2] + 0.6*vertex_coordinates[4]; + dof_coordinates[20][1] = 0.2*vertex_coordinates[1] + 0.2*vertex_coordinates[3] + 0.6*vertex_coordinates[5]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t poisson2d_5_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* poisson2d_5_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* poisson2d_5_dofmap_0::create() const +{ + return new poisson2d_5_dofmap_0(); +} + +/// Constructor +poisson2d_5_cell_integral_0_otherwise::poisson2d_5_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson2d_5_cell_integral_0_otherwise::~poisson2d_5_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson2d_5_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson2d_5_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 1259 + // Total number of operations (multiply-add pairs): 1270 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.342406580687829*G0_0_0 + 0.342406580687829*G0_0_1 + 0.342406580687829*G0_1_0 + 0.34240658068783*G0_1_1; + A[1] = -0.040998401675485*G0_0_0 - 0.0409984016754851*G0_1_0; + A[2] = -0.040998401675485*G0_0_1 - 0.040998401675485*G0_1_1; + A[3] = -0.0408192791005283*G0_0_0 - 0.040819279100529*G0_0_1 - 0.0408192791005285*G0_1_0 - 0.0408192791005291*G0_1_1; + A[4] = -0.0379774305555561*G0_0_0 - 0.0379774305555545*G0_0_1 - 0.0379774305555559*G0_1_0 - 0.0379774305555543*G0_1_1; + A[5] = -0.0379774305555538*G0_0_0 - 0.0379774305555549*G0_0_1 - 0.037977430555554*G0_1_0 - 0.037977430555555*G0_1_1; + A[6] = -0.040819279100529*G0_0_0 - 0.0408192791005282*G0_0_1 - 0.040819279100529*G0_1_0 - 0.0408192791005283*G0_1_1; + A[7] = 0.202287946428571*G0_0_0 - 0.64802758487654*G0_0_1 + 0.202287946428571*G0_1_0 - 0.648027584876541*G0_1_1; + A[8] = -0.0158454585537927*G0_0_0 + 0.594204695767193*G0_0_1 - 0.0158454585537928*G0_1_0 + 0.594204695767193*G0_1_1; + A[9] = -0.069668347663138*G0_0_0 - 0.449959352954142*G0_0_1 - 0.069668347663138*G0_1_0 - 0.449959352954143*G0_1_1; + A[10] = 0.0408192791005289*G0_0_0 + 0.202374063051146*G0_0_1 + 0.0408192791005289*G0_1_0 + 0.202374063051146*G0_1_1; + A[11] = -0.64802758487654*G0_0_0 + 0.202287946428571*G0_0_1 - 0.64802758487654*G0_1_0 + 0.202287946428572*G0_1_1; + A[12] = 0.594204695767192*G0_0_0 - 0.0158454585537913*G0_0_1 + 0.594204695767192*G0_1_0 - 0.0158454585537912*G0_1_1; + A[13] = -0.449959352954142*G0_0_0 - 0.0696683476631398*G0_0_1 - 0.449959352954142*G0_1_0 - 0.0696683476631396*G0_1_1; + A[14] = 0.202374063051145*G0_0_0 + 0.0408192791005295*G0_0_1 + 0.202374063051146*G0_1_0 + 0.0408192791005296*G0_1_1; + A[15] = -0.215291556437389*G0_0_0 - 0.215291556437391*G0_0_1 - 0.215291556437389*G0_1_0 - 0.215291556437392*G0_1_1; + A[16] = -0.0538228891093484*G0_0_0 - 0.0538228891093457*G0_0_1 - 0.0538228891093485*G0_1_0 - 0.053822889109346*G0_1_1; + A[17] = 0.107645778218694*G0_0_0 + 0.107645778218693*G0_0_1 + 0.107645778218695*G0_1_0 + 0.107645778218693*G0_1_1; + A[18] = -0.0538228891093464*G0_0_0 - 0.053822889109346*G0_0_1 - 0.0538228891093465*G0_1_0 - 0.0538228891093456*G0_1_1; + A[19] = 0.107645778218695*G0_0_0 + 0.107645778218694*G0_0_1 + 0.107645778218695*G0_1_0 + 0.107645778218695*G0_1_1; + A[20] = 0.107645778218692*G0_0_0 + 0.107645778218692*G0_0_1 + 0.107645778218692*G0_1_0 + 0.107645778218692*G0_1_1; + A[21] = -0.040998401675485*G0_0_0 - 0.0409984016754851*G0_0_1; + A[22] = 0.342406580687829*G0_0_0; + A[23] = 0.0409984016754845*G0_0_1; + A[24] = 0.20228794642857*G0_0_0 + 0.85031553130511*G0_0_1; + A[25] = -0.0158454585537937*G0_0_0 - 0.610050154320986*G0_0_1; + A[26] = -0.0696683476631382*G0_0_0 + 0.380291005291002*G0_0_1; + A[27] = 0.0408192791005282*G0_0_0 - 0.161554783950616*G0_0_1; + A[28] = -0.0408192791005284*G0_0_0; + A[29] = -0.037977430555556*G0_0_0; + A[30] = -0.0379774305555545*G0_0_0; + A[31] = -0.0408192791005283*G0_0_0; + A[32] = 0.202374063051145*G0_0_0 + 0.161554783950616*G0_0_1; + A[33] = -0.449959352954142*G0_0_0 - 0.380291005291001*G0_0_1; + A[34] = 0.594204695767192*G0_0_0 + 0.610050154320982*G0_0_1; + A[35] = -0.64802758487654*G0_0_0 - 0.85031553130511*G0_0_1; + A[36] = 0.107645778218694*G0_0_0; + A[37] = -0.0538228891093496*G0_0_0; + A[38] = -0.215291556437387*G0_0_0; + A[39] = 0.107645778218696*G0_0_0; + A[40] = -0.0538228891093464*G0_0_0; + A[41] = 0.107645778218693*G0_0_0; + A[42] = -0.040998401675485*G0_1_0 - 0.040998401675485*G0_1_1; + A[43] = 0.0409984016754845*G0_1_0; + A[44] = 0.34240658068783*G0_1_1; + A[45] = -0.161554783950617*G0_1_0 + 0.0408192791005279*G0_1_1; + A[46] = 0.380291005291006*G0_1_0 - 0.0696683476631372*G0_1_1; + A[47] = -0.610050154320988*G0_1_0 - 0.015845458553793*G0_1_1; + A[48] = 0.850315531305113*G0_1_0 + 0.20228794642857*G0_1_1; + A[49] = 0.161554783950618*G0_1_0 + 0.202374063051146*G0_1_1; + A[50] = -0.380291005291006*G0_1_0 - 0.449959352954144*G0_1_1; + A[51] = 0.610050154320987*G0_1_0 + 0.594204695767196*G0_1_1; + A[52] = -0.850315531305113*G0_1_0 - 0.648027584876543*G0_1_1; + A[53] = -0.0408192791005286*G0_1_1; + A[54] = -0.0379774305555554*G0_1_1; + A[55] = -0.0379774305555546*G0_1_1; + A[56] = -0.0408192791005283*G0_1_1; + A[57] = 0.107645778218693*G0_1_1; + A[58] = 0.107645778218695*G0_1_1; + A[59] = 0.107645778218692*G0_1_1; + A[60] = -0.0538228891093447*G0_1_1; + A[61] = -0.0538228891093471*G0_1_1; + A[62] = -0.21529155643739*G0_1_1; + A[63] = -0.0408192791005283*G0_0_0 - 0.0408192791005285*G0_0_1 - 0.040819279100529*G0_1_0 - 0.0408192791005292*G0_1_1; + A[64] = 0.20228794642857*G0_0_0 + 0.85031553130511*G0_1_0; + A[65] = -0.161554783950617*G0_0_1 + 0.0408192791005279*G0_1_1; + A[66] = 1.98929398148147*G0_0_0 + 1.28098476080246*G0_0_1 + 1.28098476080246*G0_1_0 + 2.56196952160492*G0_1_1; + A[67] = -0.906377452601409*G0_0_0 + 0.796578758818337*G0_0_1 - 0.529617228835981*G0_1_0 - 1.39508928571428*G0_1_1; + A[68] = 0.818107914462078*G0_0_0 - 0.482253086419752*G0_0_1 + 0.232514880952381*G0_1_0 + 0.895612874779533*G0_1_1; + A[69] = -0.340160659171074*G0_0_0 + 0.329396081349206*G0_0_1 - 0.0710462136243394*G0_1_0 - 0.340160659171072*G0_1_1; + A[70] = 0.142092427248674*G0_0_0 + 0.0710462136243362*G0_0_1 + 0.0710462136243363*G0_1_0; + A[71] = 0.131327849426809*G0_0_0 + 0.0301408179012379*G0_0_1 + 0.0301408179012345*G0_1_0; + A[72] = 0.172233245149907*G0_0_0 + 0.0301408179012311*G0_0_1 + 0.0301408179012338*G0_1_0; + A[73] = 0.340160659171074*G0_0_0 + 0.0710462136243409*G0_0_1 + 0.0710462136243393*G0_1_0; + A[74] = 0.198068231922395*G0_0_0 + 0.269114445546734*G0_0_1 + 0.269114445546735*G0_1_0 + 0.340160659171073*G0_1_1; + A[75] = -0.359536899250436*G0_0_0 - 0.663097993827155*G0_0_1 - 0.663097993827155*G0_1_0 - 0.895612874779531*G0_1_1; + A[76] = 0.286337770061724*G0_0_0 + 0.865472056878298*G0_0_1 + 0.8654720568783*G0_1_0 + 1.39508928571427*G0_1_1; + A[77] = -0.286337770061725*G0_0_0 - 1.28098476080246*G0_0_1 - 1.28098476080246*G0_1_0 - 2.56196952160492*G0_1_1; + A[78] = -0.667403824955902*G0_0_0 - 0.262655698853613*G0_0_1 - 0.262655698853609*G0_1_0; + A[79] = 1.35633680555554*G0_0_0 + 0.572675540123453*G0_0_1 + 0.572675540123445*G0_1_0; + A[80] = -2.82031938932979*G0_0_0 - 1.66205081569664*G0_0_1 - 1.66205081569663*G0_1_0; + A[81] = -0.419818535052911*G0_0_0 - 0.0731991291887145*G0_0_1 - 0.0731991291887099*G0_1_0; + A[82] = 1.19486813822751*G0_0_0 + 0.572675540123455*G0_0_1 + 0.572675540123456*G0_1_0; + A[83] = -0.990341159611985*G0_0_0 - 0.262655698853612*G0_0_1 - 0.262655698853615*G0_1_0; + A[84] = -0.0379774305555561*G0_0_0 - 0.0379774305555558*G0_0_1 - 0.0379774305555545*G0_1_0 - 0.0379774305555543*G0_1_1; + A[85] = -0.0158454585537937*G0_0_0 - 0.610050154320985*G0_1_0; + A[86] = 0.380291005291006*G0_0_1 - 0.0696683476631372*G0_1_1; + A[87] = -0.906377452601409*G0_0_0 - 0.529617228835981*G0_0_1 + 0.796578758818337*G0_1_0 - 1.39508928571428*G0_1_1; + A[88] = 3.07436342592592*G0_0_0 + 1.17549189814815*G0_0_1 + 1.17549189814815*G0_1_0 + 3.69440310846559*G0_1_1; + A[89] = -1.80414324294532*G0_0_0 + 0.69969755842151*G0_0_1 - 0.350925236992947*G0_1_0 - 1.80414324294532*G0_1_1; + A[90] = 0.895612874779541*G0_0_0 - 0.48225308641975*G0_0_1 + 0.232514880952383*G0_1_0 + 0.818107914462077*G0_1_1; + A[91] = 0.13132784942681*G0_0_0 + 0.101187031525576*G0_0_1 + 0.101187031525575*G0_1_0 + 0.0710462136243381*G0_1_1; + A[92] = -0.297102347883603*G0_0_0 - 0.148551173941805*G0_0_1 - 0.148551173941801*G0_1_0 - 0.0172233245149925*G0_1_1; + A[93] = -0.21959738756613*G0_0_0 - 0.062434551366835*G0_0_1 - 0.062434551366842*G0_1_0 - 0.0172233245149881*G0_1_1; + A[94] = -0.89561287477954*G0_0_0 - 0.232514880952385*G0_0_1 - 0.232514880952383*G0_1_0 + 0.0710462136243353*G0_1_1; + A[95] = 0.111951609347444*G0_0_0 + 0.142092427248677*G0_0_1 + 0.142092427248675*G0_1_0 + 0.172233245149911*G0_1_1; + A[96] = -0.111951609347442*G0_0_0 - 0.157162836199293*G0_0_1 - 0.157162836199291*G0_1_0 - 0.219597387566139*G0_1_1; + A[97] = 0.103339947089946*G0_0_0 + 0.133480764991184*G0_0_1 + 0.133480764991179*G0_1_0 + 0.266961529982366*G0_1_1; + A[98] = -0.0495170579805987*G0_0_0 + 0.529617228835981*G0_0_1 + 0.529617228835978*G0_1_0 + 1.39508928571428*G0_1_1; + A[99] = -0.344466490299827*G0_0_0 - 0.447806437389772*G0_0_1 - 0.447806437389773*G0_1_0 - 0.516699735449737*G0_1_1; + A[100] = 0.387524801587307*G0_0_0 + 0.859013310185179*G0_0_1 + 0.85901331018519*G0_1_0 + 1.01187031525573*G0_1_1; + A[101] = 0.731991291887121*G0_0_0 - 1.30897266313933*G0_0_1 - 1.30897266313933*G0_1_0 - 3.96136463844796*G0_1_1; + A[102] = 1.03339947089947*G0_0_0 + 0.374607308201062*G0_0_1 + 0.374607308201053*G0_1_0 + 0.0430583112874783*G0_1_1; + A[103] = -3.81066054894178*G0_0_0 - 1.4015480324074*G0_0_1 - 1.4015480324074*G0_1_0 + 1.01187031525572*G0_1_1; + A[104] = 2.02374063051145*G0_0_0 + 0.413359788359785*G0_0_1 + 0.413359788359789*G0_1_0 - 0.516699735449728*G0_1_1; + A[105] = -0.0379774305555538*G0_0_0 - 0.037977430555554*G0_0_1 - 0.0379774305555549*G0_1_0 - 0.037977430555555*G0_1_1; + A[106] = -0.0696683476631382*G0_0_0 + 0.380291005291002*G0_1_0; + A[107] = -0.610050154320988*G0_0_1 - 0.0158454585537929*G0_1_1; + A[108] = 0.818107914462078*G0_0_0 + 0.232514880952381*G0_0_1 - 0.482253086419752*G0_1_0 + 0.895612874779533*G0_1_1; + A[109] = -1.80414324294532*G0_0_0 - 0.350925236992947*G0_0_1 + 0.69969755842151*G0_1_0 - 1.80414324294532*G0_1_1; + A[110] = 3.6944031084656*G0_0_0 + 1.17549189814814*G0_0_1 + 1.17549189814814*G0_1_0 + 3.0743634259259*G0_1_1; + A[111] = -1.39508928571428*G0_0_0 + 0.79657875881834*G0_0_1 - 0.529617228835976*G0_1_0 - 0.906377452601404*G0_1_1; + A[112] = 0.172233245149906*G0_0_0 + 0.14209242724867*G0_0_1 + 0.142092427248673*G0_1_0 + 0.111951609347439*G0_1_1; + A[113] = -0.219597387566128*G0_0_0 - 0.157162836199283*G0_0_1 - 0.157162836199291*G0_1_0 - 0.111951609347437*G0_1_1; + A[114] = 0.266961529982354*G0_0_0 + 0.133480764991172*G0_0_1 + 0.133480764991179*G0_1_0 + 0.103339947089942*G0_1_1; + A[115] = 1.39508928571428*G0_0_0 + 0.529617228835983*G0_0_1 + 0.529617228835977*G0_1_0 - 0.0495170579805959*G0_1_1; + A[116] = 0.0710462136243354*G0_0_0 + 0.101187031525572*G0_0_1 + 0.101187031525572*G0_1_0 + 0.131327849426806*G0_1_1; + A[117] = -0.0172233245149888*G0_0_0 - 0.148551173941798*G0_0_1 - 0.148551173941797*G0_1_0 - 0.297102347883594*G0_1_1; + A[118] = -0.0172233245149926*G0_0_0 - 0.0624345513668466*G0_0_1 - 0.0624345513668439*G0_1_0 - 0.21959738756614*G0_1_1; + A[119] = 0.0710462136243387*G0_0_0 - 0.232514880952382*G0_0_1 - 0.232514880952379*G0_1_0 - 0.895612874779535*G0_1_1; + A[120] = -0.516699735449724*G0_0_0 - 0.447806437389765*G0_0_1 - 0.447806437389764*G0_1_0 - 0.344466490299821*G0_1_1; + A[121] = 0.0430583112874709*G0_0_0 + 0.374607308201058*G0_0_1 + 0.374607308201052*G0_1_0 + 1.03339947089946*G0_1_1; + A[122] = -0.516699735449731*G0_0_0 + 0.413359788359793*G0_0_1 + 0.41335978835979*G0_1_0 + 2.02374063051146*G0_1_1; + A[123] = 1.01187031525572*G0_0_0 + 0.859013310185172*G0_0_1 + 0.859013310185178*G0_1_0 + 0.387524801587298*G0_1_1; + A[124] = 1.01187031525573*G0_0_0 - 1.4015480324074*G0_0_1 - 1.4015480324074*G0_1_0 - 3.81066054894177*G0_1_1; + A[125] = -3.96136463844795*G0_0_0 - 1.30897266313932*G0_0_1 - 1.30897266313932*G0_1_0 + 0.731991291887121*G0_1_1; + A[126] = -0.040819279100529*G0_0_0 - 0.040819279100529*G0_0_1 - 0.0408192791005282*G0_1_0 - 0.0408192791005283*G0_1_1; + A[127] = 0.0408192791005282*G0_0_0 - 0.161554783950616*G0_1_0; + A[128] = 0.850315531305113*G0_0_1 + 0.20228794642857*G0_1_1; + A[129] = -0.340160659171074*G0_0_0 - 0.0710462136243394*G0_0_1 + 0.329396081349206*G0_1_0 - 0.340160659171072*G0_1_1; + A[130] = 0.895612874779541*G0_0_0 + 0.232514880952383*G0_0_1 - 0.48225308641975*G0_1_0 + 0.818107914462077*G0_1_1; + A[131] = -1.39508928571428*G0_0_0 - 0.529617228835976*G0_0_1 + 0.79657875881834*G0_1_0 - 0.906377452601404*G0_1_1; + A[132] = 2.56196952160493*G0_0_0 + 1.28098476080246*G0_0_1 + 1.28098476080246*G0_1_0 + 1.98929398148147*G0_1_1; + A[133] = 0.340160659171078*G0_0_0 + 0.269114445546738*G0_0_1 + 0.269114445546737*G0_1_0 + 0.198068231922396*G0_1_1; + A[134] = -0.895612874779545*G0_0_0 - 0.663097993827163*G0_0_1 - 0.66309799382716*G0_1_0 - 0.359536899250439*G0_1_1; + A[135] = 1.39508928571429*G0_0_0 + 0.865472056878311*G0_0_1 + 0.865472056878304*G0_1_0 + 0.286337770061729*G0_1_1; + A[136] = -2.56196952160493*G0_0_0 - 1.28098476080247*G0_0_1 - 1.28098476080246*G0_1_0 - 0.286337770061728*G0_1_1; + A[137] = 0.07104621362434*G0_0_1 + 0.071046213624338*G0_1_0 + 0.142092427248678*G0_1_1; + A[138] = 0.0301408179012343*G0_0_1 + 0.0301408179012348*G0_1_0 + 0.131327849426807*G0_1_1; + A[139] = 0.0301408179012361*G0_0_1 + 0.0301408179012338*G0_1_0 + 0.172233245149912*G0_1_1; + A[140] = 0.0710462136243392*G0_0_1 + 0.0710462136243384*G0_1_0 + 0.340160659171072*G0_1_1; + A[141] = -0.262655698853621*G0_0_1 - 0.262655698853615*G0_1_0 - 0.66740382495591*G0_1_1; + A[142] = -0.0731991291887108*G0_0_1 - 0.0731991291887092*G0_1_0 - 0.419818535052906*G0_1_1; + A[143] = -0.262655698853619*G0_0_1 - 0.262655698853619*G0_1_0 - 0.99034115961199*G0_1_1; + A[144] = 0.572675540123462*G0_0_1 + 0.572675540123456*G0_1_0 + 1.35633680555555*G0_1_1; + A[145] = 0.572675540123451*G0_0_1 + 0.572675540123453*G0_1_0 + 1.1948681382275*G0_1_1; + A[146] = -1.66205081569664*G0_0_1 - 1.66205081569664*G0_1_0 - 2.82031938932979*G0_1_1; + A[147] = 0.202287946428571*G0_0_0 + 0.202287946428571*G0_0_1 - 0.64802758487654*G0_1_0 - 0.648027584876541*G0_1_1; + A[148] = -0.0408192791005284*G0_0_0; + A[149] = 0.161554783950618*G0_0_1 + 0.202374063051146*G0_1_1; + A[150] = 0.142092427248674*G0_0_0 + 0.0710462136243363*G0_0_1 + 0.0710462136243362*G0_1_0; + A[151] = 0.13132784942681*G0_0_0 + 0.101187031525575*G0_0_1 + 0.101187031525576*G0_1_0 + 0.0710462136243381*G0_1_1; + A[152] = 0.172233245149906*G0_0_0 + 0.142092427248673*G0_0_1 + 0.14209242724867*G0_1_0 + 0.111951609347439*G0_1_1; + A[153] = 0.340160659171078*G0_0_0 + 0.269114445546737*G0_0_1 + 0.269114445546738*G0_1_0 + 0.198068231922396*G0_1_1; + A[154] = 1.98929398148147*G0_0_0 + 0.708309220679007*G0_0_1 + 0.708309220679007*G0_1_0 + 1.98929398148147*G0_1_1; + A[155] = -0.906377452601406*G0_0_0 - 1.70295621141974*G0_0_1 - 0.376760223765426*G0_1_0 - 2.56842826829805*G0_1_1; + A[156] = 0.818107914462077*G0_0_0 + 1.30036100088183*G0_0_1 + 0.585593033509693*G0_1_0 + 1.96345899470898*G0_1_1; + A[157] = -0.340160659171078*G0_0_0 - 0.66955674052028*G0_0_1 - 0.269114445546738*G0_1_0 - 0.938671186067016*G0_1_1; + A[158] = -0.286337770061728*G0_0_0 + 0.994646990740736*G0_0_1 + 0.994646990740735*G0_1_0 - 0.286337770061729*G0_1_1; + A[159] = 0.286337770061726*G0_0_0 - 0.579134286816575*G0_0_1 - 0.579134286816575*G0_1_0 - 0.049517057980602*G0_1_1; + A[160] = -0.359536899250437*G0_0_0 + 0.303561094576719*G0_0_1 + 0.303561094576719*G0_1_0 + 0.0710462136243417*G0_1_1; + A[161] = 0.198068231922396*G0_0_0 - 0.0710462136243371*G0_0_1 - 0.0710462136243399*G0_1_0; + A[162] = -2.82031938932979*G0_0_0 - 1.15826857363315*G0_0_1 - 1.15826857363315*G0_1_0 + 0.503782242063499*G0_1_1; + A[163] = 1.35633680555554*G0_0_0 + 0.783661265432094*G0_0_1 + 0.783661265432094*G0_1_0 + 0.21098572530864*G0_1_1; + A[164] = -0.667403824955901*G0_0_0 - 0.404748126102293*G0_0_1 - 0.40474812610229*G0_1_0 - 0.142092427248677*G0_1_1; + A[165] = 1.19486813822751*G0_0_0 + 0.622192598104048*G0_0_1 + 0.622192598104048*G0_1_0 + 0.0495170579805897*G0_1_1; + A[166] = -0.419818535052911*G0_0_0 - 0.346619405864192*G0_0_1 - 0.346619405864199*G0_1_0 - 0.273420276675483*G0_1_1; + A[167] = -0.990341159611982*G0_0_0 - 0.727685460758374*G0_0_1 - 0.727685460758364*G0_1_0 - 0.465029761904753*G0_1_1; + A[168] = -0.0158454585537927*G0_0_0 - 0.0158454585537928*G0_0_1 + 0.594204695767193*G0_1_0 + 0.594204695767193*G0_1_1; + A[169] = -0.037977430555556*G0_0_0; + A[170] = -0.380291005291006*G0_0_1 - 0.449959352954144*G0_1_1; + A[171] = 0.131327849426809*G0_0_0 + 0.0301408179012345*G0_0_1 + 0.0301408179012379*G0_1_0; + A[172] = -0.297102347883603*G0_0_0 - 0.148551173941801*G0_0_1 - 0.148551173941805*G0_1_0 - 0.0172233245149925*G0_1_1; + A[173] = -0.219597387566128*G0_0_0 - 0.157162836199291*G0_0_1 - 0.157162836199283*G0_1_0 - 0.111951609347437*G0_1_1; + A[174] = -0.895612874779545*G0_0_0 - 0.66309799382716*G0_0_1 - 0.663097993827163*G0_1_0 - 0.359536899250439*G0_1_1; + A[175] = -0.906377452601406*G0_0_0 - 0.376760223765426*G0_0_1 - 1.70295621141974*G0_1_0 - 2.56842826829805*G0_1_1; + A[176] = 3.07436342592592*G0_0_0 + 1.89887152777777*G0_0_1 + 1.89887152777777*G0_1_0 + 4.41778273809521*G0_1_1; + A[177] = -1.80414324294532*G0_0_0 - 2.50384080136683*G0_0_1 - 1.45321800595237*G0_1_0 - 3.9570588073192*G0_1_1; + A[178] = 0.895612874779545*G0_0_0 + 1.37786596119929*G0_0_1 + 0.663097993827163*G0_1_0 + 1.96345899470899*G0_1_1; + A[179] = -0.0495170579805976*G0_0_0 - 0.579134286816577*G0_0_1 - 0.579134286816575*G0_1_0 + 0.286337770061727*G0_1_1; + A[180] = 0.103339947089946*G0_0_0 - 0.0301408179012345*G0_0_1 - 0.0301408179012339*G0_1_0 + 0.103339947089949*G0_1_1; + A[181] = -0.111951609347442*G0_0_0 + 0.0452112268518518*G0_0_1 + 0.0452112268518497*G0_1_0 - 0.0172233245149949*G0_1_1; + A[182] = 0.111951609347443*G0_0_0 - 0.0301408179012338*G0_0_1 - 0.0301408179012322*G0_1_0; + A[183] = 0.731991291887122*G0_0_0 + 2.04096395502645*G0_0_1 + 2.04096395502644*G0_1_0 - 0.611428020282191*G0_1_1; + A[184] = 0.387524801587298*G0_0_0 - 0.471488508597881*G0_0_1 - 0.47148850859788*G0_1_0 - 0.318631503527332*G0_1_1; + A[185] = -0.344466490299823*G0_0_0 + 0.103339947089949*G0_0_1 + 0.103339947089945*G0_1_0 + 0.0344466490299834*G0_1_1; + A[186] = -3.81066054894178*G0_0_0 - 2.40911251653438*G0_0_1 - 2.40911251653437*G0_1_0 + 0.00430583112875654*G0_1_1; + A[187] = 1.03339947089947*G0_0_0 + 0.658792162698407*G0_0_1 + 0.658792162698414*G0_1_0 + 0.327243165784827*G0_1_1; + A[188] = 2.02374063051144*G0_0_0 + 1.61038084215166*G0_0_1 + 1.61038084215165*G0_1_0 + 0.680321318342141*G0_1_1; + A[189] = -0.069668347663138*G0_0_0 - 0.069668347663138*G0_0_1 - 0.449959352954142*G0_1_0 - 0.449959352954143*G0_1_1; + A[190] = -0.0379774305555544*G0_0_0; + A[191] = 0.610050154320987*G0_0_1 + 0.594204695767196*G0_1_1; + A[192] = 0.172233245149907*G0_0_0 + 0.0301408179012338*G0_0_1 + 0.0301408179012311*G0_1_0; + A[193] = -0.219597387566131*G0_0_0 - 0.062434551366842*G0_0_1 - 0.062434551366835*G0_1_0 - 0.0172233245149881*G0_1_1; + A[194] = 0.266961529982354*G0_0_0 + 0.133480764991179*G0_0_1 + 0.133480764991172*G0_1_0 + 0.103339947089942*G0_1_1; + A[195] = 1.39508928571429*G0_0_0 + 0.865472056878304*G0_0_1 + 0.865472056878311*G0_1_0 + 0.286337770061729*G0_1_1; + A[196] = 0.818107914462077*G0_0_0 + 0.585593033509694*G0_0_1 + 1.30036100088183*G0_1_0 + 1.96345899470898*G0_1_1; + A[197] = -1.80414324294532*G0_0_0 - 1.45321800595237*G0_0_1 - 2.50384080136683*G0_1_0 - 3.9570588073192*G0_1_1; + A[198] = 3.6944031084656*G0_0_0 + 2.51891121031745*G0_0_1 + 2.51891121031745*G0_1_0 + 4.41778273809522*G0_1_1; + A[199] = -1.39508928571429*G0_0_0 - 2.19166804453262*G0_0_1 - 0.865472056878312*G0_1_0 - 2.56842826829805*G0_1_1; + A[200] = 0.0710462136243353*G0_0_0 + 0.30356109457672*G0_0_1 + 0.303561094576716*G0_1_0 - 0.359536899250439*G0_1_1; + A[201] = -0.0172233245149901*G0_0_0 + 0.0452112268518527*G0_0_1 + 0.0452112268518517*G0_1_0 - 0.111951609347445*G0_1_1; + A[202] = -0.0172233245149894*G0_0_0 + 0.131327849426811*G0_0_1 + 0.131327849426809*G0_1_0 - 0.017223324514987*G0_1_1; + A[203] = 0.0710462136243358*G0_0_0 - 0.0301408179012346*G0_0_1 - 0.0301408179012364*G0_1_0; + A[204] = -0.516699735449726*G0_0_0 - 0.93005952380952*G0_0_1 - 0.930059523809516*G0_1_0 + 0.680321318342151*G0_1_1; + A[205] = 0.0430583112874713*G0_0_0 - 0.331548996913582*G0_0_1 - 0.33154899691358*G0_1_0 + 0.327243165784829*G0_1_1; + A[206] = -0.516699735449729*G0_0_0 - 0.0688932980599681*G0_0_1 - 0.0688932980599629*G0_1_0 + 0.0344466490299786*G0_1_1; + A[207] = 1.01187031525573*G0_0_0 + 2.41341834766314*G0_0_1 + 2.41341834766313*G0_1_0 + 0.00430583112874527*G0_1_1; + A[208] = 1.01187031525572*G0_0_0 + 0.15285700507055*G0_0_1 + 0.15285700507054*G0_1_0 - 0.318631503527332*G0_1_1; + A[209] = -3.96136463844795*G0_0_0 - 2.65239197530864*G0_0_1 - 2.65239197530862*G0_1_0 - 0.611428020282183*G0_1_1; + A[210] = 0.0408192791005289*G0_0_0 + 0.0408192791005289*G0_0_1 + 0.202374063051146*G0_1_0 + 0.202374063051146*G0_1_1; + A[211] = -0.0408192791005282*G0_0_0; + A[212] = -0.850315531305113*G0_0_1 - 0.648027584876543*G0_1_1; + A[213] = 0.340160659171074*G0_0_0 + 0.0710462136243393*G0_0_1 + 0.0710462136243409*G0_1_0; + A[214] = -0.89561287477954*G0_0_0 - 0.232514880952383*G0_0_1 - 0.232514880952385*G0_1_0 + 0.0710462136243353*G0_1_1; + A[215] = 1.39508928571428*G0_0_0 + 0.529617228835977*G0_0_1 + 0.529617228835983*G0_1_0 - 0.0495170579805959*G0_1_1; + A[216] = -2.56196952160493*G0_0_0 - 1.28098476080246*G0_0_1 - 1.28098476080247*G0_1_0 - 0.286337770061728*G0_1_1; + A[217] = -0.340160659171078*G0_0_0 - 0.269114445546738*G0_0_1 - 0.66955674052028*G0_1_0 - 0.938671186067016*G0_1_1; + A[218] = 0.895612874779545*G0_0_0 + 0.663097993827164*G0_0_1 + 1.37786596119929*G0_1_0 + 1.96345899470899*G0_1_1; + A[219] = -1.39508928571429*G0_0_0 - 0.865472056878312*G0_0_1 - 2.19166804453262*G0_1_0 - 2.56842826829805*G0_1_1; + A[220] = 2.56196952160493*G0_0_0 + 1.28098476080247*G0_0_1 + 1.28098476080247*G0_1_0 + 1.98929398148148*G0_1_1; + A[221] = -0.07104621362434*G0_0_1 - 0.0710462136243373*G0_1_0 + 0.198068231922398*G0_1_1; + A[222] = -0.0301408179012347*G0_0_1 - 0.0301408179012351*G0_1_0 + 0.111951609347443*G0_1_1; + A[223] = -0.030140817901236*G0_0_1 - 0.0301408179012352*G0_1_0 + 0.0710462136243355*G0_1_1; + A[224] = -0.071046213624339*G0_0_1 - 0.0710462136243377*G0_1_0; + A[225] = 0.262655698853621*G0_0_1 + 0.262655698853613*G0_1_0 - 0.46502976190476*G0_1_1; + A[226] = 0.0731991291887117*G0_0_1 + 0.0731991291887132*G0_1_0 - 0.273420276675482*G0_1_1; + A[227] = 0.262655698853618*G0_0_1 + 0.262655698853614*G0_1_0 - 0.142092427248673*G0_1_1; + A[228] = -0.572675540123461*G0_0_1 - 0.572675540123456*G0_1_0 + 0.0495170579805962*G0_1_1; + A[229] = -0.572675540123452*G0_0_1 - 0.572675540123448*G0_1_0 + 0.210985725308638*G0_1_1; + A[230] = 1.66205081569664*G0_0_1 + 1.66205081569664*G0_1_0 + 0.503782242063493*G0_1_1; + A[231] = -0.64802758487654*G0_0_0 - 0.64802758487654*G0_0_1 + 0.202287946428571*G0_1_0 + 0.202287946428572*G0_1_1; + A[232] = 0.202374063051145*G0_0_0 + 0.161554783950616*G0_1_0; + A[233] = -0.0408192791005285*G0_1_1; + A[234] = 0.198068231922395*G0_0_0 + 0.269114445546735*G0_0_1 + 0.269114445546734*G0_1_0 + 0.340160659171073*G0_1_1; + A[235] = 0.111951609347444*G0_0_0 + 0.142092427248675*G0_0_1 + 0.142092427248677*G0_1_0 + 0.172233245149911*G0_1_1; + A[236] = 0.0710462136243354*G0_0_0 + 0.101187031525571*G0_0_1 + 0.101187031525572*G0_1_0 + 0.131327849426806*G0_1_1; + A[237] = 0.071046213624338*G0_0_1 + 0.07104621362434*G0_1_0 + 0.142092427248678*G0_1_1; + A[238] = -0.286337770061728*G0_0_0 + 0.994646990740735*G0_0_1 + 0.994646990740736*G0_1_0 - 0.286337770061729*G0_1_1; + A[239] = -0.0495170579805976*G0_0_0 - 0.579134286816575*G0_0_1 - 0.579134286816577*G0_1_0 + 0.286337770061727*G0_1_1; + A[240] = 0.0710462136243353*G0_0_0 + 0.303561094576717*G0_0_1 + 0.30356109457672*G0_1_0 - 0.359536899250439*G0_1_1; + A[241] = -0.0710462136243373*G0_0_1 - 0.07104621362434*G0_1_0 + 0.198068231922398*G0_1_1; + A[242] = 1.98929398148147*G0_0_0 + 0.708309220679006*G0_0_1 + 0.708309220679006*G0_1_0 + 1.98929398148147*G0_1_1; + A[243] = -2.56842826829804*G0_0_0 - 0.376760223765429*G0_0_1 - 1.70295621141974*G0_1_0 - 0.906377452601403*G0_1_1; + A[244] = 1.96345899470898*G0_0_0 + 0.585593033509695*G0_0_1 + 1.30036100088183*G0_1_0 + 0.818107914462073*G0_1_1; + A[245] = -0.938671186067014*G0_0_0 - 0.269114445546736*G0_0_1 - 0.669556740520278*G0_1_0 - 0.340160659171073*G0_1_1; + A[246] = 0.503782242063491*G0_0_0 - 1.15826857363315*G0_0_1 - 1.15826857363315*G0_1_0 - 2.82031938932979*G0_1_1; + A[247] = 0.0495170579805971*G0_0_0 + 0.622192598104045*G0_0_1 + 0.622192598104045*G0_1_0 + 1.1948681382275*G0_1_1; + A[248] = -0.465029761904755*G0_0_0 - 0.727685460758368*G0_0_1 - 0.727685460758368*G0_1_0 - 0.990341159611985*G0_1_1; + A[249] = 0.210985725308639*G0_0_0 + 0.783661265432093*G0_0_1 + 0.783661265432096*G0_1_0 + 1.35633680555555*G0_1_1; + A[250] = -0.273420276675483*G0_0_0 - 0.346619405864192*G0_0_1 - 0.346619405864195*G0_1_0 - 0.419818535052904*G0_1_1; + A[251] = -0.142092427248672*G0_0_0 - 0.404748126102289*G0_0_1 - 0.404748126102292*G0_1_0 - 0.667403824955909*G0_1_1; + A[252] = 0.594204695767192*G0_0_0 + 0.594204695767192*G0_0_1 - 0.0158454585537913*G0_1_0 - 0.0158454585537913*G0_1_1; + A[253] = -0.449959352954142*G0_0_0 - 0.380291005291001*G0_1_0; + A[254] = -0.0379774305555554*G0_1_1; + A[255] = -0.359536899250436*G0_0_0 - 0.663097993827155*G0_0_1 - 0.663097993827155*G0_1_0 - 0.895612874779531*G0_1_1; + A[256] = -0.111951609347442*G0_0_0 - 0.157162836199291*G0_0_1 - 0.157162836199293*G0_1_0 - 0.219597387566139*G0_1_1; + A[257] = -0.0172233245149888*G0_0_0 - 0.148551173941797*G0_0_1 - 0.148551173941798*G0_1_0 - 0.297102347883594*G0_1_1; + A[258] = 0.0301408179012348*G0_0_1 + 0.0301408179012343*G0_1_0 + 0.131327849426806*G0_1_1; + A[259] = 0.286337770061726*G0_0_0 - 0.579134286816575*G0_0_1 - 0.579134286816576*G0_1_0 - 0.049517057980602*G0_1_1; + A[260] = 0.103339947089946*G0_0_0 - 0.0301408179012339*G0_0_1 - 0.0301408179012345*G0_1_0 + 0.103339947089949*G0_1_1; + A[261] = -0.0172233245149901*G0_0_0 + 0.0452112268518519*G0_0_1 + 0.0452112268518527*G0_1_0 - 0.111951609347445*G0_1_1; + A[262] = -0.0301408179012351*G0_0_1 - 0.0301408179012347*G0_1_0 + 0.111951609347443*G0_1_1; + A[263] = -2.56842826829804*G0_0_0 - 1.70295621141974*G0_0_1 - 0.376760223765429*G0_1_0 - 0.906377452601403*G0_1_1; + A[264] = 4.41778273809521*G0_0_0 + 1.89887152777776*G0_0_1 + 1.89887152777776*G0_1_0 + 3.0743634259259*G0_1_1; + A[265] = -3.9570588073192*G0_0_0 - 1.45321800595237*G0_0_1 - 2.50384080136682*G0_1_0 - 1.80414324294531*G0_1_1; + A[266] = 1.96345899470898*G0_0_0 + 0.663097993827155*G0_0_1 + 1.37786596119928*G0_1_0 + 0.895612874779531*G0_1_1; + A[267] = -0.611428020282184*G0_0_0 + 2.04096395502644*G0_0_1 + 2.04096395502644*G0_1_0 + 0.731991291887116*G0_1_1; + A[268] = 0.00430583112875335*G0_0_0 - 2.40911251653437*G0_0_1 - 2.40911251653437*G0_1_0 - 3.81066054894177*G0_1_1; + A[269] = 0.680321318342141*G0_0_0 + 1.61038084215166*G0_0_1 + 1.61038084215166*G0_1_0 + 2.02374063051145*G0_1_1; + A[270] = -0.318631503527334*G0_0_0 - 0.471488508597882*G0_0_1 - 0.471488508597882*G0_1_0 + 0.387524801587306*G0_1_1; + A[271] = 0.327243165784828*G0_0_0 + 0.658792162698405*G0_0_1 + 0.658792162698409*G0_1_0 + 1.03339947089947*G0_1_1; + A[272] = 0.0344466490299804*G0_0_0 + 0.103339947089947*G0_0_1 + 0.103339947089946*G0_1_0 - 0.344466490299824*G0_1_1; + A[273] = -0.449959352954142*G0_0_0 - 0.449959352954142*G0_0_1 - 0.0696683476631398*G0_1_0 - 0.0696683476631396*G0_1_1; + A[274] = 0.594204695767192*G0_0_0 + 0.610050154320982*G0_1_0; + A[275] = -0.0379774305555546*G0_1_1; + A[276] = 0.286337770061724*G0_0_0 + 0.8654720568783*G0_0_1 + 0.865472056878298*G0_1_0 + 1.39508928571427*G0_1_1; + A[277] = 0.103339947089946*G0_0_0 + 0.133480764991179*G0_0_1 + 0.133480764991184*G0_1_0 + 0.266961529982366*G0_1_1; + A[278] = -0.0172233245149927*G0_0_0 - 0.0624345513668439*G0_0_1 - 0.0624345513668466*G0_1_0 - 0.21959738756614*G0_1_1; + A[279] = 0.0301408179012337*G0_0_1 + 0.0301408179012361*G0_1_0 + 0.172233245149912*G0_1_1; + A[280] = -0.359536899250437*G0_0_0 + 0.303561094576719*G0_0_1 + 0.303561094576719*G0_1_0 + 0.0710462136243417*G0_1_1; + A[281] = -0.111951609347442*G0_0_0 + 0.0452112268518497*G0_0_1 + 0.0452112268518518*G0_1_0 - 0.0172233245149949*G0_1_1; + A[282] = -0.0172233245149894*G0_0_0 + 0.131327849426809*G0_0_1 + 0.131327849426811*G0_1_0 - 0.017223324514987*G0_1_1; + A[283] = -0.0301408179012352*G0_0_1 - 0.030140817901236*G0_1_0 + 0.0710462136243355*G0_1_1; + A[284] = 1.96345899470898*G0_0_0 + 1.30036100088183*G0_0_1 + 0.585593033509695*G0_1_0 + 0.818107914462073*G0_1_1; + A[285] = -3.9570588073192*G0_0_0 - 2.50384080136682*G0_0_1 - 1.45321800595237*G0_1_0 - 1.80414324294531*G0_1_1; + A[286] = 4.41778273809521*G0_0_0 + 2.51891121031744*G0_0_1 + 2.51891121031744*G0_1_0 + 3.69440310846558*G0_1_1; + A[287] = -2.56842826829804*G0_0_0 - 0.865472056878301*G0_0_1 - 2.19166804453261*G0_1_0 - 1.39508928571427*G0_1_1; + A[288] = 0.680321318342151*G0_0_0 - 0.930059523809514*G0_0_1 - 0.93005952380951*G0_1_0 - 0.516699735449723*G0_1_1; + A[289] = 0.00430583112873832*G0_0_0 + 2.41341834766311*G0_0_1 + 2.41341834766311*G0_1_0 + 1.01187031525571*G0_1_1; + A[290] = -0.611428020282177*G0_0_0 - 2.65239197530862*G0_0_1 - 2.65239197530862*G0_1_0 - 3.96136463844795*G0_1_1; + A[291] = 0.32724316578483*G0_0_0 - 0.331548996913579*G0_0_1 - 0.331548996913577*G0_1_0 + 0.0430583112874745*G0_1_1; + A[292] = -0.318631503527333*G0_0_0 + 0.152857005070552*G0_0_1 + 0.152857005070543*G0_1_0 + 1.01187031525573*G0_1_1; + A[293] = 0.0344466490299806*G0_0_0 - 0.0688932980599666*G0_0_1 - 0.0688932980599646*G0_1_0 - 0.516699735449736*G0_1_1; + A[294] = 0.202374063051145*G0_0_0 + 0.202374063051146*G0_0_1 + 0.0408192791005295*G0_1_0 + 0.0408192791005296*G0_1_1; + A[295] = -0.64802758487654*G0_0_0 - 0.85031553130511*G0_1_0; + A[296] = -0.0408192791005283*G0_1_1; + A[297] = -0.286337770061725*G0_0_0 - 1.28098476080246*G0_0_1 - 1.28098476080246*G0_1_0 - 2.56196952160492*G0_1_1; + A[298] = -0.0495170579805987*G0_0_0 + 0.529617228835977*G0_0_1 + 0.529617228835981*G0_1_0 + 1.39508928571428*G0_1_1; + A[299] = 0.0710462136243387*G0_0_0 - 0.232514880952379*G0_0_1 - 0.232514880952382*G0_1_0 - 0.895612874779535*G0_1_1; + A[300] = 0.0710462136243384*G0_0_1 + 0.0710462136243392*G0_1_0 + 0.340160659171072*G0_1_1; + A[301] = 0.198068231922396*G0_0_0 - 0.0710462136243399*G0_0_1 - 0.0710462136243371*G0_1_0; + A[302] = 0.111951609347443*G0_0_0 - 0.0301408179012322*G0_0_1 - 0.0301408179012338*G0_1_0; + A[303] = 0.0710462136243358*G0_0_0 - 0.0301408179012364*G0_0_1 - 0.0301408179012346*G0_1_0; + A[304] = -0.0710462136243377*G0_0_1 - 0.071046213624339*G0_1_0; + A[305] = -0.938671186067014*G0_0_0 - 0.669556740520278*G0_0_1 - 0.269114445546736*G0_1_0 - 0.340160659171073*G0_1_1; + A[306] = 1.96345899470898*G0_0_0 + 1.37786596119928*G0_0_1 + 0.663097993827155*G0_1_0 + 0.895612874779531*G0_1_1; + A[307] = -2.56842826829804*G0_0_0 - 2.19166804453261*G0_0_1 - 0.865472056878301*G0_1_0 - 1.39508928571427*G0_1_1; + A[308] = 1.98929398148147*G0_0_0 + 1.28098476080246*G0_0_1 + 1.28098476080246*G0_1_0 + 2.56196952160492*G0_1_1; + A[309] = -0.465029761904761*G0_0_0 + 0.262655698853611*G0_0_1 + 0.262655698853609*G0_1_0; + A[310] = 0.0495170579806064*G0_0_0 - 0.572675540123445*G0_0_1 - 0.572675540123445*G0_1_0; + A[311] = 0.503782242063484*G0_0_0 + 1.66205081569664*G0_0_1 + 1.66205081569663*G0_1_0; + A[312] = -0.273420276675487*G0_0_0 + 0.0731991291887106*G0_0_1 + 0.0731991291887092*G0_1_0; + A[313] = 0.210985725308642*G0_0_0 - 0.572675540123459*G0_0_1 - 0.572675540123457*G0_1_0; + A[314] = -0.142092427248674*G0_0_0 + 0.262655698853619*G0_0_1 + 0.262655698853617*G0_1_0; + A[315] = -0.215291556437388*G0_0_0 - 0.215291556437389*G0_0_1 - 0.215291556437391*G0_1_0 - 0.215291556437392*G0_1_1; + A[316] = 0.107645778218694*G0_0_0; + A[317] = 0.107645778218693*G0_1_1; + A[318] = -0.667403824955902*G0_0_0 - 0.262655698853609*G0_0_1 - 0.262655698853613*G0_1_0; + A[319] = -0.344466490299827*G0_0_0 - 0.447806437389773*G0_0_1 - 0.447806437389772*G0_1_0 - 0.516699735449737*G0_1_1; + A[320] = -0.516699735449724*G0_0_0 - 0.447806437389764*G0_0_1 - 0.447806437389765*G0_1_0 - 0.344466490299821*G0_1_1; + A[321] = -0.262655698853615*G0_0_1 - 0.262655698853621*G0_1_0 - 0.66740382495591*G0_1_1; + A[322] = -2.82031938932979*G0_0_0 - 1.15826857363315*G0_0_1 - 1.15826857363315*G0_1_0 + 0.503782242063499*G0_1_1; + A[323] = 0.731991291887122*G0_0_0 + 2.04096395502644*G0_0_1 + 2.04096395502645*G0_1_0 - 0.61142802028219*G0_1_1; + A[324] = -0.516699735449726*G0_0_0 - 0.930059523809516*G0_0_1 - 0.93005952380952*G0_1_0 + 0.680321318342151*G0_1_1; + A[325] = 0.262655698853613*G0_0_1 + 0.262655698853621*G0_1_0 - 0.46502976190476*G0_1_1; + A[326] = 0.503782242063491*G0_0_0 - 1.15826857363315*G0_0_1 - 1.15826857363315*G0_1_0 - 2.82031938932979*G0_1_1; + A[327] = -0.611428020282184*G0_0_0 + 2.04096395502644*G0_0_1 + 2.04096395502644*G0_1_0 + 0.731991291887116*G0_1_1; + A[328] = 0.680321318342151*G0_0_0 - 0.93005952380951*G0_0_1 - 0.930059523809514*G0_1_0 - 0.516699735449723*G0_1_1; + A[329] = -0.465029761904761*G0_0_0 + 0.262655698853609*G0_0_1 + 0.262655698853611*G0_1_0; + A[330] = 7.06156305114633*G0_0_0 + 3.10019841269839*G0_0_1 + 3.10019841269839*G0_1_0 + 7.06156305114637*G0_1_1; + A[331] = -6.32957175925921*G0_0_0 - 3.05714010141091*G0_0_1 - 3.05714010141091*G0_1_0 - 1.80844907407406*G0_1_1; + A[332] = 2.75573192239856*G0_0_0 + 1.37786596119928*G0_0_1 + 1.37786596119928*G0_1_0 + 1.03339947089946*G0_1_1; + A[333] = -1.80844907407406*G0_0_0 - 3.05714010141091*G0_0_1 - 3.05714010141092*G0_1_0 - 6.32957175925924*G0_1_1; + A[334] = 1.42092427248677*G0_0_0 + 1.46398258377424*G0_0_1 + 1.46398258377424*G0_1_0 + 1.42092427248676*G0_1_1; + A[335] = 1.03339947089945*G0_0_0 + 1.37786596119928*G0_0_1 + 1.37786596119928*G0_1_0 + 2.75573192239858*G0_1_1; + A[336] = -0.0538228891093484*G0_0_0 - 0.0538228891093485*G0_0_1 - 0.0538228891093457*G0_1_0 - 0.053822889109346*G0_1_1; + A[337] = -0.0538228891093496*G0_0_0; + A[338] = 0.107645778218695*G0_1_1; + A[339] = 1.35633680555554*G0_0_0 + 0.572675540123445*G0_0_1 + 0.572675540123453*G0_1_0; + A[340] = 0.387524801587307*G0_0_0 + 0.85901331018519*G0_0_1 + 0.859013310185178*G0_1_0 + 1.01187031525573*G0_1_1; + A[341] = 0.0430583112874709*G0_0_0 + 0.374607308201052*G0_0_1 + 0.374607308201058*G0_1_0 + 1.03339947089946*G0_1_1; + A[342] = -0.0731991291887092*G0_0_1 - 0.0731991291887109*G0_1_0 - 0.419818535052906*G0_1_1; + A[343] = 1.35633680555554*G0_0_0 + 0.783661265432094*G0_0_1 + 0.783661265432094*G0_1_0 + 0.21098572530864*G0_1_1; + A[344] = 0.387524801587298*G0_0_0 - 0.47148850859788*G0_0_1 - 0.471488508597881*G0_1_0 - 0.318631503527332*G0_1_1; + A[345] = 0.0430583112874713*G0_0_0 - 0.33154899691358*G0_0_1 - 0.331548996913582*G0_1_0 + 0.327243165784829*G0_1_1; + A[346] = 0.073199129188713*G0_0_1 + 0.0731991291887117*G0_1_0 - 0.273420276675482*G0_1_1; + A[347] = 0.0495170579805969*G0_0_0 + 0.622192598104045*G0_0_1 + 0.622192598104045*G0_1_0 + 1.1948681382275*G0_1_1; + A[348] = 0.00430583112875357*G0_0_0 - 2.40911251653437*G0_0_1 - 2.40911251653437*G0_1_0 - 3.81066054894177*G0_1_1; + A[349] = 0.00430583112873832*G0_0_0 + 2.41341834766311*G0_0_1 + 2.41341834766311*G0_1_0 + 1.01187031525571*G0_1_1; + A[350] = 0.0495170579806061*G0_0_0 - 0.572675540123445*G0_0_1 - 0.572675540123445*G0_1_0; + A[351] = -6.32957175925921*G0_0_0 - 3.05714010141091*G0_0_1 - 3.05714010141091*G0_1_0 - 1.80844907407406*G0_1_1; + A[352] = 9.94646990740734*G0_0_0 + 4.97323495370367*G0_0_1 + 4.97323495370367*G0_1_0 + 8.65472056878302*G0_1_1; + A[353] = -6.32957175925921*G0_0_0 - 3.2724316578483*G0_0_1 - 3.2724316578483*G0_1_0 - 2.02374063051144*G0_1_1; + A[354] = -0.387524801587296*G0_0_0 + 2.55120494378305*G0_0_1 + 2.55120494378306*G0_1_0 - 0.387524801587306*G0_1_1; + A[355] = -0.387524801587308*G0_0_0 - 2.93872974537036*G0_0_1 - 2.93872974537035*G0_1_0 - 5.87745949074072*G0_1_1; + A[356] = -0.0861166225749424*G0_0_0 - 0.0430583112874729*G0_0_1 - 0.043058311287477*G0_1_0 + 1.42092427248677*G0_1_1; + A[357] = 0.107645778218694*G0_0_0 + 0.107645778218695*G0_0_1 + 0.107645778218693*G0_1_0 + 0.107645778218693*G0_1_1; + A[358] = -0.215291556437387*G0_0_0; + A[359] = 0.107645778218692*G0_1_1; + A[360] = -2.82031938932979*G0_0_0 - 1.66205081569663*G0_0_1 - 1.66205081569664*G0_1_0; + A[361] = 0.731991291887121*G0_0_0 - 1.30897266313933*G0_0_1 - 1.30897266313933*G0_1_0 - 3.96136463844796*G0_1_1; + A[362] = -0.516699735449731*G0_0_0 + 0.41335978835979*G0_0_1 + 0.413359788359793*G0_1_0 + 2.02374063051146*G0_1_1; + A[363] = -0.262655698853619*G0_0_1 - 0.262655698853619*G0_1_0 - 0.99034115961199*G0_1_1; + A[364] = -0.667403824955901*G0_0_0 - 0.40474812610229*G0_0_1 - 0.404748126102293*G0_1_0 - 0.142092427248677*G0_1_1; + A[365] = -0.344466490299823*G0_0_0 + 0.103339947089945*G0_0_1 + 0.103339947089949*G0_1_0 + 0.0344466490299834*G0_1_1; + A[366] = -0.516699735449729*G0_0_0 - 0.068893298059963*G0_0_1 - 0.0688932980599681*G0_1_0 + 0.0344466490299786*G0_1_1; + A[367] = 0.262655698853614*G0_0_1 + 0.262655698853618*G0_1_0 - 0.142092427248673*G0_1_1; + A[368] = -0.465029761904755*G0_0_0 - 0.727685460758368*G0_0_1 - 0.727685460758368*G0_1_0 - 0.990341159611985*G0_1_1; + A[369] = 0.680321318342141*G0_0_0 + 1.61038084215166*G0_0_1 + 1.61038084215166*G0_1_0 + 2.02374063051145*G0_1_1; + A[370] = -0.611428020282177*G0_0_0 - 2.65239197530862*G0_0_1 - 2.65239197530862*G0_1_0 - 3.96136463844795*G0_1_1; + A[371] = 0.503782242063484*G0_0_0 + 1.66205081569663*G0_0_1 + 1.66205081569664*G0_1_0; + A[372] = 2.75573192239856*G0_0_0 + 1.37786596119928*G0_0_1 + 1.37786596119928*G0_1_0 + 1.03339947089946*G0_1_1; + A[373] = -6.32957175925921*G0_0_0 - 3.2724316578483*G0_0_1 - 3.2724316578483*G0_1_0 - 2.02374063051144*G0_1_1; + A[374] = 7.06156305114634*G0_0_0 + 3.96136463844795*G0_0_1 + 3.96136463844795*G0_1_0 + 7.92272927689591*G0_1_1; + A[375] = 1.42092427248677*G0_0_0 - 0.0430583112874708*G0_0_1 - 0.0430583112874745*G0_1_0 - 0.086116622574956*G0_1_1; + A[376] = -1.80844907407407*G0_0_0 + 1.24869102733686*G0_0_1 + 1.24869102733685*G0_1_0 - 2.02374063051146*G0_1_1; + A[377] = 1.03339947089946*G0_0_0 - 0.344466490299824*G0_0_1 - 0.344466490299825*G0_1_0 + 1.03339947089947*G0_1_1; + A[378] = -0.0538228891093463*G0_0_0 - 0.0538228891093464*G0_0_1 - 0.0538228891093459*G0_1_0 - 0.0538228891093456*G0_1_1; + A[379] = 0.107645778218696*G0_0_0; + A[380] = -0.0538228891093447*G0_1_1; + A[381] = -0.419818535052911*G0_0_0 - 0.0731991291887099*G0_0_1 - 0.0731991291887145*G0_1_0; + A[382] = 1.03339947089947*G0_0_0 + 0.374607308201053*G0_0_1 + 0.374607308201062*G0_1_0 + 0.0430583112874783*G0_1_1; + A[383] = 1.01187031525572*G0_0_0 + 0.859013310185178*G0_0_1 + 0.859013310185172*G0_1_0 + 0.387524801587298*G0_1_1; + A[384] = 0.572675540123456*G0_0_1 + 0.572675540123462*G0_1_0 + 1.35633680555555*G0_1_1; + A[385] = 1.19486813822751*G0_0_0 + 0.622192598104048*G0_0_1 + 0.622192598104048*G0_1_0 + 0.0495170579805897*G0_1_1; + A[386] = -3.81066054894178*G0_0_0 - 2.40911251653437*G0_0_1 - 2.40911251653438*G0_1_0 + 0.00430583112875677*G0_1_1; + A[387] = 1.01187031525573*G0_0_0 + 2.41341834766313*G0_0_1 + 2.41341834766314*G0_1_0 + 0.00430583112874544*G0_1_1; + A[388] = -0.572675540123456*G0_0_1 - 0.572675540123462*G0_1_0 + 0.0495170579805963*G0_1_1; + A[389] = 0.210985725308639*G0_0_0 + 0.783661265432096*G0_0_1 + 0.783661265432093*G0_1_0 + 1.35633680555555*G0_1_1; + A[390] = -0.318631503527334*G0_0_0 - 0.471488508597882*G0_0_1 - 0.471488508597882*G0_1_0 + 0.387524801587306*G0_1_1; + A[391] = 0.32724316578483*G0_0_0 - 0.331548996913577*G0_0_1 - 0.331548996913579*G0_1_0 + 0.0430583112874745*G0_1_1; + A[392] = -0.273420276675487*G0_0_0 + 0.0731991291887092*G0_0_1 + 0.0731991291887106*G0_1_0; + A[393] = -1.80844907407406*G0_0_0 - 3.05714010141092*G0_0_1 - 3.05714010141091*G0_1_0 - 6.32957175925924*G0_1_1; + A[394] = -0.387524801587296*G0_0_0 + 2.55120494378306*G0_0_1 + 2.55120494378305*G0_1_0 - 0.387524801587306*G0_1_1; + A[395] = 1.42092427248677*G0_0_0 - 0.0430583112874745*G0_0_1 - 0.043058311287471*G0_1_0 - 0.0861166225749559*G0_1_1; + A[396] = 8.65472056878303*G0_0_0 + 4.97323495370368*G0_0_1 + 4.97323495370368*G0_1_0 + 9.94646990740738*G0_1_1; + A[397] = -5.87745949074072*G0_0_0 - 2.93872974537036*G0_0_1 - 2.93872974537036*G0_1_0 - 0.387524801587293*G0_1_1; + A[398] = -2.02374063051144*G0_0_0 - 3.27243165784831*G0_0_1 - 3.27243165784831*G0_1_0 - 6.32957175925924*G0_1_1; + A[399] = 0.107645778218695*G0_0_0 + 0.107645778218695*G0_0_1 + 0.107645778218694*G0_1_0 + 0.107645778218695*G0_1_1; + A[400] = -0.0538228891093465*G0_0_0; + A[401] = -0.0538228891093471*G0_1_1; + A[402] = 1.19486813822751*G0_0_0 + 0.572675540123456*G0_0_1 + 0.572675540123455*G0_1_0; + A[403] = -3.81066054894178*G0_0_0 - 1.4015480324074*G0_0_1 - 1.4015480324074*G0_1_0 + 1.01187031525572*G0_1_1; + A[404] = 1.01187031525573*G0_0_0 - 1.4015480324074*G0_0_1 - 1.4015480324074*G0_1_0 - 3.81066054894177*G0_1_1; + A[405] = 0.572675540123454*G0_0_1 + 0.572675540123451*G0_1_0 + 1.1948681382275*G0_1_1; + A[406] = -0.419818535052911*G0_0_0 - 0.346619405864199*G0_0_1 - 0.346619405864192*G0_1_0 - 0.273420276675483*G0_1_1; + A[407] = 1.03339947089947*G0_0_0 + 0.658792162698414*G0_0_1 + 0.658792162698407*G0_1_0 + 0.327243165784827*G0_1_1; + A[408] = 1.01187031525572*G0_0_0 + 0.15285700507054*G0_0_1 + 0.15285700507055*G0_1_0 - 0.318631503527332*G0_1_1; + A[409] = -0.572675540123448*G0_0_1 - 0.572675540123452*G0_1_0 + 0.210985725308638*G0_1_1; + A[410] = -0.273420276675483*G0_0_0 - 0.346619405864195*G0_0_1 - 0.346619405864192*G0_1_0 - 0.419818535052904*G0_1_1; + A[411] = 0.327243165784828*G0_0_0 + 0.658792162698409*G0_0_1 + 0.658792162698405*G0_1_0 + 1.03339947089947*G0_1_1; + A[412] = -0.318631503527333*G0_0_0 + 0.152857005070543*G0_0_1 + 0.152857005070552*G0_1_0 + 1.01187031525573*G0_1_1; + A[413] = 0.210985725308642*G0_0_0 - 0.572675540123457*G0_0_1 - 0.572675540123459*G0_1_0; + A[414] = 1.42092427248677*G0_0_0 + 1.46398258377424*G0_0_1 + 1.46398258377424*G0_1_0 + 1.42092427248676*G0_1_1; + A[415] = -0.387524801587308*G0_0_0 - 2.93872974537035*G0_0_1 - 2.93872974537036*G0_1_0 - 5.87745949074072*G0_1_1; + A[416] = -1.80844907407407*G0_0_0 + 1.24869102733685*G0_0_1 + 1.24869102733686*G0_1_0 - 2.02374063051146*G0_1_1; + A[417] = -5.87745949074072*G0_0_0 - 2.93872974537036*G0_0_1 - 2.93872974537036*G0_1_0 - 0.387524801587294*G0_1_1; + A[418] = 8.65472056878303*G0_0_0 + 3.68148561507935*G0_0_1 + 3.68148561507935*G0_1_0 + 8.65472056878304*G0_1_1; + A[419] = -2.02374063051145*G0_0_0 + 1.24869102733686*G0_0_1 + 1.24869102733686*G0_1_0 - 1.80844907407407*G0_1_1; + A[420] = 0.107645778218692*G0_0_0 + 0.107645778218692*G0_0_1 + 0.107645778218692*G0_1_0 + 0.107645778218692*G0_1_1; + A[421] = 0.107645778218693*G0_0_0; + A[422] = -0.21529155643739*G0_1_1; + A[423] = -0.990341159611985*G0_0_0 - 0.262655698853615*G0_0_1 - 0.262655698853612*G0_1_0; + A[424] = 2.02374063051145*G0_0_0 + 0.413359788359789*G0_0_1 + 0.413359788359785*G0_1_0 - 0.516699735449728*G0_1_1; + A[425] = -3.96136463844795*G0_0_0 - 1.30897266313932*G0_0_1 - 1.30897266313932*G0_1_0 + 0.731991291887121*G0_1_1; + A[426] = -1.66205081569664*G0_0_1 - 1.66205081569664*G0_1_0 - 2.82031938932979*G0_1_1; + A[427] = -0.990341159611981*G0_0_0 - 0.727685460758364*G0_0_1 - 0.727685460758374*G0_1_0 - 0.465029761904753*G0_1_1; + A[428] = 2.02374063051144*G0_0_0 + 1.61038084215165*G0_0_1 + 1.61038084215166*G0_1_0 + 0.680321318342141*G0_1_1; + A[429] = -3.96136463844795*G0_0_0 - 2.65239197530862*G0_0_1 - 2.65239197530864*G0_1_0 - 0.611428020282183*G0_1_1; + A[430] = 1.66205081569664*G0_0_1 + 1.66205081569664*G0_1_0 + 0.503782242063493*G0_1_1; + A[431] = -0.142092427248672*G0_0_0 - 0.404748126102292*G0_0_1 - 0.404748126102289*G0_1_0 - 0.667403824955909*G0_1_1; + A[432] = 0.0344466490299804*G0_0_0 + 0.103339947089946*G0_0_1 + 0.103339947089947*G0_1_0 - 0.344466490299824*G0_1_1; + A[433] = 0.0344466490299806*G0_0_0 - 0.0688932980599646*G0_0_1 - 0.0688932980599665*G0_1_0 - 0.516699735449737*G0_1_1; + A[434] = -0.142092427248674*G0_0_0 + 0.262655698853617*G0_0_1 + 0.262655698853618*G0_1_0; + A[435] = 1.03339947089945*G0_0_0 + 1.37786596119928*G0_0_1 + 1.37786596119928*G0_1_0 + 2.75573192239858*G0_1_1; + A[436] = -0.0861166225749425*G0_0_0 - 0.043058311287477*G0_0_1 - 0.043058311287473*G0_1_0 + 1.42092427248677*G0_1_1; + A[437] = 1.03339947089946*G0_0_0 - 0.344466490299825*G0_0_1 - 0.344466490299824*G0_1_0 + 1.03339947089947*G0_1_1; + A[438] = -2.02374063051144*G0_0_0 - 3.27243165784831*G0_0_1 - 3.27243165784831*G0_1_0 - 6.32957175925924*G0_1_1; + A[439] = -2.02374063051145*G0_0_0 + 1.24869102733686*G0_0_1 + 1.24869102733686*G0_1_0 - 1.80844907407407*G0_1_1; + A[440] = 7.9227292768959*G0_0_0 + 3.96136463844795*G0_0_1 + 3.96136463844795*G0_1_0 + 7.06156305114636*G0_1_1; +} + +/// Constructor +poisson2d_5_cell_integral_1_otherwise::poisson2d_5_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson2d_5_cell_integral_1_otherwise::~poisson2d_5_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson2d_5_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson2d_5_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 21 + // Number of operations (multiply-add pairs) for tensor contraction: 430 + // Total number of operations (multiply-add pairs): 454 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + const double G0_6 = det*w[0][6]*(1.0); + const double G0_7 = det*w[0][7]*(1.0); + const double G0_8 = det*w[0][8]*(1.0); + const double G0_9 = det*w[0][9]*(1.0); + const double G0_10 = det*w[0][10]*(1.0); + const double G0_11 = det*w[0][11]*(1.0); + const double G0_12 = det*w[0][12]*(1.0); + const double G0_13 = det*w[0][13]*(1.0); + const double G0_14 = det*w[0][14]*(1.0); + const double G0_15 = det*w[0][15]*(1.0); + const double G0_16 = det*w[0][16]*(1.0); + const double G0_17 = det*w[0][17]*(1.0); + const double G0_18 = det*w[0][18]*(1.0); + const double G0_19 = det*w[0][19]*(1.0); + const double G0_20 = det*w[0][20]*(1.0); + + // Compute element tensor + A[0] = 0.00138945256132761*G0_0 + 0.000123877456776765*G0_1 + 0.000123877456776765*G0_2 + 0.000363647010782439*G0_3 + 0.000207201813104596*G0_4 + 0.000207201813104597*G0_5 + 0.000363647010782438*G0_6 + 0.00118136348605102*G0_7 - 0.000958243145743178*G0_8 + 0.000462681126743636*G0_9 - 2.29644326866568e-05*G0_10 + 0.00118136348605102*G0_11 - 0.000958243145743178*G0_12 + 0.000462681126743638*G0_13 - 2.29644326866555e-05*G0_14 + 0.000892481361231364*G0_15 - 0.000974683591871135*G0_16 + 0.000879433388113953*G0_17 - 0.000974683591871131*G0_18 + 0.000649789061247419*G0_19 + 0.000879433388113951*G0_20; + A[1] = 0.000123877456776765*G0_0 + 0.00138945256132761*G0_1 + 0.000123877456776766*G0_2 + 0.00118136348605102*G0_3 - 0.000958243145743182*G0_4 + 0.000462681126743644*G0_5 - 2.2964432686658e-05*G0_6 + 0.000363647010782441*G0_7 + 0.000207201813104595*G0_8 + 0.000207201813104599*G0_9 + 0.000363647010782438*G0_10 - 2.29644326866539e-05*G0_11 + 0.000462681126743647*G0_12 - 0.000958243145743182*G0_13 + 0.00118136348605103*G0_14 + 0.000879433388113976*G0_15 - 0.000974683591871122*G0_16 + 0.00089248136123139*G0_17 + 0.000649789061247416*G0_18 - 0.000974683591871126*G0_19 + 0.00087943338811397*G0_20; + A[2] = 0.000123877456776765*G0_0 + 0.000123877456776766*G0_1 + 0.00138945256132761*G0_2 - 2.29644326866539e-05*G0_3 + 0.000462681126743638*G0_4 - 0.000958243145743175*G0_5 + 0.00118136348605102*G0_6 - 2.29644326866545e-05*G0_7 + 0.000462681126743639*G0_8 - 0.000958243145743178*G0_9 + 0.00118136348605102*G0_10 + 0.000363647010782442*G0_11 + 0.0002072018131046*G0_12 + 0.000207201813104598*G0_13 + 0.00036364701078244*G0_14 + 0.000879433388113975*G0_15 + 0.000649789061247419*G0_16 + 0.00087943338811397*G0_17 - 0.000974683591871126*G0_18 - 0.00097468359187113*G0_19 + 0.000892481361231379*G0_20; + A[3] = 0.000363647010782439*G0_0 + 0.00118136348605102*G0_1 - 2.29644326866539e-05*G0_2 + 0.0147050657033301*G0_3 - 0.00958373625474353*G0_4 + 0.00770482812583532*G0_5 - 0.00396984582097443*G0_6 - 0.000411011153198678*G0_7 - 0.00144832501603339*G0_8 - 4.56679059109682e-05*G0_9 - 0.00248237688558877*G0_10 - 0.00248237688558878*G0_11 + 0.00576068013134009*G0_12 - 0.00735253285166507*G0_13 + 0.00735253285166507*G0_14 + 0.00078287838704508*G0_15 - 0.00381653213684479*G0_16 + 0.0102426588971732*G0_17 - 0.00137003717732889*G0_18 + 9.78597983806315e-05*G0_19 - 0.00280531422024486*G0_20; + A[4] = 0.000207201813104596*G0_0 - 0.000958243145743182*G0_1 + 0.000462681126743638*G0_2 - 0.00958373625474353*G0_3 + 0.0220771705146713*G0_4 - 0.0134785562302928*G0_5 + 0.00770482812583534*G0_6 - 0.00144832501603339*G0_7 + 0.00281836219336229*G0_8 - 0.00135698920421147*G0_9 + 0.00576068013134005*G0_10 - 4.56679059109496e-05*G0_11 - 0.00135698920421148*G0_12 + 0.0029488419245365*G0_13 - 0.00735253285166506*G0_14 + 0.00313151354818033*G0_15 - 0.00548014870931554*G0_16 - 0.00143527704291599*G0_17 - 0.000587158790283811*G0_18 + 0.00528442911255429*G0_19 + 0.00508870951579302*G0_20; + A[5] = 0.000207201813104597*G0_0 + 0.000462681126743644*G0_1 - 0.000958243145743175*G0_2 + 0.00770482812583532*G0_3 - 0.0134785562302928*G0_4 + 0.0220771705146713*G0_5 - 0.00958373625474352*G0_6 - 4.56679059109687e-05*G0_7 - 0.00135698920421146*G0_8 + 0.00294884192453647*G0_9 - 0.00735253285166504*G0_10 - 0.0014483250160334*G0_11 + 0.00281836219336231*G0_12 - 0.00135698920421148*G0_13 + 0.00576068013134005*G0_14 + 0.00313151354818033*G0_15 - 0.000587158790283832*G0_16 + 0.00508870951579303*G0_17 - 0.00548014870931556*G0_18 + 0.0052844291125543*G0_19 - 0.00143527704291597*G0_20; + A[6] = 0.000363647010782438*G0_0 - 2.29644326866579e-05*G0_1 + 0.00118136348605102*G0_2 - 0.00396984582097443*G0_3 + 0.00770482812583534*G0_4 - 0.00958373625474352*G0_5 + 0.0147050657033301*G0_6 - 0.00248237688558878*G0_7 + 0.00576068013134005*G0_8 - 0.00735253285166505*G0_9 + 0.00735253285166505*G0_10 - 0.000411011153198661*G0_11 - 0.0014483250160334*G0_12 - 4.56679059109575e-05*G0_13 - 0.00248237688558878*G0_14 + 0.000782878387045073*G0_15 - 0.00137003717732888*G0_16 - 0.00280531422024488*G0_17 - 0.00381653213684476*G0_18 + 9.7859798380642e-05*G0_19 + 0.0102426588971731*G0_20; + A[7] = 0.00118136348605102*G0_0 + 0.000363647010782441*G0_1 - 2.29644326866545e-05*G0_2 - 0.000411011153198678*G0_3 - 0.00144832501603339*G0_4 - 4.56679059109689e-05*G0_5 - 0.00248237688558878*G0_6 + 0.0147050657033301*G0_7 - 0.00958373625474352*G0_8 + 0.00770482812583533*G0_9 - 0.00396984582097444*G0_10 + 0.00735253285166505*G0_11 - 0.00735253285166505*G0_12 + 0.00576068013134006*G0_13 - 0.00248237688558879*G0_14 + 0.0102426588971732*G0_15 - 0.00381653213684478*G0_16 + 0.000782878387045078*G0_17 + 9.78597983806186e-05*G0_18 - 0.00137003717732889*G0_19 - 0.00280531422024487*G0_20; + A[8] = -0.000958243145743178*G0_0 + 0.000207201813104595*G0_1 + 0.000462681126743639*G0_2 - 0.00144832501603339*G0_3 + 0.00281836219336229*G0_4 - 0.00135698920421147*G0_5 + 0.00576068013134005*G0_6 - 0.00958373625474352*G0_7 + 0.0220771705146712*G0_8 - 0.0134785562302928*G0_9 + 0.00770482812583534*G0_10 - 0.00735253285166504*G0_11 + 0.00294884192453647*G0_12 - 0.00135698920421148*G0_13 - 4.56679059109633e-05*G0_14 - 0.00143527704291601*G0_15 - 0.00548014870931555*G0_16 + 0.0031315135481803*G0_17 + 0.0052844291125543*G0_18 - 0.000587158790283819*G0_19 + 0.00508870951579298*G0_20; + A[9] = 0.000462681126743636*G0_0 + 0.0002072018131046*G0_1 - 0.000958243145743178*G0_2 - 4.56679059109682e-05*G0_3 - 0.00135698920421147*G0_4 + 0.00294884192453647*G0_5 - 0.00735253285166505*G0_6 + 0.00770482812583533*G0_7 - 0.0134785562302928*G0_8 + 0.0220771705146713*G0_9 - 0.00958373625474355*G0_10 + 0.00576068013134005*G0_11 - 0.00135698920421147*G0_12 + 0.0028183621933623*G0_13 - 0.0014483250160334*G0_14 + 0.00508870951579306*G0_15 - 0.000587158790283817*G0_16 + 0.00313151354818034*G0_17 + 0.00528442911255427*G0_18 - 0.00548014870931555*G0_19 - 0.00143527704291596*G0_20; + A[10] = -2.29644326866567e-05*G0_0 + 0.000363647010782438*G0_1 + 0.00118136348605102*G0_2 - 0.00248237688558877*G0_3 + 0.00576068013134005*G0_4 - 0.00735253285166504*G0_5 + 0.00735253285166505*G0_6 - 0.00396984582097444*G0_7 + 0.00770482812583534*G0_8 - 0.00958373625474355*G0_9 + 0.0147050657033301*G0_10 - 0.00248237688558878*G0_11 - 4.56679059109584e-05*G0_12 - 0.0014483250160334*G0_13 - 0.000411011153198662*G0_14 - 0.0028053142202449*G0_15 - 0.00137003717732888*G0_16 + 0.000782878387045079*G0_17 + 9.78597983806383e-05*G0_18 - 0.00381653213684477*G0_19 + 0.0102426588971731*G0_20; + A[11] = 0.00118136348605102*G0_0 - 2.29644326866539e-05*G0_1 + 0.000363647010782442*G0_2 - 0.00248237688558878*G0_3 - 4.56679059109497e-05*G0_4 - 0.0014483250160334*G0_5 - 0.000411011153198661*G0_6 + 0.00735253285166505*G0_7 - 0.00735253285166504*G0_8 + 0.00576068013134005*G0_9 - 0.00248237688558878*G0_10 + 0.0147050657033301*G0_11 - 0.00958373625474354*G0_12 + 0.00770482812583536*G0_13 - 0.00396984582097444*G0_14 + 0.0102426588971732*G0_15 + 9.7859798380627e-05*G0_16 - 0.00280531422024484*G0_17 - 0.00381653213684478*G0_18 - 0.00137003717732887*G0_19 + 0.000782878387045111*G0_20; + A[12] = -0.000958243145743178*G0_0 + 0.000462681126743647*G0_1 + 0.0002072018131046*G0_2 + 0.00576068013134009*G0_3 - 0.00135698920421148*G0_4 + 0.00281836219336231*G0_5 - 0.0014483250160334*G0_6 - 0.00735253285166505*G0_7 + 0.00294884192453647*G0_8 - 0.00135698920421147*G0_9 - 4.56679059109584e-05*G0_10 - 0.00958373625474354*G0_11 + 0.0220771705146713*G0_12 - 0.0134785562302928*G0_13 + 0.00770482812583538*G0_14 - 0.00143527704291595*G0_15 + 0.00528442911255429*G0_16 + 0.00508870951579309*G0_17 - 0.00548014870931556*G0_18 - 0.000587158790283808*G0_19 + 0.00313151354818035*G0_20; + A[13] = 0.000462681126743638*G0_0 - 0.000958243145743182*G0_1 + 0.000207201813104598*G0_2 - 0.00735253285166507*G0_3 + 0.0029488419245365*G0_4 - 0.00135698920421148*G0_5 - 4.5667905910958e-05*G0_6 + 0.00576068013134007*G0_7 - 0.00135698920421148*G0_8 + 0.0028183621933623*G0_9 - 0.0014483250160334*G0_10 + 0.00770482812583536*G0_11 - 0.0134785562302928*G0_12 + 0.0220771705146713*G0_13 - 0.00958373625474357*G0_14 + 0.00508870951579306*G0_15 + 0.0052844291125543*G0_16 - 0.00143527704291599*G0_17 - 0.000587158790283811*G0_18 - 0.00548014870931556*G0_19 + 0.00313151354818033*G0_20; + A[14] = -2.29644326866554e-05*G0_0 + 0.00118136348605103*G0_1 + 0.00036364701078244*G0_2 + 0.00735253285166507*G0_3 - 0.00735253285166506*G0_4 + 0.00576068013134005*G0_5 - 0.00248237688558878*G0_6 - 0.00248237688558879*G0_7 - 4.56679059109632e-05*G0_8 - 0.0014483250160334*G0_9 - 0.000411011153198661*G0_10 - 0.00396984582097444*G0_11 + 0.00770482812583538*G0_12 - 0.00958373625474357*G0_13 + 0.0147050657033301*G0_14 - 0.00280531422024488*G0_15 + 9.7859798380624e-05*G0_16 + 0.0102426588971732*G0_17 - 0.00137003717732889*G0_18 - 0.00381653213684476*G0_19 + 0.000782878387045086*G0_20; + A[15] = 0.000892481361231365*G0_0 + 0.000879433388113976*G0_1 + 0.000879433388113975*G0_2 + 0.00078287838704508*G0_3 + 0.00313151354818033*G0_4 + 0.00313151354818033*G0_5 + 0.000782878387045073*G0_6 + 0.0102426588971732*G0_7 - 0.00143527704291601*G0_8 + 0.00508870951579306*G0_9 - 0.0028053142202449*G0_10 + 0.0102426588971732*G0_11 - 0.00143527704291595*G0_12 + 0.00508870951579306*G0_13 - 0.00280531422024487*G0_14 + 0.0704590548340574*G0_15 - 0.0156575677409016*G0_16 + 0.0117431758056762*G0_17 - 0.0156575677409016*G0_18 + 0.0039143919352254*G0_19 + 0.0117431758056762*G0_20; + A[16] = -0.000974683591871135*G0_0 - 0.000974683591871122*G0_1 + 0.000649789061247419*G0_2 - 0.00381653213684479*G0_3 - 0.00548014870931554*G0_4 - 0.000587158790283832*G0_5 - 0.00137003717732888*G0_6 - 0.00381653213684478*G0_7 - 0.00548014870931555*G0_8 - 0.000587158790283815*G0_9 - 0.00137003717732888*G0_10 + 9.78597983806265e-05*G0_11 + 0.00528442911255429*G0_12 + 0.0052844291125543*G0_13 + 9.78597983806244e-05*G0_14 - 0.0156575677409016*G0_15 + 0.0763306427368953*G0_16 - 0.0156575677409016*G0_17 - 0.0117431758056762*G0_18 - 0.0117431758056762*G0_19 + 0.0039143919352254*G0_20; + A[17] = 0.000879433388113953*G0_0 + 0.00089248136123139*G0_1 + 0.00087943338811397*G0_2 + 0.0102426588971732*G0_3 - 0.00143527704291599*G0_4 + 0.00508870951579303*G0_5 - 0.00280531422024488*G0_6 + 0.000782878387045078*G0_7 + 0.0031315135481803*G0_8 + 0.00313151354818034*G0_9 + 0.000782878387045079*G0_10 - 0.00280531422024484*G0_11 + 0.00508870951579309*G0_12 - 0.00143527704291599*G0_13 + 0.0102426588971732*G0_14 + 0.0117431758056762*G0_15 - 0.0156575677409016*G0_16 + 0.0704590548340572*G0_17 + 0.00391439193522537*G0_18 - 0.0156575677409016*G0_19 + 0.0117431758056762*G0_20; + A[18] = -0.000974683591871131*G0_0 + 0.000649789061247416*G0_1 - 0.000974683591871126*G0_2 - 0.00137003717732889*G0_3 - 0.000587158790283811*G0_4 - 0.00548014870931556*G0_5 - 0.00381653213684476*G0_6 + 9.78597983806186e-05*G0_7 + 0.00528442911255429*G0_8 + 0.00528442911255427*G0_9 + 9.78597983806388e-05*G0_10 - 0.00381653213684478*G0_11 - 0.00548014870931557*G0_12 - 0.00058715879028381*G0_13 - 0.00137003717732889*G0_14 - 0.0156575677409016*G0_15 - 0.0117431758056762*G0_16 + 0.00391439193522537*G0_17 + 0.0763306427368953*G0_18 - 0.0117431758056762*G0_19 - 0.0156575677409016*G0_20; + A[19] = 0.000649789061247419*G0_0 - 0.000974683591871126*G0_1 - 0.00097468359187113*G0_2 + 9.78597983806303e-05*G0_3 + 0.00528442911255429*G0_4 + 0.0052844291125543*G0_5 + 9.78597983806421e-05*G0_6 - 0.00137003717732889*G0_7 - 0.000587158790283818*G0_8 - 0.00548014870931555*G0_9 - 0.00381653213684477*G0_10 - 0.00137003717732887*G0_11 - 0.000587158790283809*G0_12 - 0.00548014870931556*G0_13 - 0.00381653213684476*G0_14 + 0.00391439193522541*G0_15 - 0.0117431758056762*G0_16 - 0.0156575677409016*G0_17 - 0.0117431758056762*G0_18 + 0.0763306427368953*G0_19 - 0.0156575677409016*G0_20; + A[20] = 0.000879433388113951*G0_0 + 0.00087943338811397*G0_1 + 0.000892481361231379*G0_2 - 0.00280531422024486*G0_3 + 0.00508870951579302*G0_4 - 0.00143527704291597*G0_5 + 0.0102426588971731*G0_6 - 0.00280531422024487*G0_7 + 0.00508870951579298*G0_8 - 0.00143527704291596*G0_9 + 0.0102426588971731*G0_10 + 0.000782878387045111*G0_11 + 0.00313151354818035*G0_12 + 0.00313151354818033*G0_13 + 0.000782878387045086*G0_14 + 0.0117431758056762*G0_15 + 0.0039143919352254*G0_16 + 0.0117431758056762*G0_17 - 0.0156575677409016*G0_18 - 0.0156575677409017*G0_19 + 0.0704590548340572*G0_20; +} + +/// Constructor +poisson2d_5_form_0::poisson2d_5_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson2d_5_form_0::~poisson2d_5_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson2d_5_form_0::signature() const +{ + return "944b360928d96ca1ca281c1b4c2cb8b29cd22f204a85110b2b90670006beb2c3a859d863896862213a053634cc369deca81f4afa61c4e91c74820123ab17cd05"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson2d_5_form_0::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t poisson2d_5_form_0::num_coefficients() const +{ + return 0; +} + +/// Return the number of cell domains +std::size_t poisson2d_5_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson2d_5_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson2d_5_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson2d_5_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson2d_5_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson2d_5_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson2d_5_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson2d_5_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson2d_5_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson2d_5_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson2d_5_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_5_finite_element_0(); + break; + } + case 1: + { + return new poisson2d_5_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson2d_5_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_5_dofmap_0(); + break; + } + case 1: + { + return new poisson2d_5_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson2d_5_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson2d_5_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson2d_5_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson2d_5_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson2d_5_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson2d_5_form_0::create_default_cell_integral() const +{ + return new poisson2d_5_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson2d_5_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson2d_5_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson2d_5_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson2d_5_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +poisson2d_5_form_1::poisson2d_5_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson2d_5_form_1::~poisson2d_5_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson2d_5_form_1::signature() const +{ + return "8d1e3de65bbd30f6946ddf51ea0105e5dd67f6399f6f8ffb7e3b21feebe0c5e40a874d4beb56ad82feb38f70c606ce38f67d902b15c1873909b08e505d5bab0b"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson2d_5_form_1::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t poisson2d_5_form_1::num_coefficients() const +{ + return 1; +} + +/// Return the number of cell domains +std::size_t poisson2d_5_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson2d_5_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson2d_5_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson2d_5_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson2d_5_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson2d_5_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson2d_5_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson2d_5_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson2d_5_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson2d_5_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson2d_5_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_5_finite_element_0(); + break; + } + case 1: + { + return new poisson2d_5_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson2d_5_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson2d_5_dofmap_0(); + break; + } + case 1: + { + return new poisson2d_5_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson2d_5_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson2d_5_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson2d_5_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson2d_5_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson2d_5_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson2d_5_form_1::create_default_cell_integral() const +{ + return new poisson2d_5_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson2d_5_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson2d_5_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson2d_5_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson2d_5_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/bench/fem/convergence/cpp/Poisson2D_5.h b/bench/fem/convergence/cpp/Poisson2D_5.h new file mode 100644 index 0000000..f375a65 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_5.h @@ -0,0 +1,987 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no-evaluate_basis: True +// no-evaluate_basis_derivatives: True +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __POISSON2D_5_H +#define __POISSON2D_5_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson2d_5_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson2d_5_finite_element_0(); + + /// Destructor + virtual ~poisson2d_5_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson2d_5_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson2d_5_dofmap_0(); + + /// Destructor + virtual ~poisson2d_5_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2d_5_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2d_5_cell_integral_0_otherwise(); + + /// Destructor + virtual ~poisson2d_5_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson2d_5_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson2d_5_cell_integral_1_otherwise(); + + /// Destructor + virtual ~poisson2d_5_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2d_5_form_0: public ufc::form +{ +public: + + /// Constructor + poisson2d_5_form_0(); + + /// Destructor + virtual ~poisson2d_5_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson2d_5_form_1: public ufc::form +{ +public: + + /// Constructor + poisson2d_5_form_1(); + + /// Destructor + virtual ~poisson2d_5_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson2D_5 +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson2d_5_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson2d_5_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson2d_5_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson2d_5_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson2d_5_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson2d_5_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson2d_5_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson2d_5_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson2d_5_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson2d_5_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/convergence/cpp/Poisson2D_5.ufl b/bench/fem/convergence/cpp/Poisson2D_5.ufl new file mode 100644 index 0000000..97e5382 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson2D_5.ufl @@ -0,0 +1,30 @@ +# Copyright (C) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2006-03-28 +# +# Poisson's equation in 2D for q = 5 + +element = FiniteElement("Lagrange", triangle, 5) + +v = TestFunction(element) +U = TrialFunction(element) +f = Coefficient(element) + +a = v.dx(i)*U.dx(i)*dx +L = v*f*dx diff --git a/bench/fem/convergence/cpp/Poisson3D_1.cpp b/bench/fem/convergence/cpp/Poisson3D_1.cpp new file mode 100644 index 0000000..7795bca --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_1.cpp @@ -0,0 +1,1973 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#include "Poisson3D_1.h" + +/// Constructor +poisson3d_1_finite_element_0::poisson3d_1_finite_element_0() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +poisson3d_1_finite_element_0::~poisson3d_1_finite_element_0() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* poisson3d_1_finite_element_0::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; +} + +/// Return the cell shape +ufc::shape poisson3d_1_finite_element_0::cell_shape() const +{ + return ufc::tetrahedron; +} + +/// Return the topological dimension of the cell shape +std::size_t poisson3d_1_finite_element_0::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the cell shape +std::size_t poisson3d_1_finite_element_0::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the finite element function space +std::size_t poisson3d_1_finite_element_0::space_dimension() const +{ + return 4; +} + +/// Return the rank of the value space +std::size_t poisson3d_1_finite_element_0::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t poisson3d_1_finite_element_0::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void poisson3d_1_finite_element_0::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void poisson3d_1_finite_element_0::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void poisson3d_1_finite_element_0::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void poisson3d_1_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double poisson3d_1_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void poisson3d_1_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; +} + +/// Interpolate vertex values from dof values +void poisson3d_1_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void poisson3d_1_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void poisson3d_1_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t poisson3d_1_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* poisson3d_1_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* poisson3d_1_finite_element_0::create() const +{ + return new poisson3d_1_finite_element_0(); +} + +/// Constructor +poisson3d_1_dofmap_0::poisson3d_1_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +poisson3d_1_dofmap_0::~poisson3d_1_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* poisson3d_1_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool poisson3d_1_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t poisson3d_1_dofmap_0::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t poisson3d_1_dofmap_0::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the global finite element function space +std::size_t poisson3d_1_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t poisson3d_1_dofmap_0::local_dimension() const +{ + return 4; +} + +/// Return the number of dofs on each cell facet +std::size_t poisson3d_1_dofmap_0::num_facet_dofs() const +{ + return 3; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t poisson3d_1_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void poisson3d_1_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void poisson3d_1_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void poisson3d_1_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void poisson3d_1_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t poisson3d_1_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* poisson3d_1_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* poisson3d_1_dofmap_0::create() const +{ + return new poisson3d_1_dofmap_0(); +} + +/// Constructor +poisson3d_1_cell_integral_0_otherwise::poisson3d_1_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson3d_1_cell_integral_0_otherwise::~poisson3d_1_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson3d_1_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson3d_1_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 27 + // Number of operations (multiply-add pairs) for tensor contraction: 28 + // Total number of operations (multiply-add pairs): 58 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + const double G0_0_1 = det*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + const double G0_0_2 = det*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + const double G0_1_0 = det*(K[3]*K[0] + K[4]*K[1] + K[5]*K[2]); + const double G0_1_1 = det*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + const double G0_1_2 = det*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + const double G0_2_0 = det*(K[6]*K[0] + K[7]*K[1] + K[8]*K[2]); + const double G0_2_1 = det*(K[6]*K[3] + K[7]*K[4] + K[8]*K[5]); + const double G0_2_2 = det*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + + // Compute element tensor + A[0] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_0_1 + 0.166666666666667*G0_0_2 + 0.166666666666667*G0_1_0 + 0.166666666666667*G0_1_1 + 0.166666666666667*G0_1_2 + 0.166666666666667*G0_2_0 + 0.166666666666667*G0_2_1 + 0.166666666666667*G0_2_2; + A[1] = -0.166666666666667*G0_0_0 - 0.166666666666667*G0_1_0 - 0.166666666666667*G0_2_0; + A[2] = -0.166666666666667*G0_0_1 - 0.166666666666667*G0_1_1 - 0.166666666666667*G0_2_1; + A[3] = -0.166666666666667*G0_0_2 - 0.166666666666667*G0_1_2 - 0.166666666666667*G0_2_2; + A[4] = -0.166666666666667*G0_0_0 - 0.166666666666667*G0_0_1 - 0.166666666666667*G0_0_2; + A[5] = 0.166666666666667*G0_0_0; + A[6] = 0.166666666666667*G0_0_1; + A[7] = 0.166666666666667*G0_0_2; + A[8] = -0.166666666666667*G0_1_0 - 0.166666666666667*G0_1_1 - 0.166666666666667*G0_1_2; + A[9] = 0.166666666666667*G0_1_0; + A[10] = 0.166666666666667*G0_1_1; + A[11] = 0.166666666666667*G0_1_2; + A[12] = -0.166666666666667*G0_2_0 - 0.166666666666667*G0_2_1 - 0.166666666666667*G0_2_2; + A[13] = 0.166666666666667*G0_2_0; + A[14] = 0.166666666666667*G0_2_1; + A[15] = 0.166666666666667*G0_2_2; +} + +/// Constructor +poisson3d_1_cell_integral_1_otherwise::poisson3d_1_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson3d_1_cell_integral_1_otherwise::~poisson3d_1_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson3d_1_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson3d_1_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 4 + // Number of operations (multiply-add pairs) for tensor contraction: 14 + // Total number of operations (multiply-add pairs): 21 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + + // Compute element tensor + A[0] = 0.0166666666666666*G0_0 + 0.0083333333333333*G0_1 + 0.0083333333333333*G0_2 + 0.0083333333333333*G0_3; + A[1] = 0.0083333333333333*G0_0 + 0.0166666666666667*G0_1 + 0.00833333333333337*G0_2 + 0.00833333333333337*G0_3; + A[2] = 0.0083333333333333*G0_0 + 0.00833333333333337*G0_1 + 0.0166666666666667*G0_2 + 0.00833333333333337*G0_3; + A[3] = 0.0083333333333333*G0_0 + 0.00833333333333337*G0_1 + 0.00833333333333337*G0_2 + 0.0166666666666667*G0_3; +} + +/// Constructor +poisson3d_1_form_0::poisson3d_1_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson3d_1_form_0::~poisson3d_1_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson3d_1_form_0::signature() const +{ + return "485ee4abc20119b82968409dcd30845bbd75cf8eb2d37865cd36ae609240e0096d0047eeab6075652c6e4268052caed39792496313b48a8a3cb2824bcd9e32aa"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson3d_1_form_0::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t poisson3d_1_form_0::num_coefficients() const +{ + return 0; +} + +/// Return the number of cell domains +std::size_t poisson3d_1_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson3d_1_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson3d_1_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson3d_1_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson3d_1_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson3d_1_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson3d_1_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson3d_1_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson3d_1_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson3d_1_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson3d_1_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_1_finite_element_0(); + break; + } + case 1: + { + return new poisson3d_1_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson3d_1_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_1_dofmap_0(); + break; + } + case 1: + { + return new poisson3d_1_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson3d_1_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson3d_1_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson3d_1_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson3d_1_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson3d_1_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson3d_1_form_0::create_default_cell_integral() const +{ + return new poisson3d_1_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson3d_1_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson3d_1_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson3d_1_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson3d_1_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +poisson3d_1_form_1::poisson3d_1_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson3d_1_form_1::~poisson3d_1_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson3d_1_form_1::signature() const +{ + return "c082c1c25a4ba7a938c9ca1a7b631eccd027000fb5b9464fb5a3a47fc51677a6004507ea7b064954f22fae9f9055a367b38e0d5532a53056ac02b6014df53e23"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson3d_1_form_1::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t poisson3d_1_form_1::num_coefficients() const +{ + return 1; +} + +/// Return the number of cell domains +std::size_t poisson3d_1_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson3d_1_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson3d_1_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson3d_1_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson3d_1_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson3d_1_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson3d_1_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson3d_1_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson3d_1_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson3d_1_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson3d_1_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_1_finite_element_0(); + break; + } + case 1: + { + return new poisson3d_1_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson3d_1_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_1_dofmap_0(); + break; + } + case 1: + { + return new poisson3d_1_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson3d_1_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson3d_1_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson3d_1_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson3d_1_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson3d_1_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson3d_1_form_1::create_default_cell_integral() const +{ + return new poisson3d_1_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson3d_1_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson3d_1_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson3d_1_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson3d_1_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/bench/fem/convergence/cpp/Poisson3D_1.h b/bench/fem/convergence/cpp/Poisson3D_1.h new file mode 100644 index 0000000..d2384ce --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_1.h @@ -0,0 +1,985 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __POISSON3D_1_H +#define __POISSON3D_1_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson3d_1_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson3d_1_finite_element_0(); + + /// Destructor + virtual ~poisson3d_1_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson3d_1_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson3d_1_dofmap_0(); + + /// Destructor + virtual ~poisson3d_1_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson3d_1_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson3d_1_cell_integral_0_otherwise(); + + /// Destructor + virtual ~poisson3d_1_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson3d_1_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson3d_1_cell_integral_1_otherwise(); + + /// Destructor + virtual ~poisson3d_1_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson3d_1_form_0: public ufc::form +{ +public: + + /// Constructor + poisson3d_1_form_0(); + + /// Destructor + virtual ~poisson3d_1_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson3d_1_form_1: public ufc::form +{ +public: + + /// Constructor + poisson3d_1_form_1(); + + /// Destructor + virtual ~poisson3d_1_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson3D_1 +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson3d_1_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson3d_1_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson3d_1_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson3d_1_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson3d_1_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson3d_1_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson3d_1_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson3d_1_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/convergence/cpp/Poisson3D_1.ufl b/bench/fem/convergence/cpp/Poisson3D_1.ufl new file mode 100644 index 0000000..abc182a --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_1.ufl @@ -0,0 +1,30 @@ +# Copyright (C) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2006-03-28 +# +# Poisson's equation in 3D for q = 1 + +element = FiniteElement("Lagrange", tetrahedron, 1) + +v = TestFunction(element) +U = TrialFunction(element) +f = Coefficient(element) + +a = v.dx(i)*U.dx(i)*dx +L = v*f*dx diff --git a/bench/fem/convergence/cpp/Poisson3D_2.cpp b/bench/fem/convergence/cpp/Poisson3D_2.cpp new file mode 100644 index 0000000..0617da1 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_2.cpp @@ -0,0 +1,3972 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#include "Poisson3D_2.h" + +/// Constructor +poisson3d_2_finite_element_0::poisson3d_2_finite_element_0() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +poisson3d_2_finite_element_0::~poisson3d_2_finite_element_0() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* poisson3d_2_finite_element_0::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, None)"; +} + +/// Return the cell shape +ufc::shape poisson3d_2_finite_element_0::cell_shape() const +{ + return ufc::tetrahedron; +} + +/// Return the topological dimension of the cell shape +std::size_t poisson3d_2_finite_element_0::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the cell shape +std::size_t poisson3d_2_finite_element_0::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the finite element function space +std::size_t poisson3d_2_finite_element_0::space_dimension() const +{ + return 10; +} + +/// Return the rank of the value space +std::size_t poisson3d_2_finite_element_0::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t poisson3d_2_finite_element_0::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void poisson3d_2_finite_element_0::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void poisson3d_2_finite_element_0::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void poisson3d_2_finite_element_0::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[9][2]; + for (unsigned int row = 0; row < 9; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[9][9]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void poisson3d_2_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 10; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[9]; + for (unsigned int r = 0; r < 9; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double poisson3d_2_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void poisson3d_2_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; +} + +/// Interpolate vertex values from dof values +void poisson3d_2_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void poisson3d_2_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void poisson3d_2_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t poisson3d_2_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* poisson3d_2_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* poisson3d_2_finite_element_0::create() const +{ + return new poisson3d_2_finite_element_0(); +} + +/// Constructor +poisson3d_2_dofmap_0::poisson3d_2_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +poisson3d_2_dofmap_0::~poisson3d_2_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* poisson3d_2_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool poisson3d_2_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t poisson3d_2_dofmap_0::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t poisson3d_2_dofmap_0::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the global finite element function space +std::size_t poisson3d_2_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0] + num_global_entities[1]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t poisson3d_2_dofmap_0::local_dimension() const +{ + return 10; +} + +/// Return the number of dofs on each cell facet +std::size_t poisson3d_2_dofmap_0::num_facet_dofs() const +{ + return 6; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t poisson3d_2_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void poisson3d_2_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[1][0]; + dofs[5] = offset + c.entity_indices[1][1]; + dofs[6] = offset + c.entity_indices[1][2]; + dofs[7] = offset + c.entity_indices[1][3]; + dofs[8] = offset + c.entity_indices[1][4]; + dofs[9] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void poisson3d_2_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 7; + dofs[5] = 8; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 7; + dofs[5] = 9; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 9; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void poisson3d_2_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + if (i > 5) + { + throw std::runtime_error("i is larger than number of entities (5)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 4; + break; + } + case 1: + { + dofs[0] = 5; + break; + } + case 2: + { + dofs[0] = 6; + break; + } + case 3: + { + dofs[0] = 7; + break; + } + case 4: + { + dofs[0] = 8; + break; + } + case 5: + { + dofs[0] = 9; + break; + } + } + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void poisson3d_2_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[4][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[5][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[6][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[6][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[6][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[7][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[7][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[7][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[8][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[8][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[8][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t poisson3d_2_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* poisson3d_2_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* poisson3d_2_dofmap_0::create() const +{ + return new poisson3d_2_dofmap_0(); +} + +/// Constructor +poisson3d_2_cell_integral_0_otherwise::poisson3d_2_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson3d_2_cell_integral_0_otherwise::~poisson3d_2_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson3d_2_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson3d_2_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 27 + // Number of operations (multiply-add pairs) for tensor contraction: 331 + // Total number of operations (multiply-add pairs): 361 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + const double G0_0_1 = det*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + const double G0_0_2 = det*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + const double G0_1_0 = det*(K[3]*K[0] + K[4]*K[1] + K[5]*K[2]); + const double G0_1_1 = det*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + const double G0_1_2 = det*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + const double G0_2_0 = det*(K[6]*K[0] + K[7]*K[1] + K[8]*K[2]); + const double G0_2_1 = det*(K[6]*K[3] + K[7]*K[4] + K[8]*K[5]); + const double G0_2_2 = det*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + + // Compute element tensor + A[0] = 0.1*G0_0_0 + 0.1*G0_0_1 + 0.1*G0_0_2 + 0.1*G0_1_0 + 0.1*G0_1_1 + 0.1*G0_1_2 + 0.1*G0_2_0 + 0.1*G0_2_1 + 0.1*G0_2_2; + A[1] = 0.0333333333333333*G0_0_0 + 0.0333333333333333*G0_1_0 + 0.0333333333333333*G0_2_0; + A[2] = 0.0333333333333333*G0_0_1 + 0.0333333333333333*G0_1_1 + 0.0333333333333333*G0_2_1; + A[3] = 0.0333333333333333*G0_0_2 + 0.0333333333333333*G0_1_2 + 0.0333333333333333*G0_2_2; + A[4] = 0.0333333333333342*G0_0_1 + 0.0333333333333342*G0_0_2 + 0.0333333333333342*G0_1_1 + 0.0333333333333342*G0_1_2 + 0.0333333333333342*G0_2_1 + 0.0333333333333342*G0_2_2; + A[5] = 0.0333333333333342*G0_0_0 + 0.0333333333333343*G0_0_2 + 0.0333333333333342*G0_1_0 + 0.0333333333333343*G0_1_2 + 0.0333333333333342*G0_2_0 + 0.0333333333333343*G0_2_2; + A[6] = 0.0333333333333342*G0_0_0 + 0.0333333333333342*G0_0_1 + 0.0333333333333342*G0_1_0 + 0.0333333333333343*G0_1_1 + 0.0333333333333342*G0_2_0 + 0.0333333333333342*G0_2_1; + A[7] = -0.0333333333333342*G0_0_0 - 0.0333333333333342*G0_0_1 - 0.133333333333333*G0_0_2 - 0.0333333333333342*G0_1_0 - 0.0333333333333342*G0_1_1 - 0.133333333333333*G0_1_2 - 0.0333333333333342*G0_2_0 - 0.0333333333333343*G0_2_1 - 0.133333333333333*G0_2_2; + A[8] = -0.0333333333333342*G0_0_0 - 0.133333333333333*G0_0_1 - 0.0333333333333342*G0_0_2 - 0.0333333333333342*G0_1_0 - 0.133333333333333*G0_1_1 - 0.0333333333333342*G0_1_2 - 0.0333333333333342*G0_2_0 - 0.133333333333333*G0_2_1 - 0.0333333333333342*G0_2_2; + A[9] = -0.133333333333333*G0_0_0 - 0.0333333333333343*G0_0_1 - 0.0333333333333343*G0_0_2 - 0.133333333333333*G0_1_0 - 0.0333333333333343*G0_1_1 - 0.0333333333333343*G0_1_2 - 0.133333333333333*G0_2_0 - 0.0333333333333343*G0_2_1 - 0.0333333333333343*G0_2_2; + A[10] = 0.0333333333333333*G0_0_0 + 0.0333333333333333*G0_0_1 + 0.0333333333333333*G0_0_2; + A[11] = 0.1*G0_0_0; + A[12] = -0.0333333333333333*G0_0_1; + A[13] = -0.0333333333333333*G0_0_2; + A[14] = -0.033333333333333*G0_0_1 - 0.033333333333333*G0_0_2; + A[15] = -0.033333333333333*G0_0_0 + 0.1*G0_0_2; + A[16] = -0.033333333333333*G0_0_0 + 0.1*G0_0_1; + A[17] = 0.033333333333333*G0_0_0 + 0.033333333333333*G0_0_1; + A[18] = 0.033333333333333*G0_0_0 + 0.033333333333333*G0_0_2; + A[19] = -0.133333333333333*G0_0_0 - 0.1*G0_0_1 - 0.1*G0_0_2; + A[20] = 0.0333333333333333*G0_1_0 + 0.0333333333333333*G0_1_1 + 0.0333333333333333*G0_1_2; + A[21] = -0.0333333333333333*G0_1_0; + A[22] = 0.1*G0_1_1; + A[23] = -0.0333333333333334*G0_1_2; + A[24] = -0.033333333333333*G0_1_1 + 0.1*G0_1_2; + A[25] = -0.033333333333333*G0_1_0 - 0.033333333333333*G0_1_2; + A[26] = 0.1*G0_1_0 - 0.033333333333333*G0_1_1; + A[27] = 0.033333333333333*G0_1_0 + 0.033333333333333*G0_1_1; + A[28] = -0.1*G0_1_0 - 0.133333333333333*G0_1_1 - 0.1*G0_1_2; + A[29] = 0.033333333333333*G0_1_1 + 0.033333333333333*G0_1_2; + A[30] = 0.0333333333333333*G0_2_0 + 0.0333333333333333*G0_2_1 + 0.0333333333333333*G0_2_2; + A[31] = -0.0333333333333333*G0_2_0; + A[32] = -0.0333333333333334*G0_2_1; + A[33] = 0.1*G0_2_2; + A[34] = 0.1*G0_2_1 - 0.0333333333333331*G0_2_2; + A[35] = 0.1*G0_2_0 - 0.0333333333333331*G0_2_2; + A[36] = -0.0333333333333331*G0_2_0 - 0.0333333333333331*G0_2_1; + A[37] = -0.1*G0_2_0 - 0.1*G0_2_1 - 0.133333333333333*G0_2_2; + A[38] = 0.0333333333333331*G0_2_0 + 0.0333333333333331*G0_2_2; + A[39] = 0.0333333333333331*G0_2_1 + 0.0333333333333331*G0_2_2; + A[40] = 0.0333333333333342*G0_1_0 + 0.0333333333333342*G0_1_1 + 0.0333333333333343*G0_1_2 + 0.0333333333333342*G0_2_0 + 0.0333333333333342*G0_2_1 + 0.0333333333333342*G0_2_2; + A[41] = -0.033333333333333*G0_1_0 - 0.033333333333333*G0_2_0; + A[42] = -0.033333333333333*G0_1_1 + 0.1*G0_2_1; + A[43] = 0.1*G0_1_2 - 0.0333333333333331*G0_2_2; + A[44] = 0.266666666666667*G0_1_1 + 0.133333333333334*G0_1_2 + 0.133333333333334*G0_2_1 + 0.266666666666667*G0_2_2; + A[45] = 0.266666666666667*G0_1_0 + 0.133333333333334*G0_1_2 + 0.133333333333334*G0_2_0 + 0.133333333333334*G0_2_2; + A[46] = 0.133333333333334*G0_1_0 + 0.133333333333334*G0_1_1 + 0.266666666666667*G0_2_0 + 0.133333333333334*G0_2_1; + A[47] = -0.266666666666667*G0_1_0 - 0.266666666666667*G0_1_1 - 0.133333333333335*G0_1_2 - 0.133333333333334*G0_2_0 - 0.133333333333334*G0_2_1; + A[48] = -0.133333333333334*G0_1_0 - 0.133333333333334*G0_1_2 - 0.266666666666667*G0_2_0 - 0.133333333333335*G0_2_1 - 0.266666666666667*G0_2_2; + A[49] = -0.133333333333334*G0_1_1 - 0.133333333333334*G0_1_2 - 0.133333333333334*G0_2_1 - 0.133333333333334*G0_2_2; + A[50] = 0.0333333333333342*G0_0_0 + 0.0333333333333342*G0_0_1 + 0.0333333333333342*G0_0_2 + 0.0333333333333343*G0_2_0 + 0.0333333333333343*G0_2_1 + 0.0333333333333343*G0_2_2; + A[51] = -0.033333333333333*G0_0_0 + 0.1*G0_2_0; + A[52] = -0.033333333333333*G0_0_1 - 0.033333333333333*G0_2_1; + A[53] = 0.1*G0_0_2 - 0.0333333333333331*G0_2_2; + A[54] = 0.266666666666667*G0_0_1 + 0.133333333333334*G0_0_2 + 0.133333333333334*G0_2_1 + 0.133333333333334*G0_2_2; + A[55] = 0.266666666666667*G0_0_0 + 0.133333333333334*G0_0_2 + 0.133333333333334*G0_2_0 + 0.266666666666667*G0_2_2; + A[56] = 0.133333333333334*G0_0_0 + 0.133333333333334*G0_0_1 + 0.133333333333334*G0_2_0 + 0.266666666666667*G0_2_1; + A[57] = -0.266666666666667*G0_0_0 - 0.266666666666667*G0_0_1 - 0.133333333333335*G0_0_2 - 0.133333333333334*G0_2_0 - 0.133333333333334*G0_2_1; + A[58] = -0.133333333333334*G0_0_0 - 0.133333333333334*G0_0_2 - 0.133333333333334*G0_2_0 - 0.133333333333334*G0_2_2; + A[59] = -0.133333333333334*G0_0_1 - 0.133333333333334*G0_0_2 - 0.133333333333335*G0_2_0 - 0.266666666666667*G0_2_1 - 0.266666666666667*G0_2_2; + A[60] = 0.0333333333333342*G0_0_0 + 0.0333333333333342*G0_0_1 + 0.0333333333333342*G0_0_2 + 0.0333333333333342*G0_1_0 + 0.0333333333333343*G0_1_1 + 0.0333333333333342*G0_1_2; + A[61] = -0.033333333333333*G0_0_0 + 0.1*G0_1_0; + A[62] = 0.1*G0_0_1 - 0.033333333333333*G0_1_1; + A[63] = -0.0333333333333331*G0_0_2 - 0.0333333333333331*G0_1_2; + A[64] = 0.133333333333334*G0_0_1 + 0.266666666666667*G0_0_2 + 0.133333333333334*G0_1_1 + 0.133333333333334*G0_1_2; + A[65] = 0.133333333333334*G0_0_0 + 0.133333333333334*G0_0_2 + 0.133333333333334*G0_1_0 + 0.266666666666667*G0_1_2; + A[66] = 0.266666666666667*G0_0_0 + 0.133333333333334*G0_0_1 + 0.133333333333334*G0_1_0 + 0.266666666666667*G0_1_1; + A[67] = -0.133333333333334*G0_0_0 - 0.133333333333334*G0_0_1 - 0.133333333333334*G0_1_0 - 0.133333333333334*G0_1_1; + A[68] = -0.266666666666667*G0_0_0 - 0.133333333333335*G0_0_1 - 0.266666666666667*G0_0_2 - 0.133333333333334*G0_1_0 - 0.133333333333334*G0_1_2; + A[69] = -0.133333333333334*G0_0_1 - 0.133333333333334*G0_0_2 - 0.133333333333335*G0_1_0 - 0.266666666666667*G0_1_1 - 0.266666666666667*G0_1_2; + A[70] = -0.0333333333333342*G0_0_0 - 0.0333333333333342*G0_0_1 - 0.0333333333333342*G0_0_2 - 0.0333333333333342*G0_1_0 - 0.0333333333333342*G0_1_1 - 0.0333333333333343*G0_1_2 - 0.133333333333333*G0_2_0 - 0.133333333333333*G0_2_1 - 0.133333333333333*G0_2_2; + A[71] = 0.033333333333333*G0_0_0 + 0.033333333333333*G0_1_0; + A[72] = 0.033333333333333*G0_0_1 + 0.033333333333333*G0_1_1; + A[73] = -0.1*G0_0_2 - 0.1*G0_1_2 - 0.133333333333333*G0_2_2; + A[74] = -0.266666666666667*G0_0_1 - 0.133333333333334*G0_0_2 - 0.266666666666667*G0_1_1 - 0.133333333333334*G0_1_2 - 0.133333333333335*G0_2_1; + A[75] = -0.266666666666667*G0_0_0 - 0.133333333333334*G0_0_2 - 0.266666666666667*G0_1_0 - 0.133333333333334*G0_1_2 - 0.133333333333335*G0_2_0; + A[76] = -0.133333333333334*G0_0_0 - 0.133333333333334*G0_0_1 - 0.133333333333334*G0_1_0 - 0.133333333333334*G0_1_1; + A[77] = 0.266666666666667*G0_0_0 + 0.266666666666667*G0_0_1 + 0.133333333333335*G0_0_2 + 0.266666666666667*G0_1_0 + 0.266666666666667*G0_1_1 + 0.133333333333335*G0_1_2 + 0.133333333333335*G0_2_0 + 0.133333333333335*G0_2_1 + 0.266666666666666*G0_2_2; + A[78] = 0.133333333333334*G0_0_0 + 0.133333333333334*G0_0_2 + 0.133333333333334*G0_1_0 + 0.133333333333334*G0_1_2 + 0.133333333333333*G0_2_1; + A[79] = 0.133333333333334*G0_0_1 + 0.133333333333334*G0_0_2 + 0.133333333333334*G0_1_1 + 0.133333333333334*G0_1_2 + 0.133333333333333*G0_2_0; + A[80] = -0.0333333333333342*G0_0_0 - 0.0333333333333342*G0_0_1 - 0.0333333333333342*G0_0_2 - 0.133333333333333*G0_1_0 - 0.133333333333333*G0_1_1 - 0.133333333333333*G0_1_2 - 0.0333333333333342*G0_2_0 - 0.0333333333333342*G0_2_1 - 0.0333333333333342*G0_2_2; + A[81] = 0.033333333333333*G0_0_0 + 0.033333333333333*G0_2_0; + A[82] = -0.1*G0_0_1 - 0.133333333333333*G0_1_1 - 0.1*G0_2_1; + A[83] = 0.0333333333333331*G0_0_2 + 0.0333333333333331*G0_2_2; + A[84] = -0.133333333333334*G0_0_1 - 0.266666666666667*G0_0_2 - 0.133333333333335*G0_1_2 - 0.133333333333334*G0_2_1 - 0.266666666666667*G0_2_2; + A[85] = -0.133333333333334*G0_0_0 - 0.133333333333334*G0_0_2 - 0.133333333333334*G0_2_0 - 0.133333333333334*G0_2_2; + A[86] = -0.266666666666667*G0_0_0 - 0.133333333333334*G0_0_1 - 0.133333333333335*G0_1_0 - 0.266666666666667*G0_2_0 - 0.133333333333334*G0_2_1; + A[87] = 0.133333333333334*G0_0_0 + 0.133333333333334*G0_0_1 + 0.133333333333333*G0_1_2 + 0.133333333333334*G0_2_0 + 0.133333333333334*G0_2_1; + A[88] = 0.266666666666667*G0_0_0 + 0.133333333333335*G0_0_1 + 0.266666666666667*G0_0_2 + 0.133333333333335*G0_1_0 + 0.266666666666667*G0_1_1 + 0.133333333333334*G0_1_2 + 0.266666666666667*G0_2_0 + 0.133333333333334*G0_2_1 + 0.266666666666667*G0_2_2; + A[89] = 0.133333333333334*G0_0_1 + 0.133333333333334*G0_0_2 + 0.133333333333333*G0_1_0 + 0.133333333333334*G0_2_1 + 0.133333333333334*G0_2_2; + A[90] = -0.133333333333333*G0_0_0 - 0.133333333333333*G0_0_1 - 0.133333333333333*G0_0_2 - 0.0333333333333342*G0_1_0 - 0.0333333333333343*G0_1_1 - 0.0333333333333343*G0_1_2 - 0.0333333333333343*G0_2_0 - 0.0333333333333343*G0_2_1 - 0.0333333333333343*G0_2_2; + A[91] = -0.133333333333333*G0_0_0 - 0.1*G0_1_0 - 0.1*G0_2_0; + A[92] = 0.033333333333333*G0_1_1 + 0.033333333333333*G0_2_1; + A[93] = 0.0333333333333331*G0_1_2 + 0.0333333333333331*G0_2_2; + A[94] = -0.133333333333334*G0_1_1 - 0.133333333333334*G0_1_2 - 0.133333333333334*G0_2_1 - 0.133333333333334*G0_2_2; + A[95] = -0.133333333333335*G0_0_2 - 0.133333333333334*G0_1_0 - 0.266666666666667*G0_1_2 - 0.133333333333334*G0_2_0 - 0.266666666666667*G0_2_2; + A[96] = -0.133333333333334*G0_0_1 - 0.133333333333334*G0_1_0 - 0.266666666666667*G0_1_1 - 0.133333333333334*G0_2_0 - 0.266666666666667*G0_2_1; + A[97] = 0.133333333333333*G0_0_2 + 0.133333333333334*G0_1_0 + 0.133333333333334*G0_1_1 + 0.133333333333334*G0_2_0 + 0.133333333333334*G0_2_1; + A[98] = 0.133333333333333*G0_0_1 + 0.133333333333334*G0_1_0 + 0.133333333333334*G0_1_2 + 0.133333333333334*G0_2_0 + 0.133333333333334*G0_2_2; + A[99] = 0.266666666666667*G0_0_0 + 0.133333333333335*G0_0_1 + 0.133333333333335*G0_0_2 + 0.133333333333335*G0_1_0 + 0.266666666666667*G0_1_1 + 0.266666666666667*G0_1_2 + 0.133333333333335*G0_2_0 + 0.266666666666667*G0_2_1 + 0.266666666666667*G0_2_2; +} + +/// Constructor +poisson3d_2_cell_integral_1_otherwise::poisson3d_2_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson3d_2_cell_integral_1_otherwise::~poisson3d_2_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson3d_2_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson3d_2_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 10 + // Number of operations (multiply-add pairs) for tensor contraction: 95 + // Total number of operations (multiply-add pairs): 108 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + const double G0_6 = det*w[0][6]*(1.0); + const double G0_7 = det*w[0][7]*(1.0); + const double G0_8 = det*w[0][8]*(1.0); + const double G0_9 = det*w[0][9]*(1.0); + + // Compute element tensor + A[0] = 0.00238095238095238*G0_0 + 0.000396825396825396*G0_1 + 0.000396825396825396*G0_2 + 0.000396825396825396*G0_3 - 0.00238095238095238*G0_4 - 0.00238095238095238*G0_5 - 0.00238095238095238*G0_6 - 0.00158730158730159*G0_7 - 0.00158730158730158*G0_8 - 0.00158730158730159*G0_9; + A[1] = 0.000396825396825396*G0_0 + 0.00238095238095238*G0_1 + 0.000396825396825395*G0_2 + 0.000396825396825396*G0_3 - 0.00238095238095238*G0_4 - 0.00158730158730158*G0_5 - 0.00158730158730158*G0_6 - 0.00238095238095238*G0_7 - 0.00238095238095238*G0_8 - 0.00158730158730158*G0_9; + A[2] = 0.000396825396825396*G0_0 + 0.000396825396825395*G0_1 + 0.00238095238095238*G0_2 + 0.000396825396825396*G0_3 - 0.00158730158730159*G0_4 - 0.00238095238095238*G0_5 - 0.00158730158730158*G0_6 - 0.00238095238095238*G0_7 - 0.00158730158730159*G0_8 - 0.00238095238095238*G0_9; + A[3] = 0.000396825396825396*G0_0 + 0.000396825396825396*G0_1 + 0.000396825396825396*G0_2 + 0.00238095238095238*G0_3 - 0.00158730158730159*G0_4 - 0.00158730158730159*G0_5 - 0.00238095238095238*G0_6 - 0.00158730158730159*G0_7 - 0.00238095238095238*G0_8 - 0.00238095238095238*G0_9; + A[4] = -0.00238095238095238*G0_0 - 0.00238095238095238*G0_1 - 0.00158730158730159*G0_2 - 0.00158730158730159*G0_3 + 0.0126984126984127*G0_4 + 0.00634920634920635*G0_5 + 0.00634920634920635*G0_6 + 0.00634920634920635*G0_7 + 0.00634920634920634*G0_8 + 0.00317460317460317*G0_9; + A[5] = -0.00238095238095238*G0_0 - 0.00158730158730158*G0_1 - 0.00238095238095238*G0_2 - 0.00158730158730159*G0_3 + 0.00634920634920635*G0_4 + 0.0126984126984127*G0_5 + 0.00634920634920635*G0_6 + 0.00634920634920635*G0_7 + 0.00317460317460317*G0_8 + 0.00634920634920635*G0_9; + A[6] = -0.00238095238095238*G0_0 - 0.00158730158730158*G0_1 - 0.00158730158730158*G0_2 - 0.00238095238095238*G0_3 + 0.00634920634920635*G0_4 + 0.00634920634920635*G0_5 + 0.0126984126984127*G0_6 + 0.00317460317460317*G0_7 + 0.00634920634920634*G0_8 + 0.00634920634920635*G0_9; + A[7] = -0.00158730158730159*G0_0 - 0.00238095238095238*G0_1 - 0.00238095238095238*G0_2 - 0.00158730158730159*G0_3 + 0.00634920634920635*G0_4 + 0.00634920634920635*G0_5 + 0.00317460317460317*G0_6 + 0.0126984126984127*G0_7 + 0.00634920634920635*G0_8 + 0.00634920634920635*G0_9; + A[8] = -0.00158730158730158*G0_0 - 0.00238095238095238*G0_1 - 0.00158730158730159*G0_2 - 0.00238095238095238*G0_3 + 0.00634920634920634*G0_4 + 0.00317460317460317*G0_5 + 0.00634920634920634*G0_6 + 0.00634920634920635*G0_7 + 0.0126984126984127*G0_8 + 0.00634920634920634*G0_9; + A[9] = -0.00158730158730159*G0_0 - 0.00158730158730158*G0_1 - 0.00238095238095238*G0_2 - 0.00238095238095238*G0_3 + 0.00317460317460317*G0_4 + 0.00634920634920635*G0_5 + 0.00634920634920635*G0_6 + 0.00634920634920635*G0_7 + 0.00634920634920634*G0_8 + 0.0126984126984127*G0_9; +} + +/// Constructor +poisson3d_2_form_0::poisson3d_2_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson3d_2_form_0::~poisson3d_2_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson3d_2_form_0::signature() const +{ + return "5632f72de90dfbfc3cc44b8f86ca996b11b812f9cd6707bcfc15d42f2b78d777beea6280ab7055e511165389ca4718c1aaa2b69298cb55dc03fdf4a76fc035d2"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson3d_2_form_0::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t poisson3d_2_form_0::num_coefficients() const +{ + return 0; +} + +/// Return the number of cell domains +std::size_t poisson3d_2_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson3d_2_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson3d_2_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson3d_2_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson3d_2_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson3d_2_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson3d_2_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson3d_2_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson3d_2_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson3d_2_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson3d_2_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_2_finite_element_0(); + break; + } + case 1: + { + return new poisson3d_2_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson3d_2_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_2_dofmap_0(); + break; + } + case 1: + { + return new poisson3d_2_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson3d_2_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson3d_2_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson3d_2_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson3d_2_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson3d_2_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson3d_2_form_0::create_default_cell_integral() const +{ + return new poisson3d_2_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson3d_2_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson3d_2_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson3d_2_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson3d_2_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +poisson3d_2_form_1::poisson3d_2_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson3d_2_form_1::~poisson3d_2_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson3d_2_form_1::signature() const +{ + return "43145964686b6b70399e810d68d5808ce481de0ab7937b15e48b40c9c4e3f124b2b0cfc9e3998c7c2f4200754bde07ead6b75338da5888fb3b177a9b17db6f81"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson3d_2_form_1::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t poisson3d_2_form_1::num_coefficients() const +{ + return 1; +} + +/// Return the number of cell domains +std::size_t poisson3d_2_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson3d_2_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson3d_2_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson3d_2_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson3d_2_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson3d_2_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson3d_2_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson3d_2_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson3d_2_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson3d_2_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson3d_2_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_2_finite_element_0(); + break; + } + case 1: + { + return new poisson3d_2_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson3d_2_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_2_dofmap_0(); + break; + } + case 1: + { + return new poisson3d_2_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson3d_2_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson3d_2_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson3d_2_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson3d_2_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson3d_2_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson3d_2_form_1::create_default_cell_integral() const +{ + return new poisson3d_2_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson3d_2_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson3d_2_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson3d_2_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson3d_2_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/bench/fem/convergence/cpp/Poisson3D_2.h b/bench/fem/convergence/cpp/Poisson3D_2.h new file mode 100644 index 0000000..6537fea --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_2.h @@ -0,0 +1,985 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __POISSON3D_2_H +#define __POISSON3D_2_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson3d_2_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson3d_2_finite_element_0(); + + /// Destructor + virtual ~poisson3d_2_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson3d_2_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson3d_2_dofmap_0(); + + /// Destructor + virtual ~poisson3d_2_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson3d_2_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson3d_2_cell_integral_0_otherwise(); + + /// Destructor + virtual ~poisson3d_2_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson3d_2_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson3d_2_cell_integral_1_otherwise(); + + /// Destructor + virtual ~poisson3d_2_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson3d_2_form_0: public ufc::form +{ +public: + + /// Constructor + poisson3d_2_form_0(); + + /// Destructor + virtual ~poisson3d_2_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson3d_2_form_1: public ufc::form +{ +public: + + /// Constructor + poisson3d_2_form_1(); + + /// Destructor + virtual ~poisson3d_2_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson3D_2 +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson3d_2_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson3d_2_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_2_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_2_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson3d_2_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson3d_2_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson3d_2_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson3d_2_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson3d_2_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson3d_2_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/convergence/cpp/Poisson3D_2.ufl b/bench/fem/convergence/cpp/Poisson3D_2.ufl new file mode 100644 index 0000000..31812fe --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_2.ufl @@ -0,0 +1,30 @@ +# Copyright (C) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2006-03-28 +# +# Poisson's equation in 3D for q = 2 + +element = FiniteElement("Lagrange", tetrahedron, 2) + +v = TestFunction(element) +U = TrialFunction(element) +f = Coefficient(element) + +a = v.dx(i)*U.dx(i)*dx +L = v*f*dx diff --git a/bench/fem/convergence/cpp/Poisson3D_3.cpp b/bench/fem/convergence/cpp/Poisson3D_3.cpp new file mode 100644 index 0000000..84c52d0 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_3.cpp @@ -0,0 +1,8813 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#include "Poisson3D_3.h" + +/// Constructor +poisson3d_3_finite_element_0::poisson3d_3_finite_element_0() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +poisson3d_3_finite_element_0::~poisson3d_3_finite_element_0() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* poisson3d_3_finite_element_0::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 3, None)"; +} + +/// Return the cell shape +ufc::shape poisson3d_3_finite_element_0::cell_shape() const +{ + return ufc::tetrahedron; +} + +/// Return the topological dimension of the cell shape +std::size_t poisson3d_3_finite_element_0::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the cell shape +std::size_t poisson3d_3_finite_element_0::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the finite element function space +std::size_t poisson3d_3_finite_element_0::space_dimension() const +{ + return 20; +} + +/// Return the rank of the value space +std::size_t poisson3d_3_finite_element_0::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t poisson3d_3_finite_element_0::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void poisson3d_3_finite_element_0::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0288675134594813, 0.0130410132739325, 0.00752923252421043, 0.0053239713749995, 0.018298126367785, 0.014173667737846, 0.0115727512471569, 0.00818317088384972, 0.00668153104781059, 0.00472455591261533, -0.028347335475692, -0.0239578711874978, -0.0207481250689683, -0.0185576872239523, -0.0160714285714286, -0.0131222664791956, -0.0107142857142857, -0.00927884361197611, -0.00757614408414157, -0.00535714285714285}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0288675134594812, -0.0130410132739325, 0.0075292325242104, 0.00532397137499951, 0.018298126367785, -0.014173667737846, -0.0115727512471569, 0.00818317088384971, 0.00668153104781063, 0.00472455591261534, 0.028347335475692, -0.0239578711874977, -0.0207481250689683, 0.0185576872239523, 0.0160714285714286, 0.0131222664791956, -0.0107142857142857, -0.00927884361197613, -0.00757614408414159, -0.00535714285714286}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0288675134594812, 0.0, -0.0150584650484209, 0.00532397137499951, 0.0, 0.0, 0.0, 0.0245495126515492, -0.0133630620956212, 0.00472455591261537, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0428571428571429, -0.0278365308359284, 0.0151522881682832, -0.00535714285714287}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0288675134594813, 0.0, 0.0, -0.0159719141249985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.028347335475692, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0535714285714286}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.0, 0.112938487863156, -0.063887656499994, 0.0, 0.0, 0.0, 0.0736485379546474, 0.0267261241912424, -0.0236227795630767, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0649519052838329, -0.0606091526731326, 0.0267857142857143}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.0, -0.0225876975726313, 0.127775312999988, 0.0, 0.0, 0.0, 0.0, 0.0668153104781061, 0.0472455591261534, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0757614408414158, -0.0535714285714286}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.0978075995544939, -0.0564692439315782, -0.063887656499994, 0.054894379103355, -0.0425210032135381, 0.0231455024943138, 0.0245495126515491, -0.0133630620956212, -0.0236227795630767, 0.0, 0.0, 0.0484122918275927, 0.0, -0.0375, -0.0524890659167824, 0.0, 0.0216506350946109, 0.0303045763365663, 0.0267857142857143}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, -0.0195615199108989, 0.0112938487863156, 0.127775312999988, 0.0, 0.0, 0.0578637562357844, 0.0, -0.0334076552390531, 0.0472455591261534, 0.0, 0.0, 0.0, 0.0, 0.0, 0.065611332395978, 0.0, 0.0, -0.0378807204207079, -0.0535714285714286}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.097807599554494, -0.0790569415042095, -0.031943828249997, 0.054894379103355, 0.014173667737846, -0.0462910049886276, -0.0245495126515492, 0.0133630620956212, 0.0236227795630767, 0.0, 0.0479157423749955, -0.0069160416896561, -0.0618589574131742, -0.0160714285714286, 0.00874817765279706, 0.0428571428571429, 0.0154647393532935, 0.0, -0.00535714285714286}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, -0.0195615199108988, 0.124232336649472, -0.031943828249997, 0.0, 0.0566946709513841, -0.0115727512471569, 0.0245495126515492, -0.0467707173346743, 0.0236227795630767, 0.0, 0.0, 0.0, 0.0618589574131742, -0.0214285714285714, 0.00437408882639853, -0.0642857142857143, 0.00927884361197613, 0.00757614408414158, -0.00535714285714285}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, -0.0978075995544939, -0.0564692439315782, -0.063887656499994, 0.054894379103355, 0.0425210032135381, -0.0231455024943137, 0.0245495126515491, -0.0133630620956212, -0.0236227795630767, 0.0, 0.0, 0.0484122918275927, 0.0, 0.0375, 0.0524890659167824, 0.0, 0.021650635094611, 0.0303045763365663, 0.0267857142857143}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.0195615199108988, 0.0112938487863156, 0.127775312999988, 0.0, 0.0, -0.0578637562357845, 0.0, -0.033407655239053, 0.0472455591261534, 0.0, 0.0, 0.0, 0.0, 0.0, -0.065611332395978, 0.0, 0.0, -0.0378807204207079, -0.0535714285714286}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, -0.097807599554494, -0.0790569415042095, -0.031943828249997, 0.054894379103355, -0.014173667737846, 0.0462910049886276, -0.0245495126515492, 0.0133630620956212, 0.0236227795630767, 0.0, 0.0479157423749955, -0.0069160416896561, 0.0618589574131742, 0.0160714285714286, -0.00874817765279707, 0.0428571428571429, 0.0154647393532935, 0.0, -0.00535714285714287}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.0195615199108988, 0.124232336649472, -0.031943828249997, 0.0, -0.0566946709513841, 0.0115727512471569, 0.0245495126515492, -0.0467707173346743, 0.0236227795630767, 0.0, 0.0, 0.0, -0.0618589574131742, 0.0214285714285714, -0.00437408882639852, -0.0642857142857143, 0.00927884361197614, 0.00757614408414158, -0.00535714285714285}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, -0.117369119465393, -0.0451753951452625, -0.031943828249997, -0.018298126367785, 0.0425210032135381, 0.0347182537414707, 0.0409158544192486, 0.0334076552390531, 0.0236227795630767, 0.0850420064270761, 0.0239578711874977, 0.0207481250689683, -0.00618589574131741, -0.00535714285714285, -0.00437408882639853, -0.0107142857142857, -0.00927884361197613, -0.00757614408414159, -0.00535714285714286}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.117369119465393, -0.0451753951452626, -0.031943828249997, -0.018298126367785, -0.0425210032135381, -0.0347182537414707, 0.0409158544192486, 0.0334076552390531, 0.0236227795630767, -0.0850420064270761, 0.0239578711874978, 0.0207481250689683, 0.00618589574131741, 0.00535714285714285, 0.00437408882639852, -0.0107142857142857, -0.00927884361197613, -0.00757614408414159, -0.00535714285714286}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.259807621135332, 0.117369119465393, 0.0677630927178939, 0.0479157423749954, 0.0, 0.0850420064270762, 0.0694365074829413, -0.0736485379546474, 0.0400891862868636, -0.0992156741649221, 0.0, 0.0, 0.0, 0.0, 0.075, -0.0262445329583912, 0.0, -0.0649519052838329, -0.0151522881682832, 0.0267857142857143}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.259807621135331, -0.117369119465393, 0.0677630927178938, 0.0479157423749954, 0.0, -0.0850420064270761, -0.0694365074829413, -0.0736485379546474, 0.0400891862868637, -0.0992156741649221, 0.0, 0.0, 0.0, 0.0, -0.075, 0.0262445329583912, 0.0, -0.0649519052838329, -0.0151522881682832, 0.0267857142857143}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.259807621135332, 0.0, -0.135526185435788, 0.0479157423749955, -0.10978875820671, 0.0, 0.0, 0.0245495126515491, -0.0801783725737273, -0.0992156741649222, 0.0, 0.0, -0.0968245836551854, 0.0, 0.0, 0.0, 0.0, 0.021650635094611, 0.0303045763365663, 0.0267857142857143}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.259807621135332, 0.0, 0.0, -0.143747227124986, -0.10978875820671, 0.0, 0.0, -0.122747563257746, 0.0, 0.0425210032135381, 0.0, -0.095831484749991, 0.0138320833793122, 0.0, 0.0, 0.0, 0.0428571428571429, 0.0154647393532936, 0.0, -0.00535714285714284}; + + // Compute value(s) + for (unsigned int r = 0; r < 20; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void poisson3d_3_finite_element_0::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 20; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void poisson3d_3_finite_element_0::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[27][3]; + for (unsigned int row = 0; row < 27; row++) + { + for (unsigned int col = 0; col < 3; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[27][27]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0288675134594813, 0.0130410132739325, 0.00752923252421043, 0.0053239713749995, 0.018298126367785, 0.014173667737846, 0.0115727512471569, 0.00818317088384972, 0.00668153104781059, 0.00472455591261533, -0.028347335475692, -0.0239578711874978, -0.0207481250689683, -0.0185576872239523, -0.0160714285714286, -0.0131222664791956, -0.0107142857142857, -0.00927884361197611, -0.00757614408414157, -0.00535714285714285}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0288675134594812, -0.0130410132739325, 0.0075292325242104, 0.00532397137499951, 0.018298126367785, -0.014173667737846, -0.0115727512471569, 0.00818317088384971, 0.00668153104781063, 0.00472455591261534, 0.028347335475692, -0.0239578711874977, -0.0207481250689683, 0.0185576872239523, 0.0160714285714286, 0.0131222664791956, -0.0107142857142857, -0.00927884361197613, -0.00757614408414159, -0.00535714285714286}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0288675134594812, 0.0, -0.0150584650484209, 0.00532397137499951, 0.0, 0.0, 0.0, 0.0245495126515492, -0.0133630620956212, 0.00472455591261537, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0428571428571429, -0.0278365308359284, 0.0151522881682832, -0.00535714285714287}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0288675134594813, 0.0, 0.0, -0.0159719141249985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.028347335475692, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0535714285714286}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.0, 0.112938487863156, -0.063887656499994, 0.0, 0.0, 0.0, 0.0736485379546474, 0.0267261241912424, -0.0236227795630767, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0649519052838329, -0.0606091526731326, 0.0267857142857143}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.0, -0.0225876975726313, 0.127775312999988, 0.0, 0.0, 0.0, 0.0, 0.0668153104781061, 0.0472455591261534, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0757614408414158, -0.0535714285714286}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.0978075995544939, -0.0564692439315782, -0.063887656499994, 0.054894379103355, -0.0425210032135381, 0.0231455024943138, 0.0245495126515491, -0.0133630620956212, -0.0236227795630767, 0.0, 0.0, 0.0484122918275927, 0.0, -0.0375, -0.0524890659167824, 0.0, 0.0216506350946109, 0.0303045763365663, 0.0267857142857143}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, -0.0195615199108989, 0.0112938487863156, 0.127775312999988, 0.0, 0.0, 0.0578637562357844, 0.0, -0.0334076552390531, 0.0472455591261534, 0.0, 0.0, 0.0, 0.0, 0.0, 0.065611332395978, 0.0, 0.0, -0.0378807204207079, -0.0535714285714286}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.097807599554494, -0.0790569415042095, -0.031943828249997, 0.054894379103355, 0.014173667737846, -0.0462910049886276, -0.0245495126515492, 0.0133630620956212, 0.0236227795630767, 0.0, 0.0479157423749955, -0.0069160416896561, -0.0618589574131742, -0.0160714285714286, 0.00874817765279706, 0.0428571428571429, 0.0154647393532935, 0.0, -0.00535714285714286}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, -0.0195615199108988, 0.124232336649472, -0.031943828249997, 0.0, 0.0566946709513841, -0.0115727512471569, 0.0245495126515492, -0.0467707173346743, 0.0236227795630767, 0.0, 0.0, 0.0, 0.0618589574131742, -0.0214285714285714, 0.00437408882639853, -0.0642857142857143, 0.00927884361197613, 0.00757614408414158, -0.00535714285714285}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, -0.0978075995544939, -0.0564692439315782, -0.063887656499994, 0.054894379103355, 0.0425210032135381, -0.0231455024943137, 0.0245495126515491, -0.0133630620956212, -0.0236227795630767, 0.0, 0.0, 0.0484122918275927, 0.0, 0.0375, 0.0524890659167824, 0.0, 0.021650635094611, 0.0303045763365663, 0.0267857142857143}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.0195615199108988, 0.0112938487863156, 0.127775312999988, 0.0, 0.0, -0.0578637562357845, 0.0, -0.033407655239053, 0.0472455591261534, 0.0, 0.0, 0.0, 0.0, 0.0, -0.065611332395978, 0.0, 0.0, -0.0378807204207079, -0.0535714285714286}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, -0.097807599554494, -0.0790569415042095, -0.031943828249997, 0.054894379103355, -0.014173667737846, 0.0462910049886276, -0.0245495126515492, 0.0133630620956212, 0.0236227795630767, 0.0, 0.0479157423749955, -0.0069160416896561, 0.0618589574131742, 0.0160714285714286, -0.00874817765279707, 0.0428571428571429, 0.0154647393532935, 0.0, -0.00535714285714287}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.0195615199108988, 0.124232336649472, -0.031943828249997, 0.0, -0.0566946709513841, 0.0115727512471569, 0.0245495126515492, -0.0467707173346743, 0.0236227795630767, 0.0, 0.0, 0.0, -0.0618589574131742, 0.0214285714285714, -0.00437408882639852, -0.0642857142857143, 0.00927884361197614, 0.00757614408414158, -0.00535714285714285}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, -0.117369119465393, -0.0451753951452625, -0.031943828249997, -0.018298126367785, 0.0425210032135381, 0.0347182537414707, 0.0409158544192486, 0.0334076552390531, 0.0236227795630767, 0.0850420064270761, 0.0239578711874977, 0.0207481250689683, -0.00618589574131741, -0.00535714285714285, -0.00437408882639853, -0.0107142857142857, -0.00927884361197613, -0.00757614408414159, -0.00535714285714286}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.0, 0.117369119465393, -0.0451753951452626, -0.031943828249997, -0.018298126367785, -0.0425210032135381, -0.0347182537414707, 0.0409158544192486, 0.0334076552390531, 0.0236227795630767, -0.0850420064270761, 0.0239578711874978, 0.0207481250689683, 0.00618589574131741, 0.00535714285714285, 0.00437408882639852, -0.0107142857142857, -0.00927884361197613, -0.00757614408414159, -0.00535714285714286}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.259807621135332, 0.117369119465393, 0.0677630927178939, 0.0479157423749954, 0.0, 0.0850420064270762, 0.0694365074829413, -0.0736485379546474, 0.0400891862868636, -0.0992156741649221, 0.0, 0.0, 0.0, 0.0, 0.075, -0.0262445329583912, 0.0, -0.0649519052838329, -0.0151522881682832, 0.0267857142857143}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.259807621135331, -0.117369119465393, 0.0677630927178938, 0.0479157423749954, 0.0, -0.0850420064270761, -0.0694365074829413, -0.0736485379546474, 0.0400891862868637, -0.0992156741649221, 0.0, 0.0, 0.0, 0.0, -0.075, 0.0262445329583912, 0.0, -0.0649519052838329, -0.0151522881682832, 0.0267857142857143}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.259807621135332, 0.0, -0.135526185435788, 0.0479157423749955, -0.10978875820671, 0.0, 0.0, 0.0245495126515491, -0.0801783725737273, -0.0992156741649222, 0.0, 0.0, -0.0968245836551854, 0.0, 0.0, 0.0, 0.0, 0.021650635094611, 0.0303045763365663, 0.0267857142857143}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[20] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[10] = 1.66666666666667*tmp0*basisvalues[4] - 0.666666666666667*tmp1*basisvalues[1]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[11] = (0.5*(2.0 + 3.0*Y + Z) + 2.0*(1.0 + Y))*basisvalues[4]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[16] = (1.75*tmp2 + 0.05*tmp3)*basisvalues[7] - 0.7*tmp4*basisvalues[2]; + basisvalues[13] = (2.1*tmp2 + 0.54*tmp3)*basisvalues[5] - 0.56*tmp4*basisvalues[1]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[17] = (4.0*Z + 3.0)*basisvalues[7]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[14] = (4.0*Z + 3.0)*basisvalues[5]; + basisvalues[12] = (4.0*Z + 3.0)*basisvalues[4]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[19] = basisvalues[9]*(0.155555555555556 + 1.86666666666667*Z) - 0.711111111111111*basisvalues[3]; + basisvalues[18] = basisvalues[8]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[2]; + basisvalues[15] = basisvalues[6]*(0.777777777777778 + 2.33333333333333*Z) - 0.555555555555556*basisvalues[1]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[19] *= std::sqrt(2.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[18] *= std::sqrt(4.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[17] *= std::sqrt(6.75); + basisvalues[16] *= std::sqrt(9.0); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[15] *= std::sqrt(13.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[14] *= std::sqrt(20.25); + basisvalues[13] *= std::sqrt(27.0); + basisvalues[4] *= std::sqrt(26.25); + basisvalues[12] *= std::sqrt(33.75); + basisvalues[11] *= std::sqrt(45.0); + basisvalues[10] *= std::sqrt(63.0); + + // Table(s) of coefficients + static const double coefficients0[20] = \ + {0.259807621135332, 0.0, 0.0, -0.143747227124986, -0.10978875820671, 0.0, 0.0, -0.122747563257746, 0.0, 0.0425210032135381, 0.0, -0.095831484749991, 0.0138320833793122, 0.0, 0.0, 0.0, 0.0428571428571429, 0.0154647393532936, 0.0, -0.00535714285714284}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.49909083394702, 0.0, -3.34664010613631, -2.36643191323985, 15.4919333848297, 0.0, 0.0, 0.69282032302755, 0.565685424949236, 0.399999999999998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.89897948556635, 0.0, 0.0, 0.0, 14.1985914794391, -0.828078671210824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.24264068711928, 0.0, 0.0, 0.0, 0.0, 14.3427433120127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.60000000000001, 0.0, 8.76356092008266, -1.54919333848297, 0.0, 0.0, 0.0, 9.52470471983252, -1.48131215963608, 0.261861468283192, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.11769145362398, 0.0, 3.16227766016838, 4.91934955049954, 0.0, 0.0, 0.0, 0.0, 10.690449676497, -2.41897262725906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.54558441227157, 0.0, 0.0, 7.66811580507233, 0.0, 0.0, 0.0, 0.0, 0.0, 10.3691851174526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.59160797830996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 9.16515138991168, 7.09929573971954, -0.414039335605413, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355964, -0.408248290463863, 3.17542648054295, 0.0, 0.0, 7.17137165600637, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, -5.69209978830309, 4.38178046004133, -0.774596669241485, 0.0, 10.998181667894, 0.962140470884733, 4.76235235991626, -0.740656079818043, 0.130930734141595, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 2.73861278752583, 1.58113883008419, 2.45967477524977, 0.0, 0.0, 9.25820099772552, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, 0.0, 0.0, 3.83405790253616, 0.0, 0.0, 0.0, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.19615242270664, 0.0, -3.16227766016839, -2.2360679774998, 0.0, 0.0, 0.0, 13.7477270848675, 0.534522483824849, 0.377964473009227, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.8, 0.0, 3.65148371670111, -2.84018778721878, 0.0, 0.0, 0.0, 0.0, 12.3442679969674, 1.39659449751035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.20454076850486, 0.0, 0.0, 6.6407830863536, 0.0, 0.0, 0.0, 0.0, 0.0, 8.97997772825746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[20][20] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.9580398915498, 5.61248608016091, -1.08012344973464, -0.763762615825974, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461895, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531985, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973465, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912986, 0.0, 0.0, 8.87411967464943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.74954541697351, 5.79655069847577, -1.67332005306815, -1.18321595661993, 7.74596669241484, -1.2, -0.979795897113272, 0.346410161513776, 0.28284271247462, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.32379000772445, 2.44948974278318, 2.82842712474619, -1.0, 1.30930734141596, 7.09929573971954, -0.414039335605412, -2.04939015319192, -0.478091443733757, 0.169030850945702, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.01246117974981, 2.12132034355965, -0.408248290463863, 3.17542648054294, 9.07114735222146, 0.0, 7.17137165600636, 0.0, -1.38013111868471, -1.56144011671765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.8, 0.632455532033675, 4.38178046004133, -0.774596669241484, 0.0, 3.14233761939829, -0.10690449676497, 4.76235235991626, -0.74065607981804, 0.130930734141596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.55884572681199, 0.547722557505166, 1.58113883008419, 2.45967477524977, 0.0, 9.07114735222145, 1.8516401995451, 0.0, 5.34522483824849, -1.20948631362953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.27279220613579, -6.26099033699941, 0.0, 3.83405790253617, 0.0, 0.0, 10.5830052442584, 0.0, 0.0, 5.18459255872629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.03923048454133, 0.0, 3.16227766016838, -0.447213595499959, 0.0, 0.0, 0.0, 5.89188303637179, -0.534522483824848, 0.0755928946018459, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.900000000000008, 0.0, 1.46059348668044, 1.42009389360939, 0.0, 0.0, 0.0, 9.07114735222145, 4.93770719878694, -0.698297248755175, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.734846922834955, 0.0, -6.26099033699941, 2.21359436211787, 0.0, 0.0, 0.0, 0.0, 10.5830052442584, 2.99332590941915, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.7157676649773, 0.0, 0.0, -4.69574275274956, 0.0, 0.0, 0.0, 0.0, 0.0, 12.69960629311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[27]; + for (unsigned int r = 0; r < 27; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[20][20] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 20; t++) + { + for (unsigned int u = 0; u < 20; u++) + { + for (unsigned int tu = 0; tu < 20; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 20; s++) + { + for (unsigned int t = 0; t < 20; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void poisson3d_3_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 20; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[27]; + for (unsigned int r = 0; r < 27; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 20; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double poisson3d_3_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.666666666666667*vertex_coordinates[6] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.666666666666667*vertex_coordinates[7] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.666666666666667*vertex_coordinates[8] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.333333333333333*vertex_coordinates[6] + 0.666666666666667*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[7] + 0.666666666666667*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[8] + 0.666666666666667*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.666666666666667*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.666666666666667*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[4] + 0.666666666666667*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[5] + 0.666666666666667*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[6]; + y[1] = 0.666666666666667*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[7]; + y[2] = 0.666666666666667*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[6]; + y[1] = 0.333333333333333*vertex_coordinates[4] + 0.666666666666667*vertex_coordinates[7]; + y[2] = 0.333333333333333*vertex_coordinates[5] + 0.666666666666667*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 10: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 11: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 12: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[6]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[7]; + y[2] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 13: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[6]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[7]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 14: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[3]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[4]; + y[2] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 15: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[3]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[4]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 16: + { + y[0] = 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[6] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[7] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[8] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 17: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[6] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[7] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[8] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 18: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 19: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[6]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[7]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void poisson3d_3_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[6] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.666666666666667*vertex_coordinates[7] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.666666666666667*vertex_coordinates[8] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[6] + 0.666666666666667*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[7] + 0.666666666666667*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[8] + 0.666666666666667*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.666666666666667*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.666666666666667*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[4] + 0.666666666666667*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[5] + 0.666666666666667*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[6]; + y[1] = 0.666666666666667*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[7]; + y[2] = 0.666666666666667*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[6]; + y[1] = 0.333333333333333*vertex_coordinates[4] + 0.666666666666667*vertex_coordinates[7]; + y[2] = 0.333333333333333*vertex_coordinates[5] + 0.666666666666667*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[10] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[11] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[6]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[7]; + y[2] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[12] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[6]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[7]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[13] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[3]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[4]; + y[2] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[14] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[3]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[4]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[15] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[6] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[7] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[8] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[16] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[6] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[7] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[8] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[17] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[9]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[10]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[18] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[6]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[7]; + y[2] = 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[19] = vals[0]; +} + +/// Interpolate vertex values from dof values +void poisson3d_3_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void poisson3d_3_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void poisson3d_3_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t poisson3d_3_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* poisson3d_3_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* poisson3d_3_finite_element_0::create() const +{ + return new poisson3d_3_finite_element_0(); +} + +/// Constructor +poisson3d_3_dofmap_0::poisson3d_3_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +poisson3d_3_dofmap_0::~poisson3d_3_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* poisson3d_3_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 3, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool poisson3d_3_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + case 3: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t poisson3d_3_dofmap_0::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t poisson3d_3_dofmap_0::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the global finite element function space +std::size_t poisson3d_3_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0] + 2*num_global_entities[1] + num_global_entities[2]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t poisson3d_3_dofmap_0::local_dimension() const +{ + return 20; +} + +/// Return the number of dofs on each cell facet +std::size_t poisson3d_3_dofmap_0::num_facet_dofs() const +{ + return 10; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t poisson3d_3_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 1; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void poisson3d_3_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + 2*c.entity_indices[1][0]; + dofs[5] = offset + 2*c.entity_indices[1][0] + 1; + dofs[6] = offset + 2*c.entity_indices[1][1]; + dofs[7] = offset + 2*c.entity_indices[1][1] + 1; + dofs[8] = offset + 2*c.entity_indices[1][2]; + dofs[9] = offset + 2*c.entity_indices[1][2] + 1; + dofs[10] = offset + 2*c.entity_indices[1][3]; + dofs[11] = offset + 2*c.entity_indices[1][3] + 1; + dofs[12] = offset + 2*c.entity_indices[1][4]; + dofs[13] = offset + 2*c.entity_indices[1][4] + 1; + dofs[14] = offset + 2*c.entity_indices[1][5]; + dofs[15] = offset + 2*c.entity_indices[1][5] + 1; + offset += 2*num_global_entities[1]; + dofs[16] = offset + c.entity_indices[2][0]; + dofs[17] = offset + c.entity_indices[2][1]; + dofs[18] = offset + c.entity_indices[2][2]; + dofs[19] = offset + c.entity_indices[2][3]; + offset += num_global_entities[2]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void poisson3d_3_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 7; + dofs[7] = 8; + dofs[8] = 9; + dofs[9] = 16; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 10; + dofs[6] = 11; + dofs[7] = 12; + dofs[8] = 13; + dofs[9] = 17; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 10; + dofs[6] = 11; + dofs[7] = 14; + dofs[8] = 15; + dofs[9] = 18; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 8; + dofs[4] = 9; + dofs[5] = 12; + dofs[6] = 13; + dofs[7] = 14; + dofs[8] = 15; + dofs[9] = 19; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void poisson3d_3_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + if (i > 5) + { + throw std::runtime_error("i is larger than number of entities (5)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 4; + dofs[1] = 5; + break; + } + case 1: + { + dofs[0] = 6; + dofs[1] = 7; + break; + } + case 2: + { + dofs[0] = 8; + dofs[1] = 9; + break; + } + case 3: + { + dofs[0] = 10; + dofs[1] = 11; + break; + } + case 4: + { + dofs[0] = 12; + dofs[1] = 13; + break; + } + case 5: + { + dofs[0] = 14; + dofs[1] = 15; + break; + } + } + + break; + } + case 2: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 16; + break; + } + case 1: + { + dofs[0] = 17; + break; + } + case 2: + { + dofs[0] = 18; + break; + } + case 3: + { + dofs[0] = 19; + break; + } + } + + break; + } + case 3: + { + + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void poisson3d_3_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = 0.666666666666667*vertex_coordinates[6] + 0.333333333333333*vertex_coordinates[9]; + dof_coordinates[4][1] = 0.666666666666667*vertex_coordinates[7] + 0.333333333333333*vertex_coordinates[10]; + dof_coordinates[4][2] = 0.666666666666667*vertex_coordinates[8] + 0.333333333333333*vertex_coordinates[11]; + dof_coordinates[5][0] = 0.333333333333333*vertex_coordinates[6] + 0.666666666666667*vertex_coordinates[9]; + dof_coordinates[5][1] = 0.333333333333333*vertex_coordinates[7] + 0.666666666666667*vertex_coordinates[10]; + dof_coordinates[5][2] = 0.333333333333333*vertex_coordinates[8] + 0.666666666666667*vertex_coordinates[11]; + dof_coordinates[6][0] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[9]; + dof_coordinates[6][1] = 0.666666666666667*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[10]; + dof_coordinates[6][2] = 0.666666666666667*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[11]; + dof_coordinates[7][0] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[9]; + dof_coordinates[7][1] = 0.333333333333333*vertex_coordinates[4] + 0.666666666666667*vertex_coordinates[10]; + dof_coordinates[7][2] = 0.333333333333333*vertex_coordinates[5] + 0.666666666666667*vertex_coordinates[11]; + dof_coordinates[8][0] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[6]; + dof_coordinates[8][1] = 0.666666666666667*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[7]; + dof_coordinates[8][2] = 0.666666666666667*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[8]; + dof_coordinates[9][0] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[6]; + dof_coordinates[9][1] = 0.333333333333333*vertex_coordinates[4] + 0.666666666666667*vertex_coordinates[7]; + dof_coordinates[9][2] = 0.333333333333333*vertex_coordinates[5] + 0.666666666666667*vertex_coordinates[8]; + dof_coordinates[10][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[9]; + dof_coordinates[10][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[10]; + dof_coordinates[10][2] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[11]; + dof_coordinates[11][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[9]; + dof_coordinates[11][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[10]; + dof_coordinates[11][2] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[11]; + dof_coordinates[12][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[6]; + dof_coordinates[12][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[7]; + dof_coordinates[12][2] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[8]; + dof_coordinates[13][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[6]; + dof_coordinates[13][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[7]; + dof_coordinates[13][2] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[8]; + dof_coordinates[14][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[14][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[14][2] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[15][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[15][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[15][2] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[16][0] = 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[6] + 0.333333333333333*vertex_coordinates[9]; + dof_coordinates[16][1] = 0.333333333333333*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[7] + 0.333333333333333*vertex_coordinates[10]; + dof_coordinates[16][2] = 0.333333333333333*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[8] + 0.333333333333333*vertex_coordinates[11]; + dof_coordinates[17][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[6] + 0.333333333333333*vertex_coordinates[9]; + dof_coordinates[17][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[7] + 0.333333333333333*vertex_coordinates[10]; + dof_coordinates[17][2] = 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[8] + 0.333333333333333*vertex_coordinates[11]; + dof_coordinates[18][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[9]; + dof_coordinates[18][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[10]; + dof_coordinates[18][2] = 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[11]; + dof_coordinates[19][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[6]; + dof_coordinates[19][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[4] + 0.333333333333333*vertex_coordinates[7]; + dof_coordinates[19][2] = 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[5] + 0.333333333333333*vertex_coordinates[8]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t poisson3d_3_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* poisson3d_3_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* poisson3d_3_dofmap_0::create() const +{ + return new poisson3d_3_dofmap_0(); +} + +/// Constructor +poisson3d_3_cell_integral_0_otherwise::poisson3d_3_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson3d_3_cell_integral_0_otherwise::~poisson3d_3_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson3d_3_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson3d_3_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 27 + // Number of operations (multiply-add pairs) for tensor contraction: 1768 + // Total number of operations (multiply-add pairs): 1798 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + const double G0_0_1 = det*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + const double G0_0_2 = det*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + const double G0_1_0 = det*(K[3]*K[0] + K[4]*K[1] + K[5]*K[2]); + const double G0_1_1 = det*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + const double G0_1_2 = det*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + const double G0_2_0 = det*(K[6]*K[0] + K[7]*K[1] + K[8]*K[2]); + const double G0_2_1 = det*(K[6]*K[3] + K[7]*K[4] + K[8]*K[5]); + const double G0_2_2 = det*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + + // Compute element tensor + A[0] = 0.0595238095238095*G0_0_0 + 0.0595238095238095*G0_0_1 + 0.0595238095238095*G0_0_2 + 0.0595238095238095*G0_1_0 + 0.0595238095238095*G0_1_1 + 0.0595238095238095*G0_1_2 + 0.0595238095238095*G0_2_0 + 0.0595238095238095*G0_2_1 + 0.0595238095238095*G0_2_2; + A[1] = -0.0113095238095238*G0_0_0 - 0.0113095238095238*G0_1_0 - 0.0113095238095238*G0_2_0; + A[2] = -0.0113095238095238*G0_0_1 - 0.0113095238095238*G0_1_1 - 0.0113095238095238*G0_2_1; + A[3] = -0.0113095238095238*G0_0_2 - 0.0113095238095238*G0_1_2 - 0.0113095238095238*G0_2_2; + A[4] = -0.0133928571428571*G0_0_1 - 0.0133928571428572*G0_0_2 - 0.0133928571428571*G0_1_1 - 0.0133928571428571*G0_1_2 - 0.0133928571428571*G0_2_1 - 0.0133928571428572*G0_2_2; + A[5] = -0.0133928571428572*G0_0_1 - 0.0133928571428572*G0_0_2 - 0.0133928571428572*G0_1_1 - 0.0133928571428572*G0_1_2 - 0.0133928571428572*G0_2_1 - 0.0133928571428572*G0_2_2; + A[6] = -0.0133928571428572*G0_0_0 - 0.0133928571428571*G0_0_2 - 0.0133928571428572*G0_1_0 - 0.0133928571428571*G0_1_2 - 0.0133928571428572*G0_2_0 - 0.0133928571428571*G0_2_2; + A[7] = -0.0133928571428572*G0_0_0 - 0.0133928571428572*G0_0_2 - 0.0133928571428572*G0_1_0 - 0.0133928571428573*G0_1_2 - 0.0133928571428572*G0_2_0 - 0.0133928571428572*G0_2_2; + A[8] = -0.0133928571428571*G0_0_0 - 0.0133928571428571*G0_0_1 - 0.0133928571428571*G0_1_0 - 0.0133928571428571*G0_1_1 - 0.0133928571428571*G0_2_0 - 0.0133928571428571*G0_2_1; + A[9] = -0.0133928571428572*G0_0_0 - 0.0133928571428572*G0_0_1 - 0.0133928571428571*G0_1_0 - 0.0133928571428571*G0_1_1 - 0.0133928571428571*G0_2_0 - 0.0133928571428572*G0_2_1; + A[10] = -0.0348214285714286*G0_0_0 - 0.0348214285714286*G0_0_1 - 0.0964285714285714*G0_0_2 - 0.0348214285714285*G0_1_0 - 0.0348214285714285*G0_1_1 - 0.0964285714285714*G0_1_2 - 0.0348214285714286*G0_2_0 - 0.0348214285714286*G0_2_1 - 0.0964285714285714*G0_2_2; + A[11] = 0.0133928571428572*G0_0_0 + 0.0133928571428572*G0_0_1 + 0.0482142857142857*G0_0_2 + 0.0133928571428572*G0_1_0 + 0.0133928571428572*G0_1_1 + 0.0482142857142857*G0_1_2 + 0.0133928571428572*G0_2_0 + 0.0133928571428572*G0_2_1 + 0.0482142857142857*G0_2_2; + A[12] = -0.0348214285714286*G0_0_0 - 0.0964285714285715*G0_0_1 - 0.0348214285714286*G0_0_2 - 0.0348214285714285*G0_1_0 - 0.0964285714285715*G0_1_1 - 0.0348214285714285*G0_1_2 - 0.0348214285714286*G0_2_0 - 0.0964285714285714*G0_2_1 - 0.0348214285714286*G0_2_2; + A[13] = 0.0133928571428572*G0_0_0 + 0.0482142857142857*G0_0_1 + 0.0133928571428572*G0_0_2 + 0.0133928571428571*G0_1_0 + 0.0482142857142858*G0_1_1 + 0.0133928571428571*G0_1_2 + 0.0133928571428571*G0_2_0 + 0.0482142857142857*G0_2_1 + 0.0133928571428571*G0_2_2; + A[14] = -0.0964285714285714*G0_0_0 - 0.0348214285714285*G0_0_1 - 0.0348214285714286*G0_0_2 - 0.0964285714285714*G0_1_0 - 0.0348214285714285*G0_1_1 - 0.0348214285714285*G0_1_2 - 0.0964285714285714*G0_2_0 - 0.0348214285714286*G0_2_1 - 0.0348214285714286*G0_2_2; + A[15] = 0.0482142857142857*G0_0_0 + 0.0133928571428571*G0_0_1 + 0.0133928571428571*G0_0_2 + 0.0482142857142857*G0_1_0 + 0.0133928571428571*G0_1_1 + 0.0133928571428571*G0_1_2 + 0.0482142857142857*G0_2_0 + 0.0133928571428571*G0_2_1 + 0.0133928571428571*G0_2_2; + A[16] = -0.0321428571428573*G0_0_0 - 0.0321428571428573*G0_0_1 - 0.0321428571428572*G0_0_2 - 0.0321428571428572*G0_1_0 - 0.0321428571428573*G0_1_1 - 0.0321428571428572*G0_1_2 - 0.0321428571428572*G0_2_0 - 0.0321428571428573*G0_2_1 - 0.0321428571428572*G0_2_2; + A[17] = 0.0321428571428573*G0_0_0 + 0.0482142857142857*G0_0_1 + 0.0482142857142857*G0_0_2 + 0.0321428571428572*G0_1_0 + 0.0482142857142856*G0_1_1 + 0.0482142857142857*G0_1_2 + 0.0321428571428572*G0_2_0 + 0.0482142857142857*G0_2_1 + 0.0482142857142857*G0_2_2; + A[18] = 0.0482142857142857*G0_0_0 + 0.0321428571428573*G0_0_1 + 0.0482142857142858*G0_0_2 + 0.0482142857142857*G0_1_0 + 0.0321428571428573*G0_1_1 + 0.0482142857142858*G0_1_2 + 0.0482142857142857*G0_2_0 + 0.0321428571428573*G0_2_1 + 0.0482142857142859*G0_2_2; + A[19] = 0.0482142857142856*G0_0_0 + 0.0482142857142857*G0_0_1 + 0.0321428571428572*G0_0_2 + 0.0482142857142856*G0_1_0 + 0.0482142857142856*G0_1_1 + 0.0321428571428572*G0_1_2 + 0.0482142857142857*G0_2_0 + 0.0482142857142858*G0_2_1 + 0.0321428571428572*G0_2_2; + A[20] = -0.0113095238095238*G0_0_0 - 0.0113095238095238*G0_0_1 - 0.0113095238095238*G0_0_2; + A[21] = 0.0595238095238095*G0_0_0; + A[22] = 0.0113095238095238*G0_0_1; + A[23] = 0.0113095238095238*G0_0_2; + A[24] = 0.0133928571428571*G0_0_1 + 0.0133928571428571*G0_0_2; + A[25] = 0.0133928571428571*G0_0_1 + 0.0133928571428572*G0_0_2; + A[26] = -0.0348214285714285*G0_0_0 + 0.0616071428571429*G0_0_2; + A[27] = 0.0133928571428571*G0_0_0 - 0.0348214285714286*G0_0_2; + A[28] = -0.0348214285714284*G0_0_0 + 0.0616071428571429*G0_0_1; + A[29] = 0.0133928571428571*G0_0_0 - 0.0348214285714286*G0_0_1; + A[30] = -0.0133928571428572*G0_0_0 - 0.0133928571428572*G0_0_1; + A[31] = -0.0133928571428572*G0_0_0 - 0.0133928571428572*G0_0_1; + A[32] = -0.0133928571428571*G0_0_0 - 0.0133928571428572*G0_0_2; + A[33] = -0.0133928571428571*G0_0_0 - 0.0133928571428571*G0_0_2; + A[34] = 0.0482142857142857*G0_0_0 + 0.0348214285714286*G0_0_1 + 0.0348214285714286*G0_0_2; + A[35] = -0.0964285714285714*G0_0_0 - 0.0616071428571429*G0_0_1 - 0.0616071428571429*G0_0_2; + A[36] = 0.0321428571428572*G0_0_0 - 0.0160714285714284*G0_0_1 - 0.0160714285714284*G0_0_2; + A[37] = -0.0321428571428572*G0_0_0; + A[38] = 0.0482142857142857*G0_0_0 + 0.0160714285714284*G0_0_1; + A[39] = 0.0482142857142856*G0_0_0 + 0.0160714285714284*G0_0_2; + A[40] = -0.0113095238095238*G0_1_0 - 0.0113095238095238*G0_1_1 - 0.0113095238095238*G0_1_2; + A[41] = 0.0113095238095238*G0_1_0; + A[42] = 0.0595238095238095*G0_1_1; + A[43] = 0.0113095238095238*G0_1_2; + A[44] = -0.0348214285714285*G0_1_1 + 0.0616071428571429*G0_1_2; + A[45] = 0.0133928571428571*G0_1_1 - 0.0348214285714286*G0_1_2; + A[46] = 0.0133928571428571*G0_1_0 + 0.0133928571428571*G0_1_2; + A[47] = 0.0133928571428571*G0_1_0 + 0.0133928571428571*G0_1_2; + A[48] = -0.0348214285714286*G0_1_0 + 0.0133928571428571*G0_1_1; + A[49] = 0.0616071428571428*G0_1_0 - 0.0348214285714285*G0_1_1; + A[50] = -0.0133928571428571*G0_1_0 - 0.0133928571428571*G0_1_1; + A[51] = -0.0133928571428571*G0_1_0 - 0.0133928571428571*G0_1_1; + A[52] = 0.0348214285714286*G0_1_0 + 0.0482142857142858*G0_1_1 + 0.0348214285714286*G0_1_2; + A[53] = -0.0616071428571428*G0_1_0 - 0.0964285714285714*G0_1_1 - 0.0616071428571428*G0_1_2; + A[54] = -0.0133928571428571*G0_1_1 - 0.0133928571428571*G0_1_2; + A[55] = -0.0133928571428571*G0_1_1 - 0.0133928571428571*G0_1_2; + A[56] = -0.0160714285714287*G0_1_0 + 0.032142857142857*G0_1_1 - 0.0160714285714286*G0_1_2; + A[57] = 0.0160714285714287*G0_1_0 + 0.0482142857142857*G0_1_1; + A[58] = -0.0321428571428571*G0_1_1; + A[59] = 0.0482142857142856*G0_1_1 + 0.0160714285714286*G0_1_2; + A[60] = -0.0113095238095238*G0_2_0 - 0.0113095238095238*G0_2_1 - 0.0113095238095238*G0_2_2; + A[61] = 0.0113095238095238*G0_2_0; + A[62] = 0.0113095238095238*G0_2_1; + A[63] = 0.0595238095238096*G0_2_2; + A[64] = -0.0348214285714286*G0_2_1 + 0.0133928571428572*G0_2_2; + A[65] = 0.0616071428571429*G0_2_1 - 0.0348214285714285*G0_2_2; + A[66] = -0.0348214285714286*G0_2_0 + 0.0133928571428571*G0_2_2; + A[67] = 0.0616071428571429*G0_2_0 - 0.0348214285714285*G0_2_2; + A[68] = 0.0133928571428571*G0_2_0 + 0.0133928571428571*G0_2_1; + A[69] = 0.0133928571428572*G0_2_0 + 0.0133928571428571*G0_2_1; + A[70] = 0.0348214285714286*G0_2_0 + 0.0348214285714286*G0_2_1 + 0.0482142857142858*G0_2_2; + A[71] = -0.0616071428571429*G0_2_0 - 0.0616071428571429*G0_2_1 - 0.0964285714285715*G0_2_2; + A[72] = -0.0133928571428571*G0_2_0 - 0.0133928571428572*G0_2_2; + A[73] = -0.0133928571428572*G0_2_0 - 0.0133928571428572*G0_2_2; + A[74] = -0.0133928571428571*G0_2_1 - 0.0133928571428572*G0_2_2; + A[75] = -0.0133928571428571*G0_2_1 - 0.0133928571428571*G0_2_2; + A[76] = -0.0160714285714285*G0_2_0 - 0.0160714285714285*G0_2_1 + 0.0321428571428571*G0_2_2; + A[77] = 0.0160714285714286*G0_2_0 + 0.0482142857142857*G0_2_2; + A[78] = 0.0160714285714285*G0_2_1 + 0.0482142857142857*G0_2_2; + A[79] = -0.0321428571428571*G0_2_2; + A[80] = -0.0133928571428571*G0_1_0 - 0.0133928571428571*G0_1_1 - 0.0133928571428571*G0_1_2 - 0.0133928571428572*G0_2_0 - 0.0133928571428571*G0_2_1 - 0.0133928571428572*G0_2_2; + A[81] = 0.0133928571428571*G0_1_0 + 0.0133928571428571*G0_2_0; + A[82] = -0.0348214285714285*G0_1_1 + 0.0616071428571429*G0_2_1; + A[83] = -0.0348214285714286*G0_1_2 + 0.0133928571428572*G0_2_2; + A[84] = 0.241071428571428*G0_1_1 + 0.0964285714285714*G0_1_2 + 0.0964285714285714*G0_2_1 + 0.192857142857143*G0_2_2; + A[85] = -0.0723214285714286*G0_1_1 + 0.0723214285714285*G0_1_2 - 0.0241071428571429*G0_2_1 - 0.0723214285714286*G0_2_2; + A[86] = -0.0482142857142856*G0_1_0 - 0.0241071428571427*G0_1_2 - 0.0241071428571428*G0_2_0 - 0.0241071428571428*G0_2_2; + A[87] = -0.0723214285714285*G0_1_0 - 0.0482142857142856*G0_1_2 - 0.0241071428571429*G0_2_0 - 0.0241071428571429*G0_2_2; + A[88] = -0.0482142857142855*G0_1_0 - 0.0241071428571428*G0_1_1 - 0.0723214285714285*G0_2_0 - 0.0241071428571429*G0_2_1; + A[89] = 0.0964285714285715*G0_1_0 + 0.120535714285714*G0_1_1 + 0.192857142857143*G0_2_0 + 0.0964285714285715*G0_2_1; + A[90] = 0.0482142857142857*G0_1_0 + 0.0482142857142857*G0_1_1 + 0.0241071428571428*G0_1_2 + 0.0241071428571428*G0_2_0 + 0.0241071428571429*G0_2_1; + A[91] = 0.0723214285714286*G0_1_0 + 0.0723214285714286*G0_1_1 + 0.0241071428571429*G0_1_2 + 0.0241071428571429*G0_2_0 + 0.0241071428571429*G0_2_1; + A[92] = 0.0482142857142858*G0_1_0 + 0.0241071428571427*G0_1_1 + 0.0482142857142857*G0_1_2 + 0.0723214285714287*G0_2_0 + 0.0482142857142858*G0_2_1 + 0.0723214285714286*G0_2_2; + A[93] = -0.0964285714285714*G0_1_0 + 0.024107142857143*G0_1_1 - 0.0964285714285715*G0_1_2 - 0.192857142857143*G0_2_0 - 0.0964285714285714*G0_2_1 - 0.192857142857143*G0_2_2; + A[94] = 0.024107142857143*G0_1_1 + 0.024107142857143*G0_1_2 + 0.0241071428571428*G0_2_1 + 0.0241071428571428*G0_2_2; + A[95] = 0.0241071428571428*G0_1_1 + 0.0241071428571428*G0_1_2 + 0.0241071428571428*G0_2_1 + 0.0241071428571429*G0_2_2; + A[96] = 0.241071428571429*G0_1_0 - 0.0482142857142855*G0_1_1 + 0.120535714285714*G0_1_2 + 0.0964285714285713*G0_2_0 - 0.0241071428571429*G0_2_1 + 0.0964285714285715*G0_2_2; + A[97] = -0.241071428571429*G0_1_0 - 0.289285714285714*G0_1_1 - 0.120535714285714*G0_1_2 - 0.0964285714285713*G0_2_0 - 0.120535714285714*G0_2_1; + A[98] = 0.0482142857142855*G0_1_1 + 0.0241071428571426*G0_1_2 + 0.0241071428571429*G0_2_1; + A[99] = -0.144642857142857*G0_1_1 - 0.120535714285714*G0_1_2 - 0.120535714285714*G0_2_1 - 0.0964285714285715*G0_2_2; + A[100] = -0.0133928571428572*G0_1_0 - 0.0133928571428572*G0_1_1 - 0.0133928571428572*G0_1_2 - 0.0133928571428572*G0_2_0 - 0.0133928571428572*G0_2_1 - 0.0133928571428572*G0_2_2; + A[101] = 0.0133928571428571*G0_1_0 + 0.0133928571428572*G0_2_0; + A[102] = 0.0133928571428571*G0_1_1 - 0.0348214285714286*G0_2_1; + A[103] = 0.0616071428571429*G0_1_2 - 0.0348214285714285*G0_2_2; + A[104] = -0.0723214285714286*G0_1_1 - 0.0241071428571429*G0_1_2 + 0.0723214285714285*G0_2_1 - 0.0723214285714286*G0_2_2; + A[105] = 0.192857142857143*G0_1_1 + 0.0964285714285715*G0_1_2 + 0.0964285714285715*G0_2_1 + 0.241071428571429*G0_2_2; + A[106] = -0.0723214285714285*G0_1_0 - 0.0241071428571429*G0_1_2 - 0.0482142857142856*G0_2_0 - 0.0241071428571428*G0_2_2; + A[107] = 0.192857142857143*G0_1_0 + 0.0964285714285714*G0_1_2 + 0.0964285714285715*G0_2_0 + 0.120535714285714*G0_2_2; + A[108] = -0.0241071428571428*G0_1_0 - 0.0241071428571428*G0_1_1 - 0.0482142857142856*G0_2_0 - 0.0241071428571428*G0_2_1; + A[109] = -0.0241071428571429*G0_1_0 - 0.0241071428571429*G0_1_1 - 0.0723214285714286*G0_2_0 - 0.0482142857142857*G0_2_1; + A[110] = 0.0723214285714288*G0_1_0 + 0.0723214285714288*G0_1_1 + 0.0482142857142859*G0_1_2 + 0.0482142857142859*G0_2_0 + 0.0482142857142858*G0_2_1 + 0.0241071428571429*G0_2_2; + A[111] = -0.192857142857143*G0_1_0 - 0.192857142857143*G0_1_1 - 0.0964285714285715*G0_1_2 - 0.0964285714285716*G0_2_0 - 0.0964285714285715*G0_2_1 + 0.0241071428571428*G0_2_2; + A[112] = 0.024107142857143*G0_1_0 + 0.0241071428571429*G0_1_2 + 0.0482142857142857*G0_2_0 + 0.0241071428571428*G0_2_1 + 0.0482142857142857*G0_2_2; + A[113] = 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_2 + 0.0723214285714286*G0_2_0 + 0.024107142857143*G0_2_1 + 0.0723214285714286*G0_2_2; + A[114] = 0.0241071428571429*G0_1_1 + 0.0241071428571429*G0_1_2 + 0.024107142857143*G0_2_1 + 0.024107142857143*G0_2_2; + A[115] = 0.0241071428571428*G0_1_1 + 0.0241071428571428*G0_1_2 + 0.0241071428571428*G0_2_1 + 0.0241071428571428*G0_2_2; + A[116] = 0.0964285714285714*G0_1_0 + 0.0964285714285715*G0_1_1 - 0.024107142857143*G0_1_2 + 0.241071428571429*G0_2_0 + 0.120535714285715*G0_2_1 - 0.0482142857142857*G0_2_2; + A[117] = -0.0964285714285714*G0_1_0 - 0.120535714285714*G0_1_2 - 0.241071428571429*G0_2_0 - 0.120535714285714*G0_2_1 - 0.289285714285714*G0_2_2; + A[118] = -0.0964285714285715*G0_1_1 - 0.120535714285714*G0_1_2 - 0.120535714285715*G0_2_1 - 0.144642857142857*G0_2_2; + A[119] = 0.0241071428571429*G0_1_2 + 0.0241071428571427*G0_2_1 + 0.0482142857142856*G0_2_2; + A[120] = -0.0133928571428572*G0_0_0 - 0.0133928571428572*G0_0_1 - 0.0133928571428572*G0_0_2 - 0.0133928571428571*G0_2_0 - 0.0133928571428571*G0_2_1 - 0.0133928571428571*G0_2_2; + A[121] = -0.0348214285714285*G0_0_0 + 0.0616071428571429*G0_2_0; + A[122] = 0.0133928571428571*G0_0_1 + 0.0133928571428571*G0_2_1; + A[123] = -0.0348214285714286*G0_0_2 + 0.0133928571428571*G0_2_2; + A[124] = -0.0482142857142855*G0_0_1 - 0.0241071428571428*G0_0_2 - 0.0241071428571427*G0_2_1 - 0.0241071428571428*G0_2_2; + A[125] = -0.0723214285714285*G0_0_1 - 0.0482142857142856*G0_0_2 - 0.0241071428571428*G0_2_1 - 0.0241071428571428*G0_2_2; + A[126] = 0.241071428571428*G0_0_0 + 0.0964285714285713*G0_0_2 + 0.0964285714285713*G0_2_0 + 0.192857142857143*G0_2_2; + A[127] = -0.0723214285714285*G0_0_0 + 0.0723214285714286*G0_0_2 - 0.0241071428571429*G0_2_0 - 0.0723214285714285*G0_2_2; + A[128] = 0.120535714285714*G0_0_0 + 0.0964285714285713*G0_0_1 + 0.0964285714285712*G0_2_0 + 0.192857142857143*G0_2_1; + A[129] = -0.0241071428571428*G0_0_0 - 0.0482142857142857*G0_0_1 - 0.0241071428571428*G0_2_0 - 0.0723214285714285*G0_2_1; + A[130] = 0.0482142857142857*G0_0_0 + 0.0482142857142857*G0_0_1 + 0.0241071428571429*G0_0_2 + 0.0241071428571428*G0_2_0 + 0.0241071428571427*G0_2_1; + A[131] = 0.0723214285714286*G0_0_0 + 0.0723214285714286*G0_0_1 + 0.0241071428571429*G0_0_2 + 0.0241071428571429*G0_2_0 + 0.0241071428571429*G0_2_1; + A[132] = 0.0241071428571429*G0_0_0 + 0.0241071428571429*G0_0_2 + 0.0241071428571427*G0_2_0 + 0.0241071428571428*G0_2_2; + A[133] = 0.0241071428571428*G0_0_0 + 0.0241071428571428*G0_0_2 + 0.0241071428571428*G0_2_0 + 0.0241071428571428*G0_2_2; + A[134] = 0.0241071428571429*G0_0_0 + 0.0482142857142857*G0_0_1 + 0.0482142857142857*G0_0_2 + 0.0482142857142858*G0_2_0 + 0.0723214285714286*G0_2_1 + 0.0723214285714286*G0_2_2; + A[135] = 0.0241071428571428*G0_0_0 - 0.0964285714285712*G0_0_1 - 0.0964285714285712*G0_0_2 - 0.0964285714285716*G0_2_0 - 0.192857142857143*G0_2_1 - 0.192857142857143*G0_2_2; + A[136] = -0.0482142857142857*G0_0_0 + 0.241071428571428*G0_0_1 + 0.120535714285714*G0_0_2 - 0.0241071428571427*G0_2_0 + 0.0964285714285714*G0_2_1 + 0.0964285714285714*G0_2_2; + A[137] = 0.0482142857142857*G0_0_0 + 0.0241071428571426*G0_0_2 + 0.0241071428571427*G0_2_0; + A[138] = -0.289285714285714*G0_0_0 - 0.241071428571428*G0_0_1 - 0.120535714285714*G0_0_2 - 0.120535714285714*G0_2_0 - 0.0964285714285714*G0_2_1; + A[139] = -0.144642857142857*G0_0_0 - 0.120535714285714*G0_0_2 - 0.120535714285714*G0_2_0 - 0.0964285714285713*G0_2_2; + A[140] = -0.0133928571428572*G0_0_0 - 0.0133928571428572*G0_0_1 - 0.0133928571428572*G0_0_2 - 0.0133928571428572*G0_2_0 - 0.0133928571428573*G0_2_1 - 0.0133928571428572*G0_2_2; + A[141] = 0.0133928571428571*G0_0_0 - 0.0348214285714286*G0_2_0; + A[142] = 0.0133928571428571*G0_0_1 + 0.0133928571428571*G0_2_1; + A[143] = 0.0616071428571429*G0_0_2 - 0.0348214285714285*G0_2_2; + A[144] = -0.0723214285714285*G0_0_1 - 0.0241071428571429*G0_0_2 - 0.0482142857142856*G0_2_1 - 0.0241071428571429*G0_2_2; + A[145] = 0.192857142857143*G0_0_1 + 0.0964285714285715*G0_0_2 + 0.0964285714285714*G0_2_1 + 0.120535714285714*G0_2_2; + A[146] = -0.0723214285714285*G0_0_0 - 0.0241071428571429*G0_0_2 + 0.0723214285714286*G0_2_0 - 0.0723214285714285*G0_2_2; + A[147] = 0.192857142857143*G0_0_0 + 0.0964285714285714*G0_0_2 + 0.0964285714285714*G0_2_0 + 0.241071428571429*G0_2_2; + A[148] = -0.0241071428571429*G0_0_0 - 0.0241071428571429*G0_0_1 - 0.0482142857142856*G0_2_0 - 0.0723214285714285*G0_2_1; + A[149] = -0.0241071428571429*G0_0_0 - 0.0241071428571429*G0_0_1 - 0.024107142857143*G0_2_0 - 0.0482142857142857*G0_2_1; + A[150] = 0.0723214285714289*G0_0_0 + 0.0723214285714288*G0_0_1 + 0.0482142857142859*G0_0_2 + 0.048214285714286*G0_2_0 + 0.048214285714286*G0_2_1 + 0.0241071428571431*G0_2_2; + A[151] = -0.192857142857143*G0_0_0 - 0.192857142857143*G0_0_1 - 0.0964285714285716*G0_0_2 - 0.0964285714285715*G0_2_0 - 0.0964285714285714*G0_2_1 + 0.0241071428571427*G0_2_2; + A[152] = 0.024107142857143*G0_0_0 + 0.024107142857143*G0_0_2 + 0.024107142857143*G0_2_0 + 0.0241071428571431*G0_2_2; + A[153] = 0.0241071428571428*G0_0_0 + 0.0241071428571428*G0_0_2 + 0.0241071428571429*G0_2_0 + 0.0241071428571429*G0_2_2; + A[154] = 0.0241071428571429*G0_0_1 + 0.0241071428571429*G0_0_2 + 0.0241071428571428*G0_2_0 + 0.0482142857142857*G0_2_1 + 0.0482142857142857*G0_2_2; + A[155] = 0.0241071428571429*G0_0_1 + 0.0241071428571429*G0_0_2 + 0.024107142857143*G0_2_0 + 0.0723214285714286*G0_2_1 + 0.0723214285714286*G0_2_2; + A[156] = 0.0964285714285714*G0_0_0 + 0.0964285714285714*G0_0_1 - 0.024107142857143*G0_0_2 + 0.120535714285714*G0_2_0 + 0.241071428571428*G0_2_1 - 0.0482142857142858*G0_2_2; + A[157] = -0.0964285714285714*G0_0_0 - 0.120535714285714*G0_0_2 - 0.120535714285714*G0_2_0 - 0.144642857142857*G0_2_2; + A[158] = -0.0964285714285714*G0_0_1 - 0.120535714285714*G0_0_2 - 0.120535714285714*G0_2_0 - 0.241071428571429*G0_2_1 - 0.289285714285714*G0_2_2; + A[159] = 0.024107142857143*G0_0_2 + 0.0241071428571425*G0_2_0 + 0.0482142857142857*G0_2_2; + A[160] = -0.0133928571428571*G0_0_0 - 0.0133928571428571*G0_0_1 - 0.0133928571428571*G0_0_2 - 0.0133928571428571*G0_1_0 - 0.0133928571428571*G0_1_1 - 0.0133928571428571*G0_1_2; + A[161] = -0.0348214285714284*G0_0_0 + 0.0616071428571429*G0_1_0; + A[162] = -0.0348214285714285*G0_0_1 + 0.0133928571428571*G0_1_1; + A[163] = 0.0133928571428571*G0_0_2 + 0.0133928571428571*G0_1_2; + A[164] = -0.0482142857142855*G0_0_1 - 0.0723214285714285*G0_0_2 - 0.0241071428571428*G0_1_1 - 0.0241071428571429*G0_1_2; + A[165] = -0.0241071428571428*G0_0_1 - 0.0482142857142856*G0_0_2 - 0.0241071428571428*G0_1_1 - 0.0241071428571428*G0_1_2; + A[166] = 0.120535714285714*G0_0_0 + 0.0964285714285712*G0_0_2 + 0.0964285714285713*G0_1_0 + 0.192857142857143*G0_1_2; + A[167] = -0.0241071428571429*G0_0_0 - 0.0482142857142856*G0_0_2 - 0.0241071428571429*G0_1_0 - 0.0723214285714285*G0_1_2; + A[168] = 0.241071428571428*G0_0_0 + 0.0964285714285713*G0_0_1 + 0.0964285714285713*G0_1_0 + 0.192857142857143*G0_1_1; + A[169] = -0.0723214285714285*G0_0_0 + 0.0723214285714283*G0_0_1 - 0.0241071428571429*G0_1_0 - 0.0723214285714287*G0_1_1; + A[170] = 0.0241071428571429*G0_0_0 + 0.0241071428571429*G0_0_1 + 0.0241071428571428*G0_1_0 + 0.0241071428571428*G0_1_1; + A[171] = 0.0241071428571429*G0_0_0 + 0.0241071428571429*G0_0_1 + 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_1; + A[172] = 0.0482142857142855*G0_0_0 + 0.0241071428571428*G0_0_1 + 0.0482142857142856*G0_0_2 + 0.0241071428571428*G0_1_0 + 0.0241071428571428*G0_1_2; + A[173] = 0.0723214285714285*G0_0_0 + 0.024107142857143*G0_0_1 + 0.0723214285714285*G0_0_2 + 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_2; + A[174] = 0.0241071428571428*G0_0_0 + 0.0482142857142856*G0_0_1 + 0.0482142857142856*G0_0_2 + 0.0482142857142858*G0_1_0 + 0.0723214285714286*G0_1_1 + 0.0723214285714286*G0_1_2; + A[175] = 0.0241071428571427*G0_0_0 - 0.0964285714285712*G0_0_1 - 0.0964285714285712*G0_0_2 - 0.0964285714285716*G0_1_0 - 0.192857142857143*G0_1_1 - 0.192857142857143*G0_1_2; + A[176] = -0.0482142857142857*G0_0_0 + 0.120535714285714*G0_0_1 + 0.241071428571428*G0_0_2 - 0.0241071428571428*G0_1_0 + 0.0964285714285714*G0_1_1 + 0.0964285714285713*G0_1_2; + A[177] = 0.0482142857142857*G0_0_0 + 0.0241071428571427*G0_0_1 + 0.0241071428571428*G0_1_0; + A[178] = -0.144642857142857*G0_0_0 - 0.120535714285714*G0_0_1 - 0.120535714285714*G0_1_0 - 0.0964285714285715*G0_1_1; + A[179] = -0.289285714285713*G0_0_0 - 0.120535714285714*G0_0_1 - 0.241071428571428*G0_0_2 - 0.120535714285714*G0_1_0 - 0.0964285714285713*G0_1_2; + A[180] = -0.0133928571428572*G0_0_0 - 0.0133928571428571*G0_0_1 - 0.0133928571428571*G0_0_2 - 0.0133928571428572*G0_1_0 - 0.0133928571428571*G0_1_1 - 0.0133928571428572*G0_1_2; + A[181] = 0.0133928571428571*G0_0_0 - 0.0348214285714286*G0_1_0; + A[182] = 0.0616071428571428*G0_0_1 - 0.0348214285714285*G0_1_1; + A[183] = 0.0133928571428572*G0_0_2 + 0.0133928571428571*G0_1_2; + A[184] = 0.0964285714285715*G0_0_1 + 0.192857142857143*G0_0_2 + 0.120535714285714*G0_1_1 + 0.0964285714285715*G0_1_2; + A[185] = -0.0241071428571429*G0_0_1 - 0.0723214285714286*G0_0_2 - 0.0241071428571429*G0_1_1 - 0.0482142857142857*G0_1_2; + A[186] = -0.0241071428571428*G0_0_0 - 0.0241071428571428*G0_0_2 - 0.0482142857142857*G0_1_0 - 0.0723214285714285*G0_1_2; + A[187] = -0.0241071428571429*G0_0_0 - 0.024107142857143*G0_0_2 - 0.0241071428571429*G0_1_0 - 0.0482142857142857*G0_1_2; + A[188] = -0.0723214285714285*G0_0_0 - 0.0241071428571429*G0_0_1 + 0.0723214285714283*G0_1_0 - 0.0723214285714287*G0_1_1; + A[189] = 0.192857142857143*G0_0_0 + 0.0964285714285715*G0_0_1 + 0.0964285714285715*G0_1_0 + 0.241071428571428*G0_1_1; + A[190] = 0.0241071428571429*G0_0_0 + 0.0241071428571429*G0_0_1 + 0.024107142857143*G0_1_0 + 0.024107142857143*G0_1_1; + A[191] = 0.0241071428571429*G0_0_0 + 0.0241071428571429*G0_0_1 + 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_1; + A[192] = 0.0723214285714288*G0_0_0 + 0.0482142857142858*G0_0_1 + 0.0723214285714287*G0_0_2 + 0.0482142857142859*G0_1_0 + 0.0241071428571428*G0_1_1 + 0.0482142857142858*G0_1_2; + A[193] = -0.192857142857143*G0_0_0 - 0.0964285714285714*G0_0_1 - 0.192857142857143*G0_0_2 - 0.0964285714285715*G0_1_0 + 0.0241071428571429*G0_1_1 - 0.0964285714285715*G0_1_2; + A[194] = 0.0241071428571429*G0_0_1 + 0.0241071428571429*G0_0_2 + 0.0241071428571428*G0_1_0 + 0.0482142857142857*G0_1_1 + 0.0482142857142856*G0_1_2; + A[195] = 0.0241071428571428*G0_0_1 + 0.0241071428571429*G0_0_2 + 0.0241071428571429*G0_1_0 + 0.0723214285714286*G0_1_1 + 0.0723214285714287*G0_1_2; + A[196] = 0.0964285714285713*G0_0_0 - 0.0241071428571429*G0_0_1 + 0.0964285714285715*G0_0_2 + 0.120535714285714*G0_1_0 - 0.0482142857142859*G0_1_1 + 0.241071428571428*G0_1_2; + A[197] = -0.0964285714285713*G0_0_0 - 0.120535714285714*G0_0_1 - 0.120535714285714*G0_1_0 - 0.144642857142857*G0_1_1; + A[198] = 0.0241071428571429*G0_0_1 + 0.0241071428571427*G0_1_0 + 0.0482142857142859*G0_1_1; + A[199] = -0.120535714285714*G0_0_1 - 0.0964285714285715*G0_0_2 - 0.120535714285714*G0_1_0 - 0.289285714285714*G0_1_1 - 0.241071428571428*G0_1_2; + A[200] = -0.0348214285714286*G0_0_0 - 0.0348214285714285*G0_0_1 - 0.0348214285714286*G0_0_2 - 0.0348214285714286*G0_1_0 - 0.0348214285714285*G0_1_1 - 0.0348214285714286*G0_1_2 - 0.0964285714285714*G0_2_0 - 0.0964285714285714*G0_2_1 - 0.0964285714285714*G0_2_2; + A[201] = -0.0133928571428572*G0_0_0 - 0.0133928571428572*G0_1_0; + A[202] = -0.0133928571428571*G0_0_1 - 0.0133928571428571*G0_1_1; + A[203] = 0.0348214285714286*G0_0_2 + 0.0348214285714286*G0_1_2 + 0.0482142857142858*G0_2_2; + A[204] = 0.0482142857142857*G0_0_1 + 0.0241071428571428*G0_0_2 + 0.0482142857142857*G0_1_1 + 0.0241071428571429*G0_1_2 + 0.0241071428571428*G0_2_1; + A[205] = 0.0723214285714289*G0_0_1 + 0.0482142857142859*G0_0_2 + 0.0723214285714288*G0_1_1 + 0.0482142857142858*G0_1_2 + 0.0482142857142859*G0_2_1 + 0.0241071428571429*G0_2_2; + A[206] = 0.0482142857142856*G0_0_0 + 0.0241071428571428*G0_0_2 + 0.0482142857142857*G0_1_0 + 0.0241071428571427*G0_1_2 + 0.0241071428571429*G0_2_0; + A[207] = 0.0723214285714289*G0_0_0 + 0.048214285714286*G0_0_2 + 0.0723214285714288*G0_1_0 + 0.0482142857142859*G0_1_2 + 0.0482142857142859*G0_2_0 + 0.0241071428571431*G0_2_2; + A[208] = 0.0241071428571429*G0_0_0 + 0.0241071428571428*G0_0_1 + 0.0241071428571429*G0_1_0 + 0.0241071428571428*G0_1_1; + A[209] = 0.0241071428571429*G0_0_0 + 0.024107142857143*G0_0_1 + 0.0241071428571429*G0_1_0 + 0.024107142857143*G0_1_1; + A[210] = 0.241071428571429*G0_0_0 + 0.241071428571429*G0_0_1 + 0.144642857142857*G0_0_2 + 0.241071428571429*G0_1_0 + 0.241071428571428*G0_1_1 + 0.144642857142857*G0_1_2 + 0.144642857142857*G0_2_0 + 0.144642857142857*G0_2_1 + 0.241071428571429*G0_2_2; + A[211] = -0.0723214285714288*G0_0_0 - 0.0723214285714288*G0_0_1 - 0.144642857142857*G0_0_2 - 0.0723214285714288*G0_1_0 - 0.0723214285714288*G0_1_1 - 0.144642857142857*G0_1_2 - 0.0482142857142859*G0_2_0 - 0.0482142857142859*G0_2_1 - 0.192857142857143*G0_2_2; + A[212] = 0.120535714285714*G0_0_0 + 0.0241071428571429*G0_0_1 + 0.120535714285714*G0_0_2 + 0.120535714285714*G0_1_0 + 0.0241071428571428*G0_1_1 + 0.120535714285714*G0_1_2 + 0.0241071428571429*G0_2_0 + 0.120535714285714*G0_2_1 + 0.0241071428571429*G0_2_2; + A[213] = -0.0241071428571429*G0_0_0 + 0.0241071428571429*G0_0_1 - 0.0241071428571429*G0_0_2 - 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_1 - 0.0241071428571429*G0_1_2 - 0.0241071428571429*G0_2_1; + A[214] = 0.0241071428571429*G0_0_0 + 0.120535714285714*G0_0_1 + 0.120535714285714*G0_0_2 + 0.0241071428571429*G0_1_0 + 0.120535714285714*G0_1_1 + 0.120535714285714*G0_1_2 + 0.120535714285714*G0_2_0 + 0.0241071428571429*G0_2_1 + 0.0241071428571429*G0_2_2; + A[215] = 0.0241071428571429*G0_0_0 - 0.0241071428571428*G0_0_1 - 0.0241071428571428*G0_0_2 + 0.0241071428571429*G0_1_0 - 0.0241071428571427*G0_1_1 - 0.0241071428571427*G0_1_2 - 0.0241071428571428*G0_2_0; + A[216] = 0.0482142857142861*G0_0_0 + 0.048214285714286*G0_0_1 + 0.024107142857143*G0_0_2 + 0.048214285714286*G0_1_0 + 0.0482142857142859*G0_1_1 + 0.024107142857143*G0_1_2 + 0.0241071428571431*G0_2_0 + 0.0241071428571432*G0_2_1; + A[217] = -0.0482142857142861*G0_0_0 - 0.289285714285714*G0_0_1 - 0.16875*G0_0_2 - 0.0482142857142861*G0_1_0 - 0.289285714285714*G0_1_1 - 0.16875*G0_1_2 - 0.0241071428571432*G0_2_0 - 0.16875*G0_2_1 - 0.0482142857142858*G0_2_2; + A[218] = -0.289285714285714*G0_0_0 - 0.0482142857142861*G0_0_1 - 0.16875*G0_0_2 - 0.289285714285714*G0_1_0 - 0.048214285714286*G0_1_1 - 0.16875*G0_1_2 - 0.16875*G0_2_0 - 0.0241071428571433*G0_2_1 - 0.048214285714286*G0_2_2; + A[219] = -0.144642857142857*G0_0_0 - 0.144642857142857*G0_0_1 - 0.024107142857143*G0_0_2 - 0.144642857142857*G0_1_0 - 0.144642857142857*G0_1_1 - 0.024107142857143*G0_1_2 - 0.024107142857143*G0_2_0 - 0.024107142857143*G0_2_1; + A[220] = 0.0133928571428572*G0_0_0 + 0.0133928571428572*G0_0_1 + 0.0133928571428572*G0_0_2 + 0.0133928571428572*G0_1_0 + 0.0133928571428572*G0_1_1 + 0.0133928571428572*G0_1_2 + 0.0482142857142857*G0_2_0 + 0.0482142857142857*G0_2_1 + 0.0482142857142857*G0_2_2; + A[221] = -0.0133928571428572*G0_0_0 - 0.0133928571428572*G0_1_0; + A[222] = -0.0133928571428571*G0_0_1 - 0.0133928571428571*G0_1_1; + A[223] = -0.0616071428571429*G0_0_2 - 0.0616071428571429*G0_1_2 - 0.0964285714285715*G0_2_2; + A[224] = 0.0723214285714286*G0_0_1 + 0.0241071428571429*G0_0_2 + 0.0723214285714286*G0_1_1 + 0.0241071428571429*G0_1_2 + 0.0241071428571429*G0_2_1; + A[225] = -0.192857142857143*G0_0_1 - 0.0964285714285716*G0_0_2 - 0.192857142857143*G0_1_1 - 0.0964285714285715*G0_1_2 - 0.0964285714285715*G0_2_1 + 0.0241071428571428*G0_2_2; + A[226] = 0.0723214285714286*G0_0_0 + 0.0241071428571429*G0_0_2 + 0.0723214285714286*G0_1_0 + 0.0241071428571429*G0_1_2 + 0.0241071428571429*G0_2_0; + A[227] = -0.192857142857143*G0_0_0 - 0.0964285714285715*G0_0_2 - 0.192857142857143*G0_1_0 - 0.0964285714285714*G0_1_2 - 0.0964285714285716*G0_2_0 + 0.0241071428571427*G0_2_2; + A[228] = 0.0241071428571429*G0_0_0 + 0.0241071428571429*G0_0_1 + 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_1; + A[229] = 0.0241071428571429*G0_0_0 + 0.0241071428571429*G0_0_1 + 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_1; + A[230] = -0.0723214285714288*G0_0_0 - 0.0723214285714288*G0_0_1 - 0.0482142857142859*G0_0_2 - 0.0723214285714288*G0_1_0 - 0.0723214285714288*G0_1_1 - 0.0482142857142859*G0_1_2 - 0.144642857142857*G0_2_0 - 0.144642857142857*G0_2_1 - 0.192857142857143*G0_2_2; + A[231] = 0.192857142857143*G0_0_0 + 0.192857142857143*G0_0_1 + 0.0964285714285716*G0_0_2 + 0.192857142857143*G0_1_0 + 0.192857142857143*G0_1_1 + 0.0964285714285716*G0_1_2 + 0.0964285714285716*G0_2_0 + 0.0964285714285716*G0_2_1 + 0.241071428571429*G0_2_2; + A[232] = -0.024107142857143*G0_0_0 - 0.0241071428571429*G0_0_2 - 0.0241071428571429*G0_1_0 - 0.0241071428571429*G0_1_2 + 0.0241071428571428*G0_2_0 - 0.0241071428571429*G0_2_1 + 0.0241071428571429*G0_2_2; + A[233] = -0.0241071428571428*G0_0_0 - 0.0241071428571429*G0_0_2 - 0.0241071428571429*G0_1_0 - 0.0241071428571429*G0_1_2 - 0.0241071428571427*G0_2_1; + A[234] = -0.0241071428571429*G0_0_1 - 0.0241071428571429*G0_0_2 - 0.0241071428571429*G0_1_1 - 0.0241071428571429*G0_1_2 - 0.0241071428571429*G0_2_0 + 0.0241071428571429*G0_2_1 + 0.0241071428571429*G0_2_2; + A[235] = -0.0241071428571429*G0_0_1 - 0.0241071428571429*G0_0_2 - 0.0241071428571429*G0_1_1 - 0.0241071428571429*G0_1_2 - 0.0241071428571429*G0_2_0; + A[236] = -0.0964285714285715*G0_0_0 - 0.0964285714285714*G0_0_1 + 0.024107142857143*G0_0_2 - 0.0964285714285714*G0_1_0 - 0.0964285714285715*G0_1_1 + 0.024107142857143*G0_1_2 + 0.0241071428571428*G0_2_0 + 0.0241071428571428*G0_2_1; + A[237] = 0.0964285714285715*G0_0_0 + 0.120535714285714*G0_0_2 + 0.0964285714285714*G0_1_0 + 0.120535714285714*G0_1_2 - 0.0241071428571427*G0_2_0 + 0.120535714285714*G0_2_1 - 0.0482142857142857*G0_2_2; + A[238] = 0.0964285714285715*G0_0_1 + 0.120535714285714*G0_0_2 + 0.0964285714285715*G0_1_1 + 0.120535714285714*G0_1_2 + 0.120535714285714*G0_2_0 - 0.0241071428571428*G0_2_1 - 0.0482142857142856*G0_2_2; + A[239] = -0.024107142857143*G0_0_2 - 0.0241071428571429*G0_1_2 - 0.0241071428571429*G0_2_0 - 0.0241071428571428*G0_2_1; + A[240] = -0.0348214285714286*G0_0_0 - 0.0348214285714285*G0_0_1 - 0.0348214285714286*G0_0_2 - 0.0964285714285714*G0_1_0 - 0.0964285714285715*G0_1_1 - 0.0964285714285714*G0_1_2 - 0.0348214285714286*G0_2_0 - 0.0348214285714285*G0_2_1 - 0.0348214285714286*G0_2_2; + A[241] = -0.0133928571428571*G0_0_0 - 0.0133928571428572*G0_2_0; + A[242] = 0.0348214285714286*G0_0_1 + 0.0482142857142858*G0_1_1 + 0.0348214285714286*G0_2_1; + A[243] = -0.0133928571428571*G0_0_2 - 0.0133928571428572*G0_2_2; + A[244] = 0.0482142857142858*G0_0_1 + 0.0723214285714287*G0_0_2 + 0.0241071428571427*G0_1_1 + 0.0482142857142858*G0_1_2 + 0.0482142857142857*G0_2_1 + 0.0723214285714286*G0_2_2; + A[245] = 0.024107142857143*G0_0_1 + 0.0482142857142857*G0_0_2 + 0.0241071428571428*G0_1_2 + 0.0241071428571429*G0_2_1 + 0.0482142857142857*G0_2_2; + A[246] = 0.0241071428571429*G0_0_0 + 0.0241071428571427*G0_0_2 + 0.0241071428571429*G0_2_0 + 0.0241071428571428*G0_2_2; + A[247] = 0.024107142857143*G0_0_0 + 0.024107142857143*G0_0_2 + 0.024107142857143*G0_2_0 + 0.0241071428571431*G0_2_2; + A[248] = 0.0482142857142855*G0_0_0 + 0.0241071428571428*G0_0_1 + 0.0241071428571428*G0_1_0 + 0.0482142857142856*G0_2_0 + 0.0241071428571428*G0_2_1; + A[249] = 0.0723214285714288*G0_0_0 + 0.0482142857142859*G0_0_1 + 0.0482142857142858*G0_1_0 + 0.0241071428571428*G0_1_1 + 0.0723214285714287*G0_2_0 + 0.0482142857142858*G0_2_1; + A[250] = 0.120535714285714*G0_0_0 + 0.120535714285714*G0_0_1 + 0.0241071428571429*G0_0_2 + 0.0241071428571429*G0_1_0 + 0.0241071428571428*G0_1_1 + 0.120535714285714*G0_1_2 + 0.120535714285714*G0_2_0 + 0.120535714285714*G0_2_1 + 0.0241071428571429*G0_2_2; + A[251] = -0.0241071428571429*G0_0_0 - 0.0241071428571429*G0_0_1 + 0.0241071428571428*G0_0_2 - 0.024107142857143*G0_1_2 - 0.0241071428571429*G0_2_0 - 0.0241071428571429*G0_2_1 + 0.0241071428571429*G0_2_2; + A[252] = 0.241071428571429*G0_0_0 + 0.144642857142857*G0_0_1 + 0.241071428571429*G0_0_2 + 0.144642857142857*G0_1_0 + 0.241071428571429*G0_1_1 + 0.144642857142857*G0_1_2 + 0.241071428571429*G0_2_0 + 0.144642857142857*G0_2_1 + 0.241071428571429*G0_2_2; + A[253] = -0.0723214285714287*G0_0_0 - 0.144642857142857*G0_0_1 - 0.0723214285714288*G0_0_2 - 0.0482142857142858*G0_1_0 - 0.192857142857143*G0_1_1 - 0.0482142857142858*G0_1_2 - 0.0723214285714286*G0_2_0 - 0.144642857142857*G0_2_1 - 0.0723214285714287*G0_2_2; + A[254] = 0.0241071428571429*G0_0_0 + 0.120535714285714*G0_0_1 + 0.120535714285714*G0_0_2 + 0.120535714285714*G0_1_0 + 0.0241071428571428*G0_1_1 + 0.0241071428571428*G0_1_2 + 0.0241071428571429*G0_2_0 + 0.120535714285714*G0_2_1 + 0.120535714285714*G0_2_2; + A[255] = 0.0241071428571428*G0_0_0 - 0.0241071428571428*G0_0_1 - 0.0241071428571427*G0_0_2 - 0.0241071428571429*G0_1_0 + 0.0241071428571428*G0_2_0 - 0.0241071428571428*G0_2_1 - 0.0241071428571427*G0_2_2; + A[256] = 0.048214285714286*G0_0_0 + 0.024107142857143*G0_0_1 + 0.0482142857142857*G0_0_2 + 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_2 + 0.0482142857142859*G0_2_0 + 0.0241071428571431*G0_2_1 + 0.0482142857142857*G0_2_2; + A[257] = -0.048214285714286*G0_0_0 - 0.16875*G0_0_1 - 0.289285714285714*G0_0_2 - 0.0241071428571429*G0_1_0 - 0.0482142857142856*G0_1_1 - 0.16875*G0_1_2 - 0.0482142857142859*G0_2_0 - 0.16875*G0_2_1 - 0.289285714285714*G0_2_2; + A[258] = -0.144642857142857*G0_0_0 - 0.024107142857143*G0_0_1 - 0.144642857142858*G0_0_2 - 0.024107142857143*G0_1_0 - 0.0241071428571431*G0_1_2 - 0.144642857142857*G0_2_0 - 0.0241071428571431*G0_2_1 - 0.144642857142858*G0_2_2; + A[259] = -0.289285714285714*G0_0_0 - 0.16875*G0_0_1 - 0.0482142857142858*G0_0_2 - 0.16875*G0_1_0 - 0.0482142857142856*G0_1_1 - 0.0241071428571429*G0_1_2 - 0.289285714285714*G0_2_0 - 0.16875*G0_2_1 - 0.0482142857142858*G0_2_2; + A[260] = 0.0133928571428572*G0_0_0 + 0.0133928571428571*G0_0_1 + 0.0133928571428571*G0_0_2 + 0.0482142857142857*G0_1_0 + 0.0482142857142858*G0_1_1 + 0.0482142857142857*G0_1_2 + 0.0133928571428572*G0_2_0 + 0.0133928571428571*G0_2_1 + 0.0133928571428571*G0_2_2; + A[261] = -0.0133928571428571*G0_0_0 - 0.0133928571428571*G0_2_0; + A[262] = -0.0616071428571428*G0_0_1 - 0.0964285714285714*G0_1_1 - 0.0616071428571428*G0_2_1; + A[263] = -0.0133928571428572*G0_0_2 - 0.0133928571428572*G0_2_2; + A[264] = -0.0964285714285714*G0_0_1 - 0.192857142857143*G0_0_2 + 0.024107142857143*G0_1_1 - 0.0964285714285714*G0_1_2 - 0.0964285714285714*G0_2_1 - 0.192857142857143*G0_2_2; + A[265] = 0.0241071428571429*G0_0_1 + 0.0723214285714286*G0_0_2 + 0.024107142857143*G0_1_2 + 0.0241071428571429*G0_2_1 + 0.0723214285714286*G0_2_2; + A[266] = 0.0241071428571428*G0_0_0 + 0.0241071428571428*G0_0_2 + 0.0241071428571428*G0_2_0 + 0.0241071428571428*G0_2_2; + A[267] = 0.0241071428571428*G0_0_0 + 0.0241071428571429*G0_0_2 + 0.0241071428571428*G0_2_0 + 0.0241071428571429*G0_2_2; + A[268] = 0.0723214285714285*G0_0_0 + 0.0241071428571429*G0_0_1 + 0.024107142857143*G0_1_0 + 0.0723214285714285*G0_2_0 + 0.0241071428571429*G0_2_1; + A[269] = -0.192857142857143*G0_0_0 - 0.0964285714285715*G0_0_1 - 0.0964285714285714*G0_1_0 + 0.0241071428571429*G0_1_1 - 0.192857142857143*G0_2_0 - 0.0964285714285715*G0_2_1; + A[270] = -0.0241071428571429*G0_0_0 - 0.0241071428571429*G0_0_1 + 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_1 - 0.0241071428571429*G0_1_2 - 0.0241071428571429*G0_2_0 - 0.0241071428571429*G0_2_1; + A[271] = -0.0241071428571428*G0_0_0 - 0.0241071428571429*G0_0_1 - 0.0241071428571427*G0_1_2 - 0.0241071428571429*G0_2_0 - 0.0241071428571429*G0_2_1; + A[272] = -0.0723214285714287*G0_0_0 - 0.0482142857142858*G0_0_1 - 0.0723214285714286*G0_0_2 - 0.144642857142857*G0_1_0 - 0.192857142857143*G0_1_1 - 0.144642857142857*G0_1_2 - 0.0723214285714288*G0_2_0 - 0.0482142857142858*G0_2_1 - 0.0723214285714287*G0_2_2; + A[273] = 0.192857142857143*G0_0_0 + 0.0964285714285714*G0_0_1 + 0.192857142857143*G0_0_2 + 0.0964285714285714*G0_1_0 + 0.241071428571428*G0_1_1 + 0.0964285714285714*G0_1_2 + 0.192857142857143*G0_2_0 + 0.0964285714285714*G0_2_1 + 0.192857142857143*G0_2_2; + A[274] = -0.0241071428571429*G0_0_1 - 0.0241071428571429*G0_0_2 - 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_1 + 0.0241071428571429*G0_1_2 - 0.0241071428571429*G0_2_1 - 0.0241071428571429*G0_2_2; + A[275] = -0.0241071428571428*G0_0_1 - 0.0241071428571429*G0_0_2 - 0.0241071428571428*G0_1_0 - 0.0241071428571428*G0_2_1 - 0.0241071428571429*G0_2_2; + A[276] = -0.0964285714285713*G0_0_0 + 0.0241071428571429*G0_0_1 - 0.0964285714285715*G0_0_2 + 0.024107142857143*G0_1_0 + 0.0241071428571429*G0_1_2 - 0.0964285714285713*G0_2_0 + 0.024107142857143*G0_2_1 - 0.0964285714285714*G0_2_2; + A[277] = 0.0964285714285713*G0_0_0 + 0.120535714285714*G0_0_1 - 0.024107142857143*G0_1_0 - 0.0482142857142859*G0_1_1 + 0.120535714285714*G0_1_2 + 0.0964285714285713*G0_2_0 + 0.120535714285714*G0_2_1; + A[278] = -0.0241071428571429*G0_0_1 - 0.0241071428571428*G0_1_0 - 0.0241071428571428*G0_1_2 - 0.0241071428571429*G0_2_1; + A[279] = 0.120535714285714*G0_0_1 + 0.0964285714285715*G0_0_2 + 0.120535714285714*G0_1_0 - 0.0482142857142858*G0_1_1 - 0.0241071428571429*G0_1_2 + 0.120535714285714*G0_2_1 + 0.0964285714285714*G0_2_2; + A[280] = -0.0964285714285714*G0_0_0 - 0.0964285714285714*G0_0_1 - 0.0964285714285714*G0_0_2 - 0.0348214285714285*G0_1_0 - 0.0348214285714285*G0_1_1 - 0.0348214285714286*G0_1_2 - 0.0348214285714286*G0_2_0 - 0.0348214285714285*G0_2_1 - 0.0348214285714286*G0_2_2; + A[281] = 0.0482142857142857*G0_0_0 + 0.0348214285714286*G0_1_0 + 0.0348214285714286*G0_2_0; + A[282] = -0.0133928571428571*G0_1_1 - 0.0133928571428571*G0_2_1; + A[283] = -0.0133928571428571*G0_1_2 - 0.0133928571428572*G0_2_2; + A[284] = 0.024107142857143*G0_1_1 + 0.0241071428571428*G0_1_2 + 0.024107142857143*G0_2_1 + 0.0241071428571428*G0_2_2; + A[285] = 0.0241071428571429*G0_1_1 + 0.024107142857143*G0_1_2 + 0.0241071428571429*G0_2_1 + 0.024107142857143*G0_2_2; + A[286] = 0.0241071428571429*G0_0_0 + 0.0482142857142858*G0_0_2 + 0.0482142857142857*G0_1_0 + 0.0723214285714286*G0_1_2 + 0.0482142857142857*G0_2_0 + 0.0723214285714286*G0_2_2; + A[287] = 0.0241071428571428*G0_0_2 + 0.0241071428571429*G0_1_0 + 0.0482142857142857*G0_1_2 + 0.0241071428571429*G0_2_0 + 0.0482142857142857*G0_2_2; + A[288] = 0.0241071428571428*G0_0_0 + 0.0482142857142858*G0_0_1 + 0.0482142857142856*G0_1_0 + 0.0723214285714286*G0_1_1 + 0.0482142857142856*G0_2_0 + 0.0723214285714286*G0_2_1; + A[289] = 0.0241071428571428*G0_0_1 + 0.0241071428571429*G0_1_0 + 0.0482142857142857*G0_1_1 + 0.0241071428571429*G0_2_0 + 0.0482142857142856*G0_2_1; + A[290] = 0.0241071428571429*G0_0_0 + 0.0241071428571429*G0_0_1 + 0.120535714285714*G0_0_2 + 0.120535714285714*G0_1_0 + 0.120535714285714*G0_1_1 + 0.0241071428571429*G0_1_2 + 0.120535714285714*G0_2_0 + 0.120535714285714*G0_2_1 + 0.0241071428571429*G0_2_2; + A[291] = -0.0241071428571429*G0_0_2 - 0.0241071428571429*G0_1_0 - 0.0241071428571429*G0_1_1 + 0.0241071428571429*G0_1_2 - 0.0241071428571429*G0_2_0 - 0.0241071428571429*G0_2_1 + 0.0241071428571429*G0_2_2; + A[292] = 0.0241071428571429*G0_0_0 + 0.120535714285714*G0_0_1 + 0.0241071428571429*G0_0_2 + 0.120535714285714*G0_1_0 + 0.0241071428571428*G0_1_1 + 0.120535714285714*G0_1_2 + 0.120535714285714*G0_2_0 + 0.0241071428571428*G0_2_1 + 0.120535714285714*G0_2_2; + A[293] = -0.0241071428571429*G0_0_1 - 0.0241071428571429*G0_1_0 + 0.0241071428571429*G0_1_1 - 0.0241071428571429*G0_1_2 - 0.0241071428571429*G0_2_0 + 0.0241071428571429*G0_2_1 - 0.0241071428571429*G0_2_2; + A[294] = 0.241071428571428*G0_0_0 + 0.144642857142857*G0_0_1 + 0.144642857142857*G0_0_2 + 0.144642857142857*G0_1_0 + 0.241071428571428*G0_1_1 + 0.241071428571428*G0_1_2 + 0.144642857142857*G0_2_0 + 0.241071428571428*G0_2_1 + 0.241071428571428*G0_2_2; + A[295] = -0.192857142857143*G0_0_0 - 0.0482142857142858*G0_0_1 - 0.0482142857142858*G0_0_2 - 0.144642857142857*G0_1_0 - 0.0723214285714285*G0_1_1 - 0.0723214285714285*G0_1_2 - 0.144642857142857*G0_2_0 - 0.0723214285714286*G0_2_1 - 0.0723214285714285*G0_2_2; + A[296] = 0.024107142857143*G0_0_1 + 0.0241071428571429*G0_0_2 + 0.0241071428571431*G0_1_0 + 0.0482142857142858*G0_1_1 + 0.0482142857142856*G0_1_2 + 0.0241071428571431*G0_2_0 + 0.0482142857142858*G0_2_1 + 0.0482142857142856*G0_2_2; + A[297] = -0.0241071428571429*G0_0_1 - 0.0241071428571429*G0_0_2 - 0.0241071428571431*G0_1_0 - 0.144642857142857*G0_1_1 - 0.144642857142857*G0_1_2 - 0.0241071428571431*G0_2_0 - 0.144642857142857*G0_2_1 - 0.144642857142857*G0_2_2; + A[298] = -0.0482142857142858*G0_0_0 - 0.024107142857143*G0_0_1 - 0.16875*G0_0_2 - 0.16875*G0_1_0 - 0.0482142857142858*G0_1_1 - 0.289285714285714*G0_1_2 - 0.16875*G0_2_0 - 0.0482142857142858*G0_2_1 - 0.289285714285714*G0_2_2; + A[299] = -0.0482142857142857*G0_0_0 - 0.16875*G0_0_1 - 0.0241071428571429*G0_0_2 - 0.16875*G0_1_0 - 0.289285714285714*G0_1_1 - 0.0482142857142858*G0_1_2 - 0.16875*G0_2_0 - 0.289285714285714*G0_2_1 - 0.0482142857142857*G0_2_2; + A[300] = 0.0482142857142857*G0_0_0 + 0.0482142857142857*G0_0_1 + 0.0482142857142857*G0_0_2 + 0.0133928571428571*G0_1_0 + 0.0133928571428571*G0_1_1 + 0.0133928571428571*G0_1_2 + 0.0133928571428571*G0_2_0 + 0.0133928571428571*G0_2_1 + 0.0133928571428571*G0_2_2; + A[301] = -0.0964285714285714*G0_0_0 - 0.0616071428571429*G0_1_0 - 0.0616071428571429*G0_2_0; + A[302] = -0.0133928571428571*G0_1_1 - 0.0133928571428571*G0_2_1; + A[303] = -0.0133928571428571*G0_1_2 - 0.0133928571428571*G0_2_2; + A[304] = 0.0241071428571428*G0_1_1 + 0.0241071428571428*G0_1_2 + 0.0241071428571428*G0_2_1 + 0.0241071428571429*G0_2_2; + A[305] = 0.0241071428571428*G0_1_1 + 0.0241071428571428*G0_1_2 + 0.0241071428571428*G0_2_1 + 0.0241071428571428*G0_2_2; + A[306] = 0.0241071428571428*G0_0_0 - 0.0964285714285716*G0_0_2 - 0.0964285714285712*G0_1_0 - 0.192857142857143*G0_1_2 - 0.0964285714285712*G0_2_0 - 0.192857142857143*G0_2_2; + A[307] = 0.024107142857143*G0_0_2 + 0.0241071428571429*G0_1_0 + 0.0723214285714286*G0_1_2 + 0.0241071428571429*G0_2_0 + 0.0723214285714286*G0_2_2; + A[308] = 0.0241071428571427*G0_0_0 - 0.0964285714285716*G0_0_1 - 0.0964285714285712*G0_1_0 - 0.192857142857143*G0_1_1 - 0.0964285714285712*G0_2_0 - 0.192857142857143*G0_2_1; + A[309] = 0.0241071428571429*G0_0_1 + 0.0241071428571428*G0_1_0 + 0.0723214285714286*G0_1_1 + 0.0241071428571429*G0_2_0 + 0.0723214285714287*G0_2_1; + A[310] = 0.0241071428571429*G0_0_0 + 0.0241071428571429*G0_0_1 - 0.0241071428571428*G0_0_2 - 0.0241071428571428*G0_1_0 - 0.0241071428571427*G0_1_1 - 0.0241071428571428*G0_2_0 - 0.0241071428571427*G0_2_1; + A[311] = -0.0241071428571429*G0_0_2 - 0.0241071428571429*G0_1_0 - 0.0241071428571429*G0_1_1 - 0.0241071428571429*G0_2_0 - 0.0241071428571429*G0_2_1; + A[312] = 0.0241071428571428*G0_0_0 - 0.0241071428571429*G0_0_1 + 0.0241071428571428*G0_0_2 - 0.0241071428571428*G0_1_0 - 0.0241071428571428*G0_1_2 - 0.0241071428571427*G0_2_0 - 0.0241071428571427*G0_2_2; + A[313] = -0.0241071428571428*G0_0_1 - 0.0241071428571428*G0_1_0 - 0.0241071428571428*G0_1_2 - 0.0241071428571429*G0_2_0 - 0.0241071428571428*G0_2_2; + A[314] = -0.192857142857143*G0_0_0 - 0.144642857142857*G0_0_1 - 0.144642857142857*G0_0_2 - 0.0482142857142858*G0_1_0 - 0.0723214285714285*G0_1_1 - 0.0723214285714286*G0_1_2 - 0.0482142857142858*G0_2_0 - 0.0723214285714285*G0_2_1 - 0.0723214285714285*G0_2_2; + A[315] = 0.241071428571429*G0_0_0 + 0.0964285714285716*G0_0_1 + 0.0964285714285715*G0_0_2 + 0.0964285714285716*G0_1_0 + 0.192857142857143*G0_1_1 + 0.192857142857143*G0_1_2 + 0.0964285714285715*G0_2_0 + 0.192857142857143*G0_2_1 + 0.192857142857143*G0_2_2; + A[316] = 0.0241071428571427*G0_0_1 + 0.0241071428571426*G0_0_2 + 0.0241071428571428*G0_1_0 - 0.0964285714285713*G0_1_1 - 0.0964285714285713*G0_1_2 + 0.0241071428571428*G0_2_0 - 0.0964285714285713*G0_2_1 - 0.0964285714285712*G0_2_2; + A[317] = -0.0241071428571428*G0_0_1 - 0.0241071428571428*G0_0_2 - 0.0241071428571428*G0_1_0 - 0.0241071428571428*G0_2_0; + A[318] = -0.0482142857142857*G0_0_0 - 0.0241071428571427*G0_0_1 + 0.120535714285714*G0_0_2 + 0.120535714285714*G0_1_0 + 0.0964285714285713*G0_1_1 + 0.120535714285714*G0_2_0 + 0.0964285714285713*G0_2_1; + A[319] = -0.0482142857142855*G0_0_0 + 0.120535714285714*G0_0_1 - 0.0241071428571426*G0_0_2 + 0.120535714285714*G0_1_0 + 0.0964285714285712*G0_1_2 + 0.120535714285714*G0_2_0 + 0.0964285714285712*G0_2_2; + A[320] = -0.0321428571428573*G0_0_0 - 0.0321428571428572*G0_0_1 - 0.0321428571428572*G0_0_2 - 0.0321428571428573*G0_1_0 - 0.0321428571428573*G0_1_1 - 0.0321428571428573*G0_1_2 - 0.0321428571428572*G0_2_0 - 0.0321428571428572*G0_2_1 - 0.0321428571428572*G0_2_2; + A[321] = 0.0321428571428572*G0_0_0 - 0.0160714285714284*G0_1_0 - 0.0160714285714284*G0_2_0; + A[322] = -0.0160714285714287*G0_0_1 + 0.032142857142857*G0_1_1 - 0.0160714285714286*G0_2_1; + A[323] = -0.0160714285714286*G0_0_2 - 0.0160714285714285*G0_1_2 + 0.0321428571428571*G0_2_2; + A[324] = 0.241071428571429*G0_0_1 + 0.0964285714285713*G0_0_2 - 0.0482142857142855*G0_1_1 - 0.0241071428571429*G0_1_2 + 0.120535714285714*G0_2_1 + 0.0964285714285715*G0_2_2; + A[325] = 0.0964285714285714*G0_0_1 + 0.241071428571429*G0_0_2 + 0.0964285714285715*G0_1_1 + 0.120535714285715*G0_1_2 - 0.024107142857143*G0_2_1 - 0.0482142857142857*G0_2_2; + A[326] = -0.0482142857142857*G0_0_0 - 0.0241071428571427*G0_0_2 + 0.241071428571428*G0_1_0 + 0.0964285714285714*G0_1_2 + 0.120535714285714*G0_2_0 + 0.0964285714285714*G0_2_2; + A[327] = 0.0964285714285714*G0_0_0 + 0.120535714285714*G0_0_2 + 0.0964285714285714*G0_1_0 + 0.241071428571428*G0_1_2 - 0.024107142857143*G0_2_0 - 0.0482142857142858*G0_2_2; + A[328] = -0.0482142857142857*G0_0_0 - 0.0241071428571428*G0_0_1 + 0.120535714285714*G0_1_0 + 0.0964285714285714*G0_1_1 + 0.241071428571428*G0_2_0 + 0.0964285714285713*G0_2_1; + A[329] = 0.0964285714285713*G0_0_0 + 0.120535714285714*G0_0_1 - 0.0241071428571429*G0_1_0 - 0.0482142857142858*G0_1_1 + 0.0964285714285715*G0_2_0 + 0.241071428571428*G0_2_1; + A[330] = 0.0482142857142861*G0_0_0 + 0.048214285714286*G0_0_1 + 0.0241071428571431*G0_0_2 + 0.048214285714286*G0_1_0 + 0.0482142857142859*G0_1_1 + 0.0241071428571432*G0_1_2 + 0.024107142857143*G0_2_0 + 0.024107142857143*G0_2_1; + A[331] = -0.0964285714285715*G0_0_0 - 0.0964285714285714*G0_0_1 + 0.0241071428571428*G0_0_2 - 0.0964285714285714*G0_1_0 - 0.0964285714285715*G0_1_1 + 0.0241071428571428*G0_1_2 + 0.024107142857143*G0_2_0 + 0.024107142857143*G0_2_1; + A[332] = 0.048214285714286*G0_0_0 + 0.0241071428571429*G0_0_1 + 0.0482142857142859*G0_0_2 + 0.024107142857143*G0_1_0 + 0.0241071428571431*G0_1_2 + 0.0482142857142857*G0_2_0 + 0.0241071428571429*G0_2_1 + 0.0482142857142857*G0_2_2; + A[333] = -0.0964285714285713*G0_0_0 + 0.024107142857143*G0_0_1 - 0.0964285714285713*G0_0_2 + 0.0241071428571429*G0_1_0 + 0.024107142857143*G0_1_2 - 0.0964285714285715*G0_2_0 + 0.0241071428571429*G0_2_1 - 0.0964285714285714*G0_2_2; + A[334] = 0.0241071428571431*G0_0_1 + 0.0241071428571431*G0_0_2 + 0.024107142857143*G0_1_0 + 0.0482142857142858*G0_1_1 + 0.0482142857142858*G0_1_2 + 0.0241071428571429*G0_2_0 + 0.0482142857142856*G0_2_1 + 0.0482142857142856*G0_2_2; + A[335] = 0.0241071428571428*G0_0_1 + 0.0241071428571428*G0_0_2 + 0.0241071428571427*G0_1_0 - 0.0964285714285713*G0_1_1 - 0.0964285714285713*G0_1_2 + 0.0241071428571426*G0_2_0 - 0.0964285714285713*G0_2_1 - 0.0964285714285712*G0_2_2; + A[336] = 0.578571428571429*G0_0_0 + 0.289285714285714*G0_0_1 + 0.289285714285714*G0_0_2 + 0.289285714285714*G0_1_0 + 0.578571428571428*G0_1_1 + 0.289285714285713*G0_1_2 + 0.289285714285714*G0_2_0 + 0.289285714285713*G0_2_1 + 0.578571428571427*G0_2_2; + A[337] = -0.578571428571429*G0_0_0 - 0.289285714285714*G0_0_1 - 0.289285714285714*G0_0_2 - 0.289285714285714*G0_1_0 - 0.144642857142858*G0_1_2 - 0.289285714285714*G0_2_0 - 0.144642857142857*G0_2_1; + A[338] = -0.289285714285714*G0_0_1 - 0.144642857142857*G0_0_2 - 0.289285714285714*G0_1_0 - 0.578571428571428*G0_1_1 - 0.289285714285714*G0_1_2 - 0.144642857142857*G0_2_0 - 0.289285714285714*G0_2_1; + A[339] = -0.144642857142857*G0_0_1 - 0.289285714285714*G0_0_2 - 0.144642857142857*G0_1_0 - 0.289285714285714*G0_1_2 - 0.289285714285713*G0_2_0 - 0.289285714285714*G0_2_1 - 0.578571428571427*G0_2_2; + A[340] = 0.0321428571428573*G0_0_0 + 0.0321428571428572*G0_0_1 + 0.0321428571428572*G0_0_2 + 0.0482142857142857*G0_1_0 + 0.0482142857142856*G0_1_1 + 0.0482142857142857*G0_1_2 + 0.0482142857142857*G0_2_0 + 0.0482142857142857*G0_2_1 + 0.0482142857142857*G0_2_2; + A[341] = -0.0321428571428572*G0_0_0; + A[342] = 0.0160714285714287*G0_0_1 + 0.0482142857142857*G0_1_1; + A[343] = 0.0160714285714286*G0_0_2 + 0.0482142857142857*G0_2_2; + A[344] = -0.241071428571429*G0_0_1 - 0.0964285714285713*G0_0_2 - 0.289285714285714*G0_1_1 - 0.120535714285714*G0_1_2 - 0.120535714285714*G0_2_1; + A[345] = -0.0964285714285714*G0_0_1 - 0.241071428571429*G0_0_2 - 0.120535714285714*G0_1_2 - 0.120535714285714*G0_2_1 - 0.289285714285714*G0_2_2; + A[346] = 0.0482142857142857*G0_0_0 + 0.0241071428571427*G0_0_2 + 0.0241071428571426*G0_2_0; + A[347] = -0.0964285714285714*G0_0_0 - 0.120535714285714*G0_0_2 - 0.120535714285714*G0_2_0 - 0.144642857142857*G0_2_2; + A[348] = 0.0482142857142857*G0_0_0 + 0.0241071428571428*G0_0_1 + 0.0241071428571427*G0_1_0; + A[349] = -0.0964285714285713*G0_0_0 - 0.120535714285714*G0_0_1 - 0.120535714285714*G0_1_0 - 0.144642857142857*G0_1_1; + A[350] = -0.0482142857142861*G0_0_0 - 0.0482142857142861*G0_0_1 - 0.0241071428571432*G0_0_2 - 0.289285714285714*G0_1_0 - 0.289285714285714*G0_1_1 - 0.16875*G0_1_2 - 0.16875*G0_2_0 - 0.16875*G0_2_1 - 0.0482142857142858*G0_2_2; + A[351] = 0.0964285714285715*G0_0_0 + 0.0964285714285714*G0_0_1 - 0.0241071428571427*G0_0_2 + 0.120535714285714*G0_1_2 + 0.120535714285714*G0_2_0 + 0.120535714285714*G0_2_1 - 0.0482142857142857*G0_2_2; + A[352] = -0.048214285714286*G0_0_0 - 0.0241071428571429*G0_0_1 - 0.0482142857142859*G0_0_2 - 0.16875*G0_1_0 - 0.0482142857142856*G0_1_1 - 0.16875*G0_1_2 - 0.289285714285714*G0_2_0 - 0.16875*G0_2_1 - 0.289285714285714*G0_2_2; + A[353] = 0.0964285714285713*G0_0_0 - 0.024107142857143*G0_0_1 + 0.0964285714285713*G0_0_2 + 0.120535714285714*G0_1_0 - 0.0482142857142859*G0_1_1 + 0.120535714285714*G0_1_2 + 0.120535714285714*G0_2_1; + A[354] = -0.0241071428571431*G0_0_1 - 0.0241071428571431*G0_0_2 - 0.024107142857143*G0_1_0 - 0.144642857142857*G0_1_1 - 0.144642857142857*G0_1_2 - 0.0241071428571429*G0_2_0 - 0.144642857142857*G0_2_1 - 0.144642857142857*G0_2_2; + A[355] = -0.0241071428571428*G0_0_1 - 0.0241071428571428*G0_0_2 - 0.0241071428571428*G0_1_0 - 0.0241071428571428*G0_2_0; + A[356] = -0.578571428571429*G0_0_0 - 0.289285714285714*G0_0_1 - 0.289285714285714*G0_0_2 - 0.289285714285714*G0_1_0 - 0.144642857142857*G0_1_2 - 0.289285714285714*G0_2_0 - 0.144642857142858*G0_2_1; + A[357] = 0.578571428571429*G0_0_0 + 0.289285714285715*G0_0_1 + 0.289285714285715*G0_0_2 + 0.289285714285715*G0_1_0 + 0.578571428571428*G0_1_1 + 0.289285714285714*G0_1_2 + 0.289285714285715*G0_2_0 + 0.289285714285714*G0_2_1 + 0.578571428571429*G0_2_2; + A[358] = 0.289285714285714*G0_0_1 + 0.144642857142857*G0_0_2 + 0.289285714285714*G0_1_0 + 0.144642857142858*G0_1_2 + 0.144642857142858*G0_2_0 + 0.144642857142858*G0_2_1 + 0.289285714285715*G0_2_2; + A[359] = 0.144642857142857*G0_0_1 + 0.289285714285714*G0_0_2 + 0.144642857142857*G0_1_0 + 0.289285714285715*G0_1_1 + 0.144642857142857*G0_1_2 + 0.289285714285714*G0_2_0 + 0.144642857142857*G0_2_1; + A[360] = 0.0482142857142857*G0_0_0 + 0.0482142857142857*G0_0_1 + 0.0482142857142857*G0_0_2 + 0.0321428571428573*G0_1_0 + 0.0321428571428573*G0_1_1 + 0.0321428571428573*G0_1_2 + 0.0482142857142858*G0_2_0 + 0.0482142857142858*G0_2_1 + 0.0482142857142859*G0_2_2; + A[361] = 0.0482142857142857*G0_0_0 + 0.0160714285714284*G0_1_0; + A[362] = -0.0321428571428571*G0_1_1; + A[363] = 0.0160714285714285*G0_1_2 + 0.0482142857142857*G0_2_2; + A[364] = 0.0482142857142855*G0_1_1 + 0.0241071428571429*G0_1_2 + 0.0241071428571426*G0_2_1; + A[365] = -0.0964285714285715*G0_1_1 - 0.120535714285715*G0_1_2 - 0.120535714285714*G0_2_1 - 0.144642857142857*G0_2_2; + A[366] = -0.289285714285714*G0_0_0 - 0.120535714285714*G0_0_2 - 0.241071428571428*G0_1_0 - 0.0964285714285714*G0_1_2 - 0.120535714285714*G0_2_0; + A[367] = -0.120535714285714*G0_0_2 - 0.0964285714285715*G0_1_0 - 0.241071428571429*G0_1_2 - 0.120535714285714*G0_2_0 - 0.289285714285714*G0_2_2; + A[368] = -0.144642857142857*G0_0_0 - 0.120535714285714*G0_0_1 - 0.120535714285714*G0_1_0 - 0.0964285714285715*G0_1_1; + A[369] = 0.0241071428571427*G0_0_1 + 0.0241071428571429*G0_1_0 + 0.0482142857142859*G0_1_1; + A[370] = -0.289285714285714*G0_0_0 - 0.289285714285714*G0_0_1 - 0.16875*G0_0_2 - 0.0482142857142861*G0_1_0 - 0.048214285714286*G0_1_1 - 0.0241071428571433*G0_1_2 - 0.16875*G0_2_0 - 0.16875*G0_2_1 - 0.048214285714286*G0_2_2; + A[371] = 0.120535714285714*G0_0_2 + 0.0964285714285715*G0_1_0 + 0.0964285714285715*G0_1_1 - 0.0241071428571428*G0_1_2 + 0.120535714285714*G0_2_0 + 0.120535714285714*G0_2_1 - 0.0482142857142856*G0_2_2; + A[372] = -0.144642857142857*G0_0_0 - 0.024107142857143*G0_0_1 - 0.144642857142857*G0_0_2 - 0.024107142857143*G0_1_0 - 0.0241071428571431*G0_1_2 - 0.144642857142858*G0_2_0 - 0.0241071428571431*G0_2_1 - 0.144642857142858*G0_2_2; + A[373] = -0.0241071428571428*G0_0_1 - 0.0241071428571429*G0_1_0 - 0.0241071428571429*G0_1_2 - 0.0241071428571428*G0_2_1; + A[374] = -0.0482142857142858*G0_0_0 - 0.16875*G0_0_1 - 0.16875*G0_0_2 - 0.024107142857143*G0_1_0 - 0.0482142857142858*G0_1_1 - 0.0482142857142858*G0_1_2 - 0.16875*G0_2_0 - 0.289285714285714*G0_2_1 - 0.289285714285714*G0_2_2; + A[375] = -0.0482142857142857*G0_0_0 + 0.120535714285714*G0_0_1 + 0.120535714285714*G0_0_2 - 0.0241071428571427*G0_1_0 + 0.0964285714285714*G0_1_1 + 0.0964285714285713*G0_1_2 + 0.120535714285714*G0_2_0; + A[376] = -0.289285714285714*G0_0_1 - 0.144642857142857*G0_0_2 - 0.289285714285714*G0_1_0 - 0.578571428571428*G0_1_1 - 0.289285714285714*G0_1_2 - 0.144642857142857*G0_2_0 - 0.289285714285714*G0_2_1; + A[377] = 0.289285714285714*G0_0_1 + 0.144642857142858*G0_0_2 + 0.289285714285714*G0_1_0 + 0.144642857142858*G0_1_2 + 0.144642857142857*G0_2_0 + 0.144642857142858*G0_2_1 + 0.289285714285715*G0_2_2; + A[378] = 0.578571428571428*G0_0_0 + 0.289285714285714*G0_0_1 + 0.289285714285715*G0_0_2 + 0.289285714285714*G0_1_0 + 0.578571428571428*G0_1_1 + 0.289285714285714*G0_1_2 + 0.289285714285715*G0_2_0 + 0.289285714285714*G0_2_1 + 0.578571428571428*G0_2_2; + A[379] = 0.289285714285714*G0_0_0 + 0.144642857142857*G0_0_1 + 0.144642857142857*G0_0_2 + 0.144642857142857*G0_1_0 + 0.289285714285714*G0_1_2 + 0.144642857142858*G0_2_0 + 0.289285714285714*G0_2_1; + A[380] = 0.0482142857142856*G0_0_0 + 0.0482142857142856*G0_0_1 + 0.0482142857142857*G0_0_2 + 0.0482142857142857*G0_1_0 + 0.0482142857142856*G0_1_1 + 0.0482142857142857*G0_1_2 + 0.0321428571428572*G0_2_0 + 0.0321428571428572*G0_2_1 + 0.0321428571428572*G0_2_2; + A[381] = 0.0482142857142856*G0_0_0 + 0.0160714285714284*G0_2_0; + A[382] = 0.0482142857142856*G0_1_1 + 0.0160714285714286*G0_2_1; + A[383] = -0.0321428571428571*G0_2_2; + A[384] = -0.144642857142857*G0_1_1 - 0.120535714285714*G0_1_2 - 0.120535714285714*G0_2_1 - 0.0964285714285715*G0_2_2; + A[385] = 0.0241071428571427*G0_1_2 + 0.0241071428571429*G0_2_1 + 0.0482142857142856*G0_2_2; + A[386] = -0.144642857142857*G0_0_0 - 0.120535714285714*G0_0_2 - 0.120535714285714*G0_2_0 - 0.0964285714285714*G0_2_2; + A[387] = 0.0241071428571425*G0_0_2 + 0.024107142857143*G0_2_0 + 0.0482142857142857*G0_2_2; + A[388] = -0.289285714285713*G0_0_0 - 0.120535714285714*G0_0_1 - 0.120535714285714*G0_1_0 - 0.241071428571428*G0_2_0 - 0.0964285714285713*G0_2_1; + A[389] = -0.120535714285714*G0_0_1 - 0.120535714285714*G0_1_0 - 0.289285714285714*G0_1_1 - 0.0964285714285715*G0_2_0 - 0.241071428571428*G0_2_1; + A[390] = -0.144642857142857*G0_0_0 - 0.144642857142857*G0_0_1 - 0.024107142857143*G0_0_2 - 0.144642857142857*G0_1_0 - 0.144642857142857*G0_1_1 - 0.024107142857143*G0_1_2 - 0.024107142857143*G0_2_0 - 0.024107142857143*G0_2_1; + A[391] = -0.0241071428571429*G0_0_2 - 0.0241071428571428*G0_1_2 - 0.024107142857143*G0_2_0 - 0.024107142857143*G0_2_1; + A[392] = -0.289285714285714*G0_0_0 - 0.16875*G0_0_1 - 0.289285714285714*G0_0_2 - 0.16875*G0_1_0 - 0.0482142857142856*G0_1_1 - 0.16875*G0_1_2 - 0.0482142857142858*G0_2_0 - 0.0241071428571429*G0_2_1 - 0.0482142857142858*G0_2_2; + A[393] = 0.120535714285714*G0_0_1 + 0.120535714285714*G0_1_0 - 0.0482142857142858*G0_1_1 + 0.120535714285714*G0_1_2 + 0.0964285714285715*G0_2_0 - 0.0241071428571429*G0_2_1 + 0.0964285714285714*G0_2_2; + A[394] = -0.0482142857142857*G0_0_0 - 0.16875*G0_0_1 - 0.16875*G0_0_2 - 0.16875*G0_1_0 - 0.289285714285714*G0_1_1 - 0.289285714285714*G0_1_2 - 0.0241071428571429*G0_2_0 - 0.0482142857142858*G0_2_1 - 0.0482142857142857*G0_2_2; + A[395] = -0.0482142857142855*G0_0_0 + 0.120535714285714*G0_0_1 + 0.120535714285714*G0_0_2 + 0.120535714285714*G0_1_0 - 0.0241071428571426*G0_2_0 + 0.0964285714285713*G0_2_1 + 0.0964285714285712*G0_2_2; + A[396] = -0.144642857142857*G0_0_1 - 0.289285714285713*G0_0_2 - 0.144642857142857*G0_1_0 - 0.289285714285714*G0_1_2 - 0.289285714285714*G0_2_0 - 0.289285714285714*G0_2_1 - 0.578571428571427*G0_2_2; + A[397] = 0.144642857142857*G0_0_1 + 0.289285714285714*G0_0_2 + 0.144642857142857*G0_1_0 + 0.289285714285715*G0_1_1 + 0.144642857142857*G0_1_2 + 0.289285714285714*G0_2_0 + 0.144642857142857*G0_2_1; + A[398] = 0.289285714285714*G0_0_0 + 0.144642857142857*G0_0_1 + 0.144642857142858*G0_0_2 + 0.144642857142857*G0_1_0 + 0.289285714285714*G0_1_2 + 0.144642857142857*G0_2_0 + 0.289285714285714*G0_2_1; + A[399] = 0.578571428571427*G0_0_0 + 0.289285714285714*G0_0_1 + 0.289285714285713*G0_0_2 + 0.289285714285714*G0_1_0 + 0.578571428571428*G0_1_1 + 0.289285714285714*G0_1_2 + 0.289285714285713*G0_2_0 + 0.289285714285714*G0_2_1 + 0.578571428571427*G0_2_2; +} + +/// Constructor +poisson3d_3_cell_integral_1_otherwise::poisson3d_3_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson3d_3_cell_integral_1_otherwise::~poisson3d_3_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson3d_3_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson3d_3_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 20 + // Number of operations (multiply-add pairs) for tensor contraction: 270 + // Total number of operations (multiply-add pairs): 293 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + const double G0_6 = det*w[0][6]*(1.0); + const double G0_7 = det*w[0][7]*(1.0); + const double G0_8 = det*w[0][8]*(1.0); + const double G0_9 = det*w[0][9]*(1.0); + const double G0_10 = det*w[0][10]*(1.0); + const double G0_11 = det*w[0][11]*(1.0); + const double G0_12 = det*w[0][12]*(1.0); + const double G0_13 = det*w[0][13]*(1.0); + const double G0_14 = det*w[0][14]*(1.0); + const double G0_15 = det*w[0][15]*(1.0); + const double G0_16 = det*w[0][16]*(1.0); + const double G0_17 = det*w[0][17]*(1.0); + const double G0_18 = det*w[0][18]*(1.0); + const double G0_19 = det*w[0][19]*(1.0); + + // Compute element tensor + A[0] = 0.000595238095238099*G0_0 + 7.4404761904762e-05*G0_1 + 7.4404761904762e-05*G0_2 + 7.44047619047623e-05*G0_3 + 0.000111607142857144*G0_4 + 0.000111607142857143*G0_5 + 0.000111607142857143*G0_6 + 0.000111607142857142*G0_7 + 0.000111607142857143*G0_8 + 0.000111607142857143*G0_9 - 0.000446428571428571*G0_10 + 0.000223214285714285*G0_11 - 0.000446428571428571*G0_12 + 0.000223214285714286*G0_13 - 0.000446428571428572*G0_14 + 0.000223214285714285*G0_15 + 0.00133928571428571*G0_16 + 0.000669642857142859*G0_17 + 0.00066964285714286*G0_18 + 0.000669642857142859*G0_19; + A[1] = 7.44047619047621e-05*G0_0 + 0.000595238095238098*G0_1 + 7.44047619047615e-05*G0_2 + 7.44047619047618e-05*G0_3 + 0.000111607142857143*G0_4 + 0.000111607142857143*G0_5 - 0.000446428571428571*G0_6 + 0.000223214285714286*G0_7 - 0.000446428571428572*G0_8 + 0.000223214285714285*G0_9 + 0.000111607142857142*G0_10 + 0.000111607142857143*G0_11 + 0.000111607142857144*G0_12 + 0.000111607142857143*G0_13 + 0.000223214285714285*G0_14 - 0.000446428571428571*G0_15 + 0.000669642857142856*G0_16 + 0.00133928571428571*G0_17 + 0.000669642857142856*G0_18 + 0.000669642857142855*G0_19; + A[2] = 7.44047619047619e-05*G0_0 + 7.44047619047615e-05*G0_1 + 0.000595238095238097*G0_2 + 7.44047619047617e-05*G0_3 - 0.000446428571428572*G0_4 + 0.000223214285714287*G0_5 + 0.000111607142857143*G0_6 + 0.000111607142857143*G0_7 + 0.000223214285714286*G0_8 - 0.000446428571428572*G0_9 + 0.000111607142857142*G0_10 + 0.000111607142857143*G0_11 + 0.000223214285714286*G0_12 - 0.000446428571428571*G0_13 + 0.000111607142857143*G0_14 + 0.000111607142857143*G0_15 + 0.000669642857142853*G0_16 + 0.000669642857142853*G0_17 + 0.00133928571428571*G0_18 + 0.000669642857142854*G0_19; + A[3] = 7.44047619047623e-05*G0_0 + 7.44047619047618e-05*G0_1 + 7.44047619047617e-05*G0_2 + 0.000595238095238098*G0_3 + 0.000223214285714286*G0_4 - 0.000446428571428571*G0_5 + 0.000223214285714286*G0_6 - 0.000446428571428571*G0_7 + 0.000111607142857142*G0_8 + 0.000111607142857143*G0_9 + 0.000223214285714285*G0_10 - 0.000446428571428572*G0_11 + 0.000111607142857143*G0_12 + 0.000111607142857143*G0_13 + 0.000111607142857143*G0_14 + 0.000111607142857143*G0_15 + 0.000669642857142858*G0_16 + 0.000669642857142858*G0_17 + 0.000669642857142858*G0_18 + 0.00133928571428571*G0_19; + A[4] = 0.000111607142857143*G0_0 + 0.000111607142857143*G0_1 - 0.000446428571428572*G0_2 + 0.000223214285714286*G0_3 + 0.00401785714285714*G0_4 - 0.00200892857142857*G0_5 - 0.00100446428571429*G0_7 - 0.00100446428571429*G0_8 + 0.00200892857142857*G0_9 - 0.00100446428571429*G0_11 - 0.00100446428571429*G0_12 + 0.00200892857142857*G0_13 - 0.00200892857142857*G0_18; + A[5] = 0.000111607142857143*G0_0 + 0.000111607142857143*G0_1 + 0.000223214285714287*G0_2 - 0.000446428571428571*G0_3 - 0.00200892857142857*G0_4 + 0.00401785714285715*G0_5 - 0.00100446428571429*G0_6 + 0.00200892857142857*G0_7 - 0.00100446428571429*G0_9 - 0.00100446428571429*G0_10 + 0.00200892857142857*G0_11 - 0.00100446428571429*G0_13 - 0.00200892857142857*G0_19; + A[6] = 0.000111607142857143*G0_0 - 0.000446428571428571*G0_1 + 0.000111607142857143*G0_2 + 0.000223214285714286*G0_3 - 0.00100446428571429*G0_5 + 0.00401785714285714*G0_6 - 0.00200892857142857*G0_7 + 0.00200892857142857*G0_8 - 0.00100446428571429*G0_9 - 0.00100446428571429*G0_11 - 0.00100446428571429*G0_14 + 0.00200892857142857*G0_15 - 0.00200892857142857*G0_17; + A[7] = 0.000111607142857142*G0_0 + 0.000223214285714286*G0_1 + 0.000111607142857143*G0_2 - 0.000446428571428571*G0_3 - 0.00100446428571429*G0_4 + 0.00200892857142857*G0_5 - 0.00200892857142857*G0_6 + 0.00401785714285715*G0_7 - 0.00100446428571429*G0_8 - 0.00100446428571429*G0_10 + 0.00200892857142857*G0_11 - 0.00100446428571429*G0_15 - 0.00200892857142858*G0_19; + A[8] = 0.000111607142857143*G0_0 - 0.000446428571428572*G0_1 + 0.000223214285714286*G0_2 + 0.000111607142857142*G0_3 - 0.00100446428571429*G0_4 + 0.00200892857142857*G0_6 - 0.00100446428571429*G0_7 + 0.00401785714285714*G0_8 - 0.00200892857142857*G0_9 - 0.00100446428571429*G0_13 - 0.00100446428571429*G0_14 + 0.00200892857142857*G0_15 - 0.00200892857142857*G0_17; + A[9] = 0.000111607142857143*G0_0 + 0.000223214285714285*G0_1 - 0.000446428571428572*G0_2 + 0.000111607142857143*G0_3 + 0.00200892857142857*G0_4 - 0.00100446428571429*G0_5 - 0.00100446428571429*G0_6 - 0.00200892857142857*G0_8 + 0.00401785714285714*G0_9 - 0.00100446428571429*G0_12 + 0.00200892857142857*G0_13 - 0.00100446428571429*G0_15 - 0.00200892857142857*G0_18; + A[10] = -0.000446428571428571*G0_0 + 0.000111607142857142*G0_1 + 0.000111607142857142*G0_2 + 0.000223214285714285*G0_3 - 0.00100446428571429*G0_5 - 0.00100446428571429*G0_7 + 0.00401785714285714*G0_10 - 0.00200892857142857*G0_11 + 0.00200892857142857*G0_12 - 0.00100446428571429*G0_13 + 0.00200892857142857*G0_14 - 0.00100446428571429*G0_15 - 0.00200892857142858*G0_16; + A[11] = 0.000223214285714285*G0_0 + 0.000111607142857143*G0_1 + 0.000111607142857143*G0_2 - 0.000446428571428572*G0_3 - 0.00100446428571429*G0_4 + 0.00200892857142857*G0_5 - 0.00100446428571429*G0_6 + 0.00200892857142857*G0_7 - 0.00200892857142857*G0_10 + 0.00401785714285715*G0_11 - 0.00100446428571429*G0_12 - 0.00100446428571429*G0_14 - 0.00200892857142858*G0_19; + A[12] = -0.000446428571428571*G0_0 + 0.000111607142857144*G0_1 + 0.000223214285714286*G0_2 + 0.000111607142857143*G0_3 - 0.00100446428571429*G0_4 - 0.00100446428571429*G0_9 + 0.00200892857142857*G0_10 - 0.00100446428571429*G0_11 + 0.00401785714285715*G0_12 - 0.00200892857142857*G0_13 + 0.00200892857142857*G0_14 - 0.00100446428571429*G0_15 - 0.00200892857142857*G0_16; + A[13] = 0.000223214285714286*G0_0 + 0.000111607142857143*G0_1 - 0.000446428571428571*G0_2 + 0.000111607142857143*G0_3 + 0.00200892857142857*G0_4 - 0.00100446428571429*G0_5 - 0.00100446428571429*G0_8 + 0.00200892857142857*G0_9 - 0.00100446428571429*G0_10 - 0.00200892857142857*G0_12 + 0.00401785714285715*G0_13 - 0.00100446428571429*G0_14 - 0.00200892857142857*G0_18; + A[14] = -0.000446428571428572*G0_0 + 0.000223214285714285*G0_1 + 0.000111607142857143*G0_2 + 0.000111607142857143*G0_3 - 0.00100446428571429*G0_6 - 0.00100446428571429*G0_8 + 0.00200892857142857*G0_10 - 0.00100446428571429*G0_11 + 0.00200892857142857*G0_12 - 0.00100446428571429*G0_13 + 0.00401785714285715*G0_14 - 0.00200892857142857*G0_15 - 0.00200892857142858*G0_16; + A[15] = 0.000223214285714285*G0_0 - 0.000446428571428571*G0_1 + 0.000111607142857143*G0_2 + 0.000111607142857143*G0_3 + 0.00200892857142857*G0_6 - 0.00100446428571429*G0_7 + 0.00200892857142857*G0_8 - 0.00100446428571429*G0_9 - 0.00100446428571429*G0_10 - 0.00100446428571429*G0_12 - 0.00200892857142857*G0_14 + 0.00401785714285715*G0_15 - 0.00200892857142857*G0_17; + A[16] = 0.00133928571428571*G0_0 + 0.000669642857142856*G0_1 + 0.000669642857142854*G0_2 + 0.000669642857142858*G0_3 - 0.00200892857142858*G0_10 - 0.00200892857142857*G0_12 - 0.00200892857142858*G0_14 + 0.0160714285714286*G0_16 + 0.00803571428571428*G0_17 + 0.0080357142857143*G0_18 + 0.00803571428571429*G0_19; + A[17] = 0.000669642857142859*G0_0 + 0.00133928571428571*G0_1 + 0.000669642857142853*G0_2 + 0.000669642857142858*G0_3 - 0.00200892857142857*G0_6 - 0.00200892857142857*G0_8 - 0.00200892857142857*G0_15 + 0.00803571428571428*G0_16 + 0.0160714285714286*G0_17 + 0.00803571428571429*G0_18 + 0.00803571428571428*G0_19; + A[18] = 0.00066964285714286*G0_0 + 0.000669642857142856*G0_1 + 0.00133928571428571*G0_2 + 0.000669642857142858*G0_3 - 0.00200892857142857*G0_4 - 0.00200892857142857*G0_9 - 0.00200892857142857*G0_13 + 0.0080357142857143*G0_16 + 0.00803571428571429*G0_17 + 0.0160714285714286*G0_18 + 0.00803571428571429*G0_19; + A[19] = 0.000669642857142859*G0_0 + 0.000669642857142855*G0_1 + 0.000669642857142854*G0_2 + 0.00133928571428571*G0_3 - 0.00200892857142857*G0_5 - 0.00200892857142857*G0_7 - 0.00200892857142858*G0_11 + 0.00803571428571429*G0_16 + 0.00803571428571428*G0_17 + 0.00803571428571429*G0_18 + 0.0160714285714286*G0_19; +} + +/// Constructor +poisson3d_3_form_0::poisson3d_3_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson3d_3_form_0::~poisson3d_3_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson3d_3_form_0::signature() const +{ + return "eb82495e12a51aa1d6d3ccc3c8bd04c5fb6c772d895bbae2c3b485c865584b4e47c210c2ebc8c4a8a2beb7eddf317a24dde78e0cd3b93b20b9bab87d2d7101f8"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson3d_3_form_0::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t poisson3d_3_form_0::num_coefficients() const +{ + return 0; +} + +/// Return the number of cell domains +std::size_t poisson3d_3_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson3d_3_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson3d_3_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson3d_3_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson3d_3_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson3d_3_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson3d_3_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson3d_3_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson3d_3_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson3d_3_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson3d_3_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_3_finite_element_0(); + break; + } + case 1: + { + return new poisson3d_3_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson3d_3_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_3_dofmap_0(); + break; + } + case 1: + { + return new poisson3d_3_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson3d_3_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson3d_3_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson3d_3_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson3d_3_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson3d_3_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson3d_3_form_0::create_default_cell_integral() const +{ + return new poisson3d_3_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson3d_3_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson3d_3_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson3d_3_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson3d_3_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +poisson3d_3_form_1::poisson3d_3_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson3d_3_form_1::~poisson3d_3_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson3d_3_form_1::signature() const +{ + return "f9405063f92a2988230194e9d18e524c1ee620ee1d76ecf7f88dd23e9553c1294fe4daae2ff79b61d09ac944a61874c56b1a10b111d117f93c964ea164cb2cd3"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson3d_3_form_1::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t poisson3d_3_form_1::num_coefficients() const +{ + return 1; +} + +/// Return the number of cell domains +std::size_t poisson3d_3_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson3d_3_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson3d_3_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson3d_3_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson3d_3_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson3d_3_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson3d_3_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson3d_3_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson3d_3_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson3d_3_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson3d_3_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_3_finite_element_0(); + break; + } + case 1: + { + return new poisson3d_3_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson3d_3_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_3_dofmap_0(); + break; + } + case 1: + { + return new poisson3d_3_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson3d_3_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson3d_3_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson3d_3_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson3d_3_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson3d_3_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson3d_3_form_1::create_default_cell_integral() const +{ + return new poisson3d_3_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson3d_3_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson3d_3_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson3d_3_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson3d_3_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/bench/fem/convergence/cpp/Poisson3D_3.h b/bench/fem/convergence/cpp/Poisson3D_3.h new file mode 100644 index 0000000..f1f8db0 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_3.h @@ -0,0 +1,985 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __POISSON3D_3_H +#define __POISSON3D_3_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson3d_3_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson3d_3_finite_element_0(); + + /// Destructor + virtual ~poisson3d_3_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson3d_3_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson3d_3_dofmap_0(); + + /// Destructor + virtual ~poisson3d_3_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson3d_3_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson3d_3_cell_integral_0_otherwise(); + + /// Destructor + virtual ~poisson3d_3_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson3d_3_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson3d_3_cell_integral_1_otherwise(); + + /// Destructor + virtual ~poisson3d_3_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson3d_3_form_0: public ufc::form +{ +public: + + /// Constructor + poisson3d_3_form_0(); + + /// Destructor + virtual ~poisson3d_3_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson3d_3_form_1: public ufc::form +{ +public: + + /// Constructor + poisson3d_3_form_1(); + + /// Destructor + virtual ~poisson3d_3_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson3D_3 +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson3d_3_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson3d_3_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_3_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_3_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson3d_3_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson3d_3_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson3d_3_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson3d_3_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson3d_3_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson3d_3_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/convergence/cpp/Poisson3D_3.ufl b/bench/fem/convergence/cpp/Poisson3D_3.ufl new file mode 100644 index 0000000..e105f8c --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_3.ufl @@ -0,0 +1,30 @@ +# Copyright (C) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2006-03-28 +# +# Poisson's equation in 3D for q = 3 + +element = FiniteElement("Lagrange", tetrahedron, 3) + +v = TestFunction(element) +U = TrialFunction(element) +f = Coefficient(element) + +a = v.dx(i)*U.dx(i)*dx +L = v*f*dx diff --git a/bench/fem/convergence/cpp/Poisson3D_4.cpp b/bench/fem/convergence/cpp/Poisson3D_4.cpp new file mode 100644 index 0000000..a5f9714 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_4.cpp @@ -0,0 +1,3054 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no-evaluate_basis: True +// no-evaluate_basis_derivatives: True +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#include "Poisson3D_4.h" + +/// Constructor +poisson3d_4_finite_element_0::poisson3d_4_finite_element_0() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +poisson3d_4_finite_element_0::~poisson3d_4_finite_element_0() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* poisson3d_4_finite_element_0::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 4, None)"; +} + +/// Return the cell shape +ufc::shape poisson3d_4_finite_element_0::cell_shape() const +{ + return ufc::tetrahedron; +} + +/// Return the topological dimension of the cell shape +std::size_t poisson3d_4_finite_element_0::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the cell shape +std::size_t poisson3d_4_finite_element_0::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the finite element function space +std::size_t poisson3d_4_finite_element_0::space_dimension() const +{ + return 35; +} + +/// Return the rank of the value space +std::size_t poisson3d_4_finite_element_0::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t poisson3d_4_finite_element_0::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void poisson3d_4_finite_element_0::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ +throw std::runtime_error("// Function evaluate_basis not generated (compiled with -fno-evaluate_basis)"); +} + +/// Evaluate all basis functions at given point x in cell +void poisson3d_4_finite_element_0::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 35; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void poisson3d_4_finite_element_0::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ +throw std::runtime_error("// Function evaluate_basis_derivatives not generated (compiled with -fno-evaluate_basis_derivatives)"); +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void poisson3d_4_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 35; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 4) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[81]; + for (unsigned int r = 0; r < 81; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 35; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double poisson3d_4_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.75*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.75*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.75*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.25*vertex_coordinates[6] + 0.75*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[7] + 0.75*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[8] + 0.75*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.75*vertex_coordinates[3] + 0.25*vertex_coordinates[9]; + y[1] = 0.75*vertex_coordinates[4] + 0.25*vertex_coordinates[10]; + y[2] = 0.75*vertex_coordinates[5] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.25*vertex_coordinates[3] + 0.75*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[4] + 0.75*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[5] + 0.75*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 10: + { + y[0] = 0.75*vertex_coordinates[3] + 0.25*vertex_coordinates[6]; + y[1] = 0.75*vertex_coordinates[4] + 0.25*vertex_coordinates[7]; + y[2] = 0.75*vertex_coordinates[5] + 0.25*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 12: + { + y[0] = 0.25*vertex_coordinates[3] + 0.75*vertex_coordinates[6]; + y[1] = 0.25*vertex_coordinates[4] + 0.75*vertex_coordinates[7]; + y[2] = 0.25*vertex_coordinates[5] + 0.75*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 13: + { + y[0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[9]; + y[1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[10]; + y[2] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 14: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 15: + { + y[0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 16: + { + y[0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[6]; + y[1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[7]; + y[2] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 17: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 18: + { + y[0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[6]; + y[1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[7]; + y[2] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 19: + { + y[0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[3]; + y[1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[4]; + y[2] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 20: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 21: + { + y[0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[3]; + y[1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[4]; + y[2] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 22: + { + y[0] = 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 23: + { + y[0] = 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[4] + 0.5*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[5] + 0.5*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 24: + { + y[0] = 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 25: + { + y[0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 26: + { + y[0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 27: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 28: + { + y[0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 29: + { + y[0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[4] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[5] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 30: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 31: + { + y[0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 32: + { + y[0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[6]; + y[1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[4] + 0.25*vertex_coordinates[7]; + y[2] = 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[5] + 0.25*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 33: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 34: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void poisson3d_4_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.75*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.75*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.75*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.25*vertex_coordinates[6] + 0.75*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[7] + 0.75*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[8] + 0.75*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.75*vertex_coordinates[3] + 0.25*vertex_coordinates[9]; + y[1] = 0.75*vertex_coordinates[4] + 0.25*vertex_coordinates[10]; + y[2] = 0.75*vertex_coordinates[5] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.25*vertex_coordinates[3] + 0.75*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[4] + 0.75*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[5] + 0.75*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + y[0] = 0.75*vertex_coordinates[3] + 0.25*vertex_coordinates[6]; + y[1] = 0.75*vertex_coordinates[4] + 0.25*vertex_coordinates[7]; + y[2] = 0.75*vertex_coordinates[5] + 0.25*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[10] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[11] = vals[0]; + y[0] = 0.25*vertex_coordinates[3] + 0.75*vertex_coordinates[6]; + y[1] = 0.25*vertex_coordinates[4] + 0.75*vertex_coordinates[7]; + y[2] = 0.25*vertex_coordinates[5] + 0.75*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[12] = vals[0]; + y[0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[9]; + y[1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[10]; + y[2] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[13] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[14] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[15] = vals[0]; + y[0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[6]; + y[1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[7]; + y[2] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[16] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[17] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[6]; + y[1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[7]; + y[2] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[18] = vals[0]; + y[0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[3]; + y[1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[4]; + y[2] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[19] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[20] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[3]; + y[1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[4]; + y[2] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[21] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[22] = vals[0]; + y[0] = 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[4] + 0.5*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[5] + 0.5*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[23] = vals[0]; + y[0] = 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[24] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[25] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[26] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[27] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[28] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[4] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[5] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[29] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[30] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[31] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[6]; + y[1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[4] + 0.25*vertex_coordinates[7]; + y[2] = 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[5] + 0.25*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[32] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[33] = vals[0]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[34] = vals[0]; +} + +/// Interpolate vertex values from dof values +void poisson3d_4_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void poisson3d_4_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void poisson3d_4_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t poisson3d_4_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* poisson3d_4_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* poisson3d_4_finite_element_0::create() const +{ + return new poisson3d_4_finite_element_0(); +} + +/// Constructor +poisson3d_4_dofmap_0::poisson3d_4_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +poisson3d_4_dofmap_0::~poisson3d_4_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* poisson3d_4_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 4, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool poisson3d_4_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + case 3: + { + return true; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t poisson3d_4_dofmap_0::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t poisson3d_4_dofmap_0::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the global finite element function space +std::size_t poisson3d_4_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0] + 3*num_global_entities[1] + 3*num_global_entities[2] + num_global_entities[3]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t poisson3d_4_dofmap_0::local_dimension() const +{ + return 35; +} + +/// Return the number of dofs on each cell facet +std::size_t poisson3d_4_dofmap_0::num_facet_dofs() const +{ + return 15; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t poisson3d_4_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 3; + break; + } + case 2: + { + return 3; + break; + } + case 3: + { + return 1; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void poisson3d_4_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + 3*c.entity_indices[1][0]; + dofs[5] = offset + 3*c.entity_indices[1][0] + 1; + dofs[6] = offset + 3*c.entity_indices[1][0] + 2; + dofs[7] = offset + 3*c.entity_indices[1][1]; + dofs[8] = offset + 3*c.entity_indices[1][1] + 1; + dofs[9] = offset + 3*c.entity_indices[1][1] + 2; + dofs[10] = offset + 3*c.entity_indices[1][2]; + dofs[11] = offset + 3*c.entity_indices[1][2] + 1; + dofs[12] = offset + 3*c.entity_indices[1][2] + 2; + dofs[13] = offset + 3*c.entity_indices[1][3]; + dofs[14] = offset + 3*c.entity_indices[1][3] + 1; + dofs[15] = offset + 3*c.entity_indices[1][3] + 2; + dofs[16] = offset + 3*c.entity_indices[1][4]; + dofs[17] = offset + 3*c.entity_indices[1][4] + 1; + dofs[18] = offset + 3*c.entity_indices[1][4] + 2; + dofs[19] = offset + 3*c.entity_indices[1][5]; + dofs[20] = offset + 3*c.entity_indices[1][5] + 1; + dofs[21] = offset + 3*c.entity_indices[1][5] + 2; + offset += 3*num_global_entities[1]; + dofs[22] = offset + 3*c.entity_indices[2][0]; + dofs[23] = offset + 3*c.entity_indices[2][0] + 1; + dofs[24] = offset + 3*c.entity_indices[2][0] + 2; + dofs[25] = offset + 3*c.entity_indices[2][1]; + dofs[26] = offset + 3*c.entity_indices[2][1] + 1; + dofs[27] = offset + 3*c.entity_indices[2][1] + 2; + dofs[28] = offset + 3*c.entity_indices[2][2]; + dofs[29] = offset + 3*c.entity_indices[2][2] + 1; + dofs[30] = offset + 3*c.entity_indices[2][2] + 2; + dofs[31] = offset + 3*c.entity_indices[2][3]; + dofs[32] = offset + 3*c.entity_indices[2][3] + 1; + dofs[33] = offset + 3*c.entity_indices[2][3] + 2; + offset += 3*num_global_entities[2]; + dofs[34] = offset + c.entity_indices[3][0]; + offset += num_global_entities[3]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void poisson3d_4_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 7; + dofs[7] = 8; + dofs[8] = 9; + dofs[9] = 10; + dofs[10] = 11; + dofs[11] = 12; + dofs[12] = 22; + dofs[13] = 23; + dofs[14] = 24; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 13; + dofs[7] = 14; + dofs[8] = 15; + dofs[9] = 16; + dofs[10] = 17; + dofs[11] = 18; + dofs[12] = 25; + dofs[13] = 26; + dofs[14] = 27; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + dofs[6] = 13; + dofs[7] = 14; + dofs[8] = 15; + dofs[9] = 19; + dofs[10] = 20; + dofs[11] = 21; + dofs[12] = 28; + dofs[13] = 29; + dofs[14] = 30; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 10; + dofs[4] = 11; + dofs[5] = 12; + dofs[6] = 16; + dofs[7] = 17; + dofs[8] = 18; + dofs[9] = 19; + dofs[10] = 20; + dofs[11] = 21; + dofs[12] = 31; + dofs[13] = 32; + dofs[14] = 33; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void poisson3d_4_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + if (i > 5) + { + throw std::runtime_error("i is larger than number of entities (5)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 4; + dofs[1] = 5; + dofs[2] = 6; + break; + } + case 1: + { + dofs[0] = 7; + dofs[1] = 8; + dofs[2] = 9; + break; + } + case 2: + { + dofs[0] = 10; + dofs[1] = 11; + dofs[2] = 12; + break; + } + case 3: + { + dofs[0] = 13; + dofs[1] = 14; + dofs[2] = 15; + break; + } + case 4: + { + dofs[0] = 16; + dofs[1] = 17; + dofs[2] = 18; + break; + } + case 5: + { + dofs[0] = 19; + dofs[1] = 20; + dofs[2] = 21; + break; + } + } + + break; + } + case 2: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 22; + dofs[1] = 23; + dofs[2] = 24; + break; + } + case 1: + { + dofs[0] = 25; + dofs[1] = 26; + dofs[2] = 27; + break; + } + case 2: + { + dofs[0] = 28; + dofs[1] = 29; + dofs[2] = 30; + break; + } + case 3: + { + dofs[0] = 31; + dofs[1] = 32; + dofs[2] = 33; + break; + } + } + + break; + } + case 3: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 34; + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void poisson3d_4_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = 0.75*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[4][1] = 0.75*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[4][2] = 0.75*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[5][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[6][0] = 0.25*vertex_coordinates[6] + 0.75*vertex_coordinates[9]; + dof_coordinates[6][1] = 0.25*vertex_coordinates[7] + 0.75*vertex_coordinates[10]; + dof_coordinates[6][2] = 0.25*vertex_coordinates[8] + 0.75*vertex_coordinates[11]; + dof_coordinates[7][0] = 0.75*vertex_coordinates[3] + 0.25*vertex_coordinates[9]; + dof_coordinates[7][1] = 0.75*vertex_coordinates[4] + 0.25*vertex_coordinates[10]; + dof_coordinates[7][2] = 0.75*vertex_coordinates[5] + 0.25*vertex_coordinates[11]; + dof_coordinates[8][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[8][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[8][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[9][0] = 0.25*vertex_coordinates[3] + 0.75*vertex_coordinates[9]; + dof_coordinates[9][1] = 0.25*vertex_coordinates[4] + 0.75*vertex_coordinates[10]; + dof_coordinates[9][2] = 0.25*vertex_coordinates[5] + 0.75*vertex_coordinates[11]; + dof_coordinates[10][0] = 0.75*vertex_coordinates[3] + 0.25*vertex_coordinates[6]; + dof_coordinates[10][1] = 0.75*vertex_coordinates[4] + 0.25*vertex_coordinates[7]; + dof_coordinates[10][2] = 0.75*vertex_coordinates[5] + 0.25*vertex_coordinates[8]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[11][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[12][0] = 0.25*vertex_coordinates[3] + 0.75*vertex_coordinates[6]; + dof_coordinates[12][1] = 0.25*vertex_coordinates[4] + 0.75*vertex_coordinates[7]; + dof_coordinates[12][2] = 0.25*vertex_coordinates[5] + 0.75*vertex_coordinates[8]; + dof_coordinates[13][0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[9]; + dof_coordinates[13][1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[10]; + dof_coordinates[13][2] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[11]; + dof_coordinates[14][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[14][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[14][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[15][0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[9]; + dof_coordinates[15][1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[10]; + dof_coordinates[15][2] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[11]; + dof_coordinates[16][0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[6]; + dof_coordinates[16][1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[7]; + dof_coordinates[16][2] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[8]; + dof_coordinates[17][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[17][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[17][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[18][0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[6]; + dof_coordinates[18][1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[7]; + dof_coordinates[18][2] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[8]; + dof_coordinates[19][0] = 0.75*vertex_coordinates[0] + 0.25*vertex_coordinates[3]; + dof_coordinates[19][1] = 0.75*vertex_coordinates[1] + 0.25*vertex_coordinates[4]; + dof_coordinates[19][2] = 0.75*vertex_coordinates[2] + 0.25*vertex_coordinates[5]; + dof_coordinates[20][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[20][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[20][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[21][0] = 0.25*vertex_coordinates[0] + 0.75*vertex_coordinates[3]; + dof_coordinates[21][1] = 0.25*vertex_coordinates[1] + 0.75*vertex_coordinates[4]; + dof_coordinates[21][2] = 0.25*vertex_coordinates[2] + 0.75*vertex_coordinates[5]; + dof_coordinates[22][0] = 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[22][1] = 0.5*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[22][2] = 0.5*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + dof_coordinates[23][0] = 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[23][1] = 0.25*vertex_coordinates[4] + 0.5*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[23][2] = 0.25*vertex_coordinates[5] + 0.5*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + dof_coordinates[24][0] = 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[24][1] = 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[24][2] = 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[25][0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[25][1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[25][2] = 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + dof_coordinates[26][0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[26][1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[26][2] = 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + dof_coordinates[27][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[27][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[27][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[28][0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[9]; + dof_coordinates[28][1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[10]; + dof_coordinates[28][2] = 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[11]; + dof_coordinates[29][0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[9]; + dof_coordinates[29][1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[4] + 0.25*vertex_coordinates[10]; + dof_coordinates[29][2] = 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[5] + 0.25*vertex_coordinates[11]; + dof_coordinates[30][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[30][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[30][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[31][0] = 0.5*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6]; + dof_coordinates[31][1] = 0.5*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7]; + dof_coordinates[31][2] = 0.5*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8]; + dof_coordinates[32][0] = 0.25*vertex_coordinates[0] + 0.5*vertex_coordinates[3] + 0.25*vertex_coordinates[6]; + dof_coordinates[32][1] = 0.25*vertex_coordinates[1] + 0.5*vertex_coordinates[4] + 0.25*vertex_coordinates[7]; + dof_coordinates[32][2] = 0.25*vertex_coordinates[2] + 0.5*vertex_coordinates[5] + 0.25*vertex_coordinates[8]; + dof_coordinates[33][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[33][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[33][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[34][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[34][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[34][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t poisson3d_4_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* poisson3d_4_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* poisson3d_4_dofmap_0::create() const +{ + return new poisson3d_4_dofmap_0(); +} + +/// Constructor +poisson3d_4_cell_integral_0_otherwise::poisson3d_4_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson3d_4_cell_integral_0_otherwise::~poisson3d_4_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson3d_4_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson3d_4_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 27 + // Number of operations (multiply-add pairs) for tensor contraction: 6311 + // Total number of operations (multiply-add pairs): 6341 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + const double G0_0_1 = det*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + const double G0_0_2 = det*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + const double G0_1_0 = det*(K[3]*K[0] + K[4]*K[1] + K[5]*K[2]); + const double G0_1_1 = det*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + const double G0_1_2 = det*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + const double G0_2_0 = det*(K[6]*K[0] + K[7]*K[1] + K[8]*K[2]); + const double G0_2_1 = det*(K[6]*K[3] + K[7]*K[4] + K[8]*K[5]); + const double G0_2_2 = det*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + + // Compute element tensor + A[0] = 0.0379188712522047*G0_0_0 + 0.0379188712522047*G0_0_1 + 0.0379188712522047*G0_0_2 + 0.0379188712522047*G0_1_0 + 0.0379188712522047*G0_1_1 + 0.0379188712522047*G0_1_2 + 0.0379188712522047*G0_2_0 + 0.0379188712522047*G0_2_1 + 0.0379188712522048*G0_2_2; + A[1] = 0.00511463844797185*G0_0_0 + 0.00511463844797184*G0_1_0 + 0.00511463844797185*G0_2_0; + A[2] = 0.00511463844797184*G0_0_1 + 0.00511463844797184*G0_1_1 + 0.00511463844797184*G0_2_1; + A[3] = 0.00511463844797178*G0_0_2 + 0.00511463844797179*G0_1_2 + 0.00511463844797181*G0_2_2; + A[4] = 0.00776014109347431*G0_0_1 + 0.00776014109347443*G0_0_2 + 0.00776014109347433*G0_1_1 + 0.00776014109347443*G0_1_2 + 0.00776014109347432*G0_2_1 + 0.00776014109347443*G0_2_2; + A[5] = 0.00511463844797182*G0_0_1 + 0.00511463844797174*G0_0_2 + 0.00511463844797182*G0_1_1 + 0.00511463844797176*G0_1_2 + 0.00511463844797184*G0_2_1 + 0.00511463844797177*G0_2_2; + A[6] = 0.00776014109347439*G0_0_1 + 0.00776014109347442*G0_0_2 + 0.00776014109347441*G0_1_1 + 0.00776014109347441*G0_1_2 + 0.00776014109347439*G0_2_1 + 0.00776014109347437*G0_2_2; + A[7] = 0.00776014109347427*G0_0_0 + 0.00776014109347443*G0_0_2 + 0.0077601410934743*G0_1_0 + 0.00776014109347443*G0_1_2 + 0.00776014109347429*G0_2_0 + 0.00776014109347443*G0_2_2; + A[8] = 0.00511463844797186*G0_0_0 + 0.00511463844797174*G0_0_2 + 0.00511463844797183*G0_1_0 + 0.00511463844797174*G0_1_2 + 0.00511463844797186*G0_2_0 + 0.00511463844797178*G0_2_2; + A[9] = 0.00776014109347439*G0_0_0 + 0.00776014109347442*G0_0_2 + 0.00776014109347441*G0_1_0 + 0.00776014109347441*G0_1_2 + 0.00776014109347439*G0_2_0 + 0.00776014109347436*G0_2_2; + A[10] = 0.00776014109347433*G0_0_0 + 0.00776014109347442*G0_0_1 + 0.00776014109347435*G0_1_0 + 0.00776014109347442*G0_1_1 + 0.00776014109347434*G0_2_0 + 0.00776014109347442*G0_2_1; + A[11] = 0.00511463844797171*G0_0_0 + 0.00511463844797175*G0_0_1 + 0.0051146384479717*G0_1_0 + 0.00511463844797174*G0_1_1 + 0.00511463844797168*G0_2_0 + 0.00511463844797172*G0_2_1; + A[12] = 0.00776014109347443*G0_0_0 + 0.00776014109347435*G0_0_1 + 0.00776014109347443*G0_1_0 + 0.00776014109347434*G0_1_1 + 0.00776014109347443*G0_2_0 + 0.00776014109347435*G0_2_1; + A[13] = -0.0246913580246911*G0_0_0 - 0.0246913580246912*G0_0_1 - 0.0705467372134041*G0_0_2 - 0.0246913580246911*G0_1_0 - 0.0246913580246912*G0_1_1 - 0.0705467372134041*G0_1_2 - 0.0246913580246911*G0_2_0 - 0.0246913580246912*G0_2_1 - 0.0705467372134041*G0_2_2; + A[14] = 0.0202821869488535*G0_0_0 + 0.0202821869488535*G0_0_1 + 0.052910052910053*G0_0_2 + 0.0202821869488535*G0_1_0 + 0.0202821869488535*G0_1_1 + 0.052910052910053*G0_1_2 + 0.0202821869488535*G0_2_0 + 0.0202821869488535*G0_2_1 + 0.0529100529100531*G0_2_2; + A[15] = -0.00776014109347439*G0_0_0 - 0.00776014109347439*G0_0_1 - 0.0253968253968254*G0_0_2 - 0.00776014109347441*G0_1_0 - 0.00776014109347442*G0_1_1 - 0.0253968253968254*G0_1_2 - 0.00776014109347438*G0_2_0 - 0.00776014109347439*G0_2_1 - 0.0253968253968254*G0_2_2; + A[16] = -0.0246913580246912*G0_0_0 - 0.0705467372134042*G0_0_1 - 0.0246913580246912*G0_0_2 - 0.0246913580246912*G0_1_0 - 0.0705467372134042*G0_1_1 - 0.0246913580246912*G0_1_2 - 0.0246913580246912*G0_2_0 - 0.0705467372134042*G0_2_1 - 0.0246913580246913*G0_2_2; + A[17] = 0.0202821869488536*G0_0_0 + 0.0529100529100531*G0_0_1 + 0.0202821869488536*G0_0_2 + 0.0202821869488535*G0_1_0 + 0.0529100529100531*G0_1_1 + 0.0202821869488535*G0_1_2 + 0.0202821869488536*G0_2_0 + 0.0529100529100531*G0_2_1 + 0.0202821869488536*G0_2_2; + A[18] = -0.00776014109347444*G0_0_0 - 0.0253968253968255*G0_0_1 - 0.00776014109347443*G0_0_2 - 0.00776014109347444*G0_1_0 - 0.0253968253968255*G0_1_1 - 0.00776014109347443*G0_1_2 - 0.00776014109347444*G0_2_0 - 0.0253968253968255*G0_2_1 - 0.00776014109347444*G0_2_2; + A[19] = -0.0705467372134042*G0_0_0 - 0.0246913580246913*G0_0_1 - 0.0246913580246913*G0_0_2 - 0.0705467372134042*G0_1_0 - 0.0246913580246913*G0_1_1 - 0.0246913580246913*G0_1_2 - 0.0705467372134042*G0_2_0 - 0.0246913580246913*G0_2_1 - 0.0246913580246913*G0_2_2; + A[20] = 0.0529100529100532*G0_0_0 + 0.0202821869488536*G0_0_1 + 0.0202821869488535*G0_0_2 + 0.0529100529100532*G0_1_0 + 0.0202821869488536*G0_1_1 + 0.0202821869488536*G0_1_2 + 0.0529100529100532*G0_2_0 + 0.0202821869488536*G0_2_1 + 0.0202821869488536*G0_2_2; + A[21] = -0.0253968253968256*G0_0_0 - 0.0077601410934744*G0_0_1 - 0.00776014109347439*G0_0_2 - 0.0253968253968256*G0_1_0 - 0.00776014109347441*G0_1_1 - 0.00776014109347439*G0_1_2 - 0.0253968253968256*G0_2_0 - 0.0077601410934744*G0_2_1 - 0.00776014109347439*G0_2_2; + A[22] = 0.0183421516754852*G0_0_0 + 0.0183421516754849*G0_0_1 + 0.0183421516754849*G0_0_2 + 0.0183421516754852*G0_1_0 + 0.0183421516754848*G0_1_1 + 0.0183421516754848*G0_1_2 + 0.0183421516754852*G0_2_0 + 0.0183421516754849*G0_2_1 + 0.0183421516754848*G0_2_2; + A[23] = 0.0183421516754849*G0_0_0 + 0.0183421516754853*G0_0_1 + 0.018342151675485*G0_0_2 + 0.018342151675485*G0_1_0 + 0.0183421516754853*G0_1_1 + 0.018342151675485*G0_1_2 + 0.018342151675485*G0_2_0 + 0.0183421516754853*G0_2_1 + 0.018342151675485*G0_2_2; + A[24] = 0.0183421516754852*G0_0_0 + 0.0183421516754852*G0_0_1 + 0.0183421516754854*G0_0_2 + 0.0183421516754853*G0_1_0 + 0.0183421516754852*G0_1_1 + 0.0183421516754855*G0_1_2 + 0.0183421516754853*G0_2_0 + 0.0183421516754852*G0_2_1 + 0.0183421516754856*G0_2_2; + A[25] = 0.0493827160493826*G0_0_0 + 0.042328042328042*G0_0_1 + 0.0423280423280421*G0_0_2 + 0.0493827160493825*G0_1_0 + 0.042328042328042*G0_1_1 + 0.0423280423280421*G0_1_2 + 0.0493827160493825*G0_2_0 + 0.042328042328042*G0_2_1 + 0.042328042328042*G0_2_2; + A[26] = -0.0183421516754849*G0_0_0 - 0.0253968253968252*G0_0_1 - 0.0253968253968254*G0_0_2 - 0.018342151675485*G0_1_0 - 0.0253968253968252*G0_1_1 - 0.0253968253968254*G0_1_2 - 0.018342151675485*G0_2_0 - 0.0253968253968252*G0_2_1 - 0.0253968253968254*G0_2_2; + A[27] = -0.0183421516754852*G0_0_0 - 0.0253968253968253*G0_0_1 - 0.0253968253968252*G0_0_2 - 0.0183421516754852*G0_1_0 - 0.0253968253968253*G0_1_1 - 0.0253968253968252*G0_1_2 - 0.0183421516754852*G0_2_0 - 0.0253968253968253*G0_2_1 - 0.0253968253968252*G0_2_2; + A[28] = 0.042328042328042*G0_0_0 + 0.0493827160493825*G0_0_1 + 0.0423280423280422*G0_0_2 + 0.042328042328042*G0_1_0 + 0.0493827160493826*G0_1_1 + 0.0423280423280422*G0_1_2 + 0.042328042328042*G0_2_0 + 0.0493827160493825*G0_2_1 + 0.0423280423280421*G0_2_2; + A[29] = -0.0253968253968251*G0_0_0 - 0.0183421516754849*G0_0_1 - 0.0253968253968253*G0_0_2 - 0.0253968253968251*G0_1_0 - 0.0183421516754848*G0_1_1 - 0.0253968253968253*G0_1_2 - 0.0253968253968251*G0_2_0 - 0.0183421516754849*G0_2_1 - 0.0253968253968254*G0_2_2; + A[30] = -0.0253968253968253*G0_0_0 - 0.0183421516754853*G0_0_1 - 0.0253968253968253*G0_0_2 - 0.0253968253968253*G0_1_0 - 0.0183421516754853*G0_1_1 - 0.0253968253968253*G0_1_2 - 0.0253968253968253*G0_2_0 - 0.0183421516754853*G0_2_1 - 0.0253968253968252*G0_2_2; + A[31] = 0.0423280423280421*G0_0_0 + 0.0423280423280422*G0_0_1 + 0.0493827160493826*G0_0_2 + 0.0423280423280421*G0_1_0 + 0.0423280423280422*G0_1_1 + 0.0493827160493826*G0_1_2 + 0.0423280423280421*G0_2_0 + 0.0423280423280422*G0_2_1 + 0.0493827160493826*G0_2_2; + A[32] = -0.0253968253968252*G0_0_0 - 0.0253968253968253*G0_0_1 - 0.0183421516754849*G0_0_2 - 0.0253968253968252*G0_1_0 - 0.0253968253968254*G0_1_1 - 0.0183421516754849*G0_1_2 - 0.0253968253968252*G0_2_0 - 0.0253968253968253*G0_2_1 - 0.0183421516754848*G0_2_2; + A[33] = -0.0253968253968253*G0_0_0 - 0.0253968253968253*G0_0_1 - 0.0183421516754849*G0_0_2 - 0.0253968253968253*G0_1_0 - 0.0253968253968252*G0_1_1 - 0.018342151675485*G0_1_2 - 0.0253968253968253*G0_2_0 - 0.0253968253968253*G0_2_1 - 0.0183421516754849*G0_2_2; + A[34] = -0.0677248677248679*G0_0_0 - 0.0677248677248678*G0_0_1 - 0.067724867724868*G0_0_2 - 0.0677248677248678*G0_1_0 - 0.0677248677248679*G0_1_1 - 0.067724867724868*G0_1_2 - 0.0677248677248678*G0_2_0 - 0.0677248677248678*G0_2_1 - 0.0677248677248681*G0_2_2; + A[35] = 0.00511463844797185*G0_0_0 + 0.00511463844797184*G0_0_1 + 0.00511463844797185*G0_0_2; + A[36] = 0.0379188712522048*G0_0_0; + A[37] = -0.0051146384479718*G0_0_1; + A[38] = -0.00511463844797184*G0_0_2; + A[39] = -0.00776014109347447*G0_0_1 - 0.00776014109347444*G0_0_2; + A[40] = -0.00511463844797174*G0_0_1 - 0.00511463844797182*G0_0_2; + A[41] = -0.00776014109347443*G0_0_1 - 0.00776014109347433*G0_0_2; + A[42] = -0.0246913580246914*G0_0_0 + 0.0458553791887129*G0_0_2; + A[43] = 0.0202821869488536*G0_0_0 - 0.0326278659611997*G0_0_2; + A[44] = -0.00776014109347442*G0_0_0 + 0.0176366843033512*G0_0_2; + A[45] = -0.0246913580246913*G0_0_0 + 0.0458553791887129*G0_0_1; + A[46] = 0.0202821869488536*G0_0_0 - 0.0326278659611995*G0_0_1; + A[47] = -0.00776014109347445*G0_0_0 + 0.017636684303351*G0_0_1; + A[48] = 0.0077601410934745*G0_0_0 + 0.00776014109347449*G0_0_1; + A[49] = 0.00511463844797171*G0_0_0 + 0.0051146384479717*G0_0_1; + A[50] = 0.00776014109347442*G0_0_0 + 0.00776014109347442*G0_0_1; + A[51] = 0.00776014109347446*G0_0_0 + 0.00776014109347445*G0_0_2; + A[52] = 0.00511463844797175*G0_0_0 + 0.00511463844797175*G0_0_2; + A[53] = 0.00776014109347445*G0_0_0 + 0.00776014109347447*G0_0_2; + A[54] = -0.0253968253968256*G0_0_0 - 0.017636684303351*G0_0_1 - 0.017636684303351*G0_0_2; + A[55] = 0.0529100529100531*G0_0_0 + 0.0326278659611996*G0_0_1 + 0.0326278659611995*G0_0_2; + A[56] = -0.0705467372134042*G0_0_0 - 0.0458553791887129*G0_0_1 - 0.0458553791887129*G0_0_2; + A[57] = 0.0493827160493828*G0_0_0 + 0.00705467372134029*G0_0_1 + 0.0070546737213405*G0_0_2; + A[58] = -0.0183421516754851*G0_0_0 + 0.00705467372134041*G0_0_1 + 0.00705467372134037*G0_0_2; + A[59] = -0.0183421516754848*G0_0_0 + 0.00705467372134061*G0_0_1 + 0.00705467372134052*G0_0_2; + A[60] = 0.018342151675485*G0_0_0; + A[61] = 0.0183421516754851*G0_0_0; + A[62] = 0.0183421516754848*G0_0_0; + A[63] = -0.0253968253968255*G0_0_0 - 0.00705467372134048*G0_0_1; + A[64] = 0.0423280423280424*G0_0_0 - 0.00705467372134026*G0_0_1; + A[65] = -0.0253968253968254*G0_0_0 - 0.00705467372134063*G0_0_1; + A[66] = -0.0253968253968254*G0_0_0 - 0.00705467372134037*G0_0_2; + A[67] = 0.0423280423280422*G0_0_0 - 0.00705467372134043*G0_0_2; + A[68] = -0.0253968253968254*G0_0_0 - 0.00705467372134036*G0_0_2; + A[69] = -0.0677248677248677*G0_0_0; + A[70] = 0.00511463844797184*G0_1_0 + 0.00511463844797184*G0_1_1 + 0.00511463844797184*G0_1_2; + A[71] = -0.00511463844797179*G0_1_0; + A[72] = 0.0379188712522048*G0_1_1; + A[73] = -0.00511463844797181*G0_1_2; + A[74] = -0.0246913580246914*G0_1_1 + 0.0458553791887129*G0_1_2; + A[75] = 0.0202821869488536*G0_1_1 - 0.0326278659611996*G0_1_2; + A[76] = -0.00776014109347458*G0_1_1 + 0.0176366843033509*G0_1_2; + A[77] = -0.00776014109347446*G0_1_0 - 0.00776014109347441*G0_1_2; + A[78] = -0.00511463844797169*G0_1_0 - 0.00511463844797175*G0_1_2; + A[79] = -0.00776014109347458*G0_1_0 - 0.00776014109347452*G0_1_2; + A[80] = 0.0176366843033511*G0_1_0 - 0.00776014109347443*G0_1_1; + A[81] = -0.0326278659611996*G0_1_0 + 0.0202821869488536*G0_1_1; + A[82] = 0.0458553791887128*G0_1_0 - 0.0246913580246914*G0_1_1; + A[83] = 0.00776014109347445*G0_1_0 + 0.00776014109347444*G0_1_1; + A[84] = 0.00511463844797169*G0_1_0 + 0.00511463844797171*G0_1_1; + A[85] = 0.00776014109347457*G0_1_0 + 0.00776014109347458*G0_1_1; + A[86] = -0.017636684303351*G0_1_0 - 0.0253968253968256*G0_1_1 - 0.017636684303351*G0_1_2; + A[87] = 0.0326278659611995*G0_1_0 + 0.0529100529100532*G0_1_1 + 0.0326278659611995*G0_1_2; + A[88] = -0.0458553791887129*G0_1_0 - 0.0705467372134042*G0_1_1 - 0.0458553791887129*G0_1_2; + A[89] = 0.00776014109347447*G0_1_1 + 0.00776014109347447*G0_1_2; + A[90] = 0.0051146384479718*G0_1_1 + 0.0051146384479718*G0_1_2; + A[91] = 0.00776014109347443*G0_1_1 + 0.00776014109347443*G0_1_2; + A[92] = 0.00705467372134048*G0_1_0 - 0.0183421516754849*G0_1_1 + 0.00705467372134043*G0_1_2; + A[93] = 0.00705467372134035*G0_1_0 + 0.0493827160493827*G0_1_1 + 0.00705467372134039*G0_1_2; + A[94] = 0.00705467372134015*G0_1_0 - 0.0183421516754851*G0_1_1 + 0.00705467372134029*G0_1_2; + A[95] = -0.0070546737213406*G0_1_0 - 0.0253968253968254*G0_1_1; + A[96] = -0.00705467372134032*G0_1_0 + 0.0423280423280423*G0_1_1; + A[97] = -0.00705467372134016*G0_1_0 - 0.0253968253968253*G0_1_1; + A[98] = 0.0183421516754848*G0_1_1; + A[99] = 0.0183421516754849*G0_1_1; + A[100] = 0.0183421516754851*G0_1_1; + A[101] = -0.0253968253968254*G0_1_1 - 0.00705467372134047*G0_1_2; + A[102] = -0.0253968253968254*G0_1_1 - 0.00705467372134051*G0_1_2; + A[103] = 0.0423280423280423*G0_1_1 - 0.00705467372134034*G0_1_2; + A[104] = -0.0677248677248675*G0_1_1; + A[105] = 0.00511463844797178*G0_2_0 + 0.00511463844797179*G0_2_1 + 0.00511463844797181*G0_2_2; + A[106] = -0.00511463844797184*G0_2_0; + A[107] = -0.00511463844797181*G0_2_1; + A[108] = 0.0379188712522048*G0_2_2; + A[109] = 0.0176366843033511*G0_2_1 - 0.00776014109347449*G0_2_2; + A[110] = -0.0326278659611996*G0_2_1 + 0.0202821869488537*G0_2_2; + A[111] = 0.045855379188713*G0_2_1 - 0.0246913580246914*G0_2_2; + A[112] = 0.0176366843033511*G0_2_0 - 0.00776014109347452*G0_2_2; + A[113] = -0.0326278659611996*G0_2_0 + 0.0202821869488537*G0_2_2; + A[114] = 0.045855379188713*G0_2_0 - 0.0246913580246915*G0_2_2; + A[115] = -0.00776014109347448*G0_2_0 - 0.00776014109347453*G0_2_1; + A[116] = -0.00511463844797174*G0_2_0 - 0.00511463844797171*G0_2_1; + A[117] = -0.00776014109347446*G0_2_0 - 0.00776014109347445*G0_2_1; + A[118] = -0.0176366843033511*G0_2_0 - 0.0176366843033511*G0_2_1 - 0.0253968253968255*G0_2_2; + A[119] = 0.0326278659611996*G0_2_0 + 0.0326278659611997*G0_2_1 + 0.0529100529100532*G0_2_2; + A[120] = -0.045855379188713*G0_2_0 - 0.045855379188713*G0_2_1 - 0.0705467372134043*G0_2_2; + A[121] = 0.00776014109347442*G0_2_0 + 0.0077601410934744*G0_2_2; + A[122] = 0.00511463844797173*G0_2_0 + 0.00511463844797174*G0_2_2; + A[123] = 0.00776014109347446*G0_2_0 + 0.00776014109347446*G0_2_2; + A[124] = 0.0077601410934744*G0_2_1 + 0.0077601410934744*G0_2_2; + A[125] = 0.00511463844797174*G0_2_1 + 0.00511463844797175*G0_2_2; + A[126] = 0.00776014109347453*G0_2_1 + 0.00776014109347454*G0_2_2; + A[127] = 0.00705467372134042*G0_2_0 + 0.00705467372134034*G0_2_1 - 0.0183421516754851*G0_2_2; + A[128] = 0.00705467372134039*G0_2_0 + 0.00705467372134051*G0_2_1 - 0.0183421516754849*G0_2_2; + A[129] = 0.00705467372134039*G0_2_0 + 0.00705467372134029*G0_2_1 + 0.0493827160493827*G0_2_2; + A[130] = -0.00705467372134034*G0_2_0 - 0.0253968253968253*G0_2_2; + A[131] = -0.00705467372134041*G0_2_0 - 0.0253968253968254*G0_2_2; + A[132] = -0.00705467372134039*G0_2_0 + 0.0423280423280422*G0_2_2; + A[133] = -0.00705467372134036*G0_2_1 - 0.0253968253968253*G0_2_2; + A[134] = -0.00705467372134038*G0_2_1 - 0.0253968253968254*G0_2_2; + A[135] = -0.00705467372134029*G0_2_1 + 0.0423280423280423*G0_2_2; + A[136] = 0.018342151675485*G0_2_2; + A[137] = 0.0183421516754851*G0_2_2; + A[138] = 0.018342151675485*G0_2_2; + A[139] = -0.0677248677248676*G0_2_2; + A[140] = 0.00776014109347431*G0_1_0 + 0.00776014109347433*G0_1_1 + 0.00776014109347432*G0_1_2 + 0.00776014109347443*G0_2_0 + 0.00776014109347443*G0_2_1 + 0.00776014109347443*G0_2_2; + A[141] = -0.00776014109347447*G0_1_0 - 0.00776014109347444*G0_2_0; + A[142] = -0.0246913580246914*G0_1_1 + 0.0458553791887129*G0_2_1; + A[143] = 0.0176366843033511*G0_1_2 - 0.00776014109347449*G0_2_2; + A[144] = 0.203174603174603*G0_1_1 + 0.0790123456790126*G0_1_2 + 0.0790123456790126*G0_2_1 + 0.158024691358026*G0_2_2; + A[145] = -0.118518518518519*G0_1_1 + 0.0423280423280421*G0_1_2 - 0.0310405643738979*G0_2_1 - 0.0902998236331577*G0_2_2; + A[146] = 0.0451499118165789*G0_1_1 - 0.0338624338624336*G0_1_2 + 0.0112874779541446*G0_2_1 + 0.0451499118165786*G0_2_2; + A[147] = 0.0225749559082894*G0_1_0 + 0.0112874779541447*G0_1_2 + 0.0112874779541446*G0_2_0 + 0.0112874779541448*G0_2_2; + A[148] = 0.0169312169312166*G0_1_0 + 0.0141093474426807*G0_1_2 + 0.00282186948853615*G0_2_0 + 0.00282186948853593*G0_2_2; + A[149] = 0.0451499118165789*G0_1_0 + 0.033862433862434*G0_1_2 + 0.0112874779541446*G0_2_0 + 0.0112874779541447*G0_2_2; + A[150] = 0.0338624338624338*G0_1_0 + 0.0112874779541447*G0_1_1 + 0.0451499118165788*G0_2_0 + 0.0112874779541448*G0_2_1; + A[151] = -0.0592592592592594*G0_1_0 - 0.0423280423280426*G0_1_1 - 0.0902998236331578*G0_2_0 - 0.031040564373898*G0_2_1; + A[152] = 0.0790123456790126*G0_1_0 + 0.101587301587302*G0_1_1 + 0.158024691358025*G0_2_0 + 0.0790123456790126*G0_2_1; + A[153] = -0.0225749559082892*G0_1_0 - 0.0225749559082893*G0_1_1 - 0.0112874779541444*G0_1_2 - 0.0112874779541446*G0_2_0 - 0.0112874779541446*G0_2_1; + A[154] = -0.0169312169312168*G0_1_0 - 0.0169312169312168*G0_1_1 - 0.00282186948853633*G0_1_2 - 0.00282186948853641*G0_2_0 - 0.00282186948853637*G0_2_1; + A[155] = -0.0451499118165788*G0_1_0 - 0.0451499118165789*G0_1_1 - 0.0112874779541447*G0_1_2 - 0.0112874779541445*G0_2_0 - 0.0112874779541446*G0_2_1; + A[156] = -0.0338624338624339*G0_1_0 - 0.022574955908289*G0_1_1 - 0.0338624338624339*G0_1_2 - 0.0451499118165787*G0_2_0 - 0.033862433862434*G0_2_1 - 0.0451499118165787*G0_2_2; + A[157] = 0.0592592592592594*G0_1_0 + 0.0169312169312167*G0_1_1 + 0.0592592592592594*G0_1_2 + 0.0902998236331577*G0_2_0 + 0.0592592592592596*G0_2_1 + 0.0902998236331577*G0_2_2; + A[158] = -0.0790123456790126*G0_1_0 + 0.0225749559082893*G0_1_1 - 0.0790123456790126*G0_1_2 - 0.158024691358026*G0_2_0 - 0.079012345679013*G0_2_1 - 0.158024691358026*G0_2_2; + A[159] = -0.0112874779541448*G0_1_1 - 0.0112874779541448*G0_1_2 - 0.0112874779541447*G0_2_1 - 0.0112874779541447*G0_2_2; + A[160] = -0.00282186948853621*G0_1_1 - 0.00282186948853615*G0_1_2 - 0.00282186948853615*G0_2_1 - 0.00282186948853608*G0_2_2; + A[161] = -0.0112874779541446*G0_1_1 - 0.0112874779541446*G0_1_2 - 0.0112874779541447*G0_2_1 - 0.0112874779541447*G0_2_2; + A[162] = -0.0677248677248677*G0_1_0 + 0.0225749559082892*G0_1_1 - 0.0338624338624341*G0_1_2 - 0.0225749559082894*G0_2_0 + 0.0112874779541446*G0_2_1 - 0.0225749559082894*G0_2_2; + A[163] = 0.203174603174603*G0_1_0 - 0.0677248677248675*G0_1_1 + 0.101587301587302*G0_1_2 + 0.112874779541446*G0_2_0 + 0.0112874779541444*G0_2_1 + 0.112874779541446*G0_2_2; + A[164] = -0.0677248677248675*G0_1_0 + 0.0677248677248678*G0_1_1 - 0.0338624338624338*G0_1_2 - 0.0225749559082896*G0_2_0 + 0.0112874779541444*G0_2_1 - 0.0225749559082895*G0_2_2; + A[165] = 0.0677248677248676*G0_1_0 + 0.0902998236331568*G0_1_1 + 0.0338624338624338*G0_1_2 + 0.0225749559082888*G0_2_0 + 0.0338624338624339*G0_2_1; + A[166] = -0.203174603174603*G0_1_0 - 0.270899470899471*G0_1_1 - 0.101587301587302*G0_1_2 - 0.112874779541446*G0_2_0 - 0.101587301587302*G0_2_1; + A[167] = 0.0677248677248677*G0_1_0 + 0.135449735449736*G0_1_1 + 0.0338624338624338*G0_1_2 + 0.0225749559082897*G0_2_0 + 0.0338624338624343*G0_2_1; + A[168] = -0.0225749559082893*G0_1_1 - 0.0112874779541444*G0_1_2 - 0.0112874779541452*G0_2_1; + A[169] = -0.0225749559082893*G0_1_1 - 0.0112874779541447*G0_1_2 - 0.0112874779541447*G0_2_1; + A[170] = -0.0677248677248678*G0_1_1 - 0.0112874779541447*G0_1_2 - 0.0112874779541445*G0_2_1; + A[171] = 0.0451499118165788*G0_1_1 + 0.0338624338624339*G0_1_2 + 0.0338624338624341*G0_2_1 + 0.022574955908289*G0_2_2; + A[172] = 0.0451499118165786*G0_1_1 + 0.0338624338624339*G0_1_2 + 0.0338624338624339*G0_2_1 + 0.022574955908289*G0_2_2; + A[173] = -0.135449735449736*G0_1_1 - 0.101587301587302*G0_1_2 - 0.101587301587302*G0_2_1 - 0.112874779541446*G0_2_2; + A[174] = 0.0902998236331569*G0_1_1; + A[175] = 0.00511463844797182*G0_1_0 + 0.00511463844797182*G0_1_1 + 0.00511463844797184*G0_1_2 + 0.00511463844797174*G0_2_0 + 0.00511463844797177*G0_2_1 + 0.00511463844797177*G0_2_2; + A[176] = -0.00511463844797175*G0_1_0 - 0.00511463844797182*G0_2_0; + A[177] = 0.0202821869488536*G0_1_1 - 0.0326278659611996*G0_2_1; + A[178] = -0.0326278659611996*G0_1_2 + 0.0202821869488537*G0_2_2; + A[179] = -0.118518518518519*G0_1_1 - 0.0310405643738979*G0_1_2 + 0.0423280423280421*G0_2_1 - 0.0902998236331577*G0_2_2; + A[180] = 0.249735449735451*G0_1_1 + 0.0825396825396829*G0_1_2 + 0.0825396825396829*G0_2_1 + 0.249735449735451*G0_2_2; + A[181] = -0.0902998236331578*G0_1_1 + 0.0423280423280421*G0_1_2 - 0.0310405643738977*G0_2_1 - 0.118518518518519*G0_2_2; + A[182] = 0.0169312169312167*G0_1_0 + 0.00282186948853615*G0_1_2 + 0.0141093474426809*G0_2_0 + 0.00282186948853596*G0_2_2; + A[183] = -0.0211640211640206*G0_1_0 - 0.0105820105820106*G0_1_2 - 0.0105820105820106*G0_2_0 - 0.0134038800705465*G0_2_2; + A[184] = -0.0902998236331577*G0_1_0 - 0.0592592592592593*G0_1_2 - 0.0310405643738977*G0_2_0 - 0.0423280423280424*G0_2_2; + A[185] = 0.0141093474426808*G0_1_0 + 0.00282186948853617*G0_1_1 + 0.0169312169312166*G0_2_0 + 0.002821869488536*G0_2_1; + A[186] = -0.0105820105820105*G0_1_0 - 0.0134038800705467*G0_1_1 - 0.0211640211640206*G0_2_0 - 0.0105820105820105*G0_2_1; + A[187] = -0.031040564373898*G0_1_0 - 0.0423280423280424*G0_1_1 - 0.0902998236331577*G0_2_0 - 0.0592592592592593*G0_2_1; + A[188] = -0.0169312169312169*G0_1_0 - 0.0169312169312169*G0_1_1 - 0.0141093474426809*G0_1_2 - 0.0141093474426808*G0_2_0 - 0.0141093474426809*G0_2_1 - 0.0112874779541446*G0_2_2; + A[189] = 0.0211640211640209*G0_1_0 + 0.0211640211640209*G0_1_1 + 0.0105820105820105*G0_1_2 + 0.0105820105820109*G0_2_0 + 0.010582010582011*G0_2_1 - 0.00282186948853612*G0_2_2; + A[190] = 0.0902998236331577*G0_1_0 + 0.0902998236331578*G0_1_1 + 0.0310405643738981*G0_1_2 + 0.0310405643738977*G0_2_0 + 0.0310405643738977*G0_2_1 - 0.0112874779541447*G0_2_2; + A[191] = -0.0141093474426808*G0_1_0 - 0.0112874779541447*G0_1_1 - 0.0141093474426808*G0_1_2 - 0.0169312169312168*G0_2_0 - 0.0141093474426806*G0_2_1 - 0.0169312169312168*G0_2_2; + A[192] = 0.0105820105820105*G0_1_0 - 0.0028218694885361*G0_1_1 + 0.0105820105820105*G0_1_2 + 0.0211640211640205*G0_2_0 + 0.0105820105820101*G0_2_1 + 0.0211640211640206*G0_2_2; + A[193] = 0.0310405643738979*G0_1_0 - 0.0112874779541446*G0_1_1 + 0.0310405643738979*G0_1_2 + 0.0902998236331577*G0_2_0 + 0.0310405643738983*G0_2_1 + 0.0902998236331577*G0_2_2; + A[194] = -0.00282186948853615*G0_1_1 - 0.00282186948853612*G0_1_2 - 0.00282186948853622*G0_2_1 - 0.00282186948853618*G0_2_2; + A[195] = -0.00917107583774254*G0_1_1 - 0.00917107583774254*G0_1_2 - 0.00917107583774259*G0_2_1 - 0.00917107583774262*G0_2_2; + A[196] = -0.00282186948853617*G0_1_1 - 0.0028218694885362*G0_1_2 - 0.002821869488536*G0_2_1 - 0.00282186948853601*G0_2_2; + A[197] = -0.0846560846560849*G0_1_0 - 0.0169312169312168*G0_1_1 - 0.019753086419753*G0_1_2 - 0.0846560846560847*G0_2_0 - 0.019753086419753*G0_2_1 - 0.016931216931217*G0_2_2; + A[198] = 0.050793650793651*G0_1_0 + 0.118518518518518*G0_1_1 - 0.0423280423280426*G0_1_2 + 0.186243386243387*G0_2_0 + 0.0931216931216937*G0_2_1 - 0.0846560846560845*G0_2_2; + A[199] = 0.186243386243386*G0_1_0 - 0.0846560846560847*G0_1_1 + 0.0931216931216931*G0_1_2 + 0.0507936507936512*G0_2_0 - 0.0423280423280424*G0_2_1 + 0.118518518518519*G0_2_2; + A[200] = 0.0846560846560849*G0_1_0 + 0.0677248677248681*G0_1_1 + 0.0649029982363317*G0_1_2 + 0.0846560846560853*G0_2_0 + 0.0649029982363317*G0_2_1 + 0.0677248677248682*G0_2_2; + A[201] = -0.050793650793651*G0_1_0 + 0.0677248677248675*G0_1_1 - 0.0931216931216935*G0_1_2 - 0.186243386243387*G0_2_0 - 0.093121693121693*G0_2_1 - 0.270899470899471*G0_2_2; + A[202] = -0.186243386243386*G0_1_0 - 0.270899470899471*G0_1_1 - 0.093121693121693*G0_1_2 - 0.0507936507936511*G0_2_0 - 0.0931216931216939*G0_2_1 + 0.0677248677248673*G0_2_2; + A[203] = 0.0169312169312173*G0_1_1 + 0.0197530864197532*G0_1_2 + 0.0197530864197541*G0_2_1 + 0.02257495590829*G0_2_2; + A[204] = 0.0169312169312169*G0_1_1 + 0.0197530864197532*G0_1_2 + 0.019753086419753*G0_2_1 + 0.0225749559082892*G0_2_2; + A[205] = 0.0846560846560847*G0_1_1 + 0.0423280423280422*G0_1_2 + 0.0423280423280424*G0_2_1 + 0.0225749559082886*G0_2_2; + A[206] = 0.0225749559082893*G0_1_1 + 0.0197530864197532*G0_1_2 + 0.0197530864197531*G0_2_1 + 0.0169312169312173*G0_2_2; + A[207] = 0.0225749559082893*G0_1_1 + 0.0197530864197531*G0_1_2 + 0.0197530864197531*G0_2_1 + 0.0169312169312171*G0_2_2; + A[208] = 0.0225749559082892*G0_1_1 + 0.0423280423280424*G0_1_2 + 0.0423280423280425*G0_2_1 + 0.0846560846560843*G0_2_2; + A[209] = -0.135449735449736*G0_1_1 - 0.112874779541446*G0_1_2 - 0.112874779541448*G0_2_1 - 0.135449735449736*G0_2_2; + A[210] = 0.00776014109347439*G0_1_0 + 0.00776014109347441*G0_1_1 + 0.00776014109347439*G0_1_2 + 0.00776014109347442*G0_2_0 + 0.00776014109347441*G0_2_1 + 0.00776014109347438*G0_2_2; + A[211] = -0.00776014109347443*G0_1_0 - 0.00776014109347433*G0_2_0; + A[212] = -0.00776014109347458*G0_1_1 + 0.0176366843033509*G0_2_1; + A[213] = 0.045855379188713*G0_1_2 - 0.0246913580246914*G0_2_2; + A[214] = 0.0451499118165789*G0_1_1 + 0.0112874779541446*G0_1_2 - 0.0338624338624337*G0_2_1 + 0.0451499118165786*G0_2_2; + A[215] = -0.0902998236331578*G0_1_1 - 0.0310405643738977*G0_1_2 + 0.0423280423280421*G0_2_1 - 0.118518518518519*G0_2_2; + A[216] = 0.158024691358026*G0_1_1 + 0.0790123456790127*G0_1_2 + 0.0790123456790127*G0_2_1 + 0.203174603174603*G0_2_2; + A[217] = 0.0451499118165789*G0_1_0 + 0.0112874779541448*G0_1_2 + 0.033862433862434*G0_2_0 + 0.011287477954145*G0_2_2; + A[218] = -0.0902998236331579*G0_1_0 - 0.031040564373898*G0_1_2 - 0.0592592592592595*G0_2_0 - 0.0423280423280428*G0_2_2; + A[219] = 0.158024691358026*G0_1_0 + 0.0790123456790127*G0_1_2 + 0.0790123456790127*G0_2_0 + 0.101587301587302*G0_2_2; + A[220] = 0.0112874779541447*G0_1_0 + 0.0112874779541448*G0_1_1 + 0.0225749559082894*G0_2_0 + 0.0112874779541449*G0_2_1; + A[221] = 0.00282186948853624*G0_1_0 + 0.00282186948853603*G0_1_1 + 0.0169312169312168*G0_2_0 + 0.0141093474426806*G0_2_1; + A[222] = 0.0112874779541446*G0_1_0 + 0.0112874779541448*G0_1_1 + 0.0451499118165785*G0_2_0 + 0.033862433862434*G0_2_1; + A[223] = -0.0451499118165788*G0_1_0 - 0.0451499118165788*G0_1_1 - 0.0338624338624338*G0_1_2 - 0.033862433862434*G0_2_0 - 0.0338624338624339*G0_2_1 - 0.0225749559082891*G0_2_2; + A[224] = 0.0902998236331578*G0_1_0 + 0.090299823633158*G0_1_1 + 0.0592592592592595*G0_1_2 + 0.0592592592592594*G0_2_0 + 0.0592592592592595*G0_2_1 + 0.0169312169312168*G0_2_2; + A[225] = -0.158024691358026*G0_1_0 - 0.158024691358026*G0_1_1 - 0.079012345679013*G0_1_2 - 0.0790123456790127*G0_2_0 - 0.0790123456790127*G0_2_1 + 0.0225749559082893*G0_2_2; + A[226] = -0.0112874779541448*G0_1_0 - 0.0112874779541447*G0_1_2 - 0.0225749559082894*G0_2_0 - 0.0112874779541446*G0_2_1 - 0.0225749559082893*G0_2_2; + A[227] = -0.00282186948853619*G0_1_0 - 0.00282186948853617*G0_1_2 - 0.0169312169312168*G0_2_0 - 0.00282186948853612*G0_2_1 - 0.0169312169312168*G0_2_2; + A[228] = -0.0112874779541446*G0_1_0 - 0.0112874779541446*G0_1_2 - 0.0451499118165786*G0_2_0 - 0.0112874779541446*G0_2_1 - 0.0451499118165786*G0_2_2; + A[229] = -0.0112874779541449*G0_1_1 - 0.0112874779541449*G0_1_2 - 0.0112874779541448*G0_2_1 - 0.0112874779541448*G0_2_2; + A[230] = -0.00282186948853618*G0_1_1 - 0.0028218694885362*G0_1_2 - 0.00282186948853617*G0_2_1 - 0.00282186948853618*G0_2_2; + A[231] = -0.0112874779541448*G0_1_1 - 0.0112874779541448*G0_1_2 - 0.0112874779541449*G0_2_1 - 0.0112874779541449*G0_2_2; + A[232] = -0.0225749559082894*G0_1_0 - 0.0225749559082893*G0_1_1 + 0.0112874779541447*G0_1_2 - 0.067724867724868*G0_2_0 - 0.0338624338624339*G0_2_1 + 0.0225749559082895*G0_2_2; + A[233] = -0.022574955908289*G0_1_0 - 0.0225749559082891*G0_1_1 + 0.011287477954145*G0_1_2 - 0.0677248677248676*G0_2_0 - 0.0338624338624341*G0_2_1 + 0.0677248677248678*G0_2_2; + A[234] = 0.112874779541446*G0_1_0 + 0.112874779541446*G0_1_1 + 0.0112874779541445*G0_1_2 + 0.203174603174603*G0_2_0 + 0.101587301587302*G0_2_1 - 0.0677248677248681*G0_2_2; + A[235] = 0.0225749559082896*G0_1_0 + 0.0338624338624344*G0_1_2 + 0.0677248677248677*G0_2_0 + 0.0338624338624339*G0_2_1 + 0.0902998236331572*G0_2_2; + A[236] = 0.022574955908289*G0_1_0 + 0.0338624338624339*G0_1_2 + 0.0677248677248676*G0_2_0 + 0.0338624338624337*G0_2_1 + 0.135449735449735*G0_2_2; + A[237] = -0.112874779541446*G0_1_0 - 0.101587301587302*G0_1_2 - 0.203174603174603*G0_2_0 - 0.101587301587301*G0_2_1 - 0.270899470899471*G0_2_2; + A[238] = 0.0225749559082895*G0_1_1 + 0.0338624338624345*G0_1_2 + 0.0338624338624337*G0_2_1 + 0.0451499118165787*G0_2_2; + A[239] = 0.0225749559082892*G0_1_1 + 0.0338624338624341*G0_1_2 + 0.0338624338624338*G0_2_1 + 0.0451499118165789*G0_2_2; + A[240] = -0.112874779541446*G0_1_1 - 0.101587301587302*G0_1_2 - 0.101587301587302*G0_2_1 - 0.135449735449736*G0_2_2; + A[241] = -0.0112874779541448*G0_1_2 - 0.0112874779541446*G0_2_1 - 0.0225749559082896*G0_2_2; + A[242] = -0.0112874779541449*G0_1_2 - 0.0112874779541445*G0_2_1 - 0.0225749559082897*G0_2_2; + A[243] = -0.0112874779541449*G0_1_2 - 0.0112874779541447*G0_2_1 - 0.0677248677248677*G0_2_2; + A[244] = 0.0902998236331576*G0_2_2; + A[245] = 0.00776014109347427*G0_0_0 + 0.0077601410934743*G0_0_1 + 0.00776014109347429*G0_0_2 + 0.00776014109347443*G0_2_0 + 0.00776014109347443*G0_2_1 + 0.00776014109347443*G0_2_2; + A[246] = -0.0246913580246914*G0_0_0 + 0.0458553791887129*G0_2_0; + A[247] = -0.00776014109347446*G0_0_1 - 0.00776014109347441*G0_2_1; + A[248] = 0.0176366843033511*G0_0_2 - 0.00776014109347452*G0_2_2; + A[249] = 0.0225749559082894*G0_0_1 + 0.0112874779541446*G0_0_2 + 0.0112874779541447*G0_2_1 + 0.0112874779541448*G0_2_2; + A[250] = 0.0169312169312167*G0_0_1 + 0.0141093474426809*G0_0_2 + 0.00282186948853615*G0_2_1 + 0.00282186948853596*G0_2_2; + A[251] = 0.0451499118165789*G0_0_1 + 0.033862433862434*G0_0_2 + 0.0112874779541448*G0_2_1 + 0.011287477954145*G0_2_2; + A[252] = 0.203174603174603*G0_0_0 + 0.0790123456790124*G0_0_2 + 0.0790123456790124*G0_2_0 + 0.158024691358026*G0_2_2; + A[253] = -0.118518518518519*G0_0_0 + 0.0423280423280422*G0_0_2 - 0.0310405643738979*G0_2_0 - 0.0902998236331578*G0_2_2; + A[254] = 0.0451499118165789*G0_0_0 - 0.0338624338624337*G0_0_2 + 0.0112874779541448*G0_2_0 + 0.045149911816579*G0_2_2; + A[255] = 0.101587301587302*G0_0_0 + 0.0790123456790125*G0_0_1 + 0.0790123456790126*G0_2_0 + 0.158024691358026*G0_2_1; + A[256] = -0.0423280423280425*G0_0_0 - 0.0592592592592595*G0_0_1 - 0.0310405643738979*G0_2_0 - 0.0902998236331577*G0_2_1; + A[257] = 0.0112874779541446*G0_0_0 + 0.033862433862434*G0_0_1 + 0.0112874779541448*G0_2_0 + 0.0451499118165788*G0_2_1; + A[258] = -0.0225749559082893*G0_0_0 - 0.0225749559082893*G0_0_1 - 0.0112874779541443*G0_0_2 - 0.0112874779541445*G0_2_0 - 0.0112874779541445*G0_2_1; + A[259] = -0.0169312169312165*G0_0_0 - 0.0169312169312164*G0_0_1 - 0.00282186948853633*G0_0_2 - 0.00282186948853623*G0_2_0 - 0.00282186948853618*G0_2_1; + A[260] = -0.0451499118165789*G0_0_0 - 0.0451499118165789*G0_0_1 - 0.0112874779541447*G0_0_2 - 0.0112874779541448*G0_2_0 - 0.0112874779541448*G0_2_1; + A[261] = -0.0112874779541447*G0_0_0 - 0.0112874779541446*G0_0_2 - 0.0112874779541446*G0_2_0 - 0.0112874779541446*G0_2_2; + A[262] = -0.00282186948853622*G0_0_0 - 0.00282186948853616*G0_0_2 - 0.00282186948853608*G0_2_0 - 0.00282186948853603*G0_2_2; + A[263] = -0.0112874779541446*G0_0_0 - 0.0112874779541447*G0_0_2 - 0.0112874779541448*G0_2_0 - 0.0112874779541448*G0_2_2; + A[264] = -0.022574955908289*G0_0_0 - 0.033862433862434*G0_0_1 - 0.0338624338624339*G0_0_2 - 0.0338624338624339*G0_2_0 - 0.0451499118165786*G0_2_1 - 0.0451499118165786*G0_2_2; + A[265] = 0.0169312169312167*G0_0_0 + 0.059259259259259*G0_0_1 + 0.059259259259259*G0_0_2 + 0.0592592592592595*G0_2_0 + 0.0902998236331574*G0_2_1 + 0.0902998236331573*G0_2_2; + A[266] = 0.0225749559082893*G0_0_0 - 0.0790123456790124*G0_0_1 - 0.0790123456790124*G0_0_2 - 0.0790123456790129*G0_2_0 - 0.158024691358026*G0_2_1 - 0.158024691358026*G0_2_2; + A[267] = -0.0677248677248682*G0_0_0 + 0.203174603174603*G0_0_1 + 0.101587301587301*G0_0_2 + 0.0112874779541444*G0_2_0 + 0.112874779541446*G0_2_1 + 0.112874779541446*G0_2_2; + A[268] = 0.0225749559082894*G0_0_0 - 0.0677248677248678*G0_0_1 - 0.0338624338624338*G0_0_2 + 0.0112874779541446*G0_2_0 - 0.0225749559082894*G0_2_1 - 0.0225749559082892*G0_2_2; + A[269] = 0.0677248677248677*G0_0_0 - 0.067724867724868*G0_0_1 - 0.0338624338624342*G0_0_2 + 0.0112874779541451*G0_2_0 - 0.022574955908289*G0_2_1 - 0.0225749559082892*G0_2_2; + A[270] = -0.0225749559082891*G0_0_0 - 0.0112874779541443*G0_0_2 - 0.0112874779541447*G0_2_0; + A[271] = -0.0225749559082895*G0_0_0 - 0.0112874779541447*G0_0_2 - 0.0112874779541447*G0_2_0; + A[272] = -0.0677248677248676*G0_0_0 - 0.0112874779541451*G0_0_2 - 0.011287477954145*G0_2_0; + A[273] = 0.0902998236331567*G0_0_0 + 0.0677248677248678*G0_0_1 + 0.0338624338624342*G0_0_2 + 0.0338624338624336*G0_2_0 + 0.022574955908289*G0_2_1; + A[274] = -0.270899470899471*G0_0_0 - 0.203174603174603*G0_0_1 - 0.101587301587301*G0_0_2 - 0.101587301587302*G0_2_0 - 0.112874779541446*G0_2_1; + A[275] = 0.135449735449736*G0_0_0 + 0.067724867724868*G0_0_1 + 0.0338624338624335*G0_0_2 + 0.0338624338624342*G0_2_0 + 0.022574955908289*G0_2_1; + A[276] = 0.0451499118165784*G0_0_0 + 0.0338624338624337*G0_0_2 + 0.0338624338624338*G0_2_0 + 0.0225749559082892*G0_2_2; + A[277] = -0.135449735449735*G0_0_0 - 0.101587301587301*G0_0_2 - 0.101587301587302*G0_2_0 - 0.112874779541446*G0_2_2; + A[278] = 0.0451499118165786*G0_0_0 + 0.0338624338624338*G0_0_2 + 0.033862433862434*G0_2_0 + 0.0225749559082893*G0_2_2; + A[279] = 0.0902998236331571*G0_0_0; + A[280] = 0.00511463844797186*G0_0_0 + 0.00511463844797183*G0_0_1 + 0.00511463844797185*G0_0_2 + 0.00511463844797174*G0_2_0 + 0.00511463844797174*G0_2_1 + 0.00511463844797177*G0_2_2; + A[281] = 0.0202821869488536*G0_0_0 - 0.0326278659611997*G0_2_0; + A[282] = -0.00511463844797169*G0_0_1 - 0.00511463844797175*G0_2_1; + A[283] = -0.0326278659611996*G0_0_2 + 0.0202821869488537*G0_2_2; + A[284] = 0.0169312169312166*G0_0_1 + 0.00282186948853615*G0_0_2 + 0.0141093474426807*G0_2_1 + 0.00282186948853593*G0_2_2; + A[285] = -0.0211640211640205*G0_0_1 - 0.0105820105820106*G0_0_2 - 0.0105820105820106*G0_2_1 - 0.0134038800705465*G0_2_2; + A[286] = -0.0902998236331579*G0_0_1 - 0.0592592592592595*G0_0_2 - 0.031040564373898*G0_2_1 - 0.0423280423280428*G0_2_2; + A[287] = -0.118518518518519*G0_0_0 - 0.0310405643738979*G0_0_2 + 0.0423280423280421*G0_2_0 - 0.0902998236331578*G0_2_2; + A[288] = 0.249735449735451*G0_0_0 + 0.0825396825396829*G0_0_2 + 0.0825396825396829*G0_2_0 + 0.249735449735451*G0_2_2; + A[289] = -0.0902998236331578*G0_0_0 + 0.0423280423280422*G0_0_2 - 0.0310405643738979*G0_2_0 - 0.118518518518519*G0_2_2; + A[290] = -0.0423280423280425*G0_0_0 - 0.0310405643738979*G0_0_1 - 0.0592592592592595*G0_2_0 - 0.0902998236331579*G0_2_1; + A[291] = -0.0134038800705468*G0_0_0 - 0.0105820105820104*G0_0_1 - 0.0105820105820106*G0_2_0 - 0.0211640211640206*G0_2_1; + A[292] = 0.00282186948853614*G0_0_0 + 0.0141093474426805*G0_0_1 + 0.00282186948853598*G0_2_0 + 0.0169312169312165*G0_2_1; + A[293] = -0.0169312169312168*G0_0_0 - 0.0169312169312167*G0_0_1 - 0.0141093474426808*G0_0_2 - 0.014109347442681*G0_2_0 - 0.0141093474426809*G0_2_1 - 0.0112874779541447*G0_2_2; + A[294] = 0.0211640211640205*G0_0_0 + 0.0211640211640204*G0_0_1 + 0.0105820105820104*G0_0_2 + 0.0105820105820109*G0_2_0 + 0.0105820105820108*G0_2_1 - 0.00282186948853586*G0_2_2; + A[295] = 0.0902998236331579*G0_0_0 + 0.0902998236331579*G0_0_1 + 0.0310405643738983*G0_0_2 + 0.031040564373898*G0_2_0 + 0.0310405643738979*G0_2_1 - 0.0112874779541449*G0_2_2; + A[296] = -0.00282186948853615*G0_0_0 - 0.00282186948853623*G0_0_2 - 0.00282186948853634*G0_2_0 - 0.00282186948853637*G0_2_2; + A[297] = -0.00917107583774225*G0_0_0 - 0.00917107583774232*G0_0_2 - 0.00917107583774249*G0_2_0 - 0.00917107583774253*G0_2_2; + A[298] = -0.00282186948853616*G0_0_0 - 0.0028218694885361*G0_0_2 - 0.00282186948853598*G0_2_0 - 0.00282186948853597*G0_2_2; + A[299] = -0.0112874779541448*G0_0_0 - 0.0141093474426807*G0_0_1 - 0.0141093474426808*G0_0_2 - 0.0141093474426807*G0_2_0 - 0.016931216931217*G0_2_1 - 0.016931216931217*G0_2_2; + A[300] = -0.00282186948853612*G0_0_0 + 0.0105820105820106*G0_0_1 + 0.0105820105820107*G0_0_2 + 0.0105820105820102*G0_2_0 + 0.0211640211640209*G0_2_1 + 0.0211640211640209*G0_2_2; + A[301] = -0.0112874779541446*G0_0_0 + 0.0310405643738979*G0_0_1 + 0.0310405643738979*G0_0_2 + 0.0310405643738983*G0_2_0 + 0.0902998236331578*G0_2_1 + 0.0902998236331578*G0_2_2; + A[302] = 0.118518518518519*G0_0_0 + 0.0507936507936509*G0_0_1 - 0.0423280423280424*G0_0_2 + 0.0931216931216933*G0_2_0 + 0.186243386243386*G0_2_1 - 0.084656084656085*G0_2_2; + A[303] = -0.0169312169312171*G0_0_0 - 0.0846560846560847*G0_0_1 - 0.0197530864197533*G0_0_2 - 0.0197530864197531*G0_2_0 - 0.0846560846560847*G0_2_1 - 0.0169312169312172*G0_2_2; + A[304] = -0.0846560846560844*G0_0_0 + 0.186243386243387*G0_0_1 + 0.0931216931216938*G0_0_2 - 0.0423280423280429*G0_2_0 + 0.0507936507936505*G0_2_1 + 0.118518518518519*G0_2_2; + A[305] = 0.0169312169312167*G0_0_0 + 0.0197530864197529*G0_0_2 + 0.0197530864197532*G0_2_0 + 0.0225749559082897*G0_2_2; + A[306] = 0.0169312169312171*G0_0_0 + 0.0197530864197528*G0_0_2 + 0.0197530864197531*G0_2_0 + 0.022574955908289*G0_2_2; + A[307] = 0.0846560846560844*G0_0_0 + 0.0423280423280429*G0_0_2 + 0.0423280423280429*G0_2_0 + 0.0225749559082896*G0_2_2; + A[308] = 0.0677248677248677*G0_0_0 + 0.0846560846560843*G0_0_1 + 0.0649029982363311*G0_0_2 + 0.0649029982363318*G0_2_0 + 0.0846560846560848*G0_2_1 + 0.067724867724868*G0_2_2; + A[309] = 0.0677248677248681*G0_0_0 - 0.0507936507936508*G0_0_1 - 0.0931216931216934*G0_0_2 - 0.093121693121693*G0_2_0 - 0.186243386243386*G0_2_1 - 0.270899470899472*G0_2_2; + A[310] = -0.270899470899471*G0_0_0 - 0.186243386243387*G0_0_1 - 0.0931216931216927*G0_0_2 - 0.0931216931216937*G0_2_0 - 0.0507936507936505*G0_2_1 + 0.067724867724868*G0_2_2; + A[311] = 0.0225749559082894*G0_0_0 + 0.0197530864197533*G0_0_2 + 0.0197530864197536*G0_2_0 + 0.0169312169312171*G0_2_2; + A[312] = 0.0225749559082892*G0_0_0 + 0.0423280423280425*G0_0_2 + 0.0423280423280423*G0_2_0 + 0.0846560846560851*G0_2_2; + A[313] = 0.0225749559082891*G0_0_0 + 0.0197530864197535*G0_0_2 + 0.0197530864197532*G0_2_0 + 0.0169312169312173*G0_2_2; + A[314] = -0.135449735449736*G0_0_0 - 0.112874779541447*G0_0_2 - 0.112874779541446*G0_2_0 - 0.135449735449736*G0_2_2; + A[315] = 0.00776014109347439*G0_0_0 + 0.00776014109347441*G0_0_1 + 0.00776014109347439*G0_0_2 + 0.00776014109347442*G0_2_0 + 0.00776014109347441*G0_2_1 + 0.00776014109347436*G0_2_2; + A[316] = -0.00776014109347442*G0_0_0 + 0.0176366843033512*G0_2_0; + A[317] = -0.00776014109347459*G0_0_1 - 0.00776014109347452*G0_2_1; + A[318] = 0.045855379188713*G0_0_2 - 0.0246913580246915*G0_2_2; + A[319] = 0.0451499118165789*G0_0_1 + 0.0112874779541446*G0_0_2 + 0.033862433862434*G0_2_1 + 0.0112874779541447*G0_2_2; + A[320] = -0.0902998236331577*G0_0_1 - 0.0310405643738977*G0_0_2 - 0.0592592592592593*G0_2_1 - 0.0423280423280424*G0_2_2; + A[321] = 0.158024691358026*G0_0_1 + 0.0790123456790127*G0_0_2 + 0.0790123456790127*G0_2_1 + 0.101587301587302*G0_2_2; + A[322] = 0.0451499118165789*G0_0_0 + 0.0112874779541448*G0_0_2 - 0.0338624338624337*G0_2_0 + 0.045149911816579*G0_2_2; + A[323] = -0.0902998236331578*G0_0_0 - 0.031040564373898*G0_0_2 + 0.0423280423280422*G0_2_0 - 0.118518518518519*G0_2_2; + A[324] = 0.158024691358026*G0_0_0 + 0.0790123456790127*G0_0_2 + 0.0790123456790127*G0_2_0 + 0.203174603174604*G0_2_2; + A[325] = 0.0112874779541447*G0_0_0 + 0.0112874779541448*G0_0_1 + 0.033862433862434*G0_2_0 + 0.0451499118165791*G0_2_1; + A[326] = 0.00282186948853622*G0_0_0 + 0.00282186948853601*G0_0_1 + 0.0141093474426808*G0_2_0 + 0.0169312169312166*G0_2_1; + A[327] = 0.0112874779541446*G0_0_0 + 0.0112874779541448*G0_0_1 + 0.0112874779541446*G0_2_0 + 0.0225749559082895*G0_2_1; + A[328] = -0.0451499118165788*G0_0_0 - 0.0451499118165788*G0_0_1 - 0.0338624338624338*G0_0_2 - 0.0338624338624338*G0_2_0 - 0.0338624338624338*G0_2_1 - 0.022574955908289*G0_2_2; + A[329] = 0.0902998236331578*G0_0_0 + 0.090299823633158*G0_0_1 + 0.0592592592592595*G0_0_2 + 0.0592592592592592*G0_2_0 + 0.0592592592592593*G0_2_1 + 0.0169312169312166*G0_2_2; + A[330] = -0.158024691358026*G0_0_0 - 0.158024691358026*G0_0_1 - 0.079012345679013*G0_0_2 - 0.0790123456790127*G0_2_0 - 0.0790123456790127*G0_2_1 + 0.0225749559082895*G0_2_2; + A[331] = -0.0112874779541448*G0_0_0 - 0.0112874779541447*G0_0_2 - 0.0112874779541446*G0_2_0 - 0.0112874779541446*G0_2_2; + A[332] = -0.00282186948853622*G0_0_0 - 0.0028218694885362*G0_0_2 - 0.00282186948853609*G0_2_0 - 0.00282186948853608*G0_2_2; + A[333] = -0.0112874779541446*G0_0_0 - 0.0112874779541446*G0_0_2 - 0.0112874779541446*G0_2_0 - 0.0112874779541447*G0_2_2; + A[334] = -0.0112874779541449*G0_0_1 - 0.0112874779541449*G0_0_2 - 0.0112874779541446*G0_2_0 - 0.0225749559082894*G0_2_1 - 0.0225749559082893*G0_2_2; + A[335] = -0.00282186948853616*G0_0_1 - 0.00282186948853618*G0_0_2 - 0.00282186948853601*G0_2_0 - 0.0169312169312168*G0_2_1 - 0.0169312169312168*G0_2_2; + A[336] = -0.0112874779541448*G0_0_1 - 0.0112874779541448*G0_0_2 - 0.0112874779541449*G0_2_0 - 0.0451499118165791*G0_2_1 - 0.045149911816579*G0_2_2; + A[337] = -0.0225749559082894*G0_0_0 - 0.0225749559082893*G0_0_1 + 0.0112874779541447*G0_0_2 - 0.033862433862434*G0_2_0 - 0.0677248677248678*G0_2_1 + 0.067724867724868*G0_2_2; + A[338] = -0.022574955908289*G0_0_0 - 0.0225749559082891*G0_0_1 + 0.011287477954145*G0_0_2 - 0.0338624338624338*G0_2_0 - 0.0677248677248677*G0_2_1 + 0.0225749559082894*G0_2_2; + A[339] = 0.112874779541446*G0_0_0 + 0.112874779541446*G0_0_1 + 0.0112874779541444*G0_0_2 + 0.101587301587302*G0_2_0 + 0.203174603174604*G0_2_1 - 0.0677248677248676*G0_2_2; + A[340] = 0.0225749559082896*G0_0_0 + 0.0338624338624344*G0_0_2 + 0.033862433862434*G0_2_0 + 0.0451499118165785*G0_2_2; + A[341] = 0.022574955908289*G0_0_0 + 0.0338624338624339*G0_0_2 + 0.0338624338624338*G0_2_0 + 0.0451499118165784*G0_2_2; + A[342] = -0.112874779541446*G0_0_0 - 0.101587301587302*G0_0_2 - 0.101587301587302*G0_2_0 - 0.135449735449736*G0_2_2; + A[343] = 0.0225749559082895*G0_0_1 + 0.0338624338624345*G0_0_2 + 0.0338624338624337*G0_2_0 + 0.0677248677248676*G0_2_1 + 0.090299823633157*G0_2_2; + A[344] = 0.0225749559082892*G0_0_1 + 0.0338624338624341*G0_0_2 + 0.0338624338624339*G0_2_0 + 0.0677248677248678*G0_2_1 + 0.135449735449736*G0_2_2; + A[345] = -0.112874779541446*G0_0_1 - 0.101587301587302*G0_0_2 - 0.101587301587301*G0_2_0 - 0.203174603174604*G0_2_1 - 0.270899470899472*G0_2_2; + A[346] = -0.0112874779541448*G0_0_2 - 0.0112874779541448*G0_2_0 - 0.0225749559082893*G0_2_2; + A[347] = -0.0112874779541448*G0_0_2 - 0.0112874779541446*G0_2_0 - 0.0677248677248681*G0_2_2; + A[348] = -0.0112874779541448*G0_0_2 - 0.0112874779541448*G0_2_0 - 0.0225749559082893*G0_2_2; + A[349] = 0.0902998236331568*G0_2_2; + A[350] = 0.00776014109347433*G0_0_0 + 0.00776014109347435*G0_0_1 + 0.00776014109347434*G0_0_2 + 0.00776014109347442*G0_1_0 + 0.00776014109347442*G0_1_1 + 0.00776014109347442*G0_1_2; + A[351] = -0.0246913580246913*G0_0_0 + 0.0458553791887129*G0_1_0; + A[352] = 0.0176366843033511*G0_0_1 - 0.00776014109347442*G0_1_1; + A[353] = -0.00776014109347448*G0_0_2 - 0.00776014109347453*G0_1_2; + A[354] = 0.0338624338624338*G0_0_1 + 0.0451499118165788*G0_0_2 + 0.0112874779541447*G0_1_1 + 0.0112874779541448*G0_1_2; + A[355] = 0.0141093474426808*G0_0_1 + 0.0169312169312166*G0_0_2 + 0.00282186948853617*G0_1_1 + 0.002821869488536*G0_1_2; + A[356] = 0.0112874779541447*G0_0_1 + 0.0225749559082894*G0_0_2 + 0.0112874779541448*G0_1_1 + 0.0112874779541449*G0_1_2; + A[357] = 0.101587301587302*G0_0_0 + 0.0790123456790126*G0_0_2 + 0.0790123456790125*G0_1_0 + 0.158024691358026*G0_1_2; + A[358] = -0.0423280423280425*G0_0_0 - 0.0592592592592595*G0_0_2 - 0.0310405643738979*G0_1_0 - 0.0902998236331578*G0_1_2; + A[359] = 0.0112874779541447*G0_0_0 + 0.033862433862434*G0_0_2 + 0.0112874779541448*G0_1_0 + 0.0451499118165791*G0_1_2; + A[360] = 0.203174603174603*G0_0_0 + 0.0790123456790126*G0_0_1 + 0.0790123456790126*G0_1_0 + 0.158024691358026*G0_1_1; + A[361] = -0.118518518518519*G0_0_0 + 0.042328042328042*G0_0_1 - 0.0310405643738979*G0_1_0 - 0.0902998236331578*G0_1_1; + A[362] = 0.0451499118165788*G0_0_0 - 0.0338624338624337*G0_0_1 + 0.0112874779541448*G0_1_0 + 0.0451499118165788*G0_1_1; + A[363] = -0.0112874779541446*G0_0_0 - 0.0112874779541446*G0_0_1 - 0.0112874779541446*G0_1_0 - 0.0112874779541446*G0_1_1; + A[364] = -0.00282186948853612*G0_0_0 - 0.00282186948853603*G0_0_1 - 0.00282186948853618*G0_1_0 - 0.00282186948853612*G0_1_1; + A[365] = -0.0112874779541446*G0_0_0 - 0.0112874779541447*G0_0_1 - 0.0112874779541448*G0_1_0 - 0.0112874779541448*G0_1_1; + A[366] = -0.0225749559082894*G0_0_0 - 0.0112874779541445*G0_0_1 - 0.0225749559082893*G0_0_2 - 0.0112874779541447*G0_1_0 - 0.0112874779541447*G0_1_2; + A[367] = -0.0169312169312167*G0_0_0 - 0.00282186948853614*G0_0_1 - 0.0169312169312166*G0_0_2 - 0.00282186948853603*G0_1_0 - 0.00282186948853599*G0_1_2; + A[368] = -0.0451499118165788*G0_0_0 - 0.0112874779541448*G0_0_1 - 0.0451499118165788*G0_0_2 - 0.0112874779541448*G0_1_0 - 0.0112874779541448*G0_1_2; + A[369] = -0.022574955908289*G0_0_0 - 0.0338624338624339*G0_0_1 - 0.0338624338624339*G0_0_2 - 0.0338624338624339*G0_1_0 - 0.0451499118165787*G0_1_1 - 0.0451499118165787*G0_1_2; + A[370] = 0.0169312169312168*G0_0_0 + 0.0592592592592591*G0_0_1 + 0.0592592592592592*G0_0_2 + 0.0592592592592595*G0_1_0 + 0.0902998236331574*G0_1_1 + 0.0902998236331574*G0_1_2; + A[371] = 0.0225749559082892*G0_0_0 - 0.0790123456790125*G0_0_1 - 0.0790123456790125*G0_0_2 - 0.079012345679013*G0_1_0 - 0.158024691358026*G0_1_1 - 0.158024691358026*G0_1_2; + A[372] = -0.067724867724868*G0_0_0 + 0.101587301587301*G0_0_1 + 0.203174603174603*G0_0_2 + 0.0112874779541444*G0_1_0 + 0.112874779541446*G0_1_1 + 0.112874779541446*G0_1_2; + A[373] = 0.0677248677248677*G0_0_0 - 0.0338624338624341*G0_0_1 - 0.0677248677248678*G0_0_2 + 0.0112874779541446*G0_1_0 - 0.0225749559082894*G0_1_1 - 0.0225749559082893*G0_1_2; + A[374] = 0.0225749559082892*G0_0_0 - 0.0338624338624341*G0_0_1 - 0.067724867724868*G0_0_2 + 0.011287477954145*G0_1_0 - 0.0225749559082891*G0_1_1 - 0.0225749559082892*G0_1_2; + A[375] = -0.0225749559082892*G0_0_0 - 0.0112874779541446*G0_0_1 - 0.0112874779541446*G0_1_0; + A[376] = -0.0677248677248677*G0_0_0 - 0.0112874779541447*G0_0_1 - 0.0112874779541447*G0_1_0; + A[377] = -0.0225749559082891*G0_0_0 - 0.0112874779541447*G0_0_1 - 0.011287477954145*G0_1_0; + A[378] = 0.0451499118165784*G0_0_0 + 0.0338624338624339*G0_0_1 + 0.0338624338624336*G0_1_0 + 0.022574955908289*G0_1_1; + A[379] = -0.135449735449735*G0_0_0 - 0.101587301587302*G0_0_1 - 0.101587301587302*G0_1_0 - 0.112874779541446*G0_1_1; + A[380] = 0.0451499118165786*G0_0_0 + 0.0338624338624341*G0_0_1 + 0.0338624338624341*G0_1_0 + 0.0225749559082891*G0_1_1; + A[381] = 0.0902998236331569*G0_0_0 + 0.0338624338624339*G0_0_1 + 0.0677248677248677*G0_0_2 + 0.0338624338624339*G0_1_0 + 0.0225749559082892*G0_1_2; + A[382] = -0.270899470899471*G0_0_0 - 0.101587301587301*G0_0_1 - 0.203174603174603*G0_0_2 - 0.101587301587302*G0_1_0 - 0.112874779541446*G0_1_2; + A[383] = 0.135449735449735*G0_0_0 + 0.0338624338624336*G0_0_1 + 0.0677248677248678*G0_0_2 + 0.0338624338624339*G0_1_0 + 0.0225749559082893*G0_1_2; + A[384] = 0.090299823633157*G0_0_0; + A[385] = 0.00511463844797172*G0_0_0 + 0.0051146384479717*G0_0_1 + 0.00511463844797168*G0_0_2 + 0.00511463844797175*G0_1_0 + 0.00511463844797174*G0_1_1 + 0.00511463844797172*G0_1_2; + A[386] = 0.0202821869488536*G0_0_0 - 0.0326278659611995*G0_1_0; + A[387] = -0.0326278659611996*G0_0_1 + 0.0202821869488536*G0_1_1; + A[388] = -0.00511463844797174*G0_0_2 - 0.00511463844797171*G0_1_2; + A[389] = -0.0592592592592594*G0_0_1 - 0.0902998236331578*G0_0_2 - 0.0423280423280426*G0_1_1 - 0.031040564373898*G0_1_2; + A[390] = -0.0105820105820105*G0_0_1 - 0.0211640211640206*G0_0_2 - 0.0134038800705467*G0_1_1 - 0.0105820105820105*G0_1_2; + A[391] = 0.00282186948853624*G0_0_1 + 0.0169312169312168*G0_0_2 + 0.00282186948853603*G0_1_1 + 0.0141093474426806*G0_1_2; + A[392] = -0.0423280423280425*G0_0_0 - 0.0310405643738979*G0_0_2 - 0.0592592592592595*G0_1_0 - 0.0902998236331577*G0_1_2; + A[393] = -0.0134038800705468*G0_0_0 - 0.0105820105820106*G0_0_2 - 0.0105820105820104*G0_1_0 - 0.0211640211640206*G0_1_2; + A[394] = 0.00282186948853622*G0_0_0 + 0.0141093474426808*G0_0_2 + 0.00282186948853601*G0_1_0 + 0.0169312169312166*G0_1_2; + A[395] = -0.118518518518519*G0_0_0 - 0.0310405643738979*G0_0_1 + 0.042328042328042*G0_1_0 - 0.0902998236331578*G0_1_1; + A[396] = 0.24973544973545*G0_0_0 + 0.0825396825396829*G0_0_1 + 0.0825396825396829*G0_1_0 + 0.24973544973545*G0_1_1; + A[397] = -0.0902998236331578*G0_0_0 + 0.0423280423280419*G0_0_1 - 0.031040564373898*G0_1_0 - 0.118518518518519*G0_1_1; + A[398] = -0.00282186948853619*G0_0_0 - 0.00282186948853608*G0_0_1 - 0.0028218694885362*G0_1_0 - 0.00282186948853612*G0_1_1; + A[399] = -0.0091710758377423*G0_0_0 - 0.00917107583774238*G0_0_1 - 0.00917107583774232*G0_1_0 - 0.0091710758377424*G0_1_1; + A[400] = -0.00282186948853626*G0_0_0 - 0.00282186948853622*G0_0_1 - 0.00282186948853605*G0_1_0 - 0.00282186948853601*G0_1_1; + A[401] = -0.0169312169312166*G0_0_0 - 0.0141093474426804*G0_0_1 - 0.0169312169312166*G0_0_2 - 0.0141093474426806*G0_1_0 - 0.0112874779541446*G0_1_1 - 0.0141093474426805*G0_1_2; + A[402] = 0.0211640211640205*G0_0_0 + 0.0105820105820101*G0_0_1 + 0.0211640211640204*G0_0_2 + 0.0105820105820103*G0_1_0 - 0.00282186948853616*G0_1_1 + 0.0105820105820102*G0_1_2; + A[403] = 0.0902998236331578*G0_0_0 + 0.0310405643738983*G0_0_1 + 0.0902998236331579*G0_0_2 + 0.031040564373898*G0_1_0 - 0.0112874779541445*G0_1_1 + 0.0310405643738981*G0_1_2; + A[404] = -0.0112874779541446*G0_0_0 - 0.0141093474426807*G0_0_1 - 0.0141093474426807*G0_0_2 - 0.0141093474426807*G0_1_0 - 0.0169312169312166*G0_1_1 - 0.0169312169312167*G0_1_2; + A[405] = -0.00282186948853615*G0_0_0 + 0.0105820105820105*G0_0_1 + 0.0105820105820105*G0_0_2 + 0.0105820105820103*G0_1_0 + 0.0211640211640207*G0_1_1 + 0.0211640211640207*G0_1_2; + A[406] = -0.0112874779541446*G0_0_0 + 0.0310405643738979*G0_0_1 + 0.0310405643738979*G0_0_2 + 0.0310405643738982*G0_1_0 + 0.0902998236331577*G0_1_1 + 0.0902998236331578*G0_1_2; + A[407] = 0.118518518518519*G0_0_0 - 0.0423280423280426*G0_0_1 + 0.0507936507936509*G0_0_2 + 0.0931216931216932*G0_1_0 - 0.084656084656085*G0_1_1 + 0.186243386243386*G0_1_2; + A[408] = -0.0846560846560848*G0_0_0 + 0.0931216931216935*G0_0_1 + 0.186243386243386*G0_0_2 - 0.0423280423280427*G0_1_0 + 0.118518518518519*G0_1_1 + 0.0507936507936506*G0_1_2; + A[409] = -0.0169312169312166*G0_0_0 - 0.0197530864197529*G0_0_1 - 0.0846560846560844*G0_0_2 - 0.0197530864197533*G0_1_0 - 0.016931216931217*G0_1_1 - 0.0846560846560847*G0_1_2; + A[410] = 0.0169312169312169*G0_0_0 + 0.0197530864197528*G0_0_1 + 0.0197530864197529*G0_1_0 + 0.0225749559082889*G0_1_1; + A[411] = 0.0846560846560848*G0_0_0 + 0.0423280423280428*G0_0_1 + 0.0423280423280427*G0_1_0 + 0.0225749559082899*G0_1_1; + A[412] = 0.0169312169312166*G0_0_0 + 0.0197530864197529*G0_0_1 + 0.0197530864197532*G0_1_0 + 0.0225749559082891*G0_1_1; + A[413] = 0.0225749559082892*G0_0_0 + 0.0197530864197531*G0_0_1 + 0.0197530864197533*G0_1_0 + 0.0169312169312169*G0_1_1; + A[414] = 0.0225749559082895*G0_0_0 + 0.0423280423280426*G0_0_1 + 0.0423280423280425*G0_1_0 + 0.084656084656085*G0_1_1; + A[415] = 0.0225749559082891*G0_0_0 + 0.0197530864197529*G0_0_1 + 0.0197530864197528*G0_1_0 + 0.016931216931217*G0_1_1; + A[416] = 0.0677248677248675*G0_0_0 + 0.0649029982363311*G0_0_1 + 0.0846560846560842*G0_0_2 + 0.0649029982363313*G0_1_0 + 0.0677248677248673*G0_1_1 + 0.0846560846560842*G0_1_2; + A[417] = 0.0677248677248679*G0_0_0 - 0.0931216931216933*G0_0_1 - 0.0507936507936508*G0_0_2 - 0.0931216931216928*G0_1_0 - 0.270899470899471*G0_1_1 - 0.186243386243386*G0_1_2; + A[418] = -0.270899470899471*G0_0_0 - 0.0931216931216925*G0_0_1 - 0.186243386243386*G0_0_2 - 0.0931216931216931*G0_1_0 + 0.0677248677248683*G0_1_1 - 0.0507936507936508*G0_1_2; + A[419] = -0.135449735449735*G0_0_0 - 0.112874779541447*G0_0_1 - 0.112874779541446*G0_1_0 - 0.135449735449736*G0_1_1; + A[420] = 0.00776014109347443*G0_0_0 + 0.00776014109347443*G0_0_1 + 0.00776014109347443*G0_0_2 + 0.00776014109347435*G0_1_0 + 0.00776014109347434*G0_1_1 + 0.00776014109347435*G0_1_2; + A[421] = -0.00776014109347445*G0_0_0 + 0.017636684303351*G0_1_0; + A[422] = 0.0458553791887128*G0_0_1 - 0.0246913580246914*G0_1_1; + A[423] = -0.00776014109347445*G0_0_2 - 0.00776014109347445*G0_1_2; + A[424] = 0.0790123456790126*G0_0_1 + 0.158024691358025*G0_0_2 + 0.101587301587302*G0_1_1 + 0.0790123456790126*G0_1_2; + A[425] = -0.031040564373898*G0_0_1 - 0.0902998236331577*G0_0_2 - 0.0423280423280424*G0_1_1 - 0.0592592592592593*G0_1_2; + A[426] = 0.0112874779541446*G0_0_1 + 0.0451499118165785*G0_0_2 + 0.0112874779541448*G0_1_1 + 0.033862433862434*G0_1_2; + A[427] = 0.0112874779541446*G0_0_0 + 0.0112874779541448*G0_0_2 + 0.033862433862434*G0_1_0 + 0.0451499118165788*G0_1_2; + A[428] = 0.00282186948853614*G0_0_0 + 0.00282186948853598*G0_0_2 + 0.0141093474426805*G0_1_0 + 0.0169312169312165*G0_1_2; + A[429] = 0.0112874779541446*G0_0_0 + 0.0112874779541446*G0_0_2 + 0.0112874779541448*G0_1_0 + 0.0225749559082895*G0_1_2; + A[430] = 0.0451499118165788*G0_0_0 + 0.0112874779541448*G0_0_1 - 0.0338624338624337*G0_1_0 + 0.0451499118165788*G0_1_1; + A[431] = -0.0902998236331578*G0_0_0 - 0.031040564373898*G0_0_1 + 0.0423280423280419*G0_1_0 - 0.118518518518519*G0_1_1; + A[432] = 0.158024691358025*G0_0_0 + 0.0790123456790126*G0_0_1 + 0.0790123456790126*G0_1_0 + 0.203174603174603*G0_1_1; + A[433] = -0.0112874779541445*G0_0_0 - 0.0112874779541446*G0_0_1 - 0.0112874779541445*G0_1_0 - 0.0112874779541446*G0_1_1; + A[434] = -0.00282186948853637*G0_0_0 - 0.00282186948853633*G0_0_1 - 0.00282186948853624*G0_1_0 - 0.00282186948853621*G0_1_1; + A[435] = -0.0112874779541445*G0_0_0 - 0.0112874779541446*G0_0_1 - 0.0112874779541448*G0_1_0 - 0.0112874779541448*G0_1_1; + A[436] = -0.0451499118165787*G0_0_0 - 0.033862433862434*G0_0_1 - 0.0451499118165787*G0_0_2 - 0.0338624338624338*G0_1_0 - 0.022574955908289*G0_1_1 - 0.0338624338624339*G0_1_2; + A[437] = 0.0902998236331576*G0_0_0 + 0.0592592592592596*G0_0_1 + 0.0902998236331576*G0_0_2 + 0.0592592592592594*G0_1_0 + 0.0169312169312167*G0_1_1 + 0.0592592592592594*G0_1_2; + A[438] = -0.158024691358026*G0_0_0 - 0.0790123456790129*G0_0_1 - 0.158024691358026*G0_0_2 - 0.0790123456790126*G0_1_0 + 0.0225749559082893*G0_1_1 - 0.0790123456790126*G0_1_2; + A[439] = -0.0112874779541447*G0_0_1 - 0.0112874779541447*G0_0_2 - 0.0112874779541446*G0_1_0 - 0.0225749559082894*G0_1_1 - 0.0225749559082894*G0_1_2; + A[440] = -0.00282186948853616*G0_0_1 - 0.00282186948853609*G0_0_2 - 0.00282186948853594*G0_1_0 - 0.0169312169312169*G0_1_1 - 0.0169312169312168*G0_1_2; + A[441] = -0.0112874779541447*G0_0_1 - 0.0112874779541447*G0_0_2 - 0.0112874779541448*G0_1_0 - 0.0451499118165788*G0_1_1 - 0.0451499118165788*G0_1_2; + A[442] = -0.0225749559082894*G0_0_0 + 0.0112874779541446*G0_0_1 - 0.0225749559082895*G0_0_2 - 0.0338624338624342*G0_1_0 + 0.0677248677248677*G0_1_1 - 0.0677248677248679*G0_1_2; + A[443] = 0.112874779541446*G0_0_0 + 0.0112874779541442*G0_0_1 + 0.112874779541446*G0_0_2 + 0.101587301587302*G0_1_0 - 0.0677248677248678*G0_1_1 + 0.203174603174603*G0_1_2; + A[444] = -0.0225749559082898*G0_0_0 + 0.0112874779541443*G0_0_1 - 0.0225749559082896*G0_0_2 - 0.0338624338624337*G0_1_0 + 0.0225749559082892*G0_1_1 - 0.0677248677248677*G0_1_2; + A[445] = 0.0225749559082887*G0_0_0 + 0.0338624338624339*G0_0_1 + 0.0338624338624337*G0_1_0 + 0.0451499118165784*G0_1_1; + A[446] = -0.112874779541446*G0_0_0 - 0.101587301587302*G0_0_1 - 0.101587301587302*G0_1_0 - 0.135449735449736*G0_1_1; + A[447] = 0.0225749559082899*G0_0_0 + 0.0338624338624343*G0_0_1 + 0.0338624338624338*G0_1_0 + 0.0451499118165786*G0_1_1; + A[448] = -0.0112874779541452*G0_0_1 - 0.0112874779541449*G0_1_0 - 0.0225749559082896*G0_1_1; + A[449] = -0.0112874779541447*G0_0_1 - 0.0112874779541445*G0_1_0 - 0.0677248677248677*G0_1_1; + A[450] = -0.0112874779541443*G0_0_1 - 0.0112874779541443*G0_1_0 - 0.0225749559082892*G0_1_1; + A[451] = 0.0338624338624341*G0_0_1 + 0.0225749559082891*G0_0_2 + 0.0338624338624337*G0_1_0 + 0.0902998236331571*G0_1_1 + 0.0677248677248675*G0_1_2; + A[452] = 0.033862433862434*G0_0_1 + 0.0225749559082891*G0_0_2 + 0.0338624338624338*G0_1_0 + 0.135449735449736*G0_1_1 + 0.0677248677248677*G0_1_2; + A[453] = -0.101587301587302*G0_0_1 - 0.112874779541446*G0_0_2 - 0.101587301587301*G0_1_0 - 0.270899470899471*G0_1_1 - 0.203174603174603*G0_1_2; + A[454] = 0.0902998236331575*G0_1_1; + A[455] = -0.0246913580246911*G0_0_0 - 0.0246913580246911*G0_0_1 - 0.0246913580246911*G0_0_2 - 0.0246913580246912*G0_1_0 - 0.0246913580246912*G0_1_1 - 0.0246913580246912*G0_1_2 - 0.0705467372134041*G0_2_0 - 0.0705467372134041*G0_2_1 - 0.0705467372134041*G0_2_2; + A[456] = 0.0077601410934745*G0_0_0 + 0.00776014109347449*G0_1_0; + A[457] = 0.00776014109347445*G0_0_1 + 0.00776014109347444*G0_1_1; + A[458] = -0.0176366843033511*G0_0_2 - 0.0176366843033511*G0_1_2 - 0.0253968253968255*G0_2_2; + A[459] = -0.0225749559082892*G0_0_1 - 0.0112874779541446*G0_0_2 - 0.0225749559082893*G0_1_1 - 0.0112874779541446*G0_1_2 - 0.0112874779541444*G0_2_1; + A[460] = -0.0169312169312169*G0_0_1 - 0.0141093474426808*G0_0_2 - 0.0169312169312169*G0_1_1 - 0.0141093474426809*G0_1_2 - 0.0141093474426809*G0_2_1 - 0.0112874779541447*G0_2_2; + A[461] = -0.0451499118165788*G0_0_1 - 0.033862433862434*G0_0_2 - 0.0451499118165788*G0_1_1 - 0.0338624338624339*G0_1_2 - 0.0338624338624339*G0_2_1 - 0.0225749559082891*G0_2_2; + A[462] = -0.0225749559082893*G0_0_0 - 0.0112874779541445*G0_0_2 - 0.0225749559082893*G0_1_0 - 0.0112874779541445*G0_1_2 - 0.0112874779541443*G0_2_0; + A[463] = -0.0169312169312168*G0_0_0 - 0.014109347442681*G0_0_2 - 0.0169312169312167*G0_1_0 - 0.0141093474426809*G0_1_2 - 0.0141093474426808*G0_2_0 - 0.0112874779541447*G0_2_2; + A[464] = -0.0451499118165788*G0_0_0 - 0.0338624338624338*G0_0_2 - 0.0451499118165788*G0_1_0 - 0.0338624338624338*G0_1_2 - 0.0338624338624339*G0_2_0 - 0.022574955908289*G0_2_2; + A[465] = -0.0112874779541446*G0_0_0 - 0.0112874779541446*G0_0_1 - 0.0112874779541446*G0_1_0 - 0.0112874779541446*G0_1_1; + A[466] = -0.00282186948853619*G0_0_0 - 0.00282186948853619*G0_0_1 - 0.00282186948853608*G0_1_0 - 0.00282186948853612*G0_1_1; + A[467] = -0.0112874779541445*G0_0_0 - 0.0112874779541445*G0_0_1 - 0.0112874779541446*G0_1_0 - 0.0112874779541446*G0_1_1; + A[468] = 0.203174603174603*G0_0_0 + 0.203174603174603*G0_0_1 + 0.12416225749559*G0_0_2 + 0.203174603174603*G0_1_0 + 0.203174603174603*G0_1_1 + 0.12416225749559*G0_1_2 + 0.12416225749559*G0_2_0 + 0.12416225749559*G0_2_1 + 0.203174603174603*G0_2_2; + A[469] = -0.118518518518519*G0_0_0 - 0.118518518518519*G0_0_1 - 0.16084656084656*G0_0_2 - 0.118518518518519*G0_1_0 - 0.118518518518519*G0_1_1 - 0.160846560846561*G0_1_2 - 0.0874779541446205*G0_2_0 - 0.0874779541446205*G0_2_1 - 0.22010582010582*G0_2_2; + A[470] = 0.0451499118165788*G0_0_0 + 0.0451499118165788*G0_0_1 + 0.0790123456790123*G0_0_2 + 0.0451499118165788*G0_1_0 + 0.0451499118165789*G0_1_1 + 0.0790123456790124*G0_1_2 + 0.0338624338624339*G0_2_0 + 0.0338624338624339*G0_2_1 + 0.112874779541446*G0_2_2; + A[471] = 0.101587301587302*G0_0_0 + 0.0225749559082888*G0_0_1 + 0.101587301587302*G0_0_2 + 0.101587301587302*G0_1_0 + 0.0225749559082888*G0_1_1 + 0.101587301587302*G0_1_2 + 0.0225749559082889*G0_2_0 + 0.101587301587302*G0_2_1 + 0.022574955908289*G0_2_2; + A[472] = -0.0423280423280423*G0_0_0 + 0.0169312169312174*G0_0_1 - 0.0423280423280422*G0_0_2 - 0.0423280423280423*G0_1_0 + 0.0169312169312173*G0_1_1 - 0.0423280423280423*G0_1_2 - 0.0112874779541445*G0_2_0 - 0.0423280423280426*G0_2_1 - 0.0112874779541445*G0_2_2; + A[473] = 0.0112874779541446*G0_0_0 - 0.0225749559082895*G0_0_1 + 0.0112874779541446*G0_0_2 + 0.0112874779541446*G0_1_0 - 0.0225749559082894*G0_1_1 + 0.0112874779541446*G0_1_2 + 0.0112874779541449*G0_2_1; + A[474] = 0.022574955908289*G0_0_0 + 0.101587301587302*G0_0_1 + 0.101587301587302*G0_0_2 + 0.022574955908289*G0_1_0 + 0.101587301587302*G0_1_1 + 0.101587301587302*G0_1_2 + 0.101587301587302*G0_2_0 + 0.0225749559082891*G0_2_1 + 0.0225749559082891*G0_2_2; + A[475] = 0.0169312169312171*G0_0_0 - 0.0423280423280423*G0_0_1 - 0.0423280423280423*G0_0_2 + 0.016931216931217*G0_1_0 - 0.0423280423280422*G0_1_1 - 0.0423280423280422*G0_1_2 - 0.0423280423280429*G0_2_0 - 0.0112874779541446*G0_2_1 - 0.0112874779541446*G0_2_2; + A[476] = -0.0225749559082894*G0_0_0 + 0.0112874779541445*G0_0_1 + 0.0112874779541445*G0_0_2 - 0.0225749559082894*G0_1_0 + 0.0112874779541445*G0_1_1 + 0.0112874779541445*G0_1_2 + 0.0112874779541449*G0_2_0; + A[477] = -0.0225749559082894*G0_0_0 - 0.0225749559082891*G0_0_1 - 0.0112874779541445*G0_0_2 - 0.0225749559082894*G0_1_0 - 0.0225749559082892*G0_1_1 - 0.0112874779541445*G0_1_2 - 0.011287477954145*G0_2_0 - 0.0112874779541443*G0_2_1; + A[478] = -0.0225749559082893*G0_0_0 - 0.0225749559082897*G0_0_1 - 0.0112874779541447*G0_0_2 - 0.0225749559082895*G0_1_0 - 0.0225749559082898*G0_1_1 - 0.0112874779541446*G0_1_2 - 0.0112874779541446*G0_2_0 - 0.0112874779541454*G0_2_1; + A[479] = -0.0677248677248681*G0_0_0 - 0.0677248677248678*G0_0_1 - 0.0564373897707236*G0_0_2 - 0.0677248677248681*G0_1_0 - 0.0677248677248678*G0_1_1 - 0.0564373897707236*G0_1_2 - 0.0564373897707237*G0_2_0 - 0.0564373897707236*G0_2_1 - 0.0451499118165797*G0_2_2; + A[480] = -0.0677248677248676*G0_0_0 - 0.270899470899471*G0_0_1 - 0.16931216931217*G0_0_2 - 0.0677248677248677*G0_1_0 - 0.270899470899471*G0_1_1 - 0.16931216931217*G0_1_2 - 0.0790123456790117*G0_2_0 - 0.169312169312169*G0_2_1 - 0.067724867724867*G0_2_2; + A[481] = 0.0225749559082893*G0_0_0 + 0.0902998236331568*G0_0_1 + 0.0564373897707232*G0_0_2 + 0.0225749559082895*G0_1_0 + 0.0902998236331569*G0_1_1 + 0.0564373897707233*G0_1_2 + 0.0112874779541446*G0_2_0 + 0.0564373897707225*G0_2_1 + 0.0225749559082892*G0_2_2; + A[482] = 0.067724867724868*G0_0_0 + 0.135449735449736*G0_0_1 + 0.101587301587302*G0_0_2 + 0.067724867724868*G0_1_0 + 0.135449735449736*G0_1_1 + 0.101587301587302*G0_1_2 + 0.0564373897707236*G0_2_0 + 0.101587301587301*G0_2_1 + 0.067724867724867*G0_2_2; + A[483] = -0.270899470899471*G0_0_0 - 0.0677248677248678*G0_0_1 - 0.16931216931217*G0_0_2 - 0.270899470899471*G0_1_0 - 0.0677248677248676*G0_1_1 - 0.16931216931217*G0_1_2 - 0.169312169312168*G0_2_0 - 0.0790123456790118*G0_2_1 - 0.0677248677248672*G0_2_2; + A[484] = 0.0902998236331569*G0_0_0 + 0.0225749559082894*G0_0_1 + 0.0564373897707234*G0_0_2 + 0.0902998236331567*G0_1_0 + 0.0225749559082894*G0_1_1 + 0.0564373897707232*G0_1_2 + 0.0564373897707224*G0_2_0 + 0.0112874779541444*G0_2_1 + 0.0225749559082894*G0_2_2; + A[485] = 0.135449735449736*G0_0_0 + 0.0677248677248679*G0_0_1 + 0.101587301587302*G0_0_2 + 0.135449735449736*G0_1_0 + 0.0677248677248679*G0_1_1 + 0.101587301587302*G0_1_2 + 0.101587301587301*G0_2_0 + 0.0564373897707237*G0_2_1 + 0.0677248677248671*G0_2_2; + A[486] = -0.135449735449736*G0_0_0 - 0.135449735449736*G0_0_1 - 0.0338624338624336*G0_0_2 - 0.135449735449735*G0_1_0 - 0.135449735449736*G0_1_1 - 0.0338624338624335*G0_1_2 - 0.0338624338624334*G0_2_0 - 0.0338624338624336*G0_2_1 - 0.0451499118165782*G0_2_2; + A[487] = 0.0451499118165785*G0_0_0 + 0.0451499118165786*G0_0_1 + 0.0112874779541446*G0_0_2 + 0.0451499118165783*G0_1_0 + 0.0451499118165784*G0_1_1 + 0.0112874779541446*G0_1_2 + 0.0112874779541441*G0_2_0 + 0.0112874779541447*G0_2_1; + A[488] = 0.0451499118165785*G0_0_0 + 0.0451499118165784*G0_0_1 + 0.0112874779541446*G0_0_2 + 0.0451499118165784*G0_1_0 + 0.0451499118165784*G0_1_1 + 0.0112874779541446*G0_1_2 + 0.0112874779541444*G0_2_0 + 0.0112874779541442*G0_2_1; + A[489] = 0.0902998236331572*G0_0_0 + 0.0902998236331573*G0_0_1 + 0.0902998236331572*G0_0_2 + 0.0902998236331572*G0_1_0 + 0.0902998236331571*G0_1_1 + 0.0902998236331571*G0_1_2 + 0.0902998236331568*G0_2_0 + 0.090299823633157*G0_2_1 + 0.0902998236331578*G0_2_2; + A[490] = 0.0202821869488535*G0_0_0 + 0.0202821869488535*G0_0_1 + 0.0202821869488535*G0_0_2 + 0.0202821869488535*G0_1_0 + 0.0202821869488535*G0_1_1 + 0.0202821869488535*G0_1_2 + 0.052910052910053*G0_2_0 + 0.052910052910053*G0_2_1 + 0.0529100529100531*G0_2_2; + A[491] = 0.00511463844797171*G0_0_0 + 0.0051146384479717*G0_1_0; + A[492] = 0.00511463844797169*G0_0_1 + 0.00511463844797171*G0_1_1; + A[493] = 0.0326278659611996*G0_0_2 + 0.0326278659611997*G0_1_2 + 0.0529100529100532*G0_2_2; + A[494] = -0.0169312169312168*G0_0_1 - 0.00282186948853641*G0_0_2 - 0.0169312169312168*G0_1_1 - 0.00282186948853637*G0_1_2 - 0.00282186948853633*G0_2_1; + A[495] = 0.0211640211640209*G0_0_1 + 0.0105820105820109*G0_0_2 + 0.0211640211640209*G0_1_1 + 0.010582010582011*G0_1_2 + 0.0105820105820105*G0_2_1 - 0.00282186948853612*G0_2_2; + A[496] = 0.0902998236331578*G0_0_1 + 0.0592592592592594*G0_0_2 + 0.090299823633158*G0_1_1 + 0.0592592592592595*G0_1_2 + 0.0592592592592595*G0_2_1 + 0.0169312169312168*G0_2_2; + A[497] = -0.0169312169312165*G0_0_0 - 0.00282186948853623*G0_0_2 - 0.0169312169312164*G0_1_0 - 0.00282186948853618*G0_1_2 - 0.00282186948853633*G0_2_0; + A[498] = 0.0211640211640205*G0_0_0 + 0.0105820105820108*G0_0_2 + 0.0211640211640204*G0_1_0 + 0.0105820105820108*G0_1_2 + 0.0105820105820104*G0_2_0 - 0.00282186948853586*G0_2_2; + A[499] = 0.0902998236331578*G0_0_0 + 0.0592592592592592*G0_0_2 + 0.090299823633158*G0_1_0 + 0.0592592592592593*G0_1_2 + 0.0592592592592595*G0_2_0 + 0.0169312169312166*G0_2_2; + A[500] = -0.00282186948853612*G0_0_0 - 0.00282186948853618*G0_0_1 - 0.00282186948853603*G0_1_0 - 0.00282186948853612*G0_1_1; + A[501] = -0.0091710758377423*G0_0_0 - 0.00917107583774232*G0_0_1 - 0.00917107583774238*G0_1_0 - 0.0091710758377424*G0_1_1; + A[502] = -0.00282186948853637*G0_0_0 - 0.00282186948853624*G0_0_1 - 0.00282186948853633*G0_1_0 - 0.00282186948853621*G0_1_1; + A[503] = -0.118518518518519*G0_0_0 - 0.118518518518519*G0_0_1 - 0.0874779541446205*G0_0_2 - 0.118518518518519*G0_1_0 - 0.118518518518519*G0_1_1 - 0.0874779541446205*G0_1_2 - 0.16084656084656*G0_2_0 - 0.160846560846561*G0_2_1 - 0.22010582010582*G0_2_2; + A[504] = 0.249735449735451*G0_0_0 + 0.249735449735451*G0_0_1 + 0.167195767195767*G0_0_2 + 0.249735449735451*G0_1_0 + 0.249735449735451*G0_1_1 + 0.167195767195767*G0_1_2 + 0.167195767195767*G0_2_0 + 0.167195767195767*G0_2_1 + 0.334391534391535*G0_2_2; + A[505] = -0.0902998236331578*G0_0_0 - 0.0902998236331579*G0_0_1 - 0.1326278659612*G0_0_2 - 0.0902998236331579*G0_1_0 - 0.090299823633158*G0_1_1 - 0.1326278659612*G0_1_2 - 0.0592592592592595*G0_2_0 - 0.0592592592592596*G0_2_1 - 0.22010582010582*G0_2_2; + A[506] = -0.0423280423280427*G0_0_0 - 0.0112874779541444*G0_0_1 - 0.0423280423280427*G0_0_2 - 0.0423280423280427*G0_1_0 - 0.0112874779541444*G0_1_1 - 0.0423280423280428*G0_1_2 + 0.0169312169312171*G0_2_0 - 0.0423280423280425*G0_2_1 + 0.0169312169312171*G0_2_2; + A[507] = -0.0134038800705467*G0_0_0 - 0.00282186948853641*G0_0_1 - 0.0134038800705467*G0_0_2 - 0.0134038800705468*G0_1_0 - 0.00282186948853637*G0_1_1 - 0.0134038800705468*G0_1_2 - 0.00282186948853613*G0_2_0 - 0.0134038800705466*G0_2_1 - 0.0028218694885361*G0_2_2; + A[508] = 0.00282186948853633*G0_0_0 - 0.0112874779541444*G0_0_1 + 0.00282186948853632*G0_0_2 + 0.00282186948853629*G0_1_0 - 0.0112874779541445*G0_1_1 + 0.00282186948853628*G0_1_2 + 0.00282186948853593*G0_2_1; + A[509] = -0.0112874779541445*G0_0_0 - 0.0423280423280428*G0_0_1 - 0.0423280423280428*G0_0_2 - 0.0112874779541445*G0_1_0 - 0.0423280423280428*G0_1_1 - 0.0423280423280428*G0_1_2 - 0.0423280423280427*G0_2_0 + 0.016931216931217*G0_2_1 + 0.016931216931217*G0_2_2; + A[510] = -0.00282186948853629*G0_0_0 - 0.0134038800705468*G0_0_1 - 0.0134038800705468*G0_0_2 - 0.00282186948853628*G0_1_0 - 0.0134038800705467*G0_1_1 - 0.0134038800705468*G0_1_2 - 0.0134038800705463*G0_2_0 - 0.00282186948853607*G0_2_1 - 0.00282186948853606*G0_2_2; + A[511] = -0.0112874779541444*G0_0_0 + 0.00282186948853618*G0_0_1 + 0.00282186948853619*G0_0_2 - 0.0112874779541445*G0_1_0 + 0.00282186948853613*G0_1_1 + 0.00282186948853614*G0_1_2 + 0.00282186948853591*G0_2_0; + A[512] = 0.0169312169312175*G0_0_0 + 0.0169312169312175*G0_0_1 - 0.0028218694885357*G0_0_2 + 0.0169312169312173*G0_1_0 + 0.0169312169312175*G0_1_1 - 0.00282186948853573*G0_1_2 - 0.00282186948853541*G0_2_0 - 0.00282186948853636*G0_2_1; + A[513] = 0.0169312169312172*G0_0_0 + 0.0169312169312176*G0_0_1 - 0.00282186948853591*G0_0_2 + 0.0169312169312174*G0_1_0 + 0.0169312169312177*G0_1_1 - 0.00282186948853583*G0_1_2 - 0.00282186948853611*G0_2_0 - 0.0028218694885351*G0_2_1; + A[514] = 0.0846560846560849*G0_0_0 + 0.0846560846560844*G0_0_1 + 0.0423280423280426*G0_0_2 + 0.0846560846560851*G0_1_0 + 0.0846560846560845*G0_1_1 + 0.0423280423280427*G0_1_2 + 0.042328042328043*G0_2_0 + 0.0423280423280428*G0_2_1 + 0.0225749559082906*G0_2_2; + A[515] = 0.118518518518519*G0_0_0 + 0.067724867724868*G0_0_1 + 0.160846560846562*G0_0_2 + 0.118518518518519*G0_1_0 + 0.0677248677248678*G0_1_1 + 0.160846560846562*G0_1_2 + 0.0253968253968248*G0_2_0 + 0.16084656084656*G0_2_1 - 0.0169312169312177*G0_2_2; + A[516] = -0.0169312169312172*G0_0_0 + 0.0677248677248678*G0_0_1 + 0.00282186948853585*G0_0_2 - 0.0169312169312174*G0_1_0 + 0.067724867724868*G0_1_1 + 0.0028218694885358*G0_1_2 + 0.0028218694885361*G0_2_0 + 0.00282186948853683*G0_2_1 + 0.00564373897707232*G0_2_2; + A[517] = -0.0846560846560849*G0_0_0 - 0.270899470899471*G0_0_1 - 0.177777777777779*G0_0_2 - 0.0846560846560851*G0_1_0 - 0.270899470899472*G0_1_1 - 0.177777777777779*G0_1_2 - 0.042328042328043*G0_2_0 - 0.177777777777778*G0_2_1 - 0.0169312169312162*G0_2_2; + A[518] = 0.0677248677248679*G0_0_0 + 0.118518518518519*G0_0_1 + 0.160846560846562*G0_0_2 + 0.0677248677248679*G0_1_0 + 0.118518518518519*G0_1_1 + 0.160846560846562*G0_1_2 + 0.16084656084656*G0_2_0 + 0.0253968253968248*G0_2_1 - 0.0169312169312175*G0_2_2; + A[519] = 0.0677248677248675*G0_0_0 - 0.0169312169312176*G0_0_1 + 0.00282186948853595*G0_0_2 + 0.0677248677248675*G0_1_0 - 0.0169312169312176*G0_1_1 + 0.00282186948853597*G0_1_2 + 0.00282186948853693*G0_2_0 + 0.0028218694885362*G0_2_1 + 0.00564373897707188*G0_2_2; + A[520] = -0.270899470899471*G0_0_0 - 0.0846560846560845*G0_0_1 - 0.177777777777778*G0_0_2 - 0.270899470899471*G0_1_0 - 0.0846560846560846*G0_1_1 - 0.177777777777779*G0_1_2 - 0.177777777777777*G0_2_0 - 0.0423280423280429*G0_2_1 - 0.016931216931216*G0_2_2; + A[521] = 0.0225749559082896*G0_0_0 + 0.0225749559082897*G0_0_1 - 0.0197530864197531*G0_0_2 + 0.0225749559082896*G0_1_0 + 0.0225749559082896*G0_1_1 - 0.0197530864197532*G0_1_2 - 0.0197530864197535*G0_2_0 - 0.0197530864197532*G0_2_1 + 0.0225749559082892*G0_2_2; + A[522] = 0.0225749559082893*G0_0_0 + 0.0225749559082891*G0_0_1 + 0.00282186948853563*G0_0_2 + 0.0225749559082892*G0_1_0 + 0.0225749559082892*G0_1_1 + 0.00282186948853566*G0_1_2 + 0.00282186948853655*G0_2_0 + 0.00282186948853578*G0_2_1; + A[523] = 0.0225749559082891*G0_0_0 + 0.0225749559082893*G0_0_1 + 0.002821869488536*G0_0_2 + 0.0225749559082892*G0_1_0 + 0.0225749559082894*G0_1_1 + 0.00282186948853593*G0_1_2 + 0.00282186948853608*G0_2_0 + 0.00282186948853646*G0_2_1; + A[524] = -0.135449735449737*G0_0_0 - 0.135449735449737*G0_0_1 - 0.0225749559082896*G0_0_2 - 0.135449735449737*G0_1_0 - 0.135449735449737*G0_1_1 - 0.0225749559082896*G0_1_2 - 0.0225749559082895*G0_2_0 - 0.0225749559082896*G0_2_1 - 0.0451499118165797*G0_2_2; + A[525] = -0.00776014109347439*G0_0_0 - 0.00776014109347441*G0_0_1 - 0.00776014109347438*G0_0_2 - 0.00776014109347439*G0_1_0 - 0.00776014109347442*G0_1_1 - 0.00776014109347439*G0_1_2 - 0.0253968253968254*G0_2_0 - 0.0253968253968254*G0_2_1 - 0.0253968253968254*G0_2_2; + A[526] = 0.00776014109347442*G0_0_0 + 0.00776014109347442*G0_1_0; + A[527] = 0.00776014109347457*G0_0_1 + 0.00776014109347458*G0_1_1; + A[528] = -0.045855379188713*G0_0_2 - 0.045855379188713*G0_1_2 - 0.0705467372134043*G0_2_2; + A[529] = -0.0451499118165788*G0_0_1 - 0.0112874779541445*G0_0_2 - 0.0451499118165789*G0_1_1 - 0.0112874779541446*G0_1_2 - 0.0112874779541447*G0_2_1; + A[530] = 0.0902998236331577*G0_0_1 + 0.0310405643738977*G0_0_2 + 0.0902998236331577*G0_1_1 + 0.0310405643738977*G0_1_2 + 0.0310405643738981*G0_2_1 - 0.0112874779541447*G0_2_2; + A[531] = -0.158024691358026*G0_0_1 - 0.0790123456790127*G0_0_2 - 0.158024691358026*G0_1_1 - 0.0790123456790127*G0_1_2 - 0.079012345679013*G0_2_1 + 0.0225749559082893*G0_2_2; + A[532] = -0.0451499118165789*G0_0_0 - 0.0112874779541448*G0_0_2 - 0.0451499118165789*G0_1_0 - 0.0112874779541448*G0_1_2 - 0.0112874779541447*G0_2_0; + A[533] = 0.0902998236331579*G0_0_0 + 0.031040564373898*G0_0_2 + 0.0902998236331579*G0_1_0 + 0.0310405643738979*G0_1_2 + 0.0310405643738983*G0_2_0 - 0.0112874779541449*G0_2_2; + A[534] = -0.158024691358026*G0_0_0 - 0.0790123456790127*G0_0_2 - 0.158024691358026*G0_1_0 - 0.0790123456790127*G0_1_2 - 0.079012345679013*G0_2_0 + 0.0225749559082895*G0_2_2; + A[535] = -0.0112874779541446*G0_0_0 - 0.0112874779541448*G0_0_1 - 0.0112874779541447*G0_1_0 - 0.0112874779541448*G0_1_1; + A[536] = -0.00282186948853626*G0_0_0 - 0.00282186948853605*G0_0_1 - 0.00282186948853622*G0_1_0 - 0.00282186948853601*G0_1_1; + A[537] = -0.0112874779541445*G0_0_0 - 0.0112874779541448*G0_0_1 - 0.0112874779541446*G0_1_0 - 0.0112874779541448*G0_1_1; + A[538] = 0.0451499118165788*G0_0_0 + 0.0451499118165788*G0_0_1 + 0.0338624338624339*G0_0_2 + 0.0451499118165788*G0_1_0 + 0.0451499118165789*G0_1_1 + 0.0338624338624339*G0_1_2 + 0.0790123456790123*G0_2_0 + 0.0790123456790124*G0_2_1 + 0.112874779541446*G0_2_2; + A[539] = -0.0902998236331578*G0_0_0 - 0.0902998236331579*G0_0_1 - 0.0592592592592595*G0_0_2 - 0.0902998236331579*G0_1_0 - 0.090299823633158*G0_1_1 - 0.0592592592592596*G0_1_2 - 0.1326278659612*G0_2_0 - 0.1326278659612*G0_2_1 - 0.22010582010582*G0_2_2; + A[540] = 0.158024691358026*G0_0_0 + 0.158024691358026*G0_0_1 + 0.079012345679013*G0_0_2 + 0.158024691358026*G0_1_0 + 0.158024691358026*G0_1_1 + 0.0790123456790131*G0_1_2 + 0.079012345679013*G0_2_0 + 0.0790123456790131*G0_2_1 + 0.203174603174604*G0_2_2; + A[541] = 0.0112874779541447*G0_0_0 + 0.0112874779541447*G0_0_2 + 0.0112874779541448*G0_1_0 + 0.0112874779541447*G0_1_2 - 0.0225749559082893*G0_2_0 + 0.0112874779541446*G0_2_1 - 0.0225749559082893*G0_2_2; + A[542] = 0.00282186948853622*G0_0_0 + 0.00282186948853619*G0_0_2 + 0.0028218694885362*G0_1_0 + 0.00282186948853617*G0_1_2 - 0.0112874779541446*G0_2_0 + 0.00282186948853616*G0_2_1 - 0.0112874779541446*G0_2_2; + A[543] = 0.0112874779541446*G0_0_0 + 0.0112874779541446*G0_0_2 + 0.0112874779541446*G0_1_0 + 0.0112874779541446*G0_1_2 + 0.0112874779541447*G0_2_1; + A[544] = 0.0112874779541448*G0_0_1 + 0.0112874779541448*G0_0_2 + 0.0112874779541449*G0_1_1 + 0.0112874779541449*G0_1_2 + 0.0112874779541446*G0_2_0 - 0.0225749559082893*G0_2_1 - 0.0225749559082893*G0_2_2; + A[545] = 0.00282186948853619*G0_0_1 + 0.00282186948853621*G0_0_2 + 0.00282186948853617*G0_1_1 + 0.0028218694885362*G0_1_2 + 0.00282186948853601*G0_2_0 - 0.0112874779541446*G0_2_1 - 0.0112874779541446*G0_2_2; + A[546] = 0.0112874779541448*G0_0_1 + 0.0112874779541448*G0_0_2 + 0.0112874779541448*G0_1_1 + 0.0112874779541448*G0_1_2 + 0.0112874779541447*G0_2_0; + A[547] = 0.0225749559082894*G0_0_0 + 0.0225749559082894*G0_0_1 - 0.0112874779541446*G0_0_2 + 0.0225749559082894*G0_1_0 + 0.0225749559082893*G0_1_1 - 0.0112874779541447*G0_1_2 - 0.0112874779541448*G0_2_0 - 0.0112874779541444*G0_2_1; + A[548] = 0.0225749559082891*G0_0_0 + 0.0225749559082891*G0_0_1 - 0.0112874779541449*G0_0_2 + 0.022574955908289*G0_1_0 + 0.0225749559082892*G0_1_1 - 0.0112874779541449*G0_1_2 - 0.0112874779541447*G0_2_0 - 0.0112874779541451*G0_2_1; + A[549] = -0.112874779541446*G0_0_0 - 0.112874779541446*G0_0_1 - 0.0112874779541444*G0_0_2 - 0.112874779541446*G0_1_0 - 0.112874779541446*G0_1_1 - 0.0112874779541444*G0_1_2 - 0.0112874779541449*G0_2_0 - 0.0112874779541446*G0_2_1 - 0.0451499118165789*G0_2_2; + A[550] = -0.0225749559082897*G0_0_0 - 0.0338624338624344*G0_0_2 - 0.0225749559082897*G0_1_0 - 0.0338624338624344*G0_1_2 + 0.0112874779541449*G0_2_0 - 0.0338624338624334*G0_2_1 + 0.067724867724868*G0_2_2; + A[551] = -0.0225749559082891*G0_0_0 - 0.0338624338624339*G0_0_2 - 0.022574955908289*G0_1_0 - 0.0338624338624339*G0_1_2 + 0.0112874779541447*G0_2_0 - 0.0338624338624343*G0_2_1 + 0.0225749559082892*G0_2_2; + A[552] = 0.112874779541446*G0_0_0 + 0.101587301587302*G0_0_2 + 0.112874779541446*G0_1_0 + 0.101587301587302*G0_1_2 + 0.0112874779541449*G0_2_0 + 0.101587301587302*G0_2_1 - 0.0677248677248679*G0_2_2; + A[553] = -0.0225749559082895*G0_0_1 - 0.0338624338624345*G0_0_2 - 0.0225749559082895*G0_1_1 - 0.0338624338624345*G0_1_2 - 0.0338624338624332*G0_2_0 + 0.011287477954145*G0_2_1 + 0.067724867724868*G0_2_2; + A[554] = -0.0225749559082893*G0_0_1 - 0.0338624338624341*G0_0_2 - 0.0225749559082892*G0_1_1 - 0.0338624338624341*G0_1_2 - 0.0338624338624343*G0_2_0 + 0.0112874779541445*G0_2_1 + 0.0225749559082894*G0_2_2; + A[555] = 0.112874779541446*G0_0_1 + 0.101587301587302*G0_0_2 + 0.112874779541446*G0_1_1 + 0.101587301587302*G0_1_2 + 0.101587301587301*G0_2_0 + 0.0112874779541446*G0_2_1 - 0.0677248677248682*G0_2_2; + A[556] = 0.0112874779541447*G0_0_2 + 0.0112874779541448*G0_1_2 + 0.0112874779541449*G0_2_0 + 0.0112874779541448*G0_2_1 - 0.0451499118165782*G0_2_2; + A[557] = 0.0112874779541448*G0_0_2 + 0.0112874779541449*G0_1_2 + 0.0112874779541443*G0_2_0 + 0.0112874779541447*G0_2_1; + A[558] = 0.0112874779541448*G0_0_2 + 0.0112874779541448*G0_1_2 + 0.0112874779541446*G0_2_0 + 0.0112874779541444*G0_2_1; + A[559] = 0.0902998236331571*G0_2_2; + A[560] = -0.0246913580246912*G0_0_0 - 0.0246913580246912*G0_0_1 - 0.0246913580246912*G0_0_2 - 0.0705467372134042*G0_1_0 - 0.0705467372134042*G0_1_1 - 0.0705467372134042*G0_1_2 - 0.0246913580246912*G0_2_0 - 0.0246913580246912*G0_2_1 - 0.0246913580246912*G0_2_2; + A[561] = 0.00776014109347446*G0_0_0 + 0.00776014109347445*G0_2_0; + A[562] = -0.017636684303351*G0_0_1 - 0.0253968253968256*G0_1_1 - 0.017636684303351*G0_2_1; + A[563] = 0.00776014109347441*G0_0_2 + 0.0077601410934744*G0_2_2; + A[564] = -0.0338624338624339*G0_0_1 - 0.0451499118165787*G0_0_2 - 0.022574955908289*G0_1_1 - 0.033862433862434*G0_1_2 - 0.0338624338624339*G0_2_1 - 0.0451499118165787*G0_2_2; + A[565] = -0.0141093474426808*G0_0_1 - 0.0169312169312168*G0_0_2 - 0.0112874779541447*G0_1_1 - 0.0141093474426806*G0_1_2 - 0.0141093474426808*G0_2_1 - 0.0169312169312168*G0_2_2; + A[566] = -0.0112874779541448*G0_0_1 - 0.0225749559082894*G0_0_2 - 0.0112874779541446*G0_1_2 - 0.0112874779541447*G0_2_1 - 0.0225749559082893*G0_2_2; + A[567] = -0.0112874779541447*G0_0_0 - 0.0112874779541446*G0_0_2 - 0.0112874779541446*G0_2_0 - 0.0112874779541446*G0_2_2; + A[568] = -0.00282186948853615*G0_0_0 - 0.00282186948853634*G0_0_2 - 0.00282186948853623*G0_2_0 - 0.00282186948853637*G0_2_2; + A[569] = -0.0112874779541448*G0_0_0 - 0.0112874779541446*G0_0_2 - 0.0112874779541447*G0_2_0 - 0.0112874779541446*G0_2_2; + A[570] = -0.0225749559082894*G0_0_0 - 0.0112874779541447*G0_0_1 - 0.0112874779541445*G0_1_0 - 0.0225749559082893*G0_2_0 - 0.0112874779541447*G0_2_1; + A[571] = -0.0169312169312166*G0_0_0 - 0.0141093474426806*G0_0_1 - 0.0141093474426804*G0_1_0 - 0.0112874779541446*G0_1_1 - 0.0169312169312165*G0_2_0 - 0.0141093474426805*G0_2_1; + A[572] = -0.0451499118165787*G0_0_0 - 0.0338624338624338*G0_0_1 - 0.033862433862434*G0_1_0 - 0.022574955908289*G0_1_1 - 0.0451499118165787*G0_2_0 - 0.0338624338624339*G0_2_1; + A[573] = 0.101587301587302*G0_0_0 + 0.101587301587302*G0_0_1 + 0.0225749559082889*G0_0_2 + 0.0225749559082888*G0_1_0 + 0.0225749559082888*G0_1_1 + 0.101587301587302*G0_1_2 + 0.101587301587302*G0_2_0 + 0.101587301587302*G0_2_1 + 0.022574955908289*G0_2_2; + A[574] = -0.0423280423280428*G0_0_0 - 0.0423280423280427*G0_0_1 + 0.0169312169312171*G0_0_2 - 0.0112874779541444*G0_1_0 - 0.0112874779541444*G0_1_1 - 0.0423280423280425*G0_1_2 - 0.0423280423280428*G0_2_0 - 0.0423280423280427*G0_2_1 + 0.0169312169312171*G0_2_2; + A[575] = 0.0112874779541447*G0_0_0 + 0.0112874779541448*G0_0_1 - 0.0225749559082893*G0_0_2 + 0.0112874779541446*G0_1_2 + 0.0112874779541447*G0_2_0 + 0.0112874779541447*G0_2_1 - 0.0225749559082893*G0_2_2; + A[576] = 0.203174603174603*G0_0_0 + 0.124162257495591*G0_0_1 + 0.203174603174603*G0_0_2 + 0.124162257495591*G0_1_0 + 0.203174603174604*G0_1_1 + 0.124162257495591*G0_1_2 + 0.203174603174603*G0_2_0 + 0.124162257495591*G0_2_1 + 0.203174603174603*G0_2_2; + A[577] = -0.118518518518519*G0_0_0 - 0.16084656084656*G0_0_1 - 0.118518518518518*G0_0_2 - 0.0874779541446206*G0_1_0 - 0.22010582010582*G0_1_1 - 0.0874779541446206*G0_1_2 - 0.118518518518519*G0_2_0 - 0.160846560846561*G0_2_1 - 0.118518518518518*G0_2_2; + A[578] = 0.0451499118165787*G0_0_0 + 0.0790123456790123*G0_0_1 + 0.0451499118165787*G0_0_2 + 0.033862433862434*G0_1_0 + 0.112874779541446*G0_1_1 + 0.033862433862434*G0_1_2 + 0.0451499118165787*G0_2_0 + 0.0790123456790123*G0_2_1 + 0.0451499118165787*G0_2_2; + A[579] = 0.0225749559082891*G0_0_0 + 0.101587301587302*G0_0_1 + 0.101587301587302*G0_0_2 + 0.101587301587302*G0_1_0 + 0.0225749559082891*G0_1_1 + 0.0225749559082891*G0_1_2 + 0.0225749559082891*G0_2_0 + 0.101587301587302*G0_2_1 + 0.101587301587302*G0_2_2; + A[580] = 0.016931216931217*G0_0_0 - 0.0423280423280422*G0_0_1 - 0.0423280423280423*G0_0_2 - 0.0423280423280428*G0_1_0 - 0.0112874779541445*G0_1_1 - 0.0112874779541445*G0_1_2 + 0.016931216931217*G0_2_0 - 0.0423280423280422*G0_2_1 - 0.0423280423280422*G0_2_2; + A[581] = -0.0225749559082893*G0_0_0 + 0.0112874779541446*G0_0_1 + 0.0112874779541446*G0_0_2 + 0.0112874779541449*G0_1_0 - 0.0225749559082893*G0_2_0 + 0.0112874779541446*G0_2_1 + 0.0112874779541446*G0_2_2; + A[582] = -0.0225749559082895*G0_0_0 - 0.0112874779541449*G0_0_1 - 0.0225749559082892*G0_0_2 - 0.011287477954145*G0_1_0 - 0.0112874779541443*G0_1_2 - 0.0225749559082895*G0_2_0 - 0.0112874779541449*G0_2_1 - 0.0225749559082891*G0_2_2; + A[583] = -0.0677248677248679*G0_0_0 - 0.0564373897707235*G0_0_1 - 0.0677248677248677*G0_0_2 - 0.0564373897707231*G0_1_0 - 0.045149911816579*G0_1_1 - 0.056437389770723*G0_1_2 - 0.0677248677248679*G0_2_0 - 0.0564373897707235*G0_2_1 - 0.0677248677248677*G0_2_2; + A[584] = -0.0225749559082894*G0_0_0 - 0.0112874779541446*G0_0_1 - 0.0225749559082896*G0_0_2 - 0.011287477954145*G0_1_0 - 0.0112874779541455*G0_1_2 - 0.0225749559082893*G0_2_0 - 0.0112874779541446*G0_2_1 - 0.0225749559082897*G0_2_2; + A[585] = -0.067724867724868*G0_0_0 - 0.169312169312169*G0_0_1 - 0.270899470899472*G0_0_2 - 0.0790123456790121*G0_1_0 - 0.067724867724867*G0_1_1 - 0.169312169312169*G0_1_2 - 0.067724867724868*G0_2_0 - 0.16931216931217*G0_2_1 - 0.270899470899472*G0_2_2; + A[586] = 0.0677248677248679*G0_0_0 + 0.101587301587302*G0_0_1 + 0.135449735449736*G0_0_2 + 0.0564373897707231*G0_1_0 + 0.0677248677248673*G0_1_1 + 0.101587301587301*G0_1_2 + 0.067724867724868*G0_2_0 + 0.101587301587302*G0_2_1 + 0.135449735449736*G0_2_2; + A[587] = 0.0225749559082893*G0_0_0 + 0.0564373897707235*G0_0_1 + 0.0902998236331572*G0_0_2 + 0.0112874779541449*G0_1_0 + 0.0225749559082891*G0_1_1 + 0.0564373897707227*G0_1_2 + 0.0225749559082892*G0_2_0 + 0.0564373897707234*G0_2_1 + 0.0902998236331572*G0_2_2; + A[588] = -0.135449735449736*G0_0_0 - 0.0338624338624342*G0_0_1 - 0.135449735449736*G0_0_2 - 0.0338624338624333*G0_1_0 - 0.0451499118165783*G0_1_1 - 0.0338624338624337*G0_1_2 - 0.135449735449736*G0_2_0 - 0.0338624338624341*G0_2_1 - 0.135449735449736*G0_2_2; + A[589] = 0.0451499118165786*G0_0_0 + 0.011287477954145*G0_0_1 + 0.0451499118165787*G0_0_2 + 0.0112874779541442*G0_1_0 + 0.0112874779541446*G0_1_2 + 0.0451499118165785*G0_2_0 + 0.011287477954145*G0_2_1 + 0.0451499118165787*G0_2_2; + A[590] = 0.0451499118165789*G0_0_0 + 0.0112874779541446*G0_0_1 + 0.0451499118165789*G0_0_2 + 0.0112874779541446*G0_1_0 + 0.0112874779541444*G0_1_2 + 0.045149911816579*G0_2_0 + 0.0112874779541447*G0_2_1 + 0.0451499118165789*G0_2_2; + A[591] = -0.270899470899471*G0_0_0 - 0.16931216931217*G0_0_1 - 0.0677248677248675*G0_0_2 - 0.169312169312169*G0_1_0 - 0.0677248677248675*G0_1_1 - 0.0790123456790121*G0_1_2 - 0.270899470899471*G0_2_0 - 0.16931216931217*G0_2_1 - 0.0677248677248675*G0_2_2; + A[592] = 0.090299823633157*G0_0_0 + 0.056437389770723*G0_0_1 + 0.0225749559082893*G0_0_2 + 0.0564373897707228*G0_1_0 + 0.0225749559082892*G0_1_1 + 0.0112874779541444*G0_1_2 + 0.090299823633157*G0_2_0 + 0.0564373897707229*G0_2_1 + 0.0225749559082893*G0_2_2; + A[593] = 0.135449735449735*G0_0_0 + 0.101587301587301*G0_0_1 + 0.0677248677248676*G0_0_2 + 0.101587301587301*G0_1_0 + 0.0677248677248674*G0_1_1 + 0.0564373897707229*G0_1_2 + 0.135449735449735*G0_2_0 + 0.101587301587301*G0_2_1 + 0.0677248677248675*G0_2_2; + A[594] = 0.0902998236331576*G0_0_0 + 0.0902998236331575*G0_0_1 + 0.0902998236331571*G0_0_2 + 0.0902998236331572*G0_1_0 + 0.0902998236331573*G0_1_1 + 0.0902998236331576*G0_1_2 + 0.0902998236331576*G0_2_0 + 0.0902998236331574*G0_2_1 + 0.0902998236331571*G0_2_2; + A[595] = 0.0202821869488536*G0_0_0 + 0.0202821869488535*G0_0_1 + 0.0202821869488536*G0_0_2 + 0.0529100529100531*G0_1_0 + 0.0529100529100531*G0_1_1 + 0.0529100529100531*G0_1_2 + 0.0202821869488536*G0_2_0 + 0.0202821869488535*G0_2_1 + 0.0202821869488536*G0_2_2; + A[596] = 0.00511463844797175*G0_0_0 + 0.00511463844797175*G0_2_0; + A[597] = 0.0326278659611995*G0_0_1 + 0.0529100529100532*G0_1_1 + 0.0326278659611995*G0_2_1; + A[598] = 0.00511463844797173*G0_0_2 + 0.00511463844797174*G0_2_2; + A[599] = 0.0592592592592594*G0_0_1 + 0.0902998236331577*G0_0_2 + 0.0169312169312167*G0_1_1 + 0.0592592592592596*G0_1_2 + 0.0592592592592594*G0_2_1 + 0.0902998236331577*G0_2_2; + A[600] = 0.0105820105820105*G0_0_1 + 0.0211640211640205*G0_0_2 - 0.0028218694885361*G0_1_1 + 0.0105820105820101*G0_1_2 + 0.0105820105820105*G0_2_1 + 0.0211640211640206*G0_2_2; + A[601] = -0.00282186948853619*G0_0_1 - 0.0169312169312168*G0_0_2 - 0.00282186948853612*G0_1_2 - 0.00282186948853617*G0_2_1 - 0.0169312169312168*G0_2_2; + A[602] = -0.00282186948853622*G0_0_0 - 0.00282186948853608*G0_0_2 - 0.00282186948853617*G0_2_0 - 0.00282186948853603*G0_2_2; + A[603] = -0.00917107583774225*G0_0_0 - 0.00917107583774249*G0_0_2 - 0.00917107583774232*G0_2_0 - 0.00917107583774253*G0_2_2; + A[604] = -0.00282186948853622*G0_0_0 - 0.00282186948853609*G0_0_2 - 0.0028218694885362*G0_2_0 - 0.00282186948853608*G0_2_2; + A[605] = -0.0169312169312167*G0_0_0 - 0.00282186948853603*G0_0_1 - 0.00282186948853613*G0_1_0 - 0.0169312169312166*G0_2_0 - 0.00282186948853599*G0_2_1; + A[606] = 0.0211640211640205*G0_0_0 + 0.0105820105820103*G0_0_1 + 0.0105820105820101*G0_1_0 - 0.00282186948853616*G0_1_1 + 0.0211640211640204*G0_2_0 + 0.0105820105820102*G0_2_1; + A[607] = 0.0902998236331576*G0_0_0 + 0.0592592592592594*G0_0_1 + 0.0592592592592596*G0_1_0 + 0.0169312169312167*G0_1_1 + 0.0902998236331576*G0_2_0 + 0.0592592592592594*G0_2_1; + A[608] = -0.0423280423280423*G0_0_0 - 0.0423280423280423*G0_0_1 - 0.0112874779541445*G0_0_2 + 0.0169312169312174*G0_1_0 + 0.0169312169312173*G0_1_1 - 0.0423280423280426*G0_1_2 - 0.0423280423280422*G0_2_0 - 0.0423280423280423*G0_2_1 - 0.0112874779541445*G0_2_2; + A[609] = -0.0134038800705467*G0_0_0 - 0.0134038800705468*G0_0_1 - 0.00282186948853613*G0_0_2 - 0.00282186948853641*G0_1_0 - 0.00282186948853637*G0_1_1 - 0.0134038800705466*G0_1_2 - 0.0134038800705467*G0_2_0 - 0.0134038800705468*G0_2_1 - 0.0028218694885361*G0_2_2; + A[610] = 0.00282186948853622*G0_0_0 + 0.0028218694885362*G0_0_1 - 0.0112874779541446*G0_0_2 + 0.00282186948853616*G0_1_2 + 0.00282186948853619*G0_2_0 + 0.00282186948853617*G0_2_1 - 0.0112874779541446*G0_2_2; + A[611] = -0.118518518518518*G0_0_0 - 0.0874779541446206*G0_0_1 - 0.118518518518518*G0_0_2 - 0.16084656084656*G0_1_0 - 0.22010582010582*G0_1_1 - 0.16084656084656*G0_1_2 - 0.118518518518518*G0_2_0 - 0.0874779541446206*G0_2_1 - 0.118518518518519*G0_2_2; + A[612] = 0.24973544973545*G0_0_0 + 0.167195767195767*G0_0_1 + 0.24973544973545*G0_0_2 + 0.167195767195767*G0_1_0 + 0.334391534391535*G0_1_1 + 0.167195767195767*G0_1_2 + 0.24973544973545*G0_2_0 + 0.167195767195767*G0_2_1 + 0.24973544973545*G0_2_2; + A[613] = -0.0902998236331576*G0_0_0 - 0.1326278659612*G0_0_1 - 0.0902998236331577*G0_0_2 - 0.0592592592592596*G0_1_0 - 0.220105820105821*G0_1_1 - 0.0592592592592596*G0_1_2 - 0.0902998236331577*G0_2_0 - 0.1326278659612*G0_2_1 - 0.0902998236331577*G0_2_2; + A[614] = -0.0112874779541445*G0_0_0 - 0.0423280423280424*G0_0_1 - 0.0423280423280424*G0_0_2 - 0.0423280423280427*G0_1_0 + 0.0169312169312172*G0_1_1 + 0.0169312169312172*G0_1_2 - 0.0112874779541445*G0_2_0 - 0.0423280423280423*G0_2_1 - 0.0423280423280423*G0_2_2; + A[615] = -0.00282186948853619*G0_0_0 - 0.0134038800705469*G0_0_1 - 0.0134038800705468*G0_0_2 - 0.0134038800705464*G0_1_0 - 0.00282186948853624*G0_1_1 - 0.00282186948853626*G0_1_2 - 0.00282186948853618*G0_2_0 - 0.0134038800705469*G0_2_1 - 0.0134038800705468*G0_2_2; + A[616] = -0.0112874779541446*G0_0_0 + 0.00282186948853617*G0_0_1 + 0.00282186948853619*G0_0_2 + 0.00282186948853592*G0_1_0 - 0.0112874779541446*G0_2_0 + 0.00282186948853612*G0_2_1 + 0.00282186948853615*G0_2_2; + A[617] = 0.016931216931217*G0_0_0 - 0.00282186948853603*G0_0_1 + 0.0169312169312168*G0_0_2 - 0.00282186948853567*G0_1_0 - 0.00282186948853633*G0_1_2 + 0.016931216931217*G0_2_0 - 0.00282186948853597*G0_2_1 + 0.0169312169312168*G0_2_2; + A[618] = 0.0846560846560848*G0_0_0 + 0.0423280423280422*G0_0_1 + 0.0846560846560847*G0_0_2 + 0.0423280423280421*G0_1_0 + 0.0225749559082896*G0_1_1 + 0.0423280423280422*G0_1_2 + 0.0846560846560848*G0_2_0 + 0.0423280423280422*G0_2_1 + 0.0846560846560847*G0_2_2; + A[619] = 0.0169312169312169*G0_0_0 - 0.00282186948853599*G0_0_1 + 0.0169312169312171*G0_0_2 - 0.00282186948853602*G0_1_0 - 0.00282186948853552*G0_1_2 + 0.0169312169312169*G0_2_0 - 0.00282186948853603*G0_2_1 + 0.0169312169312171*G0_2_2; + A[620] = 0.118518518518518*G0_0_0 + 0.160846560846561*G0_0_1 + 0.0677248677248674*G0_0_2 + 0.025396825396825*G0_1_0 - 0.0169312169312177*G0_1_1 + 0.16084656084656*G0_1_2 + 0.118518518518518*G0_2_0 + 0.160846560846561*G0_2_1 + 0.0677248677248674*G0_2_2; + A[621] = -0.0846560846560848*G0_0_0 - 0.177777777777778*G0_0_1 - 0.270899470899471*G0_0_2 - 0.0423280423280421*G0_1_0 - 0.0169312169312163*G0_1_1 - 0.177777777777777*G0_1_2 - 0.0846560846560848*G0_2_0 - 0.177777777777778*G0_2_1 - 0.270899470899471*G0_2_2; + A[622] = -0.0169312169312168*G0_0_0 + 0.00282186948853631*G0_0_1 + 0.0677248677248682*G0_0_2 + 0.00282186948853606*G0_1_0 + 0.00564373897707248*G0_1_1 + 0.00282186948853666*G0_1_2 - 0.0169312169312168*G0_2_0 + 0.0028218694885363*G0_2_1 + 0.0677248677248682*G0_2_2; + A[623] = 0.0225749559082894*G0_0_0 - 0.0197530864197531*G0_0_1 + 0.0225749559082892*G0_0_2 - 0.0197530864197536*G0_1_0 + 0.0225749559082891*G0_1_1 - 0.0197530864197534*G0_1_2 + 0.0225749559082893*G0_2_0 - 0.0197530864197531*G0_2_1 + 0.0225749559082892*G0_2_2; + A[624] = 0.0225749559082893*G0_0_0 + 0.00282186948853594*G0_0_1 + 0.0225749559082892*G0_0_2 + 0.00282186948853654*G0_1_0 + 0.00282186948853605*G0_1_2 + 0.0225749559082893*G0_2_0 + 0.00282186948853588*G0_2_1 + 0.0225749559082893*G0_2_2; + A[625] = 0.022574955908289*G0_0_0 + 0.00282186948853596*G0_0_1 + 0.0225749559082892*G0_0_2 + 0.00282186948853611*G0_1_0 + 0.00282186948853643*G0_1_2 + 0.022574955908289*G0_2_0 + 0.002821869488536*G0_2_1 + 0.0225749559082892*G0_2_2; + A[626] = 0.0677248677248675*G0_0_0 + 0.160846560846561*G0_0_1 + 0.118518518518518*G0_0_2 + 0.16084656084656*G0_1_0 - 0.0169312169312173*G0_1_1 + 0.0253968253968253*G0_1_2 + 0.0677248677248674*G0_2_0 + 0.160846560846561*G0_2_1 + 0.118518518518518*G0_2_2; + A[627] = 0.0677248677248676*G0_0_0 + 0.00282186948853633*G0_0_1 - 0.016931216931217*G0_0_2 + 0.00282186948853634*G0_1_0 + 0.00564373897707231*G0_1_1 + 0.00282186948853621*G0_1_2 + 0.0677248677248677*G0_2_0 + 0.00282186948853639*G0_2_1 - 0.0169312169312171*G0_2_2; + A[628] = -0.270899470899471*G0_0_0 - 0.177777777777778*G0_0_1 - 0.0846560846560846*G0_0_2 - 0.177777777777777*G0_1_0 - 0.0169312169312165*G0_1_1 - 0.0423280423280421*G0_1_2 - 0.270899470899471*G0_2_0 - 0.177777777777778*G0_2_1 - 0.0846560846560845*G0_2_2; + A[629] = -0.135449735449735*G0_0_0 - 0.022574955908289*G0_0_1 - 0.135449735449736*G0_0_2 - 0.0225749559082894*G0_1_0 - 0.0451499118165787*G0_1_1 - 0.0225749559082897*G0_1_2 - 0.135449735449736*G0_2_0 - 0.0225749559082889*G0_2_1 - 0.135449735449735*G0_2_2; + A[630] = -0.00776014109347444*G0_0_0 - 0.00776014109347444*G0_0_1 - 0.00776014109347444*G0_0_2 - 0.0253968253968255*G0_1_0 - 0.0253968253968255*G0_1_1 - 0.0253968253968255*G0_1_2 - 0.00776014109347443*G0_2_0 - 0.00776014109347443*G0_2_1 - 0.00776014109347443*G0_2_2; + A[631] = 0.00776014109347445*G0_0_0 + 0.00776014109347447*G0_2_0; + A[632] = -0.0458553791887129*G0_0_1 - 0.0705467372134042*G0_1_1 - 0.0458553791887129*G0_2_1; + A[633] = 0.00776014109347446*G0_0_2 + 0.00776014109347446*G0_2_2; + A[634] = -0.0790123456790126*G0_0_1 - 0.158024691358026*G0_0_2 + 0.0225749559082893*G0_1_1 - 0.079012345679013*G0_1_2 - 0.0790123456790126*G0_2_1 - 0.158024691358026*G0_2_2; + A[635] = 0.0310405643738979*G0_0_1 + 0.0902998236331577*G0_0_2 - 0.0112874779541446*G0_1_1 + 0.0310405643738983*G0_1_2 + 0.0310405643738979*G0_2_1 + 0.0902998236331577*G0_2_2; + A[636] = -0.0112874779541446*G0_0_1 - 0.0451499118165786*G0_0_2 - 0.0112874779541446*G0_1_2 - 0.0112874779541447*G0_2_1 - 0.0451499118165786*G0_2_2; + A[637] = -0.0112874779541446*G0_0_0 - 0.0112874779541448*G0_0_2 - 0.0112874779541447*G0_2_0 - 0.0112874779541448*G0_2_2; + A[638] = -0.00282186948853616*G0_0_0 - 0.00282186948853598*G0_0_2 - 0.0028218694885361*G0_2_0 - 0.00282186948853597*G0_2_2; + A[639] = -0.0112874779541446*G0_0_0 - 0.0112874779541446*G0_0_2 - 0.0112874779541446*G0_2_0 - 0.0112874779541447*G0_2_2; + A[640] = -0.0451499118165788*G0_0_0 - 0.0112874779541448*G0_0_1 - 0.0112874779541448*G0_1_0 - 0.0451499118165788*G0_2_0 - 0.0112874779541448*G0_2_1; + A[641] = 0.0902998236331578*G0_0_0 + 0.031040564373898*G0_0_1 + 0.0310405643738983*G0_1_0 - 0.0112874779541445*G0_1_1 + 0.0902998236331579*G0_2_0 + 0.0310405643738981*G0_2_1; + A[642] = -0.158024691358026*G0_0_0 - 0.0790123456790126*G0_0_1 - 0.0790123456790129*G0_1_0 + 0.0225749559082893*G0_1_1 - 0.158024691358026*G0_2_0 - 0.0790123456790126*G0_2_1; + A[643] = 0.0112874779541446*G0_0_0 + 0.0112874779541446*G0_0_1 - 0.0225749559082895*G0_1_0 - 0.0225749559082894*G0_1_1 + 0.0112874779541449*G0_1_2 + 0.0112874779541446*G0_2_0 + 0.0112874779541446*G0_2_1; + A[644] = 0.00282186948853633*G0_0_0 + 0.00282186948853629*G0_0_1 - 0.0112874779541444*G0_1_0 - 0.0112874779541445*G0_1_1 + 0.00282186948853593*G0_1_2 + 0.00282186948853632*G0_2_0 + 0.00282186948853628*G0_2_1; + A[645] = 0.0112874779541446*G0_0_0 + 0.0112874779541446*G0_0_1 + 0.0112874779541447*G0_1_2 + 0.0112874779541446*G0_2_0 + 0.0112874779541446*G0_2_1; + A[646] = 0.0451499118165787*G0_0_0 + 0.033862433862434*G0_0_1 + 0.0451499118165787*G0_0_2 + 0.0790123456790123*G0_1_0 + 0.112874779541446*G0_1_1 + 0.0790123456790123*G0_1_2 + 0.0451499118165787*G0_2_0 + 0.033862433862434*G0_2_1 + 0.0451499118165787*G0_2_2; + A[647] = -0.0902998236331576*G0_0_0 - 0.0592592592592596*G0_0_1 - 0.0902998236331576*G0_0_2 - 0.1326278659612*G0_1_0 - 0.220105820105821*G0_1_1 - 0.1326278659612*G0_1_2 - 0.0902998236331577*G0_2_0 - 0.0592592592592596*G0_2_1 - 0.0902998236331577*G0_2_2; + A[648] = 0.158024691358026*G0_0_0 + 0.079012345679013*G0_0_1 + 0.158024691358026*G0_0_2 + 0.079012345679013*G0_1_0 + 0.203174603174604*G0_1_1 + 0.079012345679013*G0_1_2 + 0.158024691358026*G0_2_0 + 0.079012345679013*G0_2_1 + 0.158024691358026*G0_2_2; + A[649] = 0.0112874779541447*G0_0_1 + 0.0112874779541447*G0_0_2 + 0.0112874779541448*G0_1_0 - 0.0225749559082895*G0_1_1 - 0.0225749559082894*G0_1_2 + 0.0112874779541447*G0_2_1 + 0.0112874779541447*G0_2_2; + A[650] = 0.00282186948853617*G0_0_1 + 0.0028218694885361*G0_0_2 + 0.00282186948853601*G0_1_0 - 0.0112874779541446*G0_1_1 - 0.0112874779541446*G0_1_2 + 0.00282186948853621*G0_2_1 + 0.00282186948853614*G0_2_2; + A[651] = 0.0112874779541447*G0_0_1 + 0.0112874779541447*G0_0_2 + 0.0112874779541448*G0_1_0 + 0.0112874779541447*G0_2_1 + 0.0112874779541447*G0_2_2; + A[652] = 0.0225749559082894*G0_0_0 - 0.0112874779541446*G0_0_1 + 0.0225749559082895*G0_0_2 - 0.0112874779541448*G0_1_0 - 0.0112874779541445*G0_1_2 + 0.0225749559082894*G0_2_0 - 0.0112874779541446*G0_2_1 + 0.0225749559082895*G0_2_2; + A[653] = -0.112874779541446*G0_0_0 - 0.0112874779541444*G0_0_1 - 0.112874779541446*G0_0_2 - 0.0112874779541444*G0_1_0 - 0.0451499118165784*G0_1_1 - 0.0112874779541445*G0_1_2 - 0.112874779541446*G0_2_0 - 0.0112874779541444*G0_2_1 - 0.112874779541446*G0_2_2; + A[654] = 0.0225749559082896*G0_0_0 - 0.0112874779541444*G0_0_1 + 0.0225749559082894*G0_0_2 - 0.0112874779541445*G0_1_0 - 0.0112874779541447*G0_1_2 + 0.0225749559082896*G0_2_0 - 0.0112874779541444*G0_2_1 + 0.0225749559082895*G0_2_2; + A[655] = -0.0225749559082887*G0_0_0 - 0.0338624338624338*G0_0_1 + 0.0112874779541451*G0_1_0 + 0.0677248677248681*G0_1_1 - 0.0338624338624333*G0_1_2 - 0.0225749559082887*G0_2_0 - 0.0338624338624338*G0_2_1; + A[656] = 0.112874779541446*G0_0_0 + 0.101587301587302*G0_0_1 + 0.0112874779541444*G0_1_0 - 0.0677248677248681*G0_1_1 + 0.101587301587301*G0_1_2 + 0.112874779541446*G0_2_0 + 0.101587301587302*G0_2_1; + A[657] = -0.0225749559082897*G0_0_0 - 0.0338624338624343*G0_0_1 + 0.0112874779541445*G0_1_0 + 0.0225749559082891*G0_1_1 - 0.0338624338624343*G0_1_2 - 0.0225749559082897*G0_2_0 - 0.0338624338624343*G0_2_1; + A[658] = 0.0112874779541452*G0_0_1 + 0.0112874779541448*G0_1_0 - 0.0451499118165782*G0_1_1 + 0.0112874779541451*G0_1_2 + 0.0112874779541452*G0_2_1; + A[659] = 0.0112874779541447*G0_0_1 + 0.0112874779541444*G0_1_0 + 0.0112874779541447*G0_1_2 + 0.0112874779541447*G0_2_1; + A[660] = 0.0112874779541445*G0_0_1 + 0.0112874779541447*G0_1_0 + 0.0112874779541442*G0_1_2 + 0.0112874779541445*G0_2_1; + A[661] = -0.033862433862434*G0_0_1 - 0.022574955908289*G0_0_2 - 0.0338624338624335*G0_1_0 + 0.067724867724868*G0_1_1 + 0.0112874779541447*G0_1_2 - 0.033862433862434*G0_2_1 - 0.0225749559082889*G0_2_2; + A[662] = -0.033862433862434*G0_0_1 - 0.0225749559082891*G0_0_2 - 0.0338624338624339*G0_1_0 + 0.0225749559082892*G0_1_1 + 0.0112874779541447*G0_1_2 - 0.0338624338624341*G0_2_1 - 0.0225749559082892*G0_2_2; + A[663] = 0.101587301587302*G0_0_1 + 0.112874779541446*G0_0_2 + 0.101587301587301*G0_1_0 - 0.0677248677248679*G0_1_1 + 0.0112874779541444*G0_1_2 + 0.101587301587302*G0_2_1 + 0.112874779541446*G0_2_2; + A[664] = 0.0902998236331566*G0_1_1; + A[665] = -0.0705467372134042*G0_0_0 - 0.0705467372134042*G0_0_1 - 0.0705467372134042*G0_0_2 - 0.0246913580246913*G0_1_0 - 0.0246913580246913*G0_1_1 - 0.0246913580246913*G0_1_2 - 0.0246913580246913*G0_2_0 - 0.0246913580246913*G0_2_1 - 0.0246913580246913*G0_2_2; + A[666] = -0.0253968253968255*G0_0_0 - 0.017636684303351*G0_1_0 - 0.017636684303351*G0_2_0; + A[667] = 0.00776014109347447*G0_1_1 + 0.00776014109347447*G0_2_1; + A[668] = 0.0077601410934744*G0_1_2 + 0.00776014109347439*G0_2_2; + A[669] = -0.0112874779541448*G0_1_1 - 0.0112874779541447*G0_1_2 - 0.0112874779541448*G0_2_1 - 0.0112874779541447*G0_2_2; + A[670] = -0.00282186948853615*G0_1_1 - 0.00282186948853622*G0_1_2 - 0.00282186948853612*G0_2_1 - 0.00282186948853618*G0_2_2; + A[671] = -0.0112874779541449*G0_1_1 - 0.0112874779541448*G0_1_2 - 0.0112874779541449*G0_2_1 - 0.0112874779541448*G0_2_2; + A[672] = -0.022574955908289*G0_0_0 - 0.0338624338624339*G0_0_2 - 0.033862433862434*G0_1_0 - 0.0451499118165786*G0_1_2 - 0.0338624338624339*G0_2_0 - 0.0451499118165786*G0_2_2; + A[673] = -0.0112874779541447*G0_0_0 - 0.0141093474426807*G0_0_2 - 0.0141093474426807*G0_1_0 - 0.016931216931217*G0_1_2 - 0.0141093474426808*G0_2_0 - 0.016931216931217*G0_2_2; + A[674] = -0.0112874779541446*G0_0_2 - 0.0112874779541449*G0_1_0 - 0.0225749559082894*G0_1_2 - 0.0112874779541449*G0_2_0 - 0.0225749559082894*G0_2_2; + A[675] = -0.022574955908289*G0_0_0 - 0.0338624338624339*G0_0_1 - 0.0338624338624339*G0_1_0 - 0.0451499118165787*G0_1_1 - 0.0338624338624339*G0_2_0 - 0.0451499118165787*G0_2_1; + A[676] = -0.0112874779541446*G0_0_0 - 0.0141093474426807*G0_0_1 - 0.0141093474426807*G0_1_0 - 0.0169312169312166*G0_1_1 - 0.0141093474426807*G0_2_0 - 0.0169312169312167*G0_2_1; + A[677] = -0.0112874779541446*G0_0_1 - 0.0112874779541447*G0_1_0 - 0.0225749559082894*G0_1_1 - 0.0112874779541447*G0_2_0 - 0.0225749559082894*G0_2_1; + A[678] = 0.022574955908289*G0_0_0 + 0.022574955908289*G0_0_1 + 0.101587301587302*G0_0_2 + 0.101587301587302*G0_1_0 + 0.101587301587302*G0_1_1 + 0.0225749559082891*G0_1_2 + 0.101587301587302*G0_2_0 + 0.101587301587302*G0_2_1 + 0.0225749559082891*G0_2_2; + A[679] = -0.0112874779541445*G0_0_0 - 0.0112874779541444*G0_0_1 - 0.0423280423280426*G0_0_2 - 0.0423280423280428*G0_1_0 - 0.0423280423280428*G0_1_1 + 0.016931216931217*G0_1_2 - 0.0423280423280428*G0_2_0 - 0.0423280423280428*G0_2_1 + 0.016931216931217*G0_2_2; + A[680] = 0.0112874779541446*G0_0_2 + 0.0112874779541448*G0_1_0 + 0.0112874779541449*G0_1_1 - 0.0225749559082893*G0_1_2 + 0.0112874779541448*G0_2_0 + 0.0112874779541449*G0_2_1 - 0.0225749559082893*G0_2_2; + A[681] = 0.0225749559082891*G0_0_0 + 0.101587301587302*G0_0_1 + 0.0225749559082891*G0_0_2 + 0.101587301587302*G0_1_0 + 0.0225749559082891*G0_1_1 + 0.101587301587302*G0_1_2 + 0.101587301587302*G0_2_0 + 0.0225749559082891*G0_2_1 + 0.101587301587302*G0_2_2; + A[682] = -0.0112874779541445*G0_0_0 - 0.0423280423280427*G0_0_1 - 0.0112874779541445*G0_0_2 - 0.0423280423280424*G0_1_0 + 0.0169312169312172*G0_1_1 - 0.0423280423280423*G0_1_2 - 0.0423280423280424*G0_2_0 + 0.0169312169312172*G0_2_1 - 0.0423280423280423*G0_2_2; + A[683] = 0.0112874779541448*G0_0_1 + 0.0112874779541447*G0_1_0 - 0.0225749559082895*G0_1_1 + 0.0112874779541447*G0_1_2 + 0.0112874779541447*G0_2_0 - 0.0225749559082894*G0_2_1 + 0.0112874779541447*G0_2_2; + A[684] = 0.203174603174604*G0_0_0 + 0.124162257495591*G0_0_1 + 0.124162257495591*G0_0_2 + 0.124162257495591*G0_1_0 + 0.203174603174604*G0_1_1 + 0.203174603174604*G0_1_2 + 0.124162257495591*G0_2_0 + 0.203174603174604*G0_2_1 + 0.203174603174604*G0_2_2; + A[685] = -0.220105820105821*G0_0_0 - 0.0874779541446208*G0_0_1 - 0.0874779541446208*G0_0_2 - 0.160846560846561*G0_1_0 - 0.118518518518518*G0_1_1 - 0.118518518518519*G0_1_2 - 0.160846560846561*G0_2_0 - 0.118518518518519*G0_2_1 - 0.118518518518519*G0_2_2; + A[686] = 0.112874779541447*G0_0_0 + 0.0338624338624339*G0_0_1 + 0.0338624338624339*G0_0_2 + 0.0790123456790124*G0_1_0 + 0.0451499118165787*G0_1_1 + 0.0451499118165787*G0_1_2 + 0.0790123456790124*G0_2_0 + 0.0451499118165786*G0_2_1 + 0.0451499118165787*G0_2_2; + A[687] = -0.0451499118165789*G0_0_0 - 0.0564373897707228*G0_0_1 - 0.0564373897707228*G0_0_2 - 0.0564373897707233*G0_1_0 - 0.0677248677248679*G0_1_1 - 0.0677248677248676*G0_1_2 - 0.0564373897707233*G0_2_0 - 0.0677248677248678*G0_2_1 - 0.0677248677248676*G0_2_2; + A[688] = -0.0112874779541452*G0_0_1 - 0.0112874779541447*G0_0_2 - 0.011287477954145*G0_1_0 - 0.0225749559082896*G0_1_1 - 0.0225749559082894*G0_1_2 - 0.011287477954145*G0_2_0 - 0.0225749559082896*G0_2_1 - 0.0225749559082895*G0_2_2; + A[689] = -0.011287477954145*G0_0_1 - 0.0112874779541454*G0_0_2 - 0.0112874779541448*G0_1_0 - 0.0225749559082893*G0_1_1 - 0.0225749559082896*G0_1_2 - 0.0112874779541448*G0_2_0 - 0.0225749559082893*G0_2_1 - 0.0225749559082896*G0_2_2; + A[690] = -0.0451499118165784*G0_0_0 - 0.0338624338624336*G0_0_1 - 0.0338624338624336*G0_0_2 - 0.0338624338624343*G0_1_0 - 0.135449735449736*G0_1_1 - 0.135449735449736*G0_1_2 - 0.0338624338624343*G0_2_0 - 0.135449735449736*G0_2_1 - 0.135449735449736*G0_2_2; + A[691] = 0.0112874779541444*G0_0_1 + 0.0112874779541445*G0_0_2 + 0.011287477954145*G0_1_0 + 0.0451499118165788*G0_1_1 + 0.0451499118165788*G0_1_2 + 0.011287477954145*G0_2_0 + 0.0451499118165787*G0_2_1 + 0.0451499118165787*G0_2_2; + A[692] = 0.0112874779541445*G0_0_1 + 0.0112874779541445*G0_0_2 + 0.0112874779541448*G0_1_0 + 0.0451499118165789*G0_1_1 + 0.0451499118165789*G0_1_2 + 0.0112874779541447*G0_2_0 + 0.0451499118165789*G0_2_1 + 0.0451499118165789*G0_2_2; + A[693] = -0.0677248677248674*G0_0_0 - 0.0790123456790122*G0_0_1 - 0.169312169312169*G0_0_2 - 0.16931216931217*G0_1_0 - 0.0677248677248681*G0_1_1 - 0.270899470899472*G0_1_2 - 0.16931216931217*G0_2_0 - 0.0677248677248681*G0_2_1 - 0.270899470899472*G0_2_2; + A[694] = 0.0677248677248673*G0_0_0 + 0.0564373897707228*G0_0_1 + 0.101587301587301*G0_0_2 + 0.101587301587302*G0_1_0 + 0.067724867724868*G0_1_1 + 0.135449735449735*G0_1_2 + 0.101587301587302*G0_2_0 + 0.0677248677248679*G0_2_1 + 0.135449735449736*G0_2_2; + A[695] = 0.0225749559082892*G0_0_0 + 0.0112874779541451*G0_0_1 + 0.056437389770723*G0_0_2 + 0.0564373897707235*G0_1_0 + 0.0225749559082893*G0_1_1 + 0.0902998236331576*G0_1_2 + 0.0564373897707235*G0_2_0 + 0.0225749559082894*G0_2_1 + 0.0902998236331575*G0_2_2; + A[696] = -0.0677248677248674*G0_0_0 - 0.169312169312169*G0_0_1 - 0.0790123456790121*G0_0_2 - 0.16931216931217*G0_1_0 - 0.270899470899471*G0_1_1 - 0.0677248677248675*G0_1_2 - 0.16931216931217*G0_2_0 - 0.270899470899471*G0_2_1 - 0.0677248677248675*G0_2_2; + A[697] = 0.0677248677248673*G0_0_0 + 0.101587301587301*G0_0_1 + 0.0564373897707228*G0_0_2 + 0.101587301587302*G0_1_0 + 0.135449735449735*G0_1_1 + 0.0677248677248677*G0_1_2 + 0.101587301587302*G0_2_0 + 0.135449735449735*G0_2_1 + 0.0677248677248676*G0_2_2; + A[698] = 0.0225749559082891*G0_0_0 + 0.056437389770723*G0_0_1 + 0.0112874779541447*G0_0_2 + 0.056437389770723*G0_1_0 + 0.0902998236331571*G0_1_1 + 0.0225749559082893*G0_1_2 + 0.0564373897707231*G0_2_0 + 0.090299823633157*G0_2_1 + 0.0225749559082893*G0_2_2; + A[699] = 0.0902998236331574*G0_0_0 + 0.0902998236331573*G0_0_1 + 0.0902998236331575*G0_0_2 + 0.0902998236331577*G0_1_0 + 0.0902998236331576*G0_1_1 + 0.0902998236331571*G0_1_2 + 0.0902998236331577*G0_2_0 + 0.0902998236331576*G0_2_1 + 0.0902998236331572*G0_2_2; + A[700] = 0.0529100529100532*G0_0_0 + 0.0529100529100532*G0_0_1 + 0.0529100529100532*G0_0_2 + 0.0202821869488536*G0_1_0 + 0.0202821869488536*G0_1_1 + 0.0202821869488536*G0_1_2 + 0.0202821869488535*G0_2_0 + 0.0202821869488536*G0_2_1 + 0.0202821869488536*G0_2_2; + A[701] = 0.0529100529100531*G0_0_0 + 0.0326278659611995*G0_1_0 + 0.0326278659611995*G0_2_0; + A[702] = 0.0051146384479718*G0_1_1 + 0.0051146384479718*G0_2_1; + A[703] = 0.00511463844797175*G0_1_2 + 0.00511463844797175*G0_2_2; + A[704] = -0.00282186948853621*G0_1_1 - 0.00282186948853615*G0_1_2 - 0.00282186948853615*G0_2_1 - 0.00282186948853608*G0_2_2; + A[705] = -0.00917107583774254*G0_1_1 - 0.00917107583774259*G0_1_2 - 0.00917107583774254*G0_2_1 - 0.00917107583774262*G0_2_2; + A[706] = -0.00282186948853618*G0_1_1 - 0.00282186948853617*G0_1_2 - 0.0028218694885362*G0_2_1 - 0.00282186948853618*G0_2_2; + A[707] = 0.0169312169312167*G0_0_0 + 0.0592592592592595*G0_0_2 + 0.059259259259259*G0_1_0 + 0.0902998236331573*G0_1_2 + 0.059259259259259*G0_2_0 + 0.0902998236331573*G0_2_2; + A[708] = -0.00282186948853612*G0_0_0 + 0.0105820105820102*G0_0_2 + 0.0105820105820106*G0_1_0 + 0.0211640211640209*G0_1_2 + 0.0105820105820107*G0_2_0 + 0.0211640211640209*G0_2_2; + A[709] = -0.002821869488536*G0_0_2 - 0.00282186948853616*G0_1_0 - 0.0169312169312168*G0_1_2 - 0.00282186948853618*G0_2_0 - 0.0169312169312168*G0_2_2; + A[710] = 0.0169312169312168*G0_0_0 + 0.0592592592592595*G0_0_1 + 0.0592592592592591*G0_1_0 + 0.0902998236331574*G0_1_1 + 0.0592592592592592*G0_2_0 + 0.0902998236331574*G0_2_1; + A[711] = -0.00282186948853615*G0_0_0 + 0.0105820105820103*G0_0_1 + 0.0105820105820105*G0_1_0 + 0.0211640211640207*G0_1_1 + 0.0105820105820105*G0_2_0 + 0.0211640211640207*G0_2_1; + A[712] = -0.00282186948853594*G0_0_1 - 0.00282186948853616*G0_1_0 - 0.0169312169312169*G0_1_1 - 0.00282186948853609*G0_2_0 - 0.0169312169312168*G0_2_1; + A[713] = 0.0169312169312171*G0_0_0 + 0.016931216931217*G0_0_1 - 0.0423280423280429*G0_0_2 - 0.0423280423280423*G0_1_0 - 0.0423280423280422*G0_1_1 - 0.0112874779541446*G0_1_2 - 0.0423280423280423*G0_2_0 - 0.0423280423280422*G0_2_1 - 0.0112874779541446*G0_2_2; + A[714] = -0.00282186948853629*G0_0_0 - 0.00282186948853628*G0_0_1 - 0.0134038800705463*G0_0_2 - 0.0134038800705468*G0_1_0 - 0.0134038800705467*G0_1_1 - 0.00282186948853607*G0_1_2 - 0.0134038800705468*G0_2_0 - 0.0134038800705468*G0_2_1 - 0.00282186948853606*G0_2_2; + A[715] = 0.00282186948853601*G0_0_2 + 0.00282186948853619*G0_1_0 + 0.00282186948853617*G0_1_1 - 0.0112874779541446*G0_1_2 + 0.00282186948853621*G0_2_0 + 0.0028218694885362*G0_2_1 - 0.0112874779541446*G0_2_2; + A[716] = 0.016931216931217*G0_0_0 - 0.0423280423280428*G0_0_1 + 0.016931216931217*G0_0_2 - 0.0423280423280422*G0_1_0 - 0.0112874779541445*G0_1_1 - 0.0423280423280422*G0_1_2 - 0.0423280423280423*G0_2_0 - 0.0112874779541445*G0_2_1 - 0.0423280423280422*G0_2_2; + A[717] = -0.00282186948853619*G0_0_0 - 0.0134038800705464*G0_0_1 - 0.00282186948853618*G0_0_2 - 0.0134038800705469*G0_1_0 - 0.00282186948853623*G0_1_1 - 0.0134038800705469*G0_1_2 - 0.0134038800705468*G0_2_0 - 0.00282186948853626*G0_2_1 - 0.0134038800705468*G0_2_2; + A[718] = 0.002821869488536*G0_0_1 + 0.00282186948853617*G0_1_0 - 0.0112874779541446*G0_1_1 + 0.00282186948853621*G0_1_2 + 0.0028218694885361*G0_2_0 - 0.0112874779541446*G0_2_1 + 0.00282186948853614*G0_2_2; + A[719] = -0.220105820105821*G0_0_0 - 0.160846560846561*G0_0_1 - 0.160846560846561*G0_0_2 - 0.0874779541446208*G0_1_0 - 0.118518518518518*G0_1_1 - 0.118518518518519*G0_1_2 - 0.0874779541446208*G0_2_0 - 0.118518518518519*G0_2_1 - 0.118518518518519*G0_2_2; + A[720] = 0.334391534391535*G0_0_0 + 0.167195767195767*G0_0_1 + 0.167195767195767*G0_0_2 + 0.167195767195767*G0_1_0 + 0.24973544973545*G0_1_1 + 0.24973544973545*G0_1_2 + 0.167195767195767*G0_2_0 + 0.24973544973545*G0_2_1 + 0.24973544973545*G0_2_2; + A[721] = -0.220105820105821*G0_0_0 - 0.0592592592592595*G0_0_1 - 0.0592592592592596*G0_0_2 - 0.1326278659612*G0_1_0 - 0.0902998236331573*G0_1_1 - 0.0902998236331574*G0_1_2 - 0.1326278659612*G0_2_0 - 0.0902998236331574*G0_2_1 - 0.0902998236331574*G0_2_2; + A[722] = 0.0225749559082893*G0_0_0 + 0.0423280423280419*G0_0_1 + 0.0423280423280419*G0_0_2 + 0.0423280423280421*G0_1_0 + 0.084656084656084*G0_1_1 + 0.0846560846560842*G0_1_2 + 0.0423280423280421*G0_2_0 + 0.084656084656084*G0_2_1 + 0.0846560846560842*G0_2_2; + A[723] = -0.00282186948853573*G0_0_1 - 0.00282186948853577*G0_0_2 - 0.00282186948853616*G0_1_0 + 0.0169312169312171*G0_1_1 + 0.016931216931217*G0_1_2 - 0.00282186948853613*G0_2_0 + 0.016931216931217*G0_2_1 + 0.016931216931217*G0_2_2; + A[724] = -0.00282186948853587*G0_0_1 - 0.00282186948853582*G0_0_2 - 0.00282186948853605*G0_1_0 + 0.0169312169312171*G0_1_1 + 0.016931216931217*G0_1_2 - 0.00282186948853608*G0_2_0 + 0.0169312169312171*G0_2_1 + 0.0169312169312171*G0_2_2; + A[725] = 0.022574955908289*G0_0_0 - 0.0197530864197533*G0_0_1 - 0.0197530864197533*G0_0_2 - 0.0197530864197535*G0_1_0 + 0.0225749559082888*G0_1_1 + 0.0225749559082891*G0_1_2 - 0.0197530864197535*G0_2_0 + 0.0225749559082889*G0_2_1 + 0.0225749559082891*G0_2_2; + A[726] = 0.00282186948853627*G0_0_1 + 0.00282186948853625*G0_0_2 + 0.00282186948853618*G0_1_0 + 0.0225749559082896*G0_1_1 + 0.0225749559082894*G0_1_2 + 0.00282186948853615*G0_2_0 + 0.0225749559082894*G0_2_1 + 0.0225749559082893*G0_2_2; + A[727] = 0.00282186948853634*G0_0_1 + 0.00282186948853632*G0_0_2 + 0.00282186948853608*G0_1_0 + 0.0225749559082893*G0_1_1 + 0.0225749559082893*G0_1_2 + 0.00282186948853611*G0_2_0 + 0.0225749559082893*G0_2_1 + 0.0225749559082893*G0_2_2; + A[728] = -0.0169312169312171*G0_0_0 + 0.0253968253968251*G0_0_1 + 0.16084656084656*G0_0_2 + 0.160846560846561*G0_1_0 + 0.118518518518518*G0_1_1 + 0.0677248677248675*G0_1_2 + 0.160846560846561*G0_2_0 + 0.118518518518518*G0_2_1 + 0.0677248677248675*G0_2_2; + A[729] = -0.0169312169312166*G0_0_0 - 0.0423280423280418*G0_0_1 - 0.177777777777778*G0_0_2 - 0.177777777777777*G0_1_0 - 0.084656084656084*G0_1_1 - 0.270899470899471*G0_1_2 - 0.177777777777777*G0_2_0 - 0.0846560846560841*G0_2_1 - 0.270899470899471*G0_2_2; + A[730] = 0.00564373897707242*G0_0_0 + 0.00282186948853587*G0_0_1 + 0.00282186948853634*G0_0_2 + 0.00282186948853617*G0_1_0 - 0.0169312169312171*G0_1_1 + 0.0677248677248679*G0_1_2 + 0.00282186948853616*G0_2_0 - 0.0169312169312171*G0_2_1 + 0.0677248677248679*G0_2_2; + A[731] = -0.0169312169312172*G0_0_0 + 0.16084656084656*G0_0_1 + 0.0253968253968251*G0_0_2 + 0.160846560846561*G0_1_0 + 0.0677248677248673*G0_1_1 + 0.118518518518518*G0_1_2 + 0.160846560846561*G0_2_0 + 0.0677248677248674*G0_2_1 + 0.118518518518518*G0_2_2; + A[732] = -0.0169312169312166*G0_0_0 - 0.177777777777778*G0_0_1 - 0.0423280423280419*G0_0_2 - 0.177777777777778*G0_1_0 - 0.270899470899471*G0_1_1 - 0.0846560846560841*G0_1_2 - 0.177777777777778*G0_2_0 - 0.270899470899471*G0_2_1 - 0.0846560846560841*G0_2_2; + A[733] = 0.00564373897707234*G0_0_0 + 0.00282186948853616*G0_0_1 + 0.00282186948853582*G0_0_2 + 0.00282186948853632*G0_1_0 + 0.0677248677248681*G0_1_1 - 0.0169312169312168*G0_1_2 + 0.0028218694885363*G0_2_0 + 0.0677248677248679*G0_2_1 - 0.0169312169312168*G0_2_2; + A[734] = -0.0451499118165784*G0_0_0 - 0.0225749559082894*G0_0_1 - 0.0225749559082894*G0_0_2 - 0.0225749559082888*G0_1_0 - 0.135449735449735*G0_1_1 - 0.135449735449735*G0_1_2 - 0.0225749559082887*G0_2_0 - 0.135449735449735*G0_2_1 - 0.135449735449735*G0_2_2; + A[735] = -0.0253968253968256*G0_0_0 - 0.0253968253968256*G0_0_1 - 0.0253968253968256*G0_0_2 - 0.0077601410934744*G0_1_0 - 0.00776014109347441*G0_1_1 - 0.0077601410934744*G0_1_2 - 0.00776014109347439*G0_2_0 - 0.00776014109347439*G0_2_1 - 0.00776014109347439*G0_2_2; + A[736] = -0.0705467372134042*G0_0_0 - 0.0458553791887129*G0_1_0 - 0.0458553791887129*G0_2_0; + A[737] = 0.00776014109347442*G0_1_1 + 0.00776014109347443*G0_2_1; + A[738] = 0.00776014109347453*G0_1_2 + 0.00776014109347454*G0_2_2; + A[739] = -0.0112874779541446*G0_1_1 - 0.0112874779541447*G0_1_2 - 0.0112874779541446*G0_2_1 - 0.0112874779541447*G0_2_2; + A[740] = -0.00282186948853617*G0_1_1 - 0.002821869488536*G0_1_2 - 0.0028218694885362*G0_2_1 - 0.00282186948853601*G0_2_2; + A[741] = -0.0112874779541448*G0_1_1 - 0.0112874779541449*G0_1_2 - 0.0112874779541448*G0_2_1 - 0.0112874779541449*G0_2_2; + A[742] = 0.0225749559082893*G0_0_0 - 0.0790123456790129*G0_0_2 - 0.0790123456790124*G0_1_0 - 0.158024691358026*G0_1_2 - 0.0790123456790124*G0_2_0 - 0.158024691358026*G0_2_2; + A[743] = -0.0112874779541446*G0_0_0 + 0.0310405643738983*G0_0_2 + 0.0310405643738979*G0_1_0 + 0.0902998236331578*G0_1_2 + 0.0310405643738979*G0_2_0 + 0.0902998236331578*G0_2_2; + A[744] = -0.0112874779541449*G0_0_2 - 0.0112874779541448*G0_1_0 - 0.0451499118165791*G0_1_2 - 0.0112874779541448*G0_2_0 - 0.045149911816579*G0_2_2; + A[745] = 0.0225749559082892*G0_0_0 - 0.079012345679013*G0_0_1 - 0.0790123456790125*G0_1_0 - 0.158024691358026*G0_1_1 - 0.0790123456790125*G0_2_0 - 0.158024691358026*G0_2_1; + A[746] = -0.0112874779541446*G0_0_0 + 0.0310405643738982*G0_0_1 + 0.0310405643738979*G0_1_0 + 0.0902998236331577*G0_1_1 + 0.0310405643738979*G0_2_0 + 0.0902998236331577*G0_2_1; + A[747] = -0.0112874779541448*G0_0_1 - 0.0112874779541447*G0_1_0 - 0.0451499118165788*G0_1_1 - 0.0112874779541447*G0_2_0 - 0.0451499118165788*G0_2_1; + A[748] = -0.0225749559082894*G0_0_0 - 0.0225749559082894*G0_0_1 + 0.0112874779541449*G0_0_2 + 0.0112874779541445*G0_1_0 + 0.0112874779541445*G0_1_1 + 0.0112874779541445*G0_2_0 + 0.0112874779541445*G0_2_1; + A[749] = -0.0112874779541444*G0_0_0 - 0.0112874779541444*G0_0_1 + 0.00282186948853591*G0_0_2 + 0.00282186948853618*G0_1_0 + 0.00282186948853613*G0_1_1 + 0.00282186948853619*G0_2_0 + 0.00282186948853614*G0_2_1; + A[750] = 0.0112874779541447*G0_0_2 + 0.0112874779541448*G0_1_0 + 0.0112874779541448*G0_1_1 + 0.0112874779541448*G0_2_0 + 0.0112874779541448*G0_2_1; + A[751] = -0.0225749559082893*G0_0_0 + 0.0112874779541449*G0_0_1 - 0.0225749559082893*G0_0_2 + 0.0112874779541446*G0_1_0 + 0.0112874779541446*G0_1_2 + 0.0112874779541446*G0_2_0 + 0.0112874779541446*G0_2_2; + A[752] = -0.0112874779541446*G0_0_0 + 0.00282186948853593*G0_0_1 - 0.0112874779541446*G0_0_2 + 0.00282186948853617*G0_1_0 + 0.00282186948853612*G0_1_2 + 0.00282186948853619*G0_2_0 + 0.00282186948853615*G0_2_2; + A[753] = 0.0112874779541448*G0_0_1 + 0.0112874779541447*G0_1_0 + 0.0112874779541447*G0_1_2 + 0.0112874779541447*G0_2_0 + 0.0112874779541447*G0_2_2; + A[754] = 0.112874779541447*G0_0_0 + 0.0790123456790124*G0_0_1 + 0.0790123456790124*G0_0_2 + 0.0338624338624339*G0_1_0 + 0.0451499118165787*G0_1_1 + 0.0451499118165786*G0_1_2 + 0.0338624338624339*G0_2_0 + 0.0451499118165787*G0_2_1 + 0.0451499118165787*G0_2_2; + A[755] = -0.220105820105821*G0_0_0 - 0.1326278659612*G0_0_1 - 0.1326278659612*G0_0_2 - 0.0592592592592595*G0_1_0 - 0.0902998236331573*G0_1_1 - 0.0902998236331573*G0_1_2 - 0.0592592592592595*G0_2_0 - 0.0902998236331574*G0_2_1 - 0.0902998236331574*G0_2_2; + A[756] = 0.203174603174604*G0_0_0 + 0.079012345679013*G0_0_1 + 0.079012345679013*G0_0_2 + 0.079012345679013*G0_1_0 + 0.158024691358026*G0_1_1 + 0.158024691358026*G0_1_2 + 0.079012345679013*G0_2_0 + 0.158024691358026*G0_2_1 + 0.158024691358025*G0_2_2; + A[757] = -0.0451499118165785*G0_0_0 - 0.0112874779541443*G0_0_1 - 0.0112874779541446*G0_0_2 - 0.0112874779541445*G0_1_0 - 0.112874779541446*G0_1_1 - 0.112874779541446*G0_1_2 - 0.0112874779541444*G0_2_0 - 0.112874779541446*G0_2_1 - 0.112874779541446*G0_2_2; + A[758] = -0.0112874779541448*G0_0_1 - 0.0112874779541448*G0_0_2 - 0.0112874779541446*G0_1_0 + 0.0225749559082893*G0_1_1 + 0.0225749559082893*G0_1_2 - 0.0112874779541446*G0_2_0 + 0.0225749559082893*G0_2_1 + 0.0225749559082893*G0_2_2; + A[759] = -0.0112874779541449*G0_0_1 - 0.0112874779541448*G0_0_2 - 0.0112874779541451*G0_1_0 + 0.022574955908289*G0_1_1 + 0.0225749559082891*G0_1_2 - 0.0112874779541451*G0_2_0 + 0.022574955908289*G0_2_1 + 0.0225749559082892*G0_2_2; + A[760] = -0.0451499118165782*G0_0_0 + 0.011287477954145*G0_0_1 + 0.011287477954145*G0_0_2 + 0.0112874779541448*G0_1_0 + 0.0112874779541448*G0_2_0; + A[761] = 0.0112874779541444*G0_0_1 + 0.0112874779541445*G0_0_2 + 0.0112874779541446*G0_1_0 + 0.0112874779541446*G0_2_0; + A[762] = 0.0112874779541444*G0_0_1 + 0.0112874779541444*G0_0_2 + 0.011287477954145*G0_1_0 + 0.011287477954145*G0_2_0; + A[763] = 0.0677248677248679*G0_0_0 + 0.0112874779541449*G0_0_1 - 0.0338624338624334*G0_0_2 - 0.0338624338624336*G0_1_0 - 0.0225749559082891*G0_1_1 - 0.0338624338624336*G0_2_0 - 0.0225749559082891*G0_2_1; + A[764] = -0.0677248677248679*G0_0_0 + 0.0112874779541442*G0_0_1 + 0.101587301587301*G0_0_2 + 0.101587301587302*G0_1_0 + 0.112874779541446*G0_1_1 + 0.101587301587302*G0_2_0 + 0.112874779541446*G0_2_1; + A[765] = 0.0225749559082891*G0_0_0 + 0.0112874779541449*G0_0_1 - 0.0338624338624341*G0_0_2 - 0.0338624338624341*G0_1_0 - 0.022574955908289*G0_1_1 - 0.0338624338624341*G0_2_0 - 0.022574955908289*G0_2_1; + A[766] = 0.0677248677248678*G0_0_0 - 0.0338624338624335*G0_0_1 + 0.0112874779541448*G0_0_2 - 0.0338624338624337*G0_1_0 - 0.0225749559082891*G0_1_2 - 0.0338624338624338*G0_2_0 - 0.0225749559082891*G0_2_2; + A[767] = -0.0677248677248677*G0_0_0 + 0.101587301587302*G0_0_1 + 0.0112874779541445*G0_0_2 + 0.101587301587302*G0_1_0 + 0.112874779541446*G0_1_2 + 0.101587301587302*G0_2_0 + 0.112874779541446*G0_2_2; + A[768] = 0.0225749559082892*G0_0_0 - 0.033862433862434*G0_0_1 + 0.0112874779541448*G0_0_2 - 0.033862433862434*G0_1_0 - 0.0225749559082894*G0_1_2 - 0.033862433862434*G0_2_0 - 0.0225749559082893*G0_2_2; + A[769] = 0.0902998236331566*G0_0_0; + A[770] = 0.0183421516754852*G0_0_0 + 0.0183421516754852*G0_0_1 + 0.0183421516754852*G0_0_2 + 0.0183421516754849*G0_1_0 + 0.0183421516754848*G0_1_1 + 0.0183421516754849*G0_1_2 + 0.0183421516754849*G0_2_0 + 0.0183421516754848*G0_2_1 + 0.0183421516754848*G0_2_2; + A[771] = 0.0493827160493828*G0_0_0 + 0.00705467372134029*G0_1_0 + 0.0070546737213405*G0_2_0; + A[772] = 0.00705467372134047*G0_0_1 - 0.0183421516754849*G0_1_1 + 0.00705467372134043*G0_2_1; + A[773] = 0.00705467372134042*G0_0_2 + 0.00705467372134033*G0_1_2 - 0.0183421516754851*G0_2_2; + A[774] = -0.0677248677248677*G0_0_1 - 0.0225749559082894*G0_0_2 + 0.0225749559082892*G0_1_1 + 0.0112874779541446*G0_1_2 - 0.0338624338624341*G0_2_1 - 0.0225749559082894*G0_2_2; + A[775] = -0.0846560846560849*G0_0_1 - 0.0846560846560847*G0_0_2 - 0.0169312169312168*G0_1_1 - 0.019753086419753*G0_1_2 - 0.019753086419753*G0_2_1 - 0.016931216931217*G0_2_2; + A[776] = -0.0225749559082894*G0_0_1 - 0.067724867724868*G0_0_2 - 0.0225749559082893*G0_1_1 - 0.0338624338624339*G0_1_2 + 0.0112874779541447*G0_2_1 + 0.0225749559082895*G0_2_2; + A[777] = -0.0677248677248682*G0_0_0 + 0.0112874779541444*G0_0_2 + 0.203174603174603*G0_1_0 + 0.112874779541446*G0_1_2 + 0.101587301587301*G0_2_0 + 0.112874779541446*G0_2_2; + A[778] = 0.118518518518519*G0_0_0 + 0.0931216931216934*G0_0_2 + 0.0507936507936509*G0_1_0 + 0.186243386243386*G0_1_2 - 0.0423280423280424*G0_2_0 - 0.084656084656085*G0_2_2; + A[779] = -0.0225749559082894*G0_0_0 - 0.033862433862434*G0_0_2 - 0.0225749559082893*G0_1_0 - 0.0677248677248678*G0_1_2 + 0.0112874779541447*G0_2_0 + 0.067724867724868*G0_2_2; + A[780] = -0.067724867724868*G0_0_0 + 0.0112874779541444*G0_0_1 + 0.101587301587301*G0_1_0 + 0.112874779541446*G0_1_1 + 0.203174603174603*G0_2_0 + 0.112874779541446*G0_2_1; + A[781] = 0.118518518518519*G0_0_0 + 0.0931216931216932*G0_0_1 - 0.0423280423280426*G0_1_0 - 0.084656084656085*G0_1_1 + 0.0507936507936509*G0_2_0 + 0.186243386243386*G0_2_1; + A[782] = -0.0225749559082894*G0_0_0 - 0.0338624338624342*G0_0_1 + 0.0112874779541446*G0_1_0 + 0.0677248677248677*G0_1_1 - 0.0225749559082895*G0_2_0 - 0.0677248677248679*G0_2_1; + A[783] = -0.0225749559082894*G0_0_0 - 0.0225749559082894*G0_0_1 - 0.011287477954145*G0_0_2 - 0.0225749559082891*G0_1_0 - 0.0225749559082892*G0_1_1 - 0.0112874779541443*G0_1_2 - 0.0112874779541445*G0_2_0 - 0.0112874779541445*G0_2_1; + A[784] = 0.0169312169312175*G0_0_0 + 0.0169312169312173*G0_0_1 - 0.00282186948853541*G0_0_2 + 0.0169312169312175*G0_1_0 + 0.0169312169312175*G0_1_1 - 0.00282186948853636*G0_1_2 - 0.0028218694885357*G0_2_0 - 0.00282186948853573*G0_2_1; + A[785] = 0.0225749559082894*G0_0_0 + 0.0225749559082894*G0_0_1 - 0.0112874779541448*G0_0_2 + 0.0225749559082894*G0_1_0 + 0.0225749559082893*G0_1_1 - 0.0112874779541444*G0_1_2 - 0.0112874779541446*G0_2_0 - 0.0112874779541447*G0_2_1; + A[786] = -0.0225749559082895*G0_0_0 - 0.011287477954145*G0_0_1 - 0.0225749559082895*G0_0_2 - 0.0112874779541449*G0_1_0 - 0.0112874779541449*G0_1_2 - 0.0225749559082892*G0_2_0 - 0.0112874779541443*G0_2_1 - 0.0225749559082891*G0_2_2; + A[787] = 0.016931216931217*G0_0_0 - 0.00282186948853567*G0_0_1 + 0.016931216931217*G0_0_2 - 0.00282186948853604*G0_1_0 - 0.00282186948853597*G0_1_2 + 0.0169312169312168*G0_2_0 - 0.00282186948853633*G0_2_1 + 0.0169312169312168*G0_2_2; + A[788] = 0.0225749559082894*G0_0_0 - 0.0112874779541448*G0_0_1 + 0.0225749559082894*G0_0_2 - 0.0112874779541446*G0_1_0 - 0.0112874779541446*G0_1_2 + 0.0225749559082895*G0_2_0 - 0.0112874779541445*G0_2_1 + 0.0225749559082895*G0_2_2; + A[789] = -0.0451499118165789*G0_0_0 - 0.0564373897707233*G0_0_1 - 0.0564373897707233*G0_0_2 - 0.0564373897707228*G0_1_0 - 0.0677248677248679*G0_1_1 - 0.0677248677248679*G0_1_2 - 0.0564373897707228*G0_2_0 - 0.0677248677248676*G0_2_1 - 0.0677248677248676*G0_2_2; + A[790] = 0.0225749559082893*G0_0_0 + 0.0423280423280422*G0_0_1 + 0.0423280423280421*G0_0_2 + 0.0423280423280419*G0_1_0 + 0.084656084656084*G0_1_1 + 0.084656084656084*G0_1_2 + 0.0423280423280419*G0_2_0 + 0.0846560846560842*G0_2_1 + 0.0846560846560842*G0_2_2; + A[791] = -0.0451499118165785*G0_0_0 - 0.0112874779541445*G0_0_1 - 0.0112874779541444*G0_0_2 - 0.0112874779541443*G0_1_0 - 0.112874779541446*G0_1_1 - 0.112874779541446*G0_1_2 - 0.0112874779541446*G0_2_0 - 0.112874779541446*G0_2_1 - 0.112874779541446*G0_2_2; + A[792] = 0.632098765432099*G0_0_0 + 0.27089947089947*G0_0_1 + 0.270899470899471*G0_0_2 + 0.27089947089947*G0_1_0 + 0.541798941798942*G0_1_1 + 0.27089947089947*G0_1_2 + 0.270899470899471*G0_2_0 + 0.27089947089947*G0_2_1 + 0.541798941798942*G0_2_2; + A[793] = -0.135449735449736*G0_0_0 + 0.225749559082893*G0_0_1 + 0.0677248677248675*G0_0_2 - 0.0451499118165787*G0_1_0 - 0.135449735449736*G0_1_1 - 0.0677248677248683*G0_1_2 - 0.0677248677248682*G0_2_0 + 0.0677248677248676*G0_2_1; + A[794] = -0.135449735449736*G0_0_0 + 0.0677248677248676*G0_0_1 + 0.225749559082892*G0_0_2 - 0.0677248677248679*G0_1_0 + 0.0677248677248675*G0_1_2 - 0.0451499118165783*G0_2_0 - 0.0677248677248678*G0_2_1 - 0.135449735449736*G0_2_2; + A[795] = 0.090299823633157*G0_0_0 + 0.0451499118165789*G0_0_1 + 0.0451499118165791*G0_0_2 + 0.0451499118165789*G0_1_0 + 0.0225749559082901*G0_1_2 + 0.0451499118165787*G0_2_0 + 0.0225749559082891*G0_2_1; + A[796] = 0.135449735449736*G0_0_0 + 0.0451499118165785*G0_0_1 + 0.0677248677248674*G0_0_2 + 0.0451499118165786*G0_1_0 + 0.0225749559082888*G0_1_2 + 0.0677248677248681*G0_2_0 + 0.0225749559082897*G0_2_1; + A[797] = 0.135449735449736*G0_0_0 + 0.0677248677248676*G0_0_1 + 0.0451499118165787*G0_0_2 + 0.067724867724868*G0_1_0 + 0.0225749559082887*G0_1_2 + 0.0451499118165784*G0_2_0 + 0.0225749559082888*G0_2_1; + A[798] = 0.0451499118165789*G0_0_0 + 0.0902998236331567*G0_0_1 + 0.0451499118165789*G0_0_2 + 0.0902998236331565*G0_1_0 + 0.135449735449735*G0_1_1 + 0.0677248677248683*G0_1_2 + 0.0451499118165783*G0_2_0 + 0.0677248677248677*G0_2_1; + A[799] = 0.0451499118165791*G0_0_0 - 0.27089947089947*G0_0_1 - 0.135449735449735*G0_0_2 - 0.27089947089947*G0_1_0 - 0.541798941798942*G0_1_1 - 0.27089947089947*G0_1_2 - 0.135449735449735*G0_2_0 - 0.27089947089947*G0_2_1; + A[800] = -0.135449735449736*G0_0_0 - 0.0677248677248676*G0_0_1 + 0.0451499118165783*G0_0_2 - 0.0677248677248682*G0_1_0 + 0.0677248677248673*G0_1_2 + 0.0451499118165782*G0_2_0 + 0.0677248677248678*G0_2_1; + A[801] = 0.0451499118165789*G0_0_0 + 0.0451499118165786*G0_0_1 + 0.0902998236331567*G0_0_2 + 0.0451499118165787*G0_1_0 + 0.0677248677248675*G0_1_2 + 0.0902998236331567*G0_2_0 + 0.0677248677248673*G0_2_1 + 0.135449735449735*G0_2_2; + A[802] = 0.0451499118165786*G0_0_0 - 0.135449735449735*G0_0_1 - 0.270899470899471*G0_0_2 - 0.135449735449735*G0_1_0 - 0.27089947089947*G0_1_2 - 0.270899470899471*G0_2_0 - 0.27089947089947*G0_2_1 - 0.541798941798942*G0_2_2; + A[803] = -0.135449735449736*G0_0_0 + 0.0451499118165786*G0_0_1 - 0.0677248677248675*G0_0_2 + 0.0451499118165787*G0_1_0 + 0.0677248677248683*G0_1_2 - 0.0677248677248678*G0_2_0 + 0.067724867724868*G0_2_1; + A[804] = -0.722398589065256*G0_0_0 - 0.316049382716049*G0_0_1 - 0.316049382716049*G0_0_2 - 0.316049382716049*G0_1_0 - 0.135449735449735*G0_1_2 - 0.316049382716049*G0_2_0 - 0.135449735449735*G0_2_1; + A[805] = 0.0183421516754849*G0_0_0 + 0.018342151675485*G0_0_1 + 0.018342151675485*G0_0_2 + 0.0183421516754853*G0_1_0 + 0.0183421516754853*G0_1_1 + 0.0183421516754853*G0_1_2 + 0.018342151675485*G0_2_0 + 0.018342151675485*G0_2_1 + 0.018342151675485*G0_2_2; + A[806] = -0.0183421516754851*G0_0_0 + 0.00705467372134041*G0_1_0 + 0.00705467372134037*G0_2_0; + A[807] = 0.00705467372134034*G0_0_1 + 0.0493827160493827*G0_1_1 + 0.00705467372134039*G0_2_1; + A[808] = 0.0070546737213404*G0_0_2 + 0.00705467372134051*G0_1_2 - 0.0183421516754849*G0_2_2; + A[809] = 0.203174603174603*G0_0_1 + 0.112874779541446*G0_0_2 - 0.0677248677248675*G0_1_1 + 0.0112874779541444*G0_1_2 + 0.101587301587302*G0_2_1 + 0.112874779541446*G0_2_2; + A[810] = 0.050793650793651*G0_0_1 + 0.186243386243387*G0_0_2 + 0.118518518518518*G0_1_1 + 0.0931216931216937*G0_1_2 - 0.0423280423280426*G0_2_1 - 0.0846560846560845*G0_2_2; + A[811] = -0.022574955908289*G0_0_1 - 0.0677248677248676*G0_0_2 - 0.0225749559082891*G0_1_1 - 0.0338624338624341*G0_1_2 + 0.011287477954145*G0_2_1 + 0.0677248677248678*G0_2_2; + A[812] = 0.0225749559082894*G0_0_0 + 0.0112874779541446*G0_0_2 - 0.0677248677248678*G0_1_0 - 0.0225749559082894*G0_1_2 - 0.0338624338624338*G0_2_0 - 0.0225749559082892*G0_2_2; + A[813] = -0.0169312169312171*G0_0_0 - 0.0197530864197531*G0_0_2 - 0.0846560846560847*G0_1_0 - 0.0846560846560847*G0_1_2 - 0.0197530864197533*G0_2_0 - 0.0169312169312172*G0_2_2; + A[814] = -0.022574955908289*G0_0_0 - 0.0338624338624338*G0_0_2 - 0.0225749559082891*G0_1_0 - 0.0677248677248678*G0_1_2 + 0.011287477954145*G0_2_0 + 0.0225749559082894*G0_2_2; + A[815] = 0.0677248677248677*G0_0_0 + 0.0112874779541446*G0_0_1 - 0.0338624338624341*G0_1_0 - 0.0225749559082894*G0_1_1 - 0.0677248677248677*G0_2_0 - 0.0225749559082893*G0_2_1; + A[816] = -0.0846560846560848*G0_0_0 - 0.0423280423280427*G0_0_1 + 0.0931216931216935*G0_1_0 + 0.118518518518519*G0_1_1 + 0.186243386243386*G0_2_0 + 0.0507936507936506*G0_2_1; + A[817] = 0.112874779541446*G0_0_0 + 0.101587301587302*G0_0_1 + 0.0112874779541442*G0_1_0 - 0.0677248677248679*G0_1_1 + 0.112874779541446*G0_2_0 + 0.203174603174603*G0_2_1; + A[818] = -0.0225749559082893*G0_0_0 - 0.0225749559082895*G0_0_1 - 0.0112874779541446*G0_0_2 - 0.0225749559082897*G0_1_0 - 0.0225749559082898*G0_1_1 - 0.0112874779541454*G0_1_2 - 0.0112874779541447*G0_2_0 - 0.0112874779541446*G0_2_1; + A[819] = 0.0169312169312172*G0_0_0 + 0.0169312169312174*G0_0_1 - 0.0028218694885361*G0_0_2 + 0.0169312169312176*G0_1_0 + 0.0169312169312177*G0_1_1 - 0.0028218694885351*G0_1_2 - 0.00282186948853591*G0_2_0 - 0.00282186948853583*G0_2_1; + A[820] = 0.0225749559082891*G0_0_0 + 0.022574955908289*G0_0_1 - 0.0112874779541447*G0_0_2 + 0.0225749559082891*G0_1_0 + 0.0225749559082892*G0_1_1 - 0.0112874779541451*G0_1_2 - 0.0112874779541449*G0_2_0 - 0.0112874779541449*G0_2_1; + A[821] = -0.0677248677248679*G0_0_0 - 0.0564373897707231*G0_0_1 - 0.0677248677248679*G0_0_2 - 0.0564373897707235*G0_1_0 - 0.045149911816579*G0_1_1 - 0.0564373897707235*G0_1_2 - 0.0677248677248677*G0_2_0 - 0.056437389770723*G0_2_1 - 0.0677248677248677*G0_2_2; + A[822] = 0.0846560846560848*G0_0_0 + 0.0423280423280421*G0_0_1 + 0.0846560846560848*G0_0_2 + 0.0423280423280422*G0_1_0 + 0.0225749559082896*G0_1_1 + 0.0423280423280422*G0_1_2 + 0.0846560846560847*G0_2_0 + 0.0423280423280422*G0_2_1 + 0.0846560846560847*G0_2_2; + A[823] = -0.112874779541446*G0_0_0 - 0.0112874779541444*G0_0_1 - 0.112874779541446*G0_0_2 - 0.0112874779541444*G0_1_0 - 0.0451499118165784*G0_1_1 - 0.0112874779541444*G0_1_2 - 0.112874779541446*G0_2_0 - 0.0112874779541445*G0_2_1 - 0.112874779541446*G0_2_2; + A[824] = -0.011287477954145*G0_0_1 - 0.011287477954145*G0_0_2 - 0.0112874779541452*G0_1_0 - 0.0225749559082896*G0_1_1 - 0.0225749559082896*G0_1_2 - 0.0112874779541447*G0_2_0 - 0.0225749559082894*G0_2_1 - 0.0225749559082895*G0_2_2; + A[825] = -0.00282186948853616*G0_0_1 - 0.00282186948853613*G0_0_2 - 0.00282186948853573*G0_1_0 + 0.0169312169312171*G0_1_1 + 0.016931216931217*G0_1_2 - 0.00282186948853577*G0_2_0 + 0.016931216931217*G0_2_1 + 0.016931216931217*G0_2_2; + A[826] = -0.0112874779541446*G0_0_1 - 0.0112874779541446*G0_0_2 - 0.0112874779541448*G0_1_0 + 0.0225749559082893*G0_1_1 + 0.0225749559082893*G0_1_2 - 0.0112874779541448*G0_2_0 + 0.0225749559082893*G0_2_1 + 0.0225749559082893*G0_2_2; + A[827] = -0.135449735449736*G0_0_0 - 0.0451499118165787*G0_0_1 - 0.0677248677248682*G0_0_2 + 0.225749559082893*G0_1_0 - 0.135449735449736*G0_1_1 + 0.0677248677248676*G0_1_2 + 0.0677248677248675*G0_2_0 - 0.0677248677248683*G0_2_1; + A[828] = 0.541798941798943*G0_0_0 + 0.270899470899472*G0_0_1 + 0.270899470899472*G0_0_2 + 0.270899470899472*G0_1_0 + 0.6320987654321*G0_1_1 + 0.270899470899472*G0_1_2 + 0.270899470899472*G0_2_0 + 0.270899470899472*G0_2_1 + 0.541798941798943*G0_2_2; + A[829] = -0.0677248677248679*G0_0_1 + 0.0677248677248679*G0_0_2 + 0.0677248677248676*G0_1_0 - 0.135449735449736*G0_1_1 + 0.225749559082892*G0_1_2 - 0.0677248677248675*G0_2_0 - 0.0451499118165784*G0_2_1 - 0.135449735449735*G0_2_2; + A[830] = 0.135449735449736*G0_0_0 + 0.0902998236331572*G0_0_1 + 0.0677248677248681*G0_0_2 + 0.0902998236331573*G0_1_0 + 0.0451499118165792*G0_1_1 + 0.0451499118165792*G0_1_2 + 0.0677248677248674*G0_2_0 + 0.0451499118165782*G0_2_1; + A[831] = -0.541798941798943*G0_0_0 - 0.270899470899471*G0_0_1 - 0.270899470899471*G0_0_2 - 0.270899470899472*G0_1_0 + 0.0451499118165784*G0_1_1 - 0.135449735449736*G0_1_2 - 0.270899470899472*G0_2_0 - 0.135449735449735*G0_2_1; + A[832] = -0.0677248677248683*G0_0_1 + 0.0677248677248675*G0_0_2 - 0.0677248677248673*G0_1_0 - 0.135449735449736*G0_1_1 + 0.0451499118165784*G0_1_2 + 0.0677248677248677*G0_2_0 + 0.0451499118165785*G0_2_1; + A[833] = 0.0451499118165788*G0_0_1 + 0.0225749559082901*G0_0_2 + 0.0451499118165798*G0_1_0 + 0.0902998236331573*G0_1_1 + 0.0451499118165795*G0_1_2 + 0.0225749559082892*G0_2_0 + 0.045149911816578*G0_2_1; + A[834] = 0.0451499118165785*G0_0_1 + 0.0225749559082893*G0_0_2 + 0.0451499118165782*G0_1_0 + 0.135449735449736*G0_1_1 + 0.0677248677248678*G0_1_2 + 0.0225749559082896*G0_2_0 + 0.0677248677248681*G0_2_1; + A[835] = 0.0677248677248678*G0_0_1 + 0.0225749559082887*G0_0_2 + 0.0677248677248671*G0_1_0 + 0.135449735449736*G0_1_1 + 0.0451499118165779*G0_1_2 + 0.0225749559082892*G0_2_0 + 0.0451499118165783*G0_2_1; + A[836] = 0.0451499118165789*G0_0_1 + 0.0677248677248675*G0_0_2 + 0.0451499118165788*G0_1_0 + 0.0451499118165786*G0_1_1 + 0.0902998236331564*G0_1_2 + 0.0677248677248674*G0_2_0 + 0.0902998236331569*G0_2_1 + 0.135449735449734*G0_2_2; + A[837] = 0.0451499118165785*G0_0_1 + 0.0677248677248677*G0_0_2 + 0.0451499118165787*G0_1_0 - 0.135449735449736*G0_1_1 - 0.0677248677248679*G0_1_2 + 0.0677248677248681*G0_2_0 - 0.0677248677248678*G0_2_1; + A[838] = -0.135449735449736*G0_0_1 - 0.270899470899471*G0_0_2 - 0.135449735449736*G0_1_0 + 0.0451499118165788*G0_1_1 - 0.270899470899472*G0_1_2 - 0.270899470899471*G0_2_0 - 0.270899470899471*G0_2_1 - 0.541798941798942*G0_2_2; + A[839] = -0.31604938271605*G0_0_1 - 0.135449735449735*G0_0_2 - 0.31604938271605*G0_1_0 - 0.722398589065257*G0_1_1 - 0.316049382716048*G0_1_2 - 0.135449735449735*G0_2_0 - 0.31604938271605*G0_2_1; + A[840] = 0.0183421516754852*G0_0_0 + 0.0183421516754853*G0_0_1 + 0.0183421516754853*G0_0_2 + 0.0183421516754852*G0_1_0 + 0.0183421516754852*G0_1_1 + 0.0183421516754852*G0_1_2 + 0.0183421516754854*G0_2_0 + 0.0183421516754855*G0_2_1 + 0.0183421516754855*G0_2_2; + A[841] = -0.0183421516754848*G0_0_0 + 0.00705467372134062*G0_1_0 + 0.00705467372134052*G0_2_0; + A[842] = 0.00705467372134016*G0_0_1 - 0.0183421516754851*G0_1_1 + 0.00705467372134029*G0_2_1; + A[843] = 0.00705467372134039*G0_0_2 + 0.00705467372134029*G0_1_2 + 0.0493827160493827*G0_2_2; + A[844] = -0.0677248677248676*G0_0_1 - 0.0225749559082896*G0_0_2 + 0.0677248677248678*G0_1_1 + 0.0112874779541444*G0_1_2 - 0.0338624338624338*G0_2_1 - 0.0225749559082895*G0_2_2; + A[845] = 0.186243386243386*G0_0_1 + 0.0507936507936512*G0_0_2 - 0.0846560846560848*G0_1_1 - 0.0423280423280424*G0_1_2 + 0.0931216931216931*G0_2_1 + 0.118518518518519*G0_2_2; + A[846] = 0.112874779541446*G0_0_1 + 0.203174603174603*G0_0_2 + 0.112874779541446*G0_1_1 + 0.101587301587302*G0_1_2 + 0.0112874779541444*G0_2_1 - 0.0677248677248681*G0_2_2; + A[847] = 0.0677248677248677*G0_0_0 + 0.0112874779541451*G0_0_2 - 0.067724867724868*G0_1_0 - 0.022574955908289*G0_1_2 - 0.0338624338624342*G0_2_0 - 0.0225749559082892*G0_2_2; + A[848] = -0.0846560846560844*G0_0_0 - 0.0423280423280429*G0_0_2 + 0.186243386243387*G0_1_0 + 0.0507936507936505*G0_1_2 + 0.0931216931216938*G0_2_0 + 0.118518518518519*G0_2_2; + A[849] = 0.112874779541446*G0_0_0 + 0.101587301587302*G0_0_2 + 0.112874779541446*G0_1_0 + 0.203174603174604*G0_1_2 + 0.0112874779541444*G0_2_0 - 0.0677248677248676*G0_2_2; + A[850] = 0.0225749559082892*G0_0_0 + 0.011287477954145*G0_0_1 - 0.0338624338624341*G0_1_0 - 0.0225749559082891*G0_1_1 - 0.067724867724868*G0_2_0 - 0.0225749559082892*G0_2_1; + A[851] = -0.0169312169312166*G0_0_0 - 0.0197530864197533*G0_0_1 - 0.0197530864197529*G0_1_0 - 0.016931216931217*G0_1_1 - 0.0846560846560844*G0_2_0 - 0.0846560846560847*G0_2_1; + A[852] = -0.0225749559082898*G0_0_0 - 0.0338624338624337*G0_0_1 + 0.0112874779541443*G0_1_0 + 0.0225749559082892*G0_1_1 - 0.0225749559082896*G0_2_0 - 0.0677248677248677*G0_2_1; + A[853] = -0.0677248677248681*G0_0_0 - 0.0677248677248681*G0_0_1 - 0.0564373897707237*G0_0_2 - 0.0677248677248678*G0_1_0 - 0.0677248677248678*G0_1_1 - 0.0564373897707236*G0_1_2 - 0.0564373897707236*G0_2_0 - 0.0564373897707236*G0_2_1 - 0.0451499118165797*G0_2_2; + A[854] = 0.084656084656085*G0_0_0 + 0.0846560846560851*G0_0_1 + 0.042328042328043*G0_0_2 + 0.0846560846560844*G0_1_0 + 0.0846560846560845*G0_1_1 + 0.0423280423280427*G0_1_2 + 0.0423280423280426*G0_2_0 + 0.0423280423280427*G0_2_1 + 0.0225749559082906*G0_2_2; + A[855] = -0.112874779541446*G0_0_0 - 0.112874779541446*G0_0_1 - 0.0112874779541449*G0_0_2 - 0.112874779541446*G0_1_0 - 0.112874779541446*G0_1_1 - 0.0112874779541446*G0_1_2 - 0.0112874779541444*G0_2_0 - 0.0112874779541444*G0_2_1 - 0.0451499118165789*G0_2_2; + A[856] = -0.0225749559082894*G0_0_0 - 0.011287477954145*G0_0_1 - 0.0225749559082893*G0_0_2 - 0.0112874779541446*G0_1_0 - 0.0112874779541446*G0_1_2 - 0.0225749559082896*G0_2_0 - 0.0112874779541455*G0_2_1 - 0.0225749559082897*G0_2_2; + A[857] = 0.0169312169312169*G0_0_0 - 0.00282186948853602*G0_0_1 + 0.0169312169312169*G0_0_2 - 0.00282186948853599*G0_1_0 - 0.00282186948853603*G0_1_2 + 0.0169312169312171*G0_2_0 - 0.00282186948853552*G0_2_1 + 0.0169312169312171*G0_2_2; + A[858] = 0.0225749559082896*G0_0_0 - 0.0112874779541445*G0_0_1 + 0.0225749559082896*G0_0_2 - 0.0112874779541444*G0_1_0 - 0.0112874779541444*G0_1_2 + 0.0225749559082894*G0_2_0 - 0.0112874779541447*G0_2_1 + 0.0225749559082895*G0_2_2; + A[859] = -0.0112874779541448*G0_0_1 - 0.0112874779541448*G0_0_2 - 0.011287477954145*G0_1_0 - 0.0225749559082893*G0_1_1 - 0.0225749559082893*G0_1_2 - 0.0112874779541454*G0_2_0 - 0.0225749559082896*G0_2_1 - 0.0225749559082896*G0_2_2; + A[860] = -0.00282186948853605*G0_0_1 - 0.00282186948853608*G0_0_2 - 0.00282186948853587*G0_1_0 + 0.0169312169312171*G0_1_1 + 0.0169312169312171*G0_1_2 - 0.00282186948853582*G0_2_0 + 0.016931216931217*G0_2_1 + 0.016931216931217*G0_2_2; + A[861] = -0.0112874779541451*G0_0_1 - 0.0112874779541451*G0_0_2 - 0.0112874779541449*G0_1_0 + 0.022574955908289*G0_1_1 + 0.022574955908289*G0_1_2 - 0.0112874779541447*G0_2_0 + 0.0225749559082891*G0_2_1 + 0.0225749559082892*G0_2_2; + A[862] = -0.135449735449736*G0_0_0 - 0.0677248677248679*G0_0_1 - 0.0451499118165783*G0_0_2 + 0.0677248677248676*G0_1_0 - 0.0677248677248678*G0_1_2 + 0.225749559082892*G0_2_0 + 0.0677248677248675*G0_2_1 - 0.135449735449736*G0_2_2; + A[863] = 0.0677248677248676*G0_0_1 - 0.0677248677248675*G0_0_2 - 0.0677248677248679*G0_1_0 - 0.135449735449736*G0_1_1 - 0.0451499118165784*G0_1_2 + 0.0677248677248679*G0_2_0 + 0.225749559082892*G0_2_1 - 0.135449735449735*G0_2_2; + A[864] = 0.541798941798942*G0_0_0 + 0.270899470899471*G0_0_1 + 0.270899470899471*G0_0_2 + 0.270899470899471*G0_1_0 + 0.541798941798943*G0_1_1 + 0.270899470899471*G0_1_2 + 0.270899470899471*G0_2_0 + 0.270899470899471*G0_2_1 + 0.632098765432098*G0_2_2; + A[865] = 0.135449735449736*G0_0_0 + 0.0677248677248685*G0_0_1 + 0.0902998236331574*G0_0_2 + 0.0677248677248676*G0_1_0 + 0.0451499118165784*G0_1_2 + 0.0902998236331575*G0_2_0 + 0.0451499118165798*G0_2_1 + 0.0451499118165793*G0_2_2; + A[866] = 0.0677248677248672*G0_0_1 - 0.0677248677248682*G0_0_2 + 0.0677248677248679*G0_1_0 + 0.0451499118165782*G0_1_2 - 0.0677248677248679*G0_2_0 + 0.0451499118165777*G0_2_1 - 0.135449735449736*G0_2_2; + A[867] = -0.541798941798942*G0_0_0 - 0.270899470899471*G0_0_1 - 0.270899470899471*G0_0_2 - 0.270899470899471*G0_1_0 - 0.135449735449735*G0_1_2 - 0.27089947089947*G0_2_0 - 0.135449735449736*G0_2_1 + 0.0451499118165786*G0_2_2; + A[868] = 0.0677248677248683*G0_0_1 + 0.0451499118165791*G0_0_2 + 0.0677248677248681*G0_1_0 + 0.135449735449735*G0_1_1 + 0.0902998236331569*G0_1_2 + 0.0451499118165799*G0_2_0 + 0.0902998236331575*G0_2_1 + 0.0451499118165792*G0_2_2; + A[869] = 0.0677248677248678*G0_0_1 + 0.045149911816579*G0_0_2 + 0.0677248677248679*G0_1_0 - 0.0677248677248673*G0_1_2 + 0.0451499118165781*G0_2_0 - 0.0677248677248676*G0_2_1 - 0.135449735449735*G0_2_2; + A[870] = -0.270899470899471*G0_0_1 - 0.135449735449737*G0_0_2 - 0.270899470899471*G0_1_0 - 0.541798941798943*G0_1_1 - 0.270899470899471*G0_1_2 - 0.135449735449736*G0_2_0 - 0.270899470899471*G0_2_1 + 0.0451499118165778*G0_2_2; + A[871] = 0.0225749559082894*G0_0_1 + 0.0451499118165787*G0_0_2 + 0.0225749559082895*G0_1_0 + 0.0451499118165786*G0_1_2 + 0.0451499118165793*G0_2_0 + 0.0451499118165791*G0_2_1 + 0.0902998236331574*G0_2_2; + A[872] = 0.0225749559082894*G0_0_1 + 0.0451499118165781*G0_0_2 + 0.0225749559082892*G0_1_0 + 0.0677248677248677*G0_1_2 + 0.0451499118165782*G0_2_0 + 0.0677248677248678*G0_2_1 + 0.135449735449736*G0_2_2; + A[873] = 0.0225749559082891*G0_0_1 + 0.0677248677248675*G0_0_2 + 0.0225749559082888*G0_1_0 + 0.0451499118165788*G0_1_2 + 0.0677248677248672*G0_2_0 + 0.0451499118165781*G0_2_1 + 0.135449735449735*G0_2_2; + A[874] = -0.135449735449736*G0_0_1 - 0.316049382716049*G0_0_2 - 0.135449735449735*G0_1_0 - 0.31604938271605*G0_1_2 - 0.31604938271605*G0_2_0 - 0.31604938271605*G0_2_1 - 0.722398589065256*G0_2_2; + A[875] = 0.0493827160493826*G0_0_0 + 0.0493827160493825*G0_0_1 + 0.0493827160493825*G0_0_2 + 0.042328042328042*G0_1_0 + 0.042328042328042*G0_1_1 + 0.042328042328042*G0_1_2 + 0.0423280423280421*G0_2_0 + 0.0423280423280421*G0_2_1 + 0.042328042328042*G0_2_2; + A[876] = 0.018342151675485*G0_0_0; + A[877] = -0.0070546737213406*G0_0_1 - 0.0253968253968254*G0_1_1; + A[878] = -0.00705467372134034*G0_0_2 - 0.0253968253968253*G0_2_2; + A[879] = 0.0677248677248676*G0_0_1 + 0.0225749559082888*G0_0_2 + 0.0902998236331568*G0_1_1 + 0.0338624338624339*G0_1_2 + 0.0338624338624338*G0_2_1; + A[880] = 0.0846560846560849*G0_0_1 + 0.0846560846560853*G0_0_2 + 0.0677248677248681*G0_1_1 + 0.0649029982363317*G0_1_2 + 0.0649029982363317*G0_2_1 + 0.0677248677248682*G0_2_2; + A[881] = 0.0225749559082896*G0_0_1 + 0.0677248677248677*G0_0_2 + 0.0338624338624339*G0_1_2 + 0.0338624338624344*G0_2_1 + 0.0902998236331572*G0_2_2; + A[882] = -0.0225749559082891*G0_0_0 - 0.0112874779541447*G0_0_2 - 0.0112874779541443*G0_2_0; + A[883] = 0.0169312169312167*G0_0_0 + 0.0197530864197532*G0_0_2 + 0.0197530864197529*G0_2_0 + 0.0225749559082897*G0_2_2; + A[884] = 0.0225749559082896*G0_0_0 + 0.033862433862434*G0_0_2 + 0.0338624338624344*G0_2_0 + 0.0451499118165785*G0_2_2; + A[885] = -0.0225749559082892*G0_0_0 - 0.0112874779541446*G0_0_1 - 0.0112874779541446*G0_1_0; + A[886] = 0.0169312169312169*G0_0_0 + 0.0197530864197529*G0_0_1 + 0.0197530864197528*G0_1_0 + 0.0225749559082889*G0_1_1; + A[887] = 0.0225749559082887*G0_0_0 + 0.0338624338624337*G0_0_1 + 0.0338624338624339*G0_1_0 + 0.0451499118165784*G0_1_1; + A[888] = -0.0677248677248676*G0_0_0 - 0.0677248677248677*G0_0_1 - 0.0790123456790117*G0_0_2 - 0.270899470899471*G0_1_0 - 0.270899470899471*G0_1_1 - 0.169312169312169*G0_1_2 - 0.16931216931217*G0_2_0 - 0.16931216931217*G0_2_1 - 0.067724867724867*G0_2_2; + A[889] = 0.118518518518519*G0_0_0 + 0.118518518518519*G0_0_1 + 0.0253968253968248*G0_0_2 + 0.067724867724868*G0_1_0 + 0.0677248677248678*G0_1_1 + 0.16084656084656*G0_1_2 + 0.160846560846562*G0_2_0 + 0.160846560846562*G0_2_1 - 0.0169312169312177*G0_2_2; + A[890] = -0.0225749559082897*G0_0_0 - 0.0225749559082897*G0_0_1 + 0.0112874779541449*G0_0_2 - 0.0338624338624334*G0_1_2 - 0.0338624338624344*G0_2_0 - 0.0338624338624344*G0_2_1 + 0.067724867724868*G0_2_2; + A[891] = -0.067724867724868*G0_0_0 - 0.0790123456790121*G0_0_1 - 0.0677248677248679*G0_0_2 - 0.169312169312169*G0_1_0 - 0.067724867724867*G0_1_1 - 0.16931216931217*G0_1_2 - 0.270899470899472*G0_2_0 - 0.169312169312169*G0_2_1 - 0.270899470899472*G0_2_2; + A[892] = 0.118518518518518*G0_0_0 + 0.025396825396825*G0_0_1 + 0.118518518518518*G0_0_2 + 0.160846560846561*G0_1_0 - 0.0169312169312177*G0_1_1 + 0.160846560846561*G0_1_2 + 0.0677248677248674*G0_2_0 + 0.16084656084656*G0_2_1 + 0.0677248677248674*G0_2_2; + A[893] = -0.0225749559082887*G0_0_0 + 0.011287477954145*G0_0_1 - 0.0225749559082887*G0_0_2 - 0.0338624338624338*G0_1_0 + 0.0677248677248681*G0_1_1 - 0.0338624338624338*G0_1_2 - 0.0338624338624333*G0_2_1; + A[894] = -0.0451499118165784*G0_0_0 - 0.0338624338624343*G0_0_1 - 0.0338624338624343*G0_0_2 - 0.0338624338624336*G0_1_0 - 0.135449735449736*G0_1_1 - 0.135449735449736*G0_1_2 - 0.0338624338624336*G0_2_0 - 0.135449735449736*G0_2_1 - 0.135449735449736*G0_2_2; + A[895] = 0.022574955908289*G0_0_0 - 0.0197530864197535*G0_0_1 - 0.0197530864197535*G0_0_2 - 0.0197530864197533*G0_1_0 + 0.0225749559082888*G0_1_1 + 0.0225749559082889*G0_1_2 - 0.0197530864197533*G0_2_0 + 0.0225749559082891*G0_2_1 + 0.0225749559082891*G0_2_2; + A[896] = -0.0451499118165782*G0_0_0 + 0.0112874779541448*G0_0_1 + 0.0112874779541448*G0_0_2 + 0.011287477954145*G0_1_0 + 0.011287477954145*G0_2_0; + A[897] = 0.090299823633157*G0_0_0 + 0.0451499118165789*G0_0_1 + 0.0451499118165787*G0_0_2 + 0.0451499118165789*G0_1_0 + 0.0225749559082891*G0_1_2 + 0.0451499118165791*G0_2_0 + 0.0225749559082901*G0_2_1; + A[898] = 0.135449735449736*G0_0_0 + 0.0902998236331573*G0_0_1 + 0.0677248677248674*G0_0_2 + 0.0902998236331572*G0_1_0 + 0.0451499118165792*G0_1_1 + 0.0451499118165782*G0_1_2 + 0.0677248677248681*G0_2_0 + 0.0451499118165792*G0_2_1; + A[899] = 0.135449735449736*G0_0_0 + 0.0677248677248676*G0_0_1 + 0.0902998236331575*G0_0_2 + 0.0677248677248685*G0_1_0 + 0.0451499118165798*G0_1_2 + 0.0902998236331574*G0_2_0 + 0.0451499118165784*G0_2_1 + 0.0451499118165793*G0_2_2; + A[900] = 0.6320987654321*G0_0_0 + 0.361199294532628*G0_0_1 + 0.361199294532629*G0_0_2 + 0.361199294532628*G0_1_0 + 0.632098765432099*G0_1_1 + 0.361199294532629*G0_1_2 + 0.361199294532629*G0_2_0 + 0.361199294532629*G0_2_1 + 0.632098765432101*G0_2_2; + A[901] = -0.135449735449736*G0_0_0 - 0.361199294532628*G0_0_1 - 0.203174603174604*G0_0_2 - 0.0902998236331573*G0_1_0 - 0.451499118165785*G0_1_1 - 0.225749559082893*G0_1_2 - 0.0677248677248681*G0_2_0 - 0.225749559082893*G0_2_1 - 0.135449735449736*G0_2_2; + A[902] = -0.135449735449736*G0_0_0 - 0.203174603174604*G0_0_1 - 0.361199294532629*G0_0_2 - 0.0677248677248683*G0_1_0 - 0.135449735449736*G0_1_1 - 0.225749559082892*G0_1_2 - 0.0902998236331573*G0_2_0 - 0.225749559082893*G0_2_1 - 0.451499118165786*G0_2_2; + A[903] = 0.0451499118165788*G0_0_0 + 0.31604938271605*G0_0_1 + 0.180599647266315*G0_0_2 + 0.31604938271605*G0_1_0 + 0.0451499118165789*G0_1_1 + 0.180599647266315*G0_1_2 + 0.180599647266315*G0_2_0 + 0.180599647266315*G0_2_1 + 0.316049382716052*G0_2_2; + A[904] = 0.0451499118165784*G0_0_0 - 0.0451499118165787*G0_0_1 - 0.0451499118165784*G0_1_0 - 0.0225749559082894*G0_1_2 - 0.0225749559082902*G0_2_1 - 0.0451499118165789*G0_2_2; + A[905] = -0.135449735449736*G0_0_0 - 0.0677248677248679*G0_0_1 - 0.180599647266315*G0_0_2 - 0.0677248677248681*G0_1_0 - 0.0451499118165791*G0_1_2 - 0.180599647266315*G0_2_0 - 0.0451499118165786*G0_2_1 - 0.225749559082894*G0_2_2; + A[906] = 0.0451499118165789*G0_0_0 + 0.180599647266315*G0_0_1 + 0.31604938271605*G0_0_2 + 0.180599647266314*G0_1_0 + 0.31604938271605*G0_1_1 + 0.180599647266314*G0_1_2 + 0.31604938271605*G0_2_0 + 0.180599647266315*G0_2_1 + 0.0451499118165786*G0_2_2; + A[907] = 0.0451499118165783*G0_0_0 - 0.0451499118165787*G0_0_2 - 0.0451499118165782*G0_1_1 - 0.0225749559082893*G0_1_2 - 0.0451499118165788*G0_2_0 - 0.0225749559082892*G0_2_1; + A[908] = -0.135449735449735*G0_0_0 - 0.180599647266314*G0_0_1 - 0.067724867724867*G0_0_2 - 0.180599647266314*G0_1_0 - 0.225749559082892*G0_1_1 - 0.045149911816578*G0_1_2 - 0.0677248677248672*G0_2_0 - 0.0451499118165784*G0_2_1; + A[909] = -0.722398589065257*G0_0_0 - 0.406349206349208*G0_0_1 - 0.406349206349207*G0_0_2 - 0.406349206349207*G0_1_0 - 0.0902998236331577*G0_1_1 - 0.225749559082894*G0_1_2 - 0.406349206349208*G0_2_0 - 0.225749559082894*G0_2_1 - 0.090299823633158*G0_2_2; + A[910] = -0.0183421516754849*G0_0_0 - 0.018342151675485*G0_0_1 - 0.018342151675485*G0_0_2 - 0.0253968253968252*G0_1_0 - 0.0253968253968252*G0_1_1 - 0.0253968253968252*G0_1_2 - 0.0253968253968254*G0_2_0 - 0.0253968253968253*G0_2_1 - 0.0253968253968254*G0_2_2; + A[911] = 0.0183421516754851*G0_0_0; + A[912] = -0.00705467372134032*G0_0_1 + 0.0423280423280423*G0_1_1; + A[913] = -0.00705467372134041*G0_0_2 - 0.0253968253968254*G0_2_2; + A[914] = -0.203174603174603*G0_0_1 - 0.112874779541446*G0_0_2 - 0.270899470899471*G0_1_1 - 0.101587301587302*G0_1_2 - 0.101587301587302*G0_2_1; + A[915] = -0.050793650793651*G0_0_1 - 0.186243386243387*G0_0_2 + 0.0677248677248675*G0_1_1 - 0.093121693121693*G0_1_2 - 0.0931216931216935*G0_2_1 - 0.270899470899471*G0_2_2; + A[916] = 0.022574955908289*G0_0_1 + 0.0677248677248676*G0_0_2 + 0.0338624338624337*G0_1_2 + 0.0338624338624339*G0_2_1 + 0.135449735449735*G0_2_2; + A[917] = -0.0225749559082895*G0_0_0 - 0.0112874779541447*G0_0_2 - 0.0112874779541447*G0_2_0; + A[918] = 0.0169312169312171*G0_0_0 + 0.0197530864197531*G0_0_2 + 0.0197530864197528*G0_2_0 + 0.022574955908289*G0_2_2; + A[919] = 0.022574955908289*G0_0_0 + 0.0338624338624338*G0_0_2 + 0.0338624338624339*G0_2_0 + 0.0451499118165784*G0_2_2; + A[920] = -0.0677248677248677*G0_0_0 - 0.0112874779541447*G0_0_1 - 0.0112874779541447*G0_1_0; + A[921] = 0.0846560846560848*G0_0_0 + 0.0423280423280427*G0_0_1 + 0.0423280423280428*G0_1_0 + 0.0225749559082899*G0_1_1; + A[922] = -0.112874779541446*G0_0_0 - 0.101587301587302*G0_0_1 - 0.101587301587302*G0_1_0 - 0.135449735449736*G0_1_1; + A[923] = 0.0225749559082893*G0_0_0 + 0.0225749559082895*G0_0_1 + 0.0112874779541446*G0_0_2 + 0.0902998236331568*G0_1_0 + 0.0902998236331569*G0_1_1 + 0.0564373897707225*G0_1_2 + 0.0564373897707232*G0_2_0 + 0.0564373897707233*G0_2_1 + 0.0225749559082892*G0_2_2; + A[924] = -0.0169312169312172*G0_0_0 - 0.0169312169312174*G0_0_1 + 0.0028218694885361*G0_0_2 + 0.0677248677248678*G0_1_0 + 0.0677248677248679*G0_1_1 + 0.00282186948853683*G0_1_2 + 0.00282186948853585*G0_2_0 + 0.0028218694885358*G0_2_1 + 0.00564373897707232*G0_2_2; + A[925] = -0.0225749559082891*G0_0_0 - 0.022574955908289*G0_0_1 + 0.0112874779541447*G0_0_2 - 0.0338624338624343*G0_1_2 - 0.0338624338624339*G0_2_0 - 0.0338624338624339*G0_2_1 + 0.0225749559082892*G0_2_2; + A[926] = 0.0677248677248679*G0_0_0 + 0.0564373897707231*G0_0_1 + 0.0677248677248679*G0_0_2 + 0.101587301587302*G0_1_0 + 0.0677248677248673*G0_1_1 + 0.101587301587302*G0_1_2 + 0.135449735449736*G0_2_0 + 0.101587301587301*G0_2_1 + 0.135449735449736*G0_2_2; + A[927] = -0.0846560846560848*G0_0_0 - 0.0423280423280421*G0_0_1 - 0.0846560846560848*G0_0_2 - 0.177777777777778*G0_1_0 - 0.0169312169312163*G0_1_1 - 0.177777777777778*G0_1_2 - 0.270899470899471*G0_2_0 - 0.177777777777777*G0_2_1 - 0.270899470899471*G0_2_2; + A[928] = 0.112874779541446*G0_0_0 + 0.0112874779541444*G0_0_1 + 0.112874779541446*G0_0_2 + 0.101587301587302*G0_1_0 - 0.067724867724868*G0_1_1 + 0.101587301587302*G0_1_2 + 0.101587301587301*G0_2_1; + A[929] = 0.011287477954145*G0_0_1 + 0.011287477954145*G0_0_2 + 0.0112874779541444*G0_1_0 + 0.0451499118165788*G0_1_1 + 0.0451499118165787*G0_1_2 + 0.0112874779541445*G0_2_0 + 0.0451499118165788*G0_2_1 + 0.0451499118165787*G0_2_2; + A[930] = 0.00282186948853618*G0_0_1 + 0.00282186948853615*G0_0_2 + 0.00282186948853627*G0_1_0 + 0.0225749559082896*G0_1_1 + 0.0225749559082894*G0_1_2 + 0.00282186948853626*G0_2_0 + 0.0225749559082894*G0_2_1 + 0.0225749559082893*G0_2_2; + A[931] = 0.0112874779541446*G0_0_1 + 0.0112874779541446*G0_0_2 + 0.0112874779541444*G0_1_0 + 0.0112874779541445*G0_2_0; + A[932] = 0.135449735449736*G0_0_0 + 0.0451499118165786*G0_0_1 + 0.0677248677248681*G0_0_2 + 0.0451499118165785*G0_1_0 + 0.0225749559082897*G0_1_2 + 0.0677248677248674*G0_2_0 + 0.0225749559082888*G0_2_1; + A[933] = -0.541798941798943*G0_0_0 - 0.270899470899472*G0_0_1 - 0.270899470899472*G0_0_2 - 0.270899470899471*G0_1_0 + 0.0451499118165784*G0_1_1 - 0.135449735449735*G0_1_2 - 0.270899470899471*G0_2_0 - 0.135449735449736*G0_2_1; + A[934] = 0.0677248677248679*G0_0_1 - 0.0677248677248679*G0_0_2 + 0.0677248677248672*G0_1_0 + 0.0451499118165777*G0_1_2 - 0.0677248677248682*G0_2_0 + 0.0451499118165782*G0_2_1 - 0.135449735449736*G0_2_2; + A[935] = -0.135449735449736*G0_0_0 - 0.0902998236331573*G0_0_1 - 0.0677248677248681*G0_0_2 - 0.361199294532628*G0_1_0 - 0.451499118165785*G0_1_1 - 0.225749559082893*G0_1_2 - 0.203174603174604*G0_2_0 - 0.225749559082893*G0_2_1 - 0.135449735449736*G0_2_2; + A[936] = 0.541798941798943*G0_0_0 + 0.270899470899471*G0_0_1 + 0.270899470899471*G0_0_2 + 0.270899470899471*G0_1_0 + 0.632098765432099*G0_1_1 + 0.270899470899471*G0_1_2 + 0.270899470899471*G0_2_0 + 0.270899470899471*G0_2_1 + 0.541798941798942*G0_2_2; + A[937] = 0.0677248677248684*G0_0_1 - 0.0677248677248675*G0_0_2 - 0.0677248677248675*G0_1_0 - 0.135449735449736*G0_1_1 + 0.090299823633157*G0_1_2 + 0.067724867724868*G0_2_0 + 0.0902998236331577*G0_2_1 - 0.135449735449735*G0_2_2; + A[938] = -0.0451499118165788*G0_0_1 - 0.0225749559082901*G0_0_2 - 0.0451499118165786*G0_1_0 + 0.0451499118165781*G0_1_1 - 0.0225749559082899*G0_2_0 - 0.0451499118165794*G0_2_2; + A[939] = -0.0451499118165784*G0_0_1 - 0.0225749559082893*G0_0_2 - 0.0451499118165784*G0_1_0 - 0.0225749559082891*G0_1_2 - 0.0225749559082888*G0_2_0 - 0.0225749559082887*G0_2_1 - 0.0451499118165783*G0_2_2; + A[940] = -0.0677248677248678*G0_0_1 - 0.0225749559082888*G0_0_2 - 0.0677248677248676*G0_1_0 - 0.0451499118165781*G0_1_2 - 0.0225749559082885*G0_2_0 - 0.0451499118165782*G0_2_1 - 0.0451499118165778*G0_2_2; + A[941] = -0.0451499118165789*G0_0_1 - 0.0677248677248675*G0_0_2 - 0.0451499118165786*G0_1_0 - 0.225749559082893*G0_1_1 - 0.180599647266314*G0_1_2 - 0.0677248677248678*G0_2_0 - 0.180599647266314*G0_2_1 - 0.135449735449736*G0_2_2; + A[942] = -0.0451499118165786*G0_0_1 - 0.0677248677248677*G0_0_2 - 0.0451499118165783*G0_1_0 - 0.0451499118165789*G0_1_1 - 0.0225749559082894*G0_1_2 - 0.0677248677248676*G0_2_0 - 0.0225749559082894*G0_2_1; + A[943] = 0.135449735449736*G0_0_1 + 0.270899470899471*G0_0_2 + 0.135449735449735*G0_1_0 + 0.31604938271605*G0_1_1 + 0.135449735449735*G0_1_2 + 0.270899470899471*G0_2_0 + 0.135449735449736*G0_2_1; + A[944] = 0.31604938271605*G0_0_1 + 0.135449735449735*G0_0_2 + 0.31604938271605*G0_1_0 - 0.0902998236331568*G0_1_1 + 0.135449735449737*G0_1_2 + 0.135449735449737*G0_2_0 + 0.135449735449737*G0_2_1 + 0.270899470899472*G0_2_2; + A[945] = -0.0183421516754852*G0_0_0 - 0.0183421516754852*G0_0_1 - 0.0183421516754852*G0_0_2 - 0.0253968253968253*G0_1_0 - 0.0253968253968253*G0_1_1 - 0.0253968253968253*G0_1_2 - 0.0253968253968252*G0_2_0 - 0.0253968253968252*G0_2_1 - 0.0253968253968251*G0_2_2; + A[946] = 0.0183421516754848*G0_0_0; + A[947] = -0.00705467372134016*G0_0_1 - 0.0253968253968253*G0_1_1; + A[948] = -0.00705467372134039*G0_0_2 + 0.0423280423280422*G0_2_2; + A[949] = 0.0677248677248677*G0_0_1 + 0.0225749559082897*G0_0_2 + 0.135449735449736*G0_1_1 + 0.0338624338624343*G0_1_2 + 0.0338624338624338*G0_2_1; + A[950] = -0.186243386243386*G0_0_1 - 0.0507936507936511*G0_0_2 - 0.270899470899471*G0_1_1 - 0.0931216931216939*G0_1_2 - 0.093121693121693*G0_2_1 + 0.0677248677248673*G0_2_2; + A[951] = -0.112874779541446*G0_0_1 - 0.203174603174603*G0_0_2 - 0.101587301587301*G0_1_2 - 0.101587301587302*G0_2_1 - 0.270899470899471*G0_2_2; + A[952] = -0.0677248677248676*G0_0_0 - 0.011287477954145*G0_0_2 - 0.0112874779541451*G0_2_0; + A[953] = 0.0846560846560844*G0_0_0 + 0.0423280423280429*G0_0_2 + 0.0423280423280429*G0_2_0 + 0.0225749559082896*G0_2_2; + A[954] = -0.112874779541446*G0_0_0 - 0.101587301587302*G0_0_2 - 0.101587301587302*G0_2_0 - 0.135449735449736*G0_2_2; + A[955] = -0.0225749559082891*G0_0_0 - 0.011287477954145*G0_0_1 - 0.0112874779541447*G0_1_0; + A[956] = 0.0169312169312166*G0_0_0 + 0.0197530864197532*G0_0_1 + 0.0197530864197529*G0_1_0 + 0.0225749559082891*G0_1_1; + A[957] = 0.0225749559082899*G0_0_0 + 0.0338624338624338*G0_0_1 + 0.0338624338624343*G0_1_0 + 0.0451499118165786*G0_1_1; + A[958] = 0.067724867724868*G0_0_0 + 0.067724867724868*G0_0_1 + 0.0564373897707236*G0_0_2 + 0.135449735449736*G0_1_0 + 0.135449735449736*G0_1_1 + 0.101587301587301*G0_1_2 + 0.101587301587302*G0_2_0 + 0.101587301587302*G0_2_1 + 0.0677248677248671*G0_2_2; + A[959] = -0.0846560846560849*G0_0_0 - 0.0846560846560851*G0_0_1 - 0.042328042328043*G0_0_2 - 0.270899470899471*G0_1_0 - 0.270899470899472*G0_1_1 - 0.177777777777778*G0_1_2 - 0.177777777777779*G0_2_0 - 0.177777777777779*G0_2_1 - 0.0169312169312162*G0_2_2; + A[960] = 0.112874779541446*G0_0_0 + 0.112874779541446*G0_0_1 + 0.0112874779541449*G0_0_2 + 0.101587301587302*G0_1_2 + 0.101587301587302*G0_2_0 + 0.101587301587302*G0_2_1 - 0.0677248677248679*G0_2_2; + A[961] = 0.0225749559082893*G0_0_0 + 0.0112874779541449*G0_0_1 + 0.0225749559082892*G0_0_2 + 0.0564373897707235*G0_1_0 + 0.0225749559082891*G0_1_1 + 0.0564373897707234*G0_1_2 + 0.0902998236331572*G0_2_0 + 0.0564373897707227*G0_2_1 + 0.0902998236331572*G0_2_2; + A[962] = -0.0169312169312168*G0_0_0 + 0.00282186948853606*G0_0_1 - 0.0169312169312168*G0_0_2 + 0.00282186948853632*G0_1_0 + 0.00564373897707248*G0_1_1 + 0.0028218694885363*G0_1_2 + 0.0677248677248682*G0_2_0 + 0.00282186948853665*G0_2_1 + 0.0677248677248682*G0_2_2; + A[963] = -0.0225749559082897*G0_0_0 + 0.0112874779541445*G0_0_1 - 0.0225749559082897*G0_0_2 - 0.0338624338624343*G0_1_0 + 0.0225749559082891*G0_1_1 - 0.0338624338624343*G0_1_2 - 0.0338624338624344*G0_2_1; + A[964] = 0.0112874779541448*G0_0_1 + 0.0112874779541448*G0_0_2 + 0.0112874779541445*G0_1_0 + 0.0451499118165789*G0_1_1 + 0.0451499118165789*G0_1_2 + 0.0112874779541445*G0_2_0 + 0.0451499118165789*G0_2_1 + 0.0451499118165789*G0_2_2; + A[965] = 0.00282186948853608*G0_0_1 + 0.00282186948853611*G0_0_2 + 0.00282186948853634*G0_1_0 + 0.0225749559082893*G0_1_1 + 0.0225749559082893*G0_1_2 + 0.00282186948853633*G0_2_0 + 0.0225749559082893*G0_2_1 + 0.0225749559082893*G0_2_2; + A[966] = 0.011287477954145*G0_0_1 + 0.011287477954145*G0_0_2 + 0.0112874779541444*G0_1_0 + 0.0112874779541444*G0_2_0; + A[967] = 0.135449735449736*G0_0_0 + 0.067724867724868*G0_0_1 + 0.0451499118165784*G0_0_2 + 0.0677248677248676*G0_1_0 + 0.0225749559082888*G0_1_2 + 0.0451499118165787*G0_2_0 + 0.0225749559082887*G0_2_1; + A[968] = -0.0677248677248673*G0_0_1 + 0.0677248677248677*G0_0_2 - 0.0677248677248683*G0_1_0 - 0.135449735449736*G0_1_1 + 0.0451499118165785*G0_1_2 + 0.0677248677248675*G0_2_0 + 0.0451499118165784*G0_2_1; + A[969] = -0.541798941798942*G0_0_0 - 0.270899470899471*G0_0_1 - 0.27089947089947*G0_0_2 - 0.270899470899471*G0_1_0 - 0.135449735449736*G0_1_2 - 0.270899470899471*G0_2_0 - 0.135449735449735*G0_2_1 + 0.0451499118165786*G0_2_2; + A[970] = -0.135449735449736*G0_0_0 - 0.0677248677248683*G0_0_1 - 0.0902998236331573*G0_0_2 - 0.203174603174604*G0_1_0 - 0.135449735449736*G0_1_1 - 0.225749559082893*G0_1_2 - 0.361199294532629*G0_2_0 - 0.225749559082892*G0_2_1 - 0.451499118165786*G0_2_2; + A[971] = -0.0677248677248675*G0_0_1 + 0.067724867724868*G0_0_2 + 0.0677248677248683*G0_1_0 - 0.135449735449736*G0_1_1 + 0.0902998236331576*G0_1_2 - 0.0677248677248675*G0_2_0 + 0.090299823633157*G0_2_1 - 0.135449735449735*G0_2_2; + A[972] = 0.541798941798941*G0_0_0 + 0.270899470899471*G0_0_1 + 0.270899470899471*G0_0_2 + 0.270899470899471*G0_1_0 + 0.541798941798943*G0_1_1 + 0.270899470899471*G0_1_2 + 0.270899470899471*G0_2_0 + 0.270899470899471*G0_2_1 + 0.6320987654321*G0_2_2; + A[973] = -0.0677248677248683*G0_0_1 - 0.045149911816579*G0_0_2 - 0.0677248677248681*G0_1_0 - 0.135449735449736*G0_1_1 - 0.180599647266315*G0_1_2 - 0.0451499118165788*G0_2_0 - 0.180599647266315*G0_2_1 - 0.225749559082894*G0_2_2; + A[974] = -0.0677248677248679*G0_0_1 - 0.0451499118165791*G0_0_2 - 0.0677248677248673*G0_1_0 - 0.0225749559082891*G0_1_2 - 0.045149911816578*G0_2_0 - 0.0225749559082888*G0_2_1 - 0.0451499118165787*G0_2_2; + A[975] = 0.270899470899471*G0_0_1 + 0.135449735449737*G0_0_2 + 0.270899470899471*G0_1_0 + 0.135449735449736*G0_1_2 + 0.135449735449736*G0_2_0 + 0.135449735449735*G0_2_1 + 0.316049382716051*G0_2_2; + A[976] = -0.0225749559082893*G0_0_1 - 0.0451499118165785*G0_0_2 - 0.0225749559082896*G0_1_0 - 0.0451499118165787*G0_1_1 - 0.045149911816579*G0_2_0 + 0.0451499118165784*G0_2_2; + A[977] = -0.0225749559082894*G0_0_1 - 0.0451499118165782*G0_0_2 - 0.0225749559082891*G0_1_0 - 0.0451499118165786*G0_1_1 - 0.0225749559082888*G0_1_2 - 0.0451499118165779*G0_2_0 - 0.0225749559082893*G0_2_1; + A[978] = -0.0225749559082892*G0_0_1 - 0.0677248677248678*G0_0_2 - 0.0225749559082892*G0_1_0 - 0.0451499118165787*G0_1_1 - 0.0451499118165784*G0_1_2 - 0.0677248677248682*G0_2_0 - 0.0451499118165787*G0_2_1; + A[979] = 0.135449735449736*G0_0_1 + 0.316049382716049*G0_0_2 + 0.135449735449736*G0_1_0 + 0.270899470899472*G0_1_1 + 0.135449735449736*G0_1_2 + 0.31604938271605*G0_2_0 + 0.135449735449737*G0_2_1 - 0.0902998236331569*G0_2_2; + A[980] = 0.042328042328042*G0_0_0 + 0.042328042328042*G0_0_1 + 0.042328042328042*G0_0_2 + 0.0493827160493825*G0_1_0 + 0.0493827160493826*G0_1_1 + 0.0493827160493825*G0_1_2 + 0.0423280423280422*G0_2_0 + 0.0423280423280422*G0_2_1 + 0.0423280423280421*G0_2_2; + A[981] = -0.0253968253968255*G0_0_0 - 0.00705467372134048*G0_1_0; + A[982] = 0.0183421516754848*G0_1_1; + A[983] = -0.00705467372134036*G0_1_2 - 0.0253968253968253*G0_2_2; + A[984] = -0.0225749559082893*G0_1_1 - 0.0112874779541452*G0_1_2 - 0.0112874779541444*G0_2_1; + A[985] = 0.0169312169312173*G0_1_1 + 0.0197530864197541*G0_1_2 + 0.0197530864197532*G0_2_1 + 0.02257495590829*G0_2_2; + A[986] = 0.0225749559082895*G0_1_1 + 0.0338624338624338*G0_1_2 + 0.0338624338624345*G0_2_1 + 0.0451499118165787*G0_2_2; + A[987] = 0.0902998236331567*G0_0_0 + 0.0338624338624336*G0_0_2 + 0.0677248677248678*G0_1_0 + 0.022574955908289*G0_1_2 + 0.0338624338624342*G0_2_0; + A[988] = 0.0677248677248677*G0_0_0 + 0.0649029982363318*G0_0_2 + 0.0846560846560843*G0_1_0 + 0.0846560846560848*G0_1_2 + 0.0649029982363311*G0_2_0 + 0.067724867724868*G0_2_2; + A[989] = 0.0338624338624337*G0_0_2 + 0.0225749559082895*G0_1_0 + 0.0677248677248677*G0_1_2 + 0.0338624338624345*G0_2_0 + 0.090299823633157*G0_2_2; + A[990] = 0.0451499118165784*G0_0_0 + 0.0338624338624336*G0_0_1 + 0.0338624338624339*G0_1_0 + 0.022574955908289*G0_1_1; + A[991] = 0.0225749559082892*G0_0_0 + 0.0197530864197533*G0_0_1 + 0.0197530864197531*G0_1_0 + 0.0169312169312169*G0_1_1; + A[992] = -0.0112874779541449*G0_0_1 - 0.0112874779541452*G0_1_0 - 0.0225749559082896*G0_1_1; + A[993] = -0.270899470899471*G0_0_0 - 0.270899470899471*G0_0_1 - 0.169312169312169*G0_0_2 - 0.0677248677248678*G0_1_0 - 0.0677248677248676*G0_1_1 - 0.0790123456790118*G0_1_2 - 0.16931216931217*G0_2_0 - 0.16931216931217*G0_2_1 - 0.0677248677248672*G0_2_2; + A[994] = 0.0677248677248679*G0_0_0 + 0.0677248677248679*G0_0_1 + 0.16084656084656*G0_0_2 + 0.118518518518519*G0_1_0 + 0.118518518518519*G0_1_1 + 0.0253968253968248*G0_1_2 + 0.160846560846562*G0_2_0 + 0.160846560846562*G0_2_1 - 0.0169312169312175*G0_2_2; + A[995] = -0.0338624338624332*G0_0_2 - 0.0225749559082895*G0_1_0 - 0.0225749559082895*G0_1_1 + 0.011287477954145*G0_1_2 - 0.0338624338624345*G0_2_0 - 0.0338624338624345*G0_2_1 + 0.067724867724868*G0_2_2; + A[996] = -0.135449735449736*G0_0_0 - 0.0338624338624333*G0_0_1 - 0.135449735449736*G0_0_2 - 0.0338624338624342*G0_1_0 - 0.0451499118165783*G0_1_1 - 0.0338624338624341*G0_1_2 - 0.135449735449736*G0_2_0 - 0.0338624338624337*G0_2_1 - 0.135449735449736*G0_2_2; + A[997] = 0.0225749559082894*G0_0_0 - 0.0197530864197536*G0_0_1 + 0.0225749559082893*G0_0_2 - 0.0197530864197531*G0_1_0 + 0.0225749559082891*G0_1_1 - 0.0197530864197532*G0_1_2 + 0.0225749559082892*G0_2_0 - 0.0197530864197534*G0_2_1 + 0.0225749559082892*G0_2_2; + A[998] = 0.0112874779541449*G0_0_1 + 0.0112874779541452*G0_1_0 - 0.0451499118165782*G0_1_1 + 0.0112874779541452*G0_1_2 + 0.0112874779541451*G0_2_1; + A[999] = -0.0677248677248674*G0_0_0 - 0.16931216931217*G0_0_1 - 0.16931216931217*G0_0_2 - 0.0790123456790122*G0_1_0 - 0.0677248677248681*G0_1_1 - 0.0677248677248681*G0_1_2 - 0.169312169312169*G0_2_0 - 0.270899470899472*G0_2_1 - 0.270899470899472*G0_2_2; + A[1000] = -0.0169312169312171*G0_0_0 + 0.160846560846561*G0_0_1 + 0.160846560846561*G0_0_2 + 0.0253968253968251*G0_1_0 + 0.118518518518518*G0_1_1 + 0.118518518518518*G0_1_2 + 0.16084656084656*G0_2_0 + 0.0677248677248675*G0_2_1 + 0.0677248677248675*G0_2_2; + A[1001] = 0.0677248677248679*G0_0_0 - 0.0338624338624336*G0_0_1 - 0.0338624338624336*G0_0_2 + 0.0112874779541449*G0_1_0 - 0.0225749559082891*G0_1_1 - 0.0225749559082891*G0_1_2 - 0.0338624338624334*G0_2_0; + A[1002] = 0.0451499118165789*G0_0_0 + 0.0902998236331565*G0_0_1 + 0.0451499118165783*G0_0_2 + 0.0902998236331567*G0_1_0 + 0.135449735449735*G0_1_1 + 0.0677248677248678*G0_1_2 + 0.0451499118165789*G0_2_0 + 0.0677248677248683*G0_2_1; + A[1003] = 0.0451499118165798*G0_0_1 + 0.0225749559082892*G0_0_2 + 0.0451499118165788*G0_1_0 + 0.0902998236331572*G0_1_1 + 0.045149911816578*G0_1_2 + 0.0225749559082901*G0_2_0 + 0.0451499118165795*G0_2_1; + A[1004] = 0.0677248677248681*G0_0_1 + 0.0451499118165799*G0_0_2 + 0.0677248677248683*G0_1_0 + 0.135449735449735*G0_1_1 + 0.0902998236331575*G0_1_2 + 0.0451499118165791*G0_2_0 + 0.0902998236331569*G0_2_1 + 0.0451499118165792*G0_2_2; + A[1005] = 0.0451499118165787*G0_0_0 + 0.31604938271605*G0_0_1 + 0.180599647266315*G0_0_2 + 0.31604938271605*G0_1_0 + 0.0451499118165789*G0_1_1 + 0.180599647266315*G0_1_2 + 0.180599647266315*G0_2_0 + 0.180599647266315*G0_2_1 + 0.316049382716052*G0_2_2; + A[1006] = -0.0451499118165786*G0_0_1 - 0.0225749559082899*G0_0_2 - 0.0451499118165788*G0_1_0 + 0.0451499118165782*G0_1_1 - 0.0225749559082901*G0_2_0 - 0.0451499118165794*G0_2_2; + A[1007] = -0.0677248677248681*G0_0_1 - 0.0451499118165788*G0_0_2 - 0.0677248677248683*G0_1_0 - 0.135449735449736*G0_1_1 - 0.180599647266315*G0_1_2 - 0.045149911816579*G0_2_0 - 0.180599647266315*G0_2_1 - 0.225749559082894*G0_2_2; + A[1008] = 0.632098765432099*G0_0_0 + 0.361199294532628*G0_0_1 + 0.361199294532629*G0_0_2 + 0.361199294532628*G0_1_0 + 0.632098765432099*G0_1_1 + 0.361199294532629*G0_1_2 + 0.361199294532629*G0_2_0 + 0.361199294532629*G0_2_1 + 0.632098765432101*G0_2_2; + A[1009] = -0.451499118165784*G0_0_0 - 0.0902998236331568*G0_0_1 - 0.225749559082893*G0_0_2 - 0.361199294532628*G0_1_0 - 0.135449735449735*G0_1_1 - 0.203174603174602*G0_1_2 - 0.225749559082893*G0_2_0 - 0.0677248677248683*G0_2_1 - 0.135449735449736*G0_2_2; + A[1010] = -0.135449735449736*G0_0_0 - 0.0677248677248683*G0_0_1 - 0.225749559082893*G0_0_2 - 0.203174603174603*G0_1_0 - 0.135449735449736*G0_1_1 - 0.361199294532629*G0_1_2 - 0.225749559082893*G0_2_0 - 0.0902998236331571*G0_2_1 - 0.451499118165786*G0_2_2; + A[1011] = 0.31604938271605*G0_0_0 + 0.180599647266315*G0_0_1 + 0.180599647266314*G0_0_2 + 0.180599647266314*G0_1_0 + 0.045149911816579*G0_1_1 + 0.316049382716049*G0_1_2 + 0.180599647266315*G0_2_0 + 0.31604938271605*G0_2_1 + 0.0451499118165784*G0_2_2; + A[1012] = -0.225749559082892*G0_0_0 - 0.180599647266314*G0_0_1 - 0.0451499118165783*G0_0_2 - 0.180599647266314*G0_1_0 - 0.135449735449735*G0_1_1 - 0.0677248677248676*G0_1_2 - 0.0451499118165785*G0_2_0 - 0.0677248677248675*G0_2_1; + A[1013] = -0.0451499118165786*G0_0_0 - 0.022574955908289*G0_0_2 + 0.0451499118165786*G0_1_1 - 0.0451499118165775*G0_1_2 - 0.0225749559082892*G0_2_0 - 0.0451499118165787*G0_2_1; + A[1014] = -0.0902998236331579*G0_0_0 - 0.406349206349207*G0_0_1 - 0.225749559082894*G0_0_2 - 0.406349206349207*G0_1_0 - 0.722398589065256*G0_1_1 - 0.406349206349207*G0_1_2 - 0.225749559082894*G0_2_0 - 0.406349206349208*G0_2_1 - 0.0902998236331579*G0_2_2; + A[1015] = -0.0253968253968251*G0_0_0 - 0.0253968253968251*G0_0_1 - 0.0253968253968251*G0_0_2 - 0.0183421516754849*G0_1_0 - 0.0183421516754848*G0_1_1 - 0.0183421516754849*G0_1_2 - 0.0253968253968253*G0_2_0 - 0.0253968253968253*G0_2_1 - 0.0253968253968254*G0_2_2; + A[1016] = 0.0423280423280424*G0_0_0 - 0.00705467372134026*G0_1_0; + A[1017] = 0.0183421516754849*G0_1_1; + A[1018] = -0.00705467372134038*G0_1_2 - 0.0253968253968254*G0_2_2; + A[1019] = -0.0225749559082893*G0_1_1 - 0.0112874779541447*G0_1_2 - 0.0112874779541447*G0_2_1; + A[1020] = 0.0169312169312169*G0_1_1 + 0.019753086419753*G0_1_2 + 0.0197530864197532*G0_2_1 + 0.0225749559082892*G0_2_2; + A[1021] = 0.0225749559082892*G0_1_1 + 0.0338624338624338*G0_1_2 + 0.0338624338624341*G0_2_1 + 0.0451499118165789*G0_2_2; + A[1022] = -0.270899470899471*G0_0_0 - 0.101587301587302*G0_0_2 - 0.203174603174603*G0_1_0 - 0.112874779541446*G0_1_2 - 0.101587301587301*G0_2_0; + A[1023] = 0.0677248677248681*G0_0_0 - 0.093121693121693*G0_0_2 - 0.0507936507936508*G0_1_0 - 0.186243386243386*G0_1_2 - 0.0931216931216934*G0_2_0 - 0.270899470899472*G0_2_2; + A[1024] = 0.0338624338624339*G0_0_2 + 0.0225749559082892*G0_1_0 + 0.0677248677248678*G0_1_2 + 0.0338624338624341*G0_2_0 + 0.135449735449736*G0_2_2; + A[1025] = -0.135449735449735*G0_0_0 - 0.101587301587302*G0_0_1 - 0.101587301587301*G0_1_0 - 0.112874779541446*G0_1_1; + A[1026] = 0.0225749559082895*G0_0_0 + 0.0423280423280425*G0_0_1 + 0.0423280423280426*G0_1_0 + 0.084656084656085*G0_1_1; + A[1027] = -0.0112874779541445*G0_0_1 - 0.0112874779541447*G0_1_0 - 0.0677248677248677*G0_1_1; + A[1028] = 0.0902998236331569*G0_0_0 + 0.0902998236331567*G0_0_1 + 0.0564373897707224*G0_0_2 + 0.0225749559082894*G0_1_0 + 0.0225749559082894*G0_1_1 + 0.0112874779541444*G0_1_2 + 0.0564373897707234*G0_2_0 + 0.0564373897707232*G0_2_1 + 0.0225749559082894*G0_2_2; + A[1029] = 0.0677248677248675*G0_0_0 + 0.0677248677248675*G0_0_1 + 0.00282186948853692*G0_0_2 - 0.0169312169312176*G0_1_0 - 0.0169312169312176*G0_1_1 + 0.0028218694885362*G0_1_2 + 0.00282186948853595*G0_2_0 + 0.00282186948853597*G0_2_1 + 0.00564373897707188*G0_2_2; + A[1030] = -0.0338624338624343*G0_0_2 - 0.0225749559082893*G0_1_0 - 0.0225749559082892*G0_1_1 + 0.0112874779541445*G0_1_2 - 0.0338624338624341*G0_2_0 - 0.0338624338624341*G0_2_1 + 0.0225749559082894*G0_2_2; + A[1031] = 0.0451499118165786*G0_0_0 + 0.0112874779541442*G0_0_1 + 0.0451499118165785*G0_0_2 + 0.011287477954145*G0_1_0 + 0.011287477954145*G0_1_2 + 0.0451499118165787*G0_2_0 + 0.0112874779541446*G0_2_1 + 0.0451499118165787*G0_2_2; + A[1032] = 0.0225749559082893*G0_0_0 + 0.00282186948853653*G0_0_1 + 0.0225749559082892*G0_0_2 + 0.00282186948853595*G0_1_0 + 0.00282186948853588*G0_1_2 + 0.0225749559082892*G0_2_0 + 0.00282186948853604*G0_2_1 + 0.0225749559082893*G0_2_2; + A[1033] = 0.0112874779541444*G0_0_1 + 0.0112874779541447*G0_1_0 + 0.0112874779541447*G0_1_2 + 0.0112874779541447*G0_2_1; + A[1034] = 0.0677248677248673*G0_0_0 + 0.101587301587302*G0_0_1 + 0.101587301587302*G0_0_2 + 0.0564373897707228*G0_1_0 + 0.067724867724868*G0_1_1 + 0.0677248677248679*G0_1_2 + 0.101587301587301*G0_2_0 + 0.135449735449735*G0_2_1 + 0.135449735449736*G0_2_2; + A[1035] = -0.0169312169312166*G0_0_0 - 0.177777777777777*G0_0_1 - 0.177777777777777*G0_0_2 - 0.0423280423280418*G0_1_0 - 0.084656084656084*G0_1_1 - 0.0846560846560841*G0_1_2 - 0.177777777777778*G0_2_0 - 0.270899470899471*G0_2_1 - 0.270899470899471*G0_2_2; + A[1036] = -0.0677248677248679*G0_0_0 + 0.101587301587302*G0_0_1 + 0.101587301587302*G0_0_2 + 0.0112874779541442*G0_1_0 + 0.112874779541446*G0_1_1 + 0.112874779541446*G0_1_2 + 0.101587301587301*G0_2_0; + A[1037] = 0.0451499118165791*G0_0_0 - 0.27089947089947*G0_0_1 - 0.135449735449735*G0_0_2 - 0.27089947089947*G0_1_0 - 0.541798941798942*G0_1_1 - 0.27089947089947*G0_1_2 - 0.135449735449735*G0_2_0 - 0.27089947089947*G0_2_1; + A[1038] = 0.0451499118165782*G0_0_1 + 0.0225749559082896*G0_0_2 + 0.0451499118165785*G0_1_0 + 0.135449735449736*G0_1_1 + 0.0677248677248681*G0_1_2 + 0.0225749559082893*G0_2_0 + 0.0677248677248678*G0_2_1; + A[1039] = 0.0677248677248679*G0_0_1 + 0.0451499118165781*G0_0_2 + 0.0677248677248678*G0_1_0 - 0.0677248677248676*G0_1_2 + 0.0451499118165791*G0_2_0 - 0.0677248677248673*G0_2_1 - 0.135449735449735*G0_2_2; + A[1040] = 0.0451499118165784*G0_0_0 - 0.0451499118165784*G0_0_1 - 0.0451499118165787*G0_1_0 - 0.0225749559082902*G0_1_2 - 0.0225749559082894*G0_2_1 - 0.0451499118165789*G0_2_2; + A[1041] = -0.0451499118165784*G0_0_1 - 0.0225749559082888*G0_0_2 - 0.0451499118165784*G0_1_0 - 0.0225749559082887*G0_1_2 - 0.0225749559082893*G0_2_0 - 0.0225749559082891*G0_2_1 - 0.0451499118165783*G0_2_2; + A[1042] = -0.0677248677248673*G0_0_1 - 0.045149911816578*G0_0_2 - 0.0677248677248679*G0_1_0 - 0.0225749559082888*G0_1_2 - 0.0451499118165791*G0_2_0 - 0.0225749559082891*G0_2_1 - 0.0451499118165787*G0_2_2; + A[1043] = -0.451499118165784*G0_0_0 - 0.361199294532628*G0_0_1 - 0.225749559082893*G0_0_2 - 0.0902998236331568*G0_1_0 - 0.135449735449735*G0_1_1 - 0.0677248677248683*G0_1_2 - 0.225749559082892*G0_2_0 - 0.203174603174602*G0_2_1 - 0.135449735449736*G0_2_2; + A[1044] = 0.632098765432098*G0_0_0 + 0.27089947089947*G0_0_1 + 0.27089947089947*G0_0_2 + 0.27089947089947*G0_1_0 + 0.541798941798941*G0_1_1 + 0.27089947089947*G0_1_2 + 0.27089947089947*G0_2_0 + 0.27089947089947*G0_2_1 + 0.541798941798942*G0_2_2; + A[1045] = -0.135449735449736*G0_0_0 - 0.0677248677248678*G0_0_1 + 0.0902998236331573*G0_0_2 + 0.0677248677248682*G0_1_0 - 0.0677248677248674*G0_1_2 + 0.0902998236331574*G0_2_0 + 0.0677248677248673*G0_2_1 - 0.135449735449736*G0_2_2; + A[1046] = -0.225749559082892*G0_0_0 - 0.0451499118165787*G0_0_1 - 0.180599647266313*G0_0_2 - 0.0451499118165788*G0_1_0 - 0.0677248677248674*G0_1_2 - 0.180599647266314*G0_2_0 - 0.0677248677248677*G0_2_1 - 0.135449735449735*G0_2_2; + A[1047] = 0.316049382716049*G0_0_0 + 0.135449735449735*G0_0_1 + 0.135449735449735*G0_0_2 + 0.135449735449735*G0_1_0 + 0.27089947089947*G0_1_2 + 0.135449735449735*G0_2_0 + 0.270899470899471*G0_2_1; + A[1048] = -0.0451499118165788*G0_0_0 - 0.0451499118165786*G0_0_1 - 0.0225749559082898*G0_0_2 - 0.0451499118165786*G0_1_0 - 0.0677248677248681*G0_1_2 - 0.0225749559082894*G0_2_0 - 0.0677248677248679*G0_2_1; + A[1049] = -0.0902998236331572*G0_0_0 + 0.316049382716049*G0_0_1 + 0.135449735449735*G0_0_2 + 0.316049382716049*G0_1_0 + 0.135449735449735*G0_1_2 + 0.135449735449735*G0_2_0 + 0.135449735449734*G0_2_1 + 0.27089947089947*G0_2_2; + A[1050] = -0.0253968253968253*G0_0_0 - 0.0253968253968253*G0_0_1 - 0.0253968253968253*G0_0_2 - 0.0183421516754853*G0_1_0 - 0.0183421516754853*G0_1_1 - 0.0183421516754853*G0_1_2 - 0.0253968253968253*G0_2_0 - 0.0253968253968253*G0_2_1 - 0.0253968253968252*G0_2_2; + A[1051] = -0.0253968253968254*G0_0_0 - 0.00705467372134063*G0_1_0; + A[1052] = 0.0183421516754851*G0_1_1; + A[1053] = -0.00705467372134029*G0_1_2 + 0.0423280423280423*G0_2_2; + A[1054] = -0.0677248677248678*G0_1_1 - 0.0112874779541445*G0_1_2 - 0.0112874779541447*G0_2_1; + A[1055] = 0.0846560846560847*G0_1_1 + 0.0423280423280424*G0_1_2 + 0.0423280423280422*G0_2_1 + 0.0225749559082886*G0_2_2; + A[1056] = -0.112874779541446*G0_1_1 - 0.101587301587302*G0_1_2 - 0.101587301587302*G0_2_1 - 0.135449735449736*G0_2_2; + A[1057] = 0.135449735449736*G0_0_0 + 0.0338624338624342*G0_0_2 + 0.067724867724868*G0_1_0 + 0.022574955908289*G0_1_2 + 0.0338624338624335*G0_2_0; + A[1058] = -0.270899470899471*G0_0_0 - 0.0931216931216937*G0_0_2 - 0.186243386243387*G0_1_0 - 0.0507936507936504*G0_1_2 - 0.0931216931216927*G0_2_0 + 0.067724867724868*G0_2_2; + A[1059] = -0.101587301587301*G0_0_2 - 0.112874779541446*G0_1_0 - 0.203174603174604*G0_1_2 - 0.101587301587302*G0_2_0 - 0.270899470899472*G0_2_2; + A[1060] = 0.0451499118165786*G0_0_0 + 0.0338624338624341*G0_0_1 + 0.0338624338624341*G0_1_0 + 0.0225749559082891*G0_1_1; + A[1061] = 0.0225749559082891*G0_0_0 + 0.0197530864197528*G0_0_1 + 0.0197530864197529*G0_1_0 + 0.016931216931217*G0_1_1; + A[1062] = -0.0112874779541444*G0_0_1 - 0.0112874779541443*G0_1_0 - 0.0225749559082892*G0_1_1; + A[1063] = 0.135449735449736*G0_0_0 + 0.135449735449736*G0_0_1 + 0.101587301587301*G0_0_2 + 0.0677248677248679*G0_1_0 + 0.0677248677248679*G0_1_1 + 0.0564373897707237*G0_1_2 + 0.101587301587302*G0_2_0 + 0.101587301587302*G0_2_1 + 0.0677248677248671*G0_2_2; + A[1064] = -0.270899470899471*G0_0_0 - 0.270899470899471*G0_0_1 - 0.177777777777777*G0_0_2 - 0.0846560846560845*G0_1_0 - 0.0846560846560846*G0_1_1 - 0.0423280423280429*G0_1_2 - 0.177777777777778*G0_2_0 - 0.177777777777779*G0_2_1 - 0.016931216931216*G0_2_2; + A[1065] = 0.101587301587301*G0_0_2 + 0.112874779541446*G0_1_0 + 0.112874779541446*G0_1_1 + 0.0112874779541446*G0_1_2 + 0.101587301587302*G0_2_0 + 0.101587301587302*G0_2_1 - 0.0677248677248682*G0_2_2; + A[1066] = 0.0451499118165789*G0_0_0 + 0.0112874779541446*G0_0_1 + 0.045149911816579*G0_0_2 + 0.0112874779541446*G0_1_0 + 0.0112874779541447*G0_1_2 + 0.0451499118165789*G0_2_0 + 0.0112874779541444*G0_2_1 + 0.0451499118165789*G0_2_2; + A[1067] = 0.022574955908289*G0_0_0 + 0.00282186948853611*G0_0_1 + 0.022574955908289*G0_0_2 + 0.00282186948853596*G0_1_0 + 0.002821869488536*G0_1_2 + 0.0225749559082892*G0_2_0 + 0.00282186948853643*G0_2_1 + 0.0225749559082892*G0_2_2; + A[1068] = 0.0112874779541447*G0_0_1 + 0.0112874779541445*G0_1_0 + 0.0112874779541445*G0_1_2 + 0.0112874779541442*G0_2_1; + A[1069] = 0.0225749559082892*G0_0_0 + 0.0564373897707235*G0_0_1 + 0.0564373897707235*G0_0_2 + 0.0112874779541451*G0_1_0 + 0.0225749559082893*G0_1_1 + 0.0225749559082894*G0_1_2 + 0.056437389770723*G0_2_0 + 0.0902998236331576*G0_2_1 + 0.0902998236331575*G0_2_2; + A[1070] = 0.00564373897707241*G0_0_0 + 0.00282186948853617*G0_0_1 + 0.00282186948853616*G0_0_2 + 0.00282186948853587*G0_1_0 - 0.0169312169312171*G0_1_1 - 0.0169312169312171*G0_1_2 + 0.00282186948853634*G0_2_0 + 0.0677248677248679*G0_2_1 + 0.0677248677248679*G0_2_2; + A[1071] = 0.0225749559082891*G0_0_0 - 0.0338624338624341*G0_0_1 - 0.0338624338624341*G0_0_2 + 0.0112874779541449*G0_1_0 - 0.022574955908289*G0_1_1 - 0.022574955908289*G0_1_2 - 0.0338624338624341*G0_2_0; + A[1072] = -0.135449735449736*G0_0_0 - 0.0677248677248682*G0_0_1 + 0.0451499118165782*G0_0_2 - 0.0677248677248676*G0_1_0 + 0.0677248677248678*G0_1_2 + 0.0451499118165783*G0_2_0 + 0.0677248677248673*G0_2_1; + A[1073] = 0.0677248677248671*G0_0_1 + 0.0225749559082892*G0_0_2 + 0.0677248677248678*G0_1_0 + 0.135449735449736*G0_1_1 + 0.0451499118165783*G0_1_2 + 0.0225749559082887*G0_2_0 + 0.0451499118165779*G0_2_1; + A[1074] = -0.270899470899471*G0_0_1 - 0.135449735449736*G0_0_2 - 0.270899470899471*G0_1_0 - 0.541798941798943*G0_1_1 - 0.270899470899471*G0_1_2 - 0.135449735449737*G0_2_0 - 0.270899470899471*G0_2_1 + 0.0451499118165778*G0_2_2; + A[1075] = -0.135449735449736*G0_0_0 - 0.0677248677248681*G0_0_1 - 0.180599647266315*G0_0_2 - 0.0677248677248679*G0_1_0 - 0.0451499118165786*G0_1_2 - 0.180599647266315*G0_2_0 - 0.0451499118165791*G0_2_1 - 0.225749559082894*G0_2_2; + A[1076] = -0.0677248677248676*G0_0_1 - 0.0225749559082885*G0_0_2 - 0.0677248677248678*G0_1_0 - 0.0451499118165781*G0_1_2 - 0.0225749559082888*G0_2_0 - 0.0451499118165782*G0_2_1 - 0.0451499118165778*G0_2_2; + A[1077] = 0.270899470899471*G0_0_1 + 0.135449735449736*G0_0_2 + 0.270899470899471*G0_1_0 + 0.135449735449735*G0_1_2 + 0.135449735449737*G0_2_0 + 0.135449735449736*G0_2_1 + 0.316049382716051*G0_2_2; + A[1078] = -0.135449735449736*G0_0_0 - 0.203174603174603*G0_0_1 - 0.225749559082893*G0_0_2 - 0.0677248677248683*G0_1_0 - 0.135449735449736*G0_1_1 - 0.0902998236331571*G0_1_2 - 0.225749559082893*G0_2_0 - 0.361199294532629*G0_2_1 - 0.451499118165786*G0_2_2; + A[1079] = -0.135449735449736*G0_0_0 + 0.0677248677248682*G0_0_1 + 0.0902998236331574*G0_0_2 - 0.0677248677248678*G0_1_0 + 0.0677248677248674*G0_1_2 + 0.0902998236331573*G0_2_0 - 0.0677248677248674*G0_2_1 - 0.135449735449736*G0_2_2; + A[1080] = 0.541798941798942*G0_0_0 + 0.270899470899471*G0_0_1 + 0.270899470899471*G0_0_2 + 0.270899470899471*G0_1_0 + 0.541798941798943*G0_1_1 + 0.270899470899472*G0_1_2 + 0.270899470899471*G0_2_0 + 0.270899470899472*G0_2_1 + 0.6320987654321*G0_2_2; + A[1081] = -0.045149911816579*G0_0_0 - 0.0225749559082898*G0_0_1 - 0.0225749559082895*G0_1_0 - 0.0451499118165787*G0_1_2 - 0.0451499118165793*G0_2_1 + 0.0451499118165781*G0_2_2; + A[1082] = -0.0451499118165786*G0_0_0 - 0.0225749559082891*G0_0_1 - 0.0451499118165783*G0_0_2 - 0.0225749559082892*G0_1_0 - 0.0677248677248677*G0_1_2 - 0.0451499118165783*G0_2_0 - 0.067724867724868*G0_2_1; + A[1083] = -0.0451499118165782*G0_0_0 - 0.0225749559082892*G0_0_1 - 0.0225749559082894*G0_0_2 - 0.0225749559082888*G0_1_0 - 0.0451499118165786*G0_1_2 - 0.0225749559082891*G0_2_0 - 0.0451499118165782*G0_2_1; + A[1084] = 0.270899470899472*G0_0_0 + 0.135449735449736*G0_0_1 + 0.135449735449737*G0_0_2 + 0.135449735449736*G0_1_0 + 0.31604938271605*G0_1_2 + 0.135449735449737*G0_2_0 + 0.316049382716051*G0_2_1 - 0.0902998236331556*G0_2_2; + A[1085] = 0.0423280423280421*G0_0_0 + 0.0423280423280421*G0_0_1 + 0.0423280423280421*G0_0_2 + 0.0423280423280422*G0_1_0 + 0.0423280423280422*G0_1_1 + 0.0423280423280422*G0_1_2 + 0.0493827160493826*G0_2_0 + 0.0493827160493826*G0_2_1 + 0.0493827160493826*G0_2_2; + A[1086] = -0.0253968253968254*G0_0_0 - 0.00705467372134038*G0_2_0; + A[1087] = -0.0253968253968254*G0_1_1 - 0.00705467372134047*G0_2_1; + A[1088] = 0.018342151675485*G0_2_2; + A[1089] = 0.0451499118165788*G0_1_1 + 0.0338624338624341*G0_1_2 + 0.0338624338624339*G0_2_1 + 0.022574955908289*G0_2_2; + A[1090] = 0.0225749559082893*G0_1_1 + 0.0197530864197531*G0_1_2 + 0.0197530864197532*G0_2_1 + 0.0169312169312173*G0_2_2; + A[1091] = -0.0112874779541446*G0_1_2 - 0.0112874779541448*G0_2_1 - 0.0225749559082896*G0_2_2; + A[1092] = 0.0451499118165784*G0_0_0 + 0.0338624338624338*G0_0_2 + 0.0338624338624337*G0_2_0 + 0.0225749559082892*G0_2_2; + A[1093] = 0.0225749559082894*G0_0_0 + 0.0197530864197536*G0_0_2 + 0.0197530864197533*G0_2_0 + 0.0169312169312171*G0_2_2; + A[1094] = -0.0112874779541448*G0_0_2 - 0.0112874779541448*G0_2_0 - 0.0225749559082893*G0_2_2; + A[1095] = 0.0902998236331568*G0_0_0 + 0.0338624338624339*G0_0_1 + 0.033862433862434*G0_1_0 + 0.0677248677248677*G0_2_0 + 0.0225749559082892*G0_2_1; + A[1096] = 0.0677248677248675*G0_0_0 + 0.0649029982363313*G0_0_1 + 0.0649029982363311*G0_1_0 + 0.0677248677248673*G0_1_1 + 0.0846560846560842*G0_2_0 + 0.0846560846560842*G0_2_1; + A[1097] = 0.0338624338624337*G0_0_1 + 0.0338624338624341*G0_1_0 + 0.0902998236331571*G0_1_1 + 0.0225749559082891*G0_2_0 + 0.0677248677248675*G0_2_1; + A[1098] = -0.135449735449736*G0_0_0 - 0.135449735449735*G0_0_1 - 0.0338624338624334*G0_0_2 - 0.135449735449736*G0_1_0 - 0.135449735449736*G0_1_1 - 0.0338624338624336*G0_1_2 - 0.0338624338624336*G0_2_0 - 0.0338624338624335*G0_2_1 - 0.0451499118165782*G0_2_2; + A[1099] = 0.0225749559082896*G0_0_0 + 0.0225749559082896*G0_0_1 - 0.0197530864197535*G0_0_2 + 0.0225749559082897*G0_1_0 + 0.0225749559082896*G0_1_1 - 0.0197530864197532*G0_1_2 - 0.0197530864197531*G0_2_0 - 0.0197530864197532*G0_2_1 + 0.0225749559082892*G0_2_2; + A[1100] = 0.0112874779541449*G0_0_2 + 0.0112874779541448*G0_1_2 + 0.0112874779541447*G0_2_0 + 0.0112874779541448*G0_2_1 - 0.0451499118165783*G0_2_2; + A[1101] = -0.270899470899471*G0_0_0 - 0.169312169312169*G0_0_1 - 0.270899470899471*G0_0_2 - 0.16931216931217*G0_1_0 - 0.0677248677248675*G0_1_1 - 0.16931216931217*G0_1_2 - 0.0677248677248675*G0_2_0 - 0.0790123456790122*G0_2_1 - 0.0677248677248675*G0_2_2; + A[1102] = 0.0677248677248675*G0_0_0 + 0.16084656084656*G0_0_1 + 0.0677248677248674*G0_0_2 + 0.160846560846561*G0_1_0 - 0.0169312169312173*G0_1_1 + 0.160846560846561*G0_1_2 + 0.118518518518518*G0_2_0 + 0.0253968253968253*G0_2_1 + 0.118518518518518*G0_2_2; + A[1103] = -0.0338624338624335*G0_0_1 - 0.033862433862434*G0_1_0 + 0.067724867724868*G0_1_1 - 0.033862433862434*G0_1_2 - 0.022574955908289*G0_2_0 + 0.0112874779541447*G0_2_1 - 0.0225749559082889*G0_2_2; + A[1104] = -0.0677248677248674*G0_0_0 - 0.16931216931217*G0_0_1 - 0.16931216931217*G0_0_2 - 0.169312169312169*G0_1_0 - 0.270899470899471*G0_1_1 - 0.270899470899471*G0_1_2 - 0.0790123456790121*G0_2_0 - 0.0677248677248675*G0_2_1 - 0.0677248677248675*G0_2_2; + A[1105] = -0.0169312169312172*G0_0_0 + 0.160846560846561*G0_0_1 + 0.160846560846561*G0_0_2 + 0.16084656084656*G0_1_0 + 0.0677248677248673*G0_1_1 + 0.0677248677248674*G0_1_2 + 0.0253968253968251*G0_2_0 + 0.118518518518518*G0_2_1 + 0.118518518518518*G0_2_2; + A[1106] = 0.0677248677248678*G0_0_0 - 0.0338624338624337*G0_0_1 - 0.0338624338624338*G0_0_2 - 0.0338624338624335*G0_1_0 + 0.0112874779541448*G0_2_0 - 0.0225749559082891*G0_2_1 - 0.0225749559082891*G0_2_2; + A[1107] = 0.0451499118165789*G0_0_0 + 0.0451499118165787*G0_0_1 + 0.0902998236331567*G0_0_2 + 0.0451499118165786*G0_1_0 + 0.0677248677248673*G0_1_2 + 0.0902998236331567*G0_2_0 + 0.0677248677248675*G0_2_1 + 0.135449735449735*G0_2_2; + A[1108] = 0.0451499118165788*G0_0_1 + 0.0677248677248674*G0_0_2 + 0.045149911816579*G0_1_0 + 0.0451499118165786*G0_1_1 + 0.0902998236331569*G0_1_2 + 0.0677248677248675*G0_2_0 + 0.0902998236331564*G0_2_1 + 0.135449735449734*G0_2_2; + A[1109] = 0.0225749559082895*G0_0_1 + 0.0451499118165793*G0_0_2 + 0.0225749559082894*G0_1_0 + 0.0451499118165791*G0_1_2 + 0.0451499118165787*G0_2_0 + 0.0451499118165786*G0_2_1 + 0.0902998236331574*G0_2_2; + A[1110] = 0.0451499118165789*G0_0_0 + 0.180599647266314*G0_0_1 + 0.31604938271605*G0_0_2 + 0.180599647266315*G0_1_0 + 0.31604938271605*G0_1_1 + 0.180599647266315*G0_1_2 + 0.31604938271605*G0_2_0 + 0.180599647266314*G0_2_1 + 0.0451499118165786*G0_2_2; + A[1111] = -0.0451499118165786*G0_0_1 - 0.0677248677248678*G0_0_2 - 0.0451499118165789*G0_1_0 - 0.225749559082893*G0_1_1 - 0.180599647266314*G0_1_2 - 0.0677248677248675*G0_2_0 - 0.180599647266314*G0_2_1 - 0.135449735449736*G0_2_2; + A[1112] = -0.0225749559082895*G0_0_1 - 0.045149911816579*G0_0_2 - 0.0225749559082893*G0_1_0 - 0.0451499118165787*G0_1_1 - 0.0451499118165785*G0_2_0 + 0.0451499118165784*G0_2_2; + A[1113] = 0.31604938271605*G0_0_0 + 0.180599647266314*G0_0_1 + 0.180599647266315*G0_0_2 + 0.180599647266315*G0_1_0 + 0.045149911816579*G0_1_1 + 0.31604938271605*G0_1_2 + 0.180599647266314*G0_2_0 + 0.316049382716049*G0_2_1 + 0.0451499118165784*G0_2_2; + A[1114] = -0.225749559082892*G0_0_0 - 0.0451499118165788*G0_0_1 - 0.180599647266314*G0_0_2 - 0.0451499118165787*G0_1_0 - 0.0677248677248677*G0_1_2 - 0.180599647266313*G0_2_0 - 0.0677248677248674*G0_2_1 - 0.135449735449735*G0_2_2; + A[1115] = -0.045149911816579*G0_0_0 - 0.0225749559082895*G0_0_1 - 0.0225749559082898*G0_1_0 - 0.0451499118165793*G0_1_2 - 0.0451499118165788*G0_2_1 + 0.0451499118165781*G0_2_2; + A[1116] = 0.632098765432099*G0_0_0 + 0.361199294532628*G0_0_1 + 0.361199294532628*G0_0_2 + 0.361199294532628*G0_1_0 + 0.632098765432099*G0_1_1 + 0.361199294532628*G0_1_2 + 0.361199294532627*G0_2_0 + 0.361199294532628*G0_2_1 + 0.632098765432099*G0_2_2; + A[1117] = -0.451499118165785*G0_0_0 - 0.225749559082892*G0_0_1 - 0.0902998236331567*G0_0_2 - 0.225749559082892*G0_1_0 - 0.135449735449735*G0_1_1 - 0.0677248677248675*G0_1_2 - 0.361199294532628*G0_2_0 - 0.203174603174602*G0_2_1 - 0.135449735449735*G0_2_2; + A[1118] = -0.135449735449735*G0_0_0 - 0.225749559082892*G0_0_1 - 0.0677248677248671*G0_0_2 - 0.225749559082892*G0_1_0 - 0.451499118165785*G0_1_1 - 0.0902998236331566*G0_1_2 - 0.203174603174603*G0_2_0 - 0.361199294532628*G0_2_1 - 0.135449735449734*G0_2_2; + A[1119] = -0.0902998236331582*G0_0_0 - 0.225749559082893*G0_0_1 - 0.406349206349207*G0_0_2 - 0.225749559082894*G0_1_0 - 0.0902998236331575*G0_1_1 - 0.406349206349207*G0_1_2 - 0.406349206349207*G0_2_0 - 0.406349206349206*G0_2_1 - 0.722398589065256*G0_2_2; + A[1120] = -0.0253968253968252*G0_0_0 - 0.0253968253968252*G0_0_1 - 0.0253968253968252*G0_0_2 - 0.0253968253968253*G0_1_0 - 0.0253968253968254*G0_1_1 - 0.0253968253968253*G0_1_2 - 0.0183421516754849*G0_2_0 - 0.0183421516754849*G0_2_1 - 0.0183421516754848*G0_2_2; + A[1121] = 0.0423280423280422*G0_0_0 - 0.00705467372134043*G0_2_0; + A[1122] = -0.0253968253968254*G0_1_1 - 0.00705467372134051*G0_2_1; + A[1123] = 0.0183421516754851*G0_2_2; + A[1124] = 0.0451499118165786*G0_1_1 + 0.0338624338624339*G0_1_2 + 0.0338624338624339*G0_2_1 + 0.022574955908289*G0_2_2; + A[1125] = 0.0225749559082893*G0_1_1 + 0.0197530864197531*G0_1_2 + 0.0197530864197531*G0_2_1 + 0.0169312169312171*G0_2_2; + A[1126] = -0.0112874779541445*G0_1_2 - 0.0112874779541449*G0_2_1 - 0.0225749559082897*G0_2_2; + A[1127] = -0.135449735449735*G0_0_0 - 0.101587301587302*G0_0_2 - 0.101587301587301*G0_2_0 - 0.112874779541446*G0_2_2; + A[1128] = 0.0225749559082892*G0_0_0 + 0.0423280423280423*G0_0_2 + 0.0423280423280425*G0_2_0 + 0.0846560846560851*G0_2_2; + A[1129] = -0.0112874779541446*G0_0_2 - 0.0112874779541448*G0_2_0 - 0.0677248677248681*G0_2_2; + A[1130] = -0.270899470899471*G0_0_0 - 0.101587301587302*G0_0_1 - 0.101587301587301*G0_1_0 - 0.203174603174603*G0_2_0 - 0.112874779541446*G0_2_1; + A[1131] = 0.0677248677248679*G0_0_0 - 0.0931216931216928*G0_0_1 - 0.0931216931216933*G0_1_0 - 0.270899470899471*G0_1_1 - 0.0507936507936508*G0_2_0 - 0.186243386243386*G0_2_1; + A[1132] = 0.0338624338624338*G0_0_1 + 0.033862433862434*G0_1_0 + 0.135449735449736*G0_1_1 + 0.0225749559082891*G0_2_0 + 0.0677248677248677*G0_2_1; + A[1133] = 0.0451499118165785*G0_0_0 + 0.0451499118165783*G0_0_1 + 0.0112874779541441*G0_0_2 + 0.0451499118165786*G0_1_0 + 0.0451499118165784*G0_1_1 + 0.0112874779541447*G0_1_2 + 0.0112874779541446*G0_2_0 + 0.0112874779541446*G0_2_1; + A[1134] = 0.0225749559082893*G0_0_0 + 0.0225749559082892*G0_0_1 + 0.00282186948853655*G0_0_2 + 0.0225749559082891*G0_1_0 + 0.0225749559082892*G0_1_1 + 0.00282186948853577*G0_1_2 + 0.00282186948853563*G0_2_0 + 0.00282186948853566*G0_2_1; + A[1135] = 0.0112874779541443*G0_0_2 + 0.0112874779541447*G0_1_2 + 0.0112874779541448*G0_2_0 + 0.0112874779541449*G0_2_1; + A[1136] = 0.090299823633157*G0_0_0 + 0.0564373897707228*G0_0_1 + 0.090299823633157*G0_0_2 + 0.056437389770723*G0_1_0 + 0.0225749559082892*G0_1_1 + 0.0564373897707229*G0_1_2 + 0.0225749559082893*G0_2_0 + 0.0112874779541444*G0_2_1 + 0.0225749559082893*G0_2_2; + A[1137] = 0.0677248677248676*G0_0_0 + 0.00282186948853633*G0_0_1 + 0.0677248677248677*G0_0_2 + 0.00282186948853632*G0_1_0 + 0.00564373897707231*G0_1_1 + 0.00282186948853639*G0_1_2 - 0.016931216931217*G0_2_0 + 0.00282186948853621*G0_2_1 - 0.0169312169312171*G0_2_2; + A[1138] = -0.0338624338624339*G0_0_1 - 0.033862433862434*G0_1_0 + 0.0225749559082892*G0_1_1 - 0.0338624338624341*G0_1_2 - 0.0225749559082891*G0_2_0 + 0.0112874779541446*G0_2_1 - 0.0225749559082892*G0_2_2; + A[1139] = 0.0677248677248673*G0_0_0 + 0.101587301587302*G0_0_1 + 0.101587301587302*G0_0_2 + 0.101587301587301*G0_1_0 + 0.135449735449735*G0_1_1 + 0.135449735449735*G0_1_2 + 0.0564373897707228*G0_2_0 + 0.0677248677248677*G0_2_1 + 0.0677248677248676*G0_2_2; + A[1140] = -0.0169312169312166*G0_0_0 - 0.177777777777778*G0_0_1 - 0.177777777777778*G0_0_2 - 0.177777777777778*G0_1_0 - 0.270899470899471*G0_1_1 - 0.270899470899471*G0_1_2 - 0.0423280423280418*G0_2_0 - 0.0846560846560841*G0_2_1 - 0.0846560846560841*G0_2_2; + A[1141] = -0.0677248677248677*G0_0_0 + 0.101587301587302*G0_0_1 + 0.101587301587302*G0_0_2 + 0.101587301587302*G0_1_0 + 0.0112874779541445*G0_2_0 + 0.112874779541446*G0_2_1 + 0.112874779541446*G0_2_2; + A[1142] = 0.0451499118165786*G0_0_0 - 0.135449735449735*G0_0_1 - 0.270899470899471*G0_0_2 - 0.135449735449735*G0_1_0 - 0.27089947089947*G0_1_2 - 0.270899470899471*G0_2_0 - 0.27089947089947*G0_2_1 - 0.541798941798942*G0_2_2; + A[1143] = 0.0451499118165787*G0_0_1 + 0.0677248677248681*G0_0_2 + 0.0451499118165785*G0_1_0 - 0.135449735449736*G0_1_1 - 0.0677248677248678*G0_1_2 + 0.0677248677248677*G0_2_0 - 0.0677248677248679*G0_2_1; + A[1144] = 0.0225749559082892*G0_0_1 + 0.0451499118165782*G0_0_2 + 0.0225749559082894*G0_1_0 + 0.0677248677248678*G0_1_2 + 0.0451499118165781*G0_2_0 + 0.0677248677248677*G0_2_1 + 0.135449735449736*G0_2_2; + A[1145] = 0.0451499118165783*G0_0_0 - 0.0451499118165788*G0_0_2 - 0.0451499118165782*G0_1_1 - 0.0225749559082892*G0_1_2 - 0.0451499118165787*G0_2_0 - 0.0225749559082893*G0_2_1; + A[1146] = -0.0451499118165783*G0_0_1 - 0.0677248677248676*G0_0_2 - 0.0451499118165786*G0_1_0 - 0.0451499118165789*G0_1_1 - 0.0225749559082894*G0_1_2 - 0.0677248677248677*G0_2_0 - 0.0225749559082894*G0_2_1; + A[1147] = -0.0225749559082892*G0_0_1 - 0.0451499118165779*G0_0_2 - 0.0225749559082894*G0_1_0 - 0.0451499118165786*G0_1_1 - 0.0225749559082893*G0_1_2 - 0.0451499118165782*G0_2_0 - 0.0225749559082888*G0_2_1; + A[1148] = -0.225749559082892*G0_0_0 - 0.180599647266314*G0_0_1 - 0.0451499118165785*G0_0_2 - 0.180599647266314*G0_1_0 - 0.135449735449735*G0_1_1 - 0.0677248677248675*G0_1_2 - 0.0451499118165783*G0_2_0 - 0.0677248677248676*G0_2_1; + A[1149] = 0.316049382716049*G0_0_0 + 0.135449735449735*G0_0_1 + 0.135449735449735*G0_0_2 + 0.135449735449735*G0_1_0 + 0.270899470899471*G0_1_2 + 0.135449735449735*G0_2_0 + 0.27089947089947*G0_2_1; + A[1150] = -0.0451499118165786*G0_0_0 - 0.0225749559082892*G0_0_1 - 0.0451499118165783*G0_0_2 - 0.0225749559082891*G0_1_0 - 0.067724867724868*G0_1_2 - 0.0451499118165783*G0_2_0 - 0.0677248677248677*G0_2_1; + A[1151] = -0.451499118165785*G0_0_0 - 0.225749559082892*G0_0_1 - 0.361199294532628*G0_0_2 - 0.225749559082892*G0_1_0 - 0.135449735449735*G0_1_1 - 0.203174603174602*G0_1_2 - 0.0902998236331567*G0_2_0 - 0.0677248677248675*G0_2_1 - 0.135449735449735*G0_2_2; + A[1152] = 0.632098765432099*G0_0_0 + 0.27089947089947*G0_0_1 + 0.270899470899471*G0_0_2 + 0.27089947089947*G0_1_0 + 0.541798941798942*G0_1_1 + 0.27089947089947*G0_1_2 + 0.270899470899471*G0_2_0 + 0.27089947089947*G0_2_1 + 0.541798941798942*G0_2_2; + A[1153] = -0.135449735449736*G0_0_0 + 0.0902998236331569*G0_0_1 - 0.0677248677248682*G0_0_2 + 0.0902998236331571*G0_1_0 - 0.135449735449736*G0_1_1 + 0.0677248677248678*G0_1_2 + 0.0677248677248679*G0_2_0 - 0.0677248677248676*G0_2_1; + A[1154] = -0.0902998236331566*G0_0_0 + 0.135449735449735*G0_0_1 + 0.316049382716049*G0_0_2 + 0.135449735449735*G0_1_0 + 0.270899470899471*G0_1_1 + 0.135449735449735*G0_1_2 + 0.316049382716049*G0_2_0 + 0.135449735449736*G0_2_1; + A[1155] = -0.0253968253968253*G0_0_0 - 0.0253968253968252*G0_0_1 - 0.0253968253968253*G0_0_2 - 0.0253968253968253*G0_1_0 - 0.0253968253968252*G0_1_1 - 0.0253968253968253*G0_1_2 - 0.0183421516754849*G0_2_0 - 0.018342151675485*G0_2_1 - 0.0183421516754849*G0_2_2; + A[1156] = -0.0253968253968254*G0_0_0 - 0.00705467372134036*G0_2_0; + A[1157] = 0.0423280423280423*G0_1_1 - 0.00705467372134033*G0_2_1; + A[1158] = 0.018342151675485*G0_2_2; + A[1159] = -0.135449735449736*G0_1_1 - 0.101587301587302*G0_1_2 - 0.101587301587302*G0_2_1 - 0.112874779541446*G0_2_2; + A[1160] = 0.0225749559082892*G0_1_1 + 0.0423280423280425*G0_1_2 + 0.0423280423280424*G0_2_1 + 0.0846560846560844*G0_2_2; + A[1161] = -0.0112874779541447*G0_1_2 - 0.0112874779541449*G0_2_1 - 0.0677248677248677*G0_2_2; + A[1162] = 0.0451499118165786*G0_0_0 + 0.0338624338624339*G0_0_2 + 0.0338624338624338*G0_2_0 + 0.0225749559082893*G0_2_2; + A[1163] = 0.0225749559082891*G0_0_0 + 0.0197530864197532*G0_0_2 + 0.0197530864197535*G0_2_0 + 0.0169312169312173*G0_2_2; + A[1164] = -0.0112874779541448*G0_0_2 - 0.0112874779541448*G0_2_0 - 0.0225749559082893*G0_2_2; + A[1165] = 0.135449735449735*G0_0_0 + 0.0338624338624339*G0_0_1 + 0.0338624338624336*G0_1_0 + 0.0677248677248678*G0_2_0 + 0.0225749559082893*G0_2_1; + A[1166] = -0.270899470899471*G0_0_0 - 0.0931216931216931*G0_0_1 - 0.0931216931216925*G0_1_0 + 0.0677248677248683*G0_1_1 - 0.186243386243386*G0_2_0 - 0.0507936507936508*G0_2_1; + A[1167] = -0.101587301587301*G0_0_1 - 0.101587301587302*G0_1_0 - 0.270899470899471*G0_1_1 - 0.112874779541446*G0_2_0 - 0.203174603174603*G0_2_1; + A[1168] = 0.0451499118165785*G0_0_0 + 0.0451499118165784*G0_0_1 + 0.0112874779541444*G0_0_2 + 0.0451499118165783*G0_1_0 + 0.0451499118165784*G0_1_1 + 0.0112874779541442*G0_1_2 + 0.0112874779541446*G0_2_0 + 0.0112874779541446*G0_2_1; + A[1169] = 0.0225749559082891*G0_0_0 + 0.0225749559082892*G0_0_1 + 0.00282186948853609*G0_0_2 + 0.0225749559082893*G0_1_0 + 0.0225749559082894*G0_1_1 + 0.00282186948853646*G0_1_2 + 0.002821869488536*G0_2_0 + 0.00282186948853593*G0_2_1; + A[1170] = 0.0112874779541446*G0_0_2 + 0.0112874779541444*G0_1_2 + 0.0112874779541448*G0_2_0 + 0.0112874779541448*G0_2_1; + A[1171] = 0.135449735449735*G0_0_0 + 0.101587301587301*G0_0_1 + 0.135449735449735*G0_0_2 + 0.101587301587301*G0_1_0 + 0.0677248677248674*G0_1_1 + 0.101587301587301*G0_1_2 + 0.0677248677248676*G0_2_0 + 0.0564373897707229*G0_2_1 + 0.0677248677248675*G0_2_2; + A[1172] = -0.270899470899471*G0_0_0 - 0.177777777777777*G0_0_1 - 0.270899470899471*G0_0_2 - 0.177777777777778*G0_1_0 - 0.0169312169312165*G0_1_1 - 0.177777777777778*G0_1_2 - 0.0846560846560845*G0_2_0 - 0.0423280423280421*G0_2_1 - 0.0846560846560845*G0_2_2; + A[1173] = 0.101587301587301*G0_0_1 + 0.101587301587302*G0_1_0 - 0.0677248677248679*G0_1_1 + 0.101587301587302*G0_1_2 + 0.112874779541446*G0_2_0 + 0.0112874779541444*G0_2_1 + 0.112874779541446*G0_2_2; + A[1174] = 0.0225749559082891*G0_0_0 + 0.056437389770723*G0_0_1 + 0.0564373897707231*G0_0_2 + 0.056437389770723*G0_1_0 + 0.0902998236331571*G0_1_1 + 0.0902998236331571*G0_1_2 + 0.0112874779541447*G0_2_0 + 0.0225749559082893*G0_2_1 + 0.0225749559082893*G0_2_2; + A[1175] = 0.00564373897707234*G0_0_0 + 0.00282186948853632*G0_0_1 + 0.0028218694885363*G0_0_2 + 0.00282186948853616*G0_1_0 + 0.0677248677248681*G0_1_1 + 0.0677248677248679*G0_1_2 + 0.00282186948853582*G0_2_0 - 0.0169312169312168*G0_2_1 - 0.0169312169312168*G0_2_2; + A[1176] = 0.0225749559082892*G0_0_0 - 0.033862433862434*G0_0_1 - 0.033862433862434*G0_0_2 - 0.033862433862434*G0_1_0 + 0.0112874779541448*G0_2_0 - 0.0225749559082894*G0_2_1 - 0.0225749559082893*G0_2_2; + A[1177] = -0.135449735449736*G0_0_0 + 0.0451499118165787*G0_0_1 - 0.0677248677248678*G0_0_2 + 0.0451499118165786*G0_1_0 + 0.067724867724868*G0_1_2 - 0.0677248677248675*G0_2_0 + 0.0677248677248683*G0_2_1; + A[1178] = -0.135449735449736*G0_0_1 - 0.270899470899471*G0_0_2 - 0.135449735449736*G0_1_0 + 0.0451499118165789*G0_1_1 - 0.270899470899471*G0_1_2 - 0.270899470899471*G0_2_0 - 0.270899470899472*G0_2_1 - 0.541798941798942*G0_2_2; + A[1179] = 0.0225749559082888*G0_0_1 + 0.0677248677248672*G0_0_2 + 0.0225749559082891*G0_1_0 + 0.0451499118165781*G0_1_2 + 0.0677248677248675*G0_2_0 + 0.0451499118165788*G0_2_1 + 0.135449735449735*G0_2_2; + A[1180] = -0.135449735449735*G0_0_0 - 0.180599647266314*G0_0_1 - 0.0677248677248672*G0_0_2 - 0.180599647266314*G0_1_0 - 0.225749559082892*G0_1_1 - 0.0451499118165784*G0_1_2 - 0.067724867724867*G0_2_0 - 0.045149911816578*G0_2_1; + A[1181] = 0.135449735449735*G0_0_1 + 0.270899470899471*G0_0_2 + 0.135449735449736*G0_1_0 + 0.31604938271605*G0_1_1 + 0.135449735449736*G0_1_2 + 0.270899470899471*G0_2_0 + 0.135449735449735*G0_2_1; + A[1182] = -0.0225749559082892*G0_0_1 - 0.0677248677248682*G0_0_2 - 0.0225749559082892*G0_1_0 - 0.0451499118165787*G0_1_1 - 0.0451499118165787*G0_1_2 - 0.0677248677248678*G0_2_0 - 0.0451499118165784*G0_2_1; + A[1183] = -0.0451499118165786*G0_0_0 - 0.0225749559082892*G0_0_2 + 0.0451499118165786*G0_1_1 - 0.0451499118165786*G0_1_2 - 0.022574955908289*G0_2_0 - 0.0451499118165775*G0_2_1; + A[1184] = -0.0451499118165788*G0_0_0 - 0.0451499118165786*G0_0_1 - 0.0225749559082894*G0_0_2 - 0.0451499118165786*G0_1_0 - 0.0677248677248679*G0_1_2 - 0.0225749559082898*G0_2_0 - 0.0677248677248681*G0_2_1; + A[1185] = -0.0451499118165782*G0_0_0 - 0.0225749559082888*G0_0_1 - 0.0225749559082891*G0_0_2 - 0.0225749559082892*G0_1_0 - 0.0451499118165782*G0_1_2 - 0.0225749559082894*G0_2_0 - 0.0451499118165786*G0_2_1; + A[1186] = -0.135449735449735*G0_0_0 - 0.225749559082892*G0_0_1 - 0.203174603174603*G0_0_2 - 0.225749559082892*G0_1_0 - 0.451499118165785*G0_1_1 - 0.361199294532628*G0_1_2 - 0.0677248677248671*G0_2_0 - 0.0902998236331566*G0_2_1 - 0.135449735449734*G0_2_2; + A[1187] = -0.135449735449736*G0_0_0 + 0.0902998236331571*G0_0_1 + 0.0677248677248679*G0_0_2 + 0.0902998236331569*G0_1_0 - 0.135449735449736*G0_1_1 - 0.0677248677248676*G0_1_2 - 0.0677248677248682*G0_2_0 + 0.0677248677248678*G0_2_1; + A[1188] = 0.541798941798942*G0_0_0 + 0.27089947089947*G0_0_1 + 0.270899470899471*G0_0_2 + 0.27089947089947*G0_1_0 + 0.632098765432099*G0_1_1 + 0.27089947089947*G0_1_2 + 0.270899470899471*G0_2_0 + 0.27089947089947*G0_2_1 + 0.541798941798942*G0_2_2; + A[1189] = 0.270899470899471*G0_0_0 + 0.135449735449736*G0_0_1 + 0.135449735449735*G0_0_2 + 0.135449735449736*G0_1_0 - 0.0902998236331575*G0_1_1 + 0.316049382716049*G0_1_2 + 0.135449735449735*G0_2_0 + 0.316049382716049*G0_2_1; + A[1190] = -0.0677248677248679*G0_0_0 - 0.0677248677248678*G0_0_1 - 0.0677248677248678*G0_0_2 - 0.0677248677248678*G0_1_0 - 0.0677248677248679*G0_1_1 - 0.0677248677248678*G0_1_2 - 0.067724867724868*G0_2_0 - 0.067724867724868*G0_2_1 - 0.0677248677248681*G0_2_2; + A[1191] = -0.0677248677248677*G0_0_0; + A[1192] = -0.0677248677248675*G0_1_1; + A[1193] = -0.0677248677248676*G0_2_2; + A[1194] = 0.0902998236331569*G0_1_1; + A[1195] = -0.135449735449736*G0_1_1 - 0.112874779541448*G0_1_2 - 0.112874779541446*G0_2_1 - 0.135449735449736*G0_2_2; + A[1196] = 0.0902998236331575*G0_2_2; + A[1197] = 0.0902998236331571*G0_0_0; + A[1198] = -0.135449735449736*G0_0_0 - 0.112874779541446*G0_0_2 - 0.112874779541447*G0_2_0 - 0.135449735449736*G0_2_2; + A[1199] = 0.0902998236331568*G0_2_2; + A[1200] = 0.090299823633157*G0_0_0; + A[1201] = -0.135449735449735*G0_0_0 - 0.112874779541446*G0_0_1 - 0.112874779541447*G0_1_0 - 0.135449735449736*G0_1_1; + A[1202] = 0.0902998236331575*G0_1_1; + A[1203] = 0.0902998236331572*G0_0_0 + 0.0902998236331572*G0_0_1 + 0.0902998236331568*G0_0_2 + 0.0902998236331573*G0_1_0 + 0.0902998236331571*G0_1_1 + 0.090299823633157*G0_1_2 + 0.0902998236331572*G0_2_0 + 0.0902998236331571*G0_2_1 + 0.0902998236331578*G0_2_2; + A[1204] = -0.135449735449737*G0_0_0 - 0.135449735449737*G0_0_1 - 0.0225749559082894*G0_0_2 - 0.135449735449737*G0_1_0 - 0.135449735449737*G0_1_1 - 0.0225749559082896*G0_1_2 - 0.0225749559082896*G0_2_0 - 0.0225749559082896*G0_2_1 - 0.0451499118165797*G0_2_2; + A[1205] = 0.0902998236331571*G0_2_2; + A[1206] = 0.0902998236331576*G0_0_0 + 0.0902998236331571*G0_0_1 + 0.0902998236331577*G0_0_2 + 0.0902998236331575*G0_1_0 + 0.0902998236331573*G0_1_1 + 0.0902998236331574*G0_1_2 + 0.0902998236331571*G0_2_0 + 0.0902998236331576*G0_2_1 + 0.0902998236331571*G0_2_2; + A[1207] = -0.135449735449735*G0_0_0 - 0.0225749559082894*G0_0_1 - 0.135449735449736*G0_0_2 - 0.022574955908289*G0_1_0 - 0.0451499118165787*G0_1_1 - 0.0225749559082889*G0_1_2 - 0.135449735449736*G0_2_0 - 0.0225749559082897*G0_2_1 - 0.135449735449735*G0_2_2; + A[1208] = 0.0902998236331566*G0_1_1; + A[1209] = 0.0902998236331574*G0_0_0 + 0.0902998236331577*G0_0_1 + 0.0902998236331577*G0_0_2 + 0.0902998236331573*G0_1_0 + 0.0902998236331576*G0_1_1 + 0.0902998236331576*G0_1_2 + 0.0902998236331575*G0_2_0 + 0.0902998236331571*G0_2_1 + 0.0902998236331572*G0_2_2; + A[1210] = -0.0451499118165784*G0_0_0 - 0.0225749559082888*G0_0_1 - 0.0225749559082887*G0_0_2 - 0.0225749559082894*G0_1_0 - 0.135449735449735*G0_1_1 - 0.135449735449735*G0_1_2 - 0.0225749559082894*G0_2_0 - 0.135449735449735*G0_2_1 - 0.135449735449735*G0_2_2; + A[1211] = 0.0902998236331566*G0_0_0; + A[1212] = -0.722398589065256*G0_0_0 - 0.316049382716049*G0_0_1 - 0.316049382716049*G0_0_2 - 0.316049382716049*G0_1_0 - 0.135449735449735*G0_1_2 - 0.316049382716049*G0_2_0 - 0.135449735449735*G0_2_1; + A[1213] = -0.31604938271605*G0_0_1 - 0.135449735449735*G0_0_2 - 0.31604938271605*G0_1_0 - 0.722398589065257*G0_1_1 - 0.31604938271605*G0_1_2 - 0.135449735449735*G0_2_0 - 0.316049382716048*G0_2_1; + A[1214] = -0.135449735449735*G0_0_1 - 0.31604938271605*G0_0_2 - 0.135449735449736*G0_1_0 - 0.31604938271605*G0_1_2 - 0.316049382716049*G0_2_0 - 0.31604938271605*G0_2_1 - 0.722398589065256*G0_2_2; + A[1215] = -0.722398589065257*G0_0_0 - 0.406349206349207*G0_0_1 - 0.406349206349208*G0_0_2 - 0.406349206349208*G0_1_0 - 0.0902998236331577*G0_1_1 - 0.225749559082894*G0_1_2 - 0.406349206349207*G0_2_0 - 0.225749559082894*G0_2_1 - 0.090299823633158*G0_2_2; + A[1216] = 0.31604938271605*G0_0_1 + 0.135449735449737*G0_0_2 + 0.31604938271605*G0_1_0 - 0.0902998236331568*G0_1_1 + 0.135449735449737*G0_1_2 + 0.135449735449735*G0_2_0 + 0.135449735449737*G0_2_1 + 0.270899470899472*G0_2_2; + A[1217] = 0.135449735449736*G0_0_1 + 0.31604938271605*G0_0_2 + 0.135449735449736*G0_1_0 + 0.270899470899472*G0_1_1 + 0.135449735449737*G0_1_2 + 0.316049382716049*G0_2_0 + 0.135449735449736*G0_2_1 - 0.0902998236331569*G0_2_2; + A[1218] = -0.0902998236331579*G0_0_0 - 0.406349206349207*G0_0_1 - 0.225749559082895*G0_0_2 - 0.406349206349207*G0_1_0 - 0.722398589065256*G0_1_1 - 0.406349206349208*G0_1_2 - 0.225749559082894*G0_2_0 - 0.406349206349207*G0_2_1 - 0.0902998236331579*G0_2_2; + A[1219] = -0.0902998236331572*G0_0_0 + 0.316049382716049*G0_0_1 + 0.135449735449735*G0_0_2 + 0.316049382716049*G0_1_0 + 0.135449735449734*G0_1_2 + 0.135449735449735*G0_2_0 + 0.135449735449735*G0_2_1 + 0.27089947089947*G0_2_2; + A[1220] = 0.270899470899472*G0_0_0 + 0.135449735449736*G0_0_1 + 0.135449735449737*G0_0_2 + 0.135449735449736*G0_1_0 + 0.316049382716051*G0_1_2 + 0.135449735449737*G0_2_0 + 0.31604938271605*G0_2_1 - 0.0902998236331556*G0_2_2; + A[1221] = -0.0902998236331582*G0_0_0 - 0.225749559082894*G0_0_1 - 0.406349206349207*G0_0_2 - 0.225749559082893*G0_1_0 - 0.0902998236331575*G0_1_1 - 0.406349206349206*G0_1_2 - 0.406349206349207*G0_2_0 - 0.406349206349207*G0_2_1 - 0.722398589065256*G0_2_2; + A[1222] = -0.0902998236331566*G0_0_0 + 0.135449735449735*G0_0_1 + 0.316049382716049*G0_0_2 + 0.135449735449735*G0_1_0 + 0.270899470899471*G0_1_1 + 0.135449735449736*G0_1_2 + 0.316049382716049*G0_2_0 + 0.135449735449735*G0_2_1; + A[1223] = 0.270899470899471*G0_0_0 + 0.135449735449736*G0_0_1 + 0.135449735449735*G0_0_2 + 0.135449735449736*G0_1_0 - 0.0902998236331575*G0_1_1 + 0.316049382716049*G0_1_2 + 0.135449735449735*G0_2_0 + 0.316049382716049*G0_2_1; + A[1224] = 1.44479717813051*G0_0_0 + 0.722398589065257*G0_0_1 + 0.722398589065257*G0_0_2 + 0.722398589065257*G0_1_0 + 1.44479717813051*G0_1_1 + 0.722398589065256*G0_1_2 + 0.722398589065257*G0_2_0 + 0.722398589065255*G0_2_1 + 1.44479717813051*G0_2_2; +} + +/// Constructor +poisson3d_4_cell_integral_1_otherwise::poisson3d_4_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +poisson3d_4_cell_integral_1_otherwise::~poisson3d_4_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & poisson3d_4_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void poisson3d_4_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 35 + // Number of operations (multiply-add pairs) for tensor contraction: 1207 + // Total number of operations (multiply-add pairs): 1245 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + const double G0_6 = det*w[0][6]*(1.0); + const double G0_7 = det*w[0][7]*(1.0); + const double G0_8 = det*w[0][8]*(1.0); + const double G0_9 = det*w[0][9]*(1.0); + const double G0_10 = det*w[0][10]*(1.0); + const double G0_11 = det*w[0][11]*(1.0); + const double G0_12 = det*w[0][12]*(1.0); + const double G0_13 = det*w[0][13]*(1.0); + const double G0_14 = det*w[0][14]*(1.0); + const double G0_15 = det*w[0][15]*(1.0); + const double G0_16 = det*w[0][16]*(1.0); + const double G0_17 = det*w[0][17]*(1.0); + const double G0_18 = det*w[0][18]*(1.0); + const double G0_19 = det*w[0][19]*(1.0); + const double G0_20 = det*w[0][20]*(1.0); + const double G0_21 = det*w[0][21]*(1.0); + const double G0_22 = det*w[0][22]*(1.0); + const double G0_23 = det*w[0][23]*(1.0); + const double G0_24 = det*w[0][24]*(1.0); + const double G0_25 = det*w[0][25]*(1.0); + const double G0_26 = det*w[0][26]*(1.0); + const double G0_27 = det*w[0][27]*(1.0); + const double G0_28 = det*w[0][28]*(1.0); + const double G0_29 = det*w[0][29]*(1.0); + const double G0_30 = det*w[0][30]*(1.0); + const double G0_31 = det*w[0][31]*(1.0); + const double G0_32 = det*w[0][32]*(1.0); + const double G0_33 = det*w[0][33]*(1.0); + const double G0_34 = det*w[0][34]*(1.0); + + // Compute element tensor + A[0] = 0.000200416867083531*G0_0 + 1.63005718561269e-05*G0_1 + 1.63005718561268e-05*G0_2 + 1.63005718561269e-05*G0_3 - 0.000121853455186786*G0_4 + 8.39078616856376e-05*G0_5 - 0.000121853455186786*G0_6 - 0.000121853455186786*G0_7 + 8.39078616856376e-05*G0_8 - 0.000121853455186786*G0_9 - 0.000121853455186786*G0_10 + 8.39078616856378e-05*G0_11 - 0.000121853455186786*G0_12 - 0.000149644594089037*G0_13 + 0.000112233445566778*G0_14 - 6.84089572978449e-05*G0_15 - 0.000149644594089036*G0_16 + 0.000112233445566777*G0_17 - 6.84089572978445e-05*G0_18 - 0.000149644594089037*G0_19 + 0.000112233445566777*G0_20 - 6.84089572978438e-05*G0_21 - 0.000215915771471324*G0_22 - 0.000215915771471324*G0_23 - 0.000215915771471325*G0_24 + 0.000288600288600288*G0_25 - 0.000185986852653516*G0_26 - 0.000185986852653516*G0_27 + 0.000288600288600287*G0_28 - 0.000185986852653516*G0_29 - 0.000185986852653516*G0_30 + 0.000288600288600287*G0_31 - 0.000185986852653516*G0_32 - 0.000185986852653516*G0_33 - 0.000538720538720526*G0_34; + A[1] = 1.63005718561269e-05*G0_0 + 0.000200416867083532*G0_1 + 1.63005718561273e-05*G0_2 + 1.63005718561274e-05*G0_3 - 0.000121853455186787*G0_4 + 8.39078616856389e-05*G0_5 - 0.000121853455186788*G0_6 - 0.000149644594089039*G0_7 + 0.000112233445566779*G0_8 - 6.84089572978461e-05*G0_9 - 0.000149644594089038*G0_10 + 0.000112233445566778*G0_11 - 6.84089572978456e-05*G0_12 - 0.000121853455186788*G0_13 + 8.39078616856391e-05*G0_14 - 0.000121853455186788*G0_15 - 0.000121853455186787*G0_16 + 8.39078616856391e-05*G0_17 - 0.000121853455186788*G0_18 - 6.84089572978459e-05*G0_19 + 0.000112233445566778*G0_20 - 0.000149644594089037*G0_21 + 0.000288600288600287*G0_22 - 0.000185986852653519*G0_23 - 0.000185986852653518*G0_24 - 0.000215915771471325*G0_25 - 0.000215915771471326*G0_26 - 0.000215915771471326*G0_27 - 0.000185986852653518*G0_28 + 0.000288600288600287*G0_29 - 0.000185986852653518*G0_30 - 0.000185986852653518*G0_31 + 0.000288600288600287*G0_32 - 0.000185986852653518*G0_33 - 0.000538720538720536*G0_34; + A[2] = 1.63005718561268e-05*G0_0 + 1.63005718561273e-05*G0_1 + 0.000200416867083532*G0_2 + 1.63005718561271e-05*G0_3 - 0.000149644594089038*G0_4 + 0.000112233445566779*G0_5 - 6.84089572978459e-05*G0_6 - 0.000121853455186787*G0_7 + 8.39078616856385e-05*G0_8 - 0.000121853455186787*G0_9 - 6.84089572978448e-05*G0_10 + 0.000112233445566778*G0_11 - 0.000149644594089037*G0_12 - 0.000121853455186788*G0_13 + 8.39078616856394e-05*G0_14 - 0.000121853455186788*G0_15 - 6.8408957297845e-05*G0_16 + 0.000112233445566778*G0_17 - 0.000149644594089037*G0_18 - 0.000121853455186787*G0_19 + 8.39078616856388e-05*G0_20 - 0.000121853455186787*G0_21 - 0.000185986852653516*G0_22 + 0.000288600288600287*G0_23 - 0.000185986852653519*G0_24 - 0.000185986852653517*G0_25 + 0.000288600288600288*G0_26 - 0.000185986852653519*G0_27 - 0.000215915771471325*G0_28 - 0.000215915771471324*G0_29 - 0.000215915771471327*G0_30 - 0.000185986852653518*G0_31 - 0.000185986852653517*G0_32 + 0.000288600288600287*G0_33 - 0.000538720538720532*G0_34; + A[3] = 1.63005718561269e-05*G0_0 + 1.63005718561274e-05*G0_1 + 1.63005718561271e-05*G0_2 + 0.000200416867083533*G0_3 - 6.84089572978455e-05*G0_4 + 0.000112233445566778*G0_5 - 0.000149644594089037*G0_6 - 6.84089572978457e-05*G0_7 + 0.000112233445566778*G0_8 - 0.000149644594089037*G0_9 - 0.000121853455186787*G0_10 + 8.3907861685639e-05*G0_11 - 0.000121853455186787*G0_12 - 6.84089572978461e-05*G0_13 + 0.000112233445566779*G0_14 - 0.000149644594089038*G0_15 - 0.000121853455186787*G0_16 + 8.39078616856391e-05*G0_17 - 0.000121853455186788*G0_18 - 0.000121853455186788*G0_19 + 8.3907861685639e-05*G0_20 - 0.000121853455186787*G0_21 - 0.000185986852653517*G0_22 - 0.000185986852653519*G0_23 + 0.000288600288600286*G0_24 - 0.000185986852653518*G0_25 - 0.000185986852653518*G0_26 + 0.000288600288600287*G0_27 - 0.000185986852653518*G0_28 - 0.000185986852653518*G0_29 + 0.000288600288600286*G0_30 - 0.000215915771471325*G0_31 - 0.000215915771471325*G0_32 - 0.000215915771471326*G0_33 - 0.000538720538720535*G0_34; + A[4] = -0.000121853455186786*G0_0 - 0.000121853455186787*G0_1 - 0.000149644594089038*G0_2 - 6.84089572978455e-05*G0_3 + 0.00171022393244614*G0_4 - 0.00125701459034791*G0_5 + 0.000684089572978457*G0_6 + 0.000273635829191384*G0_7 - 0.000153920153920153*G0_8 + 0.00035914702581369*G0_9 + 0.000359147025813688*G0_10 - 0.000654160654160648*G0_11 + 0.000855111966223068*G0_12 + 0.000273635829191384*G0_13 - 0.000153920153920154*G0_14 + 0.000359147025813691*G0_15 + 0.000359147025813688*G0_16 - 0.000654160654160648*G0_17 + 0.00085511196622307*G0_18 + 0.000136817914595692*G0_19 - 9.83378761156539e-05*G0_20 + 0.00013681791459569*G0_21 - 3.42044786489231e-05*G0_22 + 0.000102613435946766*G0_23 + 0.000513067179733844*G0_24 - 3.42044786489231e-05*G0_25 + 0.000102613435946766*G0_26 + 0.000513067179733845*G0_27 + 8.55111966223083e-05*G0_28 + 8.55111966223071e-05*G0_29 + 0.000974827641494301*G0_30 - 1.7102239324461e-05*G0_31 - 1.71022393244622e-05*G0_32 + 5.13067179733819e-05*G0_33 + 0.00109454331676553*G0_34; + A[5] = 8.39078616856376e-05*G0_0 + 8.39078616856389e-05*G0_1 + 0.000112233445566779*G0_2 + 0.000112233445566778*G0_3 - 0.00125701459034791*G0_4 + 0.00238576238576237*G0_5 - 0.00125701459034792*G0_6 - 0.000153920153920155*G0_7 + 0.000256533589866923*G0_8 - 0.000654160654160652*G0_9 - 0.000153920153920152*G0_10 + 0.000256533589866921*G0_11 - 0.000654160654160647*G0_12 - 0.000153920153920154*G0_13 + 0.000256533589866923*G0_14 - 0.000654160654160651*G0_15 - 0.000153920153920152*G0_16 + 0.000256533589866921*G0_17 - 0.000654160654160649*G0_18 - 9.83378761156543e-05*G0_19 + 1.92400192400202e-05*G0_20 - 9.83378761156527e-05*G0_21 - 0.000179573512906845*G0_22 - 7.69600769600751e-05*G0_23 - 7.6960076960077e-05*G0_24 - 0.000179573512906845*G0_25 - 7.69600769600741e-05*G0_26 - 7.69600769600776e-05*G0_27 + 0.000269360269360266*G0_28 + 0.000269360269360268*G0_29 - 0.00101330767997434*G0_30 + 0.000269360269360267*G0_31 + 0.000269360269360267*G0_32 - 0.00101330767997434*G0_33 - 0.00102613435946768*G0_34; + A[6] = -0.000121853455186786*G0_0 - 0.000121853455186788*G0_1 - 6.84089572978459e-05*G0_2 - 0.000149644594089037*G0_3 + 0.000684089572978457*G0_4 - 0.00125701459034792*G0_5 + 0.00171022393244614*G0_6 + 0.000359147025813692*G0_7 - 0.000654160654160651*G0_8 + 0.000855111966223073*G0_9 + 0.000273635829191382*G0_10 - 0.000153920153920153*G0_11 + 0.000359147025813688*G0_12 + 0.000359147025813692*G0_13 - 0.000654160654160652*G0_14 + 0.000855111966223072*G0_15 + 0.000273635829191382*G0_16 - 0.000153920153920154*G0_17 + 0.00035914702581369*G0_18 + 0.000136817914595693*G0_19 - 9.83378761156542e-05*G0_20 + 0.00013681791459569*G0_21 - 3.42044786489236e-05*G0_22 + 0.000513067179733842*G0_23 + 0.000102613435946769*G0_24 - 3.42044786489239e-05*G0_25 + 0.000513067179733843*G0_26 + 0.000102613435946769*G0_27 - 1.71022393244599e-05*G0_28 - 1.71022393244606e-05*G0_29 + 5.13067179733835e-05*G0_30 + 8.55111966223066e-05*G0_31 + 8.5511196622307e-05*G0_32 + 0.0009748276414943*G0_33 + 0.00109454331676553*G0_34; + A[7] = -0.000121853455186786*G0_0 - 0.000149644594089039*G0_1 - 0.000121853455186787*G0_2 - 6.84089572978457e-05*G0_3 + 0.000273635829191384*G0_4 - 0.000153920153920155*G0_5 + 0.000359147025813692*G0_6 + 0.00171022393244614*G0_7 - 0.00125701459034791*G0_8 + 0.000684089572978457*G0_9 + 0.000855111966223069*G0_10 - 0.000654160654160648*G0_11 + 0.000359147025813689*G0_12 + 0.000273635829191385*G0_13 - 0.000153920153920155*G0_14 + 0.000359147025813691*G0_15 + 0.000136817914595691*G0_16 - 9.83378761156544e-05*G0_17 + 0.000136817914595693*G0_18 + 0.00035914702581369*G0_19 - 0.000654160654160649*G0_20 + 0.000855111966223068*G0_21 + 0.000102613435946766*G0_22 - 3.42044786489207e-05*G0_23 + 0.000513067179733846*G0_24 + 8.55111966223045e-05*G0_25 + 8.55111966223094e-05*G0_26 + 0.000974827641494305*G0_27 - 3.42044786489234e-05*G0_28 + 0.000102613435946768*G0_29 + 0.000513067179733846*G0_30 - 1.71022393244627e-05*G0_31 + 5.13067179733828e-05*G0_32 - 1.71022393244584e-05*G0_33 + 0.00109454331676554*G0_34; + A[8] = 8.39078616856376e-05*G0_0 + 0.000112233445566779*G0_1 + 8.39078616856386e-05*G0_2 + 0.000112233445566778*G0_3 - 0.000153920153920154*G0_4 + 0.000256533589866923*G0_5 - 0.000654160654160651*G0_6 - 0.00125701459034791*G0_7 + 0.00238576238576237*G0_8 - 0.00125701459034791*G0_9 - 0.000654160654160647*G0_10 + 0.00025653358986692*G0_11 - 0.000153920153920152*G0_12 - 0.000153920153920154*G0_13 + 0.000256533589866923*G0_14 - 0.000654160654160651*G0_15 - 9.8337876115653e-05*G0_16 + 1.92400192400203e-05*G0_17 - 9.83378761156543e-05*G0_18 - 0.000153920153920153*G0_19 + 0.000256533589866921*G0_20 - 0.000654160654160646*G0_21 - 7.69600769600723e-05*G0_22 - 0.000179573512906847*G0_23 - 7.69600769600749e-05*G0_24 + 0.000269360269360267*G0_25 + 0.000269360269360265*G0_26 - 0.00101330767997434*G0_27 - 0.000179573512906847*G0_28 - 7.69600769600744e-05*G0_29 - 7.69600769600763e-05*G0_30 + 0.000269360269360267*G0_31 - 0.00101330767997434*G0_32 + 0.000269360269360265*G0_33 - 0.00102613435946769*G0_34; + A[9] = -0.000121853455186786*G0_0 - 6.84089572978461e-05*G0_1 - 0.000121853455186787*G0_2 - 0.000149644594089037*G0_3 + 0.00035914702581369*G0_4 - 0.000654160654160652*G0_5 + 0.000855111966223073*G0_6 + 0.000684089572978457*G0_7 - 0.00125701459034791*G0_8 + 0.00171022393244614*G0_9 + 0.000359147025813688*G0_10 - 0.000153920153920153*G0_11 + 0.000273635829191382*G0_12 + 0.000359147025813692*G0_13 - 0.000654160654160652*G0_14 + 0.000855111966223072*G0_15 + 0.000136817914595691*G0_16 - 9.83378761156542e-05*G0_17 + 0.000136817914595692*G0_18 + 0.000273635829191383*G0_19 - 0.000153920153920154*G0_20 + 0.000359147025813688*G0_21 + 0.000513067179733841*G0_22 - 3.4204478648922e-05*G0_23 + 0.000102613435946769*G0_24 - 1.71022393244626e-05*G0_25 - 1.71022393244607e-05*G0_26 + 5.13067179733846e-05*G0_27 - 3.42044786489222e-05*G0_28 + 0.000513067179733842*G0_29 + 0.000102613435946769*G0_30 + 8.55111966223058e-05*G0_31 + 0.000974827641494298*G0_32 + 8.55111966223081e-05*G0_33 + 0.00109454331676553*G0_34; + A[10] = -0.000121853455186786*G0_0 - 0.000149644594089038*G0_1 - 6.84089572978448e-05*G0_2 - 0.000121853455186787*G0_3 + 0.000359147025813688*G0_4 - 0.000153920153920152*G0_5 + 0.000273635829191382*G0_6 + 0.000855111966223069*G0_7 - 0.000654160654160647*G0_8 + 0.000359147025813688*G0_9 + 0.00171022393244614*G0_10 - 0.00125701459034791*G0_11 + 0.000684089572978454*G0_12 + 0.000136817914595692*G0_13 - 9.83378761156536e-05*G0_14 + 0.000136817914595691*G0_15 + 0.000273635829191381*G0_16 - 0.000153920153920153*G0_17 + 0.000359147025813689*G0_18 + 0.000359147025813689*G0_19 - 0.000654160654160648*G0_20 + 0.000855111966223068*G0_21 + 0.000102613435946764*G0_22 + 0.000513067179733843*G0_23 - 3.42044786489217e-05*G0_24 + 8.55111966223058e-05*G0_25 + 0.000974827641494302*G0_26 + 8.55111966223086e-05*G0_27 - 1.71022393244607e-05*G0_28 + 5.13067179733813e-05*G0_29 - 1.71022393244607e-05*G0_30 - 3.42044786489237e-05*G0_31 + 0.000102613435946766*G0_32 + 0.000513067179733843*G0_33 + 0.00109454331676553*G0_34; + A[11] = 8.39078616856378e-05*G0_0 + 0.000112233445566778*G0_1 + 0.000112233445566778*G0_2 + 8.3907861685639e-05*G0_3 - 0.000654160654160648*G0_4 + 0.000256533589866921*G0_5 - 0.000153920153920153*G0_6 - 0.000654160654160648*G0_7 + 0.00025653358986692*G0_8 - 0.000153920153920153*G0_9 - 0.00125701459034791*G0_10 + 0.00238576238576236*G0_11 - 0.00125701459034791*G0_12 - 9.83378761156541e-05*G0_13 + 1.92400192400198e-05*G0_14 - 9.83378761156533e-05*G0_15 - 0.000153920153920152*G0_16 + 0.000256533589866921*G0_17 - 0.000654160654160648*G0_18 - 0.000153920153920153*G0_19 + 0.000256533589866921*G0_20 - 0.000654160654160647*G0_21 - 7.69600769600791e-05*G0_22 - 7.69600769600788e-05*G0_23 - 0.000179573512906844*G0_24 + 0.000269360269360269*G0_25 - 0.00101330767997434*G0_26 + 0.000269360269360267*G0_27 + 0.000269360269360268*G0_28 - 0.00101330767997434*G0_29 + 0.000269360269360266*G0_30 - 0.000179573512906843*G0_31 - 7.6960076960077e-05*G0_32 - 7.69600769600788e-05*G0_33 - 0.00102613435946769*G0_34; + A[12] = -0.000121853455186786*G0_0 - 6.84089572978456e-05*G0_1 - 0.000149644594089037*G0_2 - 0.000121853455186787*G0_3 + 0.000855111966223068*G0_4 - 0.000654160654160647*G0_5 + 0.000359147025813688*G0_6 + 0.000359147025813689*G0_7 - 0.000153920153920152*G0_8 + 0.000273635829191381*G0_9 + 0.000684089572978454*G0_10 - 0.00125701459034791*G0_11 + 0.00171022393244614*G0_12 + 0.000136817914595692*G0_13 - 9.83378761156539e-05*G0_14 + 0.000136817914595691*G0_15 + 0.000359147025813687*G0_16 - 0.000654160654160647*G0_17 + 0.00085511196622307*G0_18 + 0.000273635829191382*G0_19 - 0.000153920153920153*G0_20 + 0.000359147025813688*G0_21 + 0.000513067179733841*G0_22 + 0.000102613435946763*G0_23 - 3.42044786489221e-05*G0_24 - 1.71022393244608e-05*G0_25 + 5.13067179733824e-05*G0_26 - 1.71022393244605e-05*G0_27 + 8.5511196622309e-05*G0_28 + 0.000974827641494299*G0_29 + 8.55111966223071e-05*G0_30 - 3.42044786489217e-05*G0_31 + 0.00051306717973384*G0_32 + 0.000102613435946766*G0_33 + 0.00109454331676553*G0_34; + A[13] = -0.000149644594089037*G0_0 - 0.000121853455186788*G0_1 - 0.000121853455186788*G0_2 - 6.84089572978461e-05*G0_3 + 0.000273635829191384*G0_4 - 0.000153920153920154*G0_5 + 0.000359147025813692*G0_6 + 0.000273635829191385*G0_7 - 0.000153920153920154*G0_8 + 0.000359147025813692*G0_9 + 0.000136817914595692*G0_10 - 9.83378761156542e-05*G0_11 + 0.000136817914595692*G0_12 + 0.00171022393244614*G0_13 - 0.00125701459034792*G0_14 + 0.000684089572978458*G0_15 + 0.000855111966223069*G0_16 - 0.000654160654160649*G0_17 + 0.000359147025813691*G0_18 + 0.000855111966223072*G0_19 - 0.00065416065416065*G0_20 + 0.000359147025813689*G0_21 + 8.55111966223108e-05*G0_22 + 8.55111966223086e-05*G0_23 + 0.000974827641494303*G0_24 + 0.000102613435946767*G0_25 - 3.42044786489219e-05*G0_26 + 0.000513067179733844*G0_27 + 0.000102613435946769*G0_28 - 3.42044786489187e-05*G0_29 + 0.000513067179733843*G0_30 + 5.13067179733838e-05*G0_31 - 1.7102239324459e-05*G0_32 - 1.71022393244611e-05*G0_33 + 0.00109454331676554*G0_34; + A[14] = 0.000112233445566778*G0_0 + 8.39078616856391e-05*G0_1 + 8.39078616856394e-05*G0_2 + 0.000112233445566779*G0_3 - 0.000153920153920154*G0_4 + 0.000256533589866923*G0_5 - 0.000654160654160652*G0_6 - 0.000153920153920155*G0_7 + 0.000256533589866923*G0_8 - 0.000654160654160652*G0_9 - 9.83378761156535e-05*G0_10 + 1.92400192400198e-05*G0_11 - 9.83378761156539e-05*G0_12 - 0.00125701459034792*G0_13 + 0.00238576238576237*G0_14 - 0.00125701459034792*G0_15 - 0.000654160654160649*G0_16 + 0.000256533589866922*G0_17 - 0.000153920153920154*G0_18 - 0.00065416065416065*G0_19 + 0.000256533589866923*G0_20 - 0.000153920153920153*G0_21 + 0.000269360269360266*G0_22 + 0.000269360269360267*G0_23 - 0.00101330767997434*G0_24 - 7.69600769600749e-05*G0_25 - 0.000179573512906846*G0_26 - 7.69600769600788e-05*G0_27 - 7.69600769600764e-05*G0_28 - 0.000179573512906849*G0_29 - 7.69600769600795e-05*G0_30 - 0.00101330767997434*G0_31 + 0.000269360269360265*G0_32 + 0.000269360269360266*G0_33 - 0.0010261343594677*G0_34; + A[15] = -6.84089572978449e-05*G0_0 - 0.000121853455186788*G0_1 - 0.000121853455186788*G0_2 - 0.000149644594089038*G0_3 + 0.000359147025813691*G0_4 - 0.000654160654160651*G0_5 + 0.000855111966223072*G0_6 + 0.000359147025813691*G0_7 - 0.000654160654160651*G0_8 + 0.000855111966223072*G0_9 + 0.000136817914595691*G0_10 - 9.83378761156533e-05*G0_11 + 0.000136817914595691*G0_12 + 0.000684089572978458*G0_13 - 0.00125701459034792*G0_14 + 0.00171022393244614*G0_15 + 0.000359147025813688*G0_16 - 0.000153920153920153*G0_17 + 0.000273635829191384*G0_18 + 0.00035914702581369*G0_19 - 0.000153920153920154*G0_20 + 0.000273635829191381*G0_21 - 1.71022393244611e-05*G0_22 - 1.71022393244604e-05*G0_23 + 5.13067179733835e-05*G0_24 + 0.000513067179733841*G0_25 - 3.4204478648922e-05*G0_26 + 0.000102613435946769*G0_27 + 0.000513067179733842*G0_28 - 3.42044786489213e-05*G0_29 + 0.000102613435946768*G0_30 + 0.000974827641494298*G0_31 + 8.55111966223068e-05*G0_32 + 8.55111966223077e-05*G0_33 + 0.00109454331676553*G0_34; + A[16] = -0.000149644594089036*G0_0 - 0.000121853455186787*G0_1 - 6.8408957297845e-05*G0_2 - 0.000121853455186787*G0_3 + 0.000359147025813688*G0_4 - 0.000153920153920152*G0_5 + 0.000273635829191382*G0_6 + 0.000136817914595691*G0_7 - 9.8337876115653e-05*G0_8 + 0.000136817914595691*G0_9 + 0.000273635829191381*G0_10 - 0.000153920153920152*G0_11 + 0.000359147025813688*G0_12 + 0.00085511196622307*G0_13 - 0.000654160654160649*G0_14 + 0.000359147025813688*G0_15 + 0.00171022393244614*G0_16 - 0.00125701459034791*G0_17 + 0.000684089572978456*G0_18 + 0.00085511196622307*G0_19 - 0.000654160654160649*G0_20 + 0.000359147025813687*G0_21 + 8.5511196622307e-05*G0_22 + 0.000974827641494301*G0_23 + 8.5511196622308e-05*G0_24 + 0.000102613435946765*G0_25 + 0.000513067179733844*G0_26 - 3.42044786489219e-05*G0_27 + 5.13067179733824e-05*G0_28 - 1.71022393244606e-05*G0_29 - 1.71022393244618e-05*G0_30 + 0.000102613435946766*G0_31 - 3.4204478648923e-05*G0_32 + 0.000513067179733842*G0_33 + 0.00109454331676553*G0_34; + A[17] = 0.000112233445566777*G0_0 + 8.39078616856391e-05*G0_1 + 0.000112233445566778*G0_2 + 8.39078616856391e-05*G0_3 - 0.000654160654160648*G0_4 + 0.000256533589866921*G0_5 - 0.000153920153920154*G0_6 - 9.83378761156544e-05*G0_7 + 1.92400192400203e-05*G0_8 - 9.83378761156542e-05*G0_9 - 0.000153920153920153*G0_10 + 0.000256533589866921*G0_11 - 0.000654160654160647*G0_12 - 0.000654160654160649*G0_13 + 0.000256533589866922*G0_14 - 0.000153920153920153*G0_15 - 0.00125701459034791*G0_16 + 0.00238576238576236*G0_17 - 0.00125701459034791*G0_18 - 0.000654160654160649*G0_19 + 0.000256533589866923*G0_20 - 0.000153920153920153*G0_21 + 0.000269360269360267*G0_22 - 0.00101330767997434*G0_23 + 0.000269360269360266*G0_24 - 7.69600769600793e-05*G0_25 - 7.69600769600773e-05*G0_26 - 0.000179573512906845*G0_27 - 0.00101330767997434*G0_28 + 0.000269360269360266*G0_29 + 0.000269360269360266*G0_30 - 7.69600769600775e-05*G0_31 - 0.000179573512906846*G0_32 - 7.69600769600771e-05*G0_33 - 0.00102613435946769*G0_34; + A[18] = -6.84089572978445e-05*G0_0 - 0.000121853455186788*G0_1 - 0.000149644594089037*G0_2 - 0.000121853455186788*G0_3 + 0.00085511196622307*G0_4 - 0.000654160654160649*G0_5 + 0.00035914702581369*G0_6 + 0.000136817914595693*G0_7 - 9.83378761156543e-05*G0_8 + 0.000136817914595692*G0_9 + 0.000359147025813689*G0_10 - 0.000654160654160648*G0_11 + 0.00085511196622307*G0_12 + 0.000359147025813691*G0_13 - 0.000153920153920154*G0_14 + 0.000273635829191384*G0_15 + 0.000684089572978456*G0_16 - 0.00125701459034791*G0_17 + 0.00171022393244614*G0_18 + 0.000359147025813691*G0_19 - 0.000153920153920155*G0_20 + 0.000273635829191382*G0_21 - 1.7102239324461e-05*G0_22 + 5.13067179733836e-05*G0_23 - 1.71022393244591e-05*G0_24 + 0.000513067179733845*G0_25 + 0.000102613435946766*G0_26 - 3.42044786489196e-05*G0_27 + 0.000974827641494302*G0_28 + 8.5511196622308e-05*G0_29 + 8.55111966223094e-05*G0_30 + 0.000513067179733844*G0_31 - 3.4204478648922e-05*G0_32 + 0.000102613435946769*G0_33 + 0.00109454331676554*G0_34; + A[19] = -0.000149644594089037*G0_0 - 6.84089572978459e-05*G0_1 - 0.000121853455186787*G0_2 - 0.000121853455186788*G0_3 + 0.000136817914595692*G0_4 - 9.83378761156543e-05*G0_5 + 0.000136817914595693*G0_6 + 0.00035914702581369*G0_7 - 0.000153920153920153*G0_8 + 0.000273635829191383*G0_9 + 0.000359147025813689*G0_10 - 0.000153920153920153*G0_11 + 0.000273635829191382*G0_12 + 0.000855111966223072*G0_13 - 0.00065416065416065*G0_14 + 0.00035914702581369*G0_15 + 0.00085511196622307*G0_16 - 0.000654160654160649*G0_17 + 0.000359147025813691*G0_18 + 0.00171022393244614*G0_19 - 0.00125701459034791*G0_20 + 0.000684089572978455*G0_21 + 0.000974827641494302*G0_22 + 8.55111966223087e-05*G0_23 + 8.55111966223104e-05*G0_24 + 5.13067179733826e-05*G0_25 - 1.71022393244601e-05*G0_26 - 1.71022393244587e-05*G0_27 + 0.000102613435946766*G0_28 + 0.000513067179733843*G0_29 - 3.420447864892e-05*G0_30 + 0.000102613435946768*G0_31 + 0.000513067179733842*G0_32 - 3.42044786489211e-05*G0_33 + 0.00109454331676554*G0_34; + A[20] = 0.000112233445566777*G0_0 + 0.000112233445566778*G0_1 + 8.39078616856388e-05*G0_2 + 8.3907861685639e-05*G0_3 - 9.83378761156539e-05*G0_4 + 1.92400192400202e-05*G0_5 - 9.83378761156542e-05*G0_6 - 0.000654160654160649*G0_7 + 0.000256533589866921*G0_8 - 0.000153920153920154*G0_9 - 0.000654160654160648*G0_10 + 0.000256533589866921*G0_11 - 0.000153920153920153*G0_12 - 0.00065416065416065*G0_13 + 0.000256533589866923*G0_14 - 0.000153920153920154*G0_15 - 0.000654160654160649*G0_16 + 0.000256533589866923*G0_17 - 0.000153920153920155*G0_18 - 0.00125701459034791*G0_19 + 0.00238576238576236*G0_20 - 0.00125701459034791*G0_21 - 0.00101330767997434*G0_22 + 0.000269360269360269*G0_23 + 0.000269360269360266*G0_24 - 0.00101330767997434*G0_25 + 0.000269360269360269*G0_26 + 0.000269360269360265*G0_27 - 7.69600769600807e-05*G0_28 - 7.69600769600769e-05*G0_29 - 0.000179573512906845*G0_30 - 7.69600769600798e-05*G0_31 - 7.69600769600762e-05*G0_32 - 0.000179573512906844*G0_33 - 0.00102613435946769*G0_34; + A[21] = -6.84089572978438e-05*G0_0 - 0.000149644594089037*G0_1 - 0.000121853455186787*G0_2 - 0.000121853455186787*G0_3 + 0.00013681791459569*G0_4 - 9.83378761156527e-05*G0_5 + 0.00013681791459569*G0_6 + 0.000855111966223068*G0_7 - 0.000654160654160646*G0_8 + 0.000359147025813688*G0_9 + 0.000855111966223068*G0_10 - 0.000654160654160647*G0_11 + 0.000359147025813688*G0_12 + 0.000359147025813689*G0_13 - 0.000153920153920153*G0_14 + 0.000273635829191382*G0_15 + 0.000359147025813687*G0_16 - 0.000153920153920153*G0_17 + 0.000273635829191382*G0_18 + 0.000684089572978455*G0_19 - 0.00125701459034791*G0_20 + 0.00171022393244614*G0_21 + 5.13067179733814e-05*G0_22 - 1.71022393244638e-05*G0_23 - 1.71022393244615e-05*G0_24 + 0.000974827641494301*G0_25 + 8.55111966223051e-05*G0_26 + 8.55111966223076e-05*G0_27 + 0.000513067179733844*G0_28 + 0.000102613435946764*G0_29 - 3.42044786489226e-05*G0_30 + 0.000513067179733843*G0_31 + 0.000102613435946765*G0_32 - 3.42044786489242e-05*G0_33 + 0.00109454331676552*G0_34; + A[22] = -0.000215915771471324*G0_0 + 0.000288600288600287*G0_1 - 0.000185986852653516*G0_2 - 0.000185986852653517*G0_3 - 3.42044786489231e-05*G0_4 - 0.000179573512906845*G0_5 - 3.42044786489236e-05*G0_6 + 0.000102613435946766*G0_7 - 7.69600769600725e-05*G0_8 + 0.000513067179733841*G0_9 + 0.000102613435946764*G0_10 - 7.69600769600791e-05*G0_11 + 0.000513067179733841*G0_12 + 8.55111966223108e-05*G0_13 + 0.000269360269360266*G0_14 - 1.71022393244611e-05*G0_15 + 8.5511196622307e-05*G0_16 + 0.000269360269360267*G0_17 - 1.7102239324461e-05*G0_18 + 0.000974827641494302*G0_19 - 0.00101330767997434*G0_20 + 5.13067179733814e-05*G0_21 + 0.00779862113195442*G0_22 - 0.00205226871893538*G0_23 - 0.00205226871893537*G0_24 - 0.000205226871893537*G0_25 - 0.00143658810325477*G0_26 - 0.00143658810325476*G0_27 - 0.00143658810325476*G0_28 + 0.00389931056597721*G0_29 - 0.00102613435946769*G0_30 - 0.00143658810325476*G0_31 + 0.0038993105659772*G0_32 - 0.00102613435946769*G0_33 + 0.0016418149751483*G0_34; + A[23] = -0.000215915771471324*G0_0 - 0.000185986852653519*G0_1 + 0.000288600288600287*G0_2 - 0.000185986852653519*G0_3 + 0.000102613435946766*G0_4 - 7.69600769600751e-05*G0_5 + 0.000513067179733843*G0_6 - 3.42044786489207e-05*G0_7 - 0.000179573512906847*G0_8 - 3.4204478648922e-05*G0_9 + 0.000513067179733843*G0_10 - 7.69600769600788e-05*G0_11 + 0.000102613435946763*G0_12 + 8.55111966223086e-05*G0_13 + 0.000269360269360267*G0_14 - 1.71022393244604e-05*G0_15 + 0.000974827641494302*G0_16 - 0.00101330767997434*G0_17 + 5.13067179733835e-05*G0_18 + 8.55111966223087e-05*G0_19 + 0.000269360269360269*G0_20 - 1.71022393244638e-05*G0_21 - 0.00205226871893538*G0_22 + 0.0077986211319544*G0_23 - 0.00205226871893537*G0_24 - 0.00143658810325476*G0_25 + 0.00389931056597721*G0_26 - 0.00102613435946769*G0_27 - 0.000205226871893536*G0_28 - 0.00143658810325476*G0_29 - 0.00143658810325476*G0_30 - 0.00143658810325476*G0_31 - 0.00102613435946769*G0_32 + 0.0038993105659772*G0_33 + 0.00164181497514829*G0_34; + A[24] = -0.000215915771471325*G0_0 - 0.000185986852653518*G0_1 - 0.000185986852653519*G0_2 + 0.000288600288600286*G0_3 + 0.000513067179733844*G0_4 - 7.69600769600771e-05*G0_5 + 0.000102613435946769*G0_6 + 0.000513067179733846*G0_7 - 7.6960076960075e-05*G0_8 + 0.000102613435946769*G0_9 - 3.42044786489217e-05*G0_10 - 0.000179573512906844*G0_11 - 3.4204478648922e-05*G0_12 + 0.000974827641494303*G0_13 - 0.00101330767997434*G0_14 + 5.13067179733835e-05*G0_15 + 8.55111966223081e-05*G0_16 + 0.000269360269360266*G0_17 - 1.7102239324459e-05*G0_18 + 8.55111966223104e-05*G0_19 + 0.000269360269360266*G0_20 - 1.71022393244615e-05*G0_21 - 0.00205226871893537*G0_22 - 0.00205226871893537*G0_23 + 0.00779862113195441*G0_24 - 0.00143658810325477*G0_25 - 0.00102613435946768*G0_26 + 0.00389931056597721*G0_27 - 0.00143658810325476*G0_28 - 0.00102613435946768*G0_29 + 0.00389931056597721*G0_30 - 0.000205226871893539*G0_31 - 0.00143658810325476*G0_32 - 0.00143658810325476*G0_33 + 0.00164181497514831*G0_34; + A[25] = 0.000288600288600288*G0_0 - 0.000215915771471325*G0_1 - 0.000185986852653517*G0_2 - 0.000185986852653518*G0_3 - 3.42044786489231e-05*G0_4 - 0.000179573512906845*G0_5 - 3.4204478648924e-05*G0_6 + 8.55111966223046e-05*G0_7 + 0.000269360269360267*G0_8 - 1.71022393244626e-05*G0_9 + 8.55111966223058e-05*G0_10 + 0.000269360269360269*G0_11 - 1.71022393244608e-05*G0_12 + 0.000102613435946767*G0_13 - 7.69600769600748e-05*G0_14 + 0.00051306717973384*G0_15 + 0.000102613435946765*G0_16 - 7.69600769600793e-05*G0_17 + 0.000513067179733845*G0_18 + 5.13067179733827e-05*G0_19 - 0.00101330767997434*G0_20 + 0.000974827641494301*G0_21 - 0.000205226871893538*G0_22 - 0.00143658810325476*G0_23 - 0.00143658810325477*G0_24 + 0.00779862113195442*G0_25 - 0.00205226871893538*G0_26 - 0.00205226871893537*G0_27 + 0.00389931056597721*G0_28 - 0.00143658810325476*G0_29 - 0.00102613435946769*G0_30 + 0.0038993105659772*G0_31 - 0.00143658810325476*G0_32 - 0.00102613435946769*G0_33 + 0.00164181497514829*G0_34; + A[26] = -0.000185986852653516*G0_0 - 0.000215915771471326*G0_1 + 0.000288600288600288*G0_2 - 0.000185986852653518*G0_3 + 0.000102613435946766*G0_4 - 7.69600769600741e-05*G0_5 + 0.000513067179733843*G0_6 + 8.55111966223095e-05*G0_7 + 0.000269360269360265*G0_8 - 1.71022393244608e-05*G0_9 + 0.000974827641494302*G0_10 - 0.00101330767997434*G0_11 + 5.13067179733824e-05*G0_12 - 3.42044786489219e-05*G0_13 - 0.000179573512906846*G0_14 - 3.42044786489221e-05*G0_15 + 0.000513067179733844*G0_16 - 7.69600769600772e-05*G0_17 + 0.000102613435946766*G0_18 - 1.71022393244601e-05*G0_19 + 0.000269360269360269*G0_20 + 8.55111966223051e-05*G0_21 - 0.00143658810325477*G0_22 + 0.00389931056597721*G0_23 - 0.00102613435946768*G0_24 - 0.00205226871893538*G0_25 + 0.00779862113195442*G0_26 - 0.00205226871893537*G0_27 - 0.00143658810325476*G0_28 - 0.000205226871893539*G0_29 - 0.00143658810325476*G0_30 - 0.00102613435946769*G0_31 - 0.00143658810325476*G0_32 + 0.00389931056597721*G0_33 + 0.0016418149751483*G0_34; + A[27] = -0.000185986852653516*G0_0 - 0.000215915771471326*G0_1 - 0.000185986852653519*G0_2 + 0.000288600288600287*G0_3 + 0.000513067179733845*G0_4 - 7.69600769600775e-05*G0_5 + 0.000102613435946769*G0_6 + 0.000974827641494305*G0_7 - 0.00101330767997434*G0_8 + 5.13067179733846e-05*G0_9 + 8.55111966223086e-05*G0_10 + 0.000269360269360267*G0_11 - 1.71022393244605e-05*G0_12 + 0.000513067179733844*G0_13 - 7.69600769600788e-05*G0_14 + 0.000102613435946769*G0_15 - 3.42044786489218e-05*G0_16 - 0.000179573512906845*G0_17 - 3.42044786489195e-05*G0_18 - 1.71022393244587e-05*G0_19 + 0.000269360269360265*G0_20 + 8.55111966223076e-05*G0_21 - 0.00143658810325476*G0_22 - 0.00102613435946769*G0_23 + 0.00389931056597721*G0_24 - 0.00205226871893537*G0_25 - 0.00205226871893537*G0_26 + 0.00779862113195442*G0_27 - 0.00102613435946768*G0_28 - 0.00143658810325476*G0_29 + 0.00389931056597721*G0_30 - 0.00143658810325476*G0_31 - 0.00020522687189354*G0_32 - 0.00143658810325476*G0_33 + 0.00164181497514831*G0_34; + A[28] = 0.000288600288600287*G0_0 - 0.000185986852653518*G0_1 - 0.000215915771471325*G0_2 - 0.000185986852653518*G0_3 + 8.55111966223083e-05*G0_4 + 0.000269360269360266*G0_5 - 1.71022393244599e-05*G0_6 - 3.42044786489235e-05*G0_7 - 0.000179573512906847*G0_8 - 3.42044786489223e-05*G0_9 - 1.71022393244607e-05*G0_10 + 0.000269360269360268*G0_11 + 8.5511196622309e-05*G0_12 + 0.000102613435946769*G0_13 - 7.69600769600765e-05*G0_14 + 0.000513067179733842*G0_15 + 5.13067179733824e-05*G0_16 - 0.00101330767997434*G0_17 + 0.000974827641494302*G0_18 + 0.000102613435946766*G0_19 - 7.69600769600808e-05*G0_20 + 0.000513067179733844*G0_21 - 0.00143658810325476*G0_22 - 0.000205226871893536*G0_23 - 0.00143658810325476*G0_24 + 0.00389931056597721*G0_25 - 0.00143658810325476*G0_26 - 0.00102613435946768*G0_27 + 0.00779862113195441*G0_28 - 0.00205226871893537*G0_29 - 0.00205226871893537*G0_30 + 0.0038993105659772*G0_31 - 0.00102613435946768*G0_32 - 0.00143658810325476*G0_33 + 0.0016418149751483*G0_34; + A[29] = -0.000185986852653516*G0_0 + 0.000288600288600287*G0_1 - 0.000215915771471324*G0_2 - 0.000185986852653517*G0_3 + 8.55111966223071e-05*G0_4 + 0.000269360269360268*G0_5 - 1.71022393244605e-05*G0_6 + 0.000102613435946768*G0_7 - 7.69600769600744e-05*G0_8 + 0.000513067179733842*G0_9 + 5.13067179733813e-05*G0_10 - 0.00101330767997434*G0_11 + 0.000974827641494299*G0_12 - 3.42044786489188e-05*G0_13 - 0.000179573512906849*G0_14 - 3.42044786489213e-05*G0_15 - 1.71022393244606e-05*G0_16 + 0.000269360269360266*G0_17 + 8.5511196622308e-05*G0_18 + 0.000513067179733843*G0_19 - 7.69600769600771e-05*G0_20 + 0.000102613435946764*G0_21 + 0.00389931056597721*G0_22 - 0.00143658810325476*G0_23 - 0.00102613435946768*G0_24 - 0.00143658810325476*G0_25 - 0.000205226871893539*G0_26 - 0.00143658810325476*G0_27 - 0.00205226871893537*G0_28 + 0.00779862113195441*G0_29 - 0.00205226871893537*G0_30 - 0.00102613435946768*G0_31 + 0.0038993105659772*G0_32 - 0.00143658810325476*G0_33 + 0.0016418149751483*G0_34; + A[30] = -0.000185986852653516*G0_0 - 0.000185986852653518*G0_1 - 0.000215915771471327*G0_2 + 0.000288600288600286*G0_3 + 0.000974827641494301*G0_4 - 0.00101330767997434*G0_5 + 5.13067179733835e-05*G0_6 + 0.000513067179733846*G0_7 - 7.69600769600764e-05*G0_8 + 0.000102613435946769*G0_9 - 1.71022393244607e-05*G0_10 + 0.000269360269360266*G0_11 + 8.55111966223071e-05*G0_12 + 0.000513067179733843*G0_13 - 7.69600769600797e-05*G0_14 + 0.000102613435946768*G0_15 - 1.71022393244618e-05*G0_16 + 0.000269360269360266*G0_17 + 8.55111966223093e-05*G0_18 - 3.420447864892e-05*G0_19 - 0.000179573512906845*G0_20 - 3.42044786489226e-05*G0_21 - 0.00102613435946769*G0_22 - 0.00143658810325476*G0_23 + 0.00389931056597721*G0_24 - 0.00102613435946769*G0_25 - 0.00143658810325476*G0_26 + 0.00389931056597721*G0_27 - 0.00205226871893537*G0_28 - 0.00205226871893537*G0_29 + 0.00779862113195441*G0_30 - 0.00143658810325476*G0_31 - 0.00143658810325476*G0_32 - 0.000205226871893541*G0_33 + 0.00164181497514831*G0_34; + A[31] = 0.000288600288600287*G0_0 - 0.000185986852653518*G0_1 - 0.000185986852653518*G0_2 - 0.000215915771471324*G0_3 - 1.71022393244609e-05*G0_4 + 0.000269360269360267*G0_5 + 8.55111966223065e-05*G0_6 - 1.71022393244627e-05*G0_7 + 0.000269360269360267*G0_8 + 8.55111966223058e-05*G0_9 - 3.42044786489238e-05*G0_10 - 0.000179573512906843*G0_11 - 3.42044786489218e-05*G0_12 + 5.13067179733838e-05*G0_13 - 0.00101330767997434*G0_14 + 0.000974827641494298*G0_15 + 0.000102613435946766*G0_16 - 7.69600769600774e-05*G0_17 + 0.000513067179733844*G0_18 + 0.000102613435946768*G0_19 - 7.69600769600798e-05*G0_20 + 0.000513067179733843*G0_21 - 0.00143658810325476*G0_22 - 0.00143658810325476*G0_23 - 0.000205226871893539*G0_24 + 0.0038993105659772*G0_25 - 0.00102613435946769*G0_26 - 0.00143658810325476*G0_27 + 0.0038993105659772*G0_28 - 0.00102613435946768*G0_29 - 0.00143658810325476*G0_30 + 0.0077986211319544*G0_31 - 0.00205226871893537*G0_32 - 0.00205226871893537*G0_33 + 0.00164181497514829*G0_34; + A[32] = -0.000185986852653516*G0_0 + 0.000288600288600287*G0_1 - 0.000185986852653517*G0_2 - 0.000215915771471325*G0_3 - 1.71022393244622e-05*G0_4 + 0.000269360269360267*G0_5 + 8.5511196622307e-05*G0_6 + 5.13067179733827e-05*G0_7 - 0.00101330767997434*G0_8 + 0.000974827641494298*G0_9 + 0.000102613435946766*G0_10 - 7.6960076960077e-05*G0_11 + 0.00051306717973384*G0_12 - 1.7102239324459e-05*G0_13 + 0.000269360269360266*G0_14 + 8.55111966223069e-05*G0_15 - 3.42044786489229e-05*G0_16 - 0.000179573512906846*G0_17 - 3.42044786489221e-05*G0_18 + 0.000513067179733842*G0_19 - 7.69600769600761e-05*G0_20 + 0.000102613435946765*G0_21 + 0.0038993105659772*G0_22 - 0.00102613435946769*G0_23 - 0.00143658810325476*G0_24 - 0.00143658810325476*G0_25 - 0.00143658810325476*G0_26 - 0.00020522687189354*G0_27 - 0.00102613435946768*G0_28 + 0.0038993105659772*G0_29 - 0.00143658810325476*G0_30 - 0.00205226871893537*G0_31 + 0.0077986211319544*G0_32 - 0.00205226871893537*G0_33 + 0.00164181497514829*G0_34; + A[33] = -0.000185986852653516*G0_0 - 0.000185986852653518*G0_1 + 0.000288600288600287*G0_2 - 0.000215915771471325*G0_3 + 5.13067179733818e-05*G0_4 - 0.00101330767997434*G0_5 + 0.0009748276414943*G0_6 - 1.71022393244584e-05*G0_7 + 0.000269360269360265*G0_8 + 8.55111966223081e-05*G0_9 + 0.000513067179733843*G0_10 - 7.69600769600788e-05*G0_11 + 0.000102613435946766*G0_12 - 1.71022393244611e-05*G0_13 + 0.000269360269360266*G0_14 + 8.55111966223078e-05*G0_15 + 0.000513067179733842*G0_16 - 7.69600769600771e-05*G0_17 + 0.000102613435946769*G0_18 - 3.42044786489211e-05*G0_19 - 0.000179573512906844*G0_20 - 3.42044786489242e-05*G0_21 - 0.00102613435946769*G0_22 + 0.0038993105659772*G0_23 - 0.00143658810325476*G0_24 - 0.00102613435946769*G0_25 + 0.00389931056597721*G0_26 - 0.00143658810325476*G0_27 - 0.00143658810325476*G0_28 - 0.00143658810325476*G0_29 - 0.000205226871893542*G0_30 - 0.00205226871893537*G0_31 - 0.00205226871893537*G0_32 + 0.0077986211319544*G0_33 + 0.00164181497514829*G0_34; + A[34] = -0.000538720538720526*G0_0 - 0.000538720538720536*G0_1 - 0.000538720538720532*G0_2 - 0.000538720538720535*G0_3 + 0.00109454331676553*G0_4 - 0.00102613435946768*G0_5 + 0.00109454331676553*G0_6 + 0.00109454331676554*G0_7 - 0.00102613435946769*G0_8 + 0.00109454331676553*G0_9 + 0.00109454331676553*G0_10 - 0.00102613435946769*G0_11 + 0.00109454331676553*G0_12 + 0.00109454331676554*G0_13 - 0.0010261343594677*G0_14 + 0.00109454331676553*G0_15 + 0.00109454331676553*G0_16 - 0.00102613435946769*G0_17 + 0.00109454331676554*G0_18 + 0.00109454331676554*G0_19 - 0.00102613435946769*G0_20 + 0.00109454331676552*G0_21 + 0.0016418149751483*G0_22 + 0.0016418149751483*G0_23 + 0.00164181497514831*G0_24 + 0.00164181497514829*G0_25 + 0.0016418149751483*G0_26 + 0.00164181497514831*G0_27 + 0.0016418149751483*G0_28 + 0.0016418149751483*G0_29 + 0.00164181497514831*G0_30 + 0.00164181497514829*G0_31 + 0.00164181497514829*G0_32 + 0.00164181497514829*G0_33 + 0.0262690396023728*G0_34; +} + +/// Constructor +poisson3d_4_form_0::poisson3d_4_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson3d_4_form_0::~poisson3d_4_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson3d_4_form_0::signature() const +{ + return "340d8f5c9ce7b303e79284500b0ce34da2ddca57afa75e9566ee945eb2abf3761d4355deb21c82abb632d72e2c5fd54f899691b5d2be9d1da4d99346ae0cf1a7"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson3d_4_form_0::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t poisson3d_4_form_0::num_coefficients() const +{ + return 0; +} + +/// Return the number of cell domains +std::size_t poisson3d_4_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson3d_4_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson3d_4_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson3d_4_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson3d_4_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson3d_4_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson3d_4_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson3d_4_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson3d_4_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson3d_4_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson3d_4_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_4_finite_element_0(); + break; + } + case 1: + { + return new poisson3d_4_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson3d_4_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_4_dofmap_0(); + break; + } + case 1: + { + return new poisson3d_4_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson3d_4_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson3d_4_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson3d_4_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson3d_4_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson3d_4_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson3d_4_form_0::create_default_cell_integral() const +{ + return new poisson3d_4_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson3d_4_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson3d_4_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson3d_4_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson3d_4_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +poisson3d_4_form_1::poisson3d_4_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +poisson3d_4_form_1::~poisson3d_4_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* poisson3d_4_form_1::signature() const +{ + return "44447132910ec8f7653ba2be711d10970c8c7de03ec051406a760918bc0daf0ca0702a39b67205a5209b58c100823e2885a99ee1f0e6e9149320ea08e1e2cfb2"; +} + +/// Return the rank of the global tensor (r) +std::size_t poisson3d_4_form_1::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t poisson3d_4_form_1::num_coefficients() const +{ + return 1; +} + +/// Return the number of cell domains +std::size_t poisson3d_4_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t poisson3d_4_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t poisson3d_4_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t poisson3d_4_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t poisson3d_4_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool poisson3d_4_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool poisson3d_4_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool poisson3d_4_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool poisson3d_4_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool poisson3d_4_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* poisson3d_4_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_4_finite_element_0(); + break; + } + case 1: + { + return new poisson3d_4_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* poisson3d_4_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new poisson3d_4_dofmap_0(); + break; + } + case 1: + { + return new poisson3d_4_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* poisson3d_4_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* poisson3d_4_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* poisson3d_4_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* poisson3d_4_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* poisson3d_4_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* poisson3d_4_form_1::create_default_cell_integral() const +{ + return new poisson3d_4_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* poisson3d_4_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* poisson3d_4_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* poisson3d_4_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* poisson3d_4_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/bench/fem/convergence/cpp/Poisson3D_4.h b/bench/fem/convergence/cpp/Poisson3D_4.h new file mode 100644 index 0000000..627d867 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_4.h @@ -0,0 +1,987 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no-evaluate_basis: True +// no-evaluate_basis_derivatives: True +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __POISSON3D_4_H +#define __POISSON3D_4_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson3d_4_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson3d_4_finite_element_0(); + + /// Destructor + virtual ~poisson3d_4_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson3d_4_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson3d_4_dofmap_0(); + + /// Destructor + virtual ~poisson3d_4_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson3d_4_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson3d_4_cell_integral_0_otherwise(); + + /// Destructor + virtual ~poisson3d_4_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson3d_4_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson3d_4_cell_integral_1_otherwise(); + + /// Destructor + virtual ~poisson3d_4_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson3d_4_form_0: public ufc::form +{ +public: + + /// Constructor + poisson3d_4_form_0(); + + /// Destructor + virtual ~poisson3d_4_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson3d_4_form_1: public ufc::form +{ +public: + + /// Constructor + poisson3d_4_form_1(); + + /// Destructor + virtual ~poisson3d_4_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson3D_4 +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson3d_4_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson3d_4_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson3d_4_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson3d_4_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson3d_4_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson3d_4_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson3d_4_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson3d_4_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson3d_4_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson3d_4_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/convergence/cpp/Poisson3D_4.ufl b/bench/fem/convergence/cpp/Poisson3D_4.ufl new file mode 100644 index 0000000..ee902a0 --- /dev/null +++ b/bench/fem/convergence/cpp/Poisson3D_4.ufl @@ -0,0 +1,30 @@ +# Copyright (C) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2006-03-28 +# +# Poisson's equation in 3D for q = 4 + +element = FiniteElement("Lagrange", tetrahedron, 4) + +v = TestFunction(element) +U = TrialFunction(element) +f = Coefficient(element) + +a = v.dx(i)*U.dx(i)*dx +L = v*f*dx diff --git a/bench/fem/convergence/cpp/README b/bench/fem/convergence/cpp/README new file mode 100644 index 0000000..bb5b742 --- /dev/null +++ b/bench/fem/convergence/cpp/README @@ -0,0 +1,46 @@ +This test program solves Poisson's equation + + - div grad u = f + +on the unit square and on the unit cube with homogeneous Dirichlet +boundary conditions. + +In 2D, the right-hand side f is given by + + f(x, y) = 2 pi^2 sin(x) sin(y) + +and the exact solution is u(x, y) = sin(x) sin(y). + +In 3D, the right-hand side f is given by + + f(x, y) = 3 pi^2 sin(x) sin(y) sin(z) + +and the exact solution is u(x, y) = sin(x) sin(y) sin(z). + +The solution is computed with Lagrange finite elements of degree 1-5 +and the error is computed in the maximum norm (maximum taken only over +the values at vertices). + +Here are the results (2005-06-30, DOLFIN version 0.5.7+): + +Maximum norm error in 2D: +------------------------- + + | h = 1/2 h = 1/4 h = 1/8 +------------------------------------ +q = 1 | 3.831e-01 1.375e-01 3.748e-02 +q = 2 | 1.067e-02 1.782e-03 1.480e-04 +q = 3 | 3.675e-03 5.417e-04 4.243e-05 +q = 4 | 1.027e-03 2.644e-05 4.862e-07 +q = 5 | 1.639e-05 1.803e-06 3.985e-08 + +Maximum norm error in 3D: +------------------------- + + | h = 1/2 h = 1/4 h = 1/8 +------------------------------------ +q = 1 | 5.065e-01 2.129e-01 6.127e-02 +q = 2 | 3.890e-02 6.874e-03 5.589e-04 +q = 3 | 1.088e-03 1.722e-03 1.535e-04 +q = 4 | 6.868e-03 2.154e-04 3.983e-06 +q = 5 | 3.821e-04 1.450e-05 3.598e-07 diff --git a/bench/fem/convergence/cpp/compile.log b/bench/fem/convergence/cpp/compile.log new file mode 100644 index 0000000..2bbb588 --- /dev/null +++ b/bench/fem/convergence/cpp/compile.log @@ -0,0 +1,2641 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson3D_3 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, U]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG3(?)' + Unique sub elements: 'CG3(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 3 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG3(?)' + Unique sub elements: 'CG3(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 6 + quadrature_degree: auto --> 6 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.062732 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 3600 entries computed in 0.0019 seconds + Shape of reference tensor: (20, 20, 3, 3) + Primary multi index: rank = 2 dims = [20, 20] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 400 entries computed in 0.00161 seconds + Shape of reference tensor: (20, 20) + Primary multi index: rank = 1 dims = [20] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]] + Secondary multi index: rank = 1 dims = [20] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [20] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.011456 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000390053 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 1.33827 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000546932 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson3D_3.h. + Output written to ./Poisson3D_3.cpp. + +Compiler stage 5 finished in 0.00186586 seconds. + +FFC finished in 1.41567 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson2D_3 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, U]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG3(?)' + Unique sub elements: 'CG3(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG3(?)' + Unique sub elements: 'CG3(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 6 + quadrature_degree: auto --> 6 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0248919 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 400 entries computed in 0.00294 seconds + Shape of reference tensor: (10, 10, 2, 2) + Primary multi index: rank = 2 dims = [10, 10] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 100 entries computed in 0.00242 seconds + Shape of reference tensor: (10, 10) + Primary multi index: rank = 1 dims = [10] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]] + Secondary multi index: rank = 1 dims = [10] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [10] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0128181 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000267982 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.191561 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000592947 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson2D_3.h. + Output written to ./Poisson2D_3.cpp. + +Compiler stage 5 finished in 0.000945091 seconds. + +FFC finished in 0.231416 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson2D_2 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, U]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG2(?)' + Unique sub elements: 'CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG2(?)' + Unique sub elements: 'CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0247929 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.00134 seconds + Shape of reference tensor: (6, 6, 2, 2) + Primary multi index: rank = 2 dims = [6, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.00112 seconds + Shape of reference tensor: (6, 6) + Primary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0100179 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000279903 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.10034 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000654936 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson2D_2.h. + Output written to ./Poisson2D_2.cpp. + +Compiler stage 5 finished in 0.000978947 seconds. + +FFC finished in 0.137541 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson2D_5 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, U]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG5(?)' + Unique sub elements: 'CG5(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 8 + quadrature_degree: auto --> 8 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG5(?)' + Unique sub elements: 'CG5(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 10 + quadrature_degree: auto --> 10 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0581269 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 1764 entries computed in 0.0376 seconds + Shape of reference tensor: (21, 21, 2, 2) + Primary multi index: rank = 2 dims = [21, 21] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 441 entries computed in 0.0199 seconds + Shape of reference tensor: (21, 21) + Primary multi index: rank = 1 dims = [21] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]] + Secondary multi index: rank = 1 dims = [21] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [21] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0665851 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000237942 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.985738 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000982046 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson2D_5.h. + Output written to ./Poisson2D_5.cpp. + +Compiler stage 5 finished in 0.00135708 seconds. + +FFC finished in 1.11347 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson3D_1 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, U]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 3 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0238538 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.00104 seconds + Shape of reference tensor: (4, 4, 3, 3) + Primary multi index: rank = 2 dims = [4, 4] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 16 entries computed in 0.000931 seconds + Shape of reference tensor: (4, 4) + Primary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + Secondary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.012183 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000386 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.103147 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000835896 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson3D_1.h. + Output written to ./Poisson3D_1.cpp. + +Compiler stage 5 finished in 0.0011251 seconds. + +FFC finished in 0.142052 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson3D_4 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, U]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG4(?)' + Unique sub elements: 'CG4(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 6 + quadrature_degree: auto --> 6 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 3 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG4(?)' + Unique sub elements: 'CG4(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 8 + quadrature_degree: auto --> 8 + WARNING: The number of integration points for each cell will be: 125 + Consider using the option 'quadrature_degree' to reduce the number of points + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.205877 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 11025 entries computed in 0.00378 seconds + Shape of reference tensor: (35, 35, 3, 3) + Primary multi index: rank = 2 dims = [35, 35] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [0, 34], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [1, 34], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [2, 34], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [3, 34], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [4, 34], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [5, 34], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [6, 34], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [7, 34], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [8, 34], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [9, 34], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [10, 34], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [11, 34], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [12, 34], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [13, 34], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [14, 34], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [15, 34], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [16, 34], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [17, 34], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [18, 34], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [19, 34], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [20, 34], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [21, 34], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [22, 34], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [23, 34], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [24, 34], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [25, 34], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [26, 34], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [27, 34], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [28, 34], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [29, 34], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [30, 34], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [31, 34], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [32, 34], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33], [33, 34], [34, 0], [34, 1], [34, 2], [34, 3], [34, 4], [34, 5], [34, 6], [34, 7], [34, 8], [34, 9], [34, 10], [34, 11], [34, 12], [34, 13], [34, 14], [34, 15], [34, 16], [34, 17], [34, 18], [34, 19], [34, 20], [34, 21], [34, 22], [34, 23], [34, 24], [34, 25], [34, 26], [34, 27], [34, 28], [34, 29], [34, 30], [34, 31], [34, 32], [34, 33], [34, 34]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 1225 entries computed in 0.0076 seconds + Shape of reference tensor: (35, 35) + Primary multi index: rank = 1 dims = [35] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34]] + Secondary multi index: rank = 1 dims = [35] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [35] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0211542 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000286102 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 1.75841 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000604868 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson3D_4.h. + Output written to ./Poisson3D_4.cpp. + +Compiler stage 5 finished in 0.00136089 seconds. + +FFC finished in 1.98805 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson3D_2 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, U]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG2(?)' + Unique sub elements: 'CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 3 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG2(?)' + Unique sub elements: 'CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.030242 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 900 entries computed in 0.00102 seconds + Shape of reference tensor: (10, 10, 3, 3) + Primary multi index: rank = 2 dims = [10, 10] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 100 entries computed in 0.00106 seconds + Shape of reference tensor: (10, 10) + Primary multi index: rank = 1 dims = [10] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]] + Secondary multi index: rank = 1 dims = [10] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [10] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.009583 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000253916 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.306981 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000786066 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson3D_2.h. + Output written to ./Poisson3D_2.cpp. + +Compiler stage 5 finished in 0.0013659 seconds. + +FFC finished in 0.349607 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson2D_1 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, U]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0210779 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.00101 seconds + Shape of reference tensor: (3, 3, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000859 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.011461 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000355959 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.052269 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000806093 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson2D_1.h. + Output written to ./Poisson2D_1.cpp. + +Compiler stage 5 finished in 0.00107312 seconds. + +FFC finished in 0.0875061 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson2D_4 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, U]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG4(?)' + Unique sub elements: 'CG4(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 6 + quadrature_degree: auto --> 6 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG4(?)' + Unique sub elements: 'CG4(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 8 + quadrature_degree: auto --> 8 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.060606 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 900 entries computed in 0.017 seconds + Shape of reference tensor: (15, 15, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 225 entries computed in 0.0148 seconds + Shape of reference tensor: (15, 15) + Primary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + Secondary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0501802 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000601053 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.430382 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000629187 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson2D_4.h. + Output written to ./Poisson2D_4.cpp. + +Compiler stage 5 finished in 0.0014081 seconds. + +FFC finished in 0.544377 seconds. diff --git a/bench/fem/convergence/cpp/main.cpp b/bench/fem/convergence/cpp/main.cpp new file mode 100644 index 0000000..dbd1cdf --- /dev/null +++ b/bench/fem/convergence/cpp/main.cpp @@ -0,0 +1,266 @@ +// Copyright (C) 2005-2010 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . + +#include +#include "Poisson2D_1.h" +#include "Poisson2D_2.h" +#include "Poisson2D_3.h" +#include "Poisson2D_4.h" +#include "Poisson2D_5.h" +#include "Poisson3D_1.h" +#include "Poisson3D_2.h" +#include "Poisson3D_3.h" +#include "Poisson3D_4.h" + +using namespace dolfin; + +// Boundary condition +class DirichletBoundary : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { return on_boundary; } +}; + +// Right-hand side, 2D +class Source2D : public Expression +{ + void eval(Array& values, const Array& x) const + { + values[0] = 2.0*DOLFIN_PI*DOLFIN_PI*sin(DOLFIN_PI*x[0])*sin(DOLFIN_PI*x[1]); + } +}; + +// Right-hand side, 3D +class Source3D : public Expression +{ + void eval(Array& values, const Array& x) const + { + values[0] = 3.0*DOLFIN_PI*DOLFIN_PI*sin(DOLFIN_PI*x[0])*sin(DOLFIN_PI*x[1])*sin(DOLFIN_PI*x[2]); + } +}; + +// Solve equation and compute error, 2D +double solve2D(int q, int n) +{ + printf("Solving Poisson's equation in 2D for q = %d, n = %d.\n", q, n); + + // Set up problem + UnitSquareMesh mesh(n, n); + Source2D f; + Constant zero(0.0); + + // Choose forms + Form* a = 0; + Form* L = 0; + FunctionSpace* V = 0; + switch (q) + { + case 1: + V = new Poisson2D_1::FunctionSpace(mesh); + a = new Poisson2D_1::BilinearForm(*V, *V); + L = new Poisson2D_1::LinearForm(*V, f); + break; + case 2: + V = new Poisson2D_2::FunctionSpace(mesh); + a = new Poisson2D_2::BilinearForm(*V, *V); + L = new Poisson2D_2::LinearForm(*V, f); + break; + case 3: + V = new Poisson2D_3::FunctionSpace(mesh); + a = new Poisson2D_3::BilinearForm(*V, *V); + L = new Poisson2D_3::LinearForm(*V, f); + break; + case 4: + V = new Poisson2D_4::FunctionSpace(mesh); + a = new Poisson2D_4::BilinearForm(*V, *V); + L = new Poisson2D_4::LinearForm(*V, f); + break; + case 5: + V = new Poisson2D_5::FunctionSpace(mesh); + a = new Poisson2D_5::BilinearForm(*V, *V); + L = new Poisson2D_5::LinearForm(*V, f); + break; + default: + error("Forms not compiled for q = %d.", q); + } + + // Set up boundary conditions + DirichletBoundary boundary; + DirichletBC bc(*V, zero, boundary); + + // Discretize equation + Matrix A; + Vector x, b; + assemble(A, *a); + assemble(b, *L); + bc.apply(A, b); + + // Solve the linear system + KrylovSolver solver("gmres"); + solver.parameters["relative_tolerance"] = 1e-14; + solver.solve(A, x, b); + + // Compute maximum norm of error + double emax = 0.0; + std::vector U; + x.get_local(U); + for (VertexIterator v(mesh); !v.end(); ++v) + { + const Point p = v->point(); + const double u = sin(DOLFIN_PI*p.x())*sin(DOLFIN_PI*p.y()); + const double e = std::abs(U[v->index()] - u); + emax = std::max(emax, e); + } + + delete a; + delete L; + delete V; + + return emax; +} + +// Solve equation and compute error, 3D +double solve3D(int q, int n) +{ + printf("Solving Poisson's equation in 3D for q = %d, n = %d.\n", q, n); + + // Set up problem + UnitCubeMesh mesh(n, n, n); + Source3D f; + Constant zero(0.0); + + // Choose forms + Form* a = 0; + Form* L = 0; + FunctionSpace* V = 0; + switch (q) + { + case 1: + V = new Poisson3D_1::FunctionSpace(mesh); + a = new Poisson3D_1::BilinearForm(*V, *V); + L = new Poisson3D_1::LinearForm(*V, f); + break; + case 2: + V = new Poisson3D_2::FunctionSpace(mesh); + a = new Poisson3D_2::BilinearForm(*V, *V); + L = new Poisson3D_2::LinearForm(*V, f); + break; + case 3: + V = new Poisson3D_3::FunctionSpace(mesh); + a = new Poisson3D_3::BilinearForm(*V, *V); + L = new Poisson3D_3::LinearForm(*V, f); + break; + case 4: + V = new Poisson3D_4::FunctionSpace(mesh); + a = new Poisson3D_4::BilinearForm(*V, *V); + L = new Poisson3D_4::LinearForm(*V, f); + break; + default: + error("Forms not compiled for q = %d.", q); + } + + // Set up boundary conditions + DirichletBoundary boundary; + DirichletBC bc(*V, zero, boundary); + + // Discretize equation + Matrix A; + Vector x, b; + assemble(A, *a); + assemble(b, *L); + bc.apply(A, b); + + // Solve the linear system + KrylovSolver solver("gmres"); + solver.parameters["relative_tolerance"] = 1e-14; + solver.solve(A, x, b); + + // Compute maximum norm of error + double emax = 0.0; + std::vector U; + x.get_local(U); + for (VertexIterator v(mesh); !v.end(); ++v) + { + const Point p = v->point(); + const double u = sin(DOLFIN_PI*p.x())*sin(DOLFIN_PI*p.y())*sin(DOLFIN_PI*p.z()); + const double e = std::abs(U[v->index()] - u); + emax = std::max(emax, e); + } + + delete a; + delete L; + delete V; + + return emax; +} + +int main() +{ + set_log_active(false); + + const int qmax_2D = 5; + const int qmax_3D = 4; + const int num_meshes = 3; + std::vector> e2D(qmax_2D, + std::vector(num_meshes)); + std::vector> e3D(qmax_3D, + std::vector(num_meshes)); + + // Compute errors in 2D + for (int q = 1; q <= qmax_2D; q++) + { + int n = 2; + for (int i = 0; i < num_meshes; i++) + { + e2D[q - 1][i] = solve2D(q, n); + n *= 2; + } + } + + // Compute errors in 3D + for (int q = 1; q <= qmax_3D; q++) + { + int n = 2; + for (int i = 0; i < num_meshes; i++) + { + e3D[q - 1][i] = solve3D(q, n); + n *= 2; + } + } + + // Write errors in 2D + printf("\nMaximum norm error in 2D:\n"); + printf("-------------------------\n"); + for (int q = 1; q <= qmax_2D; q++) + { + printf("q = %d:", q); + for (int i = 0; i < num_meshes; i++) + printf(" %.3e", e2D[q - 1][i]); + printf("\n"); + } + + // Write errors in 3D + printf("\nMaximum norm error in 3D:\n"); + printf("-------------------------\n"); + for (int q = 1; q <= qmax_3D; q++) + { + printf("q = %d:", q); + for (int i = 0; i < num_meshes; i++) + printf(" %.3e", e3D[q - 1][i]); + printf("\n"); + } +} diff --git a/bench/fem/jit/python/bench_fem_jit_python b/bench/fem/jit/python/bench_fem_jit_python new file mode 100755 index 0000000..7e94bf6 --- /dev/null +++ b/bench/fem/jit/python/bench_fem_jit_python @@ -0,0 +1,76 @@ +#!/usr/bin/env python + +"""This script provides a benchmark for the JIT compiler, in +particular the speed of the in-memory cache.""" + +# Copyright (C) 2008-2010 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2008-09-04 +# Last changed: 2010-05-03 + +from dolfin import * +from time import time + +print "JIT compilation (in memory cache)" + +# Benchmark parameters +NUM_REPS = 10 +SIZE = 3 + +# Create mesh +mesh = UnitCubeMesh(SIZE, SIZE, SIZE) + +# Create form (velocity equation for "G2") +V = VectorFunctionSpace(mesh, "Lagrange", 1) +Q = FunctionSpace(mesh, "Lagrange", 1) +DG = FunctionSpace(mesh, "DG", 0) +DGv = VectorFunctionSpace(mesh, "DG", 0) + +v = TestFunction(V) +q = TestFunction(Q) +u = TrialFunction(V) +p = TrialFunction(Q) +u0 = Function(V) +p1 = Function(Q) +W = Function(DGv) +nu = Constant(0.1) +k = Constant(0.1) +h = CellSize(mesh) +d1 = h +d2 = 2.0*h + +U = 0.5*(u0 + u) + +F = (1.0/k)*inner(v, u - u0) + inner(v, grad(U)*W) + nu*inner(grad(v), grad(U)) - div(v)*p1 + \ + d1*inner(grad(v)*W, grad(U)*W) + d2*div(v)*div(U) +a = lhs(F*dx) + +# JIT compile once +t0 = time() +jit(a) +t1 = time() - t0 + +# Then JIT compile some more +t0 = time() +for i in range(NUM_REPS): + jit(a) +t2 = (time() - t0) / float(NUM_REPS) + +print "Disk cache: ", t1 +print "In-memory cache:", t2 +print "BENCH", t2 diff --git a/bench/fem/multicore/cpp/CMakeLists.txt b/bench/fem/multicore/cpp/CMakeLists.txt new file mode 100644 index 0000000..7a6f789 --- /dev/null +++ b/bench/fem/multicore/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_fem_multicore_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/fem/multicore/cpp/NavierStokes.h b/bench/fem/multicore/cpp/NavierStokes.h new file mode 100644 index 0000000..e0284fa --- /dev/null +++ b/bench/fem/multicore/cpp/NavierStokes.h @@ -0,0 +1,6836 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __NAVIERSTOKES_H +#define __NAVIERSTOKES_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class navierstokes_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + navierstokes_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~navierstokes_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Lagrange', Domain(Cell('tetrahedron', 3)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + + // Compute subdeterminants + + // Get coordinates and map to the reference (FIAT) element + + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + vertex_values[3] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new navierstokes_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class navierstokes_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + navierstokes_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~navierstokes_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new navierstokes_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class navierstokes_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + navierstokes_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~navierstokes_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[9]; + for (unsigned int r = 0; r < 9; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 5: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 6: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 9: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 10: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 11: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[4] = vals[1]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[1]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[8] = vals[2]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[2]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[10] = vals[2]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[11] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + vertex_values[9] = dof_values[3]; + // Evaluate function and change variables + vertex_values[1] = dof_values[4]; + vertex_values[4] = dof_values[5]; + vertex_values[7] = dof_values[6]; + vertex_values[10] = dof_values[7]; + // Evaluate function and change variables + vertex_values[2] = dof_values[8]; + vertex_values[5] = dof_values[9]; + vertex_values[8] = dof_values[10]; + vertex_values[11] = dof_values[11]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 3; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new navierstokes_finite_element_1(); + break; + } + case 1: + { + return new navierstokes_finite_element_1(); + break; + } + case 2: + { + return new navierstokes_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new navierstokes_finite_element_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class navierstokes_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + navierstokes_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~navierstokes_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Lagrange', Domain(Cell('tetrahedron', 3)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[3]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[3][0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[0][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[0][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new navierstokes_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class navierstokes_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + navierstokes_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~navierstokes_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new navierstokes_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class navierstokes_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + navierstokes_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~navierstokes_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 9; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[0][0]; + dofs[5] = offset + c.entity_indices[0][1]; + dofs[6] = offset + c.entity_indices[0][2]; + dofs[7] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[8] = offset + c.entity_indices[0][0]; + dofs[9] = offset + c.entity_indices[0][1]; + dofs[10] = offset + c.entity_indices[0][2]; + dofs[11] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 6; + dofs[5] = 7; + dofs[6] = 9; + dofs[7] = 10; + dofs[8] = 11; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 6; + dofs[5] = 7; + dofs[6] = 8; + dofs[7] = 10; + dofs[8] = 11; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 7; + dofs[6] = 8; + dofs[7] = 9; + dofs[8] = 11; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 8; + dofs[7] = 9; + dofs[8] = 10; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 4; + dofs[2] = 8; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 5; + dofs[2] = 9; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 6; + dofs[2] = 10; + break; + } + case 3: + { + dofs[0] = 3; + dofs[1] = 7; + dofs[2] = 11; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = vertex_coordinates[0]; + dof_coordinates[4][1] = vertex_coordinates[1]; + dof_coordinates[4][2] = vertex_coordinates[2]; + dof_coordinates[5][0] = vertex_coordinates[3]; + dof_coordinates[5][1] = vertex_coordinates[4]; + dof_coordinates[5][2] = vertex_coordinates[5]; + dof_coordinates[6][0] = vertex_coordinates[6]; + dof_coordinates[6][1] = vertex_coordinates[7]; + dof_coordinates[6][2] = vertex_coordinates[8]; + dof_coordinates[7][0] = vertex_coordinates[9]; + dof_coordinates[7][1] = vertex_coordinates[10]; + dof_coordinates[7][2] = vertex_coordinates[11]; + dof_coordinates[8][0] = vertex_coordinates[0]; + dof_coordinates[8][1] = vertex_coordinates[1]; + dof_coordinates[8][2] = vertex_coordinates[2]; + dof_coordinates[9][0] = vertex_coordinates[3]; + dof_coordinates[9][1] = vertex_coordinates[4]; + dof_coordinates[9][2] = vertex_coordinates[5]; + dof_coordinates[10][0] = vertex_coordinates[6]; + dof_coordinates[10][1] = vertex_coordinates[7]; + dof_coordinates[10][2] = vertex_coordinates[8]; + dof_coordinates[11][0] = vertex_coordinates[9]; + dof_coordinates[11][1] = vertex_coordinates[10]; + dof_coordinates[11][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 3; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new navierstokes_dofmap_1(); + break; + } + case 1: + { + return new navierstokes_dofmap_1(); + break; + } + case 2: + { + return new navierstokes_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new navierstokes_dofmap_2(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class navierstokes_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + navierstokes_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~navierstokes_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true, true, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius + + + // Array of quadrature weights. + static const double W4[4] = {0.0416666666666667, 0.0416666666666667, 0.0416666666666667, 0.0416666666666667}; + // Quadrature points on the UFC reference element: (0.585410196624969, 0.138196601125011, 0.138196601125011), (0.138196601125011, 0.585410196624969, 0.138196601125011), (0.138196601125011, 0.138196601125011, 0.585410196624969), (0.138196601125011, 0.138196601125011, 0.138196601125011) + + // Values of basis functions at quadrature points. + static const double FE1_C0[4][4] = \ + {{0.138196601125009, 0.585410196624969, 0.138196601125011, 0.138196601125011}, + {0.138196601125009, 0.138196601125011, 0.585410196624969, 0.138196601125011}, + {0.138196601125009, 0.138196601125011, 0.138196601125011, 0.585410196624969}, + {0.585410196624967, 0.138196601125011, 0.138196601125011, 0.138196601125011}}; + + // Array of non-zero columns + static const unsigned int nzc0[4] = {0, 1, 2, 3}; + + // Array of non-zero columns + static const unsigned int nzc4[4] = {4, 5, 6, 7}; + + // Array of non-zero columns + static const unsigned int nzc8[4] = {8, 9, 10, 11}; + + static const double FE1_C0_D001[4][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 3}; + + // Array of non-zero columns + static const unsigned int nzc3[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc9[2] = {8, 11}; + + // Array of non-zero columns + static const unsigned int nzc2[2] = {0, 2}; + + // Array of non-zero columns + static const unsigned int nzc6[2] = {4, 6}; + + // Array of non-zero columns + static const unsigned int nzc7[2] = {4, 5}; + + // Array of non-zero columns + static const unsigned int nzc11[2] = {8, 9}; + + // Array of non-zero columns + static const unsigned int nzc10[2] = {8, 10}; + + // Array of non-zero columns + static const unsigned int nzc5[2] = {4, 7}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 144; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 567. + double G[90]; + G[0] = 0.5*det*w[3][0]*(K[5]*K[5]*w[2][0] + w[4][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5])); + G[1] = 0.5*K[3]*K[3]*det*w[1][0]*w[3][0]; + G[2] = K[3]*K[4]*det*w[1][0]*w[3][0]; + G[3] = K[3]*K[5]*det*w[1][0]*w[3][0]; + G[4] = 0.5*K[4]*K[4]*det*w[1][0]*w[3][0]; + G[5] = K[4]*K[5]*det*w[1][0]*w[3][0]; + G[6] = 0.5*K[5]*K[5]*det*w[1][0]*w[3][0]; + G[7] = 0.5*det*w[3][0]*(K[2]*K[5]*w[2][0] + w[4][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[8] = 0.5*K[0]*K[3]*det*w[1][0]*w[3][0]; + G[9] = 0.5*det*w[1][0]*w[3][0]*(K[0]*K[4] + K[1]*K[3]); + G[10] = 0.5*det*w[1][0]*w[3][0]*(K[0]*K[5] + K[2]*K[3]); + G[11] = 0.5*K[1]*K[4]*det*w[1][0]*w[3][0]; + G[12] = 0.5*det*w[1][0]*w[3][0]*(K[1]*K[5] + K[2]*K[4]); + G[13] = 0.5*K[2]*K[5]*det*w[1][0]*w[3][0]; + G[14] = 0.5*K[5]*K[6]*det*w[2][0]*w[3][0]; + G[15] = 0.5*K[3]*K[5]*det*w[2][0]*w[3][0]; + G[16] = 0.5*K[0]*K[5]*det*w[2][0]*w[3][0]; + G[17] = 0.5*K[5]*K[7]*det*w[2][0]*w[3][0]; + G[18] = 0.5*K[4]*K[5]*det*w[2][0]*w[3][0]; + G[19] = 0.5*K[1]*K[5]*det*w[2][0]*w[3][0]; + G[20] = 0.5*det*w[3][0]*(K[5]*K[8]*w[2][0] + w[4][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[21] = 0.5*K[3]*K[6]*det*w[1][0]*w[3][0]; + G[22] = 0.5*det*w[1][0]*w[3][0]*(K[3]*K[7] + K[4]*K[6]); + G[23] = 0.5*det*w[1][0]*w[3][0]*(K[3]*K[8] + K[5]*K[6]); + G[24] = 0.5*K[4]*K[7]*det*w[1][0]*w[3][0]; + G[25] = 0.5*det*w[1][0]*w[3][0]*(K[4]*K[8] + K[5]*K[7]); + G[26] = 0.5*K[5]*K[8]*det*w[1][0]*w[3][0]; + G[27] = 0.5*det*w[3][0]*(K[2]*K[2]*w[2][0] + w[4][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2])); + G[28] = 0.5*K[0]*K[0]*det*w[1][0]*w[3][0]; + G[29] = K[0]*K[1]*det*w[1][0]*w[3][0]; + G[30] = K[0]*K[2]*det*w[1][0]*w[3][0]; + G[31] = 0.5*K[1]*K[1]*det*w[1][0]*w[3][0]; + G[32] = K[1]*K[2]*det*w[1][0]*w[3][0]; + G[33] = 0.5*K[2]*K[2]*det*w[1][0]*w[3][0]; + G[34] = 0.5*K[2]*K[6]*det*w[2][0]*w[3][0]; + G[35] = 0.5*K[2]*K[3]*det*w[2][0]*w[3][0]; + G[36] = 0.5*K[0]*K[2]*det*w[2][0]*w[3][0]; + G[37] = 0.5*K[2]*K[7]*det*w[2][0]*w[3][0]; + G[38] = 0.5*K[2]*K[4]*det*w[2][0]*w[3][0]; + G[39] = 0.5*K[1]*K[2]*det*w[2][0]*w[3][0]; + G[40] = 0.5*det*w[3][0]*(K[2]*K[8]*w[2][0] + w[4][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[41] = 0.5*K[0]*K[6]*det*w[1][0]*w[3][0]; + G[42] = 0.5*det*w[1][0]*w[3][0]*(K[0]*K[7] + K[1]*K[6]); + G[43] = 0.5*det*w[1][0]*w[3][0]*(K[0]*K[8] + K[2]*K[6]); + G[44] = 0.5*K[1]*K[7]*det*w[1][0]*w[3][0]; + G[45] = 0.5*det*w[1][0]*w[3][0]*(K[1]*K[8] + K[2]*K[7]); + G[46] = 0.5*K[2]*K[8]*det*w[1][0]*w[3][0]; + G[47] = 0.5*det*w[3][0]*(K[6]*K[6]*w[2][0] + w[4][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8])); + G[48] = 0.5*K[6]*K[6]*det*w[1][0]*w[3][0]; + G[49] = K[6]*K[7]*det*w[1][0]*w[3][0]; + G[50] = K[6]*K[8]*det*w[1][0]*w[3][0]; + G[51] = 0.5*K[7]*K[7]*det*w[1][0]*w[3][0]; + G[52] = K[7]*K[8]*det*w[1][0]*w[3][0]; + G[53] = 0.5*K[8]*K[8]*det*w[1][0]*w[3][0]; + G[54] = 0.5*det*w[3][0]*(K[3]*K[6]*w[2][0] + w[4][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[55] = 0.5*det*w[3][0]*(K[0]*K[6]*w[2][0] + w[4][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[56] = 0.5*K[6]*K[7]*det*w[2][0]*w[3][0]; + G[57] = 0.5*K[4]*K[6]*det*w[2][0]*w[3][0]; + G[58] = 0.5*K[1]*K[6]*det*w[2][0]*w[3][0]; + G[59] = 0.5*K[6]*K[8]*det*w[2][0]*w[3][0]; + G[60] = 0.5*det*w[3][0]*(K[3]*K[3]*w[2][0] + w[4][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5])); + G[61] = 0.5*det*w[3][0]*(K[0]*K[3]*w[2][0] + w[4][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[62] = 0.5*K[3]*K[7]*det*w[2][0]*w[3][0]; + G[63] = 0.5*K[3]*K[4]*det*w[2][0]*w[3][0]; + G[64] = 0.5*K[1]*K[3]*det*w[2][0]*w[3][0]; + G[65] = 0.5*K[3]*K[8]*det*w[2][0]*w[3][0]; + G[66] = 0.5*det*w[3][0]*(K[0]*K[0]*w[2][0] + w[4][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2])); + G[67] = 0.5*K[0]*K[7]*det*w[2][0]*w[3][0]; + G[68] = 0.5*K[0]*K[4]*det*w[2][0]*w[3][0]; + G[69] = 0.5*K[0]*K[1]*det*w[2][0]*w[3][0]; + G[70] = 0.5*K[0]*K[8]*det*w[2][0]*w[3][0]; + G[71] = 0.5*det*w[3][0]*(K[7]*K[7]*w[2][0] + w[4][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8])); + G[72] = 0.5*det*w[3][0]*(K[4]*K[7]*w[2][0] + w[4][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[73] = 0.5*det*w[3][0]*(K[1]*K[7]*w[2][0] + w[4][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[74] = 0.5*K[7]*K[8]*det*w[2][0]*w[3][0]; + G[75] = 0.5*det*w[3][0]*(K[4]*K[4]*w[2][0] + w[4][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5])); + G[76] = 0.5*det*w[3][0]*(K[1]*K[4]*w[2][0] + w[4][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[77] = 0.5*K[4]*K[8]*det*w[2][0]*w[3][0]; + G[78] = 0.5*det*w[3][0]*(K[1]*K[1]*w[2][0] + w[4][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2])); + G[79] = 0.5*K[1]*K[8]*det*w[2][0]*w[3][0]; + G[80] = 0.5*det*w[3][0]*(K[8]*K[8]*w[2][0] + w[4][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8])); + G[81] = 0.5*K[6]*det*w[3][0]; + G[82] = 0.5*K[7]*det*w[3][0]; + G[83] = 0.5*K[8]*det*w[3][0]; + G[84] = 0.5*K[3]*det*w[3][0]; + G[85] = 0.5*K[4]*det*w[3][0]; + G[86] = 0.5*K[5]*det*w[3][0]; + G[87] = 0.5*K[0]*det*w[3][0]; + G[88] = 0.5*K[1]*det*w[3][0]; + G[89] = 0.5*K[2]*det*w[3][0]; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 6760 + for (unsigned int ip = 0; ip < 4; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + + // Total number of operations to compute function values = 24 + for (unsigned int r = 0; r < 4; r++) + { + F0 += FE1_C0[ip][r]*w[0][nzc0[r]]; + F1 += FE1_C0[ip][r]*w[0][nzc4[r]]; + F2 += FE1_C0[ip][r]*w[0][nzc8[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 334 + double I[49]; + // Number of operations: 16 + I[0] = W4[ip]*(G[0] + F0*F0*G[1] + F1*(F0*G[2] + F1*G[4]) + F2*(F0*G[3] + F1*G[5] + F2*G[6])); + + // Number of operations: 16 + I[1] = W4[ip]*(G[7] + F0*F0*G[8] + F1*(F0*G[9] + F1*G[11]) + F2*(F0*G[10] + F1*G[12] + F2*G[13])); + + // Number of operations: 1 + I[2] = G[14]*W4[ip]; + + // Number of operations: 1 + I[3] = G[15]*W4[ip]; + + // Number of operations: 1 + I[4] = G[16]*W4[ip]; + + // Number of operations: 1 + I[5] = G[17]*W4[ip]; + + // Number of operations: 1 + I[6] = G[18]*W4[ip]; + + // Number of operations: 1 + I[7] = G[19]*W4[ip]; + + // Number of operations: 16 + I[8] = W4[ip]*(G[20] + F0*F0*G[21] + F1*(F0*G[22] + F1*G[24]) + F2*(F0*G[23] + F1*G[25] + F2*G[26])); + + // Number of operations: 16 + I[9] = W4[ip]*(G[27] + F0*F0*G[28] + F1*(F0*G[29] + F1*G[31]) + F2*(F0*G[30] + F1*G[32] + F2*G[33])); + + // Number of operations: 1 + I[10] = G[34]*W4[ip]; + + // Number of operations: 1 + I[11] = G[35]*W4[ip]; + + // Number of operations: 1 + I[12] = G[36]*W4[ip]; + + // Number of operations: 1 + I[13] = G[37]*W4[ip]; + + // Number of operations: 1 + I[14] = G[38]*W4[ip]; + + // Number of operations: 1 + I[15] = G[39]*W4[ip]; + + // Number of operations: 16 + I[16] = W4[ip]*(G[40] + F0*F0*G[41] + F1*(F0*G[42] + F1*G[44]) + F2*(F0*G[43] + F1*G[45] + F2*G[46])); + + // Number of operations: 16 + I[17] = W4[ip]*(G[47] + F0*F0*G[48] + F1*(F0*G[49] + F1*G[51]) + F2*(F0*G[50] + F1*G[52] + F2*G[53])); + + // Number of operations: 16 + I[18] = W4[ip]*(G[54] + F0*F0*G[21] + F1*(F0*G[22] + F1*G[24]) + F2*(F0*G[23] + F1*G[25] + F2*G[26])); + + // Number of operations: 16 + I[19] = W4[ip]*(G[55] + F0*F0*G[41] + F1*(F0*G[42] + F1*G[44]) + F2*(F0*G[43] + F1*G[45] + F2*G[46])); + + // Number of operations: 1 + I[20] = G[56]*W4[ip]; + + // Number of operations: 1 + I[21] = G[57]*W4[ip]; + + // Number of operations: 1 + I[22] = G[58]*W4[ip]; + + // Number of operations: 1 + I[23] = G[59]*W4[ip]; + + // Number of operations: 16 + I[24] = W4[ip]*(G[60] + F0*F0*G[1] + F1*(F0*G[2] + F1*G[4]) + F2*(F0*G[3] + F1*G[5] + F2*G[6])); + + // Number of operations: 16 + I[25] = W4[ip]*(G[61] + F0*F0*G[8] + F1*(F0*G[9] + F1*G[11]) + F2*(F0*G[10] + F1*G[12] + F2*G[13])); + + // Number of operations: 1 + I[26] = G[62]*W4[ip]; + + // Number of operations: 1 + I[27] = G[63]*W4[ip]; + + // Number of operations: 1 + I[28] = G[64]*W4[ip]; + + // Number of operations: 1 + I[29] = G[65]*W4[ip]; + + // Number of operations: 16 + I[30] = W4[ip]*(G[66] + F0*F0*G[28] + F1*(F0*G[29] + F1*G[31]) + F2*(F0*G[30] + F1*G[32] + F2*G[33])); + + // Number of operations: 1 + I[31] = G[67]*W4[ip]; + + // Number of operations: 1 + I[32] = G[68]*W4[ip]; + + // Number of operations: 1 + I[33] = G[69]*W4[ip]; + + // Number of operations: 1 + I[34] = G[70]*W4[ip]; + + // Number of operations: 16 + I[35] = W4[ip]*(G[71] + F0*F0*G[48] + F1*(F0*G[49] + F1*G[51]) + F2*(F0*G[50] + F1*G[52] + F2*G[53])); + + // Number of operations: 16 + I[36] = W4[ip]*(G[72] + F0*F0*G[21] + F1*(F0*G[22] + F1*G[24]) + F2*(F0*G[23] + F1*G[25] + F2*G[26])); + + // Number of operations: 16 + I[37] = W4[ip]*(G[73] + F0*F0*G[41] + F1*(F0*G[42] + F1*G[44]) + F2*(F0*G[43] + F1*G[45] + F2*G[46])); + + // Number of operations: 1 + I[38] = G[74]*W4[ip]; + + // Number of operations: 16 + I[39] = W4[ip]*(G[75] + F0*F0*G[1] + F1*(F0*G[2] + F1*G[4]) + F2*(F0*G[3] + F1*G[5] + F2*G[6])); + + // Number of operations: 16 + I[40] = W4[ip]*(G[76] + F0*F0*G[8] + F1*(F0*G[9] + F1*G[11]) + F2*(F0*G[10] + F1*G[12] + F2*G[13])); + + // Number of operations: 1 + I[41] = G[77]*W4[ip]; + + // Number of operations: 16 + I[42] = W4[ip]*(G[78] + F0*F0*G[28] + F1*(F0*G[29] + F1*G[31]) + F2*(F0*G[30] + F1*G[32] + F2*G[33])); + + // Number of operations: 1 + I[43] = G[79]*W4[ip]; + + // Number of operations: 16 + I[44] = W4[ip]*(G[80] + F0*F0*G[48] + F1*(F0*G[49] + F1*G[51]) + F2*(F0*G[50] + F1*G[52] + F2*G[53])); + + // Number of operations: 6 + I[45] = W4[ip]*(F0*G[81] + F1*G[82] + F2*G[83]); + + // Number of operations: 6 + I[46] = W4[ip]*(F0*G[84] + F1*G[85] + F2*G[86]); + + // Number of operations: 6 + I[47] = W4[ip]*(F0*G[87] + F1*G[88] + F2*G[89]); + + // Number of operations: 1 + I[48] = W4[ip]*det; + + + // Number of operations for primary indices: 216 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc0[j]*12 + nzc1[k]] += FE1_C0[ip][j]*FE1_C0_D001[ip][k]*I[45]; + // Number of operations to compute entry: 3 + A[nzc0[j]*12 + nzc2[k]] += FE1_C0[ip][j]*FE1_C0_D001[ip][k]*I[46]; + // Number of operations to compute entry: 3 + A[nzc0[j]*12 + nzc3[k]] += FE1_C0[ip][j]*FE1_C0_D001[ip][k]*I[47]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc5[k]] += FE1_C0[ip][j]*FE1_C0_D001[ip][k]*I[45]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc6[k]] += FE1_C0[ip][j]*FE1_C0_D001[ip][k]*I[46]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc7[k]] += FE1_C0[ip][j]*FE1_C0_D001[ip][k]*I[47]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc10[k]] += FE1_C0[ip][j]*FE1_C0_D001[ip][k]*I[46]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc11[k]] += FE1_C0[ip][j]*FE1_C0_D001[ip][k]*I[47]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc9[k]] += FE1_C0[ip][j]*FE1_C0_D001[ip][k]*I[45]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 972 + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc10[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc11[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc1[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc2[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc3[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc5[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc6[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc7[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc9[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc10[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc11[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc1[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc2[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc3[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc5[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc6[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[14]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc7[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc9[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc10[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc11[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc1[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc2[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc3[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc5[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc6[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[21]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc7[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc9[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc10[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc11[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc1[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc2[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc3[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc5[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[26]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc6[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[27]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc7[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc9[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc10[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc11[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc1[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc2[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc3[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[30]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc5[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc6[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc7[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[33]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc9[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[34]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc10[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc11[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc1[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc2[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[26]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc3[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc5[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[35]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc6[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[36]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc7[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[37]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc9[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[38]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc10[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc11[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[14]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc1[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[21]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc2[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[27]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc3[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc5[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[36]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc6[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[39]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc7[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[40]; + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc9[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[41]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc10[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc11[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc1[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc2[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc3[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[33]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc5[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[37]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc6[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[40]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc7[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[42]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc9[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[43]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc10[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc11[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc1[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc2[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc3[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[34]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc5[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[38]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc6[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[41]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc7[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[43]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc9[k]] += FE1_C0_D001[ip][j]*FE1_C0_D001[ip][k]*I[44]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[nzc0[j]*12 + nzc0[k]] += FE1_C0[ip][j]*FE1_C0[ip][k]*I[48]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc4[k]] += FE1_C0[ip][j]*FE1_C0[ip][k]*I[48]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc8[k]] += FE1_C0[ip][j]*FE1_C0[ip][k]*I[48]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class navierstokes_form_0: public ufc::form +{ +public: + + /// Constructor + navierstokes_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~navierstokes_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "c1a30d8123246b455c4992f0cbace8819e978dcae09c23533fc94d9938276bbae541af15c5653df6f80d5c2f6430869430fa884aaf11cfe9c9afd212af180d16"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 5; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new navierstokes_finite_element_2(); + break; + } + case 1: + { + return new navierstokes_finite_element_2(); + break; + } + case 2: + { + return new navierstokes_finite_element_2(); + break; + } + case 3: + { + return new navierstokes_finite_element_0(); + break; + } + case 4: + { + return new navierstokes_finite_element_0(); + break; + } + case 5: + { + return new navierstokes_finite_element_0(); + break; + } + case 6: + { + return new navierstokes_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new navierstokes_dofmap_2(); + break; + } + case 1: + { + return new navierstokes_dofmap_2(); + break; + } + case 2: + { + return new navierstokes_dofmap_2(); + break; + } + case 3: + { + return new navierstokes_dofmap_0(); + break; + } + case 4: + { + return new navierstokes_dofmap_0(); + break; + } + case 5: + { + return new navierstokes_dofmap_0(); + break; + } + case 6: + { + return new navierstokes_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new navierstokes_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace NavierStokes +{ + +class CoefficientSpace_d1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_d1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_d1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_d1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_d1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_d1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_d1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_d1() + { + } + +}; + +class CoefficientSpace_d2: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_d2(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_d2(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_d2(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_d2(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_d2(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_d2(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_d2() + { + } + +}; + +class CoefficientSpace_k: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_k(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_k(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_k(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_k() + { + } + +}; + +class CoefficientSpace_nu: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_nu(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_nu(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_nu(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_nu(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_nu(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_nu(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_nu() + { + } + +}; + +class CoefficientSpace_w: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_w(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_w(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_w(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_w(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_w(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_w(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_w() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new navierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new navierstokes_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_w Form_a_FunctionSpace_2; + +typedef CoefficientSpace_d1 Form_a_FunctionSpace_3; + +typedef CoefficientSpace_d2 Form_a_FunctionSpace_4; + +typedef CoefficientSpace_k Form_a_FunctionSpace_5; + +typedef CoefficientSpace_nu Form_a_FunctionSpace_6; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new navierstokes_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& d1, const dolfin::GenericFunction& d2, const dolfin::GenericFunction& k, const dolfin::GenericFunction& nu): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->w = w; + this->d1 = d1; + this->d2 = d2; + this->k = k; + this->nu = nu; + + _ufc_form = std::shared_ptr(new navierstokes_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr w, std::shared_ptr d1, std::shared_ptr d2, std::shared_ptr k, std::shared_ptr nu): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->w = *w; + this->d1 = *d1; + this->d2 = *d2; + this->k = *k; + this->nu = *nu; + + _ufc_form = std::shared_ptr(new navierstokes_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new navierstokes_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& d1, const dolfin::GenericFunction& d2, const dolfin::GenericFunction& k, const dolfin::GenericFunction& nu): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->w = w; + this->d1 = d1; + this->d2 = d2; + this->k = k; + this->nu = nu; + + _ufc_form = std::shared_ptr(new navierstokes_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr w, std::shared_ptr d1, std::shared_ptr d2, std::shared_ptr k, std::shared_ptr nu): + dolfin::Form(2, 5), w(*this, 0), d1(*this, 1), d2(*this, 2), k(*this, 3), nu(*this, 4) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->w = *w; + this->d1 = *d1; + this->d2 = *d2; + this->k = *k; + this->nu = *nu; + + _ufc_form = std::shared_ptr(new navierstokes_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "w") + return 0; + else if (name == "d1") + return 1; + else if (name == "d2") + return 2; + else if (name == "k") + return 3; + else if (name == "nu") + return 4; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "w"; + case 1: + return "d1"; + case 2: + return "d2"; + case 3: + return "k"; + case 4: + return "nu"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + typedef Form_a_FunctionSpace_2 CoefficientSpace_w; + typedef Form_a_FunctionSpace_3 CoefficientSpace_d1; + typedef Form_a_FunctionSpace_4 CoefficientSpace_d2; + typedef Form_a_FunctionSpace_5 CoefficientSpace_k; + typedef Form_a_FunctionSpace_6 CoefficientSpace_nu; + + // Coefficients + dolfin::CoefficientAssigner w; + dolfin::CoefficientAssigner d1; + dolfin::CoefficientAssigner d2; + dolfin::CoefficientAssigner k; + dolfin::CoefficientAssigner nu; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/multicore/cpp/NavierStokes.ufl b/bench/fem/multicore/cpp/NavierStokes.ufl new file mode 100644 index 0000000..ea6f86b --- /dev/null +++ b/bench/fem/multicore/cpp/NavierStokes.ufl @@ -0,0 +1,16 @@ +# The bilinear form for a stabilized formulation of Navier-Stokes + +element = VectorElement("Lagrange", tetrahedron, 1) +constant_scalar = FiniteElement("Discontinuous Lagrange", tetrahedron, 0) + +v = TestFunction(element) +u = TrialFunction(element) + +w = Coefficient(element) +d1 = Coefficient(constant_scalar) +d2 = Coefficient(constant_scalar) +k = Coefficient(constant_scalar) +nu = Coefficient(constant_scalar) + +a = inner(u, v)*dx + 0.5*k*nu*inner(grad(u), grad(v))*dx + 0.5*k*inner(grad(u)*w, v)*dx \ + + d1*0.5*k*dot(grad(u)*w, grad(v)*w)*dx + d2*0.5*k*div(u)*div(v)*dx diff --git a/bench/fem/multicore/cpp/Poisson.h b/bench/fem/multicore/cpp/Poisson.h new file mode 100644 index 0000000..2f3a252 --- /dev/null +++ b/bench/fem/multicore/cpp/Poisson.h @@ -0,0 +1,2051 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __POISSON_H +#define __POISSON_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 27 + // Number of operations (multiply-add pairs) for tensor contraction: 28 + // Total number of operations (multiply-add pairs): 58 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + const double G0_0_1 = det*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + const double G0_0_2 = det*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + const double G0_1_0 = det*(K[3]*K[0] + K[4]*K[1] + K[5]*K[2]); + const double G0_1_1 = det*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + const double G0_1_2 = det*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + const double G0_2_0 = det*(K[6]*K[0] + K[7]*K[1] + K[8]*K[2]); + const double G0_2_1 = det*(K[6]*K[3] + K[7]*K[4] + K[8]*K[5]); + const double G0_2_2 = det*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + + // Compute element tensor + A[0] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_0_1 + 0.166666666666667*G0_0_2 + 0.166666666666667*G0_1_0 + 0.166666666666667*G0_1_1 + 0.166666666666667*G0_1_2 + 0.166666666666667*G0_2_0 + 0.166666666666667*G0_2_1 + 0.166666666666667*G0_2_2; + A[1] = -0.166666666666667*G0_0_0 - 0.166666666666667*G0_1_0 - 0.166666666666667*G0_2_0; + A[2] = -0.166666666666667*G0_0_1 - 0.166666666666667*G0_1_1 - 0.166666666666667*G0_2_1; + A[3] = -0.166666666666667*G0_0_2 - 0.166666666666667*G0_1_2 - 0.166666666666667*G0_2_2; + A[4] = -0.166666666666667*G0_0_0 - 0.166666666666667*G0_0_1 - 0.166666666666667*G0_0_2; + A[5] = 0.166666666666667*G0_0_0; + A[6] = 0.166666666666667*G0_0_1; + A[7] = 0.166666666666667*G0_0_2; + A[8] = -0.166666666666667*G0_1_0 - 0.166666666666667*G0_1_1 - 0.166666666666667*G0_1_2; + A[9] = 0.166666666666667*G0_1_0; + A[10] = 0.166666666666667*G0_1_1; + A[11] = 0.166666666666667*G0_1_2; + A[12] = -0.166666666666667*G0_2_0 - 0.166666666666667*G0_2_1 - 0.166666666666667*G0_2_2; + A[13] = 0.166666666666667*G0_2_0; + A[14] = 0.166666666666667*G0_2_1; + A[15] = 0.166666666666667*G0_2_2; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_0: public ufc::form +{ +public: + + /// Constructor + poisson_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "485ee4abc20119b82968409dcd30845bbd75cf8eb2d37865cd36ae609240e0096d0047eeab6075652c6e4268052caed39792496313b48a8a3cb2824bcd9e32aa"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson +{ + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/multicore/cpp/Poisson.ufl b/bench/fem/multicore/cpp/Poisson.ufl new file mode 100644 index 0000000..5fd6064 --- /dev/null +++ b/bench/fem/multicore/cpp/Poisson.ufl @@ -0,0 +1,8 @@ +# Standard Poisson bilinear form + +element = FiniteElement("Lagrange", tetrahedron, 1) + +u = TrialFunction(element) +v = TestFunction(element) + +a = inner(grad(u), grad(v))*dx diff --git a/bench/fem/multicore/cpp/compile.log b/bench/fem/multicore/cpp/compile.log new file mode 100644 index 0000000..9b73ca7 --- /dev/null +++ b/bench/fem/multicore/cpp/compile.log @@ -0,0 +1,1409 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0196071 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.00097 seconds + Shape of reference tensor: (4, 4, 3, 3) + Primary multi index: rank = 2 dims = [4, 4] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.00837588 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000259161 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.078908 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000422955 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson.h. + +Compiler stage 5 finished in 0.000681877 seconds. + +FFC finished in 0.10866 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form NavierStokes + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 5 + Coefficients: '[w_0, w_1, w_2, w_3, w_4]' + Coefficient names: '[w, d1, d2, k, nu]' + Unique elements: 'Vector<3 x CG1(?)>, DG0(?)' + Unique sub elements: 'Vector<3 x CG1(?)>, DG0(?), CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 6 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.03074 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 3 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 3 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {4: {VectorElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, dim=3, quad_scheme=None): {None: {None: {(1, 0, 0): array([[[-1., -1., -1., -1.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [-1., -1., -1., -1.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 1., 1., 1., 1.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [-1., -1., -1., -1.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]]]), (0, 1, 0): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 3.88578059e-16, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 3.88578059e-16, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 3.88578059e-16, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]]]), (0, 0, 0): array([[[ 0.1381966, 0.1381966, 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0.5854102, 0.1381966, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0.1381966, 0.5854102, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0.1381966, 0.1381966, 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.5854102, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.5854102, 0.1381966, 0.1381966]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966]]]), (0, 0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.11022302e-16, 1.11022302e-16, 4.99600361e-16, + 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 5.55111512e-17, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.11022302e-16, 1.11022302e-16, 4.99600361e-16, + 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 5.55111512e-17, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.11022302e-16, 1.11022302e-16, 4.99600361e-16, + 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 5.55111512e-17, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]])}}}, FiniteElement('Discontinuous Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0, 0): array([[ 1., 1., 1., 1.]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE1_C0_D001': array([[ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.99600361e-16, 5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0': array([[ 0.1381966, 0.5854102, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0. , 0.1381966, + 0.5854102, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.5854102, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.1381966, 0.5854102, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.5854102, + 0.1381966, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ]]), 'FE1_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.5854102, + 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.5854102, 0.1381966, + 0.1381966, 0.1381966]]), 'FE1_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE1_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 4.99600361e-16, 5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]]), 'FE1_C0_D010': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE1_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE0': array([[ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE1_C2_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.88578059e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.99600361e-16, + 5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + tables: {'FE1_C0_D001': array([[ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.99600361e-16, 5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0': array([[ 0.1381966, 0.5854102, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0. , 0.1381966, + 0.5854102, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.5854102, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.1381966, 0.5854102, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.5854102, + 0.1381966, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ]]), 'FE1_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.5854102, + 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.5854102, 0.1381966, + 0.1381966, 0.1381966]]), 'FE1_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE1_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 4.99600361e-16, 5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]]), 'FE1_C0_D010': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE1_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE0': array([[ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE1_C2_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.88578059e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.99600361e-16, + 5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + name_map: {} + + inv_name_map: {'FE1_C0_D001': 'FE1_C0_D001', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C2': 'FE1_C2', 'FE1_C0_D100': 'FE1_C0_D100', 'FE1_C2_D001': 'FE1_C2_D001', 'FE1_C0_D010': 'FE1_C0_D010', 'FE1_C1_D010': 'FE1_C1_D010', 'FE1_C1_D100': 'FE1_C1_D100', 'FE1_C2_D100': 'FE1_C2_D100', 'FE0': 'FE0', 'FE1_C2_D010': 'FE1_C2_D010', 'FE1_C1_D001': 'FE1_C1_D001'} + + QG-utils, psi_tables, unique_tables: + {'FE1_C0_D001': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE1_C0': array([[ 0.1381966, 0.5854102, 0.1381966, 0.1381966], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966]]), 'FE0': array([[ 1.], + [ 1.], + [ 1.], + [ 1.]])} + + QG-utils, psi_tables, name_map: + {'FE1_C0_D001': ('FE1_C0_D001', (1, [0, 3]), False, False), 'FE1_C0': ('FE1_C0', (0, [0, 1, 2, 3]), False, False), 'FE1_C1': ('FE1_C0', (4, [4, 5, 6, 7]), False, False), 'FE1_C2': ('FE1_C0', (8, [8, 9, 10, 11]), False, False), 'FE1_C0_D100': ('FE1_C0_D001', (3, [0, 1]), False, False), 'FE1_C2_D001': ('FE1_C0_D001', (9, [8, 11]), False, False), 'FE1_C0_D010': ('FE1_C0_D001', (2, [0, 2]), False, False), 'FE1_C1_D010': ('FE1_C0_D001', (6, [4, 6]), False, False), 'FE1_C1_D100': ('FE1_C0_D001', (7, [4, 5]), False, False), 'FE1_C2_D100': ('FE1_C0_D001', (11, [8, 9]), False, False), 'FE0': ('FE0', (), False, True), 'FE1_C2_D010': ('FE1_C0_D001', (10, [8, 10]), False, False), 'FE1_C1_D001': ('FE1_C0_D001', (5, [4, 7]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.241525 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.047478 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 3 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Z + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: d_22 + Removing unused variable: d_21 + Removing unused variable: d_20 + Removing unused variable: d_12 + Removing unused variable: d_11 + Removing unused variable: d_10 + Removing unused variable: d_02 + Removing unused variable: d_01 + Removing unused variable: d_00 + Removing unused variable: C2 + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 3 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: area + Removing unused variable: s + Removing unused variable: lc + Removing unused variable: lb + Removing unused variable: la + Removing unused variable: v2v3 + Removing unused variable: v1v3 + Removing unused variable: v0v3 + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.269304 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.0011611 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./NavierStokes.h. + +Compiler stage 5 finished in 0.001544 seconds. + +FFC finished in 0.592213 seconds. diff --git a/bench/fem/multicore/cpp/main.cpp b/bench/fem/multicore/cpp/main.cpp new file mode 100644 index 0000000..cc63835 --- /dev/null +++ b/bench/fem/multicore/cpp/main.cpp @@ -0,0 +1,184 @@ +// Copyright (C) 2010 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2010-11-11 +// Last changed: 2012-11-02 +// +// If run without command-line arguments, this benchmark iterates from +// zero to MAX_NUM_THREADS. If a command-line argument --num_threads n +// is given, the benchmark is run with the specified number of threads. + +#include + +#include +#include +#include "Poisson.h" +#include "NavierStokes.h" + +#define MAX_NUM_THREADS 4 +#define SIZE 32 +#define NUM_REPS 10 + +using namespace dolfin; + +class PoissonFactory +{ + public: + + static std::shared_ptr
a(const Mesh& mesh) + { + // Create function space + std::shared_ptr _V(new Poisson::FunctionSpace(mesh)); + std::shared_ptr _a(new Poisson::BilinearForm(_V, _V));; + return _a; + } + +}; + +class NavierStokesFactory +{ + public: + + static std::shared_ptr a(const Mesh& mesh) + { + std::shared_ptr _V(new NavierStokes::FunctionSpace(mesh)); + + std::shared_ptr + W0(new NavierStokes::Form_a_FunctionSpace_2(mesh)); + std::shared_ptr + W1(new NavierStokes::Form_a_FunctionSpace_3(mesh)); + std::shared_ptr + W2(new NavierStokes::Form_a_FunctionSpace_4(mesh)); + std::shared_ptr + W3(new NavierStokes::Form_a_FunctionSpace_5(mesh)); + std::shared_ptr + W4(new NavierStokes::Form_a_FunctionSpace_6(mesh)); + + std::shared_ptr w0(new Function(W0)); + std::shared_ptr w1(new Function(W1)); + std::shared_ptr w2(new Function(W2)); + std::shared_ptr w3(new Function(W3)); + std::shared_ptr w4(new Function(W4)); + + std::shared_ptr a(new NavierStokes::BilinearForm(_V, _V)); + + a->set_coefficient(0, w0); + a->set_coefficient(1, w1); + a->set_coefficient(2, w2); + a->set_coefficient(3, w3); + a->set_coefficient(4, w4); + + return a; + } +}; + +double bench(std::string form, std::shared_ptr a) +{ + std::size_t num_threads = parameters["num_threads"]; + info_underline("Benchmarking %s, num_threads = %d", form.c_str(), + num_threads); + + // Create matrix + Matrix A; + + // Assemble once to initialize matrix + Assembler assembler; + assembler.reset_sparsity = false; + assemble(A, *a); + + // Run timing + Timer timer("Total time"); + for (std::size_t i = 0; i < NUM_REPS; ++i) + assemble(A, *a); + const double t = timer.stop(); + + // Write summary + summary(true); + + info(""); + + return t; +} + +int main(int argc, char* argv[]) +{ + // Parse command-line arguments + parameters.parse(argc, argv); + + // Set backend + //parameters["linear_algebra_backend"] = "Epetra"; + + // Create mesh + UnitCubeMesh old_mesh(SIZE, SIZE, SIZE); + old_mesh.color("vertex"); + Mesh mesh = old_mesh.renumber_by_color(); + + // Test cases + std::vector > > forms; + forms.push_back(std::make_pair("Poisson", PoissonFactory::a(mesh))); + forms.push_back(std::make_pair("NavierStokes", NavierStokesFactory::a(mesh))); + + // If parameter num_threads has been set, just run once + if (parameters["num_threads"].change_count() > 0) + { + for (std::size_t i = 0; i < forms.size(); i++) + bench(forms[i].first, forms[i].second); + } + + // Otherwise, iterate from 1 to MAX_NUM_THREADS + else + { + Table run_timings("Timings"); + Table speedups("Speedups"); + + // Iterate over number of threads + for (int num_threads = 0; num_threads <= MAX_NUM_THREADS; num_threads++) + { + // Set the number of threads + parameters["num_threads"] = num_threads; + + // Iterate over forms + for (std::size_t i = 0; i < forms.size(); i++) + { + // Run test case + const double t = bench(forms[i].first, forms[i].second); + + // Store results and scale to get speedups + std::stringstream s; + s << num_threads << " threads"; + run_timings(s.str(), forms[i].first) = t; + speedups(s.str(), forms[i].first) + = run_timings.get_value("0 threads", forms[i].first)/t; + if (num_threads == 0) + speedups(s.str(), "(rel 1 thread " + forms[i].first + ")") = "-"; + else + { + speedups(s.str(), "(rel 1 thread " + forms[i].first + ")") + = run_timings.get_value("1 threads", forms[i].first)/t; + } + } + } + + // Display results + info(""); + info(run_timings, true); + info(""); + info(speedups, true); + } + + return 0; +} diff --git a/bench/fem/speedup/cpp/CMakeLists.txt b/bench/fem/speedup/cpp/CMakeLists.txt new file mode 100644 index 0000000..978dc38 --- /dev/null +++ b/bench/fem/speedup/cpp/CMakeLists.txt @@ -0,0 +1,42 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_fem_speedup_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(bench_solve-poisson solve-poisson.cpp) +add_executable(bench_assemble-poisson assemble-poisson.cpp) + +# Target libraries +target_link_libraries(bench_solve-poisson ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) +target_link_libraries(bench_assemble-poisson ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/fem/speedup/cpp/Poisson.h b/bench/fem/speedup/cpp/Poisson.h new file mode 100644 index 0000000..a608275 --- /dev/null +++ b/bench/fem/speedup/cpp/Poisson.h @@ -0,0 +1,2584 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __POISSON_H +#define __POISSON_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 27 + // Number of operations (multiply-add pairs) for tensor contraction: 28 + // Total number of operations (multiply-add pairs): 58 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + const double G0_0_1 = det*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + const double G0_0_2 = det*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + const double G0_1_0 = det*(K[3]*K[0] + K[4]*K[1] + K[5]*K[2]); + const double G0_1_1 = det*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + const double G0_1_2 = det*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + const double G0_2_0 = det*(K[6]*K[0] + K[7]*K[1] + K[8]*K[2]); + const double G0_2_1 = det*(K[6]*K[3] + K[7]*K[4] + K[8]*K[5]); + const double G0_2_2 = det*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + + // Compute element tensor + A[0] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_0_1 + 0.166666666666667*G0_0_2 + 0.166666666666667*G0_1_0 + 0.166666666666667*G0_1_1 + 0.166666666666667*G0_1_2 + 0.166666666666667*G0_2_0 + 0.166666666666667*G0_2_1 + 0.166666666666667*G0_2_2; + A[1] = -0.166666666666667*G0_0_0 - 0.166666666666667*G0_1_0 - 0.166666666666667*G0_2_0; + A[2] = -0.166666666666667*G0_0_1 - 0.166666666666667*G0_1_1 - 0.166666666666667*G0_2_1; + A[3] = -0.166666666666667*G0_0_2 - 0.166666666666667*G0_1_2 - 0.166666666666667*G0_2_2; + A[4] = -0.166666666666667*G0_0_0 - 0.166666666666667*G0_0_1 - 0.166666666666667*G0_0_2; + A[5] = 0.166666666666667*G0_0_0; + A[6] = 0.166666666666667*G0_0_1; + A[7] = 0.166666666666667*G0_0_2; + A[8] = -0.166666666666667*G0_1_0 - 0.166666666666667*G0_1_1 - 0.166666666666667*G0_1_2; + A[9] = 0.166666666666667*G0_1_0; + A[10] = 0.166666666666667*G0_1_1; + A[11] = 0.166666666666667*G0_1_2; + A[12] = -0.166666666666667*G0_2_0 - 0.166666666666667*G0_2_1 - 0.166666666666667*G0_2_2; + A[13] = 0.166666666666667*G0_2_0; + A[14] = 0.166666666666667*G0_2_1; + A[15] = 0.166666666666667*G0_2_2; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 4 + // Number of operations (multiply-add pairs) for tensor contraction: 14 + // Total number of operations (multiply-add pairs): 21 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + + // Compute element tensor + A[0] = 0.0166666666666666*G0_0 + 0.0083333333333333*G0_1 + 0.0083333333333333*G0_2 + 0.0083333333333333*G0_3; + A[1] = 0.0083333333333333*G0_0 + 0.0166666666666667*G0_1 + 0.00833333333333337*G0_2 + 0.00833333333333337*G0_3; + A[2] = 0.0083333333333333*G0_0 + 0.00833333333333337*G0_1 + 0.0166666666666667*G0_2 + 0.00833333333333337*G0_3; + A[3] = 0.0083333333333333*G0_0 + 0.00833333333333337*G0_1 + 0.00833333333333337*G0_2 + 0.0166666666666667*G0_3; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_0: public ufc::form +{ +public: + + /// Constructor + poisson_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "485ee4abc20119b82968409dcd30845bbd75cf8eb2d37865cd36ae609240e0096d0047eeab6075652c6e4268052caed39792496313b48a8a3cb2824bcd9e32aa"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_1: public ufc::form +{ +public: + + /// Constructor + poisson_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "c082c1c25a4ba7a938c9ca1a7b631eccd027000fb5b9464fb5a3a47fc51677a6004507ea7b064954f22fae9f9055a367b38e0d5532a53056ac02b6014df53e23"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/bench/fem/speedup/cpp/Poisson.ufl b/bench/fem/speedup/cpp/Poisson.ufl new file mode 100644 index 0000000..44e4af0 --- /dev/null +++ b/bench/fem/speedup/cpp/Poisson.ufl @@ -0,0 +1,31 @@ +# Copyright (C) 2009 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2009-09-15 +# Last changed: 2009-09-15 +# +# The bilinear form a(v, u) and linear form L(v) for +# Poisson's equation. + +element = FiniteElement("Lagrange", tetrahedron, 1) + +v = TestFunction(element) +u = TrialFunction(element) +f = Coefficient(element) + +a = inner(grad(v), grad(u))*dx +L = v*f*dx diff --git a/bench/fem/speedup/cpp/README b/bench/fem/speedup/cpp/README new file mode 100644 index 0000000..713dbc5 --- /dev/null +++ b/bench/fem/speedup/cpp/README @@ -0,0 +1,16 @@ +This benchmark tests parallel speedup for assembly and solve. +It is organized as follows: + + assemble-poisson: simple program for assembling Poisson matrix + solve-poisson: simple program for solving Poisson's equation + + submit-bench: script for submitting jobs using dolfin_utils.pjobs + analyse-bench: script for analysing output from submit-bench + + bench: script used on benchbot for simple checking of speedup + +Possible future improvements: + + 1. MUMPS vs UMFPACK gives skewed results (MUMPS faster?) + 2. Time assemble_cells and apply separately + 3. Use barriers between timings diff --git a/bench/fem/speedup/cpp/analyse-bench b/bench/fem/speedup/cpp/analyse-bench new file mode 100755 index 0000000..faf6bcc --- /dev/null +++ b/bench/fem/speedup/cpp/analyse-bench @@ -0,0 +1,90 @@ +#!/usr/bin/env python + +# Copyright (C) 2009 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Johan Hake, 2009. +# +# First added: 2009-09-15 +# Last changed: 2011-01-04 + +# FIXME: Not checked if working! + +from dolfin import * +from glob import glob +from numpy import arange + +# Size of mesh +size = 128 + +# Number of processes to use +# NOTE: Largest number of processors to run is 2^EXP +EXP = 6 +num_processes = list(2**arange(EXP+1)) + +# Function for extracting log file +def get_filename(pattern): + filenames = glob(pattern) + if len(filenames) == 0: + raise IOError, "Unable to open file: %s" % pattern + elif len(filenames) > 1: + raise RuntimeError, "More than one data file, don't know which one to pick: " + ", ".join(filenames) + filename = filenames[0] + print "Reading data from %s..." % filename + return filename + +# Iterate over process range +assemble_time = [] +assemble_second_time = [] +solve_time = [] + +# Remove run with one processor +if 1 in num_processes: + num_processes.remove(1) + +for np in num_processes: + + # Read timings for assemble benchmark + lines = open(get_filename(\ + "assemble-poisson_np_%d_size_%d.log*" % (np, size))).readlines() + assemble_time.append(float([line for line in lines \ + if "TIME (first assembly):" in \ + line][0].split("TIME (first assembly): ")[-1])) + + assemble_second_time.append(float([line for line in lines \ + if "TIME (second assembly):" in \ + line][0].split("TIME (second assembly): ")[-1])) + + # Read timings for solve benchmark + filename = get_filename("solve-poisson_np_%d_size_%d.log*" % (np, size)) + solve_time.append(float([line for line in open(filename).readlines()\ + if "TIME:" in line][0].split("TIME: ")[-1])) + +# Compute speedups +scale_assemble = [assemble_time[0] / t for t in assemble_time] +scale_second_assemble = [assemble_second_time[0] / t for t in assemble_second_time] +scale_solve = [solve_time[0] / t for t in solve_time] + +# Print results +table = Table("Speedup") +for i, np in enumerate(num_processes): + table.set(str(np), "Assemble (first)", scale_assemble[i]) + table.set(str(np), "Assemble (second)", scale_second_assemble[i]) + table.set(str(np), "Solve", scale_solve[i]) + +print "" +info(table, True) diff --git a/bench/fem/speedup/cpp/assemble-poisson.cpp b/bench/fem/speedup/cpp/assemble-poisson.cpp new file mode 100644 index 0000000..77deeb8 --- /dev/null +++ b/bench/fem/speedup/cpp/assemble-poisson.cpp @@ -0,0 +1,72 @@ +// Copyright (C) 2009 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2009-09-15 +// Last changed: 2012-12-12 +// +// Simple Poisson assembler + +#include +#include +#include "Poisson.h" + +using namespace dolfin; + +int main(int argc, char* argv[]) +{ + // Parse command-line arguments + if (argc != 2) + { + info("Usage: solve-poisson n"); + return 1; + } + int n = atoi(argv[1]); + + // Create mesh and function space + UnitCubeMesh mesh(n, n, n); + Poisson::FunctionSpace V(mesh); + + const MPI_Comm comm = mesh.mpi_comm(); + + // Assemble matrix + Poisson::BilinearForm a(V, V); + Matrix A; + dolfin::MPI::barrier(comm); + double t = time(); + Assembler assembler; + assembler.assemble(A, a); + dolfin::MPI::barrier(comm); + t = time() - t; + + // Report timing + if (dolfin::MPI::rank(comm) == 0) + info("TIME (first assembly): %.5g", t); + + // Re-assemble matrix + dolfin::MPI::barrier(comm); + t = time(); + assembler.reset_sparsity = false; + assembler.assemble(A, a); + dolfin::MPI::barrier(comm); + t = time() - t; + + // Report timing + if (dolfin::MPI::rank(comm) == 0) + info("TIME (second assembly): %.5g", t); + + return 0; +} diff --git a/bench/fem/speedup/cpp/bench_fem_speedup_cpp b/bench/fem/speedup/cpp/bench_fem_speedup_cpp new file mode 100755 index 0000000..c695fce --- /dev/null +++ b/bench/fem/speedup/cpp/bench_fem_speedup_cpp @@ -0,0 +1,73 @@ +#!/usr/bin/env python + +# Copyright (C) 2010 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Garth N. Wells, 2011. +# Modified by Johannes Ring, 2011. +# +# First added: 2010-05-03 +# Last changed: 2011-04-05 + +import commands + +# Parameters for benchmark +SIZE = 64 +NUM_PROCS = 4 + +print "Assembly/solve speedup running on %s processors" % NUM_PROCS + +# Function for extracting test name and time from benchmark +def get_time(output): + lines = [line for line in output.split("\n") if "TIME" in line] + timing = [] + for line in lines: + time = float(line.split(":")[-1]) + name = line.split(":")[-2].strip("TIME").strip(None).replace("(", "").replace(")", "") + timing.append( (name, time) ) + return timing + +# Serial assembly +output = commands.getoutput("./bench_assemble-poisson %d" % SIZE) +assembly_t1 = get_time(output) +print "Serial assembly:", assembly_t1 + +# Parallel assembly +output = commands.getoutput("mpirun -n %d ./bench_assemble-poisson %d" % (NUM_PROCS, SIZE)) +assembly_t2 = get_time(output) +print "Parallel assembly:", assembly_t2 + +# Serial solve +output = commands.getoutput("./bench_solve-poisson %d" % SIZE) +solve_t1 = get_time(output) +print "Serial solve:", solve_t1 + +# Parallel solve +output = commands.getoutput("mpirun -n %d ./bench_solve-poisson %d" % (NUM_PROCS, SIZE)) +solve_t2 = get_time(output) +print "Parallel solve:", solve_t2 + +print "assembly" +for test1, test2 in zip(assembly_t1, assembly_t2): + print " ", test1[0] + ":", test1[1]/test2[1] + +print "solve" +for test1, test2 in zip(solve_t1, solve_t2): + print " ", test1[0] + ":", test1[1]/test2[1] + +print "BENCH assembly", assembly_t1[0][1] / assembly_t2[0][1] + assembly_t1[1][1] / assembly_t2[1][1] +print "BENCH solve", solve_t1[0][1] / solve_t2[0][1] diff --git a/bench/fem/speedup/cpp/clean.sh b/bench/fem/speedup/cpp/clean.sh new file mode 100755 index 0000000..2fc94dc --- /dev/null +++ b/bench/fem/speedup/cpp/clean.sh @@ -0,0 +1,5 @@ +#!/bin/sh +# Clean out old log files + +rm -f assemble-poisson*.log* +rm -f solve-poisson*.log* diff --git a/bench/fem/speedup/cpp/compile.log b/bench/fem/speedup/cpp/compile.log new file mode 100644 index 0000000..2919ac1 --- /dev/null +++ b/bench/fem/speedup/cpp/compile.log @@ -0,0 +1,202 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 3 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0244801 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.000761 seconds + Shape of reference tensor: (4, 4, 3, 3) + Primary multi index: rank = 2 dims = [4, 4] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 16 entries computed in 0.000677 seconds + Shape of reference tensor: (4, 4) + Primary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + Secondary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.00854492 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000269175 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.077059 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000674009 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson.h. + +Compiler stage 5 finished in 0.000755072 seconds. + +FFC finished in 0.112148 seconds. diff --git a/bench/fem/speedup/cpp/solve-poisson.cpp b/bench/fem/speedup/cpp/solve-poisson.cpp new file mode 100644 index 0000000..a990063 --- /dev/null +++ b/bench/fem/speedup/cpp/solve-poisson.cpp @@ -0,0 +1,119 @@ +// Copyright (C) 2009 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2009-09-15 +// Last changed: 2012-12-12 +// +// Simple Poisson solver + +#include +#include +#include "Poisson.h" + +using namespace dolfin; + +int main(int argc, char* argv[]) +{ + + #ifdef HAS_PETSC + + //parameters["mesh_partitioner"] = "SCOTCH"; + //parameters["linear_algebra_backend"] = "Epetra"; + parameters["linear_algebra_backend"] = "PETSc"; + + // Parse command-line arguments + if (argc != 2) + { + info("Usage: solve-poisson n"); + return 1; + } + int n = atoi(argv[1]); + + // Create mesh and function space + UnitCubeMesh mesh(n, n, n); + Poisson::FunctionSpace V(mesh); + + // MPI communicator + const MPI_Comm comm = mesh.mpi_comm(); + + // Define boundary condition + Constant u0(0.0); + DomainBoundary boundary; + DirichletBC bc(V, u0, boundary); + + // Define variational problem + Poisson::BilinearForm a(V, V); + Poisson::LinearForm L(V); + Constant f(1.0); + L.f = f; + Function u(V); + + // Create preconditioner and linear solver + //TrilinosPreconditioner pc("amg_ml"); + //EpetraKrylovSolver solver("gmres", pc); + //PETScPreconditioner pc("amg_hypre"); + //PETScPreconditioner pc("amg_ml"); + //PETScKrylovSolver solver("gmres", pc); + + PETScLUSolver solver; + + // Assemble matrix and vector, and apply Dirichlet boundary conditions + Matrix A; + Vector b; + assemble(A, a); + assemble(b, L); + bc.apply(A, b); + + // Solve linear system + dolfin::MPI::barrier(comm); + double t = time(); + solver.solve(A, *u.vector(), b); + dolfin::MPI::barrier(comm); + t = time() - t; + if (dolfin::MPI::rank(comm) == 0) + info("TIME (first time): %.5g", t); + + // Solve linear system (preconditioner assuming same non-zero pattern) + if (solver.parameters.has_key("preconditioner")) + solver.parameters("preconditioner")["same_nonzero_pattern"] = true; + u.vector()->zero(); + dolfin::MPI::barrier(comm); + t = time(); + solver.solve(A, *u.vector(), b); + dolfin::MPI::barrier(comm); + t = time() - t; + if (dolfin::MPI::rank(comm) == 0) + info("TIME (same nonzero pattern): %.5g", t); + + // Solve linear system (re-use preconditioner) + if (solver.parameters.has_key("preconditioner")) + solver.parameters("preconditioner")["reuse"] = true; + u.vector()->zero(); + dolfin::MPI::barrier(comm); + t = time(); + solver.solve(A, *u.vector(), b); + dolfin::MPI::barrier(comm); + t = time() - t; + if (dolfin::MPI::rank(comm) == 0) + info("TIME (re-use preconditioner): %.5g", t); + + #else + error("This benchmark requires PETSc."); + #endif + + return 0; +} diff --git a/bench/fem/speedup/cpp/submit-bench b/bench/fem/speedup/cpp/submit-bench new file mode 100755 index 0000000..1a243e7 --- /dev/null +++ b/bench/fem/speedup/cpp/submit-bench @@ -0,0 +1,62 @@ +#!/usr/bin/env python +# +# This script submits jobs for measuring parallel speedup. +# +# Copyright (C) 2009 Johan Hake +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2009. +# +# First added: 2009-09-15 +# Last changed: 2011-01-04 + +from dolfin_utils.pjobs import submit +from numpy import arange +import sys + +# Parameters for benchmark +SIZE = 128 + +# Number of processes to use +# NOTE: Largest number of processors to run is 2^EXP +EXP = 6 +num_processes = list(2**arange(EXP+1)) + +# Check command-line arguments +dryrun = True if 'dryrun' in sys.argv else False + +# Iterate over process range +for np in num_processes: + + if np == 1: + run_cmd = "" + else: + run_cmd = "mpirun.openmpi -n %d " % np + + # Submit assemble benchmark + submit("%s./assemble-poisson %d" % (run_cmd, SIZE), + nodes=max(1, np/8), + ppn=8, # Grab all cores on a node + name="assemble-poisson_np_%d_size_%d.log" % (np, SIZE), + dryrun=dryrun) + + # Submit solve benchmark + submit("%s./solve-poisson %d" % (run_cmd, SIZE), + nodes=max(1, np/8), + ppn=8, # Grab all cores on a node + name="solve-poisson_np_%d_size_%d.log" % (np, SIZE), + dryrun=dryrun) diff --git a/bench/function/evaluation/cpp/CMakeLists.txt b/bench/function/evaluation/cpp/CMakeLists.txt new file mode 100644 index 0000000..8997337 --- /dev/null +++ b/bench/function/evaluation/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_function_evaluation_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/function/evaluation/cpp/P1.h b/bench/function/evaluation/cpp/P1.h new file mode 100644 index 0000000..66e37ae --- /dev/null +++ b/bench/function/evaluation/cpp/P1.h @@ -0,0 +1,1624 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __P1_H +#define __P1_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class p1_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + p1_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~p1_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new p1_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class p1_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + p1_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~p1_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new p1_dofmap_0(); + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace P1 +{ + +class FunctionSpace: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + FunctionSpace(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new p1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new p1_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + FunctionSpace(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new p1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new p1_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + FunctionSpace(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new p1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new p1_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + FunctionSpace(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new p1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new p1_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + FunctionSpace(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new p1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new p1_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + FunctionSpace(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new p1_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new p1_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~FunctionSpace() + { + } + +}; + +} + +#endif diff --git a/bench/function/evaluation/cpp/P1.ufl b/bench/function/evaluation/cpp/P1.ufl new file mode 100644 index 0000000..602a800 --- /dev/null +++ b/bench/function/evaluation/cpp/P1.ufl @@ -0,0 +1,27 @@ +# Copyright (C) 2009 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2009-06-18 +# Last changed: +# +# The bilinear form a(v, u) and linear form L(v) for +# projection onto piecewise quadratics. +# +# Compile this form with FFC: ffc -l dolfin P1.ufl + +element = FiniteElement("Lagrange", tetrahedron, 1) + diff --git a/bench/function/evaluation/cpp/compile.log b/bench/function/evaluation/cpp/compile.log new file mode 100644 index 0000000..4390fdb --- /dev/null +++ b/bench/function/evaluation/cpp/compile.log @@ -0,0 +1,128 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling element P1 + +Compiler stage 1: Analyzing form(s) +----------------------------------- + +Compiler stage 1 finished in 0.000202179 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing representation of forms + +Compiler stage 2 finished in 0.0113971 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + +Compiler stage 3 finished in 0.000154972 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.109452 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000328064 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./P1.h. + +Compiler stage 5 finished in 0.000749111 seconds. + +FFC finished in 0.122674 seconds. diff --git a/bench/function/evaluation/cpp/main.cpp b/bench/function/evaluation/cpp/main.cpp new file mode 100644 index 0000000..a474eac --- /dev/null +++ b/bench/function/evaluation/cpp/main.cpp @@ -0,0 +1,92 @@ +// Copyright (C) 2010 Andre Massing +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2010-06-10 +// Last changed: 2012-12-12 +// +// Description: Benchmark for the evaluations of functions at arbitrary points. + +#include +#include "P1.h" + +using namespace dolfin; + +class F : public Expression +{ +public: + + void eval(Array& values, const Array& x) const + { + values[0] = sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2]); + } + +}; + +#ifdef HAS_CGAL + +int main(int argc, char* argv[]) +{ + not_working_in_parallel("Function evalutation benchmark"); + + info("Evaluations of functions at arbitrary points."); + + const std::size_t mesh_max_size = 32; + const std::size_t num_points = 10000000; + + // Start timing + tic(); + for (std::size_t N = 10; N < mesh_max_size; N += 2) + { + UnitCubeMesh mesh(N, N, N); + + P1::FunctionSpace V0(mesh); + Function f0(V0); + F f; + f0.interpolate(f); + + Array X(3); + Array value(1); + + // Initialize random generator generator (produces same sequence each test). + srand(1); + + for (std::size_t i = 1; i <= num_points; ++i) + { + X[0] = std::rand()/static_cast(RAND_MAX); + X[1] = std::rand()/static_cast(RAND_MAX); + X[2] = std::rand()/static_cast(RAND_MAX); + + f.eval(value, X); + } + + // Use X variable. + info("x = %.12e\ty = %.12e\tz = %.12e\tf(x) = %.12e", X[0], X[1], X[2], value[0]); + } + info("BENCH %g",toc()); + + return 0; +} + +#else + +int main() +{ + info("DOLFIN must be compiled with CGAL to run function eval benchmark."); + return 0; +} + +#endif diff --git a/bench/function/extrapolation/python/bench_function_extrapolation_python b/bench/function/extrapolation/python/bench_function_extrapolation_python new file mode 100755 index 0000000..5414f12 --- /dev/null +++ b/bench/function/extrapolation/python/bench_function_extrapolation_python @@ -0,0 +1,43 @@ +#!/usr/bin/env python + +"""This script provides a benchmark for Extrapolation""" + +# Copyright (C) 2010 Marie E. Rognes +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2010-06-07 +# Last changed: 2013-06-17 + +from dolfin import * +from time import time + +SIZE = 4 +mesh = UnitCubeMesh(SIZE, SIZE, SIZE) + +V = VectorFunctionSpace(mesh, "CG", 2) * FunctionSpace(mesh, "DG", 1) +W = VectorFunctionSpace(mesh, "CG", 3) * FunctionSpace(mesh, "DG", 2) + +u = Expression(("sin(x[0])", "1.0", "x[0]*x[1]", "0.0"), degree=3) +u = interpolate(u, V) + +w = Function(W) + +tic = time() +w.extrapolate(u) +t = time() - tic + +print "BENCH: ", t diff --git a/bench/function/interpolation/python/bench_function_interpolation_python b/bench/function/interpolation/python/bench_function_interpolation_python new file mode 100755 index 0000000..4fdb13a --- /dev/null +++ b/bench/function/interpolation/python/bench_function_interpolation_python @@ -0,0 +1,52 @@ +#!/usr/bin/env python + +"""This script provides a benchmark for interpolation between meshes""" + +# Copyright (C) 2013 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2013-06-17 +# Last changed: 2013-06-21 + +from dolfin import * +from time import time + +# FIXME: Temporary testing +import sys +if len(sys.argv) == 2 and sys.argv[1] == "DOLFIN": + parameters["use_cgal_intersection"] = False + +SIZE_0 = 21 #71 +SIZE_1 = 23 #73 + +parameters["allow_extrapolation"] = True + +mesh_0 = UnitCubeMesh(SIZE_0, SIZE_0, SIZE_0) +mesh_1 = UnitCubeMesh(SIZE_1, SIZE_1, SIZE_1) + +V0 = FunctionSpace(mesh_0, "CG", 1) +V1 = FunctionSpace(mesh_1, "CG", 1) + +v0 = interpolate(Expression("sin(5*x[0])*cos(7*x[1])"), V0) + +tic = time() +v1 = interpolate(v0, V1) +t = time() - tic + +plot(v1, interactive=True) + +print "BENCH: ", t diff --git a/bench/geometry/bounding_box_tree_build/cpp/CMakeLists.txt b/bench/geometry/bounding_box_tree_build/cpp/CMakeLists.txt new file mode 100644 index 0000000..4f7714c --- /dev/null +++ b/bench/geometry/bounding_box_tree_build/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_geometry_bounding_box_tree_build_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/geometry/bounding_box_tree_build/cpp/main.cpp b/bench/geometry/bounding_box_tree_build/cpp/main.cpp new file mode 100644 index 0000000..7334155 --- /dev/null +++ b/bench/geometry/bounding_box_tree_build/cpp/main.cpp @@ -0,0 +1,43 @@ +// Copyright (C) 2013 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// This benchmark measures the performance of building a BoundingBoxTree (and +// one call to compute_entities, which is dominated by building). +// +// First added: 2013-04-18 +// Last changed: 2013-06-25 + +#include +#include + +using namespace dolfin; + +#define SIZE 128 + +int main(int argc, char* argv[]) +{ + // Create mesh + UnitCubeMesh mesh(SIZE, SIZE, SIZE); + + // Create and build tree + tic(); + BoundingBoxTree tree; + tree.build(mesh); + info("BENCH %g", toc()); + + return 0; +} diff --git a/bench/geometry/bounding_box_tree_compute_closest_entity/cpp/CMakeLists.txt b/bench/geometry/bounding_box_tree_compute_closest_entity/cpp/CMakeLists.txt new file mode 100644 index 0000000..2180546 --- /dev/null +++ b/bench/geometry/bounding_box_tree_compute_closest_entity/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_geometry_bounding_box_tree_compute_closest_entity_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/geometry/bounding_box_tree_compute_closest_entity/cpp/main.cpp b/bench/geometry/bounding_box_tree_compute_closest_entity/cpp/main.cpp new file mode 100644 index 0000000..446db83 --- /dev/null +++ b/bench/geometry/bounding_box_tree_compute_closest_entity/cpp/main.cpp @@ -0,0 +1,56 @@ +// Copyright (C) 2013 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// This benchmark measures the performance of compute_entity_collisions. +// +// First added: 2013-05-23 +// Last changed: 2013-09-04 + +#include +#include + +using namespace dolfin; + +#define NUM_REPS 1000000 +#define SIZE 64 + +int main(int argc, char* argv[]) +{ + // Create mesh + UnitCubeMesh mesh(SIZE, SIZE, SIZE); + + // First call + BoundingBoxTree tree; + tree.build(mesh); + Point point(-1.0, -1.0, 0.0); + tree.compute_closest_entity(point); + cout << "Built tree, searching for closest point" << endl; + + // Call repeatedly + tic(); + for (int i = 0; i < NUM_REPS; i++) + { + tree.compute_closest_entity(point); + point.coordinates()[1] += 2.0 / static_cast(NUM_REPS); + } + const double t = toc(); + + // Report result + info("BENCH %g", t); + + return 0; +} diff --git a/bench/geometry/bounding_box_tree_compute_entity_collisions/cpp/CMakeLists.txt b/bench/geometry/bounding_box_tree_compute_entity_collisions/cpp/CMakeLists.txt new file mode 100644 index 0000000..088fce8 --- /dev/null +++ b/bench/geometry/bounding_box_tree_compute_entity_collisions/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_geometry_bounding_box_tree_compute_entity_collisions_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/geometry/bounding_box_tree_compute_entity_collisions/cpp/main.cpp b/bench/geometry/bounding_box_tree_compute_entity_collisions/cpp/main.cpp new file mode 100644 index 0000000..3f17b14 --- /dev/null +++ b/bench/geometry/bounding_box_tree_compute_entity_collisions/cpp/main.cpp @@ -0,0 +1,57 @@ +// Copyright (C) 2013 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// This benchmark measures the performance of compute_entity_collisions. +// +// First added: 2013-05-23 +// Last changed: 2013-09-04 + +#include +#include + +using namespace dolfin; + +#define NUM_REPS 5000000 +#define SIZE 64 + +int main(int argc, char* argv[]) +{ + // Create mesh + UnitCubeMesh mesh(SIZE, SIZE, SIZE); + + // First call + BoundingBoxTree tree; + tree.build(mesh); + Point point(0.0, 0.0, 0.0); + tree.compute_entity_collisions(point); + + // Call repeatedly + tic(); + for (int i = 0; i < NUM_REPS; i++) + { + point.coordinates()[0] += 1.0 / static_cast(NUM_REPS); + point.coordinates()[1] += 1.0 / static_cast(NUM_REPS); + point.coordinates()[2] += 1.0 / static_cast(NUM_REPS); + std::vector entities = tree.compute_entity_collisions(point); + } + const double t = toc(); + + // Report result + info("BENCH %g", t); + + return 0; +} diff --git a/bench/la/cusp/python/bench_la_cusp_python b/bench/la/cusp/python/bench_la_cusp_python new file mode 100755 index 0000000..12e739b --- /dev/null +++ b/bench/la/cusp/python/bench_la_cusp_python @@ -0,0 +1,90 @@ +#!/usr/bin/env python + +# Copyright (C) 2012 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2012-03-09 +# Last changed: 2012-04-25 + +from dolfin import * +from time import time + +SIZE = 32 +NUM_REPS = 3 + +print "Solving the linear system for Poisson's equation using PETSc CUSP" + +# Check that we have the PETSc Cusp backend +if not has_linear_algebra_backend("PETScCusp"): + print "Cannot run this benchmark since PETSc Cusp is not available." + print "BENCH: 0.0" + exit(0) + +# Function for running test +def run_bench(linear_algebra_backend): + + info("") + info("Linear algebra backend: %s" % linear_algebra_backend) + + # Set linear algebra backend + parameters["linear_algebra_backend"] = linear_algebra_backend + + # Create matrix and vector + print "Assembling matrix and vector" + mesh = UnitCube(SIZE, SIZE, SIZE) + V = FunctionSpace(mesh, "Lagrange", 1) + u = TrialFunction(V) + v = TestFunction(V) + f = Constant(1.0) + a = dot(grad(u), grad(v))*dx + L = f*v*dx + bc = DirichletBC(V, 0.0, DomainBoundary()) + A, b = assemble_system(a, L, bc) + + # Create linear solver + solver = KrylovSolver("cg", "jacobi") + + # Use hack to get around PETSc Cusp bug + solver.parameters["use_petsc_cusp_hack"] = True + + # Solve linear system + info("Solving linear system %d times" % NUM_REPS) + x = Vector() + cpu_time = time() + for i in range(NUM_REPS): + x.zero() + solver.solve(A, x, b) + print "residual =", residual(A, x, b) + cpu_time = (time() - cpu_time) / float(NUM_REPS) + + return cpu_time + +# Run benchmarks +cpu_time_petsc_cusp = run_bench("PETScCusp") +cpu_time_petsc = run_bench("PETSc") + +# Compute speedup +speedup = cpu_time_petsc / cpu_time_petsc_cusp + +# Report results +print +print "PETSc: ", cpu_time_petsc +print "PETSc Cusp:", cpu_time_petsc_cusp +print "Speedup: ", speedup +print + +print "BENCH: ", speedup diff --git a/bench/la/vector/access/cpp/CMakeLists.txt b/bench/la/vector/access/cpp/CMakeLists.txt new file mode 100644 index 0000000..aa3cbee --- /dev/null +++ b/bench/la/vector/access/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_la_vector_access_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/la/vector/access/cpp/main.cpp b/bench/la/vector/access/cpp/main.cpp new file mode 100644 index 0000000..4f71586 --- /dev/null +++ b/bench/la/vector/access/cpp/main.cpp @@ -0,0 +1,47 @@ +// Copyright (C) 2010 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Anders Logg, 2010. +// +// First added: 2010-03-30 +// Last changed: 2010-05-03 + +#include + +using namespace dolfin; + +#define SIZE 10000000 +#define NUM_REPS 100 + +int main(int argc, char* argv[]) +{ + info("Accessing vector of size %d (%d repetitions)", + SIZE, NUM_REPS); + + parameters.parse(argc, argv); + + Vector x(MPI_COMM_WORLD, SIZE); + x.zero(); + + double sum = 0.0; + for (unsigned int i = 0; i < NUM_REPS; i++) + for (unsigned int j = 0; j < SIZE; j++) + sum += x[j]; + dolfin::cout << "Sum is " << sum << dolfin::endl; + + return 0; +} diff --git a/bench/la/vector/assignment/cpp/CMakeLists.txt b/bench/la/vector/assignment/cpp/CMakeLists.txt new file mode 100644 index 0000000..09b67a2 --- /dev/null +++ b/bench/la/vector/assignment/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_la_vector_assignment_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/la/vector/assignment/cpp/main.cpp b/bench/la/vector/assignment/cpp/main.cpp new file mode 100644 index 0000000..f316ee5 --- /dev/null +++ b/bench/la/vector/assignment/cpp/main.cpp @@ -0,0 +1,44 @@ +// Copyright (C) 2006 Garth N. Wells +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Anders Logg, 2010. +// +// First added: 2006-08-18 +// Last changed: 2010-05-03 + +#include + +using namespace dolfin; + +#define NUM_REPS 100 +#define SIZE 10000000 + +int main(int argc, char* argv[]) +{ + info("Assigning to vector of size %d (%d repetitions)", + SIZE, NUM_REPS); + + parameters.parse(argc, argv); + + Vector x(MPI_COMM_WORLD, SIZE); + + for (unsigned int i = 0; i < NUM_REPS; i++) + for (unsigned int j = 0; j < SIZE; j++) + x.setitem(j, 1.0); + + return 0; +} diff --git a/bench/logs/bench.log b/bench/logs/bench.log new file mode 100644 index 0000000..16d86ce --- /dev/null +++ b/bench/logs/bench.log @@ -0,0 +1,151 @@ +(2008, 4, 30, 14, 12, 50) la-vector-access-cpp 15.8298 "Accessing vector of size 10000000 (100 repetitions)" +(2008, 4, 30, 14, 13, 9) la-vector-assignment-cpp 18.8627 "Assigning to vector of size 10000000 (100 repetitions)" +(2008, 4, 30, 14, 13, 16) fem-jit-python 0.555803 "JIT compilation (in memory cache)" +(2008, 4, 30, 14, 13, 28) fem-convergence-cpp 11.4321 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2008, 4, 30, 14, 13, 34) mesh-unitcube-cpp 6.08171 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2008, 4, 30, 14, 14, 50) mesh-refinement-cpp 75.8 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2008, 4, 30, 14, 15, 5) mesh-iteration-cpp 14.4 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2008, 6, 23, 14, 18, 43) la-vector-access-cpp 15.0198 "Accessing vector of size 10000000 (100 repetitions)" +(2008, 6, 23, 14, 19, 4) la-vector-assignment-cpp 20.8082 "Assigning to vector of size 10000000 (100 repetitions)" +(2008, 6, 23, 14, 19, 5) fem-jit-python 5.6982e-06 "JIT compilation (in memory cache)" +(2008, 6, 23, 14, 19, 20) fem-convergence-cpp 14.7388 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2008, 6, 23, 14, 21, 44) fem-assembly-cpp 143.513 "Assembly for various forms and backends" +(2008, 6, 23, 14, 21, 49) mesh-unitcube-cpp 5.86431 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2008, 6, 23, 14, 23, 5) mesh-refinement-cpp 75.54 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2008, 6, 23, 14, 23, 20) mesh-iteration-cpp 14.43 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2008, 10, 20, 14, 31, 31) la-vector-access-cpp 14.8214 "Accessing vector of size 10000000 (100 repetitions)" +(2008, 10, 20, 14, 31, 52) la-vector-assignment-cpp 20.3453 "Assigning to vector of size 10000000 (100 repetitions)" +(2008, 10, 20, 14, 31, 57) fem-jit-python 9.65118e-05 "JIT compilation (in memory cache)" +(2008, 10, 20, 14, 32, 8) fem-convergence-cpp 11.3695 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2008, 10, 20, 14, 36, 28) fem-assembly-cpp 259.766 "Assembly for various forms and backends" +(2008, 10, 20, 14, 36, 34) mesh-unitcube-cpp 6.17667 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2008, 10, 20, 14, 37, 50) mesh-refinement-cpp 75.76 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2008, 10, 20, 14, 38, 5) mesh-iteration-cpp 13.98 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2009, 1, 5, 14, 40, 18) la-vector-access-cpp 15.5729 "Accessing vector of size 10000000 (100 repetitions)" +(2009, 1, 5, 14, 40, 37) la-vector-assignment-cpp 19.2912 "Assigning to vector of size 10000000 (100 repetitions)" +(2009, 1, 5, 14, 40, 42) fem-jit-python 9.86099e-05 "JIT compilation (in memory cache)" +(2009, 1, 5, 14, 40, 53) fem-convergence-cpp 11.4639 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2009, 1, 5, 14, 45, 15) fem-assembly-cpp 261.595 "Assembly for various forms and backends" +(2009, 1, 5, 14, 45, 52) mesh-unitcube-cpp 37.4356 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2009, 1, 5, 14, 47, 14) mesh-refinement-cpp 81.26 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2009, 1, 5, 14, 47, 32) mesh-iteration-cpp 13.98 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2009, 2, 17, 14, 50, 21) la-vector-access-cpp 14.8237 "Accessing vector of size 10000000 (100 repetitions)" +(2009, 2, 17, 14, 50, 41) la-vector-assignment-cpp 20.2998 "Assigning to vector of size 10000000 (100 repetitions)" +(2009, 2, 17, 14, 50, 46) fem-jit-python 0.00846782 "JIT compilation (in memory cache)" +(2009, 2, 17, 14, 50, 57) fem-convergence-cpp 11.3066 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2009, 2, 17, 14, 55, 21) fem-assembly-cpp 263.869 "Assembly for various forms and backends" +(2009, 2, 17, 14, 55, 59) mesh-unitcube-cpp 38.0645 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2009, 2, 17, 14, 57, 22) mesh-refinement-cpp 82.32 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2009, 2, 17, 14, 57, 40) mesh-iteration-cpp 13.98 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2009, 4, 7, 15, 0, 43) la-vector-access-cpp 15.8316 "Accessing vector of size 10000000 (100 repetitions)" +(2009, 4, 7, 15, 1, 2) la-vector-assignment-cpp 19.2988 "Assigning to vector of size 10000000 (100 repetitions)" +(2009, 4, 7, 15, 1, 7) fem-jit-python 0.00636039 "JIT compilation (in memory cache)" +(2009, 4, 7, 15, 1, 42) fem-convergence-cpp 35.5486 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2009, 4, 7, 15, 11, 21) fem-assembly-cpp 579.254 "Assembly for various forms and backends" +(2009, 4, 7, 15, 12, 0) mesh-unitcube-cpp 38.1176 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2009, 4, 7, 15, 13, 22) mesh-refinement-cpp 82.04 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2009, 4, 7, 15, 13, 40) mesh-iteration-cpp 13.97 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2009, 9, 26, 11, 43, 12) la-vector-access-cpp 46.0397 "Accessing vector of size 10000000 (100 repetitions)" +(2009, 9, 26, 11, 43, 35) la-vector-assignment-cpp 22.3038 "Assigning to vector of size 10000000 (100 repetitions)" +(2009, 9, 26, 11, 43, 38) fem-jit-python 0.00593891 "JIT compilation (in memory cache)" +(2009, 9, 26, 11, 50, 46) fem-speedup-cpp 427.872 "Assembly/solve speedup running on 4 processors" +(2009, 9, 26, 11, 50, 46) fem-speedup-cpp-assembly 2.38776 "Assembly/solve speedup running on 4 processors (assembly)" +(2009, 9, 26, 11, 50, 46) fem-speedup-cpp-solve 1.73264 "Assembly/solve speedup running on 4 processors (solve)" +(2009, 9, 26, 11, 51, 15) fem-convergence-cpp 28.4034 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2009, 9, 26, 11, 58, 24) fem-assembly-cpp 428.812 "Assembly for various forms and backends" +(2009, 9, 26, 11, 59, 4) mesh-unitcube-cpp 40.7715 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2009, 9, 26, 12, 0, 50) mesh-refinement-cpp 106.01 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2009, 9, 26, 12, 1, 31) mesh-iteration-cpp 35.84 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2009, 9, 26, 12, 1, 52) function-evaluation-cpp 21.8595 "Evaluations of functions at arbitrary points." +(2009, 9, 26, 12, 1, 52) function-evaluation-cpp 21.74 "Evaluations of functions at arbitrary points." +(2009, 10, 12, 13, 4, 9) la-vector-access-cpp 51.7174 "Accessing vector of size 10000000 (100 repetitions)" +(2009, 10, 12, 13, 4, 33) la-vector-assignment-cpp 23.85 "Assigning to vector of size 10000000 (100 repetitions)" +(2009, 10, 12, 13, 4, 37) fem-jit-python 0.0057328 "JIT compilation (in memory cache)" +(2009, 10, 12, 13, 13, 2) fem-speedup-cpp 505.45 "Assembly/solve speedup running on 4 processors" +(2009, 10, 12, 13, 13, 2) fem-speedup-cpp-assembly 2.48958 "Assembly/solve speedup running on 4 processors (assembly)" +(2009, 10, 12, 13, 13, 2) fem-speedup-cpp-solve 2.27064 "Assembly/solve speedup running on 4 processors (solve)" +(2009, 10, 12, 13, 13, 31) fem-convergence-cpp 28.1976 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2009, 10, 12, 13, 20, 34) fem-assembly-cpp 423.846 "Assembly for various forms and backends" +(2009, 10, 12, 13, 21, 16) mesh-unitcube-cpp 41.0422 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2009, 10, 12, 13, 23, 1) mesh-refinement-cpp 105.34 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2009, 10, 12, 13, 23, 41) mesh-iteration-cpp 36.28 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2009, 10, 12, 13, 24, 2) function-evaluation-cpp 20.9444 "Evaluations of functions at arbitrary points." +(2009, 10, 12, 13, 24, 2) function-evaluation-cpp 20.86 "Evaluations of functions at arbitrary points." +(2009, 12, 4, 13, 32, 55) la-vector-access-cpp 48.7269 "Accessing vector of size 10000000 (100 repetitions)" +(2009, 12, 4, 13, 33, 17) la-vector-assignment-cpp 21.8355 "Assigning to vector of size 10000000 (100 repetitions)" +(2009, 12, 4, 13, 33, 20) fem-jit-python 0.0060514 "JIT compilation (in memory cache)" +(2009, 12, 4, 13, 41, 51) fem-speedup-cpp 510.404 "Assembly/solve speedup running on 4 processors" +(2009, 12, 4, 13, 41, 51) fem-speedup-cpp-assembly 2.25234 "Assembly/solve speedup running on 4 processors (assembly)" +(2009, 12, 4, 13, 41, 51) fem-speedup-cpp-solve 2.30526 "Assembly/solve speedup running on 4 processors (solve)" +(2009, 12, 4, 13, 42, 19) fem-convergence-cpp 27.954 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2009, 12, 4, 13, 49, 34) fem-assembly-cpp 434.896 "Assembly for various forms and backends" +(2009, 12, 4, 13, 50, 14) mesh-unitcube-cpp 40.4804 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2009, 12, 4, 13, 52, 3) mesh-refinement-cpp 109.09 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2009, 12, 4, 13, 52, 43) mesh-iteration-cpp 35.82 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2009, 12, 4, 13, 53, 4) function-evaluation-cpp 20.7841 "Evaluations of functions at arbitrary points." +(2009, 12, 4, 13, 53, 4) function-evaluation-cpp 20.7 "Evaluations of functions at arbitrary points." +(2010, 2, 3, 14, 2, 51) la-vector-access-cpp 55.332 "Accessing vector of size 10000000 (100 repetitions)" +(2010, 2, 3, 14, 3, 13) la-vector-assignment-cpp 21.8265 "Assigning to vector of size 10000000 (100 repetitions)" +(2010, 2, 3, 14, 3, 17) fem-jit-python 0.0240756 "JIT compilation (in memory cache)" +(2010, 2, 3, 14, 11, 34) fem-speedup-cpp 497.496 "Assembly/solve speedup running on 4 processors" +(2010, 2, 3, 14, 11, 34) fem-speedup-cpp-assembly 1.95726 "Assembly/solve speedup running on 4 processors (assembly)" +(2010, 2, 3, 14, 11, 34) fem-speedup-cpp-solve 2.28999 "Assembly/solve speedup running on 4 processors (solve)" +(2010, 2, 3, 14, 11, 49) fem-convergence-cpp 14.6188 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2010, 2, 3, 14, 19, 12) fem-assembly-cpp 442.546 "Assembly for various forms and backends" +(2010, 2, 3, 14, 19, 53) mesh-unitcube-cpp 40.8975 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2010, 2, 3, 14, 21, 38) mesh-refinement-cpp 104.77 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2010, 2, 3, 14, 22, 17) mesh-iteration-cpp 35.36 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2010, 2, 3, 14, 22, 39) function-evaluation-cpp 22.0025 "Evaluations of functions at arbitrary points." +(2010, 2, 3, 14, 22, 39) function-evaluation-cpp 21.89 "Evaluations of functions at arbitrary points." +(2010, 2, 17, 14, 29, 56) la-vector-access-cpp 54.1729 "Accessing vector of size 10000000 (100 repetitions)" +(2010, 2, 17, 14, 30, 18) la-vector-assignment-cpp 21.8163 "Assigning to vector of size 10000000 (100 repetitions)" +(2010, 2, 17, 14, 30, 21) fem-jit-python 0.0254639 "JIT compilation (in memory cache)" +(2010, 2, 17, 14, 37, 29) fem-speedup-cpp 427.685 "Assembly/solve speedup running on 4 processors" +(2010, 2, 17, 14, 37, 29) fem-speedup-cpp-assembly 2.20183 "Assembly/solve speedup running on 4 processors (assembly)" +(2010, 2, 17, 14, 37, 29) fem-speedup-cpp-solve 1.66403 "Assembly/solve speedup running on 4 processors (solve)" +(2010, 2, 17, 14, 37, 44) fem-convergence-cpp 14.9222 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2010, 2, 17, 14, 45, 6) fem-assembly-cpp 441.941 "Assembly for various forms and backends" +(2010, 2, 17, 14, 45, 47) mesh-unitcube-cpp 40.4403 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2010, 2, 17, 14, 47, 30) mesh-refinement-cpp 103.46 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2010, 2, 17, 14, 48, 10) mesh-iteration-cpp 35.36 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2010, 2, 17, 14, 48, 32) function-evaluation-cpp 21.7258 "Evaluations of functions at arbitrary points." +(2010, 2, 17, 14, 48, 32) function-evaluation-cpp 21.65 "Evaluations of functions at arbitrary points." +(2010, 6, 19, 19, 52, 6) la-vector-access-cpp 48.4456 "Accessing vector of size 10000000 (100 repetitions)" +(2010, 6, 19, 19, 52, 29) la-vector-assignment-cpp 22.5369 "Assigning to vector of size 10000000 (100 repetitions)" +(2010, 6, 19, 19, 52, 30) fem-jit-python 0.0248256 "JIT compilation (in memory cache)" +(2010, 6, 19, 19, 55, 12) fem-speedup-cpp 162.58 "Assembly/solve speedup running on 4 processors" +(2010, 6, 19, 19, 55, 12) fem-speedup-cpp-assembly 2.52128 "Assembly/solve speedup running on 4 processors (assembly)" +(2010, 6, 19, 19, 55, 12) fem-speedup-cpp-solve 1.67775 "Assembly/solve speedup running on 4 processors (solve)" +(2010, 6, 19, 19, 55, 25) fem-convergence-cpp 13.031 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2010, 6, 19, 19, 59, 43) fem-assembly-cpp 257.852 "Assembly for various forms and backends" +(2010, 6, 19, 20, 0, 24) mesh-unitcube-cpp 40.8275 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2010, 6, 19, 20, 2, 9) mesh-refinement-cpp 105.19 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2010, 6, 19, 20, 2, 49) mesh-iteration-cpp 35.39 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2010, 6, 19, 20, 3, 11) function-evaluation-cpp 21.7684 "Evaluations of functions at arbitrary points." +(2010, 6, 19, 20, 3, 11) function-evaluation-cpp 21.69 "Evaluations of functions at arbitrary points." +(2010, 6, 20, 1, 3, 51) la-vector-access-cpp 48.4401 "Accessing vector of size 10000000 (100 repetitions)" +(2010, 6, 20, 1, 4, 14) la-vector-assignment-cpp 23.8249 "Assigning to vector of size 10000000 (100 repetitions)" +(2010, 6, 20, 1, 4, 16) fem-jit-python 0.024965 "JIT compilation (in memory cache)" +(2010, 6, 20, 1, 6, 56) fem-speedup-cpp 160.021 "Assembly/solve speedup running on 4 processors" +(2010, 6, 20, 1, 6, 56) fem-speedup-cpp-assembly 2.49474 "Assembly/solve speedup running on 4 processors (assembly)" +(2010, 6, 20, 1, 6, 56) fem-speedup-cpp-solve 1.66284 "Assembly/solve speedup running on 4 processors (solve)" +(2010, 6, 20, 1, 7, 8) fem-convergence-cpp 12.7508 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2010, 6, 20, 1, 11, 30) fem-assembly-cpp 261.657 "Assembly for various forms and backends" +(2010, 6, 20, 1, 12, 11) mesh-unitcube-cpp 40.9106 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2010, 6, 20, 1, 13, 56) mesh-refinement-cpp 105.5 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2010, 6, 20, 1, 14, 36) mesh-iteration-cpp 35.35 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2010, 6, 20, 1, 14, 58) function-evaluation-cpp 21.8163 "Evaluations of functions at arbitrary points." +(2010, 6, 20, 1, 14, 58) function-evaluation-cpp 21.74 "Evaluations of functions at arbitrary points." +(2010, 6, 21, 1, 4, 0) la-vector-access-cpp 48.4561 "Accessing vector of size 10000000 (100 repetitions)" +(2010, 6, 21, 1, 4, 21) la-vector-assignment-cpp 21.824 "Assigning to vector of size 10000000 (100 repetitions)" +(2010, 6, 21, 1, 4, 25) fem-jit-python 0.0251855 "JIT compilation (in memory cache)" +(2010, 6, 21, 1, 7, 4) fem-speedup-cpp 159.221 "Assembly/solve speedup running on 4 processors" +(2010, 6, 21, 1, 7, 4) fem-speedup-cpp-assembly 2.52128 "Assembly/solve speedup running on 4 processors (assembly)" +(2010, 6, 21, 1, 7, 4) fem-speedup-cpp-solve 1.70657 "Assembly/solve speedup running on 4 processors (solve)" +(2010, 6, 21, 1, 7, 17) fem-convergence-cpp 13.4156 "Solving Poisson's equation in 2D for q = 1, n = 2." +(2010, 6, 21, 1, 11, 39) fem-assembly-cpp 261.596 "Assembly for various forms and backends" +(2010, 6, 21, 1, 12, 20) mesh-unitcube-cpp 40.932 "Creating unit cube of size 128 x 128 x 128 (10 repetitions)" +(2010, 6, 21, 1, 14, 5) mesh-refinement-cpp 104.98 "Uniform refinement of unit cube of size 4 x 4 x 4 (5 refinements)" +(2010, 6, 21, 1, 14, 44) mesh-iteration-cpp 35.36 "Iteration over entities of unit cube of size 128 x 128 x 128 (100 repetitions)" +(2010, 6, 21, 1, 15, 6) function-evaluation-cpp 21.8412 "Evaluations of functions at arbitrary points." +(2010, 6, 21, 1, 15, 6) function-evaluation-cpp 21.77 "Evaluations of functions at arbitrary points." diff --git a/bench/logs/milestones.log b/bench/logs/milestones.log new file mode 100644 index 0000000..9606f43 --- /dev/null +++ b/bench/logs/milestones.log @@ -0,0 +1,14 @@ +2008-02-18 DOLFIN 0.7.2 +2008-04-30 DOLFIN 0.7.3 +2008-06-23 DOLFIN 0.8.0 +2008-10-20 DOLFIN 0.8.1 +2009-01-05 DOLFIN 0.9.0 +2009-02-17 DOLFIN 0.9.1 +2009-04-07 DOLFIN 0.9.2 +2009-09-26 DOLFIN 0.9.3 +2009-10-12 DOLFIN 0.9.4 +2009-12-04 DOLFIN 0.9.5 +2010-02-03 DOLFIN 0.9.6 +2010-02-17 DOLFIN 0.9.7 +2010-07-01 DOLFIN 0.9.8 +2010-09-02 DOLFIN 0.9.9 diff --git a/bench/mesh/iteration/cpp/CMakeLists.txt b/bench/mesh/iteration/cpp/CMakeLists.txt new file mode 100644 index 0000000..463d733 --- /dev/null +++ b/bench/mesh/iteration/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_mesh_iteration_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/mesh/iteration/cpp/main.cpp b/bench/mesh/iteration/cpp/main.cpp new file mode 100644 index 0000000..8a1ecfa --- /dev/null +++ b/bench/mesh/iteration/cpp/main.cpp @@ -0,0 +1,51 @@ +// Copyright (C) 2006-2010 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2006-11-01 +// Last changed: 2012-12-12 + +#include + +using namespace dolfin; + +#define NUM_REPS 100 +#define SIZE 128 + +int main(int argc, char* argv[]) +{ + info("Iteration over entities of unit cube of size %d x %d x %d (%d repetitions)", + SIZE, SIZE, SIZE, NUM_REPS); + + parameters.parse(argc, argv); + + UnitCubeMesh mesh(SIZE, SIZE, SIZE); + + int sum = 0; + tic(); + for (int i = 0; i < NUM_REPS; i++) + { + for (CellIterator c(mesh); !c.end(); ++c) + for (VertexIterator v(*c); !v.end(); ++v) + sum += v->index(); + } + info("BENCH %g", toc()); + + // To prevent optimizing the loop away + info("Sum is %d", sum); + + return 0; +} diff --git a/bench/mesh/refinement/cpp/CMakeLists.txt b/bench/mesh/refinement/cpp/CMakeLists.txt new file mode 100644 index 0000000..7ae4d20 --- /dev/null +++ b/bench/mesh/refinement/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_mesh_refinement_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/mesh/refinement/cpp/main.cpp b/bench/mesh/refinement/cpp/main.cpp new file mode 100644 index 0000000..e23a43a --- /dev/null +++ b/bench/mesh/refinement/cpp/main.cpp @@ -0,0 +1,47 @@ +// Copyright (C) 2006-2010 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2006-11-01 +// Last changed: 2012-12-12 + +#include + +using namespace dolfin; + +#define NUM_REPS 5 +#define SIZE 4 + +int main(int argc, char* argv[]) +{ + info("Uniform refinement of unit cube of size %d x %d x %d (%d refinements)", + SIZE, SIZE, SIZE, NUM_REPS); + + parameters.parse(argc, argv); + + UnitCubeMesh unitcube_mesh(SIZE, SIZE, SIZE); + Mesh mesh(unitcube_mesh); + + tic(); + for (int i = 0; i < NUM_REPS; i++) + { + mesh = refine(mesh); + dolfin::cout << "Refined mesh: " << mesh << dolfin::endl; + } + info("BENCH %g", toc()); + + return 0; +} diff --git a/bench/mesh/topology/cpp/CMakeLists.txt b/bench/mesh/topology/cpp/CMakeLists.txt new file mode 100644 index 0000000..d885d06 --- /dev/null +++ b/bench/mesh/topology/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_mesh_topology_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/mesh/topology/cpp/main.cpp b/bench/mesh/topology/cpp/main.cpp new file mode 100644 index 0000000..8fcb121 --- /dev/null +++ b/bench/mesh/topology/cpp/main.cpp @@ -0,0 +1,55 @@ +// Copyright (C) 2010 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2010-11-25 +// Last changed: 2012-12-12 + +#include +#include + +using namespace dolfin; + +#define NUM_REPS 5 +#define SIZE 64 + +// Use for quick testing +//#define NUM_REPS 2 +//#define SIZE 32 + +int main(int argc, char* argv[]) +{ + info("Creating cell-cell connectivity for unit cube of size %d x %d x %d (%d repetitions)", + SIZE, SIZE, SIZE, NUM_REPS); + + set_log_level(DBG); + + parameters.parse(argc, argv); + + UnitCubeMesh mesh(SIZE, SIZE, SIZE); + const int D = mesh.topology().dim(); + + for (int i = 0; i < NUM_REPS; i++) + { + mesh.clean(); + mesh.init(D, D); + dolfin::cout << "Created unit cube: " << mesh << dolfin::endl; + } + + summary(); + + return 0; +} diff --git a/bench/mesh/unitcube/cpp/CMakeLists.txt b/bench/mesh/unitcube/cpp/CMakeLists.txt new file mode 100644 index 0000000..97b73a9 --- /dev/null +++ b/bench/mesh/unitcube/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME bench_mesh_unitcube_cpp) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/bench/mesh/unitcube/cpp/main.cpp b/bench/mesh/unitcube/cpp/main.cpp new file mode 100644 index 0000000..cc6240e --- /dev/null +++ b/bench/mesh/unitcube/cpp/main.cpp @@ -0,0 +1,42 @@ +// Copyright (C) 2006-2010 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2006-11-01 +// Last changed: 2010-05-03 + +#include + +using namespace dolfin; + +#define NUM_REPS 10 +#define SIZE 128 + +int main(int argc, char* argv[]) +{ + info("Creating unit cube of size %d x %d x %d (%d repetitions)", + SIZE, SIZE, SIZE, NUM_REPS); + + parameters.parse(argc, argv); + + for (int i = 0; i < NUM_REPS; i++) + { + UnitCubeMesh mesh(SIZE, SIZE, SIZE); + dolfin::cout << "Created unit cube: " << mesh << dolfin::endl; + } + + return 0; +} diff --git a/bench/plot.py b/bench/plot.py new file mode 100644 index 0000000..cbeb795 --- /dev/null +++ b/bench/plot.py @@ -0,0 +1,230 @@ +#!/usr/bin/env python + +""" +This script parses logs/bench.log and create plots for each case with +the timings function of time (date plot). It also creates a web page +index.html for easy viewing of the generated plots. +""" + +# Copyright (C) 2010 Johannes Ring +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2010-04-06 +# Last changed: 2010-04-13 + +import os +import re +import time +import datetime +import textwrap +import numpy +import matplotlib.pyplot as plt +import matplotlib.dates as mdates + +# Change some of the default Matplotlib parameters +plt.rcParams.update({'figure.figsize': [6, 4], + 'font.size' : 10, + 'axes.labelsize' : 10, + 'axes.grid': True, + 'text.fontsize' : 10, + 'legend.fontsize' : 8, + 'xtick.labelsize' : 8, + 'ytick.labelsize' : 8, + }) + +# Write to web page index.html +outfile = open("index.html", "w") +outfile.write("

DOLFIN Benchmarks

\n") +outfile.write("Last updated: %s.\n\n" % time.asctime()) + +# Open and read in logs/bench.log +benchlog = "logs/bench.log" +lines = open(benchlog, 'r').readlines() + +benchmarks = {} +pattern = "\((.*)\)\s+(.*)\s+(.*)\s+\"(.*)\"" + +# Extract data from logfile +print "Parsing %s..." % benchlog +for line in lines: + match = re.search(pattern, line) + if match: + year, month, day, hour, minute, second = \ + [int(i) for i in match.group(1).split(',')] + #date = datetime.datetime(year, month, day, hour, minute, second) + date = datetime.date(year, month, day) + name = match.group(2) + elapsed_time = float(match.group(3)) + description = match.group(4) + + if not name in benchmarks: + benchmarks[name] = [[date], [elapsed_time], description] + else: + benchmarks[name][0].append(date) + benchmarks[name][1].append(elapsed_time) + +# Open and read in logs/milestones.log +milestones = [] +milestoneslog = "logs/milestones.log" +if os.path.isfile(milestoneslog): + lines = open(milestoneslog, 'r').readlines() + for line in lines: + date = datetime.datetime.strptime(line.split()[0], "%Y-%m-%d") + progname = ' '.join(line.split()[1:]) + milestones.append([date, progname]) + +# Get Matplotlib line markers for use later +markers = [] +for m in plt.Line2D.markers: + try: + if len(m) == 1 and m != ' ': + markers.append(m) + except TypeError: + pass + +year = datetime.timedelta(days=365) +month = datetime.timedelta(days=30) +week = datetime.timedelta(days=7) +today = datetime.date.today() +lasts = ['week', 'month', 'year', 'five years'] +locators = [mdates.DayLocator(), mdates.DayLocator(interval=2), + mdates.MonthLocator(), mdates.YearLocator()] +date_fmts = ['%Y-%m-%d', '%d %b', '%b %Y', '%Y'] +xmins = [today - week, today - month, today - year, today - 5*year] + +outfile.write("

All benchmarks

\n") +outfile.write("

\n") +outfile.write("\n") + +def get_maxtime(dates, min_date, max_date, run_timings): + """Return the maximum time between min_date and max_date""" + max_time = 0 + for i, date in enumerate(dates): + if date < min_date: + continue + elif date > max_date: + break + else: + if max_time < run_timings[i]: + max_time = run_timings[i] + return max_time + +# Create normalized plots with all benchmarks in same plot for +# last week, last month, last year, and last five years +print "Generating plots for all benchmarks..." +for last, locator, date_fmt, xmin in zip(lasts, locators, date_fmts, xmins): + fig = plt.figure() + ax = fig.gca() + num = 0 + ymax = 0 + for benchmark, values in benchmarks.items(): + num += 1 + dates = values[0] + run_timings = values[1]/numpy.linalg.norm(values[1]) + ax.plot(dates, run_timings, + marker=markers[num % len(markers)], markersize=3, + label=benchmark) + ax.hold(True) + maxtime = get_maxtime(dates, xmin, today, run_timings) + if maxtime > ymax: + ymax = maxtime + ax.xaxis.set_major_locator(locator) + ax.xaxis.set_major_formatter(mdates.DateFormatter(date_fmt)) + ax.set_xlim(xmin, today) + ax.set_ylim(0, ymax) + + # Add milestones to plot + for milestone in milestones: + milestone_num = mdates.date2num(milestone[0]) + ax.annotate(milestone[1], xy=(milestone_num, 0.1E-10), + xycoords='data', xytext=(0, 30), + textcoords='offset points', + horizontalalignment='center', + verticalalignment='bottom', + style='italic', fontsize=6, + alpha=0.7, rotation='vertical', + arrowprops=dict(arrowstyle="->", alpha=0.3) + ) + + lgd = plt.legend(loc='best') + fig.autofmt_xdate() + plt.title("All benchmarks (last %s)" % last) + filename = "all_last_%s.png" % last.replace(' ', '_') + plt.savefig(filename, facecolor='#eeeeee') + + # Add plots to web page + if last in ['week', 'year']: + outfile.write(" \n" % filename) + else: + outfile.write(" \n" % filename) + +outfile.write("
\n") +outfile.write("
\n") + +# Now create separate plots for every benchmark +for benchmark, values in benchmarks.items(): + print "Generating plots for %s..." % benchmark + + outfile.write("

%s

\n" % benchmark) + outfile.write("

\n") + outfile.write("\n") + + dates = values[0] + run_timings = values[1] + description = values[2] + # Wrap the lines in the description + description = textwrap.fill(description, width=30) + + # Create plots for last week, last month, last year, and last five years + for last, locator, date_fmt, xmin in zip(lasts, locators, date_fmts, xmins): + fig = plt.figure() + ax = fig.gca() + ax.plot(dates, run_timings, marker='o', markersize=3) + ax.set_ylabel("time (seconds)") + maxtime = get_maxtime(dates, xmin, today, run_timings) + ax.set_ylim(0, maxtime + maxtime/2) + ax.legend((description,), loc='best') + ax.xaxis.set_major_locator(locator) + ax.xaxis.set_major_formatter(mdates.DateFormatter(date_fmt)) + ax.set_xlim(xmin, today) + + # Add milestones to plot + for milestone in milestones: + milestone_num = mdates.date2num(milestone[0]) + ax.annotate(milestone[1], xy=(milestone_num, 0.1E-10), + xycoords='data', xytext=(0, 30), + textcoords='offset points', + horizontalalignment='center', + verticalalignment='bottom', + style='italic', fontsize=6, + alpha=0.7, rotation='vertical', + arrowprops=dict(arrowstyle="->", alpha=0.3) + ) + + fig.autofmt_xdate() + plt.title("%s (last %s)" % (benchmark, last)) + filename = "%s_last_%s.png" % (benchmark, last.replace(' ', '_')) + plt.savefig(filename, facecolor='#eeeeee') + + # Add plots to web page + if last in ['week', 'year']: + outfile.write(" \n" % filename) + else: + outfile.write(" \n" % filename) + + outfile.write("
\n") + outfile.write("
\n") diff --git a/cmake/modules/CheckOpenMP.cmake b/cmake/modules/CheckOpenMP.cmake new file mode 100644 index 0000000..50e2aee --- /dev/null +++ b/cmake/modules/CheckOpenMP.cmake @@ -0,0 +1,55 @@ +# CheckOpenMP - this module defines the following macros + +# check_openmp_unsigned_int_loop_control_variable() +# - variable to store the result +# This macro checks if the control variable of a loop associated +# with a for directive can be of unsigned type. In OpenMP 2.5, +# only signed integer type was allowed. See Section 2.5.1 on +# p. 38 of the OpenMP 3.0 Specification. + +include(CheckCXXSourceRuns) + +macro(check_openmp_unsigned_int_loop_control_variable _test_result) + if (NOT OPENMP_FOUND) + find_package(OpenMP) + endif() + + set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} ${OpenMP_CXX_FLAGS}") + + check_cxx_source_runs(" +#include +#include + +#define N 20 + +int main () +{ + float a[N]; + + omp_set_dynamic(0); + omp_set_num_threads(10); + + for (int i=0; i= 10.3 + if (CMAKE_C_COMPILER MATCHES ".+gcc.*") + list(APPEND BLAS_SEARCH_LIBS + "mkl_blas95_lp64 mkl_intel_lp64 mkl_gnu_thread mkl_core") + set(LM "${LM};-lgomp") + else () + list(APPEND BLAS_SEARCH_LIBS + "mkl_blas95_lp64 mkl_intel_lp64 mkl_intel_thread mkl_core iomp5") + endif () + endif () + endif (WIN32) + if (BLA_VENDOR STREQUAL "Intel10_64lp_seq" OR BLA_VENDOR STREQUAL "All") + list(APPEND BLAS_SEARCH_LIBS + "mkl_blas95_lp64 mkl_intel_lp64 mkl_sequential mkl_core") + endif () + else (BLA_F95) + set(BLAS_mkl_SEARCH_SYMBOL sgemm) + set(_LIBRARIES BLAS_LIBRARIES) + if (WIN32) + list(APPEND BLAS_SEARCH_LIBS + "mkl_c_dll mkl_intel_thread_dll mkl_core_dll libguide40") + else (WIN32) + if (BLA_VENDOR STREQUAL "Intel10_32" OR BLA_VENDOR STREQUAL "All") + list(APPEND BLAS_SEARCH_LIBS + "mkl_intel mkl_intel_thread mkl_core guide") + endif () + if (BLA_VENDOR STREQUAL "Intel10_64lp" OR BLA_VENDOR STREQUAL "All") + + # old version + list(APPEND BLAS_SEARCH_LIBS + "mkl_intel_lp64 mkl_intel_thread mkl_core guide") + + # mkl >= 10.3 + if (CMAKE_C_COMPILER MATCHES ".+gcc.*") + list(APPEND BLAS_SEARCH_LIBS + "mkl_intel_lp64 mkl_gnu_thread mkl_core") + set(LM "${LM};-lgomp") + else () + list(APPEND BLAS_SEARCH_LIBS + "mkl_intel_lp64 mkl_intel_thread mkl_core iomp5") + endif () + endif () + + #older vesions of intel mkl libs + if (BLA_VENDOR STREQUAL "Intel" OR BLA_VENDOR STREQUAL "All") + list(APPEND BLAS_SEARCH_LIBS + "mkl") + list(APPEND BLAS_SEARCH_LIBS + "mkl_ia32") + list(APPEND BLAS_SEARCH_LIBS + "mkl_em64t") + endif () + endif (WIN32) + if (BLA_VENDOR STREQUAL "Intel10_64lp_seq" OR BLA_VENDOR STREQUAL "All") + list(APPEND BLAS_SEARCH_LIBS + "mkl_intel_lp64 mkl_sequential mkl_core") + endif () + endif (BLA_F95) + + foreach (IT ${BLAS_SEARCH_LIBS}) + string(REPLACE " " ";" SEARCH_LIBS ${IT}) + if (${_LIBRARIES}) + else () + check_fortran_libraries( + ${_LIBRARIES} + BLAS + ${BLAS_mkl_SEARCH_SYMBOL} + "" + "${SEARCH_LIBS}" + "${CMAKE_THREAD_LIBS_INIT};${LM}" + ) + endif () + endforeach () + + endif (_LANGUAGES_ MATCHES C OR _LANGUAGES_ MATCHES CXX) +endif (BLA_VENDOR MATCHES "Intel*" OR BLA_VENDOR STREQUAL "All") + + +if(BLA_F95) + if(BLAS95_LIBRARIES) + set(BLAS95_FOUND TRUE) + else(BLAS95_LIBRARIES) + set(BLAS95_FOUND FALSE) + endif(BLAS95_LIBRARIES) + + if(NOT BLAS_FIND_QUIETLY) + if(BLAS95_FOUND) + message(STATUS "A library with BLAS95 API found.") + else(BLAS95_FOUND) + if(BLAS_FIND_REQUIRED) + message(FATAL_ERROR + "A required library with BLAS95 API not found. Please specify library location.") + else(BLAS_FIND_REQUIRED) + message(STATUS + "A library with BLAS95 API not found. Please specify library location.") + endif(BLAS_FIND_REQUIRED) + endif(BLAS95_FOUND) + endif(NOT BLAS_FIND_QUIETLY) + set(BLAS_FOUND TRUE) + set(BLAS_LIBRARIES "${BLAS95_LIBRARIES}") +else(BLA_F95) + if(BLAS_LIBRARIES) + set(BLAS_FOUND TRUE) + else(BLAS_LIBRARIES) + set(BLAS_FOUND FALSE) + endif(BLAS_LIBRARIES) + + if(NOT BLAS_FIND_QUIETLY) + if(BLAS_FOUND) + message(STATUS "A library with BLAS API found.") + else(BLAS_FOUND) + if(BLAS_FIND_REQUIRED) + message(FATAL_ERROR + "A required library with BLAS API not found. Please specify library location." + ) + else(BLAS_FIND_REQUIRED) + message(STATUS + "A library with BLAS API not found. Please specify library location." + ) + endif(BLAS_FIND_REQUIRED) + endif(BLAS_FOUND) + endif(NOT BLAS_FIND_QUIETLY) +endif(BLA_F95) + +set(CMAKE_FIND_LIBRARY_SUFFIXES ${_blas_ORIG_CMAKE_FIND_LIBRARY_SUFFIXES}) diff --git a/cmake/modules/FindBLASHeader.cmake b/cmake/modules/FindBLASHeader.cmake new file mode 100644 index 0000000..c17997d --- /dev/null +++ b/cmake/modules/FindBLASHeader.cmake @@ -0,0 +1,50 @@ +# - Try to find BLAS header cblas.h +# Once done this will define +# +# BLASHEADER_FOUND - system has BLAS +# BLAS_INCLUDE_DIRS - include directories for BLAS +# + +#============================================================================= +# Copyright (C) 2010 Garth N. Wells +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +message(STATUS "Checking for package 'BLAS'") + +# Check for header file +find_path(BLASHEADER_INCLUDE_DIRS cblas.h + HINTS ${BLASHEADER_DIR}/include $ENV{BLASHEADER_DIR}/include + DOC "Directory where the BLAS header is located" + ) +mark_as_advanced(BLASBLASHEADER_INCLUDE_DIRS) + +# Standard package handling +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(BLASHEADER + "BLAS C header could not be found. Be sure to set BLASHEADER_DIR." + BLASHEADER_INCLUDE_DIRS) diff --git a/cmake/modules/FindCGAL.cmake b/cmake/modules/FindCGAL.cmake new file mode 100644 index 0000000..0aa0966 --- /dev/null +++ b/cmake/modules/FindCGAL.cmake @@ -0,0 +1,132 @@ +# - Try to find CGAL +# Once done this will define +# +# CGAL_FOUND - system has CGAL +# CGAL_INCLUDE_DIRS - include directories for CGAL +# CGAL_LIBRARIES - libraries for CGAL +# CGAL_DEFINITIONS - compiler flags for CGAL + +#============================================================================= +# Copyright (C) 2010-2011 Anders Logg, Johannes Ring and Garth N. Wells +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +message(STATUS "Checking for package 'CGAL'") + +# Blank out CGAL_FIND_VERSION temporarily or else find_package(CGAL ...) +# (below) will fail. +set(CGAL_FIND_VERSION_TMP ${CGAL_FIND_VERSION}) +set(CGAL_FIND_VERSION "") + +# Call CGAL supplied CMake script +find_package(CGAL + HINTS + ${CGAL_DIR} + $ENV{CGAL_DIR} + PATH_SUFFIXES lib cmake/modules lib/cmake lib/CGAL) + +# Restore CGAL_FIND_VERSION +set(CGAL_FIND_VERSION ${CGAL_FIND_VERSION_TMP}) + +if (CGAL_FIND_VERSION) + # Check if version found is >= required version + if (NOT "${CGAL_VERSION}" VERSION_LESS "${CGAL_FIND_VERSION}") + set(CGAL_VERSION_OK TRUE) + endif() +else() + # No specific version of CGAL is requested + set(CGAL_VERSION_OK TRUE) +endif() + +# Add flag to fix bug in CGAL 4.1 for Intel compilers. See +# https://sympa.inria.fr/sympa/arc/cgal-discuss/2013-01/msg00011.html +if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Intel") + if ("${CGAL_VERSION}" VERSION_GREATER "4.0.2") + set(CGAL_DEFINITIONS "-DCGAL_CFG_NO_STATEMENT_EXPRESSIONS") + endif() +endif() + +# Set variables +set(CGAL_INCLUDE_DIRS ${CGAL_INCLUDE_DIRS} ${CGAL_3RD_PARTY_INCLUDE_DIRS}) +set(CGAL_LIBRARIES ${CGAL_LIBRARY} ${CGAL_3RD_PARTY_LIBRARIES}) + +# Add GMP and MPFR libraries if defined by CGAL +if (GMP_LIBRARIES) + set(CGAL_LIBRARIES ${CGAL_LIBRARIES} ${GMP_LIBRARIES}) +endif() +if (MPFR_LIBRARIES) + set(CGAL_LIBRARIES ${CGAL_LIBRARIES} ${MPFR_LIBRARIES}) +endif() + +# Try compiling and running test program +if (DOLFIN_SKIP_BUILD_TESTS) + set(CGAL_TEST_RUNS TRUE) +elseif (CGAL_INCLUDE_DIRS AND CGAL_LIBRARIES) + + # Set flags for building test program + set(CMAKE_REQUIRED_INCLUDES ${CGAL_INCLUDE_DIRS}) + set(CMAKE_REQUIRED_LIBRARIES ${CGAL_LIBRARIES}) + set(CMAKE_REQUIRED_FLAGS ${CGAL_CXX_FLAGS_INIT}) + + # Add all previusly found Boost libraries - CGAL doesn't appear to supply + # all necessary Boost libs (test with Boost 1.50 + CGAL 4.0.2) + set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} ${Boost_LIBRARIES}) + + # Build and run test program + include(CheckCXXSourceRuns) + check_cxx_source_runs(" +// CGAL test program + +#include +#include +#include +typedef CGAL::Simple_cartesian SCK; +typedef SCK::Point_3 Point; +typedef CGAL::Polyhedron_3 Polyhedron_3; + +int main() +{ + // CGAL points + Point p1(0, 0, 0); + Point p2(1, 0, 0); + Point p3(0, 1, 0); + Point p4(0, 0, 1); + + Polyhedron_3 P; + P.make_tetrahedron(p1, p2, p3, p4); + + return 0; +} +" CGAL_TEST_RUNS) + +endif() + +# Standard package handling +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(CGAL + "CGAL could not be found. Be sure to set CGAL_DIR" + CGAL_LIBRARIES CGAL_INCLUDE_DIRS CGAL_TEST_RUNS CGAL_VERSION_OK) diff --git a/cmake/modules/FindCHOLMOD.cmake b/cmake/modules/FindCHOLMOD.cmake new file mode 100644 index 0000000..3dc6c17 --- /dev/null +++ b/cmake/modules/FindCHOLMOD.cmake @@ -0,0 +1,230 @@ +# - Try to find CHOLMOD +# Once done this will define +# +# CHOLMOD_FOUND - system has CHOLMOD +# CHOLMOD_INCLUDE_DIRS - include directories for CHOLMOD +# CHOLMOD_LIBRARIES - libraries for CHOLMOD + +#============================================================================= +# Copyright (C) 2010-2011 Garth N. Wells, Anders Logg and Johannes Ring +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +message(STATUS "Checking for package 'CHOLMOD'") + +# Find packages that CHOLMOD depends on +set(CMAKE_LIBRARY_PATH ${BLAS_DIR}/lib $ENV{BLAS_DIR}/lib ${CMAKE_LIBRARY_PATH}) +set(CMAKE_LIBRARY_PATH ${LAPACK_DIR}/lib $ENV{LAPACK_DIR}/lib ${CMAKE_LIBRARY_PATH}) +find_package(AMD QUIET) +find_package(BLAS QUIET) +find_package(LAPACK QUIET) +find_package(ParMETIS 4.0.2 QUIET) + +# FIXME: Should we have separate FindXX modules for CAMD, COLAMD, and CCOLAMD? +# FIXME: find_package(CAMD) +# FIXME: find_package(COLAMD) +# FIXME: find_package(CCOLAMD) + +# FIXME: It may be necessary to link to LAPACK and BLAS (or the vecLib +# FIXME: framework on Darwin). + +# Check for header file +find_path(CHOLMOD_INCLUDE_DIRS cholmod.h + HINTS ${CHOLMOD_DIR}/include $ENV{CHOLMOD_DIR}/include + PATH_SUFFIXES suitesparse ufsparse + DOC "Directory where the CHOLMOD header is located" + ) + +# Check for CHOLMOD library +find_library(CHOLMOD_LIBRARY cholmod + HINTS ${CHOLMOD_DIR}/lib $ENV{CHOLMOD_DIR}/lib + NO_DEFAULT_PATH + DOC "The CHOLMOD library" + ) +find_library(CHOLMOD_LIBRARY cholmod + DOC "The CHOLMOD library" + ) + +# Check for CAMD library +find_library(CAMD_LIBRARY camd + HINTS ${CHOLMOD_DIR}/lib ${CAMD_DIR}/lib $ENV{CHOLMOD_DIR}/lib $ENV{CAMD_DIR}/lib + NO_DEFAULT_PATH + DOC "The CAMD library" + ) +find_library(CAMD_LIBRARY camd + DOC "The CAMD library" + ) + +# Check for COLAMD library +find_library(COLAMD_LIBRARY colamd + HINTS ${CHOLMOD_DIR}/lib ${COLAMD_DIR}/lib $ENV{CHOLMOD_DIR}/lib $ENV{COLAMD_DIR}/lib + NO_DEFAULT_PATH + DOC "The COLAMD library" + ) +find_library(COLAMD_LIBRARY colamd + DOC "The COLAMD library" + ) + +# Check for CCOLAMD library +find_library(CCOLAMD_LIBRARY ccolamd + HINTS ${CHOLMOD_DIR}/lib ${CCOLAMD_DIR}/lib $ENV{CHOLMOD_DIR}/lib $ENV{CCOLAMD_DIR}/lib + NO_DEFAULT_PATH + DOC "The CCOLAMD library" + ) +find_library(CCOLAMD_LIBRARY ccolamd + DOC "The CCOLAMD library" + ) + +# Check for SUITESPARSECONFIG library +find_library(SUITESPARSE_LIBRARY suitesparseconfig + HINTS ${CHOLMOD_DIR}/lib ${CCOLAMD_DIR}/lib $ENV{CHOLMOD_DIR}/lib $ENV{CCOLAMD_DIR}/lib + NO_DEFAULT_PATH + DOC "The SUITESPARSECONFIG library" + ) +find_library(SUITESPARSE_LIBRARY suitesparseconfig + DOC "The SUITESPARSECONFIG library" + ) + +if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" AND NOT APPLE) + # Check for rt library + find_library(RT_LIBRARY rt + DOC "The RT library" + ) +endif() + +# Collect libraries (order is important) +if (AMD_FOUND) + set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARY} ${AMD_LIBRARIES}) +endif() +if (CAMD_LIBRARY) + set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARIES} ${CAMD_LIBRARY}) +endif() +if (COLAMD_LIBRARY) + set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARIES} ${COLAMD_LIBRARY}) +endif() +if (CCOLAMD_LIBRARY) + set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARIES} ${CCOLAMD_LIBRARY}) +endif() +if (SUITESPARSE_LIBRARY) + set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARIES} ${SUITESPARSE_LIBRARY}) +endif() +if (RT_LIBRARY) + set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARIES} ${RT_LIBRARY}) +endif() + +if (PARMETIS_FOUND) + set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARIES} ${PARMETIS_LIBRARIES}) +endif() +if (LAPACK_FOUND) + set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARIES} ${LAPACK_LIBRARIES}) +endif() +if (BLAS_FOUND) + set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARIES} ${BLAS_LIBRARIES}) +endif() + +find_program(GFORTRAN_EXECUTABLE gfortran) +if (GFORTRAN_EXECUTABLE) + execute_process(COMMAND ${GFORTRAN_EXECUTABLE} -print-file-name=libgfortran.so + OUTPUT_VARIABLE GFORTRAN_LIBRARY + OUTPUT_STRIP_TRAILING_WHITESPACE) + if (EXISTS "${GFORTRAN_LIBRARY}") + set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARIES} ${GFORTRAN_LIBRARY}) + endif() +endif() + +mark_as_advanced( + CHOLMOD_INCLUDE_DIRS + CHOLMOD_LIBRARY + CHOLMOD_LIBRARIES + CAMD_LIBRARY + COLAMD_LIBRARY + CCOLAMD_LIBRARY + ) + +# Try to run a test program that uses CHOLMOD +if (DOLFIN_SKIP_BUILD_TESTS) + set(CHOLMOD_TEST_RUNS TRUE) +elseif (CHOLMOD_INCLUDE_DIRS AND CHOLMOD_LIBRARIES AND AMD_FOUND) + + set(CMAKE_REQUIRED_INCLUDES ${CHOLMOD_INCLUDE_DIRS} ${AMD_INCLUDE_DIRS}) + set(CMAKE_REQUIRED_LIBRARIES ${CHOLMOD_LIBRARIES}) +# message("Cholmod libraries ${CHOLMOD_LIBRARIES}") + + # Build and run test program + include(CheckCXXSourceRuns) + check_cxx_source_runs(" +#include +#include + +int main() +{ + cholmod_dense *D; + cholmod_sparse *S; + cholmod_dense *x, *b, *r; + cholmod_factor *L; + double one[2] = {1,0}, m1[2] = {-1,0}; + double *dx; + cholmod_common c; + int n = 5; + double K[5][5] = {{1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 2.0,-1.0, 0.0, 0.0}, + {0.0,-1.0, 2.0,-1.0, 0.0}, + {0.0, 0.0,-1.0, 2.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0}}; + cholmod_start (&c); + D = cholmod_allocate_dense(n, n, n, CHOLMOD_REAL, &c); + dx = (double*)D->x; + for (int i=0; i < n; i++) + for (int j=0; j < n; j++) + dx[i+j*n] = K[i][j]; + S = cholmod_dense_to_sparse(D, 1, &c); + S->stype = 1; + cholmod_reallocate_sparse(cholmod_nnz(S, &c), S, &c); + b = cholmod_ones(S->nrow, 1, S->xtype, &c); + L = cholmod_analyze(S, &c); + cholmod_factorize(S, L, &c); + x = cholmod_solve(CHOLMOD_A, L, b, &c); + r = cholmod_copy_dense(b, &c); + cholmod_sdmult(S, 0, m1, one, x, r, &c); + cholmod_free_factor(&L, &c); + cholmod_free_dense(&D, &c); + cholmod_free_sparse(&S, &c); + cholmod_free_dense(&r, &c); + cholmod_free_dense(&x, &c); + cholmod_free_dense(&b, &c); + cholmod_finish(&c); + return 0; +} +" CHOLMOD_TEST_RUNS) + +endif() + +# Standard package handling +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(CHOLMOD + "CHOLMOD could not be found. Be sure to set CHOLMOD_DIR." + CHOLMOD_LIBRARIES CHOLMOD_INCLUDE_DIRS CHOLMOD_TEST_RUNS) diff --git a/cmake/modules/FindCppUnit.cmake b/cmake/modules/FindCppUnit.cmake new file mode 100644 index 0000000..bcd7c2a --- /dev/null +++ b/cmake/modules/FindCppUnit.cmake @@ -0,0 +1,69 @@ +# - Try to find CPPUNIT +# Once done this will define +# +# CPPUNIT_FOUND - system has CPPUNIT +# CPPUNIT_INCLUDE_DIRS - include directories for CPPUNIT +# CPPUNIT_LIBRARIES - libraries for CPPUNIT +# CPPUNIT_VERSION - CPPUNIT version string (MAJOR.MINOR.MICRO) + +#============================================================================= +# Copyright (C) 2010-2012 Garth N. Wells, Anders Logg and Johannes Ring +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +include(FindPkgConfig) +pkg_check_modules(PC_CPPUNIT cppunit) + +set(CPPUNIT_VERSION ${PC_CPPUNIT_VERSION}) + +# Check for header file +find_path(CPPUNIT_INCLUDE_DIRS cppunit/Test.h + HINTS ${PC_CPPUNIT_INCLUDEDIR} ${CPPUNIT_DIR}/include $ENV{CPPUNIT_DIR}/include + DOC "Directory where the CPPUNIT header is located" + ) + +# Check for library +find_library(CPPUNIT_LIBRARIES cppunit + HINTS ${PC_CPPUNIT_LIBDIR} ${CPPUNIT_DIR}/lib $ENV{CPPUNIT_DIR}/lib + NO_DEFAULT_PATH + DOC "The CPPUNIT library" + ) +find_library(CPPUNIT_LIBRARIES cppunit + DOC "The CPPUNIT library" + ) + +mark_as_advanced( + CPPUNIT_LIBRARIES + CPPUNIT_INCLUDE_DIRS + CPPUNIT_VERSION + ) + +# Standard package handling +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(CPPUNIT + "CPPUNIT could not be found. Be sure to set CPPUNIT_DIR." + CPPUNIT_LIBRARIES CPPUNIT_INCLUDE_DIRS) diff --git a/cmake/modules/FindEigen3.cmake b/cmake/modules/FindEigen3.cmake new file mode 100644 index 0000000..c1999bf --- /dev/null +++ b/cmake/modules/FindEigen3.cmake @@ -0,0 +1,87 @@ +# - Try to find Eigen3 lib +# +# This module supports requiring a minimum version, e.g. you can do +# find_package(Eigen3 3.1.2) +# to require version 3.1.2 or newer of Eigen3. +# +# Once done this will define +# +# EIGEN3_FOUND - system has eigen lib with correct version +# EIGEN3_INCLUDE_DIR - the eigen include directory +# EIGEN3_VERSION - eigen version + +# Copyright (c) 2006, 2007 Montel Laurent, +# Copyright (c) 2008, 2009 Gael Guennebaud, +# Copyright (c) 2009 Benoit Jacob +# Redistribution and use is allowed according to the terms of the +# 2-clause BSD license. + +# Modified by Garth N. Wells to add EIGEN_DIR to +# search path + +if(NOT Eigen3_FIND_VERSION) + if(NOT Eigen3_FIND_VERSION_MAJOR) + set(Eigen3_FIND_VERSION_MAJOR 2) + endif(NOT Eigen3_FIND_VERSION_MAJOR) + if(NOT Eigen3_FIND_VERSION_MINOR) + set(Eigen3_FIND_VERSION_MINOR 91) + endif(NOT Eigen3_FIND_VERSION_MINOR) + if(NOT Eigen3_FIND_VERSION_PATCH) + set(Eigen3_FIND_VERSION_PATCH 0) + endif(NOT Eigen3_FIND_VERSION_PATCH) + + set(Eigen3_FIND_VERSION "${Eigen3_FIND_VERSION_MAJOR}.${Eigen3_FIND_VERSION_MINOR}.${Eigen3_FIND_VERSION_PATCH}") +endif(NOT Eigen3_FIND_VERSION) + +macro(_eigen3_check_version) + file(READ "${EIGEN3_INCLUDE_DIR}/Eigen/src/Core/util/Macros.h" _eigen3_version_header) + + string(REGEX MATCH "define[ \t]+EIGEN_WORLD_VERSION[ \t]+([0-9]+)" _eigen3_world_version_match "${_eigen3_version_header}") + set(EIGEN3_WORLD_VERSION "${CMAKE_MATCH_1}") + string(REGEX MATCH "define[ \t]+EIGEN_MAJOR_VERSION[ \t]+([0-9]+)" _eigen3_major_version_match "${_eigen3_version_header}") + set(EIGEN3_MAJOR_VERSION "${CMAKE_MATCH_1}") + string(REGEX MATCH "define[ \t]+EIGEN_MINOR_VERSION[ \t]+([0-9]+)" _eigen3_minor_version_match "${_eigen3_version_header}") + set(EIGEN3_MINOR_VERSION "${CMAKE_MATCH_1}") + + set(EIGEN3_VERSION ${EIGEN3_WORLD_VERSION}.${EIGEN3_MAJOR_VERSION}.${EIGEN3_MINOR_VERSION}) + if(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION}) + set(EIGEN3_VERSION_OK FALSE) + else(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION}) + set(EIGEN3_VERSION_OK TRUE) + endif(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION}) + + if(NOT EIGEN3_VERSION_OK) + + message(STATUS "Eigen3 version ${EIGEN3_VERSION} found in ${EIGEN3_INCLUDE_DIR}, " + "but at least version ${Eigen3_FIND_VERSION} is required") + endif(NOT EIGEN3_VERSION_OK) +endmacro(_eigen3_check_version) + +if (EIGEN3_INCLUDE_DIR) + + # in cache already + _eigen3_check_version() + set(EIGEN3_FOUND ${EIGEN3_VERSION_OK}) + +else (EIGEN3_INCLUDE_DIR) + + find_path(EIGEN3_INCLUDE_DIR NAMES signature_of_eigen3_matrix_library + PATHS + ${EIGEN_DIR} + $ENV{EIGEN_DIR} + ${CMAKE_INSTALL_PREFIX}/include + ${KDE4_INCLUDE_DIR} + PATH_SUFFIXES eigen3 eigen + ) + + if(EIGEN3_INCLUDE_DIR) + _eigen3_check_version() + endif(EIGEN3_INCLUDE_DIR) + + include(FindPackageHandleStandardArgs) + find_package_handle_standard_args(Eigen3 DEFAULT_MSG EIGEN3_INCLUDE_DIR EIGEN3_VERSION_OK) + + mark_as_advanced(EIGEN3_INCLUDE_DIR) + +endif(EIGEN3_INCLUDE_DIR) + diff --git a/cmake/modules/FindGMP.cmake b/cmake/modules/FindGMP.cmake new file mode 100644 index 0000000..3face41 --- /dev/null +++ b/cmake/modules/FindGMP.cmake @@ -0,0 +1,87 @@ +# - Try to find the GMP librairies +# Once done this will define +# +# GMP_FOUND - system has GMP lib +# GMP_INCLUDE_DIRS - include directories for GMP +# GMP_LIBRARIES - libraries for GMP + +#============================================================================= +# Copyright (c) 2006, Laurent Montel, +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the copyright +# notice, this list of conditions and the following disclaimer in the +# documentation and/or other materials provided with the distribution. +# 3. The name of the author may not be used to endorse or promote products +# derived from this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR +# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES +# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +# IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT +# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF +# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +if (GMP_INCLUDE_DIRS AND GMP_LIBRARIES) + # Already in cache, be silent + set(GMP_FIND_QUIETLY TRUE) +endif (GMP_INCLUDE_DIRS AND GMP_LIBRARIES) + +find_path(GMP_INCLUDE_DIRS + NAMES gmp.h + HINTS ${GMP_DIR}/include $ENV{GMP_DIR}/include + DOC "Directory where the GMP header file is located" + ) + +find_library(GMP_LIBRARIES + NAMES gmp libgmp + HINTS ${GMP_DIR}/lib $ENV{GMP_DIR}/lib + NO_DEFAULT_PATH + DOC "The GMP libraries" + ) +find_library(GMP_LIBRARIES + NAMES gmp libgmp + DOC "The GMP libraries" + ) + +find_library(GMPXX_LIBRARIES + NAMES gmpxx + HINTS ${GMP_DIR}/lib $ENV{GMP_DIR}/lib + NO_DEFAULT_PATH + DOC "The GMPXX libraries" + ) +find_library(GMPXX_LIBRARIES + NAMES gmpxx + DOC "The GMPXX libraries" + ) + +find_library(MPFR_LIBRARIES + NAMES mpfr + HINTS ${GMP_DIR}/lib $ENV{GMP_DIR}/lib + NO_DEFAULT_PATH + DOC "The NPFR libraries" + ) +find_library(MPFR_LIBRARIES + NAMES mpfr + DOC "The NPFR libraries" + ) + +set(GMP_LIBRARIES ${GMP_LIBRARIES} ${GMPXX_LIBRARIES} ${MPFR_LIBRARIES}) +message(STATUS "GMP_LIBRARIES = ${GMP_LIBRARIES}") + +mark_as_advanced(GMP_INCLUDE_DIRS GMP_LIBRARIES) + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(GMP DEFAULT_MSG GMP_LIBRARIES GMP_INCLUDE_DIRS) + + diff --git a/cmake/modules/FindLAPACK.cmake b/cmake/modules/FindLAPACK.cmake new file mode 100644 index 0000000..716ac1f --- /dev/null +++ b/cmake/modules/FindLAPACK.cmake @@ -0,0 +1,350 @@ +# - Find LAPACK library +# This module finds an installed fortran library that implements the LAPACK +# linear-algebra interface (see http://www.netlib.org/lapack/). +# +# The approach follows that taken for the autoconf macro file, acx_lapack.m4 +# (distributed at http://ac-archive.sourceforge.net/ac-archive/acx_lapack.html). +# +# This module sets the following variables: +# LAPACK_FOUND - set to true if a library implementing the LAPACK interface +# is found +# LAPACK_LINKER_FLAGS - uncached list of required linker flags (excluding -l +# and -L). +# LAPACK_LIBRARIES - uncached list of libraries (using full path name) to +# link against to use LAPACK +# LAPACK95_LIBRARIES - uncached list of libraries (using full path name) to +# link against to use LAPACK95 +# LAPACK95_FOUND - set to true if a library implementing the LAPACK f95 +# interface is found +# BLA_STATIC if set on this determines what kind of linkage we do (static) +# BLA_VENDOR if set checks only the specified vendor, if not set checks +# all the possibilities +# BLA_F95 if set on tries to find the f95 interfaces for BLAS/LAPACK +### List of vendors (BLA_VENDOR) valid in this module +## Intel(mkl), ACML,Apple, NAS, Generic + +#============================================================================= +# Copyright 2007-2009 Kitware, Inc. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the copyright +# notice, this list of conditions and the following disclaimer in the +# documentation and/or other materials provided with the distribution. +# 3. The name of the author may not be used to endorse or promote products +# derived from this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR +# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES +# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +# IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT +# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF +# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +set(_lapack_ORIG_CMAKE_FIND_LIBRARY_SUFFIXES ${CMAKE_FIND_LIBRARY_SUFFIXES}) + +get_property(_LANGUAGES_ GLOBAL PROPERTY ENABLED_LANGUAGES) +if (NOT _LANGUAGES_ MATCHES Fortran OR NOT CMAKE_Fortran_COMPILER_WORKS) +include(CheckFunctionExists) +else (NOT _LANGUAGES_ MATCHES Fortran OR NOT CMAKE_Fortran_COMPILER_WORKS) +include(CheckFortranFunctionExists) +endif (NOT _LANGUAGES_ MATCHES Fortran OR NOT CMAKE_Fortran_COMPILER_WORKS) + +set(LAPACK_FOUND FALSE) +set(LAPACK95_FOUND FALSE) + +# TODO: move this stuff to separate module + +macro(Check_Lapack_Libraries LIBRARIES _prefix _name _flags _list _blas _threads) +# This macro checks for the existence of the combination of fortran libraries +# given by _list. If the combination is found, this macro checks (using the +# Check_Fortran_Function_Exists macro) whether can link against that library +# combination using the name of a routine given by _name using the linker +# flags given by _flags. If the combination of libraries is found and passes +# the link test, LIBRARIES is set to the list of complete library paths that +# have been found. Otherwise, LIBRARIES is set to FALSE. + +# N.B. _prefix is the prefix applied to the names of all cached variables that +# are generated internally and marked advanced by this macro. + +set(_libraries_work TRUE) +set(${LIBRARIES}) +set(_combined_name) +if (NOT _libdir) + if (WIN32) + set(_libdir ENV LIB) + elseif (APPLE) + set(_libdir /usr/local/lib /usr/lib /usr/local/lib64 /usr/lib64 ENV DYLD_LIBRARY_PATH) + else () + set(_libdir /usr/local/lib /usr/lib /usr/local/lib64 /usr/lib64 ENV LD_LIBRARY_PATH) + endif () +endif () +foreach(_library ${_list}) + set(_combined_name ${_combined_name}_${_library}) + + if(_libraries_work) + if (BLA_STATIC) + if (WIN32) + set(CMAKE_FIND_LIBRARY_SUFFIXES .lib ${CMAKE_FIND_LIBRARY_SUFFIXES}) + endif ( WIN32 ) + if (APPLE) + set(CMAKE_FIND_LIBRARY_SUFFIXES .lib ${CMAKE_FIND_LIBRARY_SUFFIXES}) + else (APPLE) + set(CMAKE_FIND_LIBRARY_SUFFIXES .a ${CMAKE_FIND_LIBRARY_SUFFIXES}) + endif (APPLE) + else (BLA_STATIC) + if (CMAKE_SYSTEM_NAME STREQUAL "Linux") + # for ubuntu's libblas3gf and liblapack3gf packages + #set(CMAKE_FIND_LIBRARY_SUFFIXES ${CMAKE_FIND_LIBRARY_SUFFIXES} .so.3gf) + endif () + endif (BLA_STATIC) + find_library(${_prefix}_${_library}_LIBRARY + NAMES ${_library} + PATHS ${_libdir} + ) + mark_as_advanced(${_prefix}_${_library}_LIBRARY) + set(${LIBRARIES} ${${LIBRARIES}} ${${_prefix}_${_library}_LIBRARY}) + set(_libraries_work ${${_prefix}_${_library}_LIBRARY}) + endif(_libraries_work) +endforeach(_library ${_list}) + +if(_libraries_work) + # Test this combination of libraries. + if(UNIX AND BLA_STATIC) + set(CMAKE_REQUIRED_LIBRARIES ${_flags} "-Wl,--start-group" ${${LIBRARIES}} ${_blas} "-Wl,--end-group" ${_threads}) + else(UNIX AND BLA_STATIC) + set(CMAKE_REQUIRED_LIBRARIES ${_flags} ${${LIBRARIES}} ${_blas} ${_threads}) + endif(UNIX AND BLA_STATIC) +# message("DEBUG: CMAKE_REQUIRED_LIBRARIES = ${CMAKE_REQUIRED_LIBRARIES}") + if (NOT _LANGUAGES_ MATCHES Fortran OR NOT CMAKE_Fortran_COMPILER_WORKS) + check_function_exists("${_name}_" ${_prefix}${_combined_name}_WORKS) + else (NOT _LANGUAGES_ MATCHES Fortran OR NOT CMAKE_Fortran_COMPILER_WORKS) + check_fortran_function_exists(${_name} ${_prefix}${_combined_name}_WORKS) + endif (NOT _LANGUAGES_ MATCHES Fortran OR NOT CMAKE_Fortran_COMPILER_WORKS) + set(CMAKE_REQUIRED_LIBRARIES) + mark_as_advanced(${_prefix}${_combined_name}_WORKS) + set(_libraries_work ${${_prefix}${_combined_name}_WORKS}) + #message("DEBUG: ${LIBRARIES} = ${${LIBRARIES}}") +endif(_libraries_work) + + if(_libraries_work) + set(${LIBRARIES} ${${LIBRARIES}} ${_blas} ${_threads}) + else(_libraries_work) + set(${LIBRARIES} FALSE) + endif(_libraries_work) + +endmacro(Check_Lapack_Libraries) + + +set(LAPACK_LINKER_FLAGS) +set(LAPACK_LIBRARIES) +set(LAPACK95_LIBRARIES) + + +if(LAPACK_FIND_QUIETLY OR NOT LAPACK_FIND_REQUIRED) + find_package(BLAS) +else(LAPACK_FIND_QUIETLY OR NOT LAPACK_FIND_REQUIRED) + find_package(BLAS REQUIRED) +endif(LAPACK_FIND_QUIETLY OR NOT LAPACK_FIND_REQUIRED) + + +if(BLAS_FOUND) + set(LAPACK_LINKER_FLAGS ${BLAS_LINKER_FLAGS}) + if ($ENV{BLA_VENDOR} MATCHES ".+") + set(BLA_VENDOR $ENV{BLA_VENDOR}) + else ($ENV{BLA_VENDOR} MATCHES ".+") + if(NOT BLA_VENDOR) + set(BLA_VENDOR "All") + endif(NOT BLA_VENDOR) + endif ($ENV{BLA_VENDOR} MATCHES ".+") + +if (BLA_VENDOR STREQUAL "Goto" OR BLA_VENDOR STREQUAL "All") + if(NOT LAPACK_LIBRARIES) + check_lapack_libraries( + LAPACK_LIBRARIES + LAPACK + cheev + "" + "goto2" + "${BLAS_LIBRARIES}" + "" + ) + endif(NOT LAPACK_LIBRARIES) +endif (BLA_VENDOR STREQUAL "Goto" OR BLA_VENDOR STREQUAL "All") + + +#acml lapack + if (BLA_VENDOR MATCHES "ACML.*" OR BLA_VENDOR STREQUAL "All") + if (BLAS_LIBRARIES MATCHES ".+acml.+") + set (LAPACK_LIBRARIES ${BLAS_LIBRARIES}) + endif () + endif () + +# Apple LAPACK library? +if (BLA_VENDOR STREQUAL "Apple" OR BLA_VENDOR STREQUAL "All") + if(NOT LAPACK_LIBRARIES) + check_lapack_libraries( + LAPACK_LIBRARIES + LAPACK + cheev + "" + "Accelerate" + "${BLAS_LIBRARIES}" + "" + ) + endif(NOT LAPACK_LIBRARIES) +endif (BLA_VENDOR STREQUAL "Apple" OR BLA_VENDOR STREQUAL "All") +if (BLA_VENDOR STREQUAL "NAS" OR BLA_VENDOR STREQUAL "All") + if ( NOT LAPACK_LIBRARIES ) + check_lapack_libraries( + LAPACK_LIBRARIES + LAPACK + cheev + "" + "vecLib" + "${BLAS_LIBRARIES}" + "" + ) + endif ( NOT LAPACK_LIBRARIES ) +endif (BLA_VENDOR STREQUAL "NAS" OR BLA_VENDOR STREQUAL "All") +# Generic LAPACK library? +if (BLA_VENDOR STREQUAL "Generic" OR + BLA_VENDOR STREQUAL "ATLAS" OR + BLA_VENDOR STREQUAL "All") + if ( NOT LAPACK_LIBRARIES ) + check_lapack_libraries( + LAPACK_LIBRARIES + LAPACK + cheev + "" + "lapack" + "${BLAS_LIBRARIES}" + "" + ) + endif ( NOT LAPACK_LIBRARIES ) +endif () +#intel lapack +if (BLA_VENDOR MATCHES "Intel*" OR BLA_VENDOR STREQUAL "All") + if (NOT WIN32) + set(LM "-lm") + endif () + if (_LANGUAGES_ MATCHES C OR _LANGUAGES_ MATCHES CXX) + if(LAPACK_FIND_QUIETLY OR NOT LAPACK_FIND_REQUIRED) + find_PACKAGE(Threads) + else(LAPACK_FIND_QUIETLY OR NOT LAPACK_FIND_REQUIRED) + find_package(Threads REQUIRED) + endif(LAPACK_FIND_QUIETLY OR NOT LAPACK_FIND_REQUIRED) + if (BLA_F95) + if(NOT LAPACK95_LIBRARIES) + # old + check_lapack_libraries( + LAPACK95_LIBRARIES + LAPACK + cheev + "" + "mkl_lapack95" + "${BLAS95_LIBRARIES}" + "${CMAKE_THREAD_LIBS_INIT};${LM}" + ) + endif(NOT LAPACK95_LIBRARIES) + if(NOT LAPACK95_LIBRARIES) + # new >= 10.3 + check_lapack_libraries( + LAPACK95_LIBRARIES + LAPACK + CHEEV + "" + "mkl_intel_lp64" + "${BLAS95_LIBRARIES}" + "${CMAKE_THREAD_LIBS_INIT};${LM}" + ) + endif(NOT LAPACK95_LIBRARIES) + else(BLA_F95) + if(NOT LAPACK_LIBRARIES) + # old + check_lapack_libraries( + LAPACK_LIBRARIES + LAPACK + cheev + "" + "mkl_lapack" + "${BLAS_LIBRARIES}" + "${CMAKE_THREAD_LIBS_INIT};${LM}" + ) + endif(NOT LAPACK_LIBRARIES) + if(NOT LAPACK_LIBRARIES) + # new >= 10.3 + check_lapack_libraries( + LAPACK_LIBRARIES + LAPACK + cheev + "" + "mkl_gf_lp64" + "${BLAS_LIBRARIES}" + "${CMAKE_THREAD_LIBS_INIT};${LM}" + ) + endif(NOT LAPACK_LIBRARIES) + endif(BLA_F95) + endif (_LANGUAGES_ MATCHES C OR _LANGUAGES_ MATCHES CXX) +endif(BLA_VENDOR MATCHES "Intel*" OR BLA_VENDOR STREQUAL "All") +else(BLAS_FOUND) + message(STATUS "LAPACK requires BLAS") +endif(BLAS_FOUND) + +if(BLA_F95) + if(LAPACK95_LIBRARIES) + set(LAPACK95_FOUND TRUE) + else(LAPACK95_LIBRARIES) + set(LAPACK95_FOUND FALSE) + endif(LAPACK95_LIBRARIES) + if(NOT LAPACK_FIND_QUIETLY) + if(LAPACK95_FOUND) + message(STATUS "A library with LAPACK95 API found.") + else(LAPACK95_FOUND) + if(LAPACK_FIND_REQUIRED) + message(FATAL_ERROR + "A required library with LAPACK95 API not found. Please specify library location." + ) + else(LAPACK_FIND_REQUIRED) + message(STATUS + "A library with LAPACK95 API not found. Please specify library location." + ) + endif(LAPACK_FIND_REQUIRED) + endif(LAPACK95_FOUND) + endif(NOT LAPACK_FIND_QUIETLY) + set(LAPACK_FOUND "${LAPACK95_FOUND}") + set(LAPACK_LIBRARIES "${LAPACK95_LIBRARIES}") +else(BLA_F95) + if(LAPACK_LIBRARIES) + set(LAPACK_FOUND TRUE) + else(LAPACK_LIBRARIES) + set(LAPACK_FOUND FALSE) + endif(LAPACK_LIBRARIES) + + if(NOT LAPACK_FIND_QUIETLY) + if(LAPACK_FOUND) + message(STATUS "A library with LAPACK API found.") + else(LAPACK_FOUND) + if(LAPACK_FIND_REQUIRED) + message(FATAL_ERROR + "A required library with LAPACK API not found. Please specify library location." + ) + else(LAPACK_FIND_REQUIRED) + message(STATUS + "A library with LAPACK API not found. Please specify library location." + ) + endif(LAPACK_FIND_REQUIRED) + endif(LAPACK_FOUND) + endif(NOT LAPACK_FIND_QUIETLY) +endif(BLA_F95) + +set(CMAKE_FIND_LIBRARY_SUFFIXES ${_lapack_ORIG_CMAKE_FIND_LIBRARY_SUFFIXES}) diff --git a/cmake/modules/FindMPI.cmake b/cmake/modules/FindMPI.cmake new file mode 100644 index 0000000..2c657b2 --- /dev/null +++ b/cmake/modules/FindMPI.cmake @@ -0,0 +1,660 @@ +# - Find a Message Passing Interface (MPI) implementation +# The Message Passing Interface (MPI) is a library used to write +# high-performance distributed-memory parallel applications, and +# is typically deployed on a cluster. MPI is a standard interface +# (defined by the MPI forum) for which many implementations are +# available. All of them have somewhat different include paths, +# libraries to link against, etc., and this module tries to smooth +# out those differences. +# +# === Variables === +# +# This module will set the following variables per language in your project, +# where is one of C, CXX, or Fortran: +# MPI__FOUND TRUE if FindMPI found MPI flags for +# MPI__COMPILER MPI Compiler wrapper for +# MPI__COMPILE_FLAGS Compilation flags for MPI programs +# MPI__INCLUDE_PATH Include path(s) for MPI header +# MPI__LINK_FLAGS Linking flags for MPI programs +# MPI__LIBRARIES All libraries to link MPI programs against +# Additionally, FindMPI sets the following variables for running MPI +# programs from the command line: +# MPIEXEC Executable for running MPI programs +# MPIEXEC_NUMPROC_FLAG Flag to pass to MPIEXEC before giving +# it the number of processors to run on +# MPIEXEC_PREFLAGS Flags to pass to MPIEXEC directly +# before the executable to run. +# MPIEXEC_POSTFLAGS Flags to pass to MPIEXEC after other flags +# === Usage === +# +# To use this module, simply call FindMPI from a CMakeLists.txt file, or +# run find_package(MPI), then run CMake. If you are happy with the auto- +# detected configuration for your language, then you're done. If not, you +# have two options: +# 1. Set MPI__COMPILER to the MPI wrapper (mpicc, etc.) of your +# choice and reconfigure. FindMPI will attempt to determine all the +# necessary variables using THAT compiler's compile and link flags. +# 2. If this fails, or if your MPI implementation does not come with +# a compiler wrapper, then set both MPI__LIBRARIES and +# MPI__INCLUDE_PATH. You may also set any other variables +# listed above, but these two are required. This will circumvent +# autodetection entirely. +# When configuration is successful, MPI__COMPILER will be set to the +# compiler wrapper for , if it was found. MPI__FOUND and other +# variables above will be set if any MPI implementation was found for , +# regardless of whether a compiler was found. +# +# When using MPIEXEC to execute MPI applications, you should typically use +# all of the MPIEXEC flags as follows: +# ${MPIEXEC} ${MPIEXEC_NUMPROC_FLAG} PROCS +# ${MPIEXEC_PREFLAGS} EXECUTABLE ${MPIEXEC_POSTFLAGS} ARGS +# where PROCS is the number of processors on which to execute the program, +# EXECUTABLE is the MPI program, and ARGS are the arguments to pass to the +# MPI program. +# +# === Backward Compatibility === +# +# For backward compatibility with older versions of FindMPI, these +# variables are set, but deprecated: +# MPI_FOUND MPI_COMPILER MPI_LIBRARY +# MPI_COMPILE_FLAGS MPI_INCLUDE_PATH MPI_EXTRA_LIBRARY +# MPI_LINK_FLAGS MPI_LIBRARIES +# In new projects, please use the MPI__XXX equivalents. + +#============================================================================= +# Copyright 2001-2011 Kitware, Inc. +# Copyright 2010-2011 Todd Gamblin tgamblin@llnl.gov +# Copyright 2001-2009 Dave Partyka +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the copyright +# notice, this list of conditions and the following disclaimer in the +# documentation and/or other materials provided with the distribution. +# 3. The name of the author may not be used to endorse or promote products +# derived from this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR +# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES +# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +# IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT +# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF +# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +# include this to handle the QUIETLY and REQUIRED arguments +include(FindPackageHandleStandardArgs) +include(GetPrerequisites) + +# +# This part detects MPI compilers, attempting to wade through the mess of compiler names in +# a sensible way. +# +# The compilers are detected in this order: +# +# 1. Try to find the most generic availble MPI compiler, as this is usually set up by +# cluster admins. e.g., if plain old mpicc is available, we'll use it and assume it's +# the right compiler. +# +# 2. If a generic mpicc is NOT found, then we attempt to find one that matches +# CMAKE__COMPILER_ID. e.g. if you are using XL compilers, we'll try to find mpixlc +# and company, but not mpiicc. This hopefully prevents toolchain mismatches. +# +# If you want to force a particular MPI compiler other than what we autodetect (e.g. if you +# want to compile regular stuff with GNU and parallel stuff with Intel), you can always set +# your favorite MPI__COMPILER explicitly and this stuff will be ignored. +# + +# Start out with the generic MPI compiler names, as these are most commonly used. +set(_MPI_C_COMPILER_NAMES mpicc mpcc mpicc_r mpcc_r) +set(_MPI_CXX_COMPILER_NAMES mpicxx mpiCC mpcxx mpCC mpic++ mpc++ + mpicxx_r mpiCC_r mpcxx_r mpCC_r mpic++_r mpc++_r) +set(_MPI_Fortran_COMPILER_NAMES mpif95 mpif95_r mpf95 mpf95_r + mpif90 mpif90_r mpf90 mpf90_r + mpif77 mpif77_r mpf77 mpf77_r) + +# GNU compiler names +set(_MPI_GNU_C_COMPILER_NAMES mpigcc mpgcc mpigcc_r mpgcc_r) +set(_MPI_GNU_CXX_COMPILER_NAMES mpig++ mpg++ mpig++_r mpg++_r) +set(_MPI_GNU_Fortran_COMPILER_NAMES mpigfortran mpgfortran mpigfortran_r mpgfortran_r + mpig77 mpig77_r mpg77 mpg77_r) + +# Intel MPI compiler names +set(_MPI_Intel_C_COMPILER_NAMES mpiicc) +set(_MPI_Intel_CXX_COMPILER_NAMES mpiicpc mpiicxx mpiic++ mpiiCC) +set(_MPI_Intel_Fortran_COMPILER_NAMES mpiifort mpiif95 mpiif90 mpiif77) + +# PGI compiler names +set(_MPI_PGI_C_COMPILER_NAMES mpipgcc mppgcc) +set(_MPI_PGI_CXX_COMPILER_NAMES mpipgCC mppgCC) +set(_MPI_PGI_Fortran_COMPILER_NAMES mpipgf95 mpipgf90 mppgf95 mppgf90 mpipgf77 mppgf77) + +# XLC MPI Compiler names +set(_MPI_XL_C_COMPILER_NAMES mpxlc mpxlc_r mpixlc mpixlc_r) +set(_MPI_XL_CXX_COMPILER_NAMES mpixlcxx mpixlC mpixlc++ mpxlcxx mpxlc++ mpixlc++ mpxlCC + mpixlcxx_r mpixlC_r mpixlc++_r mpxlcxx_r mpxlc++_r mpixlc++_r mpxlCC_r) +set(_MPI_XL_Fortran_COMPILER_NAMES mpixlf95 mpixlf95_r mpxlf95 mpxlf95_r + mpixlf90 mpixlf90_r mpxlf90 mpxlf90_r + mpixlf77 mpixlf77_r mpxlf77 mpxlf77_r + mpixlf mpixlf_r mpxlf mpxlf_r) + +# append vendor-specific compilers to the list if we either don't know the compiler id, +# or if we know it matches the regular compiler. +foreach (lang C CXX Fortran) + foreach (id GNU Intel PGI XL) + if (NOT CMAKE_${lang}_COMPILER_ID OR "${CMAKE_${lang}_COMPILER_ID}" STREQUAL "${id}") + list(APPEND _MPI_${lang}_COMPILER_NAMES ${_MPI_${id}_${lang}_COMPILER_NAMES}) + endif() + unset(_MPI_${id}_${lang}_COMPILER_NAMES) # clean up the namespace here + endforeach() +endforeach() + + +# Names to try for MPI exec +set(_MPI_EXEC_NAMES mpiexec mpirun lamexec srun) + +# Grab the path to MPI from the registry if we're on windows. +set(_MPI_PREFIX_PATH) +if(WIN32) + list(APPEND _MPI_PREFIX_PATH "[HKEY_LOCAL_MACHINE\\SOFTWARE\\MPICH\\SMPD;binary]/..") + list(APPEND _MPI_PREFIX_PATH "[HKEY_LOCAL_MACHINE\\SOFTWARE\\MPICH2;Path]") + list(APPEND _MPI_PREFIX_PATH "$ENV{ProgramW6432}/MPICH2/") +endif() + +# Build a list of prefixes to search for MPI. +foreach(SystemPrefixDir ${CMAKE_SYSTEM_PREFIX_PATH}) + foreach(MpiPackageDir ${_MPI_PREFIX_PATH}) + if(EXISTS ${SystemPrefixDir}/${MpiPackageDir}) + list(APPEND _MPI_PREFIX_PATH "${SystemPrefixDir}/${MpiPackageDir}") + endif() + endforeach() +endforeach() + + +# +# interrogate_mpi_compiler(lang try_libs) +# +# Attempts to extract compiler and linker args from an MPI compiler. The arguments set +# by this function are: +# +# MPI__INCLUDE_PATH MPI__LINK_FLAGS MPI__FOUND +# MPI__COMPILE_FLAGS MPI__LIBRARIES +# +# MPI__COMPILER must be set beforehand to the absolute path to an MPI compiler for +# . Additionally, MPI__INCLUDE_PATH and MPI__LIBRARIES may be set +# to skip autodetection. +# +# If try_libs is TRUE, this will also attempt to find plain MPI libraries in the usual +# way. In general, this is not as effective as interrogating the compilers, as it +# ignores language-specific flags and libraries. However, some MPI implementations +# (Windows implementations) do not have compiler wrappers, so this approach must be used. +# +function (interrogate_mpi_compiler lang try_libs) + # MPI_${lang}_NO_INTERROGATE will be set to a compiler name when the *regular* compiler was + # discovered to be the MPI compiler. This happens on machines like the Cray XE6 that use + # modules to set cc, CC, and ftn to the MPI compilers. If the user force-sets another MPI + # compiler, MPI_${lang}_COMPILER won't be equal to MPI_${lang}_NO_INTERROGATE, and we'll + # inspect that compiler anew. This allows users to set new compilers w/o rm'ing cache. + string(COMPARE NOTEQUAL "${MPI_${lang}_NO_INTERROGATE}" "${MPI_${lang}_COMPILER}" interrogate) + + # If MPI is set already in the cache, don't bother with interrogating the compiler. + if (interrogate AND ((NOT MPI_${lang}_INCLUDE_PATH) OR (NOT MPI_${lang}_LIBRARIES))) + if (MPI_${lang}_COMPILER) + # Check whether the -showme:compile option works. This indicates that we have either OpenMPI + # or a newer version of LAM-MPI, and implies that -showme:link will also work. + execute_process( + COMMAND ${MPI_${lang}_COMPILER} -showme:compile + OUTPUT_VARIABLE MPI_COMPILE_CMDLINE OUTPUT_STRIP_TRAILING_WHITESPACE + ERROR_VARIABLE MPI_COMPILE_CMDLINE ERROR_STRIP_TRAILING_WHITESPACE + RESULT_VARIABLE MPI_COMPILER_RETURN) + + if (MPI_COMPILER_RETURN EQUAL 0) + # If we appear to have -showme:compile, then we should + # also have -showme:link. Try it. + execute_process( + COMMAND ${MPI_${lang}_COMPILER} -showme:link + OUTPUT_VARIABLE MPI_LINK_CMDLINE OUTPUT_STRIP_TRAILING_WHITESPACE + ERROR_VARIABLE MPI_LINK_CMDLINE ERROR_STRIP_TRAILING_WHITESPACE + RESULT_VARIABLE MPI_COMPILER_RETURN) + + if (MPI_COMPILER_RETURN EQUAL 0) + # We probably have -showme:incdirs and -showme:libdirs as well, + # so grab that while we're at it. + execute_process( + COMMAND ${MPI_${lang}_COMPILER} -showme:incdirs + OUTPUT_VARIABLE MPI_INCDIRS OUTPUT_STRIP_TRAILING_WHITESPACE + ERROR_VARIABLE MPI_INCDIRS ERROR_STRIP_TRAILING_WHITESPACE) + + execute_process( + COMMAND ${MPI_${lang}_COMPILER} -showme:libdirs + OUTPUT_VARIABLE MPI_LIBDIRS OUTPUT_STRIP_TRAILING_WHITESPACE + ERROR_VARIABLE MPI_LIBDIRS ERROR_STRIP_TRAILING_WHITESPACE) + + else() + # reset things here if something went wrong. + set(MPI_COMPILE_CMDLINE) + set(MPI_LINK_CMDLINE) + endif() + endif () + + # Older versions of LAM-MPI have "-showme". Try to find that. + if (NOT MPI_COMPILER_RETURN EQUAL 0) + execute_process( + COMMAND ${MPI_${lang}_COMPILER} -showme + OUTPUT_VARIABLE MPI_COMPILE_CMDLINE OUTPUT_STRIP_TRAILING_WHITESPACE + ERROR_VARIABLE MPI_COMPILE_CMDLINE ERROR_STRIP_TRAILING_WHITESPACE + RESULT_VARIABLE MPI_COMPILER_RETURN) + endif() + + # MVAPICH uses -compile-info and -link-info. Try them. + if (NOT MPI_COMPILER_RETURN EQUAL 0) + execute_process( + COMMAND ${MPI_${lang}_COMPILER} -compile-info + OUTPUT_VARIABLE MPI_COMPILE_CMDLINE OUTPUT_STRIP_TRAILING_WHITESPACE + ERROR_VARIABLE MPI_COMPILE_CMDLINE ERROR_STRIP_TRAILING_WHITESPACE + RESULT_VARIABLE MPI_COMPILER_RETURN) + + # If we have compile-info, also have link-info. + if (MPI_COMPILER_RETURN EQUAL 0) + execute_process( + COMMAND ${MPI_${lang}_COMPILER} -link-info + OUTPUT_VARIABLE MPI_LINK_CMDLINE OUTPUT_STRIP_TRAILING_WHITESPACE + ERROR_VARIABLE MPI_LINK_CMDLINE ERROR_STRIP_TRAILING_WHITESPACE + RESULT_VARIABLE MPI_COMPILER_RETURN) + endif() + + # make sure we got compile and link. Reset vars if something's wrong. + if (NOT MPI_COMPILER_RETURN EQUAL 0) + set(MPI_COMPILE_CMDLINE) + set(MPI_LINK_CMDLINE) + endif() + endif() + + # MPICH just uses "-show". Try it. + if (NOT MPI_COMPILER_RETURN EQUAL 0) + execute_process( + COMMAND ${MPI_${lang}_COMPILER} -show + OUTPUT_VARIABLE MPI_COMPILE_CMDLINE OUTPUT_STRIP_TRAILING_WHITESPACE + ERROR_VARIABLE MPI_COMPILE_CMDLINE ERROR_STRIP_TRAILING_WHITESPACE + RESULT_VARIABLE MPI_COMPILER_RETURN) + endif() + + if (MPI_COMPILER_RETURN EQUAL 0) + # We have our command lines, but we might need to copy MPI_COMPILE_CMDLINE + # into MPI_LINK_CMDLINE, if we didn't find the link line. + if (NOT MPI_LINK_CMDLINE) + set(MPI_LINK_CMDLINE ${MPI_COMPILE_CMDLINE}) + endif() + else() + message(STATUS "Unable to determine MPI from MPI driver ${MPI_${lang}_COMPILER}") + set(MPI_COMPILE_CMDLINE) + set(MPI_LINK_CMDLINE) + endif() + + # Here, we're done with the interrogation part, and we'll try to extract args we care + # about from what we learned from the compiler wrapper scripts. + + # If interrogation came back with something, extract our variable from the MPI command line + if (MPI_COMPILE_CMDLINE OR MPI_LINK_CMDLINE) + # Extract compile flags from the compile command line. + string(REGEX MATCHALL "(^| )-[Df]([^\" ]+|\"[^\"]+\")" MPI_ALL_COMPILE_FLAGS "${MPI_COMPILE_CMDLINE}") + set(MPI_COMPILE_FLAGS_WORK) + + foreach(FLAG ${MPI_ALL_COMPILE_FLAGS}) + if (MPI_COMPILE_FLAGS_WORK) + set(MPI_COMPILE_FLAGS_WORK "${MPI_COMPILE_FLAGS_WORK} ${FLAG}") + else() + set(MPI_COMPILE_FLAGS_WORK ${FLAG}) + endif() + endforeach() + + # Extract include paths from compile command line + string(REGEX MATCHALL "(^| )-I([^\" ]+|\"[^\"]+\")" MPI_ALL_INCLUDE_PATHS "${MPI_COMPILE_CMDLINE}") + foreach(IPATH ${MPI_ALL_INCLUDE_PATHS}) + string(REGEX REPLACE "^ ?-I" "" IPATH ${IPATH}) + string(REGEX REPLACE "//" "/" IPATH ${IPATH}) + list(APPEND MPI_INCLUDE_PATH_WORK ${IPATH}) + endforeach() + + # try using showme:incdirs if extracting didn't work. + if (NOT MPI_INCLUDE_PATH_WORK) + set(MPI_INCLUDE_PATH_WORK ${MPI_INCDIRS}) + separate_arguments(MPI_INCLUDE_PATH_WORK) + endif() + + # If all else fails, just search for mpi.h in the normal include paths. + if (NOT MPI_INCLUDE_PATH_WORK) + set(MPI_HEADER_PATH "MPI_HEADER_PATH-NOTFOUND" CACHE FILEPATH "Cleared" FORCE) + find_path(MPI_HEADER_PATH mpi.h + HINTS ${_MPI_BASE_DIR} ${_MPI_PREFIX_PATH} + PATH_SUFFIXES include) + set(MPI_INCLUDE_PATH_WORK ${MPI_HEADER_PATH}) + endif() + + # Extract linker paths from the link command line + string(REGEX MATCHALL "(^| |-Wl,)-L([^\" ]+|\"[^\"]+\")" MPI_ALL_LINK_PATHS "${MPI_LINK_CMDLINE}") + set(MPI_LINK_PATH) + foreach(LPATH ${MPI_ALL_LINK_PATHS}) + string(REGEX REPLACE "^(| |-Wl,)-L" "" LPATH ${LPATH}) + string(REGEX REPLACE "//" "/" LPATH ${LPATH}) + list(APPEND MPI_LINK_PATH ${LPATH}) + endforeach() + + # try using showme:libdirs if extracting didn't work. + if (NOT MPI_LINK_PATH) + set(MPI_LINK_PATH ${MPI_LIBDIRS}) + separate_arguments(MPI_LINK_PATH) + endif() + + # Extract linker flags from the link command line + string(REGEX MATCHALL "(^| )-Wl,([^\" ]+|\"[^\"]+\")" MPI_ALL_LINK_FLAGS "${MPI_LINK_CMDLINE}") + set(MPI_LINK_FLAGS_WORK) + foreach(FLAG ${MPI_ALL_LINK_FLAGS}) + if (MPI_LINK_FLAGS_WORK) + set(MPI_LINK_FLAGS_WORK "${MPI_LINK_FLAGS_WORK} ${FLAG}") + else() + set(MPI_LINK_FLAGS_WORK ${FLAG}) + endif() + endforeach() + + # Extract the set of libraries to link against from the link command + # line + string(REGEX MATCHALL "(^| )-l([^\" ]+|\"[^\"]+\")" MPI_LIBNAMES "${MPI_LINK_CMDLINE}") + # add the compiler implicit directories because some compilers + # such as the intel compiler have libraries that show up + # in the showme list that can only be found in the implicit + # link directories of the compiler. Do this for C++ and C + # compilers if the implicit link directories are defined. + if (DEFINED CMAKE_CXX_IMPLICIT_LINK_DIRECTORIES) + set(MPI_LINK_PATH + "${MPI_LINK_PATH};${CMAKE_CXX_IMPLICIT_LINK_DIRECTORIES}") + endif () + + if (DEFINED CMAKE_C_IMPLICIT_LINK_DIRECTORIES) + set(MPI_LINK_PATH + "${MPI_LINK_PATH};${CMAKE_C_IMPLICIT_LINK_DIRECTORIES}") + endif () + + # Determine full path names for all of the libraries that one needs + # to link against in an MPI program + foreach(LIB ${MPI_LIBNAMES}) + string(REGEX REPLACE "^ ?-l" "" LIB ${LIB}) + # MPI_LIB is cached by find_library, but we don't want that. + # Clear it first. + set(MPI_LIB "MPI_LIB-NOTFOUND" CACHE FILEPATH "Cleared" FORCE) + find_library(MPI_LIB NAMES ${LIB} + HINTS ${MPI_LINK_PATH} + NO_DEFAULT_PATH + ) + find_library(MPI_LIB NAMES ${LIB}) + + if (MPI_LIB) + list(APPEND MPI_LIBRARIES_WORK ${MPI_LIB}) + elseif (NOT MPI_FIND_QUIETLY) + message(WARNING "Unable to find MPI library ${LIB}") + endif() + endforeach() + + # Sanity check MPI_LIBRARIES to make sure there are enough libraries + list(LENGTH MPI_LIBRARIES_WORK MPI_NUMLIBS) + list(LENGTH MPI_LIBNAMES MPI_NUMLIBS_EXPECTED) + if (NOT MPI_NUMLIBS EQUAL MPI_NUMLIBS_EXPECTED) + set(MPI_LIBRARIES_WORK "MPI_${lang}_LIBRARIES-NOTFOUND") + endif() + endif() + + elseif(try_libs) + # If we didn't have an MPI compiler script to interrogate, attempt to find everything + # with plain old find functions. This is nasty because MPI implementations have LOTS of + # different library names, so this section isn't going to be very generic. We need to + # make sure it works for MS MPI, though, since there are no compiler wrappers for that. + find_path(MPI_HEADER_PATH mpi.h + HINTS ${_MPI_BASE_DIR} ${_MPI_PREFIX_PATH} + PATH_SUFFIXES include Inc) + set(MPI_INCLUDE_PATH_WORK ${MPI_HEADER_PATH}) + + # Decide between 32-bit and 64-bit libraries for Microsoft's MPI + if("${CMAKE_SIZEOF_VOID_P}" EQUAL 8) + set(MS_MPI_ARCH_DIR amd64) + else() + set(MS_MPI_ARCH_DIR i386) + endif() + + set(MPI_LIB "MPI_LIB-NOTFOUND" CACHE FILEPATH "Cleared" FORCE) + find_library(MPI_LIB + NAMES mpi mpich mpich2 msmpi + HINTS ${_MPI_BASE_DIR} ${_MPI_PREFIX_PATH} + PATH_SUFFIXES lib lib/${MS_MPI_ARCH_DIR} Lib Lib/${MS_MPI_ARCH_DIR} + NO_DEFAULT_PATH + ) + find_library(MPI_LIB + NAMES mpi mpich mpich2 msmpi + ) + set(MPI_LIBRARIES_WORK ${MPI_LIB}) + + # Right now, we only know about the extra libs for C++. + # We could add Fortran here (as there is usually libfmpich, etc.), but + # this really only has to work with MS MPI on Windows. + # Assume that other MPI's are covered by the compiler wrappers. + if (${lang} STREQUAL CXX) + set(MPI_LIB "MPI_LIB-NOTFOUND" CACHE FILEPATH "Cleared" FORCE) + find_library(MPI_LIB + NAMES mpi++ mpicxx cxx mpi_cxx + HINTS ${_MPI_BASE_DIR} ${_MPI_PREFIX_PATH} + PATH_SUFFIXES lib + NO_DEFAULT_PATH + ) + find_library(MPI_LIB + NAMES mpi++ mpicxx cxx mpi_cxx + ) + if (MPI_LIBRARIES_WORK AND MPI_LIB) + list(APPEND MPI_LIBRARIES_WORK ${MPI_LIB}) + endif() + endif() + + if (NOT MPI_LIBRARIES_WORK) + set(MPI_LIBRARIES_WORK "MPI_${lang}_LIBRARIES-NOTFOUND") + endif() + endif() + + # If we found MPI, set up all of the appropriate cache entries + set(MPI_${lang}_COMPILE_FLAGS ${MPI_COMPILE_FLAGS_WORK} CACHE STRING "MPI ${lang} compilation flags" FORCE) + set(MPI_${lang}_INCLUDE_PATH ${MPI_INCLUDE_PATH_WORK} CACHE STRING "MPI ${lang} include path" FORCE) + set(MPI_${lang}_LINK_FLAGS ${MPI_LINK_FLAGS_WORK} CACHE STRING "MPI ${lang} linking flags" FORCE) + set(MPI_${lang}_LIBRARIES ${MPI_LIBRARIES_WORK} CACHE STRING "MPI ${lang} libraries to link against" FORCE) + mark_as_advanced(MPI_${lang}_COMPILE_FLAGS MPI_${lang}_INCLUDE_PATH MPI_${lang}_LINK_FLAGS MPI_${lang}_LIBRARIES) + + # clear out our temporary lib/header detectionv variable here. + set(MPI_LIB "MPI_LIB-NOTFOUND" CACHE INTERNAL "Scratch variable for MPI lib detection" FORCE) + set(MPI_HEADER_PATH "MPI_HEADER_PATH-NOTFOUND" CACHE INTERNAL "Scratch variable for MPI header detection" FORCE) + endif() + + # finally set a found variable for each MPI language + if (MPI_${lang}_INCLUDE_PATH AND MPI_${lang}_LIBRARIES) + set(MPI_${lang}_FOUND TRUE PARENT_SCOPE) + else() + set(MPI_${lang}_FOUND FALSE PARENT_SCOPE) + endif() +endfunction() + + +# This function attempts to compile with the regular compiler, to see if MPI programs +# work with it. This is a last ditch attempt after we've tried interrogating mpicc and +# friends, and after we've tried to find generic libraries. Works on machines like +# Cray XE6, where the modules environment changes what MPI version cc, CC, and ftn use. +function(try_regular_compiler lang success) + set(scratch_directory ${CMAKE_CURRENT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}) + if (${lang} STREQUAL Fortran) + set(test_file ${scratch_directory}/cmake_mpi_test.f90) + file(WRITE ${test_file} + "program hello\n" + "include 'mpif.h'\n" + "integer ierror\n" + "call MPI_INIT(ierror)\n" + "call MPI_FINALIZE(ierror)\n" + "end\n") + else() + if (${lang} STREQUAL CXX) + set(test_file ${scratch_directory}/cmake_mpi_test.cpp) + else() + set(test_file ${scratch_directory}/cmake_mpi_test.c) + endif() + file(WRITE ${test_file} + "#include \n" + "int main(int argc, char **argv) {\n" + " MPI_Init(&argc, &argv);\n" + " MPI_Finalize();\n" + "}\n") + endif() + try_compile(compiler_has_mpi ${scratch_directory} ${test_file}) + if (compiler_has_mpi) + set(MPI_${lang}_NO_INTERROGATE ${CMAKE_${lang}_COMPILER} CACHE STRING "Whether to interrogate MPI ${lang} compiler" FORCE) + set(MPI_${lang}_COMPILER ${CMAKE_${lang}_COMPILER} CACHE STRING "MPI ${lang} compiler" FORCE) + set(MPI_${lang}_COMPILE_FLAGS "" CACHE STRING "MPI ${lang} compilation flags" FORCE) + set(MPI_${lang}_INCLUDE_PATH "" CACHE STRING "MPI ${lang} include path" FORCE) + set(MPI_${lang}_LINK_FLAGS "" CACHE STRING "MPI ${lang} linking flags" FORCE) + set(MPI_${lang}_LIBRARIES "" CACHE STRING "MPI ${lang} libraries to link against" FORCE) + endif() + set(${success} ${compiler_has_mpi} PARENT_SCOPE) + unset(compiler_has_mpi CACHE) +endfunction() + +# End definitions, commence real work here. + +# Most mpi distros have some form of mpiexec which gives us something we can reliably look for. +find_program(MPIEXEC + NAMES ${_MPI_EXEC_NAMES} + PATHS ${_MPI_PREFIX_PATH} + PATH_SUFFIXES bin + DOC "Executable for running MPI programs.") + +# call get_filename_component twice to remove mpiexec and the directory it exists in (typically bin). +# This gives us a fairly reliable base directory to search for /bin /lib and /include from. +get_filename_component(_MPI_BASE_DIR "${MPIEXEC}" PATH) +get_filename_component(_MPI_BASE_DIR "${_MPI_BASE_DIR}" PATH) + +set(MPIEXEC_NUMPROC_FLAG "-np" CACHE STRING "Flag used by MPI to specify the number of processes for MPIEXEC; the next option will be the number of processes.") +set(MPIEXEC_PREFLAGS "" CACHE STRING "These flags will be directly before the executable that is being run by MPIEXEC.") +set(MPIEXEC_POSTFLAGS "" CACHE STRING "These flags will come after all flags given to MPIEXEC.") +set(MPIEXEC_MAX_NUMPROCS "2" CACHE STRING "Maximum number of processors available to run MPI applications.") +mark_as_advanced(MPIEXEC MPIEXEC_NUMPROC_FLAG MPIEXEC_PREFLAGS MPIEXEC_POSTFLAGS MPIEXEC_MAX_NUMPROCS) + + +#============================================================================= +# Backward compatibility input hacks. Propagate the FindMPI hints to C and +# CXX if the respective new versions are not defined. Translate the old +# MPI_LIBRARY and MPI_EXTRA_LIBRARY to respective MPI_${lang}_LIBRARIES. +# +# Once we find the new variables, we translate them back into their old +# equivalents below. +foreach (lang C CXX) + # Old input variables. + set(_MPI_OLD_INPUT_VARS COMPILER COMPILE_FLAGS INCLUDE_PATH LINK_FLAGS) + + # Set new vars based on their old equivalents, if the new versions are not already set. + foreach (var ${_MPI_OLD_INPUT_VARS}) + if (NOT MPI_${lang}_${var} AND MPI_${var}) + set(MPI_${lang}_${var} "${MPI_${var}}") + endif() + endforeach() + + # Special handling for MPI_LIBRARY and MPI_EXTRA_LIBRARY, which we nixed in the + # new FindMPI. These need to be merged into MPI__LIBRARIES + if (NOT MPI_${lang}_LIBRARIES AND (MPI_LIBRARY OR MPI_EXTRA_LIBRARY)) + set(MPI_${lang}_LIBRARIES ${MPI_LIBRARY} ${MPI_EXTRA_LIBRARY}) + endif() +endforeach() +#============================================================================= + + +# This loop finds the compilers and sends them off for interrogation. +foreach (lang C CXX Fortran) + if (CMAKE_${lang}_COMPILER_WORKS) + # If the user supplies a compiler *name* instead of an absolute path, assume that we need to find THAT compiler. + if (MPI_${lang}_COMPILER) + is_file_executable(MPI_${lang}_COMPILER MPI_COMPILER_IS_EXECUTABLE) + if (NOT MPI_COMPILER_IS_EXECUTABLE) + # Get rid of our default list of names and just search for the name the user wants. + set(_MPI_${lang}_COMPILER_NAMES ${MPI_${lang}_COMPILER}) + set(MPI_${lang}_COMPILER "MPI_${lang}_COMPILER-NOTFOUND" CACHE FILEPATH "Cleared" FORCE) + # If the user specifies a compiler, we don't want to try to search libraries either. + set(try_libs FALSE) + endif() + else() + set(try_libs TRUE) + endif() + + find_program(MPI_${lang}_COMPILER + NAMES ${_MPI_${lang}_COMPILER_NAMES} + PATHS "${MPI_HOME}/bin" "$ENV{MPI_HOME}/bin" ${_MPI_PREFIX_PATH}) + interrogate_mpi_compiler(${lang} ${try_libs}) + mark_as_advanced(MPI_${lang}_COMPILER) + + # last ditch try -- if nothing works so far, just try running the regular compiler and + # see if we can create an MPI executable. + set(regular_compiler_worked 0) + if (NOT MPI_${lang}_LIBRARIES OR NOT MPI_${lang}_INCLUDE_PATH) + try_regular_compiler(${lang} regular_compiler_worked) + endif() + + if (regular_compiler_worked) + find_package_handle_standard_args(MPI_${lang} DEFAULT_MSG MPI_${lang}_COMPILER) + else() + find_package_handle_standard_args(MPI_${lang} DEFAULT_MSG MPI_${lang}_LIBRARIES MPI_${lang}_INCLUDE_PATH) + endif() + endif() +endforeach() + + +#============================================================================= +# More backward compatibility stuff +# +# Bare MPI sans ${lang} vars are set to CXX then C, depending on what was found. +# This mimics the behavior of the old language-oblivious FindMPI. +set(_MPI_OLD_VARS FOUND COMPILER INCLUDE_PATH COMPILE_FLAGS LINK_FLAGS LIBRARIES) +if (MPI_CXX_FOUND) + foreach (var ${_MPI_OLD_VARS}) + set(MPI_${var} ${MPI_CXX_${var}}) + endforeach() +elseif (MPI_C_FOUND) + foreach (var ${_MPI_OLD_VARS}) + set(MPI_${var} ${MPI_C_${var}}) + endforeach() +else() + # Note that we might still have found Fortran, but you'll need to use MPI_Fortran_FOUND + set(MPI_FOUND FALSE) +endif() + +# Chop MPI_LIBRARIES into the old-style MPI_LIBRARY and MPI_EXTRA_LIBRARY, and set them in cache. +if (MPI_LIBRARIES) + list(GET MPI_LIBRARIES 0 MPI_LIBRARY_WORK) + set(MPI_LIBRARY ${MPI_LIBRARY_WORK} CACHE FILEPATH "MPI library to link against" FORCE) +else() + set(MPI_LIBRARY "MPI_LIBRARY-NOTFOUND" CACHE FILEPATH "MPI library to link against" FORCE) +endif() + +list(LENGTH MPI_LIBRARIES MPI_NUMLIBS) +if (MPI_NUMLIBS GREATER 1) + set(MPI_EXTRA_LIBRARY_WORK ${MPI_LIBRARIES}) + list(REMOVE_AT MPI_EXTRA_LIBRARY_WORK 0) + set(MPI_EXTRA_LIBRARY ${MPI_EXTRA_LIBRARY_WORK} CACHE STRING "Extra MPI libraries to link against" FORCE) +else() + set(MPI_EXTRA_LIBRARY "MPI_EXTRA_LIBRARY-NOTFOUND" CACHE STRING "Extra MPI libraries to link against" FORCE) +endif() +#============================================================================= + +# unset these vars to cleanup namespace +unset(_MPI_OLD_VARS) +unset(_MPI_PREFIX_PATH) +unset(_MPI_BASE_DIR) +foreach (lang C CXX Fortran) + unset(_MPI_${lang}_COMPILER_NAMES) +endforeach() diff --git a/cmake/modules/FindMTL4.cmake b/cmake/modules/FindMTL4.cmake new file mode 100644 index 0000000..2ce4273 --- /dev/null +++ b/cmake/modules/FindMTL4.cmake @@ -0,0 +1,88 @@ +# - Try to find MTL4 +# Once done this will define +# +# MTL4_FOUND - system has MTL4 +# MTL4_INCLUDE_DIRS - include directories for MTL4 +# MTL4_LIBRARIES - libaries defintions for MTL4 +# MTL4_DEFINITIONS - compiler defintions for MTL4 + +#============================================================================= +# Copyright (C) 2010-2011 Garth N. Wells, Anders Logg and Johannes Ring +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +message(STATUS "Checking for package 'MTL4'") + +# Check for header file +find_path(MTL4_INCLUDE_DIRS boost/numeric/mtl/mtl.hpp + HINTS ${MTL4_DIR} $ENV{MTL4_DIR} + PATH_SUFFIXES include + DOC "Directory where the MTL4 header is located" + ) + +# Check for BLAS and enable if found +find_package(BLAS QUIET) +if (BLAS_FOUND) + set(MTL4_LIBRARIES ${BLAS_LIBRARIES}) + set(MTL4_DEFINITIONS "-DMTL_HAS_BLAS") +endif() + +# Try compiling and running test program +if (DOLFIN_SKIP_BUILD_TESTS) + set(MTL4_TEST_RUNS TRUE) +elseif (MTL4_INCLUDE_DIRS) + + # Find Boost, needed by MTL4 + set(BOOST_ROOT $ENV{BOOST_DIR}) + set(Boost_ADDITIONAL_VERSIONS 1.43 1.43.0) + find_package(Boost REQUIRED) + + # Set flags for building test program + set(CMAKE_REQUIRED_INCLUDES ${MTL4_INCLUDE_DIRS} ${Boost_INCLUDE_DIR}) + set(CMAKE_REQUIRED_LIBRARIES ${MTL4_LIBRARIES}) + set(CMAKE_REQUIRED_FLAGS ${MTL4_DEFINITIONS}) + + # Build and run test program + include(CheckCXXSourceRuns) + check_cxx_source_runs(" +#include +#include +int main() +{ + mtl::dense_vector x(10); + int size = mtl::num_rows(x); + return 0; +} +" MTL4_TEST_RUNS) + +endif() + +# Standard package handling +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(MTL4 + "MTL4 could not be found. Be sure to set MTL4_DIR" + MTL4_INCLUDE_DIRS MTL4_TEST_RUNS) diff --git a/cmake/modules/FindNumPy.cmake b/cmake/modules/FindNumPy.cmake new file mode 100644 index 0000000..ff8c019 --- /dev/null +++ b/cmake/modules/FindNumPy.cmake @@ -0,0 +1,80 @@ +# - Find NumPy +# Find the native NumPy includes +# This module defines +# NUMPY_INCLUDE_DIR, where to find numpy/arrayobject.h, etc. +# NUMPY_VERSION, The string version of the numpy version +# NUMPY_VERSION_MAJOR, The first number of the numpy version +# NUMPY_VERSION_MINOR, The second number of the numpy version +# NUMPY_VERSION_MICRO, The third number of the numpy version +# NUMPY_FOUND, If false, do not try to use NumPy headers. + +#============================================================================= +# Copyright (C) 2010 Johannes Ring +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +if(NUMPY_INCLUDE_DIR) + # in cache already + set(NUMPY_FIND_QUIETLY TRUE) +endif(NUMPY_INCLUDE_DIR) + +execute_process( + COMMAND ${PYTHON_EXECUTABLE} -c "import numpy; print numpy.get_include()" + OUTPUT_VARIABLE NUMPY_INCLUDE_DIR + RESULT_VARIABLE NUMPY_NOT_FOUND + OUTPUT_STRIP_TRAILING_WHITESPACE + ) + +if(NUMPY_INCLUDE_DIR) + set(NUMPY_FOUND TRUE) + set(NUMPY_INCLUDE_DIR ${NUMPY_INCLUDE_DIR} CACHE STRING "NumPy include path") +else(NUMPY_INCLUDE_DIR) + set(NUMPY_FOUND FALSE) +endif(NUMPY_INCLUDE_DIR) + +if(NUMPY_FOUND) + execute_process( + COMMAND ${PYTHON_EXECUTABLE} -c "import numpy; print numpy.version.version" + OUTPUT_VARIABLE NUMPY_VERSION + RESULT_VARIABLE NUMPY_NOT_FOUND + OUTPUT_STRIP_TRAILING_WHITESPACE + ) + string(REPLACE "." ";" NUMPY_VERSION_LIST ${NUMPY_VERSION}) + list(GET NUMPY_VERSION_LIST 0 NUMPY_VERSION_MAJOR) + list(GET NUMPY_VERSION_LIST 1 NUMPY_VERSION_MINOR) + list(GET NUMPY_VERSION_LIST 2 NUMPY_VERSION_MICRO) + if(NOT NUMPY_FIND_QUIETLY) + message(STATUS "NumPy header version ${NUMPY_VERSION} found") + endif(NOT NUMPY_FIND_QUIETLY) +else(NUMPY_FOUND) + if(NUMPY_FIND_REQUIRED) + message(FATAL_ERROR "NumPy headers missing") + endif(NUMPY_FIND_REQUIRED) +endif(NUMPY_FOUND) + +mark_as_advanced(NUMPY_INCLUDE_DIR, NUMPY_VERSION, NUMPY_VERSION_MAJOR, + NUMPY_VERSION_MINOR, NUMPY_VERSION_MICRO) diff --git a/cmake/modules/FindPETSc.cmake b/cmake/modules/FindPETSc.cmake new file mode 100644 index 0000000..d1399bf --- /dev/null +++ b/cmake/modules/FindPETSc.cmake @@ -0,0 +1,363 @@ +# - Try to find PETSc +# Once done this will define +# +# PETSC_FOUND - system has PETSc +# PETSC_INCLUDE_DIRS - include directories for PETSc +# PETSC_LIBRARIES - libraries for PETSc +# PETSC_DIR - directory where PETSc is built +# PETSC_ARCH - architecture for which PETSc is built +# PETSC_CUSP_FOUND - PETSc has Cusp support +# PETSC_VERSION - version for PETSc +# PETSC_VERSION_MAJOR - First number in PETSC_VERSION +# PETSC_VERSION_MINOR - Second number in PETSC_VERSION +# PETSC_VERSION_SUBMINOR - Third number in PETSC_VERSION +# +# This config script is (very loosley) based on a PETSc CMake script by Jed Brown. + +#============================================================================= +# Copyright (C) 2010-2012 Garth N. Wells, Anders Logg and Johannes Ring +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +# NOTE: The PETSc Makefile returns a bunch of libraries with '-L' and '-l', +# wheres we would prefer complete paths. For a discussion, see +# http://www.cmake.org/Wiki/CMake:Improving_Find*_Modules#Current_workarounds + +message(STATUS "Checking for package 'PETSc'") + +# Set debian_arches (PETSC_ARCH for Debian-style installations) +foreach (debian_arches linux kfreebsd) + if ("${CMAKE_BUILD_TYPE}" STREQUAL "Debug") + set(DEBIAN_FLAVORS ${debian_arches}-gnu-c-debug ${debian_arches}-gnu-c-opt ${DEBIAN_FLAVORS}) + else() + set(DEBIAN_FLAVORS ${debian_arches}-gnu-c-opt ${debian_arches}-gnu-c-debug ${DEBIAN_FLAVORS}) + endif() +endforeach() + +# List of possible locations for PETSC_DIR +set(petsc_dir_locations "") +list(APPEND petsc_dir_locations "/usr/lib/petscdir/3.4.2") # Debian location +list(APPEND petsc_dir_locations "/usr/lib/petscdir/3.2") # Debian location +list(APPEND petsc_dir_locations "/usr/lib/petscdir/3.1") # Debian location +list(APPEND petsc_dir_locations "/usr/lib/petscdir/3.0.0") # Debian location +list(APPEND petsc_dir_locations "/opt/local/lib/petsc") # Macports location +list(APPEND petsc_dir_locations "/usr/local/lib/petsc") # User location +list(APPEND petsc_dir_locations "$ENV{HOME}/petsc") # User location + +# Add other possible locations for PETSC_DIR +set(_SYSTEM_LIB_PATHS "${CMAKE_SYSTEM_LIBRARY_PATH};${CMAKE_PLATFORM_IMPLICIT_LINK_DIRECTORIES}") +string(REGEX REPLACE ":" ";" libdirs ${_SYSTEM_LIB_PATHS}) +foreach (libdir ${libdirs}) + get_filename_component(petsc_dir_location "${libdir}/" PATH) + list(APPEND petsc_dir_locations ${petsc_dir_location}) +endforeach() + +# Try to figure out PETSC_DIR by finding petsc.h +find_path(PETSC_DIR include/petsc.h + HINTS ${PETSC_DIR} $ENV{PETSC_DIR} + PATHS ${petsc_dir_locations} + DOC "PETSc directory") + +# Report result of search for PETSC_DIR +if (DEFINED PETSC_DIR) + message(STATUS "PETSC_DIR is ${PETSC_DIR}") +else() + message(STATUS "PETSC_DIR is empty") +endif() + +# Try to figure out PETSC_ARCH if not set +if (PETSC_DIR AND NOT PETSC_ARCH) + set(_petsc_arches + $ENV{PETSC_ARCH} # If set, use environment variable first + ${DEBIAN_FLAVORS} # Debian defaults + x86_64-unknown-linux-gnu i386-unknown-linux-gnu) + set(petscconf "NOTFOUND" CACHE FILEPATH "Cleared" FORCE) + foreach (arch ${_petsc_arches}) + if (NOT PETSC_ARCH) + find_path(petscconf petscconf.h + HINTS ${PETSC_DIR} + PATH_SUFFIXES ${arch}/include bmake/${arch} + NO_DEFAULT_PATH) + if (petscconf) + set(PETSC_ARCH "${arch}" CACHE STRING "PETSc build architecture") + endif() + endif() + endforeach() + set(petscconf "NOTFOUND" CACHE INTERNAL "Scratch variable" FORCE) +endif() + +# Report result of search for PETSC_ARCH +if (DEFINED PETSC_ARCH) + message(STATUS "PETSC_ARCH is ${PETSC_ARCH}") +else() + message(STATUS "PETSC_ARCH is empty") +endif() + +# Look for petscconf.h +if (EXISTS ${PETSC_DIR}/${PETSC_ARCH}/include/petscconf.h) + message(STATUS "Found petscconf.h") + set(FOUND_PETSC_CONF 1) +else() + message(STATUS "Unable to find petscconf.h") +endif() + +# Get variables from PETSc configuration +if (FOUND_PETSC_CONF) + + # Create a temporary Makefile to probe the PETSc configuration + set(petsc_config_makefile ${PROJECT_BINARY_DIR}/Makefile.petsc) + file(WRITE ${petsc_config_makefile} +"# This file was autogenerated by FindPETSc.cmake +PETSC_DIR = ${PETSC_DIR} +PETSC_ARCH = ${PETSC_ARCH} +include ${PETSC_DIR}/conf/variables +show : + -@echo -n \${\${VARIABLE}} +") + + # Define macro for getting PETSc variables from Makefile + macro(PETSC_GET_VARIABLE var name) + set(${var} "NOTFOUND" CACHE INTERNAL "Cleared" FORCE) + execute_process(COMMAND ${CMAKE_MAKE_PROGRAM} --no-print-directory -f ${petsc_config_makefile} show VARIABLE=${name} + OUTPUT_VARIABLE ${var} + RESULT_VARIABLE petsc_return) + endmacro() + + # Call macro to get the PETSc variables + petsc_get_variable(PETSC_INCLUDE PETSC_INCLUDE) # 3.1 + petsc_get_variable(PETSC_CC_INCLUDES PETSC_CC_INCLUDES) # dev + set(PETSC_INCLUDE ${PETSC_INCLUDE} ${PETSC_CC_INCLUDES}) + petsc_get_variable(PETSC_LIB_BASIC PETSC_LIB_BASIC) + petsc_get_variable(PETSC_LIB_DIR PETSC_LIB_DIR) + set(PETSC_LIB "-L${PETSC_LIB_DIR} ${PETSC_LIB_BASIC}") + + # Call macro to get the PETSc 3rd-party libraries + petsc_get_variable(PETSC_EXTERNAL_LIB_BASIC PETSC_EXTERNAL_LIB_BASIC) + + # Extract include paths and libraries from compile command line + include(ResolveCompilerPaths) + resolve_includes(PETSC_INCLUDE_DIRS "${PETSC_INCLUDE}") + resolve_libraries(PETSC_LIBRARIES "${PETSC_LIB}") + resolve_libraries(PETSC_EXTERNAL_LIBRARIES "${PETSC_EXTERNAL_LIB_BASIC}") + + # Add some extra libraries on OSX + if (APPLE) + + # CMake will have troubel finding the gfortan libraries if compiling + # with clang (the libs may be required by 3rd party Fortran libraries) + find_program(GFORTRAN_EXECUTABLE gfortran) + if (GFORTRAN_EXECUTABLE) + execute_process(COMMAND ${GFORTRAN_EXECUTABLE} -print-file-name=libgfortran.dylib + OUTPUT_VARIABLE GFORTRAN_LIBRARY + OUTPUT_STRIP_TRAILING_WHITESPACE) + + if (EXISTS "${GFORTRAN_LIBRARY}") + list(APPEND PETSC_EXTERNAL_LIBRARIES ${GFORTRAN_LIBRARY}) + endif() + endif() + + find_package(X11) + list(APPEND PETSC_INCLUDE_DIRS ${X11_X11_INCLUDE_PATH}) + list(APPEND PETSC_EXTERNAL_LIBRARIES ${X11_LIBRARIES}) + + # ResolveCompilerPaths strips OSX frameworks, so add BLAS here for OSX + petsc_get_variable(PETSC_BLASLAPACK_LIB BLASLAPACK_LIB) + list(APPEND PETSC_EXTERNAL_LIBRARIES ${PETSC_BLASLAPACK_LIB}) + + endif() + + # Remove temporary Makefile + file(REMOVE ${petsc_config_makefile}) + + # Add variables to CMake cache and mark as advanced + set(PETSC_INCLUDE_DIRS ${PETSC_INCLUDE_DIRS} CACHE STRING "PETSc include paths." FORCE) + set(PETSC_LIBRARIES ${PETSC_LIBRARIES} CACHE STRING "PETSc libraries." FORCE) + mark_as_advanced(PETSC_INCLUDE_DIRS PETSC_LIBRARIES) + +endif() + +# Build PETSc test program +if (DOLFIN_SKIP_BUILD_TESTS) + set(PETSC_TEST_RUNS TRUE) + set(PETSC_VERSION "UNKNOWN") + set(PETSC_VERSION_OK TRUE) +elseif (FOUND_PETSC_CONF) + + # Set flags for building test program + set(CMAKE_REQUIRED_INCLUDES ${PETSC_INCLUDE_DIRS}) + set(CMAKE_REQUIRED_LIBRARIES ${PETSC_LIBRARIES}) + + # Add MPI variables if MPI has been found + if (MPI_C_FOUND) + set(CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES} ${MPI_C_INCLUDE_PATH}) + set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} ${MPI_C_LIBRARIES}) + set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} ${MPI_C_COMPILE_FLAGS}") + endif() + + # Check PETSc version + set(PETSC_CONFIG_TEST_VERSION_CPP + "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/petsc_config_test_version.cpp") + file(WRITE ${PETSC_CONFIG_TEST_VERSION_CPP} " +#include +#include \"petscversion.h\" + +int main() { + std::cout << PETSC_VERSION_MAJOR << \".\" + << PETSC_VERSION_MINOR << \".\" + << PETSC_VERSION_SUBMINOR; + return 0; +} +") + + try_run( + PETSC_CONFIG_TEST_VERSION_EXITCODE + PETSC_CONFIG_TEST_VERSION_COMPILED + ${CMAKE_CURRENT_BINARY_DIR} + ${PETSC_CONFIG_TEST_VERSION_CPP} + CMAKE_FLAGS + "-DINCLUDE_DIRECTORIES:STRING=${CMAKE_REQUIRED_INCLUDES}" + COMPILE_OUTPUT_VARIABLE COMPILE_OUTPUT + RUN_OUTPUT_VARIABLE OUTPUT + ) + + if (PETSC_CONFIG_TEST_VERSION_EXITCODE EQUAL 0) + set(PETSC_VERSION ${OUTPUT} CACHE TYPE STRING) + string(REPLACE "." ";" PETSC_VERSION_LIST ${PETSC_VERSION}) + list(GET PETSC_VERSION_LIST 0 PETSC_VERSION_MAJOR) + list(GET PETSC_VERSION_LIST 1 PETSC_VERSION_MINOR) + list(GET PETSC_VERSION_LIST 2 PETSC_VERSION_SUBMINOR) + mark_as_advanced(PETSC_VERSION) + mark_as_advanced(PETSC_VERSION_MAJOR, PETSC_VERSION_MINOR, PETSC_VERSION_SUBMINOR) + endif() + + if (PETSc_FIND_VERSION) + # Check if version found is >= required version + if (NOT "${PETSC_VERSION}" VERSION_LESS "${PETSc_FIND_VERSION}") + set(PETSC_VERSION_OK TRUE) + endif() + else() + # No specific version requested + set(PETSC_VERSION_OK TRUE) + endif() + mark_as_advanced(PETSC_VERSION_OK) + + # Run PETSc test program + set(PETSC_TEST_LIB_CPP + "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/petsc_test_lib.cpp") + file(WRITE ${PETSC_TEST_LIB_CPP} " +#include \"petscts.h\" +#include \"petsc.h\" +int main() +{ + PetscErrorCode ierr; + TS ts; + int argc = 0; + char** argv = NULL; + ierr = PetscInitialize(&argc, &argv, PETSC_NULL, PETSC_NULL);CHKERRQ(ierr); + ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); + ierr = TSSetFromOptions(ts);CHKERRQ(ierr); +#if PETSC_VERSION_MAJOR == 3 && PETSC_VERSION_MINOR <= 1 + ierr = TSDestroy(ts);CHKERRQ(ierr); +#else + ierr = TSDestroy(&ts);CHKERRQ(ierr); +#endif + ierr = PetscFinalize();CHKERRQ(ierr); + return 0; +} +") + + try_run( + PETSC_TEST_LIB_EXITCODE + PETSC_TEST_LIB_COMPILED + ${CMAKE_CURRENT_BINARY_DIR} + ${PETSC_TEST_LIB_CPP} + CMAKE_FLAGS + "-DINCLUDE_DIRECTORIES:STRING=${CMAKE_REQUIRED_INCLUDES}" + "-DLINK_LIBRARIES:STRING=${CMAKE_REQUIRED_LIBRARIES}" + COMPILE_OUTPUT_VARIABLE PETSC_TEST_LIB_COMPILE_OUTPUT + RUN_OUTPUT_VARIABLE PETSC_TEST_LIB_OUTPUT + ) + + if (PETSC_TEST_LIB_COMPILED AND PETSC_TEST_LIB_EXITCODE EQUAL 0) + message(STATUS "Performing test PETSC_TEST_RUNS - Success") + set(PETSC_TEST_RUNS TRUE) + else() + message(STATUS "Performing test PETSC_TEST_RUNS - Failed") + + # Test program does not run - try adding PETSc 3rd party libs and test again + list(APPEND CMAKE_REQUIRED_LIBRARIES ${PETSC_EXTERNAL_LIBRARIES}) + + try_run( + PETSC_TEST_3RD_PARTY_LIBS_EXITCODE + PETSC_TEST_3RD_PARTY_LIBS_COMPILED + ${CMAKE_CURRENT_BINARY_DIR} + ${PETSC_TEST_LIB_CPP} + CMAKE_FLAGS + "-DINCLUDE_DIRECTORIES:STRING=${CMAKE_REQUIRED_INCLUDES}" + "-DLINK_LIBRARIES:STRING=${CMAKE_REQUIRED_LIBRARIES}" + COMPILE_OUTPUT_VARIABLE PETSC_TEST_3RD_PARTY_LIBS_COMPILE_OUTPUT + RUN_OUTPUT_VARIABLE PETSC_TEST_3RD_PARTY_LIBS_OUTPUT + ) + + if (PETSC_TEST_3RD_PARTY_LIBS_COMPILED AND PETSC_TEST_3RD_PARTY_LIBS_EXITCODE EQUAL 0) + message(STATUS "Performing test PETSC_TEST_3RD_PARTY_LIBS_RUNS - Success") + set(PETSC_LIBRARIES ${PETSC_LIBRARIES} ${PETSC_EXTERNAL_LIBRARIES} + CACHE STRING "PETSc libraries." FORCE) + set(PETSC_TEST_RUNS TRUE) + else() + message(STATUS "Performing test PETSC_TEST_3RD_PARTY_LIBS_RUNS - Failed") + endif() + endif() + + # Run test program to check for PETSc Cusp + include(CheckCXXSourceRuns) + check_cxx_source_runs(" +#include \"petsc.h\" +int main() +{ +#if PETSC_HAVE_CUSP + return 0; +#else + return 1; +#endif +} +" PETSC_CUSP_FOUND) + + if (PETSC_CUSP_FOUND) + message(STATUS "PETSc configured with Cusp support") + else() + message(STATUS "PETSc configured without Cusp support") + endif() + +endif() + +# Standard package handling +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(PETSc + "PETSc could not be found. Be sure to set PETSC_DIR and PETSC_ARCH." + PETSC_LIBRARIES PETSC_DIR PETSC_INCLUDE_DIRS PETSC_TEST_RUNS + PETSC_VERSION PETSC_VERSION_OK) diff --git a/cmake/modules/FindPETSc4py.cmake b/cmake/modules/FindPETSc4py.cmake new file mode 100644 index 0000000..cd9039c --- /dev/null +++ b/cmake/modules/FindPETSc4py.cmake @@ -0,0 +1,82 @@ +# - Try to find petsc4py +# Once done this will define +# +# PETSC4PY_FOUND - system has petsc4py +# PETSC4PY_INCLUDE_DIRS - include directories for petsc4py +# PETSC4PY_VERSION - version of petsc4py +# PETSC4PY_VERSION_MAJOR - first number in PETSC4PY_VERSION +# PETSC4PY_VERSION_MINOR - second number in PETSC4PY_VERSION + +# Based on FindNumPy.cmake + +#============================================================================= +# Copyright (C) 2013 Lawrence Mitchell +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +message(STATUS "Checking for package 'PETSc4Py'") + +if(PETSC4PY_INCLUDE_DIRS) + # In cache already + set(PETSC4PY_FIND_QUIETLY TRUE) +endif(PETSC4PY_INCLUDE_DIRS) + +execute_process( + COMMAND ${PYTHON_EXECUTABLE} -c "import petsc4py; print petsc4py.get_include()" + OUTPUT_VARIABLE PETSC4PY_INCLUDE_DIRS + RESULT_VARIABLE PETSC4PY_NOT_FOUND + ERROR_QUIET + OUTPUT_STRIP_TRAILING_WHITESPACE + ) + +if(PETSC4PY_INCLUDE_DIRS) + set(PETSC4PY_FOUND TRUE) + set(PETSC4PY_INCLUDE_DIRS ${PETSC4PY_INCLUDE_DIRS} CACHE STRING "petsc4py include path") +else(PETSC4PY_INCLUDE_DIRS) + set(PETSC4PY_FOUND FALSE) +endif(PETSC4PY_INCLUDE_DIRS) + +if(PETSC4PY_FOUND) + execute_process( + COMMAND ${PYTHON_EXECUTABLE} -c "import petsc4py; print petsc4py.__version__" + OUTPUT_VARIABLE PETSC4PY_VERSION + RESULT_VARIABLE PETSC4PY_NOT_FOUND + OUTPUT_STRIP_TRAILING_WHITESPACE + ) + string(REPLACE "." ";" PETSC4PY_VERSION_LIST ${PETSC4PY_VERSION}) + list(GET PETSC4PY_VERSION_LIST 0 PETSC4PY_VERSION_MAJOR) + list(GET PETSC4PY_VERSION_LIST 1 PETSC4PY_VERSION_MINOR) + if(NOT PETSC4PY_FIND_QUIETLY) + message(STATUS "petsc4py version ${PETSC4PY_VERSION} found") + endif(NOT PETSC4PY_FIND_QUIETLY) +else(PETSC4PY_FOUND) + if(PETSC4PY_FIND_REQUIRED) + message(FATAL_ERROR "petsc4py missing") + endif(PETSC4PY_FIND_REQUIRED) +endif(PETSC4PY_FOUND) + +mark_as_advanced(PETSC4PY_INCLUDE_DIRS, PETSC4PY_VERSION, PETSC4PY_VERSION_MAJOR, PETSC4PY_VERSION_MINOR) diff --git a/cmake/modules/FindPaStiX.cmake b/cmake/modules/FindPaStiX.cmake new file mode 100644 index 0000000..be2f60a --- /dev/null +++ b/cmake/modules/FindPaStiX.cmake @@ -0,0 +1,159 @@ +# - Try to find PaStiX +# Once done this will define +# +# PASTIX_FOUND - system has PaStiX +# PASTIX_INCLUDE_DIRS - include directories for PaStiX +# PASTIX_LIBRARIES - libraries for PaStiX +# PASTIX_VERSION - the PaStiX version string (MAJOR.MEDIUM.MINOR) + +# Check for PaStiX header file +find_path(PASTIX_INCLUDE_DIR pastix.h + HINTS ${PASTIX_DIR}/include $ENV{PASTIX_DIR}/include ${PASTIX_DIR} $ENV{PASTIX_DIR} + PATH_SUFFIXES install + DOC "Directory where the PaStiX header is located" + ) + +set(PASTIX_INCLUDE_DIRS ${PASTIX_INCLUDE_DIR}) + +# Check for PaStiX library +find_library(PASTIX_LIBRARY pastix + HINTS ${PASTIX_DIR}/lib $ENV{PASTIX_DIR}/lib ${PASTIX_DIR} $ENV{PASTIX_DIR} + PATH_SUFFIXES install + DOC "The PaStiX library" + ) + +set(PASTIX_LIBRARIES ${PASTIX_LIBRARY}) + +if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" AND NOT APPLE) + # Check for rt library + find_library(RT_LIBRARY rt + DOC "The RT library" + ) + # Check for math library + find_library(M_LIBRARY m + DOC "The math library" + ) + set(PASTIX_LIBRARIES ${PASTIX_LIBRARIES} ${RT_LIBRARY} ${M_LIBRARY}) + message(STATUS "PASTIX_LIBRARIES ${PASTIX_LIBRARIES}") +endif() + +# Check for hwloc header +find_path(HWLOC_INCLUDE_DIRS hwloc.h + HINTS ${HWLOC_DIR} $ENV{HWLOC_DIR} ${HWLOC_DIR}/include $ENV{HWLOC_DIR}/include + DOC "Directory where the hwloc header is located" + ) + +# Check for hwloc library +find_library(HWLOC_LIBRARY hwloc + HINTS ${HWLOC_DIR} $ENV{HWLOC_DIR} ${HWLOC_DIR}/lib $ENV{HWLOC_DIR}/lib + DOC "The hwloc library" + ) + +if (HWLOC_LIBRARY) + set(PASTIX_LIBRARIES ${PASTIX_LIBRARIES} ${HWLOC_LIBRARY}) +endif() + +# Add BLAS libs if BLAS has been found +set(CMAKE_LIBRARY_PATH ${BLAS_DIR}/lib $ENV{BLAS_DIR}/lib ${CMAKE_LIBRARY_PATH}) +find_package(BLAS) +set(PASTIX_LIBRARIES ${PASTIX_LIBRARIES} ${BLAS_LIBRARIES}) + +if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU") + find_program(GFORTRAN_EXECUTABLE gfortran) + if (GFORTRAN_EXECUTABLE) + execute_process(COMMAND ${GFORTRAN_EXECUTABLE} -print-file-name=libgfortran.so + OUTPUT_VARIABLE GFORTRAN_LIBRARY + OUTPUT_STRIP_TRAILING_WHITESPACE) + if (EXISTS "${GFORTRAN_LIBRARY}") + set(PASTIX_LIBRARIES ${PASTIX_LIBRARIES} ${GFORTRAN_LIBRARY}) + endif() + endif() +endif() + +#Find PaStiX version by looking at pastix.h +if (EXISTS ${PASTIX_INCLUDE_DIR}/pastix.h) + file(STRINGS ${PASTIX_INCLUDE_DIR}/pastix.h PASTIX_VERSIONS_TMP + REGEX "^#define PASTIX_[A-Z]+_VERSION[ \t]+[0-9]+$") + if (PASTIX_VERSIONS_TMP) + string(REGEX REPLACE ".*#define PASTIX_MAJOR_VERSION[ \t]+([0-9]+).*" "\\1" PASTIX_MAJOR_VERSION ${PASTIX_VERSIONS_TMP}) + string(REGEX REPLACE ".*#define PASTIX_MEDIUM_VERSION[ \t]+([0-9]+).*" "\\1" PASTIX_MEDIUM_VERSION ${PASTIX_VERSIONS_TMP}) + string(REGEX REPLACE ".*#define PASTIX_MINOR_VERSION[ \t]+([0-9]+).*" "\\1" PASTIX_MINOR_VERSION ${PASTIX_VERSIONS_TMP}) + set(PASTIX_VERSION ${PASTIX_MAJOR_VERSION}.${PASTIX_MEDIUM_VERSION}.${PASTIX_MINOR_VERSION} CACHE TYPE STRING) + else() + set(PASTIX_VERSION "UNKNOWN") + endif() +endif() + +if (PaStiX_FIND_VERSION) + # Check if version found is >= required version + if (NOT "${PASTIX_VERSION}" VERSION_LESS "${PaStiX_FIND_VERSION}") + set(PASTIX_VERSION_OK TRUE) + endif() +else() + # No specific version requested + set(PASTIX_VERSION_OK TRUE) +endif() + +mark_as_advanced( + PASTIX_INCLUDE_DIR + PASTIX_INCLUDE_DIRS + PASTIX_LIBRARY + PASTIX_LIBRARIES + PASTIX_VERSION + ) + +# Try to run a test program that uses PaStiX +if (DOLFIN_SKIP_BUILD_TESTS) + set(PASTIX_TEST_RUNS TRUE) +elseif (PASTIX_INCLUDE_DIRS AND PASTIX_LIBRARIES) + + set(CMAKE_REQUIRED_INCLUDES ${PASTIX_INCLUDE_DIRS}) + set(CMAKE_REQUIRED_LIBRARIES ${PASTIX_LIBRARIES}) + + # Add SCOTCH variables if SCOTCH has been found + if (SCOTCH_FOUND) + set(CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES} ${SCOTCH_INCLUDE_DIRS}) + set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} ${SCOTCH_LIBRARIES}) + endif() + + # Add MPI variables if MPI has been found + if (MPI_C_FOUND) + set(CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES} ${MPI_C_INCLUDE_PATH}) + set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} ${MPI_C_LIBRARIES}) + set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} ${MPI_C_COMPILE_FLAGS}") + endif() + + # Build and run test program + include(CheckCSourceRuns) + check_c_source_runs(" +/* Test program pastix */ + +#define MPICH_IGNORE_CXX_SEEK 1 +#include +#include +#include + +int main() +{ + pastix_int_t iparm[IPARM_SIZE]; + double dparm[DPARM_SIZE]; + int i = 0; + for (i = 0; i < IPARM_SIZE; ++i) + iparm[i] = 0; + for (i = 0; i < DPARM_SIZE; ++i) + dparm[i] = 0.0; + + // Set default parameters + pastix_initParam(iparm, dparm); + + return 0; +} +" PASTIX_TEST_RUNS) + +endif() + +# Standard package handling +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(PASTIX + "PaStiX could not be found. Be sure to set PASTIX_DIR." + PASTIX_LIBRARIES PASTIX_INCLUDE_DIRS PASTIX_TEST_RUNS PASTIX_VERSION PASTIX_VERSION_OK) diff --git a/cmake/modules/FindParMETIS.cmake b/cmake/modules/FindParMETIS.cmake new file mode 100644 index 0000000..f174d12 --- /dev/null +++ b/cmake/modules/FindParMETIS.cmake @@ -0,0 +1,153 @@ +# - Try to find ParMETIS +# Once done this will define +# +# PARMETIS_FOUND - system has ParMETIS +# PARMETIS_INCLUDE_DIRS - include directories for ParMETIS +# PARMETIS_LIBRARIES - libraries for ParMETIS +# PARMETIS_VERSION - version for ParMETIS + +#============================================================================= +# Copyright (C) 2010 Garth N. Wells, Anders Logg and Johannes Ring +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +if (MPI_CXX_FOUND) + find_path(PARMETIS_INCLUDE_DIRS parmetis.h + HINTS ${PARMETIS_DIR}/include $ENV{PARMETIS_DIR}/include ${PETSC_DIR}/include ${PETSC_DIR}/${PETSC_ARCH}/include + DOC "Directory where the ParMETIS header files are located" + ) + + find_library(PARMETIS_LIBRARY parmetis + HINTS ${PARMETIS_DIR}/lib $ENV{PARMETIS_DIR}/lib ${PETSC_DIR}/lib ${PETSC_DIR}/${PETSC_ARCH}/lib + NO_DEFAULT_PATH + DOC "Directory where the ParMETIS library is located" + ) + find_library(PARMETIS_LIBRARY parmetis + DOC "Directory where the ParMETIS library is located" + ) + + find_library(METIS_LIBRARY metis + HINTS ${PARMETIS_DIR}/lib $ENV{PARMETIS_DIR}/lib ${PETSC_DIR}/lib ${PETSC_DIR}/${PETSC_ARCH}/lib + NO_DEFAULT_PATH + DOC "Directory where the METIS library is located" + ) + find_library(METIS_LIBRARY metis + DOC "Directory where the METIS library is located" + ) + + set(PARMETIS_LIBRARIES ${PARMETIS_LIBRARY}) + if (METIS_LIBRARY) + set(PARMETIS_LIBRARIES ${PARMETIS_LIBRARIES} ${METIS_LIBRARY}) + endif() + + # Try compiling and running test program + if (DOLFIN_SKIP_BUILD_TESTS) + set(PARMETIS_TEST_RUNS TRUE) + set(PARMETIS_VERSION "UNKNOWN") + set(PARMETIS_VERSION_OK TRUE) + elseif (PARMETIS_INCLUDE_DIRS AND PARMETIS_LIBRARY) + + # Set flags for building test program + set(CMAKE_REQUIRED_INCLUDES ${PARMETIS_INCLUDE_DIRS} ${MPI_CXX_INCLUDE_PATH}) + set(CMAKE_REQUIRED_LIBRARIES ${PARMETIS_LIBRARIES} ${MPI_CXX_LIBRARIES}) + set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} ${MPI_CXX_COMPILE_FLAGS}) + + # Check ParMETIS version + set(PARMETIS_CONFIG_TEST_VERSION_CPP + "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/parmetis_config_test_version.cpp") + file(WRITE ${PARMETIS_CONFIG_TEST_VERSION_CPP} " +#define MPICH_IGNORE_CXX_SEEK 1 +#include +#include \"parmetis.h\" + +int main() { +#ifdef PARMETIS_SUBMINOR_VERSION + std::cout << PARMETIS_MAJOR_VERSION << \".\" + << PARMETIS_MINOR_VERSION << \".\" + << PARMETIS_SUBMINOR_VERSION; +#else + std::cout << PARMETIS_MAJOR_VERSION << \".\" + << PARMETIS_MINOR_VERSION; +#endif + return 0; +} +") + + try_run( + PARMETIS_CONFIG_TEST_VERSION_EXITCODE + PARMETIS_CONFIG_TEST_VERSION_COMPILED + ${CMAKE_CURRENT_BINARY_DIR} + ${PARMETIS_CONFIG_TEST_VERSION_CPP} + CMAKE_FLAGS + "-DINCLUDE_DIRECTORIES:STRING=${CMAKE_REQUIRED_INCLUDES}" + "-DLINK_LIBRARIES:STRING=${CMAKE_REQUIRED_LIBRARIES}" + COMPILE_OUTPUT_VARIABLE PARMETIS_CONFIG_TEST_VERSION_COMPILE_OUTPUT + RUN_OUTPUT_VARIABLE PARMETIS_CONFIG_TEST_VERSION_OUTPUT + ) + + if (PARMETIS_CONFIG_TEST_VERSION_EXITCODE EQUAL 0) + set(PARMETIS_VERSION ${PARMETIS_CONFIG_TEST_VERSION_OUTPUT} CACHE TYPE STRING) + mark_as_advanced(PARMETIS_VERSION) + endif() + + if (ParMETIS_FIND_VERSION) + # Check if version found is >= required version + if (NOT "${PARMETIS_VERSION}" VERSION_LESS "${ParMETIS_FIND_VERSION}") + set(PARMETIS_VERSION_OK TRUE) + endif() + else() + # No specific version requested + set(PARMETIS_VERSION_OK TRUE) + endif() + mark_as_advanced(PARMETIS_VERSION_OK) + + # Build and run test program + include(CheckCXXSourceRuns) + check_cxx_source_runs(" +#define MPICH_IGNORE_CXX_SEEK 1 +#include +#include + +int main() +{ + // FIXME: Find a simple but sensible test for ParMETIS + + return 0; +} +" PARMETIS_TEST_RUNS) + + endif() +endif() + +# Standard package handling +find_package_handle_standard_args(ParMETIS + "ParMETIS could not be found/configured." + PARMETIS_LIBRARIES + PARMETIS_TEST_RUNS + PARMETIS_INCLUDE_DIRS + PARMETIS_VERSION + PARMETIS_VERSION_OK) diff --git a/cmake/modules/FindSCOTCH.cmake b/cmake/modules/FindSCOTCH.cmake new file mode 100644 index 0000000..880b908 --- /dev/null +++ b/cmake/modules/FindSCOTCH.cmake @@ -0,0 +1,324 @@ +# - Try to find SCOTCH +# Once done this will define +# +# SCOTCH_FOUND - system has found SCOTCH +# SCOTCH_INCLUDE_DIRS - include directories for SCOTCH +# SCOTCH_LIBARIES - libraries for SCOTCH +# SCOTCH_VERSION - version for SCOTCH +# +# Variables used by this module, they can change the default behaviour and +# need to be set before calling find_package: +# +# SCOTCH_DEBUG - Set this to TRUE to enable debugging output +# of FindScotchPT.cmake if you are having problems. +# Please enable this before filing any bug reports. + +#============================================================================= +# Copyright (C) 2010-2011 Garth N. Wells, Johannes Ring and Anders Logg +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +set(SCOTCH_FOUND FALSE) + +message(STATUS "Checking for package 'SCOTCH-PT'") + +# Check for header file +find_path(SCOTCH_INCLUDE_DIRS ptscotch.h + HINTS ${SCOTCH_DIR}/include $ENV{SCOTCH_DIR}/include ${PETSC_DIR}/include ${PETSC_DIR}/${PETSC_ARCH}/include + PATH_SUFFIXES scotch + DOC "Directory where the SCOTCH-PT header is located" + ) + +# Check for scotch +find_library(SCOTCH_LIBRARY + NAMES scotch + HINTS ${SCOTCH_DIR}/lib $ENV{SCOTCH_DIR}/lib ${PETSC_DIR}/lib ${PETSC_DIR}/${PETSC_ARCH}/lib + NO_DEFAULT_PATH + DOC "The SCOTCH library" + ) +find_library(SCOTCH_LIBRARY + NAMES scotch + DOC "The SCOTCH library" + ) + +# Check for scotcherr +find_library(SCOTCHERR_LIBRARY + NAMES scotcherr + HINTS ${SCOTCH_DIR}/lib $ENV{SCOTCH_DIR}/lib + NO_DEFAULT_PATH + DOC "The SCOTCH-ERROR library" + ) +find_library(SCOTCHERR_LIBRARY + NAMES scotcherr + DOC "The SCOTCH-ERROR library" + ) + +# Check for ptscotch +find_library(PTSCOTCH_LIBRARY + NAMES ptscotch + HINTS ${SCOTCH_DIR}/lib $ENV{SCOTCH_DIR}/lib ${PETSC_DIR}/lib ${PETSC_DIR}/${PETSC_ARCH}/lib + NO_DEFAULT_PATH + DOC "The PTSCOTCH library" + ) +find_library(PTSCOTCH_LIBRARY + NAMES ptscotch + DOC "The PTSCOTCH library" + ) + +# Check for ptesmumps +find_library(PTESMUMPS_LIBRARY + NAMES ptesmumps esmumps + HINTS ${SCOTCH_DIR}/lib $ENV{SCOTCH_DIR}/lib ${PETSC_DIR}/lib ${PETSC_DIR}/${PETSC_ARCH}/lib + NO_DEFAULT_PATH + DOC "The PTSCOTCH-ESMUMPS library" + ) +find_library(PTESMUMPS_LIBRARY + NAMES ptesmumps esmumps + DOC "The PTSCOTCH-ESMUMPS library" + ) + +# Check for ptscotcherr +find_library(PTSCOTCHERR_LIBRARY + NAMES ptscotcherr + HINTS ${SCOTCH_DIR}/lib $ENV{SCOTCH_DIR}/lib ${PETSC_DIR}/lib ${PETSC_DIR}/${PETSC_ARCH}/lib + NO_DEFAULT_PATH + DOC "The PTSCOTCH-ERROR library" + ) +find_library(PTSCOTCHERR_LIBRARY + NAMES ptscotcherr + DOC "The PTSCOTCH-ERROR library" + ) + +#set(SCOTCH_DEBUG 1) +set(SCOTCH_LIBRARIES ${PTSCOTCH_LIBRARY}) +if (PTESMUMPS_LIBRARY) + set(SCOTCH_LIBRARIES ${SCOTCH_LIBRARIES} ${PTESMUMPS_LIBRARY}) +endif() +set(SCOTCH_LIBRARIES ${SCOTCH_LIBRARIES} ${PTSCOTCHERR_LIBRARY}) + +# Basic check of SCOTCH_VERSION which does not require compilation +file(STRINGS ${SCOTCH_INCLUDE_DIRS}/scotch.h SCOTCH_H) +string(REGEX MATCH "SCOTCH_VERSION [0-9]+" SCOTCH_VERSION ${SCOTCH_H}) +string(REGEX MATCH "[0-9]+" SCOTCH_VERSION ${SCOTCH_VERSION}) + +# For SCOTCH version > 6, need to add libraries scotch and ptscotch +if (NOT ${SCOTCH_VERSION} VERSION_LESS "6") + set(SCOTCH_LIBRARIES ${PTSCOTCH_LIBRARY} ${SCOTCH_LIBRARY} ${PTSCOTCHERR_LIBRARY}) + set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} ${SCOTCH_LIBRARY}) +endif() + +# Try compiling and running test program +if (DOLFIN_SKIP_BUILD_TESTS) + message(STATUS "Found SCOTCH (version ${SCOTCH_VERSION})") + set(SCOTCH_TEST_RUNS TRUE) +elseif (SCOTCH_INCLUDE_DIRS AND SCOTCH_LIBRARIES) + if (SCOTCH_DEBUG) + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "location of ptscotch.h: ${SCOTCH_INCLUDE_DIRS}/ptscotch.h") + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "location of libscotch: ${SCOTCH_LIBRARY}") + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "location of libptscotch: ${PTSCOTCH_LIBRARY}") + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "location of libptscotcherr: ${PTSCOTCHERR_LIBRARY}") + endif() + + # Set flags for building test program + set(CMAKE_REQUIRED_INCLUDES ${SCOTCH_INCLUDE_DIRS}) + set(CMAKE_REQUIRED_LIBRARIES ${SCOTCH_LIBRARIES}) + #set(CMAKE_REQUIRED_LIBRARIES ${SCOTCH_LIBRARY} ${SCOTCHERR_LIBRARY}) + + # Add MPI variables if MPI has been found + if (MPI_CXX_FOUND) + set(CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES} ${MPI_CXX_INCLUDE_PATH}) + set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} ${MPI_CXX_LIBRARIES}) + set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} ${MPI_CXX_COMPILE_FLAGS}") + endif() + + set(SCOTCH_CONFIG_TEST_VERSION_CPP + "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/scotch_config_test_version.cpp") + file(WRITE ${SCOTCH_CONFIG_TEST_VERSION_CPP} " +#define MPICH_IGNORE_CXX_SEEK 1 +#include +#include +#include +#include +#include + +int main() { + std::cout << SCOTCH_VERSION << \".\" + << SCOTCH_RELEASE << \".\" + << SCOTCH_PATCHLEVEL; + return 0; +} +") + + try_run( + SCOTCH_CONFIG_TEST_VERSION_EXITCODE + SCOTCH_CONFIG_TEST_VERSION_COMPILED + ${CMAKE_CURRENT_BINARY_DIR} + ${SCOTCH_CONFIG_TEST_VERSION_CPP} + CMAKE_FLAGS + "-DINCLUDE_DIRECTORIES:STRING=${CMAKE_REQUIRED_INCLUDES}" + "-DLINK_LIBRARIES:STRING=${CMAKE_REQUIRED_LIBRARIES}" + COMPILE_OUTPUT_VARIABLE COMPILE_OUTPUT + RUN_OUTPUT_VARIABLE OUTPUT + ) + + # Set version number + if (SCOTCH_CONFIG_TEST_VERSION_EXITCODE EQUAL 0) + set(SCOTCH_VERSION ${OUTPUT} CACHE TYPE STRING) + message(STATUS "Found SCOTCH (version ${SCOTCH_VERSION})") + endif() + + # PT-SCOTCH was first introduced in SCOTCH version 5.0 + # FIXME: parallel graph partitioning features in PT-SCOTCH was first + # introduced in 5.1. Do we require version 5.1? + if (NOT ${SCOTCH_VERSION} VERSION_LESS "5.0") + set(SCOTCH_TEST_LIB_CPP + "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/scotch_test_lib.cpp") + file(WRITE ${SCOTCH_TEST_LIB_CPP} " +#define MPICH_IGNORE_CXX_SEEK 1 +#include +#include +#include +#include +#include +#include + +int main() { + int provided; + SCOTCH_Dgraph dgrafdat; + + MPI_Init_thread(0, 0, MPI_THREAD_MULTIPLE, &provided); + + if (SCOTCH_dgraphInit(&dgrafdat, MPI_COMM_WORLD) != 0) { + if (MPI_THREAD_MULTIPLE > provided) { + std::cout << \"MPI implementation is not thread-safe:\" << std::endl; + std::cout << \"SCOTCH should be compiled without SCOTCH_PTHREAD\" << std::endl; + exit(1); + } + else { + std::cout << \"libptscotch linked to libscotch or other unknown error\" << std::endl; + exit(2); + } + } + else { + SCOTCH_dgraphExit(&dgrafdat); + } + + MPI_Finalize(); + + return 0; +} +") + + message(STATUS "Performing test SCOTCH_TEST_RUNS") + try_run( + SCOTCH_TEST_LIB_EXITCODE + SCOTCH_TEST_LIB_COMPILED + ${CMAKE_CURRENT_BINARY_DIR} + ${SCOTCH_TEST_LIB_CPP} + CMAKE_FLAGS + "-DINCLUDE_DIRECTORIES:STRING=${CMAKE_REQUIRED_INCLUDES}" + "-DLINK_LIBRARIES:STRING=${CMAKE_REQUIRED_LIBRARIES}" + COMPILE_OUTPUT_VARIABLE SCOTCH_TEST_LIB_COMPILE_OUTPUT + RUN_OUTPUT_VARIABLE SCOTCH_TEST_LIB_OUTPUT + ) + + if (SCOTCH_TEST_LIB_COMPILED AND SCOTCH_TEST_LIB_EXITCODE EQUAL 0) + message(STATUS "Performing test SCOTCH_TEST_RUNS - Success") + set(SCOTCH_TEST_RUNS TRUE) + else() + message(STATUS "Performing test SCOTCH_TEST_RUNS - Failed") + if (SCOTCH_DEBUG) + # Output some variables + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "SCOTCH_TEST_LIB_COMPILED = ${SCOTCH_TEST_LIB_COMPILED}") + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "SCOTCH_TEST_LIB_COMPILE_OUTPUT = ${SCOTCH_TEST_LIB_COMPILE_OUTPUT}") + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "SCOTCH_TEST_LIB_EXITCODE = ${SCOTCH_TEST_LIB_EXITCODE}") + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "SCOTCH_TEST_LIB_OUTPUT = ${SCOTCH_TEST_LIB_OUTPUT}") + endif() + endif() + + # If program does not run, try adding zlib library and test again + if(NOT SCOTCH_TEST_RUNS) + if (NOT ZLIB_FOUND) + find_package(ZLIB) + endif() + + if (ZLIB_INCLUDE_DIRS AND ZLIB_LIBRARIES) + set(CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES} ${ZLIB_INCLUDE_DIRS}) + set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} ${ZLIB_LIBRARIES}) + + message(STATUS "Performing test SCOTCH_ZLIB_TEST_RUNS") + try_run( + SCOTCH_ZLIB_TEST_LIB_EXITCODE + SCOTCH_ZLIB_TEST_LIB_COMPILED + ${CMAKE_CURRENT_BINARY_DIR} + ${SCOTCH_TEST_LIB_CPP} + CMAKE_FLAGS + "-DINCLUDE_DIRECTORIES:STRING=${CMAKE_REQUIRED_INCLUDES}" + "-DLINK_LIBRARIES:STRING=${CMAKE_REQUIRED_LIBRARIES}" + COMPILE_OUTPUT_VARIABLE SCOTCH_ZLIB_TEST_LIB_COMPILE_OUTPUT + RUN_OUTPUT_VARIABLE SCOTCH_ZLIB_TEST_LIB_OUTPUT + ) + + # Add zlib flags if required and set test run to 'true' + if (SCOTCH_ZLIB_TEST_LIB_COMPILED AND SCOTCH_ZLIB_TEST_LIB_EXITCODE EQUAL 0) + message(STATUS "Performing test SCOTCH_ZLIB_TEST_RUNS - Success") + set(SCOTCH_INCLUDE_DIRS ${SCOTCH_INCLUDE_DIRS} ${ZLIB_INCLUDE_DIRS}) + set(SCOTCH_LIBRARIES ${SCOTCH_LIBRARIES} ${ZLIB_LIBRARIES}) + set(SCOTCH_TEST_RUNS TRUE) + else() + message(STATUS "Performing test SCOTCH_ZLIB_TEST_RUNS - Failed") + if (SCOTCH_DEBUG) + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "SCOTCH_ZLIB_TEST_LIB_COMPILED = ${SCOTCH_ZLIB_TEST_LIB_COMPILED}") + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "SCOTCH_ZLIB_TEST_LIB_COMPILE_OUTPUT = ${SCOTCH_ZLIB_TEST_LIB_COMPILE_OUTPUT}") + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "SCOTCH_TEST_LIB_EXITCODE = ${SCOTCH_TEST_LIB_EXITCODE}") + message(STATUS "[ ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE} ] " + "SCOTCH_TEST_LIB_OUTPUT = ${SCOTCH_TEST_LIB_OUTPUT}") + endif() + endif() + + endif() + endif() + endif() +endif() + +# Standard package handling +find_package_handle_standard_args(SCOTCH + "SCOTCH could not be found. Be sure to set SCOTCH_DIR." + SCOTCH_LIBRARIES + SCOTCH_INCLUDE_DIRS + SCOTCH_TEST_RUNS) diff --git a/cmake/modules/FindSLEPc.cmake b/cmake/modules/FindSLEPc.cmake new file mode 100644 index 0000000..13c508e --- /dev/null +++ b/cmake/modules/FindSLEPc.cmake @@ -0,0 +1,270 @@ +# - Try to find SLEPC +# Once done this will define +# +# SLEPC_FOUND - system has SLEPc +# SLEPC_INCLUDE_DIR - include directories for SLEPc +# SLEPC_LIBARIES - libraries for SLEPc +# SLEPC_DIR - directory where SLEPc is built +# SLEPC_VERSION - version of SLEPc +# +# Assumes that PETSC_DIR and PETSC_ARCH has been set by +# alredy calling find_package(PETSc) + +#============================================================================= +# Copyright (C) 2010-2012 Garth N. Wells, Anders Logg and Johannes Ring +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +message(STATUS "Checking for package 'SLEPc'") + +# Set debian_arches (PETSC_ARCH for Debian-style installations) +foreach (debian_arches linux kfreebsd) + if ("${CMAKE_BUILD_TYPE}" STREQUAL "Debug") + set(DEBIAN_FLAVORS ${debian_arches}-gnu-c-debug ${debian_arches}-gnu-c-opt ${DEBIAN_FLAVORS}) + else() + set(DEBIAN_FLAVORS ${debian_arches}-gnu-c-opt ${debian_arches}-gnu-c-debug ${DEBIAN_FLAVORS}) + endif() +endforeach() + +# List of possible locations for SLEPC_DIR +set(slepc_dir_locations "") +list(APPEND slepc_dir_locations "/usr/lib/slepcdir/3.4.2") +list(APPEND slepc_dir_locations "/usr/lib/slepcdir/3.2") +list(APPEND slepc_dir_locations "/usr/lib/slepcdir/3.1") +list(APPEND slepc_dir_locations "/usr/lib/slepcdir/3.0.0") +list(APPEND slepc_dir_locations "/opt/local/lib/petsc") # Macports +list(APPEND slepc_dir_locations "/usr/local/lib/slepc") +list(APPEND slepc_dir_locations "$ENV{HOME}/slepc") + +# Add other possible locations for SLEPC_DIR +set(_SYSTEM_LIB_PATHS "${CMAKE_SYSTEM_LIBRARY_PATH};${CMAKE_PLATFORM_IMPLICIT_LINK_DIRECTORIES}") +string(REGEX REPLACE ":" ";" libdirs ${_SYSTEM_LIB_PATHS}) +foreach (libdir ${libdirs}) + get_filename_component(slepc_dir_location "${libdir}/" PATH) + list(APPEND slepc_dir_locations ${slepc_dir_location}) +endforeach() + +# Try to figure out SLEPC_DIR by finding slepc.h +find_path(SLEPC_DIR include/slepc.h + HINTS ${SLEPC_DIR} $ENV{SLEPC_DIR} + PATHS ${slepc_dir_locations} + DOC "SLEPc directory") + +# Report result of search for SLEPC_DIR +if (DEFINED SLEPC_DIR) + message(STATUS "SLEPC_DIR is ${SLEPC_DIR}") +else() + message(STATUS "SLEPC_DIR is empty") +endif() + +# Get variables from SLEPc configuration +if (SLEPC_DIR) + + find_library(SLEPC_LIBRARY + NAMES slepc + HINTS ${SLEPC_DIR}/lib $ENV{SLEPC_DIR}/lib ${SLEPC_DIR}/${PETSC_ARCH}/lib $ENV{SLEPC_DIR}/$ENV{PETSC_ARCH}/lib + NO_DEFAULT_PATH + DOC "The SLEPc library" + ) + find_library(SLEPC_LIBRARY + NAMES slepc + DOC "The SLEPc library" + ) + mark_as_advanced(SLEPC_LIBRARY) + + # Create a temporary Makefile to probe the SLEPcc configuration + set(slepc_config_makefile ${PROJECT_BINARY_DIR}/Makefile.slepc) + file(WRITE ${slepc_config_makefile} +"# This file was autogenerated by FindSLEPc.cmake +SLEPC_DIR = ${SLEPC_DIR} +PETSC_ARCH = ${PETSC_ARCH} +PETSC_DIR = ${PETSC_DIR} +include ${SLEPC_DIR}/conf/slepc_common +show : + -@echo -n \${\${VARIABLE}} +") + + # Define macro for getting SLEPc variables from Makefile + macro(SLEPC_GET_VARIABLE var name) + set(${var} "NOTFOUND" CACHE INTERNAL "Cleared" FORCE) + execute_process(COMMAND ${CMAKE_MAKE_PROGRAM} --no-print-directory -f ${slepc_config_makefile} show VARIABLE=${name} + OUTPUT_VARIABLE ${var} + RESULT_VARIABLE slepc_return) + endmacro() + + # Call macro to get the SLEPc variables + slepc_get_variable(SLEPC_INCLUDE SLEPC_INCLUDE) + slepc_get_variable(SLEPC_EXTERNAL_LIB SLEPC_EXTERNAL_LIB) + + # Remove temporary Makefile + file(REMOVE ${slepc_config_makefile}) + + # Extract include paths and libraries from compile command line + include(ResolveCompilerPaths) + resolve_includes(SLEPC_INCLUDE_DIRS "${SLEPC_INCLUDE}") + resolve_libraries(SLEPC_EXTERNAL_LIBRARIES "${SLEPC_EXTERNAL_LIB}") + + # Add variables to CMake cache and mark as advanced + set(SLEPC_INCLUDE_DIRS ${SLEPC_INCLUDE_DIRS} CACHE STRING "SLEPc include paths." FORCE) + set(SLEPC_LIBRARIES ${SLEPC_LIBRARY} CACHE STRING "SLEPc libraries." FORCE) + mark_as_advanced(SLEPC_INCLUDE_DIRS SLEPC_LIBRARIES) +endif() + +if (DOLFIN_SKIP_BUILD_TESTS) + set(SLEPC_TEST_RUNS TRUE) + set(SLEPC_VERSION "UNKNOWN") + set(SLEPC_VERSION_OK TRUE) +elseif (SLEPC_LIBRARIES AND SLEPC_INCLUDE_DIRS) + + # Set flags for building test program + set(CMAKE_REQUIRED_INCLUDES ${SLEPC_INCLUDE_DIRS} ${PETSC_INCLUDE_DIRS}) + set(CMAKE_REQUIRED_LIBRARIES ${SLEPC_LIBRARIES} ${PETSC_LIBRARIES}) + + # Add MPI variables if MPI has been found + if (MPI_C_FOUND) + set(CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES} ${MPI_C_INCLUDE_PATH}) + set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} ${MPI_C_LIBRARIES}) + set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} ${MPI_C_COMPILE_FLAGS}") + endif() + + # Check SLEPc version + set(SLEPC_CONFIG_TEST_VERSION_CPP + "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/slepc_config_test_version.cpp") + file(WRITE ${SLEPC_CONFIG_TEST_VERSION_CPP} " +#include +#include \"slepcversion.h\" + +int main() { + std::cout << SLEPC_VERSION_MAJOR << \".\" + << SLEPC_VERSION_MINOR << \".\" + << SLEPC_VERSION_SUBMINOR; + return 0; +} +") + + try_run( + SLEPC_CONFIG_TEST_VERSION_EXITCODE + SLEPC_CONFIG_TEST_VERSION_COMPILED + ${CMAKE_CURRENT_BINARY_DIR} + ${SLEPC_CONFIG_TEST_VERSION_CPP} + CMAKE_FLAGS + "-DINCLUDE_DIRECTORIES:STRING=${CMAKE_REQUIRED_INCLUDES}" + COMPILE_OUTPUT_VARIABLE COMPILE_OUTPUT + RUN_OUTPUT_VARIABLE OUTPUT + ) + + if (SLEPC_CONFIG_TEST_VERSION_EXITCODE EQUAL 0) + set(SLEPC_VERSION ${OUTPUT} CACHE TYPE STRING) + mark_as_advanced(SLEPC_VERSION) + endif() + + if (SLEPc_FIND_VERSION) + # Check if version found is >= required version + if (NOT "${SLEPC_VERSION}" VERSION_LESS "${SLEPc_FIND_VERSION}") + set(SLEPC_VERSION_OK TRUE) + endif() + else() + # No specific version requested + set(SLEPC_VERSION_OK TRUE) + endif() + mark_as_advanced(SLEPC_VERSION_OK) + + # Run SLEPc test program + set(SLEPC_TEST_LIB_CPP + "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/slepc_test_lib.cpp") + file(WRITE ${SLEPC_TEST_LIB_CPP} " +#include \"petsc.h\" +#include \"slepceps.h\" +int main() +{ + PetscErrorCode ierr; + int argc = 0; + char** argv = NULL; + ierr = SlepcInitialize(&argc, &argv, PETSC_NULL, PETSC_NULL); + EPS eps; + ierr = EPSCreate(PETSC_COMM_SELF, &eps); CHKERRQ(ierr); + //ierr = EPSSetFromOptions(eps); CHKERRQ(ierr); +#if PETSC_VERSION_MAJOR == 3 && PETSC_VERSION_MINOR <= 1 + ierr = EPSDestroy(eps); CHKERRQ(ierr); +#else + ierr = EPSDestroy(&eps); CHKERRQ(ierr); +#endif + ierr = SlepcFinalize(); CHKERRQ(ierr); + return 0; +} +") + + try_run( + SLEPC_TEST_LIB_EXITCODE + SLEPC_TEST_LIB_COMPILED + ${CMAKE_CURRENT_BINARY_DIR} + ${SLEPC_TEST_LIB_CPP} + CMAKE_FLAGS + "-DINCLUDE_DIRECTORIES:STRING=${CMAKE_REQUIRED_INCLUDES}" + "-DLINK_LIBRARIES:STRING=${CMAKE_REQUIRED_LIBRARIES}" + COMPILE_OUTPUT_VARIABLE SLEPC_TEST_LIB_COMPILE_OUTPUT + RUN_OUTPUT_VARIABLE SLEPC_TEST_LIB_OUTPUT + ) + + if (SLEPC_TEST_LIB_COMPILED AND SLEPC_TEST_LIB_EXITCODE EQUAL 0) + message(STATUS "Performing test SLEPC_TEST_RUNS - Success") + set(SLEPC_TEST_RUNS TRUE) + else() + message(STATUS "Performing test SLEPC_TEST_RUNS - Failed") + + # Test program does not run - try adding SLEPc 3rd party libs and test again + list(APPEND CMAKE_REQUIRED_LIBRARIES ${SLEPC_EXTERNAL_LIBRARIES}) + + try_run( + SLEPC_TEST_3RD_PARTY_LIBS_EXITCODE + SLEPC_TEST_3RD_PARTY_LIBS_COMPILED + ${CMAKE_CURRENT_BINARY_DIR} + ${SLEPC_TEST_LIB_CPP} + CMAKE_FLAGS + "-DINCLUDE_DIRECTORIES:STRING=${CMAKE_REQUIRED_INCLUDES}" + "-DLINK_LIBRARIES:STRING=${CMAKE_REQUIRED_LIBRARIES}" + COMPILE_OUTPUT_VARIABLE SLEPC_TEST_3RD_PARTY_LIBS_COMPILE_OUTPUT + RUN_OUTPUT_VARIABLE SLEPC_TEST_3RD_PARTY_LIBS_OUTPUT + ) + + if (SLEPC_TEST_3RD_PARTY_LIBS_COMPILED AND SLEPC_TEST_3RD_PARTY_LIBS_EXITCODE EQUAL 0) + message(STATUS "Performing test SLEPC_TEST_3RD_PARTY_LIBS_RUNS - Success") + set(SLEPC_LIBRARIES ${SLEPC_LIBRARIES} ${SLEPC_EXTERNAL_LIBRARIES} + CACHE STRING "SLEPc libraries." FORCE) + set(SLEPC_TEST_RUNS TRUE) + else() + message(STATUS "Performing test SLEPC_TEST_3RD_PARTY_LIBS_RUNS - Failed") + endif() + endif() +endif() + +# Standard package handling +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(SLEPc + "SLEPc could not be found. Be sure to set SLEPC_DIR, PETSC_DIR, and PETSC_ARCH." + SLEPC_LIBRARIES SLEPC_DIR SLEPC_INCLUDE_DIRS SLEPC_TEST_RUNS + SLEPC_VERSION SLEPC_VERSION_OK) diff --git a/cmake/modules/FindSphinx.cmake b/cmake/modules/FindSphinx.cmake new file mode 100644 index 0000000..e1df317 --- /dev/null +++ b/cmake/modules/FindSphinx.cmake @@ -0,0 +1,78 @@ +# - Try to find Sphinx (sphinx-build) + +# Once done this will define +# +# SPHINX_FOUND - system has Sphinx +# SPHINX_EXECUTABLE - full path to the Sphinx documentation generator tool +# SPHINX_VERSION - the version of Sphinx which was found, e.g. "1.0.7" + +#============================================================================= +# Copyright (C) 2011 Marie Rognes and Johannes Ring +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +#============================================================================= + +message(STATUS "Checking for package 'Sphinx'") + +# Make sure Python is available +if (NOT PYTHON_EXECUTABLE) + find_package(PythonInterp) +endif() + +# Try to find sphinx-build +find_program(SPHINX_EXECUTABLE sphinx-build + HINTS ${SPHINX_DIR} $ENV{SPHINX_DIR} + PATH_SUFFIXES bin + DOC "Sphinx documentation generator tool" +) + +if (SPHINX_EXECUTABLE) + # Try to check Sphinx version by importing Sphinx + execute_process( + COMMAND ${PYTHON_EXECUTABLE} -c "import sphinx; print sphinx.__version__" + OUTPUT_VARIABLE SPHINX_VERSION + OUTPUT_STRIP_TRAILING_WHITESPACE) + + if (Sphinx_FIND_VERSION) + # Check if version found is >= required version + if (NOT "${SPHINX_VERSION}" VERSION_LESS "${Sphinx_FIND_VERSION}") + set(SPHINX_VERSION_OK TRUE) + endif() + else() + # No specific version of Sphinx is requested + set(SPHINX_VERSION_OK TRUE) + endif() +endif() + +mark_as_advanced( + SPHINX_EXECUTABLE + SPHINX_VERSION + SPHINX_VERSION_OK +) + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(Sphinx DEFAULT_MSG + SPHINX_EXECUTABLE SPHINX_VERSION_OK) diff --git a/cmake/modules/FindUMFPACK.cmake b/cmake/modules/FindUMFPACK.cmake new file mode 100644 index 0000000..e55dfdf --- /dev/null +++ b/cmake/modules/FindUMFPACK.cmake @@ -0,0 +1,132 @@ +# - Try to find UMFPACK +# Once done this will define +# +# UMFPACK_FOUND - system has UMFPACK +# UMFPACK_INCLUDE_DIRS - include directories for UMFPACK +# UMFPACK_LIBRARIES - libraries for UMFPACK + +message(STATUS "Checking for package 'UMFPACK'") + +# Find packages that UMFPACK depends on +set(CMAKE_LIBRARY_PATH ${BLAS_DIR}/lib $ENV{BLAS_DIR}/lib ${CMAKE_LIBRARY_PATH}) +find_package(AMD QUIET) +find_package(BLAS QUIET) +find_package(CHOLMOD QUIET) + +# Check for header file +find_path(UMFPACK_INCLUDE_DIRS umfpack.h + PATHS ${UMFPACK_DIR}/include $ENV{UMFPACK_DIR}/include + PATH_SUFFIXES suitesparse ufsparse + DOC "Directory where the UMFPACK header is located" + ) +mark_as_advanced(UMFPACK_INCLUDE_DIRS) + +# Check for UMFPACK library +find_library(UMFPACK_LIBRARY umfpack + PATHS ${UMFPACK_DIR}/lib $ENV{UMFPACK_DIR}/lib + NO_DEFAULT_PATH + DOC "The UMFPACK library" + ) +find_library(UMFPACK_LIBRARY umfpack + DOC "The UMFPACK library" + ) +mark_as_advanced(UMFPACK_LIBRARY) + +# Check for SUITESPARSE library on Apple +if (APPLE) + find_library(SUITESPARSE_LIBRARY SuiteSparse + PATHS ${UMFPACK_DIR}/lib $ENV{UMFPACK_DIR}/lib + NO_DEFAULT_PATH + DOC "The SUITESPARSE library" + ) + find_library(SUITESPARSE_LIBRARY SuiteSparse + DOC "The SUITESPARSE library" + ) + mark_as_advanced(SUITESPARSE_LIBRARY) +endif() + +# Check for SUITESPARSECONFIG library +find_library(SUITESPARSECONFIG_LIBRARY suitesparseconfig + PATHS ${UMFPACK_DIR}/lib $ENV{UMFPACK_DIR}/lib + NO_DEFAULT_PATH + DOC "The SUITESPARSE library" + ) +find_library(SUITESPARSECONFIG_LIBRARY suitesparseconfig + DOC "The SUITESPARSE library" + ) +mark_as_advanced(SUITESPARSECONFIG_LIBRARY) + +# Collect libraries +if (AMD_FOUND) + set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARY} ${AMD_LIBRARIES}) +endif() +if (BLAS_FOUND) + set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${BLAS_LIBRARIES}) +endif() +if (CHOLMOD_FOUND) + set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${CHOLMOD_LIBRARIES}) +endif() + +if (SUITESPARSE_LIBRARY) + set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${SUITESPARSE_LIBRARY}) +endif() +if (SUITESPARSECONFIG_LIBRARY) + set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${SUITESPARSECONFIG_LIBRARY}) +endif() + +find_program(GFORTRAN_EXECUTABLE gfortran) +if (GFORTRAN_EXECUTABLE) + execute_process(COMMAND ${GFORTRAN_EXECUTABLE} -print-file-name=libgfortran.so + OUTPUT_VARIABLE GFORTRAN_LIBRARY + OUTPUT_STRIP_TRAILING_WHITESPACE) + if (EXISTS "${GFORTRAN_LIBRARY}") + set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${GFORTRAN_LIBRARY}) + endif() +endif() + +# Try compiling and running test program +if (DOLFIN_SKIP_BUILD_TESTS) + set(UMFPACK_TEST_RUNS TRUE) +elseif (UMFPACK_INCLUDE_DIRS AND UMFPACK_LIBRARIES AND AMD_LIBRARIES) + + # Set flags for building test program + set(CMAKE_REQUIRED_INCLUDES ${UMFPACK_INCLUDE_DIRS}) + set(CMAKE_REQUIRED_LIBRARIES ${UMFPACK_LIBRARIES}) + + # Build and run test program + include(CheckCXXSourceRuns) + check_cxx_source_runs(" +/* Test program umfpack-ex1.c */ + +#include + +int main() +{ + int n = 5; + double x[5]; + void *Symbolic, *Numeric; + int i; + + int Ap[] = { 0, 2, 5, 9, 10, 12 }; + int Ai[] = { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4 }; + double Ax[] = { 2, 3, 3, -1, 4, 4, -3, 1, 2, 2, 6, 1 }; + double b[] = { 8, 45, -3, 3, 19 }; + + umfpack_di_symbolic(n, n, Ap, Ai, Ax, &Symbolic, NULL, NULL); + umfpack_di_numeric(Ap, Ai, Ax, Symbolic, &Numeric, NULL, NULL); + umfpack_di_free_symbolic(&Symbolic); + + umfpack_di_solve(UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, NULL, NULL); + umfpack_di_free_numeric(&Numeric); + + return 0; +} +" UMFPACK_TEST_RUNS) + +endif() + +# Standard package handling +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(UMFPACK + "UMFPACK could not be found. Be sure to set UMFPACK_DIR." + UMFPACK_LIBRARIES UMFPACK_INCLUDE_DIRS AMD_LIBRARIES BLAS_LIBRARIES UMFPACK_TEST_RUNS) diff --git a/cmake/modules/ResolveCompilerPaths.cmake b/cmake/modules/ResolveCompilerPaths.cmake new file mode 100644 index 0000000..92541e9 --- /dev/null +++ b/cmake/modules/ResolveCompilerPaths.cmake @@ -0,0 +1,111 @@ +# ResolveCompilerPaths - this module defines two macros +# +# RESOLVE_LIBRARIES (XXX_LIBRARIES LINK_LINE) +# This macro is intended to be used by FindXXX.cmake modules. +# It parses a compiler link line and resolves all libraries +# (-lfoo) using the library path contexts (-L/path) in scope. +# The result in XXX_LIBRARIES is the list of fully resolved libs. +# Example: +# +# RESOLVE_LIBRARIES (FOO_LIBRARIES "-L/A -la -L/B -lb -lc -ld") +# +# will be resolved to +# +# FOO_LIBRARIES:STRING="/A/liba.so;/B/libb.so;/A/libc.so;/usr/lib/libd.so" +# +# if the filesystem looks like +# +# /A: liba.so libc.so +# /B: liba.so libb.so +# /usr/lib: liba.so libb.so libc.so libd.so +# +# and /usr/lib is a system directory. +# +# Note: If RESOLVE_LIBRARIES() resolves a link line differently from +# the native linker, there is a bug in this macro (please report it). +# +# RESOLVE_INCLUDES (XXX_INCLUDES INCLUDE_LINE) +# This macro is intended to be used by FindXXX.cmake modules. +# It parses a compile line and resolves all includes +# (-I/path/to/include) to a list of directories. Other flags are ignored. +# Example: +# +# RESOLVE_INCLUDES (FOO_INCLUDES "-I/A -DBAR='\"irrelevant -I/string here\"' -I/B") +# +# will be resolved to +# +# FOO_INCLUDES:STRING="/A;/B" +# +# assuming both directories exist. +# Note: as currently implemented, the -I/string will be picked up mistakenly (cry, cry) +include (CorrectWindowsPaths) + +macro (RESOLVE_LIBRARIES LIBS LINK_LINE) + string (REGEX MATCHALL "((-L|-l|-Wl)([^\" ]+|\"[^\"]+\")|[^\" ]+\\.(a|so|dll|lib))" _all_tokens "${LINK_LINE}") + set (_libs_found) + set (_directory_list) + foreach (token ${_all_tokens}) + if (token MATCHES "-L([^\" ]+|\"[^\"]+\")") + # If it's a library path, add it to the list + string (REGEX REPLACE "^-L" "" token ${token}) + string (REGEX REPLACE "//" "/" token ${token}) + convert_cygwin_path(token) + list (APPEND _directory_list ${token}) + elseif (token MATCHES "^(-l([^\" ]+|\"[^\"]+\")|[^\" ]+\\.(a|so|dll|lib))") + # It's a library, resolve the path by looking in the list and then (by default) in system directories + if (WIN32) #windows expects "libfoo", linux expects "foo" + string (REGEX REPLACE "^-l" "lib" token ${token}) + else (WIN32) + string (REGEX REPLACE "^-l" "" token ${token}) + endif (WIN32) + set (_root) + if (token MATCHES "^/") # We have an absolute path + #separate into a path and a library name: + string (REGEX MATCH "[^/]*\\.(a|so|dll|lib)$" libname ${token}) + string (REGEX MATCH ".*[^${libname}$]" libpath ${token}) + convert_cygwin_path(libpath) + set (_directory_list ${_directory_list} ${libpath}) + set (token ${libname}) + endif (token MATCHES "^/") + set (_lib "NOTFOUND" CACHE FILEPATH "Cleared" FORCE) + # First search only the HINTS paths, then (if nothing was found) CMake's + # default paths. + find_library (_lib ${token} + HINTS ${_directory_list} + NO_DEFAULT_PATH + ${_root}) + find_library (_lib ${token} ${_root}) + if (_lib) + string (REPLACE "//" "/" _lib ${_lib}) + list (APPEND _libs_found ${_lib}) + else (_lib) + message (STATUS "Unable to find library ${token}") + endif (_lib) + endif (token MATCHES "-L([^\" ]+|\"[^\"]+\")") + endforeach (token) + set (_lib "NOTFOUND" CACHE INTERNAL "Scratch variable" FORCE) + # only the LAST occurence of each library is required since there should be no circular dependencies + if (_libs_found) + list (REVERSE _libs_found) + list (REMOVE_DUPLICATES _libs_found) + list (REVERSE _libs_found) + endif (_libs_found) + set (${LIBS} "${_libs_found}") +endmacro (RESOLVE_LIBRARIES) + +macro (RESOLVE_INCLUDES INCS COMPILE_LINE) + string (REGEX MATCHALL "-I([^\" ]+|\"[^\"]+\")" _all_tokens "${COMPILE_LINE}") + set (_incs_found) + foreach (token ${_all_tokens}) + string (REGEX REPLACE "^-I" "" token ${token}) + string (REGEX REPLACE "//" "/" token ${token}) + convert_cygwin_path(token) + if (EXISTS ${token}) + list (APPEND _incs_found ${token}) + else (EXISTS ${token}) + message (STATUS "Include directory ${token} does not exist") + endif (EXISTS ${token}) + endforeach (token) + list (REMOVE_DUPLICATES _incs_found) + set (${INCS} "${_incs_found}") +endmacro (RESOLVE_INCLUDES) diff --git a/cmake/modules/language_support_v2.cmake b/cmake/modules/language_support_v2.cmake new file mode 100644 index 0000000..aa5870b --- /dev/null +++ b/cmake/modules/language_support_v2.cmake @@ -0,0 +1,65 @@ +# cmake/modules/language_support.cmake +# +# Temporary additional general language support is contained within this +# file. + +# This additional function definition is needed to provide a workaround for +# CMake bug 9220. + +# On debian testing (cmake 2.6.2), I get return code zero when calling +# cmake the first time, but cmake crashes when running a second time +# as follows: +# +# -- The Fortran compiler identification is unknown +# CMake Error at /usr/share/cmake-2.6/Modules/CMakeFortranInformation.cmake:7 (GET_FILENAME_COMPONENT): +# get_filename_component called with incorrect number of arguments +# Call Stack (most recent call first): +# CMakeLists.txt:3 (enable_language) +# +# My workaround is to invoke cmake twice. If both return codes are zero, +# it is safe to invoke ENABLE_LANGUAGE(Fortran OPTIONAL) + +function(workaround_9220 language language_works) + #message("DEBUG: language = ${language}") + set(text + "project(test NONE) +cmake_minimum_required(VERSION 2.6.0) +enable_language(${language} OPTIONAL) +" + ) + file(REMOVE_RECURSE ${CMAKE_BINARY_DIR}/language_tests/${language}) + file(MAKE_DIRECTORY ${CMAKE_BINARY_DIR}/language_tests/${language}) + file(WRITE ${CMAKE_BINARY_DIR}/language_tests/${language}/CMakeLists.txt + ${text}) + execute_process( + COMMAND ${CMAKE_COMMAND} . + WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/language_tests/${language} + RESULT_VARIABLE return_code + OUTPUT_QUIET + ERROR_QUIET + ) + + if(return_code EQUAL 0) + # Second run + execute_process ( + COMMAND ${CMAKE_COMMAND} . + WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/language_tests/${language} + RESULT_VARIABLE return_code + OUTPUT_QUIET + ERROR_QUIET + ) + if(return_code EQUAL 0) + set(${language_works} ON PARENT_SCOPE) + else(return_code EQUAL 0) + set(${language_works} OFF PARENT_SCOPE) + endif(return_code EQUAL 0) + else(return_code EQUAL 0) + set(${language_works} OFF PARENT_SCOPE) + endif(return_code EQUAL 0) +endfunction(workaround_9220) + +# Temporary tests of the above function. +#workaround_9220(CXX CXX_language_works) +#message("CXX_language_works = ${CXX_language_works}") +#workaround_9220(CXXp CXXp_language_works) +#message("CXXp_language_works = ${CXXp_language_works}") diff --git a/cmake/post-install/CMakeLists.txt b/cmake/post-install/CMakeLists.txt new file mode 100644 index 0000000..7ae46de --- /dev/null +++ b/cmake/post-install/CMakeLists.txt @@ -0,0 +1,22 @@ +install(CODE "MESSAGE( +\"---------------------------------------------------------------------------- +DOLFIN has now been installed in + + ${CMAKE_INSTALL_PREFIX} + +and the demo programs have been installed in + + ${CMAKE_INSTALL_PREFIX}/${DOLFIN_SHARE_DIR}/demo + +Before rushing off to try the demos, don't forget to update your +environment variables. This can be done easily using the helper file +'dolfin.conf' which sets the appropriate variables (for users of the +Bash shell). + +To update your environment variables, run the following command: + + source ${CMAKE_INSTALL_PREFIX}/${DOLFIN_SHARE_DIR}/dolfin.conf + +For future reference, we recommend that you add this command to your +configuration (.bashrc, .profile or similar). +----------------------------------------------------------------------------\")") diff --git a/cmake/scripts/codeexamples.py b/cmake/scripts/codeexamples.py new file mode 100644 index 0000000..66d6700 --- /dev/null +++ b/cmake/scripts/codeexamples.py @@ -0,0 +1,217 @@ +"""This module provides a dictionary of code examples using the Python syntax. + +The idea is to substitute the code examples from the *.h files, which uses the +C++ syntax, with code snippets from this dictionary.""" + +# Copyright (C) 2010 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2010-10-14 +# Last changed: 2010-10-19 + +codesnippets = { +"Mesh":{ +"uint num_cells() const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(2,2) + >>> mesh.num_cells() + 8 +""", +"uint num_vertices() const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(2,2) + >>> mesh.num_vertices() + 9 +""", +"uint num_edges() const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(2,2) + >>> mesh.num_edges() + 0 + >>> mesh.init(1) + 16 + >>> mesh.num_edges() + 16 +""", +"uint num_faces() const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(2,2) + >>> mesh.num_faces() + 8 +""", +"uint num_facets() const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(2,2) + >>> mesh.num_facets() + 0 + >>> mesh.init(0,1) + >>> mesh.num_facets() + 16 +""", +"uint num_entities(uint d) const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(2,2) + >>> mesh.init(0,1) + >>> mesh.num_entities(0) + 9 + >>> mesh.num_entities(1) + 16 + >>> mesh.num_entities(2) + 8 +""", +"double* coordinates()": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(1,1) + >>> mesh.coordinates() + array([[ 0., 0.], + [ 1., 0.], + [ 0., 1.], + [ 1., 1.]]) +""", +"const uint* cells() const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(1,1) + >>> mesh.cells() + array([[0, 1, 3], + [0, 2, 3]]) +""", +"uint size(uint dim) const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(2,2) + >>> mesh.init(0,1) + >>> mesh.size(0) + 9 + >>> mesh.size(1) + 16 + >>> mesh.size(2) + 8 +""", +"dolfin::uint closest_cell(const Point& point) const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(1, 1) + >>> point = dolfin.Point(0.0, 2.0) + >>> mesh.closest_cell(point) + 1 +""", +"double hmin() const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(2,2) + >>> mesh.hmin() + 0.70710678118654757 +""", +"double hmax() const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(2,2) + >>> mesh.hmax() + 0.70710678118654757 +""", +"std::string str(bool verbose) const": +""" +.. code-block:: python + + >>> mesh = dolfin.UnitSquare(2,2) + >>> mesh.str(False) + '' +""" +}, +"MeshEntityIterator": +{ +"MeshEntityIterator": +""" +The following example shows how to iterate over all mesh entities +of a mesh of topological dimension dim: + +.. code-block:: python + + >>> for e in dolfin.cpp.entities(mesh, 1): + ... print e.index() + +The following example shows how to iterate over mesh entities of +topological dimension dim connected (incident) to some mesh entity f: + +.. code-block:: python + + >>> f = dolfin.cpp.MeshEntity(mesh, 0, 0) + >>> for e in dolfin.cpp.entities(f, 1): + ... print e.index() +""" +}, +"Event": +{ +"Event": +""" +.. code-block:: python + + >>> event = dolfin.Event("System is stiff, damping is needed.", 3) + >>> for i in range(10): + ... if i > 7: + ... print i + ... event() +""" +}, +"Progress": +{ +"Progress": +""" +A progress bar may be used either in an iteration with a known number +of steps: + +.. code-block:: python + + >>> n = 1000000 + >>> p = dolfin.Progress("Iterating...", n) + >>> for i in range(n): + ... p += 1 + +or in an iteration with an unknown number of steps: + +.. code-block:: python + + >>> pr = dolfin.Progress("Iterating") + >>> t = 0.0 + >>> n = 1000000.0 + >>> while t < n: + ... t += 1.0 + ... p += t/n +""" +} +} + diff --git a/cmake/scripts/codesnippets.py b/cmake/scripts/codesnippets.py new file mode 100644 index 0000000..d655e14 --- /dev/null +++ b/cmake/scripts/codesnippets.py @@ -0,0 +1,143 @@ +# Code snippets for autogenerations of SWIG code +# +# Copyright (C) 2012 Johan Hake +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2012-01-17 +# Last changed: 2012-07-03 + +copyright_statement = r"""%(comment)s Auto generated SWIG file for Python interface of DOLFIN +%(comment)s +%(comment)s Copyright (C) 2012 %(holder)s +%(comment)s +%(comment)s This file is part of DOLFIN. +%(comment)s +%(comment)s DOLFIN is free software: you can redistribute it and/or modify +%(comment)s it under the terms of the GNU Lesser General Public License as published by +%(comment)s the Free Software Foundation, either version 3 of the License, or +%(comment)s (at your option) any later version. +%(comment)s +%(comment)s DOLFIN is distributed in the hope that it will be useful, +%(comment)s but WITHOUT ANY WARRANTY; without even the implied warranty of +%(comment)s MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +%(comment)s GNU Lesser General Public License for more details. +%(comment)s +%(comment)s You should have received a copy of the GNU Lesser General Public License +%(comment)s along with DOLFIN. If not, see . +%(comment)s + +""" + +# FIXME: Removed date from copyright form +""" +%(comment)s First added: 2012-01-18 +%(comment)s Last changed: %(year)d-%(month)0.2d-%(day)0.2d + +""" + +# Template code for all combined SWIG modules +module_template = r""" +// The PyDOLFIN extension module for the %(module)s module +%%module(package="dolfin.cpp.%(module)s", directors="1") %(module)s + +// Define module name for conditional includes +#define %(MODULE)sMODULE + +%%{ +%(headers)s + +// NumPy includes +#define PY_ARRAY_UNIQUE_SYMBOL PyDOLFIN_%(MODULE)s +#include +%%} + +%%init%%{ +import_array(); +%%} + +// Include global SWIG interface files: +// Typemaps, shared_ptr declarations, exceptions, version +%%include "dolfin/swig/globalincludes.i" +%(imports)s + +// Turn on SWIG generated signature documentation and include doxygen +// generated docstrings +//%%feature("autodoc", "1"); +%(docstrings)s +%(includes)s + +""" + +swig_cmakelists_str = \ +"""# Automatic get the module name +get_filename_component(SWIG_MODULE_NAME ${CMAKE_CURRENT_BINARY_DIR} NAME) + +# Set project name +project(${SWIG_MODULE_NAME}) + +# What does this do? +get_directory_property(cmake_defs COMPILE_DEFINITIONS) + +# Set SWIG flags +set(CMAKE_SWIG_FLAGS + -module ${SWIG_MODULE_NAME} + -shadow + -modern + -modernargs + -fastdispatch + -fvirtual + -nosafecstrings + -noproxydel + -fastproxy + -fastinit + -fastunpack + -fastquery + -nobuildnone + -Iinclude/swig + ${DOLFIN_CXX_DEFINITIONS} + ${DOLFIN_PYTHON_DEFINITIONS} + ) + +# Get all SWIG interface files +file(READ ${CMAKE_CURRENT_BINARY_DIR}/dependencies.txt DOLFIN_SWIG_DEPENDENCIES ) + +# This prevents swig being run unnecessarily +set_source_files_properties(module.i PROPERTIES SWIG_MODULE_NAME ${SWIG_MODULE_NAME}) + +# Tell CMake SWIG has generated a C++ file +set_source_files_properties(module.i PROPERTIES CPLUSPLUS ON) + +# Generate SWIG files in +set(CMAKE_SWIG_OUTDIR ${CMAKE_CURRENT_BINARY_DIR}) + +# Tell CMake which SWIG interface files should be checked for changes when recompile +set(SWIG_MODULE_${SWIG_MODULE_NAME}_EXTRA_DEPS copy_swig_files ${DOLFIN_SWIG_DEPENDENCIES}) + +# Tell CMake to run SWIG on module.i and to link against libdolfin +swig_add_module(${SWIG_MODULE_NAME} python module.i) +swig_link_libraries(${SWIG_MODULE_NAME} dolfin ${PYTHON_LIBRARIES}) + +# Install Python .py files +get_target_property(SWIG_MODULE_LOCATION ${SWIG_MODULE_${SWIG_MODULE_NAME}_REAL_NAME} LOCATION) +install(FILES + ${SWIG_MODULE_LOCATION} ${CMAKE_CURRENT_BINARY_DIR}/${SWIG_MODULE_NAME}.py + DESTINATION ${DOLFIN_INSTALL_PYTHON_MODULE_DIR}/dolfin/cpp + COMPONENT RuntimeLibraries + ) +""" + + diff --git a/cmake/scripts/copy-swig-files b/cmake/scripts/copy-swig-files new file mode 100755 index 0000000..58b9eaf --- /dev/null +++ b/cmake/scripts/copy-swig-files @@ -0,0 +1,59 @@ +#!/usr/bin/env python +# +# Copyright (C) 2013 Johan Hake +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Copy all swig files to a destination directory + +import os +import sys +import re +import shutil + +script_rel_path = os.sep.join(__file__.split(os.sep)[:-1]) +script_rel_path = script_rel_path or "." +dolfin_dir = os.path.abspath(os.path.join(script_rel_path, os.pardir, os.pardir)) + +def copy_data(top_destdir): + + abs_destdir = top_destdir if os.path.isabs(top_destdir) else os.path.join(dolfin_dir, top_destdir) + + if abs_destdir == dolfin_dir: + raise RuntimeError("destination directory cannot be the same as "\ + "the dolfin source directory") + + if not os.path.isdir(abs_destdir): + raise RuntimeError("%s is not a directory." % abs_destdir) + + top_dir = os.path.join(dolfin_dir, "dolfin", "swig") + + for dirpath, dirnames, filenames in os.walk(top_dir): + destdir = dirpath.replace(dolfin_dir, abs_destdir) + if not os.path.isdir(destdir): + os.makedirs(destdir) + for f in filenames: + if f[-2:] == ".i": + srcfile = os.path.join(dirpath, f) + shutil.copy2(srcfile, destdir) + +if __name__ == "__main__": + # Expecting a destination argument + if len(sys.argv) != 2: + raise RuntimeError("Expecting 1 argument with the destination directory") + + copy_data(sys.argv[-1]) + diff --git a/cmake/scripts/copy-test-demo-data b/cmake/scripts/copy-test-demo-data new file mode 100755 index 0000000..4054a73 --- /dev/null +++ b/cmake/scripts/copy-test-demo-data @@ -0,0 +1,71 @@ +#!/usr/bin/env python +# +# Copyright (C) 2013 Johan Hake +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Copy all data, tests and demo to a given directory relative to the top dolfin +# source directory + +import os +import sys +import re +import shutil + +# Subdirectories +sub_directories = ['demo', 'test', 'bench'] + +# Copy all files with the following suffixes +suffix_patterns = ["py", "h", "cpp", "ufl", "xml", "xml.gz", "off", "inp", \ + "msh", "supp", "rst", "ele", "node", "grid", "edge"] + +suffix_pattern = re.compile("(%s),"%("|".join("[\w-]+\.%s" % pattern \ + for pattern in suffix_patterns))) + +script_rel_path = os.sep.join(__file__.split(os.sep)[:-1]) +script_rel_path = script_rel_path or "." +dolfin_dir = os.path.abspath(os.path.join(script_rel_path, os.pardir, os.pardir)) + +def copy_data(top_destdir): + + abs_destdir = top_destdir if os.path.isabs(top_destdir) else os.path.join(dolfin_dir, top_destdir) + + if abs_destdir == dolfin_dir: + raise RuntimeError("destination directory cannot be the same as "\ + "the dolfin source directory") + + if not os.path.isdir(abs_destdir): + raise RuntimeError("%s is not a directory." % abs_destdir) + + for subdir in sub_directories: + + top_dir = os.path.join(dolfin_dir, subdir) + for dirpath, dirnames, filenames in os.walk(top_dir): + destdir = dirpath.replace(dolfin_dir, abs_destdir) + if not os.path.isdir(destdir): + os.makedirs(destdir) + for f in re.findall(suffix_pattern, " ".join(\ + "%s,"%f for f in filenames)): + srcfile = os.path.join(dirpath, f) + shutil.copy(srcfile, destdir) + +if __name__ == "__main__": + # Expecting a destination argument + if len(sys.argv) != 2: + raise RuntimeError("Expecting 1 argument with the destination directory") + + copy_data(sys.argv[-1]) + diff --git a/cmake/scripts/download-demo-data b/cmake/scripts/download-demo-data new file mode 100755 index 0000000..1cc8da6 --- /dev/null +++ b/cmake/scripts/download-demo-data @@ -0,0 +1,70 @@ +#!/bin/sh +# +# This script downloads data (mostly meshes) needed run demos +# Anders Logg, 2013-03-21 + +download_mesh() +{ + OS=$(uname -s) + + DEMO=$1 + MESH=$2 + + echo "Downloading $MESH to $DEMO" + + # Use zsync if available, otherwise use curl/wget + if hash zsync 2>/dev/null; then + zsync -q -o $DEMO/$MESH http://fenicsproject.org/pub/data/meshes/$MESH.zsync + else + if [ "$OS" = "Darwin" ]; then + output=`curl --output $MESH http://fenicsproject.org/pub/data/meshes/$MESH 2>&1` + else + output=`wget http://fenicsproject.org/pub/data/meshes/$MESH 2>&1` + fi + + # If download fails + if [ $? -ne 0 ]; then + echo "$output" 1>&2 + exit 1 + fi + + mv $MESH $DEMO + fi +} + +download_mesh demo/documented/eigenvalue box_with_dent.xml.gz +download_mesh demo/undocumented/mixed-poisson-sphere sphere_16.xml.gz +download_mesh demo/undocumented/advection-diffusion dolfin_fine.xml.gz +download_mesh demo/undocumented/advection-diffusion dolfin_fine_velocity.xml.gz +download_mesh demo/undocumented/advection-diffusion dolfin_fine_subdomains.xml.gz +download_mesh demo/undocumented/contact-vi-snes circle_yplane.xml.gz +download_mesh demo/undocumented/contact-vi-tao circle_yplane.xml.gz +download_mesh demo/undocumented/multistage-solver dolfin_fine.xml.gz +download_mesh demo/undocumented/multistage-solver dolfin_fine_velocity.xml.gz +download_mesh demo/undocumented/multistage-solver dolfin_fine_subdomains.xml.gz +download_mesh demo/undocumented/elasticity gear.xml.gz +download_mesh demo/undocumented/lift-drag dolfin_fine.xml.gz +download_mesh demo/undocumented/lift-drag dolfin_fine_pressure.xml.gz +download_mesh demo/documented/tensor-weighted-poisson unitsquare_32_32.xml.gz +download_mesh demo/documented/tensor-weighted-poisson unitsquare_32_32_c01.xml.gz +download_mesh demo/documented/tensor-weighted-poisson unitsquare_32_32_c00.xml.gz +download_mesh demo/documented/tensor-weighted-poisson unitsquare_32_32_c11.xml.gz +download_mesh demo/documented/stokes-taylor-hood/ dolfin_fine.xml.gz +download_mesh demo/documented/stokes-taylor-hood dolfin_fine_subdomains.xml.gz +download_mesh demo/undocumented/elastodynamics dolfin_fine.xml.gz +download_mesh demo/undocumented/auto-adaptive-navier-stokes channel_with_flap.xml.gz +download_mesh demo/documented/stokes-mini dolfin_fine.xml.gz +download_mesh demo/documented/stokes-mini dolfin_fine_subdomains.xml.gz +download_mesh demo/documented/subdomains dolfin_fine.xml.gz +download_mesh demo/documented/stokes-stabilized dolfin_fine.xml.gz +download_mesh demo/documented/stokes-stabilized dolfin_fine_subdomains.xml.gz +download_mesh demo/undocumented/plot dolfin_fine.xml.gz +download_mesh demo/undocumented/dg-advection-diffusion unitsquare_64_64.xml.gz +download_mesh demo/undocumented/dg-advection-diffusion unitsquare_64_64_velocity.xml.gz +download_mesh demo/documented/bcs aneurysm.xml.gz +download_mesh demo/documented/navier-stokes lshape.xml.gz +download_mesh demo/undocumented/mesh-quality dolfin_fine.xml.gz +download_mesh test/unit/fem/python aneurysm.xml.gz +download_mesh test/unit/io snake.xml.gz +download_mesh test/unit/nls/python doughnut.xml.gz +download_mesh test/unit/mesh boxes.xml.gz diff --git a/cmake/scripts/generate-all b/cmake/scripts/generate-all new file mode 100755 index 0000000..785d2b8 --- /dev/null +++ b/cmake/scripts/generate-all @@ -0,0 +1,20 @@ +#!/bin/sh +# +# This script runs all the others. + +echo "The following scripts will now be run:" +echo "" +echo " cmake/scripts/generate-form-files" +echo " cmake/scripts/generate-cmakefiles" +echo " cmake/scripts/generate-swig-docstrings" +echo " cmake/scripts/generate-swig-interface" +echo " cmake/scripts/download-demo-data" +echo "" +echo "Press return to continue." +read x + +./cmake/scripts/generate-form-files +./cmake/scripts/generate-cmakefiles +./cmake/scripts/generate-swig-docstrings +./cmake/scripts/generate-swig-interface +./cmake/scripts/download-demo-data diff --git a/cmake/scripts/generate-cmakefiles b/cmake/scripts/generate-cmakefiles new file mode 100755 index 0000000..e5a25d3 --- /dev/null +++ b/cmake/scripts/generate-cmakefiles @@ -0,0 +1,179 @@ +#!/usr/bin/env python +# +# Copyright (C) 2010 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Generate CMakeLists.txt files in demo and test directories +# This script should be run from the top level directory. +# +# Modified by Anders Logg 2013, 2014 + +import os +import subprocess + +cmakelists_str = \ +"""# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME %(project_name)s) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +%(executables)s + +# Target libraries +%(target_libraries)s +""" + +executable_str = "add_executable(%s %s)" +target_link_libraries_str = "target_link_libraries(%s "\ + "${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES})" + +# Subdirectories +sub_directories = ['demo', 'test', 'bench'] + +# Prefix map for subdirectories +executable_prefixes = dict(test="test_", + demo="demo_", + bench="bench_") + +# Main file name map for subdirectories +main_file_names = dict(test="test.cpp", + demo="main.cpp", + bench="main.cpp") + +# Projects that use custom CMakeLists.txt (shouldn't overwrite) +exclude_projects = [os.path.join('demo', 'undocumented', 'plot-qt'), + os.path.join('demo', 'undocumented', 'csg'), + os.path.join('demo', 'undocumented', 'meshintersection')] + +def generate_cmake_files(subdirectory, generated_files): + """Search for C++ code and write CMakeLists.txt files""" + cwd = os.getcwd() + executable_prefix = executable_prefixes[subdirectory] + main_file_name = main_file_names[subdirectory] + for root, dirs, files in os.walk(cwd + "/" + subdirectory): + + executable_names = set() + + # For 'cpp' directories, get list of .cpp files + if "cpp" in dirs: + cpp_files = [] + program_dir = root + "/cpp" + program_name = os.path.split(root)[-1] + + skip = False + for exclude in exclude_projects : + if exclude in root : + skip = True + + if skip : + print "Skipping custom CMakeLists.txt file:", root + continue + + if executable_prefix == "bench_": + program_name = program_dir[program_dir.find("bench")+6:].replace(os.path.sep, "_") + + name_forms = dict( + project_name=executable_prefix + program_name, + executables="NOT_SET", + target_libraries="NOT_SET") + for f in os.listdir(program_dir): + filename, extension = os.path.splitext(f) + if extension == ".cpp": + cpp_files.append(f) + + # If no .cpp continue + if not cpp_files: + continue + + # Name of demo and cpp source files + if main_file_name in cpp_files: + + # If directory contains a main file we assume that only one + # executable should be generated for this directory and all other + # .cpp files should be linked to this + name_forms["executables"] = executable_str % \ + ("${PROJECT_NAME}", + ' '.join(cpp_files)) + name_forms["target_libraries"] = target_link_libraries_str % \ + "${PROJECT_NAME}" + else: + # If no main file in source files, we assume each source should + # be compiled as an executable + name_forms["executables"] = "\n".join(\ + executable_str % (executable_prefix + f.replace(".cpp", ""), f) \ + for f in cpp_files) + name_forms["target_libraries"] = "\n".join(\ + target_link_libraries_str % (\ + executable_prefix + f.replace(".cpp", "")) \ + for f in cpp_files) + + # Check for duplicate executable names + if program_name not in executable_names: + executable_names.add(program_name) + else: + print "Warning: duplicate executable names found when generating CMakeLists.txt files." + + # Write file + filename = os.path.join(program_dir, "CMakeLists.txt") + generated_files.append(filename) + with open(filename, "w") as f: + print "Creating CMakeLists.txt file:", program_name, program_dir + f.write(cmakelists_str % name_forms) + + # FIXME: add command line option for adding files + # Add to version control + #subprocess.call(["bzr", "add", program_dir + "/CMakeLists.txt"]) + +# Generate CMakeLists.txt files for all subdirectories +generated_files = [] +for subdirectory in sub_directories: + generate_cmake_files(subdirectory, generated_files) + +# Print list of generated files +print "The following files were generated:" +print "\n".join(generated_files) diff --git a/cmake/scripts/generate-form-files b/cmake/scripts/generate-form-files new file mode 100755 index 0000000..068487c --- /dev/null +++ b/cmake/scripts/generate-form-files @@ -0,0 +1,81 @@ +#!/usr/bin/env python +# +# Copyright (C) 2005-2010 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Recompile all ffc forms (use when FFC has been updated) +# This script should be run from the top level directory. + +import os + +# Forms that need special options +special = {"CahnHilliard2D.ufl": "-fsplit", + "CahnHilliard3D.ufl": "-fsplit", + "Poisson2D_1.ufl": "-fsplit", + "Poisson2D_2.ufl": "-fsplit", + "Poisson2D_3.ufl": "-fsplit", + "Poisson2D_4.ufl": "-fsplit", + "Poisson2D_5.ufl": "-fsplit", + "Poisson3D_1.ufl": "-fsplit", + "Poisson3D_2.ufl": "-fsplit", + "Poisson3D_3.ufl": "-fsplit", + "Poisson3D_4.ufl": "-fsplit", + "Poisson3D_5.ufl": "-fsplit", + "AdaptivePoisson.ufl": "-e", + "AdaptiveNavierStokes.ufl": "-e"} + +# Forms for which we should skip optimization +skip_optimization = ["HyperElasticity.ufl"] + +# Forms for which we don't want to generate functions for evaluating the basis +skip_basis = ["Poisson2D_5.ufl", "Poisson3D_4.ufl"] + +# Directories to scan +subdirs = ["dolfin", "demo", "bench", "test"] + +# Compile all form files +topdir = os.getcwd() +for subdir in subdirs: + for root, dirs, files in os.walk(subdir): + + # Check for .ufl files + formfiles = [f for f in files if len(f) > 4 and f[-4:] == ".ufl"] + if len(formfiles) == 0: + continue + + # Compile files + os.chdir(root) + print "Compiling forms in %s..." % root + for f in formfiles: + if f in special: + options = special[f] + else: + options = "" + if f in skip_optimization: + optimization = "" + else: + optimization = "-O" + + if f in skip_basis: + options += " -fno-evaluate_basis -fno-evaluate_basis_derivatives" + + command = "ffc -v %s -f no_ferari -l dolfin %s %s >> compile.log" % (optimization, options, f) + print " " + command + ret = os.system(command) + if not ret == 0: + raise RuntimeError, "Unable to compile form: %s/%s" % (root, f) + os.chdir(topdir) diff --git a/cmake/scripts/generate-swig-docstrings b/cmake/scripts/generate-swig-docstrings new file mode 100755 index 0000000..56625e9 --- /dev/null +++ b/cmake/scripts/generate-swig-docstrings @@ -0,0 +1,460 @@ +#!/usr/bin/env python +"""Simple functions to update the docstrings.i file for the Python interface +from the intermediate representation of the documentation which is extracted +from the C++ source code of DOLFIN. + +This script assumes that all functions and classes lives in the dolfin namespace. +""" + +# Copyright (C) 2010 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Johan Hake 2010 +# Modified by Anders E. Johansen 2011 +# Modified by Anders Logg 2014 +# +# First added: 2010-08-19 +# Last changed: 2014-03-03 + +import os, shutil, types, sys + +# Add path to dolfin_utils and import the documentation extractor. +doc_dir = os.path.abspath("site-packages") +sys.path.append(doc_dir) + +from dolfin_utils.documentation import extract_doc_representation +from dolfin_utils.documentation import indent, add_links +from codeexamples import codesnippets + +debug_output = False + +def output(out): + global debug_output + if debug_output: + print out + +docstring = '%%feature("docstring") %s "\n%s\n";\n\n' + +# Dictionary for mapping C++ types to Python types. +# NOTE: KBO: The dictionary is not complete and is only tested for the Mesh.h class +cpp_to_python = { +"std::string": "str", +"string": "str", + +"enum": "int", + +"int": "int", +"unsigned int": "int", +"uint": "int", +"dolfin::uint": "int", +"std::size_t": "int", +"uint*": "numpy.array(uint)", +"dolfin::uint*": "numpy.array(uint)", +"std::size_t*": "numpy.array(uintp)", + +"double": "float", +"double*": "numpy.array(float)", +"real": "float", +"dolfin::real": "float", + +"bool": "bool", +} + +def get_function_name(signature): + "Extract function name from signature." + words = signature.split("(")[0].split() + # Special handling of operator since Swig needs 'operator double', not just + # 'double', which is different from _normal_ operators like 'operator=' + if len(words) > 1 and words[-2] == "operator": + return " ".join(words[-2:]) + return words[-1] + +def group_overloaded_functions(docs): + """Group functions with same name, but different signature. + Assuming that overloaded functions in the dolfin namespace are defined + in the same header file.""" + + new_docs = [] + for (classname, parent, comment, function_documentation) in docs: + func_doc = {} + order = [] +# print "cls: ", classname + # Iterate over class functions + for (signature, comm) in function_documentation: + # No need to put empty docstrings in the docstrings.i file! + if comm is None: + continue +# print "sig: ", signature + name = get_function_name(signature) + if not name in order: + order.append(name) +# print "name: '%s'" % name + if not name in func_doc: + func_doc[name] = [(signature, comm)] + else: + func_doc[name].append((signature, comm)) + new_docs.append((classname, parent, comment, func_doc, order)) + + return new_docs + +def replace_example(text, classname, signature): + """Replace the C++ example code with the Python equivalent. + Currently we can only handle one block/section of example code per function. + """ + # Check if we need to manipulate comment. + if not "*Example*" in text: + return text + # Check if we have example code in the dictionary + examplecode = ".. note::\n\n No example code available for this function." + if not classname in codesnippets: + output(" "*6 + "No example code for class: '%s'" % classname) + elif not signature in codesnippets[classname]: + output(" "*6 + "No example code for (class, function): ('%s', '%s')" % (classname, signature)) + else: + examplecode = codesnippets[classname][signature] + + # Remove leading and trailing new lines in example code. + lines = examplecode.split("\n") + while lines and not lines[0].strip(): + del lines[0] + while lines and not lines[-1].strip(): + del lines[-1] + examplecode = "\n".join(lines) + + # NOTE: KBO: We currently only handle 1 example block + new_text = [] + example = False + indentation = 0 + # Loop comment lines + for l in text.split("\n"): + # When we get to the lines containing the example, add the header and + # codeblock. + if not example and "*Example*" in l: + example = True + indentation = len(l) - len(l.lstrip()) + new_text.append(l) + new_text += indent(examplecode, indentation + 4).split("\n") + elif example and l.strip() and len(l) - len(l.lstrip()) <= indentation: + example = False + new_text.append(l) + # Skip lines as long as we're inside the example block. + elif example: + continue + else: + new_text.append(l) + return "\n".join(new_text) + +def handle_std_pair(cpp_type, classnames): + """Map std::pair to Python object.""" + + args = cpp_type.split(">")[0].split("<")[1].split(",") + if (len(args) != 2): + output("No typemap handler implemented for %s" % cpp_type) + return cpp_type + + arg1, arg2 = args + arg1 = arg1.strip() + arg2 = arg2.strip() + + if arg1 in cpp_to_python: + arg1 = cpp_to_python[arg1] + if not arg2 in cpp_to_python: + output("No type map for '%s'!" % cpp_type) + return cpp_type + arg2 = cpp_to_python[arg2] + return "(%s, %s)" % (arg1, arg2) + + elif arg1[0] == "_" and arg1[-1] == "_" and arg1[1:-1] in classnames: + if not arg2 in cpp_to_python: + output("No type map for '%s'!" % cpp_type) + return cpp_type + arg2 = cpp_to_python[arg2] + return "Swig Object< std::pair<%s, %s> >" % (arg1, arg2) + + else: + return None + +def handle_std_vector(cpp_type, classnames): + """Map std::vector to Python object (numpy.array).""" + + # Special case: vector of pairs + if "std::pair" in cpp_type and not cpp_type.startswith("std::pair"): + try: + arg1, arg2 = cpp_type.split("<")[2].split(">")[0].split(",") + pair = "std::pair<%s,%s>" % (arg1, arg2) + if handle_std_pair(pair, classnames) is not None: + return "numpy.array(%s)" % handle_std_pair(pair, classnames) + else: + return None + except: + # Failed to handle complex type, fail gracefully + return None + else: + arg = cpp_type.split("<")[1].split(">")[0].strip() + if not arg in cpp_to_python: + if arg[0] == "_" and arg[-1] == "_" and arg[1:-1] in classnames: + return "list of %s" % arg + else: + return None + return "numpy.array(%s)" % cpp_to_python[arg] + +# NOTE: KBO: This function is not complete and is only tested for the Mesh.h class +def map_cpp_type(cpp_type, classnames): + "Map a C++ type to a Python type." + + if cpp_type in cpp_to_python: + return cpp_to_python[cpp_type] + + # std::vector --> numpy.array or list + elif "std::vector" in cpp_type: + pobject = handle_std_vector(cpp_type, classnames) + if pobject is not None: + return pobject + else: + output("No type map for '%s'!" % cpp_type) + return cpp_type + + # Special handling of std::pair + elif "std::pair" in cpp_type: + pobject = handle_std_pair(cpp_type, classnames) + if pobject is not None: + return pobject + else: + output("No type map for '%s'!" % cpp_type) + return cpp_type + + # dolfin::Array --> numpy.array (primitives only) + elif "_Array_" in cpp_type: + arg = cpp_type.split("<")[1].split(">")[0].strip() + if not arg in cpp_to_python: + output("No type map for '%s'!" % arg) + return "numpy.array(%s)" % arg + return "numpy.array(%s)" % cpp_to_python[arg] + + # std::set --> set + elif "std::set" in cpp_type: + arg = cpp_type.split("<")[1].split(">")[0].strip() + if not arg in cpp_to_python: + output("No type map for '%s'!" % cpp_type) + return cpp_type + return "set of %s" % cpp_to_python[arg] + + # Handle links to classes defined in DOLFIN. + elif cpp_type[0] == "_" and cpp_type[-1] == "_" and cpp_type[1:-1] in classnames: + return cpp_type + + # Special case, e.g. cpp_type = boost::shared_ptr<_FunctionSpace_> + elif "_" in cpp_type: + args = cpp_type.split("_") + for arg in args: + if arg in classnames: + return "_" + arg + "_" + output("No type map for '%s'!" % cpp_type) + + else: + output("No type map for '%s'!" % cpp_type) + + return cpp_type + +def map_argument_and_return_types(text, classnames): + """Map C++ types in the *Arguments* and *Returns* sections to corresponding + Python types using a simple dictionary. + + Current implementation assumes the following format: + + *Returns* + type + description + + *Arguments* + name0 (type) + description + name1 (type) + description + + possibly separated with blank lines. + """ + + new_text = text + + # Could perhaps be handled more elegantly if we rely on the formatting? + if "*Returns*" in new_text: + # Get lines and find line number with *Returns* + lines = new_text.split("\n") + r_index = ["*Returns*" in l for l in lines].index(True) + arg = False + for e, l in enumerate(lines): + if e > r_index and not arg: + # First none blank line contains our argument + if l.strip(): + arg = True + indentation = len(l) - len(l.lstrip()) + lines[e] = indent(map_cpp_type(l.strip(), classnames), indentation) + new_text = "\n".join(lines) + + if "*Arguments*" in new_text: + # Get lines and find line number with *Arguments* + lines = new_text.split("\n") + a_index = ["*Arguments*" in l for l in lines].index(True) + a_indent = len(lines[a_index]) - len(lines[a_index].lstrip()) + n_indent = 0 + for e, l in enumerate(lines): + if e > a_index and l.strip(): + indentation = len(l) - len(l.lstrip()) + # End of argument block + if indentation <= a_indent: + break + # Determine indentation of lines with argument names + # first non blank line determines this + if n_indent == 0: + n_indent = indentation + # Get type of arguments defined in lines with name and type + if indentation == n_indent: + n, t = l.split("(") + n = n.strip() + t = t.split(")")[0] + lines[e] = indent("%s (%s)" % (n, map_cpp_type(t.strip(), classnames)), n_indent) + + new_text = "\n".join(lines) + + return new_text + +def modify_doc(text, classnames, classname, signature): + "Add links, translate C++ to Python and change C++ types." + + # Replace C++ example code with Python example code + text = replace_example(text, classname, signature) + + # Map C++ types to corresponding Python types + text = map_argument_and_return_types(text, classnames) + + # Add links + text = add_links(text, classnames, ":py:class:") + + # Escape '"' otherwise will SWIG complain + text = text.replace('\"',r'\"') + + return text + +def get_args(signature): + "Get argument names (for Python) from signature." +# print "sig: ", signature + arg_string = signature.split("(")[-1].split(")")[0] +# print "arg_string: '%s'" % arg_string + args = [] + if arg_string: + # This does not handle ',' inside type declaration, + # e.g. std::pair. + # args = [a.split()[-1] for a in arg_string.split(",")] + for a in arg_string.split(","): + arg = a.split()[-1] + # Assuming '::' is never in a name, but always + # present when dealing with e.g. 'std::pair' + # or boost::unordered_map. + if not "::" in arg: + args.append(arg) +# print "args: '%s'" % args + return args + + +def write_docstrings(output_file, module, header, docs, classnames): + """Write docstrings from a header file.""" + + output_file.write("// Documentation extracted from: (module=%s, header=%s)\n" % (module, header)) + + documentation = group_overloaded_functions(docs) + for (classname, parent, comment, func_docs, order) in documentation: + # Create class documentation (if any) and write. + if classname is not None and comment is not None: + cls_doc = modify_doc(comment, classnames, classname, classname) + output_file.write(docstring % ("dolfin::%s" % classname, cls_doc)) + # Handle functions in the correct order (according to definition in the + # header file). + for name in order: + func_name = "dolfin::%s::%s" % (classname, name) + if classname is None: + func_name = "dolfin::%s" % name + + functions = func_docs[name] + if not functions: + continue + # We've got overloaded functions. + if len(functions) > 1: + func_doc = "**Overloaded versions**" + for signature, doc in functions: + args = get_args(signature) + doc = "\n\n* %s\ (%s)\n\n" % (name, ", ".join(args)) +\ + indent(doc, 2) + func_doc += modify_doc(doc, classnames, classname, signature) + output_file.write(docstring % (func_name, func_doc)) + # Single function + else: + # Get function (only one) + signature, func_doc = functions[0] + func_doc = modify_doc(func_doc, classnames, classname, signature) + output_file.write(docstring % (func_name, func_doc)) + +def generate_docstrings(top_destdir): + """ + Generate docstring files for each module + """ + + from codesnippets import copyright_statement + + # Get top DOLFIN directory. + script_rel_path = os.sep.join(__file__.split(os.sep)[:-1]) + script_rel_path = script_rel_path or "." + dolfin_dir = os.path.abspath(os.path.join(script_rel_path, os.pardir, os.pardir)) + + top_destdir = top_destdir or dolfin_dir + + abs_destdir = top_destdir if os.path.isabs(top_destdir) else os.path.join(dolfin_dir, top_destdir) + + if not os.path.isdir(abs_destdir): + raise RuntimeError("%s is not a directory." % abs_destdir) + + # Set copyright form + copyright_form_swig = dict(comment = r"//", holder="Kristian B. Oelgaard") + + # Extract documentation + documentation, classnames = extract_doc_representation(dolfin_dir) + + output("Generating docstrings from intermediate representation module...") + for module in documentation: + if not os.path.isdir(os.path.join(abs_destdir, "dolfin", "swig", module)): + os.mkdir(os.path.join(abs_destdir, "dolfin", "swig", module)) + output_file = open(os.path.join(abs_destdir, "dolfin", "swig", \ + module, "docstrings.i"), "w") + output_file.write(copyright_statement%(copyright_form_swig)) + output_file.write("// Autogenerated docstrings file, extracted from the DOLFIN source C++ files.\n\n") + + output(" "*2 + module) + for header, docs in documentation[module]: + output(" "*4 + header) + write_docstrings(output_file, module, header, docs, classnames) + + output_file.close() + +if __name__ == "__main__": + + if len(sys.argv) not in [1,2,3]: + raise RuntimeError("expected 0, 1 or 2 arguments") + + dest_dir = sys.argv[1] if len(sys.argv) > 2 else "" + debug_output = len(sys.argv) > 2 and sys.argv[2] == "DEBUG" + + generate_docstrings(dest_dir) diff --git a/cmake/scripts/generate-swig-interface b/cmake/scripts/generate-swig-interface new file mode 100755 index 0000000..87f0406 --- /dev/null +++ b/cmake/scripts/generate-swig-interface @@ -0,0 +1,591 @@ +#!/usr/bin/env python +# +# Generate SWIG files for Python interface of DOLFIN +# +# Copyright (C) 2012 Johan Hake +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2012-01-17 +# Last changed: 2013-06-23 + +# System imports +import os +import re +import glob +import time +import sys + +# Add local site-packages to path, +# NOTE: We need to prepend it so systemwide installed dolfin is not picked up +sys.path.insert(0, os.path.abspath("site-packages")) + +from dolfin_utils.cppparser import * + +# Local imports +from codesnippets import * + +# Create time info for labeling generated code +_local_time = time.localtime() +_date_form = dict(year = _local_time.tm_year, + month = _local_time.tm_mon, + day = _local_time.tm_mday) + +# Create form for copyright statement to a SWIG interface file +copyright_form_swig = dict(comment = r"//", holder="Johan Hake") + +# reg exp pattern +_header_pattern = re.compile("#include +<(dolfin/\w+/\w+\.h)>") +_submodule_pattern = re.compile("#include +") +_module_pattern = re.compile("// +SWIG +module +(\w+)") + +# Get top DOLFIN directory. +script_rel_path = os.sep.join(__file__.split(os.sep)[:-1]) +script_rel_path = script_rel_path or "." +dolfin_dir = os.path.abspath(os.path.join(script_rel_path, os.pardir, os.pardir)) + +global swig_dir +swig_dir = os.path.abspath(os.path.join(dolfin_dir, "dolfin", "swig")) +org_swig_dir = swig_dir + +def extract_module_header_files(submodule, excludes): + """ + Extract header files for a submodule + """ + + # Read dolfin submodule include file + code = open(os.path.join(dolfin_dir, "dolfin", submodule, \ + "dolfin_%s.h" % submodule)).read() + + # Extract all headers + all_headers = re.findall(_header_pattern, code) + + # Filter with excludes + return [header for header in all_headers \ + if header.split("/")[-1] not in excludes] + +def generate_submodule_info(excludes): + """ + Check the passed module to submodule mapping and sort it + Creates the reverse mapping together with additional info + about each submodule + """ + + # Extract original modules from dolfin.h + # NOTE: We need these, in particular the order + original_submodules = [] + module_to_submodules = OrderedDict() + f = open(os.path.join(dolfin_dir, "dolfin", "dolfin.h")) + present_module = "" + for line in f: + + module_match = re.findall(_module_pattern, line) + if module_match: + module = module_match[0] + module_to_submodules[module] = [] + present_module = module + continue + + submodule_match = re.findall(_submodule_pattern, line) + if submodule_match: + submodule = submodule_match[0] + original_submodules += [submodule] + + if not present_module: + raise RuntimeError("Found a submodule in dolfin.h before a "\ + "SWIG module was declared.") + module_to_submodules[present_module].append(submodule) + + f.close() + + # Check that the directory structure of the combined modules + # corresponds to the above dict, if not generate them + module_dirs = [] + for module_dir in glob.glob(os.path.join(swig_dir, "modules","*")): + module_dirs.append(module_dir.split(os.path.sep)[-1]) + + # Some sanity checks + for module_dir in module_dirs: + if module_dir not in module_to_submodules: + raise RuntimeError("Found a subdirectory: '%s' under the 'modules' "\ + "directory, which is not listed as a combined "\ + "module." % module_dir) + + for combined_module, modules in module_to_submodules.items(): + if combined_module not in module_dirs: + os.makedirs(os.path.join(swig_dir, "modules", combined_module)) + for module in modules: + if module not in original_submodules: + raise RuntimeError("Found a module: '%s' listed in the '%s' "\ + "combined module, which is not part of the "\ + "original DOLFIN modules." % \ + (module, combined_module)) + + # Create a map from original modules to the combined + submodule_info = OrderedDict() + not_included = [] + + for submodule in original_submodules: + for module, submodules in module_to_submodules.items(): + if submodule in submodules: + submodule_info[submodule] = dict(\ + module=module, + has_pre=os.path.isfile(\ + os.path.join(org_swig_dir, submodule, "pre.i")), + has_post=os.path.isfile(\ + os.path.join(org_swig_dir, submodule, "post.i")), + headers=extract_module_header_files(submodule, excludes)) + break + else: + not_included.append(submodule) + + # Remove not used submodules + for submodule in not_included: + original_submodules.remove(submodule) + + # Sort the submodules according to order in original_submodules + for module, submodules in module_to_submodules.items(): + ordered_submodules = [] + for submodule in original_submodules: + if submodule in submodules: + ordered_submodules.append(submodule) + module_to_submodules[module] = ordered_submodules + + # Return ordered submodule info + return module_to_submodules, submodule_info + +def extract_swig_modules_dependencies(module_to_submodules, submodule_info): + """ + Extracts the file dependencies of the SWIG modules + """ + + # OrderedDict of all external dependencies for each SWIG module + module_info = OrderedDict((module, dict(submodules=submodules,\ + declared_types=[],\ + used_types=set(),\ + dependencies={} + ))\ + for module, submodules in module_to_submodules.items()) + + # dict of where each dolfin type is declared and in what module and + # submodule it is included in + dolfin_type_def = OrderedDict() + + # Add UFC Function + # FIXME: ufc inheritance is not used for now. The ufc module information + # FIXME: is globally imported in shared_ptr_classes.i + dolfin_type_def["ufc::function"] = dict(\ + module="", + submodule="", + header="ufc.h", + bases=set(), derived=set()) + + # dict mapping submodules to included files + submodule_files = {} + + # Derived classes (Used if a found base class is not registered + # when first collected) + derived_classes = {} + + # Iterate over all SWIG modules + for module, submodules in module_to_submodules.items(): + + #print "Parsing headers for SWIG module:", module + # Iterate over all submodules in each SWIG module + for submodule in submodules: + + # Iterate over header files and collect info + for header_file in submodule_info[submodule]["headers"]: + + # Read code + code = open(header_file).read() + + try: + # Extract type info + used_types, declared_types = parse_and_extract_type_info(code) + except Exception, e: + print + print "###################" + print "ERROR while parsing:", header_file + print "###################" + print e + print + continue + + # Store type info + for dolfin_type, bases in declared_types.items(): + + # Store type information + dolfin_type_def[dolfin_type] = dict(\ + module=module, + submodule=submodule, + header=header_file, + bases=bases, derived=set()) + + # Register the class + module_info[module]["declared_types"].append(dolfin_type) + + # Store derived classes + for base in bases: + # Check if base class has been regisred + # (should be as the types are traversed in order of + # declaration ) + dolfin_type_info = dolfin_type_def.get(base) + if dolfin_type_info is None: + if base not in derived_classes: + derived_classes[base] = set() + derived_classes[base].add(dolfin_type) + + else: + # Add derived class + dolfin_type_info["derived"].add(dolfin_type) + + # Add collected types to module + module_info[module]["used_types"].update(\ + used_types) + + # If for one reason or the other a base class was detected which was not + # registered we add derived information here + for dolfin_type_name, derived in derived_classes.items(): + dolfin_type = dolfin_type_def.get(dolfin_type_name) + if dolfin_type is not None: + dolfin_type["derived"].update(derived) + + # Help functions to recursevily add base and derived information to types + def add_bases(bases, commulative_bases): + for base in bases: + # Check if bas is a dolfin type + if base in dolfin_type_def: + commulative_bases.add(base) + add_bases(dolfin_type_def[base]["bases"], commulative_bases) + + def add_derived(derived_set, commulative_derived): + for derived in derived_set: + # All derived should be a dolfin type... + if derived in dolfin_type_def: + commulative_derived.add(derived) + add_derived(dolfin_type_def[derived]["derived"], commulative_derived) + + # Build class hierarchy (We need to import all base and derived classes) + # First extract all bases to a type + for dolfin_type in dolfin_type_def: + + # Recursively add base and derived classes + if dolfin_type_def[dolfin_type]["bases"]: + + new_bases = set() + add_bases(dolfin_type_def[dolfin_type]["bases"], new_bases) + dolfin_type_def[dolfin_type]["bases"] = list(new_bases) + + if dolfin_type_def[dolfin_type]["derived"]: + new_derived = set() + add_derived(dolfin_type_def[dolfin_type]["derived"], new_derived) + dolfin_type_def[dolfin_type]["derived"] = list(new_derived) + + # Collect used dolfin types in each module + used_dolfin_types = dict((module, set()) for module in module_info) + + # Filter out dolfin types and add derived and bases for each type + for dolfin_type in dolfin_type_def: + + # Turn all set data into lists + if isinstance(dolfin_type_def[dolfin_type]["bases"], set): + dolfin_type_def[dolfin_type]["bases"] = \ + list(dolfin_type_def[dolfin_type]["bases"]) + if isinstance(dolfin_type_def[dolfin_type]["derived"], set): + dolfin_type_def[dolfin_type]["derived"] = \ + list(dolfin_type_def[dolfin_type]["derived"]) + + for module in module_info: + for used_type in module_info[module]["used_types"]: + if dolfin_type in used_type: + used_dolfin_types[module].add(dolfin_type) + + # Add bases and derived types + used_dolfin_types[module].update(\ + dolfin_type_def[dolfin_type]["bases"]) + + break + + # Over write old used type + for module in module_info: + # Update dependencies + module_info[module]["used_types"] = used_dolfin_types[module] + + # Check external module dependencies + for present_module in module_info: + for dependent_module in module_info: + + # If same module no external dependencies + if present_module == dependent_module: + continue + + # Iterate over all dolfin types in dependent modules and check it they + # are present in the present module + for dolfin_type in module_info[dependent_module]["declared_types"]: + + # Check for dependency + if dolfin_type in module_info[present_module]["used_types"]: + + # Register the dependency + dependencies = module_info[present_module]["dependencies"] + submodule = dolfin_type_def[dolfin_type]["submodule"] + if submodule not in dependencies: + dependencies[submodule] = set() + dependencies[submodule].add(\ + dolfin_type_def[dolfin_type]["header"]) + + # Need special treatment for template definitions in function/pre.i + if "function" in module_info[present_module]["dependencies"]: + for dolfin_type in ["FunctionSpace", "Function"]: + module_info[present_module]["dependencies"]["function"].add(\ + dolfin_type_def[dolfin_type]["header"]) + + # Over write old submodules dependencies with sorted version + module_info[present_module]["dependencies"] = \ + sort_submodule_dependencies(\ + module_info[present_module]["dependencies"], submodule_info) + + # Return data structures + return module_info, dolfin_type_def + +def write_module_interface_file(module, dependencies, submodule_info): + """ + Write the main interface file for SWIG module + """ + + # Generate a form for code template + module_form = dict( + module=module, + MODULE=module.upper(), + ) + + # Create import and include lines for each dependent file + import_lines, headers_includes, file_dependencies = \ + build_swig_import_info(dependencies, submodule_info) + + # Filter file dependencies + file_dependencies = [os.path.abspath(f) \ + for f in file_dependencies] + + # Add global SWIG interface files + file_dependencies.append(os.path.abspath(os.path.join(\ + swig_dir, "modules", module, "module.i"))) + file_dependencies.extend(os.path.abspath(f) \ + for f in glob.glob("dolfin/swig/*.i") + \ + glob.glob("dolfin/swig/typemaps/*.i")) + + include_lines = [] + docstring_lines = [] + + headers_includes.append("") + headers_includes.append("// Include types from present module %s" % module) + + for submodule, submod_info in submodule_info.items(): + + if submod_info["module"] != module: + continue + + headers_includes.append("") + headers_includes.append("// #include types from %s submodule" % submodule) + + include_lines.append("") + include_lines.append("// %%include types from submodule %s" % submodule) + + # Add docstrings + docstring_lines.append("%%include \"dolfin/swig/%s/docstrings.i\"" % submodule) + + # Check for pre includes + if submod_info["has_pre"]: + include_lines.append(\ + "%%include \"dolfin/swig/%s/pre.i\"" % submodule) + file_dependencies.append(os.path.abspath(os.path.join(\ + swig_dir, submodule, "pre.i"))) + + # Add headers + headers_includes.extend("#include \"%s\"" % header \ + for header in submod_info["headers"]) + include_lines.extend("%%include \"%s\"" % header \ + for header in submod_info["headers"]) + file_dependencies = [os.path.abspath(f) \ + for f in file_dependencies] + + #print submod_info["headers"] + # Check for post includes + if submod_info["has_post"]: + include_lines.append(\ + "%%include \"dolfin/swig/%s/post.i\"" % submodule) + file_dependencies.append(os.path.abspath(os.path.join(\ + swig_dir, submodule, "post.i"))) + + # Add imports and includes to form + module_form["imports"] = "\n".join(import_lines) + module_form["includes"] = "\n".join(include_lines) + module_form["docstrings"] = "\n".join(docstring_lines) + module_form["headers"] = "\n".join(headers_includes) + + # Open file + module_file = open(os.path.join(swig_dir, "modules", module, "module.i"), "w") + module_file.write(copyright_statement%(copyright_form_swig)) + + # Write the generated code + module_file.write(module_template % module_form) + + # Write swig interface file dependencies + dependency_file = open(os.path.join(swig_dir, "modules", module, + "dependencies.txt"), "w") + dependency_file.write(";".join(sorted(file_dependencies))) + +def write_swig_cmakelist_file(module): + """ + Generate the CMakeList.txt file for each module + """ + + # Write swig interface file dependencies + cmakelist_file = open(os.path.join(swig_dir, "modules", module, + "CMakeLists.txt"), "w") + + swig_cmakelists = """# This file is automatically generated by running +# +# cmake/scripts/generate-swig-interface +# +""" + swig_cmakelists_str + cmakelist_file.write(swig_cmakelists) + +def generate_runtime_config_file(dolfin_type_def, module_to_submodules, + submodule_info): + # Extract all shared_ptr stored classes and store them in a pyton module + # and place that under dolfin.compilemodeuls.sharedptrclasses.py + shared_ptr_classes = re.findall("%shared_ptr\(dolfin::(.+)\)", \ + open(os.path.join(org_swig_dir, \ + "shared_ptr_classes.i")).read()) + + def repr_ordered_dict(data): + """ + Make a readable repr version of an OrderedDict + """ + return "OrderedDict([\\\n%s])" % "\n".join(\ + "('%s', %s)," % (key, item) for key, item in data.items()) + + #shared_ptr_classes = filter(lambda x: "NAME" not in x, shared_ptr_classes) + runtime_file = '''""" +This module contains compiletime information about the dolfin python +library, which can be utelized at runtime. + +The file is automatically generated by the generateswigcode.py script +in the dolfin/swig directory.""" + +try: + from collections import OrderedDict +except ImportError: + from dolfin_utils.ordereddict import OrderedDict + +# A list of shared_ptr declared classes in dolfin +shared_ptr_classes = %s + +# An OrderedDict of all dolfin declared and its meta info +dolfin_type_def = %s + +# A map between modules and its submodules +module_to_submodules = %s + +# A reverse map between submodules and modules +submodule_info = %s +''' % (repr(shared_ptr_classes), repr_ordered_dict(dolfin_type_def),\ + repr_ordered_dict(module_to_submodules), repr_ordered_dict(submodule_info)) + + # FIXME: Create this in build directory + open(os.path.join("site-packages", "dolfin", \ + "compilemodules", "swigimportinfo.py"), "w").write(\ + runtime_file) + +def regenerate_swig_interface(excludes, top_destdir): + """ + Regenerate the whole swig interface + """ + + global swig_dir + + top_destdir = top_destdir or dolfin_dir + abs_destdir = top_destdir if os.path.isabs(top_destdir) else os.path.join(dolfin_dir, top_destdir) + + # Check what part of path dolfin_dir has in common abs_destdir: + dolfin_dirs = dolfin_dir.split(os.sep) + abs_destdirs = abs_destdir.split(os.sep) + while dolfin_dirs and abs_destdirs: + + # Check if dolfin and abs_dest dir has the same top directory + if dolfin_dirs[0] == abs_destdirs[0]: + dolfin_dirs.pop(0) + abs_destdirs.pop(0) + else: + break + + if not os.path.isdir(abs_destdir): + raise RuntimeError("%s is not a directory." % abs_destdir) + + # Change swig_dir for generated files + if top_destdir != dolfin_dir: + swig_dir = swig_dir.replace(dolfin_dir, top_destdir) + + # Check the submodule order and create a submodule to module mapping + module_to_submodules, submodule_info = generate_submodule_info(excludes) + + # Create dolfin type info and depdency structures to be used when + # generating swig interface files + module_info, dolfin_type_def = extract_swig_modules_dependencies(\ + module_to_submodules, submodule_info) + + # Iterate over the modules and create a swig interface file + submodule_ordered = [submodule for submodules in module_to_submodules.values() \ + for submodule in submodules] + for module in module_to_submodules: + # Sort submodules + dependencies = sorted(module_info[module]["dependencies"].keys(), \ + cmp=lambda a, b : cmp(\ + submodule_ordered.index(a), submodule_ordered.index(b))) + write_module_interface_file(module, module_info[module]["dependencies"], \ + submodule_info) + write_swig_cmakelist_file(module) + + # Create a python module with generated type info to be used runtime + generate_runtime_config_file(dolfin_type_def, module_to_submodules, + submodule_info) + + +if __name__ == "__main__": + + if len(sys.argv) not in [1,2]: + raise RuntimeError("expected 0 or 1 argument") + + dest_dir = sys.argv[-1] if len(sys.argv) == 2 else "" + + # User defined definition of SWIG modules. + # NOTE: Order of modules are important, but not order of submodules + module_to_submodules = OrderedDict([\ + ("common", ["common", "parameter", "log"]), + ("la", ["la", "nls"]), + ("mesh", ["mesh", "refinement", \ + "ale", "graph", "geometry", "generation"]), + ("function", ["function", "math"]), + ("fem", ["fem", "adaptivity", "multistage"]), + ("io", ["io", "plot"])]) + + # User defined list of headers to exclude (add more here) + excludes = ["LogStream.h"] + + # Regnerate SWIG interface + regenerate_swig_interface(excludes, dest_dir) diff --git a/cmake/templates/DOLFINConfig.cmake.in b/cmake/templates/DOLFINConfig.cmake.in new file mode 100644 index 0000000..7dd5f5f --- /dev/null +++ b/cmake/templates/DOLFINConfig.cmake.in @@ -0,0 +1,53 @@ +# - Build details for DOLFIN: Dynamic Object-oriented Library for FINite element computation +# +# This file has been automatically generated. + +# FIXME: Check that naming conforms to CMake standards + +# Compilers +set(DOLFIN_CXX_COMPILER "@CMAKE_CXX_COMPILER@") + +# Compiler defintions +set(DOLFIN_CXX_DEFINITIONS "-DDOLFIN_VERSION=\"@DOLFIN_VERSION@\";@DOLFIN_CXX_DEFINITIONS@") + +# Compiler flags +set(DOLFIN_CXX_FLAGS "@CMAKE_CXX_FLAGS@") + +# Linker flags +set(DOLFIN_LINK_FLAGS "@CMAKE_EXE_LINKER_FLAGS@") + +# Include directories +set(DOLFIN_INCLUDE_DIRS "@CMAKE_INSTALL_PREFIX@/@DOLFIN_INCLUDE_DIR@") + +# Third party include directories +set(DOLFIN_3RD_PARTY_INCLUDE_DIRS "@DOLFIN_DEP_INCLUDE_DIRECTORIES@;@DOLFIN_DEP_SYSTEM_INCLUDE_DIRECTORIES@") + +# Python include directories +set(DOLFIN_PYTHON_INCLUDE_DIRS "@NUMPY_INCLUDE_DIR@;@PYTHON_INCLUDE_DIRS@") + +# Python definitions +set(DOLFIN_PYTHON_DEFINITIONS "-DNUMPY_VERSION_MAJOR=@NUMPY_VERSION_MAJOR@;-DNUMPY_VERSION_MINOR=@NUMPY_VERSION_MINOR@;-DNUMPY_VERSION_MICRO=@NUMPY_VERSION_MICRO@;-DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION") + +# DOLFIN library +set(DOLFIN_LIBRARIES "@DOLFIN_LIBRARY@") + +# Third-party library directories +set(DOLFIN_3RD_PARTY_LIBRARY_DIRS "@DOLFIN_TARGET_LINK_LIBRARIES_DIRS@") + +# Third-party libraries +set(DOLFIN_3RD_PARTY_LIBRARIES "@DOLFIN_TARGET_LINK_LIBRARIES@") + +# Third-party libraries that are not required when linking with DOLFIN +set(DOLFIN_EXTRA_3RD_PARTY_LIBRARIES "@DOLFIN_EXTRA_TARGET_LINK_LIBRARIES@") + +# Python libraries +set(DOLFIN_PYTHON_LIBRARIES "@PYTHON_LIBRARIES@") + +# Version +set(DOLFIN_VERSION_MAJOR "@DOLFIN_VERSION_MAJOR@") +set(DOLFIN_VERSION_MINOR "@DOLFIN_VERSION_MINOR@") +set(DOLFIN_VERSION_MICRO "@DOLFIN_VERSION_MICRO@") +set(DOLFIN_VERSION_STR "@DOLFIN_VERSION@") + +# The location of the UseDOLFIN.cmake file +set(DOLFIN_USE_FILE "@CMAKE_INSTALL_PREFIX@/@DOLFIN_SHARE_DIR@/cmake/UseDOLFIN.cmake") diff --git a/cmake/templates/DOLFINConfigVersion.cmake.in b/cmake/templates/DOLFINConfigVersion.cmake.in new file mode 100644 index 0000000..1d3a16c --- /dev/null +++ b/cmake/templates/DOLFINConfigVersion.cmake.in @@ -0,0 +1,16 @@ +set(PACKAGE_VERSION "@DOLFIN_VERSION@") +set(PACKAGE_VERSION_MAJOR "@DOLFIN_VERSION_MAJOR@") +set(PACKAGE_VERSION_MINOR "@DOLFIN_VERSION_MINOR@") +set(PACKAGE_VERSION_PATCH "@DOLFIN_VERSION_MICRO@") + +# FIXME: When should versions be defined as compatible? +# This version is compatible only with matching major.minor versions. +if ("${PACKAGE_VERSION_MAJOR}.${PACKAGE_VERSION_MINOR}" VERSION_EQUAL "${PACKAGE_FIND_VERSION_MAJOR}.${PACKAGE_FIND_VERSION_MINOR}") + # This version is compatible with equal or lesser patch versions. + if (NOT "${PACKAGE_VERSION_PATCH}" VERSION_LESS "${PACKAGE_FIND_VERSION_PATCH}") + set(PACKAGE_VERSION_COMPATIBLE 1) + if ("${PACKAGE_VERSION_PATCH}" VERSION_EQUAL "${PACKAGE_FIND_VERSION_PATCH}") + set(PACKAGE_VERSION_EXACT 1) + endif() + endif() +endif() diff --git a/cmake/templates/UseDOLFIN.cmake.in b/cmake/templates/UseDOLFIN.cmake.in new file mode 100644 index 0000000..fa8d68c --- /dev/null +++ b/cmake/templates/UseDOLFIN.cmake.in @@ -0,0 +1,26 @@ +# +# This file sets up include directories, link directories, and +# compiler settings for a project to use DOLFIN. It should not be +# included directly, but rather through the DOLFIN_USE_FILE setting +# obtained from DOLFINConfig.cmake. +# + +if (NOT DOLFIN_USE_FILE_INCLUDED) + set(DOLFIN_USE_FILE_INCLUDED 1) + + # Add compiler definitions needed to use DOLFIN + add_definitions(${DOLFIN_CXX_DEFINITIONS}) + + # Add compiler flags needed to use DOLFIN + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${DOLFIN_CXX_FLAGS}") + set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${DOLFIN_LINK_FLAGS}") + set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} ${DOLFIN_LINK_FLAGS}") + set(CMAKE_MODULE_LINKER_FLAGS "${CMAKE_MODULE_LINKER_FLAGS} ${DOLFIN_LINK_FLAGS}") + + # Add include directories needed to use DOLFIN + include_directories(${DOLFIN_INCLUDE_DIRS}) + include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + + # Add link directories needed to use DOLFIN + link_directories(${DOLFIN_3RD_PARTY_LIBRARY_DIRS}) +endif() diff --git a/cmake/templates/cmake_uninstall.cmake.in b/cmake/templates/cmake_uninstall.cmake.in new file mode 100644 index 0000000..1c6a9e1 --- /dev/null +++ b/cmake/templates/cmake_uninstall.cmake.in @@ -0,0 +1,21 @@ +if (NOT EXISTS "@CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt") + message(FATAL_ERROR "Cannot find install manifest: \"@CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt\"") +endif() + +file(READ "@CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt" files) +string(REGEX REPLACE "\n" ";" files "${files}") +foreach (file ${files}) + message(STATUS "Uninstalling \"$ENV{DESTDIR}${file}\"") + if (EXISTS "$ENV{DESTDIR}${file}") + exec_program( + "@CMAKE_COMMAND@" ARGS "-E remove \"$ENV{DESTDIR}${file}\"" + OUTPUT_VARIABLE rm_out + RETURN_VALUE rm_retval + ) + if (NOT "${rm_retval}" STREQUAL 0) + message(FATAL_ERROR "Problem when removing \"$ENV{DESTDIR}${file}\"") + endif() + else() + message(STATUS "File \"$ENV{DESTDIR}${file}\" does not exist.") + endif() +endforeach() diff --git a/cmake/templates/dolfin-config-version.cmake.in b/cmake/templates/dolfin-config-version.cmake.in new file mode 100644 index 0000000..1d3a16c --- /dev/null +++ b/cmake/templates/dolfin-config-version.cmake.in @@ -0,0 +1,16 @@ +set(PACKAGE_VERSION "@DOLFIN_VERSION@") +set(PACKAGE_VERSION_MAJOR "@DOLFIN_VERSION_MAJOR@") +set(PACKAGE_VERSION_MINOR "@DOLFIN_VERSION_MINOR@") +set(PACKAGE_VERSION_PATCH "@DOLFIN_VERSION_MICRO@") + +# FIXME: When should versions be defined as compatible? +# This version is compatible only with matching major.minor versions. +if ("${PACKAGE_VERSION_MAJOR}.${PACKAGE_VERSION_MINOR}" VERSION_EQUAL "${PACKAGE_FIND_VERSION_MAJOR}.${PACKAGE_FIND_VERSION_MINOR}") + # This version is compatible with equal or lesser patch versions. + if (NOT "${PACKAGE_VERSION_PATCH}" VERSION_LESS "${PACKAGE_FIND_VERSION_PATCH}") + set(PACKAGE_VERSION_COMPATIBLE 1) + if ("${PACKAGE_VERSION_PATCH}" VERSION_EQUAL "${PACKAGE_FIND_VERSION_PATCH}") + set(PACKAGE_VERSION_EXACT 1) + endif() + endif() +endif() diff --git a/cmake/templates/dolfin-config.cmake.in b/cmake/templates/dolfin-config.cmake.in new file mode 100644 index 0000000..28b01d2 --- /dev/null +++ b/cmake/templates/dolfin-config.cmake.in @@ -0,0 +1,56 @@ +# - Build details for DOLFIN: Dynamic Object-oriented Library for FINite element computation +# +# This file has been automatically generated. + +# FIXME: Check that naming conforms to CMake standards + +# This file is deprecated +message(WARNING "find_package(dolfin) is deprecated - use find_package(DOLFIN) instead.") + +# Package found +set(DOLFIN_FOUND TRUE) + +# Compilers +set(DOLFIN_CXX_COMPILER "@CMAKE_CXX_COMPILER@") + +# Compiler defintions +set(DOLFIN_CXX_DEFINITIONS "-DDOLFIN_VERSION=\"@DOLFIN_VERSION@\";@DOLFIN_CXX_DEFINITIONS@") + +# Compiler flags +set(DOLFIN_CXX_FLAGS "@CMAKE_CXX_FLAGS@") + +# Linker flags +set(DOLFIN_LINK_FLAGS "@CMAKE_EXE_LINKER_FLAGS@") + +# Include directories +set(DOLFIN_INCLUDE_DIRS "@CMAKE_INSTALL_PREFIX@/@DOLFIN_INCLUDE_DIR@") + +# Third party include directories +set(DOLFIN_3RD_PARTY_INCLUDE_DIRS "@DOLFIN_DEP_INCLUDE_DIRECTORIES@;@DOLFIN_DEP_SYSTEM_INCLUDE_DIRECTORIES@") + +# Python include directories +set(DOLFIN_PYTHON_INCLUDE_DIRS "@NUMPY_INCLUDE_DIR@;@PYTHON_INCLUDE_DIRS@") + +# Python definitions +set(DOLFIN_PYTHON_DEFINITIONS "-DNUMPY_VERSION_MAJOR=@NUMPY_VERSION_MAJOR@;-DNUMPY_VERSION_MINOR=@NUMPY_VERSION_MINOR@;-DNUMPY_VERSION_MICRO=@NUMPY_VERSION_MICRO@;-DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION") + +# DOLFIN library +set(DOLFIN_LIBRARIES "@DOLFIN_LIBRARY@") + +# Third-party library directories +set(DOLFIN_3RD_PARTY_LIBRARY_DIRS "@DOLFIN_TARGET_LINK_LIBRARIES_DIRS@") + +# Third-party libraries +set(DOLFIN_3RD_PARTY_LIBRARIES "@DOLFIN_TARGET_LINK_LIBRARIES@") + +# Python libraries +set(DOLFIN_PYTHON_LIBRARIES "@PYTHON_LIBRARIES@") + +# Version +set(DOLFIN_VERSION_MAJOR "@DOLFIN_VERSION_MAJOR@") +set(DOLFIN_VERSION_MINOR "@DOLFIN_VERSION_MINOR@") +set(DOLFIN_VERSION_MICRO "@DOLFIN_VERSION_MICRO@") +set(DOLFIN_VERSION_STR "@DOLFIN_VERSION@") + +# The location of the UseDOLFIN.cmake file +set(DOLFIN_USE_FILE "@CMAKE_INSTALL_PREFIX@/@DOLFIN_SHARE_DIR@/cmake/UseDOLFIN.cmake") diff --git a/cmake/templates/dolfin-get-demos.in b/cmake/templates/dolfin-get-demos.in new file mode 100644 index 0000000..a3cbe10 --- /dev/null +++ b/cmake/templates/dolfin-get-demos.in @@ -0,0 +1,34 @@ +#!/bin/bash +# +# Utility script for installing demos in user's home directory + +DEMO_DIR=@CMAKE_INSTALL_PREFIX@/@DOLFIN_SHARE_DIR@/demo +INSTALL_DIR=$HOME/dolfin-demos +URL="http://fenicsproject.org/documentation/doc_"`echo @DOLFIN_VERSION@ | cut -d'+' -f1`".html" + +echo "This script will install the DOLFIN demos in your home directory:" +echo +echo " $INSTALL_DIR" +echo +echo -n "Do you want to install the DOLFIN demos in your home directory? [y] " +read answer + +if [[ $answer == "y" || $answer == "" ]]; then + echo "Installing demos..." + cp -r $DEMO_DIR $INSTALL_DIR + echo + echo "The demos have now been installed in $INSTALL_DIR." + echo + echo "-------------------------------------------------------------------------------" + echo "To get started, enter the following command:" + echo + echo " cd $INSTALL_DIR/pde" + echo + echo "The documentation can be found at the following address:" + echo + echo " $URL" + echo "-------------------------------------------------------------------------------" + echo +else + echo "ok, demos not installed" +fi diff --git a/cmake/templates/dolfin-version.in b/cmake/templates/dolfin-version.in new file mode 100644 index 0000000..eba5777 --- /dev/null +++ b/cmake/templates/dolfin-version.in @@ -0,0 +1,4 @@ +#!/bin/bash + +# Helper file to print the version of DOLFIN +echo @DOLFIN_VERSION@ diff --git a/cmake/templates/dolfin.conf.in b/cmake/templates/dolfin.conf.in new file mode 100644 index 0000000..f08a0ca --- /dev/null +++ b/cmake/templates/dolfin.conf.in @@ -0,0 +1,12 @@ +# Helper file for setting non-default DOLFIN environment variables + +# Common Unix variables +export @OS_LIBRARY_PATH_NAME@=@CMAKE_INSTALL_PREFIX@/@DOLFIN_LIB_DIR@:$@OS_LIBRARY_PATH_NAME@ +export PATH=@CMAKE_INSTALL_PREFIX@/@DOLFIN_BIN_DIR@:$PATH +export PKG_CONFIG_PATH=@CMAKE_INSTALL_PREFIX@/@DOLFIN_PKGCONFIG_DIR@:$PKG_CONFIG_PATH +export PYTHONPATH=@DOLFIN_INSTALL_PYTHON_MODULE_DIR@:@DOLFIN_INSTALL_PYTHON_PURE_MODULE_DIR@:$PYTHONPATH +export MANPATH=@CMAKE_INSTALL_PREFIX@/@DOLFIN_MAN_DIR@:$MANPATH + +# Special Mac variables +export DYLD_FRAMEWORK_PATH=/opt/local/Library/Frameworks:$DYLD_FRAMEWORK_PATH + diff --git a/cmake/templates/dolfin.pc.in b/cmake/templates/dolfin.pc.in new file mode 100644 index 0000000..bd26886 --- /dev/null +++ b/cmake/templates/dolfin.pc.in @@ -0,0 +1,17 @@ +# pkg-config configuration for DOLFIN +prefix=@CMAKE_INSTALL_PREFIX@ +exec_prefix=@CMAKE_INSTALL_PREFIX@ +libdir=${exec_prefix}/lib +includedir=${prefix}/include +compiler=@CMAKE_CXX_COMPILER@ +definitions=@PKG_DEFINITIONS@ +swigcflags=@PYTHON_CPPFLAGS@ +extlibs=@DOLFIN_EXT_LIBS@ + +Name: DOLFIN +Description: Dynamic Object-oriented Library for FINite element computation +Version: @DOLFIN_VERSION@ +Requires: @PKG_REQUIRES@ +Conflicts: +Libs: @PKG_LINKFLAGS@ -L${libdir} -ldolfin +Cflags: @PKG_CXXFLAGS@ -DDOLFIN_VERSION=\"@DOLFIN_VERSION@\" @PKG_DEFINITIONS@ -I${includedir} @PKG_INCLUDES@ diff --git a/data/README b/data/README new file mode 100644 index 0000000..dcec783 --- /dev/null +++ b/data/README @@ -0,0 +1,6 @@ +The data in this directory, including example meshes, have been moved +to the FEniCS web server to decrease the size of this repository. For +a selection of meshes, please visit + + http://fenicsproject.org/download/data.html + http://fenicsproject.org/pub/data/meshes/ diff --git a/demo/CMakeLists.txt b/demo/CMakeLists.txt new file mode 100644 index 0000000..3d96c86 --- /dev/null +++ b/demo/CMakeLists.txt @@ -0,0 +1,32 @@ +project(dolfin-demos) + +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +# FIXME: Temporary fix for whitespace error +cmake_policy(SET CMP0004 OLD) + +# Find DOLFIN config file (not used here, but check that the demo will be able +# to find it +find_package(DOLFIN PATHS ${CMAKE_BINARY_DIR} REQUIRED) + +# If config file is found, add all demo sub-directories, else print helper +# message +if (DOLFIN_FOUND) + + # Build list of all cpp demo directories + file(GLOB_RECURSE list "main.cpp") + list(SORT list) + string(REGEX REPLACE "/main.cpp" "" list "${list}") + + # Add each C++ demo directory + foreach (demo_dir ${list}) + #message(STATUS "Adding C++ demo: ${demo_dir}") + add_subdirectory(${demo_dir}) + endforeach() + +else() + + message("Could not locate DOLFINConfig.cmake file. Did you do 'make install' for the DOLFIN library and set the appropriate paths (source /dolfin.conf)?") + +endif() diff --git a/demo/cmake.local b/demo/cmake.local new file mode 100755 index 0000000..c7516dd --- /dev/null +++ b/demo/cmake.local @@ -0,0 +1,19 @@ +#!/bin/sh + +# Configure for a local install. Build files will be generated in the +# directory $toplevel/local and installation will go in the directory +# $toplevel/build. +# +# This is useful to be able to run demos from within the source tree +# without needing to specify an installation directory. + +# TODO: Add -DCMAKE_BUILD_TYPE=xxxx flag + +INSTALLDIR=`pwd`"/local" + +mkdir -p ../build_demo +cd ../build_demo + +cmake ../demo -DCMAKE_INSTALL_PREFIX=$INSTALLDIR +make + diff --git a/demo/documented/auto-adaptive-poisson/common.txt b/demo/documented/auto-adaptive-poisson/common.txt new file mode 100644 index 0000000..4b7b2b2 --- /dev/null +++ b/demo/documented/auto-adaptive-poisson/common.txt @@ -0,0 +1,138 @@ +In this demo we will use goal oriented adaptivity and error control +which applies a duality technique to derive error estimates taken +directly from the computed solution which then are used to weight +local residuals. To this end, we derive an :math:`\textit{a +posteriori}` error estimate and error indicators. We define a goal +functional :math:`\mathcal{M} : V \rightarrow \mathbb{R}`, which +expresses the localized physical properties of the solution of a +simulation. The objective of goal oriented adaptive error control is +to minimize computational work to obtain a given level of accuracy in +:math:`\mathcal{M}`. + +We will thus illustrate how to: + +* Solve a linear partial differential equation with automatic adaptive mesh refinement +* Define a goal functional +* Use :py:class:`AdaptiveLinearVariationalSolver ` + +The two solutions for u in this demo will look as follows, where the +first is the unrefined while the second is the refined solution: + +.. image:: ../u_unrefined.png + :scale: 75 % + +.. image:: ../u_refined.png + :scale: 75 % + + +Equation and problem definition +------------------------------- + +The Poisson equation is the canonical elliptic partial differential +equation. For a domain :math:`\Omega \subset \mathbb{R}^n` with +boundary :math:`\partial \Omega = \Gamma_{D} \cup \Gamma_{N}`, the +Poisson equation with particular boundary conditions reads: + + +.. math:: + + - \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\ + u &= 0 \quad {\rm on} \ \Gamma_{D}, \\ + \nabla u \cdot n &= g \quad {\rm on} \ \Gamma_{N}. \\ + +Here, :math:`f` and :math:`g` are input data and n denotes the outward +directed boundary normal. The variational form of Poisson equation +reads: find :math:`u \in V` such that + +.. math:: + + a(u, v) = L(v) \quad \forall \ v \in \hat{V}, + +which we will call the continous primal problem, where :math:`V`, +:math:`\hat{V}` are the trial- and test spaces and + + +.. math:: + + a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x, \\ + L(v) &= \int_{\Omega} f v \, {\rm d} x + \int_{\Gamma_{N}} g v \, {\rm d} s. + +The expression :math:`a(u, v)` is the bilinear form and :math:`L(v)` +is the linear form. It is assumed that all functions in :math:`V` +satisfy the Dirichlet boundary conditions (:math:`u = 0 \ {\rm on} \ +\Gamma_{D}`). + +The above definitions is that of the continuous problem. In the actual +computer implementation we use a descrete formulation which reads: +find :math:`u \in V_h` such that + + +.. math:: + + a(u_h, v) = L(v) \quad \forall \ v \in \hat{V}_h. + +We will refer to the above equation as the discrete primal +problem. Here, :math:`V_h` and :math:`\hat{V_h}` are finite +dimensional subspaces. + +The weak residual is defined as + +.. math:: + + r(v) = L(v) - a(u_h, v). + +By the Galerkin orthogonality, we have + + +.. math:: + + r(v) = L(v) - a(u_h, v) = a(u_h, v) - a(u_h, v) = 0\,\, \forall v \in \hat{V}_{h}, + +which means that the residual vanishes for all functions in +:math:`\hat{V}_{h}`. This property is used further in the derivation +of the error estimates. wish to compute a solution :math:`u_h` to the +discrete primal problem defined above such that for a given tolerance +:math:`\mathrm{TOL}` we have + +.. math:: + + \eta = \left| \mathcal{M}(u_h) - \mathcal{u_h} \right| \leq \mathrm{TOL}. + +Next we derive an :math:`\textit{a posteriori}` error estimate by +defining the discrete dual variational problem: find :math:`z_h \in +V_h^*` such that + +.. :math:: + + a^*(z_h,v) = \mathcal{v}, \quad \forall v \in \hat{V}_h^*. + +Here :math:`V^*, \hat{V}_h^*` are the dual trial- and test spaces and +:math:`a^* : V^* \times \hat{V}^* \rightarrow \mathbb{R}` is the +adjoint of :math:`a` such that :math:`a^*(v,w) = a(w,v)`. We find that + +.. math:: + + \mathcal{M}(u - \mathcal{u_h}) = a^*(z, u - u_h) = a(u - u_h, z) = a(u,z) - a(u_h,z) = L(z) - a(u_h,z) = r(z) + +and by Galerkin orthogonality we have :math:`r(z) = r(z - v_h)\,\, +\forall v_h \in \hat{V}_h`. Note that the residual vanishes if +:math:`z \in \hat{V}_h^*` and has to either be approximated in a +higher order element space or one may use an extrapolation. The choice +of goal functional depends on what quantity you are interested in. +Here, we take the goal functional to be defined as + +.. math:: + + \mathcal{M}(u) = \int_{\Omega} u dx. + + +We use :math:`D\ddot{o}rfler` marking as the mesh marking procedure. + +In this demo, we shall consider the following definitions of the input functions, the domain, and the boundaries: + +* :math:`\Omega = [0,1] \times [0,1]\,` (a unit square) +* :math:`\Gamma_{D} = \{(0, y) \cup (1, y) \subset \partial \Omega\}\,` (Dirichlet boundary) +* :math:`\Gamma_{N} = \{(x, 0) \cup (x, 1) \subset \partial \Omega\}\,` (Neumann boundary) +* :math:`g = \sin(5x)\,` (normal derivative) +* :math:`f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)\,` (source term) + diff --git a/demo/documented/auto-adaptive-poisson/cpp/AdaptivePoisson.h b/demo/documented/auto-adaptive-poisson/cpp/AdaptivePoisson.h new file mode 100644 index 0000000..a0e9e76 --- /dev/null +++ b/demo/documented/auto-adaptive-poisson/cpp/AdaptivePoisson.h @@ -0,0 +1,15101 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: True +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __ADAPTIVEPOISSON_H +#define __ADAPTIVEPOISSON_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class adaptivepoisson_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + adaptivepoisson_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + + // Get coordinates and map to the reference (FIAT) element + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivepoisson_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivepoisson_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + adaptivepoisson_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivepoisson_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivepoisson_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + adaptivepoisson_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Bubble', Domain(Cell('triangle', 2)), 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[8][3]; + for (unsigned int row = 0; row < 8; row++) + { + for (unsigned int col = 0; col < 3; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[8][8]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = 0; + vertex_values[1] = 0; + vertex_values[2] = 0; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivepoisson_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivepoisson_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + adaptivepoisson_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivepoisson_finite_element_3(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivepoisson_finite_element_4: public ufc::finite_element +{ +public: + + /// Constructor + adaptivepoisson_finite_element_4() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_finite_element_4() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivepoisson_finite_element_4(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivepoisson_finite_element_5: public ufc::finite_element +{ +public: + + /// Constructor + adaptivepoisson_finite_element_5() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_finite_element_5() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivepoisson_finite_element_5(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivepoisson_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + adaptivepoisson_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[2][0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivepoisson_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivepoisson_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + adaptivepoisson_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 6*num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 6; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 6*c.entity_indices[2][0]; + dofs[1] = 6*c.entity_indices[2][0] + 1; + dofs[2] = 6*c.entity_indices[2][0] + 2; + dofs[3] = 6*c.entity_indices[2][0] + 3; + dofs[4] = 6*c.entity_indices[2][0] + 4; + dofs[5] = 6*c.entity_indices[2][0] + 5; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 3; + dofs[4] = 4; + dofs[5] = 5; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivepoisson_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivepoisson_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + adaptivepoisson_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Bubble', Domain(Cell('triangle', 2)), 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[2][0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivepoisson_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivepoisson_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + adaptivepoisson_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 3; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 3*c.entity_indices[2][0]; + dofs[1] = 3*c.entity_indices[2][0] + 1; + dofs[2] = 3*c.entity_indices[2][0] + 2; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivepoisson_dofmap_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivepoisson_dofmap_4: public ufc::dofmap +{ +public: + + /// Constructor + adaptivepoisson_dofmap_4() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_dofmap_4() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivepoisson_dofmap_4(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivepoisson_dofmap_5: public ufc::dofmap +{ +public: + + /// Constructor + adaptivepoisson_dofmap_5() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_dofmap_5() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivepoisson_dofmap_5(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivepoisson_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivepoisson_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 11 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = -0.5*G0_0_0 - 0.5*G0_1_0; + A[2] = -0.5*G0_0_1 - 0.5*G0_1_1; + A[3] = -0.5*G0_0_0 - 0.5*G0_0_1; + A[4] = 0.5*G0_0_0; + A[5] = 0.5*G0_0_1; + A[6] = -0.5*G0_1_0 - 0.5*G0_1_1; + A[7] = 0.5*G0_1_0; + A[8] = 0.5*G0_1_1; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivepoisson_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivepoisson_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 0 + // Number of operations (multiply-add pairs) for tensor contraction: 1 + // Total number of operations (multiply-add pairs): 4 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_ = det; + + // Compute element tensor + A[0] = 0.166666666666667*G0_; + A[1] = 0.166666666666667*G0_; + A[2] = 0.166666666666667*G0_; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivepoisson_cell_integral_2_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivepoisson_cell_integral_2_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_cell_integral_2_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W6[6] = {0.0833333333333333, 0.0833333333333333, 0.0833333333333333, 0.0833333333333333, 0.0833333333333333, 0.0833333333333333}; + // Quadrature points on the UFC reference element: (0.659027622374092, 0.231933368553031), (0.659027622374092, 0.109039009072877), (0.231933368553031, 0.659027622374092), (0.231933368553031, 0.109039009072877), (0.109039009072877, 0.659027622374092), (0.109039009072877, 0.231933368553031) + + // Values of basis functions at quadrature points. + static const double FE0[6][3] = \ + {{0.109039009072877, 0.659027622374092, 0.231933368553031}, + {0.231933368553031, 0.659027622374092, 0.109039009072877}, + {0.109039009072877, 0.231933368553031, 0.659027622374092}, + {0.659027622374092, 0.231933368553031, 0.109039009072877}, + {0.231933368553031, 0.109039009072877, 0.659027622374092}, + {0.659027622374092, 0.109039009072877, 0.231933368553031}}; + + static const double FE0_D01[6][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc0[2] = {0, 2}; + + static const double FE1[6][6] = \ + {{-0.0852599980736871, 0.209607191730006, -0.124347193656319, 0.611401985706872, 0.101159138711827, 0.287438875581301}, + {-0.124347193656319, 0.209607191730006, -0.0852599980736871, 0.287438875581301, 0.101159138711827, 0.611401985706872}, + {-0.085259998073687, -0.124347193656319, 0.209607191730006, 0.611401985706872, 0.287438875581301, 0.101159138711827}, + {0.209607191730006, -0.124347193656319, -0.0852599980736871, 0.101159138711827, 0.287438875581301, 0.611401985706872}, + {-0.124347193656319, -0.0852599980736871, 0.209607191730006, 0.287438875581301, 0.611401985706872, 0.101159138711827}, + {0.209607191730006, -0.0852599980736871, -0.124347193656319, 0.101159138711827, 0.611401985706872, 0.287438875581301}}; + + static const double FE1_D01[6][5] = \ + {{0.563843963708493, -0.0722665257878755, 2.63611048949637, -0.491577437920616, -2.63611048949637}, + {0.0722665257878767, -0.563843963708491, 2.63611048949637, 0.491577437920616, -2.63611048949637}, + {0.563843963708492, 1.63611048949637, 0.927733474212123, -2.19995445320486, -0.927733474212123}, + {-1.63611048949637, -0.563843963708491, 0.927733474212123, 2.19995445320486, -0.927733474212124}, + {0.0722665257878761, 1.63611048949637, 0.436156036291507, -1.70837701528424, -0.436156036291507}, + {-1.63611048949637, -0.0722665257878757, 0.436156036291507, 1.70837701528424, -0.436156036291507}}; + + // Array of non-zero columns + static const unsigned int nzc2[5] = {0, 2, 3, 4, 5}; + + static const double FE1_D10[6][5] = \ + {{0.563843963708493, 1.63611048949637, 0.927733474212123, -0.927733474212123, -2.19995445320486}, + {0.0722665257878764, 1.63611048949637, 0.436156036291507, -0.436156036291507, -1.70837701528424}, + {0.563843963708493, -0.0722665257878761, 2.63611048949637, -2.63611048949637, -0.491577437920617}, + {-1.63611048949637, -0.0722665257878761, 0.436156036291507, -0.436156036291507, 1.70837701528424}, + {0.0722665257878763, -0.563843963708493, 2.63611048949637, -2.63611048949637, 0.491577437920616}, + {-1.63611048949637, -0.563843963708492, 0.927733474212123, -0.927733474212123, 2.19995445320486}}; + + // Array of non-zero columns + static const unsigned int nzc3[5] = {0, 1, 3, 4, 5}; + + // Reset values in the element tensor. + A[0] = 0.0; + // Number of operations to compute geometry constants: 12. + double G[3]; + G[0] = - det*(K[0]*K[0] + K[1]*K[1]); + G[1] = - det*(K[0]*K[2] + K[1]*K[3]); + G[2] = - det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 366 + for (unsigned int ip = 0; ip < 6; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + + // Total number of operations to compute function values = 8 + for (unsigned int r = 0; r < 2; r++) + { + F2 += FE0_D01[ip][r]*w[2][nzc1[r]]; + F3 += FE0_D01[ip][r]*w[2][nzc0[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 3; r++) + { + F0 += FE0[ip][r]*w[0][r]; + } // end loop over 'r' + + // Total number of operations to compute function values = 20 + for (unsigned int r = 0; r < 5; r++) + { + F4 += FE1_D10[ip][r]*w[3][nzc3[r]]; + F5 += FE1_D01[ip][r]*w[3][nzc2[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 12 + for (unsigned int r = 0; r < 6; r++) + { + F1 += FE1[ip][r]*w[3][r]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 14 + double I[1]; + // Number of operations: 14 + I[0] = W6[ip]*(F0*F1*det + F2*F4*G[0] + F3*F5*G[2] + G[1]*(F2*F5 + F3*F4)); + + + // Number of operations for primary indices: 1 + // Number of operations to compute entry: 1 + A[0] += I[0]; + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivepoisson_exterior_facet_integral_2_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivepoisson_exterior_facet_integral_2_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_exterior_facet_integral_2_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true, false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 13 + // Number of operations (multiply-add pairs) for tensor contraction: 10 + // Total number of operations (multiply-add pairs): 33 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0_0 = det*w[1][0]*w[3][0]*(1.0); + const double G0_0_4 = det*w[1][0]*w[3][4]*(1.0); + const double G0_0_5 = det*w[1][0]*w[3][5]*(1.0); + const double G0_1_1 = det*w[1][1]*w[3][1]*(1.0); + const double G0_1_3 = det*w[1][1]*w[3][3]*(1.0); + const double G0_1_5 = det*w[1][1]*w[3][5]*(1.0); + const double G0_2_2 = det*w[1][2]*w[3][2]*(1.0); + const double G0_2_3 = det*w[1][2]*w[3][3]*(1.0); + const double G0_2_4 = det*w[1][2]*w[3][4]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.166666666666666*G0_1_1 + 0.333333333333333*G0_1_3 + 0.166666666666667*G0_2_2 + 0.333333333333333*G0_2_3; + break; + } + case 1: + { + A[0] = 0.166666666666667*G0_0_0 + 0.333333333333333*G0_0_4 + 0.166666666666667*G0_2_2 + 0.333333333333333*G0_2_4; + break; + } + case 2: + { + A[0] = 0.166666666666667*G0_0_0 + 0.333333333333333*G0_0_5 + 0.166666666666666*G0_1_1 + 0.333333333333333*G0_1_5; + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivepoisson_cell_integral_3_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivepoisson_cell_integral_3_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_cell_integral_3_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 1 + // Number of operations (multiply-add pairs) for tensor contraction: 4 + // Total number of operations (multiply-add pairs): 8 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + + // Compute element tensor + A[0] = 0.0321428571428572*G0_0; + A[1] = 0.0214285714285714*G0_0; + A[2] = 0.0214285714285714*G0_0; + A[3] = 0.0214285714285714*G0_0; + A[4] = 0.0321428571428572*G0_0; + A[5] = 0.0214285714285714*G0_0; + A[6] = 0.0214285714285714*G0_0; + A[7] = 0.0214285714285714*G0_0; + A[8] = 0.0321428571428571*G0_0; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivepoisson_cell_integral_4_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivepoisson_cell_integral_4_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_cell_integral_4_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W7[7] = {0.1125, 0.0629695902724136, 0.0629695902724136, 0.0629695902724136, 0.0661970763942531, 0.0661970763942531, 0.0661970763942531}; + // Quadrature points on the UFC reference element: (0.333333333333333, 0.333333333333333), (0.797426985353087, 0.101286507323456), (0.101286507323456, 0.797426985353087), (0.101286507323456, 0.101286507323456), (0.0597158717897698, 0.470142064105115), (0.470142064105115, 0.0597158717897698), (0.470142064105115, 0.470142064105115) + + // Values of basis functions at quadrature points. + static const double FE0[7][1] = \ + {{1.0}, + {0.22088075779229}, + {0.22088075779229}, + {0.22088075779229}, + {0.356378717426369}, + {0.356378717426369}, + {0.356378717426369}}; + + static const double FE0_D01[7][1] = \ + {{0.0}, + {0.0}, + {-1.90376021590477}, + {1.90376021590477}, + {0.0}, + {5.20988266488436}, + {-5.20988266488436}}; + + static const double FE0_D10[7][1] = \ + {{0.0}, + {-1.90376021590477}, + {0.0}, + {1.90376021590477}, + {5.20988266488436}, + {0.0}, + {-5.20988266488436}}; + + static const double FE1[7][3] = \ + {{0.333333333333333, 0.333333333333333, 0.333333333333333}, + {0.101286507323456, 0.797426985353087, 0.101286507323456}, + {0.101286507323457, 0.101286507323456, 0.797426985353087}, + {0.797426985353087, 0.101286507323456, 0.101286507323456}, + {0.470142064105115, 0.0597158717897698, 0.470142064105115}, + {0.470142064105115, 0.470142064105115, 0.0597158717897697}, + {0.0597158717897699, 0.470142064105115, 0.470142064105115}}; + + static const double FE1_D01[7][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc0[2] = {0, 2}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 1}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 3; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 12. + double G[3]; + G[0] = - det*(K[0]*K[2] + K[1]*K[3]); + G[1] = - det*(K[2]*K[2] + K[3]*K[3]); + G[2] = - det*(K[0]*K[0] + K[1]*K[1]); + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 406 + for (unsigned int ip = 0; ip < 7; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 1; r++) + { + F1 += FE0[ip][0]*w[3][0]; + F4 += FE0_D10[ip][0]*w[3][0]; + F5 += FE0_D01[ip][0]*w[3][0]; + } // end loop over 'r' + + // Total number of operations to compute function values = 8 + for (unsigned int r = 0; r < 2; r++) + { + F2 += FE1_D01[ip][r]*w[2][nzc1[r]]; + F3 += FE1_D01[ip][r]*w[2][nzc0[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 3; r++) + { + F0 += FE1[ip][r]*w[0][r]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 24 + double I[3]; + // Number of operations: 5 + I[0] = F1*W7[ip]*(F2*G[0] + F3*G[1]); + + // Number of operations: 5 + I[1] = F1*W7[ip]*(F2*G[2] + F3*G[0]); + + // Number of operations: 14 + I[2] = W7[ip]*(F0*F1*det + F2*F4*G[2] + F3*F5*G[1] + G[0]*(F2*F5 + F3*F4)); + + + // Number of operations for primary indices: 6 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[j] += FE1[ip][j]*I[2]; + } // end loop over 'j' + + // Number of operations for primary indices: 8 + for (unsigned int j = 0; j < 2; j++) + { + // Number of operations to compute entry: 2 + A[nzc0[j]] += FE1_D01[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc1[j]] += FE1_D01[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivepoisson_exterior_facet_integral_4_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivepoisson_exterior_facet_integral_4_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_exterior_facet_integral_4_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true, false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 4 + // Number of operations (multiply-add pairs) for geometry tensor: 0 + // Number of operations (multiply-add pairs) for tensor contraction: 0 + // Total number of operations (multiply-add pairs): 4 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + + // Compute scale factor (length of edge scaled by length of reference interval) + + + // Compute geometry tensor + + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + break; + } + case 1: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + break; + } + case 2: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivepoisson_exterior_facet_integral_5_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivepoisson_exterior_facet_integral_5_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_exterior_facet_integral_5_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 6 + // Number of operations (multiply-add pairs) for tensor contraction: 30 + // Total number of operations (multiply-add pairs): 46 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.15*G0_1 - 0.0166666666666666*G0_2 + 0.2*G0_3; + A[5] = 0.0166666666666666*G0_1 + 0.0166666666666667*G0_2 + 0.133333333333333*G0_3; + A[6] = 0.0; + A[7] = 0.0166666666666666*G0_1 + 0.0166666666666667*G0_2 + 0.133333333333333*G0_3; + A[8] = -0.0166666666666667*G0_1 + 0.15*G0_2 + 0.2*G0_3; + break; + } + case 1: + { + A[0] = 0.15*G0_0 - 0.0166666666666666*G0_2 + 0.2*G0_4; + A[1] = 0.0; + A[2] = 0.0166666666666667*G0_0 + 0.0166666666666667*G0_2 + 0.133333333333333*G0_4; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0166666666666667*G0_0 + 0.0166666666666667*G0_2 + 0.133333333333333*G0_4; + A[7] = 0.0; + A[8] = -0.0166666666666666*G0_0 + 0.15*G0_2 + 0.2*G0_4; + break; + } + case 2: + { + A[0] = 0.15*G0_0 - 0.0166666666666666*G0_1 + 0.2*G0_5; + A[1] = 0.0166666666666667*G0_0 + 0.0166666666666667*G0_1 + 0.133333333333333*G0_5; + A[2] = 0.0; + A[3] = 0.0166666666666667*G0_0 + 0.0166666666666667*G0_1 + 0.133333333333333*G0_5; + A[4] = -0.0166666666666667*G0_0 + 0.15*G0_1 + 0.2*G0_5; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the +/// interior facet tensor corresponding to the local contribution to +/// a form from the integral over an interior facet. + +class adaptivepoisson_interior_facet_integral_5_otherwise: public ufc::interior_facet_integral +{ +public: + + /// Constructor + adaptivepoisson_interior_facet_integral_5_otherwise() : ufc::interior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_interior_facet_integral_5_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local interior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates_0, + const double* vertex_coordinates_1, + std::size_t facet_0, + std::size_t facet_1, + int cell_orientation_0, + int cell_orientation_1) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 12 + // Number of operations (multiply-add pairs) for geometry tensor: 12 + // Number of operations (multiply-add pairs) for tensor contraction: 180 + // Total number of operations (multiply-add pairs): 204 + + // Compute Jacobian + double J_0[4]; + compute_jacobian_triangle_2d(J_0, vertex_coordinates_0); + + // Compute Jacobian inverse and determinant + double K_0[4]; + double detJ_0; + compute_jacobian_inverse_triangle_2d(K_0, detJ_0, J_0); + + // Compute Jacobian + double J_1[4]; + compute_jacobian_triangle_2d(J_1, vertex_coordinates_1); + + // Compute Jacobian inverse and determinant + double K_1[4]; + double detJ_1; + compute_jacobian_inverse_triangle_2d(K_1, detJ_1, J_1); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet_0][0]; + const unsigned int v1 = edge_vertices[facet_0][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates_0[2*v1 + 0] - vertex_coordinates_0[2*v0 + 0]; + const double dx1 = vertex_coordinates_0[2*v1 + 1] - vertex_coordinates_0[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + + // Compute geometry tensor + const double G0_6 = det*w[0][6]*(1.0); + const double G0_7 = det*w[0][7]*(1.0); + const double G0_8 = det*w[0][8]*(1.0); + const double G0_9 = det*w[0][9]*(1.0); + const double G0_10 = det*w[0][10]*(1.0); + const double G0_11 = det*w[0][11]*(1.0); + const double G1_0 = det*w[0][0]*(1.0); + const double G1_1 = det*w[0][1]*(1.0); + const double G1_2 = det*w[0][2]*(1.0); + const double G1_3 = det*w[0][3]*(1.0); + const double G1_4 = det*w[0][4]*(1.0); + const double G1_5 = det*w[0][5]*(1.0); + + // Compute element tensor + switch (facet_0) + { + case 0: + { + switch (facet_1) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.15*G1_1 - 0.0166666666666666*G1_2 + 0.2*G1_3; + A[8] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[14] = -0.0166666666666667*G1_1 + 0.15*G1_2 + 0.2*G1_3; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.15*G0_7 - 0.0166666666666666*G0_8 + 0.2*G0_9; + A[29] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[35] = -0.0166666666666667*G0_7 + 0.15*G0_8 + 0.2*G0_9; + break; + } + case 1: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.15*G1_1 - 0.0166666666666666*G1_2 + 0.2*G1_3; + A[8] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[14] = -0.0166666666666667*G1_1 + 0.15*G1_2 + 0.2*G1_3; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.15*G0_6 - 0.0166666666666666*G0_8 + 0.2*G0_10; + A[22] = 0.0; + A[23] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[34] = 0.0; + A[35] = -0.0166666666666666*G0_6 + 0.15*G0_8 + 0.2*G0_10; + break; + } + case 2: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.15*G1_1 - 0.0166666666666666*G1_2 + 0.2*G1_3; + A[8] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[14] = -0.0166666666666667*G1_1 + 0.15*G1_2 + 0.2*G1_3; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.15*G0_6 - 0.0166666666666666*G0_7 + 0.2*G0_11; + A[22] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[28] = -0.0166666666666667*G0_6 + 0.15*G0_7 + 0.2*G0_11; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = 0.0; + break; + } + } + + break; + } + case 1: + { + switch (facet_1) + { + case 0: + { + A[0] = 0.15*G1_0 - 0.0166666666666666*G1_2 + 0.2*G1_4; + A[1] = 0.0; + A[2] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[13] = 0.0; + A[14] = -0.0166666666666666*G1_0 + 0.15*G1_2 + 0.2*G1_4; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.15*G0_7 - 0.0166666666666666*G0_8 + 0.2*G0_9; + A[29] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[35] = -0.0166666666666667*G0_7 + 0.15*G0_8 + 0.2*G0_9; + break; + } + case 1: + { + A[0] = 0.15*G1_0 - 0.0166666666666666*G1_2 + 0.2*G1_4; + A[1] = 0.0; + A[2] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[13] = 0.0; + A[14] = -0.0166666666666666*G1_0 + 0.15*G1_2 + 0.2*G1_4; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.15*G0_6 - 0.0166666666666666*G0_8 + 0.2*G0_10; + A[22] = 0.0; + A[23] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[34] = 0.0; + A[35] = -0.0166666666666666*G0_6 + 0.15*G0_8 + 0.2*G0_10; + break; + } + case 2: + { + A[0] = 0.15*G1_0 - 0.0166666666666666*G1_2 + 0.2*G1_4; + A[1] = 0.0; + A[2] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[13] = 0.0; + A[14] = -0.0166666666666666*G1_0 + 0.15*G1_2 + 0.2*G1_4; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.15*G0_6 - 0.0166666666666666*G0_7 + 0.2*G0_11; + A[22] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[28] = -0.0166666666666667*G0_6 + 0.15*G0_7 + 0.2*G0_11; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = 0.0; + break; + } + } + + break; + } + case 2: + { + switch (facet_1) + { + case 0: + { + A[0] = 0.15*G1_0 - 0.0166666666666666*G1_1 + 0.2*G1_5; + A[1] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[7] = -0.0166666666666667*G1_0 + 0.15*G1_1 + 0.2*G1_5; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.15*G0_7 - 0.0166666666666666*G0_8 + 0.2*G0_9; + A[29] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[35] = -0.0166666666666667*G0_7 + 0.15*G0_8 + 0.2*G0_9; + break; + } + case 1: + { + A[0] = 0.15*G1_0 - 0.0166666666666666*G1_1 + 0.2*G1_5; + A[1] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[7] = -0.0166666666666667*G1_0 + 0.15*G1_1 + 0.2*G1_5; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.15*G0_6 - 0.0166666666666666*G0_8 + 0.2*G0_10; + A[22] = 0.0; + A[23] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[34] = 0.0; + A[35] = -0.0166666666666666*G0_6 + 0.15*G0_8 + 0.2*G0_10; + break; + } + case 2: + { + A[0] = 0.15*G1_0 - 0.0166666666666666*G1_1 + 0.2*G1_5; + A[1] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[7] = -0.0166666666666667*G1_0 + 0.15*G1_1 + 0.2*G1_5; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.15*G0_6 - 0.0166666666666666*G0_7 + 0.2*G0_11; + A[22] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[28] = -0.0166666666666667*G0_6 + 0.15*G0_7 + 0.2*G0_11; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = 0.0; + break; + } + } + + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivepoisson_cell_integral_6_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivepoisson_cell_integral_6_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_cell_integral_6_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W6[6] = {0.054975871827661, 0.054975871827661, 0.054975871827661, 0.111690794839005, 0.111690794839005, 0.111690794839005}; + // Quadrature points on the UFC reference element: (0.816847572980459, 0.091576213509771), (0.091576213509771, 0.816847572980459), (0.091576213509771, 0.091576213509771), (0.10810301816807, 0.445948490915965), (0.445948490915965, 0.10810301816807), (0.445948490915965, 0.445948490915965) + + // Values of basis functions at quadrature points. + static const double FE0[6][3] = \ + {{0.09157621350977, 0.816847572980459, 0.091576213509771}, + {0.0915762135097701, 0.0915762135097711, 0.816847572980459}, + {0.816847572980458, 0.091576213509771, 0.091576213509771}, + {0.445948490915965, 0.10810301816807, 0.445948490915965}, + {0.445948490915965, 0.445948490915965, 0.10810301816807}, + {0.10810301816807, 0.445948490915965, 0.445948490915965}}; + + static const double FE0_D01[6][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc0[2] = {0, 2}; + + static const double FE2[6][6] = \ + {{-0.074803807748196, 0.517632341987673, -0.0748038077481966, 0.299215230992787, 0.0335448115231483, 0.299215230992784}, + {-0.074803807748196, -0.0748038077481966, 0.517632341987674, 0.299215230992787, 0.299215230992784, 0.0335448115231483}, + {0.517632341987671, -0.0748038077481966, -0.0748038077481966, 0.0335448115231487, 0.299215230992787, 0.299215230992787}, + {-0.0482083778155119, -0.0847304930939778, -0.0482083778155119, 0.192833511262048, 0.795480226200906, 0.192833511262048}, + {-0.0482083778155119, -0.048208377815512, -0.0847304930939778, 0.192833511262048, 0.192833511262048, 0.795480226200906}, + {-0.0847304930939778, -0.048208377815512, -0.0482083778155119, 0.795480226200906, 0.192833511262048, 0.192833511262048}}; + + static const double FE2_D01[6][5] = \ + {{0.633695145960921, -0.633695145960916, 3.26739029192183, 0.0, -3.26739029192184}, + {0.63369514596092, 2.26739029192184, 0.366304854039083, -2.90108543788276, -0.366304854039083}, + {-2.26739029192183, -0.633695145960916, 0.366304854039083, 2.90108543788275, -0.366304854039083}, + {-0.78379396366386, 0.78379396366386, 0.432412072672279, 0.0, -0.432412072672279}, + {-0.783793963663859, -0.567587927327719, 1.78379396366386, 1.35138189099158, -1.78379396366386}, + {0.567587927327721, 0.78379396366386, 1.78379396366386, -1.35138189099158, -1.78379396366386}}; + + // Array of non-zero columns + static const unsigned int nzc2[5] = {0, 2, 3, 4, 5}; + + static const double FE2_D10[6][5] = \ + {{0.63369514596092, 2.26739029192184, 0.366304854039083, -0.366304854039083, -2.90108543788276}, + {0.633695145960921, -0.633695145960916, 3.26739029192183, -3.26739029192183, 0.0}, + {-2.26739029192183, -0.633695145960916, 0.366304854039083, -0.366304854039083, 2.90108543788275}, + {-0.78379396366386, -0.56758792732772, 1.78379396366386, -1.78379396366386, 1.35138189099158}, + {-0.78379396366386, 0.78379396366386, 0.432412072672279, -0.432412072672279, 0.0}, + {0.56758792732772, 0.78379396366386, 1.78379396366386, -1.78379396366386, -1.35138189099158}}; + + // Array of non-zero columns + static const unsigned int nzc3[5] = {0, 1, 3, 4, 5}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 3; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 12. + double G[3]; + G[0] = - det*(K[0]*K[2] + K[1]*K[3]); + G[1] = - det*(K[2]*K[2] + K[3]*K[3]); + G[2] = - det*(K[0]*K[0] + K[1]*K[1]); + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 546 + for (unsigned int ip = 0; ip < 6; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + double F6 = 0.0; + + // Total number of operations to compute function values = 8 + for (unsigned int r = 0; r < 2; r++) + { + F3 += FE0_D01[ip][r]*w[2][nzc1[r]]; + F4 += FE0_D01[ip][r]*w[2][nzc0[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 12 + for (unsigned int r = 0; r < 3; r++) + { + F0 += FE0[ip][r]*w[3][r]; + F2 += FE0[ip][r]*w[0][r]; + } // end loop over 'r' + + // Total number of operations to compute function values = 20 + for (unsigned int r = 0; r < 5; r++) + { + F5 += FE2_D10[ip][r]*w[4][nzc3[r]]; + F6 += FE2_D01[ip][r]*w[4][nzc2[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 12 + for (unsigned int r = 0; r < 6; r++) + { + F1 += FE2[ip][r]*w[4][r]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 25 + double I[3]; + // Number of operations: 5 + I[0] = F1*W6[ip]*(F3*G[0] + F4*G[1]); + + // Number of operations: 5 + I[1] = F1*W6[ip]*(F3*G[2] + F4*G[0]); + + // Number of operations: 15 + I[2] = W6[ip]*(F1*det*(F2 - F0) + F3*F5*G[2] + F4*F6*G[1] + G[0]*(F3*F6 + F4*F5)); + + + // Number of operations for primary indices: 6 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[j] += FE0[ip][j]*I[2]; + } // end loop over 'j' + + // Number of operations for primary indices: 8 + for (unsigned int j = 0; j < 2; j++) + { + // Number of operations to compute entry: 2 + A[nzc0[j]] += FE0_D01[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc1[j]] += FE0_D01[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivepoisson_exterior_facet_integral_6_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivepoisson_exterior_facet_integral_6_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_exterior_facet_integral_6_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true, false, false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 22 + // Number of operations (multiply-add pairs) for tensor contraction: 33 + // Total number of operations (multiply-add pairs): 65 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0_0 = det*w[1][0]*w[4][0]*(1.0); + const double G0_0_1 = det*w[1][0]*w[4][1]*(1.0); + const double G0_0_2 = det*w[1][0]*w[4][2]*(1.0); + const double G0_0_4 = det*w[1][0]*w[4][4]*(1.0); + const double G0_0_5 = det*w[1][0]*w[4][5]*(1.0); + const double G0_1_0 = det*w[1][1]*w[4][0]*(1.0); + const double G0_1_1 = det*w[1][1]*w[4][1]*(1.0); + const double G0_1_2 = det*w[1][1]*w[4][2]*(1.0); + const double G0_1_3 = det*w[1][1]*w[4][3]*(1.0); + const double G0_1_5 = det*w[1][1]*w[4][5]*(1.0); + const double G0_2_0 = det*w[1][2]*w[4][0]*(1.0); + const double G0_2_1 = det*w[1][2]*w[4][1]*(1.0); + const double G0_2_2 = det*w[1][2]*w[4][2]*(1.0); + const double G0_2_3 = det*w[1][2]*w[4][3]*(1.0); + const double G0_2_4 = det*w[1][2]*w[4][4]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.15*G0_1_1 - 0.0166666666666666*G0_1_2 + 0.2*G0_1_3 + 0.0166666666666666*G0_2_1 + 0.0166666666666667*G0_2_2 + 0.133333333333333*G0_2_3; + A[2] = 0.0166666666666666*G0_1_1 + 0.0166666666666667*G0_1_2 + 0.133333333333333*G0_1_3 - 0.0166666666666667*G0_2_1 + 0.15*G0_2_2 + 0.2*G0_2_3; + break; + } + case 1: + { + A[0] = 0.15*G0_0_0 - 0.0166666666666666*G0_0_2 + 0.2*G0_0_4 + 0.0166666666666667*G0_2_0 + 0.0166666666666667*G0_2_2 + 0.133333333333333*G0_2_4; + A[1] = 0.0; + A[2] = 0.0166666666666667*G0_0_0 + 0.0166666666666667*G0_0_2 + 0.133333333333333*G0_0_4 - 0.0166666666666666*G0_2_0 + 0.15*G0_2_2 + 0.2*G0_2_4; + break; + } + case 2: + { + A[0] = 0.15*G0_0_0 - 0.0166666666666666*G0_0_1 + 0.2*G0_0_5 + 0.0166666666666667*G0_1_0 + 0.0166666666666667*G0_1_1 + 0.133333333333333*G0_1_5; + A[1] = 0.0166666666666667*G0_0_0 + 0.0166666666666667*G0_0_1 + 0.133333333333333*G0_0_5 - 0.0166666666666667*G0_1_0 + 0.15*G0_1_1 + 0.2*G0_1_5; + A[2] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivepoisson_cell_integral_7_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivepoisson_cell_integral_7_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_cell_integral_7_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true, false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 40 + // Number of operations (multiply-add pairs) for tensor contraction: 26 + // Total number of operations (multiply-add pairs): 69 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*w[1][0]*w[0][0]*(1.0); + const double G0_0_1 = det*w[1][0]*w[0][1]*(1.0); + const double G0_0_2 = det*w[1][0]*w[0][2]*(1.0); + const double G0_0_3 = det*w[1][0]*w[0][3]*(1.0); + const double G0_0_4 = det*w[1][0]*w[0][4]*(1.0); + const double G0_0_5 = det*w[1][0]*w[0][5]*(1.0); + const double G0_1_0 = det*w[1][1]*w[0][0]*(1.0); + const double G0_1_1 = det*w[1][1]*w[0][1]*(1.0); + const double G0_1_2 = det*w[1][1]*w[0][2]*(1.0); + const double G0_1_3 = det*w[1][1]*w[0][3]*(1.0); + const double G0_1_4 = det*w[1][1]*w[0][4]*(1.0); + const double G0_1_5 = det*w[1][1]*w[0][5]*(1.0); + const double G0_2_0 = det*w[1][2]*w[0][0]*(1.0); + const double G0_2_1 = det*w[1][2]*w[0][1]*(1.0); + const double G0_2_2 = det*w[1][2]*w[0][2]*(1.0); + const double G0_2_3 = det*w[1][2]*w[0][3]*(1.0); + const double G0_2_4 = det*w[1][2]*w[0][4]*(1.0); + const double G0_2_5 = det*w[1][2]*w[0][5]*(1.0); + const double G1_0_0 = det*w[1][0]*w[3][0]*(1.0); + const double G1_0_1 = det*w[1][0]*w[3][1]*(1.0); + const double G1_0_2 = det*w[1][0]*w[3][2]*(1.0); + const double G1_1_0 = det*w[1][1]*w[3][0]*(1.0); + const double G1_1_1 = det*w[1][1]*w[3][1]*(1.0); + const double G1_1_2 = det*w[1][1]*w[3][2]*(1.0); + const double G1_2_0 = det*w[1][2]*w[3][0]*(1.0); + const double G1_2_1 = det*w[1][2]*w[3][1]*(1.0); + const double G1_2_2 = det*w[1][2]*w[3][2]*(1.0); + + // Compute element tensor + A[0] = 0.0166666666666666*G0_0_0 - 0.00833333333333333*G0_0_1 - 0.00833333333333332*G0_0_2 + 0.0333333333333333*G0_0_3 + 0.0666666666666667*G0_0_4 + 0.0666666666666667*G0_0_5 - 0.00833333333333332*G0_1_0 + 0.0166666666666666*G0_1_1 - 0.00833333333333332*G0_1_2 + 0.0666666666666667*G0_1_3 + 0.0333333333333333*G0_1_4 + 0.0666666666666667*G0_1_5 - 0.00833333333333332*G0_2_0 - 0.00833333333333333*G0_2_1 + 0.0166666666666666*G0_2_2 + 0.0666666666666667*G0_2_3 + 0.0666666666666667*G0_2_4 + 0.0333333333333333*G0_2_5 - 0.0833333333333333*G1_0_0 - 0.0416666666666667*G1_0_1 - 0.0416666666666667*G1_0_2 - 0.0416666666666667*G1_1_0 - 0.0833333333333333*G1_1_1 - 0.0416666666666667*G1_1_2 - 0.0416666666666667*G1_2_0 - 0.0416666666666667*G1_2_1 - 0.0833333333333333*G1_2_2; + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivepoisson_exterior_facet_integral_7_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivepoisson_exterior_facet_integral_7_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_exterior_facet_integral_7_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 27 + // Number of operations (multiply-add pairs) for tensor contraction: 22 + // Total number of operations (multiply-add pairs): 59 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0_0 = det*w[2][0]*w[0][0]*(1.0); + const double G0_0_4 = det*w[2][0]*w[0][4]*(1.0); + const double G0_0_5 = det*w[2][0]*w[0][5]*(1.0); + const double G0_1_1 = det*w[2][1]*w[0][1]*(1.0); + const double G0_1_3 = det*w[2][1]*w[0][3]*(1.0); + const double G0_1_5 = det*w[2][1]*w[0][5]*(1.0); + const double G0_2_2 = det*w[2][2]*w[0][2]*(1.0); + const double G0_2_3 = det*w[2][2]*w[0][3]*(1.0); + const double G0_2_4 = det*w[2][2]*w[0][4]*(1.0); + const double G1_0_0 = det*w[2][0]*w[3][0]*(1.0); + const double G1_0_1 = det*w[2][0]*w[3][1]*(1.0); + const double G1_0_2 = det*w[2][0]*w[3][2]*(1.0); + const double G1_1_0 = det*w[2][1]*w[3][0]*(1.0); + const double G1_1_1 = det*w[2][1]*w[3][1]*(1.0); + const double G1_1_2 = det*w[2][1]*w[3][2]*(1.0); + const double G1_2_0 = det*w[2][2]*w[3][0]*(1.0); + const double G1_2_1 = det*w[2][2]*w[3][1]*(1.0); + const double G1_2_2 = det*w[2][2]*w[3][2]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.166666666666666*G0_1_1 + 0.333333333333333*G0_1_3 + 0.166666666666667*G0_2_2 + 0.333333333333333*G0_2_3 - 0.333333333333333*G1_1_1 - 0.166666666666667*G1_1_2 - 0.166666666666667*G1_2_1 - 0.333333333333333*G1_2_2; + break; + } + case 1: + { + A[0] = 0.166666666666667*G0_0_0 + 0.333333333333333*G0_0_4 + 0.166666666666667*G0_2_2 + 0.333333333333333*G0_2_4 - 0.333333333333333*G1_0_0 - 0.166666666666667*G1_0_2 - 0.166666666666667*G1_2_0 - 0.333333333333333*G1_2_2; + break; + } + case 2: + { + A[0] = 0.166666666666667*G0_0_0 + 0.333333333333333*G0_0_5 + 0.166666666666666*G0_1_1 + 0.333333333333333*G0_1_5 - 0.333333333333333*G1_0_0 - 0.166666666666667*G1_0_1 - 0.166666666666667*G1_1_0 - 0.333333333333333*G1_1_1; + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the +/// interior facet tensor corresponding to the local contribution to +/// a form from the integral over an interior facet. + +class adaptivepoisson_interior_facet_integral_7_otherwise: public ufc::interior_facet_integral +{ +public: + + /// Constructor + adaptivepoisson_interior_facet_integral_7_otherwise() : ufc::interior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_interior_facet_integral_7_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local interior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates_0, + const double* vertex_coordinates_1, + std::size_t facet_0, + std::size_t facet_1, + int cell_orientation_0, + int cell_orientation_1) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 12 + // Number of operations (multiply-add pairs) for geometry tensor: 108 + // Number of operations (multiply-add pairs) for tensor contraction: 279 + // Total number of operations (multiply-add pairs): 399 + + // Compute Jacobian + double J_0[4]; + compute_jacobian_triangle_2d(J_0, vertex_coordinates_0); + + // Compute Jacobian inverse and determinant + double K_0[4]; + double detJ_0; + compute_jacobian_inverse_triangle_2d(K_0, detJ_0, J_0); + + // Compute Jacobian + double J_1[4]; + compute_jacobian_triangle_2d(J_1, vertex_coordinates_1); + + // Compute Jacobian inverse and determinant + double K_1[4]; + double detJ_1; + compute_jacobian_inverse_triangle_2d(K_1, detJ_1, J_1); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet_0][0]; + const unsigned int v1 = edge_vertices[facet_0][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates_0[2*v1 + 0] - vertex_coordinates_0[2*v0 + 0]; + const double dx1 = vertex_coordinates_0[2*v1 + 1] - vertex_coordinates_0[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + + // Compute geometry tensor + const double G0_3_6 = det*w[2][3]*w[0][6]*(1.0); + const double G0_3_10 = det*w[2][3]*w[0][10]*(1.0); + const double G0_3_11 = det*w[2][3]*w[0][11]*(1.0); + const double G0_4_7 = det*w[2][4]*w[0][7]*(1.0); + const double G0_4_9 = det*w[2][4]*w[0][9]*(1.0); + const double G0_4_11 = det*w[2][4]*w[0][11]*(1.0); + const double G0_5_8 = det*w[2][5]*w[0][8]*(1.0); + const double G0_5_9 = det*w[2][5]*w[0][9]*(1.0); + const double G0_5_10 = det*w[2][5]*w[0][10]*(1.0); + const double G1_3_3 = det*w[2][3]*w[3][3]*(1.0); + const double G1_3_4 = det*w[2][3]*w[3][4]*(1.0); + const double G1_3_5 = det*w[2][3]*w[3][5]*(1.0); + const double G1_4_3 = det*w[2][4]*w[3][3]*(1.0); + const double G1_4_4 = det*w[2][4]*w[3][4]*(1.0); + const double G1_4_5 = det*w[2][4]*w[3][5]*(1.0); + const double G1_5_3 = det*w[2][5]*w[3][3]*(1.0); + const double G1_5_4 = det*w[2][5]*w[3][4]*(1.0); + const double G1_5_5 = det*w[2][5]*w[3][5]*(1.0); + const double G2_0_0 = det*w[2][0]*w[0][0]*(1.0); + const double G2_0_4 = det*w[2][0]*w[0][4]*(1.0); + const double G2_0_5 = det*w[2][0]*w[0][5]*(1.0); + const double G2_1_1 = det*w[2][1]*w[0][1]*(1.0); + const double G2_1_3 = det*w[2][1]*w[0][3]*(1.0); + const double G2_1_5 = det*w[2][1]*w[0][5]*(1.0); + const double G2_2_2 = det*w[2][2]*w[0][2]*(1.0); + const double G2_2_3 = det*w[2][2]*w[0][3]*(1.0); + const double G2_2_4 = det*w[2][2]*w[0][4]*(1.0); + const double G3_0_0 = det*w[2][0]*w[3][0]*(1.0); + const double G3_0_1 = det*w[2][0]*w[3][1]*(1.0); + const double G3_0_2 = det*w[2][0]*w[3][2]*(1.0); + const double G3_1_0 = det*w[2][1]*w[3][0]*(1.0); + const double G3_1_1 = det*w[2][1]*w[3][1]*(1.0); + const double G3_1_2 = det*w[2][1]*w[3][2]*(1.0); + const double G3_2_0 = det*w[2][2]*w[3][0]*(1.0); + const double G3_2_1 = det*w[2][2]*w[3][1]*(1.0); + const double G3_2_2 = det*w[2][2]*w[3][2]*(1.0); + const double G4_3_6 = det*w[2][3]*w[0][6]*(1.0); + const double G4_3_10 = det*w[2][3]*w[0][10]*(1.0); + const double G4_3_11 = det*w[2][3]*w[0][11]*(1.0); + const double G4_4_7 = det*w[2][4]*w[0][7]*(1.0); + const double G4_4_9 = det*w[2][4]*w[0][9]*(1.0); + const double G4_4_11 = det*w[2][4]*w[0][11]*(1.0); + const double G4_5_8 = det*w[2][5]*w[0][8]*(1.0); + const double G4_5_9 = det*w[2][5]*w[0][9]*(1.0); + const double G4_5_10 = det*w[2][5]*w[0][10]*(1.0); + const double G5_3_3 = det*w[2][3]*w[3][3]*(1.0); + const double G5_3_4 = det*w[2][3]*w[3][4]*(1.0); + const double G5_3_5 = det*w[2][3]*w[3][5]*(1.0); + const double G5_4_3 = det*w[2][4]*w[3][3]*(1.0); + const double G5_4_4 = det*w[2][4]*w[3][4]*(1.0); + const double G5_4_5 = det*w[2][4]*w[3][5]*(1.0); + const double G5_5_3 = det*w[2][5]*w[3][3]*(1.0); + const double G5_5_4 = det*w[2][5]*w[3][4]*(1.0); + const double G5_5_5 = det*w[2][5]*w[3][5]*(1.0); + const double G6_0_0 = det*w[2][0]*w[0][0]*(1.0); + const double G6_0_4 = det*w[2][0]*w[0][4]*(1.0); + const double G6_0_5 = det*w[2][0]*w[0][5]*(1.0); + const double G6_1_1 = det*w[2][1]*w[0][1]*(1.0); + const double G6_1_3 = det*w[2][1]*w[0][3]*(1.0); + const double G6_1_5 = det*w[2][1]*w[0][5]*(1.0); + const double G6_2_2 = det*w[2][2]*w[0][2]*(1.0); + const double G6_2_3 = det*w[2][2]*w[0][3]*(1.0); + const double G6_2_4 = det*w[2][2]*w[0][4]*(1.0); + const double G7_0_0 = det*w[2][0]*w[3][0]*(1.0); + const double G7_0_1 = det*w[2][0]*w[3][1]*(1.0); + const double G7_0_2 = det*w[2][0]*w[3][2]*(1.0); + const double G7_1_0 = det*w[2][1]*w[3][0]*(1.0); + const double G7_1_1 = det*w[2][1]*w[3][1]*(1.0); + const double G7_1_2 = det*w[2][1]*w[3][2]*(1.0); + const double G7_2_0 = det*w[2][2]*w[3][0]*(1.0); + const double G7_2_1 = det*w[2][2]*w[3][1]*(1.0); + const double G7_2_2 = det*w[2][2]*w[3][2]*(1.0); + + // Compute element tensor + switch (facet_0) + { + case 0: + { + switch (facet_1) + { + case 0: + { + A[0] = 0.0833333333333332*G4_4_7 + 0.166666666666667*G4_4_9 + 0.0833333333333333*G4_5_8 + 0.166666666666666*G4_5_9 - 0.166666666666667*G5_4_4 - 0.0833333333333333*G5_4_5 - 0.0833333333333333*G5_5_4 - 0.166666666666667*G5_5_5 + 0.0833333333333332*G6_1_1 + 0.166666666666667*G6_1_3 + 0.0833333333333333*G6_2_2 + 0.166666666666666*G6_2_3 - 0.166666666666667*G7_1_1 - 0.0833333333333333*G7_1_2 - 0.0833333333333333*G7_2_1 - 0.166666666666667*G7_2_2; + A[1] = 0.0833333333333332*G0_4_7 + 0.166666666666667*G0_4_9 + 0.0833333333333333*G0_5_8 + 0.166666666666666*G0_5_9 - 0.166666666666667*G1_4_4 - 0.0833333333333333*G1_4_5 - 0.0833333333333333*G1_5_4 - 0.166666666666667*G1_5_5 + 0.0833333333333332*G2_1_1 + 0.166666666666667*G2_1_3 + 0.0833333333333333*G2_2_2 + 0.166666666666666*G2_2_3 - 0.166666666666667*G3_1_1 - 0.0833333333333333*G3_1_2 - 0.0833333333333333*G3_2_1 - 0.166666666666667*G3_2_2; + break; + } + case 1: + { + A[0] = 0.0833333333333333*G4_3_6 + 0.166666666666667*G4_3_10 + 0.0833333333333333*G4_5_8 + 0.166666666666666*G4_5_10 - 0.166666666666667*G5_3_3 - 0.0833333333333333*G5_3_5 - 0.0833333333333333*G5_5_3 - 0.166666666666667*G5_5_5 + 0.0833333333333332*G6_1_1 + 0.166666666666667*G6_1_3 + 0.0833333333333333*G6_2_2 + 0.166666666666666*G6_2_3 - 0.166666666666667*G7_1_1 - 0.0833333333333333*G7_1_2 - 0.0833333333333333*G7_2_1 - 0.166666666666667*G7_2_2; + A[1] = 0.0833333333333333*G0_3_6 + 0.166666666666667*G0_3_10 + 0.0833333333333333*G0_5_8 + 0.166666666666666*G0_5_10 - 0.166666666666667*G1_3_3 - 0.0833333333333333*G1_3_5 - 0.0833333333333333*G1_5_3 - 0.166666666666667*G1_5_5 + 0.0833333333333332*G2_1_1 + 0.166666666666667*G2_1_3 + 0.0833333333333333*G2_2_2 + 0.166666666666666*G2_2_3 - 0.166666666666667*G3_1_1 - 0.0833333333333333*G3_1_2 - 0.0833333333333333*G3_2_1 - 0.166666666666667*G3_2_2; + break; + } + case 2: + { + A[0] = 0.0833333333333333*G4_3_6 + 0.166666666666667*G4_3_11 + 0.0833333333333332*G4_4_7 + 0.166666666666667*G4_4_11 - 0.166666666666667*G5_3_3 - 0.0833333333333333*G5_3_4 - 0.0833333333333333*G5_4_3 - 0.166666666666667*G5_4_4 + 0.0833333333333332*G6_1_1 + 0.166666666666667*G6_1_3 + 0.0833333333333333*G6_2_2 + 0.166666666666666*G6_2_3 - 0.166666666666667*G7_1_1 - 0.0833333333333333*G7_1_2 - 0.0833333333333333*G7_2_1 - 0.166666666666667*G7_2_2; + A[1] = 0.0833333333333333*G0_3_6 + 0.166666666666667*G0_3_11 + 0.0833333333333332*G0_4_7 + 0.166666666666667*G0_4_11 - 0.166666666666667*G1_3_3 - 0.0833333333333333*G1_3_4 - 0.0833333333333333*G1_4_3 - 0.166666666666667*G1_4_4 + 0.0833333333333332*G2_1_1 + 0.166666666666667*G2_1_3 + 0.0833333333333333*G2_2_2 + 0.166666666666666*G2_2_3 - 0.166666666666667*G3_1_1 - 0.0833333333333333*G3_1_2 - 0.0833333333333333*G3_2_1 - 0.166666666666667*G3_2_2; + break; + } + } + + break; + } + case 1: + { + switch (facet_1) + { + case 0: + { + A[0] = 0.0833333333333332*G4_4_7 + 0.166666666666667*G4_4_9 + 0.0833333333333333*G4_5_8 + 0.166666666666666*G4_5_9 - 0.166666666666667*G5_4_4 - 0.0833333333333333*G5_4_5 - 0.0833333333333333*G5_5_4 - 0.166666666666667*G5_5_5 + 0.0833333333333333*G6_0_0 + 0.166666666666667*G6_0_4 + 0.0833333333333333*G6_2_2 + 0.166666666666666*G6_2_4 - 0.166666666666667*G7_0_0 - 0.0833333333333333*G7_0_2 - 0.0833333333333333*G7_2_0 - 0.166666666666667*G7_2_2; + A[1] = 0.0833333333333332*G0_4_7 + 0.166666666666667*G0_4_9 + 0.0833333333333333*G0_5_8 + 0.166666666666666*G0_5_9 - 0.166666666666667*G1_4_4 - 0.0833333333333333*G1_4_5 - 0.0833333333333333*G1_5_4 - 0.166666666666667*G1_5_5 + 0.0833333333333333*G2_0_0 + 0.166666666666667*G2_0_4 + 0.0833333333333333*G2_2_2 + 0.166666666666666*G2_2_4 - 0.166666666666667*G3_0_0 - 0.0833333333333333*G3_0_2 - 0.0833333333333333*G3_2_0 - 0.166666666666667*G3_2_2; + break; + } + case 1: + { + A[0] = 0.0833333333333333*G4_3_6 + 0.166666666666667*G4_3_10 + 0.0833333333333333*G4_5_8 + 0.166666666666666*G4_5_10 - 0.166666666666667*G5_3_3 - 0.0833333333333333*G5_3_5 - 0.0833333333333333*G5_5_3 - 0.166666666666667*G5_5_5 + 0.0833333333333333*G6_0_0 + 0.166666666666667*G6_0_4 + 0.0833333333333333*G6_2_2 + 0.166666666666666*G6_2_4 - 0.166666666666667*G7_0_0 - 0.0833333333333333*G7_0_2 - 0.0833333333333333*G7_2_0 - 0.166666666666667*G7_2_2; + A[1] = 0.0833333333333333*G0_3_6 + 0.166666666666667*G0_3_10 + 0.0833333333333333*G0_5_8 + 0.166666666666666*G0_5_10 - 0.166666666666667*G1_3_3 - 0.0833333333333333*G1_3_5 - 0.0833333333333333*G1_5_3 - 0.166666666666667*G1_5_5 + 0.0833333333333333*G2_0_0 + 0.166666666666667*G2_0_4 + 0.0833333333333333*G2_2_2 + 0.166666666666666*G2_2_4 - 0.166666666666667*G3_0_0 - 0.0833333333333333*G3_0_2 - 0.0833333333333333*G3_2_0 - 0.166666666666667*G3_2_2; + break; + } + case 2: + { + A[0] = 0.0833333333333333*G4_3_6 + 0.166666666666667*G4_3_11 + 0.0833333333333332*G4_4_7 + 0.166666666666667*G4_4_11 - 0.166666666666667*G5_3_3 - 0.0833333333333333*G5_3_4 - 0.0833333333333333*G5_4_3 - 0.166666666666667*G5_4_4 + 0.0833333333333333*G6_0_0 + 0.166666666666667*G6_0_4 + 0.0833333333333333*G6_2_2 + 0.166666666666666*G6_2_4 - 0.166666666666667*G7_0_0 - 0.0833333333333333*G7_0_2 - 0.0833333333333333*G7_2_0 - 0.166666666666667*G7_2_2; + A[1] = 0.0833333333333333*G0_3_6 + 0.166666666666667*G0_3_11 + 0.0833333333333332*G0_4_7 + 0.166666666666667*G0_4_11 - 0.166666666666667*G1_3_3 - 0.0833333333333333*G1_3_4 - 0.0833333333333333*G1_4_3 - 0.166666666666667*G1_4_4 + 0.0833333333333333*G2_0_0 + 0.166666666666667*G2_0_4 + 0.0833333333333333*G2_2_2 + 0.166666666666666*G2_2_4 - 0.166666666666667*G3_0_0 - 0.0833333333333333*G3_0_2 - 0.0833333333333333*G3_2_0 - 0.166666666666667*G3_2_2; + break; + } + } + + break; + } + case 2: + { + switch (facet_1) + { + case 0: + { + A[0] = 0.0833333333333332*G4_4_7 + 0.166666666666667*G4_4_9 + 0.0833333333333333*G4_5_8 + 0.166666666666666*G4_5_9 - 0.166666666666667*G5_4_4 - 0.0833333333333333*G5_4_5 - 0.0833333333333333*G5_5_4 - 0.166666666666667*G5_5_5 + 0.0833333333333333*G6_0_0 + 0.166666666666667*G6_0_5 + 0.0833333333333332*G6_1_1 + 0.166666666666667*G6_1_5 - 0.166666666666667*G7_0_0 - 0.0833333333333333*G7_0_1 - 0.0833333333333333*G7_1_0 - 0.166666666666667*G7_1_1; + A[1] = 0.0833333333333332*G0_4_7 + 0.166666666666667*G0_4_9 + 0.0833333333333333*G0_5_8 + 0.166666666666666*G0_5_9 - 0.166666666666667*G1_4_4 - 0.0833333333333333*G1_4_5 - 0.0833333333333333*G1_5_4 - 0.166666666666667*G1_5_5 + 0.0833333333333333*G2_0_0 + 0.166666666666667*G2_0_5 + 0.0833333333333332*G2_1_1 + 0.166666666666667*G2_1_5 - 0.166666666666667*G3_0_0 - 0.0833333333333333*G3_0_1 - 0.0833333333333333*G3_1_0 - 0.166666666666667*G3_1_1; + break; + } + case 1: + { + A[0] = 0.0833333333333333*G4_3_6 + 0.166666666666667*G4_3_10 + 0.0833333333333333*G4_5_8 + 0.166666666666666*G4_5_10 - 0.166666666666667*G5_3_3 - 0.0833333333333333*G5_3_5 - 0.0833333333333333*G5_5_3 - 0.166666666666667*G5_5_5 + 0.0833333333333333*G6_0_0 + 0.166666666666667*G6_0_5 + 0.0833333333333332*G6_1_1 + 0.166666666666667*G6_1_5 - 0.166666666666667*G7_0_0 - 0.0833333333333333*G7_0_1 - 0.0833333333333333*G7_1_0 - 0.166666666666667*G7_1_1; + A[1] = 0.0833333333333333*G0_3_6 + 0.166666666666667*G0_3_10 + 0.0833333333333333*G0_5_8 + 0.166666666666666*G0_5_10 - 0.166666666666667*G1_3_3 - 0.0833333333333333*G1_3_5 - 0.0833333333333333*G1_5_3 - 0.166666666666667*G1_5_5 + 0.0833333333333333*G2_0_0 + 0.166666666666667*G2_0_5 + 0.0833333333333332*G2_1_1 + 0.166666666666667*G2_1_5 - 0.166666666666667*G3_0_0 - 0.0833333333333333*G3_0_1 - 0.0833333333333333*G3_1_0 - 0.166666666666667*G3_1_1; + break; + } + case 2: + { + A[0] = 0.0833333333333333*G4_3_6 + 0.166666666666667*G4_3_11 + 0.0833333333333332*G4_4_7 + 0.166666666666667*G4_4_11 - 0.166666666666667*G5_3_3 - 0.0833333333333333*G5_3_4 - 0.0833333333333333*G5_4_3 - 0.166666666666667*G5_4_4 + 0.0833333333333333*G6_0_0 + 0.166666666666667*G6_0_5 + 0.0833333333333332*G6_1_1 + 0.166666666666667*G6_1_5 - 0.166666666666667*G7_0_0 - 0.0833333333333333*G7_0_1 - 0.0833333333333333*G7_1_0 - 0.166666666666667*G7_1_1; + A[1] = 0.0833333333333333*G0_3_6 + 0.166666666666667*G0_3_11 + 0.0833333333333332*G0_4_7 + 0.166666666666667*G0_4_11 - 0.166666666666667*G1_3_3 - 0.0833333333333333*G1_3_4 - 0.0833333333333333*G1_4_3 - 0.166666666666667*G1_4_4 + 0.0833333333333333*G2_0_0 + 0.166666666666667*G2_0_5 + 0.0833333333333332*G2_1_1 + 0.166666666666667*G2_1_5 - 0.166666666666667*G3_0_0 - 0.0833333333333333*G3_0_1 - 0.0833333333333333*G3_1_0 - 0.166666666666667*G3_1_1; + break; + } + } + + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivepoisson_cell_integral_8_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivepoisson_cell_integral_8_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_cell_integral_8_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 11 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = -0.5*G0_0_0 - 0.5*G0_1_0; + A[2] = -0.5*G0_0_1 - 0.5*G0_1_1; + A[3] = -0.5*G0_0_0 - 0.5*G0_0_1; + A[4] = 0.5*G0_0_0; + A[5] = 0.5*G0_0_1; + A[6] = -0.5*G0_1_0 - 0.5*G0_1_1; + A[7] = 0.5*G0_1_0; + A[8] = 0.5*G0_1_1; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivepoisson_cell_integral_9_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivepoisson_cell_integral_9_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_cell_integral_9_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 7 + // Total number of operations (multiply-add pairs): 13 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + + // Compute element tensor + A[0] = 0.0833333333333334*G0_0 + 0.0416666666666667*G0_1 + 0.0416666666666667*G0_2; + A[1] = 0.0416666666666667*G0_0 + 0.0833333333333333*G0_1 + 0.0416666666666666*G0_2; + A[2] = 0.0416666666666667*G0_0 + 0.0416666666666666*G0_1 + 0.0833333333333333*G0_2; + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivepoisson_exterior_facet_integral_9_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivepoisson_exterior_facet_integral_9_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_exterior_facet_integral_9_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 9 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0 = det*w[1][0]*(1.0); + const double G0_1 = det*w[1][1]*(1.0); + const double G0_2 = det*w[1][2]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.333333333333333*G0_1 + 0.166666666666667*G0_2; + A[2] = 0.166666666666667*G0_1 + 0.333333333333333*G0_2; + break; + } + case 1: + { + A[0] = 0.333333333333333*G0_0 + 0.166666666666667*G0_2; + A[1] = 0.0; + A[2] = 0.166666666666667*G0_0 + 0.333333333333333*G0_2; + break; + } + case 2: + { + A[0] = 0.333333333333333*G0_0 + 0.166666666666667*G0_1; + A[1] = 0.166666666666667*G0_0 + 0.333333333333333*G0_1; + A[2] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivepoisson_cell_integral_10_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivepoisson_cell_integral_10_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_cell_integral_10_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 2 + // Total number of operations (multiply-add pairs): 8 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + + // Compute element tensor + A[0] = 0.166666666666667*G0_0 + 0.166666666666667*G0_1 + 0.166666666666667*G0_2; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_0: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "996f902b81205976ede73587192186c9fd9b057164f0036bf925051e4ce236d3afa448345b6b3a7958f9c265483ba7f2701db77c9f0b497566f0fb97007140e6"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 1: + { + return new adaptivepoisson_finite_element_5(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 1: + { + return new adaptivepoisson_dofmap_5(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivepoisson_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_1: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "382b9803f2a509ae74c16c63bdf4f169f7badc063ce177bbdddb2734e3d32c16d8a809f391e8661c7076ddf293d38a47aaaa21a5cbf54337d67ed1e859993c70"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_5(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_5(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivepoisson_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_2: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_2() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_2() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "6e035dca9d8c4cfc991db0e76f5630afd58ee1f27054a74633cdcce7031cb5bd9579f8e3e13ac55194662a42d680e578a4bc2ee573d5976921af7bd2520c7823"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 0; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 4; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 1: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 2: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 3: + { + return new adaptivepoisson_finite_element_4(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 1: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 2: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 3: + { + return new adaptivepoisson_dofmap_4(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivepoisson_cell_integral_2_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivepoisson_exterior_facet_integral_2_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_3: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_3() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_3() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "67b203854f3ca1f9feac5fc13d4efb8a74a7fda43626869e0658070789e73f79bd72796cb8a56e81cdd5eb5a78de4000403b13f300eb31724ff2d74a8f613902"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_3(); + break; + } + case 1: + { + return new adaptivepoisson_finite_element_3(); + break; + } + case 2: + { + return new adaptivepoisson_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_3(); + break; + } + case 1: + { + return new adaptivepoisson_dofmap_3(); + break; + } + case 2: + { + return new adaptivepoisson_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivepoisson_cell_integral_3_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_4: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_4() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_4() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "262d582e90ac0b556aabf76120c84262cf8eacdf0deef325eaae164dea53db71cf34ae19bc37851a9bbe75ea3b5b8ce05fab5bd50a214f83630342dc10636c62"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 4; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_3(); + break; + } + case 1: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 2: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 3: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 4: + { + return new adaptivepoisson_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_3(); + break; + } + case 1: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 2: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 3: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 4: + { + return new adaptivepoisson_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivepoisson_cell_integral_4_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivepoisson_exterior_facet_integral_4_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_5: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_5() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_5() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "e42ae4034361a3a536c86cee63a5b8cd51ce72e50484e6cb0b39ea29fe25610b3114d7a8e35e1b7b2de50a46fb89df40008a6ba248887a12af934a86d465e707"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return false; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_3(); + break; + } + case 1: + { + return new adaptivepoisson_finite_element_3(); + break; + } + case 2: + { + return new adaptivepoisson_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_3(); + break; + } + case 1: + { + return new adaptivepoisson_dofmap_3(); + break; + } + case 2: + { + return new adaptivepoisson_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return 0; + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivepoisson_exterior_facet_integral_5_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return new adaptivepoisson_interior_facet_integral_5_otherwise(); + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_6: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_6() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_6() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "0bd20f5aa0322b2f114265fdb7709713d1fe5f3e18483d8c302ed7577e0a3bc170008fbbde54e3303642ffd332346114a88c418a2c18b071cc1f66f462d0bb01"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 5; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_3(); + break; + } + case 1: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 2: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 3: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 4: + { + return new adaptivepoisson_finite_element_3(); + break; + } + case 5: + { + return new adaptivepoisson_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_3(); + break; + } + case 1: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 2: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 3: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 4: + { + return new adaptivepoisson_dofmap_3(); + break; + } + case 5: + { + return new adaptivepoisson_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivepoisson_cell_integral_6_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivepoisson_exterior_facet_integral_6_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_7: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_7() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_7() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "d8e27cee94bb9489ddf24c8b415ef7e35c2cf0f31da9eb510f4fcdbe2dc35719f2874a3c25a41d87a819735bb19961d24b4a0ef32542805b17facd8dcc071c1d"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 4; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_0(); + break; + } + case 1: + { + return new adaptivepoisson_finite_element_4(); + break; + } + case 2: + { + return new adaptivepoisson_finite_element_3(); + break; + } + case 3: + { + return new adaptivepoisson_finite_element_3(); + break; + } + case 4: + { + return new adaptivepoisson_finite_element_5(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_0(); + break; + } + case 1: + { + return new adaptivepoisson_dofmap_4(); + break; + } + case 2: + { + return new adaptivepoisson_dofmap_3(); + break; + } + case 3: + { + return new adaptivepoisson_dofmap_3(); + break; + } + case 4: + { + return new adaptivepoisson_dofmap_5(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivepoisson_cell_integral_7_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivepoisson_exterior_facet_integral_7_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return new adaptivepoisson_interior_facet_integral_7_otherwise(); + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_8: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_8() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_8() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "996f902b81205976ede73587192186c9fd9b057164f0036bf925051e4ce236d3afa448345b6b3a7958f9c265483ba7f2701db77c9f0b497566f0fb97007140e6"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 1: + { + return new adaptivepoisson_finite_element_5(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 1: + { + return new adaptivepoisson_dofmap_5(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivepoisson_cell_integral_8_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_9: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_9() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_9() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "5ee927682358c6c0426041ab22b70a08e5ed403f78f13005173589a5c00c41be670a70ca85fa21afd8fb8bcee737b704b4ee42ec7f4dfef9f5aa6cd90a5c4283"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 2; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 1: + { + return new adaptivepoisson_finite_element_5(); + break; + } + case 2: + { + return new adaptivepoisson_finite_element_5(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 1: + { + return new adaptivepoisson_dofmap_5(); + break; + } + case 2: + { + return new adaptivepoisson_dofmap_5(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivepoisson_cell_integral_9_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivepoisson_exterior_facet_integral_9_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivepoisson_form_10: public ufc::form +{ +public: + + /// Constructor + adaptivepoisson_form_10() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivepoisson_form_10() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "48296b40b4112bae76d08039d80fa19c044f0e681d94fac9844b1e50c5b7605ed293905a73630c6269104fd6116b5548e42a6c39d223bed5904d3a91431f4e9a"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 0; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_finite_element_5(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivepoisson_dofmap_5(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivepoisson_cell_integral_10_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace AdaptivePoisson +{ + +class CoefficientSpace___cell_bubble: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_bubble(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_bubble(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_bubble(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_bubble(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___cell_bubble(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___cell_bubble(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___cell_bubble() + { + } + +}; + +class CoefficientSpace___cell_cone: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_cone(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_cone(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_cone(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_cone(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___cell_cone(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___cell_cone(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___cell_cone() + { + } + +}; + +class CoefficientSpace___cell_residual: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_residual(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_residual(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_residual(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_residual(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___cell_residual(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___cell_residual(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___cell_residual() + { + } + +}; + +class CoefficientSpace___discrete_dual_solution: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___discrete_dual_solution(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___discrete_dual_solution(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___discrete_dual_solution(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___discrete_dual_solution(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___discrete_dual_solution(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___discrete_dual_solution(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___discrete_dual_solution() + { + } + +}; + +class CoefficientSpace___discrete_primal_solution: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___discrete_primal_solution(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___discrete_primal_solution(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___discrete_primal_solution(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___discrete_primal_solution(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___discrete_primal_solution(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___discrete_primal_solution(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___discrete_primal_solution() + { + } + +}; + +class CoefficientSpace___facet_residual: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___facet_residual(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___facet_residual(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___facet_residual(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___facet_residual(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___facet_residual(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___facet_residual(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___facet_residual() + { + } + +}; + +class CoefficientSpace___improved_dual: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___improved_dual(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_4()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_4()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___improved_dual(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_4()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_4()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___improved_dual(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_4()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_4()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___improved_dual(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_4()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_4()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___improved_dual(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_4()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_4()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___improved_dual(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_4()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_4()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___improved_dual() + { + } + +}; + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class CoefficientSpace_g: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_g(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_g(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_g(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_g() + { + } + +}; + +class Form_0_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_0_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_0_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_0_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_0_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_0_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_0_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_0_FunctionSpace_0() + { + } + +}; + +class Form_0_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_0_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_0_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_0_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_0_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_0_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_0_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_0_FunctionSpace_1() + { + } + +}; + +class Form_0: public dolfin::Form +{ +public: + + // Constructor + Form_0(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_0()); + } + + // Constructor + Form_0(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_0()); + } + + // Destructor + ~Form_0() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_0_FunctionSpace_0 TestSpace; + typedef Form_0_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_1_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_1_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_1_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_1_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_1_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_1_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_1_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_1_FunctionSpace_0() + { + } + +}; + +class Form_1: public dolfin::Form +{ +public: + + // Constructor + Form_1(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_1()); + } + + // Constructor + Form_1(std::shared_ptr V0): + dolfin::Form(1, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_1()); + } + + // Destructor + ~Form_1() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_1_FunctionSpace_0 TestSpace; + + // Coefficients +}; + +typedef CoefficientSpace_f Form_2_FunctionSpace_0; + +typedef CoefficientSpace_g Form_2_FunctionSpace_1; + +typedef CoefficientSpace___discrete_primal_solution Form_2_FunctionSpace_2; + +typedef CoefficientSpace___improved_dual Form_2_FunctionSpace_3; + +class Form_2: public dolfin::Form +{ +public: + + // Constructor + Form_2(const dolfin::Mesh& mesh): + dolfin::Form(0, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __improved_dual(*this, 3) + { + _mesh = reference_to_no_delete_pointer(mesh); + _ufc_form = std::shared_ptr(new adaptivepoisson_form_2()); + } + + // Constructor + Form_2(const dolfin::Mesh& mesh, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g, const dolfin::GenericFunction& __discrete_primal_solution, const dolfin::GenericFunction& __improved_dual): + dolfin::Form(0, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __improved_dual(*this, 3) + { + _mesh = reference_to_no_delete_pointer(mesh); + this->f = f; + this->g = g; + this->__discrete_primal_solution = __discrete_primal_solution; + this->__improved_dual = __improved_dual; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_2()); + } + + // Constructor + Form_2(const dolfin::Mesh& mesh, std::shared_ptr f, std::shared_ptr g, std::shared_ptr __discrete_primal_solution, std::shared_ptr __improved_dual): + dolfin::Form(0, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __improved_dual(*this, 3) + { + _mesh = reference_to_no_delete_pointer(mesh); + this->f = *f; + this->g = *g; + this->__discrete_primal_solution = *__discrete_primal_solution; + this->__improved_dual = *__improved_dual; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_2()); + } + + // Constructor + Form_2(std::shared_ptr mesh): + dolfin::Form(0, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __improved_dual(*this, 3) + { + _mesh = mesh; + _ufc_form = std::shared_ptr(new adaptivepoisson_form_2()); + } + + // Constructor + Form_2(std::shared_ptr mesh, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g, const dolfin::GenericFunction& __discrete_primal_solution, const dolfin::GenericFunction& __improved_dual): + dolfin::Form(0, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __improved_dual(*this, 3) + { + _mesh = mesh; + this->f = f; + this->g = g; + this->__discrete_primal_solution = __discrete_primal_solution; + this->__improved_dual = __improved_dual; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_2()); + } + + // Constructor + Form_2(std::shared_ptr mesh, std::shared_ptr f, std::shared_ptr g, std::shared_ptr __discrete_primal_solution, std::shared_ptr __improved_dual): + dolfin::Form(0, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __improved_dual(*this, 3) + { + _mesh = mesh; + this->f = *f; + this->g = *g; + this->__discrete_primal_solution = *__discrete_primal_solution; + this->__improved_dual = *__improved_dual; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_2()); + } + + // Destructor + ~Form_2() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + else if (name == "g") + return 1; + else if (name == "__discrete_primal_solution") + return 2; + else if (name == "__improved_dual") + return 3; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + case 1: + return "g"; + case 2: + return "__discrete_primal_solution"; + case 3: + return "__improved_dual"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_2_FunctionSpace_0 CoefficientSpace_f; + typedef Form_2_FunctionSpace_1 CoefficientSpace_g; + typedef Form_2_FunctionSpace_2 CoefficientSpace___discrete_primal_solution; + typedef Form_2_FunctionSpace_3 CoefficientSpace___improved_dual; + + // Coefficients + dolfin::CoefficientAssigner f; + dolfin::CoefficientAssigner g; + dolfin::CoefficientAssigner __discrete_primal_solution; + dolfin::CoefficientAssigner __improved_dual; +}; + +class Form_3_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_3_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_3_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_3_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_3_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_3_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_3_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_3_FunctionSpace_0() + { + } + +}; + +class Form_3_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_3_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_3_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_3_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_3_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_3_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_3_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_3_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace___cell_bubble Form_3_FunctionSpace_2; + +class Form_3: public dolfin::Form +{ +public: + + // Constructor + Form_3(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_3()); + } + + // Constructor + Form_3(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& __cell_bubble): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->__cell_bubble = __cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_3()); + } + + // Constructor + Form_3(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr __cell_bubble): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->__cell_bubble = *__cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_3()); + } + + // Constructor + Form_3(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_3()); + } + + // Constructor + Form_3(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& __cell_bubble): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->__cell_bubble = __cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_3()); + } + + // Constructor + Form_3(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr __cell_bubble): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->__cell_bubble = *__cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_3()); + } + + // Destructor + ~Form_3() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "__cell_bubble") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "__cell_bubble"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_3_FunctionSpace_0 TestSpace; + typedef Form_3_FunctionSpace_1 TrialSpace; + typedef Form_3_FunctionSpace_2 CoefficientSpace___cell_bubble; + + // Coefficients + dolfin::CoefficientAssigner __cell_bubble; +}; + +class Form_4_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_4_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_4_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_4_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_4_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_4_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_4_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_4_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_4_FunctionSpace_1; + +typedef CoefficientSpace_g Form_4_FunctionSpace_2; + +typedef CoefficientSpace___discrete_primal_solution Form_4_FunctionSpace_3; + +typedef CoefficientSpace___cell_bubble Form_4_FunctionSpace_4; + +class Form_4: public dolfin::Form +{ +public: + + // Constructor + Form_4(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_4()); + } + + // Constructor + Form_4(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g, const dolfin::GenericFunction& __discrete_primal_solution, const dolfin::GenericFunction& __cell_bubble): + dolfin::Form(1, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + this->g = g; + this->__discrete_primal_solution = __discrete_primal_solution; + this->__cell_bubble = __cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_4()); + } + + // Constructor + Form_4(const dolfin::FunctionSpace& V0, std::shared_ptr f, std::shared_ptr g, std::shared_ptr __discrete_primal_solution, std::shared_ptr __cell_bubble): + dolfin::Form(1, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + this->g = *g; + this->__discrete_primal_solution = *__discrete_primal_solution; + this->__cell_bubble = *__cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_4()); + } + + // Constructor + Form_4(std::shared_ptr V0): + dolfin::Form(1, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_4()); + } + + // Constructor + Form_4(std::shared_ptr V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g, const dolfin::GenericFunction& __discrete_primal_solution, const dolfin::GenericFunction& __cell_bubble): + dolfin::Form(1, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = V0; + + this->f = f; + this->g = g; + this->__discrete_primal_solution = __discrete_primal_solution; + this->__cell_bubble = __cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_4()); + } + + // Constructor + Form_4(std::shared_ptr V0, std::shared_ptr f, std::shared_ptr g, std::shared_ptr __discrete_primal_solution, std::shared_ptr __cell_bubble): + dolfin::Form(1, 4), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = V0; + + this->f = *f; + this->g = *g; + this->__discrete_primal_solution = *__discrete_primal_solution; + this->__cell_bubble = *__cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_4()); + } + + // Destructor + ~Form_4() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + else if (name == "g") + return 1; + else if (name == "__discrete_primal_solution") + return 2; + else if (name == "__cell_bubble") + return 3; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + case 1: + return "g"; + case 2: + return "__discrete_primal_solution"; + case 3: + return "__cell_bubble"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_4_FunctionSpace_0 TestSpace; + typedef Form_4_FunctionSpace_1 CoefficientSpace_f; + typedef Form_4_FunctionSpace_2 CoefficientSpace_g; + typedef Form_4_FunctionSpace_3 CoefficientSpace___discrete_primal_solution; + typedef Form_4_FunctionSpace_4 CoefficientSpace___cell_bubble; + + // Coefficients + dolfin::CoefficientAssigner f; + dolfin::CoefficientAssigner g; + dolfin::CoefficientAssigner __discrete_primal_solution; + dolfin::CoefficientAssigner __cell_bubble; +}; + +class Form_5_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_5_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_5_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_5_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_5_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_5_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_5_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_5_FunctionSpace_0() + { + } + +}; + +class Form_5_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_5_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_5_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_5_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_5_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_5_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_5_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_5_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace___cell_cone Form_5_FunctionSpace_2; + +class Form_5: public dolfin::Form +{ +public: + + // Constructor + Form_5(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_5()); + } + + // Constructor + Form_5(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& __cell_cone): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->__cell_cone = __cell_cone; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_5()); + } + + // Constructor + Form_5(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr __cell_cone): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->__cell_cone = *__cell_cone; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_5()); + } + + // Constructor + Form_5(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_5()); + } + + // Constructor + Form_5(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& __cell_cone): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->__cell_cone = __cell_cone; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_5()); + } + + // Constructor + Form_5(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr __cell_cone): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->__cell_cone = *__cell_cone; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_5()); + } + + // Destructor + ~Form_5() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "__cell_cone") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "__cell_cone"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_5_FunctionSpace_0 TestSpace; + typedef Form_5_FunctionSpace_1 TrialSpace; + typedef Form_5_FunctionSpace_2 CoefficientSpace___cell_cone; + + // Coefficients + dolfin::CoefficientAssigner __cell_cone; +}; + +class Form_6_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_6_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_6_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_6_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_6_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_6_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_6_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_6_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_6_FunctionSpace_1; + +typedef CoefficientSpace_g Form_6_FunctionSpace_2; + +typedef CoefficientSpace___discrete_primal_solution Form_6_FunctionSpace_3; + +typedef CoefficientSpace___cell_residual Form_6_FunctionSpace_4; + +typedef CoefficientSpace___cell_cone Form_6_FunctionSpace_5; + +class Form_6: public dolfin::Form +{ +public: + + // Constructor + Form_6(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 5), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_6()); + } + + // Constructor + Form_6(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g, const dolfin::GenericFunction& __discrete_primal_solution, const dolfin::GenericFunction& __cell_residual, const dolfin::GenericFunction& __cell_cone): + dolfin::Form(1, 5), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + this->g = g; + this->__discrete_primal_solution = __discrete_primal_solution; + this->__cell_residual = __cell_residual; + this->__cell_cone = __cell_cone; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_6()); + } + + // Constructor + Form_6(const dolfin::FunctionSpace& V0, std::shared_ptr f, std::shared_ptr g, std::shared_ptr __discrete_primal_solution, std::shared_ptr __cell_residual, std::shared_ptr __cell_cone): + dolfin::Form(1, 5), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + this->g = *g; + this->__discrete_primal_solution = *__discrete_primal_solution; + this->__cell_residual = *__cell_residual; + this->__cell_cone = *__cell_cone; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_6()); + } + + // Constructor + Form_6(std::shared_ptr V0): + dolfin::Form(1, 5), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_6()); + } + + // Constructor + Form_6(std::shared_ptr V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g, const dolfin::GenericFunction& __discrete_primal_solution, const dolfin::GenericFunction& __cell_residual, const dolfin::GenericFunction& __cell_cone): + dolfin::Form(1, 5), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = V0; + + this->f = f; + this->g = g; + this->__discrete_primal_solution = __discrete_primal_solution; + this->__cell_residual = __cell_residual; + this->__cell_cone = __cell_cone; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_6()); + } + + // Constructor + Form_6(std::shared_ptr V0, std::shared_ptr f, std::shared_ptr g, std::shared_ptr __discrete_primal_solution, std::shared_ptr __cell_residual, std::shared_ptr __cell_cone): + dolfin::Form(1, 5), f(*this, 0), g(*this, 1), __discrete_primal_solution(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = V0; + + this->f = *f; + this->g = *g; + this->__discrete_primal_solution = *__discrete_primal_solution; + this->__cell_residual = *__cell_residual; + this->__cell_cone = *__cell_cone; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_6()); + } + + // Destructor + ~Form_6() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + else if (name == "g") + return 1; + else if (name == "__discrete_primal_solution") + return 2; + else if (name == "__cell_residual") + return 3; + else if (name == "__cell_cone") + return 4; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + case 1: + return "g"; + case 2: + return "__discrete_primal_solution"; + case 3: + return "__cell_residual"; + case 4: + return "__cell_cone"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_6_FunctionSpace_0 TestSpace; + typedef Form_6_FunctionSpace_1 CoefficientSpace_f; + typedef Form_6_FunctionSpace_2 CoefficientSpace_g; + typedef Form_6_FunctionSpace_3 CoefficientSpace___discrete_primal_solution; + typedef Form_6_FunctionSpace_4 CoefficientSpace___cell_residual; + typedef Form_6_FunctionSpace_5 CoefficientSpace___cell_cone; + + // Coefficients + dolfin::CoefficientAssigner f; + dolfin::CoefficientAssigner g; + dolfin::CoefficientAssigner __discrete_primal_solution; + dolfin::CoefficientAssigner __cell_residual; + dolfin::CoefficientAssigner __cell_cone; +}; + +class Form_7_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_7_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_7_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_7_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_7_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_7_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_7_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_7_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace___improved_dual Form_7_FunctionSpace_1; + +typedef CoefficientSpace___cell_residual Form_7_FunctionSpace_2; + +typedef CoefficientSpace___facet_residual Form_7_FunctionSpace_3; + +typedef CoefficientSpace___discrete_dual_solution Form_7_FunctionSpace_4; + +class Form_7: public dolfin::Form +{ +public: + + // Constructor + Form_7(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_7()); + } + + // Constructor + Form_7(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& __improved_dual, const dolfin::GenericFunction& __cell_residual, const dolfin::GenericFunction& __facet_residual, const dolfin::GenericFunction& __discrete_dual_solution): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->__improved_dual = __improved_dual; + this->__cell_residual = __cell_residual; + this->__facet_residual = __facet_residual; + this->__discrete_dual_solution = __discrete_dual_solution; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_7()); + } + + // Constructor + Form_7(const dolfin::FunctionSpace& V0, std::shared_ptr __improved_dual, std::shared_ptr __cell_residual, std::shared_ptr __facet_residual, std::shared_ptr __discrete_dual_solution): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->__improved_dual = *__improved_dual; + this->__cell_residual = *__cell_residual; + this->__facet_residual = *__facet_residual; + this->__discrete_dual_solution = *__discrete_dual_solution; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_7()); + } + + // Constructor + Form_7(std::shared_ptr V0): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_7()); + } + + // Constructor + Form_7(std::shared_ptr V0, const dolfin::GenericFunction& __improved_dual, const dolfin::GenericFunction& __cell_residual, const dolfin::GenericFunction& __facet_residual, const dolfin::GenericFunction& __discrete_dual_solution): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = V0; + + this->__improved_dual = __improved_dual; + this->__cell_residual = __cell_residual; + this->__facet_residual = __facet_residual; + this->__discrete_dual_solution = __discrete_dual_solution; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_7()); + } + + // Constructor + Form_7(std::shared_ptr V0, std::shared_ptr __improved_dual, std::shared_ptr __cell_residual, std::shared_ptr __facet_residual, std::shared_ptr __discrete_dual_solution): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = V0; + + this->__improved_dual = *__improved_dual; + this->__cell_residual = *__cell_residual; + this->__facet_residual = *__facet_residual; + this->__discrete_dual_solution = *__discrete_dual_solution; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_7()); + } + + // Destructor + ~Form_7() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "__improved_dual") + return 0; + else if (name == "__cell_residual") + return 1; + else if (name == "__facet_residual") + return 2; + else if (name == "__discrete_dual_solution") + return 3; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "__improved_dual"; + case 1: + return "__cell_residual"; + case 2: + return "__facet_residual"; + case 3: + return "__discrete_dual_solution"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_7_FunctionSpace_0 TestSpace; + typedef Form_7_FunctionSpace_1 CoefficientSpace___improved_dual; + typedef Form_7_FunctionSpace_2 CoefficientSpace___cell_residual; + typedef Form_7_FunctionSpace_3 CoefficientSpace___facet_residual; + typedef Form_7_FunctionSpace_4 CoefficientSpace___discrete_dual_solution; + + // Coefficients + dolfin::CoefficientAssigner __improved_dual; + dolfin::CoefficientAssigner __cell_residual; + dolfin::CoefficientAssigner __facet_residual; + dolfin::CoefficientAssigner __discrete_dual_solution; +}; + +class Form_lhs_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_lhs_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_lhs_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_lhs_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_lhs_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_lhs_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_lhs_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_lhs_FunctionSpace_0() + { + } + +}; + +class Form_lhs_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_lhs_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_lhs_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_lhs_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_lhs_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_lhs_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_lhs_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_lhs_FunctionSpace_1() + { + } + +}; + +class Form_lhs: public dolfin::Form +{ +public: + + // Constructor + Form_lhs(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_8()); + } + + // Constructor + Form_lhs(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_8()); + } + + // Destructor + ~Form_lhs() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_lhs_FunctionSpace_0 TestSpace; + typedef Form_lhs_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_rhs_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_rhs_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_rhs_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_rhs_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_rhs_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_rhs_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_rhs_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivepoisson_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivepoisson_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_rhs_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_rhs_FunctionSpace_1; + +typedef CoefficientSpace_g Form_rhs_FunctionSpace_2; + +class Form_rhs: public dolfin::Form +{ +public: + + // Constructor + Form_rhs(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_9()); + } + + // Constructor + Form_rhs(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + this->g = g; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_9()); + } + + // Constructor + Form_rhs(const dolfin::FunctionSpace& V0, std::shared_ptr f, std::shared_ptr g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + this->g = *g; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_9()); + } + + // Constructor + Form_rhs(std::shared_ptr V0): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_9()); + } + + // Constructor + Form_rhs(std::shared_ptr V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + this->f = f; + this->g = g; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_9()); + } + + // Constructor + Form_rhs(std::shared_ptr V0, std::shared_ptr f, std::shared_ptr g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + this->f = *f; + this->g = *g; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_9()); + } + + // Destructor + ~Form_rhs() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + else if (name == "g") + return 1; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + case 1: + return "g"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_rhs_FunctionSpace_0 TestSpace; + typedef Form_rhs_FunctionSpace_1 CoefficientSpace_f; + typedef Form_rhs_FunctionSpace_2 CoefficientSpace_g; + + // Coefficients + dolfin::CoefficientAssigner f; + dolfin::CoefficientAssigner g; +}; + +typedef CoefficientSpace___discrete_primal_solution Form_goal_FunctionSpace_0; + +class Form_goal: public dolfin::GoalFunctional +{ +public: + + // Constructor + Form_goal(const dolfin::Mesh& mesh): + dolfin::GoalFunctional(0, 1), __discrete_primal_solution(*this, 0) + { + _mesh = reference_to_no_delete_pointer(mesh); + _ufc_form = std::shared_ptr(new adaptivepoisson_form_10()); + } + + // Constructor + Form_goal(const dolfin::Mesh& mesh, const dolfin::GenericFunction& __discrete_primal_solution): + dolfin::GoalFunctional(0, 1), __discrete_primal_solution(*this, 0) + { + _mesh = reference_to_no_delete_pointer(mesh); + this->__discrete_primal_solution = __discrete_primal_solution; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_10()); + } + + // Constructor + Form_goal(const dolfin::Mesh& mesh, std::shared_ptr __discrete_primal_solution): + dolfin::GoalFunctional(0, 1), __discrete_primal_solution(*this, 0) + { + _mesh = reference_to_no_delete_pointer(mesh); + this->__discrete_primal_solution = *__discrete_primal_solution; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_10()); + } + + // Constructor + Form_goal(std::shared_ptr mesh): + dolfin::GoalFunctional(0, 1), __discrete_primal_solution(*this, 0) + { + _mesh = mesh; + _ufc_form = std::shared_ptr(new adaptivepoisson_form_10()); + } + + // Constructor + Form_goal(std::shared_ptr mesh, const dolfin::GenericFunction& __discrete_primal_solution): + dolfin::GoalFunctional(0, 1), __discrete_primal_solution(*this, 0) + { + _mesh = mesh; + this->__discrete_primal_solution = __discrete_primal_solution; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_10()); + } + + // Constructor + Form_goal(std::shared_ptr mesh, std::shared_ptr __discrete_primal_solution): + dolfin::GoalFunctional(0, 1), __discrete_primal_solution(*this, 0) + { + _mesh = mesh; + this->__discrete_primal_solution = *__discrete_primal_solution; + + _ufc_form = std::shared_ptr(new adaptivepoisson_form_10()); + } + + // Destructor + ~Form_goal() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "__discrete_primal_solution") + return 0; + + dolfin::dolfin_error("generated code for class GoalFunctional", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "__discrete_primal_solution"; + } + + dolfin::dolfin_error("generated code for class GoalFunctional", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_goal_FunctionSpace_0 CoefficientSpace___discrete_primal_solution; + + // Coefficients + dolfin::CoefficientAssigner __discrete_primal_solution; + + /// Initialize all error control forms, attach coefficients and + /// (re-)set error control + virtual void update_ec(const dolfin::Form& a, const dolfin::Form& L) + { + // This stuff is created here and shipped elsewhere + std::shared_ptr a_star; // Dual lhs + std::shared_ptr L_star; // Dual rhs + std::shared_ptr V_Ez_h; // Extrapolation space + std::shared_ptr Ez_h; // Extrapolated dual + std::shared_ptr residual; // Residual (as functional) + std::shared_ptr V_R_T; // Trial space for cell residual + std::shared_ptr a_R_T; // Cell residual lhs + std::shared_ptr L_R_T; // Cell residual rhs + std::shared_ptr V_b_T; // Function space for cell bubble + std::shared_ptr b_T; // Cell bubble + std::shared_ptr V_R_dT; // Trial space for facet residual + std::shared_ptr a_R_dT; // Facet residual lhs + std::shared_ptr L_R_dT; // Facet residual rhs + std::shared_ptr V_b_e; // Function space for cell cone + std::shared_ptr b_e; // Cell cone + std::shared_ptr V_eta_T; // Function space for indicators + std::shared_ptr eta_T; // Indicator form + + // Some handy views + const dolfin::FunctionSpace& Vhat(*(a.function_space(0))); // Primal test + const dolfin::FunctionSpace& V(*(a.function_space(1))); // Primal trial + assert(V.mesh()); + const dolfin::Mesh& mesh(*V.mesh()); + std::string name; + + // Initialize dual forms + a_star.reset(new Form_0(V, Vhat)); + L_star.reset(new Form_1(V)); + + + // Attach coefficients from a to a_star + for (std::size_t i = 0; i < a.num_coefficients(); i++) + { + name = a.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether a_star has coefficient named 'name' + try { + a_star->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to a_star"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + a_star->set_coefficient(name, a.coefficient(i)); + } + + // Attach subdomains from a to a_star + a_star->dx = a.cell_domains(); + a_star->ds = a.exterior_facet_domains(); + a_star->dS = a.interior_facet_domains(); + + + // Attach coefficients from (*this) to L_star + for (std::size_t i = 0; i < (*this).num_coefficients(); i++) + { + name = (*this).coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether L_star has coefficient named 'name' + try { + L_star->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to L_star"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + L_star->set_coefficient(name, (*this).coefficient(i)); + } + + // Attach subdomains from (*this) to L_star + L_star->dx = (*this).cell_domains(); + L_star->ds = (*this).exterior_facet_domains(); + L_star->dS = (*this).interior_facet_domains(); + + + // Initialize residual + residual.reset(new Form_2(mesh)); + + // Attach coefficients from a to residual + for (std::size_t i = 0; i < a.num_coefficients(); i++) + { + name = a.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether residual has coefficient named 'name' + try { + residual->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to residual"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + residual->set_coefficient(name, a.coefficient(i)); + } + + + // Attach coefficients from L to residual + for (std::size_t i = 0; i < L.num_coefficients(); i++) + { + name = L.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether residual has coefficient named 'name' + try { + residual->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to residual"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + residual->set_coefficient(name, L.coefficient(i)); + } + + // Attach subdomains from L to residual + residual->dx = L.cell_domains(); + residual->ds = L.exterior_facet_domains(); + residual->dS = L.interior_facet_domains(); + + + // Initialize extrapolation space and (fake) extrapolation + V_Ez_h.reset(new CoefficientSpace___improved_dual(mesh)); + Ez_h.reset(new dolfin::Function(V_Ez_h)); + residual->set_coefficient("__improved_dual", Ez_h); + + // Create bilinear and linear form for computing cell residual R_T + V_R_T.reset(new Form_4::TestSpace(mesh)); + a_R_T.reset(new Form_3(V_R_T, V_R_T)); + L_R_T.reset(new Form_4(V_R_T)); + + // Initialize bubble and attach to a_R_T and L_R_T + V_b_T.reset(new CoefficientSpace___cell_bubble(mesh)); + b_T.reset(new dolfin::Function(V_b_T)); + *b_T->vector() = 1.0; + + // Attach coefficients from a to L_R_T + for (std::size_t i = 0; i < a.num_coefficients(); i++) + { + name = a.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether L_R_T has coefficient named 'name' + try { + L_R_T->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to L_R_T"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + L_R_T->set_coefficient(name, a.coefficient(i)); + } + + + // Attach coefficients from L to L_R_T + for (std::size_t i = 0; i < L.num_coefficients(); i++) + { + name = L.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether L_R_T has coefficient named 'name' + try { + L_R_T->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to L_R_T"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + L_R_T->set_coefficient(name, L.coefficient(i)); + } + + // Attach subdomains from L to L_R_T + L_R_T->dx = L.cell_domains(); + L_R_T->ds = L.exterior_facet_domains(); + L_R_T->dS = L.interior_facet_domains(); + + + // Attach bubble function to _a_R_T and _L_R_T + a_R_T->set_coefficient("__cell_bubble", b_T); + L_R_T->set_coefficient("__cell_bubble", b_T); + + // Create bilinear and linear form for computing facet residual R_dT + V_R_dT.reset(new Form_6::TestSpace(mesh)); + a_R_dT.reset(new Form_5(V_R_dT, V_R_dT)); + L_R_dT.reset(new Form_6(V_R_dT)); + + // Attach coefficients from a to L_R_dT + for (std::size_t i = 0; i < a.num_coefficients(); i++) + { + name = a.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether L_R_dT has coefficient named 'name' + try { + L_R_dT->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to L_R_dT"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + L_R_dT->set_coefficient(name, a.coefficient(i)); + } + + + // Attach coefficients from L to L_R_dT + for (std::size_t i = 0; i < L.num_coefficients(); i++) + { + name = L.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether L_R_dT has coefficient named 'name' + try { + L_R_dT->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to L_R_dT"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + L_R_dT->set_coefficient(name, L.coefficient(i)); + } + + // Attach subdomains from L to L_R_dT + L_R_dT->dx = L.cell_domains(); + L_R_dT->ds = L.exterior_facet_domains(); + L_R_dT->dS = L.interior_facet_domains(); + + + // Initialize (fake) cone and attach to a_R_dT and L_R_dT + V_b_e.reset(new CoefficientSpace___cell_cone(mesh)); + b_e.reset(new dolfin::Function(V_b_e)); + a_R_dT->set_coefficient("__cell_cone", b_e); + L_R_dT->set_coefficient("__cell_cone", b_e); + + // Create error indicator form + V_eta_T.reset(new Form_7::TestSpace(mesh)); + eta_T.reset(new Form_7(V_eta_T)); + + // Update error control + _ec.reset(new dolfin::ErrorControl(a_star, L_star, residual, + a_R_T, L_R_T, a_R_dT, L_R_dT, eta_T, + true)); + + } + +}; + +// Class typedefs +typedef Form_lhs BilinearForm; +typedef Form_rhs LinearForm; +typedef Form_goal GoalFunctional; + +} + +#endif diff --git a/demo/documented/auto-adaptive-poisson/cpp/AdaptivePoisson.ufl b/demo/documented/auto-adaptive-poisson/cpp/AdaptivePoisson.ufl new file mode 100644 index 0000000..ddd2ace --- /dev/null +++ b/demo/documented/auto-adaptive-poisson/cpp/AdaptivePoisson.ufl @@ -0,0 +1,32 @@ +# Copyright (C) 2010 Anders Logg and Marie E. Rognes +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2010-08-19 +# Last changed: 2012-12-05 +# +# Compile this with: ffc -l dolfin -e AdaptivePoisson.ufl + +element = FiniteElement("CG", triangle, 1) +u = TrialFunction(element) +v = TestFunction(element) + +f = Coefficient(element) +g = Coefficient(element) + +a = dot(grad(u), grad(v))*dx() +L = f*v*dx() + g*v*ds() +M = u*dx() diff --git a/demo/documented/auto-adaptive-poisson/cpp/CMakeLists.txt b/demo/documented/auto-adaptive-poisson/cpp/CMakeLists.txt new file mode 100644 index 0000000..fbd5787 --- /dev/null +++ b/demo/documented/auto-adaptive-poisson/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_auto-adaptive-poisson) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/auto-adaptive-poisson/cpp/compile.log b/demo/documented/auto-adaptive-poisson/cpp/compile.log new file mode 100644 index 0000000..a471b5e --- /dev/null +++ b/demo/documented/auto-adaptive-poisson/cpp/compile.log @@ -0,0 +1,3326 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form AdaptivePoisson + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: '' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 0 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 1 + quadrature_degree: auto --> 1 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 0 + Arguments: '[]' + Argument names: '[]' + Number of coefficients: 4 + Coefficients: '[w_0, w_1, w_2, w_3]' + Coefficient names: '[f, g, __discrete_primal_solution, __improved_dual]' + Unique elements: 'CG1(?), CG2(?)' + Unique sub elements: 'CG1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 4 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 1 + Coefficients: '[w_4]' + Coefficient names: '[__cell_bubble]' + Unique elements: 'DG1(?), B3(?)' + Unique sub elements: 'DG1(?), B3(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 4 + Coefficients: '[w_0, w_1, w_2, w_4]' + Coefficient names: '[f, g, __discrete_primal_solution, __cell_bubble]' + Unique elements: 'DG1(?), CG1(?), B3(?)' + Unique sub elements: 'DG1(?), CG1(?), B3(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 4 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 1 + Coefficients: '[w_6]' + Coefficient names: '[__cell_cone]' + Unique elements: 'DG1(?), DG2(?)' + Unique sub elements: 'DG1(?), DG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 5 + Coefficients: '[w_0, w_1, w_2, w_5, w_6]' + Coefficient names: '[f, g, __discrete_primal_solution, __cell_residual, __cel + l_cone]' + Unique elements: 'DG1(?), CG1(?), DG2(?)' + Unique sub elements: 'DG1(?), CG1(?), DG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 4 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 4 + Coefficients: '[w_3, w_5, w_7, w_8]' + Coefficient names: '[__improved_dual, __cell_residual, __facet_residual, __di + screte_dual_solution]' + Unique elements: 'DG0(?), CG2(?), DG1(?), CG1(?)' + Unique sub elements: 'DG0(?), CG2(?), DG1(?), CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + + Name: 'lhs' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: 'rhs' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 2 + Coefficients: '[w_0, w_1]' + Coefficient names: '[f, g]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + + Name: 'goal' + Geometric dimension: 2 + Rank: 0 + Arguments: '[]' + Argument names: '[]' + Number of coefficients: 1 + Coefficients: '[w_2]' + Coefficient names: '[__discrete_primal_solution]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 1 + quadrature_degree: auto --> 1 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.082557 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 6 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 6 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.000733 seconds + Shape of reference tensor: (3, 3, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 3 entries computed in 0.000454 seconds + Shape of reference tensor: (3,) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {6: {FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {None: {(0, 1): array([[-0.99999999999999989, -0.99999999999999989, -0.99999999999999989, + -0.99999999999999989, -0.99999999999999989, -0.99999999999999989], + [1.1102230246251565e-16, 1.1102230246251565e-16, + 1.1102230246251565e-16, 1.1102230246251565e-16, + 1.1102230246251565e-16, 1.1102230246251565e-16], + [0.99999999999999978, 0.99999999999999978, 0.99999999999999978, + 0.99999999999999978, 0.99999999999999978, 0.99999999999999978]], dtype=object), (1, 0): array([[-1.0, -1.0, -1.0, -1.0, -1.0, -1.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype=object), (0, 0): array([[0.10903900907287697, 0.23193336855303098, 0.109039009072877, + 0.65902762237409196, 0.23193336855303104, 0.65902762237409196], + [0.65902762237409196, 0.65902762237409196, 0.23193336855303104, + 0.23193336855303098, 0.109039009072877, 0.10903900907287697], + [0.23193336855303098, 0.10903900907287697, 0.65902762237409185, + 0.10903900907287697, 0.65902762237409185, 0.23193336855303098]], dtype=object)}}}, FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None): {None: {None: {(0, 1): array([[0.56384396370849277, 0.072266525787876734, 0.56384396370849243, + -1.6361104894963669, 0.072266525787876068, -1.6361104894963674], + [8.3266726846886741e-17, -1.1102230246251565e-16, + -1.6653345369377348e-16, -1.1102230246251565e-16, + -5.5511151231257827e-17, -1.3877787807814457e-16], + [-0.072266525787875513, -0.56384396370849144, 1.6361104894963674, + -0.56384396370849144, 1.6361104894963674, -0.072266525787875735], + [2.6361104894963665, 2.6361104894963665, 0.92773347421212327, + 0.92773347421212304, 0.43615603629150668, 0.43615603629150723], + [-0.49157743792061637, 0.49157743792061592, -2.1999544532048594, + 2.1999544532048594, -1.7083770152842432, 1.7083770152842432], + [-2.6361104894963674, -2.6361104894963674, -0.92773347421212338, + -0.9277334742121236, -0.43615603629150701, -0.43615603629150695]], dtype=object), (1, 0): array([[0.56384396370849266, 0.072266525787876401, 0.56384396370849277, + -1.6361104894963672, 0.07226652578787629, -1.6361104894963676], + [1.6361104894963678, 1.6361104894963676, -0.072266525787876068, + -0.072266525787876124, -0.56384396370849255, -0.56384396370849243], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], + [0.92773347421212327, 0.43615603629150695, 2.6361104894963661, + 0.43615603629150695, 2.6361104894963661, 0.92773347421212327], + [-0.92773347421212327, -0.43615603629150695, -2.6361104894963661, + -0.43615603629150695, -2.6361104894963661, -0.92773347421212327], + [-2.1999544532048607, -1.7083770152842441, -0.49157743792061698, + 1.7083770152842432, 0.49157743792061592, 2.1999544532048598]], dtype=object), (0, 0): array([[-0.08525999807368706, -0.12434719365631873, -0.085259998073687046, + 0.20960719173000564, -0.12434719365631869, 0.20960719173000567], + [0.20960719173000553, 0.20960719173000553, -0.12434719365631877, + -0.12434719365631874, -0.08525999807368706, -0.08525999807368706], + [-0.1243471936563187, -0.08525999807368706, 0.20960719173000567, + -0.08525999807368706, 0.20960719173000567, -0.1243471936563187], + [0.61140198570687188, 0.28743887558130055, 0.61140198570687188, + 0.10115913871182745, 0.28743887558130055, 0.10115913871182744], + [0.10115913871182744, 0.10115913871182741, 0.2874388755813006, + 0.28743887558130055, 0.61140198570687199, 0.61140198570687188], + [0.28743887558130055, 0.61140198570687199, 0.10115913871182744, + 0.61140198570687199, 0.10115913871182744, 0.28743887558130055]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.11022302e-16, 1.11022302e-16, 1.11022302e-16, + 1.11022302e-16, 1.11022302e-16, 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.11022302e-16, 1.11022302e-16, 1.11022302e-16, + 1.11022302e-16, 1.11022302e-16, 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.10903901, 0.23193337, 0.10903901, 0.65902762, 0.23193337, + 0.65902762], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.65902762, 0.65902762, 0.23193337, 0.23193337, 0.10903901, + 0.10903901], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.23193337, 0.10903901, 0.65902762, 0.10903901, 0.65902762, + 0.23193337], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.10903901, 0.23193337, 0.10903901, 0.65902762, 0.23193337, + 0.65902762]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.65902762, 0.65902762, 0.23193337, 0.23193337, 0.10903901, + 0.10903901]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.23193337, 0.10903901, 0.65902762, 0.10903901, 0.65902762, + 0.23193337]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE0_D01': array([[-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978]], dtype=object), 'FE2_C0_D01': array([[ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE2_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0.10903901, 0.65902762, + 0.23193337], + [ 0. , 0. , 0. , 0.23193337, 0.65902762, + 0.10903901], + [ 0. , 0. , 0. , 0.10903901, 0.23193337, + 0.65902762], + [ 0. , 0. , 0. , 0.65902762, 0.23193337, + 0.10903901], + [ 0. , 0. , 0. , 0.23193337, 0.10903901, + 0.65902762], + [ 0. , 0. , 0. , 0.65902762, 0.10903901, + 0.23193337]]), 'FE2_C0': array([[ 0.10903901, 0.65902762, 0.23193337, 0. , 0. , + 0. ], + [ 0.23193337, 0.65902762, 0.10903901, 0. , 0. , + 0. ], + [ 0.10903901, 0.23193337, 0.65902762, 0. , 0. , + 0. ], + [ 0.65902762, 0.23193337, 0.10903901, 0. , 0. , + 0. ], + [ 0.23193337, 0.10903901, 0.65902762, 0. , 0. , + 0. ], + [ 0.65902762, 0.10903901, 0.23193337, 0. , 0. , + 0. ]]), 'FE1_D01': array([[0.56384396370849277, 8.3266726846886741e-17, -0.072266525787875513, + 2.6361104894963665, -0.49157743792061637, -2.6361104894963674], + [0.072266525787876734, -1.1102230246251565e-16, + -0.56384396370849144, 2.6361104894963665, 0.49157743792061592, + -2.6361104894963674], + [0.56384396370849243, -1.6653345369377348e-16, 1.6361104894963674, + 0.92773347421212327, -2.1999544532048594, -0.92773347421212338], + [-1.6361104894963669, -1.1102230246251565e-16, -0.56384396370849144, + 0.92773347421212304, 2.1999544532048594, -0.9277334742121236], + [0.072266525787876068, -5.5511151231257827e-17, 1.6361104894963674, + 0.43615603629150668, -1.7083770152842432, -0.43615603629150701], + [-1.6361104894963674, -1.3877787807814457e-16, + -0.072266525787875735, 0.43615603629150723, 1.7083770152842432, + -0.43615603629150695]], dtype=object), 'FE1_D10': array([[0.56384396370849266, 1.6361104894963678, 0.0, 0.92773347421212327, + -0.92773347421212327, -2.1999544532048607], + [0.072266525787876401, 1.6361104894963676, 0.0, 0.43615603629150695, + -0.43615603629150695, -1.7083770152842441], + [0.56384396370849277, -0.072266525787876068, 0.0, + 2.6361104894963661, -2.6361104894963661, -0.49157743792061698], + [-1.6361104894963672, -0.072266525787876124, 0.0, + 0.43615603629150695, -0.43615603629150695, 1.7083770152842432], + [0.07226652578787629, -0.56384396370849255, 0.0, 2.6361104894963661, + -2.6361104894963661, 0.49157743792061592], + [-1.6361104894963676, -0.56384396370849243, 0.0, + 0.92773347421212327, -0.92773347421212327, 2.1999544532048598]], dtype=object), 'FE0': array([[0.10903900907287697, 0.65902762237409196, 0.23193336855303098], + [0.23193336855303098, 0.65902762237409196, 0.10903900907287697], + [0.109039009072877, 0.23193336855303104, 0.65902762237409185], + [0.65902762237409196, 0.23193336855303098, 0.10903900907287697], + [0.23193336855303104, 0.109039009072877, 0.65902762237409185], + [0.65902762237409196, 0.10903900907287697, 0.23193336855303098]], dtype=object), 'FE1': array([[-0.08525999807368706, 0.20960719173000553, -0.1243471936563187, + 0.61140198570687188, 0.10115913871182744, 0.28743887558130055], + [-0.12434719365631873, 0.20960719173000553, -0.08525999807368706, + 0.28743887558130055, 0.10115913871182741, 0.61140198570687199], + [-0.085259998073687046, -0.12434719365631877, 0.20960719173000567, + 0.61140198570687188, 0.2874388755813006, 0.10115913871182744], + [0.20960719173000564, -0.12434719365631874, -0.08525999807368706, + 0.10115913871182745, 0.28743887558130055, 0.61140198570687199], + [-0.12434719365631869, -0.08525999807368706, 0.20960719173000567, + 0.28743887558130055, 0.61140198570687199, 0.10115913871182744], + [0.20960719173000567, -0.08525999807368706, -0.1243471936563187, + 0.10115913871182744, 0.61140198570687188, 0.28743887558130055]], dtype=object)} + + tables: {'FE0_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE0_D01': array([[-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978]], dtype=object), 'FE2_C0_D01': array([[ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE2_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0.10903901, 0.65902762, + 0.23193337], + [ 0. , 0. , 0. , 0.23193337, 0.65902762, + 0.10903901], + [ 0. , 0. , 0. , 0.10903901, 0.23193337, + 0.65902762], + [ 0. , 0. , 0. , 0.65902762, 0.23193337, + 0.10903901], + [ 0. , 0. , 0. , 0.23193337, 0.10903901, + 0.65902762], + [ 0. , 0. , 0. , 0.65902762, 0.10903901, + 0.23193337]]), 'FE2_C0': array([[ 0.10903901, 0.65902762, 0.23193337, 0. , 0. , + 0. ], + [ 0.23193337, 0.65902762, 0.10903901, 0. , 0. , + 0. ], + [ 0.10903901, 0.23193337, 0.65902762, 0. , 0. , + 0. ], + [ 0.65902762, 0.23193337, 0.10903901, 0. , 0. , + 0. ], + [ 0.23193337, 0.10903901, 0.65902762, 0. , 0. , + 0. ], + [ 0.65902762, 0.10903901, 0.23193337, 0. , 0. , + 0. ]]), 'FE1_D01': array([[0.56384396370849277, 8.3266726846886741e-17, -0.072266525787875513, + 2.6361104894963665, -0.49157743792061637, -2.6361104894963674], + [0.072266525787876734, -1.1102230246251565e-16, + -0.56384396370849144, 2.6361104894963665, 0.49157743792061592, + -2.6361104894963674], + [0.56384396370849243, -1.6653345369377348e-16, 1.6361104894963674, + 0.92773347421212327, -2.1999544532048594, -0.92773347421212338], + [-1.6361104894963669, -1.1102230246251565e-16, -0.56384396370849144, + 0.92773347421212304, 2.1999544532048594, -0.9277334742121236], + [0.072266525787876068, -5.5511151231257827e-17, 1.6361104894963674, + 0.43615603629150668, -1.7083770152842432, -0.43615603629150701], + [-1.6361104894963674, -1.3877787807814457e-16, + -0.072266525787875735, 0.43615603629150723, 1.7083770152842432, + -0.43615603629150695]], dtype=object), 'FE1_D10': array([[0.56384396370849266, 1.6361104894963678, 0.0, 0.92773347421212327, + -0.92773347421212327, -2.1999544532048607], + [0.072266525787876401, 1.6361104894963676, 0.0, 0.43615603629150695, + -0.43615603629150695, -1.7083770152842441], + [0.56384396370849277, -0.072266525787876068, 0.0, + 2.6361104894963661, -2.6361104894963661, -0.49157743792061698], + [-1.6361104894963672, -0.072266525787876124, 0.0, + 0.43615603629150695, -0.43615603629150695, 1.7083770152842432], + [0.07226652578787629, -0.56384396370849255, 0.0, 2.6361104894963661, + -2.6361104894963661, 0.49157743792061592], + [-1.6361104894963676, -0.56384396370849243, 0.0, + 0.92773347421212327, -0.92773347421212327, 2.1999544532048598]], dtype=object), 'FE0': array([[0.10903900907287697, 0.65902762237409196, 0.23193336855303098], + [0.23193336855303098, 0.65902762237409196, 0.10903900907287697], + [0.109039009072877, 0.23193336855303104, 0.65902762237409185], + [0.65902762237409196, 0.23193336855303098, 0.10903900907287697], + [0.23193336855303104, 0.109039009072877, 0.65902762237409185], + [0.65902762237409196, 0.10903900907287697, 0.23193336855303098]], dtype=object), 'FE1': array([[-0.08525999807368706, 0.20960719173000553, -0.1243471936563187, + 0.61140198570687188, 0.10115913871182744, 0.28743887558130055], + [-0.12434719365631873, 0.20960719173000553, -0.08525999807368706, + 0.28743887558130055, 0.10115913871182741, 0.61140198570687199], + [-0.085259998073687046, -0.12434719365631877, 0.20960719173000567, + 0.61140198570687188, 0.2874388755813006, 0.10115913871182744], + [0.20960719173000564, -0.12434719365631874, -0.08525999807368706, + 0.10115913871182745, 0.28743887558130055, 0.61140198570687199], + [-0.12434719365631869, -0.08525999807368706, 0.20960719173000567, + 0.28743887558130055, 0.61140198570687199, 0.10115913871182744], + [0.20960719173000567, -0.08525999807368706, -0.1243471936563187, + 0.10115913871182744, 0.61140198570687188, 0.28743887558130055]], dtype=object)} + + name_map: {} + + inv_name_map: {'FE0_D10': 'FE0_D10', 'FE2_C1_D01': 'FE2_C1_D01', 'FE0_D01': 'FE0_D01', 'FE2_C0': 'FE2_C0', 'FE1': 'FE1', 'FE2_C1_D10': 'FE2_C1_D10', 'FE2_C1': 'FE2_C1', 'FE2_C0_D01': 'FE2_C0_D01', 'FE1_D01': 'FE1_D01', 'FE1_D10': 'FE1_D10', 'FE0': 'FE0', 'FE2_C0_D10': 'FE2_C0_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE0_D01': array([[-0.99999999999999989, 0.99999999999999978], + [-0.99999999999999989, 0.99999999999999978], + [-0.99999999999999989, 0.99999999999999978], + [-0.99999999999999989, 0.99999999999999978], + [-0.99999999999999989, 0.99999999999999978], + [-0.99999999999999989, 0.99999999999999978]], dtype=object), 'FE1_D01': array([[0.56384396370849277, -0.072266525787875513, 2.6361104894963665, + -0.49157743792061637, -2.6361104894963674], + [0.072266525787876734, -0.56384396370849144, 2.6361104894963665, + 0.49157743792061592, -2.6361104894963674], + [0.56384396370849243, 1.6361104894963674, 0.92773347421212327, + -2.1999544532048594, -0.92773347421212338], + [-1.6361104894963669, -0.56384396370849144, 0.92773347421212304, + 2.1999544532048594, -0.9277334742121236], + [0.072266525787876068, 1.6361104894963674, 0.43615603629150668, + -1.7083770152842432, -0.43615603629150701], + [-1.6361104894963674, -0.072266525787875735, 0.43615603629150723, + 1.7083770152842432, -0.43615603629150695]], dtype=object), 'FE1_D10': array([[0.56384396370849266, 1.6361104894963678, 0.92773347421212327, + -0.92773347421212327, -2.1999544532048607], + [0.072266525787876401, 1.6361104894963676, 0.43615603629150695, + -0.43615603629150695, -1.7083770152842441], + [0.56384396370849277, -0.072266525787876068, 2.6361104894963661, + -2.6361104894963661, -0.49157743792061698], + [-1.6361104894963672, -0.072266525787876124, 0.43615603629150695, + -0.43615603629150695, 1.7083770152842432], + [0.07226652578787629, -0.56384396370849255, 2.6361104894963661, + -2.6361104894963661, 0.49157743792061592], + [-1.6361104894963676, -0.56384396370849243, 0.92773347421212327, + -0.92773347421212327, 2.1999544532048598]], dtype=object), 'FE0': array([[0.10903900907287697, 0.65902762237409196, 0.23193336855303098], + [0.23193336855303098, 0.65902762237409196, 0.10903900907287697], + [0.109039009072877, 0.23193336855303104, 0.65902762237409185], + [0.65902762237409196, 0.23193336855303098, 0.10903900907287697], + [0.23193336855303104, 0.109039009072877, 0.65902762237409185], + [0.65902762237409196, 0.10903900907287697, 0.23193336855303098]], dtype=object), 'FE1': array([[-0.08525999807368706, 0.20960719173000553, -0.1243471936563187, + 0.61140198570687188, 0.10115913871182744, 0.28743887558130055], + [-0.12434719365631873, 0.20960719173000553, -0.08525999807368706, + 0.28743887558130055, 0.10115913871182741, 0.61140198570687199], + [-0.085259998073687046, -0.12434719365631877, 0.20960719173000567, + 0.61140198570687188, 0.2874388755813006, 0.10115913871182744], + [0.20960719173000564, -0.12434719365631874, -0.08525999807368706, + 0.10115913871182745, 0.28743887558130055, 0.61140198570687199], + [-0.12434719365631869, -0.08525999807368706, 0.20960719173000567, + 0.28743887558130055, 0.61140198570687199, 0.10115913871182744], + [0.20960719173000567, -0.08525999807368706, -0.1243471936563187, + 0.10115913871182744, 0.61140198570687188, 0.28743887558130055]], dtype=object)} + + QG-utils, psi_tables, name_map: + {'FE0_D10': ('FE0_D01', (1, [0, 1]), False, False), 'FE2_C1_D01': ('FE0_D01', (8, [3, 5]), False, False), 'FE0_D01': ('FE0_D01', (0, [0, 2]), False, False), 'FE2_C0': ('FE0', (4, [0, 1, 2]), False, False), 'FE1': ('FE1', (), False, False), 'FE2_C1_D10': ('FE0_D01', (9, [3, 4]), False, False), 'FE2_C1': ('FE0', (7, [3, 4, 5]), False, False), 'FE2_C0_D01': ('FE0_D01', (5, [0, 2]), False, False), 'FE1_D01': ('FE1_D01', (2, [0, 2, 3, 4, 5]), False, False), 'FE1_D10': ('FE1_D10', (3, [0, 1, 3, 4, 5]), False, False), 'FE0': ('FE0', (), False, False), 'FE2_C0_D10': ('FE0_D01', (6, [0, 1]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00196 seconds + Shape of reference tensor: (3, 6) + Primary multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00165 seconds + Shape of reference tensor: (3, 6) + Primary multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00159 seconds + Shape of reference tensor: (3, 6) + Primary multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00253 seconds + Shape of reference tensor: (3, 3, 1) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [1] indices = [[0]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [1] indices = [[0]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {7: {FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {None: {(0, 1): array([[-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object), (1, 0): array([[-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype=object), (0, 0): array([[0.33333333333333337, 0.10128650732345648, 0.10128650732345651, + 0.79742698535308731, 0.47014206410511522, 0.47014206410511522, + 0.059715871789769934], + [0.33333333333333337, 0.7974269853530872, 0.1012865073234564, + 0.10128650732345637, 0.059715871789769795, 0.47014206410511511, + 0.47014206410511511], + [0.33333333333333331, 0.10128650732345634, 0.79742698535308709, + 0.10128650732345634, 0.47014206410511505, 0.059715871789769726, + 0.47014206410511505]], dtype=object)}}}, FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {None: {(0, 1): array([[-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object), (1, 0): array([[-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype=object), (0, 0): array([[0.33333333333333337, 0.10128650732345648, 0.10128650732345651, + 0.79742698535308731, 0.47014206410511522, 0.47014206410511522, + 0.059715871789769934], + [0.33333333333333337, 0.7974269853530872, 0.1012865073234564, + 0.10128650732345637, 0.059715871789769795, 0.47014206410511511, + 0.47014206410511511], + [0.33333333333333331, 0.10128650732345634, 0.79742698535308709, + 0.10128650732345634, 0.47014206410511505, 0.059715871789769726, + 0.47014206410511505]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.33333333, 0.10128651, 0.10128651, 0.79742699, 0.47014206, + 0.47014206, 0.05971587], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.33333333, 0.79742699, 0.10128651, 0.10128651, 0.05971587, + 0.47014206, 0.47014206], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.33333333, 0.10128651, 0.79742699, 0.10128651, 0.47014206, + 0.05971587, 0.47014206], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.10128651, 0.10128651, 0.79742699, 0.47014206, + 0.47014206, 0.05971587]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.79742699, 0.10128651, 0.10128651, 0.05971587, + 0.47014206, 0.47014206]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.10128651, 0.79742699, 0.10128651, 0.47014206, + 0.05971587, 0.47014206]]])}}}, FiniteElement('Bubble', Domain(Cell('triangle', 2), label=None, data=None), 3, quad_scheme=None): {None: {None: {(0, 1): array([[-1.1102230246251565e-16, 3.6637359812630166e-15, + -1.9037602159047706, 1.9037602159047724, -2.2204460492503131e-16, + 5.2098826648843648, -5.2098826648843612]], dtype=object), (1, 0): array([[3.4373799093713836e-16, -1.9037602159047682, + 3.9672666806617637e-15, 1.9037602159047715, 5.2098826648843648, + 2.1527793290222102e-18, -5.2098826648843577]], dtype=object), (0, 0): array([[1.0000000000000002, 0.22088075779229027, 0.22088075779229013, + 0.22088075779229016, 0.35637871742636851, 0.35637871742636862, + 0.35637871742636917]], dtype=object)}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_D10': array([[3.4373799093713836e-16], + [-1.9037602159047682], + [3.9672666806617637e-15], + [1.9037602159047715], + [5.2098826648843648], + [2.1527793290222102e-18], + [-5.2098826648843577]], dtype=object), 'FE0_D01': array([[-1.1102230246251565e-16], + [3.6637359812630166e-15], + [-1.9037602159047706], + [1.9037602159047724], + [-2.2204460492503131e-16], + [5.2098826648843648], + [-5.2098826648843612]], dtype=object), 'FE3_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE3_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE3_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ], + [ 0.10128651, 0.79742699, 0.10128651, 0. , 0. , + 0. ], + [ 0.10128651, 0.10128651, 0.79742699, 0. , 0. , + 0. ], + [ 0.79742699, 0.10128651, 0.10128651, 0. , 0. , + 0. ], + [ 0.47014206, 0.05971587, 0.47014206, 0. , 0. , + 0. ], + [ 0.47014206, 0.47014206, 0.05971587, 0. , 0. , + 0. ], + [ 0.05971587, 0.47014206, 0.47014206, 0. , 0. , + 0. ]]), 'FE3_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333], + [ 0. , 0. , 0. , 0.10128651, 0.79742699, + 0.10128651], + [ 0. , 0. , 0. , 0.10128651, 0.10128651, + 0.79742699], + [ 0. , 0. , 0. , 0.79742699, 0.10128651, + 0.10128651], + [ 0. , 0. , 0. , 0.47014206, 0.05971587, + 0.47014206], + [ 0. , 0. , 0. , 0.47014206, 0.47014206, + 0.05971587], + [ 0. , 0. , 0. , 0.05971587, 0.47014206, + 0.47014206]]), 'FE3_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_D01': array([[-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0]], dtype=object), 'FE2': array([[0.33333333333333337, 0.33333333333333337, 0.33333333333333331], + [0.10128650732345648, 0.7974269853530872, 0.10128650732345634], + [0.10128650732345651, 0.1012865073234564, 0.79742698535308709], + [0.79742698535308731, 0.10128650732345637, 0.10128650732345634], + [0.47014206410511522, 0.059715871789769795, 0.47014206410511505], + [0.47014206410511522, 0.47014206410511511, 0.059715871789769726], + [0.059715871789769934, 0.47014206410511511, 0.47014206410511505]], dtype=object), 'FE1_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE0': array([[1.0000000000000002], + [0.22088075779229027], + [0.22088075779229013], + [0.22088075779229016], + [0.35637871742636851], + [0.35637871742636862], + [0.35637871742636917]], dtype=object), 'FE1': array([[0.33333333333333337, 0.33333333333333337, 0.33333333333333331], + [0.10128650732345648, 0.7974269853530872, 0.10128650732345634], + [0.10128650732345651, 0.1012865073234564, 0.79742698535308709], + [0.79742698535308731, 0.10128650732345637, 0.10128650732345634], + [0.47014206410511522, 0.059715871789769795, 0.47014206410511505], + [0.47014206410511522, 0.47014206410511511, 0.059715871789769726], + [0.059715871789769934, 0.47014206410511511, 0.47014206410511505]], dtype=object), 'FE2_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE2_D01': array([[-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0]], dtype=object), 'FE3_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]])} + + tables: {'FE0_D10': array([[3.4373799093713836e-16], + [-1.9037602159047682], + [3.9672666806617637e-15], + [1.9037602159047715], + [5.2098826648843648], + [2.1527793290222102e-18], + [-5.2098826648843577]], dtype=object), 'FE0_D01': array([[-1.1102230246251565e-16], + [3.6637359812630166e-15], + [-1.9037602159047706], + [1.9037602159047724], + [-2.2204460492503131e-16], + [5.2098826648843648], + [-5.2098826648843612]], dtype=object), 'FE3_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE3_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE3_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ], + [ 0.10128651, 0.79742699, 0.10128651, 0. , 0. , + 0. ], + [ 0.10128651, 0.10128651, 0.79742699, 0. , 0. , + 0. ], + [ 0.79742699, 0.10128651, 0.10128651, 0. , 0. , + 0. ], + [ 0.47014206, 0.05971587, 0.47014206, 0. , 0. , + 0. ], + [ 0.47014206, 0.47014206, 0.05971587, 0. , 0. , + 0. ], + [ 0.05971587, 0.47014206, 0.47014206, 0. , 0. , + 0. ]]), 'FE3_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333], + [ 0. , 0. , 0. , 0.10128651, 0.79742699, + 0.10128651], + [ 0. , 0. , 0. , 0.10128651, 0.10128651, + 0.79742699], + [ 0. , 0. , 0. , 0.79742699, 0.10128651, + 0.10128651], + [ 0. , 0. , 0. , 0.47014206, 0.05971587, + 0.47014206], + [ 0. , 0. , 0. , 0.47014206, 0.47014206, + 0.05971587], + [ 0. , 0. , 0. , 0.05971587, 0.47014206, + 0.47014206]]), 'FE3_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_D01': array([[-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0]], dtype=object), 'FE1_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE0': array([[1.0000000000000002], + [0.22088075779229027], + [0.22088075779229013], + [0.22088075779229016], + [0.35637871742636851], + [0.35637871742636862], + [0.35637871742636917]], dtype=object), 'FE1': array([[0.33333333333333337, 0.33333333333333337, 0.33333333333333331], + [0.10128650732345648, 0.7974269853530872, 0.10128650732345634], + [0.10128650732345651, 0.1012865073234564, 0.79742698535308709], + [0.79742698535308731, 0.10128650732345637, 0.10128650732345634], + [0.47014206410511522, 0.059715871789769795, 0.47014206410511505], + [0.47014206410511522, 0.47014206410511511, 0.059715871789769726], + [0.059715871789769934, 0.47014206410511511, 0.47014206410511505]], dtype=object), 'FE3_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]])} + + name_map: {'FE1_D01': ['FE2_D01'], 'FE1_D10': ['FE2_D10'], 'FE1': ['FE2']} + + inv_name_map: {'FE0_D10': 'FE0_D10', 'FE0_D01': 'FE0_D01', 'FE0': 'FE0', 'FE3_C1_D01': 'FE3_C1_D01', 'FE3_C0': 'FE3_C0', 'FE3_C1': 'FE3_C1', 'FE3_C0_D10': 'FE3_C0_D10', 'FE1_D01': 'FE1_D01', 'FE2': 'FE1', 'FE1_D10': 'FE1_D10', 'FE3_C0_D01': 'FE3_C0_D01', 'FE1': 'FE1', 'FE2_D10': 'FE1_D10', 'FE2_D01': 'FE1_D01', 'FE3_C1_D10': 'FE3_C1_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE0_D10': array([[0], + [-1.9037602159047682], + [0], + [1.9037602159047715], + [5.2098826648843648], + [0], + [-5.2098826648843577]], dtype=object), 'FE0_D01': array([[0], + [0], + [-1.9037602159047706], + [1.9037602159047724], + [0], + [5.2098826648843648], + [-5.2098826648843612]], dtype=object), 'FE1_D01': array([[-1.0, 1.0], + [-1.0, 1.0], + [-1.0, 1.0], + [-1.0, 1.0], + [-1.0, 1.0], + [-1.0, 1.0], + [-1.0, 1.0]], dtype=object), 'FE0': array([[1.0000000000000002], + [0.22088075779229027], + [0.22088075779229013], + [0.22088075779229016], + [0.35637871742636851], + [0.35637871742636862], + [0.35637871742636917]], dtype=object), 'FE1': array([[0.33333333333333337, 0.33333333333333337, 0.33333333333333331], + [0.10128650732345648, 0.7974269853530872, 0.10128650732345634], + [0.10128650732345651, 0.1012865073234564, 0.79742698535308709], + [0.79742698535308731, 0.10128650732345637, 0.10128650732345634], + [0.47014206410511522, 0.059715871789769795, 0.47014206410511505], + [0.47014206410511522, 0.47014206410511511, 0.059715871789769726], + [0.059715871789769934, 0.47014206410511511, 0.47014206410511505]], dtype=object)} + + QG-utils, psi_tables, name_map: + {'FE0_D10': ('FE0_D10', (), False, False), 'FE0_D01': ('FE0_D01', (), False, False), 'FE0': ('FE0', (), False, False), 'FE3_C1_D01': ('FE1_D01', (6, [3, 5]), False, False), 'FE3_C0': ('FE1', (2, [0, 1, 2]), False, False), 'FE3_C1': ('FE1', (5, [3, 4, 5]), False, False), 'FE3_C0_D10': ('FE1_D01', (4, [0, 1]), False, False), 'FE1_D01': ('FE1_D01', (0, [0, 2]), False, False), 'FE2': ('FE1', (), False, False), 'FE1_D10': ('FE1_D01', (1, [0, 1]), False, False), 'FE3_C0_D01': ('FE1_D01', (3, [0, 2]), False, False), 'FE1': ('FE1', (), False, False), 'FE2_D10': ('FE1_D01', (1, [0, 1]), False, False), 'FE2_D01': ('FE1_D01', (0, [0, 2]), False, False), 'FE3_C1_D10': ('FE1_D01', (7, [3, 4]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00381 seconds + Shape of reference tensor: (3, 3, 1) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [3, 1] indices = [[0, 0], [1, 0], [2, 0]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 1] indices = [[0, 0], [1, 0], [2, 0]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00305 seconds + Shape of reference tensor: (3, 3, 1) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [3, 1] indices = [[0, 0], [1, 0], [2, 0]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 1] indices = [[0, 0], [1, 0], [2, 0]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00287 seconds + Shape of reference tensor: (3, 3, 1) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [3, 1] indices = [[0, 0], [1, 0], [2, 0]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 1] indices = [[0, 0], [1, 0], [2, 0]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00233 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00201 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00203 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00305 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00319 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.0029 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00352 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00306 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00296 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00287 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00277 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00289 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00278 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00283 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00276 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00278 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.0028 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00313 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.0029 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00284 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00264 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {6: {FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None): {None: {None: {(0, 1): array([[0.63369514596092058, 0.63369514596092025, -2.2673902919218314, + -0.78379396366385989, -0.78379396366385934, 0.56758792732772056], + [2.7755575615628914e-16, -2.2204460492503131e-16, + -5.5511151231257827e-17, 4.8572257327350599e-17, + -1.1102230246251565e-16, 1.3183898417423734e-16], + [-0.63369514596091581, 2.2673902919218358, -0.63369514596091603, + 0.78379396366385989, -0.56758792732771934, 0.78379396366385978], + [3.2673902919218341, 0.36630485403908319, 0.36630485403908319, + 0.4324120726722791, 1.7837939636638593, 1.7837939636638589], + [-3.7747582837255322e-15, -2.9010854378827551, 2.9010854378827475, + -2.4980018054066022e-16, 1.3513818909915796, -1.3513818909915798], + [-3.2673902919218358, -0.36630485403908342, -0.36630485403908297, + -0.43241207267227899, -1.78379396366386, -1.7837939636638598]], dtype=object), (1, 0): array([[0.63369514596092014, 0.63369514596092069, -2.2673902919218323, + -0.78379396366385989, -0.78379396366385967, 0.56758792732772034], + [2.2673902919218358, -0.63369514596091625, -0.63369514596091647, + -0.56758792732772045, 0.78379396366386023, 0.78379396366385978], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], + [0.36630485403908286, 3.2673902919218336, 0.36630485403908286, + 1.7837939636638591, 0.43241207267227894, 1.7837939636638591], + [-0.36630485403908286, -3.2673902919218336, -0.36630485403908286, + -1.7837939636638591, -0.43241207267227894, -1.7837939636638591], + [-2.901085437882756, -4.9296699827375906e-15, 2.9010854378827484, + 1.35138189099158, -7.6450782352261042e-16, -1.3513818909915805]], dtype=object), (0, 0): array([[-0.074803807748196033, -0.074803807748195991, 0.51763234198767138, + -0.048208377815511877, -0.048208377815511919, -0.084730493093977774], + [0.51763234198767349, -0.074803807748196616, -0.07480380774819663, + -0.084730493093977816, -0.048208377815511967, -0.048208377815512009], + [-0.074803807748196643, 0.51763234198767361, -0.074803807748196643, + -0.048208377815511891, -0.084730493093977843, -0.048208377815511891], + [0.29921523099278691, 0.29921523099278691, 0.033544811523148657, + 0.19283351126204784, 0.19283351126204781, 0.79548022620090597], + [0.033544811523148282, 0.2992152309927838, 0.29921523099278657, + 0.79548022620090597, 0.19283351126204779, 0.19283351126204784], + [0.2992152309927838, 0.033544811523148269, 0.29921523099278663, + 0.19283351126204784, 0.79548022620090619, 0.19283351126204784]], dtype=object)}}}, FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {None: {(0, 1): array([[-1.0, -1.0, -1.0, -1.0, -1.0, -1.0], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object), (1, 0): array([[-1.0, -1.0, -1.0, -1.0, -1.0, -1.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype=object), (0, 0): array([[0.091576213509770035, 0.091576213509770077, 0.81684757298045807, + 0.44594849091596506, 0.445948490915965, 0.10810301816807004], + [0.81684757298045907, 0.091576213509771076, 0.091576213509770979, + 0.10810301816807004, 0.445948490915965, 0.44594849091596506], + [0.091576213509770993, 0.81684757298045896, 0.091576213509770993, + 0.445948490915965, 0.10810301816807, 0.445948490915965]], dtype=object)}}}, FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {None: {(0, 1): array([[-1.0, -1.0, -1.0, -1.0, -1.0, -1.0], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object), (1, 0): array([[-1.0, -1.0, -1.0, -1.0, -1.0, -1.0], + [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype=object), (0, 0): array([[0.091576213509770035, 0.091576213509770077, 0.81684757298045807, + 0.44594849091596506, 0.445948490915965, 0.10810301816807004], + [0.81684757298045907, 0.091576213509771076, 0.091576213509770979, + 0.10810301816807004, 0.445948490915965, 0.44594849091596506], + [0.091576213509770993, 0.81684757298045896, 0.091576213509770993, + 0.445948490915965, 0.10810301816807, 0.445948490915965]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE0_D01': array([[-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0]], dtype=object), 'FE3_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE3_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE3_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]]), 'FE3_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE3_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_D01': array([[-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0]], dtype=object), 'FE2': array([[-0.074803807748196033, 0.51763234198767349, -0.074803807748196643, + 0.29921523099278691, 0.033544811523148282, 0.2992152309927838], + [-0.074803807748195991, -0.074803807748196616, 0.51763234198767361, + 0.29921523099278691, 0.2992152309927838, 0.033544811523148269], + [0.51763234198767138, -0.07480380774819663, -0.074803807748196643, + 0.033544811523148657, 0.29921523099278657, 0.29921523099278663], + [-0.048208377815511877, -0.084730493093977816, + -0.048208377815511891, 0.19283351126204784, 0.79548022620090597, + 0.19283351126204784], + [-0.048208377815511919, -0.048208377815511967, + -0.084730493093977843, 0.19283351126204781, 0.19283351126204779, + 0.79548022620090619], + [-0.084730493093977774, -0.048208377815512009, + -0.048208377815511891, 0.79548022620090597, 0.19283351126204784, + 0.19283351126204784]], dtype=object), 'FE1_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE0': array([[0.091576213509770035, 0.81684757298045907, 0.091576213509770993], + [0.091576213509770077, 0.091576213509771076, 0.81684757298045896], + [0.81684757298045807, 0.091576213509770979, 0.091576213509770993], + [0.44594849091596506, 0.10810301816807004, 0.445948490915965], + [0.445948490915965, 0.445948490915965, 0.10810301816807], + [0.10810301816807004, 0.44594849091596506, 0.445948490915965]], dtype=object), 'FE1': array([[0.091576213509770035, 0.81684757298045907, 0.091576213509770993], + [0.091576213509770077, 0.091576213509771076, 0.81684757298045896], + [0.81684757298045807, 0.091576213509770979, 0.091576213509770993], + [0.44594849091596506, 0.10810301816807004, 0.445948490915965], + [0.445948490915965, 0.445948490915965, 0.10810301816807], + [0.10810301816807004, 0.44594849091596506, 0.445948490915965]], dtype=object), 'FE2_D10': array([[0.63369514596092014, 2.2673902919218358, 0.0, 0.36630485403908286, + -0.36630485403908286, -2.901085437882756], + [0.63369514596092069, -0.63369514596091625, 0.0, 3.2673902919218336, + -3.2673902919218336, -4.9296699827375906e-15], + [-2.2673902919218323, -0.63369514596091647, 0.0, + 0.36630485403908286, -0.36630485403908286, 2.9010854378827484], + [-0.78379396366385989, -0.56758792732772045, 0.0, + 1.7837939636638591, -1.7837939636638591, 1.35138189099158], + [-0.78379396366385967, 0.78379396366386023, 0.0, + 0.43241207267227894, -0.43241207267227894, -7.6450782352261042e-16], + [0.56758792732772034, 0.78379396366385978, 0.0, 1.7837939636638591, + -1.7837939636638591, -1.3513818909915805]], dtype=object), 'FE2_D01': array([[0.63369514596092058, 2.7755575615628914e-16, -0.63369514596091581, + 3.2673902919218341, -3.7747582837255322e-15, -3.2673902919218358], + [0.63369514596092025, -2.2204460492503131e-16, 2.2673902919218358, + 0.36630485403908319, -2.9010854378827551, -0.36630485403908342], + [-2.2673902919218314, -5.5511151231257827e-17, -0.63369514596091603, + 0.36630485403908319, 2.9010854378827475, -0.36630485403908297], + [-0.78379396366385989, 4.8572257327350599e-17, 0.78379396366385989, + 0.4324120726722791, -2.4980018054066022e-16, -0.43241207267227899], + [-0.78379396366385934, -1.1102230246251565e-16, + -0.56758792732771934, 1.7837939636638593, 1.3513818909915796, + -1.78379396366386], + [0.56758792732772056, 1.3183898417423734e-16, 0.78379396366385978, + 1.7837939636638589, -1.3513818909915798, -1.7837939636638598]], dtype=object), 'FE3_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]])} + + tables: {'FE0_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE0_D01': array([[-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0], + [-1.0, 0.0, 1.0]], dtype=object), 'FE3_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE3_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE3_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]]), 'FE3_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE3_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE2': array([[-0.074803807748196033, 0.51763234198767349, -0.074803807748196643, + 0.29921523099278691, 0.033544811523148282, 0.2992152309927838], + [-0.074803807748195991, -0.074803807748196616, 0.51763234198767361, + 0.29921523099278691, 0.2992152309927838, 0.033544811523148269], + [0.51763234198767138, -0.07480380774819663, -0.074803807748196643, + 0.033544811523148657, 0.29921523099278657, 0.29921523099278663], + [-0.048208377815511877, -0.084730493093977816, + -0.048208377815511891, 0.19283351126204784, 0.79548022620090597, + 0.19283351126204784], + [-0.048208377815511919, -0.048208377815511967, + -0.084730493093977843, 0.19283351126204781, 0.19283351126204779, + 0.79548022620090619], + [-0.084730493093977774, -0.048208377815512009, + -0.048208377815511891, 0.79548022620090597, 0.19283351126204784, + 0.19283351126204784]], dtype=object), 'FE0': array([[0.091576213509770035, 0.81684757298045907, 0.091576213509770993], + [0.091576213509770077, 0.091576213509771076, 0.81684757298045896], + [0.81684757298045807, 0.091576213509770979, 0.091576213509770993], + [0.44594849091596506, 0.10810301816807004, 0.445948490915965], + [0.445948490915965, 0.445948490915965, 0.10810301816807], + [0.10810301816807004, 0.44594849091596506, 0.445948490915965]], dtype=object), 'FE2_D10': array([[0.63369514596092014, 2.2673902919218358, 0.0, 0.36630485403908286, + -0.36630485403908286, -2.901085437882756], + [0.63369514596092069, -0.63369514596091625, 0.0, 3.2673902919218336, + -3.2673902919218336, -4.9296699827375906e-15], + [-2.2673902919218323, -0.63369514596091647, 0.0, + 0.36630485403908286, -0.36630485403908286, 2.9010854378827484], + [-0.78379396366385989, -0.56758792732772045, 0.0, + 1.7837939636638591, -1.7837939636638591, 1.35138189099158], + [-0.78379396366385967, 0.78379396366386023, 0.0, + 0.43241207267227894, -0.43241207267227894, -7.6450782352261042e-16], + [0.56758792732772034, 0.78379396366385978, 0.0, 1.7837939636638591, + -1.7837939636638591, -1.3513818909915805]], dtype=object), 'FE2_D01': array([[0.63369514596092058, 2.7755575615628914e-16, -0.63369514596091581, + 3.2673902919218341, -3.7747582837255322e-15, -3.2673902919218358], + [0.63369514596092025, -2.2204460492503131e-16, 2.2673902919218358, + 0.36630485403908319, -2.9010854378827551, -0.36630485403908342], + [-2.2673902919218314, -5.5511151231257827e-17, -0.63369514596091603, + 0.36630485403908319, 2.9010854378827475, -0.36630485403908297], + [-0.78379396366385989, 4.8572257327350599e-17, 0.78379396366385989, + 0.4324120726722791, -2.4980018054066022e-16, -0.43241207267227899], + [-0.78379396366385934, -1.1102230246251565e-16, + -0.56758792732771934, 1.7837939636638593, 1.3513818909915796, + -1.78379396366386], + [0.56758792732772056, 1.3183898417423734e-16, 0.78379396366385978, + 1.7837939636638589, -1.3513818909915798, -1.7837939636638598]], dtype=object), 'FE3_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]])} + + name_map: {'FE0_D10': ['FE1_D10'], 'FE0_D01': ['FE1_D01'], 'FE0': ['FE1']} + + inv_name_map: {'FE0_D10': 'FE0_D10', 'FE0_D01': 'FE0_D01', 'FE0': 'FE0', 'FE3_C1_D01': 'FE3_C1_D01', 'FE3_C0': 'FE3_C0', 'FE3_C1': 'FE3_C1', 'FE3_C0_D10': 'FE3_C0_D10', 'FE1_D01': 'FE0_D01', 'FE2': 'FE2', 'FE1_D10': 'FE0_D10', 'FE3_C0_D01': 'FE3_C0_D01', 'FE1': 'FE0', 'FE2_D10': 'FE2_D10', 'FE2_D01': 'FE2_D01', 'FE3_C1_D10': 'FE3_C1_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE0_D01': array([[-1.0, 1.0], + [-1.0, 1.0], + [-1.0, 1.0], + [-1.0, 1.0], + [-1.0, 1.0], + [-1.0, 1.0]], dtype=object), 'FE2': array([[-0.074803807748196033, 0.51763234198767349, -0.074803807748196643, + 0.29921523099278691, 0.033544811523148282, 0.2992152309927838], + [-0.074803807748195991, -0.074803807748196616, 0.51763234198767361, + 0.29921523099278691, 0.2992152309927838, 0.033544811523148269], + [0.51763234198767138, -0.07480380774819663, -0.074803807748196643, + 0.033544811523148657, 0.29921523099278657, 0.29921523099278663], + [-0.048208377815511877, -0.084730493093977816, + -0.048208377815511891, 0.19283351126204784, 0.79548022620090597, + 0.19283351126204784], + [-0.048208377815511919, -0.048208377815511967, + -0.084730493093977843, 0.19283351126204781, 0.19283351126204779, + 0.79548022620090619], + [-0.084730493093977774, -0.048208377815512009, + -0.048208377815511891, 0.79548022620090597, 0.19283351126204784, + 0.19283351126204784]], dtype=object), 'FE0': array([[0.091576213509770035, 0.81684757298045907, 0.091576213509770993], + [0.091576213509770077, 0.091576213509771076, 0.81684757298045896], + [0.81684757298045807, 0.091576213509770979, 0.091576213509770993], + [0.44594849091596506, 0.10810301816807004, 0.445948490915965], + [0.445948490915965, 0.445948490915965, 0.10810301816807], + [0.10810301816807004, 0.44594849091596506, 0.445948490915965]], dtype=object), 'FE2_D10': array([[0.63369514596092014, 2.2673902919218358, 0.36630485403908286, + -0.36630485403908286, -2.901085437882756], + [0.63369514596092069, -0.63369514596091625, 3.2673902919218336, + -3.2673902919218336, 0], + [-2.2673902919218323, -0.63369514596091647, 0.36630485403908286, + -0.36630485403908286, 2.9010854378827484], + [-0.78379396366385989, -0.56758792732772045, 1.7837939636638591, + -1.7837939636638591, 1.35138189099158], + [-0.78379396366385967, 0.78379396366386023, 0.43241207267227894, + -0.43241207267227894, 0], + [0.56758792732772034, 0.78379396366385978, 1.7837939636638591, + -1.7837939636638591, -1.3513818909915805]], dtype=object), 'FE2_D01': array([[0.63369514596092058, -0.63369514596091581, 3.2673902919218341, 0, + -3.2673902919218358], + [0.63369514596092025, 2.2673902919218358, 0.36630485403908319, + -2.9010854378827551, -0.36630485403908342], + [-2.2673902919218314, -0.63369514596091603, 0.36630485403908319, + 2.9010854378827475, -0.36630485403908297], + [-0.78379396366385989, 0.78379396366385989, 0.4324120726722791, 0, + -0.43241207267227899], + [-0.78379396366385934, -0.56758792732771934, 1.7837939636638593, + 1.3513818909915796, -1.78379396366386], + [0.56758792732772056, 0.78379396366385978, 1.7837939636638589, + -1.3513818909915798, -1.7837939636638598]], dtype=object)} + + QG-utils, psi_tables, name_map: + {'FE0_D10': ('FE0_D01', (1, [0, 1]), False, False), 'FE0_D01': ('FE0_D01', (0, [0, 2]), False, False), 'FE0': ('FE0', (), False, False), 'FE3_C1_D01': ('FE0_D01', (8, [3, 5]), False, False), 'FE3_C0': ('FE0', (4, [0, 1, 2]), False, False), 'FE3_C1': ('FE0', (7, [3, 4, 5]), False, False), 'FE3_C0_D10': ('FE0_D01', (6, [0, 1]), False, False), 'FE1_D01': ('FE0_D01', (0, [0, 2]), False, False), 'FE2': ('FE2', (), False, False), 'FE1_D10': ('FE0_D01', (1, [0, 1]), False, False), 'FE3_C0_D01': ('FE0_D01', (5, [0, 2]), False, False), 'FE1': ('FE0', (), False, False), 'FE2_D10': ('FE2_D10', (3, [0, 1, 3, 4, 5]), False, False), 'FE2_D01': ('FE2_D01', (2, [0, 2, 3, 4, 5]), False, False), 'FE3_C1_D10': ('FE0_D01', (9, [3, 4]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00236 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00221 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00244 seconds + Shape of reference tensor: (3, 3, 6) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00187 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.0015 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00182 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00153 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00172 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00152 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00169 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00155 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00255 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00219 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00252 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00219 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.0025 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00231 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00277 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00222 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00251 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00214 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00255 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00247 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00261 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00241 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00272 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00239 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00265 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00244 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00356 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00405 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00471 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00364 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00289 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00235 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00272 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00238 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00514 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00307 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00272 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00231 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00275 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00229 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00259 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00226 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00259 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00224 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00264 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00236 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00268 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00242 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.0025 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00214 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00256 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00213 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.0025 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00207 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00241 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00204 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00237 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00217 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00247 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00249 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00266 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00218 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00248 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.0022 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00249 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00213 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00251 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00213 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.0026 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00221 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00264 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00222 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00306 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00388 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00438 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00393 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00262 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00224 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 18 entries computed in 0.00258 seconds + Shape of reference tensor: (1, 3, 6) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 9 entries computed in 0.00211 seconds + Shape of reference tensor: (1, 3, 3) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.000698 seconds + Shape of reference tensor: (3, 3, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000684 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000994 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.00177 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.00169 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 3 entries computed in 0.000634 seconds + Shape of reference tensor: (3,) + Primary multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.722986 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + Optimising expressions for cell integral + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + Optimising expressions for cell integral + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + Optimising expressions for cell integral + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.0103931 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 6 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 6 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: det + Removing unused variable: dx1 + Removing unused variable: dx0 + Removing unused variable: v1 + Removing unused variable: v0 + Removing unused variable: edge_vertices + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.366092 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.00279093 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./AdaptivePoisson.h. + +Compiler stage 5 finished in 0.00198698 seconds. + +FFC finished in 1.1872 seconds. diff --git a/demo/documented/auto-adaptive-poisson/cpp/documentation.rst b/demo/documented/auto-adaptive-poisson/cpp/documentation.rst new file mode 100644 index 0000000..1d412d9 --- /dev/null +++ b/demo/documented/auto-adaptive-poisson/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the auto adaptive poisson demo from DOLFIN. + +.. _demo_pde_auto-adaptive-poisson_cpp_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/auto-adaptive-poisson/cpp/main.cpp b/demo/documented/auto-adaptive-poisson/cpp/main.cpp new file mode 100644 index 0000000..4d616b6 --- /dev/null +++ b/demo/documented/auto-adaptive-poisson/cpp/main.cpp @@ -0,0 +1,99 @@ +// Copyright (C) 2010-2012 Anders Logg and Marie E. Rognes +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2010-08-19 +// Last changed: 2012-11-14 + +#include +#include "AdaptivePoisson.h" + +using namespace dolfin; + +// Source term (right-hand side) +class Source : public Expression +{ + void eval(Array& values, const Array& x) const + { + double dx = x[0] - 0.5; + double dy = x[1] - 0.5; + values[0] = 10*exp(-(dx*dx + dy*dy) / 0.02); + } +}; + +// Normal derivative (Neumann boundary condition) +class dUdN : public Expression +{ + void eval(Array& values, const Array& x) const + { + values[0] = sin(5*x[0]); + } +}; + +// Sub domain for Dirichlet boundary condition +class DirichletBoundary : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS; + } +}; + +int main() +{ + // Create mesh and define function space + UnitSquareMesh mesh(8, 8); + AdaptivePoisson::BilinearForm::TrialSpace V(mesh); + + // Define boundary condition + Constant u0(0.0); + DirichletBoundary boundary; + DirichletBC bc(V, u0, boundary); + + // Define variational forms + AdaptivePoisson::BilinearForm a(V, V); + AdaptivePoisson::LinearForm L(V); + Source f; + dUdN g; + L.f = f; + L.g = g; + + // Define Function for solution + Function u(V); + + // Define goal functional (quantity of interest) + AdaptivePoisson::GoalFunctional M(mesh); + + // Define error tolerance + double tol = 1.e-5; + + // Solve equation a = L with respect to u and the given boundary + // conditions, such that the estimated error (measured in M) is less + // than tol + LinearVariationalProblem problem(a, L, u, bc); + AdaptiveLinearVariationalSolver solver(problem, M); + solver.parameters("error_control")("dual_variational_solver")["linear_solver"] = "cg"; + solver.solve(tol); + + solver.summary(); + + // Plot final solution + plot(u.root_node(), "Solution on initial mesh"); + plot(u.leaf_node(), "Solution on final mesh"); + interactive(); + + return 0; +} diff --git a/demo/documented/auto-adaptive-poisson/python/demo_auto-adaptive_poisson.py b/demo/documented/auto-adaptive-poisson/python/demo_auto-adaptive_poisson.py new file mode 100644 index 0000000..54c241b --- /dev/null +++ b/demo/documented/auto-adaptive-poisson/python/demo_auto-adaptive_poisson.py @@ -0,0 +1,64 @@ +# Copyright (C) 2011-2012 Marie E. Rognes and Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2010-08-19 +# Last changed: 2012-11-14 + +# Begin demo + +from dolfin import * + +# Create mesh and define function space +mesh = UnitSquareMesh(8, 8) +V = FunctionSpace(mesh, "Lagrange", 1) + +# Define boundary condition +u0 = Function(V) +bc = DirichletBC(V, u0, "x[0] < DOLFIN_EPS || x[0] > 1.0 - DOLFIN_EPS") + +# Define variational problem +u = TrialFunction(V) +v = TestFunction(V) +f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)", + degree=1) +g = Expression("sin(5*x[0])", degree=1) +a = inner(grad(u), grad(v))*dx() +L = f*v*dx() + g*v*ds() + +# Define function for the solution +u = Function(V) + +# Define goal functional (quantity of interest) +M = u*dx() + +# Define error tolerance +tol = 1.e-5 + +# Solve equation a = L with respect to u and the given boundary +# conditions, such that the estimated error (measured in M) is less +# than tol +problem = LinearVariationalProblem(a, L, u, bc) +solver = AdaptiveLinearVariationalSolver(problem, M) +solver.parameters["error_control"]["dual_variational_solver"]["linear_solver"] = "cg" +solver.solve(tol) + +solver.summary() + +# Plot solution(s) +plot(u.root_node(), title="Solution on initial mesh") +plot(u.leaf_node(), title="Solution on final mesh") +interactive() diff --git a/demo/documented/auto-adaptive-poisson/python/documentation.rst b/demo/documented/auto-adaptive-poisson/python/documentation.rst new file mode 100644 index 0000000..dfc469b --- /dev/null +++ b/demo/documented/auto-adaptive-poisson/python/documentation.rst @@ -0,0 +1,151 @@ +.. Documentation for the auto adaptive poisson demo from DOLFIN. + +.. _demo_pde_auto-adaptive-poisson_python_documentation: + + +Auto adaptive Poisson equation +============================== + +This demo is implemented in a single Python file, +:download:`demo_auto-adaptive_poisson.py`, which contains both the +variational forms and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +This description goes through the implementation (in +:download:`demo-auto-adaptive_poisson.py`) of a solver for the above +described Poisson equation step-by-step. + +First, the dolfin module is imported: + +.. code-block:: python + + from dolfin import * + +We begin by defining a mesh of the domain and a finite element +function space V relative to this mesh. We used the built-in mesh +provided by the class :py:class:`UnitSquareMesh +`. In order to create a mesh +consisting of 8 x 8 squares with each square divided into two +triangles, we do as follows: + + +.. code-block:: python + + # Create mesh and define function space + mesh = UnitSquareMesh(8, 8) + V = FunctionSpace(mesh, "Lagrange", 1) + +The second argument to :py:class:`FunctionSpace +`, "Lagrange", is the finite +element family, while the third argument specifies the polynomial +degree. Thus, in this case, our space V consists of first-order, +continuous Lagrange finite element functions (or in order words, +continuous piecewise linear polynomials). + +Next, we want to consider the Dirichlet boundary condition. In our +case, we want to say that the points (x, y) such that x = 0 or x = 1 +are inside on the inside of :math:`\Gamma_D`. (Note that because of +rounding-off errors, it is often wise to instead specify :math:`x < +\epsilon` or :math:`x > 1 - \epsilon` where :math:`\epsilon` is a +small number (such as machine precision).) + + +.. code-block:: python + + # Define boundary condition + u0 = Function(V) + bc = DirichletBC(V, u0, "x[0] < DOLFIN_EPS || x[0] > 1.0 - DOLFIN_EPS") + +Next, we want to express the variational problem. First, we need to +specify the trial function u and the test function v, both living in +the function space V. We do this by defining a +:py:class:`TrialFunction ` +and a :py:class:`TestFunction +` on the previously defined +:py:class:`FunctionSpace ` V. + +Further, the source f and the boundary normal derivative g are +involved in the variational forms, and hence we must specify +these. Both f and g are given by simple mathematical formulas, and can +be easily declared using the :py:class:`Expression +` class. Note that the strings +defining f and g use C++ syntax since, for efficiency, DOLFIN will +generate and compile C++ code for these expressions at run-time. + +With these ingredients, we can write down the bilinear form a and the +linear form L (using UFL operators). In summary, this reads + +.. code-block:: python + + # Define variational problem + u = TrialFunction(V) + v = TestFunction(V) + f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)", + degree=1) + g = Expression("sin(5*x[0])", degree=1) + a = inner(grad(u), grad(v))*dx() + L = f*v*dx() + g*v*ds() + +Now, we have specified the variational forms and can consider the +solution of the variational problem. First, we need to define a +:py:class:`Function ` u to represent the +solution. (Upon initialization, it is simply set to the zero +function.) A Function represents a function living in a finite element +function space. + +.. code-block:: python + + # Define function for the solution + u = Function(V) + +Then define the goal functional: + +.. code-block:: python + + # Define goal functional (quantity of interest) + M = u*dx() + +Next we specify the error tolerance for when the refinement shall stop: + +.. code-block:: python + + # Define error tolerance + tol = 1.e-5 + +Now, we have specified the variational forms and can consider the +solution of the variational problem. First, we define the +:py:class:`LinearVariationalProblem +` function with the arguments +a, L, u and bc. Next we send this problem to the +:py:class:`AdaptiveLinearVariationalSolver +` together with the +goal functional. Note that one may also choose several adaptations in +the error control. At last we solve the problem with the defined +tolerance: + +.. code-block:: python + + # Solve equation a = L with respect to u and the given boundary + # conditions, such that the estimated error (measured in M) is less + # than tol + problem = LinearVariationalProblem(a, L, u, bc) + solver = AdaptiveLinearVariationalSolver(problem, M) + solver.parameters["error_control"]["dual_variational_solver"]["linear_solver"] = "cg" + solver.solve(tol) + + solver.summary() + + # Plot solution(s) + plot(u.root_node(), title="Solution on initial mesh") + plot(u.leaf_node(), title="Solution on final mesh") + interactive() + +Complete code +------------- + +.. literalinclude:: demo_auto-adaptive_poisson.py + :start-after: # Begin demo diff --git a/demo/documented/auto-adaptive-poisson/u_refined.png b/demo/documented/auto-adaptive-poisson/u_refined.png new file mode 100644 index 0000000000000000000000000000000000000000..69489da331505d85b07408530e0685fa8acb760a GIT binary patch literal 39800 zcmeFYRZyE>^fnqO#fn35cUs)t3GTE=Deh9V1a}C9pv4`6mKKNN6n6<$+`YIvU-+Hx zKXc~HnR9h6znNTQCwbp@`CjXJcD`w-$z!6Eq5}W`OhpA*EdT&f4*)=jLq&vt@~Hc5 z3;>`8D9TFdcxE27I#se+e_g&6{deeBPOX4QPeMb_8Alw^=Rr+K)5-oyn({5AH?Ckf z6#KjDh~!9jd9|Iwfh%5HH@&t;7={((P>^H;(OhQQGm}8Y(9+}w-a=kw66!&}hwsv*-OXX+g%1upd6nH$-pCttGnr6Zub{QOUT@TXA?C+m}yue^BW+y zCt!((e4)5wA4I%F0 zmBh)boW}#}fDHlvje}^3n-1({|NFz7+hJ?C4#)r}uc1%=w@xq(WMk+-2fS2^Di1*6=?^3vMG-?2a7kS14p3c>C#QpZCN_py^`{l*Yte+2Z zFyA7btP{20L_7Iz+XyUc_ZmvNKWZLZdJ)P=SA2tH4B-6y zc%9Swm<3wCeKFxsMb6z+arRkaab_%0QwwucC3EDu>(+VBvuNP^iWb-Av;DFP%o)2OD6k-oqc&oe!T;Q%J($N zSaj^XRJ+*dEFmScov6w1KaU8qmN#yvZ)|M9Wjp@m6&6s} zaGZEe$oOaIi!f)sOTT;5nge=@<655X{yncrJb4p8WCH3c(gfUHzu+yG}wDa5tIrl=6ILoLzOsSK&3%{`mX(s>&~K zCWS0ND%Dw%X!?VNb`O4||`u=bG)1|~sh{Vlm2=>!m#q-^--^<>k(a+l} z4;gToeI%YvW82|kJjPSq##@V@r%^rb%2zZWHT6A&v2*PZGiZk>vkzuL17=gf|b^UniPM!65{X9zRmhtswt#)V=^Q}^izDKZc;o_#NUryaWlqZ z$*2feHlp4`8A_y4>t)*#eik4a<0IPu(}1f%yv}v99PH-`#yqaCqjA+te^7<`D*-e? zh@)B^f57DE)Uek*$+DopxC!S>3XbRd!YH}ZBo=tpJMVXDYb22@tR|6)$BCCF9+#5- zvxtk$c4Jk;iPW?BK`#`&*_k;%@CakYZZ?Yg%d<~mgxqO_@0~f34r)?$Qsn9aov@#9c{7+X7T`mxqoOpPi^`s1&%ZTN4BrgPd-?~7~Qd<8dV)__{j24 z_wOZUI3DJhBb77Z$>lkG(;iSy(lNzfYdI&?DfSgBiq0KZ6s!p-(cr^%#>J>I|3OV( zxS|8-cLyT^k}XpJ2U(N!C_FI=2O^Tgh!KCE6j;nO>EXUOB|ZswoctCn^<4CfyG( zHCdoMi32dfeIq+)Y7v*Lty>iy6&>L3)fQwq46&76Y8JbxZd#=4S7UA%5s<{Bkn{mjb~{v zG^Vqz7mJRTIDdCgk{XHVr)BjpZBP_#IIwfoB*hTWNF@6({>*K>dj63h1uN%f3Kr(u zxFdRhbCARk+G9Deuu=sbFCmbwl-e(iAV;?jWSRIhwd3w#)izv-8#XO$NZ|5~;BJPQ zd<10fu=O|@Q=Lr^SQ4ek_A=@& zZrab-a)NOf3#X4K6Y^K_pT;aG^5&aB=EhhZbKB|5b|Bvq`+QakOs%x%RN`6x%Xv>a zjk;n!K&pzuBBlOmoMOsAiWt)}dEP7L0(Rm4<$fr0hz~u_Y5xeCOFM*~)GqvSr4;z9 z_0`fO%RcRbLOIQL%pA=`*c>dVaich(cC+#ZdFT3RH&|`^@hU?tr?on?vZ3I%%D6Ef z7c&(#WHl8P@q3UK9ppre6d{j=jHk9Kc zs2Vf4E3?$6kq<86Kb%QE>*$eh($R(}-R8!ocR~ozyT&5Re>P)-Y!s*g8Qj{yVEfsy zDsVI*dM1SfuC|3<=#rb)(ap4g|6Z^kx||Ebi%)rO$=Yv1Z9AvNOG*)H(mMjJGIpuQ z(+vv#T&P6Ta61#%Q`3x;dcjnYv1&ABu>p~sdDrl&mi8zoWSCnTY(6)Jiit($dKv`` z-d%Lty6J0FE)XHF{&rOAyT*7(Q>Y?0JghYlMoGAa!8go9{y^mPupagx8@b-{QumoW z4>^pc(@D8hO>}Ea-|**|*F96yjhiO2>GR;8FO=yQ4LH|g*FkpUHF75Prux&R2v^@1 zaof_5vcfv*j<5K&N=9_hjS~sZPg11IM(dKlXrXwk3)mh6iCl~x#j}JgPfm+~fXJ!^ z(}FG!oS6p{Si?Na&)7;>QBFwy*KP0FH;0xU65T?H;T1+XSofJqm#k7G@=TnBiv+^` zM$Rx=Iwk=PDvgKy5vD1{6>I#N z;1A1NE?F+&sa&}-(km<~*VLK3u8v1aERQ~443vPKfcuBA$L`2=E_lZz=>Fv~%|1Pk zuMTZDoslm;ZI@G9P)`1Hu7O2IDrugOU%^PV3q(^Ktl7YyqOWC6U1EPIC@fskAqRBQ zRG3em-Y6h%vQ|Fg-@5y771wShWh#sLP275HLT`?OeZKYznzjQ=8W~`b#aiNFPt`A? zz`DXB>G~ynU5m;v%Hu6hv@?0LJ0|XFDqffGiP1<9>f973uR-vs?Y_9&9!UB?d}J5B zMAP51YXl4#qf-SE*K0N|sqGHg)AX%0*JbEo9_|{l}fCUZ)S+F*yd^q+1(o(AdURS+@YclM`v){dbp2FJ3$f( zy4a|to+BP8jEe5>UG5sE$7n-gO6R2N^6))+zUlUdJfFloy9P;&=QsR>_Z#fI0c%u? z1y z^lFKP0@JT4I0^|iL)*Zp5=Lice~^I;y>aTtyPx$tslLo+CsBEQ$wJI|O1FR7@DT@f zh%e?h_`aACXXVU%MU)~<8CC?LBw@8_)(LJLVzri1h#OF7Z0aK8aUq~~ZW+7KI^?j__263& z)y4GFD!A%^1;H2zz8jB)B+=imo=w56~lZ@>4)`$oe8}c`qy23oI|b$+ex%bw?hy z1L=-y)UG``FawQd!F(n=uslrL`}||QwyRwUn=5mwa)dxf*Mixwpcse0+#({*q8pyE zUcIN3#n-bS@?&#$yv)?FgL7Js;_sg`&F}DFVdaaiS&TtnTQO*3uV;_>KqEC*ed*Wp z$1steDSx7vSXh={xX8B9r|PfrIW%DFOEJ^bSeVEiCE{Jx6qf`mjz6o=Hn@kA*Sw7* zk3B`T_{O**REe)DI4c0u?ww39;iTPtNtw2Ysu?inX=Iz$luJVs-esVsPoU>*C zFI&5MoHKzIT%_X`;dW$V8fbv}p@!12>a5F+13Z)vA^N5eAgN8mw&lu2Av1_E9c%V;Hagw=8gO`+)VMsPuOF1+x0RTiyqaCJii$;Ot!76(SQQMItv3BiNh8! z*$Wl~s{7ji_}U1x^!3{*s*TFrEW?z9A0UEo+{ODzff*>?@gwcxT=a3yKWr& zJoAD(39R^@!@-4X)s+j?*tOGu)s8-iaG(3gmWLm17mTb?m4e2iTTZ@ZbvC|?L@=ok zlOr`LHNLyd$)w@&YmM)?)Q@_OX71xL6F1^RigYG)>IE`7vFVYVn+k_DcEQ6^AxO-? zh>>d&sp0u=!;J$6sXxm=fD^UG1{~_*#IfnL zRuk`ceR?#C9f0$wY(m_DQj#lRBArx0305>eY_)@82C7G`4GQ#v2D)og?frcsv7TnX zC(!dvi~n6um}&M7w*N^8+(f#lWPk(^9J_);Ne`37>N&z+^K&k9p7wJ5*YR_1`krs7 zoCN%r{uy02{cSyhwakcJFS=b$>l%ZW%nz)d*N@iacj3F=d1qb4Ex(AI5SnL7yp3iK zwf**z=~R^iEl@F#gnE!+AmRwI#D>e96E9Rod@{GBGhA1pS1j~O5Kgf)HQlmu*F1u=;}-+_s6Gf!!&N@d z+!2+Zpn5)~GX6UKLEWjqHuA z@{H#%2DV~H;mE%7DR9@426?2UVep24V@51KA^|H7r%J`~NsY7vC5c$kDX&aX+1KUY z>3si}h{ny)l%pblw|h>nI{$CJ2YdgdH^W&IV#4`m&S( zTHfb}`2Tc{cFp&;n6yY|MjFxAQ+x&CvQTon2~vFZnYTJ9E~}d9p@+=Z$@rnwhw7d~ z$|djSVMhXcb?|+~VtLEmei?%A+8b+ri-2vOoZGSITL}sCEuWS9WulhV*Rk7mM~yq# z61U$ayn1=EU5;C?)8}3)M!=c+)4=b5``-bF@&N-H(t4uFhF|ZEYoW;>wNb7rDW=!r z4tIS_gVVe~_+mN;fzVg{KmO5zdaLmvQ{3{5s@+2G5Ec7bspgN}7Lla1kUrz(juuJ= zOVbb9BpS++yU+zmdg6o6FyC_;3`0sxQQ`*Dl>J)0#U(yN6I5??j>+%CL%k#rBTXNo z*U@`dXxDhoRw-z00db1;!629Xv9p*;0wF01_ELQON+MYcDrXvD6xoX@1$@kz;aE8o zpMZyeOJ0dz;O8#uu}R(h20$FsI~>BX9o@|r82Qu6-OP2{b!)8Eh7Vl-AQZ}*(ww`} z1*i7Mm-l<{ENQ<;d7AhPTDttTa`(&l64%%a-o(U`sC&+hco1YO-5hvWa1Jz+Drkdx z1HaAjaX~G8^yx5>8)d@Bv7;>Ttu0D4nZ>7)06+v`}5GBv5QbM0%|N(Z>`rX>h*Y5jW=c*^?R^51HwC-a4q2e#Cna zT+Cc#oRYQC2<{YUrhDCJhP`Zwf6p3}-hrI+7L5B(`zEMGN6C~l*z6SrKWwS7tJGTJ zLk&g1wuIRBO5}RN78DL4zBf9Jda|uw1|9a$4X*jj#T@-H;)lI<6Eqn?Dt!eD z#Xm9cS^Z2$%y(I1V!CfiAltL%lt=YS!3S5* zEEMuF-*75k13aep?%#&yu~4r6*Y9@UHH4G@c9VcZ>mzcCpWWbB7j0^N;pq4AR&_*K z;qWMM=;LMHLFL!_ybrnUbPbE+QCrpM6n&Kp(|4-Y?zZ5)v87nLnA(u|L7zT^4O%e> zYKzvDK!jJgF~{Fa9(@#`hhOcNzbUuMTHw&FnE43y<2ZKf>T3=`adB~BVebohA7t#` zO35tj0hFL~(5XVEg7gyK8xid*ORgS=*D~AQ3E~zQ1!KV>KwR-515`qlU3OthS_CGR zgFUW<<({wxHiP*}y*g}#z9I}s%jXiFE zej;;fIkgvgQVxYj!oT&%od5yz$jG!Q#aFMbIz&mQ=#sSKDfWG4;}u;6LaHyuwgO2Q zZj2lVvgAXo7IzUUP$CDX^8} zuRo5wr;xa{>JBXpREHf>rKrv?$oyOBSQ&tldz&?iv|4rq580LCr!c}#A)<8gG?D3V z(SB?2e;h&n!6s7>A7ByO=LJKZd*_n|%yGr#+He7FOkPxuJv$Ao6^_>ZH4;&sgoF13 z8BT3p`nO;>%V6bkSob&koF(7{CE%nwrS+h>?O*fqWjRQ75}FhUPy7|{9g&sWs#rgV z_nGb2KJB2bB;94_E==RGPYnbOH~h9Px32pOMu-{tHGEC6UnYka{dm5HMhviM=G*LZ zNoCWxifiX*iq}wq&ts_luvg^MZkah#x%x<9@mrgIqj#s3p836B_JD+bW#-AIqJGQf z;xjGAZ=O0&XGOMK?~G2ny{HCQ^a*e~WlY3pd=1Wx#LdNl65*iXzT1ki-M;<4GyQYh z9#@HvIk4+}pOL;ZA>F$wPLGA_U7s7HHeHG2CSRa?=&AWFYtEXO^_#M;>j~D_hCPg& znpQFvq0L4N-5Z6P3GVkiviPgKux?~~6a10J@2cyY9_UwsYJXS8v)vzi9%J4bXG5XT zg)hyAY;X>39V_Xg{&(x)%qJ(zc%R)o@G`uZvMoG!P(5_KP)S5>Ct=6_*Ug~jC1^mN zZu{MI&ci0t%G1?v4*P8{{|&O0n|=7Fu$^tgYB<#I8%^%_Z>VNN7gXCnhqCKhrHM5% z`pwn!BRhb1unY2?FP|i@5|It4a1e%!YlZRlvX%CTC|p&7(2*rg(rDv)0`(G8MpN9p zG-YQ(9FuzXS}0pX43kFIFDxYfcs|7<)f0WDWn5LY)n~K#r=N8_a(=8ql%-b{q9U_F zc=n>_X}hZy5J~K=L=h2WOQ95@sB(*l6~x$O-Uj=SbuAVf$9<|AOO=c{+!^ut2i*cC>zeD?xgTMZVf0xg* zuUQ=}k6N#nMUEQigd_a+wR61ZhKxMmG1az)>2w2nK3Z`EoxzFH-J$luoagg^Cno=O zrk4iI?*dBI`gpY<0qv6fYsasEPQK>)ZyQOGr8&lbVFbj9Lx+$~MVnLc%>vPNEwVgE!u>t8H$c z5YEXRb(X3^uxQ{$8J^wnAOAXr zw>vM4XWzD?p$?onJDuhdd;CbL>JY>4hN8Bv=CF=c8?(*-ZQDG$Pa*^0#MY0;N!~8yVNf&n3x(wX6re{v9XC`oWz*RH3%NZ7E=TF3M70Z z6!=o{$!vTX9fo`3QF~`vU>_^xPSgR4-3Zt@4N|t7cgh_KqH?3(N0g#ZuHTiu@1+7r zi0-BdH?8hHkIrzUd#l5pP7}-Zd7_xZ^U~N91-|hROEvkS4${nxSgdwA4~_juG7bB^2^X9vlc(Csgn z5pi!rDp=GP4x^r5AW&{Xma*&+TZ&c^=eq8m-sTT1J8qrn`AL=kph{m z)Q@T9r>Wy6s+nnN#|5wO-(o1Y6Fa!7`avUx)C*Y6Sh`c&k?KDTFhrzY&t<5Rtyq)R z4w_-mXvxY&VNAGqDzhLb?*#TL2+Ps&xte^s)8vY0$1ZjgeK(%J*=}3C$0D%bV1N8H z?q}Qu+C%)aH)bPV)2HWxrp48{UTuae5k;+Qv<&r#{znK%e#2ufjf9X|D!-L6yX*5C z%{g{Bo%bsctTFP1knaqs0L%Nw=khdMc5N%R+;w!yiUHhL=VCbDO0YI2a0t%#OcB{x z_`}6N0tZ#lzvacI8qWu356T#CMC>hz>MJp0P7f#9mk-xdT~~Khuf}&FMnF9@H4&?s z>-b|PIS-RD|5jRB^hgG$a-_u=h7F|+Th8C~19(jcS@(Ggu|(v)4n$bZiYV3MxiueG?}ylM7YK=Qpwjp~2I=eN z1yW>M$h#HmKOB!>WWhWC4`ew(@edpK8rT|9w1{z{mmC)A$|RyQjE;E*8RARm|0-3f zd-Wiyzxjjr*GQHNlEhUOev#zfK7ortBNijN{U4$_x0aMVh>7Q9PYK9i}UL}{=9BRrR+lTG5`tp zM=bwROd~O_Zh45EQXZ$)C1M&<{;Hy!UwRF>C7GhA!Z0gH<2<93k?^JWd)I8j@igY( zGr}N@3J@>8VOx`2*?AqHInqxtg1WBYv*$xx3)#ec@AjlMxMoME#YM!D9uO{#J1z9B{hM zOdFfsx%B;{flMmU*k`3;J@;kmrT7)*<8nBKW-)-ol0%||TEdF^BYi|x=BbZa^o1JS>1-R^jcP)w} zBN!y83B@GV$r}K^@FP4M%zJRpuihI{LqlN~4lJ`{`@YCRioPZsiIgu$e=KmR!dRgY zcvrp5#5;a%qW$g{cq{dIGK-fD7godCefc&7w&ruLXxFVK7YEx#Dd)t0O-xO%=HsN^goZV;)b6}CVdvQ+;MPPc|F?q**i8DUOmt8fHIxqTX5UX{ zd!W#H6V<;Bvl`E2INIlYMR8=4T>8E1OarBO%}ALpHeGBXS8gJJ=(ANG`h~us(fbLl za1jC;2dJHyJ+<9;7HE%glZz`b5yDO#b;=XmK!EBUNhR;h7D@;Z#Wy|UH%X1fVbmV2 z_*==6MmmY%S89mSI6rk*Xy!!OvnxvZ$&MI0vf9NhvlDTr$YaLoBAP}X!s}bmDyydY zQ4zP^pWP+AP;`D8^4f+DanGKgh0M&5+on>Kn3OK#8}Mr`iAAcMeL4o#MXA_r+CH2J z>w79Zf2*_!)An)~i)}+ADDHa|d}X8lMWD6l8Rj!O8ATY2hFz0j899U)?oQk=5C{?W z-cUeAOT+2GWeJ7s&Ht0G*$oUP=PBc@SHT$Ahta!*){*C$klHoteZsiZ8hh`{Z~1CU zp7Z@dPiriMSnfexxjmI3QUF|8IAV=_N#h_1!BWe>Gt-lgLSGMMm>2X;vn!bV;!WHu zLm?bb``cpE`MoU8-{b<9etvf@Ede_F8R!bc^a47U=qf9OUKqnb!@N)qL?8b6&_Icu zJneE(MfJ&GI#iJYPVr9iTjgsHYhh_-V$_&(_s_C0dE2XdC*NV9+!>w2$DWI_Tf*#D z*>_g6xHRHNB!T0UIReIq=(TjRI}77KseHwtQ-G{S$`Vg5?G<+NFl2GIY_Ze64lS z-Q=>2G(kOcCcc>kO4>u3Bl+`0iqN>-Lr_0U1+;vAJUDrlmW&-;FRpuDr1QsINLt03 zoCeqw1FEt*j|Os0bOC_OL!J2zhm#Hbqt$#*BzWm{QY$7{jrOm|R2#m@_M)ZV;$Z{dCP4^%I1pq0olx0RL@y+jUnY6kcYfo_=py0YMAqcf!z7@*H4xM3?IZnkuO|k78 zm1Z3mDN3Hkbd$FSaDm%XNW>4sBavlN1&dTos&W`C8hboZkW3>w-`MifDg=~-JGtp? zm&qqu%MypN7U-2p5szAuh5Iz9n?^#>3JFZY*-=wTGo3Mo+)Jdmw9QcvJVm`x%4^HA zU&*cw@wVyQQfzGGB*|Me!xlUQ+R`W|Pz4Wkewc_LPJMZ>e_Vb(FT0;0LII+go+c^W zkM;N0(37bC(LyRns{$}h2qj;EvD@{#8z7;pLg86RO(w2|f?M4TGKpdeQT4zwKJ3r# z4$u%pu*lS3kKFDe-|Q}@vMOaumpsEk&DM!KLpC)&?b-**X01B~usYA*Vs;!PZSk!n_mhwz7 z-i?)aT6px!)+!{t{=`d>6vihcT4?`B+xP0!V*g)vh`A zuP{xlxO7_PcR2G1D(&_y(Y7dh==2VBkqSgM>^|u9pEhlxGl*2iJP#kzjQv%fXd|5z z;5ouEw2wf($6Tc)MsBY$_O7;t@vgrzFqOvyy3hWaFJF~}0s@n#BX2+>WPf{+hJj{j z;ZhI_oL7FgB`Aq1bYiB*Ny>l;<@2x_!9cNM+;*N~A+1XSvd$Ib&N$dV_M1J+^)y~X zu5fLXBg0LqdYpssD!(ZkI_qZ(JT`pR`>2L*&~*Ud6d9)O?2U{4c95sS6_uK59kGh^ z*IBPTEiZEBE4rJgme|I|>NitWYToqGZbh=ojIzJ(S(*@4##m|)FfxJbI4Sw2Oir#X z*BDTjh*zvnY%12z@lG5G-1-pTx;HhKYN_Wg`(2ylM%sd&=nf=+qQL+HFGgz2&G&b3`iL zvE>PG%-x}@Rhurtd?K^->NX=k@DDi$r;8m2wvm$EyCvXQeb3o~szvPrrS9z#`~2Qd zF6qsn+`6Aoi8`0)dNfDGK=D_9O6j_HR|S90aDr5tYY{>ChLt_~>6DtI6#RLr&R}q% zXQI}8(nQ0JT94rQMZ~RslM=Wum768A4Hm$*94uwVk3+mB9}25`5JoJEAS_8fE65hN zh})YUDOo#dOE3I}R(Mr(#!iVsh9Xrdm1hUDWA+)hj7!89LB)HhF+hjX?;j@ zC3YRxR{dVQp0MUTHJ^Z}gfkK7?#y5a)l6q6rL!oGhgCIAaT?mmto5FQw}i0o$HMjT zva7d*zo}~PaT0d@sB!tc4O|Auf=?pUV)i4dDsQAo{56I0OI$R?WkqTgdiwFiRPbq3 zlRr||&WD*ks&%0+W)12dQ2a6#A@&v6B0HvNejjK`(aXOC3x7gO6%jPd>UJ`&BwITbYT&oyT-NdRhnY{ILPY+Y}dw$kvb&$RX z%2r7VcAA4ZQ`9P-^7|7T-rF-QdmBeZ-_NI}g0yEgF@f=Xc9=CGe`>oHb)lRGctk;oqE1+QEls!z1y0(%#-?eI%a|z0k>Um!U_Ni%?d9_sOG&G+`K+1&;Fwkg>=~ zJBsit;C@WLL{9aE^G#W!up<|}pz`Ol#IU9Gx_o*=hj0h>%{}*`%~D^BD0>4&d~5P% z#Vrc9Hu4w!yW-JP-BB-Azrt&s|4 z>~GrXeEWOEC)Xbh=HqA$T+Kbj{R(DH*g`(dcg0t`)U7m$5w$bpjvBzm9W1&b#Z(kq zVQuM9}2C9~sXm zLw?LffoW{h$6LtB#u3j}lOmeF`Bb2Mc`t{_voFh6@Er3?h$ypVX++t#7O>-SU2> zBQfjM`S6280*Af2FoW6znvHqni9cNN9;Gc<6}Ey*bXpM%yrKAeq^Bx0J{b)*xZYDI znME`xV@cMDprMpx6Wik1N(mxm_QFvhdx=vd73yRX2#g){*)j_#+Vi7Zzbe-;av^f#g&lGC6!n)0a(*=Z;HS0+G4ASx1KpHFI@ zh=+*aY{arQ5qYXLf&-@6u=?8^ayB>7BnLaIF{ydlK{ighUaAR2G%=D$Adeqwc z&N%0Jqr&%B08Wnp_e(tB_`_8CFl3w+2@Sg~40|S5eupAJHPj;qCAOmP`&S8kErd)C zkZw^o_QgHg`fUlyU22`se%pVkBQTfLU!ia)J2R*8pLY&IwBj8Mmzz~H@NfQ1>Z`9U z*clWh!zT-?b~aL;Mhb$m5G`t3($pfy7A-S9pYbj`S&R?I*dmf`#|Y-NzM@lW)C)az zJ4&OQR3N1k$3$4nL-?F(eW2#TOzW9A)EdIJ8SIA)(hH7=93W2vBmpf7elVkGhR&$WnHRx0zS_k=x9hldyj`rb&TEL6b6zqFE($(12G z2=6sgV46lL$4253rm#coCtRT;G$QsJN}-B)`wW69bC_v-C3Vw`;g~7WGiq(K>4Acs zkx}ggbg#`%KbsXe;S9;~W4mgKvu-4Rq;v8b>G5z7ty=E&sY7F&trZ8^&8fApE$~w3 zhuar$W_gdG{t^@%*)KK<-N1Lf(DiBtPy?u{?f$9OVCTP7K~{Sl^-#@%n`#yxgB z{YSINvj+Kj@5LagG1azNR^4i{HWJyC6|>CJkpmH$3=(#1^lnWwm}1y<28%zv?g|{* zQ@nViusUmS4F%cuT-mM6nvCff`hcy##Zx`Td5G@p-RpJG*g?_Svk{v#yF>~(+b74q ze8DLA6iHr7W<25&Wc`teb%2B2f=nF{Hw%cM8*?^{1=^<5%p63@0EsE#!!B_Hl}T{d3JHiVIRF$Xk(qvIx1KZ_yUDS%f76sAF>#$i>7q3|lzKxYCy2uj_Raqq0ZD7`!oB}Ja_!|6p6 z+fg0v=Sjsf$uji9Gdr(Rd>~=9^(Q;ih~o%SeslYO&J2>1F+xL}z7BJ*k&#%o4m-?n z@g|uwc)I!z#%{<1_fU0WvYpt5);sk{<%zM=It=RH)*;)^$@Uf*dew%6vNu?haobPD zoy_V<>bB`4WHzk4>OMlHB^MPRm2u@%!pKii1(_fhsZj1y#N)r~wANF879^}`E&iJr zczrRAr{NKaCZx4IXA_E?601WB>(-Pb6(%z4&5J_(qf&x~!dlI4eZCj&9HVYYKQAf1 zc;jUa1f;7oHWA9fPrzm>HlJ2-{u_WF$1-~&C)~r^99}pnOjl=#G$qYE3`+>l*@s+` zoNw6BcaC^xR{2W* zJF386#gUwphnKi*k`uU~)eBUCI%{MLgM0KuNrz~_^-3n0{kt7YZa|m2P$u)SOuU9a zC4)Aw1N<79+&9hI_6W4OOPZol^VZ^OZ5$ztIL?2p>w1};PxSeFc8!55xM>7@ZLf)2 zk2)=k96H?fp2xd%N!^+qNSR;^s7A?i9f$VxAodk=!CRYb7^fts6 zE%YC~>Esp=R5z*3MgUeBdrma6l*j!cwqAqyRCzAN4a0hD&g(E=x%rmEVxyr9pRmfv z&8s4n!zcYszgvz@uQ$V!0Y99EShp}Q7%-YB$!euuJ zTy*a0CsQX$|6NNzM;u0c_q&b^td~#(gxuKyD#@J?0Q|qa*fr|EM>*0OPZ|6$pm$8L zVWUeeBab1#vnTtWC@E+NCf}~^;3=j0mDlHuxY20(+8Z30ye5fL>O2=H(p;SX#-WOe zKi@~qK29F?TJFZb!J4T^`YURxS`|X8`EnO0Y4KN+$W2w?Ux5tjaqB>?c$Ptl@DN_| z7HIo0_axV3sQK;*Ni`Fz7jIV*j@9}Nq8%RzL(K7pb6attjqB(EdD^vaGeV#>2lXJSWp&ArtITea=eCA7weXXN~VvW zH?OKNBpuh*ISpr6-vA8=3E1_zQgPM!Rpcu(>lI8?_?$>KYk(Pm&LURNN|sNcI<)#% z#O0$9^?3rA;J67JX2MArdSKq6iDRv>y-7&^cl#$gQkW}~BN5p+qicTWZKJZb02Usm zBk3#Lu97-mZO4>i?kRT=x?_rUviZrRAd`bg{pajY_La5=j-+jdY$zl<9+^e}9JZ$( z*O-XaiB#&NuMS=jwm;G;%aPVGezpZY7{v#hZWLcxra=~s*#|ydFEa5f0>4~Ja zhkMTyk!CXbp*@Pp_UOKJR#7@OxU}U%dFtYksOmqcD~SWTs_LfOKj{AzXCUEF!e^^k ziV{g=N=~6O>Ybz%J4T4N>2)64`0v!$0nTqP|B zLIKi_4%n>uA`gX<1evo}gzo*7`Cl_(^UmL6I4us|S$8h1??kQ1_1Aky+NXAXu|Mc^ zM@QVw-lkjNTu@l)V!X)&A=f!^@f!B!fOeK$5}5qkO7}Ws)|p%?2xcZb*Swn>4oZtmu8$9$ zly>tI2&^ljym#K=^#~at(zRBCmWHz$Rp(rv?J0Nlq{B9ykAHe~7&C~Y9g??atI`6O zLN~wyJEmYSY(TvXr1qF%+%pN4Tn$q0Bpy5OU)Y#bY#!sQiJsfXyt#IGaGJ)xtO>E} z>`#uwAal0;(xgZg_Qu(!)-H-iX=8VlQ|;qLJBff)n~n%pyW58uV>40TAoI|jd_!oD zQuAKLw%=1FYG2_pPgA`x$#1L0%7JA0nP);D<&2%IlF}7)n{=SH%@2O@*^&80{uYaR z#pG{}GPsJaUn!C6t7bXRc)H}iX}03{LDhW3}}^%pa<)mLJP1g5fdXQC1?vK3#X zY@dA@rlWO0S?Iw0vUff;vtt`5g^VJcpT~RN_Ggtmt?+c2sh?WL0e`8u%fe#F9MG5k z?a)SuB(r?g{q;cv&F6Y^VcYYp1noP`U$A*^#yJHtNAU&cE9u+(DEp~iYa}+OXh;2u z6WAYyI`zEy7&({|`Bw~u;s;eF=u=BrNp`T}%bE*CBKGA`8wSpt zO=PKAfa8?#326+rrRPg1EXaDzh}G8wKQqc*IRJ6yc+*R{rhZd!4KY>E*$Apl_JaS| z`jU#pj_@Hn*PZT-xX`*PkMtXoVpZ&|s~!hh9{M&Z%B0o^WUL2HYFQk`c{DBj&shNZ zG@Uw|<9-&o(KOOq9@w>`BF@P6Ds7FwrD8tX*X}dqNJKbzQqRd?sZG)FL5lq<2dMML zYmfA5uHk@&YRG=SX=}jIb?7_cY6KQm*c;uy>(7SA*JH_&A%#YWrbVnqwXD$*hiNm4 z2GsHy{;+;cv$4@^HnY0seM9U1rx0bwGin} z&@s>~lGQ`Y)UmjdxTA9-xVL+2kuP5FmD1TNqy7=8)WdZ{oM{-PoWAWHrA8!t%19-%G=dEW0vvWPuA4TZEW%mNeY~ zE$QLyVn|wDkyF*&ZEuE7-@b;EWURFrPwyIA$64!eGCY^lkk_yN8XCD71%7y)!X^M( zUt~QU{+9s%W0pO&*=Md89+CWCXOKF@ADrc@bDTW(RMvguKls^vz7dpBb_N))b)Bu?k>7-y!S&2`}iOr$ZqX z^!~xtlsaM)PLbx_?nx%%u)ZkMrGT-4XJT%TBS`fM@M-hFSvyc3KR?%Ob4bHavtXKQ zq=5>}>y0MawxvNRl8CISyQR9rCk`%QR}L*JXc%T((J6^B^@4#nDOXRt()ZtZYkXEd zclLJyzSxmbBYXa*mb>dzQZBYt^PkB6Zq+~0_}gvPnZr7xN7;OckH)8Qy{o&nN!V30 zA3$)#C7uKQXGroNd>TnJG@S4R%pe`{H-T^1ELqsve?}RjBY?wpU^YG_ns44m?!B`B z67B_hZ%2(nmprJfx$Z_;DW(EdQL>4XdDS@OwNT};`KdeOFzVi*LA<*c2dX&>cib*h z_&vv(Zq^JL0%s~ED05swNVZOdBy1NtvXC#lGA*dG)yw^1#2#daR^ugJJdIv1hHALR zR$p55dIJqGNXc!v5mS<@C-jz6{k(*GOVKn5-Y#iw>D|>~FZk;vi%XXdvrE?=QW$9J zRI4BW4vX6BEf@*{3s-Q+WLSF~kg)nH%J%A+%?w|s$p7}4Onc^kOJuFEcJ)EP9{A<; zSrEQuaC`(8MndBEwID--d}rA+tu>%!9$%BSm#2s8H-fi;_~YCZjNYF(RLgw~NFl?R zq&)4&X~YR=+{m)?I|`AC@;2moG}R{S#q!pgxlwt+ZM?@MB8Ei05Balsbc3@bPaigi zaB=&i#Zg48#MNqrcxDNX<6#FMBHfAg%$N0eoe4hDev!p+m`hq>oR8t}89|2*I^PD; z)-cK=l~Wy@{N~A6DM(9W;$9B2fgU+qa628e%_At4GJdY$!Yy{i)m19uJR(hcVUm7CL|L)=WV$E8@dQdo40jp zf8slCTAuW1_*OnXAbjx0FsN0Z+gxUO(Ve+tPu6J=(z@OH@_>h;glYyV;6Xg7pZhXC z^;sQS_C3|SJ=*Zh@BnZ5?rl*t3gRQeTX;vRpHZTC)JMQZ#{Y#8B;%CNI#XZ1 zB}2f^+ByX6!F)T-`I&N$uziy4jwfwBnIbyo^1cv+l(_86J$t}AhYatj%3h=Fi6UNn z%i3Z^oSrqBN%Hy*d)U>NhZV1u8{91i$I#H6=#ZH>_M61)*Y{NI;5c= z1dLTgbaQL6?^h?5=gAMF8~;xjU$T3*!G}|$eXPU(eLW^FskZCI>*$Hpns{L|7=d5W zMh3-gqItv~1UGbc8TEbRN;DfJC%FT$6j*r%{z+2*4SbeKVgCEsb#(-ND}Ec0zi8vS zI=DcFxGgn~O_kV}zZOh3ShNObgPQJc@lcWB%3DKlq7EvuM{&>bPX$shs2uA>W3%$f zZ|1qBXA)+ea}T{O?Cl^Kxa)ifcL>Qn{mMjDt7h;|_sk}=3iAj>;sSdDgDh)^+S03j zSS;e}>qX30)kZ zLN_K|t=41FtV^@srr0+hXVer0?Yf>WciD06B4NMZ$5S2|%o}?SSFFVQHs_KuQz_zl zeg;dSHlu0YVn;;QRXc^rewCwr%X3g-<=d_MRMZzVN{vVi>a#%tdMDiOvJJ$_P5NBS ze?5PxN%@?j^fhw4k?Cy97T8%5EKkC}>;)c}osCco;}A$zgnX`K7AdZ^8QOf!up8tu zo^>WNK>wT$L86` z2ZEmVes(bLTYi``m4KHLBLI%Ak`vQQcpyvJki&5s{0O0WJ1>?qeFUe1lLnV#^Crk= zq5D#cJ==JwEEwOUx3Zy5B{{0{tyO!$(bM`3yTpw?Bb2GUn2+IBnhAsso>w&in**tJ$;8_2N@6c)o%7D);R+EMpFPF>CpeZ=y-gkt2Q{9haZ8wx=NO@NrSAsT-E*Gxt*d$4t z93>_t!bPGVa-83Zp?nW&BdS1U<{2T+ybMcJ4z2{CMaz+{@HF_GoLr+{AhL@M|%2D~Q{X-)RRG@!ON;TiT=3 zmVNm{a)P&KToj0H*gMG1vT5z96Epl-U9HI8DkPt+^iy0EVu_sTRc{lolS&^Ws0TX8 z;{BulPn>{3xfz3gVKQszaH6rBw6ADAUCBN{yt%{I%7W@nSsGHKU7JtwX1+x6s6E-qqkn+#-O1RF#SZMIzT`OtB zFiCoxAln4LEJKL5y5lnQFb~=5_Z`lh^MUHD?mKh1 z5k<#=Utoa|7*Prp4Y%=<+f7YZpEBo7d_q6VpEdc2sA30^@O1AIHs6@+=x01>; z8_T~jspRInQjq`2&Gh~N&kc&MR*P7GqxyB}x&&zM?+j&Pt3h3fvR_z~mZ^V=8*~fv z?nDDEeWt4KYAixH978qXNllegMk$`NH|NZ!gu1CxA+<|p9a+6ol9q~UT-?5Szr({9 zt28taP)A>PzJZMP_aVXi4(B5hko{(|Op(TB$8QO1s%NU_YRi_VeUK9~vl|4bi52F9lNg=w;_e;+M1XS@u5@@#p6e-F%$l^#R+%I@F$~&ocM?Z zRBDsDZa7zfGeu9rhDNETK%$t_$DzIg<_y+EATq+bfX{^=%CCHC#S$$|pkjNNOKe=v z`Nr{0yej} z3HV6ZycwC4Pxf3RtxfjI1(-(;Id|8l#YOD%S2?QRrK;vv-~H1r`Zb1v9NN)AJmK&W#90gVDk^b%xzi|((n0h7h@q8LC z^}@W5@x-MXAv2>G6Z7zCJ{0~)jT6C$VWQw@CuQ$MK8NU>pNn)pF;2|1RB1j=G={JcT_Cm-BKUJUsJAM^H785fraoV6U+U9 z4o9M5cuEuaU1PiedABv0@xsFKS&h-7Rj3de^$NPrSrl+~yewAmC|x z7Nxe?Y|PWtR-6^Q-L_rIgBHAQCt)M8D_%g`MyC39Tqk!vesTlZcD*}cROAf2GI9CE z9`b1je4TBqqGrAYcWK`?N=o?fZcK}RwViBZHH1c}p%LG6*Wq%pFQbIbl(Op$MA zFObflASoQQcjr>69W9N;fbrB^pgZp)RC^is9js6@k~7s>a)aete6-9J;*= zM|#TTg39151&N3^b^g{TwJsQpQnJ7Zc|6PUdy;_e;0~ z+t!jIA3kMYM!8L-fkWqQ85tV==#OZYU`ArA?iP4LFvq%v&(I3)_cM2-73X;Q?b zIf3pMEi>UfG3pO0x?@vDTV&g$6DEP5kF-+Y70`oY>R1LdFE5E|E2#Ls%S}AU@>$$l zw2yqiarl7TZ89R3C>WYKIbDY%P9z0v^xS9hn{(P$*UA`v&UhGCp*Kh~L>9E4RN%g) z<7A-i$Nwt&Ty&olqd|RCpd#h(+^&sAM%J5F8q_>)SMS2O%Wtow&}Wbzq6%-1m4x#q z%M%8RIh{I#b-x^YSWG2K>7zK5C9g!%QyS*!)6?W=iDF;#ESy^ooQZddW!deAmb zwhoK9FXKd35cXy`|3`BA$1sZhHJ%T1h{9Cq#X;*7-Wh^eIJsOFHpFF-Lc|fyyQ6C1V!%YpEK~;jd9z$0Wbm@Re^S7X zslr<-3>o1H6)GJL$=Lo&fqH`42_$Y%Z0=JGU7ODfJy+SkkU9#O9J4`?|;(0ziyg*y%_+79K zV-fXJ85jr1YuClkgWKPj3Yol5T*PVIv*5lh;2d9U{&TZ9S*C1#M(X=IGV3joN~A6& zS>V@3^JCy0KwR&tJo+`WB~I?8*as!boxlww(+iJl*h>@^d~R-gy!UbF2O$al7;6zS~C&QrmNve6*k3W^)*^ic+1@n~u5B>J-<>ST*MDf~#?W+YW`@a_@kYwTkf0sCZF`hL1m5yBWv8|wp)$jRcfYSEdT?Sqt;fEm0hi?8xwdlI{~ef~NUQ`A zZtWuKvTQA#3h?FMM~OySVXRaVI_`G`g?XJUG92_cRe*-0^U^w0%h>6kF)urV-kvqj zRes5c=jEp;*h3s>Js)V9?b?)lur+M#D^;NUcJR0ti1UlN;`szrEjGhwg=!44P%#LO zWe>8K%Ui#3;E^HtY> zEP?-i`JaFs26!yGCm}1*4ZU8DuePmUCk5GP!67A0yhnR@+__@9h*vwwx=}I_u-uWM zl`AC+#fI0B2vcCd$gB~kTkYca!eFZ1|4K`o9EkhAT?lev`A4eoUoqWxF5D{aAJIK# zUi*j$3nf?jPMB7G6b8bprr8f1V%$RGV!T{EFr$fy}GG=9;wjzaMt3|gKuEZ+nv-y*|}VS`9{dH_!|I6F$~6iSd1UJ)KM^1A6h1Q zlsXTj1Y*z)top8q4w|AZ|C9DZ?P{I93Uc`t^29loWaPTkG+D@x0pKw7NudV^zup#y zTsfGa@59993n-%3VKlPIeLuaLdw&f)2X8+7$KQa7Ap>B{fug6?|L7Ai&1A#IkH^8c zm;V%d-abAiFBc!g{#}pSJj$RzwmI_X*rEuVp7B5uJWW8fQn1rZry8VFSv`(*e8b1! zuk}C@cw}OFLJ|aT@UBn@-$ChIYLTRI%f!hcFeu5&SEm!~`Va%fp)8qit!j)ks%W&# ziECF{`#dADO8^WQ)Ix2<-+C+?($zB~2>!_TWg_D`_^m);Ivo4V!? z5+9sI*6ufwzvieXOrVpHpyq9Yq^5`yKV39Q*-fb`#wdU(rTYZWb`027AvAr745_{z z4kbCGA8|Cdyxgs~)L4I~z%$qk8x$~GsV~~c&8~B_ww7C8bHqLMi*HoV(U$k`4&-MX zYr5LROia_;wpcZl9;Xw!o2z5DY~N9dOv5yP0;3p-8ndEB^AHC zAfquFDHvjV5+jEsm%~Z?0l_@!(So@NOBs7xMRSt}824y{rQepx$p4AGeMX$4FS?~U ze|-+D=Q?YE`lk2yH2#azT3DQ4(c8a;w|_812y^K#o=Ti_qT9e{`L%14{#&J0i~;MfI=;j1zy*V`7I&{gLfilQIi-hZ5~Oav@Xs&RKJmltw&~PlJKp(AUEW5iMTtewWu4U*ufCq)J%R(Eja4aTue@O*9eiLCuB>BPu7T zI5Bv8f;h-E?NddqDB84|4w~{Cs;Mg-v@;?u%dwrNEJ&a_adX<3%cB|*8MOfYWaH^9 z9q`Blnu|L#oX&Pqd=njS{CT;Yuvc33EbWOy0+`dJ8lDiGN^Dl;OA6(WiwScH@=P*Q zim({`#`>JxA8b%Gs#3T8;HS3TSSa8op>6W|JNuE@N727$FnrGAosSo+4*Val z2=+%>4E{b_Du+=;9_Oz}j3QeB2XuHaQd*oJjHT7K$tS)5ksxlr*Prq8x|XkCTm2Rf zsBILn+xrwirt(s^Qx|b&|fdoZv(A39ozQ^t%gz>5;TlOOK zL%-=FJ$jWASe>wu*9Yql{t`T`lPixF79*`_HUX#%*4K6dfAx`LgNQf_tLO;kaO5 z)^He~yk6X{g3*H+dALef=*f2Wt;r2a=*i@8C7IGQIA%uMuj2wtEI zjDg;nyFfA9@qynci<9o3XCjU080tfD#FGAf_8c61KvEP+!*|;7^8i1OgvEZL2q7JU z0j-ysg}pBcLp7^aM9Pi&|3d=9SizrNzW=9DUQy;R+~My5!V0~L+-dM-RAtRJJ};Zm zU6eQv{0#<(tHfht{Xud#Jj|&H09VUUt#!cw<^Mh8l> zA6F~>-*|fsyNs(ZWVB}tr-gKe*v%k_^V8_I@$@(%05Xf9 zyl(@I?G2_nbmjE`p^hfp(FLf4|50R&ICI1k=QE(ASq#iGq0x2STuFJ+{Z7eEeVzQCL0BsxI0YF6KrsU10Sh@HKB~yT@Q|A?OdMY%NldE!| zRU5Z|qsB&yIp&km?*MX{d2h}~!^*@^DR@nQT!cusnHV|R0a-_o%QBr(b_@_5Ys*pa{t!JYg0*In_xrzqjpV?F{|)ap37kKE~pQ z2Q><-)oR~MRPFtJOW6g@z^56L|7g*BFya0;?;WSp`y{>qf<4*p{~in3LPC8m)FS&z zX`6s>T|sX9+yoxpBRBFL`XoJ0(4%DG0NeI(a?Swj*QJt@60{C+{UGecm(E~;6{ z*@?eZ;ZZtVa>&DH=98^j1x0u7lI~wW*G)D*eT?g1C5*MT;)ocvBLFlodanZEVl!V1 zq4tZ|@3nWTnOZ@NC4kIzp;bq($pBX&|VD@Bp|?d^+?A%|$hsLeoR5fa~(A~WbqZE82t zkL$THIk(VYZrS6P)Z4i<|sM_5!eG9z(4?FoYf+nwH@ zYMRfCqFHgs$jSCHQJ45Apfk>40IVW0?#OvW;o|3qnL#3oR@YXM##Qr_gkuR-yKp#$ zpojZfE~ zCK9r5+U?oRtOdpg_)Zo&OBu<~&9W9%xGZut-t;`<29ncc+`X7FecdK9KNzF#A5W!! zF!IuF3cPIn0uX+CS`h0EA{Pt(2P1Cuf6p=yg@Ns@+3o`Smd0^mxfagS#I+z2;_nG^ z^@*LB44|2fqyhk3Q!j%_hE9Tb(kR@Blt@EbW2vOqc3F{$oaAMjg5R4ci^6LY6DtJ) zEFzcYpU_o2VvE~^i_*ZQk|BJK^7hvL+C!a}7Io`fP+Q_tL>yFiQKHf+JlXR5pH199 zhEOgAd$k$t!{t;&0YxGz1gTE@NIv_eq0u`oV`b9WG-U<=9_zSwJm@&PHl#Ps|%CIw4q2C!5M=%7l2~c6lGaY|pz+-6h8mQ1( zth+qi$Wt4It`>2cdHAB({ug4_;VO`LbxYMbW%5{Z6g38&Og4rQ1CIpuV6-n-OzF`S z2;+SzFn%xzy4SnBu7|~tBzxD<|4}4ha6s9KR=BbEA>|27Sn{^)Z3=FdfXEumEP4{L67b73D|^vH?PZ1)O?PQ-s9wZ zoP|uF;i`i6>J)LGpN#ar(!7yS!m9UW1%m%f4P_(#B z{MqG$Na~*c5iR>(svZ)!L&H29-O6=r;w7LBVvy{MNc_D~a|$~9c_!#w$Al(LCgHA^ zGI(=YY}-5_?FH-aj_57rPlSU6w)G$Pu*dn(JNVq2TS@x_1LdH=wjGdQP89hb#)-YG zhy~>ZJi~A|gAQ>+l0BDr`BiQL(5Gupa=>1_zL>rKvHH;__y2%A%)SM^$KrPwc#BBSd zL4?E&%mR&`5#!^Im-HM!`7@xF99I}t*L6iexFs|UsZ5*=2$P|$B)>I$3YCA@_8%Z! zJ-YqjI)A8?zN*0X!_=47q`=lHO~LPvi>^z1gQ6`^4tGNdtkt&Z5_AGk^4?>oSREyoylc|CCnhA~ghirePx#r`JE3!X@`w2yh< zG$tN}2o>7M;`RzsbYx=a!6`sDJC>1b=erh(IL6AdSk^8ZtasY3T)mAj`q^r7wQx&S z5-}J+?-v{ktaS;!XzX1XPo?OwozCPn7cJ9&c=PTD+hNRO&tOyzpQt%vP*W1ZBcW!f zJNgAx5TW56BLb|z4|&T964QYB9A+zkRD(%PB80aOo7*cI13qkhXnY&7G7E|R3?(DS z#%xn3?9jg;tDYq|CHUsuCVKMfbo?u`{4d0`erbB{5LL{seUA0y(a)LRa6$6V8i=GW ztGv>Re0Dq7e&Pn!sL_Yfwma$lXUG7<2q}7i&>yD*6I-Rq2uqZighBL2W&Yi}|JaU$ z_XdOa4ucO4LPA2YZ4wTm_qD41H?TDvRnJfVF=B8TR0;q@hU_c5ce$m3pyz>K9| z=3NNJ#*6y{`W#z1^_qXYM4t(yr>Y!Yx^<6p$*04TtwSLoGaEyCRmcAT@;AB6-hr7| zZ*g(FMqmk!0h1uImxdDjMb=%#*_pOgLv4|7ej+CKt&UU}m%bmv!Ldz0^bMOCB@BE=9`gfZ>oJ&oG73^xr zQzp_71&B^bAId2%(QRJB?i5!O|7$XWnOU11$4X;y9?1gnW0Pe9yuYV*O)zTZc%@!f zd;nfix_)b;6iRqNU7nt8?tCffr$yw#6ev$nmWA|URburAned|-@gD7HN>Uy%OX?}+ zvOCN8E*=#Jzp^fT-+37nYag@&;LG@)mCq#D@8u!nzRlJY0a`Lh zk)mS}%Uo$AQ?zXNO|&Clw#oI$**=#n(sHaO-J)=6maM3_d!KRruGXX#!}BWRhv%)8 z+o!-=Iqv%BUCr+V|0^67qqIp@cou@-t@`YNoK&xETG8!BU2N`@yUexR<}-R`-}|{N z@t}%O+6Ii9!E`E;I_zK9nz+bh6`8pDKL1cn8%Enx^4QwIBzjuFDI#0j$Tpm^5)Dd(V9v`|tyIsg^l9hY`p67lcDg=DrH7FfV8N#Up0 zCVOtP@OF@{svViW08ovD+@#IM*11Xbde-TZf7-NSah^H&W0Qz`sGvSbxv-}xgIEy$ zl~K*^2~`_xwmZg+TT-;QjM`x(UHBC!b_E*BM395D@E<*^7PJe;z-{}(ym#XVPaqfr zp<|i@xqD({Uft)88rVF)$_eT+D*-M!;>Zff z7keB&z=;vSrxczA`7OP2MM({~4#(IjhOfydHfIu2gxca;VB6Aa;6+vB@zA$7|I7%* zNs-Xv2DJeNn28KsEj;2N+xM|sgmjTAJnhlSE0yMZN4Ln>zIVbj-##Vct`;gY0kRkXrjDu0QKeK+@G~q79 zkNHNde5_;aiGIz6o=3aPYdqd{{#X#47)XHGW=jGNJKepC^dwt9azM9IRxD5m?ixXk z0r&zs$`yt4VFeLa*=u1bnT!jcH9e0RtCQH>EG$gVhE5jB8mbhkv5BVV5+ew!to;mq z3Ml2`7z)rqQd*=qmZ)v_DXtB;V=}!zJ_WhEOjw+9$@Y&Id6HA=}SI+~(oQ`i7&do`^h1sVxTZUxN0*ryj?%!5d zO-Kl%8!xP@$*z3bD%n{Z@d+U$-;`!v^xHPgIO;>^fiLKmXbL;0-^ZKDj1IS8$w`bT zalOzeJjDQ#MOYE;?R^m_3f>->RaRkCy)i{xD18(*iL~~}czoQVFFq5MCPlYqd}a*X zO;Mn_Ag@_PZO~2qCgyh&{_R}?IXDKYLz7HC+;QNK0*KB`WLD~>g{tgJVMw$!kd9h@CzsN&L}V78Q?TXD1A?Jp zmhFotwIv3`_9d#;%9#+icWW%zn<&1Q5L4Ovo_Tu_f4W#|jRrl&3~F@;M56_w#m#r7 z7jeef4s)24C0<$FJpZT|w^k?r@63p)-GH=DOama3tIS!vq+wDI zm;vfRAu6S;%iygDjmH^f#yDN}Ddm=T?X)jbMWSz*!=#(T1J0d_!d2f9P1+{yuR_p$ zZBaEkdiJw~TmtgDl-l zE_kVg`=bGtQ_19qu-kndty>)|5A-zjoR=N!%tTb|L0n}DSC_rpIh$>MIMx`Ea%uUn zs|nQx*0PkMmEByIm5rgV$&HIbRLF|IqVU#s3N z%H;Jf^0C^046jgas7}IFn0noV_K)n)M6CMB_^;|$sF7F zjKcs~jTCJc(4(p$5+b0dr~7?VA9863=W;$b@675tE=P@*?vsb=;((?iAL_8TWs2H= zfbFF^WqH2=ZU#`zwH&@b(hA?Hr2n1Mb;9+Eo!<|AF-(s>1gz$Z zE9*dg@#^0Ul!?em8N&YLj|%hkd%OltTU4&`NesM?6gCUJ=i~{YBs%vx#mom5F$Az< zY91&Hdso_i*Nwvai4MYGUe(i)<@}X8R6IU73de#{=bR-J=esz7E&itBEQ`AoIs0}bKeWQj(M*8!(B;U&Kqi2vKym&H z1jV|MQ}a_$YLlu8GQ_$3!{TsV5+l3~j|QIvs+f5DEPu^y07Cx7&T{poP0FO}OY?e+ zs6SgUx}u>WtS(7~sd{ys_~&J2?+JLu>tvuLE4&ih859y2Iz@l8S4>iNqK_t)szL_;8hwASTom5U*%3kdYdH zsTlf<9(Vp-2J=P}OcgR6x~{cOZ0=oa)Pti<)cOT$5Lc@% zmvv+|a?JhI^F;+1BXi;ua+D?1Vfke&rfQ*n6CLZo<0ImA8G*cZqP8cJHkJcax^eHL zwU^e(N=ByZiLcgJ&7Q)n0y|ADHB!e3?~k-jiMqMLaBMEYo)!rkb8)>)YfKD~GS3GG zqA!!EX!W0LGIii*YwyItNSJywPmD&nEtuK1*Ar5`(f05a72~E2NqGxOE|j?NPn~N# zKe1Shbyzynf6~17OXAf7Y27EH&T=p>iLZ+uJxC?cVX4D<=RgaX^*LgKYw;h!wRI;n zz|xdbEQnX#a?;nddoi~?o8$m-xmSCiihY)eZr2EE(AdSs^U78Yd`qhe6%$k`xMqGq zH_@sgMB^vHa5%u2$-pWFYdbV`;%H^y&B{V(h}1stXTZ-7QMP0`dPfz9QhhE-sUh)S zxtgVHBSBL?bokg;f>G%<*1C~_(%o!1R` zzx1XBo{_h%WDcS8PSNsWhi>zslmo~VmN8twY0!F@0nO5 zsBzBKIDf~KHRat{%>?R5Liwe^205JKkzBgfYG@hl{;Z2%!MN&rk6QdSy~06uHqc^q zVSfoYLl37`E<+-9{xS}3>gjkdnj;W{t3EW<425szgAI~EGNZKDEeoGWQ8mjuQ*36L7{$rR zx=bmD1OOMTl(z|HRi^K8%0=0Bx2zZ?PK}GlX{rZuvon86eT`bJn0XAAlB>G$Hb`2_I&I z`!R54VF$Ara?7@nJ>{7xC+ko5LN5RQJ6*H@W;V`PA?G7Tx2#q|D`dT5b=w44kx zl{jOG&v%S>1Ao*c0a;pz`kn2_xSA4D@hRg*LBw0K&Ku~MWW2n*y9H?3>M6~=@`Qd1@WK<__laZ{Z@6(1XV!E7)PIEPmGM+g!CVqr?8Ml?6vf;PR z;+#@-{`-AEpoEu5r-(`B^uE*6m{3atgRHSMPiL_Z2cTZhd)c+eSuiDH^?gs?86POT zakIFAH-y)%MFv-n z2g4lrTGnLZrEP~iNdb$0R)x3alDu=Q#d6#*>$M{F=K7E`BuhZ)zmJ0sCvqNnmbXp- zObGRuR}Y{6S-xm*B|!veq-H`GqD)wS%;TBq$_dw+lJ_d_IS7mosD>To8tQBWO>_a1TBH&2x_-9|E zY6xXiYq65TWC}<6+f13sWi|7**Z`K$rx_yVYu18zMLfwDYiauoD-=Rnf<+nvR^tF(l8_(K`c!!?tkS-h-W-A*8_TL=c&F%$FzJQW0GIe|`$})7{H0AzDl8fJN=U;w$nGxwO zFYn;x@+1k^;%ZUEQD&tf{l$FM=+rK%DsFnM%8=wCE=L07b*OL%aA1|2HGgSRok zme6V|h0O@hsp&R)9>25bj@&@M8qve^@VY9%X}_qr#q9}jA09-<{`N-#>3TVT0)9Oy zgSXTm5xWFqgvbizA`x3FOPh*O5^flcC=$Ccu2fe{!~Z}HkUDJ1qP%&Ixe2s&m5pv0 zKdw?)LW>_#h~}(&KS34eVy)jWT?78PknGPSiOAbto`znrB;<*zv9QTk6?=tNnJz&{ z<7sy$YC-LA$(31&cv{8&sqc(B_kFdx&&Pj%lIA^F60fhvV1ZH?+3zi<&y;7T`j?Vr zraN-5Zu>7q$SIM2C8Um+F{7?#y4Jnfy~|y-_|HRM$$nIlOR(9%o7f!u1#&}8?>w+{ zeGD%)Mo`mc1SRNC1~cV^I8Fh)<0_DvLn;A38ks0`xZ)+63BC)XU4i-66J@~6muwDU zT_#@Bg$9sD=x{Az6pYab^QcH!ZP{ifhdjx8;Yi6t01WY)q#*VQWue)KSd0{H(jkCm za4AicF&4lwiff{BSs@-_n#1s|dHxqc-I*qUrl##CLoN3Gwi#}IG$>$Z(%D@&22Hkux&UIe!li`ukq{ES&>i)u~ju4Dg733or;qY}nQ z94!YLSA;IYwNkDI8iX)DGoQ?H_9Fy|g*s|G5WO%AI?KLvZqgY8+V+|Xdc2G)G2jx; zeeX^0A6At{CqlS1i5zW?Ahj0|(Yh&^(QDSJ~)EajQO$RL97^=a1qAyd%)M0KN)F%3L7Fa5Fh$BW% z{^t^Th}n5Zy|SUC7a~-~Z3T7)OJnSDpfQglKh0-+N}-)YkG0Nf;grX<0&5kYsvt!l zMp@Sr%x7@<&f^C4V^gZ5X$?tG_T7>N@jREbi+dw3@kReoi8x*&i~RhxReT{?VUrZ& zUx&O*0HL>4?I0pJmYQnCqxYhnu#x&qTrp!fDUtf<{>?u4?9KP*;F%=8*A0lxO@&4s zTRiEZ6uy?T^g}W|#Aa4!f|cCDWfl>6!!5(ae;=9!Oh;c;b$B1i*&JYd)TPsV zcaG3uNyFkuU5Qy55q_hZN*O2#1gHXN6a-Sm#{)eTG$0K%Oox1^Ve7kpkK>|%0ylsLW|70@fmHhoB-3q8RsTl6ZUk}-hDofu5D7~dhov5!A_Fan?~ z_rX{@#Dhk@E!mlyJ>;1=1-OpuElLej^9l2`2ByYPMLT@MvBLH$=h&ZZ7MB`E1A(IE zbqb+{CAb~#MU)pKOLh~6>dcS!LFUk51d4BeR?l66FL*MncyJk=2H@k>;@}zKc{?J& zsW{&Exd1r|B&1VyXj+AMJi%(B05N3Sk{uqBO2e9Le_pPpW<<07`9(&fCfR#+c?}+A zQZ6wC#8pH^%Bn12AK3b00M%&~(a&0YJDm))`yyr45s})46>X2(h(l8jTQ{fZW!O<3 zLk+7d+lCucT1rzjicb=gwvOz#s7VcP&BPp%t?JgZo*9ofsETsE{NXn|3>`xV`AZv` z{c`v{@+_K5rqZ=);j&PYcLiP6NQ#CHEs5`IRjs2#g*G;BK@AW1PJv2cwve!suxR+B zjfu$VR7MZrrUgMPF~j#WutNr}4OKQ*h(8RY-1AIEygtfiO>N0W0Z!kF(`@1I%rSD2 z4y^r@JfeGO`UMt&Q_l*yAdOIq`hS=OsRGq!_bRE;W*3R1)onmgT1#k+@K)NncdI`5 zVByG{A%-G=>u7%So#i=ln>%CDvVoKMPF@PCCC#a&m^%@!5iNlUl#Z;5H72lt()G%q4z?90GLf)Gg zc!kvxI%8;U;fc=m*-OvK_1#B%LS2ow$eY;4EYo%Jc7+G294?{Mq zzE>xL<9fqG(uon^J7|p@6ixt%G4eBV<JD2hoX1* zId<^bhXKy;F<~KF-LovQjKo}8Z5bL%RS*^NM@vFdG<{Y8AFY0g;by{dU2hI8(z(*- z31iL+KmxY_7*w*rmur>T6NS$XOBT23Q4NF#*x$c&^U$*pb)pbVR?vPjc(B7M93SCW z$nH9aTjGS34$^|Mh|kyQu)JX=qQ$~@DxWG8s!ydxCvxBKpk_nSH;4~mjs8(Xfn)*wuc`m7^s!_!n3@4xRl#lS(3Yp< zD`UUPXmKooAdt|-K%=a<=rEooFLib6Z_*b|LoH_=9d8TAA#MnizjkJiV@ff7}+iK+apARaCiuf z5TMTGoNBNGbXbv}{O{&B1mCIVzQwK5I4kS2*l68}!l;fY3A*VNf$Xal+gf#0mc>B8<|6!oRJQCoPaxy-RZ?7LiBpzQL5nV(OJBr!>1nPko7YZcTIU})J?$nhl6jz-LxGgtizD2Hc)AJ5)SNlm@ zM9n4PdzIZo#-v%Bm1Hbsw{%iasoq@D?y;$!@|X4|B4rrwpQUrX97k_4ICqUbROgCE zSd(P!$In;+Nj5ViKqAn`lE-LAXyMxe&Z!72?SV@^$P)@v&?6lJ3JIW+)b1iTOHYRO}ZL-tjx! z_?}YoCNhzip(*sBuZo5hHOZ}uBX_adI2VHB#N1yb#ctDJ! zq5?S9F)1Z+yahPSfPIX{6fb)8O^O@I-PAeBSk||KtVvH zNk<_R>CFd0s)7_jy3&gjAtv>=bd@p zFZbKcOfr)_=j^lg-fQi1W}o%nzljM24_j;KVaq`A=ew?qwP_b~XorQdGbj0Yq_3`z zR2ZUqZ-4mpSY7yn%bXa)pa{p1iwezY&a)Q72w4eK@0ScN!AJnZI!83C4*6irMt9fO zz_*O-tUr=n;dhl8v%V}F-}w^YH2Ao2Huj_KnOemQ>YtxH@-e7h6)kV3^7D61d#-vp z4crIPM_)whC-uKTk|SpP_dcCHeDdAJ?&H@hN{D+#;(+W})a3D_>Gsb0?r9##_J!0}R69$}r zyBP<)UwE8niHNyWM7#Md@?n!4;}>u#vz5U1aWCz?@kL;MdULbu?1OZTl34986DrUO zu1*V~@rx1VtOJVbENO15EI10|XfMd)PFVOMFFyx4O}#<48XO4s$G zubHw)RAbsnf3_W0^c=xE;5_wH;JVo2*fY!2pMhd;GeRqJ>7-ho$SGRtNtTxuT0rPl zgHD%uSNMMAlbMVC#vm=_Yjr7YCjrtgEuxz7W-T9C0#)rXQE6eb-NSzaY+5G zq}dInm+l2$Bj-hrd(rEapbn!$hejKTe9P>ke!fUuk?3d*31!o?19e@tpDT_dZG=+p z0+HvhEojG00>eB1Q-E@4{ z@9+KS3mDScR}E5z$>ZdoV?G50Zm-X`jU=}AmZk|FB~p)K&7y|iXPo^#6QDzTbIARg z%nxn0t+6T~{=RGqZECOf?dVw379rL~ZJ7yGK*}TGvPt6W{L<4rs+cdO6&2cbbTvsz z3eWULcPsgW=Y)xF(g}VMO;pJzA(pfZ^`X2qTn`pSP6>}EN$Bg$@a3F{|2tgTt`}se zsx(}Ts3gegXZu@D<^f5&=Ru-YE>LrXZ?Q}WFxQVBYP_7TK+ounIrGU<1i3)bLgBke zb)|7H#nc+zEuV}fFeHqKJ<#Rq+r-yI-3qorlh?PL!EH3$n)K>sC80$(E40n@5cN4=d^>}W z2N)OB@=50)88#1Wit*`{Y-!h7X= zk|sp&06oZa`pkMd8r6s@OPY1Ao(EwQiCP4QLK2-|TMN=XC;Vj>Uwq>Yh1jNt&$}Xa ze@w~kWyu8o^MR|l?Hp$J5rs!mibMouyJL^Yp3CtxL&O2!$mQVhn_}nE&|w6Zrs4J$o$ zKS`AEA-nhxYDPIsEM;hDd)M$%3l<>P-n~>}t5=FE}xvjoaL@$4BuW-VKq00YU`+8 z3eqKjo9oTZ&h&1At-LkAZ(vJt zR7;8uMFZRl9-#xw^g>PidLFV|kjT|TKIB})Rhm7=H$;ZJD2&VPu(^cqY(oA}ue;|9 zQWoMh%S3YycIrsE)N_bJ>K0sqL-LF9cAAGFPwpk>TUT4ORfhA3*3YobXYb=JH0H84U|gySj$@&#M>bp;1FuU~DLCROdz*ir|nYm%lfss!$6 zhSVA)1v#&N9pF}@a>p#bb~`e4#acQERQL*&i|l;h*j2f`*i)_|-!< z($%*P7I@%K5I>Ckk6N*?Es)xcUIQ7FAbRcnR@-_Pli)@%3?$x(ecP#!gRS1%I&=Xa zDRaT0V&(giJFf)8L0{87i4NwJX&$;=M{9HUfy7`$;>l=*XPFAENp$ZPmzg#oMi?cp zQyKF3?+p+U_9N>O!pO4F9Y%hJni7W_4u-A#D7O0v$pYpjTuTv{vpAM!ijSt3TqsJ&yghG*T*|EWhKY`nI5 z)pC^OJWR+lLO+9mAE=A7_EF1lI0;7CPi>f^tK^8EfQ>xQUTfQW|0@o3@0TxyuR@ zS5IrECrD>D0a6zEpEp7~R!!x?yI3{%N>4p?(O^0tw4ljZM&}RrK*+ZV^brnJgT1lo zSX&gNhHH{0TRIgsP4tXpDf;K?PBc7X zdEkFXBSp3!{u|BptGhH}qQ&R*sz|CZ=c>Ms$BEJ>2`O>5hY-X!0Z9JY9$l+qVoKg` zi+SU|_oT0em*vYHP8M;}ykjEM#7TG~ek?xgv`3TQW4n^_@e!aIp!n+jPXD=J+%b6+ zgo*}+g@u8|tNu}I<0I7gJG;ddEdDbvOsIPCy4C0g50SXZuv$3fXaxsG=;u!HY zJt|RE-2zM{HJ`{uAK}OY=loDKnDPwGhuC(@P;PT40*A|WdK8)%$k7kx%^e#!SGiBUPwsatO{u$ef7-ICQpw_SD2jFp zldPh<=R4gd=6i>O?a+jq8CH?g%x>t^?~d68!!TVZ{ZO+h=7I`~Dr0N+AN8OJ*oq?- zcNlTB^MMA;7CucLaQ%=@qw?TB+8Pgr-x%1%*&ub(jIv}#z|Mi7MCkXBY#BjNL+~C1 zN3ug_e?87^Uz)CS1$$hJ^t3h#Cw+49LMpgp(XsbNj{84cAO1Z*D`P*`_59Yg?uU-7 zuw;K>ND=YTMJ|_F&gSzjPFdG^RuNeF@w_R;#4#C zCItIv@mS&6u?^b>Bg^+x2515(8=EI}%)bYLmS#m)4?##f=`YY8L^+c8%&2>}`TGq( z4f(MpOk#W6TZ6ctZP*Z5J$icMS0y^vANDC*7!49jd@+8J>mu3e3Qg(FYvl;uu77&j zQY-~2Jors6r*{XxbJ0;C=(nBpeY+E+9s3Lkl1BwQ4*KLCO;p`s_+cRTaP(N2bT5DI za5!u(7#qEBEUS&`<-E@SvGUaWwNi&&L7fAy*-0l;mpH33p?db$=Lm1*D&M~9*W2Bg z${e@V8WZr|z~`8v{C;jiv7=?Kjk-%A)>4UJ z0(0Yx&+vl0VmJry8jsMiPn-;05ouWpiU=eKnK%q4D2|3bsf*5FZsskWboo|vCmM7I zj5s4eESxGtV}F}0f?#j@0I(0MYT7Q@XcDGf0Z`kBFaF*S&d2CKV9s+ZF6S5mpSO9G zf<9mcwDyCwrnY|(*K6l}l#kVWm(@~J8C`E`%OWNk284|}H4 z6em+7^Cw7TZxl}Chao(9kL469>HG6=>JW7Pxs)IXRks`fY4NZ#=iq;;oM1hm$btxp zEJQ$&g^DubU<2f^m!5*HfC5!JC*~tiof^~!YUF~4lyS z@2Q%ut}ZabhaK|@3r)qc&nf$$f^Y*d>O8-u;B%xp|7&-hD1Y|-<<^*Ka_T@u>GJZj ziP)E!nY?Qk4Gj$w5)<)@;)OTDLP7?iR~eF>+QaL@w&&K?*1o(l(|WikK|Nz?YN{T# zwXwdwzO@C4p>{f9q&YNPOI|+n#w)AW)(RgagrHU{>jbKxnl1vj`Lid{6I;{)r#`xQ z^CoC5cr$wZX=(O4wn*b!ovRTAWV}n=sIW{tDM0KY<8w38(~H!@{Gy`TYiepLDk^Gg z{Wrfh_3@V@Zc-1n%c#E$o>BJaJ3AymVc3u*bGQ3$yb*A~H~9DOGY+s-%=tp}LS8Wt zM9B$VAZGb4AK^3n`eDd&uEOG`K zx;^K(lxD1Em`X21MbP-QoLqnV2yt(h=Q(anmm$J~?tFNcmv$q#= z^X5cZO1Xqu@bVy7nYg(4=Yav1S{XSxxqJBVLoaS;TsVo~t6cEC?SVI?&$K|p+xN?kN6ozgD71o9wBR5+H9rqu`j}Mc+r2BY9yxcgZXM&vdaU7M&v+ud;sR4eQZTLSkMfx zcjYLCeH-l|(yeqfzce03MivwlT+TD`^z^)t#mmRXcm8}4RUy#;`uo5A`Twn;aUS^5r!jKMvPKyIKmQoq(67;Tj`<(c CD~Npn literal 0 HcmV?d00001 diff --git a/demo/documented/auto-adaptive-poisson/u_unrefined.png b/demo/documented/auto-adaptive-poisson/u_unrefined.png new file mode 100644 index 0000000000000000000000000000000000000000..f1373a9bcf24b78ad560f425258f8ba8e4e8b0b9 GIT binary patch literal 31880 zcmeFYQ*>ofyDgfeqDod&v2EM7ZQHhOS8P>mqhhOKR#Y)6w%1v;|Fc`WXFuF_AMWFM zn_6@BZ;Vg9kFlba6eJPgaNxkez!0RR#8kk*Ahf{1z>{DhKvzCAqi4auh`^-9gw?!q z&wG4Z%+>v`UOs-c&aNN(pM5|;l1a>Igh^S$O2Db;Ip|yCbK;*QZN^!Jn7aK=K0?IW zb{^{)-h?kRb!ho2k-`<%Y0dWKf`SESaU1+MK5wnwZi8C@imT_*JYKQ39sYLx^{^TFqQA5A{;M-8tB5M5m})3S`wUeHO)P$TVRf4?bo} z6#RVV-FZ;}BLqH=3BIk*Cd9|<`#&t}wmaC@yq}aL8u(tcmXwqfeBPG}zDy|2{Q9LI z@N&r5`&_L1)AMS(x~|LScqZ>@+xJRR@OAzw5cuX8__k4kkv|taLm!ou@rw5^KvE7O za2>RId>%fYb{ylt`=|ds=y|#MGESPfL~H1CTAHEnu^x&ffJM9GclYbU2gpOEg{g^&mX> z`F77wm6tyQp;!J_zNO#6u?Puwnk|unKHi?LwtluZJyuoM{cg6L?e%|CI1xI=t1T4( z7YD&5Jst19o?J2NqMDWSh5a zdW6a|#~sNd0vbzK++w<}lhh%jXr;N7#>Qmcr0BIY+^GD3+VoVP#E*wBGE`NI^DLK z9SzX?Hd?F~TUQOLrt$z4* zqup@_gmE+;m(c4^aB^~Tz)%0(aLj)LAo$iS7%S8HCwRts<^>*93a~9MJCF0L>w90v zlS$jReX5y{rVKxCG5elJxHhH|@Od4&PANE@CtYXx{~?uERNQeM!{7P1^gLA9+_Xlt zy?_z84%T((JUkBkJjM(xOo5C`?rmnsh!wA*ZP0l``?dR5&pZ}WR`0AIMN+oL8=By0ueaq|M`kC@&9o;Z-)Kv z;}a*RK|Y`Zac!OdQAJx4{}oql79XBM1JHqTI>!Ha(ZzqgKRwRDw{lkKKY$MY8|?qU zPBBF#!FxM;1zsIC&G-QL&i}=$`Z(So6i%dq z2-fI`EKH1uX>avM?A6b5y-8cuR983u5QQ$`0n`wK&$(CtFtzBi(#eB>JXLqY``+l!C< zXx*oZsc%Yjnl&gdrpC+W9W;W$#>gTGI4T*N+5AvXWlaD{kVe<(=>?QJFX$t z<`Tb$4|JbRW_3zIKb*en!JIwG@!s(f7VQgF=&H^A@?IS%XkTL-dvDwzuHBDiGGrzc zE{iQbt5kAys2>3dty@MSg`14b7}GU=eV98Y-WbI;-{T7oR;K;_T^KSm1TG}=&%qpo zGCpuwe-ZHdz7;t$e4&v_EQ(*`qTxDq^~(p7YOrVqt!~HYJ3gIXFBLYg0JVBjwi=W7 z03UD5f+W?gQ1q4y-U?N@AGRaR`k0h?!@Vr<=8tvvevFF+ zH!fZgT#-xqEhBKKsp>fmEo0T53P(K&j-a3dslf3z#JilRxEMuqBtZy_?ieHK48v*1 z;7SlB0Z?ost&=8$*i8bNSUowGyEK0|&-YA-m^-RlPi2V=nltM^{GN=n`b5~VgCQal zT?h=q6c6y}lfSP%{!J72`7lIfNp@Ch#& zT>kkrh00~c)=C%&`1!f`L`yZ9B@F6Ds^0H@YKq<1#zdK1ylTjxrg<>Y#VG=?c%`fx zjNEnDBS); z9ItSAQzC!bTUj2uwIG11@Bs!u zc^5NI*!s1?XjdIUo3U_-&!i~U`#j}fnDs69L`m?b`T>4rc-H<(L)*mh4HjcqesWB1 zmm?`&yDZKK;pXz^s@9y~X6xUU51E+TZ1Hd6s0INF@u)$KnpchE!}Uf2qR= z8Bs>+k6vgdF+)mWakBC;0zUIw0k8GI&%?!gU+PKQZ|EZC6JBFuE4-p;8*hAg**~0L zc*;Yj%P`;(=9NwRq2lF>YLK#!43x~mpy_L@307gyAjH<%BU9SE$!*Utf9OarjYp`1 z8O6&c4Va`dLdyDkBP(#;53c&XNv`V7c>=d)R6kRwC#fw1!Z7OGvO$F}J)&B`2ONMR zrzT)4uEYi<)o8M1WnDup(q}Y+h{FMm7O~9Bi=~c?L1lI%>+soxWj&eT9D3sUoOn6 z=%@h1u*isx2Emv4WLpW31~r>ur$%%WXerHOT|fpK_>_g|dfmQy};!|kMY+e%I&kuL`%%%SCDx3VoA<&CU$@o12o zXom6Zb0HNvHR=6f`P9kvU`WADc<^vg~K}-@|GP?Y4911YX)5 z5`$73KYM1nVH+s454i*@)g(PbzAP~Z%)B{rHn8*dHSLE5u!wVSO}D1^CeG14e5D#1 zj4UAm~BYp#5?*R$*STDwp1F zqwNAjYjz?Ka4jq?+wInGhfx&)74Nl<{(nbt9rb$sUO=}%y=pq9ftT^kPoIy!hKk&Z z0xt*Foj+J(LDNm46}S~H*8Ofj)dS~4&!$0D0Ay-pUp$W2F7h*160n_9#1FhRb9`z( zoKnnS6tw5I$;pW%M--2$Ov_>@3rp?X&&-)3n^O@#`(7n3-h$@Nmj1&mPs_!KlW=VW z#$%am5@nMTUUt<+wOXFk9$BfeB(3};hDReMNQ@kL<+FLUAb&?&8-gJ4{l>HRE)PuL z^CmIyvAF;r7x(AuS#`U^)^Dwsc}c>a$KSS+l9GZSr;35MDFwMXIX~ZTr$BscWaRt| zM9u_3zZ1O6n&qSL8p7RnlBm1AF9vndb)28%d$CyNz*>VS%&lR_h-&X>ImvSx^=V)oWc>Lz|(8 zHN=_UV7N@c$;n3a=lu)g`mnY3UWGBs+CxtQG4dL6{0#C?h;gWp^9igQzEu%0QCyNJ z9Lg;*5>v@+%ZXVxd~Qt=G&r{5ZblikJE)z~a{ZNLBWh=^b@{c-i~(EToRFahi#2PK zaEq@8Ic`b?sm(Tvxa-;eJI}%&d}*#B2K7%5^@08%;0j$}$nzKNI{_o;n$xqh?HlWU zD(V$r{;<7D)znp~gwe^V0bJNDqTxda4yEobvb&TT*@IQs45W_g2@7RdxW zZUoI{GZ3dzfUoB0jfSJxTj#8AWR_$Du5npyhR{=R#H9&5Q#XmmG6@YDT|Fh@nz$_L zp$0San2$ft5q%-GZ?dL?)EpHF+Ok|Nl7Gm48u!1r7p_*#DD zHOAZKu=RSxS#XB}g)VZa)^vVLn}G*x-ku^zD`FaV$nJXb z(KI46O8y%(X9W_-z19;yV(T+4i35y-lMm)RQ^nCCRT8t_vn$RFhv3r?%Yu;`r|N?T zipNzBvVGv*E;$X^+uJE`6{5j6pjZjL102r2SH{5Gtx*O?S#E!NF#Ou3{OtRLQ8R$& zdstEh35A^?D>xmuyE9({A2b77L1NJq!%sjzNGiDcdDZLC?)!GpF8F#R$O|G? z)TWR0j-E8Id#9WZRtZtiwo(p%AWf&MjdJNCCjO*dNalSy!(x2bBFJMf;bI#F>PZqE z?j3(7lOFyYtKA`zHpGAmpFNn+aGsNGhq8Q)>?k=0zR_xmqv6sS)e6A7^R=~`CD>$4 z6TX$dIH6y*DvKG(>GMsRKaC6i8Zu8}k?(fs)Es8JCgH8EZ11@nPXW63Yg1byt>{>9 z)#!Hw`uv|tl=!91Vwrqep5KWmVb|>>EpOh;$;pXyJ`a;7oqtsfs1(^`dM`@Yc%$dO ztlx1O84@vS6fcnXo5UxQqSmu0x69+{Obn??Lp zQuwhb1|HU;YB*I}Eo;Qp7j}}5Yjp5hPZ8v7#>m>-;)yrQm0OMkkd!_5;TgJsGdAs8 zt%M)bYg(AcJWA;4AYAEC&awNo7NH*Sr?jCg#jz*5mizGo=y^>}B|APn4G0Q_K?2FQ zd>8~gZm|7L=2Nfst)SE;pTnUK5?~A7Hjho{+^*|-Z{i)nyq?=wudy+pPjP&PQcV?xy12(>Xka1vEeRhzfMK2~aB;F28D$hTp-7nb3bB8C z@{IpNsW4I`rhNIzdEHx^I{8+aQXnA?3p2z`@^Kl5A5!?#p|}&(f{w zfMH^~_!@1(HD{ zZW;;(?+j`g8kt3!N-E23CjV-kuXF@WhJi*t2e1Yk0J+nH80$f3cH=7zB>DkZi|U5u-HgJ5g6R-BKS zfdQZ5OSVLyM4Ua;I#kU z;=Df!L+IB)FpJkv4U#we9%>ywrY!~Tf|30C)h{1>I5(Y!pfL5WR|7v*>yO_1ma@Fr za|)<96A7v?t3VYZ|0Z_F9jtq?U&z18bG;bX;{*xooRD}MWBxP@Qjby8?K~~K2yZl`ype%O{}v{7Cx`XrrV9O8V(~(N1w$Ufyc(gf2AHIZ!X1iZg)8D^eXzFsq%W9 zgQQv*gTt3udY-X|`=SITZs}2mO)+unm<6=b95MU72TTiz2B`!ldNhyA7ypvKqq)cM z`w&^M1Mkd-hcoblOvz7y*9>zKj8YLFXv+Y&P^!s&fhjQ^Axidn2nepWa<>>FI}%tw zw*pPEFANx7(H^gfRzm#cfpt6+lO}ATy4Wy0M0X(p%j0B4^Q4pJfk;Y^7>BU_md0B7 zz*CfRKL-TeH# zs|Gv0(~AR+Er?71R7z9}vkyVm+V3&>nghjbwJv*mu~ki)sDquDj|p|yp*Ii~{Y8dK zCx&z|sExQRSLYU@Tub576W@1D=n$~!5}`CH595nx_f386F!1AFCFS}X{W+jygIA=w z?|UigV=BC?6uBHO#TSRI@Jw>7+p_7-PiGwatCFP`D`Ejn{7aCGz)1?)M(vk(*~oPq zr|c@U^EZ?{yb$@9n3=h6E;qb`-Fb*?O)F8<#284T%a{gw zF=F#JSqvfsm!mnDF<%l*q1el}jd#@GX5o;A1QSD?eC|ApA*YVfsk6m&U)&`ytuhg2 z0t^!_+f(g-Gj$N<`34q$W>I{^M#7%*P499s(BT;}OZ{0RjnZPRC9!Zz)H25QHe(sh zUTYcmSX>5wxX)wT4}#?w!Y}U$_?0u`v5l?Ju4A9lB@hg!PYK3V->LQJC zX)6|~$ORiY3q;|CGVS}b_9D0sGqd^=nm*X-v*0mF*mjw0sH;UOW1Xwe(8;W6#E3Y~ znaPKInCeT=vDfn!7^{fFaoTFay6W9T^OF!Vew1(uvx%L zJZsD%05QeXT5xrc3Zk74wz|#x(`p1fM`G#YLG&ra$7os6c8%xqcI$yJ6aT#z;H%yF zZXll5tOB#exe4;(?O##wG+sep3PmAqNl+ogkZnBUSMx%5OK9lXjsKuf{(J6~B_|yL z?ogZSV*0+B#MvKaU0+IgH>fGsVzWDU*6$6M!}9z*LxA$74NDqs453(@{pWslCxI{| zRJ;s^rM0#aP)}SYWK1jU^QCt}somt$t^=*OqC6ml=^{SIZ`nR~lt`oZyI@&hd}@4T z%N|44QsqfN#hIKC5l7wAiYBcEPSqP7mW@LDBwVs%xtm;(saEX_<&A#j%ua!XbuXH+`?$ z4{3YeNC^W}2`zg3yJ+vkN`|}`^Y`5bUEuJ?KfBrdbBW|==jxP)~JAA8JLa2pM>+2+mk zAhurW>-r-ElKgvUYfm+5(sZ+|L*xpLjBefsSuqOhXfRFr`Ma)s4PTw5eTgT&OP|LSV8I*_Lg? z9it=)28#=oWQ6%n9(=;?I+E9RbG*aK6N7;XHSV^v^HkAA!4)-8#i(BuX($b}I%1$G z_p3P0DjLyYKWk)nXfc0j>#al-o^Lph^nL4Ggsr{7NOsLYG!zb#w+>k4OU|UA@AYaB zv53#+zEo#AHS9@P5|5k{yut*RoAFYICmFl3RU4>MMf-;Jw4cEROCB2hn8|5+nRMs6 zX@vYCus(%DE*a(IJJbvwYQz;LJrw5vVCuZ=ynUqrt`|Y0g4crb2+myR(NU+CtuOgzc{%dy6HGz=2|k%0i)KZy!o(gpn#2kB{@Cpb1x;bMXnPQWiLa5xu6r z@pv9_(p0i@({XXhr}rrG+OtwssmWniN0I*_xt2+r(U)z-2)Q>Ci~U*p@%&i7n2lkJ z*44g<-LHP|%qT^BP6jUI7}u~gqcIq_4Iq8ZJg4lRzqKV}o-|I9^-56cDM zu=Rf}z;+DZ^3Ih%KNleQFchyShI0Y1Jc>RS@4pSg`e58Be%CE8OAT6~g3T11uGMI+ zLP!@f<3P#dPMRjF-5AijE2jR@lJp|pKIcH1Fkx26O1OFqJr721;-=QsKN)g(t_Ft1 zIReH?!}#bdO1TE1{P;(W>BsUj3cDSk5h*c+edP9mm~(mUiy#y#Ah|V4Cv%6W`4#iy zC2EIH{MQ?dI4KUkItFN8l6I!aLtkNtE-ho?M~DaT&P;|x+C__vlxF_f=f+)enw#!C$1R+80w_AzLK6 zd2oy_nNWwKyePsP4h_Bgbr^#y+OO9s92n6qk(b#RAA%ydRfj~rjnB93fJ8%&qrv8& zdJXqrV(aDD7;7}C{;q5XUP9jZ%ef@@lr8|yejf{}cF0Z4iCV)#xfb2Vp9P!qBFtpl zBJI06r-5a|tcnRV4K|f+Z1>nn5s;Q08`RPIZa)M6`-`B9>ks0%O3ArF6A$jSF3d4r z$?*6yIWpkz>Kh0B}(DY;G zrqE;tvkb~40)5Ijm=5*Jp`SbvIJB;dV2pbuvzgpE7odp}Rh||7-am#a*8#J+-ZaBx z2ojC0w`lfi{W?-vzuI`g6#=w(Jp(>n^^_Sxk4oqVJ*pC15g0H-zh`2>9cS(_6Z{V7 zoj@UR!w89vX+&XJ37P5{3j^ZbU(cA3WCi@l7iS9Uq$4e3;en`CuJRUx=KebEDydk( zJEtu~2obLu^_V6UCJLBqdsQEe3_3y7E&0q{1O8<-)8d+#XXZqL=o%Bp<2aYaqstE# zyeP(xSPreh{f0tb#Z}Tt#qTZ9&mAndQ-==7gKF^u?+JYZ5%tw(# z(nQ=qyzvE_6Ui`ceUge{_DZVH7*@8tpvymBLNX2Y-x5`nNl3-LJ@<=SMn$-Vk9g*f zuy@`Ym4u4bk-}uVL{BdVfyKTfA*&>$DH0o!rN%a8HW}A98B}`xvlr5;D64Ij8NxPc z;AWd}F^*}G3IwlfFB#W(YMV}bsI~g*nS1%SWjy zXVIZnURe&7BR_&JS7Y43_o~^+Qf44})IJ$IAPHPzlL!t1wX1G_{yTXDaZo%I>iXw` z)n@zw8&bhj9YQhI4~2Vw4-YcsxaP;W{JVN3O$Azz)I$`*&Pm$q!)axF&pvVwmw~Zs zhPivi%dk(w!x*r@Hdih5VBFcXMf4X+zJj)^oxlyY_ZtQX?D1aY!tWrOz zk}dtq*DHJ(6lFHx3j`CXQDJi*n+UK9Q<*Rn94wPJ*Q6+nt%>AyFge{;6EnTPVU8%+ zd3SL2aABN{9STB*HY7LfI6u)8BE&6R$TEqU*t*hYvhUZ@%*c-+e}GMvoEb~HQ1u0& ztB>n$RknlQHyIMa{kEHus~!*RBzZ?DXO3h$vY)Icu63|ASLDk*8p>nx#UmJ}mobqSvm3R%Lsvo@hAkKn%*PPQTw z3;@?K@}beMQxk?Z2>d$XbaFS#t|Q6`+qVbYoFHqQ$|qBbmnIcp^CBE4rjn`U(C%k? zI1=yR&{Lw1j|8`b6whij+LsCA2^m<5309pV%4DJ;99F>52ii67PURBD*Sl+11`x^d zjA4x?^c57}gF@w0w(-#-b50-82@}^jlkjTiv4HV|fA6+#(H~|Ll zbgQ`cSS)6C`630JiSb=86)5bE6H9=|L}G!tF+vGl7?8BwVghx{l?pD^Jc?W+#fjSr zekA0%b(zAVNr-!g&x7A02(B`AB}rdeL_!`suETQ^l~sARE803&n+!TG=kKT|tEBRe z=;hDyqr&ll&lkot$~vMwP+fg35~%?6iwmm;Ey>m0G7h@FQt?1sG=33tfb~fd+WQ0b zAvlbnEW;?0PArM4&OW_=j}*~4mV1suCZu>Zbg_77~r$PP||eyBDNRqo}8GYV!8F+hOt~$|_gSbi<>p76jWpKAFnH7WA%(WHt%PESZ_b zYc;H_LuaJJ;aP~(K)pEZjYJ<8JG~12U0YXGh;>#r9Eh`R8;MvTWL~Ebk_$&6QB7<_ zpibwb6jQxQhIF9i*{hSrE+t|`P&oDOpphaR)f4APNNKCcSOks!Hj7>dgOZ?lXQX&H z(3%-+*&Ps(aQY~)`K_e z?5i7cM5oN{sCLAK55~bSL#1IiF`G`)Nk#Vt+#m%Ud}S0q#NrcjGaKwpsCY%;wvJGK z!|7@?oRd;$#<4BM;~@M92zBkeBq8imhyCdH<1{f?9)q(2bl-a z;+@5fXd~CGG4??{P)c{)?MXzdf)XOt15iZ5veI*;@oD}?MxG3$w zM1W+}X<8-Ki=bd^j-evtWm6zA$${A>!Xxtncdi9?DU%+tJ2|v+u8xGWqp4~odTrPz zG>u87Tv~Bh&@MSL3B@{-mLi;i_zO8ZL-=GUD z1QXqOL#)HwZbU$4MUDydjAOF-T!piKUfcdr%*{$d_m7u+fxud{;;hdMgg&_3-Zxu7 zAHrBX)}PDdR5TtI_15K^}K2%x#X8Pml< zjqI+^!?HyAmmA3!hz$DHB`lvSIo02R{IrsQS1Un!LnVMI4h*cBS^h0YyF&Qh8oEmKvv`dohWbV9`~ zte?Y|{wWeZD7G$zqUpfArijg|EY!0oK0JQwKl;R9`J2FLvJK@!iF=gb4zGM3E*a87rPr{|s+%k4xIjSkjm2;|1>3BE@l^-NB2=KM(o z3l_RasZ8UMMO^*%bIIB}jl34r|I2=N?FZkRO+4KnZY31TvXtdJXy!VAec-J` zCnH*ZJ>>SIlZ@%%oZ;^E~jGe=sp6zw2Gao9ciRB?jBd zO|24CqL!HG-JX!YZb;G{jBqwD;h+ye!ieX>7P-^OA`fXSh=Ioh%lEk!V48N{l~~cy zrlUlmcR6Hs|7C%Dl@#v7!OofP5&PYUR18I%lf73(@-2#)IS*2$WgKiFDY_w&2AKo3uRzd)SglYt6r4saVmcl}|3m-lGJP+uBaFgo;oB#GogLa%xP_1m^SVn&R zr5>{eUbs?0NUEIk9$s?R@mQw$O`F3Tt^)57Io?8Rgg?g}Tf}S5OMpxRd~0ZhX|x+? z`+dKx{({VZ8)CVuPZK9rxbKUdPK05z@S$(!f+lY9 z7Q+qX4XR=V)Tj|wqlOHbQ`s01x^On~PF^YysB2MDY%r3DU?ZgnjzA{Y6rc%uZ=xptmH>e6*xELF`X{>6*h>=;$O_Un8|p_)^{(!<)aoqI3aA6cr6M9L}(V2}Qg# zX32hu9)%&54-rh}$k90#u1J_Vda5F-GH)s74~ssnxIqN+8r`9okk=t^cQLPgLRTi^6T;Fv1-5gEO1R9_lJ z15xUFMQ%m8PV~LDUQkz|J&NN@JEbYWQ(6o@aK?uq{|e}JKck$Y zA+@r#09U#x4Vs_rH$cZ=_SNvIl*oZX2sn#ir zclia18?wCLI#v1#r;^DCXaX0P(2rBNa0l-kl2#y}Zi%EMOyOT7Avyc)XsR@$s8sOF zAzg@w9@+$KF*{ARiSptpA?rBw1)xj3$VL5eQ;_+7aKqEh>qW_n)B@3Wvht&$kiobC>HeHUbnfET8hbpW9q4ZoSIm9ccCjifk(rCPj zk8_Y5^|94bx)Yy&yomBKD73};w&jj7(&*j>TexHpIgr9uV8(W$Ip7vNpDHi|h~K}?%kBpX0f|F!Cz7GJTw`K=Dghr+E^?#`iT#^*S9T^4 zt;38sG(>NUcPN|C+-hh-;Y!hHe;uHr!Ov@zku`at>?5-#ygFlglp*UwCVa`_cZpm+ zdHoWJiZ5jC8G~U*k>jReqxnOKL&Xl3#+$28w0*zZ)Dv4(tu9gV@Nx-=0+`=0!HiE6 z@Y67}Y1EKN-jGs^htFeT;!sc}emAKm@!aLE_o7|YU}zk&qG=qkE`OC^$LFs@pP#St zfZL7JT~9DaW|h!PXdt&ZBcM`+MmV_s`VtzIYK|T zWu@`A)B8-@=tSY0m&&9D8@(y%OspWkAqrz#)Wrz<8IxvuR!QqA!K9i2-AW3rV=4`T zUDBe8BVdvszQ7 z7Y3>9)h0h&m;~J6Pt3uZX@6MDZBXFH3{pS>z))L9SxV1mR@EBj8R4X3Lz$cQRkGR3 z=YbF3&qsdkyT>M#@`_z9=q@Ut$X^*LZpOy!eo;zH7)u8qF6yoR==YO>o(P(B_Y+VnYW z^IMRK52Rd==$1vRC_fJlN4#~}3deN9ij%6X${2qT*cY2{T4~Jcd1WY2!X&~H=4FI| zh$z(m&c7qmX+d^{X@|!pJPdm`^6dBZ3(IaApn^&dOR}JkMjWv;qa4sz=?EuTJ{>gX z*SYsBtRVUj4(FoM!S&PP7XI|bqDOvyu zOLlg?$uR7o0Sp6U%FuK8JLFr3%M1K4)F~JDMtZP`&r(lYuV=^K*nVM5+>#P0<%Om4 z=xfq2_yj{ysL9!1K$C5XZ?0%+@d-3Ra77S>T5q;YkeAQVi(%EeM9=GbnG?7frG$@` zLSkmcPBLH30_h+C!f-Isya!LHD?hx}Pf{xtX;p|Z1$VWAPSXP1yhh}QIT?j?`bQ5b z=pl`LUPQ{%>gWZOqy#A~awoQoYu34Him_06iQSIBuXr5)d41gLGjf(?8NwuFT~GoR zW<0cZVwC!lUIp!lGP9p;n;Y_oyY+Fs<)oh*ZL&@<3{L(^0mKweroc9;LP+2|RRhpL zV~$2vS6Qf=V{6<4k%Ue%3NXDzS=PRTY5vKcgSdIUvqNx zXhUUpM`K*C=Iz(*AyAK>{ZOt5wEuNI*cEN}hCk71w2VDAcJz;B166TkA{bK!Ir`wX zdR~E5!ys94ssyuD}Uqj}U!JEPyxivAF_7?MX3m7<|Djh4nzI#Rw|LdS23IG|`hj^oo?EqR} z(|cs8S7fr4zHpP`?7#N{Ah|>LX{pMnnfwUal!4RLI?|H5&~`CQ zB#g2yCi_I-v??^O$r_~iCHwb`p{6R;!eonHqfmpQWKAu z+?E+EJ^_)NCQLLjF&27%o{>RE5e^-7(hJ=To+-=bTJ^be3C;J0m3UCfTYOw#umVjE znlvRM=q0q2DR5a7;hBr{M1efaRl00~NeN9|KTZcLA6ZN&jj7eI=+AGVRb|frl{+E_ z@Pmt~CFM~;7`o=A!RG^HnPQTK&0ww)r4nH5Q<6)T^a55L0`=|qII!=PJ)^@-*4i(3 zjR}>IKYs<+@nMtZX8L>QhTm$FE^~V*4!%AQ&sOQIrV25hjfh@L!3Ao5B29IZ{CFkN zOZLLcSHYBUi3xYY@3qhu@31iu&8>HGB`0igepWM3wRCcIa#^KxdKM)|#M=GceBq*B z`R_AfivS4_8(Q?`nhRDrL$WlTn5EgF-RhrKVN1%j!+}$>smA6?U3n~!OFR&)1Ai%# zmR&4333IM3Nf>a@l(ArdgJo3(Q>iLw8FzNRH_NE*$-0>nX%v@+1nQS09A&3qoh>e0 ztk7i|b4ze=z3%gbXLl(00n$*^?vCLwki))b=SqByd{Y`-r!96mklGAK@aBcD>~wL{ zEfN;7$yp+NGim|N5%qv^T>4Fdht{|o#Gi4CO$P=O=Fv?DO&QcULgK>W$rO^9g319R zr=Hd6N>QVzp&eRJIZ6@e?qNgmfB+7%@W<%b2n2uCi4}R|Y?qdiul=4hBm@afvwEK=!TR_yY#y8%pVIg;#NGB5@tWjmg7l z^Wrk6kMqKFfmHaCW_k;g(f5Ic0*nP|vxv+veiSehg&qvw0QyK6ynS>49ch2 zHq%gfh+=<0NiXhlouQqriF%CpeOlM=COx7?KN@nSt_3KI_^*9pV4+0#a-JJPjnkZzL%D0jE?uSbhjRsd7UnbkU?^> zCD9C1PSsU5GBDK7Mu{=h6HzB=XdX0 z>$~4~*Zcde)oaakO;>eS^{I1us?XlLVmA_PVL)@d`AMx?sXAMsE>X;$FiU`cup9%8 z?Yi9-hx@$+fJ*{3Wa3XaT4@+ApjWjG97y&nynyuOD17wP6(?)1(Zg%mnZ(^-CQPED ztw_`KTm)K**v34@e%{eh7!`D3<{00RUscOtBCwR@zQ0WWqAb|QRN(tOQ2Bi#!bipG zR+aud{G;yVL1As^3yC6%V?^Y5r&lb((&1r!u{iG+oD=^V z3KnEbV^%-hxS77nHk0n=xr2i+q()oUq-r>%5GUnt!@HmgjI@e}3XX;`PTkHoM@R)RUjR1)i6}t0SaqXL)QXibqR=KR5Ycf4EUL~ zzuaJ|(M>*WG^rouA(>$$Jw#=u$9pH8SaM)cK6sVWaCd2Oyh8mwb5nj`bDbD(i$0xA zteDo^1ML8lGG$9^;MkzS zAM{8P;kU46rY|{|W~$I&5Z0S&r>jOmBK`EczxT7+oz~PG-=qb+7cOjqoh1#+aaQ)K z0<~kC>zIr*o#CLIg*Ty}HPl6XL^?bS|MvT6y%78_Ojp_f&Lh5>;#4sB=I1r>j@7M; zKMYQT2~)Ee=JUl*#Z0jVjSeXIv3CO~If%;L;#;M}o#%17it(Kl3qIjKFpzKLCUi@Q zTc7((Yzy$T<81UHdp(ry-u7h9DWONM(&-O4t|Z$D>X+bPl0v%3*PHlgXb26Ke`c2u z?l*hrS;-5^3!6 z*ChHOGFJA?(G|9CGkxiP`*&Mn-lcteZ&WOutfMpdK-qx0mt*>G32`o#bWDCa6@ zib4}H91DvD!wnZ_F)(3w&ZeE>!l=Iol+g2X?XBKi6kFx`M=fYZEJIQ`M0$@QO=rFY~aO3!rAAg}U(bGBlv6F{k zT%QzYL_aN_#s`i?meN)0#tlzwx-Bs>_^vj82ja06_x=}+>etDjE};|8r$560?}!KV z9l(n6vNG-O?&x@WTvfN(>E_V)@E11)aBti!Tf{Hw2mz>x9{@`VfHx@n3n25qNOo~? zNjLGoj|TO6IwSChBRY|4g@u`K)OAHpj_6{1)1?e+Ag66)eTz&(XJ#MTm}S<%$RIj+ zc)d>NNlA-L1+5Xu3O1|vwTi;c7t7M&mZD)9+hL4dXb-bG&O*Yev|zrfBI2tnL92tLO?PjW74X0q#x^LE1^N%$f`nct^z-7gQ&ynD$A^Y*JMvW z*xsrSY0bC~b-L!`!2blCK`2tTUSDp{*E=o~W!@2XQ(!&=3?l7Ua|#xt0QAfo$XXV< z`x*RMhiA*zrEBBm=|JSw9*r}@VJaLjQ)j5 zb6=|vQVqTDNZz{9EEMPU-m z7db<0`=-a%V2va+F-o{qYcU(&$67>0$JH_A@O=_kf7aBYGt{uvWTJu--&w;dQ4e#7 zO*b%`^`;XqcxnCqA@sE5NMXf#5uZ60)dBsfeV2}*VC6>}5f0lqEmIdsC)SEdPaVDh zelp3Bs=ccG76OtJi5!tkfScGFIX_||qsfB)A03S1>X(|3-7WbMSk}e-IQ!exn}JN5 z`PM~<`O7%V{`MZz&hPDSP^D#MR@RD63#4YWUf^kRKx!!;y`?BmwrVum*iLw;Iv>D;v?Zx(kJle@KEagu@7Wd{YGh z7k9hiu?6rV`F5f=1EeZwglf}7zlusC(6yf_zv5WSyYLThun>aW=-aR>zHqD0pr_Tf z_waV;pDAX3y?h+soNXlNZy=pxzf-7ief(}^$F`a*x2wtqHZ;P0?K1wt^ZNnciSV|K ztZ);ld==^J%W8p*xx&|{H^kTmh z^Ul*|XACBBG=!`p#Y#!#1T!}Yi;R7g`WB0AGjmIeEg`c6^A{KbFg`(gA0d<3Jo!s7 zZu{x}0H?$@M&hrc*{b^h=FrIb%K0d)T#++I#uxk^4b(x9l@_t+Of;>w549=3yMR>0e!~F%ocaiz3=q^ zL=5QG7J!uT*z`KE6PnQjBX6rx41(m}7-US`)5zG4^m&O94Sz(S)xzF+`f|4?CaqyN zq_JK@33pj{RpfpXmnP}>r2C_H!#~yP0C|YkrER$5(^8D7KE!2>Wc;!8tLE8{fe&`7 z!<`Gcfuy^~g`_*mPYKbF!O(|Hi&uxsn{7ZgXL6YvD<~L!&7JU+0NKV^Z7+^4WuZNY9}|@1zjYT!*-1rw|_m zv&IGs%N;lQW==>(G-m>pZ2i7f`8HWmaaavd4AHW2Q+$al-a(uK@qpRlg}FLgrlS^{ zeYu$HEc*wu^$m1gTi|vZd*#%jYFk%!7$@$KIa&u|YFO<={kXU|xnAe|_{_#~}%MkMZ#TtT1eyKa%!t}wbHk{!BqvxAkXrnCBpP)h3AkY~+g+kt#F z);LOfdD}c4;R1RwT4Qn#1xVUqYU*&(YLonOJ#F|)j127vy?OGB+TOT1=LM6+e<$A> zUH&)u7L&8n|7PEEZ0&$UcU5+oG6{5srq*i8T)-3)ju_TLy!Iib4MWNW7l8x%LTtr+ z$8DbS>_4EutP9N~=7PPL7TkFF^`xpoE%_6_u#q4}1gRE^szcAaNf;YmGPGe#nmFpq z!Bb~Dv3wg&e5}Fgli-wV;coLUsQ)@R_;nCDIkP)-lL!;k>1^%BEa|n=+sFgDhhTxLNKYs z&rRRwOESj_D>4u`1It95<(e58F}|{BIPBt#SOjT&c7Dqkey~Y_=T9Q7pIVXIU(%mX zp`NWk29FGt%SD>@%yG*CEWh2j@p=k-+#}ApzyWzI zR3Z(FFXmokgvllkCuBOkn!>0p6%Uwp<(%x9@XoIBi>)3!fuG}c|sXiD6*cDArU_tt?N z{`%>(0N(DGD$h=NK5q&mM}#wu)>n+$f4p3)9uIWw6sqjRL6Eh2gAI~ zbj#1iL^5=#5oo`}1x4h*C-A zOc9&Q&!uRr+H9&pmgTntL!TIr_l$S(m?A%~>Qe;I@adbl-JooDOic^D^m2H$pLZAY z+d(a0qG6YiA#P{Ac*iN~n_{TCFR${dv%*OQql5%Bnc8M53dg-WgnPyY{fy-+$wbat zwhbEfK;Xw!do1MMkz^{AT9rBWzhxr74AWc^OzHW_~^g%N$sMTcuvFc9D^_PJ6 zqnMqC2JIQ}(Y(LgARl>skfi6D^qWp$1L>TES8jWIA--5(l1GZy*PAJ!_PFDz%RU!K z%ez*qdkPU&4qg~u<8PMMO6KpZ%T2rMbL#OsfEN39@m>R%`Fps8L%IVDc()P<*P?(-yZdr)lEDf-ah8KtfIz_jGeL19-&D+1nV>uoba?O1V5zXf9IAjlMA+i z6M^)I7kkZgGP;zlEr0ykHDh1!O1PI2hn7l)<6RRxU0mNAMa`j*i&gkx2LWX4nq2f| zhbXS>D=u;|zr>qk(g;@gkTcwg=uYBLrY0=^Wt*_zhpxKj5OO(&RO?Y(I@KR&C_7$a zyV`H$Fgk+BflY4vKuQU&_nbGrM#YmtnvhGkyO?B0)?2Z7zLq-FEl@q#^ zbL~iYaD=4BT*dE3Eb5Z?tpm0nvHJ7>_@~}Q#hpl!peFtt$k1+tSY~>V zEWE)m%T3n3!DYm|S~NS5imXVW7&Rt#7$rET4<7R1%EAOsCbFv`TdD-%B7nVjzVTf8 z-^o98Jr|BcNZT`2D6y6f{FZ&6E7Bcs=du6bk4K!hXL;#gK*Y`m-LK z8n+boHz`|YEwsDtF48T0HQ>sQc%resT00HbEZ~y6n1kp0qF|PJ0CW4HXF2}IMLhLxeD>;J6A-_MZg{fgK)d-*#oxaXPJEO}xTQ_4=>u0J4F`Mm(+n$IAW=H+2zrQM zs!*FnXgwwCpw8C~SGi9&@~L@^tav51k`zFxye!Vcg!AcAte!T! z#i^k^NWbmxkGTvVrq`E$v{X*HDbov%j8q|=sCO7ssd2Kt zYoIY<=L1VZeiN=N?2=$HEqIphf_O15 zk(%lf+v<2+q@Qf4MQU7xP$&h6h=EHllQdpX3g;II8;*$5L&8e>;@n-%f|k5+2?n()hR=Uls#-36+cEQaD`q*k9k~yiz0YwC zteGk1->*p;nqsk^3R-;YE9jue$_l;h+&RMPL)?KF_GNh-BeC<8u0{M5I5PfoO|+^slVMCA9LHXdtE5I_4939=q` z2#xsbC%-0P46fcGBJ!Pm*=xr30LIK06eYWQtoVm~Wl0WFT4aWu?#7^ETgRKaOy%^~ z+d?N*45X>plYrotu5&3L_vHg?nNR^T_?6jl82gZ)SVfmb+YzcIk$SSU?D@SXUqq94 znL4cpqD|xn${1mm`A+ z?n@X>eKtY^k6|Kl7v^*r3shieC&ig)@3L%ruI|Gyb{i8ytJ`$%?`JL(meuJZikvbJ z(*dF7hPLG_wj&eAp0YVsS~}L>6!W>Kmcr-wPj?)%Mj{hJF{h<8--L1;abVos2V0%? zi6oHLc#sb~d?)^Wv?r*Q6=Riitvh3x1dCGGts(fi(u@?P^G`m5I_VelAX9hNGL(=_ z2?khnH{2XLR;?e%F}rPjmpz`}Y}RQM27<`5U#)C9G<1|d#&HfrGlfLh4k=Q58FtQpy!GUWs}dRAt+JDurLwChV>8B-J@5DDZNQ z+jjWU4;f4)nOM577#fTJKv7n!JayAyVkXOT9Kn{pf{#wS;*&uPLEUuWXt)|i z6$^AyUGoZSL~M*~k$fNGe&_U!EgXja%qK!iJBXTfj>KAtjfftUA(>a)XCV6E6$32V4 z*-b9b8XG4XRB|_}aw&O*Z<3{TPk;LS-cm;G!Zy&=X(^L@`RDftYrA^e3H&V3HYxH{ zV@A{^bcLGxvy8D$Y#WuWm`*}3mDDBHRw9$hX9e5WXRhSoQQg3GxZ(i<@Z>q zmL;OWFPFVliDCfs|J~3@J97s9BHo0_gzbUcR=^x~;m^X_ZcCzIXvTdTkx|T9A(J`u z(hlGJE^q|h&QJtubas)saH9_{CVrTNwD!K{z#N?TtA7pZaPCLdSW*l#qhGM#smqPrUx^^W++UIPKLg1S^)D=_K=Ss2AXt1B>)ejt z-nKD>h{$+@5+k9?K>-hPX%XB`%+EQkNkN+-$>k85%m}*q^v_IORW+lPDDWiK=?~C+ zDgoJ!_o2BqCR?kj#u^-hZ||nN{{+H4=k7w9<5njnci6WQ6>}ihU6H4@&(N4l#QY!z zB4`-1oPHRb#sX~o%7s7{WO=JGmBX1CLQ*Q{1L<#59IbMQ?}U@F6_LbQTq~b`4eL>^ zHn+^SWYr6Yzc1@-T;^&zy^l%0%xSUZhJz7S@Pr6Hmupr&cFTYa4D{?5$Pg`-m|(cs z%Pt+1k}7yGo5|N?&aB_aL=7=k7iYe+lqt&<@2prg3Pe1?IC%XT_!^_4CIG5bhoMg4 zGTBVZe_`7avF2Ct4l3X=5wFJ(j4?cP1&EHOFlPID+8WWL=iIAja*fqzNTuZ@S5S81 zijq)ly2PWVLRS;>L8*~%gCdz=rAsAH;gko!(q}V0JDjf+>Q3wKz|fza1MFDJpWRq3`@`)0!U94TZme3Rpv;ZfC3|>zN)Cs8agznW-FcPYUimJ~wjV(AJ3p zXC&P#U+{0wT}5Novcj(l)8o_e*t4W2d8C3rt7?m;ZBxxwR69!qWJ99%pavHwbg1vF-X&r2sF1@W96e6prUC8rfT!tPP8luX7DCw#et>A(6^ zXx~QYgLXznQzY^@?#$0wt{X%ViieIm>9CI=lL^N`qi-9YkM*ye1WZTo8VStV%`Qb^WZ%@5vG&|*WT;#xaoF-EmteQ(% z6`JPZ0nag{a1ZJ4v(@CsI;@wq{ROJ9p*q|Lgl1x5)G>53o;*=FN@Ao?m`m6Y^&*^H ze65{>p4mcv(G+=E<<=?M(U&L=@OrQK05i_O{f*KXYxw~--qv7`?*)znRvG`e!L>!(iw>J@Colmv7LMBi+{7cM3<%0<$l zNu3Hb&Up`XdNO?TI_xPd7qo$$fJtGy8ZR&xXLzZ-JD-ooawU@kg~*5C$VwiePsvq; zXwKcwHNhhVnWE1AS!czpxtC|eOjMTBzRNVSTbA7{8NC>+{$4WyPPL?2_9BRMe*SXR zBsX}9XFjJ+LfR5O>UnV~pvf8WRvY7N3U}0te{y+qG_yD1Y@!W%WmW-&b|KhqP>+(A z0L32VI8-9FDX!enj^g$W&O?QwbgIS!xW;2a7?OG-O*qyydouQ1MF62-o zt#(r=$nNKI6Mp33L!Z9sSuENU12O_}UB=EA{+RCQj27ioI&A`L)9?ckB z_u6HcVd_fwIdSw+h*O$@J{80M@Rkl?2|f3fS61@%xDM}*us3S@gTAnVK)lpS#`K+Y z^LrsGN0q>;bP)et>&x1a_Yuhy`TIX&ozDAVP zC2RLmJ7}WWIKhXbdB5M>8Bf7U=21+>mVflHT#bTU5hg53t{dL{8Xqj#d{KulO?oAA znEhH1sh31{19v^7@05hPoygv*P$o^^9q!npH-@8Bv#I=!xOLAae~(73<(1C1Uld0d z+ENBYRgMX^`#KhlrBV8W5kLoFBIDFTN7Bt-7iMCT3Ug^M8oWu*LC+&3FLHRXPHeNe z(L(jFOon5ecMr3GZYV&e6)(=dpW;w2mVy=&L2gbx;=)t9bbFTy7mrT7Cz1Y@Kyw=G zjw1{CWA~d9{Ozwb`vESdbT|_PvYF<=r3>Kzr#x#3L^P54+geM8tHf&GOMl(_wb1KN z`7p8dTKMi@05gfhIlB;E3R+kpYHTVoE;hQ9&wW{D+jGjWZ_WJ+h17e$Ra;p$pBEvr(wX_ON=yw zLlY5b`C)Jt!(FduJ6q4dW6z-Ws=Kjtv*pV?6KW@%_@2N78XHX$C+IuFPt#GR>+a}4 z^OnBc`4U@QSyYsAvmjgDpIXR#et8@R!M7y1U!@S-O2maUf^*t`y+rn$o9+ii)VI#Y zXOHAq0H+VahT}(ewL#EFb_EZt%h+_s*d9;Fwm3m+CQrR?N=a6|p2%M`7QdOU2*eb6 z&&L5bo&w*a5t1jbD~u5n0lkucuk&Om#$>xhnP^KnOKn~Escb@E3l_Z_x7*87#s&(R zOPo~;R-;vhli4*-hO9!=jE?p4b2<;5w0!Err}kAIC~Mf^*8>E}=Hqj1;$wzi+yVnt z)DHGpjpd7!(jmymMq8i0_;lJStuX1<=MgGE9FY(3LUlhCw?W<}3iN8WVM~5td6x&7 ziqhKI;!shd8<~%2qd06Hi9WEXQFKHZdDGIfrNSf1py{E)1AOh`pc~id*8x zFhfn&?OY_K$JR9E1!bKH)6jea7ch~Xdf%?rz1nI1elOw80Y{i;XcnzB>a5KuRJx#Q z&5J>e9Fo*48Cl(N|6S^^dAESKMq{wsfKr*z+u~u_4;fR4Htl!Xfmp0Ew9JyZD?CD8ru8YvI!qk|B*_HpfSs*YYO-2 z>`)_0HYI#hH1iX~LipB6)=n;MeuO_0xn6F&n44wXY)QR7*8pi*(jrcZ9QP zvWT9rxW6T5nq>bvEq}8kU*3xcp(fH7X@{i2q?$bFYZd`I9PowExd7qp zAD2SA?@)?S5F7vN(WW}-imBJBA^kNmy@w+uIVPCtI@18<9#`x#X(A2oWJlz%m{zW6 zT2{u%0BznN^?D~UlOiBKumGci{fZ=yLx{8Qv*lqeA9MQ^Y?{UQSezbdyMoUneL`KC zqHB%U&7nQttei;4%0Mc=-A%`#MjFQ3~+uX~F~l zwRX1;3liFAJPhSik4{42`b&xr%3hs*?O3^z6T~#H)6MueC%+T3kO`6|msJZkk5a6S zKt7kBj)_5}OeIhACqIm3|K9xY*VPHh?@M)j+7_bM+V@q_dPFoA+nRp4e-a_h81W62RzKL3_S2t|gK#tmy3T4h(sgwXf;NG}CwzJYe(!8W{$?=WwSQevKDFb-1L7cf zR!YoL#(`Keq$R9El#)UhwHpNmO!)nG)il=Z`q~ROB|Z@vY;n<7Renx>5K&7b(LLo` zsSvdjTjI5C*K(b(+i$%yo@&@Y8`u%`OP|W*c)irPJQZbAiBD^t>!1)5AFk0OZEq$` zTBvG7`ReJv@UwHuVR}c)hD(#s;7t%xWR3U}V5>=8(s^Db2x~@CH?cc&q9i?KROe ziN6!V!OF%&^j>XxI^dBtZ0Py)@tm{U;|~<@kS_V>vdH&O?$ht^MF=|79-+w7v+MBf zQ@G|x=`XyP>gAPS2XWxVk=2#vz*w&*0Bu%tAyGnVHw;z~wXrz>UcNT@-d`*&EdfNl zq-oS!Cb-tyS*{LLu5j< zkDf>j7G_p_a7 zi)6_Bt^ffuM|*qywvR?KGQ-qFj3s|lSpKTD0sOaOK0c2;02MHxGUjs-7Z>O5<|g!K z5W9~}x5Iglx|3}lK-X7JKqHk1S`Z7h4n!O+}O< zYZME*kLaqzjyjn$+Yqdi_c^Kz2quCI+^=f8Ao|^&e>kQEsY<9Rtv3M$vy~>Bzm)iq z+`>S@2EgAf^7Q)~Kx2zN3s9K@(qSFn!qEi|++AI(jk;Rf+B`;+Xf#g4M%Nz$gi9Xt z$t&K!3U*_24G@9lSeX!y!%o+>T)C~EPhN4esCZKwIEF6i#ugE;^>+H^{N}9sk|ZQ@ zqoaSJvg|C+`U(dCwA*oUXfh&_)FHM`P9{y(O0>y#j*dC1J3uPdUyZsrxX8mL1E-A! zi*OHb8yg!3hm&95qsx|Kq3nHcEYJN{MeUopWtmpSsQQ?59z_-*h*0w?ki&pc(r0N% z?kmYubfX>)Qxg83soE#-bTPrBmfT6E!%T{!YV5AQlT)4gah5|Zn@6o~132R0;emFw zy{G3HNR7Hi%jI{oKbkAqjL*%@t#TtOs;Epy;WE~CUyK3P`d2_~ zxxpg&aOf>;g&Ne?7^>UNfKS{>RlV4J!9})etO?{=gjkbO2bghv`o4i>XN)a&!as&nxtIKG<=kl7eaaY;MGGP%NmAw*P6=tc)XON=~ES2@J zj1ncMYLAN2wXh9VG#>MqbyH7I4$4s1u2P$i1h1C zgW6m?Ju@Qqr}IS$hm4GjhU3Wq*|=n{F+dRS5m4R(DoKP#90IzA-CkFKEFjQnKR-Y0 zN3o)FyrumKy_p|6ntN|%Ti z(6_%rcR&(`mzS*dCSclti27x9^}) zt^yp_z!ly?u62+`4lV&g=H*7K=#)lB9&28%87U~Ja*V~xw#`;YpR^I9@0>0(s8FFq zFCV!&-77qI6J>yW+I0Dn)(>m6CBA^xULKGYAPvE zb8~b1u-Wb9>kH&;lZkx(H3+z>h(jQyWDQWkfI%1h4ai>t*4oh57ciYCw6U?VN#t14 zr3O8fmh~~f>noN66qM>(_w&u#U)E?qMU#k_*s1%^P+h?D382xJ?s5odR+{v9x7_oY z6tQ8F@_sV?mkfhmv+XP}819gDI~E$3pI?KV0O3o3#oNxo!6lAGzqx#X5x@9odMhie zt-yRv#DsVg2@?>sEhpj-3n~BmErRQx51^n>Is&j}DADR5#5Yh-gGB$a^EM4AQ{`gS zg$LAd%h>_TgbLJ!`Hu#29LnACG5#sy`7gh}(_8r4ZeS(!ziR#KkYJ*}Emij4>n%c{ zDaC=t|G-ni0*2@Sm?mH9bv zK!Ya#90pa1B8dnf_Lf9LfQHOb|FxspCyxXawtf;;J7XdLrwyn7ata~j#rWaMEf}C? zLDYXVP#_I7THyW92b3oMe+=C}-PVi;m%F3?x6%3cIP|jvtyaQY{Ow?%U0GApB@oT@ zdVRfs7*eW~4G3EdTCl*C26q0M+}{a#yG~{SG|in24WGqh0ohD4VIVjM2M3G8GJ2IvD^X*mdK4d%a{&^| z*Ao9Hnt^9kSBCyGdW}uzs`6B#{k=!m-$q6dFu=3rCo?+0DJwlh@urB0swA9yUtiiQX!pXqsPaCCEdZvDF6_$soZEe`e)4b ztxQe7GIe-a2&Af8-<6~=d``rQ{ZVH^X8SZFfxZFIrLQ=)CgEoRS3mL=RTD7#6sxUX zzbe$fjQaof*6i7+=;+w9PxqHFW$7P%4`%?+j0UIN0SFN^t~i>Qm>jvhUx=;zJI6$8 z<~BE{;Lpy^K79BvYIy;;UF)X#G8F~-wbfNx~;3Y7^~fKqoSg;{`89I^9mxD;5B^_$37d=+6SL63%N5<~BBZye_RlQ;f5B z{~ultfFjiGhRT!W>ahZ5{!mn0yn|wLH_+{Mi3c+F1+u(ff&9ZOG*S_N!QZ2Rr{j42 zh2PhH*1EPomHSu$uMq)3eEWA&rh zru=2)BXA&{+{>q*UcTN>-M`^_J6_Ja9s~3*&%d4ym(%O<+?BKQ?Q#CG>)*!ltdXzq;<}eYm}K`{8sNzdwduKMv#d_uFu|Ue0}YIKJ=t zINd8Zi{g0P54Y}i{3$mTA}&YE;qcWR&xhe_*F)cxZ;>D>+IQdO83Qq=zWdqrIRIp| zzI)if(Qy-|8HbQK(}Y`jw3xPWay$vFI0!B30x9t}9%noSCQK8~7Gjc##uzY3!#mHk z2B27BS|UdZ8C14uaqX;9wUODig`p96s)0wRbI4H_@f4J-A+BrQkUejRTyapvZQL9u z0(Er;7RQUJ2A*e}LpGk(Swe(3t5Zos`80Y4oL93Y`0^Z=s*?ueR@D)mXMHj5f3cGEBIhIJbO0T&5EA~9SkRvE#d}@)lxj;nh>uNxZy!YeP0LpQ5nu19 zL;ER@bvHbGL(6O)iDG(6eA%mwJyGC`pdHeR!832kAvbi7VR|Nt`d+lL=fKNozmrRE z|5>@cKZgAi62Qx>ZrAtiT9U-{8146qA)W}`$``~FV|-oSKBgDBET2MrqzXJm0bhNu zE%--#^;!~}@wND29q|_OpLia;*92dO@Ojv8AK>j+R6%)~_NDiLeejyLs7G<|^-&4+ zc7)a7Nw(>!4L-+syJa(ow_|S+zxu$-1;*R0pnYDgLt%ZL4>9a@)Pp|WszZ80W4w+2 zAippD4G--l*_|C}pt{t6WBPp-OCyZ5O9q>7{}F ze9Q0`@4hUKJ=*J!0S?aImO<<5l336+XwLbl@rwqmt>t#FIgM>JUy01)Q&V1OJJ%h` zb1t|hSMuP~>$~gz@L_F9f`lOKMpG)t<7j*PMJ4q73!Fbe2m5 z^JDV__{ETIJ=H@a+oHg4tlq)9BtGI^r`lrp{4iEYz7g9x^7!Iccz3_=z^e=@{Dxya zvArX|4&X(RR>zN-Pv9qYVOuBgb|3eLpKHDC;ZwJCj$0r7_z36X!aEm!QrB~6l`KlL zv|~x;jli$98|BneKAQAPxglL~e%?7=E#%IE#5cjqTq|GB@mAsFxYex~l( zRW14OJhLyzU&xDReQZAd zg%onS|K{&zBV)Pz*!Bm531b zU+mE${doq+H9NEaSKVG4Tcb%t2L;g&z&Im13Es#DBG&FuY zEz?R4t|$e_!L^-_joH(iz17D_>+4R3#=dV>=V7t-`GtL6&-C*+&o16%VkweS$fR%j z5Zy;jwYlLd!bcn^TV&?pGt21+y{fRr{q2`0luQA{?$ zy`#n60+o$jfPlM(lkNhq-(tevmD(tCU|`smerRi#19Hf z-UDDfRFA89LMED z2GzeLo<2%RGne)^aAD5_h-2R&Bvh52xmPn!!QjWml8xHyVy%SA#|A zIx)ePm9tIK5pTbs$}MDqoR?JPixl)_(FQiQ&Zu_zL@OJ6@)4#9zCttckZ}1X#L$;L z9iVHA1^`iCm0YD{B(Bv!h}hc79B`RLH0D9KF@O0qvm*gQ5DI3rB_4qJC$`{l?9aXc zbaV<8y7}aCX$nSil-iQ)G0HRSn>+B#72b#E_5!-MVP$Hv?1_W4jJOg+={U4hvq1em zjCRnbWSf5Y*j+Sr>+wU;^pj(Cpt=8aX3X9xy*#kcF3V+q?9Fgoye4; zt)fNy&xEg9+7h=lQn>c$sx90N{~_miswd?^C#eO%wnXA~b?X%M;hS&L^;{9|pj%{C zVATwlG|A{ofIAp z;9;>I#>DU6+1yxZlrgy%=GRgoxG8f>`)?|mE6}mw3N*R<*U1=L7~IYR+IC85vb?*7 zatk)7Ca?zsMNwLlhwEzmIpsZA;W18a;!mnGOudwnMIa&O~O(;1j+;G-RNsop5_Dt2f;7jW^^q<2*S{o z1ay?rUiVKN3G=flK#%LJN|Fl%%CcUdZw4qDup_OG9nRs=^cPxbx3<+F7id}LxC?ig z3sPFrINTFFD(n+hgz`)=R8o|hxU>0Td*snab$in3B6?tir397y)xK_B`Byn1y8 zCeRaX-w6ggh$>LY&2k6!sh;Ed@1YHtQ=pZih)s0t^gM_fAjhKIKMKQT4IzfwE$wxe zIKnP7trTU#E!jF@=5?G{(eDYWb3}_`w3)8oN%!d{!ZzI3Rxbp$q4j1Ch7_p4HdL%Y z0>G>03FpldAC+7XZ4wz4DW9>EB;Z(G{G%=mG~L@s^m_vTLsfSSjskKQhYd1sq$!jelNV{r>`>Yre{5IupTs`VI!)fwU-_r@#w?Ra0=( zDtFK*6X4-4*3TDMQWJvzPbz7Ow!v#;pd`rnr7L$Z2gOFB)|6FhQC=KPlI*bHvY99= z+IrrTLryqmWYjm9o7yWyaSqRWc)ttmjW=+>L;oTQ;+bjBeN~~vR+05kHff4BJbce| zIW#6rCgW}zC~J5)FA(m{rsNmF7X1PX^-y-XT%x~}!Q(MHq{sq$ZPpeOE$Y{i#iV&m zSfyagKO*WO%zAz$Zq3Smrzo=Ne91V5 z=XGT$H#A+N@UR0W4(_mkoNQ^n0W(HgNsB0O`+fL0qb!L*5C~pLK|t<*v6ZZ}`?Gz3 z7b_#hz~HDX&_fNUa84KSJTktLW4VZ~;y|frPIAwV0quq}0a^ zfDw!4hKAfwLr}f9o+VIaZ2Aq_>nq09qXnI+8!sBl4Ltcoa_FA6y3Zm@x@U379#2Nm za==$StEXMba_LDiY(qj4(~*?Lpda9+C!Z9o`yDbTMDY~59bbAv|qjWv|%Ko1++`_mQCubRj!?@n5aF){? z#`PXSe+4+#YPa5_Urdu;f%22OqjtS#8}lb5xT55>l~!9GKgqll?ZomeF?%;zbR>tw zcmzW2$#$1So^$FB+F{-Zr5gDY2m|JCHP~;O*9E$a%@Ry~`g{`#c(tG*%Dm+49@1Pe zq9Eyb4e73vZx#RwM)vhq|K1>U(?>8+s5Z^MLy7*u!TcqnVzcbQ&Y^m%w==PIwvgkjf8Zay2MEVu<2^2S&4HJt1_T_8PkLZVxbIWod z1cB(5Py}WF8=IzEtNaPG0CUWV;c+Qy!E0dzV979Ji)Uqrw(Nq>px2*ZdQ-bO$_s#A zKY0wOLG`?W979z#$-2}voaKIFn|)r&NU(qngOUQjH4U@;A1{cnyEG{6`p$_@XkT?S zz9uNmpi&D60%mHmtCY4!C?idg&OASbvK?bIE8F}%L3wHO!uhAk#(D85FQE8@^ zV0RJ|z7ZWOz;AM@&M#_axx?4z0xB^nb8-+G`k+WGCNA);RsFX8faj6<2_&AN5btnk zRa&VK)>ub0x470YOX{dXjaR2s&rd>(ZJ_h}JelF>IR9y-_64kpr7DnkeSRYwpC55g zD)3{J-@vF9^vmuGU3T*do2uX$j(N~=Qj>-ckgB#+q5Fql02jHNC?$ZdOZ?%1xAZh+%?`?${vc z{kTv45prz_4uc@@NqGE9>^+=@$u%&js->YwhCi?o&q&_@ zVKL%Y2Ox@F4(GEkgQ9zm2=*fmK$LBxM?Y6IQ|@y=K4R%mI9TFvy) zP}0>R8(?`=D@@u?HybT_r}v^_K-~T~RL%nP zYL^nHEL3qMUPIciSN$Nj&54CPwN;ceQFXBFK}o49Q+I~8h+?MTeygBi$kY4r`+1y* z(>j}HwF^d~R{A^|8XT#xY%2)wf)F+ys$v_?BEIf&pSqR&pP;xZIvN~ho(ErxpkhRv z?&H!>lCSeFMvH1!%E6T$$p)OV@gLkP;8Z(@89NS5I-mJyICeKRZ7jg74Qfptc14W2 zL5*eOwVJl8z(JiK$gdRziZ$s1*nu*=D{jD@M+RBg7H$DWW1?i^yh89QUQS;^Tdh6- zXnXNZ>2>6f_h>k}lrjGJIJYcCVi<<*XpSF=o$P;OgP|=>Tf0R9V5BMEGp4*}xYH4%RUAxz#+{*P z@j&4hohuMVpQ{UdkaUKk|3nqKX4}S0TkcK21K5VPC)AJo@~jr!i5ucDL*6rCs9c&E z-ADi?eICGwAuc+fh1X@SpU)UdnE7;sqEBR{jK$Ci)DxHeXy!^C^i&napyC?4Qo`;Y zy#Fy)TlPTB>-T^A<;k~|VIfrbB`Ma+G{XX(PmmTRkmx>+{hE-SV#X0f`Wp177`USx zKRJ=Ucd1~R(gP`Sq@^Lm=t#Yg2bY4qV_FUCiPYD36Zx~i3JP8GfMau4f_!0d8eEYS zTILg?m>9a>A&EKdt3pwspx0br+v<2~WI|Cz*voB1SxonQ^(F61jbPh2LCX}0kt7Wt z@h^jweu5c=Qket6oTtRMsWPagnAo zOV#;9$#kU)%&Dw%&xK=_6ddMx|MPW5Ns_}L48747G1$QUFE&fYNckBK&|RIRgRvx@ z@elZ9&l^8firc9EYd|v$C$d8Fs+MnKKk7{ZPO}J2+XAd^1P)T=;m3!VD1&<$ z+L`qnjFhU3g_t8K#xi;uSyE*rN8vuPJwBh!>57e9i^d4ezV68{HIY})Hfl+Kb4z&b zlL}RsL!pSnXiH{}UyzL6+vXHcavJU>{QM2BmQPTW;P8dd&$$wlhYTqH5@-<%Ntp&X zOc1$_o}sCrY2z{~D(55mTDTlHim))~O(Uz#x{aSlHO!`h8edb7(>O5Wnd2+6xuKZu5y#sPbM}D>h&kbQhPy4)=8ixxR zA0iJf$%L8g*2t1#kxv$uk>n-FWR%L<4o>w~--`aj*SX*}48t(=MuYWeaNT33m9Rf1Oi@3$nU$kN`AkCWjm%LOscXOziFh9B{McqGOzAq%W+{Wyl*oQgY9G{mphBVlqHek{XEaB{w zm`ft?3!0W-AJ*aI>Qs5jTex8bD`xnikB%hl>!AbD#)eKk9(CG@T$6=Y zv{*2$H6cfMKaKwv;1nkxPA+qiGa(H`8A&966a{*dc;3_t5Lr{Kcg}fTSTCrW{0R^= z%rKzA-;J=-yOL)q$C(6lIeh_1Jn`Q0A+Sml^rw3v!E#qsqU1o69UoH>)`I3bOU1^? zi6$Nk9JR+bVH;CP6f-HS0dA#xPXn-xl+&0potlnfiQsiGe*f@wWyg-gFs!2;9Uvw3 z-`GZp3Haxs0Z-yEqDWjni7JNu1hbYL*`O^+FANnooyew|fR_St{658t$wHoCV@<%G zOzh-}BWvY7!iMO94f%7im2Lu+<`&n%%f5hBBuUvUe_gv23)9`60bol$XT3E3LE*yg z!+r&V$gM2$zed|fb)0U*!-JjNKVRAT-FwwbAKtcY$?;|xCQ;}npM<^bSrQ7FkUsvL zdWTmMV9(>2(q70bdo*xa1-EfVAt%>!hT4T)X3gJ$*`~{cd>W*W&z1ZirwxKc(6go$ zPxM+X^~uAyH@CEhB2HvA-p}hKv>-l&nw+f~>`*S(wqD-|al5Ggxh2FjN?3{{1e!!s z9%by*oy;M?NKPhabRL9dI`k=^1xHFkp(Zy-XYmb2%8M{8{)j?N?y^m!B&zU!lz;mG z&L(3fIhuK%ZZvL>u+vq>YvoRD`Yid&&80kczDyaezknt2CZA$k~WrW!?K^!M15RRktf-WDxO0tDrat7 z(u(R`l6M>+F;6G{I5mDq%}qvHw~#S;tT)qKsoLc&Tz5+osroc5#GO$h zyJ%If@ky@cmGqx0@2i&~2HhB!8lU81S^bQe=TgfUdC}81GyuHhV6(~;GuT7XNpg_7 zxNX70g!ngeT9x5Gu>ho5HjH%N0{8y_AZr4c=%bhW#MvBM4#@vKI;hTc&Ri{{55W~V ztNnTL!gr-)$;2wf@MKLm)2k~;2poOC(s7NEFK4;@e8owDTZ0~OB_87!@MiNque-+D z3LP74-hKkka%ASR%TzHt8IHhk83$-yYF*KxkiFY8VAb0`<>(I{`NP+_B}xo}Fmy|T zqPYK!-Rc#>&tw79>BC}`90|nml z<|CGp0BRlpT4&YV z&^y^u3{<{W(WGz~2WLNb>9X8pL;{eM|gF{~tkk-t!S?m|6eP z_lq51LXRN`bP8DeIWMJmFlXecC`1R*6S6cJN+VoBxL!NExS}<9e$YXXqwt%xz*tB` z!r4Kll}HOSX&^!+=EJk?JlG1$v`|8N2d3ne5?c6WCL9p}^3akdB zsI@}QqF`79yQ?MWTpl0hW%^MAlOY1dH)5chKp@GhIhrRe5*5F>MMDvBnmV+a>O!EZ zrdr%h24IS`oNFD2IKTvK-X?P*T1|mhM2o%o;4JWzeO((;;L-gUSI-o+z^FvlfbL3d z;nB73v}HT%f?CHQEQX1-HA(T@$!KVv=!DW*JLKxNX(@o`#N89}EhGBCN2NsHWHe7U zVjtF8KvW2QgdH8cDozaE(5dW`EiVkF69HyC$z!*1(EkX#qGN|a7`D+nY^(tLFZK$F zrTo+#04}8=V9AooKWMmQ41s?BREyk2+PHJvB%g`0TwPd4#gUgmfn@ z1}FHG>3o7(R*ux292ulsi{?`t9H^%P-T^{}6HXS?!Ua}&#lS)7C!Y%j*Kow52+?Q7 zzyXA=dwNW7kj`RCn_pfEM4lkwuDyunoS@a8bFn9$QqcW3cG+B9y`oQ$^hy5}d{g*056mH=@D`0G`P+cf#JuZW)qj{$mY!Cf|K*PeVh>PPSaTzMVo9 zib>snXCvQ5S}Q3mT*M4lpA1&J`vq^uqJHre%;INEL`*#Mq(A4#BUi{e8P3AuYrUoJ(@|L z|JW{V^DD1R+;FK#!OJ5;A&aoGPL=QkbiCgWqbQ^ntNaB@Y3%=eok?!RFbqSlr&k=XGw`LBKwk)QX0*H(bIgA8KJOB2I8QcN(g!~P!bt`;lB_^ zH7Ms={qh-l*+N>N=oOQ`fmL^93qiS{NO*a9VKZrURD3R9$~>+L-;GJX2e=yXMrj~l z4%jz<^TQ43UC*)rM1xe_)+i%Ff$xgdpePrDEn|Tu{ROBSLI(4~7G+Z}e}xc~Mc_{A z7n9QHwhR%)rC0I%gEDN$wXxoOUFEI0^FKx_F?3MZxUOQzHNh(w9UQ*rU&tN+9Vptv z5%Rd7;8_h9P0CcH$j3lhXcsMJ{&TWn6FJJ^H4E3Ce|NN!LO|$%pib zOfncF7F9D9Ve(q&r|d`7iaS-KO99g4eT)law@Wr7Q_3D!>0Ez$o%I~u0Vs7 zY05}E)656NuNI&|${+xp;cTy*EPI40~GWaCAy@|I9CpW&1y$GBXB zjw~_RGRw*pNDM_Avb3i-WVMmZmFiV+a=oU>nzPUMb`=?aSd9S?^t<*ghRN=m2&j+h zl8+#}VW0b5LM21oYl~_Wf*`vASXzOD1!ny+N{BKHS8#4fT3NCl5nY%;@Q%B#8{Pv+ ze=eZ>33DpS)|sWm_cwdb@<$ZA!A{Gcjo)N}hyC)o0ND*sV9JY|Y-QY)AS!}5_RWs? zKB}iY1lj)+o3m4J?3BHbQ>C#j z2Q9grVb6d=%1F5x|9c|h@Vd>Lp^?>4C)5aZ6LULbk#3`p1|h$LgLP#rJ_*%E?$89T zspSJpF0_>3e=lxLC?yh@(3teHSFo6vyV})$9nHeX+pzUsxPD5Ufai%&U%qGCxJCO_ zNrqohg0@_%;xbM<9||?0)Kw{7y&s4(i!t1wHq?ZY1cd&76wnm)3FmAgQzJ!5XLAsG zF%CWU_W}54Wwb{A{-AWU6(PG#K9?`qllTkcv5ICBLZjqaea=^g9>g91XH}L0f7(kHzl;d=_HmTvnY|IoUc|syC$w z|NbVm-UBRu2@vPCbQREcbs)IB51=B7(mCE2ZE6}|IeZA9B8n*p5+%ePqwaQprb2nF zN+~=qhG~bs%*6j6U)Pr8FbKo01P&4S{ukSI5=;Hk0h*aM6pWtr08NM~9QQtxohoS& zG(eGZ6dJ4wDW+o`!_KIHWX#H>3zCZk0oaACEU%1nWCu_gcG%!{u~|ehwv0V@E($ok zQUY7)>l2iqjy8GDC+5s8FWVcB_x3yrP(*JPd7UEB&7g?REkiL0q$8;1ij=~!f6z}2c5c|S0?S6DLA_nA* z>3X6l2+h6)<$5jra0&>y;NBta;j$1?Orb68j z%2Y(T$330)3aNNGEUK9?HtQhbkFYDdk{ExP_Q)awb}eEeVUw0Bexu)*b@3m`Clao}ZK>+AWS2 zYN|wvZ|daDKZm2bxC|520lWs5uFS-`n1tgi|5k1;NPak31=+p>7~Ofs@eX~K9X2Sz zk*x+lY{=dx1eHk2&sWX%c^N6Q!CG%dcZ6IjyLbST2f+3vUv~Lnj1~fY;0N=#- z?*XW(a_*MvhZhSARrE%O()=G?!W@cD4gd@>OeGriV!dg=o#J5i$_9BGw_s zB~XWU0#HMze)zh!YlmSFwo)(<@cxV4xQ!)$^lE{gG{rTb7ni`3eCRtBSE49R@hC9Y zEDQ`t?~vbs+W87NO^&P$XFPSLTC4JlMvdvm>I|}FD@9!^0xH)QntcSP1-;}m^{JD@ zVEHd``la0DdzP2;u}pO-ce;P)!53k^ka^1|h$Ag+9E1~0yI+3z{~wS{Rp*=)6N=AU zUP=z@>li_$8_IAQO2~gRM~-dH_g-ISxsBMt&Xf-TIK_%Yheo2wQ&G}mubev@(EnC0 zeW5v=5@W9*u6HqWuj;~#A{V$tYp*JUVX1FM`BQ~{E8bNRO)*&NEb-@ikj9EFR5cXN ztyNQH*6>2P<&0KGth|qd`eyh5?~rehBv>Q3Je>SRlcy*SY`KwFXGo}8&hTpWSb@!9 z;zG-XEhGN3r|b#>RhZV}5IdqP=&64Lva#o8U47CXV{=W$ltr+y6n_nrcAAAlE7)pf zRNL8WN$ofwcrcfxTOP!O1NM~;ZHONtrMqN9)$^`ifA)SgOxUU^tJ7zgD>e>{dVc&h~4ruPDRrAoz?$}N{C+1@5p z0TvT=XouSGt{*$AKf=!F%9Rj?p)Fw>F!bNpTW?~CpVccMbCOBIfF)f$7r@?-bgSA} zU8CPe4L_57ubcB}HEFXpd`N}02pfqbA%p3NQE9!=(7jd1>B*z6l zXq3M%0RFITy7JFux@5~0b)ztko~ivL;A@N^|BIAT90GkMLL4)2xt=D#uVYQjUOzpQ zUm;{FuS_Ovup=YL#OZy-D0r~?3K&lLIk{tB;l3Uiy*wgNN}2Zfg%G?gK~2tl7*4Ur z2D`$s7#t-^W|G8ih>3NZa@9VbAz#jlD6&LG+b?T)Wbzl#GD__~s7ufI;>BueC%rgYlPj1i8W3xG^fHj(>QW6C6X_jA>WGFOu){Bd;mQv!q9JjD6 zCSL@#-Txrg@^WhkcSL#X1ETIfzOL-ZVi<&Vv}1e${WrGZ#g_7=1~LxgghNPj$uaXw zO{u&^M+Ccu20wOt`Hy4a^VCLN%I^WosLBuYC?oT%ItY!xuFL&JLkChG>c)O zzJml`G_vCoJk16y|8|po`oU1%!|Y&d451B(aAP-l-BcaDc*S4{w!@KHAgqvtD*Y4F#oIs zkokUvr3!(OXl@u?lsmQfeL$3`N6HsS8ln@$^6Sb`0g!fm(NPz|m7^lK4R?4+nY|z* z<+*mw7S}roYVs96jFc({{|P&@BZpxahPEVA2f_Xu+h`pD`a%k@Cvh?~1%eM}BEDwI zSK)dJgt)IErp@9A3N|tj!9rN01QMYIeX~%?J^^yrbIC9nOC*uBha;T%$u_6S8q<+{ zon?jn3PRef)HJm(`irV}`x~$n4#I;sB685_W}PL7s}dGH0Y&F<{i+0=E6a6JII0@s z1SahDj|@_!K!xK!-+F^B1f7L2^6II+bzpz~W&gw)p7f9}1?#Z2$_Ma5vy%o0gQAeC zu(2l4E=n=1Z99ci_z5eVLu{{4O=3&MY?%M0^J$+zO1V#_AMa`?t~Um`r%T&ggh>ypxd5u+{{;&k#z_n`-oq*pV9Dy)1xg=eh(J0 ztx2|{8;os4Z%gb3syyN3S`6Yto=_r4OJy!j+f59Okwc#A)~$9v)7+lwAM64r z?kT5t*6H4i#UO@~nx2Ben$Rdk64Yew%ay(b14#h=c}!FQ;PtdE86di9=YU{p;onPI z4bau=Ff%W&s6>0deH*fySj%J8NxRfY1#uj^lym`TP$UQ;{uVS6I!-|M_X604BdjiW zk}6r}=X-oFAW*?D&;De--h#-|0YOMms;ehB@SZX9UpKkwdjXJYvDfxb`a^NYIb`cpi_gGVEX#~ z27}D1B1sagoIb7e*$Fy1D78Mrl%B4M!9$R=d8^eLcE@2ZMhE+n70%guXk}Y zu+uUWvnUG+WD6ko}vDtiq9hWz0PM1VZ!pKp)v%zejNffmV1+kq2!wl$0x}3L_ z`S--Jzmu<5Xpz08v$@_LUnCck~T$%37DR_TSh0VYYxg?nQ}Pc34gFwacjq?NGuk zxMv*>>rx0}d1G)Qp_4n`QaF)x=`&DUequ+;)Z>PQXp@vGrt%{ss?l#^XIe}_ll(|4 zAC#!?O+44FVGm1rbvc->!)RFh!`B%dKn#K~bR|Vl*?+M+s*wIP3wUi$MIq!JssBCP zv6$|?T$F~x1W6k9a-*hd-phx*mvQolgAsJ9)Jopd&TGN`CT`lps(vN3q0*&VLQhiS zitGAN_`R}|m1prJHViFo+gwtOSksKY!V6+M>Kn9b&)y*wVLO2U-PoHV+j0Me5Sr?y z0~i{_fdn@zqPG}3AG=JLj;#G6a+gq5X)~Kk$r)Bsjv|h4aGEIC-UT=1R5m^48Fv!= zmqDY?4|hYALQ0t4tZV2@C_vO<=GAr8C8@2H0z7e+{R6jn5??CYdLsZVobQd#LR3%w zC$tHgG}4aCmA*phty`a^uw4CyGig^K^F4s3>x#Tkx|+S!kuGtePk;hS0(Oqbbd{ch zr5!z+Pdu`%H4EE-9Ha5yU)4=0*v_?RVUGG#VzUHy9iFJY8=`FySf zrbWt&GKyTG?edQHosBBwv8VbTpd3REz9J20!7DRr1MgaPuRV>AMM1__rs)ofDHg1y_GVyIeiC*Nr{m($Fw)4rj0`J+0L>rsWrV~lXS20 zFrrQN!kpq>?{KCPDzpbC^nfyz+XdZ~rtxXjC@bv?6>;o|Kci>1M;Mw>0g5kN#H|hb zk(oB+A?fQB@>sZt>+;~XXrGs%Z-Vbe; zgU`Dmmz@~Ye(+Xct1_zVf6}-lM7Ij}c-OO2S)|~9Gwo4!14@J7W~4d54^bm1UwaVx zfJ6}8YMioCRTfAz23>@@1To!gUboamFua|w$wODtbp@Wy_Egt9dh*V~0LJvY+-1Ho z=&AoB@_iLLO!a(k1zen+nH72(FGRwiE6R%7nX7y=&F*FBUhxoJ8alb1$x2Lfyb$fd ziz?K3^j-c(*p+2l41%yNfhgksH}8n2 zsO?qr6aaQDtareXBVB*P=dnoa4D9s0Z<`Cf6lk!_F+p#c)u`Dib(q~6@|JaBbo<2# za>j1>haLgs`C70`p0~fT4V%;D0oPDeOz3;<_GG|%=Z#u10@(BOTBhtgC}G(gO-BRm z=Np{37TZK_$HrHTK*__ROq$;d|IyVbJ&#HLcH$fSYP&yzBr+hW@?|wXg$TNBOuY{E zv8SZ2O?EsShlKFBUDuS&5TnKBn~xq%YzfMA3xFTiN*075arJnK%V`WG(nhP)b{&Lb zo@7W2fN-4S+_$^VStpHs1O`&>%7D{oP!VK8d~*#siGf(0_u;l1s9;I>J{@H&#-PZ* z!`1C~!ngZ!o7VLoAQmkK$ggu0j(Dpjw`2gAXvGR~-RAW!M@aQYw?J{R8!>I=7bN{V zq4hs})NP7v6F=eXkDHF1$J1}=k9I1EYnkjmFX=z??%j8Uxz_l|(?EML{<*Guqv>o% zG^`6J@?TyhWro~(Fd^QXf-;|-q5@&v=*mQYr23qs#>(csb@bQc%v_fOl6wKDyy@^}4r}E>! z024NrY)qQGqJO2ifVF}0G8DM|q8F!PlXdPI^^%#ud&q(K8 z(tK2!C(-$`CteQ`8)GGXR7}ZAIq|;J+jpa3m5_X&$Wu6&jxP<2P5p03oLLh5b z%?YfL@qjxZ<)|${3HqG#H2fC~vHw52zzso%nj;@j{H zqrLf(=&pN+G9Cxc(8uPNDt5CpA;Dj+U0OK|`xqkv8*)AGGL*(3FAA%Atv_^*z{J>= zMez0;u0M>OZMMW92t&6d0)qSB*c+Xa^cV9s;OU308c6PSmsvl6LqcA<86`#Vp7-m0 zFtE7x(AVZKNEZBjRQ)9cG3n+kXDt>YemzI%;A1e^FL5Bs)7{*UfF0yeWlc^Z$ad-f z(KNUC(!~n9qIJ%-zXsN02E2|ZxipY-Y1V62PetaY^Oj%JpKABFxB!hna=$9lpG*@o zav{oQK33gFZOLATO`st6D~VlW$N!AKGU#xb8qi9XlvZ*qGS>d46TonPF5zx{jbw`G zCCmb>oC&qyewH%K-AO(A5waeGTA`xPNtZEsnf4&%4R)V_H}979ns2tq*>Yg1cn-)t(K7z?E-6 z;bSN_L5U@!BcX{5tlElD>ZAD#j?il^LXLg7!;?Ni_&m6b)ec}-GL0GkmVp%4=w&A% zb!BW_uX@`=%8h*X#eamIQIhQ-2t>DJi;C=jV>4tzcis>0|5mDQG>Aa=>7H zaX>Xh^h@CqFR9@cq06Dg>X+hv07B3h3T-$~Yj6&zM`IKnq-IKT&eNuF5X>Gfv|uWZ zShVTWA4vQ%ju@Aqh%F0qw_VFpzoZEJW9GTVh+Njj7Q9`W$0?89-;n#%yYXk@!6+>bnT_b!uWE9<>=wZ|XF3XPmYt^A-byf8hrEo^Db9kps}}8ANC{)d$Q~HDwDI~+zYLPX z#Mb;e2$o8^$mrjsFntaNSuAP2`*s;7Z6ikUZ}V%cam|N4=k1qSaQpLCDc%hgbhbRL zof{xQjGHluyg~A5tp2RB4>3|GW|S1-8N%-)WGP}YzgW!1ed@?I_jW@XuQfhCkTVW7 z=6$abD{V%p5jb|cNnqI(7Q;PrdzAa4dWGtc- zmero(nycw=f$>`}y3fgssw({f^GXBk)fCP5^lDZ`Pj^ryEjXOEw~4woalC(eKE+;O z7ATk>TTdynx3hyOUxN4Vjn`Wh2t&-Sb6jJmW?)tD@)|9XlIRDZio~dr^5vfVsUu!- zPb_`Gda(5wWx(Ji&K02#f@4X`bED6LEd3-jsecCCj@L)cx);`9McAZHpqXQ7H3lJ| z&8Q(Bx(96zj%f>mIc7{e!<@1XX~C@oNOs<&lSQ(`LviB4Q@ zbJVU>JAttNF#)Zz!fTvRy5JPIexCkc2V%$%CGBxlzJXhhu4BljRdX{e8OJ72i18;U z0F8oUqc(8Q)5J@|Rd+5e$&(Day47p6 zn;LZrP{kk5nG!pc#XP^H#U5^jF>b?36j&}+qbH&r>)lQMxngat%qCHb@v6`THguxz{zgE-K_Tl#-O9ECmB#_^Zlb#(1`4FwOf$xq|<}wH7F~dKqs>G?1ebq zV*cphh}MJ!Oqx+^;!`S0%98lgL~?4Afch9WMz(lBC;d&SEsnfpZ|jO)uH(gOPU|rs zWOEJB{_V#&)}gSrc&ku!DE(9syo4; z#!U@ozkS_{)vo)!uG;Q&ebC8-xq;Dm%=(04n2Wr`0MHwDR#VBml4$gGQ~tNJr9Z9< zbxWU8n*F;SyE%iDOdEAe9{47^1O!Q=-FhR(xVl`)KmsofSKB_{p3E z^YErtnH(w-xM;Il?7nN#MPIdE2Z{^HQf@=(##4i!LafHbDS>Dtc76lGizhfro-;vq zrvLIdgwy&Z;_siZYs<0_gkf81(}H&Y8=FC;;VX9o96<%r=CMD?-I!l@sN()|E7`n* z!7dSg(cg`4;+A1?4s+6F{D2j+?SH4qFA~OGGVaFuw|yWuKG}F zElwZwEGVcM`^bI5jm9pTm_BU4gqLZD$ZU>Xdx|M@?j7Fw8jjiKJhelO7qx8Y0h%!W zwshYCrrVCD{-1+vwSZP-SL2GMK>1Egf847eM+h=@m{VibXy0@-6wcCkq%&$K8x*{P zB{4!9H>TSmoTb6fCDVQ!K8g0p-H)KVdky_tQc^QXESN=nmNJ?5^#}Z#Ug_+V#NM4A zS+-sV+BZ&PhFvq2*U0jm0Q$_fZIb`+t(jILodg_g))e~o6x-e9$sN(lh)(Ctq$5P< zHZ8u+b?Zk6VodrP+c?|^G`0eg;!j$%cQ1Mc)mShM#ys&lX%n#j6)uPAuYO4eaBCY!zfMW8Ay}Nkpn6P~@_M77W)7+#!tS9S zT0-OIaI3g2D}SyX)1IwGxYo0pD)OXt#++y?Kh0UO0(nT=v@?q_Us>?-PC7+iZ7Nst z(`iUY`k_KF8k%{B^VD9xi|ohKP1ku3#=&m@9tU}cWmLBHRUDcnBs8qIlT)9NEd3kU zh(sH)D7wzo$X^_u`O73=1DC$hv6nxkNvwVv# z|329IgYlv;t-mEypPAP$5%3kADVt?1F$jA#R1Rb5FkHu92~|9Byw#oG%!pCG33`Qt zNOrF4l;=LWh7}l*XT#zuc{x)Glf@!CNVAcgtwIS0U@)TAJBheckIQIKW?-Igt0TkF$hT_04|Zg|Cw?5brW9rl8+?SWH@<)qv+Qy zld15(_B3pv4)?JujdC3UEU$40Eg#Xspz*x~}rx9NGXNhp4nt}Y9X(`B^QV;gk6 z%JCusTrOcY?9FGwa7CB|yMm0Ggx_&vRS!u1Qn~Fn00|7x73u^2P;o!LN+}~;(>_!o z+;%yS=hkaLHvaX;-`B7&I6ma;S3JnZ$jcvY6KP64aTE`b?DWDo;sl!By^qilAO~r7 z4LZl+4>SrU2gZXi&5UzIcb_HkU9U&t@j*(>KHkZn>DqUgaJTyT&}(2uk_fwfky)fu zI*hEt#m0PWp7P_7-G(r*4(A8}xF~2o(3gA*1`h?Jq0O9!d)d-3ruP8ZiW&=hz>IQ} z&gD>N5TqHk7IiD=d6`<=C=N)|XeT$Z4|3V1245|-@CA0LH2RgdkXe^bf|yUfrDq|f6;VGVZ4zI-@9L*JB6pZ-9XC#A})g_DH_&v;Sfj zazVGBCO+PwvnKiObEwLvP{o5Xpn)@fdFwBczD)(huY*NZpe5yH#8NgrFB1E&rvQ&sKXyEX-hVd@BR_33I)JGXl(kWbeJeYaJ73>@N}q`v{)722#V{zK{6&n7VzU`Ps?^D`#Kt z74l!Er0)R|hTF!91w{88wer)C96?$P&gBiq%hfJP1~{ya z6+=dsOrrtX#Z8$J{1dvfeF`VSU43;4$E{R4hsTEt2fqwE$i^g7)T*me^Zj zNzP8PsgX%@$DY(b`CBBGWDNVLvOPtth%0>ow2|{{s0Y9>E~GysT4hPMsh!T?(Jl@p zm)9#Y5m;!GhE>CxB5Xyc)b~K0SMyxzh;iN-TrudzmrrpSqI>WjJm2>)XWn&wM0s=+tPsQB|sIQNN1Q&K9XdT(PT%yB=q)^9J4YvTWZgXYFUvQMjCCvL4r8 zOFRgAr}e;G8*-o1%f&Siw4H(Cmr4o#hyHwwNr|$^rHmz5=d|<<4PhS2!R$rn0_kgj zSC?iw3Fo>2EFC?gQp1>bT)K(?C}7$6*acp*jWoU?5Z%k_GoK(vg>g!XNu7fOWA@(w z@!ATb@^Fy7Zil~Iq*YUD@L5FlDyhf|CYavq{xx9e>cScxkT~hM*2XCt7=i^cB0CLE z{9DgkuzTFsFb61otwrkjj!0GL9bdsc3%~@VZ0&V zf(C^MQ1xRQS9Q^k9}4jFppxkyKVoBn7#Lq2h1`D#G41JW14G$(DN_uxIS?Iv+GK;l z+9n2p_jzlf{wPlRjSNCIF9SajM9STsOh)jT4!ODuoZH-OP1+`?KEKzWNl%$2Wi7Am z(bxpk2i=L(^HwSK5ujPWf?~Q%I76~rAm97<=V(^ItYL|SvH|?=ft7)F^LgB6V(2x8 zyg_@=k4ItBec@b)&SjVY`Cx6uJXAA^AGuF3)RUjd#w{&fCBbWFx(P_z!XiJqHW`9;x2^Ja9Pp5w6{ zY@VJhSHe1Js~IE-mQhVARg_`KO6u6Ac55gW(@3U%hf7jHGfwZggR2V%zY# zbeI^2($#CwNi&gDZ2LHiHu$T=7EhR@5f-Ai;yB~?fy(7&ZWz3;H5N*aG1HQPzsrSyXc}sY^e> zm`O4Tc5I#UzmH*XFe}=#@f|L978wJw(GxV&j5Y=v96XXO*B`gDk6i?euM-rs9pTpX ze}MvWnN#c(IH3E-R^wPAqp?BJi@Rk{U3~eX3FJ5?^JhGK4Q6YkeuttMly|xLv$*X; zs?IlzKmpmQADoMsze_uKBTztQo@l`BpH3hv+;r6u%)j=DqM@Cho$b34JsE=Dg_VS6 z6#QkWQO?19n!Iq*<(U`STQ2lL%+&d+-a9KlJ(j84UBNERf;xGN-3_;(ri<9)rrEM4 z{)jf6T%eCppc%VUe76pIcXMDKu;f2sXOt~52*S`Ufk4&$Z|ohakiMVH20SxU$07+g zWCajZ#(3}~yo11%Mv<#SrCH^k%P=?{;A`@nAOC>QR6a2ht1sy5$LSOU&AuzK&#^x)aB`zD@;HarfyAecW1+>HsLeXwLKYLlc0*k(4yJ3z+1lW#Pbojxq zO7o6^m$&!HLpGZ7X?%eusFcw>fjSD0ia4*Hu1Iq%scqF61*%HDjHcV4gn?@T#3;0_ z(L*Rd=;Z!5wiD)%!>#|>+c*CR(G0uVkU5V(2l#KQe1-0ai{E#CcDu|Qw`xDmd4$wR znOu?xQ#ir2lm_p1K%)^`3iWh1b?ne#$O;He(us>v^=#gPp8gCa(ImwXa(?fI1kr4M zOi#d^_2L9yH1xGrXf}hW<=zoevsTs8Ip=k~J|pj0{GB}wzANq0#Tyxxmcq@y1ro9! zm?3Qf!Xi!`OAe7H+DJIw1YSsXd^^m(Xg`mA{Ab{}OyReZ+13i*U4iD|?wKSrR*(dz&7v$0Zjtr@Z6A5?A*&Spb?H|I4KoC3gw)IDp0oTu~jSa9f zqWPRZ0c5hv)-G`N0)C~@k*5HqdRctg3ATHIS{lP3d_ke%+>iaqJ|h}gUe3X38EL6% z-hTs1qzWfh9)@|_+XDHevIAft#l%X9c0OSVzkAn!1D#AXH8Xkut%O#9le*FI6lq<9 z*wz5WioA*$1X~T_crZ z=wpB~moImF>zC7Mi!>d?BwnxYw*px_nWdZNC=B`X^eJvfM7phc-NOaYB|Gzeg#^v{ z`1mal?@)#Aez^ztpDE4V+!vZ;F9E4EXA8kOxtz^*h-Ia~13pvlFx0lkI{MnMxp0=0h@GY?mwhZ-Aa= zB-Jn(0&k>>mapWrJ2c2mc)LQ#tA}G4lXbT(yR?TS zh7L(n2{viTJ6}7}W(8*2HHM;1B|RJ>s$YRy@&O~iHwVZCB4PcDEWw4u@gHw#mIVtMaadq?gc|N)KQA_DRX>R-8Npk+O671QLcviKpc zLwvm<>#cwWfzOB-*u9wYR{5Yw<0;kr@^x)T41^%CB@_Yezp+G57QeOuCl?(=_Vsl> zihbxlVeur3qWbpuo~hL|*5NX`Z18Uwa3f6e+sW!os3xvGHdz7Cp^nmLg=oe54d*+7 z<2b}enbqTk%n^AT@#IxPi7fWOz(ysoR#1&6a(D=M3YbJi_;0|_XU&T6TCae0@iy2n zhg6%dcoQ(N^Q+E^DGrv(o(|kUvL96u-3Y^N?U0pk#lpqB{x_903YwXL?Gx*vbM`1% zxl&fFmF?M=v-C~RzM6HlQ7iZgsE;ekdbbZpG9IU6nmv&qirJN?^71R!d@IVyS?ao7 z=>>QcvAl;Zq(&PS7_hn8DTl@vSZHBIL7SSbk_)8q*QLX#^c&k|0IDGE(Smm!WqKCc zV9`Ef;5{;VR--w_K9cX#&6~2Tl-q}M^5;ZBHIc?^8wE_e)x(VCTj9`Uiwy8HJRM)p zTy63dz7x55Ay5u%`{sLH9>YdjpBydZ(7*$?EeF^$8n4pndbS(!X2t(v*a;^IPjP|!Jgl~+ z`FXL1eDRLOh}51D9#`&WceaY7wc zqgTKs-E=)p)?@1&0U;`SZsnBNx=-?bIumLFwq;A3qhC)m7-4^FSsMPu{CK-iP17e+ zQR2vHc6|KDIiMs
zvn$F|&P=wpopef+EmTMxkm0N7p;~aLTF_+gNDQhg4AE+)V@m3Z6YvCr?9W=3e`BCNSLZ8!2i7k3I?DU>Ov`Y_?+@2Ol3jpzf2@lte`rq75WNY_>hc>dM;<6eMLYx`f9l3?V2Jd5w0 z=y5=p*O|~fn<~|P$BvKF-Rj!j*oyF0eUhXw9nK5%rOT+Svb>ofAJ%GtOCY0$GV5p@ zF27gTxh6>FaPXJ1OY`yb7X)?g;qlC(-l~5}{{(pnM;t%g7B+A8HDzFmX7+`&gFC8{ z;NziOC$^52qBD)?)5odqwhZnST{KcWc?05P_~je;W)@MvpT>kj|E<8{q1By_R@H(qBY5x_rFcqlSa#KPNLx z#BlG*4MMUE_^DSMoBS72#YLSxWTnGwGX@}o&(6l2v>@jS7ITQ-`F-$kF(J;^GjDq@G&8#_F!Ge;1>&)-eNw!aPB!6dn znU?QS8(87>=a_$Q_ebxddo2r?CEi!1rtE#N{tEq$E(vOVO*>idBJV)m=SY4BX_i08 zk8Cp|Idj6MK5K!uPMbVgLffaXLd~*;&BRd2N9ZiX#c^vF>@NVFw=<#UJwH@+Imn}A zI2;f0`Ejfck zTK_3>%RYT5gm>yb9C;9Lyo9#;rSk*#I+4qCCTc~;`pbDQSMyQO&IE)xg<>ut74CSu zf5e$hV>-_2pV7XTTlDYFL?08~SNxvK+a@{0503K@SZt|kE1~LSuxKObH*Z6Auc5Mj z&9`x!8M7#(Hjd^W3sB?;u)i`_jzP$8DmM^9*ABD#u9mZMjWZQBQpTc*cd3%p;<;mB zhMD^GU&bK{AhrT_Gtovw+;20DP1Z}F-@S7=EVRg+UT@dooYqQ}mw~yB@0lvfy5~vI z&8w)O$dkR5>4qQmMRTTxft}8Tma)2e<2OzK>c1xR!^A+N@nUl94;WK*$8UutWNFnE za*YcsNdqdNayixReMB2g2AfSE-0{^R1?X?yjUwS9^;-#!bx4`Ck zWb5&BRV$#ot<5_M9ar0W#iBgQcKr`JTU*`h;@yaW^%OT8O$u|eTs3qK7iUUp3fPzM z(q5EyH%aHkR<9*~Hl0fL)@*pGRkQ~pBSqJiWXFu^9VFHfG5Ohlg;dOEbOGK%sVUyn zFO9F2vDfy0ji_PwC*A0-;@X<1 zk?P(fVWYaofhEom#MWvizjyHRv%9H39lp%=~&uf%HxCwy+JcCWq;)13cn+g;-zzXST`t+5q50t~~|o{VSc#{_xz2 z;o{PGBaga7{k07c*!OkY3WOD`!LDVPu$eLbI^yED5Al!ZnLlN9u7YFcf%qJ)xS(QP zH{$1?hNvJ9qy1`MaI)tV+*F~1+w+;Xl*;r;)#z_rf{S0};|->n8X7n@>WlQshfOE{^Q>$yy=i=#8;-Rj0kh{E z#QYn}w_9I(go60dYotRtN`F25x%#et3!##ft?*eTe*=H>47eut=a1pL9Bc)4M!Z!n=buL$ep!w$1))qG9oK9u>`S z<*PDmArz{>xTk~y-nmm@A5bH!8V^><2G1;gw1F}!ANl^*UVF?Cbm-Tt7nfWAPcKu< z1riR#$ep1I^>SXjudV;<0r}N0KN!$*VRxc65 zybr8JA|DC=IYqj7PdZlQkBQ|m^bSmtUUqgP{v_=>pn%KV5mDu$%L~`UPzde+CJ8^A zyGPP4+cQM{nByv_U8-sZPC4(V{hW4K|AoJ8-CulFSRR^ zaNys)n#}w)({xQ?0BD{6=MknV`+=(lwB=ZKE&MZPUHv!HCpi*89{u^J*!ufga@#rI zE$|3xGeA`8sNXob=^duVna)DHx=#04g?)mHH9x#@0U?5s0J7*G93jzFMdcK+Z z)vcDdAZRO(WqPvCUxR2<^*LnjlIM7YiE^^SN0G`!HRb|`N9YwA1tPf{r}g8}{ClHi zd<(8-UWGSG#nO)5OwkEUg|0C5W=d*W^rb`=-;4Mb6%Eu&9)yeESo$BGkO!tmoe9>R z3MY2cCTbD6PGxra)EZWppDMKEJ=qN#U!tMPSD@z~xExp^yf-SxJ_mp0`!0hp;}g#| zu}#&xvLJ%+U=;1`Si-*B3)u$t>djt96FA-!)yViYud-mCDtxGaz$@!{3OBm_(3Np9 z_MS{%K z;$QM{{8I!MZdBigQYQxeFm~M$WiLiAG0^Pgt5ZV7*BkHZ7B9~MS5?PQywB4+#OdWi z)QR@UFG|&!F*9YZr;PB%bK9X25D-=JcorwnG@6#PVt4j@wimlrxCoXgDw7OM7H#mU8Q@xR?v@|!N- zyd&Pm(;gx$*F`a`G2fneSYBhy5I*dNp>B2k({<~j0YBu$EVTCL6)ujlejv<>z?+6H zU!eNBPIV95QaqmcdaS*cSOrk^3!MRf=*5|X&CJK74Z+teUlhZ99bCz;9fGm!#_%@0}f>^2z|Um~k`7-^KUwQq#`M`(_H z69p9K!4hYQ;*L&waV#$72y&GnQLC0y73yYd5RU>H3tmN3Y)`kLv?RwxSD+GatN(Iu zLTpQ7Ho)@!)?H&dUf;GwpVo2dD&5np{>AjmHh@X_YAkPG2Yd4Ex%Yq#B6?a?^!uuT z|7V-P)8w%YjEaiNc(I*?!BF_j3{lJ1SOK%kiBlejz6`mTz3!tr%e!~<93C%P$h-li z#8)UZ#sX8nt3k@mr_Lv_%WcHWN6M!P--i<<)kruT&|6j}Gv!LusjJ_F{Y{~&QMRZJ zMou0AQ%~kmT1#5pF7$NBrVt?jmFZk~PdEK+B$!ITXQme`DOuWWrS9V2qlB&aIJC`{ zlQf`Wu+24W?^rD9j5?nI4%A0zUmDLo!g2+_T~uXW3hJB-mzswxGtRSwlorfHX5;h{ z+1XWGHuDxB$#C|XrunjnT(C5K;_X+Hd}|BLT!eDd%O=nFHB~6_iAG@b-~@*ZH$}A@ zDg5=`I!^~RRE{D8TgL5?BE=t2N8%xy9wu+A2)74kbM~zIzp|C>`R#WQA<#Q-xxU>n z!F|{j2KwdP7~4w1jK8J3ds#Uw$9pxGG_{2nZKu~fY>`Z2b0w`B!x8H_k7^3hN9-Kt zoSbuhtI@wW%GB=qpHutyzp63TF|A;$1!5sl$bWDVDMMl2FIR%G1p-m`0kFolHTc%- zd7wk(#TD2l{8svS|*IU$&&8!_r+SZkv)GuMC-#fZiqh82*o6aN-og zg1sCu&{O---mf#qAk1#~i0!$}E&GpThh;Grt!<1hcZlDXkolG=eL@8`(h*9(4cq*Q z6rh$gnMzB-G)5yY2FW(!`*)P3LULebqCpXu{TX%_fHO%4ITwwkYr8?F!Y>qYFNrC{ zqh+>MSYkgd^u%=Q#$_D6O5Zzsx2QDwKm8 zaI7|r=MOAP9eANyW!h2ut>`~UXRKCpV3+$!&$Pp|@+xH8$AqWcT()f)>peQLeUDGZ zBIpT}-B}uD-{?yjXlz5*d|}x1qJ2a&{Un2VQ=GVDAxd=t3vW5L^7pyZt2*@0z&Zzh z3mmpKPzBP^6x}#1<*E1~T-2sv))3GXH|syg?$XF)5FlElV8K+i$sm^^wP2#iQ@IqdnSYkb6xevCewb2!AFZ9Voo=oZcl z83Zg1iIxE84%CbGW)~Q-1<{N*g$U|9_uxDnrqy@x8*(iI!)w; z5k&pOpD)MY^WYSU)A6~zf0|m*^XfSldK>xo?SSte19Nuf{zO>NJEP0o##w8tsLaI- zu32|Rv*91?%G$3x@+O&P^-G#*y+N)ZO06%|J~%F2)m*UPBoXUrcY9Ab?98ll05@KX z29Yy|Xd&vwJ4&D8&xrVLH1;7~x+5kQzhmOl8CqNMX}WhC8Utt&woT1dG%M7VA)Jm<8C;9;+M@n)76(x!i0pd?#8#N<^Mrlbr9lQ zzFlDwbBKuc3Xks`A(j5SMN)qK;Alcp{O%8}cE7DH3S{?FRUliz1fzYrzVm7Z|NG+VXFA-bG!4^U3|Qq_#p&8;R9UV+~kS%Rq4|Hr)4Y?OpKp z$&>{quIeg8WqAWY$#`v;@uLWGGo54 zGL`XR{IQ{`OD+*IINUoleWY#9Aue$lSN%=9Vu`DHqfHs>@OigQ&BG`z@tqpKE)ARXh9Jfo!d+*;se9E2T zR$E|t>{eg3e#19qW*p>_g5s-q4uqULvkv1le?qUt;%$Khgs{EkpRqbV_J z;2N#PPA_esClS0}8iK>%Y>k6wJ5hUS1wM#};xB*hH162of`4$xKQ%M5l7(D7oP^a1 z*1zWo{@*-K^zEKw^Lf}pR~mX$jaU-n6jx7b#e?V^^948JH%@JJCx?Vr5VMvj){88V zZV^C5+r|sVC~Pr)qd(s*i@aDUoxxVX_IQaf+Bq9xHJ}yPDKY#(FuYJrIHnz#CjABF z06b~RW01>9?2TvNR3dgOlFoigwucta3kCGsqY~_gzsQtk^I9J-ljf%XgU%pOZ{&73 zir)9!U{3f~2A!QrT+D4zIR5(u?r}B!ZYHy)+R9A&a7ZLL{9USq44jmu8u&~wP%&;H zTlvI?WN?_kVtA!&@}~37I8wpW57*1>T1zqE>uXMzPltZN^hTyiS<90G3cL;dB3SO; zX{d(?%wA%G7`>?!rf`kdunqg6?UY7kO8$3FKm6FSyC!@2!hBud<07-rkkJ5YXMP&= zCqMi&eDmxga~lckGYnGeXK%VnySQWDKo2)p%pZNgl${-K$sb5Y`MG;2zKmQqp)xto zR>dCqSE6iSy7yDQ!|Z#SPgO33iqdBn``(38pXKZ8>_GmUk__P%{oap&1xO!4JO7T) z{V%YNithfwn!P)a{iR-Rxx^I%-TK}>9Hyj0GWP&q&+!UvcgkZ!W;#-j{DPZ_j zM0)ulQR_{qWw5=2xueRmNPHuXY3w#J0QK`E@t06T4$$=k#oM@so!NHW{yBdRo>C*t z>nQ`XH49>bvllV*8vGfXvJDuq>_@tCBbJi?HC?0px6?-j$3+77kU zogeN!`)Iwl(5g&Vqt@1!Z+4R(Wwp&jwJrD@moD94N=p zXwx>IVd`QH`@av*jZK-GwW}VkSa(l!NVXp+14N=V<#?S+t;VN+$e zejqZo9^>D*ZecRlVsS+$GB|m!;lTJ@$Z3rKys(=$QEJxxwu|C_08x8Rt(~W8QpZZb zd3ot`@ANJsX6N2>qABxuD@0|0TJ$nB8S77*bh%)mzkE1~mvR^+2=Lzs)Z*NS-zEdG zU-&m(C)?=KJG^y{HQN&;)=xQCZC}5rw|dHXX(I$5;tRPp&|vgF+I|i_%q>1|TpjK5 zQx@fxqxM^00kalpAb8rVvl&vN?=K%L>~*$SUjjE881g1?#pY-#JX8?lZ*y3~F8aFZ zs{pso5(}r#8KrwP(Ll6vbZSkA_Dp^guMQ|^Q5;vZE$rZs-ePfC^e+JAPp5${+T6QM zg0DixxeHjt*_Rl?;d`f1(#Ds4GljJazr%mU60*y=&wd!MUEH(`Jx>FOC1j0*`#@Xj zy>mcYYQb1N)9a1->6w4&`~sg6eC4ou4-2Q@Q^%GRW9B`229wJo6 z_p&pWPArP5%sO=AH;h*Q&fTi^+fNL7mKeVk=!OtNJi9|rn}c078gE@M)@W)S3X$2e z5o;^?_7;jKAc$Xu(;bUyB82wbkWn_-Y6K4%w}T)_q{bQB=%SZKiZ4x@8ciHL>1nRr zziGl0kuqrLuCBAR5BUMicTqbJ#fhP^aHamvROG-~zgf=el)RKB7L?ATTw9><#u%J~ zRjvY&VrTw#BRECw^mWd+>_57_QnenVZ26Ix+l>6yb{!qtnu)jQ+;dTuMx{|CVQ ztExlyIC#S*0t61K&!B`c;Gs5H2=ubf(&IX*-l;+5lagJ}(m$GPo>zj>BQ^R~O%`Fi zyU3n^Z4HPe>Pa`xL&s%iB>UyzF>6VEvML8rUSk~b6`daK z+>`Yvp59D1`qdAJO+(FSwu#ew8r}Q`4T|!`57dEdavMGJnkS!Nko_A+!FCI3*^I?& z`pvmF%dYJfD^~;p{uhW2%%lOKOa_F#Pm^Zq?pBhaAmi7WoWp?izrrdQcUaJN2s|5; z0RA;uyZxtuR)gKjeC>pT>TX_k67^>18KVPPw_*6=2nzmk)i}rA1|R1~WCgGot1@XS z2DUb&$@r5s+6|iwC7DqzY;TxmR+&cqu1+_&$5wSAZrll|+(Wtb&8SUeZkdL2 z(rnbWjN!i4u5VX>Vf7s|)rwHMm6OmN>10UTTwwbgLWdSgJ99X}&Y^b+ow1KYHc%L3;Ed|@s6BGMJ(6wA{2 z-z6eJjSsM%>qavoKOq{szQdiae35%`6iD&3e#mfVRZSJoTj}iaR6jqp$$8{vRCeo2 z9Lou)uA#5l9N5FyO zGJR7sHav6K&_x=SnF-5GUp7Z5((`-{(6i@rLToRBy|>g#kfb3^iL|RwGmi_4&}{bE z$jdVCL>@hzC3H?wAiSEt&dYq044%Y~>v7e03Tte?USAK_HUU;MT(%Z8o9)qsTuBcq zA`DSRiF!}t1{sea1sL4hqTTrafN1AFfIn2Y7y=HEcdyOG6Lq0IU7tS^Y*SNovOx&h z5?MvA`=K5zE>CCNWJtU)>1k4|$in`qR0C2U8<>56Oyy8G@OA&5E7FZMTNmY7764N6 zxq_d(fHl(!9O+t2+Q%Qn&8bC4ra%2_QC?lVC%11(2W`DO1!mb(7`-Kiu0mQgtsB__a(E& z$@G4L#hQX+`Iq}>skX6kfTh2+#5qlQpnf+J2*6H3J7ZiSIcc2Mw&YQz(F_{B8hcA*@9*-mU&%U2L2?OYv?FO|-p08;#-U}>Oc*k z_s=_Uwh)ecu1Jb^E_?@CS^dmT8v6fQOoF@d8=veioz0UL`)z;Vbw~8PSC?wi8v)9g zke;i#aq=;G$o}k6*|WRpa`8V=f54xNt2-=CVgRSKBqF<_wm7=DUv% zY3Uz#@rVwi-Bd1Ci0__lb0e1jqG*;LXed9SPCVgi9a@(8dN-KA{~Erf|H|j(vG};- zG}hyzf+o(epD#7MewRFfm({I?XT*H3agNx%1G^ym zSnrO(;7b>ESquPQY7UIqHS7L1b~`WB zV?)TdqiXN_X^f_4yT}6+C#-Wx@?atEP1$)WXrVQZci-+`Lvcdlf>_B+(|oa7@JluF z$PcDRfL_h(-h~)=WZ$oxf{>1Dkr!l?HGI&^eSz%>9W-7KNFAWuQgV z@7rBjdKm#V8zkJNqVoa_F#unyL`Us?)0qi2=RsR!!1exL9U2Ce?~eq8R2~tN7sr+6 zc^AT#=sY*~(8={Fp>gt)XjPZ1;IU6K*uyyUU(FCH5y3n!V^yV|RoyxC`z;klnh&0U z-953AdMlZJjSv@YJ~LV6m4;_JH&=oLr=@JazL|k{J>-MgE&P-v=kPqV9I3yT0z{ zr-hmp136u@;r23MVzmws+o`p`bS}^QG?yr_tx|f~oq6+Fa9-ezs3GrkltI6I4vy$qAKVg>^W%QVW`Ojux0#Ru7BLZ?<*p|Tgzry9&T7CUW|)?<~NfYN!M~qjJ7-u z(c$S;z7gzW{tHpb3=rvH3d#KU5G@RQeFZ8>g}sk6Zma)=$sa4RLpz;ivSUY~^0(7g zPUPaC%RymKYNc>g1djPgl8?Iqx$S zrX|OiZL9dwKgFxXDJmrz9_^t{=(h6^zcFyZL&q%sBCQcwBRmRPl4G zXvWO-7A;(3qc`<1A=&hxJ$hmdAlPhybj81RT_jgnIr#M7UeZu6Q1%0N=QuD~Vg z4qHSv?IdsMIA#e4{@dJP{kOU7GG-s>-OV`+SJ%>-M`qk}d0Z%>-4|_mMyl~HI{=%w z3RalunV-rDp-jZm^kvGn#=J!`-YXSQK+AK>N1x|)0@lGDKaUWtRiC5G9%_|%V-vNV zZ$b)ZCR2CiIHqpLZ>h1{NWj1c5^eP;kpmjNZhI^6uojlz!fixFdwkMWJNc8_+Y0HB zAZ#iI>w3$jKxH(Cvc5gKz!2*Yh2>v{d%UD^#y$Rs@rvF1gjFu|OJC{c8jIRB`yc90 z5pg>j#<$$Sum1Tuu(m($Jylz+^aR++iW!U589S9Nzth zrkcQ2!TXKJyn;i#cn>q$pfD!ROcb2Hbup~T1?wNW>n4lRh+iBjfn0quH@k|P@J5uJp>6ieT;&F1T_(1~CVuTv&MM(Qgg9%scL zub`!XC5l3}w|NZ1b_tSXMFE?K1=!M|lv%LGiRuTE5C3jzC*j$F--?9*e2ujhh|so! z>pC4D9zbJ+bKHYgE|mQR$O{bF!=<0AxX9FYW@5dpvkJaMo5)-gneC$i7rat!nC6|I zr=yOL@MtpopmsBuBo*|cqvYle@W_K~9mi?g*L|!AxuWTak@^`nlaaXl6S_|sat|g` zjOW;Hwr5+fpk4I6PJSvprV_pc#MfvQMV8M|Bp+gHxTa~`I+7w@TR!XP5B%GaMVDj( zFFX~g46NzeO=frgxO)=)g2%WlUDjY2R=FV6mi_Cak(_g@B`NH#z7>6!O z@lxA=ERd&G*)Ahb(Ew|m>x@|3(XlPNr@|gEu6ArtX1cHvUTnaN!c*j0R&>+=#7i?f zHi#QK{RJDffr8WJC9C+hM$QI2Q$Zn-Y&&GHD(5e|rj%z5P>mo_djY8xW;bwc_cWLI zsYZTksULOXMQ&iUXm`SaaVi4Ik#U9z+X5Re1Hmnve%TkE}mtqk4o;8lp(68nIbRv z%6-I*9y~9?f>&VYLjaS1B(w|9r025{2E$HlqK}Uvsvg_8`ctO5u)Q9I=Iki9mQce= z9ml2=hUt#F;ze%1n`t3mkI*G2YbdO>rcAs`B|w?}ma2CWjoDPoL-$H`K;c`aHs0TZ z4Mx@Xj+Ow6cLKbBaGgZfAXOoWQkffl=a&2m-rBJx@liqOPkc&AB|g4 za5)CdfIU9{o_Rf&>?#`%B$F-OB7DDYIA`Kuxi7xTa@O>Oq5y!67ExgIJK;S6G#w-;K0o0fl?5>*6%RGhe9eB_eU9Q2nmb zLK{Jj7Q*~PsJJ}++Ba1CSjM;Xr}LpCom(ETJeQ8K|GC3^Ui#h&TK2<3(UK3li%;nf zotjcEGAs6Soh7Uz77NP=HUH4BbOy}H2%#NEuYnEpr|uv%Ce-IF-AchQS?{R<4h5m7 zExL%k)>iNBPz{Al0I?K;rNOD){c}lQYNOZfyXCJnR%U@4 zdWnJhJ<@BEQeXjkh%x^#I!bQLAqW!t=XVprn6BzJy~mIHmY}dDN;Dj{0Ztdf5>>KK ztM4TDFaxBS3AEnfpGRr5juAh#VcwMtFDuzBL6W;VM1@hL-Io1CadMQh55KeDHd&r|^mqvYxxPdm`V! z%D==z=cq%I%o02KG06G7XXAi_5)razql0QXOi;$#jP6isrn=KO#<^$t75?+yB#ru8}EzisN}Uj1NzdDq)r^=7QZv z4krx0tu9w5zWDS9D@u9xTmFl=O>R30kkp70Cp6%$c0yvhbzXM7S@bXBwD>pQ^!2#L z?#8vO*zf*d(_QZBEQJNJrhPNfz7`tL99<2q@c1{ve&uP+o9wb9UdTVloDUNB()~{@ zCeWo`#^d6{jo&lZF04sdG6~99_M8X9@MN@&np0moHf$+81HyeP>iOu>Ey8B%m*Vf?Yo!K0yD>9=s z&6G_RCJZ>b`X`UvjV%=@r()C#KO6x+5(8nWbh5CKe#LC5*pUZkE`et^$Oscqa3qis zr?*WWy!ykEHK5Qb@S)<|nf-+~SFP&P7TSZa11ebQ<{ybiZ6|p^yU+EH|1AM4$Ib&b zz?g?j)9=SC3#T8SI(?Opg4ZddPbBa-q+TTY=!a51`T%b7E$?*r7*j{Sk5E!D`3H;0;e2xu0e;nx%10nV8@x8Cn7L%*^8hHN>wi- z*KW)rb30-dARX6qz1a07GlJF;#r@BxS&$l?_b2pbo*VjIIE?(R25)RP4S8%+w~_0J z2n9xj`y%p9Tym>5s+H8gL2)@W?ZHqdPxY!*L__T1%5#96)?qh#pAElTbQmNJlk7F$ ze(%J>QoUtu0PT%6OUz#XokN_GIYhIyPpz{%fW{skPjn$(kq?9Sj=tb{5T9(j)3_0n z4LtCOIaAF0le8RsEV0xFK97n$N!*$fiXbXJfG>wBfbD17m~$Iq^oi?XpDj0GX^p^G ze?#pxaIQ6PJ$D{RC_Bsjf!yxO%VIYizpM9nZB`|0K$W&c(4K>_<5x2>M6+gt=Uz8U zzXLx$>nH7^^8Ii^$C)-TJx>J^-h}ajN1L;J*nFnZA%MA_O{eqvJ1Gk&9n7KgRcTzB zB@K0~_*xlieD}q|a$?~7q8kSj&kMJ8j>z0V_MEEb%EDA?Q=NtUMTuxT&%ebQlOc@q z>xfQh>*68~zG}~*?fik@xfA(;S)sM?T!5^K?vKjZU7Qqv&!gG@<1C7itrn+}z$IBL z?^xo@ZTyRXMi0n#l{!iLtnH_H>e3tsCxDEJczY1bj$cPaaR(WW~wyGR(YdI_re~)Oz7X>{<-OYn>PDOF3jDJN^wPTpU>m zYwJAe8N9aK0;vLv+}~g?nHd(EN6*Exauv?IEPJzmIh+_RE^(=~u{rj|PXp;;-Sl8b z<#H|;mjnkOFE}8DzVT%Km^afiP!DI5R)6ot?SEUNa#r~Tpt9rSRIpeGb7UEK^Xnv6 z2-yW{v@pw@sX0Z-(@c%hG*=@W`FAuTAMI|Bt7)4r}uN!@j?Yh>|MOX#h%yG$U0+R0Kq%Moe0m zv~(#5h?Iy@5+VXBF={lMbdP2*I!AAe!8XR&bN%k;xbOe==XM>}K5@R!^L6@Ewvvq~ zQ1#NrCOS;(Q>@0}guhDQ-M-md*oYX`d$eCe3>92rz5^w zr4dzI4fr4&BZX&41Z_3z?c*L;8S0s+ZJk~AZWav_Ehlgc2{aNi$X~psV0B69)%;?Z zYD{(4d0($dV76cxd}bs^>B~x7fYuU^ZE@9~F|t`W@OTwH)U(UL1n83Jw~Wghkl5-+ z>z~sbuC=HK7V}XNi`RHunp9`{-mya?_RDj!LSEi3P6z_&kO0>MG{*cy{>henu!Ju1 zs6eZWk%an_EEeI;Id;WAAfAo=#RzN{HZZN-_y1yQ;hHiyq=l8J8vpC}qc)9XO7_29=?_B+4oP4qpTaS4}5&Fd*Hnf`4WLW zldL&$VQw+4xRGF)>eFNxL$A&T5*gvp)?ui^JqE3J!%$h(gD630 z`-nlavD%!cu2C16CjNIrAuG8z01l|4&Bm>)qF87hk4|?-vDXpH zMI+$Yl2-kd{LrrLP-w?h(kJGvl_D-0NBDUiu$7N}qFwIVA*o)?=AmHLG!_U!hb+Q* zvk(^T;I>uGDfKJDRl+p*p8ZPh;*NTc^j|!7@qRGj>Z=LHY<{kgvX+xnYOYH3M$#jg z`w@G61$<+_IaNLO6l43=o4$DcXUH?ho7*bXJyYD z3hy9W*U7*9+4GLb2hPWiK*q(W2Xs%OI9;j1YNI+Kwc)n`r3?jCZd)?{e9q;_m5#4G6#5D~3%s_%RHrXeRO!YYvO41%3$de zrL$JKE+nWsiiyMFZDfo*%Mw(mTu_@J7uJ(uInrgzl9K?ZPwwD zFMfqmQj1U~P-EeH>KB{UQ7V`^pPq+%DCS(GiZ#6-e;E&le@=f?Za@9+%-2i?2#bXK z25u<4AXDh}4r~?L3v!S46fk&oiKNKjnmK*$f9DBv`#si{7lIKVa1oXH|H7Z1F)i4!2(r7f;Q=T1q57>t zW||NY4@tVGVS05}f|(jk+X%vBC}q%f*|Novhp|b@p^b8TM|3ympDyDQOHqah_c{2i zZvUGjD>1)oCt%(y(CzJ6D@cC;A;RDe5p$m&C|_OWKdSG;9VSCEWvNySjd|kH*rUVE z`XHarux8;VkC`5A^@$1>?-Bm3@cV_QWT+IsMajIc3h92UJLL=L-excn=lag2bu&5)4q+Y+ZtKeWiHJfD+vA2Zn>1^VzkwGr@3| z6lzvu3g~wk+SX?*q9Up(GW0)7n4f1Mj_=v1)y44LWO}|`jN52?&k5K$6xDsR|GIr6 z@L7Xz=i}Q0-GYD%5xege@?Fgsgwt}fb?-=PG1nB;1vgg_Q>oWQ4!mlg(fU+Cs8vc< z-gL?yv};l=U@p%*Rd@tCw68ZkEh+_Yyva|8{{uMQJ0LTJUvAQz?Ym0% z51(nNvV8o_*YoZBz&F;*kB?|!ebCBuN1qZV8A0DPb`dRrzQpCe{eR5NR*iTo9(YybR zdA~iwN4PlayTH2=A-qkQO^5C_ayY%e#Up6&Nac8=0~p_#+z4l%4=-jSt$`QeO+!I) zmPQc^jxq%G+3c>f&8zefH&#C z{Dk_uidz=}qRENlgrKOW<0bL%9#iZM7xyTg&D9s;#~90zO;%Np0fTHyaP813Vwon_ zR3Ct9(({CWP&$-72yqyi4s@45I=oY2+y9)?6oSD2Z$fx@-j4TtThrb9PqwC}Bji5+ zTQL175^Ev)qTnWch_rDIXP)>(`zl6u#io;kPnO1+JMn#J*~k1!m<&ZouGPHmZA{m| z-4V1|+xBC^*$z&n`bj>*<;@89KK+D*FHWz__(rXEwS7~nu<&cP-OrJ1dXDO0dbjE_ ztuLz{NRZLlsCiODY%#tMO&*p~rNIB3V9p@%|LROY=TTuhLA#74iRI=Czsuq$iU6~V z?lSu>^`sT8Hi8yjeC91#SJYD`hcX|6<{1%zUPH7bp{(x@ZUlY4VNpMzXWV+$C%XXy_pR(my3)+T%_Bf3MWh8BeoyXMTFgj40iQ@LI2L<8Btu8Bj@_wm2m@Ism9NEKQ(hkRPQ))$s_^?942M2Xc46J`=C_fh;A#6=$gp?hN8*4m$hk%!bjb{h`XBz$TbOpwME4-eBk+v)nM8cow!>$znwuS2%%A z%WBxmz&fvZh|L-Lf5!J)XM!&P@iy#=3~7shv?Y=ZXPR`>rkwDeVCGuYF(w7No=_*(Jh}c^+;6TOI;px=re=3F-?O7AJf;1?9Pvtqx6X)$a|6lum*tz?-nDp|^X&FX$yERR415%gz3^Bkwh|$J@{0#d{8=`{^an zOp6XEta4|ru>H(IcRf1$jp0X#6zoNi$Ew@4!_QLN9ozf{nyUth zM=z4c8id@-O z+UYC*O9fJ=^9?J(O#&-AlTgiV|M=8S-PfV+JWS3Tl9QLX!(7>fY*3g-VQmFbj(B*q zZJt3uhA8)TZkFi-y*hAQM=k|pl=T$k+BLRs%>ZdCjr*>Z$`nsKU4}B1Yt$oFA^Nzd z2xsWe?GlYrs#o*YD95WA<%1bifFtS>EHk%LyJ*-~4$>cXYYF|eFmI)|pfFY%_jTSG zHM}UzuHY2XN`qepX;Tq|1gUTP=b1`|pW#nME zMo--y(rLA{Il5u;oNYSVZw(Y;33U}{)Iv<5i?eTsAXeh575)K?TD!&c*Y7U@Q~xJ3 z!OmrBVzhf#Z?WAlalJzX&7 z|3s}jI;H>)o)ly5gyLWEIlpMp$oIior-INW+C3|Pq9c@07>K`)=NlcWkiWz#Q+g4^ zak<-6hjOZ$#+Xe^>#Kty2Ju2^>HY?WC2s7mcP}}$BWAvB%PKne?^!F#3 z=JPwSn=IZTRmeVw`o`viIrJau(*@{0eBQhTzq9GQzpo2^lEGEE%Cbi1J$>@&&lh1bCsnKS;V~deG$}gTXusqbectlp_!)mPxRWG+ zhu6B@ZE1e5=OhI*2q4l}TQ;xEwkmQVuOR%b)G|nR*I6o2pMQirBV&Fy3VIIgjL$NP z=%xXD!d8pJTa`?wm=7@bjZwpB%rt#ur118EBqZo`iexa%E)mqDLRxt!&xNd_m}0ez z)?-mN*=Q0ST#)4YZB8a|4mkgk1P}~tPPZJ&f>HN}9&J5C_y!~hXabt5!oNh`3&2Zz zWoj^n9#Q%N=byb@YhFzI?|Mqqg;ybQaM^m~E5Fws%dbpNFpJ#W24Ct2B>Fybc@i2a zY`sWs+aSI8Muof!1>D?J49flZN3x;+8n^hc&fXKGBRmtLN4+QD9H z*rJezcf?!OK&Js=C?xE=EPaN2J#1c*#?OKzjRGZzeYuT@_;2IXj))5)Y0{KpK24KP=30oY2+gbL z++)ZinGcYDwm=R-Bun_$N~k0m9&PlfeTREJ_!_P^@DS2gC)RW&uRxcBd)Ep z)uQOh%C6rEa~DusJSacfoF)xRM9>yaMR%XQ0oH?CjW6~({@2g(75hA!l*`E+Bf5~;%hRt>Fimf`Q^ygrITVZV?`s)46SJ~*uI!8s2Orz8dbvmceGt!~ zu)DTK7xb2UvEe_MlEx6TFDJI*b)}km`#z~*5iL(=-Z|?(?`Hv=x>(AS_@#H%YQDoN(w3Yt51R8JdiTCYSSWe!BRQ4%ZHU3|N+9?q9kP z-pk8)Lhn`^n<`A5V!tW!D&g9CGs9j$>G^J#c)pzhm5YH*>;+aXRo3W{fi6+5 zw*hxkmnz4v2b%urE?wIhnfYbHacSvuW^D6EzxtCdhXz{~<<^C#ZZq;!CoH!uePxo$2x{G2KKPgjUSa6xsGQ) zjT{=^gw3hP9r+C&=qfy$XXoG(&z9}LI92kr9JHY0tX@6HoxRR<5);b@ZJ1{)Yi2}68bF>>CE|W?}VeYF1nJt^+AA1x8^u+>uqWnC@xxZ$( zWZ>;yW@xhS1`H|C|Vt26D!$8<+?^EM^WE!QX zJ8mAtAr?_<8Ut*Ghvpev$X(DL6?^deN_bhf=4F~tYv=HX$*kiW5+@jg5_;8>GLE6) zSI?cMen~!Eh#S^x%^M=-aBDvT%>-K zopdc{x9^8f&nsS6DZ(NHq^&!n`XkJ^fpt_W< z`7KeO|6v&J)*EU@_h`%L8=V<+S$i<2ew`9e!4!}r!BG6(XeNi9@lZ;)>fwVije*Nk zBs@Guf{Xv9)|P^9#b{!kl(qQbhRl@^GB~Kpye2Rd&y)DdxO;VGJ{uGo7=5L;WB}cm zYQ7d#-1OkJ4Rz4wYGPtq+GO-;*dfvZb}Cqt`$h4|qP*s3UuLY}7GkIp!?kU_#87&l zBdDt{3(9O)c-xjQY(ah%b|LMAwW0mxW+D6=>GcAs1-2u*57)%1wtUh-1p%h`C#-Fv zSLeR0>dsoA7s4|b3jEJky;m2r@6%z=r^ZvjO)NG-q5(XkFfOs!_h*8WUM4(2PIi}s z4t4CfK7+2opUU2wZZJ-?x!MbONx0%O-}q}4cZQY$=0h3P>t5=l2=gEfJ-NLcxdgp` zIClg$DzthI;L(~ggb#)8_6MyUZJpK}(}aBF?s+OW-3Sr+xb`+HQO2oY7dFwow^*d) zbmJss3i_g<;15I1<6LJA$D@F&0Y_g(enPBfskdHFd`fSC!(gE-RzxE_stxWJELh;UM_~aF3sy8V3i-EHGFLgSl@X9*FI-dhwpW ze=At5Q}XbX$12r{!zAncETipb|H(6_A}+?=Uy%zTduT0sj1TlzQtulzgw>{!KM&7A z^k#j`f!x%PrY~SZZjjJq-+lspg~W!Jy$sIW&~UUo5H{aN`o2{V`E#lN1Zv>-9LkDIEfe4=exN$`$u4wlHYSI}2DMnUZ)ThASt$)x4xj1P3mY@S z+ULlY76H(^|1JVn&`8MH2R}~e4r=f>*)QCGicDP;i@MNlQ(E51V-~GKtHgaX0sEBO zwK(H4^f;to(g5we%6TC*HNR-r5jWGJ^yrB6ExU>$ydEf3v0Z=*JL_9Z1$U{cQSM%G zSjtn7o{4OMO?h^ERp7h7?s}SOqYsaguJ>UORp5_GsD{Q!TwiNIbv;ZeZFz;elm#GR zf+lJ{UC)N8p?m=`qUf;UHMn?(8pce=H@5gu%{8|a;eC{W8LzP z$rC+<$svl6rr3}MD$G#GQ6^Q#IyP~na(yaH<}_Lj=+hqF2;O>-*ABWTMK-G8wwn&y z#gvTX-r@;ME`CvA4wR29y}7_4>0~o^7+)uCNnF((lMN|IE310>82qC z@1OG+T={c!Sm~pITp@mEw59f~lX9m9rH)(pX3GL&`87gyyWP*>*Jk7>RwL#im*;`7 z0dXyKbk)GH^edY3e#W}qMeQ_iM2P{G^A?An%?O45YCc|oFW5LN!#B-Q&k_}k$~&vX zVAd-_kmP7Bao?Z9f$oPH)oPzuTJF-Iz1vl*FZRkVYeu6Y_!oA2^Ke&=+@b>7rt1py z*X0x<(ykL9;4vyeiN#PU*c3@gHE>YCI%V8OPHb}7h5UEa23Gsc9MXJQi0$v71z_|% zw1;_2vV^ z)z!k8Iq$^a6@whD;P#c}6Vljm3=-S+O?kNVP?RI#S$cotctK)#vIxOY)_T1X4F9`; z3#=fu-8#OfXScDA0&`DD@9ND^a9=_IQZ*KNKB}&{g3vuVDcWgQk zdH|71RHGZcrF?0rH?M<(U9tKCf#vybPfV0cX+S(ZfHy}LwY7ATXASuwTZ=bLMmBMv28v5^3@;z6qvpWB=Nfm^`o*WCW5 zy^*~nc6o6qDrgix;S@6^)zCsX4L?1$m0HP-;6P(GN^+vZ#X&%Ug8e6sbzS(EnGLvt zGya%W=HKX8{S&((0C3o*=k_+#$lT{)DIt-&8SLPEIZgNI5rF)<594x6x|Q$v-sM7SyD`^FxMe&O&`~0_DgR7@vSvd-x1Pmo$EH%r9A6k%8)O z&&tWubam;-h~1Fne*aAYPYKU0u6e(ilwcSf{82VGVqwf7JIHZ)KIEFn2-M}M^*KR4igmic4J zpg$nO+?cK+5o|T$DL>3ALZv$9ge+O&ub#>upr$hyEiSa*B|c3o28^&rVn2oo>~6Lp z?=j{(R&ruHuHr$j%xFOo;GP5cdf&(gYNzo)!Y)AV1ckW{3_AJv4Gt9GWx2;t9H=quOC<+3XlDp)!ljAsn{TrYNL>w`lxt)cr9F`{}{B#v?$cA z9%3o+8G%Xsp8ahvbw7m}kB|R^hX%e6ee`=FWPv3|WIb#weHI<#HyvhIjASIft)R-Y zHhAvo?_ALJW3{eSE|@7*&$V2s-L@t|aRJt0No-Qm;qWM>E-$;z-HzAgjjnn|Yb_?^E!^+204Io04kS+7qZOG*XzG@*d>Ly9MXe zG*&cG_;1UVP!Awc`=@< za>^`*hwU1KkG?kMnKMtMe-!pfJz`RtOrc0lqDc5rv++eMnnj!MS!uTHCw|6KW=L4v zd8W`7ksT%A$A2AK-XB)sn^TR|+9t$SRqNaHo&${Wq8CPhd~uHQPSKO%=sFF#*H0wOhBaX z?qZO@KEjbDbe9L2Byi9u<0bK1$Td}3EC|sSp|J*~Wx@O=S4t?~jI{$e@NjfCizmAiI6**lz>nc&ZT>EKp~ zXhSLo>u_omP1q+ItkBQr-VQ8PmZy&_z&Yk!Ro<5EqHHsUAzWlQdRAmo^8_QDd%u{T z5+p;OSks2jo4H>l>ntCDt%|J%bS5QVI{D&jFj>? z7NmdtVW0UQGhG!e!nu%Qe#G^-ko>7+TMXa4IWU#b2xd^1#@G2)3ePkediMbPDG?F( zFEx!X_kLXNZ!!?1Sg9S}#f3enQY8WBge)MM+O{aQc4p8A@bT*PWB+^?pStsE zQ|ldDPc)zX%>4mr3Y7X`Od4!xeMIned50e+=_!>(u@P4JIhSwD|%3=x;;p)S4)LC*#S&DoyY5QJCiR zBFQuK>!cI`(VG{Sy)g?1Nh2L>E+9Li^V*8gH+P#uvpB<|<3y@t_G6A>tp_`zJzo;n z@1$Yhtp$ZU*n1YhxXj{7pIx~hGqZ%1RoI47px*f~q0Ij<^gDyK9qjT zZdyRE&UnGR65!eRwhc2*SrAtAXOqd-IM%Ha#q#dS+5sr(L0DmTUkfdm_3b*10U_=(Q)RNK$+WaKUW9qNISI!^y2yD_$E8GUq>XzEzhhgb3}GIQ{oGs00uixJNM>v5c|?2h40T!ak7gSp~=pKCUInlnxI(Xf~F8 zB?n=d45>4(`0a3qO#8y{aqMKZ`lMrP^*=5afz!~O2xE@;W7-RE`@ObN;l%8Vbj%Iu zP0=6=(15mhmQB1fs~Hn?6<5KGW2V1d-eaQyGK2Mko&GI%|gGgygA$A`P&RLl!Sj^6N zUxD&3^H{((@Lb!i(|n?G7uo;-D%-i+bh?F$T7B^kB_e~$nUU7jDiHLW2q|u&zBZ(6 zt$ypR3t`R|6F0b|p1K7Ow38}*&vTfMlWx_M*_T_o24(lQ9r>RL$N4W0IU`Wr0jyju zr*g{GaWl@fxA?iX?Nwft_??;BvP&O;>kL7AeSn~UXJ5C3_i?gDN~ zNa#$aZCw#P|1)>!v%L%^_O+jr9cPeBsd_aT2kisXe>K)I;hCY#<5`NZ(6QO|k7jJR&as!B{xbWS_|vDhj2ggJy^ zPetLUupQhX`PdXz9;ei$NfR>FGz?jlbP#^J3$^_I53St%-pNr@>=g5KaE4qKcoZKk zhA

lwTj_%WV7&>w>8Z$)AxwqDQkid#@#|MvxcfiR(Q} zZ56_~ICGWRg`*5djw)rO1nZDtC}LFR{%P*$q+N*oYrI$59&~u1Ygv$>A) zK`B&8$z)V03TLUth}NjyBcZ0?HJ@N9ADnc1Iy(7JH!9Bf@1%9bed1G`3$d*THB87W z%ftao0Zhp~-wYM<{DLZZ78w=51)xTNiz9*sWo5@9Ob1PWI88F1->D5nNE97MQWkli z%Y>4!r;Wxz5>a{UH!yiY5MH0mZP<+3?+;WAi2${AzmyFLW$zXU=B12(J8|ZWe*`;j zn>gCTfWmnm{AAMrD7JKbjLE`xVMSe6J-nWR<7pA%BD>Lh3jUqMapUf?>JyfL>VmnZ ztB~{wD^NBeKeAN42v-juITG4^??gNk`Tph+RQ#Fb5A^qTelr*uCroOL#sB@^iVrS& zYzvX6{v_wjA@5UW&6m)Tf)^0$pQ^q zLWF?~2=(w=8=?1AQtW~;glJeK9c0FnWWK4 zaESe6_=qMtU!r{4CpHMpaNa`r!OZ#7@$y-S;P zc|Ydmx^}=sm55xpL14O&dcs?CQTXFki#P3G_FPGv__H@nbe+!<*cPK6OT4OtD_6X& zhfvOE%kpgiN)Dd-3*^8kR^cUo%^0&!^lLp2682aLKwqdx5)^NeFpzh{SVV4(iyl_{ ziwSe5D1o%)8Uz}%H$M`D#kmRtK6mzN6iH4W?O+?{_Kl35vz23UI@Cet&O|bDCd9Q- za>fXuG?l41Uw>4CDi+axGrsK-j?AfwV4N!DCsvvu)FO{%3Tm%=Ln5N+0&Tl*l57{I z=#%J#i^PMM8lX?pS$6!bzS-F-^Bsd-{xroR%y@V}V;0Rdc>wI{nlgJ(kx3CH7W;c* zW=uzjKfRt3F`2Y*a;ZnLWcg{3j^}8erQyFiV_9Q<&*Y>31@ubMC9`%{>?j56iy=^@ zrPJBo!5R6!b*C225v@|8u;CFu_ZIB4kSQy|4#NMZt8rDJT(G>;w_9t^uJ9=6XNn|s zBz8)^{~g+a{fgl>^?jW~v1xN};^~CTD`b6*{tN!0=!bfmB+lpl7po(Flj*|@JK2iK zUQZt_wG$^Vj28jH($|(lxquE=EXasweE~f61p4`i4<}rK<(>P2_co1!j|Ck@t@y+K zDPP=Z`&zjiaLGU;_TqQl!;GSC z+VX&T&Uh7cpBUW$yp4NZ>)q>&MAvg#;qIRixT=jE-@ojh0eD97H(zR-z_gPhK3;86D9yol^-H-xECZ&Bm!ZK2Ul;D3Cb7KBG42)ch^a3&zh*bUG}g%^sS?ztt_fMYc-0+3JI zaD(GUnNTHFfj5*G_K} z7gCx+{D3NV;%{lf9iGWVWAK3&FlPzJ6`o6M1C+wK|voBsX{ z3Q>z}#HivZB0M1%0@T5(A}v5!b@J*}lXp_G(fx?9FMVoyl`3{&`pGIpz}KSri4JZn z3V2KUX^rb883ljK>$;0n>pm#KFU3Xv=fmF5w^1IpH7xc_hU6$nUHxUDrh0%n&FXcU zF7-8&MJORuF)R8=8AE=q%##^ zH#7i(%Sss}=agndrNTNerFwkZc(YH;4?D}I@vz6H_WDBM}kFFqlXFYQJfcC zaq6%WB`mW~d?olN!q~7)27QeYRuvMtHl*7ZPhy)lHOr;pOV!vZlgE^K<~WO z_xWuEtzGZJfSk|$c=#K(PHshexzZ2@v$w3#I$I{`Zq&WjDswa(OZe#8$(_+Q^B-C- zYuEXp%xRX9dR#$Kgg$AWD)z_}j22E>!8Xm$i`huJ=#v=gITZ^?kbNo@8>pcGS_GVu zAI+L;pu^Kg8mtW>2@1MG)HVIeLGxnrb_4Ves7J_=gczPnM|dHUeGPOb=O0zQeuK%w z{>8lQ-PS}3BZqLi6JXl#PTmS+yG?Tx5LdLyJXE1{#&QD;RQ*xz>`@v;e|22w!>Q0Q zdl+iHlwO`GfMS;rIMOyy?#27nvNb;e)a_Q;Ez2N$)~e!ymTGW0c1TZaUB2(Ahcs{)@EQFWkO%;)Wj-bPaMT zX+d}wBPq^s?D8mUkUIX*>dhvKrx#xlXqTyQU1~!wQgB0;Zo=1?;MOGxI>u-2M~RQM2&c0zV4flz6JqbBqgtHHqIIJw%xma}o3~Kc zrUH_=@83~c?U#d=Uue*$Gnd|%e?GG=-H5NTZHB88+HXs_uIs3gg(1bDr~5ff)n3UX z{udH3wSmaH?C(`mO*?)w)|4&1@~-P5!QIK7MZXSW8vi;HtAmmbpFOf@ zqg5Qu#Z@K}8W?7bRs-0IXXjj~S}u_GV(5|v&7Z{3yEp|Z zQzKAordXLZHt+pUvSQCf!2R|chtHtV(G>W%1qT4WugphbUO+lZk9iW+(+In zV`{^f?`mqNDo_#TV42*s%Hmj!zDhj6!4CSzkbdT>@$G^Q3iGv6dXTX}#k~wo<3!{c zMja`+MvX<2hy+ECF0)-w{Eux+U{6-ykGkzAArJY6XL!V6A~ zh(qtVpO5Yf0W1PRkO9h%RvpOooT;W$56-LvWyi;f?Ew2LRV-O|ifzapazHPDZvkeSs*Z8GkP21N%NgiK)a$AH`gZ z_6SZyvRg=nbpgEmejkzN!O{Mk z0CS)!a^&_xZ9|n*aYiiAez=JjqpvX0>wxi@x)H=E`>kOP#WC88DA)7R&*>mVgq#1j z3M6W`_i#dOUUTB6zjucaaz}?w2tzV&;g!ak4BQ3%Icx)gYPfPWU4zctUiR2empGLd zegMv|6%s&3R}SMR^1L4i@L_&EU(&vwUrhFd{cD!h$<@8i51r9|G26ho<$BI}>FPo3 zbzU0Rrqy%Cb4efisOaoDyb#5L-XXe^_-!0;$D{o892>o^^5jYPA*$x-aP2YX;BtrF zC=jX>)}}c4*-#=|<^FR3$c!>rtENV^`KHl3LaKrr zR^)Ap|527!nE6E%sY!2?(^>!@6+q2Dhu@JUqV(W9iLW7d)YmcV{uhlX8dXx0@iI)x zFT@k5QaEd}hk`_o%`Nr|2()7U8kG1kcj`pB!6+mgjP8J{i!C|o z6Ee$x3M%&4y_=ddt5Tm=p|K;4P2$jF%f#kj>1Fmj$F@{BaK2|2!p zasRbgn<-cRbob093Vfk7dix{o%eXo359{sLgi5G7j#KPIp0XLNv?)q5 zdq(oZSdA@p{E!h249>OcH5q&Kr@lL4<>e!xJ;lBYT#RY>nF2hd?@k`)B!LSSMd+@X z6~GnFi4NLv4hEV`TsRlb)*Uk^dHsF#*W(;f>Z1Nid!$LG#pVnZpwJYz*~x$BP}ga$ zYz{cnm$oYd&_S4+{&2J?KN+I$4)N@_Vhuok zUSN;H@sSO)?ifJ5#<{LsFWh5HNSsN|69JKb@jQ23!;i|6BnDIj)q96j%~Z+%?sl!P zccs7#S*spN%qZ$kgI&htfMH=ASJt*}cHJK)Ttv+xPYf_juN~TY5Y(e8GmhjJBYl{Aa3zFbFVPpg^wBs> zI#h}M)y>*mtOHc&I^<#yOen`hI0e-S5cIq|J-OTWzgRwi;Jf5cQAPLI?Eyb>)jFrg-T!3JHaB!f`kn3#u1@Ewh4F34< zRu;udlOO_2bO5%L@87~@zXr?Y6M5=?MvTHC&tnmqf_@=Ub)ln5BX>AR&R*h3>SqRu zDqDwa<=Cg9Irl#3p~!3&+kJo@&j@-jrQRB?m}CZxWLm7 zO<*1df3i*fzLNxPSWg z4BzHHT@xgKyvp$uGI@LIA-FZKPt&I$)mcn;{RsY~X2lXD+JX2Q_xGnjNFWMeM7oTp zxGCF_k15R|BxLTjQyjj7Rp}}PETFl#<>Lnhs@j!|qQdM9z=o*mnrocRLB#U9_8pK@ zNhc~Yq1TIBTRDtBbEt{)g1cUvc?D&?i6#YdX3*3@T%2Ozr>n~u{|)8BXdEI(`k67< zWtEa~H?K(a%^yoEDb0TXqGQ-uSkGED(OVCc`5O_UUX%+pECn49A_}s&|GuSCEFxkc z&CRrPeUsY9!9PS5nSk-R!N5JpHB(&d^uIe1O>9>zRc|l;fL%OIoC^TId65-TSxt7r z{L!@l-ItH{5S%Cty^zcFrLv!-X1o?)05ujVi&C=P19nvM!zIJ&W&r?9t+T6a20+&7 z9iX{c|FHpk@K(lxxA4Uea5`j5%%mCM4Iuo0XZoL1Q!db5!&s{*2TTID-&Q;jHe9L`6rNdq z2MOu)&xhJTx(%&|_dLQ(^H@0amsbBp&TX9}g0IV&U8 zs_w)5;07lr5jpa7z|huKYuwES8TC^Io}o*uF+R-qymj)v6q?O^F$-|{_%lG1e1aE< z$iqAvqj^ZiikFL9$pKM4*6l_5lFpg=pN7uw&jNKC!7eFj#&hdmqQk6C4+X43S+ znH4n#iKh)yq+cONzGl zqbm1*vL42mM@qVKaftmR(Y4gSBK03%H))B;r2vsDPI3&$m>5@#GHp$FnzJhgo7z6t znm=7}3#+jZiksLN`m$UjXN3O2f_d;$>?dUTB!e4X(?4ZcU0RZ#zs_)YSeV8Ln7~qy zVqw?A?!lWU8H&KDk#gbu*2_Vw8j!a!J3R?iRB8V@Dz^&y*8L?RWw&m%eCL7wZ;biqpCsT-ejvPw079;>Mm+{FqS}{@PFA9z0X$lmYfZUDq|mqIK+@st+*#()}^wx`{k^9?wNLF z7+N|~{s!bvwc@;gm}J-x_D^9}4uk3&$UPI?G+iQsS-h2!6Fy=Z>-wG+T+}c$Ua=7K z(o6kUF(f1h&__Izt)9(W3Eiz*ALWkG;zkcqQW>VbA#3pipzs#}Z&~gEa0u(URMU1I zw5F^rxbiQ5g114wUL2yoI5MR;G*M5Cqd*~BJPWvM9%I1cZ2G&6SD4{34)D6mfma6O ziT!zv$3{bi)nD_NA~oS72?qIz{4Zog`_Y2e|`lJrpR5W5!p zzpuX$VW~nZAw=TX0JWlceJpk^rzxl2e$52yNDp=az@D0HKsNN_OhGj(p1DwrnFzH$ z9upBTry)m&@=wcOK*|#X z@Y)iwB;2{F8q5Di`TLTLh4H3#HL0AJHy%fiHrOq9^<+O0KE;BqwKQcr_qj(JZg$7SD^^zlmhNpikJAOnSee+Q0;9~Ot29df6UZ{YExrRY? z2^t|DJL;YOs^^4n$7-+2(}l>oFy%YxtK})rhgDOHC4(_)G@itkK5&ESKBd^FO@-`1 zPQ}HkT<9?}yvFW*i*~v3^<8Lq4L4*Fd3DjxFW9PHJ6VqFG3Ql==n|48fogLKeD$)< zDyYAhmE0;jZVo013kOV*Qx~zlr1M)3a9QpdKJts9^sFREg zzO6jd8{|iXC1Gj%CIeE!P)9n99|q;@asN6i;|d)*J?jadJ~zHfz(MWpgUpRL@%99_y(Zaq#~#K)(>| zEY)Td!R%)r#K;@Yd!Z4;PntUmrLESZ+lE2kuWn`pt#xOc?`ACQXw+wL)6UtzP)BDB zTjI>ciQb6%&9vpgC`E5HJ>yZza~uHH7-1#^4$j_m3lbUNYe~@c(^oEJiLed7!t6#f7Zz@!r( z2nHm%Sy4;b8&$qEfE)_5DgMXm0H58oIXbU*ntP=cpD`eOR220w4#+PI;0N2lOQ_wb zgZGF3O^f^ct(84`^ie$J{`)gD^jRHql8y&fpy?is^ED7~uV~>z8k`JE*y^+!GBIt- z?ccAUMf@jJZ4hh?tx%f6-N@XQAeZ6Rfz(Xz%nCPAsaHo*TjY^fV{rDBWcW%!SJh3)JhugJFHaIS2gpV+y;aoV+yh;$LiEQRlWMp8sS!OAmX1Ld zzmFC2ze$b=ndeFBLyk%~yHBz3(%m;cFZcL)_Tj6$#NdWn`4!k?Q7Bf{myy|hsm7Fg zw~W2krDMp)?mJCy>1efz!DY{PO2>|-V){GP7nNkOr zl;7+(V#oN~D0nv#(FnXWYDfgs>w2$P7<8_&0SapP-|6x&-N;uAaU9c^-{yNP-x0i$~875hwl%)%V|}G_;f)&k3frWC4LhSf+{7 z+lTm12Rv^-zdc$+&j*GEAdoQ}_fUZRA;eZ`*IS<#@#iK?|9GDshY|5VM4E1?h-Qb6 zkak>EkMijg-oGuk<^2*N5&4wzQ+EhJ4;r5i%Omfwih3$~)r*Ya0Bz|hLlSdfoLK%g z!+($Pv4F&2+}ZG&6#E|pW`wT1JI@A0wJ^JeRbn;icZXdP6Psyn=a^(mV5il+LTEnL z)5*os8QmPVePuFGxR|D8iuXksc8iP6G|ifjTFk;fGj)wDY0O$LhktTUUcZG%S_8y* z!rn+29oVR|nS82)TBwz3bq}|||AxWmctPNRdb&6tvr1}5Ay%xOC08sTT2_pjzN~1wk4zpu z#4CvD9BlMALUjnsB7q(vVZPOFb$vH0)Gkr3$|ohBwVZ1k5yV70*g|$}XRRGKPgGe_ z%TInMnw>$+)xT;!bu3{JN*;K*rJdo`fhp-uGj}bQ7XeF^-2JH@=G#Vu{6qxLUtW>0 zhlxCyC+11zBa<@i(bx8n4HUra7fU=SCUICXufTw(hf1+s_)kucITd;rP31qDhzYiJ z03T6r+E^AuKV;^J`pYX>M%d{$nKDm?rRo_sRP{bPYj8XS+hVs|dRrosdIt98O+7NH z-i|f_i~QF6AM^Gr9%eY**}I#GTUf7r;pYs|S~ZB*RG1!j;n%0L!JJXLFOb#R8#^h6Q~rQ(EF1B!)f zy;NOR4OF+33NKM)cjV3D*9@1hq>4^fauIq68LchrsOgE!uPb(_Gn;~(b9!asSOLQ{_$vnI2tY?I=Bi^1F)epZEimq zw?yyMaqg$`om!G+-9=IO-C%v+e5%29H5(XG>4%R@#Q58^k_usK3v&P>r{$7<>b3$1 z1SgL3W7RO8rDtN!g!y#}Yoo<@M5B$}n(}bvs@?ojmhzxRKl1_#r`b?M?T&hq@!@Fa zyHW0DiPj^@oGr%}kY&{rXK5nXPy;Dy++1tZH zEv2(4Md`}w)#FH3!>M{Jc(-?LLN4jykDf9YIB~d7xaR!xwzg-5S8!X|CZQQ6hn)E{ zDs|2U5ufLp>cvI_AaT~5p%FKZt)NM+LikjES$ZD2hd4Kw(RDj zrCFhgooAaqzx~;Fw9ih%EQJnt!mo7SV06mRsQlb9mjn#I zc<{1-hFm)Jc!YnXk8GZ!sOvQ#>)IkY>oog6|JnaI5!}mvc2&(>4pg*VQUbm{fx`|* K@DFjPWB&_nDbS?= literal 0 HcmV?d00001 diff --git a/demo/documented/csg-3D/csg3D_mesh.png b/demo/documented/csg-3D/csg3D_mesh.png new file mode 100644 index 0000000000000000000000000000000000000000..bbd3648992cc8ddf46ae4137103eaf24352ee459 GIT binary patch literal 45855 zcmeEtWm^V5#KudszhW125UD*H)4Z{o#4Lu7F1NEPK z)07!BG$u3+Wd);ELQA)8tq8 z!?+}FUJUdF^G!#cmdaOd?ts9>yWxz(&++u_3^In$x{f%NSOOeH$q%foa24Vg^cWQJ z8qJ%}m;BdfI!I>dS_7wmmk-S@WA|&f8<&HZU;jpI9tY+Y>i=g684Dd!55%VaXW6oH zlbRTzmbRM_b7LK96+r8h&HjB*s9HazwF0#qG%LyMRZwdzSCtL?pRaMHYbH?sTZXhB z@OZdUt48$y|Iq)N7&+G3p5ve*8pWUWRoXHCua4}{_1}BI@qLd+U4=uq%D*F+NS6m= zHVe`nPr-g5-|etHzjPDwLuZNI|M~=bAJCqNerR5b4GD?3@K=2sKGSTFzru^;LiKcs*35yf;pQ34) z{g8QO3Od~aP2RiHmcRRD8SHwj^P7s2Qs&veL-(-7`(w$~lrX>5F6l2_e6(g__T3}4 zotfN5TYjdgQrFrULm_p517Do9Z$*qS@=b2sx98XFW<$zXv$yIB9XZ+WH@>* z$>+O)Xl;++6J0cjZOZm5X7AVPZI=3jkI>?~&oB5ZGA7MkvKqi?VuWP+2h&r+S6Q23 zZgRYFDz8p9XFnA_Ddm5_%j5P>8pu1~@Ah%KG%6C=kp5;1`3jllELD`I;7socY!8O8 z15NlFmla;4(&FbXp<8^ko%_!rRY9$-ABBW{vK;9uRa4N4eFq;m9xPQ_5ldt#7|HAL zNp+lKYr832>^^QFwvyzYXH#2cEGX{Z`8-~5{^IZyT*b{0S;fs-98XALwO-m?N?Dd= z$m`tMl_HlpOXaMpy!i8`ZDwZp7z1GYep+Xe{_3Z#y2{wayCOAI0KDVvN@UP#2ZZIh zDXKH;Z20b<+E@<))AQFxh!yz%5~Z5eMhtLm8d+fM2AalX0-vNnJgj;}n}X0~$!wz~ zh&L7@o)*Hsv{Y9(+^QM>+Z4B`lD^5vH2LQ(X6i(~#C-aY(Rh5YnT5TuxiVnVMWRRW zaGxk7)MDQXq1E1V9W8|&wiO(>2F_1 za$%tcA|LB2n-s6-bbr0bVd~CZ+X?C5T2E^=Uc9^S zfvXm6QTkH*O)3Mv@jrCZLD?UNKc$G}z(Pn9RiGW*{RI#{eUTEno@trkQMI#>V2g_0 zc^04cY=mx?N3{p<#jLhrr5jyf=>|HOvnh36kk5KZ}sxCU?vP$lKK zm|>5ek<po~IACynPe_mIZv^9AK)JP^&P5yyq8iU(uMST4J?$>V>jHEXn zPERqQYFmeBcP0MzsDS@BhuX8R1ypZf4djnKsj5bk>plV5@eJWRF|>}qlH11?NzMjT zf9ShE0UH#ES+rYw1>tCCF@$IckJ_N!j(=0z(gAqM%aP}S9YQ|hWSAh){^f>HOgm-g z@FMTkUh78~5p`k@p7|`i#t$DYSf-u=7tUFbu0;~;$8GcErKrp+3;RgpR^a6ucSga$$bPnrigZp=0; zk*%KWf%=>!_+6u?B_LG2B12_m4S(FDAdqV4;icHB`3)Dn1!pYIDbc$!Xbq{xX@gx9 zW3Cl-vp1U{8uW&hC;A!C&HQ!pcH4xi_r`m}=k6N>L-?C}YwlBr70}<%K!D4aoBYx7 ztsD(nT?%5B^pOcP*`Y&ID}5oF*OjU~HS|?Y4?@75GSc~^4oFdrK1UUe7oHBBZ$Kk< zyQ%t5TN+rn=}Z0v8!3Of-zv`(RqjQ9W!PEK{rdp-Gn?tSrO^Jm0PFhCi@mZw=vL5B zp6DfRenbC#o**E)oWt-gK zMPP4W-Hx5`z~z_S&nKJf3Pe!{-nLy?@Ct5cwv?JTB_we2s+g8mU9C|{G*3J69Tf$91_vi>x5O%4Ut%+ACeVVoC`lSS%Zo)8x0qr<-Sbu1;Z_5F} zbCNx%hRM%$&Rc@k68C(h;j?u+3SinnD6+7eJ@-E5#fQafb&2R#H*WNjo3gWAfXv6n zu{2f{JoOojY~Hp;PKKi6 zk-uyt$xfcl377hD_n+@I#b~`6HoSNJ<29FfZB)_V?bP5QYf974k0apS9MJ|_W!qxm zia5vUR_SxTP zhnx&&t27YilAkGAR$NxC^y0BsdqKa0b4|J@TN8e$clA=XZ!h$BD1ZNA;F8OlDwsMr z;8P9@B|8yt^UlwRSjX&tV@b}<-RZtiHzM0Z5p8g6>|&HAvR z+f035uT!r*^tl0_B_=%Ft7j7Mon20Nu@7c^by|Q4FO>8B2YkiPx0&W51HxX#`if2EBxU{7quO>CXF5PZxW4 z-3x{!eybnSKvDCC#;E~oD&(Y-ElwJkTAd(^#$34xwfF9J3f)V)IpHCii)$cM!eYiu zxm?87u-t~|B|@thjrgrPjqR^T%^~8vwrr$PcqZNsN zrO?sz&n^uU3RRR4V~n}xT7N(Van`b8N+EJ?dHFNFGOfEj#?XRR?0PMl9oOBL95z|$ znk)w%!it`i-#%@)Y3%V$xYNj@H{aJVx?W`pybinEuPxR?+7zWs<|Z7Ow|CQN^_s5GAnDtO>T)vp@zM< zK08|E1YCJW;CRhe&i)2eUlG8mYAFa+n9~}V4WiGC8yRR-^F?tDZG#1@kEt5*t#Z1_ zN*1+bQca1WZeRGS*-}4~s*yW^rdiZ!o{s9tePFcM`QnSHZKd3qU$h)mr$LLN#Z?Pp zbwfzby=6M&Ri9T~Y0bwOd@_8nef775+N2dr(6Zo+6N4_MSQ&2^8*qHef+)_4-}VuZ zrLUQLJ}e7jgSLQ2V_@r*60h~!tSh;}sTwhy0CAT70Cx+&)};v-@gs4lZ273CW2y6| zT2{K%-vr~fYH;*feDDCzm>!GmPaA}JH}wfAsOSBX5pZ=)Df3GJo!f?i@WcjYiv%6X zdMJr!xLav|vFeSoenS4JE?@}L`}pg(0_zWIQ~cTdg143ktCbLQ%0$YXe_X%Qoq}L0 z9w4Iugaqy13|H}$^zwCU2h6+j)P1fVt!jI(SqE6PL|gm?VfA~{vw2iKqQnNw`qp@S zdHq`~Eq$RG!&1E3b;W}C;|*l^a4kdleM2;*0Mt(} zGS%2EJ9x1_$4lVt%P-oeERAlXhGNnQD44A>fT<;)zqWnlK=uX*&tgY!JQM+3SZU>O zqq$i#k_^(|?5JZ3?MobXU*i0A)?9GS(TrU2e}zz9UP)?ieCqV(*R7UMLpW9mHZcD@ z7el?vlCgP&?bTaFiF6y{W6hRJ5MXFN)HEN=7Xvfqdb1OFlB3_!RpB69!M7q8>~W6 zKot}tS;a1T;3JWO{R*0sZ?MjjPyV%B_+FvFvTh7b#-TrU}3yHgNHA{`SJp< zhRm16WqNVMF{# zBiJXn(~>t>6aY`*$K~M;3PJUgE9}Y{N8I>lb2?m1ppu4J)=UUjt%GM-whv*p;?#gj=tHfhlN47`{&@+ zP(ketPRsr9EM|f-o*?~h%#5>2rrOx__UcITK(TLRUV^}~%TcB#=G_GnWJPFIj$w2Q z?6$h)@{s;nvhhjxct#Q@y+og~1(7>Eu$5MPM7l-5Fy-G)P{rl3_N|@z$f3_2o;(Y= z-lXb^%uDOfNvv4*HvCsy>7g~sJdyJ4TO)HnI$v+?1lY5vk9$+lxf+yMOXxIXD8O$j4ax1*bAIur{<85!H$kx`4mVr>c{^PObslOVJW&g*qM6Q?i z#%1B}~HaS&rT2M)GilHCaYy}?Co%v;)%_&#@x7r?fr~WUW zv?)l^s>+z2?TMy$?W#3qLCJ4i-)l0^nEt1x+cM|t3&Uxw>|_JXF>4z z0SmvSva^GRX+B-gEwRGsLuZnDh0kvFOFOPnhOrTbmUmfm<;+Mj%dq_(whYm0Ji5Mp z4}{T4d#ZQ%JMDhB`_%NC2eoTL(5Cy~ughSS7j{8~0bH`PLdm-EAB>EUW+={a>YaI& zZc|2>l3w)n)lZ_HR%Zsjw#uFfC1RfR2ERQ(v=TnZ*UkET+d3c9$$^f|(C3-(%8F;i zI(_meBZcpqZciL9@E=`q(GHg1G(an$XVrn5aDaQ)t19DuyG}uZqB7jfM(`&;Jf>h|O=U^6_nOQ|0MdWcUsx zNUEtgm1?38f(IAd>1YBrh<%Twge>(93`@5jg|x_ZYFVQ-CYIRw?=C7um%_SXM~Q@K z%*Zrlh_`oSXzcXcbx+YJow{Ewt0+&XUy0JLiCa-*$lo#|3}#C3T;P3he$cTfM{~kx zby0?~5Ett1{c{s%z@Cd}R5|(O-k9i$`S#U&!)ztHIP7thJCRzUxvc?v0J5 zqwF3ryiglAVZKmB+fdvX4ps&~!sO1^}mcV(=&fc)?Cyo|-ABl3uPEc^TH z-C@cbXMG3imp#nL8y5dJ$_{HP^~Up0pr0sM!rr(?B985&LD;%c&`sbyE~02-g8|~c zx;VE(Co^QGhMrlJLO6t}ek|Ij7v@6ryd(YA*vKRQA7onM+A*4w=ZoT1?D)RlEs375 zZ%`^F3_S&?EKlBH zE&rAOD$*R|vZwSD+_&{?*rTmo*#cV3i9?e>U9GuBGFHFuXLcJ3tcOme3Xai@8q)$Nu8SnQy%Z}SY2jh1Xf zRiF%z`}Ts5jeiHeFf$H*BD5f!K!*J2E%qf>E%d<~vzV}2Eu4m0P)4J70?FEy0gZQ@ zq6*oy2aQ2(hxK)nVbc3nc>X}uxi)oXS?-$ql=Gv(K9nG>iQ)tyZk&o)Nr6XUl1s=L_S(|IfS8a<>Rcyh;M*XfO|1kt&W~tB<`4ri%v87QZV@ z_t^faa4(jP33sCE*jyY#_F~hqUY6|} zTy;~oAkie7t+t=&D8tNsHfhE&Z<#`|zED*iWIOz}NUGpVkhPK*hm|uSUM{z9 z5cI30m+U3v0H|p}q`5TPy3^uJXBSFMn51k?srx!a^iG$ndPq_}z9l*p%uF zw@-cgVa25A)#H?>zk)r4=+VyPfE8n&zu#wc`FW-UO;~*Z+b^m@yt)#aJ>3TVF0ZsR zJyLOW01p|Qr8I)%RGNCPj*3>Jeq1Y9WMVehcbwOqyNru8*Dpp0r4~23s}B=H!!pMjzgNuV)S_R51ur2jeB2x zf&fl%(EyFj!N$n5{%UitLrX!muv%C?ybO-BEFz=8!_7|m$*tXix!vIvnxwVGzM76= z?*{Uus<^q9^ioK>_*oO_{lejx;j?(Ut?tIMqKUYsQpyHlk?MxU#1WD4{zg6;(k8xY z+NuMnw0kw5xib|5Y_0^mLAC4L5^oY6G!X9SDQi}99hFLbB53yH3{F$cyLFkQqq)e2(*SJk1h3h<)Ao1(ErUH9+C~;!3cTG)t=Bg_)^N!Q5v#ed(tCvZ)N4gk0 zQ$3{0b@z{ZDu=+k3Y)(>@8)2a+dd9fKc)V9$9RJeq(wHf&J4J@*$GiH%K67k%!sw< zH+sp{kq&LXo@s+IP7P*WM2)^(GeAnE;=q@~B$3l-#6w z6MzD6oYR~$Xm>H#{*8M6)EKaFhvY5V62>MsLCX%tQ<#LXqOV>M$< z=^hgP_UYS0v{LAL6O13+e?%zy^IMfghPNxdT2k9CABSH#oH>0Xzf}+Zk_hzcDWp)= zd<*t+Onsly?SEa=m5n=^Ag8dZWXA>>1!*AhHB2N>7t8YhlSG;jsro0VxDb9JR@K2K)3w*~2`?{m2%9;t(dg}Ww24E#?%sRJPp10wZ`))M(; zHH(I#hatsSmM+qHP4=I?dEX9je1gOr#wlc}5&^Un%O0wde;9%~yLuwy@h2oim-#VfF+M;h@cR*6q7!mgSvCyVI(=!_@N~rs(n{Z2oPo4JBwsS zSb+qL_05D}D5BvIvsO>ML13yWF>Kis?|1 z+=hHs=9G=wNK)y#ee1$R4%}9PEzt&Nc=(<4vUhZ$To|%0*ZDX8U0;;s?8W(;(5HyA z7u6de#A*29S`GGkSM}$0AiLe6eE$u{CfS?1zR2KGkDv%Q0|9gafocVi6on0G>It`q zw|4ZjI8QLg8ljq|T2VT;rGTg|GS&dU=1UgqyKuNGRigKesX+$Gqx)C6e2}i z&9HA`73Rb=1G+cwV9$e0Pofft8Y`WX`EievqRYsQQ0YVc@4(GkrG#-zzY08jI9Z%# zQ##W4%cnQ_qf6$@I|dd>xrC-U*75D*5R3KdzEIz%fQQP%)yf|r2^k8*+#R!=vped$ zt&Al1-|CI-`n*bgd$MMpooVg8bkr>AJwHTs*Y~FK56cF!N@MuEu5&rdgm zoOX=5ayy%KM8=utqLxI>)P*=!TH*|wV50&)#cGfM6=SR0Dwxg2`+RhG)Az`HhZ5rw z!f@p`OB2-T5x9e+9vFNTg6r;{zw`sxw)O#%GiG!3&~8}4O(}sb8bi*$xpyBTPVlhXa6?~ zpx;(fNd~7-nUg-1iAse1tRQrp&EZ^o2>moZ{RKm-@+K(gQ>gCP-)fxT1DlvGb8nc4 zXO@+^*RKYnw%)$$o#9tZUtu~Ua))Ts-T4x_D?hJEde*&iOU;*fC&U|-pHXyoJ|lsA zt)|{;C1b}_7pRI9_vjhMvf85+QcIS`E*fCYkf_p5`MecpLY4?Cgm#c6Vpp%i5s$bfyYQL-aG@)sGWcL zFgPwMi+__Ei>@l%PESB|zicP^B&box0^UfbQ`9<#q&IU9%2@S_b=3%o;aCD%Q*4iM zhUp<@tMbX*EKr6q%E&V$hWxwYOEmEoES=K7jr4|dQ=&SzU`Dfql8Fiu`v zU`6-d>)k7Q*GEM4x5iVD2+I>slPPq1@#|2}AFZCw?1BO=DQBz;*`g;aQh^flj`3ov zDn-^e8i8|^iHX=s#79m+W~ZbViWVf9qlWxgCB*2U%A)EnOVZkOG7$*&z}|{+3<}L< z=v56{0L0vu;$?Z5-`FL`vJJ{^R6y;L5c(T%j4`#r9NENKQ1LkRRf(Z9`V<{x2-gIi zS~>Gg^ZyN@S&Hy^L%)`#Q}XIvK4E?#gpYjcD`Y2crOGWl7~IyDPSboR&2#%8fvM6? z8N2GR_&F-|k={b4&w-yY$fn`5t4(VtT(zJCD!YQmzeWe3POHP6ysC9(3Y0Rt(NZ2* z^dOe|{&M8)Lkzjg?4=}jg`GgbmngI(IW1){^*94pQ?^(-s&$AdE$IM8~iz%ZGo=*wMWa=(G*gw2(F^Qo$;%mu zQ!0?22j(wo!(q&lC-UDq)ju#b@_4LMmSkf}A5jB-+WR9J;k^USxaoGzgvNY%0v&{qI|+8pTVgEdbD+?-E)qI`;)fNtKmnJ}P5X3T$A8=k^2ryx&^hf-{q<+kN1n zP)dl|dlaulsG>DzoYGCUC8q>E$pmcchD4t4beFf+&h&Yzj!b>X8(~IhNOl&M&2n1j z4F(!?&UF3`R z(C3!M)P5G7x`28RKhcAio)~q_zB|X197evDGzw$l5A~Q zSan$#S>AIg=A(YBWNf4@ZN$7bQm#t8iM!>0G6zmX)DD#s=7>Q-NV&;Y<0<5u5RAM| zevPV-H%AWHwUk8(DoqvckXN&%<8F*C+%wC4akqCxa(KxV;uC`%0Si8ApEj^13Ca9G z1vcmf){P&V&SRTnbHBu$R0Tg3UA1H$`!>altf(xGV=?*&`nYYM@<&VtkL~kByQRYd zp-*j#(m@@}7@AD;7EFTa!+ZBkFkDeuM|uGnJ2-$6GJ@;$D`kXxn*~6=R}>KxC-D?} zdsYQ0zX(8Mg?D})tY|}+dcz24>eO4lGsh)%8r(EyLx*OVl^F%gWWQqYFKYhEOj^iS zE#2~pM%So|bEY$^;SVJen^P--emhv-5l||zoEyjmULU8k?%EMH$a*S>tEB4Y!T-EW zc-1zHHRCc#PVSAUbvL89`sGgMI9UC0p=S~^1^eu3$|de9B^8~9@%;PsbOkb z=r-HTi3-%I1 z>&G4{UgmoJckP&uhdgrOpyJ;0ObV^?j=v>xyx#|3xtTYfIZb0AdvBmWVcF(XWw`EY z=4vuTaz6B5rxQJ+C@<>OHkD;1wd8n#sD9bN>Lkg@Hykj zqHiP21`s~dHvP8L3Xh`Cb;EPRxN%lJIa9FErMlL7w`W0Q)i8|PQhwf0@*47I-yKa> zAq2hh%U(`tAd}q2&9LfnzUK>HxX5ZTQNaMt4mb>f3*g8sINLd==qfBhYljj*rr+}3 zE~!6Hn|PiEdV*OWz_o^<9=&Bw|Gt)l5o>0sV7#$zS@*S0r3|;Ypc6*iqx>$sQnYGA zE&h%_@$$>aq^#;!t*I)n#8T&IvEq`(#!Yve(%jSPY+L;bfEQ;I2ejQ@H!I6C!8Lb|T2826x6We&0ME!R(OoplIY^pgc)$?p1krW88JW{_6JF&H| zY1#cQ9Mdqm*58%$_2dU{e^Fy+yOjYMxAcvl{&b_as&^QA=cxl966<5w)HfVSerA2k z(A3e+M8J0TMHlrNak$v1yqit8OO76IDs2Zyy&@6mUKY8K@} z0KzG%;WM^Z?3)cVIZ_)gQyyc{#A?txC^$-f>JmWl5PMzkS^g+P2q@Iatkc>Zfu!?=z$QiLD@sZ#v#{lljaFNF3rA|@Ts*Pi;@IWZK?>y&L?PryCDF`KeI@{qf z&QeW;CC?RQY4IT|dW7yDpp~sMQwif?ZtQXTa*I0~X8yx*CFvcCj>IvTYxy+fE6pP* zj!r*6Wfn#XXAC{Xt=(lZPHL-MFaoDe#C^gGmX*a$^Djt&b#qMChS115CDjlg=;*rs z-atQ*Ir#x#owQ?}308N65=gFJ&meue8JnM1E2yPYBpqQLuc40z<}knk-BO>zHr66_ z03voG-#l)xCZc1ySg~YlY9j2YWHBw(tUB^}#;$q^J$Uz9-zqYho!CwRdXfIWmk6l% zptJ6a%J2595V3z^QA*IulU7)H>za}!L^sPTepJolDiTUv^^)K3^^M~&^0NBnfo{@s zaD&XGc9x?d>Q+=i1}9Fbtvag`T8e{)me8l1p3?H2o!v>*_uQ-5Ffe*u~X8ApW(Q()8 z%cJ-wob-$u337X$O4+~dz+GEU;Out>Q@oy>Z?;^=e!W8BJ?jd+m?(|K380ZML*!CW za(tcW_6w42T;iE&YSu>!qjZ}#1@0d<0EP^vaRQq-jeF3$H-JmyiI|RV+S3dic^xZ@ zqkop)z!zkuE+)jG9t;pX{^Her;=MOB9u`;dFipqsn7Z?J(FSK0&!ib7^c4H(M_XGO z9j9ByNAUTd7_N7isvdn2XBt>V>Y;(EPxy}A_09k5R5Osg%$g?B-^&F_x^90c)gi53 z*dUponkEscv5m4ju3$KG%z)q75JmkcGM=?_8y^aZ-0At^vNUcc^C6Bxja%+T`baP& zBTKyC5R*k~_{;Z=$&JJGjeaSIQ+Xudg}Gj5@}!((iKE zxBTWhSrzRo+sL&OT zcg-B{Si>k-MR1Yww>ZnYicPK43N4^2YB&#N(*Tl#oi^QGy-%9FOCBU=*-t%*auY+2 zxJtr%WLkS-%hQdx<-v@YZW2YJdZk;7kO`#&SK)ypY(2$Q`h71&P$VHd&=1!I2+0-~ zZ}}4xZ!O)AAA`9yU4fzI0Y#jMUr`Su`54)API9$gA!a@oE+Az}lLR73iQnrcdnS;h zt|rNKHFFFk+b859L|M}TQ~{V=Pow|rew;m9=eID*hXLh+RBytjcr_9ZKh8d*`7$l& z)L0E5{GK4(Gc^%E(H%xxjH4%V#qem+;~1fN*d`ZYK|WJk4DPX}dbg@`?kK0Qr5!?0 zcJyXMF~nNWUN!{2L~WouRtdOO`K4Rf)4MlR6By8{NFxfg?Ekc(sdz(*_e+OBMyDu> zNC3B@E^K4NlhK@@p{ixX-lqVTJSC3>w0|j)5X87oC^*%Jr}7q77OGn=s{ac$)f)7# za*CoxVp|f+&;U!))Bs%j30_gU{K043PjPtv#@cIj;(6S*Al&y;$;DG4m|f1%f%wZeKkLi ztsmn-Dv#lt0%G0gE$mhk!$IS@cC-zN2sICPrwi)x@&X=xg))X{SlD_t+MeZMQ4VY( z@9NZ6UO5OqZYo4YvJVkYMC#p?(y3UAskmkBegCYxpwc(u5!GYuTJizFK{b`K4!=%_Y*F-KK+*; zcRRI~ZK-=Ei5@B5vR57vt$)NN8g7g**<9)z+|+r-8iQ09k1b zqioqSZLBhc3=<1GL~ZQ>2kFpN(V>kkve|3BUX8HEzpI`>?;k&EU19>%)DJ4#l!RiB zNcBbd{{V(>@R1clp3S1feX+lDQ(WctUhu6ilH0iMAgu1#if*P48(we!R+1P-K8+hY zl4j@(`^jY2DZq3HCkE>-eo^)l>^?DujO17mU)X?WrF(6;da1U(@n7t9J+#A~f51ez zx8lAVEh3!^+p1ete`JuAeS=9!xk|!KdQ>22NsR*?x7*xEb;`!dhv`ma-=)6@v6mq7^jaHW0T0GH%jo&(Dek3yC9P~g-9zw~*=lI*_; ze9Z(IL7Z$-pYX1e54gEuTbxQJba^kH@ZU+Il?l@2KVa}Dq)kO-M$J5jO28)qd{SVr zCQGf&_k-91&qop)tXOu`vn0b40$w8V^?I&FOZ@&6U;_VIae)%|w6abYHi$I9vDj_KdBcf2AUc1i+pYcI2#sp`QLCUO?#raI;YoN@_j51a zdJ48CFmj+&lhj#VYilZhYx@Kr-Tl2dfolE6rk>KX0s{Wl1M zT}8BB_{&;gAkUnUkw*SF&X z*lmh`M-*a%IEhSue=RUkG?N(SmE>#~ zZjSMC5CG-G5!%9yk9svIATAz~gph~2E7Tw5UJ7+9vzkz3UHXOws+1<9N~ur5IZgpP<7$1TkrbPEbvOaypy z;zGMrJ#MRPtT{uCk5o?DVO9md**;l|j1AqY(;0}S+g=q%SA-%#J)ZV?@8&>0BC_%d zs~ct)*-*nS8nIq%EWNy5@p_e?A}I1Y6VN9IGSYENq^thXswdjFj7B$g@pinJP*3Z? zkQ;8537xVRhO-y*G$oi0^Psgr*ipW_Y9L##{Q6HtoS?aAZQD)H3!4y3rh$6zLd-YZ z_G1^BC_4oGWzueC&`Ok#qb`qVAI4EEc{RxK*8qxXMcF9c7`f|%E+u+=&>IDB^$H0g z(?`F-qA2@z+kuIXSTU*Bhbf@S87lnDJ#iv{O4cZB*rV*@DEedJp;xDjU8jt!OvSFP zJ=ddjwxOW(f`oSEDaGi?oXKZdB}{}NK;&+d>PhYO?XY~|BQwas*}}7VsKQ2yvx$hn z>e$&@iE!{c(s&D9eknII+ViLrlIV6CtXAF;jj=@uy@m<_Y~y%;HNff}!qxsMc7TH| zs&2+oTr28cP7n5#Z8!G}ALt!})Qi<|gCC0W>)_E^-=Q`9S%nsj}` zaE=h#Qm;VgR7zRrpC{kG6$5RtJ@Qb`%|x!pE=+1#4&Zo_U}WP}KS4$oYNQVxF%PYs z*Lmcm3hjc0f28Q{NmUpco!okPRrY!y_B*P!a&VLC;up{q;|(jxGczz)g{Yco>Lpk@ zJpAy{@_j6@#wmzw-%|u-g5z5=(-beUYgRphgdqI|v97Q<0pFycabjVOMJ`uCGW(;3ss_UrTRH`u?|uB_8Nd)YR|6 zS6Bq~drBXslVH$Z{5)=}Z^NR!WSs>JM`VIJ?!cn$m#}-Af+q71JB^Z8ETETu`kaxy z%PQfMP1uYHL%1K84F2m+!i{1JgWWdi7~^o^xmoeJn!AMq)TPOZW3TpIY1BoiF#toR z-B~ql0Tk32>wC}01i})h{@9<~%9~Kw+bdHiR;Pyp8VAQO-`(O4$DJhI?LsyoJIY_u zZG|y|_N|+G{*(g3H7(igMp`4hPBLNgt#ox+wk-ooru_Jcl@dN7!g-8uI)~anOE7>w zo+WG58}7UG`Br)R?pFApeYvf#D+oYI(A8UU-ri=|Bt_Qf62jlOWHAMA@pyCj*_G{= z%$I*E4iChy1Er_|lxBY11XYv|vH3DGnhh0uv;)_Fr{8KYO=E01pSZr+_JU$UX8dj5 z(&J6DoZ8w%XMpO{z&4VInik#I8CJLM7bSncmAKdgzRjn<`&Oeq(m)p}MqT0t{(f@S zF{(WJF2XQ}*3Ej=VdQ)(klprFBkl7}V>4l(C|>fcNA#RERq`yNd~|1ex0B#|0UrTv2o9j|kpFOrwe|-W-Aw4@ zwyWm+NYF)ZJAP>_880Z@djpO~_2rgYT*Dpnh3X{VT?PPDo!-QIJ9j9YbWa*SCz@4i zr208f)N5`gE+zn1JK4pK1Z1fBS-JRL>#EHk2vdm(u=gduuwP~WiMp3z8I$Vr70|3< zjH9)hgyp0u?t(=RSz6bAl;dXS8A45~T83o{aNQvr#4{uQ0Ph6KRxmQXiR7KckhIBg zCXjdUAevAR_j zz>>G*5dzx>Du@MRs1yVtlE&FcLqWMJ^@+K-s2f{1lXEr{ZH>DGw@Y(6uE6^6K@s7w z{G?_CA8K0kBabbTAS1S~DmL@=O+V~*{@o*fRmj}E9eX1|{QkyB1fR6WGnIHk7Z>Y- z$>iP#|MEqBkD0*x2$fW+$FZS%w%I=fkZrz=_wsxP>jAew2_d`1qmTaZ#uQY$K197w zm4YF;vTuZ^6Hs&Hf}%MF`%~z%z)-&`m@g3-2eGIOc9z!^%{j!gU*|>()TKcUrbiUN z9sL7}=3|)eQR#~aMfJ8sRPiUaXDY#|9ZpwBc$pG(q3!~tY$=_GD~6DH0iN=_OjuQ4 zH(R+$2__J|)r&cI1_fh4gK2(I-^`q6mSC`$?fmwYZRpv(h7R~5dAl16b>JPUzS6m+ z?twhKekavK%`{{$M1#dvr=@rDK z8;yrv1AP0z*6P@Y-`{$pvH}lmxw{FYm@$lA)RNH^6FM`79wEl9789ADta@Iu+Lj zZfyw14@}8TVWbiTvdGQ2&RF^XIf8DtqUJ3um2b_T#tdv}>;SDp z^uuO72AAkvdx)z0?rZ?#>cKsn^u7l#u#=t^f1{TUD*-3c-5@LY7D5V9*1-=o$q#Ml zH6tXcRH!bDlk$Xt>KvK21YR$HTyP-p$jL%LWKSn^lysH;Vo7Hib|EDvbSXT39k zte#YSl%i&2iR4bFAAODSlS*GrC`S{mD?EHr*$R4aUPOsrJ#Q}& z;)GG@>PJp&mE>FFL_V$21$>Kb>D+D0`k66Z?w854G3lF+=9LIL3H3mVIKnbQf^&uZ zBrmQ*0SN+$cbs81K9Y?&^6nQSW}U41#YCIJmOS_0#e=U5UdXvG8nU*a-t{W6f$IrH za%^}?>@V5_aOm+Qz+Be+SXCf6D}w%UbyGvAP$^Qkd^F+?g?!CTvG9`fSDWHVo}30G zWAT=}cm*Y_>$oCQ88}tWUhIi&-?+|g^pBLSo`i!(1?KooSIo~pDILEa^38Ski3_}K zUSXYc7|H)^Jg(%!8(a9%U|j6zilkKpd1Nnql0{8>=rn)%O~LHx*F%(N z^ZJIDH_jRA{egc3;LeuGAJxV{)rCJnXIE1AEG!g3Y@&Y(Do4#;jPvfj?Deho?5*j_e&SHLA*D=CvR`XA z{`Rj}p~2|gPvxN3VXU^C_n3AU$JIk(w_*ryjk~4BzWc}&4`FOOh1!-yVNgRH#mw$* z%*WwBU31`oPwkWqRc5E4k7V%Nq%_4>MT9Noq+%e|-e*)rk*s6WRwn%l(AAvu^A-)# zDx&U_7DyD~+h>Kb)kZhM^uTBhmL3Q1V4BVZyQv;7iWiB5G+CRY0NgL+e5u#L=m1C5 zc#GHj@%PBZu0J*StXlgHoNn&N#nb}0lLUbIs&qk6J0tR3c`978PR4A18jaz8*YpX7 zi)J*@uA-Uy|Il=u(QN;3JN6bc)ZTkjd)J<&erikXsMS(bY+}#a6fHruRBG2w)T&j{ z5u0jh+9+C$&6EDmd0ymQa?bZYpM36d-Pd(}3H##M;3DSF>Ku*d-TjszEfSd`T{2-Pe_*e)}?cqfV!R*U@)i(L$sagWtI{l2v}AJaKO2 zphs9d0Jo*`;I7&OOpsc~nzmKvqtj@s^6jfPjxqfc3+1zkwUyR?fHTG2E)sgCmBYnd?}n2s=?SQn@Di#{YwMz$1W>D|R{GWPa)783m$;d3WdBK93# z7}Erfa=4j}EaCEdW^&xxV8BYw=$Lsx8waVuhdy#Fym$9~;$9?x$)1kc*se^8G zVsf!{x02*&*CP8|$+OQ=a;kF8tLk1ZtWxJ5+E|UMbCnlbwi|CevTZ2;rrGx1b)39u z^)0P(hfX*3+vtml8Ac0HE6cwNkzLgo{$7pfoFnR0*)?|u@I>!&KDFqjOiHIA$1mv_ zxyN!AtWmiBGySLX9aqMJ&H8oNSqTlSG34#H`vXj+{imIQZ?imzRO}JFAFc}pzt$2G z*)N?-(W$GQ`&($eRk19On4T}Y;>t5W+vk*EzDW0#D;^>rA!>*+W_uqVF(}qL#*YPP zlZ>p#-6MoSZs4l)#95?j3TqUrSTlbpYvu0OQo1pB(>Gy0O^U6)>G4kKR2&|kcTU!U@8311 zz#d-yHmc{3BQlnbJ$yC;YT1w0)rWe*1FOC-WU#Xj5=o#Wx8&Xi4MuoCU8z5#Zur#} zC2GwK%?ap!Q^oBiF5O+#4E#h}cp|Ic$Kptai9)$f)>yuO)=ydgZU#8(!O&LvO72Zg z;xRtBdv8rkrol#;Dpd1x%HZ?BKJk9k7 z?>aRxbSz1l7p@m9VAB#{9x?A&`60H^jX$kQxa^cM!hWV{u!l}h0g13p34tac<*vr~ zOnil4PaMA=Y9KFfg7pV0$Cc_6>SMEA^e>Fy(v$buHUd^06QI~Zx_GR?wrX&WE;sU*>-Vse zF6CX3=<(LZF?+5r***tkvor3`7i1cZJ}sva)ZqZ%X7?L8LH zqQ%gV?z}8@>v?R}r~CEax3@}o9DJ2mSZlJy;O9MG0xUkvJV!(Q#8D(+0GWbMBN64n zgz3W@2>S@WALp+aNt}LOzi!WEqXxyI@NHjSIAV-F4wf?Dg4kaTjxm3zEAPEr>iFWB z|AJaNO@h*1t&#+@0C++IWNl_PJ}_>r=;3%+&Vay__=V;^$uf{8JLagYc74&}TOR;H zy~2mNbGGm3>c{jRrN6VQuc`HqOgu_mVs7;>{-vgMJ0>IPd5rEA&y(s0E8H^W%A_d; zHL^10#*ml4a)6cA**_G7$^0>*4SloQepKkB>c&i91+Up}4nH}S73JQr`NrG`>%OVc z*|IloE{s1DGrxiRvejJqRJCNrd=YADyH@~@TFcO5^N~{FgE1J%C0dZVQr27pe);d1 z^V z)@I*V`>Y}Pbu%KGwnl1aNWGUo>^Gh9iI0DU2Bv5|RA+9;YMGq-+1k~ys9?v_qs~9~ z@v-x42O7-0F{yb=PliIQbsGA-XYG?m%}>-!^|?#vQIS5 z8rj)Ds<I27Kx)>=3Oa*vUQMM>}z)nzN6xs_w+vS1RVS_3x_$sH-=m- zYp-OK-B05Dw2(Zwsb?{P5^`c2$9U#$ZwuM{)kFV8c=yA~0mQT*d&JzK15plA)I!8& z-Ba-OsrhikAy-^F3c`~1TYN4)Q)n5wp^O*P9iyM>$#loECV=IlKruPs0T1jh-!a0ko+%%H)dV z=zhbfz=U0QyK)eJn4mVDna)R($96}Vz5BEs6n=CMj_Q}}FgiyUjr@XZ!`9-SR6vx8 ze?85+8gp(FiH?f;?E981Py7h(9a@_L>eTV<@$99KB4{q|T~8>|m3p|2;N z4f8cG6=G<*}kxp8mbQih7hA!*-cQ4*ybbyUA(a*o;_q2S6}^f)VZ zES?2NN@5)Q|K7M0_ISGAn^uWz3ydGT#v2Csm-A1zXI&)`tf=3*Q%e4n;Bjoo$ij)Xgz zHyGLnquM9g)Gz0LbnL8kRh#$lxIvTD^+u{q($Xe=%%wKCk8(aooa^1&S3bp{&tK27 z{&@(oj#R_TFB^_j`IY)rB@T%3;jB9DH5``&8RC@6y@?lYzaff9GaRFTK>K<8UAA`9 z5P3Fcn=3+YU>@I7RRK3UW@DFF^Nw`Ly8?6WeVGEfs|hw#4<7m8y!H*MYDSn|*LO@O z(<||a1PAzi+OKd=@q+~%aAu9>Q_ODcq8EVeWk)_!?GkJ!Upx$%Gvq$|u{Fx@79(U0vXVCn{HU(kF926% z*Eazh*{F&GyOZ#f{R7WU3!E(~7=3pF#dE@@ZhUF&rrtufX{gZkRj1{netl4Y%@9LehfVtIz5Jw7hKtDsOjv+!u%cUG z;%Up0RY%3(!haM83X=AExLxPiwR!FNikh@>YDUwBD++_xuvmCMz3ilN3w9E(J?BoAFfig=XQOF`lSN{p6$h%&`#EfJxsOWQ|>c7gH6fB2;FwYJUldQAIX7+UbzvA&v=Mu!KMk+@;T@c}sn$P&sUxO~D*}Ma2 zahEhKdC9dQdk|+ZiOMe0jMWmx9oWeORFmX#Tw$9tcl_u&+*N`(!!9G7+Jy+`j8zPP1UU|?4@ukCHxF~88kTH5o;6GGB81>tXp zKTEYe=PiST<$L_okA7d6Sm-%rUfWn7$1}yVo2P2fmDV2I!`sPW3jkcWb|ahR^(jt(&T_+bQ4{p~Mc z(U#W<$pt{SDvzh%QXVB0EhLrS#4tcsgWMoFMz?xUaYtu{HgIt*FTN9!IdvF47|A?Z3Pu;k>;8&-PL~F>i7li^}YrSOyvbX z3K)7i`o+wW-I}(3<%1?}7zG3Ls^_(=2B0$1NfcUVlB=y^air(GOOa?D0xM4ZKth`~ zG^MB>&~iirXhfGN(3_~8-t@=9cD}SR6FdkWNGTi4#OZ;V=0vGZhq^*G) zkuY6Sce#5Ye!!2(3sZ6fh=2xYLP#GRa+s#}A=v9w*WW)KHHmroHe+WIQR1u$v3h0i zPE?bC+FUwy(V(h4v(|pCAjHD-`jF9?YcFa@Sj>C^HN>n{WHJr7;V;3cy*EfoOc1B+yVPeb@| zi-gaB^FUl}kqVD|9B<8IbZw__OS-2e+nnL~ANC5ftZEX3bXHw80fxXSDB;jLhzg|0 zJSz~?Ink7wB*p8eEUrT7x=hyaJkb3MTE`YyoZ zQSL3#X!VZ-8KQ&ZlIt*AQhnkPE0z^$YB`T;J>WVg$C0X=oRLd>?0v&2)X+8xXRi++ z1Xg41qU-n$Bro5`N2wC;Kf(=jR-G8ZIxrRQpPJtYyXH!~w-pqvJB890q-{o+e7Nap z6F=zflSPxeEm_(8F+o<9MwYo7>mVXGz>?SHZ&|c;8`l+Pbo=QMbmYnfq<;1=T8afg z3fC+Su^RlT>v`Mz%P@`c$@2*KWlco9EI_!SVoGMo>H&g3?tJ8SIyCJ3!8;=|4vTQQ z#}d8BPo!UlNsx?J;uo!Jo_*B1v_=Mj`hC=;X#Xuin5TY>@G3u^y1s#*IJ9Y(imggh z9MUK1+046;t)R{^r{(~jN?lMJ!5tTeIp36K7AX22W>ju2?P;Uw&Ym~IMMoGZLJBC( z`r;CjPx^tqGsz=X>Z11Bw`Lw%CbcbTOwHdJ0=FqW>ylCyRq?QBh;^|$d13NXIOtFb zd`-GeUz*qBKN=iHu3b5U@J#Wf;(e?>e>EXOWxl;ojx)oGm$nBfZmre;H$b(lg@PF_%WKGrR?s&8ue zNT64Pgh6-&sT%sfeD{dh`%Cb!3+W`lpOo8Bp`E+P)Nk0>grn&=86>_CD3yM;GSbnu zzG*<9bVK(epd;z4fI=cwR=zKhDso47@!?CLs<{oD*^a{dPjPC44| z(nt_<7hIEEgYx_ElN*tQlm`t{#j}2q&-*?2$OqT{Rm;sCW>iA=r+rycW#{ndK92w| zK+mfC{g50h<`2eLLFU_CJjt=;^q0w+1A8-lSX49#Ws?~{f&ocg@Tzm8RLFgzv`5V` zhLMoeCMu^*H6$XNY{~WCg95Ls*|!GiP3hQuMk>MT+ZfXy*(zJv)+rn#6gN0PK;Gra z;3^i5A{G%M!EsAq26oX{1odUTm&xXO`MEByl-hMb8yhvsr~nM|{O`!5fU%4b=r0HW za*Q?ptW$86?LDwMH{AiNl(8#9hAUW1z!dmjwTPbi&wTCUfE(P2HV5f!`v8IZ3vb{eov=$Ow7% zUuSYVqI#mrR7Y9_46({VRTz4lcyq`P3c^&x^ZQ!8vMi^2*A%rqrpv-xbdM&UclH#d z2ybRu?9kliG)uBLv1+*0)>+>vJV0Z(RsG)%+U6ehd9y>}Iobz{XN9vLnZ-|LPqGDZ z4o?!&@J)rV9RprY>Pf@3`t%7vNgx80~>#XftH@OJrTX{uZ$XY z=q@b!6!XgpuiVd$-6$;X7KaM*q!Sf0`wHX0&WX`E-`rl6)(fjJ$e{Ey-unnk`(O-5 zpzZ3-uV9xSwV0_tfEH>{r(V@imXJnLaf4cI-etHt{s~7?Q4KL(WrYvxynZM?g^_sf zw`bmn8_24Nj);y<%6M=7!ee)f6Vd^97d9$DHiSGU;6;D+Ft}DC$SANB2K7SG`hAj+ zO?J0sn11Afu&7;}P9yA>;p9gL@h9wn&|=1((5Y8)MK*c%MJ&#nR=eUi{S7qzFt}%=Nl*20 z8{sf0lLv&^T8)xJ*Ga{7a%ZFD#RI*fT{{QeMwD}+j*W{?e(@*l7IQ49z+^;QUz65@ z%6qe&O&~^e>bb-kz;tBR7~3=$YLwOZ{yj0JVA`#i^U~QRTbW=!%k$yLK^;d@5Sz`A z4^qdu5AZ{<4SQ^HZlQ&>Z8|hY8dg$mBOd8T+CK?(EzX+;4N!K^;%h}UoQiK1$ra_v zE`BWAYTHDs9Q+3hkYngDe&N<@_u7d@Zm%>3E1awn(AJgFP5m!iy-X%J;Ulr^{f9YJ z(Codf$+KS2=+0=yUzpgBpQeLB86{nw08^N6aClwkXFSbJMQ7osRh5nV9EC!)jWBSG zvcjum$*iu++(o2zADF@?`2cH|simPRrWoS;c>Xp!ZP?Zu#FZqeE-?6JY(w)m?&8xp`?37fp>rB z&YhhgYE(0&4YSQuC}@mc7*4WWw1|@l&=dW3{T<3k)n!{Y6jbZs*7`Q#(|&7|^AC5g z&hk&{&ko0be}p>AZHNVtYZ%xIb(5Im zUw%R6_tg9R@j8DR#$*v?QI?{QBoT@8Jkw=Ln67#RoGIli{*`=+41YyYC1lhG`S~=L z2cw$E+Y+9p!_=J=EHnsQC-1TRxn+(W{ROl|-z&-w)22^`VD1oCCNep;@?E!n?5WXH zn$1(JEP3z6E9gFnCDagHA%3!j+cD=70)L0FT;r%r!nHN)*^^{~Tm^YfVcP!Nb=F9d z&CsVI_Z#dvw6>gZ?N-m@mUIVIcO6awU3>!KRocOPVlERV&S9)!L4=;Mmt3tvL5H3b z0~x$s{H1w7;{Z>A>L5=(BTlpCBhPeRNN>b{b^=9g5w@2Ab$T4Efxm`8^kh~X@vm-G0>Q1HU@ zX!4dxZWeR8?9^PQ*oc;Tt;X-1VD$k&3VutUR#Y@|Oi^;@8=%*9nWA8)sbOdI_6hJj zfjBSTgK$d@eS{!|5`nF+VUrGY3^N>9SV%m zgGY|>`KuRvS_o9&^6iq=v6ocsm+9-bvS+y;gQbahgC&-0o%)!JDdL2gGsLrC_S)=s z9YfmTn<}OPVxW-pWI7U@4ZzRe$mt;!rZ5u{%0nakeY#9S>}wi|(G(%}tYyzEsuPvM-rz2`=m^E4tu*h1?K`l4HX7=~v1IoTJ zU2Rzw;W84Wz*jJ6{P#C6ksYtVu+Qm0UL_SU#OBNsV#ChSo1imrbFv6gZP*mAuVkol= zaM75x>z=QGEGOJ%(#r0Suay&&S)odWO^VR4Jt)T!K7i*PF&&yM}aT| zJ9=|+qGtmA6q#4bujJuE)=@{9d+CVF3nJTi=l6?s-5UBzhbEpL_U+TcQDB^^J#^x2 z^23?VZW}UkRmj%RaBC_~Bzi%&t86mh|G5AZsw2NJp3DA} zyrmqmE`95|lHV25@G0Q#I3^j{$@v=6@VZYqIusz$*XjxuQ(wDGem>_k{>h3@QkcJT zw8)#0uP$xvpll?=Fd+5tR4XHaP9Co$Q#y&}x#z|`V$n3+rJqJ`bF#y|5xe+!1+KJZ zvOOILk9O7XFC3kddQr1x|TFs=7T z<{MnALi+3~#jGvaG4eUj?am`kqyaX~2rC~?v&@6`V28EzTviEj@2~L_D$hPtHLIz* z%yo`|GXJHi9>B_DFbGe1PR49Ri`64V6w!fZ!sPMNmkpN*N^+~|x*E}gaSkXr!JJ@< zn1G&YZ|I77s$lIZt(9_j+$&2L+M0A(KM}Ve za687{C1hVjHg#|72CS)0$`$PbV6+!2S0Y z5yoN8B6cIR(bB7T-b20&wM7VrM_2ay5SlZDLq&%H%R{_=(X?D|59b+wU7+Q07B2!?%}lyhPz!- zP-(8icIsCpS058K)Xa0!YAD*As}c46(@JY*tZsO$eR|Z_6pV82gWHwtriFLK_ZTLY znno8fCI1*+2weIKSrN1tY~WO@6Ce%~$4%u>lo@9(EbFFQPUEi*gj(QTTlYIBMkt{M zJV=sp6Vvgh`sdHtbX^9f+Zx(N4vnRr@fHpmJJ+Tt%RO0Qqjov*ifR@Op_J#!>&)-U zw=SK5MtVw--pHk(+xhPk?bxT3PASTd15aIgo>s{{f8g4lXJZL`*ZexS^3lgvQm32aM9mb=bNb4JX z-_JAF`?77vD{7g#FkIq;!9Txu2(~6|5z4{ACv-i9Gu8ATSbi*vXcxOb=n8Zn- z7l};%^r@U+se7{OaH+e_gl;`Iwoa20zZ- zqH~}pt^4n{;7$r(7l#F6U%w$1WEq+!ExNgj)Z?K)7IBYuz#7xZ<*>qDM8sFq;mXY? zMzJ$TYP@`1dXCe=JiOmlX&t^;c9Z}g|FY6M66W^ysl1J;K5#!Lr@;b_M?H`>XBv1} z9kR=8BWj!mCxs>W9%ljCyc^E&IJf~?7=ncu5Kj<%gWh(9&rDoO{9UbFdT>fQq86QZ zVACse#%vM3)gN|$Ho{FlSBDlf{_3%%{F9d1F;801%*5WaFmDLQ!yn9^28td`uEL?; zQZ(W|)d&61fUlKzO|q>9EG&4rxW*iPO!=g;{G}%kW*;AC*+>-dSWOO>zwPve~lD`kwPc3lA5(h$7Hu+;f&C9}|y7 zK?CfnBgG#qq6P-_0JfmQ+DwYOXaFZ*Wx1VVdhZGae+*%wPh~i;4?umrm$Of_@?R&4 z@CJ%^t~H-hPbF=Iu?ozV?4XSSsR37tfMI%2kcHpAhy$Ap_Jm!f`Q>PXE7!I&-Zni+ z#gtio(aASg>1N1>6sJ{ev68{I8E>m*&_94P{->EJ*DI^W1)DcYP*1?lH#euD*FR*e zw)v-*UX$YdG4pu6?))Tih(Zf(hrgOx6q*yt$XSXNhA7I&alWRKx45^d9c|dhezuej z|J`BQ6mNw+PyhU$k6VV*ZywELk(Hgf7y(ED2P}*U3BQRx>Og8AZj4xQJ=S#KA>Rh8 zM%N*&5v(<$w+)^_B!-Kvi=W}H!SfX{Ep_!WSb`H?S|TfrY&yV z0Gs5U!vl6_rqjKL?TDt)_TGlax69q-;WG{{A3yVbaJlVi9FU0|3*{%sL-aC|Km6RY z1nZrzQ%l2L>Eu$+5r5jbn=E!G9<{0&lW~aAUU=*GE$cEOH$sMa3*y~2s#K`Pu|;@u zf)7$EuFo3vv%jWiq;O@bCl>yT(U(%_LKIIsj(l@7>^d_3j?rq*a&%nk$f*p&t zQqm_rq@asD&ufo>jb>w{qU~Hf8%Ifytw+x~| z9`;%vr$(F$tpkY?*a4`Wcy~P<_eU#Rc_f5wx*;!LAW@MRz z%$!b_UJI2Ei51;M$A@O1jUFo3?|Pz=tyd%vTdx2z60xbLGEf^-oXcv&o$ja*?!J^ye*6jR5@=SulODg>LaTj`-=$ zp;$MS<_t#gju|He0t+2c&j72Xm$Cb$s;jwv9?0y-%zid0g|&7%yq9g#U*w!F4MS*(uu!y@@A-E%}99EI~o-g!Iy^(#lgPU?pa zadSPJ9|y0jL##NH^u$M_Hb!)eaWZM#4p;q=(Gqv zxc8amG#ba*wWKt?8|_3cyb1q`feDViX@MIzYyEP;fqLnFCEKF;Fwmzae;yDbZ#7UT zs2`Iq-vN8*Hd)EW%|=gOz45MpXZ1pzHkM4+rn{3u z!rM-K=r${zR$#U)4-s`farfq(DO)e$SBg4r+Km`Idzip z7b7^kr0=B#1GJmk{-&` zJ^W>UsPrG!bR+Trp$@Yi)YHZ z4aGdNm-m?M=|tr4bUl*d+C~vpe8%m~gXt_~JOx$e_rlNGanf~2!w26uf|!E2XEXL4 zLmGQsw)9{UR@2H754QceoGbEsJ}t=d{X3}3r``hA{I%Wkl1{fZ>G@tcnJzZukC}&v z?UCS`2(DQNH*kKqox0>m2hi*dqRYf|U6>ZE^U`TguxAuUfRW%}xN(Xw>K2mGFiu8! zG&Vw4`(aTuvq$PTX0gg-U)mNpQwBE}spA$SC@K?j%gX>J6ja2{JjUmnAoI~1CZTv% zi((HOjB^#C1G&yRE41EzFz}x?95-GvCC(MjINy7a$aXshe(8Veev>!S!iROoJies< z_xt7J+WjV@uMfSUqGLl*TqbGWt{NvV4FB~c{78QU{}JP&(E~wkN^Flwk_rxC)?gO( z&EpP!1}9yf1$l{IO*jXz3EcpdjII1Rc~F;S*@>plV9Z`q*qTe^8Lt)u*g@q8QB& z2;VYRr_Fop=)1_}gyh`csuO1QHzv2Ppp!m{_VAkJqxEOAekuj`lggjof7d}Tz4%}{ zFs{(TFb?jkR>@Jg%hCOxUw8CBpzxR+MmdxDqm00Sy!XTLr1;4A+_9G|^7)2S20FC_ zDb`ZoRiW3l@mNPu1f0p(P_;(}u^aQ@BAT{$goBFtQk)YbBvu74ZvuLVdjhO3sn{r8 zScVR@NAehE4YQW0BT<4isSMqxAKlx_(&vO$tjRM%Z?!gIG@;dq501e45ZmbjxK%6*MGZyMZJup z?F#y^S3hXsT=CAl$Mn5;g4$eg@aFfIJBM28?3+p~3YD^i0tp9Z9`o@~|q5CryQXvkcjdS(B`M zfUQTgp##tV-2U+0+5L(%IfetN_|?rxtpJTO_uyD07Oebxxy&_*5poxyoQ}=vmDbNc z!J#wRZO<_llyQRm(!wRC1r%r%lL;bR-=_M%<4X4taA)|rc^}K3b#$P$*=l@}6ZeQG zlS9w-sErE02zltt_G@u687?6cx=jrzh0}HdXO<80tb+5qDUvDnCIsSdT&uY)e)~qS z5r>&6o&w6rj#1cTitHr}9kW3oFkdOiIbeoSfkw>OJF7S@0eHa-$S1|jBVc=R4e|@j z$=KQ^KP8GyEdo=44khI%UGrib9^udvUNji+aDZ6TTzVb*4Euz>7&nABgzwES)z)X* zbt>-44?7ry$nTXpdwMoOcXHqCyfm69hJ#mHqbyDSU8y#t|41;h=rU{%1O{MMI z+T(o@b%X$~cQLC_wL8H=o2tHFKK|R7T?|3EYs%I^HHP|{GkJ{r{=T!{rK2wI2y-mo z$u1_C)Cbf{6#Jo41%?e7m-`Eu({wZyzdSf$Rkw`cBkmU@1t`>&UT>x-h<;3>1MxgI zJJjVA(GhP=Z@>t_MDUeoqPbawfo9t+^dxg9)#$QOtzL)ts5X`&o+8RzFSV)OURuCC zw6-#^BbaO(tal>13X*YpUh&}TWVyN_FX);}qP(6@t7trb@{brvdCm2Tkj~Hfr?n9w zz7&ADX~z|_WTTLk77;c_)ul11m9YNKcFcug8skoIZfq`x`d~B`cbnPnrrS|K&$hp85g*XSL zSF=5z%bN=0EL$aF{|E3S08%B$g`SSqFu>SkI3+=nyD%&P!3EZJUC*gehDn=PrI zZ|Rj65Hf{<4e-3~15EP|I^5g}XD#g6D^f@sNU?oxag z`9#{zAUo}hhP+<$#yY3);G=IcXZ0rcE)}tB8y^n5zGa zqh}%vQ5K`2#dY8ISqV7IF+>a>!Y}Mz(SY%+25H#z(f#^w5O#Y5c*bnbxU)wi?q^q@ zgln$&aCgh$gfs}qc379FqDC70IBk?qvh}s7b$f{%L%JQ)$7QKC+MXm7vQ-Bl#u3cX zp_@(Q%>fF|oQ!*hrQb?9@?FDrGb?Svi&hWqOoFoFJ^^T(F;;&P=dY@ z+j!AIxz626@P-_(mnU^c$1?QJUh{#7fIGAnTnl)ksj;SOayAra_{HqqO*1kE_O%D8 zJTm!KR+)be6^*u>n?LLl4uD~D1Hw{I%&%z|Uc@JqGju?Fy4Nosr%>!E5}cd@@=Iz` z7|c^b7>3PtnD@&Z-&Px>8w-1#Fw>XC2Mlu;3>9Oft`_)6(;F2&2Rir|e}7IKRF`T4 z_e#lvk_3|0?>)*7T zLBOJ#ly69;#?*VaiCYmkX!Rw*Pwf^z%~CzWcI6gA&w`)B(Oy!?V_=nUO}Ml@YFuYP zF|KGnvg%Xk<}MU3N*aUTsk#K2{2Mm) zM1sU={!-(`tO4&nErdQCKCW$-qf&f8PcLT#(eInqWm3h8j|jn(tYjYl+)m6qh+yND z&Fkd=nH?_`)%iTv;R2x*4~9vgQaqHds8$RY&Lo(z+$WofVH-tE((pT{4>$=jj#v1?WZ_n;;r26~f`Y~0ps*=}bX$)!nH_2QB z6)3t>Wr%s!e*+sCvi$oWr9e-Cg=0vUXmqhNDt~V&X`W4ZftM*GOBvebT{q!T=1)}a zb?dxYzdxl*{>ev@K($;Cv47D|&^B_QBm9R1yaIp~-6-y2P0??{h|FU=32fxn0sn#6 z36nOdGMI9vJWwo=#h>HLB5u9*yW``R z@Lj&TJh<&{#ryHY+&&tZ2;)w8yF9|-UZWa9c;)MvERfiDMZ>{R6ddZ~`_{*TUrKE0 zx;XsVCHu(@yz>@1D_2E38y8qYM>NmgSrWwTS;JOPeAR0EU2VxxfM*2!OT_k`JiyLc zR*8CVadRSZFv=^B2I>6(xmMi1Q^=QmBTRjjWvSr)$VGBFL?kEG?!Zx<+{Sz_xSnCm zc9XfBQO|}3ZbsLy-q*PBRpX`4V%hMhp@A-V|G)RoIx)I35s|o8$$MQn84KU#^i+lpq>sh?=pv42)Nk|tSsZ(TJ zY=Suhfl0x?g)JNQe~$PA;lV`I_Xb?WXtuyfVZ~l>flwB*_a*oI>CxWurYI&e7Z;a% z-n_OB7Mm>z82x;ANNxCKx^!V2+?ugq)8827p7Z=U(d^MA}p$#~#UnhWa9(=nWhA3Q4d0 zl@0`$^pQ}Yp0scFGHbZxV>lHgpV}TOI@5|2_{KK4X(-Sx76^2q;aIAj`ZO%kQyAjl z_up4{6ubnL>tgih^i31;74@G4&9A~s++A41f0ybmTf7`EAfK&vZ{K|1dUvDFTQY9> z%EDV5olFOzuHH%R2OY}4p<~(+drcg9->3u53(!`9`!3Ue>Sy4oa`bYkS}AmUi+Eea zY10@FAcWL%qjLjl*&e~l6ADD;r;JX|9J{Nt&gH1GMLv_)6Ru_?YWw)(UQ}v3ec+>b zxphe>I6BtKWTQyQ?mhfPIaCihK%_Si9ir%PJxAgyKG2QdQm4iUw z+NtZP$=py@?-q|qX1F)8T zjC_g298l`>wM_4o!jewyXR9e>_z5GV;wU<}rwDLze!yWNj483)vgy@#5su?67^<-u zl8j@WbPzzQwhPeCQuScTHv13Udx0M9!*1~>jtBE$ax4xnbP~@ ziQ=PO^sqSzaP{?@HmD*lIoZk24WL;O0CTW;?K^vB0OADrK3^W4{|ir9)Iyuxe~KQs6`QFlzNQo+@*4;@4Q zcdfl@WtimY8y$r{CxB$pSHDcKI-uL)OWVkU6Ar9m7b03$c4Z_PC;4&24mTMvFCzQ0 z>vT3@gZEpgYG7Y+NEa~MtX9Gc%wI-@zAf51{JhiW-L{+5A8yH}$8HOPl@Ei(Vc7h7^w^r;5T2uk#lLX;YHXvS1?d;z|1^1=Z-0c5EZ{6La`b zNM|;3N+{BsmOdE;p(yz^f65YRV}P(sxkgMtp7Qc4gI0tQV-T^fw#O!B6J(e}r2GKD z?$h2)43|1zBH7l>M*%rUz7o-|ZpTL1;m%mN4d6B|8rGXQjJ-D&w({mIZA{u(yZNnuJSiOJP9f zb>C~SNkQ;~OHeW~xec^4)iD)_jmA$Mc8_1x97$qj|IpcVHj!fB&Z71J9R9=Pl_rrG z{q?u7Zh7Mx5KCnqwM;c;_8t8`A)?P{jRxD_)c?hP2pqQMCAqthkMc!w>C$2sYH*!G zl;3n|#Baw@htZ>O^ccmC&I7 z!eE)_+B|or?;CaGHhP)+rn2w1eyO(A|2P^ggL|@O|6x$kV?>KxvtDr(&`iNP9W(o> z{FoKa=bUsz*TqnC_R0d44DBjvpp(c(FSBa7Vb@Ih`c;&B6=o2R$a6c%O)M<&d&2p* zxvJI%sSDO=FTr}zLejgDs!te`=PsYhE6sJ9dFy?5=mMWPa)#O4rJ&HJv zO=H>pHowClkB&P{E?{W$Yo$h}Dy8YDi z1}-4?Cy2k1*Fmv@zCWLLO1b=PG^X_iXHv7)M^H}hyrnV}ScaMRn80L|)?f6PmcB}B z1&1JPjie}MZ0e9kskx~ZxxD?j;qk)|lIMT(^?$SRxn9M`-1k^PhlQJR-(3DulJiCF zPznpoxcW=Dfzdd6L`%2oB5%X{fC*`vreSXfZFq5ENVHX=5Ymy;Vch;A!jrmmDg}c% zIUogyB-b*;seNkI6=^(4Tgo)pu{iB@Tgu<}8$*l*c|>=QiR}X2>XV1$ZtT964IEq7 zs5?j=^2=}#IerV%zML)JY0A!Jr>W$G#JC8yDtN@CvAI-qfGJSP`l#f=j^lQ2y&@a* zq;ppB6#tse>(Dzj_7<47mfAl7b9p5}S)HS~>U6F_ivO#%Y>_I^7;R@$^WdtQf;nQp z5&3z+_#|NQBMZllS+0Njh}6jX$949a+@g!bo48W(d)Y>w*?*hgF3%C>2;sPgekd8- zAVjLzBlZ5l;_v$!PeMI?JjwrHNQhfkCcXEg_4T3op>2}MM_O+{GtzU22g(qEHR_k< z;a~-N8^$@xcarn+hJIIXw1<>-(R~`7rtyX$Y{6fr*Co>^)*PR!tzEUBw)wuBabB{zOKwY76N~v;| zaeLWR#)eyux#&X3UQQn>9j;!)*1HGSr;XghKf~}~Iex+8xNq5DWdBo!c7J?E!4Vlw z>zMQ8@1LwHWUusa4@;Fx{@c_4Ywx@N*?zzG%_`|j&Dd)17_})y%~&P&3~IzytEj4x z3X0mBs-Sl4Jz~^s5w-UyP0gZq`K0gv;`?}f^J^Y?=6>GeoaT68J}iAV8&e$pGFTs)3^LS|_s>mlC85_KZy zb&u@4c)#x7+AJ5QnD`BSVvV}rvRBSS3H z6o?V-b%>Z+*m9L$1?GrYsNo#rfBzzGymO>`tUfaL%9o?`xg1GT)vBOw<9N-B=TX+* z6%Dh=d*&o=BafFudR6H2vagcMVR!0R|KZ7l1JMcS2y3aQ%Gquj?Vl*%X`~KFVwADr zD-p2BOy)yapx-DiE~nJ;Wt+ohAE z{sLjer;uyVJd|Q_+S_RU92i4gFbw<|HGVn-uW<%SZL^r<+t`*fjT`3^tDGhy3P&|!3`5$X?JrnZsBcKV^M6Rl@-qv~eazDPE0rgS zmj<^%il<>^@E@!+%kM+_pl}J^ks-v;C{5wLK{CM!&l6^nP&RLC!m<4$R|{e|ECA^>^CD@u=&>2mo5VfyN4+z$fmfIY*sm5uXfEx zgB`>l-jI!d$K3u(5-Dg90l%!TSgtd8f427Rs#s+*KwF`5$)>9rQMFG4t?;OshFcQ+ z%YNsO>@kP}R*LjIl1uH}^HuE%h(qWUa`3KS|0L123wt$li%XZk4fT!(JWMa4i#&yY zVa^O93-Nla;-ubd5A%G3RxRY5Uo@1+eD~bBT3M8ov ze>m5-MyQ+Zq&9=aN~U>2(jE)zhS=~g6Gj%wGIB3pGxT(Q{_X04?$VQRWZ?OqD_TfYK7TgKcEkN9)mv?wr}^jN{3*`093^vaA23`mTkSGq4SZT-$}$GKOh zA3gKVs>2^n7{r4sA=nPHW%aChr{04jCK=VXE^M5DrpsGDL+3v^DIf7QJ&QIpW6eAzqg>h{~t;ht(^@hwScY z`rATYaLlYU@YO(C8gaxp&(<($sFhjSV)766v8b%GH?4l7vY6XL%$=@auCvC|mF^_H z^8IdotY=%3Z-%`D?c~xBJbpoL@!9U#;_<(P`Bzdc8jj&xcAY2r)-b z57PQPn>^0$&3w7}MlXU#cjp|{SGpLw9nz<*5$z3AP+BLwkhCH3?y!lwP zcJ`z;@!ecj+531wx0MIBuVMg9js6ODMbeM!o;1cm$pC-rOn@>Q6&Ge80o1@MnawjEL%7|$^zj*e zl8cwBCtdsjP-()IJIBU?WHf@<*ViQvFm;1EghP%9=hHN)=q==V&|YSMXc@uht^m)G|KGqiNU_Uj4~qi{ zkDhxMe&;VWk4gj=)a!q!*4gCk3Bca0m2fOi&rRamH)fsVibj9u9serg->$c?;u(8C z43sN-eHsaecQ(A9O@8TrcxzzJGif)-yfBCC`Ub}dE5xEbCGd_ViRl)eMG~~vLbC&m z4uo*jaPfqxtpsVyf8O8$krwP{YRiGZIRxu%FKe81x{!$N0vF}{1}$7F^wYq0bgJ%e zReN+n&*EBZuLfTzr8*jPG+eUyZ-~kg+?rE%=@Ni|#)oO1BfEuWWCU(5-U2#`dnCe3NOY;_@<8w#Fuoww~vNv z@#=zA-z0XfmLPxN>X@R)wLSH6-m&_PT;$MaZS-KL3x z5>tn}t6!EKfFHk!GnM-{t>&NBR9<=f^1c3W`sP~R4?*!$r1KHu<8{VXQL~9#KDK2Z zYv9fg+23I#Ju27UA7>&}{3)<0^oI!+wdwdl${RX_Z;_z@Pf2Gq6Sq%_gB0) z{s}>qLZDJD{VQFX6b;uT{5&?Pr^%;Oxb)YTpk~6R@G5EmuqMcXyENahTq!B~HuW^M zv#663ddR!{406G3KBg^Keh;%!nYCYKdZe8qUV}XPRgE4=dbnNlTpPen9W)ht2nso_ z#hx`?EjY#CB1rdYT+Z&^9H2UycOS6Mdz2em7|K3Ij67L~zFJbGLye~?(vgha$Gru^ z-b_`Og;KC6c?dZ5cSB%=2KD8S_E;71B$10K1!fyTP-J*nf57II8&dL2$t)c--R;R3 z?_;(i`^V(W1ocEuU}t`<&adu2yxAT}rv1)*#0wbiRtPCMD>EG){&Jqy0GbEoFOVO$ zpb8Q^%|RwVQO>_K)9zxeJ?!7=@27QT=VV(sHIqRXJ$XQFExG)PlpvXy3{f#FHm2h2`OL?>-VE00mWsa=zLsv@_AG3RbkJDr<&2^oCrVfpml?f zYu&k=k@v&Dzuibbq5*R1?ub)y0z=5>r9UU#A&J+YKbVD5*aYXRx87N z#0*hTbjEtHkfm~s*6J|oR4kx{wogg7_%Rz9d9z<=3M)&3^Nj&=w0LzO&>9A3+(6>f;u zj35g9f%I6M7T>;J<0bGLV3)6hDA9=& z4k%hw>mhLO{&M=3c>u$#J>50dzhJb}5AM0Hna$?6}^ z3Br#7;6mBqGs4!BvN5?Y`*b`z!qDwHpEnj(7_67&TFtkL<0SG0SdV1J5! zSa{guA*v`$V|8D1aQZN{OL?O=m%P}k=ic=u1)9H^M#JLrXiH?N1&G}10Wk6KcXRxt zNJp==sqb|f9ogR34Iz5)j_zfgODnW&Z|JW`?_X0O%iPpW?U9!(%S=6`tJL`QUT5)j zwy?GB{eHhg(>^@Qkg_z|yxI8lNYSB?c(J z1S$%5;^P`bl>i%@ZLNut2r$h6*-SU(Yio=&uJXtHdeczmQaCyks!YlFY|zn6rj5}| z^l(1M(|jrO#KuJft3{t(M;kY=Idu#s243kDEpCs#gP;^;7w3j91g(<<3b(Sn@6@*y zQ*XbrTAG+bI8wM~or4->sc8S4RnI>wK8cMAmZ@QOYpYZ7|3jNynejEEW)OM+5z22A z+ix$+ity+dbNZKEcb7#uYsMZ;PQX!sCojg?NYSdGL3F!dv$nIwy2SOSQZ-=eDtgE6 z(~ptIyM~lm0?3vtt_R`9nDVPAp?*I_KEXwn$Ryo4IvR)bjP#Opoyk@dHRY6ip^Al3 z9Pz#b`b)OmnHg3##C)wR)J0!8zlIEmF2h9OHc)lZ?|W)V;GhkbP?X`)g2 zLVTc4MFb~Yf5Xq7yWBeJ$9i)=NXn1XcmV(|iI&zTu;{jl8j|iqMyd5<`eRrPvT0jq zE?TZuf=S|Lh8x8q8j`nH2Yy<-js^id{}=HAi5InKzP%exVwsEz>;s9S73=AfBW}7L z5V7#2VBMyoNT51N;QLWZsjSU`X$Otx#K^(=zk6ik+C3jU;Yul`-fAc|s281;*?RW_ z!M*)DbzHF7$;wCI{8E)wEeMGs!;u^_#(J6R^=)p?`fTYjqOQ(_m{4?tV{oRC8JH=H zvjvsIRP)E>__>3?n%Hq<)t#w?p`P}4cx8AP-v zUR*zFHFs$?QTVson?maMDyVgIVnw<|)HDjSsU=jtAyVlPvNNJ74HRmA@;)Ta-n}BW z1c+ICPZOQt`>VZmsaGVEWN3>Ys2m>ZgcB)&%QF1R&>&NN>yP7v7THsrx?MLL&jbak zqT%8NkOxv^T_di#_f}xKzdxZPq#KRFQt}N3MW7}nr0pjSyiAfg=f3m(`b|8j7Y>p3 z`pvc{hfDAso#G%e@vdFx>Fx$4El?+LUvSxy)skw;j`l(PRyP^)5=V748Nq+uQ>TD^ zi!fMb8af7?cy@}YCfghMNTjU82#Wq_AMwo#s0osaRXO^ zg!3C~0A`2Ls%=vGs~PHh72QlRY23zJ$BBnmXaL3)<}X8DtmX(=Dc~*NrKF;w4cK<~ z3;Dibf=ACdGpQOI>XAv1CUl`bYb{pa>+4Uo{MnKO{e^?! zmkSb~K~xF@bDib$L01}@!QOY1`2SH7fW!SgisSC9g|o^u48eYS-L>TJ2G?94Jqe8) z2wz#%&+iCYxo$n&?JBsp;?>o?8;GLF4$a(UgN;>b0Y*tEE7;?yvvDq9XAOknw5O%0 z6|h(9kCk{w${H`Db%lRZw+G;X@D+0=8Vj_TEil&-1*kJ;Tl8rr8ec~M$}6)Bo=bQD zx2X+BbOd*NJ-yNt@aj3q1w~|N$m2C*N}|=6>3!IkiAW6ogMa>Ye|Gxm$@h5;u#1F! z5SRi~6w_Yv+@hu&A9fqCN|a1wqUYAu`XKG?bni@+$ev`Jwer5=;+WPI2?RwLAn`Oe zf6<-xwVDIF#I+FC3(_B$%&cDdZYsM(G|$9sT^}+Xbt;SXr7XC|VWQ>6X<}438E;M= zBg4PJ#m1nDCGqBaaxd}6Qr1_8dooYVw@}hA7C!Bg`*!_osd)Qp8rM`4bnPg;rt)W}1$vGOzfIh43do#^C9i|_6~V%i}ni>UZ>?YY19V9L^h z_k4z2s_3J&>`fw`)#3L{Q#qhYy+}$0Y0L!)He%V;?n+V%+Fz>8dw_)JRhVpP!mj>s z$uK6ov+dpdcnrHT*C{-O#vphCGee@m3o9c@TEXc}_eS;Dja3^iHS3G%z)~-V#p06*gjbu+LbIf+g>|LJ-y$>jyAB>q} z&m+@DLhKCsgJH5Ac%^B+NZ)XTV6jNA`YY{fwhrw!!I~57C;0RRziW2G(L~3>LoiCB zGaPoADz(G892_&4ELkbY*Ud+2Kk6ty` z*x|OPBIRnD9y|wH?5EuH&aym7$4k$bYlfB<&>oTt z@_v<9@E9Mvj+g~of>B1nz*HTZYL;9}>9}D@_%B9f_3H=)|G%&&YW*rLPFGe63$3rE zA+wf}L8vGG>)3Q@KZsWG9l_m0$dAQv zZ$Uhbw0EvwW#Ks^2hhge(vvLPx941(LoRn-oRxSS3CRaFR%=>SI$2y<12i)4)StF-#tE=>0WT1MbO9^I)cX>7B+Mbyc7|EkAxMz$mue48Z z&|WYMJyq>zr>y66ibPtg9T^_DWT|GpX;S|K9`CWbs7LsF>!v?jW5yboiLV=AQ+Krj z`$8!Pi*24zIwO-~VlH#8-%So=_Gf3&Uv#XiO|JH$L47;Cms=44hL;+9RjLFu|qX z%zwH*o{Hk_Z@VrhxKT#)f^-Bj62L8M$8Ei1RKq1cis{-RFML^kjE^1keHj#Oj;L|ikfmYA6ts3Okx@-5AUtJpov zyg9-6JLz;Nzq^h{OE}`3PJ}O1WOUsf>v_S6ck4x({+NYRp?s-r4*j}!gNn_g4Ei{t zy-H{dAA^LCXS}C}nL5Wp!h|I33r}_W@!uP{7N#bv)eQ3@vDBqo{xe3iC0e~CVji>V zR5IH^t0dAr4420~@W8{yqTfaTYpTo_6V%N0s> zxA~8oUG5R^9^UDOx&9T$O^^_W6xi$StTu#F9tm&>Mvt(t=IF4yGeZsntR#~+@(~Yb zA&2-_Rx`Ys((>%j!nQh&B!k6Y{P-;+DWkQcbrod`vg&l`CQ_9a1Tyu6|C_Gf$K45U zkwOLL)r8JA6zBCC>1KN65gm^NZ+riRnV0`@t6x^puB?b?#a{$wX6$`z;5P3$ zwU<+B6P*!5R7-xD=;J3=}{I1oJBiWcs!L~{baYC{R^kHe!O9& zbme}M5YMyFsc&5Mv{6Igrx5*AuZqjPQNp7Nm1h1Ax zbQ)6(Q#LhDY&i2cXt>-1t1^nU5Zv1K|G*pD6^E-@C6^c?FN2KR?)W&eU)w2O;-)Nx zCDrr2nSjU0BM`U?)q25^N$sPvME*C=L(r_XT4P&AX-yU_b=W1oQIFzlG#hnm+6L(9x<@a6 z0Zxoj016o%C*q+vz8=Q6bhs4y>Fs`B3Qf(GIiVR#?n<{=E-q%`T(PviwZVR|0E9ra z+Es<#mad@@vQ?((ePt4n&6w_eqxQ(lfOaU!9*Ml2XL(tTtr7g}YtyIFEnY2wSCTi5 zheg|bKkMA7cT{tkeI9oxbjHZEDz+{@m)}82I8hU@R7eZ+`;qJ+ey9A5#}25tywiRR zr+hjl{%GaiQ#}j%TAmGYO!4KIHgZ}GaDuMKj3esToH5Jhl!=k;@_~Y;e=d4GU1&Zu zX$TFO>dKG0mdR53)^R;qU9_V4kUvEHCt8)6;2NL5yW~w;dXjcAf5MoK$^a*g+(rhUmkpnT@1A`mFG=~vlu)g74>o4thBWWjJXJEvb;eeWiJsrO;dF#_Z#9PoPU4WqluT zVvklR>I)JN+g{Gu+;@w5`h3)`pWFK>TUBH;cz2DW%rW^^hC2={4VIpHg#77p>)|^} zr_Ky%5G{lDi&c@Z6u}`?79lV}qK*$BXbyr9eBg4@3wyZ0pY>5OU;f)`tA*zk(3m(d z6X${>uY)?N&HU2i4ypxtMAf0CN&RhBXGFdF*NK=pzP!xJLO+B4AC%4D!y!meV#;l` zTxiH`_x7agr_d_6FS4fiGyjLQ!=G0Pj)BjEKW`-^H;Q6ywTbKbtv)n}+QU}qv`V}+ z`c<&MUk+ymhZfG<99JjWR2DHsr$^su#8{=p1pVDIC1;ve zBED&;)Gm)856{lP9SX6SM`)oI-Yk_Cg^gn?6MPCEwSHW4uOrCEvH)jEYK=!}UA7`D zwKNHO7MWoy={Ef8*+$RX{@d;gnB(@yZsBY(T1dUIl}n~l+|BEK?KDom(nTCn`lmW_ zYJDMDXd&Zqy{LvN6NA_^hgZtM&q@X2u>bDnWNil3#{GfsFaNGhd=|r_WUqSPQU)>a zR=#RS08U`0co^EF&wgtCmzNjj+#K0&z^fwD1Q_WxeYQVw^WDM~e3}o@wcH{+kCwha ziFRVe)?Z%C{kou`(><#;-AC@j5dE29=|(1D{@J<)o+PF_37%!qR&uQhJk4orkoV9X zMSfumUq?*0&qJp%n|>9SF$5w9nda@g`_R81-Uu`q9M_M{eAsZd-=wt~?V;44g(*RZ z7kg>s@>G#3tTI8CroozwvIg8=*D)I&m#zD>t_&3Py;pcn8zLa9ATC zkPejkE&A#3G)+ylp_2*kkCZNa)m*J9I$$ypc=sen_dT=Ch(}?1-?tg-t4sHOW>OhG z?^PSEG^=2L<+>Mw#&8m2aFT9v0uKCRpY*F zn$%vfvHA03^Q8s@ZSNzQ?IHu94umq~s`&@e_tY5iQoj@!cbpSYi>bm{5dIdvIp|`C zW%D)f=jBkGyq^2gfi$}x5Bm`LQko7lHYg(GPos7BvOOya2o57uwaQ&FqRY?SLMfVY zQ3RA|VlQ@J2#ycd3shKh8KDh-j8_|7Kn0H>lVRpVh^XxX@pa#x=SkCdR0-q$sq#gz z!ds5cvU(?u6*iBhBAbs{-AzQnIax}My%$e%N>4QEUostVg#*f227|=Q>c+>t!D8^xf`c+* zopC2p2@yKnE1W)WcrK^7@lwX@iiW}mK=J!2KDI_6u%*!*=(J+s^w2nxj&+#(?K1ho z=)c=_=klL@{O@pXczsXNHztXdUX1s@8vUF&T~e;Hk4C{+P1L&D3hLsI{K>lVS4;Jl ztVx&R`QOXTQ@Pl94&A9SPQ@Xa*+K;})R{?p64#y`l^dyMHXc3X6t0#gNIBLDgXDhl z)9xq5@*3B<>~!I}?ai%J<$WHgT!ipEy8Dl7wuNOo(8IPfkWYb}L}PE(0wt_7#!&9) z=1uaNqI!H+0Z+p(p95xBw3&VPJu?F&Tp(IffEcoP<*j%eq;y5|#H{fl%YR8j2}l1? z3Rb8I>sj!HGBHB7>&LZcj%KHM>+P7Bd6ogH%%czXpaTSR!e56QBirSk{VIsM3|$S> zo9W0uzHzlZiah!w(c=2fjNt1iGtSgGlr?-n)Mz=Yy#{TZ7}oijijJ@;kRZ%Btto2_ z+ekf!1+A9MPl&LQxhy!1%!30W7NH0g9DoJ0{1hkyOvv z7MTruP0aBwf|^rrtOOM@jY-x`VSE+9`6-R_wQ+y0q1&YNJ9}_;{*Gdwoeru<3f`J< zbo32&Vu-IkKzO9oPgU_TXuwXxW$Yly1o=Jj1sS_}bISVq20?h+e}RfGsh22!59jjN z0}*Cw-|}GjOEMfD0&=GQ;jPVNS>K|A=80#@ge^J9#}8A=_f2_+8kp_+-(aD%1ff7M zA;!7<9F#9aT~ryiofgMZDAvxqp*M#ovNiD&gIGM#*hxHr<1OJA)iz)j5XO`h$;^7{ z3q%GBRmRpcO~YR;gFBXsj4S}Cvf-`u9kPwfH*8{Wx&q^8jYPFy*k zNp|3-7gw76)?qz^vRS(Tf9(oUAX;8>A=W|thPhU~O^8nI_5BZ?39p(Pfa(VQRwiM9 zC-=2E^fc8`MF}<7yvGK|F2_eDJFXyiPin;i?QIQ<%*7Edzy-4o#ia9E>rGF(QvE;j z!fE`&x2QwaCxUtSTU^=NS=D8CVmD$p%E>*ydUMvLhXI(+bUIoRUXdC@1m@QM+S-7V zCnX+L7S}j54F6ytnDuNOP6f&1iyFuOVc~FQ%*-h1q~A(+Yb2)_Xm!1csvr{<4!^_e zsnPap$k@1FoRdO!2BhODe=*4svM2{QSUrY+rEM}Xrl`-cnEPa=r2UbB=o{`Cc?MTHbstaU1V%V2=n<)v{{!DrPvatti68x6{H{M@f~zkM`kTV9l}LS4FZ zf+~fei4p|n09zEX1mPeKEyQgKzw$jKq09gm#IzW-2|QvT)-2Ak^Ob^g(vB^$8zh!~ zoD4nX!xnB3>~di|nWQoa$F~EdQiAYz3mBe|$1|STBj)a(_fTSfA63|sOi~TtfgjHh2cO7X zO?q3jUcheXXve~qc1ytZSFN90R;dkdg}W+$!q2bS;(lCl^xB{HkS3NR<|xodF=}t+ zPO)x5%wxQgwfnC)@y<(S!QL;1vtwlB3+}8lM+gD4+W~IU=sx4tza_zXUj3w)XOwZ- zw_f5x_i$n7_OpFFj_rf}L)S4y1kN~g3sN%SwE*5~a0Xr(}ZC zxrdV^1J#$#WLqy;OPh4#2HuW)g!?O?E5FS3q#Hb%7oyC)TVKSQ9Ez=b=86AX@N zb*ibSd_%5T+DC{9!n#PSligJXt%tm|AZHrrfF6>{*I#ZFeQ=8;LW-$da@-C_6lm_CbJmKc`NIH%JtS*wry>1i z-FG_@UvStjs7%v>9(Q4p$p!z72jo8Wtohyh%kzKxSsUK);2`q6uerV8Donw_hUXth z&4@+(H|=C6XOCM1$7tN2e92VaJSKH`FBbVl#pS)2(**9BVqYFG;@ms#E8PD6LND%u zGtcx6_u}Cb^bTVmYbh8V-ZT7Lk^ldr|7Rv*`;HK=)YL`6`38oE`)H}@saC5%BmNI= C9d?QU literal 0 HcmV?d00001 diff --git a/demo/documented/csg-3D/python/demo_csg-3D.py b/demo/documented/csg-3D/python/demo_csg-3D.py new file mode 100644 index 0000000..83f9387 --- /dev/null +++ b/demo/documented/csg-3D/python/demo_csg-3D.py @@ -0,0 +1,50 @@ +# Copyright (C) 2012 Benjamin Kehlet +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2012-11-12 +# Last changed: 2012-11-13 +# Begin demo + +from dolfin import * + +if not has_cgal(): + print "DOLFIN must be compiled with CGAL to run this demo." + exit(0) + + +# Define 3D geometry +box = Box(0, 0, 0, 1, 1, 1) +sphere = Sphere(Point(0, 0, 0), 0.3) +cone = Cone(Point(0, 0, -1), Point(0, 0, 1), 1., .5) + +g3d = box + cone - sphere + +# Test printing +info("\nCompact output of 3D geometry:") +info(g3d) +info("\nVerbose output of 3D geometry:") +info(g3d, True) + +# Plot geometry +plot(g3d, "3D geometry (surface)") + +# Generate and plot mesh +mesh3d = Mesh(g3d, 32) +info(mesh3d) +plot(mesh3d, "3D mesh") + +interactive() diff --git a/demo/documented/csg-3D/python/documentation.rst b/demo/documented/csg-3D/python/documentation.rst new file mode 100644 index 0000000..f4cc429 --- /dev/null +++ b/demo/documented/csg-3D/python/documentation.rst @@ -0,0 +1,112 @@ +.. Documentation for the csg 3D demo from DOLFIN. + +.. _demo_pde_csg_3D_python_documentation: + +Create CSG 3D-geometry +====================== + +This demo is implemented in a single Python file, +:download:`demo_csg-3D.py`, and demonstrates usage of 3D geometries in +DOLFIN. + +.. include:: ../common.txt + +Implementation +-------------- + +This description goes through how to make 3-dimensional geometries and +meshes in DOLFIN, as implemented in :download:`demo_csg-3D.py`. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +Then we check if CGAL is installed, as it is needed to run this demo: + +.. code-block:: python + + if not has_cgal(): + print "DOLFIN must be compiled with CGAL to run this demo." + exit(0) + +Now we define 3D geometries. We start with defining a box by sending +the coordinates of two opposite corners as arguments to the class +:py:class:`Box `. + +.. code-block:: python + + box = Box(0, 0, 0, 1, 1, 1) + +We create a sphere by sending the center and radius to +:py:class:`Sphere `. The center :math:`(x_0, +y_0, z_0)` is represented by an instance of :py:class:`Point +`. + +.. code-block:: python + + sphere = Sphere(Point(0, 0, 0), 0.3) + +We define a :py:class:`Cone ` by four arguments, +the center at one end :py:class:`Point ` +(:math:`x_1,y_1,z_1`), the center at the other end :py:class:`Point +` (:math:`x_2,y_2,z_2`), and the radii at these +points. + +.. code-block:: python + + cone = Cone(Point(0, 0, -1), Point(0, 0, 1), 1., .5) + +Now we have some geometries that we can play with: + +.. code-block:: python + + g3d = box + cone - sphere + +This simple line makes a geometry of the union of the box and the +cone, from which the sphere is subtracted. + +To get information about our new geometry we use the function +:py:func:`info `. This function takes a string +or a DOLFIN object as argument, and optionally we can give a second +argument to indicate whether verbose object data should be printed. If +the second argument is False (which is default), a one-line summary is +printed. If True, verbose and sometimes very exhaustive object data +are printed. + +.. code-block:: python + + # Test printing + info("\nCompact output of 3D geometry:") + info(g3d) + info("\nVerbose output of 3D geometry:") + info(g3d, True) + +To visualize our geometry we :py:meth:`plot +` it: + +.. code-block:: python + + plot(g3d, "3D geometry (surface)") + +The second argument is optional and it specifies title of the plot. + +Finally, we generate a mesh using :py:class:`Mesh ` and plot it. + +.. code-block:: python + + mesh3d = Mesh(g3d, 32) + info(mesh3d) + plot(mesh3d, "3D mesh") + +Note that when we create a mesh from a CSG geometry, the resolution +must be specified as a second argument to the :py:class:`Mesh +` constructor. + + +Complete code +------------- + +.. literalinclude:: demo_csg-3D.py + :start-after: # Begin demo diff --git a/demo/documented/eigenvalue/box_with_dent.xml.gz b/demo/documented/eigenvalue/box_with_dent.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..3b2011d4d7168050558f5bec0055641e94f529fb GIT binary patch literal 8836 zcmZXZbyOQ$w8oJDL5c(@TATvKNpXsMDOM<2Bv7Piao6CG;_gta6nA%binq8HC=y&> zxc9#I&s#HVC6oO2x4*s5%sDd&bp#OU#hIcS5^ChkaCjgWk>6UY3PDvl`9`fpa~e~! zyPw1~Uv_0tWSxpwYy*(eBQ}cp8rV+BdG1W%amrMn11rg4i)0}vc_Cc<_u2jRgHXbm z2WCJM#ci5~>D*`0w1{BQ#4UGNuJgz4G}Wq%?k`PpX1uvce$gKI@W7hfqold_ubl{n z&u;O5zka1CB=|bss($zlB<4r*Alpi_(&?GD;B1d<{-2)NiPkS-JcUag!qxh~?$dFajN6a~%JR zV^PXbU(@`Aa#yp7G_z(`s_0rNznsH7h~HJfBKpv>2o0=+dgpFuM-ElI(UxDo}Nz6G1Pw@ z+;NECpjfPfcb3-U)!6LB>DY-`LY%uCe*raCLqGtve*vYFu8PsLODzTNeHI z#b;vHnw>+n@!r{DiRugEpF>QWC05@J53jhTn~*!IT)f!DGnw~kKD(xqg*o2us?DBu z6{5nupy1c7YC#2JPMLdw4q)#|NCEX9#WR~-#%VU1r=2hX;*le)bkzR94PoNPK~WUfgF1$j?>;1E`b{ zBIuZ@i6jJfNH@NEMxKfj#M>dt%LNW0a{K&SMmvI%AXvPTB3LXVdmf%Gg7_Gr{a+Dq zQ5iuzjd(+ZHlh~la3hibk2I}i`9>~QKI`VfL7PmljsXqcle`Uo-AR^ohW8mS`ytJ7 z`JbMR(iKrZ@4Rb5BtZ1$sTrvM^wd}_S2>COF(&wNU;FKKEq zqCrok|2HoGbzg$uPj5rxmJm*txRXNf%a;5y*8TSSiwSf|>$VaNN)c}G5MEtbMeq_y z=c4x)g+YCv_HU*fUoSbk?Cx)8LNJc+$OLu+0lWt2m>h77B+CHsE?yXcaw3-b9p$fK zNy{Kv89a(DVh`q2>(}G~)lpQeuUU1iU;mh>2{Mz>nJl%?tXZ%iD>ys9I7Rd8kJVtl74X!L%w^1L%^~O1?7qD4B zCUFj2E5-am$D|TZ?PeODuBw*emYTYAQjxaH`18|lcvbsow<9!uKve5qxk^yUt2~R( zom532z*g2UwMJ4kv>D&18600x6!^}p z@?Pv*wV7gPKIGo>-UA;49&-Ec3Vh#Stn3`|yWe5og#AtOF})e=w==k6o%Sv3JleU} zX}jMzCB83SVR$FD@Zj9upS*IG<-YwmW{8L&ybtw}7UQ|!bm`nES9)y3^NG3_q z*>}r1`<2Qzsse_4oG&FLZ;!Eu{nSq&Kyb8;6=tn_8jkhD>25Dy!-m zLrMh8WV|RB@=hm?!4$1ZOEJH_zlq!od7HyGmz9nvgy=2OuiAJj?MQr{Uo&muwMoG* zBaSrP1>w!*@jG+BT+_82$_sAMXO-=bh%O}uTQk5rpNQSDuLF-J?)KL`WtI)heJ&IJ z+|4?yEQmB-Zr^v`WwMPqVv<%pJ6$b&TCWTesGrEwJMd-3Xj~zz(QegS zg}eQRU*q&wrSqC+lwor> z)1%3_u;YW;_y_>^p=J%$34K5nWlmzX46CNMD?nsXQjE(`r=to@^6fpYm&zL=;Pt%9 zfjEvJgbSZOC-cDf(x5|5b5)0pZ8eWQ67^aWZQgAHW%8RB2HTqt7bz$u!bT^P1hW30 z@U43_;GKUq80|IDtUJYe!p=+3#EuPhXsXcm4Udovb87?rJ{xKKlhUzh&(W$&YBC>) z8=$l@PdFr573W8)PG8}$tJxdThP<-Z-CpewdR98EI$XMCz%SJx+H%P3MfFeve2h1JML>7QUwBVUnV?8c^;hL;}3 zx|~HhdWNF*EAAZinyA%%}`>{raURACQl5wUz6Mk>lye zr?_{Je|`Q&s>9w===Zj!)Z$&k%*8K3BTXaZ*cfgMEL~zQ22(>%#Y;aXmA%y$4O@z8 zRk{|1NTKP(jhMF$2cyW}Q80jm1IbCD%~%$os;oEPJUbE!okogrZpHs5KL7h(oJ58- zoY1zmcL0H6M@L2q&T^OdMMvK+yl=vwL5L>pCbG5;em15=VOEx&gFzj&#vHiDsbVePro8< zY0!;Ho2Cd-^A>z7Z#(5rFc+}3UC8}Q<@DAlZT;w6nuUbpagkJ3S7|Z6akxwn0<+6o zx3GH9RuXltI#kARm;;`7P(9Zi+mn^2YnZ{zbvZu7jeRjN-oV@?I`U@&tA!*~c%%y> z90eJc4L~7c#Lyf&qXRGxWz!ZM(liB{V*FX-WF88u&}s~3J=RzKdxmA`mzz$e3Sh6` z=VsCz+mh9mb~G;xTkKqV!62+UUMQg!d!rk~f)sv=;WW+ag&Yn_0_q~AC2I%{M{$Mi znK6Ygc1}N`Vw(QB>A+j@;yo-cPHk8BAWm_$fBn96*rK$B(v>v}safOtM5g&a>*B&k z)yh@4UAr{I$yt}P(>*|AYc3%l=}meIlXJDNKs{GLmG?)w(fwQ2(XiIEN8E;-s6OsT zXMx-jrjX#+M1Z^Av=El-g8y5h0+n|cS)&*zkb$SQ>fY_lUw-_|o)~BkU_q(^QD`dj zqf89thmh61QI>W1bUPPnU7_zPzCjJoMzbGvR^QUMh05rY5Ljc3 z|D~DtCol9b(*UH8l_BjadOdiA&Uo4lxswNHe7{^S)hQ+qMJ@+ir0`DkNWyd44v^Rq z0*309D_!x5U@Js_lE{I>cHyImKt+j;Gw*VF=2EL5JDg%aejdTT3dX9pTzoTFNbC~C zr!CsNfmQj*3_Z>V{lmyT2Zo)F*+z(xri?Hco8PEL?-HqREZV$*Er5Rr6y!ez3B zPJYuR3&zBloyD!qd=B7xQs2|tEj>RAi?l+IRI;lyVz*ujkQ{XT4<})3kelrS4!J1@ z&y`|IKFMnlEG=iNf)fYGgNMMXne>T2g4iomcga-d1G0e{OdQfyg;nqH)45fGwaU_w z6sCW}tLKGq>hPp!KYySj=kke9*TX_goT%kL8@@XK^{u?$6Nu7_cJ!CPMW-iXAiZN- zY73kz(B+P-c}Yk`#}EJ^z=dd-Nb?7qrGx4F%h9?LfV2Vc87TM$Z2D;Wg*FUS>W}d2 ziZco5TLz&az#y8oFSw99mxwytQ427=TqRlnqh#nR(cl$rSiDhR72$|p;emXD}TF7rAd9kfrgxcvn zlmE9zh{{`@U07OEp*rrsXe@fIwRAmM^J=&tRXW`r|8Hn5&&Ca3i3$G9m}Cc`%E`qN zsMDqG$6qz7{PArZGVkvtG}{s~D+Y8L)3_4jq)=hV2eV)M*XEo5JCpDNES?tFu`o#i zL2T{u_yD$g!NAX?#&BEJ3-KKCHBkF+%Pf$y*3!Vp8V>124aX^xRyhiw21oJrrma2)8lGwoe??^M#f%Uvz| zC?Cp4AIza|ja*?M=WjNqoA&59(|kc@Skow-FN1SPvFLrO%j^1@5N;%Q$_`Cf!U;J1 ze-|_U`Meamg<#V@VrfWcSLo2pcZS3=M_!G#Es;CmmAH&18!C=*g-DV@JGD~R?SDN& zjy21L7Z!!@whsgu?X5I<=he#d;-pfhvYMh-XzD40E{OUZ)=+0^fsy(_ZC!Tib;GRqVcKL)7$XiE5Vg~ z^D>vtPzHGoB#_~XOlE`ccHv3gee=H58|%9iS6X=KfW-0mBCX9csLXbznd$H-IZm(M zNZ&xFUJFXfHRibiOABRhTIk7;(Z|q$9%hU1>z&tHR6X~fCn}P%##~dsv*)H1nD&(Z zR>h~#jPlDNztVL}M>DIFVT<^gogD6VtrNQH)6FS^!J1BFCyt$d-5yG<h8jk=Q9*s%J=7hFX z8)lc{RdS5buaw1v zhpOqa!1k=%7q#CkRXiaEG2}G!g4d* z@z#1^Jo8?FG~Xe_2?D`KoFJec!6V2~OEAwA{u*^YHLYqFZISj@tKjY0 zp=bhH_m)9gm4F7&$~B9%Wl?R)L8&M3l?zo!y7hfQtuxe`5r?iw+b*vySmO@U0GW

=I^Qo#!t~Re< zsj;)V=Yif0TB!~wy4+Coy+exrd^kcy0Jpd`r~}T#4QbqLmK|xUqAD2}a@a31`m}iWnIW2yf^A zm|%GCut>dLv^@G+<@m;!CfN8`@rTJyR4_3u$yBkPfBUZXD;8_tFjse4hP7TE9SC*~Z=!hdYOx-_Q$n<1{tx#qAm z6y4*px6$@| z`3@FrZ{iA`a}+!>V{m;(f6k!BRJk3YnN`>Sk=7}%=qHu<>?BDcCFTP0)RsID%vp2( zm~53cWV{{pc|5&mJ5Jvjv>(T8I5NVzwF)M81oF*Vq?Rt;MU$);n~au>;`zuXXc}*S zYVl2Y)+3Nrgzjj*o#3#DhpRhQ5;uVmcJ?scKBw8qluUMCK-~2@e;FJ3E~O5G+MBGr z8zYx0mGtN+pW7g zLa-*1UWfnkB9=r5|1#$#Tz#Mg&lqAA1;G&KTBU82gp?jZ@C4D+?Zk1Am1C()4StVN z-;RgHc(9|i-bUH z=uheirx;U`B%46k#bNC5u?})Sw+^XotjVh-DGq;C1$Is*O%<4eS1QMoy2qmlZh8-T}zqH;zv1J^)`FcA z3ZOdGp(Xd#1Ey$673I$s#Z@q+kVG4jAQlwnAP9b_zm`XB-{P&|fwv%bv-}^lVCj55 zfCF%?Z_MWYF!)eNe@Vl?sHB7()y(=f-)*ipcPp&U%*>G?+}n30+U};EL(3 z{in)-Bq{y+=>mU`bKyh01eC0jJG=$Z{f6EgI34Obv~6B^Z)Q+?y~o?n$snwo8opRN z;5gD7w&CI_RIX3hc|xaj5NrRY{L6AG@)t?NgN%_s45I5jABXo^K<49^NBr6ZLY$+$ ztMl@2cY;FK-D2KUo)in@t9^z4_}9+h`wVG9CR@*ZxFq!TkRGl91FTV?jGjG1t1N8w z37=%pzqCr%1RKd4T4zkSuQ4-a;o$$EmR5$M&6SzE)o|CdA-7^c?M(WT-yvhXT zj3Km`tdE9lYxZ9W>w^us;p+0kmH4&?><(qzo3&C54^-mI!hkjbRd@Wd@wQ}lWYF%r zD~ztFkA(>SErJIPn1HZ5`*LSRj~Ugn1&on&D4s4a9{FwbK~ z0&Qgr@iDaZn`UH|K#N$qO~vTpS;0%%rumI`zVtJvNzN2hN5^=%fSFWCC)UIqpkt=Ae{HC@pvXA9cAT=Uwx*0vjyignL*O2@-FHWAzo`C4*SQ-by>7t-0@C=?iJ$> z@7(o)lvCxC9pZ<7?a)CY)JYtxE&f-MCs-W0ATUB(dA5*a{l4%1|H=LD)3snKN`xCyQdpR7f88WfbchI}i59 z5AI}5=y+3wxaSB8gk&I|_I(kP$T#eWYIbk0BRl4`l!MGDC-AO_O9;LH; z4m<$3VL_lI|ESjBW1apTLm^UWz*x93EiNW7y(olQsJv^T&|67w^M0ro1J=|s;Xad! z4W_A2OuI#Yiasq{h$CT04N7`WAHK>lijR*qi3d>}Xm^ z3g`la`IzQ46cPg>=|T!o?4%Ah zBMcq%CCW~f!YQAv^)2`6UvB+ckUwn-a$AfOv5Y0?CHd~+Yrb8(b*xdb80~!8%P9x~ zZKY_WmD7y0*sFC6>&t23g3HhI6=cttDqjzV@`Qc9aWym0!&O1^2J$DCM-K2AYMu*& z%R{Z zQ!@_?FNtQClf-e5jR7wqR<+M}KWMAPkI|(WgNmDchp1Id zF^DM*SMVxsV8UwB&x`*;YJu#xDzKZ&{+paG5b+D?Z4(i%v@MB1W9$rFsQ{-utep`$ zvX6$zsQ6MUQje8ZDhvuWahFYD;PGI8PP2nEcv2s%j|ozA zQE5&9x&5nj!Rgdq52F_G;g66pw6z zD+G)%K(N-~D?LqK53#ocs&uq#+M?{cwOmi~qEZfs3S9%BAS%vUrOw+pn8^}852vut zr@J2|#JRV^rY~s)E-H8)K4?ZM zZ=WNRDKY^1tCTvEp9&DAK|Hb01VKmvxmurt(j-ZNvnq$6$& zaYzRNYqM|I)s;-1u_NHXWY^NKYB-z+wE})MKugv|FWeZw7e-Qp10J+$D%yFgFQ{bS zI4`c!bam4R=*DX~Ww#mEx0~enhZ1E|bvU4P7554VZ8>}xH>9( z5w3#PZa)&o7?!-SB>ENk<~;P3zfw&kxEYKjL>2*(SiIsZRIp7AvJfE|8>G44IG497 z)@s=@6kdf$wU{ub>_6sFo9wtC{&no`NPt{39=2<@E0NIQd`4bZc79KYGL@>li3rZl1k0B#}g zs(8Yl(W#NNSHqiVE%F=_r0y0X%3(Jr;n^wCFsu_iCKuJlx?GqqyQ_G#kzuIvDR z>7sw0EFV$5_;KdAK%&B{z(Mm==<{C}(T`Gl5{i?c{5;O?GVWvvqZRQoLH$Bq42EQq zW(A8Hg-}|B3mURNKtOt3(CAh$OM`Yq zv{I94n;T%MQ6!iPq2RZjtyjaaiz}FluBoKW4NiY_XX(GMfsM5|)G8>7U@kDA#S!7D qXT$XKz>>O6cCFOyGH=Td-Pokw?iU`7U-EciAa&~yWh&tyBmEDo5!Jc? literal 0 HcmV?d00001 diff --git a/demo/documented/eigenvalue/common.txt b/demo/documented/eigenvalue/common.txt new file mode 100644 index 0000000..ef46c57 --- /dev/null +++ b/demo/documented/eigenvalue/common.txt @@ -0,0 +1,40 @@ + +This demo illustrates how to: + +* Load a mesh from a file +* Solve an eigenvalue problem +* Use a specific linear algebra backend (PETSc) +* Initialize a finite element function with a coefficient vector + +Problem definition +------------------ + +Sometimes one wants to solve an eigenvalue problem such as this one: +find the eigenvalues :math:`\lambda \in \mathbb{R}` and the +corresponding eigenvectors :math:`x \in \mathbb{R}^n` such that + +.. math:: + + A x = \lambda x. + +In the finite element world, the matrix :math:`A` often originates +from some partial differential operator. For instance, :math:`A` can +be the stiffness matrix corresponding to this bilinear form: + +.. math:: + + a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \ {\rm d} x. + +Here, we will let the space :math:`V` (of dimension :math:`n`) consist +of continuous piecewise linear polynomials defined relative to some +mesh (Lagrange finite elements). For this example, we will consider a +3-D mesh of tetrahedra generated elsewhere. + +With the above input the first eigenfunction will look as follows: + +.. image:: ../eigenvalue_x.png + :scale: 75 + :align: center + +In the following, we show how this eigenvalue problem can be solved. + diff --git a/demo/documented/eigenvalue/cpp/CMakeLists.txt b/demo/documented/eigenvalue/cpp/CMakeLists.txt new file mode 100644 index 0000000..91ec045 --- /dev/null +++ b/demo/documented/eigenvalue/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_eigenvalue) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/eigenvalue/cpp/StiffnessMatrix.h b/demo/documented/eigenvalue/cpp/StiffnessMatrix.h new file mode 100644 index 0000000..2ba6154 --- /dev/null +++ b/demo/documented/eigenvalue/cpp/StiffnessMatrix.h @@ -0,0 +1,2051 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __STIFFNESSMATRIX_H +#define __STIFFNESSMATRIX_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class stiffnessmatrix_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + stiffnessmatrix_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stiffnessmatrix_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stiffnessmatrix_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stiffnessmatrix_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + stiffnessmatrix_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stiffnessmatrix_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stiffnessmatrix_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stiffnessmatrix_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stiffnessmatrix_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stiffnessmatrix_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 27 + // Number of operations (multiply-add pairs) for tensor contraction: 28 + // Total number of operations (multiply-add pairs): 58 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + const double G0_0_1 = det*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + const double G0_0_2 = det*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + const double G0_1_0 = det*(K[3]*K[0] + K[4]*K[1] + K[5]*K[2]); + const double G0_1_1 = det*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + const double G0_1_2 = det*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + const double G0_2_0 = det*(K[6]*K[0] + K[7]*K[1] + K[8]*K[2]); + const double G0_2_1 = det*(K[6]*K[3] + K[7]*K[4] + K[8]*K[5]); + const double G0_2_2 = det*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + + // Compute element tensor + A[0] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_0_1 + 0.166666666666667*G0_0_2 + 0.166666666666667*G0_1_0 + 0.166666666666667*G0_1_1 + 0.166666666666667*G0_1_2 + 0.166666666666667*G0_2_0 + 0.166666666666667*G0_2_1 + 0.166666666666667*G0_2_2; + A[1] = -0.166666666666667*G0_0_0 - 0.166666666666667*G0_1_0 - 0.166666666666667*G0_2_0; + A[2] = -0.166666666666667*G0_0_1 - 0.166666666666667*G0_1_1 - 0.166666666666667*G0_2_1; + A[3] = -0.166666666666667*G0_0_2 - 0.166666666666667*G0_1_2 - 0.166666666666667*G0_2_2; + A[4] = -0.166666666666667*G0_0_0 - 0.166666666666667*G0_0_1 - 0.166666666666667*G0_0_2; + A[5] = 0.166666666666667*G0_0_0; + A[6] = 0.166666666666667*G0_0_1; + A[7] = 0.166666666666667*G0_0_2; + A[8] = -0.166666666666667*G0_1_0 - 0.166666666666667*G0_1_1 - 0.166666666666667*G0_1_2; + A[9] = 0.166666666666667*G0_1_0; + A[10] = 0.166666666666667*G0_1_1; + A[11] = 0.166666666666667*G0_1_2; + A[12] = -0.166666666666667*G0_2_0 - 0.166666666666667*G0_2_1 - 0.166666666666667*G0_2_2; + A[13] = 0.166666666666667*G0_2_0; + A[14] = 0.166666666666667*G0_2_1; + A[15] = 0.166666666666667*G0_2_2; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stiffnessmatrix_form_0: public ufc::form +{ +public: + + /// Constructor + stiffnessmatrix_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stiffnessmatrix_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "485ee4abc20119b82968409dcd30845bbd75cf8eb2d37865cd36ae609240e0096d0047eeab6075652c6e4268052caed39792496313b48a8a3cb2824bcd9e32aa"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stiffnessmatrix_finite_element_0(); + break; + } + case 1: + { + return new stiffnessmatrix_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stiffnessmatrix_dofmap_0(); + break; + } + case 1: + { + return new stiffnessmatrix_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stiffnessmatrix_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace StiffnessMatrix +{ + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new stiffnessmatrix_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new stiffnessmatrix_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/eigenvalue/cpp/StiffnessMatrix.ufl b/demo/documented/eigenvalue/cpp/StiffnessMatrix.ufl new file mode 100644 index 0000000..952dd70 --- /dev/null +++ b/demo/documented/eigenvalue/cpp/StiffnessMatrix.ufl @@ -0,0 +1,28 @@ +# Copyright (c) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005-06-05 +# Last changed: 2010-09-05 +# +# The bilinear form for a stiffness matrix (Poisson). + +element = FiniteElement("Lagrange", tetrahedron, 1) + +v = TestFunction(element) +u = TrialFunction(element) + +a = dot(grad(v), grad(u))*dx diff --git a/demo/documented/eigenvalue/cpp/compile.log b/demo/documented/eigenvalue/cpp/compile.log new file mode 100644 index 0000000..9170118 --- /dev/null +++ b/demo/documented/eigenvalue/cpp/compile.log @@ -0,0 +1,165 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form StiffnessMatrix + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.021688 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.000882 seconds + Shape of reference tensor: (4, 4, 3, 3) + Primary multi index: rank = 2 dims = [4, 4] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.00749898 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000226021 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.090632 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000468969 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./StiffnessMatrix.h. + +Compiler stage 5 finished in 0.000762939 seconds. + +FFC finished in 0.121654 seconds. diff --git a/demo/documented/eigenvalue/cpp/documentation.rst b/demo/documented/eigenvalue/cpp/documentation.rst new file mode 100644 index 0000000..43c521c --- /dev/null +++ b/demo/documented/eigenvalue/cpp/documentation.rst @@ -0,0 +1,3 @@ +.. Documentation for the basic eigenvalue demo in DOLFIN + +.. _demos_la_eigenvalue_python_documentation: diff --git a/demo/documented/eigenvalue/cpp/main.cpp b/demo/documented/eigenvalue/cpp/main.cpp new file mode 100644 index 0000000..b709c16 --- /dev/null +++ b/demo/documented/eigenvalue/cpp/main.cpp @@ -0,0 +1,72 @@ +// Copyright (C) 2007-2010 Kristian B. Oelgaard and Garth N. Wells +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Anders Logg, 2008. +// Modified by Marie E. Rognes, 2010. +// +// First added: 2007-03-08 +// Last changed: 2012-07-05 +// +// This simple program illustrates the use of the SLEPc eigenvalue solver. + +#include +#include "StiffnessMatrix.h" + +using namespace dolfin; + +int main() +{ + #ifdef HAS_SLEPC + + // Create mesh + Mesh mesh("../box_with_dent.xml.gz"); + + // Build stiffness matrix + PETScMatrix A; + StiffnessMatrix::FunctionSpace V(mesh); + StiffnessMatrix::BilinearForm a(V, V); + assemble(A, a); + + // Create eigensolver + SLEPcEigenSolver esolver(A); + + // Compute all eigenvalues of A x = \lambda x + esolver.solve(); + + // Extract largest (first, n =0) eigenpair + double r, c; + PETScVector rx, cx; + esolver.get_eigenpair(r, c, rx, cx, 0); + + cout << "Largest eigenvalue: " << r << endl; + + // Initialize function with eigenvector + Function u(V); + *u.vector() = rx; + + // Plot eigenfunction + plot(u); + interactive(); + + #else + + dolfin::cout << "SLEPc must be installed to run this demo." << dolfin::endl; + + #endif + + return 0; +} diff --git a/demo/documented/eigenvalue/eigenvalue_x.png b/demo/documented/eigenvalue/eigenvalue_x.png new file mode 100644 index 0000000000000000000000000000000000000000..0bb428930ab2b8c02bf54e820c1676ee2939d22e GIT binary patch literal 41085 zcmeEtWm6nXur&b|mPHpfxVyVA4#Axe+}+*X-2y>_YXsNeF2N()SGKbhz`K zgMLr?NMwJKI^ot*4WmzT*b1NY@KD$(*vZ*zW*49Q#`$criN;s%1aAV=%hlC8yvfOH zBQsR!zsVL)S*Sl%d*pro?=y)Spj-9FXL>*Dk3hL%)gRYC)JYltTT}WasOrBJx!V7? z;Q!+A{}&H8D+z6I#SSHF&r2N(i_jd~*M+q=i?y|}ly@NhicEhPSdEyPJLGx0b%+o0 z2x6Vo_>TN`Oal2LS3D*6Q{;Y86&}rx3FzUMTpJ=(ql!2Cj^my(k^7&Iqi^RtL4)Zw z7?^D9^Zn@T)=(*8J+_s&>OZz{ra}iqBp35^x;gcq>5J(x+H0fmxdEn)?|ZxYA#yMKSpK%(2y?xm9Usy<)n>SL^Hnsf5LA1Xc**GzZn4r%sA+l2Asjtj@kg-3aHBoq zuBmy}(3V#~5YY645Jy_rnFyBT)>X0H`|l4*n;+MCpiq{)Cm_nByF_c}1{a-@3rSs| zhbAwzetOki6>A$TcSuu%-7Y_&J(iiNRL9D!*WO)_owx?6fS};rx*AZ{2K&3C~ z@xTFE$_s23thYFoMLtFnp}-;DE?0+8yZDkD*T~(8K@MOO;5{pEuUG$Qhu^5ZABn`{ z-RoU|2g>u~-P`@^l)+nzAG)$H2{L-K&C_}Q)B4=HqhcL{ZA*1{lyE~Q9rWIwFlX>G zkf?Qcv(WvVf7)sy{iK+vb<3tY8_DFFVY~;u!e9RfC@n`9&`mQn{rr+LXmbv z^7dM}R*kp@id)U|l}}iA9P=W9ydP{#_U4#|_$;@1VoOUWB%}lQ#|9kJzn87D^9>T7nE+o{?V>Dt=WSDYZ>Xx@A zFl_Q7$5*2%B8n0phb4M*H^-ic!5&# z8$3}Wr;mSIhg+_X*50-%CAKt9?Xbn=wDGKu*?!we-9ALmnR;fW+p?{lw=fx=PIXJJ zIbdA{35q^NA}@FUc~~By5ZVN=9B+j@{$#HX;ZLLRWqyZ-GR(hFV6gdcKa!o~|=H(U;wkvqNy3&THLH{AI74}N0F^Up~3G&s(E#<4n{ z`%+6Nd^lFYdcvz)=zg>$GyqV9p2Of@>B$Lih(bLRg1wOYDoYGswGznAjlXz9)>@U2 zAi!LuZxp^%f>6MN&%iN7gyZ@ev1W|i^S`&#%KaL2cZ_BSpNXx6_e9jx2P@Czx1*pq z4>@RWLV5~VpcJZf4qckWrD#I=Z9q!d%v>8T`s;7XW^59|3f>WzSaWKrV{-I}kQ*;_4jnJv048O0Ta>QfdDQDb-GriJ1GJpaR)zWt zJz@OqPj55QPVg?XIm@;T66RS>uFl@_H0*a`7r?|%+ekPIOHvdWWZ_?Yf+TKs@|r??>7toeFzy8HV>|J81# zmUAl;yU0Sda(v_3YfA^y)ypzvq_;VGh-k+vOF(%`Tdd*Nf{_?C#)6rX;yC1b)*BJ8 z3r&A|NdX>DQ5~(!lk%mm9+~?O9_e;FhlM99y8TrotDg@LKL?%5{QL9keHS2oyS+9a z&t{_?l9BmBn*=Iy5*aLOpp&G;T~k>j#&>y67bPD`Clhkwwe1TG-R&#scCI_$*o~2g zla8k)ZXSH$d%^U#n}D06`t+p%@S~viY^!>^=2v(K*S|kltL^5sdAG98oG z@JaWrd+izFeC_ns^&mV+_kTWBL>0lK^vQvCtHt6RdBmX4d+U!Lt%@?^ryAZk3@d|;aqazDXl!yOW9)Yy8H~zw>dk& zm%>ZKbd6dH*pa{yma1~DxQ!*Hc&{a}Oq@&%W;;ph@rh?06BJ20Su0w9EJIGsMYpia zd0`}{mM<`v?>d5EfyF_0pCFmkVk7X#zejGG?iTjz#KvSolop%kQW3k8SO+ z+uhv}Rj}&DgJ@2WaF>B9H!%#>3cm{vqBl9|6d->jd)kRkK<`SNMCxePffmnN9nwUa z`(lcPrhaL!E^y$mmvFJEnX04n9O8Hw>r%Th*f)%Orpp}aRlD}~7h*pw?2PxEr-z=J zBLe8&QvJ0NV3eTn}cjp5)lxMS! zKfXQxz8_*wn``HjY6>oB&6w+p+9s%zX*z-P+8#H5#$auqIJUU;LN^>|A+1(!>iF=( z273P?Yd8}JBIT(!jv;(G8Rkax5Z5tIU#r(~pDp}My+r312MVpsZz(yC$Xh3)jdt}k zxK#Zs%t1G>L9t>tY`iqaYTlV>RgFP_yi(yHm3?8-A{BEr99(dO;S6nRj~+pL^dn>w z#{!!%GV@D$_Uor&xG@?T9&;zTgo5q^^KB9cgoWbxeO@n~iz^ByXoyhSR+2VW)<(Oh zlq3P&xxvS7OMkF3714S25xw!DuGqc^#92`!EdjhZ>7S&|ntST+0WpXPu0Fr-yrI_E zRSYDwU%gZCm^ejM3c^JA`ML{Lv6tI)j*oC+IhvP-if<^t7VIPoq0@hOL?P< z&0^DD86rR6)7e57;&dnnVY4P}gGrcpaa-tFs;%8RyXPRgkU}vk+0Sg1??v(FLJzYJ zq=^`xo1}}Yt8SA3r*h5RIeH?QBbBUF*M+`Su4|n`>zn&dTJAb0zt0`~>+d$4L|<&J z>O+FUX#9E*nu<$RgU-J}6{#e4-;>F^@O`*wE-OWP~W0UJ_vE_dRVC1 zN#_;fI{mp6@Qbrxe>w;w5z4t}jyi|HW4{ttyWmovaaCAAv0b$*Xr=@++w?S1M(BCK z@gH09#sQGneol+7^%;0+!1AE8Juip3%7_ zSan6*acF6bdjjlm8?2_io&u{L0?}vX#Rsv}haa@=FFwSTYKRuk*VZoFyI~eo`kSKQ zCv~VEF0M;5d$SM_=4X68t613!txDA2?OJF`6^Ub+r}4+c8lwQVg*>Q?J4Trj?7a6KHKey78mLj;T=EmF)aH zcIYyB%X$lRlkd8<8ne$7#sdFKMHtfaBv!QE-!X~83Fji0B_NuUsb_=wVRLM2>rY&c z`%+Rkh5GYs*_U4KZ8)C{qfLqB2{O&;2cQ#I@88?L2QH8ifY+!7e$WF66%l$w}l!g(a=mCci}Pk82>u%Sx%IHnjWt zDmLLGM1KXf#*O4eV@AT-SV{HO?D?NentF2DduHRr9E_wuve|O`|PnT9K8~78hOJecQ?8ydXIJd zR2^7MqY-reqZmS1Ju%Rd;MJrTH2sAF>(q+ab4fxiGf8z~R7c24@n2@xuSsN(tkw^B zzHh*j8LX?K=-vg zA7gEH{FDXq4h>FZ-qV{tD#)7u{3W|=rS0cGT-%tZmX3Nq|9R#sT!7vFP`$BGEdMbT z41s*be1orFt0npa6E{kWLzyJk(q&YdJFEfHjU#hw$e8h4%qhbvf{rj5v z03q@yj{|Ylu7pQHs!-HBnJ;&c>-w$ggv|5doUFdQsvGVMC@d%1*hq=OK0htxCMW?y`*d0utcOU>g9oGthfhJIc= zGBM;YxPk>AGc=*p?v4$$;Kd=;oUn+V2ZW!d8_DnJY<*+}kd&DC_Ks2WcUb1pa(%VG zm+0yfHmJg&ZMv7L`4`y6wL&1erfQ7W^6PLyP~v$=vMywoZ+PF|HZyk^Fy3 z-8KKWTVr|zT^+fsLh&@G=GWIZj^Gx-qD$$p0rzkMc) z;$m~ayVYT-+$L7Z%7wx(8Vtg8blSe)Qd5-Oa|QSm$Ldt#69s-%>FT(%%S9skeVqw(`Ir_;&2yLkTtcZG?Eaw6NP+b9bA}(!a;1N33xl zXfn%6*mwWc{NdnR!xepfNOMFB5oKcc?b5|~s0{y=4tv}GREFuan3&5T-vdX}5d}lJ zM2bjoB=QOm@?dZZXJ7bAah}E@@3mtE8FMNvu)fJ7vgO1N9^jtK1iL&9AA0rvy}{`F z_*(9r>%~tMpSZ)ioC-GmX%s?qP4f*;6J670T;`XrB9L-Z?b8UwH}pSjxy z*T2@DsLW~DANuZJjVI||`yre?8W6&}5)8<noF&JTR;l~^(`MbR!)UQ7VEGN2QoaU&!$QIV)cv{Qh8XFRl-IxT@ z<0c7FMe06Aq&yEA1owx=p9c`xazr|#i7q!J%pOLRTfAq|ddF}|rzS-NJ;onM{GQNx zM7r^AH|@%4UB$0v!O6lY{?YVO_jHh4rH-87g`P8_`-9F8(N3KXqstfys*WdL=OqzP zp}n}eCdBP#snej?S#3T0f#l%d9;#cw>AbR`)CJtFZ4e&(pj%ri z%Pfmu-u1vaYZ3qP96m)q$alUWXBuqiYTzk$U?y9bvn5&Lyt<0xK^ z;)DSC1_S#cmFSwW2#iZR=J(}Ydec~=kG@pP%R60^?E1K>E2?+~xT}A@zH#%9ux z($)~`KLJy}NtaEmjOu{P`Yrgo@uUegowq~Y;&gehGh>|W39!HI+zOwb9cG9Ay*(3= zYA>L`B2oBS#TT_{?U(9n^tXe_hIhO%1K-t-{`z>hEqk#`@Y!C2OwY{kVdp`p6cm~( z|Ea4;r2jXSq$7frjCfuJAWZH9CRQe+(q9D3ys?8V?zIW&D|rbRxJIGVSAx~l*uCNP zQX4QjsAiE77)vydf}h}ua$o04=@I-y`!! z)v;i5%E`N3laykREbjMTZl?28s+$1#b8axH^#`&U2UTajR@B;p$x^s9cTQ?o0X(TF zvCPZK2e^gEGIP?sKih<4v(&Ybv>c)P{fJprmYXNrpZ`sdWJ|xN$9(Hma0QNmJ}gd8 zahmeG{#C4DVz@CtZ$=y)FN6y4plweGu9n|VmogFNwO8wN#v6y zN0l*{`w1?CaSgcPcnA-0W4EO1`T64|j-TBcBg=kesz}j3*Czf8!5kl&1reZ_uPUPT z=lJ{}Lb<1;&RH0&`l}jrLQ@I5p`_QUx4gLcqj;@T6P@^W_^ARBRa|H1d8GsA6 z6)1++sY^#Lrm zlDa=)cH#}x4^;yvD?+|FVSw4#rcbz|Xx%5gdM`|@V&{CIBfaIqFR6{t3bFLCUJdv2 zr834Hm-n7y`ZMMT-wv>Y1hhNd!3UtSbdLyT9exvm#EPoq8xp)CA?tZ!IG`&!!~|!L zoSIQ`_$;AKk4wOJw%wroOON9kEfdu5?IAHJ|IV|3u!n;z|D=fdjc9~&Vzg!==liKI zmNf`(VJ5yA>nST#{6*4I&%$ItPN@)f!)BkTdWBA_E~TK7Z`x-@|Z@JdUu zC--v{=X0wb(%l;tK}e0cf>%N%&#KScrn}_hH0kEGNf)9b6OyKs5GSB^5iVUF4=wv- z={;n#xg&%`rr3sej)DP}onDwuRVlrxm8(!vm=ZTZYOIlh(l;jyS!R>Jb&-w51$$2U?Z0Lu8CLTsgF3hvViV1mAzN@_)>WI z__|Sh_={i&r>7ik6A#F@S2Vn=1UYn52tcBQYJJXHypC9v#*8A@r8UwmA-EowDs}yS zE-2LLky^C#(73`FC&i*C6f#}cXzS@YY}3?*I5csg5RsR-R41NJ6Wdl@8zzj3^BaD+ zX@+6pFX39lQGb7XwT%s=xS6TzUcYN~&vdlPRnz$EcK=HD_S22E)XKZRgLX6yj~@Lrc}U{G4Gl0Q;{e+pnMOFd+bINO_Sh}qLPLKtp0H3qeB63b;$Xm zC_WCfGRzIE`KmWo1K;)?071@`0d#9jt;ieg2{8+sT-+kZpQ1oP6&Ft9RK~-&@Ab%&d_f!%`(etoymx$KNo_(o?%8ok-YB|};ueXYHdvrSP{eqxH#G zXM(k=oL{wyuK$yr(wQ~qp)S3vexOWbTurno^kiI_i(vMJSZ&bQ2Oev@sJP%59Ru;M zBDxnJT3&~24?5bO_+VyFPtM>7$xt%Ndr}H3PtmCvQe=R|Mj4XlqHwFrW8_7JI4PaOEK!b75(dIV{WIzms9!yyD_}~NLSq5%-uOSkfPnj2HLVa zg`+*v?b;p$f7VVpjkUo{l?i}!y)|{;688n~3NEz*syq3^98c~b&?D16a-Q0%0IZAn z&)dMj-x!tRZKP}?cM1#xVENUh|GN|`&Z0!0)l&$$TSVfGN<8*ApXg3^kQ|->|FEzb z=59R<%)iO~|BTGo$DOm+!@Yp(+UaFWP=}Ve?>fRI`AApOc>)rDD!8=t^RQstQUjC8sqE)8^=737W}M-e&#{@0<`0O zDvU0&PhE|St%DS>@=SF{IH^4LTIW|keW_)z_%Uh{B6ssukQ?qU9G1ko&i=gf9YFoP)qs^@~`(Sd;k@1aJ%)r2emN&OIEZ9o< z^N>Y&+K@D9vjBP7)n#yDswq6m#|S=HKWkK!0w}if8|9nDt6qDR+{XS7P3kViA_Gu+>CA)KQ$m(l4D6pLG*7%`}@hV2miuQX#r8d+N`DU50Z!MUf?wUv4mFfM%a z8!=iN9;Tb;5>ZOr*!cR%Ya*j_B(uxf zl>=h>1KbB9tB7i_$k2p%JG|d6?RzGcc?z75{yvLmnqZTIbSeOr!M!1wysShYjWbB> zZM*Kf#T#!L9~#Amfsou+g5(?p-UBCIPVosIO=Ajiq<8=-rfAKygtC5I(%V+W9?f zv|ASOBEh&D> zMn7V!CM(*VWL-~q6s^0CbH+<_0r4T^Ib)(smk#II2NLIByuCIx{oZKclN*bRs)&$& z=eka1CC4}`$U|}yvxgDl%v4b>O)kw_wMT=%OI-q(cOkCOpZmcyxsQBOq849Il`(kL zSji`PrB6imuu;@R`pPb!^tHw7 z$nPHS`~8YM?~i2wQBSJ883cULpNY);5XGSlqRv;jh_uEtlAN>02bC~}E=I-%PlD|s zrsASL0j{qO=%LzBPjxNO<^or$>O`yB52^JBZg&Q=CVDe5YXut2$UpBzBHrW+oQn?r z7P6GxRg@Y55_w6x0!c9&-TC**xNLzt3*PmkMR<07HFO|m`aGSgJA^g0{@AN)+al$>`91V_2>wh26=a`$Y-EQwY~ z1H#wfc~ht5pQD|&5}j-kaZ0RHVTBj|Cx2Ya&79MgM;*N#-lS|%5CE)&1uUG4JNyt> zdlpX(CJv$laKPKM=N)pWi|zzS=SW;Tm= zKfaA>Hop!aN9mfBpB`k}17dIAH-9spH(S5)+q*tX8y<@C%&D&Tw8`+cO{> zMV6TB1;q&EzpFXSQe7=TiKf`Ct9=v5=iMQ50f>U7>m*x#9`kn<#}DH#F@+SmPLr|0 zn7`RK6o_ssfY{L(mwd_9Vv)nLm{-mJatvrUS`xI>IR=a~%yM9IirJjE5O_!^IU(2C zgXx_=E-8+*5PEyp&vU#Du_Nv6;Pq5los)`BLW$#_IeU90h+3lqDYbZsZljOf*#fFp z|2=jyA@g$2AW;kt3Fy)UW$e{1rn|BRNJtA7eBU8XxSyO#V;p zYk{wBz^t!B~T)6L!ir@V*$EYl&2tn$+%FDfONGF${MG!b zIC_8-zD&YSuULj#0jZCOvCzXf+|Y5}m-hL=QV!n%Zp)zx+yjE4TYri7N?n>K z39;bB4IPVhgQjZBF4hK4lXar6?5#iX0#_;54 zqTq-kI@Ype(u?x$yImg2Q2mWHbCcN%i{(DR)lYdD!85>2Ix$gC5P}0vzBCkIq`~>?saaY2 z7t)6uQ(b{`-o^G$qNWfCPnC-D$S*dp7Ov2Y9n}z0V@7xHOE37$C_j$~EARnI1e)Ad zjU@t-6^*r@ld+0pSI=!bQ<4&_oa^LsHMje9TfeQ{-cWtXeAd75wJ=*rMQTq9xi z66)G)q1HHZT_52%3+W!}+WVCg=MFU>pW%s@H_YLG+=0>b@I>3dE!yd=SX@{D)F8FB zr`zYA-^;pEd$ha+eHMU%Sy)xeFO|CAV?VGx9?CCsl6=>9beI$+Yz}UrC2<3qK1~z? zzjrjfu#X2sz~`g3u}*p~;~OE4qVC?XUez^5iTtVIcd^l6QD%5)dWTfyX}jNfj`k*i zO9JaESnM-bKtwoJ4J!B1Ph{6)*N^$gKHM0GL}ZjX@0pUf``{xHU*P$ONr)Ccv zpfs%ceeg#t3Jzdmz=4Stc1L@z)p>CSn?n{66&&9AgVco)hI;jaBTEMUCl#Q;nRkpR z{0@wXh1EH-oD$%z3uCJ~aheshcBsY~vV)sJ803;rMn)PXbwEq{qd6mg65})@7^~@P z!Dp$mU!lA|7o{?D&7TcOb1RE-moF-S;lb^3y{sWX$VlwUtyq+xhqRBl5BX+07d^}^ z_Jv(NKFXQK=mzSJ1x)R`!P275DVw5auh>=>6N ziK_x6ynTdJ&Z!`7WJ?U*fYXQ2>e83(-y|1Hj3WGObi~S)bozfzxYWhjZFz`<=wjRN zKuj;4^o_4Y|FyFqk+ZdHknxoJz`Rpa6^<0v@q-F^34(Ru0Z(Kkz6ht>6Y2Oo#X^lL zGyeH!eQl{oL1yoQyk>r+LWL?(2meE4qFZhdnwm>maQ0)jj$G`zt9JPwgitw25|}3* zbKe@2=O9sy`$N~t&R6PEC}LLU$V7(AODCudHICR~;SQ`yL+v<#lI*TPi|LXj9APyB zR>4`VNl}l+yirj?4jDJ+A>X^ANK!I4koalU>jakWHG$V;Q)+cWi1tX6e)YFn$!H=k zmQP{Qc~p6yf-C)T-Aq}du`8&yFJ)An7I#=uaH2CgiMxGG*8>oU;~!U%`_Q7=-s^CDxw8^N#=WLgHh3SF>+GVpE4Q0nYr zpH+Rfuh>PJQ|m-0FHq`&^B5KssQILK7uhXdqhp%k^TXAbZ`8eI-}90lv)cVh4GJdg zOKQnPnl}OnANv$i7bVhJUZ1S)M|@#971q@x110X64j!W|Lm5}m&hLI8Q>CK+BTlmC zdmn~b8h&fpD^mfkEv**EW<4J_|6n#$p81)sY-8YI%bp3~reQ)Lx?%iV6)&oQHjJk0O1oDO1LRKDkLCyDK=fC1Ub>wj|8bn{Zfn4B-p7;U5@A$@{Z9@Vi2 ze?=6xzlVJ%J++sBWRfx(+|T@H`5xC6wG6IWVdz=9@`POpPXhGQ#lEVfX1fqG=jSQC z5)tKBu@>fegu-rEJyA;XV`q5{g^6e@&*7`cXRRNeZH>+>0?D}mAi1yo=J2UeE}f|v zRV5!yq&a*#rdFf0fzjMG{VKHkE)K&T=AT`Jel#qaam8`Yy$okg;QnX#wTBR=`udm+QcdVIxvr%7;a6Da)?dkD5#3cHBcLlB@51 zSj<6rhYZKnN!*oAL;&*4aI--ZZEX*nRyyOiD_+^LM*T3r=?q zr4Wl-=y|+j@yC2%FDKrF#gkVh#J^*WNOo+frRRn?>bzj3v-{;^NCS~r%uzU{v5kNY zbP@&@KZy4wE%MJKe%>Sjeh--ovAI;B+1&Dv0J;90x0rTTCK4)p`PRmI%PY2hiF$NO zphnOLieKeGC7{x+zSm+TAylSA6bG;POzyoL<$1P1?)J+byP+klhAf^EsbojMzWyH@ zIuhHlVQG*$sEO8ocaG*cHhed~ScJG!D12Xj-6_wcw$C&niCfe7DFPL9A@V(EI!#7O z>@Lfq-53`FXS2FC&F1RT>it;|9dif}JKou3`&Z-@f!*E@nPIFs;M8OHuS*qs(uP6K zs!#+Wo}!gRUgI=_3&Pg`f9o{ z`*lwZBiXg6s-=_Fn?20r&X@NyU6WWQHq({kNXJ*Hk*xxAhg!X$U^4CCV`nAd9p$G~HxIZmNhA|q%7a+#$tl`HwHl`9Yp>6%w(Yi4 zyCg;*0|{9!l5-TxW$x}7>LT$D`>9Sgc;}UhW=qHRW|=%pwmWK?61r&s9&N@cGBZ{v z16LE9^Y;ii^I%TJz`HTlgOctIj`y6*zi4Bm3idcX1I8`xY3;XtV$slli^smoA#A@< zhy6DBdtDJYBW_7temqo9kz$$Z61w@oOk^~#1Lc4DOO(JF%~M@&EU%mq^EQ9UMf|p9=ReM|xAzD4 zje0?vy=631)#3`t-1){p&VVCHx>UO)HAntGEwrg1zQl1E6%KGyjNz`Gx9%J?Cj&+c zA5ZBK$<9qJLiy>oT39mqEK^&KM*SN$br;#x)QaF%H^;#rZuN>P-f+fNspZ z{C`A=8tp%R9HXj<+xYrwgnQTkDuza9+oLtEzx__5=;^g_Tml1pW?meVn^KKR> zp>AGDqJ$fAt?29BO|=^uH8c+>iSp$k^U2nr^XqD4+`NkH|<+5oI$ALyd)Y}Q&&uMGXw}r&Mu~^K+k8JqPSpOm<$|^ z2({0p2{F4}oB;=j?^91+H}4+z&iL!(cx76KB&$>&yv1?dwd{zzQ9AWpm5U0)3|>J@ zQUJcJ9)b#oTX^v6#^V&&81Tt2!R9MKH$qIHu?k=-ZZfdrYQf7H6?_Oew@g{dh>}_} zDa?>C)wc%`sAQhltnzV*;~e22vfj476W)kL>1EXK@nJZ(uz+MzW=aa$Um=D^ zu3v_fFvopq9~xm77cMsdM3{0N1dz64@6C0voKnSm7h%Jh+!^1QZ4ZS#YZ6HXhyA!p zXpo;t^ZUv5`Sn4|<$dU-7nc0b@b7)v48}ZiM@d#1izrEXtORn5sc*5%zE0NE!uYaJ z{g}{aZA^-9S{i;oM<*Z3dMI#s?U%FrV_+0Gkmej6t50eGFMRyXUo4`xTVV6Kzk613 z_Ls+Note0cKMA!B2)EMc|5e4udh817o#&cj?u2@F0lVFt`B|h}b1IH^)c+&s2I}Q1 zdrP?bu}k3lL_p{+j9G>9L`rj~cUPUYtL?j_qw`NbFYg-GMZS^r&m=AE!7)%Pn`}X2 zG-=BNm&?Z{#HxAE1_U%bLhCAOv!O;3YdVloWkrsFrL44I-%##9X-H4o1~f`u@LnUk zSVZTq%WIw%Hf;3zjeFRN0`p0IKz~K_x1EVt1Rtb3c`U8Kp^0KgsG$Sh8HRX;IHoU% zZ|4p#>@B2n!Zq*j#3-I<7s}$MaQ&#W-|876b)vJ#gby3qp0kVd5*)45Kdbpwxm(*B zZjqGlgaxDdKTOyC{sR>wBqT$XEUz@<4et{$m8gRXI8?TPQ}ESmxSblrv+mS>Lv5j= zP77VXg#IA_;PlqBWIT5tqW%sJyI+fJjb(QcwT0ldg+O8KPiFB$eYNSfq$q$S_KXhk zDSlpKw&jCInp2c(x6=X;7NVQxAr|tLjQC%cNe(%Q9>K*zmK`F4T2>whNbjmU7_Wz$ z78fJZ#sGLcN5MzYh@BVM%*YJVqOJ~44akI~C@28g1rs5hGHFcA)6*g3ZbMqMT*~`}slIwBZd{4gcVu zc3wKFASm(5XDmMep?{PB@Kdcu7p*GQO+A!sR_;)$0_KrLtwrYu3JhrTk5E%T%a};w zKb9|>vyx&~A3Du2q>h|RBCdjQ+Io)9K1cgIeKPiVYmC$G-pN7l-G^&3E`#>N+_B6K z#(NkvEoyju+B7-uF>B?-?<${$!pO*Pt^=+P%tc_)nVGd`&#m60Oa<;Nk%XXAoC}!s ziS0@HPQ!|3`lah_^j3eE#_rbci47K@O<#7sMYL|z3@mU9#R^))a1<&+|3Wp&eY~%K zz%Lnx6RH_~Vdl8E1L(4|VQ1-Vv6OX)%R`R%c>>g{thQ4$EMHB<5%6HHl_yK*Ph@7D z@UcQ%DKpdm3WgVH%a%3K6v(YhYRcGD-*ZKMbC;4n>4uD{yC2)}&P=oLAR0L`Q6`O352tiy)jH|8Dz2mM=)fQiJ7o!CpL*$7&O>|v9 zvizR(TGNVmY|RvRl8*5bn(Tpt3)(b#%f8aoud3vk2N%WVx%p?|2uR8%<kFsB&$| zijWK=>jx%I@VhKpch81V+wCP!!idE*I~`J?iuEJq^Sk)OVM`cwxZSA_2G4>C&UJeiZ_`ael9Fh91wQ@%)Fo1(jL$ve3T zc)=HrBQ_}R1`dH-FE6Dnr}LM{-OpFptg(;hKioolTw)27NvKhNmosG1C}3pH z&=o7GYRd1P*}SUChQL2b;PJ)762o)S@f?E=Fi80?6w7e+31_Fs$}knj)g>cU3#Ael z{w5KUA~rfOh$AKLz>eicYUthT$UF0Bnl217Al(XSlL5|PcTC*-O?e&+J>!wP|DLei z1)S6_66SGg@{fJT0K4IAxTB`#NWE+G(@z-Es;s9ChF^HH*hjZbf?|zyw6$T|0Jhaq zhF_w{wL4uX={-XI%grL)_&qs4p7*CLM#pFm4>OkYP)34UD(=FrG)GR{j#%vW3a(;w zie^GFB2@GswryaOc7wa`uqfs0C(FMT1S6XYrC4ZDg{RDe@A7cHldXE;S#Ox+>D&5Q zwH6neaqUF+6VlST6!!g-E^6;i1E{y~!7tvOM$bzk`(tfh&J&*I!Gh%jUMzbZPibDR z9NtAH2QvQ=C;+^1OuQugX*I61@-<}UcleLUj4R42lNd3#&TgfV96B+r#+Vr1y-%!% znu9c_AQ7q33(c|W1q7=y>mV)pLwe@~sYdc&E;mSnty{R?Fql%fiJ)Ta|It z0{sh4C`K!cGZ6}S0)0x`s!4I@Agw)vW_Hk{XyKLrodw{+fXnCMRU;ferTsGOCnvfT zuP@y}1@KxQ?9k%rmD?*N@y~2il^hG>09sv_jiNkFG;9L#d8;i*-A06h-l6oa9thQ6 zyUD>aRa=(6){}%AD~hg(Ow^ZnC{UOdHjrWwM<)fBicG89b$_By8u15ro#hCBCkhg% z^@qa#W6zAn?aD{4Utz%Tqf}jlK~VXf8Px8-uLzn56X&Vr4dSuyulQ^3B~jNniGBV{ zl=r9j9qW$+(a*!8;%{67?$_)qQqV3K4^}bJ18W1LL(jWY6Ie8`NSQ@8-`(y(kqVp# zyLfJ0?A20TMf{Z7f3ggJn|IadfJ0x`{rLCIiU#TinY9peKcg~iEue0eR`tJh$TH(P z6+mhAwCgf-1Z>=D<%^BgoK5NHc*pGco1E7J4fDupwV@=<91qba?R@-`>@*C~2c~dw ztLq>AuHSH6pXZS!3PUKB&!i0+p+aK~!A;Xq^4$Cxh^#l*9Km{IGt-h_p=Jg*Hnity zcJ}a(i1{44K-U<qUQmIH;iu zshQ_BPUvK%e|5N}T#U+C#FmfAj$CEPWg8Ab>K%$nt&85K@DhE0m(?=|6=QUrjpuKO zliq##67saqTEF~tPFcR9rF|N*#~{+|J-fS$jLQ^cFy5(5 zU@YC;GRMSZ9&D`{Jdd#uH-C{6Zu;+~c*201uOi#vOf9YruaI&<*yDr8X2BR(5rpuQ zYL(d}U+1`K7PliTGh5}B-My0PWFOD2i>1N_N58xl>5_ZVCZf@+i!hoLzx?9v^;5PC zKR2rURj~Ofia&SY6VsW(OwULia?#yF*KB81W!R=NK3s8Lel|ymGpQEzk&iXTnEM`} z7Wq$P8c~3xCqGcRkW^L27ii9yyoYRBGd#km?EOAPXdsg9!y$C~>k?%e=Kz4du`F9; z#V)b@_5bnom2pvhQP+r!4C&AfLl4~{Juq}ghcrm1lt?plN_Tg6OLsR&hti=)D9t93afwpi}5ufd*{b%9+alfl7z9x8jg zpCII~y7j6=V6BSm&g>z|x$w!BKOAK^a?kX_%u&1kPw$`KPCo2ZTo@1p*~=7T5Hsk% zf91`XtP9!sRfja&Nrg+SME3FJ!_Vb59D$SPuQm+C(7FkI^p-9Co_FXqJ(qLqC!3( zU}5($*p*8Ds>txWLL18YLh{$}ek0Z5Qq6b$IR{4zqbx1(x~M=LfaMN_ZF%!*yNfaso`}@Cu$!$S{R*(!sm7^kr{y82;wuEniA0 z=XVq}w15sNtYF*gw68HVj}P=U`XI>(A4`1RF^v9{;U>IZ=Lo5H$0P4)Qzbt@Gj4m5 zwRO#jFp_e#5%jP4%8Yk~e`=sj`D%s(>5>Z_o1otkNf=X0GU#a#5?c!`8i2*@R&Qyqpsl$fJE@${Xts zUNP}W`MHV#r(cs==hIvX%HHD{HGzZKJVXbj(S&!|(^Dri<`ivPaHu^%a2bg7%pC!d z`*-SZ{_ba$E+oZNu>TqqT7ctMF@I?`Ku5~E`9`5nCyW~56n=sYAS(CZju{ssvd`Sq zyX)uGn_FA=`lshHWSeh@wznLes(WJcw)LHyT9+N2xG8#beeYZo;l^8zt-py|SN$?> zV}=#a>N-lY3az=p_=~$@%X%bzF@>`N7{8_{3rr&&&LoYTw>pD@@SSo0jCjS^R4aBn z$M&nv1~@NAA-DNus$1imst5f#LNd$WNox~G>3vMtrowUWvNunc^8_hi`<7tulgee~ zB67u`ni4GOnv_Yj96eavkc9UaFc|GEf~0AQemE#xqN;%AwnOdonL=!HAm1+c&?rD@ zHUb#x`Y3}J$#Z<;VTYI4+S;z`RLyf?p?dK*yJ1!x>oS$3`%X4C9Bk{gu6!!@%Gn7M znRIrzdm9;;SQ1#%ln??JS(h6m*Qer85Yf2ESBr>81{xF{D44g%;80&4lS*H^2hIYkw!qK8JRLO;-g3UNq-B(OReu#J#o+UhYm(1m2CW2g}PwcM!1 zz$V6)o0PJtt7;jXudQH%B`)lg!aRAJg0C6kS%h(Zj2)SP-vIfwzRYL9_nxTO=U|x1 z$aGge0a~t}7T>*w_Ms!wXxwPRkw@XyoD*$VFj--v$43#PvWgq-VSHx5h)9Srr>l-d z!58(o@PEw*hqVk;*S{aX`rD}_>n;Kvnp?L>NtLIYTi59jfmDsbaCkj^KGXf!&f)(T z;ZJpF>D)@PVVAtyEKd5v$89l$VMdi}H`~ z)6aJo%MYKccQ5`)?3R&PU{+>NE+MPoA-jJ&CqDtOvH^lD45pZG7e79CkXw#WzvDKeg%dcFIdl9Ny%0&?|#rKs6Cj)kjp#0gYi=r)^oM&d<6S(+p0am`+Dt_+~?d8w@ z{PN<&5ZqhQ6#U@TFCI)J(WrNKq-ewIWC9z57=K$^#m;u*&`D|j`q>Hm1~?gS-KYL` zL_E)hoo;VUZu!r?uzTskWdz+qZY33F_Qp~|*0x}ytAq7LgKEXr*7*K18ge;NZ=<<6 zFGC_4&q8&nNAGF~gG1pH!fR&fTBKLqE@@9+(`5e%Q2ISzoBL1EUtBd(8s=SB{l|2C z^Xk{%Zzbp0OEatOXZAlrMJbX|ji^YorxqA@Fk5jU^K^kxu3PWX??uP%;imaJKHrge z!b$Jf^#xj-LZxJjC)Wpe&po^|SH5+vnyH1*bT5F80Cy^Z8e7Pvz4n@Q5YHtJrL?lW zHczguIy|}U@;wrdUwYSn94!LoT>F)r8?ZrvWPy%Pei;2wXf)}ZMk$Zd0nQ%rg~%?* zk_YoiTgmoAvQ>&wN-=*W{#yi~PuZBZ6%RcWG~j1;IPn`qxQG0QA!Xe)p3^ zwxMt31EW6$-+HP$?=h@iI6YRDaQcv?oj>!|(-QH<{BlHoN3PR_5+P8@q(blm$O$UlISvVEi+$ z{>~=182Lq~qJl{g@dEp@%y;o#>&7x2#W+#wU3L%=MRGV~z1{!T+ds~}{+b-I*A*&= z!@7nV)9Hb1EsVcQY4g5B^{&+s!{rkOAc%JIMDjHT9!8t?Hq((=zNy<8*M$F8us?>M zlYnIE=lJdC9&y9TpMD>ykKRY5&8^#Vf2v7(SB!Z>rvGRsL_Y5)i|%ryu+F%J35YN; zE^{+|*xE&AO2=@xtp~gtc%VO134KFQbC)L&-ZJ!L-SZx{2yT~H&j7%lxIPPVBo=;h zOI2!98vbf6^MgKtO@h6B^e`u1VI~iG7sIX=oQ@V#zA>LcV;$)@N5aagd846y4*ln@_s7K=0)*`vQoRvQsf9Y!(E z^8m!@L~uOc%X-H^kS?0o6!lxV?Ida*s+gd@paUgou_Ym%%CSgbIpV+z&Uo! zwh#=gd+*l+x6`{hiG*C=M;w3@dz=a612juqCI zCTC4is)4_GmRM9@=~T68h5X)R5ag67xz*2h6OENV0c&n8DoJBD8(5#wke4324nq|F zxPN=70`$!84V0o45}kbt3nJQRmC&u`!(3Uc$+DYjK$tjXRIK6X<8`E`{#{Kxo< zsTFLE!UwmR>>m$e*NYHS%}Uo?(40Iq?@2>I1%llNxI|A^sTf;+4FL50RzlBkF1vGE zs4=IU4q-~NX6vJ2HVyGpKQ7HrG(sNx_6xm z7ol~1B6qdwT{s(1sqM2#J>)5zGM!%?Ip8|>izfh%K|OE(OKR+W7qjofCF(smP`5nT*BltoRfyb z3;8?{>2;7budiqd*{EtMV)p5)%iy{%Xv>&V6W`}Q9lZR=Ejm?Wkp98!B=O4)RLu!p zzML=`OatJ%rNyU9l>CHGZfL+p8;<2ogg>dgDR)YW*mXJl9cb(-p=Dh=BUnr7iH{LP?&cu+?XLxyv{gDrWqH(K;uPlMP~r!Y3tS6 zCDF6y@t?*({yzN45mZ8}p>yNfsw=}{hJD~V(2pw^54BN7!7?La(H_^n zZsd5R)7wS7!<=8=c2zyy>HRgs+`bhLlnpbXwg5u5%y`gvY(;;d$8_M%mf#y;p(%lq zo6-lhNzD~yW)Li&E2T`d7O6mM?u<3DT!y6Xg;^4jHfW^o( z5n*DpqNu3C!O&0PA7nvdNiW}8A1ApcewyI?L6|N2==riCzuGlc!aA`KY574;Es4)N z0YJWZrN!BF#$LP=+7%{Q_|q`>z!`A>qmbv8^0qk4F=VBRF@x4OSaiV5#%LWDIi}Pe zwAPvLFJz#E=q{es>X}n?gMV#ol!X2`Qe$dcSmMfx#{X93?y%2g^V?NH+9Z}AD`Qov zEFSR#Z*t9eLyckPLYs~yy2Gw>i>JdhTc1%xYMskmN8D)`zffNgAX;Kj`uaW=h!=`& zfLiL}%l!R&O6=rU$9ilqC_$tGbhY1Lh5=y81QG2CPN=Kv4Md2nkHsFui=weJKX}|yf%`Fz_aCpj*7Vv1&OKj>F8fn+Cphg!?j-t z^FqUak3WjWaq#NB7JXOg-~6Ave`s*)(6@^Nvm6Qz$yLUReYu5{MfsE3l`+hdLA}AB zE2IR_f1&bS*FH^c6X(&Jb#6*vW#4SST=hJS;C3YuJw*!_<_bPPRr|jfF9%Wh|5WzO z|CX+W;WY^qg7nvMs>aRD_HBOdr zA0jjvgP!JY0YKj~(L#Zz)|+84gLA2h1Y@*+U!}TC^bjz9jdU(5a@IoZ??=<+V}6MZ zy$%AbDZ1G$mvyUg*c9wfly~4!ULK!5wXRpLkGGqfA|7%~dRL~K-=}-ES2>MA-b-cW zz+_}KD-;qDY&N!(SKvQ~#DyMszX|-ex{24uB4*+`tiF>BMu$)8bU7~9U1uRMR$e!0 z;Cd1txh)jn!g5BEf%Z$Zrd^E{T?GU1uj<@Gcu=I3JN;VMgnx*WmHc5=h|8UHSyfda zP=I(WZ&`?k@7D&GP!*zP2W7OB5GSXUjxq|GZt++B&Y=Jl6xMeROcsGn3H&=wW{&`k z8>UFqNpN8XS0c~o@cTD643}vAp850TRwN0ZA8{=_oE7nYu>t8n35woJ*JJYh7zlf! zHYgQm7%OGmqQuCynncMnv@`%Zm%8@-PDaE(7lN~Ct0R}!CPVwk54krm!37`~tF zwjq0QGj!3v&-2^2srIy>%hx{_%5UakJM2c?K1emx)Z?^ioN2tNQCe(~95CFuJ2qM9 zS!0bEV}jfy<_qzjE3-{dWQ0S2!L=+P(FB(-P~>~I-x`_4yu;dkbRN!>wNdvB4zHjR zPRoxWCD%U%#;=+)KO2L21uEqBIyku7VP^K>_s)~5 zHLv=`JPu6|l{O28;Z~Rw1%S$tn^@*G;Ls}IdA{d{gIoAak5IC7rh&+oLTQj9={vO#3d3#E(cG}OpX4f}jUf+-ZhNIjEP?If&M2sZN>4H0&Ief_d?v4c6 zqvzAcdYWAMUUwD=ENbzc6qI<^PlmINR*@&3e9x>7ug7=8`-B?&Q!))YTdjM&_agL9 zfC)#c^GxA=DFVVm{HeNT`zKw*O~Y zpUh^#|4z(3DECVWi@1h4bQT7Y@#WyCjp0aE?OwwRk9TYhaxEVood?Fi8QxqHi>3+? zLje{tTzf{_d;vZ_e|aLiK=@mNa0Sh)z>0K|i$TwdBes8V-<07t8JwxE8=6~5?y{C4 zZd$H&AHq6%dFZZz=jABl+Vhg+AI5Y}$dE-e5ie107rNS`H#Op1N@aTwtS{l}9k6Ny z^(aL!FdZN%`;A+_C7hK~(+FxPSK|lELswuss1;Hp%1^t*dw7J@0mR;qm z%hz2vg@MlY2462+Hs7Z8ud0KdLaPD?mAK%$?^;{$SLTCD{E_sDq)cqL9*?~l!^_i) z@&=2&Z{IaJFN!6df!)%31AFO=9qs{~uMP$~O)XCPn&R9ftr^ z{IO;X6n=Elvpy$I)!7w|X&Icl)cJVX_r#W{DdOoopID?=G1Lj!;U9Smn$w6I^* zXd?;Wh0htyL5CG{)`V6o?tJNjU3T(4cR3bT-pg%`GgPD386}MJ-xE_>Xh=l^-S*(F zA-&%bGG>d9PN&9QYy}}X80cnLN0<8PWi^t$;2VU9N|BFJjbZFlLz_wo*)~rI34nUt zpOf6H9x1%sosBA4D1+-;48v6k%|QpATE;%l!}X_)>{O0V#as%|!?3CWVdV|iFeLkh za1(Tn2H&rlk}|J<@~;CNjhsyqB(s(u`ok(@WV0h{!{eXl?SuMro@ho$=PoqRUw|gP zsX;=GK(?&(bKBTYbJHxd>aXVi(_AOxCxlS>ttmmQdqFare17s!E39IzWH;SJoe^Fd z!htc|R11?~?xDx2WA)PM=$?!3&p$lP>wG0zJqd9Cq-i}{Eey{>G*jGFe1-3JWVZ+4^r;r?|usTpqSEVA<*DXqfE zd9n)aV0K!_ZxiHQ-L@u38>ZPdM38Dp=26n-kS#9&bP*Fy852c_k!yq)AA{}z2EtML3pRLyNY#oUzndC3mpf6h-bV2LIV)3d(rW?F2LSLk!NM)qSQ>@S>FySU)r zS?Dpc9%(>q>MGIK9AOY}b;?EL6PTqxsLzya!# zyAd6iq%_PAT^iGj!&fXI56#c34nNKh90XtY7jd2b zj7bwEgqMH^n?AFe-n|2-Tc$Bpo*|g=b|}w7zn_td54GR*e_v>3+92}yNf$7W#;5@l zUNd15BnmH4#mwE(b|FOHa{~wcfK#zUJW)M~8u`(2|7_oSzjQ>L+E!z7kq+a}Q!WD+ z?;WIti7sx(f!I}lXO;R1;2FH8mwtUKnWQq3R~tj5-Q5yy9wFl-f~iEoCGQ;MQn-aZ zRq!Hfv9t>RcHt>4wi+#v1Kt&aWzjFQtQ!Ij>uwlhyF5}*;}XB zf>Ma1Nb;L%eG4e(E7m=;_09R}|EAIU91Kj%==XL|a7uvBKf7S4Zdc-D$Dhmf9q%Lx zV606H>PvW(c16XFvi@yUc#m*Hu(S5BbDKhMw1h{&Jx&fVW=foE$j$TrO5=J7&juGy z0kC_@@G%Ro%8on|9Y}6%4r7suklZ@)&63$fU{KsRv0lmIod>kmv!R=W*L#h`^8y4b zfu(LmGRjACSPs$mI_eV47NLzkgIAk+NHJ-}?AJ+xh&n|C_**B2v~lHwRWC1wno!3- zm5bXzpS~yzPoYb`p5B5y{ixT-H^$r2wORY8g952C;ZY~eKYR7O91%C37Ul($-e{8Q zg=oGS3c76=cgCB+|IAz%ScBdDgg~+u;*4%n!uiBIpN0B8%&581NkNn*p{TFYA8{5p zihP5Ow8MrK(u+n&vZuRVVG%zi@I9IHjwT6%VNxU2J%*aA0jA|CNdpF&G3Xc8s+`&} ze^pt{!Jn6eB$>_3TxYsvVSvOH+mAjYHn_WPGeHN;ZFod%I=7^V#(-OqP7zBS^$20M zCkd$*_PvtnV-{BmVW-FrkmAuzLM#$&NZF_!Ck7%a&SZUOyC2p^F3@?$oU0}@TG*HS zdc83C+fV$%VMah^6KRoX>mid|w=-{L)hENM7{~I5>OWpVxb*E^tDqkVNfENa#+(1L z5gCB8j5OPj2t_HQ=|}qD z&_ik}RvGOEVyB3r>hb=?uGJw8f zr3{w4q?GsMJh4!abMp^zHc)Rmd%&E%Kg?0Kq%qJsdYb%j`Zhqm$`aQGXNvX9e%wpr z#RQ943un1%oB;YsEr(uL6sP5{m*G{?-m!T@tgCa1O_~%x5kw>ywZPrH`bI$Ea?qcn zqmLMqVU~sxOl_MTpRp-zw`~qj5eq)nCMTS64^Jo({rs@GYOjezA_B-@#AHG1Tn=FPNAD>ht8O| zl<+GvsYDLYPk9p}r+1(IN?6B!Kmw^aAykG)TlOtu5C;wb?24~MU zPVCnxJGM&)d?k1m7auSOA7(KBOzqj1+0EA15`Hl!tq8T3=H<#0DrvmFx)TG5wFJB> zWtne}4QEJ;?iw?2`1p<=q&5KLFmE~Q+@x7?L46Oytd5meE)v~U#=p*QEAzHZI?Z#f zZ9AGk^vX460mwM)!_})p2=SF!M>Ci2mT&=JgWNPAcTnv!;dJJD6=<`}!zK7FUpiw( z`|y8m8U1nguT5pz=Fn`nOEU||j{mwAzwy;EEfKm-V=5ZP3lWPgq6HtZ>-{c>s1 zd18vXdoo&msBsCH-(PL^?fk`Yj+>}=rxYIEU_)!lBJTcU^1#d_q1OS+u7fD}j{_%H zBTxM1bFA&=<<8-z9*YpOr7EXQ&i|K1yqEnA%R_$S(K~HO)UB?%>`h1BLDC15cCSdV zOL~E!TgGy(bO(ogK>bvZ7dO-NWfam@4}#JCTOLS2Dq0(|LiJrLb9kxyJ~Zo-3^O8H zIEW%@qL(uNf&tsvP!a2YkVDJs8VkE8ovY$KkZa>h3c)eAI^j|M9_PSQpdpPaV?sp3R(>8}H;8Q?O%lrLvnH-6Hm|}h z-+{i6dg9<)5kf=Cz{|wA8fDFymjAnf6O5k#09hI!D8rwfWq)r7-|z{&$Z%CGA8$}^ zlru@+Z_&H(hWtGe{W^MC>oDo<=@qJlwCMR&bkY&N2dAcq*2#_T|B00a!*mnn*=&|Y zx_J9?Zd`DE{a>Y=U}QNBL;?O-{OFO>u4+f`H_M>Njp50N*k&jqi|VHA70_AIwWbM5 zu97JBMTba2yB%4r!>v6_T(7v(1NU(9d7F7sQl0k{KUsg17hWE^I1)UVMK}zTydhhV z8|z60XK5e_Vx+~n{Av$L*>sf^oDd(+TqzZ;nPZOO@^JRge|&9p5r3=zJ*Hhh%#>nW zJ3wQ7yEbF}?6c3X>j1MR5>wUc_G> zWEqQ>aAxns!qkRs^{3W>^^y5&nfTzXE92O!z{5kHp5+!t(+e#`6_53QHn9sE5si%; zA36J4tk5mC>y0D?+8}8mQs3Pa`xe$2m0%u1EjUh+oj+BhqZ+!}$;tCY;odWkwEcP~$=%qW z?3IU*y$rv^5X^TFbA@Lp)0yzbqMp7KIfs4xMh2kr2zLG1nH;({Pi(+Ph!WkUPry5S zlD7I8v#t1PBKp^R2O7@mq&XdkQqPfb2Ma!(ZYMD=y)t2EL5oe+`M>l$y!|T?o{lE)o&W&XE?X^m?xaw&QU{@U!j2tf(LuC~p|8 z9;ZV+sQ_XC<9{Y51I7m3oCD0aZC)Y#gV-8>d$0@yzxkUM?ZCE@IvgBs-MYp82Qmdz}8 zXODpAy`A!Hd62Ws{>AT;T8*;yFD8`c8htpiAzATVd3kl`aJZ#>3eDo|N6Od`*-;09 zjS|04%BIEHa69<&UDbHTIEDN^E6SSCL`@0|9V{J==q z+JqI3TFkx7b9$_dEU}5lDc(0SEe_zGjI*@t7&YhA-_^u%FbF4W7#TOcGVhuOk$H0t z2*^rqBO*B5$VEc!G5=yddfs(5tM&A*R1`1?zyrGGvLM71)b{uje0UolR1H*}F(NOS zy#ovLJg26RYbjybO7nI)C3l91(po z9QFis38z<%^4gf}w1U5sktAo2kASoQhd>Czl}}_U(nxGg7c?ix3~-R1ybto~^9$X` zNjmXfOd3<0?Y54vd|U7to_m6wXtXTk&TE-44Cf_PK>^vu@#FVF(8F~f|!pe8IaUqobyB?Pz4 z0*i|5YKpO9O~%3iLy=M43ICCfV)cWp@@I(rB!)3a!%&+_R-qbD+Sd#aSX2N5IkWP? z=L&~dXS<5CRe9GQR>0JoRDe%jeO~E~fgOK>^G$I_&BjN18ZRwuTZ5g*SX=c-nTu#L zdUr0iZnLdCb__o+P^8`xne>Wjc@Q zrTlIdhpU1+)C9OG@7Li>ld^+~!p})4uWIeg4e@bX%i4}u{=>bCvBUO}jb8jH9ZRD} z>Sc}X&<*SlVW@aO3;EY$Fdb;2 z|2GVSxw&%&@3N$0;@Z-%yv6TB(YL$4GpUQQ8D+gD5d`3Y0kd46J(=k%N;8R0So; zO#@T*z%xs^>VBNtlHV`)9zR8Xa=DXMS+^s|A99ExM=8I^=p>dvDo7DF9ffNg=N%NH zx~jiHGFz_T)00U)nws_T?Nsdvxjr*`*RF&x*v(tYECyHv2JdGu2qzgX_%2Q8yTqNV z!lHR|6q>C2_~7swA{Ijr)9`czBCo;pLIVd8=Z4Pn~JkXrC7S*n!mgH+} zq3h?h`;YAX&5`Kq%hWqWR2H6u!Ax z<4J8f%g(HNbFg#~(0~GUaezmM-~EwN9?JgAv!E4=AvwydIVCGN{fi%B- z!}T$voQt@G{$MiSYj~(i{k;b+=B0|ndePH}DEW!zZP_Ogv3(-C8jh@Ct0a~>-cur6 zvF1*``DtYr*2Z<>D>j#}F=-vp3*O>Y98=^@1ipe0cszj2>y4pONlvo7Nf9Pf=`3hn6d! z@;0)F%<%X7x@aYrkR?*|k7~rKDnhT@jS$tgY9dm5jg)JCT2#?9^gBF!HmxkXlvD~# zy2n<3wPbG#i`TXr};ODT1- zTDOF*KqSCjmDAl}3;mw8#9A?Mqp)6z=Wa=iMm>Do&NRhnkF ziB4_KU!wPY*34qssSxMrM#^}IIvmJuKe9j8N_-ifOSJ<_D@X$ds@r0LO(Z1YNC8NJ z&9o(@kHw^Yh_8@t&08+9IMa5t;&`i8;WgDDDjZC?BnS$F zyxYsorH#u8Bx-*tdOZQdia6(~l)Ei+n)T0d0CN6Her0f8C;6pxpCsonF{g;vz3GFO z8@ZSuj^k@m_A|VXi=tI*Sg7S(^LJ{B7RuTX&>OcEnAr#RDpp8~CaS%HEv6Hit7&z} zC_Y4*I;lWn`Rh2*K20P(seRR2C=gXsXO)WvWjQARKSGj3n929Gsp{88>og9lsKxn9 z*lYTDm~EkCTr=6HHw+*%FeY&vrwK4PjgohiYZ@uP+d91gUv5vv(0UsM@K1vyS5eGu zPELHnnmIym3|{?db24}Y+NUimsTllWW^Cb8@Gtcr`ckPunE=LqHfVaNW&^lfXT|t1 zIv-v0<@>|71zEdrl zwzk(*^u$A;r!xY&&jH*A?8a}K%jU)ry-3_fy$V1sxe3b^^OQa`F(D}-4AuooQNUXA@Vtt z$a3Tah$J1&2fB<`0dZ+a6OXwSGTn71zN~eB+P)~~Zo2V&VHQMhm*5HE!HGxSHac2N z8|Gshx|Ez)v*mumKBem~A~e+C`Uus$xkQ?T|1b`|uRV@sHf}Pa_$g8FbGARi*?U%~ zAfu_ww2qoLUOgfW=&|SCY*Z#6mhqS|o42Am6=KFo>O!pnt{j-GEQZjqX-qD!rDJKa zy}Bwnpyux4%MwtfwYgEt-|e4FN=FWi5|Yp@lwVr?(=R6%j-L*dMtk*H5u?P|daO_+ z@5j4$zL>m#n{W!glVOi}K5TTA5dgKt6Bzl5-V7`$5lozy9Bsmosxoi%h3w(I^p9wh zJ|k^(n!QEh2fz5LuQ3003U_n2M#SkXmm@FSN+F!5(=eiUx6~K((NcWUk{hY z49fEAuVrH&v<*wpMFC)ZFoH;=&j~jwp6E45u>cBI?n(Lf&?7qu*Z>Mw9`Nj%3gNcSKG|nuy zU8p#lR8z&jqrs;jU846S-CF4hFx&JU_UdK^|MJeP5nPHK*d%q@(*l|-HSpbJ19S|f zI~O9BZ5vT%We!xe%3U+veo`zUbk76{g zLPY0XFpSI9q_M7ak~{mDXm~APrW6u%>9M(;ZR7BvMlC&&vTC(y0UH3#cLM8-qOuMy zD`NjZswx zLi(4Iak=^4U~=%*wrL7gzLWeyrf3jXt_H(;$FAG0Rx(!z4Xz$#sUZbZyF;03?4$83 zQ1#)d(g~41paN}dnN__xBUKj=K1NBG+>nRizHtn29L)kEA@M`cJd_U?#l6uEoJhaZ zP|Q0Oa>o!52@r}mMkjALhkvPL#CG@)%c@-!2oVqRlE2}#r-(nP{70nd4WO1_J#6Z> zB@d%QEFG?bEUDR2T7xSGTIRt4_wI z$a3LJ#ubLz{veijC&WS4FOeEZEHnhR*rJqK;3BqN5EjE0Fs8k`}$FR9t%p>53|2h>e{FH z&HCdNblf<9Y`8+L_kbVUv_2%O)y9{3?9@>iy-@mJ6q1`A=s==FwO6EO1Z) zQE?rToQ~cxhA6Pi5o{qt11GIi$?8sLhn1OSQyj0lX8$^<#Fz?eGI8bzGBkoYuWZnC z`-3xpSOa*0phoT!7Qj2c(CW1u3_HaMc6uXS&BBVL+H6|WUGc7v3>^1yYpED4j0~ni zq}h1m)#r#2Ebf6nD6f5IWMpxXLItx19dmXj9;NM3kQil?TO}m$X+wF342yde{A6e~ zOvG*~$tT5_zkdLax~74U;D<4e_*p;!LVAeIC04kMby@u>9g4A9;Ls&bdFeO?-%*`f zWP|Hn*!btXIw>4$ERLiwN-hjqj&P(5 z$pGV~8(h}>fYMyTNya^}hw;>Ul|Tto7D$AM3nWLl7oKMcjke!K=5q^A7=A+^5Qs#r zu9%ozijLG*p?FMNtMQJbM0ry=A!j;fzhNVzm-jBDj{j~mx|QTefH+r=o1=to49uc`~%6u<1Ndl?0hn7`2%g>>-(=#Q5hJkI1YGLE0KF_ zT)b4L%)+{9qQfE(DNBXXeYa+*ypM_UZ&TXqoW_KgX7Dp^UjwZW&jeIaJ{H0}3MUdPl(y>~B9Y=Zo#H9!G^;d3hvtR=GN(T*!MR-govzeIgD zJ&JIUW{>uEs0Cg~N;VD=D+dZu%DD+q(mzrCsARy%ffe;A8qHpC=A-fxCzgZ=Nt%h6 zq1bk#xjx6MG#VFQxKg@}Qt_}H!_kl`&FiN&s3jB~Nx3k~D^viJl*Ybn4iW<)B?8g% zvaYP<2bX}z>$Cg(sh^TmCv@H<)bI8%qy97Xv(y*QwL}S!h&Rcfb{LWAi*RP){EA#! zJ+~$o9{HC6qT1yMsZ*sz`pTj!%!{~+=#4639bI*dx`Qq3_<3DGD%w*z$M3ks^C8j; zh)(@Y2%u3Yi4KMj%MP8!$u^Nq2S&=_aA^_AdF*+iA?@6M!U3M?>N%#Rb1S@4Ui8D| zpcxW0>t-*r;U;g~$%_?3#dy^_`^9i=j+ge}8y+|7EMlfM3f)&rO>~ZZW^p=|H)KN( z7WvbqUzmx`*smDf2$Qq*qcd8F22Lr~5wLOhzv+5;?!Y#9~klTxZWS z_S-}~iOq(1Tq+F`CpSReC{5kJgj7$PpW%1@<*_?dPEZBOd4Usq0Y-OZW4-3;bRhS(9H8; zp`g@we07bv)ODbx*nND75lygvTTEU$AEqfFhS&b?laj1^HcHjJGb{O*rgIB)^$Cwj z|7M)%_fQw5bkr)G@E>T(?s=$Fcv95K$N7XRi(xFLc`FuSxS?sU6Z!ATD@N|Wi;JO2 zDoivnYEBewO^9g#(Wf?*Adx7q@`2Z{ERcC+jW~_x_Bo|q2xQ%0f#**a?YtY{O-=+Z zC(e+4`}gaf)-SBRO1Ck0cqJ1kn1~s+MMn{NbMkvfg0|7*XNbCNAU#O8mDx#}vfS3j zoIuwmYQginY6kX0Ag{Qr9?$;7>m{az`^N#C^)c?()|2XU;w9giva~fdzciR+@P&qX zTk{!@gsZk{h+22ofno7{8kKMOX2yyruio}nfrF9SWw!iqeeVsmG5Xj@b(j8^3$PRm zQ8(+W|5$aHX4aR2t#j1lk{X%}AVa6yj}^Rf;76ppw-Fdz^3`8PeO4=_HsNwMUeThe zCZzO5_|^3TgX~kF*Eb%*wXr7!#a18qBK)IjGex+W3+e<5t|s48uRAsz4K-S0a@e0Z$Ark2T48D~1WzLjZ%0)TM zFKWd>wuEQxAf#_{Mm?*KQA+O$fHogAzu3(yXDwe)y+G8l`Nuduyo@32A4>DY0*e_k zkoi*++ju)8&8`qotIL{W>Dg7f*oU4mV(i~HHd+St^1pNgB@!TZmgD|tBjECT7Fz9) z@_~02u!*2%8$WIIrm6SwJ0A?#nWO$;8>z$uQm><3;SH7!wG3^PHj@uM+9DMqyFvqJ zxeD@9)CJ|z8qM#|RAK5%_d>japb(eLcTBv;kAJQ_Unw{Q^{t9t?LTo_Y7b<9Z9RI+ z^T3~eIkKSA-zD=T)}{SPN6|;OpWZ(3z$GU`W$cfE6%pt0N&mx=LMF`HVKwY8#t)W8+M$6?PAr=f%Ge*eEb1G+QrV3iiSOHv;jK76i@Xkix z708(h#D~ij>7AgEL~(vhIKhkwkE=Yuk<<=j7UnJTx??}n8Jkf^uODZer?cnG`NTV! z=*vK%(689)rr}!c{-)Utis~}!c3hr?8=j0j(OwFNJHVhqw6V%Tc)KMu>M(<%v-sbu>5GT>T&ribyUSeR56>U>>pu)(4&s zsdKOf|3Y`RM?yp~vGR{e%Goz)!u#L5d5P85D%~A)Db$)dm;C0jlTS~%?HYstvPgleHCN-_T~$}Lm~jL@AdV2dHbGOn3+qLhA&U7~ zku1R@33O(qkj970nb-AbgWn0{Q-p|ft$1CdNT8$Fv`DZW{7jKJhFs2t^DwHI8yfkO zmLuQEE~<0nI_fG#kYaz7tlkGL$>|V5I^jE#Zg?IKKe@E4i_{}Ws;gJ`^J+h<->zQ5y_A&=_v)s6n@ltePSQKR z2w|H-BHjuibcVhk-M`i2teBcjf-tTYYYz-Fo^Vcwm!w!7h;rrE$ksFK9iu_IipMyH zlngP}Weg1Ix%_)VImM>mqkmm4Jm$Jg#j_mfcrKPOSCg+`Vxjs;IVc+V{ApV23$U!e zZxvz#)61mHm7nMh`-Xn$7A}fsZaEK1!S55(~5z>7u zmrylx$X^>GM&pL^ghD>hXcNaN6!WkxrF@mUVrcI(%>Zx&fkqrvjuO{9Z6Xk&T@?4s z=aQ-NtIG5|{^2d7HaqJ&P3dvsc+5ZTe^BaK88poxxV)cBk>KQSR(aQXl-;Qu$!XYy zP3&X56tuG2dk55H$7H}BHc;@~tyP5^gE1u}G-_1N#n4}MqoXHMSJ<<|ak`Bp=qCqU zG?jBVJ5_}la1Y-v%D=T#DVUF`z_{qRP^DhC%aJBv%lU+kbwN=9^S~Kg?{qN}e6GE- z?xtMB4mc!XqAx|Z_K5#O2dS`UIv?st_>{TsDTv-IY&9 z!u{)7hvaHaY1m8p=dqs}zwl2%jv@)>5U3_%de0{DQ55@~M3Q`xGj7*|A{@ zRWxwpkb?;i=?m$0n#KHu^};ur!=gjkzx`FD$J0>9f&@v zB;^SF#>R06D|jP_DHW2}zA{r6nawo511p}JjI{)19hBLr4raRZO={FR7J)DoUL_pO zB{D9aFO=mP6?IS1fh0r|PFIHyhMCPgljQNbHaoi9H|D8P>p#`(SWF_d+Wq)lmHvl< ze4S6PRYfDDAT|D$t*mvWYYyt=g^h=XH!%9`+(rLy5fCQH+6GDBm@V_9BF(6!W_dsx z&VV`_k6KNG`Y?|~sLTYRfwaH=SF56THBi82g{UYO)gf)D(Jmq%qex(RPKM>V_I%Y& zr>L^B1g3Q`h8n+DMDZA4vgCniVUBmx0u>XcL0IB?(L-XlFgxlsgkm3d-ZLr`U%4dr z`>3HVNJ_}RtaoH%ArN_w|H0!_4n*RoNYSaRH=zhTE^W6XVo}i^wKPb`w zx>lkK`yu_}&>-LEPBVuoWko+5k1;e?HY=z^#oZRrl?lhq4asdc7QG zt}I+_gGE}+2XmaS&1ArqW;Pb^%f{g+Q4C$e;@$e>r4jcu?f#<<@EE-knpv3C0n>DG znnHardC+6;=t#0~`7wF+3~iQ{vp;)ZXtt?ybVOL*XxWV}uENr;rW|0cq45|EF}&^{ zrYHC_pPL0cr(T$ROrNlkDYE?82OgFaD$;T&s?JLOi*>MqZCM4c*m)h zxX(1pNjR4RRo$ky5*Q%KfTC_Z5P%FG_UwQ@_-^NDAfl+}G>&4;W<|MKaiR7-&x!}D zV_1pMQcGS)W0ptHB&mMdX8fwYspQTQ)V@pLB#?-wcFn`4!yC`$T4*0(Lu$A0^oo^f zO*5fJ+_v^DuF8C7)~22uOouto`m;ioQd~Da^H2OfH;9uGUug@fcD{M=6fl3S>)C$$ zTu#+)C%0-X6U#=R_=*nFq_wt7CVk~*|PaGFEx#SK9!wOzo2jrM?H zMRSPtpeo`WTA<9N?IAxQYUd>qTo{?gAQWYk9X6eBqD*hpPX1G{Jb1(=5sZ$h{msQG z7`W$nq6};#WdUsJwQuyKWs;wkDP&C>H1^N$hRdh0!yi=TN$OG;V-J$QVfX0jB72hX zqh>YER3w>BE`?N6^BcV0n*tgill5e7vnZZEWlOG%W_{HrR9<* za~1srR17oyyS2ZQQHqBHGX9aV$+uvzlx0Q{obi>3X+&})5X2BF`L$cjz&4&SxW3;- zxhhT5-f6*Z(~N{Dd4T7Le$nX@ia7nZ!x_W+rq;yr;QhflI%3j#r|YXUA||b z7)uLT@zDkH;hrZ#X&c6v`t!nxH$3v_Hmo%UI61W3C5xm9_(2Udrghf^CSSaB4Fh>N9(B2^zyj3)Wc;oZ#R4S?6!U8r*bwSyFVOSaqK1 zcox$3X<~ro_8KE4Ly+DaDJNJm@Zh4S_8cT1TVR(B(@d{41R(B=>WDZ03y ztmbZjhXhgcEcWgTa4p(MyXmU{?tF&iel41hIMRc9rC&etgqZMmTsst72bF!agpueZ z>&t&tT6wgVR+WY#g56Vj)YR;NbaCn+S|-lAJ^jzm@d#K{*6 z4-QAQnw))Xrv_a7xq&zWEMIQFn0!J5{nWG0kjj5*Vs_5z0&+#id7bphm_2kMu4Gm0 zYnB2PWQDz7^w03r{z9UmcUb#^pSwHWTrz5gB!1m zgQCvp?ihzO0!44-~F=Z1l#sA%r?g+yVU@l}K1Y3*&%A0OiWuRo%knmGHJ-X}QB z_bkqG^AXb|eP^tOXwI! zd|AVW4tDpdLS?gK`Yi?IUlu4U&&LeTAkN{gmQv_j9a+vocfa2whlXed|{nbq1gue&NR;ZZx43=GX8*ukMzv z3P1SJxq(`pLTjUtOn3fm%}3`QHZWz>`K-+|kVexRA-QzbsR|p8aNYX8K^ApGfK}Ab zS&q>@BmGe;LmRLX)va2rNAM@Xq^o&AM;*(=c4r@kJ(2m+R^K(L;DF_}FR9>6g*7Hg z*Zq~PzhW>lg1nf1XB^_r?q1$%ZL>W)cD4YGei!Y`@ffYDFicQ8hh z?71-Pw4M>g$$6JU@)H5Otm_`VVhHn?1f%8`VBGH|NA+R!ryf$#QAr@HL?VWNbjiDZ zmhJ1bq~gVn7PWdo%AEB1{&uCT9v9V zb`V~9jNJ`flGE230`^Dbby=fCHMN4$I*saj+jMg?!EKDcR(Z5*!g1b^ZogpSQ~wp4 zT_q0g)Q+(ySlT(OuabdFCa~ zxMvPRlLkf9xjUUEAnm7KGfH6U7;z?9y~AIZi~0m)Xb4y&73^PHxUB6v-0j2y4fu5BDq z=APj3u_xA`>%Bje!;)U(3Q#KjUf`v-%TYlxsGfbG{0ii%+uPE*EH6Q?jRCT#PnmfK zU2ki<*qoN(A~wK`4kY&unx7jEk)>K0D@5DS!y_4rkcyS4H@u2zRhVQYt=I{XgDRdx zF6G71{#`&)6+YA7a&t*gE?g7z@>{>62)qI)SL1)nU^5kIxQJw8bhfb{ZuY8&KcGAD z3MzU3G)&%6)w|VdC9ptAG`Z0GYlB{qYjH==HwNmW0HP_iZQD zg`sIsnN;nAcx>NcQysnRdHsi)@^sF|<`s@<40otoQxK1k9mIpy_3Gu|B$V;&{qCF} z%<6M{VS_wjA{$_iI_GP%6NTyE9KG1UIP)t*NBBto#Kv~ow!NkXcK9ec=cOSybvk;K z=}O^cs3Z)kHdnVf@ynEo0XzjZ>JE5_BRMM3`qff-#2&{jDcO!GOZqx#Wn|?DxU|zK z?&sftAI2uuk2^A%Zkh9a+D>cAY3+Kl{r#(*^%hUJ^1{4?kVIGh?Z^ekRr-YnhA(E% z5l_8(RTQ9LB47B)iz`E#nNiF1`;G75anK#as}S;fn}q?e_8x61T|z!X z7hBe^CV{oxj*9Tz4=G8CKYD3I8}B~TCnHThMdJAkWq1^0`F&L7L6al!1XKX?ihdX$ zbrMo4{Gnpq8L!gdV7M&XtlW4+O}M`v$MhsZNo3!r z(2>$5KWpIER}dsCP52|T?%jLESK;nYNOjE^n;w`f0u=#ir{?KOVrU?19L%5tC(d)r zGSF?+ZUJ*3V8Qa3&rt_&SJ>RbUg4Ns^o88`e&y%<=sdVjI69}SEr5I(=q>{x6r`>X zPWOD2wYaP3PAn-jZe-EWQP^p#^;fmk$AA_|nGrG!;r!xxYH}fhhNdz?yrZDgK^&ih zR%FYinij71ZSE**Ah9%#1yqo!Y+y}&F_}4 z3hnzy*La@`1Brck_O2|-4H#x$WZK2L9QamV*Q7NC2dL*47EENa49^`qOxfTLgTunA zXigLrBhXt7f{UoPu>;AMEZ`~GxygL|MCfAc(yYJ6v!DLe7O=mlr@(WB+jLy`$~aKg z_FJ;I{t(MMDD1m;W|F|y-&TfythcG@M%i9+NS_+k>iyv$RAc+5Seh1Mqk@reMWkX8 zJ!@t9DYWRFxl~5u!iCg5;Ts%=D6J-OPl~^zqpv4kKl&>+L6L67yp5)LOcOhF)K2TR)u9+>b`zh-gtElq!y8(EZDPw4A? z9Ncy7$#=p6O)-U~+qLNT_jMI(yF&P===|^DhY98zyerPE&Pa8p7Z)6yxRYDq$`eywu=?>oB(_wz%wiFy%uc&!tvtGJWF5~T zm?c*+*7+*8JVg{84s$`?b%TB;pORnCle(wSuBZzms){&|vfvZ#lX>;)yFXEOaxz=K zD*lHNpOh2yIzqk*muTFJ(~?+Nr~A3xNz6O$$4XAfW?$ z7JvrW?+y7g6X7Zgi%O*aCY2c&lXOnWO2kko9TW>0&@0$qem`vBBUPeA@dZXB2m@vV z_{mUeMg2u_eas=w{X(TX%sL6I_cRs3%CIz*0vN?^=M|)L-JghZaz(|R69o9|<+SB_ z^TZqX*re;yxB0{ChCPebTJ zK^^xy9K}uX!gu?h|FKlef}B-(w*O9)rfr7*slmx`%|c&qTynr;Ky^Hebxi4t+Hyp! z$&CmE76|`t3_*e@{SgKfdU2B<&59|9c2{)$e-cJxt{B zEPhVU6(79nHvPVIT&Dt{~8F=pD?cCp~3(kff zvBShALWg(G({vp~dteW6ONqkdy8$ou;}k${7u^pWSsloqsm!Ap*vG=wle#KNV=-Ocqw z6M-vmy=1&MhHTCT2B~Si6~9^VF?aebwUyeB%yo*4JdI+`dDlbWyZ+?hh^@LUI8w{d zuK|7$A8^05Xj|R>yQ+0+36G3@KzLjPc^}Ka`f+#UGoy4|7Q}gTvp2@Ps}p4#!-qpH z!ZUHYyNTxuU%F!i`kU8(X&DN6U+y=|8GKn)q(gQfHBH9QsjogXwO338L}H5gR6k?y zw`x1Tp`(wZ{>H0&cC!`#MDtFXF1y}${0y1zv>Y9R~=~1kxAw`-iNGcAIE)G8P__l+fQh& zkh4u4SEG*p7vWS6H;AUrc0Kl!PUPbrEZ{LOg4P?cV2Qqdc`#kH_t%N9JCP56fgLr> zbs!q5^;cIQm)gG}A`h3-oa9#9XRzr2Th2YSxVwra1I>LAiC|c}7FN0=&+#9_DnD&( zY^hMLzGP-4tUf%Bwh8JxH`UCD$5btY+sk5+hpXy~R<&b6S5rw0<7jN8FF3cUI1Uiy&{uJ-L#I{jPp#F>cCpw5JGW z3Akbr!aio{x zc*4m0i^!X={Ot$0$2(o77gJW1_( zNf%4!dn#IwWawg$OOuTn-W!K8=Nmqrr!$0pacDsm#=LJfB2YHHL)qF7rFf25*q`OS ziJxShHeGqVz$8#98-FzPR#UkuH4dc)|pn;m9as^&h>v0R{=P*ZS)@o*dK>q*a zn73Bcau1MS1g)V}Orbx!-}n{2rt8X7=W fLR5X;`d*~stzu7GAfXhh4NX>3QKCxBDEPksEJ-ZM literal 0 HcmV?d00001 diff --git a/demo/documented/eigenvalue/python/demo_eigenvalue.py b/demo/documented/eigenvalue/python/demo_eigenvalue.py new file mode 100644 index 0000000..fe18a91 --- /dev/null +++ b/demo/documented/eigenvalue/python/demo_eigenvalue.py @@ -0,0 +1,73 @@ +""" +This program illustrates basic use of the SLEPc eigenvalue solver for +a standard eigenvalue problem. +""" + +# Copyright (C) 2007 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2008. +# Modified by Marie Rognes, 2009. +# +# First added: 2007-11-28 +# Last changed: 2009-10-09 + +# Begin demo + +from dolfin import * + +# Test for PETSc and SLEPc +if not has_linear_algebra_backend("PETSc"): + print "DOLFIN has not been configured with PETSc. Exiting." + exit() + +if not has_slepc(): + print "DOLFIN has not been configured with SLEPc. Exiting." + exit() + +# Define mesh, function space +mesh = Mesh("../box_with_dent.xml.gz") +V = FunctionSpace(mesh, "Lagrange", 1) + +# Define basis and bilinear form +u = TrialFunction(V) +v = TestFunction(V) +a = dot(grad(u), grad(v))*dx + +# Assemble stiffness form +A = PETScMatrix() +assemble(a, tensor=A) + +# Create eigensolver +eigensolver = SLEPcEigenSolver(A) + +# Compute all eigenvalues of A x = \lambda x +print "Computing eigenvalues. This can take a minute." +eigensolver.solve() + +# Extract largest (first) eigenpair +r, c, rx, cx = eigensolver.get_eigenpair(0) + +print "Largest eigenvalue: ", r + +# Initialize function and assign eigenvector +u = Function(V) +u.vector()[:] = rx + +# Plot eigenfunction +plot(u) +interactive() diff --git a/demo/documented/eigenvalue/python/documentation.rst b/demo/documented/eigenvalue/python/documentation.rst new file mode 100644 index 0000000..dc531d6 --- /dev/null +++ b/demo/documented/eigenvalue/python/documentation.rst @@ -0,0 +1,125 @@ +.. Documentation for the basic eigenvalue demo in DOLFIN + +.. _demos_la_eigenvalue_python_documentation: + +A simple eigenvalue solver +========================== + +We recommend that you are familiar with the demo for the Poisson equation +before looking at this demo. + +.. include:: ../common.txt + +If you want a more complex problem, we suggest that you look at the +other eigenvalue demo. + + +Implementation +-------------- + +This demo is implemented in a single Python file, +:download:`demo_eigenvalue.py`, which contains both the variational +forms and the solver. + +The eigensolver functionality in DOLFIN relies on the library SLEPc +which in turn relies on the linear algebra library PETSc. Therefore, +both PETSc and SLEPc are required for this demo. We can test whether +PETSc and SLEPc are available, and exit if not, as follows: + +.. code-block:: python + + from dolfin import * + + # Test for PETSc and SLEPc + if not has_linear_algebra_backend("PETSc"): + print "DOLFIN has not been configured with PETSc. Exiting." + exit() + + if not has_slepc(): + print "DOLFIN has not been configured with SLEPc. Exiting." + exit() + +First, we need to construct the matrix :math:`A`. This will be done in +three steps: defining the mesh and the function space associated with +it; constructing the variational form defining the matrix; and then +assembling this form. The code is shown below: + +.. code-block:: python + + # Define mesh, function space + mesh = Mesh("../box_with_dent.xml.gz") + V = FunctionSpace(mesh, "Lagrange", 1) + + # Define basis and bilinear form + u = TrialFunction(V) + v = TestFunction(V) + a = dot(grad(u), grad(v))*dx + + # Assemble stiffness form + A = PETScMatrix() + assemble(a, tensor=A) + +Note that we (in this example) first define the matrix ``A`` as a +:py:class:`PETScMatrix ` and then assemble the +form into it. This is an easy way to ensure that the matrix has the +right type. + +In order to solve the eigenproblem, we need to define an +eigensolver. To solve a standard eigenvalue problem, the eigensolver +is initialized with a single argument, namely the matrix ``A``. + +.. code-block:: python + + # Create eigensolver + eigensolver = SLEPcEigenSolver(A) + +Now, we ready solve the eigenproblem by calling the :py:func:`solve +` method of the eigensolver. Note +that eigenvalue problems tend to be computationally intensive and may +hence take a while. + +.. code-block:: python + + # Compute all eigenvalues of A x = \lambda x + print "Computing eigenvalues. This can take a minute." + eigensolver.solve() + +The result is kept by the eigensolver, but can fortunately be +extracted. Here, we have computed all eigenvalues, and they will be +sorted by largest magnitude. We can extract the real and complex part +(``r`` and ``c``) of the largest eigenvalue and the real and complex +part of the corresponding eigenvector (``ru`` and ``cu``) by asking +for the first eigenpair as follows: + +.. code-block:: python + + # Extract largest (first) eigenpair + r, c, rx, cx = eigensolver.get_eigenpair(0) + +Finally, we want to examine the results. The eigenvalue can easily be +printed. But, the real part of eigenvector is probably most easily +visualized by constructing the corresponding eigenfunction. This can +be done by creating a :py:class:`Function +` in the function space ``V`` +and the associating eigenvector ``rx`` with the Function. Then the +eigenfunction can be manipulated as any other :py:class:`Function +`, and in particular plotted: + +.. code-block:: python + + print "Largest eigenvalue: ", r + + # Initialize function and assign eigenvector + u = Function(V) + u.vector()[:] = rx + + # Plot eigenfunction + plot(u) + interactive() + + +Complete code +------------- + +.. literalinclude:: demo_eigenvalue.py + :start-after: # Begin demo diff --git a/demo/documented/hyperelasticity/common.txt b/demo/documented/hyperelasticity/common.txt new file mode 100644 index 0000000..e399e53 --- /dev/null +++ b/demo/documented/hyperelasticity/common.txt @@ -0,0 +1,140 @@ +This example demonstrates the solution of a three-dimensional +elasticity problem. In addition to illustrating how to use +FunctionSpaces, Expressions and how to apply Dirichlet boundary +conditions, it focuses on how to: + +* Minimise a non-quadratic functional +* Use automatic computation of the directional derivative +* Solve a nonlinear variational problem +* Define compiled sub-domains +* Use specific form compiler optimization options + +Equation and problem definition +------------------------------- + +By definition, boundary value problems for hyperelastic media can be +expressed as minimisation problems, and the minimization approach is +adopted in this example. For a domain :math:`\Omega \subset +\mathbb{R}^{d}`, where :math:`d` denotes the spatial dimension, the +task is to find the displacement field :math:`u: \Omega \rightarrow +\mathbb{R}^{d}` that minimises the total potential energy :math:`\Pi`: + +.. math:: + \min_{u \in V} \Pi + +where :math:`V` is a suitable function space that satisfies boundary +conditions on :math:`u`. The total potential energy is given by + +.. math:: + \Pi = \int_{\Omega} \psi(u) \, {\rm d} x + - \int_{\Omega} B \cdot u \, {\rm d} x + - \int_{\partial\Omega} T \cdot u \, {\rm d} s + +where :math:`\psi` is the elastic stored energy density, :math:`B` is a +body force (per unit reference volume) and :math:`T` is a traction force +(per unit reference area). + +At minimum points of :math:`\Pi`, the directional derivative of :math:`\Pi` +with respect to change in :math:`u` + +.. math:: + :label: first_variation + + L(u; v) = D_{v} \Pi = \left. \frac{d \Pi(u + \epsilon v)}{d\epsilon} \right|_{\epsilon = 0} + +is equal to zero for all :math:`v \in V`: + +.. math:: + L(u; v) = 0 \quad \forall \ v \in V. + +To minimise the potential energy, a solution to the variational +equation above is sought. Depending on the potential energy +:math:`\psi`, :math:`L(u; v)` can be nonlinear in :math:`u`. In such a +case, the Jacobian of :math:`L` is required in order to solve this +problem using Newton's method. The Jacobian of :math:`L` is defined as + +.. math:: + :label: second_variation + + a(u; du, v) = D_{du} L = \left. \frac{d L(u + \epsilon du; v)}{d\epsilon} \right|_{\epsilon = 0} . + + + +Elastic stored energy density +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +To define the elastic stored energy density, consider the deformation +gradient :math:`F` + +.. math:: + + F = I + \nabla u, + +the right Cauchy-Green tensor :math:`C` + +.. math:: + + C = F^{T} F, + +and the scalars :math:`J` and :math:`I_{c}` + +.. math:: + J &= \det(F), \\ + I_{c} &= {\rm trace}(C). + +This demo considers a common neo-Hookean stored energy model of the form + +.. math:: + \psi = \frac{\mu}{2} (I_{c} - 3) - \mu \ln(J) + \frac{\lambda}{2}\ln(J)^{2} + +where :math:`\mu` and :math:`\lambda` are the Lame parameters. These +can be expressed in terms of the more common Young's modulus :math:`E` +and Poisson ratio :math:`\nu` by: + +.. math:: + \lambda = \frac{E \nu}{(1 + \nu)(1 - 2\nu)}, \quad \quad + \mu = \frac{E}{2(1 + \nu)} . + + +Demo parameters +^^^^^^^^^^^^^^^ + +We consider a unit cube domain: + +* :math:`\Omega = (0, 1) \times (0, 1) \times (0, 1)` (unit cube) + +We use the following definitions of the boundary and boundary conditions: + +* :math:`\Gamma_{D_{0}} = 0 \times (0, 1) \times (0, 1)` (Dirichlet boundary) + +* :math:`\Gamma_{D_{1}} = 1 \times (0, 1) \times (0, 1)` (Dirichlet boundary) + +* :math:`\Gamma_{N} = \partial \Omega \backslash \Gamma_{D}` (Neumann boundary) + +* On :math:`\Gamma_{D_{0}}` + .. math:: + u = (&0, \\ + &(0.5 + (y - 0.5)\cos(\pi/3) - (z - 0.5)\sin(\pi/3) - y)/2, \\ + &(0.5 + (y - 0.5)\sin(\pi/3) + (z - 0.5)\cos(\pi/3) - x))/2) +* On :math:`\Gamma_{D_{1}}`: :math:`u = (0, 0, 0)` + +* On :math:`\Gamma_{N}`: :math:`T = (0.1, 0, 0)` + +These are the body forces and material parameters used: + +* :math:`B = (0, -0.5, 0)` + +* :math:`E = 10.0` + +* :math:`\nu = 0.3` + +With the above input the solution for :math:`u` will look as follows: + +.. image:: ../hyperelasticity_u0.png + :scale: 75 + :align: center + +.. image:: ../hyperelasticity_u1.png + :scale: 75 + :align: center + diff --git a/demo/documented/hyperelasticity/cpp/CMakeLists.txt b/demo/documented/hyperelasticity/cpp/CMakeLists.txt new file mode 100644 index 0000000..54d4afe --- /dev/null +++ b/demo/documented/hyperelasticity/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_hyperelasticity) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/hyperelasticity/cpp/HyperElasticity.h b/demo/documented/hyperelasticity/cpp/HyperElasticity.h new file mode 100644 index 0000000..f54696f --- /dev/null +++ b/demo/documented/hyperelasticity/cpp/HyperElasticity.h @@ -0,0 +1,7158 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: False +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __HYPERELASTICITY_H +#define __HYPERELASTICITY_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class hyperelasticity_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + hyperelasticity_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Real', Domain(Cell('tetrahedron', 3)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + + // Compute subdeterminants + + // Get coordinates and map to the reference (FIAT) element + + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + vertex_values[3] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new hyperelasticity_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class hyperelasticity_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + hyperelasticity_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new hyperelasticity_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class hyperelasticity_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + hyperelasticity_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[9]; + for (unsigned int r = 0; r < 9; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 5: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 6: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 9: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 10: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 11: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[4] = vals[1]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[1]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[8] = vals[2]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[2]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[10] = vals[2]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[11] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + vertex_values[9] = dof_values[3]; + // Evaluate function and change variables + vertex_values[1] = dof_values[4]; + vertex_values[4] = dof_values[5]; + vertex_values[7] = dof_values[6]; + vertex_values[10] = dof_values[7]; + // Evaluate function and change variables + vertex_values[2] = dof_values[8]; + vertex_values[5] = dof_values[9]; + vertex_values[8] = dof_values[10]; + vertex_values[11] = dof_values[11]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 3; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new hyperelasticity_finite_element_1(); + break; + } + case 1: + { + return new hyperelasticity_finite_element_1(); + break; + } + case 2: + { + return new hyperelasticity_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new hyperelasticity_finite_element_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class hyperelasticity_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + hyperelasticity_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Real', Domain(Cell('tetrahedron', 3)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 1; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 0; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[0][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[0][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new hyperelasticity_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class hyperelasticity_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + hyperelasticity_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new hyperelasticity_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class hyperelasticity_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + hyperelasticity_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 9; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[0][0]; + dofs[5] = offset + c.entity_indices[0][1]; + dofs[6] = offset + c.entity_indices[0][2]; + dofs[7] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[8] = offset + c.entity_indices[0][0]; + dofs[9] = offset + c.entity_indices[0][1]; + dofs[10] = offset + c.entity_indices[0][2]; + dofs[11] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 6; + dofs[5] = 7; + dofs[6] = 9; + dofs[7] = 10; + dofs[8] = 11; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 6; + dofs[5] = 7; + dofs[6] = 8; + dofs[7] = 10; + dofs[8] = 11; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 7; + dofs[6] = 8; + dofs[7] = 9; + dofs[8] = 11; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 8; + dofs[7] = 9; + dofs[8] = 10; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 4; + dofs[2] = 8; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 5; + dofs[2] = 9; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 6; + dofs[2] = 10; + break; + } + case 3: + { + dofs[0] = 3; + dofs[1] = 7; + dofs[2] = 11; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = vertex_coordinates[0]; + dof_coordinates[4][1] = vertex_coordinates[1]; + dof_coordinates[4][2] = vertex_coordinates[2]; + dof_coordinates[5][0] = vertex_coordinates[3]; + dof_coordinates[5][1] = vertex_coordinates[4]; + dof_coordinates[5][2] = vertex_coordinates[5]; + dof_coordinates[6][0] = vertex_coordinates[6]; + dof_coordinates[6][1] = vertex_coordinates[7]; + dof_coordinates[6][2] = vertex_coordinates[8]; + dof_coordinates[7][0] = vertex_coordinates[9]; + dof_coordinates[7][1] = vertex_coordinates[10]; + dof_coordinates[7][2] = vertex_coordinates[11]; + dof_coordinates[8][0] = vertex_coordinates[0]; + dof_coordinates[8][1] = vertex_coordinates[1]; + dof_coordinates[8][2] = vertex_coordinates[2]; + dof_coordinates[9][0] = vertex_coordinates[3]; + dof_coordinates[9][1] = vertex_coordinates[4]; + dof_coordinates[9][2] = vertex_coordinates[5]; + dof_coordinates[10][0] = vertex_coordinates[6]; + dof_coordinates[10][1] = vertex_coordinates[7]; + dof_coordinates[10][2] = vertex_coordinates[8]; + dof_coordinates[11][0] = vertex_coordinates[9]; + dof_coordinates[11][1] = vertex_coordinates[10]; + dof_coordinates[11][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 3; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new hyperelasticity_dofmap_1(); + break; + } + case 1: + { + return new hyperelasticity_dofmap_1(); + break; + } + case 2: + { + return new hyperelasticity_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new hyperelasticity_dofmap_2(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class hyperelasticity_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + hyperelasticity_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true, false, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius + + + // Array of quadrature weights. + static const double W4[4] = {0.0416666666666667, 0.0416666666666667, 0.0416666666666667, 0.0416666666666667}; + // Quadrature points on the UFC reference element: (0.585410196624969, 0.138196601125011, 0.138196601125011), (0.138196601125011, 0.585410196624969, 0.138196601125011), (0.138196601125011, 0.138196601125011, 0.585410196624969), (0.138196601125011, 0.138196601125011, 0.138196601125011) + + // Values of basis functions at quadrature points. + static const double FE0_C0[4][12] = \ + {{0.138196601125009, 0.585410196624969, 0.138196601125011, 0.138196601125011, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.138196601125009, 0.138196601125011, 0.585410196624969, 0.138196601125011, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.138196601125009, 0.138196601125011, 0.138196601125011, 0.585410196624969, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.585410196624967, 0.138196601125011, 0.138196601125011, 0.138196601125011, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C0_D001[4][12] = \ + {{-1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C0_D010[4][12] = \ + {{-1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C0_D100[4][12] = \ + {{-1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C1[4][12] = \ + {{0.0, 0.0, 0.0, 0.0, 0.138196601125009, 0.585410196624969, 0.138196601125011, 0.138196601125011, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.138196601125009, 0.138196601125011, 0.585410196624969, 0.138196601125011, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.138196601125009, 0.138196601125011, 0.138196601125011, 0.585410196624969, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.585410196624967, 0.138196601125011, 0.138196601125011, 0.138196601125011, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C1_D001[4][12] = \ + {{0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C1_D010[4][12] = \ + {{0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C1_D100[4][12] = \ + {{0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C2[4][12] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.138196601125009, 0.585410196624969, 0.138196601125011, 0.138196601125011}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.138196601125009, 0.138196601125011, 0.585410196624969, 0.138196601125011}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.138196601125009, 0.138196601125011, 0.138196601125011, 0.585410196624969}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.585410196624967, 0.138196601125011, 0.138196601125011, 0.138196601125011}}; + + static const double FE0_C2_D001[4][12] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0}}; + + static const double FE0_C2_D010[4][12] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0}}; + + static const double FE0_C2_D100[4][12] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0}}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 12; r++) + { + A[r] = 0.0; + } // end loop over 'r' + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', False), ('ignore ones', False), ('ignore zero tables', False), ('optimisation', False), ('remove zero terms', False) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 47232 + for (unsigned int ip = 0; ip < 4; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + double F6 = 0.0; + double F7 = 0.0; + double F8 = 0.0; + double F9 = 0.0; + double F10 = 0.0; + double F11 = 0.0; + + // Total number of operations to compute function values = 288 + for (unsigned int r = 0; r < 12; r++) + { + F0 += FE0_C0[ip][r]*w[1][r]; + F1 += FE0_C1[ip][r]*w[1][r]; + F2 += FE0_C2[ip][r]*w[1][r]; + F3 += FE0_C0_D100[ip][r]*w[0][r]; + F4 += FE0_C0_D010[ip][r]*w[0][r]; + F5 += FE0_C0_D001[ip][r]*w[0][r]; + F6 += FE0_C1_D100[ip][r]*w[0][r]; + F7 += FE0_C1_D010[ip][r]*w[0][r]; + F8 += FE0_C1_D001[ip][r]*w[0][r]; + F9 += FE0_C2_D100[ip][r]*w[0][r]; + F10 += FE0_C2_D010[ip][r]*w[0][r]; + F11 += FE0_C2_D001[ip][r]*w[0][r]; + } // end loop over 'r' + + // Number of operations for primary indices: 11520 + for (unsigned int j = 0; j < 12; j++) + { + // Number of operations to compute entry: 960 + A[j] += (((((((((K[2]*FE0_C0_D100[ip][j] + K[5]*FE0_C0_D010[ip][j] + K[8]*FE0_C0_D001[ip][j]))*((((K[0]*F6 + K[3]*F7 + K[6]*F8))*((K[1]*F9 + K[4]*F10 + K[7]*F11)) + (-1.0)*(((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))*((K[0]*F9 + K[3]*F10 + K[6]*F11))))) + ((((((K[0]*FE0_C2_D100[ip][j] + K[3]*FE0_C2_D010[ip][j] + K[6]*FE0_C2_D001[ip][j]))*((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8))) + ((K[1]*FE0_C1_D100[ip][j] + K[4]*FE0_C1_D010[ip][j] + K[7]*FE0_C1_D001[ip][j]))*((K[0]*F9 + K[3]*F10 + K[6]*F11))))*(-1.0) + (((K[0]*FE0_C1_D100[ip][j] + K[3]*FE0_C1_D010[ip][j] + K[6]*FE0_C1_D001[ip][j]))*((K[1]*F9 + K[4]*F10 + K[7]*F11)) + ((K[1]*FE0_C2_D100[ip][j] + K[4]*FE0_C2_D010[ip][j] + K[7]*FE0_C2_D001[ip][j]))*((K[0]*F6 + K[3]*F7 + K[6]*F8)))))*((K[2]*F3 + K[5]*F4 + K[8]*F5))) + (((((((K[1]*FE0_C1_D100[ip][j] + K[4]*FE0_C1_D010[ip][j] + K[7]*FE0_C1_D001[ip][j]))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11))) + ((K[2]*FE0_C2_D100[ip][j] + K[5]*FE0_C2_D010[ip][j] + K[8]*FE0_C2_D001[ip][j]))*((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))) + ((((K[2]*FE0_C1_D100[ip][j] + K[5]*FE0_C1_D010[ip][j] + K[8]*FE0_C1_D001[ip][j]))*((K[1]*F9 + K[4]*F10 + K[7]*F11)) + ((K[1]*FE0_C2_D100[ip][j] + K[4]*FE0_C2_D010[ip][j] + K[7]*FE0_C2_D001[ip][j]))*((K[2]*F6 + K[5]*F7 + K[8]*F8))))*(-1.0)))*((1.0 + (K[0]*F3 + K[3]*F4 + K[6]*F5))) + ((K[0]*FE0_C0_D100[ip][j] + K[3]*FE0_C0_D010[ip][j] + K[6]*FE0_C0_D001[ip][j]))*((((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11))) + (-1.0)*(((K[2]*F6 + K[5]*F7 + K[8]*F8))*((K[1]*F9 + K[4]*F10 + K[7]*F11)))))) + ((((((K[0]*FE0_C2_D100[ip][j] + K[3]*FE0_C2_D010[ip][j] + K[6]*FE0_C2_D001[ip][j]))*((K[2]*F6 + K[5]*F7 + K[8]*F8)) + ((K[2]*FE0_C1_D100[ip][j] + K[5]*FE0_C1_D010[ip][j] + K[8]*FE0_C1_D001[ip][j]))*((K[0]*F9 + K[3]*F10 + K[6]*F11))) + ((((K[2]*FE0_C2_D100[ip][j] + K[5]*FE0_C2_D010[ip][j] + K[8]*FE0_C2_D001[ip][j]))*((K[0]*F6 + K[3]*F7 + K[6]*F8)) + ((K[0]*FE0_C1_D100[ip][j] + K[3]*FE0_C1_D010[ip][j] + K[6]*FE0_C1_D001[ip][j]))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11)))))*(-1.0)))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + ((K[1]*FE0_C0_D100[ip][j] + K[4]*FE0_C0_D010[ip][j] + K[7]*FE0_C0_D001[ip][j]))*((((K[2]*F6 + K[5]*F7 + K[8]*F8))*((K[0]*F9 + K[3]*F10 + K[6]*F11)) + (-1.0)*(((K[0]*F6 + K[3]*F7 + K[6]*F8))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11)))))))))/((((K[2]*F3 + K[5]*F4 + K[8]*F5))*((((K[0]*F6 + K[3]*F7 + K[6]*F8))*((K[1]*F9 + K[4]*F10 + K[7]*F11)) + (-1.0)*(((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))*((K[0]*F9 + K[3]*F10 + K[6]*F11))))) + (((1.0 + (K[0]*F3 + K[3]*F4 + K[6]*F5)))*((((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11))) + (-1.0)*(((K[2]*F6 + K[5]*F7 + K[8]*F8))*((K[1]*F9 + K[4]*F10 + K[7]*F11))))) + ((K[1]*F3 + K[4]*F4 + K[7]*F5))*((((K[2]*F6 + K[5]*F7 + K[8]*F8))*((K[0]*F9 + K[3]*F10 + K[6]*F11)) + (-1.0)*(((K[0]*F6 + K[3]*F7 + K[6]*F8))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11))))))))))*2.0)*(std::log((((K[2]*F3 + K[5]*F4 + K[8]*F5))*((((K[0]*F6 + K[3]*F7 + K[6]*F8))*((K[1]*F9 + K[4]*F10 + K[7]*F11)) + (-1.0)*(((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))*((K[0]*F9 + K[3]*F10 + K[6]*F11))))) + (((1.0 + (K[0]*F3 + K[3]*F4 + K[6]*F5)))*((((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11))) + (-1.0)*(((K[2]*F6 + K[5]*F7 + K[8]*F8))*((K[1]*F9 + K[4]*F10 + K[7]*F11))))) + ((K[1]*F3 + K[4]*F4 + K[7]*F5))*((((K[2]*F6 + K[5]*F7 + K[8]*F8))*((K[0]*F9 + K[3]*F10 + K[6]*F11)) + (-1.0)*(((K[0]*F6 + K[3]*F7 + K[6]*F8))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11)))))))))))*w[4][0]/(2.0) + ((((2.0*(((K[0]*FE0_C1_D100[ip][j] + K[3]*FE0_C1_D010[ip][j] + K[6]*FE0_C1_D001[ip][j]))*((K[0]*F6 + K[3]*F7 + K[6]*F8))) + 2.0*(((K[0]*FE0_C0_D100[ip][j] + K[3]*FE0_C0_D010[ip][j] + K[6]*FE0_C0_D001[ip][j]))*((1.0 + (K[0]*F3 + K[3]*F4 + K[6]*F5)))) + 2.0*(((K[0]*FE0_C2_D100[ip][j] + K[3]*FE0_C2_D010[ip][j] + K[6]*FE0_C2_D001[ip][j]))*((K[0]*F9 + K[3]*F10 + K[6]*F11)))) + (2.0*(((K[2]*FE0_C1_D100[ip][j] + K[5]*FE0_C1_D010[ip][j] + K[8]*FE0_C1_D001[ip][j]))*((K[2]*F6 + K[5]*F7 + K[8]*F8))) + 2.0*(((K[2]*FE0_C0_D100[ip][j] + K[5]*FE0_C0_D010[ip][j] + K[8]*FE0_C0_D001[ip][j]))*((K[2]*F3 + K[5]*F4 + K[8]*F5))) + 2.0*(((K[2]*FE0_C2_D100[ip][j] + K[5]*FE0_C2_D010[ip][j] + K[8]*FE0_C2_D001[ip][j]))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11))))) + (2.0*(((K[1]*FE0_C1_D100[ip][j] + K[4]*FE0_C1_D010[ip][j] + K[7]*FE0_C1_D001[ip][j]))*((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))) + 2.0*(((K[1]*FE0_C2_D100[ip][j] + K[4]*FE0_C2_D010[ip][j] + K[7]*FE0_C2_D001[ip][j]))*((K[1]*F9 + K[4]*F10 + K[7]*F11))) + 2.0*(((K[1]*FE0_C0_D100[ip][j] + K[4]*FE0_C0_D010[ip][j] + K[7]*FE0_C0_D001[ip][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))))*w[3][0]/(2.0) + ((((((K[2]*FE0_C0_D100[ip][j] + K[5]*FE0_C0_D010[ip][j] + K[8]*FE0_C0_D001[ip][j]))*((((K[0]*F6 + K[3]*F7 + K[6]*F8))*((K[1]*F9 + K[4]*F10 + K[7]*F11)) + (-1.0)*(((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))*((K[0]*F9 + K[3]*F10 + K[6]*F11))))) + ((((((K[0]*FE0_C2_D100[ip][j] + K[3]*FE0_C2_D010[ip][j] + K[6]*FE0_C2_D001[ip][j]))*((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8))) + ((K[1]*FE0_C1_D100[ip][j] + K[4]*FE0_C1_D010[ip][j] + K[7]*FE0_C1_D001[ip][j]))*((K[0]*F9 + K[3]*F10 + K[6]*F11))))*(-1.0) + (((K[0]*FE0_C1_D100[ip][j] + K[3]*FE0_C1_D010[ip][j] + K[6]*FE0_C1_D001[ip][j]))*((K[1]*F9 + K[4]*F10 + K[7]*F11)) + ((K[1]*FE0_C2_D100[ip][j] + K[4]*FE0_C2_D010[ip][j] + K[7]*FE0_C2_D001[ip][j]))*((K[0]*F6 + K[3]*F7 + K[6]*F8)))))*((K[2]*F3 + K[5]*F4 + K[8]*F5))) + (((((((K[1]*FE0_C1_D100[ip][j] + K[4]*FE0_C1_D010[ip][j] + K[7]*FE0_C1_D001[ip][j]))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11))) + ((K[2]*FE0_C2_D100[ip][j] + K[5]*FE0_C2_D010[ip][j] + K[8]*FE0_C2_D001[ip][j]))*((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))) + ((((K[2]*FE0_C1_D100[ip][j] + K[5]*FE0_C1_D010[ip][j] + K[8]*FE0_C1_D001[ip][j]))*((K[1]*F9 + K[4]*F10 + K[7]*F11)) + ((K[1]*FE0_C2_D100[ip][j] + K[4]*FE0_C2_D010[ip][j] + K[7]*FE0_C2_D001[ip][j]))*((K[2]*F6 + K[5]*F7 + K[8]*F8))))*(-1.0)))*((1.0 + (K[0]*F3 + K[3]*F4 + K[6]*F5))) + ((K[0]*FE0_C0_D100[ip][j] + K[3]*FE0_C0_D010[ip][j] + K[6]*FE0_C0_D001[ip][j]))*((((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11))) + (-1.0)*(((K[2]*F6 + K[5]*F7 + K[8]*F8))*((K[1]*F9 + K[4]*F10 + K[7]*F11)))))) + ((((((K[0]*FE0_C2_D100[ip][j] + K[3]*FE0_C2_D010[ip][j] + K[6]*FE0_C2_D001[ip][j]))*((K[2]*F6 + K[5]*F7 + K[8]*F8)) + ((K[2]*FE0_C1_D100[ip][j] + K[5]*FE0_C1_D010[ip][j] + K[8]*FE0_C1_D001[ip][j]))*((K[0]*F9 + K[3]*F10 + K[6]*F11))) + ((((K[2]*FE0_C2_D100[ip][j] + K[5]*FE0_C2_D010[ip][j] + K[8]*FE0_C2_D001[ip][j]))*((K[0]*F6 + K[3]*F7 + K[6]*F8)) + ((K[0]*FE0_C1_D100[ip][j] + K[3]*FE0_C1_D010[ip][j] + K[6]*FE0_C1_D001[ip][j]))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11)))))*(-1.0)))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + ((K[1]*FE0_C0_D100[ip][j] + K[4]*FE0_C0_D010[ip][j] + K[7]*FE0_C0_D001[ip][j]))*((((K[2]*F6 + K[5]*F7 + K[8]*F8))*((K[0]*F9 + K[3]*F10 + K[6]*F11)) + (-1.0)*(((K[0]*F6 + K[3]*F7 + K[6]*F8))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11)))))))))/((((K[2]*F3 + K[5]*F4 + K[8]*F5))*((((K[0]*F6 + K[3]*F7 + K[6]*F8))*((K[1]*F9 + K[4]*F10 + K[7]*F11)) + (-1.0)*(((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))*((K[0]*F9 + K[3]*F10 + K[6]*F11))))) + (((1.0 + (K[0]*F3 + K[3]*F4 + K[6]*F5)))*((((1.0 + (K[1]*F6 + K[4]*F7 + K[7]*F8)))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11))) + (-1.0)*(((K[2]*F6 + K[5]*F7 + K[8]*F8))*((K[1]*F9 + K[4]*F10 + K[7]*F11))))) + ((K[1]*F3 + K[4]*F4 + K[7]*F5))*((((K[2]*F6 + K[5]*F7 + K[8]*F8))*((K[0]*F9 + K[3]*F10 + K[6]*F11)) + (-1.0)*(((K[0]*F6 + K[3]*F7 + K[6]*F8))*((1.0 + (K[2]*F9 + K[5]*F10 + K[8]*F11))))))))))*w[3][0])*(-1.0))) + ((FE0_C0[ip][j]*F0 + FE0_C1[ip][j]*F1 + FE0_C2[ip][j]*F2))*(-1.0))*W4[ip]*det; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class hyperelasticity_exterior_facet_integral_0_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + hyperelasticity_exterior_facet_integral_0_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_exterior_facet_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, false, true, false, false}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 59 + // Number of operations (multiply-add pairs) for geometry tensor: 12 + // Number of operations (multiply-add pairs) for tensor contraction: 90 + // Total number of operations (multiply-add pairs): 161 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Get vertices on face + static unsigned int face_vertices[4][3] = {{1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 1, 2}}; + const unsigned int v0 = face_vertices[facet][0]; + const unsigned int v1 = face_vertices[facet][1]; + const unsigned int v2 = face_vertices[facet][2]; + + // Compute scale factor (area of face scaled by area of reference triangle) + const double a0 = (vertex_coordinates[3*v0 + 1]*vertex_coordinates[3*v1 + 2] + vertex_coordinates[3*v0 + 2]*vertex_coordinates[3*v2 + 1] + vertex_coordinates[3*v1 + 1]*vertex_coordinates[3*v2 + 2]) - (vertex_coordinates[3*v2 + 1]*vertex_coordinates[3*v1 + 2] + vertex_coordinates[3*v2 + 2]*vertex_coordinates[3*v0 + 1] + vertex_coordinates[3*v1 + 1]*vertex_coordinates[3*v0 + 2]); + + const double a1 = (vertex_coordinates[3*v0 + 2]*vertex_coordinates[3*v1 + 0] + vertex_coordinates[3*v0 + 0]*vertex_coordinates[3*v2 + 2] + vertex_coordinates[3*v1 + 2]*vertex_coordinates[3*v2 + 0]) - (vertex_coordinates[3*v2 + 2]*vertex_coordinates[3*v1 + 0] + vertex_coordinates[3*v2 + 0]*vertex_coordinates[3*v0 + 2] + vertex_coordinates[3*v1 + 2]*vertex_coordinates[3*v0 + 0]); + + const double a2 = (vertex_coordinates[3*v0 + 0]*vertex_coordinates[3*v1 + 1] + vertex_coordinates[3*v0 + 1]*vertex_coordinates[3*v2 + 0] + vertex_coordinates[3*v1 + 0]*vertex_coordinates[3*v2 + 1]) - (vertex_coordinates[3*v2 + 0]*vertex_coordinates[3*v1 + 1] + vertex_coordinates[3*v2 + 1]*vertex_coordinates[3*v0 + 0] + vertex_coordinates[3*v1 + 0]*vertex_coordinates[3*v0 + 1]); + + const double det = std::sqrt(a0*a0 + a1*a1 + a2*a2); + + + // Compute geometry tensor + const double G0_0 = det*w[2][0]*(1.0); + const double G0_1 = det*w[2][1]*(1.0); + const double G0_2 = det*w[2][2]*(1.0); + const double G0_3 = det*w[2][3]*(1.0); + const double G0_4 = det*w[2][4]*(1.0); + const double G0_5 = det*w[2][5]*(1.0); + const double G0_6 = det*w[2][6]*(1.0); + const double G0_7 = det*w[2][7]*(1.0); + const double G0_8 = det*w[2][8]*(1.0); + const double G0_9 = det*w[2][9]*(1.0); + const double G0_10 = det*w[2][10]*(1.0); + const double G0_11 = det*w[2][11]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = -0.0833333333333333*G0_1 - 0.0416666666666667*G0_2 - 0.0416666666666667*G0_3; + A[2] = -0.0416666666666667*G0_1 - 0.0833333333333333*G0_2 - 0.0416666666666667*G0_3; + A[3] = -0.0416666666666667*G0_1 - 0.0416666666666667*G0_2 - 0.0833333333333333*G0_3; + A[4] = 0.0; + A[5] = -0.0833333333333333*G0_5 - 0.0416666666666667*G0_6 - 0.0416666666666667*G0_7; + A[6] = -0.0416666666666667*G0_5 - 0.0833333333333333*G0_6 - 0.0416666666666667*G0_7; + A[7] = -0.0416666666666667*G0_5 - 0.0416666666666667*G0_6 - 0.0833333333333333*G0_7; + A[8] = 0.0; + A[9] = -0.0833333333333333*G0_9 - 0.0416666666666667*G0_10 - 0.0416666666666667*G0_11; + A[10] = -0.0416666666666667*G0_9 - 0.0833333333333333*G0_10 - 0.0416666666666667*G0_11; + A[11] = -0.0416666666666667*G0_9 - 0.0416666666666667*G0_10 - 0.0833333333333333*G0_11; + break; + } + case 1: + { + A[0] = -0.0833333333333334*G0_0 - 0.0416666666666667*G0_2 - 0.0416666666666667*G0_3; + A[1] = 0.0; + A[2] = -0.0416666666666667*G0_0 - 0.0833333333333333*G0_2 - 0.0416666666666667*G0_3; + A[3] = -0.0416666666666667*G0_0 - 0.0416666666666667*G0_2 - 0.0833333333333333*G0_3; + A[4] = -0.0833333333333334*G0_4 - 0.0416666666666667*G0_6 - 0.0416666666666667*G0_7; + A[5] = 0.0; + A[6] = -0.0416666666666667*G0_4 - 0.0833333333333333*G0_6 - 0.0416666666666667*G0_7; + A[7] = -0.0416666666666667*G0_4 - 0.0416666666666667*G0_6 - 0.0833333333333333*G0_7; + A[8] = -0.0833333333333334*G0_8 - 0.0416666666666667*G0_10 - 0.0416666666666667*G0_11; + A[9] = 0.0; + A[10] = -0.0416666666666667*G0_8 - 0.0833333333333333*G0_10 - 0.0416666666666667*G0_11; + A[11] = -0.0416666666666667*G0_8 - 0.0416666666666667*G0_10 - 0.0833333333333333*G0_11; + break; + } + case 2: + { + A[0] = -0.0833333333333333*G0_0 - 0.0416666666666667*G0_1 - 0.0416666666666667*G0_3; + A[1] = -0.0416666666666667*G0_0 - 0.0833333333333333*G0_1 - 0.0416666666666667*G0_3; + A[2] = 0.0; + A[3] = -0.0416666666666667*G0_0 - 0.0416666666666666*G0_1 - 0.0833333333333333*G0_3; + A[4] = -0.0833333333333333*G0_4 - 0.0416666666666667*G0_5 - 0.0416666666666667*G0_7; + A[5] = -0.0416666666666667*G0_4 - 0.0833333333333333*G0_5 - 0.0416666666666667*G0_7; + A[6] = 0.0; + A[7] = -0.0416666666666667*G0_4 - 0.0416666666666666*G0_5 - 0.0833333333333333*G0_7; + A[8] = -0.0833333333333333*G0_8 - 0.0416666666666667*G0_9 - 0.0416666666666667*G0_11; + A[9] = -0.0416666666666667*G0_8 - 0.0833333333333333*G0_9 - 0.0416666666666667*G0_11; + A[10] = 0.0; + A[11] = -0.0416666666666667*G0_8 - 0.0416666666666666*G0_9 - 0.0833333333333333*G0_11; + break; + } + case 3: + { + A[0] = -0.0833333333333334*G0_0 - 0.0416666666666667*G0_1 - 0.0416666666666667*G0_2; + A[1] = -0.0416666666666667*G0_0 - 0.0833333333333333*G0_1 - 0.0416666666666666*G0_2; + A[2] = -0.0416666666666667*G0_0 - 0.0416666666666666*G0_1 - 0.0833333333333333*G0_2; + A[3] = 0.0; + A[4] = -0.0833333333333334*G0_4 - 0.0416666666666667*G0_5 - 0.0416666666666667*G0_6; + A[5] = -0.0416666666666667*G0_4 - 0.0833333333333333*G0_5 - 0.0416666666666666*G0_6; + A[6] = -0.0416666666666667*G0_4 - 0.0416666666666666*G0_5 - 0.0833333333333333*G0_6; + A[7] = 0.0; + A[8] = -0.0833333333333334*G0_8 - 0.0416666666666667*G0_9 - 0.0416666666666667*G0_10; + A[9] = -0.0416666666666667*G0_8 - 0.0833333333333333*G0_9 - 0.0416666666666666*G0_10; + A[10] = -0.0416666666666667*G0_8 - 0.0416666666666666*G0_9 - 0.0833333333333333*G0_10; + A[11] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class hyperelasticity_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + hyperelasticity_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius + + + // Array of quadrature weights. + static const double W1 = 0.166666666666667; + // Quadrature points on the UFC reference element: (0.25, 0.25, 0.25) + + // Values of basis functions at quadrature points. + static const double FE0_C0_D001[1][12] = \ + {{-1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C0_D010[1][12] = \ + {{-1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C0_D100[1][12] = \ + {{-1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C1_D001[1][12] = \ + {{0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C1_D010[1][12] = \ + {{0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C1_D100[1][12] = \ + {{0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double FE0_C2_D001[1][12] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0}}; + + static const double FE0_C2_D010[1][12] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0}}; + + static const double FE0_C2_D100[1][12] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0}}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 144; r++) + { + A[r] = 0.0; + } // end loop over 'r' + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', False), ('ignore ones', False), ('ignore zero tables', False), ('optimisation', False), ('remove zero terms', False) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 506520 + for (unsigned int ip = 0; ip < 1; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + double F6 = 0.0; + double F7 = 0.0; + double F8 = 0.0; + + // Total number of operations to compute function values = 216 + for (unsigned int r = 0; r < 12; r++) + { + F0 += FE0_C1_D100[0][r]*w[0][r]; + F1 += FE0_C1_D010[0][r]*w[0][r]; + F2 += FE0_C1_D001[0][r]*w[0][r]; + F3 += FE0_C2_D100[0][r]*w[0][r]; + F4 += FE0_C2_D010[0][r]*w[0][r]; + F5 += FE0_C2_D001[0][r]*w[0][r]; + F6 += FE0_C0_D100[0][r]*w[0][r]; + F7 += FE0_C0_D010[0][r]*w[0][r]; + F8 += FE0_C0_D001[0][r]*w[0][r]; + } // end loop over 'r' + + // Number of operations for primary indices: 506304 + for (unsigned int j = 0; j < 12; j++) + { + for (unsigned int k = 0; k < 12; k++) + { + // Number of operations to compute entry: 3516 + A[j*12 + k] += ((((((((((((K[0]*FE0_C0_D100[0][j] + K[3]*FE0_C0_D010[0][j] + K[6]*FE0_C0_D001[0][j]))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((((((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)) + ((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))*(-1.0) + (((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0)))))*(((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0))) + (((K[1]*FE0_C0_D100[0][j] + K[4]*FE0_C0_D010[0][j] + K[7]*FE0_C0_D001[0][j]))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5)))) + (((((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*((K[2]*F0 + K[5]*F1 + K[8]*F2))) + ((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))))*(-1.0)))*((K[1]*F6 + K[4]*F7 + K[7]*F8)))) + ((((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + ((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))) + ((((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))*(-1.0)))*((K[2]*F6 + K[5]*F7 + K[8]*F8)) + ((K[2]*FE0_C0_D100[0][j] + K[5]*FE0_C0_D010[0][j] + K[8]*FE0_C0_D001[0][j]))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5)))))))/((((((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((K[1]*F6 + K[4]*F7 + K[7]*F8))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + ((K[2]*F6 + K[5]*F7 + K[8]*F8))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))))))*((((((((((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))))*(-1.0) + (((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)))))*((K[1]*F6 + K[4]*F7 + K[7]*F8)) + ((K[1]*FE0_C0_D100[0][k] + K[4]*FE0_C0_D010[0][k] + K[7]*FE0_C0_D001[0][k]))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + (((K[0]*FE0_C0_D100[0][k] + K[3]*FE0_C0_D010[0][k] + K[6]*FE0_C0_D001[0][k]))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((((((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)) + ((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))*(-1.0) + (((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0)) + ((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))))*(((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0)))) + (((K[2]*FE0_C0_D100[0][k] + K[5]*FE0_C0_D010[0][k] + K[8]*FE0_C0_D001[0][k]))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + ((((((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))*(-1.0) + (((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[0]*F0 + K[3]*F1 + K[6]*F2)) + ((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((K[1]*F3 + K[4]*F4 + K[7]*F5)))))*((K[2]*F6 + K[5]*F7 + K[8]*F8))))))*(-1.0) + (((((K[0]*FE0_C0_D100[0][j] + K[3]*FE0_C0_D010[0][j] + K[6]*FE0_C0_D001[0][j]))*((((((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)) + ((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))*(-1.0) + (((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0)) + ((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))))) + (((K[0]*FE0_C0_D100[0][k] + K[3]*FE0_C0_D010[0][k] + K[6]*FE0_C0_D001[0][k]))*((((((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)) + ((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))*(-1.0) + (((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))) + ((((((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k])) + ((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))))*(-1.0) + (((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k])) + ((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k])))))*(((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0)))) + ((((K[1]*FE0_C0_D100[0][k] + K[4]*FE0_C0_D010[0][k] + K[7]*FE0_C0_D001[0][k]))*(((((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*((K[2]*F0 + K[5]*F1 + K[8]*F2))) + ((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))))*(-1.0))) + (((((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k])) + ((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))) + ((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k])) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))))*(-1.0)))*((K[1]*F6 + K[4]*F7 + K[7]*F8))) + ((K[1]*FE0_C0_D100[0][j] + K[4]*FE0_C0_D010[0][j] + K[7]*FE0_C0_D001[0][j]))*((((((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))))*(-1.0) + (((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*((K[2]*F0 + K[5]*F1 + K[8]*F2))))))) + (((K[2]*FE0_C0_D100[0][j] + K[5]*FE0_C0_D010[0][j] + K[8]*FE0_C0_D001[0][j]))*((((((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))*(-1.0) + (((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[0]*F0 + K[3]*F1 + K[6]*F2)) + ((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))) + (((K[2]*FE0_C0_D100[0][k] + K[5]*FE0_C0_D010[0][k] + K[8]*FE0_C0_D001[0][k]))*(((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + ((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))) + ((((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))*(-1.0))) + ((((((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k])) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))))*(-1.0) + (((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k])) + ((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k])))))*((K[2]*F6 + K[5]*F7 + K[8]*F8))))))/((((((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((K[1]*F6 + K[4]*F7 + K[7]*F8))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + ((K[2]*F6 + K[5]*F7 + K[8]*F8))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))))))*w[1][0])*(-1.0) + ((((((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k])) + ((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))) + (((K[1]*FE0_C0_D100[0][k] + K[4]*FE0_C0_D010[0][k] + K[7]*FE0_C0_D001[0][k]))*((K[1]*FE0_C0_D100[0][j] + K[4]*FE0_C0_D010[0][j] + K[7]*FE0_C0_D001[0][j])) + ((K[1]*FE0_C0_D100[0][j] + K[4]*FE0_C0_D010[0][j] + K[7]*FE0_C0_D001[0][j]))*((K[1]*FE0_C0_D100[0][k] + K[4]*FE0_C0_D010[0][k] + K[7]*FE0_C0_D001[0][k]))) + (((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k])) + ((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j])))) + ((((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k])) + ((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))) + (((K[2]*FE0_C0_D100[0][j] + K[5]*FE0_C0_D010[0][j] + K[8]*FE0_C0_D001[0][j]))*((K[2]*FE0_C0_D100[0][k] + K[5]*FE0_C0_D010[0][k] + K[8]*FE0_C0_D001[0][k])) + ((K[2]*FE0_C0_D100[0][k] + K[5]*FE0_C0_D010[0][k] + K[8]*FE0_C0_D001[0][k]))*((K[2]*FE0_C0_D100[0][j] + K[5]*FE0_C0_D010[0][j] + K[8]*FE0_C0_D001[0][j]))) + (((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j])) + ((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k])))) + ((((K[0]*FE0_C0_D100[0][j] + K[3]*FE0_C0_D010[0][j] + K[6]*FE0_C0_D001[0][j]))*((K[0]*FE0_C0_D100[0][k] + K[3]*FE0_C0_D010[0][k] + K[6]*FE0_C0_D001[0][k])) + ((K[0]*FE0_C0_D100[0][k] + K[3]*FE0_C0_D010[0][k] + K[6]*FE0_C0_D001[0][k]))*((K[0]*FE0_C0_D100[0][j] + K[3]*FE0_C0_D010[0][j] + K[6]*FE0_C0_D001[0][j]))) + (((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k])) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))) + (((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j])) + ((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))))))*w[1][0]/(2.0)) + ((((((((((((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))))*(-1.0) + (((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)))))*((K[1]*F6 + K[4]*F7 + K[7]*F8)) + ((K[1]*FE0_C0_D100[0][k] + K[4]*FE0_C0_D010[0][k] + K[7]*FE0_C0_D001[0][k]))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + (((K[0]*FE0_C0_D100[0][k] + K[3]*FE0_C0_D010[0][k] + K[6]*FE0_C0_D001[0][k]))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((((((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)) + ((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))*(-1.0) + (((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0)) + ((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))))*(((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0)))) + (((K[2]*FE0_C0_D100[0][k] + K[5]*FE0_C0_D010[0][k] + K[8]*FE0_C0_D001[0][k]))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + ((((((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))*(-1.0) + (((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[0]*F0 + K[3]*F1 + K[6]*F2)) + ((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((K[1]*F3 + K[4]*F4 + K[7]*F5)))))*((K[2]*F6 + K[5]*F7 + K[8]*F8))))/((((((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((K[1]*F6 + K[4]*F7 + K[7]*F8))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + ((K[2]*F6 + K[5]*F7 + K[8]*F8))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))))))*(((((((K[0]*FE0_C0_D100[0][j] + K[3]*FE0_C0_D010[0][j] + K[6]*FE0_C0_D001[0][j]))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((((((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)) + ((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))*(-1.0) + (((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0)))))*(((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0))) + (((K[1]*FE0_C0_D100[0][j] + K[4]*FE0_C0_D010[0][j] + K[7]*FE0_C0_D001[0][j]))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5)))) + (((((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*((K[2]*F0 + K[5]*F1 + K[8]*F2))) + ((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))))*(-1.0)))*((K[1]*F6 + K[4]*F7 + K[7]*F8)))) + ((((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + ((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))) + ((((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))*(-1.0)))*((K[2]*F6 + K[5]*F7 + K[8]*F8)) + ((K[2]*FE0_C0_D100[0][j] + K[5]*FE0_C0_D010[0][j] + K[8]*FE0_C0_D001[0][j]))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5)))))))/((((((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((K[1]*F6 + K[4]*F7 + K[7]*F8))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + ((K[2]*F6 + K[5]*F7 + K[8]*F8))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))))))*2.0) + ((((((((((K[0]*FE0_C0_D100[0][j] + K[3]*FE0_C0_D010[0][j] + K[6]*FE0_C0_D001[0][j]))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((((((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)) + ((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))*(-1.0) + (((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0)))))*(((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0))) + (((K[1]*FE0_C0_D100[0][j] + K[4]*FE0_C0_D010[0][j] + K[7]*FE0_C0_D001[0][j]))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5)))) + (((((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*((K[2]*F0 + K[5]*F1 + K[8]*F2))) + ((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))))*(-1.0)))*((K[1]*F6 + K[4]*F7 + K[7]*F8)))) + ((((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + ((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))) + ((((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))*(-1.0)))*((K[2]*F6 + K[5]*F7 + K[8]*F8)) + ((K[2]*FE0_C0_D100[0][j] + K[5]*FE0_C0_D010[0][j] + K[8]*FE0_C0_D001[0][j]))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5)))))))/((((((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((K[1]*F6 + K[4]*F7 + K[7]*F8))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + ((K[2]*F6 + K[5]*F7 + K[8]*F8))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))))))*((((((((((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))))*(-1.0) + (((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)))))*((K[1]*F6 + K[4]*F7 + K[7]*F8)) + ((K[1]*FE0_C0_D100[0][k] + K[4]*FE0_C0_D010[0][k] + K[7]*FE0_C0_D001[0][k]))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + (((K[0]*FE0_C0_D100[0][k] + K[3]*FE0_C0_D010[0][k] + K[6]*FE0_C0_D001[0][k]))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((((((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)) + ((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))*(-1.0) + (((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0)) + ((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))))*(((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0)))) + (((K[2]*FE0_C0_D100[0][k] + K[5]*FE0_C0_D010[0][k] + K[8]*FE0_C0_D001[0][k]))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + ((((((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))*(-1.0) + (((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[0]*F0 + K[3]*F1 + K[6]*F2)) + ((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((K[1]*F3 + K[4]*F4 + K[7]*F5)))))*((K[2]*F6 + K[5]*F7 + K[8]*F8))))))*(-1.0) + (((((K[0]*FE0_C0_D100[0][j] + K[3]*FE0_C0_D010[0][j] + K[6]*FE0_C0_D001[0][j]))*((((((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)) + ((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))*(-1.0) + (((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0)) + ((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))))) + (((K[0]*FE0_C0_D100[0][k] + K[3]*FE0_C0_D010[0][k] + K[6]*FE0_C0_D001[0][k]))*((((((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[2]*F0 + K[5]*F1 + K[8]*F2)) + ((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))*(-1.0) + (((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))) + ((((((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k])) + ((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))))*(-1.0) + (((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k])) + ((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k])))))*(((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0)))) + ((((K[1]*FE0_C0_D100[0][k] + K[4]*FE0_C0_D010[0][k] + K[7]*FE0_C0_D001[0][k]))*(((((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*((K[2]*F0 + K[5]*F1 + K[8]*F2))) + ((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))))*(-1.0))) + (((((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k])) + ((K[2]*FE0_C1_D100[0][j] + K[5]*FE0_C1_D010[0][j] + K[8]*FE0_C1_D001[0][j]))*((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))) + ((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k])) + ((K[2]*FE0_C2_D100[0][j] + K[5]*FE0_C2_D010[0][j] + K[8]*FE0_C2_D001[0][j]))*((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))))*(-1.0)))*((K[1]*F6 + K[4]*F7 + K[7]*F8))) + ((K[1]*FE0_C0_D100[0][j] + K[4]*FE0_C0_D010[0][j] + K[7]*FE0_C0_D001[0][j]))*((((((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))) + ((K[2]*FE0_C2_D100[0][k] + K[5]*FE0_C2_D010[0][k] + K[8]*FE0_C2_D001[0][k]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))))*(-1.0) + (((K[2]*FE0_C1_D100[0][k] + K[5]*FE0_C1_D010[0][k] + K[8]*FE0_C1_D001[0][k]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*((K[2]*F0 + K[5]*F1 + K[8]*F2))))))) + (((K[2]*FE0_C0_D100[0][j] + K[5]*FE0_C0_D010[0][j] + K[8]*FE0_C0_D001[0][j]))*((((((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))*(-1.0) + (((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k]))*((K[0]*F0 + K[3]*F1 + K[6]*F2)) + ((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k]))*((K[1]*F3 + K[4]*F4 + K[7]*F5))))) + (((K[2]*FE0_C0_D100[0][k] + K[5]*FE0_C0_D010[0][k] + K[8]*FE0_C0_D001[0][k]))*(((((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + ((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[0]*F0 + K[3]*F1 + K[6]*F2))) + ((((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((K[0]*F3 + K[3]*F4 + K[6]*F5)) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*(((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))))*(-1.0))) + ((((((K[1]*FE0_C1_D100[0][j] + K[4]*FE0_C1_D010[0][j] + K[7]*FE0_C1_D001[0][j]))*((K[0]*FE0_C2_D100[0][k] + K[3]*FE0_C2_D010[0][k] + K[6]*FE0_C2_D001[0][k])) + ((K[0]*FE0_C2_D100[0][j] + K[3]*FE0_C2_D010[0][j] + K[6]*FE0_C2_D001[0][j]))*((K[1]*FE0_C1_D100[0][k] + K[4]*FE0_C1_D010[0][k] + K[7]*FE0_C1_D001[0][k]))))*(-1.0) + (((K[1]*FE0_C2_D100[0][j] + K[4]*FE0_C2_D010[0][j] + K[7]*FE0_C2_D001[0][j]))*((K[0]*FE0_C1_D100[0][k] + K[3]*FE0_C1_D010[0][k] + K[6]*FE0_C1_D001[0][k])) + ((K[0]*FE0_C1_D100[0][j] + K[3]*FE0_C1_D010[0][j] + K[6]*FE0_C1_D001[0][j]))*((K[1]*FE0_C2_D100[0][k] + K[4]*FE0_C2_D010[0][k] + K[7]*FE0_C2_D001[0][k])))))*((K[2]*F6 + K[5]*F7 + K[8]*F8))))))/((((((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((K[1]*F6 + K[4]*F7 + K[7]*F8))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + ((K[2]*F6 + K[5]*F7 + K[8]*F8))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))))))*2.0)*(std::log((((((K[0]*F6 + K[3]*F7 + K[6]*F8) + 1.0))*(((-1.0)*(((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5))) + (((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5))))) + ((K[1]*F6 + K[4]*F7 + K[7]*F8))*(((-1.0)*(((K[0]*F0 + K[3]*F1 + K[6]*F2))*((1.0 + (K[2]*F3 + K[5]*F4 + K[8]*F5)))) + ((K[2]*F0 + K[5]*F1 + K[8]*F2))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))) + ((K[2]*F6 + K[5]*F7 + K[8]*F8))*((((K[0]*F0 + K[3]*F1 + K[6]*F2))*((K[1]*F3 + K[4]*F4 + K[7]*F5)) + (-1.0)*((((K[1]*F0 + K[4]*F1 + K[7]*F2) + 1.0))*((K[0]*F3 + K[3]*F4 + K[6]*F5))))))))))*w[2][0]/(2.0))*W1*det; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class hyperelasticity_form_0: public ufc::form +{ +public: + + /// Constructor + hyperelasticity_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "763ccfdc293244408c67e52bb1cc41bf2c984be579263bf1830f951bf476ae418a682cec8e3c06792303ae6dc42992f9303df7846ba72ba1d5313f16948051ac"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 5; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new hyperelasticity_finite_element_2(); + break; + } + case 1: + { + return new hyperelasticity_finite_element_2(); + break; + } + case 2: + { + return new hyperelasticity_finite_element_2(); + break; + } + case 3: + { + return new hyperelasticity_finite_element_2(); + break; + } + case 4: + { + return new hyperelasticity_finite_element_0(); + break; + } + case 5: + { + return new hyperelasticity_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new hyperelasticity_dofmap_2(); + break; + } + case 1: + { + return new hyperelasticity_dofmap_2(); + break; + } + case 2: + { + return new hyperelasticity_dofmap_2(); + break; + } + case 3: + { + return new hyperelasticity_dofmap_2(); + break; + } + case 4: + { + return new hyperelasticity_dofmap_0(); + break; + } + case 5: + { + return new hyperelasticity_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new hyperelasticity_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new hyperelasticity_exterior_facet_integral_0_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class hyperelasticity_form_1: public ufc::form +{ +public: + + /// Constructor + hyperelasticity_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~hyperelasticity_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "da897a9a027ac237332789519da16011c78455a5d4fa7320f630fc067d1a28ddb24638b2b221b2b2a099f72aba3c06aadec6fdece80677e3ad3202ce4b9f5a5f"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 3; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new hyperelasticity_finite_element_2(); + break; + } + case 1: + { + return new hyperelasticity_finite_element_2(); + break; + } + case 2: + { + return new hyperelasticity_finite_element_2(); + break; + } + case 3: + { + return new hyperelasticity_finite_element_0(); + break; + } + case 4: + { + return new hyperelasticity_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new hyperelasticity_dofmap_2(); + break; + } + case 1: + { + return new hyperelasticity_dofmap_2(); + break; + } + case 2: + { + return new hyperelasticity_dofmap_2(); + break; + } + case 3: + { + return new hyperelasticity_dofmap_0(); + break; + } + case 4: + { + return new hyperelasticity_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new hyperelasticity_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace HyperElasticity +{ + +class CoefficientSpace_B: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_B(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_B(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_B(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_B(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_B(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_B(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_B() + { + } + +}; + +class CoefficientSpace_T: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_T(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_T(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_T(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_T(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_T(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_T(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_T() + { + } + +}; + +class CoefficientSpace_lmbda: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_lmbda(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_lmbda(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_lmbda(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_lmbda(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_lmbda(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_lmbda(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_lmbda() + { + } + +}; + +class CoefficientSpace_mu: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_mu(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_mu(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_mu(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_mu(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_mu(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_mu(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_mu() + { + } + +}; + +class CoefficientSpace_u: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_u(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_u() + { + } + +}; + +class Form_F_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_F_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_u Form_F_FunctionSpace_1; + +typedef CoefficientSpace_B Form_F_FunctionSpace_2; + +typedef CoefficientSpace_T Form_F_FunctionSpace_3; + +typedef CoefficientSpace_mu Form_F_FunctionSpace_4; + +typedef CoefficientSpace_lmbda Form_F_FunctionSpace_5; + +class Form_F: public dolfin::Form +{ +public: + + // Constructor + Form_F(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 5), u(*this, 0), B(*this, 1), T(*this, 2), mu(*this, 3), lmbda(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new hyperelasticity_form_0()); + } + + // Constructor + Form_F(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& B, const dolfin::GenericFunction& T, const dolfin::GenericFunction& mu, const dolfin::GenericFunction& lmbda): + dolfin::Form(1, 5), u(*this, 0), B(*this, 1), T(*this, 2), mu(*this, 3), lmbda(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->u = u; + this->B = B; + this->T = T; + this->mu = mu; + this->lmbda = lmbda; + + _ufc_form = std::shared_ptr(new hyperelasticity_form_0()); + } + + // Constructor + Form_F(const dolfin::FunctionSpace& V0, std::shared_ptr u, std::shared_ptr B, std::shared_ptr T, std::shared_ptr mu, std::shared_ptr lmbda): + dolfin::Form(1, 5), u(*this, 0), B(*this, 1), T(*this, 2), mu(*this, 3), lmbda(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->u = *u; + this->B = *B; + this->T = *T; + this->mu = *mu; + this->lmbda = *lmbda; + + _ufc_form = std::shared_ptr(new hyperelasticity_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0): + dolfin::Form(1, 5), u(*this, 0), B(*this, 1), T(*this, 2), mu(*this, 3), lmbda(*this, 4) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new hyperelasticity_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& B, const dolfin::GenericFunction& T, const dolfin::GenericFunction& mu, const dolfin::GenericFunction& lmbda): + dolfin::Form(1, 5), u(*this, 0), B(*this, 1), T(*this, 2), mu(*this, 3), lmbda(*this, 4) + { + _function_spaces[0] = V0; + + this->u = u; + this->B = B; + this->T = T; + this->mu = mu; + this->lmbda = lmbda; + + _ufc_form = std::shared_ptr(new hyperelasticity_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0, std::shared_ptr u, std::shared_ptr B, std::shared_ptr T, std::shared_ptr mu, std::shared_ptr lmbda): + dolfin::Form(1, 5), u(*this, 0), B(*this, 1), T(*this, 2), mu(*this, 3), lmbda(*this, 4) + { + _function_spaces[0] = V0; + + this->u = *u; + this->B = *B; + this->T = *T; + this->mu = *mu; + this->lmbda = *lmbda; + + _ufc_form = std::shared_ptr(new hyperelasticity_form_0()); + } + + // Destructor + ~Form_F() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "u") + return 0; + else if (name == "B") + return 1; + else if (name == "T") + return 2; + else if (name == "mu") + return 3; + else if (name == "lmbda") + return 4; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "u"; + case 1: + return "B"; + case 2: + return "T"; + case 3: + return "mu"; + case 4: + return "lmbda"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_F_FunctionSpace_0 TestSpace; + typedef Form_F_FunctionSpace_1 CoefficientSpace_u; + typedef Form_F_FunctionSpace_2 CoefficientSpace_B; + typedef Form_F_FunctionSpace_3 CoefficientSpace_T; + typedef Form_F_FunctionSpace_4 CoefficientSpace_mu; + typedef Form_F_FunctionSpace_5 CoefficientSpace_lmbda; + + // Coefficients + dolfin::CoefficientAssigner u; + dolfin::CoefficientAssigner B; + dolfin::CoefficientAssigner T; + dolfin::CoefficientAssigner mu; + dolfin::CoefficientAssigner lmbda; +}; + +class Form_J_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_J_FunctionSpace_0() + { + } + +}; + +class Form_J_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new hyperelasticity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new hyperelasticity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_J_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_u Form_J_FunctionSpace_2; + +typedef CoefficientSpace_mu Form_J_FunctionSpace_3; + +typedef CoefficientSpace_lmbda Form_J_FunctionSpace_4; + +class Form_J: public dolfin::Form +{ +public: + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 3), u(*this, 0), mu(*this, 1), lmbda(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new hyperelasticity_form_1()); + } + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& mu, const dolfin::GenericFunction& lmbda): + dolfin::Form(2, 3), u(*this, 0), mu(*this, 1), lmbda(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->u = u; + this->mu = mu; + this->lmbda = lmbda; + + _ufc_form = std::shared_ptr(new hyperelasticity_form_1()); + } + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr u, std::shared_ptr mu, std::shared_ptr lmbda): + dolfin::Form(2, 3), u(*this, 0), mu(*this, 1), lmbda(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->u = *u; + this->mu = *mu; + this->lmbda = *lmbda; + + _ufc_form = std::shared_ptr(new hyperelasticity_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 3), u(*this, 0), mu(*this, 1), lmbda(*this, 2) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new hyperelasticity_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& mu, const dolfin::GenericFunction& lmbda): + dolfin::Form(2, 3), u(*this, 0), mu(*this, 1), lmbda(*this, 2) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->u = u; + this->mu = mu; + this->lmbda = lmbda; + + _ufc_form = std::shared_ptr(new hyperelasticity_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr u, std::shared_ptr mu, std::shared_ptr lmbda): + dolfin::Form(2, 3), u(*this, 0), mu(*this, 1), lmbda(*this, 2) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->u = *u; + this->mu = *mu; + this->lmbda = *lmbda; + + _ufc_form = std::shared_ptr(new hyperelasticity_form_1()); + } + + // Destructor + ~Form_J() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "u") + return 0; + else if (name == "mu") + return 1; + else if (name == "lmbda") + return 2; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "u"; + case 1: + return "mu"; + case 2: + return "lmbda"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_J_FunctionSpace_0 TestSpace; + typedef Form_J_FunctionSpace_1 TrialSpace; + typedef Form_J_FunctionSpace_2 CoefficientSpace_u; + typedef Form_J_FunctionSpace_3 CoefficientSpace_mu; + typedef Form_J_FunctionSpace_4 CoefficientSpace_lmbda; + + // Coefficients + dolfin::CoefficientAssigner u; + dolfin::CoefficientAssigner mu; + dolfin::CoefficientAssigner lmbda; +}; + +// Class typedefs +typedef Form_J BilinearForm; +typedef Form_J JacobianForm; +typedef Form_F LinearForm; +typedef Form_F ResidualForm; +typedef Form_F::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/hyperelasticity/cpp/HyperElasticity.ufl b/demo/documented/hyperelasticity/cpp/HyperElasticity.ufl new file mode 100644 index 0000000..e2aa5b3 --- /dev/null +++ b/demo/documented/hyperelasticity/cpp/HyperElasticity.ufl @@ -0,0 +1,64 @@ +# Copyright (C) 2009-2010 Harish Narayanan and Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg 2011 +# +# First added: 2009-09-29 +# Last changed: 2011-06-28 +# +# The bilinear form a(du, v) and linear form L(v) for +# a hyperelastic model. +# +# Compile this form with FFC: ffc -l dolfin -feliminate_zeros -fprecompute_basis_const -fprecompute_ip_const HyperElasticity.ufl + +# Function spaces +element = VectorElement("Lagrange", tetrahedron, 1) + +# Trial and test functions +du = TrialFunction(element) # Incremental displacement +v = TestFunction(element) # Test function + +# Functions +u = Coefficient(element) # Displacement from previous iteration +B = Coefficient(element) # Body force per unit volume +T = Coefficient(element) # Traction force on the boundary + +# Kinematics +d = u.geometric_dimension() +I = Identity(d) # Identity tensor +F = I + grad(u) # Deformation gradient +C = F.T*F # Right Cauchy-Green tensor + +# Invariants of deformation tensors +Ic = tr(C) +J = det(F) + +# Elasticity parameters +mu = Constant(tetrahedron) +lmbda = Constant(tetrahedron) + +# Stored strain energy density (compressible neo-Hookean model) +psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2 + +# Total potential energy +Pi = psi*dx - inner(B, u)*dx - inner(T, u)*ds + +# First variation of Pi (directional derivative about u in the direction of v) +F = derivative(Pi, u, v) + +# Compute Jacobian of F +J = derivative(F, u, du) diff --git a/demo/documented/hyperelasticity/cpp/compile.log b/demo/documented/hyperelasticity/cpp/compile.log new file mode 100644 index 0000000..40b9623 --- /dev/null +++ b/demo/documented/hyperelasticity/cpp/compile.log @@ -0,0 +1,1487 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form HyperElasticity + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'F' + Geometric dimension: 3 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 5 + Coefficients: '[w_0, w_1, w_2, c_3, c_4]' + Coefficient names: '[u, B, T, mu, lmbda]' + Unique elements: 'Vector<3 x CG1(?)>, R0(?)' + Unique sub elements: 'Vector<3 x CG1(?)>, R0(?), CG1(?)' + + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal Identity. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + + Name: 'J' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, du]' + Number of coefficients: 3 + Coefficients: '[w_0, c_3, c_4]' + Coefficient names: '[u, mu, lmbda]' + Unique elements: 'Vector<3 x CG1(?)>, R0(?)' + Unique sub elements: 'Vector<3 x CG1(?)>, R0(?), CG1(?)' + + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for expression Division. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.200657 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 3 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 3 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {4: {FiniteElement('Real', Domain(Cell('tetrahedron', 3), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0, 0): array([[ 1., 1., 1., 1.]])}}}, VectorElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, dim=3, quad_scheme=None): {None: {None: {(1, 0, 0): array([[[-1., -1., -1., -1.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [-1., -1., -1., -1.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 1., 1., 1., 1.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [-1., -1., -1., -1.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]]]), (0, 1, 0): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 3.88578059e-16, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 3.88578059e-16, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 3.88578059e-16, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]]]), (0, 0, 0): array([[[ 0.1381966, 0.1381966, 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0.5854102, 0.1381966, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0.1381966, 0.5854102, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0.1381966, 0.1381966, 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.5854102, 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.5854102, 0.1381966, 0.1381966]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966]]]), (0, 0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.11022302e-16, 1.11022302e-16, 4.99600361e-16, + 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 5.55111512e-17, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.11022302e-16, 1.11022302e-16, 4.99600361e-16, + 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 5.55111512e-17, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.11022302e-16, 1.11022302e-16, 4.99600361e-16, + 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 5.55111512e-17, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 4.99600361e-16, 5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]]), 'FE0_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.99600361e-16, + 5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C2_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.88578059e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D010': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D001': array([[ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.99600361e-16, 5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1': array([[ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE0_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.5854102, + 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.5854102, 0.1381966, + 0.1381966, 0.1381966]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0. , 0.1381966, + 0.5854102, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.5854102, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.1381966, 0.5854102, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.5854102, + 0.1381966, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ]]), 'FE0_C0': array([[ 0.1381966, 0.5854102, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]])} + + tables: {'FE0_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 4.99600361e-16, 5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]]), 'FE0_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.99600361e-16, + 5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C2_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.88578059e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D010': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D001': array([[ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.99600361e-16, 5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1': array([[ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE0_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.5854102, + 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.5854102, 0.1381966, + 0.1381966, 0.1381966]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0. , 0.1381966, + 0.5854102, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.5854102, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.1381966, 0.5854102, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.5854102, + 0.1381966, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ]]), 'FE0_C0': array([[ 0.1381966, 0.5854102, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]])} + + name_map: {} + + inv_name_map: {'FE0_C2_D001': 'FE0_C2_D001', 'FE0_C1_D001': 'FE0_C1_D001', 'FE0_C1_D010': 'FE0_C1_D010', 'FE0_C2_D010': 'FE0_C2_D010', 'FE0_C1_D100': 'FE0_C1_D100', 'FE0_C0_D100': 'FE0_C0_D100', 'FE0_C0_D010': 'FE0_C0_D010', 'FE0_C0_D001': 'FE0_C0_D001', 'FE1': 'FE1', 'FE0_C2_D100': 'FE0_C2_D100', 'FE0_C2': 'FE0_C2', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_C2_D001': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 0., 1.]]), 'FE0_C1_D001': array([[ 0., 0., 0., 0., -1., 0., 0., 1., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 0., 0., 1., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 0., 0., 1., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 0., 0., 1., 0., 0., 0., 0.]]), 'FE0_C1_D010': array([[ 0., 0., 0., 0., -1., 0., 1., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 0., 1., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 0., 1., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 0., 1., 0., 0., 0., 0., 0.]]), 'FE0_C2_D010': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 1., 0.]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D010': array([[-1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D001': array([[-1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE1': array([[ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE0_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.5854102, + 0.1381966, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.5854102, 0.1381966], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.1381966, 0.1381966, + 0.1381966, 0.5854102], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0.5854102, 0.1381966, + 0.1381966, 0.1381966]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0. , 0.1381966, + 0.5854102, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.5854102, 0.1381966, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.1381966, + 0.1381966, 0.1381966, 0.5854102, 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0.5854102, + 0.1381966, 0.1381966, 0.1381966, 0. , 0. , + 0. , 0. ]]), 'FE0_C0': array([[ 0.1381966, 0.5854102, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.5854102, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.1381966, 0.1381966, 0.1381966, 0.5854102, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.5854102, 0.1381966, 0.1381966, 0.1381966, 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]])} + + QG-utils, psi_tables, name_map: + {'FE0_C2_D001': ('FE0_C2_D001', (), False, False), 'FE0_C1_D001': ('FE0_C1_D001', (), False, False), 'FE0_C1_D010': ('FE0_C1_D010', (), False, False), 'FE0_C2_D010': ('FE0_C2_D010', (), False, False), 'FE0_C1_D100': ('FE0_C1_D100', (), False, False), 'FE0_C0_D100': ('FE0_C0_D100', (), False, False), 'FE0_C0_D010': ('FE0_C0_D010', (), False, False), 'FE0_C0_D001': ('FE0_C0_D001', (), False, False), 'FE1': ('FE1', (), False, True), 'FE0_C2_D100': ('FE0_C2_D100', (), False, False), 'FE0_C2': ('FE0_C2', (), False, False), 'FE0_C1': ('FE0_C1', (), False, False), 'FE0_C0': ('FE0_C0', (), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.00199 seconds + Shape of reference tensor: (12, 12) + Primary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.00245 seconds + Shape of reference tensor: (12, 12) + Primary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.00235 seconds + Shape of reference tensor: (12, 12) + Primary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.00186 seconds + Shape of reference tensor: (12, 12) + Primary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {1: {FiniteElement('Real', Domain(Cell('tetrahedron', 3), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0, 0): array([[ 1.]])}}}, VectorElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, dim=3, quad_scheme=None): {None: {None: {(1, 0, 0): array([[[-1.], + [ 0.], + [ 0.]], + + [[ 1.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [-1.], + [ 0.]], + + [[ 0.], + [ 1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [-1.]], + + [[ 0.], + [ 0.], + [ 1.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]]]), (0, 1, 0): array([[[-1.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 1.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [-1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [-1.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 1.]], + + [[ 0.], + [ 0.], + [ 0.]]]), (0, 0, 0): array([[[ 0.25], + [ 0. ], + [ 0. ]], + + [[ 0.25], + [ 0. ], + [ 0. ]], + + [[ 0.25], + [ 0. ], + [ 0. ]], + + [[ 0.25], + [ 0. ], + [ 0. ]], + + [[ 0. ], + [ 0.25], + [ 0. ]], + + [[ 0. ], + [ 0.25], + [ 0. ]], + + [[ 0. ], + [ 0.25], + [ 0. ]], + + [[ 0. ], + [ 0.25], + [ 0. ]], + + [[ 0. ], + [ 0. ], + [ 0.25]], + + [[ 0. ], + [ 0. ], + [ 0.25]], + + [[ 0. ], + [ 0. ], + [ 0.25]], + + [[ 0. ], + [ 0. ], + [ 0.25]]]), (0, 0, 1): array([[[ -1.00000000e+00], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 1.11022302e-16], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 1.00000000e+00], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ -1.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 1.11022302e-16], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 1.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ -1.00000000e+00]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ 1.11022302e-16]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ 0.00000000e+00]], + + [[ 0.00000000e+00], + [ 0.00000000e+00], + [ 1.00000000e+00]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]]), 'FE0_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D010': array([[ 0., 0., 0., 0., -1., 0., 1., 0., 0., 0., 0., 0.]]), 'FE0_C2_D010': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 1., 0.]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D010': array([[-1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D001': array([[ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1': array([[ 1.]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE0_C2': array([[ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.25, + 0.25, 0.25, 0.25]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0. , 0.25, 0.25, 0.25, 0.25, 0. , + 0. , 0. , 0. ]]), 'FE0_C0': array([[ 0.25, 0.25, 0.25, 0.25, 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. ]])} + + tables: {'FE0_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.11022302e-16, 0.00000000e+00, 1.00000000e+00]]), 'FE0_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D010': array([[ 0., 0., 0., 0., -1., 0., 1., 0., 0., 0., 0., 0.]]), 'FE0_C2_D010': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 1., 0.]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D010': array([[-1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D001': array([[ -1.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1': array([[ 1.]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE0_C2': array([[ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.25, + 0.25, 0.25, 0.25]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0. , 0.25, 0.25, 0.25, 0.25, 0. , + 0. , 0. , 0. ]]), 'FE0_C0': array([[ 0.25, 0.25, 0.25, 0.25, 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. ]])} + + name_map: {} + + inv_name_map: {'FE0_C2_D001': 'FE0_C2_D001', 'FE0_C1_D001': 'FE0_C1_D001', 'FE0_C1_D010': 'FE0_C1_D010', 'FE0_C2_D010': 'FE0_C2_D010', 'FE0_C1_D100': 'FE0_C1_D100', 'FE0_C0_D100': 'FE0_C0_D100', 'FE0_C0_D010': 'FE0_C0_D010', 'FE0_C0_D001': 'FE0_C0_D001', 'FE1': 'FE1', 'FE0_C2_D100': 'FE0_C2_D100', 'FE0_C2': 'FE0_C2', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_C2_D001': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 0., 1.]]), 'FE0_C1_D001': array([[ 0., 0., 0., 0., -1., 0., 0., 1., 0., 0., 0., 0.]]), 'FE0_C1_D010': array([[ 0., 0., 0., 0., -1., 0., 1., 0., 0., 0., 0., 0.]]), 'FE0_C2_D010': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 1., 0.]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D010': array([[-1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D001': array([[-1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE1': array([[ 1.]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE0_C2': array([[ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.25, + 0.25, 0.25, 0.25]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0. , 0.25, 0.25, 0.25, 0.25, 0. , + 0. , 0. , 0. ]]), 'FE0_C0': array([[ 0.25, 0.25, 0.25, 0.25, 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. ]])} + + QG-utils, psi_tables, name_map: + {'FE0_C2_D001': ('FE0_C2_D001', (), False, False), 'FE0_C1_D001': ('FE0_C1_D001', (), False, False), 'FE0_C1_D010': ('FE0_C1_D010', (), False, False), 'FE0_C2_D010': ('FE0_C2_D010', (), False, False), 'FE0_C1_D100': ('FE0_C1_D100', (), False, False), 'FE0_C0_D100': ('FE0_C0_D100', (), False, False), 'FE0_C0_D010': ('FE0_C0_D010', (), False, False), 'FE0_C0_D001': ('FE0_C0_D001', (), False, False), 'FE1': ('FE1', (), False, True), 'FE0_C2_D100': ('FE0_C2_D100', (), False, False), 'FE0_C2': ('FE0_C2', (), False, False), 'FE0_C1': ('FE0_C1', (), False, False), 'FE0_C0': ('FE0_C0', (), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.562147 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Skipping optimizations, add -O to optimize + +Compiler stage 3 finished in 0.000302076 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 3 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Z + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: d_22 + Removing unused variable: d_21 + Removing unused variable: d_20 + Removing unused variable: d_12 + Removing unused variable: d_11 + Removing unused variable: d_10 + Removing unused variable: d_02 + Removing unused variable: d_01 + Removing unused variable: d_00 + Removing unused variable: C2 + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 3 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: area + Removing unused variable: s + Removing unused variable: lc + Removing unused variable: lb + Removing unused variable: la + Removing unused variable: v2v3 + Removing unused variable: v1v3 + Removing unused variable: v0v3 + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: circumradius + Removing unused variable: area + Removing unused variable: s + Removing unused variable: lc + Removing unused variable: lb + Removing unused variable: la + Removing unused variable: v2v3 + Removing unused variable: v1v3 + Removing unused variable: v0v3 + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.320696 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.00127697 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./HyperElasticity.h. + +Compiler stage 5 finished in 0.00178385 seconds. + +FFC finished in 1.08725 seconds. diff --git a/demo/documented/hyperelasticity/cpp/documentation.rst b/demo/documented/hyperelasticity/cpp/documentation.rst new file mode 100644 index 0000000..cde5c3f --- /dev/null +++ b/demo/documented/hyperelasticity/cpp/documentation.rst @@ -0,0 +1,329 @@ +.. Documentation for the hyperelasticity demo from DOLFIN. + +.. _demo_pde_hyperelasticity_cpp_documentation: + +Hyperelasticity +=============== + +.. include:: ../common.txt + +Implementation +-------------- + +The implementation is split in two files: a form file containing the +definition of the variational forms expressed in UFL and the solver which is +implemented in a C++ file. + +Running this demo requires the files: :download:`main.cpp`, +:download:`HyperElasticity.ufl` and :download:`CMakeLists.txt`. + +UFL form file +^^^^^^^^^^^^^ + +The first step is to define the variational problem at hand. We define +the variational problem in UFL terms in a separate form file +:download:`HyperElasticity.ufl`. + +We are interested in solving for a discrete vector field in three +dimensions, so first we need the appropriate finite element space and +trial and test functions on this space + +.. code-block:: python + + # Function spaces + element = VectorElement("Lagrange", tetrahedron, 1) + + # Trial and test functions + du = TrialFunction(element) # Incremental displacement + v = TestFunction(element) # Test function + +Note that ``VectorElement`` creates a finite element space of vector +fields. The dimension of the vector field (the number of components) +is assumed to be the same as the spatial dimension (in this case 3), +unless otherwise specified. + +Next, we will be needing functions for the boundary source ``B``, the +traction ``T`` and the displacement solution itself ``u``. + +.. code-block:: python + + # Functions + u = Coefficient(element) # Displacement from previous iteration + B = Coefficient(element) # Body force per unit volume + T = Coefficient(element) # Traction force on the boundary + +Now, we can define the kinematic quantities involved in the model + +.. code-block:: python + + # Kinematics + d = u.geometric_dimension() + I = Identity(d) # Identity tensor + F = I + grad(u) # Deformation gradient + C = F.T*F # Right Cauchy-Green tensor + + # Invariants of deformation tensors + Ic = tr(C) + J = det(F) + +Before defining the energy density and thus the total potential +energy, it only remains to specify constants for the elasticity +parameters + +.. code-block:: python + + # Elasticity parameters + mu = Constant(tetrahedron) + lmbda = Constant(tetrahedron) + +Both the first variation of the potential energy, and the Jacobian of +the variation, can be automatically computed by a call to +``derivative``: + +.. code-block:: python + + # Stored strain energy density (compressible neo-Hookean model) + psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2 + + # Total potential energy + Pi = psi*dx - inner(B, u)*dx - inner(T, u)*ds + + # First variation of Pi (directional derivative about u in the direction of v) + F = derivative(Pi, u, v) + + # Compute Jacobian of F + J = derivative(F, u, du) + +Note that ``derivative`` is here used with three arguments: the form +to be differentiated, the variable (function) we are supposed to +differentiate with respect too, and the direction the derivative is +taken in. + +Before the form file can be used in the C++ program, it must be +compiled using FFC by running (on the command-line): + +.. code-block:: sh + + ffc -l dolfin HyperElasticity.ufl + +Note the flag ``-l dolfin`` which tells FFC to generate +DOLFIN-specific wrappers that make it easy to access the generated +code from within DOLFIN. + +C++ program +^^^^^^^^^^^ + +The main solver is implemented in the :download:`main.cpp` file. + +At the top, we include the DOLFIN header file and the generated header +file "HyperElasticity.h" containing the variational forms and function +spaces. For convenience we also include the DOLFIN namespace. + +.. code-block:: c++ + + #include + #include "HyperElasticity.h" + + using namespace dolfin; + +We begin by defining two classes, deriving from :cpp:class:`SubDomain` +for later use when specifying domains for the boundary conditions. + +.. code-block:: c++ + + // Sub domain for clamp at left end + class Left : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return (std::abs(x[0]) < DOLFIN_EPS) && on_boundary; + } + }; + + // Sub domain for rotation at right end + class Right : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return (std::abs(x[0] - 1.0) < DOLFIN_EPS) && on_boundary; + } + }; + +We also define two classes, deriving from :cpp:class:`Expression`, for +later use when specifying values for the boundary conditions. + +.. code-block:: c++ + + // Dirichlet boundary condition for clamp at left end + class Clamp : public Expression + { + public: + + Clamp() : Expression(3) {} + + void eval(Array& values, const Array& x) const + { + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + } + + }; + + // Dirichlet boundary condition for rotation at right end + class Rotation : public Expression + { + public: + + Rotation() : Expression(3) {} + + void eval(Array& values, const Array& x) const + { + const double scale = 0.5; + + // Center of rotation + const double y0 = 0.5; + const double z0 = 0.5; + + // Large angle of rotation (60 degrees) + double theta = 1.04719755; + + // New coordinates + double y = y0 + (x[1] - y0)*cos(theta) - (x[2] - z0)*sin(theta); + double z = z0 + (x[1] - y0)*sin(theta) + (x[2] - z0)*cos(theta); + + // Rotate at right end + values[0] = 0.0; + values[1] = scale*(y - x[1]); + values[2] = scale*(z - x[2]); + } + }; + +Next: + +.. code-block:: c++ + + int main() + { + +Inside the ``main`` function, we begin by defining a tetrahedral mesh +of the domain and the function space on this mesh. Here, we choose to +create a unit cube mesh with 25 ( = 24 + 1) verices in one direction +and 17 ( = 16 + 1) vertices in the other two directions. With this +mesh, we initialize the (finite element) function space defined by the +generated code. + +.. code-block:: c++ + + // Create mesh and define function space + UnitCubeMesh mesh (24, 16, 16); + HyperElasticity::FunctionSpace V(mesh); + +Now, the Dirichlet boundary conditions can be created using the class +:cpp:class:`DirichletBC`, the previously initialized +:cpp:class:`FunctionSpace` ``V`` and instances of the previously +listed classes ``Left`` (for the left boundary) and ``Right`` (for the +right boundary), and ``Clamp`` (for the value on the left boundary) +and ``Rotation`` (for the value on the right boundary). + +.. code-block:: c++ + + // Define Dirichlet boundaries + Left left; + Right right; + + // Define Dirichlet boundary functions + Clamp c; + Rotation r; + + // Create Dirichlet boundary conditions + DirichletBC bcl(V, c, left); + DirichletBC bcr(V, r, right); + std::vector bcs; + bcs.push_back(&bcl); bcs.push_back(&bcr); + +The two boundary conditions are collected in the container ``bcs``. + +We use two instances of the class :cpp:class:`Constant` to define the +source ``B`` and the traction ``T``. + +.. code-block:: c++ + + // Define source and boundary traction functions + Constant B(0.0, -0.5, 0.0); + Constant T(0.1, 0.0, 0.0); + +The solution for the displacement will be an instance of the class +:cpp:class:`Function`, living in the function space ``V``; we define +it here: + +.. code-block:: c++ + + // Define solution function + Function u(V); + +Next, we set the material parameters + +.. code-block:: c++ + + // Set material parameters + const double E = 10.0; + const double nu = 0.3; + Constant mu(E/(2*(1 + nu))); + Constant lambda(E*nu/((1 + nu)*(1 - 2*nu))); + +Now, we can initialize the bilinear and linear forms (``a``, ``L``) +using the previously defined :cpp:class:`FunctionSpace` ``V``. We +attach the material parameters and previously initialized functions to +the forms. + +.. code-block:: c++ + + // Create (linear) form defining (nonlinear) variational problem + HyperElasticity::ResidualForm F(V); + F.mu = mu; F.lmbda = lambda; F.B = B; F.T = T; F.u = u; + + // Create jacobian dF = F' (for use in nonlinear solver). + HyperElasticity::JacobianForm J(V, V); + J.mu = mu; J.lmbda = lambda; J.u = u; + +Now, we have specified the variational forms and can consider the +solution of the variational problem. + +.. code-block:: c++ + + // Solve nonlinear variational problem F(u; v) = 0 + solve(F == 0, u, bcs, J); + +Finally, the solution ``u`` is saved to a file named +``displacement.pvd`` in VTK format, and the displacement solution is +plotted. + +.. code-block:: c++ + + // Save solution in VTK format + File file("displacement.pvd"); + file << u; + + // Plot solution + plot(u); + interactive(); + + return 0; + +Complete code +------------- + +Complete UFL file +^^^^^^^^^^^^^^^^^ + +.. literalinclude:: HyperElasticity.ufl + :start-after: # Compile this form with + :language: python + +Complete main file +^^^^^^^^^^^^^^^^^^ + +.. literalinclude:: main.cpp + :start-after: // Begin demo + :language: c++ diff --git a/demo/documented/hyperelasticity/cpp/main.cpp b/demo/documented/hyperelasticity/cpp/main.cpp new file mode 100644 index 0000000..41f8a97 --- /dev/null +++ b/demo/documented/hyperelasticity/cpp/main.cpp @@ -0,0 +1,149 @@ +// Copyright (C) 2009 Harish Narayanyan +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Anders Logg, 2011 +// +// First added: 2009-09-29 +// Last changed: 2012-11-12 +// +// This demo program solves a hyperelastic problem + +// Begin demo + +#include +#include "HyperElasticity.h" + +using namespace dolfin; + +// Sub domain for clamp at left end +class Left : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return (std::abs(x[0]) < DOLFIN_EPS) && on_boundary; + } +}; + +// Sub domain for rotation at right end +class Right : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return (std::abs(x[0] - 1.0) < DOLFIN_EPS) && on_boundary; + } +}; + +// Dirichlet boundary condition for clamp at left end +class Clamp : public Expression +{ +public: + + Clamp() : Expression(3) {} + + void eval(Array& values, const Array& x) const + { + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + } + +}; + +// Dirichlet boundary condition for rotation at right end +class Rotation : public Expression +{ +public: + + Rotation() : Expression(3) {} + + void eval(Array& values, const Array& x) const + { + const double scale = 0.5; + + // Center of rotation + const double y0 = 0.5; + const double z0 = 0.5; + + // Large angle of rotation (60 degrees) + double theta = 1.04719755; + + // New coordinates + double y = y0 + (x[1] - y0)*cos(theta) - (x[2] - z0)*sin(theta); + double z = z0 + (x[1] - y0)*sin(theta) + (x[2] - z0)*cos(theta); + + // Rotate at right end + values[0] = 0.0; + values[1] = scale*(y - x[1]); + values[2] = scale*(z - x[2]); + } + +}; + +int main() +{ + // Create mesh and define function space + UnitCubeMesh mesh (24, 16, 16); + HyperElasticity::FunctionSpace V(mesh); + + // Define Dirichlet boundaries + Left left; + Right right; + + // Define Dirichlet boundary functions + Clamp c; + Rotation r; + + // Create Dirichlet boundary conditions + DirichletBC bcl(V, c, left); + DirichletBC bcr(V, r, right); + std::vector bcs; + bcs.push_back(&bcl); bcs.push_back(&bcr); + + // Define source and boundary traction functions + Constant B(0.0, -0.5, 0.0); + Constant T(0.1, 0.0, 0.0); + + // Define solution function + Function u(V); + + // Set material parameters + const double E = 10.0; + const double nu = 0.3; + Constant mu(E/(2*(1 + nu))); + Constant lambda(E*nu/((1 + nu)*(1 - 2*nu))); + + // Create (linear) form defining (nonlinear) variational problem + HyperElasticity::ResidualForm F(V); + F.mu = mu; F.lmbda = lambda; F.B = B; F.T = T; F.u = u; + + // Create jacobian dF = F' (for use in nonlinear solver). + HyperElasticity::JacobianForm J(V, V); + J.mu = mu; J.lmbda = lambda; J.u = u; + + // Solve nonlinear variational problem F(u; v) = 0 + solve(F == 0, u, bcs, J); + + // Save solution in VTK format + File file("displacement.pvd"); + file << u; + + // Plot solution + plot(u); + interactive(); + + return 0; +} diff --git a/demo/documented/hyperelasticity/hyperelasticity_u0.png b/demo/documented/hyperelasticity/hyperelasticity_u0.png new file mode 100644 index 0000000000000000000000000000000000000000..4d3ce4d768640a9002159176c5587c95f1cb6450 GIT binary patch literal 40841 zcmeEt^LL!z7jCSHCk-Y}8r!zbrm>TTjcpr^Z8o-T+fC9~jqN+1?^^fw`v=_LX3d=Q zuKn)wY&`os6QQgqg@Ob^f`EWPk&zZxg@Az4gn)pIM}Pu<^Zq?z1_FWvLPlIf-977H zm(HZihSv6@-|$Ow3y|3r(heE-pMn^ajHL)EQclzxqhC9BOw zP%!wXrFKgW1fBoZELfp8gBPEbERop!w@{%%Wc9xtnHoX0OW+S&Rd7b&eN8{L|NjI2 zzYqRjaB#mr@D2+`(k0RRbI(l%fEfYj3W6~hz>JHt8l{B<-3pV_G#>V<)ACbq zaFY1q5)4w`AIE@?!WC3QbhrS7pw-&%f4Q(+{vF5}??Aln0zK-m84YRP4tiW3cRqA< zxQhNmrS^Tg-w8RK5i<5V;&W(fObAZDe|4A56@Z-=3ObD5HQs-vQd}K-o=}MNrJmCG zOsodH%VptZQRvZ=j0pN`JU$d>$*)njkPsY(GA4FDi#{b*c5RY7%!~M32x#2iM7~aD zvC>A6F^-7}f8?jtiheto>i`;LlUNdwqgX_WnT7T)_nEGe3R7)*y(ybt0oQ z;GVoX7=jW#qhI{l9|5=mAz>rI!rvP5L(UO?=r+{e=c|LG>qW03&g*q#9s-3D3MGIT z_yy+oZ3FeO6--SXdTSa7JDDR{?)so6R;Kiv7PY^3e=7pQ6jm%B5vKS7bBJ@8LzvL5 z8z`&_Edm_UU~l`}9rZ+nhj_4a56q0yL0Q)JltP>kVR2BCdFO-r2K$}FlZ>xrPU*eL zwAiAlD(SJ9+>Khv)z!FJE`;5l9y3F#&;tJVBz2#~AAV$k9-2=_lJ??wVj3O@>|2{y zl3Y97jIum02u{lCY-WQ@lwg0U{uL$BAP|Jik?(#Y1CS^C;l#yaMvxaFwh!d~#BR=M z@gy*+xaX53zQ)Vd9d(0*n=_nuJC1UsFcPLNOLq2#$0&D8N?inoBMgd*!_@qOGBooq zLZH%`U}Hg zuk*knBF4{hii(hy&7#5xFH^&&N2GheQKTaV^W1MZDupe1ZvB@Ydt&Z(Cq8+zya$~T z7e!P`Ckv7IMMy%Posdq~NsNv1(>q1Pv%;lG;6(lu)yrAY0*t!R4d>^rkdnP;zcH60 zJi5q3+&W_iBF0Pj2aM&3K=kZMAue|DR2@}<0eNq+jXo zcsXS{sS1&(NRxtTp5yeFxHQ@!tiVx$0u$9?vb5)l0T`)qSOqNSbqNnm;(Q6I!WCwp z&*Tuy(?-^C?jh-bzgZ*FYeB_VM50jKWCb>e1#?;m=JV5{_19R0AX@>u`$^WS|1Gj4fj!;nOA3<^b~L?++x*@O)%Cz2?g zlzte#?{OWj1hg?T9olu$yu1IJ(9~W$z(nYeile^401Mlqbx= zGVHw>goVq>4e}gnp^ld%3i!;_c*XoI>D0Ucml-Q~sxk$mv$o$NtL;27I3Fa2dn>~d zdiZ#2;m2c_G?N38f-rB$hOl4u&DcU3hvYakWz`Ex`kP0y^DzMw^}ZrX0d+b2#FV%O z1DeUy#}%$fo>Q_TofV5xX}<7hpXA2IuBz4ai^tRrD1>)wrr~Mnc)<0s(daR8A`*(R z7DR0DL93wjFJCIgti0hvBpLZmQ9}7sF{MbHtSw;04f5|_)U~6D?m!;ABq_4~p**Z^ z#bRyBzd#5*$@-DgSYM~y9B7A-i)ve#r!AIElk`10+rauF`o{voev%c|DiFsaHlFf& z=;_G(myu52je(&|ep_7pkn$;lsL_tl3u+1E<`7KZVX0+PP9hlG+iRejXL&lz-52S+ z74D;XZ99{^iR5t+TEpIC$515IKr?P3;sSk?wZHp2j{aC-Mak@+0B_yS1~y)hKtco- z1_kuP+|ttHHM+c~g)>+9;2LsOCpmEB%QS^ghmoup4JJy_rMEQ@j(Gr`3UjNn^1iq$kN+SN1;E zqt8nVlr<=6u38C5fva&(47>hY79E`;6>afnnYx)FcB!->dd%XW!rt(Z*MymF+eLq2 z9#11Ttz4+>E*|xlunB}mewqw7BuckdBRj8pOq95&oKC}ww#m!h{4OOtF$#8C1mwdt z=Yp)=0&TQH!b-qZuc)*isR1)p_kmtCB=Z#i&jPW+s-xdk8G*vwSFWE@D(RC3X>u*mue}{*b*ZtMr4$Aw%C(wfSf0hB+$g23 z-o{!*HzA3)3)ORUlJ+Qx#x4QO*s=i#5DkJ}GBTDADtiSa__8yT&M_gs_y$t{5K1Sy z%R~GZ??1q=PmCFZ(*x1V>90NhYGyDuAu$aB)|SD<8z>&)8HGwLCCldf_!4b zzGACx;e(=%C;s-g=!~mCR(hWTcty7lLK(>urr)8Lv>0&+Sbs4P%s-Gwtj$p%jG^M@ z`C9AI1t*YMZd-imQujvL;TOc6YVWm(08fLs((d-tjZ2)&z}Cq zaQbAQxq z&%{S4#Vx^KY94XF66}nj@eAT=>t}H#c~Ov81&Hy6O}YBne(QyfD2jXaGoH%58yn|O zH@#PXQVdC~+y=Pc{fP%BU$~vA6Wa5)_i}v(>YLh!$G`T^gYcyBfV3Ix_z8nX;2es< z{*b#tA+%!`Iu)u%B+|+d6ps=9`F+Mt|8RdjEv}`-Vw;RwSMhwFFQct61Jh-LI#Ogs z(2_cKWL-nFGTHnQq$eD`8VR!-nK@sYwXh+v$Z-jCG8HW#f;8ZG!P1E^p=!BsiKLTf z?(73KTx7E6;d{>V9o~wbWyemumF3#O`ytci0^e-`<9Tgo$N4}z>5?deT4;rtFNs#W z>|hr`!zA}kV2C9e{+oOLi2$qte|M#byP9hp!d_XOa#!Av#DZ5|QlOLJZUTv#nmPJk zes_^`)Jp%i2fG}S)kI&?;UpUv*twuU(8upJ^=%YA2`&ANY{zki-~ofG?=>HXQT z-0Yqpf0#CllQUHzk*urF1iEqKyTl{rkt`KPGljIs~Mn*@Xkaf8BE>42Lx zDFS`34m4wa~Doxc_)kKLX2_ zJT<`igJ$$D^b-{#{CeVZsGQqm6rUHh|wq-prO~4r}$t%%`F>4R$HL*h&OY{fUftPT1uq% z_b8neANINz=Rvka9dG2c)+1PW2DZWH;nv{}L2@N8(|zd2Dfid=@DoZ&`TRSKPy?H$ zoUj+fd#=(6{OxQ4w21?|n{2)714m8~U{KT5M-S14fyq*LtNOfJoBNE^m1-G6C2+wM zfx$Kr(^_fKi$`4 zO}A;BIao=#Pk5dR#B;cx*cr>C?{)bVs?stjZ(c#LX}>na_Vm}rhi5YqY`1Mz6hKS);LY=CkJUF9?Asr(+zqjq)w5R8u@-KV? zu7{gyeqX|9iXx`2mN;K7Z1`eGii*2kk=B1?L*)9R27IscW$2? zZUkAVcI7{S-1e$qREgx(I4C`}ijnEoN#%2RLLcpR9bQS?rFvx~Q-rFw;z!x$4u7uFW80(xEKnh-frl zC^9^0A1Idei)X`;3G2a`NyTYl6z0olWJkC1U|R-;F9b9biHt9#_-2Cu$^8TYM=jw%!-FX`33mO5c>$>CVWiGS#VY8g=lr@{T)r zB}A(Hi{qGidWt8Te2g^hG2%EwbaIV%w2}^HXva9{V82ffJ@xx|&Led?8`4~tK43tZ zQ)O zqoQjP9kR0h>#VyoAW)H-Tf}Q$P0-Z8^deMq98AlVgRZb8g8Z$?rE8pt9oxxOHYR37kh8#*^Z_djoli&RrD8{>E zU&V8OWh6zSs&Goq{5f5BTOsv=L0{9q3=0!0V^~`+@C~`* zYp9+kaK3-DYnYj7s4av%{~#-rK$;g=I{9B7=~vt%TcK}NTcBG&7)Ksnf7}PP{+$k`tiNM9Yp!)eT&L*H?BCfzkn-8LBC4U?&y==> z5*2$<;sMjr)KD#WT$l*6RTHlhxsQKc_-Gs$<}6l#&xe;z#D`Yu{6&0>!tXV{x_^IHH+2=KNEx{Mug!rD zQ#ASByep#H8}l2t_X0kpUXv96WWt@FI z;Ys`6bJ){JpwJ2sDNAJdTRRYSW~5O1Q_gk*O4K^lUAkGju1*YOO^pBeT#fYjI=M%& z$ze0EbqG+mhq9=YCH6+36u=WCESVTt#m1(v)>P28r%0E7GQ9qFq9S93YCxMPJedhW zi4@@wZzw!pP#`dbd2+h+Nnd_U;!E@)TEj1%A{UnRC42w7(#0y$C(5UO|7PrehtUla zSX(Qz>WK<=&czb6LjFn(ibc8m4%-J-Ovm=y(RSxeIr`55ee^n4x}UuOZpgZp$!YmD z5T$|#`w-4y6{^GHKbj`;b0mcCsuzomZuHhF(rQ5k(gQ?g^=uF{+ttcff8waI{@ltn zvC^_*0<`sE5`Ij;zum##-ja|iFH0yddcv{xCUbAaNNZ?AwKZIYLBHrwf2`-k*QG!EsHT=6|pA7d-Y#3d&DzgwWvm(K15rMw3 z`@#bdqzYr40V3~LSrP^oq6A*4rush5*eS(uzK6H-LkP9;=L9ve= z$5Z}OI>(rc1c3EBCM0G@DmkWpML`Yk^UPa97#H;JzqpsTY9a#9=Fe0LUVXOjt9IM= zG=Mld!e<6=)a_a=6(!U=Z^ZS+(Hn5Hmm1@TD-p?w+-S6a9xx0;eMNIWb6hK=1C6)n)(bO3U#c{j}reJxf*)Di$kU{s?3h9!zAR zrXCfaoD61q1JpcE*L+OvMXXy1D5LaaA7&+MI2Q-a;&iR4Qu7(L)t+?;R58r7+?eVP zUOs2d6gWKA_#Tf$ercc_$w!4%5338xgC+;GFVg0>wo{xRLgS1 z)94Kx(k}=w`|J~cI)mOmy|?4GgLL7&>~)wEN0`Dt4vA0gV(f_pIZbmC^rm#{ zthRpf1%S>B-2NJPD>nsEh#zb*1dE! zteV&->~onMjlRwHk$3GgpX?wv;-?%x2L{Kq{CjmI&`gw1rI(@!DeVkqsG8RXK|13r z(R@qsT}VxS9RwO|47?RKC>y#6bqE@RjYBQ1QJGmsjLLX+uGCbHy2&8tA7#*<1ad+v zbwlZ7d^X@=qaLL|D!L^1b#2i~Kp%{_VO+JF`O7a1pGQzfKL8{s#j|HdWX70wmwBcr zU0V&7&Tn^T-G9|a5^Hul6`8X_ns-`dQ%M?$e*dSa(S4^Tn{Hv z5>8xg1uQ{q_VtyUY-X5JP70{;a0(cc0GLB2%bEbBpag*j#%aR*cqC+3rU^_={8idjBj8~#Z=|Yg^j1t1O(iyy*foqaM05HTE4;*-i8(e# zu^N|=OXRisdfZEaQa+2&m7Y+=nEb5Z$ELTb_FvFqE(rqH{ea9ezu}=)meB2s8Ic;T|5pnTo0bmOC%Mp(Y=hpM69leDbmJ@WEW=r)R4iHxPOuwa z)Kk)^vCA8EvC;IInRp3tN=K(fIR`sGqPApHpRKpAiGGBtLBc`X*o(H`;TUL!;WAoh zQ&`>-1PL^?5$RUV$`W_gq9CSsw=|A5A)IO((4G~sStj}n`cyL1EP+6<>9R%aIl35p zq>8uJ0IUI!B4w@V)Zp`Biy`vzEOmG~Y#DfLr5<$E-1OY3fQ1&lFsz-sVN>ai06P|+ zLLbJs%t^f&teq1qGCjoAd7fxFY49GK%M-`i$t%bde(VjUJgJ44n=;gE3V}-zs&$o8 zZ&JS`CtV%eygC>(#NN0Fi96gT@42pBLTJ7Si^Z^rXdtdmq~D$UmLNvw!C1a`71n(i z6#YxIun2qBpq`^)GvPQ?K7;ai^<3zeX6+hPaHnP6x5L2;!pruv{B`b_&1f`1wp!hu z?w=z{`xq*ohg8&` z!#{4{5Hz0frnTl=ZMe~2G;xGIzD(5jWCGlW3SfpYr(SMMebHvvlfG}OgpG_pyhB`y z_G2@fvOp%urZooMo1GMrylohK>^{DCZF6T=fNxpAGe?Gmv*}pj@sq-EIjjS@kYqc(9o*C>)u`2r37*ewl}OP&5((+Jt;P=+!&4A((ZDH|oTp`mUG<~cO}1FJrwY@%-~G|tA~i$KAQIwJWovFck4 z3R~p);22ht<9`KJ2Bm)kOCpPPML<<2o~^7oI!~HKRnG@GzJy=3e6ACh!<@ok8063H zL$)EFo)`sL!qxpA!+yxrb@m=xEsv$Xow8g_5EE~0Y~`{pP+H6|;DhX$7BdO=v+jccZ=T%@=etiaN^SD_La zb_jD$Y{8E|woM6OXGIRYYVZgqt}>2wQ`h~r4q08g-m{^yhhelx`eul(uq(nl6#l(l z;Act*E`6H!-iDBC^z(<^>(K6Sk|AAgz0+@JcJ!A}YW(WkVusvglhV<_^`Mjya|&~v z$>I&u@om5BaF_3AIRiOVJ(@p)wJP%qTOiQ5^Hg|Vf($ax4F@IUN|5DvEs)&s0eER& zf3jq2ttf44oCSb6Su+BEy5%s%)b~HB+zrju$w^k64r|NRj=qR`Z7b+dnHs7q$~ zgGB>4gptVnDGndzar`E6ouZ!spJz;$lC{b)|1#$!y9t9~3*^iXiI^0svFJ#E1G10% zH=C6QZ3;uTyxraZjI<_~?E~b@qusCpQ7v-c%E3F|&Ig#bnaJeWk|mR+5@t7q0C)`k@Mv*+9lXo6AZc!IzZr ziYqyLhVwe-Cq1K`9VHzQH%B?|x^2d6C(>MI>kZSPRD8;SV)j*_@F|Hd4Ye4>ZfbU~ z^7qjl1Q|Q`<%Zu&o>|~rOACUjr*&H@02D2V~_@+{tH@ zJpa-~qdhk(21px&5CnUoSre$%7PJrAt7Nb*@afq>+`*DZX?NO_#Gemwp#K?ci&c5G za5;(}+-d`RRwoC;kR48!^_v5kBpKoN`SJz<|1Q!{Q;rev)5dS_1?Nk%Eyr{Gii9;b z0&)gf@fbD6)Z3a3>tJG9pIS%QdFFW4jNzm|g;oKI9*>Gn6+BoO1|@6~J+@M!c?&?n zgRA))LvCSlUPwTyrYMHd6%*DkoE&)iiH!21H^?%o__p)K9EE`*S%x4uL^5JZxpr7? zO&-zj4X5WPde7sA(BH+m$Cqe8lX%^-p`}jo6rjQi-4XvmSqk#y((!4qoy)p`V#QF$ z+5E`%{Yu%R)V*g*%VIK0;U)?o(sN{OAW|O$!nuELBImVoP#G0xHKjsvhaztZ*uoe? z{apRt`S99vx-w@a0H%R0<$DTuP@UFOo!9TLrE~`th0sK4)RHHu4j2?>lz;MnL~8R! zo3-E> zc*fFAkmK;~&1PEgOa{kz{l&;m-8_;F&SgK3os9zRb3xjBF1wiv4k8SVS&4n!e#UPD z`33up%1KirjTXY6@J#`fDUlVXte#MLTz=P=gzSC~8=uLds3)1Q0Z;yQ(FDIgEFZ0? znqkRj=m&S`0?4|(4UJx8weifoeNs7X+L%#?rf%0%=DKy-vS|jGRsGeUQ`IC%MdlJ{ z_8?XJ%Cf^@%#j6LYcW_|nZc8xrW`GB`cApAxqRFheZ(Tncc&e>LX-^xu%YfC76f;4 z>Y1BSH(iNJ0vWo}IG(#A)$Uo8HBnzU#ByZJhmZq;pL=Wgn`d}&Zo z<}S7L2LYO5i(sVPTr?y(yf3_0_rm8CaML-Uw47*U#T$Y=A@9@WzA{>!)vXS4eMW$} zuFxxCkA8ws)QI+Ofe~a~ZEXr#cGStE_VGarn%pY~Z{#i6IF2IAmS->R{w}#O=c*}+ zfPqu7A(51Y$^<5k-Y~{8swlKRPaO5qE0N*Mp{>-aCkObb3of=kmnY;dA!~QfkvZ+e zXtaiFf?u(dP6_N>PdJ<@tjkE16>ea>o%s!Y0_M~#F8i5dvlKd%t(7pVT$SJ9p<)C@ zQYj7MM~v4TMst#`51Bk2{Fw%YZnJv=hRhip<|tq?hVh@)MN6<02Y-b(>-^i-A^5S$ z=}Rd7hvyRMxkgz`r$=bS?P@3q0mR){txBIAWe(4Va4W|uv0#mwv(;5rS(tA=XS~kI zQl29Orok1eLA4=Y!swnaw&UrwlIDw7SNa>&<6qyhVhWX?+Mzvc z@K82$m`3(iB(=3sG%R(~OH~GX1X1S!jr|>Pww|iQ*3{lhJ5jUJ#K5ha=Ni1fxz9P< z;+&eWq~*8tDzt3!_MNSbu*}bP&>?kvFa3dCY=D?$0{rE;!nY8kZ3Cd|`$U5eoebl6 zzREJ3bdSd=i9CHHeiDNF;UL~KOdCyIA)Fm?srdMBus#Fa4=r;XGDNk-8=2pb(C7@R zGB(yBTDeYk(^AN-C;#N|#zV3pa*$n?`bRqdg&{3vYpwpdYGhVWhA_VYoj0gON{XYh zbbtk-U+3cq5M&S8bL1ry4$L~eOlDP3)joV+JD6Ib$2BD(jn*sYxtJYG^(I9<-@}Q1 z;pgqgD5_{}E^=lHvhzA3j5~&1CZ65;wZpaJpmG>sX>XElk<=S(Su!hSpqWT%bhcC` z;y#dY)^%enwXus+NXen8zq(9zYHQ!9PsLL;-o~as^IUHODZv$G6U$(1QMa6EY$(pj z^(`Ftml8F}&b4Y}w^*~HOjPVL6dO?gqmwG=I_L89Z-DR^RsNgiKYtpAv(S^SEs>|( zuTkYKc5C0((Cl29A?vSRM@6H~0&9GBaQVs}C5qjccMH5qkUJY@Ul7ckzG;1RB1!^7sxA(?%9y|O_|a#e~e0+T5ETIG3|<3Y5u6fBxHbdIBlVV>vk${bHPc^w z;FlB70WBAetCu^EDL-4VB%?%Ha7Nyw; z#1Pc<6VFXZ4iy!4V44S1?u}Fq^5Ns#XttjnJb~G25^>b@e zv`s_eIW}fC7u_g`VH-rwzs`=#sflPNQbw(9JEhQxl;Ax2&?5glUJ;}X@*A^%@py{zDeKd#aARmMS3^Uh66rRM# z3hQPfe^NKlJ>(%q;nX|Oydc=lb~)lOoFGW;Nf_m z(YyiqJZ^W)L&Jt3S3Z#oggR7qm=S|ndK-ZbaI4K&2r@y=09hp+A7gkab*-D0x(@;L zeOgw`;n%2A1I*Eeo3Js38h(m)Kpb`A8WV0wVvF6DDh0zP(a6&huBob_ggK*xvFYZq zwm9R_(xb%Wr3yLeQf}SOT-+F-4ymOL-E)nX=ez8x8R+b$q!+4h8*!0`SE2eQ0mTf)0L4gfW5jgkYIF zK&c_f(Z@sBB5C2pQAHtYd7%MLLawNaw+A8eCAa`DWtS5i6psYJ$PRx%l-4Tb^=8Hw=kQB(DK!fPF$39? zhff=%-jama87D74uG!hqsXeHrS>)MVEBF?vDQZSY;H887{+ShRgb~2%A<{xZzh}zG zd<(k@x>nfceipTfQ%WKKJIJbLp%$$e6;)3$ihy$j@il5pKO)aFX-_Z!;vzVGnXLkx zAJ)f?K)rfaK~HrNc-?3q0oW&`D0x5j}{g3`)f1P!ov z5H$O34^c5}M3t5W*BwRr(y^r2YBt5}Bz;9GCcue$kLLvkqt2txwCe@jH^-P=s`~Ha z&71O4AM@TE*LLc+(kMHORYubqPeIF#5r8PA0`>=Gyoji z4*z~(3!qm}cQYdgMD#=b9+25lrs>};zzfqvDR6-Y%@11gqOz&&c(5Ddk>`}rSQ~sa zvZRd+c6`pj)ZSQ=`QrS(n3a*-f_r{MLGt{&ini3vGaqba3cpRB6aH|O0`pXNFVW$} z-1F0Qmfyq!GcmTrEoz3JlEnx$I^vI5md$UCt7{vu#HIk;n*V0Dn=W?=<7_iD@2i>8 zZt8>}*)2{F46Zs@*BX7k=>Q3~0%Vh2RdO@V14miSGgt<(0cJn=O-|EJ@4!hC$c=PzM1opCg#R50R8a>nJ-$CjWqu z8K^obBw+Y;x)54R|Kh))Nt;dxx0K;Ej=DTSi&CC?tH+9DWl(d(NIIL!G8- zv(Grbk zCG3!VKnkUa38Vl3PCjkkpv)`z8pye(bU|`=Ss?VWpg5&*_8Uxl=|JRDmCZfG9f*%Z zfeIDtaJ3QVPV5;o73p|6S(@3q?G^{o@-nZ^yrA27Rtbza++h8v1J=xNX%X?Z&Yxqf zANRHocuCcQX>t*oWiBX`(}?tAQ1!8sHw9z-gHo6Zhb`UmCcC9uYP-eaDG!1BfT=Sx%(`WHYkE$E6{|ZE$d_&ECp6aT%SmAdP-=!*$?3 z7XYKP2rnWGbo$j0$4`muUcvNFccvg!L5EnRrEHg5ya=NDKQ+IJ%a$GVpEvv;>6}z@ z6iZA!nU2wm!xMHMbTJXRA2hFDZn_5M$y`*syrn zvvoOFrX`(vA6kOKMw-9CnjkaQVe`X&2Dstku|TRr6SFGI9LcC{o70DnnFWSO4uY7P zq)SF5c1Q(p?YR@|Ds+G3j@^a*nEGlxYS?cIbscX=ztDK2vn6U0h%5BYCK!H$EXsfm zNAg}eP??EsN)*^gItlCPXVk4G8=H9FE$(|~JQEl)+JgG;f>{&6E#Lydj5@?-LYyQA zI)OFuBJyS$I;?7W4=mv=pYPm|=KdYX0W5ocuM_DNM~;S2tUMXz#u@3uXp`ALEUql=6Z%nBSXpP1!t(%v73Eq%wKoW zYag6Z7fe9jL{9MrxbYAvNic$f1mA?lc7#E`2^K7QF8%K>jW5in(s>7)Q9SXkGpH3z zwJ~a@5338fo#K z8Mtn^z&%vwQU*)bO%??rwXh~3Bce&1!-;(tA-8toaj({a)&cv)gCKJuSpLwlpD19- zXaMlVP#;fx=Yn~7y)>SNOku=A8sbXA;2{G(tE@^xg|A;{NvySm0S8Cg)j`KKRbl_| zVU;k<Q2TqC_j#IO4*s2&So=OB$nfnrcbrK7#s7A@*8RV2R)^cTR@h9q0QMIr9D3H9j zH>(lBO!&&wV#Ku#%m;I$_uL_3J2rAX>ptnMl1-zjb%F|Ahckb)5YA;y<@;w(?0O~n zTDsTu9fK0^;C6u9!7SHKJ@G#&usfeOM<7`2Q~OJGOr-x(8^!zrK|^d^XGdpHnvjdU zn{BUJ+0y5Qis8hi6;wded&qMB&_@dLIx;)_S#hrk?oC$IrQ7s=#46uSBuuW=vnai6 z6;TEjtZvbP)Sea{aG{X^G(232guxlVt)5wz4RG)HI>e5LG!*I#+$nIa*^PH2g;DI* zYkti$TC#-XkPMj3bDUu~ABFL-7%m1oGlD?y%*o-2%%OsSJ)nL8%k}LgfLzlP{s7O< zEhIKcL7!wQ_V*i#j#81f4;79Fx4M({f!i4LX^1JOJ#!q%*Q;5OiRF{8K*?iH^VGn9 z;n}IO*>wqIB7SVZKdm-G`;Kp);XLSWVrw%1LcOOpi`+UVM<^_o6 zruUutVHLh>wp-3tP(_^F+Es>9x`3-up80INKu`p-;|0Jc$-{_9d1Ppzof=n15@@bw z5kzMW$`W)c{TnHH#z7AAhJ>>err4h;2x7km^gziroKy)k7A5aD-5YKw<%jX&O9{|Z zgj$7#SG5HT?@d%~b)jQ8+TYtBy3=$pnXzTNy6aT^0ITtao1Xc{ePgRKuZUKphhf(O zPl=$yVk`D3s_7Zu{UillLn*B4g)T=72{st#R6KsgHMLx77#G>h$j%Ee<*TqBmNPYC zJT6pEZjq=kKlf8mN6Lz1uShCO!QczRH|HH=QxXP`aYp$E%iRA8O^^Co;m_3t$$s5! zFju3!Wo^-zcIsJeD$ZMrm$V|0N~<$s#VuNSTcOZVmA->@8|HplQ@nA!Vs+Q_pS*%0 z-Fa~s#4mvl8wHqj4tAN~A(>>=JT))K)*)i$F7~H-Jro%)o|rw)yK5fuHLi#hi-l1c zg-*Aj?m8M1Kfa3=-e<=%;0wSK4sIl)GFC><FIwy&0-ycPXt>hXB( zH^;hMB3D#QSaNIu@l~*&ah#|`ZKD5y@q?W8V`4gjfp}Pm@nK9jFkl(Ki_*eMBn;7t z!U#2^5tX1a2zJUXW&9@NgfN1#Gj)MGBvn5y&WrFkb|h&om{(X?3TbOiSWIW1Z(NVb)y78Q zQ&uf*!b`VA>N>U@sCU%7m_xqy^{tZ^{9i2qt^g2%Ki?TKvRx#hbc-!u(Y>yX8_ovC z2r+RS_(C~{UXSe4pExL&?r(}@$vi+=%d*1IvyHzkY_f~vClR;D`&S|scOQTy^~52B zz`qt$w!bGo*}CytTtcvK=10u0r_w9}UGtWPJg0ZxQNiXZa}rC#UkbGt^0W{iqz?}JEY6&c@rfwXn@QLQ(P7Db3@toFMPIuwR?$#lq2x zKa1^I@^k^)+x({zg{)t9VP>p4>9zJ{3V~=`U+h6k?k~Fw5Y$NR@~@BndkIJ@kA5k* zLu>M&&o=3Y!JxYcWUi;UNZ~zRKL)jWBGWL*Ev@eqs#ob>=a$qPGjGLoc|lRn$6rr_ zlfYeI*VYJV9^D?TmSVJ4CB`Pp_jjXiu@SuGI>yZ_$^a>)?=>_5Re0U-rL*d$E8AWV zTq*RFqw~C#38|QTHN5n>{gK@v%RJiy_2;&sjerJNqCmY7Wv0(Y_SL zOruKA86wGb;~;~V{B<5zqh@(p4_#qG=a;~7oItM{P}~DEe3Qm=nOc}#&Mni}Ra5J* znbi9qxDoICgf9PVA$qELRQz0$D zEEM-X+e{I!8L`W-p>Q=#6fS6z5Q?RQSsQl-%ix3t``_0fRh&uII8CJ7mn)HLziX*@ zm)zp3@{cUuqz@vs<40&BD#{If4|a}Rs9t=7Qtl*>5TaoTV=UX<{{ihl62GYWNfZdP zy8s)6XkM`1npg(Sk~Qi!(e}<%K63rP)q1o#YqYhf!e;51SsTDEt|*lrXoFr0Q@-EQ zpeBpjV0NitxM}dqX!Z~hL(BPuX@|QPwC|ZNzLqHp%L}z0EE}@MPDJ}4g`65IV_t4x zxsmqLwUg!f4e&}$9F=%v&JImmF(Ey4f~H`P%wpPKGxP9}VXH>T8V%MAz_K!7i%89o z+Q0F2cNXhHa#CKq`Re^w5yVHZCluSq}mbQ zu>9Wsnl%jNVf9(pOyS}PQ5P2Zl@sIZ#ez+F?81UW%k&YjXr`!+ zBUF#5VNngkO0OQ7v9YfK)~VQXcVKpGu&}BQF&y6c=Y#RR+m9k~bZCA}=@j$;DPRFr z$)+J~kL(NCu!87llaYm}{*O01h0;m2+OMrAa(l5Qvh7XpzkvM4< zd2SK%L@-W7JAwymnD!n&sFtmgmQQR7ww^^D8f}Hfkn>@=njIHuTYIv4%Uyhlqe+x( zYi!rSI*wl7Ij)jqJIU}v+KFEkqem(tmQxmCdHfa^g^j6C1^Y4{3yt_*fJ#A>!le1# z+88V?xEhP89+?PK0YTRbOT08S@J=@gfs*<^r0A%uEe*DJEIR?R|FYkk)DGIB{4DT$ z0{xvM?i~oUgJr>7`z_)dTvv_~5dZ0aw{P)Vk5GfKB|2VZ(#`nZrcy1np|nY@ld z2+a0wgC8RXLsF^_)aj$``S67LjfMUiVDCHh>8w+CV1}YDj?{yw@2rfx02h5j+X!ZV>s`zZDH%NY7pMC5^pBY$@7lus?>4?TQ2)GZgGcc ze&p0r#pQBYQEH7X?3rR{s1R6a8g>nC_;gqHv8e8lwQI?**OnI(1%2n*hO>7panb9q z&H0@QF&~?cN#7thuX@3F#=G;62|TRv@Xdiii$P?^VfKQ9l!ErIAk2@h@S}P>N!X&p zmOBgoP76McSwjvA!22w!A-POr`~L+MlGs!Hno$h$lzf$U)vOgf*M7RbliQ>4Q% zfovSTcYQHZvJA+wRMKUcqn!Ez*$Rk)jGeauf;O6-d|DfuVy$in3x`6V)=NW>Ed%Yh z25jV$hgI=lLX5b8eP{9`ATzZ2(UzHYC=N5*0R)x5SO03utwla|C8Aox332ZDPM7;I zI0eZpXgPJ7h^T5z&F7VCX!Q`O<1pHD zy26@=OJ*kq?WHKFvJJ5Z_i!8+baRJh94%gI)-V-#rNSvLDhZ_$M70{S#^f>5tD`BB zM?Cny=`PR)RCtZGCy$pV7ib|+i-ocn!2!MyF7%(hZTQji1Gt0{VijAjp%mE8mVDHF zVuBP2$a_ETJo&=qG;I>L9-#)|t&0ZH*aD&Yel0+Hj&N>!@N#y3d$VHlY@Z(dGA?qy zbVe^=>O_n|X#q2-oaxgoUj|m6QeEnpLN7#eN6M+O_U7$UCJrAK=aMNyfu%`X=8Ly+ zcZiLMgh{xg4Qb@qOZ&`=V{2pJ)PBKB1VUr+0$!l#{;%K+<(uczC*SU{1tQo_p#(q9 zjqj1|-ppy7PtC#BW7MJ1TUNwEX$+0?oo}W0uqU1C*&ob{dLbi@n|g^=dfCETv8rAf zInO?W^*#AQiYFkdX(J2gfl0=JXb=^7(ov4tw*`ta)tcX*a?~A#@717D~KbG>JxCw%xXg(t)-(3OMsO8$-R&# z6sl_k#vley#(<4*BpYAII)E`2$%cc}gIrFXL%rY4s7-``mvE@1=Ejy``-!P`0mtEds)1~^ zuBaX1jmu1-PPW3O2JY45Y9td@+EDap47*C5T%$HV;ZSl@ye2!p;sUeJGtOm?=mEjB zNlY;##%L1771YyV0EwMiHVhNd(Id*AEd&1lr9#W%pVI>QOC0`g$5hoXjI;{} zC0IZn?98WzAM1=qq@xzr(9yU%yLhsNW;lD4nml5?d>+2+3omH39;OE2EsGxfj#|!9 zuq$!VV~q#FmR0M3zkG45HG#$y&xD3CBLxF6+gCPWPFWO6wfNA8$9l%U22LZ0%CH=n zz@g=rF3B=iUmFhR79b@XO-TM89j2L%>@#$0?hLt8)F>z@;-VJkOgy7ZxT!UV80iYd z3%>GC5&Zig09H-j@vO6x!K|SNAL^-9ZoN{C{!}rT#z-7DO6>?+k5Pw4TSrk`OEl~y zi~f+_Jv4eO)Et@O6#RKih}h|&oHsNN!F76WMyg3R%0JnrgNY{~N(zd6%SpIMXcSDA zUz4711dHJMs6jxd)+Xrx9s;EZjfNMkg9`=5T*@3z?uF;YL~_mgJ|W>%z#h-5&*=pw z6BA!7SPC0`IDs+1Op{qMVl*hqq+e$E4<)|YGi420Zu-Q!&Ek(=Y-ncT)(mVT|wp^%Db3v`3J&U@DKBoc8hNuXn zvRD9iETeMG z0@4#XcrpfoCp=SBI~463Sl1w7%3=_4a=F1-W0{l>wEhBqyaHI+tf%n~e(Ko%oqU;} zT>G6FHnjtp!ECi2t`3dfuI}FVl9tvB2W{^tH{4GNhi<`4&TY~rIY!F)x*7Fsc(ZFI zMGfaqTs~AUo1E9q6gFf36k^zb!Zh!w21{c^pnhRa`}C|)-S!w7&9jVZ$Kf$RN*)(Y zW%97+Hv6{yO^8(!kvl5=g`QBVH5TObk&E6nxc3_7l+pZ}sqCi!rQ>jt-CgO=hyvP<| zwX)#f!<%4mJe4p9MM*-PZp0ZL4g~=zWmMdut-S-uq%ji&c_!k(WWverc=2V!ldJ-9wZ;^D}wAx`!nf#xR*2TNF}Ij@0Vq&28RoO%3&L zQs;wq$mZXP1Ac|Lt=5Co zj_{_%Q=LufhFVmepCxEqw}7@QrgU4r04$k87AI!cv>alKGN2uhqy|f#&Yo(rFH}U4 zO~XwoM`mglAjPyY_Ejh0qArll1&T)$&j=fM=zefFh~Wa&emV?fXG^~zG>1iUKGn(5 zBrINVN~fUK7-J}U1YRu(?A5(#OP_Uad_99Odj zOIaMAlMLnpy=Byxfy+TrNs8e>qhJm0CA2cLFyf-*K}g{sNX!Y_cbBLs>jz70l*y=p zlyn(Hbf08dqu9_0z5KJHPH;um#pq9^01qh>0FsAEoC=ydg9Jzn45m31s{=&fI{;)c zQpyPQ7%ACoauGGv1DO7^BUl}vmNF{ynZl*a<_hijtbM8K3-v6>EQ}wz)q1cxG}yIY*{Vov4zSi%hS=d_T@SK6`a3@14RemTZW5I;X?lC37I=hvu0)vklK5CP9brW zbN-7b#ZVdoNGVOm(r0YQ;2gLcB)KzpT8=R3w3m)Mq`X@@(#K;iVt;#p;+UuV1igKd z$<xOKN`nO$(i0$2-wu4Kpj>O8H8`PRBb2f zQz`T_rSlMWt=8d#vT9Q5)uS}gC{ipGJedFnHMAT6rPu&?5r(m|X7ANxi9HYNb~02aCzWMi7&1Gqa(k<#o4%N>pHiSc)T zbUy8KTP>g+;mzxKh1x5f9kjJc?hS6d?%BC-l`Iz`@EBoI^IL{7EBog88W{dB*T5s9 z9HH0Pu!Ky3^j_no?l)qRHu8akuqdcqephd*7jlJeGB^`RWGUWhpM0PALzWvor@z*Xc$*h?;Xs=Ot!b`;Wik>NOA1Gsykp}+VAp!&ug`Sc7&~}YnJZ*LX;WXn*UXe0trp)RNF_tP8M~fe5$Fz&oTk&7BV&KCeg!)zB&$bM064^NGw#Y8L(O6 zp~6MMAd7XePDu}q`mKRs&t0_7Q0f!Z869=6%ohLj;S(PD6gm!KW{GE#JaboJNhk$r ztfTJ%FOvmD8IuX*!BW!vAH%gXNDf5C;d(}-BVW&k;|XTJjWf?uXfyUQ|MXoxOQwJr zYS`UL&WXSO19uNP>sqY_;jK$4!m+5zgxm1O04?2wsLhV{@u@FB-BPk>ZVDZEFjJ_Q zv{^$l4wpp-UW_TkR5HD;AJ-Or^py&Wp|M ztqT@E*3%?@Ckvi>rs#y`!ldNcM8U{hvM1D2?5`bR>v3ujwp?-nzvk-h3wT~>{1mYV zvdA}FqMc4MAOUQjbd4$PYKfEr(EzYi8X)G~wi|*y7OE^vSu@5w&N#HFX+oV}++*k+ z40z_T^obLY%RgsuMs!pL*H0TwIGN#<#DFo6%VQ{C=dugma^7ukPBd+r6SSOw0 zQ2r3>ZZ$M+H&RdW|MlGPXr_1LaxhQo-36LQgg+WX5omWAV`5&sZL31^=YjAfAAmX%gFL;ZwIrS5s8JFq4An^F(z9Du=NPFBfNF-Z2i8Kk7fOrfY#k8080A1eq-^dZ?Vx$7n#h49U=A-lv6a-p~ zG#!58v^6_STdhZ_L3r!Zta)3y4nNd-x_8xm(b2@g%^ezL=;~T`a zltDVdWQi#r=_G^ao zZNQpDI++GB1N!LQvWFZOO?fm#lL68|Z(d}BpFG=GuxDtD`lrL^&_?3XZkQpoV@O&m z#12N9Xf3!Sl-#7n8n#-GQiHIiV+okAO~Y{wY(t+TTN^kKP83|&c5UrRIY%al2y7E= zTLIS6_ux)Z^JOeq#`~wry=l>9$fPX_0(JgQX}?l% zHGie2aKI@jV+V<$Poh81$4xXCGL_7bbQ^+ZkP@bPK23>LHrewT$y{qV?0npgH&j#$ zaUv)MchU$_(sw#($1h>yc_l*h0C1C-TWR zuX{nVjw+njYS<5DkRqx-TixMPV_Mbft?k2HkiBOLF7Z+gXzGZ2>*bPR>}8@+?JOkH zhcp=r-3O(JsMVy2XHtKmUGw7?(NL?#9~Wx~bDn#2G)9 za}|dS#?VkF4Sk}MMmq=bOuvD37P2iu_q6m8@^Tox%g(w)jhY%k&QC8!_`-_7Ni{ke zcCe<5UItx8ld$z@wIggjToLr!{9meM9O_F1>&!fk-CldukLJ{VwS&oSZmUvvRhgSK zdYZ2ILLJBMe^Gn^tBL7D)ub|O@HU)|xgq4V5cfo8D1FtEAR2RxQdGJNoTR>R)@Rwf z)nlY2Qs2ZU6!pbO9L+P1ij_?EQ70^=FaJ-sD~U}*9w$OMfXTaA3XBIoA+b=J+D$k# zG)g1&5n{R7(du{pTTp83 z38HHmWpcG@0rf%l_1P3Q6ux*to1x~)HxQ>c2?Sic6A zIYVj(Av4H1ukFqNF|(R9N~7apBkLt!29S9~H;*Wru#_=jy@P;smJZK2g-*@}O&qn! z?%0l}Cde?m_2&Hu^X?7fFOM^+#6s;3fwYb%cPKLc0%Q4_voek5)Uv8yB4} zR<>$=_j)&EhX!en)wfx1-x{z)T>dxuW6E?MJC4kyNElU<;JWwcl2WPyynKKt?J%v6a+01Q_eW5f4 z+w^5R*3h3~XdCJfLv@EXlyKNXeN#u{TrMQrX+`NjvV%bO7i*7eggvLnMfH1)6cP0q zxBVzu>QZ+Qww_Jx2wPaK&uWRh4X$<>!W>dHf?LZZUN4tt2a!J8@BYOz1ZZvXYS*AG zn(b4lN#B?l9_ueGvusl;d$(Bh4o>|8`~eiH%P{#rqV30uC@t&oMCq%956>`QE0KwH zaD&axrU|8M_n|+GFpaE`4AN=6mf9m|8LAUBpq+&S`V>P?N%f!A@@(0TvHYf|!4vC= zqet2fo@}P`dCN!%gZ|Vl37|gZv$`CC>=FfjlPL_!Q{xRP-D*xjZXxi=;Z!N<#Jo2=_N{udqn8sxHmG1lo)6mg`Y6=Hy2;0+S$O5s9 zum8qZ?m6(S)-`o#wB?Qp0L|%4+26f2rSgadoIPF?V&m;<8EzuIU&S)lj~1^~7k#Zq zCf7WjviC@q@kyK0r>Nhs92QESV#zZ5SMp$~eH_~>XU$lGj4g^kG6TlJKVQu6NSoJp z4Qbk_iI`t4qNY=Wk85-^HMVG~HMa06JWr=i*oK)$-N;FxAE-a`de{i%DNA5WieU_& zXjEThBkN0aG(y`L00EbKZ+}{?d(!XR^a)3 zr^_nXY^8|YQKulK8Wf&QDZ|T4q0Cl#4TpdBE1%fUvYlJH%yx+Eexb}AI&GN5#F$Y3 zH)S-Tjwu|5ljAEW001BWNkl!gvP`C6#*YoauiuLE{ulnG@8#CeTxK$P!9Qdo zCJTsw<-sQU`&hr^xW)PDL^g)C} zNbS9YRsaY*%+7z)KkT?@>lxJ`ylLJ2!W*7OK5RAD%$YSS7r`YYcJGU?yszKq1fjCH zo5&EaEemLki28004;)0y8+zU%^4_xTvrnZAKTcoFO&(&(=!#FvB*~@|_fjxbZbS_7 zRSSs40v0cL6^9IFOx9KTCoVsIK)iZm6rZdt92z4fL7?T1dg3SuL_GYy!|x_qt!Gsy z%d|j4;(^PxgftmKK_Qnhu4_dDd{@#$b>11$h~zTAOctllx%WF>VIFM%RQ9y&@Q|&; z9Dh<8K^Xb2k{+Y|UHU0rjgl9mEYz<69Z2pEn}GVEY6}A!G9E4^*ThVu_6tJ3oL%sB zKq0geR-kQ_)Bu)2>J26^$O<+vQK#*eX}E*%&-Ui64wp~Kms4W@&Z%qAZJA%s%N`bYSdw>=^YgV9Ce&_4YghXb zWARE{6ijK6o*p>WnMes~&KjgCW~lTFB2^au=b19}|F`$`!Io9koons)UVlL2G@wKr zPz1(wq99_zXnG_g!HO|pVuA!SrJ<(cU>TtjHA$sXshXOJBViJUsRUz;3qc)FRHC6sMyC|hH6$U!SJO@Rd-tsQWAF8~_dfUD*G<3o%w4~Fb^Dxs_St8j zeQ%%N`K^z=*>DNtD1ApB02e8fBx`U0&XnM&(IN^peNb7D#4ZX1AN$kQDVGlfrXv(# z0KB~G9tEofd+SRy^3jUI^+NUB2q{jZ!&VMvI&*W7s-UBsEFg+2ryCM4wM2X`$cr0F zP9ZQ&vZl)yBUzZD3?15@XmX)BQm<@SQvC>6+7%`#>J2z+5K0yxvETy$WJ<-dY=me; zwPCY5%;Jx{YDC_kJOK@rLMx-STmfzF;E6w3OmG7C0)z4=8{mpWT}4;l*}i8qamFHH8sJcE|LmAu6UiD8y#BWdwxt z3?nL20vNV4cURM4L(i6_H19$?z_B@{9UJx{{VBbk6)YpPH}ndPrIe3m6YGF9fU9Y8 z_n0q%c$zuoF*_%D`^us(!oG%yd) znntbNkGJ#e+p?q)W@p#ziPqdD8cIX(EK=1s=!C=gjZ$vIDzbqz+ba>xqDvBaLpkE5 zOhA)EY)nb%WacMhEJf|Txf!`CmmBrujiLact1>~J8HNWGin)^)Ptv)$yJ0e=pJGAH zx8Mu22xhx0X1gn711u7hI(a1~`EHTqF3ZA9pnZ|?Dg&Q&puRJRx3p-!GTC@BL_=AI zH_s{K14nZw@=DSOkO&gM$Ny_M2m?ojP=tXlrpv^+C7_Wq{*?BwJ=*P6ucoN3ifYMj zU|nD3pxmHDtRR3{hSyj`r9|Zn$*gIpm!qbuoNJ+q5KJR{qO@u6*Vtge$V53*EVsU8 zWB=r+mK>BR!7^ev9S|sS)C`Bu=yJYlIL)btECc~1a#(z&|A%m;}%gqYBZi1G)ITL+=Ms?<+Z>(!?|?KO~@38Twa+;g&nm8-7srY2$RWT z6czKC1i>=(%OERVFy}SSLh(Kpt0~Gb=->z!@|yC+&sU715+EuD(mKVy3X=hDLCwm6 zz)>Mgqk-wD&53FflT)p-bd0O8;%Y%oHqUdQ9XvTk_2chl@#5B3$_rx(m9?V~%=MY@xQ0l0;DgM+;{X0H867nqbi)A`>SO zW>NU5KR(?3(F6kXBNXAn!{{U$pqXn8=Gu0T`YEDNcE|s!fSOu0R`r{^Ab*tF3btC? zPt*-oS{+?z)MOpc;zDK`P}4&$H+s%Am3PhBgev}2M?xzEZLnxvht*y&pYlXAyb`^O zEOo)9knNwqmoNg6%P+lp#SJJDD%%$ip9Fte{b!wm`dJbuO!`C~IEj}@y+IBH)`?Jr z0fZbWff8&nT5amKS*_lc+YR*RmeTQ#;k4rbRu1y)Fg=;rDYso}7En}iMp#A46${PY|Fi&s2#^5((xsVo`oZh}j#ldJ&6o%U3X`4**CUBZG(l ziMy2-GEC(>vSL`rrYL5;#rE9?WXY_2pX?f>YzQ4n8l;pvMaa64*8?U5z+@-y2?UND zL4*OIq4l)zBhp4lj&WhT?raBR)(%2>2ZU%hJN&M_t9W$YFFWSY{4LLy1fUu)(6$^7Nv0lW92+I7$Q&1^`paPdD@E zAFVr87j{)(+gj_`GpbIWZygT9W~V3ns=rnaDp{cEIT~KfoWV3^7!lM*D5PU#9|7ok zKw0fkzvBSCd$hzTnvV}ro)wn8bGBFfzQXQ9{Zh!+6+s!$BB$8W2PnD8R%sLpyU* z#c)t>qpb{3;#l2nofEU_Fkqa?ae=nzZFgj0lo1Ed55l(|$?W1e5sdk2%vBLuqh zLtz&UJUs{^3`{}wxCg%tO`!yi_Gym~wSUyB)1K%zJD)8D`pyWoTWg}b=*X^8e$!jD zN85{<08hR$K#@U^ALV}Cg$dNZ?tqJxN z7TYp1@l_!+%zu!hN=?>8$xjqpbY@tq1sge-kWz`132Rp1X+scUK+x)m>D9*wvM((7 zoY7_*>chGen<`qfOMy_|NMWoJ`ER;6MuBcL3N2uNps2n(VHcr2jh5`(1h>wNCwF3% zdMQzbTC4U>tG+*dbqIvMIdl7#=Fv&OQTq zZNer})Xppem|&Q8+kwD(5JVV&iY;am;8gyb#)7lk?pzC}mUIPWudCRU^lm}Oi~z91 z^gTJ)Z4KRW3L||3B{LA)uZfhY=kx(Tk`0-Sd|JD%?MlUwYyu_Z*|+`p@Y_Jiagc$P z1dXB*Q7>&SphnTs7y=LyB*1~nTLgazh;~kyAsa;#aJ&o<0)Fm8hkBzL2pkE52m>wF z#aON6st->&(`;g0pxbS^j~bocF>FetNjBKkH)2ez1e`448u6bvv6>HXXzI5&Mj(RG zGcI#rQ=cWH)reEopk#M&SCJ z17co-f@i|!NKqFxs;B(eHQVJD^)fuywob0bv&KN8vihJ-C1WTs4T+NonPLNhrxQVh z0Yf|k85W%XX=7@V+W6WQ=5DcDah|hlvT^6m)g8}*HRq9`J(*{`+nV8B>>byN?Ey=8 zT;kSmnwAma-f23tS3vGhlPH@0H}Sf?yEcrdX_b2G*)Ce#}Tu+}~^hRTU>t4w7sUryF!n#+s##j%#7F2oA8;0YR z&<*E-4~>})Q>Q$<{Uf`&!CpDIsbSc`SGD%T{HX!Ie*usbre;L0OXi^EZWqFz|FD6k%YxEp$}KG`qPZH5En$V%?3p zR#)C(y;+=vW8EB=eJK+jOgnw_;;l`R%j;fa-Dk@GBM9TGb>rX>AcmH zT-3P>AueCvHq|EJi%}QMO=h8}!^|1+U?gBOgA7tioHdvuWtasMq_hrOMIbO2f(QeE zDPcmKy`s(h6{eHlx*lXKh+N4?`!zj{T;0ej&so?O)km$((}1*JWBjegLaM7F)S|V0 z&+wK^r#+{ARvZt_2G2@fy zLF}Rs4#L2(KoH@gWAZnLfE=asQK>pH6|;E;)-Y0C1=ypR1c z3aqc*D$VXWb03|Tty`ZVHI;>F*54mPa#rVA#?ozn3fgwM8&kR2`30q8m)^G)lim|6)U2S%QwrwFr-znGflqWNG zh-M0XBmgKOAwG6x%ub0M=F$y;LGE&es$5PW&>KYA1tle#+Jc1eppcpb)%5NNJ25h@ z$*EsiTLHl)4*IIbR9wmk3E9XAh&-E2GQ)tyC~LigCSDX$ytxOC4T1;*T})@M_NaMM z6Z95fn%QQ1iEiN-t>r^@)=IO{DxW@uS2MZTTj1S}NUQD(&7-}pY6|u7?{`NV?C<)p zRGTl~;Yb|-SD`oEwyD|PV^yn6G^(Yw7A)gLkQE?uM6DIWpsypCBW2Pc!J@njZ`efx z#{@xyfg?kg)pFtZ)Z0_US^pAabm%wj1ToAc-BatbhO8Po^v7!!9Fb7P0!TF#pvbgL zdv?ClniS3Tgn%<$R4*2m{5lY-!Ai@bnZ0I&&aJ-m7uAh=eE3}`UtGRI1kgM}LiR<< zjoY4p3l?=g!a(4dAbwhbj2>^e!1|V!x6%~)q=yu5VYbkOebcAjpV zUj}qnji2Dnq3lNlNF`o$ebGUI!2Adz3;;l7)0zTbp(h!tn)X@TJT%8NU)9V!lg6UB60-f@6f8dko%f{!!K^QnT2qFwP=yaoX+(U&aC9Q(#ZFiK}bb&ZxS8N{3 z^`Tjxnx`B0qi>fQ@#@|BQq<&f9X+2`7rC zwlYP;`cE{U^Ri%>14WJzH&K}aQNv{1fjQ!alnZA$HO)DBN!^x)Ok)JH7!y(5ui0>& z?*tg}f%XvkuM>fiEN~B*zWqd_$c{rO>n=&+L}U;Kjvays19`4d2`QZNS*n{;nfbcm zmsHJm-H^dFj7Q0|2WsA&rqF7^Q$BOY*e(jdIc=F^)Kbd-_NY#8R%o)Jf^Ju^S6H2g z(!J>l6G>O%MGjBZ2G;YU)9tZoaQgRY-hZUOE3tDeQH}uc*Maan$vQ)oj}?sIxn}rt*v*t$HOTlKUdZj=i>Q52nRIlj!O}#7&rl1%Ws~ChVetjX)4#AY;tjHdYROSyqQf zEwghRp`swvu!`HE@-y>>~eMA z5bJl3nZQ~ynrqqFJ7-Yd7#c}u+b8(3U)XLr-OwQk9VP@}yTXD@{G2`*cG1AGMVLkd z^COFmv2|R1Ayq!JZZ+@~W?g!&Vxp@hwoTtHec!F!Ng}l^Wlu>9WW^;ax}o16rdkh$S{hmL^t& zvf@M_a7+=uu|R{Cuqv}(?X>a_%+AqiZTH*hJeB8qEO#!|?T&H}0XeoaoM*_?Rw(?} zkWWJNh5>!(+8d~=UFxqs&mhJOMbq2ON~{u3tBp?&b8!fJ2vI+gdIJ17RvF76gB7h z+Znq;7by2Q-bWtDJXUD95EIb=$ZJr5aA&5>ltm#zq9O|C=useW z;3OJ0GrMVfBXkHtpE+;P%vDyuxR?PRAIc5`_3JltvRY+{{DYA2vkHESBBXe-z-)Ve3+O2+%|_C{11>RnJ(4?A1U>C-2kbKv%=@Yzs)E7=N) zL$OEe(oG@<5hRH|R^kn85JC|KIw-TO0q}#!J>GrQUZI00iW${fHX6ySZ%>4p3b1>2 ztMI@rjR%z|#9sMWjEo*?IyHk1tw&R5rZ$%*E+N-WeJ_%+ULSIGdfx{^BQ#ydEoyOT zn&*+{+>0N7>xytNmaGXjfog(;a~75oiVVWQ1|bw-z=0;R_yLX!M6Uuhvl=`x;?zdE zZO$hRp?btut~Fn~RA}T(cRK4@3)Z`Jj0~t&vN;unTA2Z`u3SPw8agy}xRuI4YDkWF z*H}JD1z(w^#Y#YL9qqm%RIfalw%?vLv9gUzw?QH(E!Jk6nfCLGM8PWIx3-jp=G6|$UAW#bbU|>TKrqKWZ z049#-Q&HGUlP{=TM0MpZ2Q|$i?=}&KrOjH|jJ9qM)suE=Z)*y44Ci-|KaALMyW%61 znqqxL_W2q9!%91rI((uqyOV=%rtiw_=agTGb5iDW^y!;LO$%{Bn|3U@JWU893>Xk#O8L>n6L9N;*3`>Sw(exmQ(&HZ zHFwS(rQwhCCuebw_IeU(+2D_+LKQWG)owj?N`Bb4>HaAEXL+ulQ{VKVvS*?pRB+nS znnPWBB6FUbM@?^AjGsbgJ=&W>hvdpl$5j*pyPFXR2oZ_zo)W(%pkq@oR#Qj-pSk%k z1Omq%VHyn_9a^etNiDNMc?5U4O(%D0j-%TY4$xgW>ce47O=Y7@T3~j$vXCPR^_Oze z)-tB(ORwUM0OBT$ict{A&4*llfO9*02&IKzT4^_zokS{ zJ$0wFg3xKGVODL%>c5s99UHkr*l?TauwKyUFn>oj*u<{Qq`{LVD70uI0-iq%)MQGs z*pOyon3n;eMk(SFwoH<>sj{=M=2s;}GZI2_)DDj?@5nXgGhsV3u2Pv}R3%czrbC!X zN6Aks3dUKuUVB3zaO4QnXkZ+@toV%bm~Cc(Y}6ofE7&?68x;c6u4l>5l^8bC`qq0V z&ukZp!k^T6kVC~N)S*TR9A%QwUh$uE>>+^Fc1j@Jh>)4@lJXz&0B{dYu#Aq6F^8JV z@z7OlSMILjIlF5dbxk!Df=(2YoM;A^Kun_vfPktsp4cb~NRWt-;8TAbcG18FA&4;0 z0vmFokwepw04Da7b-m+PPw-NtO*HO6-SzcN3AS2L^-E?T)-st%ld(E_YBU$sR0>Cm zTp1fibkQp==9BpwW#Vbe-z2usDw_~IDe4=BtKe47m{+FyAG^6OrFE=PP ziHyq442rUyD<{fa2!X(cA&4+=G;kb=SktGUvSnH;^X>J>ua<)vx>;8!8q0BERcNe~ z!j!5b(bu$-%W!Xn6pQ6k455Hx3-xAFzMRIkD5XedAyZ&OMD@4^0>>0VgaHPbr&EF7E#dC-aNF!U z?n&A^rgm9uYc&2pFsejLG;Gl|rL$veG>UMN=Rz8#MgR~Iruh=}O(B>pdo5BbRVH)& zA$zDWpBz&Ar%;f0`?bNMo-$|9URz#kJJMJfyIW~QK9r2HG!@?|$uEg-noXksNbrdd zhg~$Vafo1L9*TLpM|9l%MT6yUzQq(7|%0YmV?Jf#32e#PC(B(oU z2f4J0CquyHD$Iyz`On^(xEqBOa}RS&CdoR2-iT@`GjCwcg4`v`f^|y!ymUCvE@f56 z&O#oEpZu50$S)iGSE55v=NBzT(O7pWu)zpL7|7saTQ3&MX~+#- zVwvR_E$PysrzMoLGF1q302GA>6&DKsHROkW7lg4YEm*U!p(3gt|6mGj;HW1#CKAhw zrfm5XC_Bjin~hW|9Zfk{*(Or|9&kNHABh6|Zo zD=k=&KrI0ceHvZZdJ2hK18|-~-q5!M-cY*Y1do~p5o%JbHKO03rUlD?TrB}poeYeV zgYMIRwBEMVJA1n86vO0XT&gbr-BEK%}8K!B-9*pu~ z0018#Nkl1@lV-xZisR!Z>oo{<-FFcYWXi4 zC&BZdrd1Sm<8&Ke&P8TAAt-_}*AXf*e;hSx|9IdiMl8`LmIOIcf%g00#ZJl(=F&aR|F;U=t8T7ytn0?aLEz(*QlcAesqH z5P*De=ZNF5<4SC=>W{R$bqkeZtvJsT5(_4F6M~DktoTm|vSvOcz{ClBXin4)ns61B zm`#AIl|@p9PJ|V%EwoKtqbPO>&+RspHiI1vt4;MCCaJ07+_c;=idxNFeUto3k)vk9 zK^WK!glRNzgi!6~LiByX9GMo1n*5qmJ+D+M(6mumN41(s(aWS__^+h;>4i{E=Tk)V ziVx3RAa09q*v-k_`$qny+sZg~HR$_1FuULG9-pxf3(vWq2uhrNELMQH-2I z{Srq*Z227EvNt9%e#)oaKq4f%{lAA@G_cVKMHrY5t@2YVXd@iE63|&h=YyvfQ(SSR zSVzGV64-ba<|h{&BO#hhsOBhw#K<6s!;h&~^$lTCA&8EfZE%f=8YK-MMIeq2%`_~L zqQvU3b_d!Z7x24ng^`Wzab1{5T6<0#NhvN#zq*6b>NX#OkX<8AGoc1A&c1 z5Mf~bAoNcxYcB<52~tH?isg8?=Xn+jyl>YVQ4T*T)GWl~TSE_8=9 zSVriuOe@3RoBbgK5e7C9L4<)G`p+YygQ%HM&2wRi`B;x-v|OPr88e5XKkC}B;iFWQ zd;4eQyi&Vf;T0b{!#7t^8mXm}z}w_cmlkx}idlIS&d2dTVDDpQ%S12ce7n zoGA*KUxm!7Y6MuUpe*&k$i6~*MG-n`BoI+(z9+JwQMuaxxOHuPKbSz^=|B)+U?wV( z%SF9v>!rPshCC`hbGvA(Ro2ldq7YdBfqM)Kw<&4aLu@83XQA&HU)uQOtO_)`FkiDy zC9E?Av1rgLYu-n40;N9ftKed6hSK?Zj`%;;!>ZZHZUH4y8O_vW%DN;fe1c4x32-1`y%}^vD zRg6j%5TqE2fOH7OAVs8vBIN<3NtY%a1A_F9^eP<*MM@x$y*&Hw{tdhLmz#X;~a@$*k;hMpXY( z`#Swwd@2EY5VCUN;Kk?M2et|i-tU-llP;sA zM6Gi;)Kr(XA_F|YpTpQl%2`kW&4U#i55NqT3W(Ldr}1`xy3})wm^$eDZ0gm z*=oqUK1T6|nmQ>5&N54d>9+fit@vvQj_n1Ouh+XAFOLy;eIZj~VUSvG@C zqkSeFO{YZkW5(F&-dTxXlJP%`U8UV-<1DOT=H5M)CI^2p%TGk71$=(}1C%E=8HA3n{X%Gx+?d0I` z%eH!OJ2|>Q_Ncr05jp9nFdl5si~Yb4JvZRQlOSOYoq#YkHI;6u3SKPQ&MusxSM2Vc zdzklh$-`}gf>Kw}2+l`Pn&MtYwE40YI^M+3C!Mkxy%D$SxTVsD^ zIiO@?7E-w$PyRe@W|sf!VN8rTVY-m|E9`nlhK8949?UMN#xF2xO_&@TphUx~c4VS@lkMN3yvO!4CGB zK?I5Tl@nn^uK8{}Q*d=8gIb!upVa|n+c-cUI(!Q;>J*aokm+@faFmZhk-oxyf12%* z?Qc_VJ~H73s-jr-Y(@&cNcisuoRlFj&++TZA9VWsVkoFwcsLg;L&4yfVx`gl+FfOi8IlAiL*e;_F?qhTN^M4A(#VB6=KV$tzO+NY#}*PAVn!Rkfpg z!3Zjp4Eg+nrR^9Uxh#DdCxe z{$U{@0bZOa$$dDd>Z>kFO~Xdo!(Kl7PrWU9GK<2q&3~+5Bh4R@NCXrev?_+fWPQQtk_lw;cs-m`;c)o^Vt34YL#O~6P4m$M= zC0#w}3diO{TU#^p7r!VXIl}BV9fRySw1WyvdaCX+(5<%XWRop`koA-BK%J+V!rT#Nx(_epP#42LuF<_K9A$k^ z`q~rlt!`3qiDUU1U-7l91$Men!cXt3K$e#7Xw;^9(8HJCU+}0Op92On0zjh1a-m+c zam@$cKC=#=r+^comN9wy2J|d3g$l7rl5Esn!&;wgn5hsfUN>hC)2|^LLt%)U-}J3b zJ)$T>C$CK}Doc)1-rqlZD$h;rpna@<>_XBPkk*8P0^mFR$UXe z=~_p`woK6bivvTLK20EGk#b!)3dG!vA$IA3f+R94KXSzBz^NGTxck^;-3f-6^a}PF zC&J-#L9gVlmB&O@5Cos@E*%wh(H9-15EX@4sdY5KQ!`Yx&(+^$yIAFdNen3UlA>Y{ zN&7TP@Ww}DVXNyrBkv@I={#@BlwcYSs@AcTth7%20QzglGa6T3OwJvKe*k@rW=`a= zipV#4s)kY%1ob{n#3$622uX)t#j=X4T;bF_T6%G7F<52h9VHemh7WF9LK`rPQJ9Pm zX|q9Gs`6!gO~wrZ-%G4i(N^Y_K8!CLvx*3-h(Z`{q|0+o=%nWB9k|8%iCFQJZ(NF9 zZksshc+f$me7r~^02fw;sK{a!2h6zhefGF)h#-QnOsp8=`g8KV*I6%Dsw_qfsmD zC-0d^Q2m|eBlG@|F*6<0+ct{btcC~7S8Aw%nBh5_9%1cQ&yliE&(){+3JV5%;an0y zS%d~eeZ&yb_ms)`Dj!L<&NEX;{ouPG&)LwyoCmT2)bCRMQfUVFqQ4xK-vB?8jdQWG zWmD&4l9LvA`e$OEq3xA5q004hdzGEr+L($%#9(ik8N2!`V2SN@yu{#^w zIp>w@l==7QMkv8ho1BSRk5^wCEyr$6b%!4nv8m4AD5Aow!$@IdDVs*xJ9G1pu7;!H zeI$wY7s^7HPhj_KN?>#8xAJjRS7^sA+UPs`F$e4M$HYng)pU4LvczR$w<(>&(gQWtmRU#0COEzbRKAvL993!UUk$w!b#q0ph<91QO3hxju`i5 zK~7TL)_z+%+j(`3sXpanK-5s|28@>xlxcgJ zbJWHJ6?7}RyRY`$bTWF2bn$2MyY zQmaZfyfjQU!2NSwD}DRM{2v91bVmtV6L8$)cjXJLV#ib5bfTC z7`(&XER*$On#Jq~V+i@Td-)Ack{<4z%sKV~SpFcZvC0LGR*pfDR*us96lH|t@2KDs zH1Hxz4)K$}AKqYXM8to`4z2K4g=$JaG=XYI6}%j*B!^jwX;En&a(7Dx59+5=#kyw4 zI>-U%2C=5EB{BYfLkVRNh4flw*V#lc2qXx{Zp2!WR$)SHcUg$y02I`LOb^OpdbW!) zZpIWX=`QlRgh7Ev=-dSRY&Qlo{oZ}Xm*1~SgQu8cwy*Rc9CUuyj7d{tHWg{qifGL8 zELmul^WyG&%uc;+bvqj#nnJM89v`wwv?To&uKX8?q5w=C5P`N1EotI>BixxtAAd%C z&JuVuxNrF4T$2hE9^v%slpYj}xsxc5q3~{c+m-O-f-Ij@^Np32>J|}xU+f!s5ZU0f zA7R>|h2=bGp@f#Cb02+6%OXCs1j9XnlftXb0|KKoY~uO1SPdMxbSb5E4B^34>YMzK z>sR>5`$ipm1AEX~p!lp#)N5aM@YSHM*r$WZDvxQzvp#7`)2cX53fpTLAY4iq7M1;d zV=WdMs4hF)u^2t?*L>y21c-eu&+0{pEyhSvq}({XOFshJ8wO7nVbO}`t^1aYMZuG! zEMg_OrV2;hKKDxU$gU1H@^0!Qc2Tv(uaDNRkZS%bLHI%{^1k2=_26*wsVAi4;Je716?T!t zfi4KOlmgb~=T6%=MFGD`M36xI3%W2H0!mg#g94&!Po+PxlSyn}>}x($S(tzTT%sf= zrHQVZ0f{=jLK_9FD65|In{oz;7#`U4N21RhE$ zA4mzNzZotyYY=ZC?6;gXv{Y(x2NL!U`W2wLe`CBF`I5FLD?91-f3;j3Mt_ShiT3Wm z_bcFL8oY2ZTnb0qlLwOn0VdscF>B*KutC<=PUVZe#6%XD-;R4`ga4T)%x|p7T*fZl zyWh-)vu}cN2uVCb@-0ybrUjwxGQ9KBBuz40r=4rX#Kd@)xGxsDZ;muf8zvv*f2*(e z0rtn>X6l&0%KINb{KhKmd|STOv5}t{gGQeWKA?|IL~f@$ivhG)5SG|7_oD20mJTwG z8%@{Z;Nl;1-qCT@uV+Ux?8%gQ_t{ADW-H(tnZSCAd+my&z_y#C&CSj5xv}v!#bv+a zSuf;tjq|Hl8>2>g>g{XFM0}m!>f6`Vn(eDhi#C#STg8K#K-&ZP%4Yf5ZjTnq8S^xm}xN{+>8=;qV0vYn}FQRS~KN7ZG{>$J$5 ztLzSu?gRJPz%A#0khSkhTP}QHe#uMt}1T-z#Zxd3RcTfscP8Axz_Zgu+h z_4j}K-gG<{iDol(QJuU0cGnWaaWI;)_HU2Hz$K-ntK3_H%J_#cMIzzAJ-xyWGF6M5 zf0dtJ1rRLNfgJyXFb2cip>|KPU$f_BwHMO=sDW;_|r0gMdo_ zE_@HU;ql-(^VaEo;tvbLk1|4c8P8IW#f4j{OvdvAa7E)}-qVxeq-Jsu)OWIHf9L#o zo*uLYFh|j2RnF_9tF$!@NH{lL!Rw~t+ufx|=#?O^mb2Nqegr;VPszKBKWTfadTYwD ztZ5fZW3eBXbQ_Aipm(w^FU?#6{;H*>X8gX-;n)*p{O|a?GcIk%egnt7M$Pugc4-6h zTg93;yylZOgec=pG=-yX#7|pz%YaONjh)jHo*te~xTA9Opg>=Ki+%rD#>yLZ$e)h0rj6 zzT?%jWtN}ev+426?07BkVogrkx-*7rz-PQtAim50c=mX_w)wD~Nsq7y=qA120@>Ly zu4Siw3$&2;>Gc%)(1L7F&Wtyp zmrO$nb9;0!zxlJd+V95=5r|)Udu)MwY|}ZHnhanSV;HBAmjo49D^@yRr0anR({NntKuRmxU?<*jiTeJMK(_K^< zBAZF+{(BKXYK9j8=1BDMoGi{#!blk=slU%5N)Cj|l2+i@V{zVFd? zmve^a)T`QA&*|{F-Bl|y@NU)8_N zeLK0le$V=!9q}$zW*ipZKsHt=WIQK;EAX)7<)66vEpf={M5hwQ&}Z%-<4KcA)YyNN z-Z@68Wh3tsdR_10w;sdZVOijPutyId_Q0FIh%|{tk8@@{`HjyB!+`Dx^IwubJUm>P zdA_a5?LRusDQbZLjIGyM;rTw7{*}02(l~aTh!G?{&9nLl^HM)(NRz zuKU3a{-hUL<~zH^;A(5T(knI4>sd36Y)MC#Htu)ZDIKH)9@z!T=Jq4Jd6w-vj=mI? zcDIa<=qUsI_#>F+f+eF@l*l#R-EE`iTVl6Mt6=wPe3fihAa&DkR~6>>oyMGp-_g+# z>c0U8?{(ZjRyoHcLV+Za1K@YDmGdzQJNF)b_nX}^*MuS8w%z!evIBG>q5YfhPMzQ{ z<-<{<1NdBSk~s%-M5+@HCGJBHzNNc$3kzoYxncZ2DDMBflzYl@9mT(N&?^&mS)Q1> zVyOhTXX*~HG*IS}a}--6NN&iX_nTGz<&R<~Jnq2_4ZdVR8A5A&BFQTk7<_|QLPlo`vZgW`11|Qf-jB!0R z%)gct9~?+RQ`bLBODKjy-|xM;uosQ<)E)XR~yRU3C>M#-(td0Jli^J`v^6YjjeCYr!p z3-u7eUB`bs7R?V>;Tja4CpjlNZWSrM>Gsmm5Ydz0$w+tPOMIe`SbI#}*4_y^eewTK#CU~q=;bl* ue+%b<5Eh7RDQ`;ylMk078vGv-EfdN5)`^9MBOhBq!1Yl55v)|r67^qiTg<}% literal 0 HcmV?d00001 diff --git a/demo/documented/hyperelasticity/hyperelasticity_u1.png b/demo/documented/hyperelasticity/hyperelasticity_u1.png new file mode 100644 index 0000000000000000000000000000000000000000..568e87b14bb0442fd27d5a6661dff596e2796cbd GIT binary patch literal 42794 zcmeFYWmB7N7dDC$0!4$~xVu}SSa5fDin~(^#e+j>aVNODLvbi>#VJ~>xV!B1+57zk z`|CUTkWA*9bJn$d9qTxw)Kp~O0ZD*xaB%PB<)k#=;1KlS;NTMg2(W)%bfc!=;3(nb zr6jaIWgY+UYqVO{UcZ}YyM2GBqpeuQP?ZvfO?iP$B>zG7ycR`6aSsOpA=Z}%iE4ln zU}iop2?&Nmr=3O=4uuc3gp0TM89VTC^8+OosVlYc5D_3RD3WSuST3J#ZtZTN%5N%% zC$N%lF~i~HOL;|kMSHo|{-RBmfnV-V5u4m!Pd;4_dNEq~P&GynFkAQHBmn+@Ki5={ z0g|v^p4Ir27!WXYx=kmD69j~S_YL6t{`aiI|9#;9>f!&FKP-55n2Ixk+6!*-_b;z< zDUwzuvYFI$+cGTKG)@rCgz_qBy>-|gfK86p7!hL1x=RjAW5RM4) ztNteEwFDH-oDoEFQ#Q4Qj)#et6UgD+6YnY`I8uz=O1(^|aU0ov<8XBn@B=zcqw&v+ z`M%7`UT%fK9wsKl72PgdQa9hi=h7_oq;5sXVpc)28R)*MuxWXMM1TdV|DBBxv>zBo z#kmFUqx$n+bts+$FcmcB;TFs=2(r$U)3xrrI_X$_!30D9)6$9y2UGbU%9eC+OyjXn zuSI<7qattV-FS1y-c`imDMq5F?He$|4o-^0$p=Hcd>vagUvje)lXF!Lj3@AZ2M`KxpAAgyCC9*rHE4jxZ1ZHcBycK*J zYkdk)Pq?@;l~gOG4ox5$rwl4J;xR{{H)D_sD>OsKON)dnUVTY{iKrpir*`oBFET|x z-WKInkei)i1m61X%^)&ZyquE&e6jL|QxcsX&Bt2o8i7}oNStbu#cZ78X2o87zSiyb zxnskW(en#XmI#^m|s!-^wGn5Kc0g8CgC#D2dWQBYY6VJR6&o z0AiIxvbKQ76ZwmWxpBA3(DDS+(jwF~43<}>8N|fs`j8xnP|*x$1FxN=D7BE<$7&zG zbeHmMfd&b4;8T5CKm6JyX5e9;@}w4Ao*BW^_4eG2J;lNfC)fNZ$d`npMAJ0-zO68+ zC2mZ-*Gw0NpgD6@LnDxJ2B#^al$@476<%=|nouxq0tn4a!`cFcN95I)kmCNwpVgNx zNvMPNKb?f? zAdx5Q_`iv$>Ms4v-uh28lWj%_|wcLDVfAX-Ox%$e&)O2=m z4`Q(KbRR8Y_zM*Sz|{2L|J1~J&_*F3a&hr#;m3F(p1Gvifkb}pOTgrNF}{x_6IVD? zHb{JiJ@!Ct2}eH=tu-)sg=IK)KrUq9y(|Ew7->CNKFaO>xI^{z9jN5BduKWdObSr$`RFqvA1_tVAM2a^o_5&QKg#hV(Oyp2#-0t3fGKHV3Ij z_{LL1J>sM|ohGB8X#WMV@%q*!K56dEu4cPGB%Y&$Mb@ybb9wD8XVqs142{tJ=i!s{ zA{2v!95abI0~GF9TnUnS$$?Sl#T1Hgdou{QwY-o)zyda-{=9A52t+1X!lF&`5(TGx zb5^qyX_V(1eJ^cBm_{Ej%{TfX-oH%y1aWEy@jCy`Rhj!SrAWxWji%a@R4YGT3Yf#_ z6L|gffN%Ic@ZeW~YZ0_`W=4lZh)BZ6O)cpM%7tH`jCUB%G^XHH@j2+H?!i5f-4r^e zdwo!AcoyqPoT9fzOG)67DEC7|Gw6Xi1c)G{6c%bP8xvLQbBt>cS-LzwqNZLG3ix zh5Lmaxx=W0=l4JNrOeQR_hfE9yb8PIzR>4n+CKChg9c9s_i@$& z047(OFoj2Y_Yk{U4P6kE788rqIay<(eNaeJ@u_)_42cGjOfmvX2R1x z&759B4s$=s#4!YJuOjHiRm#LMMcG=9z2#_ke8>dOcZ9s0kVDsl*gPAm(1Gue$~ed% zD=vEExbR9J=$F*5SR;-M?<68S4VBpfVNm-YP(0^#X*5S?R@z#s^ZjGh(CcIHXMIi_4FbnVBfIW^{fFut8%$F1ygDt;FL!O zcxtl_ABtLV?zTrlKEAEpZgNT1^a!)bOXMLn?Y$t5=lFGjMlMtwL7o+V*3B4rv2N(+ zDhZX%gK1S(^=~yteiED)By28s#ZIcg;34n_efP$iC9fK?>HYY{!u-*0V$Des%iFQg z`VN>dx9!KL7L(SPvjFC1R6)UkEo2J>2|O=$POPp!6NW+FFaPDW&rjW^Bj#Go)v3+Y z$~t4{@_if;EB&~Yfn%8vlpL8??zo_aFE#q`@J*R&7V}puFBP2<+ArFqBmvdb1|N~{ z{Y1buAy|7LqOjf3MTr&Z+l|vHRAldQ>%OlYjA~qzjVb(-;rAVa&Rq@X&FR-qKdoa< zkk`mJ&I?hQdgl;_$m>(#pbf-|G7H%t*^$;yBsgvP z>PZuX0dJW*7=oHYW9fZ7q`8~-vGMV)p0N?}4~Sbi8J56x>`HwZK;t$&iP<@D0;AWgVN)~fA z(2yyhytA>XQ?Fqj?%>LOy zzPIMB4pEqW!Rgc@`!(U+$Br5@@ow3%JcAygaGn^Hz8hYuf};YnF_Q1sr?tgsY?}9> zV%)h*+06BPAKnknpv80iIiUJ{K-GD7m&>U8ddzH^3`?H>Y^%d0^2ft>EJ$GlTU#pG zVY@dSe!9KTq)l74u*{ZEaP4({y~+&}NtSC7phpK<%fpx>X3E4h*Wyh|2@YC8KFAFlnLex@EYJFc!zD;LYrP^G^mt4J%+7 z#4!K5atdWyR`iNe7`)qyPJ%8CQrmmg*@t}tt&M#@wOzTtX|p3R@?GM;$!ammv5xm8 z7RD8$*&(QA;1;vZqWntXPr>=^m}DTE#~zw*`V@}nSrhwAU;7>L+Nd(qc+t!wDU@k$ zsFTV^kEwMJL0C3&8({)auHP^Eh0#n~=Xn}yq9l)pZKQ9EK~Si7hATe);7edN*6Y^a zo4~JNsH`NcA8L`YV+_^`BoT-;$H_;E;yz=ER)=G%qEcIH)$fmxp!7P|EMH_D=qnr_ z{m*KlQ6i%UEz5IdwozgQ7Rr0D7%mKB2MQrcqt)Ec93%Yq+)3z3-X?5$)Wp@i+>TO~ zG1}RkCM`*M*ca@DC#98wf6cBYPu0|>mJG+{1Yrj1%w`dS=-33xm~pg5m9s9;tfqO* z6_y-1m0MliJ|RM<$qHer%&htQp2OVw+XrF2DIRPe9Q8)dy@Q<~jmLZ<$?OBcmcq>d zYK@qfy>Zi=7z4ELXg#z8qZm0!iPo>lNAHT+ir>LLTh21c_%thb(1rA(#|U9kmt zq#|Lc6oo!7L&--k)DZC3cm$Yyl@mWZ0X?{O4;hLAKRUd410DP>^S;k6@zW#d8s{ze z5$vN*MD-{!(ltA1SWGm3#naGG*+gTaaScskY8|wW;Z5Ep6aos#-Y3_HRj%Q$Usavg zbW0|m@~9sk${K&0z@{M!$sYof!HwX5s-3po&{zM->Xi7D$7r}A!eVmwa+OX=IBB%J zbwKnp^fk@>)*AtW@~+UyeQ z+7MEu)A%#7L8P&i;gfgP#B2hxO>2Fhkt36cr8Wzbwo-dyw-E%==$VOo*=7l%8cu%o zb?+e<3Z2K8`Y1-9F^>W*Gv&%HP-P{SLC&1n=Fy4D2P&|Mby|5EqU!g`O<*wjkU^85 zW8y7fd}@Rwjk@A{wLf&*QusTu5fiZBHmpEwjUVg?P%5IPR~|;rFOqOYRGEKkawjS` zqQ%~d3D{I4d{rd{9OaQ`B)duHrB*vFPeRZuBYqs$__bDitJ^U(73}9@()$8!2>o6C z)S1Vhxl{?=j4=Hnj4y9!H%9bkzKKyCjL9U}D zO<*9LZ!$DI$BU`85evGCxn*=ACQ~Lcaz9VZ8)%MpjJLE#AI=*WLs3oRm+4h5i)8Ao ze03Q|XU6F|f5JlMy_<9y>29Z32j$bDo16c^348JgvtoEpx?l;_7YX7%%s_5DCc}|> zN-{q!qr|79kK`9FZ5sd#ERbxW0_UZetswM_Wy`xCo>m%rtz-UzB2sVX-@?Exny`HM zRm>DZUWjhNP%wv)p#gS6g^Hh`$4(9&PobiiXC|r0)PE^jozTDy;ZV zI=QcbBOaeL7+WVRt0*&-GB4hHI_o{JSrhHlYa)I;m`PRO3!#L+;kviys81+#>frmt{$1tK$F(M_wBX6y3yxyJJ)=9(L< z6>N7~d#T4NIc;2fPkM_pvmL5~7luxHoAT{9*-&kM!Ddgl4$fhmS-pGOEQuT+fkKua z3Ms;ja-vMwRNxIXBA0hxx4NpC1^~fT)wxw<}H3LebaL&eR`Kg@G~}+KV0A?N4__&rwtRV zbwIfpnEFg`mC*vPmO;1I*YE*Cn6Mst+`~+N%ofD6tD9p%SSjoiLA1R zARw2y_iRtuI0#lW0_EO`L}ch18}z7tHf?oAwd*Y7#(J?927hFnW9w49fy+QH#3$|3 z#HN(yf@p2+D?v|if~q*>CH9aBGYjq4!paMn8dK$p;F86|CYo7CuJ5rnM9*b$$lk3< z0I|cJ)y5kX-w9Ed`%0v?Tru3|_{U`T)K2HoO^~>u#rZA+`h0uiLz*}^O>t+njLcSo zh>@@bu5_`N?&SO@eN58WI@^HV{OW%dSQ{x0ditJ++B?h96G@(i*UC=Zk@L%?q}arw zXVuK7G$e}`$N&iPvI7Vv%pCaO<&*j9aU;P$#8JHAG9LRts$c3i+AhCehbtxzbBD+9 zOg@8?#=}loVfem4e#xusox6sa3e%ZuTqw|5mLvDxe&^^x_gQk8*6-X*VC00AYy7vT zntQO$js<|$nIM6oFv{Lo31Xy3mwyyFY?YsT)q*uft>hq6izH{)X}4(#Z`rJD;A)F% zL8o+xskE0`Lakk}#0ZeCPMDa_un)FKWktdWNTDg5Rmqnsyj`UZ1X(B^ul&cv@1`$W zPFYNfS){d@DrQuk>!8?#>jWDLLneA@9u6U30n=|Z7{)C*x0il!p68NHZUb|-UPCtL z{;!z3TXBd#p4{BJNpbk@!tMVoeSXq=uP$K*UhxDdWrABto{u@I*!MhM7ocfZiQ4E( zDeTuw{XYbGv73(`Wn`%zOUt~QrzzqBRAnrquv*&ndt{Z>8-h~EEHmvRUdT(mWc5N^ zH^>!%#oWVXz4hJ4NbBcSCGV9#F$;?JNn&k&Is10^Gw*8w?qkzWMvt^j^!5 z6&v4O>)EI%k3VqcqK2-e6Wuc#YghjVa^=1!QNIu{g|T#Dp(hE5+~z5Tt(sPx%$%m9 zquE~`HWi?qPB|2+rd#pRa}cvSY2+a1$ou&gd#10DXlwDOw7M7q^ULLqKU7+|LOE%u z&tj&*!?T!kwTsU*jVIDxc$F8ms2HSGAI|t|+%jgvnqrN7){}VkU(%6>hlyvmQX1LF ztE=;#hvn;gF;r>c0?nALM5G} zv+`nz9vSi=EI#a`pud%<8MsAP)J?|+9JJqU^m?(sGFf4L%lk77Rf=;N4X+G@wW{SQ2h>QohU`e;gCv7iQuI{NTuP$t!r zGH#K8dLiJ$9=f8Cn#A-RH{?Z}uNOD$9EOK*D@6+g{7P;}SFyWw0P^${CM^v*t|MW;e^A1;S(s}DnFB3feakbbR}(A#o{mqyyH)lKG`kNoujqL$H3#?k3Uq9Eh_qgtx_NYt)De3wx zf>5z}^JK#UqL*6`?#zdSmw5A90V8tVw!OOEq^9PVKgk_$YG10l|#u<0*C zJ;a?F$892@?Fq_D8+(XYLiTL*p3y9-XJrenrwL`jBoZ^sYUF;8tf2~a(COuD&Fc8_ zx%yABR6--@$J_OmL!%>u==fS*It5KHL94;8I1Jy#3M!Re9Z3$nSSAWb?UEjE_2JS6S>xi0vO zBV+U#dHBb@+zXbg^nbBLSVvI{MGDwq=d&-HolS+?XW|O_U?W{1(IBC zs{BrJpj>1Dqa!31N1#zm6H#Y5T-8#1~LxHJ4N zlC`w)j#Vh>mF>IKqO|amhaR74SF6(C+U1ybl`jLkYO((a^bm`xf3_{dwLCi}fUeSE&q0^WVuFxn`}~ zf{P?Tt2$MCH8i=Uy8!i)Gp16>X6yLKC^CTja%Y8p|Mx>0_w+t)FUGWlq{AG`+6tt( zQ{{vet;SNESs|8$%}r|ZyW@$_K+=ZsFy~B|H~df#H*uSm7Qm-#M4Ke?lu03u1{~4Wf9`7KlIdP|0gs{(x{PWKtw_v+T}lF?&2DZ&dV;u*q%hC zC0|sCrTF{{XlWnYxUCjuPfHw=WL|YfkjabR#7N)Jq&!_Nm0$skdBBTFrPmR+k*G$e z%fu-8k5^dlc|(PZ>w86>Jl{)2o3d{i`G`k3y(WM8_>1m+%(%Y;##?@y8uPh@Tygc9=LGKgf=HrMLUN!XTj?ze?% z*i)Cqp#@aZXs-Ut$6{+3WG~&QZ+nf@P%87%ANUmS zn=)2OZ;_JZkU7tsUmzRe)>eI6MgKjN#9`c`eJbk zgem|pMoorg~(Bg3@ z${Xi0lZ{3XTF=w|J>Z-gq|ClESr;QjNEM3{%bc0BpH z?TPMo6ufi0!aa#!*_do0*@MX3xS>zc(-?!_AC4SN-4agAM)$_LEHfr{CXk>;Tl(9% zJZh^u`|M0h5T!8{NFJw)Nq#k=N!K|-9I}f>eUQl8K!4#L!qY8U0<$%githl^X$&X7 zLQF%?t~8B|HGu0)$Xr!)n>@?_Jyl1Eib;N*r~fny#JrA9AghNPT<-Krd=&_nvVcw3 zFc!vC$H*>vD$`X2omR#f9Os4>iSAd>y92IuiM^Oqn{_@YR?Q647U+y11icGz#OK2M zl9hT+gAxlZb7dpKi+@TF)eY8_6cK!Y@KUfzJN0Uj^lI`HMWi zW~!6cBI?YBrz52aE@+#U8QrTFPW+6$Ct?I1C~}oC!{@aIrnB*mYJ4$21B{VtD_1H# zP|^7e(;DT7ZO|$S)p6TVvw2J;&})>^Yshru$l>u$@ntlQD+C5(#WU00cUJvc`E zBFoO%dKDY=3w+wy3rK|V6VzcXTQt44HG!Lc$@;llS8(uTb}T=;_PrO#(J4fcP>*qG zJKx|}Sl~^J21-tHPfume`@UnGv1_|Ykhk>=xHviRU4${K=ej93kCgJ=`PYb-2DK>G zmKF7T>I{82H8f!Y0{+Lc>Ma~(zYq<AjL^mPSRt;lk|onD+2Qi@8`1i9n}CMoX- zD{pOcEA`%?Wb}^3MGOnShcCs6r2~*L)GE2y^q#OJ*H0JWU6nAZ4U90>n2#h*%Rz1O z#gr*zLV5jB+gCIB1lzPqEAFQ0E=%ISqQkBf+O}oDNN z-HTJ~M{F@ASn@2axJzGEF@m?>Svb)ZIsz4qw6yiphziZrA>1rskY1tGcGAVQuebJ! zb91*T_|R$Ue9`sScVd293|*Jp4d17?jK5y{{Rdo2g9QLS-G6#(;RRYbiO0z0ReQzquzf4w?1l6*6tHpUuo!tTWnIFW7J%I*ibOb^ze3$tqELAw3WP|e?X zAS-;0tyoEXLQ3Pi$PehdHwYb{)f*>2*PWM<`RS4)${oeKmjA#b)-L?sVvh>_X|D48 zjrE2&+UgUq*CkuR`Mdb&@uekI~MySaI|g6w5UWl20S+E!piaN^0nfobiw>==u~z zIiiZL-FJSWyqDF>W7LYWecwm-<}Wji<7{&2k{zFfZm&SEsvoAMmn>CJHooBcLyy-b zMOe-R56!kAHpQ$=FBLfnNsIoJt5xnn%^qe$hB5xlsPg&YrP$T*o_Z#*<2)B^B&5TI z;2Qp5l!7EfkdXs`oRU)M_@mT3%uwP|%?Ux?y+xzIU8393#~wBzg^l|w!i~q>pGu=r z5$fD{?PUL6sfgqv|1p>3(i4daPxAzA3?FJ$^m~EuTggbXLFOLih+AXLx3)7eC7yx` zfbmDD+oVQlmw#ipq*F%PkQhiZVki z^xk%~g|9nHj)`Y(OwybPJ3;>N;G6jr$YGt1CQ|-SYGt4bEAx^He0FLtUHEl^{nd_jAX27BdzuIojEf+>YkKAVUdEnkLAt&c zD{BF}6g`Yxvf!gvEGksa8IP5B0$!uF%^HrGvN4-YQ%<~$B9%KXu<+wpzKN{QA zC(%TAQ>hNUPruy5901p>*SiJn1n9_YcP+7ItH-NANXPv?H?_UrUOE~Lz~NNQ8oWH^ zIGA61IpeM=3f7VOSoc?h6;U{RH)u~tSpxvumEq=+U7KLXloO8tkjli9A}I@{n1zdw z)F-?I-cz#=ADu)qhW27FQ>k{C=yI~MV~79fY-4faSP8Ce93nzrmEsYM{GL8t0Augj z&LJg%#cl?e(ZKYyL)PWbn%0M%X7w9SIU!$6T=O;+O^0|s(jQ@xvY8o61z;hd5(vHN z#*+D$AbmBuZYl_9p9$%4yaAq9lat_^Yy1?m0e#$xsrf zeo>=uUAj6+p=!)}da3LAolD2HPxp>(4jtFplYD02TMe}k$>(bjB}SZrDCuEnK9UR* zd^SMS;3A~a|5yzZHf(lY)3Ks?=u-m}s*oBlr|uNT!_sB1_OBrGOHC{3lW$dSZc5no z1!jM8TNw{>h?vHdm}A#LuxXAIDy=5GT9QBjV)Lu4EM!!*adJXa@Ol(pMRKE|U@5#* z{XmGvl4j{#r>4P}EJeo>rX4KrWIto{tnnM#=WT88^4;?5p;6v$C_0W6YSa7KreOZu6>w@%#}%KlC{%;X4mR9v#5}yQv$F(om;Y^L#K@f(=Ol zI~+R+icw`&FhdCB^vGeY;z*wnf@T;unx^U6>D(iv-(0Fw%~+gCwHo{Y4vMlHFsAv8 zDwP}khpOGGfeqWq+dy5pAbjHGF=kAFXk&gzVR_Li!aTY`TB8n>;IeLkh)FK0)%}|s zFO${)cA8tM7AX~Qh)a?f;!inR@qtOPIZ`bMzP!xx4593aL5#?O(vuLr>!Q2s8qd@} zX-xLax3{+=@M^T`tv&)Q4y$T&g_~043brg!cnNZv`QTp5cvpJ~t$H4hig4T1YKL<= zj_vn+v36uyNPCu4SPy+UF}0Y$Zf}ji^dls$>d^etGVf{U%W)5r>EBz<^s@wH#woE2 z5!it33Dd5tNSTpt3WcKB39>(ZiB5gGqvi@b83oOe9Lqb|UJ$U3y-BUsG>E+(_gi_f zB{Hv(MrekEER`BH0Ycem5`c9OZ7<1u5~a9P9FI~E5f^ROk}53dIWxlkoE|2 zp$1iQkQ)XhTvs#r_+Ubu%U~5w{XhEB`l}E}r^`fRjlO}+IdiOs>qQ1YhZ)lrT_6Oa z$lBP0^%CR}+bFJ{&im0N$l_fX`$NkT4~u==fg{h@_#r_a3`dK}D?Le%nl>_vNn(yU z|IpD>Mhni?87h~z(Q(1%)163a{*3b{_YN{F0x=Va%2?9?N>wdON97e-Dk|y4Cdq5N zduq`o*6skMqoUFxuL4HgW-x3l#tX|gjaU)I`8ebN5>az|s>#IEW@-WHeP&$o^O3Cz zZ>w@fbxJoeHO~>L>z9l1m%68DQ)|zI!ZeyNs>;9M$$&9Z(-|8$J9-EtFo3nE<+ZPf!tX)d;&b1xeo#0$9SoN*XeL14ZB~nK>(QE)gJY5FDZ4h| zuz;SpZwhhb!5xNs&qUkOkakym41Xic@ZT|@tt!CU9x>lITO!VOQMfyM7Q=)oy)3PfKT03{*}8xA7&rK% zk*6~#YkyW5-ieP}$cAvZ;hmPodir8;siw=61(T%YN6ZA=CGEHcJqGhA8E)BONFV`C z)3tdzj!a~d;N6&_{`YDAD8+3~I;zPh>9X|Eq!^^Na1gB0r8k4C%gK7MRSm8Zi>G1j3 zM_g+4(Pz#24m)e+O8sd*9FqLeB)j=%eNPaZsjVHDt!1*hBq27ilr>9#AD6I-aJ1^$ z$vWK{+v7y(p-8+CpQ+0pgb0$)#-T+tcMcscf+{FfGH3lDOVb{>PyMS`{4y!nIG2YW zm*3R04jW&;VEUNcha6S}wqa0E^03aaAdk}Hd=PlMC=&2L#o-aT zDBwSP3x(mk|7&@qH=aE%f0_0p2N-Pr1kM`KYYP2XE`QY%M?>noN7jln8_XO-j(`4D zC(|gxnY(vXj|(((7RVIS`l?52PMQzk?a+e<8~NU3boB3xG1^{xXkbWKkG)`$(3L?o z$;9{HQU^ort-Ks^IQ@K%Ai_QBJ$rsh|JwuU}Y3LB6? z>3Lr%x5Q4*BRM^MCAN3kgb0vXg@=Q2A%<)ZGUdzS>1Bz1fQ=3CiXtN}#2U$AZVuu5 z3-@&sS6>`-PFiYpXXTGLU226T=}MZuJ}KtN2ijf(5+ZS@I}YY2*u=&jJ0nVSKnCU1Yux1I zU}PM?Ah4psvDmZIf#g+}TmCUZQm}gKuTM~`PgsAp61H8y=99?~Yo%gbssFxfke;BI z`*!=E7VZmd#+ehNiDV3APsetZ9$N)vw7Q94m)-ol8*Zw&6Z zkSbwpHY9@%R^YzO*U|uYb-jpuWbo=ER!TlgGRHg!GcYTYX9KA2 z3h!|pQjJ72qK18$=+tpD21Gf<<(pvir1Drp+r~IAyLXCkNli*-{gi(bLnhGordZBW z3CK=1ZMc_UPv&htk(*~_wRhF8_+K9<@|Qy*_>kqI5(ED7P&4kKNL0i>o+E?IfM!FamsRDa?*&w$^ zsA*H^g2T6Rvap*uT_kU#uwd7NO%JqzdU=ayO}Wzw%aiG}iA~2`%`d!v*;jjpq=O+c z^L28XXm#PH^LaZTe5;(l&9(@Fx0LkTpKL{02^dBfWM|_sxdsGc;9n z;EL^~IAXF1mX;!B(zmtTiodYM`ULY`rlVU<$C{zaHEUK&=G`S7vC@8|LLq2Bjr?s2 zzY>)^+fy#H^})iJqszOMP;==5E2b{iF2iJo>%mp+#2UM!YDhV$4I*xSx zyAWSOrbsGL4#r6mW~rVJF_bs&h$z_-=#GQtUSsupwofzpq(o;OBY0G)Gz$u_HFiD| zvsD;>B1|ihqNJW=;m~;h+BT9)c#g-|md#{m@p-Sr@pY{mLzAfeA^LOWbpL_CTbw1q zYg4Y%h*-;Lx&4%MMFw$Po-{WbvaOFMwF{jgIZl;*@i?WX9}j`LvVgP5eSV>rPKJSO zVukhPIQL3g%jfj{L9*NA@W~POUn`$x-~VO*%l?&NO_}9Sw(;KQ5iEHj)!|fQ@RxuN zv2fJA>|JN0Q~er`jD`-rWDUwy8a7Z?p)mcVK#RB1)h`7v_M9%a#G@%3CPnPjF_j_| zk0Z}RgQLRH68gZW!1koY4`>i)$iHg|CMD6DgEALZZ^*DqYj6Zys;UysGMqjJmW5@~ zn@N?_;YP8IkBUAg_U5e0rA3Uz5Xq;D$;&`=BnyTEk!|2ZZLV*J4ua4H4Dh1ZNaBP$TtEX$m{U*Q*4>lp@vZtxOt5jAIx^KJZR z_f+4s(_o}M7%qB!{ut*oS`x^b3#3oIEg*T2$`Ky8!lDy5P=^tGBI!&QIm4R z6+xhC9|z4IAP9feo9w<)qHRt(4S3xpwlrX!JK^BV7v2Y;V#k9j;Whr`rYtW$=9O}Y z)EjMb28|J>9Gf*yl=~)2j5DB`|LP2gV|O*E_&7RK&!qIyRF`ns_k&K4xhB+#7a7qP1-OmYv7 zSxg=L|e7M>%#B_%M_xb$g)8%R= zK;<6`C)3O#5^E5^=4>yxh0Ip*{L=cyT&m|OtIWsxyl;_AtYLMvAMA4a!a-^ixvk8c z6|U)jbnr89n==7l!=1aRVN5mpm&dbIrLD4*BGd|w##2C2VpH}A@^(YG2qnQID!rkQB6fR)>P@T4Z|d?7A?{o5T-5o+8#){v zWyM(Lgn_7yV<;V2WWUV>k}m{@F`9oWd?EMFj8QVr<@5CYX?f=Ca@c4x+PUK->Xs_& zC@=9;WbqDvQa8me$XeY2T9+XBEl9jf*`(mwxZ9J7E9Zs@wdL*&GL4!GbNFg);;_VR z#Xww_r{ZLyviUY!JHL`T_BjbRIyb$7g59z?Jv|Ri_Tm-zS=NtZAOmbK*I6XXrGX5b*x*7y~cNdzJuulVHN?+3cU7-U| z8Kia&Pvt$}siJ8{AJ`ty|6Au9+#H=HWD}5Tcm>lb+cLP87LXxneAvc~Km;9m^56%g z#A+l!#)LHWgfHIpa4Hd8&3GvTQoSKMcXG_UiuAT(cya&98B5f*@eYkI&3EQ?ANvH) z=UXXFqFv4TO8h-Gv!U>*B50h4Ozz2Ey%_T`g?BTastVEo8bUt~sww+d?A|UbNbr2YZt{#&cq2NaCEFIqLUQ*$XY&SzV488y~AE zCKqSlMR>HNgHLjLje%OE5kx=ujNHP8h#JHDW-#MTYH4xU2#n+Ml*!c`LL=d7%f%s5 zNyzEoP+2W1_hM`(wtjz=LHGZ|1<Z{3nA`jvV4UPI5|rm-d5FYCqXUz*s&#d z$xLmTe8&~sG7fqyOe9wWc;5`twD22}*8P9-gv3f2@j+%em#cLZ?U>)9O_MC{J9#8; zLOf>M3USqy%z1okt$P=w1R2KX0nYx37B?Zo!bLBGU&wLRL63UQ6K;<_?Z;4~E}t=E zi|b!>=Z1kwt;<+4!g_a8)J+{jYNleR)-0wkV}!->xv$UnI27%6uokmg)#a^QG3Z)x zV_U8{6_T#UZ7~&6)HbtDLQas(cUV0EzuT^6=iR`%RXCSWQRT2&uEc^Dhn$Bw%{>qU zGUW-e`7(P;KC-3EJ_i^TSrNt%25~H%`EYn~eRCMuXNok6t=&d!J~bU9Vg9!BeP(+q zQhx2aP)jrHCb)l8*_X5A@~4AD1srUFK+UX$GG1;WCXp9|WFDo6m)tkgl__e2>T#>9 ztz9P>aAM#6>DZ%0N4UJlx=-Jg(=!ov-OrPzy!aen48_c9h_61I54LDE^vP=oRU}C9 zLM=lqXOk%{@+|DD3E!JO>#fYDnX?cf!^!+wnOx*2S)s0qN$(@KO@j0I*;I)27B@{e4(=9# zxe&7BQ=S3olZbD5jsJz*dv&`n_J-%)y21BPEB|B2#T}fy8JPS(G<^j_lwB7s&CuQ5 zjMUJjFf_uT!+?}@cZbpg3@JS{(%miH9TL)rgp{O$fb`}4?!EtDpXcmn=UVIh9ka&u z6F49+|J8~O)yQYd{R^#9$G2DM5G&&v^nY4;lV{6ico8y}8_8q7^gL3xh~V(I8|$e= zKvXJq87$rZt!PQF>agxuFU}hkE_@`U$Z2NzmL*wW9to5y*6W2uICSw}sVm7%$7>vZO2b1cl5qT*D5Nvp+oig0m=yD4lu#X1SY zpdAr=_*MbO>i^4+^y{^36;1Z6DvP4HS>?z!N zES$#BW|bKfold0;nc>-4eT9msfi|HAnV`!^h0?Iq!{9*8yROIS_hqy0ZL~Bk#&}{L zskof~ZSu`ah1bGFfp7IJmW;Y*rh(tivTtQ|J4D;5?Bc#@#0e9L%^GN|dSaZYC>u*@ zPRy4txuYJl1y=^r9-Bs4`^bi>$}w}=@AJI7-+c0RQ)}I~_-~|H{vX!@>heTz!;`xW zG0So$0E^#wW{}uME)U53*I6w0tU!ef2lcdNOd?@fXxPj-_ z3fW3l%oz=23+==4sLhwJ>p207#I9}9xeW9#S%;B7mbKEC3aL141EFFD>L#`ifE)N& zKxA7yv=_t73hthxsr|f@411@Tp{l2^?a@&8vG0nla8fzCCR6+jCI2s;w>Rkhu)e6K za}8L02=ba@Uw~YUtYp*lfaJeaH{ASf8?Wc;?4R-3Hf9!{;tvseLN0Hnd)^PBWm#?= zb4@v~-?P>UFt2#P6IA{3IOt;iSFYaeFJY^CrNpVB|Mtb;oSs;?idxk%%h&WiAzr9l z*gt!<4b_o)n^5j~ee~i}gsS6v9_mYhuQCjyml5)>3{#b>M~dcS%&YxHYN2`-Re`2F zwoOd0s3n&I8f-V1mQ*d^n@dmQi08gB@qZ>>?h|d=y&Zg$4Gc?p)#B$>qH)MjMkhg~ zeJVTf0_#o+&vqZrMq2Xg32$3n_zyLECOn4if|H`N{@_OGSsQ;!`KIyAuZLD?`f4t7 z-RHA9sjy#&q3JLdl>;G!5rPXxuorEs6KPUT!WRL05)m{3?99`VILEiPye1BziMOm}+T8Q)A5o+EjPGHa^V^93Y_4-mzVTa1Db|zVGpX2U!(yxb2Y*%w zDs$RW8cVP}!5z@z{%@L2)GGgww&du|@cmV`4F9-O4Gq- zB@MiQm0<$w!0vRh7@zJM&#G6K?N~imt62Y1qTY_E+6lL62hnKHr7;n=1&@~Xgqf$I z8M5V0_v~#*^Lrfk7vWAfNiKCR4tlf&-OVVygNO2+J{(A-Ae;^VoZ!4-eb{0eeWNMh z?S8@gH$z_ctZoFerOnNRcMlB z+c9&65P0{|9~xS)D-AXZnxJNO>Pgs4LR|V;$i{tNDi3&_jr{TVt$;J@7@04|bCJMU z{^OzB8rS6Jp_{#c&|WU=^W7rJ0k4J31-xh)x15grP=~eMHA7Y)%gmk2VP4CL56nR{ znh#Q>qrPvZ0oq`!<2$_~XZU>uooO5|Ir$2oX;0WXex8sdPBR9IIQstc3bKl%@cE2% zREam5X=VAg*4MY6uUKa$D{at&QT2TcTUA=1j1Q-RlESH^Zu~K>Y<}bY+B4YVP4<+$ zc-gVf;y1q;lBk|Bi=H|JBe6sCE3Ew3(119Cj8b5M`;o3WG{?G$o>yzzW?B|o$l$ttC1 z)qO&|OX_3_X%vxKt~Sn=n~L?p6_zWaFCNhM00HArFSAbG<<|I+De_yjjOKmK>-|*c zS|tsqxGY)#1EDH*owBbB_L05XG2z#S$FiU1u?Es6wzi&}GC|o_Zr4#eYA>5<{v3bv z*;8#Q=-y}h8AjPoGIY)9N%l9QhpSOZrPdnv?la$U`M|GuUM;GU{EKBykd+EtdQK`eX<6!E*?qC%9{gpTMU%_`N zZjE?jr*80=khB`O`|c7LyVLxz<8Cct{zg7+hR-A<(chAZBZa8Tnjq$khe8ZDg;c<+ zRA6Z1E(H%8+f5#CJ#yQRtX(K%l2YUw$JwWLpLd=Lt%IA5uCSOQTdHXAyv-1^KXCiTP zF(T~iP6u8^f}oZa-l_e3tG3ioZv&G*h=G?Gr;iSalWHTBE<0bDy{&k~dJgR!y{UQS z3k^v0ei*4#eQn=WI5Ym3Mq|_%N?>tP=s5lDrHNI({=h9bO^7!)ditq(n!!mS#b25D zVX5%3;%3Z5@)P8ldiA^@S{Gqput+6k2w14xw<^Xr%qd-Mrl7nkE*ia<6}i}RTa}i) zBV)kqU^nghafU|cwb<6$z4ACWVEppp*7$=<9I|TZcSQ+w%&*THd!gro<)xEOz%<$7 zf$cSoNJ^ErQrMbHP?!JT7cPExeOfsb zrOh*!z;40(tdfn#v<8oi{ z7|5lzOjpqx%umpL{w;+sXGpB& z__9%XYcS_=kSExI-uPn4mM%uhl&Sk}U;4kMF$AtMl>v?ol|K5LxM+1D@RA8X)><*o z^Ug}S93xKIG)}(PrWBw4Ju~qXMNGup`saL9`)5z?QZIdXWc+TR5if&Z$$@JA?F`e~ z=4q+7olZ>pRH8-=#1C8xE~~mqeAmZ2g@rd`PqVVJAI^n;PExiL4lQwb3VS`>(P7#Q zUHiWkM6{82D^F+3iKs_B@P@5_9|x=lN@Gf4FRsfybakc(o=M2i%_J6He>@5X5;>BL z_Nmy%7p(ez5XB%IJ&s%^^8LHYB+pmx#lS{ngDrg{ZF)J!Aadc&jR_lQToL^J2R71w z3-pmN^!@mhRS__MlTqxfQUdZcdJg=~B|k3TeB1;y&Q%T3qM?Wgyi+A~j00md>qI}3 zKy&6kf25Ldn6@fi(kX|BgVO>%x&FWr-ET%dmm4YJcW!(?YKI=lZHh^^*09b90(+7w z)B7QP?zX;^iweI^fOU?)ZL8t@#9bv_B{O%D4b6m_8yx|oCw8AgtBpB>^w48E6pU(` zYpP~V{2I%8gYK@F%?_mg^J~k8Arngs*jMtvGoQ0E*)Q$Y-TfYYJyUD<<2>e@3Z;w)AsdPbC|o9CH= z9(4UQica(lM6z-Kq%(Lb7sU8x9$KwN#R;x$|I@$zV0C*)4)w*w{r$~l!HPm)@kY3I__nI zZKs)HR(k!2f2<1iNq^@aUgo78KY5`%WMVM|9q{XJ}!-WAU;UdrIlrR!Q4y~ zZ!lhums$~d9ij-?yp=9DejKYE+J^jJgVg`dC{*XWmi~jEt$NK?*<&}-hHy8+0rS0j z`zDO9=ehT?bN`fDSGP9@+oxA2f3}R!x<51}V$9qulI9K*3KBdpzvoX%r-)!DEetp%j;C*qqF*<*MUD;Qx`n#5${iH** zG$yql7cA3}T80N(6dOr1e6vgsd;b3TRLn#1{?|1b@un~5}scQ1eI`iazsU>^V8EQg*DHILL{sN(F3qqM2- z)=O{hj^nSo@>Vu-4ZM>+NU;`km9+xYoiksvrp2Yq=Pc`9NQCMU#a9p;KDPGEzj~T@ zA}M(ulK&S2QrZv7QgxzVDG$6^nPQ`ufKfU$Xdu6pUJ?1cHAD|QUG(wv28y40=aGH%A>i~98x5sIQ?E_79#e(an&jt^Z^ z_~~>)ah1n#+Tm>^<6esb2u50=-cpa|>>OcN%o0rO$dPtYuv+{4Z?8xqfvRq%) zhXJ3@%~`_p$H=3_5{G^D^Zi?MR;;r*huDyXkGyZ%?Hi5S_g$zRrrYCs_YUa&Xzh-r zHtZ0H-%xrI)s&z)f|uB38-vT`GqktgkIJbIiFZ}ozPCL|c!na_{$^P+(X>s+O&0P8 zrb6{=k|I&CNEUY3M017ozw{o{SaMyZ{ZySOh$S z$8d(3-?fS7uWpj7p&FArs$d)X#i=G=^UfPRF_K$Z^#cZgm=TqNf|OAH!%m;1&6!d2 z9{qK^rT90pfvb9A~iYlUN zH$b$uG5g&_Kkbnt0jsD=%hosf22`-%2d$gtG*@ucL#hp^%IPV5Qeq1=FyDhg_3_4a zJ)-^MYd-M4%OoeUONMgUO_YM$kmol@MPM==ZTwe1y^7QA5K+9Q`~{06-WB8c7l1V+iQ0=v5DwkiuT71cfa+72rR!9knW7uX9=L?Ja4O_p;h=sU}k`h7(l z7~$d#s@wuykB8^)Nx5;l1XKY?7)JZgD@8jfk*xvl%evv=c3p~lb4})Mh@#7RuV6}%6@X59H z^!>?3gcp#h7|AVElK|Q3efK+3OQe-nc^$vP;7+JPoui=w{Enbh*Dhyj7>a#0YS>3b z@J&_BnI!P$MCMc@gEWtSSaZbrR?VKcp}U+!K%%ab?JeRqVkIQ# zvRlrYC4I{`C+p3Vnp2*^Q^gI@sFgR$ug15xPFN^tV~WB|T|cO7+?{~WpR9X<$~pS( zx-nc?YyR@6yx7!X*+AL7>z{?I8Q;=x`=scsF|0!NF_aAIY6FpmX|&|+aW>SGX2#ol z2n&fI1F@J$k*Zu=YGhbgg6fPFWNX`LmXp7sLPk3>y@Ej`)j8YJi;BbF-dXR1bPN=7 z{;DwBK2P2)*rjQI5jx|~BqY=5PYdzXe`?XrQX2Q+BxSShnWXpWG&wc=dHy#1NM>nR zs`|`D2vK{Rq8}K!dZeo$*Ck&dqUqXZ(86npQ$dmfv4|NymY6l1DrZEg7~%!H6)f(4 z+7Qwno|${3gi(%v3s)Ql%)vGC*UK{Gt;|4RzWd}-1Aj9%!$Gv)wyLe@*{FAKG+#K3 z;-~hcX&hCsgl9Y7?K{GGroUyXBYWZvRA}~9F$#zcF!p}RK05b&ZyVmt#a{}jxqMjG zbD2;fGro2Zj!hCJGa;qGUg#w%;U$hi6<4mu5v|jo(Np7P$6A|*(XuYqSbj3S zw3%0ACJG+#g_PApSrvF=20~@tqJL$13RnETjlk)jI7+-05=k6@nCX2e<){Ym>7cPu zQ$FjTp~A=z$~RZv@@n9@A77ss)=1{{nu5OdVpasu%g^rG?=pL?@86D>-d%b*w(J&a zmJ}PR&hn)SE^rgy;Hi#FX^P8z#eu#JuT1Gu(wBPSg+RF`@9SP#Ia!| zF61qBGG>zJe+tL^r_Y_*Dn;E~OlDQ|LxMvbQB%Fc?CBKIeLogx!H`9#3W)-86wR5q z)EE|}HP{p4?%02*7DPl3&pAvPFdHPnLR-1(HrK+tLGO!UWv?M-wirBwU-&a-H%nP` z%vcDzOgnfImk%*JBKcVk0#pxJ`Tk9?7{)B{fGd7C?vTAyr>Hb<@EzP*Q(OnHQ@gqm zt1vhRhdg)-d4}x@gH4H7^lU#8pd9neEee>k{jeR5kmJ_V@Q<=y6WIbeEKBr&JPJ;!Y({8&ww_{ylLV`&^5qe$*m_fZP@v==Rwc5;7(z?Eo8wJ*mkxF2o^RL{(p&(PPFwcne80Wr1v?$!$f*iTQ=oQxZ3%Tf*q^A8b@`We? zT5@*8UQ_yAiScmyd0nr3ly@rNI*+lGqu?^qyIdi(X^$>4wq9TpR4XI@sn&3xY^s%3 z5@57eBrOxPH!LN#l*|mR-g8|&L2)3l2Yf1TTh3T-_c!wTK>e5}l}*!^S@MW0ug+#M9C+0+)<-B z^Y!w%S)eao4~Brv5C7ipgyjZI?N)+;#P8@=U2wEL0@?4;Bd%)2Fzg?&v_vDp7F&yu z9_--4`_H?6qy&@=K5Z`zPglie9m%qemY2clsuG~$_Lo{fe{NNU@|;a``nJD)m3Sfx z!nd{rE}2Dna8?J6a@xK@a?(;TTv8CB2m}d|2y+zlBEhIEESMkHS(vTdF^a+xdIurw zQ!eJt9>Rcn4WE#733m1e)^T`(#F-Et=Z>%Ot<*fz>laPS`}czjhre3-Yw1AC@`A7c zReBbR8f?Ch1sK(fttmJgefvISr0hOfoUAv$-5Y~1Y^-AeU@yx`f=$i8C-53igM_p0 z)o+B*?5BI0K6bJx5Vc89Q$@8IR?$O*X)Mx*$IGbcsu&;su|hajr*ta%%@*ce!3p59BIj9hzEeG%DGUPk5jmkXUkGxRfJ%&$7bRCfs2>* z*k+m2w+LCCDZ^l-Dv3%YDWDA0IGx#Jpa?X2Ya{^X`+_D*NBb^mcQu1F_}#x0*JoDr z#fQ?`=mJi_g*R_w!>?~8q>m|gSkYq2QZfVJ-CVCNMMe5i??E2&h#)Gn{LgP{1~uQu z(X#1juqf=)bFj+m84f+h^_)ZU)pznWms+AwGM!9YqNWI{7}?12eK+2W6tCF>B4<#e zNFqsvNyw7FJ3yPNlbG>j`A)ywTbL6L3O0gBmVHB{GB8G*1a=Y8P8zSC_{uKVYw%-tkBFM1rts6WS(Zn{(Q6X)bHo02pMUqkmAq6G=B`P~S z9seH-;7v9jGp3@muVOS$mFG5_AJFtpc#L{#j}u&d=0MGsV(Efl#l=);KF;nk^*Ri_ zAkx65Wh?uU6!qmC@zRpzUE?w{v4(a1=I@%yb@Fx;pRgJy?P0A0o0n^Yj>$Ulgc|SVN;xu)JQ?DEal7ej0gzA`ZN@y>}Qd z)q%(BCfdoLrARN_@|=tn6afYXqpwkeswNzr%=uzT98_CeI$OB)I{6kSL{fz6Ch4Gc z>gdr~a=-oxGz*Km8kq2haNdU~Dt@c8FQ4B;Cf;k^#&VJGQ3#CkT?La+?%Alel_tbK z6&i9TPqUT|I^!C>_|JHBjXlsC@B#cvmInUxv7z(?ckX} zU}QQt+wzZ~YnA>wL_sGmXjQO?m%8%Izo%avyl3m8 z%v8=48B>}vq}8H6jHNWT48WU`u6CiH>d>)=;TAtrqluRC2z`^vX}iVfD|7^W$0unp;I5jFwuFjC_ish(0nsBPs*<1x7~JTr%U^Hw+99%LIy)odjoJTNJ!$ z@Np`cvAoP|nD$?Pw_i%9h)RAQgDL1?KcT4pu%Ruh?uu~r zmmQXsOlk-shV4dv%OsEd_@?N*OgSYA@OnA*DXb4#XCResLS;rscO(7qBK^ z12AA@h8)&K^yYk9*I?{_z3r(AkMBmConBC7J3syS`IG*FW-lwAL<50y zj1Zzjd?o)zHBHsqw<@O^%ugJ#cw^Q_CAQ1RM$*5GPisxjuCK>yT8+m?SvNB1j8x1k z!da-fT# z;`_M-yBl<1!vdigKY@aZL<1@z)`JCrex4NGTf&A!8^4!dz9;*Fq0aYo(b1wFM$53v ze>Fe-u?7B%Q^$M3xqq_%OSk_;fr)y0+P3AVh(`odkD$wjxDTHb%|Eobx5xpT9pb zAQR0|Ussv&(Wi)4;Jgck(UBll2qrnLB7@C>9?FUEpYC^?)}Ocyr4^nF+mZ4%l?hveH^;!Mzw?Ff5f+@} zAAx)cXm%DoBq8&-@CWCtrLtD2xYrz90{PlIM2rFw=# zZ+%qhaJ}})BWL^@0DRhPm^*2?i{X?tL~R#JrR&F%bMJfadYVE zqj*!WVicMvK#|iNi}YAYLL5Ljf_PIiDXN2Qfx)7Kh!(KKB5Ayp{Hpu2Gb8rw2~n^UtCjFDiGu}zsW{_9CVE1v8@+4=Yd zUGy3e*$hEekRWXj3$Rmn1>J+2rX*Ta3ZC0OG5tjggU*08^a0s+prP7-RWnfQs5d#V zo5nA5x;59VCCWL;4;Q#xj5~$-byaScRXCw2|5fbO`d9REdRYz}H9Dz?)bqhXeijfW5oBXG{u>ettXdQ44~rfUl6)b0 zzlIhjCh}sa#woxtt);jWVkBGIy>AzPga7d9C%;nO)so3W z^i=8NoPm&RaxZ*{5Q~|jk-KI}5tN|@$8tCYEpT&_BpJR!hm$4LM#(FZVLFk8;h%bn zTL8~NthimEks5bF9E%}L&LpcG%l29A+9xH)H|vxou6ojHRtrT%>U5c{Wq(zdS2eX% z*qo?=p2Z@Z&m5f&d<_jdfPstwT2cEc44!++s!H-JArj-XOs*vV9@UxDB&9{E1ySXm39g-pEeGB}clK`S~W^GCm1Vnn5F?du)x6x)s|jz^+)Y88xxn zEW_TPOt~t)V0g5s;;!LDrzu&4S|7AR!9nxW7-j`iO+9o<$eLScbwMASRzaUToizdj zBy(AL{ig?GDGnJr)BLL7iZVC>mS(JAx|de0G6vQ72c5lqkSj@?lQ9$-1w2yUSxtRHx zJ<&?a4n%TAcz9W{_(O+y=mPD%Qh&;a#V$+}kXvYkUxY$9jWe^3Fat9XaP)~-8;`kSx#t%SF>xSn+7)m8I?5s2awQP+&LN(D79JTU z1}6p<*P?kwl3JBVhvn%W9v=&v4lKqOwPcX~f=(xw)mB?;)Y2&Lvo!vgcXTD~zYJWM zc^Ob-ho`&FdGw(G4?l`?_=nvwvYp&gK}~r;&drvX`!}0ifdDUlk;mr&h-aQ;Kg#K{ zuN=CPq{fUBUl%Ic1XekTd)cRR`GWN59oy9(~CD?VAiV(f1TudE5_Oo5?8LUn?F_r$A zw!zGZ0Uu`2kxpOZJO5CSS53b8hOJ<{MUdW_ZFHFA5b#T$3@(XW%@`DwqsD}*f(~ zK@lo(nN8|krXtW47oZ4Swu6liM`|ce^ef>W<`KZ1&4|4;Zfd;3yx7Fn<|L>?DQ7W$ zk|=N`$E<=6nE6+~4)XEx-Y2_qdoUyD%hxPYgG*!M+@s>;D_^hmXK0JN|1=#oi~2~| z5S~d(j=R|8Xxy3>VIps+()C{qo@JJ!9*>nA90ju41vgpaYP>g7GsmlX!b9PqjbOG6 z$57=V48>9xCIq^U@{*~fbK`3`P>M_NuJOL)2ZF1Qke#M#n_xj#HC4Et80DzSPqBK* zAX>g=@48Q)sQbiB(g{`uwFCJ>pemGxc?1a+W63}IN|Z~O>wrvrjTuxhYm2n4v=}Aq z*l_H~xYYg(OW-I)L>1dj77CjpBRG+bdwc0gx^Y+@5rmQIr^d))#Q9$q=Nik*pkpf{ zheZQfuT)9gzFtUbSbx{x7L<5L-+gf{KK=Bo8U8dOTw{fiLVzQvrZ~S{_pkq$mo)2n zBs`Gz-uFf`h#|vClQ~8Ksy_=PDeZj*#41_fY7q+nc-setIbWDN!0I~Nhfsc{lPKD` z*9wOy8|moYVN#(L%`f22eHza5s334@;}_u~v5Ooo@z*9Udxe-({BFfcIjRYSZ_%Rd z(lSu=i;~lCgFsYT66xWb?1Y~-J_vK!Y8PzfHf>vWe8|10b3IZ0?>L;hOuInqPe2Hg zwN$l!KQK;0K~}+V;au|s2(ia&9U~C~i11osLHY6^{OIWNSRqXmj622gD}7k8R%r^` zAhqYkLD{6$+hvrZ4 zywU!r**IlRaKyZ{Z1*RmPI<-?sx4yQ>1j*QJjCjT;|DV+V#X=~r6coyT)1>cX<0KW zJD06$lC8|&6HQ~ zo<#u`admq`gXxI(Oc<3-?4;)`aaCqU^RnlV!+~!;C4~9&0w#xqRv6+w$nB)1tg&0_ zPCyfX*36UE<0OdD^tC6JGA`Uq4-?yF;W^ltkyp%y;8jUD4itqZc0S`)5@=VE{ECk(SBvs-cJO5F9SgK;*ShS|NGu-taZzMhy!ln zVnyBz`Dl;R{rPFZs3hPHr`EG*Whx>T$j+CN)}}1z$YH7KVxnp&eFxjUpe7sme21* z$*t1%A%GT0v!C@d!&k9kuTPw@PcwNw*&%uX})~+n=m}s~53?~Yx6h|TmlU0%3mna=0uL3~u zt?w@##HNF0?U$nwmig&hLKrN)^u55>1|a;9&-g`QBuAO6u4NEHEnTm<*v?kd(NoZ9 z=c*wiOr!)FV=nZ>?omt-mFgKDGT#7o&uUil0LvILch9&DQnl;~r`U8-<1wh1O6moe zVGs0t7pm=GXqMAl1X_>x87AnHq#p&!m*Y|3X0BWE*s`bmd;i3-dvD?eFPSzT9f^Fc z6BhRg`CE2l%WZZy>G>p|4FC!D1K{mm!IDV-7~w&hTS?9?OI%5+uOQN&t4mHYTN||m zq%RpnQRiwfWZO_#0HZ6zD6aCjC=&P~W})`f;L^r&qWFvW1zOxEj0hH2bBuzQCUjh! z8Ma9BFwnhl=v;vuYB9UlCSkLy$XgK)6t?vDv`LB@*xw@d7^4h-kfvjOpo>ND!$3vg zu^Q&Y6I0#P6ezv7sz#UXvr@#vWoIPV+yZy@w4tW2$V;%t!%9u9+Yn7le0Wp$^r;`% z>i@sgj4o}P$sI|JQ8G9fg&9WjVCcNw#0uhA`5Hj3QH;(;>^R@_?R+*5Q3#eFtt93w zPr!L?updeZas3FFqmN)=O$)>UDzFDwHB^OFaq-M*+8;BMk*RN$@p5Eu8M^AkGOK$c zdzqnlJrH$m$|PqI^6yd*T6|2a5-9Mw#n$3Zn7Ayq(C?Kpx6^fb_B0w??^rorSuYSq z<|vo`V>xh=sO#RVURf>*=71rLX0eSVCez0i%J%{A7ys8(%*%(&45~(v36gQekr*k; zs${zv=94G3f7hAj(Eo69B%b@P{~ezEWym}MmPfIzYC=gL1_lO*tBC#`1OT^U*#t2& zp*Rp<;1~7X_EcB1lnYo|6Km#dA%S0>c`^cOT`>}iv?P3E^4l!;LShfIW7Tb**K>Ci==TWxf4vb|Un`#$uL9CR1&-uaiWE4e(@Lk#KJRqMW-AUA zF$14s{gexy*M@Tvve=+JOQ027=pBEujZ{@sRExYiGHVaRVJxQ=>e=jDMXrw@phT6>}d{Nd7>xcutw2GudpPaa6%d^QHs zE(jsO+JV8gk(P{fYN~AWV#)R7c9L%OL(D26;>4r7DWgUev4Mo26| z=W%zRdg?ztC!dRK0SkU8CuWM+J)e{9TyghD zQWC5jkkU61C`-7QVG4z@zPQoT({oJ^EwIOy^{m!%{rJC1kCGvu6>3d5#$dh~N&Y-a z+?Ob9?YDdJ&2|4*Z4v}9&dIOl2r)A=)5J2PNlXCFuoI#?G9yt~)iBu6;E~+BuGR^n znS->X`-IUAEm{dx`BeiB>0Bh576ipxvbn5%Ug$$oFu2WVnv;1Ha`B_gnlH_+NzRSI z8txDkE;*4Ut_DA-DCsKsFx~ty(y9Iv0sKv*w3-udQ+s>dY_naD^DM)2r5o1UdY@AN zuLs#fWeXKi;7_h)Vg|8ri~}&t82{AwWNj?v1}?ox{jafWFed&fvC})5Ex~bMC>%LN zuIy>_*^Q42ueQtmYH+{y1wj1<@~isixvZ!zn!H#%ny4E$4+KohNG1qFNuLLV1S6SP z-)zD~A%kF6+*@Ka!P4-Lv?NY)whk&6wTU0>9)p~y*qvyq8fz(t?QgiLMTs*fTWICT zv}ZVNF|&i4QMyJ)t})LrY!_NxCoUccCb3 z_ktobo126G;gW+t`usbJJG~Za29x~~MIE%N0{}#Aa5raVCDv5S5QLLz8CSB}DSGzN z?qP;lZ96f7i0D1XCs6@I_4ZOTkoGBWH0SzYK0K!)ZShq#8vTntQq8I@ctAc&u|$u& zbcHu4xWiDOkcWg;%Qh;#UF^$}XiDz)TltzrC@dbZxzWLEZwmef#|jIGr=|#dmTr=y zq!n$?A^C9OM-S)kl{;AFPh@rNbQLjKO%$+?8l+O*9?S@N$mV+G_4%vNfcs6y6+t7H zj7#x7Z5C}+j{#$nSxv``kvTaVR#=!Kxeyu+fH{G-k6z??eA5QbB@+(OQyAZxp})t6 z;Z7v9DYRMRMu-W%#V)Of-i^NxPM+j7sN*WBV+W{{)@xwvP}$0*6An=soZBfj;Y8!& zDO?6|NH0^cx*KVLLZ=2_eq<4;7(woGQtRG(=YsB04gf==6!4F1Hkm&`41kjK-z(Q& zPn+Lcru8pjP zW)p{yidbSB?Zfoe?`oSsfi<40dj#Ve;N$81F$LXz>g8<2HO? z>M}KE`N}GZtP+~CBbIUWoG0=cWaBA<1r{CJ=xe)}SUo`^Dv{ZK76DPn1OR{>4CHWX z&m#r^ccbc}K-|fidx8_%LhVKbxv_{AF_O{p!P&I;CXL;_vtWMMo7WGTwzfc_3nZC>KrX2%z4vRVH9*_=hgQxIn)%FH?R`t-HIF zT5?2bci3``T~ANdPo~LDz(2uACGCHqww!Gc0BFt%5shDJf+@0VknKV8AzxCt-JD}a zyj-#a&OCI-4cAufp`p1kN=2DZtQi>WhgU*)7V&{!lO>B8$G*zYTI!rah3wk4lNyD`?=6%H z-Sm;?mN{*L@+DnZa10IrDo&Up%hL4DSc9A@kQfG5McRau5r;_b)W{uSj;LD~!LiRpr&p2NFw1GbX?=Xk2s-o7p*G!H6=1PN3S~2Y#h!$q2j)t%5&#`Iz)Xkpj;i6<9E?2rLNW*!#}hzNWm_X=>O#ARLnfLOYoc+BBBP+ z2V7Xd_G-#h?h(nK+UfT(sGfAqi>!Y2Et0sS7~kwAqTeU?3#(!59U^zn zsmR>9Mq08g(IQ_uLB0Z#Nb9?qvw-9rxQf7{PJ1(4bPQZTV&zTBMIym;GV@rtx@bmDG znbqDFf1JWBF`%_DGBq*Je|70`O198x`W6U__T1l)elqm=Zz&<>@KRdU`n|gKhu;2W zg$nEQ?Mo+HB+ZhMsNa2jHJIxA*u^~3*mI&25d4?K+#GGCVwRSzn4HvIL5Vq7z5;;3 z!5I}d&a6whYSci4S`04PPKb^*;?6+LG@p};eXC4cha(8vV7o&4MhE;G zwz*zkW71uMjXp;gvDvzSkl`37xMVQAGvOEYyS!Y=D|;huam)RJt&#-8-WbYf z!OXcy{IkGIDYAVW1DBkRSj=rUQ{sLgcb#|7rA{*=?dI9^0e`X!Mw2I`cz?$!+5ejK zpMWoFWQ2up2N$ugDjlmdMTZi=i1KPDLW~&i!be znCHJ**zt%+sSv+{rZEfn$Oq8KvH9!JpZeZX;U;;7J$yohn4^C4Cu`L3Khct5D?92= zdCuVsYDX?-r#_l?p4g@{=`J6=dLhrOhjvw;t{MJD5J$8}k>qyvPo(8*++^OJuFjS+(1vF=J+WwnQs;$nH zBO^?)e{1CPV^E$-I3$*BJ}?U9aazDYk(p}|eDDeH$(rup>Xb98(b|h=6SK&#jn)}_ zNcwvLaVjcn5-dc_BP8ayeuI)eE#BINg=Y^JHI+@--DCPiZ2Qt2+QEvV0{|oQTENGBvQ?rj1bEr4e#29j0jC zX-WfRf!a@4X2M{4xMIn<8lG0`XhSot1C(LCDY9)c_+ihA!2aPk_!k;~g>#%tyWwjx zr}rKVjQ{y-`8HtU6y91EM+~0A+&i3UU{}fv(e2e-J(PsMZjlD14+7LOa8MzNt9@XD zHz6pBKhfAiBgwc0IpopI$;h1siWK2Ml6|Fg(h1lv$jzm?OHXWEfuhEHt@P_gM};kF zz(+kri#0CXs}}&T!gesCpqRNri&v*M*mX|+PjB3B0s+JL?4=YD3c=U^xR}3hUP`-- z$V#CZMQHt(w17V@TTcI#qAp8`;6}x$xkJno+U^^I6RfT@zoO1bs8C@fc(-Rg)wT zvoXBcyGg=Sx@WsF=2+1xfmQW0iMVrW9R{?83>Qa1=C4`+ zpKu=V8#VGb9ho+~lP{*5+5X!=^h}M^>3^_N9 zBe{~qL9&8(rm3t)M@LOdOf_@n(g9Zm{&6goZ{K!(*>s#D==K7`9iFi6F>uef_Wg{) z>wuZ+w`J^nc=WfiO&rbbqKcb_zHlnD{mdt1HT*iaO*(#0LPO1^lmb{082o6V&3@d*LLL-_$jnM0$lni&vSy`2*D7l7BFyUS|IM zh53sh$dLE#mx3F)>W10_guIFKj~Um$rdrVz8X9=#8khF=N~%;0f~^P`2Vqu>Fv zs|Cf>;wydZVq5CD)=wC?YKja5(q39LWqEy0WrGA=Ph72tr7`b-K7f;G2<7S7Ma!wx z`(U3UfVQzW#vvM+d9Q#n87qyJkl-L=a-mh^Y@HA*^gda2P94F)KEHz`pc{t zGNSLwDrOuC6$Zmk=dS8`iYh9yUs`hxPaYQ1Hj;X>O9J^sn(*`4veb-A;_-?%(aiQ) zYgYju$ zqMuN0S++Y*qyqdJ}!^F@DmE@V~Jo0ebSsM(>BKKtX!;_TU<3x=_qT60*7LC~dBy=gw9a4!J_egW7 zjCsV!-?YDbm{IKgwn6Qk_d)gJ4w>B1*G30ivQiV^k4x~XR--b50hsne(|vV}`8_X9 z<=lsiXo)Y95jK;lfv5;sk;LBEZmrH;3Yu!nn3~{*)(1OBMz^N^tK)%4*yCQOk#gOvFlo7HP<2rKIZX@LAmfv`;I?(#7o zJY}TNN&I0kr?H@RoL;V}ZmyMhjU1a3$&!?oM7X;?>9)5RR>*?B9))rt2eUk0Sb17h z(X&o8inwp4kcJclx#P-z{sJw!9fw56-#FL~(WPT%u!8D>14!Fo@s%0 zb+jCteMS#N>a2m2z2O&@`eJ`ke0~#{r<-`Gq@Rml4j$#|vkg+EDOt31-Frmhr|{W< zGSzCBPmMJ|S3&gi=&@i59fJ;5P$$#weRLi|lcioUPclr(ghlkm1Lrtk^GhlKiZP`k zU^eYnj8!tEwqb{D=Ck8_lWj%`%Of2cUJ}L?ukJa@$uQ$SS*0pj`~}YLa9sYi{R)cl zoA5|ARTQhR2x zIAmH@hEoaXf$ZGKk3-fGldJG{)fJjYm(}Wv-?Hk(?{@&vM@#pg@&glewWJ!2g?waOrwy68(T$;TJrRMF+jCgy)(6GG#`zS#jGW+@bslr!tky=-`MzP(Wo7c~AHi|!| zwGY4A?nHx{jVksJW5qF3O^^|)@!{Us7yl8~1t)ByAK1 z(ylN8Pf@#0BnEe-jQWiPk_idM^H^rxyZ?UWg#$HABNgBXeO^9*nq=4f$|sizY7`mF zq`{Nm*E@U~eR4ofd>bgH`~ZjKIf-agKEL1Jmg5?+`|ddKxcMvR-CNR+ChWW#-XZ;m z&}HvI>CC@S*N}?~B=aaN3WSk&ssEFoQ&yM&XvSF$Hhv$jyfO+YqT@3re=ss4^21Cp z#i1CQYZ>!ETZR7(@E&NFGo6Iv^7~HFmmRI<_@V%l%a&-$3UBa{8n;l!QMv8 zAn}{yhIe57#OE#cPISkLL^(ogjwHgM84=A&t&}6xs{{jy`)R{&{Q>NuWqkO$lV*XK z!O7oaHiS18MV%F~eh##|$lw8bhE7~RftZf=Ot&%pTT}h< z=Tz{;2x#-U1`r`CYNTgl7tua}$qyOtT>khW1)rU{LBS0siGr-o!GS|z9UXaR{eOwj1vMmItD&u`Ao@5)$?4IvgVzjjwDO=H%!Y!zIMj= zvVpw7-UzcgyQCc$ms%TTqBO`uSJyPm0I-Z-taudI^=$k2?Aj6kkR9DjnXSitMjDuM*jM!k_ReIMO6K`bU{&Ja-3%WuzQ#;Xr;;Q5q z#4&oh8PIU78K;)4vl=&2Q(a)}YElk;T>7#r^u>yy2SPAd`2BSv%M?FS*~sKI=fqbQ zi}=Iq7u@hZgQ##6>j)k4(V?-GbA zWh2({`azA1G`U#UM z$1Q7tmV|NEJM1qx9KKmQG!M6l5mbgZXhb}av=4x-ejpB|vwKc~oyuyG+?U)RJw0oK z0eSrYoS@4rvE~d=5Hw28&wr@KY?Lz&>JL(b-9lJ&C(ZqH;C*59? z`oomp^^GlBAdGS9!36cc)w}_E(whh{9Z6`08I=vwz)espMQ)mw*ca%l9m!;()R!?} z%W7Q)rn_l%HjyPWYlP&v>Z5S~fBxQ~)$%8EtK^>bG(32De_a`pm-UqNR4#EtI8b_c zCN&xm6{L91MVO1XCsOdUKP4-AW5v#$yeqU+X&Vh$?bJ?H>!JzErAguj#oX+eMC%{ zvuDt_TB2)m6C9bMZ67nxl9{L1KA#$v=ETDwN1(>k$~zzG=RKMu)IJC0ZX~1@%>yy@ zP+c1Lr@)`IcbW@JZ{|xReygcs6N!-U>T#kwSf)aR1>pT@{oXqufty*12DzX~e#!ui z{ee6U1^EMtO4tsa&Rg*A`Ef%~JK1k*PR$Mn9FQO*p`<^d?s#A0@Z)_Leck2lNH{w; z`%Ax&8b7PElU+y`&7{$7tIKRACzm0~Y)n@ASo0;*oBGdcz`9{*f_)!5N1?Bv)kraL z=|Bv(YuKrlBIPq??gXtrjY7i=1yc}47SP``{%)~|Wpa;-q%dC6o7bg6&=&$Nk`aH| z4Iz0V;DXO@YvtZaBCb-XE>9OwmGbTDZ1Bq;kdd|XYoTFKgLi}8S&J)w-_7GnDsu;z zqIM`(5EzJ7Ea@dEK0-3QQ#?)0M%T{)Xt1nlf6RdRC=S&7joW4xtbd0(kQf{Eq^eKe zJ#JH-bwOED9`{HQjluM(_GeU|q7Q2s3gYddV>O!5=Qau0tw!*DWrf3X} z`N!Rda?=t{f{Ek^K)p0d*JStZ*-lS)WQDvTX)r$x17-&Tg{n_hI{!vUKO4*jmeij z;bOa(ou9p27mua4cAmGQDJP%)i082+HRYZp5Gv}3_XDpzgry7G%{%Ak*L>&MkL%Rq zzFo3v9b@_NcTu2slSoAm7A4B1w*!e zaqplr#2YWC_rR&FINr?5aR$xBxQ}Rcnovc%W?+Nf0q^P5hFPTj;={;K_ABI5Pis99 z!ia7qBamH;C7-z?BTFm@YE9=@shddwt_ja#suiUZ57tKcu){BzU^)F>oPF%M+Yf%D zTCN<6FGnb3G6Ji2tA!mf5%uvrv#sC+BHynRsK4YkSn?<%sqn`=-M8Go=xOHvvJSuR z%phY^`1bqu(n)7BPue*;WHm2%U!i3YZ*>7c7y&EL$ay`X;vmR#nXjvE;s0Kk$m8t~ zvEc&In>H8i*^4mM3_&~4moBXdaMjbn7*=($*+HP=CSAo?{zMm2DY%vNaB^54&_ZV* z7V<)DP1Xfpyrdfz$Db9Wtpe}UB8lJstu(-7;H zIgs{LI{mUWX*NgNU>>Ospc||JhYgwY`%BA7Mvz07^Nl67+)Ij!5NJBIIGxs3vNxEf zA*9G>Fbw|no)vDlTnN3%9@=2$5!uBbhi(;6Qoicn`2D@k2_pnhiic*1DQ!SkCA%9F zbLssA-;a*4PH-MXw?s}Oi^Q6;cv`j-O(JZhc!w|F7zr`w&hSd>rMdAnPU6QN9Wk3! zsq8@YmtLtTe~E(*+rp3|cjn~nH~1L4>KLWu=mWb+-pIx!%QaweG8QL*u>Zwt=}g*K zWNOxmCISBKCWWy?u5qLgE%-fWpqgM7l6^7q`CaXv0sjZdo42sJWSP6seD&sv8XT-% z>@(*_*?U19e5bc{dwb7O=%=m!K9!5S;3T$!@^m!yby#6b^eBx5xE{$WP>wwcZ3;}> zTgL_SZ^iVeQfao1g&_BT&d28T*BAqFhnLLefGwwHDacR*ru5;a=W})GEs4R&1PKcC zGu75Iipe6=ZC)|pP~i+{9i1x8iB>>$j+9ist1-5slO@$drJ(T6#yh2LDVPwj&Ybw` zx+`iLLIugX)S`wGi>7<`<32b>2mL-4>^pM$B4(rx;^u+QFN9w>i|^TWsQBFarANJY*?$I^_nkPmEa0c&J5Ij$Q%`2h+xU&f zau@5Q*P1?WJ8`gj2Uty*otF1k`wtwB`w0ea$-FM&M?dp@uPX}uWD+mYuNk^_Kl-^qTRgAt17Ha3Er7N8kM=JTW9bqo z?5f^1pbgW7bl-(ZJ}esHsc;eCVubgASxBSY`zbVb{GXzab@2ev(c=N!W~?7L^wpD* zr~_!-mgN@fSe4+gWT(f-G4}G4gSUh&r9e!a$0uz&1cH zneB`0#@~b;Mnckr3YPS8J_fqv#+F`2IE!p zEQjFLzr<{BT)jE0DKJWQYP1}6RxVATdb$7f9}`NfhuYy8up5zC9`sMNt3g-H+Ca8F zLrvNH`p%@So_g}OU4o*639vYx==FLSmfLMz?N7Ta$*Y`k8BHnAp@PzEU=GEFIM@^t+70yBuMy zz$U$9&2I`BdW6vTjlhqDZ&6VXMV+i9vN0*Y4zpn2h`qJG?|~O^4I4r%xqt1sgP&$| z|C)RKXW(E0@ZDYXfByhz9B@U=I6$|#ShC|6{8;8<|5+@#*PE9W0vnKk`^on;wJZm`9>-{2oj!z3Fb8IUK z$?-2Cvb3y>eiY#84f205v2ZoNz?WwoulyOQr+hsA4`LQ;+kCa_y5A6o{BzcI?@#f* z3v7!{H41~hJQ~wqsBvThHSapR_J{8WpEjbjy!wQS=|G^MEgd-8AuwQJX6QFS6K&9@ zW;eSJ8%X&mmv*q*+;=HrZFF#O5HqA0kIed)RNTRwifz~~gXCQ-T;s5hvxCpKFxWt| zg^8gt;P%@tKVRC|6mB;p>Z_z8TaL|8vhkcpfqOr6I+n;@#vJ|_0}d~!USm{k*W-ha z@}Xdj9?lVBPU-An+VkrE(g1fCj3ljJk0x?+J>7LET&VEU*eq5W)2(t+Ip65Bp>raj za`@gks6A3Y(*5iAAtj71&-vwsD(YL-ztQ9jy<~Pd~q9{tI&Z7>;y&vxOVmH zH`{C277O?lI=n&C1Z4}R`{TP33q4BdR^s0;D=)YG<|g<*rUM(8rCPf0Kh=obEUg~u z>vobI8VESq@dF+mI3&NJ%b!?NQ?rJB9#p3im7bnHwsmy25)TjDoHTQtZw@#;?B-Oh z2r`QmPp4T^3OT9HR>qyJa9*EvZ_LlSqUJd;)v6cOP|xM}0=O~ND`Sp&yz=;vM>{@^tYe%T2(hr<`j?)}j8s#6)xJ|8a*USbLkMGmQ4IH^oy=TeiAy-PHM%k7*v ziMM#6`kexDzVT)~)s~}AGVmUDm|hjr8r+#VKH8As0S@-9F}C6HoSo_FWFG zpA!(=sCfuge;jbSzd*Z)b}T1-1I*RD-$rJ6!2EXY2K%n={P$rD@ZD$Dx$b*uskz_U zCxSnh>-Su}RD5>$mJgWv19z-Bi4QUtu$kVchVlO6xojSSs*M8;0vjg)KFDokcuY=B z>B}u4wmc~p^>M5E1WvLX)=jG)bxw9>JO*W_0&$pZvNw~@Y@Nq0<_H_iI6Ko_8Yrxj zKh?Dye|HVqHbZR$v}}-y`?dm{=I-sOVv|vqYbcB&%Hv=MqAtUGe4Iq{~Ys1W?ehn}~o;*AruPvJA9M+TviS7sQ zd1OQK67>|ew8Z^Ky{0UZ$yEP+h^HHca2z6?{q8B6kSPyO!9%WWk}XaE^HSX3o2iaO z0&_-&SIYbik4QKVjVieZJN9@AK0L7R+pVZUj>k+gxNxn)f3xCTrV=ui{->&0wPDhh(&+RgXsU}BO7;A%rNSy0Qe7M zkBr?k$Fi5}I^xYo=`CC7xbyPsa{>Uz_WJOq0;sn-t{}_3Pw3mXZ`~XLJ9xYnk9gk>NYU8VR&jRlj7{=dE8kRZU{-m{`Cs5d4~0y;JjDSQtYf^c{vS6( zC(XI%&yJ6`>S@wxLM{;aPv((8as0nxFmI^I_5735oXXMfDSu*P43oQPvpOnmnQxQW z9W8DJMu%TihTE=?#mA2IF_M)#aV#%>CM$P|;b5Dbgwed1U0$pdpfF=sy8CDTHd%a} z{$$s1*SvyngMvE_M$4g0|I2en{AWXFx!E%oELSWIktzFy=Xa+=L-XDH_`5Y#g5NN! z`rd@BI5J)FN=L*wo8J f#s5QKe11*f0WBp&>faG20RA3o=|RghEW`d6*$I~N literal 0 HcmV?d00001 diff --git a/demo/documented/hyperelasticity/python/demo_hyperelasticity.py b/demo/documented/hyperelasticity/python/demo_hyperelasticity.py new file mode 100644 index 0000000..351b7a9 --- /dev/null +++ b/demo/documented/hyperelasticity/python/demo_hyperelasticity.py @@ -0,0 +1,99 @@ +""" This demo program solves a hyperelastic problem. It is implemented +in Python by Johan Hake following the C++ demo by Harish Narayanan""" + +# Copyright (C) 2008-2010 Johan Hake and Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Harish Narayanan 2009 +# Modified by Anders Logg 2011 +# +# First added: 2009-10-11 +# Last changed: 2012-11-12 + +# Begin demo + +from dolfin import * + +# Optimization options for the form compiler +parameters["form_compiler"]["cpp_optimize"] = True +ffc_options = {"optimize": True, \ + "eliminate_zeros": True, \ + "precompute_basis_const": True, \ + "precompute_ip_const": True} + +# Create mesh and define function space +mesh = UnitCubeMesh(24, 16, 16) +V = VectorFunctionSpace(mesh, "Lagrange", 1) + +# Mark boundary subdomians +left = CompiledSubDomain("near(x[0], side) && on_boundary", side = 0.0) +right = CompiledSubDomain("near(x[0], side) && on_boundary", side = 1.0) + +# Define Dirichlet boundary (x = 0 or x = 1) +c = Expression(("0.0", "0.0", "0.0")) +r = Expression(("scale*0.0", + "scale*(y0 + (x[1] - y0)*cos(theta) - (x[2] - z0)*sin(theta) - x[1])", + "scale*(z0 + (x[1] - y0)*sin(theta) + (x[2] - z0)*cos(theta) - x[2])"), + scale = 0.5, y0 = 0.5, z0 = 0.5, theta = pi/3) + +bcl = DirichletBC(V, c, left) +bcr = DirichletBC(V, r, right) +bcs = [bcl, bcr] + +# Define functions +du = TrialFunction(V) # Incremental displacement +v = TestFunction(V) # Test function +u = Function(V) # Displacement from previous iteration +B = Constant((0.0, -0.5, 0.0)) # Body force per unit volume +T = Constant((0.1, 0.0, 0.0)) # Traction force on the boundary + +# Kinematics +d = u.geometric_dimension() +I = Identity(d) # Identity tensor +F = I + grad(u) # Deformation gradient +C = F.T*F # Right Cauchy-Green tensor + +# Invariants of deformation tensors +Ic = tr(C) +J = det(F) + +# Elasticity parameters +E, nu = 10.0, 0.3 +mu, lmbda = Constant(E/(2*(1 + nu))), Constant(E*nu/((1 + nu)*(1 - 2*nu))) + +# Stored strain energy density (compressible neo-Hookean model) +psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2 + +# Total potential energy +Pi = psi*dx - dot(B, u)*dx - dot(T, u)*ds + +# Compute first variation of Pi (directional derivative about u in the direction of v) +F = derivative(Pi, u, v) + +# Compute Jacobian of F +J = derivative(F, u, du) + +# Solve variational problem +solve(F == 0, u, bcs, J=J, + form_compiler_parameters=ffc_options) + +# Save solution in VTK format +file = File("displacement.pvd"); +file << u; + +# Plot and hold solution +plot(u, mode = "displacement", interactive = True) diff --git a/demo/documented/hyperelasticity/python/documentation.rst b/demo/documented/hyperelasticity/python/documentation.rst new file mode 100644 index 0000000..0028e9b --- /dev/null +++ b/demo/documented/hyperelasticity/python/documentation.rst @@ -0,0 +1,218 @@ +.. Documentation for the hyperelasticity demo from DOLFIN. + +.. _demo_pde_hyperelasticity_python_documentation: + +Hyperelasticity +=============== + +This demo is implemented in a single Python file, +:download:`demo_hyperelasticity.py`, which contains both the +variational forms and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +This demo is implemented in the :download:`demo_hyperelasticity.py` +file. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +The behavior of the form compiler FFC can be adjusted by prescribing +various parameters. Here, we want to use some of the optimization +features. + +.. code-block:: python + + # Optimization options for the form compiler + parameters["form_compiler"]["cpp_optimize"] = True + ffc_options = {"optimize": True, \ + "eliminate_zeros": True, \ + "precompute_basis_const": True, \ + "precompute_ip_const": True} + +The first line tells the form compiler to use C++ compiler optimizations when +compiling the generated code. The remainder is a dictionary of options which +will be passed to the form compiler. It lists the optimizations strategies +that we wish the form compiler to use when generating code. + +.. index:: VectorFunctionSpace + +First, we need a tetrahedral mesh of the domain and a function space +on this mesh. Here, we choose to create a unit cube mesh with 25 ( = +24 + 1) vertices in one direction and 17 ( = 16 + 1) vertices in the +other two direction. On this mesh, we define a function space of +continuous piecewise linear vector polynomials (a Lagrange vector +element space): + +.. code-block:: python + + # Create mesh and define function space + mesh = UnitCubeMesh(24, 16, 16) + V = VectorFunctionSpace(mesh, "Lagrange", 1) + +Note that :py:class:`VectorFunctionSpace +` creates a +function space of vector fields. The dimension of the vector field +(the number of components) is assumed to be the same as the spatial +dimension, unless otherwise specified. + +.. index:: compiled subdomain + +The portions of the boundary on which Dirichlet boundary conditions +will be applied are now defined: + +.. code-block:: python + + # Mark boundary subdomians + left = CompiledSubDomain("near(x[0], side) && on_boundary", side = 0.0) + right = CompiledSubDomain("near(x[0], side) && on_boundary", side = 1.0) + +The boundary subdomain ``left`` corresponds to the part of the +boundary on which :math:`x=0` and the boundary subdomain ``right`` +corresponds to the part of the boundary on which :math:`x=1`. Note +that C++ syntax is used in the :py:func:`CompiledSubDomain` +` function since +the function will be automatically compiled into C++ code for +efficiency. The (built-in) variable ``on_boundary`` is true for points +on the boundary of a domain, and false otherwise. + +.. index:: compiled expression + +The Dirichlet boundary values are defined using compiled expressions: + +.. code-block:: python + + # Define Dirichlet boundary (x = 0 or x = 1) + c = Expression(("0.0", "0.0", "0.0")) + r = Expression(("scale*0.0", + "scale*(y0 + (x[1] - y0)*cos(theta) - (x[2] - z0)*sin(theta) - x[1])", + "scale*(z0 + (x[1] - y0)*sin(theta) + (x[2] - z0)*cos(theta) - x[2])"), + scale = 0.5, y0 = 0.5, z0 = 0.5, theta = pi/3) + +Note the use of setting named parameters in the :py:class:`Expression +` for ``r``. + +The boundary subdomains and the boundary condition expressions are +collected together in two :py:class:`DirichletBC +` objects, one for each part of the +Dirichlet boundary: + +.. code-block:: python + + bcl = DirichletBC(V, c, left) + bcr = DirichletBC(V, r, right) + bcs = [bcl, bcr] + +The Dirichlet (essential) boundary conditions are constraints on the +function space :math:`V`. The function space is therefore required as +an argument to :py:class:`DirichletBC `. + +.. index:: TestFunction, TrialFunction, Constant + +Trial and test functions, and the most recent approximate displacement +``u`` are defined on the finite element space ``V``, and two objects +of type :py:class:`Constant ` are +declared for the body force (``B``) and traction (``T``) terms: + +.. code-block:: python + + # Define functions + du = TrialFunction(V) # Incremental displacement + v = TestFunction(V) # Test function + u = Function(V) # Displacement from previous iteration + B = Constant((0.0, -0.5, 0.0)) # Body force per unit volume + T = Constant((0.1, 0.0, 0.0)) # Traction force on the boundary + +In place of :py:class:`Constant `, +it is also possible to use ``as_vector``, e.g. ``B = as_vector( [0.0, +-0.5, 0.0] )``. The advantage of Constant is that its values can be +changed without requiring re-generation and re-compilation of C++ +code. On the other hand, using ``as_vector`` can eliminate some +function calls during assembly. + +With the functions defined, the kinematic quantities involved in the model +are defined using UFL syntax: + +.. code-block:: python + + # Kinematics + d = u.geometric_dimension() + I = Identity(d) # Identity tensor + F = I + grad(u) # Deformation gradient + C = F.T*F # Right Cauchy-Green tensor + + # Invariants of deformation tensors + Ic = tr(C) + J = det(F) + +Next, the material parameters are set and the strain energy density +and the total potential energy are defined, again using UFL syntax: + +.. code-block:: python + + # Elasticity parameters + E, nu = 10.0, 0.3 + mu, lmbda = Constant(E/(2*(1 + nu))), Constant(E*nu/((1 + nu)*(1 - 2*nu))) + + # Stored strain energy density (compressible neo-Hookean model) + psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2 + + # Total potential energy + Pi = psi*dx - dot(B, u)*dx - dot(T, u)*ds + +Just as for the body force and traction vectors, :py:class:`Constant +` has been used for the model +parameters ``mu`` and ``lmbda`` to avoid re-generation of C++ code +when changing model parameters. Note that ``lambda`` is a reserved +keyword in Python, hence the misspelling ``lmbda``. + +.. index:: directional derivative; derivative, taking variations; derivative, automatic differentiation; derivative + +Directional derivatives are now computed of :math:`\Pi` and :math:`L` +(see :eq:`first_variation` and :eq:`second_variation`): + +.. code-block:: python + + # Compute first variation of Pi (directional derivative about u in the direction of v) + F = derivative(Pi, u, v) + + # Compute Jacobian of F + J = derivative(F, u, du) + +The complete variational problem can now be solved by a single call to +:py:func:`solve `: + +.. code-block:: python + + # Solve variational problem + solve(F == 0, u, bcs, J=J, + form_compiler_parameters=ffc_options) + +The dictionary of form compiler options, which were defined initially, +is supplied using ``form_compiler_parameters = ffc_options``. + +Finally, the solution ``u`` is saved to a file named +``displacement.pvd`` in VTK format, and the deformed mesh is plotted +to the screen: + +.. code-block:: python + + # Save solution in VTK format + file = File("displacement.pvd"); + file << u; + + # Plot and hold solution + plot(u, mode = "displacement", interactive = True) + + +Complete code +------------- + +.. literalinclude:: demo_hyperelasticity.py + :start-after: # Begin demo diff --git a/demo/documented/mesh-generation/common.txt b/demo/documented/mesh-generation/common.txt new file mode 100644 index 0000000..f0b0fdd --- /dev/null +++ b/demo/documented/mesh-generation/common.txt @@ -0,0 +1,14 @@ +This demo illustrates how to: + +* Generate a 2D mesh of a polygon +* Generate a 3D mesh of a polyhedral using .off files + + +Problem definition +------------------ + +This demo focuses purely on generating meshes. In this demo we will +use the following classes in DOLFIN: + +* :py:class:`PolygonalMeshGenerator ` +* :py:class:`PolyhedralMeshGenerator ` diff --git a/demo/documented/mesh-generation/cpp/README b/demo/documented/mesh-generation/cpp/README new file mode 100644 index 0000000..3a17715 --- /dev/null +++ b/demo/documented/mesh-generation/cpp/README @@ -0,0 +1,2 @@ +There is as yet no C++ version of this demo. +Please consider contributing the missing code. diff --git a/demo/documented/mesh-generation/cpp/documentation.rst b/demo/documented/mesh-generation/cpp/documentation.rst new file mode 100644 index 0000000..62bdec9 --- /dev/null +++ b/demo/documented/mesh-generation/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the mesh generation demo from DOLFIN. + +.. _demo_pde_mesh-generation_python_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/mesh-generation/cube.off b/demo/documented/mesh-generation/cube.off new file mode 100644 index 0000000..7a4cb16 --- /dev/null +++ b/demo/documented/mesh-generation/cube.off @@ -0,0 +1,16 @@ +OFF +8 6 0 +-0.500000 -0.500000 0.500000 +0.500000 -0.500000 0.500000 +-0.500000 0.500000 0.500000 +0.500000 0.500000 0.500000 +-0.500000 0.500000 -0.500000 +0.500000 0.500000 -0.500000 +-0.500000 -0.500000 -0.500000 +0.500000 -0.500000 -0.500000 +4 0 1 3 2 +4 2 3 5 4 +4 4 5 7 6 +4 6 7 1 0 +4 1 7 5 3 +4 6 0 2 4 diff --git a/demo/documented/mesh-generation/python/demo_mesh_generation.py b/demo/documented/mesh-generation/python/demo_mesh_generation.py new file mode 100644 index 0000000..cceef11 --- /dev/null +++ b/demo/documented/mesh-generation/python/demo_mesh_generation.py @@ -0,0 +1,57 @@ +# Copyright (C) 2012 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2012-02-02 +# Last changed: +# +# This program generates a mesh for a polygonal domain that is +# represented by a list of its vertices. +# Modified 02-08-2013 Solveig Masvie +# Begin demo + + +from dolfin import * + +if not has_cgal(): + print "DOLFIN must be compiled with CGAL to run this demo." + exit(0) + +# Create empty Mesh +mesh = Mesh() + +# Create list of polygonal domain vertices +domain_vertices = [Point(0.0, 0.0), + Point(10.0, 0.0), + Point(10.0, 2.0), + Point(8.0, 2.0), + Point(7.5, 1.0), + Point(2.5, 1.0), + Point(2.0, 4.0), + Point(0.0, 4.0), + Point(0.0, 0.0)] + +# Generate mesh and plot +PolygonalMeshGenerator.generate(mesh, domain_vertices, 0.25); +plot(mesh, interactive=True) + +# Generate 3D mesh from OFF file input (tetrahedron) +PolyhedralMeshGenerator.generate(mesh, "../tetrahedron.off", 0.05) +plot(mesh, interactive=True) + +# Generate 3D mesh from OFF file input (cube) +PolyhedralMeshGenerator.generate(mesh, "../cube.off", 0.05) +plot(mesh, interactive=True) diff --git a/demo/documented/mesh-generation/python/documentation.rst b/demo/documented/mesh-generation/python/documentation.rst new file mode 100644 index 0000000..94c0db2 --- /dev/null +++ b/demo/documented/mesh-generation/python/documentation.rst @@ -0,0 +1,141 @@ +.. Documentation for the mesh generation demo from DOLFIN. + +.. _demo_pde_mesh-generation_python_documentation: + +Generate mesh +============= + +This demo is implemented in a single Python file, +:download:`demo_mesh_generaton.py`, and the 3D geometries are +described in two ``.off`` file (Object File Format), ``tetrahedron.off`` and +``cube.off``. + +.. include:: ../common.txt + +Implementation +-------------- + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +:py:class:`PolygonalMeshGenerator ` and +:py:class:`PolyhedralMeshGenerator ` need CGAL to generate + the meshes, so we check that DOLFIN is compiled with CGAL. + +.. code-block:: python + + if not has_cgal(): + print "DOLFIN must be compiled with CGAL to run this demo." + exit(0) + +We create an empty mesh using :py:class:`Mesh +`. We need this mesh as an argument to +:py:class:`PolygonalMeshGenerator +` and +:py:class:`PolyhedralMeshGenerator +`. + +.. code-block:: python + + # Create empty Mesh + mesh = Mesh() + +We are now ready to make the geometries. We start with a polygon and +define it by making a list of its vertices. We need a closed contour, +so the first and the last element in the list is the same point. We +represent the points with instances of :py:class:`Point +`. :py:class:`Point ` +takes :math:`(x,y,z)` as arguments, but since they all have default +value 0, and we have a 2D-geometry, we can omit :math:`z`. + +.. code-block:: python + + # Create list of polygonal domain vertices + domain_vertices = [Point(0.0, 0.0), + Point(10.0, 0.0), + Point(10.0, 2.0), + Point(8.0, 2.0), + Point(7.5, 1.0), + Point(2.5, 1.0), + Point(2.0, 4.0), + Point(0.0, 4.0), + Point(0.0, 0.0)] + +We send our list of points to :py:class:`PolygonalMeshGenerator +` along with the empty mesh +and the cell size. The cell size decides the resolution of the +mesh. We set interactive to True so that we are able to rotate, resize +and translate the mesh. + +.. code-block:: python + + # Generate mesh and plot + PolygonalMeshGenerator.generate(mesh, domain_vertices, 0.25); + plot(mesh, interactive=True) + +.. image:: plot_polygonmesh.png + :scale: 75 % + + +The geometry for the next two meshes are described by .off-files. It +is easy to make off-files, so we will go through the four parts of the +files: + +* The first line is just OFF +* The second line consist of three numbers: the first one is the + number of vertices, the second is the number of faces and the third + is the number of edges. The number of edges will not be used so we + set it to 0. +* On line three we start listing the vertices, one vertex is described + by its coordinates (three numbers) on each line. +* The last part of the file describes the faces (facets, sides) of the + geometry. One face is described on one line where the first number + says how many vertices we need to represent the face (in a cube we + need four, but in a tetrahedron we need three). We then list the + vertices describing the face. We use the vertices defined above and + start our "indexing" at 0. + +:: + + OFF + Number_of_vertices(n) Number_of_faces(q) Number_of_edges + x1 y1 z1 + x2 y2 z2 + ... + ... + xn yn zn + number_of_vertices_on_face_1(m) vertex_1 vertex_2 vertex_3 ... vertex_m + number_of_vertices_on_face_2(k) vertex_1 vertex_2 vertex_3 ... vertex_k + number_of_vertices_on_face_3(l) vertex_1 vertex_2 vertex_3 ... vertex_l + ... + ... + number_of_vertices_on_face_q(i) vertex_1 vertex_2 vertex_3 ... vertex_i + +We send the empty mesh, the off-file and the resolution (cell size) to +:py:class:`PolyhedralMeshGenerator +` + +.. code-block:: python + + # Generate 3D mesh from OFF file input (tetrahedron) + PolyhedralMeshGenerator.generate(mesh, "../tetrahedron.off", 0.05) + plot(mesh, interactive=True) + + # Generate 3D mesh from OFF file input (cube) + PolyhedralMeshGenerator.generate(mesh, "../cube.off", 0.05) + plot(mesh, interactive=True) + +.. image:: plot_tetrahedronmesh.png + :scale: 75 % + +.. image:: plot_cubemesh.png + :scale: 75 % + +Complete code +------------- + +.. literalinclude:: demo_mesh_generation.py + :start-after: # Begin demo diff --git a/demo/documented/mesh-generation/python/plot_cubemesh.png b/demo/documented/mesh-generation/python/plot_cubemesh.png new file mode 100644 index 0000000000000000000000000000000000000000..6d20103bce4248814e1e2acbe30ec32d9af135e1 GIT binary patch literal 39015 zcmeFYV|S*{6D^!f?1^pLwv&l%+qNdQZO+8D?K`$}Pi$LHe*b5kuW(+ScNco~>aMQZ zwR=~0q@uhe0xS+J2nYy*w3L`K2*?jj5D?G==pWx-J~Sd{KtPBL7Krw2a_Hk&q)~TY~I2Ty>(s zhKdwA);{lea26<1eZO6aAsZEbKV9O8hkXB1Y_mZ_#`taotWgrv{I5Z$#Q$sXf87pW zPg@97X#VtR2U7%|{eq7ly|uQog^FW!=Wm}|c2sDec65__qw1P?T2#K|QP6Oq)O3@@ zV~xD;C}{kHJzr1ym+y^N3RgV!ic}?3By?yzSsCT`VSp!s={J@XWG$*L+yhd&O;SAI zc)!=%r=zdi^#qi4UVssVe4*MWR9rWKw)ctP+voinxbF0rh!NzsKLvmpm^I<2{Dptg z6UutOBR41EETFD*RV+Cl8>kgUHUdHcMMqu(*I^9&c$Yp9-wS)cJN_d1o{#}Tx;euR zK|(ok`s6LeZNt?UKA}K`bHzpR4~r_D8|UO@SeKw+K-b48CQf>0yKdn%>$kr?)ApkvfrIj1{?GDC=7y01_roEHsn7?x}rzU0!FM>%2bPZuXFIeFz3J|nQbkO zeY@oZ9{5`6;yoR&1<)ih1b%)`IWB)h)Xp>4d8P2c0)baWO(ye8wZ>ZjXLkLLYYO$W z2Cf0~w)9R??D4~j0s&bL(EIcrTex2J$}*#0CrDBoa3w?^N4FV8GSE4=GFqX@e!KS| zQT?UoeX=(iHuBE0-|D*m_?B=+Kxkij+GHf25DG6I(u-^{jnx5kUiRRG8!EbvTX}VfNyRcC z9+*R_K`M{WQ;qna>Y z$HJ)4Y=T8We}TT&Wj;WWkTTsZNxBhkg{ayM@!&lM5inMjvfo}b2K&)fM&kEdNHH9u zTpJJs2o$Q^Ir7JyOkjc)UqfYuQCc?ER0D?Igpq*?{ar3HA4b8bP=y}T>Qa)|`Nh&4 z&l$2?6p@JjQN$6gm-j7%8Et{ve6PWYj4r9~mYUjr2KpwgNe+DVt;9TM@ngSoR{W9E zNe2GwPJ=YQ3yEcWJwI9SjSH-wCfP|f0-=J>ZSv3hU(W2295Ku&7S!!Q>tle6ghj=U zad1Gv)s%^0viR)5tp3GO71! zxGNYRH?HxgImtU~AI}l5tz5~Sx|%}5=-zEV=PCBl&)~FVZqE){i1B!?0$$XL{M*>8 z-{?xzJ738h3AgPr{=F4P$3qD6T@h8YaK526VpJdYy}*3J_4I)mab)1mKhc4oIUi1q z*lc5<*Yz~O4w}($Um_C$%Y#@@4>*fA^Ly;UPPP%Jk8Ryg3+3ltEDNL?MpQ~JT0!Xs zK0Q#ioiv1|1GSn?+69!VEWr-yJLzvsFO0Z$nDf_zhQ~I{bW(O1G&Z1H_~2V9C`xA5 znjc^F+wdI-pOi=yj2AzQ?<0)W^vW;2#w7>$Iq59{c#edHP>x_B#GxV+;7L1E@gOFU zMnhjg{fAr62tvr_JNaqi_XIM9t0 zX$Q!c7qZy~R7`4k95?v6Ie=+^2@hOC<=e9dxzcTYId1RivoPk6!N{uOw>@ zM_Np2oO-%9pqJDesu=Q6x6G`Z8zN_Fd4H)xxEUJ0+~&tyXs@z%d6P+n**^7f>=+{F z<@MY@tj6I;+=0~JmOm^y-{#xNc0fig5F{MU=YZqt1vO33X7x-0`L`cPm>xE-hPh4) zc5&M8OJK4cT=|lOLL+`o3H*_^P1U?)+=TfKMT~vD(lvhMLbiP4w-3S$Ja2pG%V)=d zyUJ*-%7cZ4@o)qm3o>gX$kt8Gzx+|6$jIqU9tRxnu}yoG5^b8%+!P{)D$X0V?i>pN zzf)|K5C=NNrHcu{vh+wEKa8|mj@v$4;;Xh7#-dThr&}l+JEkR@m_V9y%S_+Tee<7J zSh?t&`Xkd`?%g{@f#Dgv|?C)dPA zY`w#gtGmgl^Q%E71}a;-2guKgT*Rj&pB)Xia=~$^D}yS>E#-&%BIw?|Q^cQ*EPJ~@ zU2g4t4gRM3YQ_v@Ri|!tOZxk|N}6*-USMpOkIK|KTX(Ge8QZ4N8q$zi3sJP=jB^rk z#K|L_BFUtNVQOj9_L1rNJxv`xHJeRqVk^*F1;~j{SeOT1;@2*_oFzt7UEa9i+DP!h zMXBJzT$Py1w-yQm{6+j6xM;Oh@o@znw^$)TDi09}^-qL(JlMjh;=Vr%wbK z2qmoL7`DIJj@Jii@&wsyhbl)@-+2Hj3Pq2Ljrj4IBHUccE>y{ey{9B$OMmP-v@i&r zdpx$gq4|i1+c~&gMC_ld|NLjHB%A$tH!qA6h<-s zFCs^1VD2A_CQLc4vmBLM=8{n4pJyjg8lo|d&>)H3u$Z83fZ~#HvN;H~w|ZIfw@yLU zwlt2R>|1NatufEJq~c~`V*$D8W&{;qN0P9U-mznS~}M5(GzDw?zEzC z`NUKw;(LsY>ZD=r?+qDZor{2h*+F6v*-#hlOa2de!(o_$=s#Igy|9xHbfFALC-``x zA$M>w1U^0Bh~AG3M9PTGg9gQLe{ah&zk64sP6@{#2LGURUoHQd!Mx@u`;4R&X_`^E zi=}>7{|^CK(qKhR;`Y3D0f$p!5N$}@c1i(9hCKKC|DcWR|9K4niM(9>7ueS@L2u$ zFDfThuP{n#=FBfZt$C!;ms+FlO}3rZ`}4GQVY<+T;w8V)p7^x>&`ISl@wJJSjiHt{8apJKPnP771;!i zh5G=9$ll8d)yuKnz|$HpjE8A1;m(=fDZ~iPQb=CFR6>m6VLQew9w%WOQf|r|2E`NA z2XsZQYf0EM8pn%`4a`M1cWCOqFvhvxVSz!;L2si90Tgp!GY&&(;nV)q zjO!xT%~X}+W9vKZg8kG+p;Dutgn(?GOgd(oZVWOgSLS)xpqRjucOEn&i2o%qV3LLp zR6ZLSuo4u{KCK>a@1_V^Zz2z8_K41&<$VeIqk`Fr*xZZzcwYw^;QK1KuPq_^^KLeO zkp#`NmMLNWrDBDn*}E6CBohT$tvG-|$`krRV^%Q#_u=T&#yW0M_rjAFW^?A$L8^HM z2Ie+y6to}~)=`mU$k8x=#AOu+D}$#JTeRGYx#^yivs)DXVgxRMzJoOSjED@IMX;!T z__Ar2*Ois>=tU-hKB2lrcHv_cHj3tWy#FW+=oiE5_;njYNzfW12P&x}I7$ROljZO> z|9&I_`{05#RC=5x_!I z+RARW-wp}hK-cd?J4QZUcaJR<&rNJ;^w<7@nk7IfMc3US-|oXnFEjSsWa5GIX} z;)PBvD;Lf4eW_euj!rL>6{rj?MLt((C)j=Q(pk@kJ#gwsV+h!ys^dRM>!F;R(Cy zqo*aAM&uEv?2F*FL8SQEP}}sWBbD$%<*W|3&hBJ<4vx3@e}K9`&jR*PBp`sw{pq4P0-|<|uEN>9_K^En4};x+WQt zz?^wO8J;q6^!~tbWnq*T>-r&k^$2#8zj~z8Ci)G1L>v*YkroAPHjk>N#eHw>JnYk9 zAh2m*;4<RplPBjC~X@AmBT~Sk-Z2pO=OCeJO5^~zY)BDV_ zxhL9Ith|k53iq9uV)F9fYd!z|bO32a&TW?t+zbb!Y^3zUg@Ei@k~!y z=4*+$J*bSlN|VW~8o-)k$3$);V=YVE#1{JUdn%VsDFTfYDO_Ip9&n@ zOvJh`>+w*g5aXYAs_I;R(j2gR+i;!y&9{NP%T`?NJ419(2Bv?f29w{tYG0k9`De@i zAvi?S`aDL+EK?DVK-NZGF6lwA5U|;Otvvkd*iHm7Rj5tzNAJkv&6HiJ?g(vO?O=Mk zlZkBZknTL2IVTLy93U)o3>QBV=IxmWJOs_U4d3x^$=&rua|E(v4 zmW!=R0!S?Ogy;q_3r{1MOQ`J_0=dP0*_s>@K$ooD04Q{7=DJMM5X7uHsBoB3_(th! zV9z*3{6yQfE+O3H6;6ACU3om2896Yh*@mwLG7MEUk8DYm?)|X+Ehje2cPrhR&7u*n zP{l*?A>OhD{pY(%wVwwCAVc{kev3L-_SD|e<;?GG^)qI$Z^Tbpo;RreLFZv5!EYIX z2fgsM#7FLKqJM#8jbuA@uw|T&%)Gi&6-Hp>?+?wiOoCqN zDfrBQoka}&`9z2K6#)%hL0XM868g}_wy4mPxi^@?YUMcWk;AT6J&wXV<`9T)W`UEC z3f{qPTK+X_aFDN8hW+~5h^m9_K&&U`N?0QR1QERpl0#n;<4E8~vc0bEC03xJp<8i# z=Fl~1WS@s}?8)t+-^)y^Wy-m3H(oy|HK)@zule!dzYiti&yVH^Hu~b;mx5_?P=Z3Z31rx!?1mPXC%p~-+uMAiGM=ca(sjS9Zg_Ql z%Ie><@Z-u;8nzeYKmL%*vgg2lk4W)}a;3+LS5AU8vX$t_<5+6-5;-O$m=*t+z+;xR zV3@EBG0mA^YO3mE(rcjpw>YiI z+ZT&zFPo2e@Hk57W7$RNkW<0TfslUST#3$prF%ol#q%DQR+&ewgc$*mTnTRbOMR<) zfMO|)n9pg4Fbg@y{(ix=-4pBxepiE+Ve!H$i}D5ars_t`@^SAa`xy4GZvPgMOTxbW zyGL1;Nu~A{=qnQ1A}V)lYI(@O+qX0U_3zr8zmQO-sNK58;E$jNEogW7+CJmHylgRG z#+RFxtCEdMuq9-6!WKgPl%)k5r=^IKHolOkcbyJy8p#ewK2TetU`Zfoi=%#8i~pTki&x1k(p=z)RXG#D~K;`kf~|#@Ho|9?q^;Q zW>~+=UtBU5AF|?0gio^djspgYQm+aoL16g2QHA7iC*RLOy)1Y``)=SN=&6Faw>|L4 z#0DmhG*4J={yr;Fk06-fl;);u!*$T2;x49-oqX)6iI<&Pv%==JgO^b|=oCRlly&k&!C;dQeEkoKOCXurE`f zqFjCQSNJ)g@c5{Oij)07J>C^rS*%NLIb`z;h1d=<_LfnHY1OdduFM83nRWZ!*{=Da(ZzcDVeV<-^QGci9x2czKS{5zm&sDd?)jH|by7LWeCpSJH(NgnU z?`)1Y>+T5#`_8s5+r$Kqm^z>BYKt-+b!Jz}$jPW<@XY?5XXs3=mkf9B z1WFx?a0qg;5#P**9uwYd)sx`YRNrVtq2~KKS#2*;o)FN7CkEWg4Mja#~eHkZfW2=&v?SNf5_w_S3{ z7bjSrLT{1%VYOvj^w01I%1$2)U z41)V6XG2u(;tH{G>USYe{boUQ{M97O(dFagYJ1{WA&IVj3g5Hz6ut5kc2mW9Y(yfx za>06pHhjC}knDC^ltjW3;|4K_oimO?>~O;z2pcA%#ptOtj?al}#EkW-o-$^xPZYq1 z(jutzLN8&3*nQ|8O7wQ55@{8gv6}6Kb`E`2fj{Vz_Dz4wklcjzeX9PoWFqOz%DlAY zluE&y+I!E}Bd%7=)Eqen5FY!2)S^NQD4Tvt`Mu(1hftXl#rvPCvB#D}#zT%_*SAzJ zOkSB0X?LuCZ$lnm3|qQhyn|wgG)U5+UxD9Gfe)3)>t}TK0P_qWgh`ckV3a7tIEfr1 z0rts(SCL1Sd_J%icO zD(ARJamVAJKjEn>R(9EJZFi*n_7hL|O~dCw9YeL~NS<2lGvMl5wy-r*++Lh3isB^f zWiq;_%~D{@$c^llh_THew!2FT-Erq`=7fN3NpZN_|i zY(JluO~Ujq+G^-|mQ8%U!3a z5i+O5e$UIJbz73C&VM+Y+PEDnHdo&a%<7*w`h5*)3SXoP*t|gNqHmlu)p71Ha=N&l zpAh=dN>u{nzHW(d945+9%gL$Pf+6gdhlrRPwMEd-2s*E|S27f)(L7`o5;?a2M_mIm zY%0>u!v{wq9rLd%{um`7=h!IR%&cn(eLf!bqYH0>n9M|acIC<(>|gegJj{UZpniC1 zh#uD4Hb!d$piQNxMO~C8BYfI$rzDem))+&_h*Q5Zykn5yvdW+5Y;{pl)FCbJMDSp8 zb3+?gBkzLi(OLFE5ZX$$p~Ra@hDzt5_`iJytYS9F3T7siuOTlw<6l;JwiuXY2z72lnGUtiqHRrNt#ewgi6+uA|UYoM}_;AAM_@ zb&KUij+U+RTuFp!dmObO-QzYOWcl5BB~t}?HcV#QRJYwg0z{0aA;*sfy&bZBBAR*b zFoyvw6AgL4MT*EaeSiKOk2Y4Tc0{LbhI%H~ zOcBw4WZd&jp;`kqih|4pFmXUvAuowg6k^ezg&V{pT8OYj{dR4T!B-NdTeJel@k`X_ z=Esm=D&>0C^f*`WoyR6@En z?C$fyDFYp=2)WX(T^)#Xm04t6YmjN@^U@Du;L!Y&K4pDCUyl$-H)s&6UFCG1?-%|5 z&shNWfrIl^YGYa{ySe42*SsVCyz?n$aBVS+b_I_Hhh0+=Qp3j9Ye#A!~LK%zvT?Giz$e zL>zdQ3DfKPA+IS)n^TjMpu0ks@%sxBRK?^2d)PG4F(cAv!)>v@3lx{|R{_?KVr?nc zcBszJ&9SL-Q}jzNS8he!_2TkSi7Vu9>dGfo-&M~Sm(-}k6M>&m<P-BIcO)domf1ljYE9n77t~49|axeKi7&K;>5hPw2d^iznT{nF42d-CjX^lV%h*EO5LrH7X8q7pdLgQ`+x;yP zM1u(O>BA@gs_2NQLDa)f%n7*Q#H$^yDi&HS>VXsHQjWlu4!xyH62RfHV*a3RGT+!G znh|!$tu!(fHOZ{PS`zAt;GaNPUIoA32~#B_NgKZxX3a00rLQ`1OVomQKp1cYbQ~G= z;#_3fm}y@MkLyFZ-w`K!6T+5cPG5D3HpZ4P)+g{@`U7jeV`f-0P_KrTuU*RvE2g#C zz-NW;!(laBt7pJ!vf<7N*WUAeDd~~UG%?tcJB3gi1ujn?7f&j}RmoU@W-r`;1jH?d_XTzSF8G_LdT zipi#`LigtUjQ(_{j}ZK=elb~obO=#7GSJ+XN!$($8D?RHo>|W=<_z&bFuxeOo%Z_M{O7Xu zdVY;hv?i{bv$yCkClqF3b?PA8u!Y&&`g;cPfQu`V=q^C%&K|h%BhR3_C({NFj`Ja%%=`;4| zh#qr!%O$8-g{dJ6IqghV*pO6C$xtOZ;;Ux;GMLW~+9T;dZI_D&T5YJ`A|R~gnBq^` z=jx*)no%GDCmzx-9{xH5X1ElrNfpOJlWTlvtzuug4|hxPOi&x5m)F8IR+WA4nDUfO z`Pp5=Y`AyUCiYR?v)(L%6fhRcRD)Tr1?zg|>w;0`{cM(+Ly?@Qi&skOrAPhYt$Rcz zPMaLLwct{E1f(oAO>gpw!3E5;a+h^`2_mf`Qq^GE1lv_HU*pjA9zJ~dT|+A8xtHUd0-|ln zS3t|kQz1c0On$WT;SkegkY{P=-ux-U1Y=B3i|8hpCeur>y13t>F2DhMz)J*Oq)g+tmi4EGh24kNH#omV*zhHbPN zR}}h-lb{y{YYIpyC9P7%(RbZ7a}66)omwX3lRr^$_KV6Jpi*Y5T*&Wqv^QHp5pnp} zHnm7b*0sfL=9X4qcAaLdAX-WhHPVCq6Lwz-Zeo-A8{_DnjasM5>tzi>#KW-?>fVb| zPF@upjRAyvPOzr|4R&0Gv^p-OM~Zlp)BJj-WH!|~+|>N&cU&SqvNmol`>zpK^VU}xX`Jo9C%hi* z;8{d58iQiW1<@*D94~qN_27EZ{}bDe*!%qwWpg4t_Q}vkyl#?>pfwfV+FI7?v1^;X zd}J;hMmcrMQEKhEJ!y^&`S^^OmHDYyD%vv9Wq{*1IY z_HP}o7yo-Sp+;DxTD%e{ZweW<_HgqHGJTOaiwqYX+3TjpBmGktJ}xC#BBS`)gp)B& zrpqCudu_ej(Ak6oBBB?Iu6GQy(p2D+NU%-D6vwUDrrC@{B<{_C*#KXqfbCU90qf#9 zL0?!SgjIH*LUgi^p3&Ov{SuL1626UcEN0sL8D7!{8hj8@Zm6gpO$oR=`2)3L$UsVx z$bimIw8R>4E-PF4xvp)!f4WPV^{Y+V1!_3!|M)NOJVTOe%myfgi=hi~&TyJ($6 z*!F+|_bg!+i4P~|w+yeKaUKQ92o*tg47VZdA$IavL%f0^SrxT3kr(%zrh`(b-dPv) zuvv0>f*pe6XPEBqMR1wsoTVS`vKT7$hK2u;I-o-X1hnICQA?rKdPDG7-o62*V}omF zG*jlEn`GGJPeyFJZO!_7xsfUvE47FG{8Vo9NBmKWTf}jsP4WDD5^5)~V3e^2+OT4l zWWe4!o2E;SdQ6EpK-n5f_srX;Ve8GtI`Z(Zt9_73=Q#v_yJV{8;o3Fa3HZOcTz-6~ zfRv1Z?!xcX7;c6(WeSbQL`7T#KwpwJ-m_YTuF<7=Uc-Q6=?>HD%nDm;7f^Rp#MOkv zlSNi{o``Tizx(A-P#Y)CXDg)XInuRS3*+VVPmgt|^S4*U0!NjqP=2R%-r^`yeTYae zQ49FEbXF(go=Vqt_OovH_I4@Uc*D9A;)v6hdQX}r?KiN&j9m}p`&lynvoIb##>Bm} z3Es})nifIQHgRf9)s>0slu$;O22{(qly|yp9MI!FYemfOde+OZug` z`?rkbIeLY{&I~Xi?5#NOA+heAO^M7?8sy$K``G63T#nuuW0DZRAo1K|h#B^c! zf+@;$cE?xHqOp&_n;D8zOzfIiLJzn7^1V{#(UMH01cvPSSIA6}qu_tieV^eR=6e23 zVh&`lsrk=!g=(w=I!G@xf2@Wb=lK8NKy z)u_bznZ@Lr_)oV%ptjcGe=NG3YiIBZZstmNuxDh!hFVaZ1~pO3wkM<$Mce)| zGxUBfo-x*(Av}|WL~<44z!|=C&@{7CRe=>d$WgIMFeeE9d4^jK%G9gFw_WgAj0`gm zE|fb2ia(;dl(N>Qb7CB)QPDp^z}5LOB+$SA{Yhn}CL-kJ_VR!lqf1hC@%RXcb6WJ( zH6X1Th!M7$UzQpyJHJt`6N<>dkRm7ww|PuWsDvp$KaabZXr-##J+y6tvtlbe`4fBm zLO7vBtCQA5pw0mvF0bNmsRujTMD|4weVrjzhxj1s#}br=)v)}(JYRUGZZ|tS9a4u7 z4+?H6##2M#$3R9Qvu#hMg{l^nWIrtibYbt-Z_N`G`7~#o$n9VMkFT{;iEcTqM+&6y zY@DZ@%R)xET(5Iu82s4JA(#MwH262Wf7=JQC&gZt3fCs`!PBI;d(V~jy%B!H!AlOV zG_&On8@Z>CmMVft=Il}8BA+ShYuu3IvRT31t;rLESok2;nwLooUg@b%Z&Km-$-3=a z=_+HoT^Z2i*7&7QMPW1DK=;n^9W)G8BA)m$C2!Y`bW($DK+KKsQi(vW9?NxSB$sPa zQUq|4A8R-KbuI(5d|P4TW7YGLt*#)U7hiuMdstMOQ7Af_YJaHgz_* zJdKMg_NOwy^zX|50yANPxkb6(*a9k)@7hQT0;Hn8v{+UxbB8OVBMh$^WKjC`h4!&(O8d>pft=9UQeiL$nG2mTFH!iYxWh{0ZQ2OfP|-cQa4vEbT`n8#A-2rM-vbHPZ@-GG(78Bt(6!i5gt!* zBHcyhNpo+V1z<4=>4t01K=FJkuMEgo(n)x3>hU{vF<&sixBO72;y_-6<2OPr-9} zD$2Opyc8n_c&m|oF4m5@_E!r_t*~Nxy-@FNUW<}|h|-ZKkXZ8?HMto#fh34Q8Ag7d z^T3v+oB)Pu4{EqPcE$|<7X~q1{Wi%IwpVeGUKvYn{@F1R`NS@5gKP>$#H31zQ}T8N z)p#{nhawxic^1OPV1evF`!EfM^fvlCKSh+9pkN>00P`A|AqjhqtA9l{jHDy3|A~XoZLVyHv_jKn z`dY#DqL?B3V>rr!SN`+8gaIu|W<4(LuI;jY^jPA^(S|=(={FQHTD!*aC_SA1@j_f3 zvvxSkV^V`0seTjvRPsl_I`cX&My?W&$IHJ$lTfaKVjJBT%w+;rjwNNRmz=wUBYvY3 zGJj?ii2qf|1RZ;$@F=2Ds5_u=**WQv$onmrSGHsdBM1Z`j!i5 z0M1MykHJ^tvL%snG#mv2iIWpz%b_~`!bXS^cFn+>i>6RV(}x3o5{=}eV1Jhsle&Z8 z*FoCp{Npa~9D86X^eV^BlT<8QKScpwae;R?Sas4}XN3`k$!#61X-5OR)kB7H8JcHP zz$}er*9oHj58gQ3?7oxWp9|<4X`l{q8QJgV%?ktg{|jJ(W-DDs!8gOjw()!;Ee=&8 z4Ol?o-;RQz%yVebA^~I(JzioL69sadCs8-J8lUyL)vn2=sk%c@+Hf{29hrZQS9Emj zl)xbO(z?s~&)c8v+Te6$E?NA)%<5y@)=*un`NSKo5>I|1ewu4P7BM&y*|@vlaTxUc zPbAiT9>e_Dm6Y~5T`voQ=SAzu(-s>Xb0-Ue!B1nu_E?JwJad{ZQnqn(zoA(?a|NF< zA@>x*gMR{3AA}u0oIF)hkA^f;St=;iER|@(8#1A<23ganhEyjViSehK7AjrsA#$sp zwNW>2#16g^a0Zr`U74%4!3VLlw%0GCTfe7#QqKBgrYbrae5YYoBAN2T;OT4$R=+)B zuGUh~Ty7@$G;%PWML)&2U+=*#PKHbMNnu?P>}v)0=~(f8#BkgDKV0=ZC$0N}-EG;C z6os;$TfyU&%wjwpK)c7Y%ywYB>3Z$5Fq$`L=9%py-59fb2%7qf>Vp>H0e zUN24>!+hF8Sw%Q2rJig%#!Gdc&B_cjYlYBA9j6+2q=xZFU3~PrBJg09xn}b@1}B{S zsNi)n4F5n!XQFls`>v1GtpldPBu(N`hJIK!O(D6v=KD3PdJ>(9yPsx}XSee1?s<57 zGAZX~36GkDYM43V`cR=hk1UTQzQ*YZ?p9-Y;uV{RXEQrN9|Jm%CaLOATm)@!ZF*Nr zjQf2gzA+6HzF4#KuBL4Wb`i_lJs$tS2)c8Z%3P1dN*x50KCF8<==8|a_Lmz|pptVY z^t?^u+ufnuDncW!Jv3i|@RU!yA^iGYt<3GoybG}er*OWrX+HnUOd_3EVPy1R%f@2R z76q;tZy=tJnd{&C)PYL-#}hjXqh=i`y;8uwA0SB(vx3zX1HMM>`Qdw&cxK1sMdWBv z#lVHU;Qe6`Mk(1?&as}ri~At+20Z>MU)XQ8!Snpw5X$fbX&!tn`*eK&aT}o#g}oBo z8fq)|j#`_#RIZjtBl8aH2cOzkJzi31$4M@On71g4&}VUcyjAC68Fj&dKD0ev-5s@M zZdW-IZy}C!Im)8n#kQd_)VUfB0r$Plfx+=}EDZ!(J|uySFD4K$`!si^;}c z44EH;jCCKuYQK1CSY1`giI$C!rIU4bSexDcDiVweF8W-7A{^?NW6vk0{02zQkXE_Enngn1J`#%I*o#!XZ$)04SQ zAWgx1L1RN@i*|`19%2A$qXYj>E2thO-CRO%PNw|jdAf18-_5RVh=Q*ou5pVqB_KVG z+=_mYQWN}Anx4R!uJGji#H&CkPF%(TN(Hoj^BnG(MJhoR20I`#w#dUXu-nUT77D_< zPa`Mau$P5A(ag`wI^*`BWNrU^OU|IMQL3h#U4v3*`;@I0|3rkj-QOZKc7RbrJl3Db z)tfh2Bmq|lb4xA^>xU?0m7f(1hBi&#wW}wPY94f4DD8h>^QBxhu*m*r zVkar_gJHP>IHtdt2e{0PyX3lv|B^n3kq)!;Du+PXC?$M(0!NpU?VI1`C+k*98X9M^S!Px#ipcspZ zY^z_Z7uh|D#p)HpLQS@>@dnq1AHr=n?ZzR?4A`{a4u^VtODGEAadJ#J_9fOWdl?cE zG+Ng_Ee&LPY*_8@5ou0^VsxqZagu-qmGcvYAti0NCw5+6QMb=Nf zU70xxe*I_xLhzY zQM;Sd^0l0U__vr8WY+T|b3qxxh>G-4HKuS(OmRa9m+%wef;sc8`jh^bH5xQHg0Y#N!UL$? zbM%H06xJ1KKt7Y=^UC*1i9=hQ*->p;O3A_Qc{AXhCh0bnN`!zZ;s!IU!?SA{K5OcD ze}+nodwA&jEM^qMD~_t&>)=$Ed2rD~bHjM~)%X9=94~;3955n#f>vf`gqL{uHl-BO zsD&xC+&M2G7h*X*F$CEnr$B5F2u^i%9%-?@ePpw;-nhDJHPX*cC6LcSfu<4m!^#YG zoBdmD(k*ZoJ4Ak7TBdN$dZ5%9?=xY`L)4+1t*`oneT+|?bs(sH91AlyG&Ll=aQA_5 z3|i~}qQ~rFO&_W_{i`6@NIuLqm|wSVdssBQEenUEHHv`^%pWpt6fOP+du6d_Ga<}4EQbI-x$UhEETddwbdLMLxmmtL zky^}1H|EzKyaQH-rUPbvCDmrQa0ff4vQbW=oV{XFMdwSrCIh;Bvsgh0SyIOn77nLt z{kiPo3y-EmXQS05^=Ch?Go8jtb#`o>W}KZ6Q>&`+_vIH_bK)w26X4gx$t!gX%f z13vA$!1oRif@KtD)%_+Y+%R|79_92?3us}>!4A+tkw~$;^ELe7Hp)5i*X#+WKMt4B zvofr1PR+Lz1xq57hWIlB#;~aGNrP~p9vQZW{l=b?(i*Za!G zZnEVK$*)qe;835K$Q;!z0Hl<>2-L&E?rB4EOeeW-p(iyE_xz}H?RGV9$p9N=`%b~EBSp_j|iThNRt2k)=AKtUNGt`SkMAJPlfk))+tnk zZI>t<(&v-Q#gd*S-QZtcth@|_gEcA1i3$s0H#UmmfVy%BYY$>Li9DK~rK_KpbcH?5 zZ&$^hY&I@UmAu~WCm3@G*nGuRx%TU>*id63Kic}LYKE`wAI~nxYrDEhD$0vP{b75* z?+6%xGiARU*0&tH5P*`uZjlt5rY(ddqU|do;BpUWy{I}l&%xeQUu(c@1tRMpVQ`-z zOMrPy#nae>WoC1e^97cbMNfMIu1HsF1%6sBadrtAf6f=l2J&rd>%z};WKl~P zskfG&J+JjX3OStR$x?&d(BJw`K>SF2BzRU4E_wRza^dK2J*gm3onL){P>2MmKMZMe zCWN3kXQXF~IaeU%Q!pYO1Ih8;8Z=97tWKpQV_538?eXi5)sw3+vJPu4htjx%GkX=cZ|G>lDmK1$JrBKgBr_ue?){qWGK{p`sX`k#p6 z0|G$)IoNZy?bC(55Lk~&PMqz^)tA{VviUbnR#z#-j?8TqpcKpM*n~W5qY%AWOQ{_!Y7PP9^Bl`gd*^YO@z5F=}Qc| zC=a65c40C>49ONw`Mq}<3tc+BCg90k9?5aB+!iGpyv8FXarZk zJZD_aT+(Q{fo&{Mid*DPyJ=TK0-9bs1Fr%!jchFF{wQ-Ty>E9R!(}1%Y=kkqQ+#7D zw(k!Wrj&%ukX~hWxO246e*y`?WC#wz3&i(T&+7fiZqRxSkNZaKpkp=YoFavR24BpY0_P_vU=q|qGM zBMJ_0mF&H)vcB(;EspLORzrueFE?2*^M@g3nWWK+qfiN{;gqX=#yyd@5*to=Y$JUK zSf$ye=;fZ0k5H@$5cv0Zd7w%xO0wTq37E&2aJ}HWkPgCDbWek=I*P7VnMl3poqPjtzRIgBCq80%ZE9>p_t zs7egL{Pf#sQILJWn1mt%<2|8aZ6GP#xG>hpp?d4wnJ{4E4>hf$YQ+T1!pa~)o0hSp zM~KhExJevw87B0wE0SMUf@Zw|CdFHt3A~9!$wEd>ar$F+O*t>$Pz2If*DGt;J85ns z-$NN5LmhjDtL)7r zBfk+v0?Q?N2X_%oF5=va=VJ%Sr{?p!{wlQ0uO07rVra&&E*ak3_X-B0 zRD+pg@}K@@x**fhp>;_CDW3B5KJsqAij``A(E3;fxG@)lQT%aP8Zer)|*%pju7>98DA2 z&-i3%Hbd*aRM2@aW+Q56kXS)RdtwWJOi35#H2)BNDK zSSSldgnycQ{C)u~QRaA|S32|1F2;@;FaN4nz(z>RwerCG+^@1DYK5^K$I49f<*wXJ zrUUV1+T+#nd<_jZ;(XC<&gOmjT~M<-JWMHpaf^FG^2IHRPv{)dG-*Lt2G>i5jZz#v zN`zCZ9g}xHgw76ya}-NjF;+v1of($WE!HaqSKJd8b&V(v3X-PPI=n-?bU%<0VS4)Q ze?Zn98%+_Xrmp<5nSc407l9q?BNfc)dAF&`CZ633VN63~mQ&YGYI=DqB$lURc!car zufX8L4%C`9XOQm@ZFlZf;sezW4se%XtDQHoHdurkW^lOduiItQtOoY$zcuR@AJohF zIGSvZm#3d9ns0H?r{R#2eRk{yTW9jpA`BbWw0J7Q95e3}_;S}#r_3iE$hSRd<`>Md zg^OrQJKJBGFSF+_3wvY612{>b{vc!Vsb5}$v}v)$GgarR`;A8Hm^l7}jDqN>u;#*U5m$+O`f(Q z&r6yo=#WwomRj6$@Pofo0;`^V-T)O~#NE~YG&44R{GO440*ngSpe-dh<~$wl#gI$a z@HBT?(93YlFevOtf$y9)TAp?GeS;`c(s4eF{b1!u6fZU7&j;{1+tahTTeE=tte(B= zZ+W40Fyh{Scirn9uwCMhI9q#!by263l#9TIW@Qp{QEBREHLH zK?I-njEkJsGq#LG-mfnuo!S{UELG`L$Xl9mK1x)>+X!0(Rw(e|Zm{bX{-~z<_qJK@ z3^vpGWH9yt-YQ&=Tt-iNQO>}I%>U}uG zKsB_Sk)}>X6^*I04{sIG4>X1p5~!rbO7jM^76z5pHeYxb=8-fLKznpS?qeH+%(aqT z9+O@6BpqoFGpGy|y>C;nWsjN|6`F-EHtv^`;F09DnAi3_E(vpu-+zjUJg8wI8MR!X za%_IL=^5VYsN?f~=xWt3B zChv;%;&y)RZiqaVaEW%69-N;KOMr<4)4;6MPz@$qK(lmX>##VdoxTmGY0K@Ap{{89 zKFbADyovhjuWI|32Y0k<_?I~a#AmlRun==N&WJEc%U_4TONJ3yW8KF0m_K*WZ;qg0v3_lk*gyVi|$A{xrms#n&*JFrj#q zRS5*uzlx>9vKv77*HV~;WQ@8K&AItAgoGtK$%C(2^cqiPpg=8Ri_ks4dQ&YH+yW@; z@t&_4CflE0al~~1gVdW*!BePLeFe@Qua(#P{u#L=rXov;;3pA>W$-!(!@IVlP-0nsh9)w|Noqp2iz`j4_SxYgkzv8^u@52pTD`On2;4K_k7!1%bbg6(Z+js}yZ;UDC8U zBbKl<(2(gK4BB+CmJJ`Im3#}mK+E8VvqE`9PmuiZw0Xyu4vCKv&Hju1h$HaH4{Hx} zO}0R_J2RsZY+5*4t@KoxBW9DO{d3DcR)EHWkEbZ{-77#@d_kqR5o{Fg8|zSPQHv5+ zFQhWca5ruZN2)z{9mVR{|nB@O?*#8 zn9)Tsyczu+c}d5`m{GUQQEpSLtHuhV>!zZ4#Vr#zj5aX`f~0@E>%g$QkqFr2DTa#N zyaY1|ebw-{seBHBZkFV7d)k}knc&U#)esqlqc?pRd5;i6>~QGtM^fIZFtX-}Pct3T zC$VeuqJEq?^+YZcx2WVaCzkR<_VNLR5k+nw5Vv1%s6kAUcpn63%feq4Dl>TPc4_(3%)_lWnuAG5#f&XE!=tf=eg` z)1BfHaavES-{^ic0Bis!O?}&;;9%w|L!!%!7A*_SR?CZ!sBOWt$(^xj$tQcA2iqvP zp2xNp!x(+QdoHij&m(DdmeFW7y>Wlxa#mD_86P)cS&*{n_eqJSsV8xXzpY8a{e#Nm0pr5QlduE!xZ>5XK58Zv{khv*9jZo0uZ!HuDPhK_B?p0$?!i=j}w>uEVr z{ftTJyb{Sv8gjV@g2DMBrQ=pA~k0T>|=au2sRch!S< z03a!o_`O?`g-R)auP)8!w-V@ZOqtA(#RjEG#7=)xdhgM(tC_$-#rW`%79b~*u4yjL zXQQAhwZ8PUz3uENZx$;fdk&XLa+^XS;kqUvOI*T2FhpVk^AOf*N++I8rln#(gq6|T zPU$gyHy^Mw@cQ*DPi*hLcfa5GC^j1AFBU-Z0Md;LBAv1@R-=gl$>|s1mZhm7Hv)!r z=;3AIlIJI%OBpFUS$KK&Isz+B5|qg#A-sOu%p?Kd2WV6q182%73tQ32O)Pw^L)PlywP#M``>TZk9(FkV!YgnG^elFaWY zjb}HXQO%!_I>P${NxgHWR+u0Q6~)=ReUDJ`xhcbA`DV4J2)YjzAezAm&})M9dnR|n zjmkTpZbcg+)0V=kVZtPG>x7M9Z}bjAE7FxKC1 z;b%BA5Pjy#Xl~gDiSjJXfUMkWn~fg#_pxIDP~eFN|At~Ejaob!<7IdSEqiF^`dF*y z4U<=p4}CI%*-2)>Yv4Rd2t=vu{NMz5eoc{|^2tw`1qX$Ham- zHkt|F+)b|;EcNDa<-B$8T2O1ai|R#~m>xa9(LNa7(FyE1ywf8v6UKv z(&TS!>mh73o7$^jc5Jf{Y%~-qiMY!a6xg9@EE^Ix@|%ffA-jWK;?08WNSh%i7cSw6BA1{iC9VH6vs@6`GaLm05yD|KHvF@o zp2`jE_~4S0y=$dNz6Nw6NW#z`Im8DOlUfa6nD78XnN^SG0L9ii#;{Frwn)S;f)ib4E}zw^~9 zCJg@oR~9q!jg91$CyZkCr)y>+aE(V7=lfXrm{4I76J(QtDQeDc@m=q22LLOrU`^Y5 z$`vefB-^1#KfeFEA!XKR(pylGgAV zTe~fIE(*&4XzTZum}-WjDIqwQhK1DgBX#0NcjnVDhqt)8j!^VkQSRf+!ikO7$NoE9 zpUSUbl1Pt0-OtfV*>)3h6?#>8H+x~ngC2lc-yVpkM=c79VKPCo#N3zLxINU$t1o|ojA9x3$Vgl9LNR1A*Y)>)oNqRlf@FgL|$N^VZJ zrC(lLd3e#L;XO%|;x_t3_rsZ#c$*m?b7c9WKK5g2yuleED4O*PEsQ#(w?ff+@PJv@ zg4OW0@S(E0Fz(Rsg5PxLqkCzVtHMmr7oW668P0>QQ;? zC=Z@RrlsT4-gVx+i7$jUIvJGj&AdLsKXQicP~t6N?-xY|9;)=D-uQ!`{DGOKMHt6g zL%|CJ@w)}a*MxT@iFE5{yJD^P6FxWm4s8&_#K+5eXz5N{MW;PH8Rx^96KK%*0{7g4 zy{B>Jqg%ckyc5{6>gOga=L*%21|TEAuRzD{49)szd1uzLWzl$wcBPsSQx{W!l#xwV zBoHYlVbBq=Vr<*~*??ekLRE?YU0l47>z6SV2XAr$SMd8;%+no%r%sAs8CZflG(`Chnn zN5Sh@zd{OF1qeOlV2oB~{%E?RS6Ni-qzH${A7M%ie7#YRkngO&^(Hyk;y7^&otpt| zx;RJlPhtN|n#m4{F52UQWybi(9>i~P8*=+vUMeD8QA;*SBEkLGUU7S@XE^fOi5D$n zyX-%@eF!Js55dbnLj2E~`44MgimShFp8vk=i>Kmha{};LyODilupAmIh@(l6EpL|W zWB^N2CA+xVq*N+ec4E%TTEvF8y79K(GptZ`9l_{kR;p(3u;(F#u@E&nbe<{0V2^Pk zmg~Yb(8*Xn@BLr$LjE20cssxII+=!zn`CxAVSQ!Hlr1p7TfFvSpD@nWu zUT0;C{a+Hse~#lmpk06Pv7v`7=rR=3L>$coDKZ+Wv|lx;#TShKcTInJcw!^ax{;wDnhq&B#Z;)K2-LOH%zlYw% znEDu~b&|5l&@dFVg*5PClxzRj1JQd)r(rtm-mm)TkEAvu3iNCZp)t0r$mIqh9C9G$ z8Yc9@(C*NPE)Aof-w72_VDn|eqXA65-8N-M_%2>57Up@D6tfA_v^$GY(A#)bxSt-_ zQz~yGfC4W6*1$(b`Y}IBLL9?+HUVS3Say6FO>CZo#y(V-pb~uSTMr&67d*JAi&=P|R*QbhD_&06Jtb^uZ$2F06+)mDSHXt&qU*pP1?Db+qP0 zas$2qk)JbPSM|VrX3ESWbX-UnQHh4z%9lf8p2I~$DNl?#5;GWDkQ$w=4Gu^iFjaFUMjS`MU--2V27y<2~;l?WXV`_e|}fGe6IJRiHkQ|P*bcC10#K2Nn)It22ENiV^v;jAY?cILl*0n!Q!8BVg)pfb`K^YE zH}E1Fl-oHU#?|n=Rl$AR={pgF{t=z>ZzTcPw0OsMJ5$KP^&JxxSIs#OCKM%GkUTNb zV=+K>v_LJLa$fT?B%11w1L;fn`WHj!UZ%8q=HJPl^5m9;=Aj!0*Wi?Os%zrLJ%_t5qWXo}<~i`Sf21#Xp%0N-w1PtFTRU93t%>no!YrH;ZI2Kig%H zH7)BMlSDQcG;~PKliuL{aILDQ^D@zQE2^iC!(2ugp7GI~wGN&t=+2whSb0I@!8C3- z#G$RSfNyuM?0IgTMC-eRm;QP}y_whDz95Bq9aKNUC*$EwF zCyFqWnn$5L$;C~kL;EQ$a}*Xm)BnE~pc9Tx2uC>JLXK7(-RhtcX#&<9f7lba`?fZD z_zk78Iq2?itV8XcC{f2aAj-*AoklbD{wFq;C!|@Q69NYDvM{{#RpyGL zMfD3BN+Upg?1(|>|K+6@ZOXgq5fno@zfiO1{cuOq(7?5M(&BzFOzecqPd&%Q8{IwM z9!FKbd0_;PuM1gNV!`u+#i2O@a&Cy72!n!}yagCGF^JPftZe>(U!Q=+3vHu|_ud7u z{ZLD(%-9xU)O6g09QnB92FI2QkRcF8`#VW}0ehrqhCKei3B+g%hPFH~d2Sim{DvROxx$X8t-;a1`N zLLEF}&@|i∾s3F=u0Zr2?yRFAI{inx)nTaWYh0aP29XYf%9>u-%7dv#|lUcnGSh z@3l$(V0#2>51YNDKkv}L^>u6qu)#2i44q8Xn zx+Ar8B!ctnZ(I=cHt-l&5kZ0^cLu);BJRQo^#U@UWZiRshlhr(@NaWJN%g>3ySy-) zDq4k@7@U-GCq3{~xBpa@2lYF+HN{YS{xsnv^^?9_EVywqtvY`aMpjX^^|N5d8BZt& zu!-rXonUD-vw=pUp6tz{3`qF@* zgsGcE^)gBux~7fs=WhBS^L=C8ci5dn!K(v5h1T_47 zr&-QJE3N&vr%l~}M5@Ala9%{Jp{bNZfg zpv?Cw7iY?O*UD)y1CtL8T8}e;362K|ewB559myZ89ZvqZ=eU9!6W;&c>tE)E1lTDE zH2GI3Nj(v$dPwwUj>NqO8Y_d8I1U-(Fd0JfY?yoR%_`gZoSf+#gy!$qser3{M(9e< zxfyic%fFSbL-g@Bj#&u<94ZqRn*QXO@Ody;-|T+jGMg>L`aFYasw}LC0!}?Gfc!Dy zFa36z8;_QAWV{-cy;@f1PxM%E!9W$gDfaoA=PcXF)4^!F^$x&Sh-3T}R^DmLt z-6mcgya&$EBZ1UoT5DE5msM`S#AqjRB=&OeH2zZ|w zgI?CXj24h=pkbd#irUx#d#0S_*@GDeag(*w!L$br275kZR>~mZ&I#=HAU$6LN-!6M z`9_B#T#lz5TeqNSOqsaiN%&Abj_1vs(q8(B7B>ujd4m(oc^e5Y?NAW+NTe6;-3fpm zv6mJzz+iu33Z$4$oKv?Lf|_TG0KZWDGp|wr(_YE;8ydh`?}Z7?v;QP5XfG0QdAT$x zPP2bxB!*fA40g|X7z4-o2v?{l;$dYW5eKn1wjymLxU!$9zyy#6CuJQ^=x0hz;eMDJ zPPE4J+o90-SRb3#a7Pq)S|e8!RadI3u+c(2HK_Ca<`{CqSK|f*bue#n^H*)1#V;UER6Mu^P*&hCu|A z!tU-Lom?&E7PPcdU`?2jZDdjoj*-N?WoW4k#e2iASi9|nAi^`Cx+*v^dcbW;K%qpb zizxGdk(9^TE5X7L-axvE`e!u8B8@T?y&IoVa%KVtA@z?7@8f`tGdAd;7UCWf&d;qhKDPX%7!|5r`y2x-S4h@UYaY31sT*xmoPzbQ)9jjBZaFHCZ3(vQY`S70ST~- zqD&_w5}ivQo61TU>{)fz*wYT@=BVe8`^10{?n; z_ze%NXEF2>;8I5bo>p_5mDytE^}tf;RK)}ZRj!CuqxB4UL^~A6GM3EZjhBw07?Rp|^6sD-TxuK0Zxs{&#V{l^deWquGgSY{Q`{VM9y$F; z>Wlb~=M%uh8#OF;a@awlgVxCLjX_jcr3OxAeUa!D>9V#*K0>^iR$>i)_ zZ9fQTCI6N1?t#|LB_B}YW>}c&DO-u4T+X`D_r|pB9%4pQgU2s$$9ffF=H=v_*CBZ9xF>#CB(hV! z%nynZi2Zob)S|J}kPwIeLH~{Y1eZjd{dXf1HH?r5{-i%Tk9Y>lQf89SXwM6J3|=PJ zl(1f)1)iS-#ux;^KUxo*t?Y)cl;Sex7ly?Lfy(`Mnh6GRW^Bj|S$)~4A;DC-hOV!M zGECd%l3um?Uk;3lAT+*jX)sJ89Cj!xPMHjvW@*t{db($8i(!+vJ~gnP|K+slPUv#s2u&-0(Gb&PkwvCVDT#F8 zF2dnCujk2OSa};I5-dA0DluTuW3hXoJ$-InLfFZUr{5DpwMsdi;Oi}3F^Ua-mS2ba zGRCw`khu2SGZmEGK)ALCf_1GyFbz8}=_n@FdJ3XMOb*$)C~_RB8yl*8^sGGpk#~^e zNsFEPukLNiu{qgA>2JQl<_M+<%6?}|dol0Yb5$x94!Ep%T^t+aui7a>a`{M;q`g0O zRtE+ENw>SOiM~Zqln@Z%-;Cj4kl9Rg;Nb~15D0Gzk>raM+NH){&y=l-LKq_{%-TC) zcz&Y0`|m7x%N6KZ`zqqyk4V^;QLJ;xC14Q@cnAA95B+#C(KgV3;C#f&L-niSJT<)e zWUW+D6w{54RzO&14B)m`H|%DsJhCaHaQIUiD}$ZdUp< zNL@(;{`|a2lv9uk0shEgSPWX-($1^)B6MX4GtD0yDb7^NY0hq(!aStWXVhCj6tDo; z8wcb{am3cZc{ zzS{BJ0k(_W;P?b5Di{U}NfW6G@&k-FXNA2vOUYpiC>+qpB#D&<5o$7?_p}VT-(eJx zwgA=ufR&@r;~kVM_>zIpON57VDw1lK&$W!^&S`BhF`3bTKy>!FI~lx+{tdL95~ z{qch1L0Sjo6yR>zd``ofc7`FgtT6Cv-Z9sIHdd?#Uo`zbL=MlIc=5Tj!3WR(*-rB% zfw8RZ6I>L(!^G{=X97K5%~a8Nje)8P3GP_{Q^TSs2Hpy2;y?V1Qm4%x3*HG%``2c#u(A?PZw~-_?&xi&7)b^KUe+Sn7Xs z+z&+1*q-tD#h95-U~BVo>z7L*xSJZUFWx#;K%Dv13$6^#ur5yPV4t|4Nd zRQ~yDH!ENc!KSOY#_nKD*di$~Gb8qd6oQ*uxRxM`^0{f^5`;F>HQ@oYGYnzxX^%K$ zI&DK3bL#@693a_hjF`m23StZP!-Nw9a3D5Yc67?S;1|&`2Gs!ELUq|?Gs51=A^tkR5%h`XSc0d@vG$UTOi#`XKCbsaR)20jhTM)&$e+wq=y zsPJZlx+?|mR#a%r)kn4U0GH{Jh!uyzVOWOkk5ZcPQY7IjWbz2XM;{SG_&VuEt$l>- zW@`;jvSUcP1=IWbFB==k!dYjbW4^m)1I!Y0w5Tf&oaKHR4#ctC@++>))FNlrsD}-A zR0u=3IZxB^fwY5AMR1C2% zj7a#LGi0={a3-srt64hO)tM0rc}n86>%P1#SR;0!{3$^U5^OqZ7jYsKwYBY^!m0;E%GY&x*+?T&q!3C5|oO_jDbxCl1dyGb#M zzPP_0aif4r5Ybp%?+{`+w;8M@SU}ZAjLOPuP6x2Ls0s8qppY zD#5OGT1e^*Z>rD<-3lQ${qOEa@s19hjEhDqx~J`5z79wmW6;E4$y^sEy*kg31)gHx z8XuAgQQJlhlBQ?KD}WTVAG?PcEA56awIEH1L-2}gp{J)O5KA)vvDF4@4$6vHZ(NbR zVR{rY(T9I&;_s8sSA3|r^P*oQ)uh<8QB{FpVuqmX%IQU;M)$2|K6(t0PCuDBB|ZPc zr^*&T;q!7(&_+s~Jolp&QqDQ+EvVh(b<`-G^QR@A%Sr<_$gv1gAFar@!~U9WI0L)f z;|k_64Bzp5Qzu(7%>6_gO6 zD~YPjo7w@>18xeo2;s$Me4hwarpCGY77uM7^^S$!I-Iq?eiWpHEQF2oxSO{)}>S{6OEY1RtmOz&kH^HCylF_}fc;Wq)JitJz zSF`YVSt&|3J{mcB1y3(m2{9s=P62W(pJ+?iYASSEz~dGl`ZFs<1y^iIsn7aJ{YSBl z`Cl89ufF2J^9?X4WGx`JmejMMohG1$@_!cPiw%zvzVRed{EN0! zDv@Ziy&4veEmZtbXq`k^EvCWbP{*lXyWFY0XOljX#=D8408F^37E9enEL4wckJQwp z59vN_L9lE;(*#PcA=srJ1vYae-}Q+Y+3aW}{*NMC9PJhYP^p2;Trt5qMb5`;Ohkhd zN8sT`sTO_M{i^%&+UqLe$J#MFvA}90L~}rk&#syvhnMf*gCy2rDvRgCH01j2_pDNA zqbt<2SjZ(u>u+eHBulp6XHyIdN*u{LMU1-6Oxg7iIzIz0t;+=&yVxp^xQM6+vf{A~ zhX!p#VDtDA{IVHyRv&Ey#^5EtA8F;((H5lAw3`bUFZ|p$ULj6KR;!+B0Qp6LPJWO| zwGhv_3DbLSXQr^6bW|`fxb}qKf_p59m?9P;7kM6ow)4M1wCd2V9*4xYM<5T zyHO(fnQMVO?VhbmuJ0qreXmrDCwb==UDd@8k#%+kX%s%0=6G{>$AUTeF=S}uhY!?H7!+c@LRGv^Y^QV|P}6&IrA%bRz|D$!}}OAvZt@kO98t-3Z1gx|aso zY-dv>m@I1ELD_o)cAPwMvfhyZ8;l~dVYhWzu9axTNn75af)+}z-~l|K#~=~Rl;yYD zFT=843Ua`&HQRQ$>L(`H$q2;^NPHa(;iotqq0 z#LK$(572rMtFa@WrG2C$IxMVCrlAkfHp{RHh}FO_L&Z*Bu~d(p$O`9sP%T#{$qGA& zRql+vwwcw46g|>_<8i`q0Tt4}v5Q&!ndfd%>e3ESSJ$!E_U*mP2B`H#0CByLci!SK zizOeGIHR`OC12rNyUHQaW^b-hix0qqWg481?9~$y%g^WUNr+-S#@5e<2K^(z#aJ7; z;1d^z8n|c$ple9}#~bel-9y({s_G2h#*^I!FJNlw^5!j}as`!eg}7Tfn*sD^?AS26 zCG7N1rM@^V&?)P?etQ1!>0DxuF4Jz&dd+k+^FhDcPUX7EFNEv47TO&CGvXj+90*Xx z6c0&X3A5=zj>tlbvr)lO^0qbW?`YHcZ&SL(XldGZL>t8mtr#0ajs5|Lz#C)KfR|6q zXivC&YL@blXwTt$Wnw0_%=X4@T`Cb|Fw^E|cdB3wFKQ(>Xb|L~nKvWqW89Zn_u?>9 z$zTncIt=M-am+Q2s9DEY+#%KjuV*+3hI43caT#F8kZ2yHV^hTlHSZ(Sp+LU{1I#24 z9>!V_T8zGf`HX{rml18c*D(&3|AkLl#Xo{Z-^7#Qn_06`D%}m+Q)Pkowc=CF264i- zE!F2labfD`!_JT-p=?o6i$WBl9E#gIb-y#C221mynK8hB!_~6-D=`>$mSFd7IdtGK z+Wy07x?mYzg;&2_?S(-taNTkEa|b8}J2fev2HEh5btLv6GxUD8lq8Ih(s=_A$ti24gKwd3K@SR-ZrR=vGX1Sk<9HrK%{))^paq7O9yU~0{F^aSMg)s(6&eJwaLoEB2V z^(^ayj)Xt#{ZmuG(TGJP)_x9WF91LBiUFvMPNCeQ3W)hFxK0|uvWdKTzHI$NvTio$ zH$3`(zn!kCq*eHDJNDN0VP@RPNKJ}35{SMahmXxKXD{e1_xL*jeKJ-%uTiiT6$K_f zWt64nELUfzeb_PrO?K#2?WOt(KkVXoBmkCHlsidPk3bH%@i<>A)%UR=(~a0kbK$tw z0urukO7|8r%XK!#C(FNq<6t*f_S<6|X+HVE@MYyzYIvt;$%wnh6ZNvRA!MJ7DP8^_ z6b&~VszCh57L@>ux)`x^m!GRn0Defov)D5z-a(EEMr=Xv<}e0FA9qw$rZ1<4`*AQN zrnAKzL^IwkoEhz>E^y)~ZDI1>kEKKSlC$v^T|66}&^~TN?(6fn5x@LP2u=iE96EBH z8#2iy^?cJte6#eY)1+eNWm=%9qVN)DylU1q=Ei@w76f@RV;%4cuYe!BQLuUNtm-+{ zo;;rr9i3Y-;O8IhqTd3xmk0o3B3R;C4gjKnDXJ2~!Ao)AWvvXGk12(MSiW#o@m4xg zC8jjPf^}5n+IrDUnBc{<(u&O*VByP9*RqBi6l1Pv?JYfN1wHMJunc}h@#(Onyk3wc zC|MH_{FZir=f}2flh=brvu4y`k1D0y@@us)(NU>iEHZQm+~%y&=(D951?1(@M11u> zspcQ1uCR)OXO(bBuqCy>m}g}xbwHpZ{h$`?OW6Q<`t<~eR#oP~q!nq-ENRd$!m)|a z zf$JxQ(@!1k`lZ7#E!R&^a+An_h*Bpu92yoyTHJ=CmOmjXQ^MO8o<)$@Su8>)kz&ye z6)HXWotQv$-9GABc3IbzkggnTwRNKw`6id{)wqy%eEo!;-N<>f8hH;Mbt`vnRCnMq zJhc|t{@f33MsF7I6bm($O@e+43OHJL>STIf?~mI{9F^jKX%_Z-`P!Kp5n#S*0>(Tr z3IhBt=A^&jl$*i2-8sL<{ItL?L2EkcwM(&sv(~e?={P4sDbzXHfX7*U5AQ{r`G zz{_rQ1|dpnn(#T-Ii(JeaUGp0YscEFyq`-p+?;$18u_F#Leq|n_cVagaHA4KUx9%i zV6+}PCFMx|rdz~r^jg4YrnXIWW=&h1+yWM(M%+;l>rTU7Bp91x=f5AtH2m_w;%ZQV zvHk@E-q$bae19v*6h>YuXwgWh0_?ert-s9P!m|d{uJ!%G&22uZ?_$1w4JkuERm?1r zM>tL@5gn1_UDLW}qkVi{h#|v_dNiJ1s5M$xHOqB&q6l=!JQe;?h3x%`#i~t^RP0%~%KUZrBO#_rW zNaEiF^lPy@Ocf8dhEa*^(HgHi2nqvc(Z!eOb574iNHZ;-)5X@{^^Ve2w0YG#3;%RJ zO@ej2MQ?^hqwgX=DN56aLPPG5juS;g_u`u%{kaXzYOTvdr7NXM5s{$LOQo;LI6=i{ z7+6m?3(VBzmaMX=0)#6naFWVy3{wv=F|HN=;vfjyF@|cW^lRe;en?2n&jRw=Oe5W( znr<=>d>&hpByp}6_xf3JX*wldal(5FiDZr?wBVr7dJMBjF!wf-oHb}#)7*4;SCm%h zRox5vikjo|?-f`R7wD&V!b7|MTW<~Y+&ExrkPbdF!rKMo5RP|H3ZpADDn?Tyb&oOb z5dT^rm?zSTjvl?xD7B@~NH+~(qzo|&qDnvez_BT$hcvn^sKX+a5?^&un0bP-srXLX zgx@PErS=KA3Wj4Ub?I9QeFT+}P{xi^Q{4Db(hY6bp9T|F3IbAZq6%h4Sb}%7r*2F^$P>A14~G?ivmHgZlDUd5C?$)TYJt_1)0Ih znh9fsex^zs|A%$=4ytGXWAR{pkbWB~&3CV_3odl4pk{T|?LBxEhc>@#krF)pGC#+9 zZ+x`mR~Q*!{vc9MN~AHV9>ZbMh)>1Pu)Cz+i-H_Nk79 z-ftWXOe{$136yXDdUz4#ld0*SMsN{hvh-##0A#AZ$nL0-VBO4=n}{uC6GdLBFG*10 z(ga)cIQU;Iy+49HxvyF?0!L`M3*@vv;tM%6UO0*Gqt~&R)2UW<2CQdDEq)^5V zZj0|iJ)`G>XclWQ?Ru3W18c+F{J4yd1_?TDkcO7EhNx!(+>#)hVXoh)e z9o)sdgSbeVGei<Q*( zF<==5b%%027($s(2NhLY@loK{47_5GwH_W(%S_b;gEIFr9B#Km1dx z^II+<{$F2@vxJ?lRFQ=f`bwDY=4P~Rtzg~DVw!S+c=c6{Vqr9xFq#+Px zgTX%azstGnJhA`N+*Q9d;eG!BqA0C&hk!^a-6<$ABt|oawAAQkbf+L8LqK91qXkBX zA|WwqgfJ<2BPEgpM8NN!&tLKV`QCf(>pagn_c`~u_jO*d^yY$}OO$QL#n!bXAyp2J z8D`AKGC%gEN9UYsE5%06WkLG?)xI%xGluSI{mJItoiwS=w(fbTWq>sxV0tfLjsw1| ze?(UOq4hs4*qxJC>VBdi;DxMk-WVUw_(Luh@&vC2G=qFg83*qO4*PkIAW(KHs-0xW zMj0UW^5sWKlIo1|1QwK9=IVs_BDG;tFXU{PTI<+PJjErg@~d4D%&}PWU9v%j#?aoX zX-sc5zUKG$xvpNFiRxbQo46gUj0{J`gq2AY9Zk2wXr>GfsU!fW zP;aTiC5@;2_S=ryuAEukI<0!X-_Y+^wcn+5EN&9i*9LwuqHg;7j5^4&dty8s*k)r_ zY0z7>Ea8D~92*_{mW2HFGHT^~r`QPyHS-PqufVUuKq=1N^$&YUrj<~*VC_2(g@Wgt z)0j*nvcesB{iXYz8tTWe`+gD3Yv<||2X8EGQTF|BgxPef=kfl6yK@lt?&`Cpjy%dl zSpKu&qSJ<)aY-rA7X)Eysm1j8R%!c(Ox>{4$|$TM8Z{=2D*@qOc=X_L&KlgWPbC_w zY}o^V?$)+&T?7A}PI3j{AEhye&xHC&oyEPbvsa}3tK_`hhI$p4HDSyv7dNphg?evs zj}x;lPUAd1G%G#>viW@{Yyb3@SGLAd*TI?8i?>!k)oQ8e-xf6WWqKbuEk!sd6|_?~ zBOf%o_aL5o{75r*;`VQ?nwc3aM1rm|hx}++{kCMuTMdaz|k%ab&9Va$n5i}b%dsB7XpJDXoh~2 zdge%3V8NbjX^Kj6gJ&+>@_$^zxD+obXY%@EEU+HYYPWd1{Z&;b8;c9Yqz^mi)$PIndL z{wTAk@jh{Y%Bm>95GkP3fUp(0N1J2QXdpZt^d;V6X%LqF$2={sH#E?(RmH>ayQv7@ zF3dX=_&)?u159^ggW1rP6(3ecE59#-1GW+3{vc7H^Rd5~gTQfcy-VpK()qq`jlX`~ zmeKW_a#r4Azu^gez5+k_uHu&0&kXqO_pg!~+m76boZ6GD9M^NR$cU@c*gnpGb>QaW z^S>Ti7s``Wm$G;+mz?3hd?olxp|5{`jG>sgZs;l2d8gWmqI}nL0?j%%Lk%t(Rycx( zhi7r(x)TOJ619_~=4y?l_-boi>!$7@5HhlFevsGuG}y7#?2I5P9MB~R@P4mU)Kd4D z`5L!<)%`jv2qx7$L-0}!46UL&tjT#WIg?yW(*|dZ5%G>8H;#ai!|MKS-M+ZP6Mu(q z2mBtVvPE-wS#Q%u&3aOuJ`9!qkePf>)r|Qo!&dW7QUq{+@s!?SZ`!K=-_g;-?CJs* zz45mv%Jdc32UZb*8FPrwYI7`eRFkEiQqQ{0KaVdVr7W`X1cjQp#JA)MGJ;T1uFf1g*Id^xaC(OkO_{y^5qzSdt+PV+R)Pe%W{6R$h^V}B zo7P7yEa+4YNmrqp>x*hNMA0rq;$;_6a^B(k+=FR$lQ%E!@#>5mKdX!HLQtvK2on2^ zE%Z~0jk^2qb55ISECtx!?7JM5mTw+zSo+|r)idclPs9*HdM0f?F}>fQ(R6Fg>J(Y} zzP$7GC7|?u`cr=T1MEb-W@>W;=_qyWLj^kyC?YjPf z>9Db@_&gTNWu49@B`Lh6wPKTbuD;Xh#tajW2rM;hXw4VOUA>y~yHYeHx3+wj6mvcA z3n(Qz7oey31z0HTC{hcoe|@Zg%XX5qj@X+2{p4r?%*hh0T3lmW<)?UU?ki(g_;?lT z`At^>68%wLj@|z0qY$*{uXGF7Aj0g1t=h~EDaKZJKK7h*r|Cm4mf0*Pr8{dWE_riP zL~^=6j2x(bG0GGFL@NIW0_Bf<_$9W01GJ~_q(}T^jwm2@&jTd|S(mlBo%;_W;}4gy@*4@Dq`3*uHJyITK6(&M2ry7HEh zN02_y9n!-TqC2`!lR=!u0&J<4rgl3Lrsql>W2~_Z8CBHcpS4cT`%|S;hLqWDuH^`T zT!{~t%%R&`=XQBe!ufj=Pa>+t7hg_-3(duJn}u8Jz=P}NcjYfDdrdSeae6C9Pc}#s zys0%QNY0lK9Mf4=K@WWsu@K8pLBek~5U^iX)?DS2+C~Kyu)a&V7%CktL8D2* zI*n2&dD2>@%d2IWd-%{0m(8$|)E4+{vW5|Kf2XF;b(v+k9xV0_H!>axhPB|FRi_iT z>}6AgMpRdPwZ(OG+MS?nlyOAikQ#Qfw~@iHH?5#08NUXf)v_Tw%vwzsKy#Ju1`yZ=!TDMPcM4g^b>C$&C?&E@?xjI&OPSTg-7gbROoetKXS<K`ed*>=P z(}+P^7)KrN&esKQi#T%3+7!#wEh$g>UoBNe!w1Ya@=G>^#}ksmH%^a^juykC8!}(# z(F)EM-ruT9-g0`TXE3-3w`U-%S>kIQEHuPbF~`pZzzw2kREyP&pJZ}I5@JoT)|dYTxcV_tmYlq zq(N+|U7XXn*$@}%f{nDHoGzSr7~5~GPO&bi^X5R$S6ihDYp2{H7${vw|2%tTF{|Ze zjh%w=9)0$gtybUdewMJCWI~h+6YAsS&C=08BMBp8>7OT=$^&^;k^;FbmEywRlmB3! z>TbBBS+SE0C08u|XlYl>wIIoF#(28OnA{g`Pd$c+1q)LtxD4skQ%kL#TkscHp7J>4 zskE&q@j))t%8K9Tv;R9;{=ks1Cm!GUo=XQWoZ=kOtB#U<&kH}`bC(``nuS%HWsMvX zAZWL+#)9z$W&CCI-@I5rFqI}n-w<83po9)&5mf*1LzT#$=xP{N4(+Tw9G+l3v@N9E z;0d=svfNJ)MA^6>3+pv6K)bxS`B6y@y{$#?LNo{RMie1%{?g<%-VVPdJqKJ+xQG=s zk{6`ly^`G7gd*Dej~H-4R!uxAK`i@u3yNz-iLb`R#F`Y_2y%>LS!vy0AN48_ZkRxB zs}1e-V8$Pp4HnVhWalS4Q@}$s*B&}aMoE{qr}uLHqVL~Y$Y`jY1ksWG#grJ!)4 z9LmK&oKwq!HFH3K#y#zrU1e~ggH016MKZ9XqO;fh1L|SHn+&upm=R@3^Um=z0i=1#;ZN{ljzC$&AzOr+u=Cqd4|{HIz{cu~494`Ym{nXRUkpU(C;?|_0#U$r1BDz z41C?b=Dr8~@7O~|(*oqGbzHUu&fGDG7V!NZ6YmwwY2brD)Kv_@dp`_XB=Z2D55H3M zHpOErIan1+#_&BysUbYUiQEFiZm(qQRINM({`te-Av&z94I&L-Y0rX?uy`t^Zo zNh9V2oQTutOHd=dPjR?)bUVH@K*2FhAhW$-X)9h(SY#q_9J1yt2^;@H(EMYHeUsVV15K{dut?!{yNDv;{k=P`)@6j%;I~YZps(Fr-cB-oW z(ie^oN%x}xM3I0i4p+;s?FPKw*|;6p@fuWZk1}bwva-Vq!bUCA$9HJFBkvjhih#`Z zWrc^@?DJfuMH9s!fTb%lakl}H>_jN!kk^lb=Fa}1m$x}aM6{U&x!qXH1D#n4#)5R; zWo#IqtqH)!N|pm%w8bL1+n=8bq&h6=fc_bs6GQw8MNGY{LyfMFQ;jsWma?2)UjieK zz6A(Yg5g%~eJ0{~^S?5A2dPoBn+etQXr+UsrGk6fK=tUTJDL>#atYrqDWPmomAURL z>mBTJR?t$W{?jg@=2JwZEN4lH@Z}@5zBH}CdzD2+wrb72+x;Njw-&O0ES{2(+^7&w z5f2B67Avb#y#v_i&QBi#lP(*=H^?@Y{nK`xdN6bJoqisEVneIpo$#Q~kPzo=^=Lyf z-grax&P3US#Eq}xnMB4lvWf$^SeaoUxTpwf(MxLzMmP2S7%^2k$e)mKwxAj$zlb2F zvGlBg^dxC1v^!@L_3j@PxlUD9d&*9;2mV~Zz(rCjtCXd6B z*Ik82Uw&~)F@a5VRkB*zb+nj^W`ny@f2=9MVHnP(F4})-J#KysK65l!hv(7?$+t)& z7>Qfm-)2cIlXES$vj6z|35Fdrh49>t+8kJas7rW#Ex zvHBMx`m}5+gRQ)@n_sMi`*xi>p{4Wr>K85de)f|^NHtQdi}2A*3e{D-SvL@d>C}B% zkep~N74`0bRb>>_k3NQ&n+p>0!anoGHzbEYtLO-FlddlQ)`D)sXLCt#d?bF(rmSO? z#&lRqt8<&&9k3*7!>)zL(e*D3cGY_Ixwm-;?Jm~16S<{DN#>-(Ka%R`jEZX9&N43b zai(Dp>DId9JQ#Wv(Nj~JBhNAgFC7$e1dUHS5nm|IrCy&kkO5YS1#It~9A+u9BTx01-0iVh= zC`bTnQ#|nifX{0>O#nb%nt~Sq;9!fV0|01#v+tJwbon5f)6 literal 0 HcmV?d00001 diff --git a/demo/documented/mesh-generation/python/plot_polygonmesh.png b/demo/documented/mesh-generation/python/plot_polygonmesh.png new file mode 100644 index 0000000000000000000000000000000000000000..3773c68b5eed313767f8367b390932db77e7866e GIT binary patch literal 15635 zcmeHu_dnZT*nZk-tJNAs?W!tj?-8?Aql%#R2t`pvjF`3BqO>S#@1jPFAhD7dMa@L4 zqDJf_W~jYA`8>aW|AO!H>-%-y=XJ(?U)ObC=bTT5Ann^X*>3^>fZICHG+qDzmn{H* zONrE%DPPXaKMeo?_W?Q@PfP-HHgY$S`Ts{N(|>WYxPN|jvUu$x;P6;+;}YQ4#e;CsNZzZv zp03#Ixs7&XDlbHo*7MCR<+&xRZU6x8-hr+r)Ez$Lz|m2@)>zTowx~TZH)0S_AeQPf z;PjqAlwo&(C><26E$dgqF*buq(z*nA$;qUy9gJGEeA55bsU~<#&$560&5YCS8Y;ly zZ5(w$;!SOoGwkvKF)CL8&t4+NdrK^z7Gik?@GijnF}2+-a^Z19nvD;f2^hXg^qlej zoGJa%gdQ+Qr%>(Yo9-FZxZjzQEnTH!Z|*LZBb;`Xs4r>t7Ohof;Q5SQh#IgZpA!_i zFr3{a(P&e4Ynb`_a^WB3L?A@$wL!gE7V2Ob0u4Xqs0w{s*W{U*xA6Po$YSm3u-KS#gc+Z9$3 zn!_D+`|toM3QlD?+Mz`ELlxL}Hr3RkYu%kDreThVS0BG(%xeF=ObnF-0K$Lujtig~ zX!|~;Ji1RkW%}Fg7V0hOZ(@~J3KrVpzVTBvEKkAsG2oru0#4fa&leTNF-cM70$a*;}M@cA}+1JG!Fpq%9d6yb37K-4aZ#7BB>mJ zq`D1;L^Jr-^7ZH^r;cj- zDN;g6>`Om&?jj+UG^-GsSxk7*6-jpH9Zzmzsq=yu#THjB007mP>!BSHzLXUd%{d+3m{-A~n|n1)R!ZWm5d)&!?JcZlw_dD2 zT+N{nK=A3w@sw*+9;@FAqZYTn&F>!Vm-2!+RY9>7daxy(2E;3F z-iQH9i+_F+7(CxK(nwhMce_kd{yAMofrk$}vm%bFfjds(DSr&kHLQ<}=cf(@K|8aS zi@E0FR0sx2C@1ZxANF%jU>bPUGmm0+zDZhp?dP7K45W7+8q1Ifp9$MlkQinoz&rVE zLG?$wf(D^!4!m+D{`$*53ig9clH2*z?Q-Mm+&QlT0%^E;B9G%y)je!^tMRsBD8Ao# z?RSf6;_h)_{n8nJ#HdA5f{G{&Z!jeR+U$9-ALjKw!oDIHNTa{XfyQNU{R^j0_B{m| zPqGXYDeR{Sx>>+It*KKp$@Ya5FLdnj*+^eY|7vb|zzO67$6Ie!W(s2QfxS?$;jdGC&)x=#UdI?KzVM>9u!Ya#vm)$+1az(8EZWbZmUBLRvt55 z0)*w$9S?6n0$!)pfc^gDi8OrlHy)LU=2&6si<;m-tLPt4BIH_k9)nn&sIn$alO|VH zf^7)1J+Kmc8)%?HI;(N;W(5Fj=do1=aib>uuOA;Zc_BBPCZ2EgF_?oZrdW9I84z8a z%o}B5?_LHp_4KmM$F7bx>jwr4tTxNv-8ExB3)~iJa*u5g1OUQ5C07|JBug}_|7~8a z{?2&ECEgeLdP0;0;qhgs%r=lWe|wE_HpcWf`G$in&#e)-vhg2v2Qu%5T#rbvA}S<7 z;^Z0tu(@z*UIG3(C$35Bc_u9`aE%xA6vMBvSCt#El^$$}w$h`gM9+K^JuZf2a~B~4 z)qw^ot~T9YHo&3$_mC--o1cXN01=>gBw}^FMWA{bGO{6Q*<#F-*9DZWUVq&1Qg~I7 z!(&h#@Q&rE711Bvz^fQVeHA5jzJq{!+2)PPp$+QZ5pK-73#>mGr85kAMS*=q3K_M& z98YbkUD}taaewp-E>_Y!diV4*RI=s^1GbCycHAp zD`9$8M#=mV;GOy5t~lN{?La3?o3sKyO=s><(`5yEM0C?;bhS1X%l$f78 zHK-9Z*{s3tbP{gqdDb#4UAAmhB2}pcI$Z|L#phh?-Eh%|*KXbA%W!fQ48wodZ`w-4 zETM|V$CXKrcPYcQ#ZlX5ghi=IAwX1qBIaEE=KQdLhg#y!cqn>3Pc;heaQNCS>F$4< zLgNw^S{MxCFVW~o%!GZ~o@**m^klpJv%XyZZO7`E3}~Hc6dnH`vSDFE!JbSZZl+_J zJhu*J{2PVRURcQ);miwvt)4tGJ%hhk33=^yUi#YiXuort7XYB=q;D^#N-Iy%g&4#s z7H3|JDJrr+ZE^`7Ge~1a{@$*ybwQ46!kJM#0?i0cX>$kK8!1fj=M~2tP*- z#}hkrCC)n48q;-$=}4_F=nKcT+LIT^A*?EY$JY_HPdeadYnWdY!1#~ zO4voHV_ulw4_PWxubdU#X0`yYMhbi=PZur6rH(rN|}f;uJ-q3M|lIG%8jpnuaE9mPp4+B`IGMaq#;#7 z$Ag{zYxg(K3wR)e5ovI+)s75RF&B1m-cdsk%EvZTa*p4mC}{==Q~>~nKHJej-8l3X zv=Zi!7ues~msw`}QB*c?P4H#)Ae%@)zGCE>*8nx(S2FNITCXT5-=HVL!j)C0n$vrVwxAG#y;;lF%EsJ1Ccd8ev9M$a$Q49i)lT#u zBNW#By;I?7emMQ1CL>}1c(kJUeuV8$Lr1h8^{<}~0?}9D?AkagXjCQvhz${X) zKHI;YFdV^TKyYM3DK~UX44m(O4P!d7J@Lx&U4J0}AntRn(taeFk*IQU$%4KTBHSPU z!!(hb1didUd!yTm&@WX60AAxR?#+*-CHf@1E|n~LYkDDC#YUZ<>rp(Pj}esv3u90e z<+9X7PYgKelR~pkG;8pA_d|QVmwzr3p4<58M_Jd!^lJ=zr3pIrq zN2#M{XZ-fzC257H7B#i?e69qlAy*3BN=3IicpzboP98Fo`&y=6W)9lYJB(v6M!UX( znK*W<>wtHBE|G)NYEn&AV>X~mN@)oKTrQE`{V#_5JXEne6d8`m+++ts>Sg%4XI+03 zll`9-9E)UP>&YXEFrd#qfBcC90ebGkL=3Aoyud4{~ZTI4!Y7nl4q;z z&3XhWC#ZdM0CIQ=Ng+Pf?npzmG-1u?ns zt^(d+YxEm-Z2s*ZRt#(}P%=xEoY-(b)w?7CKQUhN4oTIf`8BQG3 z-&g*4HEt%S%D$52;ZM8lA$9)X=hpt6m(8~9HkT>8(Cr_;S{mR`&op-HOd!TyOZKfM z)2I?ERc}5|`g(uR$+Cwu&24C zmzEY2wwVBcZ%bQij71lqyQK@KgP`@Qe|C|L?&l}w=HjBh8;S&yfA_9W=lJTz7x*VU zg-pE8T{5)lgqN~?MrB^Ax-!x(@r^<1g?_rFrzHcM2l$jGR17pPUjq08kB)y^s2DMp zhd9iZ{N4CkE;9Zy7c7)3aAfIh>3(Ws);vD8XHZK|sV)+NLmv!aKfr7{VG-)8b|Hy! z9CqZv6}kG9oguu%G^iNrHz0?mQ)YL_T1)@p9V-gnhI-(;TH(&W*nK>hn(g;Au?d6=#`7eA#9; z;@`q1@O~uDG&q+)C0wp)*7&6oIM!NA^9OmkE%Rl;uA0e3MC>hq?)KJZJI+Eg&q?^a z%?S;f^mx0r8KzM8!Ec=+WI#Lm0cyYbtY_NSV9TF~+f2`8Z_-htj|!zd(RUdYY4A6s zc&QXLElzqP%x_JB#LqtSIa^g+Awr6rYQ~-RWMA>j1-EPG!?PH$z7WB^!iv?WLxl^oAnG>Xe?ig7O5VcHtU_8+X{|Em(Qpx zDXB;+O(&iJ)3xB=kK|2-z3C@U*LhN?-bE<%uF31V1{D{^Bu?Ob_=Wmt6a_E}{&FF? z7sDHboAY}^@%I?lm)tu=R>I$Ql-pM*Q~hY^>GoW@1lZDoJZ!_?2dhqdQ+ZBXvE7-k zaoi`hI*A?j2k~GPSyV;Mk2vR>-2G#toy>gBTA@1m>UZUgjT@MB2e=XrgxQjF8_%tQEIf+zG`ct6Qwv z1b~SrO9nfbiSLVXWi3pL!_O#0tloa}DXdtD-imtbU@677;^P|&z18RBFRx2O0)H+% zBp_0V%b}@kw(fu2+QYFFdqA;&*$mKf%;K$udJ6Wd`8emBwYFI`%CU>AEFbeboo(g5 zAfPUe^9wRC)KB)LuTk8a-_O>y0>q?`|57}Sdd}?=r=xL}U_>3=CleRvNDz6^;IHR& zLFGyc^5a}1169>YnQ)@O;0OGKG+^5KULMcKr6h~4M5%3sBvFz3sgOwK66D?~r;8q4 z1S)8QoKhnq7Ys+so!H_+R_cMdQpK9H1?0kjs~`Ru?TwRp=etG+D@rETr(sXiy0+hh z^c-LL<%nGPh@?U>PbkjcxYqsL75*SCFC`@trDm^?-Iz}y&wR*O1?efyUB|7`BCSaT zoBS4U?z3qJ8~J$I(wIar1}OB%vgSHuO(ltj%V>X+G?5Xm6iw}=Lm+f@`BcBc!x!Sb z@_=A%=bYYY_^*m6T5!AUPkV_fx;U+qz11h?FXbM6?KWhsp*l2ee>}k?u{qr8`f0GFt0{9FJ;u1r!iA ztoA^rIl3NR@9(eg-vxGFN#QvtyUyJuRJ+>LR4X@rJO7KTX$2xERc4Ay%@J?sXLC-3ivjou?hX$W^cI$@x!3a;c;!8C-m14 zdvboyQUpe*IBAHgE7K7EXPmynK(o?ulVMd5XVdiu1J5{o_S#foLF9D|GB>#-Ga1DA zkbcf{`JSzf2uozwb1Xd9@@l9KW+N@{WXN&M5qf!~4nDOz1w372dFb1-ASnE>^V(sOfq_#Y&&BJ8!6<95Z6;ZAaL0}rr# z*_bqMFXHfM?d+g+&9=R#gx^vDlow*Gso3F?uWF|oUYD~t0>ioRJA{^BN7i;&nf3(h7-tD=)!aRwK z$8D#E9G$u9`Jk2Sr0`eX&Awc#>CtSMT#B>vKQlq$JnHJ&cRIQ{)PK1M*KIT*iFj>s{zSxs=(g z>}#STZlc_dXMEhp%x*gXAL(e3EwdGtQws*QX9$)1w}H#e{b6r zM;8oe7*j>Uc3upm*@fU@)=n@vE*m<0O=(`qAu0_*9c7w>lLP?Zzl zw_@oxbN7xRwDRejHp7cg3~VFLAb+Xc+Afe+RyuD38sE2m2bx(sqB;u*efqW+SluLC z)*D;fn|u*m+CO#GI^V98dK33TrEOTZ~W~SJDBy!3{W+_IK z{gN%uZ!v-VmO;z)zk2p{7Gbh#CoHS}9~yL7bR+19!;?vM<&;AJ4oo)2GzOw$?>0YV zW12ye-jeyeii;cx6`K%EU3O;zgutzqZGzn2yfQD}d6=+3$Xb|q#pxDL>2E-8>rWtPWI*h#bV81 zxgFA^B*^u}XQ`KQHhg>P`9N23#{hN5o0-2zE&Ox!pq*W=&`|yRdW;SHXs7pZ7BPX4 z2}wZU)!f(w>v>%)3pz=-FQ!IKTsLja7H{J(2FzcVa4`Cm$IVS=79F0jl`4eMdD{>- zSK;A|!kO=XH}Ye$yNX@}Ux*2>8eDpr4yok3g+*=!b{`Km^Gv&zT8Q`SwiNe^lv{^= ztUkSQX%$N`0;!@N`3YCprh%*79{3K5U0?aL&^cx7&(vlHHi)YxI|p!uBQ8IF@K3nHeYLdZ~UJx?b)~T=hRiTZ0M{+c=5X@ zK6Df>DKE**pen9rwK|ne20SHe4z6VuI-H{`f*pYZ9CkQu&-##q0$dbGBxLz@0=bN`eJrUiSjz9zVN_^y^_t~CZC>g}c?O^5Qq z`U_is$$4dTLpZ0P$yh<#d;=Q-Z!>9t*o-N5&bvfnrfhzK%>#Ei45RT8ev;4{N$bJ2 zD@Chy6W5c3<3<;kk$+>$TL5$#F3Hx2hKeM7#cMW?U7w-x^qZd+OP_}p>xXyHWGha_ z3EfNMqq|m|Oo?-WaEBwKX%ODw@F{j+TTRLB=o_LsPfawqa`~}?;I-T3gEU=PrsF`$^12T8Ue zhgxn^Ih8TQzVH0uioB5zGps(x=hGA3OLF`hh{=5LE&}mQe)v~T`6jK*P#U#{r^fdc z!kw&Sz3ASB*SiYne+Qf=Y$fJ>8Q_uLfO;t==w+6iQ+bu-U_O^yxo}QkLBZTLA?oU= zWc|;|vc_T$$=4oS7)!EA2$X;sF})u%z}U(V>h2cbsn+W|+IDtozM2-);cEmMowMDW!?frI_7kf`_qB);AYN zYl?@=A#W_+Gp!XK714w{Nu|q2NxSF~P5kzcq_PK$@{OtyesF-qdbBl<*QS|wUjjdz zV4!QzN9Z38k`_t-2Ym?6*-(12&O|9x{TuqR*=dR_eOSdmvfqO(y2s#MgpYE6GyAv2 z?|c|MChY>>B{(6sgP1W+AELxeM?d`QVz8n;ZIWVBZpwW?V$I%2w+&T)t$4Ag*NvMXU-@qk?95wk2bA= zGm9!?P~i7ISCwhM8Ug^Exc}|~2&W739w~@MlfpwCfIw-MAL75&31wn$^VH)14D?m} zWE542z znITw_f{JQmbKOg+SMowrqUAIs>B5kpQ>|2d$g_cn@RP=6zfGULhU~!-fAHj+V{qtW z?$)8&`*CKHJ{XL# zJ*OvhI^AyG`uX5k8&ra-5NZ&c9s_GUTJyR0!!5HJ8U$A~_i7}44T9z(dP*QN1>g;v z<5B+l^;?Tt>vI3n7V$qm8H?!yT?AA&vRKu+@o<>*Gqmv|wVO`A>!daYLgA;rL7z^= zSlIEOIW`wA&QWcj!dLWnV%N4qOGV8gg~58baae+eEfiT(@ikTydD!CTC?8Jg z8FD@;Nb~ZXAQ5MprnI3)K;~wAq-EH6itFzKv+h{f&aB%)*C*<9pCExUKmGN4;ko#7 z29(pi*X=LMEc&{JGlL_1Y3&L`FD5@f5n5N+uaXLrYG4M>_DJ&lDb4L5R6N4pw%|7d zryA+>toJT&65N5iJtBeQme|tdr~==Y^oi-9?;FZ=%>h z+e2U0iy3^2an$~M+aWg?? zqx^Qbu|Ka|u!1#>j<+Rt-d2G8)Awkv`5Q8oW({HSW@e*lDq+akekii&TZirOR5RD5 zQ2Y!m>L4d1>cuTZ4Q|{WCHExZa$lHOY-$~x&Iz}n^o{N#|8q9-v_dE41hyWUfDufY zRr6s+Y^~d?(%_HD{{~(AS_%y;cgLsNYLqQEvK`;lOHavzt!91?Z`(A-QCEG3;havh z#-XUUth6@VU|`tx&q%Ff_xh(&e;r}ttu23vRrWij`MSq%7$&*k*&lC2$As>*-FN4D za8rB-c!_j=GYxHSQz|)X$^w?R7|>TjQ8SD#~s8ZFx*+z=rFjN~zlq zA#Y`}H?HMY|M1Mr-;E>wbk-(sXrOyhQf zcf~riT|M+jCtwSK*YecNXzB%lcc2t;4q3)r9B$(>A#|utk%9vT9zieUy>Os141CtV zEwm?@`MoI}A3jL2e!KH!y)jv=#P7#ZnV1pjUD2-7{M;{_ZAAy$2977|4M!Dr`P5gn zpiTjG&rNQq^m4jBv4TfWsFxK+_>AlRw)Ewhv&|PqQ0@HDk|iRNC)V9Pz6bMsbW+XG zuIMTI7+|*z^j}iO>zHBJlCvAngTzyO3p~nKV6S?v`Hal}#?Yj8oDDZ~)CBswy4w3& z$Arq+hOMqaw1aXriLb7`_sV*J|2IM{5Ob#T-;ph7ythatF8@o;v0sGft8ZUOJU&+! zK_&b)w?!d5D93S9`^KXyi3)X6x?YgA5dYjs;NmOckHBCGJuYS)SKK2IcqZAsR>Qt(?I?I%BUI4m zLt)YISoQApS3x%~vNp0nfWB*ITLPz>Sz(Th*14iCbQrhbB7p(FsJiXAz6c(TX__DQ z-)Rc^1Qz61scLJapFM@~pH8oWc2;~@l$WRoe_2#6o+|7YPaWS$uS)~YxvP!KY7>?3 z_&h%^Om0|7QIK(QM$cw2w3aW&Ee%n{BoYHy^tFG{SCjdAs=UA+;robD=FNW``o27S zor^rwG4*L(B-F()r@Zx`RWMiP?bXIAx|`hX7W4!=`<5n9m-4}eBe%GxF=@0F;y7sMddb&x{$pSk8A*He!Ei6RZ$e!8@HLz86RQHm~crj(p zj)cIey&$))xrf4FJE;z{l^3M!N14GXL8tNR*Voy@;Fm{jGm?D>SKE&C8^ZTUBcEJHy*&!wd~PX&q-qkD;CvHR?vY3Vu~ z`3o*D9^GbxzhzL6?xKWp-C6&gdIRT+_XW0VOUuC)EteGOFdPSOzl|@I+5a3`zgT~_ z)t%4|+E1SHgMGbAryUwqC(68zBE*w-7bMv9)7O?>1wBC1E}6WTCLljA+IqqN8Fh*`ZFumqGcSek&WV$=$nWUxT`^u zpI4abWm21E!BS|l8B22#46MKH4R2Tp=Kc8O-u}TK-}BPPR15BeiNtHzrTSkbQX#uSILl;c&5s z^h<_0dk3Xx^M=5ilrUE9K?&!*90bO%2^h@gog$NqFsraDl0+a`5F()-QrDDj64Z|x3QUbyW z3TG~mKkkKV92a2_6!{M%u25|WQWZ)&ija0nohHM}src4Fh8nL#b?3#_7nTgZum+Ih zR|`LxrJYk>>=@qcLIk7MDCUcQe2e-rCuVIq0sD?o1I4P?ls7KB`v4R8(^^Cu|IGX0 z5+l+}p55=IkFp5HS6%hw{_kO?JNl)P$WEu_p#nLY`ibB0P9#v9HL~f`Nw(jCR=}O* z$che~_778v_RZ<~$FHvUO^IenI3_L29oyOWk4@R4h#f- z>MD(UOScJ14|3LF^r}yK)(LGc-uON#a2%9L_>a{`y7_sy-jS=hRQ_Zl%M*prJuAn+#%4x2nZ`&5|U;GVTa&Np*;3kJV`$1}=&oT&eYJ3-F|+Kfv|; zs8f2oQ>uG=*&#B5*J$Fl0M_XQv*uNF0}-7;DpQl%YjM-9ElmD{ys?3Jz0g(qfM|2o zw^!60Q=_ak^)#*IxwvZsWY5beYz ziUCORSewmTIGG9B1;_Cc=0qjr-)B$70+)T;PFEnWY0}cSZRCD3RQf(KyM7rDQ)@yS zTfB)|9GE`KdBm&XU=r#IS@_sD^IH9{ye!Aphvvx75e}JkHoU*Te6%P6C-P$+LvRZWyi4{XE#l0!JZVU#Ab_D@Ns%)fc$;-)i zOGDt7hl112Q?9B*=kqP&JgHa7)iS9SP_%9;CmRhPI=JT6H=t~97y2@?!0CDmUL)w{ z11fR!lk^L}={1luwOr9pZvPy_j;XYH07?U9F%zoh<}K!|sts;vI=4?0^E~E;x+C<0 zn&O%sNPTfmbO*oQp-t7w`IxpKqf|YbAfB%&oI8b}bNmxeq;dMlEIod=?m6nRQ~SKH zba(mibz?_(60pg?QY3pBQaJIOEa=mys2Fyu}-1g6YCrLv6Yl{i+% z$7VbE6%=7sF^p{bk9V^z?hf+2(2aU_JN*DvA)ECcxeh8q{j|DOYd&!pqMV+C5s}3< zX@CwM#S*NDV6V^3fB$t2818g)W;0|lbR&=PF`}Zryh!8w(TQxpJ9SP?O6jmIsZK_2 zr#9hkQ`RL#gyqi?=$nZKGLsbkkX!2KO9cMR-k%eBvLnns9 z7b@%Ihp64L%#X`WCUq0%HqDrq&)vY{lXoOqPlx}UUTg<;H5rPd4jypt9{-joo#v(J`Y)I&5AT@LN_%7UdRc0weki5S zq70#$45}!ISJjQsyBK~Mw9eAHHCwontKh%IU+V@gttM5|!hJ*INB1F-6FZo%)@+X_ z5?RfFM-p{j{#EWhy}eiyBBO~HCrf(`@{Q#9s@{>gf12sY^^wC-*X_SFH^5#czHnUu z^!v(@j==(51Q5Z|g-lN}dQ}1TajgG3bfm5D7ta*Rrt6~R$AaaDJj6X<5K)SF{UAh$ z{9)wwOjwmTLbtAGA7kQoUPNk!jss1H%O0qH|X!@LkX=4GUK&54^gb@ zX4i2DS}A(d$hJ_5$CiENxIlUkTejzt!_@xbvY%W)K``aYRYcy+W$VJLffEAiHG?^c z4YSVWyw|$Zu8ig@#w7IJa@M=z%DU)p(!hI&TsNBNb&}*R{S>^P%LK)QrCER*IPq5Q zaL>XJRrGWab|})M{s&Jke6kE0WP*pq<89aRxAX z{$WHTV1$r7CrJKWd+GO$0y?}9Fd1Z8h`WhE*A~h&a8UQ6P z(;$~&y0RN$o)1xYD0goDP|DSbXJ%lH)A?vBw`ayuhY;poY`HL zrmcQ)uiS`zJ*A)tEn>aD=e6$0 z+og}6>A@ljf!!6(g3ofJasSrs$$W*;&cq2Y%-SR`F^6jiXXduH0+n_-*Bd0W-v{$Q0By2&$*%Mq)cP)ZD(rVOWmQ&OJlA`^XpP5-SD3n-a{A#JxQ9y7fcdy& z8xf7$7rSRYQt9LOaK3^FRsD^N!ysedHw(U<YPpYPUdWSwitN3tUoo+~%h*lQLdZbC z9c#Nv1Y6pj0DPkz;cuLw+f$fNvAI*mBSzR-Oe15lb7b)B=&&lu0DW46z7Kqpfs!&` z$yuTGN9GL*sWc3_K55}^3lCpj9W>L5=2%3Oo8G$^<=+-OeB!^7I;gBh>dE(?3G3C& zbsFhtsRU+iUMqxu4o`pD^p?+>tEl-2Xw7a#R~UNCaUNtnfU3##Oas-2B_z+vD!x$L zdiqn^nfR5!-R2&!slRBcebs4j{Z<<7vhvUkVaL^P>ZJC65GLSZfX8=x*EjQrL5sUV z9zU!OYY}Xmv|Q_*ph5$l>7o!aQPkR5xA ztpQys?JO4+h*81|_DrF%{vy#&AJL0}OBKh}l-h(Pp%sS3ZZMj>`M|AG&bW)=gv99W z(*MP1&)<#B3?F?ohg@@33$fFcm_P8QIzsO?*?zn?n~tUxyE_pvwHosvory0L6IM;X z`26AHTw_`sBA$HXRmS8~}re5@y|0_;#b%tsT=ON;+K0!i~OX!^F3n@!_l>}28V zQ_Mk#*m+QQYuNM{s3dXBvqUv=R0NWGI?XVKGJ2K898g(1_suhr`qEM0%2T!=zZizP znVH`kIVc%7{_qKqxe;dRbrbV8Vk#Hru>a@sfv?_F-Se=eTG@cTfmxf0 z7%PX4Ye5%tMkbz{sgF3(VTyB8eH(;768&26>l& z=GN}?;mLoBnZojeiXD9`H@g@mu^5HS(7>8hK4(1n&GhSk&8M@yUD?@7Hho9=`BltP7tgdT zNo%bny}Nq==QR~}G&KFg)}Y+Q9wXnwZ8yp7E!$_MD9}Sr4V$?~^FXc9zW+OV$lRI! z9Q_7-S^S#$YlnSh0iE|`89xc%xTb^4GjreR#TM})e)WI6Cw`;*(x)+{Y3UA@ou5?O z&)2xT5AGd}v^Z53Uzo>bAg-4JyY20oTg(#1X8!Ja2wYJdm_n7J+2S4z%5K^v&_;V0k5k#+N|!EXIx$%M^)3l(X4wm9lB=K!m;+1!|vf8g0! z(KaZ1KWP{|icj1Y!)8W63vhiTHl7g4=4P=8$St9GcUe5M7+A_W+&r@R`3wgPM1}PB zN9$AjZ?3@20>&Xd7qAA3g}ve0a5lY1s=tD{H}$U&8*u%C&F*0+2ZLh$8^YoyyUp9C zlcBk;Ag({{SJV&RPEL7S$J=rSR>}O^r&ek}uWhB~ojBH&7akQO?zw)O8NvPAxqQB= zGE6vIJTRH}Q~IKdHecK;X|U>*U$D(*+fMP!?}YICE^1BFf44)Gmey{)qlakfwXL-W zbz~AM`>*Z&!iKt~g#0aJhZ;eP;qQ%8va literal 0 HcmV?d00001 diff --git a/demo/documented/mesh-generation/python/plot_tetrahedronmesh.png b/demo/documented/mesh-generation/python/plot_tetrahedronmesh.png new file mode 100644 index 0000000000000000000000000000000000000000..de9a1d7458c5106cbd0d80423efd024da5712db3 GIT binary patch literal 21616 zcmXtgbzD{5^R*(~odSY%2+|?&aOt>ocXy|>zy+ndySr1mrMtVkyZIfy@8|sw;og1r zo;|Z>&6+s|$;pVJAQB>e`0xQmLR?tk!v`p}4<9~8!b1VSc~K1-`|#n*2MJ+8rJt!M zX}k_w;!|~4KAu|*QyiS+d)j_hJQ`gLc?tjhcCiH!Wv$3O8Lo2%$8p6a6hr0Otc+q| zAtFK}!rVefT(*@S(LvBb{i-`}tv9gnWRS=P2uK{BY+Fi*i~@pwnU{r*34(u^l!G6@ z9&*r*Khiw&LkH=QB9bk1R(tv!F#_MEzw)td{dlRbHg{Fsazh1txh_jY+@-SIlt&za zECU(%EDCWhBytQ|JI9FBDH0RJPf!a#fMJFW{DcDhWD_jk$gnndGpBhL04$Ek2y#d@ zcJuz<;!;`Y(JTLL?r&+H`U8La1T6NiT5IlxfxMS#P>+mkI|tY(uN;mQ+N7W){6h!B z=V2)mn$z)Yzaa-4?x1C1nO@$(QUXx_zW|VUe&MES;{a9g*fa>#|2wc;o@LBhn{@Vu z%rl}B_zhfuGsFmY&CE$XeeOnZTUB0A1sB*NIX0-;zc`@4*^4H-k)fes6`Ksw0uO9N z5S-+u7H^6|P<|wI!vDw=_P(nBcMwa+?vP$9BsuWN9ru9@`F#ySY!J&(Q@V)Fk^8p? z7E1g45h_YZWCUD5_3?dJ~ z+=X=eJLsbY@2hdZcK>n^5Q^=ElNJWqk$hP?aTV4Ss6M_1! z+qb0=JxN0WY0;&D7^N%PJX`PAb~*D+0akW`Qrst`q=nNABigHQRQbq`zUppQ?_-S#aI#jxkjR$EvU~$f!T?C5E6lrh%zk~e z^4@(mss!xi4cLnqQuQBAl@BTswXl)8&Cz4YqF)4ynS>BLnGYHw88=k%y4;v_PSRiw z{QDg(b>ovI^$vewP|sndE9A(w|IMN%4)2BrSen05XS^^Iuh&inYjC5Sfe7$@tasm6 zek-RGV`GB`XL+f~sgVa{21NK+{DYvg05>?S;516)w=h6eCc1-FZ8F%*hKN9Bix6Yn zkIea(6P0*;jM#c?Ia)knhnf`#2wUI;EK@5-i#MvHb$-XCu);uWZ;L2k5wN;P!*(;Zh5CR3Am&ccz`Q%{7C>1CN-^z5nR+ zhOKEJt4#rURtBt(XHbA9iPK+7o;|Hv*zTmB>l|54%1O3e0SbxyT#)GMEOX|jUQV^q z`_j~lq%Aua;p=3KC`^{phD>?Dy@>$p+BDJq5jFHF(oUvw6o2pHEGq1NFU&DKm!tUkYp9CKe`ML8Bdqt65R|OxMke8qUfbU>nXM##dC0#4j z-va8cJf?)n&e%x$gx_&S1NfVLD6U@vD`VAviY%;%^6FQbPZ)s^bO&feGB=FHuhaN` zJiiRo)0=nKM<}B<8P=*}*%3<+U$H^(Zr_jDB~d5)&QA~XtVNboEbijj^xNf*g$d(z z#FhE$pt9i14|xHIlK_rEx<3D7C?19|R5KX6YTm7Y!oF|O?{sz+uNdlK^B+0HQycgY zVvY|+QVRk}QOQGnUP^?L2!=OKR7Ts43p+Ymc<&boI$$h`=%VYnMV5T=3I8kWd<3Rm zHHJiMMB{Ik&Au6yU` z=j74^SJHRS6axU~<3AI)!@9@C2ptD%%h8Z9hC`D09YT|lMjUuDBi#3lm+YT51+rw) z8f*_~&qlmGq8BCs0H7`sy&9Sdhw8YZssOdU^24|uzN_u4TjgFj6s zxv;*c!^d%Q3ZeWT*{r)?zTw0xD1Evx2}T`?L`-0DFLOknGFb+I74Y%EWl7G71fqa$ z!sm0N6Jx|K^E)hytazO26=bs9PXL(+oqceQRtF`q;b5GusHJu>5aG+pA0o--ZML<+ zYZuXly^{?EAg0wbPj2{+>}Wv54aEa^y;Wd^w89&(Ew+J&&1n7?NDmMS{2=bn2L?O^ zI#foOEK(jv9S_BSz_c6Ho@Z>dln_sKAd!i63MK+jSIB{TU-AFa<_zxG6L4E=c z*wTX^Z!yllxutaE8p>X^)WZIw&Z-ZKLJx!{ERcav`UK&i-K^A#!5Nm<_b@ zk|2Z_vE#fOgb-LAPH@aHexi~(E`EPN7>dj)}q zeRUcn(?Y6U$rSmim)6qvsf1QdT^#-|ki4JHPX`HUYr$32F+YyT(e$rJX>44QmsTt1 zklz^?uTxkw@qTW{?fMFI&$mnqVwdMguYW~&a~lC=4IH!F?^g`$HmO%SUN!3KmH;(j ze=GsMf-s$9SqH8@g$#oK9;lxSk-mPh;gM|6y){)ZkM!o-G^#Vm_Did31)$?MK!2!G z-k6&t#Sqe!3tjRioeX`)7@bx;3u0(ft(z;kklM1vu-Mp5tYly zxyOca$qsOqTY02ITd3?A0-XxglQ5QD$GsGig5A#*%`+2^Iib|oY2rmb|J(UCymGLO z2$WYd0T-)yl6_Lfm_nRvP9RmgQeG`_1c~2nh>Th;RjYkh+%r`kG4XDdPKkEc zn9qVO_~^RicIOnnDi3NS48@2hzMm%%y$L1X{DJuV(DkHZcpZo#Yz4)6%>Fe9cN1ff zj7%2}@DP}#pSXBt@?V37g)^w!OE>v7Tap7^ZWWCxABPMX**3+1dkOh(jwXrRN!%Tc zI{TAH&WF{uCzsjZ)sIWn$AmCHKCeo_KVSktU^sr!IMiB%^V`m7?m5`^q|ioTVYr7j z3&mqZss5{yB&ZDvNW9xBrA?o(>=Sml8S>7MsZw22XW@;xAC&Ntl27S1h0iBiujXNq zxLXn;Wl@0(KObZiMGMt*I3v7rs^JA=j`ZgvPl{;@Mfx8jJZu9dOkBin=JW!kwj|L# zxywmCK5EQ|+!`yo*;5OZF?!9#@9=!@U)2l)ycF;s=`2Q3Fw%HZ(67lfT72!Ll+M_~ zby_U}UFhbzFz0YlGO`T(|J4KD2Vv5OI!9=*8eHZ`s0d>0NzB^->-Uys5QU>9%fOA7 zjr6MB`f$cd^V|W)wm6J95v4;Q>fu`2Gk-`3)EpGw^8S%n1--aqK9F77I`PJ-0T>_E8`0L4|OGC2$Oma9mEf?zDx3F zHcAOU#~j}Pw3Eg>Dp56K%pDH4R~{58+g@<;a3dE}2t+i?_J8pc(}_>U-BnrN`BE^D zeE`w1Rtq-1=h`xdUF%2j_v==gBzGvAUPx7dMM8Km0xqn109Ni-bW&uNj2Y%LZPbZc z-Qo69jWY*x`%EsWIqkEU?*3RZm{4gs1W3l)SN{R9WTu=;t@`@R;)Q2=F4}#Rp^PMA zL*5LhGVFARS_ZI2xz6LP{V$aN`!H{ZF!(?wo^$Uj{=iW6e@9jSneB~qo-*gd)f(7` zP8;R#fBVh&|7sOQvo2FE49;ewxkgI!Yvr@cN`^V(Bn_;bh`)^UX3R|%M<=jfkLiId za47*K?eEEb+_tbMq&$g-^r4zf66@fVV)n%-X>*TchNZk%wduJO#B7>POQ6p1L_G)!VW6YDojg#Yl;|r*}v9;yGddftjKviujacM8x7Q^@0ZE~OB_vUnb8y4WbzX!7<7wvFcBzJWh4qvCIj+)Y+yr!$O+T^`n znC$y>QGefIUdjW`_|@z%7`0-K$^zaAG3`>Ver}WlKCIr9Nj}5cr?ypdFTp3xO^~}X zC=w0P5VHNHJX-MR;S}dL3(Lo>|0*YPy>*aNXNSUR_4`#G-0Ak?FykNV7}l~pD_h_f zE32v_BO~6ateEonkeU}Ce(E-E>WB*h=hmYoUQOLW4#!_CHHr|7z&1G*MfA&yOv~8M zJ<=+Z*GbNNA*qsqA#J!(lU%hK4@pIOW#RY~;epd`?X98sjyd~WF(8D8+IRo`UOqIA zR2<+nZt}YFWNM$j8OJi~_t&z3U_P_z6$pWQ>+~N9M9V zya^F2c+SovF`}mZ30cR3kq2)vK!$k1CNL819b4@6KJ z3Y;fZs0XDq8lFXr~4J$;@DiffJpb>LM(Fm{ehFNu1 zHr)6};JMs6bUVo<238%ZpEi_(?fkeys@+^O?DvT2<)n^psNsMcwgIZkW7yUZok^vR zY8OU+q8i7qKgx7|T8=GzPh6EdLi!FOFe;h#4KabQjQ8w0G07by1N4^5Q6O;e94y78 z%~*z_5HLw9ky7T3N^%+uwG9W8^;e4|omD0p8B|Az%LM#8rQ$#k!@SL!d%D$4lJA7rKx+lusX=mJh&a9zoAtkqOWic@WfBX(LlEDIBAQ-wE?%M2 z(dON*OMOtXW`CulL_01&E8L3`iep@aWUw`jVK<~WDlL@|&|Th%n%*vat_oq@e(j6r z?d-;~7n(+-7hecrecGe7)RhURanV1Uqlt_@qg;9M{wH66mLYRECM8gw8$Du%cqzI# z6GhIjkiZ~oiRAU!0U2X%_X6BSdifUv%6qdh2%&Kgf&C2bS5!gDtWG zxv3j?Y>`CgPKW%m057Y57uY`LN0UfUKg?_iT8^9TEO2AO^>G9pp~m2>X#E(({f{K0YF@g-HnEW4l#ytuwj9ly-6|=6bq?VrrRW!% z*PQe(W}8}3Uy5xMz$d*rrUN``YAfschz4SrnimrIuC90&6p zzs#OZmC>mQ5O~(ecNU%vyX3>aduGFX+QH933|~8%#j-5rEJL5IowD!N9qDveE;VKK zYU=LQoT@MIJMreJLAWXI_|G%0S_;(v4L}r5wbj#tIou(J;eph1YmPMC>Yi!izs{wi zTR|hDqW7Av`A;r23O88u&rL&@p&E?^D;z+n^lY8TAmoA`-(VSnyRU4r*f>1<@L(y# z=BE6GsV~jWNB%XXw$_DRP&?lAxQlMZ_m2*Y*Q_)j3o|7k#UQ;4d@O-QiMp!{mQc2= z8i_c>qq!-`<+)h0Q){C8Cu|kAEYE(kT7 zp0|aPYvUUnJEsyvkC3Ko)hzb7{Ky*ka$-S-W%@s{O(G(R=|%r{&BSwlCf1UXgujhK zhtz?;=L;X?+nNg+r;o#)`mkUe50l4>t~yw-e+{@f*z2RcM?6B`i)aFFOxHwveHM%M zlQ$Yk4bfM=;&7(Xgo?tumM zCsIahe|PKdi$XbrdWRF?8J#1d&GJM4COrI{i2ZR8nV*)25dkz0UOxl*Bf{lc*n${U zHIW930TEkTGC7NVLS`o%Zaa6mL4dDuDiMr?zEu2AS3fC}B*-WlxU396khn{ZhFWT# zNC_Kj-WrUF0@uu?=A7d{Mj!*GvCT;^mWo^}z77Z7=4zr%0+i;t!-!zKB_oHVy? zC8slZR-8ipCGYaUe`%48yveo#F8(cv4zK2F>GMo9(42-bfjn36X&@n1Y2fV1$*>XY zc!E;3t9;+8#(tTwl`>HL&rHO~LmOfV0*1};-s>n4nNa%LdR}*-$!w~UwuT;DWe1d! zhU9*2g4$rC7qZI=t|wcQNIsx7;P$TW#TP0{Px;n(Z~cqcQqlWT7Z%b|%6A~w`rKEH z3AgcI>fe1P+9$SMybQzTh4fIS1UA z`{&a}6#CCJE8P|^Wfa{+0nNLkcVe`ZICu4$<~xD@2i-6i>P;RY{(eG0iML$`RV;j2W*Th1a5prW=&@Uj2vv^}r5~(%-7-~|FB=zSA&#!Q63OKKsXez> zzjY}jgFpktLj)b;?5k(H zK9?yyu2%e6qGb0*E999Q04>;9epB|O-rIlyV?8mbp-^sP7N;(g zNjoV|r#qfdHt)Y$jT{QxEL@9OX=+6(PQ-VZ2my{wTUm%2{N{-pbnwmEnzlXj*Q*Hi zvZ9I7Ra37IXUr0&n_Pp#tJM-QFBqgs5z&lUC(k^>CnmiuZ0+ z3)PE^E2@xUNn}|CH9o8Sm0~p^f*jS_L>V`kXXI^Asj&H}ta5eI16WX4Zf3$Ow2$VQ z_EHVzOy2PK=5beXNNN6;ZLaqSl?l^BX@LopiI>@w7ClyR_=CAWiZNG{f~o)t2N-tqcVo1Z3)2K!mi=dhK9y8sME=QzHpak1Nfe&g z)94v1ju_j%u=orvMSQQCbM-VQP|P1}S2KJ(CAgxCSfCNv{~ZvRDSHlgC^iV|sc|f! zZV4JDy+z37xlfcgE5*3;2mW}S!yU6vp&)WBu)Wu(n1Hf+o8=|e8^?CfdU3Rht!MW4 zMeDB4Ks>KZ%P2Iy|Mn4Lqw<3tTvvR!YBA>(m+L;Th z&IoJ~o**pFQok#E=~(sxDf zOLWoic30C5#2jZv{-f<38_2h$@{gUth71F4!B^S4pPt-qSM)Qq*{L;PBDJf^=+^Le znhvws@PVSxq7+XG0#VDxD{snm0VUBbqX`F2tnX0li3vP`&>RhcB1)+Vz9NP81Q{8|#>vK@sn*_5iO2(`1vE5F5IVrL4ay9k zgEb1t2O$l1s)}+g7G0M}KdM+cmyT8c|15xO&qzuX1giIyCD=ezbFuHad;tC5v0%2V z47orsboLH4*y-HViR_yUBSkJ8K;hu_X>s3*u1j|mGc{C4HqR^5Nztbu@e0ph*e-Md}LKbItXTBxOyKqzC z$F)>)cqm(7_J2u9Oy6t%ux;WMW@Zf*>#?3zrbyql@r?QbVuk?_9PsEPEdNgCzg`(k zj&MzZ^W!2lmFuv!|7zvU?7BOA6)^!XeC=NSJlz0#up*l6@yA)Z8A3!efwVRvD?~&| z1KE%QU_Rk7BZhw5mvnTB>~1_>4K26DNfHUGRmz)FtDp{z@0*Is{)7?Xh{?t;&!8KM zhOwXiD&?Ps8Y}#uq7lRZ!HEJWkWmd%Bh@T{+N+S9Yci#Iik*=cg<&)W_95H_7R?~i zqsFAEr|%oI)=j@Q>QXhRTSYgDJ*{Y5P*VIuKxEG~`19YAUdQd9*s9*HvL6FDvZ~@Z zkvnYhN}wSEghf)fdXO$WUN7HZvlmqIJOV7wEe8XTy9g+5a}|V zjHJvJDXmhLEWar}r_+(fxf?A*$RRCCL)su2zzgK(4Z@6;hc0y*6wL(g9HucuWu@nP64i-Eek~&y0Oi{Yqpz4vd{bh+ck*}t5BZ;y7)C$#c@uGSbvZ%|_{l@4s zNgEXe8K~t$zb7TdbauV^b^BdVNKq1HOrIG%$_-xWMl&L8dinXM=(yvM!g3w0c6DNd zw|E?r9U}veWC;S^J4<8~wBLNHX)QyNTaM+Dlj2hveFsQ#)$tu#BSx9gCeM~n=&@5q zrj1kL&42zIEq|mH>ArQik;eX;p(a;IEr*0a04&k`@zeKk?~#Idv-T?Qi?x#eK&~6- zqb~(5Z$qr^u7WBzu_;b9-X_U7iPmDH+cEuU$Lv@ZtDz~e8scq0j+@N+YQESl((FDe zTW!5CJTL7ahv}vm{H|?6% zd&K{^sOe}tksPjsBl;>WsUH_z>06PK;9*Gc}Jm7GB}O zEOFNYHn7GV%>wuVBum)C7O1@&#!#JQBVkv#I)}EBHPN}imULe1?JU3&-L%eFqlsT= zq#4;BNjG1tum8oan2(bHf5#e8|QeJ-E>B=As_WD_547k9dr4@*tY}b zIYE=(*1>#;Ejpt<^`|SkkF0yt>Bnv>q9BMTJb;k6Uww&b52@NirS7i3ZIBlRWW_lC zMdNRY!@JKoyWnF(G*x2uzSyn&SKEv|Qf#f&+5;Q%~wa^OL~2Z)~@Xvlml z+nAKd=X%)2lXi|eb>)FY>Q=&rZo9K>>+gh2o#W!iryQMXSMyCJx1YPY`jVcd4-T0S z-N0C+M8LZYQV++gsff4XVuPYt7KV+}0W6dz_-MUvWw=k=Yr_?}7>r^W3_9~3eoz|A zYETU4p~yn``H*R4&!_e~f+h^>!~|$iwV?xjLu6imSEiUEn(nh@XVdt7zA28FA= zw3wB!fQ9eIF(cZ8o883aE2HZZ0~&rocTNA`v;1^wZ#29Lm0&dKBjWq-c9kEBTL_*k8FLp?^CxrJ=9Vy)rD-dV27-ppb3nMnmp^>6Ra6Leqnc z$q*dre!o=BxQVeX}B%o63eS9Nzv0A*_2^)HP*dzRfamy+tjHkuKf1OsbZaCAj zCe;dZe!)@s>$yHhg#-<^i?2oPqlJ2A&+_a81;25DzFbRk7D z`wf2$PcyAxXFF&YMb~S6@0VOvgGx8F9V2`W&fQ0_(+DP0h=GwTParKD!Fdgddc{e^ zoN9XMZv}KeQ3V8c=QG!dM=r2_RP4qT+xQe*B5hUE6uS^!9eRV$t2I$vfpv;xs7z25}ONlRW?@IBOO;ZEW^C zHJa@rTFx%-^ag(3J&RO1!fBkfG-1r?`VV(lqybZ4&d)_|#s7|l|5`Ybb^>8GuS zN~sXvB!~Eta*cjYPzB*_%E?=H18hVIY0pJ++Hm&2=b&%kM0GAL$&-Fj_M(7o#V%k( z3?%i}(ob41FKIU6Mo$)IiSYLKw~SOjhT!r*^Ki6vaxpga1M(yP7-v=G~RPxMKU9 zR4n}2@t|QM+r|MzkIPM7!;o+9B~jGpNS* zso@TgodZAcPN#HgpEQ_nfkKS(LZ ziieJs;>amzbFA1rOZ0EUw7;A^%ntog4oBr+m4UY0drQh}jVPV*_Xkta!M}V{i%$xq zEIpmr1M%I=8#(Yphy&E`dZERmw;P`_E&Lqp?d)r8ywZFq`DyU{h#T=gZ7b&E2G$~H zO~Gg#rxQ5ul#;b}Zm-^z*URL&!%bP%dV}jP3{}(_?=tYm0j7(@pPmgQ5>LgoVpcJh z)`ctO0vw-3a*Z7PDysL~!Lva(R@Jj4;40L4dM%>a;Tc|=IEp@((zNa4l`0Q9t<}Og zeH>)fuiO6bnMs(tGOgC$If>tzJ6YTX? z9Ah#w%7iLWKeC2S{4#s+`9_@(&fKGS_ig(p;^hobF@Jv)DHVadK>3H;+=LaB&Kktl z99o{)C41U2*}4Y9v!S#TuyS@U)j>H&nn+FfAE%fYpCYxwLxs9X(*L&8z~WlgbQRBu z^n?N;H@KhX@6-OZl*_zFDR^f;Y;PsQH+we<3>QaLVDj@}#r!WPJtoO{ZraCTgiS&W zBR8R>=LS+K!rtNIOJ}dbug5T&wh3PgeG2`8XgCrSkp_MPV*@4^E+mTt9;(a(dE}c@ zUvIvprN(-H4_w8QX$!D0aw+tlP(AQdNy$Gvf*TIJp<>9%$Q$@TLWH7@l;g#Fqlvoo#SiL<5-=`zaA;0 z^ST61Q8Jr+QMQyZw@H=Lc(vHPW9Izv&uq4T^YA4pG602s0j^#ai^#L9;^{(exoNS6 z+tHTYPlE3xS<-jn0MkNJDAlC4b-I6F2dQ*xHf5(5zOVQs2}?V%KRHU913a4%m?Keu_-i-;S!V$nH7+n)U^nI*q&_Da2L zZMdTubpvsEOdS<`22BkVy+8*EJ1f#jA>!FBGI18R{3Ql3!QwtV@3~%w)K;CtFka(I zU0>CwBj4f_V6Em(njX2YlGx5*bjfqz`(gR5f`k{!;T1X~;$W$f3A$SARm{gyJRP3%QC-XQ?}aU{X$W zEng7visykhM{cboNtz9O#)^_?=-C=Faib%k10o@*P9$9uO=i z4+meZq6ClP^{s{SvGC{p%WP8asENv0Dga`LB_oC1dyJ&1^B*Pzc1ZA8n2vlxoC?JM z0~>_7MVuHD{AYmSXG>iw3D3eecT1=14b3S=KDgoj=kYlW*(2nYmDk*kZ1{%VPlU}) z49B;#rySzJ0}P|*6Y-d5Na{)0XbDVSJ$SjqCG?cm!Orc~$g@ zluRF`)}Naxwcql}S*=kH1J$g2@+s$ zYdEQ+1tvxsS1=TV4Puep zLzLBtQwuYsTlyEYW5$It;<0U3_w#VO#R_J@X|2SuMzlL%M(e$uoRpVisLd3)3jwZGDc5U>#H0jFY*$ITR4)P}kI~Go$X@;tsv#$MFS0wi zof#&~)siWG6Zh^gdgn7RJHgKd*e`dFe_W(H!WW5;h{XDJ0e#{&%Gfv9x%x)i(G>x8x}dqaCPn!Ji71FmU-=Rq=xt+YZS@w^4nwg9-~x~RBsl2mD2^yn20S^juR*zl4*Anu6{fG z0ixsOXUEz(lH+A-3vzv#EWM!CKiiTIH8!^OvYceLfMkLE--{5!=RB=jcWJyp-OU)1 ziJ;(CMfU%A`_${ZGBpo+ZU+rfsnAU40#zC1SueuvP)9odnEY%_nW9+u^3=8i%!r)< z(w4*pRi?gK^|V#g*QzEy+Jr3w{{cQo5hs&6`k3lbB}o!EGU(caS>bDo#W%-2#6FwI zjY-!?he*DMKY;WgtqZkx;6v=67u_WB6rBU^4YY5hA>r2H_Jo|Po6sPzTaTXTf#YPK zGhJSqhvyuo6~M0^z0M5j`wI|n z#W$QeBvE5)y5H2TMZ4b#N0yXB(WE)9S{{0JD;J5?C|c2*dy=-gD=qihSbbzEdeb6A zXR2*j7LK;_r$LuG058CY_1p+=om zOw+$OhP9cQ#E$97de)(N_>a~SHvkvVY_Gs-^Km1lgU7|q)Z1Xa(8y~!u!cTtjAiGK zIF89%j^^h3StrocfT>2YFMd2*e=RjS=MUW#ff@~$-16t;;sf(t$4@5o5?z{NH$xO*|p}Kk0WlIZ~wacbT7&s<8DjtBXTm%zF5TY`B4C%+kC*NAi)-^ zL8Vxpm870m`cM8)W@Lr8n%op;M#oF22@B3j!$fPBf2|X3e3J1z@&(QR%$v`rhE;gW z)L$a0u2rey(%Q%IEVj$G@Mc_rj&qCYJ0+4UtQ4seuEx$H2=XXFtsm~Q`gAk5p!u1` zZdk$L`f7kTJCCtniiWK@X8^k_cxI|gX3Fu!Zg^l}WoacDe?xYd)|i;@p>dpD(geZy zlfSH6#~4#x&PRNXb3lFB>v8};JB)4Cv^s=ax7p;YzO9PNf<=5-ze4RWKkpT~e}1Od z`$+Ds(yW9IZgAhosoHyN50s-CSOVUqIR4P?x#D^~T)4zYG?k*#jT0*J2Z5<6f7)s| zY17_kn-V5! z2H~Y!u52K@q5g9AJCMKE_w)Em@Q1=s+*Gq(!aoJ! z;?vdm-qq>p^^`BCS&Pq@7}qbx_1PXVau$+kyugg0EiiJ9{2v0cY{zhHPYA)wTW&4LcxL#tzE=u4EkJpM~igVQA)^TMbR{QXgH za4d|z?xi$eX*_oT5_h&hIqJL2hS(9~%E$0S`=0g%{jYwISBXo+Pc5G=D!8Vfg&wG6 zOh8)@WTOsY$T`gL#(*=(*$MQhv#Yj}xh%{@JIJDhus`W@F;3~ZveYAhrCxK;wX4`0 zzV?-vbHw~u?|kTv+0`p~T&t=HC6LaLSV?uhrvc?eJ}c8eD7G?vCY7d7>X3dPJ+bFB zLo=3{g50}3!p6}~0yl;$-T8Vv&G@~j7IXW|WOWwrtoVDy{*;(-ZqXhN9DE2qKvn>< zcLh+T5OA`|1yWNJOQ4!%B|->&5L7ZfhD@lGl`Gfmn1w1W(f1CxZCtQ%3^rstK$P5*tC#P!mO&j7$_4ge?on8C&)%_2>V z`FV?lq!U-0!`zj;Y7=8d4mHcC2KT{F7G&wECm&_ud%23Q;e$o1HQ~7&lxwB2nKzVL zmN%A>=M~g?=Y{`trzVGU{}BUq+d~6_+Zn*IJ_VBWdZ+I(vr-OYTZcvKeVEd5yN&w< zh&cJ>qe@_5P2&8PbPLhYIzmd>WcJaqQJWfzq3q0<^vPvJwmZxy()>n#_47ZtEdH_2 z?0_|4!sza!QRw!&&(`)AKS;mK>9!7GkIwC`gb_L~2iXLe)=--Arw?BX))KO!jPeIZ z_KWu1Zz8N&ASwAZJtZv_J&xX;CT$gDfXyrrH@4kEDvy6_h`+)Ds%!UtlG2lv?K9PI zlNHWR7S3qd4}m8g4)-r*515FDCFqClN^Ayas5{Z%gWU2Dr1CL!9t>_2!;5iX-4wlT z=^|-0Q}w#3@B*4X(mo_K;BBA>qRImf0(6m<(;XYHqzgQi9eM<&G0UY~kHkH{Bd(a! zZ_J6d+?Wx9NaI$B)aTJdhMSzTMP`hQYLt}g7?8`Im}8mx%%rE@WYq;yG+~^r}okf z9nJxElYMIFX1lwdPX4}D?ix79tTv)YRby6B*~Q`$<>%~IoiaryyMbygk@WZ-Qb3yV z8M=(pkoMd3pT&|4U# ze~2C8G2ulbktHlx(W&j7sUBC@JZP>sQWRxIlg)T%g~i0X^~k=&uUl_e54!da!S7Ze zC%00=4%l9Axoa1a?c3aPAYl z`zI{-w{J1t6TI?|mXRq~k}Gx>!>R{&k-`=kFFunucA#WwgcTfpp_ua0<#|t0IeF|b z9t+k}qfcuPQ4%*(W>Ikly`x0+JJ;SJRb{Bsbt$zDxzY#i>C?Mi1DC3o^?()l?C%e-(&_e1{9 z$nuV2ewG^%~6P;a9S2e>zl!W2&oYPx;;CXaS&dkiMWk29fF>_v^d)p4Ic1J{i^L z%U)RXOU(7L3>7z5T)}7AHGf+U?Y>Xl9M=?!11+*J>`7QDJ{lO=}=Sc*o#F$(!( zUVuqxbV4Fod*+AZtWa`#cvNPkXN^PzQY-=s{KXF$X%@QKHmX}MJG5z?6~mqOZuD@h zZg+OORd6+vVGg;Dn41}FKUiVcSbIh}G1jDKy3cz!xx?u!wO}h$}j3!my znWlO|uV;%8zxwKOzB3jK*RYQ z#co4h(CnVqr4LOa+EiK1PW7y;?9vdsDbJXrfVK)wdDR=6>n@Bj4x|Me7*bqcvT903 zeDcyjv)OU2OqQhxGSq8o4B60UC5%lnaMKd*c_QgPdtp$l%~1vjm@}p4_PHCYVU^DP z^epSoZ;8{Ncs;wEQV5R5z1B5vAx*feK*e&!k43Xe`#1+{`b>w|Rs|D{{N(Z>s!uVPUyvDq~o$+=cp=*Bcizx($AZ?tOz`^rj3qLyx4mZsV7v z^8u~r+hrA|4bpFFY?BLi`KNX{x?EXzkvQTpQ7!y{JO;cc%(RuEv(OXyOPkXy!daZT z#M9agukTCUiJ{JUPC4nKNQ|D)%WPz^58@jG30s>;PXMy(f*arys(@r|z-BlVdn)m{ zp+>jyF>ViqFvkTT8dU=w{brZygPQ!9xTghL<>q-CB;-^77YPye?&q8dvoS-x@tP~p z73Av4=eYWhrQ?CjtT8;nZytDZX`GT}yZ9${4;W-5h5yxmyMIM~YwbkcaDSq`hu%^0 z%1{W&fVPG~4~~tw@at8au_#VL%xmL&jCR-vgIJg2lONHb`lSEqd?>Y<%=($lXQGVe z9OzG`cR!>$Pgtlet7U5PoO^S{NO-A4s;s@SHmA@KS5%t>h-eel= zg?5F4zi8tZ7?`Io{(-leHFYj-+tJ3x_Vi3xN_;9%>!E$Z5%ai1V=hOJAinEOd#`Kw z$%y+Wz&{Q;|5yUrjMlT!a{W7|{(6@9-|Mn0-&OzM^(K(0lo9lflGlVnNM3}IC=@U~ zh$pM@}337C(pF^LdFL!JZ7p<&!k3AJFj7y z7MfzXH@E%;AKZU3;okwyu)cPpn-b{a6YRYCYsOo^iNK%R{~y%;``tQAjkOm$Na-CV zuLy;Zygs4hwEY@I!w$n{u`#C>m5=K6Ls{Y1W&b-=jj-^Xq;u(g|K+E5oazbAEPKL( zno#5K3o*-c6&2AiCvHA`D6fL;QdgBR5a4sWLgVw)P%E5i{|ad_&t4w9ctQVLmhb2+ zZN)E(7t%XQUJVK%`Gd^I_Ubv;D2WEWre-OxL*>3_t!{Ll%s@MhHEF_WRT?i6eZ{-5 z=otr7vtDNwJABcBmf-Np;!zC)1Jw^Dpi?=3a=mKp&nWyNWdO?jl z)QcQtkNiPcK0*Ext1T(JgcWsB&4AQPp8Q)Y6i%3=|MrD`7e9rKH|vY-UEO&eiW9vM z)dl(tG^KdiwWfht`^a1MMfBA6<4V>Sc-X5cy2zdyuWDB)=RAcy+p^7=k7B9CqwKX! z-UGA<$={}p@7A}mZ!!&|yBlod*cWC2?_A$cHj*JNYb(~R~7E5FlZ|bf~2nnG@NZu0c zUn3&e-b_IUV{Q@Rn(149WwdyP7wWstJZj#B?LCDFoO)Wj&XeZjm`-ov3^KUO*|bc< zOVG|XMsw$5(c2kI-P^wAaT0Uz;&Ywam1z``H-y zbgO1}$rRDMJ-rK2h064`Ss@>%YykVf8DFTsqqGv9O-2mO&34-+GP&bU=G^RZ3gv0grKW7-YW z6V7!J0mZs_w{UyTldd1FX?>C=J0`P4&9>3n#;f`tb@v2mSGa`#H0HErk%{ubz;~Mc zr9#LqD1_wwf?xN`BBo_med{WbTC`vBJ}B78&)Vj*VBl?O6HR?nG1ZSMLb$SxX!;;r z^gaF*p6qGYf66O2E{Pgl+{sU&CsXpoSNyEP&}s6QO;e^)wcoT@GthTR{uFeLk`F-f zG2%3g&>3i4bFzKOJ}s@|4o{Xykc<-#WOegHW-dg(h<9n~CcSB;!N2;XK^JV}e#Cg8 zw9!hOP~mqQdMv#sQ(dXyCmDYJ**}VRnJ!xfY1zQHb{<84=n~bDyaE(L^1;aFL-{Xd z{TarnAU^jbplVLoE;v&j*9RkMV7kc`r@VxlRGEQa|Ism0?anu03qPE;TdDR1jiYz& z^8cbCP0i=`y7Y%#B#(1$_a8hIp096}Nfh1AyZHY$*00( zU?$n5n$Tzq%;6l#x=6cPbvqVOuLTX5a-Sx*L#Z?S7vq*}AHTd6KZQ8WZiOoDWt!}^ z`GX_V%j8}c=plZAx9nhwkm^1qj$>+q+LK3HE{wn-}2D7HoFg44TdqU~iEbgTd zD>On;^aqUs!Gf1Cd)BO`Clu|>%wkDC96Sv=bjKzg?z!W7b((q+5tpH=eo-@$Lhsug zp+!hu1;z-;=ci45?BzOQ)T$rw!>D2SZfHw|F-5bEw3$05pR>N0?Ge)^7G3<)g`We& zCgYqV7b9$ZwqbrL=KIt?AfA%o<+r*?BXYmZk?J*_@?8^>K_Mhx2>c!wdGa0IW^!9_ zHEC@lOclZJecvet@94JqR4m9a7bbj`=p2*q@>HMqs@=fD&ATUUl4d)9N%&9C{HJv< zkm6)n*Z)dVOycv*GDw+ON?rtAqvR_R#;c6u)VM40G!tEOZpMqbol86kHsHgM(IS^< zG<l`i)&zdz;=+{v&Oh{e?g^+x8 zvb4t9@GR4kfAWqkPi?Nv#a(OHnMtK-GfRW8Ux(#9uk#5fnl~0zfeIh{@`-#dCNez8jj7 zkvr4`-o*6q#1z)3=jWD{svE8WxvXv>Wof1`+B%B$-cSb5zk-PwB*BJzFdk#~r^YwP zjwvr}vJ9Ttc^pFePzVX>;R+MCgD4N3kltwaLU4``Lv~l#HZUw$bcvmzF&DTQGtI6^ zH|GWF;yYuO+dahHRx7`?vkW>&6Qht8Avq4SMhTfhJGyD#?QZQsKk4)dD;c5$OJBKh z#T-|i9hfDf_CZV07k&&^Gh2mg%iju5*ekrBc02m4O6$?PQCNOvg@Y`jAcvt460)2A z7~$eM^uALRhSB=Aw!yDse)TmBk(v%F9otJ(dK+QO>L}XXKH+G?{#6~Luzn8r5%%l) ztLp`&QAiF#AtdBDnQc_xy(e~trrV5Gg;rE%N`@1cyqOicJ@Mqp=MC3{QBY^o13mn# z>cd`q0e*e!x7HLI2kD`IF+u_;goL~f=38Fw#fYit7D^Y|lu%ZG4M#5xoq_5>4ezdZ zk=7&H3R|O*ee(`K3NR&u^2AV#WuU~rrRrbUdaeIa5YmCkGK9P`t=Xps!vccC~$l2r*zfZg<7bE6EKOQDVfmY zR77$B3LznX5TA4!iclDAn^8(}I^<<&TfE}qRO47oHAuEpxS6Pk zkP$)hYS1-G$lm}nPQhXLt5m>V`x8r|C1H ze>HmQENHq7>80^UUJD8#A%7Jt!+?Wv`bn7ZqH-us!?Hy{eyptGl!?*Kn+PakmNh%6 zzn-y^K)A{9EfEp9i2Ts;gkg&r=+;fhJ}88QycuB@CA{0zV0eqr7imaf5vDq4v^F!* zLd!DGzUk$iYAR{FY=5Zl#q?sWg6GAU0YY*R3LznHPgq(|-#Q!pi}YzT$U2s#xtBEQ zFrf`+vsgQi(AQBT%vxE2%Ic$=wI{fC68Ir^3H%)v6mnoaIR=H0koN^DB6gDrbxxf7 z)T{>4wb)iG0lZF5O=k9)JC1a;(NwMLFq2ymwH9(32@ua{5(zo=7S#aQuQp3USR&4I-+kb8=>#*hHsQh=>_m*go~O-n|&g zMeRxj#a2+5&uJp02Q5NEJ`!Ol(I?tu`7)V*Rb1|j|1S&v`3+>d%H&ylw}!@Cod)$! z>%!F-;kWi=h6%}TD1?N3NL(7rrPJF}M6jJ(S)p})rp`>fqd1N9%XYRJim0@bnF(zh zeZ05f&TdDeknDo4Q9?dEll^Oy(1CfF&>xHQ6f>i+ntIKdnOjxewpA3HUNim$A@k58 zB;@np``3iipbqEYpyB9KNwYJJf7QE8b-`#?7n3`>Hf_zn*K0QwWGX4y3oSxIJ|XRl z_)WUH4$RWUd)$&64a%8brtMv@lWJ+weeXot*&C?l1z!J-0)%WXLv}+UB;=C=j?-D+ zsRyM9#cY0^)&#s@Vrq24b|&gK`cdnVz$3b@zxt|A2tpww7g?&RFVc`{J2FgCb(y7C z9}&bs_JqtpAtdBWgNj&=m`>mA$=KIzP&kqF1P@ej*vJ$&AZ>b1yTjl0H0H~Y9ndvO z2obT4)8L@AH4Mh{nQ#f6t1~1nP`vM@1{yVM=H6?jl+`nXluSY)B!pOeVWQk^NA;AJ zBLi)7)r1$#6m@u64TM%3tw|7QG+8rrjgna?goKckz4GQ3;0J?Gjfv3EH*Pa;y&ZJugB?r&@~LnfhXln`=|V~*3g$l_V#92Ujb zqC>pPxgLKKxrqE*0))#ps)>*u6hcDCE0E>a)FV&J(rcoYtodKo&dmoS)q-3W5&2g{ zsDfk?3LzonH3`kc`fI=3VylZVXX@nM@~%V!ese!6y`y9Rg^&>Pr@%I+=7-IY?MvIa6qhaC!>dt9$QTMCA>@zKah&3>t@HD41$tAjNFA;jc}mNfETtf0m^DfW zc^iCwP3uYxBv3O;;l)4UEQ^{oBbq__s(UA&3JM`1 ze+`X75<`oS5b~Ls8JbAGIJ5`}A)lGKG7R#ip+!gtA>>QL7HfnMLcTNpLdciq{{yoq!4iHt0&@TW002ovPDHLkV1mzA;FSOX literal 0 HcmV?d00001 diff --git a/demo/documented/mesh-generation/tetrahedron.off b/demo/documented/mesh-generation/tetrahedron.off new file mode 100644 index 0000000..3eb39db --- /dev/null +++ b/demo/documented/mesh-generation/tetrahedron.off @@ -0,0 +1,12 @@ +OFF +4 4 0 +0.0 0.0 0.0 +0.0 0.0 1.0 +0.0 1.0 0.0 +1.0 0.0 0.0 +3 3 2 1 +3 0 3 1 +3 0 2 3 +3 0 1 2 + + diff --git a/demo/documented/mixed-poisson-dual/common.txt b/demo/documented/mixed-poisson-dual/common.txt new file mode 100644 index 0000000..39b844b --- /dev/null +++ b/demo/documented/mixed-poisson-dual/common.txt @@ -0,0 +1,75 @@ + +This demo illustrates how to solve Poisson equation using an +alternative mixed formulation. In particular, it illustrates how to + +* Use mixed and non-continuous finite element spaces +* Set essential boundary conditions for subspaces + +Equation and problem definition +------------------------------- + +A formulation of Poisson equation involves introducing an additional +(vector) variable, namely the (negative) flux: :math:`\sigma = - +\nabla u`. The partial differential equations then read + +.. math:: + \sigma + \nabla u &= 0 \quad {\rm in} \ \Omega, \\ + \nabla \cdot \sigma &= f \quad {\rm in} \ \Omega, + +with boundary conditions + +.. math:: + u = u_0 \quad {\rm on} \ \Gamma_{D}, \\ + - \sigma \cdot n = g \quad {\rm on} \ \Gamma_{N}. + +The same equations arise in connection with flow in porous media, +where thery are referred to as Darcy flow. + +After multiplying by test functions :math:`\tau` and :math:`v`, +integrating over the domain, and integrating term :math:`\nabla \cdot +\sigma \ v` by parts, one obtains the following variational +formulation: find :math:`\sigma \in \Sigma` and :math:`v \in V` +satisfying + +.. math:: + \int_{\Omega} (\sigma \cdot \tau + \nabla u \cdot \ \tau) \ {\rm d} x + &= 0 + \quad \forall \ \tau \in \Sigma, \\ + + \int_{\Omega} \sigma \cdot \nabla v \ {\rm d} x + &= - \int_{\Omega} f \ v \ {\rm d} x + - \int_{\Gamma_{N}} g \ v \ {\rm d} x + \quad \forall \ v \in V. + +Compared to classical mixed formulation used in demo `Mixed +formulation for Poisson equation`, the Dirichlet condition is here +essential one and Neumann condition is natural. + +To discretize the above formulation, two discrete function spaces +:math:`\Sigma_h \subset \Sigma` and :math:`V_h \subset V` are needed +to form a mixed function space :math:`\Sigma_h \times V_h`. A stable +choice of finite element spaces is to let :math:`\Sigma_h` be the +discontinuous Raviart-Thomas elements of polynomial order :math:`k` +and let :math:`V_h` be Lagrange elements of polynomial order +:math:`k+1`. + +We will use the same definitions of functions and boundaries as in the +demo for Poisson's equation. These are: + +* :math:`\Omega = [0,1] \times [0,1]` (a unit square) +* :math:`\Gamma_{D} = \{(0, y) \cup (1, y) \in \partial \Omega\}` +* :math:`\Gamma_{N} = \{(x, 0) \cup (x, 1) \in \partial \Omega\}` +* :math:`u_0 = 0` +* :math:`g = \sin(5x)` (flux) +* :math:`f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)` (source term) + +With the above input the solution for :math:`u` and :math:`\sigma` +will look as follows: + +.. image:: ../mixed-poisson-dual_u.png + :scale: 75 + :align: center + +.. image:: ../mixed-poisson-dual_sigma.png + :scale: 75 + :align: center diff --git a/demo/documented/mixed-poisson-dual/cpp/CMakeLists.txt b/demo/documented/mixed-poisson-dual/cpp/CMakeLists.txt new file mode 100644 index 0000000..a62d7b9 --- /dev/null +++ b/demo/documented/mixed-poisson-dual/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_mixed-poisson-dual) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/mixed-poisson-dual/cpp/MixedPoissonDual.h b/demo/documented/mixed-poisson-dual/cpp/MixedPoissonDual.h new file mode 100644 index 0000000..922f7c4 --- /dev/null +++ b/demo/documented/mixed-poisson-dual/cpp/MixedPoissonDual.h @@ -0,0 +1,13248 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __MIXEDPOISSONDUAL_H +#define __MIXEDPOISSONDUAL_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class mixedpoissondual_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + mixedpoissondual_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new mixedpoissondual_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class mixedpoissondual_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + mixedpoissondual_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Raviart-Thomas', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 8; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.235702260395516, 0.404145188432738, -0.233333333333333, 0.182574185835055, -0.14142135623731, 0.0816496580927727}; + + static const double coefficients1[6] = \ + {-0.117851130197758, 0.173205080756888, -0.233333333333333, 0.0, 0.14142135623731, -0.122474487139159}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {-0.117851130197758, -0.115470053837925, 0.266666666666667, 0.0, 0.141421356237309, -0.122474487139159}; + + static const double coefficients1[6] = \ + {0.235702260395516, 0.0, 0.466666666666667, 0.0, 0.0, 0.244948974278318}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.117851130197758, -0.577350269189626, -0.466666666666667, 0.182574185835055, 0.0, -0.0408248290463862}; + + static const double coefficients1[6] = \ + {0.117851130197758, 0.173205080756888, 0.233333333333334, 0.0, 0.14142135623731, 0.122474487139159}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.117851130197758, 0.115470053837925, 0.733333333333333, 0.0, -0.14142135623731, 0.122474487139159}; + + static const double coefficients1[6] = \ + {-0.235702260395516, 0.0, -0.466666666666667, 0.0, 0.0, -0.244948974278318}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {-0.117851130197758, -0.288675134594813, -0.033333333333333, -0.182574185835055, 0.0, 0.0408248290463862}; + + static const double coefficients1[6] = \ + {-0.117851130197758, 0.692820323027551, 0.266666666666666, 0.0, -0.141421356237309, -0.122474487139159}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.235702260395516, 0.404145188432738, -0.233333333333333, 0.182574185835055, -0.14142135623731, 0.0816496580927725}; + + static const double coefficients1[6] = \ + {-0.117851130197758, -0.692820323027551, 0.266666666666667, 0.0, 0.14142135623731, -0.122474487139159}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {1.06066017177982, 0.173205080756888, -0.3, -0.365148371670111, 0.14142135623731, -0.0408248290463865}; + + static const double coefficients1[6] = \ + {0.0, -0.346410161513775, 0.0, 0.0, -0.282842712474619, 0.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.3, -0.182574185835055, -0.141421356237309, 0.163299316185545}; + + static const double coefficients1[6] = \ + {1.06066017177982, -0.173205080756887, 0.3, 0.0, -0.141421356237309, -0.367423461417477}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 8; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.235702260395516, 0.404145188432738, -0.233333333333333, 0.182574185835055, -0.14142135623731, 0.0816496580927727}; + + static const double coefficients1[6] = \ + {-0.117851130197758, 0.173205080756888, -0.233333333333333, 0.0, 0.14142135623731, -0.122474487139159}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {-0.117851130197758, -0.115470053837925, 0.266666666666667, 0.0, 0.141421356237309, -0.122474487139159}; + + static const double coefficients1[6] = \ + {0.235702260395516, 0.0, 0.466666666666667, 0.0, 0.0, 0.244948974278318}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.117851130197758, -0.577350269189626, -0.466666666666667, 0.182574185835055, 0.0, -0.0408248290463862}; + + static const double coefficients1[6] = \ + {0.117851130197758, 0.173205080756888, 0.233333333333334, 0.0, 0.14142135623731, 0.122474487139159}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.117851130197758, 0.115470053837925, 0.733333333333333, 0.0, -0.14142135623731, 0.122474487139159}; + + static const double coefficients1[6] = \ + {-0.235702260395516, 0.0, -0.466666666666667, 0.0, 0.0, -0.244948974278318}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {-0.117851130197758, -0.288675134594813, -0.033333333333333, -0.182574185835055, 0.0, 0.0408248290463862}; + + static const double coefficients1[6] = \ + {-0.117851130197758, 0.692820323027551, 0.266666666666666, 0.0, -0.141421356237309, -0.122474487139159}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.235702260395516, 0.404145188432738, -0.233333333333333, 0.182574185835055, -0.14142135623731, 0.0816496580927725}; + + static const double coefficients1[6] = \ + {-0.117851130197758, -0.692820323027551, 0.266666666666667, 0.0, 0.14142135623731, -0.122474487139159}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {1.06066017177982, 0.173205080756888, -0.3, -0.365148371670111, 0.14142135623731, -0.0408248290463865}; + + static const double coefficients1[6] = \ + {0.0, -0.346410161513775, 0.0, 0.0, -0.282842712474619, 0.0}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.3, -0.182574185835055, -0.141421356237309, 0.163299316185545}; + + static const double coefficients1[6] = \ + {1.06066017177982, -0.173205080756887, 0.3, 0.0, -0.141421356237309, -0.367423461417477}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 8; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 8; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + + double result; + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + switch (i) + { + case 0: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 1: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 2: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + return result; + break; + } + case 3: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + return result; + break; + } + case 4: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 5: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 6: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + return result; + break; + } + case 7: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + + double result; + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[0] = result; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[1] = result; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + values[2] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + values[3] = result; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[4] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[5] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + values[6] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[7] = result; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Evaluate function and change variables + vertex_values[0] = dof_values[2]*(1.0/detJ)*J[0]*2.0 + dof_values[3]*((1.0/detJ)*(J[0]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[1]*(-2.0))) + dof_values[5]*(1.0/detJ)*J[1]; + vertex_values[2] = dof_values[0]*(1.0/detJ)*J[0]*2.0 + dof_values[1]*((1.0/detJ)*(J[0]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[0]*(-1.0) + J[1])) + dof_values[5]*((1.0/detJ)*(J[0]*2.0 + J[1]*(-2.0))); + vertex_values[4] = dof_values[0]*((1.0/detJ)*(J[1]*(-1.0))) + dof_values[1]*(1.0/detJ)*J[1]*2.0 + dof_values[2]*((1.0/detJ)*(J[0]*(-1.0) + J[1])) + dof_values[3]*((1.0/detJ)*(J[0]*2.0 + J[1]*(-2.0))); + vertex_values[1] = dof_values[2]*(1.0/detJ)*J[2]*2.0 + dof_values[3]*((1.0/detJ)*(J[2]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[3]*(-2.0))) + dof_values[5]*(1.0/detJ)*J[3]; + vertex_values[3] = dof_values[0]*(1.0/detJ)*J[2]*2.0 + dof_values[1]*((1.0/detJ)*(J[2]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[2]*(-1.0) + J[3])) + dof_values[5]*((1.0/detJ)*(J[2]*2.0 + J[3]*(-2.0))); + vertex_values[5] = dof_values[0]*((1.0/detJ)*(J[3]*(-1.0))) + dof_values[1]*(1.0/detJ)*J[3]*2.0 + dof_values[2]*((1.0/detJ)*(J[2]*(-1.0) + J[3])) + dof_values[3]*((1.0/detJ)*(J[2]*2.0 + J[3]*(-2.0))); + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new mixedpoissondual_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class mixedpoissondual_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + mixedpoissondual_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 10; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[8][3]; + for (unsigned int row = 0; row < 8; row++) + { + for (unsigned int col = 0; col < 3; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[8][8]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 10; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new mixedpoissondual_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class mixedpoissondual_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + mixedpoissondual_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(FiniteElement('Discontinuous Raviart-Thomas', Domain(Cell('triangle', 2)), 2, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None), **{'value_shape': (3,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 18; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.235702260395516, 0.404145188432738, -0.233333333333333, 0.182574185835055, -0.14142135623731, 0.0816496580927727}; + + static const double coefficients1[6] = \ + {-0.117851130197758, 0.173205080756888, -0.233333333333333, 0.0, 0.14142135623731, -0.122474487139159}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {-0.117851130197758, -0.115470053837925, 0.266666666666667, 0.0, 0.141421356237309, -0.122474487139159}; + + static const double coefficients1[6] = \ + {0.235702260395516, 0.0, 0.466666666666667, 0.0, 0.0, 0.244948974278318}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.117851130197758, -0.577350269189626, -0.466666666666667, 0.182574185835055, 0.0, -0.0408248290463862}; + + static const double coefficients1[6] = \ + {0.117851130197758, 0.173205080756888, 0.233333333333334, 0.0, 0.14142135623731, 0.122474487139159}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.117851130197758, 0.115470053837925, 0.733333333333333, 0.0, -0.14142135623731, 0.122474487139159}; + + static const double coefficients1[6] = \ + {-0.235702260395516, 0.0, -0.466666666666667, 0.0, 0.0, -0.244948974278318}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {-0.117851130197758, -0.288675134594813, -0.033333333333333, -0.182574185835055, 0.0, 0.0408248290463862}; + + static const double coefficients1[6] = \ + {-0.117851130197758, 0.692820323027551, 0.266666666666666, 0.0, -0.141421356237309, -0.122474487139159}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.235702260395516, 0.404145188432738, -0.233333333333333, 0.182574185835055, -0.14142135623731, 0.0816496580927725}; + + static const double coefficients1[6] = \ + {-0.117851130197758, -0.692820323027551, 0.266666666666667, 0.0, 0.14142135623731, -0.122474487139159}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {1.06066017177982, 0.173205080756888, -0.3, -0.365148371670111, 0.14142135623731, -0.0408248290463865}; + + static const double coefficients1[6] = \ + {0.0, -0.346410161513775, 0.0, 0.0, -0.282842712474619, 0.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.3, -0.182574185835055, -0.141421356237309, 0.163299316185545}; + + static const double coefficients1[6] = \ + {1.06066017177982, -0.173205080756887, 0.3, 0.0, -0.141421356237309, -0.367423461417477}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 18; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[8][3]; + for (unsigned int row = 0; row < 8; row++) + { + for (unsigned int col = 0; col < 3; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[8][8]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.235702260395516, 0.404145188432738, -0.233333333333333, 0.182574185835055, -0.14142135623731, 0.0816496580927727}; + + static const double coefficients1[6] = \ + {-0.117851130197758, 0.173205080756888, -0.233333333333333, 0.0, 0.14142135623731, -0.122474487139159}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {-0.117851130197758, -0.115470053837925, 0.266666666666667, 0.0, 0.141421356237309, -0.122474487139159}; + + static const double coefficients1[6] = \ + {0.235702260395516, 0.0, 0.466666666666667, 0.0, 0.0, 0.244948974278318}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.117851130197758, -0.577350269189626, -0.466666666666667, 0.182574185835055, 0.0, -0.0408248290463862}; + + static const double coefficients1[6] = \ + {0.117851130197758, 0.173205080756888, 0.233333333333334, 0.0, 0.14142135623731, 0.122474487139159}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.117851130197758, 0.115470053837925, 0.733333333333333, 0.0, -0.14142135623731, 0.122474487139159}; + + static const double coefficients1[6] = \ + {-0.235702260395516, 0.0, -0.466666666666667, 0.0, 0.0, -0.244948974278318}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {-0.117851130197758, -0.288675134594813, -0.033333333333333, -0.182574185835055, 0.0, 0.0408248290463862}; + + static const double coefficients1[6] = \ + {-0.117851130197758, 0.692820323027551, 0.266666666666666, 0.0, -0.141421356237309, -0.122474487139159}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.235702260395516, 0.404145188432738, -0.233333333333333, 0.182574185835055, -0.14142135623731, 0.0816496580927725}; + + static const double coefficients1[6] = \ + {-0.117851130197758, -0.692820323027551, 0.266666666666667, 0.0, 0.14142135623731, -0.122474487139159}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {1.06066017177982, 0.173205080756888, -0.3, -0.365148371670111, 0.14142135623731, -0.0408248290463865}; + + static const double coefficients1[6] = \ + {0.0, -0.346410161513775, 0.0, 0.0, -0.282842712474619, 0.0}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.3, -0.182574185835055, -0.141421356237309, 0.163299316185545}; + + static const double coefficients1[6] = \ + {1.06066017177982, -0.173205080756887, 0.3, 0.0, -0.141421356237309, -0.367423461417477}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[16]; + for (unsigned int r = 0; r < 16; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 18; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[24]; + for (unsigned int r = 0; r < 24; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 18; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + + double result; + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + switch (i) + { + case 0: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 1: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 2: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + return result; + break; + } + case 3: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + return result; + break; + } + case 4: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 5: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 6: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + return result; + break; + } + case 7: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 8: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 9: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 10: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 11: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 12: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 13: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 14: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 15: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 16: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 17: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + + double result; + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[0] = result; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[1] = result; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + values[2] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + values[3] = result; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[4] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[5] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + values[6] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[7] = result; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[8] = vals[2]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[9] = vals[2]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[2]; + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[11] = vals[2]; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[12] = vals[2]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[13] = vals[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[14] = vals[2]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[15] = vals[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[16] = vals[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[17] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Evaluate function and change variables + vertex_values[0] = dof_values[2]*(1.0/detJ)*J[0]*2.0 + dof_values[3]*((1.0/detJ)*(J[0]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[1]*(-2.0))) + dof_values[5]*(1.0/detJ)*J[1]; + vertex_values[3] = dof_values[0]*(1.0/detJ)*J[0]*2.0 + dof_values[1]*((1.0/detJ)*(J[0]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[0]*(-1.0) + J[1])) + dof_values[5]*((1.0/detJ)*(J[0]*2.0 + J[1]*(-2.0))); + vertex_values[6] = dof_values[0]*((1.0/detJ)*(J[1]*(-1.0))) + dof_values[1]*(1.0/detJ)*J[1]*2.0 + dof_values[2]*((1.0/detJ)*(J[0]*(-1.0) + J[1])) + dof_values[3]*((1.0/detJ)*(J[0]*2.0 + J[1]*(-2.0))); + vertex_values[1] = dof_values[2]*(1.0/detJ)*J[2]*2.0 + dof_values[3]*((1.0/detJ)*(J[2]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[3]*(-2.0))) + dof_values[5]*(1.0/detJ)*J[3]; + vertex_values[4] = dof_values[0]*(1.0/detJ)*J[2]*2.0 + dof_values[1]*((1.0/detJ)*(J[2]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[2]*(-1.0) + J[3])) + dof_values[5]*((1.0/detJ)*(J[2]*2.0 + J[3]*(-2.0))); + vertex_values[7] = dof_values[0]*((1.0/detJ)*(J[3]*(-1.0))) + dof_values[1]*(1.0/detJ)*J[3]*2.0 + dof_values[2]*((1.0/detJ)*(J[2]*(-1.0) + J[3])) + dof_values[3]*((1.0/detJ)*(J[2]*2.0 + J[3]*(-2.0))); + // Evaluate function and change variables + vertex_values[2] = dof_values[8]; + vertex_values[5] = dof_values[9]; + vertex_values[8] = dof_values[10]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoissondual_finite_element_1(); + break; + } + case 1: + { + return new mixedpoissondual_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new mixedpoissondual_finite_element_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class mixedpoissondual_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + mixedpoissondual_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new mixedpoissondual_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class mixedpoissondual_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + mixedpoissondual_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Raviart-Thomas', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 8*num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 8; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 8; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 8*c.entity_indices[2][0]; + dofs[1] = 8*c.entity_indices[2][0] + 1; + dofs[2] = 8*c.entity_indices[2][0] + 2; + dofs[3] = 8*c.entity_indices[2][0] + 3; + dofs[4] = 8*c.entity_indices[2][0] + 4; + dofs[5] = 8*c.entity_indices[2][0] + 5; + dofs[6] = 8*c.entity_indices[2][0] + 6; + dofs[7] = 8*c.entity_indices[2][0] + 7; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 3; + dofs[4] = 4; + dofs[5] = 5; + dofs[6] = 6; + dofs[7] = 7; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[1][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[1][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[2][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[2][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[3][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[4][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[5][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[6][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[7][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[7][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new mixedpoissondual_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class mixedpoissondual_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + mixedpoissondual_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + 2*num_global_entities[1] + num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 10; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 4; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + 2*c.entity_indices[1][0]; + dofs[4] = offset + 2*c.entity_indices[1][0] + 1; + dofs[5] = offset + 2*c.entity_indices[1][1]; + dofs[6] = offset + 2*c.entity_indices[1][1] + 1; + dofs[7] = offset + 2*c.entity_indices[1][2]; + dofs[8] = offset + 2*c.entity_indices[1][2] + 1; + offset += 2*num_global_entities[1]; + dofs[9] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 5; + dofs[3] = 6; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 7; + dofs[3] = 8; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 4; + break; + } + case 1: + { + dofs[0] = 5; + dofs[1] = 6; + break; + } + case 2: + { + dofs[0] = 7; + dofs[1] = 8; + break; + } + } + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 9; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[5][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[6][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[7][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[7][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[8][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[8][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[9][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new mixedpoissondual_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class mixedpoissondual_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + mixedpoissondual_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(FiniteElement('Discontinuous Raviart-Thomas', Domain(Cell('triangle', 2)), 2, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None), **{'value_shape': (3,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + 2*num_global_entities[1] + 9*num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 18; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 4; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 9; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + 8*c.entity_indices[2][0]; + dofs[1] = offset + 8*c.entity_indices[2][0] + 1; + dofs[2] = offset + 8*c.entity_indices[2][0] + 2; + dofs[3] = offset + 8*c.entity_indices[2][0] + 3; + dofs[4] = offset + 8*c.entity_indices[2][0] + 4; + dofs[5] = offset + 8*c.entity_indices[2][0] + 5; + dofs[6] = offset + 8*c.entity_indices[2][0] + 6; + dofs[7] = offset + 8*c.entity_indices[2][0] + 7; + offset += 8*num_global_entities[2]; + dofs[8] = offset + c.entity_indices[0][0]; + dofs[9] = offset + c.entity_indices[0][1]; + dofs[10] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[11] = offset + 2*c.entity_indices[1][0]; + dofs[12] = offset + 2*c.entity_indices[1][0] + 1; + dofs[13] = offset + 2*c.entity_indices[1][1]; + dofs[14] = offset + 2*c.entity_indices[1][1] + 1; + dofs[15] = offset + 2*c.entity_indices[1][2]; + dofs[16] = offset + 2*c.entity_indices[1][2] + 1; + offset += 2*num_global_entities[1]; + dofs[17] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 9; + dofs[1] = 10; + dofs[2] = 11; + dofs[3] = 12; + break; + } + case 1: + { + dofs[0] = 8; + dofs[1] = 10; + dofs[2] = 13; + dofs[3] = 14; + break; + } + case 2: + { + dofs[0] = 8; + dofs[1] = 9; + dofs[2] = 15; + dofs[3] = 16; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 8; + break; + } + case 1: + { + dofs[0] = 9; + break; + } + case 2: + { + dofs[0] = 10; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 11; + dofs[1] = 12; + break; + } + case 1: + { + dofs[0] = 13; + dofs[1] = 14; + break; + } + case 2: + { + dofs[0] = 15; + dofs[1] = 16; + break; + } + } + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 3; + dofs[4] = 4; + dofs[5] = 5; + dofs[6] = 6; + dofs[7] = 7; + dofs[8] = 17; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[1][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[1][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[2][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[2][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[3][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[4][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[5][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[6][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[7][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[7][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[8][0] = vertex_coordinates[0]; + dof_coordinates[8][1] = vertex_coordinates[1]; + dof_coordinates[9][0] = vertex_coordinates[2]; + dof_coordinates[9][1] = vertex_coordinates[3]; + dof_coordinates[10][0] = vertex_coordinates[4]; + dof_coordinates[10][1] = vertex_coordinates[5]; + dof_coordinates[11][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[11][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[12][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[12][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[13][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[13][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[14][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[14][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[15][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[15][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[16][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[16][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[17][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[17][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoissondual_dofmap_1(); + break; + } + case 1: + { + return new mixedpoissondual_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new mixedpoissondual_dofmap_3(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class mixedpoissondual_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + mixedpoissondual_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 64 + // Number of operations (multiply-add pairs) for tensor contraction: 1328 + // Total number of operations (multiply-add pairs): 1395 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = 1.0 / (detJ)*det*J[0]*K[0]*(1.0); + const double G0_0_1 = 1.0 / (detJ)*det*J[0]*K[2]*(1.0); + const double G0_1_0 = 1.0 / (detJ)*det*J[1]*K[0]*(1.0); + const double G0_1_1 = 1.0 / (detJ)*det*J[1]*K[2]*(1.0); + const double G1_0_0 = 1.0 / (detJ)*det*J[2]*K[1]*(1.0); + const double G1_0_1 = 1.0 / (detJ)*det*J[2]*K[3]*(1.0); + const double G1_1_0 = 1.0 / (detJ)*det*J[3]*K[1]*(1.0); + const double G1_1_1 = 1.0 / (detJ)*det*J[3]*K[3]*(1.0); + const double G2_0_0 = 1.0 / (detJ*detJ)*det*J[0]*J[0]*(1.0); + const double G2_0_1 = 1.0 / (detJ*detJ)*det*J[0]*J[1]*(1.0); + const double G2_1_0 = 1.0 / (detJ*detJ)*det*J[1]*J[0]*(1.0); + const double G2_1_1 = 1.0 / (detJ*detJ)*det*J[1]*J[1]*(1.0); + const double G3_0_0 = 1.0 / (detJ*detJ)*det*J[2]*J[2]*(1.0); + const double G3_0_1 = 1.0 / (detJ*detJ)*det*J[2]*J[3]*(1.0); + const double G3_1_0 = 1.0 / (detJ*detJ)*det*J[3]*J[2]*(1.0); + const double G3_1_1 = 1.0 / (detJ*detJ)*det*J[3]*J[3]*(1.0); + const double G4_0_0 = 1.0 / (detJ)*det*J[0]*K[0]*(1.0); + const double G4_0_1 = 1.0 / (detJ)*det*J[0]*K[2]*(1.0); + const double G4_1_0 = 1.0 / (detJ)*det*J[1]*K[0]*(1.0); + const double G4_1_1 = 1.0 / (detJ)*det*J[1]*K[2]*(1.0); + const double G5_0_0 = 1.0 / (detJ)*det*J[2]*K[1]*(1.0); + const double G5_0_1 = 1.0 / (detJ)*det*J[2]*K[3]*(1.0); + const double G5_1_0 = 1.0 / (detJ)*det*J[3]*K[1]*(1.0); + const double G5_1_1 = 1.0 / (detJ)*det*J[3]*K[3]*(1.0); + + // Compute element tensor + A[0] = 0.0833333333333339*G2_0_0 + 0.0166666666666667*G2_0_1 + 0.0166666666666667*G2_1_0 + 0.0333333333333337*G2_1_1 + 0.0833333333333339*G3_0_0 + 0.0166666666666667*G3_0_1 + 0.0166666666666667*G3_1_0 + 0.0333333333333337*G3_1_1; + A[1] = -0.0416666666666669*G2_0_0 - 0.00833333333333332*G2_0_1 - 0.00833333333333331*G2_1_0 - 0.041666666666667*G2_1_1 - 0.0416666666666669*G3_0_0 - 0.00833333333333332*G3_0_1 - 0.00833333333333331*G3_1_0 - 0.041666666666667*G3_1_1; + A[2] = -0.0166666666666667*G2_0_0 + 0.00833333333333339*G2_0_1 - 0.00833333333333333*G2_1_1 - 0.0166666666666667*G3_0_0 + 0.00833333333333339*G3_0_1 - 0.00833333333333333*G3_1_1; + A[3] = -0.0166666666666667*G2_0_0 + 0.00833333333333333*G2_0_1 - 0.0500000000000004*G2_1_0 + 0.041666666666667*G2_1_1 - 0.0166666666666667*G3_0_0 + 0.00833333333333333*G3_0_1 - 0.0500000000000004*G3_1_0 + 0.041666666666667*G3_1_1; + A[4] = -0.041666666666667*G2_0_0 + 0.0500000000000002*G2_0_1 - 0.00833333333333342*G2_1_0 + 0.0166666666666668*G2_1_1 - 0.041666666666667*G3_0_0 + 0.0500000000000002*G3_0_1 - 0.00833333333333342*G3_1_0 + 0.0166666666666668*G3_1_1; + A[5] = 0.0833333333333339*G2_0_0 - 0.1*G2_0_1 + 0.0166666666666667*G2_1_0 - 0.0333333333333336*G2_1_1 + 0.0833333333333339*G3_0_0 - 0.1*G3_0_1 + 0.0166666666666667*G3_1_0 - 0.0333333333333336*G3_1_1; + A[6] = 0.0750000000000003*G2_0_0 - 0.0250000000000001*G2_0_1 - 0.0250000000000003*G2_1_1 + 0.0750000000000003*G3_0_0 - 0.0250000000000001*G3_0_1 - 0.0250000000000003*G3_1_1; + A[7] = 0.0250000000000001*G2_0_1 - 0.0500000000000004*G2_1_1 + 0.0250000000000001*G3_0_1 - 0.0500000000000004*G3_1_1; + A[8] = -0.00833333333333366*G4_0_0 - 0.00833333333333363*G4_0_1 + 0.00416666666666659*G4_1_0 + 0.0041666666666666*G4_1_1 - 0.00833333333333366*G5_0_0 - 0.00833333333333363*G5_0_1 + 0.00416666666666659*G5_1_0 + 0.0041666666666666*G5_1_1; + A[9] = 0.158333333333334*G4_0_0 - 0.00416666666666708*G4_1_0 + 0.158333333333334*G5_0_0 - 0.00416666666666708*G5_1_0; + A[10] = 0.00833333333333368*G4_0_1 - 0.0791666666666673*G4_1_1 + 0.00833333333333368*G5_0_1 - 0.0791666666666673*G5_1_1; + A[11] = 0.187500000000001*G4_0_0 + 0.375000000000002*G4_0_1 + 0.150000000000002*G4_1_0 + 0.0750000000000001*G4_1_1 + 0.187500000000001*G5_0_0 + 0.375000000000002*G5_0_1 + 0.150000000000002*G5_1_0 + 0.0750000000000001*G5_1_1; + A[12] = -0.0375*G4_0_0 - 0.0750000000000008*G4_0_1 - 0.187500000000001*G4_1_0 - 0.0374999999999995*G4_1_1 - 0.0375*G5_0_0 - 0.0750000000000008*G5_0_1 - 0.187500000000001*G5_1_0 - 0.0374999999999995*G5_1_1; + A[13] = 0.0375000000000004*G4_0_0 + 0.0750000000000013*G4_1_0 + 0.0375000000000009*G4_1_1 + 0.0375000000000004*G5_0_0 + 0.0750000000000013*G5_1_0 + 0.0375000000000009*G5_1_1; + A[14] = 0.0374999999999999*G4_0_0 + 0.187500000000001*G4_1_0 + 0.0374999999999998*G4_1_1 + 0.0374999999999999*G5_0_0 + 0.187500000000001*G5_1_0 + 0.0374999999999998*G5_1_1; + A[15] = 0.0375000000000006*G4_0_0 + 0.0750000000000005*G4_0_1 + 0.0375000000000003*G4_1_1 + 0.0375000000000006*G5_0_0 + 0.0750000000000005*G5_0_1 + 0.0375000000000003*G5_1_1; + A[16] = -0.187500000000001*G4_0_0 - 0.375000000000002*G4_0_1 - 0.0750000000000002*G4_1_1 - 0.187500000000001*G5_0_0 - 0.375000000000002*G5_0_1 - 0.0750000000000002*G5_1_1; + A[17] = -0.225000000000001*G4_0_0 - 0.225000000000003*G4_1_0 - 0.225000000000001*G5_0_0 - 0.225000000000003*G5_1_0; + A[18] = -0.0416666666666669*G2_0_0 - 0.00833333333333331*G2_0_1 - 0.00833333333333332*G2_1_0 - 0.041666666666667*G2_1_1 - 0.0416666666666669*G3_0_0 - 0.00833333333333331*G3_0_1 - 0.00833333333333332*G3_1_0 - 0.041666666666667*G3_1_1; + A[19] = 0.0333333333333336*G2_0_0 + 0.0166666666666667*G2_0_1 + 0.0166666666666667*G2_1_0 + 0.083333333333334*G2_1_1 + 0.0333333333333336*G3_0_0 + 0.0166666666666667*G3_0_1 + 0.0166666666666667*G3_1_0 + 0.083333333333334*G3_1_1; + A[20] = -0.0166666666666669*G2_0_0 + 0.00833333333333343*G2_0_1 - 0.0500000000000003*G2_1_0 + 0.041666666666667*G2_1_1 - 0.0166666666666669*G3_0_0 + 0.00833333333333343*G3_0_1 - 0.0500000000000003*G3_1_0 + 0.041666666666667*G3_1_1; + A[21] = 0.0333333333333336*G2_0_0 - 0.0166666666666667*G2_0_1 + 0.1*G2_1_0 - 0.083333333333334*G2_1_1 + 0.0333333333333336*G3_0_0 - 0.0166666666666667*G3_0_1 + 0.1*G3_1_0 - 0.083333333333334*G3_1_1; + A[22] = 0.00833333333333331*G2_0_0 - 0.00833333333333337*G2_1_0 + 0.0166666666666666*G2_1_1 + 0.00833333333333331*G3_0_0 - 0.00833333333333337*G3_1_0 + 0.0166666666666666*G3_1_1; + A[23] = -0.0416666666666669*G2_0_0 + 0.0500000000000003*G2_0_1 - 0.00833333333333335*G2_1_0 + 0.0166666666666668*G2_1_1 - 0.0416666666666669*G3_0_0 + 0.0500000000000003*G3_0_1 - 0.00833333333333335*G3_1_0 + 0.0166666666666668*G3_1_1; + A[24] = -0.0500000000000004*G2_0_0 + 0.0250000000000002*G2_1_0 - 0.0500000000000004*G3_0_0 + 0.0250000000000002*G3_1_0; + A[25] = -0.0250000000000003*G2_0_0 - 0.0250000000000001*G2_1_0 + 0.0750000000000003*G2_1_1 - 0.0250000000000003*G3_0_0 - 0.0250000000000001*G3_1_0 + 0.0750000000000003*G3_1_1; + A[26] = 0.00416666666666659*G4_0_0 + 0.00416666666666657*G4_0_1 - 0.00833333333333367*G4_1_0 - 0.00833333333333369*G4_1_1 + 0.00416666666666659*G5_0_0 + 0.00416666666666657*G5_0_1 - 0.00833333333333367*G5_1_0 - 0.00833333333333369*G5_1_1; + A[27] = -0.0791666666666671*G4_0_0 + 0.00833333333333371*G4_1_0 - 0.0791666666666671*G5_0_0 + 0.00833333333333371*G5_1_0; + A[28] = -0.00416666666666703*G4_0_1 + 0.158333333333335*G4_1_1 - 0.00416666666666703*G5_0_1 + 0.158333333333335*G5_1_1; + A[29] = -0.0374999999999994*G4_0_0 - 0.187500000000001*G4_0_1 - 0.0750000000000009*G4_1_0 - 0.0374999999999999*G4_1_1 - 0.0374999999999994*G5_0_0 - 0.187500000000001*G5_0_1 - 0.0750000000000009*G5_1_0 - 0.0374999999999999*G5_1_1; + A[30] = 0.0750000000000003*G4_0_0 + 0.150000000000002*G4_0_1 + 0.375000000000003*G4_1_0 + 0.187500000000001*G4_1_1 + 0.0750000000000003*G5_0_0 + 0.150000000000002*G5_0_1 + 0.375000000000003*G5_1_0 + 0.187500000000001*G5_1_1; + A[31] = 0.0375000000000004*G4_0_0 + 0.0750000000000005*G4_1_0 + 0.0375000000000007*G4_1_1 + 0.0375000000000004*G5_0_0 + 0.0750000000000005*G5_1_0 + 0.0375000000000007*G5_1_1; + A[32] = -0.0750000000000003*G4_0_0 - 0.375000000000003*G4_1_0 - 0.187500000000002*G4_1_1 - 0.0750000000000003*G5_0_0 - 0.375000000000003*G5_1_0 - 0.187500000000002*G5_1_1; + A[33] = 0.037500000000001*G4_0_0 + 0.0750000000000015*G4_0_1 + 0.0375000000000004*G4_1_1 + 0.037500000000001*G5_0_0 + 0.0750000000000015*G5_0_1 + 0.0375000000000004*G5_1_1; + A[34] = 0.0374999999999994*G4_0_0 + 0.187500000000001*G4_0_1 + 0.0375*G4_1_1 + 0.0374999999999994*G5_0_0 + 0.187500000000001*G5_0_1 + 0.0375*G5_1_1; + A[35] = -0.225000000000003*G4_0_1 - 0.225000000000001*G4_1_1 - 0.225000000000003*G5_0_1 - 0.225000000000001*G5_1_1; + A[36] = -0.0166666666666667*G2_0_0 + 0.00833333333333339*G2_1_0 - 0.00833333333333333*G2_1_1 - 0.0166666666666667*G3_0_0 + 0.00833333333333339*G3_1_0 - 0.00833333333333333*G3_1_1; + A[37] = -0.0166666666666669*G2_0_0 - 0.0500000000000003*G2_0_1 + 0.00833333333333343*G2_1_0 + 0.041666666666667*G2_1_1 - 0.0166666666666669*G3_0_0 - 0.0500000000000003*G3_0_1 + 0.00833333333333343*G3_1_0 + 0.041666666666667*G3_1_1; + A[38] = 0.150000000000001*G2_0_0 - 0.0500000000000004*G2_0_1 - 0.0500000000000004*G2_1_0 + 0.0333333333333337*G2_1_1 + 0.150000000000001*G3_0_0 - 0.0500000000000004*G3_0_1 - 0.0500000000000004*G3_1_0 + 0.0333333333333337*G3_1_1; + A[39] = -0.1*G2_0_0 + 0.0500000000000003*G2_0_1 + 0.0500000000000003*G2_1_0 - 0.041666666666667*G2_1_1 - 0.1*G3_0_0 + 0.0500000000000003*G3_0_1 + 0.0500000000000003*G3_1_0 - 0.041666666666667*G3_1_1; + A[40] = 0.0333333333333335*G2_0_0 - 0.133333333333334*G2_0_1 - 0.0166666666666668*G2_1_0 + 0.0333333333333335*G2_1_1 + 0.0333333333333335*G3_0_0 - 0.133333333333334*G3_0_1 - 0.0166666666666668*G3_1_0 + 0.0333333333333335*G3_1_1; + A[41] = -0.0166666666666667*G2_0_0 + 0.066666666666667*G2_0_1 + 0.00833333333333338*G2_1_0 - 0.0166666666666668*G2_1_1 - 0.0166666666666667*G3_0_0 + 0.066666666666667*G3_0_1 + 0.00833333333333338*G3_1_0 - 0.0166666666666668*G3_1_1; + A[42] = 0.0250000000000002*G2_0_0 + 0.0500000000000005*G2_0_1 + 0.0250000000000002*G2_1_0 - 0.0250000000000003*G2_1_1 + 0.0250000000000002*G3_0_0 + 0.0500000000000005*G3_0_1 + 0.0250000000000002*G3_1_0 - 0.0250000000000003*G3_1_1; + A[43] = 0.0500000000000004*G2_0_0 + 0.0250000000000004*G2_0_1 - 0.0250000000000002*G2_1_0 + 0.0249999999999999*G2_1_1 + 0.0500000000000004*G3_0_0 + 0.0250000000000004*G3_0_1 - 0.0250000000000002*G3_1_0 + 0.0249999999999999*G3_1_1; + A[44] = -0.154166666666667*G4_0_0 - 0.154166666666667*G4_0_1 - 0.00416666666666707*G4_1_0 - 0.00416666666666708*G4_1_1 - 0.154166666666667*G5_0_0 - 0.154166666666667*G5_0_1 - 0.00416666666666707*G5_1_0 - 0.00416666666666708*G5_1_1; + A[45] = 0.00416666666666703*G4_0_0 + 0.00416666666666662*G4_1_0 + 0.00416666666666703*G5_0_0 + 0.00416666666666662*G5_1_0; + A[46] = -0.0708333333333337*G4_0_1 + 0.0791666666666674*G4_1_1 - 0.0708333333333337*G5_0_1 + 0.0791666666666674*G5_1_1; + A[47] = -0.112500000000001*G4_0_0 - 0.0749999999999999*G4_0_1 + 0.0750000000000008*G4_1_0 + 0.0375000000000002*G4_1_1 - 0.112500000000001*G5_0_0 - 0.0749999999999999*G5_0_1 + 0.0750000000000008*G5_1_0 + 0.0375000000000002*G5_1_1; + A[48] = -0.225000000000001*G4_0_0 - 0.187500000000002*G4_0_1 + 0.187500000000001*G4_1_0 + 0.150000000000001*G4_1_1 - 0.225000000000001*G5_0_0 - 0.187500000000002*G5_0_1 + 0.187500000000001*G5_1_0 + 0.150000000000001*G5_1_1; + A[49] = -0.337500000000003*G4_0_0 + 0.1125*G4_0_1 + 0.150000000000002*G4_1_0 + 0.0750000000000017*G4_1_1 - 0.337500000000003*G5_0_0 + 0.1125*G5_0_1 + 0.150000000000002*G5_1_0 + 0.0750000000000017*G5_1_1; + A[50] = 0.225000000000001*G4_0_0 + 0.112500000000001*G4_0_1 - 0.187500000000002*G4_1_0 - 0.150000000000002*G4_1_1 + 0.225000000000001*G5_0_0 + 0.112500000000001*G5_0_1 - 0.187500000000002*G5_1_0 - 0.150000000000002*G5_1_1; + A[51] = 0.187500000000001*G4_0_0 - 0.262500000000002*G4_0_1 + 0.0750000000000008*G4_1_1 + 0.187500000000001*G5_0_0 - 0.262500000000002*G5_0_1 + 0.0750000000000008*G5_1_1; + A[52] = -0.0375000000000004*G4_0_0 + 0.0749999999999998*G4_0_1 - 0.0375000000000002*G4_1_1 - 0.0375000000000004*G5_0_0 + 0.0749999999999998*G5_0_1 - 0.0375000000000002*G5_1_1; + A[53] = 0.450000000000004*G4_0_0 + 0.450000000000004*G4_0_1 - 0.225000000000003*G4_1_0 - 0.225000000000002*G4_1_1 + 0.450000000000004*G5_0_0 + 0.450000000000004*G5_0_1 - 0.225000000000003*G5_1_0 - 0.225000000000002*G5_1_1; + A[54] = -0.0166666666666667*G2_0_0 - 0.0500000000000004*G2_0_1 + 0.00833333333333333*G2_1_0 + 0.041666666666667*G2_1_1 - 0.0166666666666667*G3_0_0 - 0.0500000000000004*G3_0_1 + 0.00833333333333333*G3_1_0 + 0.041666666666667*G3_1_1; + A[55] = 0.0333333333333336*G2_0_0 + 0.1*G2_0_1 - 0.0166666666666667*G2_1_0 - 0.083333333333334*G2_1_1 + 0.0333333333333336*G3_0_0 + 0.1*G3_0_1 - 0.0166666666666667*G3_1_0 - 0.083333333333334*G3_1_1; + A[56] = -0.1*G2_0_0 + 0.0500000000000003*G2_0_1 + 0.0500000000000003*G2_1_0 - 0.041666666666667*G2_1_1 - 0.1*G3_0_0 + 0.0500000000000003*G3_0_1 + 0.0500000000000003*G3_1_0 - 0.041666666666667*G3_1_1; + A[57] = 0.150000000000001*G2_0_0 - 0.1*G2_0_1 - 0.1*G2_1_0 + 0.083333333333334*G2_1_1 + 0.150000000000001*G3_0_0 - 0.1*G3_0_1 - 0.1*G3_1_0 + 0.083333333333334*G3_1_1; + A[58] = -0.0166666666666668*G2_0_0 + 0.066666666666667*G2_0_1 + 0.00833333333333337*G2_1_0 - 0.0166666666666667*G2_1_1 - 0.0166666666666668*G3_0_0 + 0.066666666666667*G3_0_1 + 0.00833333333333337*G3_1_0 - 0.0166666666666667*G3_1_1; + A[59] = -0.0166666666666668*G2_0_0 + 0.0166666666666669*G2_0_1 + 0.00833333333333335*G2_1_0 - 0.0166666666666668*G2_1_1 - 0.0166666666666668*G3_0_0 + 0.0166666666666669*G3_0_1 + 0.00833333333333335*G3_1_0 - 0.0166666666666668*G3_1_1; + A[60] = -0.0250000000000004*G2_0_0 - 0.0250000000000001*G2_1_0 - 0.0250000000000004*G3_0_0 - 0.0250000000000001*G3_1_0; + A[61] = -0.0500000000000004*G2_0_0 + 0.0750000000000004*G2_0_1 + 0.0250000000000001*G2_1_0 - 0.0750000000000003*G2_1_1 - 0.0500000000000004*G3_0_0 + 0.0750000000000004*G3_0_1 + 0.0250000000000001*G3_1_0 - 0.0750000000000003*G3_1_1; + A[62] = 0.0708333333333336*G4_0_0 + 0.0708333333333336*G4_0_1 + 0.00833333333333367*G4_1_0 + 0.00833333333333369*G4_1_1 + 0.0708333333333336*G5_0_0 + 0.0708333333333336*G5_0_1 + 0.00833333333333367*G5_1_0 + 0.00833333333333369*G5_1_1; + A[63] = 0.00416666666666713*G4_0_0 - 0.00833333333333371*G4_1_0 + 0.00416666666666713*G5_0_0 - 0.00833333333333371*G5_1_0; + A[64] = 0.154166666666668*G4_0_1 - 0.158333333333335*G4_1_1 + 0.154166666666668*G5_0_1 - 0.158333333333335*G5_1_1; + A[65] = -0.112500000000001*G4_0_0 - 0.0750000000000003*G4_0_1 + 0.075000000000001*G4_1_0 + 0.0374999999999999*G4_1_1 - 0.112500000000001*G5_0_0 - 0.0750000000000003*G5_0_1 + 0.075000000000001*G5_1_0 + 0.0374999999999999*G5_1_1; + A[66] = 0.450000000000003*G4_0_0 + 0.262500000000001*G4_0_1 - 0.375000000000003*G4_1_0 - 0.187500000000001*G4_1_1 + 0.450000000000003*G5_0_0 + 0.262500000000001*G5_0_1 - 0.375000000000003*G5_1_0 - 0.187500000000001*G5_1_1; + A[67] = 0.1125*G4_0_0 - 0.112500000000001*G4_0_1 - 0.0750000000000006*G4_1_0 - 0.0375000000000008*G4_1_1 + 0.1125*G5_0_0 - 0.112500000000001*G5_0_1 - 0.0750000000000006*G5_1_0 - 0.0375000000000008*G5_1_1; + A[68] = -0.450000000000003*G4_0_0 - 0.1125*G4_0_1 + 0.375000000000003*G4_1_0 + 0.187500000000002*G4_1_1 - 0.450000000000003*G5_0_0 - 0.1125*G5_0_1 + 0.375000000000003*G5_1_0 + 0.187500000000002*G5_1_1; + A[69] = -0.0374999999999991*G4_0_0 + 0.187500000000002*G4_0_1 - 0.0375000000000004*G4_1_1 - 0.0374999999999991*G5_0_0 + 0.187500000000002*G5_0_1 - 0.0375000000000004*G5_1_1; + A[70] = -0.0375000000000017*G4_0_0 + 0.0750000000000004*G4_0_1 - 0.0375*G4_1_1 - 0.0375000000000017*G5_0_0 + 0.0750000000000004*G5_0_1 - 0.0375*G5_1_1; + A[71] = -0.450000000000004*G4_0_1 + 0.225000000000001*G4_1_1 - 0.450000000000004*G5_0_1 + 0.225000000000001*G5_1_1; + A[72] = -0.041666666666667*G2_0_0 - 0.00833333333333342*G2_0_1 + 0.0500000000000002*G2_1_0 + 0.0166666666666668*G2_1_1 - 0.041666666666667*G3_0_0 - 0.00833333333333342*G3_0_1 + 0.0500000000000002*G3_1_0 + 0.0166666666666668*G3_1_1; + A[73] = 0.00833333333333331*G2_0_0 - 0.00833333333333337*G2_0_1 + 0.0166666666666666*G2_1_1 + 0.00833333333333331*G3_0_0 - 0.00833333333333337*G3_0_1 + 0.0166666666666666*G3_1_1; + A[74] = 0.0333333333333335*G2_0_0 - 0.0166666666666668*G2_0_1 - 0.133333333333334*G2_1_0 + 0.0333333333333335*G2_1_1 + 0.0333333333333335*G3_0_0 - 0.0166666666666668*G3_0_1 - 0.133333333333334*G3_1_0 + 0.0333333333333335*G3_1_1; + A[75] = -0.0166666666666668*G2_0_0 + 0.00833333333333337*G2_0_1 + 0.066666666666667*G2_1_0 - 0.0166666666666667*G2_1_1 - 0.0166666666666668*G3_0_0 + 0.00833333333333337*G3_0_1 + 0.066666666666667*G3_1_0 - 0.0166666666666667*G3_1_1; + A[76] = 0.0333333333333336*G2_0_0 - 0.0500000000000003*G2_0_1 - 0.0500000000000003*G2_1_0 + 0.150000000000001*G2_1_1 + 0.0333333333333336*G3_0_0 - 0.0500000000000003*G3_0_1 - 0.0500000000000003*G3_1_0 + 0.150000000000001*G3_1_1; + A[77] = -0.041666666666667*G2_0_0 + 0.0500000000000003*G2_0_1 + 0.0500000000000002*G2_1_0 - 0.1*G2_1_1 - 0.041666666666667*G3_0_0 + 0.0500000000000003*G3_0_1 + 0.0500000000000002*G3_1_0 - 0.1*G3_1_1; + A[78] = -0.0249999999999999*G2_0_0 + 0.0250000000000002*G2_0_1 - 0.0250000000000005*G2_1_0 - 0.0500000000000004*G2_1_1 - 0.0249999999999999*G3_0_0 + 0.0250000000000002*G3_0_1 - 0.0250000000000005*G3_1_0 - 0.0500000000000004*G3_1_1; + A[79] = 0.0250000000000004*G2_0_0 - 0.0250000000000001*G2_0_1 - 0.0500000000000005*G2_1_0 - 0.0250000000000003*G2_1_1 + 0.0250000000000004*G3_0_0 - 0.0250000000000001*G3_0_1 - 0.0500000000000005*G3_1_0 - 0.0250000000000003*G3_1_1; + A[80] = 0.00416666666666706*G4_0_0 + 0.00416666666666704*G4_0_1 + 0.154166666666667*G4_1_0 + 0.154166666666667*G4_1_1 + 0.00416666666666706*G5_0_0 + 0.00416666666666704*G5_0_1 + 0.154166666666667*G5_1_0 + 0.154166666666667*G5_1_1; + A[81] = -0.0791666666666673*G4_0_0 + 0.0708333333333336*G4_1_0 - 0.0791666666666673*G5_0_0 + 0.0708333333333336*G5_1_0; + A[82] = -0.00416666666666659*G4_0_1 - 0.00416666666666709*G4_1_1 - 0.00416666666666659*G5_0_1 - 0.00416666666666709*G5_1_1; + A[83] = -0.150000000000001*G4_0_0 - 0.187500000000001*G4_0_1 + 0.187500000000001*G4_1_0 + 0.225000000000001*G4_1_1 - 0.150000000000001*G5_0_0 - 0.187500000000001*G5_0_1 + 0.187500000000001*G5_1_0 + 0.225000000000001*G5_1_1; + A[84] = -0.0375000000000002*G4_0_0 - 0.0750000000000009*G4_0_1 + 0.0750000000000001*G4_1_0 + 0.112500000000001*G4_1_1 - 0.0375000000000002*G5_0_0 - 0.0750000000000009*G5_0_1 + 0.0750000000000001*G5_1_0 + 0.112500000000001*G5_1_1; + A[85] = -0.0750000000000008*G4_0_0 + 0.262500000000002*G4_1_0 - 0.187500000000001*G4_1_1 - 0.0750000000000008*G5_0_0 + 0.262500000000002*G5_1_0 - 0.187500000000001*G5_1_1; + A[86] = 0.0375000000000002*G4_0_0 - 0.0750000000000001*G4_1_0 + 0.0375000000000007*G4_1_1 + 0.0375000000000002*G5_0_0 - 0.0750000000000001*G5_1_0 + 0.0375000000000007*G5_1_1; + A[87] = -0.0750000000000016*G4_0_0 - 0.150000000000002*G4_0_1 - 0.1125*G4_1_0 + 0.337500000000003*G4_1_1 - 0.0750000000000016*G5_0_0 - 0.150000000000002*G5_0_1 - 0.1125*G5_1_0 + 0.337500000000003*G5_1_1; + A[88] = 0.150000000000002*G4_0_0 + 0.187500000000001*G4_0_1 - 0.112500000000001*G4_1_0 - 0.225000000000001*G4_1_1 + 0.150000000000002*G5_0_0 + 0.187500000000001*G5_0_1 - 0.112500000000001*G5_1_0 - 0.225000000000001*G5_1_1; + A[89] = 0.225000000000002*G4_0_0 + 0.225000000000003*G4_0_1 - 0.450000000000003*G4_1_0 - 0.450000000000004*G4_1_1 + 0.225000000000002*G5_0_0 + 0.225000000000003*G5_0_1 - 0.450000000000003*G5_1_0 - 0.450000000000004*G5_1_1; + A[90] = 0.0833333333333339*G2_0_0 + 0.0166666666666667*G2_0_1 - 0.1*G2_1_0 - 0.0333333333333336*G2_1_1 + 0.0833333333333339*G3_0_0 + 0.0166666666666667*G3_0_1 - 0.1*G3_1_0 - 0.0333333333333336*G3_1_1; + A[91] = -0.0416666666666669*G2_0_0 - 0.00833333333333335*G2_0_1 + 0.0500000000000003*G2_1_0 + 0.0166666666666668*G2_1_1 - 0.0416666666666669*G3_0_0 - 0.00833333333333335*G3_0_1 + 0.0500000000000003*G3_1_0 + 0.0166666666666668*G3_1_1; + A[92] = -0.0166666666666667*G2_0_0 + 0.00833333333333338*G2_0_1 + 0.066666666666667*G2_1_0 - 0.0166666666666668*G2_1_1 - 0.0166666666666667*G3_0_0 + 0.00833333333333338*G3_0_1 + 0.066666666666667*G3_1_0 - 0.0166666666666668*G3_1_1; + A[93] = -0.0166666666666668*G2_0_0 + 0.00833333333333335*G2_0_1 + 0.0166666666666669*G2_1_0 - 0.0166666666666668*G2_1_1 - 0.0166666666666668*G3_0_0 + 0.00833333333333335*G3_0_1 + 0.0166666666666669*G3_1_0 - 0.0166666666666668*G3_1_1; + A[94] = -0.041666666666667*G2_0_0 + 0.0500000000000002*G2_0_1 + 0.0500000000000003*G2_1_0 - 0.1*G2_1_1 - 0.041666666666667*G3_0_0 + 0.0500000000000002*G3_0_1 + 0.0500000000000003*G3_1_0 - 0.1*G3_1_1; + A[95] = 0.0833333333333339*G2_0_0 - 0.1*G2_0_1 - 0.1*G2_1_0 + 0.150000000000001*G2_1_1 + 0.0833333333333339*G3_0_0 - 0.1*G3_0_1 - 0.1*G3_1_0 + 0.150000000000001*G3_1_1; + A[96] = 0.0750000000000003*G2_0_0 - 0.0250000000000001*G2_0_1 - 0.0750000000000005*G2_1_0 + 0.0500000000000003*G2_1_1 + 0.0750000000000003*G3_0_0 - 0.0250000000000001*G3_0_1 - 0.0750000000000005*G3_1_0 + 0.0500000000000003*G3_1_1; + A[97] = 0.0250000000000001*G2_0_1 + 0.0250000000000004*G2_1_1 + 0.0250000000000001*G3_0_1 + 0.0250000000000004*G3_1_1; + A[98] = -0.00833333333333363*G4_0_0 - 0.00833333333333358*G4_0_1 - 0.0708333333333336*G4_1_0 - 0.0708333333333336*G4_1_1 - 0.00833333333333363*G5_0_0 - 0.00833333333333358*G5_0_1 - 0.0708333333333336*G5_1_0 - 0.0708333333333336*G5_1_1; + A[99] = 0.158333333333334*G4_0_0 - 0.154166666666667*G4_1_0 + 0.158333333333334*G5_0_0 - 0.154166666666667*G5_1_0; + A[100] = 0.0083333333333336*G4_0_1 - 0.00416666666666702*G4_1_1 + 0.0083333333333336*G5_0_1 - 0.00416666666666702*G5_1_1; + A[101] = 0.187500000000001*G4_0_0 + 0.375000000000002*G4_0_1 - 0.262500000000001*G4_1_0 - 0.450000000000002*G4_1_1 + 0.187500000000001*G5_0_0 + 0.375000000000002*G5_0_1 - 0.262500000000001*G5_1_0 - 0.450000000000002*G5_1_1; + A[102] = -0.0375000000000001*G4_0_0 - 0.0750000000000008*G4_0_1 + 0.0750000000000005*G4_1_0 + 0.112500000000001*G4_1_1 - 0.0375000000000001*G5_0_0 - 0.0750000000000008*G5_0_1 + 0.0750000000000005*G5_1_0 + 0.112500000000001*G5_1_1; + A[103] = 0.0375000000000004*G4_0_0 - 0.187500000000002*G4_1_0 + 0.0374999999999992*G4_1_1 + 0.0375000000000004*G5_0_0 - 0.187500000000002*G5_1_0 + 0.0374999999999992*G5_1_1; + A[104] = 0.0375*G4_0_0 - 0.0750000000000005*G4_1_0 + 0.0375000000000015*G4_1_1 + 0.0375*G5_0_0 - 0.0750000000000005*G5_1_0 + 0.0375000000000015*G5_1_1; + A[105] = 0.0375000000000007*G4_0_0 + 0.0750000000000005*G4_0_1 + 0.112500000000001*G4_1_0 - 0.1125*G4_1_1 + 0.0375000000000007*G5_0_0 + 0.0750000000000005*G5_0_1 + 0.112500000000001*G5_1_0 - 0.1125*G5_1_1; + A[106] = -0.187500000000001*G4_0_0 - 0.375000000000002*G4_0_1 + 0.1125*G4_1_0 + 0.450000000000003*G4_1_1 - 0.187500000000001*G5_0_0 - 0.375000000000002*G5_0_1 + 0.1125*G5_1_0 + 0.450000000000003*G5_1_1; + A[107] = -0.225000000000001*G4_0_0 + 0.450000000000003*G4_1_0 - 0.225000000000001*G5_0_0 + 0.450000000000003*G5_1_0; + A[108] = 0.0750000000000003*G2_0_0 - 0.0250000000000001*G2_1_0 - 0.0250000000000003*G2_1_1 + 0.0750000000000003*G3_0_0 - 0.0250000000000001*G3_1_0 - 0.0250000000000003*G3_1_1; + A[109] = -0.0500000000000004*G2_0_0 + 0.0250000000000002*G2_0_1 - 0.0500000000000004*G3_0_0 + 0.0250000000000002*G3_0_1; + A[110] = 0.0250000000000002*G2_0_0 + 0.0250000000000002*G2_0_1 + 0.0500000000000005*G2_1_0 - 0.0250000000000003*G2_1_1 + 0.0250000000000002*G3_0_0 + 0.0250000000000002*G3_0_1 + 0.0500000000000005*G3_1_0 - 0.0250000000000003*G3_1_1; + A[111] = -0.0250000000000004*G2_0_0 - 0.0250000000000001*G2_0_1 - 0.0250000000000004*G3_0_0 - 0.0250000000000001*G3_0_1; + A[112] = -0.0249999999999999*G2_0_0 - 0.0250000000000005*G2_0_1 + 0.0250000000000002*G2_1_0 - 0.0500000000000004*G2_1_1 - 0.0249999999999999*G3_0_0 - 0.0250000000000005*G3_0_1 + 0.0250000000000002*G3_1_0 - 0.0500000000000004*G3_1_1; + A[113] = 0.0750000000000003*G2_0_0 - 0.0750000000000005*G2_0_1 - 0.0250000000000001*G2_1_0 + 0.0500000000000003*G2_1_1 + 0.0750000000000003*G3_0_0 - 0.0750000000000005*G3_0_1 - 0.0250000000000001*G3_1_0 + 0.0500000000000003*G3_1_1; + A[114] = 0.350000000000001*G2_0_0 - 0.0250000000000002*G2_0_1 - 0.0250000000000002*G2_1_0 + 0.0500000000000007*G2_1_1 + 0.350000000000001*G3_0_0 - 0.0250000000000002*G3_0_1 - 0.0250000000000002*G3_1_0 + 0.0500000000000007*G3_1_1; + A[115] = 0.0250000000000004*G2_0_0 + 0.249999999999999*G2_0_1 + 0.0250000000000004*G2_1_0 + 0.0250000000000004*G2_1_1 + 0.0250000000000004*G3_0_0 + 0.249999999999999*G3_0_1 + 0.0250000000000004*G3_1_0 + 0.0250000000000004*G3_1_1; + A[116] = -0.037500000000001*G4_0_0 - 0.037500000000001*G4_0_1 - 0.037500000000001*G5_0_0 - 0.037500000000001*G5_0_1; + A[117] = 0.0375000000000004*G4_0_0 + 0.0375000000000004*G5_0_0; + A[118] = 0.0375000000000015*G4_0_1 + 0.0375000000000015*G5_0_1; + A[119] = 0.449999999999999*G4_0_0 + 0.337500000000001*G4_0_1 - 0.225000000000003*G4_1_0 - 0.1125*G4_1_1 + 0.449999999999999*G5_0_0 + 0.337500000000001*G5_0_1 - 0.225000000000003*G5_1_0 - 0.1125*G5_1_1; + A[120] = 0.1125*G4_0_0 + 0.224999999999997*G4_0_1 - 0.112500000000002*G4_1_1 + 0.1125*G5_0_0 + 0.224999999999997*G5_0_1 - 0.112500000000002*G5_1_1; + A[121] = -0.224999999999998*G4_0_0 - 0.225000000000003*G4_1_0 - 0.112500000000003*G4_1_1 - 0.224999999999998*G5_0_0 - 0.225000000000003*G5_1_0 - 0.112500000000003*G5_1_1; + A[122] = -0.112500000000001*G4_0_0 + 0.112500000000002*G4_1_1 - 0.112500000000001*G5_0_0 + 0.112500000000002*G5_1_1; + A[123] = -0.225*G4_0_0 - 0.450000000000002*G4_0_1 - 0.112500000000001*G4_1_1 - 0.225*G5_0_0 - 0.450000000000002*G5_0_1 - 0.112500000000001*G5_1_1; + A[124] = 0.225000000000001*G4_0_0 - 0.337500000000001*G4_0_1 + 0.1125*G4_1_1 + 0.225000000000001*G5_0_0 - 0.337500000000001*G5_0_1 + 0.1125*G5_1_1; + A[125] = -0.225000000000001*G4_0_0 + 0.225000000000005*G4_0_1 + 0.450000000000006*G4_1_0 + 0.225000000000003*G4_1_1 - 0.225000000000001*G5_0_0 + 0.225000000000005*G5_0_1 + 0.450000000000006*G5_1_0 + 0.225000000000003*G5_1_1; + A[126] = 0.0250000000000001*G2_1_0 - 0.0500000000000004*G2_1_1 + 0.0250000000000001*G3_1_0 - 0.0500000000000004*G3_1_1; + A[127] = -0.0250000000000003*G2_0_0 - 0.0250000000000001*G2_0_1 + 0.0750000000000003*G2_1_1 - 0.0250000000000003*G3_0_0 - 0.0250000000000001*G3_0_1 + 0.0750000000000003*G3_1_1; + A[128] = 0.0500000000000004*G2_0_0 - 0.0250000000000002*G2_0_1 + 0.0250000000000004*G2_1_0 + 0.0249999999999999*G2_1_1 + 0.0500000000000004*G3_0_0 - 0.0250000000000002*G3_0_1 + 0.0250000000000004*G3_1_0 + 0.0249999999999999*G3_1_1; + A[129] = -0.0500000000000004*G2_0_0 + 0.0250000000000001*G2_0_1 + 0.0750000000000004*G2_1_0 - 0.0750000000000003*G2_1_1 - 0.0500000000000004*G3_0_0 + 0.0250000000000001*G3_0_1 + 0.0750000000000004*G3_1_0 - 0.0750000000000003*G3_1_1; + A[130] = 0.0250000000000004*G2_0_0 - 0.0500000000000005*G2_0_1 - 0.0250000000000001*G2_1_0 - 0.0250000000000003*G2_1_1 + 0.0250000000000004*G3_0_0 - 0.0500000000000005*G3_0_1 - 0.0250000000000001*G3_1_0 - 0.0250000000000003*G3_1_1; + A[131] = 0.0250000000000001*G2_1_0 + 0.0250000000000004*G2_1_1 + 0.0250000000000001*G3_1_0 + 0.0250000000000004*G3_1_1; + A[132] = 0.0250000000000004*G2_0_0 + 0.0250000000000003*G2_0_1 + 0.249999999999999*G2_1_0 + 0.0250000000000004*G2_1_1 + 0.0250000000000004*G3_0_0 + 0.0250000000000003*G3_0_1 + 0.249999999999999*G3_1_0 + 0.0250000000000004*G3_1_1; + A[133] = 0.0500000000000007*G2_0_0 - 0.0250000000000002*G2_0_1 - 0.0250000000000002*G2_1_0 + 0.35*G2_1_1 + 0.0500000000000007*G3_0_0 - 0.0250000000000002*G3_0_1 - 0.0250000000000002*G3_1_0 + 0.35*G3_1_1; + A[134] = -0.037500000000001*G4_1_0 - 0.037500000000001*G4_1_1 - 0.037500000000001*G5_1_0 - 0.037500000000001*G5_1_1; + A[135] = 0.0375000000000015*G4_1_0 + 0.0375000000000015*G5_1_0; + A[136] = 0.0375000000000004*G4_1_1 + 0.0375000000000004*G5_1_1; + A[137] = -0.112500000000002*G4_0_0 + 0.224999999999997*G4_1_0 + 0.1125*G4_1_1 - 0.112500000000002*G5_0_0 + 0.224999999999997*G5_1_0 + 0.1125*G5_1_1; + A[138] = -0.112500000000001*G4_0_0 - 0.225000000000003*G4_0_1 + 0.337500000000001*G4_1_0 + 0.449999999999999*G4_1_1 - 0.112500000000001*G5_0_0 - 0.225000000000003*G5_0_1 + 0.337500000000001*G5_1_0 + 0.449999999999999*G5_1_1; + A[139] = -0.112500000000001*G4_0_0 - 0.450000000000002*G4_1_0 - 0.225*G4_1_1 - 0.112500000000001*G5_0_0 - 0.450000000000002*G5_1_0 - 0.225*G5_1_1; + A[140] = 0.112500000000001*G4_0_0 - 0.337500000000001*G4_1_0 + 0.225000000000001*G4_1_1 + 0.112500000000001*G5_0_0 - 0.337500000000001*G5_1_0 + 0.225000000000001*G5_1_1; + A[141] = -0.112500000000003*G4_0_0 - 0.225000000000003*G4_0_1 - 0.224999999999997*G4_1_1 - 0.112500000000003*G5_0_0 - 0.225000000000003*G5_0_1 - 0.224999999999997*G5_1_1; + A[142] = 0.112500000000002*G4_0_0 - 0.1125*G4_1_1 + 0.112500000000002*G5_0_0 - 0.1125*G5_1_1; + A[143] = 0.225000000000003*G4_0_0 + 0.450000000000006*G4_0_1 + 0.225000000000004*G4_1_0 - 0.225000000000002*G4_1_1 + 0.225000000000003*G5_0_0 + 0.450000000000006*G5_0_1 + 0.225000000000004*G5_1_0 - 0.225000000000002*G5_1_1; + A[144] = -0.00833333333333366*G0_0_0 - 0.00833333333333363*G0_0_1 + 0.00416666666666659*G0_1_0 + 0.0041666666666666*G0_1_1 - 0.00833333333333366*G1_0_0 - 0.00833333333333363*G1_0_1 + 0.00416666666666659*G1_1_0 + 0.0041666666666666*G1_1_1; + A[145] = 0.00416666666666659*G0_0_0 + 0.00416666666666657*G0_0_1 - 0.00833333333333367*G0_1_0 - 0.00833333333333369*G0_1_1 + 0.00416666666666659*G1_0_0 + 0.00416666666666657*G1_0_1 - 0.00833333333333367*G1_1_0 - 0.00833333333333369*G1_1_1; + A[146] = -0.154166666666667*G0_0_0 - 0.154166666666667*G0_0_1 - 0.00416666666666707*G0_1_0 - 0.00416666666666708*G0_1_1 - 0.154166666666667*G1_0_0 - 0.154166666666667*G1_0_1 - 0.00416666666666707*G1_1_0 - 0.00416666666666708*G1_1_1; + A[147] = 0.0708333333333336*G0_0_0 + 0.0708333333333336*G0_0_1 + 0.00833333333333367*G0_1_0 + 0.00833333333333369*G0_1_1 + 0.0708333333333336*G1_0_0 + 0.0708333333333336*G1_0_1 + 0.00833333333333367*G1_1_0 + 0.00833333333333369*G1_1_1; + A[148] = 0.00416666666666706*G0_0_0 + 0.00416666666666704*G0_0_1 + 0.154166666666667*G0_1_0 + 0.154166666666667*G0_1_1 + 0.00416666666666706*G1_0_0 + 0.00416666666666704*G1_0_1 + 0.154166666666667*G1_1_0 + 0.154166666666667*G1_1_1; + A[149] = -0.00833333333333363*G0_0_0 - 0.00833333333333358*G0_0_1 - 0.0708333333333336*G0_1_0 - 0.0708333333333336*G0_1_1 - 0.00833333333333363*G1_0_0 - 0.00833333333333358*G1_0_1 - 0.0708333333333336*G1_1_0 - 0.0708333333333336*G1_1_1; + A[150] = -0.037500000000001*G0_0_0 - 0.037500000000001*G0_0_1 - 0.037500000000001*G1_0_0 - 0.037500000000001*G1_0_1; + A[151] = -0.037500000000001*G0_1_0 - 0.037500000000001*G0_1_1 - 0.037500000000001*G1_1_0 - 0.037500000000001*G1_1_1; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.158333333333334*G0_0_0 - 0.00416666666666708*G0_1_0 + 0.158333333333334*G1_0_0 - 0.00416666666666708*G1_1_0; + A[163] = -0.0791666666666671*G0_0_0 + 0.00833333333333371*G0_1_0 - 0.0791666666666671*G1_0_0 + 0.00833333333333371*G1_1_0; + A[164] = 0.00416666666666703*G0_0_0 + 0.00416666666666662*G0_1_0 + 0.00416666666666703*G1_0_0 + 0.00416666666666662*G1_1_0; + A[165] = 0.00416666666666713*G0_0_0 - 0.00833333333333371*G0_1_0 + 0.00416666666666713*G1_0_0 - 0.00833333333333371*G1_1_0; + A[166] = -0.0791666666666673*G0_0_0 + 0.0708333333333336*G0_1_0 - 0.0791666666666673*G1_0_0 + 0.0708333333333336*G1_1_0; + A[167] = 0.158333333333334*G0_0_0 - 0.154166666666667*G0_1_0 + 0.158333333333334*G1_0_0 - 0.154166666666667*G1_1_0; + A[168] = 0.0375000000000004*G0_0_0 + 0.0375000000000004*G1_0_0; + A[169] = 0.0375000000000015*G0_1_0 + 0.0375000000000015*G1_1_0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.00833333333333368*G0_0_1 - 0.0791666666666673*G0_1_1 + 0.00833333333333368*G1_0_1 - 0.0791666666666673*G1_1_1; + A[181] = -0.00416666666666703*G0_0_1 + 0.158333333333335*G0_1_1 - 0.00416666666666703*G1_0_1 + 0.158333333333335*G1_1_1; + A[182] = -0.0708333333333337*G0_0_1 + 0.0791666666666674*G0_1_1 - 0.0708333333333337*G1_0_1 + 0.0791666666666674*G1_1_1; + A[183] = 0.154166666666668*G0_0_1 - 0.158333333333335*G0_1_1 + 0.154166666666668*G1_0_1 - 0.158333333333335*G1_1_1; + A[184] = -0.00416666666666659*G0_0_1 - 0.00416666666666709*G0_1_1 - 0.00416666666666659*G1_0_1 - 0.00416666666666709*G1_1_1; + A[185] = 0.0083333333333336*G0_0_1 - 0.00416666666666702*G0_1_1 + 0.0083333333333336*G1_0_1 - 0.00416666666666702*G1_1_1; + A[186] = 0.0375000000000015*G0_0_1 + 0.0375000000000015*G1_0_1; + A[187] = 0.0375000000000004*G0_1_1 + 0.0375000000000004*G1_1_1; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.187500000000001*G0_0_0 + 0.375000000000002*G0_0_1 + 0.150000000000002*G0_1_0 + 0.0750000000000001*G0_1_1 + 0.187500000000001*G1_0_0 + 0.375000000000002*G1_0_1 + 0.150000000000002*G1_1_0 + 0.0750000000000001*G1_1_1; + A[199] = -0.0374999999999994*G0_0_0 - 0.187500000000001*G0_0_1 - 0.0750000000000009*G0_1_0 - 0.0374999999999999*G0_1_1 - 0.0374999999999994*G1_0_0 - 0.187500000000001*G1_0_1 - 0.0750000000000009*G1_1_0 - 0.0374999999999999*G1_1_1; + A[200] = -0.112500000000001*G0_0_0 - 0.0749999999999999*G0_0_1 + 0.0750000000000008*G0_1_0 + 0.0375000000000002*G0_1_1 - 0.112500000000001*G1_0_0 - 0.0749999999999999*G1_0_1 + 0.0750000000000008*G1_1_0 + 0.0375000000000002*G1_1_1; + A[201] = -0.112500000000001*G0_0_0 - 0.0750000000000003*G0_0_1 + 0.075000000000001*G0_1_0 + 0.0374999999999999*G0_1_1 - 0.112500000000001*G1_0_0 - 0.0750000000000003*G1_0_1 + 0.075000000000001*G1_1_0 + 0.0374999999999999*G1_1_1; + A[202] = -0.150000000000001*G0_0_0 - 0.187500000000001*G0_0_1 + 0.187500000000001*G0_1_0 + 0.225000000000001*G0_1_1 - 0.150000000000001*G1_0_0 - 0.187500000000001*G1_0_1 + 0.187500000000001*G1_1_0 + 0.225000000000001*G1_1_1; + A[203] = 0.187500000000001*G0_0_0 + 0.375000000000002*G0_0_1 - 0.262500000000001*G0_1_0 - 0.450000000000002*G0_1_1 + 0.187500000000001*G1_0_0 + 0.375000000000002*G1_0_1 - 0.262500000000001*G1_1_0 - 0.450000000000002*G1_1_1; + A[204] = 0.449999999999999*G0_0_0 + 0.337500000000001*G0_0_1 - 0.225000000000003*G0_1_0 - 0.1125*G0_1_1 + 0.449999999999999*G1_0_0 + 0.337500000000001*G1_0_1 - 0.225000000000003*G1_1_0 - 0.1125*G1_1_1; + A[205] = -0.112500000000002*G0_0_0 + 0.224999999999997*G0_1_0 + 0.1125*G0_1_1 - 0.112500000000002*G1_0_0 + 0.224999999999997*G1_1_0 + 0.1125*G1_1_1; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = -0.0375*G0_0_0 - 0.0750000000000008*G0_0_1 - 0.187500000000001*G0_1_0 - 0.0374999999999995*G0_1_1 - 0.0375*G1_0_0 - 0.0750000000000008*G1_0_1 - 0.187500000000001*G1_1_0 - 0.0374999999999995*G1_1_1; + A[217] = 0.0750000000000003*G0_0_0 + 0.150000000000002*G0_0_1 + 0.375000000000003*G0_1_0 + 0.187500000000001*G0_1_1 + 0.0750000000000003*G1_0_0 + 0.150000000000002*G1_0_1 + 0.375000000000003*G1_1_0 + 0.187500000000001*G1_1_1; + A[218] = -0.225000000000001*G0_0_0 - 0.187500000000002*G0_0_1 + 0.187500000000001*G0_1_0 + 0.150000000000001*G0_1_1 - 0.225000000000001*G1_0_0 - 0.187500000000002*G1_0_1 + 0.187500000000001*G1_1_0 + 0.150000000000001*G1_1_1; + A[219] = 0.450000000000003*G0_0_0 + 0.262500000000001*G0_0_1 - 0.375000000000003*G0_1_0 - 0.187500000000001*G0_1_1 + 0.450000000000003*G1_0_0 + 0.262500000000001*G1_0_1 - 0.375000000000003*G1_1_0 - 0.187500000000001*G1_1_1; + A[220] = -0.0375000000000002*G0_0_0 - 0.0750000000000009*G0_0_1 + 0.0750000000000001*G0_1_0 + 0.112500000000001*G0_1_1 - 0.0375000000000002*G1_0_0 - 0.0750000000000009*G1_0_1 + 0.0750000000000001*G1_1_0 + 0.112500000000001*G1_1_1; + A[221] = -0.0375000000000001*G0_0_0 - 0.0750000000000008*G0_0_1 + 0.0750000000000005*G0_1_0 + 0.112500000000001*G0_1_1 - 0.0375000000000001*G1_0_0 - 0.0750000000000008*G1_0_1 + 0.0750000000000005*G1_1_0 + 0.112500000000001*G1_1_1; + A[222] = 0.1125*G0_0_0 + 0.224999999999997*G0_0_1 - 0.112500000000002*G0_1_1 + 0.1125*G1_0_0 + 0.224999999999997*G1_0_1 - 0.112500000000002*G1_1_1; + A[223] = -0.112500000000001*G0_0_0 - 0.225000000000003*G0_0_1 + 0.337500000000001*G0_1_0 + 0.449999999999999*G0_1_1 - 0.112500000000001*G1_0_0 - 0.225000000000003*G1_0_1 + 0.337500000000001*G1_1_0 + 0.449999999999999*G1_1_1; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0375000000000004*G0_0_0 + 0.0750000000000013*G0_1_0 + 0.0375000000000009*G0_1_1 + 0.0375000000000004*G1_0_0 + 0.0750000000000013*G1_1_0 + 0.0375000000000009*G1_1_1; + A[235] = 0.0375000000000004*G0_0_0 + 0.0750000000000005*G0_1_0 + 0.0375000000000007*G0_1_1 + 0.0375000000000004*G1_0_0 + 0.0750000000000005*G1_1_0 + 0.0375000000000007*G1_1_1; + A[236] = -0.337500000000003*G0_0_0 + 0.1125*G0_0_1 + 0.150000000000002*G0_1_0 + 0.0750000000000017*G0_1_1 - 0.337500000000003*G1_0_0 + 0.1125*G1_0_1 + 0.150000000000002*G1_1_0 + 0.0750000000000017*G1_1_1; + A[237] = 0.1125*G0_0_0 - 0.112500000000001*G0_0_1 - 0.0750000000000006*G0_1_0 - 0.0375000000000008*G0_1_1 + 0.1125*G1_0_0 - 0.112500000000001*G1_0_1 - 0.0750000000000006*G1_1_0 - 0.0375000000000008*G1_1_1; + A[238] = -0.0750000000000008*G0_0_0 + 0.262500000000002*G0_1_0 - 0.187500000000001*G0_1_1 - 0.0750000000000008*G1_0_0 + 0.262500000000002*G1_1_0 - 0.187500000000001*G1_1_1; + A[239] = 0.0375000000000004*G0_0_0 - 0.187500000000002*G0_1_0 + 0.0374999999999992*G0_1_1 + 0.0375000000000004*G1_0_0 - 0.187500000000002*G1_1_0 + 0.0374999999999992*G1_1_1; + A[240] = -0.224999999999998*G0_0_0 - 0.225000000000003*G0_1_0 - 0.112500000000003*G0_1_1 - 0.224999999999998*G1_0_0 - 0.225000000000003*G1_1_0 - 0.112500000000003*G1_1_1; + A[241] = -0.112500000000001*G0_0_0 - 0.450000000000002*G0_1_0 - 0.225*G0_1_1 - 0.112500000000001*G1_0_0 - 0.450000000000002*G1_1_0 - 0.225*G1_1_1; + A[242] = 0.0; + A[243] = 0.0; + A[244] = 0.0; + A[245] = 0.0; + A[246] = 0.0; + A[247] = 0.0; + A[248] = 0.0; + A[249] = 0.0; + A[250] = 0.0; + A[251] = 0.0; + A[252] = 0.0374999999999999*G0_0_0 + 0.187500000000001*G0_1_0 + 0.0374999999999998*G0_1_1 + 0.0374999999999999*G1_0_0 + 0.187500000000001*G1_1_0 + 0.0374999999999998*G1_1_1; + A[253] = -0.0750000000000003*G0_0_0 - 0.375000000000003*G0_1_0 - 0.187500000000002*G0_1_1 - 0.0750000000000003*G1_0_0 - 0.375000000000003*G1_1_0 - 0.187500000000002*G1_1_1; + A[254] = 0.225000000000001*G0_0_0 + 0.112500000000001*G0_0_1 - 0.187500000000002*G0_1_0 - 0.150000000000002*G0_1_1 + 0.225000000000001*G1_0_0 + 0.112500000000001*G1_0_1 - 0.187500000000002*G1_1_0 - 0.150000000000002*G1_1_1; + A[255] = -0.450000000000003*G0_0_0 - 0.1125*G0_0_1 + 0.375000000000003*G0_1_0 + 0.187500000000002*G0_1_1 - 0.450000000000003*G1_0_0 - 0.1125*G1_0_1 + 0.375000000000003*G1_1_0 + 0.187500000000002*G1_1_1; + A[256] = 0.0375000000000002*G0_0_0 - 0.0750000000000001*G0_1_0 + 0.0375000000000007*G0_1_1 + 0.0375000000000002*G1_0_0 - 0.0750000000000001*G1_1_0 + 0.0375000000000007*G1_1_1; + A[257] = 0.0375*G0_0_0 - 0.0750000000000005*G0_1_0 + 0.0375000000000015*G0_1_1 + 0.0375*G1_0_0 - 0.0750000000000005*G1_1_0 + 0.0375000000000015*G1_1_1; + A[258] = -0.112500000000001*G0_0_0 + 0.112500000000002*G0_1_1 - 0.112500000000001*G1_0_0 + 0.112500000000002*G1_1_1; + A[259] = 0.112500000000001*G0_0_0 - 0.337500000000001*G0_1_0 + 0.225000000000001*G0_1_1 + 0.112500000000001*G1_0_0 - 0.337500000000001*G1_1_0 + 0.225000000000001*G1_1_1; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0375000000000006*G0_0_0 + 0.0750000000000005*G0_0_1 + 0.0375000000000003*G0_1_1 + 0.0375000000000006*G1_0_0 + 0.0750000000000005*G1_0_1 + 0.0375000000000003*G1_1_1; + A[271] = 0.037500000000001*G0_0_0 + 0.0750000000000015*G0_0_1 + 0.0375000000000004*G0_1_1 + 0.037500000000001*G1_0_0 + 0.0750000000000015*G1_0_1 + 0.0375000000000004*G1_1_1; + A[272] = 0.187500000000001*G0_0_0 - 0.262500000000002*G0_0_1 + 0.0750000000000008*G0_1_1 + 0.187500000000001*G1_0_0 - 0.262500000000002*G1_0_1 + 0.0750000000000008*G1_1_1; + A[273] = -0.0374999999999991*G0_0_0 + 0.187500000000002*G0_0_1 - 0.0375000000000004*G0_1_1 - 0.0374999999999991*G1_0_0 + 0.187500000000002*G1_0_1 - 0.0375000000000004*G1_1_1; + A[274] = -0.0750000000000016*G0_0_0 - 0.150000000000002*G0_0_1 - 0.1125*G0_1_0 + 0.337500000000003*G0_1_1 - 0.0750000000000016*G1_0_0 - 0.150000000000002*G1_0_1 - 0.1125*G1_1_0 + 0.337500000000003*G1_1_1; + A[275] = 0.0375000000000007*G0_0_0 + 0.0750000000000005*G0_0_1 + 0.112500000000001*G0_1_0 - 0.1125*G0_1_1 + 0.0375000000000007*G1_0_0 + 0.0750000000000005*G1_0_1 + 0.112500000000001*G1_1_0 - 0.1125*G1_1_1; + A[276] = -0.225*G0_0_0 - 0.450000000000002*G0_0_1 - 0.112500000000001*G0_1_1 - 0.225*G1_0_0 - 0.450000000000002*G1_0_1 - 0.112500000000001*G1_1_1; + A[277] = -0.112500000000003*G0_0_0 - 0.225000000000003*G0_0_1 - 0.224999999999997*G0_1_1 - 0.112500000000003*G1_0_0 - 0.225000000000003*G1_0_1 - 0.224999999999997*G1_1_1; + A[278] = 0.0; + A[279] = 0.0; + A[280] = 0.0; + A[281] = 0.0; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = -0.187500000000001*G0_0_0 - 0.375000000000002*G0_0_1 - 0.0750000000000002*G0_1_1 - 0.187500000000001*G1_0_0 - 0.375000000000002*G1_0_1 - 0.0750000000000002*G1_1_1; + A[289] = 0.0374999999999994*G0_0_0 + 0.187500000000001*G0_0_1 + 0.0375*G0_1_1 + 0.0374999999999994*G1_0_0 + 0.187500000000001*G1_0_1 + 0.0375*G1_1_1; + A[290] = -0.0375000000000004*G0_0_0 + 0.0749999999999998*G0_0_1 - 0.0375000000000002*G0_1_1 - 0.0375000000000004*G1_0_0 + 0.0749999999999998*G1_0_1 - 0.0375000000000002*G1_1_1; + A[291] = -0.0375000000000017*G0_0_0 + 0.0750000000000004*G0_0_1 - 0.0375*G0_1_1 - 0.0375000000000017*G1_0_0 + 0.0750000000000004*G1_0_1 - 0.0375*G1_1_1; + A[292] = 0.150000000000002*G0_0_0 + 0.187500000000001*G0_0_1 - 0.112500000000001*G0_1_0 - 0.225000000000001*G0_1_1 + 0.150000000000002*G1_0_0 + 0.187500000000001*G1_0_1 - 0.112500000000001*G1_1_0 - 0.225000000000001*G1_1_1; + A[293] = -0.187500000000001*G0_0_0 - 0.375000000000002*G0_0_1 + 0.1125*G0_1_0 + 0.450000000000003*G0_1_1 - 0.187500000000001*G1_0_0 - 0.375000000000002*G1_0_1 + 0.1125*G1_1_0 + 0.450000000000003*G1_1_1; + A[294] = 0.225000000000001*G0_0_0 - 0.337500000000001*G0_0_1 + 0.1125*G0_1_1 + 0.225000000000001*G1_0_0 - 0.337500000000001*G1_0_1 + 0.1125*G1_1_1; + A[295] = 0.112500000000002*G0_0_0 - 0.1125*G0_1_1 + 0.112500000000002*G1_0_0 - 0.1125*G1_1_1; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = -0.225000000000001*G0_0_0 - 0.225000000000003*G0_1_0 - 0.225000000000001*G1_0_0 - 0.225000000000003*G1_1_0; + A[307] = -0.225000000000003*G0_0_1 - 0.225000000000001*G0_1_1 - 0.225000000000003*G1_0_1 - 0.225000000000001*G1_1_1; + A[308] = 0.450000000000004*G0_0_0 + 0.450000000000004*G0_0_1 - 0.225000000000003*G0_1_0 - 0.225000000000002*G0_1_1 + 0.450000000000004*G1_0_0 + 0.450000000000004*G1_0_1 - 0.225000000000003*G1_1_0 - 0.225000000000002*G1_1_1; + A[309] = -0.450000000000004*G0_0_1 + 0.225000000000001*G0_1_1 - 0.450000000000004*G1_0_1 + 0.225000000000001*G1_1_1; + A[310] = 0.225000000000002*G0_0_0 + 0.225000000000003*G0_0_1 - 0.450000000000003*G0_1_0 - 0.450000000000004*G0_1_1 + 0.225000000000002*G1_0_0 + 0.225000000000003*G1_0_1 - 0.450000000000003*G1_1_0 - 0.450000000000004*G1_1_1; + A[311] = -0.225000000000001*G0_0_0 + 0.450000000000003*G0_1_0 - 0.225000000000001*G1_0_0 + 0.450000000000003*G1_1_0; + A[312] = -0.225000000000001*G0_0_0 + 0.225000000000005*G0_0_1 + 0.450000000000006*G0_1_0 + 0.225000000000003*G0_1_1 - 0.225000000000001*G1_0_0 + 0.225000000000005*G1_0_1 + 0.450000000000006*G1_1_0 + 0.225000000000003*G1_1_1; + A[313] = 0.225000000000003*G0_0_0 + 0.450000000000006*G0_0_1 + 0.225000000000004*G0_1_0 - 0.225000000000002*G0_1_1 + 0.225000000000003*G1_0_0 + 0.450000000000006*G1_0_1 + 0.225000000000004*G1_1_0 - 0.225000000000002*G1_1_1; + A[314] = 0.0; + A[315] = 0.0; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class mixedpoissondual_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + mixedpoissondual_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 13 + // Total number of operations (multiply-add pairs): 19 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + + // Compute element tensor + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = -0.00833333333333326*G0_0 - 0.00416666666666664*G0_1 - 0.00416666666666665*G0_2; + A[9] = -0.00416666666666666*G0_0 - 0.00833333333333342*G0_1 - 0.00416666666666669*G0_2; + A[10] = -0.00416666666666666*G0_0 - 0.00416666666666668*G0_1 - 0.00833333333333341*G0_2; + A[11] = -0.0375000000000002*G0_1; + A[12] = -0.0375000000000001*G0_2; + A[13] = -0.0375000000000001*G0_0; + A[14] = -0.0374999999999999*G0_2; + A[15] = -0.0375*G0_0; + A[16] = -0.0374999999999999*G0_1; + A[17] = -0.0749999999999998*G0_0 - 0.0749999999999998*G0_1 - 0.0749999999999997*G0_2; + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class mixedpoissondual_exterior_facet_integral_1_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + mixedpoissondual_exterior_facet_integral_1_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_exterior_facet_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 18 + // Total number of operations (multiply-add pairs): 31 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0 = det*w[1][0]*(1.0); + const double G0_1 = det*w[1][1]*(1.0); + const double G0_2 = det*w[1][2]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = -0.108333333333333*G0_1 - 0.0166666666666667*G0_2; + A[10] = -0.0166666666666666*G0_1 - 0.108333333333333*G0_2; + A[11] = -0.3*G0_1 - 0.0750000000000001*G0_2; + A[12] = -0.075*G0_1 - 0.3*G0_2; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + break; + } + case 1: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = -0.108333333333333*G0_0 - 0.0166666666666666*G0_2; + A[9] = 0.0; + A[10] = -0.0166666666666666*G0_0 - 0.108333333333333*G0_2; + A[11] = 0.0; + A[12] = 0.0; + A[13] = -0.3*G0_0 - 0.075*G0_2; + A[14] = -0.0750000000000001*G0_0 - 0.3*G0_2; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + break; + } + case 2: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = -0.108333333333333*G0_0 - 0.0166666666666666*G0_1; + A[9] = -0.0166666666666666*G0_0 - 0.108333333333333*G0_1; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = -0.3*G0_0 - 0.0749999999999999*G0_1; + A[16] = -0.0750000000000001*G0_0 - 0.3*G0_1; + A[17] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class mixedpoissondual_form_0: public ufc::form +{ +public: + + /// Constructor + mixedpoissondual_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "fa24a02d3bb9a3995267883bac1f60e561ee1372b4e29fc1080f3512ce5d69de8640ef5b1efe53cdfc1b7e811fd9695a8a69fc4c282d9c9c7b4a226a2f1667cd"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoissondual_finite_element_3(); + break; + } + case 1: + { + return new mixedpoissondual_finite_element_3(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoissondual_dofmap_3(); + break; + } + case 1: + { + return new mixedpoissondual_dofmap_3(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new mixedpoissondual_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class mixedpoissondual_form_1: public ufc::form +{ +public: + + /// Constructor + mixedpoissondual_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoissondual_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "7d83f092173b0fae11175969b48eff93192a79a93defd6ac3d2496e383844e563ad6baa9a92e9f2a980cc6cf0c0d4170d5140188d135fc76d0609338ed64af3a"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 2; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoissondual_finite_element_3(); + break; + } + case 1: + { + return new mixedpoissondual_finite_element_0(); + break; + } + case 2: + { + return new mixedpoissondual_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoissondual_dofmap_3(); + break; + } + case 1: + { + return new mixedpoissondual_dofmap_0(); + break; + } + case 2: + { + return new mixedpoissondual_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new mixedpoissondual_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new mixedpoissondual_exterior_facet_integral_1_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace MixedPoissonDual +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class CoefficientSpace_g: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_g(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_g(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_g(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_g() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new mixedpoissondual_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new mixedpoissondual_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoissondual_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoissondual_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +typedef CoefficientSpace_g Form_L_FunctionSpace_2; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new mixedpoissondual_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + this->g = g; + + _ufc_form = std::shared_ptr(new mixedpoissondual_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f, std::shared_ptr g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + this->g = *g; + + _ufc_form = std::shared_ptr(new mixedpoissondual_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new mixedpoissondual_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + this->f = f; + this->g = g; + + _ufc_form = std::shared_ptr(new mixedpoissondual_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f, std::shared_ptr g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + this->f = *f; + this->g = *g; + + _ufc_form = std::shared_ptr(new mixedpoissondual_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + else if (name == "g") + return 1; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + case 1: + return "g"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + typedef Form_L_FunctionSpace_2 CoefficientSpace_g; + + // Coefficients + dolfin::CoefficientAssigner f; + dolfin::CoefficientAssigner g; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/mixed-poisson-dual/cpp/MixedPoissonDual.ufl b/demo/documented/mixed-poisson-dual/cpp/MixedPoissonDual.ufl new file mode 100644 index 0000000..74c9f98 --- /dev/null +++ b/demo/documented/mixed-poisson-dual/cpp/MixedPoissonDual.ufl @@ -0,0 +1,38 @@ +# Copyright (C) 2014 Jan Blechta +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2014-01-29 +# Last changed: 2014-01-29 +# +# The bilinear form a(u, v) and linear form L(v) for a two-field +# (mixed) formulation of Poisson's equation +# +# Compile this form with FFC: ffc -l dolfin MixedPoissonDual.ufl. + +DRT = FiniteElement("DRT", triangle, 2) +CG = FiniteElement("CG", triangle, 3) +W = DRT * CG + +(sigma, u) = TrialFunctions(W) +(tau, v) = TestFunctions(W) + +CG1 = FiniteElement("CG", triangle, 1) +f = Coefficient(CG1) +g = Coefficient(CG1) + +a = (dot(sigma, tau) + dot(grad(u), tau) + dot(sigma, grad(v)))*dx +L = - f*v*dx - g*v*ds diff --git a/demo/documented/mixed-poisson-dual/cpp/compile.log b/demo/documented/mixed-poisson-dual/cpp/compile.log new file mode 100644 index 0000000..2fdc657 --- /dev/null +++ b/demo/documented/mixed-poisson-dual/cpp/compile.log @@ -0,0 +1,750 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form MixedPoissonDual + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Mixed' + Unique sub elements: 'Mixed, DRT2(?), CG3(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 6 + quadrature_degree: auto --> 6 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 2 + Coefficients: '[w_0, w_1]' + Coefficient names: '[f, g]' + Unique elements: 'Mixed, CG1(?)' + Unique sub elements: 'Mixed, CG1(?), DRT2(?), CG3(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0518291 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 4 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 4 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 1296 entries computed in 0.00817 seconds + Shape of reference tensor: (18, 18, 2, 2) + Primary multi index: rank = 2 dims = [18, 18] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 1296 entries computed in 0.00783 seconds + Shape of reference tensor: (18, 18, 2, 2) + Primary multi index: rank = 2 dims = [18, 18] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 1296 entries computed in 0.00407 seconds + Shape of reference tensor: (18, 18, 2, 2) + Primary multi index: rank = 2 dims = [18, 18] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 1296 entries computed in 0.00433 seconds + Shape of reference tensor: (18, 18, 2, 2) + Primary multi index: rank = 2 dims = [18, 18] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 1296 entries computed in 0.00923 seconds + Shape of reference tensor: (18, 18, 2, 2) + Primary multi index: rank = 2 dims = [18, 18] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 1296 entries computed in 0.00928 seconds + Shape of reference tensor: (18, 18, 2, 2) + Primary multi index: rank = 2 dims = [18, 18] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00306 seconds + Shape of reference tensor: (18, 3) + Primary multi index: rank = 1 dims = [18] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00304 seconds + Shape of reference tensor: (18, 3) + Primary multi index: rank = 1 dims = [18] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00295 seconds + Shape of reference tensor: (18, 3) + Primary multi index: rank = 1 dims = [18] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 54 entries computed in 0.00291 seconds + Shape of reference tensor: (18, 3) + Primary multi index: rank = 1 dims = [18] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0805202 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.00041604 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 4 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 4 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.764373 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000682116 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./MixedPoissonDual.h. + +Compiler stage 5 finished in 0.00156808 seconds. + +FFC finished in 0.899812 seconds. diff --git a/demo/documented/mixed-poisson-dual/cpp/documentation.rst b/demo/documented/mixed-poisson-dual/cpp/documentation.rst new file mode 100644 index 0000000..fa1cb94 --- /dev/null +++ b/demo/documented/mixed-poisson-dual/cpp/documentation.rst @@ -0,0 +1,213 @@ +.. Documentation for the mixed Poisson demo from DOLFIN. + +.. _demo_pde_mixed-poisson-dual_cpp_documentation: + +Dual-mixed formulation for Poisson equation +====================================== + +.. include:: ../common.txt + +Implementation +-------------- + +The implementation is split in two files, a form file containing the +definition of the variational forms expressed in UFL and the solver +which is implemented in a C++ file. + +Running this demo requires the files: :download:`main.cpp`, +:download:`MixedPoissonDual.ufl` and :download:`CMakeLists.txt`. + +UFL form file +^^^^^^^^^^^^^ + +First we define the variational problem in UFL which we save in the +file called :download:`MixedPoissonDual.ufl`. + +We begin by defining the finite element spaces. We define two finite +element spaces :math:`\Sigma_h = DRT` and :math:`V_h = CG` separately, +before combining these into a mixed finite element space: + +.. code-block:: python + + DRT = FiniteElement("DRT", triangle, 2) + CG = FiniteElement("CG", triangle, 3) + W = DRT * CG + +The first argument to :py:class:`FiniteElement` specifies the type of +finite element family, while the third argument specifies the +polynomial degree. The UFL user manual contains a list of all +available finite element families and more details. The * operator +creates a mixed (product) space ``W`` from the two separate spaces +``DRT`` and ``CG``. Hence, + +.. math:: + + W = \{ (\tau, v) \ \text{such that} \ \tau \in DRT, v \in CG \}. + +Next, we need to specify the trial functions (the unknowns) and the +test functions on this space. This can be done as follows + +.. code-block:: python + + (sigma, u) = TrialFunctions(W) + (tau, v) = TestFunctions(W) + +Further, we need to specify the sources :math:`f` and :math:`g` +(coefficients) that will be used in the linear form of the variational +problem. This coefficient needs be defined on a finite element space, +but ``CG`` of polynmial degree 3 is not necessary. We therefore define +a separate finite element space for these coefficients. + +.. code-block:: python + + CG1 = FiniteElement("CG", triangle, 1) + f = Coefficient(CG1) + g = Coefficient(CG1) + +Finally, we define the bilinear and linear forms according to the +equations: + +.. code-block:: python + + a = (dot(sigma, tau) + dot(grad(u), tau) + dot(sigma, grad(v)))*dx + L = - f*v*dx - g*v*ds + + +C++ program +^^^^^^^^^^^ + +The solver is implemented in the :download:`main.cpp` file. + +At the top we include the DOLFIN header file and the generated header +file containing the variational forms. For convenience we also +include the DOLFIN namespace. + +.. code-block:: c++ + + #include + #include "MixedPoissonDual.h" + + using namespace dolfin; + +Then follows the definition of the coefficient functions (for +:math:`f` and :math:`g`), which are derived from the DOLFIN +:cpp:class:`Expression` class. + +.. code-block:: c++ + + // Source term (right-hand side) + class Source : public Expression + { + void eval(Array& values, const Array& x) const + { + double dx = x[0] - 0.5; + double dy = x[1] - 0.5; + values[0] = 10*exp(-(dx*dx + dy*dy) / 0.02); + } + }; + + // Boundary source for Neumann boundary condition + class BoundarySource : public Expression + { + void eval(Array& values, const Array& x) const + { values[0] = sin(5.0*x[0]); } + }; + +Then follows the definition of the essential boundary part of the +boundary of the domain, which is derived from the +:cpp:class:`SubDomain` class. + +.. code-block:: c++ + + // Sub domain for Dirichlet boundary condition + class DirichletBoundary : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { return x[0] < DOLFIN_EPS || x[0] > 1.0 - DOLFIN_EPS; } + }; + +Inside the ``main()`` function we first create the ``mesh`` and then +we define the (mixed) function space for the variational +formulation. We also define the bilinear form ``a`` and linear form +``L`` relative to this function space. + +.. code-block:: c++ + + // Construct function space + MixedPoissonDual::FunctionSpace W(mesh); + MixedPoissonDual::BilinearForm a(W, W); + MixedPoissonDual::LinearForm L(W); + +Then we create the sources (:math:`f`, :math:`g`) and assign it to the +linear form. + +.. code-block:: c++ + + // Create sources and assign to L + Source f; + BoundarySource g; + L.f = f; + L.g = g; + +It only remains to prescribe the boundary condition for :math:``u``. +Essential boundary conditions are specified through the class +:cpp:class:`DirichletBC` which takes three arguments: the function +space the boundary condition is supposed to be applied to, the data +for the boundary condition, and the relevant part of the boundary. + +We want to apply the boundary condition to the second subspace of the +mixed space. This space can be accessed by the :cpp:class:`Subspace` +class. + +.. code-block:: c++ + + // Define boundary condition + Constant zero(0.0); + SubSpace W1(W, 1); + DirichletBoundary boundary; + DirichletBC bc(W1, zero, boundary); + +To compute the solution we use the bilinear and linear forms, and the +boundary condition, but we also need to create a :cpp:class:`Function` +to store the solution(s). The (full) solution will be stored in the +:cpp:class:`Function` ``w``, which we initialise using the +:cpp:class:`FunctionSpace` ``W``. The actual computation is performed +by calling ``solve``. + +.. code-block:: c++ + + // Compute solution + Function w(W); + solve(a == L, w, bc); + +Now, the separate components ``sigma`` and ``u`` of the solution can +be extracted by taking components. These can easily be visualized by +calling ``plot``. + +.. code-block:: c++ + + // Extract sub functions (function views) + Function& sigma = w[0]; + Function& u = w[1]; + + // Plot solutions + plot(u); + plot(sigma); + + +Complete code +------------- + +Complete UFL file +^^^^^^^^^^^^^^^^^ + +.. literalinclude:: MixedPoissonDual.ufl + :start-after: # Compile + :language: python + +Complete main file +^^^^^^^^^^^^^^^^^^ + +.. literalinclude:: main.cpp + :start-after: // Last changed + :language: c++ diff --git a/demo/documented/mixed-poisson-dual/cpp/main.cpp b/demo/documented/mixed-poisson-dual/cpp/main.cpp new file mode 100644 index 0000000..3dc9c7e --- /dev/null +++ b/demo/documented/mixed-poisson-dual/cpp/main.cpp @@ -0,0 +1,87 @@ +// Copyright (C) 2014 Jan Blechta +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2014-01-29 +// Last changed: 2014-01-29 + +#include +#include "MixedPoissonDual.h" + +using namespace dolfin; + +// Source term (right-hand side) +class Source : public Expression +{ + void eval(Array& values, const Array& x) const + { + double dx = x[0] - 0.5; + double dy = x[1] - 0.5; + values[0] = 10*exp(-(dx*dx + dy*dy) / 0.02); + } +}; + +// Boundary source for Neumann boundary condition +class BoundarySource : public Expression +{ + void eval(Array& values, const Array& x) const + { values[0] = sin(5.0*x[0]); } +}; + +// Sub domain for Dirichlet boundary condition +class DirichletBoundary : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { return x[0] < DOLFIN_EPS || x[0] > 1.0 - DOLFIN_EPS; } +}; + +int main() +{ + // Create mesh + UnitSquareMesh mesh(32, 32); + + // Construct function space + MixedPoissonDual::FunctionSpace W(mesh); + MixedPoissonDual::BilinearForm a(W, W); + MixedPoissonDual::LinearForm L(W); + + // Create sources and assign to L + Source f; + BoundarySource g; + L.f = f; + L.g = g; + + // Define boundary condition + Constant zero(0.0); + SubSpace W1(W, 1); + DirichletBoundary boundary; + DirichletBC bc(W1, zero, boundary); + + // Compute solution + Function w(W); + solve(a == L, w, bc); + + // Extract sub functions (function views) + Function& sigma = w[0]; + Function& u = w[1]; + + // Plot solutions + plot(u); + plot(sigma); + interactive(); + + return 0; +} diff --git a/demo/documented/mixed-poisson-dual/mixed-poisson-dual_sigma.png b/demo/documented/mixed-poisson-dual/mixed-poisson-dual_sigma.png new file mode 100644 index 0000000000000000000000000000000000000000..8b1e33348373c5511b83c1fd78c5d9c76ca48dd7 GIT binary patch literal 31670 zcmdSBWm_Cww=G;G!685h?g2uAhTtwig1fsrgy2qsI|O%k5AFmH?oQ*@xI3KUzMpf> zzRuq74|w?k-CWhRYOQHw%rQGiR$3Gl2_Fdn093KBLh=CcLKOgDA`xDI?>wjkjQ{{C zASNWB=$x{@WTL4kx&Xg&XStkS;2kE;9xBuR9LyUxt*7%o~lB#sT?2PSsm?NxvLI)ZKaT%eq(Af+4{tp`Wjsj zflQ&ha0iCe7hMnw5t$5p9qsRjPUaga)+rc>F4&i&M<#?oW;kAf{>~TuvzaOah9E*B zGp#QInXe>1wjg-fd({8mTvmza(jX#?2IHX_DxF`v!$|5Yo6E{HVVgM=5=;zxtNKj@ zeB@Ww6Wqu;Cft*QgZ75Fc`tf>c!{5%S7DpEG3rF17p4YThmW_c&m)h>4tbfpH0^n7 zit=yaZ*fV^=VnH(GhDoVwv(jc;2YjpukNi^*%5bB?>9ReaS1Al>4LkdWYr4qMnFlHe(&(69s z_Y?W(v;TB7OU<1H(7uGYn5rv;JHZmD_9?i^#uOXyrLT1DJ%Uw2d|q2DZ09F!3$8`z z_l%uC^Oz4j%5`jIKi@ED0QDpeUDw<%OpxauP}bLLd72H;#+N;~e^ZTDaLjipewBnp zGr=YLbI&F-VYf8!6m$l8peQ(fHa=<Rk;E2}8P!;x5>L&2-s zYTa}biupaKNUvCyf6d5dd({I7uaXVH{$O&0!PfMSI=VXOOZ%Fs zS4loY3=w-XnFO*;~heY(x{m`W(a@pB-TuzfkEPHq!c>H-b=xj!LwbM(RaKZ$JoiUW^aCDtn~$80 zrO+GaeO`4aXoB5E&gxJsA`$LK-C4PEsniQ2G~lhw*(rUC?>ox=Cwqpci56f*WT6Gt z15QBi6#(l{>5Mp;-xWk!p)3GY>}`sqCxeP8dKiM)+**d_$CXMwC~q+I2e^^?77JlinH+mRoCMX5e_t^Tbz;b&E6q# z8g9s0aB^zX`|1e(C`7bED2`?@-=HPzy$K!d|1LTBE4>&qec^}anCr})g8aJMva$4Le&*2hlGay8BC*cG2H1OPu3 zDs`VCHez6P-5Isf`kLHlV!B6;>yY@SVnkgX+UjAy<~`Nb$4f1=e{^pTb<~I6E&#yS zG)d__`lFYC%=>-T@Gj!Z@CgmX6uQ`t96eZa`(`R`%E$mZy9VI>nUalxx2A#_deqMR z-Yrt?>`bI*4-=isUvJB67&M`kg&d_9!w57r13GOlK=W~SA3ghd;GJ7&{t)u?*!RL) z^eO)AHi-}*U6Gpb*6&6G-YA<;KI#nbS$sBy8{I$PxVS(Al>n|@#%N0TumR-sm0%mfQ1OVN_p8#nY4adweJDpL!bH8Ji zo3=akz_!RcG`E}1nXV6aqeP_pt4jPA+#%R4;k-w`?Y%t|`}TIuddyBY4nP~4Uf_Vr zwXyWz_VGR4@hl^x^BSb1(rO?+(MzvwSUF%Y9#f+c24Zh{gtVos<$M3-nJ5^ZFzNVp1%$;Bj0^oY+F|&QJ>%P)lrpainGb-d_WI@ z+p1>XFow6&K~|sF71aoez@odDpKO@+6{)V?O2}jBWj4Z74Z{$iE!_LvN?W+_6s9kh z8h>sg=685`$i-_yFng>U!P9Auf@W;Ce(aJl^W%>;Jlss6{vB~KWx$h%7`OG+RKzCt z8^xPd&W<9w2e?(OiQ_5g>wS&g%SlCS=9$ilu^%CmrJ zi^_vfzw9<@Jroh>JUAVi?k>lw6(4t|vOO)J2ZX{Fk+p|wKH7UQ?RH1sX1aNTthCD- z>>2bG#$&z!D-Gnoj0$4Y&-%rB;PL!z6SzWWwXvOIoi#l#ew_#mWa@bI&C15AjK$(A zc|ZQu*2`b)kZ!1~-gVDP^TeLLrV@=a-p3S3m7W2QB^lF`7L{`m?d1NK6$Kd^S49r0 zW3@vfbYMJV^{+OqSqooNWe#WRu-&q3T#ScE0gajbH9hL0le;y})X$c%fh=PB5Z8*j z!Z(`A5tPLF4|zp3-?2}ehlI}pdxshwy~8o`+@Z3< zWm|Q3saZXg9{kroe!V{|Idf~v3F0zC{T{wp%P06qE6ZTpZXUN_4y=G4Kp$~ePrH9+ z|9%w?uVrI*GFh00AX(;1mnS`Nd|&)TV}AQ^Y*cv2DUZ9qT-C zZ=8kW`0s5zrSc!-%t^Of82(G4B=+Z35r*nsMmw``w zmrNhhbGR6G2F6!*2bXA-Dv%1RT(WWsHE!qE;gl+dd;b2`5EJ|2#bkPPKJh6^XK9jw z4L3bl85V|roHKzHkh(3t!vFSo`8O+WqfT4S;U|-z;fLCXFB#YjfcJ4g7_p7J$9BLr zt(7J`*T!NLBsE^r0=>E|$gdo4z$yy>w^nrC6|u$Gc6EP30L+tC9O`OvJR`<7kwkW# zH)6{%YE7o7^2P_h34{`zR9I?oUaxV?QJ|^O7Z{W~%gZ`g!q-(IT&Uz5^CmaI0=mXg zm&pD=dzD(UZoz7y=CoA&vgfacgPap3^I?LE@5HNd>Oe(0&+f&&QCDBHMnv-$e=eu^ zz`gNnkERT2cw{}S6{Z=MRj z2!OAyb~y!{1XO&9Z+k8-O%EZt?@EKuP*j9a$L+$^-w zcDu+L`6EMVYKEPVv2RZX#ho$lzNSh5D_rH_9vU>jCp#QGAvnQs7FIi)m;5DMdi}XN z3!WW&+$X)+5W*34pOg_+()+^KfJ57{EureR{zO}lnU59G5ehftP$Wd*(RUAfNvuIw zvkCc6esCUy@ynrb^FzySQ-i}{?u?Ar6B@AZUn{^Ycnb0UnK@|M`NM=}_GfEBhI(-V1_iK*uWri=XJh4uy;cXHZM z+1KGVrpRV`$dT&Pc?+7U+gE%=0l?I?Xkf|_)}no>Hq3)NQWF5$ck}hSMiPN`6P>n6 zy1BWgKAUuK=i-{4&=0C>C-O~b-_NK31t$|fRdj}_wfeP@iEzB~J!7S50+c2K#1c-#X}(4#PbHCC{!wVquQIzl$Z>|70lFEx-~QF6dIS^GtG2&GwC%YeDz26yR&_g>4efWr5e@gGqw&h47;zXNajP|rtrGKOG(oadR!-R_d2 zeqYW<3iB4dUHt0_uEPn^Ai&2~Lqbb>o|C z@uKeBX@~rVD(2(6VwZ33rm1)kS}XS_=*k_=LhGkAf<|ZSosRL0!+zo{S4T@!)qEc? z@7_*0(iTp9J`IoYvusNk{FM|CP~~Kjezr@H;IP|2?yWLV*mJd9k)AVOkuExm(PKWS zSj?ypbYRx@XAoXtd##%OXDxv^F-cM0Hvyh^cWlRl>)jEiW}Q}az>4yQA61*|dsiSV z!eJmtB6|t{rOnpQtL*TK2q6)d>zBYRs#UCAjMY%~giL23@>svPwPfhQ`7SN$=eS4x zC%Ogo=+NA@z@M|&7)5D3GIzI4^5Nz3->-Kq)_p+VSddOShc4KlhA&7al}d{bs@M3A z8XY1LZDPaEEqkFyNVt~gIE>}#m=G`*O&^!aDdN|`X#=`$Uw)rdT9;q(imBNKOt;&{ zw7KvP1!T`DH@O`K8oG?r0;-N?ec!7-0LO%XBj((kG>hNVrmd>0|7IJ_Q9y2h>>VNa zWkP==9A$Y$xmC>CrS2O`uTE7ATsy=<)hbJIY2UrO*4FO2vpHzfNNEUd_6R*##KL(HWh@H}{L zUuR@vfH{}aA~0kFSIJh9&hfKFAdI9<-$oZ3y9bh?{yUKwvVt(u5ZBppWYv~nd9NYt zmExR+|8z%k@W$~BTdthfgo94sMd2+Oz9z36%e58i-$VXn_ngwFEF!g&r7G5HG1)}z4v#&5UY}4#CZj1OR>${k8+!PY1^Zz z_l{#!w`FsSHAJB(5vd{+12cbl;{+UO{YH5^)DrX1rx=;o>1F!iy)_=Bad>v>s#5!= z2qBg#R?R9V4{e-?T7w`mwOiNDyBE2BRkj+`8l3NP74VD1RQu`Jq~C-if|u&)=h-aJ zXQM688}d^~uLG+zE5t=jW(7*|`f>nrgT`2Mr*95=TMz~?>v5)WdlhX~nA4d*j`<`S z>ipUo$_!1m#LlkUF3W>>nX<01`7AXc*;>?FXv?u7GCf(!L8kGlCtacbCAk|`8I-BF zAxSmxz?$`YW3Aicy&C|S8HNFvcg;9ssohW=g2>vGt)|XQfOe-cE!E4>rWN@6e1%ro zWpkaemjXvf$a=9ex)L;i^XWwC{SyMsoYwp4I&+08)6Ic~<6w4V+RDeNq|w>3I(P}h zk}H!}z^J%x*eYE~Ba8EF0B3*!h~#9?7RDIbvU!UGThNmncB8$jnPqHr8GN%MKiu4y zn$LevxYs##WTm{^ibWK@g1Mm1!gq8jEmxrQ#*(0SQk^$|a%$Ip3&T<-u@0Xtp0Xyb)&F5*pW-3D zBBujeZhvV=^nt|fWmTUJ#7z<*^U9Y=P-qL}8eP1C6?EVRgD}iON1G&&XIshwg$n=NGa&if*k_!(CH>^qU^c;00 zjmm#IF3a-SPfi$C@U*oG&7V{4qfUxV!s9{puFhC8D-*i+Zr9TvigHro2EV4( z7G#P3fS`4LnpTL%UoI-rnJ0_5>%A5bet!C;)9Bl7%=IcYDM-QtflH4iqq)gpl4sY~ z&&LJ!8aVnCNDy%%q zkc-Ru)?qD*4rk8-{PHjwO#hpP_hz^ibxu~p2=J2Z*Ky=0V#XFGOL^UdZ z_Co^Te>nHQPgySYVy2V@f;m9O2NF(7=GleZ=z;Sn*6JI<)Ax5ItR2fFZrRUe7ANH4jJn z#au}Ft@agQBp!Y~f0lw7)Pv@DyvRieD31Krxp!5!j+qzrQ}w?oOfzY@eemUus^ALU z^Dl(rB#vwgVFsv!kpSSon~gByq6aZh-T4JKw1{hOckefLL`E)U*=+XeysO3M!!dce z{I-qWcZFtMur89w>ePp}%C&7QEC+6awZ$)4!mbsP@yqK4J={gD2Q7RZqv)UMu5t6s4+XrS^qRm*rB&dm zOZfg)l?o<3Cc!MKxi!{mxoeuzvB(Frzl%*V{0{1z0}tt-ml$^}4sK2&ApuaTIyHGm z?sSB>nDzOFNfZBH@BK~fSHI@Y6=Cwml!wY5(sua+C$4+x=)-)cVJp_wOHX(W9dzoPA9e`_vP3^O^c zt$L6AUvxnw*kJ?=rT!AF_C`s1J9ro5iLBXT(z`F=C88sJ5p%=xu%+)y2enzlH}5q~ zye?NOLBOyw%cg%cTsjff0<-M&6H2e~Q5ZpqJq07HKjdhmq@$NSLms0xL^&n6Xh$xi z2*xQ+AQngYkGaU?&-+iPa$jTAmSMZTj=NDFSpNF4(fb3&yWq}69qX+<1-HIr#LNl; zUD3wxsw%Jh6Hz`sJ|-q6C#Nf79@i8OySy%K&Q$B|;nY8W{$OKcTU%R4MMa^J@G@It zVq#8|YSiJgm?OM;frAsD`6U3-EVkrQSyYtJ(uyHC6+V|AG9+3;C4z16xHkQbT!dEU z82w6JAdHtsFvJ&Q+Z1EQ4x3INKFdFMPxZCDg2Kc7Jv*VakWiP3jt7hT^)dL-K>PXb z#2iO->=TiJy&-097?Lha-r`<^J4KqXQ9MY+W{Qu`%ZOeHNy&SJ zWvTA=5rpDUbv{%82#<94idN2?7Uj;@C*UnqsFF8+tHEZ)RZv>5N0gS03KZxV;@h}c zF;%p<5V^l&g4qENw(Xb`{x6um*f?Z-C~sw$Oy>>(zJ_9WQ}UpxyDZDD=j_ ztgt)7uR)`aiyYZUlzMG?obz|N3zMwtyu7swY)3p94Ji|z&*Q0k9= zr0>%|JrK`8L_|a-nQ(k})P}?JxHCqMh88iL%C$F;TzP$cZ9J4@HD7IZyi(T`$;HV@ z9oruoit-S@y1E+hnuybGOLA|zo7GFTQoq|55i?IR@wdI18EYi9G1*zBiL(w9A|)EK z9t&BC#+StNr0a4sri@tOUXjqq^8d;P%zf!-41cZT1qVQJ@bJ8d<+xq++=)FN2DltJ z+_w3;7}@C`!CEy{`Gr;f;4AM?9h^4`V)>8mPC9GhF|KQ@K1L?}k7BP0i*M)mpG-fF z*oEKz8JT1zRVE@4mrCv`Dwk8ZR7aqU{i0hM*k^x#Ho}*gnc3uc0G-H>5HOUTLNTpT zFI65`{l=d1lS|m}b7DQyrFM%ec(K>h!&QLi z%h+u6wbLMT!4uz#)kN*BOFLSkR26CYHgJ*o`T4E_JUqM)c-`#?se(cw8dB-^3iPDL7~25=Xw7E*dgnsK^0MIOOyzfd zF~{BOmqscB_R&k?HtX<{Sf8KHMK2~6PS2i1Ep%B; z-5#;WYi(@4S#sATqL~&}OksC()N+u>a(pZP-&z1crLn1Em4#|Ea&&|;?H2VqYpu&3 zHtR*zDq|^m`SG!AQ7bE}nNkfL47rLU(#}s12m}!kv8P2f>nck_86t6=Ag10S@Z8B( zw9;&HEH&s2|D3o#n)!u@v$>Z?|LSP@XgpU!T)h8pG}RYD!S)y=GWr5hgiQ0b{#cq+ zP6v7F*dq;CnD&7Ii-+3_>R2e~RSeu;Q$8xS?P5OnI9(#`^C9L8c=aLpsHDpeXuz6w zz8S`dQ%@6G$%nFm#a{$U$|l1pyQ7&eJ3moLr|6ddR8v!%Dc2bp7+_+D)LLoK&=l9# zvp>Y^SF*FQ&D1xwW+x`9;h{FKJ&O=pXlx^jyp6(Z8nJ_e?H2f@&_Q}emUF}Q7Jf;ZXHfpVJa z(QO}JWXyIF`TZeps7V&T3LOYJgcV zlT=`arH{Y6TJ}Q2mEG5_0%K!INlC30@?(eTbjjR$Z-jw?0qP+ykIN|qaD990dEMub zg~r!=M^>iMm26amm`}+B@F%At1E)1bab06u7#~? z(Q)4?!fM9%CYjuxiW_Erc`m*2{CEcS_-nhL&Al9xi~1R3Y;25NB-9kr>>?={T3Sk1 zss`rJ@83@w>|l$715ogO8x6!^(I|%!X;ggQ?GC}w)6-+KfpFVxg+3Z5g0ACmxYz&& zOwkD9i{s-_HqdX(!H@uYPqt{p;^HFjx8r%1&4)4yleZ8S^A1`!$H6(L6x^x%8yet) z>g%uiTppYw5bcLshn}_WE;v@qt?vgGhUIF4ZjPjGh;M6%JM64t>SAvj!t1xG=Xjyh z7W+z(+h=~9t2pNBM-ms=>82lNj;gmh2Ak*e{#FDd_X24Nq4(C#Cq%)86G~Itu%0VcR$-2(x@?yjf$%DdU_lj9K1Q( z_B!cakV0>}*-9qyy#CYQUj#m@wzl^3vwPgydwM?pghe(UruA|8ge|BDdu%Z?-6qS! zltKiZ8`8=U^NOuWx{V6Gh%xHd*fyg?2WWe3hSUT+IniPiU%+@D@yR)?JE>FOZxpQ^ zMX*?Pi2GA7W(kJ`PtzIrwXLEekpUmx27^0qHTQdSwKL%L>(^4rtf@S1j=H)TfAGSI zxN6;RPD5}Q^78XFG&I0Pxr2e1h%0VLh8K)L;-o=~WDmuB5-&YF8H+T$Viuf1orgqA zVKXwB4Z=TSrC1TlkG}QpFa95aQ!J`nJl4W4&xGJsmdCBaQx?)sW#($8pC$RCs|SmVHe@$b8T@>7u9C#sKJKgo z+7Vv$j18#isM{lBUf%-12n0g<+0>HD!&R>e>}-UN7&Do%&XkGVHsf`XpjC~wW@Xgw z@<~&?9{+wFp}CNh7{W`Hx0Oz(uf|}?>uv*aJuUwP=qAWN)+5bRd>FZo$ujU;xoH`H z@0dr|v(3U;=#|+z2O(X9CmJ_OQ{f{$GA6ZbQm}0#Impr^u#wv00r7Q697#}?WA)i& zPBe)f;QrI7ds|`A!ladiT7`-LcJAY!mw@#H3NU&vs{{w7e3(B_SUcJ{MZGJ@xrhU7ZtFGkY0+gC1H@ zDE-6c4_Ox+GFcIRiO8@#Uu(QqiY(DZ2^F0RgjclK3p;yy_moM32l=g^aPit>?`MaV z8)>B_HNm|{GJ;-GUtZQZ7;6q4xy7Y#XtwRoYPo_e#b1JfPGSFpRE{?Rhs;;DTQ>gA z$0g`lXXYBBhpU$yR;@U>j=+Kxg6&rZG7|6CDIX%nID_xfR@gqfAA9`a;Idi0lgZL% z*Rx!l@j(u!?=M<=SG>Kpo>DQwU|5VPqVVGoJo4Wg@U=es)!d996 z>Adk>EhC3{TPmYdY;QGb-Wnu-GQtrv{qBS5=d^X)uNt-tyIzvEmV~w!$ZaRD$_z5@ zcVthop7TgQ?X(b(} ztlYr&Y_-it_%#UKo0wBcON+2T#?W6lU@H67!=Gkyw{wO;&WlK5KHa;Eav(!YW}@yd zUt`k_UWtg;K#kofn=B6lA>|NOGNTboS`_^-i%8d`GeLIGM;u%rA2Tet9qG z9ldP!=up<^5J0*tY~$cG_?YEMECSx6Jjak(LIp(!Vwp)c2~XQ&`qT zFYDs7JZw;pxFOMD**6P^0Q{q;_!7ZIlpv+vJu7(^i-8VN9!cQC1}F~PUdF=%?pHq# znCfd;E}~$>dSSTh;GSauGNM<0$O78N)Wtx^WAOF*pW@y3kA{+md1_r4-!1ATT%S^! zTmeQbxCq6rQc5oy0E}Ln0Ra=^@&8oRm2C)3~oKf=% ztQjbu&CbwmeoUGMEUFv1B$qM!F%7`dr;q3h+kgRlG}k42vGihY;{`zjxrYWGuyW&` zDShpSi})`H-1}ha5m8HyR(`?=$m$#kN!|#E0T~_*0@2JP?3<0)gp(AQ@-f&dkgG!W zSL>XD6UH3pG`q{mQw+aC$&1BkVEB`h3q8MUIDStSFbCPiIuRm3R{KfR(KW=@sR~Ad zW4fkVZRD&DlhrxqT>EcjN$HTw`z5Afb}VM1-n0Ee&k7kA2TI%7ti$b1c)`G^j7?8K z_Hn@{;nc^bXbm5O+*j71fUmfl0PuFLS?Ux{A zC}7^~SPfJAS$F zh&>s+c#@lJJ)c10D#3Edx5j9{O63nhcXa}DT4s?iNkU2EzPJSJ!6CKGjr;^_Q>@8t zq|Cy%&%o$(MHNF>{5jwIB>`aV?EWse?K0(nz0Fpv+gvlR}ixItc6o64fZ05eOv}`ZE$K41Nnf6NC zaj(K5$)N?#;^ST)Fd+7!r-ktK&LaZVYK1NfC~Wng_pZ2li{e=C8s2Xv-FLY9C@$Jz z^^U70N55MTo!u3Ai#=5NZF(!OFG2`U=-ywU-ul7*=5O%&%P=nJ70Lv~lhJ*OtH7Qc zXfmy04?9%r;s5Tv5($bA-&c@rR~ADe^Ari}2b2YTWvBf9-&bCXr)|2Y{6J8$VK?5+dBL3L~BCtbjFtZ!NA-m zONvu><>e}8z*w5l$W?k@DV~s``v?%TB*OPm2&zU#zU z@0n{{az_=dZ~3V|45kr)>Kit`afHH|*lUYiHt{jJ(eG`i%f!`+Z*70nVj%;8f@~Aw z83lW;2O%{5#WX>MhWsV=ZXZg?D`xnB^#@GA+hU#0v`yXRd-eP1iukaKb=ICiB~Mac z_xWRXE$!cHihS#V2Acymt-|r?IovY??3*qlYmGwC9GSo;)SEv6xMEs>Y?>wi&K^g6 zC88dMbw(8R2rKz(6bvw|lfaH-hI7&tz9kxhyU%g)l<_!9;iMZQ{Y=t|0Zd*=7agXL zHGh^I^0%DW%zx>V|9OJE7ws$6YQlvAuqR02V}4_{+iDyUd40%amA7TEoAx z&?a*waJEpvLjBExsIV~OTZKHykCu58yN-v8c!Y$OdU~r{TiAGbH^+Lg3>c5N$7OPc z!LO|7i_1mL><&lqkCQ+`C~78X&sM8#g2GGU;P6S%qqEZ9V4X!mPRBMc_ur0(S>dPs z;57sXfx7w`vl~7i(?akVpAGQhsKeO68M1U%=Qy-H9~%i5zBOr1y}+m5Sjw=P^-qG_ zvYT5)>2zts~|Zn7R%WR z$Afv8c96M+9Qs6gi?qy~h0h`sBxtADC3ql2TG2h}vuQxLaFa z-vgNeM^I^1A6^lRQ4_jx=U{m4A7b-e*&Pl5OEVa6fuabY9h4nu-ZgfG1G>{rFyCMa z_tgF5AW1UFUfhGXw6D@44K7%Rw9XvQUW=t~0_~MW54A_Pb;(YFZe^fy$LJ5k)x8vk zOaaJXn=>B?17!HgcDTW`~bGgtOnSOaN6*kYpmCD2QT3%u=xe}M?1>)uws zQ%Mqi_0(f`lY%39>a&Sp^2eBNckL}ASgGDIR(ajIaRlJ{FGWefI3$vm3$GV`P^Cvb*Ztry|TgOk070hxv0a7=8~MnANOQh~=A{C~9eWr^}CD zP&z?6jEW-iiM%42(V(Zi?J+4KVFwCD0>pF2hlk5Rv?Ll%2oik2@d)3OufM;)pC1wL z;3cHJi7Sr$WAs^blXRT?ztu{??FR?4!M}fPZEbhwYxZib7S2V%ola)4s5P6&`{T20 z-L}26Q=mxA^!anYVRdW{`kF>IIO(B#Fkb^QZxi`44BX>6Vwkbwx#`HzzlOgD2PL_< zntnGH#OQoHR49Dw!w)*o4@K%JaGCRYQpv_c5YL{$)o;$++Ir77z5yA^Sn7U-8a3Ypl8pFT!SaDBPSjKkCHA7-;D@m>|+&UGZc#wrV;=A4eJj zp9tL1fxx{rP}k^|o5Oa2(fcn9x}x zHW5yJ%wk!&lg4pq5ehvIvAChrH}z0@a{ac{nwJZ-UvLfm`rP44TS%W=Y7q61tDZ9il>-ZfG8U(T8|cO9swOx_S@bpYb?LoupV-njkX=2fU4+{`v&9 zaUL6ay?2!g1NeBDyprk_gXWPir^8z~cUMdNl@3kRr&*EaUrihC4Hvta^a`ThK z`xh5a#UQ(akc=kJcZ&lsm%j;9sL~E$W;iS&PMdCaHJoMq_TifgkWpVhT%S#g5|o>W|HVQ9E)GPdXY+Uvwr@r1V*WeL?HyIw!_S?RTI#AXK9S<)tCB+>i zh_c{S$}|gQKjcY~yBF-QtbqT)16vZfxa^Mmstk;CKtjUO@&7&5>IOJldqvRbGGZ(m|O zA<+I@ESRF!2{LX9bk{>bWaqQA$SI} zhOp;quc*;O^^rl3CzN-}m~Uj6H*r>L+=RoxIKIt{lo2$*?yviyDvLNN%>zh4BngY= zNm$Vj@l!l9?2e*d_iGV>~ii9@sBr3cQ9Y zi(mm4uSzro707M?{7^b}N z2D9%Rq!yg^5c;RhH8w84KFybZQ?8VluKbpmiVs&(s;MlVgjhNh*B|3mm@J6A^02cV z#jl20Azw2;4QYL$Z`ta+GOtP(bBcC)Vgz~PA+e|f0tv#1>j`q`-CgX7Z(?!I6Qh-N z@MX8rW(`(PA$U(PY5$9F;iABnD=@lARlL@=K7Clws8G`Mf%`RJ@A7wE1qbD_fTriG5Ds-?^0b%lcs zZ--?ct1D-q#ZeD0;0uY;?4{d&!U*`WhaeZ*b-LpA*P92(h|U|(=cQsrzvAsX7Mfpt zdlU6RAEW|5YSww4z9g$IKGWzbpciVs%2-C7VUj-cZlq5miOFeH42VPOEc+17oSpj% zrVc3MFv#RD(OI1dv`ISG!$ z0gta$o-M7#-sI^$-OEr0y724hs96|qdpDbPMUbJ-7x{9t?5lJGknYzj+qzRQ3dVL_ zapr$-U1O6hIsscUO20l(^sjtfEvKq#MP@F1!XO9GYY2^JPlm$PK)b}ZSJVuoZ>$R4 z>R!?(VkntuTbXY<<5|EV>^P=|s>F!jf2~Ex=(V8T=Mp z?(S6wdjXJ|GcJDPwvoRK|CJVkI^MB)3I6^;LyM1P?V7a=gsujGErf?bQmlZd9#u|8 z?#f3AD`_O4@3LjdUFdCVoWZJQBnb1+@U3~@{X@0F01j)`AWfs|yZp{SYEp^V#*}dP zB#Bo=r&L&i@71%a=STAsL1Nauf%Cu$kM+qiig$`_v=HlN0hu+CiJ;;wIL1^1$r%yI z9$aRTc*@Ng`3|h8PEC6iDh!;lq0$mY6x@-3g=PsVFiwY&W!?7owe)!Y&%AZ^@FAop zSO@b4OQ)-jlVbvz6;8MpfWcwbL>~-)Yn_F_1|K3&|5^Z+h~;~CP~Fox2xbBAb#xRU zL+*pLa7);I9`*xTR%1)`PW(OG1d8o!*arHx)xDI*PRF z6Xh8O>3-upRfBxX0+L}|TMu(OZOcDDIU}?^Qr)I%LL4<0@>i-`uxe6p)N@jf!TOIxkMpf*+g17-Rk3un-SAf4Bg^zx)!=NPXqMFF(W7CtJsQaDk4u)%A@!O-3tnZzlay2=q zQHZkw7ZkVFSLYk{W@O2IB_rj#%Xi2CT{32tTnOK)f#M%DG8Dq1`sOHH#25aysrVKX zhXt52rrLbWU%MYJ8M&ia*@QuLRj7{9qSoRbGf;r(RBTO4o~G0G1KCysk4JlA8(Lfg zIU!)|u^pJ3d}a zs-vwou&$|c!FX?7U_L+?d(6gCjUahsa-gUv+<`7tJgu&Ewuc5FwdDP&(S&IFHpzr7 z>`BV+M|P~rbjAJRcPnn@ME|FLS3&|AtF4#nqP|GrVS#atT4bc!8w{ts0nY0_*Z(1H zZ2rwV;!3#%0{@b*|Kkw5dhT_`8<3|%l&6Np;&}yt(KzbnI1EL{@Y^S+3&7(Q09VNS z0yxu4MkJa!&&~yFgBb=U(3+6|l=5q{nahtmxHVIx)JaLGbHQaEW!EQ=hP(_Ej(p_jU7eGlpkU(pufK+%Pzyh-XT@1k zQqtM^Ismod%^%o{0{l13M48Qv;eaxddSn?g+gLp#yc;5KL^KX7|(3+bElenae?7jxPB zQ27C>02)=3V}dQUIY;Q;ctX_dmKClfvFcUs_)CQ#jDfcI)YTq$m%R}rFaIGZTF~QW z_dpc{C@uRE@cQE92%`?#|f zWI!OV8s(E4Egcpd+K>LaLSk1@l+I>1GTO?SBo+&i2;$Vp$d!WwEk^_QVvrnmw|JZR zTX7ZCzko_Rph8ig{Y_wSz2iZWDlL8VUy>+6`undYo(#@2AHc6<_ziL)Z03`J1Dnd{ z{Jix4eER|dGyc#}G8-0>aGmuMAt50xEvz$`sFc`rm*AD7s)Ef2lHf7t`zG)o3c5k{@Ou z7y{w)%NH+rAI>MhB_t;&d#zB$1dCUOqyJM+Al%>ITQAnjslr}>H{BXazSkVbPMlfO!NCX2qVwA-F#NVI4r7XwMzFnk#Gpz@p}O#-|60j^DLHi8<#L=Y^4(?`miC`V7FvQ zOfF5sG9|cU<~wal&{Msp27~9Z=5u*pK(fy=i~GZ3eaPmL#o+J-SXaOYW0HsDfmxjW z^`Fp08UXhwvAwcv#O9vI;LyBT00nq%9h)=50|x_DMXydrP-FVH017hJ;=g+_Ma9<5w7P7 z#?|Uau7BlCM4wjzB7hKU?re6ipJA?eC{a&P6rqk-- z4(b`;Q1C7={MDIGz$T=S$YGrkjOj|z|=>~lhzI_tm!yYzF1 z!3L~9<14^QrBD#0BLj~YZl&+Eh(9}hnQXPUCW2rC?@~b^eh$WL&3@tPL65Ek;M0t2&5@Kd1W%0j?eP~!(U>k7E&egi&6HwM#(ddgc?;M>0AD`0avuKJns zp$AiGHbHUnMM>=AlE4y~oT3iR zObBeP+-{&&y!v!JBAZ;js1KllzKHK6x%rDXJ*XeH>6TF_Ea85Fy{9nGsM#Le)UY}& z=hgH@^iyv(H`lnrl^r|)mVSlShl*Ou5`4~So9XgnGbF*Co`&=(*`9IN!x;I@|0a{5 zTv^FL2~2Iqo~k5vU=eoMudY z`{j)BN$RYRo5Rl33h)nWmXCcokxPcH<{|7?}B&2~1)8B3)_mT5NWCFh0kvt%M zP*x#z*U(Kq+~~DV8|r31Y>#|9pr$&UfcMWkkv$|!x91XM6avWa7;|o-^2*<6O#8tk zeLp*bHugc=vO&#DiKk%DuXt$73jPz+6~c^6zGtsh6VfyfmYUTcjtd@$&pJ;;mPYr_ zVo*HZUHDo#F&jIu%GMMeeW1)v(}Dq{C)gdl*T_quN$=lPHGnJf%yf6qaQ8H;sNVDt zQ>a}<3RAMJ^b@?JjHdewi{5KFK-)je{37&ur4yre$#$0e{@9!RbXL+vPWB%w5|zZx zQ_wP<8ehqus`JM&Z=KcM1lNTD8t8A!ny}I~Etp&N+4FtZy*XX2^!xlvOfh`&;N3qso=*FqbRPl`X4;P`e zIq)kN`H!WpI`)`5h2t;H1sI|i4Iz{iGPtd&$^MLn^yZ&yFOBNCghXG&j_z1)X`c&y zjp$K)31?};V@&km&DsFW+O0Obx&hj~K~ zf%p&SLI#W(=M=`+fH%rPZU+mPEpI5@OF!3>@)K)cG=S%2PuH|6%`8=0QAD$-va`t~wwReX3Z*fL7qo3Vjiq5n_jdu+uP zf{%kwkR?&o`1cdk$)HaR;>tQL+oWj6Fl5HE9oJ6jy)_osy}>hN1k#nf$r za7CNVL;-_f$#&=AMY|S*0qPFn60j1ySgyO2F(;D$|7f05sO z*-McgiwimTstea-#0A}te@-ja1{zM^wT_#H3j4USePKQ6q-r=5#ntfw5}`7 zYVbh41p-pMpJ3JxJ`4~%4O~h3FXfz|&c=s>I%(VFZ=#?iWN4#7jMe}jQ_-U;EA)@F z^UOlIYRr8b(`&%N&B{O=SiQ@&IGP6`RKs5pXV2X2&$Ujew(`W9#QcL-IZjxD0!eC7 z24&O{WL-($4k@$(I za~7RvWXm#$NQ7Qerb`pD`KizLE)2H{o6h_;XqS{UDU8||e&X9I=a6z2W=FPCpc`3E z9*>#IX*ylC7DHPoaQ({i9zRul>*k(V4YEL; ziErk2@5Un)Ck**m>Bt2``&?PXd!vo9ua-LC*TnHYQic>!lRYl?Yn{XylOvLPlfa+Z z=93ErCK#bZ3r328s!s5wiTrjBA!tGLjlXjKw!ZK$-!v{rD#AxEbbX3kwDX)_aRsCs zt=^=X_>jP7LRp8+@V{H@alzc8Rd^#w{DcAoCwz{RhMk;+5>VIw0J=W;=-q!Pp6=X&6ALtq&BA!j}HfEz>atmEtqY7 zh0zXw4OC#2#LLiGFZ?~*-{|mI%tacok4V5?A=kiwHsjH|5qb3KTnlXGQ?{TFzd6kM z0$X78!@3|;iNo!h}|8Pyz&otVIy*Fxpwkq9OL-;^meT1%Sr zgJH`SxpDI8vaSY+E&Io3 zjXpt?sppn}TvzdX4be0$y5%*_*mZR&N8bO#Z0OrKR=$V1m6aj!XhCOR3o z)x-f@WWGPtVFl5l&8E`-y%dJm#1>2f@9jqLF`Wo}U67BD+PAM)aq@jRA`8?kvT~iGsPng)vo{#{oOcW#lJc|BtD-=KVH@S2T z)xfQL4{jZACy6Oe0OOeDD1v6;(lKU~xN7*Su8NVdn9QI3=uHCDfY~ld*S>e96>}CA zDlSKN6z0Oaa12VE8}z?3Z?{Qz&x!Tn7=b?ZOWk$k%e*6oL1*>y2sv0h;QMPdY)jI? zlCejm)JZDQ`+f&q(Z{QPvYxRgtvR+{=TZ}Fr-E){+;4hrwEnEGxb|JVy3YyM37A zA_bL!k%ltel;{C*K$edVUP-C{DpyZbQjJIv8=3&86V(9+0CluFWrg(gI_IR!;FC;|j`}gl6BECWypuWBL zPlfM|EjDNlB;QgU)~pn)JJ zM)8vP6SxvKi<$S7lp30vt%Dr2dx7ZdMz~-MbQuEWF2IY50vog{rKYAL;n2%bW9`pG zu|Qt6fwsYJ1KYTent_e&ZJVWr%Sl=O61n!IFvZz6FPE3Mf3dVIR--?fS9T}<(dGpO zoPbs~jo$qHd{Dt*SHHN&ZviR*Zf|cv*y@-=2F8dY8t=m8cr_S|?b$>z(a{D52AMfI zPx_@ABrR^Y(SM{0l$KjPbtz*|2sp+-4Tq{~EeP7#Z;vogQ>XJvd`Ku$ugV3j4M#^u z$ILQ>(0=H*UOVm;afc+h59FP+XUjuuUty-sHD!#{xd{yU2?g;0=EN`bI2JYgJ3D}Y znHf!mDrheNWhP2Wu`MkgYHELWC-cD8yxQaO4(#EVTHJsC**sb6q@kfPA8f}9RfKCF zWQITa&5BuV%fRL8y`_g$DT(7ywR51KIlWr+FdE&W z0qH{nkyKq+sdw5|&{oH5WTUAA#oupZdPU@?e&6uU_9f>At`iwTA2ywP~ zWwbdkGbn_unCCvM$ySHEMNFP)PT@cETyF<244bMjgcuo>wPdKzna*J)@D^ci6H9dF z8VgAng1Ra2iZtu(HjCA(Xlr$wepEOeFXOXY{sJwZjiFioKW?V?Mh~0i?CO4lSz6z{ z!*m`iHK;=4=pDA1?x>>0_+yvq>IML))2U*LPhOt?<>oSemRL@nI>jw6@WVEBMayGA zhZ3+^zrN*e$x)AT^0jD&2V(m}rskbd?IHBypv-P0&j@CZ>2F7B0LT0=Sf8-LZG7X% zY=0}o2>XVm4-7P5UGjmKHt@LrEB-;*IHn48Ha(Grz5C3H0Jj*Q z;z*SQcpW<{5OGGDPE437s^k;#>s&`kyoZH_Wz=bsvtXpA9-ExpAIsIlHLk264S3Wo(v9bAcj`y4AEMF$H3pn63&$k(FH_>+BK<)ITwNEzmUB3-W zn5jZRdiuUcrZTv|V-H``!U!<%fFL{wEhgcPOiWAw>FO*UBdrqe5s{G}Znx9eqzg9< zf3sWBetNo?lzsJ64>U4@u_OiNB}~t!->k|d6>N;@74Ci`PWnvL9DiCjVUd+jXoF_> zz1XR)v5^idxXNU-5TaZ64GPfGf^Tep6O;``l-9>9O-IL?Br_131I9peRB-&o#RaeH z6?hB>Iy%<1dq@>@Xp1+A*IDJ@F~BWh0;Pb!M~A&BU*Aunz0uLpLc+qF1mOdS0J(Vh z!OY=ssh+8+sfNZp2sPW=+bc6{Zf^bt)i4!?;(0PDVi6uOM{b?|D9nkLTSJLmd8(et z4alh&U>P!HgF~-|j)zxRR(1@&XJ_XJ2yTO64;vesLAQnH{f5JzXfQ=sT3T+RJ)q#T ze@Wq*UR-orZTkuCDTpsNJD(fx&y++Ea;ro!mSksl&Ckyd4<8OCvQ+1(nh@Y+%33#{ zH+phsd;TzGUk?UD=DRPty)3oH96PYqCJ`jxiAT$WVN*)mi)mNqqJ{A>vOOw(oUVg^ zBT(P8KM%1eQYislc?V!R5D^jaLws|4HppnRST_!8;1u&@KueS;3A!8T&aJgsDJ|A< zy*lV08d5^aENka*Ake}fQ`Wm%avCTuwshIk`CC6Ycy>-Z@LZVj=}5D*UU>x3E{YHs z!-Ysjx#_wXp$!W%e-}O-XEak0OW^^~FE|ujZiNZqZ3&+gdK6{L(V+|8=s({>9z^DF zg~G(JI{eWBI+=7iH4~$>@7{ABm)`~5;ioBwVBxAe-$(Q*PWhZdwNZ2YGBL>P8_Mn` z#FI%JWMdlEV)bE1>5Lpk=A8Q7#P7*_>F6_Z^VhEtcD&e<;j3=$+wTz!%|a!Fo%T}7 zixt@#3)ys;!=^K|Yh1~yJ+9Mr+}^B!9DG!*n5U@?YDDsSvz89!?y{iN4J8r}Ck-RxEb$S8<(#*PvDR87QG>h{bquHO>6b8UT=g6#gxl6Mg{r-~+n~np z`qY{InbQ-kWmu_{i*W&k8*(O7g&mI@JXjs!P{CAh;}Q`>_QloTwq&6*i?^f)9!Xc7 zEscKbsxca^rAsZnL6;Se{MR={M);J^qRw>(nTL6!>Yfq6CSdb0y4q&3?&;1=bo;Pd z?5fim$n;rT%@9bNJe)?K=&d_prJVL|M#%O(E$5o8C;dTcfJu0e8JX>duimcxtr71Q z{|g$faDaEv>p1a!gr$y8cwgg7K_c-e%)I{X^ygaAA-Kqgc#keZ%l1#{AJO{;eKwzz zJt86}vn78p7}KOio=1^ELetTljh@%2A49%Ty;NuD(6<~fk?3FFmM!li6zC@KWs7nA zmS5N3XN}&RP!PKzOZ_c5M4b4m({^nh4hJ-#U+aEw)Pz&aVE`?N2MhMBA-NXDNy8~^ z-#(^t_OFYZW7iIiIk)}Alg`Vn?Neu)G(B?B!8E^0^mZpjW}u(nE@OG(Fm$o}s#+xB zn{QO&0XZvKbt*m#0pJx{sS}XQZv!|`c*rfW;D7(_kDf4_F~)CMhrjj1c-|nW6Zrm7 z7psru6K%sc?(16kOrK>v;?LLN>J~NVFZU8y00b2k|oM zKjO-hvd0vnj0i4xS?}Bihwl2L?0dqR^_A^|2%j9!7P08 zYd>_VU(~vC%|$y)CUqrtl#P)Y4{!O+z)F(-4eb|U)h%lcDp_e#jj*lKQJq4alj2v8 z1+M2FM8Z{-kn)~?zyV{H`kZ9XaWqM*%rKbSc39HcScIG z@zj>`BVWfPObyd0bJ6Fi;RXU1G|rRWI|Wi3mh_vht{ z98?YyXw`EX4>wCitA4C>uOHL>LLKzO^cfK?LTS}UU5RTDFC7r#`N_5~Fwp9ibbgWX ziZ36>h2E%MdfE9^XCjgWbdINftEOjEb~Fn!)@rgI6TJ1AoUmvN>|_R|Rg+t0_hlcr zBxL$}p8~M&t#YOtO~`ldTzA>b*Mwo4W^jYya@lqQl@MMK0|%_qiWFu#`4agBPe{Dr zWCz3Z_`}%P@1|DzYYKUcOUh%$=4UFVf(Glc_Vuh4YL+QtXdrV06H36v5YE;GEG)1O zuSt_c9=dxK0Gm&d{slGcca=Pj$?$1-Jjpj z`hFvlbFW5LujPum7Ik*!1oQmM(!u|{Y!#?^KP9asCAVTJqmP5-cLAsW)6ySQ>Di&L zYE`ObpZWuic>n-k{pA?}n#^fyk&p|EP8xe$)ZlH~0|W_wd7BF*xRwRW8Xr><&Q$2z zoj&6H*|);zc;LE`7M3u>#GNwL?NN0g%V#;8XBDggZznw~7dd)Yt6EqCE}S#A=!9`G z`w%n-#yX;r;E=s*SsEr$(`eDr$fmFhy*e=~8>M6wRx}(|YYPpeLrGA6+rhNPdj?Jl zkXj!6A%16p$^PZ5jZifoVXaT+-+4mhN)2h1*o`)n0^MV?7FRrJR7I-C$a_uS%^uEb zgzVu|n-=C+8&L-6(V31#V*c5ba$jQ@V2MNpkDY;c&mKzPb`PghgMzFT-xBUtSm>)1 z%!8xityRm91OyUz1;UfcFR$Al&QZ-4o=KAk&?3g(oJuO5L#=KW7Ezq4C-E7lIZa$U zKzTKti0>}gyy>mreg_ROws6u)50P-OuJD$uYGE-c5d-v}M)WswnNSmT@bGoNJ-io^W6OT8|WIgF;@)*lxDyH zv4ciNoMtfhZ(n(J4eIX9zyYyyX5DKG*k#eQPE%-FU2M#wD~~?wM$z-XqFd5}7F|uA z1zMWT-c{D?jVeIKX=QWuWyTqVw*btn~9HR^HY$)_sq_XYwz0?Z&RvF}M{4kYQ*Bso2MTfK`2Ldq?Liz9L(S)BMmhk)L@N=_3|^ix4t7RRkpN>x66 z(~L0|Ih^{O0jCUv)^mhg6#h&Ezmv|NLV>L2#kC$$4=d8dt~h}&43u^&d^_C&^(d($DGiTFz33N3~e6oH)8GW4y~wCUY( zNh==hA*}0=JBVYPm2cY+WPI8MP6b6>AF6v(Ns_X+#q3d10x6R~YCINOURuHj%+v*> zGUAVi9d2C=q3`$@t|Cm-kVeEceV+o>(h-Hfa%7JpO%t+4uC-xA?tg3fsT%hh)9QIz znFG0#hjLoTDhuKr9ny+*per#cwB(i2rBjVf3Ye<5I1s++*6yu6^j3A;u@aHJAwM#I}$v;!JT_OFFU&Bi&LET<1_TN2Vmj!r-PMghKc1 zXFW8phd6vpy@medo4L-+nu#+8vFJ|{07Q2Luf5nkQJfZ+(mK~nx!%igUj8v@tm@F)Q;rm7%n%zFJs{12wO|X z|B?TV3Nrr@*pcRH3;(v7$TpkiEnWhDCbMdk=pQ<`d_+cP1yB!1@@b)oOUk#en2pYgVY<&hun_>2;gn7AA!KNF=1OMfPchHYqsBnnlY~G=xfQF$d9z|n zPbB&FDq$uXRNJ?K#pI724?S#G9R4CauKYvS=hQ?cE#d zBQ}Md`3T39H&1VG^M+(zJDWWn9h+ItyTf6N66C34WaF%I#ZR4K#@QMSgDpgZ%>JXc z=**j&v?+}K`q^cjFyZ)Fl73Z+HR@buHi8SSB13$IV;?qDpzj>BZ5uWW2qea#0`>a|N;pDUyQGD0 zb55TJv$K?NQW4;QzjG{-hJTTsNK7pC9tNva_a2Pn&$c%-z8@qV&o6g|j6^?Q?O|zf zS#k7q#(oaryAs)B1#@dhhjGbqmDvWGE_VDNpY)@DVZpSBo{@agS@4=(%~y{*9u@ac z|6mzU-8gg=Jswxs(Jp8JD={%A!T?dGg^!pGHF1Q6?L&);q9TSe<+?%2%Fu-AUIGZv zkn=5p^=prt9SXhA=X3i{3ZCQ*nDJN#?<4wk{8&~Sp$CZ{)qKJw;y`>oEJ-EL|GiA3 z+8bGvJhtDflx8a%gpe_VwO^_$6{SWR#fZ*qA=qnjIp|=Y7LQpIzc%(`jF44sqD0Z9 z?-fKATiNxhLHZ2qk|G@(eA7K^jh^tEZBoeg7=z+%->IJjVRkq?=`x|xP`b?BFO-F%f9I>+Eq==HwP+WQfi_E8O&wDoo=PJ z*!CY2M+@IfM^bZmFk4-@4Ij@GIyy@h-VVrVuXyGl$=!zdWD^)u$5`c%u zN&Rb%Rb$<2!^i->UZn(iv#z^CTQ0$pJ0w6>+|u$2lkT~4U75Y}PA77?fXt$vS+m(Y z0543OX3}_+5uRVz^w}l#^Z-|EGB+P$Ql?HCa+kOMP|2*mBAa7InkAC+@bk{u8HOy4 zu*dYCM?MtoovrAdFVfkqJ((xL{p3sypN_)hDd%xy6MI&IxI&Bi| zk+E*+WYUp6{Z{0fa|kScFqvxb;aCW6r1O1Vw+%XT|E71||Fyqo$ZF`Qe?yE6H#ru^ zxvxHF0yYcA{?Vh=N;@|<@7zU48YUw9H0rrr88R-ic-V4Sw=hl{g=Vf5!-Q0trxmkj zoq`)8pNTjO&IWW`2F^=}eol$Y!Q(SFA30p{92L$cp)0=zW*5t1-^Zzi*BqSYzm-O{ zspiLLyV2ODwplq=j`xuXbM){9Pz< zeIT}{hox8xbEbuQWrEfTlhn@`Mr=~pv{$c;(Ax)wLDRU*5XFEeMr%92UG4{E@|8BJ zYd8I)R~g#^lH(HfU_3S04K%}AZUeD;mu+J z!D;b4$+!v6UT#D)f8`kgiKT?QuQck|^Uur5mRW?nXU84l&LVKN_#P7*9RW{oO{*Lh zm-wv-^e4agO$Jp|c(|IXEWD0M4Nu=1Hn05JG3Y#%@A$a3>>MyUQ4F-zR!%jo%l{k? zotrCCohT07Cj!!0zR9h9R(Y2;S824n5@~T(@GEJ?=re}N+Zy;zldrwtbomE8<+5*!z9&yER+nYeEbVJ5hz3!p zC!7ansu7A_aO~35#C_Z-w~uw|ugc7CpADQ*fpZ0?pdkI0F)RD4-##X^5ayF6bC+Ul zbu}5d%~Ie5gCc%0!YMGV_tPO}Vk1EWQxnF)jbHyDq|zbW#*D&p<>y+PiePg)U-S_n z?i=cIYXjzcd$7{;?3NS!32`>F!y67JA;v4&3I=&3^*5x)?2vU%1*dPR7KBx?krZ^s zW_GiRC1q%Cf1VTJ0AvXl_h0g{)XL4PL96YdzD+wFvxEmA34JYdfDC|_0@xJWu22C)_&n}Q`tfE@hS-r-K+_<)1(@~vx4 zhPo)>{Nxva)Qml)3BrI$x{66c5eMyPfZzw>vF?e!ua+sX%Id3p?i<0*e zN?<`I+qf{@Ld4aI`&6CVu7jo5=8$$u9y1~)l~()x1n0oLnCpy3*0$|z@_zm4;Ph;6 zoL~9huw^u=MViq5Je2jyT5f;`&))BpB*04N6lxn66)fA7jaW@tbss-ZAkR3w1Ijg+ z=qWbf7xM0Q?ryP@({nA2^w>QWT&NvF{37>4l}Oj3gab;i_TBdX7rvl; zRWZk}e#-pGu#;2Wph3eaZugd6GMv-}CnI;TM=C4L=-DpH6tYMVjVFTo$eQwr)3Dzq z6X92grH7)$Et0vI3JBDNy77Vu5%5~uz$M@#2I_ijBrR#Hm@8-X2tVLBd=&-j>?Y49 z;zo*N=?L|tj+0%7GW$KoGFC{rw<8?4c~G4boOT|knzWS}Ujq!2s1}SBBWm+Xh!&NK z=%8Yj>D;Ok2LVBfD;K5VTTWM6K&|8*EMQ4my~KOE%W-!2;1U2fqdZ8$0Chq?(#Xmv z=MQWksRXav!azVt#GinDg&VSZ(0tIGz$Pu75C-SL0QrbYKaqfoL+etU@0{V60boQi6ji7+kUTp{M zY8#Y#@y3kTfcDX4Ge24735J9GpF255F=dn=#6mki+}sw^wUGmG0$!!LNsf3GX3m|h zfzMF^S>Pe#!GJ2lJ)|DP#{DPV1-pW#)d!yg-DS5Rd790^+kmOB6Q*C#w2vLTax%vI zbTZl5MHpC5u3vdA`uIXxmdl?eG_R#%bepEDafR~VmUDP6ypr~8_R>>ocM>mBS7+d_ zIN;QGLg}PJckrjI|Djv{$&#FMh6LK{+xw!GbS)7D{x}CqlqQC!MHO6t%&1 zd9ARw!Z9>a%jWI)6+jof-=6o@>TOl{X=ON1Me=})2m?tulW|D$^j@KGjdV}>9@;En z<&~B*ySe+swk9noNasm|JkRA{=IUNm&GFBfeoY9z0{`sFFfSVZrP!^jgznZrKm9QIk@LIn~Z6yv$r$M*D@C&Mx0i z3b3vasnzqE4UHC%-X|TW&{i{*ET%pVc7u0KGeCj zIwSm3&?_%N#s&PE7<57W{WVBSX!f z3ViF>QG$`<_#-U+&RB-Fkrkx>Px0wg% zDl<}gJSE{yXG6MXugyksm=+aKDSE_w{KP_#^Z|cBPA~>RyO77L8Uf#!so7*Xu@|?o zfJSzhvTm;U5~998_%1K}WL?uvzb}@tBT$1{_OnHUb%XK!pjk+e=K~Ct%sZG?(Km-@ z3g#Gc8;|K5Q&(sRP4tQpr|@je%_K2b_!rFvhErnsE-7hpck6Dp>t(lzP6(p14`iA< zb4UP*qy5OFkF&ZwbQ;trLI+Lw^;+Yl6e(0W{EJHWam=}t{?DA(eV#zq>^o03A7j;XX`j1mJlLwCjn)!+FE zLc_1Pa&7K^8$)#V(|E!PzdFMCyc6oH(I~rw1A123^*e9k?@opD6Xd(EC~?}CpocFc z)3#acFai(5B;WA;Fh85`egFQWJH>q>{hiR&=2S@WU^&x?v)&ysa z>3JQ~>{Y!Rv?ff6$~}vUt7Xxp#`AhU)_iW!+;+-^ySC{YHNrGknE<{ROoZXhAIO1(k zjJ_>B_!OYmSLKk2$S=x0Il71kd({{%m5+nTzf?FgKygg=R zpH?<535(!fhiiIFk9_?_2=pl+#t7S}7GJ#|@ekK@Mc zO=W3gl6mj>7(c9*1@~O3!uBf!N8_x}gx@9{Fva^<^Bz*hXgl!IulJf^BQUZzagKrVX)}$TItzjJ5>>|8mFbt?Q@tdgg#NTz z1OvRX*2Zcb0NpNz!%1v+cXuEu{oU3!C_FqoFc4Jda62Bn13wxs3g`N!|3jn&PKN7% z?!;XCm3!TN_W6nO!|n_O!MChzl@47dLAqjCy#>7JBYHdA?B8yXtG0T5}qxn&S8X6A{}QATcV?hhYEX5!Il zG*fig@NY{%B_;eONH#dU4k&5XOuL%2w6WI@{4*|4)jVA<8}zrD=aJZ;@i135@Ni4e z8vIu{I|yr6*{b?na1zV0>r@AFL~kKO;IMG0)w9h(^FwfwDe%$#?gH-`ys%4*e>w=L z5*c>`jH#qCnF*n&X8Dkk*Fk^LA?20mD!G@p`XF0A2-||u(U9v6etLCvWl*73pi~Iq zcRqs#nwpy}7Qqde75~_c=S_0y1>Rcwb(mM<*|K(rpInRB;=4=`l6I5e>dfzu=nI@J z%!Uv=-4S>0X1&(ynraW9GQh#fOiWCmcK7+Cs+Dnz+h-XV<(F%(=kxwYeUk8b$$5Pw z4NPXC-v1U_Lzi(Pkyzajr$<9+8)?B$oU2Coo-5z-9<1Cw;<=jR8cmq?es*7)zM0>4~QUJg2%5Fov*j32aKaoTTzbAIzt zPvRMMb=LlFY-HD*708tB-LL{5ciF-3Zl)q5BcrE30BwEXm}XD|0nUI<;&X2R=Y{+E z{1ZwP&%=4dH5cwGu7E{0sNuw8`@cn=FEmQjWkp=sY kbN+9I=>NAjCq2W>U>%N z04M-*lH!^l^Dg@Q>sW1kj~|6iwCdaMcTdbG`1mG5B=P`sI^Q@c=@dD}C&Ro$#$!Ex@>o*fFM8%wiHnbvmm9`N{TKzhb0~V)4N^9* z5EOdcTh(i6?QsWx*?Z8c4@|f^nf43*uw_%P->$t@v(;PRw|f=1mzeThAmKpZr@X*d zq5mA6VBv!&+(>Nd-6%atCfwGE{_o%aD~2?>Bx+g}F08`t}y_az8ABW7Fvy>~J*WXtwMep+W9`h^0 z0LCvr@b`kAFKx^vR6;s$rUoA5etT5@4k9D+BAMt`_5B`-VE$RhB=GLzzLt&=-1i{_ za$(=se-&~UJ}UY?jj;#)xt?Jc!zS)&a+Nt1Nbo3j{{eX>0tOigyKul?j*$HP{M4_F zHOQdtj)z_UtG(Bqz1Nq8_m_p2*@e7MXhypKCEkrB=A|*Lz5tp8a~IfB6uc0I}W*>xR3BY)nQFuqR7%&W~`x~NOQEO57A zi-3R(J|E|JvtS&j=&^yUvD+B#z^%eSTVLNR%D``w;HS!9zbHOW@!zcGj-(LWNs@?0 zhZ69<*!Z~r=U@WL&~r)ZS^MoebKqqn_+{c5umA0?@%<-ca;)?gqoDr-sXUZ)1@^wS zhM(*K`zQyICXj}L5i^bb&id1@AXCf0x!cOe$LGuMzkd#N4Bf`gb{65HQHl=)<|C&q zxw_9Pa({IlBw&@Nc|zvJ&c}mzFC&^sK42HxKw&ma2` z6S&wo5lCTtt-uzaa1-(Ptio&K;i2;e^1lY-gKb#<-k6|j!7ZKmG-Jd4=uRMhY>RrYRn<=nbHRhHC8D!Ci7AOJ?8m(T@DR`4yt9 z4udj#*|+Sq6b!3Fj-;khDrEo~N=1J_|ge<02wW)$MKuC?l1(m&Kv0FZW0U8M9-ln}RDM4?PK zp)`|0m@{Nlc%-1W!-WT%A3ufWBV!O9?9D5s0saM>irmNQK#X&SB@ryt9YVBa|AlGb04zRYXz>79va{&=UTEQ4b#Uxilp<`MX!2v_(W7kDc$f`4W9Q z_H}qNLo5r*`_aJp{Nxe@5keP&-Q4;3AHLOQ(zAO~da}v>dWyH^6DJL+stcn5RU@0K z4+(?md2qeGQ&z=8WGPeuGvM-#>Tz(^=c0PoXFyH8yM&I){uvJ*xp66e5&YlE{u|vamU>bjOvZ zR79*DC5ON;fllnt^slE+T)SN7#2JseJ=yI>vZ&sRDSTv8HJ0 zj`{AMi;@Q5y^|!qGL~M%5K@k0iII%xTLzRvwCMPh3?%&2`FhLvW(b+z7!c_6HGJ9L z%ZI0uL-R%*0m059{r+>S5u<^3q zz4AY1e5)`-%)iNbzucP(Yif@KafA&!#sadb^OVGGp9vT^N~*=nmWEQekjo+uK0K{z zS42oh_K9p>Q|ejYW+s2zmy_c$ibhnV8&p*l#|&i0oGG6&i%r;?G*=ft>^fC6`!`6Kk7qtk@SiYq4G=XcBt|`RXgEOI7!DTF$Y~5bysY1B zac?u|kjt(=)yT_n;z{o8D1!xLx4Uv&y;RH_10BkfhtVg|WFNFtXEXU2CUHpT#I}PL z2h7Z(WoP~pqR>#em*K>WUVS+#8%Ce#{tW@LJdGRnU>jyh)va%m6wtUKXFOyd8lD8`bVlim+5&hD=l_W$~n8{{DY42AX{QFxvkMBW=XqZ{7nr zK;j(ivJ60|949J3F9xG5PKCz0cm~c&nHd-^L>5XNT8KVHQCrX~i2EELO=SCA!AQR^z>cQ0_?-YcA7!gw$Vd{)kX{qdK!*|G3Ka{7p z_}S7#NE(YBN|zp35)uns_I&C4v+jtMeNTSN9Px4yV_ewk{ry|(! z&S7^iap;J0ipwf!xm-R#WXqi5dK-ARK2gkro)DaQS%Yb9?e6}`CN>5PM=AC&{=IM| zOcF6Sg8Eq-vAH=CgqbCVV}k&MMHbIdmSY0oYVlJ5Lv}1mRCTIq0-3USTxj(w1cps7 zI~0Jpz~f%u!ex^v+u@Awf5#e>qMEa_zADUEBwF#y7EKxKS;WNYt9n9V8fDUOSZ6E3 zL_fyg7dhchd50qA;7NZMd(XY(_LL?$x%dtNT7c_~5Ig#CRJCb2u(=ry>n7TqR~!F@rhkj;g2p2rpY&7^{XycnpyCb=}+=aep(6-%uNJ8{_!g+twy1GdQK zA{b>8YgM&Tyj1=v=WHl(ADHvgu6t4|swk_5UGv&%oDImRXWh(9%>GTJplpfDK@n5z zF#)^sIZt3-Z#Z&M&&T=W39WcdNW4VoXUZ7yRwXvFa~NQRojjowkWM2DpN8kXqJp^E zI0lnm8$EThMG9kWs2I%Y9pCYpUs5ZJoHI8aNWiO zgT!Vw_+fsgPTSOv;Wnmi<`w*EC=R9C8Yzk*$18y`M;=8x!^3^A=%=l7N?G9xucmbh ztA68zn+*%v0+=z{OkP2)R^ku-srzD>KUe_p%Z+9HjF+3$ekSh69?fC5jh;i_lqJQ? zY3WpcJMz1j;_y~Y8?f;(893IuloyG3>wlmv__v?mg(JTvZ zhie6MZud?O;1MWdr&qyPV7I@>5-IOwrMWsU{jMIuQ}?!n>?BmDS;9;gF>^Gn;Kl<& z^axU@lDg2i6o%L|P6R2qruj!+Qff^m^jb7n&M+t9OQXG44SbnD{U*Vuo&~HEkJ=D7 zM{qmfon1K4Ta6Ugq7k`RaF$Fzh*}vV3Nc%rC-*`_zG6$H4F#@zsMk7nmnW(2XIa<{ zc8RJM>d=;9Dwqg=wp9*CNY*2|1gs_w(EWv2p5rQc0h?#;T+uJFYl4bY3i?WgOmS{4 zD@+;zw9O3vPKl3_)0wLN$;>!=MnsCCTdwMgq9~ua!c#}eBOB~bCCw45^R9v)4YL;f zIQQ;Nw2*TUfC6zd@kLDx)L;q?b;XdBV@%3+74BD%c5d|y z)wno6+^rzUo;_oFc-3cn9P#H8z^o;N2m`hQMS)Z4L*}|Bp0XN2i#xCsf*U5?=YvK-sBcJr7{PpY-l7qO>`(YiA}W9 zwUcfweYq(ex3kaGWxF|)=ktJ%zF0iMx`e)j=A@DykEs$r40(;+U|nKeYPa`U`eol8 z=dE+uVBSbj9OG?pnXpCbC4@-=?w2w4f5dI<|3Q-Pd*bMNd%E=X%P}v64iF6Z`V7!+)8zdLLKZL|=!o4nCvx6&F9bU8`41cj^@rC6 zoNE+*c-=dxJ4jd*Y$bV|s-?$A&_+evSB+7BSaf$6NJ7YQ1yeJxmH%=1& zJXV}A{D$vN;fV`%Dxbrks-k|odBO5hcl3PkQfroL8uHFqp!ig5rSP` z@4mio7QSv`ynV+g_;M{H_O$em(cs?;xM_UdYE+_2g@lVDd+)D%@7W6h$B<7&z3YzG z*BuC{0SNjV9sF_6-^bg#|K*7Neck1C{UPY;AtQ3{&S=kTynl0Z-IUP=g;3AUC9 zHe-8ftErrBOZQWpey95JIA?jwVw-I@|1FvpJ348n-Z$`*VxrO6r$y6=mOx zyg{95Jeoo=RXJ^8UZ>9Z>Qkicm=guhip7H))M4s16gUKt&gh>olL(}sF4@eZ3Bo0% zq$7`-jX6ijFy1#|DsM=HPI7c0Bn>2_-Sppk-UUJf8754^%{jDY$Q2>3Sy@ z>h~oQyX5qJEZ#}Q@1gdb$5HWrY}%?RBPh48H5UE`AA@QZm%+6) zy8*M)Yzx+10M8;(YK>&gku%S$+*Y%ZX-1NP8mcL>m5RrwN@jM_gkr0bsG_S4B}7F0s-MDmH<%&({7#C+74t8!$-U zV(Mv7g2Mb{Pw`UJD@kKe%T}Ex2nhKkJem@aFGnu-@lA?#Ne7;<3WvMB=J9(Pp8rmW z1wlF)v5%kAx#PW!V*ER7%$zg7;kGsCv^ZMy{c+)ay76WD;}L)VpLmym17h-pjs!9h zzrVltXV`i#Zi6Ckpzy&bpIy&X0#p#|&=pIlq@*K2fHm#Zj5gh%Rt(f+dp<&1N^%9shM;Eenx?4=lVaT9?{AWY@1Y}c?_)Gn)4 za8RPEWS7unLLsEGjsX7b*eOJuU^Vjb3tH~}B8JGpU;3+Hclxh_!5{xWcrq3!m4l6D zi^ib4T9e;l_@D8e9UWg*#6%iAYf5Dj|FMhdw;1ogF{05)Ke&D$)YuIKY&gva*2F>_ z$(-)LykD^bs|e5)OU(m5s*yK<6k@AO&EH-3NGK!_H6wE3f%UFt#a(Gi>pl6w~WMGyqGs2!UF)&+Ux1t1e*~$yJiWE_xZf!j<=w=u%dta?? zo4mKJ^4zTiRcR7vVNn1(VCWho1y3ACT?dRs)<{F8(3g1}r8%hW7cFvcJsjz06%b_h0#6`v>nrT-iKj^!{7_ z+7av&GY6)zw~ZE2;n0%7rp>mA3{?9Ldq!{!xK&H4I=HKze`?V5i4RGtx#v<>Wphr7 z3$d;~BA;_k2m`y@S%#9LEMeO!gu_63CEiw<0}WYUU%r!JN2ayW({U2`Hgj=XS_jE<4}d$AKyNq_F4vy<1&=dim4yZ478C1Pn^CvM(-L;n zS8=mD6w93U)7`!_XB)->e}iw&6UY0zu(}@qNCv-=+se7Tv&2>KnKXmbRa z0c1kn7x`BKCvy;lz1V0rd0jJkEhc{|hOo9Ly#vp^g}=!PZ6F*)WjqY~W9a!J-4h#0 zffv2EM9f_=5{`wWN7GpXD}n9;6H0tkjD4*>nFEZLi*|~-$SVyRvNydsFI+BAp|$k` zE}1Gat{jWEy2b*Kpgd0^d!$h6X1R#4r;kgTfK_wm0>gq|nD2=VK{MN3w*|%U&i9$d zRaZ2nS#7B=FhSW~bEVQQHwEv$9++~T8T-6{qnt1f4FD^pN)vx?yE~5uN`2aKR@SJG zjCuRZr5Hx_gKNIPqx{MK&sbx@(~Q7gY{1h>VbBr8%Ko#i{5zg22YT;2S3wWB5NdRe z_bZ_5<$C6yXgZu+dM`T?gKkT0KB_DTK%C(-v!BuLdR`x~Pe<14#F}S9ngo+e=32j! z{v-hNqEv(dpOrtXrUOyEd=J~(9n=)NTB-6qu>^BUXqi;xj1CO#ikOC#ubsg=Gz)52<|$_PgV#$AXa zf%<&=%fjkduxd+gD`J}Cp`YgsOJ^yzRAStU)8v_s2`dQvq)J3}6^ey+Bazlh{XhEn z-L)E`uuGbMw!kN_2uMqhhYal|W?)|1WWAyz=U;Tl8=vti5}<)` zm!&BvB-8X;k*hFzJF_`b9-)FLJhW+S(QC+wmS_*@#5p86MS3*Yg78Fi77I3ITk-w4 zTY1#TN8^sO67h(|U+k4eRw^UpY9uc3r>&^LfT^ypa;Rvyo0qKTaTT#ShQ8TPH4vo^ z_}uy{kDTO#C*okU#ROab-ybdixNrbl&uNK_-`Ay58JDj8C*T6H2m z8|UD@<%59QXPRz38M$pzi8?-qF@};YR6fylrwKplQBW$^ur3T1y{5 z5%lt4;gb<8Q(WPiL|IdnoZPJRqUm>Y8`|x$b2vfd#CxZlWhy(&Mb>DROe%3a=p7$c z!ni$Ax1ZZ)SJ!OELto05Z@*B_p`hI$m&VxEj4T!{O9<;qV8usu>Wc9pbvUkUu7qKlbfC_w@vQ!TNm?{C08`c;){u-P7#)cDeU;f2^gW1|#nJ44tqj0mp^TBiT$Ks3wDzmYplT;UEv5tv8Z)FvfRne?$mOKaIXjXMPoD^k7<5i>4s{Ma zV#62e&gQM+K@gcC?!^lf%3(*c&7At}#oD7CSlh5>E)z$3$7&uY`flLp&|K==eeKd; z|JZ>ir2nhRq{N`aq{sw7o8KP(VHCYNU4Q12(ln{T805|kI)5UeG3Dm;57iQmxS7l9 z_Luala`*NaQjAP&7KYO8YEGy_#~%{(@AdEPpBE{3Vw~cNo>Z|bIA;m?HiQqd*UEJY z!cACC+_?oKqwI-H)Z8zTMy7M~mJTx4c186r04(UHkup4@tT8 zSJ;ugM;ZT1+U=v5e0=ELGs^HZ@_D}O9Jp_941DPpJYoHXm`^`-=x>ZZ?)p3AKA{zw zpD%=g@)rx(bR(+*YFPPIc?J|~rZ0|Zeo=loNs*F%6r+!48}3}$*}dmc~zdUXcF@+L_%)jyCsJn3Vr=I^_3!qIar{-39#KXbG*4w1UD^q}ba!P*PJaUuP z*>~ym)g<^8BB}b$T_W(`K?Kp?Zw~_lZRy?bZ_kj_5ndc=z@Ipif5|BC-`|HizZ|g! z-|z=>za`=Kok}J4r$aJIj{`3=125wc5ARPS2=EXR{eo z`Y?vR?g_$zrabx)OCq8CD352rn#v6=>6l(~0mJy|)Q1|Uww~yCzO!6bvL>Hj<^4Vg zyuBPOLcGu)6rpcoaT=>l}E!{D+7Cpx|F{CPDtRNSkTs?$8Wn^U?=(2D{CZlb@kn-X~t~*sa-qo18?cA7Sjeg`^oWeWo$oKW`8P-e4sA!l+7rCqsRaubY!Dg;gis|^rv*=nmxx2~{MaFi_ol#ydAoV*Au ze$ofqmxggleS8*)IaAHrSX)VIU*s~aKB}r9Glh9>VVt3Z)|O1}m+#0CL_#X*xxfsc z3m)oJAdwvjH0_DSR1t=sF5Dio+E;!K~)Zq zc5#jxDYqM+ilu6TB~*@u?1d1ri-qmz? zL0(*2e0qGm5(kxi9H?7TZAm5@Kjude2^IX#Bc?xChtCjG%~BkjdNMcQ-H3! zxY;LMYVrovO5x>=avwYSjYqV?(8 zl-(P4X?O9?=&0Cy#U}9{_X-Lua*f_Ml#0k^f>@J*PZOFOoNR?nNM#{`2}!=YhLm(F znL&uBC-;{Vlp1TPmM7qvb`Y5;>>x*T1SPb5po|k+6-O1tc(VHTc`S9r79w0sogC&6 zbR{NeqYhY2@MD)tapm)LOkm(+=R|&f*K1b~Um{t6IAQmXV#HyE`Q8B1~+Jfuh3J6q{zucY=ZsQLjx` zts6>jAk8W^g<*Zl{wNmt-l=SmW0uQSn#lx?uvZoo$Q95$$0}!*tDD>wB#2H~VsyC3 z3@XaELDD3mgEd`4l*5!MLZK}qelm$I%HO&;7b;EBRKQ}WuO zs@GY1jCe2oj~5&m4jXLk-2H2V3x*y>PcnLlzkU!7mCD*|(>ZcRw`$f?e1sm(kzKJW zDIP})4c3sr#L1V#NqD5*UF(vZi?5!n$3CNM7E)EQ=o~ygee4$gpisihy;au22A_aJl?l zb7-WJsbJk#F50i3qs7h1=BQQUxxlGd6}AmXxtk|E-c`a`HWAi5rGdGr(nE`?v$!}$ zMB!@0*SGiDgud0UPsJ?eu_4z z;DNa_oMMYp!Th2<7-}2dO>RkL=BO%XOuA4?E=lD{il{0pVmebGfn1~TB#G5D U*m_}_+ROg+Qn*?&Sm@jHx{>u|J!NM&#S`&m$ zvDxokP}ZFt1MZ#tqy9;dDwZUL_eRE)PXPnqS-V*y&0-O9FV;MpFUyG~%ZWmngl29Z zP%5m^q=*j{ifM)Hf6NrOq%y-)Bje;Z4f71{?t-4~<`$W@m|{XvqSHv_V;HqUSOFXK z>y}j_#)!v}7A0)klra^qK{*RIw!!}xI@#`SE_~H_|E}n`DroerTB9>eNaBV0t@A&I zjSK_a3Mc6$l;;RYozzcM8y(<55Y~An^JBS$ zR#1aoA&*>ck1v*5YlSrwKVOPs2P^cV=AeMMGzGBb+t^Y*{ml}qVlD~U9GIc#XYyyN z)J}!h!;2VLCKV}f7uZ#86|4zDXtM;Y2@^V3!N$klzlx!O-zcsK{p&z9rL#Sh?>-msdS&vjQFl&Vx&~+Ce3j-U$RL7#l#Q^0>C~;N{ z5uEVxsm8V{iei9{A<9_#pUhQzK4k800@SH5H04#G)u@pa;nnceKaX(eI@a6pw=lvc zr!|@|Rp;Qs&5Kt%-(z4Wa9Qzen|6XIC|9|0kt~%Gt+ z9LD)%>wQgITV;cdIsM>}Y3*)X{u>pqO^Htpx+ehuHX1Gy3}2OOPRqAcYqKcWnyvdq z2Thrx**2=JHz!KHNkdN9n>DRhK{qd+Y%dhCl}Ck35ypLUvNpB=RdwVnx^yNjwbML= zzr9`y^L!s|@D)Uw6m3kO30VB`^NhriWU5ms@x|d%fDl56a#l6GoFH;4n40i>nuCq8 z&CH6h6wHaGgjSnLNWEyPL8hFpAv7n)7tAjI!I7vc#pFdlD&A$_}^{O*^+}k+l`1ui8cmive!K zoaXvbxhfhZPsbHlpQ>awpSrn4k})2DdhgvTGkf5tC7VK7a#bIl56e(74qb;>)ZjGy zbj!CsOSvK(84XgnlA6Ys5@j7J$Y!e$7f+KzTTwL+@mq4XK2KAE;q1T!N(`3C_iJcw zD;(A})1H}Zko13+>Z&vVk%hOr7`vcFvs9i^#mv!K7_i2)Qa_J2_Mfl+VjjSl@U{F0 zvSH@jFeOidwd2k$n~JOR9ypp6VIa+IF3DOVnomq1wHY$XmgZX(g~m38R&!#BNX;*hW;oT$a(Qr%m{ zHf&Q;vLlAH z!?Pm{GgQ?f0}LZjceW)Etlo&tV6o^fJ1~5=4L6V@ke5xJ;;l$a**MvPZ`GE-&c3~8 zk~2jLs$f|>!&xCjxZ8rIV&!M4;p} zEO#YNJz7dBMZ0RX-(HpBSdt5f|@0SvfKMxE#x_n1O`}{NdAr=-3$tDGSAy zG$0;?2Lv^zzOrDu?p*N65@aC^SvqJ;5Jpu+<5M>6u@+jGx@{X$wQGsIAlJG7DrlP% zfQzXJ7ir9?KjBp7enn%A6QRubL7t<}ky8MmTFB;bW=AsYbADm(f^W?oDJa9^Lx`qD zM#?grT}zkq$vh6EXv6rIF!lrTTtr$95zdpaO)8S>1t4TNG~7-#K|ebeNtPdJFqS7H z`rCtMI9|>&iLd}7SqwJ)a&Ig++k@4fYmd0YTni(45__%Qx;hHzm}wCkjn(vwRj!{_ z_Cca!*;WUNBFmjivs;^*;@)n7Fa#cpfHJfXRC8OW#s>aGP$slG{XnKkq^TUnCRskPUz8lWpo~E-pvig#LSsPIO?+4YI)-$WB6vxOYXR?9Unvr$F~}u{M2~3 zt?L)v>UgCf4@DuunwRbjRSnBLyT7WTc14@cK&G2a#+|6Mjp`7rAU+N`AqdC(B(#H?-z;LTxt5+pFI=EVAm^wf>B$-~&At#e-5gHG8p zKP^K6+fEv;%8Y>wJ!{<WfM|E|fr~SD`MrJ|gxQ5KXd}Xrw4aW#EUna`bFa#_DMg4^51u~?_ zdT*`GU%hK;u4JlI)J%WEt57ssJG|{Pk7!R6ccakLr;^0I$&6Z8XW;f7y=@T91ykH3 zLs5oAd>Bja(4V%oS`lmqIZu&pr`<0r7Net%2o%OYLWOYbkf@tFYR+XuU&K4k!5{#v ziqUFeB97wnJRMbDKfa_11boCHf=eXTSsvC3mNWlJ0V`?dvVf`^8>eh@jIz|;r2o9y zDkLJyn+^TUHzuobJd?zk8h4Y5QaRo`wNyVSyWfH|_s(F6P@{|dY$wMvB8IZdgaM_` z?+RUa&90V?6{|k4Jgdj8YS@wk6=Lf&6D?_UDfW`U4Ov|5ixXiV2E@ci#jT-Br;8wp zIW^FHtRZ)#dtz|N-@Ie=YOONDS2I{fynYFycH79LN$xNr7mkDk|xHl zKhVB%U)~>dw0a&h^&;5eBIVuUS7BN6v7$_}YPt_Lpk+O8kFiA^4Mr4UDK-Ean zr<@yw)Qt?GqJ7b5pqfjThRV8%poP5R06nEm_J?`ue`&Rx^J$&ZYznrJn3`rqLT$7* z&;{fWni>!h(jQ49t;??v5{e32*56qPnAL9jRv|-d#gyUNl|^~{%V9RKO-eOZ(A9b~ zR*+aDAMP3uk`Bbo@$}-wZ9~hk%yDWWAToal`-z4OO8)Dee@S-6_-# zuIN)+fx1K*5iKj^$gIm}W*(+T8)|p0Z&D|h>v$rJwii4~dv8d_n< zr$Ye>YMn7B^xU6;ssd;m>y^#pJ>8CNWkGE>>m&uGyJf44t@Vo$#+8Qzu1cfox~(TL zAqRZ?TXqd?4I?2$_GT5^*4lKG!_ACjoswgl;2v(dzlmNoC1}~7&$`ON`~?pnUmirS zVR$f<2A8^*sq-rmn?CB;J`qP%|2)&WF2DB}^SjLzmr_2Ep& zFNaCN_wrD7bh_i|yPN8NOssxrJ!!Lv#3h=jK<$`9H7TRMs#R-2uB&1RmL)5L4l%Y41*gZppgMr`*-DD(9B9d#TX1XD z$wmG1#st&gk>_B&(o?Kbu;mMdW#g(%wV*Qgrp3iM+(VfSOqRyhhK99hNCaX;D>`+p zD4T*on1ka`(%?~N37ED}E9-#KZp$Cp{O zx>+O-Dobpee~G6{h}N#x^UW~hLRD19vKAPDODB@vcy@}5|Q&|voeX|unXE!RE&{B)gttMrBhua ziCVlq>aU4fFkSD^kfqShsM{D?!nz4y>a*Y=DXEu`Al<+JQ-%_rfIJyXQ2vO%V&FmC zGZm#JQe>nXC|sA#K;L%C@Kl_`p)D9i=n;Y=A+Iup!)l~>W0?HNtX4ZfrOKDE`nw(} zMBG}b{sR?)l+)HIS3=e=X_l)r=v7OVM;#S zNR|PiSv537U{|EdzN+^?x1jJG$z>W>5Hco}7*6}*Kjt)g_F2hlJMgS(pEF37$q}|R z!`6Puuw^6J&OF6cqSw~blLrK!) z(9Aj>hdCnFT&p&yD;`zT!EAQW;2MSO>JZv0$LR1iz#2Rjk2$6G?uhOq>L=sak&kj| zHh^UeY`3=O<|#Hx(~)J;Oe08^)>_d))^jPjzr2_C#94CYP%q=P4z%vyo_tSpqEfdC z`62)+xf6eXPR`2iVwSh)3~B0j6= zlIZk&3H1pE&F=Znj6yteruJCX`^aLl)Gb`7KM;DOPu`+Rl7(2F9`>6+0Y`;9AVoz}rR>le( zjuj%|b{_X`QQO>rjS)?tP3jfe3_prg8{wRLWd0_QM0Vxan6(|iBET5i#Z4l)9qDJ^ zk$0&+OC5$I!TL#!j=%d-{~R6#%FSfoG$+@!t&BvKvRpi!x{ix}5;(!qYx%&AiVHht zIzVX69= Oc`jKIX93$KOX=6ah9rJ2eM_T{jWErr*c%p9DQ!9ghswmB1M#`ku)3! zuvvv!^RYpseC6ahp!QusN9a(1NL}BI4M<#Bg44@ips{G~ZArGr?83+xp>@qvT3=RV zpq0$CKV>fHt`OR^nVHhG)~(1XNEhkH5eWbfT7LMeH52KWgPUljQj;RuYOg$O|Cz^b zR2P56xI$C@NXG_YB_~h@Q)rvX!^!qGRF9?Gjf3&Wulv*XC3w1A@9VB_3PgHsl?CeN z1CkL+nX?S=DAC((cSh$e)-H&&@olqsL;G2-w>;zpnn6^>-;lERq|SsaOh$wY^TUDB zKaj_SwR7Ebvpj6vNh9IXwsB=y%CC!d`y=ywTR0Hdu;j~pt;s9?Un|bB`+izQS%+)1f8?KS?AYa2pZcyc68I~&FhNDLCYABi4aIbMSuEq zVRP1NPH%lck-oDzpD_I-rwq_N6A{<}lhc~^b8ksLkpVSbR6)I!e-0I(!@Mlvo~>eo zPx!Yal_d+dswb#P?zRH#sPS(&<)Imr^;l?J|bo)*pTzYnbxqp9A5(v-{2ibiik zeAy1lxdY@V?s?2Wyq*z19#t^GAFTg916o za_te`mkZbM*I6dbh#2%qhHEKhF`;a~IMqAoD}92tm{kk0yu*|) zz0ArT))P~osv%B`V|Ldd6S9&R)BridXI^nhj+#T=FrA@DQe+-isZ7ixGpVBSGj8~p zll)tyjZ_jI0m^`Ohp!5UJTJs{<#?xr zv`9WvRA5eMV1eZa8J&j5`a#s~F!@SkA(K2Z zR@tA!x}#cgzNB&P(u9s^FSE-vnWUyU*fZC_$j9IY?Fcny75>{ExIX}#2PMQIE7mjI zDESxOF(RN@J>0CDvl@NAUQiP{ZzjS7D>f$h#b)ql$ee{`WOB`k7goRzZ#W>8S1O{1 zANy=p>Z-KYbg>Rr^btD^p^`uhx`!q={ohjOSUI`OJ?oUMvosXWNb9i4wS4>xJIWRlNDqlyD5w<>*`!G75~W+7bjGvUvjf@AYW z2sW&$Y~vjEPF7a(<;}v!v8WYa`3#|8!bQoE63AfXO=ssETL?8VJ&tn}(WLmx8CPOp{4h_kW2TrR2Ed`2nerpk^$j+r`4Hl4Lb4v7Q}CH?#sy~q&dRkuqM(0?|gn=@GM}ktvn3!#WcL(yqfd6_gz!EAAj(qVJ!^xuNN*z_PYJB5v z)%pGitftcL7f?}$WbBt<3u@gOEP6C`vH5^A7ow7~!GznQYC+qXQ{pHPs)$n(wwMmO zBxZ-Dd8_(*tDy~>=3szmY-U1OIdiP7J%Xm%O}?3aOgeVqx*1MJuRylnG=pax&bRsS zNWd7~+M`~_aZ@YhUO~+1$_8h4i=8Hkr5MSKBTz@_+?73D-+ksO(n8?b_b4kT6ME3r zex!y>9z(@f=SLksTZD3n-*_Um*7O62Evkc$wZb(6U4@Q1>#30OE{G)(`*Bz7E}!R> zIkO|>u!SmP-Gt8MMS@R~h_C?%pC&sz#zH1z%Ih^m>nh$Dy}hLrM%|IS-jIjgS_Ii57EP6nKreYbv18WfS8_yI)c~J1Tr!#46?Z zu>Ix(%zXw>pkWqe?Uaf!{f%AP=raXkadz3|DBBUWGF>Tv9;%$yP6hU`ByL}0#g#%3 zStp^ipYr0y%&c!}>Md_oFKPt&ImHT=kNA`t$Q$z`78#ug38L01`gLiG2`yCW zkHV^R3?b&7ohnYS9Pv0z?H%*U6Q1FzB^Ald#C68{tb<%uK-ydt4hq_2^h7}hb0$3& z|D^fNnm0}@y~D#J5*N}v`OlVEBC1*oeu3|64}}5Xyw=$gu?H^CUk`(VCQYF=JRbyd z9E6PwTEr#ML*cEgrtx!WLc?{oU0g1@#r+R|9*d=OT9H?!nY(AV1fGv9oiwqExt`#nKD2Q zSVc?D8M=Hgp`0N`%)hl~(a)mgNMFGCqXO~VX2^1`d5NdISns80JPb%uM>cGRuwn0e zEry5_tlKeZV4L$#xCOSB7FC;KCDO4Aj4@18TSC_2MK{qqeA_{zbq+^5=zNbzaLZfm zwHI2|{G-1qH%BpK=FJx#JK>vHR@}(u`a1<2;!%oW0BhVq&_ir^J3xF=O(3X^F=H8V zPrgcn`72JZD*d)*&9Za_M|~wFZ`&80$6?&@%pWh!76$_T)``Q##Z0}_z+&rNT3I^T zDV)*yoER?NEchgu?~cTBBNh7H*2h}g-aujST*Mj_@U;QQkR1M>q^`;nKnB-9P*?d$&oIYGw0$ROquY>(@WWZ{=NYi8IO z2%w$?Yh=^y6`xgBP-s%3rrP`sagta5z4Q%d|*w$_vaQ(CG0&WI~_6CssMq|-cf zAu9JO`$$Ke98GXxhBwJ@s>g6s=ol`94glofXHJko9vwu?VN#4n2kio+^ioD+iBcIg z#K`~UJNbP^ka?IaU@Ulf$I8d=caV8Tr&N-`3Q}r10_M8FqDd3>-7x0YOh$pTR5h5d zv;dHLZ3}D{C~7^Kj`t-=R6QvJiyVJS3BYRKcdAw{-{S&_@eUWyH{3pq%HarfeNwp5 znu7!uIqduNI8100Ygw5fiVWLmZx+#dGYF8d+#N}#l1G*lrm2FWpW|d$Cl?soQ@vWH z_-q>ROPja0uS^CxP1|EJIdN53w^%PU9LmSjcTU+n3uDK3N#fE*V^ z>7f#n>&TV|DE6l`j!74obcq^rLDR~sUQmMiBvU78dmhDo)!TlsBVtQ6wBo}D$HhTpEx=orlv|UxZw(%t0v+}7g{rd zqbu_e>J>_lvEewDEn+fxgE$adh0atlmg(87pGBXNkQ8 zN~or3ytCWOJ=Isf4F7-j-Zj>;tGpH*-&||&eNNd`<+7{%D8DWc5*tvE9oaYzt=Oh* zxlJ6nf#!8v9g&VBwUmxfLrdL1=pPMIi%6gZ0xcn$hz2?)eSM*?;U?nIO4I>|j)9n@ z%p(S3Y;2dycGao#*pIc=9Q|W{-<)&pbE;e}SNYUAXAT|hT6^ueo_p6EYkW^P(sFCv zG-n&Ds!&@rX_G#Sl0202hDa!0s-K$^Swx?_m`E`7;+1(O1_fhslV04AV2}zA%o)OKSX%rZiW#9lUY}Pip2~;**@IbW)Lb?uqjb>A| zvq6%%)dC3d6hH1OGb4I8v_8jECDHu*lS=da*!CVH!j}nW1!&k0f{71KB5EseCQiM8 zF_$ngTHH9>k%T77=@$SGRPmcB*3nJJwB39f+Wa#p*nCJ51JF4qvS3y?rXK;q*eNMv zL6e3|tQnuY&1z+WCq$N>;A8|@fQ+O7RBF%nxTBl}-9XsVx4L0H$l@x3C>X|Rlg)&K zkpO6>$sAjcjQJ5d;$b+-qzIHF>S4?&(K|~_ zZ?s2}AVmfOFOK48`Ay3nS-b-UZG4K+?~XwZYJ(>c4?3pQ(-cl4h!HgTSJJz|;ns+0 z!Tjd}keW>aOQk5-@hC)C0Gmr=g1pXw$u63+V4QEY7Par&Ma^rN+f>19b6XuXBCxHIf_t{|W=Ri@N5%vIfzyQ8w^w3pS3BP!@NHT@h_R& zn5|;4fOf2g!l(oXLsUc4FiP1FoUF18EV|X(Q5y@bjB%viI9aR=4dVS35a_(#9-2Ln zi19MQa34%Kb`$yz>|3|v_oU;M5z$OyjR5^_*=f~uHwaEd@m(fh!?{HnH_()Z5KWqH zY+$}x&AaTfvUM3LYAI2dwLHvkE?|{}HZpEnFmL?&6CK8V zjZfDpYY>Pbpy-Lhq|zkTRAZb`C2l)6Q%1oDAh3l#sh`L@s5_TfPC1-xEdbetP|B=c z3;>85nG+X3FVO_gE@l1iIow3h#C zq^P1Wiz5|)DAv(}LWDaWF*-Df!hAxfQjz&tdIC|ipnFYsleLpMo5Dgv343Ipj~z8S zq}MJwX?>m`Q42e=Rl0Sx#ZgjVfiM8N83e3`nJNGPRGAPAljOjJ;A~YN1?rLbRkIC4 zOM-=xhdUmH2zNZP%&TM<&8FPmyvSTU zgz2d_(}wkC7fqigA5pFmgZ|4Vrbv7CR@iBrj&&JSxH_i1vzswQqjWQ!^fY}U@;Xor zb<<|7S6UA>2r--~$z&k4*J{+Wg68XqUUic3G62*=%%;7GIUKdNV3`dk?a_I?BnsHX z-&b;B*)GX){(vlNFwXNXyTv~4q!&lpb-7&>K!~pq0;IGv#^pJ(B7lK;_-5%1V@MODK|_EA`f^YDrCCFWveGJ&D4!DtTEUg(f05VN*98W-Q0 z2Qlxc1FaY1XI_hMEFZ7K)%-2!*DV(JVHWLa^572bIO#j$B*ABpH)VnR? zWd;LjJB^bhAs7rLYk!cWOQgV_uL?lFyYJjbRh>~+vN&hA)d4^=i_FL9?F;IbfdY-j zkTMbHGYF9-S4e2hNDZH%U0;%nOt;>5BDJ=pMBC?z#8SZ`8oE6o6deV$>C)U^GK!kj zv`0nZY@Chh;t}-jh&_dc)Cem>nx7c6P4qXSTcvLY~TW*u_GX&!xObSHJsvgQVo zO>b}m=_ce@eT4NOQk9}gN>NwVBLFg4_KD)b5L1dw9a8JDDPwIwfniNHA=iB&m`>UP zT(eG0O0VggsM6q^8e>>(+Yl+gP^3yKC|@ANdm@*8*@9FEB+<3XF5#b$UlFaWsuV+l zARv^`ZUTui^_H*;ZMP^@D3d0fWuKydW_>rI*`G-u6_<&L_TC~q;~mX&?Og~W%^M9S zvqL-qB}K;PsaWJjdfBE0I}(KmcQmr8yKfiGCkA2Ol?l-h#rq< zBSUtkHDjUe5Dr=i+RQ;1y_FIoMRjiMrWB#8g`JO=6Ef5D>8%=Su;_Fp*w;`Gdo6@u zX%)z(Pa!0x7EZk(O4GPDlt1hXEin_!ipHg6RtQwU0xRHm3;t(!7A2(u}y8qB9; zR707qFvQWQ=IdEUfk1&d^^0y8#9Cx8$%NqAu^!opt&i0^d*?9Ej!K{lyM;iWERXaB z#4-m7ea$ERw+OeXZIk~G042&hVgJ>4KoM86vPjz7Exv1!y16j?A`$b6U#V7Acll8;U#fb~#j zlldISId@>(Z#0~)N58)4{A8<*Bhsfmt1JOmp_#-e%c!z3Sk&cIhPx*XH;9x8%boyx zHp5&UhVR5Yf~o?2AeahHgoJPPOE!(DN-#>+F)W(PuX|fokWV$7o zawkNb7VPfrCjKCtHTdm)7a8aE$0yZ|ylzslj_z0#BHW3vvTAd|qU#ofTGewdOf)Q; zQ7wh;M_X&yR0w8HnS7S#UPzdL>+jkt1*TnPj7vM5b_fTwJsbj|vh(74rx%N>nJpAB{u52B?;YL^(nJWb z8p>>$-PFTYRs+njooGPmJaesgB?hclmg%E)ao};M^ZbYT3E5@ApU7x~b8C9lw?#{a z0^#OXL$i0so=S-Y`|Er1F~~cMyUF=4f3>|ytzr%yYyt%$*P75n2%zFma|9a`pILH6 zyt+Vj8Y$ZP{#Qb?Qin)S7aW1KGJbsnXBh147bdB$xn5rOtBnsh^WRv(4niTq9S19` z#xz-psW(Iy9k~$&hSuZ3HPi1bn8Ipu$ziih=v`}TGV7glA$`z?==Z1#1$3?#1rwSp zsb~nIvyOu!!vR3E5@?TAEq=<#qXM{fL^W4;EubDkfVHFZvt@_~ovx-ear}BD3d|BY zHl)Dw_N6-#?Va|e~eV~UCq=2Etl?1UkmtwDe zK`llqYA&Fl(#IG!DhD&uE0V#%6NFe&d@3b#f}4h_3O^#YgxX6}bZ7Vx0EixDI7ta5 zO5(Omd*;$(WQUb>md4}7Jh~H6h;T4)CKuXKTyP)Sq~!)^SG=Dh5WHxvp1FVk zC>!-WNTEFU_?XEb07iAqYIdu#_4%5B6RAd|gP!=)TIc=oa%6?*rzL>VZXsY2&={rv zxPiE4E-Rk^;M-hpAwJZ2AA9FYuf$Av{0R?5;f9HNBfVEEYo^TXh-wSXB1MBg&!=3C zIVWf?6WKSk0wKOeZ-h8Uv24OFXD#S*gosw3iJSM4F{u4<{l~>R`ch*yJL&(Tmjv$l zhZJlx^n+aTm7&LgD!)8N1^{VxCX16m$`O<}$A(GLEM9K{az9622AR!FTA|NPZa$Mhk$M1^^*xMY;t}LJoc|`|@C!wCo8H z5hs=O2`RsSNo-2xq;ldMJoGQS5Bc{Y&cQi2Csn1U*l3nz{*d5ev7&S*a@$5a5B=R_ zG~FAvRdDFgp*O$z%?A%2+`D)0U3cB}z3+YRB!j>H^{(q#Iw zC;xn|F+vTbQmjRQ{V}2z7k}n{L}Et5vAtzx#yW`cHtW-@0)&66eic@fr|DXjN|_n?Q5!Jmk#Sm^0JLdd9EO~cU{=uo7R zc}3WTos!n7Hylf9K_yZdDbntG_LE7!n%YV2P&=urzI`=E*qjJK##xY6Zf{O}D-O=7 z1(n$$bAk*51@V!sy7KKO{1(qWeEZwqzUii$0DSnvAO6&*KDDs0aP!SKKltE-CmMgl z4L3aSzyl9F@WA?yzV@}R-EzwM=J57@x!uoI^Z!6=pPjM8X zb71R5;)W*sv<K(}xe1e~qpfu=ee#@EW?XjI*zC-vgObY;D6 z=ndWw8&P8-vwEof6x@LT^5zms8Zn_l5-;`xJ^>5ej2~r$2LRPV7A#}FvP704FOX?{ zO1%$7XM75cnGcq++`->m>4?zRmjdtR zQuXr%P}unpgKX=u!Ig3XTtNEI}w?WZsM+KEkLDlX|Ni3w$rQ6PZmf)WLS==dBe&H9jF(Km1T|?ML}b%lol~Gqm~vvC+jzY_BX14C`{MWe=wV85{phvzR^YspqoJx0wFR)(s}Vq%@kq0h{&U`^$cfdF83^YH4ZdO>cVBb=O^&uUuSQ zJaXj7nLW@sh(d%r2`N|<7B6q>^8qRZdty<&PbugirNcw0aemS08u>{G2YMeuY%)hx zZ@yxq#kH;UsF_CfwAf9U6P{FY4%3yD^{fzJw(JvYsz?Q_?Zbu?81F$?e-fQ{atTR&PWO!Nw~^rOgD@6&x``+6rto% zqw_vOdk7FvLsH=cBC(*FF?{4UvqM4+m9)$X5n*f9!B2u*(q;FjKPLQRDHeLJ$iC|S z;9M!5{OIQlmY0_S?B2aQU%7YhUI44Bs~c}~0=(>HFZF0{`%|B?19cf z6e8SNNKf?=AI)>lV+z{K!!?)<5P-R+B&j~X7(pr;9jbYUVVF)uf-o3u3|&l>)xsR^ zoX$ht#G62zW5GCs(p55B_FYDJ!EzJF0H`X-*+(*C>FRT)ZoRo;21I*?Ldrk=xd#ViEwIl>2AyOqp z7-=t-+g64%Js0XM*z-$I5qb|K_KFTUL|Z5|DKL8GKu;^fmYj2-z=f~Y(qQ4$Z+jy%o>O@sM$_!3UmTj>HpgCF|8~Egs>XB$|wP|{|9+r zyE<=n-&ZL0P;#n^`;W_W1W6-ZWRq`LsD@a)K#sM^2Su@9SySXavUUye!oZ z$m;H7>M$EXfUQ=;BSjPNnN(&nqFSngZX0tA1-{FFJ26;Bt(rYsXysy*3LB;X7OaQS zm2QIAIVlI{-h_@A;RlJ&eBA&5AOJ~3K~xkvQJus>t%V@~3cSzsrEXGP_4e-PTfjPc zmhjL+58ZXwT_5v;s2n!MJ7)0Bj0HK?>`D+LQ+Wa(S5T<8u>laAE za_2*6g`~Xu%sOgm33fCBWamXd_(*mcy9!x#|?zzM}kyV`lEv(QC#2nyg_ z5_|$ok9%>c5?Q!nm)TAurCIadw9-tY{n<04z`?LLYp&h9V!`!fSsvBf(}ux%~PORI5m~t z#dynDJ5AEVls-x^Mw4nlRpqprnug5ev7PA$W#Kl$pcI)Lit|VzwgNz06(p%}J~rOu zpU>?G2#;(*C7#&YdTzpdpNli^{YeI&3Jx7Qbo=eM-+lMp?|a|-&gy~A5fmca5zw+~ zy-17P9149jmM#vEBm|=s?pUiw>Ot z1orG#$(7%;!6@C__$dJi(UJKYV7AKqJP3^T_JrWvf)$+0MI@Su?w&w33L)=NP-eAb zqFoe0u7MDCP~V~0{qr$`Wa`_b!69p7D9+7BILPTb36%Q@I zJr^UIwiW;qE7+!+D)v#fX}Er|6pOh!w&x`F?AZfgX=!QSzI}1!@#Dt#euka?7Vb{pn~6JsSr)cTk9M$G|*r*`LkS`d>cx4w_!H=Xs=QCdfVy5MJ${ z<{(U}Av9OgHW49qJ}QK^Gm~lB$~l#We&XXu3mH{2DU9u!Rd17Mj{+sT&=?vMG8UBo zvS-=2SXJ@5=g2R66F;)M&}+c7Zo*zZqRMJ80xT+jvJ3#{@0U5wQ?jzQQ0eRGW3m)Q z3JDqR6(Cfo$rX4+rnmt>+9^rx?nDdDjtkYdYqS78g8_|sC|VXF<5BC@bj5vw9%#kkqqu^rI|b$ISuNB8gF zU)S{`k34e24L8J~(lKK$^*x7~Kz>tFx+&wu{&b>=fT;|DsYuuWW@ z1ohuCg^23}!M1tsLTr$r7haoGx>^%<)l940*00D+W3dANeYP|R3VKsbZ#SEIm);OY32lic09p!HyCDf=X%&)qRkV) z-iwWU2*k8Bs`4fpCh@UaoxCxPZ1M|rqUEw)RoTcH1SeSHIdiRcAa}y=Tk6D8!5V8eC;RiqX!JBWsd1YngUGI9AbMA{@ z{NfkB@P%0IAeeZj}``z#6ABDqbQ^DcE+mt z^z_0S0+oQVzb>Telbr3aPmsN3)mc4t7)`IDM+vzJCK&@!Ni>9JMb1dTGqd{I>E|Ic z6m&_Q7~LYBSlm*o;9{mgdC~jatey=Q`&MJ@%&98%&BFE9U;oW-e)IkBfBzr+!5@r9 zqZ@C$@vr{suio&6H@wjO{KG%|!{Nh+4<9~!>#euWeH3`~OdaSPM5#5p{ZU=@7L#b5 z3O*rHdV`-UC@SdGP^in%5$HqHK@kF7swV0v)Z(Imm*_YIEI@`LMCWxT3oPhU5g9-6 zN$^RWWz{vxf*h2&DG#-o+&07@Z{ZsZ!*g0faM8ut zTVS}5xi@u8#($BF01EaTaD81U%6#TH&7VqOL`&tx%)J*%siksj_8=3*96+F2u&tsk zv@%8vhDzjbp^}jr$&&3&i7HYZqp33&g_Q8rq_3&IjJ-nQ_nZq#dSUAm9mY?S?u=xq zB}2ofzVq{+&W~R=07|84Fd~-=!&gppKmW^<{ZI;C9DeQFZ+V_}J??XwJnw++B^M?ZPZ~B< z3+v>VC!`t)f#Dw4H+b5~Fzq>@9S21w7{Co(x>{q(xS_JC=}6xqSQMhHjJ5)mXffSB zt`DLR0uhEd(iYMFnbUuiar89i3z5DO9+}ui&6ly72lYIXDix`NkkeB#u?YHjQS)~R znvAdFuZvxv@>Gf~U>z-ZktjsC-65I%69RM=nGo|9G?A=VSq+f|Np|AFApY2?doP52 zc0N?!76mVx&3|p{Q*; zWU*w@4aitciuCZ8@&St7RH5kf}she$*K z2;W7f41Mho)n1qSE}8w4BJ>koZ~{%P07Te@BHDrWJfPvAm@X#+X-Hz69A_911jw+{ zN%gri#CaQHz3-rMf$DMLUH~|LEO1A-u>f%KrRzNoa_n$4jS|2Gm*#V~@=jbaTtu^y z*lzJ6WJ1a~)D}cktIv*mn*DgNM`WN%I;KfLO{PdEOz~4oE}$tz=Oly_CsSuQ&9HN` zPb(q!3Ctp8a$le_KcJsFGqkpdKTR_S8!P9YIn#^c>abx?DcXgY`P64SvC|64^(Ge4 z6N{0#!w*=cd@u^@>CM{-3bq>x5pHK#S+xLf(^QCyiT}YnorlE2L_-^T??rqHpJ8XM zm%J#0TF9u=ZP{gQ2u%pG^J@GI8U3CBoY2p_Zz-X0j8S0dEWs86IsrV!%M?vS#GoVP z?9$$;p!2;G2)sz(@=J6UU0z~%))=n=f&-VTlmfB1OQUJ0$BpL%1om7aMlg{zXmc~x zo(()D1Qst!v$7dn!|_FeY9t8hrsNDH>RtL3MniyNoki5uU}v#Al}p+S<{CtlVipBz z^>U)=I_EQU1Oj~rVY>2IXq#YX=LH~c;$cq?^O_H?)@=hrH|++}un&m?;66_L!Zu5M1cnF1$$=Fg68ehxsGJaub_lR z=3x_dU=o5fcMU*vUYzAlc(SvooWO!E2s`?j7l562!T2el$861>;adP~*XUcNg?dH+ z&mBK^?Nd1~?%5>}tc(Hhvdge*5dc<}pmGG*wF`h5d;=&D96y}wqI)h)`47l^gkgF7 zEG<<93l~W}5;Jn9u$nZd1MRA(W=Ejf6{3R@1-jaNfsD){B+zOO9%y9RJ!W1 zW9r_ZMq2w7rVyYkG9_ChVu6}K5PbTWAieSHplOIzodjjq!9-neWDtu$MtFd$K=qu1 zLUwACjVxZQqdNeF2)8Xlm<;HxNRkj;a_^y2{pSSC=rBB-hZs&ZN?K7ECYxvItfXVQ zF0F4m!dgjmjO+b4jE6H86tJ;|@@N5Iw&s1K%7SAaU)_4s&+#=q=RN1ia)_f50NArf z*B^O8#UgtwJiu~+yj}GK z+|X5vj@EQ3oB}MMG+0|RUIbfpL&~5>X^dVy)udvcLS+sKl8a&~^SK8OdUvAvG^~hZ z=4wgxV&>yzNXtRYZN8Qv1Xr6qR?v1DEJHJLGTxf}Hii9n`aU%A3QbLP%+~ugZWXkp zF>k?H1VfCBSdM%L7z>7oOeYYCZxIDzV8k%LsSrf)6bihmJ&;`|u|s{=h5SOcYDbNc zq9Q=&ed{%e9$@Q5z$v>%jiPMPtWm(O0mh`m@#XC>6m!TZO*zu(PBgXM#d0&&N+~8qh}lAu@=K?mTS3EHiGwrUh@0|kQ9Wrm;_Hs~f?UfB-( zw;>`a9=upqj&WrT04TWRphU%X^eMAM3ie%Q!Jj%%0IVGGHvh}613F)uqU>RM%#)}V z-C&Ov;f&dVh_7*bq8o=08@f>iV=q8c?1R6I(Qm1O%;=Cn3?Z7_$j^AgIffoMIPPqt8F zL^go}*{ylaC2I)4PklFokkjKFI&5S9TaPES=nO8qL;$QV0RRQ(@3Hw-0OHt_N;DT7 z3|fuJrv(sPJEDOzyAC)2gT<_Z8luY(&9b*_dKsKQpEbFjLAr^Tp|e_RIrEtzG#Mka zco}MH&N|Lp{~GJj!~&$5DYfIqqA-?1TE~>A>dd$bHce(|&2%B+&5iri22A4mdswd* z+1ZnUKv+cKc10n=ZHmBf(pd*T2R6{YeN-VBa{HKvhPI(E+4aK5q z%-Ts1BF=@tDXTjZIS)pY@il40KHEiWs+Rhc(6zF&Fs!H-^^E&bGw~yazGubz#?vr4=H02SrPX1}Vvz4{@Pr!Wa+0&%6_|WxGZJ{EXd%?U>U^nNbp+ ze2M^m`IlTUpFZ;o<%Rv1$M_9EmxbS)U$uuk8jf6n8%bCd( zh=dePqn70E8!h9BT60d}oFu}_s-t0kWmZiMF$KPtlAoDd)n6EBEV!nfmZ4?aMGBmA zNva7nO1fz0B*YDjn*s0HwJE^^Hn{)LKz7k12$&f*lmZgauhWYK+XaOPw;`%4-V&;U zKmfKH{1Rx-G6=!e`tAb06X)R|0(Px16deV8o099>7O|~Fr_GqqYP_g(^ph@lh&b~A z#QSzkC-5`+30ID8lTOxW13!L5Z_Y3MatK?(v%esLi>?ThJ}st{%ZF88?Y?AV!kYv} zBt{qNf9-lff>kqn6#(s;4}qiAVrAL?MuCs z(mFC5*hrJMnkVPrAU7 zp{)cub`vjPyFwuf1)e${`LPG^ieGl;?*;{vWu4M5JP4mzLDyNPb_+$e0y2&j@<{q4Z<)@7qQmUj01A8)zd53 zrYJGc zup4^^b`$S_X4yMnwNT(`;U_=#0ABtp&ZcB}?g{mUGVnRd+UtSVtPZ6eUex;RSKm(VTmd~J4)my$rPmN zNH`G(aU|GrJtJl(U@Z)DMh`a6x=vd)opM`x671W1^$rE5G~Yo$H9&TrfS_%FU^vO| zYr*zJA;Rs3>Wa4jEvgD3+LMhHR|DA6du`3e)~cfcT?-f16TTxuff$4wL2>l6RyryR zww;I<&`&!xijI9KB?_=z_G~d;E)@7;@zWpaJ^VM<1d@}Zzt9Yd3oef>WVJTt+7S&j zT|A(M@45Pz1ZGRYYAS=h)!fYPhR%XzKuR|Wa*r~olBkMmDOoQ~J609FNVI&K5KQ6^ z=$lN#Q&<##k`fKs4UwA_HT;ZUz zyTqw{e1rrS_V@EH`tS`sQJ-H$d!zXR5yuB=@lygMMFy2JP}Vm}s*JsIwHEirL}QWI zOfn|1$R4v=RTlzqp)p}}Rc3q~)f)(PSOdvTND8W9Tq6KGkFE(Pe!_cA!k@rd=mxPT zSh10AKNKR|R;aFc3u1LNHX7mJDqtqgsWfB*%>wkGhZBfL*TxEJ@NLYRXVZ$KR7BH> z&RatZ(0%WDstAMrK`N3c@K(^ z;|{`ZwWBK(_>$rWf8PSQ=GSY`3I_>Rp6UoW?^37FKY%_AQKm<`Kz_r08&o0<=vE^m zR*_Ki0R-Hj(qusodXSVVNy8)o`yn%=We0|^D`YZGUj>X0ZYg{;i?2zvr$u3m;n=i& z!)azCjVu@nqUSO$XF&qh5ES?p6jT)`=w=(=CLbwN09IGMv-|m9oW?g;aBiXy;r2oh ze6E7?5E0HG1Vo*M;!!yW&`ncWnXZ9QD)_cVqmDoy=+Kd~R)nth!6O)0Pz2p-*RJ?! zp}@_+4BklFYBG7AoYuSg=Pd&^x$vlP83@cE}r&s|3VcTTmVI2pPhcbKBlVETb zvj1r{>JewxqMMoow9V5kE;s||CJUQ=3WW%_5vnWR0`cN1tt0B26rkW6shn0q?q-@A zXcP!1zMY9s#0Ls=6=5vMS?fEBkdqF=Zmn~|l_yJb@h0QP-)aE7@;3&^CivB-Jb_)8 zhN__f$x}Ex+6BQk*tafTW>E{oFf@yhXdz57FEIorCoSIsp~+L|%jg^^@N*_m6>>S% zsmstgz>$L1qrV9dkSg6As!`72WZuX^Li%7KBz!d}-+NMd1s zWlt^{j|rON9VylMb(Wc6-abhiaN5xeDKe~k60NT0Oq$6+iddBf`A47t6(NX$HbBpU z8mQORAs++IF|?k~#owG05lHWbfiP(q}rt0A6#s$M`4eikTD9MMitK|ls`Xf2#|@ZQzrtU(2-l>*&>e%yvM ziPb0D=Rb*pO~u1snF6@xjSB=tEb9#%Khu&j+TZ)nPOCoME~{&>I=_wtnA3q}+`~^h zQmXSbXoV@}#WqQvymb+z5TNRXz~p6U^0xIlJ|s~{h-cBjQ3~3&=RwR>U}C{MIwqvp zqqhbEKq#yh69odO1_01bHn_PIrNB%J)>pl=E!NQ&jjrSo7Mw9?ftU*701rQfCVfHt z47Gy;+KGxnA=tWFAjE7Y&WrPGTd5$9R3X@U@tk-sTzR6f;FiG;zcK;v$~P_w5V#Nk zz{xW$DZ`8GzdSK#-V2OaS$m3@5$HyhGM^XH`IZ(Y6^SdtCNbm=Nk zAewII35gmJqQyvw{+eDMMZUvGet8}tA*dEKfF(%AW|mkjZzZu&P>j~y&Rm8}gP~U% zvneR37PIk~UoP0nC`7m&P+jqFH8iH1ig-ARtKrA7d`w_LsVlTIsi58GXHyx9IN@|E z6*+CBMqoid?xf;s5rSJBk9>Iy;F@>t4lyz@ScWr_s4uKjq-g&SA{=+5$f%CCM0NYc zLfet9GDZ{#UDX$SQPTApE+|L{Tm?9E?CC!fi#=ap&+cl2fg~BLg;4Av&?+cw#sKEi zB-XJYdlC@9i4zJV+6f@_Rqtwl{(qjKud86wP>66_AlQw%i8!Jfi1X;ihz$kXiPROG zpfPHkO)(T12&dB!EQ6+VHT+sr4d}<+_;B;Q$1K*G?Nb6C|h;9rLj&J}vsp?RunITNZdH7Ch2l1Rv#gT18P@Lzi^^McZ z@`WV;FMrzwfU*FPh_PL2BOS8SZooS2TR%TP>0~en_R@Z>QFY)6HcBG&y1BS&F45ln ze-?t^e?kBN7~x4oK~y-JOG$B{lgepxL<-wB+EhUy)&7alr#{nmnSW8&ptHV9Mu9z< z2%wvRBGvBREsGH}?HB;+^Fbhzr2s^+j&1`KBHRX`1{ri?jgbivF`))XGY%B!h83Fz z&cnQeoHXJ*XC1`*m3DHtu;7lsPyg~5fUEz@eQA{jmI6kHZud|`0CA(5l%U>>`QT?> ziLiE=7Z6d>C6Y6-D6WE3Ic4_f5Phd$=!fDnjTi>FVJ;uhHlZ}?JOv_>oB&{F&3h3? zqR){{=0QX@*xt3{UJy;aJ39o>Z6qQKwiF5xZf#VTzZu#)(ENY(0Nttv<+WpRlwrl$ zj8iX_c?XBW@kE?Q+lp}YCu^I19R)8n9{s#oA)h% zGpIMtJV~hrY8TC8TPXA*mGbDiV3}U-U{*&hG=}bJO*MgHo;%?dw3bZ_B5lTr;VAU$ zDKMu=^tw;zPU0H?pym`xe|1c&PztQCepmZw5rtbAg$TDef+r=gU_FF*w5zBD@NCC2 zti%atYvR0A1REKO2sxfs3(l|3T*Z~bf;$*L{q)lSuKwN2!dvFTi12GIy|{%TlqM}c zQzW-!vgt^tvb4MPzLjzdc~jP}e(e$iG*0uB;FpIwjeLI4iU^%w_WE`1PypxTv( zl8OVHm5nKoF)mcst4k8-6{4d5Jd={F%%zR!5M(~G3p_lN4pwwCm;~C7*r6? z*;riaG6*3j6Sp9Kb+Y!atDAl91?L1F{mheB{nrO$yr@Bqf!$h5iW?1+G&HT2xdSy9 zUL=}8`z%O-C#9MvISO12?{upeFPbc_mSv%D%`b>}(9F-Lfivm+rQTx>&TI@@AX-EL z*Z=@@0FhX*A3n-Lf!h;>2)8h*OYg*B02hSdTI#IC&e9~t;wYmkl-2g*Nwpv{60S_v z9xW_bknr>W;|Tzl|GO)~TkG?OC=k1G3yO?}G-ak-2*_YSFG5EzzV#wb)te+rQ&N;Z z3rY>Ro-a^pgh#oY5rZO(TnNiSWTq*RQDCx#T4n{Z^`ZL`fWZYo%%ZoTm~H|9ZqaT` zUkHwWexe&#tfN~Rg$TDY>LK7E3@j*Mc+}N+nPyE!l{n#KRcdfNsTRbqPA88Y-|X`) zI7jh|&p!^}(sx`P-kNLB?1co!4ZV|HBMj;gK_fn+x_;yfz1lpJG>l{>bu@UIy|ix; z)eH&&1imK$lSgol2#K`N3!E`t^ldgC^CYJ%DCwiQVeK*oS%lFXnxil7-WO~p3K4E; zPz0(4>mk~e@GuSM*{r!yE#f&@lggv(+{pRWNnyc)=fzX^J__KHcfJA?w^#-LAH55; zM&X4m;l0$Uf()~mmyqz6ttY*x7Z9fTB5THMLUHI@L`eZ^FjQ*;Xi19Q42yvq5|4guywPkV4E$;<;T>5k3u-*71D%zBTY$4anqG|i$>MQrO{a#|=vJKj zYo`pE@-ZGYUNr?9rr1YhLa@I2U1#z8C^(xaig3$90CcEF5RY~x1j2x=3bU8sO+*SbPoy9v6ecYQhiVZF?J}ah6zIlj47(%^^RU?DR-6-p=(U}BJk;IW$Hy*X zZ$eboN)aj94OvpMQ}%{iiWW=ubr?(TkR2%{pS$1l zdVb4)&-rU!^F8Zzu5-TI_4&RpVBGO)9-*aK0Yg`GXWr77ll@sJuN_OhOdZ@Knn}%b zY~4LKf3{Y1;8c-jWD|-;oc6iWZa0LvcJ5P^+?wt2(2+z_D8ov|Ytw6tnlGn~Jr;sN5<{b4c zd6=$bxfL{>b%sOzc?6AZWx#`DvC0a$`3}x}g>#;FXp;~2emzKg)ac$2?ZZpy)N77> zn)35QZl4M*jb+ZqbXn-Rkj0Ma#6$^O$jRbWQSD+*zvGXJ&oTttjh45CFS%IDoV}GH z5u9Gl7ahC%?z@=8+((CqDznFIo%)a~)uLY#zi7)6)!hc=tJAOq0f#M}&sEccqH2}4 z{5M5q%=@IYO7B!$4scB_&_UwnAEf=!=-ymPBFaN>b$B#OmmrSoApiqwF zOQ#O|Dkv;|m5)QOitaJ};&dtMos;O!dmPBOJ6Tr{_7#qhb1$CxHF}sv_KHT}kiR6=##c zcuHO2e154$+Q^!r=m=2;7f)gdsKdCl`X<=T&0K^|!xmIn!m5w8FhMe0-Xjf-p1UwN zDcd_xa8X;fImj)F3I(}1!=2%eB@+@=V?>I&-5K?-t`2EPYPcbzDXn+vb1}tCrV1hE zKq^dv4gnO{NdO>af!SsHIb*>Edoy>*C^GKspwdX&DTqKKZyHN zLz>XR;4XQW*nbG=s+sd(x39_wd#fuv=tVbN#22$LaQ@oz%1xhgX_osUopKiqXj=LC zUQM#z-^k>L{xRB-!K23~Wz{Gucv+9n8zvksPS=2=Uoocnemn4LfD%zxozFoXTo*lJ z%`|PYW1E##6pM8{qgXb&Xrz~Ja=3zoI8CKs&>|QMO3k5I0T0&K0`zRzhjFzZo5Cx- z7|JNd^3E*TU#E0>Cr*7O|AF%6IfIGn&5XdU1M0z$<);T>RxWBMrN;&NB1GF%Ld_X- zK9Aj1al>1pIGQb4pH&NWNh^^SJK^t9D6azI&cmVl{Y8EHq*Idi@9GjQ3O;Fzqu5LW zgN!sgb7vo!1$DX$yzA^q@;RFl$xEV-nCIIae45A7gEkNJ>hS1Q{Iq|G zU}i;0_3R}y;RLLf52jw3)4-t;kRX<^*=a*68$EBN=cH2LcW4OVKyG2K9e-Ck&v5lQ z?bPdxFnf)JK*Q%?QTBvLo&iMUp1<9AJYy%h2_3>)an(y^3uyT)1?y|uey06-0H@Bf06ttx@ z{;=0qOl~YvppI5+;+&+lc3WPbG(^Z#c@$5tfm_9)Ks`$68RCxzX`0s?q0RGXUaHI9 zlgRGE5T27Xg}2Xc>oX^P&w@}zQ{1O!kV)Z0QO^W&Q-5yEYDLvuPE-zD%Wtk#7(dpm zF?uSR3C_+1rF`S(NT2fY*5JIA>Vz6oSN}Bzg*HS=5GdY95#DSoJtY0nJWqx&1Lk{l8 ztM)XnMb7)84Cf~O?SZ8s<=uINhXxVT2@gl1uKxL5o@BT+Nn)#m5m*i9rcYlkRtw+D zy)Hd)bD(&Jl?zhCU&FshRnv?p{}52jHIOaSkC2XR=b?_4(ol}>eSCjrkgJXsTJ&XU zFg;y%3d*~~@xA(_jO$Vl8hh|Ph>qpQWX&$1jO|bD>Tsw!Z8rW}trCv?4WJ&!-{vLl zMUgzcbDecESgo&LZ+wvHwS=^*C&5FzLhhxY8u)rmOt9B(#F)OME}%6p6!p`KsoBxR z{b?cmLnRujF2-IZeEVy$*0Ca_fhGUo!oD#=Y_R2ucVxspo8^ce8yb%7QAB#*!-8~1 znm6$`nEn5YDkxWC?=gZfcBx|G$|+{04FC>Xv*AT+oh$NNf6VK%_VL&9%F0T&KdzJ< zj>mG}6Hqk0xO1Hg`QH>=5*7v@cNr)mVzU+uWACQk6^FjZP}3OXMqg<|sk=y9dk$fH z=-%WiI|c0mxFgB*S_;o!jdWy;BM5jy_-?d_Z%RH(CJ{&*EmJ5?RIKhHZa=m~!$eQdsW4q} z8yg(5Vhj&TrreqxV=TBsmz$m~8WutF77aTdT)1tcF^b4txK-NpgdHKRlNq*@iqGft zp2>~;r?@519}?E)GqshvT3F*Cm-6yPmLYF#b@hH05Vr{O;%^d{kAy7%KwJTcx?@1b z7Dz>RZ{9vR2z(I+bfPPR(EBqqWF;P6vG+JC$uLaWtV9Aj3k&N>r!6VCxoc5o z=M(X9qfVLS;&dNplN@OcDK{AoKYa@BJK{rnVO%SK@Y)$Prt;ih&Mm6l{AS2IQNE6z z+I|cABt~*|cHU@<7PQ9qWT;{`MKCIxU(csals@dnFQy^Ab0z4Mrrf^8`;_bX2Gh{c zEQ(cY5G{9OJS5`QzbMzaZWU$FqDzb8SArYGITCCfT6TExPpX)0xV}|=YPB(~>=0S@ zT!TUmdc_Hg^_%S2w1ov*2pDCTF>rp)2H+=9?t_x}y0zPg{XW}x%Qz%izyOGTJ4YST zRoodEG)DO07vg_{#WIXM9LA6if2MsQ8|X!Gdiu1*bJD1M6N(^>__~mOQYWkG%0SjF z@J0#GJzD)C`+8zsj9(5{{#Vyl1H0+>gz{(cy6l&QvNwz7nKJ!0)tUVP)(*bk z8#RR_9nP$0s6LO2izAXTr(NyYY#kT*LVG~Io!D9Xtl=$BM-WY zr^N`|kYXkDj!9v>9ae+g!z{@45JIUiL|yA&J4;%t$~+jdArTMVER{Cf1f?gOR4woT$~Yiffg}<8xj^_i3)X%7X%X^p6>uB7 zhus9i0CX5bSObX6Al?H$4{CoB0gJ8k*#)H0@p8qTei=G__7yN!4CR-Bz^oAHKo=6% zFeCzoG-4AKqJ@i%jm6;682kt9{s+U8M-BW>@HNm!NS|Wf%2EJ-V)pYf`(MF+M&`pe zC6zxV%l<^bYPy<+@7Vf*7c%i(#ioq%JbM;FI$Rwt5+yrlx)pQ|bZQz9C2K)=ccDjJ zyX$ev8R%q*2;@K0C?q>s70Y5U2e~mpZ>RiMhXR6vT+?O7lj`i07W&i}?L z@u>6KRO5{g(p3JgndiUMoI#HF{HqX%s5$y^I`VfDN9PYPHhZfYyrdEA?;-qaMzmux z`GhDuQYHL%eVzZNzTX{@!rnI31F6`iv3zXJ@Ms4FW_tKfGyQJk?|D#gMHjV7kr4>>KbeRdK`SYR1>-uzujt@jEb3!hnN`pok zZ-o^8C`9S0>E+6Cak{apJ)B{sbl2x}ekHKP_wEwM#%rD*y30E+rSzk=_kERYHWeJt z$ZfZxgZIMus3BoDSScZDb0_&B4NBN+nDbT|^pIDPzYhq~Q$R8|fc&LFnpwOZ0;!*9 zX=xc4FmiNs6kvq5E_^B}Df#qi zaC9{BrjTg+zVb)=B&`35s8%{!+KFv%?q)>NoQ!`r1hRMKz0pOE@TZQBtJQ^Xo}D@$ z^L1i!G9@|Lw`328b9Zw3wX`Ihs3o=TR#h^zwS!Tn>T2d?W)Ft+z^AZS)r?oRrlHnG zEF26p&6h96Y6`>lojw|nRhiS%)0>+H{bgV30+k#3zY%ALgdt^71cJ|a`SZ}wM=ZGA zU6GtKXI4B^Q(qtu2x)0)P7V%9?Z;!Q_O{rKqs;N~oH<6u#>VT7H-$3aT#Ro|yD&96 z>gD5uPE2&hu0FHHeiWn*aNlz2zq_+_Ve;XN)2&|@o|TrCx{VH14)=4x{{S|%o88_n z(-Tg3yS&SXq`6KHA?3BUwvK5yC@PXLDEo2ubzFP-I&FC6g|3BX?~NXLdX5+t!E^i5PCYFZ>jZA75w6s`*$;nB#b+Pd9mf5MPsoB{~!aZG^y_bB{ z0mwU2XtziAOGoV_xfyATii#e$J2*JFT1MT-A{Q7Q9wzMX_br$GE`aOp?Tywt2S%B{ z%YVAn)ZCnhhX+aZ;s5TI42Rc>Vy%8-C=lY94c zgxGTo?7h9shIbAR4?(Y1b}e4C%+Al>-!Z%x86Io!);_L%LF?Syj*7Oi13xn)z0M>q zRwuW4#z~X|osb{{hZm++S6Al|79I7TjF($;xwyFSR_gVaehAVnp!mx_l_gQE5I$~T tI@bT=pKQSpNH6fZ06S`a$p3FP9MyaQ-H(*>aXt``ZmH|26{=XF{sA`Yz`Ote literal 0 HcmV?d00001 diff --git a/demo/documented/mixed-poisson-dual/python/demo_mixed-poisson-dual.py b/demo/documented/mixed-poisson-dual/python/demo_mixed-poisson-dual.py new file mode 100644 index 0000000..bb8f2e6 --- /dev/null +++ b/demo/documented/mixed-poisson-dual/python/demo_mixed-poisson-dual.py @@ -0,0 +1,78 @@ +"""This demo program solves the mixed formulation of Poisson's +equation: + + sigma + grad(u) = 0 in Omega + div(sigma) = f in Omega + du/dn = g on Gamma_N + u = u_D on Gamma_D + +The corresponding weak (variational problem) + + + = 0 + for all tau + - = + + for all v + +is solved using DRT (Discontinuous Raviart-Thomas) elements +of degree k for (sigma, tau) and CG (Lagrange) elements +of degree k + 1 for (u, v) for k >= 1. +""" + +# Copyright (C) 2014 Jan Blechta +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2014-01-27 +# Last changed: 2014-01-29 + +# Begin demo + +from dolfin import * + +# Create mesh +mesh = UnitSquareMesh(32, 32) + +# Define function spaces and mixed (product) space +DRT = FunctionSpace(mesh, "DRT", 2) +CG = FunctionSpace(mesh, "CG", 3) +W = DRT * CG + +# Define trial and test functions +(sigma, u) = TrialFunctions(W) +(tau, v) = TestFunctions(W) + +# Define source functions +f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") +g = Expression("sin(5.0*x[0])") + +# Define variational form +a = (dot(sigma, tau) + dot(grad(u), tau) + dot(sigma, grad(v)))*dx +L = - f*v*dx - g*v*ds + +# Define Dirichlet BC +def boundary(x): + return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS +bc = DirichletBC(W.sub(1), 0.0, boundary) + +# Compute solution +w = Function(W) +solve(a == L, w, bc) +(sigma, u) = w.split() + +# Plot sigma and u +plot(sigma) +plot(u) +interactive() diff --git a/demo/documented/mixed-poisson-dual/python/documentation.rst b/demo/documented/mixed-poisson-dual/python/documentation.rst new file mode 100644 index 0000000..b17fba9 --- /dev/null +++ b/demo/documented/mixed-poisson-dual/python/documentation.rst @@ -0,0 +1,150 @@ +.. Documentation for the dual mixed Poisson demo from DOLFIN. + +.. _demo_pde_mixed-poisson-dual_python_documentation: + +Dual-mixed formulation for Poisson equation +====================================== + +This demo is implemented in a single Python file, +:download:`demo_mixed-poisson-dual.py`, which contains both the +variational forms and the solver. + +.. include:: ../common.txt + + +Implementation +-------------- + +This demo is implemented in the :download:`demo_mixed-poisson-dual.py` +file. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +Then, we need to create a :py:class:`Mesh ` covering +the unit square. In this example, we will let the mesh consist of 32 x +32 squares with each square divided into two triangles: + +.. code-block:: python + + # Create mesh + mesh = UnitSquareMesh(32, 32) + +.. index:: + pair: FunctionSpace; Discontinuous Raviart-Thomas + pair: FunctionSpace; Lagrange + +Next, we need to define the function spaces. We define the two +function spaces :math:`\Sigma_h = DRT` and :math:`V_h = CG` +separately, before combining these into a mixed function space: + +.. code-block:: python + + # Define function spaces and mixed (product) space + DRT = FunctionSpace(mesh, "DRT", 2) + CG = FunctionSpace(mesh, "CG", 3) + W = DRT * CG + +The second argument to :py:class:`FunctionSpace +` specifies the type of +finite element family, while the third argument specifies the +polynomial degree. The UFL user manual contains a list of all +available finite element families and more details. The * operator +creates a mixed (product) space ``W`` from the two separate spaces +``DRT`` and ``CG``. Hence, + +.. math:: + + W = \{ (\tau, v) \ \text{such that} \ \tau \in DRT, v \in CG \}. + +Next, we need to specify the trial functions (the unknowns) and the +test functions on this space. This can be done as follows + +.. code-block:: python + + # Define trial and test functions + (sigma, u) = TrialFunctions(W) + (tau, v) = TestFunctions(W) + +In order to define the variational form, it only remains to define the +source functions :math:`f` and :math:`g`. This is done just as for the +:ref:`mixed Poisson demo +`: + +.. code-block:: python + + # Define source functions + f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") + g = Expression("sin(5.0*x[0])") + +We are now ready to define the variational forms a and L. + +.. code-block:: python + + # Define variational form + a = (dot(sigma, tau) + dot(grad(u), tau) + dot(sigma, grad(v)))*dx + L = - f*v*dx - g*v*ds + +It only remains to prescribe the Dirichlet boundary condition for +:math:`u`. Essential boundary conditions are specified through the +class :py:class:`DirichletBC ` which takes +three arguments: the function space the boundary condition is supposed +to be applied to, the data for the boundary condition, and the +relevant part of the boundary. + +We want to apply the boundary condition to the second subspace of the +mixed space. Subspaces of a :py:class:`MixedFunctionSpace +` can be accessed +by the method :py:func:`sub +`. In our case, +this reads ``W.sub(1)``. (Do *not* use the separate space ``CG`` as +this would mess up the numbering.) + +Specifying the relevant part of the boundary can be done as for the +Poisson demo: + +.. code-block:: python + + # Define Dirichlet BC + def boundary(x): + return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS + +Now, all the pieces are in place for the construction of the essential +boundary condition: + +.. code-block:: python + + bc = DirichletBC(W.sub(1), 0.0, boundary) + +To compute the solution we use the bilinear and linear forms, and the +boundary condition, but we also need to create a :py:class:`Function +` to store the solution(s). The +(full) solution will be stored in the ``w``, which we initialise using +the :py:class:`FunctionSpace +` ``W``. The actual +computation is performed by calling :py:func:`solve +`. The separate components ``sigma`` and +``u`` of the solution can be extracted by calling the :py:func:`split +` function. Finally, we plot +the solutions to examine the result. + +.. code-block:: python + + # Compute solution + w = Function(W) + solve(a == L, w, bc) + (sigma, u) = w.split() + + # Plot sigma and u + plot(sigma) + plot(u) + interactive() + + +Complete code +------------- +.. literalinclude:: demo_mixed-poisson-dual.py + :start-after: # Begin demo diff --git a/demo/documented/mixed-poisson/common.txt b/demo/documented/mixed-poisson/common.txt new file mode 100644 index 0000000..f9c2c95 --- /dev/null +++ b/demo/documented/mixed-poisson/common.txt @@ -0,0 +1,99 @@ + +This demo illustrates how to solve Poisson equation using a mixed +(two-field) formulation. In particular, it illustrates how to + +* Use mixed and non-continuous finite element spaces +* Set essential boundary conditions for subspaces and H(div) spaces +* Define a (vector-valued) expression using additional geometry information + +Equation and problem definition +------------------------------- + +An alternative formulation of Poisson equation can be formulated by +introducing an additional (vector) variable, namely the (negative) +flux: :math:`\sigma = \nabla u`. The partial differential equations +then read + +.. math:: + \sigma - \nabla u &= 0 \quad {\rm in} \ \Omega, \\ + \nabla \cdot \sigma &= - f \quad {\rm in} \ \Omega, + +with boundary conditions + +.. math:: + u = u_0 \quad {\rm on} \ \Gamma_{D}, \\ + \sigma \cdot n = g \quad {\rm on} \ \Gamma_{N}. + +The same equations arise in connection with flow in porous media, and +are also referred to as Darcy flow. + +After multiplying by test functions :math:`\tau` and :math:`v`, +integrating over the domain, and integrating the gradient term by +parts, one obtains the following variational formulation: find +:math:`\sigma \in \Sigma` and :math:`v \in V` satisfying + +.. math:: + \int_{\Omega} (\sigma \cdot \tau + \nabla \cdot \tau \ u) \ {\rm d} x + &= \int_{\Gamma} \tau \cdot n \ u \ {\rm d} s + \quad \forall \ \tau \in \Sigma, \\ + + \int_{\Omega} \nabla \cdot \sigma v \ {\rm d} x + &= - \int_{\Omega} f \ v \ {\rm d} x + \quad \forall \ v \in V. + +Here :math:`n` denotes the outward pointing normal vector on the +boundary. Looking at the variational form, we see that the boundary +condition for the flux (:math:`\sigma \cdot n = g`) is now an +essential boundary condition (which should be enforced in the function +space), while the other boundary condition (:math:`u = u_0`) is a +natural boundary condition (which should be applied to the variational +form). Inserting the boundary conditions, this variational problem can +be phrased in the general form: find :math:`(\sigma, u) \in \Sigma_g +\times V` such that + +.. math:: + + a((\sigma, u), (\tau, v)) = L((\tau, v)) + \quad \forall \ (\tau, v) \in \Sigma_0 \times V + +where the variational forms :math:`a` and :math:`L` are defined as + +.. math:: + + a((\sigma, u), (\tau, v)) &= + \int_{\Omega} \sigma \cdot \tau + \nabla \cdot \tau \ u + + \nabla \cdot \sigma \ v \ {\rm d} x \\ + L((\tau, v)) &= - \int_{\Omega} f v \ {\rm d} x + + \int_{\Gamma_D} u_0 \tau \cdot n \ {\rm d} s + +and :math:`\Sigma_g = \{ \tau \in H({\rm div}) \text{ such that } \tau \cdot n|_{\Gamma_N} = g \}` +and :math:`V = L^2(\Omega)`. + +To discretize the above formulation, two discrete function spaces +:math:`\Sigma_h \subset \Sigma` and :math:`V_h \subset V` are needed +to form a mixed function space :math:`\Sigma_h \times V_h`. A stable +choice of finite element spaces is to let :math:`\Sigma_h` be the +Brezzi-Douglas-Marini elements of polynomial order :math:`k` and let +:math:`V_h` be discontinuous elements of polynomial order :math:`k-1`. + +We will use the same definitions of functions and boundaries as in the +demo for Poisson's equation. These are: + +* :math:`\Omega = [0,1] \times [0,1]` (a unit square) +* :math:`\Gamma_{D} = \{(0, y) \cup (1, y) \in \partial \Omega\}` +* :math:`\Gamma_{N} = \{(x, 0) \cup (x, 1) \in \partial \Omega\}` +* :math:`u_0 = 0` +* :math:`g = \sin(5x)` (flux) +* :math:`f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)` (source term) + +With the above input the solution for :math:`u` and :math:`\sigma` will look as +follows: + +.. image:: ../mixed-poisson_u.png + :scale: 75 + :align: center + +.. image:: ../mixed-poisson_sigma.png + :scale: 75 + :align: center + diff --git a/demo/documented/mixed-poisson/cpp/CMakeLists.txt b/demo/documented/mixed-poisson/cpp/CMakeLists.txt new file mode 100644 index 0000000..9e637a2 --- /dev/null +++ b/demo/documented/mixed-poisson/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_mixed-poisson) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/mixed-poisson/cpp/MixedPoisson.h b/demo/documented/mixed-poisson/cpp/MixedPoisson.h new file mode 100644 index 0000000..a6dce9a --- /dev/null +++ b/demo/documented/mixed-poisson/cpp/MixedPoisson.h @@ -0,0 +1,6759 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __MIXEDPOISSON_H +#define __MIXEDPOISSON_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class mixedpoisson_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + mixedpoisson_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new mixedpoisson_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class mixedpoisson_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + mixedpoisson_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Brezzi-Douglas-Marini', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.942809041582063, 0.577350269189626, -0.333333333333333}; + + static const double coefficients1[3] = \ + {-0.471404520791032, 0.0, -0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {-0.471404520791032, -0.288675134594813, 0.166666666666667}; + + static const double coefficients1[3] = \ + {0.942809041582063, 0.0, 0.666666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.577350269189626, -0.666666666666667}; + + static const double coefficients1[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, 0.833333333333333}; + + static const double coefficients1[3] = \ + {-0.942809041582063, 0.0, -0.666666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {-0.471404520791032, -0.288675134594813, 0.166666666666667}; + + static const double coefficients1[3] = \ + {-0.471404520791032, 0.866025403784438, 0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.942809041582063, 0.577350269189626, -0.333333333333334}; + + static const double coefficients1[3] = \ + {-0.471404520791032, -0.866025403784439, 0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.942809041582063, 0.577350269189626, -0.333333333333333}; + + static const double coefficients1[3] = \ + {-0.471404520791032, 0.0, -0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {-0.471404520791032, -0.288675134594813, 0.166666666666667}; + + static const double coefficients1[3] = \ + {0.942809041582063, 0.0, 0.666666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.577350269189626, -0.666666666666667}; + + static const double coefficients1[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, 0.833333333333333}; + + static const double coefficients1[3] = \ + {-0.942809041582063, 0.0, -0.666666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {-0.471404520791032, -0.288675134594813, 0.166666666666667}; + + static const double coefficients1[3] = \ + {-0.471404520791032, 0.866025403784438, 0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.942809041582063, 0.577350269189626, -0.333333333333334}; + + static const double coefficients1[3] = \ + {-0.471404520791032, -0.866025403784439, 0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + + double result; + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + switch (i) + { + case 0: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 1: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 2: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + return result; + break; + } + case 3: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + return result; + break; + } + case 4: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 5: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + + double result; + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[0] = result; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[1] = result; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + values[2] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + values[3] = result; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[4] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[5] = result; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Evaluate function and change variables + vertex_values[0] = dof_values[2]*(1.0/detJ)*J[0]*2.0 + dof_values[3]*((1.0/detJ)*(J[0]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[1]*(-2.0))) + dof_values[5]*(1.0/detJ)*J[1]; + vertex_values[2] = dof_values[0]*(1.0/detJ)*J[0]*2.0 + dof_values[1]*((1.0/detJ)*(J[0]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[0]*(-1.0) + J[1])) + dof_values[5]*((1.0/detJ)*(J[0]*2.0 + J[1]*(-2.0))); + vertex_values[4] = dof_values[0]*((1.0/detJ)*(J[1]*(-1.0))) + dof_values[1]*(1.0/detJ)*J[1]*2.0 + dof_values[2]*((1.0/detJ)*(J[0]*(-1.0) + J[1])) + dof_values[3]*((1.0/detJ)*(J[0]*2.0 + J[1]*(-2.0))); + vertex_values[1] = dof_values[2]*(1.0/detJ)*J[2]*2.0 + dof_values[3]*((1.0/detJ)*(J[2]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[3]*(-2.0))) + dof_values[5]*(1.0/detJ)*J[3]; + vertex_values[3] = dof_values[0]*(1.0/detJ)*J[2]*2.0 + dof_values[1]*((1.0/detJ)*(J[2]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[2]*(-1.0) + J[3])) + dof_values[5]*((1.0/detJ)*(J[2]*2.0 + J[3]*(-2.0))); + vertex_values[5] = dof_values[0]*((1.0/detJ)*(J[3]*(-1.0))) + dof_values[1]*(1.0/detJ)*J[3]*2.0 + dof_values[2]*((1.0/detJ)*(J[2]*(-1.0) + J[3])) + dof_values[3]*((1.0/detJ)*(J[2]*2.0 + J[3]*(-2.0))); + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new mixedpoisson_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class mixedpoisson_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + mixedpoisson_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + + // Get coordinates and map to the reference (FIAT) element + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new mixedpoisson_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class mixedpoisson_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + mixedpoisson_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(FiniteElement('Brezzi-Douglas-Marini', Domain(Cell('triangle', 2)), 1, None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None), **{'value_shape': (3,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 7; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.942809041582063, 0.577350269189626, -0.333333333333333}; + + static const double coefficients1[3] = \ + {-0.471404520791032, 0.0, -0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {-0.471404520791032, -0.288675134594813, 0.166666666666667}; + + static const double coefficients1[3] = \ + {0.942809041582063, 0.0, 0.666666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.577350269189626, -0.666666666666667}; + + static const double coefficients1[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, 0.833333333333333}; + + static const double coefficients1[3] = \ + {-0.942809041582063, 0.0, -0.666666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {-0.471404520791032, -0.288675134594813, 0.166666666666667}; + + static const double coefficients1[3] = \ + {-0.471404520791032, 0.866025403784438, 0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.942809041582063, 0.577350269189626, -0.333333333333334}; + + static const double coefficients1[3] = \ + {-0.471404520791032, -0.866025403784439, 0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + values[1] += coefficients1[r]*basisvalues[r]; + } // end loop over 'r' + + // Using contravariant Piola transform to map values back to the physical element + const double tmp_ref0 = values[0]; + const double tmp_ref1 = values[1]; + values[0] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + values[1] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 7; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.942809041582063, 0.577350269189626, -0.333333333333333}; + + static const double coefficients1[3] = \ + {-0.471404520791032, 0.0, -0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {-0.471404520791032, -0.288675134594813, 0.166666666666667}; + + static const double coefficients1[3] = \ + {0.942809041582063, 0.0, 0.666666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.577350269189626, -0.666666666666667}; + + static const double coefficients1[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, 0.833333333333333}; + + static const double coefficients1[3] = \ + {-0.942809041582063, 0.0, -0.666666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {-0.471404520791032, -0.288675134594813, 0.166666666666667}; + + static const double coefficients1[3] = \ + {-0.471404520791032, 0.866025403784438, 0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.942809041582063, 0.577350269189626, -0.333333333333334}; + + static const double coefficients1[3] = \ + {-0.471404520791032, -0.866025403784439, 0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare array of reference derivatives on physical element. + double derivatives_p[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives_p[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + derivatives[num_derivatives + r] += coefficients1[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + + // Using contravariant Piola transform to map values back to the physical element. + const double tmp_ref0 = derivatives[r]; + const double tmp_ref1 = derivatives[num_derivatives + r]; + derivatives_p[r] = (1.0/detJ)*(J[0]*tmp_ref0 + J[1]*tmp_ref1); + derivatives_p[num_derivatives + r] = (1.0/detJ)*(J[2]*tmp_ref0 + J[3]*tmp_ref1); + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives_p[s]; + values[num_derivatives + r] += transform[r][s]*derivatives_p[num_derivatives + s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[1][1] = \ + {{0.0}}; + + static const double dmats1[1][1] = \ + {{0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[1][1] = \ + {{1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[1][1] = \ + {{1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + for (unsigned int tu = 0; tu < 1; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + for (unsigned int tu = 0; tu < 1; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 1; s++) + { + for (unsigned int t = 0; t < 1; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 7; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[6]; + for (unsigned int r = 0; r < 6; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 7; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + + double result; + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + switch (i) + { + case 0: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 1: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 2: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + return result; + break; + } + case 3: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + return result; + break; + } + case 4: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 5: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + return result; + break; + } + case 6: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + + double result; + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[0] = result; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])) + (detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[1] = result; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + values[2] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + result = (detJ*(K[0]*vals[0] + K[1]*vals[1])); + values[3] = result; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[4] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + result = (-1.0)*(detJ*(K[2]*vals[0] + K[3]*vals[1])); + values[5] = result; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[6] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Evaluate function and change variables + vertex_values[0] = dof_values[2]*(1.0/detJ)*J[0]*2.0 + dof_values[3]*((1.0/detJ)*(J[0]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[1]*(-2.0))) + dof_values[5]*(1.0/detJ)*J[1]; + vertex_values[3] = dof_values[0]*(1.0/detJ)*J[0]*2.0 + dof_values[1]*((1.0/detJ)*(J[0]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[0]*(-1.0) + J[1])) + dof_values[5]*((1.0/detJ)*(J[0]*2.0 + J[1]*(-2.0))); + vertex_values[6] = dof_values[0]*((1.0/detJ)*(J[1]*(-1.0))) + dof_values[1]*(1.0/detJ)*J[1]*2.0 + dof_values[2]*((1.0/detJ)*(J[0]*(-1.0) + J[1])) + dof_values[3]*((1.0/detJ)*(J[0]*2.0 + J[1]*(-2.0))); + vertex_values[1] = dof_values[2]*(1.0/detJ)*J[2]*2.0 + dof_values[3]*((1.0/detJ)*(J[2]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[3]*(-2.0))) + dof_values[5]*(1.0/detJ)*J[3]; + vertex_values[4] = dof_values[0]*(1.0/detJ)*J[2]*2.0 + dof_values[1]*((1.0/detJ)*(J[2]*(-1.0))) + dof_values[4]*((1.0/detJ)*(J[2]*(-1.0) + J[3])) + dof_values[5]*((1.0/detJ)*(J[2]*2.0 + J[3]*(-2.0))); + vertex_values[7] = dof_values[0]*((1.0/detJ)*(J[3]*(-1.0))) + dof_values[1]*(1.0/detJ)*J[3]*2.0 + dof_values[2]*((1.0/detJ)*(J[2]*(-1.0) + J[3])) + dof_values[3]*((1.0/detJ)*(J[2]*2.0 + J[3]*(-2.0))); + // Evaluate function and change variables + vertex_values[2] = dof_values[6]; + vertex_values[5] = dof_values[6]; + vertex_values[8] = dof_values[6]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoisson_finite_element_1(); + break; + } + case 1: + { + return new mixedpoisson_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new mixedpoisson_finite_element_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class mixedpoisson_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + mixedpoisson_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new mixedpoisson_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class mixedpoisson_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + mixedpoisson_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Brezzi-Douglas-Marini', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 2*c.entity_indices[1][0]; + dofs[1] = 2*c.entity_indices[1][0] + 1; + dofs[2] = 2*c.entity_indices[1][1]; + dofs[3] = 2*c.entity_indices[1][1] + 1; + dofs[4] = 2*c.entity_indices[1][2]; + dofs[5] = 2*c.entity_indices[1][2] + 1; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + case 1: + { + dofs[0] = 2; + dofs[1] = 3; + break; + } + case 2: + { + dofs[0] = 4; + dofs[1] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + case 1: + { + dofs[0] = 2; + dofs[1] = 3; + break; + } + case 2: + { + dofs[0] = 4; + dofs[1] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[1][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[1][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[2][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[2][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[3][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[4][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[5][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new mixedpoisson_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class mixedpoisson_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + mixedpoisson_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[2][0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new mixedpoisson_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class mixedpoisson_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + mixedpoisson_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(FiniteElement('Brezzi-Douglas-Marini', Domain(Cell('triangle', 2)), 1, None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None), **{'value_shape': (3,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[1] + num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 7; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + 2*c.entity_indices[1][0]; + dofs[1] = offset + 2*c.entity_indices[1][0] + 1; + dofs[2] = offset + 2*c.entity_indices[1][1]; + dofs[3] = offset + 2*c.entity_indices[1][1] + 1; + dofs[4] = offset + 2*c.entity_indices[1][2]; + dofs[5] = offset + 2*c.entity_indices[1][2] + 1; + offset += 2*num_global_entities[1]; + dofs[6] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + case 1: + { + dofs[0] = 2; + dofs[1] = 3; + break; + } + case 2: + { + dofs[0] = 4; + dofs[1] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + case 1: + { + dofs[0] = 2; + dofs[1] = 3; + break; + } + case 2: + { + dofs[0] = 4; + dofs[1] = 5; + break; + } + } + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 6; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[1][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[1][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[2][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[2][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[3][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[4][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[5][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[6][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoisson_dofmap_1(); + break; + } + case 1: + { + return new mixedpoisson_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new mixedpoisson_dofmap_3(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class mixedpoisson_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + mixedpoisson_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 64 + // Number of operations (multiply-add pairs) for tensor contraction: 284 + // Total number of operations (multiply-add pairs): 351 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = 1.0 / (detJ)*det*J[0]*K[0]*(1.0); + const double G0_0_1 = 1.0 / (detJ)*det*J[0]*K[2]*(1.0); + const double G0_1_0 = 1.0 / (detJ)*det*J[1]*K[0]*(1.0); + const double G0_1_1 = 1.0 / (detJ)*det*J[1]*K[2]*(1.0); + const double G1_0_0 = 1.0 / (detJ)*det*J[2]*K[1]*(1.0); + const double G1_0_1 = 1.0 / (detJ)*det*J[2]*K[3]*(1.0); + const double G1_1_0 = 1.0 / (detJ)*det*J[3]*K[1]*(1.0); + const double G1_1_1 = 1.0 / (detJ)*det*J[3]*K[3]*(1.0); + const double G2_0_0 = 1.0 / (detJ)*det*J[0]*K[0]*(1.0); + const double G2_0_1 = 1.0 / (detJ)*det*J[0]*K[2]*(1.0); + const double G2_1_0 = 1.0 / (detJ)*det*J[1]*K[0]*(1.0); + const double G2_1_1 = 1.0 / (detJ)*det*J[1]*K[2]*(1.0); + const double G3_0_0 = 1.0 / (detJ)*det*J[2]*K[1]*(1.0); + const double G3_0_1 = 1.0 / (detJ)*det*J[2]*K[3]*(1.0); + const double G3_1_0 = 1.0 / (detJ)*det*J[3]*K[1]*(1.0); + const double G3_1_1 = 1.0 / (detJ)*det*J[3]*K[3]*(1.0); + const double G4_0_0 = 1.0 / (detJ*detJ)*det*J[0]*J[0]*(1.0); + const double G4_0_1 = 1.0 / (detJ*detJ)*det*J[0]*J[1]*(1.0); + const double G4_1_0 = 1.0 / (detJ*detJ)*det*J[1]*J[0]*(1.0); + const double G4_1_1 = 1.0 / (detJ*detJ)*det*J[1]*J[1]*(1.0); + const double G5_0_0 = 1.0 / (detJ*detJ)*det*J[2]*J[2]*(1.0); + const double G5_0_1 = 1.0 / (detJ*detJ)*det*J[2]*J[3]*(1.0); + const double G5_1_0 = 1.0 / (detJ*detJ)*det*J[3]*J[2]*(1.0); + const double G5_1_1 = 1.0 / (detJ*detJ)*det*J[3]*J[3]*(1.0); + + // Compute element tensor + A[0] = 0.333333333333333*G4_0_0 - 0.0833333333333333*G4_0_1 - 0.0833333333333333*G4_1_0 + 0.0833333333333333*G4_1_1 + 0.333333333333333*G5_0_0 - 0.0833333333333333*G5_0_1 - 0.0833333333333333*G5_1_0 + 0.0833333333333333*G5_1_1; + A[1] = -0.166666666666667*G4_0_0 + 0.166666666666667*G4_0_1 + 0.0416666666666666*G4_1_0 - 0.166666666666667*G4_1_1 - 0.166666666666667*G5_0_0 + 0.166666666666667*G5_0_1 + 0.0416666666666666*G5_1_0 - 0.166666666666667*G5_1_1; + A[2] = 0.0833333333333333*G4_0_0 + 0.0833333333333333*G4_0_1 - 0.0833333333333333*G4_1_1 + 0.0833333333333333*G5_0_0 + 0.0833333333333333*G5_0_1 - 0.0833333333333333*G5_1_1; + A[3] = 0.0833333333333332*G4_0_0 - 0.166666666666667*G4_0_1 - 0.125*G4_1_0 + 0.166666666666667*G4_1_1 + 0.0833333333333332*G5_0_0 - 0.166666666666667*G5_0_1 - 0.125*G5_1_0 + 0.166666666666667*G5_1_1; + A[4] = -0.166666666666667*G4_0_0 + 0.0416666666666666*G4_1_0 + 0.0416666666666667*G4_1_1 - 0.166666666666667*G5_0_0 + 0.0416666666666666*G5_1_0 + 0.0416666666666667*G5_1_1; + A[5] = 0.333333333333333*G4_0_0 - 0.25*G4_0_1 - 0.0833333333333333*G4_1_0 + 0.0416666666666666*G4_1_1 + 0.333333333333333*G5_0_0 - 0.25*G5_0_1 - 0.0833333333333333*G5_1_0 + 0.0416666666666666*G5_1_1; + A[6] = G2_0_0 - 0.5*G2_1_1 + G3_0_0 - 0.5*G3_1_1; + A[7] = -0.166666666666667*G4_0_0 + 0.0416666666666666*G4_0_1 + 0.166666666666667*G4_1_0 - 0.166666666666667*G4_1_1 - 0.166666666666667*G5_0_0 + 0.0416666666666666*G5_0_1 + 0.166666666666667*G5_1_0 - 0.166666666666667*G5_1_1; + A[8] = 0.0833333333333333*G4_0_0 - 0.0833333333333333*G4_0_1 - 0.0833333333333333*G4_1_0 + 0.333333333333333*G4_1_1 + 0.0833333333333333*G5_0_0 - 0.0833333333333333*G5_0_1 - 0.0833333333333333*G5_1_0 + 0.333333333333333*G5_1_1; + A[9] = -0.0416666666666667*G4_0_0 - 0.0416666666666666*G4_0_1 + 0.166666666666667*G4_1_1 - 0.0416666666666667*G5_0_0 - 0.0416666666666666*G5_0_1 + 0.166666666666667*G5_1_1; + A[10] = -0.0416666666666666*G4_0_0 + 0.0833333333333333*G4_0_1 + 0.25*G4_1_0 - 0.333333333333333*G4_1_1 - 0.0416666666666666*G5_0_0 + 0.0833333333333333*G5_0_1 + 0.25*G5_1_0 - 0.333333333333333*G5_1_1; + A[11] = 0.0833333333333333*G4_0_0 - 0.0833333333333333*G4_1_0 - 0.0833333333333334*G4_1_1 + 0.0833333333333333*G5_0_0 - 0.0833333333333333*G5_1_0 - 0.0833333333333334*G5_1_1; + A[12] = -0.166666666666667*G4_0_0 + 0.125*G4_0_1 + 0.166666666666667*G4_1_0 - 0.0833333333333332*G4_1_1 - 0.166666666666667*G5_0_0 + 0.125*G5_0_1 + 0.166666666666667*G5_1_0 - 0.0833333333333332*G5_1_1; + A[13] = -0.5*G2_0_0 + G2_1_1 - 0.5*G3_0_0 + G3_1_1; + A[14] = 0.0833333333333333*G4_0_0 + 0.0833333333333333*G4_1_0 - 0.0833333333333333*G4_1_1 + 0.0833333333333333*G5_0_0 + 0.0833333333333333*G5_1_0 - 0.0833333333333333*G5_1_1; + A[15] = -0.0416666666666667*G4_0_0 - 0.0416666666666666*G4_1_0 + 0.166666666666667*G4_1_1 - 0.0416666666666667*G5_0_0 - 0.0416666666666666*G5_1_0 + 0.166666666666667*G5_1_1; + A[16] = 0.25*G4_0_0 + 0.0833333333333333*G4_1_1 + 0.25*G5_0_0 + 0.0833333333333333*G5_1_1; + A[17] = -0.125*G4_0_0 + 0.125*G4_1_0 - 0.166666666666667*G4_1_1 - 0.125*G5_0_0 + 0.125*G5_1_0 - 0.166666666666667*G5_1_1; + A[18] = -0.0416666666666667*G4_0_0 - 0.208333333333333*G4_0_1 - 0.0416666666666666*G4_1_0 - 0.0416666666666667*G4_1_1 - 0.0416666666666667*G5_0_0 - 0.208333333333333*G5_0_1 - 0.0416666666666666*G5_1_0 - 0.0416666666666667*G5_1_1; + A[19] = 0.0833333333333334*G4_0_0 + 0.0416666666666667*G4_0_1 + 0.0833333333333333*G4_1_0 - 0.0416666666666666*G4_1_1 + 0.0833333333333334*G5_0_0 + 0.0416666666666667*G5_0_1 + 0.0833333333333333*G5_1_0 - 0.0416666666666666*G5_1_1; + A[20] = -G2_0_0 - 1.5*G2_0_1 + 0.5*G2_1_1 - G3_0_0 - 1.5*G3_0_1 + 0.5*G3_1_1; + A[21] = 0.0833333333333332*G4_0_0 - 0.125*G4_0_1 - 0.166666666666667*G4_1_0 + 0.166666666666667*G4_1_1 + 0.0833333333333332*G5_0_0 - 0.125*G5_0_1 - 0.166666666666667*G5_1_0 + 0.166666666666667*G5_1_1; + A[22] = -0.0416666666666666*G4_0_0 + 0.25*G4_0_1 + 0.0833333333333333*G4_1_0 - 0.333333333333333*G4_1_1 - 0.0416666666666666*G5_0_0 + 0.25*G5_0_1 + 0.0833333333333333*G5_1_0 - 0.333333333333333*G5_1_1; + A[23] = -0.125*G4_0_0 + 0.125*G4_0_1 - 0.166666666666667*G4_1_1 - 0.125*G5_0_0 + 0.125*G5_0_1 - 0.166666666666667*G5_1_1; + A[24] = 0.25*G4_0_0 - 0.25*G4_0_1 - 0.25*G4_1_0 + 0.333333333333333*G4_1_1 + 0.25*G5_0_0 - 0.25*G5_0_1 - 0.25*G5_1_0 + 0.333333333333333*G5_1_1; + A[25] = -0.0416666666666666*G4_0_0 + 0.0416666666666666*G4_0_1 + 0.0833333333333333*G4_1_0 + 0.0833333333333334*G4_1_1 - 0.0416666666666666*G5_0_0 + 0.0416666666666666*G5_0_1 + 0.0833333333333333*G5_1_0 + 0.0833333333333334*G5_1_1; + A[26] = 0.0833333333333333*G4_0_0 - 0.0833333333333332*G4_0_1 - 0.166666666666667*G4_1_0 + 0.0833333333333332*G4_1_1 + 0.0833333333333333*G5_0_0 - 0.0833333333333332*G5_0_1 - 0.166666666666667*G5_1_0 + 0.0833333333333332*G5_1_1; + A[27] = 0.5*G2_0_0 + 1.5*G2_0_1 - G2_1_1 + 0.5*G3_0_0 + 1.5*G3_0_1 - G3_1_1; + A[28] = -0.166666666666667*G4_0_0 + 0.0416666666666666*G4_0_1 + 0.0416666666666667*G4_1_1 - 0.166666666666667*G5_0_0 + 0.0416666666666666*G5_0_1 + 0.0416666666666667*G5_1_1; + A[29] = 0.0833333333333333*G4_0_0 - 0.0833333333333333*G4_0_1 - 0.0833333333333334*G4_1_1 + 0.0833333333333333*G5_0_0 - 0.0833333333333333*G5_0_1 - 0.0833333333333334*G5_1_1; + A[30] = -0.0416666666666667*G4_0_0 - 0.0416666666666666*G4_0_1 - 0.208333333333333*G4_1_0 - 0.0416666666666667*G4_1_1 - 0.0416666666666667*G5_0_0 - 0.0416666666666666*G5_0_1 - 0.208333333333333*G5_1_0 - 0.0416666666666667*G5_1_1; + A[31] = -0.0416666666666666*G4_0_0 + 0.0833333333333333*G4_0_1 + 0.0416666666666666*G4_1_0 + 0.0833333333333334*G4_1_1 - 0.0416666666666666*G5_0_0 + 0.0833333333333333*G5_0_1 + 0.0416666666666666*G5_1_0 + 0.0833333333333334*G5_1_1; + A[32] = 0.0833333333333333*G4_0_0 + 0.25*G4_1_1 + 0.0833333333333333*G5_0_0 + 0.25*G5_1_1; + A[33] = -0.166666666666667*G4_0_0 + 0.125*G4_0_1 - 0.125*G4_1_1 - 0.166666666666667*G5_0_0 + 0.125*G5_0_1 - 0.125*G5_1_1; + A[34] = -0.5*G2_0_0 + 1.5*G2_1_0 + G2_1_1 - 0.5*G3_0_0 + 1.5*G3_1_0 + G3_1_1; + A[35] = 0.333333333333333*G4_0_0 - 0.0833333333333333*G4_0_1 - 0.25*G4_1_0 + 0.0416666666666666*G4_1_1 + 0.333333333333333*G5_0_0 - 0.0833333333333333*G5_0_1 - 0.25*G5_1_0 + 0.0416666666666666*G5_1_1; + A[36] = -0.166666666666667*G4_0_0 + 0.166666666666667*G4_0_1 + 0.125*G4_1_0 - 0.0833333333333332*G4_1_1 - 0.166666666666667*G5_0_0 + 0.166666666666667*G5_0_1 + 0.125*G5_1_0 - 0.0833333333333332*G5_1_1; + A[37] = 0.0833333333333334*G4_0_0 + 0.0833333333333333*G4_0_1 + 0.0416666666666667*G4_1_0 - 0.0416666666666666*G4_1_1 + 0.0833333333333334*G5_0_0 + 0.0833333333333333*G5_0_1 + 0.0416666666666667*G5_1_0 - 0.0416666666666666*G5_1_1; + A[38] = 0.0833333333333332*G4_0_0 - 0.166666666666667*G4_0_1 - 0.0833333333333332*G4_1_0 + 0.0833333333333332*G4_1_1 + 0.0833333333333332*G5_0_0 - 0.166666666666667*G5_0_1 - 0.0833333333333332*G5_1_0 + 0.0833333333333332*G5_1_1; + A[39] = -0.166666666666667*G4_0_0 + 0.125*G4_1_0 - 0.125*G4_1_1 - 0.166666666666667*G5_0_0 + 0.125*G5_1_0 - 0.125*G5_1_1; + A[40] = 0.333333333333333*G4_0_0 - 0.25*G4_0_1 - 0.25*G4_1_0 + 0.25*G4_1_1 + 0.333333333333333*G5_0_0 - 0.25*G5_0_1 - 0.25*G5_1_0 + 0.25*G5_1_1; + A[41] = G2_0_0 - 1.5*G2_1_0 - 0.5*G2_1_1 + G3_0_0 - 1.5*G3_1_0 - 0.5*G3_1_1; + A[42] = G0_0_0 - 0.5*G0_1_1 + G1_0_0 - 0.5*G1_1_1; + A[43] = -0.5*G0_0_0 + G0_1_1 - 0.5*G1_0_0 + G1_1_1; + A[44] = -G0_0_0 - 1.5*G0_0_1 + 0.5*G0_1_1 - G1_0_0 - 1.5*G1_0_1 + 0.5*G1_1_1; + A[45] = 0.5*G0_0_0 + 1.5*G0_0_1 - G0_1_1 + 0.5*G1_0_0 + 1.5*G1_0_1 - G1_1_1; + A[46] = -0.5*G0_0_0 + 1.5*G0_1_0 + G0_1_1 - 0.5*G1_0_0 + 1.5*G1_1_0 + G1_1_1; + A[47] = G0_0_0 - 1.5*G0_1_0 - 0.5*G0_1_1 + G1_0_0 - 1.5*G1_1_0 - 0.5*G1_1_1; + A[48] = 0.0; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class mixedpoisson_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + mixedpoisson_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 2 + // Total number of operations (multiply-add pairs): 8 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + + // Compute element tensor + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = -0.166666666666667*G0_0 - 0.166666666666667*G0_1 - 0.166666666666667*G0_2; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class mixedpoisson_form_0: public ufc::form +{ +public: + + /// Constructor + mixedpoisson_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "a7eb3b51b5049e5083369f2a1ad483cb1fa1835de3c13b88dea95a6d60ead2b00fd9bf48d950cefffd9af2af4a8bfc15b41193e14dba6c3fa45bd7ad4862ff3c"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoisson_finite_element_3(); + break; + } + case 1: + { + return new mixedpoisson_finite_element_3(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoisson_dofmap_3(); + break; + } + case 1: + { + return new mixedpoisson_dofmap_3(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new mixedpoisson_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class mixedpoisson_form_1: public ufc::form +{ +public: + + /// Constructor + mixedpoisson_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~mixedpoisson_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "56784ea4415b93e8bcccb97fb98cf136b9b503dcb660b9d1a64c8e3d9d51cbb9180336262a68cbc2daa2f478317491cc7f718ac2421d4ddaaf7cd6c913a4a88d"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoisson_finite_element_3(); + break; + } + case 1: + { + return new mixedpoisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new mixedpoisson_dofmap_3(); + break; + } + case 1: + { + return new mixedpoisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new mixedpoisson_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace MixedPoisson +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new mixedpoisson_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new mixedpoisson_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new mixedpoisson_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new mixedpoisson_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new mixedpoisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new mixedpoisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new mixedpoisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new mixedpoisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new mixedpoisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new mixedpoisson_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/mixed-poisson/cpp/MixedPoisson.ufl b/demo/documented/mixed-poisson/cpp/MixedPoisson.ufl new file mode 100644 index 0000000..6889d60 --- /dev/null +++ b/demo/documented/mixed-poisson/cpp/MixedPoisson.ufl @@ -0,0 +1,37 @@ +# Copyright (C) 2006-2010 Anders Logg and Marie E. Rognes +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2006 +# Last changed: 2011-07-18 +# +# The bilinear form a(u, v) and linear form L(v) for a two-field +# (mixed) formulation of Poisson's equation +# +# Compile this form with FFC: ffc -l dolfin MixedPoisson.ufl. + +BDM = FiniteElement("BDM", triangle, 1) +DG = FiniteElement("DG", triangle, 0) +W = BDM * DG + +(sigma, u) = TrialFunctions(W) +(tau, v) = TestFunctions(W) + +CG = FiniteElement("CG", triangle, 1) +f = Coefficient(CG) + +a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx +L = - f*v*dx diff --git a/demo/documented/mixed-poisson/cpp/compile.log b/demo/documented/mixed-poisson/cpp/compile.log new file mode 100644 index 0000000..000598c --- /dev/null +++ b/demo/documented/mixed-poisson/cpp/compile.log @@ -0,0 +1,493 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form MixedPoisson + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Mixed' + Unique sub elements: 'Mixed, BDM1(?), DG0(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'Mixed, CG1(?)' + Unique sub elements: 'Mixed, CG1(?), BDM1(?), DG0(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.030057 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 4 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 4 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 196 entries computed in 0.00111 seconds + Shape of reference tensor: (7, 7, 2, 2) + Primary multi index: rank = 2 dims = [7, 7] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 196 entries computed in 0.000984 seconds + Shape of reference tensor: (7, 7, 2, 2) + Primary multi index: rank = 2 dims = [7, 7] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 196 entries computed in 0.000949 seconds + Shape of reference tensor: (7, 7, 2, 2) + Primary multi index: rank = 2 dims = [7, 7] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 196 entries computed in 0.00095 seconds + Shape of reference tensor: (7, 7, 2, 2) + Primary multi index: rank = 2 dims = [7, 7] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 196 entries computed in 0.00071 seconds + Shape of reference tensor: (7, 7, 2, 2) + Primary multi index: rank = 2 dims = [7, 7] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 196 entries computed in 0.000737 seconds + Shape of reference tensor: (7, 7, 2, 2) + Primary multi index: rank = 2 dims = [7, 7] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 21 entries computed in 0.00117 seconds + Shape of reference tensor: (7, 3) + Primary multi index: rank = 1 dims = [7] indices = [[0], [1], [2], [3], [4], [5], [6]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.022532 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000296831 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 4 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 4 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.275354 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.00105381 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./MixedPoisson.h. + +Compiler stage 5 finished in 0.0018909 seconds. + +FFC finished in 0.331642 seconds. diff --git a/demo/documented/mixed-poisson/cpp/documentation.rst b/demo/documented/mixed-poisson/cpp/documentation.rst new file mode 100644 index 0000000..3247c44 --- /dev/null +++ b/demo/documented/mixed-poisson/cpp/documentation.rst @@ -0,0 +1,240 @@ +.. Documentation for the mixed Poisson demo from DOLFIN. + +.. _demo_pde_mixed-poisson_cpp_documentation: + +Mixed formulation for Poisson equation +====================================== + +.. include:: ../common.txt + +Implementation +-------------- + +The implementation is split in two files, a form file containing the definition +of the variational forms expressed in UFL and the solver which is implemented +in a C++ file. + +Running this demo requires the files: :download:`main.cpp`, +:download:`MixedPoisson.ufl` and :download:`CMakeLists.txt`. + +UFL form file +^^^^^^^^^^^^^ + +First we define the variational problem in UFL which we save in the +file called :download:`MixedPoisson.ufl`. + +We begin by defining the finite element spaces. We define two finite +element spaces :math:`\Sigma_h = BDM` and :math:`V_h = DG` separately, +before combining these into a mixed finite element space: + +.. code-block:: python + + BDM = FiniteElement("BDM", triangle, 1) + DG = FiniteElement("DG", triangle, 0) + W = BDM * DG + +The first argument to :py:class:`FiniteElement` specifies the type of +finite element family, while the third argument specifies the +polynomial degree. The UFL user manual contains a list of all +available finite element families and more details. The * operator +creates a mixed (product) space ``W`` from the two separate spaces +``BDM`` and ``DG``. Hence, + +.. math:: + + W = \{ (\tau, v) \ \text{such that} \ \tau \in BDM, v \in DG \}. + +Next, we need to specify the trial functions (the unknowns) and the +test functions on this space. This can be done as follows + +.. code-block:: python + + (sigma, u) = TrialFunctions(W) + (tau, v) = TestFunctions(W) + +Further, we need to specify the source :math:`f` (a coefficient) that +will be used in the linear form of the variational problem. This +coefficient needs be defined on a finite element space, but none of +the above defined elements are quite appropriate. We therefore define +a separate finite element space for this coefficient. + +.. code-block:: python + + CG = FiniteElement("CG", triangle, 1) + f = Coefficient(CG) + +Finally, we define the bilinear and linear forms according to the equations: + +.. code-block:: python + + a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx + L = - f*v*dx + + +C++ program +^^^^^^^^^^^ + +The solver is implemented in the :download:`main.cpp` file. + +At the top we include the DOLFIN header file and the generated header +file containing the variational forms. For convenience we also +include the DOLFIN namespace. + +.. code-block:: c++ + + #include + #include "MixedPoisson.h" + + using namespace dolfin; + +Then follows the definition of the coefficient functions (for +:math:`f` and :math:`G`), which are derived from the DOLFIN +:cpp:class:`Expression` class. + +.. code-block:: c++ + + // Source term (right-hand side) + class Source : public Expression + { + void eval(Array& values, const Array& x) const + { + double dx = x[0] - 0.5; + double dy = x[1] - 0.5; + values[0] = 10*exp(-(dx*dx + dy*dy) / 0.02); + } + }; + + // Boundary source for flux boundary condition + class BoundarySource : public Expression + { + public: + + BoundarySource(const Mesh& mesh) : Expression(2), mesh(mesh) {} + + void eval(Array& values, const Array& x, + const ufc::cell& ufc_cell) const + { + dolfin_assert(ufc_cell.local_facet >= 0); + + Cell cell(mesh, ufc_cell.index); + Point n = cell.normal(ufc_cell.local_facet); + + const double g = sin(5*x[0]); + values[0] = g*n[0]; + values[1] = g*n[1]; + } + + private: + + const Mesh& mesh; + + }; + + +Then follows the definition of the essential boundary part of the +boundary of the domain, which is derived from the +:cpp:class:`SubDomain` class. + +.. code-block:: c++ + + // Sub domain for essential boundary condition + class EssentialBoundary : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return x[1] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS; + } + }; + +Inside the ``main()`` function we first create the ``mesh`` and then +we define the (mixed) function space for the variational +formulation. We also define the bilinear form ``a`` and linear form +``L`` relative to this function space. + +.. code-block:: c++ + + // Construct function space + MixedPoisson::FunctionSpace W(mesh); + MixedPoisson::BilinearForm a(W, W); + MixedPoisson::LinearForm L(W); + +Then we create the source (:math:`f`) and assign it to the linear form. + +.. code-block:: c++ + + // Create source and assign to L + Source f; + L.f = f; + +It only remains to prescribe the boundary condition for the +flux. Essential boundary conditions are specified through the class +:cpp:class:`DirichletBC` which takes three arguments: the function +space the boundary condition is supposed to be applied to, the data +for the boundary condition, and the relevant part of the boundary. + +We want to apply the boundary condition to the first subspace of the +mixed space. This space can be accessed by the :cpp:class:`Subspace` +class. + +Next, we need to construct the data for the boundary condition. An +essential boundary condition is handled by replacing degrees of +freedom by the degrees of freedom evaluated at the given data. The +:math:`BDM` finite element spaces are vector-valued spaces and hence +the degrees of freedom act on vector-valued objects. The effect is +that the user is required to construct a :math:`G` such that :math:`G +\cdot n = g`. Such a :math:`G` can be constructed by letting :math:`G += g n`. This is what the derived expression class ``BoundarySource`` +defined above does. + +.. code-block:: c++ + + // Define boundary condition + SubSpace W0(W, 0); + BoundarySource G(mesh); + EssentialBoundary boundary; + DirichletBC bc(W0, G, boundary); + +To compute the solution we use the bilinear and linear forms, and the +boundary condition, but we also need to create a :cpp:class:`Function` +to store the solution(s). The (full) solution will be stored in the +:cpp:class:`Function` ``w``, which we initialise using the +:cpp:class:`FunctionSpace` ``W``. The actual computation is performed +by calling ``solve``. + +.. code-block:: c++ + + // Compute solution + Function w(W); + solve(a == L, w, bc); + +Now, the separate components ``sigma`` and ``u`` of the solution can +be extracted by taking components. These can easily be visualized by +calling ``plot``. + +.. code-block:: c++ + + // Extract sub functions (function views) + Function& sigma = w[0]; + Function& u = w[1]; + + // Plot solutions + plot(u); + plot(sigma); + + +Complete code +------------- + +Complete UFL file +^^^^^^^^^^^^^^^^^ + +.. literalinclude:: MixedPoisson.ufl + :start-after: # Compile + :language: python + +Complete main file +^^^^^^^^^^^^^^^^^^ + +.. literalinclude:: main.cpp + :start-after: // Last changed + :language: c++ diff --git a/demo/documented/mixed-poisson/cpp/main.cpp b/demo/documented/mixed-poisson/cpp/main.cpp new file mode 100644 index 0000000..e1e8c62 --- /dev/null +++ b/demo/documented/mixed-poisson/cpp/main.cpp @@ -0,0 +1,108 @@ +// Copyright (C) 2007-2011 Anders Logg and Marie E. Rognes +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Garth N. Wells, 2008. +// +// First added: 2007-04-20 +// Last changed: 2012-11-12 + +#include +#include "MixedPoisson.h" + +using namespace dolfin; + +// Source term (right-hand side) +class Source : public Expression +{ + void eval(Array& values, const Array& x) const + { + double dx = x[0] - 0.5; + double dy = x[1] - 0.5; + values[0] = 10*exp(-(dx*dx + dy*dy) / 0.02); + } +}; + +// Boundary source for flux boundary condition +class BoundarySource : public Expression +{ +public: + + BoundarySource(const Mesh& mesh) : Expression(2), mesh(mesh) {} + + void eval(Array& values, const Array& x, + const ufc::cell& ufc_cell) const + { + dolfin_assert(ufc_cell.local_facet >= 0); + + Cell cell(mesh, ufc_cell.index); + Point n = cell.normal(ufc_cell.local_facet); + + const double g = sin(5*x[0]); + values[0] = g*n[0]; + values[1] = g*n[1]; + } + +private: + + const Mesh& mesh; + +}; + +// Sub domain for essential boundary condition +class EssentialBoundary : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return x[1] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS; + } +}; + +int main() +{ + // Create mesh + UnitSquareMesh mesh(32, 32); + + // Construct function space + MixedPoisson::FunctionSpace W(mesh); + MixedPoisson::BilinearForm a(W, W); + MixedPoisson::LinearForm L(W); + + // Create source and assign to L + Source f; + L.f = f; + + // Define boundary condition + SubSpace W0(W, 0); + BoundarySource G(mesh); + EssentialBoundary boundary; + DirichletBC bc(W0, G, boundary); + + // Compute solution + Function w(W); + solve(a == L, w, bc); + + // Extract sub functions (function views) + Function& sigma = w[0]; + Function& u = w[1]; + + // Plot solutions + plot(u); + plot(sigma); + interactive(); + + return 0; +} diff --git a/demo/documented/mixed-poisson/mixed-poisson_sigma.png b/demo/documented/mixed-poisson/mixed-poisson_sigma.png new file mode 100644 index 0000000000000000000000000000000000000000..87ec57231b3d217d1f7a5d01040d85180880d107 GIT binary patch literal 78506 zcmeEt^-~^Au=V0ja1xy0PH=ya;O-V2g1fsUKyY_=3&Gvp-Q8Ut+~wo_s_tKL@7DaV zJ5@8aH9d2>`^@PO1vzmPL_9&EqVWEQhhYe1;evEa*b!x+8M&Czd8JQK9dg$gZ%20f)Z<$DK#_VL=A z6#`BAUr#{{2|0WKNi!S9?~m^9Nn!!fB=7-;(-LSHAKyB72*Lp*@VU}tLJ}XtoXpAL z5duj5Fh=~};Qwt4_Kz-wsSF5rSGzSOh8IG6w^bk*cwHJ0M0;-{YOJ^Iu zasX&5#NQBDvNIG*m%;)?Fo`(l{)C}<8*cTCj+8POf3Q_njSWWaVkD&0i7x6v!jCp^ zevfHTKr(Hs|7Ae6mFb?`L8a<3Xv^!rY5!Y5QBjIXMTCHr_4uFb6khD=^?N7{GXYOu z>tB%R=9KP@Mf&-rCc?j*tBrF7Ow`RWWhq;V)x4>eYBuY zF&BEi7w+i2&fzZTw===iZt{wnqMYY|SrVyu|*FPc%yaX6uUh^42|xPlU~ohm&zHjc1; z2uz-fmB#j6JOi!e{&~8p3j}ru`SCNIx)0+5&jTbtop^@tsU}9RbJz}7XfB8CdaKjX zbR3mDr2glAW0tdxj`xiX3OYK=qv-%Ma=BVal zkfrDD$KLD+t%ucf3fMev=ymO&@bPMMx;&Y-&2r`~2Q~p&|IFLahgIDQ6_EtO%S^3< zNEw{elchQ&hP+IrT9CvBenB{}=eY_DyEX$ink3~so15C=zRh)gN;_qXM>0MNj7o|< znaWWflDx+h))Kz<626yNPV3P2{F`KF3F^8j-;DYnuMh6Q8(@bf02z<%(4whtV=oX_ zH<{H`PEm2H>la*x9F?Dd_Y=Kdd+W787%r2~^I3x|B_>d(^}3g&r@Qit>ciH7UeB@G z|8f!_kO|_0_t)v;UoV1M+JCDa7FX}+%E^E-imKVFifUHx!P8fJBqP;rR3R`J@!)sY za*6~`9U!P;_S9>#Qa?%;o09%%9i3a4UP%Gwc&hQc;3#bCo$?gt+{US-z^$_je+-DvjMrD6Ldg{Dgttue2+_} zStWB8KtVx)*H>MU0Ly1P=*t$F7I|p>nP(e7x;>%ITgAmCYr^CJ7<7(b>tx`j+_=r9 zvn^wyTH!x)4=hg^@fh{l#y9QIHV$sTa?_;E(_lzseFnKu=O*Vc9TWWAUuh{%CE9Mk zH&2V=f?eGsCe*4NpSs6!Z$OBBrHhCYKnd3);ce{3%48gW?d9;4_WP=#(Y}U2@`!3O z=Y#8)*loFr@PTfa6|5cY6Yt$d?IRqm_v@Z%9M%}{&}V%FvNJ#=AunZuu6s0xsN%tR zM$O8ZJm2N_gO+rVuP$Yr^E&It!_HpUMp*Z;^%m}|K0K*!p)9zC*iHSavjxKs-!*Mg zbSsWZ2TA?Uu~cIX$g@W&kd_dWHC3}=7CUp;>pGth$X79|ZhU880pu{XYx`hGJpSf8 zO!URDAe)vOLli$ry0mT8Ehqy{JqcbX)P7ku)=gzxUW3Y|zR)U0%D>tE)N^<=M05Jm7mF8j01a zO!{t6f-mS+dU3M%4?im|bNw*wxtYy{E$+2m{%<}o>J{N*n_hm8jNq37f<3}M|0I@T zoTJiDCnWrffn0KOQ}L&KSwo_GQ5%CLotQ)rpK<(6FK49+uK5{(1muo!Bn9%eExXJJ=)7J=ntx8E&Z!!{9uSa(zI>lR;ar`3q$D=a^1jn_ zak)!m(DrEpb%^Nd>MAKsn}CML#y&v8_h8MgDuRug+H5$U<`d}UqK@BfT3q5KhjL?l z)JFkce`sNvX#_jumpQ=5`@`k;C)|%++4KGEZJ71OzDj9e)K{(bSv%`rM{%`Z4O=yo zO(LY7CRbH@N(aSex0vY(Ohv;aYG^{qH;20R^K4ANoR@70%TP%1UwJeTb8ekqICKTh zyxniQ{oY0bm`<;}St_}UD=N3bE${PSqcXw>7>zXV`uT;FGAhLj54ZX+;yn{MTV*K; zF?zxMMGFghzTOKut_-@ZZri;f>MPfwLT>w`DMG(sFQax`T8KRkb3WeN-rt@9NGPa} zgXwX1x@76u`2lwzEg8P+#SU^&@izaic&^{a?5Pk6>cg~9G{G?*EPaX0I<*D`Bh%d` z{AWBb^1&*yl5?{m5r65U)kK+r(Fm(E#ZP_)wiY+u(1}{b&r*F3g*7aXSRh&%uru~YBv?PIBnek z`e&`w=zidHokDWl7~~?~Ru4m74}CweRT zzXS`ASTkN>o3vmV)`LZI)t^&R5m&FVx-i(uHdg^d7L$1`TlaeF6mBfG$r3UUiJC&k z1fsryGOS%!RpV-Xd9slzo$|3$}tmN zo>E{G+wVC7r+-;%u!2O?m33|(fqH@+fhqH69D0pP$AfXzGBy6!n;EaTeWuG5OG`^k zOiW(eiHQkUE`pq#oR_iNlZB2CwEFN5{e6GROG{}P7~1NCWod=CeT%hO+BOvpHk^c( zRZzdz}Z-dfq&dUSe+{@F4-`Gzk$wfDT%Opd<6h}emqf64`U7rP_r&Yg^- zkN}=HfBplZVw{3|HW%ToimE>ou%8Piv>d1%-5_c;5OdV7!tG?B`c)?H{sqF&bg&05 zw8*3}1G&ly^jmD!ngfG_UDvD4X9|0JzXusS zJl`G9S)Q*pWw;Iw4~K?^HrI>G1w=RA1&v|RYty|pt7LwYMO#bDY)sZ{>1Id}q7_L% zcfm)>{udtcneH=}s4=S@x*|N73|r;ohIn7O_?!Of`$+>T~Z&Zmw zu95{>JT9efO-!d%L6wgiaBn#iG(s zjbv&;b%=8(WcWA1s-!EHMjHR-lq!I}r2yf$Q-W4>y+x^rj@%m_e zxUn%aU%Z*;<{?!9v((UYS>p9=XLGYu2)~`8COpi7c~%Z6b&qaSXVxn~ibxQl7wu1R zA>~~TfwOXze5t{rf}~>o$%%Pk(+Xs5_{xuoeG_+BfozPD;^rR4)Le+e*zaB~hsma@ z;XrNWj)+;9IAZn$B#mFttILlcel17Q-Y@lL0B>eB53<#Wr0Jz;zdc9{`)v0ilgrhJb*5aX47b1t@1Lp9@(%iL4z72r3pf7Q!1S*xw z)j%JoqhZ6RMX6*Lm(ctD^&SZc$^IJ+=y5l0t;O~F-hqn%Ff=lPf`oj?!b1)kildrg zdz}>d1i_p(1_+CYhzJWmw6L+U$)s~BevRRKd)QgH!}{>x?@gxjQdydGI_k9Vh2MF+ z@Zyr?-XCJpwkPL1FZB%kv4EyjB@6R{#QHBy)ibMII#$0^k>vI3efKrrbLq^o?K))? zvlJndBA^6em?25myry|yDN+KPzs@K@}B?W~EC9 zK=g~S-HhV%X2UOQ!y|v+Mp`+e7f)IM|0i3LmHqFiq(_3;sQcs*7v2$<7H?!Sc#L!R z;e2^Cav9vQH>Fns{5v<1!JXSD7)=PIYRISYB%L>7bil8)0!CF2saowta;CEa%o+VzJ{ zJOD?U^;)xYL_~ycMZ@2}r*#Xu(o#|uHa6qqo0yp{dFh{pM{y0jr_BH@ z{%~0!8z~1k9l8RFX?w?{f4hXeJ3AXDB^4g-a9jO`#a6ZI2-(j3^`$A2x4y4K#4Sir ztZU#a=gN#qcOgIJMtd)xNkaF@7Grv0d-5vJCThxxG*t3!xZMs}WRTKLdJ!7U(fX?w zddUrMj}`jPUR}$pb&imE_5O|=@T55Wa$uQfgBUL^@fEV1mxvQG*{3>qpq~=?hGWm& zrMxoYfs*AuaQ}rf4NQ%g0E>u-`c0sPiCR=E!G!i&Y-k-(&|`$ zG}6GkAZvkV7pzngC?G_Fk_`nX?ZU4=_#y};n44oQ`&a6dUxE4Z^rkOTG0!fnoy}ST z?t?(f`ugL~ji&06dO)LA=y}gd&KAVuWewA(ub-)-a{C>bf7yK-&`d{4?RY$k$n> zx7HdRFk|2OP70?#Uz5b7Ap9ag{4PmMV*`HZDc7tCA|AbxRw|h_teRwNbJ!a`$n-=N zba!`ma$J~<)AC>RuK^zA~iDYq{_Tz`FXc9aXB4pqNB zqLKM%rnAv~nzEt#GP~^sUwINxJk^0<`6Wu7w@eV5t}5FMEqRU~)Hm?USZMTsCc;Q< z*evy@CJq}RNE6wwu*-p->(r;8Za*nXi4yM`Wy=Htt#1I;-uvt-vcFvut{FU%hJ|`9;|10_2VL1;0}NY@9Qp z{a%1z@y-p?(sP)zDTiB+HoJWTucZ3PCFof~!3h#UYC}Q$?QMG<y&8Wlsm}92!0I zDYhLRPKA#RUMiDOPi`T|xIxx{>A>0Ay(qFjD$H|RZGXs8SRMZuC&xfqUR-$o!r7A1;Nvat=!nXEY%LUsqKz?ycn7&n!j z`TsImd7J0Ckc{~*GV}F#wkN^u^RG;#zpk`{slhhFyqQ})zNhVGWj`2OJEbK~ou zXYKl7^jEKGb>tyB6V99iAm5uH1nr20mUIvLL@^;Apsse|#`BvD0mY*?UmlZU-zZ&7 z9!4+4`h_zygQQP$P!g#Ou$yd-1)ggF^E9!4NKLOCrh4;=_Z!?os4K9!AF=GNS4tpO z?^eX?o%eD9vObIt=v(=5$d;2L-*ud4BLiOKatQ2R?tFXs^B94W)Ir2kv^f`leu=C# zI{K_M*SUIX`zz;x2^Sp+rjR+i7gGQ0`% z8H?hF(K1yPFwo|Y$3yT_uecLXipm8b>tQb4ACUkp2dYuJxL@MG7JN2ei|RKQ z&+F6LchUaKrpfN3qtWA|ec5mq9&C&iVSA9a;=9&bF$>7~Y;LheRb0oD3IlCoVGxb< zgec6|&o6y5kFt!?85Ljx$x#J^i5Ou(jukH3sp9$N(|KGLFM-%bF8$dRtoH#t-$Nuy zp8d6$wMsLyLGz-4v89{`h-e|m93(m{x?DCLcTP;k7f>dZ;2l)9}(i) zuA_fu6;`RAN$A*$rPTC}?fh{ja$3=*;KzEB&M$`WYlq1lkDbQNrn+##`-@zV?V4T;W{6QSK;0aU?zRr zorXd2z(dgFvNDk`G$dfNUThuJ$yAuK>f#%^+R9C0Q@uFVKTmM)B-fQz<6MQ=TmQ4( zF^}4>NK2UC<@`W=^dk)gleAV&xoe6Jaz^-ktFJpAq$rEKF3*EouYPaso_6>2#Mvjl z;Afrk-9;LhgoI#cKuM~LhvZTmbdKy1kcZClyp8=Qp3CZTmZdy8iBwT$Lh)a$S^j0D zH^w`#jRo4>@{~>1l#g_5%;i@e0c9oqie+{2Q>{EMQ}NP?1*3>vD2Z)N!+@J&R*9h} z{AF8ouv1S*3hUhnd!+yJ*s5#>`jH)TzBV!Oou(V*3=Gr47DSw?tmv_Y%rq1U&-|KRL$Om8? z0XZGRLwAaA;?Bs*UH28Q6h}zm(%#he4BF^f?5qgCf|`>9Kp<=WH^rhebxEOi0{Vyb zCZ9J7f7d=#;UE0)rtK9(wHiuU2i~q1dp&mlk^_OyLAq>ri1v%_1hUITiu*{6v4QF$ z0T-!_ayi? zhuW$*&fpOW-Ke<+usx<90!ZvJJ-uieF`H{7@j)XxZyk!nBn8#4v>|`5vTnzY+bL^D z&$93~o7*fu6-U3*;dMQHW_X>&wC$vuN=-e@c6DM6_!HlKh<}T}Bi-uaqN{5Aru%_- z3s!ZzFwOp=IM(Pcqt0GTBaU)XHVBY179mdL3*;np#a1@h`S8|brxWr&l>R}$6Oz<&R3?4o z?;F!XgS<84=EWB}^E^BkaqEDto-q^GF)N$h+Vc!u&E9py>th9Xxp&4%?EEYLksGON zYqVuu_FMpfO_{IoYr7b%#*8%ZO}IpmQ;=~U-gn0Ut=HG@1|8#F?pVfPneSa8vJv^c z%;a*#LDo!s;`?`ESOORCL#YmN%2{QGpK_>;gaopR8y)9fr_swMxutUM4Xvk=>7>Z# zJ$`wSUZ;OD$lLAP=1sQwTu=oqtC)IG{gX>pk6=j@kqF`|w@nB7X;6{_JPG(I(pzre z#0?Tr1P|dg=YCqAx*>p~e0-!0$NB39?}(#(^G6eQ8R#bH<*L+b10xck?C@LLl0*qp z+!=TDwiIjTcCM6ZJIoL>@-vjuJX{jK?X3B=PlzY@E?dz!o@T0#amKxk5meyib2*7; z>_qObH(0>&;|>m!=X_xV)+vk7;8Te0UUK>?9|`;_oxTB5U`Qa+gj^*;R7>v+luUNd zUf4!Va8C`$=;9&^(%Fd@AYlIdvz8bc*;&Hy={UBkD z20b9x$_G>AMZ9bsYqg3b)o#grfQ0X-ebVeG;Dw_(zs~!In!fbt$k9RX{-$Dk&=qYw z=}y2+TW4&7@HLx$pqd`zKySMCA911FD<8x^3oSo{3EIc`sY6lHE>37;wW1bn{uahN zTou!er~xhe%4PS%eV86h8R*xFVL1he}{#3DtSm zD5T;(?CMg(NgbX?)BH{tTh7F*!CMFR=Ji|f5=#78di)2@Z)Lo1JgHerQxm9j4P@BU ztXui>6nE||EfW?6{RP>n2jTw1=8X^k819xGtoHI^mx>OtbdAL2I}ztSN~8`9*Plz9 zx{{%7y!>zZkB#mP9UR)~ zg_Z&y|GYWhC(QO)sBCi{%9$*b7v`x|&atgL6NvbpotyWtl;13=L1lADBy6%84dVo# z<;|(g%u;RMx;`h6svMdZg_Mn5vehAWv-SeJq~RmokX%l_NFd(s`Tk{g7Jw0RC3!~| zR1YEe5;6S6cG%e8>C#30JgS}b{fe_^T@jxQ#dudNjjz(kZ**67D`ux4Vd?Hv)7cBW ziLZ!)+3-CmGTJBi#s72mGr-I zZD)w(c_n%j#m_VvObbl+tCJ~^ErE2rJuWt6)~+MaKeh0HkEG)vaT*7c`uHkRBsasf z=fh{ho9d~{=8?m<6j!t@Tiz;|x;Aw=WBp;;(1&4ur;yaIrnar&qz{CcG-}nrq`Uy= zM>3xKVMtusXRZ6s_Yz5^=Rj+-JckIXQ=cN!Khe7`h?Wztpk-1HJ@+DS&NrWH_E>tZ z73P|26&vPn-3%3J8G(^6v=-C%ZkK(o4j-HAl{qY%e4z_9n4IdKfI~6!Fg+SLG!{A) z67*TGJ*M6Vn{K3vAFb|Yeq~eM#)Tas_BSE^^-2R(j|UJkgVL}l((S6eg8lAI+ngt= z_S*rR_-D80BbolBbWmogJTEc>ExyOf7COWROO&Rk1nzD@jRGU^*$1yYZ$&n&NS!W= zqmbxOze5!OyVS;+m68kOD!$(ko7I)FMXP`m2QP;BbXySuA?zYMi@>`S2e-reZPD5+ zN>@k^DN=S=L(9Aq9-gDPHF964{WM0>(iHn5Hw^DRDr4!9X2U|eWsa{4$%c@dVTA+^ z<6^SP>Z7qZsEFXI@+wJ)YcnGG;%M1Ty^bfK$?7LRlZT>21yx?G+(D5%HkY;fnDCGA z9z8;F5kKfHcHw}^Fs*v&#}nRH4wss!EYSsxVUAkEfiM>UX`#$02+2M?i z`z*0DC4Z?U{~5tc^ZK;#S>}%%d~$}zTx&6->S%}a&+6ubbrHNt)72CCp; z)8dPw{Gk0|u=2Zqnr_l07Gl%`#=f+$@DjoZmic`M>=-tbU1j{h_!Jgg=XtirL^M}~ z)uO^t73beJuu9<3mm>eQhSB(Ie^GQ=8J*IlTLroUv308bQE)dO&b*NkeiScUYqtE) z;%eK`*F+c%EowVp(qsBtQ*oBYVad`K2;D!O+uL@k_R5DH^f@7~M}BN#2bVitV-;lg zL*cSi_)MR0q*B$+M1lvz;`Mf#+kLHW(Igi zeFoA!R^S06G*-Dpr{L4gRh-s{mQTlCsPCoyslr);5E}6X z88u>i%r(xGibj!+uZytZF#R8qZ^ZCcg}J9poFs}%sNsp+!?Lp7@O_RE2-N}4i+d!M zsx^NXZm{(R=4rL`%bQPjP2iq#Wt(f|MA$Ov2eWEboohOCB02~ehw0xrk-!g+ zmn9D65GtqKM8o3SHR%XZxtLIh;J-vLLD!K2bYxtgs8pusK*^5|m82~wxZ=ai7|kRno4A+8tarpa-Z!%0J$XjB321cP@UNM z8p;?JM7(Kb01Bhuxwj&wPi>VsFuSSa42Assl#eKA-?XZ`@BtLI_D@rYTHjwCPR&e9 zw_@BGx`;vNENpfT6zpL0n2CPT3Id!ezMUjq-?tjueyNQ@GA_-*4Eo(=db1kAqHYwL zH-rbIfoNCeZ9Ece(#y1)GzKCrJxCJTjIAU~1W9AF)VE{G5$~4Svz8{pY#J#Np(UI9 zz_HA5ieVy0)f`ycKE{c0llf(%@nDP|6OVp#eQn3KW}jU9_i4#rM>d!y`pHmH4F&vV zN0*!l3(#Ui1?@zu4wG6fJ@wuma|<@36{o5-ef6FODDPnbV$`w&E6{%%c~-v9+zjTu z%5R(yA5NWR7FW7={b?CanT&56o&#r`!?9e$nS45E&~clIZlrZG-43~Hb097|zxQxz z&=wg1mBUTy;>mF({b(-?*`T5UedpKcac`(HN;hlfD3xw|ix)g=C$NQrVp7HdXb1Y`1?VM(dE>auZI z@%83t+O`E-{#^odHthJD>`e6>7N_DVb2Tpy3R+tp2PKcPT2oKExr6rsw()-at(w&8 z3$vonged5Fq$|XfOhjDb{;drHKf0x0A=9&btcN><;T+&0s5ojU{2(&kV8lx`IT4 zCz!>guAx32{aShhni|91N`RJ>7XyVrOA66@eJXmMRgvXA%Sfs{!z(yi?n#3VA$Qo7 zYvjIhIS25U_G6zJbYVN0)t{9MOAuDcV`&fD#_>Q(3Hq{gfDDV2#&4`p+=_f;e^ z973OKahu&eIP+FditT*K&G8@i{Ts$kN+hg&JKL$(&~qZ@T}H`4xI5~aeqUzEo}Jro z3$3p%W!>Jw{_@l}-@=0p_(B!r=b!r`MuJQ^};ax-}NcB-RhV(;VMO~h%KmxSt$$Cv zcANvmVH|Wn?I*GVx{e0stC5YbJUEJNSbYkBOW|IPvL~<^)}0<6F%TS`&{I6Urmk3+IBf$2-Ioj`#}?i$)=xNBh=QSy`E|&;4^>V8+W07XVK{ zUTEHY7hklMA6Iyol~qHv!BEb0-a+f0Q_==&77=~9`z3<2gcdLn|mi83nzb2#RvV&a1>pJT^F-$k2- zVCNQAV^<5gXa5Kqf@ZpN{pT@%d?jf;dXD`ECb`+2Be$#`^~+Dbk6hHAZaeqvbHqsy zlcqr~dPKf#-VM1))gKpFSa#IbAiqXa!!l4=ow}ZndH%?auUN%7jg7#%y?Oq0UB9kt zDf{I%RM<%`p3t&qPS=qVFpcIb9X>ER@3oErcbEKqM2?#zOQ_9*F z9#ZK=#RL$|7^D7bFps0)Q-$v|x$|LJ-o35_JVs~2y>uMU3lcB7Wah^T@34&{&#{B$ zRqD@JzHgAMd73(QB~b$WILFhrg@!>Ph`x4O*jINnm~n{D4FvT>+COqpao015jV%pP z{2?e>s5SGA<(Eswi@5LHosUJX^iUIz?u?Zl>D+;SBFWPtt4T3u`i8ra=E}7>oQy|K zpJ%SrjEc!Xb}l8qI^K#E^FQMZzH()m#w=gxMP5Kuv3l(a6*CTx2RX;e9aqAxE8GCv zVWN`WdDNWB=}FL>ti|&v7dRCr54g+$3ifK!f$5MUnb7a1OPHhbRaV%j`N57 zPI#bfRjmGJlJ|A*a;WQ9+?DM|IiZS`;4qrxxjcXhLjUkd!9a~r!ohwcGr2k-zHCCclokDn{!Y ziZ-(w$b`LR??37*?W7Mi!;qLvL#n60{BHG~b zxC^mZTHp_Yw^#`ty>Q;buBr4kIPWzWbzHjIhz)$t_np6g zl?=1dGnEjPcnL1-pn+3xjvvzmf3E)yvDq1>23*$UBV3z&6A^W$;se;AzF(pBoBYI= zZ{laL>a{9Z2q;wk$54}M!$-`3ntSZR+c0i(vFL5o5f+|ayvYmmsQ0amKGS4rRkhs2 z^5uF-mEUA43=&3a|AuU@)J^p8hD2;UT~7^?WFNd1=#W#G)vLS3cmLg>m%obrofejv z&2+bGw=E-z@3l9%ho)uO_D(B-JR~-wZ3*-%w~g@z>}AXaLxAtx2tF2A&RGs}W*4r@ zK02sx9+N$b$|lTaOK<0LQyr~^GZ+pd9VQY6BH&IB)=!d6l3VE|GD!Z8Ru{DYgCjx0 zX=FG(5>FuP!Y@D!R7CWW&F4CXT_~SVl;Xz6fS(cCJ&uX!TgQksGUe{D zg{dd0+jcaZ#A37H4k^H>Q_l7^nstQ+5M^KW2J1Fp=U5+PvHBfS0eEJM*$2|sC!A?&Cklq3My)1K5-$zHLDaK-WG?&jV+%wVz#jG`rYgdjYr-l>1 z%8wBZ6n&d>!F1M^b`|?h_~d!AA5uruVk>0wS3q{SXmgXZ2e#u2M;|!RCp_$tmF}Il-@3jEAN#u#Ct2HThlf zA>%SB9q=9sKFr;756zFf6p+_`wsblKWx>-jXCR`rjWw%)f zlDCq|AnU@ro*62H@B|_;DY~FQe7To)ZjOIiz9;r42A2Q$-CQ#n-;OHpvaXyBMoZ)M z)?>g-PD_(*pw}PuFJpPtoKd<*!g?Kcbp{1A_E5sFp5$d?!D}{a&!wGNw9Gd2pF$+!R9gZq5Y_6-g>`JyTWVxww z+??_^6N)2lywH9*o$hZ?WPUMv;*SJ>7siR)vu!L4V!0F)o+PCQ*-#Glzx&6o4wO;D z?pdaaWe{~YrE`Z#kHV+{WaAM_3#JRjNJpL?#IVt=&MHH(Kdz7JbGXT@#YB&G21big zA%3rAn(?oVrk>4jN4h?agbD+fwzuk^P|YfkAjrKZ_2%TAsjWN66;7?}DJqVNPRlm= z($B1FI7DImU>W6>^vzRkc+Y)bo`_d~S(`iDI-{DekG80*T3{CETF@siMu|9*?Nt@K zR24jWyR@a5i8=)iP9V{Q-RLIRmInMyp7qeAja)*X+YrNiv#L@vkC%}jRP?u@zN(;B zF#CAO%rkT)I0W@E*Hj|)yIY|^HXKE~5-Jo@CrCq?a`fbnS#mEb=#aDM|p}Wkx^QSiBB>sAb zF|X2_5G5`7pdda91+d9SW68(vnZgLzYmFS(d=+n7on7qU2`SZrm~H5&a)E5);9rG@ zo#+^;g&z>?C{QbQWAwy_zR8|<6i;XA#qZZQw^rcMZ*3e_LmvdWu;eQ1G`MKho11XRwI*6iWTcgY> zY}=uKm-2#3i}-o9s=AC^1AgC)*s%WuYEILy=w>j$1F?^o^%C-Z&5EVQbZaiKATFqlkU>ZOq2tQbL zCw4y*J3qyHhGIasroc(f4ZGKpYd7lG;A5+9S?QfWvp0#TAXdia+BCR5YLE&4vklj0 zeB5m;0+Vvm4XI3yJcf{8yD*+A&EH0>#Ccj(f{`z@<7|L**x#1;S|fEq!!mJOWOjUz zUn5ZQsk3w9xi}W9$d<;6*8~>LN7;B*=UW8GS%&*wllM*f6D3&o2dMsnklu%NhG&Uba@XEWUX3{^!9T!Ab8@(-L6w=KKQ`d0|Fi!GHOn51?91{NMc07 zgweeEGa3|gW}UWldL~W-vw}*;9CWARL3nD;HCq$;hYDfHRvfbO0B=>z_SzmCSrT|u zvR0@o5q}uil^4HG2?r#M(-AV#jXS`iCZc$;=CUu?yBRcnmxlUW5Q5q!G*n`;@16L{ z8fK~z{Oi|BcjOPk{1kKseLl8BV#Di8o^uc}v>=IT^j{ul%f0;WHM5b!76EH4xpT}Wp|1+)Dv7u;8s*CRN}s_S0} zr~*gOwEN-$J@uuFb9oQMee|+6FQvVT_H&Pak_5~N8PdgVX+Jbn_io9Gw_)zLLRlhcG|o@Ad53`fu8C;~rMJfWG|;gZ4|Tgls@G z`=WX38|geq=e6zk{x@y|{Vk5F9<^ZF>Dw2HDTpkJQVeYD=L{qt_*jB7jnGaXk1>+ejL zeYPcoZq&6Z68G=TD)p@ogd zdFL;;Z(ZnA8{fjPYCjb2$xrJgGTus<@$?9?NkDWkGX}#>ow9+ENkYr2;*7B_u@UVp zfp=}m1ZG#WfmGCx>-JO-QkgcZnrqe!PiHcC6G;e|IfnbsyUXn=Ke(oP1=;>RkwUy&n@`H5A!tpa^|y_8%zB8hV&I zxb5RhnY?gss+scN$leTWu1t>%^USX}BaKGXz@?}7H$If~AY}GovKbHOGhpCd22`y6F=(y*{`}q(6sb0eRsP2?5~QSeWlqO9&b!D} zT0dawKTcaFL4B4Upm=@by>aT|kWh8d<8ks)A)xNDyQ=3;?~8aY&5gL3Mq?cpr z)X(Q{tl)KkwHspEhvP<($x3t|6rfi~;y0Xh4Y5fCe6AEsb*bpx+4Pa-*04+7duPTK zXR*ILdOw3t+6m;+g$J_UPx0^d1aRzi{wo5c`XHmXwK8%#U3X#fR)(+ClTaqmq#=_h zohXlCOX|=u_^sJ1b$Ko6Z-eOi4Dtd|p3__Q=V3mfM=gGyA@bLVC<&AlItrbMTDS<* z-zCtw;$2Ia&SVFZ_VXGe;lwD7NcRX1ICwOIVk zu*IQYjE(1KwcWmd8Dk~mAb(@-Q#`JKG18MKcC+Fk`x#puRIn#^Rog5VxsH&1FuYDd z$Moauv1DcWo8#rh2h;VcCc4X5(KQ?C?IdDM#&O?B{+^5e^pE!S#3tC5US4m8-!Rl; zGY$R2N?UNpz+lgJ4HQ7J#@SmvkfQzbUZehp3ZnUqFr!hV{qT#!FW){D@x14QoVTJ# z`L2C_O645yO}KAcu7MxCm#S$U`Ki0#hAgijwxjKzuX2#8HQsME)Zr`3uoM*?erDpzpIuDc+nXMx(!4`5_8qY@^KV>2O*{7zLRHdhC!2PH_Ml3@gx| zh-@h@1O(0OLlECy)w-WijMqe+J@0A$@euut%8pY(-)zofk*`-kA|NCxHoB3z^={sZ7vioZ7-HP<%hZcMp+sJ#gMQMZ{&?_wgVYh;V`A zNsr7aWF>zi*`iU?^BcW*uCqya=}gVR#nyPKWf32*SplGgs*phb$PFX*lkCXQVtlQo z?s~FwQij%z_6{BKI_h@RoWpjhdh1gbqRiv%{`tGO1e%Me^1?|)BR^ZY5j6*~17L*` z9jrhfTpfWL13Rt;ST&?bH3Y&;I`p4?^N=yIn&`7g%}tYUsUNrbeAD>#Z3?X+#d^qI z?bU4T-4q{iZ#4U9VAVskl46?npeh0}YEGzdS@2Hy-n(H5A;TzPAz*yFv=sMAtXv;ePI^^<}E`EErL_K?DW~4ZWp(c*{TSl6QLPmu--MF?d*7k` zm;^ak18KItzF+M6TOMh;kh-r+*oQWdWEP}&J%u85jIKs_^wK;(bd4WuTJPS z6;1phOK=G8A-GF$cXxMpclY2j5Zrg(zTF?3Va{RB zbYJfMq^iDZLOAyAteXrGE~}Zc>GabsJ7_?|&GQ@^0@0u;0v5?LyV>vS^y>F(ZWg|^ z%5Hc%r#9^_+nOXf3Ibw3j|tSXuwUgWxLtAxQ7XKXyUd>f*o`;wNt5=BNI||W8+Y?X zTi+U}5WzA8> z+VZ@;#<- zFpIGqd;(Oh%hp!|=q4N2uWt(r2ubgslWz=Z&0};ff}(tKUcRm)(_6dkxZHy0Pg2_% z%_CaPs*w_eBLgpXnaH4w;uT_CQXJTe%*790)Z$agxa_eRL_SxQ8D8H!0Vpp&%L=Ez zb03Kw53wUyRq6hnvHrv4n#d$oV&M9jz{mp1a%zbecat^m)}orjAZ+KJG|)kbB=E|Y z;zTVvq0oI9n2h#Po$_feej}Y*NYRKX`Py@KvnXS3`zSRjlq z;3liIZn-;rI^C*yo#M+2>Rx~$Q_dUX5EccgbNs7A@v04zduOi|v4IfAVotDCV^>k} zRTS?8&Wl-t1ELV$Yvk>RxPFY6C47S!NcC4fJfv{n`)yJ+9)s|;H|g!a7V@1De-Y(s zWVZAq9++&ncU*0FP&A6?0E(!TLpQ52NA+9BY*|27zh1f`4P#?S00YdFGyY@K_93K`GD!j{4fyQIo0A-6mDmXt!uVfHz&WEf-u$6* zQ^$4fb*wYGk2btr;&vrCvPqj9)LlV%Jv0L@NUMt?zYCipTuY8@|@G|DlP9d`AYAC>~24bmBnwJWQ z{xR92LV*-;XY|SWG3W>3&t%rxoiql!lO%MD06cbOYJQ~Num`V`S``WbDU*kDW_Ri) zE5`QvtO@9&&Q1{hNzY%!bX#T_+Cu4s@|$D~S6vE8^YDo_RTbS~ADLN--3?RzIabJC~xcyE($Jq`hC_Zi%V|nyaq^ zeJAW_0jYUhAcx_CgHD8fA&OK402WhqqEArJ$R^UuD9&8IrE7|&_L3!Tzz zlM&a^_pl{cFQinU9doFpTuJ1(@S(I576nin+j=Htv1J6t{$~l$Vxq?J&tgkM6Z_Y7 zs!*{TL#PbzU3eC-KYv_lF6OsahV1%Hlw~!?a80GNZS-^ek#)^4`_Qq?ZL_SiWs!cG zJ+$5+^Y+nQ6%A>!jh9B76|X%N*O>=3$qcVBlO5}#$L{pyH)W2;C4YA*q@znVzHBl? z!)fLSNFNwe;LUE~3+T)J`leg1!SUF=CyzZF{h0OHe+Kz?nZ{BS1HRQcYnIGtZMXe| zTbLb$95p85daR|Yj&7gkV7(2o(|Me9u#?(iIZyAl+@FtPU5^qZATMT`39o+mWYeQd zsMO<0#47@HkA0T?wueUy+j}AQ-_`vU<&SG8Qopid{ossUzPXsGdlM0CD)Q&RCrtJU zmT;iP=(X{&Z6S8Jnoes)&{}z&8z$~3GXXERaOkN)dcO{)g0Su`fApA)kA%OYC zOY64pj6e#Q#E|qc8D5!0`7-;0-)2S|^N{IRmftDPsPc~LE{?9KuEUR; zEbK^=gXzlk>PwH6@>g>|gCAURqSm_lS~)?SJYJDqy6c-u!&j~saVKZ$x)9*XKS8@W z$>mkw;sfqhLnKg?GaqTuD}K4CshT{X@B^yO>G=+O6XLbc6Ex-nLJ36Kis@Lu_O35x zCs_Us4frSQz*8t;-Et7jw0i)eqOV7AZU4ORkS%37-5`L;sEuN-C;^n2+u|bc2(d)b ztNOjN3&Q)PK$oqw@T}8HPCuH%pF#kQw`?%skS)?D|A6ExA|~8cv4i0QOxY_jY(=gI z>Q`%_q2Ir{A`<>~FC5b+0zHJpp(LSuv0~Ewgo7VS39(V6GcSK4ypVD?cU78+bE*ANm%xyD8+fcqv`zTvgF zb@8HeDQu6uIr=9O!uLA<#e+^vtrlUVCo149HseLy_TLoB!)V7)_Fo|OLuRt11EVc; z$wj@AJHKpoBPEUxBbU_W>=fnmTur|I*IDwv2`v#nBnLl^=Ih$A0JJH=l@_}08)W{l zY$2AGcHJ$#km8y)DA~61wOu4~0`fTGVUVbqa=#$5hMrR6$I?>q(7x2HmJtS#L`rWn zc6ZLQPxs^wa6Ix z;!=N(!J)>-Hs@I`NCV+4TidUkcu1Zki{ymc27RaHA`VcxvI%=jDnq z@G;Ohet8F&yyML}Fy* z*ugx`OIYU5o}GAVS3TMH-@08)bYI;S=%gH&h5s)zRHED@%;TI!c9^=3lX7sS?hB@B)K|qN^o@GdAOhbG z3S)6Y)gTL13U;l@&ncDISLu)QQ^0$mR>U9ZN#EIjv$EM04`GnZ#>~f0TKjxjM=frJ z#Ag|EH45|BfGv_JuYY&^6Rw~$iO4&@PJrc%PFDv7CttwHU&tXpOp)F1 zk6{F0lJAWQ&yxXsJi?L7E}B2(cSoB9)xGcq?5-!Y(u%s+X`I|3!8P~lu;xsI>jp9N zFMxYTmN89SITBy;#5M_2?&T(C<+6dK!;R_^%jKAl*sHyr`9A?9(m<%?VV^+jGXtc% z0CLyX-_Q(TKe|wgO=v*3;LlJ$USQx=yxt2UtX?1>d?T3Hh2-KVwL@2k-$=EXc$p+- z<%%Yo(pMBws*e5DSBIPES!a{v1#emtSB(R2F{c>ac7F$al`MYdcyy|Z5d_Bm3Usi* zd9Fwr+oFTX%!bG7uwE}@f7d^$+Q^N3TdBVeam}WtOzYc95<4xcyx2!TuYq@T$tC&;0rN-L zhVQGJW;93F@-`}ze~J*BPIIz07c|Rrd5((GE$C{iqvo121Z?SYk!qX$_RXk0C(RDH z(&q^xqG4Ye(G`Vqa0xeBzLX6Z1}9th2{!=c(J@V@!k^9*5Z0$7D#MJvx$@!*pvy~l zJ`Qs3kP$EzW8nKGhCVCLduuZ%J%Q6mo0c#lqKl#z#`M9$ABlS-QQ#f`yO_JmVgdBr zh)Ca5U-VBG&x^C0RngfiKmhLi$5Y`Z;Y29p&INXz6^J@M4-)MT%;c|+#snGRfqB!~ln;$Y%x%*2wInMSh)NA2op^KRUpV?P9$Xi84b3g? zZ7y5})R{-wBCO0!Z|U?){XLB*72K$Rvqp((v9_o6pE3j|uY>vI(nM;$8fT(w@gF^V zC~~jPlxy^gJG_75*#1!E87*SG-6`r+jHl~4EaD8xo02nyHc5p@lK@g|l&ELqN{m*C z!a%HP8%!5|X;4Jnw^>d?L6cc?IfKoVWNp_8L3$dH&A72OCNhk#RC@KdXgg>sqmEhVJNW z)8?PU>w#<=dOl-CXGZw(BXZ$tPXLLH9y?c<1+#B}Q9#waUc7XC4rQA;DS@@=TZmr;aB(!U5C%58jdbe#j zu{(k_YDi(xKFmT(*LAO)C;>#i?5Zi1^tMUL>SPGv)6%%7d8fB+#8S=3qp*TQ`HPKZ zrFH^r#I%{k{Xxyu5UyndTL;wWn^@vTo)*+}lV4DU%xf7VEB5;+P)6Ta&G1d5ws-V? zmBd>20#fwqQu)8-2}O&bFPmoFHrRxNe9F)@!zH$JfpKeX ztZUBY0@x9V0`WwJ%t!$*tO{_|PoG;}v3x>$z}P2YheD!S1>PJ63~^fqE!==TF@ZSrGmr@_^> z5W6Y1aTrKJguQic5YYKhf;XKW(){I6#^SaSW|EF5yiUFYTKQX8ZILTj%s5n4dRki@ z!|Dv68&4><=wj{}V`2no|Cvm3`Ay3^$h`F9Za7g`7-&&gIJ>kFE(yIO&ou=;DU)Xf zVizrDt}(TgLwJDcyVVUUCfFJ#pBpv+r?IGMpEm;cA_?~`E4~E&OPgx~N#cA%@!-P` zP}yRX3!iq4Uag>QcGrNv1T;D4031oCQPr?ng;pI@W2?99W@ zvLo&WwVTa*-M3d}(1wN6i&RnQ`osEdJZZs8=ef?iZ{b^7O0@|9NGTn!i10m^bCZb7 zCLl%0kv9z`lt?Ld<{tL57JG#iKRcgW`}@LDyN@FCJ?wOew2;54uCjU|1dU#OIC;7S z1*D$tH?(-qA(7x9{{O!pN!dOkT&Uh9LHc7TeMm$pF-T|tQv?N@78+nMx8x~mx{Y0d zlLOG?#aXQ6^@^PdC8?+z3sk3NW)9Gkp`r+w&VCbj1 zOuBpAGQLk>9Jzb82aPN>CC>BLswkWA8~R+mSd120hKm zxF71|fD~&X>KU05p(pQ_`Z`K2i~6I#ri;EZ_w3Uu5<4i6pnJuyDJ@Y!Jd8h3k|(iKK-~=8c|0q)Qn0O+??Hx@jB}XRPb+e2zT8I|=)6@wPN7 zA#JX9$6^>&ViU<5+t%hn>P3$Qz)|NVTFlkNSa`;f_LH|+`)&m8Tu~bARPU^*VUEOF ziQd<<$yiFhFrSOMG?})>5)*&J`7>pY(B|8Z@baor^i$F!^>(NZ1{tr>{VXalf4>AW zm`YLqp5SuO_}OAEzwNvHY=XNqUy&d9C~s@7x0FKw6bY0fvH?Ft(@ry3{h0J`uoE#S zrT>y3iZ^vlrIClz7A8OyWfCc%&%ylZ>0t5GA}{$QV>r<}3L9m^{Og@Qm^Fby0{uD- z1@sW|Gx!PoHG2KHht+}?D0Y-B^SY-Fo%9d#X!up#$J?Js10M+M)5z_ueAa(3ii$Qg z`gnkvA_Y;PfN%2ET}Yj;L|KeH-uA~&!`4A!dTAdG9ESOhB`Z*_^zYN|ns=b>ARVim zcm6EVQMs#IZO%FU*H?8!qoHu{U0ym#E{?BeO^0yWSNh{Gb&o``{;^X39 zex`;zgj|crTP)!(W~gBU-%#||kvn|rwC;XpnykOO59%ce*f@1mVM1$fYiKk+Oy9oJ z0=Ws5Xra5cB!!gYx%6Lp^}ygY7{C?{I79h}Q;l0z`A8qzvSdtc$#)kzSbSU*AXK~2 z#!+-}tMppud=juZLotU^G^naOH8_6ep4BYve3vklNSL6I`v9l~0?5E|*%KB5{ z!;7bGBBkb{rBUcxKk^*A#`-v+?&)OWES~|1ce|yP^fxyJMyP`X@3O z6PK)?BSml?gZWPRza??%nS>2Cb?R4_WZ69BOTb8~$Gkc>PCdt3$+z*Xp?LvOb@BAc z!_x=bC^5?VPwNj08|V9*JeK_5vgfb_zkHBE0Autsoe+rtoW zQdIGs&DhPFwvz1(0{&@Iuc}O(N!9y-9mQQSyTc7rS7*GXG+LU*#HtH_Y0v7* z+)ensw1VB1Bag4)~ylP|7N2*NKH3nG! ze8DSJrEm07PvS|P#i4!sM{LRRs?Gr@IZY;{OFdofs>Zz}(zmx@_i?>{K7+MOte0tS zciKkW5|};tQ9}YQHMFI^)vSLwIl!p6J)Y7%%c$?dAAvJ4M`lC|WLa(ONGQo<6lpG` z@R^_5ArXq=4jF8KmAn9+lHPZh@ksrc_D{kuaEyF$CuC-~KO$k_W--n@c_-Dc=P}Qi zrbn?O6QG!)b6`ubez%gAw>|OU0#H6lefaxEbGeM`W9z;ppMgM8qz}pjI)~W7vM$G^E+dwqi=H;iA!K1cROAsMKbeKPB&hG z+sHr+xuQzq_(`|HX)DG)+y8MfgFsIBJxWxa`g*t}JHoA`C`N!C)hPBxlCVZQ@4@0b zG~(vL)EM-mctq%SkqQ)3*$1c96uZ;6=az3_G?3W!y(@a9GkPcIHD^+iUyuJ=m`Z&G z1m`_~9ga+E&U6<{pL2)cub3Y`DoJ=fka=G}-`LoubqOaW6m5a$^o4Y!H^0{c! zG))*E|1UaIOXgAQtq#M5Jrz8%kCfoAG#7jke7-}3w9|tonqqHXf-1j&R)$WV>^zbN zayUC*6Mg!Q827vPPueV8!AUMT$|>q+bxP~-7LK2J5>s{l>7q?JNMdoP$+bi7nQ(}La@yh(o6o1 zMTy796^TvyT?XzWQ#s)3?AKRnC!)#IPHk<0uU%vkdIccvyoyb`8<+SG^mz|e()E+r z*S(v9W*{^Fl_dYg%7A*k?^U*Ot z+M*#@xFR^0rM%6f8L?iM(M1Vss=vSEQ`shv*FyV^TOsmPX*GDQ$R7Xw((0az((y!I z3loTSw;@myUIy2hg30632_@5wFurMH_!maiej-}^8-0%{?^?_UwIsQe5i=cLkpF+b zqWUNX`^9%&f9^xV4BT-|hXNi57RJ5ssvWEQSz|^sl7#H5&`$)Aerk4HHZbB3ZlRhM zzF7XmBa7x&=Jmw}YS=b7EOb5zj_pKVfv?*dJ);RkpICfgcofCqqms|R2(1yq!oy>$ z-dMi9mBYOV9i6wLw@p5M2_=ag%cYyczqq&!jkt~>DJreNWO%hk(M#i&u%-ERH&8jG zeVJ4zB+YB)Ihd_2?Ekd@l*yG?h@j;?yk#Et3euKh?kbb5#FuEJ)Bj7OP|JPRbj?4q zPoK{&5zpP5s6L9&)j{lCXH-kw=08ENLgPE;?uW>4aD2C(Ji7dYFuCONI`nJ4CD8sg zQP<}(DJu$N|+BBTwP3>0W^z}WbB zeqNq4FX3;;OfBUl6@Y|~&+B+57X$u)v)V(2rBv*LtIS0-LA)HY%feG|3kGW!tPZxK0UG3Hkrjj)R3>3P(a|fIkl4M zLc;oIQ`j%FN!AKMAIoJr6R<_4>&~o?11FCvDe(V75TsPaRmym9z5B`nX4g$n@k-B} zk5UJ0%Hbh_HM{dF_LXuH;7|8=lI?A~>Ht8gcBjuD3?Bu;qanhFAQASxmiP7b#m2_s zD_5{tOjYQ$V|fwc;XUt$5O2M6*u(dcQ?&35h^-P@5Og#Q*uH<+c6G^W#6@p-UVCM)R7DdPCdC#{`W!$hD|BI0?c9|g^zlp z?>jFthxz)Khw9N<*3c3Qm%n$xA}_%aU17-GFC5ZqyQ%HRaB)@axBugN#ob_cCe7El zj4dNi-J9+DcplAjChgSN@=|$-my2&A21{nze!=P`XkL3}CDi&wEc7U=)VnNN_!Nr8R- zN~@~g!8W|rj)Y)C($!U5EG#Ty;%+yPK2!4g^70V~w7qezbpKOjxdR%Ol;TmRZ!0#b z+Vx#VeiK#cA!_4;78STsNddv9@4Ajg9$P~ix3qU!s9jSEqi21U zTt4^gE*_=v;PnV3o~Wpt=Ymp^`upOy1Mu#u(us_vGX(ru+ff-vbpFLeQy{(^bKytmS(h=@&%OGrtXt1>Xd6iPBVso1W!YD!8voiwV{5qVA7rztjgbYur z8)d4H$;-jWXnVakxU9(oHt+rogWT5Is-~*i(hBySGcq!gk&#i1`5FBXWpIN9mH>2- zUzGQ}e-lX)yTnz;o^_OopqnHDXHx%I0JvqOvTdE3L+Gm|IA``*5dMx?(r)%GMsfhi zVLbT^xU#nY@TwoSK?Y_p&emgSPMew|OYyCi!1m<408NI$S}|vI3Eq#TbQelqU?lq| zEuT?$&l~mAmlDDxvEYZnQ78 z*#QyKIj0?Y$EWUJtly8GP%Uad|4?t7$F#1ToqZ3>e``++r4 z^pb0MeSNK~t7Bzjv%gAP(TWkc*K~Ar6#4Zte5q3J<})dHc}*U-X7F`ai#Y$nugyhKha0#Nnx;j_ z>Ji{!kZ(9%6?MtNvu?AMC$QaEq|h-y0OIgXxWfp*-FTv9qDR^D7mk$o*+Az-XtQ1P zic6n0&az)`aaD5e3`E_CxJXvI_J5g<89bV!j)P#v1cu2 z{0CUSlZFRK3Gopak<@)@4ED_2V-89{IPM8VV(fEn%V= z$I`7;C=Y$6TV1f8`%80v#`?A$R^ZX5+HoGME_MYv*uoG6xV`Sr|Bfc8mEn(por}-% zXDwIG1ibEVHF|Yg4&_C_wEgC<^a*vnjw2cJbI0+}nQX>EeJ@|$&ZkVF3ZZ{`EaBoJ zrXV61pnBO@yZMhcp~x0Z=|58)?RShj50BNGRsiK%f}cM8_sr;*^s;of);xFcuX;_TOV|P`BFHEX6*D$(3pQKfEGt{t?ZK9W$tzbPe6e z0w`!az{Ub-FFpaS>xdLIo@-4AXblWFBC%u01aor7qHPZdg7@;xECnhX>-T(qhi=#p z)P34+i8sTZw9&gCmwP%{eU`{Qhn+<@L(*~e+spYAS_{Eh(T|4Ot2Cc*rjj+{Hcm)-@m7L$w@F{hEcU3P)n`A>Ds0iId@fdYs^?U z{xe8Z#XfNR*WaRdO!m$Gs3%h)zs@)Uo4dtLm5Sp|b1aoT2B{8Um*T^?OQyJ`fidHwL^vUY~C4@5h3Ig1|=kpMUqK6t8z2f}yO~9*7vZtYv2i zAcfI9K1f{j$`x6&FtAN7ri?Lwor=@AZ^nG?&kt#=ctfb-;z`IQ=lOg+LkM+(Y`TGU zF=wKS^HMH&)=M?l=K!Q?lK&*y>8H^O3&uy{Z5;+=%jyt*=HZ3J*(Vj zZ~Tl2;pvCMK?Nu?6197pCiA+zlk#$8Aj$TCuzOL9ag=&EwqztIw+R(RS*x}WMtn?n zFwvu>O42@hkHQIs_j|K`aN?pYD`hVTniNc%XeNK)WKn^!+22%oxx5WvQt3MVTa9et zY~t}h;&#OQQue~NfL0GMydoH#*)w$|d@TC*Gft4?gv#osRO z1ah{jPMRJP1TVT9?@9^NbhZQqBaF415?`ta#$b07HcQs}Toa07P*1ICtm-wyrwbF( zHC{cU&JbZOQo5g=Gdl~r;i(K#Tv-N}(slS(*^U!d+G1pN{QejvL4fIJ{elU#!)eBv z<{a=+5;BF)YANTzQ5V_$7Dmqfo=2;SP!AXnIVh0AdU|?>hB?}m z=Czuin1q!vtn-o*5)!hq>>8636DcVv!A9ff7tPyUtN*)xXozxuVf0}GFc^QX)JAx3 zmzzG_-JHT*`1?oiAEEmdl1UaFxoNLAu_y$;t|3paj13WL%t$`gS*6@6Z%P=jcmeMGqk`04vudUF^I(bs&HDH3JA8KpbtCoEA zUSxI!v^OC@6^?*8FN8Qt0mt=Ar_ssZm+2i8xa1>q>+xi8xP{S|NUw2taPaot&iFk* zIpQVK&=c0u&Uc;0HW>N`kxZJ|q!seMbv; ziRY^f2w=BcZf*a%+@}u>(IXArxg@yOa2x`mi1_p)x)c7}D@(p}+lAX)8}0FfddvAu z-EE(=sfLrngvcXmURNY$GzzpIN*bXjqA2OkB)EO$GnIhtLd8J_{AZ+u1JFgNAplnh zAeQIv<=ABaj|R!qJ)*`TRw#AE>NOJXO(x7bgfP2wKxfSnQyB^Uw;aavHXS$W79D3- zR~ZU4K(o#?tkdV|-+?CmMGN<<(CtVZ`NQQVpZP?}>#H|>5P0OO(Q2{GBHJfPp?G_T z0|xa!eV}pxwufq^3zH0j?_|DJ=5H2X*_^JjW~WLqC=Mq262o7=AtmhLPpVE!w=5Al zzuCfas6H&%l{Fh2cK38MjT)0@2T8%@m6H9JPJH5 zzV`jmWj`EBeA{dXA8ap8_OoQL{@T1)dEHoA_4}+!Q>Nd;$t4&P00WiUmrB^Xg7Rx^ z4_N7D>*$%7Y7IFnqhLn9?a?e`vn%wj_FR0b)u{M9igq=hDU$z(J)Bh{lTL29I6SDiU?Bd+2uPW&$z?1Ka@taR+IG-*&czW~av>MRDzt>aQEe6SV zDIarX00S;cKB3augQ)D2e{3c05S7@b48JFB>g5IAv{c; zju*t3rEQ(LsYq_FTjrNDaX(Z_JnB9|ut+m>6OA;BM7;5M6o-F+ZW1Ge0c@OSIi|Z< zxa#isR&#UWjQZt2iUs$#JQsRpjl6b#YGNRdQ^G`yUx|=ThuQkIh}77}<_vjqwtY{Y zS5>2|^WP(-O_Ah5y2P%QBbaqLLzefomjnPcar+I`1H3-hh+Q&RQOsF+PgR2=PPg<) zEH*yyJeTJD%@WAE16!Qa9F;cTErgJyh5o_k^Lz1zk0>mNc?gqgV}vy=ltHLcB+)$P z#Jjv!KnEHN1!?$TvV!ZA@R1gnzJxMyzn^!-;IUFjyAan4gIK(;i@)C1^eKe^l;oM& zBmgV`ET*VgT5mIMv@F7ILKH!<4O2HLt6EpecK1%XvkHa`vL@K}E!I;h$a``?g_^~p z!D0DMm%jDn^P|6r^}IOl#X?&tLdDo(AZ}P@7}V4Zb(x`dbF1heK!!9)n|U0|jNagC zd6&m_pEPqvTcNpCsN9r_7N_MHFq?OZdB7;NW2?;qr+P?pLp+>0_>RW?DvDR++Gve` z+HD8P_co7p_Rk#KurN@Q7P`pqes4Lkl1a}U`sTHUU0JWRsTtjjdXEwvn5k)Pd(zQ* zOft0##u+DP^uT*C^D&6X@n}`OOCS4t=cGAb|g;T3s0FY|CjHX>K1Je$v~mNKF0S|>SAeS|4_Eo^t`_7-qWYdFj#D5rGxfe#a=MPwGpbDN@vv~%np}H{CyQfFq*>zgTPzju3>WuN<)Z;^2C9{X*n0~zp6J8Dh<;}pbeqSwH`&MF zyabdr^q&qgy9IAc{R`u%N9ag^@WPb4Y;#b;#H94(XaD1iSyiSW+yQ>fnC1z^SK6Tk zTRQi?B)vUBy}mGu#BNZm8W<)L?9`Y=c;L@c{LJO22OX{U^bQ*SzEPr)91Hkk9>s3E zdu05!mv^u>{dHWm;RfLh#*nv2LwQ95AYk?XYBeskPD@=`XQ`cKMCDd{sZ}^iG2MCS zGED4@P4kB8z9!AQViQ=c@moav#(Gw*ZZ1^+W)bA7ai?nUu<|={4M+b~Cbe@AWM+_R z5;kZ%*TxBE$Ty-CMbHE?`{V`@yn!jJdtu6Zab zA^-^+t@&3YFwzQ}XgZf(0sh6K9$vs)Y6tGs;W4OTNr>R|W1~2{Z|gxQ)xB3ATJoT9 zMxvo#u<2s7g>iSo)YUcKmW|c?Ck1tw81{Vh)4p4>Ts#!>m%g^vELeUxU<2dVkx5nt z6j*`Hbuu##x0(lc$<$?c`Lm+}mwjv=ULCUe;DxF?=vT@h7@ExqKhAv7;h_};NDxXi zyW*u|>h_+(iibb>gXT*9)}!B zDbuJZS)BAe0$3LgCl$c1!_nL(2ZQB+;MhL}CMJQI>tr+r5}cty7}SPbXBG)xnNi}g zeg=VyZ@^5FHKPCtUI>gUVkH$Yqfyp+0{IfD^i;|O7zVG{l~vBAsZ!n3C^n3jOlpkA zG=)*YwU;Bh;9JKlL@r{{&|~pX@D34WIh*x~c*!nooea*u1Co8dUM=2-epS~`kCnvC zI_?y&F(KncAJpz=p~ zV3@)(4pRV0277LoT>gZe{Sy+i`n3l~o{`uIhahEuA5I_n{|c?UQ|6M)eSD%Qum{a5 z3y1q;O~_!4Inx^{H-VXAmH=oP2L3HGP9319LK0PDBY;HeMH$*2wjN9Yu4*|Igm6 zh$97S%>-kkK_A$pAA`F(`v082zbJ$lU6O9gS7)4&{}XE?3O~LGrg@9q2(~8F+Iak)m%$4Gqr7W61qqL~Fx3XMB1ZAbo0SFW;Z)(g z$ULuTpP7*CHs)rE2kz!>ScImO1T}O1Mdii1z}cY^$YyKll$};Bh7lvFWLlN`qANm0 zP5M5LNu`6u6<+2CCP;h%Mt&2t*_TQjQs^!BE~`|9JQo<@#hx(UIJVUR3eh1YSom6M1#$S{a(0z(Qqp^+y>h5U`EldhNoZGckCRId2uP z1y}mM;9)M1D8Xh0&qL( z5+(85k@l~rYraTVaBmHwy4ONc{i?fbl;7t1k7)dd>F4itHGL*cp{8W3?f#DIqJ`)Z zOOMn5#bp?)TRN@W*kB04#kR!p+<%nEcgl?1WT_NCK+BeYc6|Snf+7C5KZ@~dgopG` z0MDvDy+)*fUwT)BzPMN+1VI7dvt5(Ip!{ME%LSaV4ZPA*LRI~g*ZcYYj9*$4mx?J>mN-ah>?^~MUwdXN2j^< zNz?Qayw%7A5ydT~hQq2%P+R}=wOi+VN!xtvlt^wc{^6L5Z{S&^OA*XlZ`Lb2AxMbc zC{cGX1gS71I(>RKaPXJ-OHf5IbN^-DN&IK0;qNi zhRob(cx47+rxfkh&GB8Q74GIThMT|ER*JNZ6gJoMo%~%XnpCsxUXTQZngrEX*3PUD zqN*Yl?oU?*+g~+>Q+Dh?hw$s1nAW<- zmt0YXxaMfGHPxShwZ<>4JwwdaWJ|-4{*CC(!zvING)O=VT8k$2qKA{v`kAz)^ZUDcWwD-QpvE_)gstsENQtzV34*UsY%njd7hAy?0;?E5aQ z<7=PHPZDcUo_fsy7)t2^IrKUwSVMWRC4fH(Y?0(PNxKk`=A!WjGs0n8fqilNW%F@djNqTKs9%cK zb;-|*j>qePX!~p9$Q=73_33qNUqd^sLpMPX)p2+m2FxkBYf(JqT+@X|rkCw#l{ED* z-WW$Avu=$xt5XP>^Izs5P}2Wv0h}ST3h@4S5|4}xMZWfZk38u9xtM7#+pmP%NQZ_w zHE1-YNNSsr>z@j@GfSn5L9!)=#(Q#j=Ey*iYmT z_Cs1sItEDmrVd8rYXRY1C5RknkzD0@7@&{kd#|bVU>>~!X!9sBHaIFUe)H`Al;Xs3 zf=a^|_x+!sh&)avE4=C#om;Bn#xOOON#$cMPFJ$FHHHThOcBL@%A zFw;fS{Slf&r!T3Q!J#;IfkV|x^@h96@l<}%Me1XW=|Wx3{7=iA^RX0 zREB-9it80{(M76XpK+H`{X}u4nLqveBizNZ8W(VfBe1PS0+{%9VS!m4G88D~Obrw1 z0(HnOc;{;uT8~kl#0AhD$tvCv7AMq){{QtOIR5w(c!>&!&2Jux1&dO}QebApMjMLp z%aYz~(}ndX|KsZT)HoZx#?K7?R-@pWM|n1x>#zir9=E~r{%kC9hyVB(Izs+aW@vp* z{8Q6ZiO&{iw=_4s_IpBQbEAV53EyVtJ)tgk{}OdA+7oujZf5^E<;*E$*%U3KIRbO4 z+1)`6qLtZS0ESm!XSOoioFMcQPxkQX5XWD_wSZb zU(^4qb&cKeC3X0rISIe6uD;U5UPs?*dZ`5^vNxsB&HtBc7enaDH#Grk4gL8n9~1fA zP#|)PtI_gQ@VwE7dx7p(->#e;|N1H9zxj<4U3jkGph2Npbn>JZHgC)1>`D7V2%BZMtp0*0hAYy~i#7RO_2aOm=;jRd^o7cF##Cr`lm z+!)^RcZ4Ap1^9x*al$!%(VIB!BYo~59FhL(u-`hSYu3B}0^HF>VI}vtzH8A%MD_OrnlZ>-B0vKIStG6zvTHcRrEh;h%Ym^5J6%# zuqI99q)eK(tTj)Eg>z*{zN2kG%JzUMVmC@|MbbA7G4@TW7SaIyn~KY2N3WiLVX+ch z3LXW&5IPsIT@*Mldn3HdmU!(c@0pWeb&vJxx1KZiWg7Ge01b`?!1<;yk6c-VQ+XW>5kdh9ki({5GZ6(LdI11>I>}=q zwq}2$A~{hmso~>f#lS0EidW0BIv`6W=u+kJ6=P{uGhKng7J0Y02I#Spdu9CtR-5>n zTqi?fJ-Ut~YBDi#rAlDWBY9Bm{SNf#zrMT%2PBmQ`@X<26+Z}heI52-dR%}Si=&jW%f{lgaVo156cd#^~ z5#18}ZbA%QG_x4iKPJ#|(l{%(PJ(9y37GLX+JXVOj5WU}wo7X|t8{HT%dB&45^Sa( z4sWC9m__{3R2^JsH~rlih*tl;hWnpqv3|$-wm5ZvNCCvj+;L{~Fz`#>j!Rjm8K;Bd zl~BR2U*9wxj$@l8aFTHtKnaS=0Z1tV(7QN(c)4WMI7sAIwZdTuwgyEM{!+2Cz4lXz z;$V?zD2hoWkjvA0Vf0ww%}Onlhco?|##p3UZRv{Sx{I=@ANnsBma)+=9=P{4FRYHi zA^``|^(7xiaoL!{;eaJf2EdsxrES1o3O;-|-@wtt<}*PfPt`NZzUFObb;z8ZeazOC zgf#ZzIL^yTF6nIATd8Z(9c7Tjf8;zwEG;IIenxL|%Msov8vgJ1iA}FQfVg0@g$xL$ z_&r&DX?>~}uK@(3^XY0E)=#DhXl$`hw5=)1xNc_dSjbj4EX!>H=JyJpb`1ppGbHhG+IS3VaNf`W3;_Tzc;xxi&5UDCnrM7}<9iQ%2Cx zTVBs6Kh|Z%1Tt*FLGkIrH|5|y^pnv`EjYW#I68F9Q;ZS2 z=W1HsB4x{X=6s?j>Y#XzJDl^S1U?|=Yhsb4ow?YMHLGAS6p&6z2snRKojEm+c_sZI zj6N&oa?EskE2|f{hFJ0H?f)S08VPwk$Fm%4M1Hk>r)@_N@czGKZ%DJ=?+?WAN=MDH zIE|wciR;x$hH3H-q2rsfu{6EDFgTsNbU&!zJ&h5yP`U4v4%d5molErw5YwhvK?(BQ z3+iO!LM8^G-|y3C0eR2s5XaWzwzlJ^Afw<>YOtRisV`aj9hIn{G4pS^mbSKuQ+ZSO z@}&0e_bHOID!r{aG(+_IdDR%18O&$jx4Umj=H5^0%RsU@hPpn3@7xXS96Wk19d~v} zw6O$>g8U9jAb~i%kZ}r1Xna%&fcKghoXyVVsV-kVi;E@Bq~4*d85VS0Yf6m5Yak-= zu6|158ufMC?JUPw1V>YZ0U*8oeLyc|e!A8>+{+2#GK z(1h)>Kds+rTavw?tvTG7(tt!^@sVc;x)Gfz;*XAdGqs62HIUlleHc#rBoXo4-Lw8TSOAau1QnXgoQzljMjC%!o2 znS89KKw=Gy{B;81A7(eD1GSJ6LKO2%8Zn$3H(K!Aa&KyU5BCk3=-GZd>!|2L^zOnd9f{2?>~A8;Qd(V5KPN&KCp%c)*p0l zmaQFQT()k#*3=tu+}H~f2NH&Q>6pGdV!4-%NP}@GA&e><$T1gY0fM|Sb9oBUW&6F1 z-9CbcM%^-#j71{@C!(l836mv6_lyw;5mZ1|y+Bb<(7L~CRP!)pg9IKi8??wnDf8Y| zy+*?Y?%f1Qn;rgJnb=bva7-+rRLV)S=|716K3+=(V{sGgyE4zrXsrMg)sEzt0nAG+ zky_4`d0pIVF>^N;`Pr|b8wMxe|Kz2V{m5dzcUdpvKpla^dzkrK{^#Bd{*hknK|)NO zu}bUz<$RfM@v64wkU%Vrh(!^|be(J?5sR9kuth}RFu0PyooP_5?N+IcqL^l>J z>+jS2TOJDNn{&8iO(}fB9(w!vA73Mz_gz0*6B7BC$XCf$-}5X|YyJ4G;IP#l91wv7 z4S~}X=6g>H8F5ff$_i~_XMSjVSirD4_E9ziw3CpNbd)2@vBOBZekyNy-1$LnUbQyi z6r0fu=%3X+Ashlixk_GlhjHXVB+j$GIe-eSYK#2H`&~!+imPwZg_aWs5I{?63KFol zBmmS51+f-}%GS@`;`{SQ`DI#d>AAZ|7r7 zmL5Z3GcnApy#S;U6hz{B3GhWC(LC`o7L>efg9o(|l`_8}v&!q?n4=p<7 zu}7%xuV`p*mcqv`ME9@k5TNQZV=?`Fn4?Pt%725>G00YzAlw8!%H)wd*hI_4di4ZW1vv~>5%Q)mHN&&j(6{(rjreC1vj-WqX*agK80C0fb$ecmNvQ2Ciyz?QD?e!yn@LP z$Z<3%cdM$nH_bXhRXoh^A3{sW2U}$Z zyUp6Ja}oRfg{h;3A`ynaZ8q@i*lbp(lPb-)tOiam7vtJeW;-L=ouc+~jNq>C0&iMt z-BmR{w3DOuw2&Vl{vjxKbI5oHYE_jVV;aqUOJlS$&g;1e@P5Ghrw-J<=DyC#H}izC zqKjWW#TUkIjMBd*|5?K6KPtah-)W#*`WCdqBuuawCqzJkFr*jSbJKK4pQ0xr;^^XT z+&$c=tqt zyfxCz>s}wmTd9M-c!B;<@31SleD5$cQN3JA5l0^p@gQ4+!(s9*;m$`FOGNl^qoV@I)V{&x9Hu#{0@T zx3My?777VuN}*`x7IOH`2-D7h<#-sYoIq#7`&J03q+SX_g_Q33uC zDmx;HT@3yhe>%nNqG%EM9cC{{932-V`MA$Qs8ZxgRjKpwc!j)nlimpXX)=)_61NA9$$H zvU@E{I9QC**6`Tp(tu!p^L_?`<7j_KHoApM^O$mgn3)0Dt3+`2b9mICuNAFDF|-*} zw~$NXRiGV&(BBg%pj*El#v~Zz(yNROgS@C@#JQ`zRy->wxgDcpnr!Wk(4uCPr8)W1sru}~BiMEA-zd=h%!;2PEoM6R!os<_?cVGgTu{4a{= zAYYgG2~jSzVN@9Z-)2VXg5)0`f&_7<9}yI>qcF?Su-+6lViU|!(JWi}MGAPOIepuX z;>5YhU+kTL%@)9F6G|U;L>+bTzmg~IvJ~^;phhJL&$_Ghu*=;rR(@1x_Ax1uC9&_@nSPIbhGo>SO4;mu z+}4dQy&Fym_oeAPWSFSe?Qw7MT-TG)$%Xr~ia`SOGa#4y;iWiXzXi145^fD(=_2yq z;j#pZUy7Ko@`@_5e=p|~Lau-yeryRVy3=}HvZ8z_{`}uvgpvKyfR!SS9zj~i*?+@< zhJN+M=Wg$I(Ro?j?(90-8FNa(M*z<%O9UORxaM(`n}Xzl%Rz4)XI2#DQ$}h(?W`Yr z0Y(D)gI*coYs&sB)+HW{W>OV~O0LuAWlqoD=HH=(V{bjtu^WYCOROs&_lUyD$<^U4 zf<8m0aY&2o_&L-aufTZpc|Zqe4BYwRJL>(|-#0_7A$l%=Jm*M|xHjxeg975KjSJ2? zKlz-CZub8vh)q~b`w@^BJY=Ort{kYm7QTn_nRT9qmC5y5N|W%NYqbWa&Vf(q!JtU* z`E|TvLfw*tqv?HL=TC96kC*Wr!&3XmxDdoAx$s1h)6Icmm?Qp)+EjP&^x|EP<{jG zPd;7#k|OkR?F;`HnKm#QH@AApaf@wi9B~;|UfFmNUs}fGYAAS3NdbR0Wc}kB1)!e8 zWyWe|$NlV86NzIemVnM9GJj%ev?~d@h@0b2lrh;*i3i*VYkLw)OPC8m&;~EPl*0n# zSf2m@8~>m|kw!&Uktj!Q5?TPz@U&SdEpGfB21)#`id;!%2IpPvo0sMxJmpcO4iPaT zwi>~E;IG-unUit`Mj?qxG2xAX6b#TdB#cnd%H*Z!tOUu2R;%}E)b%Sd<0TGoVoJpi zGRMLpUHgwu+!UaER6^X9@4SZ!@#3^`SxG-&N|KS2ur_;>ntqefo8i*sy=9Iv4|*=~bhp)3tup zd!F?nyA0s<6uiGg6QIJonkVD1}9IUOqM?V>qGBA`M?7tA|vh_*kTOFC5CT zdW*a4I}lkG0LI8-Cb;IW?{S5qRN#j;Z-SIOkVth$oaieQGNng36 z1yfpdfOEQi4L++ZvxX>PNog&SqI=n&4{~rgg?ZT8!q#y3_KhS9lDmS7tM>2~10{zTe+UK}=w1wk^xrGcWsccr=Y{A#6otsC zZk@2KsjUkJ^vgIQVc4J8+xblOJ;NTfiGUwoWuvAw;tUZyU61Ws*BJYFnT_w5)(cMU zx?{&`2&|zM`O@dT!tmkVF!ClLcXR2+5F)&JS|5xYWj4Ct{#!m_Q_i4t^(Ln$!rG!n zD!d65D$v|p!hsp!e19pb@l}nE7hyj}Eq`o zNob@OMV_x1(xwTTEB2+R@Oc)=2*Iwb>}mDc2Xi&4Y=WX?uQl!J7~OCj37@eL@PuPXiqM5vm zdRnJ#)m)*%_C4jH#-=h8YU<&+){4S|N812;!^5{T9Iw#^oih_*hky&5{PEQrWd(Z7 zTNzR+y#n5;lhhUevJls)dx|rr9ng>2Ufw$wUoE1jrNc7dPJFDwUJObonMr@ z!c>P2Zw_Th@hhKTpcIS3LC;>UO09I;|cN!_vA=2X4qXgTLJ zxCDQz2C$1H_(26|S3P1gj!<3(-oO5O-IM1ZxF5py??EpZaJ zGA(LURCsOS13?`uAzKnwI_+p)5#Eaor`2y;odNf?@g3Pj4uZ&foC!zrR=$_Sx9C6n z_9%8cKu2_c!5@jYF5gvcY&^?{vL(Vb!SD38l!qtwHEFKZgrW322nq<4wR)1H`8Wb2 zn4?sR90UvC7FO>23p-=Y$Myk$^>|I=?;ZObumfY2@~3GfHM(O=cCUj6xHYZm_3F)< z%Dl{&0P>0mJMBg6F6qgq@;bAW^0#+X$ylt)Mf^pFi>s$EngjG-ti3y6FC@>A&R2Gf zMh*VHACmo22A_BG?H~q4G!!-M{bEDBOk7Lrf0v!32lRvWO-^qJops-7qM#xTi=>QZ zK3F1_|4NZBs0`4iEJw&N+<1R` zW*;G$jaPNuKJUD%`IOzA+IsuqQ(ezQ^trF!I>j2iowxDDbA?mW%Z3^=Fa7XZv=8^y zr>oyE@y?umWsM&vcwxcg2FSfa!+%M4n3Ja@4jb3#FqY7;9??DK@54d)FB5Q>MXm6S z#|KmByU)R_YCeDjrktHgYcN4=KT4HL2baMsQ zP!Ks!DQg>A{c6cp6W@O!LHe&{u5Oj~*v6B*HLsaw%&aKWO^%9kzb}Rt> z!Jo*W6<>FwOspx9iyrf{Z|S|M0B>@G;6svDlqa<)Yy6;;$(bT{OH$}(ax4#^8@vj4 z3XeyV8o+V~uMAGV(DuIKkbX=Gr@Daf&+J`FamUme(q}7hlN9AbiZDwCXBEnmW7+Hw zLJKdsfc<7UC$NDBU%Lm!D;};2o9#kQm0kJ%`f3W!ZPZMn`eRS*a

~z+e88Qx(htg=GoI%S?2zV2l4t-? z0QC9Z_gEee{n7|CknP$rZYMdPK!ZNBJJk#@qd1q{9&)#Y70&j`7()3Uxw#yt*Z}Bl z+yTj>>Zi&LHr+nqBWKYE3oDKkb}R2+3pB>6QGjk41PK4mVMZYAb!)Cj!WR}$OJLrc zo;1n#1N<+{wg;MqBE?Uk{F~K{csmb`&1%|wk0AYPyhKu2ge#AE$84H4KL}3&PW#>2 zK2qf50xi9AkDtdG4~MKA*UO>*{f8}r_Xk3gZ7Iz-LnCGoh(Ro<|LNgfa{8n-7S}Ba zSHjz@GK#M8jO!g6~2hIFW%Y_$uoe3f* z+w0+hEx+dShcy20sD?;?{1wiGGUy^?7x_CJuUt>|+v}uSw`pH$Q4yuXJq0jb@?`C@ z@AefJrAFg;`-j)rDPm^;p~pc7KnN)>%V%NwJS4FnF_WyyGwuG@r=hUUh!bIH$9MnD z3nZ-WQGpYAVH>5-XPNz$aEA;cc6iTZ0mbmGZZDNiByrd=wMyreqD)etff8sWM(lEz z^o{cKi?Rd+@nMr!nVsv6I+7lLi_4_#o$^-GSXGBj#A$HCVXmSbdA5w3 zi@DSCX6+AfdAnA#-v-z0aoB9e4x^c7eSEdSq>4Ut73GQiC1=9A;0$7CHXTpS^~CA+ z>?tvS7^KUq7T^I8Dk6~VYrQ>)h~{ro)#>{CtLxqVpwUdnQjP}3e4Ex{$8<6=fu|on z8)wNaj&`{!5I2Ehw|+o|r^3lqXQU89mC(zkrfU)SKEVnMNdE~+Z|=QBXjU)Ccs0_L zU!b>x_Ch+l-5GfkkEyQQQcu#!Xw^c(2!!Y|?f;n8U)d%|FcA52-cjBC-12KLzm0kG z)RSn{7u|=G*o>8Ww6J_xS+^0FkAAKR+?L@8ak|#gWPs*{2F`)no%r;yr_cRZ_q`Y& zfP=;S!?nWi>kOvFtg$h)L|W-4ic8J|;ULGB%Bk1rgWHwn_ps)+h20pBxZ^;;y50?p+yYYMz)RiezSUt=M!R+XR0Ku)% z3niKVaRH?EA^mG-8t$yvxDP(S(j{BbyLja8HQDa2ji;Jev~E|8S|@3V2#SQ69IAIXd7I?lkinnC9&TQ1G7dHiRQ6H4M^l&POfsr zXV`N01xe5D3#+6`+^>F^=Y>fZ8V+D45hLbws}Muk9xH;bB_VUl+TH=wN{_v8v4Cl15VyLT*bpb~cJ%@AE|gA)~1qF#=OaIKWxL ztA(sTNPbkI!oci$Gxk$r*WEu92GiE^od<~Udi7&u^F-ufBMv+nsH&<;OAlwaat9E1 zy}f$b+Ez`BeB^O1si}#REB1QB1y+zgpboY;?I$EARzJspZTZG;P&(8J`(?F_`)NoU zZ(3a*o9z`e3$&u>LE6R*A+XY+iPuO#QWG$!=rfUvD82wgZt{4qkBbrwc8)@G-vUVQ zHAy9qLCsX=6N3g&;ey3KLkPKO1b$TuctjQJv{>IRuj6|AjH(qL<@BR`wjxbfl?7x6Bu6*zPf#P-SLPDBd!n5k8{657= z=N*ZuI;dSVl9C##x0q(8qNAfbJ~&8aHHnxw)|c08uuPsk8XjOvlR59W%bGMdW=%UY zk%;}sKuha+*0K-el$Rg>oDk4zv`)LjX|!AS-5X6?wrykJ<$VvtfCq8gbBo8cPoaf^ zsC=-+YDZ1a(EE+-1e4CtEOWP(-vjA${a9iDJ(^R)0pfGxKbW!^Ct zWBeuq%NMAuslNL4qU81Vz~pY0%xN_8*-{3@EM4(?|c0Hyv%wTsVH7p^)l8|B?xG@S!C8^Y? z-2!d>+O}hO9UUFBysw7*{eg@zP${RZwB>b69+3z71q_XhXtlf7W@jJ2`QS$0JYP>3 z2`*c67An0XBFc`Bul0FyWlXVZ_)11b#>>OA!sYXH+5~Ej`FtM#VvvcCW(%%^KZdnY zM1rpelV38e+&_abZ_G)x;ggol?3b_hTfexkAHJn?+3(wH>J7NO6p-wMQFdTxcI;dw zV@AxA9(~`og#bvVMRo4iRvfBD=c?~{J)MIY##?HJ8w7_4@d}sEX-&g4{j|0}FRzS{ z-xc3_tA2a=&|=-(BEI}{R#oimR^-HB^H2mk=P1{)Z75fRU`);^7q#BNB$6n0?kU5x zzn1>)9SKn2TL4Z_4#o+-5PjP3RNuNv-IHH_Y755+HE`O+<7`BGkr29?*lA@IDV`qM zzs~l3Jlq{gf%2a|EKn--?9iph)uPAMOMw71YV>w6&Fo zUc92D1Yf}WzPlT6RnDKJPL|I0JStT!S8K5=n?4i~5qW%i^3io-{e1Al$9;06vPFvipWQx7Ms_E8Lte5^b z?Rh*_u9=AP?1v(_C-3@_vZ++pj?%W?zZu{r^f(cr6#2&gA{v_iFsIL3n5I|Qd|Go| zYZLlG#fp7?hD=z+o2)I}o$!kwpC==;vTLQhJ<# z@bK{5TwP&dJj6>t?W5aVg(d;YrPgsQh-vSv$8L4dBW4;_aouvHlC6)rHZ91l`C837 z%YPDmj%BkvzkiKo`n*C2<3DQDWDpvRzg2p5A$GZD!Kz{I&Uy|#2gBgp$nL4wyo?H= zzc4>^!v1|a#1O*pUc1yCQcvNx3orPm=HFgsdc7jI*jBS9+IvPC-r(Tf0S#5PRn0)z zb97nsR-6}2pWWxOdsV5Prcm$&fH~^YRNqgF`E@0ugCaPy_X-uO zZ*Mq1E7JU-o!?Xu+B9NG*>lq!A|cBCi8Ok5LfUmV*!5+G41b6%=^*X{hW04->Dt_w zz9Im;WBfHGT1gxEnv_l;Bo=~%A4UW$sNe$3-z`4n2ijOhKK+^3D04_Xl`Br{x%zQ# z>3d%1e1~L*WaHbXtVYr-wf9n6;@5Tij{nWM3X7~Cv?x!}Jvum8X!rQpbiZH}J851o zFZeRE?*cAEUEc?jLZuc^aJy{RMF@a?DN9RBMe^Ba9ix^Ft@7wi){6lx8~Qc8whJ|z zxuGAIz-$c~NK{{(#)(S?^qD;b$t&_DEPL%B4pSk1Ix_0N3hzmz%gaWwdW>6W7gy+3 zCmOV|CHGBQ=xE?I{{8{rPOEZ&D{`VF*OM$%BBX4442$8Fs}TGnwGFK%=!^)!HZ8M+Ef7CmbdDmphrz_NmBpNb zFQ87D-aRPeVAp(n2nNF5j3AAgW~SkrGm-s}R-a3uC@aIH=T7ELZVbA2xjzp=v8(P? zUF|^MOnj>?Pse*-nWQzWq4#8_6pp}#^O_x_gB-bC6g04M*xW9H;FmC?_W>SQ`dsx+ zUWJoPX#6i8cv8T`Ar{BAw<0IgW9$>uj9GO34tg2 z&47i|M(ah#x0kzhuk()M`RcB#CUA5T9dLq6B8-r>m;Yy~FJGQI=YnI6_~h>BH*by0l68oG z&z3Ijl3Hce{b?m7c?{8D0CtvvOf7xH6wb~1FvO4khj;udbS)iy zu~3EJnwPBZ1d51m@OfQOIf_9LuBpi8=4Q6v>qCK5V!I2pFzN?xX779Z?0E|to83!y zYfd%xT`=2yt>h#phaL&O{B`Jzii`{m1A~H$EGj1E;<{B=!9wPB+AyzH`IW^PT-FwJD~7!8Upb|W!_0= z%Yh-spL~0SY8V-0TucJ~nWK<^PD{^XtmTEt(+_ReyT-LOJ$}9FNhUF_4i}t^%yY5mO{fkE7R(&Kzj1TSPv39+;DeBSSgcidTvm#QTXVEHQRc27!jv6c&uWV7*DsPj1+giwX~$<_t+Rm z#+WUPm|~?GFL+OUo^BcRI=w+lroh;bOk>#>G6{Z+UB7U3Hiv_%`;ZIw*qj`SO~Um; z55J5Rpa0^hl6mFKJG#NOqbL`&&6#yI-TP$6@>6f}B@skCexzRb%(N6X_eV5W#@~!& zY?7=*UT!~Xx-@(Cly3&q1wRm;w<>*J+%{ZoJy@gP-TQeK8WPB`;bLvTw~DpQT(? zGTY}?)7Mwv)(LEte0=y_T@Q3GK1hYvt-wPDq((16 zmZRu{&Xd6d1t@EtA^@xg!?5q#!H^kgD3?+ zy(WX)^2JhB6Q$5|H)|~`QwNB<(4_?w@Udst*4A`%&eU+ zl!V`Gb8$XR)p}LsVKuqA!o=to58i-~qDr9>1tp~bXzX*w$ZY!o6)sx*v*O>GQe_Vh z5Btd--}}wbcWkC73$;eQK?n$Itn zV~(Y=KrI`-Ac4v2iizsE0om${-u#{?Ao=>B79l9>SMbtXHf=ESO98)rZXinuZv40T z3x<6Erv-Q{w~4Z}=gOu8haJ~D0}^rDp`Gulvl{8h;%k?Rfd6R{BuH3c;Lbd^3C(pX zm_#Bw_>gXy4ZF;Q(xFZe{gA!1RFl_oy`S~RYd4jQv%+%Eltd#cwU&lZN}O5QT6=Nk z<%`>rdYU9_M$8`;<$CjqZ@I!1q^%mPxD4_4NL78wYV9xr=ZLUdsOdr21uo)YZhaZ-ipfZntLY zenzOZMa_&>G5k!5E%`6Iz_E0O%CnpJs!nr)@BkCq-0D?f6XxCe)6x0TPUY{cvBUcd z_D$C{u!_}u8q7FG-p}IRR!aaa8>6w=JAJE;CDgA@H%hUAIBvkFp1JFII`5cAGNo2@VNpWe4Y=0Y4)UFn3TsyZ|%R&29q^9+| zKIM7Z#U8{kS7bEq2{APZ>C?|DX&{q>JY#lBordzjL^}5G78;8p>L$US-5R-Ou}Ofx zEXT$xBHIt8Iw!FrM-;%n+AjT9%J{v4R8{Ip-g4EDPh_agweP~zl#;Hlu7<|%O?w_5 z9?-+2#c@|Ua^MQATn)v(r6!7ri~n1?8W#O)9bUmA29}m(vz81rG@4DetKS*4C}q?C zg8AF%qsPG?5^(!RMIpDX>Z+Ic~WU4(NU|3-j=gHYymLJeFD28S{X9X~f0 z+=Y7Hi6!{9H9hW)rT9n%Mx(x?T@f9rGl`2xXnt=xuT0l6UrJI|jgXo~ z4A!A}MAmur_GZTjusjpX{lMxWqO0Ww!?Q7#*iJPq(M%?bmV^7Brc1@^W%uIKCx|roWPVANtrk zc{FoGlwD(cKuBxn(GIncXY>YlNC)#Ix9T@MAoP<>*~35JDd17b#;?!cSr;16NLG`X zPbrOO|ClT?n>~B|D-uGeqx!u9;+}^s``|2U5-vI&09YmB0@j{Zr)(xb&b>FZsjoWJ zWJlWYSXC8W&m9$Sl-h1AqZx`HNo7~hpSH1C3kp-Iglz5{(@we($~_Yp?#Zfio_0Fw zE!}9F^%VnK4zE>+0=B|Tt#Ch^xH#?f<3aeh$$yoO!iDk{PE|dDjekH%+%^NP`~d`v zuz*ORd$N4eI|!Jy0R&8ETv-ooIBMb{dfMcOSvdfptV>upOGlhVV8{W4#1ioG~GDh+o6)s%caXgpay{2r+NzR?Rtm?Gp)LcWUZwyFdhcHc4 zclI?94y)K32@Z42A0B6aLIC2CwgdB0D~!hvbS^at zp9S7=Q^!w;F)tv`3aAcjCj&VeMR77X(_q4|;s1WjBdtOo+f~!Zaa~+dq#C{2)vV2S zxoQl~{r{9@^+$)tdN9=b=v)h-)nc+3tBKAxG5Fm$k+#H03i4d1uQXZr&;55mMV>O4 zJxJV~BQIjR>GmQ*-*K`3q{-g=wR^*&_lz)wNbB;hJ0l@)br*3YZUujvCiY$A8IywV z?vU{%Dk2L!Xx;*f#_{&uF=Z3yOdXJd!3lI*Q%l4{`zgBe6j#9|qQ_d_@pPB;Hr_?0 zrPXv9CB2Z$dg{2G@BzF|i~Q`PUu6hu;PXe1od9ZjURWp5fx0078X@xV=x{2;7(nQx zj(igufzUu>7T2h>bMH_I2-8fLMk#OzxsEnzU4miEj`5_x0S>&o9`_wypg|?;=IJH_ zUHGTG3enEeJ!!3{L~Z{65gfj4L`8^*i`I8}06;+`l}ptXw0+&Y-Koay&%3RfyR*&< zK1QYxbZkhWtMTQsqOIGosXLjI=PsVRcoJae10fQ1vzzp0g6qQHxrZtn9e_BSj0!r; zei9>7t+;bW;lZ5(aOcg-RXHER>o^DtQR2s?Eb>kplQuLeT6k9TIjPWz6lIa)iR9OZv&I0z=}h}(hoapU9S8}?45Q;Et^Fbn68>B}Ypm54w>)+x_6qQR8^LE}pXUec(4uwIOZdwi&yzse z^`W9O>gqD;?oShN73QJNJl!+Dl(Un=2-}q8&TO29J$q-V+PLtN0tI%X8@t!-go?iM z=KXAw&=N^w2>Y>E4o)y@2BbaMwUXfaOL`9H9>tE{O@G{v3^WsWk_d*Tu&)pG;{GH8 z9N3*f`RBN!0tYd-b)g7=|JFozI~Ks+_BH;)5YY>is?4Qgimc=Ae@F}rbCUL=D@@WF zs#>8XVDdkP%NUU&p75MgxkJIDQf@ zEt(zM{o&;QDacF_aU>7rAF`Mw;=Y(rN@%z73vpPtD|sV8;P824VI!x;@`zI{?~ls% z;t4}WGgTw)pqK2OybTcNOh2NHApXr?k$%FR9~1~sJ7`&YsWR%qKxT5VeFq59 z7t9xWfl`!Ofj*a>YNn5Ow8WJpSWmUv@8xT|PMp+9z2?8;HsN211$}v*D@R##2mH?} z@#JkJ0?~fm|0y`e%8+Vmvs|F}P0w*Xlpn zp(QI!^TVLZ5y_`kid#76S$0v~4ke8Q7I;|{0D$zq6@7%x5!DO-Wck$eD1%rD1save zDMaAW@bkJyV&_8ARW>_#grLq~sE%NLq^T$bpq7IIWFEf{n(hO-74o0})5hN_DFIJsl9asv<<}rDkY1BqZ?m0y+B<6OyHI?{Xif37o95 zQ%LibXb80&bc71o3R|~%oZeRzK`Ij83P||z%0c@JX)5@^DU!E9NG-XobF|pqxEqF_ z3KFoAwv(7^JC!~NY-RA9AjkMp<>(8XC$CL$3*8h$BKp#I4^u(@s_C)3-ky31nS4P9 zVT}r{W>D5#bv=Tb2lwe^0U3Z#|JCq!={YE8b)77W7y+>e3SbD`r79qGkO^&BN4rEq zE`k83XeI-!vx46z*KRFo9|Zb+65k4p*(pT5v+J^z`kg|A790-g*vY?c{0|kN|bSHg;^Wj zh7k?=;RnsDrTQ`|?MdAgOc<&}I{e`G$;mZ5im&!1xA;}FX1%;au7Nf+NWa<%)-O#! z(k+Xy3J+VmlNBAZ2rF5|zSkBY36eswKvHN=e7%ZpM-q26@ga)Gb|`;P|Kto;-|^ac zy*c03MYYkBmUVJmY+Hx;(}-Mu=rson_~Uv{4Fq80D8A zoHH6_)xN_n2l&^Xm<(aRhOp`@s*YC=9}W!FO%$L?T#)$SzT?L;6>@f|I)DVy1d`CG z|A;1}7|{YhHyttw`iSskuD4{SDlxUG&RnwD>RLTd{az{@Ta#WnR=gP*@4FH04=Mio z@qPyrX{)PCxusO3W7=reqD$_ye3Db(ytMhZfHxNR0}U(9+-mGH~8t+0}aGkisyu|CbkUjHC z{>PPv280?PFJr{Abqs}n_d4jDpWUhTuHnnxpWKG zA}8a!>;G{9$Vsjy7``_%9wIb|uckPT zp6xGtjkcCvd*X&_bG-i5>zGX2{g8q7i$s#nwwLv} znFRBaDP*Q|mE!v)M|Krb!)O>A_*Wx!)O&$8a?*|jEqu2q(W*A-a+wGLZ0Ti&~74#PxhCCB(}Au*FZY~@O$CMw<(=T%SG#XRD-QI6G%jkSdY#>eYg~Q8mHUk&z61J z6@N}{WrPv+_(oNVRNj^X_@mrO#8}CCiyFSK?C>Z?`ckkk^Mz$l{rR9`7=q2iHEJOS z#$1*KP|=8^28nUk+PkuVcd1Pd#i$fVQj$*a!o_p~x4%p5v)NBj6 z(#|X7etAIq&SAvMc13MkGRZ^*E6&{F;hpizbLp6yS!h^h{nM|ahAhInjQx)Gq;W!q z)AAX1#@?|F6fc48Ua$VjuL;Kx|G#~t7-Ow@nv8fI@O=(W0~)hu)}*g8a+kI`W3nB5 z)9U%!A33y>zSq!;s2d(VE>0)P)Uq#Wm>xYZvRzZ}-7NevX`b<(OhVtS>T)N45X3~M z{LsAN(O_T~gBFG}vwnIw$dLY#K`+(Az$E^0{(FvlOp6*Cpb1Bn=URW-N1)tN)YX9o zB+Q#QT|+~EmVRPQOquw(H9|GTS#XVXuNFPai~EJ=;}A}$9tIE58=NzLoy6nR2nYbA^C}AU2u`xD7q={{(SV6 zU^kc|%UjWo*E#ai>WaIi_xj6lQX5~fTg%{Ju4{3v_Bki{V#S{@7)9!}iJhOjK^hma zqJTYI*qT;RAe1N|smm3WJSuK8{@v|(^?hRx8|m&fPRXjr<_p0tqk59y0tN)}X_J;Y zz2NF5>L`Yo8+AWg(VtZ0Hq)HrX{FoW%%ECjmdKXvL+3@cykO_v|LFMS4)F!1E@;B- z7?!l{@qT};pV){z>3-CPKSFT?nMAyepS)~U+;YiZL@egMy3aqP@TsDt5?aRooe|t0 zBIt1TKhSyGh=GaS|JYVfok2+OV4XA_<0(i8T**fl{XCSwyz_|E@OP(&nYZEF{HZM$ zbD=_6MdPuO4tZ;@cxk_qTDA}?LAtn=@J!S`P;xhTn_TM2sp?L%4YhUeV0Q1$;7s;iETR*+Y_4;+qN~aZF^#Sl5}k2>-&4}t@^4?^&eezs=A-E&wln^ z&t7XOA_tY@wtCh{IsFs!>AnW_@Beb$YsYzQJ{-Je4iW+8bq^R;gpjl8M+K zwAw9@_h9SZwUpTk`TYsV+0|@>Z`GvfR9|ftJ#gW^(L{IuoR@7Azi!&SBp4!v%p+I~ z-3)+=+r~*x2}joA$@SZCKGV!Q^S%2Z>55VWg~9#%oCvCKsSEN94HV$T*7FThvuY$# zRPJHON*jQRF~V+ef>)LFu0s;@AGY50&Mcx`=#|0qYZ}o>JnwJ_Zz;m5Lx}NxvA%xGn_T>4b1q=6FIN8I2%#+#et3es^Y3<3CGxdc zH|Tivct=2Tj>26GQi4@y`{8fVrgu8@xGVC1J9GfRF)nIL5CI|M;%iA#klKL`xopA6 z?LWk>X(7w>Rp%)HHS8VQpNZcz?1V*6?$s6Bq`f-DKTP&9o!-}?b9Yik*1^o#8*RcU zKc}^LMC|oe3h7P}ddS+&|7J$Z1Et_aBu^kFz)ULYZzE_y=N+@mPxKF|?x%IkEXDEE&GC?jT_r&6(30FIN9YuyDx!N+rGW!@BTTr~ z8y^qX*g3C|S?AaGjP6VS-Ybia|_>a<<-?mCGf^u(~|v?likZnRGA;6hO+^Q{qjQ8Af*g8{Tz39nBGgss7` z<1z(70T6>r`ONBo_?!61AU-iM`+q1UY~b+O^k4)95E_;SR_t8JkTk35G(Xifd{c~e zef$lg7|tuOHPf|<>^*wsf3<)G7~6qS1Xy#e;^sY=zDRZpp1wPW?b(kS;F|(np)97j zV^3P@Qd{};)DE4=GT>m1K7(w0AVI197>B69Llh00a7@Mxsi@Yc5F8LF5;SFJF0!D! z*4+Ri)B=>W_yT82|J-oW8k>AFMYF zKDK!+C$TaB*ltC}OiFMJ8FLTomBgMgT+0i4uZ5JFZ;!^OA+5C^efi-O?P~s+?z~xJ zn)A*v42XeU53|2 z0k04r_OT}q9j5dbXUdW9Air4_eZ*#%>f4$+1 z*XlDBKXSe*UuygX|L>oCzTwo< zyen3_7lH@|9E;kt8V?{XwUM!w3m!KVHtzn3V86A)f$mHvSwjA+1B>$=So7#=;%LC6i| zkNA~fmC58*XHWR+Ifk2N-=Ew=!u08BI?do1s?ZSUOb$|+Q?``1;KF9uEM|m079wCo z{ULa`eliiCa`eUB8qVuEkQ`w7(I>e~JuV3QzjkNpMC!I;A-!kCorncY1})B1I~m#b z6%uft%L*p5hhkExkX3;}YY#b@H(36bPv+91q_c4Sznb74=xxk1(*Dz&1ECwl60yN-SR zA2QuHtQ*DfI-(&mh_}p(u0_B(i6H-6L||#v?B8R=o;5a`!rsvudR8#_LZk2?1+zLU z2$`&&s#!IQlo>Qt8b)#Nk;TVu83E0si}3G?Twcf5Fyv&1E;c*h4FSAfk&F^8SMF z+$_@w1sByx9NGyE+z<4+)1zG=OzCLd#BGy+J0B66mS+MM zuzzfAWO7yJw2+R-DX(tZ1Ux^Iu({Uj*NQH$<;=um7?JqnJ(>JX4ER}7=B-%^@}|E> zWM`~}3V7yd&(=+-k6y&nrQp@`!N&0pGpN! zB~`aCC0bE)1atzx!Xo3JTq^FQ|0XAM;oPch;H94hfZUen;=Y-1Z4%T3J4=O8d`B~k|?HP2!O-s|gxGt>9wWy0hQpvfv zqNCBazX=$Wb7S@UFs9u2RstgR>ciu{w+$FE=plVCSVwwnXs@aLd;f(D0cvVnp7gVa zFnSr|aHVS7SH6c|Q;J*re>i(mfAJ=2*JtWs*+NI@L};gu5P`ft{-bxJ6K%Gh%P`$x zyrNsVh@=ggEa}Gp69OH`90p2Fp&^yLPEhGyy~g3QIGf-mPKel*_bl!b5SQ9Z+32n% zf4Z*M<16Zs0Wh)&)dh~}69))w!(wVRyovC^g=W?&G}}}&>n>(Kan&d3!n%gru8!|( zc#AfUc~%bPrO^a*=iDnx?k;S0_KyvuuRB*t2W6iIY!?0=foS9;5h(Lm2+3vi1Tc;- zk@NM!IWV71yrJ8}HgC1dI?}#$Rr?gWS-@iTgrz8c&QcFHOu(uB19`+y7urr+aQf5p z6PaH6#!C$qVv0aAhhYT;RJN9Hq&JP|Poifl-JcbZ(TT>$-at8m^kR=TUFR_>4gOWko2j$B2bU)SD0UoOwtoR0Qv;x00$!0X!D`W?i& zkLhXgMDieGYT0N_&Zd~x_1;Gz#iiWKVvZU+tcM4xMSz44ftI_Fc6V9SI5~aqFRp|h zhQonGfeZ}vJDBev(d5=L#h0N~x*%CjHLmlE#)XBtsKJX?^um(h4SR3yf$uhmH zbFDed_NUzaAD#Hnz6M#!y+`?j`97cJGxqjd5z_||Rt#5!rB6K$IE4GJLOimJb7tR{ z?YI&8Too|*<+Cqg@=vWshh*ct2Y$Mx?6pemPA_ntUP!)UdAnu$e>-R^j8h%i&$h~*st^bQ(y|5EgX8^a7YPQ6rUw2^451CkBYG^m#dzN z1yf^cTZwI)a&&Sg&(tG#^cTIbfXcRK<-xkBFK!vqbe7tSjPT^AfcH0~v4K8$^vb+9 zVCq%qmqpx?z;(|@_~_1+m1iebAv-wmia#%Ft_!$4`(i)wrEhPPo_|szK#~6UOf+4j z^vqHlXtRX$=9O{WJG5cfmF)*1%cZflEtKcoh3m#a;fGd>O>@S*l+ili=*Y< zcpp9Jaa!ScIzR}62`&DyHi&pNI8w}t{iXt@1!C=Rr7Z!q zmLVob`?Z5?>jTMn;t^XqFr8KPksCjkKajLyqLnu5@n;fmp@39EtizCTKDuaXtsjSjDjcXi3Z?z9GaHy6E?Pkn23+FMkV4wuh|_fDBk6x}f{k9VWh{&o~N zv0|Ew!DV~LJUpj%!_b^*xF6jVg~Cv39pZ%q3@JFayB)0T0IOR%KH~ngBWxt?j@nXN znWFhsOx508m$dp>E!WjWqYvKe5vp<_-&IW!a*~OkuFD7GsCr*Ki1vNy+9LNBHvu=m zOG*Ws)1enKm7;cjnMB9(t2eK7e$z==wYk$`03^DGhzte52uAbCjYbmMvA!HzD3_7% zr{lMZTXj((LpFP5c;a-|vJ3*5T25B6iq#;TwcPO+$&RM;$Uh>4Rg{hXLFkCm&})bp zBFL?zJ7e^(bXRzu>6FE~UxOoYc?$aH?431voh0g-M)216ffng2h#9~xU)WV;%e%bn zGbB@S!ZolYo*7>TaiUiqeIemZ4KDRUc_|?#_rjyWB4T~c`~!RF(5^nwLwRP?C(R>) zAKCZv2HAi}g8O7fv%RW=JS6u;h8|{bi$ztCv&a^#ub>~ZVQ!8IX9`Hb9gz$PrEmJyi z>cyKa;5tm#x2%o%833i)3Pm5wuH2W(oTW(1VJ6`hK4*@~f#jv0Ky%&>n2>WdP(~w_ zSg7F~#$eJZUNkASnEZWIj-n!VGoP(Y6=)Dq?b8kr8p8u3A{(90uhg`Hv-%uwWd^2( zA}vqAw}wf!_@12jeZq#+#$EKxf#pA})^ZTmN?JxX*PvtUYq7|h4(CE(CG|$QN1*=& z76D{dG&u+w2yx@X!J_y9!2);+d*$s5D4Sm}Lp`ZNe6y}}` z*C($f8zd^Y&z9jkqQVv?Z(?FVW~+n8pMir_8}psDzD`F|lcEG%WccwR{RUe)o;z+~ z!c@p##Q&Ff3sfQK{)yuVqpqFtp2PT#-kkaO;1HbyY-#aI;~4iF z`b2$yl?BnI#OG8L^In{kl#ZlpVX{M_Ad_(rE; zef85<>u$`idiM*g2#9z~d4D|c7Hi$DfwB`pE&sJa`y~-M73|mk#PjkQrDXT~3m4C# zgMuhCY$T*Ks`}f~za1K|;x2OgX?Dbqp|Xp@%lks;4u0(FAODm!^=)g`m&!~XtQ~#& zCm)tNc`jg*zV>!ft7|`6+>xA4wx#sz?$r{T#h6^(>E&f&d-vbt4L}YKa^N9dA?*Ma z1;ul|tv(ctbs<<{+q?7z^;l`f{wylZ8YjdPIFoL6sMc-Zocl%a>x1v@FTTqtmrkx` z!*@5pt)t)NLicL_C4L4Jxu0DxJRsB9CcXapx4;id0aos^+L9T4~wJec_i7QCEAmgb~91{HF(d^)+uXD5w$ATD=SLpWkC=qaswNI<|}4u-H}>99S>A$P#X{C=9?X+Y$7QwKvZ zixhsZO5v!udfPzU2Vr^2YJY7WIBibYR@jcF=N=dIG*cgbCAyPga@zfIaiF~!HP_Et zJjTR-UAw=9LH<~FA8hdt`I;=stl7=^-zT!fcZJ1YutQQ*&~xO#KGglKRs)IqMS%L(ZeZ?dE=n?&RF8gkqEQ*jHn~kiBJmY8Ls9^4vNQjKEQcZS9|q zS<+yF3|9w=+rSWDj^)N>KDPZ#g;YIcLoRfbIXk%~SMwP z;mqJ+0f?AIFK;uU5E{i$f`@B9Z5t+q?6;moEx}OvFIs8*XjWzzR14ha_NY{cDAwy+ z(D{D$7Ece`sC0HnXDu8Y=a>03mgwE44) z^1P`wz81wsrJb-MxD3-ifYsN!Jb)1$=IMR6inZ(Re{13wG{584ef_kJ=dwwgF{|g} z#XrjsGn>=^U^lal-Xfzh;4(ex9co|e<}unh+Cw2gcrf0O z0&H0p=FCqgl)>7%3TL;2MSG(XDPdQ?r4~%PeEj>F8Qw2j)hXU$poX%A_b*^@hzp{t zY?9c#HSeV0&eArKB76Z^Le%7iyNYM8~%N`+t*pPDep# zRSJ6!*V1OwU$f4Q@;!tbpbSw9;1+d_d*UA(x~C-cTEoACk9D zw|U#bC9`3I_acHH=DbQnK|*ZuBTCYvMS*dk`&^XcBR!%AOEvHS+{F6|A(p41&eHk{ zG*up@vfcyy_xtOpz4;G5Z}GbTl)#C>hqS#E^XC>UW!`mqF-Vx04g6$A8O-vthd^jy zj}ss~+0Dml3R=dNbhv;cQaj8NW$>ujXkWIm+;Bp&5P-+8su7|k%#aa~?_I|K)HVS5f(o<>tn* zd52}g*?|DKuFO0yZ_%(#vYOQ;s`FIGArQ8>m{~&ir2$2JN+Q1NgBBy9$F->vYzx;2 zbU~q3v(u#X$CrbVEg65W!Pk5DCTWqXxZ+!>I~F+~EY4l%BIOkS`nHvIwj=0Bd9#?^ z#nSy`R;wPA#rY(02;Q=})qWRwYMVDa>~FwgFAkPZmeW*gp;cR!$udss)yr-J>Y<#>D1XjV+SyMzghBsRbn`m^ z>`u=_{}!yjPD=|z`UBhjhetx!L85|oAp|ptJ!(JYxi)s|OxmJqCT@^J-GE*4=I;=3 z6um^0?`LN*6E?VJ1-L@YN||MtkbC|u7Um(FK1r?Ajq`Q39ad*5yJ#9rwVOA$)PV2VdUTAc0< zj`Ehvr!5Tx6LT-dxW55M>f*ZE8@NqE#k6eAW@of+)L_w@->2>X)al8os%$nVhE`|V z&6RR#PqqX(Vnwtom6P|nL%hH~Z;YjY2K!?PIsD?>QYVV3U` zKbNp>mVy)C{J?jgwCK@J(pb{di6=eckkU5tEbp?g|>9s7|o9f~@TnLoswR0*95@ zvq4%iXhrhc+9)i+jeTq~SO!SF(Ce}+4v!3kk9P4iEM92S0?1}imNkHkOqX^yxc33A zl}co?&No_^3NTUxAfc1me8$-ZAN{fUwUhD1^fth zJUSm#6#or)5Rj?W>i;GD%4QLTKk8bI0jR+%u%Q5R!N3(_k^4Ds-ypSNY&Ee6VaNh< zW0pNsfS^;i?Q9v##hyX#dy#gC~RSa?=AUs%-Uhu=7n$aahy zknm#C+>Gm55D85Z@cdEaak+VJBnW=(%c-4wqS1BD4Kj5!fxo&)y4Y`K@36ATTV4Wu zQ<(1LDV-J394p-;#{NE=eUanr^R3_LD3%|bc>jVsHkbjY6d)xd3$BD!sn&jx@>SLI zV$tvX?_?vUB}`NRnVpuwNAdB6!WZBA1fqt4YEjz$Z6fJ;`C%~)*KVzaQ=Ts7cr5*4 zLr2c~o6t0&*(iriZ4k+ZD3G~=R&mKiCDYe47-pD zcPK1}i6xn`ymbkPofHC$jm-nycz{ia{h?`FF_G) z?h%7|TTHL_r{w<6OsSmekf>9uX$=JO=mpYsE-|Z1x*a#-PilFs<4JYqEQRu!O;tF< zIl&K}1`g#vA8?!pmTJG=d4IR8?EaW6qiYR|tvcGwK_T`LO{P{8gN=|?t!7bN0rvDv zir$*@EI&TL7(Gjx$ZF;`5jkd||GHds&pFlGcFs2(xRKVAq_yEnD}Lw8y_jgWoO;li zAg>rG93^=A(a}CY=)&|?tk`dGNQ+{HzjMck^`DZN!`;;86vcJr9Jt^^?2@5#j;q*` zTw=qPYG-Xbz3BS=DUtYDpUVoi-^~bm%54ox-<g?zp|g|&w_t3hbN(8=FvE})dzG=iRaXnz>Qqu5GSPnqXIH7=JKZ*f8QV$5GWCQaEV*y+bN5>I$if{D# zOI{iq+fpl}K7kdSuL#C6V3ixtez}y+{SO@}kmzQx8E1v#%Me!egzR^aH-@mBSqu^p z3Kd$BsozR}<&?FFMHbRbpzx@dwMnga%JaJ3xct7s3vnd7;fzRiX+tNK4pcO>hu(y_?&OJ0A$Q@1OW0 z=aF_xiQ?eW;nVvXY3isJ%SH$s2xJ4FODF-`4HzkhF$Ea!AU07MA39|iqcZtaG<~*Z z=A8_rIO4|9;33ofad!=-PgXxa0cUO{4LqATw^GRbTMBG+r*8B~AU4#y2>mon|=eb>LD8ySEt$uH*;hXJR{ z{fF!{HWzfwx-VGNbutI7d{^dAqGWzpb?D?)Rr~DMg*9PrVUMsw$O6^Yx$-ozhvVt* zf;#p>Xm^klI}bGF>8^`g8ZuJMu(82&Em}WoPK1PWhwP_Wz2q@*H!3Q(wiq%(145j{ z;dlJ@9L%k%eA6*{8?Hx-ZOpqL{ICCFsb=^LYI$qXQ5*BdQp zq>B+S83~s8`3|#q2VDG`aQz}iYt7wX{IYK!t^1I45E;2S31f#6z1&}?bVt-( zWd<{Vkm;x98G|)T8)XKP$sIkolR|gZ{N*#}dwEZxfHGcxGPX!i-x8&d@4ii;Z2ZM@ zXZ}fwb7U=OT<#p*TXE;Lz$5a>vM$j-H(g|h0jbn-I&h)Ne6CFN7S;hxmNcmp{jEL5 z%@OaS5St>>f0XMb3FKH)!}b$;+FCYaDfQcHTN<;R(xXIvnV5K#iV|ZI{FzXsOwpy5XmNoJF$Vh$v6A+)m|WT5z6! z{QlGF0iZBlYsX!BboT?#JeIa}pA|SM~F@^h6ELl|Rra%9)Eqir|uqBNa$vAfX zUy9=ZiqOaJnsBP>Fj!12gu+7e8%+H8pg;sQVY+TWdP*!Lt^YwNFE6Km@VgiyA>~2Z~Av|XFKP=n3 zfH2d*mxrP!C`;>yT%3j)U4AaCkg^0`)<1J$PmXJ#;^kB>|QcZKQ07J!qgIskUp+Cnj@;6szw zD2})?LEaL=X81i7-WP z7$_qexrAuPmvqkqdK#^Ol;x3{;rxVWWq8BR&6$b@|9IXV0w9hu~048ZYhUaJ;8 znPe=!18YEEUmuF#yTg33bc?9PZ0_{kMtdpx&_rvV|`-#2)M`xaL;Fs zXx?wSrin#-ef&;16ZuY73_y(G=?xnI7U^N}fIah@b0p-V455CDoxSY?#U5a>YOb_olAw;Y>>__9DuUGmeC>COO@4dq?oEN>>NhUCB$Jgtis8K=-dsMeRX2 zq<&+_XhU(P@8bh&@)^*XfdH8nw~K2gD5W-a{>OmYFUW1tX)s&Dg-1SH0SFYWMU~K!W-C0WCE1w=4}M{qa18nyV5! z6qwp^mOmHNF%{ZfQh56fm-Fv5Jco8L7+cDin&Y<8x13)y$m)BL}-YBEl`1(kzdl_fn- zG1PE)`pD9I2clY51xz2{ufAn$hrwpN75&zqhj0q(S==(h>-lD#%m&1;;bb;%zx(e3hg^BoAkSM2yzX;KZ{2kQ^RAz=$!WeUf|zAI9_%TeIc&`3KI>E+kHLy_dZQSr zL1=WcAUkUQ=}vDA-vT1BlSL?BU>Ea=Ho3x{1;VnuytkvL`ofDyEqb$fw~blE0zTPG!#nn-%=2MEFrNMBaUlPt(rUAU z7;eS#gp|$TwC6FxX)4ONCmZ`UJ^wX&Jbr)szA?0#19J8o=n#P@-L(2DTNy*#A%1s3 zFVE!FD#&kuk!c;H^cUQ1*JQ{{CRkl%pXmN*6>E5M2xU~>TR`dcp6st*%2i+lMn9L6 z&--^I`S#K73P*|k8e5V!vFA6+IUjeY0&yU0S1}qEk%$e}4U1{oE}#a-FGfBWei^i0 zfumq3UFDG(X{xrdK=_;UhJQgxN-1MVCpxvi*N+nF^!o7w63O8Lm1t8gFE82mUh@i7 zD!RJ6iG1(>t{C`lxyiV@x2C0~DU>;<%PC_BqiSnwqf^SA0D%RgAYCGt`xE5?B`p;d zQVe)7-A*?K28NiCx*&WVp&t)lVi{Lkh2`=leaP%LX5I$xHUZnx zWI+6rl;bgLr|+7l)(mj}?1$kF6sWKq#FnqM#-yVMJo# zEA~324aU((r{pM}ix)vaZH=^z_@rw!w#%^Sva-_gpP&&X29}DX@n5a{i?KA^M%o!P z%IYS)OasU69BlQqR&R^TL??M4u?|j$K@(;PaG*P1z?u%lK}mGm$%_1+=i-%dI_J0;Iww4rOY-kw`%(Vx+pt5QkKYiW~+}RFdz-pviK#V zz=|q^Xs27=c`>?tA!9$r!22*^EY%a(5e&Fv|Izfmy?((Zyy9I}e^8+X^|$$bbZGqX zeO$8uq6HEIFfcLUAp^k_*Sb9K`h#G!=~Jg!=gUmZ%x+$M{q!RX1wQT>soM9rg`>$TDE|QJI+?A|;teB(Wi%_lRHIl?7+6{u;dD z81!&5#5Q22+IkC3OW|kvp=*uu(`2aaW94cMpFqJxA=QDtgQD-w%AyGvvEm^Y{yC{O zV$%H7H!V?rJ_E)i#cK!;z`%;+>Bc=|*xVA3-=YnRv3oUXNkJ7gz&5<BsYC+x)SY<~hH`+nOr#$AFYoW$~S<^P&yO?cV$;ij6ZS=A!??qHMokq-U36 zi^8zG3}sk<3TyW$yrlgdVfVDRusZg~u(KJ=4g*||4tT)d!YACR1dyt6m=hc$nPI5q zqDHOwQo%v*15`v}t(U-UWi?OD0bTmHTrVrH1CSjlSEnu$W?; zAOlA<6wF0)+*pAM6^;ab>8i>!Yf$rRcH1aW@U%Hd^GFAV=}uLB{&vzar4l`?V*<^WmFV^a;;4F|Q*8n)?P zYqV5V03HocRp5Cy2oy>irOFs7Sy^v;VMI>c_<)sK zgSZ%1#N7odR_tiIjh2hm`ax(Dm>&e7Hd|?rkUwA-%{Gv@2X_V9a2`bOJ7r9#^9f$y$ML)$ zMG&Hs!VBViYlKnOI@@(t^|n>w^?i=*YY!)YE$H2HwWQ81?F=R);EiIUhl$n}A_5vL z{>2HT4WS$XsP$~@&TMrktJWQS^NGL#rewN*I57u*+2v9gw|p4J06k|O5wx+k-t8zP zNFNR0Y7RE7IW;}y(sW!7BX$=6b>9I$V|iM58flIkHLWmK{EA_FLi=;Q#@=mqv+x+SU5@4-I zT{MrsF4NP*%k-_T{iY-*58>Focp~mkkA4BxP&i(D#vj8?Vtn-Ff?-9EBhd3wxd^Xh zw!Vp3#4l&B)Y4u%M44L2UlYmwT#c@ydY{;K-5mB4`il^Z7UwZkb(4<;3uMn20!@CQ zL6u>S#<^M*ra@DMxcT}~yBuV1w5t)VVS@kG|NPtVFL1rHPiG>7>GdkS#rWmr#nI6b zIjly%J2O3$vK(ad6Xpl$> zWwoOAM9dnraMChF2khbw)4pq>h%5E0Lek-V*tqGuDQ#4dTp;+4AW#z4al-5nY0JHd zY?Q=N{cD7rN`M)#BP$C#{-!IkyU^LE-BqKD>V(is3XATVd&Q7f*BS(w1gnkZEAR;; z91hAF@AvvC|CP=*=6=n0p5r>@TR#y|3?Jrrjs%z+J01tT=;HL#ez@^tWz>Yy8m$l~C zIM^MAYSaOeed_8rQ{+jD8)J-Ix};xsPA=k*7vNxXjCKCvL;s+wK7My3Ah;;~iEMfi zDf=Wqf*t7U>Ix42jhp@S9jTpw*NyLfPINMrp|K#g-;iFbPN-T#@M+Week>r?VXMQn z<@ppO#kk}9v;|hXFPHj4ch+paqNCWspOV8eCys#umpDnk`lq)+kJqz1|CLYMLst+8 z0Vj+a^J8QaL@bC>X!E9M+=z_H#|He%omgm9m0<3;eb5^&=1vBQfLvq9`G)-)U}G5O zWk>J1dl=v4%31tkUO446|1Qbu8Qdb~>|%@*(1a4iN7%QgB2SjJ zDdU7EGQ&0EdtOWXGzuTi79MPl3QPGf&CzBoF9;o==H<7W4!`J@(qE;y*g0&UE+>Cj zem4g5$hd)G2_W66O8;}R`OS$+SN4UbM={H)w{xq|;IW8{4}3S5(Ym)>{)2DTyV9k1 zg932F)X^S%dnif{fHl8DO1>Hg7fLLCbwB`!a?#uy-_D!ezrh)nX)5pU40-CP0gOLO z!!t+bzn`3#QbeFA*UiS?g<$p-Uwr`0hST4~$hPC}zRSsHji)fPtXa017W$G@e}4e; z;VOKj`uJTTKfCM|-W`6*RysS{3^De+zChx5H16d7o6hkO3CRu~Se3Ee`nM+BIP4g( zLHl={RcF+F*&I3kfw_@&yR62qZy;iO*33J6gi*9;vV({I}j@LX9@wEFOzJx6YB4E+FS&S5Td5IYzh6qhYOuSnZC(ux9olh-8 zkD15k$;!ZRL8)1A)8uxs4yuNI`vakLT7Q|q_1{r6F28kwU5Z|K0Y?L%vC<+hQiMF@vvaPek z!6b0Wi9SX53LKnU#s#A;)FKSxrk{A8j5G&q12?7L_`4I=jWFp zX#(kIaIL2N+9rxg$#Ngl-Dozw17Z7sd+mvkB))2@W)4IQ%S%AfJmiM2o3+2)!v`%; zB2O%=fS}o!NgV%7fko{ZP!~_^en|n^xW9->?T{4TiQA4lT*oI|!--wmea5JI2nV@S z6&~*Q$GkgCigIsMG;y^_>%_=qrF63mUIyn>)H6ujT^AJ6Y&wgfpufWrpT*?PX@mc0 zQjziX5)pssST8_nSmrElzFu)>sf0nKK-dK9zGHYPp7{J!M?a(0=r)Y3;QX zPYfFqZNbvNjRpR^*jjp87t8pE`!h3FpT6tMLK85G#ie<+v420%1LC#2B1L(ihb?Iu@b&)ad1w))_CwX#NZ_rcTqKM@qq4}3xtpExjxR7# z9}r@Ix~V{7$WPm-jB|PxFzR;|UehEzNttvt(_yfbC)2b|O`a%$EBI_Of`<$Xot9Y6 z5P&%cvUTU`LCVMvfkGAalGcm?IEz9lwk3xVdT9)c>85S|GBrf&84JDK40*xm9ZoIH zYB)Xmu8tZU%x8LpLSb$J!DrhUMLXq0$i0YQeO_)Bf7H+w{)~1Y3Zk`Zz(L6J&7B7t;;iaS=szz*FSv2godcA@F$C&`I zhc4^A-6^zAmC1#SRss9mcdv;*S9sw$l=1dGb7q_gj+=C(LUZwWM-@WrCmQv&>AFwB zG{*9wa*GQ5#vLfFzfkB#VeZ7$I6ZIW6YTw)ZQ2pMw0xEzfY`)`Kxo8s#iwy6r{N#(RD=8T!WWz_Mq8@vVv(nPil9rD6P#LhP?QZdY zy8NSAyM6LP6FD(6lgsN~qfoX1Qu_~vL$^KP+_4Huvnwtw9ogB*(`TY*V94S3Zu!s# z-67z1uBER}_&N@nMtrrrM;8G&vT*~X;CsgD0r)I4J%6A=grlAT&xDX^zvma0^*1^g z+fe?on`*;9o_3pH14z>%GaIHu-tOCVIGj;BLgbFlc*l>xO*Av$`cUXP39B9~obszU zaJ(z08Qy_<##29ne+Y2rf zh3(Rj5u2TH?y`?z=4A*UEnT^F1+zu^$7B?_V~0wr&)^fdY0#vg&n)p6!iswDZNXsAI=jz&sf zD_RC0VQtCD+E9?qHTv$n)%acObA*wR@^eaqw2#~(OF`=@c=z*j*+{{BDq31;z}&du zT>wMG4?DZqn3#W+a*?dBfMRkbYPO5Dy`!TxYpot^Y-|`(NUgG}stMWI*&1a9U}HAj zrZ^DDRzO=#Eipd+YD$iMaSrcv_uq-(+(1A4l}M=4hoZ~;hMmma*MzSCb#r+@6fvs5 zs9eZ6e)00a9I4o_3z{g_pc2GlX)u&!dn`?Fl51hRq3KF5ElK!5?(Xb6TDDI|5ECludCfb*{vOdr68*A#zl z6}{F?1Fp)#7Pnd8U=TPJw24FWmaI!9hz8)$CD*UC+lR{~g^_)5U{73+LJE7#!3{`l z)T8ZH5zkR1h1OH~R7pNO+G>$njhhoX(-BW|ef1P5gjdyl4}CVUo6=Jg)l<8ZW35ei zNCyonL;rB&Cg7xh4EIVBz_EoL+f@IZoVNZ28otm*0@>qm(_OC)hQ*XGEWT@xY&YbY6=TGCN zdm5j*mHr;J;UdQ2PprAkuY7Lf%|;*xsqP3%?uvieUU#hXnK;W|8Yk)cEgiATyOso> zcbyUwfnEUEYAAZZFeXJiJB{8lKuTjVGE&z*9$!sK#)k{n+b8%N=eD*!bSPr6Jg$c) z1JXYrB!u7K2|gE$a(l>Pd+Ms2#j#{K?tc;h_2E7Mmr?y*fex8A!)deIEq6rwTQ z|BUh`GVIAsAHR{_voC-L*hGey?QeRVTBYk*;?J38>=5DDWb~4UISlI-+U%gMB13s& z-&80>swp{-PI1k<%_8Zo-HHT$g_>UwkjG6G+W##AzVTo@Ztn1-=4#^*I+B#<`gxQpqopsMDjX~xSQ4xDS;B^3V`_dPEd zH-K*2WKc2=|MJDHGollTWq3yV*VI|F^uBOCs_G?kabRHJ8Z-)l)`njh zxHxqFT=Ok6JDcMD`(69+-wYKR%)g|qrIfOTMt2<(;^RlmoJ2*tpcT;nWz{Y&E_%W+ zpPrsD?>}czIv?>JOlH9Xq9yPELrH)TpI9qNA-eGNu}ktldoqMKX^5V3bSex;B6@{C znMJH}oA+8n80moKCfxfV5;(2tP+IQ()vv2-UKG zmPJ;`fO5;Ac!jHaq}(8~OncUXn1Ce4sPDO%8Ey|wsLV0Vr_xwYjNbG^zuQTI!q=zdi8u!DnWkptdu zq$8n6sT>8{=Iad^&T`i!>=?kXh9omq-#A&FjBf!IZ-^^-4<5ZFhk9+TS*@6#`FCZ4} zI*a|WEMTs3iP};O`4{(pNmHoi3N#|Asi{FDVAHKJLP!}ty(`z?7rob^6CB! zmITzj3HS{-T88nE6S@&t-RA-0M-qT)y(FR;mD7y>`JIqmL7kH2RMpPcns=7Ub5WvvcX zVJU6QqZoqSKAwK`_xeFC0FmHEsMwrP%_3zKjh|U8X&c9CQBH5|^3hbb972nbBdIXG zfhIh6omgpP9%47)C>e3^W`2YYB*4{o6`RJ>SbkYYr*yzpT9t<_ZZ_D8b%ud!xcZ5? zs}4XEWI{=!0?70gC_Cc{xG-yZO(u5C+goP1p2dR52Q#a-GStxNp459}VXb`witkQ(%C%+fiR;SFK+Vusr<@I1*X$0L@{uO@#g+-l5Ua z$BU(LNr1CUj`r}tqSeS_-={lua{no`owy?R(*hHlWLk5`SuXBXIA{3~DK3LQj2;0k z#h>>K$QW@iH4V_D+%~i3XZa;9la}+u?&3n(kE2M14X{neR#h8XK$xh}lqdm79=KF5 z!9;56_Di-G9VL6Ic8B@u$A=2e`E|?j^%>ZWfEX;(<`Pxvdk^a>Ev+e>@9p6IZrnMq zN4<~|)_%xVN^P0zU8YyDp|`L0=Fw0e^(ig}f@c&Kx5jmyDX~mq+!%&}kA&H`lIK&%}c>=2pQTmhNKacU#1>d5Qp9tiJwA| z0D+WIf;9fOt2XdmaY$S~stW-3uZRE=yz4tcN4HN#1_!d6`O!dtbL&i~*c1P4S!h2< zbGkm1ck$bSvJvtID9h2ardk;7R3W!VPCM_iaAbkfp}Z@-deU?tubWx_-MelQb*wc8 z(LNzEJVp4m(E9|tnzD5YnpKs4*oQaE|Ll~W-3u4>`WWy;e~U7WqKk+;y38?n_W`<$ zC^QfO7$pBVV*u1iw9+g$<7oT~jp7_NhDcpq8XmTZnBr;9g(;y7AP!`xKZtZ%R5p-} zB1i^`*5Rk=ppE9OsZSVAK_6F2DCCmx&0Z|G+XqJh$!hR54~cPBgTAUR4yuiQq3$D! z*(;jMxXG6xLgle|>eo8P2P-PisKA7x6A=+R-Uc{idUXs*tw<{-KS=997e>0v&RX~s zc7GmB<|qScBVVUiE625+!tVOFlotzBUeE;IYaXjvNHDy&WjSOmQDxlK#D8}=f zc1sO{zZCa0DNUtN{-D>or{{#d?UvEmYtkHug;{X`iRJ?Ui2*~8F)FL~M$U8GPhMs(bIpNI zgTcOkD`Im2Ku z%p&GAN&1*2Ah`1CQg7qzeKC)#_HAF%w5u}bTrXGRUqY&TZH-S`?sZyXKbUUd1DcTF zZ~AA8&T2HO)>Yq+IT`bSCZ4&$WAbo33HUb*8vP^vz_YL&`nBDElxFj3 zny3q%i8wCTv1BPJs@xoT4o#PbJA*xg_4jI!Ijk3~p~vRyZ(*U}3oH9U z2UBk2+Bk{b0edxlnN>~wA+mo%hKLi~40Cu=KYGTEUFBO=?ymn_zhc8Oc`IY0d{;Q%oy%4`vH44f#*IP4$w0X#_1 zd5wsX21US7vSm>s2c80n>YbaCP_stTa7W99%r~kTvI*%#l`p~H$lL$OfljM300O(@fuKR?na91N*~H$C80peH|G*Wy}trkH&6eU-aLE;XDcF!C-TS z!(S%Np1nT;ds2pQ=bH}&Shx}T&#p*rf4WUBSFmB1R~Ntr!hlE&)e=}xz%TK)P~wGu zN;3@glQXpyGY=y$4PKPgQx}2KjE=xx>0<_Kb?B3|Gd$L(D0BlGuz>#tCuv(e)7zr- zG^Y!~I$wwl_127Ec=AaC%)q+wz4Pz6(4K=sUE;6?cSaj@YC5NRZU~#ehrEi-d9XkN zJ_=nMD+bYcy}4o6cUCgW8(AZCFI|(4Z{K|S6076*+|0A(nU@vu8gIOu;3n~$rQhhE&f)OPl6X4L4P6K-iU2{>?)eFEtrNpnsLUO4qi)CPI;c%gh?q1 z01?jgh{52eCLVs1HK9BeON>k!`SiikQBJ>)4{uA5>5Jl0Zp@80r?Uz{^+je9c%TLj zP((yzLQ)%#ni3tIH%9I$s_yCIqeX1aRNeAIh2ZC=C?VrzBP%yZ5M?9-@h=5sd046d z8Z2qxtt?ahy4SdOlLT^HGJXKy<`v{!+`_N!QVP7^7re`K(gWBs{oIctv4(vYptw1} z(>NdeY5O!Ocf`Zh$H(weKTAt9{YPUl1pyzRsfJofV56pB@I1Fs<5bqLJ|q)HySid7p4sJv(`ekDu=eBoxTgGe%6y? zNGPk@{Cvg189$>%!w}{TyiWHn+;|kgyM(`Sni|p9+jc9~idXMz>-CJ08m;_5i|Wt6vz)$v znqH{ZE794O>*%T!W?EoJhKo%` z=zf^b2%6J1^1B;v~t`CAhVksw4Ef0&aCevKEl&zMx7LvHFdFrMbam~-k>q+abg z1r~yk_m$5dcshE2*&n6pK3c4(Q01qDwgo9S=5QVkCK^{UB?+y~?1xZ~(G+E!d&C8N zxaiNL{6fosJZ_%tB1Ps`eTUha$LLK@mv-p3oe+~Qu(X0|uAkz#^y-1^kM-zx^1(Qw zYr0GJbsouJ-%P$`z1ZAj$i5PF#(FMF17>5wmh*u(p+oLKt7%)|e69n5;&WWw9v%-# zlG$SZxWy=;)q>_$%2)Xbtc&pCPqs1}(X-upWa;ia=|k^%*jpSGa$GWmeH6WO1i8(; z4R*P-p9>}@7R(deV*Tislg&&%qLHGW`c&{=g92n5(_L!l+U=Cc%**c~Zs+(>o=hdS z&5)fwxDM?EZu|I>E~`~XbKKy8Oe>@~0rI_1-`l3{UPsIT+i$7%7N&P~9rX4;d3(oimgOsP{MK}_kVDn4=9qZ@8b{KB4zqR7^4uZQU#Xtz z9&6Kc4caCKjSF?C!%A$#N{PD5PVjeMFUG_R;cJ^>2sUb%cLLl1k{-x2dodan&fDU%j(i@&`{`AG|#hhGkzYq;~>@blYa?@w|JnCc*U85am z%YAcH{~g`ADK?z#)F-(Dh$M{tq+L0PZNy_LQ-fyvsk5a(_V5_wWu=N2DdS)Xt!d(W zQ6{qDUe?upBKA(CcTP*53C3XoU#yV2-Br%SACTHzlNY1Qb# zOne)r8#RJ-6SxDmi2=y2IkJg1GxCbQr+#TjGty5fFNP|u(RPfs)zf=?zx_3dP3nLa+}HQB5a2m!8-oPth|a@0Di#Gba& zM9v-U{Sf%*WN^$MWx5C#_czT%p7QT00b>tj=q0A?uKZ{_ca<)quR6|;v}PE{luRfj z*;l%CoiLOW1w6Kx4!+JO*p82BY>V^kQ5nC~0RS8X8F5jyDiQ{w74|BxbY%&`Ng?;c z1)CTbuq_`fpRb`{;5t%QD`6d|&kbE|EA zNUP00Emc`yclwG-YkNX;{o*Wp3Un*2S%XWJD?FdYqC;ExH6%UqCp^P(XzU;B~Cp*O@7?`@0N zX%R5mh3Ahpy8k{5O>)x~_ZHqv1$Zd-&?Q@Mt!gn;Wg{jj$Fn?>tc~z4*#gmEg)|5v zVY8e^x9c$0Jczj7x3SYZcj>lJI*+)YLO1ZvqZbi?)Pedg%e)>hbRMteF2v~iodbX2 zZ7J@EdlZq`)m#`NI$zWAEH)9>_kFRzo8^b=9bk?H(qtL`!!8|qUauKu$*{hG*Q zZ{LiABwNi9CS;nPkUwhI?qRDoU%Am@f!x#B5p9=(Y9ALBc(wf(LjvHZYl(tlqTgBJ zikOotnc+}2!hddoV}VQ%3Fr99-)0yt&pb6WD!G)2n?s~H(+M1O{`QqqAgx2rBHeyA zvhKqoNiP@Mj(igH8fMHJtrBA#yFOw4?a#A^B+Ic)I?B{k`jpp2fxn(oW357SVSh|A zY+v_^ODb>VbpAR_9;CHiI*o65VEC0C{i?sYgD|a~BHFu6i}(b}FOr;P3u9-c+F2~_ zD3Q_ck2Nr{y`P9@m@$1XN2LU4Z5sc(Sv}+ODDe=`t7(gbt zPvJENZM5dF6{6F#`MbJJGFm2OWL4CssvZOqHxD7$MDLheajL#(4~E*H1uj%?eJFYG zvfZqpjF-dsIxbFUxkfJTSaDt9Bh9tPGv|3Mg+YRA#*?_?{(3$MGx1;&!H@x7TM6EZ_<7HU@w82haA#aaf_0DZucc>i%zE$>S zj%BD`q;MSe4D5vCXzU65uWLJwc_m*TuC3krlw~aOZJyMSQ-2eFQlel+PqUV95}8Zc z-5uqCE56UTg9tY_M`aH8Py@H|dk^`zb7^CsB$bb|?{Y3Fvuk*I5=V|x8U{2F(P2`S zw6O1I(`oX8c&y(6Qo-G6AN%T_)03NYg$^+%akw#hEq(4l&wMjl|8`0UyncOVn>2L=bSn^wMM~dpa%iz|lbqfpC9~!~nwaEX2;H{Tl zCC4REv*WzhLXS+zo1piS*vr3SKO7_Ob@Izb>dTXN!FVHj%gU0*d(cI^%jmBx=dXws zt50HB;p{OFkK;_s%k_KvPp)5PGMxh^r}KUOmL+5JEvxpW2Gb!bayyJc?n0VGXDToS zadqD2Oh?PkPj!9HYf=(ugELbsLN{hxG6sw#*(5Yi* zcB$um^249?5xFE+i-PMx_+9j!Qy_Yz^GjHw9y=t0T#@u6$HDQ$_pu*<9J}I%eX;B! zJ)+M7ve}f|(q;f|1urKfopZEh9LHO(7$H}`b}s6simD2NaV<6M_~`TFpebR+zN9zkB#E{OmO@+>%gqWt7NI#ijWSAX7&*)}^jovq^b*>gyA z>>iEr29&Hk=Nw5ry>M@nV<~lTML_y;!HErgBtf9!*Yo_Ud^f|y^|x!P&1l1(kxs^u z>>WXPrttt_NwfT+wc3|@Q9$;}G0`QL(4qDqv2tU_mJO5U)U?EpT8s6P$8>dc`#+Jl zS2ku=uNraDlo-mvFEP_t4nAP*8vRZDT7V87Ryp>;#5B-wa4Q+@BxldhGg z^#k8}()xlyqm2&P;C{S7V6DE*D;7ya``3wlXaBVxnG3Ohrs2{u0UyP;bBd4Rc)H=| z`X@#>nLmjE^GB7j?82^oJp1-Rknb<|g$=(NgNM5e`Lwwzs{tGm;1-;9fnF)S^~J8v5VCb0k#kat?Z61s#I{VcPg{G_^vT;eUs$yCGJ+p?>c`ir+gvTYny7^ zbgN9{q|+~BO2t3HKUE)kU-c*JwNY{4@B?16e*5E-Pqxwi@)MPL1qk`1!Y~$*k||AK z%CLqjTPJ@HuptQ{!;KZQhDA>IB!q2kw4=On7`EgSF!S`G1dS4!6kQ5nn@7w5I3 z@92(g_`2yZxf`G|&QB*yf}24tWv;cVkZUvUIkaXE*I7_>$BGLaL%|Eq_v2Qxgz#Ab z=Gus0FHT%Z0CI_-5bN`zu3~pYk#&FW3TcpI2M?PPxlfzSx@XcvWV8B$8 z^t*U*+2g|cY`(X*>ayT8qGvj{!gQ1?`N>S^x;6i{T?&@t?eAQbDdF!;)YWIBaiG9h zKf{~mkSe+Rm2M;R8ZjC{gq!2GMhayGUXy4;G6*c-Z-tc7{qr_?IH+l2jKAYD;{w$) zFAE7$*RU$PY+Gg&7VDLObG?)AEjAh5uXt1L-p}XoORV9e!Zcv5osW>mzvH_zGJp*cFe3bN z9udbyX>xE*o(UBrg5G{5-}hDW(~<98(&#cHr9reAKvLJZbiG7-+x_}Gt6#dq_@hWB z?o(r_!~9UkcOu*bw&zjH+ugS9JDiN=R-0~p9{@S|8%sK68|r7hlPLLQxF zw{b)zXkt;b*-3fFr?lTk4ReW5diu{)Q&k@&W5~mcgiuoDW7hQ&^UJY5e?|qsm)E=# zk=_FUh3e)?Ihzpyr%y9*%QGh>X8I{VWcUCFwi8i`X(Su``8+A1IFV5m0%B#hhX>=0 zq63E}3YSGhC#YrZP z$D2WT-cCkNO<2$koEER717a_fLrG&^GQS_j=RxEa#K=JCKLcB0N$;L(rm%5K=uAF! z!bs|0^c{@8fn~9RJ;aa7%v~sW_Dk_akwa0)8MyprQ(n3zyu7UcIABtHxxe2=j>b zfBrHs4htwPp63L;+;Qyd69jG_q4fW{_5WNzN%Oz|721%S>G@dt;0e2vwKkn((~k8w z_J;Fj9SsfFkzZ>zYU-@)?80dv6)b2&_~A4vv=N%pP zo86-sd~gO)C8aHnyF+W}$?W>=&<~+l4wyKa5-=E?pT9%%DEV&~cIu89VW2|hVVD%J zaI80RURyuu_eRoGp+eb)J%}$g2nYzVU#_H;f{L&5ayB8r+okv8Eaav4bytjjRrlePB7JC$MPb!hGLwIYBI%B zEG!bSppn_s?5w(`=3S3i9ssKHjf#qT;tKKAq-b8LF_!Z674knhIeEC=_q*sq@?^W^ z{#I);2*qG4{nq@?=KQ#X#-^sG7-7_cf-l+ilVM83(0ibv#Xij4t@{ZZ{Xqt(7AXq8 zQdM=lKGJ7<*BbRkBpeW`|C=adanP1;eoCyiTB|@jRep$*vLpY%3uo{o6+&{j_WZ2D1|RS8xK1C-iHM#IJmgb zULD(i@-^!J&kZwCpeFq{Z%WI`ykZVYZkMd8OifJWL0^dc$M=u5(2D&U+uB~B!?4n5 zrw_Fel(WMbVx|<__IFAyMbA~s*7i)sIf`x=>tB1ImVYEA@Oi%MU$t%Yg_M+7F4mgb z*w{q;o|&C(gR*NvLPDUh7-o&~@Si{VUu&W``%>4>JN7|d+^6{sa7F(-)v=|%uFih! zA3M<)UxMX(YpPSb-`gwbFeeBJb8Kv^9m>{M{rVL;_}LzNXvdC04-6|4L7o_?9pF{t@E6YFc{Qvr^+czcY4>URUBK-j9OGZLb Kyb@>-_`d)`XZ+Rx literal 0 HcmV?d00001 diff --git a/demo/documented/mixed-poisson/mixed-poisson_u.png b/demo/documented/mixed-poisson/mixed-poisson_u.png new file mode 100644 index 0000000000000000000000000000000000000000..1003afc0addab5e86eb820a20b2e121b0baf2796 GIT binary patch literal 34205 zcmeEtWmlVB6E0eu;)DRjwMcMxN^rO0?(Po7CAhmoaAq(pWZKk z*s$#jK@j(y730(HTvSpr@sLz^%h(8J+>e&1HoT$RkH<(C)xk~@z`=Iav-nC=VXdIs zmYxSO$MDAXzVYOj65hgvpmaF&fM3RqZ@gIhp^a~=nEOnZBP$OvNPf^lyWDLxA+eZD zJDQS{i@HKNc%+Biiik*8s?}iI$jhI9%U2$jk*8IJcc2Lu$GltdIfwU96JewK&zj<6 z4G*-zYwUBNg1=cfz>(BStsYxSZl#1dTN}+(-0u|mRTY)=xDRu)kUSQ&0E* zPX4quKJB;d<2wDEi@|aN{e%&SR&EuRMcWvZAQ&*IKoTe0d#3TvG`wb#HUO2#Ld7XO z2hBP_zg(6Fb*#pcqJX4|qp&3@%}Yk6I$`yL`oF6k|6PrLFlvO~OR@?rb=>rV`v5cLbb~Yp zrA?tJEPXfT(y##>#-bIQ3bO_6EE#@v%{$rVX43s`-0fM{s^l#2yVN`0XgNhQ!};oj z-NjXFfjBV77A8CCKiS(=qc+*$8*RThrv@k>tjYZ5K7R7hX8fl% zbP+U7409MChu1?L?i6rDSOb*?7!5c6P9QuST$8E3rUoAiF=0rY3BXE z+gBOm&VG%=9LVC0Sv=96Pye>h)k@dlJz_iTA^d@3;*x8?)V#R4L35l zCAes>mSE#?`6^<)pSRJ)%4q$%0_bP<+1$tQyq}C|co44a`zW^c?@JK3EXCjl+ZX1@ z2$u9X1?A8MzmBE5;>;UPZrtmn;XE@lp z0)`Fd0~jf&xenugWhGlGlk?E1spMimy4oKXvI;|G96LjmW7H%ZGiuZuv_Ud#38O}p zhD%8B-LL3?X|Otrh8v=PrDVKNUN4d1c$G&mrif*rzf_`hK2#PM`s+X7=%&qF*1*Wy z@gnv+Y8=V`e(tZaKU~c;w|$GeO#8=e`YCCU)L(cP-z`gi6(xNdPm7+=K^L`7o^O39 z4^pmguZrNUZL1@CC!W-NF`*Um@I1o_gC9d83?XNSJjP2(R#68(&?JDK8LYtE$S8}4 z59Q=8Y+p14zAJNN%TiVT0f_)m;Snz8C`LZ&P-Opj2| z-F#S=(k0UVKt;e%mj|W#xMEdi)e^^L-U26yB-|7o7d+-7V-&le@#{KtTLP5-qTQh@LqvC5vq{TScZn^ zx}x>Nld$kf-QU5C~BR@_X52Y z)0So^+4Dh6*E-(O2+>6{*l9<&rFvQBsgvT*GU}C5JYiWtH&}aFq3rtHv=7wEb4T6q8xN zh23G0k?$X6CEj&n4z5Q1vt?f%0n38L7(E-1riA4e=<~rC8LneVX&QC7WrH)W9CVODM%{>Tn9>v`q==!BW@~Hu}z2WNEa}&J&E?s~a^*vZOBhF%P1!67>8VWl;J^nN$sTtknEK(Kyhn zX!Il+JgUuU4p6~#506y)`^^3)wVjaFq1%MXhl&7)wz&G>y}#m*A*K;i4qq9?vD}a0 zsMu8Z)0yW1lZYWGBCE-Uo>5zPU?gatB(GZ&mWX2d zw>AbL)XvX#Ngb619AMp)h?Ybn^HLFH)d+FxM`B z{GUY_We->c2GrTnt=>ih(#VWR;#(VB_c%1d6s4p~4~BDQA7~^$v>6IAnk_*TmT_)8 z$e(yJz|Rn!EExPp<6x+f{qN_mm#z0B?Tib`zG=Vk^t`YH#bYsQy^^M4=#8UoSES2s z)@ewF7Ws=+p#=M}KKru^l(6qsfcFWo(-L5TR59;?*!U`Ad_6v_{80Vu;omI!w$-kKt|y(m5^5$@eJX5+Dfq zFlH<1bw;FH+hp*Ma7O<{SU8g=s|ATd-apGDF~S_&UP@)5#7UP@a!zjVr5CxBC$&~z zo!1nSd%sG9ug67SKB8E@%G!MlU#X2aS~**3d+8(@;ex}62fh>C>pdn0dsgI>v^I}6 zT6a25T3mUYt^bBY2c)PrRVCOa8epgHmAIPmGMLU2u$2F#Sy@qJ*%4NpfJTHf2=$ff zn>7toKBxb(G&Y2VsDC`BOQvQBWTaV*iL*lw%BYVyL)90`lJjSru##w%YUVIj)n%bf zErfVqI}KE^v&g7=lbgmT`1Nsh4hBsPPn48KUIJj@1Cu2IRp(ony1cm?i8ZISBYs4M zXfH^sbfitqja~Zbp@1_xn^+SPo0Pcbjs4r(spl|(D70V;?#FEg?Z${o!SF2Sj`wq9mC=H2csaq9y z!aIgzikA(Tc`EOfjh*&abN;zSg9=GHyQK6N?^I5VOk?_BjQw{lF6lI>_q`_0up}`t zHbN#|%Gwp_u{P9%oH~_|k$75ljP{cfc0>3_4Usr%Sy4$r5@$~&2-Q1Dg(XbzFBZX^ z9_#MOqP$^c1qcBfd&Na~)M=CME`IOq&@9L)MnH1E$hYDB$@b|dHth*+*Ev1tfH1Bm zs@(+kNW0A}9>x?YZ5dirr>1>QjY|%5u7SPAE5+a7xO7DsRZv^xUtG0VNiB`muXAT9 zOl1t+oyh+7jIda2E@?x?y_FNkqo87p89t)a`P&d4$|DpVz?VWh%cH03htu!uzqaQ7 zA;g9^8s7Nok+9Od9pe$I2mPB&9aPP7NHtm9na6Y!QhDBDd}aQ2bz=P1xAw_Mf6%AX zJ>7uGEiN37kHDxxeaozh^EQ`w3zHcjD{s zZ)!LQ)4UH;e5WffaXfa#Qx<&1j9L}UtL@@-ZdqEO!k>!8^N8eI1M*gw`x&t0IcoBo zSW)kN#I)y>cy_hN8YRLQR&Z4)x1HfLQOQYPb%f^L)9dU7o28Zh;(B2D75_;^nb*z4|6{e=?=Sg!TvEQ!2e!_A4QOEmn=Wb z{UO3xNJw;GJVy;VF%gLN-M4==rgv@cQAyYhG0|XjknaK|7;60dsO8wbQi0!_JXjsg zA)XL}S9=i~A``C5Kwe9Vq}w#Rj*{zW5Hyg}5%U7;Hc zmQ3BcMx)EO2mM@Q|J2ufK5jQ%>T*G?e)`W)4dc};N#=Am>>RbWBIETgqrp{J8nG|l z@rJzBLhLaUB-SP|-Ilun}{EtAw&&VA{rrpxpgSZ|p3)qhweSeSVnv9F|i}a!A50MS)0atu1 zgqLq_C}M{Rpqya??TIrC9)c#?MO?P@#LfsmeN`KP5Da1{^4>#1n z0#$U}0%Sn3_@VpY-D8yAtoNHUDCeV>xXTK)83qlFdS*@Hhu_exSUs?5M_j?EB6;AI zLI2R|zQk_7YqW;X)guO`cJ4?F6*x+z!^**?!aD8M5%ra)?B}thBl)me$hFAhqgTx$ z)~eU}rzL#kmWp>Vi-rxVhw76Q!o2~@=^Xnkd!w#dV0bFNkwCx5Jxt0#E+-BL z4opEOPXGuLAZ0g0;hx&_)3@x_H{(hTrQHVWSg^Bz;x95d^M&06;Ei*D8ZT8QWY!wi z!Kq;%iUU3M+Rq}P7eYml7e4Ix@69OBp#Kr|l%`%=x4zLpntf~-Ao1kIYwYhsDavn(REiN!~CNUspdx0t{21g$M{wXE+ zDoy&b=e@3hzl8U1U$#-!T|tizJ?6DPAgp0GF3NHbCDz!zw~ybf#YnyLcP0p7Iv+=? zCo^w~_DY)k5Qj_@_=*jSp0s4Rdq=+mhGI%D0WuCK4!o-luB~(5u%>z2Npdlqk8VkQ zHl!Y@8Wi=$sKb%0x?klGPJLQ^=0+q&xiCo~)~lO~FuKzT+8ObEJ|!7h_~0HsVtEz$ zHaA)y63vPHltR?G*reL^7Y=UwMg6T@MFOL%<#hQNJYC`U^;ppb9hVc^8h3VA?0N9p zp~!nMm|yTfu;Sec55}tJg~*;}>%9H;59;Mw6DO4YR(j^V5)DYK@@mby;je6zi(Tix zNZ)qXf?s3PPsJ-;ESTDC&C8nbdxvDpnX+A@=hRmEZ~v(;9Ok9A|LsoxC*wQWKQ8E# zvmo{xsxd{qeJLP{`nvpHghb#5TyM<5u2KE2nHN{)S5lej<O`CgdRa))a-B^ga_fVc#hAqST4Z#p0RAdcPtr>v~*&N0EnYSD}Q!Ld(Y3L zjGEj6?b>VtOoIyh7GK2{B$xgpn1jduCsL?ZJTP;Rv}cpSoZ#B1$z*644;*saFVdz4 z7w!C4@l87TPs{yh5BtuZjB$dOnhv?LXfxGl5bE|rcjb&9Z=#Be$B+#Y@gzU$J42Q2 z($n2ek4Bn6fe^PeUbIZn6XEO3G?C7xc7mRU?SPH}xA>*lQ5~1xPOp30VjBgfnxotm6I8%eDP?m&!eOFG`VQ*&O+`AJp?uz)AEL|{)z^^a zL&KckU1InBZ+W)Cu($pRNdf<*%v)7AgG8>+efwk8&LiLj?*-un&v3@635;xb<@HzK z$s_acQp@k_XgYxp^#OW75%lf;`!gaY_%-%M1JjlfyQ!}Fy(zKIwLCNbil$*u=O7Nw zh{s2G2};vF)KcmZI41Jr%e_qF4#&5}$jfF}*5q%@lJACWQUhbOTBzktwvd@}ONWR5txF61uc$13z? zertjOUw)4ub*cVO$XznHU1@<34)yJC##XGt2Zk#b8_xW3LUbdn>JX1O98dxPaRd%6 z2|$m9PX+NJ!}hp=)t7@Xc|fm!b^bE?(7ovlsTgX3>C!bv4Sr?0=^dMNz-jTf#mtI zM4(V%q+ET73YUq3hEgaq7f z6SDFx)}1bo_Jlfrg&B(+g1rAMP_ix1H6Ge}5TU=g9Dty&M0YNqF}mow2p?gx2@Cdb z1o?J}EbVHJVo6RA+szFS0I`z#a+n~tb9nB&kimb!u>1L&jyK0|29Cer>fAh?#4&O( zzkh&T3`<%$Kz!%5 zr4!Xdv>CHAbx#$)*2{p`l!b*mjV1>pSq;E4qtOgNnZ$F#x_M;KWAPF^0_G+gj3&+_O*g4v>0etig`W~^ULsl+6G{!n^_I6f zxN00Fcm!g9+R#p>2>!*O*gQ)y=gA}y?Zslv9g*^hddE=AAEvU5ns#!u7q^nodNm0@ zZT6!L2F0XbT4OiAFuaX)xKt?13A;W|B-KZq?g~D#+3%)I@@S9#=f^&(u~l$#SCOEP zr62Cd8F6f556(S;GM5k;O`k`ZZj$^@rkID{AL=BV(fP2FelTmS{#>QckNACgmDr%S zN-p5`wV6={Oot7eGP-blyE;g((XDOQ9R_CeQp>M2DSmM+aAfglL$CNRR^KSfw)?wN z%#;B}7dQRl{ZYo{&IxLbx#(4esqir9G6EzUGXwKbTyAPDz0*!V!4D;WwB>Kf zC^|ZSxw!4BH|;oZi|;_cgSboQtDp@mV`zihRnBX0^ZrUIF9lZLa8Y@TSV}cr(wZ^ zR)!4sp&~iPF`4bNZgxurod*fUcM3eoJ=U*D?c*R`=A(tL(H@MVPv!yMUvDP=3sEi3 zQBK+~aRsdf&bXc8vn=cWRE}Z%!o&#F2MTuDehat_t*fF-I;@eqCR;FA@F-DlZVYJO zOy7hs-nx(*suJ%Y1U9_jnfLL#dDb#`Und6nUhja}y8G&mkdzm1!{gisTM~5g>$|8; z=hXI-U=xGs!rzy*&vzubhXQZuY~#cBqmbF7tf%(aaocQuZXsK=Ju8;-lJV$geTeS?{<0ki&a&sA@xz zctllcZ%d_ba$qcBsz+X&cWrvktH|q`5~wElH%yGDDeu=C;hDJeEaV zV0e{!eXM==!FX6G*uDL+#AvB%fVBwWP9Dr3zanO&|1*UIt{Rr9VH1DM;F!+lHDkK9 z0iNZ2;Y`uPT&RrDzR=4TS0lzPb3o?st?-+a^C0-y%sUd^O3Z zJzAyC?F0|uVd}9Z^6*q&Z?+)?Q(V86zZ_3QwI(?-g zPLG5}dJ>$*gT|dAme3kDC#MDl3yys%OlwSM8$V?=t3%&KmnFM#$YNYY6#AcAzC8j) z=u8r3`BjYGrVMXGmrNQrzb}O6Y-|wvexH11yrTD4Dwc%C=QVCR`ZMPtlKt1S z!jhss-2Gf9gN~75W^6|}^Y3=?Q0pxkT*P7}PsNrnlb8rR@efo#WTe#ylI!{{Tf?+) zPs2NELpdx2YbY(j#CA&%iaFM~L<2}?&wzKYC(=^{`pzcj3WWDDpDQAkUc<*fSPXMN zVMwxcq~r3X;WStGs34(p4O}yro7eb3DNFO9X?dJ@q-iT90^CQ&;;3lqFnsNEzU|-6 zlGFY=aynT$&tIrH%i}At;;vl;NBMhlbE7Q%rAE21IAl7P0OU(aiR}Td;neaRKMu?9jqlErO%1qV z)vmi#DPinkmVV!z(+#zWJ&L#TIxw|0G_56|SwxQdXRK?PdK^(})b)6wnri@|Ye)F` zF7Y_(qXA9MRVWkNM7|5-oQ<&eZ^{KrCN2Z|-zh@pcve9=hI*N(@CIK;zO6_W3SpEI zC0vwxDcm6HFaUlqZGiV?JU>9LwT`v+?U|9d zsd#3>5z+O2c@a37!yuP3?k36=G4r$)#bfdue>zDsV%W76YWYpN8uxb!aoJ$m`@|}6 z>GE*%YvL^4e-gKJxLkd_vzJA3`SGJdy4ZA**k&7M8#)Awg{e2d z7QzdciWaIQu}q7aO!$ZO@j2GhyWOIvUnXB2IUyLsupX1B&2eFF3tH<>D$ZfNVu8ZN zu`^+HneS<+WvzceBocOtMB3!#2qnzujj>VpKFjCASM}yA4QBhofhdJ-a22yQx52fc zX_}3qBI6AZxU@_6QYJ;6itZ_QM2ox5d4FUgLdETEiT!~5b%XvhWFBkuUCBJ@>Yk|g z7c{VPLY)|FupJS#UG6f!z_iFNfh<@NK$U{4iL9CKq&{r{i24GnKCz#}oX_V_O<}-f zz@0N>-P9VQ29(QaYU~%C6(G*r?3SewFvFo9UhTR*M|<4=bxK~I%2X@4$&)i7&)b3) zQAUU(7o~LYwmMd^Pw*uV(ywk5*wDl(?P4lqcE?tA4Fpk=B=B$$}nOOha3>rTfe?8B4 z)EB?_+7Y^xwSW0XGPsB z6A*2)L*GKhTgg;7^TjPIpqSY`I4~x99&sF1SwU(`v#JpQc+p1LOvt#DziOl%a!bIane=_bwT8h%b6RaoQ> z7F`ItOp@cV&6C$)mVG&?>}3CdY4vlp&z`f+xL zq#|;NPvDU+0rnkbdYVoIN%)9IsOMpI0uk8YgDK2@xp=(H`sosMP>AcY9uu`v`lp$o zad)<-%t;U%Dy##fAsO=1pW2~T+8l+46wGSm;+(B`70oQj6RIHub^PP#3~By(7|Vkx zXChrHUuE-0?*5^!5FmC$XULRPl|pi=5q_yp1&1Vc6++NAEV0Z)T|I95TQgTNaQ8oK z-kIzgIcaLFyj;yG@hw`x>XHr@dM5V?;K-akd0<0OIK^56&O1YFvhAvUPx#}~M&@I} z0gGSec{w4y6Z%>!t#yNAi&nr;z!voJ~bzo_Zw*mq79Z}K;@y6mBoZ0P}RAYAd;_1gL9Eg zOGBBwbt@~0e3wf?*ZJpsk&kIqfs1weL)`dI|?P;fjTacAX*hkf)bt@l`2qDb!c>wyK+XUpjIC4b)&YeBgT{8EQ07L2kndjtaP4o*ybT=K@z>vZ3lbNHTGon3jA1K zmwar-z~75T;>rUqGzz`fdd(tTabc6e0%5$js8l}^6FdT#b=6tc^AO`HB=<4&uQP>9 zmf>uPs!J5-^TOea&sJ^b2Ey{Hd?Pq zWgXktU5P(UiI48|#__D)&_S{IY>GhJShut^X9GQz{bphn1#defeAPxptVG`q(9SOd z;NH~iv~k`oqT{MY--<3(;GF|u!{JNr%UyMz8#Ei@mn(i%A1oGv1!uP9BAZh59Et{N z3AJdu8uj5CLMlwE`b{Z-nqq;x#yDOI5w%@$*=^9@*@`p!9NE6u6q$hGvyYFFMu&hV|Hggk}^PmoDA!ii}UB`8`7lP_} zHbooPrP^ht#M>1hsW9-LB;tH zZ%+^d#oLyHJWSK327v(q_3|OgyQt7mH{MQ9m6MmktLL`2II(u6UP+k0{7+J(IaK8u zbNcj>CJSj;i$?!fZj7-#zU6s8OZYndZ*|TFn_^X&^rTbEd1KhxpwN@ zXYV9T(zDw|WN8wcQNyFpg8e-{2h0q9z8N2oc0;HMc$;!5p9Wc zq+tn;F>mIBS_)B$3whAx?Z(?92GL(z&R;a2w2B9KgOA}3Qy&>6B2pJ^5<76dDiO5m z=~Cp;p<2Vwj}TC=_5YM_X%-W7v`VsD-y>~lti*s;fG9DK5-Ce3WRAlp?`&oKKP5Hf{O|vRVI{mcw_#H4~|be1lG$ z$Tn#TiILatcR>35)z7AWMiIMGgs{a+^BT>K&lD@3*DI+d7XkaC!(_$YfQb;X>}>HK zlctkLG6b?}l-c-2g{DJe2_or<-+n|wkiV2cI^*(B(C;fj_v#EvH{uzc58^z*j)^L19&h2;Bcy{9sUzVg2Akw>eC$|J5@MCl*16*X+(tW z-OON@hv=CT%QBX^%)`xSoGcz$j^sgICVVZ>L{wR)BK0KU0_{u||KeR4E%pY;_G7G2 zTa&Jg;kWAXCJ0qIqDU!^147veB3+Tb!ql5qv@>YfsUP9qIKg4|i>0X_^8-Q*_gTCt9^_sm8(W9>?L{oIj5+p7f zi^D7j_6ufrG10N=R6tDxoEO4V&7G}_5yPv7MTr`T>~%{@i~oGJ2CvkR9%o+Abi(6l zwl>)js-jfNBQW#5yCVNXT!+2i&?T>I`6+pJe%?I+AZl2%gkX-eugzfY4b`V{Uh^R5;v z{hklK!4A)TDo2l06I6pxQwzQlW4pxWMcyBe!jy}L;G@(Z{Y`*=3!D~avkrR3WA#rY zg4ciwmu027j6~kKxt|z;)5IfHn<54w#x|&DZYLh?#hlPMu}%B507i?C27)(*WX%SlCc!FU`wH6wLnwHZSeQI1%iG+pd9lU_7KxjJeWq4!uJkVE9PkglV|K zq=Xu8%?YDh{L->V^>HX~2~_h)5u?&5X+e7DCNYSOBtP2Ny)9!9DZG!v#@Aw%;Mam_ z*l#9fie*zcIP%*$t;S#E@5jdtm9^J>pO@Jq@Be~&d+>}s&z?1qKWV1rLs7dNkOJ8v zEE6)-ue~bqXdLy=Cbve2O4a&PMDt*+48yy1J5%(eRzhw$>@T_!>s}f+6E;}j-x+B; z76iBx+H~<`iGdN)I3(d7E26J~+b;{wqM622ust5w24(?V!(#zmh*!seG=V(}0SwdG zhh0l*j|f@^-^`_PY0(O}U)co*TxF-7S4}oeR(EbXo$62dQ?P-ghlQvs6hv_MB1c`= zZ!#U`*?(d?|36H(|p-=Zu19r&@GvnOcf^tM|1uSI; z)3H_n?}8qghVoqMax}!i_h=`?Y2s+JMR;!gwF+-3yCXZ@ZMOC!TmV?WMWamRQE(^R zybOiBy0jU){6Vc`>TAA})u(|DV~l+0#{prI@d`R6IX87w<(_tSRP7Vh$8Fqxpkeg; z_~TNw{Yli@jd-U1FuFcX`JG*JBoN$E#V9oOa@!G5A>t~^{`86FOZjFi@4CA)r)MJ1 zW-be4e;MlgPTw`0LveyLMd)6W(LC5Rak^!A+tqQ|K!cc`m6CuzAZwSq@ z1}F~gBtXslHYX5#JJbE zB|H!TNk+FobP_Gl`jCOr!~brt4O%z3`AN2NbOpw`s|Mk+q?u5Pfpq)y>)8SPo7ncae4hv5GXN1tsV* zAAG%a3w`{cdjJbP+4pK%{nYw{cr3R$ooM=CKzi(0JaH<(wl(t7FN1pHF69p|0kzPl z69)j(SPHvzw$1+a4~QH@b1j*QaQXp`kU_$rsG9l@k2ZXMp3~+f`n2&&7IF9CVbFe+ zvDRRFDa^Y*us5aQtfBr%8!r=^9lPaR!}w#Hos&TL_JDLb(6DX?YdRBFmx>Q<tTw_$? z-Fre~>EqDGj*mJ;>+Coo);r-?Ct?2@~Bd$`&X#B)G=lpF_Ij*&X|{- zAjA=kT#;ZERWlctxa^AXZTg{o%;qSFfklDDIN0tO9q44c;Jdax&OKP#Jy&`hyOlX> zD3OZRILoRMOAdJyeuE3M66R)kru0428KjA0kFoCL`BB&W*VVFaSr`%A z!?cD%>6+xnNsqXDS~VrQSTse8ejm2&G|?P5Bc9N$<;&Gs+HDoA^aw3jDe9P{-mgeV zIy6TS88gndSJ=%qf0oi}?f30IEq%Kg?7g6vzP|#F{Q8Gbwy!wL^p81A4wmng^z8YF z*2~_tIFfyjU6qmES2nbLR~e5ug1f;5u@-dV$TMxP+GX)Z7lfO2$BJ#`zqk=~ z8z|z?U!HzNYHbrdF0f|1u$Uq~h&~!3x5}4d%Cl9Zy0bU^%~E?SAXL!^HQ8ETOh#Zx zG7u`ABS0@=rlG`1zjQqRQ}`5;ExDf!+poS{eO@}(LtJZ7bPIQU3NXjIKPqfxUhNcL zGGNE2FKyC5*#$L)4Q3~hV(Md73T`gCrfMZolGJ!iZ(++g3F9TyKTav#k{?|!X5}#{ zPDR)*l88fVB(qM;uX>D%@`gMKV{WudwW)aUd}_?HWiU3hW7T=8Q#_k!>GS9D5n?4# zzg*)qTy!L8Y9f^4REHoCT4D+$!snNx#ajbm*fXbb6l_cuHvvCi{oO2~-!MAh*jj-qr9?ee)hUfGc-IVffX z*)Abk-sl|x5+0*O4SIqca#VZ*;z)dgHSk?Je1|=bM;jmGy4&@x%gRfTJAO};P{b+7 zfxvPwYz0RpQjr73+i?Ov!ws$F zx}zzsNjPePw&;mA72H#OtQ4WMOMx-$@d>3>#CAL87#wLCEkc)kGB#3D} zY_8=EThhoWsHpgE*i!_jTVr*!Dr=&6vt&icx)K~57szEye{5xr&cPA!y#kbAR06{A|tlz~KIYf9|Vjy)NwP-M0w z=;J0|?Uee0+7c6eqAbm=LR5E}F~T~6W$~RsAB!}ds)oayuM5FN=e#Qm!|lazxBe+$ zl^PS!wp!5d=|bMFlsunwVxuWnSXnDjLA68MEDbjI50WSS>akkt`eT-!T>rKqBmK`c z41m&1WJ}c%_!?OyrRBxc&d`ulby0ajR|HwIKB67=i#phN*9ul_fcGtf&)d(w*Wl^8 zX$na~vlL89LzSetr3n?wIm+!NE8@JO91{{`UN)#57Lc-$id$w9+Qn&)8owA*(z4PD zwPWvV?~?47h-M}VT2aV=%B~sxFSS6U@^T@^jwn`5M*)|&85NC>l4S!qn+I7dyy*d^ zJQ20bS((INZA|wu@?%wxhyZUF@1G8PXD-13NAY~GU2*>%M7rkw3vux`t-Xo@bs9o6*{Mf$8JLP-Xk=-pzX|{tKj)?4{$#lzA)k@b>yAGby?Q=^Z zB0tZPq*Ug0)FI5^cVwfE|FXGhSs2=B#8ei-A;@f-OQUcQ6Gq?9h z8rkID7yf7Y-=TovYBdYUY1i-JgQ;u}4ih&z1WwBk*av%fp!SJz50{kGOib!ChuHWS zXV+lBuMNl5H`M*~plmfB5yh{5D?G9vaG_Q&^a{F9OUV0+*{ zFOF0kEKa@aua2l1DrLoI#htT2mtw`&nv;1`FIO}a1n97rkD$Re0I&v#IERXjt1@Vj z2~&A)%5Q!STwpjjb7Edd;W_a2-R|(Bp#@Bj#JAXuXbG(%F`@B8%b0=kk3Umn@&vA` zef1jNUTK~riy%h!f*9_eGY-p&WZ&}{riU&!T|}hCsXj4Ye5^Fr4IYasd_8F}xJc)N zxR1h?GUy5~y;au5ddA#)LBs#SjY@Etjjmd1D_mEyd z+ApjW?`wA$adr2`|Km;65P&12#LVC4*q;DM(o)@xhT|WW^@P)si_%8L-EwG(Jh7X3 zp%u!S{<7EMTpsK`zL+BxFEAE^eF)pq6kJ*+kpEUE=k^!EAFG=8JRbZrjKbwh<|fFA z7#2KOnS$-CyYYFLR?&+$2e2b;LmPQQg(T)YM8##&;Y|@^rtoOEp^?u9x@64l24PMC zGZe zh#0EeVR!2bKUv)FCH|Kd=L|T6&EL$$3hx|snvc`^Y6B=Nm&eNjN?DV9n=@k0Fb1KV z2jvQL7}(6_^5`<2bGX0~YxySCx}aHjBlcF;l3`DXXI&2%uq!=?>a;7!Kf@SB=Js1r z`~>K*&S19-sSunO@Lcxw%dX=o)EkT;GaDriy@j>gsYt*Z-{r05<;>BM*URnHQKj>Q zZz?vtJYmlR!`S7HX8pB)tB`z16JaCzsMc80KK_W7F$ZGOtSZGyl8!4_jagkPKP$)| zxxfbBsUU|#^!m^iX&op|fgq{MM~&%WX!n+=q&jyvqX#XGr$0KTWWk%!O6qVz)fln@tq0?Qr#AyHwFI1*VZ(#U5n4yjDLV09ln z##4WL0M|X@^1)-7`Egk-bOwI@%66E(BnUmEbHJ$dht*4In4q}2s-{L(a}{O!qH7|5 zNONhd_~zA`4qxz1L0rcU%wJ&q=l_7Q9YAacaQ;)-oZ?TU3Sdrc%Bi#}c7a5WV zgbdT?1ng#sGPEe#I23}-QA%;VGTFl6@}f|Sl8QcKEIfsPLOx)|iVOA)qTx_}12BCh zE8&R9hFTm8`wuR!^0>}DTa^cSrt-6dS?%dG6|to$5zx%~7Di)6VY)nU zMLCP~sg$EuCHX_W!lVm(Zrk(Y#U}ARHM80q5+^kq2u}i#PR?;~;FtNU43j)Q%7PG5 zFnj%Y)G)^{qbEdcZ;=9=eI{Tc>P_seP$q9Dt#CrvBD_QbqHd;xi&eiHn!y0 zJre0k3hOf5&3fPv5&qn74D&sgE~r>u9HYEPgeq%+Zb>0YxPoOaP$V0hf*}@0AjM^% z5s&|0{=#>C(r5%UnQTKF+?zd#_04cdu8IPYp5l+Ay;XBmBsYo#laNR`?cCpt z>UdK8Q44!}{(KZUidi^}A6srpM0TMkfc@6qzx0yHBC#CgZ&&b{$#W4Xa*8Q#ag$$K zO6w`OQoa>H*b!jMu+@d1F95q5`kMRxhjZzeA0TGEtOw&sisS+{lSEfB^KVril{Ece zQ&AtM$C<8A2VePPuVIlZtW|>}T{?4UHE5g1A7W~yaa<-Fw zy?x@g&p7B}%Q-iJYjQV2i?VnrM!nAbh|Vtl&#a(|ir{E(t8w<+?Q9c<+4zMnF=edS z_2ZKVVK29BoVKR^^t=;!^YFs4Mrqw_(o|nk-ep?e@A%DzB14ZDn=Sue>06w6qPLrq z8NY3MZk?SrhQG1Xlf~OL$%3%opAtFZTCVCu>kwF-B`K0f*^-u|?Pto1q`Ux5>q{YyBqgVRQ4AljbsRmGQ)cX5jbjcZIU0irLd-A<&ciR(73p9 z(iPTHGd74_W&Z6~N)v4;VlbSt(TyJN*n+%Ltt1cP2OK9Uq4a{s=3_K#@mzP>ee z8xTZ+^dmWttyIOhx_s>}54Xzg z!U;nc&vV1R-#;)gK$1-tCh%2HJ?*=S6)oXTelA)3)l*pEyHGtQKF2R)WzIl$Z_~10 z^<8H~N4E?XbMUu3!HQvWbl%}?J%;u8fO_h^ofmKJHUn2)sbD7{z`7wpiF&N01IZ#z zxOk?F6(HXG{$X_c`1pM(hZad~cn|H#uMk&i8L#l@dP@|;WD1YQz}~92jB5P`W@0oTXsAe1y0E+b)G*!rOMT&D zVyXQpb9gCZueUYAV4B^8_^z|7T+_yo;nl z8Mf5x&*uRdZwvA@PBi*(dAVZw#oG+&(FjWgpk-$4`5!Dowh7$wp;x&Q7!Ept_=iq8nRs6vw-^i|&dK6V#icjKV(MDN9!TQ<9v6CvYZ zhK_N31 zou26Y2X~wig-numMMIl4jl7h5=0r1{704J*2@CqyO#F?Imfjgv87`2jGeyKYYt`~< zKVL{ChAWZTarQQ!&a%c`V&m=Du*#CtjnH+LvgP|9;k)$xG(mesCA~Cv+Jn3W7WRLZ zb0*?f%J%$7I`whl#-9n;mu6=~{1T?zSG@1^WWcTm7V$IX#Y%P=gxdm3*gPB=ajG|= zcFlT@nFaCJad@s&p5*Vcy3Ja{lsFp^YKoOi)zD!EGMo6lhd#27ujfTPG|Gz2*q7)D zB~Tdg*bd=+b=*dWE1$}tDUd_D4l}rpWV&4aGd!{J%dwc{Zmo}8@Pn|l_FAbwbxv!a zrr(#h&Mm(gbo*~a#H*di>0mb6mNE4-Wv(a}>ZdRBj47~P>vUu+xpE!8*~i2V`3WYe87jAT}Af zscP)LkxW>cw2mE_2+yF-%`Tx?x|&%GF6gWV+dU3Chq}z^zrhzUrAypH_t>VT{D7}a zvK-C{4VM2Hu^Z|EQ3f^(N+4iEsP2M=1*f-($;-cwu?uPGj>i-x1_!r7YQV- z)vMmOP2=$}rho4`i$3*l%YBi-HYASRKC3qOLNzXLX@Kcd634pO`V?w5sLo^Ba?6i5T-!SSx5!2CpK%)-s|TLp&$nY?EW=NcXj8+Q&6Tr{C2bCIyuq`{~ySa6~51N+jn0!LaDrMpOX?;%x!|$~LEmj_00t!;sYN{pK zX9si&8Cfi=UDvo9Pp*?{Hq7ZFNprSv`e_f$}ONj^I4i%^D8R{apf}G6z8| zm^(@^wgY^R>D_+Of&WB;KPerl5EG-Cz-`oZ&lpXcdWyJqdoeg)q3OXyi25@j54vBbjxjF`%!JZhRzEkl*V&kNLKSC2};+ zeb~65CkA!uWpl~?n=h`ybky^O^HYfpN-|J9&O~CHb&PhpV!UVutk1air_vbmKM9S( z_C(-!&^z^(_5!!IE{-SU1#PlewxnPcs}#heLTJEpa@xB##pE? zm} z+T(@|c>A&q>o?jD#U&##)K|0$FFpw>T z2AJqmfc+FaIW^rgr7KG%-zr@QIct8lYeU0;(_)xo%E`?YomcD3e2`1SyH_~aw;YcT;4p>Ke$>w?bER|CzkrXQ` za&<9uDs|AwyV+ou0+y=DswKLGnm-ApueqwC>4swg00f!b)j%!lz-();5feX0BqxE) z_~)39jnwvV$)me9-fJ25TVfQ5gRPl{&z^c-Z(r7AT-VC=@RN`%c2q&Lyo4kjR(}M@ zI5obkZZpJ{pN@M{SIMa4OW`Urm2hYBA&h241tYnC8fi9@BSlVO8tCL??k~nlVGoxI zsel8ifjv)99MmXwOrfqcFzvJ-KIoQXH)qDNqG^rMtVyeWp;l+fKmr>2&$u;&^Wqbf zF)D^|s-;Nfl;_*RC8hJC4@T{mit-X)*@ZKbu!s0AOxgE+Lt*-)_lBmG>CK1G1=LDH zZ63SgLix8{m(rXaJYG2t%$oJ;i{=4wa99vu`E{37Hx3v|IPv~??&Pr2Ag*!CM`i)X z)+(}#)i=WONO{=O!)B~9A>U>--@oD7SMTw`p=zES-(+GIeG=f1Gz%`}`h-}Tki}M2 zU(umMYhOnx#(62N6W2k$`wR>_HOeQgag{=1NM9YC@!?5~H^Y%l#rmlvNS~P@OYP=? zt%sjA?AU;}20%f`$?8AKtZ15oRkoq7MmWL%$r{wTsFx=8_CIkTBfi3q9Q@ivt=l+G zWFcvKSRV`fw7IFTWTn1ylBjB+U$I}4mRl0Y%Of?i%UY#>wD&7*5YY(N0mHc>R~+{5 z;vj{Hn$m0iBvn~Zw+JAdlwG`=Ns54Ck~9v{$pR7a>vrt1HA19Tv3!oJ&(NpE8**6A z1sOtFq#2w9@~yiv*w^-P$GbHq^IC%K?%ow4873pxc0_@`;j8xl2_%yVyWTO5`}$KM z*ppLY^nE?2R`|C59;QrlSyoGE#fBHYmkzBa70}2czt(9aF@~C3 zDC5V^FRWH05NwqN>~WxlB0Lvj9Muf5AM0BTz&_`yVu_bmFHI#}2a1F%~vm0?u!x94v zjaeA8e;|yAgZbYL`;{wU8YlXD)UHZT7*!gpG1VInHpA0t^6>A|L*N>o!z*}9I(|P{ zjyG?|^Dv*2o{6lhH>c5Bwh@5P-n8gJ_WYvw?~*=RBoUY^&tNCk6eZNDjiRZRYiaxZ zjepKEOMcgCB|i7Zuy~T9SQD7Yb8b_>TR7E(X4_|c}l-poA5zJf`+)i^Uk}4v7A49CU;hn@Z-^eym zY<`XvS5fF%B!z_yud5Q$n#4tl*x*Ds+zhA!!bA8)Q<9MgBC&6b9OcoljbqF2+#r}` z!`OELQQM&7cXVa)tL|YqU~a6^tk6%%VjGZ13mgqSC5Ti@afq)^Qi=HjSP_34LZyN< z$mzMSD*PbrKJu6(ToumJ-=o#6#!_|k0e@^5$c)*yEO8kFPlR5{>lj7K+0PJzq3UBh z^ZU2WZ3$4{o}^MjO7I2RkxN>=IJsvXRFV}cQrpnd)V&l-fJhK(mPaD^wR8b|g*}?u zXWKK;&Q?q5m5XZw?`_I6$9XKx+sO&q`NLW()m*~ox9yK z#8!$*36sE%m^RYr{np1!NEUs{oa{VU_N6#vx%dmRGM#s-T&^EIpNlO!y*0RV7*$xG z1@H~bp*v5;GQw2KRE95TrASrtW7}ygPY9iIwap@ajutx#n_4KOhA|dzHbc9B5fh>0 zlr-oXF>)S`3PW{mliX)J{KvAZDz-p)cZA`v-bML}YroZ4Nc1E3ttK)P8Kx5DyT~|srzmQgS2L;>!Io2eRi-@;j02HxX>Av}VMP-wIYct*2%2+O3TX@~ezD%RATD3CjNMOA3Qnp<$PK2ZspR2!3weOEMU7(-!c!q?_;bQuK zvo`WBF}q+yRJXC4Q3i&?K@vPT!{!}O$V>^A97&=1<45SVK!40VRgKzo#ruc#tr)6t z(vtGmX3ZJ8m{7Y0Hh;FSLfnaiDr>x!0T-}>uwCj4HNPyryA|X4CKQ4_M>m=E>$4FS zsj+P?ghFE^O%t6C(#V3wyjzEqcqIME&#eK>p}@O{E{hS4_w|(*-rFTGvy6rvbWu`{ zt`Cng2p3+_7op3~;bRSMqJen~hv8OBO%q(9Qi_J1?VOeND>XrX0}cz2Nh;N_0e00-#M5cJQmtISNjKNPZPxzvZ~BbQ2vfE8HiB2E&bI(M=RrCD#KwBOu?qN zIT(;tDOR7!y+;^v?-jv{HV;?2o(UHYhgE9E8K>po>NQ}t0}j(tr4OSI@B4Y`kbaqP z2qLZpKBE5^F=WdCqjqqVD@8~7HE>PJ8P?)hU6cKEhXkV(bHkre zY2kq#uV-p4{L+kwhHWWnQ0`BW@vE_#9Ewjl!m6>9jrAh?ujt39&?Us`R;P34`j4qJ z-k107cF6(5IRRAtOc*@aACb$972O}#Xw?!L=gjRX!udF_(L(r&CcGb_$ogMs=x6pL zOF@}dv^aDQyvixRuvT;EWroojk@$$7g%i$egAAqAFBlb(LH6(P;;`G2qfqJO@%KYn z{pBsOEca1EU?JIItZtqhz?bN0NK9gn!*Z*tX%;d>sr(-IfGHjJNFHiM2=}uha69Gq|;|K0;0GB{Bp4XZQyU0G!zpX5l}9{KtfP8;tKr z>1b~h`6xdrscjR1b*bZcx%ueEs}q1r3%C-X#4Ym=SyG#?|MOL7h% z!|eKv23Rq(k#e!BmY*%Kn%?q~ZzJ^RE{d!*(fmr8Rs`+RL`EY03{~{S+D+G)hoM<( zf#;SvVVVG7@Ew4NaMp+iKrM8VB!#nOQ?U1a&$%XgU5NMhT2O2N(_C#-6p~5J>nc@C z#T&|T7vJiN;K!+|F~%)-qr9+Zh7yI3n_kdVhuiUk)Qvzixtuvr5J$O^wFD21AkD5v zQ|gM(reh>O1`rb3q2VL?MeloM82%L@kNs^sK4n~HEOK&p(Y{Ip-Up-7(L_8zpBbr- zCG$wF>#vor*k_d2Z84c}8K5cVaNky}7{-ulr;MROt%ZJTk0Qny-{-g$<7 zp$adj46Wgk{7FP870aCUAFfMF-%^n(_vp2149qb86{(^zgM2N2-{7XiJ=P za8p#q8L+P=^{6y}I!xUOL@O6WjkxH59&{L*BH(@kTws%%evINsDioxf)!-8mC{*H| z7+8>8uTy4pRgSG>x~1Sy&htyw#=#J6W##u8Gm0e{ngz&S3UMK0zvx=AWe_A!dy#Q3 zq+m{+EY7Qvskko>8D|eX;l$lD`G+|`;V$rVgSV1;)*Z>T>YUZKo;?rq9A}TPH+|f+ z;**&y#z-%Kt~&CbL~u$G=3BHjy*B}DG`vo7g=Dm#tZCvQLdhDcwuC~MYrS`+`E1xX zBzfu5hzhdHISNVic4$oF@NZw?fR|*;k0K)UE!4bY0N)?`YmXBdS15Vm+J7pTQyF6) zoqMm-U6w&68)T==GhsQ3MtWg8MA&%F`-xiMGrGj{#YT!t4!n2VEl$@(@+FwY)aI9D z)l+hr_ARMndsI1Nzm+lc8OxMj^lFrn?1EBq6-zgua8wk#ZKBqbd`}j42gsI?B8;)u zJtwGrf-j{ITgK~4&s4s|N?uv8#*?XRO|<2h<(ZO|n~mKp!(@Jdn)0|Hs4=7xjo{UA zr2-{^(+v-#O9?Br3N4`~?JEn?(9DJkK^8ot(`Kd8!=PVs!%MJZ9|iShBTDYM#5FnL zgtVzMFv#fGO28ykaEhLvKPnZUGV$RiG7|ZnKJQZ_`a4_-#I86T8LtS!YDz)YNU}u9 z%i8{=v^kMGfDo4cpyY#*)TjdCWZfAVTGFIkNL;ksS?NbnTW6$%@uGYm%_eDCoZ-J_ z?^Gg?XuN4Y?4=7gl1xHz-+Ql@P~|G3!cSw&5Jbw=&7KMt{~>AUlc(^yvSo%OLJ^9| z)lY8X2-#N$rs4@vHx}TPJ&FHnz)`V2?Yi&W7YTC+7~$L|Eo;e-)9uo`PE2PF*lrf< z^@k&;&=fnK7^j7GuR422)fdZny15n2ri$Q|HFPIIGi^A%qco_anw6MU-urN&P)#jr z;)F&@ClbF^YHz?d(x>d6>Ry7Z^bfkx^a^`N?Xa<3X`;b@PkfkHBtf+$3Ch|LEcz8u z@9o&>_Qi=(>krZ5w~W%6m^rD*1$3Pp$Whf?&CkPn0{oMAwK7^pwxCt)IBQRW<(*x4 zq|H|88Y&52w}DD7p5RfV=!RbwWe!8D>Ov87F=!%R%mrhrtXG(Twj!c!^!?vTfZ3kcJh6+&j^n{DvffWB@5EV znJpXJvCDbIMqv&26};8nC}wiW!k`4eBSHX|@KTzZEsfZr!e+3pu^x8OoWkYSBP;eu zY!wTWKp?u=9*=Tl?__0XnBn00@sDpf2` zDg#R&L?P0aD|XAFR44CH3%zOr$Fi*}#&uG@GSFbNKKuTO zX`jKCoYRDiqf+Aab2Eh63%3_4o}}E=y}FH-r^Yv8L5pZ(ZxDqHZy!okgIMvdDe>ZY zV2OjrA-hk@BwCiduS1>k?s6HAa-%@mc%Y^OsKBuAU11d4$jyzbF1?wdq|R@tBiK%( zPQ;mKKuKBbf<`^>f|s)ye({2C1_GxqFEjGayjOo{NY)1gU)ZTap(X0FJQjcQyO&gX z?Zl7MiM_DMZRlVC#%MIamc#LirPN2Ud;iW!Q%!>^v=!XCNK6gD?jSHiQ`@|fu^e51 zU*SgOo|G0kd&flgAx;)KJRXtC>imHwer3LQ;{%TyVfE37P z(>wBLPt(-u$J;7js}qQ#U4tT<>G+&~fy504js$6cMc13E>mDbiO*6pj|V%PGyt zTB;{jYc16LbSo&itYFWxdNimXOZZ-@^-(9BH%Swpu3ls|9CZ{Chg$0kzc6D>_vcuh zlt3DwpfbKlk`#`2xx28`kb&QayeHI$x4v&;zT23UlmzPN`5fQwaJ24l!X^}Q6GV&n z#5?F8ddul%9B?aYvOcBAEmUi%5gNa33`Oz!d^Ps*W!fk9JKWHO6q+1jyfVN&fpHf{ zVTaVZsZ7ikAbWf5Yp)r{^@)z3Lk!bOAObs|swo-Fmg13|dP_7&}TjxXjrXyAeb47JM88(l3owNlbFRETA8^ zp(xyw0)6DVK_2BJZI7e^e~IO%xQA#324S zo(ViB@>Ipw4HvT**sJ3f+0-ycQaLNQiIld_Nh6UU3_Zs;b}r{crlOf9R;0!3@QF7p z%|w;^7{_mbz!|oUFQ*zJHM5G^oUBTa=Oa6Rome`s{Ec`7B}(>vbofN9&JWMZ&cyV0 zcH%33q0@bgBjB=^?cG;^Du=7wGDBy!a-{Kz_I!*8udghhEAN_jo74XAb1i)|<N4MWFdZwiAhVr)DevK=+e!mi&KD>EF`Bz(THh79G8#KSP!&=l_l@t zJx3hL&{Df~S5*wym_ipg-fObL(V&&6kiJu3#3BAseyT^kVYLoRN0v&Jud;2p={Vw^ zNV~GRA*%@J(-VQ^fnIXd46}-*AbK<@%aDbnutZ);>_n%^w5Wc~J6GD4M(u$K&U1AZ z-@WQ;JCB@{K1}lj&L9nd5@E^VQ}v(JS$YUtI;gmv22P{P#c}QQJ#_eu8;dO~Wqu8P0x zP&*#+CyK}q5MhhSe9oX*XCyHz9nO?6dn7q5zpTUPhP$0D7JeS)6bpb=Vr*MVcK@O3 zw?xut`2=gKm24u=e5M7Vh zBfw^kczF3~d^Ab~h||;r;6yM%*le(y&YUa#Z}Nt|m66{Rehx%|B69qbzjugbJhcvU z@L_A-Fh}0z?J&`l=NM_zBPVJW9k|THJ!yF74_lBDSot`#Ik={vp5*rRR#U^ec`J;;4Z}R2}Zie z^Mdjl!n8s~v>Jgyl{LZxSBG{-8t55G+?rOJBbO;dS0539N9KQ$Gl4fYpueE|T8Cvs+daescNt`D#hunUmW`Z#c{a)wwE zyjU5f6mEqsga<7q#Ctovoy7HhNhX^0(ao4~TK9BpSC9eRCGQXSC^z3DZYNM;(Ipki zYTE2nBjizbczpeb;l?*V^AVmy$1p#@w?9g>Soq3%T2Q!b35bTo>WOaq91WMgrU@*S(r zx)$oEXN-2OzRMsiYV81hR9J*yr|*>nkYsZs0FvQToPWbr(oY<-XpSPLYZIf`X+{q{ zj^(%hPCx!>G23@a4j|0?dyQve3WWo}809mpJM~O-#Y*EgY2OY~5jOD@vm^fea@C}^ zImyp@LeDImP&e7lr!lfRr6@L;i)s{+ulbS6zhHM{5JA;bi8ix1C6{Fxa6+E#r`51+ zU%2!5_T#B_X)Zl9-aQ%Scqm>msAR0o+2_gR8N9RiM8ko{-Cq)Cn7_R*#V{wW_|ixo+~1F?(Y5lybk}am|~ma%s@&j z%$5y8EIo52E zNbavTofS+x0a{haPKDGW(n^j_BdW{A(^h*?1o;de@SiF0GR|>uP6fwdbN9DYzJ;em zd<5Z*y@*zCXDuJ0fphUv@IJPfAYYn; zHJt&Sxw4R)$&$8*f!et2OjMG*%7L(Crt*N5by2|X0`X+y(SojRbR6;iHyafuw1hhJ zLY_X?v}l;9iJ6i$S)8*{Nnz*sffcy9nHd+p_{K@DJe$kj+EqvB8hX6r?8SvRp@VZX zw-j+@W{@CPKzlOH22?m9=EPUCQ;D8F^1-#5P!<2EXrt1XR*)#~@4_76k0X&>S{YxhO<2zb_?`2?lCnNZTjVY%Pvlq_j6-{tQ-+CQ~uBIg%w?g?+2Q>z#b$+ zkc)C>dq!MNdBlpukZSan_otqKokAWr3e^v#rUj6v9g z62>jCqe>VkUb1K`U#Uo>E+bnfXAg!0AyckC=Sv*K7q+W>0^^aR0mYp=$!9p0l}uOg zs6PWeR5E3Q=KoNZ=PV-OQL?8{DG8w}l$_69`U%Q=;T%1k!LpkSy(hkY=-ji#%d z;87wb=2)G(D!CI}WESmo{3C1bY$7v|TbP662)6g%U>nqM5?G7Vhp(Nn?YF&p4+^#m z3}8R1MB~UHXXBj4zZye5RTMon5}CT%iFQfO-1KXpKY=A>nKEtTpB&fAj$+5I^Ix)4 zk!b1bX%VjxGu30)&>m{#Ct^;xe#Dd(h_7`BbfsTq=XM=$t9ip3Xt5{SMWl1T_7nV) zO<9FzfM(P7%o;=05+3n$@dgCnHl#-6R+D`AGSn@P-zXnGfohj*4Jh73jtjDUR`ByC z9o-Im22Gz`QF{G?7&J<=zw1M>&iNN1NLR_$w?z0M%Dr$5!R_Esfo9fCycsxaQ}$C))x(;T+fuDP(2KPjCi1E!o2%sIw3z?T#L6pY2(^amm3OGA_a!Ul1bNyN8f6IbvN< z+^q;PO!ut4R2a*XCKE_Q)mh5Pr1C=(tha!QiRCOnWV*b%v~^{Z&Fg@kzS;^BXP#Q#pa zk@a_%6sen|g}OznMqc}~q7wS*N#O-guFOkv5)5TMyI>D;SbRyrFqAS>+4}Z(w_R;q zANlrmudJ#6UVAj}hNwlrVU#=L$3l@}n*~EZuik>HI)J!5J{+#^`?17Wvl*bH?YL>u zllp5X=Qi$)K9doSD!U`nBCX$Hlxu!UQ-JN*1Si{a2NRp!RW>uCO2~}WC$G?u%bRz) z!_E%Ummkr?*SFsIB7l4$gaE)h0fuPli5ru9=lc*R^A3TCog7gZ=cIqDF>pV;bj?p} z$~k?VDC?wAd$X$kezkAx z(w_Uih6cIxiB4I9CD5gy`r5hv$3Q3=Cm!gG{}scs%Ofg z%^6_=ub+WR*7?P;^g@x}Zb}HiSCWAUfSFN>uT~oFk|TbzMPXCiI}t9@c148iJm=Rg zI>flW<$PZj12X&B)0DEas_c##7qHFqGoYM3R z$I|oyk^ZXAG$(3A?($<@;TlD+WY-D>Ltj0N(9c11{}i?VU1mod$)<(zv6Yn_O~%A~ z_RJU4Ro&s3X&y|opxJ|=Buffvjq#C6Ql>@gW&GOP{{ah<8J6pi@J4t%fkhhX>wDdQ z@M%o>XeR=e&^C8n{~Dpgmt6cE|CrPGO)TNA!?sl5LIDe+a-8DO=Ob@>9*g(m2Wd0< zA7N$wsd36NYts&a?xd(8&`&m0r;a?81#&_TM7DHwPvG~lX`qxwf-qEEHkI*}u`Q{e z75^}kd+Pn?U2_|#?|svYz>6jK=dbG;+4M!wk394v-9<~-jZg2VG-tA;>r29tMOMf7 zG|(5M$v(Btw8~;OU$#@*7dq|M`bauC3Tn^)~uL#Aka(`h>m z?9tB=4pNK38=?ILU32N3*r2x+Mpd;uM-WYQ;*&$JX`(o>wJVfs_unO42b{bnJ22~` zipn1froi@Oy-v&2m}!5?)kI6tLZC3T6@|Dt`j4cdATDUWWkQUc?ISGzj8E%W?zBf- z9@QspPgZ~&sX2npE1!|~#rCD)wQ)@O_zx`k8qXu84*k0lw7x-19n;?!&soJ3OWT0y z9q_f101*I@21<|XR{$WW*F5K<%37CUG?{Uz6gHWzGKYeAvgc3LN4;5(3(NiMDrhBP z_!fa;Kg3h_6Wj7QKm4|Tu9o5RFJ9+&)|91)=QsxAO-272<&NhO`sQ=c8xzH8gde;P zA_-3=wG^nHp0g3;qpvGc+gNBs7`w8yNaxGUZ?uebG*BrYRYz5mu0=P-5oQ6yAeYHF z;>bH2heNotTGMq-1*Yzk_T~EOmD*@$p!M`+z=2v8C!+a-oY$L58eRjJmxcuPAIw7W zL;viH|K;`EJK{)!nImJo$65DWHJwlFBQ+2K0;d!xcic1ixPT|Hqw4iTTc?~zcfBdb zWS!@@8dfHxu-Pszo4_CC*6UabTA%qE0n{%dso%qM3j+dC4d#jHHzsxEww#z4>6+dZ z`r6UG!4_tT`zI)rVUODWP)53B(Q)#CWP>EEPGN?x~5k znzp4MvWwR79!YvFPR(|L^}Kv0evyx%CUc*n_IE*f*q=Zz_PY6m6LhUMf!15`Kr~NWqV; zQk(*Eq=cg)@lBflP>5PGf@8h-)q9Vf2AnLlT2uEWnr5Q7Q1Say)<`%qY*$F-bJGv~ z_}DdRn;};@82Uz&>YkJdylU9ktH%e2c(+_RVDp7$vmRd#>mGgfWxa{34pa{v)PLCO zNHoaJ!X~FdQyEkxourb~QMX0k)RJao=>_4?+)?p)O95XpF~hRhJliLrbx z!SFx5@w%q;n|FUa{-GGt&KRdYUil~s|Gv>Sun28C*XKG#BWfj1MR;m#J9@^IK9kn; zk*NBXn@w>c>N+!gj+LnSEfzVq0*|6bT?MDV4$!L#xrzv?FZGYAicUKEazS|T}RpB3n&)%(Nwmw*E*1!VtQOL$YWb-gw8h%H{6x?gPBjVHhG zT?#x=DS>L|e-Oo$4UY4LvXP+Tc8UI;fde%RYWrLtz8LF?%! zAKp6bfz?Gx|DmtPB)C3u#f z)_mgJHHQEyVG}=38^6&uuA_pzl1kWOUmT>m^SfG5L*~F_hjg;WY{>-K3`a<@GY%3g zB~M56k` zt`8`#CK$+K?B3RM2rIElwW!!lvV^;YYnSavKTp*|)_EZfk-!j-pU$E;`Ea~PAESw| zbey=z{{@{t@f{m=Cx1lI`M@?iVCxzrDK16rcCTAQLrHRP+~s! zL%)Q5{JgSl(u=);td!gv=MWH4@+NYm)1u^_Whu}X;wSt0Hh5Ij#?MYRP#mgH@z3&< znU9+e5eLCE+S}lbL5*w&TBpU>pH0!&(Kt+*>Xb~9fE?ru_#F70tNf#>%3l#Pu6|?d zcR^fgSFE@SRUhy+!k$PR2|;%E6L5gD-g&Dr#1N^E@UHeRUoPHW!wYry1-lEWCQzRW zE2;=&LS`{MI%6TXNwYXV>nY3aQoDeF`i;A`Z8$JrZ=$B83jENGaZbDCf9WyTRBXUnU@#J3RIj!J-=@`dTwwlXk~Vyb`JdDJO+LMDa6M-+ zNZwUk0Hr2A7*k_LSv1IUDbirpNFp+k(+Tcj&b&qT!(lv>(ZWRTp!3kd6M&)8Ur`j2 z8|SOhXb`J};9g*ObEOJuI9Jy)11%z&bzL+8Ldb$J4>{Elc=Mk$FI|r+Ru@g+%C_36 zVF=}U4ZAMoSj|pX3&9DcmsiYKlU5{~xmM82z18Q;xA$>#E2F9--}c*GAluKCIECzgjvo~#K>Q5Y zU^%W9hq)ar(bNR)?vyF~lN!1ai@i)liUd17TkW~r3*mvVoSG}V8E{4(MYAxqetS=0 z!}pIjumInmWNaK1r+4Gi47siGeA1<8F-tVnwM>8^!1BUYI7?vEe#k!PGNQ5m;CRs# zuB;6&} z5spuh$#_rYh-6NRUu*>r3MSE>S8zl{1!jS;G*faQTw2Hm03)A2KXflJg;nFpq@k|d z`;_8N_6O+tNYo(}6>S-4{o26kM4Uo&FEaKnKGqauwSu57f_S1O5 zhkvKXmc%R+mLn<3dOW6q{no<=Q&sm2W9jC{uE z`t-~2!xTBg04B`7GWtFqt*{)hNjnY(+~v@cDlyA)GHjQ1hifkzbo8IjrYu-R`7vi^ zLo2d2k%9M=THG2Yt3tL1SqI{RX#(4V1OMIRs@STo=#QzxXOWXQDy1ppQ|)`}J$wnP zxpA4`M*Jq*`aAqp*Q6up`9Vuf?B=+tF6iN?Od;R>7nlfn;I8-eSuki??Cx~6#bGjw zkI2O5*N@&8Pv1QA9lQz6v^&}Kq)72Ug>Rfzn~y@#+5bX=pP*lZ960#o_3Z)eyUEJi z(3=6umwJqsLj?&xsK{o6-F)fI$q!TaNxo_E$J6a=-ApjFtU1dB4Q=s714_d`NR$*d z$@A)`ulh07^KEP1z}vO!1m~|M)z_Qd{#(!I-k(;R?FJ$+dv6STZ?5xSMdRN*4!`B$ zb?$lE<4{vmquusB$Q2L~iHX!T@!gAbKkqnrD=Yf^XMS4Z_33(ABKTk`_xk!;)?+L1 zZgOG*137FmTYz?(#q@scujs%qLq-Yfg%ayd{?lka)pi6X8MZ4lo}%iO-xMvjaY2?> zLZa9GV5-I82hBE7@82Q8zh|F<9~ZRLAhm zc1ID?RthXbQ=s9S@S4Z|rGtSboBpNzaJGbS_g+f=V38bmHJ_pMft6Rw4pp=Nh8-i? zI!(F3tgL@vljr;K@%AjT-FiHY&tZvbdu{8*i}WQ<%xl;Ym|fcOGZY>B@}DAb0`I!E z&=Xr}JI&N1Ta4tWiyk*S0-Ov6MG;X+g1?C9&^|LSR7WGS<8nd#|W{TeM^_0jP z9Lj*-eS({rVFOpVA*aw=Kc2x2n19j^I3g|MwHUuaCV6k?E#E_l!F!P|Y-5 z`q-XWn294JBTb)=b#X2m$Jq`0?rw1{Q%eZrDMa|i#JXK~hJD2g8m|Vu~ z1#W08`7ZmhUoDFV|2MLz!&sgv$-#p>|MbpSqk;=5_^#tsy zY1_2VcUk_s+mO2V6}5=N5@>$5+M*Co?t7iRg#i%QTrP?}(nvG#`Q3*?L`b;1iO$|` z1{;*yg@VL`2Eb=+ZIj>eMfvkS6vzo6#%LuUzn~sXvdatFXzV>_JP~yiBl303m+1VE z);OgyKN$IQCqW`;n8arA`)#dpSNvm~nEY@K>vi`<;2S{DQF_qmX26+)smNH)yqd%_ z<|m(lGKuFSnJ-w+mz1wufOS_W#Z~#hmp89h9IsaoHzx=C`!B!Wy#8+A!5h^~6WAmV zB)PlT>UH>0OREs?2y?*S??-=Bt}#vYH=@4*7+fg=n?5^~&$EAhn(Ub0++0jgoBkK?ARK{5 z%GBX7J|ybJsdV4|v|Clz)9JJZ14sA$cwSq#LC&8mnBC(TI%BzF9^ysLsUWZyIrPd8ZaqzIkwdfJzA0jDsfUFU?EV;z z9^y}%fp;4=`GL1EKY@zhHfZeMW&Y=xSpJUF{{!iyjV|x$sejk`W_NaE(4BX1+e2Kp z@TY@z81I;PE`Ep9Y*%`#zm08QoG|n5XNsk zEVc2gT*KlTXFTjrSGe4dwqrOp+dgg8Utab+f88%mzoSdL>^!NBaZYqvYn_~$a$c_g zRruvC>Gh+joV@<=NQ#_?rRCsQ`HoyV2t*ZxzkKYWvJ$p0^L zqYh!LE#iGHJE#_TtmSI8EO5KLX+D*K`O6&^ny0*b++pz$=1JY#(JX@px5v7@q#gG5 z%Q;==ohLBC^78UFJKPUc1U7gD1c;y)->#>WIl4Xk{QTBhohbi)N5LW&tpEELu_<*= zY}Q)T?+@%9E}Iv*FktcU@W3!fx=)a!{ZHsz?@c>C=vmuVJjLeY<{eh{mV12HR7~|j zJ@ode$k3YU1SEUm0~Nu(YzuyDJ9Ec+91da%k@a|rC55_@Lo?M)aJ%IxU>|La{!J61 zut|4@$aoHUn7e(^fa5~}cSKmLxNl{Jn2ZxPpem*8;0ws4T&4CxJ-Wp;hlJaAe>pNt zhGF_`jVhKyyf%Fu33taWo%!R&S+Mk%$(2S9#lL5-sO!|QZblsnxOOgrlm{?@_xm9X;LOLY*B*Gosf}YLdzMcHOoK{x_x0EHq#1Wzh+OJiMudi?c1urW; zQ9H1u1UdAG&lxt~cFi%_fh~FdKl-XDyCaVB&lDtN{}u%QuYlLDa2x)sEYx39O98M; NNlsO^R@yA|e*ySlu;%~( literal 0 HcmV?d00001 diff --git a/demo/documented/mixed-poisson/python/demo_mixed-poisson.py b/demo/documented/mixed-poisson/python/demo_mixed-poisson.py new file mode 100644 index 0000000..e607675 --- /dev/null +++ b/demo/documented/mixed-poisson/python/demo_mixed-poisson.py @@ -0,0 +1,94 @@ +"""This demo program solves the mixed formulation of Poisson's +equation: + + sigma - grad(u) = 0 + - div(sigma) = f + +The corresponding weak (variational problem) + + + = 0 for all tau + - = for all v + +is solved using BDM (Brezzi-Douglas-Marini) elements of degree k for +(sigma, tau) and DG (discontinuous Galerkin) elements of degree k - 1 +for (u, v). + +Original implementation: ../cpp/main.cpp by Anders Logg and Marie Rognes +""" + +# Copyright (C) 2007 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Marie E. Rognes 2010 +# Modified by Anders Logg 2011 +# +# First added: 2007-11-14 +# Last changed: 2012-11-12 + +# Begin demo + +from dolfin import * + +# Create mesh +mesh = UnitSquareMesh(32, 32) + +# Define function spaces and mixed (product) space +BDM = FunctionSpace(mesh, "BDM", 1) +DG = FunctionSpace(mesh, "DG", 0) +W = BDM * DG + +# Define trial and test functions +(sigma, u) = TrialFunctions(W) +(tau, v) = TestFunctions(W) + +# Define source function +f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") + +# Define variational form +a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx +L = - f*v*dx + +# Define function G such that G \cdot n = g +class BoundarySource(Expression): + def __init__(self, mesh): + self.mesh = mesh + def eval_cell(self, values, x, ufc_cell): + cell = Cell(self.mesh, ufc_cell.index) + n = cell.normal(ufc_cell.local_facet) + g = sin(5*x[0]) + values[0] = g*n[0] + values[1] = g*n[1] + def value_shape(self): + return (2,) + +G = BoundarySource(mesh) + +# Define essential boundary +def boundary(x): + return x[1] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS + +bc = DirichletBC(W.sub(0), G, boundary) + +# Compute solution +w = Function(W) +solve(a == L, w, bc) +(sigma, u) = w.split() + +# Plot sigma and u +plot(sigma) +plot(u) +interactive() diff --git a/demo/documented/mixed-poisson/python/documentation.rst b/demo/documented/mixed-poisson/python/documentation.rst new file mode 100644 index 0000000..9bbb676 --- /dev/null +++ b/demo/documented/mixed-poisson/python/documentation.rst @@ -0,0 +1,184 @@ +.. Documentation for the mixed Poisson demo from DOLFIN. + +.. _demo_pde_mixed-poisson_python_documentation: + +Mixed formulation for Poisson equation +====================================== + +This demo is implemented in a single Python file, +:download:`demo_mixed-poisson.py`, which contains both the variational +forms and the solver. + +.. include:: ../common.txt + + +Implementation +-------------- + +This demo is implemented in the :download:`demo_mixed-poisson.py` +file. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +Then, we need to create a :py:class:`Mesh ` covering +the unit square. In this example, we will let the mesh consist of 32 x +32 squares with each square divided into two triangles: + +.. code-block:: python + + # Create mesh + mesh = UnitSquareMesh(32, 32) + +.. index:: + pair: FunctionSpace; Brezzi-Douglas-Marini + pair: FunctionSpace; Discontinous Lagrange + +Next, we need to define the function spaces. We define the two +function spaces :math:`\Sigma_h` and :math:`V_h` separately, before +combining these into a mixed function space: + +.. code-block:: python + + # Define function spaces and mixed (product) space + BDM = FunctionSpace(mesh, "BDM", 1) + DG = FunctionSpace(mesh, "DG", 0) + W = BDM * DG + +The second argument to :py:class:`FunctionSpace +` specifies the type of +finite element family, while the third argument specifies the +polynomial degree. The UFL user manual contains a list of all +available finite element families and more details. The * operator +creates a mixed (product) space ``W`` from the two separate spaces +``BDM`` and ``DG``. Hence, + +.. math:: + + W = \{ (\tau, v) \ \text{such that} \ \tau \in BDM, v \in DG \}. + +Next, we need to specify the trial functions (the unknowns) and the +test functions on this space. This can be done as follows + +.. code-block:: python + + # Define trial and test functions + (sigma, u) = TrialFunctions(W) + (tau, v) = TestFunctions(W) + +In order to define the variational form, it only remains to define the +source function :math:`f`. This is done just as for the :ref:`Poisson +demo `: + +.. code-block:: python + + # Define source function + f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") + +We are now ready to define the variational forms a and L. Since, +:math:`u_0 = 0` in this example, the boundary term on the right-hand +side vanishes. + +.. code-block:: python + + # Define variational form + a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx + L = - f*v*dx + +It only remains to prescribe the boundary condition for the +flux. Essential boundary conditions are specified through the class +:py:class:`DirichletBC ` which takes three +arguments: the function space the boundary condition is supposed to be +applied to, the data for the boundary condition, and the relevant part +of the boundary. + +We want to apply the boundary condition to the first subspace of the +mixed space. Subspaces of a :py:class:`MixedFunctionSpace +` can be accessed +by the method :py:func:`sub +`. In our case, +this reads ``W.sub(0)``. (Do *not* use the separate space ``BDM`` as +this would mess up the numbering.) + +Next, we need to construct the data for the boundary condition. An +essential boundary condition is handled by replacing degrees of +freedom by the degrees of freedom evaluated at the given data. The +:math:`BDM` finite element spaces are vector-valued spaces and hence +the degrees of freedom act on vector-valued objects. The effect is +that the user is required to construct a :math:`G` such that :math:`G +\cdot n = g`. Such a :math:`G` can be constructed by letting :math:`G += g n`. In particular, it can be created by subclassing the +:py:class:`Expression ` +class. Overloading the ``eval_cell`` method (instead of the usual +``eval``) allows us to extract more geometry information such as the +facet normals. Since this is a vector-valued expression, we also need +to overload the ``value_shape`` method. + +.. index:: + single: Expression; (in Mixed Poisson demo) + +.. code-block:: python + + # Define function G such that G \cdot n = g + class BoundarySource(Expression): + def __init__(self, mesh): + self.mesh = mesh + def eval_cell(self, values, x, ufc_cell): + cell = Cell(self.mesh, ufc_cell.index) + n = cell.normal(ufc_cell.local_facet) + g = sin(5*x[0]) + values[0] = g*n[0] + values[1] = g*n[1] + def value_shape(self): + return (2,) + + G = BoundarySource(mesh) + +Specifying the relevant part of the boundary can be done as for the +Poisson demo (but now the top and bottom of the unit square is the +essential boundary): + +.. code-block:: python + + # Define essential boundary + def boundary(x): + return x[1] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS + +Now, all the pieces are in place for the construction of the essential +boundary condition: + +.. code-block:: python + + bc = DirichletBC(W.sub(0), G, boundary) + +To compute the solution we use the bilinear and linear forms, and the +boundary condition, but we also need to create a :py:class:`Function +` to store the solution(s). The +(full) solution will be stored in the ``w``, which we initialise using +the :py:class:`FunctionSpace +` ``W``. The actual +computation is performed by calling :py:func:`solve +`. The separate components ``sigma`` and +``u`` of the solution can be extracted by calling the :py:func:`split +` function. Finally, we plot +the solutions to examine the result. + +.. code-block:: python + + # Compute solution + w = Function(W) + solve(a == L, w, bc) + (sigma, u) = w.split() + + # Plot sigma and u + plot(sigma) + plot(u) + interactive() + +Complete code +------------- +.. literalinclude:: demo_mixed-poisson.py + :start-after: # Begin demo diff --git a/demo/documented/navier-stokes/common.txt b/demo/documented/navier-stokes/common.txt new file mode 100644 index 0000000..5de4f01 --- /dev/null +++ b/demo/documented/navier-stokes/common.txt @@ -0,0 +1,91 @@ +This demo solves the incompressible Navier-Stokes equations. It +illustrates how to: + +* Implement a splitting method where different fields are coupled + via a set of partial differential equations +* Use different iterative solvers and different preconditioners for + different steps of the solution process +* Use time-dependent Expressions +* Set boundary conditions based on geometric constraints +* Perform time-stepping + +Equation and solution method +---------------------------- + +We consider the incompressible Navier-Stokes equations on a domain +:math:`\Omega \subset \mathbb{R}^2`, consisting of a pair of momentum +and continuity equations: + +.. math:: + + \dot{u} + \nabla u \cdot u - \nu \Delta u + \nabla p &= f, \\ + \nabla \cdot u = 0. + +Here, :math:`u` is the unknown velocity, :math:`p` is the unknown +pressure, :math:`\nu` is the kinematic viscosity, and :math:`f` is a +given source. There exist many solution strategies for the +incompressible Navier-Stokes equations. One of the oldest is the +splitting method proposed by Chorin (1968) and Temam (1969), often +refered to as Chorin's method. + +In Chorin's method, one first ignores the pressure in the momentum +equation and computes the *tentative velocity* :math:`u_h^{\star}` +according to: + +.. math:: + + \langle (u_h^{\star} - u_h^{n-1}) / \Delta t_n, v \rangle + + \langle \nabla u_h^{n-1} \cdot u_h^{n-1}, v \rangle + + \langle \nu \nabla u_h^n, \nabla v \rangle = + \langle f, v \rangle . + +Here, :math:`\langle \cdot, \cdot \rangle` denotes the +:math:`L^2(\Omega)` inner product. Subsequently, the velocity is +projected to the space of divergence free fields. This step may be +obtained by subtracting the variational problem for the tentative +velocity :math:`u_h^{\star}` from the incompressible Navier-Stokes +equations and using the continuity equation. One obtains the following +pair of equations for computing the velocity :math:`u_h^n` and +pressure :math:`p_h^n` at time :math:`t = t_n` based on the tentative +velocity :math:`u_h^{\star}`: + +.. math:: + + \langle \nabla p^n, \nabla q \rangle &= + - \langle \nabla \cdot u_h^{\star}, q \rangle / \Delta t_n, \\ + \langle u_h^n, v \rangle &= + \langle u_h^{\star}, v \rangle - \Delta t_n \langle \nabla p^n, v \rangle. + +Problem definition +------------------ + +In this demo, we solve the incompressible Navier-Stokes equations on +an L-shaped domain. The L-shape is the subset of the unit square +obtained by removing the upper right quadrant. + +The flow is driven by an oscillating pressure +:math:`p_{\mathrm{in}}(t) = \sin 3t` at the inflow :math:`y = 1` while +the pressure is kept constant :math:`p_{\mathrm{out}} = 0` at the +outflow :math:`x = 1`. + +At the inflow and outflow, we impose free flow ("do nothing") boundary +conditions for the velocity and no-slip boundary conditions on the +remaining boundary. + +The (kinematic) viscosity is set to :math:`\nu = 0.01`, the time step +is :math:`\Delta t = 0.01` and the length of the time interval is +:math:`T = 3`. The solution is computed using continuous vector-valued +piecewise quadratics for the velocity, and continuous scalar piecewise +linears for the pressure (the Taylor-Hood elements). + +With the above input the solution for the velocity :math:`u` and pressure +:math:`p` will look as follows: + +.. image:: ../navier-stokes_u.png + :scale: 75 + :align: center + +.. image:: ../navier-stokes_p.png + :scale: 75 + :align: center + diff --git a/demo/documented/navier-stokes/cpp/CMakeLists.txt b/demo/documented/navier-stokes/cpp/CMakeLists.txt new file mode 100644 index 0000000..beb7484 --- /dev/null +++ b/demo/documented/navier-stokes/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_navier-stokes) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/navier-stokes/cpp/PressureUpdate.h b/demo/documented/navier-stokes/cpp/PressureUpdate.h new file mode 100644 index 0000000..bf4e5f1 --- /dev/null +++ b/demo/documented/navier-stokes/cpp/PressureUpdate.h @@ -0,0 +1,7858 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __PRESSUREUPDATE_H +#define __PRESSUREUPDATE_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class pressureupdate_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + pressureupdate_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new pressureupdate_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class pressureupdate_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + pressureupdate_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[3] = dof_values[7]; + vertex_values[5] = dof_values[8]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new pressureupdate_finite_element_0(); + break; + } + case 1: + { + return new pressureupdate_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new pressureupdate_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class pressureupdate_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + pressureupdate_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + + // Get coordinates and map to the reference (FIAT) element + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new pressureupdate_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class pressureupdate_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + pressureupdate_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new pressureupdate_finite_element_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class pressureupdate_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + pressureupdate_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new pressureupdate_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class pressureupdate_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + pressureupdate_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new pressureupdate_dofmap_0(); + break; + } + case 1: + { + return new pressureupdate_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new pressureupdate_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class pressureupdate_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + pressureupdate_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 1; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 0; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new pressureupdate_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class pressureupdate_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + pressureupdate_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new pressureupdate_dofmap_3(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class pressureupdate_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + pressureupdate_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 11 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = -0.5*G0_0_0 - 0.5*G0_1_0; + A[2] = -0.5*G0_0_1 - 0.5*G0_1_1; + A[3] = -0.5*G0_0_0 - 0.5*G0_0_1; + A[4] = 0.5*G0_0_0; + A[5] = 0.5*G0_0_1; + A[6] = -0.5*G0_1_0 - 0.5*G0_1_1; + A[7] = 0.5*G0_1_0; + A[8] = 0.5*G0_1_1; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class pressureupdate_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + pressureupdate_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W3[3] = {0.166666666666667, 0.166666666666667, 0.166666666666667}; + // Quadrature points on the UFC reference element: (0.166666666666667, 0.166666666666667), (0.166666666666667, 0.666666666666667), (0.666666666666667, 0.166666666666667) + + // Values of basis functions at quadrature points. + static const double FE0[3][3] = \ + {{0.666666666666667, 0.166666666666667, 0.166666666666667}, + {0.166666666666667, 0.166666666666667, 0.666666666666667}, + {0.166666666666667, 0.666666666666667, 0.166666666666667}}; + + static const double FE2_C0_D01[3][5] = \ + {{-1.66666666666667, -0.333333333333333, 0.666666666666666, 2.0, -0.666666666666666}, + {0.333333333333333, 1.66666666666667, 0.666666666666665, -2.0, -0.666666666666666}, + {0.333333333333334, -0.333333333333333, 2.66666666666667, 0.0, -2.66666666666667}}; + + // Array of non-zero columns + static const unsigned int nzc10[5] = {6, 8, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc7[5] = {0, 2, 3, 4, 5}; + + static const double FE2_C0_D10[3][5] = \ + {{-1.66666666666667, -0.333333333333334, 0.666666666666666, -0.666666666666666, 2.0}, + {0.333333333333334, -0.333333333333334, 2.66666666666666, -2.66666666666666, 0.0}, + {0.333333333333334, 1.66666666666667, 0.666666666666666, -0.666666666666666, -2.0}}; + + // Array of non-zero columns + static const unsigned int nzc11[5] = {6, 7, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc8[5] = {0, 1, 3, 4, 5}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 3; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 8. + double G[4]; + G[0] = - K[0]*det/w[0][0]; + G[1] = - K[2]*det/w[0][0]; + G[2] = - K[1]*det/w[0][0]; + G[3] = - K[3]*det/w[0][0]; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 162 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + + // Total number of operations to compute function values = 40 + for (unsigned int r = 0; r < 5; r++) + { + F0 += FE2_C0_D10[ip][r]*w[1][nzc8[r]]; + F1 += FE2_C0_D01[ip][r]*w[1][nzc7[r]]; + F2 += FE2_C0_D10[ip][r]*w[1][nzc11[r]]; + F3 += FE2_C0_D01[ip][r]*w[1][nzc10[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 8 + double I[1]; + // Number of operations: 8 + I[0] = W3[ip]*(F0*G[0] + F1*G[1] + F2*G[2] + F3*G[3]); + + + // Number of operations for primary indices: 6 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[j] += FE0[ip][j]*I[0]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class pressureupdate_form_0: public ufc::form +{ +public: + + /// Constructor + pressureupdate_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "996f902b81205976ede73587192186c9fd9b057164f0036bf925051e4ce236d3afa448345b6b3a7958f9c265483ba7f2701db77c9f0b497566f0fb97007140e6"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new pressureupdate_finite_element_3(); + break; + } + case 1: + { + return new pressureupdate_finite_element_3(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new pressureupdate_dofmap_3(); + break; + } + case 1: + { + return new pressureupdate_dofmap_3(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new pressureupdate_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class pressureupdate_form_1: public ufc::form +{ +public: + + /// Constructor + pressureupdate_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~pressureupdate_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "02e8cbec465121e66ef7138d34a44f7b23ad14df6f0c0d3e8f89334b7ceac189c0af977563a810b8cb8d6c121e7a76619efd36196310f690b7849e12de055967"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 2; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new pressureupdate_finite_element_3(); + break; + } + case 1: + { + return new pressureupdate_finite_element_2(); + break; + } + case 2: + { + return new pressureupdate_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new pressureupdate_dofmap_3(); + break; + } + case 1: + { + return new pressureupdate_dofmap_2(); + break; + } + case 2: + { + return new pressureupdate_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new pressureupdate_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace PressureUpdate +{ + +class CoefficientSpace_k: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_k(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_k(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_k(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_k() + { + } + +}; + +class CoefficientSpace_u1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_u1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_u1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_u1() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new pressureupdate_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new pressureupdate_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new pressureupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new pressureupdate_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_k Form_L_FunctionSpace_1; + +typedef CoefficientSpace_u1 Form_L_FunctionSpace_2; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 2), k(*this, 0), u1(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new pressureupdate_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& k, const dolfin::GenericFunction& u1): + dolfin::Form(1, 2), k(*this, 0), u1(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->k = k; + this->u1 = u1; + + _ufc_form = std::shared_ptr(new pressureupdate_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr k, std::shared_ptr u1): + dolfin::Form(1, 2), k(*this, 0), u1(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->k = *k; + this->u1 = *u1; + + _ufc_form = std::shared_ptr(new pressureupdate_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 2), k(*this, 0), u1(*this, 1) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new pressureupdate_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& k, const dolfin::GenericFunction& u1): + dolfin::Form(1, 2), k(*this, 0), u1(*this, 1) + { + _function_spaces[0] = V0; + + this->k = k; + this->u1 = u1; + + _ufc_form = std::shared_ptr(new pressureupdate_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr k, std::shared_ptr u1): + dolfin::Form(1, 2), k(*this, 0), u1(*this, 1) + { + _function_spaces[0] = V0; + + this->k = *k; + this->u1 = *u1; + + _ufc_form = std::shared_ptr(new pressureupdate_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "k") + return 0; + else if (name == "u1") + return 1; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "k"; + case 1: + return "u1"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_k; + typedef Form_L_FunctionSpace_2 CoefficientSpace_u1; + + // Coefficients + dolfin::CoefficientAssigner k; + dolfin::CoefficientAssigner u1; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/navier-stokes/cpp/PressureUpdate.ufl b/demo/documented/navier-stokes/cpp/PressureUpdate.ufl new file mode 100644 index 0000000..3bc1aa5 --- /dev/null +++ b/demo/documented/navier-stokes/cpp/PressureUpdate.ufl @@ -0,0 +1,41 @@ +# Copyright (C) 2010 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2010-08-30 +# Last changed: 2010-09-01 +# +# The bilinear form a(u, v) and linear form L(v) for the pressure +# update step in Chorin's method for the incompressible Navier-Stokes +# equations. +# +# Compile this form with FFC: ffc -l dolfin PressureUpdate.ufl. + +# Define function spaces (P2-P1) +V = VectorElement("Lagrange", triangle, 2) +Q = FiniteElement("Lagrange", triangle, 1) + +# Define trial and test functions +p = TrialFunction(Q) +q = TestFunction(Q) + +# Define coefficients +k = Constant(triangle) +u1 = Coefficient(V) + +# Define bilinear and linear forms +a = inner(grad(p), grad(q))*dx +L = -(1/k)*div(u1)*q*dx diff --git a/demo/documented/navier-stokes/cpp/TentativeVelocity.h b/demo/documented/navier-stokes/cpp/TentativeVelocity.h new file mode 100644 index 0000000..b0a7211 --- /dev/null +++ b/demo/documented/navier-stokes/cpp/TentativeVelocity.h @@ -0,0 +1,7029 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __TENTATIVEVELOCITY_H +#define __TENTATIVEVELOCITY_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class tentativevelocity_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + tentativevelocity_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~tentativevelocity_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + + // Get coordinates and map to the reference (FIAT) element + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new tentativevelocity_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class tentativevelocity_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + tentativevelocity_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~tentativevelocity_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new tentativevelocity_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class tentativevelocity_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + tentativevelocity_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~tentativevelocity_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[3] = dof_values[7]; + vertex_values[5] = dof_values[8]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new tentativevelocity_finite_element_1(); + break; + } + case 1: + { + return new tentativevelocity_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new tentativevelocity_finite_element_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class tentativevelocity_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + tentativevelocity_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~tentativevelocity_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 1; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 0; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new tentativevelocity_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class tentativevelocity_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + tentativevelocity_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~tentativevelocity_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new tentativevelocity_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class tentativevelocity_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + tentativevelocity_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~tentativevelocity_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new tentativevelocity_dofmap_1(); + break; + } + case 1: + { + return new tentativevelocity_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new tentativevelocity_dofmap_2(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class tentativevelocity_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + tentativevelocity_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~tentativevelocity_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W6[6] = {0.054975871827661, 0.054975871827661, 0.054975871827661, 0.111690794839005, 0.111690794839005, 0.111690794839005}; + // Quadrature points on the UFC reference element: (0.816847572980459, 0.091576213509771), (0.091576213509771, 0.816847572980459), (0.091576213509771, 0.091576213509771), (0.10810301816807, 0.445948490915965), (0.445948490915965, 0.10810301816807), (0.445948490915965, 0.445948490915965) + + // Values of basis functions at quadrature points. + static const double FE1_C0[6][6] = \ + {{-0.074803807748196, 0.517632341987673, -0.0748038077481966, 0.299215230992787, 0.0335448115231483, 0.299215230992784}, + {-0.074803807748196, -0.0748038077481966, 0.517632341987674, 0.299215230992787, 0.299215230992784, 0.0335448115231483}, + {0.517632341987671, -0.0748038077481966, -0.0748038077481966, 0.0335448115231487, 0.299215230992787, 0.299215230992787}, + {-0.0482083778155119, -0.0847304930939778, -0.0482083778155119, 0.192833511262048, 0.795480226200906, 0.192833511262048}, + {-0.0482083778155119, -0.048208377815512, -0.0847304930939778, 0.192833511262048, 0.192833511262048, 0.795480226200906}, + {-0.0847304930939778, -0.048208377815512, -0.0482083778155119, 0.795480226200906, 0.192833511262048, 0.192833511262048}}; + + // Array of non-zero columns + static const unsigned int nzc6[6] = {0, 1, 2, 3, 4, 5}; + + // Array of non-zero columns + static const unsigned int nzc9[6] = {6, 7, 8, 9, 10, 11}; + + static const double FE1_C0_D01[6][5] = \ + {{0.633695145960921, -0.633695145960916, 3.26739029192183, 0.0, -3.26739029192184}, + {0.63369514596092, 2.26739029192184, 0.366304854039083, -2.90108543788276, -0.366304854039083}, + {-2.26739029192183, -0.633695145960916, 0.366304854039083, 2.90108543788275, -0.366304854039083}, + {-0.78379396366386, 0.78379396366386, 0.432412072672279, 0.0, -0.432412072672279}, + {-0.783793963663859, -0.567587927327719, 1.78379396366386, 1.35138189099158, -1.78379396366386}, + {0.567587927327721, 0.78379396366386, 1.78379396366386, -1.35138189099158, -1.78379396366386}}; + + // Array of non-zero columns + static const unsigned int nzc10[5] = {6, 8, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc7[5] = {0, 2, 3, 4, 5}; + + static const double FE1_C0_D10[6][5] = \ + {{0.63369514596092, 2.26739029192184, 0.366304854039083, -0.366304854039083, -2.90108543788276}, + {0.633695145960921, -0.633695145960916, 3.26739029192183, -3.26739029192183, 0.0}, + {-2.26739029192183, -0.633695145960916, 0.366304854039083, -0.366304854039083, 2.90108543788275}, + {-0.78379396366386, -0.56758792732772, 1.78379396366386, -1.78379396366386, 1.35138189099158}, + {-0.78379396366386, 0.78379396366386, 0.432412072672279, -0.432412072672279, 0.0}, + {0.56758792732772, 0.78379396366386, 1.78379396366386, -1.78379396366386, -1.35138189099158}}; + + // Array of non-zero columns + static const unsigned int nzc11[5] = {6, 7, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc8[5] = {0, 1, 3, 4, 5}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 144; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 16. + double G[4]; + G[0] = 0.01*det*(K[2]*K[2] + K[3]*K[3]); + G[1] = 0.01*det*(K[0]*K[2] + K[1]*K[3]); + G[2] = 0.01*det*(K[0]*K[0] + K[1]*K[1]); + G[3] = det/w[0][0]; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 4920 + for (unsigned int ip = 0; ip < 6; ip++) + { + + // Number of operations to compute ip constants: 4 + double I[4]; + // Number of operations: 1 + I[0] = G[0]*W6[ip]; + + // Number of operations: 1 + I[1] = G[1]*W6[ip]; + + // Number of operations: 1 + I[2] = G[2]*W6[ip]; + + // Number of operations: 1 + I[3] = G[3]*W6[ip]; + + + // Number of operations for primary indices: 216 + for (unsigned int j = 0; j < 6; j++) + { + for (unsigned int k = 0; k < 6; k++) + { + // Number of operations to compute entry: 3 + A[nzc6[j]*12 + nzc6[k]] += FE1_C0[ip][j]*FE1_C0[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc9[k]] += FE1_C0[ip][j]*FE1_C0[ip][k]*I[3]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 600 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc10[k]] += FE1_C0_D01[ip][j]*FE1_C0_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[nzc10[j]*12 + nzc11[k]] += FE1_C0_D01[ip][j]*FE1_C0_D10[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc10[k]] += FE1_C0_D01[ip][k]*FE1_C0_D10[ip][j]*I[1]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc11[k]] += FE1_C0_D10[ip][j]*FE1_C0_D10[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc7[k]] += FE1_C0_D01[ip][j]*FE1_C0_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc8[k]] += FE1_C0_D01[ip][j]*FE1_C0_D10[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc7[k]] += FE1_C0_D01[ip][k]*FE1_C0_D10[ip][j]*I[1]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc8[k]] += FE1_C0_D10[ip][j]*FE1_C0_D10[ip][k]*I[2]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class tentativevelocity_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + tentativevelocity_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~tentativevelocity_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W7[7] = {0.1125, 0.0629695902724136, 0.0629695902724136, 0.0629695902724136, 0.0661970763942531, 0.0661970763942531, 0.0661970763942531}; + // Quadrature points on the UFC reference element: (0.333333333333333, 0.333333333333333), (0.797426985353087, 0.101286507323456), (0.101286507323456, 0.797426985353087), (0.101286507323456, 0.101286507323456), (0.0597158717897698, 0.470142064105115), (0.470142064105115, 0.0597158717897698), (0.470142064105115, 0.470142064105115) + + // Values of basis functions at quadrature points. + static const double FE1_C0[7][6] = \ + {{-0.111111111111111, -0.111111111111111, -0.111111111111111, 0.444444444444444, 0.444444444444444, 0.444444444444444}, + {-0.0807685941918872, 0.474352608585538, -0.0807685941918871, 0.323074376767549, 0.0410358262631383, 0.323074376767549}, + {-0.0807685941918872, -0.0807685941918872, 0.474352608585538, 0.323074376767549, 0.323074376767549, 0.0410358262631383}, + {0.474352608585539, -0.0807685941918871, -0.0807685941918871, 0.0410358262631383, 0.323074376767549, 0.323074376767549}, + {-0.0280749432230786, -0.0525839011025453, -0.0280749432230788, 0.112299772892315, 0.884134241764073, 0.112299772892315}, + {-0.0280749432230787, -0.0280749432230788, -0.0525839011025453, 0.112299772892315, 0.112299772892315, 0.884134241764073}, + {-0.0525839011025454, -0.0280749432230789, -0.0280749432230788, 0.884134241764072, 0.112299772892315, 0.112299772892315}}; + + // Array of non-zero columns + static const unsigned int nzc6[6] = {0, 1, 2, 3, 4, 5}; + + // Array of non-zero columns + static const unsigned int nzc9[6] = {6, 7, 8, 9, 10, 11}; + + static const double FE1_C0_D01[7][5] = \ + {{-0.333333333333333, 0.333333333333333, 1.33333333333333, 0.0, -1.33333333333333}, + {0.594853970706175, -0.594853970706175, 3.18970794141235, 0.0, -3.18970794141235}, + {0.594853970706174, 2.18970794141235, 0.405146029293824, -2.78456191211852, -0.405146029293825}, + {-2.18970794141235, -0.594853970706175, 0.405146029293824, 2.78456191211852, -0.405146029293825}, + {-0.880568256420461, 0.88056825642046, 0.238863487159078, 0.0, -0.238863487159078}, + {-0.88056825642046, -0.76113651284092, 1.88056825642046, 1.64170476926138, -1.88056825642046}, + {0.761136512840921, 0.88056825642046, 1.88056825642046, -1.64170476926138, -1.88056825642046}}; + + // Array of non-zero columns + static const unsigned int nzc10[5] = {6, 8, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc7[5] = {0, 2, 3, 4, 5}; + + static const double FE1_C0_D10[7][5] = \ + {{-0.333333333333333, 0.333333333333333, 1.33333333333333, -1.33333333333333, 0.0}, + {0.594853970706174, 2.18970794141235, 0.405146029293824, -0.405146029293824, -2.78456191211852}, + {0.594853970706175, -0.594853970706175, 3.18970794141235, -3.18970794141235, 0.0}, + {-2.18970794141235, -0.594853970706175, 0.405146029293824, -0.405146029293824, 2.78456191211852}, + {-0.880568256420461, -0.761136512840922, 1.88056825642046, -1.88056825642046, 1.64170476926138}, + {-0.88056825642046, 0.880568256420461, 0.238863487159078, -0.238863487159078, 0.0}, + {0.761136512840921, 0.88056825642046, 1.88056825642046, -1.88056825642046, -1.64170476926138}}; + + // Array of non-zero columns + static const unsigned int nzc11[5] = {6, 7, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc8[5] = {0, 1, 3, 4, 5}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 12; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 5. + double G[5]; + G[0] = - K[0]*det; + G[1] = - K[2]*det; + G[2] = det/w[0][0]; + G[3] = - K[1]*det; + G[4] = - K[3]*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 966 + for (unsigned int ip = 0; ip < 7; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + double F6 = 0.0; + double F7 = 0.0; + + // Total number of operations to compute function values = 40 + for (unsigned int r = 0; r < 5; r++) + { + F3 += FE1_C0_D10[ip][r]*w[1][nzc8[r]]; + F4 += FE1_C0_D01[ip][r]*w[1][nzc7[r]]; + F6 += FE1_C0_D10[ip][r]*w[1][nzc11[r]]; + F7 += FE1_C0_D01[ip][r]*w[1][nzc10[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 48 + for (unsigned int r = 0; r < 6; r++) + { + F0 += FE1_C0[ip][r]*w[2][nzc6[r]]; + F1 += FE1_C0[ip][r]*w[2][nzc9[r]]; + F2 += FE1_C0[ip][r]*w[1][nzc6[r]]; + F5 += FE1_C0[ip][r]*w[1][nzc9[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 26 + double I[2]; + // Number of operations: 13 + I[0] = W7[ip]*(F0*det + F2*(G[2] + F3*G[0] + F4*G[1]) + F5*(F3*G[3] + F4*G[4])); + + // Number of operations: 13 + I[1] = W7[ip]*(F1*det + F2*(F6*G[0] + F7*G[1]) + F5*(G[2] + F6*G[3] + F7*G[4])); + + + // Number of operations for primary indices: 24 + for (unsigned int j = 0; j < 6; j++) + { + // Number of operations to compute entry: 2 + A[nzc6[j]] += FE1_C0[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc9[j]] += FE1_C0[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class tentativevelocity_form_0: public ufc::form +{ +public: + + /// Constructor + tentativevelocity_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~tentativevelocity_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "2975a0716fb36262c618c28dbc58714e172982554b8c5398a13912292771a755aae852b1d331d5389db2e0f784528efa14f4f5b640cbef0d37ca8740e2a50764"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new tentativevelocity_finite_element_2(); + break; + } + case 1: + { + return new tentativevelocity_finite_element_2(); + break; + } + case 2: + { + return new tentativevelocity_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new tentativevelocity_dofmap_2(); + break; + } + case 1: + { + return new tentativevelocity_dofmap_2(); + break; + } + case 2: + { + return new tentativevelocity_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new tentativevelocity_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class tentativevelocity_form_1: public ufc::form +{ +public: + + /// Constructor + tentativevelocity_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~tentativevelocity_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "a6851cf9f35ca760f8fd419c516d611eedf7a4c14b59f0e20781b93590f44c882c7c904c06f68f1b320474769183c4d69c875a619e35dd58abc53931ee2efc1a"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 3; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new tentativevelocity_finite_element_2(); + break; + } + case 1: + { + return new tentativevelocity_finite_element_0(); + break; + } + case 2: + { + return new tentativevelocity_finite_element_2(); + break; + } + case 3: + { + return new tentativevelocity_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new tentativevelocity_dofmap_2(); + break; + } + case 1: + { + return new tentativevelocity_dofmap_0(); + break; + } + case 2: + { + return new tentativevelocity_dofmap_2(); + break; + } + case 3: + { + return new tentativevelocity_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new tentativevelocity_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace TentativeVelocity +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class CoefficientSpace_k: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_k(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_k(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_k(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_k() + { + } + +}; + +class CoefficientSpace_u0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_u0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_u0() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_k Form_a_FunctionSpace_2; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 1), k(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new tentativevelocity_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& k): + dolfin::Form(2, 1), k(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->k = k; + + _ufc_form = std::shared_ptr(new tentativevelocity_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr k): + dolfin::Form(2, 1), k(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->k = *k; + + _ufc_form = std::shared_ptr(new tentativevelocity_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 1), k(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new tentativevelocity_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& k): + dolfin::Form(2, 1), k(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->k = k; + + _ufc_form = std::shared_ptr(new tentativevelocity_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr k): + dolfin::Form(2, 1), k(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->k = *k; + + _ufc_form = std::shared_ptr(new tentativevelocity_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "k") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "k"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + typedef Form_a_FunctionSpace_2 CoefficientSpace_k; + + // Coefficients + dolfin::CoefficientAssigner k; +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new tentativevelocity_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new tentativevelocity_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_k Form_L_FunctionSpace_1; + +typedef CoefficientSpace_u0 Form_L_FunctionSpace_2; + +typedef CoefficientSpace_f Form_L_FunctionSpace_3; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 3), k(*this, 0), u0(*this, 1), f(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new tentativevelocity_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& k, const dolfin::GenericFunction& u0, const dolfin::GenericFunction& f): + dolfin::Form(1, 3), k(*this, 0), u0(*this, 1), f(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->k = k; + this->u0 = u0; + this->f = f; + + _ufc_form = std::shared_ptr(new tentativevelocity_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr k, std::shared_ptr u0, std::shared_ptr f): + dolfin::Form(1, 3), k(*this, 0), u0(*this, 1), f(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->k = *k; + this->u0 = *u0; + this->f = *f; + + _ufc_form = std::shared_ptr(new tentativevelocity_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 3), k(*this, 0), u0(*this, 1), f(*this, 2) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new tentativevelocity_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& k, const dolfin::GenericFunction& u0, const dolfin::GenericFunction& f): + dolfin::Form(1, 3), k(*this, 0), u0(*this, 1), f(*this, 2) + { + _function_spaces[0] = V0; + + this->k = k; + this->u0 = u0; + this->f = f; + + _ufc_form = std::shared_ptr(new tentativevelocity_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr k, std::shared_ptr u0, std::shared_ptr f): + dolfin::Form(1, 3), k(*this, 0), u0(*this, 1), f(*this, 2) + { + _function_spaces[0] = V0; + + this->k = *k; + this->u0 = *u0; + this->f = *f; + + _ufc_form = std::shared_ptr(new tentativevelocity_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "k") + return 0; + else if (name == "u0") + return 1; + else if (name == "f") + return 2; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "k"; + case 1: + return "u0"; + case 2: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_k; + typedef Form_L_FunctionSpace_2 CoefficientSpace_u0; + typedef Form_L_FunctionSpace_3 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner k; + dolfin::CoefficientAssigner u0; + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/navier-stokes/cpp/TentativeVelocity.ufl b/demo/documented/navier-stokes/cpp/TentativeVelocity.ufl new file mode 100644 index 0000000..ce6fdfd --- /dev/null +++ b/demo/documented/navier-stokes/cpp/TentativeVelocity.ufl @@ -0,0 +1,45 @@ +# Copyright (C) 2010 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2010-08-30 +# Last changed: 2011-06-30 +# +# The bilinear form a(u, v) and linear form L(v) for the tentative +# velocity step in Chorin's method for the incompressible +# Navier-Stokes equations. +# +# Compile this form with FFC: ffc -l dolfin TentativeVelocity.ufl. + +# Define function spaces (P2-P1) +V = VectorElement("Lagrange", triangle, 2) +Q = FiniteElement("Lagrange", triangle, 1) + +# Define trial and test functions +u = TrialFunction(V) +v = TestFunction(V) + +# Define coefficients +k = Constant(triangle) +u0 = Coefficient(V) +f = Coefficient(V) +nu = 0.01 + +# Define bilinear and linear forms +eq = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \ + nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx +a = lhs(eq) +L = rhs(eq) diff --git a/demo/documented/navier-stokes/cpp/VelocityUpdate.h b/demo/documented/navier-stokes/cpp/VelocityUpdate.h new file mode 100644 index 0000000..7893281 --- /dev/null +++ b/demo/documented/navier-stokes/cpp/VelocityUpdate.h @@ -0,0 +1,8040 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __VELOCITYUPDATE_H +#define __VELOCITYUPDATE_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class velocityupdate_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + velocityupdate_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new velocityupdate_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class velocityupdate_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + velocityupdate_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + + // Get coordinates and map to the reference (FIAT) element + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new velocityupdate_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class velocityupdate_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + velocityupdate_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new velocityupdate_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class velocityupdate_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + velocityupdate_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[3] = dof_values[7]; + vertex_values[5] = dof_values[8]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new velocityupdate_finite_element_2(); + break; + } + case 1: + { + return new velocityupdate_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new velocityupdate_finite_element_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class velocityupdate_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + velocityupdate_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new velocityupdate_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class velocityupdate_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + velocityupdate_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 1; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 0; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new velocityupdate_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class velocityupdate_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + velocityupdate_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new velocityupdate_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class velocityupdate_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + velocityupdate_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new velocityupdate_dofmap_2(); + break; + } + case 1: + { + return new velocityupdate_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new velocityupdate_dofmap_3(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class velocityupdate_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + velocityupdate_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 0 + // Number of operations (multiply-add pairs) for tensor contraction: 24 + // Total number of operations (multiply-add pairs): 27 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_ = det; + + // Compute element tensor + A[0] = 0.0166666666666666*G0_; + A[1] = -0.00277777777777778*G0_; + A[2] = -0.00277777777777778*G0_; + A[3] = -0.0111111111111111*G0_; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = -0.00277777777777778*G0_; + A[13] = 0.0166666666666667*G0_; + A[14] = -0.00277777777777781*G0_; + A[15] = 0.0; + A[16] = -0.0111111111111111*G0_; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = -0.00277777777777778*G0_; + A[25] = -0.0027777777777778*G0_; + A[26] = 0.0166666666666667*G0_; + A[27] = 0.0; + A[28] = 0.0; + A[29] = -0.0111111111111111*G0_; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = 0.0; + A[36] = -0.0111111111111111*G0_; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0888888888888888*G0_; + A[40] = 0.0444444444444443*G0_; + A[41] = 0.0444444444444443*G0_; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = -0.0111111111111111*G0_; + A[50] = 0.0; + A[51] = 0.0444444444444443*G0_; + A[52] = 0.0888888888888887*G0_; + A[53] = 0.0444444444444443*G0_; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = 0.0; + A[62] = -0.0111111111111111*G0_; + A[63] = 0.0444444444444443*G0_; + A[64] = 0.0444444444444443*G0_; + A[65] = 0.0888888888888887*G0_; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0166666666666666*G0_; + A[79] = -0.00277777777777778*G0_; + A[80] = -0.00277777777777778*G0_; + A[81] = -0.0111111111111111*G0_; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = -0.00277777777777778*G0_; + A[91] = 0.0166666666666667*G0_; + A[92] = -0.00277777777777781*G0_; + A[93] = 0.0; + A[94] = -0.0111111111111111*G0_; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = -0.00277777777777778*G0_; + A[103] = -0.0027777777777778*G0_; + A[104] = 0.0166666666666667*G0_; + A[105] = 0.0; + A[106] = 0.0; + A[107] = -0.0111111111111111*G0_; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = -0.0111111111111111*G0_; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0888888888888888*G0_; + A[118] = 0.0444444444444443*G0_; + A[119] = 0.0444444444444443*G0_; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = -0.0111111111111111*G0_; + A[128] = 0.0; + A[129] = 0.0444444444444443*G0_; + A[130] = 0.0888888888888887*G0_; + A[131] = 0.0444444444444443*G0_; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = -0.0111111111111111*G0_; + A[141] = 0.0444444444444443*G0_; + A[142] = 0.0444444444444443*G0_; + A[143] = 0.0888888888888887*G0_; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class velocityupdate_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + velocityupdate_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 28 + // Number of operations (multiply-add pairs) for tensor contraction: 66 + // Total number of operations (multiply-add pairs): 97 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[1][0]*(1.0); + const double G0_1 = det*w[1][1]*(1.0); + const double G0_2 = det*w[1][2]*(1.0); + const double G0_3 = det*w[1][3]*(1.0); + const double G0_4 = det*w[1][4]*(1.0); + const double G0_5 = det*w[1][5]*(1.0); + const double G0_6 = det*w[1][6]*(1.0); + const double G0_7 = det*w[1][7]*(1.0); + const double G0_8 = det*w[1][8]*(1.0); + const double G0_9 = det*w[1][9]*(1.0); + const double G0_10 = det*w[1][10]*(1.0); + const double G0_11 = det*w[1][11]*(1.0); + const double G1_0_0_0_0 = det*w[0][0]*w[2][0]*K[0]*(1.0); + const double G1_0_0_0_1 = det*w[0][0]*w[2][0]*K[2]*(1.0); + const double G1_0_0_1_0 = det*w[0][0]*w[2][1]*K[0]*(1.0); + const double G1_0_0_2_1 = det*w[0][0]*w[2][2]*K[2]*(1.0); + const double G1_0_1_0_0 = det*w[0][0]*w[2][0]*K[1]*(1.0); + const double G1_0_1_0_1 = det*w[0][0]*w[2][0]*K[3]*(1.0); + const double G1_0_1_1_0 = det*w[0][0]*w[2][1]*K[1]*(1.0); + const double G1_0_1_2_1 = det*w[0][0]*w[2][2]*K[3]*(1.0); + + // Compute element tensor + A[0] = 0.0166666666666666*G0_0 - 0.00277777777777778*G0_1 - 0.00277777777777778*G0_2 - 0.0111111111111111*G0_3; + A[1] = -0.00277777777777778*G0_0 + 0.0166666666666667*G0_1 - 0.00277777777777781*G0_2 - 0.0111111111111111*G0_4; + A[2] = -0.00277777777777778*G0_0 - 0.0027777777777778*G0_1 + 0.0166666666666667*G0_2 - 0.0111111111111111*G0_5; + A[3] = -0.0111111111111111*G0_0 + 0.0888888888888888*G0_3 + 0.0444444444444443*G0_4 + 0.0444444444444443*G0_5 + 0.166666666666666*G1_0_0_0_0 + 0.166666666666666*G1_0_0_0_1 - 0.166666666666666*G1_0_0_1_0 - 0.166666666666666*G1_0_0_2_1; + A[4] = -0.0111111111111111*G0_1 + 0.0444444444444443*G0_3 + 0.0888888888888887*G0_4 + 0.0444444444444443*G0_5 + 0.166666666666666*G1_0_0_0_0 + 0.166666666666666*G1_0_0_0_1 - 0.166666666666666*G1_0_0_1_0 - 0.166666666666666*G1_0_0_2_1; + A[5] = -0.0111111111111111*G0_2 + 0.0444444444444443*G0_3 + 0.0444444444444443*G0_4 + 0.0888888888888887*G0_5 + 0.166666666666666*G1_0_0_0_0 + 0.166666666666666*G1_0_0_0_1 - 0.166666666666666*G1_0_0_1_0 - 0.166666666666666*G1_0_0_2_1; + A[6] = 0.0166666666666666*G0_6 - 0.00277777777777778*G0_7 - 0.00277777777777778*G0_8 - 0.0111111111111111*G0_9; + A[7] = -0.00277777777777778*G0_6 + 0.0166666666666667*G0_7 - 0.00277777777777781*G0_8 - 0.0111111111111111*G0_10; + A[8] = -0.00277777777777778*G0_6 - 0.0027777777777778*G0_7 + 0.0166666666666667*G0_8 - 0.0111111111111111*G0_11; + A[9] = -0.0111111111111111*G0_6 + 0.0888888888888888*G0_9 + 0.0444444444444443*G0_10 + 0.0444444444444443*G0_11 + 0.166666666666666*G1_0_1_0_0 + 0.166666666666666*G1_0_1_0_1 - 0.166666666666666*G1_0_1_1_0 - 0.166666666666666*G1_0_1_2_1; + A[10] = -0.0111111111111111*G0_7 + 0.0444444444444443*G0_9 + 0.0888888888888887*G0_10 + 0.0444444444444443*G0_11 + 0.166666666666666*G1_0_1_0_0 + 0.166666666666666*G1_0_1_0_1 - 0.166666666666666*G1_0_1_1_0 - 0.166666666666666*G1_0_1_2_1; + A[11] = -0.0111111111111111*G0_8 + 0.0444444444444443*G0_9 + 0.0444444444444443*G0_10 + 0.0888888888888887*G0_11 + 0.166666666666666*G1_0_1_0_0 + 0.166666666666666*G1_0_1_0_1 - 0.166666666666666*G1_0_1_1_0 - 0.166666666666666*G1_0_1_2_1; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class velocityupdate_form_0: public ufc::form +{ +public: + + /// Constructor + velocityupdate_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "386a3a1747d7d0b8a5d32a358801cc9f4acdb6495ca0c1e0ff70fb875f43e35f6b1fd49273952be2355ee318aab456b6e2fc8d024191099b832a061b20661050"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new velocityupdate_finite_element_3(); + break; + } + case 1: + { + return new velocityupdate_finite_element_3(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new velocityupdate_dofmap_3(); + break; + } + case 1: + { + return new velocityupdate_dofmap_3(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new velocityupdate_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class velocityupdate_form_1: public ufc::form +{ +public: + + /// Constructor + velocityupdate_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~velocityupdate_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "2fc1c57b4ec05126c800aeca311c58f43758b8a48e564bd86026cbcb06a56f7c258d47961dadb2151928fd3ad8ba89d2d662893296dc6efc394ad72b24e7fb97"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 3; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new velocityupdate_finite_element_3(); + break; + } + case 1: + { + return new velocityupdate_finite_element_1(); + break; + } + case 2: + { + return new velocityupdate_finite_element_3(); + break; + } + case 3: + { + return new velocityupdate_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new velocityupdate_dofmap_3(); + break; + } + case 1: + { + return new velocityupdate_dofmap_1(); + break; + } + case 2: + { + return new velocityupdate_dofmap_3(); + break; + } + case 3: + { + return new velocityupdate_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new velocityupdate_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace VelocityUpdate +{ + +class CoefficientSpace_k: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_k(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_k(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_k(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_k(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_k() + { + } + +}; + +class CoefficientSpace_p1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_p1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_p1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_p1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_p1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_p1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_p1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_p1() + { + } + +}; + +class CoefficientSpace_u1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_u1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_u1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_u1() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new velocityupdate_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new velocityupdate_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocityupdate_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocityupdate_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_k Form_L_FunctionSpace_1; + +typedef CoefficientSpace_u1 Form_L_FunctionSpace_2; + +typedef CoefficientSpace_p1 Form_L_FunctionSpace_3; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 3), k(*this, 0), u1(*this, 1), p1(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new velocityupdate_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& k, const dolfin::GenericFunction& u1, const dolfin::GenericFunction& p1): + dolfin::Form(1, 3), k(*this, 0), u1(*this, 1), p1(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->k = k; + this->u1 = u1; + this->p1 = p1; + + _ufc_form = std::shared_ptr(new velocityupdate_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr k, std::shared_ptr u1, std::shared_ptr p1): + dolfin::Form(1, 3), k(*this, 0), u1(*this, 1), p1(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->k = *k; + this->u1 = *u1; + this->p1 = *p1; + + _ufc_form = std::shared_ptr(new velocityupdate_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 3), k(*this, 0), u1(*this, 1), p1(*this, 2) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new velocityupdate_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& k, const dolfin::GenericFunction& u1, const dolfin::GenericFunction& p1): + dolfin::Form(1, 3), k(*this, 0), u1(*this, 1), p1(*this, 2) + { + _function_spaces[0] = V0; + + this->k = k; + this->u1 = u1; + this->p1 = p1; + + _ufc_form = std::shared_ptr(new velocityupdate_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr k, std::shared_ptr u1, std::shared_ptr p1): + dolfin::Form(1, 3), k(*this, 0), u1(*this, 1), p1(*this, 2) + { + _function_spaces[0] = V0; + + this->k = *k; + this->u1 = *u1; + this->p1 = *p1; + + _ufc_form = std::shared_ptr(new velocityupdate_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "k") + return 0; + else if (name == "u1") + return 1; + else if (name == "p1") + return 2; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "k"; + case 1: + return "u1"; + case 2: + return "p1"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_k; + typedef Form_L_FunctionSpace_2 CoefficientSpace_u1; + typedef Form_L_FunctionSpace_3 CoefficientSpace_p1; + + // Coefficients + dolfin::CoefficientAssigner k; + dolfin::CoefficientAssigner u1; + dolfin::CoefficientAssigner p1; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/navier-stokes/cpp/VelocityUpdate.ufl b/demo/documented/navier-stokes/cpp/VelocityUpdate.ufl new file mode 100644 index 0000000..3e07333 --- /dev/null +++ b/demo/documented/navier-stokes/cpp/VelocityUpdate.ufl @@ -0,0 +1,42 @@ +# Copyright (C) 2010 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2010-08-30 +# Last changed: 2010-09-01 +# +# The bilinear form a(u, v) and linear form L(v) for the velocity +# update step in Chorin's method for the incompressible Navier-Stokes +# equations. +# +# Compile this form with FFC: ffc -l dolfin TentativeVelocity.ufl. + +# Define function spaces (P2-P1) +V = VectorElement("Lagrange", triangle, 2) +Q = FiniteElement("Lagrange", triangle, 1) + +# Define trial and test functions +u = TrialFunction(V) +v = TestFunction(V) + +# Define coefficients +k = Constant(triangle) +u1 = Coefficient(V) +p1 = Coefficient(Q) + +# Define bilinear and linear forms +a = inner(u, v)*dx +L = inner(u1, v)*dx - k*inner(grad(p1), v)*dx diff --git a/demo/documented/navier-stokes/cpp/compile.log b/demo/documented/navier-stokes/cpp/compile.log new file mode 100644 index 0000000..f047bd8 --- /dev/null +++ b/demo/documented/navier-stokes/cpp/compile.log @@ -0,0 +1,3024 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form PressureUpdate + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[q, p]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[q]' + Number of coefficients: 2 + Coefficients: '[c_0, w_1]' + Coefficient names: '[k, u1]' + Unique elements: 'CG1(?), R0(?), Vector<2 x CG2(?)>' + Unique sub elements: 'CG1(?), R0(?), Vector<2 x CG2(?)>, CG2(?)' + + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for expression Division. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0154691 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 4 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 4 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.000629 seconds + Shape of reference tensor: (3, 3, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {3: {FiniteElement('Real', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0): array([[1.0, 0.99999999999999989, 0.99999999999999989]], dtype=object)}}}, FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {None: {(0, 0): array([[0.66666666666666685, 0.16666666666666674, 0.16666666666666669], + [0.16666666666666663, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666666, 0.66666666666666652, 0.16666666666666663]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 0.66666667, 0.16666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.16666667, 0.66666667], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.66666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.66666667, 0.16666667, 0.16666667]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.16666667, 0.66666667]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.66666667, 0.16666667]]])}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ -1.66666667e+00, 3.33333333e-01, 3.33333333e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, -5.55111512e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -3.33333333e-01, 1.66666667e+00, -3.33333333e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 6.66666667e-01, 6.66666667e-01, 2.66666667e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.00000000e+00, -2.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -6.66666667e-01, -6.66666667e-01, -2.66666667e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.66666667e+00, 3.33333333e-01, 3.33333333e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, -5.55111512e-17, -5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -3.33333333e-01, 1.66666667e+00, -3.33333333e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.66666667e-01, 6.66666667e-01, 2.66666667e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.00000000e+00, -2.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.66666667e-01, -6.66666667e-01, -2.66666667e+00]]]), (1, 0): array([[[ -1.66666667e+00, 3.33333333e-01, 3.33333333e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -3.33333333e-01, -3.33333333e-01, 1.66666667e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 6.66666667e-01, 2.66666667e+00, 6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -6.66666667e-01, -2.66666667e+00, -6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.00000000e+00, -1.59906312e-16, -2.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.66666667e+00, 3.33333333e-01, 3.33333333e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -3.33333333e-01, -3.33333333e-01, 1.66666667e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.66666667e-01, 2.66666667e+00, 6.66666667e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.66666667e-01, -2.66666667e+00, -6.66666667e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.00000000e+00, -1.59906312e-16, -2.00000000e+00]]]), (0, 0): array([[[ 0.22222222, -0.11111111, -0.11111111], + [ 0. , 0. , 0. ]], + + [[-0.11111111, -0.11111111, 0.22222222], + [ 0. , 0. , 0. ]], + + [[-0.11111111, 0.22222222, -0.11111111], + [ 0. , 0. , 0. ]], + + [[ 0.11111111, 0.44444444, 0.44444444], + [ 0. , 0. , 0. ]], + + [[ 0.44444444, 0.44444444, 0.11111111], + [ 0. , 0. , 0. ]], + + [[ 0.44444444, 0.11111111, 0.44444444], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.22222222, -0.11111111, -0.11111111]], + + [[ 0. , 0. , 0. ], + [-0.11111111, -0.11111111, 0.22222222]], + + [[ 0. , 0. , 0. ], + [-0.11111111, 0.22222222, -0.11111111]], + + [[ 0. , 0. , 0. ], + [ 0.11111111, 0.44444444, 0.44444444]], + + [[ 0. , 0. , 0. ], + [ 0.44444444, 0.44444444, 0.11111111]], + + [[ 0. , 0. , 0. ], + [ 0.44444444, 0.11111111, 0.44444444]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.66666667e+00, 0.00000000e+00, -3.33333333e-01, + 6.66666667e-01, 2.00000000e+00, -6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.33333333e-01, -5.55111512e-17, 1.66666667e+00, + 6.66666667e-01, -2.00000000e+00, -6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.33333333e-01, -5.55111512e-17, -3.33333333e-01, + 2.66666667e+00, 0.00000000e+00, -2.66666667e+00]]), 'FE2_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.66666667e+00, -3.33333333e-01, 0.00000000e+00, + 6.66666667e-01, -6.66666667e-01, 2.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.33333333e-01, -3.33333333e-01, 0.00000000e+00, + 2.66666667e+00, -2.66666667e+00, -1.59906312e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.33333333e-01, 1.66666667e+00, 0.00000000e+00, + 6.66666667e-01, -6.66666667e-01, -2.00000000e+00]]), 'FE2_C0_D01': array([[ -1.66666667e+00, 0.00000000e+00, -3.33333333e-01, + 6.66666667e-01, 2.00000000e+00, -6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.33333333e-01, -5.55111512e-17, 1.66666667e+00, + 6.66666667e-01, -2.00000000e+00, -6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.33333333e-01, -5.55111512e-17, -3.33333333e-01, + 2.66666667e+00, 0.00000000e+00, -2.66666667e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667]]), 'FE2_C0_D10': array([[ -1.66666667e+00, -3.33333333e-01, 0.00000000e+00, + 6.66666667e-01, -6.66666667e-01, 2.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.33333333e-01, -3.33333333e-01, 0.00000000e+00, + 2.66666667e+00, -2.66666667e+00, -1.59906312e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.33333333e-01, 1.66666667e+00, 0.00000000e+00, + 6.66666667e-01, -6.66666667e-01, -2.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.22222222, -0.11111111, -0.11111111, 0.11111111, + 0.44444444, 0.44444444], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11111111, -0.11111111, 0.22222222, 0.44444444, + 0.44444444, 0.11111111], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11111111, 0.22222222, -0.11111111, 0.44444444, + 0.11111111, 0.44444444]]), 'FE2_C0': array([[ 0.22222222, -0.11111111, -0.11111111, 0.11111111, 0.44444444, + 0.44444444, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.11111111, -0.11111111, 0.22222222, 0.44444444, 0.44444444, + 0.11111111, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.11111111, 0.22222222, -0.11111111, 0.44444444, 0.11111111, + 0.44444444, 0. , 0. , 0. , 0. , + 0. , 0. ]]), 'FE3': array([[1.0], + [0.99999999999999989], + [0.99999999999999989]], dtype=object), 'FE0': array([[0.66666666666666685, 0.16666666666666663, 0.16666666666666666], + [0.16666666666666674, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666669, 0.66666666666666652, 0.16666666666666663]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + tables: {'FE2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.66666667e+00, 0.00000000e+00, -3.33333333e-01, + 6.66666667e-01, 2.00000000e+00, -6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.33333333e-01, -5.55111512e-17, 1.66666667e+00, + 6.66666667e-01, -2.00000000e+00, -6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.33333333e-01, -5.55111512e-17, -3.33333333e-01, + 2.66666667e+00, 0.00000000e+00, -2.66666667e+00]]), 'FE2_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.66666667e+00, -3.33333333e-01, 0.00000000e+00, + 6.66666667e-01, -6.66666667e-01, 2.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.33333333e-01, -3.33333333e-01, 0.00000000e+00, + 2.66666667e+00, -2.66666667e+00, -1.59906312e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.33333333e-01, 1.66666667e+00, 0.00000000e+00, + 6.66666667e-01, -6.66666667e-01, -2.00000000e+00]]), 'FE2_C0_D01': array([[ -1.66666667e+00, 0.00000000e+00, -3.33333333e-01, + 6.66666667e-01, 2.00000000e+00, -6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.33333333e-01, -5.55111512e-17, 1.66666667e+00, + 6.66666667e-01, -2.00000000e+00, -6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.33333333e-01, -5.55111512e-17, -3.33333333e-01, + 2.66666667e+00, 0.00000000e+00, -2.66666667e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667]]), 'FE2_C0_D10': array([[ -1.66666667e+00, -3.33333333e-01, 0.00000000e+00, + 6.66666667e-01, -6.66666667e-01, 2.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.33333333e-01, -3.33333333e-01, 0.00000000e+00, + 2.66666667e+00, -2.66666667e+00, -1.59906312e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.33333333e-01, 1.66666667e+00, 0.00000000e+00, + 6.66666667e-01, -6.66666667e-01, -2.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.22222222, -0.11111111, -0.11111111, 0.11111111, + 0.44444444, 0.44444444], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11111111, -0.11111111, 0.22222222, 0.44444444, + 0.44444444, 0.11111111], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11111111, 0.22222222, -0.11111111, 0.44444444, + 0.11111111, 0.44444444]]), 'FE2_C0': array([[ 0.22222222, -0.11111111, -0.11111111, 0.11111111, 0.44444444, + 0.44444444, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.11111111, -0.11111111, 0.22222222, 0.44444444, 0.44444444, + 0.11111111, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.11111111, 0.22222222, -0.11111111, 0.44444444, 0.11111111, + 0.44444444, 0. , 0. , 0. , 0. , + 0. , 0. ]]), 'FE3': array([[1.0], + [0.99999999999999989], + [0.99999999999999989]], dtype=object), 'FE0': array([[0.66666666666666685, 0.16666666666666663, 0.16666666666666666], + [0.16666666666666674, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666669, 0.66666666666666652, 0.16666666666666663]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + name_map: {} + + inv_name_map: {'FE2_C1_D01': 'FE2_C1_D01', 'FE2_C1_D10': 'FE2_C1_D10', 'FE2_C0': 'FE2_C0', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C1_D10': 'FE1_C1_D10', 'FE2_C1': 'FE2_C1', 'FE2_C0_D01': 'FE2_C0_D01', 'FE3': 'FE3', 'FE0': 'FE0', 'FE2_C0_D10': 'FE2_C0_D10', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE2_C0_D01': array([[-1.66666667, -0.33333333, 0.66666667, 2. , -0.66666667], + [ 0.33333333, 1.66666667, 0.66666667, -2. , -0.66666667], + [ 0.33333333, -0.33333333, 2.66666667, 0. , -2.66666667]]), 'FE2_C0_D10': array([[-1.66666667, -0.33333333, 0.66666667, -0.66666667, 2. ], + [ 0.33333333, -0.33333333, 2.66666667, -2.66666667, 0. ], + [ 0.33333333, 1.66666667, 0.66666667, -0.66666667, -2. ]]), 'FE2_C0': array([[ 0.22222222, -0.11111111, -0.11111111, 0.11111111, 0.44444444, + 0.44444444], + [-0.11111111, -0.11111111, 0.22222222, 0.44444444, 0.44444444, + 0.11111111], + [-0.11111111, 0.22222222, -0.11111111, 0.44444444, 0.11111111, + 0.44444444]]), 'FE3': array([[1.0], + [0.99999999999999989], + [0.99999999999999989]], dtype=object), 'FE0': array([[0.66666666666666685, 0.16666666666666663, 0.16666666666666666], + [0.16666666666666674, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666669, 0.66666666666666652, 0.16666666666666663]], dtype=object), 'FE1_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.]])} + + QG-utils, psi_tables, name_map: + {'FE2_C1_D01': ('FE2_C0_D01', (10, [6, 8, 9, 10, 11]), False, False), 'FE2_C1_D10': ('FE2_C0_D10', (11, [6, 7, 9, 10, 11]), False, False), 'FE2_C0': ('FE2_C0', (6, [0, 1, 2, 3, 4, 5]), False, False), 'FE1_C0': ('FE0', (0, [0, 1, 2]), False, False), 'FE1_C1': ('FE0', (3, [3, 4, 5]), False, False), 'FE1_C1_D01': ('FE1_C0_D01', (4, [3, 5]), False, False), 'FE1_C1_D10': ('FE1_C0_D01', (5, [3, 4]), False, False), 'FE2_C1': ('FE2_C0', (9, [6, 7, 8, 9, 10, 11]), False, False), 'FE2_C0_D01': ('FE2_C0_D01', (7, [0, 2, 3, 4, 5]), False, False), 'FE3': ('FE3', (), False, True), 'FE0': ('FE0', (), False, False), 'FE2_C0_D10': ('FE2_C0_D10', (8, [0, 1, 3, 4, 5]), False, False), 'FE1_C0_D01': ('FE1_C0_D01', (1, [0, 2]), False, False), 'FE1_C0_D10': ('FE1_C0_D01', (2, [0, 1]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.142801 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.00136781 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 4 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 4 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.29465 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.00077796 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./PressureUpdate.h. + +Compiler stage 5 finished in 0.00116491 seconds. + +FFC finished in 0.456587 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form TentativeVelocity + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 1 + Coefficients: '[c_0]' + Coefficient names: '[k]' + Unique elements: 'Vector<2 x CG2(?)>, R0(?)' + Unique sub elements: 'Vector<2 x CG2(?)>, R0(?), CG2(?)' + + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for expression Division. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 3 + Coefficients: '[c_0, w_1, w_2]' + Coefficient names: '[k, u0, f]' + Unique elements: 'Vector<2 x CG2(?)>, R0(?)' + Unique sub elements: 'Vector<2 x CG2(?)>, R0(?), CG2(?)' + + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for expression Division. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0118549 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 3 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 3 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {6: {FiniteElement('Real', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0): array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849]]])}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ 6.33695146e-01, 6.33695146e-01, -2.26739029e+00, + -7.83793964e-01, -7.83793964e-01, 5.67587927e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.77555756e-16, -2.22044605e-16, -5.55111512e-17, + 4.85722573e-17, -1.11022302e-16, 1.31838984e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -6.33695146e-01, 2.26739029e+00, -6.33695146e-01, + 7.83793964e-01, -5.67587927e-01, 7.83793964e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 3.26739029e+00, 3.66304854e-01, 3.66304854e-01, + 4.32412073e-01, 1.78379396e+00, 1.78379396e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -3.77475828e-15, -2.90108544e+00, 2.90108544e+00, + -2.49800181e-16, 1.35138189e+00, -1.35138189e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -3.26739029e+00, -3.66304854e-01, -3.66304854e-01, + -4.32412073e-01, -1.78379396e+00, -1.78379396e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.33695146e-01, 6.33695146e-01, -2.26739029e+00, + -7.83793964e-01, -7.83793964e-01, 5.67587927e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.77555756e-16, -2.22044605e-16, -5.55111512e-17, + 4.85722573e-17, -1.11022302e-16, 1.31838984e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.33695146e-01, 2.26739029e+00, -6.33695146e-01, + 7.83793964e-01, -5.67587927e-01, 7.83793964e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.26739029e+00, 3.66304854e-01, 3.66304854e-01, + 4.32412073e-01, 1.78379396e+00, 1.78379396e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -3.77475828e-15, -2.90108544e+00, 2.90108544e+00, + -2.49800181e-16, 1.35138189e+00, -1.35138189e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -3.26739029e+00, -3.66304854e-01, -3.66304854e-01, + -4.32412073e-01, -1.78379396e+00, -1.78379396e+00]]]), (1, 0): array([[[ 6.33695146e-01, 6.33695146e-01, -2.26739029e+00, + -7.83793964e-01, -7.83793964e-01, 5.67587927e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.26739029e+00, -6.33695146e-01, -6.33695146e-01, + -5.67587927e-01, 7.83793964e-01, 7.83793964e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 3.66304854e-01, 3.26739029e+00, 3.66304854e-01, + 1.78379396e+00, 4.32412073e-01, 1.78379396e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -3.66304854e-01, -3.26739029e+00, -3.66304854e-01, + -1.78379396e+00, -4.32412073e-01, -1.78379396e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -2.90108544e+00, -4.92966998e-15, 2.90108544e+00, + 1.35138189e+00, -7.64507824e-16, -1.35138189e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.33695146e-01, 6.33695146e-01, -2.26739029e+00, + -7.83793964e-01, -7.83793964e-01, 5.67587927e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.26739029e+00, -6.33695146e-01, -6.33695146e-01, + -5.67587927e-01, 7.83793964e-01, 7.83793964e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.66304854e-01, 3.26739029e+00, 3.66304854e-01, + 1.78379396e+00, 4.32412073e-01, 1.78379396e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -3.66304854e-01, -3.26739029e+00, -3.66304854e-01, + -1.78379396e+00, -4.32412073e-01, -1.78379396e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.90108544e+00, -4.92966998e-15, 2.90108544e+00, + 1.35138189e+00, -7.64507824e-16, -1.35138189e+00]]]), (0, 0): array([[[-0.07480381, -0.07480381, 0.51763234, -0.04820838, -0.04820838, + -0.08473049], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.51763234, -0.07480381, -0.07480381, -0.08473049, -0.04820838, + -0.04820838], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[-0.07480381, 0.51763234, -0.07480381, -0.04820838, -0.08473049, + -0.04820838], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.29921523, 0.29921523, 0.03354481, 0.19283351, 0.19283351, + 0.79548023], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.03354481, 0.29921523, 0.29921523, 0.79548023, 0.19283351, + 0.19283351], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.29921523, 0.03354481, 0.29921523, 0.19283351, 0.79548023, + 0.19283351], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.07480381, -0.07480381, 0.51763234, -0.04820838, -0.04820838, + -0.08473049]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.51763234, -0.07480381, -0.07480381, -0.08473049, -0.04820838, + -0.04820838]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.07480381, 0.51763234, -0.07480381, -0.04820838, -0.08473049, + -0.04820838]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.29921523, 0.29921523, 0.03354481, 0.19283351, 0.19283351, + 0.79548023]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.03354481, 0.29921523, 0.29921523, 0.79548023, 0.19283351, + 0.19283351]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.29921523, 0.03354481, 0.29921523, 0.19283351, 0.79548023, + 0.19283351]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0': array([[-0.07480381, 0.51763234, -0.07480381, 0.29921523, 0.03354481, + 0.29921523, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.07480381, -0.07480381, 0.51763234, 0.29921523, 0.29921523, + 0.03354481, 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.51763234, -0.07480381, -0.07480381, 0.03354481, 0.29921523, + 0.29921523, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.04820838, -0.08473049, -0.04820838, 0.19283351, 0.79548023, + 0.19283351, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.04820838, -0.04820838, -0.08473049, 0.19283351, 0.19283351, + 0.79548023, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.08473049, -0.04820838, -0.04820838, 0.79548023, 0.19283351, + 0.19283351, 0. , 0. , 0. , 0. , + 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07480381, 0.51763234, -0.07480381, 0.29921523, + 0.03354481, 0.29921523], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07480381, -0.07480381, 0.51763234, 0.29921523, + 0.29921523, 0.03354481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.51763234, -0.07480381, -0.07480381, 0.03354481, + 0.29921523, 0.29921523], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04820838, -0.08473049, -0.04820838, 0.19283351, + 0.79548023, 0.19283351], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04820838, -0.04820838, -0.08473049, 0.19283351, + 0.19283351, 0.79548023], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08473049, -0.04820838, -0.04820838, 0.79548023, + 0.19283351, 0.19283351]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.33695146e-01, 2.26739029e+00, 0.00000000e+00, + 3.66304854e-01, -3.66304854e-01, -2.90108544e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.33695146e-01, -6.33695146e-01, 0.00000000e+00, + 3.26739029e+00, -3.26739029e+00, -4.92966998e-15], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.26739029e+00, -6.33695146e-01, 0.00000000e+00, + 3.66304854e-01, -3.66304854e-01, 2.90108544e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.83793964e-01, -5.67587927e-01, 0.00000000e+00, + 1.78379396e+00, -1.78379396e+00, 1.35138189e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.83793964e-01, 7.83793964e-01, 0.00000000e+00, + 4.32412073e-01, -4.32412073e-01, -7.64507824e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.67587927e-01, 7.83793964e-01, 0.00000000e+00, + 1.78379396e+00, -1.78379396e+00, -1.35138189e+00]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.33695146e-01, 2.77555756e-16, -6.33695146e-01, + 3.26739029e+00, -3.77475828e-15, -3.26739029e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.33695146e-01, -2.22044605e-16, 2.26739029e+00, + 3.66304854e-01, -2.90108544e+00, -3.66304854e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.26739029e+00, -5.55111512e-17, -6.33695146e-01, + 3.66304854e-01, 2.90108544e+00, -3.66304854e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.83793964e-01, 4.85722573e-17, 7.83793964e-01, + 4.32412073e-01, -2.49800181e-16, -4.32412073e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.83793964e-01, -1.11022302e-16, -5.67587927e-01, + 1.78379396e+00, 1.35138189e+00, -1.78379396e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.67587927e-01, 1.31838984e-16, 7.83793964e-01, + 1.78379396e+00, -1.35138189e+00, -1.78379396e+00]]), 'FE1_C0_D01': array([[ 6.33695146e-01, 2.77555756e-16, -6.33695146e-01, + 3.26739029e+00, -3.77475828e-15, -3.26739029e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.33695146e-01, -2.22044605e-16, 2.26739029e+00, + 3.66304854e-01, -2.90108544e+00, -3.66304854e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.26739029e+00, -5.55111512e-17, -6.33695146e-01, + 3.66304854e-01, 2.90108544e+00, -3.66304854e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.83793964e-01, 4.85722573e-17, 7.83793964e-01, + 4.32412073e-01, -2.49800181e-16, -4.32412073e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.83793964e-01, -1.11022302e-16, -5.67587927e-01, + 1.78379396e+00, 1.35138189e+00, -1.78379396e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.67587927e-01, 1.31838984e-16, 7.83793964e-01, + 1.78379396e+00, -1.35138189e+00, -1.78379396e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[ 6.33695146e-01, 2.26739029e+00, 0.00000000e+00, + 3.66304854e-01, -3.66304854e-01, -2.90108544e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.33695146e-01, -6.33695146e-01, 0.00000000e+00, + 3.26739029e+00, -3.26739029e+00, -4.92966998e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.26739029e+00, -6.33695146e-01, 0.00000000e+00, + 3.66304854e-01, -3.66304854e-01, 2.90108544e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.83793964e-01, -5.67587927e-01, 0.00000000e+00, + 1.78379396e+00, -1.78379396e+00, 1.35138189e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.83793964e-01, 7.83793964e-01, 0.00000000e+00, + 4.32412073e-01, -4.32412073e-01, -7.64507824e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.67587927e-01, 7.83793964e-01, 0.00000000e+00, + 1.78379396e+00, -1.78379396e+00, -1.35138189e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE0_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]])} + + tables: {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0': array([[-0.07480381, 0.51763234, -0.07480381, 0.29921523, 0.03354481, + 0.29921523, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.07480381, -0.07480381, 0.51763234, 0.29921523, 0.29921523, + 0.03354481, 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.51763234, -0.07480381, -0.07480381, 0.03354481, 0.29921523, + 0.29921523, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.04820838, -0.08473049, -0.04820838, 0.19283351, 0.79548023, + 0.19283351, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.04820838, -0.04820838, -0.08473049, 0.19283351, 0.19283351, + 0.79548023, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.08473049, -0.04820838, -0.04820838, 0.79548023, 0.19283351, + 0.19283351, 0. , 0. , 0. , 0. , + 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07480381, 0.51763234, -0.07480381, 0.29921523, + 0.03354481, 0.29921523], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07480381, -0.07480381, 0.51763234, 0.29921523, + 0.29921523, 0.03354481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.51763234, -0.07480381, -0.07480381, 0.03354481, + 0.29921523, 0.29921523], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04820838, -0.08473049, -0.04820838, 0.19283351, + 0.79548023, 0.19283351], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04820838, -0.04820838, -0.08473049, 0.19283351, + 0.19283351, 0.79548023], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08473049, -0.04820838, -0.04820838, 0.79548023, + 0.19283351, 0.19283351]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.33695146e-01, 2.26739029e+00, 0.00000000e+00, + 3.66304854e-01, -3.66304854e-01, -2.90108544e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.33695146e-01, -6.33695146e-01, 0.00000000e+00, + 3.26739029e+00, -3.26739029e+00, -4.92966998e-15], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.26739029e+00, -6.33695146e-01, 0.00000000e+00, + 3.66304854e-01, -3.66304854e-01, 2.90108544e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.83793964e-01, -5.67587927e-01, 0.00000000e+00, + 1.78379396e+00, -1.78379396e+00, 1.35138189e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.83793964e-01, 7.83793964e-01, 0.00000000e+00, + 4.32412073e-01, -4.32412073e-01, -7.64507824e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.67587927e-01, 7.83793964e-01, 0.00000000e+00, + 1.78379396e+00, -1.78379396e+00, -1.35138189e+00]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.33695146e-01, 2.77555756e-16, -6.33695146e-01, + 3.26739029e+00, -3.77475828e-15, -3.26739029e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.33695146e-01, -2.22044605e-16, 2.26739029e+00, + 3.66304854e-01, -2.90108544e+00, -3.66304854e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.26739029e+00, -5.55111512e-17, -6.33695146e-01, + 3.66304854e-01, 2.90108544e+00, -3.66304854e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.83793964e-01, 4.85722573e-17, 7.83793964e-01, + 4.32412073e-01, -2.49800181e-16, -4.32412073e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.83793964e-01, -1.11022302e-16, -5.67587927e-01, + 1.78379396e+00, 1.35138189e+00, -1.78379396e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.67587927e-01, 1.31838984e-16, 7.83793964e-01, + 1.78379396e+00, -1.35138189e+00, -1.78379396e+00]]), 'FE1_C0_D01': array([[ 6.33695146e-01, 2.77555756e-16, -6.33695146e-01, + 3.26739029e+00, -3.77475828e-15, -3.26739029e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.33695146e-01, -2.22044605e-16, 2.26739029e+00, + 3.66304854e-01, -2.90108544e+00, -3.66304854e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.26739029e+00, -5.55111512e-17, -6.33695146e-01, + 3.66304854e-01, 2.90108544e+00, -3.66304854e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.83793964e-01, 4.85722573e-17, 7.83793964e-01, + 4.32412073e-01, -2.49800181e-16, -4.32412073e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.83793964e-01, -1.11022302e-16, -5.67587927e-01, + 1.78379396e+00, 1.35138189e+00, -1.78379396e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.67587927e-01, 1.31838984e-16, 7.83793964e-01, + 1.78379396e+00, -1.35138189e+00, -1.78379396e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[ 6.33695146e-01, 2.26739029e+00, 0.00000000e+00, + 3.66304854e-01, -3.66304854e-01, -2.90108544e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.33695146e-01, -6.33695146e-01, 0.00000000e+00, + 3.26739029e+00, -3.26739029e+00, -4.92966998e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.26739029e+00, -6.33695146e-01, 0.00000000e+00, + 3.66304854e-01, -3.66304854e-01, 2.90108544e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.83793964e-01, -5.67587927e-01, 0.00000000e+00, + 1.78379396e+00, -1.78379396e+00, 1.35138189e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.83793964e-01, 7.83793964e-01, 0.00000000e+00, + 4.32412073e-01, -4.32412073e-01, -7.64507824e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.67587927e-01, 7.83793964e-01, 0.00000000e+00, + 1.78379396e+00, -1.78379396e+00, -1.35138189e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE0_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]])} + + name_map: {} + + inv_name_map: {'FE0_C1_D01': 'FE0_C1_D01', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE0_C1_D10': 'FE0_C1_D10', 'FE1_C1_D10': 'FE1_C1_D10', 'FE0_C0_D10': 'FE0_C0_D10', 'FE0_C0_D01': 'FE0_C0_D01', 'FE2': 'FE2', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE1_C0': array([[-0.07480381, 0.51763234, -0.07480381, 0.29921523, 0.03354481, + 0.29921523], + [-0.07480381, -0.07480381, 0.51763234, 0.29921523, 0.29921523, + 0.03354481], + [ 0.51763234, -0.07480381, -0.07480381, 0.03354481, 0.29921523, + 0.29921523], + [-0.04820838, -0.08473049, -0.04820838, 0.19283351, 0.79548023, + 0.19283351], + [-0.04820838, -0.04820838, -0.08473049, 0.19283351, 0.19283351, + 0.79548023], + [-0.08473049, -0.04820838, -0.04820838, 0.79548023, 0.19283351, + 0.19283351]]), 'FE0_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C0_D01': array([[ 0.63369515, -0.63369515, 3.26739029, 0. , -3.26739029], + [ 0.63369515, 2.26739029, 0.36630485, -2.90108544, -0.36630485], + [-2.26739029, -0.63369515, 0.36630485, 2.90108544, -0.36630485], + [-0.78379396, 0.78379396, 0.43241207, 0. , -0.43241207], + [-0.78379396, -0.56758793, 1.78379396, 1.35138189, -1.78379396], + [ 0.56758793, 0.78379396, 1.78379396, -1.35138189, -1.78379396]]), 'FE1_C0_D10': array([[ 0.63369515, 2.26739029, 0.36630485, -0.36630485, -2.90108544], + [ 0.63369515, -0.63369515, 3.26739029, -3.26739029, 0. ], + [-2.26739029, -0.63369515, 0.36630485, -0.36630485, 2.90108544], + [-0.78379396, -0.56758793, 1.78379396, -1.78379396, 1.35138189], + [-0.78379396, 0.78379396, 0.43241207, -0.43241207, 0. ], + [ 0.56758793, 0.78379396, 1.78379396, -1.78379396, -1.35138189]]), 'FE0_C0': array([[ 0.09157621, 0.81684757, 0.09157621], + [ 0.09157621, 0.09157621, 0.81684757], + [ 0.81684757, 0.09157621, 0.09157621], + [ 0.44594849, 0.10810302, 0.44594849], + [ 0.44594849, 0.44594849, 0.10810302], + [ 0.10810302, 0.44594849, 0.44594849]])} + + QG-utils, psi_tables, name_map: + {'FE0_C1_D01': ('FE0_C0_D01', (4, [3, 5]), False, False), 'FE1_C0': ('FE1_C0', (6, [0, 1, 2, 3, 4, 5]), False, False), 'FE1_C1': ('FE1_C0', (9, [6, 7, 8, 9, 10, 11]), False, False), 'FE0_C1_D10': ('FE0_C0_D01', (5, [3, 4]), False, False), 'FE1_C1_D10': ('FE1_C0_D10', (11, [6, 7, 9, 10, 11]), False, False), 'FE0_C0_D10': ('FE0_C0_D01', (2, [0, 1]), False, False), 'FE0_C0_D01': ('FE0_C0_D01', (1, [0, 2]), False, False), 'FE2': ('FE2', (), False, True), 'FE1_C1_D01': ('FE1_C0_D01', (10, [6, 8, 9, 10, 11]), False, False), 'FE1_C0_D01': ('FE1_C0_D01', (7, [0, 2, 3, 4, 5]), False, False), 'FE1_C0_D10': ('FE1_C0_D10', (8, [0, 1, 3, 4, 5]), False, False), 'FE0_C1': ('FE0_C0', (3, [3, 4, 5]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {7: {FiniteElement('Real', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0): array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.33333333, 0.10128651, 0.10128651, 0.79742699, 0.47014206, + 0.47014206, 0.05971587], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.33333333, 0.79742699, 0.10128651, 0.10128651, 0.05971587, + 0.47014206, 0.47014206], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.33333333, 0.10128651, 0.79742699, 0.10128651, 0.47014206, + 0.05971587, 0.47014206], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.10128651, 0.10128651, 0.79742699, 0.47014206, + 0.47014206, 0.05971587]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.79742699, 0.10128651, 0.10128651, 0.05971587, + 0.47014206, 0.47014206]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.10128651, 0.79742699, 0.10128651, 0.47014206, + 0.05971587, 0.47014206]]])}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ -3.33333333e-01, 5.94853971e-01, 5.94853971e-01, + -2.18970794e+00, -8.80568256e-01, -8.80568256e-01, + 7.61136513e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 8.32667268e-17, 2.22044605e-16, -2.22044605e-16, + 5.55111512e-17, 1.52655666e-16, -2.77555756e-16, + 9.71445147e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 3.33333333e-01, -5.94853971e-01, 2.18970794e+00, + -5.94853971e-01, 8.80568256e-01, -7.61136513e-01, + 8.80568256e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.33333333e+00, 3.18970794e+00, 4.05146029e-01, + 4.05146029e-01, 2.38863487e-01, 1.88056826e+00, + 1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -1.66533454e-16, 4.44089210e-16, -2.78456191e+00, + 2.78456191e+00, 3.33066907e-16, 1.64170477e+00, + -1.64170477e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -1.33333333e+00, -3.18970794e+00, -4.05146029e-01, + -4.05146029e-01, -2.38863487e-01, -1.88056826e+00, + -1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -3.33333333e-01, 5.94853971e-01, 5.94853971e-01, + -2.18970794e+00, -8.80568256e-01, -8.80568256e-01, + 7.61136513e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 8.32667268e-17, 2.22044605e-16, -2.22044605e-16, + 5.55111512e-17, 1.52655666e-16, -2.77555756e-16, + 9.71445147e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 3.33333333e-01, -5.94853971e-01, 2.18970794e+00, + -5.94853971e-01, 8.80568256e-01, -7.61136513e-01, + 8.80568256e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.33333333e+00, 3.18970794e+00, 4.05146029e-01, + 4.05146029e-01, 2.38863487e-01, 1.88056826e+00, + 1.88056826e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.66533454e-16, 4.44089210e-16, -2.78456191e+00, + 2.78456191e+00, 3.33066907e-16, 1.64170477e+00, + -1.64170477e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.33333333e+00, -3.18970794e+00, -4.05146029e-01, + -4.05146029e-01, -2.38863487e-01, -1.88056826e+00, + -1.88056826e+00]]]), (1, 0): array([[[ -3.33333333e-01, 5.94853971e-01, 5.94853971e-01, + -2.18970794e+00, -8.80568256e-01, -8.80568256e-01, + 7.61136513e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 3.33333333e-01, 2.18970794e+00, -5.94853971e-01, + -5.94853971e-01, -7.61136513e-01, 8.80568256e-01, + 8.80568256e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.33333333e+00, 4.05146029e-01, 3.18970794e+00, + 4.05146029e-01, 1.88056826e+00, 2.38863487e-01, + 1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -1.33333333e+00, -4.05146029e-01, -3.18970794e+00, + -4.05146029e-01, -1.88056826e+00, -2.38863487e-01, + -1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -2.15331488e-16, -2.78456191e+00, -4.37374128e-16, + 2.78456191e+00, 1.64170477e+00, -4.36972564e-16, + -1.64170477e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -3.33333333e-01, 5.94853971e-01, 5.94853971e-01, + -2.18970794e+00, -8.80568256e-01, -8.80568256e-01, + 7.61136513e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 3.33333333e-01, 2.18970794e+00, -5.94853971e-01, + -5.94853971e-01, -7.61136513e-01, 8.80568256e-01, + 8.80568256e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.33333333e+00, 4.05146029e-01, 3.18970794e+00, + 4.05146029e-01, 1.88056826e+00, 2.38863487e-01, + 1.88056826e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.33333333e+00, -4.05146029e-01, -3.18970794e+00, + -4.05146029e-01, -1.88056826e+00, -2.38863487e-01, + -1.88056826e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -2.15331488e-16, -2.78456191e+00, -4.37374128e-16, + 2.78456191e+00, 1.64170477e+00, -4.36972564e-16, + -1.64170477e+00]]]), (0, 0): array([[[-0.11111111, -0.08076859, -0.08076859, 0.47435261, -0.02807494, + -0.02807494, -0.0525839 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[-0.11111111, 0.47435261, -0.08076859, -0.08076859, -0.0525839 , + -0.02807494, -0.02807494], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[-0.11111111, -0.08076859, 0.47435261, -0.08076859, -0.02807494, + -0.0525839 , -0.02807494], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.44444444, 0.32307438, 0.32307438, 0.04103583, 0.11229977, + 0.11229977, 0.88413424], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.44444444, 0.04103583, 0.32307438, 0.32307438, 0.88413424, + 0.11229977, 0.11229977], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.44444444, 0.32307438, 0.04103583, 0.32307438, 0.11229977, + 0.88413424, 0.11229977], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.11111111, -0.08076859, -0.08076859, 0.47435261, -0.02807494, + -0.02807494, -0.0525839 ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.11111111, 0.47435261, -0.08076859, -0.08076859, -0.0525839 , + -0.02807494, -0.02807494]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.11111111, -0.08076859, 0.47435261, -0.08076859, -0.02807494, + -0.0525839 , -0.02807494]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.44444444, 0.32307438, 0.32307438, 0.04103583, 0.11229977, + 0.11229977, 0.88413424]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.44444444, 0.04103583, 0.32307438, 0.32307438, 0.88413424, + 0.11229977, 0.11229977]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.44444444, 0.32307438, 0.04103583, 0.32307438, 0.11229977, + 0.88413424, 0.11229977]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0': array([[-0.11111111, -0.11111111, -0.11111111, 0.44444444, 0.44444444, + 0.44444444, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.08076859, 0.47435261, -0.08076859, 0.32307438, 0.04103583, + 0.32307438, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.08076859, -0.08076859, 0.47435261, 0.32307438, 0.32307438, + 0.04103583, 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.47435261, -0.08076859, -0.08076859, 0.04103583, 0.32307438, + 0.32307438, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.02807494, -0.0525839 , -0.02807494, 0.11229977, 0.88413424, + 0.11229977, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.02807494, -0.02807494, -0.0525839 , 0.11229977, 0.11229977, + 0.88413424, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.0525839 , -0.02807494, -0.02807494, 0.88413424, 0.11229977, + 0.11229977, 0. , 0. , 0. , 0. , + 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11111111, -0.11111111, -0.11111111, 0.44444444, + 0.44444444, 0.44444444], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08076859, 0.47435261, -0.08076859, 0.32307438, + 0.04103583, 0.32307438], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08076859, -0.08076859, 0.47435261, 0.32307438, + 0.32307438, 0.04103583], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.47435261, -0.08076859, -0.08076859, 0.04103583, + 0.32307438, 0.32307438], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02807494, -0.0525839 , -0.02807494, 0.11229977, + 0.88413424, 0.11229977], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02807494, -0.02807494, -0.0525839 , 0.11229977, + 0.11229977, 0.88413424], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.0525839 , -0.02807494, -0.02807494, 0.88413424, + 0.11229977, 0.11229977]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -3.33333333e-01, 3.33333333e-01, 0.00000000e+00, + 1.33333333e+00, -1.33333333e+00, -2.15331488e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, 2.18970794e+00, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, -2.78456191e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, -5.94853971e-01, 0.00000000e+00, + 3.18970794e+00, -3.18970794e+00, -4.37374128e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.18970794e+00, -5.94853971e-01, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, 2.78456191e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, -7.61136513e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, 1.64170477e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, 8.80568256e-01, 0.00000000e+00, + 2.38863487e-01, -2.38863487e-01, -4.36972564e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.61136513e-01, 8.80568256e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, -1.64170477e+00]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -3.33333333e-01, 8.32667268e-17, 3.33333333e-01, + 1.33333333e+00, -1.66533454e-16, -1.33333333e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, 2.22044605e-16, -5.94853971e-01, + 3.18970794e+00, 4.44089210e-16, -3.18970794e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, -2.22044605e-16, 2.18970794e+00, + 4.05146029e-01, -2.78456191e+00, -4.05146029e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.18970794e+00, 5.55111512e-17, -5.94853971e-01, + 4.05146029e-01, 2.78456191e+00, -4.05146029e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, 1.52655666e-16, 8.80568256e-01, + 2.38863487e-01, 3.33066907e-16, -2.38863487e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, -2.77555756e-16, -7.61136513e-01, + 1.88056826e+00, 1.64170477e+00, -1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.61136513e-01, 9.71445147e-17, 8.80568256e-01, + 1.88056826e+00, -1.64170477e+00, -1.88056826e+00]]), 'FE1_C0_D01': array([[ -3.33333333e-01, 8.32667268e-17, 3.33333333e-01, + 1.33333333e+00, -1.66533454e-16, -1.33333333e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, 2.22044605e-16, -5.94853971e-01, + 3.18970794e+00, 4.44089210e-16, -3.18970794e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, -2.22044605e-16, 2.18970794e+00, + 4.05146029e-01, -2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.18970794e+00, 5.55111512e-17, -5.94853971e-01, + 4.05146029e-01, 2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, 1.52655666e-16, 8.80568256e-01, + 2.38863487e-01, 3.33066907e-16, -2.38863487e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, -2.77555756e-16, -7.61136513e-01, + 1.88056826e+00, 1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.61136513e-01, 9.71445147e-17, 8.80568256e-01, + 1.88056826e+00, -1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[ -3.33333333e-01, 3.33333333e-01, 0.00000000e+00, + 1.33333333e+00, -1.33333333e+00, -2.15331488e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, 2.18970794e+00, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, -2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, -5.94853971e-01, 0.00000000e+00, + 3.18970794e+00, -3.18970794e+00, -4.37374128e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.18970794e+00, -5.94853971e-01, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, 2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, -7.61136513e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, 1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, 8.80568256e-01, 0.00000000e+00, + 2.38863487e-01, -2.38863487e-01, -4.36972564e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.61136513e-01, 8.80568256e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, -1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333], + [ 0. , 0. , 0. , 0.10128651, 0.79742699, + 0.10128651], + [ 0. , 0. , 0. , 0.10128651, 0.10128651, + 0.79742699], + [ 0. , 0. , 0. , 0.79742699, 0.10128651, + 0.10128651], + [ 0. , 0. , 0. , 0.47014206, 0.05971587, + 0.47014206], + [ 0. , 0. , 0. , 0.47014206, 0.47014206, + 0.05971587], + [ 0. , 0. , 0. , 0.05971587, 0.47014206, + 0.47014206]]), 'FE0_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ], + [ 0.10128651, 0.79742699, 0.10128651, 0. , 0. , + 0. ], + [ 0.10128651, 0.10128651, 0.79742699, 0. , 0. , + 0. ], + [ 0.79742699, 0.10128651, 0.10128651, 0. , 0. , + 0. ], + [ 0.47014206, 0.05971587, 0.47014206, 0. , 0. , + 0. ], + [ 0.47014206, 0.47014206, 0.05971587, 0. , 0. , + 0. ], + [ 0.05971587, 0.47014206, 0.47014206, 0. , 0. , + 0. ]])} + + tables: {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0': array([[-0.11111111, -0.11111111, -0.11111111, 0.44444444, 0.44444444, + 0.44444444, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.08076859, 0.47435261, -0.08076859, 0.32307438, 0.04103583, + 0.32307438, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.08076859, -0.08076859, 0.47435261, 0.32307438, 0.32307438, + 0.04103583, 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.47435261, -0.08076859, -0.08076859, 0.04103583, 0.32307438, + 0.32307438, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.02807494, -0.0525839 , -0.02807494, 0.11229977, 0.88413424, + 0.11229977, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.02807494, -0.02807494, -0.0525839 , 0.11229977, 0.11229977, + 0.88413424, 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.0525839 , -0.02807494, -0.02807494, 0.88413424, 0.11229977, + 0.11229977, 0. , 0. , 0. , 0. , + 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11111111, -0.11111111, -0.11111111, 0.44444444, + 0.44444444, 0.44444444], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08076859, 0.47435261, -0.08076859, 0.32307438, + 0.04103583, 0.32307438], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08076859, -0.08076859, 0.47435261, 0.32307438, + 0.32307438, 0.04103583], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.47435261, -0.08076859, -0.08076859, 0.04103583, + 0.32307438, 0.32307438], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02807494, -0.0525839 , -0.02807494, 0.11229977, + 0.88413424, 0.11229977], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02807494, -0.02807494, -0.0525839 , 0.11229977, + 0.11229977, 0.88413424], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.0525839 , -0.02807494, -0.02807494, 0.88413424, + 0.11229977, 0.11229977]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -3.33333333e-01, 3.33333333e-01, 0.00000000e+00, + 1.33333333e+00, -1.33333333e+00, -2.15331488e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, 2.18970794e+00, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, -2.78456191e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, -5.94853971e-01, 0.00000000e+00, + 3.18970794e+00, -3.18970794e+00, -4.37374128e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.18970794e+00, -5.94853971e-01, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, 2.78456191e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, -7.61136513e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, 1.64170477e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, 8.80568256e-01, 0.00000000e+00, + 2.38863487e-01, -2.38863487e-01, -4.36972564e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.61136513e-01, 8.80568256e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, -1.64170477e+00]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -3.33333333e-01, 8.32667268e-17, 3.33333333e-01, + 1.33333333e+00, -1.66533454e-16, -1.33333333e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, 2.22044605e-16, -5.94853971e-01, + 3.18970794e+00, 4.44089210e-16, -3.18970794e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, -2.22044605e-16, 2.18970794e+00, + 4.05146029e-01, -2.78456191e+00, -4.05146029e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.18970794e+00, 5.55111512e-17, -5.94853971e-01, + 4.05146029e-01, 2.78456191e+00, -4.05146029e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, 1.52655666e-16, 8.80568256e-01, + 2.38863487e-01, 3.33066907e-16, -2.38863487e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, -2.77555756e-16, -7.61136513e-01, + 1.88056826e+00, 1.64170477e+00, -1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.61136513e-01, 9.71445147e-17, 8.80568256e-01, + 1.88056826e+00, -1.64170477e+00, -1.88056826e+00]]), 'FE1_C0_D01': array([[ -3.33333333e-01, 8.32667268e-17, 3.33333333e-01, + 1.33333333e+00, -1.66533454e-16, -1.33333333e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, 2.22044605e-16, -5.94853971e-01, + 3.18970794e+00, 4.44089210e-16, -3.18970794e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, -2.22044605e-16, 2.18970794e+00, + 4.05146029e-01, -2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.18970794e+00, 5.55111512e-17, -5.94853971e-01, + 4.05146029e-01, 2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, 1.52655666e-16, 8.80568256e-01, + 2.38863487e-01, 3.33066907e-16, -2.38863487e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, -2.77555756e-16, -7.61136513e-01, + 1.88056826e+00, 1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.61136513e-01, 9.71445147e-17, 8.80568256e-01, + 1.88056826e+00, -1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[ -3.33333333e-01, 3.33333333e-01, 0.00000000e+00, + 1.33333333e+00, -1.33333333e+00, -2.15331488e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, 2.18970794e+00, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, -2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, -5.94853971e-01, 0.00000000e+00, + 3.18970794e+00, -3.18970794e+00, -4.37374128e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.18970794e+00, -5.94853971e-01, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, 2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, -7.61136513e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, 1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, 8.80568256e-01, 0.00000000e+00, + 2.38863487e-01, -2.38863487e-01, -4.36972564e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.61136513e-01, 8.80568256e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, -1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333], + [ 0. , 0. , 0. , 0.10128651, 0.79742699, + 0.10128651], + [ 0. , 0. , 0. , 0.10128651, 0.10128651, + 0.79742699], + [ 0. , 0. , 0. , 0.79742699, 0.10128651, + 0.10128651], + [ 0. , 0. , 0. , 0.47014206, 0.05971587, + 0.47014206], + [ 0. , 0. , 0. , 0.47014206, 0.47014206, + 0.05971587], + [ 0. , 0. , 0. , 0.05971587, 0.47014206, + 0.47014206]]), 'FE0_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ], + [ 0.10128651, 0.79742699, 0.10128651, 0. , 0. , + 0. ], + [ 0.10128651, 0.10128651, 0.79742699, 0. , 0. , + 0. ], + [ 0.79742699, 0.10128651, 0.10128651, 0. , 0. , + 0. ], + [ 0.47014206, 0.05971587, 0.47014206, 0. , 0. , + 0. ], + [ 0.47014206, 0.47014206, 0.05971587, 0. , 0. , + 0. ], + [ 0.05971587, 0.47014206, 0.47014206, 0. , 0. , + 0. ]])} + + name_map: {} + + inv_name_map: {'FE0_C1_D01': 'FE0_C1_D01', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE0_C1_D10': 'FE0_C1_D10', 'FE1_C1_D10': 'FE1_C1_D10', 'FE0_C0_D10': 'FE0_C0_D10', 'FE0_C0_D01': 'FE0_C0_D01', 'FE2': 'FE2', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE1_C0': array([[-0.11111111, -0.11111111, -0.11111111, 0.44444444, 0.44444444, + 0.44444444], + [-0.08076859, 0.47435261, -0.08076859, 0.32307438, 0.04103583, + 0.32307438], + [-0.08076859, -0.08076859, 0.47435261, 0.32307438, 0.32307438, + 0.04103583], + [ 0.47435261, -0.08076859, -0.08076859, 0.04103583, 0.32307438, + 0.32307438], + [-0.02807494, -0.0525839 , -0.02807494, 0.11229977, 0.88413424, + 0.11229977], + [-0.02807494, -0.02807494, -0.0525839 , 0.11229977, 0.11229977, + 0.88413424], + [-0.0525839 , -0.02807494, -0.02807494, 0.88413424, 0.11229977, + 0.11229977]]), 'FE0_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C0_D01': array([[-0.33333333, 0.33333333, 1.33333333, 0. , -1.33333333], + [ 0.59485397, -0.59485397, 3.18970794, 0. , -3.18970794], + [ 0.59485397, 2.18970794, 0.40514603, -2.78456191, -0.40514603], + [-2.18970794, -0.59485397, 0.40514603, 2.78456191, -0.40514603], + [-0.88056826, 0.88056826, 0.23886349, 0. , -0.23886349], + [-0.88056826, -0.76113651, 1.88056826, 1.64170477, -1.88056826], + [ 0.76113651, 0.88056826, 1.88056826, -1.64170477, -1.88056826]]), 'FE1_C0_D10': array([[-0.33333333, 0.33333333, 1.33333333, -1.33333333, 0. ], + [ 0.59485397, 2.18970794, 0.40514603, -0.40514603, -2.78456191], + [ 0.59485397, -0.59485397, 3.18970794, -3.18970794, 0. ], + [-2.18970794, -0.59485397, 0.40514603, -0.40514603, 2.78456191], + [-0.88056826, -0.76113651, 1.88056826, -1.88056826, 1.64170477], + [-0.88056826, 0.88056826, 0.23886349, -0.23886349, 0. ], + [ 0.76113651, 0.88056826, 1.88056826, -1.88056826, -1.64170477]]), 'FE0_C0': array([[ 0.33333333, 0.33333333, 0.33333333], + [ 0.10128651, 0.79742699, 0.10128651], + [ 0.10128651, 0.10128651, 0.79742699], + [ 0.79742699, 0.10128651, 0.10128651], + [ 0.47014206, 0.05971587, 0.47014206], + [ 0.47014206, 0.47014206, 0.05971587], + [ 0.05971587, 0.47014206, 0.47014206]])} + + QG-utils, psi_tables, name_map: + {'FE0_C1_D01': ('FE0_C0_D01', (4, [3, 5]), False, False), 'FE1_C0': ('FE1_C0', (6, [0, 1, 2, 3, 4, 5]), False, False), 'FE1_C1': ('FE1_C0', (9, [6, 7, 8, 9, 10, 11]), False, False), 'FE0_C1_D10': ('FE0_C0_D01', (5, [3, 4]), False, False), 'FE1_C1_D10': ('FE1_C0_D10', (11, [6, 7, 9, 10, 11]), False, False), 'FE0_C0_D10': ('FE0_C0_D01', (2, [0, 1]), False, False), 'FE0_C0_D01': ('FE0_C0_D01', (1, [0, 2]), False, False), 'FE2': ('FE2', (), False, True), 'FE1_C1_D01': ('FE1_C0_D01', (10, [6, 8, 9, 10, 11]), False, False), 'FE1_C0_D01': ('FE1_C0_D01', (7, [0, 2, 3, 4, 5]), False, False), 'FE1_C0_D10': ('FE1_C0_D10', (8, [0, 1, 3, 4, 5]), False, False), 'FE0_C1': ('FE0_C0', (3, [3, 4, 5]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.453338 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Optimising expressions for cell integral + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.00742197 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 3 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 3 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.240305 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000939131 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./TentativeVelocity.h. + +Compiler stage 5 finished in 0.00108004 seconds. + +FFC finished in 0.71541 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form VelocityUpdate + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Vector<2 x CG2(?)>' + Unique sub elements: 'Vector<2 x CG2(?)>, CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 0 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 3 + Coefficients: '[c_0, w_1, w_2]' + Coefficient names: '[k, u1, p1]' + Unique elements: 'Vector<2 x CG2(?)>, R0(?), CG1(?)' + Unique sub elements: 'Vector<2 x CG2(?)>, R0(?), CG1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 3 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0269301 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 4 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 4 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.0018 seconds + Shape of reference tensor: (12, 12) + Primary multi index: rank = 2 dims = [12, 12] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + Internal multi index: rank = 1 dims = [2] indices = [[0], [1]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.00172 seconds + Shape of reference tensor: (12, 12) + Primary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Internal multi index: rank = 1 dims = [2] indices = [[0], [1]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 144 entries computed in 0.00232 seconds + Shape of reference tensor: (12, 1, 2, 3, 2) + Primary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Secondary multi index: rank = 4 dims = [1, 2, 3, 2] indices = [[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 0, 2, 0], [0, 0, 2, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [0, 1, 2, 0], [0, 1, 2, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 4 dims = [1, 2, 3, 2] indices = [[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 0, 2, 0], [0, 0, 2, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [0, 1, 2, 0], [0, 1, 2, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0176291 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000257015 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 4 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 4 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.357863 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000974894 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./VelocityUpdate.h. + +Compiler stage 5 finished in 0.00117302 seconds. + +FFC finished in 0.405192 seconds. diff --git a/demo/documented/navier-stokes/cpp/documentation.rst b/demo/documented/navier-stokes/cpp/documentation.rst new file mode 100644 index 0000000..1152e36 --- /dev/null +++ b/demo/documented/navier-stokes/cpp/documentation.rst @@ -0,0 +1,449 @@ +.. Documentation for the incompressible Navier-Stokes demo from DOLFIN. + +.. _demo_pde_navier_stokes_cpp_documentation: + +Incompressible Navier-Stokes equations +====================================== + +.. include:: ../common.txt + +Implementation +-------------- + +The implementation is split in four files: three form files containing the +definition of the variational forms expressed in UFL and a C++ file +containing the actual solver. + +Running this demo requires the files: :download:`main.cpp`, +:download:`TentativeVelocity.ufl`, :download:`VelocityUpdate.ufl`, +:download:`PressureUpdate.ufl` and :download:`CMakeLists.txt`. + +UFL form files +^^^^^^^^^^^^^^ + +The variational forms for the three steps of Chorin's method are +implemented in three separate UFL form files. + +The variational problem for the tentative velocity is implemented as +follows: + +.. code-block:: python + + # Define function spaces (P2-P1) + V = VectorElement("Lagrange", triangle, 2) + Q = FiniteElement("Lagrange", triangle, 1) + + # Define trial and test functions + u = TrialFunction(V) + v = TestFunction(V) + + # Define coefficients + k = Constant(triangle) + u0 = Coefficient(V) + f = Coefficient(V) + nu = 0.01 + + # Define bilinear and linear forms + eq = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \ + nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx + a = lhs(eq) + L = rhs(eq) + +The variational problem for the pressure update is implemented as +follows: + +.. code-block:: python + + # Define function spaces (P2-P1) + V = VectorElement("Lagrange", triangle, 2) + Q = FiniteElement("Lagrange", triangle, 1) + + # Define trial and test functions + p = TrialFunction(Q) + q = TestFunction(Q) + + # Define coefficients + k = Constant(triangle) + u1 = Coefficient(V) + + # Define bilinear and linear forms + a = inner(grad(p), grad(q))*dx + L = -(1/k)*div(u1)*q*dx + +The variational problem for the velocity update is implemented as +follows: + +.. code-block:: python + + # Define function spaces (P2-P1) + V = VectorElement("Lagrange", triangle, 2) + Q = FiniteElement("Lagrange", triangle, 1) + + # Define trial and test functions + u = TrialFunction(V) + v = TestFunction(V) + + # Define coefficients + k = Constant(triangle) + u1 = Coefficient(V) + p1 = Coefficient(Q) + + # Define bilinear and linear forms + a = inner(u, v)*dx + L = inner(u1, v)*dx - k*inner(grad(p1), v)*dx + +Before the form files can be used in the C++ program, they must be +compiled using FFC: + +.. code-block:: sh + + ffc -l dolfin TentativeVelocity.ufl + ffc -l dolfin VelocityUpdate.ufl + ffc -l dolfin PressureUpdate.ufl + +Note the flag ``-l dolfin`` which tells FFC to generate +DOLFIN-specific wrappers that make it easy to access the generated +code from within DOLFIN. + +C++ program +^^^^^^^^^^^ + +In the C++ program, :download:`main.cpp`, we start by including +``dolfin.h`` and the generated header files: + +.. code-block:: c++ + + #include + #include "TentativeVelocity.h" + #include "PressureUpdate.h" + #include "VelocityUpdate.h" + +To be able to use classes and functions from the DOLFIN namespace +directly, we write + +.. code-block:: c++ + + using namespace dolfin; + +Next, we define the subdomains that we will use to specify boundary +conditions. We do this by defining subclasses of +:cpp:class:`SubDomain` and overloading the function ``inside``: + +.. code-block:: c++ + + // Define noslip domain + class NoslipDomain : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return (on_boundary && + (x[0] < DOLFIN_EPS || x[1] < DOLFIN_EPS || + (x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))); + } + }; + + // Define inflow domain + class InflowDomain : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { return x[1] > 1.0 - DOLFIN_EPS; } + }; + + // Define inflow domain + class OutflowDomain : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { return x[0] > 1.0 - DOLFIN_EPS; } + }; + +We also define a subclass of :cpp:class:`Expression` which we will use +to specify the time-dependent boundary value for the pressure at the +inflow. + +.. code-block:: c++ + + // Define pressure boundary value at inflow + class InflowPressure : public Expression + { + public: + + // Constructor + InflowPressure() : t(0) {} + + // Evaluate pressure at inflow + void eval(Array& values, const Array& x) const + { values[0] = sin(3.0*t); } + + // Current time + double t; + + }; + +Note that the member variable ``t`` is not automatically updated +during time-stepping, so we must remember to manually update the value +of the current time in each time step. + +Once we have defined all classes we will use to write our program, we +start our C++ program by writing + +.. code-block:: c++ + + int main() + { + +For the parallel case, we turn off log messages from processes other than +the the root process to avoid excessive output: + +.. code-block:: c++ + + // Print log messages only from the root process in parallel + parameters["std_out_all_processes"] = false; + +We then load the mesh for the L-shaped domain from file: + +.. code-block:: c++ + + // Load mesh from file + Mesh mesh("../lshape.xml.gz"); + +We next define a pair of function spaces :math:`V` and :math:`Q` for +the velocity and pressure, and test and trial functions on these +spaces: + +.. code-block:: c++ + + // Create function spaces + VelocityUpdate::FunctionSpace V(mesh); + PressureUpdate::FunctionSpace Q(mesh); + +The time step and the length of the interval are defined by: + +.. code-block:: c++ + + // Set parameter values + double dt = 0.01; + double T = 3; + +We next define the time-dependent pressure boundary value, and zero +scalar and vector constants that will be used for boundary conditions +below. + +.. code-block:: c++ + + // Define values for boundary conditions + InflowPressure p_in; + Constant zero(0); + Constant zero_vector(0, 0); + +Before we can define our boundary conditions, we also need to +instantiate the classes we defined above for the boundary subdomains: + +.. code-block:: c++ + + // Define boundary conditions + DirichletBC noslip(V, zero_vector, noslip_domain); + DirichletBC inflow(Q, p_in, inflow_domain); + DirichletBC outflow(Q, zero, outflow_domain); + std::vector bcu; + bcu.push_back(&noslip); + std::vector bcp; + bcp.push_back(&inflow); + bcp.push_back(&outflow); + +We may now define the boundary conditions for the velocity and +pressure. We define one no-slip boundary condition for the velocity +and a pair of boundary conditions for the pressure at the inflow and +outflow boundaries: + +.. code-block:: c++ + + // Define boundary conditions + DirichletBC noslip(V, zero_vector, noslip_domain); + DirichletBC inflow(Q, p_in, inflow_domain); + DirichletBC outflow(Q, zero, outflow_domain); + std::vector bcu; + bcu.push_back(&noslip); + std::vector bcp; + bcp.push_back(&inflow); + bcp.push_back(&outflow); + +We collect the boundary conditions in the two arrays ``bcu`` and +``bcp`` so that we may easily iterate over them below when we apply +the boundary conditions. This makes it easy to add new boundary +conditions or use this demo program to solve the Navier-Stokes +equations on other geometries. + +We next define the functions and the coefficients that will be used +below: + +.. code-block:: c++ + + // Create functions + Function u0(V); + Function u1(V); + Function p1(Q); + + // Create coefficients + Constant k(dt); + Constant f(0, 0); + +The next step is now to define the variational problems for the three +steps of Chorin's method. We do this by instantiating the classes +generated from our UFL form files: + +.. code-block:: c++ + + // Create forms + TentativeVelocity::BilinearForm a1(V, V); + TentativeVelocity::LinearForm L1(V); + PressureUpdate::BilinearForm a2(Q, Q); + PressureUpdate::LinearForm L2(Q); + VelocityUpdate::BilinearForm a3(V, V); + VelocityUpdate::LinearForm L3(V); + +Since the forms depend on coefficients, we have to attach the +coefficients defined above to the appropriate forms: + +.. code-block:: c++ + + // Set coefficients + a1.k = k; L1.k = k; L1.u0 = u0; L1.f = f; + L2.k = k; L2.u1 = u1; + L3.k = k; L3.u1 = u1; L3.p1 = p1; + +Since the bilinear forms do not depend on any coefficients that change +during time-stepping, the corresponding matrices remain constant. We +may therefore assemble these before the time-stepping begins: + +.. code-block:: c++ + + // Assemble matrices + Matrix A1, A2, A3; + assemble(A1, a1); + assemble(A2, a2); + assemble(A3, a3); + + // Create vectors + Vector b1, b2, b3; + + // Use amg preconditioner if available + const std::string prec(has_krylov_solver_preconditioner("amg") ? "amg" : "default"); + +We also created the vectors that will be used below to assemble +right-hand sides. + +During time-stepping, we will store the solution in VTK format +(readable by MayaVi and Paraview). We therefore create a pair of files +that can be used to store the solution. Specifying the ``.pvd`` suffix +signals that the solution should be stored in VTK format: + +.. code-block:: c++ + + // Create files for storing solution + File ufile("results/velocity.pvd"); + File pfile("results/pressure.pvd"); + +The time-stepping loop is now implemented as follows: + +.. code-block:: c++ + + // Time-stepping + double t = dt; + while (t < T + DOLFIN_EPS) + { + // Update pressure boundary condition + p_in.t = t; + +We remember to update the current time for the time-dependent pressure +boundary value. + +For each of the three steps of Chorin's method, we assemble the +right-hand side, apply boundary conditions, and solve a linear +system. Note the different use of preconditioners. Incomplete LU +factorization is used for the computation of the tentative velocity +and the velocity update, while algebraic multigrid is used for the +pressure equation if available: + +.. code-block:: c++ + + // Compute tentative velocity step + begin("Computing tentative velocity"); + assemble(b1, L1); + for (std::size_t i = 0; i < bcu.size(); i++) + bcu[i]->apply(A1, b1); + solve(A1, *u1.vector(), b1, "gmres", "default"); + end(); + + // Pressure correction + begin("Computing pressure correction"); + assemble(b2, L2); + for (std::size_t i = 0; i < bcp.size(); i++) + bcp[i]->apply(A2, b2); + solve(A2, *p1.vector(), b2, "cg", prec); + end(); + + // Velocity correction + begin("Computing velocity correction"); + assemble(b3, L3); + for (std::size_t i = 0; i < bcu.size(); i++) + bcu[i]->apply(A3, b3); + solve(A3, *u1.vector(), b3, "gmres", "default"); + end(); + +Note the use of ``begin`` and ``end``; these improve the readability +of the output from the program by adding indentation to diagnostic +messages. + +At the end of the time-stepping loop, we store the solution to file +and update values for the next time step: + +.. code-block:: c++ + + // Save to file + ufile << u1; + pfile << p1; + + // Move to next time step + u0 = u1; + t += dt; + +Finally, we plot the solution and the program is finished: + +.. code-block:: c++ + + // Plot solution + plot(p1, "Pressure"); + plot(u1, "Velocity"); + interactive(); + + return 0; + } + + + +Complete code +------------- + +Complete UFL files +^^^^^^^^^^^^^^^^^^ + +.. literalinclude:: TentativeVelocity.ufl + :start-after: # Compile + :language: python + + +.. literalinclude:: VelocityUpdate.ufl + :start-after: # Compile + :language: python + + +.. literalinclude:: PressureUpdate.ufl + :start-after: # Compile + :language: python + +Complete main file +^^^^^^^^^^^^^^^^^^ + +.. literalinclude:: main.cpp + :start-after: // Begin demo + :language: c++ diff --git a/demo/documented/navier-stokes/cpp/main.cpp b/demo/documented/navier-stokes/cpp/main.cpp new file mode 100644 index 0000000..8cb6b38 --- /dev/null +++ b/demo/documented/navier-stokes/cpp/main.cpp @@ -0,0 +1,196 @@ +// Copyright (C) 2010-2011 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2010-08-30 +// Last changed: 2013-03-21 +// +// This demo program solves the incompressible Navier-Stokes equations +// on an L-shaped domain using Chorin's splitting method. + +// Begin demo + +#include +#include "TentativeVelocity.h" +#include "PressureUpdate.h" +#include "VelocityUpdate.h" + +using namespace dolfin; + +// Define noslip domain +class NoslipDomain : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return (on_boundary && + (x[0] < DOLFIN_EPS || x[1] < DOLFIN_EPS || + (x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))); + } +}; + +// Define inflow domain +class InflowDomain : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { return x[1] > 1.0 - DOLFIN_EPS; } +}; + +// Define inflow domain +class OutflowDomain : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { return x[0] > 1.0 - DOLFIN_EPS; } +}; + +// Define pressure boundary value at inflow +class InflowPressure : public Expression +{ +public: + + // Constructor + InflowPressure() : t(0) {} + + // Evaluate pressure at inflow + void eval(Array& values, const Array& x) const + { values[0] = sin(3.0*t); } + + // Current time + double t; + +}; + +int main() +{ + // Print log messages only from the root process in parallel + parameters["std_out_all_processes"] = false; + + // Load mesh from file + Mesh mesh("../lshape.xml.gz"); + + // Create function spaces + VelocityUpdate::FunctionSpace V(mesh); + PressureUpdate::FunctionSpace Q(mesh); + + // Set parameter values + double dt = 0.01; + double T = 3; + + // Define values for boundary conditions + InflowPressure p_in; + Constant zero(0); + Constant zero_vector(0, 0); + + // Define subdomains for boundary conditions + NoslipDomain noslip_domain; + InflowDomain inflow_domain; + OutflowDomain outflow_domain; + + // Define boundary conditions + DirichletBC noslip(V, zero_vector, noslip_domain); + DirichletBC inflow(Q, p_in, inflow_domain); + DirichletBC outflow(Q, zero, outflow_domain); + std::vector bcu; + bcu.push_back(&noslip); + std::vector bcp; + bcp.push_back(&inflow); + bcp.push_back(&outflow); + + // Create functions + Function u0(V); + Function u1(V); + Function p1(Q); + + // Create coefficients + Constant k(dt); + Constant f(0, 0); + + // Create forms + TentativeVelocity::BilinearForm a1(V, V); + TentativeVelocity::LinearForm L1(V); + PressureUpdate::BilinearForm a2(Q, Q); + PressureUpdate::LinearForm L2(Q); + VelocityUpdate::BilinearForm a3(V, V); + VelocityUpdate::LinearForm L3(V); + + // Set coefficients + a1.k = k; L1.k = k; L1.u0 = u0; L1.f = f; + L2.k = k; L2.u1 = u1; + L3.k = k; L3.u1 = u1; L3.p1 = p1; + + // Assemble matrices + Matrix A1, A2, A3; + assemble(A1, a1); + assemble(A2, a2); + assemble(A3, a3); + + // Create vectors + Vector b1, b2, b3; + + // Use amg preconditioner if available + const std::string prec(has_krylov_solver_preconditioner("amg") ? "amg" : "default"); + + // Create files for storing solution + File ufile("results/velocity.pvd"); + File pfile("results/pressure.pvd"); + + // Time-stepping + double t = dt; + while (t < T + DOLFIN_EPS) + { + // Update pressure boundary condition + p_in.t = t; + + // Compute tentative velocity step + begin("Computing tentative velocity"); + assemble(b1, L1); + for (std::size_t i = 0; i < bcu.size(); i++) + bcu[i]->apply(A1, b1); + solve(A1, *u1.vector(), b1, "gmres", "default"); + end(); + + // Pressure correction + begin("Computing pressure correction"); + assemble(b2, L2); + for (std::size_t i = 0; i < bcp.size(); i++) + bcp[i]->apply(A2, b2); + solve(A2, *p1.vector(), b2, "cg", prec); + end(); + + // Velocity correction + begin("Computing velocity correction"); + assemble(b3, L3); + for (std::size_t i = 0; i < bcu.size(); i++) + bcu[i]->apply(A3, b3); + solve(A3, *u1.vector(), b3, "gmres", "default"); + end(); + + // Save to file + ufile << u1; + pfile << p1; + + // Move to next time step + u0 = u1; + t += dt; + cout << "t = " << t << endl; + } + + // Plot solution + plot(p1, "Pressure"); + plot(u1, "Velocity"); + interactive(); + + return 0; +} diff --git a/demo/documented/navier-stokes/lshape.xml.gz b/demo/documented/navier-stokes/lshape.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..e280aa4e276420a6b0183c5b82f4483696a34fc3 GIT binary patch literal 3420 zcmV-i4WsfOiwFQB^h!|x1BBE|Zo)7S2H-uXu)J>)KjH@>u->Hw`s=BjM@zb05wbbE;hXGT+m4TmYv_3OU)`y7lpOrI zq5O#^Htk^adpD55|4xhv9Y(^KyA$6X+`XaG2IuGF|5+l6Jr&C+{xTOsm3W=2s8J{9 z*(Q;bHIVqqD!AM^bZ|W5OmHIOY;ZF7mn(Q=9I^ma4u(hyor5AklY=o9n}hXhWlbD~ z3P6KH4WP!M0Z`%40*F@_2iIf@5`_#vfkO@;$DsfauWr6bCUu+|rk$b+R#1v+Sd}Si z7MB~(h}#9la~F&Ilc*)Z78I{f!9m+dG&TYHMgmIEI1;c1og)DiXsQXQ0mREr7y$7? z78XGKYRH(5s4Avo<#DTOmG~&;#HFrPEG(s@(RgAqCZ>c{R>qZTYpTRbF}>=!q4}Fi zNsa#_8FQ?p6wh1t$9I_|R}h0R^h(Ub{Vx_$717z4-u(q1TRh43FGy}|M;nZ^RgCLj zA3lykn6RCR6;jVS`A`9NG|dpf@e*4;iL#bt9 zvZ66%?;>7?QUvN1v%a_F>)$L9jEPhA7_EZ_jp#-r))D;Zv{x2OD@S6t*4=ke| zv`cGw=bZ0FCWr$#R7dzb@fQQP38R zPq&k2<{O9L6^}JA+90}U4e&7YZwKN@bxbLMLsR*;C1;mob- z2E{eWkDROpqSIXW9-tCOr|~Ju*4WnEFByQN zKu7{e-Gk(6FfD^kDcZnXPU^>Gg}fQLE+7_!oZKI_r-#T7DV&SM-|8*Tb>RS=>`k|J z8vBMrT{yJWY0Q5R%)=l|b>UEZsovU2s`tCKP4@u8v)}}J=@3LSS)!jW6p6tX_QivP zO*eNdsA0V)u-B)X=E|HvU+soN&77f9wE6SM-$DVu`M$`F)f z*GQ5|l!F1^LG%w{;zVn1(f0&40RaiyANj*{45t%r7vYPP3>=0GhXNr(z-Dj+TVoGN zsnAjG7VZjl+B@7DgrWgXHCpTKvTTUDpfL1DZm%q%?bBOCg@Yyh6DS|H43&$Ez(8=J zv$LoSK^GS=ET=>Nd?_mjzEmmp*n;%3?8wa!b&(P3o6@0>`!z)IthP`nOuf$ zDGdb%$~pUR7wJP(@`L*O+rMITSq>w4k9XjsYVs|nQ)+svY0!ywtT{4N;@mP*es*@no6BlY@WQ#UrKH zp^l`SlT@OPq3jqrm7eK})I(dmM%-*?uzHuMNGJ(WtYrR@|l&@E-_0sj{-Rhf8+3_p$RpP6sy7qZQWFloE zBMApmBSa^XfMi(70g^W>V^A81q{vK}%rTjfMyDAIkYgeWM1hn5sT(543&h}M{8=gM zG!j5 zrtjV$ZdQfD8qP$C8F`CoUFXQEc8$k@h&?_Z;5_12GRch^#nB7`A03w(N zIR8YE2k3p+SyS>^^r%@^QRD$y6jblW|08Pk-H2323J4;MNI<|NTLmTzP#o?@8!GDb zC?7Xb4lJBY5}PQMem;ALf1Tx@fT}JB7{JyM6fzaD!2340>y(**g<)47YBA+i%ARX- z{ZCgt_SMR=xG8J*2im%NAi$WQ>5<*!`vAt`5MMNJE{* z?Z4wH)MO3xauE=_|$~g6kiUbv2eMc|pnMbdxIQ8~5>W49FJ8~d|VJ*P| ze)Qj1aydjIJ~S@CvqlI>_Wt~r{8Zu9N9BTT(_)^$1YQgUp+PMko>E+XYclS`3%J`R z#scmoVwhdGHBhCPYnvErau5vJV6fvatIR8g%n9b6c&7BiFJ|P4XX;qqxx?B-ck$1qA>jUG< zs?Av8+~BeACOgEg!r34H)@!0FS*X8D9(7sSuF=*CUYwm~=sfnLPL-P$E3O$(>U0iP z+^UYfaoEQgoe~S@s0vHa{RJD{xhmP-`{Xam%*BR*5Qd>E zVYq{^|6-L|Oq&$B=>Sm+bz zPi<^iB3Vwke5bKHffZg8=U81jSq~1kWeo0X$2y(tl2LZvPJZ0S^qeYpiwF~CS2KnT zLudjiI|%a5Zm~3{3~OgS4*iWwAcIB?DOv?W&mMO#=`}#?iKVQ%F_O-qP_Z#tnDlaMdOe+{THPA z$KIq;u4HIYBO~MP(XR8hZaUfRp+IV{1+i#fPi=g%2c>3|1ThH0&?_}oY`y=*_G2e> zq&4CJ7#%7QUMhPe!DzK`LmhRG>G%)2B~QiKzZLr;`(&dp=_A_#;V3I6#hE}jN_{{F zLGPL%9_1r`MwAY#gXxvhbf^J& znY&Wek(gc_pvRGtb<%etM?2Ia3{(1hsDUaT3&W#YIp5h=7@>(_v*|8fYy@it2<& zD$gIKW|YG)2*c1b!GMPQUu-{nsRWA&2e7J6Q))l^m9@ac=&vsvb+jwX1WEM}+cM~; zz*2WIuVwbXR66+FXRh@|&L2ZmH?pTMB}kQ*%c2geQTmc+0jf%mnvC1l0*|cC9b}b; zIBN=Ft6L{f^l$kDHTywk5&xAY!i2nC7?M`c}PTEG1Vkh{Z^qQJPnTr!$reFgn~-oB z%7VP^C1f26_F5vEOpsTkoX?OFH`3PxhH2~WuD$Q$4 y5ZJPWlA?ma<~0=a5fHZR<_iQr=lX%7jtZN(x%lklmXOaK6CfO}^E literal 0 HcmV?d00001 diff --git a/demo/documented/navier-stokes/navier-stokes_p.png b/demo/documented/navier-stokes/navier-stokes_p.png new file mode 100644 index 0000000000000000000000000000000000000000..7865121372e56a54e4fd621108e7384c455f7e2b GIT binary patch literal 28878 zcmeFYl%mBYxCV;5LveSfxVyGcN^ytcobdeK z_xuUx)A+ZI$3?_^-B!E86($WazSsw3l_$souC0>{O8 zXDFye?xmYxe(@g<2p)dpwQ=XRrQ_p+muvQ>vI25#Mtw)V} zG+d}10LvJ5hy#l%YC_PjCd2x(Jt2EFg_9PC7*EkKvfv*w#P!^0g*seV=kZKv}4Czd3%!MfG2m(G4qc3jo3p(?AdhEckTv zz8Q=(sUdC#$F@38t?1Bio^s-LYj@+%B2r+akR6aHsR-?K8H zJ+m_;&zoD2Q9wN|1m{ZtQb>c@L+PR7)tRbkLiavKs_v1M=F3(|pqn@++>QesY~t$n zvlWKY%U06RLr|`$l@y78tf;v2X!I*0QeM!9RV&*{NQY(Lt>pi^3;ca$Bm{wVP(ax| z3vTCucDxw8oM)9%_#GG-B8u;htjR9~HRi|cFkN*^e&G9CzHxmolt!kmrv2Btq-6|b z0$al^0MLHO$o6wk>%99iNI=SBoFg+ft)Jm#?uq$I5w8NTKejm3Eo&?N5HA70E@%cp zRE~w%l@IKG0f9ffowqtnbGq`El|pdyJ^qib8;HN?yV^3v-Z$;k8HBh&P0Zl1oWM*0 z^9wJ0MnR<+-ec$&;X|Yvm!{m&5v$k1g%g?Dn<~Hf0$!9@x7?X!pm+Q2U6hBxiIz8X}-QS)jla z<0Ql_n;HGiv@V|zaU7d<3j^5e*wy1(dUvxismLM^>!20SANKTE7g_fgmF{N@MyeF+ zO|qs&e0rKKWk>Jsc7Me5Tl1Pq3P5D0sHBt{GW`@hYk|H@(2uk*VxuU}9WgOKs`w>% z1(QP+v0mQt^A+bY|LrGB*r5mU0bTcobEdf%%4=y^ z4Jc|FPK?HCbRUjVzxJdOa)#M)=8&B;Kw^pkP;L|Do-}Ix(?-YepLaqkJ!AN^!xf?q zLlBvaOW- z4p+I3VIVJsCnat^I=x=AliqjaPJCdTIzsA--yTCrEDo0Z;6AE2-={tzGL0h2+4)(T z{1#`{N&YK+tkr!xbZ}iAg{kS#7U$L3uu{L{lj06)!Zsls%zShfIBHg`5$gD>Ggd*^ zH>Jn~5urPrAq3$hUORkXn5uk(^v1hzYD6eb@*Aq)YFJinGbq#bbE8!aS-7 z^Pz)pHDAlWi$>^fjXO@llgyOrR+0@KkLB*`f*tC0YPB#Y-R;>w6!&4foRKjR6a%8W zAnG9u59@zb92>mE;K{;kChc0MS1iXUggGb%KvSy6Z$FRi8J?w+KwgSZj@*1AdSFVy z4WU0`}vtxp5YhWHIf?-e|}RWJv#byB1LobH3!G*-Pk#!}obA0snIG4>eR zT^8SVMfzbXt@{@Xh8v!DecGjgTqi&L{N(J5o;$S7H=BMp#QECbcbq|vi$#&a2Q#tI z3QKgzSDuAdPGH=iXT)!0Gk z%h_2cGzBTDerq=I?jZK}LQuje)x@7uF%`^N$vigsGdY+Z6u);HjNhv{qW1nD5so15 zGLzFX&)$)w%oM@o5Bbf9Jr67U>cy^){zZRf+c4^7oxX`un6d@%v~x;`aWTGd$+2*} ze&Wx^WNGR2#sO6pb%qU$)^=kPyMZ$f1i+};Wf7pe^(j*k+Z}|lsJQp;kzhpvqW3x7 z9}1}p*_7;)Qdjc*(I*2lXM;$m=;O1bT2HI+vJuHz7L0)&_IT!Ebblu@dZfwhS-o*z z9dshwk1Zo)bztmh6aJ?Kftgo9DCJpYbwK>B2tC-U(LvXmRbKlpXAebj3ral{W_^1J z2Hy4pzdYuO(F&z43BG(sz=5?<*posvc^ntr7boe! zj&F?J&ibTVxp{HlvcN#gUpV2DL#(>}AT5o-`wkx^D8=?Q`=f1-xK)ZeXz2O=qS9e} z^Xj~=Eg<}Gd1lo_a2#19J0@c3s%l6O0njna^&SlOV+eomHZFbe(aek)jbf4&K$1n> zo;#2#i{81;7p;RI$2O=%gku{cl-YQ2B%Ja${pf;A4Ex3Z;gn?2($yKckM-7+0uUPw zy7GwaN2=(~({eEtpF+=+M7xo^h@XI?42=+ZQ zuF)!9CLyAt4DG^HriJ47uDN9xRO8{US7rZ?!k}6^#OE;Bi4$Um`cOnjJ1m^Q*SqcP z@yD-uCc;8HSea~d%uzwrztdQ<{F@Py%Lk(ogdyU10=vw=)N2%HyD5CFa6Nhl`dH!(ahq_1O!X4)Z1luD`I#N%#~1Q7Wfq>_i4}PWn!Wiavz(=Xr&PK zQ0goJp9*kkhkaj`ICE3=^Gjh7N)L-PYBLWXLlLG>kQa4-gRY|48zo0PG(q{)6lT_- z5}P@>b#^t=nbMvfJAHUGe#EaX)Vuy<#|5?3bQG*bin z4=p$bP$yIRL^y+I38;ii2DsW`frqj`#(Hd$ecJ~XR`eMh?Q_?6T*+)FynIkf{k*q~sHajFB zP9|eEaOD`i(kGB?TUk0ty$7`H1qb?Q?nkvS`e1w3oclA9J&R$GTq?56r|D_K%^ys` z{K>AAn2Mh@aaIz2NvNY4Q*Qr(T4>+`nKg8)ze*u5#YVN>c3WW3Vn#n`OTr_)sp-9h z0Y;n~KmXe}H?Rl40Fh~N5RW{}T;#zqQUu^BeFe z3_VmB=*OCd0#py<_izo7)zA{myZ(D<>vsU7oMBCgB#(Fp<^YPs7<*k1QNP_d_OZH{ zysRwymg6K5rh{;#E^X_wsO9^WiImv-lGUx>1fZ20ZTPli(X9uwqh$ zilMrTR0_H_YV6FU1Drqn=#SN^4Z3zm2>7T0*VvT**~Az(yL`2Iv6x%4h}*SbD!da1 z(^P$Gf)*Exda+6{+HXOcP-Tq_n5jO}&A{~KC2S_a!)6O<8A{x2F{7Lq#{7@etm*L2 z(^EuHCl-Nb0X3^>#hR}M&($%QZZgK)ex{@hqzW)|qn9NHkUwTI@lciFhVffh*@%&& z8aOh|(5CI>2}rsNWisi(kFzJRqw9&N3)!tptqv z^7^>`vr2GXt2B9*0Zy+cx>GV+usk-g>*ov!kuXym6WAda9FR0qq?G07g@u^o$c=9n z*_L};U%Q*?yO6$RQEgDOlElt`Doq*ZK35;$WI-Rpiym9Df*o?epR*8EfVMlRbkUdm zykMIfimQM0z{pb!jw>*EG#D-+bUH?@ce@)r(ri`}!`yJtQo)=qN!){bPxgypUKtjg z_lHNPir5c*T}cDhBQQ)se%nz6U$_;AL9?p+G4*BYqN`w1Zpe?w9h0`P{l%COmNoLQ z!w)ZSo|2~iO&JASQ0Gz~37e$GqG^;)(;qA*&rJxB%+~JNT|g`kSFGt%8)`M`iDZ=5*9Wd`Xk%NACikq zl3Z}j{9oo|F{RPa{B-^E8&<5Pn^Rb#+nJKPi?0H)5DwTKy;QlS=h1Ynk}TN%pEsHo zb$%y1Ja3?ZV+M2I?yknD+@R^3!{6-@blbG5dep7zjE zL_KoC2XFP@PjEqlfadQ7t>7`{CAC7^T?@)e-IvGzUiX z0AsvMq3EX%b|`2O^<1%Wa=w#*9SZ#iyZPSBLs`IAdyK5A{RR2I4{B*ffFOY4fo|sE zG9m|Kw3D>EZLY33ZBeIuNZTk4r1sN`X##+;WD8SFrhs08NxB5&^=UOE86}3`3Kp(E znLPce!BgY$DIrqv8u|YtPvD<>zr(U7&FGtXrCP+lf^5x9JiB>{WbiasrCHtt9_{7eMp0=+oPHAU)7QjOLDq`O@#2?H)fTWIMN3!; zw`qJAvx;}u21i4p|DB?1s6ioS+D*ga$k$ZRvSZjq?EJQ=_fIAL3#Gv{{Qdf3B|vLF zNSAk%)4n>GtAmT@JQglmJ(S z^mSA8{y8)kG{#b^O*ZI0e*v@xT;8(?3;<0kGG8cb5IwP&vpquJ3dcNtE8GDGWIml3 zz~?XeGJj1dV8a*k#q`Z0b#_fcrglsM6Ycb(wLgAvWuQw`WQgK^W7e+**SU7W2z1$? z-c@+jOgJ8#qMtYoMgwW0Bcu!+EMPw`l5TT916}K5GH5BZg5xe}7NBvh6OiGOMR30k z9x9VV-{_0QATMwH0hN07jW~J#d#6(MLI#a@~4p$O{AcO5??<$9QWr0G6uvcFv2CF(u;sh>!Ng(rN1qnB<)WmoLS&p>Q|QMu3D=P;m> zwJL_w^%eg*jKZU~*6pE3ktJ9$Z-@mRVPjudRm3YwqEAHoonNhQS+ENE%P4Y|&E zNlnTJB;Sc;TkY!jwdMt4Uea(~94Ie}C{i7w>p%JiUwkEY==+FXz(!*sMd|b?a?!Yl zlJLKrKq7n#xLqyxn{sGoq%)|kgW^iy1JtDB<`#ATc&entU@3N3DIx9*-+b~9PUMNX zp3YoquUbbo1SWV6rx#$Lz*&MKut|S%n_<>!pLt>!FY|k>?f02}nno>f{-LH0m#y|y z`6vzw#;&DWz2fopi9K6d?lfrG>}Ac<3W5}iUH9oC=I92vEHWW7#wCbXY+S9PUb10& z=M(rfiy}8EpIkz%Y@}`QLSd;p$gTqSHb}GRw8L3-Yw*&igMG@-yL?1^dpz`#0n9;Z z4;D(4;leP8uP8G8wqgwmf%0Me;8!x30Of~HvKcqBlOF(%VJ4XV_)j7L$`V%7V%dqm zlWUwp zLTk9y*;KPzJ%e}cvM(YFi{7@aQO>|?B`hy|K)Dp21Qe9RlTD6<>ax&a;S%8nd<~m& z{Is;mJztu0DJsckNIIbZS1s83q3ti+J_4b8aU%atq#8PS*RxS zLhxc5xGJZCiD6Givb>F2;kc-HOJoai>jz-9pd_G6QMGWZb)f6DWXeY(n(DBf((4+( z|I06^MqbOOc_oaz1a*cO_6!ZalqVZ%*o0GZIUz!ejDZ*9Ie&X9XIpc6Q zc8?y+INIS(c!gg-Y;OVY0;Yl()a%S1hP$Lgi!*Ti$LccC-aA{^F0-?^lwyDb_knao zLa$)1__h5%ni(N43;_Wv5&b6dL=5K;sf7Q@U8FW#;`^$|NKHzWXwzb!qtc%YzO=rS zIT4!xzDYWv`EINQ_POa4R-2(Y%wxOHsk8yXWMb1(*gYB|qrz};Kn1VEi2S^cXsbU$ zmu_QwD0)MiLTSi&k7N1~g69?QfSA|7T*R*{o?x1BF2C8B7P+K|fa(pQ9$kU+Uv#VuGdft|WF*By*J+Q>AD69=f^qNod}R zCqdLV9!mPMJnb*OBskFIKH7kRLkgWVW&HS;tnEL7^5y>8TCC_EiAEB#*v)CHJzy?XLk$-H?-%9UarL&E(WCGIPq=P$|p8A zld1h|U>MJB)C@zbKP|1QO|=1mx77@x`T`+RgT-oUG9>tgV%Qppwn5;LxI!mdGB`w- z;1IcGsHBkEYytD39cl&RWKvgS#MKJml+dK~Sy(^R41MDIvO%o~&d)87JfU;rW!ekM z8#~(CK_$jy-Oj2FR$AWq4OdW(+q&@LO1vjxEq?JO{y#H0myz5uni;2eA9smh4g5#+ z4Zam)1y9UyXHvrxIdQ7cZuzPEt4rQT;%+;MNIKxo+)M`2+~%nSXfr`Z++~J2lGu zjqBtFJlTkTfe^Q(iS^{*(u3&xt4M`}G(zVOx$F*e2Q2waacE6*F;M#NT^-e(Rw-&? zB<@#U3*xhJ@_5v{B$BhKVi-CE94}Cedl|>6>Vs|HP90S^ZZq#Nk=I~Iuc=Iq-tdROC;_9y)2-@qhIKV2pW|?@Fmj?nIts2Mcj(h z@!W>X$SQ*9z#@?Q?u=KP+lxE!bg$bGxlpwTV*K47o@f1p=d2UMix0hKtt#2UT}q_sW(IUtb^gcpF03DzxuF*HwkY8cMajbr5)`_TF9wwoUs| z)=LOXA=Ah3ue|MI&+4Tl+xs+K_q150!PRoJr|wk9HJ88AkLGeP5C*h!EkHtf>sD=J z;zJ3+vs{MfL*#Jm^2IlBr@Pz$7{ZIqmd(N!>njr=n&bZ zCHLE^wqq1%=& z?HCb_Zr0Xd*Q7&x)-REfmM-wX{{o?mYQORbj)@Fl&{B43Rt4=YE#pTu3<603)^lEc zx*Kq^NBJZ33g)U#cmdLnLkbD}tK@kFcl$Q6RN7tBim~!D6Lv136D6xYxzg1WE#zDV zE=n`-u%aV+wl*$2A!=tA8!^-A{gu*vxnHagi_u1Ow&k_d+7?ix2!ffZY+|OC#mK2O z$ca_c9klMi##>)q5BH2UpLZf7GD0)_Z%uNB;K4aF5PXpcFe^%~U;D}6Y zjYv^`&ZBE=H}i?R%-TT7Rz+?jVt{CCcvEI@m!XgBbga2uBFi#pJb1fYMmf5{ftZv5 zC%MqZZtf=e6eCNnhbUqmk!4cU3*^no+Wz#zO=W}RGb)UO8rZ!bWjI=XB}K%nZb zncrpjhx^y^uzt8^&UlkeW?qk(4&_Skpmgv z+BL*wF=u4KaOA&O^d&1xrutZi>Kb}J!^&(oOQ)}_4m5cE+QN1qPv7qSz`({62*UbO zUlFXXN_?dcR(h7(l=1)i$BcbQR?l3xO$njag4E1PT|@b@TvFmFCc``8xYY(2=up#E z6sRf9Re&b>HIgw;zpL?sJGs!q4>Q(Zi1>t#Y1428Nd2;t${ExyWBrr;(?>$^^EuT? zD%FossUBilW6Q*1?$QoED(SXjt!pKav=Xw_`3&@tqn5dxM>1nBi~%=(J`gPzl-}x! z^S_P6dD+OR5geBuMFD2zo7ndj7+J8BOJsIhv&y-;7&E%O4jfVfmBFyNhWoc)kP4lo zCb0~s>Z>Co%L4h)Ky0BF7_9wc)d3v6ipaMr7q8aP+wIV4Q7=5w=3%P0v4&BbSc{=>)y8xm7~?76gY7U`;Luf zJJ*T)06|FLuE#}fk$_~0GL#CYtq2Y;qDuigF7|WmFF>7`l5GGQjg%P@VmzN^IDjPy z2b=uj8MENF9+Cwk>B=4ILQCR#RPYXU?~k^x#HPIsO|2JfhL6TfNeunalLt91+2Jm+ z1aqSoB9ot9TPFfuG42jbTA=GN8M@RWgVJpH7bj}x>-)~F9n#vzGp!m}ijoyKBe>Xp$mpah6j`^~Zo0eJNgN~?%0^?{tii}EB%UT^)FQg?eEz0 zcr=8J1jV@5<)N~x!c7=)3&>!V?OI(Q-2+J;D&1Bh20|H^%j4n=jRQqF%ALZ*Lc%oR z3+bOnw7!WDm^wW6ed-&KJm`1Q>wwyk7)9E*uA@y?2#Diaf@+i}u6v3Wyq^D7#!g`K z$1bIVOWD3zn66Fl;E1P2*{g;DNGysN?Z(O6)DCIr(ND0&JLH*?&|=v0;f1C*@XYZO zH3-$mwWR3s7ggT15P4n^AxAW>m1J&Bs0FKpSA&lK+)RLv6?a)qCE4ty-nH>eJTCRO zJms#fG;FIbX`-Tt<4-!fx?FlrxdK1$uy-V{tLY{n`0%l}pRp6_Hb;2c*sU)h6{Osl zb#a#EJTz^_s1a@=th*6TJnP>ezcW~}N^@1#^-G(nR3pErW-ci=x;_FcD84bVgAyZ5 zIaIey|K!g&QEFnJ;3$Fj$xry?tUk`CKP51LAXeF;S4tVUBt;0%5nE zkj>5^w`~L&C_VgSt-#%be|^eEZJs$q@zcbbq@9~!JJ3bWt}TBbBlnf+YMmB_`OuN( ztMHuG<;!ZKQc0r&Yz2+asU^%~`>5d`pNSM;>GGA&=@|i&cQsxIi++zuO|N;nA$@9y zs1iu9;tG+=U25AOI7j+`_@bGxa&iX|T68c`@^FZx?7B`l7t@1oej0Gj#Jojxs6f=} zmY&dBCa#f*^opU6<>{2h?|hd|2;F{gqj0>HO+sGehEl|nfm|5|`b$A(;*3%+Ymp+n z^!L_Wg($AVlk7)2T4H~Cdq@?93dgK@uFxlezL1)=^q)H5hBCsgr4ZR#Dfv^V81niR z!$@w4bKHiectO?f`|xA$nfwSDicxj&7R}->MOgYvtq-L>1LPKteg_F4%4!X;r1e3I zN*+@rQTJcB4JVR2E7tUt{REJiQN&~$dKG5{8Z=SAvhmN}oTZO5m`ak-g%3SYKu6WTQ?zDKb3%HVB{ z%8^hGEpEMx`VyyzZJ#g30R`bI^6mk&T|;?T`T2V@q~k#!V&QSM-h1WkPupp^g*PsY zGOSk1r6l1ds!K7=7~w0q0=m*xJkgUBSyo7^a~PI$>-o$AOOmqF7H{~{BzHU8K&2Ah z$I0!~r0bgvboxHO8Wtf%xV3Cl3UGz~BI5|JuPa?EFlj_TNtgTd>HUdhAvSBnjQP~E zR#29szR+(| zX(86<@NId!4!qk&6doOCdks>fT>iNMwqgUxFu&y}P^>$%99bKYkSMyeNqvmneWcn! zFaAJIdu669v6Q0uj2l>DzWA2W>UzHPoc&wg#;4rxv0cA=ey)F&E|Dyt^F@LWjQTRL z>cWH3fPJC5Kt`3`bA%(KOp%`$hPZ#d+#B$v)a5i)-UMpxfMBR(YXAxLw?W?9$qF>= z^_CA((wlNp^Vq%T&<&hc-eFVjeNtqwYt*|h_!kKQv|aB}+i z&WLJpM)0=yzG7kiM@Bn$;5Z~9|Mtl+e)%#|@%x)uIgzt_)(0^fh%+yo8j810p1Xah zWOdPkh?wl-#m|KjaHq=NaOMjO*EX7U*GVb7ktT9Z$~+RFlpeCPO}dMBknb3GxG=P~ zN{vd2>c!WUQ~H!ZU&he>^?5p|YjOf-2OA1;o`nZqMW}aiRsY+qV*vjA6r}iC`P^e-ljC8>sRc}pI&boCab$}0i7ABtqwSL7?X;`!{!5n9DtT})kf#ZD>8%SLa z$(WZY#!i3tL$OYrlcrDHDxYdPoXB4SzQHPDdC znvuF*y)ii@LLP9U6I+%27(wCeAb&&2>K_?zN?IqmoQHqf_&8ThNB(8m86(N?uXBf# z^lCne9F3H$eo!8?`7&M=F2A4{1hlM|b3nflg~z3YZT}aYitt^)7LO#wV5%-Q>`s;# zNHQ;tmaZ6OTpd4-2wN9l3QG3wqsrTQ&~Klq_e`8Wt)DX`=47~Hkg}Xt!JoUaY70!! zu#AYA>Mhv9DD8CBWK-i-l})!D9Q6AveXN`UiWP(#ja7K3Z50#zsCmsr+Df8AM##eo zZ-?wd7HNol6FpbHZ4*-I*Q!cR zLcphA`QGuTiv}l@xB>!`4tpTitHmQX)@Pth<(ALOu;Tl~n>h@`)c3Q{9bX*?E75Ax zMXn=+9Z6M6D2Th%3punvrSzf_#mV+ucSxu^j`Q=!2K6hy@JVS2>)I5k3t)WKL1)w7 zCF|UubzJ$I1qzkm?==UqvNB>4RyzWgWc9cCA8BZjIpMuwTI=BnWh!%RaaT(c5;Us( zAyORziS-r$$>_{G`CRv43)Cc=uei)u2>I0JfVy(IAY}g*(Te2K_?bT=S4TmMVR|@w z%fc1#W@<@vliHD=PyhZY-529bv&VMs^r=ttmu48%oS=W6*7YEs!%;w9b`GXgAcC^* z{_JOa38Sc13sYpS;P;Okg2%k19s+x$BPE z>F4yI*a~3_{6y1f6>^foadCZJoW0eKUv=cSlR^;eXgI+#TJ8i31NMt2dj{^NS88h( z40f&CZ|3S&tQW*{$z9Wecnk1qn}XItj)k>Xd&oG=lWCee+(POVrNAF<1J^c z_4K`Ywwu<`d*g)vD%oSDBzW!-+W!Ixf!~aaBT|0w4JL31&Wl=o2$~w_)Ncri)3%a< zteCuC&-x)_u}6IS=V%Mp$O0c6FHOtJIne1e`jODmFoOq)>!zzK{JpFD>WGtAR6JtI zsJB|?D4PIBgWG1|IHx>pTM9-TW{!-#iaY7zO<> zj3#e2sp`L$+%aaFdn*0-9zRYrd@U;4u6B@K^i|`+FP59;e)1i&ji;aqAlQ2w8(tqGZY_zCiQY?siq>m`uG1gY0&wK}2u2|q z^n3U*Zg!Hehqr}&kbzz=6hMiimBIr$HNyWYZ;76;9RjcB%l|^uE}7j*nFUxy#nf65 zJStvlTG|9I;`*qP1+h}CbhJ-ozTtbkum_TTV>S+p+0U6^h+)*;t|g&%J=5^-31+E7 zk-=E31>z@>VJ#P9_B20*h#;ALdDhd8Ql~0Zz_8tvkMHob?W_jyVsP@Ofj+?CmlC+z zb#L_3A~hlyFF8~#v$DP?Uqu_w9irP~Dj9tybjRXhlP~keWG^=?dKj;u} zl==yP6?F}38H-DKI;=x!i_+iSAOZy&L{a-t@55FXC0IThm86MG=lYGlTOQsNSG`gB`@U}8LQPKl7Y zP{P1Gtt1C57o_&}UUD^m8&U6GIyx;~d z`H~av$>$~bFxXsycdbv+HXY+Y+%z^j#-UYR1)F&xV|~Bz@3C1o+w22zf#{9qxs^R` z51(BAWFx|DoMq^ED%|kU)S%w@4Vx=W~5Bdpn-oqvBYXY z;NG~%y(jQSIRT^t??6EFK7DrU!h1h@Z4Gj&getNJn$4c(Cua*cebO@fhns(+;487Q zMWpjlfH7Ofl`Ry39Yb(`+=H#{9g4YcxGlb=<%Vu&b;MR**V(%yX1ig@K(!v)Xda^* zpr5XDC|m|}z-2JnO|um_K2#IhI4|)%uDML*JSg3p9pOCn2dmhwS%UBgiQu2(LE4$t ztrAb=auCM7Tl?$jM_-jpybb=Jrb#-mnG)9zdU}WNqC%fmtMY!uxO@NQEk^7>=Z)1v zh3-y1oBzXtU#Aj2cN_z8&ZGSuQ|_9cA0AI+&_~}{vMFXvTIreixUbR@RbIr476)%W z+%35k(bW3empdVwMviq5tTiMwvBBCl{L%8^DvdLFA6u{5W%TXi7F!tureU0TO1<6Q z=j^9%bUwatrJai3+kcbe*!9!;^_$G@66hN8`+FJ7;!hQ`RkX9nj2)aU<|eBPCQboC z;Gos#VFj?u{6Tg{XP3R77J}V;x>LQLw5$4HuJog2N4i@kBI{CP;ir)#a_@oBRXcQp zfkZl!nWOBEvxjU47>Eg8*uhTV#%pn9aZ%l7MZm(+{1X-~S`8u>FBTbaQFrKOE7{Sf zShJ_d_#V3cy}GN@y`IP0R(9{*G&ZMOh#cg37VCTgaO{TB>}1_}+LQcf$MONW3WQ-> z4F}pNEtK8*VcfC92pD@zOK~lD?1(%ITiNeA}$mQyFu49DBR9H<%0>Zh?1jAbqwO zW6?oQ)xs{fGWj&uK9ibaZ8w#X{TwgOok3(+^CjEnO^398O^BeOgm~2^R@nXJ-Fn*B zSQ-17f>{YFD(3CP&jTcB2^Cf9sCw&1rvcedXid28vt1PPQEkF^icl@M4TJ7Nl8Y!jz%p3phYXtS6#9A@CHm^`HL%xf*DL%7 z#6{}@k)G=SX{5L;xS|Gu=CW4mMsu(L*YjUNB9GK650{gPcN^0NlP_-@g?ALcVh4g; z%@6>{li4=Uu7pz!3K(>5>=AjLamd(jMtAW7ERi;)_SKe+Keakw~ZXGcgE6k<_O=@J4oikZ7q5=0sDmW5C2L`aYG?+sGkKT^W4j5wpg;dRsP zi0Y=iT^u1_Mcl*OC_dqzDqEvfK7sfH7?DRG!K2+LENUa{I)?9-r0%-hl?SvgUlkKC z;#v__a~L3wOyuWN2hww>>V~bTOj+iR7p-e}nPbJ}+10EI-+U3_zCGx1;MCeugvr6X zSc!RtLCSgA98b&HY$&poMTAbUyuN+25=c{X+1`f&{;OQXH`G zG!p9d1&@5tNMA#_x-7NOnvx}lF(9&E2AH=G1olpc#1K;HgoJF$LSj`K-*z5$HBU+k zyS%5;=UJ_E3F#}q8dkHO zc)Ow_>6K=F`kdFRUx=A~dgiLdyq^bvy&5yjFkyUKt3qyjq%hRcz58? z$FsnmHUG9q58(cQqx=WN>)p#LwGm~q{l0>yf3I7^ai_^(vwXYeVi5Fwgi-tj2!1e@ ziB5HV;0)IER-~K(%9)j#Up2F_)N&fz1N3<@RPbwZm%U=|~U+q9*kz^q9<}9yh z4)A|#CnHK{aI#_T%~^=7;x4UF=#Z@zb=WE~)E3Vy5Ck|JyuBdw9;@)dv`cNW52dv$ z^c($X*=cxlmlQjCoqI4ktuck-g0!-BHuu)n>pBTpz7~R<&z?el6Am=o5{VVq*t-yW zXZ*?@EYk8mMCFOedG}1ig$AjKTB|-AV?5gd1nq z*{}F}^VnKTs9+7iDMaR9``&0dp@vU~kzHS5g1y_m!J(t~zE?go<_jH21U8=~5mWZL zJk6aBUib0R2FsXeP^`Phq5WbEx&qv4)qE^795hh2RRfz$9KR>Gb=*xYu6SjwEMGVi;Gqt}jrX;-fMjhBa7c8NV8Rjz}MF=`w|{wiVf=(Fd| zEB@AZ!J&S)_s1TgZ{O6VpPXEeG$UwjTqjhMnk)mz0??cNBS6ZBLXFlmtZVwu+%3Ni zx=JO3b;SEFPuU*WfUOmvmYxD?LH&)t-}|v6km9`5n}Az+k+EU>iyhd<;QYB|F%fyg zrM-~|F_*jGU#RYvB`d>7p3myuxjNl=LZ(ik!u%tY{40&IyI%VKbN}oPHZJE;sZx5) z$k{A}H%!|qVpl_}*tAZN?JFO?#fs|mKl|)@; zSk2eVq#e_b=pc$wZEXlJMHkxuA|fR!yjF_qmx5(c|*LSX@j>!T) zw?_WUFZ? zRDtxZ!Sf#_;aQOtP>War;6451&B*;PQ~fj;1_4JH?(PuHV)OVEp$+W|BY|V8;1P5>r`V z4t%;p-+xi*EwS@PWpM4XyIpKsQk#*L4A2N(6xG=y? z_u(v1+zNjOCs)h=%0nxo(Uw-+F@?3Xf+8i686S%3pY?vIgw%kV+h z_1UNUH<=(Hb)*G0&T*59lOHA|QPm|}qeizTs_0N3IlMkqK6{@sgr67PR!fdju{}sr zppUc)&vCjVi?^X!YV@Q2W>oZF_L(Aqv9W#$_tV;3i#lfMKbxT`G2~B$RbA(b+2pd8M8^6) z`^kcrqj)T9f_D`)E&1bO%t$Lkp9QIYh2=$-_g3oI4F@wi$>^r~4(7QQ)WXB>@#^!h-Cj`J9!;9l2=&Au*6 z-R8B=?p%K90(-lPcE|nGne{DNn5}=$fTkoc#BkLWo!0 zN~C^FcfZ8gDhcDxb$zS2ZWwx4YUR`ps`Togk$LAw{zg4Jj7B|t(ysmN$T(8A#ZKZs z%_GeAl_p=1({1ZpLh@~w^b2_l^AQSHG|;805%m1K_55|)mIV=IZ)8xrsZONg8x^~i z>q?$kw+1!e*7#KS7pQr3k4~#S{p3Ht`9>ZCY7taLeH;1D_o+h|f4;NdETg_OTY~PY zIm{H$awjy8W)&9pW34tRXWNeUOP9jKlr3c%VV-|7mc7T9KP2eM2ZQbFc~9zO4tVds^L@|4 zcX5eMwyn3*XLd<#(s-t~F%hz%+W#qx+rtzLeMJ{AkT|oUK+fh`!T($@S#fE^`0C@` z=+EN(7^ADP<>vt{JBY2SpJ{hzAB)tpxYWKZiV8m#oe{gV5PXbmE!JBaCb^^g1Z%WZE<&Z z*8;&MfBN13d%ExUMujK zJF1=H5R(Sm zay+}M1%%T5&Y-y#OX<08u(ih8sz<%ne?OpStj$oKSJ-gSRfkAa146RTCbGMZWE!Ed z=Y4WDL~(MKJKNXGC=IKILej`uO4COLgcLWvz0&HX1$-$kOnA|lLXaaUZ=<}L($tiI zHw0%N5>wIUGrdZVq0K@k@JIks;UXl6YM%q&40`HX zVroJe&pnQBC%r}@;oTi7Qs&cA!2P%20V<%kC5zZqJ6D5_C)?)gyY$#%RsE<~qI#7*6ov*t5 z-m4NXtxLQixb3;RyIorppI~U>rI9p`rI(58xPx*yRkT!m2fE6($Y1a0t$~KBX2O;m zszSKRL=@AfEgouRf@>@H%Gz)e@>2@W0maFn{F10WGFx%AoKi(a77puH$>%FLG~f3K zt}t6T2AJIlpI1&9-BRbLT1N+X9!iHUn5+-hyr!j0vdA7l#{pI8d1lZA428aBAEMOl z`cSq3aUSb#mTJFP{oOZL(wCWryOSfUU$OYDoPcy zfsYCX&b2!zqYr)w^p!@}8kZ^j`m1ZHRTZaPS*ti{qcVE}L1j_>3ga@H7|JJJ6~n5B z-HqX8P&r!qju_YM@ie?~uq@Yy0iFdEXAYpXaq-Wl6-UI6q7&2B<2*WNBRg>Nm={|VC|^_I%Pw^YGo^YUQe zqF9T*c7(g9X!>!Je)Bj^XLAM)0dk$^h?$mShzp9YEG?)tU|8lDmIjV+H8s@*>b)3FRFg4AtwzbP{b=1Sa&U$c8q_ z-m8`t6xZs=C0b@nGevI?BPk=)rKQtp3&TrM!5*fwHy{pEIj2jp`#-@FJj-E3D?(Jr z;0vms`nTF_Cl9V5&d<*f?xa0hRb&U?#frl&jRY6s$k-cHeJ8g<#B)%Agy< zdwhj^$;cfEBQkF3lJjKLA+phu3OXCVnEWl1`LuKHxRj}HsPHeQbP z&eW&0rqU{)wEAKfp;t8rJZGouu+OjA4Jnv$up1qZ%?^;Q+3L?VR3zX9csF@9 z7`HF@^WwGZ=G`kn_XFY2^LGVKyH~V8e-}iT=VrN=0rCqWvtwQd?%w{|i!~_H*a3-N zD$kJkR^?~P=f#@qTwStUzLGxGuyg)W4eq>R+(N||sgn#2R+tFgFhx2VwrfLmL08?S zV!_fsHN5}wQ%~X+kuoq(&$G~T$cab3e=qc7O^(i8*@9vc9MU_38?ZKv5Ur-t zv)Sijj0I%-@*LfjgNhW+qvR+wcUv0xjNL0R=(vLvFk7?dS=jlFq?(Mj`Zmy>H0qzb z4TS{HKH)eyyn-0cD#=^DRZtUE!_+?C2I0Qg_=Fr&XQ9IN;4ejy*0JafX8LrK_uR#Q zA~tB0RH&rjB^U034|R1rdHp_$QZ3FC+;tYELBGp z)%~VQRNK>+oaaBkwkM8+igtMbt#J>iJJG17uOf#JGw>A$X7vUxE0S$Ak8 zGbT>bl1-;zMjkDsXFB^-@vLtS_3Zf!m_TUeuYYu{qQ=KjHpiz-#t3!YC=z2b@-j z*K(fa@P|fIROM`$OD-9^*Oa=iAxW+7{&ES_!vW|cQ3R*|E#BueLUw$tuc=~h)ql?H z!S_YiN2<241pn)KyY%)RHDt}pWA`tc>0pOXo`-I9pIA;veVO%(gjdMZ&hR>~mkTm< zS8F#S;VT`b?I?Uruji__W<%(roRJg05z+fJ;{24MwL~Zr09X+9&MQXRraEdBx``L! zkVvAHxft6$Ha5l2NJ78_PM|Dg(ngPl>hOa6Aua|cqlccMZeHr}H(W?+^a-fLSmUz; z>at${DK8lHuk(GqaubZMF7`O)&(j(yXU{^cjU16zultb8?+zG<3k~u#MZ&-B6F3&J z&B^PYg)SsAUJ*2fIunoLTKrJg`77*q3e32a>+_0hJ;JxN^N3@OJ)L;9^O`f$KKRf6 zM5tt+n#{ZtFvVNMMOE?v%kUSsP}Kg;FOO_cd3RF2G+! z^cOTU#RG?VTE8uZkuZRi=KxD2A;^Ns?9yE)n@u_rwyS)qRPt?h6sp-=E?`=Yzdat5 zg2vF4Zlp+Mx~l@`4{ilIGuA)?jewUZH2IbTdg+lx&$=4psN_Y@aIqz>#eJCoJ+(0s z$x97S^z^tHpE_aq-vrbw>e5`Rz26EGbnbZH%9OIraNP=pa*4X6VzvO|l=$tj#a?^3 zD%2n<`H}D5(yBa#AGB+JzZq%2*oYT%@@3yqz?4nS-iP!L!lyYk$EyZcz$Opgng3g4 zK;Y|f@+qYGOQwqEvPNDesD=2q7>F5g;l+8xloU)G`j>C-c(U6<`^XFqR_x9!wZKcw z|HuVmxdMURbnW)b8z=qvgqZ;r-Uk;?dHbS>z0X$s;#aG1KoC}H8EEaK!WlHr$fZN6ejRFmmqc|Xcei{r|2iipx~R|iZd_B2Sew4jJ^*1UplK^syPwq&-dT$C zwnGde4Fg`PasDJAC=fvp(NnTF$+>#*q3cA45qm3g@C|V|_|XAre);$)eOu9=;Lx&F zf+*<5+vp!4I>O(@Ryt5cjs3JFIIBsHIC>$KUDsr?;tpJKeCC$UYHvCXFiqF|g^>D|cmZD>bOB?4V6gtSE!L3* zoE>JB66#yUjHG>iaJg5%llI@MH@pOOT{eF*Ty1}oSCip7h<{PLBnxk`reHs>rrcJ( zjksvklR!+Oa4;2G-K#NnR|aCIh6fAOFNi0@8r&8A%mj>D=nDM!`YhZ-@_9yBJ+k~w z$!BG}g|JMpZ=n=QB8@1t z>K{Ib>a~2Y@fv9E3KbIJ(GuT*=kYF+i|{J>Qfd0z-LXFGVwmbE8j=3K!eKk8*4+1+$E(Sg z&K1w6=1wyKj+M`>)MqS#2Zak`AoIL@G;|ulmsCb_GDAB7uBG0qGEmQy9ve|^-u!ouq@;L>i1fE8WpH4zS_)+ zkVT?itM+?fwlMhh@<9vrKQRh;sx{bqbGdwEesdiMsSP%w0| z^WX+VP`m0SXuC3pl`5h$R2~!`r_j@bz@3~Z@~-Lnpr$ng!ON+CYq(nxpnSVE?+!4x zVafUZ%R)0^*zbgtGd(RI{i|pjP5X`Jx~o5J6^=C*yZ+~#ccX=(=_ePJd2tp?UtrqU zGSDdz+Y8Kv=-=2snR!vsDQA5f`lg2>zKT|EU$edD<%=}N_(b6zuC>YHRiborH{g+$ zjZiuN+y3I4?|p+sa@gMl=x&<5o&OUzu$^yXS8v07sg`5iA&@zhbnl+gmD_>QYAB>W%FIP)(z=r&`;^WMS# z1IHs`qvG>IrtiI*8(wuYS(Jo_z;L4CUA}>u9Y=ZyN|KhcWp4?A2oX)2l!Bk|aaA_lYuzOdh-+p-!-}$b&5BK@2qyVSe-++Hj z=J&tQ>DC|to@eIR8kJqOJEPY41RWDN)kG)T%+~hH@XsNLC}e8T3Cj?Y#Rvi-Hs-dO zM8=Jp!t@tb62`JTvhbBte86?hqj$%(=@86rPx>fRA5RLUh(yeRY8!YN!b{)>DJ9G} zD0H}K-wgCxzT(;J;42K{0y#XfB(-KSZ!BK_z%Wg7hp0kk;GhHc&&O83a&i8`vQfP# z2ETstkv8Lt_^4i%&Ro%)^>JARX6SoRR2B8+rGg3jTf=27W!ProR-ercvLhYOShJWXCn{+3Q?jD4-5_3Uot0vjf}q{jL;bZB zHHRl{T}6Oou%E{GezUI|Ir#PX)#!s}MEh%Sd^e4s>tRcr^#SQ(Vw% zbma0~cgZ?AcI}xeAd`RP2uej=ts3^b9X&%9wb{XLOlB!Qk++Blx*LrJDAxC?Ee<7X z@!#Xw?#v-zn#Xmd9qZr<4Ko@+h@jLad8*cCAwgv*q#C~aCEmY?Z{y15Ej+K*1rx+n z&NmOpr)*$85r|l;1j)ba)9Tg*E#Uy_PKMW{I#3l)zX2o=Yz^4^P3aT%aI1Ogh`J&> zraNZi+=0@R(lRnCS^lcSu)qFM@RLM$w7UOxzpW6w&PV4k~OMNv_YWiz*6PeX47RWw|mh zUX;iD0o5j*DbRhmWB1lN&io3UUzI1k~_{f-0k`EEoPPV0ytF*14V!39cY z#0IAeQXiw6<)6dHiFQpFd%0dXTEp)$pEyw2to`OOZ1+BdvluDSN+^*KcPmdF&ikiX zTk-Nl&<)q4X82$)tQJqfq!Kf~9)O)Z08VePAHxAq^7|gV|E?fAaNouM z(^LHvVK#MGUe_{f5|?~)gtg4>V#BhqI3gCHgk%9^b~WQ^#zj`dCLWa{&QL{BXOwXu zwym#CQ<{BwMdRU`Km5HWRQNlW#@{JuTBj}9NrCK{HD2uzyxgWx@ietk)ZR4;yAP0O zWUr>vt2MU5H&FnU)Y;GP)UOR4Kg_s7$=~U1##ZRDaq-@!ofS8T)yd6PvGR~Fd@0=c z6JRz+*W}^ABxp43iHICOUYgXuqnf=ou77&T30)u}rw>0!MteREn2ikfUwwKj1#vOV z!ko@O&+P-?D$ z9Fg3<|JaK6Pv7HkyE*5XyYZ^Y=!xg_)@5r=q%}p1uLRMlYH$);zZGx^1?>N(^_pDF z7N$EFq7i88A4XWtX&YUkxhkI~&B}KhAop9d!=ev!@CC>2IS!MWBXEC?AOxDA5EgPWPq`FMROp3|84o3lV!u!=#LUPu`5ppS3Bn@zl zYe^L^NsUNGE}(WUaVfwLD{-XJGkt!FZ&RUgcaBc@!zFtias6y`{|ZA6@uJ|1#>pW! z8vgL?@sa?FIXZ=^5jD`bF}Sm}u&q#AwCtNQj8T#X!NS%B&uqJl*JP^u~hx=yh5Q zG0^9UDHnQ|^Vfjw`C{7?S@CKOpBi%Uux>)TB0OnPEz>JLSDlh-r{E^X3272oU>0govHoDZr=Dr$de!-L&v$XWj@?? zc*1q6Yis_sF@5576}5}5z@^~ZXIac2P#0b%*!au3c@w_*1gs(xmD12l2%q(v^)R=& zwXTxD6i}FE&N{yfB97E4G@u!LKIT=r=;ten!f1b`z4{K-Z@!Bbduh6?j`a~c-&Jx} zKZ@$oa`%f8V-vKH?N3+J?5IT*@AXlz&Yh=Q(VcN_ZbSDr`a`h|8KiIlFAF~hBb(#FcdfvCA4Kg(uV z4|?sLW8}qSiq+{_mD+K3{q#?pE^8uKG^u$5ay0bhp8%&JB@aS7M`JU zs=w8D@v{%lJwzIbVClIplEBsu6Rlj~JXgd?^cWcj3bGou>oNWGHY*WjuQ9)8c|7Z5 zp!n;3)(OWLj{|auHPAOjYJEdeP0y4l1k0(%o{ALH%Vnhqr5Eb;P>iN5bnorP2_%RE zKnJumNMjqM+wu2)5*|`Bsqfg*f86@*fIA_pGUkcQjZ#?Z-i9INN75#7ec`(N*~-=k zvdw??PS&0XTD9yo?OeqBEo6}WZm_0{L3b;Zu&rk=J(egI=AA6W4#1tOM9Ev@Q)CSJ z8(mo^2d@Zb2SZK&=N+p_?U0H3NxBe;bw-ZN&%KKIiZp?&D}s~ABSk+Ikz3V13ET_f z0n#2KNmXrRsg617bJUP={$sku#naK`shtsfNZNPQcJi@i!L^SeF2aN}fy{ycygoKz z0USUGQJ}Jqzm5@q4uN>!KYd8dg~|e^$=Y)`e(Sf*If7u z&gF|VRTlmzPi70Z5b=*|c+t$|&uW9~&d9kgAtKz-*JS*^zx?;HLh(@r~H~ab8LGl%KIXjoCx~FjHju%}rUNn!x=tvo6@?@+QR( zZ_F4=!g5YVa}cV9&5Pmip%#{1mA4I@Mn>>QY1w>)VsJh>Zf*o}`RDI2tDBGnnWuI6 zyOe(hD;})Oc6&2W|B`vtroS$mkMgogiRUU4`+t4>C=D&9>DIioKd!;DZVwW@SNg^Q`%!uqC=Hik z>5YW!(U)xj*vt2bQb2)~XW)~b!)Hpw!Ndq%Z8x;Cv(o+AF8sVfad~le=5FrM;O?>V z=wG*dCJ!RI^GlnUyH0$>2CAX8z6V!?!swz~p%(22j25*O_$ny?5E z7qtK25Ms+v#x!Gf9i$sNLN#$+K*#=w2RJ`id77S%uz!-5w0rhK{u)Denh(5}<`^I@tz06QY<`8Cp$cS{N3p?30HPJ_0EHPDL>-FYj3d=*Qi z_l_ot8qbEE`W%l1!_~`uuXHRF`m{Y8lBbe)itDUelCVa*RtTX(oxw;b&z4+yzbjF2 z0x9QOa;+5xBg0bS03a{fzT4@30*@9~m)Ji#rM>nkh86Rssy`JXqu}FGeT(xz-S4-X zB8#yvZJ(A02X?20xJgN{W5-jc#Tud* ze11yMO+Gq+1S;vuVyOfJsN1!`Kc-E=~3PygJk%)+( z#QzO&1cx?xRDr3b@whUI_yR28&1+voe`YS=Rz%7uaFMxvUzJq; zc_$-D~4}J!`dnnYanhtXA7Jr{IfEzi4D47u1J}v+V5?MkZbktS&Q5$}e zg?C+`qT&Dr6H8neTUOs){%I$bL;=;WS12WCtTdM$OE9HbbOn%WL;N5!Ja|G>sK=eL z`MSt~XFo&#AmT_&0=HdTc_QU%jLO5R@_UkhU+K|0KR5^#1_gSnbl~4^{?RVV!NUpU zDtzl^;*Z~)Cuu#Lz=*cjt6o0$C9N1F0wio8n1E?2(lvR>i{Z-;$6a%>kRtrT_0}K5 zys_{&jZt0iev#F(!BJw00$>Og`XI|aZST?ktgBrK=A&$aB_(kyf?~+23Im|cEs%fc zCUJdNi0yRWP>nxe_`5qZl0o+^9TqCf#Sxm zPq)qX>oa^hwZ?%^{CR%I^$7FI2=0~XyyFZBIwHT_in_9LLTYNWNq^X7H{_F)F9)G| zn1IWH{D5wTo2IIrJA8)S^DsT=M{4Tx>zkmmuVS_;S|Q5!Se0G=FZN}mX@^i z%g%el?#;=u3auJN?9Hhu4pH-yxw5gbF*`fEbO$$0ZP~_UY|Eze$D6}W!>dXG-w$0ME|w9xT|Yp-d&ZE`sw%UC@l1Y;hTdhl|iUTRB91|7o{O*tp6ZhpF&C$JfI5F*3xQ8=cu8H|X#*p7b7Da!Mb zb1IINq~_)29TRcb=vZxbuxQdLuG2@(%*aT43`8PNh<<&29m`5hwfK0j(rEMe_{gkT znQ+?P)|S*nMo9SAQv~{vGpF6l5_c9Dl?oLNExom%KmvJsd3kuOwY63A&g-$_*@XRE-Xj=e{-uUD{UPd?!7x5I&T*un)==<_jF8uHWzZg z!@j+})zHvDfD7#Oxz|)zXEE$pI(G-3)3Y8db2uKt}%op~!7|RiT?s~ou z_68qyc-?T#6sy;X=p5|)iI!||+y=bvTb`K#&~?*> zU71cg&YU{8;U)#YWIE<2vJiK<;}0E$73#An576T zYwmP8oTxJ!g$wN2+S-a{?-EFgB}Aw^6qMRXnm{ivUznSN5AMaGS8Ql%`Y@gJQBJxJ zyC5J%L~l6rO#pIIQM0E`+`Va}u3lJfEhjfRt0a~U-CatV1`tL{Iy*ZzJcdA{MfUh7 zlI01vo2onz2pNbaG4ehxTCTSM347RI?+u%iKwa1e>caiu?!u^!M`gr%sbmi~9VGI5|C~NgVpp{Ac2S zYEhy|;Y!&3%=qAZwK?8(_H5v5dFU{< zWy^UYjm+J}`s&mar50lFXLB|trjai;XUujvBqSuW2MR!Q0rxXPZX`HZFT_XmG3fEH(5dsVS}w%%CpPMj081C-S(i!DV-b^8hTECK0Z_`#T=0`hObUePBXu0 z>(j!*!ccJNJUci1p6`e*I&yQxRep4JeQHhP^FJd}^xjv>%*^!r1e!dwvA0(w*_@l( zb8e+m%wmu$F8H79)^ZMYwzSs#d}>^1M#*Ec-H#&Vh4)pldf1+(?@YlBZI zoX0XHTJ{^Wvue7!BV*y1WMA7S9R)gEk5$b-d4nzaRx-@2)UtPwdDiZr?<+3P*d0KpUEP$_AF@R@6%b;KrM(Dk_+nnQuHr z)JhcB8*Nhk*xE*@nZsRAIzDC-fr&{-(jT|ODJH}vY$v|v@IG}E2~7C-_%z$CYHDjA z-8_zrjBI%BVq~g+rh@N+7QQf~=kq_#Z?hPL3l|Egz`EW*7+cLwmz<#6KvL!L zirX7@y6(Sg`;u!MKS>D*>kUhk+~a(r0H?pW7}oR#es4*NfMU#37x$FGt>{6obV#jE zwckk3=!0+lx!w$(O?suZl%6z_jpw&^bFyk>9fv5FEE;BPI~}G3mV}LKH*AP)YiIlx z1(r;4&$v+BiC*&wtJUT2#KXF+2fBfh?J@BfnG*kL9tO15gCYIDzs81QE&IQRcC1b? lw0?({NzmENf3Hy7$Ghq!w``3!wDkL`qYKMJn$w#fL_`Rz**;GvvZiz+B_EJz?Y7KI84TBc|s5 zmqNP?f#F^3Xg%y5k!^pmjR-=G(}s~zDSOz_Hm7SaIbnZ@p#Q(G|IZr#cg{e-b_<_o zIK-5ax2ZkXspnE#4kErmxCxJcFL2<1dKg!%O@y&ofe|c;89f?`lU~MS+`6D6r7lIw@ zuOSl(1Rvh7?YxeUWAd`_dMWHT`?G?$38d^Q<}ZPB8Ge19J=*Y;(#f5X+mrprD$azIYTZcb7?R{NuPgbN0&wmb()t#1q|NgzA z0G z_`_;bKK%*@%LLAS(Po+H`uKHvIB2_re%HD=!5aW;G=rzY=k{c}R2dNy8=K4HM6Zcs zc6OG_Vk|m595CWc-xv z)d$bBb)VDr+n2{vht;<9@Ud*c+xy*IrtJ$XpUoJ)z`($p<7FAiHNRVZfBz0YsQb_; z-dp;kk9__p8IGN_(z~821`ULp+_nf1z_yg zOO~noZ}?PJA$KDD*g;nGz+TEM(|A13GG`FeG}U;nEUHG{Lv`Uk!EkLAEM`Et;^_ki z_5ayls^)6rx%{Z{1iCb|74}LXhYBubP2RLVe=|yBO2S7^-R+2L4UqD^p4IFLMbG5; z5_-eV#Z{-2$(xb0sNHBw2vF7PR7FHY^n_tFVPJ|A#Poj|h}C9JfdT`X+FDu*n{lGm zcBhMV18Zw*#~JttjY#bv7K47T^qTiy$qJ>1zjCnV7MvOUE7{PDgf4n{#coVo_P6jw zyEzch8EkraTfMTsG^@VOj}*V`c18oVBizj)(fzSp0J}v+xaYI$F~Sytc&HU6At52P zbaaiVqOvkMw`Kf50uK)l%(GyoHf(jTY77gvwy}vL7qw?60E5AAN%$SN2C=BXH5TJJ zZ%ID@nBtXMKTT%JRR8}+jK@}J{CeVUK-*@tZfQT6+={Xn3Xz=2a_D_M8t?S{#K=V6 z^JE%~30pM?5u@=`PFXoFCdN*vwxndIyfg>QZZ$8DB06|Il^F-^k46aT-xJd&F_ITQ41?8aiiQE{~m7jP0QLe3xqISNLZRhv;UxBG6T`W}Kwr$G% z=o{e3DD1L5ec-Iz)t~n<2o`wt#}^kDS65eecb<=`RE!J^4D|HP8==JY!m!XWXtH0a zXUj`VOWWGoYP7qKJAvg6G9n@rSXjcYG3$o0G>$@--LW6-H%sp`gi!PO3X^o2L?>`4 zK{#f*-csH#E;7OS^y6mZs2BwOeNjl*z*bUsVS?M4RH4Qtc2_83W>yfb^CvYb2L0fh zWbM#%IRA_*l*uBxpt9oB+OX)@^z9t!?(!?NOSOBL(OB?M0VBp>~eIGxGR`G#5`4=YszJ3yqRAZAL(Juw_jfM5aPC|`0;XV z^6FHC)>9w9(&}L&fAf61w&psmq}yb#Bqujn+1}jTe7xM0nw(535N~Tu*biO_N$p` z|6IFs@+EBqO##VIsDvSEMQEi{TqDW_u#67N5FbB&{L&vySwJf2u9(4%EavL!DlILo zuAcPAl#!X4gws?OmM$*GMRU{A?qE64^=JXB%WYo&c1BG(BsBCbnULqSM(nb6pDz)qISoJ*RcE?#MPJicU7`o;e>-$;Qr8~a9tzZz(pxXMSKD%Gp zpypBEiB|&_(;{~gI(AlmFu^2em>1ru?(M$}KZ$0^S!o#@r7+k0Bxe$1bo zW32Njl~o^>i?jP5<46U~*K$6%9n6%g5yx3gmng~q?`u=ywBzxl^|ZqWYj+U`Rvnn1_m{7=&09=zYd8$-ze*$Ng{J5Ty9>;G^O&-lPP2y>sB~IgU zrW*ETFci!CH$!eLER6v!_OnhuJFN*DkvXVp zTf?4n=r$f=@h-q>vs7kDkm1`#pBI(K4vDA#?Bt7XKz+qn@0niLh+?YK7AqC2)iyMQ6do^jN`Tmd_grv@C*;e+luASKBA-M>M9qdRMJr>$WSpL^eKsOyH7{@l<1|8|Aj3 zRVw-u9-8APT#?a!asw56I6w%qwY)YvTFB(E8*ZC|vj(z`k$lj9rM}V>25xAg0<9j{ z(0jJVxwqG?eSKd?VCLIYtHJa}_L-l{n4U?8$Wj)^OORXpxwe8aiC7QO3b+Sc&J=!# zOti&rw6k6Krs&1N&MpyfQ8Op2W2h9uhb`Gd)HB6_sR3bmyJe;5p8iO->2)h?c z&QVyC!}_!ll7@-PA}pdG?`8`PE!xiW{-(%j7c&lR?Ki2nCr)8LTie7-!iPhx!A93` z(3({sUehu&?$D)aJ}LdG<`tj#U^%RSW*lWb6yfQYQT5x(RED^TVMTg2pAQ{lIXpZz zrP%@=WI##v9ssL!G=sB(@OK-(bTqGs0T6YCEUH;;C zFBxj_EcD(>X@fWL3W=u^PgKE(&q-FzB0`=M-;wj{CZGC)b^)U$A*lY;4+wB#A3;`f z!S3SJi)`KhO}zOY-ySaZzt~h%$m8b8h~t&;>IkdNoU|bwQvXeXa~bJe;${;e(^W=t zZX3s?$o^hh>@c7D2E%?+>SO4+>RnTf$CSO%p&eUp=2;oJt+wxTHz-f3(&@1A4HR&y zMFVQN&JKbCub4gbr6j2*|0e90F%)tb$LATwBfMU!-1rXCzJb?x2UOT7d@NU*-q&1v z!q-(c*s2}bxUCSy4>hjFgyo+^WpaV%-D1kBw>kS*44u#KfXG;##`dq(`GK-XAG`lJ zK5P@7CXfQawb-SST~(1nd zS>LEs?^RK3KCYj-Sz0Nt@LkI{%4r#nIGIc_=O0u;=0uE zywB5|em^+`C9>HQAt+rEg;ukiuyK$;lB%t#>ZEbjJpxZb!u`F!_3B2mzo^ySxal^8 zWY|%N2Aoh6%bv8YyQ&9iJ>J%7KZ3Z)=w*HoI)!J|~c0{?(&LmNp9@AHP zY8#2>VpZcvw$TS=5jUhX2|rshr^C!Icx^5Shv^4Auqru)~rF z4;cj{dtn$(j0?}r9Y`ySezT7bZMI} z3?7nLkLw>?^oMFxhF&5O_Iqq#bpD7>{hDZ|5)IeFQUmpd>b*g^TqBA#pXudr&mac;M$B3x_nm!KTOhbPN>=28DFAW2i~ zox6Dyb=cXGFo0?A{3kUYGc+UWa+#r)xORxG+wCvga)EduxN8AX=QR+sAOiDE+#1XW`1}OUO_%%qhfB5H`=;{GKs6yfBNGF^7TA?{7=?mSYg)*rSH(92 z9WcX%SLx>f7TU?lg}>%925IAVmhIc4)?x(^As{^TPqMKXpM!2bz(MjTW{KWeF%R#U zD~`-cw$E=j8saVR99%ayQ;X^w22>}*J8ofuAPlpLXi@PH*=&qg3jhAr_fP*Ca+ zON)vej!+f}hwYe)|rj)yf}zkOrpWj8~uEh#9h}=MCgucKYOOoQ{V-*&a5D4#~L$hs>iB z_JRzmZH_%wJv)^?BJ%n15P|4Xc$IxQIfl@c|@ zyt_70&%2)tGI)3wz}%ldNde8(q6k@TWg&CF#Am2#v1^BU2Fj1|E#V3Rq268OSjJ+b zY#ENDM3Ymdl1*}`a^J{~;(ABJovd#vt_$$NhIjyi27njuf^YoxKL6#xA_Es9M z(nCkiJE>Mt= z8O-#F<%fexLX;9x5COT{h?J|b(GRRTIfk8A*g*IpHIP=3T|d#EVw;pR#mm4#4pbqP zzK1irpqy>ZWEPZn1R6>6rTlb_k$XV^R44z6V><+L;H+6~c zN#N{g2i!&*&Kb)_*#9Q*uXsAa=BXiPRHi6n3O@=d#f6TL$GeJ>`QT>YrQ}G;(hU?x z#;Hl;{p-ObM}an$STpVwguE}k!n-U-c*rsPGI8NuDA#1NPbWJpqengtXUiB~?+bWZ zGKUvIy)E--3hsS4jG$1vbZjv%1UX88L_~2-=nHaGqP{m$R&CNYoLKTAtf;*dK8YBv zO>`5&#sE^-7{Haj%uJc^VlSBMHI^s)eENuE`!2v+UgX(=r;NNP*g58pVh27vbBDfU z#+l{2UyC6Sarp#;;NR^O#jMb7IiwIA2v`FMKSfrfla)g#O)xB0par#Fke)0~d>Tug z|4~@Zd;sL#!7FA{0vj1;dFAWhwFg<}cPKzelsP1k%HuwsN^i+a96F0JI(REzB{k9~ z`)GhH=GoIh#zA%wq*CQO6o+HG=g(%DUlXI{6L6gOFgaM>052DYU@@=aD2^sa0stxV zy3yn-pyEB{6;431&0kze1Y}Jw9*5O;+(Hg?7>XPZOen*z&f!^jRxdm2sX#~!8yvTO zv&tfr^c|e0x&V@-HRz5+P7c4asnQr zBgLDMfo(iNGk79>%`2LRdMVTJOV*#xZ&`d4&`v^Xt%F@%J8gA9d6;XNL~Q8RQ}pja z;tbsOQ8v}iwscB}(0Pog851Bp1^{C&A>?WRP{>VA_mC}@?zHonNj)Bj20)6Bhajy) zvWyh3ZivgD=UN=@yw)YR59utZyaqmBlNnO|PxJVbAsdBrFKO{79h;Ky^X^W-E&nQ7 zQ3f+;Gq!sOK7()W^7m)11nxu#DuU~_3tfW>&1lgT6+ka~-0=ySq5-HVg`=R9GC?CF zJ>WNWcb@&0@?_~!Y`%re&=*kUj)tkkmp3mS%vf7FDy#%s6CY3fhuK8oF$yP%;fc~> zp!?jZ`k}{^=C7-N_*d(lI`lzMjb#K`g0HpKVc*{CMS0DOW7ll8Cg|+l|J@?Qguqr0 zPRK#5?9lBD_ZzR>kR3l~hsYbdYxni8k=KSqFXcRpwdZwx6&G4t-w$Tp z<7F*T^Kh)LlGKC9M^pe_6&EZ9blV}Q%AX(DdMNMA^`JoSX*yVG0V@Gd*EUzXY^Hb8 zn9xdRNdzlI60*sn)_j_mUx>7&dlSKwjaE=n88p@<p88TgH@6wMk7Lq3_n0+}QBw!@iAe=AE~_On8i=hfs#HxO~wr#UF;Re#@#0U`6Cl`T1BY!GJ3Ew_Ogl z9G#CdCf9bDdBx;WckF2uS?z`3Y608|2gIkJmehUHUA`zQ#JJQ5jvYZWQ*gyeK(Z!3 z_jLk3x}E4XpR0^n$M+FUV5+m=>^BaP6}N@1kY1E=wUB4bSplq^O#kK5AABQ5*%@v- zJB-w&fPq4JzQfCzE9s%@sj#E^4T82Ggl>opsL^d{2IisW(6YOS_}szKhitX(*Y%w6 z&GtI4p3!n~BT?PES1Q;zFO?%``L%Xrb0XNpf}lxIs;ce`zoMyHMm?6HAesI2U9{4# zZQM3%{6TYt2TADw$#aGl0%89=th8$fFEeKAqALTpD^#n0{}EsdikXrX*ZXd0An3~G z&#KmC2C0WFr~nJ@>ion3@*v)({gzXTVi>Xr@os=zS`8?QDD`b=#XECQCEC|1X9GXW zL?N-=zTkY`!UC(1ALw8>(#tMaVI?)tH!>acl^zUPjFgn2V0 zT7NzFQm0|C8aYyIY3|`dXjthI-LQBwPWg2!>s$a^(o<7$FAmv_JaP7av;fZ>-`P@P z;cVTig=q(EitrDKV+N1_Or=&u{Q~Es#jp&Nj0$$PHm`ji0`@g^8&&Pg)67rC=)%x#q`XD zC}E__%1Xizu&AC?-1nj&XIOv@scy!H9IUF+k^E%IP%OcxZY)J?sPi(kdoNL;7v0@Y zvx5FT1PI1b$tzh&iF)XnLQ%;Rqji6?ik&mPXp_FUSgD@GZflhHLF>FsAO}ikX@(|e$TzH{+EP2X~I1voKjhSev zM{S)j13;lY&_1FtOUp&ZA{F&-gE4$BFE8oo=`ctiMnpIWRaRHC zQc$cnF546H+Ad5hi`t1cb##bOP~%Rhv(_vEQ6zz$PXg?eQ^L$4&|mXjX~x}-G@}5h!ouiZ=d*r%4zYP1;J44e;NjbLfyZqf?>NrVtAq&1_`^&6tWn0r9kP^ph-yC_4 z&DvP^3LU|Yg}5Xl2AMC6CR+`7eICu^!=C)*vMciXblIP+5+nV^)%7Y)^hHZueTx}J z5XQ%2QpqbTkB^VjQ2`EZ=h7-F6CHk!;d?OpVt9Pqp`+noJXF7MH3H}DGin5PbjEgR zRhIB=bwDfmETT;n;D+J6&rJW`Y{yu|FzNH}nZ9YMuVHj3vSqn1a0e;=Dk$2xG2eIr z;4(~Xk(DuN_rexTWktlYvM0NGw?$#n0|NZ_RuP(lOF1aZl)I8i#~WT6+3oi4yUC`7C-S#JFI_eWy=K@^~S7LO*vF|o1qS72emvIG}y9e6$W4Uk3Gc&=Mk|&>xU~vD1N=nkVl{_?;$-%)v0uGblXJc>g2Nj`4S2b4u$ecwva*5UBlJxpZUhqB$=tqq9aUEO zTxOqvngf3^ZWdJ~4Ggz@L!@AwcPh|2IQKtcR}(Vz6-dN4(+}!DSumC_YTl#jqSQ1X z!9MX|9NrkO_*W|99!@i`WQwfFG{G;AIb5-(K=216v8%_6zX2pqARwi~#L-_Qf8$Bp zC@nVvv)gWzO;}i%m$$L}d`w(cl04wa3FZ>@R@1;=mvLc-&gVuyQzfNQHDzH0qp2df zrT${5=##)D#m%faB z-V%g|&WP)$$ya0&SDG#U=ui;*H;e2^@y78u8KkSNe!TiAJKy!?iRR^u&PU4OyA8Fd zcT~p%3gL2PcK3D`&#^R{?aH^(e)j0>%1Y)|OcY9pnp);NaY{*Z^ODQ;Vue&ztr{_1 zJ)wXXUt{BZKNfa&cE`R*TuIl9tv@lud>2HNE?9entj`B>3JQ+2ZTOC>ZmBq%Cg*q7 zk%vJ6_CbJRHV!lplB(M3oF~BLv5U;&V|;D_ z`{s=|b|WzL$UN+b3iZ;1;)C1+Q5X>en$zp66iAm=!hWmwRb{C_6(U1#sF?gx$_XV! zNqt6=b5hN@mXi6BSds<^4}50zf%cFb`{zF9KktvN=9YAd`@!QEE4tT2&`5GDlASw9 z8lN5}QrDG1nL`wdsL_+yJF!&^r1t*jxu$U}@^&dwB`^TP!=BJOo-P!k`oPd|JZ7zl zLYX*Nc8{aJyto+46%}<{7kkWUTJvu$DR~3!Gtutwy$?pl4*wr!yjy0}{PJRZ7)F%) zMbM5{tL}iAGgyxz4wMo!WPzfqiR9H#AkVhleYEsi9X;;#XgCapXmOYsC6aotyx83n zEp>YFA$8raC^cP8Pw`4Nmv%b<_L=YBD6^{^D|_1!go2>3S~Nd52fq7HYtyn{Ql;Be zQdDG_kn7~+wA|#-6h~7~Utb>{9^Ta@W;fnww>&g7^z`&}bGjz#eYH0=HPsh||9{}l z4GQk-r1qjbE13)JOvwJ`eemE6G;HdZ`}q{4sI zZzLt;;oT6j>W$}VdFV-0kdFW5leXbS7T|DRa=1a= z3;fIKQLOH@1c(>Syky(uJqytSv7^dye)CVc6~G3a{Ha zu$n!jrzqS*uf;pX){QT154!<+t8{z34f*~A1H}JjVt-Q`{q?)s{cqUD zW;3K3IG&}pkyq&J3vJzV?u(GF)wOAb@#6^yBLc?n`YZJvpsDoZ?O4h`z#{pm~{6=|$_o2VvFU`G51tl|A7wQTzPd;%XCOGyN)dPiKwBd`9V>bd`+0l@DzP1rv<#8;H( z1r_<2b;oos(r1ajyOjB${1!feJy5em`Gr-Zf+d*CqwMQhTY`fEBQFV zD#wp`Z}<(60U2jd$Rar4g$+3bLj&lRPqt4%@(NmfjaMv<2cHsjf=lYyNNAL?c%5+nB*v%Etrz)@ znc^62KU@A)+=PkWq>bkZB%(?N*`rfoKs`QWZLp8;;atP8Q_E*mOj|Y9zESI2q%-CF zSdxNNvcOERJ|AWREhysnaj%77<>m27_qbMF#h6^SxRj#Eo|M+_Bk;`}84$n?N0J`K z%KPjQ9wu6JXVA?8D!i+&HYcXNgwDUgyF!a zN>lj=;h#$Z-g>rQa8RuY#Ws>#Cr!sR)`sQ@vw01|e^lxnj zgk-0je;k36oK^5m&9vIRY(FH@X*xksmLbDa4I6qz0zO+CZ&obikE!2Lq}bEXC^E%0 zC0K(AYcm(`O18B=eC>^Jma*u--WEqm&)zSQbB|IUYL z5ZJJ_!D3G@C7%ERu#igLrr}YS^m(#orDz1s_+sEYwPdXRqPizb$bkdQQ%@9%glE*x z?g#$TEwO<;RyOHd^wX?Y?uj&YzEr=prequL9DZ(N<2)j|7Ds8C54*aYZ*=gaa-2uy znG7mkW?T;U{|6m{?WdoY{_rburI@bvv9aIBfXC$>BPK-=n>abSS zClZ+15O9j|RDIc0b+#SjwKY4J-#B$oVseG5_kwqOrJEhWm)NB5fh`2_gjxOb8`@huD zvLcU_Gue@JD{&uAwYiaZtnsCOd61lt!+A2MHy+rF4d($n`lrUxNd>CYdZZRsdVZPy z171PwqN`4_ToSu|kSRN=W%JBPBEK(+4vNP?<$mn>qC2rpo&K3bsbR$eZB&Eo9WdEf zdyG=lCuO<)iTqM#1-pgLouf63gX^W@_^Lv5w?%n*ZF~ywn4sUag4jmK{l%yoBQJPt z@ydP5rN%m^Mi%81E+7-nTvLqe<)l@P0#mSK(u~Cz4F~=}u9F`yTD{ilTz;;-l>WDI z`xin>vUrkz%-~AVxbwkdBcvQ%K2DIfV@tyCwSo*T;Hp)vQ9IbfLtv^jZlOIB@V)Dl z?$Q~A4C;l<1lAe-NA(!UN>m;3tiGDg0NCiMLN)Ipg2SEjeO|%j)K0sVh{4=-Pd+*-3 zY=?n#=u>=kXHKwF+f}W4+DmUH?tD1#@s^N`R(O%wlx&omXz3uep=L=Q?gI&dFvREBD+CjYxo# zGGGA8XjhrH^gh*_{hLZc<`sE|P4)BPZ7FStQtu>Eh52W1*=48_g67B<Q;0sW!AeJY+4VZqF9eVe`2K zucN3SSw%6-8!d_13Q`gAP`E}bwdjttj@_H;o9zw&U2R%4y-S5(Tz76=Zd-}$(!Z)! zXCMBV{Z<5rC&kE^6F|fnJ^q{Ahs|`k@Ut@CmF2-+DH9RUdj$uLr%+8$;5}FE{^R?& zOx;E3=d+<$)E3pu?on8Cm1GaMWMaoXP_Cj>jJTv+S(4NEZdKlDx8Numz??GZ!sD#F zMgr1407ZmRU@>c~Vmxry0io7IIROc6q(2RVl%<91X{^%h15dH!30Bgcli0+=44mgS zC^h})UMJ*w8*mLhx6(rL3;bbNc}z|X>h%cADyhhZsFad2c)Mc>-NEHN3TN3Q{2{8; z3znHTa%AJ*y$3--Q;}1QoNmt59W22#vtnkYQnHAt>6YpEV@^4c1C7GQKrQz-l*gGq ztZHAbVyXrlZD>IB0&sxYF6LC-FKnN1cx7+I-~eDzigd5!wYUF@6JV>0buS_T9Ar7!V^7jXEg@W zF&ZFG*$GYzlVG4ns$;?I96 z=&}i3m9{m>6cpY6*51Gx-~nsg10G*mAv&bOWq^88Yxc*nn?=7w^l{<$$FY)4W2a;; zxEd?(PslgPnm9e80m<$dNB6`r(un){=^nnQeyc#(beUiP2Fxthv83GVX1Cp^V1RhL za{H8weCZz>IsC8BpuB>t|JdK#-UAC9Q|M<{|AUSv?m+E#{EJ+n3h<8O&Kaqm_pomQ zHy<{LDWPVU*UaWJRP>gC9&XeEu-sXKTVM8xO3*!Du=Ep8T9NtUaA5Z)V&tz_lzFNR z>1gs$Ck_HWF+uIFxxQ8N-NmN9142u4KUJHa!|#DhFnnp3EnY!;fxbl~}rKjls#Fc2fy?XB*IKd2E40ANLp|Ns;xpE(q@~Y zZ0p=f740$L1EH1j!MBAxh>{q(RnR^^75w185__(s1s^sg-ykasJdPxf%P3f%$XfaA zX55f7+jb|O5YK!czB(Lj&5HO>Ed7T$%6WX<#iBPR^lfR?9tt3N5OaNy+!vSy`IjwR zkbzRN3shYT?=WI5A;CmuEe?_kWhT8p# zty4T!)j76A%F#g)`O9)P!=FZW`uafm79l|Mv_ z$3W(3L-wU`$mfD7&A23w(?c4=Rs1L?MxAuLQN&R$34`lBP8w*q5gMe<_ev9~0w)T# z>XAOHX@VwF^jHG0?i;(*i{o{`$nv%6ZQ9AP!4GFDS+(PH(z#^+XeS;xt9$+WIQ*o1 zU_9PaixeUGi^l7@o6s1!9+87D$OShmM!ZfbcxbE{M=B9QAODdLULRK-|C7wtcZlh{cqw|G z0O|bCc?ShHN_rZlHvpxSsfFqChjTnK@zam=!rw9JK}UCFd|$hLkRDyrn7-~aEy*aI z!A-CX@mrUlgiQ4QxThYl_~;40 z?;dP;>??DoG)?QkTye&-Y=Gzc$w|EkiWA~6zNSQdRE1B8@l;iqfQdv|y-u^0v2{m| z$ig(k)f+Kuj=l^MrT|`4NZb#ncBDw<1eic3YYIGf&J zxHDPf%gJ?`PkTI`PLo3O`{5rgx=$_`ptr{}l@iM6X~9V<=q-33B>amg0^Jr189pvR z;Kh!H<`9eU0K|CT)))3RI)6un52pTZS$*Rtm++24!`~XJHo9~h`W_E?&Zl2GACq~3 zmq(*V?0b}W1yQTVv(jTtC9`?@O9hxJpZ6a&oW#H94_8-k>~_kfwKJj5He*Y1q0&Qo zKv#a;AxKYDRWr#&%&ZugXl-C2nVI{3n?hV;hX3yYV0BOXw2AYGi;6I2baEXS4H#Kr zY!c?bH^=OKBDP#%HReOvjRoWE#CD6`@*DP$schz7!vv8(l+;4tio-Fc2g2MP(I$A0 zuA3Wfg57cJGokX6r-_wo_7kEA8?;}I!=reMNWZk6&F68?zT=dP(XkfFF>}K2w1LWC z^3FK)+6Dmgif3?+(-7g7eaQ|;(WlJwA0ZZ*t)QNIw2!X8lks;LsYN(y*6h9lwY+n0 zNf&@Tg|Z@Fggk}#nnSV2x=$?oUn5Zhm5`V|fnnl7Z!4_4c(p*c(|sMwgPF1yZCn+Z zl27)+2-n839SR}9*|zG3tI9!v*fJxaMn2pdfPeq;3m;1B(_+YN%%4}ovg|a9ya7D3wqr+u_z3N8Bm@epdQ9j|8mf6RXgN3}K5ikPLxgm?O@wzN>A}lgOW` z0{o2oK1IXHRbTaEmxrp7h};t2->R&?K)Bi(fJ`HgD?0vX^Uv3I&pQFUx2fMC;AW${ ztIwkn=s9>#Y{C`K&aA_JY*_y#Mz}C>ppCZ%tt+Skt|eF=Ncw>@!Ge@gu9>R5(&B|F z&YU7_e)F`~guN#gR~?eX$8!sGQ#0_??!%jbV@R19cE z^bOZ$u6Zc+ZVF)9Z@-67j~69un?g3By>~T@vpI7YY;O-UL<#FRXKp-Q@Eq_?&$vh)O@i@KqgF8O0nNLc!ik+&}JUI4@jT z>QReA=_p-`Hc~(Tx)UPRpcQChcdfriAUQbHbCRZR(83l6<;|q<7Rc1guS|X)qzpbT z1c6)x0OPm3uIRWApb%{Hz$AhFIi(oOddjfM|#(&FKy!TQI*n zij5CpYv_T8fN@Es`k@7J+cdOhlUZHVZG@EELK7*6_ZJe{ zfgttI!3$N7PDDZ7{P=(r_j;?F;!Fy!l6WjW}~@H*$< z1n3kd|KM!AeqGTDX8$m2mke>=V|bmIfb06(zEYoEMTF~KHCWiAOBDDRnPulj=rEgd z^5ap)kIwkgSHlzwO1(@p1KNvjw@&*4c;M`l7=nol`ZvG*YisTg9Yh#n+ zvnCaq`tmt||HvG99mD1cpouPfycCpXFl$nAMRn8eHz$BK(S{rKxs>olNeA46%@(cO zp~#`+oU>gC{qaaBht!qT$>TY`i+4{BEG=1Cu9o@4I&hJlqRfupU}#9&{d=CbOiC;T zlX!Erm%c@&I%qvVPx9hKEHR<~^Q~YWl+Z02BeBMWB3yHz0)rFziYu zCS#fXFXaHwJW=2;SzsWfi(z2v#t*$&iZ>z2vzY6o>4mI#Y%IqO{fp^g8yxFoO^N3w zDTAG;p6iX_{O6V!HbE6sF?j*%V!Pj=2eCE80C3elj?v}EhG1P{L6?{Wsa_@zm#*EF zF0U$SgSd8AhDLL@{ru5T5+K|yoRxe|t}t?Z;c2Bd|K)$-1M zcei|1b`QIdBEe2*j;CtJ*8gU_>YDArHMqM?aQEOA+@0X=?m8h5 z5*T9|cuevq!aH{5M_Sw6;_v*D)I}-LvmeV2E4+3T@O@m#h#9EzMslvIqgomES=zc7cFl_5L*R z5Km|v3i_Jj>QTdON?_=d*uP*{a7pEmtHYA}9(AFAXJ>kVfPIO757wG>!rOs&XQ$nM zYntKJcd;9ov%zQw2LP2-H<;|bvSZZ-@&L4}Y~F=c+yPj;9$Xh*CH7Lb-&ToCHYo#F z2FB}N&;96~r=qU+rQS+PyDkd5#jr_?I2>f|qB!X+{`pycaj<=_E9VA3Q{#!g5yz@| za`ep6Vbso*CXT$39fli zZxT~r0@$i~$*4f^`@lJFQ6};_>w4sccMm!s3nyfm_IiTAV!-%Ctox(uP32(w2^lMmYTFQ6;-u(hDOJ1E;#heTJG_uC7>&O*z*{bC7q9phcw-%}4_Hw|wCm#QA>R97} z{hql%Dh+st`9R>oW+r52z`U}YeSOQBHjAZ(Y_e5!J9HLQMl&BwA1!24m3cJ3czHP( z{q*jlOe}>qzuXiJw0d?L<=1-GGAL(qjJB`aJ~JT!cgTP~vxwq7PnB)TYxU+EsT>^< z58li@qvZhfddte}90o~bILAEe=fEqyfVuH#r@9L-IzYCoYPQ#wVZ8o2XwL23Oa=L2 z&B6b`fYk`F3}j#m5tcmmjKH}rNX5Ib$xJRnJFoA&EZP-#*wtJR`$gr(3WazSKE@Rg z6e~*?YWjr~Zyw$Tj;o*wLN7)xnsDTGssAp+2u-84F8@JJJKLoX4t%z$st8ldfPots zwm}6{;|ii2iBg{37E1oJ)nxM!wf-VBGarb5bM*P4A@y5ne?e)^_w>J5HkeYIdNKUf4PiSKoh)_hLb(9*tpGx!ye@Pz3JnZw)*fqEZ?z9M1$425Dr! zCwR0y8i`zvkc)S&h6|ie&HTm>Ji`v|^k3&SZ{K}nIV)lL*?J%RfjIZG2c{|x<{s=+ zTa(!>-A%#G0sr+)Lvi^JnR#iHY{cb;h;*qwOFFJF<&19xoxcOp3BoXXJKoGE7zY8t z*!ev5-;IT2*Und-Ps`=SP-B4{w@E+qc3mDx=v+n{@7jGEH1r8@9hK-n47P;9*C;;I z?%NJuW7S_@@O52s73r9&VA_q5D5nzqBWEM zicW|djTQ|_Tdf@NG6SjVgsYa6ycSY-Q(%cQ0+1InAVjc%3&aV46P?fi>%8p&==Q`u zv6kxN^w>N#_{;tnpxXFnfQZ4rs-&;d^snvx!rQ4&*JIv~g?Mm2{@dLu-?r0wJAxbx zY8$4VOLT*ny#IZ+ENvbq;=Q`RjR(#REe+?!&w^4RJ#;xTK4vawl;uWQar~2A_b0!T zgX>`RndMbgBU!bPUmZZsT|ca`_n#wyfgb|JpFU*4T#hfUAeS*dE(n~V!-gaBRwPuk zLW42#%7Uv7&5UFhD`B_tvZ5x1A{%7`C;zEk|9jviatcxu9CpGmJ63;ZJTRDLdFXQ8 zc$cCDYe7{jM?6OzfuOhGaEV)@=M_4ncUn%Kb4vO>nEYEOxr6g8 z{0P#`VV0j_G+Ps@b0XWfn@u4^Ld;5XqAm?Q%2F*C8`F}CC7}9@go!s@^wudo5o#^HUKg760g4B+DEV|LOikX%baicdmRjJk1l<_#F6&5=zqJ zBOpyP!ti)(A}*(^sR*J4j0X+Z4xzz}zHA6MMufb_&&RF6wr;(Kv=xyjMtN9JT1Zn4SHq9&P*SV@m%WF2@{n^^@z zftPdF@IO9y3^8uuCPNt~_MV~YKmHR?%7puO=zLgs``5lWuWu%g;>CtS;EkwLkW;tJ z`bxe#e=zJLh=-dH(8mfxc*n9mBjlqQT23su8=oz9%Cd1pOB9_nga((_JsEgK&p3*2 zO#1H{C{S3cLD6lV&JEDqFaD^|R(>{4eejwT2;aOCx}k;YCO$2HdsH-f4%jcdJ)niZ zj8V8Si0@G_Xd}v2zk}*U($I1tR@thudJlYIRaex}9B%W3n-1x?Lz)^3JpiTsyc87w zhG7y5#OW(}MdNoHl#Wd{uG=JgIc(Ixt|XVMC;<%lX1H)N}&m%vPxy zD}2S|NRfe@Yoa^;(FF}(EL8_gOelbw8iE&qRaB&L?|>;vq#(aE3Pmk#rjp**C^z2z zP@~t9OfE1QRCS)j;qwex=}Om9wE)TYSl(_&9?q+axIN`B{y=X&yr zEE>?eS*h2(eA=tFIxL`>_;||fvmW4?Tj7RN>W6PzdVM%?C-hXZIbn1<_4Z6@S6X00XHh@!@2fZ@*QHx$&h1#6#N$zGBa`{{ z(uW+*5yD7YV}=ZNbI&JCjhN101I~LG44;O41nN6Sd?k4@Q9g$*b#eVnvDuel`d6$F zbwf-6`}Bj9M6e=qr#IspDml~-hp;7{ADurC?VrurMvjNmh6Lys(5U4`PvF4`c#6>5 z-Obi#eJ(G~vsSbv;F3eO)45aS2T#?oXM@X zc)yu!75wY)UC0r0u-1gtp!^(a>fC4FG9^(!c}6ZZNo zb8COf&{a~upmihwkz8k?uv2EK!T?eQL4^(?CiYLMn+$Ye2W@T?v5t73SL;Due*L+S z@;N8u;*N2@#~@&w_sU;V2?{v(siA*|^T1xJ!Jqu6w7L@?Z{7B#2o#qfyu&bV8-i zihTuH731hxp8&}57XGfKwYBJ++v5;^mWF|G_B@lbSZ+-49)c0`YPfp1ZgkW!b@CWdb%IibH-xY>6 z?h)Zt3ErJx^}tP?0?@+d{jU!l@mIHkPlvl{6ny*!#3ai<8SDtUH#hI#o+p6VxOjo< zAFGqsKa3^S>D)xCq2`(dd}(>pQ75Unu(zLr$v149EkC0G43|$G+@0)Znc&DDbIsMg z)DB;UjPO$Y%Bw(R&Fby1l>?z-H5~+;(rM}Prc}-(oSOq-b=xqSddzqHe;oP`P&-T#TTo&fBr(AR^sLGV9(mXUDGk*Hv zO*{x+CwMR#A3hIc^HS%P-+ffKfCAV?kCCB_XBrfWPuJp806>}P^6g0W1r3`}%qVbD zf(5-Zt4z+3y2Oj)eQ%P(5+mwIVQohdJ8Nyc=Nx3UqB=Gv$IDvb9}4TlT)$t~0UG;W zx~fr4i@D}qE$yM4{nYXn8noQBWoW7^QuT+FgWp)W%4H`5Agjp#!(?>Dh=7=?kmSu^ z@B=yt5f3{JyW(0ycgy>%Is{|s`xvS)>gdy)Xm&wH4lc2V*mj+6fUx1&M1`C@JvWX7 zNJmWG#0OBi+<@16y+(Q&HBay5b+{RO7N5c{DLxB{}vnrCnkFd_U zKNILasX#%(A;8uy0%csp?AL6JAIs8O$lcnsTDL9ZY|9~3(=G5mOfmCi*$^qGT*|>v zb65+r%gJkqL8(=+`9;H=7ArWxNZA9jhYemRK3j`$c>P2VxkC3f3ZjffLE0+QBbp=r z=DRBL;@HrbCKzmZHLAyI5@2kazMeODB^!2of+fjy(&L=3Gh_d zlkl*^iWc*^$un%QIHjIPDkA^$8J3me&cDD3h`4%l-5e)G1G>0U??cYpu`&Dp#-Tby zjCjB>Z}a`kz^c&k2NXK2m5=~)eQ99QKLV-*HE(n<1t+g9##Y}NrG%~=0bEP{!|9?) zT1hSx76}2_mL5ccnidC}^g7uGyVV*kDlO`>D-$c~%7<*r&V!wu;##&xvCX_qz9K z;|b-gfcrP=E=?IjLwSlI&ZE>z+WmQ~E+;A9Fp%|}|4<`R&Y&B(ky1K*I|sdKw7=Sb zxcp(?BMy`_4I2Gb)Tf=sp3lNM?izbI6}7gXSwjNUyM;ZF`zDho^TiG==4 zWv8b{&LQ3J-DSHJuDit%NO`aSvDDY~!pO){KPLhWP!5@uN@w%`L}mnx7uZJD{(M2d zJPc%j4F)6)0BWyD#prrlY1)Uu0V=v8k_9Q^qe=~*L50{HOvM9g#dC1)CsgIH7`Nle z8zDB7^=pyL^2pLlf*Vg1g&}rD&41DKb)*$tOx|H@8YFLu#MlB#cX8C*_sHDK3*47k z)HUAc3RoQFqc>OOzg#P4PnYsoEiX(Ge4LC?({QH>`;$AU0XenEz`zGibr_*%*!MkUh`x}e zoeu^WcoXZqD`1W>>)iGV~SSmiadwWe?)N3EzVbnB13ZrEWkWwQ=?%a3{zVJcM*tBXWl z{uXaegCCJz^ET4b5$iIN&h&-*(ogp1Xs+j|W<<<4c8$u#9HLn_lxcj?=5ASH;*Z_hr2-c#cfv>(2Vw~ z^{P4(TqgfT9P?FDC6?LxhXyN)nLh>h_$*&_c=QMlsA&FN7qEEKci{2Bg9mwtnlKj^ zt5D!?1R!;|hc(u8{=+^hhn%3w;y0It258g2J z({j{N0j$M`V2q`f&&QN=&F5;~wyK^u7)yqchlW7x!UujS=Y9#fHWSvz*S9vm1&6fY zgr3l_AIhR79D-koYtaJ?cRb=R4N@y3nPIxiT&tjx^gz8&Tg9-Nnp9L+ag>yBNEWDm z<>)YUB@3=eM6Q~ye7JL_I#{dCY#qh?LB7gSID>aRt0#X&7Pj}N#c!ctVPwKVKqniY zQYthRC;N@=5gYwN;6namcPMPX&Zi_LZX@)g z`M-x2LZ_ zIK*NQ9_|qKuXQF7#EH1&5wD_Eb-=-F2I%qvZ>D*;H$A;SLlX;JDCI@R@I6&U6(RL7 zhy<>|-2n@g#a{nhrbZGGMAZ3_0T*kzS_}18D94HOckI)-;??ab(Q0 zgHyJ~eV;33&K>XCu|_cf8n}!xS8;FVN#>-rVQ1rUCp!A_DHV??VN&q#!+0r!L6!t$ zSNo9J!J@ZsGZCbvRH?b%ogdPXlcsPbnwHn{(jsj^->)@MGsvHTI z@sx=i-Q3{?+|8)Qb{o4~<+!y=)n%OL{+)5^($&SOY&zy6DY5 zF&m{R0Jd$pkHGWh1Q5iR?$|DA#xZGfR?iP2n3oqYANI!4+Ib=U(TcH%+MR)$p$bi% z9bsf<)i<+jND)xHyJ<36bz=SASs$j2~h50Q5g*3ecK|r>fd` z_8iptr}3Ej9OTOb5jVYeB@siWf~dBhd>XK$3kCEqHX-3kV{qpqX6{`Efkn2~5iZp6 zv}|vdu-*qgzk9-t$4K%se&YFUtLF~|9{uD-f29ZqzV4$=pB+VzW8hn5#zWaZ>w7Ba zZNI@$p)I6vXA6a0zO`YA`rrbmbbll54twyuujg-{iT#ho)BGBIT#hFNttV}5e(E$v z8>Nx?kBeJd4QHLFn3QU8-{2a4N(>Rzqk8^0b#EFN5Mh9q;a=hGaO0GQ5;SVOpO%*9 zdA0(v3j^>vLGB7Y0j3yl&8G(q`s#=d3%*r5+%T3nPrVt$x3_Pm$ z-(S*zcgF_A1R6jKqvqkk6V=d|OLyw@Ico@1m44rrR2+Z&U^-g6wRn^H7kw1j%w!E`lz z75OqC-PIpfXLF{{N%sYjZOO}#2kUhmcdpR(l1vT)IXNTtij<&Udtk;d zuY>q(z2u2-UL<$NO82fVL5*YdkB+0k&yzM|9iuzzJRyXV0j8Dp5aD&31vyi^uZnWQ zc4h-@NvD}vdId(PmTVGomPw899mja`=c{n&mY8*NL!wFWlo-A%r=?}snjRRz_bvSV z-koPt2NfegZzo ztP1Y!Y|~e3-oB24rG5DV6t$!wU`9;9o@jcp$ylzHn!nYj{I#iP3?k-^ii~VODoO`# z&)5B4AFr%PIbC-CaFTp6G71_b^`ZemH03{ks(!<5H*}JfMFO|Cw?j0;WfK=&?}0mBmZyX*Uzf!`VawaQ+wi6|Etaxdt$l$13&x{QDQg7VbXwUSTZ zd$;&3zT^5vQ?ynnvP;pVfSg!!RXd!|`Yo$`Ykct4@GqZBxyoWTiAJKkKf)!EepRH? z`1-wt%p8@{?vKPl+7x;>gj7kRxDdRW88GYXlT2vxrLImr|i2=`r0%&+HHoqcIK02lmx84`R1Jk~1 ztLOgb@rc@}`2VokNtYQe{V%QJ)K)b#b+#iO;`1Q_@TLqH@zbc89ov)rQE8PPtpdr* zQ%#^CyvhmbceXG5da!hW?J>YC6&A=ZS*SAl@gQs8i@(WMH?IO9_ zok2{QsPmPG*`Evx1GZ#~;ude?=2Zk|QQ1A&L%wbteJ{BZ^a*QnZJb&4vjsP(tm} z#&kDmZ0M&iD?S9e@9~F_KK=fI0Z_Q1)RC7m_p?Uz zVC5$Kf0}nF82B~MRfl7Tz`!>+e0_>na%Jd2{lKR^$Sb`+T?SH?4{j7wIre7cSsRpw z#(aEyAWqLwF-=y#jQ4$R_A@_u979~s(e-Wr13#PJ`kX2METS)n1qD~qUwSCG036$L zv#l&3PX6f7p8cICd4h36tT^sPM%X+7DA7sbg!IYMpEO^uC4L|&H08b%;g4hSjSJJR zY%++v=I^s_mo5rNIm!YIF>K%rECoV45@q@G{!?E5;sgUrEWA~ecWk}4T;UBAQS3*C zXrd?iaYCJ5FG|_r8d7U>L9s3D#1{={$^?GG>gt@}o!$a86-oKv8IL#t7}DcqD*!{u zj{BV02n&^ADu5kXLq-De@x*;o6Ww^yREk)#e5Og5b< zXla=5Mcvb|F+^;(9DZo2ndmG@5k)XLYvLpA>CQw0=wpds-bJ%D=X|BwR3#b2Ym(j> z_DFcY(DjsiKqZjC#$bAVhtU1i$<*vzH<)C^RtGVS?e?@u=A~kx=Od>0drcwe4X@>r zHv$s-Mp@d%ywlUuSBqo*nb0_oP31~V`kwy8re$f~3bx7)Xq3lq8=z)oWxZqqAc}7e zPR_d8TIhZ;NcG(ke#fi%kh*g3ysg_5rE&X#thLwN|AY@u{CpHF1Lf16*hc0n-&6unZe>DdlIaw6Yj`CK$1$>F zFRE`Snsgnm*r4i!`sIpg6Ey@8IUcS;cv2R!vlMn%@tm-8P>!@O0A!2j=BA?B#Nn$` z0hvUJ&h&avq8hZ7d?9-+{)(^&E$WKYXAeVU-!i@pF(v>>8*peJi^qo{*Z<3t>4?4O zetT~;n<^^{v#0eTe#E#T=D)xFOjHc&$;K#PH`YS@!Z?pk?nuNp9D#Okz3SkPpKwSW zHwG5b*mhVa-J@(Z1@3<(2$sC0o=4?%kNDcV-AG;C_DUiE7Lu?3h=2c))buJe!cvs= z`n|M7VjYBsp$c&sskbR&5#Z(J<>tQoZT2~u#An}3IfJjpxF;AQ^^PIozur%GGK7o= z@R-Pv92)al_edVyYkhy);zv#Yd6^;ga!&bh{==`%%VtX1sdI2Tzv(b%@%hQ5sZmiw zdnjP@@&0`4Ng2@+@trGXaT5LC0cTXHY@m29#vEg4(?wyRY>)QNyZa;%)%6`XKp*(Kvq-1`_~wI{1f1JRy!pf=ZdeSQP{%jkpe9IWVwuEt&4Nqu)D=M?2PowPQN+a?jkfc)S3CV<{ty$8yOYH)QPGkK+1VmK*XFA$S`~VU@$okh2byJ^ zI(P{5meH?`zOd0IG3wyIS(^kX;UULh00TjOVgco`9Rlq_zUm%uUeO%8_XUzYEbuC7 zAuM{O3fRYRb_&gKhWT7jI`POTy)=bW78!ed&tG0w~R8hUX}sJt0Mx8 zbHDmT52v-(GOjd#p@O01Syqk9*TM!SSVaza z8BgHoSUI{^OG>~uuTF*EXS@egq#qy%v96{A%}Fc zw(U)1t~9=VE|QQ7$pFBI(T8zGKBd2Ptux~^lp5+K1@P1UP$ORNb!usRw&`7V?`mVV~!$a zqx89012$L0?QJAgy}oJBw`43@2w2M1 zRvsgh@HCAm<`vn!TEqgkF#f%RIh9|@KsnT(hrq%528i7mi+>}D$BL=w6+K!p=tLqb zU0^Bri2yVWH;YWq{hvqQZ*YK?4g&d)rhA`DVAOYibtD<34M_H?z?5GwE{^NY2I8WK z)2>_ooC;rBS`zX*1+jNM?x0jHqJUFrm9t2QiPMvkJQvs*!1D`1JAaTYqaz~hW{aX` zw*3UNME)HqLkiR;k4DIdjCfk*`{Vi1LzDfZ+2XL!P-gwZrZ3A=BqVN~TRPuvoLdsq z$XJpQT>TS$wa!N`(CdVavh8KtAl>S`@NY$=UpxyR0nY{QdP05rB#PNOiSpMkv>s%pYQO78u-D5+Q_a6T1KeB@Q zp05G*Hna=MId|B>r!Vj*(TBlE9Z>6MuD06xi+Dh#Q^d(?+AfN1E)AK*Ke^*A=|BcS zG;kXlK-i)kBC3Yawith#y4SLGFanipsYLbK zem7?Rt7@&LtHrN5C+g&Ghgi~61=Wqz$cv(<6bshHTE->+dtS=E0_IC=*iqPTK4srW zWj|}MBqOsAgzFDZjkkVI-$ynupwqR}gDn{WX#^7Ng|V|_#^rP4!ETj)vks}ld~$Tt z+e>SgjA4(kM>%vXFBhh~pDd{ENP)A~YFyAgyt0FjG?r90;6%wH{m&-^GT;b!eZ85K z2t!-1HtB=7hu{uFPMgC<`xB}e^b2|5<2IyZflTPAcU*7H%QIcBwZJ#>cY&BlVJi!o zWc*5Pa@x#FNSG_rWX!i(ZFGPb1l{LJMXWSB5I4)fKoDHATnKiE@Bq_|pLF@N*3{>z zo^6rsm+uEn?aRr{ky``_&r>)sa>QU41|R7_tX@t4#dH7e0GIufnB$Y!=g-|IVE3(W zaQCFKvP@}|Ks?H5bS$h+ZOt^@-=ta$Jv>4g_lN>@)?W!j^AdZ4gMj={kjh@rf+AO5 zdV|F97u2oRMm$zr3J{5SPEHcCZK95)H|MjWwexnTo(N0*2k=C`;kTo_hZu%@rtaO}`#7$K4v8MS?TNrNv>8aqc(=I1acdt~v9 z8ix--pyr(+ZB3gC&>1q#h*-`Xlq_>22b4Zqna()KRKvFk2vO zU6gsJLH0A93ah(8y`e55qdY&Ir5lN{gFdM^juoTrePkn3l+lBD9n+xM2AkPt+p7IeW$ub|)`_C5^*E4&wa+ zF#;PK`_El!=odAV`^AP3E30y;P&yHIy~xLp``uq*{ypEx%gA`&FIyEWq(WFzn@x6B z3kdI!F)-)NyJ&s2h!mWhH*xYTgrD3Gmuk#l@D34>j~Nys-C*jJJjPL1o!Sllp6RP^ z`4vHGR_4tW2A+Nw^J3mg#$>#!-qg+~*04Vw*o9KHukiyZh!F#|;&`WE27UbX;S7^q z?ToT`MR!r1&~44^FCo%d?sGx3ZBlt>nXYFND`R`UG=c5}IqpVxK&%_s?~j_VlU(#% zW9~mkrQ=A#i)sv+s2PYGw1dLAsuDH>l%f*9)p`LVC3BJpX_P*A>N~>y|#n6d|j+#m1>q^+*wS*Us>@iLo*>ksF5dhnoEtpuO=& zt&<5xZ;{#4*@{)APTCz_+m5US17e0?5$VW@u3VX5-km+GIe?9TbxbI#M*Bi}TtasC z>Z^a1aF;qpa^V#W`U0e+EnW9LdXg&>_~T*Qxcj~O;8bk>T;$;dA30stUKO1FP_ObN z&@X`mR@Z_R!?CUgir#_QE+nhecMq=e&yy~awi9n-udTlg0JE-SIHXz*<4y= zTUHylFEMHV{OQ1UANk=8nIYe2G@ObTKBzw+SDP<4R&FN*Yp%u3UbR5%7uZJxEf@;1 z)dvU~PB))F{+pdp?c!@^m{N0E?MLh4L*A9&AybM~l>IqlHA5BP1VLY1Kc#Kz3U?C5 z9*Y@ZbS@mFegAcZ1jwn$$yy$FR{R^RC;!I_9D*RPHKXXbq63bCOQV{@z{@rIr8!De z5GMvR1rYw;S5>iQDp{BsuJUjyC%UtaAamFjgc@}D2nL{N2Kw-e8n$9TQ_JXyBu2Iu zJtK~^Mio+MQt&VIsxh#)ay$3$FA>h7g~QD&s%WMqo^e{wXfwJh6vFFY-45V&r6xZg zKvk#GelscwN$~b(Hku=3Jq-JD_G5HFV9UrW7`zs|NrJ+&D-sF;>w~VQZ8tmpk#dT9 zovfCVS#eR||M{@ZT6~+X5Yt7*~ct z1NwN&xnWC-__sP(kC`pMUofjB$sxO}VzXk68bs*T`$_pwFffoDpmrupUtc=a`u=%5 zM&oO}EkV!GlsBVtYDKqM@;$0^3FT8JDUD19*ft!$-=#in->btG>c{{Wt`;acQjbj@ zvfIaxawz5&eZfoGl!b?r8;0a-+tSU@!A5a^JNO}7U zqW}U)X5BIhTGFYznJ~VVIQMEI!>YL{Y*njK!9&sQM#6i2HYs~8b4d3n_CG8|^LAuy zXvL0C-uFK(U#s$UxqYMa2bUHa$utX^{Cw%aF!yJ9bVy(m)si3&F(ndooy$G4 z5PXn0kw)zT;RWRjnhH$t`GbXYn!j_jLl_4qEs5+fFLPhQ=&zN2nns=V#7PWxgDWn( zLVeflO|OwSA!#H;Lu^%-?IOX>M&5}G8EHNLtcu3rjDH#YX!j(JcmyWVtjg~05u&QN zuHg-Vg?#@^(ebsoBEBEs{ExJ$DCSK4p7S$zv(o+$M@pQ+LvPe$H#+ki1W0~XnILO1 zZNUa(AZk8M(Nq$HPvEDLMcBdflh~Yw8M28UKTz?ctJsbVT~>zIu`d6T6Ld!|>VS-4 zDBx&fwV}aT=@n7h6VH`=dV#c1)dgS7G!c8DN0_aEKHn!@B8dZ=dV~&7$teuTKq|64 zapvL@NBp^8SkY5H?fdl1S0ibme@mxRJVMDtthn!($<82y5;K)M(6+=YeCMiiB}zZ2 z7nEd<8mtz)%Tw4id!)uyyzhO`5l%uyPKa|GWn&*#&}G{dn&|Ai_?$>8ri9dnWjzB@ zEV_ip@S_A0NTvEs8jL;rRVScUTgTSCkt@CR?mz?RGaE^Z-=HYjwmB5j131$4Cbqf} zeLdrXc06vvLvn64fFJHll6xJAnBi*i1@xi zeX>pOVN<_}gpysFrz&}l6Lx-FkV~F%Tf3Gt^VOHFX{*vnSJ~Ft@xqk+HWelCQ~8!v zRnUutl_PjU^hI2*axTs@ExRmPnc4YoAbpJE!P)!P35$dzt$$9P@so*Yih}Xuk%baw zs(OfPr}6OG%#__PjL&PKK6#PlbdZ1j2<8;tSqvJm6ES;Ywsg+rCfR7tSVM-7D(}?2fFJc>VK9NnTVBddo>N zLm=ZLy3K~*Bq>)=@&TOVmkr;UXB4||q6bIoW_!7%O)C;!f~%@75epeL@;60d5mTk1 zy;*T6jRl=sdC|8{ik%1yal{c;w75rP(KoWU7h7`hwZwooqDd|uY14!UPLdqJOgr@9 zshu*rsw*Kc?<>T5x8>+eTx$iQ7s0oT_>O3fDz!igD-=z(Al@mR!&UP6BY)@^yZMJa z6-eLBg;&LpQpZ&{v5P4W{pCayFn*lg?ivmShDHn(r*m!4<6HYR8sNLM4k?B6%cl4W zfzDEP9sBZ+x`(9xhfx^a6lj!1>?KV=}*;o;rU#ZFM{opeQ>x%e>445vb#`P zT2%&4R#F1UBn*C&d>?j83AZ~ei}+La((oOiHhuqN$s*`A^(vKBN07E&(|PFLW^R>T z>L8Nh`6`pzGHS@(w%3>2kbhp7DzEqY^eu`13!hcpMartcweZ0{sOUX!M;r#a+0SAL zms0{(Mb+Va1$Q2Gt7ed-#qoYF%`c-E&&w#Lm>g?0q5+m_PZ4(4$<6JZAY)^TaWkrl zx275Z4Xcc|ZyX2ue1WFCpmc}+2xE@tz?z}3vDp1{fP#dD5; z^A12@v5S(|Gr7EKxot`!UjHG%km;J<{GYNr>$-1>sDC-{1i(kcjgW}z- zaU+?cGw+k;p!f>8J)gPx2$f2BZY2IDQJ#33uUA4pLcND!_4}*{vF>H4O|;I>IAu&z zVag#*s(K(P7BYkARSjciKD8BT{8QCWaRXbmSFloN?f*9S0 z4XI#G3B&|ab}ACU_;t^kTdA={J?Y@)4cUHenAp>7y_wVAWJNk2K4+2Y{Ep<}9WMK9 zP~_oeK+XRa2)G58D#FE16VCQ+mrggnrQZhPN)jZXjsIb%hp=E~)G1&cT;mg#zEs#? z=BgL%^!E0hR#JPBPUJDoCxmE)nq2PlnKUNV@$Ztxe=hhlvkHZA^2efnujx>ji9I2p zO{R)^a8U z9gYu#&i%6w0^GZW6KW-Vd7#qaXGv(8Xi3)s53H`fI^o3Q*$gc6DB3&U=X86>WGV3h z)T}-EiFi{w|6{Ux zBZJ>+Rf=qnK{bn{nD(gW3=F3BsNZcxk`xE@)hM8t{Ksn6$BX-_SvH9*r6(r~Gq4nS zEke?I#_mmbIx*d|-&EeO&?e}&c{_WrzgRypYk0znTZf{jT_e1f0OYvU?$Ej3%##H| z2J5zq2rL~+p;*_q&bNXgSz$n9axS7=*f6P%1-T}OenuUKR2&g!;TI7#DDD#&gw5B2 z4f5JgkolqFx|m9pW>3|VjzyL3>37?gAP)srf_!L_HkFtyC1m)Z^?rl!%^djw^Gzjj zD*ML%eS8VR3$`b&Hy8=I3Hm+8cw-rRJi>^OoX7iClNdVg?;IPPAL~S_O14zfpDx?{ zze}B!GWYd{!n>kT*tM@?OM@T?hjM4-I`=LPM6M0mPv}kr079n>&|cCrmdMINM(T;a zD5Mo=q~ija!tLOc2|pzybUV99lr-+3q0i^+8ewM@26c(!{nJ_T&#=M!?c0gn(;1$V z6k)(WTeIn8{}UZWwaAOlnFi7K__`0Im6Ox$YOEJCkB_^ZgXGC$9Hz~JI$x{0;_QTD z1B^Y^^ZuU;@Qi2?%Fc5&`ho?Pa+6X*Iv@+tWHEX@xo&Jl z+$h`+0v8%QwMtBQ@4yLZIWY23C;>v|XZpUGYQ47qKEok#Rdl$YSP=ehSXA#diOr*g zBa%T|MD;5YB}Cc|aZc;xpD{uzC746pK*u3*=!w?SELO` z#=Y?X!7i@C0=yf+Kk+up%F?JOl4W zH$yJ0Ip0|SBU@9WInK9lW#4_?cr-mJtW$21= zitP+dPN{cn{?y@TExdm{F|_ge>di2m`x6^SW5!<@Q3^Lyi|AY%a#syL=};J@giKfz zG#n5Vz{P~LoKN@i{bS2iPVCPPLU3C&AL^8Pc7Zzpi|kH>lBTjM=c=`+QjV!=@xa3e zLDbG|&l)J1Y%#-vDYq&c(ywshK2emyta-%tR`u8rU86c2L^jyhoI@QqfI>FG+|xWL z)rd1)*I#6YTgbqPjj1!Yk)>MF>TVMY1oN{6n%Wur=LM)?dv^pu{LUFJuL?7o6Jir2 zD8hTZ`%#L&eK`if$~9-|-!S7peJxx-)yZbg5wX8ZrHzVF+x_)Kc;fR`F9B$feLY}v zl}ppTToZF6*?x*nxK#ms(%V&sbAi@76hf}X{tbs>zk3f2O=n3QLgLE}QvZPOmr%=f z#4oo~d1K`d(A{PIZ!9oa47(tNQE1;yZ^-pBqqyZxGy1-RNW?p#Kyp#Wd}2z711P~p zS@Y$EnqwxyB^xK*4Mw`oM}Q~?M8!*a3&Y>zFEa`blfXfI#`{9BP$Zf{2_7(3{v-vl zLbr5W07GJ9oHL;U1=bl&tTq(@wS4-;zR$&~MeM-7qI%$G|6XBn7n5bozrNKw z2*0xnqNjN_P<5HMx{Y+&!(dqu|7VqK-atMc)1g%}okB zg{{!X9#3d`{>y~b`x_pirYNzeuS^iDU*E~l1s7B_}qItr~ftMvkOx#1%O#}eE0Ss`C%)lU_7Ww*e0$lc? z{i!z_Z$yyc1b)%zfL-PIdEnGyKb0oA-}3q6_ZpO2*hA5szyq(oWQmLEBfOMsrK~+_ z98D#t>!xB962DTgD)){)it5$cOVILE9Oejt(r1Et2ST-UU~VkB-!0T=pb-61ZpaG~ z&;q~yrIB&56l0Dv9hZnCftVcrA5B*o6j#?YFBaV0-QC^YEjYmm4#6EZ1PKIpcXxM! zLy#cB-QC^c+vlzNs_xIN+FSRWIj5(mrzcfhLB?%RZAgEjebDbzSG4yroeL-20Z~q( zRtmb#p{{AQv*(b9Ecdpx&SyfmU=QFp2OZ#%Cqr0s{(iwO*kti zrlgv7wk1?A_8A`J>z!T4E#<9hh(?)0&<&wBvUhr9QM(-3{f8-l4&>M0HbxgtVK5n2 zIT8)Fw?wioViDXS>5#@HSh9D&Loczc3_qr{P_qHFB&JVM$m~Og!tA@-am&e>e5ugz z0LlnPY8}N=Y`1TVqs!j zzxfyM6-uB%^93VK{xcPRqq#_i%cx|_e@!t|J5{VnuOSI{W32K7uM3X$h=ww5p>q z?FhY3Y^AV&31qZk)uE=(&}ZTj+nkU5gTLYk$$}5$zn~KmU*Vt#i5ugtFR0kcOsSSi z`5U#<4Vh2AZ5q7JWyGTX@val`vE}oP1#sB}JOjP#E${&5&@V$?mo-4m`%er~FhE6h zIb~*5C++FEwKowGBLJdt@MUT{#cI|vGoZ%#n_K5;>ZMAuKK2n$1+?117h;tV@u1?9 zIxj*FG)sANk5-r-A~ndQWw@)?Q6Mptaz`o2Z_$;8{BBC#J9VBlyE18P?51N z+7OCDj8a3StHBh`H6kp=_(u2x8%F>5M4ti+)ohty-U+4a9eF8Ree{IgmcL`0{(x-d zSn<%r?rY92pT=JS3ClN)sd?;{$Z##!g}wGuL0_*ec5h@du!FS| z548v~pUKzNN2IBB2}K6+DZalq9y*q&+E)QR(9c&Er|64{e5zh8v5v0^NDQ$MHg8#ct{pU$^<#(eS^0jt^=GoI z`n@#~EzGg|5Jg1z@vd*a+?Yqltlyt44}Lu3ZU{s#KVZVc_i@MnQnZ*B|9#D}VepFx zD0lIn{168gwZ+lwrKlOT4q7&@L&9S53f!|Fmsg${Xi=U4Fw{n8AAi^)0`-3FlXtM# zhwh{2YS!rBf{=@V?gUdLC$v-V0+l&p5E({dTq|_U*}c!=>g?^*8ZHhh1oi1j7yM1LLL|aNX=f7X#^4gg({k^fuQfSI0UZ{={V$pEdWWGp?L+pW5~f zhpbvY`*9aA9Lkmp`9HXIEOOlDX~TG9hB4(vPcAnHjk{VUCh=kl8$*E($#afGmtu9f-(UT`UeTxRerk`kJP=PL#zm(FY>$LQ z$qL5j5hsb&oFfMY8oXbYy>4l?d9c9O3l{7rlJ(2wQd=5|1`Gco^e~%ow5PMKKM(eg zcbWLDjB3+j9}+QSL5Fb6$1i_pgNZXs-=CU}fguQ-B3+ zi8vy5O`+Yx^5E1!KJq0l%75()o|VG+gg3s4bJI#cUw4d=WY~Hw*b`n)Nz;HJjtOhN zZGxw-S+s>EF~-m4%qEwLo_uWBEaZVO?Qq&elZ)u5ou=B$K)g?6kwH}=vExAQzjr4W zCGCixd>D5}=xIA7O3$sw#+|HTPJhDL=1g1BeCs&M4?0(8t6rE3`MvgQ@FS7%dN0(E z*-xU^6;ES3QKthTNe_9-HHv2}6`g)-sJn?Apt!C^r+I4`{4Dl*T$#Ih-^fTiKUYtJxnC$k2U!ft0z`{RB*g3ScDD** zi0DSxrIX#M?_wrTbfCZjQ2W1luFgfYa-aM9;vUk_=wFHJvv zt54(lycIqu{xIG|$~P2tO-{|gOfxMiGE<@ypvxHsMB|=hNq(9Mc82W9u3>*8f8J3I zDZq;c7a(l?uix2L!g=V$TjJK8cNi?eXv300%Zg{t}8^5)HmZHs8J(xgblgBaw+hflrvlrgwbMbvh0UQ2jM=Jq=vzI?N` zfa%iRf5?f8U0OAO?L*hqk-g2ZMuDcWAlSo}JziU+G$ueZe}$1n>DQb%O*96e%Q0ON z7D@GdT8cBs_~PO(}BIu|5$;pT+1DH-6jtc(5k#tALTG zd}Hn_7n(%uI#%&pbz657jr*lfTgZ-mrauQK28ZsZtTx*^CDH-|Wwf@_)UqtP5%$Ci zE&Rf$dP0?$nZNC`{>~1?=a(AB0>`06&MQKAKZWJIiPxey5Tcf8y@@Gfv4VVaYOAHt zgmiTAp@}t=r`|I4)ATSF$uJ0!c#sUETc4pYxIaAeTG7RH2_Lj600l4*NkLL018kmb zRIyfv7w)&=M7#WdOh|EVkJ`OEzff}Uvgcwplr>fa6hY^W_kR7S{C1n!d5rkR&mM$9DaUd5 zi?*IKS8|^@G;8p}b|wQ(V;R4zyOPB6JzEu9VnpF2(VdjaYpg(D?bv?P0k*9%S@vNc z|3|F5=)VGf;bqm5QGm8_r&0H9Nj-==$A>jGPU_^|YuKbVH?W->g2^}d6>Qls=CSAx zR7#$WsE;$!1U}r-?NNUr{&3oKM0%>R{}?oQSIrH9t3gOSy$&zyHkCOPW;D>jHp*|wCNtIyL64oFcY4B`MX>Vk&y?F zqPwi15%A3M1gNNKw0E`s47YF~3G-k7tRG|`v*ISo;EKoQQ%{!5ux#WO1VQCVLmte5 z&_Oj5+j~2f1M40xDNil(s6P!4FP@@7qogYqLah{R%#1y@4@b`prbw6HZ?H`jzAf2Q zX=`V{;s>gYEl}Ir&=&Bc`g@Q};Tn`Gs@@_Q}5*tp2;-d0J>xtH>F+XvZHO?h7 zwPmCd?Z^o|ov;m_Ocp*_WOpu$0ks6J@k$c1_S96vW}ph(PRNK$b?1Q(2SI+QVXJX7 zSXBAx!t&-6`NMxi3GrRJ5!^@dJtpTioa^0BtAJ7V6(;<-v-pqO3*n?Uka*Am zkxG6Kn9bPp3S%LeoLtiYb9+c|7fj@b*40QC)i(j1>~F6IH9qfcaf}Se335#s67bWw z?<#;4RlEiqq!b25wkj(_!DUX3cl3E8@g#e2%o6lo2&UU4l!(mM6s@#EM3p%zRw4#S zh?X^jGI;_Ag_fg*?6+{mY6h@4HFD6(=D;T>21%*OzNdefe~dwT4guOM@sc$%Ns5Zg zjHI3_3R72B)3;qkWMwTL&Mk!0{#ybW_HyX)uB#E;zyM1d`9#CLb_$Da%Guo0iH$@%T$_&2L$Htbla z<(c@_pYJwi2VBh*sK2!M4LxO-NZb?b-P=zC+jJaUZ_CnvrI!Q_0yK&;MA24()At1l z6k<~#0x``}9jY)<;-{pnnqMY_;|v+ZXX%x+5VY8y%i!Xck8P0^1y2LhMFVXXA+;VD z%i99jfhcpSp|0kiCxhWTCScf6=m?2+7N-74)pmfHJr&dZSB;kadyyWN1iuhW)SsS1 zx0^r!-8pA4bNxFaBUHIkSA9BlO!*|nW+Dkr#}voJEZwc%Ku7oe1@(!kMnh*wlj^ZU zQuFLj+}rNck zWm;kiky93Bcxz0Xm)${C^gSwT4*0BrsrG*tP5)Yf)H$~67M5tb`qEnAE{L5T;Utd# z4zwnnRt`5q3AN(}4_w2_aa;TGPi<0>jj(n%V|yq0aE6|(W!`l%FT7Mt$PLkYH(GR@ z-b8jXj;&<>DL_#zu6Ll`K8t7N%g`eS)GZY{Hlq1V_KTQ!CeU|s>UpQRE3k9 zs`(IuNdnN?V>hx25zBmG8Cc~36xtG5NrghUud1~|^J3mfL4OrKNmS9-qxYDc4Ns*m ze*ZQqD($UR8O%T0MsOWz#(lx|3eCD7mK`{i-9H8M9o~0BTg_m5zOY=DzW%n!nf`Z_ z&Q1M3XCQ84TjgO`)v(tIJIOR^w%AN4TydmDdQ13-mpsRCjYa<7r3v-XihEyQYa>vt zcQXFR6bd3z1&V*buMV9c3Akjpn)3Fy&1|81Ud3=qnZ)vZF?#QBp5xtLB9Hg{)jknl zgDhNgv=iRNbZcQgSpIj$kCe3U{L2fzm=J}@{bpru(Jt(qyFka40&f+ZBS35~c+0HS zhBp*bJbbE68}uU+#z#i(!s+AXy4Wg!m4Oj*938a_BjB$tAqa6vIWWWLoV2DRCr~C) zC%xCmmf|b<;ikI(=v#xsTc9oJWrK+&u0ptagFVph#?BQ1-sJdV_qcw$l%F=E3&*=% z4KcP8nvN5ow*_(skQ0(!M)^$n0^Q(F9_W0?C=XY1g44~Hpo1pp6^@+c6hTOXb)VYt z`tuOI&v0MQskl7tA#G_bm1zJC7u!aqli*vt`$kC6W{A*^&)&b;Xl1*!!s#QCMlK<2 zsvaE2F*!2L`?4SBS{|wMVs?C)LUx=`>3B+1GF}(@A>$ddg5GqMr~|7xadNwgg!bkPv(-xdxqZcr@s^c~$*;nDAu7;W#** zkkb;uIxq@GHO%V)%?FJMUB)HWkxCVY^Qo6Q%2FI=cQ>1}2A|Lp=kf|=NHu0;(niS`o{DqANQ4liy$ zRvl&tFAb_DV}%IkuerGn>pF-)YbDsSwHTZ?uu_*0bl^x&Qz=2>MjW0Q_3aGFB(g-x z>q?h8r6lB!YHdc!>-h4}wt%@wx3`B1?Zqi)9VYnls5dTRXkA>$t~s7Mv^^#|^op!B zaG>owsguaFryc8j=6yoVbTm)1vCSC?k=2z$Oj~O<>Ny!K0YH;mKi4MP+$czn8Q+$R z{p%;5XkP`6uUVn()f^tB=Q#2Z=qlY6IO{LHnlm3%D!}j*3)k_TwCm$U7^5fhgh2JJ zi@mPman(;R+3ysT-4{)qI01=2D~bmxPft1Y1+D_DiDu5I$odM0aS{>2M6|LA^uf`qSM<0m;+LJay*=Ku+rZ++3WD$d^T*M#yX42WTJZs5b zvVSUKzC0fN66eNd>LO5b2vKJx1hu?xXRm!ky5yg)9`d&vS9{H&fOH{=%=rptsqUXQ zR*n7WlnZKiY*<(>PyNrfVeN!~<-2B5uVL3sV(M{ndT}Zs)9Kf#8Gr_Az|nY~+4@^> zxUb%LjJO)W$ebY$`Nx?9H2#;V$b-`bF69fGf2dL9IRv0cgcE0l)#48tzROMWOn|0Z z+=2#Wx{#sas^@_M$IL0E3O&Qp#Dno zf?EKW1h$@S9(zWrdalg58X+m4;pVFL!11 zkr8&i_FrSfTV8@BpH~V)8%+foi!Vt)j{VBiJsu^1SPHGqw&&?Pua49?R zAnD-x_9aLKB3pINNA~}UK3w-Mk|g5grOAYXBtMV9kG1Q_XhtAsC*`&)lON6vhiQnTmAK>ExPvChEy;VY{$C4l%5Ky>Y4vK_a4UUbG|2!s zuZh$7@F2Xan?ZB5eCw9dzpI;U8%^FLqiTfN+>^krz4}QL zeGm3fl5m>x)^5tnoI>e{exlQBL_Zp6>^-iS^f8S_tfd#YQqA45XM@gM=YoWudek9@ zMpmLR)npG!bl)hVILXr}Mwa^*_?*ch1Ps`T3BUd1S5{?SC+UH9$X(jY4RXoW5u#k6sxrQV)F# zSL&+oixu#BrO7963?Pnawds9YO_}tHHvEP&vhjOQSh|#<5z-O{Lu}}0?k$oah+Eaz z%Pt}EPzgOtUV$=G^{~8J!^I5ucR=e|dVmK&8rVnbKThg@T2$08`)ERbuzw;9?r%#% z242stnq|L6WDG|%u&+0gGlc6K5>;YZ*94VH=n)&1g!h5iLh&uFotL^EH6h4snJzfJ zS{5jprIs*z;2mO3bYn-23~z%|o6@Y1dS@YoIIt;an1vOBdB(Duj}dEZye=OS|NZ#< zdkTKdKOO#i5-OVbk#i@TZ-SVi0ac^)lDAfNEWi{fWoK2%loS`~@HE8l!yP?T16(9*PQ0xdW0OX%%h$%E$ru!s)smGBLZc;AU}+R%aA zjnS6%o5%Xp`}Agln{Lm)9}HG@f0OX7WnSm%Q_qUc*oyB zAOdA)g_07V+0e`KKRN`bQQ1M8ZeFbJ$HLlDE?%8C8VqPMIp>!`i{gmPeK@r%0X(cR#((Nik>mIh%Xltn#_4^Lb%F;8-z$>RfHVB<3+N=MSn{yeSz9A_$)Hmm8UcS~ zkt2c1&&%-y-JjFcwTb*s%0zw|8a%>KW;bPb`gO(IICsxx-z{F@pqf4s#JBl`hU^|_ zw4WUDbj-^ws$=E5olW1@$|igw1GQSH#5G)Qykwmu92E1X_oa`k7KG3LdD^;=1G4PN z%Ee=|H9GPwEiBeseIFP9Aud4@{zaSF=V)MlZRv8U!s^D;=n^p>xLkh?Jr?qm&I{9H zxF|*It0UFB$v|)^+?EK*j1lTSoKs6X2$yehCm}43>^qjsE`WWq;MdX7r_m+{{91=^ z+^duo@Rx^CzB@3k#$jM5`PCy>YquTc1SWv9#6;qfqnZ#TU6bxJb%UG^`v?@#$4Fk5 zdcB3Z>a#!o9g>g}1dpb3xMFNIt)zwKLz@kcmv3d!})B~t` z?z0Pl6R$vQvcYbT_1rUE!NQOtqiVL4OO7A*cqqfYfX5MZiG9)rRkutO>jh4~TAZ49 z72-mJ+jxN{_;pt(5!CZAk6+)B$fV0IM{-pYaY@6`VXF?k*H1ScAK{ybvmB%5JG;cR7uN`v$aR*dBx4%sd!mHPl~Caa>;Js8 z9samwamd;K^7JzN`Uy`QOPlFjJ>-0AJilB{#Tz`#?Wh;~$r1RGZ9nJfVRuYYC|6P0 z17-fiM)QSpW_B-c+W%A*Re`>(uWUpCAof|=Sl-pUn|->bkQ=cK$!w!~yhIoA3ohEt z=LCfy4v*JG{nlX$C_WnNBB7=h4#-R^5`>NtZ%?~U9P%hE*!bqi?()kG$Zr@@3`-i+ zeIgTA8z$M7=(LWYPSx5+9$y~saItuD{+vmc^j>w!rGP{(GS(wsXXUV8<=Xk;%WMX` zbv&kEV?m2kLF1PbUF2zV?mjN$TI6eM=yY~mJJw6Ruq#%rSeU%pF@0Zz8<6R7H=4=g zIK`mU5=LOKBLf=NXZ_n%dfgTDY$`uUa=|&_O|$3c37^FI_y&>$|1sEfi_Gb?{of;B zLsLM~p1gh%eUFp^3Z32-m6l!^qDoCz0vGPu;oV@<3)Fk3vX1!Q2Arn?rAdt`3SGq) zbogvS`CpUO8whIM>1VZIb%-a8J~k|Rab7#7z@dStf(@;JW@B=gPj{lzZP_Q!8m8>S zU-|sT8Rq#V@t+licd-r>=-A&oNdU%jU@$XtKZ=RR2j`wN+!-dciKF%(1E-rd9v=AD8&_dzlx)+J%bTchqE z2pcz7KG43a>afo@O{fLMQg1ToMezK^4;r>4M^qXGzcLngwBm`eH) zUg$LRO@qBXn>8~c3Su!XCTOf+%;Nn8)TOs}z~{ie_c4ktTyzXq_}`7LGLFvF2vqmz z0;v%ZZjSi6YjF)fnY=&MJ-jS|$mmQ)dX~8Qk1@qa*Q@~p@qkC-<8IvdLELgPs#h#t z257T&nz2X4$A6Hs7i1EkDm@wh>*_h%z3At5KZ?7P$V%eQn_SPE6UDjHtgheG_3sGc z;Gz(-HC;QKwVq**r2Er(q58TOJ+_poL#^rklUZ0v^EmRMS{16X9aoI@t~YQ?WE1FA zm13t1YomvrYAMYglaY@LmlIen4<46Z7-5Qfn8olrzcRM_RgA?)7_S`?%in!ypCP3v z1SwY&Aol(BV1E{WV?Om*Dl5i0_{NswfBk zs6SgdxwJQspru|SjA?@yw5$)M%mi+ZSVqZy#NWdel-6)Pn!bKo7m)QV`ub7#gDwwB zz`F`2C#|tTmb27GpIYXd9~R!vUuK+4z3v1PGh6{sP(-+h0Q-m^d-@u>kX?h;c1=4+ z!ic(`ub9c0AEcVPJYZ(VM-$pWLf+KSi2-eq!WI;FN5ZiDvad@0x=nm==RH9!cH?@QJayIuU}UkO?w&PnWem% zOeTdV-dx9^NUm?9_b)nu&1hS|{uQ@fY@{ke4BIjh5SVP4tB!;V_?H{;Z z1YbkvbC~v>?!6A;c!cfQtWm{2(3|mDL(34eME$1SC0Zh*DFMyou&Hs56t2)6wu`CFOXk;n9^YMRMlEGPeK!CfFdA2V?j5o zKvuJ^x1reIW}-y}TRWAfFgNsqkhu9&(ZWoI?*7or?&I*Cuy1iEKz6ZZbwxmG{U9E` zooK}y7~G7ulfNQ`0t}d?@!Y{Jr&Q(>8@E;!2MujuuE&4T{*KZ*2>)~%jlCmt=7g}7 zu^K&8N^`0g#IpX1o?Zvy{M7p&VuI1f)Q8=auo7-2`6MCd0Gs`wV#mqDZvW4Z|$82#Gu+_&iCg za&Xa#miD#V@vEJv>|uLOW)#s(`^GEJe3p5NRH{r~+f6h5J-?#lSJrtJZF=-HF&O@A zbk}|o-Bkp!dq-4I@aO5k;Ikv#AKA|dXBKVt)mX}M*q-lHr3Z_#lT3zu&qh}n8_R(= z283Xe5)YKi^VS&5+Qv9obf^;Fp(fqTG*W`{SmG~MK{N)BWzLvKoQVD;*x8WHL247L;8>kX2C}C%8#KZF+;8^(_XXd1 z_34Ly`d&3(Rc8T|RdCFgt;s;`&j)P<|IW-)4&AE`R-Jh#;6LnJM9L#2$fYJ|b>A05 zf--+`t5iGJ>$i7o)u90`7NM{2Y6ImZ6B+OwcBY~pV*8|hBQBXt3$EM9F`=1%Zc2H? z9nbk`4jWK~$6c%q&7UA9TQ;_p=ps~hERuK!M{3KOZ^-FbVh5#{z1mIGZk`{!7v(r- z34mqyeawR;t*9*0`iKFYjGzXb54HsS)+cEBaKVKw3y3t~R1~oT7zR;kiCEfrp*U#q!Cr<0M29R%iK*7T=d{*4UzoeD zI$^vi@Eaooi%1&qmahSP`wNj1UiJl(b6IzwI7Zq6P7``)Q!e)UxyE5$%f^6~ zTfr~r4M|A{1S7^uXVnG4DJtwkv5^7tsV&odZjg+{{=?9vI*c7=qu+qlz91b2Ft|dH zojyLkn6cjovfU$o^OW^iSlrj`c5s=M=3~QCOE#l<^3F-A;^N!zz;F_=(}22MkVTR z;Xg+xq1`1A1gRW(z`Nl5dHg)hpEfj(!a|>qn$_#tAn_@>K@tw0NMxL0RYEy8OVc50 ztGO%3=X#8;I}$Lg-61_$W7JuiY$+bKIfKSVFACwG=F4UvNG{ zEef2>TBfJTZ28_00z&4jffK|J_T4kC8#Z@~9aYDf?+JsfKHT7-l2U4Scn-ZZzP0r- zajr1nkTm<}kigSC`fjBuQC=#<68Pj{9rX*s{)w~;cyjSL3H}@x%a93E&or5pYWpMi zkDdKNp-}4=gzwSLpS4&BBzGIS+u=5^4uTADU0evjrCqpZ`qGEFMrtU@u z9d*O+v921R?R<#MhBxS3I~}xemM^y;I{{!5<;xszIo7*VOfsnf4A?tFLCFbJQx7OaqTl=_WS~sD3Iz0WdR4#=}iKW{(+@r6%zzfqi#@fhu75=a>?U4DgndpX z-N^!^Oz5Xs;m16WPs%CzsaKi9mE=pdr@?_If~Dc2g8vVrR+txXSMJ6~YZTUb-uqjZ z-k^Y9KytClt;>Uqzh*row^IH^w9+e_k+txmI|%33<*01;fq;L`*J97vh^MHLIw;6N zEd9v7t(Z^}->UaIPlGi0$;xyM7%)?T}!)iE^+COga5c?vIM&Jq{%7d+}uc+{n8 zQhM+cibNx*KH|*4l&CSfYa#Oby`w&K)UNY7!DGZaCGwP_)fO#B2{A_}6j4y2RYbb+ zL>gEi;vLV@@47ovHV^$*&I*V-6UW`rwH?bRiE{DqF)VHEma+s;pbvO%#`<_9))fTv zXC{7G#FD_E$}@l8ro2k%<^-im0s1F+E7?U-t#O^R>X9S75Rg~IXd4jN$lvCU5S2T^ zwdzmbzxb1M)RUF0LeErdwC?B!#r4fjX6Wl9S_#YC1BlH3)V03Bkl!E+*9PCu(#M;| zTHI*KK!BHP6+KZ$`blPjOjF#Jf#08CgIwm0rm43+K0Qup$ud40>r}Af%O*UNm-O}wt>wl)4Utk203kpZuIn%WPQJb5CR-@lXj=u zEe$Li{vYpv1Z0JJskPJL?IsJf{Yd($>q<57Eye) z3kUAL;Pj{XODeI&*ox;>nJBDQlB-2z`kj;o(s`<-!Hw1Sb_@VmT4{WUIlt9}K zNF*fcP?^T9TV;3uDgw67nHNB@_FbCnb56dHyLM?tOI$=}Ri%(+2PS+Lg}yJ1|NIhE z37aOq#p(T2@GM1&cuk|MlVU_a)ZrRV-Jw#}S)A(P3iL*kuE@&+Rw-q12Akl+`t~QTHLREHeCu~e#HIX+E{0~jF@!>l#Y46NY6VRe)(kbuUD!& zIY5RSMUj$6`@(1cP$k57DEH|5v5&xTWGcT0#msA$IAuh z(Mmw;0h3ThQ9AOJgtoX8fEdb z($lP{rr^k)fNn^vub0rylDe4AcMw&dOOEDyQu^uHe3m&-{@j+ z#r}RE`#K%K!Z07zL8G}~@jS@L!4n!ZX^WaCU^z=iz#f$ShAjL-2x+}Q4tQPKz>{^r zp;@1bMX9@8#0+BCB zX!XiKRdE3x>l^ehtKJ!z(dJkg$hk$nfuXBZ!n!v;>`bcEn~oHK?TMy7(ecs|8yRm6 zk?ALl_~B3A!62-NrX0@Gsf^?D;0Bs!RaVYVP-633-%UPDD|qwXM^aBp%F6m5Q{F5E z|LRR4%+;61vnCjS=2rYQe4Uku6VvGB$}1SbZ3yS<2JP|mzW=U_^)u{E)N=8W@)eyp#U3Gqab zMGj8D4eLwjN=Fp33oN2%ZB*KJ2L-zpod8il_uCRbt|G!y9X0t^3u*J#vxRQA1;s>S z+9ulKk~dv^Vus-~G!K%5C{r$bn9L|SVqXw7^J{B8K7Y(sFX`fp? zj6{#?!=*e*mGe#;*MHM%Ucii@RA>48Mjx=$NZM##x^LE#vcY(x%Xu~uqf@4e+wH2HAdz^Z3~)= z_2IB|x=d{obd^s#6st$P=ueVeL8chREeY6{->)c z#j5w~0lgFYifnRq2RTOkVh~l27uGvFT-s0C1&EHY7(%l{Z(&}nl-dqv-$XZc~C&59~>a4Q0qpa?N0={zh-=e z-CP*b3hT7}Xq7)v2O*9^n20gdSvaG+g6G@l+>mn%w%{yDcYak>q#I27@t=C^YHnr^ zb>ZPrgqio2C1WF1=*T2rpBtLZME_42$I^V@9a`--)6Wddd>BdH4I_p9vf822?${a% zTa2%|ixm((7pT$$(E0sKdgKy6@9W-O1wi1i=(w<`P@$J`B1yynfPN>O02@3*|1+7-8OuzC}GOxCfGWq14)isnO)9?<{;q014a9f$>j$J-Sw zt95Z28l>nw9MJpKWQ_M$oTfzK=w=v`cB^d(UQYKCEWzJp^5~nXZrpltOcXH^l_W$ zI|W`=J(~?N^o2y3_4wsziIrY$le%H&A|Cd6g#rrAKeu;DGB_%s8h@iYt_m+{zlF*@ z*z|z6P9gie+69m8yvUvuB%kWmYCiIWHWD$}ehUGL4i_2YEDG__)^J;-m&QuejQWM> zB6Ra^0c8)2B3N{AjlY|hVx*Mcv%b~C_vA;B(=f`)jAcC$U8fQG6iiaBG&MZfNmKKN zP%M7K5amLVrk&!Bo{R;0m>vQmFrQj!jB>W;6OZ=#APYd>Y=ay*y^;2?zG>ny=TLg= ze){(5{fQl-=STqOMgErX8(;|Nzn^2(4oMRXULuhYU zWJ*@70@t@1_6}Z!ivF5PZAdEMD{UXro=-siXh&^+;a9BkdX!NfVGYDgj%BESkONWd zz}JTO-U?->g6GNazxSUte4y38Fsm9x6N10DK!7ASri5GM@Q&yl)5C3pI4{yC5P{^= z_4_CMI3z%e7Q$qi4uWis_IMyUK9b_s!R1&@Yrc#gH_}usR!vS-&yfSq3(K-*B#OCE zv2>}m{b-d%vC*HPnbO4{;CwL27^cv@<|JMST9u)$rlZ{wlMbge5 zyB%gtrg+7}C!?H(`~g4W_|&gVuC^>(n|$8|A&+>7X}#2o6^0zR5g;~;yhCN?OG!)V z(0T^yl>VAMLbM)lsy|zQ-}~4s;)DY@f9nOQMw`B|?Bov$9mqbr4Qq^gDM8Aqsef?) zhkm~<@BcoQbRVMJUNw8ptIO@2s+W0m`mc#(t5pb*!7s2tjTuKpVmox*G9i|)o85aR z7oj3(2=x>0r>t>T#BX~oB%-P|VyR13t709{>KBRHR!1d)HUjT|sm(57Ge725OeJE` z$K;AaG}6K&&^0^IKm%!hGvC-RP|1P5vug>q5W{@ir^9IsZMi2Zt%SiJXzSFAz#rFI)LRrd)zp_tVhk3Pk8DX5h z&tzkn>gl^eQmgIT!*I)j05N>!Q)0=Q)SCu84vSl6&p%n4lEHDUz|13Fb9EZ@I@Y#= zMjlY|nilL50YC=Xkc$fmRQ}6u^zw5-QnZ4wT2hZJa%J`Q@$>y87Nk91Z&`gy*-1)) z*u1#`WA=WY@*BtS%B%JFaEj{Z-Kwg$^WvV@pO!<-nK4=l zc@kvFWJp+0L4;AuI(SzR-~xMgt1P|H7+CPW{nL)SXhR}?KX!0(AtEmw8gx@w=aK?` zp6rW4vG~`+i0g^6^uzS3TzkP?M^OSzd21n+}5SM#{UyQvCHs+Qd zyZ5_$27qz2ni6362RD-1K8xF6im*2m@@1Q z1r|PJWbQ*pde1JlmAmJ6DobHN;>l)%zQ4Y)krK9C?dLo(#Rv=iTPa@a>a<4~q&lpT zu$IYe2}&8q1Y8gn18^G7DS$!C-_zflTFYWmAYmsC{v!U-Lqu6Xc2u|#$^3o;u~}st zTOm`&hpKSbR?`UG*o8V12A;Yk6VXZlCSn-b$C@8ZkC@&PQL(1uZIpK3s2kgK9N*jO z_H7kx#XUcIq51{WxsgS6aUxS+?gRJQk;l%TY78Glga0E-hCO{`HECNEiDrf@dhI^2 za6RoRs-O^A<^trcuYwyFIaMCO+rA%1`hLvb)tmQdn?wtkQH$n%Xl;}p42YTy-2b))&JW9mzukt!D#CcP^9;)bccFe z#YPe1DGQHOh_=)4JDu#!IZXh{$M~yA*F^h^#|N^UydgO#04MPLXM0i{eCYRyG`$FS>wqXwB`GY)@%ix@y6-$+Jf?FVqG0Oo9b_RS2>ADQ?mxT zgy|T-e)VvDc=8rOp@u=ub1b%a?D5|F8oadE#-Qf!I;?NYb2X(rUM&D6#!pd!LsBFBAavS z!!ZV!w5oWxItz8ujq@ryO7POy_jV(Ki(q>@f?WkLC;k?v#=>6$&T_Vg$nP`^y~ZL?sxWU^WtW0(X5v}< zLol_QVWxP{9WY@)(!%8sbOM=g-eLRXIDlg|2@+roC6;1$x|c=IqCAtAh$Q~^h>gF0 zJ}@_6>Emn6X}kgmEIpna^GLyR(LhLB4%@|&j##%5W{3vd6wtFYq-^p!9b3KL8fsZZ z69JFkd)_8ki5|rU#_H!7edCHYmn`&o5yVnKa5pKJ@lRCL7fVh8HhOUF|JU4CKgIPd zZ=c021PH;M;1&V|m%!q#!QGu;!3n`V3GTt&CAb9$?(V_eorU*&?yb6YtM2y?cu&>N z54%VDbno;`KRwfrD-f;#w9%Tl_@&1k@9uaOyPD5QA)N^ijiz%{L0BDc z=sQEVU8W8FAY2(XD;eorz*s}-=#gCW74mSv5{~5U$v^%*kD#%Ar~E?*o9kss!C;?H zI^Xd@hwkl%{B~qlY0E0@cNn|0%Q%GzJ=tW_8ws`Y#IL#r zTfwt3hy!yqnPnhV!xDy=XR#2y3PRjXa|5a#(u&t*ncz?God+M9H3*)s>Lnim^f1Si}WLoy5@Ye5BnQWnZe(Ynh& zrdMgDVu>`PrXZ>}iUEr+4Yv>I9si2zG>s+XV_rS$yd+~~tN)6$`pkfitq-3f}mwMm1413!qTqsKh1_d3$X(HnPp5J8#}5 zQ)P#(Xm21nrsstRR1>K`epW$?=OYx6+=32QqEg2BXhFQ&X5q8!TEFoyLzW*xUo0+T zJYCZZdUC%~(iElTHf@!>=%u8=9xf|9mqB`K_M0XL29$zZTpS+~hbEMCHTCEro4BXw zii-jw6=X>b!T1*YT<>#O;8!BwXE?$c+FX+D$BH)O10CgJSOHVvD+@6Y!(%>XFPX{@ zu3KEEFB1@Q-&7FKSGJVBpUJ#2wkJlabR+L2(6z*w+hDr%XS-d=DnYtgrhWu#y$Z`OlBBy%WODC|VQvSI)d_@e+ucuA z8o;xo;8cyYYju5j0H}Vou-`qTU8;|dG$p-hP>drYHcHK^7s7>VsPN1IlKoUB}vSu z7ji3^PiL_nuxEY`ew?@l^OEdAP*nFfXD6$>WmI`M$q#~Osf!`y_nE}PvSHAKLB znEZ+#8_QzwG3q_e+ljU`uoU2yzToLCT84@AZ2`gYBqNd10HDH$Sd9w-Zk}$xx0SnN zj%POt(V63~zZAZ4a4-$c>k+OKe(K7rfv;V|G2H%&{Icy1@7A_G-if^=1tX68VAZT^m{GcPiNId<}D6vMlbT@H+d#s70?A2kv39DqF%sY6I zGF(Pds})Qb&Z^zv4a`j6HVP+1Ql`P zUh3}jS0TsjcvD~=Q7THJf~?k*Tg~b2+&V3c3c7xZ&4ixaLIk(VpHzw4>Is&9^n}PN z8NCVWXAn_QJaqgMTVJm)Sn17FKy&_GjXB)tLF)5I!UXXE!ii(PXp?^sX+U$N}z8!>)e|<0;BlX<>{l||??{n!Z53p-?c6L5fp@X*6 zIrXW$X;T3bCq{0Kq%GOajV3yOUt3*+c};Ku8|jY{wpT6=)~3BIR$k{iqqnb{B2U3d zIdJa&-mHCP7vI>(HO)S0%Veb7cVOpW3cuSk3KI@1kv4!5F$@zGh>guJFt=!9=J~SA z@pN1fb#nT$PL6oS*oWJqx>?M1i)%&zykqv`^=%>Gw0<44l1#8>8tLP2h8m zk}%^U`_;|Q|C>;@^>w_y6BdOt+HHfdLmSTal|jPCJ;*~{=y7PcjL(|_;J|&ofg2Es zIli0_ST9B-RP&T~7nFK^{_V$TyT{BF0=qv9T$QtpyEeayR#@sMY2o zxysleTk0)qqbw`q&%~SC+bfRUFScjX($a){?sfC4R>v0>7T((}ARr6xF-?Achaikh z=a$j#z0}GTYOJiP=FLa}RrCDCz{Ev(#!p)C18=Y6Q1N}^jol}FUuWf`NRDFtz($A^ zipz9D+6N?@5vqA1jhV*J8>{2bo;Y%X81b~e7cyQ1_BNatfOYM{!BKUH!*(DGUEHn zAS_&RWZhTl?;adQ8&b4^bP~a9mFeGL?-p+fLrEtBY%bs>Cr|wDL~oQk{db;g-FLny ztA`MEw0oK3;7}mEhy{#(U|k17=>^>Asm}LRpa`YeSa=_>!n5Oz^%xBqDndmvvI2xe zw(hib!sEr2(dX1q=26%w-+Vhnz!62EOy=EzIa%17({extHBl~LPejLQjm{R?H>out zP$__vN<8F`zp^5tKqi@r%fbZvjDV?qM3;%{s#j8^uu+?^e>QWGV#94koCc76@($lZ zX9OP*>0}U@q^q_er9MP`1AK|b{`!k zJz`-kS8;z)V4gLJbs32>S{`qcAk+6+C07vc%2?R_8M&ySAgjRQD%|kgeLpY0SECa?;;98-EB zGQrSt%3p)X^Mj$8cc=yfeHtK9=!jrLr^(y6w+>M-?1esLzm-YlB~x#(T5h%kn%u{$ zNfW%}d4nW3Y}qhu3Lx~X>dLLByQa=6!AJPPCKoAZXUPGxQVj9&@p*B@rKKbSpDTNe zu|-YI&53+`Q}StOX-87IM~?=%=tUJ8C>tqw?JM^a2lqL zqO7c3<-9YpHJG@wxjB@~vGX&8EQQDE@0Ee@*Vwc-Y{C~8f9HgQXx^*zhIXH-o=nhK&sP8SEJh4xAoUVb z*<^4hE6rlqo|r!8(CCn{8r)N-Sms>JL$;)izE)6UOK3$h`Uly66P5r(knl(h3U17O zE`(@S3W+ex!xW?#f<&~wxy`Z#Zgl)yJak$r&)KsrM~MAKm00!;9*dP*<%P|vdlO?w z@f$w2O2JsOT?kGdO4=!{cDIpGpTIItwa6w*w|&ZtNxy#%A7K>9Gq;kbLYyA1+I9Qzp%d)r z6~bhkma$KM#%gM6rnz?OZQ%4OH#c`~PP2jSqYN17@V<|VCgR%f!8gDarOy+3IIQXD z5P_w!|Lf2waXsJc|7Y^OJ)GM535Fs1DX+lr(k5M@RnL>5Z{zLNQQ71fiLdfF-2*J# z0ncM@v=-9Z?{c{iJ0tiAK!>g3tM3>elskCwEeZ{bOw}nzd_(HL(OQO9SlM|gz;*1R zOyVOmuUBo$eEEJ-3YW5?km9VnQZt4pdi^c$YT@P-`E;+IDSh#0izd9|{V$BYab}Np zL=k^+Dyg`5KxtmOdR1whz3U9)%6-Ux1WWX{+v|Z`2&-)6-u}sxSnsqV+gNFRh#0@# zUH5~8AjZw`+s+ka)T}Z6aRwF@1Jh(T+iLGjJH*PrAALQNfiW5tokt`<0G4%x@ygfS z!y;#Xg+H|A#16IU$%Ofn=G%$69f$~M-g{kDH*m|%?}yTMFMU9&U!+~vN9!HpgD3>k zi4ua%E~N=u`?WB5NXJ4q`M7jdGhe>h(9W(U|H9&C)=#;IhJX)F0;VIg2#u>$(iv7{ z;BpK1ynC&>+P1)9v-RT#7c~lTeimhEI^GQCbIr=hxOhG54p;lsCGKWv82K9kfyd4M zAFLqNk$`2DCP1GD+O(^?+r-#-sqGOYu}x$%IG(M@bTS3GsHdl=0cO0x@YhVVa!G~) zd2!k;pU*&|&VT0PYioww1rO^4ft&j0=N#R~p}(xFN^eHIia&Dx9n9P5wQmu$(u*(1 zAD2+u9{g65E-|oWHf``Bv`wo-v;>o>M*l=ztVmNm^@WaV`|$OMPsZP=lla|M}c?G3Km;kN0yVs{h7Yd+H{liA4nt zmCaZuOq`}zlT&d@c^ve2|k|( z>of8aA=1}Cq7Th_S_NRv>{g6f%{!%oNy^7**a6hcKOQx#{?mCvUXniz8a!pkJVu6v zY1Nny|8m;6{4P_p(HA2Lg>pLBKdd^fw)wywZX71_hsSdy@mX~>m6T5V=`sm|z(BXv zX`}b{_OoKuJ)0rccgc_fy;l6U>sB|i;=0rL=p!bb(-Dm*VQ`B-x(O*>C^}*-%5Fmc@ga-Ach# zdR`ta*~oMzMSB=12N)!9OR`J6-Nj zG0VRe95B+Fv7;tqPc%5o$ron4^|-oE;Vk0%IxI3WxLJAm{T1J9r(6!gUhQw;+hykU z2BeX2XNr>3a#$7jRh`^7KYFL6CQZd>^n868fnAwyaH2Go&ht~~F-vGuS7Hu75w63T zNsmtaEn;gPsKOeHQScMfV@$|tIkuDOC-iAk3J~Umm&u_oUgGMh-2twMh8HM zK)cGgCz_OhU|<001<~bJq5()RtmjMH$(a$ z0Juf8z6(oGRzz+>$Yq7q5d91b_YPx>z|vlA-uJ`I7#?4Qz47NhabH0GJfE2YUq~-{ z@05HOUpKYf#T_w=EXANm)34Z|1q|Ju;CX~;Br>O6CS}Hb8tL7BVNlNBa);(0sm5i~ zn#y}Y_pFVaRf?c8pj<|Yc9Hke`dUUZqe?Y1i;Q)M^VN1{umUM?Qu5X?6e&xm;Xd$Sve{m?r7Z8}LrB<# zkLPUbRl+3O!(W`bzq78Qq0!5=a9%hSo-6gMJJITtHjp*4Mz3vA_k#m_YYgK!iMt7ZTpKU*V$>Be%n zr-N~`lyG9!1bp@EXTO|{Vs+%&y=}I@F*X_#15$s?WhG^bAd#5$?bUoE+!DIhDPVFr%&ZRx9_p)W(DO&Rw&N~djH_21S|hCmv}=vt4knfYk2)#9CXF`#^{4w!oFNZ^ zcqqWcdf(89g-w11DnJqc=%{sMLY(qJ?3n%FrZ3%|t>7qC5{)urjsS(?=2xBKM?}Lh z&BaBq%z$K4{Pz<9b^M0$;U4m^3dAw17Q&7O11W|)KzrJ7TE@n^<%y>7FV5q(c*L2$ z?CiZ6NyG6x>qo(gJkvD|nGZ84tpOjTq6jZsr{>w%Htm>NKQC-}=7Kt>HV;uVGmuVl z-`1U=QS1>QY|7UgBc%nr$Zc(Ddw1(7J^A$iR7o*BpNm*+6zDlp4Q)wX3+b@X(RX~R z>cyaN?K2a3aVHL2uFp>+09wPcjxUc>szp)P z=$r*L1T8q*D=pK7f%fux=n2OPg1qd!#e<9TMxaT1iV3$~HjFs5br8e-swWP^OuA83o-4$xVfILw4!c5%W_N3l`E2fpd%>HL@8EolZ~eSMDv zgt4}eei{^(6j~B{YDG|ko3C`5o#K2nOSKHn)FvZ`IC1bh7LaY*GXt?W-Xm_)YU?eS z7->nKVkXB9Ir!kV|!Q$7RgVuL@+CRf4{mN!0UAo9^ zJ?4G9I~phJlzyq@620sS+0aRot_{9+ZOzEQ%+b6ewjZD6viLrwh&Nv@vx;(~8-1j| zRIX#fgqS&4b%fS@w-OPB>wJ(wH{`eI8Sfb*^d#<(9j9WiXIOG34BNrO507=OJ!W$E zqCQ~Ly)EcChx4G7-gBxO_{qUl8e*kk*z;XcI}U#UTajma@iASD-m3j|#~s|fR}!j7 z`WTRVR1+u>dM=7;c+k?TjZc;HTTfL^6h)9I{(IvC3!TDR|BG@HOFtq{k7?w3VR@~e z+BLb~NYhftkbZu2ti<4gkVAJoyjh8W;O92G68@nBxKG5q{kuMtfVOy2Zk$B=c@52L zi7(HOUXJ}v2jdOJMD0nSuc6i{xAH&uvJP9-3kh^Q#ug8SDMl^YOR5~cMZSH?u#OXq4yWsFF1{O{dU>41h_ggYP zQ?o%B%l~?PF9{hHJPbPPcVPlOwfEqhe1jkRDy%oWswS1rzR2w%4qran!DAX1;ndMP z!jA>fFE-eDN3!RRJ0n0eRN3hXnRqD1b~Ei*@!cfJimFKHZstBQMa1IrDJ>W;995Aw>b+WwH`YZAl7H-{EnZjM*gHvueujwO^xxX>pDci!bX?S_!Hzv%_9%xMRgPgYe_ zY5yD$1VUX*P$)ALn^{Z@SPo_3xK$p&RJP<=5{AtOPYITJhj?raK?F{xu{kx`v7aptRs9$44?Ikiqu|;~@7IGFV zy!~o5P|nC};4#~;az>w8tl0lGK0vwo1##C~;4kLo4)%SwUiLH$Dc0WF;=KcZ^#R4K zakj;E#ps!D)`3`(9yh~Gi$~mroAKFE!U`GKMU_$54@OxaYMT!(+?0C4pxj*QukX(N zDvZ`OvU|Deu`#g6kL8_xeNd zbnD`{_;^CLwZ#7t>)#@RDuc==TuB&ou>2p_{#%ZJKf9mU2hxBrgAx|HEBP~yk%gtK ztPC;s`*#&x-NX8!M&})1b7#j7b~StdA)@Dd;=hi}%nEX=)ixLyNz8iZ9X8z1F@U1D7YO&u4w)?hLBR%IszXaiO6o07&+n#_OE# z`v{T-=YS;bf}WQkn2K%)!l)n#yU)Y5x=a)a?>kyr^UK}wjozq(i9Fc~{nqkl6|TIg ztIVL#&?lIj5%;!FnSHUFLYzubQ4u^6#$27vEEuQ9t0c1Op9xy>dNoh1!X~c>M=r(@JvzaZwS@Ajnp_UTxTpXNW3_=_Ng592&?tcuyrYd6x zo(sx^ii&zK+ztltsIO?jS8igltGZDdWi;z`Z+l{vFOz6*4q;LgE0}aR`qYD#DRZFHOa{WqR@PN3q0TB;=owgKbQuT z9)ut;*D}10$H@sm?dQu!L`8vkA*(-_qdjQ6oseZ?$kVR3y;~0<_uR3b=ahj$XT|;p zj6^_2_B-prcVF=+&^HH@^%vX25fKp=E}&N(2?`D-@(GkF0u|;kQ>yj+xFa0(gC{}Q zJfZW%#D<2J%lgNf$a+S;@<5|i49IF)~(QEU#3weW>{>9E{`;)90Ip_jB=6{NXSX)~I-Va9&CcTmK z&F&7~-YppcAVi0ZNkY%aC?hX#2hx-)E05>Pr{05ka`1wW20pL-RrWy&Yks#w&1Sc< zi~!)1v-9NSDsXbgadw73Ga JT+}e&{{ceV=A!@r literal 0 HcmV?d00001 diff --git a/demo/documented/navier-stokes/python/demo_navier-stokes.py b/demo/documented/navier-stokes/python/demo_navier-stokes.py new file mode 100644 index 0000000..f6f7749 --- /dev/null +++ b/demo/documented/navier-stokes/python/demo_navier-stokes.py @@ -0,0 +1,141 @@ +"""This demo program solves the incompressible Navier-Stokes equations +on an L-shaped domain using Chorin's splitting method.""" + +# Copyright (C) 2010-2011 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Mikael Mortensen 2011 +# +# First added: 2010-08-30 +# Last changed: 2011-06-30 + +# Begin demo + +from dolfin import * + +# Print log messages only from the root process in parallel +parameters["std_out_all_processes"] = False; + +# Load mesh from file +mesh = Mesh("../lshape.xml.gz") + +# Define function spaces (P2-P1) +V = VectorFunctionSpace(mesh, "Lagrange", 2) +Q = FunctionSpace(mesh, "Lagrange", 1) + +# Define trial and test functions +u = TrialFunction(V) +p = TrialFunction(Q) +v = TestFunction(V) +q = TestFunction(Q) + +# Set parameter values +dt = 0.01 +T = 3 +nu = 0.01 + +# Define time-dependent pressure boundary condition +p_in = Expression("sin(3.0*t)", t=0.0) + +# Define boundary conditions +noslip = DirichletBC(V, (0, 0), + "on_boundary && \ + (x[0] < DOLFIN_EPS | x[1] < DOLFIN_EPS | \ + (x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))") +inflow = DirichletBC(Q, p_in, "x[1] > 1.0 - DOLFIN_EPS") +outflow = DirichletBC(Q, 0, "x[0] > 1.0 - DOLFIN_EPS") +bcu = [noslip] +bcp = [inflow, outflow] + +# Create functions +u0 = Function(V) +u1 = Function(V) +p1 = Function(Q) + +# Define coefficients +k = Constant(dt) +f = Constant((0, 0)) + +# Tentative velocity step +F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \ + nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx +a1 = lhs(F1) +L1 = rhs(F1) + +# Pressure update +a2 = inner(grad(p), grad(q))*dx +L2 = -(1/k)*div(u1)*q*dx + +# Velocity update +a3 = inner(u, v)*dx +L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx + +# Assemble matrices +A1 = assemble(a1) +A2 = assemble(a2) +A3 = assemble(a3) + +# Use amg preconditioner if available +prec = "amg" if has_krylov_solver_preconditioner("amg") else "default" + +# Create files for storing solution +ufile = File("results/velocity.pvd") +pfile = File("results/pressure.pvd") + +# Time-stepping +t = dt +while t < T + DOLFIN_EPS: + + # Update pressure boundary condition + p_in.t = t + + # Compute tentative velocity step + begin("Computing tentative velocity") + b1 = assemble(L1) + [bc.apply(A1, b1) for bc in bcu] + solve(A1, u1.vector(), b1, "gmres", "default") + end() + + # Pressure correction + begin("Computing pressure correction") + b2 = assemble(L2) + [bc.apply(A2, b2) for bc in bcp] + solve(A2, p1.vector(), b2, "cg", prec) + end() + + # Velocity correction + begin("Computing velocity correction") + b3 = assemble(L3) + [bc.apply(A3, b3) for bc in bcu] + solve(A3, u1.vector(), b3, "gmres", "default") + end() + + # Plot solution + plot(p1, title="Pressure", rescale=True) + plot(u1, title="Velocity", rescale=True) + + # Save to file + ufile << u1 + pfile << p1 + + # Move to next time step + u0.assign(u1) + t += dt + print "t =", t + +# Hold plot +interactive() diff --git a/demo/documented/navier-stokes/python/documentation.rst b/demo/documented/navier-stokes/python/documentation.rst new file mode 100644 index 0000000..623fdd5 --- /dev/null +++ b/demo/documented/navier-stokes/python/documentation.rst @@ -0,0 +1,240 @@ +.. Documentation for the incompressible Navier-Stokes demo from DOLFIN. + +.. _demo_pde_navier_stokes_python_documentation: + +Incompressible Navier-Stokes equations +====================================== + +This demo is implemented in a single Python file, +:download:`demo_navier-stokes.py`, which contains both the variational +forms and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +This demo is implemented in the :download:`demo_navier-stokes.py` file. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +For the parallel case, we turn off log messages from processes other than +the the root process to avoid excessive output: + +.. code-block:: python + + # Print log messages only from the root process in parallel + parameters["std_out_all_processes"] = False; + +We then load the mesh for the L-shaped domain from file: + +.. code-block:: python + + # Load mesh from file + mesh = Mesh("../lshape.xml.gz") + +We next define a pair of function spaces :math:`V` and :math:`Q` for +the velocity and pressure, and trial and test functions on these +spaces: + +.. code-block:: python + + # Define function spaces (P2-P1) + V = VectorFunctionSpace(mesh, "Lagrange", 2) + Q = FunctionSpace(mesh, "Lagrange", 1) + + # Define trial and test functions + u = TrialFunction(V) + p = TrialFunction(Q) + v = TestFunction(V) + q = TestFunction(Q) + +The time step, the length of the time interval, and the kinematic +viscosity are defined by: + +.. code-block:: python + + # Set parameter values + dt = 0.01 + T = 3 + nu = 0.01 + +The time-dependent pressure boundary condition can be defined using +the :py:class:`Expression ` +class: + +.. code-block:: python + + # Define time-dependent pressure boundary condition + p_in = Expression("sin(3.0*t)", t=0.0) + +Note that the variable ``t`` is not automatically updated during +time-stepping, so we must remember to manually update the value of the +current time in each time step. + +We may now define the boundary conditions for the velocity and +pressure. We define one no-slip boundary condition for the velocity +and a pair of boundary conditions for the pressure at the inflow and +outflow boundaries: + +.. code-block:: python + + # Define boundary conditions + noslip = DirichletBC(V, (0, 0), + "on_boundary && \ + (x[0] < DOLFIN_EPS | x[1] < DOLFIN_EPS | \ + (x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))") + inflow = DirichletBC(Q, p_in, "x[1] > 1.0 - DOLFIN_EPS") + outflow = DirichletBC(Q, 0, "x[0] > 1.0 - DOLFIN_EPS") + bcu = [noslip] + bcp = [inflow, outflow] + + +We collect the boundary conditions in the two lists ``bcu`` and +``bcp`` so that we may easily iterate over them below when we apply +the boundary conditions. This makes it easy to add new boundary +conditions or use this demo program to solve the Navier-Stokes +equations on other geometries. + +We next define the functions and the coefficients that will be used +below: + +.. code-block:: python + + # Create functions + u0 = Function(V) + u1 = Function(V) + p1 = Function(Q) + + # Define coefficients + k = Constant(dt) + f = Constant((0, 0)) + +Note that one may use the time step ``dt`` directly in the +form. However, by using the :py:class:`Constant +` class, we may freely change the +size of the time step without triggering regeneration of code. + +The next step is now to define the variational problems for the three +steps of Chorin's method. We do this by defining a pair of bilinear +and linear forms for each step: + +.. code-block:: python + + # Tentative velocity step + F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \ + nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx + a1 = lhs(F1) + L1 = rhs(F1) + + # Pressure update + a2 = inner(grad(p), grad(q))*dx + L2 = -(1/k)*div(u1)*q*dx + + # Velocity update + a3 = inner(u, v)*dx + L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx + +Since the bilinear forms do not depend on any coefficients that change +during time-stepping, the corresponding matrices remain constant. We +may therefore assemble these before the time-stepping begins: + +.. code-block:: python + + # Assemble matrices + A1 = assemble(a1) + A2 = assemble(a2) + A3 = assemble(a3) + + # Use amg preconditioner if available + prec = "amg" if has_krylov_solver_preconditioner("amg") else "default" + +During time-stepping, we will store the solution in VTK format +(readable by MayaVi and Paraview). We therefore create a pair of files +that can be used to store the solution. Specifying the ``.pvd`` suffix +signals that the solution should be stored in VTK format: + +.. code-block:: python + + # Create files for storing solution + ufile = File("results/velocity.pvd") + pfile = File("results/pressure.pvd") + +The time-stepping loop is now implemented as follows: + +.. code-block:: python + + # Time-stepping + t = dt + while t < T + DOLFIN_EPS: + + # Update pressure boundary condition + p_in.t = t + +We remember to update the current time for the time-dependent pressure +boundary value. + +For each of the three steps of Chorin's method, we assemble the +right-hand side, apply boundary conditions and solve a linear +system. Note the different use of preconditioners. Incomplete LU +factorization is used for the computation of the tentative velocity +and the velocity update, while algebraic multigrid is used for the +pressure equation if available: + +.. code-block:: python + + # Compute tentative velocity step + begin("Computing tentative velocity") + b1 = assemble(L1) + [bc.apply(A1, b1) for bc in bcu] + solve(A1, u1.vector(), b1, "gmres", "default") + end() + + # Pressure correction + begin("Computing pressure correction") + b2 = assemble(L2) + [bc.apply(A2, b2) for bc in bcp] + solve(A2, p1.vector(), b2, "cg", prec) + end() + + # Velocity correction + begin("Computing velocity correction") + b3 = assemble(L3) + [bc.apply(A3, b3) for bc in bcu] + solve(A3, u1.vector(), b3, "gmres", "default") + end() + +Note the use of ``begin`` and ``end``; these improve the readability +of the output from the program by adding indentation to diagnostic +messages. + +At the end of the time-stepping loop, we plot the solution, store the +solution to file, and update values for the next time step: + +.. code-block:: python + + # Plot solution + plot(p1, title="Pressure", rescale=True) + plot(u1, title="Velocity", rescale=True) + + # Save to file + ufile << u1 + pfile << p1 + + # Move to next time step + u0.assign(u1) + t += dt + +Finally, we call the ``interactive`` function to signal that the plot +window should be kept open and allow us to interact with (zoom, +rotate) the solution. + +Complete code +------------- + +.. literalinclude:: demo_navier-stokes.py + :start-after: # Begin demo diff --git a/demo/documented/neumann-poisson/common.txt b/demo/documented/neumann-poisson/common.txt new file mode 100644 index 0000000..810ee6b --- /dev/null +++ b/demo/documented/neumann-poisson/common.txt @@ -0,0 +1,99 @@ +This demo illustrates how to: + +* Solve a linear partial differential equation with Neumann boundary conditions +* Use mixed finite element spaces + +The solution for :math:`u` in this demo will look as follows: + +.. image:: ../neumann-poisson_u.png + :scale: 75 % + +Equation and problem definition: +-------------------------------------- + + +The Poisson equation is the canonical elliptic partial differential +equation. For a domain :math:`\Omega \subset \mathbb{R}^n` with +boundary :math:`\partial \Omega`, the Poisson equation with particular +boundary conditions reads: + +.. math:: + + - \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\ + \nabla u \cdot n &= g \quad {\rm on} \ \partial \Omega. + +Here, :math:`f` and :math:`g` are input data and :math:`n` denotes the +outward directed boundary normal. Since only Neumann conditions are +applied, :math:`u` is only determined up to a constant :math:`c` by +the above equations. An additional constraint is thus required, for +instance: + +.. math:: + + \int_{\Omega} u \, {\rm d} x = 0. + +This can be accomplished by introducing the constant :math:`c` as an +additional unknown (to be sought in :math:`\mathbb{R}`) and the above +constraint expressed via a Lagrange multiplier. + +We further note that a necessary condition for the existence of a +solution to the Neumann problem is that the right-hand side :math:`f` +satisfies + +.. math:: + + \int_{\Omega} f \, {\rm d} x = - \int_{\partial\Omega} g \, {\rm d} s. + +This can be seen by multiplying by :math:`1` and integrating by +parts: + +.. math:: + + \int_{\Omega} f \, {\rm d} x = - \int_{\Omega} 1 \cdot \nabla^{2} u \, {\rm d} x + = - \int_{\partial\Omega} 1 \cdot \partial_n u \, {\rm d} s + + \int_{\Omega} \nabla 1 \cdot \nabla u \, {\rm d} x + = - \int_{\partial\Omega} g \, {\rm d} s. + +This condition is not satisfied by the specific right-hand side chosen +for this test problem, which means that the partial differential +equation is not well-posed. However, the variational problem expressed +below is well-posed as the Lagrange multiplier introduced to satisfy +the condition :math:`\int_{\Omega} u \, {\rm d} x = 0` *effectively +redefines the right-hand side such that it safisfies the necessary +condition* :math:`\int_{\Omega} f \, {\rm d} x = - +\int_{\partial\Omega} g \, {\rm d} s`. + +Our variational form reads: Find :math:`(u, c) \in V \times R` such +that + +.. math:: + + + a((u, c), (v, d)) = L((v, d)) \quad \forall \ (v, d) \in V \times R, + + + +.. math:: + + a((u, c), (v, d)) &= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x + + \int_{\Omega} cv \, {\rm d} x + + \int_{\Omega} ud \, {\rm d} x, \\ + L(v) &= \int_{\Omega} f v \, {\rm d} x + + \int_{\partial\Omega} g v \, {\rm d} s. + +:math:`V` is a suitable function space containing :math:`u` and +:math:`v`, and :math:`R` is the space of real numbers. + +The expression :math:`a(\cdot, \cdot)` is the bilinear form and +:math:`L(\cdot)` is the linear form. + +Note that the above variational problem may alternatively be expressed +in terms of the modified (and consistent) right-hand side +:math:`\tilde{f} = f - c`. + +In this demo we shall consider the following definitions of the domain +and input functions: + +* :math:`\Omega = [0, 1] \times [0, 1]` (a unit square) +* :math:`g = - \sin(5x)` (normal derivative) +* :math:`f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)` (source term) diff --git a/demo/documented/neumann-poisson/cpp/CMakeLists.txt b/demo/documented/neumann-poisson/cpp/CMakeLists.txt new file mode 100644 index 0000000..a6b925d --- /dev/null +++ b/demo/documented/neumann-poisson/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_neumann-poisson) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/neumann-poisson/cpp/Poisson.h b/demo/documented/neumann-poisson/cpp/Poisson.h new file mode 100644 index 0000000..72eb5c3 --- /dev/null +++ b/demo/documented/neumann-poisson/cpp/Poisson.h @@ -0,0 +1,4254 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __POISSON_H +#define __POISSON_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class poisson_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + poisson_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + + // Get coordinates and map to the reference (FIAT) element + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class poisson_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + poisson_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None), **{'value_shape': (2,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[1][1] = \ + {{0.0}}; + + static const double dmats1[1][1] = \ + {{0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[1][1] = \ + {{1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[1][1] = \ + {{1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + for (unsigned int tu = 0; tu < 1; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 1; t++) + { + for (unsigned int u = 0; u < 1; u++) + { + for (unsigned int tu = 0; tu < 1; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 1; s++) + { + for (unsigned int t = 0; t < 1; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[3]; + vertex_values[3] = dof_values[3]; + vertex_values[5] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson_finite_element_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + poisson_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 1; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 0; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + poisson_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None), **{'value_shape': (2,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + 1; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset; + offset += 1; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 3; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson_dofmap_2(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 14 + // Total number of operations (multiply-add pairs): 25 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_ = det; + const double G1_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G1_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G1_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G1_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + const double G2_ = det; + + // Compute element tensor + A[0] = 0.5*G1_0_0 + 0.5*G1_0_1 + 0.5*G1_1_0 + 0.5*G1_1_1; + A[1] = -0.5*G1_0_0 - 0.5*G1_1_0; + A[2] = -0.5*G1_0_1 - 0.5*G1_1_1; + A[3] = 0.166666666666667*G2_; + A[4] = -0.5*G1_0_0 - 0.5*G1_0_1; + A[5] = 0.5*G1_0_0; + A[6] = 0.5*G1_0_1; + A[7] = 0.166666666666667*G2_; + A[8] = -0.5*G1_1_0 - 0.5*G1_1_1; + A[9] = 0.5*G1_1_0; + A[10] = 0.5*G1_1_1; + A[11] = 0.166666666666667*G2_; + A[12] = 0.166666666666667*G0_; + A[13] = 0.166666666666667*G0_; + A[14] = 0.166666666666667*G0_; + A[15] = 0.0; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 7 + // Total number of operations (multiply-add pairs): 13 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + + // Compute element tensor + A[0] = 0.0833333333333334*G0_0 + 0.0416666666666667*G0_1 + 0.0416666666666667*G0_2; + A[1] = 0.0416666666666667*G0_0 + 0.0833333333333333*G0_1 + 0.0416666666666666*G0_2; + A[2] = 0.0416666666666667*G0_0 + 0.0416666666666666*G0_1 + 0.0833333333333333*G0_2; + A[3] = 0.0; + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class poisson_exterior_facet_integral_1_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + poisson_exterior_facet_integral_1_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_exterior_facet_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 9 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0 = det*w[1][0]*(1.0); + const double G0_1 = det*w[1][1]*(1.0); + const double G0_2 = det*w[1][2]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.333333333333333*G0_1 + 0.166666666666667*G0_2; + A[2] = 0.166666666666667*G0_1 + 0.333333333333333*G0_2; + A[3] = 0.0; + break; + } + case 1: + { + A[0] = 0.333333333333333*G0_0 + 0.166666666666667*G0_2; + A[1] = 0.0; + A[2] = 0.166666666666667*G0_0 + 0.333333333333333*G0_2; + A[3] = 0.0; + break; + } + case 2: + { + A[0] = 0.333333333333333*G0_0 + 0.166666666666667*G0_1; + A[1] = 0.166666666666667*G0_0 + 0.333333333333333*G0_1; + A[2] = 0.0; + A[3] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_0: public ufc::form +{ +public: + + /// Constructor + poisson_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "e6cecd0b5d1d95eb7fcb61458ecc05c3ed041c4fc98d976931a545c7ca5bc879241bc527cc05473ecfb01c3cbb71d44d37345694f637cfcb82e4cb118937b6d5"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_2(); + break; + } + case 1: + { + return new poisson_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_2(); + break; + } + case 1: + { + return new poisson_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_1: public ufc::form +{ +public: + + /// Constructor + poisson_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "a15e4974716541263fa1d36f9a0dc870f6da624bd7daed8f4c2c3f1ef9c6a480b0f1595b9c69dc2713bc5980cab5b5093a1a33a6949194e6f046f46b28e0a398"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 2; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_2(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + case 2: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_2(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + case 2: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new poisson_exterior_facet_integral_1_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class CoefficientSpace_g: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_g(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_g(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_g(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_g() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +typedef CoefficientSpace_g Form_L_FunctionSpace_2; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + this->g = g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f, std::shared_ptr g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + this->g = *g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + this->f = f; + this->g = g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f, std::shared_ptr g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + this->f = *f; + this->g = *g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + else if (name == "g") + return 1; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + case 1: + return "g"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + typedef Form_L_FunctionSpace_2 CoefficientSpace_g; + + // Coefficients + dolfin::CoefficientAssigner f; + dolfin::CoefficientAssigner g; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/neumann-poisson/cpp/Poisson.ufl b/demo/documented/neumann-poisson/cpp/Poisson.ufl new file mode 100644 index 0000000..bd05f7b --- /dev/null +++ b/demo/documented/neumann-poisson/cpp/Poisson.ufl @@ -0,0 +1,36 @@ +# Copyright (C) 2005-2009 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2011-03-09 +# +# The bilinear form a(u, v) and linear form L(v) for +# Poisson's equation. +# +# Compile this form with FFC: ffc -l dolfin Poisson.ufl. + +V = FiniteElement("Lagrange", triangle, 1) +R = FiniteElement("R", triangle, 0) +element = V * R + +(u, c) = TrialFunctions(element) +(v, d) = TestFunctions(element) +f = Coefficient(V) +g = Coefficient(V) + +a = (inner(grad(u), grad(v)) + c*v + u*d)*dx +L = f*v*dx + g*v*ds diff --git a/demo/documented/neumann-poisson/cpp/compile.log b/demo/documented/neumann-poisson/cpp/compile.log new file mode 100644 index 0000000..502ce47 --- /dev/null +++ b/demo/documented/neumann-poisson/cpp/compile.log @@ -0,0 +1,346 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Mixed' + Unique sub elements: 'Mixed, CG1(?), R0(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 2 + Coefficients: '[w_0, w_1]' + Coefficient names: '[f, g]' + Unique elements: 'Mixed, CG1(?)' + Unique sub elements: 'Mixed, CG1(?), R0(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0342889 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 3 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 3 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 16 entries computed in 0.0011 seconds + Shape of reference tensor: (4, 4) + Primary multi index: rank = 2 dims = [4, 4] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 64 entries computed in 0.00104 seconds + Shape of reference tensor: (4, 4, 2, 2) + Primary multi index: rank = 2 dims = [4, 4] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Precomputing integrals on reference element + Reusing element from cache + 16 entries computed in 0.000784 seconds + Shape of reference tensor: (4, 4) + Primary multi index: rank = 2 dims = [4, 4] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 12 entries computed in 0.00107 seconds + Shape of reference tensor: (4, 3) + Primary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 12 entries computed in 0.00149 seconds + Shape of reference tensor: (4, 3) + Primary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 12 entries computed in 0.00148 seconds + Shape of reference tensor: (4, 3) + Primary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 12 entries computed in 0.00129 seconds + Shape of reference tensor: (4, 3) + Primary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0224471 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000337839 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 3 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 3 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.09307 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000836134 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson.h. + +Compiler stage 5 finished in 0.00103307 seconds. + +FFC finished in 0.152407 seconds. diff --git a/demo/documented/neumann-poisson/cpp/documentation.rst b/demo/documented/neumann-poisson/cpp/documentation.rst new file mode 100644 index 0000000..2279d16 --- /dev/null +++ b/demo/documented/neumann-poisson/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the Neumann-Poisson demo from DOLFIN. + +.. _demo_pde_neumann-poisson_cpp_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/neumann-poisson/cpp/main.cpp b/demo/documented/neumann-poisson/cpp/main.cpp new file mode 100644 index 0000000..f373adc --- /dev/null +++ b/demo/documented/neumann-poisson/cpp/main.cpp @@ -0,0 +1,98 @@ +// Copyright (C) 2010 Marie E. Rognes +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Johannes Ring, 2011 +// +// First added: 2010 +// Last changed: 2012-11-12 +// +// This demo program illustrates how to solve Poisson's equation +// +// - div grad u(x, y) = f(x, y) +// +// on the unit square with pure Neumann boundary conditions: +// +// du/dn(x, y) = -sin(5*x) +// +// and source f given by +// +// f(x, y) = 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02) +// +// Since only Neumann conditions are applied, u is only determined up to +// a constant c by the above equations. An addition constraint is thus +// required, for instance +// +// \int u = 0 +// +// This can be accomplished by introducing the constant c as an +// additional unknown (to be sought in the space of real numbers) +// and the above constraint. + +#include +#include "Poisson.h" + +using namespace dolfin; + +// Source term (right-hand side) +class Source : public Expression +{ + void eval(Array& values, const Array& x) const + { + double dx = x[0] - 0.5; + double dy = x[1] - 0.5; + values[0] = 10*exp(-(dx*dx + dy*dy) / 0.02); + } +}; + +// Boundary flux (Neumann boundary condition) +class Flux : public Expression +{ + void eval(Array& values, const Array& x) const + { + values[0] = -sin(5*x[0]); + } +}; + +int main() +{ + // Create mesh and function space + UnitSquareMesh mesh(64, 64); + Poisson::FunctionSpace V(mesh); + + // Define variational problem + Poisson::BilinearForm a(V, V); + Poisson::LinearForm L(V); + Source f; + Flux g; + L.f = f; + L.g = g; + Function w(V); + LinearVariationalProblem problem(a, L, w); + + // Compute solution + LinearVariationalSolver solver(problem); + solver.solve(); + + // Extract subfunction + Function u = w[0]; + + // Plot solution + plot(u); + interactive(); + + return 0; +} diff --git a/demo/documented/neumann-poisson/neumann-poisson_u.png b/demo/documented/neumann-poisson/neumann-poisson_u.png new file mode 100644 index 0000000000000000000000000000000000000000..292e16cfd7fe60e6dab562d166335b7669ac7454 GIT binary patch literal 42812 zcmeFXRa9JE)FoQDJ3)gx!Civ{4esvlF2M;9+}+)S6I_A@cMWdA-JyVc`2OxO?qfgo zQ@_u;E8~3C%$-~(NdSYIF zSJSa(w7y)--3vNU)e&x0jdw{P_1ML<7b%m1mTd`ls%5q4zW(E_x8b5#O_O^5>?6A5 zefn!r+uPq`p&|Fao{NN&P4j^S5Cc^U0i-*ZXe&+oSnOjnZSnu=K@Sym!Q3Fw_|j zM0DQ$wMmrY;ytPDb6>G*Za-@~247F+vYHI4Y3SWXXmo6+=6b)q+@Axl>wa$Ue)jOc z_h` z{9M`8e`;R7dy4<8WryVLlH?q)%VW)LG2J4E*J2{ern=QUlCg=j0H56)IqPc4BsMxG zCdYF-e6nr!7T=735m@O~Z*K^a$C6Pfp+m=I_PNi#zW1rys?#4m;63kv`FxX)Ca3j| zm(Y*SLnq4(3V`nqi4HmP!)o7iAp98kSB>xK82hBpu#En82)p?hU>5s?;Qi{b*V#KT z$U;9}UG$;(-&PuA|Agd5O|ohP9^_JW)q~sIczf9}0B_^&Uvb(jfbj6~(|txpl0T97 z-b{DiuY3Qu50&awPnWU&;1P|k8Khib^#EEPx}MJn2?g4WcsUwn?)J&^v9+}Y z&?_JONuwG7-NwVz7c@Pmfe$P8?WZm$u7Z;PRS4U%gSN9FidfxR!yYI!fz6P2Nd5VI zS63Lr7a@fbSeoN?RH0Vc(fho9--YIP5d@fAlloJ$ZhI0ytODO5a8M9Q?0r)AzV`q?6Zynk z{}6ecG|tM`KSvsXjbFi!+^dd#-s{&ndhW}6XYJ>o_p@Bw|5}xPs%|l!mE(RHR`9!O zTkJer_deHaw464@5%`y8l4D+~fc0Wgsut@;bC-w|2@iy^QQsg%tNkd zfaB)DkJq@2+DV;WP-5_gr+>27U0MkNd8x)P5v)PL)?DcZq1_oPubP9*pyqmg&*P2 zevde^|8e>MuP7(Qz5^8T82M$h6m1bA0$6gd%RmMHAN4g>RKwI}M$JVNI_w8A3eD=fBBrmL`rC^bE1MW(eVUpPYR~(+;g6< zi1w>?dOjddLjUU525yAabh}@w*xP9~5I{`l#Y1L+x`G4klrhWJMX2SoQ2D*yT178s zUEa|VPbdSe!GQcX%y2;`_V=p@WCH&upWZUeTF;5D@B-|4-u z0q?nn1tvxBbKBK=UGf_jDr|Jwcp^kp0G@Dx@QmJ#;g%F+KqeFZX`o;P5>hwzuLJjd zMa^@^;}3<+`mBiPtR_WjfgrrjKLb%|h#WD{L54r2TOMboHO^S>lUF8nJTz1^H(2Y4 z8QS!e03?ezT|XQ!?i4~Jem=%$cnsXk;SKqb5GiVzA0b+18mz{15Zk4qtLaG(zA=z2 zX=oqcU}J5q1u%l=F5tTHFfJoO^0d{0uE~;h;!G_-E#_*e(!=YljKGQt?mGvUp8k`& z5Bb0a{a=gb77pjn^V<1I5_p6sJ!*$|47~{|K;KGXI%ppGYd?rbm6YK74Nehcz|LDm z0uqvnp)YCg70~^CiHPjF`WLDmg#|^#mv`Rt6JHJ5v8IQ4w~htbl{Cfo2HBik^MUqv zC!Q>V@Z=Q6#p)iN@dTMV=4}B7A?koSHcHE zLWJMpoJOtdyVhG-qX(ZSlcKQI{So!c+39g0agi3*iA*_)YKo{GW9ht$BDKH*Ea=*Q z-TiFkHLs;MkMeBOZ=ViY{EVRak(YOd4|9Up=y!Lz>S)AX!lm$M-A4`o^mC*eTPL z65Y@9e7o|^?WTEMIdTHq+AJODWqLQ^&|+dYS`I?dn9e|$=Epr_dKQQZVn+Lvl49oY zr|DV~U+Wd%oyEXm&_Wu$R_~kG|?1+mfu$Op&1U> z;IdQvUXVjRs=7~`TMx4>hPs|Mm``FzHSg&zEKE3sqU=M0L{cy!W%SUXqjO1?3^7m# zE!#oATds7F@I8HjbfQ=26CBbz806sZFzwNGZ$!l<<8}ZKO8nteK=Hs8$QVR^MKXj* z%(nv5V6p5?D|ZL(F|qLRO%KDBE13FvRlr`8!+D=}?`QGXUdhO}FKAJrlK5GnTdRjH zq*o%sn^+s{k=jvAVZ=Nb{3FP^y55mE2wot6D^EUfmku5M>ke(WrGhIcEg4eKomzZ^ zR5J1Fx_FIuLIQ?wJ_1uVugzKAKuBK%$=Xf9;mMhrH`w?;xYZi%oQ2{Tc+KM93p9F) zsgH8CE?`LYYKp;#ntYbF%Rk{*h^Ol{q+9r{)O0SdDc>0`Fdr6A+7qs*2iaz7N)%Po z|8K>4!T;Oo>YKVQPtt!lnj{`2(FTuaPPFX*k%6awNSjXorQ+jB1VKLJ_2!yKBwDYZ zA@Olj0Cviy$r{!Gag<;_o@Q+ySyXdpxIaQH_rT=7do1I*odz2hmFRymcz+0Y_GNVD z=NXLlzfdlc6=Pw`I|f5xRY4_};fQ0$W#P;0v@9wFRqNR3gXCgF3*Kt-d<;@czFgySOv>JbnHTsv; zX~@_4jDQ19pHRJz=v!GNW{wV9xSH#rJy*Ijo+{k7@sOHH3mN|1@Rw@}319P$>)`XT zRrj;TwaMPLf$lZdDzS&Z+3$4}1;1ISW%rod|E3xaSB5Vy0joSwK`jr=>ih4tTYd=6 zkuS9LN2#|50bA2((%V*C=7K` z-~8GxljR^8TwNcQFiE})Lq&&hbW+){y~MC71s063aCl_J$%IvT;SF}vRy#;jJ0+Dw z!+>%q3YbyXglplnsktxih2_=#D6V3HIt4J|j&$E3KO^;MxgbC4=eq|lsZFQ3hd)F( zFq;k%ep>6g=q&_H)AV;bhLY*_>HA}^)0zY_K3e?#n<%~oD*RhfA#pX>l}OQOq?!U} z0UC4!kF~5T4Z_kIAr0%rDC2}UAmG3fY=ua)EpE&aAw8;x-u?HfOFJDD6XjiQh_nE& zsijF(dam#ED2l$W+2&X{m?3wlq2U$ye)RuY%5(n|o9nUjCv3`XH>R_?FkIiqa}`6b zj7*iTB-ao`Attt3`IrGjJefhloK=7bg_F#UOmnbM8hdOajkz=)-AM%EKYy^oZ2 z2Db08RxQnXleWc7MX4FRfvHD>ipu(*V-( z@2C|X4)qt=6KE@CRN>$RM4=zA>`qn^N=J;ua1u2O(54&mGy&b$K*sB6ZK=KZp8wqp zG2|A0L&s_F&Hp8x`|V()8VaMmDuI?KJZ#zpPQhVH3ZI->Q<1h#+)%q9Km8Mb{g6T> zK7Jr_{p956n_CYT8b?U6ktVXW>9P(b{W0z-0$cY|f-Q~*pZMo4xCxHKM~v_hka?&3 znK%7_qe;Ksy)9q%+G)#a#&8JG+Vwttcd35u7t-~nc9ZZnJvM{tUyV)^qZlXHMWAY} zR#85b`XW62374R-mYIqE-#AkZr*&YVap%~liIxvZ3?Ag_+dodJ30xe|I4Kv4?0#Pz z)4@b$gtAd-h)JTe<#5`ZW$rVlsabs>#7$Yd-#$FCUrc}d{9j9R})92y%KzpL4++Uk)CWZu=?wRr{b!OLF`GeXyr1vN2Al zVpa0BfMyOZnl(U*);8f&fH^OrT(bimOFdfhW~~3YM+6c#^{Vq5PzTRyn1Fh^z`lCX zckcH(qTqKfxlt@XmcTF}K(7AzIG~G0%`c82xVm9zGN+F=10{dTR+N&kBwSQSQD;YI zrog5tvctUDLd!u*#lwi;@p%{7%oRe7L-Ld)xHH)nU;iz{h1X6``V%YJUx8+g`W ziKK)@Pm?69_I-ohel(=|9l6K|N%zkwarY3+EE^d!%D5t9JpGa-&6miD^MTEP_ojx3 z%IVLiWi18?@L-P><&Ms)BEF#ua*#~3VR}cRQlZ=QM@x>})Ppir4LutpiGK|#!>XKE zk0G;%{layO$c7NU+@r3naoEQRx29Jqbp0LW;A=z1{;#_jKpOZxOKHNjoWW`Mx`SuA z!3Xq44BALh!g}_CSklCh@wQmh)EvHXpr3AibgXIK2_F{Ida%BFXCWu(?Gy9l(+B4( zcM~ZLTGKfWrdX)NOSXNEGMkG0#YQ#Pm&v92(Z4|>Q2#szAW3HMVb>NJt%?axA6n{*W(y|((e4H;7UbI>l#XTwO zIOq~av%38FxRiXm#1X?0Ll7F0In^zOfsBik^0yTfb&F-g7Y49wVOxY)x5_m7JAPP8XlRTRirmJqJS<6#Xkge6w|C@y)k;Y zB1NL1aa0ZS(-vCj{Zd*#2!MS-|KRBmH$5 zv~F3r%_3pzCZqa6p>TAunf*}(Dw5%s`)|)t9eID5bZKtcpJ-y5pL<2OVE&Xczhrj5 zE@-X6tAzShwY+GW$nqt$e2|Dq3RE2I*QO>9SKi8@TZqRXEcsU>6M)3$I9W^0-vpye z=}3)Zk~oETb@T0qB2qepIxcRsW3pxd3d2TME$HJu3j!)k9b7l4ZKAA&W-sBIp8ev3 zDe@7tsTh~V$E5XhIB*n7kj^!}{M(9%%))}B-Sm1v#E#1y+_ z4YC#Fdf^Lh{&Utz0qRevGc+ps8_DF7xPb8?vl#Jnw880G5yD=F{=&oE6kgL85bLd! zO{gH&lz0mRjX`BdNGlLZ3=wj9rKhg5z%5EUzPb+`Z!|N2wr8*|hstNI( z9LMMQDlw?v9&4`B=5fKisEqxvXZtog#xvE+<_%VJNA1g8IwB_DGF&-Ak3df$;?3pu z{5EG04!oVZKM2uNKDRBqx;Jn5dpiHuEM9cJ$CS-Ym49M>52#0hKCWF-?EU5%M$vzgbE2~<(V z+d5eE(in}YK_2i@NGWWv@N5M8=G-p&{qYGz(accXOkXwwnzQ_brTb8zfqofY5L_3&&407ZRP zwE3MOv=!h1_x&NcjKA0YwvV#PelM)B8AJ11b~VWR0{S=6eZOEnO~4bvO{d>jw)fF5 zHm6uWNacoH(0v?qL^y&~1m1!74c3A8c>S^WQB}rAV+k~tDfZh=O!Z0NkDrfz`ic00 zg%(F4Sz&4A7Uc-kM_LIyl$BpHKM<&3F{(_?g=T$0BMOLdG}QPZshwU$VXtt{=T(ic zPFzyrLeb>A+>E2|zTE5fEFen=P>fD9(ln>7`#G6*P0M5H?C&I&B=NUhjU2aWaa@3a z($940dIUJ9OMnQp+dKgHS&2kPfJyoWWB&Pm)#V=G9mlyhe9k-XyLJ;~a@IB%qo!P6 z)18su8OR(sA8=)^(DiX{VT@I{2l1DeD+#B?IhrqQnYrcAyyT0|LdOOM3j zMmO>wYO`ZSTdp_3UiXmJUdC4xz3Rvg*)do5?hXHPT(>21oVx#y$nWxrw$1NI06iVn z-2HM2_tEjU9QWEy>!j})KmiU0!Vw>QKotUC095ul6v=}yP{yH9-$`JzXP4aP)nS@k zpY3p(Gk~Pk(Eqjv5aPw7OzpM+BRA;^-tgO|n!HKc|Nhea(EUFI+kSBIs6F^WL&$$G zdl3slk6BmB5FQs1$=z6kgYRT%El}R!40q1%Uo{lNB5|$WR>#CzV1^d_0i;!ri)ERN zRPWW<)>d8{ViW-(oX~!e#KZ;j-z!#Pn-RHZDd=#qIHh#)fpmIVd9nLD{8J}I>V1`r zr$bA}{eaX9rF56Ui!JNhlpbR-ngv=7cI*!7fJt zB22D+k@PETFr+oo9)eW9wg^7ykvDtX2-!k6!~+>=viCT#1im^JsPgvLIn@!2G25?` zPFo71RW~GShm8f!2J0mn@232=cy_JNc7#t%Amb8S>eJ|3SuE-Xi)wa5>RZfb3J1hg z{ichV=sDSuvA2iVw-&=5NDC2AjnCdETqfOzVrJj+^JltA?M|;-KtphU*a}T#-1QnF z3te>{Wz^par^$KfLGxqrzB?&Bx(7hv3ETlt)`rZyH&b6+kO*<;HA~(}Md#6b)YnaE zju|YB!o~jf@EpFp#l7EU6gPtGg%qw+v1~)CYeDdM5DI0l31=$0bv9DCinB%q>S@?AUCo)}A5FPd7;u*Bu~X_nPbj9iN>eE3&XFlwB0GPK zJ{X!44W2<~>a^Xmc)c6nczb=|5Tu>`{w~=#c4vQiI4>79mynPEjLpRDei#5zQ&U%W zJsk->Hwbwj>uel-5L?Lxw5}1VH7c*i|y-fd&wH_ z!jaC#(*j*-R)SuX0!cSs{vnus5AR)a5`gNsRgl;BI*y)$n41mbf%Hc4%+KM24djEp zJ(@Z8iepS+Bo^^N8NnK;vZ(cwi_UZHUP^vUd}u=e6GiZUJez6o~C2JhP=DuT|czQ z^?g0eeLZYDuI2~oWHXRHxI4B`0Lk&7tv$mc7LW*fYkqGNI(*)Ve5>94msvL3qUb6Z zKO~|M$MS12<)3R|p^A zUIlM4`&bQ+a}&Pt&fhv#5JL3CW`w9P6!deDE3pd>W3t!!i0J9cB_bssNoby=s6$Ld zwh@=3N3j;;sq)t|W4H_J8&oAOL^aMZ3Gh$h$AERNQ(VcYM+|vvxR$2vDsbo%>DZTK zD#@ai`YbN?~ zG++5{v4h`rCe$7f0u5PifXojbbO1}BMq`BWI}S$S8;fM~y8IIkS?u`7DfBq3kaPR% z=a+W{CP>rgg^_uECjia=l_c>}4k5w_0a+dje&IA9osaXTcxXbt89iY%3Msu%wUJl@*B{AzX*{15bL%f%DpyurX0}zB| z7gYeCvG7yty#cP&zpVh;Trkik5tqHUzb^?c>pYE&q8CH;4 z@+gB%KY2vl@+%J4QS`Ry-6=%e;KY#X=bo{w{*;Nc9=?zG7&wo{;C{zI_##gnx#p=s zLq^L|K~CiTbj+WS6IMDuOl=ZHRo0gIzur(ZLng{E7SgkNn@nZdJIu^}o95-jYt;HN z_lzQLcjRJCv}_wRQ%lD;AN64~VH79lHk}(tKo8eX9CC1N)%;gO6u1nUq}BXAi9mB- z7wdacRv6<9w+{4ZZPxSj%hUxM&z&33q5cn{9Wi5lXhI#1TfOfcFbL4V*?~a=fYtDA z9p4*G_1^^g-W{P=lk*!u-F-Wn-*WK2=z;4DK|$T4V88|$g8%B^zMQs3I<&wfypf^` zAw>j2cSJ3T(zZEj$D-0HOLX}9_77OX4hSzmACni%^>vBB|0_dVY4XHJioV1W#F1F@ z#_X?7Q~#E;{&d$(cc@pz-mPQry4*)TX;k$41bbgQ@sqx{6!POn_~+8PqQ1ZryE@_cPp`g_zs|c z)&K3q;Gq}Sd?KqA=x%`n0`~7Uj}1ZpS1=7Qd+}ZsfTvR!b?)x{-|hkZdxN|Caa@jT z8Tz+LtY8x`0`Laj7xLfd-vC}V1|-^NB;a+Z{3o@h!wK(`Fq4*G1MT+tYcC-`7(a)^ zKQy>N8vQ}Ev$)!Jz`h@C;1PL25}YpZu@NgYsRa4&wEkgqK}=n0|Fk8S(UcDAC%bag z9A>Gyo2Idat}a^gzhEif>taQ#sP z^gi{`PxJZmw#NSj=%JU~7WIG`njxW=Ss@~P{7Xb&uw)X4N!RnRICb4+Qt*AW07LTQ zCD58Edfwo_52tAU(R^4m(7#E)j^nKv{VJa}nUvfA-90W^D&in%Z0c6R0Y~!d1+8Ln zW0s;q6e{JXMoxMb@dyHMx?E`vt3Mg27)p5(-tulKk{BP_`l)K?yy?g$e|fahahl;B z>o6^LaobNx%Q3GSi;u++ zkbu6&aLKkH?7mh9ot=?cbYZ}gxa;M&zKdb-N{A%6G0li(N8Q^ya+|Bdty%= zt5#vcdu7IG7jjD0Ih5DkOZKgFG18jyTPo%I+F|fX-zR!|S$Q z?p4SY@*A%@*!&^4tR7jM!M9gNAWF90CBG*3TBR5KR-+L_FTgY?S5hK4)DfFvS+meF zp}eLk5GFj~uR>$+WLt9)RI<_@KWm#0A4zK%BWO39l5hwrwpgxx$dE_LDgPL-qTxa@ zTw;A?`@3)P8BkckANuRY=ytqkBWH4qi810_jWOKy{!gp(Bm=)ZN-tT{R2{5Pr^3wDo9)-qX(Ij-)G1Oi3 z_atEq8O|&$oiyrijN~^-)=maec{!YMH;ejZADpLtD{ zAzEo-ER-Fh8%SY+ky7fvV9J6}M$+GU(`j9B_#x)YKys+~^agQQ)lb@A{ib}TG$ap(42*J--sBQnOO zK!{bF+NhY?#m6=JOs(X!V4@e%F;_xdDW`mQH)9q`6T}^lPT6`ly)kTh&S<$`Sq+>n zzgrH)FLSwwnHdDi3!3e^^{r!UFRI8?alaULLo5ipTDuuaY(+Bb!*AvVjmow;6#$)8 zG>(Y|lg>k`0e-hvdOF7dbcF3zlwG~4$l4Ea&xli1=hr3K5MavpJ1dj+KvYwLcLQ+E}3I((&2b$-;W(vizhGFT?A z$h)#gb7sDP3k0m&43Ug-~|epx>eJ4IlcW z=hPt_k+SQ9&vwI$f7ZmA{7K1!gb7`5uS8hgCkMip{>R7~ZCDMdxv`9@ASpzMS-yZW z!E7XHnDBBz-cPdj6$N7ilAtNVoe{1>xV=+FwnWinN;l~hC*&W`0xUB_1U6C8Wv-Q> z-#!k=RxHZP$|5I6(cg2>hpJZgz!r(lYrF*SQPAr_hlz z*s9{aJZMM=U4B4Uv0x=8)+Gyf&In{`sMHZz9&_kCW=X?@1T`2X5WfDd8j!O%Wr;R# zAjNpn7rcVL8OxrAYM9)FJ^fT5TSdn%gXywuOMb>#k3HxjL5x#vjg7=UpD`X6XB%IX zPfgnJ;hSsOH4gfRF^R9it_8Zi%zL7ZcBtqT8bkB5F$BhNvU&33C-<_n0>9R8L`bR8 z|7`E5C{YJKeNG`oXVUHR0dIc6vF+~D#pXf;5=Jenq3vP)bgaJ_xV^a?q>M$I-lOsr z-td8s*&6qB-1MkPE|%16kMj9I89L+dh($dP@{AX&_H0$g9F!uVRRqy5zA0UAR==Y^ zdn!Y;uKbKtP@e)Kwq zRL;F9qNA}>u!R&0R-`+zN?~d61=KEFW~u*nHxO}tT}8}D66zT%@^ytC>9_+tPIA%hQO%H8+5-wG*X7LMg5VL&-Mlf+~dN3l_?p5Ml%GdhTG*wI!lkNRqvIikBJfJ# z)Fr@>Q&Q23w?9}H5W^>m8(H>~qD4S}E{w!#WfOT0#*fah)4zYiRXG&hwO*wapY_R# zC0}>JlP)+UlecjU z@DmL#Fu7%Gh^JF;>vL%LzIKCFWU;~TyZ`#r@{Pul%Ihv6>#za>P5O4=x4yxs8?TgH zULo40U_i{8RjWIjk%V`K*N3iq+Wwe3{7Hl|jDefikcTAZjbJE77e|#!5}qTw*%C1O z%$D2~`3ZYp$6CA3sbnT3(QMmPk4Ni{YVRL+2u*k|Y+|9`3@b^9Tl#$2TP*MWQB{b9 zs}e2uR8}OeK?}Mt;N8e~@4}kMq(uAO0NypTYGk_kPA~M;iIrhj5_;IDRus!rt1raE zaisU>n<#q>Q;rd^r;(n*Gvci!nuAITjHUU$nSKIL3AC}C@9MB27FoETn^nhOdJkw z*%I9_3bEHh(km-nI-&|_MfTlpq|=Wnc0Lu}SG_k436GYg)9#iQ zlaQQ&zp5{$4{*kl$%0|NCXRLiqo>b&e*$O3WIfU*8%89kFQr2hhRMyxSZ>1jT-+%7 zEZ}V~v>jtqFX*16^Vq|l{}H#ubfLf0+3vRF!I&=77#4!~i$P^39qgcAiyjpeOUtzS zTQQ=x_SM*S7)TdcLR~jpzpch@Bj4ghOGG9{spzo?a!Ir{X$i*n$!FY*r24=E#U-mI zU$YIwD~G*`%mb*fVy5n>=Ge_Pporm*KKBOx{AOULO25mZq-iEZuvdblCnnMAPLD@x zW!?KD-Yg3))lV_LL%5SE2djW*pqMAek@wW>GTu*Ci z@K0z&#oQT1dB$H^YM3eGr{N$R$n*}A*g7lB>Xm}qk8_0ivnD$E*hkf*QvFXq&fS`d zD>If2c^+|nvkDSvH5vI_?ykBs5nJj{;iO2 zJjw=1Og;<>F`I72ZTFT!=v+AJ6#&`Jw`XbFYzKfjqZSS}JQ|!_h1e46R|gDItR_X% zP?CTlB3tMz`fhd9rkq|0{yTNHGWgQJFoxQSFzR<0NAAiI)QDKW65EjpmvM=EL@q51 z(x*fVS1vB7=#x+5!lmp6b>O_m6&fxi9e%fGI;>#;Y0R1_#Jy zQRZeTT<& zU1q~hd{vRI8c~CiE$-~7Naw>1v5MxYk}@lJ<&c)7N>2+msYKEnNS~NZo;AL8G;qnv ze7cO39ih0-OG?Cbc!cK6Vzf*C$d8txbN_pfF!q| zx`EL_TxLQY=i{Y>6W|k+CNv@O>jk6c>%T~VOeq=ag!0es)>tITPHdp7~D6br$p2$-m zNOvrr7@*BNu?>F3BCjDyij{jn4r)ONt^b9Sh8Nml(nHp*;>rUff9~(g*RHc9$kJL1 zU`rd=n&kuheJFvZUH42Fw;$BGx(IPpxhr8YQ!cdw#tFRGpgaRM>ynwxjyX~F&;Yt0 zMUbqAu`XjZEn>O8F5%EmcR=G46(KSDpQuU!&;D6y6H z9t$TK3>SHS>39%XWQPJA*!pSo z$gna0tjjx0(5`G_3zQ=AkpeZ@sQF>sv^XQ4s^4y$IW$#=XIfgz19+y-i*GDHm9^r= z{iFktK{sq7spn8);md{FVT~Q&cjsS!EdZDSCNA^w#yD*oBt8l&zgn5uy# zhw137ZFD`sUfWf6EY4WhAKl^Ht`=tZg0;iD>w$w!WDfrJmRs7;9_#vv`kmv@r;TFN z=X%<@7Wo=H;!l1%wS4lC-Tp6EaT>Bkn3bS(r$C(<$0;{oThLb zm4Q*vDZwg>OEJqQHZw0(8MXpGBndHOWwEFgnZ2B0NQeBF0yz#29M>>SF-E#kpU|Mn zzf$-`$X>@RHBPh6Mx)jhZvraHpaq*N%wbRT%F;@iPV!^}@9 zxv6!IGt`+&|4HGq2W50n923YbMXnKW>L(}}EA9y<2%@E$Vk^fu0{ZdS$SXC$lJ z>-!jo&traqWSV)!=!=fO^-BtCIiKf~wZ-5{nSeN6{8JIF)qUlc=aF038?qnEwo_Xe ziDW{R>lOwihy94Uf#zsteJ&uLmJ-Z_;cnVeQc1hggt=yATE`KRh7{Z}=viE4XW*sp zcnceAo1R8XD-r*djgB#6*2vXX{{lZH1_1lxIF1!Qr!h*2RYJJ+B22696&~N zRNZ?}y{yAbof|>clkF}TgRf9+JhRrd5G@s%Y?>04-1D$SIVcr!1)C-D=1z84rj{JW znaN}*ZE4q6(rxHal_h2v<&aG3$JDIBUa@qse)J!BhMBBy8>|Ix4q!rw*ymgyUVpIz z093Gd-q`IW@9kwDT-sg%x|N4Y^f!|D1QMTr6wjmjm%hwt(G<|Imd#rPO1E-fg73J$ z<6*)aQF0hU!gwlocPWQlDRTQ^M1OhbI_zg)RO$p-`gs z&03StBvfGXm=JalX9LyH=hDt3(t$*$UUrYj(7)jd$EUz7*BFA+PU1F=2uo|w-Zt&A zG5f;jjI1Wklq3qFEc=we`b6hnLplRohiH`frj~%O9^>i%+ zx379bB@}4S4oIkP=U*g4-{*j0Ygu5T9?$S}oL7JyyGFJodnZ4cI&C$Z+<2w`ZG0tm5T(Mxr}9ru+CYz%YB42s?Yu zSq;iv8Cg`WF5{JEpcTFB-YB@UPDUk%<{Ab?(nqoXnjN%dVqa5oC7(;`6 zNfe5^BySE~C_wk)LLVBjhkhyv9R3mBfQs_x^-zU%@1JtqntYCT6AWgHMx_FPj9_>Z zg#;qjaSl!Qh97$K=|pdeFVWh?NB+hSKfN(+CZu%)DjXb(Wcm^nUEoJeZ^uqELDN1@ zd2Xn!%NUjNds71zBc55*@M#PFymOo&%ANKUvu?D7%LjHw8;>QtoT9nC!ftjk;}GPy zSgi9`Tr_{ZScs6wLR_sBe(kd1iyXDOA^W3c z#gM*jfv78E`(;9+Z-n|R?@zs2Rlf0aRVk8k5|&VFT;8BKyCplKmfM8B?UB0&&xXr2 zgvZ2dRD45660ImhQ-%Dj3A)4Y&r)?f+buAX9WFbieTfTW853u(?z7(SB7i*@IHG?1 z{jl9Wn6e5}TWbim!Frvwd(#n%?e0^+`OfImg-RgngFjW#IY z`Iy@WzpK;hVPgh;EPkep*!4}CaX#3))tueUo;Au6e>AzTy>VxoL9rfdXUR1X+jcdDoPJ=C9EUc`KvJ}~{;7qVNJ9klLOF0zjE|oKrek#xFP0M8Pf3iadA<9h^h9cGvG=SN56Y=zupHa^ zzVSiNoRqPvZ_At2=(4YGjpy(6r|56$Odzcnb1ZXU6gih^OdNE`*Jreq*cPv26UHM= zYl>hj2SPccSJhz;hS|e#B8o`~Q(2X9s8*Ki{rhc^me*4}2hSf7)%OtiU2AWVMc%DM zR>t<%-K<B z=`+NbD&#rT?cALhj-&2=9rvd7Rs2 zULqqyp2Jr0j&K*VifQa}HIE4A#mKyu;Ze_+SN+X59ujct5+`#&-+FP zH^J~n;%7r!Iv;VsbfD*7UxsC?@UC;@4!pW{RaEHm+Z-S+XW!T2wu(R>{iK*y6fOnR z6hXPxUqrH{P%p+0d~ma0Y0CG44s+jBrSTg37Bi*gT}!L_%*!~W5;Z65j@Nm;Zl zCt}@B2#I(da%I!==VoA@yGq!2-ckD@e*M0r*TlKAQ~F^K6^&VBP5iM5V#rtX#v4gm z<{cD%UhzM>mNS-QA$=?a<9`kvG?C;=rIcqWN2Q?>Q3;mmD0!GCGF8TlXA9%^OtUwjG$Y} zB%JkAGXG+_P zFV1L)z2Gu|R4X0!FGHde^Udp>UmIp&Nl(1i^O6?DSp^4`hDi;*eve-ii{M|1QIQ8P zoabrXR@N`DZ_S7k8VTZU@%FXB+1uGoL3Q5SS&|DolxmAEN7zTgb8t!1&36RmH@+PI zA5CW!)n*edP@uR5cXxNENE+NBXmPjV(qhHk-Q6h^clY3~h2q5>TKwj}cipU&mn099 z`DV_Xk-dkeK~;4}sOn|($cGiS?}*q~`1zCUtIm^zb^Mm+D-r4ptR=~29rq>12IC)b zF<6$@;0cQOF6sjCQ6pS)W7LX!nJHsq)0_Z`g?PfU89|^P33Gm`0*T1o)r7o1D1#Dn z(ZH(f<+P6W=kFP1`}qEv^r_l)-q*tl+6B8L66r6sryXO)XLOsYYa(lkQ++GK7KH0V_b0d<)KZObA7ryKu6EDi-fv$0oj!EG4YXHi|D16=!|i zi->{Mr&@-v9lEp4mgQuodh79Ip6?!8p?WepA*(Xa+}PpI9~_3JvA*|AXWLhgRqAZ!6I;`+6qHS96(#3 z?vc_G#9;;2Fnqdf3zOj=@WFjC@`=U@z}l{u#&M zXGG#`hvC0i&*+t_?;^ZJ-COaH%YIw4;^GfH6!TFE+B|1$5-m1=@KU!m)Vw?}drkq_ zoD25zkiqir=U5M>jTmB2`)_v9s_NEBX%?6iMbusWs^6Z$q7XgefJv_4NLM->5Tm9l zQZ(~-F>5?7f-WK{WxD%C{nZQCmrhca7Ff0%YF4{j?f zb(oS1p3iy83Lzc`<##@rTa7{ye8WXJno)SE8znkBcx5$NQ*9WqeBK_bku3VsCy$@W znr0PA@Z}B@Wx)@s^P=yi*=DR0R4mT5CehXHekGSXThi$j1Q1tsxyiTZ%t>Y4h3$Wrh`YDa%%u!k1%vf-0y6l=F;H z$byKIK7(<$TXlobJk4FA_lR-dqa~=Kp)0wuqQ>G0GQP{+RVdRJvK??3EZ@2s3+Zbv zCS%B7FeEB%r^Zd9EPHo3xP*}GQ zAe)DMANl?2GOGRwfVAkY{X# zPeNiQBmPP8NY(Hvlfq+%3mM5D%U*NuANL93z5A_`aR{-8014_;w z`3Rpllewkk&4kRQvn5RY$1UJ6?$?kjk*7g!{!5ByL3y`0 z?2vhzefGviWPHJ;ac_33z(qGvcLtY5O{O?WGzUCOhB-X4D$Lwdo_QvcTfZpdgzbF= zZL{9HfRda1h)H3q9-!ZGoe)0%be1u1N@)VkU}k!Wt=CAEybd$?(6y8av#@eYSfJI+ zMs}4ws25cz6v;__SGsd3&{_aDJD!$8V~^Jy6o6Q)(?{TFK82znPt|w|35o$P|_RFr!dJ9wc`oaDN3{_ocs<3D3YGf{#g7W*LwDgxCG(PO7O z!b$a6`s?@U-CW5$!7huP67GvW1SUexi{_osomS(`r?mghfD2MgZa9tBmwFxhF3v7# zCgxmql~06p7^NH-F8&<`@+=cwRQ>if;hpESB$8V9 z%T2pVCLY{ee1}fd%XhujN13BxK8E9!?%<2n5Bpy>8_7-llxY-`jRi=3LY2bj@$?$^ z=lDE#Qp`-p*z$Qs?PUsL!^b2_ORN=b&|SD>N)cj#JG>ZWmNVqXd(=8OT)yZl&a8PUTe;(a zXAY)BvQc%Aa}+TiPa`-d^>o#t#PBOe!OT~VGa|DDr5Jm^A!HlJRg`cxM&O9rwd`2CgMUK>6%!GLB?E@#DB zZ5cWC`$y=el(!7SSn=Cv5cJKZQPAhta0)mTFYUb&GwVmfLW)^o@|8o(c206_pq-YN ziLwyj$akA<*|$^8RaarxJ~~gfZ7ZOOf?fT!i994^=<9GHsTeG1TtIOTdsNFWhxfZE z720Zp@?+T#W^j)M-SiH>7|t))q`OZ!KyGCJR9o5ydwV0LHJc8(tp*Oi$%qrJE#Vh7 z*X?a-!%L59E58LW_ngyN+nVx?tw;YZR>}XsKxM*Lb)Q&K z8*LQFvAFsdwLc&ojByyGH7jsT&u>;v77ApypA@k1q2&Fnxg++o>1A0faN)3FZx#2S zPW^&&Vv-cGG2W3i8NgKvOTS*K<9(x5MQq|8634eG#w^wX*&?xKr8~!FX5x-%Vs4rH zHiS{JBOW5$z8HZ%7eE$+m25a)yWIR2gXYkPKmL^{CeMUqRzO$FQWZus{r2dbZC+CS z^)AshPMB@a6q~fBMw!HQ1%1r>?;0P?Y-i&vMex_GGX_RWB9{`EpqHa-8<6d@OgT`; z&PSu`nL8Km+;!kao&)uh%ZU0%#qQuI+P{@>&Ud1OWcSm%z4r*xA*7@PzS~!V>HU%9A9%`4-Z#Nkdp(k$?Bcqa$(xOhdbtzO!Bm#SGQ!rShDh-b$!LMU!s za$cRkJrK7W57A5^*l$azOUZiFRPOh*Jp9reZB06tk|!ZN@ZiAD>UgRO^8Dgm3L(gH z3L*HDeWut9`MD|kcm1mhs?zs;^%KpmqqEIF6t6zefsz{w0j6(gs6$W*y3pwWZ3`+> zicV?>t@K}`ZWxXL&T;Mppvk^zuQ%f~wTFk_;Hb@IS|aE{G@U)QyW&S2rf_W3gAf|@ zq-ZqTIM2siNdom#`dJX~uUuof>WbN@vGfGVhHc{DPk8z?wAQs=vf0lsa=pUk$v<$i z4I`%Ce>mhjmb*&t!*!V9>`EXG`GGEYq~%Zf|KB&>kic;{M96 zbER;NGmXEiZ=e#uBK-oLgoy(memhB$hspBf5s9w${N;C$eXQudL9kz!Jt-{_ocg0` zcDobNW)9N`ohus_uXWCRd}>2z{BBNxiUKuk?I863di5kR_O?C?ca8G%k(#2{v(l3n zZ^aI}mRMqk1f;^LwtZQiw)@AH&4e8S2yPII2uuXU#3Ty_v+EiC>D^a@Zff19J;sy@ zyNmqv+{sny&p!t#>^GJr>zNr$6gUT+Oh#q7Q{y0@a<0M&$Y0g_aM2#<$o>h_A|+KX z@8_ZTP3b%O%O|U2^Mk4`A+C-7U!`E`)HN6_F(uGI5cQ=bwcpt2hkpo}_v(ai307*!oxd4vRR?6-=@!`$G(5x5o`9O5t`8|kQoBZ z3RXMJZ24Vq_kPA}dnm0)jZ=Adhd+FrnJyjY|{P^M2T-83DDK*xr-V71@89u=IY#E1x_` z7Z$2iWhkE?$ShQ1H)>Hx-`02dhsN!5MkAL3{>gMDIZ(>##jQ8gHhN|I+3AuaEF_CNX}?@y7)^+E;;c! zGgl#HPmK9BU3WRlGASoayY8v>^?U$zxyRk~ti(87t!K_gH7qoEU{4~lR5msrFDVtr zp6kRNhUNx$t_(5pVJLw~lMDB+cSpSPu3R&Kyf~UlgTMc&CH3zR1?M^~Qm!{4K{#`W zv^V?5ZR$$9tq{b-s-5K3Q@IId0C>|1WJTJNp#D9~oz5|OR!!@B%f5?zE1&U-xHUZoSpTVCm=3)qyG>}Y%V-I@Ri4PXh=c_HF8H`?2H zw5Ox=0j(A)LM%yES%)6)7u;}YgpwwCzBiEnC;&IHga5!xs7=%VR`9zU)N%P03f{d} zs`}ZPnbGJ7oi{Dm;5b4ZnbsmzJ>~x)mzx#z%K|Df?A^D@;khUl0@suxtX(0H(Au;t z)Ta^guN=y?nW&IbY71I<`RwtoPULJs>&%zU(xQKDBN zub6u`U()4~z`c3Ml!)DWdU}O}@@e(j7}By%Bf-l`UD;Xbz~@GTl(yCfY^>Fvedn(! z0a@J?khw^WYTC;)MvhqLzO4j~J%My>b9fXb@qYWn$$d%YvZyBevLf@9cf z37-ciO1HBhL$B;`+x{qgR;bhUCzLPQuN%btPkIV z@b&BK{R)(jKY(&z?I~hV%KJYxfcW#78pmhsn0rgqfjC*{c z_4*OoP~VQ?-{cgGp4V6YQ|3bP_+>XTEo{>rgrU_`2GqpJ__B(uRLTROR~eCCScZjp zo4`d113$9)lu~AvIFoGqvB=cKi96b3L}$HIjo4Mk)NBxJQ*(5#US?|HGuAUSSC+KkoL3 zKxp6$<%glHbjK;;tFh{z6um|(sHm0#3Lv)+K;hBX|0p4-=ot12DhqaKKS+auvkxeY zIag$|&Ef#lM`S_$$qlda1aZkNp14BrVNj6Cf>BCvK$Bc%0~HAY`ghY^eNOjNnv&A# zb?n;nEVug<=XH7sGk`}YtDnc2X01k=aqtf~bNrGaU)y6EpS<^EEPcGu)#(JHDg zf<~^Co=2k9%is8|fWMnVbMb;A^A75SGHP5KWiEOiK|x&#)2m) z9s#R^jDUPY!4yK_esofFGI(g($ytYm+}8+2Aa#qCRlcqLkr9U0^?z;cz56XK-FE1a zj|U{5yqB_K$5W>tWT4yaP42yTIhnSGD+yoooTXiz_E#_p!;sZK+5zAVF)s!w{X_|1Wm@M~336ig8yv zL%ks%U+)%31s&l7pyV7n47Af6heg!;r{TJV*{$^R&}kx-yTTT{-jj? zBpQ`SO+$A64TogGnuy3adzE^`ZY*qrtNbbe|5C;lq(-!LFu@$6vedqKB~iH-=duTi zG)wrhb^oYf$Gq%?a2>au5yU0od2HdOf)ZhVh3!cv)AA6U!9>c6fBm2QA;lS zUpY3+cB+oi8Z-|3KTa6K^+5yoLt?z|{^Or~N@&$XB`YmouXq3Rb^BP~uU9*5Y*lX^ zJ4*{C%)Lw=%RCZ)unO?NkEDluqFu8Mh?Z-jqI+U{nFi~Z!fU3*dZ_W!fP{${W6~53 zB3ZLIH9*+p{HuQ(U|hmx8SJDLk#-r*Tp^2*k&PACTS^|()~E<90jMUuQ%$KAA5D&N zzc*}wobYAD*Zp;ofeFDS-rx{Jh^wZArY&2j3sr;}w}(uue~G>(e*4#CNoE<{CEvMW z@V-Q6h76{Tjuy946bBtZz|yDW6;>pWn zL`7j|SYt~fVw*GT9SU1NsQQfsNz2;h|NmJ4n3t30KY2b@2Z0H8Iz27x`w5>g*PsCA z_v>h53w)@VARmKN;A}e>3o!ty$^MQIkPn3`p>h&`D3bUe&-tG*e4$L)=YC1Y%R$=@ zjd36_Ca=<*L{paZ*6N>*vg%W>==!Y&t71qEU#0>F{rb9HA!Y_+B{<3djx%9i1fB&6 zS7Y)YRt+rfzi;|Pja4_bC}}V;^i)5H6^7h^EO^4^nM5dG=)qu+(d1-&Atf$a|1a7v z%*B&xjd&AwXI*LwOq5mKO-dq>`SeBuIP9r6h}&Zl>cY%ztvdwxH<( z)c?@67ccP!HH!b^^uLb&&s773;C+89`;P8_g!<+T+&knrt}}VV`p1H8;^?Dd6alds zc&r-pN);T9o?*bL#h~#~=@Lf%D`HMUM`Da54R-b9FvntVMa8O+aG=w*seXcuxas(S zMga$WkaHv#ah5hhYNAjw{U;XpO3oAEgD#%)WbiwFf!)uTGkj5tT)Ya=Zn4!#XvX--m0gFXsOM+%do7n2fM`)DoZ4J8uVb_M1f zkG3RnGOipe|5xCREXhpPjKcf_XBIL;oYTv2((_DSC!do!Ul=a}uQay1>#ekiNh(JT}n`!lYneYVpzo0MLjgK>4~@)ylVvZzurKF zP(B+QNvSPU*@7SX3Z#NPe?aJXFV>E~E;F0yEI#B!#fIjf^CN#*E-gMhsfIOlkmrYvn~b$n9HkUU2H%nC)* z-W5m&!*7fD#1W|T>@KaQgLIBs#I};i252Blx#UxUkvb-m)Q07zkf~(6lq>w4?a0ux zLo{J`<0V(|&I+Pbhk^Syd#ot&ed+Zz7D4Kls*&&Y@DH)CR?CQsPUgvjP`LXUYN7cr zLe)SOD_dRPpsxLh@&5m8@)_oFC_k*Oq2E)$AYxH;88#L*tfopdx6VaEYsdN|qm5&% zicK=lz#%jR2~EEt<;leZFtr=UyfT`^&LduM-g6y5W)tYnVCv~ha{sHyDB}}%9^wq88i5MiTD%snAf_9GaBk% z%BzFZHgE>Ci*59X6clCT)9I)+OxjM8YSO6)bo9vayoeYC5>`=SX8{bf+(Q#z=uk}~ z?Fu7c}R=OSj~zlhu@f&dKuWcET6i&)R+Hh@>heLtb9a&sq{H z>!Rm_sa)sX?{_Ss!VWB0;)$(rEJ7f1NQwuaYBd6en`D81}|7M|LlZSJoCb?9r>>JV!YJqD$JTWGf*8!}} zbu8I@>#+V9fbE;5M>@Io4@mSuooiXj_wVY+_s(6U@2=hwrF{WKOovn1D-HrHKlF-2 zvjx6%Kts}u*saoLt0g3f{&cx!qm}^{nwDMucO}DrdM>EcNgtZIL0>LVf7=>`KlEY- z!*2(vXasDlThvb<>L|S%L_9?(zFt9&-Fk?`vn2*PBxIE)4j>7QU~S>(hQ21i7el@H zT{}EIfh-NFuR8j+@FAY|;j?^&WkXj#Yex`LX&UERvhrj)qt>hg5D-UfxgSsOMrEUBmizy952MLs!@oFu7g#Wa5WeJRzU zrY{gSOSo_FjdhsYXD=8)w=}R4#?#Y5jx4lM%KZR?>)J0aY({zjp@Ovu69BLilfng+ z$e=YQ4cQWLl<(V_`n3ZH*aPU4NvL7I1itqi^?1b}dxg#F|7SD0*@t8cI*FhDXdHE>Ba-qkN1l) z#Jv8`8^8YxY{fFM-q3l>e?O_Mt-bXB+euA)+=4ZCovitLpi{FyKK`>dyE}~oVUEzB z=m|>S270tZOwP>5#g?Kju8v^+-IS*ac7B{6JP2i|YHtgf$bxe1^A=|cLRcv|`@!P< zAKvBP>sZ-R({cGC zj=MFSq+V%vStLPDk9gNbZ4?{5lsWgu^lRo%jeFG~5yf6EwXAz;=#iT8`TZf8A%(*Qfjc zZprx12LhGkphG(>bY)=$D!v&@q-_Suglx>i!}#A7Q+jxL{dOM2kose(+v>Ra-}(*o zdKr7DAqba2DMQd{3wjSp4eewLIxNhk-@m(DH^LT-c#8KLyFy&kPH4K8@B5qBm=A&J z2SMCEFEErg`MXkKgHEZKplcZRnKRX(skbikzBTtr;hl+$tUAlUXDX#+HqMq^fwveF z1(j(wIZf$ zrrc9j8Ifrj_GOW&f%YxC2b)=ZP&_-7FSyZ|yoW?ABe%&T+wIlRBP`JBU;pYj!{9t-a~2D2>zT>f z2DNWY=9+_*wpc0X@i4lAu*Z7dk}xP~jGl*s<820`KOSwWo#l2OSuX;p#88K@TqC@- zWKzSw&}gXd;!xGW1%@aCs@UU~(m_aL9Oq?Dxut&T$bpEikKSqFNm#z;NdwA1LKCW7 zX_{4K?C86H(+LJhuCg1oPW6m@7~L3YO}6;Xw)`2M45Pnh43y}63*ePfqe0}?IZ?z4 z-9~3HqiZ*VgJC-0RDc*P6EPdrY~lBO0N;FpEtA_rMm)4T_!*$kX1e3268Ht0JqrxX zPpH10eK$r_V|>P`psG$eU7+77Z0ZqDb0|#pMy)yr1iHsZsIlV_9=2O@Ql~@+$AqX2 zeiBI_Mx`aPc11u2p8W5)0sahc?@N;9?w!HI|0FIuwBOTKMt>t4<| z(1)qV5hgWIO@0KaK9uFQ$kd@Hbh2lj$rs_!Nj`#ygFv=ci@WA`c{k}O1^;<5rLOCl zItTnSj#F1&Io;;{e}9LsEXG!excjBwc(`aNhIxj-KdYE|24rEk^n*WtyhQriR?l-TFV zdP7W{L2{T@W?}DglNpu&@KUpUc`Kqcl}4*D_VAI9Bc?Ta%y8;MV5tc74+O>!sgBK( z^y=^8bO@dz#?u2wgT@WEi zQs#Qxj~XD0!1P7dZO(R`Egoa}M`Gb*(yv#C5wiZWq?|{FGzwQL*%p!j7o>QJ)2kGV zGnM$CS23-NFIbeEh_uiX<{|+{nz)71-L$#ZL27wt+@I62eII%f+Bx;5571;-3rxi+ zfN}e|fuWf>3dh39LlCiD%OQ%%bAc{~))G9eQrCttiFi5~?1>EF(R+cnlIxPcX#q1xEvd^nhzMMb(cDFIFRn<(=9 z-*Au^I3_#N^njnZ^QHGHbpPyf!c#rBB%o7-WR`x56^w8n-C|tU&6@A1&q~rYt{P-SHvAVS=Wn>f%XPBls^ zHn})8!bx{iyM_)*@lIKtuRdS{i9NMtvhij9isGS`{vxP4&8AlpX?Wgito5H^Y7G^^ z5yEaEC(#^XGkydc>CZSPBwMo2+%MBvYWv^mNSjtvv;0VqZCu8#jbH;4e`LY6l^*93 zxdexyI7R)4HP8_B>48`NP{WvN$J@@ps7`r#4WamhKb%@?iJCgPkqVwQnz}pdQ=pE7 zw}=yb0%wXwFq_7F&7@PwDQbnP8-)vKqr~+N%%9jMzyuAyaVE^+nCM!)>fow(Ibdnr zWCsok&@RMWOX{eM(N_NgmM-X3cW@gCzWW|7J?6(2|GbuwSj|}3L*Bp+#uTQ6Ioqq# zpij2Z&r$DdS!5hE(%`P|mq}9a!E{xSLmdP2l0>0pGMlx1o@bX{8drB=pFRo5$lpaV zDW!AADaN9%8f7!$GNO`~ClKenc;}W>E21j#_tv)7C1f6Z-59s@b`lu0y?@TecPJ!|Ntb{+A?L{TaaNa-t4|dwFO{fO zfd|7!yf*HDk`5(Na5sahaeXH7y9&TG9egN0_Rp}YkSj4DEmiZmYI?v(*4{(6T1h(D zju+#1HMtC}*jYE+9w#lmul^FX&0TIT`cGP!a$@iT0~HLO9Q;VNPDd(fZJLt0F~E#y z7HpMlTls`mOvG@mq>X^Gb`wclP%g3@m$+a44jy)@;?7ZPMT>B|KU?eC- zDtW51aP!6JU}QK@mFnyAQB-%WlGfql3+)Lc3c(}ra7e2o2Flk1&C(EO@s%ATkdZAR zaT0&>n*Qx@cJHzst+E(kx6qR07L(?h4_P7>q1u&R*-aFmC_K#y99!cETbg3I zO6UAyxlT_cMA~LvM~Pr-wQV`LxPB|FgRxA*u}{x6;;#U*;13FCg; ztiX@><@0c=jITv0BU3 zQ*xh!l)nbT)$m3?wFKlO<)N4>E3~OGRoIm`sUypig`gP3!;gcQ^ zsAOs)U^R2B6Q9%Vmn#rkQtZwYVrDs)Hgs~0*Y;$Ta|=*lB6=-CsA#YQDnf3p*~H&V zSo`a<3w(<&Z7VLVw~ui7L}bfLO3}VTNA(HK8hLJdoo{)WSFQ@076)`BOk9eR!NeQR z2Npt~JYGP{1wM+lOlW5CX&U`Ji1ch}1|Iv_CBUQ!>0_O=pC?WQD7sv^n&74mjf{#< znUeEdSRzeTajVtvk#e}$0S2ZJuXIQ|OeqB>UkH(1d>?#7zpS*c-8AFkztTc_Xd18&s-k7 zDQbfpeJNxQfV!r?&$u|Ed7J_MEB4fcN~ZWv95rM$Sywyu4I_<7aKcnWnt0J3GEai| zQIhs@K_)X>OfKlNjUD+?SOHtIzf8nphGBiBM+A4m|55EU0)X4cKkQx9ro7%~b_qdodwGNLo3L{fyZ zCSLWM?T^GKKWkW&oOBqF4-b)7AWYrfSY@l<35D}nUO~g9pFr;aRdeigFt>6xDDaZ^iw%hdPr`Vlkapd?X@s7-rS6w|O zj~iCGCEa!O*mFKaxC-~?bpmu;UgCN(3kbcoV&kE5O0l?tt_ncqrM36PGS_ySqt!|9OFK^{x#v9p=iAWBfv~^@7$&knu4!wyLp3nYH>( zm{f=R3!EZAf&}nb(TsWk+`N<=ifpH8^v%%K@wijEj&!EutrDIM>FVogW zeUu?VK;12|6~ehO;4K>7jfR8IF280;I;B%Ll2YO!Y>bad^a?#$(#45VP!7X@L4XZ} z9yI0;3=pJ+hYx^DxVsTLux~@Ld>KsO3|`?xlT=Hm4nnhH>$obB-gfS?g(ejI-XgN! z2`*BLx1>!yS(;Cu*T2} ziJOBlz-qT9Il9{#E;&E8_-R|4+$=>oAVyCTPfN|%4|0l9GoMwO7ygMw6c^^%ey8V~WDC}{hy zN%CZ-FfjEc+ji3AvP$jFBL~UxIU4P!n4@vfJhf)-NUUm3xP#%IiHUvK{5G4#IyHog z8JpGkiV#1qD8&QEpBo`_K8l>-K~zo}{3Fe!u${^9k0zz8C>M!*))p**p&f&=%J65C zpCJyHV#!CWr1I(y>(vSDYZE&!>*}%!Q+*4CNQItpqnfnlG&0;jdJ8iNVPFWd%)oX8 zL)=#~6$%M7y%Yd!#P=+mU@~;LpOSC`8a2yjFq3+wL56s!aJ#QeFcm4_UqjCqW_&j{ zHEma~>BjE!mZ?soJF70xM$SI!3=y&pzZ)dO$pb4^6E* zX}&2i{$ijEm>K!gvaH-u9~dCBEZvIDtA(K&?=Cm5-CSHNq>ruCy#*gI$(Lm>Rhn5r zu59{`kz+5AD}ji4(2okHa4=|1V_;ry36`cD9|0a24pWNUdLMBdWL83zoxDV?72D`- zuQ;3I#Qi|yD2f~rIzn6Ji{6^^TOI(b*dt1<3k0!XYsimM3Lhk8qA^mgt)2RLo>{Hl zoNV{x1>u@*6wiGF7vEM8u!h!Yg-x(#;M0r4TWa%Z@F<5Tor=XQR=R|jG)T_at$wKR zk>jA`Ek)+ZuW+=Ggwgt8by!BJgfw%hRKkHmHTyYH&)^*06;QXWfR^~j<|tD>9z^Qu zAnb~4L_9UjVm`&6LNkLZkb&5<`!nKI4@Rq}N;akq!o;1{;f4!Kz;?QOF3AR5PvgrS@XbvxEU0XA{2cU8@AfwIZs7U{>&dc+e)k4eu1z(wW>(vEzL1 z*Pya%pHGP>mjg@VePT27R*$XR!3(Lg&@|HIZ7|C(z1U)k%$86@Xlw73U&aLF!P@_~ z|8uN|>99dFO!r4)3<1xIZqV3%qE_CY^qkkxpMSqG6O7>&c!MACf89rR+;RNoqzfdAkxEx!*Wj?Ux@ zzlW$Z1`J+n4@AzwLc=%-V+_t|MOCmqtgJ&*5J6S~Yim+W;^e@BjtGCSv=z_13^8)4 zi{m@`nKX)2)O7SWFfw}aYI!F)iT#PiitJjXoiYEH$tAijyVD5F#WsX5p-W@o7Gmx0 z0PW=TtSfD`EZ5Q_V7Cyxmm*3(eK_HTBqXL6yCgwX*|F|leAbc5u0a9)_s^yO&gkZn z#(XI46fSV;m|!AWuFwf5b9zk<>De#J&9@8ggn+UVQf@m)Wi!tTG`uH?>zfTXBx>F) zADbS{ir8@$8dF+6y(!zZFPNRS7nYRmDylAV=cEPS7&OU8jT9;*f7NnvjhwLjn5ey} zb$XZ>%$T8UtTRmz28_ZD?*O`_00n5!@YcI6?kidw`VLg=ojL}a7xeQ^2tA=eGhB_R@dzY4 zifLV+sFNA1k-;A#Re!CYdO;jYtPk^NyhPZg7@6|ea|!YU+eqtLyJmJLuyj*QY%PRazBQLFa^?i3ScG7@ zqu{mzvh94PFN7^ZG!@FIn*UbTgIFt2JRNVuHMgxQw27GYg>paym!m?u7n2u22%iCM&`a5)BUu~wxTvDpBx9`*`urHoXhzMq z3H*$Y_8#$;20Yl8n04j}EEa>suC6B}cPUi{a+w z*GjI7T4H)+-D`oKRA|K9OE<(o+2YvjFGEQ|1lvJ-i9vw2xF7Ctv%5KI1B2 zX45QUSd2I^Bq_*fQPn~C+8`nQ$n^V zj&s&XW3)KX2f{_kLDHav2|n(BO)Eu7^JUnSk!gGzfD_xoNe8W@Naam?%gV-^6ZHh|{?)v- zfvhs1^px)iP}t_FPG+>V4E?m(!a#S4QAQw(QLT{;Zs^V-2R97GU{ECCk`X&J<(KrI z4Egl$SIL?(lt`Ge`Ov6^J$FQwN}%>@Fb$3CThEHVcyL){2Yc%)y~xZB!Qg&$Bzc)K zmHZCz%pnWFa=OJJ*2`ung^+iy$u}*Gn7EQ@lA}VT+<7n*(2r~c(Ihx8 z&JYNxTbFf!zz+fSl-E?Yn1X8A&E3f0K~1F=H?+ucyf6hf934ENWZYR!wc80&w>bT$ z(KiA(L!LxcbTDkN$eh`JTSb}@D44Pm0l0;oVBr(ZEawR+-m$UjwtTJ{Ah zgzZ@qz6IPC6Vv^b`=S23(Q=l>WtoUq*}bbIGEqe4cr$6%!@)%DPbR2fT61t2U02YPaVlox+Hfg|)p;q5L@)Nkh!$*NbDQ?s zqP}e71aA^^;kP=pgu`H~>bSjI;zdC?X(?*6_@NI7_W~uX(PE8ou&d=MPDQ^&EI!zx z+e%I;<0f~z-1!l)|6+jW?@(BkVM;9FrKcGQjPFgTZE$X%CINWHkQsa>#~a3)*{8mmGmFqu=p-HbL%u_%NUcw_=OWVN)2E>)+M zRr!43S98tLp7M(kVKP4yMxZP{Q0Kn9;LX7xs`^W|z$9MwJz)*D^Dp0+BQ|(|Sfp4PB-zpt7SksjC6clTmI~*Wh`13|WHD?sGKBIMvm};l@>44D|A&pLhXEHU%)WD;+ z>C9}S@?%=eGPoZpjc4I-+mcWEF`=Kw`lG?b`C6fZw!IGA?7f3-oOtKhh0b>jc8b(+H-N=E2YIZU$ ztbcs>qj=w%E|SRO-r)W#oXnrZSmtF*#1r(q8ai6K6wTku1Twc&ZW=&a8L1Ivb9)3c z5y#01=2t2P_>}9!QYOBZ<*M!!kJJWp1Nr2Mc@tkBzy5&?JtdFldv|=*@FBT@k`LKH zn1qip05v4`b9NfYGaSnzoTZD682pVnada>UfuIYQD&%uu4l~{XD+?m5tRDQ1ZdeJg zQW|vm$k05#-Rwfxa4!xvyqI6%cgD(`#GHXpF+)L}Hrz6W{Q=5^h5fxNafQnXF0aDbE{mW-OENKRmd)u*d+IkMKUuoBk?LZBWm{LrYd2=;ga1U zIcp>k!im=sz1;xZD(PbSnMU|20|lZW&dJo2hA+4f{)u54m@_GQ>LfO9;H0JkQA>I6 zZj4)P&ht)3=MJwV;h#eCSz#gkR4T-vSQ0!!$D0qvVC6sAR2n$Hg=A)U!w^}} zV4?&a?JL8Z7jDt8z?g|N1>y5z?)n$PCy*8O+v%qTaQo?-D6uKVr6QZPsoAp`-!5L` z63&Qr+P{FDg*qJc599hjeq- z@%MkY_vL=yeZ4%fH*4)ZSIo878q6^VZL;KW0^WBf6gsGO%nnlF03)Ydk7u_n^Lt6u zfp`PcywjYW>G!er4@gWeOv8w!`aFC3)eX_?UU0|=g)JwsHmBY_Kk|Z^XJ{mFu_HcO zp`r?8{q~mZk<)-(7G4#Sf6?ma)}5i6rsxb+cWP|ehY-?<5wWmm` zbZ@`VPABp9sLbnFHIyn$NPWz2v@Bgypv#KSlef%iP~;EVxmEAiF!64uswjTL80*K$ zvBYIz>szVGplNqeB&TPLJDdqm;Ct94|DrX*55NLYw5s85tV(YZOxHk0VIPj zGQ%O^ft|1AAC!;hWck^ZqvC1^xCN?Ni}Ie$aI&bcG2S3 z0BOLBmt3bT=g{Ykks1Q-MZQ?$b)9$$E5nq5H#kBFv8}jaKSwAaPwV65e5|No5;_dk ztWU-9dm(>nb9>oEyzMT6bK93;2p(q7Wc_49&=BhtLJ5Y=)vSrW#kUpXJ+ay^&rx4t z974`XEa|S35SBM4TJuSNI(roSG@jP&E)hC*CX5*Va|0k5!hW4Ur`BIh8q0V(v=WESKg zLsp8Ma^lK_o>~a+A;yxE7mNf9Do8B>67hWVtJ9gRNb(Y2sL4erezpm-#lFy71WzfiH;J`DynLMx z`ms=ro|$nan<1@LyHc7&M_AdE)r^s{SVx__^8$Or*vIisI{6k9f>iFk!pYB}JqWy2 zo=n^H8NE{B_wQrA4$SG653rW&><-1~5h-L= zQqgZ#_Ay&m$nWrSr?~8o8HnB5BIR)U>DHN7WW@yA{t~WZ;)o0#@(j3z_{UI{KFCw} z|FHvWuk=NgEZfyq|70{dGInnpSk6Ghl>~AClk+%X^vKbbm#HRphLpgX`3(+pDocsR z@bs6WuDlPX?h*X*Ci%KdjBl%P1{N|Q&O9K}H5HU^KwD=?+n~g7@hmk^8%Yqpe-1gYyIuD&%i-eRS zL(9Ht?>nXMXJ?3WufH*UO_1Kl^x_9n8q1G4+dQUR+*R$q3dGpj`19uh=5!<9eTXmY zASXHgW=s@W@CiMumFPh8$V=8aE6q{*?2i*7z- z-VEv-r*NQgu^|T_`q%qE_PXk7A7FF!=&|}Ve(Oq!6q-aQPHb(Jsaoz(IZi#-NpXbg z=S_rH?HU~;k>#&kV#z+*(FO5pX5h-6D#0^5qUMbkWuK$2EWe0-C; zk&`Y`&smc9tEf?()b=Mc&CYEq&u>{I4J2mbQ_|v65EfWweCM{~Tpn#=hWkpbysW1A zn!{t8Q(wAVlLj#`+WN8lGwL$A9QDE=qeKMrIs}`JMz3 zFa1gzsSZO|e3;8kW-c39)sX(sKaffnH{`WigZ#wFxlG>a2O2s`w}im+*BF-3{iwu9 z9CFu>XGuv2#gOBX4>gHzSRm(r=uNknzLFzVqHaGPRMmca5{~cZFxi`qjEV=XFz{Ut zAyQ7|u>>lp6r9FgKtFD_;@!__sPpECv^e`TTrQ1v1w>!lECZR)NLT)Y@2g(h#Xi0j z`d1o4sCiABp`B{oSwU%x-i%I@rdDg6c^Fy>cy6URP;n~?8)mZR|l zMWh<2wMKU0UC>p3B+XgClKC*ZE>n^qXY1mJwQgEYf|EzA$Q#ob%e=JjSFp*VkyH&% z`YmU_F7>hhs!B6C+nJ7IP+2tjENnKKA?&!)1%ykFffgF^E03dr1ZEt;tthxiKmWsY_&Mwz2X=bm^}6GEVh46=u{a?ySrbsTr3I!wJ)eESkZpqgZRjlZF8T6r&CtE7W%M3 zBmI+W+YkGjganV(p1BRyvgDhbDtzGWvXQ1v>2y)B7?EHq;7-u-Rwz;nSG~1Uk18zd zFtSWj^f6?V(taeCyE=3)IJa+!gi(f#rJIt?f68DCwU3&w?$}R= zw3I)r!V-A2RQYJl3y)d0zH$ze1X+GUizKZgjRw7aN309?L;sVVG%KAarqW;CDy#xf%DhwkUm8(T^vQHi-t!uIAI^bdR!go>(Otp=z;<&irQW zZR?n;vqmrkLB%?re|~}x^g|9@1NQ}2plG`{j|?hO*}GwCZv zr42HZhYm=xi*&x)xs!j);M-FAd^JhtRQ)4Gu&3}Qze1sanH+R)Q5$5+v$59X?B$9Q_Xq}yoVpWRzs<> zi3+5;iCn%4WMTZaGPbfYIyxu9FX(WJNJP2oNCYN$q!a_@%A!PosNU=9tXB+w{n62# zd+NRsxv{iZaPgDblVslQnah5rxEqtiLAFbK<$2ufd6KW3er@h|ZqE1HK@xhEsAuO1 zs1t0>M;)!n+ipN1gM2=8gT}S4S5RTFPe$^TiNH#!sD+HgF&`JxtuF&VND+i+ORGPVGo#XvExg-)V3te`)CErW$z_5tk$~$a5XzhZ15T zLE~N3J%I_d$GbvC0;AI((KMZm2>m1f^EmngWSX6UJ|7=7sxG`8s*U=PR}!9PZM)&vh^06lauDhtH8#COiV<4*7K6L zryhz%2m%hUOL+t9wdrTBXvX`h0hgI;XxX->;zAr_V1n}5z#M>%sQEfM zIXQ^oz8QVE9Sy<}(Z+oEOZo5@h;jb_QOXV9%)tS?>L%NKAWUWx&4j${`0d9THg2!h zi!X~wbi1tI2I>-O&`ZQe0{f$z5Tu!Di%%(Mu{%XK_KBHAzGcT4&v(r+-WB3$tumT9 z*Rv2i4nL1eJz2txu5bS;;H=C~t#b!gDFsLG2=>;?a`%?OjJZl9M93+H>JmnP2H>G3 zU;P2>KXgdx&&Rk6Ai5WjsnU2XC$Jw+F~Bz>e5ny6lbb%d2SfFxMD^8v=jt^?6y5PV z5;}*Np;S^5yaZMaN)j5ZoNcLXB67n1#m}0`Nb)4!+Gsu)cQ`@$-XIzw^Z0kOW{jn1}Lw4YybxooLoRV}fBAmlwTCtHAb zz$G{5j)7RIVOJP#BHF|HyZiNVS;`h5RqJjT-wH@Og7u`r8nT)L#k(N{aVBN230yo& zC+hhUEE^S&zp4fFTcuEo&T~|lBtDKCP%VOXeW;dJpm?E=jAW1%pDOLNOqZf7KKp1G zX+_-_p%!(Fs>ZF)*}$vcyZ)7Lc}j@-=IOe71;K&mVa}&q`*?)tD$SC+CUB9vh`jL~m3P@C(-@ zq|mzar!?0$DMpFaVDPxtTPZ6~w}{8GT5$~ER`SEGthijt&wAeb9(Wy?*qB;Ar#;u-aoKCRCtkkDYrCNPfrS2>>$F}=Rxw0z# zga%e|^4AHd{NoRJpU0D(44q>&vO23uz<1L_!$OI?>Q?q4cCa=08%wOJ;!OYUoBo=a zJRQ9+XJ##Gc@p$w*0V&}BY%EbJ+C&%HbXH`jFN9q3eZS@L~e^ZS54cf;?4#(iS`)7 zqb@3<`+l?C{m8XW_C*|TN64O)F|lh!Wx7IN%Z%p)62!YQ`#JVMiOaT5?Zc2QxpJl_ z!CW?Txp(G=)Sn7to!vbq`@!p#Pf^dCIm+Z$Yj9PIP~CRBhR}xkF^en{zgi+-|sc)J|Azn?d$O}8G zay?r93rQp<-rC*~&Qcx66q>_G*{){eY5izdLYHc1kV!1TxL?opd?1D0$IgX(s`;4M z0sdwTxC>KdkGpC&JqyX1S;kkQeqLw8BauG=fhb(5HdrM2<)1ps*u?kVN+*5wDF$y& zdqaWf4+gv!5(EI0f^5%_g~%MXDd8)n>Oh$HCDj^9tkDt;K-3sWSY=**n(?ZfQ$7~M zv~X#u@m%K=)<>_2 zRF-2fc*+TJ(L&?GCsN|fZdq|OKf^NWn^l$O~Qab(Jj z*qq|1PHHkVfDjE5Rdi^>mVp!oH@IAK`-ciY3SsIS7nO%3=!_a`?Rda)r82FtG%eRa zyf}9z(U&^OGIm;ZFEj`ws$9~mX=!@P%UtC`sNqBxEFzEq&|>qP0_!elX)a`?O$US5 z^b4C5Lb1&6;ymsJC!}oGmZGAiEkPtmTEx=)q;FreetzdNu^fC!d(Ts`mvP_Dgp1-- zj73>mJ`s|tS!9UF#5G({h~o{q2NRMSAq2@PxX~B#a>NcbG0$DM%m0B5yfZyAqa62m z{7Yuev;swKWcnu4jF^?Fahc3x5%z%FXjBH#(A=e!sMdn)*31BtKiQmTmFvtIMM4^+ zxXInpFdR4X*t}NLu2SlkP4`d0TT~!oph{;IE8H$09wL>r4+Go@#%E~5E4R8`9U6wM zRQCfUQH6^c`k{}+oc}(BY;E6nrh7ie4$Xyo2<(buMy)VeI6LD?`z%4drqHBS`{%f; zh028y=r!*qoP{f*KMwqJ=)m>{q^NR3@-jNleo_2!LWr1HjhWq@9Om|ss(((S2NUGf zh4Or6`1i8IoD6uq@A(md`O z47W7wXoxF1AZlY}`{>HgZGF>$|C-w;YHZnopUn58crM@mz;gYq)uB~3vqUJc_w*Tj zN`qhc=bqgehF*iAgkO;PqA~pYdoAy8o*i%<-6|=1H0wg+!cT@RyVO35Mve`tZ|MPl zA_L=720l^nQuQA}Z^CaJ{y{i{m$0xt4a%FhBXNb-)9VcXXNWBpU(|o4RL{@gP%J1p zo^-_f?~VM|0I&P6>c5BgLb`yuJ3Bb5$;Z*}1Gs}$CNf#n@BaF1x1q&TCvjn6A*^x1 z=~uNWfQKl!-uG33tR5h1z(KIMoM&8g@xXFSPBFFF}qWQS6C0Td49+jk(S4QKR=-Y(-T4Q2h;6|nyQ3;5!t z_mnm#PFZjpV01vXS_oiTrDRo(t3A|`AAh?{zRtX!Dv;=hrwcglXZU%0JZNt=b}tr8 zAp##~L=1Lt3m_swf`Zk@(b3Vb0b3VVx$KXKz4h%1=z!k`QQrOmyk;#UqDmkGUZK}8 zLMZZZdmD>*sT9AHCsIqSs%7!wl?wGjy)NAr!gjM6qtUK=f|A zJqQ(kNHS%=0~p9Y7_Ni8y|(}s0Rr3?^r-tdU`YWJ3>DJ0bhog?s#m{P^6qX2&gM5L z9!}<5h2u{ZfY`a*8LE;gB3z1lF!Mh(z!~HGiz1r3oKOgRv?hf2*j=@EUox9=KJ>oz2gz0kvEU=34Qx5S< z8`#lu=bQ4kDOw-aVr4&Klcyp}BL%;=1jA5HkhIzpg$R)XIK$6I@Q(Y_0#V>e-ZdXT z3!lR-|E?k!qN41J9{GC#Mc8#XsT+IwEMdQSq z=dut*7640~|a=^0s-=c^AKR5o5h3kJ`75~2|(DQ)0 XE2Z}!g(PbT0YCE6%2MSLhJpVJKUj!F literal 0 HcmV?d00001 diff --git a/demo/documented/neumann-poisson/python/demo_neumann-poisson.py b/demo/documented/neumann-poisson/python/demo_neumann-poisson.py new file mode 100644 index 0000000..ac37eac --- /dev/null +++ b/demo/documented/neumann-poisson/python/demo_neumann-poisson.py @@ -0,0 +1,70 @@ +""" +This demo program illustrates how to solve Poisson's equation + + - div grad u(x, y) = f(x, y) + +on the unit square with pure Neumann boundary conditions: + + du/dn(x, y) = -sin(5*x) + +and source f given by + + f(x, y) = 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02) + +Since only Neumann conditions are applied, u is only determined up to +a constant c by the above equations. An addition constraint is thus +required, for instance + + \int u = 0 + +This can be accomplished by introducing the constant c as an +additional unknown (to be sought in the space of real numbers) +and the above constraint. +""" + +# Copyright (C) 2010 Marie E. Rognes +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg 2011 +# +# First added: 2010-05-10 +# Last changed: 2012-11-12 +# Begin demo + +from dolfin import * + +# Create mesh and define function space +mesh = UnitSquareMesh(64, 64) +V = FunctionSpace(mesh, "CG", 1) +R = FunctionSpace(mesh, "R", 0) +W = V * R + +# Define variational problem +(u, c) = TrialFunction(W) +(v, d) = TestFunctions(W) +f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") +g = Expression("-sin(5*x[0])") +a = (inner(grad(u), grad(v)) + c*v + u*d)*dx +L = f*v*dx + g*v*ds + +# Compute solution +w = Function(W) +solve(a == L, w) +(u, c) = w.split() + +# Plot solution +plot(u, interactive=True) diff --git a/demo/documented/neumann-poisson/python/documentation.rst b/demo/documented/neumann-poisson/python/documentation.rst new file mode 100644 index 0000000..f17b2f2 --- /dev/null +++ b/demo/documented/neumann-poisson/python/documentation.rst @@ -0,0 +1,115 @@ +.. Documentation for the Neumann-Poisson demo from DOLFIN. + +.. _demo_pde_neumann-poisson_python_documentation: + +Poisson equation with pure Neumann boundary conditions +====================================================== + +This demo is implemented in a single Python file, +:download:`demo_neumann-poisson.py`, which contains both the +variational form and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +This description goes through the implementation in +:download:`demo_neumann-poisson.py` of a solver for the above +described Poisson equation step-by-step. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +We proceed by defining a mesh of the domain. We use a built-in mesh +provided by the class :py:class:`UnitSquareMesh +`. In order to create a mesh consisting of +:math:`64 \times 64` squares with each square divided into two +triangles, we do as follows: + +.. code-block:: python + + # Create mesh + mesh = UnitSquareMesh(64, 64) + +Next, we need to define the function spaces. We define the two +function spaces :math:`V` and :math:`R` separately, before combining +these into a mixed function space :math:`W`: + +.. code-block:: python + + # Define function spaces and mixed (product) space + V = FunctionSpace(mesh, "CG", 1) + R = FunctionSpace(mesh, "R", 0) + W = V * R + +The second argument to :py:class:`FunctionSpace +` specifies the type of +finite element family, while the third argument specifies the +polynomial degree. The UFL user manual contains a list of all +available finite element families and more details. The * operator +creates a mixed (product) space :math:`W` from the two separate spaces +:math:`V` and :math:`R`. Hence, + +.. math:: + + W = \{ (v, d) \ \text{such that} \ v \in V, d \in R \}. + +Now, we want to define the variational problem, but first we need to +specify the trial functions (the unknowns) and the test functions. +This can be done using +:py:class:`TrialFunctions` +and :py:class:`TestFunctions +`. It only remains to define +the source function :math:`f`, before we define the bilinear and +linear forms. It is given by a simple mathematical formula, and can +easily be declared using the :py:class:`Expression +` class. Note that the string +defining ``f`` uses C++ syntax since, for efficiency, DOLFIN will +generate and compile C++ code for these expressions at run-time. The +following code shows how this is done and defines the variational +problem: + +.. code-block:: python + + # Define variational problem + (u, c) = TrialFunction(W) + (v, d) = TestFunctions(W) + f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") + g = Expression("-sin(5*x[0])") + a = (inner(grad(u), grad(v)) + c*v + u*d)*dx + L = f*v*dx + g*v*ds + +Since we have natural (Neumann) boundary conditions in this problem, +we don´t have to implement boundary conditions. This is because +Neumann boundary conditions are default in DOLFIN. + +To compute the solution we use the bilinear form, the linear forms, +and the boundary condition, but we also need to create a +:py:class:`Function ` to store the +solution(s). The (full) solution will be stored in ``w``, which we +initialize using the +:py:class:`FunctionSpace` +``W``. The actual computation is performed by calling +:py:func:`solve`. The separate components +``u`` and ``c`` of the solution can be extracted by calling the split +function. Finally, we plot the solutions to examine the result. + +.. code-block:: python + + # Compute solution + w = Function(W) + solve(a == L, w) + (u, c) = w.split() + + # Plot solution + plot(u, interactive=True) + +Complete code +------------- + +.. literalinclude:: demo_neumann-poisson.py + :start-after: # Begin demo diff --git a/demo/documented/nonlinear-poisson/common.txt b/demo/documented/nonlinear-poisson/common.txt new file mode 100644 index 0000000..0f19101 --- /dev/null +++ b/demo/documented/nonlinear-poisson/common.txt @@ -0,0 +1,83 @@ +This demo illustrates how to: + +* Solve a nonlinear partial differential equation (in this case a nonlinear variant of Poisson's equation) +* Create and apply Dirichlet boundary conditions +* Define an :py:class:`Expression ` +* Define a :py:class:`FunctionSpace ` +* Create a :py:class:`SubDomain ` + +The solution for :math:`u` in this demo will look as follows: + +.. image:: ../plot_u.png + :scale: 75 % + +and the gradient of :math:`u` will look like this: + +.. image:: ../plot_u_gradient.png + :scale: 75 % + +Equation and problem definition +------------------------------- + +For a domain :math:`\Omega \subset \mathbb{R}^N` with boundary +:math:`\partial \Omega = \Gamma_{D} \cup \Gamma_{N}`, we consider the +following nonlinear Poisson equation with particular boundary +conditions reads: + +.. math:: + + - \nabla\cdot((1 + u^2) \nabla u) &= f \quad {\rm in}\, \Omega,\\ + u &= 1 \quad {\rm on}\, \Gamma_D,\\ + \nabla u\cdot n &= 0 \quad {\rm on}\, \Gamma_N. + +Here :math:`f` is input data and :math:`n` denotes the outward +directed boundary normal. The nonlinear variational form can be +written in the following canonical form: find :math:`u \in V` such that + +.. math:: + + F(u;v)=0\quad \forall\,v\in\hat{V} + +Here :math:`F:V\times\hat{V}\rightarrow\mathbb{R}` is a semilinear +form, linear in the argument subsequent to the semicolon, and +:math:`V` is some suitable function space. The semilinear form is +defined as follows: + +.. math:: + + F(u;v) = \int_\Omega (1 + u^2)\cdot\nabla(u)\cdot \nabla(v) - f v \,{\rm dx} = 0. + +To solve the nonlinear system :math:`b(U) = 0` by Newton's method we +compute the Jacobian :math:`A = b'`, where :math:`U` is the +coefficients of the linear combination in the finite element solution +:math:`u_h = \sum_{j=1}^{N}U_j\phi_j, \; +b:\mathbb{R}^N\rightarrow\mathbb{R}^N` and + +.. math:: + + b_i(U) = F(u_h;\hat{\phi}_i),\quad i = 1,2,\dotsc,N. + +Linearizing the semilinear form :math:`F` around :math:`u = u_h`, we obtain + +.. math:: + + F'(u_h;\delta u,v) = \int_\Omega [(\delta u\nabla u_h)\cdot\nabla v + ((1+u_h)\nabla\delta u)\nabla v] \,{\rm dx} + +We note that for each fixed :math:`u_h`, :math:`a = F'(u_h;\,\cdot\,,\,\cdot\,)` is a bilinear form and :math:`L = F(u_h;\,\cdot\,,\,\cdot\,)` is a linear form. In each Newton iteration, we thus solve a linear variational problem of the canonical form: +find :math:`\delta u \in V_{h,0}` such that + +.. math:: + + + F'(u_h;\delta u,v) = F(u_h;v)\quad\forall\,v\in\hat{V}_h. + + +In this demo, we shall consider the following definitions of the input function, the domain, and the boundaries: + +* :math:`\Omega = [0,1] \times [0,1]\,\,\,` (a unit square) +* :math:`\Gamma_{D} = \{(1, y) \subset \partial \Omega\}\,\,\,` (Dirichlet boundary) +* :math:`\Gamma_{N} = \{(x, 0) \cup (x, 1) \cup (0, y) \subset \partial \Omega\}\,\,\,` (Neumann boundary) +* :math:`f(x, y) = x\sin(y)\,\,\,` (source term) + + + diff --git a/demo/documented/nonlinear-poisson/cpp/CMakeLists.txt b/demo/documented/nonlinear-poisson/cpp/CMakeLists.txt new file mode 100644 index 0000000..ca1cf26 --- /dev/null +++ b/demo/documented/nonlinear-poisson/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_nonlinear-poisson) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/nonlinear-poisson/cpp/NonlinearPoisson.h b/demo/documented/nonlinear-poisson/cpp/NonlinearPoisson.h new file mode 100644 index 0000000..3618a8f --- /dev/null +++ b/demo/documented/nonlinear-poisson/cpp/NonlinearPoisson.h @@ -0,0 +1,2550 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __NONLINEARPOISSON_H +#define __NONLINEARPOISSON_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class nonlinearpoisson_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + nonlinearpoisson_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~nonlinearpoisson_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new nonlinearpoisson_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class nonlinearpoisson_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + nonlinearpoisson_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~nonlinearpoisson_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new nonlinearpoisson_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class nonlinearpoisson_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + nonlinearpoisson_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~nonlinearpoisson_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W3[3] = {0.166666666666667, 0.166666666666667, 0.166666666666667}; + // Quadrature points on the UFC reference element: (0.166666666666667, 0.166666666666667), (0.166666666666667, 0.666666666666667), (0.666666666666667, 0.166666666666667) + + // Values of basis functions at quadrature points. + static const double FE0[3][3] = \ + {{0.666666666666667, 0.166666666666667, 0.166666666666667}, + {0.166666666666667, 0.166666666666667, 0.666666666666667}, + {0.166666666666667, 0.666666666666667, 0.166666666666667}}; + + static const double FE0_D01[3][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc0[2] = {0, 2}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 3; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 12. + double G[3]; + G[0] = det*(K[0]*K[2] + K[1]*K[3]); + G[1] = det*(K[2]*K[2] + K[3]*K[3]); + G[2] = det*(K[0]*K[0] + K[1]*K[1]); + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 168 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + + // Total number of operations to compute function values = 8 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE0_D01[ip][r]*w[1][nzc1[r]]; + F1 += FE0_D01[ip][r]*w[1][nzc0[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 12 + for (unsigned int r = 0; r < 3; r++) + { + F2 += FE0[ip][r]*w[1][r]; + F3 += FE0[ip][r]*w[0][r]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 22 + double I[3]; + // Number of operations: 10 + I[0] = W3[ip]*(F0*G[0] + F1*G[1] + F2*F2*(F0*G[0] + F1*G[1])); + + // Number of operations: 10 + I[1] = W3[ip]*(F0*G[2] + F1*G[0] + F2*F2*(F0*G[2] + F1*G[0])); + + // Number of operations: 2 + I[2] = - F3*W3[ip]*det; + + + // Number of operations for primary indices: 6 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[j] += FE0[ip][j]*I[2]; + } // end loop over 'j' + + // Number of operations for primary indices: 8 + for (unsigned int j = 0; j < 2; j++) + { + // Number of operations to compute entry: 2 + A[nzc0[j]] += FE0_D01[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc1[j]] += FE0_D01[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class nonlinearpoisson_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + nonlinearpoisson_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~nonlinearpoisson_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W3[3] = {0.166666666666667, 0.166666666666667, 0.166666666666667}; + // Quadrature points on the UFC reference element: (0.166666666666667, 0.166666666666667), (0.166666666666667, 0.666666666666667), (0.666666666666667, 0.166666666666667) + + // Values of basis functions at quadrature points. + static const double FE0[3][3] = \ + {{0.666666666666667, 0.166666666666667, 0.166666666666667}, + {0.166666666666667, 0.166666666666667, 0.666666666666667}, + {0.166666666666667, 0.666666666666667, 0.166666666666667}}; + + static const double FE0_D01[3][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc0[2] = {0, 2}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 9; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 27. + double G[6]; + G[0] = det*(K[2]*K[2] + K[3]*K[3]); + G[1] = det*(K[0]*K[2] + K[1]*K[3]); + G[2] = det*(K[0]*K[0] + K[1]*K[1]); + G[3] = 2.0*det*(K[0]*K[2] + K[1]*K[3]); + G[4] = 2.0*det*(K[2]*K[2] + K[3]*K[3]); + G[5] = 2.0*det*(K[0]*K[0] + K[1]*K[1]); + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 360 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + + // Total number of operations to compute function values = 8 + for (unsigned int r = 0; r < 2; r++) + { + F1 += FE0_D01[ip][r]*w[0][nzc1[r]]; + F2 += FE0_D01[ip][r]*w[0][nzc0[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 3; r++) + { + F0 += FE0[ip][r]*w[0][r]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 22 + double I[5]; + // Number of operations: 4 + I[0] = G[0]*W3[ip]*(1.0 + F0*F0); + + // Number of operations: 4 + I[1] = G[1]*W3[ip]*(1.0 + F0*F0); + + // Number of operations: 4 + I[2] = G[2]*W3[ip]*(1.0 + F0*F0); + + // Number of operations: 5 + I[3] = F0*W3[ip]*(F1*G[3] + F2*G[4]); + + // Number of operations: 5 + I[4] = F0*W3[ip]*(F1*G[5] + F2*G[3]); + + + // Number of operations for primary indices: 48 + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc0[j]*3 + nzc0[k]] += FE0_D01[ip][j]*FE0_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[nzc0[j]*3 + nzc1[k]] += FE0_D01[ip][j]*FE0_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc1[j]*3 + nzc0[k]] += FE0_D01[ip][j]*FE0_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc1[j]*3 + nzc1[k]] += FE0_D01[ip][j]*FE0_D01[ip][k]*I[2]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 36 + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[nzc0[j]*3 + k] += FE0[ip][k]*FE0_D01[ip][j]*I[3]; + // Number of operations to compute entry: 3 + A[nzc1[j]*3 + k] += FE0[ip][k]*FE0_D01[ip][j]*I[4]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class nonlinearpoisson_form_0: public ufc::form +{ +public: + + /// Constructor + nonlinearpoisson_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~nonlinearpoisson_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "677a2b61464428b34fde07b7921aeeb31afd08f4f6d69de2edc504610ef33ea0176ca502bd873f98c2093072d09c358d5ca46c69c3283733037669f6273fb6fa"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 2; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new nonlinearpoisson_finite_element_0(); + break; + } + case 1: + { + return new nonlinearpoisson_finite_element_0(); + break; + } + case 2: + { + return new nonlinearpoisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new nonlinearpoisson_dofmap_0(); + break; + } + case 1: + { + return new nonlinearpoisson_dofmap_0(); + break; + } + case 2: + { + return new nonlinearpoisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new nonlinearpoisson_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class nonlinearpoisson_form_1: public ufc::form +{ +public: + + /// Constructor + nonlinearpoisson_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~nonlinearpoisson_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "f1695d3d91a4300d644a6515716cf3a728ba760d698765fc102a4d0859bc04b758fcc852aad55b32e2edecca1c3e7f8f276211c86b1e4ecfb1e1e231b7b68d75"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new nonlinearpoisson_finite_element_0(); + break; + } + case 1: + { + return new nonlinearpoisson_finite_element_0(); + break; + } + case 2: + { + return new nonlinearpoisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new nonlinearpoisson_dofmap_0(); + break; + } + case 1: + { + return new nonlinearpoisson_dofmap_0(); + break; + } + case 2: + { + return new nonlinearpoisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new nonlinearpoisson_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace NonlinearPoisson +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class CoefficientSpace_u: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_u(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_u() + { + } + +}; + +class Form_F_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_F_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_F_FunctionSpace_1; + +typedef CoefficientSpace_u Form_F_FunctionSpace_2; + +class Form_F: public dolfin::Form +{ +public: + + // Constructor + Form_F(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 2), f(*this, 0), u(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_0()); + } + + // Constructor + Form_F(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& u): + dolfin::Form(1, 2), f(*this, 0), u(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + this->u = u; + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_0()); + } + + // Constructor + Form_F(const dolfin::FunctionSpace& V0, std::shared_ptr f, std::shared_ptr u): + dolfin::Form(1, 2), f(*this, 0), u(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + this->u = *u; + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0): + dolfin::Form(1, 2), f(*this, 0), u(*this, 1) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& u): + dolfin::Form(1, 2), f(*this, 0), u(*this, 1) + { + _function_spaces[0] = V0; + + this->f = f; + this->u = u; + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0, std::shared_ptr f, std::shared_ptr u): + dolfin::Form(1, 2), f(*this, 0), u(*this, 1) + { + _function_spaces[0] = V0; + + this->f = *f; + this->u = *u; + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_0()); + } + + // Destructor + ~Form_F() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + else if (name == "u") + return 1; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + case 1: + return "u"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_F_FunctionSpace_0 TestSpace; + typedef Form_F_FunctionSpace_1 CoefficientSpace_f; + typedef Form_F_FunctionSpace_2 CoefficientSpace_u; + + // Coefficients + dolfin::CoefficientAssigner f; + dolfin::CoefficientAssigner u; +}; + +class Form_J_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_J_FunctionSpace_0() + { + } + +}; + +class Form_J_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new nonlinearpoisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new nonlinearpoisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_J_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_u Form_J_FunctionSpace_2; + +class Form_J: public dolfin::Form +{ +public: + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 1), u(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_1()); + } + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& u): + dolfin::Form(2, 1), u(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->u = u; + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_1()); + } + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr u): + dolfin::Form(2, 1), u(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->u = *u; + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 1), u(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& u): + dolfin::Form(2, 1), u(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->u = u; + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr u): + dolfin::Form(2, 1), u(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->u = *u; + + _ufc_form = std::shared_ptr(new nonlinearpoisson_form_1()); + } + + // Destructor + ~Form_J() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "u") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "u"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_J_FunctionSpace_0 TestSpace; + typedef Form_J_FunctionSpace_1 TrialSpace; + typedef Form_J_FunctionSpace_2 CoefficientSpace_u; + + // Coefficients + dolfin::CoefficientAssigner u; +}; + +// Class typedefs +typedef Form_J BilinearForm; +typedef Form_J JacobianForm; +typedef Form_F LinearForm; +typedef Form_F ResidualForm; +typedef Form_F::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/nonlinear-poisson/cpp/NonlinearPoisson.ufl b/demo/documented/nonlinear-poisson/cpp/NonlinearPoisson.ufl new file mode 100644 index 0000000..5ebcf7c --- /dev/null +++ b/demo/documented/nonlinear-poisson/cpp/NonlinearPoisson.ufl @@ -0,0 +1,35 @@ +# Copyright (C) 2005 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Harish Narayanan 2009 +# Modified by Anders Logg 2011 +# +# The residal form F and the Jacobian (linearised) form J +# for the nonlinear equation - div (1+u^2) grad u = f +# +# Compile this form with FFC: ffc -l dolfin NonlinearPoisson.ufl + +element = FiniteElement("Lagrange", triangle, 1) + +f = Coefficient(element) +u = Coefficient(element) +v = TestFunction(element) + +F = inner((1 + u**2)*grad(u), grad(v))*dx - f*v*dx + +du = TrialFunction(element) +J = derivative(F, u, du) diff --git a/demo/documented/nonlinear-poisson/cpp/compile.log b/demo/documented/nonlinear-poisson/cpp/compile.log new file mode 100644 index 0000000..168fb8c --- /dev/null +++ b/demo/documented/nonlinear-poisson/cpp/compile.log @@ -0,0 +1,494 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form NonlinearPoisson + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'F' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 2 + Coefficients: '[w_0, w_1]' + Coefficient names: '[f, u]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 5 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + + Name: 'J' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, du]' + Number of coefficients: 1 + Coefficients: '[w_1]' + Coefficient names: '[u]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 4 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.038409 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {3: {FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {None: {(0, 1): array([[-1.0, -0.99999999999999989, -0.99999999999999989], + [0.0, 1.1102230246251565e-16, 1.1102230246251565e-16], + [1.0, 0.99999999999999978, 0.99999999999999978]], dtype=object), (1, 0): array([[-1.0, -1.0, -1.0], + [1.0, 1.0, 1.0], + [0.0, 0.0, 0.0]], dtype=object), (0, 0): array([[0.66666666666666685, 0.16666666666666674, 0.16666666666666669], + [0.16666666666666663, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666666, 0.66666666666666652, 0.16666666666666663]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 0.66666667, 0.16666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.16666667, 0.66666667], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.66666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.66666667, 0.16666667, 0.16666667]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.16666667, 0.66666667]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.66666667, 0.16666667]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE0_D01': array([[-1.0, 0.0, 1.0], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978]], dtype=object), 'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0': array([[0.66666666666666685, 0.16666666666666663, 0.16666666666666666], + [0.16666666666666674, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666669, 0.66666666666666652, 0.16666666666666663]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + tables: {'FE0_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE0_D01': array([[-1.0, 0.0, 1.0], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978]], dtype=object), 'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0': array([[0.66666666666666685, 0.16666666666666663, 0.16666666666666666], + [0.16666666666666674, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666669, 0.66666666666666652, 0.16666666666666663]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + name_map: {} + + inv_name_map: {'FE0_D10': 'FE0_D10', 'FE0_D01': 'FE0_D01', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C1_D10': 'FE1_C1_D10', 'FE0': 'FE0', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE0_D01': array([[-1.0, 1.0], + [-0.99999999999999989, 0.99999999999999978], + [-0.99999999999999989, 0.99999999999999978]], dtype=object), 'FE0': array([[0.66666666666666685, 0.16666666666666663, 0.16666666666666666], + [0.16666666666666674, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666669, 0.66666666666666652, 0.16666666666666663]], dtype=object)} + + QG-utils, psi_tables, name_map: + {'FE0_D10': ('FE0_D01', (1, [0, 1]), False, False), 'FE0_D01': ('FE0_D01', (0, [0, 2]), False, False), 'FE1_C0': ('FE0', (2, [0, 1, 2]), False, False), 'FE1_C1': ('FE0', (5, [3, 4, 5]), False, False), 'FE1_C1_D10': ('FE0_D01', (7, [3, 4]), False, False), 'FE0': ('FE0', (), False, False), 'FE1_C1_D01': ('FE0_D01', (6, [3, 5]), False, False), 'FE1_C0_D01': ('FE0_D01', (3, [0, 2]), False, False), 'FE1_C0_D10': ('FE0_D01', (4, [0, 1]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {3: {FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {None: {(0, 1): array([[-1.0, -0.99999999999999989, -0.99999999999999989], + [0.0, 1.1102230246251565e-16, 1.1102230246251565e-16], + [1.0, 0.99999999999999978, 0.99999999999999978]], dtype=object), (1, 0): array([[-1.0, -1.0, -1.0], + [1.0, 1.0, 1.0], + [0.0, 0.0, 0.0]], dtype=object), (0, 0): array([[0.66666666666666685, 0.16666666666666674, 0.16666666666666669], + [0.16666666666666663, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666666, 0.66666666666666652, 0.16666666666666663]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 0.66666667, 0.16666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.16666667, 0.66666667], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.66666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.66666667, 0.16666667, 0.16666667]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.16666667, 0.66666667]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.66666667, 0.16666667]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE0_D01': array([[-1.0, 0.0, 1.0], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978]], dtype=object), 'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0': array([[0.66666666666666685, 0.16666666666666663, 0.16666666666666666], + [0.16666666666666674, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666669, 0.66666666666666652, 0.16666666666666663]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + tables: {'FE0_D10': array([[-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0], + [-1.0, 1.0, 0.0]], dtype=object), 'FE0_D01': array([[-1.0, 0.0, 1.0], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978], + [-0.99999999999999989, 1.1102230246251565e-16, 0.99999999999999978]], dtype=object), 'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0': array([[0.66666666666666685, 0.16666666666666663, 0.16666666666666666], + [0.16666666666666674, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666669, 0.66666666666666652, 0.16666666666666663]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + name_map: {} + + inv_name_map: {'FE0_D10': 'FE0_D10', 'FE0_D01': 'FE0_D01', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C1_D10': 'FE1_C1_D10', 'FE0': 'FE0', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE0_D01': array([[-1.0, 1.0], + [-0.99999999999999989, 0.99999999999999978], + [-0.99999999999999989, 0.99999999999999978]], dtype=object), 'FE0': array([[0.66666666666666685, 0.16666666666666663, 0.16666666666666666], + [0.16666666666666674, 0.16666666666666663, 0.66666666666666652], + [0.16666666666666669, 0.66666666666666652, 0.16666666666666663]], dtype=object)} + + QG-utils, psi_tables, name_map: + {'FE0_D10': ('FE0_D01', (1, [0, 1]), False, False), 'FE0_D01': ('FE0_D01', (0, [0, 2]), False, False), 'FE1_C0': ('FE0', (2, [0, 1, 2]), False, False), 'FE1_C1': ('FE0', (5, [3, 4, 5]), False, False), 'FE1_C1_D10': ('FE0_D01', (7, [3, 4]), False, False), 'FE0': ('FE0', (), False, False), 'FE1_C1_D01': ('FE0_D01', (6, [3, 5]), False, False), 'FE1_C0_D01': ('FE0_D01', (3, [0, 2]), False, False), 'FE1_C0_D10': ('FE0_D01', (4, [0, 1]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.126413 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Optimising expressions for cell integral + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.00921893 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.06299 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.0010159 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./NonlinearPoisson.h. + +Compiler stage 5 finished in 0.00142002 seconds. + +FFC finished in 0.240043 seconds. diff --git a/demo/documented/nonlinear-poisson/cpp/documentation.rst b/demo/documented/nonlinear-poisson/cpp/documentation.rst new file mode 100644 index 0000000..75e82a5 --- /dev/null +++ b/demo/documented/nonlinear-poisson/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the nonlinear Poisson demo from DOLFIN. + +.. _demo_pde_nonlinear-poisson_cpp_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/nonlinear-poisson/cpp/main.cpp b/demo/documented/nonlinear-poisson/cpp/main.cpp new file mode 100644 index 0000000..1d9b21e --- /dev/null +++ b/demo/documented/nonlinear-poisson/cpp/main.cpp @@ -0,0 +1,115 @@ +// Copyright (C) 2006-2007 Garth N. Wells +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Anders Logg, 2005-2011. +// +// First added: 2005 +// Last changed: 2012-11-12 +// +// This demo illustrates how to use of DOLFIN for solving a nonlinear +// PDE, in this case a nonlinear variant of Poisson's equation, +// +// - div (1 + u^2) grad u(x, y) = f(x, y) +// +// on the unit square with source f given by +// +// f(x, y) = x*sin(y) +// +// and boundary conditions given by +// +// u(x, y) = 1 for x = 0 +// du/dn(x, y) = 0 otherwise +// +// This is equivalent to solving the variational problem +// +// F(u) = ((1 + u^2)*grad(u), grad(v)) - (f, v) = 0 + +#include +#include "NonlinearPoisson.h" + +using namespace dolfin; + +// Right-hand side +class Source : public Expression +{ +public: + + Source() : Expression() {} + + void eval(Array& values, const Array& x) const + { + values[0] = x[0]*sin(x[1]); + } + +}; + +// Sub domain for Dirichlet boundary condition +class DirichletBoundary : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return std::abs(x[0] - 1.0) < DOLFIN_EPS && on_boundary; + } +}; + +int main() +{ + // Use Trilinos if available + #ifdef HAS_TRILINOS + parameters["linear_algebra_backend"] = "Epetra"; + #endif + + // Create mesh and define function space + UnitSquareMesh mesh(16, 16); + NonlinearPoisson::FunctionSpace V(mesh); + + // Define boundary condition + DirichletBoundary dirichlet_boundary; + Constant g(1.0); + DirichletBC bc(V, g, dirichlet_boundary); + + // Define source and solution functions + Source f; + Function u(V); + + // Create residual form defining (nonlinear) variational problem + NonlinearPoisson::LinearForm F(V); + F.u = u; F.f = f; + + // Create Jacobian form J = F' (for use in nonlinear solver). + NonlinearPoisson::JacobianForm J(V, V); + J.u = u; + + // Create solver Parameters + Parameters params("nonlinear_variational_solver"); + Parameters newton_params("newton_solver"); + newton_params.add("relative_tolerance", 1e-6); + params.add(newton_params); + + // Solve nonlinear variational problem + solve(F == 0, u, bc, J, params); + + // Save solution in VTK format + File file("nonlinear_poisson.pvd"); + file << u; + + // Plot solution + plot(u); + interactive(); + + return 0; +} diff --git a/demo/documented/nonlinear-poisson/cpp/plot.py b/demo/documented/nonlinear-poisson/cpp/plot.py new file mode 100644 index 0000000..6fef0d3 --- /dev/null +++ b/demo/documented/nonlinear-poisson/cpp/plot.py @@ -0,0 +1,10 @@ +# Load mayavi +from mayavi import * + +# Plot solution +v = mayavi() +d = v.open_vtk_xml("nonlinear_poisson000000.vtu", 0) +m = v.load_module("BandedSurfaceMap", 0) + +# Wait until window is closed +v.master.wait_window() diff --git a/demo/documented/nonlinear-poisson/plot_u.png b/demo/documented/nonlinear-poisson/plot_u.png new file mode 100644 index 0000000000000000000000000000000000000000..a7400a3085a7f3f4c5667c92f8fa064ba69b8261 GIT binary patch literal 25785 zcmeEtWm8;Hw2}C$tI4CG6L@7z2G8EKDO(>`jF|Z#YE3X=%lTc8^P*Ol) zRkw`O4$pRdHTU!92v-VnXa`nYNv;&qZhC81ouDa?iY6zOmGLI_UqXncu(GoUZeE1wjvL9$c4ip{lA-B#D+`~8K zo5Y^PcI-U&Sag2t%6F*FY2~D4}9M z6v)FKu%U=R)-u0{z(PUg%nHFmE_K3%C4qwaDgTM&GZfU6C2=6+0v^Qw|EK@Q1F`oJ z9*dDJYI=G)H+j9*c(6z=eW6Ovb0=1UQLpVLK}EjxsH{B8^Q_fyNnjk?`qXI^k{1Sf zx-QG6zmNz>^V03wEKgS&qxr6eP)0YL7xm1uz3-NmmeSa*7b?>6UGY5yuC_{6G>xTOPHYtzO!PIUt z$mg_iG0SO23Yq_A>gDnJm+`C9&naq1rlKwCI*z}+K3BJ2ja*L(b}0*!rg7SDBr)i4 z*sVP*8Aq@CJfF^5Z+%YvuM$X^w%P2=3}I|L$h(;Xwzrwzl+yO3_t#>4@IN)3*`9a*oMZ^bk$geiPO3EDvMD=!{0UVVGwl+8!PIO-cS6gcgM?eR8M-hVZ(onQxVm{hq^#oi_Hipg`W)=qo2dT(la(08$T;CO*;?dy6ieo z7f_~=n|yLjF`#}9e-eSE6gfR6mo*z|0QqNYM57>8ii78vRZQ~|lM+ctJ+{uXw_xZi z3(eo2h^TDvpmOYq0}WUt#lgB)H?})wai1mvE5ml1#NG&(s>va?In zpvG*F#v`C_H6@lT)%D-XXKg>C%0&qc+~U+Rto%(s)RZx)h|5a&OLJ)iRPW3>a0?hunw(QzAv4;Ge?9X{uEdP9tw?PMdTkl*egpwt(B-| zc#RQf%C}1J#7wK{aogVzyH#~R3UJHD1LRQ8O`}ZDT>Gvb<~?q0zKQxKe}OU(g5^a_ z$JIg!O)ZK&LLk7)RB%DyJQPDR)%^1q7EGtED7?Px>@c!3iEYdf3oseRw$mZq3Z~E@ z&7;__qOv}kDrXmbx*-s4VTPj24uCIO{YdJM;vaT0hxul|>M;9}wXRXgiyc^E2D@k? zOA)>R#K7Id6rc04V#T&t=lU|W`S*^ns2 zu0@_2Gu<>N!5x}l#WbZ_ZyYIeZrz*K7DJDrg`V{K%i>G_G#+Y9 zia2n6cggid+p$PUn4@l%Yqd2xXct`+Q&Q$KCv$;3cE!f30O5NuO=giDP1l#&emFP> z(Fk%46>78El?N8&{0Z8!@Rn(5QJ}=@UXV#-;|-YUCHhM*6gDjk)(v;Er^8PamsB^j z-N2)1y`G-F7_$KBWB6yi84c#RCFw7*ahzmvf2h+buH>^4w}B@ux2riBMQH}+72(22 z#~~J)u7*cJ*h$sX7p%Jdw}g+!??DwL))l7&5BptqmV{9C1h9s`l)!${`+Og=WlxV+ z`v_)FBIlC|-D1LHX3c^a#c##V>bAWpz3_YyGiC!?Q!;g@ZB0J&Q_jYz`yvI}_D&MJAW+|p}m&JXl-&TKQ$?z%gx0p<} z{4xW!Lb0!(!&K9==5AOl;>^^)cbWJ!<9DhH%wV2#Do;Y2+B?BT;{HHs4H%%H{4n#7 zUn+p(yVIcE+I#K0l{sH98?f2gR(%X*;Ngejl3=`fNkoN-FxTt!BXYJdD%CAVmkk9k zIZ-HUY%>1IoGDEv zxNlB3avx33bfVy<9TNYQpDd&fVTl8CD4TcIG|!>AHx0f6M%`(fHjYdTR;2z4&F>ZM zvTZ;E7Azhcu@+!4t>{9G<|;01AE8K+rPzIodf2MnJ zg^N&6N?!X&U907a__Z)ZaR?H>NgXG3JL?Oz2z_;!;_UZ&7WgcNjqx;lmngq{bLy zi9OOHJRWGrxf(GPCORN1XJWA?sOOD5wSg#kQ0(xDh{>5a+ISOWM;jG2w-H5atAAZ08(q=k9nlz3;k!AJR z=c=Wh7p~ixzYv38iMb~ZT?>zl+iH>BljW%6ysRbt#w}0i68?s5m)cZhU~7M5AWWt%1}Q` zKZz`9vDo?J)}{Xy)!7rP)AGjGB!2w;T4(IJi~G>kiekZju*l^?z1<*7LdqUiS7@t5 zZxfb|ZAm4AylN})!}xY@6$mWnMP;eyX0cxM{)maV z?v4-c)xUwjIUQ#VEm5%9i>Ggi9vW0UbYM+5{&f?`ek4v(i5!Vzn5$M;Lce(X2;~qQ z?ZMnMoYn4NLL0tATPBK>+wU<@E{9p;`B)1~XsJ&OF60frNBfs<;j zbbqv5ojYIwtu?#-`UDI!4~qLi;ccsXlrQ$A`W$OA6ou!bAs21YexHY|7S1@3{b(s9eo+!;q=)oEL4S_;XRIe8Uw({WSa8)^dwTt6UR8-j`(g zPL;gq)xmW+_0aJy3IKVSX5kUifCARQ#aEUJqeoSf4jWvGIei!dwR)R#XpMMw@TA>@ z9y1jBXOSgSY2(1w>004kdRFKzl;{llJ`8f(eR5`iD&k+-5mfFd@z7llfElT@^F^Fm zPfrTY&Tq=VDfN0YHVjUVujOe^gDszM8f+a<=Ia-v^md!BF6f{!3bSk&C5yD4icN;! zF1pNdp$xtg2MST}ic@<@3b-59xXb|<$kOp~l|Rl;Gl>58`B=}dhJRZN2;bt zO1Dy%B#S50x%6ED`&pr7P12n6up`Fpse9%2%J#^bDM#ke?HmlN=O}!o7nX=fG~t3F z7zzTE<4<6W+E;ue(irKn7%Bwfm`{=hod8b!WSZkmvfMGU#;3v`ViD$1)U#4T_lDn?diXN8O!tL4Owy8If` zt2KFj4G@PlV;AR-TE{({VRKVP1S%V9GBMDZdt0Hws@;l5Iu3j=lB=45SC)7K+Ex$> zB&29#uvZ1KgKKC_*J#p<@akfvALnm;y6lg21qBBN&)qUXa47(313i5`yTG_P>zgK= zI=c?Z4b#sCP>}uBcO_gigS8|`?pxVrTVajV1RM2!=T!D zny3`e2RV&cmoh~C46VWi->8*-3@>Ww#UMU`L8(8r9vpF!N~x`7h}Q*z`ckx*0X@c` z-hPWfG2alMleD}tmp^A65)tVO*Q<#Wx0W=tf&w+hu4mq~=FG~nG$gIXz^Ccy7UuT3 z6g|(rkH(k7qBxY*^HfShf;<|1#;SRd139%R%q0B;$H!Xx-4?q{UG8CfUSr)jlKGNy zdll;8J!A+!a`D}N3yS13FhL2AtZj2k(jXu4hi9epZxjJ9hwVy(%jpVPG@rxaOkr_` z!-$%O-tC&>q}Xzn@7v>j$GLa4*DhVOz|%qY`(w86;_r=HFwwi4KS%U9tIA7$8st>v z-a?GHop!sd*!@$JKq_9GB*t5cSPiY@cZ9QJkKZf-aKS|dYGEW=o2C_$)b-aAdH^nX zM@pK!Nt(qHmJQ3BAqU>mdsCGm;z%KpY2aQX{v~*Sd6*(u_iBK%^D@%j%NSI6)^=P4 z!GDgce%pC@c|j0^t{a)In?7^}-5>oJg3tAW&kx|}XB%T<<7%JV^3CUsdqO_9i`#17 zSIAji@Sz(y%j2jNeX%DMDzGL1`?Q#y;>QtD`EB+mY?QABjDAJx6%CykpI3I?`rTclH?hMQKnyrBWxOvO@oQ{2SG-zz=imGUYi+)`=8@o|l<2CJ@&-G%SSO=V+v zdMB@n89?US@1`p-S&+v(8^E(~zZ}3@#d6{Ky9MDs_n=RhVUUk@FBq7`&cLYX|A~Q_0-;erQtC57oo@d z^QIuT25TW?+LaI&3={NTSQf`kT!1&ban}RLJJ=}abu12fF>Mi`y(epp?ot(y17zQ7 zc`kfZg%K;ht-GC-7%~=wmKm|b?kjL~cOki0PShG}k0k4~m=GaU`MRlggLGFOFARHV zK?7Dd%gHmF+GtVrcRFtO*0arpSwaXkBz0I zJ&H3$-O3`36_(02ohh@T?5!^L5nL3+)t{BeHWT~_Z}&3Hv?0fOtxXB7ziC~5D}pV6 zH>lM87HNHh$kt2T@+H8sJ+C2wsVAztZ>iIp7gf(`TI{e?hN@V?7~A5W4S#VbFD6XP(RU{Un;qMx9uSVE#D9^>lIZbV=sS#9Z1HePEqy zxz`}(r!vm#q;D(_ok-{4Y=MBHgSCRhAnm>gh(us_$B(^r9VIcSn=ary*%r7H#i7suOYmDShvw(&CVV=gs%GAS``JVAs88 z7pGX0JSA+TOE{M8lbmnGt%LXr*^q14Vd`CNRo&+mRmr%4G+yfk>m%G4smags;2r82 zYc1_O|0D^T*%+E(W7m zTh11_b{y-en4cAVh^{eixGry?=cZyIOH<6?OpuyUO)u`%Oqpi|4DhprUK6sgbvVsZ|W% zz=FrH_1I&TRg2u4kE?A&&IZic@z672&bt)MI-bG-q7zHmGAFgl?CylN*=Zws4kK1^ z?AYyMKUf3GVt3R1t+HwXY>YNln;?ZS%$0+w!2J{yGiHA4)`C_+F+q5?4gIzEL=%&F z_b7w9e+6p)GGOlo#@lQ;$P3@NYih34s^7aDB-*Sq9j$EMcpA6&xgG_*UCk8Az?8e& zn22*3v-ZF;H|}K6%H5}V4PxS4kJCiuZ|UbKdj?m0*pk#Y$e1{ZO`_A!p~hJ4UK7sZ zrag#K2|{|>;xia!@l;d66fB90x%^mZPwQYZ|1vBZ3RtM&MIj9A!{iAb>PMCB?Tsr> zY9v^9rb-=%(cHBNt>Au2+Z*Zr{4gXTaP@CYIEFK&{!z=rCglkex-}Gm z&TjTQX>3MS5C25WV3B)E%wnXn8?c7H|LHe*omjKj2swJwfrzX{&7A_thS>EIIKKgXAz%31_$GPVw-md$k z=Y}ZIr*i8AI(Is%+q0l^IC0oswls0*+1av)l1XAmfo{QTP1%DhQ8Gu$A-Jwi#w@!& z8TT6?u_Ok&-K4C60m#ydxu5|umtnxVl&oysN%3Y|Su9@-OBCaFCFM{WVqSM0Rk6< zV0G+{y$ojvwN1DV9Z}aU6g(p71$OnB7gexOS*Zw4;K3YBvpkmA<1=+9XK z!^1#BGeOiWAL0-73znMITa;dm9OrIfY1q$>nJLE_rS^NMKb0zbwgnS>sFL_D|CXEH8r? z1$Ii`F8QmGM{y`L;;Pi_LK<+`eyqg-ztz4Cg@5g0&X=-X+b$D3WDzGcak60@55l-< zoZC4sci5LR6-%#as(lg1A=P0>Rj_x~R2ObsnLnm0s~`h{89U~PscRf|M|jU#j3HDD zmcHB8-gx>Vgiy1X&U-%leLhT;t=sN)X)bV`YSsD*A=~UaZWqFtIv*OVy-y*;i#*R^ z0i+dfmxEr9Agq~v%T{pbhBp^0Ks_BBW{;f7qka!netWjzxG61tYR?d9$&6@`RSXSV z?Z6vYjzum=ip}z{5P5%HA>-Ob6M-6>aqD->U5T8BtDasf5OI=m{sbL)){G(F>S--; z@zdL31%?a~W2}=9`pA)8=wP|kasOYhguIjW=HrB`&r`AQ z(@wm?8(8oSoZNX+hz@W*cH{eCUibK#Rrd)pe~PvrjK6a`ia+C}tbLESwfZ^OxiYty z-FiySjK#HEN+}?ZrPTMy(x)D;)c=gDf*^qht5C-$sa==m=pbSKJ4q~eDhdz7H<1I- z<$-hTV79fEkrC!DkvV&Gd;%w9V242fib!6}Aj?;xW`UpDhp%t0lpwT}=`j=%pv5;u z7vjiQl?mR!YHUXT|JDLv)=L*52&h3jK&$OWI6M2JVVk1U4wXg1710hIU!p5^ShU(K z><odK?PvAT%odx1k7vPc(>R=j7J3Ltf?xX+v9&@+Ej>&I*I`Ya zeaPwagxtQ#LO~#3i<=&{5kT+KEm_Tn#^^G!EdKn47l2-JLM8V>Hi&QJdH#W}xUm=aDK zZI^~MUCVz9v`_IIkf*S(P^_I%9Zu#vP`%z1YgV(z!pTozYs5@0CAid4XWK>Jh|!D5 z(3q(4WpAQH-M^KFgU{OOvowU)U7fa6PC0_)7D<)9!K|c39*isYP=tSM=bkRS7>o&8 zPjqIt+ka4B#$3J4a-Z_?GC30S3eWLqo< zqM*-P60|Z=tEROSSzXoML0*pAuF`XVq_jv(bS^t1Mki-*lN!HH0BV`X&8TaaK&kY3 z?4SLGvNDzXmWH^TxRw}g5nr9Z!Uz?$MQ=Pd25XKWvV@`Uc6c1uAhM)Fh$ur``9z}( ztJU%KLw$r05IwpDRG;Y+CNn!)rK6ZkF^{mGnBu19Sp_w zLqmb!^SIY10Tf&@Eq3I|$~DQdnk}vFh`HXtEzFjV1=%+yjGvTdfw%#wzfc8#jMbkh zI|@d!iLscfPp23fjyVvk>ifr$)JoioBvRV2)78EG0skUFk-ptyveC|mFJIUaT$P7* z3`=PXXy+i^78bp9Bk>8ZWB9&JDbh*9(U}|Rry~94<*}Xr{YNJHu!5RK=fUKP{#Pg@ zx4;}w*%{Mp{w09v)MS9{Fy3Z)=w4dh)VRJ3xu8JD&V2&)hC7~5Dq^nhD6x!qa!j<; zolG>0US`L<$ih!uDete=)#vK7!_qaP(BUy#sZP9JLi(c`^DCi%pVZi2PjFh; zMv_(bvNyusn5;!%B&%H6p;aYMILVteI&u~fZ;?<_eG!Vr%%5V&td6upwqSD724HQU z;t}2`f|nagn6Q!Y>u@Vp_Hjo+ekQGg$!@Ik0yI5HhlPpweUid*af9c-&Ah@af@CTZ z$A=rQaT&Xw^p;}8Dk1$$oQR!2YPCj6fB%uD2)mW2Y$(7`WQyqm_P77R_!FfdrrJHI zP*St0$1hQhF6Hu3Ihw&(HcnU^9N}|f9kLg3psziI-#i*FQI2JVL61N^fXHoo3Ee^Z zWfk~$8i+P}VnP%NQarzRmP%Vtp3y8}tzn^mBa`l*=}-oI{(ju!;_v%6XB9##1~_+J z1+aWlI*IL{^-jp1arDNCk9K*QsEZ-d(8wfFV%K19WRD6eqD_HIFX0}-INXxP1dzXO z^!cfnC)Ncay1uyuMK<^yXm zfR|-n&dT=?a>nuBwSTF+5Dw*BP?&4Y?hX}68;)Y#icivi+HxM4mPg|u=fg`T=@h|% zk7Q9b1yfg*x&+CeDUf4FhLwmTNd*ecp9`H>m(8Da2vPZPv~h1RX4?&$T5Z)Go5TAb zz0bARU0d&i5=Skq0wT6Rc1$~8&zZ=vm?%i;^PpZoM5AzBb?94G_I=i=w<=puj*0BV z{j0`Spu^6u0R#zRjW43mTF`Wa9o)8ufw0$v)g2c?ow^k`ZPoU^){PXzKF2mL9z@^f z{LsrK!JYIbP}1s+o_id%>x@Xh+ty+0aI1F*8)U`ww#d)Ns#$%PTU-MdrMp7)l z%SW;m43LS%;c{@cMWnhBX$R}DkZcHVX_x2ce+j1+>VkYnkxuheSW8RMxh42r)#7tZ zxvh*i;p5~W(E)|qQ|O{5Yz<#Df?XfOvP&&a##L#SP|BHhYHBOA)f7z1k+kSnTvrKg zp8!e>W_O0QcW|wutG3p#p)L=%To4mi`oAg@vDy0-8EGl_i9LZM*{sB{lFbE_SC(NN zS1Xu+amXRh$x<)bEPcY(HK^l85p)JW0_KP!P(#bJ`A&PwGTnYP8*uS>bT7~cN^Osy zPE6aeTjYk{EMc0_ZioQL{|=>=EiX0xlQbr|p3W^gmWSM2iSI<{7Pwxtrj^)Glf7@J zM;nK*Qs1erdpBxp`|Yvs<6}i;tB{3KJHv5JeK;eUScEml71`HVbY)tv?!SK>ToqSm z#?1JYeu%uT}@hFijc>g~+V+7jJ%N27@fK}JBvU+v>MCUPqA-Fk{gIcAKTuNG z69xAaR@8%MB3LuOiAB&W9+!fC`1eE!ycv;LcZ9pPur-+kbETpx-L;Bnt^4pF&1Q=9C0@B^UnrGo6#3l@i6L)4ryXeiLCl4XNRK*$r;hH>2JT zbfiK-e8WfjSTUz>4W9|O*32J$z4=jx2d}9|1BtR6G03MG8y{bm2U<+4Xt(GjgRtk| z=c;4RY2r77*)UVsdT{Ch7_w}#&M=Vqo3(f@M^u_MHVTudS{%wUeHF^iDVN3wGCH zT1&5RcO3{s?~rz&m24A2UkJ{uh{&}PniD^SN`T020(G$~kp-2*!E!?gg?mogd6)aE zRZ+LY1BguF;=R@^s>Hm6I-vFABxH+=G@0B);aEKK zz>s--2LLH>Pt6~u6fJs&ewv8$R(_rT?mS$Yqeuy^4hJGCkM+q>mT?|NZ6wB4l}`R8 zqHf{EW@H6T?F0D7-PO8w2}g}n@&=l-G*o|y4lCXaAc0*$<$~#AzS9}v0H1|QS zC*DCc(QpxsEZ&i*?vz?y=Lm&OJJFF&$J0*)IgVe_@e7rY{JzAq&Kz&MgM;ciKatHaja3B2 zOFocfJYQ7(c>uA5niE-pV|@-XjcxoFq|7krMk;@OcrIlo^E=ZJZ=uCOT2A?MBQrkrb^W4D5bN?mc5*qjGVSqx zA_TyaR1vm!@eo_%HO@O&jr8vGQG7>uV%S*v?reQLz5uj*Uo@a@j~kvh#e97fQujmp z5dA&s+Fxctp&hLpe?Cwk)LCI!47Sjx>g9%T5Cg1os;e+wU_;OLH85^lsWzJB$oj^3 z(RS3R)OQ%JjP`(^tkmD`UbV<}mtcx)lI0}|&^S>r%z`ZyT$WSSc`dV3q_s~Fw;Ihm zVy{I*M)%#Gs6v0Zpm{m~#MSHmb`dd^gJbwP1vulw?45W5EYpY@d2FFrMrN>rozYa> zmo-#_4uVYoODL+}rgcYE@({&usQ2#xa?5 zvD7zVg)PUEIGWb3WE5YxqXbRk14Kw@Y9Xw}Fp=~P8UnZ;m4pW_?WY7Rc59TZ z3mtk{nc8wsYX(`$S7)O|PiptZm$81Dw#X)YP^AKnUGQiX&*{QE&c=c@s{lo{Z{P`+m+(K~ zpM~%Q1G99I)Fr*Ur>$$`^oZHjXHb}@kEIhpO>P9f_~h6&A+A(66Lw@q<RzeJL^nes{$E`7M1V&{OPNss$=Zb$3fkiQuYCyN${(>GBIpC5{io zuv=?XM~alyS9Rz)PAcrKY(@XK(xQ|6o(H%Ej<9~p)0%rg`21gTyYs__4Kf?_xc8Xtgru3eX zgtRI0S%Pe2Y_P_Gj`+t!c{Iz9^iQeZA~t`syrEjN=H*Jii5lLImh7G6sIs6?8+mNm zEwPE(am5_@G6)uqD#U?^d?QtvwU9{Gen*gsb35D10_Z2sk7|#!3j4hry9s+K(e~RP zxYjLMqdUXuIgr9vrgU3A>P%uGGH9JNet{c}zAvZ22*NK5}qaYvEIT#Ak5k}`iZtV;w!dGVwN zYo@*pd3Nhsshwo9n)l5L*_CTr=8)*PyHT!1XqIcC5lMX8>mm4zCLC*0rW9=tcE;)X{{nzC3&B(YV8{6f>n$pN=n^s6Xy6dkw~hb zh1c=}U46bjb;r{#u~9D&NceO>3$Rb&0&dwXp3|DAJ!{pF7FDfo;S7K4IrEjUw(eGC z79D^!4@5O^u=K(_1JS_amhMiJMmZFy>N*fy9WB+^371Q2jO(KEXOxuWz*;V(f)~k4 z=LcvhyoC*$2vyWF#HO9L@a9BHLyurU95jWG1_CRU<3r;`#YYw*e^mi%Jn?IECvubh zidz^T2_TtTq$gRDVM+>^Xp*5(-lax5y&;RNrHYMbqd<|?0jPDM={b$LTCKX_nxaQMJs! zePT%4NO)SZ>IROzKQiIBd_)2}Hj`)zjxVE(@x$B#$H6>@z!>1Qe3vzo{*&-$3W(ms zjD_7ng!bUrp2!=6Vb7>4A_FX`^;K3oHo$+HrZ7Pcnx;+y*Ps6cL4>*k$ z&qFsVzC9T6H7l>~8%ubk>snRTCj`7^^zqacklZ>@hdX4T==xV7Ja$+L`E+C50n_PQ zGiM4?QA{>|hTu9SiZJXxS0~JYP9kMVtQ@~t)zb%;LdzJT%AQVw!MSeJaKM#7o_@?K z=CP?$N@`N+h@q4E5TQ+K?=lHRG@xGKzaXBmE;q!;#5_qxcPA zl3YYsuTBe}xmRc$)?T9V`r}nZsM!x?LM!Pt8L{$8E?E2sZK-NTd6`x;0~;jlD?@gL zmbigKv?HrCT$U3$S%#z{)bUG6`rE*_qoI)>_SOB#alx{cd+BPNC%D3Xj`V29MZQtk(~I;DXX4)g6m*}}^9wv5kvVI_7kirpE| zs8YL~$@^tRGWi<7{BIGNs+A1uXnG$p9>?@kLmj18*Hk{j=SAsgG3!*{;DUb$#Cs+e zUDB>P4u%pP&H!Y&@*jq~adL(KkvBAbnF@5LN7YyKWl%eamQ;Qoqmg^&1l@I5n(Ezs z9dt{xEYxKym<)Na=v?edsztpP(Uhb-X&H#c4l6jyi3Cq{P)t7;E1!?&r=_W106F5-cRLn?Qtt6Ezm_rljQu99^2qIiW$6UxuUey zqzUu!%kOsZB?@z2C|TZwl)5dHEv(c8rbe`p1sF%o63Kp;2cjR2O?ByP<+?|+?q9$& zRKB)0@@-f^3h%vK@9m1) zInUS_dwjs%WOEm&K|71oD7|wcLbgbH zPhgNvbm^9Mv#@SLLCnW`;}=+`Xqh~nF69S#N4lnW7@v^7+AB}EdXoPHRP^_WyeGH# z4e?EEo!hy9Ibwpkzpp75QbpE}jVd%8?(l6^5#uGqoT77Nq2O9xo_n{fyvpOObwAGrg5Kv&KdkKwaMp|qJ`SV)N7@lx zqm$qnTPo%)s>qctSl9|juU5{n&!t>z?utQ+iU!uGt@XtPxKzFWaEdR)%H&^zgFG1rCff3xkZ+uNG8=zgafb4I?78wd{2s%i6b(%Tf6Y57KilV~xA^Sy%dXsE?Jk zCPOQ2+Um?H1aloDQV`z2WDtB@_iNc$IMeRFD{_x|AO*ta3tSD6MRI3DL?7t#T!uC_ zCrLVX+~@7r5da{>E0jCR)b+ArUCn=35KriFkozBM@t>OnqOXB4YTgj7f+*YV4HbyB zZ)N5CVmBZKYd|g}Q7%BiW<~j9if@RHLbETT1MNa=$?;yxxL^afQ%d_jR-u z&KRSO-CwyeZsg+WF{pz@^OYk(Ny=-*5Pg|erOY!OV8C0Bva?=m z&;jUmh)wDQ@hP!C-=B9~jnGXBzI%Z?quj6eY#|Z>@IYiV|J~AQ^QJz<+iKVAD#SQ7 zs()8^$m)V7Z1Jsu>~vbUx|%NSp?L%|2rmAkcH6j9;g7~wp5z7ga_*3EzwtiO$F|O~ zVEV(gq$NpP$LTqE*(x#~Yw+ywjHu57Ws+u=5+z(>;SS^N*RJO2St)Ox>TZ&N*iGY= zpSc%m_dBIk_1@1eq!3S3_>2m~6Lo0YybfVwn&25*euhAzNJ5I+h9V%?WYB_v^o37k zDll5NKjkF)daMN|^~Ykwj4-+qd+2~^&11Gr=E$l)b;>@IoW7-P8Ru|Z3#nbrsABeX ze}u+FU=mSbl(Cl>PPDWhK2@JGBK&Bwq{SY4L%H$VVTHC*wz(*CDHG zno(!5`C_&lT-REu#+9ZL4p+_wpy_AOrL?2}{`gb{9V3b2Zm1YkUyj~JR>RkHspx}N zn>YPSE-Ns|B|4(CStne_aS}Hq3Jvw2_bZt}rzlIi(~BGRbh*Cx2~sA=Xw(0A!+*K; zc(n`hH$l`eQ19WEqFVbz!LaE#=5*q=;TwiUuR>ph%c=VHYo|^CkQInVv7RZ4Dn79EvcdJ&lT)ZK*M} z&2@GvmV=p;aEV>ySl_CP@mu@#tpgk{{&rg-9pPU*h*~gS=G`_rd!ua{jF`Sg;{LuwJ?aR8;`(1$9~4kkEv+vnZ1G~x4_ z&J%+u0ANBbTEgLr2?NFVN!zP&=ogmm9lhod8?6m5G%Y%9X!OoeSs9JF(j^UQr@1(z z9Y@Bx>si0a%`2%+;pMlrhAPmYrHc%nxiTjX^6C8$HJKkZx5e?%%6RaseMCK=jf12T zlK29i8Z8|_UL7%3PJd?fo=i>lgp`bo3=@&t@95g`>jZy_Bgw^omPv` z_)x~3l_%+4<{DmJQ6m|4JH{;7`~PYrToQ*Lm6RAT_gaK18N{>5uu!*tDg!Wl3@vbv z03qib%kba&m?^0(r;HL)Jok}2QRM|TYJyd+eJ{d8Sha^e#ij~M5wrf!wvn1?1T^9 zgI?V@6bC@dt8Yu~7W2yE&v#W?T<(*FnK|0W?OYkQ-pxiYMcUsc-chdMz*sKYJ3=`^ ztEw0%9)4!vVLyvvM+f|@LAW!BZtIr8(x)$O(O^&RjPA*3?dy4&*wE;D znveE<0e8JWcM00-)8ioXT|l9B+!QhqjQtdaXtK>%gYQ9JgX}U!1m3$Z6yCZQsCX}P zT!6!72PC6;y9v~U#*Okrb<`Mt3XHnjGR^k64`Q&^?mSS#{Y1L3Iolv-1j=Yp9QXB z-R!0z4HROql_uqRf4QbwUl{%@!iBYk&O48?8;IgDWu~4pM!H*|DE>9uO1VJYL@GK+ zS>9&EpZq-if)X(tr)^?QS#+>!g}7bFC+3nY-#>Og8J{qvl?fGee= zG2Yi$xzV_c_C%{I++|jvi3j8N6$Wt$iTq{8|6RXf`SO3#Z$Qd|D&u<((d#tPx*Iss z$8-zw28`_&J)V$l2GQQF*Zy_EUhc9H0ju5H2&rzze=}4W_bvLKQ3B5@QmVX0iYl?$ zC`PbN7nU(;p6g++9d?}r-c=-xh$8+dk#4pFN>CKZdheS3&m8lw4_6nH)X4C2?@t+zp>Tk8--tAfDe z&USzJdFS()M#qtwT9X8k_ly`|}KpBx`SAD<-mvVPKGRP9;{SVoZJ(lk?h2YmcQs?|Kj@lS?CEBLgruvU1zr zoR{rBA2&Ybz!Tu~~_YR}lLM|6|cVN8CJ>h|+2lS~b+uA!&bq{IL8sQ%6+R zH2~_`+r)%pIWY28!Naqxo}#>wPjAmWJw3f8=YFZZw0qz9@%0$lIeH3ZdFdLQICz%h zNslg9gX<4E=wEB|7_il|y}*JT=Fw7+e9lIDPbyX}P8WT6AoftMMeHiL8I-J4$7#t^ ztxmP;R!s|%8*R*WATdKZZ}S?11DIZBR!yaPFzg8<)W~^-ix@{Fs*?x(D3nny^Bu>8 z)HD1>@F)4anczeD-$~WoUvabndpfv+@l8Tk#cIv^6n6-bt5(g85%+LyUnob%xNY{# z!vKA4grWCe5^n02i?pC`m4j3c!!z7am|`PeUK=cZ^cA*wS0sJ>6@!3uBeZm+^vy}` zW|w{yO4dPz*XlMIqOEK``g}w{vXDGU6FDpCFYiHkr0;PXUXKs(wcQ-P6ERv&w#K~% zNS~r>SQCDybO*d>tF;F0x0TN!ougf*<*mS>mE>?y%q&}6YJUym2)e`^5h^e8pMhcj zA^(o{xF%O`mp~Vns>yyGWzeP&xxLTst2JgmU&UX^jy8%GJG7h4>hEYCT6WqP>1h_~ z%t<2&9Ohs%kmh1z)gOb0sQ1|nQ*FLQgh~@zLJ-jWf*gMjUB>66$2_>W^MC-fm<)Kb zIe?3yl!kDj-aI!L9Q8s!IsoL{_c-LNiS(poq|(IpmR%h=Xxk*Kw5L~^?9eA|@i2K+ zw{2fxBj@R(5@voDf{fWhh}xL`F_xEm=I>s!6?;Hv)<|vIjyO`O#l`hx=CsApLJfYi z|JB@GheZ{&ivq_$kq{7x0g*20E(N8#JA|PdWC%q<=^-Vg8yvbzx<~2m?iNXr7|!DR z&N=t_&i(H5-231Cd!E^Q&E9MFUTeMY`&;Ux?X(eQ8iVW>c>Ud4jrvS4GS?hrI4e~- zpHLik_>Y8zMRz^;>G-liJp9PGRiyT>nzP6LYPwvbMj$>5epYtsgXdIMvKDXOuqe`t z*!_BY%t0tiTgFl^C~SIKv7m{!E$Ob(l$G~hP<)LW|Cm&rxNPsBK+zwbp*lL#uVK4^ zE*Y#@%E4R`mH#d9+Wkw!U%D)-bNUC}#dwQ|V(#5aJA=bMBmON=1wIsr`~fRGf%9FY zXz3KOPuj-kloY+DSDLsB=bB4ue5cYxx_tJ{LFEfr)HU}AtLm4ccxq}l7H1O6$F?=w za}khV^)yXz%#QWBS2R1FDz)OW80yPBo^H0%uW+;RClEx2g9_dgfnwt@ygp353)n@T z{_}KASEh^D)^?`;e7R?SW9FPJ6fIR_=1j>NeTee_PdrYht)|J7RFVq5zxPKXpB1x;HF)*glUabJWZ0K-nB*25ArrB`eVXmEFTMl zPcWY^uJ!q=ZAmaA=EARE&mla+I01NWPr<4z^}Ye7l4|lwM^3{}N@@#&5zW$M6jN5qK4*bE*PNZ7M`>sB<*bpLy`r6` zGU<;yW;ssz3&%|09#rG!?Aew-LmZLdk&rs?ql=*8@Z`{apzui0h)SvE-GQJPX8Dls zeYNHW_5#zh^$!6V%uLtsJq^tJnLOyXEJqE8Vz2nF;>lww%YVxx!v^u>Uhu`v6lxl~+O$x*goa!NA@J5PKpTC?^c>tD5?+lv>`xf~`zMFrS`H*5uLkoSj zUZqdZ_PVocMR?^jBTqw76Ft00*1mnlWxlEPp*}%?e7`(y7Ijt#a?9K-47GnkQ4t^2 z=X>YnPYAE6^Q4J*M16)&BuQ4b;eDVG#3Bi01ma7J-5W*6a~Tzdd3IaEKg^#GzZj^m%wPEYz} zl%3WCu@nEKKkdac!mWwS;frsf(d}{SJ{Ub1{kh0bfK@O-sx5-rZ0934hqRB42$gnm zENeKww_A2eetn-RMV>|Q00&19Gj+^~!k@c*f~xVpkTc6pu=zlc6*<=UNEZ=@jrX@& zx{8T@uXU~MGD97nkwevD5E$whfs^o|+?^S*L8 zI!ht>D-|w4!_M&GsJ!SYe_A*xpTAWQ<*G5?U8+57`}9NJnO-xb{f_wEOA1A2oZOWt zxS7Rnq(QhHM+|S2Kc+eb52k0h}-C)e!N-_8_jwKd&( zCXVg%#FOKd)i7bk>&cV=iFR8%Y`zWpe6{q0-Jj}5Go#X&DC}jaJ7muki|=qcF>Xef zB$R!8jnUQ_EDYI2&-hhs5sbNEtR(*1u_CIeXn_Hq6hpiilA@x^AljB~&d+twUCr^; zTsG**ys7+^*axFJTvB4`x9S~Sda;9xlN5@ik59k1AZL!b*@SEogGt3-ksT4>YY`}s z2U#M8#P)bG14F5LwU}ymhAajM1bj3z34g3T!^MZf*8F2OmCcz*9cfOpsiPBA;iUb_!VC(snIw!6l%xY0!kVV|*x`giwRno-r2hwn7=WETWM{m$R0l{dY@@F!0^TJ%AYNwR~c$hMrcPH z7A}k|ypVbS1v=YHD^&2~uH^M$(SVAkOl_yOl^L$y-uI1&IsJog>^hH}T&=zD$TH9P zM6Q>2@QG0S=)Y<~4d`# z_8?121FYv&HFk`9S~1^f`eu31syFC+>kAwX({({L70t4iiivI%4E3{m+Fm>oEDvk{ z$#r$9$!wP$kS`m!U-|$+3c!I%f=SulR&68f4UCYDSVlv)KuPK^Zy$NqKYz+f>7r4u z4uLDShpFwKbYV-jx!qhy!OEw(G-ay2wN>9*^bF`2{WT}35BcHR)dmwc^Q*Qo6=}Lq zA4l!HSM9Le(E~3g%rJc42^~H+-lesA4<1hS7VB)^IQNgs;!w{*tAc8%aevL3lWxg- z+XN?SVb(5Wlrq%bE7I?^++dVpspiv+`Owf9GL!eyJJCg2O&BRPl+^|(2aH0?Yvby0 z-^wYSx!t#s3Z*+FoC;Iqphpn}e=$ra4_|4pK5QZ?S81wv@Q04!3-toyJyWf;@C)51 z@&{dOYS)-D7L^xWh{FZiq0NWVw$~in98f!(t8#Op-i#ONJBEZj&J}(U(9apLqjR@x zsekEW%^ z7b9F_5bbDO|DCh<{YsjZC2eb-C2*IcaBpb7^QyCxUvE;*#A{bH?vEe5<@w@8g{A3> z6El3(JFp=%5>_q)#_NN>ZO8?PNcEw_%z(?$TKvhsLtp-*5G&HYV3HV%&wRc)?u0d{+#NFV{qP%y?qB2cau2&F8EyO(g!QXKdCoz$|+p zB}hvA9Q~@Q57Aru%T~i;1>2QNrV=Z!Ca=yMhf21iMHRmonht>`5Y=jze2cpfABLsHHn*7gdV7kud}WBSK5CcOmGv3Ij;?r`(F(r;@3`Bi|OZaXf z@AqteMl9Wbbl5#)JK4j{3xk|ES(!$8__Nb~En+Pu=P~&eyb-vu6Z=5$hiZ7d#r+DG zZ^fr9&mCAMP2mcz{R?lKhK7&{F=T|ur}mz4;lxRjle5>34%YX#u)vcdKg-)~(=oL; z2BN-=aTfV?^~>_83bl53fO6S{#}Fr}SHB?Ro&d22p;q}Tbv<2M+nC1HJOQZlTsg+^#@;oX-nPIh>MalAn&PuO+Ds(N&ELDrJ&wm9c+k`VqtL;2CG zlkn8LMtn}4us5UIv6Z1Zl=d<%o0_>c3EE(Ge=cpQ&3lKRD73R(z(P1I2wvbSGM8tz z#3wnC(^4&0B~{%wQz^sZt?MJ0Ph~$)VK+le;ZO`CDDQD9xkr_9s$hq|tdd}FVm)2q zFFPkMfn!*M-PkQ-vDL{iK~szS0aMlPFoA=rVMN8A##5q(vox7kkLy#&2NojLK6@~l z#SZ8xmbDbuP>>^$H(A-dd@~dCs^U)|!wO#Ky^mpcuphH$Y{?Uo#UfG(QOq?1CwCm= zx%l#{?2r9o{dn!Co0PEh;&N-`ytym)1s%0GQ7`FxKW!Tep=xXXrcZw&>8`XsSIbV% z&n0M6rde5-rNoJoUcj78#&(NK9^$GY33|4t{B15FoiYZ~g)0xfw3PyUMg*Z3?MQUB z+Xk-ki;qEEwc@I6L`~bBulSEXgX|0(Q6WezrS!&3(q^xv-rB0ij)0XyxrcJm8rnaHAWZFqZaiR(?NXLK8(zj-3dp$apR`rRwc6yB|;) zy2#PRB`EP{zy{SH77pW-4*#h~BXsd5cIw=NNl30>BzB}BOwF+;j^{i8z359yvt`?w zDz*cRUpG*oArbB)Vl49-<8ynY1A8~EqMzDhbY?!W-ugE&cmA-FF58SbBg1tHGV{Hw z;>5|Hgx;U(DV|{|m8gpil(!vg)KGeO;pTfUzErfL`Sf0pu8ZHi&o-sj=R^QxVvFfA z5#J0TnJUdloK(Xe2I>(GTAJGMsnoJz!^EC!;GgR7d2bQ+c0v@IMi(ffM2M(dg8W2e zX=h?oCuBr=Ppzk2qU32sm8vSXej8|l%t}1p<>PGS#W-Q!R8ppeztSVJHhUZG13Vqu z1gD9lA13`}^)RdhyV?1AV(hEg@9@m@=NnP7q?0vf3tnYbH4-GcqOw-TCekNtEL$uA z;RjTL+qk1^<39_qa?IO+8+bLHemzax{5v33*!}stPJG*mBEj9F%7u%G+UKA;>*efZ z3+fct=e*+&ScLo2{HF;J0k<`Npc+m9tlBY{9AoQBTUoTxx(-2z(qRr>IRmFEQeIqx zm)q}kJ`(nQ@P`VM(r`^N!ct6Fg$tiQZ0R6>C>x496|j|P{~n$p%+Zv`stu3Y?hf_M zw)=V?32)9k;nx%?>>nedL&j4~rpz!M=|^#wm!a&tn9>ECfA4gBC!EH{pQh-a8`?6D zH+0(?qN1(`DB%p&vZ4FD>)EtrWOz8J%C(rUcLic%(+%qK&;D#JsAmR#rDcB-uVxLX zpljY%bR>m91OYv$RitwW3?MGH&Q!+5l4%NIWDt~$U9|AzhKpe*p%1e5UqQu8738Tr0brmcu zz>UNk&J+(~Yq>hIEp0jj^_?J=9kel+esf#eH>R#kPELLek_p@aN~vXjP`8;DPR1V* z9u7Ez#UuDNm$*M(rYeW<)Q!7OjBxc<(J>ijyha)1ut-Ox%@e(kIP*eax+YvR?q}wE zWvFjA>lkeKB?bA(eEoTRzAwk?u|yHQF-Vvj#ntz>FN^7|^`!L%MprkgzUO@(nM>`4 zCY~a_?7wm%%#QZ{3of_~tsD>H-Vpq!Tk!F0uWldU0KhE(VdN#iT(IL`&o5q+6E}ib z={3+Mg#XOJKw00PMUUNLb%#q1(BpLnQG=c@+--($+}`YcJN4UR51K(oHUvIN#>zIg zQ`RM}+|Jj7Xp`UQJo~vvmKi!O?7`h0Cr8Q2xe=1wpiq6Ppub`o>!TDfRO7g)BtdNG zqUy0T0+<5OlG}jxyHzB+_hBeQy64etkv8L?u4O8(59$gi7Q6SzIJ}pBe(rsYk3p5t zyLWS`yrD#XeSy_$ZqJt>d;Q(dYvrz|L!0n=!|B;8?@NR(Y$EZA)T9{GkJdiOH(+W~r<{R8^wxmTp0PwqSUzprPX_dZ~SXO0fs z=d%zLt{YwIcCvvo#LSpNu?NGjVK~4quOLhDr0;<3> zjR2^}yVITV1J6z2+}SudfL4vOt}Zu4zu&t_L-$nh2#_Xs9m^HH z-u@;Z|JWch6@s-x<&UO-d4m$Y(Nh#X;z!x$Pd)uk9@pNRnN?;Z#LDeDe^IW|Z8h%X zP^_j$8O=XO?75>zwpu}qR7%)dbT|rN_k@B_4G4sSJ|+y9iQL%~Dxl67%l$nRT}Yt^ zK%b++NYAR7*CREJuR=F5=#_#;tKQQ)TK z`9R?pv#iX!Hbwr_;gIpMfMVz4^qVX8nHf4onLy`O!WMHCIr3*+%sOMD`; zL+if6{QBw@7*@X*4~UtXKkAcp6>8iZ%_i*~vFiGr>l_}Q=8#yoilz0;eeNCjzn_3| z`Vq;exT04a_{DnFJ-KrqHd8?`XFye&{510BJhCGscqV-drj<(q{M^d0a(2UbdN$8} z{n<&5#?La$H|y+(rDB{3w>Mn&FIp>(vf9_LhIeF+pRR683GP~u?M?#AV6vqdD7Uzt zOZSHJXB}Hog9ijw!**6dF?~7s=Yt!L8Wp`BWxr}?SE$a6!RDKPVC+z_H15biy<8P= zuUXPHwcT5NYlC&xr1%UyJZ~aIolj&OMp%FzAY1aFI#Vrb?;AcrhZqinW`o#D| zOm6Lq9u}0vkx%o7fTgncng@~@@)~3J<;0|vq8JHrZfDJJeN1R74|mX`Su84i`~S-z z;;pJYcs(~59vOMt{JL6&IS@YeOT+~Fu!5*`N`2yo@I-B4eBP}u!i7x*vR(&jIX?MG z^n!lWHqFMg{(`ovSLo}Z=v=25-O=+m^hqC1==>$BY$r?pll0BcO%w7w{|%fBAMmPk zSZJ&xrM&9VZazwyY(&hhv@UenGxBt*UALDa^M3`iAO@o{I}T<}!;(AO;nEFB+PO_fcz5R_xzW z&v+40iPS5#B>Ze8(?d9`wn~|tgnrR;&QlG0)xtTMy56@k2!VvuTl&2J*%eY#wdX3` z$K6MhXONhcF;3JBqGw&kYOa-3ljt%}Te*cygpi|q0gwp|yS>e^NmMTJhGIcImaOn+ z!coH&ibj)|w{ApnS#b6ow$qNi{xV_w_Q)N}OD)ZjJ}G~W{?vW_u+u=VVc831ym_(2 zh%2gUoBvbCdsH%ynU_)#<|v2k3!&l^CmJ)Yz(z9;N#MU=kQn1J3aqOBbglU8n@4jP zyE%-&Bu17e_F1qsZ#Ok2x9MiY0A|E_wRG~JX@FMtRy*lK+&?Pz`d?@aR5i0VIrz;vGtH5$xO~P!4 zvD94!UoKhv_7`vmh$~+~W4WB$c~@ZF!eK{dT#Tb{!xWTZzTNH5Uz*e_Qnmxz+L(y* zXq3W&#?3zP5!0F~_a*g}4ul;W5<8tuLjMfhj}Oiv`Y+Gf8FJtNYeuUK>{z_MhkCcx z<-?}5=_$|^S*0so_IgjT0xHRod`r|@FbAdAr}#YkYlMmpPTJ@az-&M=GPAWGVPg{v zyaEyfTA!jvp-8lyliW5k$D||4z(u1|rkF5uOz2)#_C1ap;+qyGhr^}oAK(6QMp(?D zq2nsW#~*L?=Y*@aB-(G1|H0m;8hiesN0ryElD^u-HZIh4?eEAY z;I~T#f;R$t2 zVUuqy`viV|>(Uej)WB)t9~eJ};%(YE5gz_2;uc>=GZy++#NYH*6GuG!XeDKZ_ws*t z{gWX0>F9v;m*kKFZ9!8I{x|l25`!-lh;G?51NF5651QXALQ2Iv>e&wLl_K?{1tHV}TrXz=5is7Aml%(R$Nl%2Z{3>D_a3_KO+}@7 zoG%B#tw27bnu7GUBF-p2h2091|ZygsmFNXMGv3+ZO?2?$zrFX%`yb1 z1t$a-8cc1+ZnK2}WCpxA7-+)qPorMDN-!t5-4?^|AE5sK?;B$D-{2|+-N!oh3q1k1 P7EM-CNuor|*!MpG8=PQ2 literal 0 HcmV?d00001 diff --git a/demo/documented/nonlinear-poisson/plot_u_gradient.png b/demo/documented/nonlinear-poisson/plot_u_gradient.png new file mode 100644 index 0000000000000000000000000000000000000000..b968113cdb49b5674363f6fcc39645faae90a341 GIT binary patch literal 34141 zcmeFZWl$VZ-zVC*JAq)q-Q696y9IZ*;LZ>rxVyU(+?|jB!QCymyZfCyyIZ%m_O18U z{k~tOx~6;job&s;O}Mh66bd3fA^-p=GSU*N008*~03hPvA;I6gYK2b#00|%?A*$|~ zb+YE+i#@jtcVRhvmt*IB4kK2EAV{K7p$^eu@+*)g0#Q{0!^f*8qKlpj`vgW5KKPR? zNq+E6oI%TZ(tT_+sd)oGgc$s@ukbzE*~MrU)Ou#_{%E=je9k@uX)yYgx|xRu0KPa< z{1^;R8Z3YhODYCW8XF=ShA#G}&={Qz{EXHAz4d?5_+PwnYuDf3f4}Bo`2O~4&Zhn4 z%i>mlWMyUL+B&Dto!yo&)3AZhDQ6(b^vn#iOraK4;Qr&;8I%}&K9ahgURFYa*vw6% z^-MxSf?|$9o748^a`lY(_|5(O{jGtUo13kzE%2>kxm0&-Xh})Q@bGZ%b^Y&BH?1&3<4)~->k%3Gb3oUD+>V*DqLlz_|btB;SOqN13Xn3O1s=|Gg< z^IbNNlUU)DUf<^$j(==Ct9B_+qgl!Au*&0gwUe^I?YJ%gdh-qXDU#r@4r+t%W7KVy z&lP$NCH8MUYd>bPFRbePYh!XZ?K3)*i@kvX-hh&ZmX;;UM_3g6*}bPc(V$Ta7X^he z7~v%&mQ~REYlFp@O=6(_vX#eA5()VHoQi@1NWhg(Kl9kT>l46aaXY-+WE&X~;q2nl z)zxKcYKqHjV8`;Yy?yFT%)y!6E zesFMbBDGTYMITZSEXs0+M~zO^S;6NHjDLcgubJcjbhx;iTKodIP*^B<9Y)(xPzX>Q5&P6aH_H`+`or z`#Aqzd8;0Co32^eH0G8$1`A+I>i4qK)6v=3*r=+ht>_VRSSg#En|pbAX>lxfvA|=9 zm6baGP%5veuyI+dbG`2CwojF&046&*O466?V1Z)Qr4P~W%*bM3jZ@yJQ>9os^5>70 zi{D1KAAWSnqwW2;5IY5h+3|dpeYN98w;%(9e7U;2WZ@c85ISkFH(de+Sa~(r%vDTJ zPwz!qGRLKhSK0%k8+*@!WVOm0U5UteE$_d6xwS9M+84v+Kog99rm6jAi0rKQWu z%Tq^>_J*i62VyYO{0xG_WztJaOY?lXIYbkBAQ2MsUum|Faij?5phLeuGbf6T_i#F8 zHu=Y?6Po(^T^3^*V3tZsNwH~KcG@1O((mA6W2G8kbiZ)T#aOM+4DJVNyy8O zf(0Xm*>L@8MYJUvG5CL|V0{G9FydKqFkW1GaObD(VKcM+{cQiIs@~)WV=A_`$JRsc ziYWD8=<@&hKuA|7+%?~K@_$c%LivYkoYXHcqmu4S{UaZ|7l+9z+GfreO9z zR0V(ik7nRs{1XB2UXcBjW5KNI_8(IIzc2Fmw{Uy3{`8t)FUCJhf)@H;SrVocQSh7X zPcUEdKK(O3n*Y0nIsdm2Hv)qHb`6E7|7=BU4e@_F#0AkmIdCxT|Ib#G@B99@v;EIQ z;Es^|J4EXj*ng{A{Fkd&!v7!dPbJ9r&+F(2Ko{Ewqv_gqiSoX%rY{1oPs_m3O)l{% zATIjwjEN*zIg|xnC3SmDx1$3|3u>CX5d52J<^Nu9o`M#vIE0>08o)Zwxvf*H#voSU zD(t6G>%-?7dFYAjwKX^}{=;1F^v8va_U(xSkPOQ<*_Z~qn zkZ-fNc0ZP9-^l(W^G1<4jC^1J_Rd%7YS1Nb%W7*c1tVaEAmh~=|AK94+27frprB|( z2rSL@e@eH^S!#2!w6Uq!mK7Hlx3M|8Ih> zo~NVA{T!dOgQ-H?4J$bII}lOzpGdTMGe5EDCI zZ{Tgn$jI1NOG!#*3;DH2;-4CP3@)pTTc2?Az-6Ko6I$|{`Vbo-unHz&s;ZmslOv1GYP23vx3?p(9VlyYPepORIxj6B z@trJnXLo(SX^%m)d1lAZCnZ$NAd4>>bF2HZ`qGgti5{#@SA3{xn7%MSU#;D+H?Qk> z3f9=TVD|QAsV)L}c;v(7^}U%O4d`E->W#&w*0PsTvwcKXE0I5(tJHcn-s*2qUK9Rw z{Pu~&)jFPZupP`+DM)gneAYE9_;jwU**CW^0))3DU}6s^(Q0UDZ1`R)JgfYjg9t*` zw{IJdI774c30~RW#!uZ5 zuXg)AbKomnFP!1#6%?4<987_25LgX^t?E(xXGRJy-uLZBG_X`l*W|QN#m%lCH;3eL zq*m~bKU^1kC#e-J{K9=luik>}(aI+?aMHTqS$pTkg*j>400PuMM@YSGHukn(3yqx5 zF#quR1M~lFbd?`>$FsoN>aeV8PxgNptZIuQ69&tdjt(EE4`lH7?=6&^rfuH$phwr$)X^cB z)G|Yb-?Wup;_atL3NGMukW? zfuAb`r&90x6;#%!MC{*&RvboNRwdI-?y!mmVjaske4l?rvW=ahsTz2{t$qT^UJHIb zNN5RxRRUC8duZ$OLVE|UeqaQX@dUJ+2XjCK|3Hpw4+8L^F^18rUXBmlnO*m${1{&) z*Yca@G8&`1KGmnrm^{k)8!5e1nZfG1m#&J#h4KaMJNMSeOy?^*CtplmUH$h>0!1Y0 z@Gra$wG>=YS5tKwZpq9Yk3o6#C}2f>P@o*%Q%Ak*|7)R{>IS3v!n`H6z*LK^G^bnQ z_31qQ+p9$ReH!R%L$wC$HmmBf<;0Tx(8Ic9`riCAEwiAm){F`bUs-9C`khv|cxT#G z$kvC4%dKQouzaFPQk$_Zb#-*$I)o+UHW6!|HOo7X`RFY%J%`8Yrw*0$^y8ej5MejE zs|$iiNt5S6vzvOA?&}hKB1+Gmb#v99zZoo`CEcQ8KiUF$m$`)9&4H?u$s7BKhfwVT z>wj-k8`|K)n+di6@HzTaE@A8xzj)k>q0>F_-bFn}TS)kAv=AE{bjyDs<4Qy|w3G2@ z$dP1yHCDwndOKw-5tslUV$Vm$k+`~gK#~SBz<(&ZF*b%{Hv<)S;nlaXus%-exia(# z3ZhxHkhI}w)n`!O15+OstP}DzrN?Nh{X3r7Zdt00wX|FVV$vpd{B}#Iobf*h^*>GM zSC9M-S36w1oWJ2-te9aMrpfN{JxUl*N~NvNMg;~o^b{<-H`t}HPX^T&G`fy_`=i}u ziB*|W{vEdb^h0zCR`HzSsfW%XNUESdHiP206F?T)1Un*06o zliHq*fx3_hGAWK6nYq06hd7B}O7HIKhnyWfHu3_Z=ywqV3CTnj4e$2h5hW@l#`K&C zbNh-_d`sO7FW=zpD>Nx9wFc!NdeakDG7n^BUz}f1v-l^ zESYIK9Wjf~_?!9KDRuk}0BGL38P0E;)e5JOZj(Erf6j0`8Oxdne}re*Tlv%1UQyUw z=*ZoAK!*tyB7MlBd)ewI%o=YgL6{G&NV-?yak6|b?o=CN>iaP0)QSbB)vWdgNA2>{ zj#;e>Uws@(C<}in!9oPw&5uwkmfmzX)d-iS^M+V1g^aCaYkF@8$6C=S7llBHess^O zUO#w|Bmo}Q68>^h62kYnk6Q_-?z-Aw1AXVQlSMY>VET%vt7y9XarM>Ley(qQ9PZtm zz8G>I1lj*-NPV$gYFL(;B>M&?Jes)8`QIbGQ_}F@yyp|sm=aeHW|6F?3j1@+7V`uZ zW)^MY1`P))$ztnB8T+sm3A>UE)>u^3%GaKK{n;?zuGxmcDSrby1;4pt!}c;{Uz_?r zhNtk7<+<7AbxEL=zBtSH*9lJcO z7cZL_HMAY|(1l&gOVZAP?5Jtk-?wRn?Xvf_87j7eF%ence64HX()RGLE<*Zz=h&RT z_%sBTgi{c&TF|8wcd2FB{>JA+zpBC5w717K$#k1l^v6jv5`=~HA7>ZAe|k%) z|)rCWV~@po8yytRsZIXfCNbL_85==y%ZQ=-N4N0HTCaM&K?xl)X|5#{3mXl zy`HR_U@6sfo%%&-J>je|csi&b-3y2ia)-na+b*BH*-Fj@YS>ABJ3Np5U|J0WY-{dY zz6^(yqK(j&5(1l1Cu7XH=8tt3*@pyHj{E^~7c z%r(mtioVcWBA-;c210;vcphLkE1`|@+{&9b0Y`tUDC()xn?R+)8X zB_7i5qWWW;Ss=w2oD#=Nr#LT+bqp^0yJ{sW+SLYQ5a!&ePqJ)qeggA!YoM z`6%R@j?Z*R$&jL7WEqIQn`{;OzgNYO0s%~As^@6woHW=s>*1kmNeg78)|nc0}$Fa;pM$|neY@PbQ= zn7puB{K#>yqTM$k@l$IuFUx?R_6^o(`u=K4{CZHpep?1q_Gt)>cg5?dl7o%O=kTq; zbbsfbdiA!yGV69%q0s*mU=I^w_xQ9PPFq?8+7a_(*S(92-FwYnfC)qTji*5M{ zAt6O}Ol@K5u3flU zZ1wz;*pd0zm;Gi{A!|-Ydk#mpp7@p^y8{}T4T$Cwh6QmEotoQrAFj9}O7_xC%l$&W z(15|3;@4Sd8GQHb_@^(&Z%l02uJsOT_!Wr0EZT%cKb{*{ZeXK}e<$3(qz_<4+Ybkp z+LRmFAMnUxFhL9+rHQRfeJCFC7$&$%8`aV!vdXC!!{tz|2rnpCi?++EAdS5&X4J(Y zkkwU+j>)2y{ip~t7$2iTg07r12obQGM+D?}jS5*)-5yhMQRNWwrxWrdAtMA0xZ(i* zOFxBu+0zY&&xeC^o3FJ?d2vB#TA|c!e@B*9`KE_#jlghZOb$_}k%y;VeS2k36BlPX zF;E${c0MG>3i(Y&0jr4y(Ux9Iavom7mRcq6wN z6%sPB;i7-&wqUnB5jn(5fjAjwv(#ppg$B_Nfj@WP>1L>dSp=O>o0{&N>YA39?-6PX zYYn#5fzWc{-x;b#-|I`x(#rkJ`^ev(j1f7Fclx@bzBgAO7s{Hfb(GAN!}#sX^iQ!# z(LjpiEg}P)mfB}&Z9JLJw+gy0=3kg?F65Vw@wLy{uz-_?#Ew({ilR8UfFQgVU1ko- zgDixdI5RRTWPpS$%&J@Pb-#qc_nG-k`lrUjHa^%Zj3vjvY4LmiLYnM4i%GRGmM{`Y zde#!xf_E~=-CmWXr1LYyTo2+qQ_LRX=K9$3e%h#-!ZzCJ zhzmRjIl(ELty%UgBFgFuEWOu-lL>Pw7dd%2jBykBv(ccazz9qZVnn!sK0L)F?R5P$ zgNJ7nt9uD`3HKOQ_}*Nol-!IUDJx&k#k7g>zUUN8B?}FRh=>b`XW4LQT!MaZG&04@6a4V4U#+v@m~;@VOI%wtvAJ1JSN}r6Y6On}{M>{F(18*V9uOBnDu^{~ z^N7an1k|3OA_5`zaP4Vu0l_4L&$2was6Z__fu^5NGBOS;yh;lxXN%KqAnNb7QR!2? z>a)zVGfDcS4STz`ydHX0?g(%~yeS(Y<97-?U!4BxIf8D<^FoB{9~L^ZR=1YQ^G8Cn zZDP*%N0XVFnY}Bn2FhP^wvsB!VRi@b!-EScE~^g{hSkJpZu|1f6DtYnGZ!O@fHHCf z%bCa3_gr_`dJa|*>@v!VE3-?3JLj1tsVorDW(P@3(#(^(4h|VqLT!pp%=(e9H8Sv< z+3812JOH8Yudpsu@QRKObYlJ{H@LmC7?c08j1jT#uG5%QWln>dOE3FAAmort=A5*6 zNh_JQX0qW31%zXxnqN2ygZwdXbBbMWF&wPeFmM2;&6uK~7Z(Ab$Wm+*bX_2B8h*tm zEe8#R-M|EtC_@J{?1I4pyuUJmGoknJw_@EtU%B+x0wZXRm5}&0v-A8sOX@41XS9n1 z;@R6C6}@)3sq`HN99=qH18Zf) zOX0Q<*2_-aaNxVG&z8}jY~u{}#P)#V)1kxQQ&emJ@w7 za+QQ~j}iAyyCO;o(_JudD(u*=1A!jc2mtsJARMJ=BD}sm(lkUF*C!2EbrQ{&Fe6kc z!}-p+43XCw@cw-It~uD*JB}yyY2v$eVc4c0#9Jml)>AViND>DtR5*co&Ppwv~(!c4v4s) zV(C57wy+lfd1=lqm-`-o2(J@e@xlV=%mS#AC!isi4z=ab?0IZDmOb4Os+e*TNf?OI z3r|G>#=Ev(T7O>bheSdpLrc=Qxk1aQzo{Br2=BvPgskG>u%$TY;EM;A|1oH;Lk4Dz zZ}M?<8Qbw5f|Opx@sKLlrGMQXP3zEMr*)LJ7(7?%Xu-kdAA@kG2sXEPA z=(Cs@i^$BfDlmwC0S$2Mnw%?}Xd+IrVduLs`Dg!hd^nDHBYlT=(VlqlO=q$KVFaP) zH%s`TEur1xs>;}eI=SgPGZ|IBQ3#m`lUjwBc=m2L2OWP`mz5G&VnglkqFRjU*a(&8 zyf!)g1oOD1O=Z^ ztC4n<(ypVuY%6YP9Tr7`U|U{H+F)>M+py5U%iQ9JRUQ#fC5Tl7pNdWa1eE_dD`v4^ zsH_%Py=%C)uBjx^JcO4F3>Jwmr;0UiU;vceL!NhUuWwDY=*XnPp+06BV*fm8I9(oI zb0yZ$=_MZi%iWlUn=P0_m>~bVS(m6`JGSIuy%5w1*E9VUo3J@?v{5O46S4WD{&yGbf^{WmsZ z#!eFQ`)Y>&HjL|Mwi}FNhkIT+B4;Ghh4hy8Wu7rnp))F3;>CyLfQ1MsxEbTk=nY48 zgG4eVg?d84T~C-rj92?#*4cX4MdlUJM3e}qFCAmWgKP7U=k7BMf?=GaSy?_HE*-=9IMr6qY5?rF7e$EYJ z^yWa(uw}Bj>o!>K$n6?m*K;*_O*@bK0!F$6s^%hFkF5A8|48~JYvJ9uToR%z+3%>h zn4thk?n}~PYEz7%99&d!kSR*$hO=L!&E9QNZ0_a4*c}{Pg$MTO^EF_|ZO1J_$}E=QBxA6Pw0RfOA_q`M#g)ldGw2GQzzX z>xgl0PJ?M2zP%RZG2bKT^s(<-UQoPRd|?ND^+|PpB14y1+)~>UtPZh4UH%^F*--u# z8M~(Gy~dT@vSi!ypaFW8w)Pd7<6mKDBRb2%{px7w6rf57_JEA&6ue^HJU@~G&}%qn z{N!;YKfTANJzIsWu#;K$lV*lf^1s|DDBSSW+oeACE+5?`kL4dQvvOB03Rv*fMe}w? zGxDt3#5S_hCy7g4?aBKXeI!-H0CUQx+^)nqoi9=}<2e#_*liz}Z)0)VZkR0a9Z31znU0>N9X?a!Q!-1Vb-`e#K-YEW*XWW~u)69uwIx;V%yfN$!?F)4 zrxWnyNeW+vHTHDS+LR<77YU@>hHK5C0Ga{)5#7;}?3HX`7mQ+81o}~Vb8H^4jjvjt%^ma0(ReC3S^Ebp5<|1?qhCK{%UHGND~y%(|A-i|U& zA6@Ch`DXR``}$8Dg9my8nPtm)kfZZPgp#l-F0&aQHXl}K0x7pPd&b*a|0Qifn*TuV z>PuwC(-VPLW%AW+rO!RcA-AT(obR;Mk^q^Lpj-0>4Gz$LudTSxe(C3;CNs>TmbWFomQXN8z-$;(J&EYe3HZZe7hF1?z^jCAiSPv;XSho<}Nv=s5)M)*MQ zP{YeBcVY}QBh4m+(LE^*-`b5!nk5MzI$&hx2niItK;+RLUkw9*yV>Pf{^FDo>sED6 zqb@BtALu203R$f5wzI^6*Mq3XaZ|RF}rJ5Q^{Q zbBV}gOy23>ch^5OB~~4AKE;J8y3NA$WywFe;}DszHMw!MuFW9 z7M_ZC272$6#|P$%l&`lU*|Mfdp)&9ZEUAk&_uM(&ZO}lUWyLjjla5|RbTYEP3L0=E z%^LR?Uh;$eO84*({w#q(;!HT$H-au3v3%|IwxM20Glv7J&@NAP@7nGsH|&fo7*YpH zRe-;^l20$jRPbTZ6o_&UQBW^6x{uq`6P9zGQ#-Zm=x1n``TN2Jf0&_wMX#iHCtT2t z-Hg&<>0Tm0s3SVo{inzHn=Sgbm4&?84pU2HWltG%J#DwS1D^`JULD3wtRJRdmqM2_OQznu zZRZaMHr$UKiTh{qj=6Y=-+3{oGPGzD@OQdy<*SOXwiyN=YPxDEonUHmqI{}AGpT{* zDJMQ?4@y^%fI`C7&b6fdQ6UbDCyFL#Xo04A#iISV@BEOaRE)B^R0ISdeUX}ebhXr% z&E*pF0caHcP0XDA&PQh7Mkk=K1IM*NlOSjY6QJX$5|GYYANl+>yK2`oS62~2L>?Lg zXS%V62Eb0a*zoU%=#8V`@rFf?u5}`4+4}4(K@16y>Esl7$<+zBS_Uv z^S8m*OaVZ7+&7MK>_feXI;S7k?y=VWdM1#UBNTFXUG23n_MimXw{j}`L^JJ6QsX`& zw9rpV9~uspx2pauea5Lphye8X?=?J+xEZ~feHu`mX2#C8>HS|DnT#m(eR{t>nN#yy zL-gh;neG~6I!0pv@R-Pw^8F4Cw^0~?qVJl`%;`?CflZwtgTjx<0tCzl2GcH8oz|HW zi03``#DYje?9{zWj0G9r!i@EIjXjqPQ08#XmtVt0!ApHmy}$020Tx#h3>>kfPZmVw zG#D5_oPY2}XQFV*$_;y)77wc_&y)}@KR!eCYsG#si4i*4Y>=|CM;**LB0~vQ3hUBY z5BGVP+33oA)qOi-qM|1RgIfv+<}`JFiHF0^X8BM-$Q$x&)}bMHhsCi&Ta2al^2VU| zi|e+dLpO$ctb*!)Bn?NAWzIsDlJ{PCKS)xF3=^An<|BMWZF0KHnTr7}O8oN}YW^sS zLD1Y43xX)d9;WRhcQKHs5J#xJ;0~X56V~$nwT(_}XHj!N`S(HbUO{#P=zAq)`eCiwXpL~d3k2MdzpxW?o9jyD!vl}zEN4?WjeI32 z;DnGj=CB8u?&ULBpuXyt1@XAG+1KRZDe`>v*k^_jk;o|8zGzNr5f7I) z&>Fr!p{?%I6ssIL(&abkS_8-;BY{7SVd88~v@i>KLl(T(c z*f@K7gy5DqD23z4ta}(!`!>@Ad_Cf&u3`LuQ6H?4KNkMQrx%?oVpvZ_#johp6ICa) zAa@lSxP@VG>4OG1C07lZvw9?RNo3PV74Tq$R45XyVIU=5DK)&Za+7(RBVTvYH4_Ua zgd`=UFo8)9T3G-9V?wE|AnZx(9k0(5?F&L$pbtzFO86Kr4~R&Rhzx>}pm(5v$m7K| zb?76(2Djj}iS_R^l>P!242cR7(O9Hl-Tzg)e>s|6!Bl;R0QhVm66vj$?4PxQ3jR#p zH3U+5ns4K}Xgtn~XMV?~w-o5j;ios_Q_m1kX8T%8j;f(H7-rg6Vfa{EXtKt*Fz0_& zNHMKMxLHXU-^-OjZ{XgOL~GXnRV5&yszKe?d(`L0Cm>=&;INVHZwR~wD4RmUxTf&{ z>!VzG)0xqBy4FfJiECIVb+2u$P8CNbSwA#F2$_$0i1xWDTtJoFa*jhyEN=gJ-1m}j zw|I_RdpmVmh~Cgf|M%K*nufXkYZC;g{RR_jVpiZmB0lD)iN>c=MQ*6x!H36vjW`Yo*b=%9XjrL-?$SQdBWzAX)tKl=-hTx91Pq~5>ufXbY)UE9q3qf= z8y-DbgZt~3jk)vjVGxmUP=mS8JzYc}_%Y*$7}e3PsAvlI&g&CAvK`UMQBrgx6gE9z z4pr5!zS4?frl`_q8X^Hv;rz|jov(~tsRw?cL%JaavUUoN+~kNrgQ3PG0vj+XISq{f zk<`SOE7%Z(Fjos)%!^mu?d8<#;iP_s5~(3W0)7vG`Rc>Zb-x#4kn_^geyFRG7Q|3{K=Ta~%<;_opti2Ta?i?}P?5Sxq0M zr!T7Ve3I2HRJz}8iMwfwzBCx&pVqWw^UORvqn>BZEPi%bLnC4ey=?RF-CY5BD@4yk z#Zu7JJ9((=?vJBs+2CAn0W!5&dGNYzlE3G*CzgP}H`kA+^dC0s7e5$-rO>06)ePIs z%-k!w0Z+xP(d@6cutpKjd&g6fu2o=gh;OrJ>fA zUCH+|X1Cyi6k}n-6*`Pk#e7&)ih@FT03HPfAc6mLkC6;oR!?z@ct3b9(UXs&D2*ix zxrYiU(R0O!0CUrZ|1$zt+koa#|?{+Vgy~ZOnx?pSO_99;62s zZofhS`SfTHvx_cmZZqV^%0n&D{ild+*ofyS^pBy_I}iyFK}1e8#M4S#t%loZpyjLV znxWZswuZAr1wiCDNeImV3EO&n)FnO)l@Ut?PiC2(u_%klcj*yltOR>ogMHjowF< zqlvpNwcrJhqb?(#={iT9w{9h)I$`31~MQHCusbsue0?@Eiu$G)TLnedZv9QONF!^L1c*wmuzy4_z! zjXgBvIWo<0Z}jU{Ic%WvS?wtmzxokENz@QXO?kWZ+m3r^LIJOW+m&1|hl1oP_?5V! zW$899Qx#R!xy%Sjp$v*i&?BdFnx>jnvzMHtGFe{hLrmI?SW~Jtw{k}E{dXWso^oiw zt+8l>5A?61WeqNwh7UlNn5E85tgI^!zczHwMU{DES^c$Bam|n>mRye2sed#7RWbzR z9T|?~5T|#NR}EOwFHFyA_zoLk0%Cmuz@K}ZnNa)v81DWRQ>6w(JY$Y);9@Zw8$c!i zfN__)U8A~PKsv0a6<}i;B3s!5j2qnG*Ivjw2T(jleQ<(mAcXZ?KcDft~-Q# zCoO%%>;6_Wz7X+tt3i5h-zJ+_vctu9chZw;K(A7c5CJyRoQ*w7r=djE->263D$lmh zAw)n6p37QtlSPkT4c20bsso+SA8C9YiT_GVOzWXwgDqB4_sS-$$kYUyYbSY9B{H<+ zmkDjO4fh{~TixeWA6>@YUg0HM)AD-N?P`{7Z>HIST9@*~H5*vQ8Q9n)tIXI>3`Xt@ zmEg3%t5gTxRDOd*#RE9%00WpIFrV6_i?$5$_r&^b1Z_Na&ctL0qT!$j0~?UQSw;xh zc-t&hq5w#?N#2h)s-KKqj<*N0EIpiuVhi1=a3#1> zaZy;w++(Mdc`bqp<(VGmTw`?MiTr+d-(-=?`f~WjfI3&U9r&=rrAA2wqSBs*%(rhn}nBc?t)HKQDTZhoY>ek;6GO=LsVq$kY^s;DBZZdO&^0Nw{a( zMrAa3_v(NnelLKQ1{)yZi=knH26$RSeUAGz8&cV+6U$%2557VIed0PhdaP&w9^51D zhF!8t?3zpyTK|I3Rz~Wg9w)e`LP_jNa3~pR`S?Exu zQGAh~)$6@`et%G^?maw_w)+u#c=P?|`w#snY;R;%7u1I{hI~e~uP4@|j&KmY&)vE_ z4gIVlH##g4oH|F`{Gd%Z;HhIktLwRxVP1+`P?Ye8v5kDc?W%kzxNh7KMDY_*icFS6 zVWV`vYs)u*{pQZ-UE4oK;>Uy?ykcSHJ)V-l`OEX`1Dvm42rc%e331cZ<(Q!g~V7tyT zggKZg@KlBZ_&+8=0BulqFE-c>M_nTjJsm??{{2_N#$^?(jwOjj!GTj-+`&LM?7t;tYhBW%u=`h=%n#gVsIo^S2?>ab zDG2S4ELEj*0e^)1L9Ygtmm68slwDG)0J`=x_71CxgfVN6CGq=n?n`)TvVQ`z_D2$+!U)4OKI-0gx~LI`J9U}lWI%n?>VSbIXqsU@^2c>y!DOz zO83P2>!5zi{K`xX8J03cVlZ9a^uH+Wa6=_cy~c@*YzboYV$LE#yfHaeNUm|b>++$| zwJq_(-gPYD2R#(=+%8%Ll8rq(H<|__WRz_fc%S`3eU~6byQlTuwW@i)P5C|?K=#9Y zeqa<<*C2b_Lk{G0)$_Rc>~|}k6r;?Mx>%nhge$1f463@`X2`($7pK1bPFeQl0+p`C znL+{jB#$d2`=J5;2(IUN31uAd%!{{8?vNy8IW&xaAxK=f-^Z`*#a-9HLvRIT;gcy+ zO4#5q42;Y$K@}`W?i?KN`7xn>+_iJw*)646Q$4VqOeB$zDb}a;MQ9LfWY`0tbQbNYFWuKqFxHuC*N!%7;tHgCbb)hb7 zJqddWs%bbbx-0V+r}BI;UDf*X>Q=I%Nj6^+7KA+(E*(yL3hy`uoG#&J`SN4<+J?Q$ zzwb#P6Ur={aPM^+;KVDNc?aY3g64g<0W6?x*zz>#-)pM# z!9G?R%STED8bLm#ScP_Y!&(b!<&9$flD(`uXz1b#8BZ3CayTJ-!3Qtjys4bFOlDzl z$|F{|c0qv>^b#H!Nm)arge*e|h)B~kXNhLJ4bEM6N&HK93`_Q#)s}|poqZNhsgum+ zY5aDTJCf4&o;1d(N;JUS+CEY{|XV_-M%3-HS7u(kV2rGWsFpXw$ng7=M)Z#TLXNFPbnq#_8z z;Q<2^IpcQw6*_8{(jbdS(@?c7=yGywh&-;`xuDls#rdzRr~t^{MJTsmYiLKi;CFnZ zAvOdsyru~}94k3oVLNXayxnT8P%Vkyt1*eyy&@mY*{I4Kfg1@INT`p~!Kp=<@~-sC z=bNh*x$gpFI8`SSUFQPLVw2UG)t|Q5L#kYRXbSPNAD~?du&_$E;)xgCSEnBRIpdK* ziy2HD)p?0dG%-XZin6vb;*ViVpGA|LnT zF{1RGHSBRk4@hThecZ2nc}np0XPga^R259!}o z#8vxj_NS3jg5_V4v0f1fKz|USPhK+>GG&R@`~7OihdOs>CME$E8xDxcBxlL*0PuWw z1$r6ZHETg^3q30ZjHGR5ZVo{nz3=OrLhnaMFE#~uV1Gz#>XnND~YXy~^&W=~$Hk9!GH+Oc-H&Nbd|Vk9z~ zF8TG}{LF*k78P??Uv}T*5FQ)@zPyd%E)R97lNT((%8j+8r_6k)KA)b5(!9A$2`*oy zDiEI>%lBu8%)qK!P=jcKL#8&QbJF<{6?f;)w-_H*+%ro#jztiW7J=*{mA~j%9+QBH z@JsZ5!&Yps^-+R~=G&`va=G7YTDog)zL_V3@i`>~5EwA*iwe-aH#Z|owq>=NW)zH2BGvk-?QO#k>N|x;ES3g-BRG%MIaY6P+Sc2Qx(v z6Jk!4EtKB6JHmW&9j7bbm3U38sw-N0d0`}-po*-f;3_)OWSwnhu~?+D*-BC1qJ4ip z1BDnWz}c+c_ba4jqk7k4VI09LZY&Or?UIh#VY~1u&avg^<7yOgt3Ctkl2Nx|q2(jt zk;rwS8I>+_jAJ$%aq4h{2yot6kD@?4H?-?DbVNNS-Vj4A-Z+Lp($1%`dvxg!8t_@5 z9Qk7Rm71P#Cg1JR&bYnGk7m3(^vwZk=IWzCAkZ(w4kY1-xlz8~*Q^e0SBWuk#hlP! zL-ZaZA8DWk)moA?)qHhB1J5gX19WfPT>HysXWt37e&({48tmJk!uLqddZfQzd?)5c z1Gb8mnoTzl7*dMH;WC#pXla}Qkrb{L7bhN&@wI%p_q^-y#=^r0akKA!re@3L^P)gt z$q|=BLylWFTQTL>1N1Ftok;w^E6g+?wywL;+EDZ|gQ^9^i&nei=1p0uA$Xp(@Z5$l=?%{t3@g+A3X zEG%hzLHshF-WpnV`*%c8&={yT@@WQRDj@nU=$g+%F4yu@D%DWFaN5?O;pJMH`bdho z#SZI8&rGDDdreXoF#TGO?6^-=O@e;Zu!|Eh8X)Mh&-WObLY_ko9-z6;UHvqM#Q{EZ-k!USM>0@6gRLjEgGa?iU{R(IXS(sK$ z`0sSpnyWyqr$(3S#f>vyjDqm=o|R92fTxtf<7iCe$v?Z?%+ZO+9lE%*Ja zeb+CzhQ626a?HDXdsI|Z)dpQp%eFPAvsln~;54Z|Hk&7wmOuk|LPoMs%%VY3Y@dRN z@7X|^&92F9;b`2ga`&_xN&0*0BXPbIULt0??@?FZHaakiboNeFfAGJ00jwXKgSHoj zolLDj@9h)a=+5NDD&A|n$?V#}ze$0xPHg|!C~~W5&%6NWLY^-$0)|gIp$(HJ!r$NZ zhqjbIsAz$c>`;=6!;IAD8|UpGB-0qq%9Xv+X5+)$;80|lVF6U(-4~xI1GK|Tuxl43 z>7G5Rn&7b3RZ{Kew4sfu{e!}_=nH`)RBv6Z!uEMl<+Zj?$_GGJ(OLMl#{Q3j4r!!9 zA*EE+w|r@x}<<#=dRdeNV(kFEqVEGE~RW4Td-wrdL2ReG~XM5l<8+3vv zzQJS9`W^0mPlu(Tm&-x$*dVl!sAtW;=Jn4{YZJ+a^N9yU60gE7#O*4cg2lw6F7DL> zLt2eQ7_o~+D_%dY+~Ko*tzy zsQ7m`IU@O0m38dus06g^E-r-_y8CQ!M6rLd5?0s^0r6Gb`&{71=eB!3#*&T@kqcMy zmbP!P-}}J)?p*BQ#b_dnSh^VI1>wz7?dbzVmYc`@xDBSz_M1+gOsN?##_gj^2ONBb!U~+wZ zJpvXLG9H`RuMiYmcch8y?(S~K&dUMttR)c)z2=X_Za*Jy@Ah75`1227LoWie`a9?O zhg!>Im!WxmimM8Uk4#bDcx9!HsGaiHr@FJF-wQWaLn8`3S)f=Ng=|;>%cc8<-jz9| zvrYT?@qzr)S?le2dmt}cFhrf+M(E^1M6|zFDB+q#}VF@bX+8SzBDA5fUpk8puLAU&f8&l zR?)!n#r3Q(GG1$L-bXe;w{$AcqFL6fZAAhURT-If4H;HYwd?e77;nLEW9&6KNZ^TP zxGqTEP3U-Hktn}R8Dn5TQ&9Lyr!rWp)3@>EZ$-v1IE!Q0=iP5Ir8*u$Sl6#i#Hy%NrA!9h^# z${-Y+NFdqke=8*xoV{Oz)-FrR>vbO21eLMgb8_42N%<31N1+Fq)})&}$7`5R&6q#u zoL#8(Ti29JusYjgpQZ^F%gFFYCiBDoFuHsc!>wQuLHU&@ z`}shdTD(0*3*5dqp(ZZ>d zr3UK%r@6QOsw-&Lgg1fU!Gnh2!QEYQa0~7Pf_re6V8PurxI=J<1cJM}ySv+L-h01q z=B_n=!2HJIoU?m(b#--h$@8$+nn~`MWO~+FFEt$=T9U~BqLO;u;n83GEzxY8E{ zVOx9DPK<{U2{E`w$2eI{7|cfq`%d$wFBAP|2D$}bi)mPSZU5+}a>eC^Wp{ofXn)UE zUzFiWc(h~jWV5-0od;GPai_Ct!gP}Wx67PjSh)rkve%1zLrD_(^U4k5Dq71E2F0A2 zf!IAqO|p=m9KpC;BAe@@6o7=wXpc!!2eS;_qH?B3bwj1kTx)6m`S*ojS-1+Wvt2a@ zU5pZEthd0UEfNr91R0jwUT_j;uw=r=9MU@u225|-y7C_34@*+XeWl___#2)kcSR@%E0(sRI^;+tMiG@$ zpz!oFIy9df)wmuM4F(2A+A}UCJSi_PuRz;T*5Vr*ZV-+{Q8A`(vgW6di_2}+=bsKd z=~0wmm6xtQn(jM^C7SZ77T<8v4^zJj2d7TA`yex3C7XX8A|#u$8ggh2?}+A#W9^F@)WaB;h3`Rt%l1TTh;!lNz=~ zV$$beNDptGdRo6TteA+23JS1}TzI@BBqgaUDxR;0GP?0)w7TEW#P?^s>(KA1Fu5#P zl!b$H8s&QHhvtYxYaCD?VVgtcbPbnL?d)(dol81n!qs2s&$^3nQ%Q*%e=7De(0BtS zM)6|bv&koSO}@Y>|Mq2U#g_G=fjdBEBPx#Sjg6EM5{}#cL7AXaQ*kw67roNln0ZgK z-9?0)AVnPo;fxv^&wz<7Zo2^Kpn|PIo{&%{fsSK#kdDfq@aS38M5JoNN0{J}KHc`? zv|28glR+67O{mV}flTgozn*LA zS1I1J%Z9D;BD_J4*B#N|1=!;5ot~QgI1@MpxpKC@ zD!*VIFqH*lvty~rA)JMq{xL%A0FA`J);VL_tuL|W%1V=VIXambGLgXJ5a-H2Vn`yP z@a6mpmg*&q4ZmMJF_xmEpM3q39iRM{v_;M(@kCbIz3M@omO5TeqaIWfig2gn2g)3p zwMlQL@XvD75(m?NV1ubkd({VwHD$>Gp{Ue>fuSqj58d*6$HBSlqb5~~n2;%}0GP~) zmU6!v2`F^$W)zR-d}pT~KCTo@iZgt|CPukgY2Kr2G&F8T6?XOvy=Y}pF&R}2xn$ti z-A}p50<+Yhe1rVLH|5Wq(vp3G9ABQ|xP^;JC4L`o5%@k}X z+3eEN(+>>}I&gj9`&e=0xNo6tW@hH*#xoI9SV&c*?6yBy1X|WQ!QUXNg!@TreO(>L zF1%NJ=ChJMTDBmW>N=0jRC=qO#jwxSF=kdhCnBEnKh|(R3s zreGWeNDm+d=sdz^Y}gQhAKJ+HAxi}_2P!lwva+(4mX-?#pt~|QHfD7rILgS3AC7>4 z@F|x1_uDAD-O(&iFdB3TzsOwpKHkd*fQTKuijF_!do14@$?Kc69o1)CPhWQAyF2ZR z5OZf#q2j5WAwF*{jvUfcc|YR!9QQzb_Y!i&=JnNh%is80kG*?=BOf?%nssWCe96z2 zyg-QNLi@Q`<1lkaoJwnmgo7_=p+lDQ+`iy5#9}qSSG-$n@Y%;uJHkboNH6-@;61$- z${4kR%uq~(JjHBo-flK=MAsO+rOD+xA}nVG3~t7F9Ln=OO~cPvzT_n7kX+;k@^mQ( z*qpDKsopz{Jr^lBF*!Ga`q-@a{zyqa4jK^l^*v!zbt}GUyyjm%Yg{;eU{mX15)zO-vZGWo1ws*}vhH}d-P~2-5Em8}ULaDhw_duxIzau%Ct(8fAIX(}Div60?c!uABPBDwO~IuLJiMJ&i0v(; zKHfk^X@mu=mqW`xd!KBVaVJkKQKTO;x5w#?e}?&a!qf71;)_VT6x)VZzAaUTXMvH@ zfw=JA5RzokppNRdr)X>5Z+9I8vt#Bv$rsx;yj-R^pRFi^Qkny+*)g61H?GI!$l!qN z29XQzrp z1u6!qgVir5QA>_9IuAD|E43DCGBU`HUDoxHM1lg8lqO3}(<>w;s%1?lZ4Ymn?|l>K zbX#sgbQTb42|KiF5_NKB29=P^ z8?1l1tZn{uTN>0cLfAo+(nEz3Kn9EW^Xg{q!@VPct0caH@Yl?_>8h(41}X9lyFtOa zj|tdMLL{7W$72iTnTw)3PU!aI5NKs(QjQj9j_W$E`eBtjMYWeMAqrAK-BokDVir%} zOT7vX8+xh}USQj=EPS*#K3mxfI@WJ}GF6>g%wYjB0h;j8>*5%VXBiS>D%g(e5?~oA!b~d=d z7P@LTC#T%WnAR+;=^O@cRWQ9Q+ceEzfT!%l4IRvAM^6p zXO(blIU;~P2`S=oP{Ufd@s@6vYTJ~{T++WkGytOH+9Tp5H3hO3R6euhw-*vGm{bzf z6WJv=dxSYYEaLwJRDC1@*--Q1DXrUO10Tnvx zNtAn~cMiSx{)I;R&Z5SyK{-j{O4BZZPm5mK0QyfCeR|vMp>w-tETiR7zx!AjeH9XS z2DH3Gi=N}DYzx^}9&rI0S*lHiiGR3tpPm200XsKMS4O%3*Qw-#b1DLN=`iSPw;dW% zdZCW*Iao}W&ed6I>FA_uGh{O9cPPp8$H&BA-2RZB0W;{8nq~3=cbm>Do@%fbY7Ke|9m3Q zbC@*YvcevptxN< zSJv!htK!6-XfEx!V<=bC@72;`bWjoPP5=928$2-i;`HhMhlq8}q^)p|@ti0$*`n-q zH|p^0uwzp)Bk}e$`QGZZS>~NTvni`CV44^d*oiGL2B^F3!gW7^*cMc$FPB z?C6AC_S>D8<6D;c#t1*W_zSxn8RS`CC){W*h&augkGR6V3w|RK+Uca8Lb5ETd4xW{ zF7Gi`89PT{AUAI+Hw}|-JDcFLjiFfjT`jHhW&Ce(-LQo5kddgV<}`ECS444SjLmna z`{DGNmI{MJ0|P;|M2wu)2j;vUS_(Je8xYA>v1YH0N`|KK`Y8@{go3#oXE&?mc}Jae zIw^|mocT{DpAj+dgfJp_cE+?uU|Q9#ThXK2i5SewoSOTGrZrD0y&Y@qy|)Q4j1ZB= z|Fz!~-Ao=iOG!B6WN}>}2&D~U* zxY1=0Q1JSi*|mIW)0Bz9ZEid1H-k<$o>Sj6P||3Nk=d#AA{J$EiZK(m+8s0`n5njc zCjJ{`rIaHM}KixMmf|px@-O z4CQqBv2tKbX!5;^0|+waKXjhAP9d`&)j(UUOD>%(KZe&G~29IXpe?#g$YmVFIj`*7_MU(-jz(J|@9 zYbrD!Y)?P70BE&L+)+X77SaJ{W$B11Z6^*Roq54rt3`zqku!L5PEBk2qtJ+R-;=qL zX)(bHVq$ou_-6g~P6cZ?Kmn#?cM8SWOTlxFRW~uIf3esQ1IVt{7{c)|a$oFex0_1a ztqJz{nRV+y(uRJ72=;~;84f=A8~WGhI-{(@0&>@w$JO%wUwR1}haG=4_pE%kKOw)B z+JQ1I=ts!s+ba_!l={F!S7)O&Vzh;t`Y$A`-nzhDEX;6NL^1z#!76_QuN2{1ANjec zy(dTWS}P+UG|JfJMRRM6JT-ps_h6#+CEa5lu=S$(EwNw|fB!P-+4-TJCliO!k#iwM zfX|9{&!JgF>j;DS=r7EKf>M`7yiOc^EDT;Gg~srl;tnEM%>R3;!LeNv3``s59jvN^ zBq_Wxqao<07xGCS;(Rd|sGn2tZrRB9;bV5)kQR}}mQI%vIhe=!MHKRrqsiOjpsE7D zwb0RSG9fpgLaL1xp>plbJ%D!#XRvCS!nIF=Izq6Sk&LPpiwpXPORM8Pvn?-Lqi zz(mVMQsMmVMys*=#Q|~?iMgt7PjI~ZRo(s0UfXY#q5dd&sZZ*;&2wV2Vc8!7)_yiM zIs1KJiF&U1JB*)NiYgsNOsu|IXb&q3k=m9DcgvMX`8@#JUPm?G ze$Efb>eAQpMHoOp8L9J|^F}zyy?Yu=~qRMT(!*kbztl|oS^$sNOtHwhDs)A>o=U(3SkzNV!72kPkGV2QmOIk^Q0R>kCC49o*7lncsMAolQw1V zNKh8mx9HECkID@Ob$=jsuSn8-EBng-@lkwXxx`zb{)OtIpp4P1OUe3juC$JSWr8ko ziElthgC3Ws*Q6G2dg3V#UipJqKQtz!D=iDqyQPt+5FYA3@Zd-+D}*q!#uCt<;T~Sw z4+&#d)?RNb_YqStDjZtZXvyKZuz*J-I*{V*SPQW0OL|Nm77CGyg|F|SYDnoK+o_sA zCsKdQ(n{%o0*HO2Ao~-mb0fS<<7y3>G0MGL_btG$KH~!h7pT>ak>it>u|3l9B(FnZ z`v$AeXAdSv?lbEI3YtvtWAUBG-jnt$^_)b+8^ZF`)zhL_$G=Q`=rNs4&WK8_0e?1j7xu54m01BvHi59!mhnfn*0jnT!T5!CaGUqo- z4>tWsA3ug{ixI(s4F(Gd+Ia=WcQU4A zknVC$pnSg{>eroD(~rfqM-`in1jJrL54v&oV^<)Ppco+;`>mKfenSEv<(iwU3xg|< z>!rx!CA*R5l288vl3_w?o>kEud~tuJMN?!ZA<}hBSdx7(u8T3@FSBuZv7Av!NmXi$ z_Gs_RZe$K5MlfmhlOt6O^h^+@AO&VE((+09rG?Tw@=N-Rrup>O%ZmT7DNs1z((+BY zr$6w%P8M?}NU7V-N1uw62V7T`u=rC>#f%dHS7{r5zfrENO?pvp zt?wOD#cx28_u6abN0ms`NMQHtNd6w`Q#bH?zAb1vg^LaSZss zwkd*^Gp#XhU~>>tQGUN!~?eMYT*V- zh;2`-eMzccCBe#JWl?Hph;-Ic)zJUokb7X5Xm3SLJBjwg7$cK#+{i~1fG$|*W=&p4 z*>)0RZg6q?=GyeQAMYk(ri+(k(hja2hA!h^bZN;ma5madx%>dWS_6mD0+G@nrrNZup88gU(#rNB zV&{_3V(C`>fGGdcS?5=+9k~#nC)Dp*y4vnKgPi7sziseqL441n!UCaXTb{-RKWTB~ zXDU`;f#QXpbC&E@Sm}*W~21^}`D`QT`ISS z6Gj@AhqCB^P(XI`_$G_nhyalxk>^^wN-2byU6$|V2Z=pRvvp>UM`+m|MD1z4r!@Lg z#2PFHx)*9!=CgkGMPX1xT=>$x#NWvPSHeg8aN!`|)yo%T_;JtmZCwx8=Ue$!N5RI> znV*Whdsa3_P&a##%@=@g2ZexE=tX@+61J2zcucWsakO_AhET+Z?mTxjv^h#=J6y|T z_F2w})-N#tzvEfD#t9Ix2W+$dUA|lTcnP3YenS)|yTG@iPeq~0H*&k=7^qN*xX`(B zg#)%O1=36rBzasbzgd^!N_5=XJ8r=J9qG+CY)x3;K);g`1mgIWmK|04tJL341qYMw zb8z;At+C^1_dw=nlXRsuw&w3d2!{g#6rvscHWZDI}&lRv(_A;R--jVhBZ1$AVlwFlK^ zv;BH(K&;6_8TQ1E4QrXoa&;Q9`O!&d!=c8 zMY}WpQ5u~b5&q2w$KhYWxL;0Hin)^E03n~3?8Ou2*K=}e1Nj*Z)YIF#(f&EJ(9fxabzSYxp1(PH zz1*1mHP^ztAC6!jhAEpafDVNEXvKJ=30fH>ifS9mDg2wpSkP5sp^2kU8i@!SZN29K zdUw8#DE1Go9NMakEq#Iq&<6@C$+mQ3hZ^pDsk7rhAQxsur-q*1sgZ@~`>)LH(zx^YYK_Km$6N*|k_yAZ z%ogil{HWG%Z#{s(_yl<^9_T6oLhxBZB2l+zPip5*D)p@nd!isnDl3Yss!gMaEpph|}%HG3?JdTc0@s2>@*gJZ|xh7urdrj8VlP|uMGS7joqf$1&mD+|> zcX4t9&LpsGeplqj@vp|sOkuf%XyenIf?h>R`&?@6{iUMDaal^Ni_9oWtn<~FFUa80 zF$RL1e}QwktH8*1xykz3O1~6R6Llue@U83mVgb3%CPQCyAf_l_BJsg0AMH~RR8;_y z20FSxY|)k{tZX76q|Bwv<>518X~ZKOCx=T;v#a%TThKq(m>o^6>$jvZU$`Pse}w^% z^Kpj|kX`Q{)>Sv5VT_eIs>|UkllkY9b@$KsfokcZ#+P`a5*`eryK0eF$q7wIJ{u{ts=W!ma`zbu(8gicD z?tvZZIK#jh%jgUIQs+x8Q()(BmgBI(rG9UljWwUh$&62Oe}c(fX(wN;^3p{j?i!_% z1GUes(eaGl!WG=yXUtoIS#U;(Gvs)ZfuuQ`5=2@+EDVsZmD-QWKmduacoQ7x{3@U9 z8%u77h^zSl+-eSylz*z%Yk)A|v*+9FRI#y&nO^rBwbxtZc>t4(`VbG-pGy0CVC%um z^I?(RDDIkKi^9mQgUO-^9#PsmAeSwW)4I0aF7v>pK0}zxEO^DZ=ENW^)VGCs5sK_l zHFnRwdjYcuA-g%dqs6hrV-2}tOy;y9U)F&Wp9VYZf(=jft*570Np;I|L%j701rQ~F zz=)SB{99t+2a+!&LwsdEw$Roy>WT%N<#}J<^$N|Ffq@UX_B)OPYJMX|PVyh%x zHxu_J)qF>dHj4>@bRL40uLQdMhc2Qx+20a9mESJv1zC$#7&C{172V!#gKBz6RrI7x z7`lZP8FXP5V*eOCmhs)?|nYwWsz>bQiV3q^Egn#k3SE? zEcAUziiLFQtg~eK6Rg!bHJxkj_j{@K+ODcS(frzMN&B*udO6xIrGjcwvT!1%14bwy zr0Zf9KYm7UyuHgZg*KTPd&6|o?l)3r; zm3wgt?)}z`5YupLe9CI1iK(!O{ROT}h4LQ^> z*muxQ;&4V0sdS&KU! zNYsgS2Pe2YVs{4mMIikxkcB#v4_gzH_7P3GRz{e(wJswB_Lq^pCTZe>=mlrQ<&-eM z{ZXA7Svv~4e`o~=52ccb-*lfwebPCi`w55Ac2k4z*L1{jwTh?J zbSCmLFOyB}c==U^TXTuEEENohjC{rP{Le(fEUdtz{$RF%B+edgc=Zy`=4n0Sn9tAf zctt`bcf^p%d-%|h9YEWTTz~g*pEcF8xy^ZoNsE{)oj>{hd!epCEMeZ|{*Y`1(?bGv zDvuCLK5CS|nn{s&!W?yxGN~rY6is*W5AwzEx^s8D4@U`4(|WosK4zqE{)~=Py$$9A zPN(p7h?zdHupdo2dgddG|C7=oes4OfkOLEg#o!o?*kvF;u7mCG1_s7N(lKOKcI&4> zHAgOMVMmvCYLIg@_-pc4Tdw=dOe1LzRQJl8wHt^-I{&wohp+jy>qQgvE0)l}U57^6 zKlPqU)@>U+nR7shML(#J7*1l`tKnb66^>YK3S9noHWp%phcg;owp5BOPH&e5pa(G$?)pNVKkAz5AA8rkrf^KHV6BGo@b}B z;&b8qk)}vxNI*i6@7j#*LnKqVJ0g(FxwOt&r`~3e5o#cg82IiSe<;Dm>${HOb+S~e z$0uIJW2?$0hDqBEQQh>n@T1;x&PRn@oC&G9QL++b5@0mF%q#3~s+Ly^`Tg1_SJ#x{*@RY+n=-alc9o_eXP~NMpig+>xOIQoZejsm}7;?mQ-@p z@ccoZP8q4;%*xfBlC5sX${V9e+)`*Sj5zbrR9ZKs^r#5?rJ99jf*w=)cPz#SE4} zAJLUM72O`ueV3)`bnsPOs&>YZ&FfD?Ff+TbrQ5Ttms1s!;7m1D1gOxMN7E#AbKr2VR89Kipqh*?$R}ICWG9?|eG!wyJ3cwF0Uxt#OzKt=&d|E^ zAspH$W}BK+3^8wy&z1!T{DOa>y=3~|t5g8~>6 zzCKwSjn4ldy4t8rE9G)M3Jjc;6!DC1^b!v}b2t@4d-^yH!4CS@rw#lPQD|P#tR6Dt zGAel4EG&RLUu1&L-aH)dt@B&(QYrSm%A{e0h4-k5a5>6s@p;2@+xWm6mxx&^3uDZ2 zn{(l#u{6ViB3*01`>bm`%}X24-dm_o+XxpA=;US(WwSL_f;pOVlfvuFp5`ylu9r^+ zu4d-)v0b{0g%7^gJrqDt(uz16u`dCot%X$<7|%f?AA4NES81Dc$<5opTJ^+)BHn1j zosuY`+Pg9K$4S2@Wlc9Dt$7D_=xKgNF9=q{0F6gt!1sBBKil(d$E$?!gxPZ?63O|z z!4lCR3P_F>F?>f;szxFOfEG@Rwz>62k|!dg#^Z);!tQFRS_9p#r_Zij41ifH=d7_b z=9p6%-e+uOfR^Z(Ff@DKGqsWN^&lwdo-Oz&LrEfg7%+9&!mLl9T9r9=Z)UYPp z6U6`Jo#=vS!ILi`5V0h0Q7gUhh3}yvzdUj3R|a^Q8#Vezzyo^7!zR;Cl%VHRkp2^o z@f;Z~B6ToA+K^gBz##PK!RojPKc9>$VYx$*+EXm{;oCduRcDpSH$F%3OJx0k5Hn|H z>MvvQ{ubEKoSL@O;NH;p;8IKGKXKib-v!-yV$D#ddNZi$5TU}Xng7;^I57J}3cxFM z6``8cNJHv^-T@y=3J&JO9=`cAe^4M*iy;93i}>n0pS)Ywrip(_BWt;*h#=3^uGFp< z*kx(#_+v4PEk9(iA;jlWP5g8nLINId zm+p*-Qjo9d%SSl#^6c@gSdS+nk00Xq!dhQ0&H!Smbts?OeguG$sE8xu*nEP&>D#0{ zi-2=BZ;G1pcWto21CckIfanr0)$?9+hq=2M1X29L6h9-_o*Ha=e@h5Nt+b6QsoBi+ z-40O#g=&Ka;xw&pIkp$_GBct5`6%d-!?56XlUZeUPoYm}-66zDIwF$yFs9=aLna@4 zf@~HcsO98bdusNyUc0i0^6_a>*?#$Yb%>L`Gp(F5JUah%cIPjyW1GJeM2|}rl86B6 zVyhV2je;Wf9w$4u*Ym%ecSb#I@j=5m?uYGx7=>k#%xzzyIC0@SY%l${nu(GU?AfHI z&Krf$bXzO;;u(_?2J%suz3kO%zbBcxun41N7*`)}_>oX%pY=!`iT_(V`NeRu>3Q%{^mF#s8}3QKvnaGgF35bjiUd0EJ_n*#x08hHm zfU@VLDG#Ox?OUMt9=^!Ap!TZ)+VvaoHJ%~2WY!K?R$%*0dU)bM(^4$I> zG!!_?_2C6Ds=Co@s~gf^!udvMK+O1wYO`9*PAPjf+Rm4}RJ4me70+Qk4+dkb>V;1W z7FcC%P7x3kE=a(k+@cIsVO46ZB=sfMem8CXDSNN*ua4DvA=eZU%vW>rKD1Bt(@Deg ziYLKP00n{`$!59iC05j%=%m>=mH9zJwo2G^*J+B}@e-1Pz~m5-tu(EOxM1S^jw<_t^?tMjhFr?QuDLdlC)gI0DYStYrRlQ z@{om!om(>uwEz@#|7U5~bQdTg{))`s?SYtNN6`>+zTx}G-Hf%OWc;F(jNbQ6Fu`x$ z{L$U`l^ld+mcaCooa+=k`}?!}#S(Q>>8l4|4llO!hahU@yu0`qnKXkdLf#Yp@yJx3 zg0yerHqBbhkIHyUs@n)k*d=AKNj@YES*-^&F;Cu_@=<3zzK2ISUxIgM>cK58XQ&qC*Y*T4JkwtZgce{63&(1M++A7L#WPB<6jA z`f2cFTwNd#*LCv)a=HI5kaOjoJ`6bB3+HyK?Z`8Y507oZ!{aFl^n)oVBJ$+fmWudj z{spQ7^0CbXmRA;$a|6hi;z1f|BzUFBI;Z-Uh#M&l^%W`p(|W z(4r{W&bRTSVceTpU>&#ugXjL`)>U23)p6z(!aGHD_0PY_{Lu>`H776em|(}DnrrP* zz0zQY{`~iaF_tc0Tg&i{13v+O%?``4KN8kqxDxOr=x_UC z{M&E91bI0=rg&f3L((+Qa%sWD-I<3%3L1Qe*BA<5WYIs=Mdo_=#S~2ERJq39J+b%@w=^Yes|g?)`I~jRYMd=e{@WEV;E~3Ei^rl{ z1v-bdnP!&HVSgJJ;x=)5{L?@eu+fQ&QEszn3TdKiShM-;`#{$Wo&(I_(>EXDAM@H0 zvyAgvDEN4?m}BojzR=NHF{W=dt)><0<-9F!eouddovl3K{UpkX=sz$=NkJymR+@{G z2|qvsRc4){IS)|6w>9kGT32bbpP@|%D__9E+hsS5#e9^6IEN1#*iB6csM3Fv!V;9E zA}C&^goh&bhsbColM^vulArz{27u3JBM6||WRc)7jGXW(rcBZ83RcZEU~55#1bLhT zosd$RzWK9RVqsI6PwKBtQ$ryiBOA#Z%(35%S6gK>av-(Pd8h$=yHXU*+c(-*90O;@ z_rVf&tU6P%w!Gx9gN@DpVGPIYg<;(80K5SCeLU)OKoqwP!~;*B5SLez~oxe?s2}qy?RM zOK0T=57U(7Odnf2skDjJOJV}Kr7}&YCsJb0ki>Y0yKY)n-ig!;hE@<9VKn|TMfO!e z>uSv#fO=EQ%Q!)7T=Fx#fErsdk+4re-!5I5+1y|$6l0zhY1Mm6V6?5%vbojG>+9Js zD!H&EV&WP|SQD8vJAE_{?}CaAtA{-lm<1ix2}o_rM-`MKmU$25lhcg?Y{@684=3aC zL+?AjI?0SvOGtCf=*!#KY8vro5Axt)p2}P$jxo0I>-{@v7~fO2l+i! zj$6=lx@nmxzTK`U9a=Dm$i6!xMfx5B~4_|WW{bQOElg_)J?}sQiGSWJN6Rwp>-S!6}nd4eMAOGQ=sA$3_n6aNIc!Hqde^d@-M z%G%89u5%Pt0qpbqkcJFoe2UF!h%h5nbR$Pc_PE@3Ise!o6&Nx*E_didqY#wC z)gru~5EwM0XEC@u-4ltn}N7@crWT;~A9tqc>t z)BmD#C=3LiV{9$rG6QSYHJ1{k9G<#}!2aG@IDzR^KAcb7l&2NN_G}(C;9uQs%v0Ka zD~31G({MdGImvgkXb;kjb#-+`M@NGcq1vr(wNiQeMHrbQYU=6@-Y?H}uILUhDfO>} zSz~z`?3skraBuiD4L0nVKyZPr7S!I!HIr1 z__yrF|JOhxV$XapFA=*WRq<%247`!YpZhZaBrgE z=3u5GH}|zu%|oEQuuvjr>{6nSz^0}0TNfe#zbQJ3zPs|u9rsV27(LxYI&Ehkfn?;8 z-|w?9l#pUne|S8ST{gFZBJrO~12fZL+{)kW9(Lx$=-g6u)!mDaM6dOU-!e;g_2p#0X zbGnhHp{2FAvkOEeYIDCi7Se?w{P9fhkM!BB6N6>JWJbsB6^y(@eX^6a;Y_N2dXr0w zU|vl~*O%qno&*j0Quy}vO~{A$VTs+~QCB{7rnFh^7J3Cy+ISd@K!Ni~%1hqg193_M zNOR0c^N!dmub0k2p|N-dmPD+aBueFh{I*Fvj^+yoTJ_egciXA-*hrEwOVno%Pas(z z9X0h_jhT|J?#Fl>VR2%3-)H()b>jDV)gFc3>0bCZi<+^|ovp)C#_!^(Y~^K<$g}IS z<}|D(y*(55h*LzlLk?n#Hu!a}67FXr=SEn09e9n+^2ycSCw<~!)THaV9OA`wNWjUH zCT|S+4lm;O_m?sa0RaKn1-qbIQBo2b9&QD)!j?=eQERk&J;hK+I~~qOr==|x$P>{p z`bPZuR{3AcH`$r3wlez!i3^uB?t9xm2jZw%|7L6R>{S@HjN}7MvA2R?A>R$UgwS5E zc7|>2<0n^0isX}_6QPV5-|p8h=T*VJp7{7JyGE`Latj9xiJ?6k>AcPitgNh?G4u2D zhlhuFti~Q-o9NDPIueZjC_3QtTH;UY&wxXN?kO7%tWr${-oO9u^V=JXQtS$i+ zY%tN&lY{~u982tOT9sMPI>x+Iq&wvHaeP-{g1Tubk!-A_5BmsO z8q%ZaHD6U=ya?S*5)6Z+JU@5%5MmZV*dEm*C;olB>B9MH33BLyRG>OGox1|ZuE##Y}mgV$>eIG7O7b@p1sGh<}IX;sodS?7U?$dPd=6b0*HV z_x&Jfx`dZ2pQAbQ1jLf|=xVG*y|TI+9)L+yc^H@EVU+7k)~!$j+b!AID=RClDmdBL zAmZW#;UGPAe~sbI@zN^|^=r$B%h~#$mjx$mTnCuQp3g5u-^GH^_Knyht>A#USuE>P zWiDbGuc6yZ`JE>G!MfPN=`Q8P`qX>T^MQ@6*cfPgh;w>0mVF9mdI4+i-FtT^A#Umn zifvPDqudrYK9dD3lk_ROnno|ejqnd^LJWztSRvWj+1&QqHLYH|qa?{P*t3Jfg@zOP zvcPY{K5&mE)Ra)buY(-N8o%{~XUJ}!yzb?>h`))UsHB87d7ensd95R$NT~oD2S;37e88~k7iZpuGS>6uirX`z z)Xs;6K;2ifNHSSe7ra|E0WEYi@Dn%uS5nj}6=(M{Zxn$#4yGdM8=?Do1!a&DBk-FK zsAB^I_Kn&XJ0m0g{WJ^=%Wa;`fAzRrPW3c3@vm5q5(-DD%?g&@B>y5CZ3p8`BD?!& zwgW;6-ftNd5W$d4wZjIj9!Y%AXp`r9L;9WCpFeDsXF20w;)YjEyVHSZ>6OsZYC%;^ zjWTh7QYPtiQb|59Hy6fhb-Xr3SbDzEA_jY`Gk!1Ko*YV@K8QEwcSs{*s3SQh11vNO>7~M3R$=5AAdZ-AZD- zN}De3UBK=>SjCFggbf46R7=~ZcI)C;m%de`#r=AD{x+W)FbV6bmi`_v|C;4^jNDZG zYO%_xLlA;P`XpP(sey+5vT1|)z^ej3RUH~P+q&~W^8Fbu+0Ne#$6&?mr6fdHxuxzu zKavG^H2OQR5;r7kA(*N^99{;K8NGrZbnCJ#zV2HXK!dje$BMx5NCaSfna*-f#}CQ8 zoO#if0*vC76D{22y0|S!A*_ zh4+8G3wIiBD8BwjIWBiFY8xtCzCiR+T)gf^TAv`hEcdK1Bz5{C@K23wr8epCV)Vxc zW4wBBXoTY4H7$xw1W2n68|si|KYX9nm#3X zrG(bqxcTn(fd0B+MW|X{pMZvF0lqSce+O7z0Dj?jV5kvDX?^vP^FQ>|{%)@g@vr}W z9f7KJjq{ZNyS4jd?+Ld9@BjSdzn|6mVuuZmdfQ?1`p_>Y|6!iSntnZn;RDz~fuf1% zm)*20z7DMAg<4Wi1O*ysaCn0M+c-T74;Pio-fzHP72^EQxAh`}fb7}s|CtuaWb^+R z;9dKF___IYv+FZ~|J&pL`%(X)zW!2iw($)Q9AQaWNvYc7?tF1k`-f0eQc{E6mQ=bN z$nS*K-QtGs)!ts82?b6m2&8=nX_03wufgt}hpPiMMa5S_Xo1YH%F4N8rXsWm`h!vE z(fqu+XkJ$0BR;Q!Q>y@3lnDhqTtFj=5$xYIK03-|Hl7Q%FSa~gFJ#60Ga2{(*9?YF zZlv?Z-w|-gr1R7sU4ak=%N`d)*r5UB3*Ik?nj&Dxh`GXPWO5#;Z-U0z4W5-RJWw1UdiS;n_;M@@8!YK(A7rB+j2{d+L=R z)xTVI@=e0__O{bZQEfV*wHK-;Mn{qw@9Q!*Y4&Z|1&AmpD^DKZgMG(_EE;;ed^xYe zoPQPn=u`-KU!(nw!1L{fqod=GP^adnyPeETPMeRyH5n$Y=2JB0N-*gdDF(XIr-tDA zG=-Se&bPGiB@VEAKR=e1z5. +# +# Original implementation (../cpp/main.cpp) by Garth N. Wells. +# +# Modified by Anders Logg, 2008. +# Modified by Harish Narayanan, 2009. +# +# First added: 2007-11-14 +# Last changed: 2013-11-20 +# Begin demo + +from dolfin import * + +if has_linear_algebra_backend("Epetra"): + parameters["linear_algebra_backend"] = "Epetra" + +# Sub domain for Dirichlet boundary condition +class DirichletBoundary(SubDomain): + def inside(self, x, on_boundary): + return abs(x[0] - 1.0) < DOLFIN_EPS and on_boundary + +# Create mesh and define function space +mesh = UnitSquareMesh(32, 32) +File("mesh.pvd") << mesh + +V = FunctionSpace(mesh, "CG", 1) + +# Define boundary condition +g = Constant(1.0) +bc = DirichletBC(V, g, DirichletBoundary()) + +# Define variational problem +u = Function(V) +v = TestFunction(V) +f = Expression("x[0]*sin(x[1])") +F = inner((1 + u**2)*grad(u), grad(v))*dx - f*v*dx + +# Compute solution +solve(F == 0, u, bc, solver_parameters={"newton_solver": + {"relative_tolerance": 1e-6}}) + +# Plot solution and solution gradient +plot(u, title="Solution") +plot(grad(u), title="Solution gradient") +interactive() + +# Save solution in VTK format +file = File("nonlinear_poisson.pvd") +file << u diff --git a/demo/documented/nonlinear-poisson/python/documentation.rst b/demo/documented/nonlinear-poisson/python/documentation.rst new file mode 100644 index 0000000..6eef68e --- /dev/null +++ b/demo/documented/nonlinear-poisson/python/documentation.rst @@ -0,0 +1,164 @@ +.. Documentation for the nonlinear Poisson demo from DOLFIN. + +.. _demo_pde_nonlinear-poisson_python_documentation: + +Nonlinear Poisson equation +========================== + +This demo is implemented in a single Python file, +:download:`demo_nonlinear-poisson.py`, which contains both the +variational form and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +This description goes through the implementation (in +:download:`demo_nonlinear-poisson.py`) of a solver for the above +described nonlinear Poisson equation step-by-step. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + + +The actual CG and ILU implementations that are brought into action +depend on the choice of linear algebra package. If the linear algebra +package Epetra (Trilinos) is available we set the backend to Epetra, +which is used later by the Newton solver. + +.. code-block:: python + + if has_linear_algebra_backend("Epetra"): + parameters["linear_algebra_backend"] = "Epetra" + +Next, we want to consider the Dirichlet boundary condition. A simple +Python function, returning a boolean, can be used to define the +subdomain for the Dirichlet boundary condition (:math:`\Gamma_D`). The +function should return True for those points inside the subdomain and +False for the points outside. In our case, we want to say that the +points :math:`(x, y)` such that :math:`x = 1` are inside on the inside +of :math:`\Gamma_D`. (Note that because of rounding-off errors, it is +often wise to instead specify :math:`|x - 1| < \epsilon`, where +:math:`\epsilon` is a small number (such as machine precision).) + +.. code-block:: python + + # Sub domain for Dirichlet boundary condition + class DirichletBoundary(SubDomain): + def inside(self, x, on_boundary): + return abs(x[0] - 1.0) < DOLFIN_EPS and on_boundary + +We then define a mesh of the domain and a finite element function +space V relative to this mesh. We use the built-in mesh provided by +the class :py:class:`UnitSquareMesh +`. In order to create a mesh +consisting of :math:`32 \times 32` squares with each square divided +into two triangles, we do as follows: + +.. code-block:: python + + # Create mesh and define function space + mesh = UnitSquareMesh(32, 32) + File("mesh.pvd") << mesh + + V = FunctionSpace(mesh, "CG", 1) + +The second argument to :py:class:`FunctionSpace +` is the finite element family, +while the third argument specifies the polynomial degree. Thus, in +this case, we use 'CG', for Continuous Galerkin, as a synonym for +'Lagrange'. With degree 1, we simply get the standard linear Lagrange +element, which is a triangle with nodes at the three vertices (or in +other words, continuous piecewise linear polynomials). + +The Dirichlet boundary condition can be created using the class +:py:class:`DirichletBC `. A +:py:class:`DirichletBC ` takes three +arguments: the function space the boundary condition applies to, the +value of the boundary condition, and the part of the boundary on which +the condition applies. In our example, the function space is V, the +value of the boundary condition (1.0) can be represented using a +Constant and the Dirichlet boundary is defined above. The definition +of the Dirichlet boundary condition then looks as follows: + +.. code-block:: python + + # Define boundary condition + g = Constant(1.0) + bc = DirichletBC(V, g, DirichletBoundary()) + +Next, we want to express the variational problem. First, we need to +specify the function u which represents the solution. Upon +initialization, it is simply set to the zero function, which will +represent the initial guess :math:`u_0`. A :py:class:`Function +` represents a function living in a +finite element function space. The test function :math:`v` is +specified, also living in the function space :math:`V`. We do this by +defining a :py:class:`Function ` and a +:py:class:`TestFunction ` on +the previously defined :py:class:`FunctionSpace +` V. + +Further, the source :math:`f` is involved in the variational forms, +and hence we must specify this. We have :math:`f` given by a simple +mathematical formula, which can be easily declared using the +:py:class:`Expression ` class. Note +that the strings defining f use C++ syntax since, for efficiency, +DOLFIN will generate and compile C++ code for this expression at +run-time. + +By defining the function in this step and omitting the trial function +we tell FEniCS that the problem is nonlinear. With these ingredients, +we can write down the semilinear form F (using UFL operators). In +summary, this reads + +.. code-block:: python + + # Define variational problem + u = Function(V) + v = TestFunction(V) + f = Expression("x[0]*sin(x[1])") + F = inner((1 + u**2)*grad(u), grad(v))*dx - f*v*dx + +Now, we have specified the variational forms and can consider the +solution of the variational problem. Next, we can call the solve +function with the arguments F == 0, u, bc and solver parameters as +follows: + +.. code-block:: python + + # Compute solution + solve(F == 0, u, bc, solver_parameters={"newton_solver": + {"relative_tolerance": 1e-6}}) + +The Newton procedure is considered to have converged when the residual +:math:`r_n` at iteration :math:`n` is less than the absolute tolerance +or the relative residual :math:`\frac{r_n}{r_0}` is less than the +relative tolerance. + +A :py:class:`Function ` can be +manipulated in various ways, in particular, it can be plotted and +saved to file. Here, we output the solution to a VTK file (using the +suffix .pvd) for later visualization and also plot it using the plot +command: + +.. code-block:: python + + # Plot solution and solution gradient + plot(u, title="Solution") + plot(grad(u), title="Solution gradient") + interactive() + + # Save solution in VTK format + file = File("nonlinear_poisson.pvd") + file << u + +Complete code +------------- + +.. literalinclude:: demo_nonlinear-poisson.py + :start-after: # Begin demo diff --git a/demo/documented/periodic/common.txt b/demo/documented/periodic/common.txt new file mode 100644 index 0000000..be315cb --- /dev/null +++ b/demo/documented/periodic/common.txt @@ -0,0 +1,50 @@ +This demo illustrates how to: + +* Solve a linear partial differential equation +* Read mesh and subdomains from file +* Create and apply Dirichlet and periodic boundary conditions + +The solution for u in this demo will look as follows: + +.. image:: ../plot_u.png + +Equation and problem definition +------------------------------- + +The Poisson equation is the canonical elliptic partial differential +equation. For a domain :math:`\Omega \subset \mathbb{R}^n` with +boundary :math:`\partial \Omega = \Gamma_{D} \cup \Gamma_{P}`, the +Poisson equation with particular boundary conditions reads: + +.. math:: + - \nabla \cdot (\nabla u) &= f \quad {\rm in} \ \Omega, \\ + u &= 0 \quad {\rm on} \ \Gamma_{D}, \\ + u(0, y) &= u(1, y) \quad {\rm on} \ \Gamma_{P}. \\ + +Here, :math:`f` is a given source function. The most standard +variational form of Poisson equation reads: find :math:`u \in V` such +that + +.. math:: + + a(u, v) = L(v) \quad \forall \ v \in V, + +where :math:`V` is a suitable function space and + +.. math:: + + a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x, \\ + L(v) &= \int_{\Omega} f v \, {\rm d} x. + +The expression :math:`a(u, v)` is the bilinear form and :math:`L(v)` +is the linear form. It is assumed that all functions in :math:`V` +satisfy the Dirichlet boundary conditions (:math:`u = 0 \ {\rm on} \ +\Gamma_{D}`). + +In this demo, we shall consider the following definitions of the input +functions, the domain, and the boundaries: + +* :math:`\Omega = [0,1] \times [0,1]` (a unit square) +* :math:`\Gamma_{D} = \{(x, 0) \cup (x, 1) \subset \partial \Omega\}` (Dirichlet boundary) +* :math:`\Gamma_{P} = \{(0, y) \cup (1, y) \subset \partial \Omega\}` (Periodic boundary) +* :math:`f = x \sin(5.0 \pi y) + \exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)` (source term) diff --git a/demo/documented/periodic/cpp/CMakeLists.txt b/demo/documented/periodic/cpp/CMakeLists.txt new file mode 100644 index 0000000..403b066 --- /dev/null +++ b/demo/documented/periodic/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_periodic) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/periodic/cpp/Poisson.h b/demo/documented/periodic/cpp/Poisson.h new file mode 100644 index 0000000..5a05f51 --- /dev/null +++ b/demo/documented/periodic/cpp/Poisson.h @@ -0,0 +1,2213 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __POISSON_H +#define __POISSON_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 11 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = -0.5*G0_0_0 - 0.5*G0_1_0; + A[2] = -0.5*G0_0_1 - 0.5*G0_1_1; + A[3] = -0.5*G0_0_0 - 0.5*G0_0_1; + A[4] = 0.5*G0_0_0; + A[5] = 0.5*G0_0_1; + A[6] = -0.5*G0_1_0 - 0.5*G0_1_1; + A[7] = 0.5*G0_1_0; + A[8] = 0.5*G0_1_1; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 7 + // Total number of operations (multiply-add pairs): 13 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + + // Compute element tensor + A[0] = 0.0833333333333334*G0_0 + 0.0416666666666667*G0_1 + 0.0416666666666667*G0_2; + A[1] = 0.0416666666666667*G0_0 + 0.0833333333333333*G0_1 + 0.0416666666666666*G0_2; + A[2] = 0.0416666666666667*G0_0 + 0.0416666666666666*G0_1 + 0.0833333333333333*G0_2; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_0: public ufc::form +{ +public: + + /// Constructor + poisson_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "996f902b81205976ede73587192186c9fd9b057164f0036bf925051e4ce236d3afa448345b6b3a7958f9c265483ba7f2701db77c9f0b497566f0fb97007140e6"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_1: public ufc::form +{ +public: + + /// Constructor + poisson_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "d29669d54e80ba045b9f6aeb94d0d33237447c2de5977853d51a949f2f7e7c2b30871cf2fd1dd173fdabb4daf7908a96678f21eb4086c6ed052d173bfb7ea232"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/periodic/cpp/Poisson.ufl b/demo/documented/periodic/cpp/Poisson.ufl new file mode 100644 index 0000000..9bcdea8 --- /dev/null +++ b/demo/documented/periodic/cpp/Poisson.ufl @@ -0,0 +1,33 @@ +# Copyright (C) 2007 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2007-07-11 +# Last changed: 2011-03-09 +# +# The bilinear form a(u, v) and linear form L(v) for +# Poisson's equation. +# +# Compile this form with FFC: ffc -l dolfin Poisson.ufl + +element = FiniteElement("Lagrange", triangle, 1) + +u = TrialFunction(element) +v = TestFunction(element) +f = Coefficient(element) + +a = dot(grad(u), grad(v))*dx +L = f*v*dx diff --git a/demo/documented/periodic/cpp/compile.log b/demo/documented/periodic/cpp/compile.log new file mode 100644 index 0000000..8d7022a --- /dev/null +++ b/demo/documented/periodic/cpp/compile.log @@ -0,0 +1,170 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0164762 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.00062 seconds + Shape of reference tensor: (3, 3, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000516 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0067122 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000215054 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.0404301 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000652075 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson.h. + +Compiler stage 5 finished in 0.000699997 seconds. + +FFC finished in 0.0655069 seconds. diff --git a/demo/documented/periodic/cpp/documentation.rst b/demo/documented/periodic/cpp/documentation.rst new file mode 100644 index 0000000..47abf1b --- /dev/null +++ b/demo/documented/periodic/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the Periodic Poisson demo from DOLFIN. + +.. _demo_pde_periodic_cpp_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/periodic/cpp/main.cpp b/demo/documented/periodic/cpp/main.cpp new file mode 100644 index 0000000..f4e7db4 --- /dev/null +++ b/demo/documented/periodic/cpp/main.cpp @@ -0,0 +1,133 @@ +// Copyright (C) 2007-2008 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2007-07-11 +// Last changed: 2012-11-12 +// +// This demo program solves Poisson's equation, +// +// - div grad u(x, y) = f(x, y) +// +// on the unit square with homogeneous Dirichlet boundary conditions +// at y = 0, 1 and periodic boundary conditions at x = 0, 1. + +#include +#include "Poisson.h" + +using namespace dolfin; + +int main() +{ + // Source term + class Source : public Expression + { + public: + + void eval(Array& values, const Array& x) const + { + const double dx = x[0] - 0.5; + const double dy = x[1] - 0.5; + values[0] = x[0]*sin(5.0*DOLFIN_PI*x[1]) + 1.0*exp(-(dx*dx + dy*dy)/0.02); + } + + }; + + // Sub domain for Dirichlet boundary condition + class DirichletBoundary : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return (x[1] < DOLFIN_EPS || x[1] > (1.0 - DOLFIN_EPS)) && on_boundary; + } + }; + + // Sub domain for Periodic boundary condition + class PeriodicBoundary : public SubDomain + { + // Left boundary is "target domain" G + bool inside(const Array& x, bool on_boundary) const + { + return (std::abs(x[0]) < DOLFIN_EPS); + } + + // Map right boundary (H) to left boundary (G) + void map(const Array& x, Array& y) const + { + y[0] = x[0] - 1.0; + y[1] = x[1]; + } + }; + + // Create mesh + UnitSquareMesh mesh(32, 32); + + // Create periodic boundary condition + PeriodicBoundary periodic_boundary; + + /* + // Create vertex mast-slave map + const std::map > periodic_vertex_pairs + = PeriodicBoundaryComputation::compute_periodic_pairs(mesh, periodic_boundary, 0); + + // Creat MehsFunction marking periodic boundary conditions for plotting + MeshFunction master_slave_entities(mesh, 0, 0); + periodic_boundary.mark(master_slave_entities, 1); + std::map >::const_iterator it; + for (it = periodic_vertex_pairs.begin(); it != periodic_vertex_pairs.end(); ++it) + master_slave_entities[it->first] = 2; + File file("markers.pvd"); + file << master_slave_entities; + + // Attach periodic vertex pairs to mesh + mesh.periodic_index_map[0] = periodic_vertex_pairs; + */ + + // Create functions + Source f; + + // Define PDE + Poisson::FunctionSpace V(mesh, periodic_boundary); + //Poisson::FunctionSpace V(mesh); + Poisson::BilinearForm a(V, V); + Poisson::LinearForm L(V); + L.f = f; + + // Create Dirichlet boundary condition + Constant u0(0.0); + DirichletBoundary dirichlet_boundary; + DirichletBC bc0(V, u0, dirichlet_boundary); + + // Collect boundary conditions + std::vector bcs; + bcs.push_back(&bc0); + + // Compute solution + Function u(V); + solve(a == L, u, bcs); + + cout << "Solution vector norm: " << u.vector()->norm("l2") << endl; + + // Save solution in VTK format + File file_u("periodic.pvd"); + file_u << u; + + // Plot solution + plot(u); + interactive(); + + return 0; +} diff --git a/demo/documented/periodic/plot_u.png b/demo/documented/periodic/plot_u.png new file mode 100644 index 0000000000000000000000000000000000000000..c587c0932e2dc651b6d610b618b1a07ddad595ab GIT binary patch literal 58379 zcmeFYRa9I})UesOJHaI(KyVB0F2UVBjk~+MCWPQlaCdi0aJR=4vkI z?!V}@&gye|pQ_zktDcHhQIf$xB|!xM02p$zl4<||tPTJG^9>mm`pv6$^b`Q_9v~+v zrs0)!*5yBKuWLy0SI{>1wtF2z=Yx``D3y(TktA)MB|N;itANFDv8)9?JYyNH)+18F zs+=Ot2P;}&WOr2`wxWWRo&BJOJ`ih^M-7b6PRvi07r%v+FGgoJw5(2!2mJa3_TOxH zxJ(xb=xGA49%lJI!%n;&Jv`i1wLIwho;QhX+*VtP^wdbn$x`D+OYZzCFgQW`pG!5W zXtwXr%TFY7VbPLQ-+5dUC~+ns<3aB@7krmY`}Z5Xck4VXCnb; zPp36K;8ok6L*MSh?MTY*-fPyE`P9$IaqyMS?W&0@$fYqxH zO&D^W7-%FEcySnT;a=mro(MTg?A|56{CgEC^6~)L*zEXL$O09_M|Z4dEb-3`x<%KV z1~4|Csy2O|&s&~l6+6D{8$gwCyVwWm^hUiKe01ABM^E?jfru8;z+ zkPbyo`j!13&E4g6dH*@6F)xMRl^8(T|3v+HxI}QD9!uzM`f%Zv+0k3x*6-i@_CAR` zGIsAUP6p10=RV!Y{O7+0Wy^Nlfa>;>^6u-CiW-WMYqX
)9~*QM{~^TtE>!?|Oi zFa7?DjN#w1spzF!abMvGuL%lA6U4E9u>uy51Gy{NgwB1*IPmq<`0Z&b0NjxJfzX*>gVE0T5(?9s zhHb0c4k%v>1Men1yKnz{H*4VkK7U%>f!Rw5*`@@?V+sG=(n245^zHsT#47Cnb%M($l4#^j~1oX2`h;`y}|#Hr4ff(V-vv%lD$~@Np_oIB0iwS2^%$ zE^+mi^=-fB1>Dl}dbZMFzofr$LqNGLD3kp*PZ;Jx4>^~Rj)z9H!FO?UCCWW}G^~8C z2jlX_PqR<~|Ag5)`huP}-vR)+kK>j(&`-IRBA@mY)C3_H9hZ<4$H$bV&I7I`L(g^A zmwwjH>v+e`H^?)k`^)WFd;PbVe}T5zWX3%!G6Zo=A`F3yoc3<=MR1-M=pRx1R z59!>Eb3JfaKYf=qScK*Z!40S9 z(~Y-PN^8kh#2OgHm*0-=hKNoWFl<2p2cKQIZ$ zLh@KBd}!nSJ<1V1@(wa;+;ixE`KH`U(n?|g2Y@I4*nNOt00;L~l#xv=4**Yb?1 ztmPiHvGicF>eV1_G<32hV;eZBUPo)lG`hR(ee?{ zbh=YFc>Z?A)~jtWzIpdVM39_kz9v13BY-pu}iCoDhZQo)Ry5 z1lDph043_GJe3BAmLjqBRVMHiO!=?`|bAkTg@9 z{IJsJpAErWSj7O)1?gQ;0YZ8mK7zT+6Ldj;ZfEU9kOd}I4fn4HTq&>|dTg8NiiIQeWiJiV)cS?y|)ez&7^VS0hp!%_!b1{BwGo#*npJg=`PwiX;OX69&RttuH=GegN@`lR@K4WP+1k` zjIGKkw+Cz7p~+&N{bc+ZOX0mIK{7$gvXb%ezJ0p4zPbN<8>HrvB_WvYV$zz+VQWgu zJ3*hh*lvR85&C}-Yy{Bq_SZ2Na=jT0k7AZxfzgbDYWJg_R`$KX*a!aO#lp$6Rnz1R zoK_QL*OeB#EP&>5^MV&lAJ@ijS6BPqX1Thug;wK=^(Rt|k~k2?#fBbDLpV&jd=d!! z)8=Bl%J7-Ox}(&;lcL;h#z$TG2am(tUKwd_-BFgH5Anas>93jdbI(iF+}lk{{-}LH zrYMkER~(xvK0o!#s=WLCH}0Xx$N4%S+J1;q!G5Qar~}UMEIi5la)>RuiA=!+d^^oh zWwCflHO_OWEtp6IB(cna)8brQ)h+O)@w7Jg&tyY|&>?MZi?Y^R&j@!1S)eW9gF9g_ zO*9J~9vaOT>ga%D=L4bCAmp0IQ>eL*;6zxyoQ{UTYpDbqJSvK2ilVdyR+~Y(wae!9 z8f_gL$<@+N>hy)$eu*;eTCq*d_!@-nXQ8*}Y6<)}2w}31q;B*FcN^+|%;R=oXCcUL z`4m?a?bVmPR;+d=xEFrxWyzAEdu1?}?ECfM!eXKRd{_94(ks=B)VV%jt>BMKdBb(F z{+;+$+k+7-mEUX&G%HZB{;jBiCdk((iM~J+wu1QV^g4K%)p>^BgDfz$QnFU#Mf!ng z&w9Tcq|evPL4MZnQ>>q>0yotpM9p;;P7A3}8!26L(Z2aUlFF->@Nk+fTjs7c<2tU0 zq-H;m^0g41b|$YVEZ#;E(9L@;vy)7Xx7)6-N1k{24if@w?39dMh)K44I}Nuxq;fGFwQWW1xxz2!DyU7XDhE;+u>~zFbc({u4R3mVy1aM zb#BsDLAjz~#bi^o6stVqZIHFyx!G7cdZ1q}&T0>aZNB@Ur|hBYO=Ot-I^)5AOWF7t zZc1QD=o5>u8V+qW+nVPa_#JLfGz_TPfg_$CoIQhHxiZm$2N1)7c;?K!KY;z))2?n5( zA2!o}%JS`^o0LyiRw_-_FSzw`;0-~8=SS?tCkBKYL7#}z-^0k6S&s!c5) zrIK|DK}Myr!ahhwY_4aTq&nUIrl&Na8D{O6B#~MFjDeQ86$cDL2bK96*_GkjCus7R zbTvGdH%DPCY(;x(|HwyUB5AW4oUDD0aX5SYMeee?lL@}Az5LY;R9?dtn6S%dtxVZ?}-^2a&+T z47^laXsuu%r?Yu=P>ua1_IsIBqfpSaCD~~Kg9e|4a{UW|>tFoNcQ_4WEMwB(c&jf7 zqB6{{)DC0U{;NOPCPOD&YDL`d?VMv_>+odeRz2T(AH1Kv62PwB_fME7&6Kabw>nIo zm^l2^dKCCarKNSW01%UOgV8UC6s`UBF}iidCT*NR_A;XlNJ^#+e&5e#%-j*;Ac-Kb zaku9)w=x4{Z_^l-2E0cY-w|JijHivR^mZ2r0G)a_rCY<6IQPhnh=h!xSxK-ON~d9$Z;=(q03u<8A}?7yQ?smDxTTUTA3`!=UBwlbo506 zO*+?o#Gh=8EIH7@b*FsTAqy)p%pM8YOaR}oD9WGj+f4`wv^&(dVh%}>O-!frv`jU< z#3TCSasi%P+OT}R|_ zJsUOa7Ygk%yM}$ftHtZGZ0+Rh$(l6=L5IiwQbFDMYC&%}%h$q+a85Vc1|^`@q>C> zh)_p>iB1uAw$iLG2O%D}< z&(};J{Q1uex`#QG3CS=IUJVe{xCu;Yh(KN2-rD8Z^%(r17d9CD2iyCQWYgUs*N4fuKO%phxmz;08!QtB;H->Ao%mu1INiPCl z6W%#qh#h=`U1ILoSi@wx_8+y|YM-qXZo>@GDd&QViF|DrQ5oMermo74RT(X1(>Pi- zmrs7zKX?%=^}{(|OSI1oW}}A#AMfS!2CJWo|BV^1Wb-cy;9H;c?}OR^EW9Cj-TAbf zrPL#WA)pBTqCq$_v&ysN)G%X35sj<29mwI`Oct0Q)u48@fTD~CbL=}Q zE6d|puELaH7nwm^TTx8;LVbol;XJ!KE5X599?WDa=fg>C+=DKoVINFdiseW8J6r9A zXT2)RMY0HnEB`~T=ebW$M8qH_PpR%gyE#x&hwbS_=_ZW^Wqu%yO3x>)7Bm&2W}6V& zK=W9l1K7$B8{nQdEMFF0XYcpXY|aQ<3Aq7)YS>^4ypQNf8fZ~>^r75M(OQ+n0Sylh zV;0M3Tr$}hzCRAumR%Jre^g%N10(Zj3a-^tnWDJ6DvG^JqdOBgo(rG8PhEHJOqO_q z4t+oq2}ihaK85>sRaJ!V2-U}Sm^@6ieC-{df!|{#NTM5#n{7;Uri_GKS5a%uIf1EP zbpzkvvF6W;Byv9uJc^atW+m(<*fH+li=qiSl%U1a>8hAVpGKnROz5Ff^COh!;ahz} zz9~L@Z9BIN++jBi@q2oO_B#d_ysyKXaQK)EpQk_Fp^$KWmi&otqwBBeIq&TaI*RmX zYHgaS=wgni5j6}#w>Xw_yY*N0dL33HoZOXJKD{x}Z=P;n!TCT6GcMh2;Z-4MHTcR+XfxgAfeMFp?StHKpzX0OZ-=M={#gD zn$d9ShePb=x_eQgtffEe_j*$qy@@E7GRtrj<9yV@#dZ4;a zhLPHcygtPy8u$vpH!3?k_C~=VdWYtR(0X4|IfImcs$cx4`di{p0ZKBpyJ;Z+qxeXN3(W%3ZEJEKlao9A=sFv-e}0 z1-<*oAl1UEx{kEsDFV0Inaj$PCm^A}b{Rt_WuTM$@2Y6vQDye|p4JccuSYda2tCX5 ze-@QSrSKg{Yb~E>L(DM}hlm9P`Uu_@%vYK`TL?TN(`(u!8*jGQ9gnU_(^`p?kFDJHvo9Sv4c&T)!n)$xy&W^e&|k((QW zm?Y&b2S_|PU#WGD$(G;qJ!oZMYX0!v-1=oNXIg!dG}}f}lU1H(k8t|4ZO4qXyCLtV z)OjLIB^aixO9X#AzR+O3RWH)A#?+`Gn)CYNx2I85rmE&%zmb7$3Jk8M*$sh}7=YbP z4V-RZ>T46ih%=UJOMWwJCWMXu{!HYsBAZXEaWQfHkbg$}eST zG0tL~6|j2=6GW>ZGj*Py88o{09H#x!s0F;hw>UjO*spafi? zUxq%YROfCT;_pTUs{R5e7FJ}wPiy3#Q$ywcX{Or)EkZoA_t4tM6q#naOw@e}UeuLF z%bhO#oyUj%CqeH?G0rZ`SWp={XG5efcI2o68Y7iTZ~cVM0E4vc6y*_WdJ;3hgL|Oa zXHy865bHFjhic(m9Zt5E6mc#UoZJsbgxOE~EYnC>(bxbLr~*O){;u zlU)dwnK0#}`A`u8vJNMhbGxX;H&_#awl*(Ph=t$e*!{Ex=cR7%bJoCrgO9^{!w+;9MufK)z1JpHMYk zB<4~XK2jX{xzA41-kQ4o+*b|L2c(2VN zI}wqXk58c#sagAr+f$+e${O&>tA7!pxs9(8&UzEgoK$jAX4+8YLjMJ7D=Hyy8xQUTE90Kd~S%u{P3h*Sm_r! zK!VF_LU#@Rg$&NOr~YQU0`Jpl#Y*E0dVo9}w*DRjhW$5ufeRO;4}j6h*+~xvB0vzW zN!)Rh?lvb3K{^27lc+KsJ>l0|C5y-G4UEOtr%!fOTkn>xJ#^*Fw9eaJd@ z^_0a?z}{SVrQfs7y$8)^uYQbx-otGfYa>y65xcivt@qu>wwzj30@_7NKTRK`smR^X zF)8*>P=}Stf*fyFM2xF?3_3xYXgn}hnHcEddgmXPpO~U@T23~&ja!n>nI(16pEH0i zWiu%F#q*7fYQYh7x$HsAHZI<9u17#$gdXzLx4z8l`l;8nrw)&Ia<;_gFI_LHv=`q+R(UdDUKSk+Xlv>n@+nSnEJg=gB{qe3;%h#144yWz|qlK0y zvF`C-?lKFqlS3-6zN456WuOfkOLH-1R9BwgihU;(TQ>AmFp3w7o#!37(StvOpoXy@ zH79ZpI742|o46%2A#^qmFAVTXk8$GK^T{rT;GgU4C`L*G3tztDT zFIWQYu4z2~*2EH|i|`ZLp>#iC6R1oC>R9X-dQUb#J+L#qvJs@C8!GJyrfHLWY`Rwo zKEd4c5SZq;*ySJyn-{>Tt1L6@r9#2}_+{~YyHapTUsFFKKqSD>>&5_I$C07^o-og6 zzq^Zkpp$L(%g1qycQ1X~G-yWb|H6m|um9l)o6s!rCm4Xo8uRWFx_>53$NNPm6I+ze zi#O=xBKZhCR()h=jAF(BgbT#Uas1M)T4_i9Ujnz3(+IkY(u>YM&-&{dW_?2US}F?^ z6-4FfSUBL7Ib}~-;*{!E+AYC9`F0PUhZPlF;qNPwIKxc*s~hTpsSZ)$YIg9tAYXSf z8tJA^br_piG1m*0}DA~ z!8!@k!+V%-_Bb0C!;@<>cKN=(OW>i+HsspHC})?mNb+)BcNuPk^aX+iU+yr0TFNh6 zjNb=3=Y0ihwJw^N)&jUb(0E8mI_{Srg|Zk~jIke=Y>ak{bbkuXCWW>t1HyF)|U7+i@3F2XCEpKxC=X4X1z{cIy{JG4HeAT`B1P8XOU*I5>+<1Ca z+9`-z$BQ0jYn}(TjB`jAV0dp5^b~ zcoQQoTI&mA!c3U77C4O4SlMSDUslc>UTU;2PgbzQ6H=beVl^S}x8T8R!0m#_M<{jbl<+x$I zW_W~wn~%7u|JHv~ag;V6ub+iqWO|VWV5L>I7+U+dMJK}P(BbGaufVC@H^NzQWR4n>5MU^mXL5$-Fp&#LBcCpMStYOt+6y|BHXLOiL0= zh?$R5I_%8I{5PGl@foUEL3kdoh_VLF;xg^2-|AV)%hf-)PMuQ)e7jmJH`d3_5uU`F zMSNnJWjtbSyX@k#e21k*A2RwTpMpgGme+t>PX>W;|58H8oa0|vMLak4ZFU8^({M2k zEmZjFWtQf{XnV)IFPnk6kki!)87CgJ0wa{e8IMp|^F5o7Km+gNQocXF3i8?#Y*SmGid9*|HGkNo63dmIvQ<@z|+86Xdhl^;C6< zb|0h?Y`(*E19OFPH()Cp1pmH^hE8FjVM8O`A|yfeH?$I1My9jT8UpnMBc@D7TK>%P z*_^$Ay^|+jq}4F?Z;`i-a+PC7Z6x7qiJ8%eJ=zFo3Q^I(8fnflWat?}Hn=$TIits0 z1&Omy-DHp1NA0^Z>Q0HM>Mcs@Pdnw~zXsQd;-gB||3-01@j3rw8h|G8nQ!>AcQtJ8 zlad?CJ5`zDA_kZ5yur;&;YA0ByS|0^Hat~jzV)DR34vmCf-K@jh+3P@tu2KKLS+VX zn7J=t}(Dc5If+41jnQC#F{o3mnQw|Fl#$(>Fya?fJA?1{Dc zdIarlWv6N!r5yCJV8SMgv0u!bl7;&v3r3D}U+CES68cc^$Aao%nRKS*sMOFb#D+_i zoA$ zg;<%o8jf2mg^Sji6id6~HlyFq2Rv3Q+SXdF%@KK;{X~==4^v$<`L1}^k$?*yCTV;) zb)MCo)ehi6Lt4U|-pImWW!FpL^E>B|j~aWF9r`VLm38PJV>lT9!20vhVupY?reW=D zk}J1sEY3i7s@>E3bh+>>#%}X$GL_~X(`fVThLDgpuw+Ro;NdlbUtlwXIg7;{0Dyd zrG`}h&me@BM{>C_23tjNQ_r*(YvVdl{c}z`JC93>nWnpxU!X1w%_0h}j@DNBB4X%B zXV{F|H=FzPWv=<7cau*H301y0$Nus%AA>cylvu*^5(OWavOjbrVN^8K_9^2GA2AbD z*4KQheXK=5yU2VF8%l1K3R9nF%a9NA>^MWt;HG>83l-9Ww_gMO?uSH<(caEJcElg* zJaK$))!}``qYRpaB{iXzHi08y3%;k6-hBVb3|87COxolG;yp$LG88B*aTgikrse%E zoiG@2C!Oj>kg7_HFTqZ*6o|(g5@B{<5`;shOG{wRjxNq_6^5k~H>4Bh;T3Jl7e(Wc zGV~%z6b3^_puOBO1-jqOTU4TS0>tW|Bjoi>=?_w2zK>5ckx85EPiW*TES%c@>q;~w zPMgU|VVY43!~mioX3uDTxmAc`x$MRZgV)|_$Fo1unSQ8#e<(OQ(a(`)g4j~C8urHo zZ`>qF4#(%SY-puy@=J*$K0UJUb1sf+%X-)Mh=xm1Q<81Q3x4kh-x6~L%e>=x9;4@? zx7d}?|8Hg~QSjzB)=Mvz--5RP!jGK0Uxb}o2v9`HQD9H71F+_ET4k_vwjwk`=j$wZ zwetq@rGf4s$;UzSNRaa4uV6gX0jd)RJ`&XBvmytguMKKi9W?QrYS#@!Y&ajYmr2U< zl76Var!}iYdEQ+UlbP1tLS6=t+DO=awKSEP#^Hp`r1L&Ge&eT27-+9BU)D`ie?}zA zk8k{*Q1tPLXjPQ7#OTh_leW+qkbNI2#yG%7JQY8NDYfuyK_`wwd`|W|n1~3gYQAI- z1jmjZWXfNV9ZqiTry~;>Q#fVninyzr{?%MEoQa_bhKbI$wo0oNuU&1?@T$ayJf&Q> z?SioLXF0tZQ0$v#u6$Ar=7(PROg26N*dHb#d_q{r{9hli>`8sCXJ50Qb)8}apB85? zW@r^GO-42#1(wFJRGm;oDQENFS3+s7Dk#kbrECzk5TG>IhzR5w?UMd@pEd9iiu9xi zT(s``L+Pe5BXB*G$$IyX{DR4{Ox+DeqG&yD1_>{0Z*6VC)~tDC4oC| zC4o1ud56r%_z|Jik|oNE7ZK^q&ZbNVe$sbV$t)wCw~hHe5DTw*pADhvQB*1v)%5Q=5$|NtUS`TFsa3L^7NFY+=g49iUeqT#i4j zPJD&lra}#X=nXs$>OM4MmGBzC;PE?c2{=7(*}R~nS%(637T^P(o<~^U4XFKX zzD#Vs^ul2Y?h;R38HzkNi1{h1zvyjAd+OlGf`C1Y2}hdkua@NJ?jM(EeOIpo}rby zGnJAo^C{~X9vx@Fs{RDF9^ni52TO1|e%JQQjM6KQ3sT59g5$PvdkPEwnqEU}(Ns4t z5He0Du{|DGx*^6@a@?;>8w|wOW(xg5DfEY{{8&rkp9QK>q6FbPcZ8T3h%w|{|L6vP!Md%Z(^x&*!QyQ zL9@nZArLb4232ME0awjqdhTQT=41Az^?BgSNZ^0C-#=zAbMxiE^}PL}{Z#mQWlH$* zk22&Rxkm`;C&Xp+eZ)3}LTD_+7aeaR?o3vBB`|jkiY8_G`2g&Wc{8>08(UrMhRy*4 zPy75wyOOWXQfcF4_ybXIVct^sSTH~1>aJ==!k-L|XH@_?$V&OJ`dsOnANE#ZYjr$L z>3Z=YY*7edwIl^`t?g8RulFWy(&9mMc{n2uSk!_`1xC8M;Ydn@wIRPv4H2mHRh2zD z#p)MfF&sV!jXJD=NJ^kZAg!eU6`R#~cs zv0$1ebxU*wsJ_yfpR19aJfnG*56{DZuPprEu2#!C%x#jn@B8%vvwXlbrL0d|p;)k9 zC+fMYJi`0*%HBu$ku05uW$Gmkt=kdZuTbqM1HK7Pu>i0HuSDthD|((PD1DCd2L=X2 zZY?3>hwj&zE|~KBQc&J;XLjqZ=c(uNIbJ#9Bir3ddCHZ^ez}@D0*UnuvDu%H(i=?n zXs!B6+QrdiMJq)2d3@x_^RTc{om=luR;VQzSo+AfW;|R%A_T%23?Od?0}-lC`!KLpvqsp16}I0q522;mHnz>a48 z+LNaZUr2Fv=3MxhgP3=K54Je`o9z{83T~`B<}+@#hK=bzYdhJI?J`lE$TNlyp*I@-dGTR<#xgX3iU!30J=*!nIJ$Df-Y_QKCEZXzm$ETVMMNe43ZIxFL z(CAfnKb<&}v34Hv_zm#bxkIig->wfu-X5XI?0M6YgRcn_0<(Tyk)hk%$cf<-GQuo zhN&;u_&S#CTE+0qeqlkZ)wZ#I(K-}PG2YJH?a<<~yl-)+fQ!}Qych_y_vDNK)wsu= zh7AGdx88d)Db-Q?4zK~#--T$T1y^8OtCGeOnOP?sOjT5zMKr`Gd4G+h6-S8LzuRN1 zO63||r7RIFqhtma;K}4TU)I2ph3N$`=lK1!g)rdR9oAcC5PB~;yK`a+$pSyw-C3dco5MTDGrv79pfQYQvi^Fi)%ew45$qfZT)M3ME7XA%}qw z3CgGG!iy)U1EOp_cV9ktpM$#3kB*M2J1+R$Pv)UC@OIB%!nYl%t{v8YFra)8G#R%r z;nATp*4CmF)`n~0(S__~_&fYj)|BT`i<3&IH5qM|R{If}kw?4gM^V+sI>wty@-iDO zPYPqctx&zC*g2oY z|MPRKI5Hg_s(QX$K?O^iB)3Q0Gxw1!Lp3>jJ7H~*EqbI%nZsC)+zXFpUT{1tj&fXG zBkQS|g4nlfTgZ0A1#CwzgJ+QJ*)<`(}4&%lR{jr(dtXu7Cg>IOHpK-0urF2wEa z?|{h50Mwo=-?l|wA}_tCd|6JU0{YzJIeIX&~{OZMzhn+Mrf{*dj z@P5fwtF+o1oaufFQOd4hy0dgEPgyRVJ{W9>_R5vThVCNN^qNk_!T^S5iP)XBB4HNSs zi(sq!;2JSLv0+KCLz+P2PX3bPT3j4cN60bfp@MvG^Ybe)BfNy#*!=pXGW(LEKMBCI z%vAF)4aSulW0Q}^oRe+*?6@!{{2>Y8tAn8-_a#H5Ev&aIEMJ%hXmW5s7=rdyP)8!K)y4Yr<=(1;zWM0h(3)D?MvVl61U@3 z0H(EaJBB5EAs(~Yu_43M9F--<8zCF6CmFLLsm6^hIi!RmP5C~cfoaE!JvLbXK?d_< zWEr}7V+}2)x~?KHEyl5?q`tX6qc!8V`KqphC13XbHF5T9)?~nB!lad8|3Rf&oENhC z+AfI!VRclWI(MP?M1jUcxe1pOU6wp3it~tQj#vT9{I-M_638W7d5jZp$thf~lP;U1 zr6VCtn8sy(kJ$`n-aM?WJz|-j#o(Dnl=3XBR!tFCwGTKOv-zob=v(~B%T#r*$Zma&ufPp{txR_QnNx2Yqu|lB9y(?*ViQ? zug7S|kJX-Cr;ac2J=f|Y_v-%&pf>jy*K?oY&pCA~b{CzulL5W|{=?!-2cI~{8~J~5 zPHg0yC&c*S^#D#Y;9VuA=-;F}E__$f{M3Yt9pjT{FV;&7%6uQnZM!RYB6be{_Wa)& z!`L~p;W};tHr9x0p|tg}Z(;KsG%q3V91mNu>lBG1#; zt@^WN^F|$;$%%8IC{m(Lv#@tlox$TTF`-ai<_Uv4022X6#9pZ?i=(9xR}e>+Q@4Gu z`!cCOMY~8uEI}XEK@qEAB28XKpwlN=8ilkaHlZk(W?PFe??5zWb7VLil3DAUY3b-# zMLuZn9Bo7YGjBH`NG34n+U>Pek1P3SGy?0v(&PXG67fR#>Z5JS7>yft4)jz54XgK` z^v{+?PqV2Ml$4vUQ$o;#2B3{M$OGKpaZBM_=%;}uHn-vsnyhpFbu={r_Z7x}`w6*s z;IHnWTJO5_zijg$CnNip(xF|@*c&MD*^$+EW$fP>6oJdmTWCLIoa^RQ^d9d7j}XQ4 zWxmVv<&ISVXy*D3pNy|3k;PV`>>hQa41YrMHHgo(8 z7WR$|P83}2JvKCn^bYht;^;+kqIp^>aIF-3F<;_-&n7%(5k`yA#hA?@5DanC^y|c` z6PlEsBS`;*OKFOuvrP%rGowAJ_NHuXU(l+U9aO21{e;i#K5boB=DgW1Zbp_`qr%JrfIJ+9KoWH6Uv!(i(tLA+YHGPo8o^0uLu5F&0 z3Sx4wMCCZ!594)YHOb%@Hc2FNATLWYV31mWR17;*AB{0J zY%fW2ntIM+o?SD7;r{mmNs$Uoh{}GPEn8SGl}U`f=28)sFu6Giy^SmFva>rz932u7 zX4V@~IXf(SaQlr~no}XSzJGol3j~+z-7w#5koj^%$d&AZH^oj5B6dH{XV-8nRI6U#o5qZjimbGKlo$JM zzSjb+YQN#tf_h=$aGzV^ojq;u5;a+8IdP;IgPRd&#U)K>B(YdBF@oZ7-yDOi&)oz- z01ksBQ9`VJU`m#vmh5+^KWa1#QMnENmUY5n9j@5av=e62d#+(TaiSWTv>-)CR(H>j ztr76m!6u?a+fypl zm5clDg%9w{#iOuTSj6QKR<1-UdXkhDg;uR_>|=de!uUZWg>Lk>R>TiDw0b`fj=yK+ zY-sPt5OX=dyBmhJmnJYKue~Ky18$wEla;8&RjhDD#p5t&v*SKaaH1BwU~BHJ8JDVl z)8>r*c{XD+q_ERlZ(%MBuo3Rpj8-c*G>8+YC%9x)mAZQ3Q0<w|1F81?o7uf7hc3{xy?zxN{y>k`cZ+DxahO#mwhqG!P>?QTfmyMVW8;( zm0sX|lKZ1yC8usxrg+OTK^{i$U;Y(4`k!+jmioH8Ij;O5ybIl^P*Bc1y(&G)a#{7E zoff-gJ!7Mf6?;VRQead{658?0hX=mRD8F2-U+(#AonZIz75^a|LXgFjfcH;}WcH%y zno8ta>LytUi8;tiYp$2PMbJVrow0j#>rpBjWeVHkO`QV6jbOx*pqY`>rN`8OmE(<6%{kBQ{M*=h!vi8Kvpljv%x6gWarhgCdkbcZ`u*b3X(GvlKTX|hu+MiAv53}ft6L7`x^7FF;y@-x%Kx00b-#S zD+@0^{d%s&c;Ce$Z{;yUX#MF~)JDXkXY9dsg>{S2l5DPT`cTR8|zKuk*qw}?06iy@ZS>U)Ui2qdTZFX471fKySd2l3MVJAm^Z`#BRSee$od-3*7aRpu ztfB)`{I;_nq}={6w8r#*_+|yCW~&N~f~2bn*)b_NNX7t9E8H)I7_o@GV~W-PTvy4YbI zJiv29hKO)@`ykkOF%zF(&;8&U<8EIQQn3-PP$Op{>>!YXKiK^KA*nSC+QRzDUF}@H zu~SsTz?d73BFzql=C5|6o1)$}#aQ62K*D#k_vYn#rPG<`!tN_Uw|OFE_u+caQyo(IN+`hZUSOCX(H)T? zJi_}X=GdATGsXgZx4QP3%b|+)_fazwMBEFRuHr*7o1*z(KRzqJxsh8kXEiqSt_Gda zyS^%6?^L*-Tyj>NYCwQoiD(?RL3q6xk)0xmrj`!57aDfLCq`RLBzUt4J>J_Y6)id> zQ-lR-815lGS!(-w=>Q4=hQwt0EM06a&kg3(d=f)KJ-W~M-`w8m(4i;G!71e9Or#G{ zMf?c4{q@f5V`g5#1fmuv85J&u_Kj_Q!47zhiioQD=LfvP4Qp!oc`kMvZwG;b1PdGZ zV7Mz4x;T@WP!;#DMf}nlm}5+2s#RsRUWsO(fj(UeHjigR1%Ys`g}7)QKLoB?DgT#7Gb;G4+3=bCQH}nD`TUGD~UNBLmMN;%KZZ zqp{`^TTYt(@F9vW9-N`^dt3c&vMvP4`aD8W!x%rLXAC3CztqXPKN=1_M<0a;pk^(J zsc5L~HQ=|AaLvtkIwy)E?0&BlmD?98qlDNly-=UUT5B_%iuRQRvzP2(*>ii4gDU$e|m zL|b0Z4+EV889$MmLyMzC`InOs;cMl9ZE`xXV57S*NHw{xQP{}uv}Ka6?68F(Wyu}G zFtd8gF$-{Ia3n5QJ{`xk1cujq90-_AAAfb`6@ETdTy<0T8)M*M4TT(xt=1h#Zf|wXp$YLsy z3;5DMEXLm)R($!PLH!VT|03#~qATs1XuV_Gwr$(CZ9D1MNyoO` zv5k&xcRIFh=cK>$pK)&Y-L6rqR;_wxJrlF$79-u-={`h375Z45aO28vs0R)P@gqjhJms371KQ2C!|-lzjvKaitT5_x+^|axT+tr~K&i zW#)~6)Jf}`=y9XD>(=wkUeo&!SR0LUS>q(iq!GBJVB(zgOTk$w_V1vT5^eR+=pu(x z3umVFQB_CX;iyF6PQMVOTyzCfE*@uJbh@TnZmmqOaS7m(VO=&PrLf_riXmM5T-`76 z0n3^qbqHz@S6T$b2hx}&qGK%-BoI=-8HjNM7fbbO^aS^!4JX)uNQtwi;)x(zxFoDM z6}Tj&jW}c}q2+o=g0i`A{b)|QX>w$QzNU`4s8?<`W%;N^3xn8#xIXzWR7|ca!~18P z!65NaYUi1vpM;Vuvi*WrvCE-sv&I0BGr9tk!m*@jB?$osEXF*>_p%duD?7E zBB*}>Y%8GNBnS;h0x+tKrlK@KV68zrn+v^i&o1)tB#Fj$X>+0PS@s=T~5jN7;A_DYc}})4R`_0Bik8(>Ul!P}aqLLa>j#6WZODCOtPc(vE2}Q2EOEf`AtRVYO}(#OvWU#CWC-a91&0n} zh3RHtUGRfRT?2jS)0O^>_wEA|*cJ6sGz4GILK8x`$B?V+QpV^*6rF+QZt#`xJ2l3sHO+aKJwQ36 zBNI8g zp>pV8C5pkCl12^j!9!$vqFb}%^@vR7RZsghGO~zlIdC}>&2>K|Yt)vN-r#^`N_?Tv zm5RCzB{eNc%=)Jg>Yz#xGK`-211YhffpQ_8K$kEuvwqk(!We3eO)oQ;UXkzHwRUgU zf6;IoaZcPG=g>p{FM=CaK@1o>c~Uj%%m6p2->dLYX2+*q&)*G;=)^knbT`)0Je^53 zQc)=MU={F*)GjR1DDi#EESh9+H2aMr={V4DZW*lvT<8N&@RE2~<-y@d)+!;2G^tEh zT+3$j=Qie-gysL z_;m7UiQ7LwLaOQFQrN2IXb~%A(Td=btmWbCr4P`pMMQ%sZ?-h2vl5mLR#HTI_@HEl!@~@ipG9>R82mt2-LyxDws-LhFq@qHQ)F;3HjLsOS%0?WT|eqQ<4^>M z&LH@2fE?&hKuKNt+p4A@dfu853Jg}0`F)v}__!w(IF=c%sxDRLT(nq82nNiEdf5{8 zjZ=d$alL+#BDS20=D{)qcDQ&Te-Qz$b3i4bryxzh63|bP7DEX!V<14)GAz`wL|_m+ zd_6xYLKh3i2zH#=wrkbRsBbCtQX-{jAe%~=h-e)pWjdAyZBT?6Si5Gnp?PNHnxs(> znx?3~cv+&dGNp$p0BzRc_Zt$Il>VZ0d`YG%2IWocOJVh{&DU1(VZHY|m3XfCZo z5x`PJ6w`r}IhCy|fD(TF9ntnG^{=@=Szpssl7}p&t`N2^HZg8UC^+^nM+oo;dGT^sb#RLI z2;_3366FA;bX7{_N)S|_qGKec*;m9$Hr}itwowzevZa8QOQX)4V37_ESY?_as{AUY zfWLT}Fm}*``LBdc{M)C1!!hq|R%>jk?dPvMMd`-O5WzWJhH+C=Xb1&*!UL!f!$5FF zG4QP7v0~#asK$Y~VpZOgx>49jHTw5{J~n~#W#$IedQC;?GI50<4vWsrsqMWY5A`A( zJF|rDKy?MQW_dXFAfXWa2r&>n254cT@P-;;MHf?8vaF7NTR{(EqyuwdVt5&sj~m>w zp_HD=cAU2s9S5)IuSn!H)PE0i^xCfj_gh1>i2-U@1$Oy5sL<$?4WQb?^+@q$Q3x%V zXImrYAT2VbMQ59z^I<=^FP0$FG~NHKR7_d|SI^<|+2lf_yB<(j2$>*F86K_;NXIwT z3#TY+IhwGd1IEUBH$7R1)s3Gu9$n zR66Jy4#MqfkiUaTOb#p_SJMpyugMFz!Q5klO^;>7@1$aH%7+FE9b2U397chY5h~-T zn3ct)WDxDRjVJL;X*QfjjM5hyPNKBlG-5RC+ef#824nZSBqX^hsY}+BU0JVP7cDqi zLv-UZ7|sG8kin!E{5iKF6Hpjp#-%T;ek-XIuL&Z~aJ>hM;b8oEE`jPsU6d4Tb|#@#Qb z9`{Crb5`fVwZc2}mKo>8G>9TI^dNodVZeZCaf-4;dXSI^cI=^> zhB^c!y>1bpQUu+y`S6uGjf7|eDWy7w@_ z1A4^b-~|x#{u+b4DXJis&w!|QpjpP_A6^NP$_Bd1hT7&SN-jH+9&1)nA|0ci{h{@) z*IR`u-HmTj{6`0fLV6bQOv}@*-Ek^l7N$7cu-Z!##$J1R5&HO z_!L47RN0@605quI%~E;0wtW#w;28;3t+=cJx+#4T9Jx3o0FG7O6gr`hFq=9Ns{4`e z=-eXqGu?%Mrty*MY4z!KZ}ZH3>h1LRTh;GxJXUSvmPHlQVY&-;e!NtXCr%;hfUq;Z zeR0Fgp(5QOnox52I`~G21=8<;Y-yvpKNORCpgt#^cw2pI)XzJM!c>5*hw85ri~X(n zJ&aF6%HOz7fE}bfWuGgB4^ByT;hkbq!JHJS>wlrl@e77>hgs7%~j}KUZ8+d2~Vqo8){xHGuwIfPMIN1m; zbLa^ZXVrTwHZN{+n;@PO$kkt!6erS(yj$eNxem#cmZ+0EQ?wHoX3p+NIpP&!F03l1 zz%dD_DHAiZ9Kz#U zQBxP`Ef!GlYbfc5kbl)hpTZv6g9hLr&g$v+pI>V2hxYa8;+MLCA%f)3SlnCuyjUg>?i)q43^1=#+9@lYq3 zP-i#HSXpjrg)q+H8c|3HUOfZ65s(f_&2C_OOimgym?Mfxc0dV8!jLU zXa2Ova;)*_a)zb>Fy_(qvNwA_3hmZ&x24W4?s3{YJ~dk=f6VOySsFhMBv24V+OzFY zyLp6R?aU7gqFlivSqw2qqZ)?8GvgD=Gyc3?UXt#VZ4;-WC`zM(%sH#jIY}L!l4iS1 zVWS;$%_oE=7jZ^AIBMzu6>OL~&)*7N;_|}_HyZyDwAFvLi;f|j4lS#SrUe#$??4BvMXNyAQl17BR)JB9HY)_ovc410- z!d@YP<02F*@A1Ok2+gk)&j==)YQxH3z5h3k$B$wsdu)2+K^QT-03Y1ue!QX3bbelb zCznf%l1MQZW0R-qHFiFrdKLen`HyMx3ciW2uz8rT?)fyLyB#&KMVy-Hbj&m7h-^Fb84LE$IZUzkrs zQt0)+he=x~DC@V%w|cMkTk%+3GldHHX&C3{chA(1Bxf;?#iWMYsvY|QSDMD3I(+D!OPH49xt7q1IfVzuLFN{mgAy1t$DbLA|EfO)H zmw7>N1BK)@{;Ts0WZhT3{&}S+q8n;_=*Dx$RzEb0j<=hlfUk4GLjr@e4_U#W)f>B2qTVUZ(2}>@pD= zc@I8@!|Q+0hrd5NOblghO;>ag`tNW>NV_5^W&G_~YxEM3C$W%jLa{62A$!GpjoCjZ zcsljRPb``nU>#4E(n|!}soV%iz$TsQhmTw=?$p3h3bW8Mt|-E1kU#MZfd3ovh)t+vC{^=3{dH+0a3c^+qM!4>Fn#$7^!-R2 zb&UK`PJ=UOsh1mg$+88u?^54UO__d}Joe6+RYzA`hiykuxknf-nP%k*RZtkth#m9O zAt>^uD+MDuW>3O$%}|u5FMNT7z40RC*mXXj<-|2~H;Az;VJ&5q%5{eqgvIWU8Z(gM zYK>LzkC+9vX5H{RIkPkQw$7oADOO~n>4bKbT5=GxrKNC{yoow&au4T8S#>lI2cA#vDb~fG_^XP zu`(uwiMnGP`>qxPiJDt@r|EevZ^NuTD|CQJ#6B&76{Zjg#osU?@f*~Imnc7ZE&j%i zo4Psnb`ZP|aLG$bNb{zPTAzvUbUM6FBa?Vm#1-@yjEemhXm3d@@mE6UNkQh6s?hV% zcYyZd4NpEA5f*NV^cA`vcl;w}}HhyI)~V-!|z@5}enLI2rI(?Z8v zxLiX`C5iPLOFIc`!U+kE{BCas6>F(RoSKo5?e%CMB4!5tVdp`KLcQ50$daN7rPk(6 zaIjNnsaZ2FRY`@8zGX1C!vh*Da_vZHd+Ixz?%<{g^62sR!^R1!G*geHIMA@hop_`BMK|S{21x8%+^TQ?|B*&xCuyns_S#Q?|ME^@~*drkQmr6^;3gh z!*&7vB>JxJMgA`~C}4O-M=CSa41;{$`7u1&S)yc?dG5AyT1faHpokog8A8zzUXWmW ze8b|ku7)(NprT23#S!9b(dWs3q0A@wnMsYrGun~RpFW&|6l)@N_ou{31u8dS0jpMC z`ihOLwpma!U|cIT6p3)a5YeBj5s(*|Ki~igtj>EEG1INC+j~8YrNOc^Q;xH|n4ZG} zY*Lb(zPVECq7fWlH8O3TO8)Zq=e?)GLFLxDV1ypjtwm0M+XRtAFWBVdy+tEBlD32k zr)OhI^(3S~iLw@F?^elJE8a_(Ik9lrF2!kk;HezAkBgQ!)A)-*WauVKB-7RWoCsm* zAu+WpVTtqUdxlPJHf!4TMk>F<#C5!Vy~mMc(m2lwhS>!R(aw^v5e{>w8} zYPchmV;q?W%~UBwwl;8Ud?u)j=VZEa4mK@QILl9oL4hjrNS?;(1Mg8mX2eSQmWUG6 zgN6btwljJ=e;r^GB}e`?SLU7xB51Q-V`PUZ*Rwa%4JY9vKLQjY(be`G)^lTXZT(B_ z5G>+4_raO}M6szQ(u`r*{DqRnq#rWMKbj3A{tfYqIIGP2<(nPIW>#}8Vd<7l znove3Nyb7{T^2Is=HDfDsTeEClA2A?Y1}fYzb>?lDB!XQQ@q+K;QHH%e_JrMEzJ<8 zeb$znaQl_YWxFFIE!@i;rUxs}IE_oUh9RIhSjKYO`yKpzRbFFVe}d-bJ^R(g@#fMU zH&mDFg;8f9S}2?l5#>mPKg9@;xG1!W=E)rHmAr-ClT_&anDdT%5FvtR7P+e#@33x5 zMr;icaF8t}NTjJ0k>uSyGP7)*VF&>wrqQQN@>ALkHG;)P*CS6mjdvW!W9kAl z8EvEr`V!$EKXOK)No1K4rTId`_eW$4dgaM}cngsO`HbX!zFs{yN(5cAAkTQd4f6P^ z|5rvteYV~{8Jg(QK3rlL5a*gL3!2?+wX7sLU))8(ye-3j`}D7f_G;zij;`=k9*+EQ z-v_(`w{Js`N<^*#g65wLywr+A;T7Td`R-4N+(i%@jq!}4Ei&Z*hnKB3wi3K70JEb3rQtm!yTJW=_~{0Y!q z3r;X_T9Y;QrXzbiT67@2dFO#|_gtbK)acC_t!X^X1|$0Av^EIjFaYmG+{*r213st3 zML}nZ>(D5Ljz&^{+rX#10@2*BaW`AjKvK%jT+X6ja6BD36g|cf?JoUSXt*WLc&GQ^ zk>h^_14?PdxQbpOxtD$;Cu+SsQ7M37mQx?kY(=+~s1gs~t1&~KhL7csHGCZ|sM2Zq zFXuW|gl^1WZ$U}?1^1{XaSO|7r9j&{bbC*&NipCSlvb3MUzP-hsw})-%xe_~;=QnO z`V+|K+hzi`KQFKWT}P-P&rL<*j);93?lwM%V0+PS^?DKE^>gwqIfQk;Q;z^*+lTG} z<*}O(l5pYKnwB1e&TBo@7@Y|FWD&z6**?*3!W&b_4?Zv_m^G?y_yW{^>n1iB z-tY3iDiQv?`SnI1s2+<+tYb06x(LmMciSmFY)N0@$K_6jWG@i{C_hxSv^PTRY)1K0 z=bqXHCF@Gt=W;EE==hh4r~a?FjisD8_8dF*5_>Z_Nnrst(VC%#A^qN1!TI2MKNcLX z5LR1g7|9k(9#pE*lzEj@p9DDC}ZZ%jF;ViT*4K8?w*0CY^xini2S*nwQu?ASA z!mdy79UbYWUz54o;#!OoXYgX24(5TIFJ=Gq-6FX{r(93MR-5UEy4Q4Lqp)vu(Awzo zPaCR;d*VRh%k1ln>ZYPO*xIscwduIt0P%h_e&rCv+IWIUD)S*C$s)EowQ)w$4}Kl1 zsJSfM7OCfnEuR%r{HTA=N(J`rCxZ8;F0aU8Y*ek@W=u-;vdi!}AzU3Gt}JEQWRlAV zyhddr%(-C0_R9ceT^&5$jxNwK#=cQ-_J&}bDM6F9QE(K=45CB$RW(&TjlaeyI8oVx z!0g00&Ic4l2|Du2GH1l;bbquTfpLoCi%~3(I}t>IR}2;Q`2?en9%47a8cFx4{+|}0 z4#TEPv`;Dz8m0(s5+JbO`|4$Mxg8|hx%;CK)I0G5oG5RT4@c$j4-#x!a-~MRF8;yC zY$8lE&21CaYli!4%v-h0J;uI=LG zHImwuQG8xi{o_;>&(!b)R&l8?0c_bdnDSUi&WZjnJ-o-;7L1p%xI0L-{e9LF5aH0x;01WrKHFF%yDlV-F>D*~v)&Vuscfm{nl(ugu|+?s|L)RtvH#g&nJ zJ}$Pd=Rb3BZ={Cjv<|~H4Blt1JQ+++WBIvJRepQLNH3|dz9yg!UC#|C4O}}DwJmK% z??$eN%(J{r?f??_-?<`^?KC3Sh;ZEQd@d54^1;o}7c94D$k%n{k6#uJ$ zFpA2>LBSq*-?p|rF`wrNM{2S9%`Szr$*4@~UBwMP-)Zb_2rn`mC@<5Lsge&eWLS{O zp(DR3`taIVx7^jQ?(|7a+5aW$Yaiyrn{(HN^4|+ODboM>>`OW47@sh$otca#-W#3a zTTxCzd^}sWOD!r1=|T&(Mmgo8bSUYjfDzUY689~9yF$<$O&*s9kM-nxa3{ejIX~o8 zj92PJpEnhe15=Jhl-8wXV@9{MSR5sTZb1WUJYW@Mo#6jNnZb%SC^M8$ai(;{qyC(O zSOMN*D=c{JLjp0k^Bb~InsDjXVK6TnqUWf~5M5a_Cf+If(}c6N*9egm%+rW_E;>>~H{5#Mv6~$ziyQH7}{M9 zr9C+(D1w5OV;^8xb6w7Iat;!5%+;}P+uAuFE18lKd5tPn7juqA1yXP-m3a(oHwMoe z74~vfyx##xSk+Agwzh-VMICsim9fBmbSL<9>f8{j6x+uspD>XVUUboe4$aPh-6rM{ zG;7x3pq26HMGN6+{CNrhL%7@?tCJ0*91bMjyKS%ZLK#pxe5_Qefa zc|o;&y^${l^e1pG)&?hy2=nWtX=X+VEMeT;ct@0~MbR(Ey`|kR?p+oX3jwbf{F{o% zytfB`vE0RY!$WxC58RW~oZtO07n&!yR~dg33JmA;kP|RuQGXK2mNd>_0K&58y5T5S zWdz}TcYc#hTC*#myDMZQte6;8WV(2JNsH|AAPIL818o40w~LsB34!|Z>L-Sx057-> z;A!dNJF?g$J97= z6G*iU|6Rej{(BVu==gh~>5CWZK)UdXaVaTuHl*N{Cn7X5wzM2_`Fo?$VhL`vsU?N= z#jL;l%o@4nh@CD??|tM^RnwZ&_x4T%TvyDQ6+)wn11TnkSq}-%$1T|sIX+qU(0Vc7 zQAGSh;G(%YPzx(z#7Gomqu?sm757utId9tM1I#hyK&6c*35?Q283_<^2kj4Ef?fdo zg;D)t+0lTU3+xYYU?=_bLh%ByCr%CEasdYDpV;NhKEscXgX9Tux8GdG623D9 ziRPnw`727kSyuYTWqgn{8wL;evw)L>{Mu02*!;9YGOHrM02ARSlIyu*cY087{RV_< zj$i_g+$ z!!nFkvFOV%gTQ_;O>DPLViuPhferv5R}E0H&`LPX?e2-wyJ_Gh^xvI=>1`tp-U)7x zg2B^J$qNP)f>=Cboz7;YQ69G;L=sWI-W3scofnMTW{W~T9)l|4b!`G(?OIl*sk&)9 zbhOM!hv}9p?)it@$>*Y`&X)&6OS) zOd;hlUcM?R`VUr8?1N*xVi`?=Q2zmM7nx?Riqq%~Jzgm|bB$|asD9Q&WiSi5eW9;}%nk-DnQOFjA%Y0aUHVt;H z&iNJ;3UWey#!K1qD343lTmPO{X6h(aUZInWY>G2ResDb4mLoJ`@ZM46xLY6fT^64~ zZ~lD6<^9RA=sZ3yhb^W*wpi4A+V!MzIwb}PpZut%$D02Mfp!orMZDN()|lQYm4UB1 zc^X=nNbjk_0@cPNBJODqw8&#a)S_Z(i;ot9>f@ndK-zce&nj2Slu9eiwZt-AW-rIyc@InLzY0 z1&E8rUhjQ`r9SSbPxxpOn%;T=VW9?TZ~!=$s&LWdWIUQFA5lj2kbJm~cLE)0Q}(ko z)Rd@X4Sp`BAqiy~Y($%-pb1<0n6RB~bin{yvoNu?N!$VNtUTArSVIR~S;u7?aAUN+ zpzzTCFriNx#^UX_&QCKG5n+2BMrd2?a0UjLp)nY7jP9igI8rd1Y9wIBn{rgzbJ`-< z#bh6zAs4&oX&s$HN5Au=gY*9W=A1lTQ8GRGeT&DvJiw3Q-QgNJ9~UJR+kg3x2VUG zaFaD`5}gPzP33?kciR=_{w>-C?acwt0V--nml~fZf@)M8|EU=!j!4hZSM(-Hk{R>@ z$8DK4l)ALPsx4@8ZEXHWsaG7uVHCTA^9te=dbWP`vFPp2s3u{$~h$f$5qBm1U0rztatwymP)FMhIW43s&@+txJ0-#U z`OwBo3b0^p@*U?c8qTdPeU88rk7OO3q$MigYLqH8GcnIA@Q5-T5U$s(p>I@gJ!L<`wQljQ)0Au6{LI6Xhsz>&30oWrUj(%UZM+GK9+_#)^7 z(!>P1dcBb*mt0@g@CpCkh}(ksZb!ro15JEUx2Io#$&!!xr2ofDFn?FxM6q|psKbh~ z$h}1WG^$kG2NBo}$U6N;F79h3|sL5iv~0`=tj-p){NnnVB}jT(B(|| z{BKaH_^u%E7mBtxgs*Fjr6 zUGB?O*DTA3zLVd)C?FK+ccdhWH@z^~sFiPM8$mWZOFC9boJHrz^cFfSOOaca{Rqu0 z{w-adQ;pU9nhlRv;JVe|@-u#z05H*2AP4q7dlVeXF;@vy#7~kL)tagi^ag7QQO=hD zIml$CtM#tK6uc1-b<|R}r3og{qW1&MjRyepyvrjl0&R^IgJ9RkcdZ(Q_P!QVXL=yu z{UM>npa4^AYJ+0dMGD9pYLw~K;-+!n#l+xA%)GmV?bYx-0Sbw;`j`1IKOr4X8qYWs zA><5LrnY~l|Dx%%uRaJ9m?d4x4u^itG*-?2Tpdd$G0UKu44v0J z2xzyAL|nlxrmacS0ye`PFH}`RZ-Wd5OM^X%k(rxe3wJEVPPW=xcIh1_RAm|K_c*XfnI{25dLOq*79%0Y?{-n1xI9S9#r`!gLUOSC}b&=Ew}+)~k< zBV&T9=uQ-CU2L3^LP|>(J^GThs%H=Njyc>44g2upV@Xw4XqtOB;+v9lS252vJ67 z;>Uhl!$5qTYgZxf)Hf6!8%>sDpDDZ79JS?a^IL z@M0`BGEq#)oEcOzEzerI;-N_xVNe{X91u@9K$hWkqY5%?U?@eq#U6GkPQmxqGT&-7 z6=kj%L?U+eblDnvGq^hcuo4 z+jaZ7JH2i+4?M!o9KpO8fv`~c>4Zu0Y6fQe0-d|5y)#d~+Mj$BB-w<35!j?Kr2fu+Uf2c3P*k{#U%MRbcO2Y0V{|~Yaw`2O4 zc%|4s?Ae{p%ZfF^TwqY?I2IyUOLpE$WV9vvxngcwrL|S#l73drr53fA%+k-g_5l!1 z154uLCilv=R^Uat*YGTD3$Qq78;VBG5YZZlplQ0`0l(nJz;F zI-|94`W)|6%n$Oa@waKvE3U9^119LI3TQydHzJ4wl$n_X;i0Sa17?}Rw+H+89V^i@ zuaLQGEEEFfWgwDkC^<)Wo#A=7+rsnufkRRl25;wXB`V)f!3j_Q4n0GAkohyL7jN@H zW@k4fHauCgC`Xnh5V-l?PU<0V-Ft6cD}N^7-f$uPOY^RR%_SAL=m$;E>3Y8!)-aRg zt#QXhNckC4@}`PW8uZ4d>w5SgMgGvyDXG{?60)$Jf{0AvK%Jz3GA~CETnd;RrPKP* zso640pL0+um|%!?FxTMriA=+K98ee~);7a9Qq$u?L@67f7_DYabES;>u!CVIta`|| zHrLKf_D5xZn;``rC?SIz+pmDJj7R#}p^G5z=hEFAj1~;WOA%6Zl`d5|jLIWpzq#Mc zLWZmQK0}RYO~P8W7u1%Ze*=zx9|*gHiJuZ@wRH`lYG9osYHmFx(!wt)=&6Fj6Z%x` zrS!|jd4LVie2zN^$*ttWtvI*j0@72xtwn)$h<^>mxykT9MyE{VTS{{&Yk{+l4$pyt zWI8JZ7tXi$Ve?9N--24oStB0&bfGK+w|7oj@GfqKwTptN*RwAi%ls2}NzT!9DF3}l zK4sRhY5aAjgs-x5mSFNJ4`%=ev6g>}1#(!eG{pG_bdrsMRIq!9aZ{_&Q$G zzx21uQ+|J+`FhvcdR=CC4q|woXZV=^NAmc_5cRwwKl=OwjYURj_^!43;ym4~yUhGv zY3(L>nK^BIJL+TM`kpi&#pJylAPm6C4=H=VR|X5A(`k|>HEvGgx74WY2{wxr<|28x%K=|1IraFCKe0zHmyw_a4)*#S1xw$bXi@uI~SSo^t@)_7>;XKvS6PBMLA(a!aH7nQmqfnmKA;jUT+XM|OGh)i>EvLKuu!A7>)@6Y{u&-?mz zwY+8M=?(pM;B*tX7ZJE`Y1O+uRQRkWh!*(7G5C=3A6L-nI+F2w{2V5c@EE)kr7IUr z%L6iD@rY>;1d(@ciV#BOa%?j#9GTSIoEJ^nRH9$TPG288UtzAeE;0rN{6$57C!3%sTsgV@#|4+|EDDUBATh(0u>VUQIjJh258oH>yuv|{c}x6j4h z!3m9>d#76)XWU@@J?-CKMnrRf&60*aJd`D$q5U+lAAy#H?oLT9)aK$LzcxVzYTUzw z(C}*TUdT#Z!0L~;K++h5ScGKjW0Bgl^#Mu*Ax{5m7AVB696#W90>=;-qVcwUS2nnI z3p1hzp5n#nO-x17_oIod%S-9{+bi?=AE|-ht)2i!NAfe{8yMDopwoRocIAmg@G>gl z_YZ{kP}|cb%J33U+xu@06Silu`Q@+;z9HpqQc@G)`B$3!gGHE=YXJs@4W-$!#7x{p zmFTXvUZ60U7lyiU4@-!qR1WitQE{ozO*$1vdIgryOQ9HcAJW7p56%pNeYo($VH;RleYyXd|X!2;;<}is-YN*Q$DNy~tvCG$EiNb4ri)9@Hoasb*-; z+-Y43T0%&;WlrlnM-$(m&Ae%(U$AW>SNH4yLuGQ4Bsc||eAUQ96MA2@qHo1T0fK_o zs2?BwYO6>er0q9(={KRpb@Du@lbDX$vx7>MjhJD1^eer6Lo9v$$D03PC2b zJuZ5oK#pvgizMsRgeLf|lQ?d~(r#y=Qe*w%+!PXFu6~PC6mmbM)C}4uwx#E43@qY- z#QlcIDmn7?*Xe%Gi};(T_`W6>MENx%!H@tgb-hy0!p!gvf}# zT)wOEiYI;7Dlk#3zs?gPU%>i!PVVjy+jB({XTub^9=ksLJ^OqNyWeGN`{Cg~x7N?` z+IQ%H+ULkxkHZX$&ufCuf$v-*vCr-NBz=09{rBmW7xC(S$6&5q1Rh)?s^0>d@1Q4p z9p3~PPdDsz8jbd^k#pMjoD5KO#2%Opay;(0cvCU@>>36;hw&4a%FZe*=oFpw!zD-D2u_^`>Ek?Q8IUA02BWE19Gzgx(7s(}HFhMQ^HoW_G? zTQKgj62t@25O9Ynkn2e?r(@hnMicnzV|9E*K~`F?VPRzU@Wnt$12g@g{ZZz&Pi@%@t4Y3V&_B;) z|F0+iuL*DC|EqU~*v%2R_nR~>)I7C?PZ~93n>*B8G_fmWRcDk;V1g;DVnbks!IZg@ zl)tx&uK8P12n>pi$s@=*dR()d&fq=w%8tL2<(D9>*9GBIkPl-a2rvtn+RIMnE ziq26p=*%GIW=Z5sTPWCs@n|rj!Mr(Qg6~u^;rL^`yByO@WH@))yu6E~4G~YKxjtS!aacsbP4Z{CH{$H_3~>>lxs-hu1@dL}4#eT#Is8DrV; zXQl0%xmERz8V(*@M`gk=NV`v>dhQGS0kxUW8$ECCAkTlkUJWc{I`#jb7Qp{++SIR| zo|mj1&mALACGVP>0tDY3v{;9^V%<|#akBiq4ck;bV z;wfrf?LNQC>Kemw1?DJ|l4C44QwcpDo~1J5AsX9W%AkA|&Ms)2MT#NZXLtNq!cpLV z*(Z1p_P-AEe-0Z#mlC)o5xAB393=p9^!9%H7sI^C+!>78Z!hz!%gbEPZ*q*K}l*=dCCq!Fkv(r*eHPUy<2zboJK5<3o4yt=8OzrF7lKCDS z4jGV8Fi*GMwhS-jUTHYxXlMU1Yn~sv@hWIwg$JeM;4r_X=vAox6@{@bjMjjVhvPA}Ke{&thS$+FYx?`iwQ<6>AmZ z?W6a94Cz+734dyT3UKAoFI2PGXflj>4L_e&IIoQwjqAAqjf{!x8a$i$!`9w9Ct*sHfBoMrG{-b5B&wStpe7lYt7*y^V7|tBQB+l^OO|ETyK7M1y zzAiX?7dZId&Kv*z_|H`S+t=Q}&kDlFZ20^3(;c39U+@P(y(eC>a@@X!nacQgSkQ#c&+?P0@A08$tOuZ7vkY1>N-jRe#kkZAIq_)3PbJ z_to11WyAlg$)A$md&|V(hFW=X7J=D@UbB9&0PK15O@w2cwSUd_Uo{+d70?VIL|kPXK6v_=bikt*vY;btS!mX&No#a@PGn6Y!VXO zwroWYP6c(ngvVdMg;$$_kBkXIaZ<0Jn}hVoK0WRmj!~S!$owjf3U!|wqk`36SyxWDq0h=DGy zE>IM;H!4>7Mx`NV2Hiv1eJazvKk~Ki@B3xYhm@D&vB%)^VeuvRHKy_T{1F2|!fQ-` z{2oo4p;2-c2}5k(I)Q+42LER$D)RJ+Q#Eyt#UB=#gVK~b_lDm@m8gVqNL0%=MfwP@ z8woxP8zpER2?T&v5|h;dA})RCiZX;!@_zspLFv9+<7J=+`Lin9(7<3cKtNZiuL+Yz zs$+m51ry|QOx1#Rcpjy6f?qjk zRtUV{f~z-mcPKpIhzXIi=x}1skP3u{>0tV3_LpaD7#F9^ptt}>)t2=petbE{l@Fy< z09p~jdWtDgzxhkQ1V_Al;k~`wr;u>~;Ssxd=QF&B2qw8dFvH$?dy?aswqQA5#L^L4HjTU$WBhDko80pbEH=B%ixzNr?$J8^FTM3^p65J{c)a2O!Xxg-xG_(QqskQu zFdLwNDJmj4UliK`!=;IoNmJX43cHv-SiYM)dbm=D+7*X2CcMNl>=Ls;zUt_aTgvISv^W=EEV}}zg_snmlgQ${u%ZSM)Q=HzJ$pxp@I+)+sI4LOJ(kP!7C79xux9=d`9Vzuko9$zrE@vM5Udj-7t4PW%Y zp^o@0#`*4*(yjCW!Xq-Ce&z!U)YXWhL_3Yee)JPXChCF(=3PI7_6;S9nCJ-B%-*4u z21X)j7m`uMbO7~YlNP9D!3DvjgMzYxFzOskp@}g}pOxwho+=u);)H$!+L7J z8j5J1V%mSw<_ee)6&Gc?p5=oM7%qwhhhTiUJwj3&lw|>@c#Yf21?O%%r_2Deyik|; z=c@`@pu75FYFfoTadncv2k4-dXrgH7f>9>8r}h{VdI?mGJmlO? z*L4{~X%UVHU1e}fXfp+m;$O8Nzt_DXrvCUgF%?=$BIGe2fbqT*cCT?r_%2&vze)SXKX*bP!mp>GwNK z<#SO)FRsb%fcF9O;w28$@4aN|~= zh#(Wv(tuzA8`4ESF}1J6z~X%M!p!{$k?_Ncugc-SMI!S!nMjnPz00Iii|^FR%i-A= zO+C|gaXcd}8)v72T5>Cz)x7zE_(U@aT)d-Ui)26@TFwXMLU-ln7c+ew0YjHjX^B(bv zil^W83t2DWSvx2Re$HF$gd~Fx!^eQSTCj>8W(mZuz`2Mc3*=PmR4htsSs~`erQ)7h zN{?#r*84mf5ZzEEM?qtiI#AKlJJO1QUNI-COHsAFfmV}O)M%uP1r>i?G*K+71RvE7X}*}8*?@< z5p;~>y->oeWqa-b=X}F#F_Q-#XjhB1Qoe-X!Q_bS6|G^k0aKJMbB#cfk{LSSxv)pe zQ$gIClz>M}xZ9DB1q-HA=3;$k(7sX6j;TOuHPHZCm|{&4y5w*RG)^A5%N%qt)MY`Y0l&j2)Tn6 z{?M^8*Wab$zLq*>eZ5r3%5amCO+pgcpm>FLN^Vu2mZ7P}I68VVKLgQ9fQ`kxdTKY) zi}Tc+!a!Se8vs~Ky#QOSq1^q??q|CQAjaOSl*XwpBBnM11E_|PWC6kj(#qy)1N>Hl z=mLZbr@TxVE}|&rj}ud|;vXt)d2!k+wOeRngdRe>OCeOdm(2YO1y|P#mz{_Z!6TVX z)~8!F+I}wO_J|`g4j_Eo@PDqsI@eX0$gZf&Wx&>!3D+R@ACvgAyJsT=ah*Z1hyt|)*%d7O34&ETgnay zFT~6;;`)kb_t@d2jF?!61^?ztpxvGe7aV{$9`DK=vHU%h%DP6oeCl|#J~g|e;r_1D z`m(COnX+f}B+BD zETUJ^xX=)Xo|&A zJ=9pOtCb#6%0bKKV1#_gp@o75#+g7c(32*DqK$^p+%41yDRnH#*olFRuA!H&N%<~Z zjSCP~K}G`MGU^?Pg5Zi<)A_EO?tBmp?9M z(d9aXB(Si(al;d=P1A%ruMgJ!Q@i5& z%T(e7zrh_>BDh2AA&O4IH~${})fV{_%ZJ}{zPg{Wb>p~pzyP^HAogVvgcOsaY#=NM zaR?iZ-T_2H`hh;MM?Btf0O4aDPrvH}IpiG+&T%Wunj~zR)F%bRA_&I9r^yjf`^d)& zqaAgbU&g_a2hpw!KbWPeOEfC=l)Npg$1)KX^pT=m1VM=oMwgjtJ(IN%0$kQ8W(U(s z3J&G7YOiBXFZ1z0!MZHFbB~j>d+oO4+|9JJ(dJ_TG5K(4p6la1v@FCcy*&frmP}p& zVSbn#E^pbX^}+0*FUW_HU&I2C%-#oYh1wR*nIEx zB>W7bdgV>FnNuG93_p`rzc{`5%fApu9I?a!gpYMR{jPs9jG&^xMmxdJVa}W~DO*A# z78IPi(`Z_Dfr2aMagU>=aY@;&W^ltPt8yUHT>UJMsk!HT?b0DTyr9tvRGGmHF*UJ@ z)nXfwyc{;2>`F6Ih6ozEpdey&aFwl%n*k_FBnPXV7n%)Y;(SCN&BR$mIPEQYDl5|L zfl!sD+x02stQ5q)r%VB1(#=ABKg(7|EQgKMTGnz`Q+t@0|+1Ac=}zxxVTqD zyGFZ;+3rwJAfy2sN$Gm-WwZS0k zV$9vv558lBT<;YIc#dm2zc6(w`%vA(t!)a%eTe|V?*b;XTe_+{ta$HeN4yNtZ;z(i zN4(te^bh<~AmlV-dlEq5A9A_p70ndF=}xPvv`sEkN~E(|8K*!x*7VFEhGAwg*CeON z!%_%=>oSuRDZf4c111=+8*97V*AjLDV9SNDQh-R9X3q0Pii=538v(;W!KfOfv^X;2 z8pg-3$?y9MO-4<{4kwZjHmxW!SQ=R~>sKsX*cDd^9ZJbBs{*WxTxT}CH%ojl;I^~&+EFLVF z?W~C?$k3=N*+ZH-rG#r8;mQ;jEp$-H zfs{LTSiY5u6TpDd!OQC)T=!owZ227z#G1E0GnO9O3mGf{`g4+^sT&0Nb+G49zp0 zo?rl^uls1+!e_TKg|A_th!_(rMz6C%DzB!aW@9}aE}X*1rI4{cQogB3YN)$|tj2p5 z6$|oL_3!zT!gy8(vaE*4GJaT8m7rREuWufcd?!(wc|}=r!8vOwj%zvmck(d7A=s>! zA2bdRk-rIAET;@=%bw@0{b)uabAiBlv?6?$(1?A5Z)lN)7ad{w{XP)msf+rG`l2km zj_D}NuXnz@*CxyMKw5e}^bVb$_Z*IRT;l-3$1$FM*FWXeH6q zp+km3SxNU*5TkG+AW@?$X&sLxhc1LJ+Fvgq5^vuq?Uq47ai_mqQdw`rVip{Wdi8dYUC!eVS=N>TjZ;MgnB4=WA*JZ6*s?q$ za4TBj$TE93+gI0=*12(IO49vqWI`Q=y5)K2t;wy%V&B2Q(&Yv=aVklgFT{dv8m7=HqNursQyNv>0SM6O!f+UsnlPL)^#WJ+ z8jqH?VM|usnMwTy@|xyx#1XqVfbg-4r+?s=fIA4lxd3c~oq$p2KDdjr;aR{^aHa$> zD`_-DOcYphaIfNLHra~+!bmSZJ76%x)}UW~fOK3A%0{Yh1sH-< zxA=8v1wt?4iWcN6x^ZPd^zw(|C6JL@QBMe zfbg-4cmCk}0i?3T4ec5tV!{FzA<9lQj}Sl+qkyhS1d$IW9bB1T(M=47HV7i-c1#qM z#Nmcl;tetj$F(*;Qjf~gF-I>gkX8RcgG0u#&?b}-qpTviVD4ap@kK+K_2Udw`~Tbf z+E~r5tGs8O^WJ;MnGl<%aqU1Lgec&qfJy9-II71=Rg7#26BHp;mXQjilo-ShL=ZpX zPw@ka+8?BGGbF8|A}f`W(jX-NhyydKCk`aV37DAFmMb7Om?k0#^?2sq_uZ>M*5}^m z+&kCKeB6)yWOV($`|PvNKKs1c&w18fYi$tGV0WRzs9j*sNT9>01gVnC?+C(GMRUif zA$qj&u!L|0;882XxR8W~ljDplJdBm8vzWz|QKjLIIwe^+2b1#N|IAouD3EiBRgec6 z!co84F9B0GqR?`-8#CE&Ek4_x%pPf@*D>ydxjM(*CLo4xrc79E0b3$NW#Rh9@9&;6 z9W6Q$9xmMXz+-?-LBj^dBVYoSMp`nD3>Y>fTSwUPg0WI+v^XoXSK?0BS`k(lCP|ZG zrUktnHK198u_Q<;*SxOlvXGC~o~VQp!UnSY;0mna3_*~7rSPL+#y}KHn|56q*o~R0 zdc|@(RyH@Y@=-~)Wg8zZ3>wv=M0frxN?b-2a~*3n55rHao8Xs4k&}#jU%fleh_)f{V)}HVb7i zlc1$W+o1xP8euDZW>y7a?NAEYXFlme(XL6B`j z(S$dUE)W)%aXI>8NY15_m<>jg#$lS0jWun$y*n5?re}muiZv6HnLv?p>kRN04S!P! zYV_Bv*$gA;L9z+X%AhJ^;R}c9y#&m>NmwPv8Gz`4g$#E}pyCC3V%tnQT{TB_}(+QOi#efn4_QB(xZn?V&3wh?6P>XX4G2oEdh_I@&F zsk2hEnyBQLC1V`bx0Uo#<3F$}W+we&@<_UwG&^K5iW&3MNqS8hP|ko0)1bKy^vA|G ze*abI=$N1r;UU8P$G?cR%VS+f!1C6-W?tz6=e&g(GcEj1C!@U4Zmp2AK^4xMI{~|G3qv3CTJ*xEkil!L^~A?Rif5=M4|CwvQ}QUDZU8xah_p~7okoW zam$qK#fVvXAX(A_XIBxgW6V)3nq1A2A?Az`WwTj|4CyejNR|{-O{_^HDlOTj6Ydn_ zelBoN92*BGuoH@6uQ=q>XrQbk&s9%Zn6{s;;dWHNZQ}YKZKkH| z2gJH`ry-EsPU89|z#M7bbgM(9(~)urWT0fllN|Sz?Etu;(#?aTOx_Xau=4$gV---P zqNGqMK6DFx5W!)jiL-OSejI9qU?nlbWfW%f^hQ{Bl1yTeDr%3>n_5BRb-{jFDRGP` zZ+YHqcFxd(>@Lc7xt1d(m?Up)sJ|cPWjBrPDfImaJ1#cvKmO-7;re^{0yNIOBQwZ_ zpqFta1j&RIY_iL*`0;w4xW|_OBZ$!0$4}9PGMG6nQHM9^P+oRn>I9j+KL1;T=CeP;YSi(8D9kG` z1L_1sq8H&O7W;8bm7-U((cm~3Zy1_5jqFFoHg002CrOG+L|jT(6#TbRHbLds4|db& z9s+kF?6{b??}Lw5-)Y3K0cKqwOnjp(7@PnA7PsJ&i%eCP>B?s|^Iid*e4sV6MvRFJ z>POR%Zm3V|m8?o}ZXBTzbJiR6$Dyd^v#L4J$6ZuwjcMNWU;v+uL9mFxs-J9<)H|*y zs!Uvbdo>o%BUfNBm4?uK1)6s>oMKFf%UPn~#D2>XG49kQa!ppzAYm0WERqnk7Gz+( zJbS*xbvZfvkX)`-iuvtDMr;MP)7a>c(_2ET8l9^r?_@maFDgtC_Bj11L$munyV)Fq3pqZENn5?#4sg5yFL_e5eJITc|W2 zs0${iAF4HC6-1v__n1(C5rMu)?;iU-2 z1sIYrkKqYI^WV&HKVaBicR z*|jvk&?lD}whEQks7+h!LG+oOC@C$Z&q+#BzOJQe%d1cXSc*{7j(P;qO}&xEY)Kwo z*k}~X&c!)39YCI*TPhb9%43LXr-x!AX$sFO>jI%Bph>J|7Rw>oLII?>K(!DWjTLsE zmvCcIVq0l`oz)7oPz&v_W^7cg2*y?z6=6pmo~3hFdu-1l-@fo7NK~WMk|#7qV5e8c zoE9XP$ku)gY3--OE3rn*iOr5nj~+hJaq)2f@jnNRpbcnT8UO-s+3~?*2LWE0hl?K? z(gIjwBRLv#lNmFEa=cz?!v{mMW#%JLNmuu2E-eVT6*b93HHKLxw?<;d4Cqo)xK9(r zU^+u`5p!J7JO$Iha-bN}HujZkXeBG%Aye*pK;~NgpVJ6Mz=In?;X<&W3XKp|WO9&= zh9j5(nIm_i|%8dV*E2=c=Y5ZuwG26PSGg#AWCN6}S zNyVVqnqehRCTT>!HJh#&-nalB4M=sTgVz+hgY6woLhH=r@1>5a+Q9ejdln-4Ha z>UZSj{#xRCFtekeg!heN&>tR+qz2WM5GN&`Y(Yq}y# z)M&ifL_k@I3gN(rk$`8v48sQCNg_Su& z%9{tfH;OpRFqb80h@9HAsELrk#q*9<5&C2-$l`tKOK$MKCEY2mHy&8B1tu|LGDZzs z92Um4sfA2+GIUdVOKYyWWa>8aT)C>`PZqIxlNpYc=QNsA23AwWq7+~S8q5JnaqP`K zaH3;dbRs;+xbL^0OfSW0x?uu|Q6k>rnE@V{2G4g1fO%#5%>|;_@z{gNE!!Cot~9Qb zkeDn?SeYR6KC5gk_$l6JgsfE5i;$KM|8bbU`K0I!mEv}`YK$<%Dr9$zmBUzV!XRP(9GtKuRU5uw2xq4a*pzsk6H zAYbeA;@2(UqRurmLa0$)Z=6#(UO*}?)T^sV)I(W5rh)Zeg`1#*&e(n-D`ik#+V6<9 z0bYVPAzrkQAbNfGy75i_1RWjQpcCOi#{D09vYs4C)m{iM`>#x7G)9?DJK~&g%*L73 zTnMreTgvLG6|)XQO2v|>6a>$s%mj4~EtP;njzL7_mFhOqDt%gFJ3ET(moxZ1rc0P; zv$<7zCATtFE$$RU^#|xOTV?Hp)fpK=ft-Yqa#FBhF@46lOG(eIishOS9v$Q1<~7UW zi)55OI4KgBQrW}30*nh8Vl@SzF%_i%1z3X50>oIC0VT`*mVR1s?>QtiMkB4^hOd*K zJ{j`*Myv&YuVR?(*P|(z<@JR4*qdH8+g!&bMClvzc3fzv9E^8!v4xK6w&xV+ibVOt ziuJEezP8fjFW}@`5{A4(G^KN&nJkk&i{`3aqrrCU$z@tU!W?~33q&jDU_rf@ot3#T zFEQ5BabiK!8AP5G#s^1OY8YdvTqwso0n(H$M?|HS6i4s(GU(oZB@>TyaVlg`~>vFR1jI2Kl-*58RbzKp5Y>Q5W2O2u{48Q_|2WwlHpuUAm zPVH5g&SG}*FC3gFONLCeVaLwsM0j9v|A(Fe09pVRC}!>tPzoeXvBqgh z1}@G9VCmb{$^o+~vWqVObLm}R)~c+@GFK%U%8dkPXdM;>$%zYDJVGdWn;M_x_Kk1C z{u(T6U*d`k9>-6vWYX}7>B}O1Kocg@5I*wN5 z-UkAJvJwFop^fUjBErs6pb76{tP+YxQ?*q#ST^4dS1W>3IOQvwZrTft_@nwl<7621 z^qeWQQKI%9K=uv<`vH_KyO;O{N~XRWyBzG;5uFGRChq&~C&L!%Ga9QeB8z>DY%f_Z z)l4VssKz(9A{upJg&;kdjM(-cch#s31^J;-Y+1wE=b)d~n%Yun+nNzw)xNioHLlP0 zwH6fTN$+%JJN0DQ948Wh953&SQqgD(sqj$ZEk@Fd8flQWXs=jsL;-kdgKejSVq+$d zQ(zoz*qYg-BF*ODN|G^; zUe25low0W;q#uL75QOQ%SF$_yD0&=W$A!iHAO13EUC9r|f~tWA^*MC27$=vC*o?_e zjCqVuR@Ew6l@SKnO-F` zJpl8#K@eof#LV>GTm4LS8)>V0$+c$pqQ+F$UhEt>YEyD^KKK|=O03dln#}XQNWIGM zrg|FSVuAKUt*`ld6 zz?LshGT^Ea0B8gXA?tGcwGc%dPR)YHuIv7y9p^wN!UGD~?v6<(5%P)K#YdWORYqiM zUP%6HRuY})vVq^8)G+5Bi^VuSfB*-US#TSDom<0zX_w8rHOwNKWbrFNkp zZFLH**^4a7JSfm_pXv?+EHU+GjfU3%F&Na7hW>=&8u1}JTLlYx3H*xkd$Jp?S=3Y` zAemZM3FB0PY&|F^%a6Sq2o64WS~6Roj1wJ&W$ zfDAIH65|^XO1%U~X^sZvhBY%wC@S?A&FrXQ3~t8Va5p zkvE4W7P|Z^9a}+jlgf5a1l|H~VHmW-`d-1w)Zek^(35U=TqxZ4+kfpVf;wYL<}FRNEVU>J zI9acDyH=xAk`RPN66AM!cu-f?h-l@V`@*!r47m<;zbB-gI6JETt1YVy^G(C*qi>d0 zEoR=_h_k!A925<&l=%L*W$ByE{$U5TFb_^Fm@SqxBwMJfBMMV0!`KVhjx!kQ7)fav z5*FDR+d-rjri|=NoG;{x+$&0qO|}74W6t2s$hN}-TGz*?>1ModEz3>%v^_@#yuzw3 zXAsP{>okbLD|^276QcFIe(w9u)qcmN0dI9@nT`tuQoATfcd7#-Kq80`I&n|m=$&kW zD#C!q`4wLGi!k~N?y1wec=$rae>t#0cwyG_McGk}tV$duoK(#Lr%okvsSFYvu&xGfXDD^rBN2 zW&hh4A4PLWMtjI-+e!9(hmB*`ce`lExzUO6pyB=xK4XG!V7S4JV>SeAxstwzeU#*-!Wirqoe*8h|mZP%nQt9l$hYBdwh z)vDC{DR<$Mds34eUM$q|s~;WWvPe#_e$mNoRqKUW#<^XTnXAC|>azM@i%E!XlfTW# zfE4yyBbqd1kCn}!8Zw=2k9d25h|V;lPI2YV)~3hk{YIF zLA_AQsjVDu^K9gTVdbaFEy!hxQ&)N(g+Ue_L4*_+qBm7+a?d0!&j@BL4RV#^`SGn# zind7>M<2Rep1UNP87s-ob_r?5>8&z2`v)im!b?1!J;hw2UK|Y{E3zd$bG>no8{x%h z!3JU~<$+`uB~{+DpaH|0H`R%-V>jqTc)&0)){Kpu2*s5E^`=YEtq&CD$j*h3>Bl`J zlV=Lq8l*cc0H(_i!FKUC8`h#4yJgm^RR&TDVpD}yOyEkJ z1w>q`6-Ns0rz&MvSPM<-`63w!(Wf4=*+Mn3rw@}2m~i~yM>*(L46SAAm72b~Q>Z*G ze>B;UXwmVKXq@vppFC66-vEIC(mSNV$5ngc@p(pjq-pBxid1Y1Co^j!`P`bAwszQZ zb`$ulJ{yP;wSWeVtZ(i+Qk)M|9hEyjt1Z(4!y=D#C&Imqo^-q8g5drSepTJvRS6YU zcubWLRON@ToTPVdHRO8R|)j-{3DODNZgEpcD*oZr30958 z3@Vzo)K?JQ#z^8Dqm)SbAhO#h;1to)o}H6iZz_HbdZ6&IC$`w_qQPp~&m1vgR!yTo z>7O|z*;MXkWEx`TR*FiBGoF!LR!C*ETcQ|I{ZC2Dx^*;*kPI(lbHVHrYdQ|FFnoQz zaIT700bdIgdNv0fB9rx`^sGA58_6F4YEt*X9)mqCRw-?73%&;-NBE$yCNDj*o(ZJv z=*=!bi{!-XH`39uD|8|}I5_#a)0(m}!C&xye`&>0@bVM?r+9zX$?6B%&XAz0p$;7sPQ=UoAZkYx>VA9B@ zX@n1LwN6Gxkk-1k=`n(y#?#T5sX47vHXsm`-e?4kdLd^=7w%=NejLebSIoRQD8ij% zk)*atNd}0*Mp}}Hw?sv92_op|$AGY&VlM>w1;l-D@&Lkqdp>a4Lg8s_u?1{tmG~K~ zftR`rIg9}3oTXh6cI*;+C7!Y4JV4}Nk?ocS-Q1Ol?Vpxo0Up3&dK$rlrJ<48cCgLO zJ;Z`-p^?%Dq_0C;sE4HGdw2ooT1j=ag+UeB)$wL83Nv@%F9kvSDTPJ^zmdgq#aO*1(XuvRH zSYTW;MO!dXA`;6~Fi1OF;4KiRNb^iQ!mL}sQVqqqrvF6&FTq>D3RHje0k)Kl_yEmqvlokt_xvZF%k(w@~5>yU~os&p1jnTM9!>BYVT*52xrf`Yg z0NHJ5Kz~6Insf?;SyPR%;I_&#A+`cqfrKN^DotV~r|Ul%{Wz;(L;x$V41&z3rX3ly zgdT;SIIN{N08S&r05FUgHtxFf2hZRCxArt1dg!5J$Bw=6jc@$e$3Axa_;CO?+;GDe zzxc%$Rda_!fAS}P@?^sC+!C^*4V!LHK-TFyDA|Z1N_4_4@Ak4ve zVeWGZEEWafbw)5I!Q(P+5#q_!Swjjg^!DAeG<;K)#X*sA+dWYucEa^&iA@>9qFxDB z&Kb9vCY1qjEKKGe`YVyzx6{TZabKkO0`nh^*9GbO3cO0T(y`jGY4vc9NUL*g=e?X}n5cH3?D-g~cnW#-#&zrB?5(T{#~_ceFl$ZfaX_L|qc=Kb$~zkI#= z>Z?Ee;Sb+(%PlXVS19_}edtH0g?)|ifZ*gGpK)sAYEI;st)v9-<+r+x zu+G`pWDyZkTC^>pIyM%}lNu!&^}_hu6l!n7&(!jTn#mz#bA7eBp%`zVL-F{O<4mu9pze9e3RE?sva?_ceFl$kR_h z{rkWF`)=g?+Sk7Jw}1P$uYdjPUvjVZ2s#lS5S;wu(SswT$JJhqds!%;1q1bXzw&yOZ`BLg;!m5)pO51xBHsAZ{!0X_`o~f z@s4Y*xkkP|@x&9uFueA)uYK;h=QcJruDIfg7u74?THF1dUQl!*JRmsv$4g+H*}?}^ z`8kpJ#t|l1T_QV?I&Wmu)RNEL#+E-x zd*%lQ+l|(ircl&`D+84kp>u!JBh`F1q;P#EQYRTkIa`dgk!us|7cHD8)NM#scHei-_rm_q(bynTvBV*~k=gH6d#%Uaw zt*2DKVHlh03x>o?cm~k{5RaJY?kG}!6C}3KBQXm8WDWF*IjqrpZ(dN0l4Q8otK2*>U85~ z%-NpUox?9t52D zqqDX10%Cs#-@nwCbMjmmMmU}*7=OjCS+Lj~m#uaUJ8C(pPYr{8zGF^WB@+U%8_=R% z=h|)QF)7ZbPV~oWxZ5W8ggr$;|SIcaO zxPI8X1(|IVgb|Wi6p)B`ugPuNZq=7|Zb3zXaUu5S$gpHL@rGm%bRh6T?|ranNCpwd zu20TDo?QWn1)ceFA_6b>cP6%{2>_#MZrMA`RxAA{BdOF}C2I--efoF(++necUQ96a z```cm_q^vl;}`<{o_p@O^UgcJ<2$}XzW&;;{o2>Q_O)OA)nEP1-~7!>)XkTOPJ{;n zjEE2bfT@7+1Yj~L59v&3&4vPVM0Ue=)hoW7!Iffj>Qeoe`Il^#^oELQ%8DAT6ZtOu zh!hV-PMM>~ZcwII&rlPqTt*t{oq#zd>}1dgiN7PKGxxKdM7~!`u)bzyyE#ravbXHx zLL7;h^IWb~OQIG4BZd(GhIK$vau;yHV2hnuTMa7asvHEZ9F!qinW@v6+qn>?6io$2 zCOKIjEk=hWcK?Xy>z9iXsu_{prCC{%Y@2Ay;FI1c^u}lnG@zWdo@|*;9d&JZ8?kyI zv9YlM;Q8mDKYH}27oI+STFQ4>b2p8gIC0{sr=I$$pZclX=4F>%<}4`qiJ$n1cfIRf zyX{rqn789R;^b#G{U^nq=|B7h4Jve+se;pABoQXxta8XL(U}llFgXd=+k=$W4LN{)7eW43H~FtKegaU0?Zbzy&5<>5c6vCkR_s&Y-2?mdBqAuG#MOuY9GKJo)64Kk_3#^7+qy{#(A~ zTfFe>*|SHE9NA^B_Rhw@7&JKdph*F>GMi0IgY{N+BX%4H`@O;v0atXDRuIel^3yeo>V+t?KogZm& zlom&iG^y@8001BWNklc{NRHRzU^&q1F*Td`P5TS zowMf7jR5$|zx>NjeBu*7|MNeeFa7%0zkX|L>wyOz$Y&ite*C7JZaQa!dktL??t7g0 z%qABybLfnNh)#R}l0=d!R9w^5R?w*9(!`pQ@VGVr!)=w(UUVbk!%*uwG80^*5(%{d z&8}-bVYY0RW?YTCiylz4=GRObHq4=6Bh_AI1(PkPDu`S*WosiD^LDra3Df;Zn zOvl{U8XHq;rc$&q_*3Prj;RAMVjPJnjN&WVM1G}9jN~F75dy)cC%L?sl!Fkt*1+%-ok@ZKNz9G*uSs&|%4U*lO)J!=RI+co@^P-5T%j_P zb_NUZ2&@6?z=$&F<%%ddauLa)4u@L&W&Jm#RHaExmh`n${gIaKLZn&iL>XfZv<_Ow za0J5<(7L5z6G}h~9lMCkPcYeW_3Nq@-&ql&N;DI75{3n6fyEK5zZ~l?$Ko=KYZz@0 zTg{`k0D7DrtIO8#)EV^Y#}q?@(LEUqY^LRtK|tQ-am1BMaf8paVIB}>zSdKMMk zVs|vldA!AKg%%t(Xzg+ukN7YgyY5iL(P!Lz^Ua_93{?6F&Kz4eYe?)b`AzVh(H z4_|-%^)IUC4u@WN;e`)<=tIBo3%@XJ@YY*z{nV#E_4&_#{)d0~hkx=Xe{y|&{R?0C z!mD5X>KE0ky?~x#ZQtYGfB%hp|HIcOOD1f~R4Mq3(rS(GwhE-2GN~qt9ru5 zd6MGPft!M zDl71+CQ;I#PVwey!Rm$td8^8evkg-??NIczvOthZLv~>q`!#aD=xPg8Knog7-O;n4BSo|y!|HtE$(9EtKBS*{ti%b2fk-W0xY<=>QT zp=3hPM+RxwoIH)-9+g>2H)yZZ@l)YNl(kijoE%Y z@TUfVFbv^1rN1aK)9OWeAR3Qq%w;tu{Jx+4K6G@vcyuD%_c;0KP5bCGop0ajQ$!p1pKi`1D~<6Wtw*^rCa$iT2vr2bdtSxR&6 zpuu(w3k@`qsKUA}9J`{%?37~C&SrcNduBDN#?c*Xjpr%{R9H{iaZITO$X{HPBiw4L z6;>MjzywQ|kRG%rpyBpNP$17}{YD7Jc?1oX4=QzrgK5yAntA;a7*jW_eRZZto+}JZ(+ud< z+2u&y9@gFlw6f2q6!fD6Ifeq(v?nX$u@v9N2yYSV5QXkZ1L>F0=Tbtt`JL(W@PqwHsXi-Kzj~r3NttKHIce;M0x|dYlPf4MQaq^DSv}D|P&GcajP}0y zGlF~6CjIGmtaI!#XX$<<;sift|J>fjjLZh5^8O$u7NJ6v)Knt zeMaA6`kZuC932i=!ULmTC|N;L!B+Q;H#NASw69>!hEr;`^;2*OW??;^oSOdf$~sy! zL9S&#DBWE8PV&`gWw7t0S?8v|{HQ^tAinyn%+ ziwt`{UBPVS>PqZj2p}{9ht&WLgSa{aU^vc@aWP<2?5&DfwD;7eIAfwX3C#TjoR+m} z)KK)^cP<4r3|+ALLwBV#?O2pqQwz%z-CiyA9zqlx{T1rM4CmLkF1j`v)`xZuv&#UZ z=-XT6JUzwRh&xVihJ2E7_2x~NPS@(@!WTJTO6K`I8Kxm&5pc0|lw(X8bMctABHU1# zr#gzOx`uL7=oA97-+^jcDci@~Q&J;GH*XdW;Mei-j?@3Ftel+_#Rl57HndU9#zHo8 zZhJdlka@F`n6VAqaR{$}JQfTI{$)P@yq)mIir_S+#VRN)(FpX7Hn&`dLxj} zoKhkN<`-5HBcIc(o)FXZB3vj-k|*j;jh|WVOX2!G{9cctLo2KAv?3`(I?j>G>eu3=l$ut_47I~kQ-Fpk#6mFU7sU2tu!Qz;p?z^cX%|5 zu;F6G>kUoO^htKw?Cr<1u`f0L-tgu6*-^wuK0oUGY@3F6B_G>*$U7`UlhDWv=n+KY zdZ#kjMGkx3N~Ba&q4E`phO)nUr~n~|K2xpGwf+`&APH;MM`qmjOTj4$>{r;YAz#ai zrd79*A2euNE~4Vb60~d(`3D8UciJOFyEkUlPc4*ZQYuO(C@)w)kkuw9I%!kG^J`La;Cp~sM$S$c&9jEuX_3EOC<^4tiCMm`jKt2;-E zPD*g2UC9W(OQ9Uzsh;nn5{K@hGG+E@r36q_%#dhHmq~K33%qTf)c#NmuuLP({Sbj; zYWA1!#B0A%JU;$D;=;>+ciqJO46n<^5Kg=%HlX5c(!Kk8-|HzrHAl$pG>M0H<&4s# zwqY1xho{YL51%gSV}VIXvc7jiHafL7jXk5-o=J(--lDL@;<4Z0aIYBtLA02NFwv8r z*squd`?$ zSz+AJJwxe-^Rq2*+*@n03J=5Z&pD2@Bdn9bQxGFPDQ{P-I%%G$ml)T@ua^=gQ#U4& z2sYDQa?Y;8JJk>LONuv`Z8PX}FYsVIlA{|kc>Tzy3(5WwxLMMItV{LBuNL5PRQn(r zOqeI;hP1+L0Rk**lCuKKh0V6QhSvT9(|JO%E&QPtZ<&UKY5r(O1;#3nq=uU!0+Ntb z*%;+xBN8IDaq>J3CIi8s@-Gn?Y36_vWcYGYU}?TR7F&o6(5abZ2O@56yv!Ag`Jh8p zG;kAhGT3+I3Bca~_?bOf)SeKP7mDA?9N6^p8aIu|vF7hGD_f=5@%N^Gxl}Sh#?58r z5)GlIsC;p8Wb+q;iS7U%RZ&+60doWsdDJ zNj>3TPo#edaU1JTqeAzQ9wr(nQ>E4l&ZT+7O5V^jdGoe;WXNNiG81mhjy`^y3wHjD zI+ONoMR>p)AOFd88@!H@8OM{M^OoOXT0mGyR(}E|y(q zV;>fYJMr<)U3)D`#+dk`Bp2z;vn&<2V70bQqp@3FMw*B+aCxg?sPvn$?eGKE*y1pT z%HuAAJd4!nQMcP7cD>5b_p-A%4oqnOV;{3IQdt!NYQp^H*lw|425ZvFNH zqTLbR9w@d4RnNAuDUA~TatdA2&HufA_q051h-Rp=7@fIZY0}SU%A~EToj&Lp;NCw##QFvcVblnE$cIo;I##uEs+KjBgN?Brf z9pU2dxr$qtc!$}?G0`Lrp7aEQDTp7cNczM@cfL64~Xh~8@9^p z3+Hl{PVJYmT+ZrV!b+B?0xmi#e3S?shs!GYCVP*!c0>3JeVUuyfr@fQ>SQNypZ=Y= zq)W^aeGe_{lT@AjikH#kBJ8DcooLdH2PAz%(uFM%^GoFy_w%oLUhSi^%xcxB(?~V< z^)B_by?SS4zUiPsoL@FGo5SvSK%Xz!NXc1hDFF~TRIR9o)`Mtn^?ai2+l0fyZcZ?* zWGvT0-KN@8-G57*6^^W0VDqvCC)w;FQ7)0Y47{G5Np=pq<#V!{xq=Sw1Y19whXeFo z1=URnhgTB?>%Mk$w^JWDV(C>41Ge{fcK_uAFpJ%XgtIS!GaZwOVFqS09>&X| z&&>=I_W*c$bfKtWP0E~aZYx8h%Y`;~yWkEvYHS`@wvG+&kZnIKv2qzX^ObSqGbyya z%q8c&K9*39^vS=mO3x->$jR5xyL@-B56oW9;&c>d>{x2FwNqKuEuP*4f8VRJB(%aP zTZmwmmRJ0sc{mzol(#G0YEpkW-`(|SpJVnV;m8GDV@zHLE=r9Li4bD{{u+hnhbv6l z%#C-vGxaB5*4%YRzUrLdd?$ib=Afh3elMqT7k*_&(qyIdgh8a9u1>d+|Jj(YJ$vZk z9o;i+=^@%=07n(XDw+45B2m#|`?L>lSj*a;gRA9IW^7kt1ay3U49L9P#aY{T-R ztgirUmV#4zFK9=@&b#vd9(GBz2Gw7_odn-~bh@8zQNg;UFdI~o3}b%+>Am)#R*o$` zJc_mk8+q#<%CDCwPMpS-Mg=N;NkF5*I_` zTa)J3t`1UhvyA61GJZsspZ4KuW|VN}P!zT(66G3nMr+qO%L;JI{LeMv3Boq|1Azz5 zmld0VjjMDOnRR4lyqB<)cZ}^!x*BMK^L7LJhQobqsVpBwis^S1QZpT7B~?f5)us*b z=lk9{*bosn|EjaJh6xnXYAC@G>H)kqu}Y`z11S`8Zj<=C^L>mu;a7LDlK8#?)#`&v zSK;Tse!Yqu^OA4JdjZLR4K;u!omMQ%;Gtf|(;rB~UCq|ar{5P~?m_x9==5#^+I3{r zW6W7Ev{i*vwCPNg&%&!sl$7R4C@H2S6_5Zh?={|)<_mb zjLxk1e8Hp>R30#@t&@T&F#7NC6jH}%SL;HInA)tn9GzJ-5Pqls>zUkPa)z6=rMPT z-yYozrh%k2ww)YKrR@xrW`T9boXaNZMO~z29xrRjom>mY7^g|RzTTPE){F!nK0Q2&31J#mnZo%$@G(^Jf{*TTU-fX ztcED{qFZRv*r%Mlk|P~%4A!FlIOiKVo`pTQ9E+dTpJ=4Zk`hC6%1qGKkcf;~bvP|% zoJmDq>+bx4XW+HRl+ji;Szzo$&1*0Jki4~imbI*50!ey!lqhRvh9CxP9b7Qk^sa!* zAoa2llj~U=ABdaH>03lUrDVakbMmOh)ZLdgNl6ME(?0G4?Mv7t0T(K37qZ+Sezgi& z*q0>|3J>|S%CDWgakBSSHYdLQ zt6TbVqJVAc&NF$K_t&^)PJ9umkB<1~n{$2IF?Yzjd>N9ED&=ysaHE7D!SVO8{n-zP zNQ`&gU6VuNNq+z@6mZ=;7}l}@bZx)+iy|>jUiZBBAi@G6ebqq~m@uchGY}#n^Yqwd zfY+~O-!a2Q)7WDJI67NHrd0#OYq#v#-37&v?yLH~6hw1amp?7mMf+;!U~X;a8HwJ$ zbi_nKZf{hUV@WTDPp1T2lcMXL?7#uul7D=2|MO$e^j02{PIsc z)2Q)#l#^!p$`ycJ(}xSFIb=;vg#ttK?SNn%YE$cm#8|ui=-aU|vf7NjLLXxSn`uLJ$*rN~Jp1mB3C(5{S|6(kM=sgOXiAz#SW2(mCi_EX@t~fb zn=(Ok@S0ryTger^C_^m%-K!5-h(A{<$|CDUPmo_@c3!T0LPuIIp8Dr8m?;y?wn z&3CZ;;_bF!9Bz~5D|l;|c~EqQ-l;$lOR^B|!!Tw~z!iPVh_y?CqNr6BWD zwm}`fcZx2_?C$%GCJBm9ysc6-_NgRuW88p|`Zt~HYj}Ymp-aJmpc_2Whk{B_;Am4_ zEm9)OmGjHE>>phpI$FzQwK2Ax)3AS6Ct{@Np#;P@l~r-rK;;BelK9T?Y6!Oa%Gl6e z>AoNzA>5XiRRpK+WYHRhdxksT;teIm1Gqk>W9qNy$Tz=_)r-_NVaxHfrk3dhseZMD zq7bv0*EcjRU3L@X>w|Efe0%bYbM*=_+7g5S0zni=v2pQ3NPqeX2KxowQy$m#+gUTW z3df`pzTiTXuZU4D3z9!0)h$_27gKE6&5}4?#|Ek@&7fVhn?2a&|M`(O97%3WlvOzO zr7imi5=n;K9ULR%h{Sm^V`H$%DrtM;#N~29Z@&Csx29f=+dBrwb~#xo0s^<6uktQU zqm=23VAWA*81a;_2W-7~a=(-G5s)QuQIfRyKKp)kiCk~xu#ZXJRa4C7d2uGm9-eFU zq8+cJmROjVa%}P+pQ=IT(Qdjsh_$Et(p2_BMEJbNXuKLQXtjPnzPZ%>;LQPW7Q);c zA5Sg-s=(J_4p7WX5}&pFT5pY2aaHBm*Y_(7N&qtNttIdCKxZ~|((nHl{DYlJ4^ zMxtT{uD0vRbpiS;o&JBGE*dfLaZkGOulYmKVHv_R4(3 zteGSeI(-%0V5H^U!#P|+NbFT13O5{LE%YRY)lqbngV2s=u;)DKPX!m{1gay({iWAi%h>Dco< zIX&}Oma`Qh$!dsqH&mu0aq$#&*`AdFor?sllSO}SP6a`q7) z14&=N*3H?%_+HsIiJVyI7zflmxz5I0W_vU6NfFLY+ALS9fH;5qg?BGn`HLlFdCm%% z5*+!hwnEHS39^=M?9KbOHk>oW>n*y?yjKzZ-4Gw&07G~*^3%|pO%TGSm@J;Yu8&fb zn~0J3GIE?9`ZB)v+Egnl<_ALTbAhoq1!aI`TPmi7_WbOstF=6D=1tFY7P9y`!>Qiu z56Bhg%kqSC6=qx{FUHfI%2PSEY{IgvzreM(O1~;)z3)3A@xwTgd3pyN%xcnP%TIy@ zv(>Il$r2;I=m&Vj;>*!4XVceWaRXL7wzs@i1);1B7UJedFU-8sc6VBNUzAdww0@w_ z5Y6enXhqp0vT{iJxcD+c6Sk?#vz-myiJOfvS2u#Xk8^NsNGc9T&v8`L2qTU{%{w3- zs3x?$KPg*6WZxqT!vz4ojb={W#@~MwJ>x`%XZHgP{V>!i-vWL~A|W4_)6JsXvI%iY z4BIWi2HsK)P_2sAH1V|gL^{_4 z+LL3PbCR1m>#2ja>$a*d_DsL7hNyh%`!#3~jBobpTSd9+0?0V<56GCy z%W1Hy?>Orc-{e_J_a_X~-xJ(GAR3ymZ-F6Wyn5WRbZVbn^%3^q_VMDdf_eatRMGrz zafDaaJYgsQ*2sK{zRK`eekSN^HL}*&x5irObikt&xNO#<8q6JJC}d#L=8hr69znRu zw}=xk(6=XZ0KJb|@uxZvB{cJ`o8H~NapoIgT(ZaSvBA0CSKi31mWwh~@-_1huzGf- zZ+%_5Nk;g4(UisB#(lf_+r@t4gj4OOe|v)3PfJ>y4)!jEE}up?=Pk#aJ}LC~VX`j# zr-+G9W!h&3#^Cc~4AqMy5vvYe1rKW+4OW#FQ8#T1&JmM~O*=Hq@0FnE_+raQrz+e4 z!{?)f2!kQ}k=4dUn{rxq)Wu)jmq}j9+c!G~c#s2rHExa829*Dqt0(0G2VlTU@5W<4 zbpD%670$1B#qWA<{hJCfKkjYDx269!tRn`P1+o4}^*K0w@JI9CNSgK=krlPUPm+&T z5+4wa4B@}ckB6}lZrRi*z`kQQkT&OA5C*T!L~ys6^K zWwo_QW69RYx1bcc*(rSU)Bmi}_@d&m;Y!QTz}pQZ9hJcDuq){dwTtKhG4)RsjO!&W z&MWsn`aV9q^}&D6LiJ2Hn4+%rA;$0N`n$g0!Tzj*?$AQD*dLvd?hUEf28W zY~F6^LnM;c39q+s_TQiszpPI{?(|cA!+EoE+z$#ok%6rQyxhhI@2o#$|5kVt=jrYa zez9`9{}Yg};`a7s#s?U05RRFp7x~tBN-QPdVJ)b8uVfm51qwtu8Ik&v1W7bK(lZ+qsyzzZa$Lb!$!mNp|-YH`LmI1~@UI53y!?m^;z za!E@oZ?Qlf$GxM*mkp(Pfj8}4tTRdC=TmS072v+sV@Pj6 zJ}~(fCkuf{brcAiS|!ler7pWy36K*(7O4T$bhVw9cJ5VFKC+8e7mxy?5&!dJ4*q|5 zr^y~ zNNk<)|7LSgp}NmP)H65pi^j`|3UqrQ|HCJ@L}r)tI74qcRX?b`-_F{ zvPb@+M1c)5e;|jz+)fPADUoie{?DJ0Gv~|x_kH8v#{JU>5E%IgD}|5)m+zlG+})|{ s-02VgcmJa+_`}RK3b|;n2Ox)njH+~vlxfI+05v?bh5!Hn literal 0 HcmV?d00001 diff --git a/demo/documented/periodic/python/demo_periodic.py b/demo/documented/periodic/python/demo_periodic.py new file mode 100644 index 0000000..143d25c --- /dev/null +++ b/demo/documented/periodic/python/demo_periodic.py @@ -0,0 +1,89 @@ +# This demo program solves Poisson's equation +# +# - div grad u(x, y) = f(x, y) +# +# on the unit square with homogeneous Dirichlet boundary conditions +# at y = 0, 1 and periodic boundary conditions at x = 0, 1. +# +# Original implementation: ../cpp/main.cpp by Anders Logg +# +# Copyright (C) 2007 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg 2011 +# +# First added: 2007-11-15 +# Last changed: 2012-11-12 +# Begin demo + +from dolfin import * + +# Source term +class Source(Expression): + def eval(self, values, x): + dx = x[0] - 0.5 + dy = x[1] - 0.5 + values[0] = x[0]*sin(5.0*DOLFIN_PI*x[1]) \ + + 1.0*exp(-(dx*dx + dy*dy)/0.02) + +# Sub domain for Dirichlet boundary condition +class DirichletBoundary(SubDomain): + def inside(self, x, on_boundary): + return bool((x[1] < DOLFIN_EPS or x[1] > (1.0 - DOLFIN_EPS)) \ + and on_boundary) + +# Sub domain for Periodic boundary condition +class PeriodicBoundary(SubDomain): + + # Left boundary is "target domain" G + def inside(self, x, on_boundary): + return bool(x[0] < DOLFIN_EPS and x[0] > -DOLFIN_EPS and on_boundary) + + # Map right boundary (H) to left boundary (G) + def map(self, x, y): + y[0] = x[0] - 1.0 + y[1] = x[1] + +# Create mesh and finite element +mesh = UnitSquareMesh(32, 32) +V = FunctionSpace(mesh, "CG", 1, constrained_domain=PeriodicBoundary()) + +# Create Dirichlet boundary condition +u0 = Constant(0.0) +dbc = DirichletBoundary() +bc0 = DirichletBC(V, u0, dbc) + +# Collect boundary conditions +bcs = [bc0] + +# Define variational problem +u = TrialFunction(V) +v = TestFunction(V) +f = Source() +a = dot(grad(u), grad(v))*dx +L = f*v*dx + +# Compute solution +u = Function(V) +solve(a == L, u, bcs) + +# Save solution to file +file = File("periodic.pvd") +file << u + +# Plot solution +plot(u, interactive=True) diff --git a/demo/documented/periodic/python/documentation.rst b/demo/documented/periodic/python/documentation.rst new file mode 100644 index 0000000..63caf76 --- /dev/null +++ b/demo/documented/periodic/python/documentation.rst @@ -0,0 +1,174 @@ +.. Documentation for the Periodic Poisson demo from DOLFIN. + +.. _demo_pde_periodic_python_documentation: + + +Poisson equation with periodic boundary conditions +================================================== + +This demo is implemented in a single Python file, +:download:`demo_periodic.py`, which contains both the variational form +and the solver. + +.. include:: ../common.txt + + +Implementation +-------------- + +This demo is implemented in a single file, +:download:`demo_periodic.py`. + +First, the :py:mod:`dolfin` module is imported + +.. code-block:: python + + from dolfin import * + +A subclass of :py:class:`Expression `, +``Source``, is created for the source term ``f``. The function +:py:meth:`eval() ` returns values +for a function at the given point ``x``. + +.. code-block:: python + + # Source term + class Source(Expression): + def eval(self, values, x): + dx = x[0] - 0.5 + dy = x[1] - 0.5 + values[0] = x[0]*sin(5.0*DOLFIN_PI*x[1]) + 1.0*exp(-(dx*dx + dy*dy)/0.02) + +To define the boundaries, we create subclasses of the class +:py:class:`SubDomain `. A simple Python +function, returning a boolean, can be used to define the subdomain for +the Dirichlet boundary condition (:math:`\Gamma_D`). The function +should return True for those points inside the subdomain and False for +the points outside. In our case, we want to say that the points +:math:`(x, y)` such that :math:`y = 0` or :math:`y = 1` are inside of +:math:`\Gamma_D`. (Note that because of round-off errors, it is often +wise to instead specify :math:`y < \epsilon` or :math:`y > 1 - +\epsilon` where :math:`\epsilon` is a small number (such as machine +precision).) + +.. code-block:: python + + # Sub domain for Dirichlet boundary condition + class DirichletBoundary(SubDomain): + def inside(self, x, on_boundary): + return bool((x[1] < DOLFIN_EPS or x[1] > (1.0 - DOLFIN_EPS)) and on_boundary) + +The periodic boundary is defined by PeriodicBoundary and we define +what is inside the boundary in the same way as in +DirichletBoundary. The function ``map`` maps a coordinate ``x`` in +domain ``H`` to a coordinate ``y`` in the domain ``G``, it is used for +periodic boundary conditions, so that the right boundary of the domain +is mapped to the left boundary. When the class is defined, we create +the boundary by making an instance of the class. + +.. code-block:: python + + # Sub domain for Periodic boundary condition + class PeriodicBoundary(SubDomain): + + # Left boundary is "target domain" G + def inside(self, x, on_boundary): + return bool(x[0] < DOLFIN_EPS and x[0] > -DOLFIN_EPS and on_boundary) + + # Map right boundary (H) to left boundary (G) + def map(self, x, y): + y[0] = x[0] - 1.0 + y[1] = x[1] + + # Create periodic boundary condition + pbc = PeriodicBoundary() + +A 2D mesh is created using the built-in class +:py:class:`UnitSquareMesh `, and we +define a finite element function space relative to this space. Notice +the fourth argument of :py:class:`FunctionSpace +`. It specifies that all functions +in ``V`` have periodic boundaries defined by ``pbc``. + +.. code-block:: python + + # Create mesh and finite element + mesh = UnitSquareMesh(32, 32) + V = FunctionSpace(mesh, "CG", 1, constrained_domain=pbc) + +Now, we create the Dirichlet boundary condition using the class +:py:class:`DirichletBC `. A +:py:class:`DirichletBC <:py:class:`DirichletBC +` takes three arguments: the function +space the boundary condition applies to, the value of the boundary +condition, and the part of the boundary on which the condition +applies. In our example, the function space is ``V``, the value of the +boundary condition (0.0) can be represented using a +:py:class:`Constant ` and the +Dirichlet boundary is defined by the class DirichletBoundary. The +definition of the Dirichlet boundary condition then looks as follows: + +.. code-block:: python + + # Create Dirichlet boundary condition + u0 = Constant(0.0) + dbc = DirichletBoundary() + bc0 = DirichletBC(V, u0, dbc) + +When all boundary conditions are defined and created we can collect +them in a list: + +.. code-block:: python + + # Collect boundary conditions + bcs = [bc0] + +Here only the Dirichlet boundary condition is put into the list +because the periodic boundary condition is already applied in the +definition of the function space. Next, we want to express the +variational problem. First, we need to specify the trial function u +and the test function v, both living in the function space V. We do +this by defining a :py:class:`TrialFunction +` and a +:py:class:`TestFunction ` on +the previously defined :py:class:`FunctionSpace +` V. The source function f is +created by making an instance of Source. With these ingredients, we +can write down the bilinear form a and the linear form L (using UFL +operators). In summary, this reads + +.. code-block:: python + + # Define variational problem + u = TrialFunction(V) + v = TestFunction(V) + f = Source() + a = dot(grad(u), grad(v))*dx + L = f*v*dx + +Now, we have specified the variational form and can consider the solution of the variational problem. First, we need to define a :py:class:`Function ` u to represent the solution. (Upon initialization, it is simply set to the zero function.) A Function represents a function living in a finite element function space. Next, we can call the solve function with the arguments a == L, u and bcs as follows: + +.. code-block:: python + + # Compute solution + u = Function(V) + solve(a == L, u, bcs) + +The function u will be modified during the call to solve. The default settings for solving a variational problem have been used. However, the solution process can be controlled in much more detail if desired. + +A :py:class:`Function ` can be manipulated in various ways, in particular, it can be plotted and saved to file. Here, we output the solution to a VTK file (using the suffix .pvd) for later visualization and also plot it using the plot command: + +.. code-block:: python + + # Save solution to file + file = File("periodic.pvd") + file << u + + # Plot solution + plot(u, interactive=True) + +Complete code +------------- + +.. literalinclude:: demo_periodic.py + :start-after: # Begin demo diff --git a/demo/documented/poisson/common.txt b/demo/documented/poisson/common.txt new file mode 100644 index 0000000..6bd1f50 --- /dev/null +++ b/demo/documented/poisson/common.txt @@ -0,0 +1,54 @@ + +This demo illustrates how to: + +* Solve a linear partial differential equation +* Create and apply Dirichlet boundary conditions +* Define Expressions +* Define a FunctionSpace +* Create a SubDomain + +The solution for :math:`u` in this demo will look as follows: + +.. image:: ../poisson_u.png + :scale: 75 % + +Equation and problem definition +------------------------------- + +The Poisson equation is the canonical elliptic partial differential +equation. For a domain :math:`\Omega \subset \mathbb{R}^n` with +boundary :math:`\partial \Omega = \Gamma_{D} \cup \Gamma_{N}`, the +Poisson equation with particular boundary conditions reads: + +.. math:: + - \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\ + u &= 0 \quad {\rm on} \ \Gamma_{D}, \\ + \nabla u \cdot n &= g \quad {\rm on} \ \Gamma_{N}. \\ + +Here, :math:`f` and :math:`g` are input data and :math:`n` denotes the +outward directed boundary normal. The most standard variational form +of Poisson equation reads: find :math:`u \in V` such that + +.. math:: + a(u, v) = L(v) \quad \forall \ v \in V, + +where :math:`V` is a suitable function space and + +.. math:: + a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x, \\ + L(v) &= \int_{\Omega} f v \, {\rm d} x + + \int_{\Gamma_{N}} g v \, {\rm d} s. + +The expression :math:`a(u, v)` is the bilinear form and :math:`L(v)` +is the linear form. It is assumed that all functions in :math:`V` +satisfy the Dirichlet boundary conditions (:math:`u = 0 \ {\rm on} \ +\Gamma_{D}`). + +In this demo, we shall consider the following definitions of the input +functions, the domain, and the boundaries: + +* :math:`\Omega = [0,1] \times [0,1]` (a unit square) +* :math:`\Gamma_{D} = \{(0, y) \cup (1, y) \subset \partial \Omega\}` (Dirichlet boundary) +* :math:`\Gamma_{N} = \{(x, 0) \cup (x, 1) \subset \partial \Omega\}` (Neumann boundary) +* :math:`g = \sin(5x)` (normal derivative) +* :math:`f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)` (source term) diff --git a/demo/documented/poisson/cpp/CMakeLists.txt b/demo/documented/poisson/cpp/CMakeLists.txt new file mode 100644 index 0000000..b27a799 --- /dev/null +++ b/demo/documented/poisson/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_poisson) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/poisson/cpp/Poisson.h b/demo/documented/poisson/cpp/Poisson.h new file mode 100644 index 0000000..7c28263 --- /dev/null +++ b/demo/documented/poisson/cpp/Poisson.h @@ -0,0 +1,2403 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __POISSON_H +#define __POISSON_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 11 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = -0.5*G0_0_0 - 0.5*G0_1_0; + A[2] = -0.5*G0_0_1 - 0.5*G0_1_1; + A[3] = -0.5*G0_0_0 - 0.5*G0_0_1; + A[4] = 0.5*G0_0_0; + A[5] = 0.5*G0_0_1; + A[6] = -0.5*G0_1_0 - 0.5*G0_1_1; + A[7] = 0.5*G0_1_0; + A[8] = 0.5*G0_1_1; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 7 + // Total number of operations (multiply-add pairs): 13 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + + // Compute element tensor + A[0] = 0.0833333333333334*G0_0 + 0.0416666666666667*G0_1 + 0.0416666666666667*G0_2; + A[1] = 0.0416666666666667*G0_0 + 0.0833333333333333*G0_1 + 0.0416666666666666*G0_2; + A[2] = 0.0416666666666667*G0_0 + 0.0416666666666666*G0_1 + 0.0833333333333333*G0_2; + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class poisson_exterior_facet_integral_1_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + poisson_exterior_facet_integral_1_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_exterior_facet_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 9 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0 = det*w[1][0]*(1.0); + const double G0_1 = det*w[1][1]*(1.0); + const double G0_2 = det*w[1][2]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.333333333333333*G0_1 + 0.166666666666667*G0_2; + A[2] = 0.166666666666667*G0_1 + 0.333333333333333*G0_2; + break; + } + case 1: + { + A[0] = 0.333333333333333*G0_0 + 0.166666666666667*G0_2; + A[1] = 0.0; + A[2] = 0.166666666666667*G0_0 + 0.333333333333333*G0_2; + break; + } + case 2: + { + A[0] = 0.333333333333333*G0_0 + 0.166666666666667*G0_1; + A[1] = 0.166666666666667*G0_0 + 0.333333333333333*G0_1; + A[2] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_0: public ufc::form +{ +public: + + /// Constructor + poisson_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "996f902b81205976ede73587192186c9fd9b057164f0036bf925051e4ce236d3afa448345b6b3a7958f9c265483ba7f2701db77c9f0b497566f0fb97007140e6"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_1: public ufc::form +{ +public: + + /// Constructor + poisson_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "5ee927682358c6c0426041ab22b70a08e5ed403f78f13005173589a5c00c41be670a70ca85fa21afd8fb8bcee737b704b4ee42ec7f4dfef9f5aa6cd90a5c4283"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 2; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + case 2: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + case 2: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new poisson_exterior_facet_integral_1_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class CoefficientSpace_g: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_g(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_g(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_g(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_g() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +typedef CoefficientSpace_g Form_L_FunctionSpace_2; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + this->g = g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f, std::shared_ptr g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + this->g = *g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + this->f = f; + this->g = g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f, std::shared_ptr g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + this->f = *f; + this->g = *g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + else if (name == "g") + return 1; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + case 1: + return "g"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + typedef Form_L_FunctionSpace_2 CoefficientSpace_g; + + // Coefficients + dolfin::CoefficientAssigner f; + dolfin::CoefficientAssigner g; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/poisson/cpp/Poisson.ufl b/demo/documented/poisson/cpp/Poisson.ufl new file mode 100644 index 0000000..63c555c --- /dev/null +++ b/demo/documented/poisson/cpp/Poisson.ufl @@ -0,0 +1,34 @@ +# Copyright (C) 2005-2009 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2011-03-08 +# +# The bilinear form a(u, v) and linear form L(v) for +# Poisson's equation. +# +# Compile this form with FFC: ffc -l dolfin Poisson.ufl. + +element = FiniteElement("Lagrange", triangle, 1) + +u = TrialFunction(element) +v = TestFunction(element) +f = Coefficient(element) +g = Coefficient(element) + +a = inner(grad(u), grad(v))*dx +L = f*v*dx + g*v*ds diff --git a/demo/documented/poisson/cpp/compile.log b/demo/documented/poisson/cpp/compile.log new file mode 100644 index 0000000..2a62533 --- /dev/null +++ b/demo/documented/poisson/cpp/compile.log @@ -0,0 +1,213 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 2 + Coefficients: '[w_0, w_1]' + Coefficient names: '[f, g]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0166111 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.000709 seconds + Shape of reference tensor: (3, 3, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000608 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.00109 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000885 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000932 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0128582 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000299931 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.0432231 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000645161 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson.h. + +Compiler stage 5 finished in 0.000671864 seconds. + +FFC finished in 0.0746362 seconds. diff --git a/demo/documented/poisson/cpp/documentation.rst b/demo/documented/poisson/cpp/documentation.rst new file mode 100644 index 0000000..92baa33 --- /dev/null +++ b/demo/documented/poisson/cpp/documentation.rst @@ -0,0 +1,225 @@ +.. Documentation for the Poisson demo from DOLFIN. + +.. _demo_pde_poisson_cpp_documentation: + +Poisson equation +================ + +.. include:: ../common.txt + +Implementation +-------------- + +The implementation is split in two files: a form file containing the +definition of the variational forms expressed in UFL and a C++ file +containing the actual solver. + +Running this demo requires the files: :download:`main.cpp`, +:download:`Poisson.ufl` and :download:`CMakeLists.txt`. + +UFL form file +^^^^^^^^^^^^^ + +The first step is to define the variational problem at hand. We define +the variational problem in UFL terms in a separate form file +:download:`Poisson.ufl`. We begin by defining the finite element: + +.. code-block:: python + + element = FiniteElement("Lagrange", triangle, 1) + +The first argument to :py:class:`FiniteElement` is the finite element +family, the second argument specifies the domain, while the third +argument specifies the polynomial degree. Thus, in this case, our +element ``element`` consists of first-order, continuous Lagrange basis +functions on triangles (or in order words, continuous piecewise linear +polynomials on triangles). + +Next, we use this element to initialize the trial and test functions +(:math:`u` and :math:`v`) and the coefficient functions (:math:`f` and +:math:`g`): + +.. code-block:: python + + u = TrialFunction(element) + v = TestFunction(element) + f = Coefficient(element) + g = Coefficient(element) + +Finally, we define the bilinear and linear forms according to the +variational formulation of the equations: + +.. code-block:: python + + a = inner(grad(u), grad(v))*dx + L = f*v*dx + g*v*ds + +Before the form file can be used in the C++ program, it must be +compiled using FFC by running (on the command-line): + +.. code-block:: sh + + ffc -l dolfin Poisson.ufl + +Note the flag ``-l dolfin`` which tells FFC to generate +DOLFIN-specific wrappers that make it easy to access the generated +code from within DOLFIN. + +C++ program +^^^^^^^^^^^ + +The main solver is implemented in the :download:`main.cpp` file. + +At the top we include the DOLFIN header file and the generated header +file "Poisson.h" containing the variational forms for the Poisson +equation. For convenience we also include the DOLFIN namespace. + +.. code-block:: c++ + + #include + #include "Poisson.h" + + using namespace dolfin; + +.. index:: Expression + +Then follows the definition of the coefficient functions (for +:math:`f` and :math:`g`), which are derived from the +:cpp:class:`Expression` class in DOLFIN. + +.. code-block:: c++ + + // Source term (right-hand side) + class Source : public Expression + { + void eval(Array& values, const Array& x) const + { + double dx = x[0] - 0.5; + double dy = x[1] - 0.5; + values[0] = 10*exp(-(dx*dx + dy*dy) / 0.02); + } + }; + + // Normal derivative (Neumann boundary condition) + class dUdN : public Expression + { + void eval(Array& values, const Array& x) const + { + values[0] = sin(5*x[0]); + } + }; + +.. index:: SubDomain + +The ``DirichletBoundary`` is derived from the :cpp:class:`SubDomain` +class and defines the part of the boundary to which the Dirichlet +boundary condition should be applied. + +.. code-block:: c++ + + // Sub domain for Dirichlet boundary condition + class DirichletBoundary : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS; + } + }; + +Inside the ``main`` function, we begin by defining a mesh of the +domain. As the unit square is a very standard domain, we can use a +built-in mesh provided by the class :cpp:class:`UnitSquareMesh`. In order +to create a mesh consisting of 32 x 32 squares with each square +divided into two triangles, and the finite element space (specified in +the form file) defined relative to this mesh, we do as follows + +.. code-block:: c++ + + // Create mesh and function space + UnitSquareMesh mesh(32, 32); + Poisson::FunctionSpace V(mesh); + +.. index:: DirichletBC + +Now, the Dirichlet boundary condition (:math:`u = 0`) can be created +using the class :cpp:class:`DirichletBC`. A :cpp:class:`DirichletBC` +takes three arguments: the function space the boundary condition +applies to, the value of the boundary condition, and the part of the +boundary on which the condition applies. In our example, the function +space is ``V``, the value of the boundary condition (0.0) can +represented using a :cpp:class:`Constant`, and the Dirichlet boundary +is defined by the class :cpp:class:`DirichletBoundary` listed +above. The definition of the Dirichlet boundary condition then looks +as follows: + +.. code-block:: c++ + + // Define boundary condition + Constant u0(0.0); + DirichletBoundary boundary; + DirichletBC bc(V, u0, boundary); + +.. index:: + triple: forms; attach; expression + +Next, we define the variational formulation by initializing the +bilinear and linear forms (:math:`a`, :math:`L`) using the previously +defined :cpp:class:`FunctionSpace` ``V``. Then we can create the +source and boundary flux term (:math:`f`, :math:`g`) and attach these +to the linear form. + +.. code-block:: c++ + + // Define variational forms + Poisson::BilinearForm a(V, V); + Poisson::LinearForm L(V); + Source f; + dUdN g; + L.f = f; + L.g = g; + +Now, we have specified the variational forms and can consider the +solution of the variational problem. First, we need to define a +:cpp:class:`Function` ``u`` to store the solution. (Upon +initialization, it is simply set to the zero function.) Next, we can +call the ``solve`` function with the arguments ``a == L``, ``u`` and +``bc`` as follows: + +.. code-block:: c++ + + // Compute solution + Function u(V); + solve(a == L, u, bc); + +The function ``u`` will be modified during the call to solve. A +:cpp:class:`Function` can be manipulated in various ways, in +particular, it can be plotted and saved to file. Here, we output the +solution to a ``VTK`` file (using the suffix ``.pvd``) for later +visualization and also plot it using the ``plot`` command: + +.. code-block:: c++ + + // Save solution in VTK format + File file("poisson.pvd"); + file << u; + + // Plot solution + plot(u); + + +Complete code +------------- + +Complete UFL file +^^^^^^^^^^^^^^^^^ + +.. literalinclude:: Poisson.ufl + :start-after: # Compile this form + :language: python + +Complete main file +^^^^^^^^^^^^^^^^^^ + +.. literalinclude:: main.cpp + :start-after: // du/dn + :language: c++ diff --git a/demo/documented/poisson/cpp/main.cpp b/demo/documented/poisson/cpp/main.cpp new file mode 100644 index 0000000..c7f8e07 --- /dev/null +++ b/demo/documented/poisson/cpp/main.cpp @@ -0,0 +1,101 @@ +// Copyright (C) 2006-2011 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2006-02-07 +// Last changed: 2013-03-11 +// +// This demo program solves Poisson's equation +// +// - div grad u(x, y) = f(x, y) +// +// on the unit square with source f given by +// +// f(x, y) = 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02) +// +// and boundary conditions given by +// +// u(x, y) = 0 for x = 0 or x = 1 +// du/dn(x, y) = sin(5*x) for y = 0 or y = 1 + +#include +#include "Poisson.h" + +using namespace dolfin; + +// Source term (right-hand side) +class Source : public Expression +{ + void eval(Array& values, const Array& x) const + { + double dx = x[0] - 0.5; + double dy = x[1] - 0.5; + values[0] = 10*exp(-(dx*dx + dy*dy) / 0.02); + } +}; + +// Normal derivative (Neumann boundary condition) +class dUdN : public Expression +{ + void eval(Array& values, const Array& x) const + { + values[0] = sin(5*x[0]); + } +}; + +// Sub domain for Dirichlet boundary condition +class DirichletBoundary : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS; + } +}; + +int main() +{ + // Create mesh and function space + UnitSquareMesh mesh(32, 32); + Poisson::FunctionSpace V(mesh); + + // Define boundary condition + Constant u0(0.0); + DirichletBoundary boundary; + DirichletBC bc(V, u0, boundary); + + // Define variational forms + Poisson::BilinearForm a(V, V); + Poisson::LinearForm L(V); + + Source f; + dUdN g; + L.f = f; + L.g = g; + + // Compute solution + Function u(V); + solve(a == L, u, bc); + + // Save solution in VTK format + File file("poisson.pvd"); + file << u; + + // Plot solution + plot(u); + interactive(); + + return 0; +} diff --git a/demo/documented/poisson/poisson_u.png b/demo/documented/poisson/poisson_u.png new file mode 100644 index 0000000000000000000000000000000000000000..1bf0bede3ff538c772eabdba3ec9534ed6789683 GIT binary patch literal 35484 zcmXtf1yCCe+btFd?#12R-GfUhP~6?!r8opAPE#oE5ZoP#6?ZAF#hpTd;+MYP{U@`N z$xdcx_mT6+IUA#&G{vQ)8@V3Exih;K4~$y$K3gK`%XEb$CL#_;#<8A#nk1(Qne< zahH?9haprSkxcJ|;K}9IEAa1SWZ4GButq7~TgfJ_)h4|1-(*@kOBj z?x-fPGw19y4d$@t3gbOE1{m*!!9Ds$ALP;6d z0et?CsM%y)eTY#gH{TI#w+y;n$UoddNje8_#-Qqdk3Ymewlx>y5TG|jHr3?i<0dO9 zYrHg~)UHp#%}qn(&t1HR{HH=d@a?Vi&=pVc039Jn7wLP&&8~h1cMCec_=~b z+pU4qhXNga|x0grXNZuMum^&NT*I zH54$WP$Q>!`iMWQ=F0iam^>)DbxX%K>6%FoH&RY#KcMQE{!AW?qN4of{bMaoQ~5cY ziXoo3hw~U*p8K%Ih=L#~1q%;ULkYn9G{x{kx^F1(U=EJ_@O|V2o`E!goDK=HvaN(J zhw8X1Bv77$h_lig-gOTS7T>(Xj{1!xbUbJ|Q1|rB;KdQ~P$YgrsnaN6VHIp{UV)%>mBiwdVw@e=vGp zQ!Zp2c3%37jfIuYOBet|z(@Fgv-68;d+z&VYB9!y2fs{QExT3}Ebpw^dpK*ovMm`a zWLf$8L0UK^LZc81W){+p5b z{b%j=wYXUUUuiwX`{8x@M)IPjjvfs7W12HVla0!WN(a%)M4kYg!hd;kLtD_7_QU^5 z7zLh;{1QlOd5rZN|MiS568*bSlQ=#AO?M*XgtVR--K##o6ev%gKa=q3=>hX%kmC4X zAm$W340H=Qg>5hNVfWX`1tB4`J_N-5txxQft=;B%>HATus!*kU?VnTyE4P?Z)cd2D zPeCvs9VBwRgZKE9z%}fPpYYGuBV{HJ^~jTkPQc!q-oh@$Ite(COsAG0yg-F-XV@;s ztH@`p6B=?%MgY~RYBAg`>>gdjKV~KhpB4?bxz+7a_ zH{n#QjIotWbW8CB7G;N|=xEsBvkya=&ow!x{#swX>n?P|CfI9vvRHJI;t$r6VaTIk zf0uaLx@1)TL494MME~zfclmuf&XoYTllu(}Oks`;G9%qD;Aq0%fY+Oe&*&7dHl;r^ z_+|G|KoV684H2K*ZN$bHsBgqWd2sv(Ya^rZzYrFg{X^&rW6i%N41Z77swrajQc1{S zl#?REEwbavvh%SNlXvIALOz{Zbk})PUW$G3NST zoNSh${Ct2WQq-c~9ES#o)Ctc6l@) zcJ5W~y2{dJ9R<%F&+?wo@S^BkB<*Ft0T!ieHmg3fny ziI+Heu|2-}6lcEnY3C-#;;G~uXSObHObw3|Oeqa2ZwdtH35^Vb-H_+UXMor3==cqiRF#`tsPxlonJ0;1!kBc_GW=^38~B!cFWz`xQ2+f9XWj976#mxX+_|B)ls zxZUKbf~Q2X%~&OlIK)@1^R)E;y$p8*_h@?0w)Z0RcmJ@IAM=p_3w4? zANn3};?o7a#QEZp!cPmyP=r7IBlwsLC>lQPE~UPZ9YTJ?XllYE#s4Da*YQEO*|8uj zs-5e+*<8;`s7x&J*${DpDo+G3V*(4SG*eoQnO*p-=6gzbR>3I!eyeH`AG6_n9K@fQ za&ZscZbu?*sNv+YUm}S6rRZOwylFiGX(c68lU!F-bgI3-B2&WWX=eAt*z=yJl6zXl z?4D7Sj;<8RGCBlgmLT|)RNv`bkISnbc7>vev`L2`(DO$5IfyLYl@OO{N}A9AOL%gf z=e05V^{w6vURO4XBW9*ybtJm0b|Ug4W21afbTsZhGQ|zWdh60ylP@PbC!in(a5DD3cae( zb*-p6BV*SQOk${p63V8Guh|Y{Dnw1Eo4y|(QvFpO|8uA$6^RUFy2DSfs~}&8K&J52 z^8t;|ZvLZoq0vn$Rsoi6R}q_3T#E`U;)BZJZQ~1rWnjGywSA#O@J*Ggf4fg+;G|TS78r zYf4E?nExa3b?Yk1r0>ob_(+D1e=Bn8tu_I572JC2xrVPc9+1Yo68Ua@f3~NK-AreQ^X0$fo1=g7>K$ZYOUi|uBI$03jRL_41K55iod!j2Z1s+d1?A1E_9K}Dy z#x9!YLd0f8W-`-jcK$dtoq!}P)alWH`t!5@>>>vbx5IgKRtQj3!?mgolu>2GVx~(*!3_O zk#0wI*l9_8Mm(+e8s7Udln8m&t3s4hNJtYdsSdkp{$GAYF#Spll6;B@_K{8kw>%-O zua{1J&-Gc4WJzn=%m?*}+F&cjj&k6W-(vMPIRH~9$sn+9zXV?5uRlCq88Oi5IpQ#_ z^x2ch>1ZOVZ~d5S#U}?Ym?{0QTbP8EZUf!)$@*~H6-gPje9wpb+?&S=onA&e-_@$$ z6cxqdr7CW&Bj%J*!QCg>;W!!KNWc`0^4W~=;=BB#%-*1QuCVtY?G<`vbm?#IDRvnoQ;4gUz|MUsGPBeK?ejTCNsR{hA zEVc$+i5#4|n-35ynMph8RF#sSO?)_tv(?m7RF|dIowL8}%zt`y=gTg>{f0zbf=qGy z^82gAt7Zxq^I_|64}9kd`&`h|2kz+yH-Dlu_MOQN-$gOs*R)HQ zpr?EDmrm|d6Gj3n4c49lh0g;RQnTKy=lpg#VBFTjE`P=^SHZypd%uw+{(W(=_XQ1C)HCGCSr%$nLn3~5X6{Kp|P!WCnA-XMXj2C=N zkPA0^nSvQN<(JfAwD)z@^@v+FyUA3hw==1vAA4cmUcy}oF{vE3UUDS6OHV`2k?k-* zjKbu%;sM9=LLfN<=CVsILry|xT`T%(Xi7Eu5%g6w>%SpVEOmuFp?hmh>d!%%Bfp`} z`+6zc8hU)1mBtcoAQ|^$ql$JI@0aFr-f`dFfI*X&2?l%;q{T;=hFt0=2B_}y@*nP zd*dg77gqH-(?ENat|v@Cl!`9i|C4YE`Al*`=i=CV_ufhH8QEW8347F62dOf$#@lIK z)!x$5563*$K^GJhzR^0>SEEjXU2$Lj;mta730Voz9L5}mn{`%fG;b&_VJ|XO*vEaz z+iFg(N!I$581=Pm*9{AwFcuxRJ?4v!T$4MZgRwB_KC@o4UTTFt*;d9cuF3R_%gYG3{hXUD%DW-i=>armFF#1apyg^yO~MEGKe8-F7@*=wA8pbK>|44o+s zkr2j8Zq!OiOU8X;80Xn|Y};N8QqGC6*#~fZ#uOc{X!$*=m1W#_WR+vw*ExlS&*1H8 z=7g1ryzX8A66@*7ViYvUY3621Ikb|(DX}@;yq|CAeu`&6^Q)zyXg|WUm`g8*Ab27Z z6-y}P>pk=n+Wyy3`9NtDyB(z1x6p&S;t=JD!(L5Oa;MBE!(o1yP|7($0S7jrPb#)xoj? z=bFm|-*NqOI7*53uj6a4g@}>2&W)qcF8FTY(f%>^Jb9l|pWbu((~@%7%7*4!k5z{@|nrIl=mamxv(bC%83t7(mqCNq9xm~|4KAe zGRrXsQ%X@bL{1iOJR?Bsu7rs$Xeuoy@XzK_!!CU>nHq{^?~3&bT)iRPqmG%S9ESi9%E;3Jy4%!)^X8Ut=gX~3#iJL$!l`O4jtz| z>@s>D3l=UM>sexra6?a)R|r2qIv4-M3_n_%3CT_?p#<>1rqh?T4r()9qd!--tmN}f zw0=5T2N8>JNtXtk@9nMDcK>)*w3A$MTS*syQI-5&e5CM|TePu~E>8Dj?3DO^@R~;h`zj*Yl}pv;frq6Z81&WYMNfY7_}|Kg ztQ1wW-fq_9rqJk=!Yil6aQneWTc&q?wquiivJp`mF8}<67Ji@TI?hJo1o1nQ;E?Iy3fW~ z@ZZRE0SK1Mz6dhXkzaW2C1O#;!0cpzk8qp3@q=_YZ`@l4r&&YOYvXO4CO~>eC|te8 zYKvD518jne>j79F9;X5`ya>6tauoCzaUh?lB6>LA8j(?4CE|^f$lvLhmse+NCVelE zh8>i-tR~h5;p4#gND4@G`AUI)V^HedtzKDbTB#+1mL61EQ^rh_Z_JFtP=*8bTzu

JPN zuKE_%Rt`=H7t&bJXD^PCKLpPBP7n&2^3VT6LMQ*BY{WpiNm-p zn<4GZk@rP1Boomd&Y;L}ga(w#vD9(aeI$mM4j(Z@syKZ=9Smj*irY^sGEMo%&IbDav)x;8E5BN2gvX?Y@swA3J z7^bD+K=*puA1QlB%wL8uZzMF}vGZq|cCD#F*Nqd=%|E*QazzT+Hz##EPfu591UpKi zJeKNqMGW7SM2_`Yjf`rfoZF(dR1mN=%8NfDxsY%~sfTmL!8t~b9T$zhI0+X_e*xdH zAF}C8r@YP~&~3Ksk00cbNR5DZczM7;S{s>$7zVT~>ujIa1ETG_jlZo5{jn0B?bk$W zCX-OLz{uI~AN-PP+@ieJq844MnCZeWL1M`ZuI?SK8XrbgHe>P@!Zp#s=wXb}F&?vl zef4i4@pq;>;C4IMj>0CMM_MMSo=#-XuVHP#}cQTiy%@l57jg%c;6psR9u|~cPmG8v0 z_BWOec;*^ze_g$oHt{%H=@$%;nVRA@63nvs=&zTQ+9@f*<}jNSp=f(bg$s;il>L3Q z8T{z0{+1@&b{`0qk|RzK=*X6@3nAcFS<@ zKUrkPoY)j9YqTG4q5P{4`tZ`q76zzF7=)i?+ir7bMwGOig)=TI)1_^}QS}Uxt$jEv z^wWqWe#_zS#zKMmclQV<$PQfASYz?agV&LJ zR0(?lI@&1owrf6qdjQkYR&dpF7`q*V=!5**{x~TmC#aZ!MM9(c9H4q!hLZByt!kq5 z38`Kqy=;G`_lO&7D5duR1L7)X`P!Dy3D`&8ea3kF;`88gp*Mw|<~#-EBw}6?m9m7Q zXv6@<<290_{TvPYWJh)(#{?1QLwe{Qc?ybJ!UjY$LS+F%f;8t`XLTZbFWl^#p}EiJ z4Gr>cx4=nqzW0il2ZCAKuGM3(V_{ZOO85M9D=PgOUACFl3RoldvkXC-WIJA5Zv~~) z<+(q&ZL=JBDnr{BFu8~0dm{U|Hzhbqm<3?7mjfMnhE=}@=B}Le-9ThEQnRE>-fx&q zV-3e#SNd$+Od4H_zlN8HobQd4Nk=YM#IHE%o{bwfq)wG7LQo2+ro2y2{$6 z814DVPaq@}Q!a@hTK~+Cd*9^d|geGY96zM-2S=BL?|-S~k3*A}b(eUVL|q zfiVZWSf5N0&PbY9(Nm-fa}3%%*6{GNDn-ZKWe!Kid1vBRmhpF)#OW<3jh>>Z3YWwT z3H}-Q)VmiAJ_KqydBPJDLB=lCloz}=*5S;A$Wqbvoir+F$W-aeJ$5rfW-XVVz3X>T z4N=MO;!)=c=5owtDbWhd%*lL0%%q<&vP%$7a!|U!g8zj>YEKWV&%9Y=VHi%rTFq^b zcPmvB&&z`XIli_APAkfG67l5m5Sg06S9bn@a?<(6@*)iw1UPEyE3?Cr3 zaU$cTOGdwnSN~?#2pR^6Op?zuM7iBYlTX%Wr4^zmp{7Crbc%Z7N_5Q92q~0(MSm|| zr$mM-EapwoJ`6oHQ;3&Uy!-Pl&r_2dw2nQ#ry#seV;K%a2ea2G`|Fn< z&OVB=Oks+Az;Ju4K}GBnEW}JyBNCLY*`EIYHjtw6UPaC#yUFSNKEej+=uNmW&U>+` z#wucnXjN1mY;=6@%Ld(W%`agVS3i@JC=`bw@G^KIf%Eo3CT$NGs!mg{G;?1?T15sL zIk;AM`sbxUM2=ucYiz1w!VXl@)5ut#wn)oI8*w-eS09^NfGN^mhLD+Y+%Xyr7sQVdZPX_6f6^F)vHJP}K^q*6nfR320VmT8Y#SrkdGH!>ZwULds@mU3jkMSm?-9ZYy?gt({M)pwOW~P+;4$-(1WQ2!t)u zk0^C+`Sq=dd8)9KXmyq-1@{vDyW5AK0?)%S`-rs06rxXL>!QA%y7>)xd=+wmCB|f! z3*H+XgwvBRA&eS+hK}ER&BAvZtj@LTOFn22alUVLU;RyS)=Qw;ve|zRd7BW;q2djh zAgFWbuGA&5Vj5XM6bhQ*TqOO_(F1bjR7iHHYzI^KsiTeNbR3qR8Z|;RF}>Pwk;>Ni zH&6W})mD+MKm46XX=xoBHr#`hpA`x3(#>}1EAr5aQuhkIb_|F#n2O9O-mgFnZ{A)v4PNxah@&)|V@fP*f1gm?1Rs{T|0P{vJAZkVrDw zGyoLb=T-BR223Lq?*ix!glV0^;!rdhWj|75Q=fm5`!q)K@j2%FyTnFd@HbX6jsmor zI$F8u4xqkZs3iq_f$8^&>t)t*b-gB2ht*Swyp0R~wW>1dhPBdMADj%ZPp)Um8NL-cuzfAM-2sUfGDJVD>+UzkOt z#sAX+Gw^FM>fI&weOxe9WXA)<=NxFcWc1&3&vidG= zML&3dM8GM2_+8_Jr2EWlwZ1mJWb87fDgV;QFW!hEH@P)8{kPQg{OS^Hp%Ft}zi4Xw z$8$8Vd^B$hK`A@XV90kjm&s91|4lNWG0SFXaz~R^o<}9~Yv40hwE*Oj5M!nK{&sIZ z5QGH3{$248#m)_BBwiIw%Pt4ssT80*0*HaCOw4lLKINz_`nSNZxe_(jmhY>HL7%PN zzS&Gk{ioeSj0$g)bG3-sF?j+p60h^#9CRA;*plM@Z8NVpY+2 zO2~dCTq7TR%vu|4`R*?ikZBxHK~Da&pHED*yiA4vTb?GE#CEEbHk!gs0TLl`UvCq) zIQBMv<*>i)MjBApW&x#?TK>tK^Yo-<4pI&xKOB@+Ed90c+57{=>oN-S9Hd5)3aLZ0 zJ7n2jOB0-nBlbe}Iy>92%F#^wj=s81Nt*>L;goCAFaj(<%t@5!zE@0w_&))a8X97; zI(%h+n`N~}WkQYB%0KLLZK(A~UPE%57^(`mHKSoBa?~hP8%3YFF1F6*An^4ftps7E=@WwNv*0jP+WmP`O9^f zCbV7TGp#8AJiR{ER`WS;*$e30#V3VI^NXu;K3|E-dj=bV>qjZFcG_26MRQx>}?WAk%fV^@Aw{ajCm&3U_{UY*lF&gTQ>U=JV9 z5~A~oZ09zkXr=s;sNE%#A`$+mP8M$~Bn-DKdnhfUA2!NEEX%B| zB#MW0G6|!+XPZY5mU);Db^mk>6)?j5&eF$fD+k(aj*yJSyU>zz2P*xgXIDlU`X(V#=f2X+EP%4Gm*DIqasApJ3ck+V*)Oqn7y~J=dVOTwq1Q z2f!%mV%Up#mx%3bfRYGpBES7auqFUp;RrZWR}o0_WYFlEp=;JN z5>zl~-dEm5p|%ySzP-2!sB#-y+pvMore-|7s7fdfM)9M=SZ3DJ3gb(zJtJq^+XACa z5^8cxf$hY-rm+;(#oV^>pWV0UhFRYvMzClt_JPY|HKtx00xDa{JUa3O+=RAg()v;Z z4~N(w1m-ohh|ehc0TC(hs`G?+%O+TSHEZ|h!!k8y~S98Ho|AFLGeIhdRC+>6>Q+{PYf_RFhLWWlM^dMh-_qX(X&qa65-c3jm1oX z2!S(!qX_3suP7`b+nTFPQM~tZvHRZE{b5H4*J00RpB_mfx!wsED#;Xs!c%bPZKL!E zLf0SY2Pp2ZY+n8lbO&{Yy~R^&q*u{{|4?Kpo0nT=JlAx7*h1z0tix0j1Tqp)E*-`u zT9mb>hByH!`#YtqL88Q11%*5*kPp{e2+8YHey$DoA{q!xn8Emn+!g)pPB0kZI-+sw zNgW;gsHeYBiCP5>$%y_^ltmes(QrRH5HNnfA~PJ^dk~RpXOcY&X~>p4YU!{b1@vTvsBJUQTQaLvJ#L($UC*M3y(E$( zLvm7CO?lJ9Y zzsT)+KcVP-!w`H7oP<~~ZMEhJrbeuiC)$VHRGKOYQ+T0b7SrMh1%Jnnxy7FYzLXq`5(F}_VZq{2f$*t9Le0`*K;Mj1 zjA1S^yzPXtqyTQEDXpYfli2i^Yv$TbM&UfyXh6sBp|HB6%Wb=L?|d0sl0B)_RRfHY z!GnXoy#0pC{`m$p{`q;kXdadXV%8kODx*YHROeJNb5y6*3jVP<-F#g8+lV39<=!8Z zRZUD!=9#ajIqp+zUf0r|Cw;Nss8v_xp9I}c<=sg}_v1Nql>j=gfVGuCSy?zFw8NsJ zD|RLz6PgcnMolt?3pTw^+iB>0HRZA+gSRZDKn9x zqiPy$PO!YiZ5T^G6nFD&$OFM`ROoaL5n>?IhWAi;fJ|f(?$xltY|`)>lr|oEf)o`{ zF)>*RTWQh8+=~G<#0SHJ{?7|h6P*7lFc9s}LE%rCYL_~Ra+D^JA^9&MvEwb3^`3u>W8mtIahp0$E#}57|Zt|J!(NH`!0t7 zj;`0V?&FprWxKb1j6u=&t-Y42$(NJl$oM=2LwWgnT;@a#1YW{gBQCWWRrwS&lI#S{ z*_@9W!NDU4AX&;7y|3lDn~)&s$TI#+eoaQyEQ6OLUJIX5hs1dvj}1n)zP%7mI|UWg z*4-`u5jiWmD6gn(QNAkxI80h8Gxo)Gc+0gi;N_XrFXo7)wc{sbO`AgEW&v5LxjEn3 zNCl|aKc0m3P97EP>fUIcXzVMULdS%-hmSHma?^&vzL^E8%W$vM z8_hCnXf7-z0~sU16l`#z@E)mBQMuq3M`BlYx;JtNmA=X-rddkt_z zd2d7*igEGcjbMIxBA?}Eeo;l2yS`aF$tR2RFE^tpe6=N~0R8y4+xVhS(=uk7amtEh-jpyIC{ zwP@5m{TL4vF^RQSU{?E0L)L0lO#4dj6^^2%u3?nON=k>W_j$%#P&r=K z97D-|0kn+*$LFq=sr_*f+*wv7-rD-=Y%=x`1j4q~P0grtJV#@xPP*9hsLs2sYTmO# z!A7)TKoz87t39VzF^yO{o{R)g>8gdMreZ7LKyY-~*c+NI)UWo#{ZUsso>`Q;NgSZe z+8DRqzbg=awlFW7=ho9?aMQ2?k-5y2ri-HFDQ!{;-XGc>NsWpy@FvxfT$A(t0~xj4 z`~Ohx#TSnjhv z3AM_MM*J!gy_%6d}l>FN~jtw2v zI56M`o{S~-Xj@p{v|21r*)+0HB%c~)p`F)1B!?%2EUL%zqiCobvG;)4Xd8PYS^s)A zpr#O$Yx*Y5cUpNhd+ebAXl=_@@bRaA_)I*+-F!q`z@w=(d@VF8(jkx;)A4&g*$KQW zhA4e0=|^1slrB<+!c(sv<3VB4-#11X7 z!fMqvGBAnSna)58s#L88!Rb^|#q>;o_bHQ?gYb;dk6FHu#l;l zk-lD=^HYL}zvh=GYyOlZhtLT97tY!2J@J2!2UvUI`}IXuup-a9>VKh-v?q~@(rPn} zcys7jzj2$?j7$#I;P#7LzgP?-?{qts=UmrLV*%0jVAdNQ`)Ulb~>&PJR{IxguHo>n_U;;mLQ*9(~K zi7&B~3ILF3V!iue*$}{dfMU-`qEuF{#LOF_u7w4cbNw6h`@V>Yn6b$l1-F*fv-QWJ zRWoj;0OMPYo7zVOXr%#4aUGgjdP_a$Ov{mY%tNbHjUnPOECkwBp{i9BI(k zs*iIM&(uEI%`j-M&x;pMq4dKA?$eu3M1hHz=HHSr*oLD?;#lYW28OXyU3yg)N1Yr~SvqeuWUsmEDdPOIdQKe*W)1)(m8+(mo z#5LiHHY|YFf)o1L$$~0#d(#)k1&|P+;U#Nbz$G`BsRea6&z(Jv>zq-s!fHMH+TWj+ z$)`*o#RsdP=S_Pf`A&iHQ9L~xku4<+e8uzE5v_atU|7HCwEa<~U)=ZSa}Y~_ZZe|q ztSM@>Y`EI~+BXuM0)*%yc+VLbWcnzoi%9lsXI@qAf816k0U;^Oe1g_qGFwi?(mWWw zeDcmvfF8d+FM)j+g$j))#rj_16hr&Dtn9~b*`IK1M!oW46S?Omv1L!fKPR*Psx)x# z?RzMZzJ?!51)s@d1RqM|?j$hbt8g{wFrkQ$e70^`R!7n=AqP-lMJn1#a`KhYSJg*a z?z+?qqo0New@<9AyE*6^MOh-?MzZRon1#_t2*LAw%!9I* zqej3{>WWm4=$6nk!QJRlJWii{zth^G<9~y__u3S9@OSeb&_o~c`go+1pN_}wT8Xt0 ze4M1EsM#H+o>Y6GHt#bYegodCxovpauuX@i!G{o^EvR5MuZWZoLg|tfp_=^<|!C7@; z_7W%l(1|5!_}Wea%GfJ1b=z?Jgi*)`gMkX!DlSEWnIg2mO%!xAzY;vfRL?{W%wemd zeg;9|OzDWG$!lgPHFR*irZVjVua>Dt$6Vx3%wCmwtd61{nO%lSGOhy`Txn7_X!ny7 z{24A98q`s#T_l|3zYR0FS}$>p@5;cn+orCke(LGrDtz9u(C`kUqS0+*+7fAw8)mBWllOe(|_#Ehov zMXTKaKa1DMWe5Pn>A=v(7`ObeFYN=!m6@5bo3$EKSDE|l5img7Y2oCIFxqMUgX!iw zh+|w6>0H%pxXICx(c!)Tso09guQ*$_7mox+OwB2hD?{Eeg!kt4DU5$$-or^^8HAaz z29uioFD}X-cwTomy!$j;tnw3IhU}})3d$m59c@N*z8?+}EIonoX%&>^G`b-Znk7%x z4SD$$F5jG_tS6-G!3_pHrISOGSJB6C_&Vz~db2#4oL=Ib|fsqBPfCFUdpsGOU+E77mtos*=(Xp;H5BbU|$r$sgu4fUj z#9jsof2NY7jP}tnWz`*jI>gp2LYjo|O|X+$u6eDz@k@1Vu(48q-e4~6RJGg%MfT9M z=!7&#i=n|%6V|j!s?Gu#Usj{#qG1}ae;wdFZsRr6bSBQ}B8oIzMnUMjt|sYCK*sI^;Y=T%Pgn018!6C2fGjVF6RY{v4H87_xMrOjk?(AuPp9EXUfE(z zP?4DxLh^iO_0Gr1SmlNQUey@=&MA-il3lX!cKhqMc*S=7=@?&7MGeeV?+o&glH*YvWf7|)ih&R=t z4fc^Bn86`rfUvZXrDQOsA;An(5{o6*#he*$l2p^yHZ;UDZK0OBny(XEKR%!Al|EP& z&88GhJFn=S2pSwI{*+0JQg1B$6#HN-9ozgQ&zpO7LK5Oa^ZXDT8a~?eAc6m2(v_aBzPSd8vB!yjW3GN4%8&H& zpje`5h`*h^(5Y+jmteL!Ux{vkt>0XKh>D*&5d z&_-C7uRuC=;OaFw1MUQ?y8BAIMb2ZrPCv*k6EM?m3@a0r1NF_bUnOQ$?9iX4n&Oqj zqNg?cRz4?LJ_<+cV8rH)q&c}a`T8fnrPExc{omNwzbOA{s=+fJY0WvyM;IsZalFD% zi=na*O|&pUpw#-z-U?CCV@`c8Vccd=$zhaL$~F}9{$!B}B@yYEviC;s-kT{p@aWA! z%XTmjG+7%4i^>oB(e&SKjnG=c$oXd_7Z_+Q(SUTh@W-ZkP&uXPunGlq-3y3oMoO;O zA7H+bMrHL;n1$-f88X|aqCfOy2k2G@WbnK=`?d1Wq%Y+NpVfLk$@4M2d$iYZL?`<1 zwYAI$c7^`%6CyO@G`r30IYF zB!4eVZX5bt-cVwgmIL#b`bz*83I82UC^})#w#ddyL1OnTpGaHP#O1ae3T)V{xB9nO z%G5#zc8ex`RD?*NT0X$e(rpt4WOSgLC~L&%KXh=|@%d)}W`Y>wLs2|h2%^qFfGdql zWso$pPe~7LmXv{e)pU`r44>^XI#tx$t4(k19xYONlK4#a=EBSv^ zqJa0Fo!Ou57yk%$Q~Y$F?EGeH5d!VH!Eky;MQwLmCDor0P0|1bR~l3zQFoOr4Fesm z*x!fSy>kHT>N#lKgAh229xC(3$5lG;RObk!&^I~6thuhnqZlyNuev$D?eGy+G1dJQ zt|g_1wfSjXU?M$vp(9qh#Tz*CBnTPH)60|O_?>(ob>v(U(J&JPY$py=v8=VwvGV!I zXrn`G)pPRc{{=D+C!&oeIS=7h6##F-pJyG+|4Ui7A`uiBDOUL#rfgtasB8Gwbu{-z zCA)y47(c|BfK8~NT)xpa5%)XMh+AYFir=;u`pek4D@;{n@N?7y>gLM=!SlfCx7Gam zz44zgMtf;$_69>rY;kj z8*1GZ|2mIzEqvE7lsYe4kQ_Eh2qyw%xWlHSMBE-gc#seBFa8~r9Oz3>KBPZ;+2qZ z+@s^mXuCbNcBfeiSFkljGd5vmStO_1wp5nk^Z+Z-esJUdYaI2&b^};xzsHkSCR7Tm> zX4A?|Nr5b?`PiuTMeMY^az!_}91#XIuzJ$ZSva;8cq;l^B)jXOY1QU}p!)`MihSjEjXSy#Qe5-O#-@=IscEQtBz}+-;v_cHcWTnBAnAU^&uFkjnEL}0a*3Y;2W z_d=fTUM^)12-S4^6)UFJ`1*6c?8gchRJ|Djvc^jks5YeB2;tC5Vp;?e#g)l1A_>(+ z4og^CggF)%61hiK;t{vp4f(j%uOy#@1(5e~>`cUyi02S!5gL<)F-#%h<+A1g#$nv) zRAJiS0}tYw&VR1H)?oK(Wdbh0pin6;pyD|vD-|k_(-14LC=`u^T5!N4#5*RYyZC$2 zZ$V3wWm~pLYW}1&K>5aTr0hV)k@4rWFJrs>p&9o$tACJLWaw|Cpfb75r_{U0IYHEw zlrLmL9aYFM)3SRz{>;9{u!aLt|p3g8>&_jJTt=+3sl8aog zrmX1&mKFp&XYxWZmJ={_q&HlEB;JxhB{;flvcU?6e?t3Ra|jDVEONeIhMeMe{$)6~^I zazmJ}fih(oeMtG@6e(9oNcMX0`_p1=V<H@kE*9k23cJgdW;M0qcv9-v>j%Z$lY`pvRYpXoUwUMfEfb z&(}tION;0GPD(9GD2-R_^Q%^+{iQ#JTSr)QJx=?4TTJ+ZrGI z97UdIOO5$!Vj`a%;ij6iBYCdG@lFls&6fHuBZPHQSyyQqRo+JSygQ#YZPf@~1CRN| znc}UOuotzwN8*k?Z+QF0k6qO3k1^3(qC(mf@T`%Kl{!^zqCpnW^7T(^23qM!`G(Fp zHTtjHLfQjs?;gKsx6e*Lt*gxI)Z-(!_3AyQIF+(EHlVmwrG|_u+Tt+4@G&Gw?;+(P zjHZy(ilZ33!G4xzW+(+Gej3uNw!S87Dc6oR)`9}jku21V)hl7d`t*z2i0lwK*QsB)-wurH4ihyW9Xn={ zHpkIr@}8#cwhNsK}w>zWGpFc5cSRD*4Y$%@y$j7n7!;zP=wsFhHh7A zam-;+LvrBytt=;t0c(C3~g@ovbD_my*Bu+Rsp#cs*>_nY#JtX`V!VO$vfswR$7Df4NTUX~gd$ z^|lpA6g`6%tHlZaBf38bt$QM>be@hO2i2=oop(Rw5eW9QP91A?2q>2vt0J{Pv48rV z_{LS3c`wl`kO4}S$r--(+t*m?vWaVXsnNH3ya6%5qJ|d$wOE;Z8Ez+AU;ljQ68@a{ z&lN|B&YxWVEI3KHj7oB{QM0Sc8<9GB>AKSTb=tLn1s^19f57}*3N#`uzcLEeMn6IY zw~q2O1w>-cT;wWATlu>yh?~*;5)44kcM)s7s&meA=KOZMEvsSm-hN1Ibw3yZJYuE^*WtKCU_V)12DbzP?%rD%SnRFb>fMz|ku zxX^*TW=Qq;QxZuv(GAUfRM$htCwnfQ9NBjuRx!j9y~leaao*}bXHa=M+fH$P`$RWE zpxQ>H_NT6%$zs=X)n^>7TPfQ{YB7AdM&t+MV4 z*qx6X{Bn!VzYKM+i$v7tWo=Ltwh^U$dlicnnEHdf`dgDY$=fZ5z`#g&6XuMzB?JB% z3E;_RaO^;0f=ZZ)5gVK*?X|GBq69Ze0M*+lz81rQeReX8VStXxk zbd)g3Prz;TvaYmL_;KRvfXw>Xt6>RRv??$BoRc4I%=&gOWiu+91uLiSRT&?Y%d{|W zf{v*x*1o}9y98Wt#57f*vSW+2BTb@`G~oIQS7iS9yhnm2(eh3+c@S!H1t&8P9g4=t z!f|)G2p^9*U&`YX!8_R_S;DThxh&{$$-SDg70>GLM^#acfr!<%pH*M+zSXev$mHv3 z$9P@_1gKFnF;79X9gZm_l-8+FF1*E7Pr1rffFGtqcE69Y7Ydy=opS#UV1+4MGcOFB zpr+Nqlv#~m%MS#)4(UmhaMBYLLxR0zLyDZ z7by2?DHq*D=a)%4)=w#Us<{U^Bp1A=?@*q&+0p3yUaMN=ZgZlkvF>eDbxb!C$|DA-1u!jfd--$#+yqp-Uzt{}bHy z+~{Mz<;eH^N@ZsBRc1wsC3$msDn-I~Ji8PqCG8h0q#E?+?BBkvd47AnM`ZFMVlrDE zhqbJkY|zN8i&TGWdfv#fYM!uT?JUwxzBS~@s7JKJox2a3_rZ5X$G5(W6MQUG3yXAn zd7P`}K=nE6Kyvl)FeiY=adQ89(&e+5yM6Z@hzYiWjk6$^O=vZ4TxzD zF2xcMY_mJPh{BCE>fANF26=>p$km(FVMQdqj4_LSPvK=wVJjC zzi)Np^IJcQAw2wds^G}v;tG0+;UDN}N)A8Cd|Gs&j1wTN-dZy!%$#$ia#dJDSV)#4J)ZZ8`?w_5r82B|JPd2qWSS%z)&|;4GR8_Vb>FC!c~lxN zLeu-qT4&cg+;d(}*-8E(9MuKD4*44;vAJ-I*R%(h*tbEPc~uV?7)NATj^RE~N?Lyn zT};!=a^^8odVZ1X3Te>Y)%4Q%B>G7(fIxihj=F4QHx&EANoc6@1WFqnVSR=6k#L5z z6vAw2{<=*23txzW>}Nn!oijK;2#t5{gg7Ctxu8nSI0hqR)+Q}!TEsaFgG8yU&|*v^ zoWtBM*g< z9gFF$BLM$sBjjXDg0Qz14%KdCM#=q)Fn`;)*KFI@F{2>O!Mrm8lfQmlNAqV_Ghu7l zJ)?kS^(e>RbNW+u9q3?(x> zS8o{_&89=R#qxoc&W;>@T**m?N4vXrSaF|@-$0p^so1x)ZZD<%7bd<;Ve*Uuk{wh- z+6d-jN&n^}j0=L2eRa@oxaLwOJZauHuC6TD=;?2iXNgr?VV_X(6iN*9uO6tv!V+V3 zT_wdG%So4dYHW<7&V3M6VwhoJ{5nhEahm_x)w#pmnXFviGcMn&S~F|CIu669&{6kt z54rsLn)G4lu?TE-s(U3uKJQ9g!DCpfa_YD{`nBv0?(YT)2VcAK+%9~7^Z@9!Z>yr) zbvjWzeu#*-<?ZZg>=pn(wJRN;{DYi!<&R*%`JkSgyIl>AT_#7XGe}si{Tah1! zK|6N%^eh|2e{GdM2=YRwa5er&zy5M?xq#UB(RH z;2f;o9KT!R`dt6kh3l#23bliuaVx5C&xUk~nb-RS=&lm!zIJ2rHpo1EMz+%}bUkKw z$g){}Z#svfQF%pri8|4H$rGL5{@MaSnk3HNQLo-z_BQzzuUZ`DMK*E)KcLzsmX>0w z{4;@do|VyQfaJjq{`$0+F@0SSqjTDOz8uoo3}jYtCqI&dUuiH%O$Wgg5!6#=8+Kkz z^yzMJer|n3Vib<(&Lgbx(j!T!6a?w0SqTT#xI$-|S4bw7lP7HR-Vo#nvn3kc1o4Qqg7lc_C(kza4myDn=X($_a>*-l=i7j zEAt=$=DByE+Ec!B56UbMt!)^&#v)}!93mOM-T4oB&{aaawT zfqN^d#P1w2uqv#OhCpo@7PrDuOl{p7#xt41dh82Z*`enAeB9RYTPvApt}0R%Ia5-> z+|&X?a#Bn3-@ZPQ{Z0{l!<%f!1uZ1}?7vMY?50@XN_R8)t|W5=*#E5AhJrsjYS|T< zR9z+On&buBJoR-wDuYcPpLk8?_V|d4pRb%cR!E6E_OV312 z8Smh+a$zptV0S$%&tF&HKI>b{=gGWlzOC0!uQE-Z{?9U|N+YnOBSL>PPlL=06qloN z&%E}wF>1(bHvd8E{q;O|7OnjVLy8JssWcjXoF0u>&46`9hTjfb(G*DZnl-Cwdk5ug zR7n%4d`!?e9Z2{{v(@rE^=J7>jJ{-=k$iWcU#E{=9-ay38;ESgpo`G9)|+N0#!guO z06vu1p;UHioTIXMqjqAm+Cb-#-u2pC(PmeGAal;756PTc!NaU1_g!B&CYIi;^}7IR z@xW?j)G7bG`!v4gPRp^oHTSaK0W6W9M%{t$!pO*o#t+qzdeUwnjFzeinKSX{~HpT_B=6B;W{w(q{lTV2NxrD%CFWrZzOzPWRz0PUFx zXf&xjvi#lPprvhgaq(d4J0rh=Vi3SfC>ER{$!PYFr&5xE(2%Z$%l~&)LCj z3T8t0=8o9?3H!_>&RaPm=PV(Hoha8o155QepTc>fZa+hND52%Z;qPAV+7-KgNeU)o zCZ4Zkf|dWDcd=)A`&$R3L7D(&XwYpRy(yuieE% zL5frsvk|1f>1ygF5SH$xZKem^%GMsdAfp<3q`Z0=N;gKaBc#p7Dfs|CKFX}Zt*$6! zXo)Y6a?qrHdJDywTSD3qvQqpl{V*~GW)D>{w_kT>T!2>yCerB*ueZ(Q>3vO2TXTkD zw;WDF%lLj%3GBc-#0gXJ2Z*9iy!&095~X~Av~YOPSV|&cTfVp(&%s^9Bk3c_3UW%Z z01@kz)oW9|xLnx6&=jw5{31rF=Ru6B1Hk0>d|-%47)xW9nK~d;SQap)iTg$9(!U8w zzC3Z|XvWPO4w7Q+GC(0J%*Ui~bNpOYac!XXQAV#?Amy%!=2YQ%mL_YVo-)H0W*e@2~DHClPq&Kz#bumAQiE4R8QHb->?Wj zFOwwE=$o~0a2boKjf;D4z!QDP(sB2UWgOM62Fm)ha06l`I>G8@9ZryuG9!``|5lF^ z&2x8{zeJNZA>IHS&Gfkc*6<1VRi|Dg9xaMbP1Y%h9|Jd{TPo8o)oNaTNVilN)F;yh zj9~IVim|yp?Zh2Go!wwxQ+A`R17?3!r(MHcr zXnvxP_=s|lxX?}do#dlk7z+J8D{^sOCYUMv8$7XMswV;+@z7uO*bI*y@yDolMoW3Q zKEc#%uUzYW(Ld@L4y{y}a?)L?y@(5qlLAKmA;;7~!i!9Z4^C(@F}0w>IBb;S!YY+H2eM zC7*3K=K=Ai8?*oM4a{f1qiZx?$fi_)JnR3c)W9e+xzLx66w(d0OeF8wYcVWdKTJTD zLY*SA+Re_KOtsabJaMb$UGI!@@Ly3;8w0+-DZ|6v0}BYoK-mNsvBXiWk>J4ZL{zan z0g|AE^%+ST{0SdUe`B>wZ!?a@%EU%x>KGPUZA;ToBBevd#)LAJZZzpQoyi`j=o&uH zz3H$&%B$f$wYsQCK2;X;I?>g}G=3wNClE6`wLkW_&Um2mO%@YGLLrsDU<>(mwo5$; zc>rf6bf_nMN!Z!gUtCPX;bFsf$p>wAIsSVZ=>mZt-jCa@Ss+TGFCP|p1UGyX2(P4o zvK;wiPO(-okq+5lQ6hUrwP8wuKfP{X8nw2V+#F{FgM*zya9(7*iJ`q#zOWT&&8E!7 z_I~;~W)OoKr9yrs3^lZJ6s5?MhVRf9%^;e_Itjv&s8^Otun3mHI7_F|he)x+wE2oF zU++lBsnNcJ#E@8SEdB7)g8h4vB8q{?ulKhcVj!Vrwo?&`%@i(yw*Hv=@IZC1-^>Y} z*BfnUd~VLHN@9BcNT5rwGuxzB9_c-%iq8R6&|pTxc9Auf4Q)0K$!(LblPwF|0L8@2 z_6L679a=JIWdjGM20}l{{_IKec3{%gFPh z?9ny?#&?NcukngaoF~{4g&P0#Pb4QjS#Kp_!_l;kWK{h%%H8zT@-m40XVTl$P($t! z?kAgW)n1L$ebe`Tj5>X7c6qPglN@YSObN!qYV=AGAIh@X#S8TDIKo49izs(kxT2V> zbk~+udUKH9Lh*mRlnIgCItlajQfNk#C@@2p(DPM_M&*iO8PRi=sm+rbq)xQI5c6pZ z4SuoxR;qQ?$3KTkfu5>G$VQne(u^<9{N(u?^*2+d#D&_UzfGvK-eRfEwZ&I+3%}nE zCvod|LECcu35o1DZMzb~Nb1b2fN|vfPFeig2WAOdZT|x^6JZ#N9Bc|sXtLhV72PfG zV#jc@?=xsOdyUAyO1iCN;G+D2yE!&GR4PCfYlprMl3@F(!HRn_m`je8Uw4Y~STNHu zrN1Nwwnabl#D7D{i##hDT4Fq;E;)|K=anj+N)NG;5Q{NIG@j`wBoWg`Xz=<6{U zsz*YUDA7ZKMKFUhR^K>X>M-*H)t3VCZ5YbBLzwV(D!((Qb=N(}-d-1{+9A_1!N4%8 zat70QV56%Qo(7CDfj?7521?@iZ&2Yo{xsh(d$wULPQ$W{)DPPrMi(f|3si^@ci#c7 zGptXOo#+;3AXqpWV%l3!B-n5*jPp;~7|XxE=6zXt`NfiKnog#`=55rnR^om@_JxuW z@cyd=LWs8`1wE2E5wrDgS$~@v3=!bKL8Qx1CUklh$hVo{$s!`G4u=m(1~pQQ?KeWg02^nY-f z5l;M-hY6|k`;(sK5A2&SwVC4*s!wvats>vF^!xkfkpvZj?D)bJoS;9Zql>gdlKPyV z)~T5M&}lJAXXI&8oKuSliD<NQs%OeG#L(T zlS!g#)iT31?Izb54ruPd#zpaQ%nv|;0y%4T(!@z#1XL-ph!hvgeIL#e*wQ=_;^}VV zQptghsVo%y(nZ~;xraEO)gio~d{@NS6g1BUeLPyvnsuCJMJ2hkK#XBzYa6qVN!iDIP)`gw^2C6Q0C z`-ri>B(zh}t%lgtKSk7B|9>q&$F2~5q1UZK`+VycQN#m!#Z3y z0zZ8g=PQf2PQoMh5deE0Xyvm>OiID;hWilk@oM_4(w1<+XRHK7`T$d`McK0yi z(d4=fd<#?Hg}Q%^rbcW>$q1KTS&lEq*p8#o5#}oi`*O%=u}n8XytP{u1i%>CaU=jo z22g+Wjl3S`KXI6nhtPH>`4aDG-Awf-XG^YIEXw%3pA`D+P=9Kv4nV?}FTkF>NgxIK z?X=mi)Amq#JSrOxmVCmRA)Gu6E#v;0Q`D)-C`_y`kImcFTPg8|CG#!puj^-tF0v50*d9(AZH8f}Q4!LNV> zt@i^Lf{X_{T1u!3Wg&AdT`Cl8bZt-^8hw|^E!AQK3YRv9#Q1XJqCAo2qRPZW zd~ybW9b+59m*~>E1>%#Jkef20Kt~r|@Hr>xn|LMgDMs#vtaK$e?BX?8IV_%8FEO+cqx3j?Mvk%41RG@PQ+L|k zO`RM8Zhx#>L|P`f1Xa#{z4zUJ5Zv!ZbCG@RiCd-}!0WSI%a+j6-nqNPV}i@q2tgxC zSs~LSh;#cw4@!wrSCwa>zl*{tL5PbiG8W^^7te$gstfGIX-KyG;5aKlCb(6qi^>Q# zjUSM0^~aVZ+<~;vgySu|cfV5#{*N0D@dIi6}PS8+%7-pBZ!%x`LFI-{OgInjCbQ;m z!>?Todn;0g4}HU?UeRPDD)0hSvP86o*E6W_jyr-A(*@#9Y{6$50P+vd-Ssm;iaaz` zzk504ZtD(*)zq^3wYeG4Z^A#<_p@ubs5`GvrRkU*gkuYg`k8_#=KZsS#8mVEx6ROtBPmBN8$u<%TR5VtP zb|ZFxq~=Q~&qVKo-6w;6At~!8t+{LG-zg<)EPv#yis_+&_)*-t{~YHBm-JVZX-VWw z4&cjbN7H&SF+82vhZgA%QW&c(M5XrVNOawFgm3)(b5sauHfso*(JaQ6fy);IawgBI zVFGQ)!flWnM7c<4p<1sAS-B6lSG}%G;~dawnhXc}BP7$2P;e@0mCEpgBZ0QOchdkg zhh`I-pw`-#;Hh6O=1Z$7|3W@hje4YxxbXZoHDw}#axH6m zjhne|h^;V92thb~rH0d8&k7mBd+ak}6FZ~uqiRfiWPXl%b=%AtE>s&lj5c&PB_hfU z;%oPsIvl2hp!(G6)I;%Oe;)I!DR{y}3|S}*(>J@32YP%$iai<#tVGMyeihcG6{7(9 zNN8*~7j2jcAImVaL^i=i_wYQ3t-V{6D(xgA>lx_LrqidJ+$ zl#i)AdZauJ10ht+G)F5@K;wso=cBS*zib&=Bs5+wh6b(ZYDtBs# zawq6HW~+Q2jX;Le7*xfVc%+`>VZN>1pGhJ?D#uT~dt0#^a49RPv0P~m!>(z0J}lGa z(yz-V#`EeC&Nt()M!S5gC}%M4e|9_i1q>HVc>)k=dT-m9&TvI5J2Nwd93q0d0^p(A7$@K z0;na!ld>Dnq-5KOTRiH=adRLw^*2FNXZu0IspYA@_nd^-o5}K)ZVSH zZ3%T2o4pVjzMM?f%}6!hxAHmx$r~$wn!!&1NBsaW(J~;r+V^Ynu}9wTCzh+Y+M|-w zfPr9*97L0f-C&EUsO=k@Lg170M2I!Ypc%Bbfg>?8;(Hld4ked7sg zpFkzeDgGCR_??EC&yCmacnit`VARtI4i)kEkz{yrlCW?g*RvmkWxBP)puU|zoIXpV z?L#)RiSf&RF+`Wa1hh*3o-)J)hiFCk!r*Oi5NH6G?ShCmSwb!wA)#S5`Q^Q7r_5S3 z6G2)&&BA`PC4tQ(j4@`X6pOMW1l2e+&K?Z%?n{{T9#0l8_Em$6hojO~28?P4S9HNL zI_~1mj8D^@*e;en;}|wh>~{nszCIMyS!K-Ts(mDzoe@!6crMtGlj*=hU#9FT+^|h% zM`rfBViG)7(IDhLbjtNKgs+Rp&4X~$Y>QAFa_^nbIXOK9-j>YzoPAj<{%hrhh=^ zQ`ot4c)w{gA{n6eK{`1rggk*!lvr;rk5*h9!Ex_CK_Qa6GMPL0XYDEof>7oo_WS+C zSdg3b8?Oo2OzGSYSu|EMvOSr@j=PzKC|QZ6-{3HndTsA57>|)S>ZU`#Y-`tth3z z#0uW>l`8WRa)lvfvl9`CqW9FF+{2}$&d45ieUtW33 zB1DDjV9}DfP%&Z$`Hn_x^NdbIU0C7v`+#7_nf$-pxvnz?${1T?aPsjsZ>X~e>45M{ zOB*@B*u9V-T=z|g7#0M!qoogTX#a*>$IhadArz+_Rq5m$Qj2o`jTDP#3NtRrn5HmT z756$JsuD((W%3jwC_AH1DE3j+zmjP9+DvM1B<*Oh!=RGE?bdTcksoA##( zJqhp9TlBU1WcM*KI1|6qVf6>{_e1qplj>d95Nj zXM_4!u9#32w<1+JdK31nBuzA&6L!0;702YC9eX5%SnV~{R(fR0FsiOuu;eoPL)a~} zvCo7S)d@p34ZLxdw0iLR!hwhfN^Y$-M#d;?-Gy{wcflM58LKj$M)Fs9XnHb(gP7e+hW zzp-73u(ZNbjiZ;7q0jINB4_xDxeuH<9-58P*|bTn_SgcP*o$*nr?nmH6D{oN|F#Gm?0B9|KQpLUamw`#JHDB$SD(h~J75g0o>0SkL%`U!S6Rop8C${YuWISH<9C2WjZi>W_-Le@oKg z7IVZ0qh~>|rlfxzzA9i9S*DvjcBvMxO|zE4soNwVaB8v}gUpN#`R!todKiLZPZ8G9 zG1#Mlw(CN_BGA^9^^)MOeP$o!txa|`A6{4ZY+-yKEjGqFbG^qN5pG@~H=r~PLsXj9OW>No>Wv0nR zs9j(`tIV4xC=$C9i9<6=I%_PPZyXZSydr&C636DCN#S%-ffQpQ`|h|2>6H2PPJq(N zT5c5o%Na8fz&aQ%?BSriDrL`9q<(=OG3tzuI9$BHQqqX(JjC`oK3fHfwV=y}JSF&q zR0EU^OF>b*DfF|p_=eMW@L5aEhvJv)!GR`jYuLlIt}WKx{t%%2!7uyJvwPhp&TYhyNXAym{9m$>Y5qXw~UqL-`eDoSx0&Od&<(0@;RO>%vc9C z?L2?%I(9i>I*JTXwSD}LlomF;yL-wLZ-wYyc79-T0aT6P4oW%FTYawuo4kGBnM#I4`&xn-R8tH!&OpMvD4kGIgP_uv5UCjm;VXT4Df#%$ zXmcuWH*l6%!ktHKm5-{?2f~6*PvU`EWmswW_6ZTK?V4q?kEWGj^}LMR2@cC{WZeb% zqx7)OA9-Zk4~H@2Oy!PbC#V!WT|PchC1hFx0gMS-ak8yji%_2dMWyO=@$$2P-+0Ky z*Po<})A|R|qyeF)$8rJq4djf(nt$J~R=^8oa#yIJpoUI_hPqH;AQ8(C`4~< zNDPE|6_6Zv9oLzHpeQP7KAwlo9+|K${d&Pb*)M8k-ve=i@{>SXZp|M83U4-RWB5xW zj94@F*H|NrIcBi?yX$D=>fzFIzCI5Ko|s$4#>Y`dM4(vH#R*mKOQAQj9&X^J#9P`N zh@Qu}jYb11k$sd66kR5rU$G3%YF^vye)fdh@piUza|Zla4ZcoFw*$aqeW(g(CHg+4 zE<)PF0#EB6V-5M=E0rNK1QX$X2yQjaGG+%Xjr-m3 z1_C?HNxq!Vde5IEe~QOR#gu{v@yl8?i<7Ju@CWvo&!~F34*GINhp6CS&ofJ~G&@t}P za+--*0Advd%MoY()BpaHEP*?;+CPa;nv z^=b8l_pqZsbiF3p^&Utk#S=12JND^%*~9(V>7^I zYL0F8p-x|*Xbi;ZQfQQA@|>C=CoS@zw|NLUp42Z3YShr7S^=Zx>#{+QI%bhuico4l zh-x6u&#OWq9TLFuluBRgUp^h<7SjOFX2WHcoEvOhq7ks#zl9<73B}Rn>opKFdY3j( zj0^F0mM4NDeFpeB#ESB8Oq8r4U!OjshFa;6W)s);1#Bli_VPtg8ii=`ftcQsY#;yz zCjaXSKMg3n&IllqmrUTEsECFVx^<9(VAL1`U0p^;2@XJc0`e)~ZdJJXT^PKza7)QfPxdeX6GHy~3$4PC4YEQZXF`2%EX8A!0 z<(fSCvr6A3WIvEFfjB^bPLJx9ej7zU%G;ss&f8?sTU(HXk${}WHe6-bE<)wA~j!y=#ULi*x z=5N(q zbFIx<9@JD>QH;ayjlu~I8iKi#DWyaV%{3zC+`y9Kad6<@+|Dz4RoW$8r#g=ZZ>a}% zkihq?nob1b30?-C1j@z=_+Ru&WQLJ}FMBMBab@AF`Vt>+$uxm$e3ddyb(Cr`=V!bFohW~GDR4D)Vzym8w->GqoeD`iaLR4e= z(U3u&#>*8-9JI=}z=0CyP$Co*Q70%BgcHuR4We|gz?I9B0yU%${ zn9reRya+f?Q&brwdsOyt^m;1&_!VO>#gu)FNU-aXaJbxm$?u+eWqnw~F`17+&Vpty za`saM!}ydW^cltSf=x3MXsix*TtF>{Rf*cK)$?XC4VSnI0xU4-rM#&AmWinHf{n0s zGe<}Yzu0(VAR{%~jiq2?V9>TG(xP~VW6b!p(4lT?l_4WJzvfS_lvrC%DkzAM0F*J+ z*>t!d9>9HCxn#E{T8;8Z8VRWcb=L~JAYJnO5EgHlEXU9+*vZ-~q_e9{;UPV-3DV70h;Y-i=_`ZiUfSeqGWX_j&nLKrnk|>YDjeEj+ z)WkmWAw(|!u;=2|0DDo)uF~)=lfwRoL$UMRD+muBt5QP=Eg6CgpB(Y|R~U|s#<7-H zWakuyPYY3t{+OU{{+1iZS>SQ=TleOfWP*)fpXlTPP_*L14JB zey2)#YiQ8b6@K7vMB~fl`7NS7q87U1xw|;`z{f2j2zsWN`dh5-go}Hpwwxwtd&Fds zjBU8MsYpt`^O{~{c;P)3V?$I@ISr$a_%ysaiTIcAFcJDEZ)KfB)_%{QPH?&Z>B-wr z%Y*cxZVxJAIVO0y!zt@A|O6aTlliG9A(5JSYjR|5(tIGQ40J7|8dOSx#xvmv$#!kO;+J!^W-=? z41qi+$PK;S_q;@Z8v2JxTP5YQmKjq;thvB}C2$Ber~1ThZ)uu9Yuisl*~_)#{^R2o z;4P&W+QCR{t^qiZ73mv_dV;q+oYEvOOGUYj6mQ^erYz^P=|R*y$CMo_r7JJ#D1MC} zKm6a)IExoW+8rO`z)U*=d84uJD2OWNWjQpU^g^-VrPO|fGH&34^TG6elo(zS8%ZViV=8gCkg zd1y+rxPZN-1P4ux76Bc@DhAC(I=%p!_Y&%`6lVJ0)RNQZzmteLvCUT=c)FfdS8o>b zK|90@cq+ur-A6w|z6)*VS%e>Mt|0&Kc4T%edO2W>)%S50HaVbt!3`MAA^b1J-Gog^ zD=ovp$|_UOFWEPb8mZ5>drY6HT_I66OZRK*mcSL-x3y`mnPD%5SOac*9xW2Q&TFl z)8Ig*nSw(tEWZ3tGi(-YTga5~KBjA6gp*Thv*Av(>TM}9)mnrQ3;mYqCHilkXJ+E^ z9$L8!EHy9^#OpP6a3M z&<~@EPALHlgMarR2ARmIWp{2xz$#7F|Mzr06|kgE;!aFFy)F`K*V-|Bc&NpJEte@m z1T|AICQ=kN(La@ejPh{zPE{6v2S{m}j!qN~1u!W79{F(vta{VV{70fQo3>Yi82=;~ zUX~kDC2NT<&V&gZqKUm)`O=d=58t2w)Vga7nUfH#i#efY|92iSnWxVu6;hZj@5NHS z4~pB4fGol}Y4Wxb5f;b*jc$-ezQi|A&5)11b-S}K>Tow+Su>zet2EMu7)#}P;_BX_ zq*3CrW8)J45e1+O_wT^na`IVOFqvf)Uh#NWF}iq1Kp&;3QIZXED|MwX%;!jK&;CcD z8u!x?`y_I&WCT|gMUa#@xhy>32DBpep*)zLj5+o{86#aPfDJj!bt<(ez!&1BX%n{! zsijZ}#G>s9Xx(@)TmAa)7;TH;W4zY2K)$0KJV0$l=jm%BHa5A+$~cU9%RsN~|C^JdMm-8G{2ahpCJ3SAK7h$vx7(rRHutSMC0LNW5d813|by5S##P zI1AZB%COeVhjt?~&r3cprP)?sw8Nv*5&<3wm~E2yVh@Z=e|wrv$w6~gZ#vy6p#&=v z`zyCg|7;XrDYy?lX@yTY`JFf|4g`%j!zq_p&RPxq?fuQX(e5o_4Z;+$PsetGrkfZ} zA}729lSWYMas$P!L;h+wJUcY?g{}vOBmzR8VF^^Jg ze~g!(KHqAYL3=}g6r5*|FPR2tBb4FEmpA*4-7frdm`EGe&Zof96lGsDvv z4+tiK69xgK-&8?qp6^#q9$xyYJigw^OP5@Hs9sBN)AWBM2zZ}-)wp2O;NktB$n*PT_K#@FfgcpSiq|-t!RGWU20L+5adQ|9!dZ^1EHOVAE+hn3BZm*a}2ns4);-{IJ?&CwS5@TVC$@ zxVrfcQ{-5Cvi#o<%X%(!}%8;rYI!}iKOYr%l+E-sv?1oqNR=-$7NIQUaPnLC@Q-|m*|lXKAn3@jMo9n{-~EggxG830>ZA zv|0S9sCez!K^-TQ7@qrbU4rFn=j0OrI%*Ty4#o{Xh%$Jh;@b4NTL(ilG+H_*+XngF zM`+Wqrx{AJFPBW>XwSN==NYMVn(g)ZzKn4UVNZA5ZLI!?aJCN?U0Gk-un<1h2D?1p zEOK4FEnAX`n1rO__~E9;PZ+1;asAAEul=-*iPUet;jjJxq|F1a?-2n1}sTpHfnZu*1yQ{2Y3P!iIiyj(sQLP zqAYnlh1=S|S4$|ng{S?|npZFnAt!O$QP$Zn^WxEaHEa1Tr21B=A^NvFF!?m z(^GgF!^m8?Rb8>kPUj~G^KF!n*{!`27$*|MrQW!6Z+%4sKMV?|_tubi1TNVrf}_Fa z{U+$OyHV(}=Po7EZH>_H(ApN{*PcmQ<*WCHyu3a1eS)uo76>wQH)3SW&>mmAuvjW0 zFPOr|li!@JzW>v9c0^lPP>_k0<8Xb9Fced9aOxS0{g)NRk!s_}`8$dTV;ul`6>Ee#nMz|5FAY{VH)HOaXnZ-MHCC-j5WzV3mQ^<9aC zf2PI}lL%s+HZN*3ldVU{NMleZq%6fSTB5oh&}g)TIzF*Pd`4!{12F+$j2PR?nBMB@ z3gW11LiT0@lfROLJK*Z>{xVwdh|6AWff(>M#dp(GP~L(qY7=&X3)ln-+9J z{Qb!j1hLPowMeQWm3buXPoAd2+U8EXv;YOfw#*j=x9f&XV9w;On6J?S$(1$Bqg;XvU~%m!oWHm^hQnnKe)CJ9 zk7`hB`PgPpQ$slyBK&aY<_y?31_xgBskQlD@@Cxu=Ux z{pw$QGf1VGEr17>r8XYN@qQ?6U!%I1_fuhL&rzoQ@#G|z4dUUuEiMNH1dz98ZAB6- zyH)dx_A(>lq_K?W-gKO9XA@0-3CGs};->!OZ@pd_Z zzk+WQ*=|i4)1-NBeI=!amO1Yb@f8wB8YttU?+gV66KY+|yR;B95D64UXiFjAI7L*x zgS#nNXw|d%-eQVjWqYyk!QUn66Gpz@j^_G5ynK9Yu={eQ-Ijqzc0bC{YVOm&ElR5j z80F>RybJ{pUHBil=;f_-XTL-@Cr_uGfS8nQWfPFSu$I)*7FoIhCN_T@41K2q68`(i zDKJav=pemm!;ruYzjhNQn$zZms{c#m8QGPb;`|J5@-iq$)vEwh}04nP!+p=P(Fb@Qx<@V6Cg6xf|Z;zH} zpO#^-obT+b@G_|B3BuslmX?;R;5vDsw(7n;pU>33#r(Z10jzur^RNi=ISUk^$GU{8 zT_`g|S11%eIRvA#R72|xC1%IsSai(7RIM|kM`_(4SB9(c9|40=kn$>gq7eiI!>bB> zbvCORm*eeZq$DvZI0vltknMW>R!6P@K$AvqMLovjOff54~<)|v7riX*wDeY?BZ+EzuIFI0a1#%0E86f?TbL6z3W-Y^> avuh@e=6v`uX4BpXw688*L$WVM-u({}L?ZM6 literal 0 HcmV?d00001 diff --git a/demo/documented/poisson/python/demo_poisson.py b/demo/documented/poisson/python/demo_poisson.py new file mode 100644 index 0000000..b1b9db0 --- /dev/null +++ b/demo/documented/poisson/python/demo_poisson.py @@ -0,0 +1,68 @@ +"""This demo program solves Poisson's equation + + - div grad u(x, y) = f(x, y) + +on the unit square with source f given by + + f(x, y) = 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02) + +and boundary conditions given by + + u(x, y) = 0 for x = 0 or x = 1 +du/dn(x, y) = sin(5*x) for y = 0 or y = 1 +""" + +# Copyright (C) 2007-2011 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2007-08-16 +# Last changed: 2012-11-12 + +# Begin demo + +from dolfin import * + +# Create mesh and define function space +mesh = UnitSquareMesh(32, 32) +V = FunctionSpace(mesh, "Lagrange", 1) + +# Define Dirichlet boundary (x = 0 or x = 1) +def boundary(x): + return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS + +# Define boundary condition +u0 = Constant(0.0) +bc = DirichletBC(V, u0, boundary) + +# Define variational problem +u = TrialFunction(V) +v = TestFunction(V) +f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") +g = Expression("sin(5*x[0])") +a = inner(grad(u), grad(v))*dx +L = f*v*dx + g*v*ds + +# Compute solution +u = Function(V) +solve(a == L, u, bc) + +# Save solution in VTK format +file = File("poisson.pvd") +file << u + +# Plot solution +plot(u, interactive=True) diff --git a/demo/documented/poisson/python/documentation.rst b/demo/documented/poisson/python/documentation.rst new file mode 100644 index 0000000..4597ce7 --- /dev/null +++ b/demo/documented/poisson/python/documentation.rst @@ -0,0 +1,157 @@ +.. Documentation for the Poisson demo from DOLFIN. + +.. _demo_pde_poisson_python_documentation: + +Poisson equation +================ + +This demo is implemented in a single Python file, +:download:`demo_poisson.py`, which contains both the variational forms +and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +This description goes through the implementation (in +:download:`demo_poisson.py`) of a solver for the above described Poisson +equation step-by-step. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + + +We begin by defining a mesh of the domain and a finite element +function space :math:`V` relative to this mesh. As the unit square is +a very standard domain, we can use a built-in mesh provided by the +class :py:class:`UnitSquareMesh `. In order to create a mesh +consisting of 32 x 32 squares with each square divided into two +triangles, we do as follows + +.. code-block:: python + + # Create mesh and define function space + mesh = UnitSquareMesh(32, 32) + V = FunctionSpace(mesh, "Lagrange", 1) + +The second argument to :py:class:`FunctionSpace +` is the finite element +family, while the third argument specifies the polynomial +degree. Thus, in this case, our space ``V`` consists of first-order, +continuous Lagrange finite element functions (or in order words, +continuous piecewise linear polynomials). + +Next, we want to consider the Dirichlet boundary condition. A simple +Python function, returning a boolean, can be used to define the +subdomain for the Dirichlet boundary condition (:math:`\Gamma_D`). The +function should return ``True`` for those points inside the subdomain +and ``False`` for the points outside. In our case, we want to say that +the points :math:`(x, y)` such that :math:`x = 0` or :math:`x = 1` are +inside on the inside of :math:`\Gamma_D`. (Note that because of +rounding-off errors, it is often wise to instead specify :math:`x < +\epsilon` or :math:`x > 1 - \epsilon` where :math:`\epsilon` is a +small number (such as machine precision).) + +.. code-block:: python + + # Define Dirichlet boundary (x = 0 or x = 1) + def boundary(x): + return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS + + +Now, the Dirichlet boundary condition can be created using the class +:py:class:`DirichletBC `. A +:py:class:`DirichletBC ` takes three +arguments: the function space the boundary condition applies to, the +value of the boundary condition, and the part of the boundary on which +the condition applies. In our example, the function space is ``V``, +the value of the boundary condition (0.0) can represented using a +:py:class:`Constant ` and the +Dirichlet boundary is defined immediately above. The definition of the +Dirichlet boundary condition then looks as follows: + +.. code-block:: python + + # Define boundary condition + u0 = Constant(0.0) + bc = DirichletBC(V, u0, boundary) + +Next, we want to express the variational problem. First, we need to +specify the trial function :math:`u` and the test function :math:`v`, +both living in the function space :math:`V`. We do this by defining a +:py:class:`TrialFunction ` +and a :py:class:`TestFunction +` on the previously defined +:py:class:`FunctionSpace +` ``V``. + +Further, the source :math:`f` and the boundary normal derivative +:math:`g` are involved in the variational forms, and hence we must +specify these. Both :math:`f` and :math:`g` are given by simple +mathematical formulas, and can be easily declared using the +:py:class:`Expression ` class. +Note that the strings defining ``f`` and ``g`` use C++ syntax since, +for efficiency, DOLFIN will generate and compile C++ code for these +expressions at run-time. + +With these ingredients, we can write down the bilinear form ``a`` and +the linear form ``L`` (using UFL operators). In summary, this reads + +.. code-block:: python + + # Define variational problem + u = TrialFunction(V) + v = TestFunction(V) + f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") + g = Expression("sin(5*x[0])") + a = inner(grad(u), grad(v))*dx + L = f*v*dx + g*v*ds + +Now, we have specified the variational forms and can consider the +solution of the variational problem. First, we need to define a +:py:class:`Function ` ``u`` to +represent the solution. (Upon initialization, it is simply set to the +zero function.) A :py:class:`Function +` represents a function living in +a finite element function space. Next, we can call the :py:func:`solve +` function with the arguments ``a == L``, +``u`` and ``bc`` as follows: + +.. code-block:: python + + # Compute solution + u = Function(V) + solve(a == L, u, bc) + +The function ``u`` will be modified during the call to solve. The +default settings for solving a variational problem have been +used. However, the solution process can be controlled in much more +detail if desired. + +.. index:: + single: File; (in Poisson demo) + +A :py:class:`Function ` can be +manipulated in various ways, in particular, it can be plotted and +saved to file. Here, we output the solution to a ``VTK`` file (using +the suffix ``.pvd``) for later visualization and also plot it using +the :py:func:`plot ` command: + +.. code-block:: python + + # Save solution in VTK format + file = File("poisson.pvd") + file << u + + # Plot solution + plot(u, interactive=True) + +Complete code +------------- + +.. literalinclude:: demo_poisson.py + :start-after: # Begin demo diff --git a/demo/documented/singular-poisson/common.txt b/demo/documented/singular-poisson/common.txt new file mode 100644 index 0000000..fbf8e45 --- /dev/null +++ b/demo/documented/singular-poisson/common.txt @@ -0,0 +1,78 @@ +This demo illustrates how to: + +* Solve a linear partial differential equation +* Apply non-zero Neumann boundary conditions +* Define Expressions +* Define a FunctionSpace +* Use the Krylov solver +* Solve singular problems + +The solution for :math:`u` in this demo will look as follows: + +.. image:: ../singular_u.png + :scale: 75 % + +Equation and problem definition +------------------------------- + +The Poisson equation is the canonical elliptic partial differential +equation. For a domain :math:`\Omega \in \mathbb{R}^n` with boundary +:math:`\Gamma = \partial \Omega`, the Poisson equation with pure +Neumann boundary conditions reads: + +.. math:: + + -\nabla^{2} u &= f \quad {\rm in} \ \Omega \\ + \nabla u \cdot n &= g \quad {\rm on} \ \Gamma \\ + +Since only Neumann conditions are applied, :math:`u` is only +determined up to a constant by the above equations. An addition +constraint is thus required, for instance + +.. math:: + \int u \, {\rm d} x = 0 + +The most standard variational form of the Poisson equation reads: find +:math:`u \in V` such that + +.. math:: + a(u, v) = L(v) \quad \forall \ v \in V, + +where :math:`V` is a suitable function space and + +.. math:: + a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x, \\ + L(v) &= \int_{\Omega} f v \, {\rm d} x + + \int_{\Gamma} g v \, {\rm d} s. + +The expression :math:`a(u, v)` is the bilinear form and :math:`L(v)` +is the linear form. + +If we make the Ansatz that :math:`u` can be expressed as a linear +combination of the basis functions of :math:`V`, and discretize the +equation, we can write our problem as a linear system: + +.. math:: + AU = b, + +where :math:`U` gives the coefficient for the basis functions expressing :math:`u`. + +Since we have pure Neumann boundary conditions, the matrix :math:`A` +is singular. There exists a non-trival vector :math:`e` such that + +.. math:: + Ae=0. + +span :math:`\{ e \}` is the null space of A. Consequently, the matrix +:math:`A` is rank deficient and the right-hand side vector :math:`b` +may fail to be in the column space of :math:`A`. We therefore need +to remove the components of :math:`b` that do not lie in the column +space to make the system solvable. + +In this demo, we shall consider the following definitions of the input +functions, the domain, and the boundaries: + +* :math:`\Omega = [0,1] \times [0,1]` (a unit square) +* :math:`\Gamma = \partial \Omega` (boundary) +* :math:`g = -\sin(5x)` (normal derivative) +* :math:`f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)` (source term) diff --git a/demo/documented/singular-poisson/cpp/CMakeLists.txt b/demo/documented/singular-poisson/cpp/CMakeLists.txt new file mode 100644 index 0000000..b5f0aac --- /dev/null +++ b/demo/documented/singular-poisson/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_singular-poisson) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/singular-poisson/cpp/Poisson.h b/demo/documented/singular-poisson/cpp/Poisson.h new file mode 100644 index 0000000..7c28263 --- /dev/null +++ b/demo/documented/singular-poisson/cpp/Poisson.h @@ -0,0 +1,2403 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __POISSON_H +#define __POISSON_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 11 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = -0.5*G0_0_0 - 0.5*G0_1_0; + A[2] = -0.5*G0_0_1 - 0.5*G0_1_1; + A[3] = -0.5*G0_0_0 - 0.5*G0_0_1; + A[4] = 0.5*G0_0_0; + A[5] = 0.5*G0_0_1; + A[6] = -0.5*G0_1_0 - 0.5*G0_1_1; + A[7] = 0.5*G0_1_0; + A[8] = 0.5*G0_1_1; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 7 + // Total number of operations (multiply-add pairs): 13 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + + // Compute element tensor + A[0] = 0.0833333333333334*G0_0 + 0.0416666666666667*G0_1 + 0.0416666666666667*G0_2; + A[1] = 0.0416666666666667*G0_0 + 0.0833333333333333*G0_1 + 0.0416666666666666*G0_2; + A[2] = 0.0416666666666667*G0_0 + 0.0416666666666666*G0_1 + 0.0833333333333333*G0_2; + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class poisson_exterior_facet_integral_1_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + poisson_exterior_facet_integral_1_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_exterior_facet_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 3 + // Number of operations (multiply-add pairs) for tensor contraction: 9 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0 = det*w[1][0]*(1.0); + const double G0_1 = det*w[1][1]*(1.0); + const double G0_2 = det*w[1][2]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.333333333333333*G0_1 + 0.166666666666667*G0_2; + A[2] = 0.166666666666667*G0_1 + 0.333333333333333*G0_2; + break; + } + case 1: + { + A[0] = 0.333333333333333*G0_0 + 0.166666666666667*G0_2; + A[1] = 0.0; + A[2] = 0.166666666666667*G0_0 + 0.333333333333333*G0_2; + break; + } + case 2: + { + A[0] = 0.333333333333333*G0_0 + 0.166666666666667*G0_1; + A[1] = 0.166666666666667*G0_0 + 0.333333333333333*G0_1; + A[2] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_0: public ufc::form +{ +public: + + /// Constructor + poisson_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "996f902b81205976ede73587192186c9fd9b057164f0036bf925051e4ce236d3afa448345b6b3a7958f9c265483ba7f2701db77c9f0b497566f0fb97007140e6"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_1: public ufc::form +{ +public: + + /// Constructor + poisson_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "5ee927682358c6c0426041ab22b70a08e5ed403f78f13005173589a5c00c41be670a70ca85fa21afd8fb8bcee737b704b4ee42ec7f4dfef9f5aa6cd90a5c4283"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 2; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + case 2: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + case 2: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new poisson_exterior_facet_integral_1_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class CoefficientSpace_g: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_g(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_g(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_g(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_g(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_g() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +typedef CoefficientSpace_g Form_L_FunctionSpace_2; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + this->g = g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f, std::shared_ptr g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + this->g = *g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f, const dolfin::GenericFunction& g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + this->f = f; + this->g = g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f, std::shared_ptr g): + dolfin::Form(1, 2), f(*this, 0), g(*this, 1) + { + _function_spaces[0] = V0; + + this->f = *f; + this->g = *g; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + else if (name == "g") + return 1; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + case 1: + return "g"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + typedef Form_L_FunctionSpace_2 CoefficientSpace_g; + + // Coefficients + dolfin::CoefficientAssigner f; + dolfin::CoefficientAssigner g; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/singular-poisson/cpp/Poisson.ufl b/demo/documented/singular-poisson/cpp/Poisson.ufl new file mode 100644 index 0000000..148ab90 --- /dev/null +++ b/demo/documented/singular-poisson/cpp/Poisson.ufl @@ -0,0 +1,33 @@ +# Copyright (C) 2012 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2012-10-31 +# Last changed: +# +# The bilinear form a(u, v) and linear form L(v) for Poisson's equation. +# +# Compile this form with FFC: ffc -l dolfin Poisson.ufl. + +V = FiniteElement("Lagrange", triangle, 1) + +u = TrialFunction(V) +v = TestFunction(V) +f = Coefficient(V) +g = Coefficient(V) + +a = inner(grad(u), grad(v))*dx +L = f*v*dx + g*v*ds diff --git a/demo/documented/singular-poisson/cpp/compile.log b/demo/documented/singular-poisson/cpp/compile.log new file mode 100644 index 0000000..f11304d --- /dev/null +++ b/demo/documented/singular-poisson/cpp/compile.log @@ -0,0 +1,213 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 2 + Coefficients: '[w_0, w_1]' + Coefficient names: '[f, g]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0212979 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.000759 seconds + Shape of reference tensor: (3, 3, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000874 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.00108 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000885 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000884 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0135062 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000319958 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.0485861 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000771046 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson.h. + +Compiler stage 5 finished in 0.000790119 seconds. + +FFC finished in 0.0856481 seconds. diff --git a/demo/documented/singular-poisson/cpp/documentation.rst b/demo/documented/singular-poisson/cpp/documentation.rst new file mode 100644 index 0000000..db88c1e --- /dev/null +++ b/demo/documented/singular-poisson/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the singular Poisson demo from DOLFIN. + +.. _demo_singular_poisson_cpp_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/singular-poisson/cpp/main.cpp b/demo/documented/singular-poisson/cpp/main.cpp new file mode 100644 index 0000000..9eacf41 --- /dev/null +++ b/demo/documented/singular-poisson/cpp/main.cpp @@ -0,0 +1,126 @@ +// Copyright (C) 2012 Garth N. Wells +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2012-10-31 +// Last changed: 2013-05-30 +// +// This demo program illustrates how to solve Poisson's equation +// +// - div grad u(x, y) = f(x, y) +// +// on the unit square with pure Neumann boundary conditions: +// +// du/dn(x, y) = -sin(5*x) +// +// and source f given by +// +// f(x, y) = 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02) +// +// Since only Neumann conditions are applied, u is only determined up to +// a constant c by the above equations. An addition constraint is thus +// required, for instance +// +// \int u = 0 +// +// This is accomplished in this demo by using a Krylov iterative solver +// that removes the component in the null space from the solution vector. + +#include +#include "Poisson.h" + +using namespace dolfin; + +// Source term (right-hand side) +class Source : public Expression +{ + void eval(Array& values, const Array& x) const + { + double dx = x[0] - 0.5; + double dy = x[1] - 0.5; + values[0] = 10*exp(-(dx*dx + dy*dy) / 0.02); + } +}; + +// Boundary flux (Neumann boundary condition) +class Flux : public Expression +{ + void eval(Array& values, const Array& x) const + { + values[0] = -sin(5*x[0]); + } +}; + +int main() +{ + #ifdef HAS_PETSC + // Create mesh and function space + UnitSquareMesh mesh(64, 64); + Poisson::FunctionSpace V(mesh); + + // Define variational problem + Poisson::BilinearForm a(V, V); + Poisson::LinearForm L(V); + Source f; + Flux g; + L.f = f; + L.g = g; + + // Assemble system + std::shared_ptr A(new Matrix); + Vector b; + assemble(*A, a); + assemble(b, L); + + // Solution Function + Function u(V); + + // Create Krylov solver + KrylovSolver solver(A, "gmres"); + + // Create vector that spans null space (normalised) + std::shared_ptr null_space_ptr(b.copy()); + V.dofmap()->set(*null_space_ptr, sqrt(1.0/null_space_ptr->size())); + std::vector > null_space_basis; + null_space_basis.push_back(null_space_ptr); + + // Create null space basis object and attach to Krylov solver + VectorSpaceBasis null_space(null_space_basis); + solver.set_nullspace(null_space); + + // Orthogonalize b with respect to the null space (this gurantees + // that a solution exists) + null_space.orthogonalize(b); + + // Solve + solver.solve(*u.vector(), b); + + // Check residual + Vector residual(*u.vector()); + A->mult(*u.vector(), residual); + residual.axpy(-1.0, b); + info("Norm of residual: %lf\n", residual.norm("l2")); + + // Plot solution + plot(u); + interactive(); + + #else + cout << "This demo requires DOLFIN to be confugured with PETSc." << endl; + #endif + + return 0; +} diff --git a/demo/documented/singular-poisson/python/demo_singular-poisson.py b/demo/documented/singular-poisson/python/demo_singular-poisson.py new file mode 100644 index 0000000..fbf3e2d --- /dev/null +++ b/demo/documented/singular-poisson/python/demo_singular-poisson.py @@ -0,0 +1,93 @@ +""" +This demo program illustrates how to solve Poisson's equation + + - div grad u(x, y) = f(x, y) + +on the unit square with pure Neumann boundary conditions: + + du/dn(x, y) = -sin(5*x) + +and source f given by + + f(x, y) = 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02) + +Since only Neumann conditions are applied, u is only determined up to +a constant by the above equations. An addition constraint is thus +required, for instance + + \int u = 0 + +This is accomplished in this demo by using a Krylov iterative solver +that removes the component in the null space from the solution vector. +""" + +# Copyright (C) 2012 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2012-10-31 +# Last changed: 2013-05-30 +# Begin demo + +from dolfin import * + +# Test for PETSc +if not has_linear_algebra_backend("PETSc"): + info("DOLFIN has not been configured with TPETSc. Exiting.") + exit() + +parameters["linear_algebra_backend"] = "PETSc" + +# Create mesh and define function space +mesh = UnitSquareMesh(64, 64) +V = FunctionSpace(mesh, "CG", 1) + +# Define variational problem +u = TrialFunction(V) +v = TestFunction(V) +f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") +g = Expression("-sin(5*x[0])") +a = inner(grad(u), grad(v))*dx +L = f*v*dx + g*v*ds + +# Assemble system +A = assemble(a) +b = assemble(L) + +# Solution Function +u = Function(V) + +# Create Krylov solver +solver = KrylovSolver(A, "gmres") + +# Create vector that spans the null space +null_vec = Vector(u.vector()) +V.dofmap().set(null_vec, 1.0) +null_vec *= 1.0/null_vec.norm("l2") + +# Create null space basis object and attach to Krylov solver +null_space = VectorSpaceBasis([null_vec]) +solver.set_nullspace(null_space) + + # Orthogonalize b with respect to the null space (this gurantees that + # a solution exists) +null_space.orthogonalize(b); + +# Solve +solver.solve(u.vector(), b) + +# Plot solution +plot(u, interactive=True) diff --git a/demo/documented/singular-poisson/python/documentation.rst b/demo/documented/singular-poisson/python/documentation.rst new file mode 100644 index 0000000..a21fd5a --- /dev/null +++ b/demo/documented/singular-poisson/python/documentation.rst @@ -0,0 +1,161 @@ +.. Documentation for the singular Poisson demo from DOLFIN. + +.. _demo_singular_poisson_cpp_documentation: + +Singular Poisson +================ + +This demo is implemented in a single Python file, +:download:`demo_singular-poisson.py`, which contains both the variational +forms and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +This description goes through the implementation (in +:download:`demo_singular-poisson.py`) of a solver for the above described +Poisson equation step-by-step. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +Then, we check that dolfin is configured with the backend called +PETSc, since it provides us with a wide range of methods used by +:py:class:`KrylovSolver `. We set PETSc as +our backend for linear algebra. + +.. code-block:: python + + # Test for PETSc + if not has_linear_algebra_backend("PETSc"): + info("DOLFIN has not been configured with PETSc. Exiting.") + exit() + + parameters["linear_algebra_backend"] = "PETSc" + + +We begin by defining a mesh of the domain and a finite element +function space :math:`V` relative to this mesh. We use a built-in mesh +provided by the class :py:class:`UnitSquareMesh +`. In order to create a mesh +consisting of :math:`64 \times 64` squares with each square divided +into two triangles, we do as follows: + +.. code-block:: python + + # Create mesh and define function space + mesh = UnitSquareMesh(64, 64) + V = FunctionSpace(mesh, "CG", 1) + + +Now, we need to specify the trial functions (the unknowns) and the +test functions on the space :math:`V`. This can be done using a +:py:class:`TrialFunction ` +and a :py:class:`TestFunction +` as follows: + +.. code-block:: python + + u = TrialFunction(V) + v = TestFunction(V) + +Further, the source :math:`f` and the boundary normal derivative +:math:`g` are involved in the variational forms, and hence we must +specify these. Both :math:`f` and :math:`g` are given by simple +mathematical formulas, and can be easily declared using the +:py:class:`Expression ` +class. Note that the strings defining f and g use C++ syntax since, +for efficiency, DOLFIN will generate and compile C++ code for these +expressions at run-time. + +.. code-block:: python + + f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") + g = Expression("-sin(5*x[0])") + + +With :math:`u,v,f` and :math:`g`, we can write down the bilinear form +:math:`a` and the linear form :math:`L` (using UFL operators). + +.. code-block:: python + + a = inner(grad(u), grad(v))*dx + L = f*v*dx + g*v*ds + +In order to transform our variational problem into a linear system we +need to assemble the coefficient matrix ``A`` and the right-side +vector ``b``. We do this using the function :py:meth:`assemble +`: + +.. code-block:: python + + # Assemble system + A = assemble(a) + b = assemble(L) + +We specify a Vector for storing the result by defining a +:py:class:`Function `. + +.. code-block:: python + + # Solution Function + u = Function(V) + +Next, we specify the iterative solver we want to use, in this case a +:py:class:`KrylovSolver `. The first +argument is the left-hand side matrix, and the second argument +specifies the method used. In this case we use the Generalized Minimum +Residual (GMRES) method. + +.. code-block:: python + + # Create Krylov solver + solver = KrylovSolver(A, "gmres") + +We impose our additional constraint by removing the null space +component from the solution vector. In order to do this we need a +basis for the null space. This is done by creating a vector that spans +the null space, and then defining a basis from it. The basis is then +attached to the :py:class:`KrylovSolver ` +as its null space. + +.. code-block:: python + + # Create vector that spans the null space + null_vec = Vector(u.vector()) + V.dofmap().set(null_vec, 1.0) + null_vec *= 1.0/null_vec.norm("l2") + + # Create null space basis object and attach to Krylov solver + null_space = VectorSpaceBasis([null_vec]) + solver.set_nullspace(null_space) + +Orthogonalization of ``b`` with respect to the null space makes sure +that it doesn't contain any component in the null space. + +.. code-block:: python + + null_space.orthogonalize(b); + +Finally we are able to solve our linear system + +.. code-block:: python + + solver.solve(u.vector(), b) + +and plot the solution + +.. code-block:: python + + plot(u, interactive=True) + +Complete code +------------- + +.. literalinclude:: demo_singular-poisson.py + :start-after: # Begin demo diff --git a/demo/documented/singular-poisson/singular_u.png b/demo/documented/singular-poisson/singular_u.png new file mode 100644 index 0000000000000000000000000000000000000000..4d49913b292df12672816825846d30aa32b8b8d4 GIT binary patch literal 45179 zcmeFY<9A+P)Gi#Gjcqoz&BjR^+fEwWwr#Vq)h20d+iYwnXXp2vXN>nhc)y$v8F#YB zy4POQb6wX=xT3ryA{;Ip2nYzGw3L`K2nd)u2nc8#3>fg_O)Y#91cVqwT1@!6Th?ip z=dFpjGsE-viePPgXr2VWftwNpB$+Bs@cI&`?;Ugg5DTHraH zOf+fl=L$OZ|F_`(>EZuZf5^s5)p1$=IY{uZG$`QGvhK2K*YhUNwH;Jh)BWsn{xad( zofy`ATg)goV%K>!FsmT=79Z=i*LC52A&SJkH(%p(cQBrL@hkA$oY-_@!yEAK;NI+h z6JXaRgV5@#D*T`QsG)=&M}M*OyzZCHYBU-SUT-FSx4?QF&p0|;G-4-;=&gupU^*){#T{pcSI^3oRP_;i_ zmyOBj`!u@vOUJVhk<)D$+2=A)lK-F5Aim?6&AI2ClH}X#p97J2j{4CQI!~b2L6sstgVRNo=|FP7~_ zXIoSCbI%0#VHQ~|-*wIVznU1He`UjJv7T$YNL*Wf4U+=ASU!L_?z5R2x7BvuC%^EW zFgk-?CDN^x0j`9<)L-|h)Qnek1b-0g^B9s4bhFO!={`nUJ1UPE0^wZmguP=z2 zo_CX%dVh&rX7|V2#pdK?lo{Xd?X1G4Q7r%7D$(1Kkq*BLd8)H zfK+r^g|fK-sD_1R6VTM#s<^hxvdM+VVh7<>m}DoQFuupFK*sLJotDmhdaK1>Z~xSK z+81>_QKvK5ttdORJ5sCit=(itjKKPL<=<;u^AOtwOY20sWQe^Kf*i zX-`H(FH2e**O&&ve}Fg23%=bVdmo8LdYlj7*?HYJjALR&7`2O@_SQ__nE*$+hmUCdD}mRPk$8z z{*oK%xeR7JZQ1mZ4^ji{s*-b^MD%_cn)~s3NOWHty8ie7bDHX=!dL;1z7WJzJ)btL z4X0T-JD;1(&!uP<=0nm{+2q{F0lTq+@6I)z>&2kWrd`jds~m*>Tv_nFl0+s`yX0k|v>w*8>O&i7?i@ckB{Lsb>={;x#iJ*&RD2$EHev}4ezd}fnk ziT_&UGI}`Tf)t@ByaD7AAa$nzmuwjypf$mhO^*GDsd8K4M zCXEpj6NoWhW`V9c&@CjPCu9Phv8cFcBG%lJ@ObUJLoeOTJ^2<%o2L&L<>d zOecPh{Vl8bUO0V_zAW#Y-#<g_55L0ir zO~&q}j*1}|-diqXrJWVrV?6xw^anM~AKSPJn2m&oUj_YC4aub$(Xx1duA^=)s~4Ij zWU=t2JM7^#qz+exLI;l2VQ)#CZ}?S!AT#CD~gZKMr%70#L@UrXe+xC?i z7krDdvx#C)r$DIW6!-L*o-HPc20Bc0i29-5*C>CVfTh^-!&?QAZuL_-b(hYU-Hr+f z2;4$DVer7|yv9A+IFymtLy|jLUa&BH;qvlu%y2BvmFXKKGSJN#CZDrLz~CGrfbZ6J zx*bwo6nh{M`?dI~?-NsGQWcjel?s`NfhZ@)=5g1fkM)yl#&u|FWMh>c%nH+7+kILB z_S0x4{aO<`vw3w)@@|ONjAV5>%`w+mR21GZrnpKl^J*GogstPO@X2!ggc$jdO-%K7 zPn?^I+Uk$#yAd_EDx_Y&w?F;c>6+Kb!E9YdN~c>NEs0BT?|K;Ev<4cr@3RlK2&7Gp9DXf%{^G;z zel4~28O#)RuslgMY(jJW1ydUZJ#oBbKOB|PoJgccf-=>qR;J}j`rWRc0aZ+*{1<6N zRM{;ZM0G3ax!Qj%qI(gaM7(D-2W$G*J2D6{5nNqA!K@ok6pDf+4OQ)|DU3eh1sThC&Q#S%lnsw%R&@`EYNimUW3Oi9R4u;t1NeCi@qt)6dr6^)}{oL zmDMom)qGqp=<8h%`fta8kN5Hy_8o~d)USQsU*{05MV|~1$jc}@v6eZ-eu@qb&(l$bG_e|mt#-{#s)y996AxWTInTopRF5u?)%OP<2;!f{l3NXhtM<4{*3pD*Q#dF0AmQ%FmNBDr*G zOQ2|CD3~a<=Do3(gHZl(PL(R@)7kK7Wb#(HbKCb01D?hk_!*35y^OhU`gJyNlm0)z zA{fLD7q}z`VG?O3QOj;n1a_@T(`EOjQC7rg1}H@l^7m{7xozQsK%*|9WXhon<;l#U zl=sGx23)K$%y$IFaIgx{eS2DK?FWBe^_;fTBR_86WQTh>}`bcZSjZ|QfnGc>aC)m1;7Oi|NZbKl0GRTs2#glnk4huikLi| z+KD;UVV~RS4bzW~tq@8!U)C>d9pxKHyk)(F-<4i{fQK};eDEZ02(j{rLGdpz<}`)A z(lk}o(d+4j8iUf`S$=6)l-@r81G{`)@0aqgB8j--e%lO?LQnI?`r%gY zH`E0sR8%Si7w(~c3!lj`#msm@2ho(?I_%{CGs2o5EEAZ<5b0mo9+_!|obw zvHW-1#jeFt0xPTuV{SAapkRTqMpmuJ=V*)NyltMTB4gnIp_vWyRYx(x6e}2d+Rc1S zUqCK$vFP>>IVMhFx>Fq!Ld62i&uN40=Bw(9O)D+Jb0y^WV?zTVI+(WNSdmGTF{Jt- z-iW_L*Oo|!rK493Uq_EKz||8gk7+#B1S>IzPKpUdONlxYWuTBFqR5?#7XNnZVB`v; zVlGBATVhSramrIBgyWaAN6(IXP;1=^tf!Rm2s73Wa%qIYHGGW)5>j=+r#|cKr&f_| zzRHp}kN=8Vq9c_+$Zua3#w2E)b;Bv-#|%O1qFzv<5+{X6p)hK-CkoN|UjCJSBRiQi zJsE>Q3idIBjM{*!SyomtFSJh`c1@jUPqR#(AS|&-Ch>t^E{T+hPM4NQSBs&qcj2?a zIi=>>8voFcior#5R&t(83k&BR7n(Z4W~v|O(537=4JE; z28ErSCJ2jT(x43|oL9VmG3bR!OPG5s6GrQ3uD{~imSk#e9gRy^W_A9H<4BZHx|-?DA~~ptGBadjvCly+p)D&75l5~+ zMPewN&eVQQTLeScI@Po*4fqb^XR=tud8ro63bPoP!#=8j$-LBFgb1g+Al)Iyp%n{n(w znMI0Wg}G#`F0X_V6k(n;l3Bzk!F#@y=>>9FcbE;mog$@BMDfm8oO8>W0uessGf;T9 z1iStX%X@CgvzFkXIcJoUeCJm90&RwGI`hl(Z%O~CluC{yP_}6Tq(F!N_;pnj47ThI z-?4e1(ZC>s&`tN=oW!fD;yuPfy`$aBvD?VmQ1R^~X{0^IIyS*n3a9v)B2h$7;Vc|b z`YwxOCTVM{EB>csbY!mkk37?{QW3?l>dLpoF*Z20pcJuqjz3-FbUYFq^9+^3KqR!L+$@PP&G|4|}MZTwq4!9K>cvRJlYF?|6w6MRAE3PPLIS@D-3)Nco)0 zrLDxE&Vz1EZ|1yzhs8r>Vm}34-9C)bfHwFu5X9Xi7J5Kg1l3B?=$zp{CkuztQsN$D zKncl9utFKcp5M7YI_`%XcxNJ8i-ne9!X7-?n$BjnS(+^M=gJW7hktiQS=T9(p>Sd( zbD~~-r0L7QG>r=)N*TAzxxPkYC(-8!*1~=<(}kGCuhaHzSH)H?t0|$LGv0QZbabS2 zYd1f8umlMVyOQQ$iba+D3CKwb>86=S!sfz%5Pa(6eo~ea!Na7BncHY zkVFV-t{qmu7Lm9_sztHGJQMU6Iz@GDIm7o8LwL;ZIuxVP2|w%;%VF8sL%~eF5f5&> zUb9rOpB{hR=Y9J*tqzB9(W<6a{I%^zbg|SGi>~?Ci9KpOef@rtu(`&P%bk-*_|z|- zp*;!r;Qk(O4&L==N83*^NT|ODM&nEPwUIIg_I9BmyUj}8V5H?tzQ;S=sA9^t#5GdD z{NhqQ!*>2%D1uTuS(qihhz`IeYOi&8kU{etl%KJ<$QXe6rYVw?t^Tc03$(ZUJPrN3hB_ zTn4oFgAh-<(LR3Xnh$k4>(zQ_KrgtSe24Bl!>;zwld$Gv{n>64^^cic{i<#zcDj$CMI?cZ|>S)JE|PB(h;C%fdBrVf?SbYz?y1xk^e6rsm?53&!kJv84{R?PAms)`7Rw8NbTvhuI$ zg`f|jxcf9yn#89yw9AizkZ^P|LRo;-QO+S>WoMtkze|M)QJGmvHrqv!te_egz zprykBu1XImr|-8P&4a8tH9Vz(9gZYRl-B24NKP1h^~179h;&)dPP=W~Ni=^QIYX0S z^hAy;&>Ak&*}pP^Ha>TiuBW#XbWMh5Z=`uh<`&vX(@{i~F;nOdbQZd;Hj}b zw}pbw)3Ng1{C9II7NA(#_Wo-62cO_ttoxYJ{hH%sAF|-22%7 z$CH)0=|@ovR5WU_{2X)U;|F$gJx70nboOsU)Fx|@$W)6F%56#V1quo8pX}$gx3Ena z9wOosxCp!zlA#fs(<$5XUw@TvGC;;xu+KynAHW3hq8ngNpqrC%sFTB&ij5hVT0`^v(-ls-Ho*Oqg51ohncI)lVfUJLB09aDNYX@!8 zeZsM`H(rwP=@Z*7N|Yb*+QTN9|V8cG{w}H!s}LjpPbngPo8VU`#}g;6-_0FJn?ZuBgNN_Wx-wv?N7pfnqRIvx>U74 zts8uQ+x&Pt1mH&ghc%UNJ^&ai0Ep%Jx=Zvy<$Fz~wR*A@h%5kLc@z8(+RJOT27Q~a zyJ~4*u_8WYH?`90E`!ZPBVT7jCYa3qg5diy~Bwu_d zQdCc9EP++1vej`*~=a6`f=_b6H*eGRes< z@%hY{tP|bf^*03AD>H@_WJ?IE3tT3+ThTg}(JU$V<-0;Pl7+ovHl(d9OkLSG^Pg_G zR>g5vV5%USC8FfgwsnOnOAf}Ty&@)zU6h(q?|-={IfIH+=NbCVCt?Ox+s$m*I^`C; zg{LR+EdMN)cSBL(T~@Y4Mn9LtN376vSRqPEcXDRB(R=-?XT4PWM+4<|AmMG^tUT`- zU|#(T@A)oU02jXSI^>=7xo_y&OP};Q2*%P)`}+DxS&)R{*Ej9z`aJEc={V0fQ$$H(EA8^#7fB<7``Si?JlOJjmb;X9cZ{Q2Fh8J)3=reRzW#v9kot~QT? zns#`ENKT79rX%ph|F8ZmuJN=D3bP})@DJi+VX4y^%Db?nI^Ohr3=nB3@zCr_B)mF{ zK?%!-vC3o#lc%acu(+U+0C6r$SCc*I1RfsgFC_>9AeA<1vNh=8-l@A^YeJ?}*)*V|hREetc2-axDro!6(+OhH7g>u&& zcWU{_m}z`I40XpJ(FKq%_-i^a|CA0K#}0qBf2XMzc<4|r!v6r9b|<~yy48bgRBGb9 z(C45j@r0$P6s9qZQGqEd8xAXHB;cb>Idi<9M>0ETRZ?|u0_*dlq3kG{Ho@n zSc+re6lHDcgy7c}JRF8K)pNFeGrF$}qtFsMcC!PM1lN8HZTLVe(&OBs2VR~&g?7fz zBk>PBvB`8U_Yjm_8T6cn+?PMUXKPVSyTKgm8XlrNae+v2p%ZF_I4we4f4u7uP9`^(^h{dVoX$p#XI+q^|q z7(@F}!6$R3>hhUbFY8mg5PsWsoVgqqrwSYiBPU$%0;MPR<1v=#CT$Sk^RzD3W3KT1 zis<7i+RkeiAgVqXfy`mGaD==3$+qN&5f3R!fPlG@;gx@%_tlH8pxYX08xy*71y6^?zc z!!v1|jfiO0E#1ITByk90_>V8yb~UCL>%fpyt$7k1L*=F}H!Nn55w-p}%?4}#Qi}GK%Pp-E9 zB=eI2XpnHA`~ZpM`Z~48tLN>$<8dc)^Le4gcDa84;{E*M{F7A5S9v@d_gv3^c14}s zybJlnmV1#RbdY#dZx(`5r23^er3e263x6kImAVF}gC|W{l?aXGn_(9hP7yXBH?vfr z#?&?3E@XIAx3GBJ$}hqcpuMH+_-$Sv3@5htU7gIYdJq%;*gwyOZkLZx6(6zspfakt z>WnTkpdmwhDwu(Y8v}~{06$7ho-JWN4?fzk?uSm8zVHXWG`eO^ppwlX;wU}h1t}^I zkP@J@LsIjWG{u16dLz=l!-6pu#qYo`xicUb{Fqy>5U)^r-h- ztmiT5x#1WpZy-tBdkxr~s|w$KZKO|+;iOw#J$S5zfUp8I8YLbZ<;q+-PqH<~STn_M z#@3ovfK?O{pvQSAiU3l?mibPbe(~4#a-4CkJgXDJ(`=-rVTH7Pi8@bfK zN9#%J@K;($0~ydV(eLX%+2ojW4w!S!sTp8_bMWTR-v%ZZs$d@oLphnB(5por@40}6 z`{|w%wD@0oQx{#>-04cB#oe$KHer7!N3=T{tn5;&MR`}qm&@S--=|dHWmXu1Shs#MKq?*(vux*uLV$I~ z$0b8?-2!;qq7|SKsQ!ypc%GJB>)J1L`Uc#jUt1 zC6CHT1!tIg74SXjk4B{iGb8y}&^qSX2ujoX zyX3yCQBh&>xB$ZlpDbkL*8&~4?cfB)pF<>}UME_c&p>y`T7J1a>ErSN5WE~3@DXJKSRFY3Ml0y`X ziW$_`TH?wuYYm7efiP7TUZ-4`J5jKew>_CcA}T|0$5t3a7}_Y$#)p42t_YbDGf6a) zNnpkly}%`Bguok~#D|l#S5IzVNX|fbDQrWVG&exQiZS#LC3OyEV`HwUN*~_IT?Rvl zk=7QW2ky<)@S1jTjmoopO(>r0@#rf_jxMFgB4}QS5qLgA#N!A%k++|fZ2zn5d=}6t%0>O_P!H-_7?yU}O_x)sGF2L*DF&AF{4CoscfAPOR?mA|E zHUkPg$3<%0*U3IpYCX^MnVgak2cIDVG+%O>OUH_TSc1<2mwkB%t2KzlQn69kB0z+r zjY$yGNs!aG(P=W^$Rq}K^fE#>T)zpk)f3VjlURdtz+W`N?P?aH8iGG+dC^0lH@D&% z|5Sn}iYCqo!wRM*y~Ji5NqCPZlVVRp!!_9@$?hw#N@3Y{f9Ad;jrxmA_7Am)CJFuW zfo(rdX*HN08>8(Hi8>ppp41V~{NY?^@Fh-cw(v7tV%c;s46fY*Vk@e-rPy1@oea9L zBhV$_15+=bN$r!<{;ZG%kqkT!YmPNt_bb4pOeHkFz296q#Dw)mC&0e@TmzltBVNxH z-seEYXD9XflMi&=SUrz_ff*5u-vEJL4_q+tfF{(0(Q_FT*kC&t%ja`?W+pM`wp_v6 z(!>PvcN5TIJZ^`6>`@820~To9^m);77^d)jF7AEh)O+0lu1F4{&mVv2JvXa& zf8srkC!b)#N5a6b;x<6P>B`#Swhc`fU?0Z?QR2}ELJIe)j0Lq=Co5@aqhAI=7xSBq zZ>!Habe2H|4|G@EN^Fn8DMP$CteO`0)xwv$VkT7L7JbRbFP4SbW*$_#@70a#%1@OY zT!v#$aW%LtsT^iv-;M1=Xi-Y)ZeCnuyqoXZUhEezYUenP3psl6u&$_qVy$xJ;W%2% zb@PYZRX3_FW5=jW9-uek9k?!1r{w8;{#VIqyXFRr-+We*&w+||=MxTK7~tdm#WVOX z%uJ?j`>~Ck=PDrY_Gj`%_FU?V;kzEXJ6YU3(S5jvQ`2?d2f}gzNX5Ir+{6>(YcC_d z_w96z$9$#3?f7SHUa=_6cHMCQxMuut*aF50fUXS~pg0MVyg&gi{iDJ6e!DjJmTa=2 zQ4;9?6gQppo%y`u$h}F2yXhc0it%ti#IwsJ(ut+jrWXFP0M|J(c%;ameY!Y7{^+5N z9#HCwE130j3H<@53DXm73DkLKmCCZTC`8>s8j+JZW@#0pu~M1&r}d*ms3!9{W+ecPxi87H>fz-{N)n8AH7xYhe_7nD?sg zifXqTF_<`P0fv1I7chgMXyZ$lNNG_TqKzf1>9okKEE5K+Slj^Hpa838_?rxmnk8BM z8?hwuxQ7)-DXy@PRAFG|SQo^;VEQ6#Ek;*|L!Ld9Rizk+Ysjw=C?PHh!|5cpWt{0D zvge})epJ^OM6w0)dOl*Q*LaDSC<*<5DrI^Z2Rw}@jTN_BbtQZdp8TJ;qSzZj8PhtH zJ^eNo2&Jh@Bu*EnQhyAdkZS813y$J-i8c1J;^iZUmIW|IN>*ILg@X|B)L`61rwt6g z0%X+MoB0bqQ8O*7=$)@S)Nc9 z)H-;0Q__DrZ%Nk$JsaUg_;lZ5OolnrKoc~uP}x_G#*A-;i@qpEM~Ok4OAmb`>Y!DO zV~I{t*s1LA;1q|{hkyPAkCj>msCEHq~Gl#u|GYCFSqLz zvQ3UM$%YVDg_bHYAYRIujb!?5H#D0`;e8o}y>s0;uOgDUL>dun6AEM}r#H|5fv28jkTQ zmvdgoNoSf>VFsrZ4@FC7Ckr``5#`l9{DWV9Jw7y9ogyJFvT6zD{6v$Ji{2($| z06EubB04f6_%QRLdp zB|2oC{fQ6WMr}Y$bSVY_rXO&($p$%l>hObOKnYa+q9&)#q?9_+!xnmM#*F1*3|DD8 zI-4f%fXPlEsfdRUQt(zRmTlv{uHA{&yw6e&f@f6!Cf( zRA(~HRv6U$y8B;vEz-Q%!g&W`d+P`f+4l+&^QYzwzR-Jbx4o0unnwG($L32n5jh=D ze?$}((>J3d!Lj6v^2>kyXk}W*sHhzN<;~N+j$K8TdycB&+Xm0jA4;rD_k9$LGuygC zZ>E;`Gr)DH2nSo0;PrbMI54EG55E~Zn_$i%3#@BF=E@IqC6CKtU)^fJ-=nw`u-x#S z*dRgBQrNa=?+M0O5E)Y_4bqqMY}YI4N8;lC{Aazun+OR3+jT2XI8$Eo{YUgn@t>$L zsd&YCi+Y)*Ml|ZW?AcR5ooFfWNXuY~XYlBjeU?JLHUN}-*MYhTgr^kM3TZv59?STwT8%B(c zw~ou?=rSAkWZt?W4FsRz7A=N4`I=9si>{v-W&GSv7pHG#JZbLKPJ%p1GG5NaTS1T- zO{tR>ek$uQE3PhebTAA}S^V0M!@bxG8=LjeS5Rj2&xDEfiafv+TbO7nOlIeJYjC)f zua^$d(ewNm&&ij{e`drG{o7v z^2%FrOlcb@~%DT#EQXAS%682+_+BrMEzC>jl*v8zt+NB1wV-uS0yh0G0fAL9)r#B;E z<>=D-I`Gv+t|*|VkxSgq^1ba#iAHiFH%o}QKGlMjA%>pm7Z@B{v`RoCF-{9kl|MeGWM(WCwy;q0ma&zkF2k)R1j) z-pDE#B(kL$tO|qq*2^VM&5h!`t;Ivd;kxBP$!v~2T-t#?q~$jZy-N;<{CQzcA6sA- zl`|o^X{t?gaNlIyp%7QUlu1OFfc{|4h;s2r4--Voh#boZ^|6||s;$-V~)OD?xhZ^P;@C(Zy>ny;jthk-7h%yA4o^4kq; z!B1Hy4pULNDQzVfUKDlu!cQw2adN0&ekDbT4e%$27G_bcLnRZ(<2>7J-A#;L_AKIo zW2?mVUTyj=ui{E0&Z)i7nVh7ZE^zYLdS~o%~i6v)nQ;Jlb)`4W-Kkw zoDwO_Z=SS}#a+oCOLDOcz8W=VaOTtJ2j^zDj}0O!=$pq>OcQ!yeh#s`BQoG*Ap|@nGx_8!_=f}$N9nxznNl>4&b(;c7hwG_4l394ngEC zzA#KbZxJW)P|{uNO2{{dWqkXM&-e`&yDaP9t;G#K&fjN?n9O6RFPt^Bh*%HUY@i+Q z`o?X)!S7-$2W6nlHWcmXq@kVvr1lsJr3fMRUdnCPr0}G3Ys{xuaIjis5HUS0i%3b3 znd!2yp`~ePzV-O{x&H3z5mc_T8D)(Avv!dYd0jJct+PXrqVKe(8}S?uXhhR;@fy;?j%$ zmT~92a{lWky6Pql0m)eu0ZZ1D<}La|oiON;cwgyblJZ~SQJ1im9x2}jnVabUAzQh` zIZp@DfmR=~A+3l&W~!*oW=9gltvgR389Fm^3&=g-rpBQsNz0si4?)N{d8q>8&4${}gI*C_V;u^>iD8rwe z*10|}GOA`ke4FY=kL)~%ln1F1w2+93_EmRsb1m=+3SI>{d+&G-k1wE(M(zy>zXA_I zm=>04yS}N}x;SFJ9>GzR>m67tU?W29AIsSZwXf|E+TdA3NwPfa6#X?hN^6F>4(LVNt<|B zD+yy>fv-({CF@gfDTbkE6d|vi0yRa)*ms*`byz-k!)_j6ddne2Cg7g;r${UZo^ldx z*mQKNMbhNkSo_p-whP9)p=^$sa*+9X45E*%f_&I4BRCLDS^hs)v?7o$xB(AT66*NK z@xCQWlhrvN)Wl(dYZOs-(B+ctM_W$iMkq`($b8Lu)mKhPDsU31wNQbN9viyzm&Uo4 z9%7TB`nLw-vpO9_-bP-68yJrZ zBd-0QzaQpNrC$aVOGlZjlZO)6J|;tGyRT2e@)@tY)~&-?-fqvX^iS}!Rm)&&tbu`( zj}?ud+x$@CL95V>gH|BehbG0n@7=tMkQV=3g(WC=G1<{DhbE^bm`hmIYol4Ar?kHHw=r-&$xu`ME#N7=khDm1+n?MK`)BMfppAQ5rMHp2V)} zE@Nt-+(tdUlRZabBdfTUc9|3BqeYQzOWSAK@9}q0Wl#L($hPpXEhSldlc9}t(oEp; z+$!|bDr#oRPD>ZLw$0#Hbqx3x%hgsfJYkFHA7#gwxUAZBD8T#h)ESl?Yg9vYV zjNvVyR3hz>)=Wiot?Z6wkx-Jf6uE^^7TS08kf%573!a=qlz&@x}MZn?<2e_nr~E`cewXPcVj& zQ;Nh^#HH9HK781!i#;AdfSREboc99`jJZYBlYY-P?Bl{pOut3`TG~@-YUkiLUbT#w zQR+Nvrm+$48(aqwPS?=US2D(jmS&8-JP{rpvWs*^)|7h?E*(^nQl}i5YwmGG)TRxm z?);!;OnTrvHd(TtgDBU2sacno=akOd64kC1lHz(Vrjs;G7AW&BS{)l)@~Zqg-XYo5z75qsRYwcCYmUN z<)g-{@e@Zg(C?SBk$|9%N2WNtWe~Lt`>20hj(N>@KMRGl)3DR{0+uE6oTaiFC+L_U z?EQnI5W<+HoR_NZ3qxOzB3 zeqK%Q$*V5%jB9d$@m&D%o#~_!{RA_fJC9kdnN$)Ch3$@uH99K20} zBESpl*dQx&V^v@!VY47jz^*uz6f>Y~G+R_)+J{FbWxdKLwWtd72a5a#&b;dXFhu${ z@Uf5|a+veU3czK?q0Ls+#2C`bewdJwRD72w&zMIRLQsTPg>ObXFS-STTgtE)hl=mg z0E^fAa7zwyN+?*&l8qV>{bOcmlx&In*2{sbJXCdi(C^pZ`W}QqURn_S1^L+GK(|L4R%}x}kdDey%#aiY5 z2>Mipi>&?IVvNX<^=bRfHb`4R*E)xImOTReUAwH^Dlo@6 z%=z*+GLgtbq%bh6Jk#%o1jHjnFzl5HO?i$SqQ7zoHAmd(LgCpdn^_YcFky> z$XDz^Y&{-}_|ZRNn)hYf^HEG$A!n=MiZXYe&wMlU)OSMsCk@-q@)mlyaQhIvr5lu# zv-00|f^M8hJHLxW(yCbIJbN~%=qWk1&gOXqt-_zbj^4NwL~l2IrTrLTUS2O}=q|{k zuA$JAtG{^r={0>l9B$<}C%bX$Q{t|L!^~lEhvu}yR&OW~*-+d1@x6fR+iu;Ax&6P` z@2OdxusCG$qu@yv>4N<9%?=x!!$eG-@i!B-58D0*!ZaHQ-_GC#SBLv`iL+nfT4%($tz1i#}d0Q2^tVx(} zH7zAi-#7ONts262lpD%bXO9KnGvmjn6V$1|3lJ%FLMF z6w1imzduq&No1_ZWJ7V^$-U%wx#cr1kIG3_yv+s^v?-n-nEsQc1FfVZsm;C^j@Yci%j&kN^rEI+igLk~!Nmfrh2t(NF|*+EuuOy4Jw?!suUrs3)jndh=K zw`*ET*ztDw+*_R&X3y*A`x=wR{)63xng4%h0d$GI)8vm~CBCQ}%-Y#7P!&|4?%yE0 zKMCcQua(LF zCAXb$CVG!H~ZrToCNnua0eGwLvNb&_}())+( zDd`OrV@i&b10`GNaRno`ZI%eS5)Cx9D zr0@g&oktU1l=!Q^MkuUU8mb0~ryU-RN`^A}M4<-Rz91egQuVPIsdef2ilJ)(*fQ@X zpYp)63_%tlB>0bEY&RwR&=D6GqdIQfSskuzZr{g@XCz5o?Ir$2=#uGt6<>oLrhj2& z_&s34cFTd-^w?M)-_NA{30c6&+PW*?oMfslhCE7230bv#Wv921La$M6IWG|}in`?0 z_akNHrO>%C+^=)Tyt+kAX)>Wg*0JsjI*k|_U9#rmP7@DSScbV+Oz{807rV<3j)ban zQLpt3E5%#8qq-qHJe%!N~7LGfF_*|n$+HL>1rs)hnHZ}~0_QsF%v37v z)Ebn-s&(1d=I26&AP0lAjKonUGolrO0o&XtywtZ9itv(B>2lDjOG$aislkSO9Hl3HGq_gXV2V2#7<&OyGtp{WvcWtV-U%9?l#tJojM#DfdJQw*(2W|kz9Z@n|ZUzB6misc= z`NwtIXyB?8i|rh4e(<<5+$ku+%#b%_-Fq((t|N9S7u&!!r8b)nY$^Tnas>mV-#aeE z!6*BT4x7Vyo>p#xQ$?QEdPbPC;k4wD5qv{crAP9Ti$d-MA zs3=!X6m^8R73OH9DZAkS#3;+*xrUY075dH7h081pO|8ktw)TR3Z=UsPomsJKrDvpp zM8R{4xkrD0KdEMDWK)_g4n}x&-z19Wo8xFnP{d%w4>AA_K~Ws9hKo3-9O6Y`^As{r zdM&~Nwbine|9&J$q^Wc~f-rR%HA6GQq?}=X-=TV|+wa&^o?P|5WV`}P0aJxTbGeJXusrSwOtLrd;xJH!uIh-LJz@Zn{*dflt5Al&~uz$oCD^{8@~c6Ow; zRz7Ua(H$vgh=vNUQuT$L-nSYx<2>s74JoS;8s-O3K}BjavdCw<9Dn(u!`qneEMD@Z z>FP^1Ry<0|7$XVWVwP>3C4;JOc692{H6l>1BE`!moSCG^HzQ1qDQcQIr$xw)(=G#= z&5ji8wLun99GXe+dA*`)zPe#JtT8O9uthx9V?DyUG?D#ppc2|)gS%DXR*{YUGG`Ml zh+8Rx6nSvTqA$5)!M?sx&LJ;WtI)#B!i*(Kv`xD)vG5P*Z8Wi9&)|1E92UXN<p}vL;8lv1sKYi5+l~6R25U~t&9SM1I=^ndU&gNgDi;wT zXzY2@n(q>r9EUSvjb-mAvRNvE?H})3iEw`T*TXonkms=e!Kto9!iWBHAJDvfHTI91 zu@TQgOvQ-)aQnc9Z*oYbyyNK>e-PU|%_l|t-1v|Dwi6Bt8!O?Y<^~}m3-&qpJjnrb zcnw$YIqQ04xbiK9xo;_0uyQ=&2OB%wuR_$!LgQ;{7yU%+=})+(DpRQ(sHF*mIut(w za}!9vTa!y3FgT!ABL7i>t&-?EO|Kts%*arkj;fNa!YJ=J*Mgjjwr53PMHcVn>a0n` zg`P|EZ?Bm%HQ%_l zJbo52IgP}4m|K$Yl`Go0K11@@u1pv}iQGn7N=VR-Iw*{3lz&m;mmr9#TO=RF$Z3Grb#T79Y`v#Lk!DitQ=a=r3Y$;3QNjYI5(>%RI zKoX{TLFP4OH~F;EW~(Rf+WWgYZp>FFXksFRm`H{<@O@f@^Ul@|ED70u4>|87KCf6$jnDQe*dvG@ zipom{CY7N}I%c0TmGtY$iDnBN2bl345Ll!btIgBzi!`5cZ*cE7bf|svYIQv1=fu!| zCiwl?_5MzxjV-?dcZrq;RT#CCOY1jT1VHb~_lr9)k4MgX1F+8}BdC{N!bcMHw!qW$ z$=?3mqfzT&@fLCr@_@{{hx}!Ey}Z7q3ki3y3Y65Ql}ST%s~_J_g!%w9&WxF2B96B) zP=Y`1wj=>|xh|&8@ilvLNS1AC;vTo25Rso>ysz5!dbJ%46&=a|1H5JqM_XKrAg9H8 zVto(WFOk_l-w^uG7}m57n--*{iSdHd^#?UV56LEVndTRaW!QOjinHmoX^w+Ldf1;? zgalNq5-tU&*vuW_XAoqrjMP}GrbT(ypV8Y{vM&=2Tbv@I_++9AROcAi50_dp&}#D<=k_@e)fafw<*w7~-9Tr) zFYXSRr|Gq2Mg?1fgFqZ>J}q-!wuXVH!_DHzq&I|9NU}veSd^N|#o(@=iy6PuKeL;P zQ2cVOFLLSZu;{kvzsVB1$1%PN-^F_IjbL8iE@p@u@!P9&T6ln3z?*kth+JQE3|QBi z&OJL>$l!DR&~d{E_Fya=C`I~Jd@^U3*Ye~`x8-dgK+n8|1bJ;79tHgGuUxP)gVlnB zD(mQRZhLk7DSHXOOwgr$FOnZyj?e1C2#Sg}ooDbxzHyXu#ftHxo3>;ZSx00a)v=WZ zNc2`Wh~!n8Sc-e=IpWG z3E07wVpIrexmkdv=+UX(dZ^KVk^NhuCY_M`9lAo3YtelaeTgC@W28 zYe~f>#z{8Q(>paAyBJZ6za~U(vYxB*rsYKH@ZEnKcMM_me@XMqRG39AwQtb`N+rey z*Zy5pV1%x(CkS9~R*@9M*A|!O@_hlD@riNFQD~MDHO~0bB<`&khd!allvY9xlTb`jBWT*I#kRD8 z^Jej3`7e&!z9MOK(OD}?6>|#J3SLL|0Q46HhfekfV?sM4XcOHiJ_}TTC=5Bj$%wW< zQnUmWfs;a}(40{yvOc3oa<^fMz&i%tlaRLKd2W=1E7QCK{Ly5hdk-t5`w>DiJxv5U z9BLa8p<3l9O|A6@Nx*o))bin;Sxj}%Hsf|=+@15FTaCaFI65=2Yj*#KuVH!@leM7g ze)b7T^YFnF(?wX_bKPC0I~DpBNEYJ~_H?zoYg@^U>_p0)X}q^5h+q$GN0VJyeS7l7w!ezVFqTwdmlBaDsG-5awKmv1YtY)RFU_VFvKrrkldPQ=gV@ zMR}Va3x1y2<(~tk}>gjc3&-s?A%l?Wv zg?vk9uFn4vIv|GN6VQKxnRD$Bmr?pm>R6~0@oa!NGuFb!dbUL8t>R1ywCQNQ|j<-e00-7Qgv;(?L@CJ;!=X-~K-^W06 z4qANTK1#{Y&|P2%HkQfKg@Q3Tj}`{otZfHh@p=0xRqYjj=VUEfvW+|l(RF-Isc*F$ zru&@ku9D`5aJLz)1mx_{=snk??*LHNtb$Aa8Cz|OTj2|!Dzf8EAS*g`RZS)^&#s!xOMVf;;@e{#(*wMr`w^+b8y*}07_ zBw)n}#A8a(gmi90!f(fP7hQcwv~xa@`_`%ZFHoEgyn9{$Oeks}G`s&5HRu`=5tpt1 z1zD1sHhCadR}832hC>)?PKECmq&WNZ7HWvx1`#WB5Z})qn_o$+^lTguB+rvb*oKwR z@s_guWfh0yiGQjm&}mLEsSAH53~;wEpv9}nAJE`GYcCP-Lgx7k4r^nLuAn7Jos|(XQtX-5jVDjsU5-GVH9NI3F_7|$n1vysLq9G_ zp%lF~0bhkeX>D>(Q|M%_6o!nBSWrWa0{P7IQ*-t3N+`RTcK68)Q-)xqvEwh~<7<1= z=PK#&4nLd1E+sUm$u`0Z=xP3vQH=y_=s7e$CIX8i`F53Mmaqq~pI z>=Fj2_7>ys$8dM!Hcqg?>+3TcQ;d@~u=2WIwY=!h0nXID4>p#vn1ozZ@MzYx9bnRpUJe($^gZW=T&+zr-l;cb<;&*#_izHA~+4p2*hWj3q?Cw9A4I0X} z*DwqX=gRFwf(C7;I%siIk0}*jT=1<9%7z%Q7!S(K#vr74$ zpDFl#>7`9f^ulXln>(GZG5+}etpb$k}A;ul8`{*7{>_218-1pj6@l8M7>zn?n%z4*WOia zrQBBC#^S__Kx5`~dWkQ8W;6ASE65vS>k{TpXQJZCr=fPbxS%) zAg6RQqI7VAhxR=Wbq0pwy2B&%iz~#RmYG%3ZQhs)tN$72&%KD7sLL5GQD2M8qU9mb(;VMfp~beVH8N_6{_s7D)0`K{ z1FigE=6Ac-bag4N*YXKclOT;OVZ~zJPq#6v;HY7O(`+ULwbNglLsL(q6#qGZf~g_lss_Oau-E zZ%_NHKVq&g)SJ-F1&UJkjW3R-H?m43k&E<%6|ih+T=zq{n2AM5(6O&=GL+tV<6%nV z5&g`ew6)UaJ3koVUSrvQRn3y(_@_JK`neR zs)72_7K%kVZnL}^F6#|__9{7TbX-_x7}dlKEr_hu)#r3eX+1(;*mdJ6)P#LF+vmY; zn(c=VV21O8N<2#7o|`o~ggGqf6BIjvHEs1~ft?)k0GRyxo%1sRH7BJFZHld(y~lxQ z0it*O0$x)P=T`F+sBf><6(JN8=l(x4mt( z2%ME{Gt#gQN>nTCI#}|@qE}Ap(Lb|F7IKjnTG4WML)aJ(I+?lkF( z#-?^Zv>6QSBwrE6TzJ?}9~o#CB$mnavoMMIwhXC0uU4`L3&0TosZo z!>3XxspB4pmhNlQ31m+ZbM77J97SxX6e55a=xH3@WV)qlFZNMzv@_>Dm-J5)%R6fV zGqz}a#OI$jyOIfnyuJz{u)jXbY?zu{hN#Jyu1t*-vhf7harK`hJ zt?td-lcTy2S^+hhD{*_D#CMlSfpURqH^MH`-=eT&Hhu)3F!EEx^CS>D+{~XA`PR3k zD>9C=*pF<%rOmMHYm;R7r;^jUpsVMQ<4C2Q9Jxl=jrItFZ=Pu_H9EX=cpL_#UBAzo z(#q5y6*YA>>{SOD-xH7KOe4XTXWlTFkL6Q2{R&A(?sc`xg*n7$Z&R^6H7%w0R4P4e zcjE18jN{>_@-tgjV64(^FNID=-2sjxo{^yUe0txn-%Z<9qY<@I z#M{*jXn`X5(%HIYCLQgJLKN<>%aXio7xUmR9vZOxp~;nuv=q$L?EQfXg|k91QNBFn zp;N|J;1hubn!CtoHWJ)z|IyJG{I-`*rT-BR?FVtb5W=Br6B0ItIH@$*PJ_!3@s{D< zahADl%ViS6-V#5yk3xV_LnW_4%$Y9-F&*Mpc!~n|>bm{^#qG3wT6$R9N0IsH;0>e? zJe!qM6qGJ$GB1NQ#%8k$WfYbTQ}iBQh*^7;clS+&Ye^~WXXvtBdB(AL<;yrZ$pxHc zOVTMT614(nI+cH#*(RsZ>J%Eh(TS`j(`vvZugIfL*xMg*axq|bsZ(6ZEbiTazT%(t ze3C@6X}^<^I6uYcVTGTzG+Uo9b5Pwo27g7TzW;;XI#Ncg_^`jE6vqoF*YQhM_BN7z zXJg4MHw|Yk6Et%EM%AUg6e|#XW}EMUzy<{}$U4{N+lJNyxxX45D9M~&v>7&)IF!GJ zWEu5$XWHtzwIGa3`N8wvZauURz2fxz+DQI%83?x>cpcZ|s0U{VfqlOdd8|!LOkhY6 zI-eGNH~e-z3}G%FAobO^S2aib_wO`$1VN_atrx4C#mgW6y7h2hr=*CVfN zT=ZqJ?TuuM*lMoAq&Y2LXlPkuzuk>KNwR?BDSpl~T2Qy*1n=mYPMpFw!)1cVo(tBA zDI{y%O`8OrQW)7yaZxkIk}yv?2A~GK@BXzt{!#JOILeuA+6{z4lo_IzgaJp(qO;hs zDWvGychRf6YahXZOq4YNMYVKrOjt6kmLu%~*g*E=-`JQve|xlMd|nZIbDo;#*}q zLjtEP2Aysj%{C?G)0yD^W(vf5=`tTr%CU1fO4VXE?0(AoILot~%{8F^-=o~zd1&o> zo9yFG!He<|k4n633Xa30W*2Pfw$zAH-p z{#KAcV(SM=3!7OlKBn>u)?-krVocTd4|6U!8B-N4H$QVHn;4NneJn3jg&IXcl7y#5 z5TRAB9b}{JoRG*WyeUy(3Cw)iqD$@8HURE=FHJ%fcz47CWs~Cwo>%ZiGOuTQ-(@Z6 zJqrcbbWkeWu5v= z9jXY8G@_+4=ni#$@y-8#7eGyw5rmp*I!sz6g!%XFM@O$#YzkC3d%~g0Tmm6WT9Rsz zJkZ}yYCA~W?e74>E`(RU@_+2|dv5D{|MOo&m4bqTuH~bS$cEi&CR-vJC&&NgtamVp zO71^idX(4~1&|Aw1ZRt7EIN&c|H;+NGw1EtS8D^&+e}XbDxU7hKc&7nC**am$l(Lf z{b|u)U0qW+T2z*@m{Z@BhrhQb?da<*NULak|M*k6bl1n}QYKpt=nIan7r({TwVKju zj4C@vCByMffr5H{5Qak>BTV{&i&5^vtU0T32IX=M7wokS`g<(fpWCNe80~Pff6HLl z412NZO3X(q*i8xU*mS9E2d%Sc3pNF)5PGd^p`R2IpU+u*Sw(u=->@KP-LB0IDswd}Z9|bZ#%-@(bh`!^4I`UFq(MpXPMB}!@Qa6pX<3?RGEg-bQM^bB%s=uk_A8tsVBjVRGi8Gizc zCg*R{fB@N3wY+@th%8usB~5q=ZyY4Ll^m0P9x>iuE8-c&qC|(@Sl!0T34L2U_=a#< zU!S;XQGfBA->vfkmhVQ7tA+bae!mVv7kBCL%><-8~6?cDQ^ns^sqKaC$`0 z!~~%Pa`LD*+J)=%%u|6D7@D<_mqgVT3WuwdB+f+z0%I(?okp z#R_?MVIXdOx>=k~v-Lb=&^>)L&7!6A(yhnrY8Adm#imT_pGJhDW{Hvt4q?UAw#$yv z+L}`j$!z>6zSD7E&CbrGWTQz!jzehpn+kHM@(Wn4TE?4PT(XV=`D^%yG5Y3^DKc1ETsxS(*}vgC88$iX{WF`i=BIOA zh9Tuv>HX+JpJnXB1b^>elSJ27tkq8j9zlL><=%l0`=a>_ensEhGnYSQl8RVHr_u49 zAi2bAv-2ky1t}jA>CFM&M8yx^d9v83;_SB^x+juu2MpzKUJALejcc4x_iKB`3r zT(lW=mF#}JUe#F{*(d8XSrUEwJMizn9s`gN&$iYRM3d(<8;KD^6Tkxa-z4V&`u__Y zBQv-EQgHNH{BMo@_P;mzvG+d?M=6KboyHQ}3M9`C{BPLn2&noJ)&VsML!U>jQhUlB zQtmA}5`?RHQ}209F-volP9%dR>vUflw#$8Br?=O>+*nlIrm!i%N7vNM!1)`BhPjO3>HJ773X_F&|2gc$*>2}&1gpdLiDQ_!|?<;9c zdbQm*6A)Cs1n@Tv(t!YmRso?z{T%2+sUy!j4~$`?c3>ZhL9CP`|sJO)FX_H6<)&Q zsaR+@dhJupvibNyTQcxGS;a~}rbaUYc0MYo7xzsW4JElOD>={_ePA)U8S|Q+p@Tq9 zVolNKbCd^_+=)vQx~rk~X{sPKdhHRDB!(m)=tHkN%O_fx@ca3Vc@zDs!hI<=h>N3w zKzDkaW=Gsg@TiXouY?o9bRCtTKouqT#y?2+Q;Er$>{Rgz`Vc6({Phv~Dme7P7b>9~ z_ha1Lsq9cf@gGORn{-cV=x&AG?_cd0rK_sin8~RX+Ts=_f+g+2zxx~rfO=$MywTwjI-9`Q<96k61~<` zt^0+DvgpsjrTf}GJXICty2gv;>$(ztQ5x77K-E1GQJdn%$`|bN8da>M3YGq9lgtk( z8lz-AAp+q(B#hu*t=z(?5P9gr`sk0^>|yObW=GUxM81YG+z4{;@D7qPC*kJCQpLcC!Ie3cSskI+y4l#&GacqW%YWPtW>Ml=J3CnEb%3g z?c2?UY?cNZSCacZ5n~+uMG3C(*laX^9l=p@LuHwyU)V@zW;e~Gj!p9Ur~AEvdyyEg ze$zx-3EHba-Id5#P%&@eMlZ8~LdSlFf(0%ZYd0AcFC9+h#4k9|MOG39HeckAkBlK0 zuAp^?9r>V2m4#qQlyY-UvkOUnc~2!Ku5}SMZ{tE3kgP)2eSpOugD{De#7M-zPk16r3Hp8c)DZ!*j_7BYh3wc-fZzR!UER6>BM{_&1L-rueMH6H#9iQzkoBL0 z0g)6=Sp2V}A?!!4&v^yJ;#1}Ef;4IAhPWXsb9loL5`zJd&g*`zIAv>(A^v56P2caU zfinM7F41QW>g9VWzN3o7qr{x^Qtd!#Hi4=o+7Z6H=p?4ZBBexs^E)jkeU7h2} z;^7+3g2B{;>fn*3u?&_HP#>o7%5x{~UVsZ#Ey zuuhl1M>qt!SOH{BH$7@6Xwv)~I{6jc$s4-~^gro5Cxysc1JIrNk*Q|G-tqvLH!O;g z_?c150 z5idj;l-rw^B6)}G){s%mQ9#>;=pZLk85|JtA}4)$4SLiBpk&-;#yVLy5Y8lVMwV2> z7LZn~Im)c7Wf`reQLriW3|}kOK;FnRuCdZ*p~2;?u!^+N;UNJ4RET3kw~7Axn{575 zh71aHHA?wYM^@0fFjX^p263j$xkht;5vFp~Zsp0;s z6nF1RxrrdK2ju5!8`#P63n4MYAX9?)mW>vZ&EFgErXbCTx{U{dalu0Y+8;aH{z|Pu z2s45j0oqj@ zM}?lmI_J-)-!m0C-PEcOMQ+Tt*KkXERaGVf-V9CND5(JSqLpfg%%dzyNFJJe&Wj$= zztA@j9-{!d(1RYlwJDp8%gVdvHo>TEk?wO%1X0sUY1%(K5tK#G(F@E>MV%%uS=;DP zt5Q^V+^IBoRfzJSVGA@^Ck~(RmAkk|q0MDoG{@0$M&wD)u{p;R?F#3JEf=m>W#BgG z!4~r^RC&8BsJ6um{wHx*yHXQ?wGprz6gFmEY%HJO`?WV&~ zkk2l?l7k^+)d@sr`UmNq;{(yko^PZ`{O+C(;sgF`iUhGji6K3mAPeK%{i@Nw&A#`| z-RBw43DaUeL2+~w<2qATI}wFYNn-%&rhC$*RFUM}zf;VuCZd+qtlS_HV^w@x=Fq5T zes^cJ0?FOJ`4FdqB4(xJmhhs=1iMC#u_lA<&(3Snf*8*q-iX>YQkC8NSOpZiLP`*i zHZHXCXVe+gH}C=1Up0_kjy~`uGuKn(q=;fdbd#ED9BrcrId!DC_a2~19zw9J0ZSKi zD)+@#g7Fs!Ygz#B1hL0mHXW`+p8*RyJ%vxkTFG}TP`F}ibqZ%0wwsHa#U>dM*!!|B zARQD1QDayjrA6zegIG>U|I^A3H282K<8{e4U{(QJbpLw-E(4+|Jkl zy;g=L69x@UD~Yl%xz=7w0nD?Dp);jgzxh`ua?`c3eV9|IQ~g!XC2+Xo_~v5@SB4mb zSYRz?WHN+V2F`>a*?WY_(DP7=z~6b5pZC4Xsd!eADm81E)pzz;M2+-Ql74@PgjFOL zfL|+3lO0=`A9oWMOcpf6^vK025i!2Tlni>;WGrRy5-Fsil`x&}(&kF41*x}II?2-= zA~4?;VWpwZ*)NTa%--an$=s0yw104XWt7RsJqQ9)_?d!Wsseav(JCxsm5-WSPG@D= zdGehLS}6QEpT*(k;Eb9HWO>G4So*L3lvhnz@AJ<_g!~*PT^=pKm{RT6hulS}xPQgwv!H3-k!_4`f}DI-;Cs!$Bi z8{^Y;O-10=XP`zPzg?KVw!|6*ioswwKbd>T-?U1V!^Gb|bGv+UX$zS7i#Qf&c+x8p z+cOhnGXgVBAl3i)))6{;5hik-DiDxef6}3#S%UGin#;3Bm`-6P=@_gE7AOs)$H$0a zOk9m+K=VJgJ8VOLx2-RyRI-u%ZU9aB$)Ymq88RQFs*r^VECeEXlcA zDmX!?4$Z5SQqBEa>rQblC2QGT$mIZ{Xb_-tf>vgs)j6G=g?`ivB%YPJV)dPZBTnw{ zS2P(Ihdu9xqHf<5c8nKmqxm`UH(c#Zq`fbyx}_wmCMIt~EjnXXE@RH_IK2+h^6%CK z+0{5PE>>Bkex9RhisA3aZe&(lA+1!x(xq?h#ovU<=pS|S`>2U!`_gWbO@{4NC&wK< zud?G{VJ9r(AFbX#!@3r9Tk_<{RlHR21V!HbB&UqSI*#!*OhtWqEsPnDz|Mye?-;%VX)JpHr=*~2c(lf_X z*zflyNs>;XjVCFA$tEsM%T_F%C298=(E^wa>t!Rd)S{L8)oH-Cb5&>M*>3(onXhJtYASA|CwY2!bm)40GZRO=`L|W673Uyd)7IbF)$uilP_yZ8Ez>5 z2FIV!q^UNvfIbVYPw3SqIGXNRew{4Cgq~ZS4d{K{C9AI^jc`gbZ9kU_S)VdGuDHdgZ>tM-BJU--hwqmimK9|v z>5w9=b_A`vX$hhO`WE)6kL!QEgLDKsI+CMAK8AiC~zb*$a z%p_{5kU9%T0M$sT)LDQ0P^O4bn%7Q1{bqT|fvByY6vvf80f_BR2@{@beIZw6hGx)e z>_HRO8QMr`r4zt7>3=YLj@n}S0oN7Ti1+8C(jz!&D)TgxvhH>%YqU_j)V8Ub(T>oN0wwAX3Xqlxw?<{7i5XgW3Rcvd zefW^Vq8kdWUnN=M>yt8p11-|XU0yjis1!?%PGf*Q4w@-$q}X;C#luRty3RgaBbq@@ ztH)w+s(i%;TAg@4{9`n~?z1f8NVNd`ND0$PJ4K1!PD6rI7cA4g25+Ip?xP(K6uhnqIH%zZID`Hn6qN zwaDFjQr_qOyj=cCv|f|GjR5{$N!h7@nKVSNAAX!*YdjJ-H(Ec@e?Gu?O?J;XEENWe zU#Xn)vVjP2eWw=|XBSI3KV14uI_4o*e%qjpjjHH;DVFG#&jMX(BoAIu;XtLESXI@d z_|pY)B*v^(B(`v$3WpoU91lA*B3o0P+8JP%6II46^5du_=^&C6#yP9lNZ4gO-_3a; z71`Xtl}Ny-udWzP(r&KoCRJ~0dqhFqcIHL|1cu*G!+gtQoey{wum1%rg1%=y>a@H( z6=sP`Ky{P6$1{U00`@vXe3c`38O1&oGpaT#)zaTx5to6QT06P0)7{OzAD6Evk!n^z zz1MwPT#iOhQ#it~!Ki#mkZb~c{!Rsmga)?^k|SCmXyNFUq;|e5V`s@4r$$!7sSIb+ z@RZ;juzpH5Noo>F<(B7*d~f4Fopkyom^{?&^H^Xe9IKO*MSjK1%&>eZvEEj&@(mQb zU(J_2#kqoi4_oq5kSEm|KFOpu0Z8AMd~b1j z#l2CyRe%Ji1#BfCDaR4%8hORp`nfZC;xF6E2b}lSg2jko_IDK%L)0r0xhSq0qTby% zOisAFRIDv=m4h%Pgh~wrV2bq4z0bw8^c@t%a=jtqHlf*lZG_e=m*UET;8Z5X# zLC?E^L)6MsH)5?{Ww?&#zjGsw?QYVfm)M?+paV+CNtS5K?_lG1!)LP*~0tK2S zW-Gig)!(k0(t!7ZfBA(S<&<0>-B!eXt!d{Ff}>OqGhOP2oyX$6l?&BqsL)yTYoU8P z9YfdQRukrsmxD@&L<%H|8WYq9G`Ho;{s~uF1j5?3nM3K>H<0S}|Mt41(UIRuuoa^x zH@~K~BpyU9?-Lz_noH2bHXE$5iWN2{Cx<*R0IRZwmd0a zB7}VzTSY-0JTy=K_B^_ zyO}9sr4eQD#V*`SuSVt%Eox^*GvA`G)%&v4u=$R8_xi6zsPb5lq7>4Z59#sz67Ajl zFUov`^sFSg^PRSg=nyb4U`~XASLRbqFc+heYW0wAK?8k0G}tn<3(GUjy_~&8cTuvC zUm_5yipWh+qRRs(xj1Q*jk2;!)(!QAEyke!XISAw=uUG-I=Ki_-qC&rNye=>P!yZA zvQ!0gmq6UMS;2JKoQ51LmmFD-DQ1XRS#Pkq9`k7M&i;?MIC(|oVB;y*f>xw?>C)C) zL@3_7W7(FZTtBICBUTY?q;Eamm^^_>Ne7mfT)m-UF#SXhvZfqD~~zo27n1|I;L&HC11Fp`Rtc z-BRRSa6pQ$HOQC4uU=63z;{gB`>mvTA&5r$t9EIiJrSJhHZ=-xALB67k~EcN7-8G` zZ@da=*9z}7xUn=QAs(GE_@=gInkqN z8G_T_5&3GT(iQjav%}(OIl&s-xX3Bs)$f|@8`a$*im~el#GzC9{4(<@iTt*h5j-mH z>6igChNX+;=EN@pe%eZO?y>I{s_$*w8HGR6gc0X87W*YEKd}}jbEDuy=Qe~+#-201 zA!z&yQvFdIL|rRojtXn4@D7zyoC z{8M6Ftn`&Z#x(;CT#}C32C;nsBO0l>Rm_{rp%p!{J<8un(ubE3yeE?LD7o{uBn?^= z6{?R)0+%vv$0GoPnQ;`}4pXie7DCL|}s!@iEPgNrtkUg4%xq(!b3_c4h zkTrppZ4b>UUVDzlrsOu10K?uVjVGVunk0Qwfo{BoZu+@v=+M~P50o8DU&;Bp16v}Q zt@$BQaX^?bbBst}2MzjHm_nDlvWsAmx6PtB(1?!T8O_OED4$h+_>S#psMAscH0ljn z9<(Qq*#09S9y}$vtI9SmunOrn@Y&6Vv@m6g_>+s-#|i##GS&=qaXdV@B>`f;WTg9q z^#VBo$|Lyr@VCrk`U_y7xd?a#zm!0xV@^Jvv5|h15UFYGwtY$}o)e%}*W9?fKHP~5 zQ?hw%S?&*OqNqW9{*MCO^m3|}WVf^={L4ujJb=VqmE;N?XJs}}XpE$~gCQJS_>IK} zrJ#S2saK$oAu^YpOu#mHxz>&YXGP&JZV~;=~{G+#bzO%XJ0- z5)e5-hyaU43%_eo;nqZ}KymxOJtr~X_g!;iCDW(3rG{Kl$Qg?piWW2R)Q8f{!y4`v zvEF{yoHES)KBm?oHYn*6Td;cCpe4}gQq)FTR!7rzs?r415l1 zmxHkz#&k6)*Hv@S8t!|W-vv9yE|0hW!c9)c#;sJDF99W`_2k@PySh-BbV2mTMa!A|_WePQ+v(P7=2sCef~aQxK-|DE-zDYMq6T(|ZU7 zqP*sr$VuJ}Tic^DM1WTn`4*dgNHmBo3JoaKU$`TKVdQfK!&0*a17S7?osMubkVW!d zbJ4aqvLg#rq)bDr5!DpAg3$?cl3G>>26N)v6JkBmzA%-E51oEFtqWE#8E;4LCl^^l z(pGA-^mOtVi0XV*rcr-NZO=f);DnWYDh>6CT3sZVB$Re*q}qVlC9)l_qgKx}v_Sp; zy8u7bu96uD;YwYQrJqu>|D@Am7PcQKr+F|G>!LK-<1Q1O%8?@Zetba=u7lFyo0!Cb zGRAq_0R*x00mImJ(l=IXj@)7` z2$v@m9Du5PA?TYR0T+jr!APtps7sD!EYKj~^1hZKX)6>a=ux@Mxzgt|gVa#6NDX92 zV?f2Tr3ss`%woG1`U#3jv6-ZNO4lP88AW2qB~BodjKrZ|5$KGS=%fYra{J0|$i6P7 z7MA#V3G8Ilh4zoW{XBTW53+$Uhu=O1GbnZRA zKl1qW*9`2Ih`1J%pCeVW5E)8J^iS1)P~-Z@mEPMI(@~){67T+LRLEC)u0?S+n;ww294K9 zvmCS<`V%AalZKe7dtII$Ds%Op9?{(r+2gz@)j`EIXlHjz;llpnc-!W>DrtRN#fWhC z0&EnNYetq7N9_x|)k`hQ#Qe_~!q|I=E?-SI@2*SEPdFE8NlnOGa(F}N6AuS(g}dQD zOZl+R%YuX`#lZDDy=?(?2-B!Xr?cfMphhp%6gAwv!Z;(t@<` zK>+wn9$TYHp}coISZFY0^7BRQ9cX<~Sv%qi_|mz+9{g7wp(RXhys#EP8*Qg&9}yd# zE2Pe4gUV(`Ko$jFm?hDWkok8MdFf3wkXzFk(N@_LMKE1Smo{6vl_iE4m6^y3EcBCE zZB5Hky)KND*3la!=Z6xRt@xTzq<=AU^WK1`-V*1dfCwDRQo$f8v+!L?Gdl$EpXi6$7$S^qR{4qP=D&_7qh z<6!$m7>;bbeWey{(*Pl!hq39&b&|yoQ(IP6V2J3TCKyB$#_K*nW3iALrx7N|`+R0i zO|2_Pmqe7!M@5;~2WO0Vl%TsyQ#FSx_6dx0`_rrFFKZ z{HUhPY{1ZQ1tA%lX<4zpqk^l3JuP@%pf7`OUc-}G`K(*hLeb#{Q!`jr{Eg1jTA*df z_TNNwF7@+9_dO`TMACEf&e995_)1Zda@mzqS7o}v{ErUW)<-3ooxek7g zI$1G!uF6%W#k8yXr+D$=Z&U9-^s*(iMA>X6dND1C@cTh|S?EYGrZS4=ayH{s;jAB@IqznwYpFdCDn;-RnF$m(Ke#Uu2PDe+O?g3DMI73Ma zjykVz23EwJCY00D2H_esif~B}2kseozwEh1ID$3+fu~8#=h_NHia%}bp~3$$f|_rr zW#0<*^ZK~4B{UHZ9jLIlGz6@$Ll36?<(OxQ%rPZOdUz=YtHe5VWZh>9($hsUEDeNX znFs;G_{u+hKZ9i&6KIeHNom8?4w_&i2+xBrqb;B^C!Gj^AuyB^R2}u^rljc7?BrE_ z`v2G5S4LGCbzxq*TR=*>Q=|leOSg1)DGEp<4VOl`q*Ej=4Fb{#(%p@sbSf!5=YHRs z`7yI*eh-TutoOa^y@!4F+3(r=?B{t@E823}1MC6IEeR%SV+37y*BH|Nc(Zb;U2OJ= z9Z%}4^6t2CwSg`Qr0A{4;mWPeR_X8Jq^V+fQ6_KydAaA=j6FvzhF%6{TxzC9W+uC? zSYnEf&v=uxwO#)QxzF@(|8W{CZ|bFQlDJn*Y4!2f*=V~e=~VoRS>V{KKc*oWPA%Qk zF?SI$%uQvmL|%V6mMQ#AfjKxF>P;5b!ym+@{y{cDSp%2u)h{Rd+SQNb`2|ToTg^0)`JjRFNbRoT0wFFy9a zbZ7+D6rLr!#(vcEo_zF1B|F{8Eu~S{29J~Z6<@&Cr@YcEz0tVTn~7$e*@L~W^>wXv zQb`V3zdDRrxCO;DQmdHw6rGq>c1J2J-ecJ+m#u%~+4lN^9zhteQb z8a~zHyzJb}dhz+64Fb(lO;gt?q-V)QX51udY)b{LN|bIzx3UK`4q@<5!czhvqP0_| z#HHCb%f)%MKL)Ti?+QfL`GdU9E1pG}bI%gjq?2raE*q>^q#h$1qR-D@^r1sxe*CDG zqdbNIX`}GU#$GDevQGznSW&jcf@-Hun1aocgP$ZI;F~|;!h1rA?yip5^&wu|SLPbp zId1i-1iAVzY8NrqNp|S#;Z^unrn}Q=sv*J3j7)gt8^t_tr({XLOkbER4@j_(k1{(| zG0vLkV%fs+il$mA6~mV7IpLA2Y9uqQHsKb~RwMg<3K-ARA1_mV6&*-zQTW|xBIpXd zuJcz$JnytdP=C$JSc+A%JeMIMB7u%kGonOs&%c4DdpC90T^o6KLb39Yf@LeFv4Z$F zP*+%yn5cu86pNB#9*%L2!=OKV8Nt3ng^-8K&VbP9)J(srfwT=PMOLt7$fxn?2TEH} z-I5OOLr4x6aovIHxaOxzw734}by&Tl%{C44|Tn8_xjGOq} zRjz{?r>dE+SulNj%E<7nB7vDSDk@_t=qgqJ*OsK6s8~I;7d1pWk%G@96ZNgyQxuDE z+;WMV&g&xsx*8dTYjcEiN=l~t)6GP~Eq!8J%qVCr(MT=rE1-gDo*xW@} zNvVBb`&RedA~7log4wn%FbFTQ#i9x#)~LTeRZ+P5i+X{#@rMYV1sySJFST`PO%LkX zGM}q}n@NH_$1Q7}k^otd3Z6|sstrjVKW37@2xRNY>iS1U zTWCyfo4P+1HFwz~=CLrh4WglFSspW)0_YH*B5LS!<1Lgu{vQ<2g+qd-Pf0Z88I+md zGayYRr#%p0qIyzDg~C=t*5Ts>W~Xn&j%vC~$#kX_7u*^-_@eWzk)s6O=)XUGb5fxL zk9yOA>N}E+&9$T;(R5u`?R^e}ifCj$3L`5-W#SDI!l!YefxDteqmoYFzH#uV^e{-T z`lGOJDbGiFG!op{7_())XBN=WVMxdnmTEFq#?sJY`6`oSgY$(@BPDX0;o$=sg{@$Q z4nJf#t~pduU_|6GG)iRiEDARv*T_#{8y^)}EDF4J-t{=oZlhN>50J9W?w;i1y|&P8 zn$*Q>f=LX{))>B@lI;lU^A|xWQ#W&9w3W?^5}&hW*qe3FFeuJ<)uJ{DfN#8dH~LjZ z-J31hAv?5Ny01e}`FXU$d;yo%(MT^Hx@A*Erdh~_19TAy>$9vxe$`ePiy^|S!7-RA5Ep2s6=t&yiG;^ylkYnar|S{U z{9J^ekHjij*}(Yr#jF%<(;|Dyn%`+3Dx9G>U`wB~cjnbViv&US_g)QH2^OdPh$v}+M^+^oia6Q3axQrw?l7=5dyUhI1nYzVd{P7 zpX~36xgiqo=Wo@%6;aMBWoxAljit26p?qgs=pcdg(_qM@q{%Xv!)P?zow`p$;&l4i zbmd=8f-N%=FLU^aO`l4u!9{_{gYvn9kEUaRjvj_wKG$L>D*NC27Db4m>ph^~$=|^F zU`?Fce7_G2r-bO_zyyY)XuG!3hZgD{SiZn+$6~cah7WJLEdM=(eZuAg`q3P(&Cff; ze-rD*x?;x4rx1#(#;Dy&PBvoi{mn;4h|aVXaV zXZ>uvy04_4fpqi%llXN*>p%7On>s!!MabKz;K8BSp$T+Eyd-J$3wFJ{292rPKegD5 z+mH^1XbUxpZAGx-Ze7+TJQ*QVzORVM(5UQZ7Q#3uEvQM0 zw4BS|G}(G8m^H!8{m%Q5Y$yf06iYBJ2Oj+-gekZfTW0m2c?UL3Dd<)jbr_X}CtTfx z-|M{FarTcxQN+&po+k;moBQ*3&rqzNLDf8T+~PlBXw-8XYVQolnlg8dE96~oLQxU) z|xdKl5_S(!djt1i;<&@vNZz|$AI1)>Q#FNfmpiX%F5KZLA zq^lBASR2Y5yMKch^W5~V%C7IaK0TNy@^C~I#@wd;_5+%3<9h0b{~^ra=ZEPy-_#WE zm$8swf!=B{@R}w5AeJD4M2kg&{HBc!Y3rAX-%;niAS$viIbvARh+)-BSob?7yha%h zUdb0daPjxhO%vAC8uoL%Y=^r%s$l#B^srxgLM` zP1?K3ng9ZGxVP|M*^H}yD3?x!8gr)BmKdr|ZHsar2k3%Fj$~ePas|f^5x*HbQ36J5 z&Ey3s?C%a2stZ#Y%~0>~^W5B}I?d z*6wHJ1;J-}X(>}I=nb!|%)V#3@nO2VL6Q57c=YQU{#w14qR_gEgtY0wSGAgD2K`_& z3jveGFFQn(2yz{V6|o41k`|{>h>(ieUwpWF6qP0srb>+b_8=X?M^9SM5p-bn)b-Q~ zQ&ky})}7=RV6z&>5WEOH$VVeJ!befC)@%P5wRJm99Tg`xqgeaWZ|2-E^KYBtXj6%jYtb0bLJ1V9f z`R4{z&4wC%1Ig}vuh4XPLZ2A3nSXs53B^tSdBRadi_gH#P9{t7Z15tqJ1*)y#B<*T zh5l~uVjK)(4lxYo{|uw$JE^;lgv- z==`~2qZ|CY?2RSjVHsC{-Gc>+NleY-)DE6>-WuxJ=sbO#ncWYoLtzYj_1Yg<_y&&` zb^5-+;M*K7$RC_Xeu;2Vgx2he<%K~l{164eOFk3-T9*RNuz7JjL9KD(X97!$5^#IG zqOy`#X@Fy=>RBE~WBp_fYC_DHpsp;N%7TB$Qj2o0*5{D^_{7b7m6MfC2AGJjeKPd< zl9}&JUl+sJ5Zp5B%7+BoAYvIUB^*`G1Spg^A7RG7=#Qv1u;CJ^G)M_TtKLshks*ZM zp|HWozTQnn!6BD;rRimL`-}xG)3o(WMT)w2UZLU0VO-6Q`YdzsFU*=wlOE{mRJBj9 zq+j=&2F}{n6pa|fA8K#ism-{Q9i`85(_>_~7F71L>?gjRDyVz{(P1#rSt1@lF0x|W zbdWRiNpXgxz#y~G53-6td-V+_Y9EDs^c)TcOO}#kSlFshzu!B4`8tExyic54gKNY!uy0 z(blMmeG7y;Ng39FAZ5oNg8QEYH3XekS)I-0yuh7Q9xoaNX1G z@jQOpAtlzFvp(UDzd(t-dAB&L_+?HDXqHCEL@wKTfllBGqlUdG)?AU}wo`fQh*VDf zj{EcKhh)jCLG`Gm1LRm zV{pPng-PC0;uLmdX?KQNm4f7oX zGI}70{=e~B!HMG2s0D@eWxy*kuUFdP78no-bT3J4uK%wMEObLnU7GT1wXZ;d&nEf3w(1K}60bWO$o5k`SOs z^ZS!D?IrJ$1;?gU&;81#HP>P8W$+n;Hm|=c&2H)<>!CSM-W`MR!6)=s!dufvmjrq| zP(5tF`t>p4B+Ab=cYlqlrMNIKd#`Aj@>w+FpADr>L~<%prQIxy&87V-xN|nBr^9YY z8_*JLFTNhDK}(IPpe%P%gYkrPGtYc_nKiU_(g-n5jTxU;Y%vioa1ihGzREak$2;J5 zSo!K=V`H<{=B;+s=6#CLjkN3uPXpcJV)Lg10|N+6-ph6%8wrFXn~bjzVA=CII3ZKBbu1YD>N3qlVtKmSg%jI^{`yWjwMM1@`&TcUhB(!Br)RphFc9^CVGzVFpivS zR6VJGJqIzLdV3dc2YE75{v^p&HP-SmCGuNg&DQ4^h=&N>mQa6uw;E~+RYRs+xEsHp z>9Vr%$y9auD`*=Sh5FplET9kH?*S$r2Cx&zU7+nh>!dqSjF|r!B~Sa=6mWZqiv{Zl zYS#gvY}tbFbnwr883JJVbMRSp$-6UP>T3E&mKI!zd2MVod-G(wn!(5i{s;^d zZzVy*BLql)BT*q2^hhfJA#}$07p_;EX$XMl)yXCXt)H{@6$n{Z2vJ?oVNUDy6DB6S zvW93Tk4c>OYl+9PXS56>|E+d#pLXnONigdeLU|)vaiO+xm5{@|yRlcuwD?8+hW1Zz zo?cW zr$y*?Bg_aiMVp+L0j>-I6=-Tdbj-UNc}>RqZeI0a4=B`jK%Lv=utARGAOV3nSaZDqT7uGx|j11jurfXzH@Lar8g& zl~Ni}QI%!!QL!dJma`?IZiV#{!u6($BXqb*$M$fN%tauXTC+^3qxf7Uu5}LGF$pfi z@gZoeB9S{=0Fi%tGTh#s1rRd`-FbxOcPSeL~7eS~i-TH{fRZM*w)W9(;#d2ZJrLm(*w&9?nI#8|j7SZ=pSz zh>ZMVo&^a(=_VFO?&$j1MoF;aW}2hg@{jYr5$|t^W^OY zKC9pLfn%wk?|hc}b3i=o%W{o&foqZAnnbC8M2_T)V8$z93a4!y`?vGPyS|))(Iqwf zgGoHK*ij4QJFCfi@*c0WoYAL*Yzv#;qW;O1uCa-UF{YK^HgL{n{OrD0R>EWQ)%kpH z*68b->Hjcx+#LsY@-X<^Uu~z!M$>#pL|Ft7_O;|q#z(}P9IPn^1}idNvljr23>?8_ zp2w=1;iCag3~!Nsz&9!pd%Ss8lI2Kcb0oQ0!KKNZnI|Jf3rz+_%axLg_18wek;@{> zhXq1jOE23xWPUJS-{|OAwFgn@z5Z5NGE%IO81o{V!`e^^4?-9opS#pN)g{skRH(sL zqtp9z3n)!H9=TU$mO>ze=t{CuIxEebdKF*qE|&AWw=y<|(`W(EFatpK+oI*aHX}<2qXxBm>FP<3iKrQGVlHmElZr^87}*cUtfm6C@j}s-Fma(%Woz0aXw1 z@TYb}UcO*yoY!$GRcULB=C#X@0-abvv+PQ@(RncQN9bAgCRMT+nanWJt2)x^ca94k z&bYK;!}0Xms7|AFb0KSvW{%NJ?$7VT(sEt{TQ(^t-vm;dq1E2>C= zjsZ1Vi#h1l>02;N36aTq$(s3gM0WekK9y5%kw$?p`P{HJV|U2Zi^dUiMg_=j8(FiQ zrs6agf5@UTU7+N1`+UkqrQ(vdHT#HaD_^MA^C;X<%%j_fe$YVMp(xbg#L+8?~RL$%_$0&IByRhOG_I`q>!Oqu=y~xxbJ`d=67`!Ax`mc8LDrhGjW>wZQ3UbxbULS3NqIl zY3vwBY-A^Eog0P5i)F<3SwhUxg+@JcKV3SFwq94C?S4`%BM!^1IUY32vNSu-ZR~+s zxFRw&rvh~}y( z&SBI(v6Gfgi!A!6l6XoMlx^fQZ=(B(xm~n5(z+b_1T-tkEY=oD<}ob-Q@5j{<$}D< z>Uaod%KogGt8aVbSI;TA_T}BwdXrAmZWc*zEi)Rf$CwaAT@Gu*BM*+_bA{{6@lSBP zjqsotoq;8xSa}SR%W4Q2L=GL`WCS7e?;@)Zt z(kMtWV1eGS$rEJLn}1uBT;54?#K`d!J1#=k%aU_1No2<9sP+~_b@ks7!CBsmjcsbo z*XwysRlQ-oQNq9=z;^^SzM$P_2kYg4aX@{(Frft=Cu&rwX1=gSN7=7ckwc?9pYkYm z&W)@b+cb5NQxqvE{2c8Xzt(!~`=LIeW_q5FQ;h{3A0=pxxWPS{&ZAuAH>|;ff9k+C zMX|0zxAXTEPu>&w;Tas!LZyj6dl_|9@40}vNH0Lwc`n<}r1HGlU)_uv7`R)M|WzQsqKl8&1MQL-%U-)aaWpz6HX%#^_Z)!Tbrl z+eL6FK2a$yOFNAoR91V4W(1~QRz*!CrCsTdZQm>DlKQ!B)KIpyw5+Xs=cr(*4m1Y_ zt(itxBYA*IVt2<%K(~Z86Pl)1jbsxttCu`HarvIn`bJ%z8d2 z5kaTO*xx8HQ)z@#@HEooVF^0T(m!+f%rxg&`JQl3=JRr~^!ssXyjdxIDe@QgZ6Q5x z*#!mrt*nt9=K^FP1LJ-czVlBo52*4hZyY&ZEFRnMoQILZ@j*(s82 zT8l9nNfoztzxI1>uk@M_=p zEVVyhnZq!f=>^D`nBd@9HQ8w>a6^d4v7PZELrI!&NhgKV}5Rv*&XZrrj z1)8U6MuX}ImEglH1_`&FUql8F3B7IM%Q+&o-9p@V`kGbkm>+6|a zs$W;NC$OyMzU(3Tdu& z-@vyfN|5h5R2Hg=^-h>adPD{~G4F9y--0ND+)D8#d_Jtb^Kc1u>GZ})q|R{R^Q50f zGU(^YpB@S};)4X;9`yTc(_*R$#b7YRSY&j4@4;_d)=kV_Rve-ABy0Yt3vCY}#PEnf z*>5x>5|i}pyVxefRArf%t1T(e2!%z33;eE@7gwNUT*_}%eD4PTi_g)tc|D(0&B?d!UFi3d&yCJG55H+f@*A0IY3{!MmZ*aM{|=CVpMEyUuFIbDq@ zV%WaeZ~Dwi^`V008mWtGvf*aw9qnA%!D^KQOJ=f0!kGkp3a()l2^9@h0l>Lz@C z)x5@VJxtU^fZ5)x+{5#GLnZ`rwfM6WaU|~-3hT<1$qXg z)#9nAOD?R-rtham*2R`{PoQ}If2L)?+2rf!A;hsWvXW+TKAAT$?=E`vX)BZt0Ts-0fPMu4RDGKVHIx zaz!_xfVORMf4=(1->v7{ zzvIO4Yi-Mno!UJ>odbi$eIo0}?Uqx(X;$m|iCXCc2_oxhF5u!GLprpGwY)b11!y#Yum^Vd0tl!&C0K-H7 zV;$(gb6Sv%fuf#*b^!SPC!ogJv+mqF`r~ih`;lDn8$haXO8qz5{1zGVk;|}<`4W(x ze8Zq^Ge)N|2ABiHjIjORi$TkF_YKwlhgGdd*GKO=%e$*A0EL=yql3~QgUXY@+rKjS z&uyA;MH?e6G7xj6VbJQy4FUOCJv*Ym7N?I=9#0dNs5%_gKB!B9XutNN!AeH_JRbhty~ztYu-e- zDtYI>UcjexjxWH^f704{)0!z&DsnQwDEw{(6J+Xz=rof5^I_8^>UqYDpAke$AeZ4W zZmcNt1NpC7oDhIxDe`$YA}@zZh1&W#t4uFW*_ zj=~T?K_&*N0i+2aZ6zW?_~{R?-?8t1_%~fNgZc(wg}a-iy_<|95S1WOsXzlOTDIqZ zOFjSJ>Er2>Lqwpg(s?S@c{(9OfZ&=t-5ND+cHIQ);}R6jE-)njNew10 zBue$O_c`lkfqw+^fc^#WK^!tJk=s8#m&;C_<~I%IHxm&OXA9QxSJ?j@X5s2pd?wBseNcfcI~K@e+bhQz6ZJ?wwu5dijqHON;+1VTBuq7?goM7aNJ lDEptG@;~nM|L-Gi1Ix83ewt%y%Rs=7lH5z#Drt-0{{gy1X +#include +#include +#include + +/// This class defines the interface for a finite element. + +class stokes_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 10; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[9][2]; + for (unsigned int row = 0; row < 9; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[9][9]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 10; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[9]; + for (unsigned int r = 0; r < 9; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokes_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 30; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 20: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 21: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 22: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 23: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 24: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 25: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 26: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 27: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 28: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 29: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 30; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[9][2]; + for (unsigned int row = 0; row < 9; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[9][9]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 20: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 21: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 22: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 23: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 24: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 25: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 26: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 27: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 28: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 29: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 30; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[27]; + for (unsigned int r = 0; r < 27; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 30; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 10: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 12: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 13: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 14: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 15: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 16: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 17: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 18: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 19: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 20: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 21: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 22: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 23: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 24: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 25: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 26: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 27: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 28: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 29: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[12] = vals[1]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[13] = vals[1]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[14] = vals[1]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[15] = vals[1]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[16] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[17] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[18] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[19] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[20] = vals[2]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[21] = vals[2]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[22] = vals[2]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[23] = vals[2]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[24] = vals[2]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[25] = vals[2]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[26] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[27] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[28] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[29] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + vertex_values[9] = dof_values[3]; + // Evaluate function and change variables + vertex_values[1] = dof_values[10]; + vertex_values[4] = dof_values[11]; + vertex_values[7] = dof_values[12]; + vertex_values[10] = dof_values[13]; + // Evaluate function and change variables + vertex_values[2] = dof_values[20]; + vertex_values[5] = dof_values[21]; + vertex_values[8] = dof_values[22]; + vertex_values[11] = dof_values[23]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 3; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_0(); + break; + } + case 1: + { + return new stokes_finite_element_0(); + break; + } + case 2: + { + return new stokes_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokes_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokes_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, 3, None), FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None), **{'value_shape': (4,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 34; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 4; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + values[3] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 20: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 21: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 22: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 23: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 24: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 25: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 26: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 27: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 28: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 29: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 30: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[3] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 31: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[3] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 32: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[3] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 33: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[3] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[4] = {0.0, 0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 34; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 4; s++) + { + values[r*4 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 4*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[9][2]; + for (unsigned int row = 0; row < 9; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[9][9]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 20: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 21: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 22: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 23: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 24: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 25: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 26: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 27: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 28: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 29: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 30: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[3*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 31: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[3*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 32: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[3*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 33: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[3*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 34; r++) + { + for (unsigned int s = 0; s < 4*num_derivatives; s++) + { + values[r*4*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[36]; + for (unsigned int r = 0; r < 36; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 34; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 4*num_derivatives; s++) + { + values[r*4*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[4]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 10: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 12: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 13: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 14: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 15: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 16: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 17: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 18: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 19: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 20: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 21: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 22: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 23: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 24: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 25: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 26: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 27: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 28: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 29: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 30: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[3]; + break; + } + case 31: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[3]; + break; + } + case 32: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[3]; + break; + } + case 33: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[3]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[4]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[12] = vals[1]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[13] = vals[1]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[14] = vals[1]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[15] = vals[1]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[16] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[17] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[18] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[19] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[20] = vals[2]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[21] = vals[2]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[22] = vals[2]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[23] = vals[2]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[24] = vals[2]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[25] = vals[2]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[26] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[27] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[28] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[29] = vals[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[30] = vals[3]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[31] = vals[3]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[32] = vals[3]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[33] = vals[3]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[4] = dof_values[1]; + vertex_values[8] = dof_values[2]; + vertex_values[12] = dof_values[3]; + // Evaluate function and change variables + vertex_values[1] = dof_values[10]; + vertex_values[5] = dof_values[11]; + vertex_values[9] = dof_values[12]; + vertex_values[13] = dof_values[13]; + // Evaluate function and change variables + vertex_values[2] = dof_values[20]; + vertex_values[6] = dof_values[21]; + vertex_values[10] = dof_values[22]; + vertex_values[14] = dof_values[23]; + // Evaluate function and change variables + vertex_values[3] = dof_values[30]; + vertex_values[7] = dof_values[31]; + vertex_values[11] = dof_values[32]; + vertex_values[15] = dof_values[33]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_1(); + break; + } + case 1: + { + return new stokes_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 10; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[1][0]; + dofs[5] = offset + c.entity_indices[1][1]; + dofs[6] = offset + c.entity_indices[1][2]; + dofs[7] = offset + c.entity_indices[1][3]; + dofs[8] = offset + c.entity_indices[1][4]; + dofs[9] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 7; + dofs[5] = 8; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 7; + dofs[5] = 9; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 9; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + if (i > 5) + { + throw std::runtime_error("i is larger than number of entities (5)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 4; + break; + } + case 1: + { + dofs[0] = 5; + break; + } + case 2: + { + dofs[0] = 6; + break; + } + case 3: + { + dofs[0] = 7; + break; + } + case 4: + { + dofs[0] = 8; + break; + } + case 5: + { + dofs[0] = 9; + break; + } + } + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[4][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[5][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[6][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[6][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[6][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[7][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[7][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[7][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[8][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[8][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[8][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0] + 3*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 30; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 18; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 3; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[1][0]; + dofs[5] = offset + c.entity_indices[1][1]; + dofs[6] = offset + c.entity_indices[1][2]; + dofs[7] = offset + c.entity_indices[1][3]; + dofs[8] = offset + c.entity_indices[1][4]; + dofs[9] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + dofs[10] = offset + c.entity_indices[0][0]; + dofs[11] = offset + c.entity_indices[0][1]; + dofs[12] = offset + c.entity_indices[0][2]; + dofs[13] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[14] = offset + c.entity_indices[1][0]; + dofs[15] = offset + c.entity_indices[1][1]; + dofs[16] = offset + c.entity_indices[1][2]; + dofs[17] = offset + c.entity_indices[1][3]; + dofs[18] = offset + c.entity_indices[1][4]; + dofs[19] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + dofs[20] = offset + c.entity_indices[0][0]; + dofs[21] = offset + c.entity_indices[0][1]; + dofs[22] = offset + c.entity_indices[0][2]; + dofs[23] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[24] = offset + c.entity_indices[1][0]; + dofs[25] = offset + c.entity_indices[1][1]; + dofs[26] = offset + c.entity_indices[1][2]; + dofs[27] = offset + c.entity_indices[1][3]; + dofs[28] = offset + c.entity_indices[1][4]; + dofs[29] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 11; + dofs[7] = 12; + dofs[8] = 13; + dofs[9] = 14; + dofs[10] = 15; + dofs[11] = 16; + dofs[12] = 21; + dofs[13] = 22; + dofs[14] = 23; + dofs[15] = 24; + dofs[16] = 25; + dofs[17] = 26; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 7; + dofs[5] = 8; + dofs[6] = 10; + dofs[7] = 12; + dofs[8] = 13; + dofs[9] = 14; + dofs[10] = 17; + dofs[11] = 18; + dofs[12] = 20; + dofs[13] = 22; + dofs[14] = 23; + dofs[15] = 24; + dofs[16] = 27; + dofs[17] = 28; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 7; + dofs[5] = 9; + dofs[6] = 10; + dofs[7] = 11; + dofs[8] = 13; + dofs[9] = 15; + dofs[10] = 17; + dofs[11] = 19; + dofs[12] = 20; + dofs[13] = 21; + dofs[14] = 23; + dofs[15] = 25; + dofs[16] = 27; + dofs[17] = 29; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 9; + dofs[6] = 10; + dofs[7] = 11; + dofs[8] = 12; + dofs[9] = 16; + dofs[10] = 18; + dofs[11] = 19; + dofs[12] = 20; + dofs[13] = 21; + dofs[14] = 22; + dofs[15] = 26; + dofs[16] = 28; + dofs[17] = 29; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 10; + dofs[2] = 20; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 11; + dofs[2] = 21; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 12; + dofs[2] = 22; + break; + } + case 3: + { + dofs[0] = 3; + dofs[1] = 13; + dofs[2] = 23; + break; + } + } + + break; + } + case 1: + { + if (i > 5) + { + throw std::runtime_error("i is larger than number of entities (5)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 4; + dofs[1] = 14; + dofs[2] = 24; + break; + } + case 1: + { + dofs[0] = 5; + dofs[1] = 15; + dofs[2] = 25; + break; + } + case 2: + { + dofs[0] = 6; + dofs[1] = 16; + dofs[2] = 26; + break; + } + case 3: + { + dofs[0] = 7; + dofs[1] = 17; + dofs[2] = 27; + break; + } + case 4: + { + dofs[0] = 8; + dofs[1] = 18; + dofs[2] = 28; + break; + } + case 5: + { + dofs[0] = 9; + dofs[1] = 19; + dofs[2] = 29; + break; + } + } + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[4][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[5][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[6][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[6][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[6][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[7][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[7][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[7][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[8][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[8][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[8][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = vertex_coordinates[0]; + dof_coordinates[10][1] = vertex_coordinates[1]; + dof_coordinates[10][2] = vertex_coordinates[2]; + dof_coordinates[11][0] = vertex_coordinates[3]; + dof_coordinates[11][1] = vertex_coordinates[4]; + dof_coordinates[11][2] = vertex_coordinates[5]; + dof_coordinates[12][0] = vertex_coordinates[6]; + dof_coordinates[12][1] = vertex_coordinates[7]; + dof_coordinates[12][2] = vertex_coordinates[8]; + dof_coordinates[13][0] = vertex_coordinates[9]; + dof_coordinates[13][1] = vertex_coordinates[10]; + dof_coordinates[13][2] = vertex_coordinates[11]; + dof_coordinates[14][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[14][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[14][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[15][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[15][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[15][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[16][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[16][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[16][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[17][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[17][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[17][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[18][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[18][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[18][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[19][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[19][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[19][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[20][0] = vertex_coordinates[0]; + dof_coordinates[20][1] = vertex_coordinates[1]; + dof_coordinates[20][2] = vertex_coordinates[2]; + dof_coordinates[21][0] = vertex_coordinates[3]; + dof_coordinates[21][1] = vertex_coordinates[4]; + dof_coordinates[21][2] = vertex_coordinates[5]; + dof_coordinates[22][0] = vertex_coordinates[6]; + dof_coordinates[22][1] = vertex_coordinates[7]; + dof_coordinates[22][2] = vertex_coordinates[8]; + dof_coordinates[23][0] = vertex_coordinates[9]; + dof_coordinates[23][1] = vertex_coordinates[10]; + dof_coordinates[23][2] = vertex_coordinates[11]; + dof_coordinates[24][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[24][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[24][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[25][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[25][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[25][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[26][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[26][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[26][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[27][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[27][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[27][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[28][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[28][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[28][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[29][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[29][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[29][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 3; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_0(); + break; + } + case 1: + { + return new stokes_dofmap_0(); + break; + } + case 2: + { + return new stokes_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, 3, None), FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None), **{'value_shape': (4,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 4*num_global_entities[0] + 3*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 34; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 21; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 4; + break; + } + case 1: + { + return 3; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[1][0]; + dofs[5] = offset + c.entity_indices[1][1]; + dofs[6] = offset + c.entity_indices[1][2]; + dofs[7] = offset + c.entity_indices[1][3]; + dofs[8] = offset + c.entity_indices[1][4]; + dofs[9] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + dofs[10] = offset + c.entity_indices[0][0]; + dofs[11] = offset + c.entity_indices[0][1]; + dofs[12] = offset + c.entity_indices[0][2]; + dofs[13] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[14] = offset + c.entity_indices[1][0]; + dofs[15] = offset + c.entity_indices[1][1]; + dofs[16] = offset + c.entity_indices[1][2]; + dofs[17] = offset + c.entity_indices[1][3]; + dofs[18] = offset + c.entity_indices[1][4]; + dofs[19] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + dofs[20] = offset + c.entity_indices[0][0]; + dofs[21] = offset + c.entity_indices[0][1]; + dofs[22] = offset + c.entity_indices[0][2]; + dofs[23] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[24] = offset + c.entity_indices[1][0]; + dofs[25] = offset + c.entity_indices[1][1]; + dofs[26] = offset + c.entity_indices[1][2]; + dofs[27] = offset + c.entity_indices[1][3]; + dofs[28] = offset + c.entity_indices[1][4]; + dofs[29] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + dofs[30] = offset + c.entity_indices[0][0]; + dofs[31] = offset + c.entity_indices[0][1]; + dofs[32] = offset + c.entity_indices[0][2]; + dofs[33] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 11; + dofs[7] = 12; + dofs[8] = 13; + dofs[9] = 14; + dofs[10] = 15; + dofs[11] = 16; + dofs[12] = 21; + dofs[13] = 22; + dofs[14] = 23; + dofs[15] = 24; + dofs[16] = 25; + dofs[17] = 26; + dofs[18] = 31; + dofs[19] = 32; + dofs[20] = 33; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 7; + dofs[5] = 8; + dofs[6] = 10; + dofs[7] = 12; + dofs[8] = 13; + dofs[9] = 14; + dofs[10] = 17; + dofs[11] = 18; + dofs[12] = 20; + dofs[13] = 22; + dofs[14] = 23; + dofs[15] = 24; + dofs[16] = 27; + dofs[17] = 28; + dofs[18] = 30; + dofs[19] = 32; + dofs[20] = 33; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 7; + dofs[5] = 9; + dofs[6] = 10; + dofs[7] = 11; + dofs[8] = 13; + dofs[9] = 15; + dofs[10] = 17; + dofs[11] = 19; + dofs[12] = 20; + dofs[13] = 21; + dofs[14] = 23; + dofs[15] = 25; + dofs[16] = 27; + dofs[17] = 29; + dofs[18] = 30; + dofs[19] = 31; + dofs[20] = 33; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 9; + dofs[6] = 10; + dofs[7] = 11; + dofs[8] = 12; + dofs[9] = 16; + dofs[10] = 18; + dofs[11] = 19; + dofs[12] = 20; + dofs[13] = 21; + dofs[14] = 22; + dofs[15] = 26; + dofs[16] = 28; + dofs[17] = 29; + dofs[18] = 30; + dofs[19] = 31; + dofs[20] = 32; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 10; + dofs[2] = 20; + dofs[3] = 30; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 11; + dofs[2] = 21; + dofs[3] = 31; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 12; + dofs[2] = 22; + dofs[3] = 32; + break; + } + case 3: + { + dofs[0] = 3; + dofs[1] = 13; + dofs[2] = 23; + dofs[3] = 33; + break; + } + } + + break; + } + case 1: + { + if (i > 5) + { + throw std::runtime_error("i is larger than number of entities (5)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 4; + dofs[1] = 14; + dofs[2] = 24; + break; + } + case 1: + { + dofs[0] = 5; + dofs[1] = 15; + dofs[2] = 25; + break; + } + case 2: + { + dofs[0] = 6; + dofs[1] = 16; + dofs[2] = 26; + break; + } + case 3: + { + dofs[0] = 7; + dofs[1] = 17; + dofs[2] = 27; + break; + } + case 4: + { + dofs[0] = 8; + dofs[1] = 18; + dofs[2] = 28; + break; + } + case 5: + { + dofs[0] = 9; + dofs[1] = 19; + dofs[2] = 29; + break; + } + } + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[4][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[5][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[6][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[6][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[6][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[7][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[7][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[7][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[8][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[8][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[8][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = vertex_coordinates[0]; + dof_coordinates[10][1] = vertex_coordinates[1]; + dof_coordinates[10][2] = vertex_coordinates[2]; + dof_coordinates[11][0] = vertex_coordinates[3]; + dof_coordinates[11][1] = vertex_coordinates[4]; + dof_coordinates[11][2] = vertex_coordinates[5]; + dof_coordinates[12][0] = vertex_coordinates[6]; + dof_coordinates[12][1] = vertex_coordinates[7]; + dof_coordinates[12][2] = vertex_coordinates[8]; + dof_coordinates[13][0] = vertex_coordinates[9]; + dof_coordinates[13][1] = vertex_coordinates[10]; + dof_coordinates[13][2] = vertex_coordinates[11]; + dof_coordinates[14][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[14][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[14][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[15][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[15][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[15][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[16][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[16][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[16][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[17][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[17][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[17][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[18][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[18][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[18][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[19][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[19][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[19][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[20][0] = vertex_coordinates[0]; + dof_coordinates[20][1] = vertex_coordinates[1]; + dof_coordinates[20][2] = vertex_coordinates[2]; + dof_coordinates[21][0] = vertex_coordinates[3]; + dof_coordinates[21][1] = vertex_coordinates[4]; + dof_coordinates[21][2] = vertex_coordinates[5]; + dof_coordinates[22][0] = vertex_coordinates[6]; + dof_coordinates[22][1] = vertex_coordinates[7]; + dof_coordinates[22][2] = vertex_coordinates[8]; + dof_coordinates[23][0] = vertex_coordinates[9]; + dof_coordinates[23][1] = vertex_coordinates[10]; + dof_coordinates[23][2] = vertex_coordinates[11]; + dof_coordinates[24][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[24][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[24][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[25][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[25][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[25][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[26][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[26][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[26][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[27][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[27][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[27][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[28][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[28][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[28][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[29][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[29][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[29][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[30][0] = vertex_coordinates[0]; + dof_coordinates[30][1] = vertex_coordinates[1]; + dof_coordinates[30][2] = vertex_coordinates[2]; + dof_coordinates[31][0] = vertex_coordinates[3]; + dof_coordinates[31][1] = vertex_coordinates[4]; + dof_coordinates[31][2] = vertex_coordinates[5]; + dof_coordinates[32][0] = vertex_coordinates[6]; + dof_coordinates[32][1] = vertex_coordinates[7]; + dof_coordinates[32][2] = vertex_coordinates[8]; + dof_coordinates[33][0] = vertex_coordinates[9]; + dof_coordinates[33][1] = vertex_coordinates[10]; + dof_coordinates[33][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_1(); + break; + } + case 1: + { + return new stokes_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_3(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stokes_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stokes_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 139 + // Number of operations (multiply-add pairs) for tensor contraction: 3627 + // Total number of operations (multiply-add pairs): 3769 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*K[2]*(1.0); + const double G0_1 = det*K[5]*(1.0); + const double G0_2 = det*K[8]*(1.0); + const double G1_0 = det*K[0]*(1.0); + const double G1_1 = det*K[3]*(1.0); + const double G1_2 = det*K[6]*(1.0); + const double G2_0 = det*K[1]*(1.0); + const double G2_1 = det*K[4]*(1.0); + const double G2_2 = det*K[7]*(1.0); + const double G3_0 = det*K[2]*(1.0); + const double G3_1 = det*K[5]*(1.0); + const double G3_2 = det*K[8]*(1.0); + const double G4_0 = det*K[0]*(1.0); + const double G4_1 = det*K[3]*(1.0); + const double G4_2 = det*K[6]*(1.0); + const double G5_0 = det*K[1]*(1.0); + const double G5_1 = det*K[4]*(1.0); + const double G5_2 = det*K[7]*(1.0); + const double G6_0_0 = det*K[2]*K[2]*(1.0); + const double G6_0_1 = det*K[2]*K[5]*(1.0); + const double G6_0_2 = det*K[2]*K[8]*(1.0); + const double G6_1_0 = det*K[5]*K[2]*(1.0); + const double G6_1_1 = det*K[5]*K[5]*(1.0); + const double G6_1_2 = det*K[5]*K[8]*(1.0); + const double G6_2_0 = det*K[8]*K[2]*(1.0); + const double G6_2_1 = det*K[8]*K[5]*(1.0); + const double G6_2_2 = det*K[8]*K[8]*(1.0); + const double G7_0_0 = det*K[2]*K[2]*(1.0); + const double G7_0_1 = det*K[2]*K[5]*(1.0); + const double G7_0_2 = det*K[2]*K[8]*(1.0); + const double G7_1_0 = det*K[5]*K[2]*(1.0); + const double G7_1_1 = det*K[5]*K[5]*(1.0); + const double G7_1_2 = det*K[5]*K[8]*(1.0); + const double G7_2_0 = det*K[8]*K[2]*(1.0); + const double G7_2_1 = det*K[8]*K[5]*(1.0); + const double G7_2_2 = det*K[8]*K[8]*(1.0); + const double G8_0_0 = det*K[2]*K[2]*(1.0); + const double G8_0_1 = det*K[2]*K[5]*(1.0); + const double G8_0_2 = det*K[2]*K[8]*(1.0); + const double G8_1_0 = det*K[5]*K[2]*(1.0); + const double G8_1_1 = det*K[5]*K[5]*(1.0); + const double G8_1_2 = det*K[5]*K[8]*(1.0); + const double G8_2_0 = det*K[8]*K[2]*(1.0); + const double G8_2_1 = det*K[8]*K[5]*(1.0); + const double G8_2_2 = det*K[8]*K[8]*(1.0); + const double G9_0_0 = det*K[0]*K[0]*(1.0); + const double G9_0_1 = det*K[0]*K[3]*(1.0); + const double G9_0_2 = det*K[0]*K[6]*(1.0); + const double G9_1_0 = det*K[3]*K[0]*(1.0); + const double G9_1_1 = det*K[3]*K[3]*(1.0); + const double G9_1_2 = det*K[3]*K[6]*(1.0); + const double G9_2_0 = det*K[6]*K[0]*(1.0); + const double G9_2_1 = det*K[6]*K[3]*(1.0); + const double G9_2_2 = det*K[6]*K[6]*(1.0); + const double G10_0_0 = det*K[0]*K[0]*(1.0); + const double G10_0_1 = det*K[0]*K[3]*(1.0); + const double G10_0_2 = det*K[0]*K[6]*(1.0); + const double G10_1_0 = det*K[3]*K[0]*(1.0); + const double G10_1_1 = det*K[3]*K[3]*(1.0); + const double G10_1_2 = det*K[3]*K[6]*(1.0); + const double G10_2_0 = det*K[6]*K[0]*(1.0); + const double G10_2_1 = det*K[6]*K[3]*(1.0); + const double G10_2_2 = det*K[6]*K[6]*(1.0); + const double G11_0_0 = det*K[0]*K[0]*(1.0); + const double G11_0_1 = det*K[0]*K[3]*(1.0); + const double G11_0_2 = det*K[0]*K[6]*(1.0); + const double G11_1_0 = det*K[3]*K[0]*(1.0); + const double G11_1_1 = det*K[3]*K[3]*(1.0); + const double G11_1_2 = det*K[3]*K[6]*(1.0); + const double G11_2_0 = det*K[6]*K[0]*(1.0); + const double G11_2_1 = det*K[6]*K[3]*(1.0); + const double G11_2_2 = det*K[6]*K[6]*(1.0); + const double G12_0_0 = det*K[1]*K[1]*(1.0); + const double G12_0_1 = det*K[1]*K[4]*(1.0); + const double G12_0_2 = det*K[1]*K[7]*(1.0); + const double G12_1_0 = det*K[4]*K[1]*(1.0); + const double G12_1_1 = det*K[4]*K[4]*(1.0); + const double G12_1_2 = det*K[4]*K[7]*(1.0); + const double G12_2_0 = det*K[7]*K[1]*(1.0); + const double G12_2_1 = det*K[7]*K[4]*(1.0); + const double G12_2_2 = det*K[7]*K[7]*(1.0); + const double G13_0_0 = det*K[1]*K[1]*(1.0); + const double G13_0_1 = det*K[1]*K[4]*(1.0); + const double G13_0_2 = det*K[1]*K[7]*(1.0); + const double G13_1_0 = det*K[4]*K[1]*(1.0); + const double G13_1_1 = det*K[4]*K[4]*(1.0); + const double G13_1_2 = det*K[4]*K[7]*(1.0); + const double G13_2_0 = det*K[7]*K[1]*(1.0); + const double G13_2_1 = det*K[7]*K[4]*(1.0); + const double G13_2_2 = det*K[7]*K[7]*(1.0); + const double G14_0_0 = det*K[1]*K[1]*(1.0); + const double G14_0_1 = det*K[1]*K[4]*(1.0); + const double G14_0_2 = det*K[1]*K[7]*(1.0); + const double G14_1_0 = det*K[4]*K[1]*(1.0); + const double G14_1_1 = det*K[4]*K[4]*(1.0); + const double G14_1_2 = det*K[4]*K[7]*(1.0); + const double G14_2_0 = det*K[7]*K[1]*(1.0); + const double G14_2_1 = det*K[7]*K[4]*(1.0); + const double G14_2_2 = det*K[7]*K[7]*(1.0); + + // Compute element tensor + A[0] = 0.1*G7_0_0 + 0.1*G7_0_1 + 0.1*G7_0_2 + 0.1*G7_1_0 + 0.1*G7_1_1 + 0.1*G7_1_2 + 0.1*G7_2_0 + 0.1*G7_2_1 + 0.1*G7_2_2 + 0.1*G10_0_0 + 0.1*G10_0_1 + 0.1*G10_0_2 + 0.1*G10_1_0 + 0.1*G10_1_1 + 0.1*G10_1_2 + 0.1*G10_2_0 + 0.1*G10_2_1 + 0.1*G10_2_2 + 0.1*G13_0_0 + 0.1*G13_0_1 + 0.1*G13_0_2 + 0.1*G13_1_0 + 0.1*G13_1_1 + 0.1*G13_1_2 + 0.1*G13_2_0 + 0.1*G13_2_1 + 0.1*G13_2_2; + A[1] = 0.0333333333333333*G7_0_0 + 0.0333333333333334*G7_1_0 + 0.0333333333333333*G7_2_0 + 0.0333333333333333*G10_0_0 + 0.0333333333333334*G10_1_0 + 0.0333333333333333*G10_2_0 + 0.0333333333333333*G13_0_0 + 0.0333333333333334*G13_1_0 + 0.0333333333333333*G13_2_0; + A[2] = 0.0333333333333333*G7_0_1 + 0.0333333333333333*G7_1_1 + 0.0333333333333333*G7_2_1 + 0.0333333333333333*G10_0_1 + 0.0333333333333333*G10_1_1 + 0.0333333333333333*G10_2_1 + 0.0333333333333333*G13_0_1 + 0.0333333333333333*G13_1_1 + 0.0333333333333333*G13_2_1; + A[3] = 0.0333333333333333*G7_0_2 + 0.0333333333333333*G7_1_2 + 0.0333333333333333*G7_2_2 + 0.0333333333333333*G10_0_2 + 0.0333333333333333*G10_1_2 + 0.0333333333333333*G10_2_2 + 0.0333333333333333*G13_0_2 + 0.0333333333333333*G13_1_2 + 0.0333333333333333*G13_2_2; + A[4] = 0.0333333333333332*G7_0_1 + 0.0333333333333332*G7_0_2 + 0.0333333333333332*G7_1_1 + 0.0333333333333332*G7_1_2 + 0.0333333333333332*G7_2_1 + 0.0333333333333332*G7_2_2 + 0.0333333333333332*G10_0_1 + 0.0333333333333332*G10_0_2 + 0.0333333333333332*G10_1_1 + 0.0333333333333332*G10_1_2 + 0.0333333333333332*G10_2_1 + 0.0333333333333332*G10_2_2 + 0.0333333333333332*G13_0_1 + 0.0333333333333332*G13_0_2 + 0.0333333333333332*G13_1_1 + 0.0333333333333332*G13_1_2 + 0.0333333333333332*G13_2_1 + 0.0333333333333332*G13_2_2; + A[5] = 0.0333333333333332*G7_0_0 + 0.0333333333333332*G7_0_2 + 0.0333333333333332*G7_1_0 + 0.0333333333333332*G7_1_2 + 0.0333333333333332*G7_2_0 + 0.0333333333333333*G7_2_2 + 0.0333333333333332*G10_0_0 + 0.0333333333333332*G10_0_2 + 0.0333333333333332*G10_1_0 + 0.0333333333333332*G10_1_2 + 0.0333333333333332*G10_2_0 + 0.0333333333333333*G10_2_2 + 0.0333333333333332*G13_0_0 + 0.0333333333333332*G13_0_2 + 0.0333333333333332*G13_1_0 + 0.0333333333333332*G13_1_2 + 0.0333333333333332*G13_2_0 + 0.0333333333333333*G13_2_2; + A[6] = 0.0333333333333332*G7_0_0 + 0.0333333333333333*G7_0_1 + 0.0333333333333332*G7_1_0 + 0.0333333333333333*G7_1_1 + 0.0333333333333332*G7_2_0 + 0.0333333333333333*G7_2_1 + 0.0333333333333332*G10_0_0 + 0.0333333333333333*G10_0_1 + 0.0333333333333332*G10_1_0 + 0.0333333333333333*G10_1_1 + 0.0333333333333332*G10_2_0 + 0.0333333333333333*G10_2_1 + 0.0333333333333332*G13_0_0 + 0.0333333333333333*G13_0_1 + 0.0333333333333332*G13_1_0 + 0.0333333333333333*G13_1_1 + 0.0333333333333332*G13_2_0 + 0.0333333333333333*G13_2_1; + A[7] = -0.0333333333333332*G7_0_0 - 0.0333333333333332*G7_0_1 - 0.133333333333333*G7_0_2 - 0.0333333333333332*G7_1_0 - 0.0333333333333332*G7_1_1 - 0.133333333333333*G7_1_2 - 0.0333333333333332*G7_2_0 - 0.0333333333333332*G7_2_1 - 0.133333333333333*G7_2_2 - 0.0333333333333332*G10_0_0 - 0.0333333333333332*G10_0_1 - 0.133333333333333*G10_0_2 - 0.0333333333333332*G10_1_0 - 0.0333333333333332*G10_1_1 - 0.133333333333333*G10_1_2 - 0.0333333333333332*G10_2_0 - 0.0333333333333332*G10_2_1 - 0.133333333333333*G10_2_2 - 0.0333333333333332*G13_0_0 - 0.0333333333333332*G13_0_1 - 0.133333333333333*G13_0_2 - 0.0333333333333332*G13_1_0 - 0.0333333333333332*G13_1_1 - 0.133333333333333*G13_1_2 - 0.0333333333333332*G13_2_0 - 0.0333333333333332*G13_2_1 - 0.133333333333333*G13_2_2; + A[8] = -0.0333333333333332*G7_0_0 - 0.133333333333333*G7_0_1 - 0.0333333333333332*G7_0_2 - 0.0333333333333332*G7_1_0 - 0.133333333333333*G7_1_1 - 0.0333333333333332*G7_1_2 - 0.0333333333333332*G7_2_0 - 0.133333333333333*G7_2_1 - 0.0333333333333332*G7_2_2 - 0.0333333333333332*G10_0_0 - 0.133333333333333*G10_0_1 - 0.0333333333333332*G10_0_2 - 0.0333333333333332*G10_1_0 - 0.133333333333333*G10_1_1 - 0.0333333333333332*G10_1_2 - 0.0333333333333332*G10_2_0 - 0.133333333333333*G10_2_1 - 0.0333333333333332*G10_2_2 - 0.0333333333333332*G13_0_0 - 0.133333333333333*G13_0_1 - 0.0333333333333332*G13_0_2 - 0.0333333333333332*G13_1_0 - 0.133333333333333*G13_1_1 - 0.0333333333333332*G13_1_2 - 0.0333333333333332*G13_2_0 - 0.133333333333333*G13_2_1 - 0.0333333333333332*G13_2_2; + A[9] = -0.133333333333333*G7_0_0 - 0.0333333333333333*G7_0_1 - 0.0333333333333333*G7_0_2 - 0.133333333333333*G7_1_0 - 0.0333333333333333*G7_1_1 - 0.0333333333333333*G7_1_2 - 0.133333333333333*G7_2_0 - 0.0333333333333332*G7_2_1 - 0.0333333333333333*G7_2_2 - 0.133333333333333*G10_0_0 - 0.0333333333333333*G10_0_1 - 0.0333333333333333*G10_0_2 - 0.133333333333333*G10_1_0 - 0.0333333333333333*G10_1_1 - 0.0333333333333333*G10_1_2 - 0.133333333333333*G10_2_0 - 0.0333333333333332*G10_2_1 - 0.0333333333333333*G10_2_2 - 0.133333333333333*G13_0_0 - 0.0333333333333333*G13_0_1 - 0.0333333333333333*G13_0_2 - 0.133333333333333*G13_1_0 - 0.0333333333333333*G13_1_1 - 0.0333333333333333*G13_1_2 - 0.133333333333333*G13_2_0 - 0.0333333333333332*G13_2_1 - 0.0333333333333333*G13_2_2; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = -0.025*G4_0 - 0.025*G4_1 - 0.025*G4_2; + A[31] = 0.00833333333333332*G4_0 + 0.00833333333333332*G4_1 + 0.00833333333333331*G4_2; + A[32] = 0.0083333333333333*G4_0 + 0.0083333333333333*G4_1 + 0.0083333333333333*G4_2; + A[33] = 0.00833333333333331*G4_0 + 0.00833333333333331*G4_1 + 0.00833333333333331*G4_2; + A[34] = 0.0333333333333333*G7_0_0 + 0.0333333333333334*G7_0_1 + 0.0333333333333333*G7_0_2 + 0.0333333333333333*G10_0_0 + 0.0333333333333334*G10_0_1 + 0.0333333333333333*G10_0_2 + 0.0333333333333333*G13_0_0 + 0.0333333333333334*G13_0_1 + 0.0333333333333333*G13_0_2; + A[35] = 0.1*G7_0_0 + 0.1*G10_0_0 + 0.1*G13_0_0; + A[36] = -0.0333333333333333*G7_0_1 - 0.0333333333333333*G10_0_1 - 0.0333333333333333*G13_0_1; + A[37] = -0.0333333333333333*G7_0_2 - 0.0333333333333333*G10_0_2 - 0.0333333333333333*G13_0_2; + A[38] = -0.0333333333333334*G7_0_1 - 0.0333333333333333*G7_0_2 - 0.0333333333333334*G10_0_1 - 0.0333333333333333*G10_0_2 - 0.0333333333333334*G13_0_1 - 0.0333333333333333*G13_0_2; + A[39] = -0.0333333333333334*G7_0_0 + 0.1*G7_0_2 - 0.0333333333333334*G10_0_0 + 0.1*G10_0_2 - 0.0333333333333334*G13_0_0 + 0.1*G13_0_2; + A[40] = -0.0333333333333333*G7_0_0 + 0.1*G7_0_1 - 0.0333333333333333*G10_0_0 + 0.1*G10_0_1 - 0.0333333333333333*G13_0_0 + 0.1*G13_0_1; + A[41] = 0.0333333333333334*G7_0_0 + 0.0333333333333333*G7_0_1 + 0.0333333333333334*G10_0_0 + 0.0333333333333333*G10_0_1 + 0.0333333333333334*G13_0_0 + 0.0333333333333333*G13_0_1; + A[42] = 0.0333333333333333*G7_0_0 + 0.0333333333333333*G7_0_2 + 0.0333333333333333*G10_0_0 + 0.0333333333333333*G10_0_2 + 0.0333333333333333*G13_0_0 + 0.0333333333333333*G13_0_2; + A[43] = -0.133333333333333*G7_0_0 - 0.1*G7_0_1 - 0.1*G7_0_2 - 0.133333333333333*G10_0_0 - 0.1*G10_0_1 - 0.1*G10_0_2 - 0.133333333333333*G13_0_0 - 0.1*G13_0_1 - 0.1*G13_0_2; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = 0.0; + A[62] = 0.0; + A[63] = 0.0; + A[64] = -0.00833333333333334*G4_0; + A[65] = 0.025*G4_0; + A[66] = -0.00833333333333333*G4_0; + A[67] = -0.00833333333333334*G4_0; + A[68] = 0.0333333333333333*G7_1_0 + 0.0333333333333333*G7_1_1 + 0.0333333333333333*G7_1_2 + 0.0333333333333333*G10_1_0 + 0.0333333333333333*G10_1_1 + 0.0333333333333333*G10_1_2 + 0.0333333333333333*G13_1_0 + 0.0333333333333333*G13_1_1 + 0.0333333333333333*G13_1_2; + A[69] = -0.0333333333333333*G7_1_0 - 0.0333333333333333*G10_1_0 - 0.0333333333333333*G13_1_0; + A[70] = 0.1*G7_1_1 + 0.1*G10_1_1 + 0.1*G13_1_1; + A[71] = -0.0333333333333333*G7_1_2 - 0.0333333333333333*G10_1_2 - 0.0333333333333333*G13_1_2; + A[72] = -0.0333333333333334*G7_1_1 + 0.1*G7_1_2 - 0.0333333333333334*G10_1_1 + 0.1*G10_1_2 - 0.0333333333333334*G13_1_1 + 0.1*G13_1_2; + A[73] = -0.0333333333333334*G7_1_0 - 0.0333333333333334*G7_1_2 - 0.0333333333333334*G10_1_0 - 0.0333333333333334*G10_1_2 - 0.0333333333333334*G13_1_0 - 0.0333333333333334*G13_1_2; + A[74] = 0.1*G7_1_0 - 0.0333333333333334*G7_1_1 + 0.1*G10_1_0 - 0.0333333333333334*G10_1_1 + 0.1*G13_1_0 - 0.0333333333333334*G13_1_1; + A[75] = 0.0333333333333334*G7_1_0 + 0.0333333333333334*G7_1_1 + 0.0333333333333334*G10_1_0 + 0.0333333333333334*G10_1_1 + 0.0333333333333334*G13_1_0 + 0.0333333333333334*G13_1_1; + A[76] = -0.1*G7_1_0 - 0.133333333333333*G7_1_1 - 0.1*G7_1_2 - 0.1*G10_1_0 - 0.133333333333333*G10_1_1 - 0.1*G10_1_2 - 0.1*G13_1_0 - 0.133333333333333*G13_1_1 - 0.1*G13_1_2; + A[77] = 0.0333333333333334*G7_1_1 + 0.0333333333333334*G7_1_2 + 0.0333333333333334*G10_1_1 + 0.0333333333333334*G10_1_2 + 0.0333333333333334*G13_1_1 + 0.0333333333333334*G13_1_2; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = -0.00833333333333335*G4_1; + A[99] = -0.00833333333333335*G4_1; + A[100] = 0.025*G4_1; + A[101] = -0.00833333333333335*G4_1; + A[102] = 0.0333333333333333*G7_2_0 + 0.0333333333333333*G7_2_1 + 0.0333333333333333*G7_2_2 + 0.0333333333333333*G10_2_0 + 0.0333333333333333*G10_2_1 + 0.0333333333333333*G10_2_2 + 0.0333333333333333*G13_2_0 + 0.0333333333333333*G13_2_1 + 0.0333333333333333*G13_2_2; + A[103] = -0.0333333333333333*G7_2_0 - 0.0333333333333333*G10_2_0 - 0.0333333333333333*G13_2_0; + A[104] = -0.0333333333333333*G7_2_1 - 0.0333333333333333*G10_2_1 - 0.0333333333333333*G13_2_1; + A[105] = 0.1*G7_2_2 + 0.1*G10_2_2 + 0.1*G13_2_2; + A[106] = 0.1*G7_2_1 - 0.0333333333333334*G7_2_2 + 0.1*G10_2_1 - 0.0333333333333334*G10_2_2 + 0.1*G13_2_1 - 0.0333333333333334*G13_2_2; + A[107] = 0.1*G7_2_0 - 0.0333333333333334*G7_2_2 + 0.1*G10_2_0 - 0.0333333333333334*G10_2_2 + 0.1*G13_2_0 - 0.0333333333333334*G13_2_2; + A[108] = -0.0333333333333334*G7_2_0 - 0.0333333333333334*G7_2_1 - 0.0333333333333334*G10_2_0 - 0.0333333333333334*G10_2_1 - 0.0333333333333334*G13_2_0 - 0.0333333333333334*G13_2_1; + A[109] = -0.1*G7_2_0 - 0.1*G7_2_1 - 0.133333333333333*G7_2_2 - 0.1*G10_2_0 - 0.1*G10_2_1 - 0.133333333333333*G10_2_2 - 0.1*G13_2_0 - 0.1*G13_2_1 - 0.133333333333333*G13_2_2; + A[110] = 0.0333333333333334*G7_2_0 + 0.0333333333333334*G7_2_2 + 0.0333333333333334*G10_2_0 + 0.0333333333333334*G10_2_2 + 0.0333333333333334*G13_2_0 + 0.0333333333333334*G13_2_2; + A[111] = 0.0333333333333334*G7_2_1 + 0.0333333333333334*G7_2_2 + 0.0333333333333334*G10_2_1 + 0.0333333333333334*G10_2_2 + 0.0333333333333334*G13_2_1 + 0.0333333333333334*G13_2_2; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = -0.00833333333333335*G4_2; + A[133] = -0.00833333333333334*G4_2; + A[134] = -0.00833333333333336*G4_2; + A[135] = 0.025*G4_2; + A[136] = 0.0333333333333332*G7_1_0 + 0.0333333333333332*G7_1_1 + 0.0333333333333332*G7_1_2 + 0.0333333333333332*G7_2_0 + 0.0333333333333332*G7_2_1 + 0.0333333333333332*G7_2_2 + 0.0333333333333332*G10_1_0 + 0.0333333333333332*G10_1_1 + 0.0333333333333332*G10_1_2 + 0.0333333333333332*G10_2_0 + 0.0333333333333332*G10_2_1 + 0.0333333333333332*G10_2_2 + 0.0333333333333332*G13_1_0 + 0.0333333333333332*G13_1_1 + 0.0333333333333332*G13_1_2 + 0.0333333333333332*G13_2_0 + 0.0333333333333332*G13_2_1 + 0.0333333333333332*G13_2_2; + A[137] = -0.0333333333333333*G7_1_0 - 0.0333333333333333*G7_2_0 - 0.0333333333333333*G10_1_0 - 0.0333333333333333*G10_2_0 - 0.0333333333333333*G13_1_0 - 0.0333333333333333*G13_2_0; + A[138] = -0.0333333333333334*G7_1_1 + 0.1*G7_2_1 - 0.0333333333333334*G10_1_1 + 0.1*G10_2_1 - 0.0333333333333334*G13_1_1 + 0.1*G13_2_1; + A[139] = 0.1*G7_1_2 - 0.0333333333333334*G7_2_2 + 0.1*G10_1_2 - 0.0333333333333334*G10_2_2 + 0.1*G13_1_2 - 0.0333333333333334*G13_2_2; + A[140] = 0.266666666666667*G7_1_1 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_1 + 0.266666666666666*G7_2_2 + 0.266666666666667*G10_1_1 + 0.133333333333333*G10_1_2 + 0.133333333333333*G10_2_1 + 0.266666666666666*G10_2_2 + 0.266666666666667*G13_1_1 + 0.133333333333333*G13_1_2 + 0.133333333333333*G13_2_1 + 0.266666666666666*G13_2_2; + A[141] = 0.266666666666667*G7_1_0 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_0 + 0.133333333333333*G7_2_2 + 0.266666666666667*G10_1_0 + 0.133333333333333*G10_1_2 + 0.133333333333333*G10_2_0 + 0.133333333333333*G10_2_2 + 0.266666666666667*G13_1_0 + 0.133333333333333*G13_1_2 + 0.133333333333333*G13_2_0 + 0.133333333333333*G13_2_2; + A[142] = 0.133333333333333*G7_1_0 + 0.133333333333333*G7_1_1 + 0.266666666666666*G7_2_0 + 0.133333333333333*G7_2_1 + 0.133333333333333*G10_1_0 + 0.133333333333333*G10_1_1 + 0.266666666666666*G10_2_0 + 0.133333333333333*G10_2_1 + 0.133333333333333*G13_1_0 + 0.133333333333333*G13_1_1 + 0.266666666666666*G13_2_0 + 0.133333333333333*G13_2_1; + A[143] = -0.266666666666667*G7_1_0 - 0.266666666666666*G7_1_1 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_0 - 0.133333333333333*G7_2_1 - 0.266666666666667*G10_1_0 - 0.266666666666666*G10_1_1 - 0.133333333333333*G10_1_2 - 0.133333333333333*G10_2_0 - 0.133333333333333*G10_2_1 - 0.266666666666667*G13_1_0 - 0.266666666666666*G13_1_1 - 0.133333333333333*G13_1_2 - 0.133333333333333*G13_2_0 - 0.133333333333333*G13_2_1; + A[144] = -0.133333333333333*G7_1_0 - 0.133333333333333*G7_1_2 - 0.266666666666666*G7_2_0 - 0.133333333333333*G7_2_1 - 0.266666666666666*G7_2_2 - 0.133333333333333*G10_1_0 - 0.133333333333333*G10_1_2 - 0.266666666666666*G10_2_0 - 0.133333333333333*G10_2_1 - 0.266666666666666*G10_2_2 - 0.133333333333333*G13_1_0 - 0.133333333333333*G13_1_2 - 0.266666666666666*G13_2_0 - 0.133333333333333*G13_2_1 - 0.266666666666666*G13_2_2; + A[145] = -0.133333333333333*G7_1_1 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_1 - 0.133333333333333*G7_2_2 - 0.133333333333333*G10_1_1 - 0.133333333333333*G10_1_2 - 0.133333333333333*G10_2_1 - 0.133333333333333*G10_2_2 - 0.133333333333333*G13_1_1 - 0.133333333333333*G13_1_2 - 0.133333333333333*G13_2_1 - 0.133333333333333*G13_2_2; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0333333333333334*G4_1 + 0.0333333333333333*G4_2; + A[167] = 0.0333333333333333*G4_1 + 0.0333333333333333*G4_2; + A[168] = 0.0333333333333333*G4_1 + 0.0666666666666666*G4_2; + A[169] = 0.0666666666666667*G4_1 + 0.0333333333333333*G4_2; + A[170] = 0.0333333333333332*G7_0_0 + 0.0333333333333332*G7_0_1 + 0.0333333333333332*G7_0_2 + 0.0333333333333332*G7_2_0 + 0.0333333333333332*G7_2_1 + 0.0333333333333332*G7_2_2 + 0.0333333333333332*G10_0_0 + 0.0333333333333332*G10_0_1 + 0.0333333333333332*G10_0_2 + 0.0333333333333332*G10_2_0 + 0.0333333333333332*G10_2_1 + 0.0333333333333332*G10_2_2 + 0.0333333333333332*G13_0_0 + 0.0333333333333332*G13_0_1 + 0.0333333333333332*G13_0_2 + 0.0333333333333332*G13_2_0 + 0.0333333333333332*G13_2_1 + 0.0333333333333332*G13_2_2; + A[171] = -0.0333333333333334*G7_0_0 + 0.1*G7_2_0 - 0.0333333333333334*G10_0_0 + 0.1*G10_2_0 - 0.0333333333333334*G13_0_0 + 0.1*G13_2_0; + A[172] = -0.0333333333333334*G7_0_1 - 0.0333333333333334*G7_2_1 - 0.0333333333333334*G10_0_1 - 0.0333333333333334*G10_2_1 - 0.0333333333333334*G13_0_1 - 0.0333333333333334*G13_2_1; + A[173] = 0.1*G7_0_2 - 0.0333333333333334*G7_2_2 + 0.1*G10_0_2 - 0.0333333333333334*G10_2_2 + 0.1*G13_0_2 - 0.0333333333333334*G13_2_2; + A[174] = 0.266666666666667*G7_0_1 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_2_1 + 0.133333333333333*G7_2_2 + 0.266666666666667*G10_0_1 + 0.133333333333333*G10_0_2 + 0.133333333333333*G10_2_1 + 0.133333333333333*G10_2_2 + 0.266666666666667*G13_0_1 + 0.133333333333333*G13_0_2 + 0.133333333333333*G13_2_1 + 0.133333333333333*G13_2_2; + A[175] = 0.266666666666666*G7_0_0 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_2_0 + 0.266666666666667*G7_2_2 + 0.266666666666666*G10_0_0 + 0.133333333333333*G10_0_2 + 0.133333333333333*G10_2_0 + 0.266666666666667*G10_2_2 + 0.266666666666666*G13_0_0 + 0.133333333333333*G13_0_2 + 0.133333333333333*G13_2_0 + 0.266666666666667*G13_2_2; + A[176] = 0.133333333333333*G7_0_0 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_2_0 + 0.266666666666667*G7_2_1 + 0.133333333333333*G10_0_0 + 0.133333333333333*G10_0_1 + 0.133333333333333*G10_2_0 + 0.266666666666667*G10_2_1 + 0.133333333333333*G13_0_0 + 0.133333333333333*G13_0_1 + 0.133333333333333*G13_2_0 + 0.266666666666667*G13_2_1; + A[177] = -0.266666666666666*G7_0_0 - 0.266666666666666*G7_0_1 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_2_0 - 0.133333333333333*G7_2_1 - 0.266666666666666*G10_0_0 - 0.266666666666666*G10_0_1 - 0.133333333333333*G10_0_2 - 0.133333333333333*G10_2_0 - 0.133333333333333*G10_2_1 - 0.266666666666666*G13_0_0 - 0.266666666666666*G13_0_1 - 0.133333333333333*G13_0_2 - 0.133333333333333*G13_2_0 - 0.133333333333333*G13_2_1; + A[178] = -0.133333333333333*G7_0_0 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_2_0 - 0.133333333333333*G7_2_2 - 0.133333333333333*G10_0_0 - 0.133333333333333*G10_0_2 - 0.133333333333333*G10_2_0 - 0.133333333333333*G10_2_2 - 0.133333333333333*G13_0_0 - 0.133333333333333*G13_0_2 - 0.133333333333333*G13_2_0 - 0.133333333333333*G13_2_2; + A[179] = -0.133333333333333*G7_0_1 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_2_0 - 0.266666666666667*G7_2_1 - 0.266666666666666*G7_2_2 - 0.133333333333333*G10_0_1 - 0.133333333333333*G10_0_2 - 0.133333333333333*G10_2_0 - 0.266666666666667*G10_2_1 - 0.266666666666666*G10_2_2 - 0.133333333333333*G13_0_1 - 0.133333333333333*G13_0_2 - 0.133333333333333*G13_2_0 - 0.266666666666667*G13_2_1 - 0.266666666666666*G13_2_2; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0333333333333333*G4_0 + 0.0333333333333333*G4_2; + A[201] = 0.0333333333333333*G4_0 + 0.0666666666666666*G4_2; + A[202] = 0.0333333333333333*G4_0 + 0.0333333333333333*G4_2; + A[203] = 0.0666666666666666*G4_0 + 0.0333333333333333*G4_2; + A[204] = 0.0333333333333332*G7_0_0 + 0.0333333333333332*G7_0_1 + 0.0333333333333332*G7_0_2 + 0.0333333333333333*G7_1_0 + 0.0333333333333333*G7_1_1 + 0.0333333333333332*G7_1_2 + 0.0333333333333332*G10_0_0 + 0.0333333333333332*G10_0_1 + 0.0333333333333332*G10_0_2 + 0.0333333333333333*G10_1_0 + 0.0333333333333333*G10_1_1 + 0.0333333333333332*G10_1_2 + 0.0333333333333332*G13_0_0 + 0.0333333333333332*G13_0_1 + 0.0333333333333332*G13_0_2 + 0.0333333333333333*G13_1_0 + 0.0333333333333333*G13_1_1 + 0.0333333333333332*G13_1_2; + A[205] = -0.0333333333333333*G7_0_0 + 0.1*G7_1_0 - 0.0333333333333333*G10_0_0 + 0.1*G10_1_0 - 0.0333333333333333*G13_0_0 + 0.1*G13_1_0; + A[206] = 0.1*G7_0_1 - 0.0333333333333334*G7_1_1 + 0.1*G10_0_1 - 0.0333333333333334*G10_1_1 + 0.1*G13_0_1 - 0.0333333333333334*G13_1_1; + A[207] = -0.0333333333333334*G7_0_2 - 0.0333333333333334*G7_1_2 - 0.0333333333333334*G10_0_2 - 0.0333333333333334*G10_1_2 - 0.0333333333333334*G13_0_2 - 0.0333333333333334*G13_1_2; + A[208] = 0.133333333333333*G7_0_1 + 0.266666666666666*G7_0_2 + 0.133333333333333*G7_1_1 + 0.133333333333333*G7_1_2 + 0.133333333333333*G10_0_1 + 0.266666666666666*G10_0_2 + 0.133333333333333*G10_1_1 + 0.133333333333333*G10_1_2 + 0.133333333333333*G13_0_1 + 0.266666666666666*G13_0_2 + 0.133333333333333*G13_1_1 + 0.133333333333333*G13_1_2; + A[209] = 0.133333333333333*G7_0_0 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_0 + 0.266666666666667*G7_1_2 + 0.133333333333333*G10_0_0 + 0.133333333333333*G10_0_2 + 0.133333333333333*G10_1_0 + 0.266666666666667*G10_1_2 + 0.133333333333333*G13_0_0 + 0.133333333333333*G13_0_2 + 0.133333333333333*G13_1_0 + 0.266666666666667*G13_1_2; + A[210] = 0.266666666666666*G7_0_0 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_1_0 + 0.266666666666667*G7_1_1 + 0.266666666666666*G10_0_0 + 0.133333333333333*G10_0_1 + 0.133333333333333*G10_1_0 + 0.266666666666667*G10_1_1 + 0.266666666666666*G13_0_0 + 0.133333333333333*G13_0_1 + 0.133333333333333*G13_1_0 + 0.266666666666667*G13_1_1; + A[211] = -0.133333333333333*G7_0_0 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_1_0 - 0.133333333333333*G7_1_1 - 0.133333333333333*G10_0_0 - 0.133333333333333*G10_0_1 - 0.133333333333333*G10_1_0 - 0.133333333333333*G10_1_1 - 0.133333333333333*G13_0_0 - 0.133333333333333*G13_0_1 - 0.133333333333333*G13_1_0 - 0.133333333333333*G13_1_1; + A[212] = -0.266666666666666*G7_0_0 - 0.133333333333333*G7_0_1 - 0.266666666666666*G7_0_2 - 0.133333333333333*G7_1_0 - 0.133333333333333*G7_1_2 - 0.266666666666666*G10_0_0 - 0.133333333333333*G10_0_1 - 0.266666666666666*G10_0_2 - 0.133333333333333*G10_1_0 - 0.133333333333333*G10_1_2 - 0.266666666666666*G13_0_0 - 0.133333333333333*G13_0_1 - 0.266666666666666*G13_0_2 - 0.133333333333333*G13_1_0 - 0.133333333333333*G13_1_2; + A[213] = -0.133333333333333*G7_0_1 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_1_0 - 0.266666666666667*G7_1_1 - 0.266666666666666*G7_1_2 - 0.133333333333333*G10_0_1 - 0.133333333333333*G10_0_2 - 0.133333333333333*G10_1_0 - 0.266666666666667*G10_1_1 - 0.266666666666666*G10_1_2 - 0.133333333333333*G13_0_1 - 0.133333333333333*G13_0_2 - 0.133333333333333*G13_1_0 - 0.266666666666667*G13_1_1 - 0.266666666666666*G13_1_2; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0333333333333333*G4_0 + 0.0333333333333334*G4_1; + A[235] = 0.0333333333333333*G4_0 + 0.0666666666666666*G4_1; + A[236] = 0.0666666666666666*G4_0 + 0.0333333333333333*G4_1; + A[237] = 0.0333333333333333*G4_0 + 0.0333333333333333*G4_1; + A[238] = -0.0333333333333332*G7_0_0 - 0.0333333333333332*G7_0_1 - 0.0333333333333332*G7_0_2 - 0.0333333333333332*G7_1_0 - 0.0333333333333332*G7_1_1 - 0.0333333333333332*G7_1_2 - 0.133333333333333*G7_2_0 - 0.133333333333333*G7_2_1 - 0.133333333333333*G7_2_2 - 0.0333333333333332*G10_0_0 - 0.0333333333333332*G10_0_1 - 0.0333333333333332*G10_0_2 - 0.0333333333333332*G10_1_0 - 0.0333333333333332*G10_1_1 - 0.0333333333333332*G10_1_2 - 0.133333333333333*G10_2_0 - 0.133333333333333*G10_2_1 - 0.133333333333333*G10_2_2 - 0.0333333333333332*G13_0_0 - 0.0333333333333332*G13_0_1 - 0.0333333333333332*G13_0_2 - 0.0333333333333332*G13_1_0 - 0.0333333333333332*G13_1_1 - 0.0333333333333332*G13_1_2 - 0.133333333333333*G13_2_0 - 0.133333333333333*G13_2_1 - 0.133333333333333*G13_2_2; + A[239] = 0.0333333333333334*G7_0_0 + 0.0333333333333334*G7_1_0 + 0.0333333333333334*G10_0_0 + 0.0333333333333334*G10_1_0 + 0.0333333333333334*G13_0_0 + 0.0333333333333334*G13_1_0; + A[240] = 0.0333333333333334*G7_0_1 + 0.0333333333333334*G7_1_1 + 0.0333333333333334*G10_0_1 + 0.0333333333333334*G10_1_1 + 0.0333333333333334*G13_0_1 + 0.0333333333333334*G13_1_1; + A[241] = -0.1*G7_0_2 - 0.1*G7_1_2 - 0.133333333333333*G7_2_2 - 0.1*G10_0_2 - 0.1*G10_1_2 - 0.133333333333333*G10_2_2 - 0.1*G13_0_2 - 0.1*G13_1_2 - 0.133333333333333*G13_2_2; + A[242] = -0.266666666666667*G7_0_1 - 0.133333333333333*G7_0_2 - 0.266666666666667*G7_1_1 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_1 - 0.266666666666667*G10_0_1 - 0.133333333333333*G10_0_2 - 0.266666666666667*G10_1_1 - 0.133333333333333*G10_1_2 - 0.133333333333333*G10_2_1 - 0.266666666666667*G13_0_1 - 0.133333333333333*G13_0_2 - 0.266666666666667*G13_1_1 - 0.133333333333333*G13_1_2 - 0.133333333333333*G13_2_1; + A[243] = -0.266666666666666*G7_0_0 - 0.133333333333333*G7_0_2 - 0.266666666666666*G7_1_0 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_0 - 0.266666666666666*G10_0_0 - 0.133333333333333*G10_0_2 - 0.266666666666666*G10_1_0 - 0.133333333333333*G10_1_2 - 0.133333333333333*G10_2_0 - 0.266666666666666*G13_0_0 - 0.133333333333333*G13_0_2 - 0.266666666666666*G13_1_0 - 0.133333333333333*G13_1_2 - 0.133333333333333*G13_2_0; + A[244] = -0.133333333333333*G7_0_0 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_1_0 - 0.133333333333333*G7_1_1 - 0.133333333333333*G10_0_0 - 0.133333333333333*G10_0_1 - 0.133333333333333*G10_1_0 - 0.133333333333333*G10_1_1 - 0.133333333333333*G13_0_0 - 0.133333333333333*G13_0_1 - 0.133333333333333*G13_1_0 - 0.133333333333333*G13_1_1; + A[245] = 0.266666666666666*G7_0_0 + 0.266666666666666*G7_0_1 + 0.133333333333333*G7_0_2 + 0.266666666666666*G7_1_0 + 0.266666666666666*G7_1_1 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_0 + 0.133333333333333*G7_2_1 + 0.266666666666667*G7_2_2 + 0.266666666666666*G10_0_0 + 0.266666666666666*G10_0_1 + 0.133333333333333*G10_0_2 + 0.266666666666666*G10_1_0 + 0.266666666666666*G10_1_1 + 0.133333333333333*G10_1_2 + 0.133333333333333*G10_2_0 + 0.133333333333333*G10_2_1 + 0.266666666666667*G10_2_2 + 0.266666666666666*G13_0_0 + 0.266666666666666*G13_0_1 + 0.133333333333333*G13_0_2 + 0.266666666666666*G13_1_0 + 0.266666666666666*G13_1_1 + 0.133333333333333*G13_1_2 + 0.133333333333333*G13_2_0 + 0.133333333333333*G13_2_1 + 0.266666666666667*G13_2_2; + A[246] = 0.133333333333333*G7_0_0 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_0 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_1 + 0.133333333333333*G10_0_0 + 0.133333333333333*G10_0_2 + 0.133333333333333*G10_1_0 + 0.133333333333333*G10_1_2 + 0.133333333333333*G10_2_1 + 0.133333333333333*G13_0_0 + 0.133333333333333*G13_0_2 + 0.133333333333333*G13_1_0 + 0.133333333333333*G13_1_2 + 0.133333333333333*G13_2_1; + A[247] = 0.133333333333333*G7_0_1 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_1 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_0 + 0.133333333333333*G10_0_1 + 0.133333333333333*G10_0_2 + 0.133333333333333*G10_1_1 + 0.133333333333333*G10_1_2 + 0.133333333333333*G10_2_0 + 0.133333333333333*G13_0_1 + 0.133333333333333*G13_0_2 + 0.133333333333333*G13_1_1 + 0.133333333333333*G13_1_2 + 0.133333333333333*G13_2_0; + A[248] = 0.0; + A[249] = 0.0; + A[250] = 0.0; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = -0.0333333333333333*G4_0 - 0.0333333333333333*G4_1 + 0.0333333333333333*G4_2; + A[269] = -0.0333333333333333*G4_0 - 0.0333333333333333*G4_1; + A[270] = -0.0333333333333333*G4_0 - 0.0333333333333333*G4_1; + A[271] = -0.0666666666666666*G4_0 - 0.0666666666666666*G4_1 - 0.0333333333333333*G4_2; + A[272] = -0.0333333333333332*G7_0_0 - 0.0333333333333332*G7_0_1 - 0.0333333333333332*G7_0_2 - 0.133333333333333*G7_1_0 - 0.133333333333333*G7_1_1 - 0.133333333333333*G7_1_2 - 0.0333333333333332*G7_2_0 - 0.0333333333333332*G7_2_1 - 0.0333333333333332*G7_2_2 - 0.0333333333333332*G10_0_0 - 0.0333333333333332*G10_0_1 - 0.0333333333333332*G10_0_2 - 0.133333333333333*G10_1_0 - 0.133333333333333*G10_1_1 - 0.133333333333333*G10_1_2 - 0.0333333333333332*G10_2_0 - 0.0333333333333332*G10_2_1 - 0.0333333333333332*G10_2_2 - 0.0333333333333332*G13_0_0 - 0.0333333333333332*G13_0_1 - 0.0333333333333332*G13_0_2 - 0.133333333333333*G13_1_0 - 0.133333333333333*G13_1_1 - 0.133333333333333*G13_1_2 - 0.0333333333333332*G13_2_0 - 0.0333333333333332*G13_2_1 - 0.0333333333333332*G13_2_2; + A[273] = 0.0333333333333333*G7_0_0 + 0.0333333333333333*G7_2_0 + 0.0333333333333333*G10_0_0 + 0.0333333333333333*G10_2_0 + 0.0333333333333333*G13_0_0 + 0.0333333333333333*G13_2_0; + A[274] = -0.1*G7_0_1 - 0.133333333333333*G7_1_1 - 0.1*G7_2_1 - 0.1*G10_0_1 - 0.133333333333333*G10_1_1 - 0.1*G10_2_1 - 0.1*G13_0_1 - 0.133333333333333*G13_1_1 - 0.1*G13_2_1; + A[275] = 0.0333333333333334*G7_0_2 + 0.0333333333333334*G7_2_2 + 0.0333333333333334*G10_0_2 + 0.0333333333333334*G10_2_2 + 0.0333333333333334*G13_0_2 + 0.0333333333333334*G13_2_2; + A[276] = -0.133333333333333*G7_0_1 - 0.266666666666666*G7_0_2 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_1 - 0.266666666666666*G7_2_2 - 0.133333333333333*G10_0_1 - 0.266666666666666*G10_0_2 - 0.133333333333333*G10_1_2 - 0.133333333333333*G10_2_1 - 0.266666666666666*G10_2_2 - 0.133333333333333*G13_0_1 - 0.266666666666666*G13_0_2 - 0.133333333333333*G13_1_2 - 0.133333333333333*G13_2_1 - 0.266666666666666*G13_2_2; + A[277] = -0.133333333333333*G7_0_0 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_2_0 - 0.133333333333333*G7_2_2 - 0.133333333333333*G10_0_0 - 0.133333333333333*G10_0_2 - 0.133333333333333*G10_2_0 - 0.133333333333333*G10_2_2 - 0.133333333333333*G13_0_0 - 0.133333333333333*G13_0_2 - 0.133333333333333*G13_2_0 - 0.133333333333333*G13_2_2; + A[278] = -0.266666666666666*G7_0_0 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_1_0 - 0.266666666666666*G7_2_0 - 0.133333333333333*G7_2_1 - 0.266666666666666*G10_0_0 - 0.133333333333333*G10_0_1 - 0.133333333333333*G10_1_0 - 0.266666666666666*G10_2_0 - 0.133333333333333*G10_2_1 - 0.266666666666666*G13_0_0 - 0.133333333333333*G13_0_1 - 0.133333333333333*G13_1_0 - 0.266666666666666*G13_2_0 - 0.133333333333333*G13_2_1; + A[279] = 0.133333333333333*G7_0_0 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_0 + 0.133333333333333*G7_2_1 + 0.133333333333333*G10_0_0 + 0.133333333333333*G10_0_1 + 0.133333333333333*G10_1_2 + 0.133333333333333*G10_2_0 + 0.133333333333333*G10_2_1 + 0.133333333333333*G13_0_0 + 0.133333333333333*G13_0_1 + 0.133333333333333*G13_1_2 + 0.133333333333333*G13_2_0 + 0.133333333333333*G13_2_1; + A[280] = 0.266666666666666*G7_0_0 + 0.133333333333333*G7_0_1 + 0.266666666666666*G7_0_2 + 0.133333333333333*G7_1_0 + 0.266666666666666*G7_1_1 + 0.133333333333333*G7_1_2 + 0.266666666666666*G7_2_0 + 0.133333333333333*G7_2_1 + 0.266666666666666*G7_2_2 + 0.266666666666666*G10_0_0 + 0.133333333333333*G10_0_1 + 0.266666666666666*G10_0_2 + 0.133333333333333*G10_1_0 + 0.266666666666666*G10_1_1 + 0.133333333333333*G10_1_2 + 0.266666666666666*G10_2_0 + 0.133333333333333*G10_2_1 + 0.266666666666666*G10_2_2 + 0.266666666666666*G13_0_0 + 0.133333333333333*G13_0_1 + 0.266666666666666*G13_0_2 + 0.133333333333333*G13_1_0 + 0.266666666666666*G13_1_1 + 0.133333333333333*G13_1_2 + 0.266666666666666*G13_2_0 + 0.133333333333333*G13_2_1 + 0.266666666666666*G13_2_2; + A[281] = 0.133333333333333*G7_0_1 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_0 + 0.133333333333333*G7_2_1 + 0.133333333333333*G7_2_2 + 0.133333333333333*G10_0_1 + 0.133333333333333*G10_0_2 + 0.133333333333333*G10_1_0 + 0.133333333333333*G10_2_1 + 0.133333333333333*G10_2_2 + 0.133333333333333*G13_0_1 + 0.133333333333333*G13_0_2 + 0.133333333333333*G13_1_0 + 0.133333333333333*G13_2_1 + 0.133333333333333*G13_2_2; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = -0.0333333333333333*G4_0 + 0.0333333333333334*G4_1 - 0.0333333333333334*G4_2; + A[303] = -0.0333333333333333*G4_0 - 0.0333333333333333*G4_2; + A[304] = -0.0666666666666667*G4_0 - 0.0333333333333333*G4_1 - 0.0666666666666666*G4_2; + A[305] = -0.0333333333333333*G4_0 - 0.0333333333333333*G4_2; + A[306] = -0.133333333333333*G7_0_0 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_0_2 - 0.0333333333333333*G7_1_0 - 0.0333333333333333*G7_1_1 - 0.0333333333333332*G7_1_2 - 0.0333333333333333*G7_2_0 - 0.0333333333333333*G7_2_1 - 0.0333333333333333*G7_2_2 - 0.133333333333333*G10_0_0 - 0.133333333333333*G10_0_1 - 0.133333333333333*G10_0_2 - 0.0333333333333333*G10_1_0 - 0.0333333333333333*G10_1_1 - 0.0333333333333332*G10_1_2 - 0.0333333333333333*G10_2_0 - 0.0333333333333333*G10_2_1 - 0.0333333333333333*G10_2_2 - 0.133333333333333*G13_0_0 - 0.133333333333333*G13_0_1 - 0.133333333333333*G13_0_2 - 0.0333333333333333*G13_1_0 - 0.0333333333333333*G13_1_1 - 0.0333333333333332*G13_1_2 - 0.0333333333333333*G13_2_0 - 0.0333333333333333*G13_2_1 - 0.0333333333333333*G13_2_2; + A[307] = -0.133333333333333*G7_0_0 - 0.1*G7_1_0 - 0.1*G7_2_0 - 0.133333333333333*G10_0_0 - 0.1*G10_1_0 - 0.1*G10_2_0 - 0.133333333333333*G13_0_0 - 0.1*G13_1_0 - 0.1*G13_2_0; + A[308] = 0.0333333333333334*G7_1_1 + 0.0333333333333334*G7_2_1 + 0.0333333333333334*G10_1_1 + 0.0333333333333334*G10_2_1 + 0.0333333333333334*G13_1_1 + 0.0333333333333334*G13_2_1; + A[309] = 0.0333333333333334*G7_1_2 + 0.0333333333333334*G7_2_2 + 0.0333333333333334*G10_1_2 + 0.0333333333333334*G10_2_2 + 0.0333333333333334*G13_1_2 + 0.0333333333333334*G13_2_2; + A[310] = -0.133333333333333*G7_1_1 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_1 - 0.133333333333333*G7_2_2 - 0.133333333333333*G10_1_1 - 0.133333333333333*G10_1_2 - 0.133333333333333*G10_2_1 - 0.133333333333333*G10_2_2 - 0.133333333333333*G13_1_1 - 0.133333333333333*G13_1_2 - 0.133333333333333*G13_2_1 - 0.133333333333333*G13_2_2; + A[311] = -0.133333333333333*G7_0_2 - 0.133333333333333*G7_1_0 - 0.266666666666667*G7_1_2 - 0.133333333333333*G7_2_0 - 0.266666666666666*G7_2_2 - 0.133333333333333*G10_0_2 - 0.133333333333333*G10_1_0 - 0.266666666666667*G10_1_2 - 0.133333333333333*G10_2_0 - 0.266666666666666*G10_2_2 - 0.133333333333333*G13_0_2 - 0.133333333333333*G13_1_0 - 0.266666666666667*G13_1_2 - 0.133333333333333*G13_2_0 - 0.266666666666666*G13_2_2; + A[312] = -0.133333333333333*G7_0_1 - 0.133333333333333*G7_1_0 - 0.266666666666667*G7_1_1 - 0.133333333333333*G7_2_0 - 0.266666666666666*G7_2_1 - 0.133333333333333*G10_0_1 - 0.133333333333333*G10_1_0 - 0.266666666666667*G10_1_1 - 0.133333333333333*G10_2_0 - 0.266666666666666*G10_2_1 - 0.133333333333333*G13_0_1 - 0.133333333333333*G13_1_0 - 0.266666666666667*G13_1_1 - 0.133333333333333*G13_2_0 - 0.266666666666666*G13_2_1; + A[313] = 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_0 + 0.133333333333333*G7_1_1 + 0.133333333333333*G7_2_0 + 0.133333333333333*G7_2_1 + 0.133333333333333*G10_0_2 + 0.133333333333333*G10_1_0 + 0.133333333333333*G10_1_1 + 0.133333333333333*G10_2_0 + 0.133333333333333*G10_2_1 + 0.133333333333333*G13_0_2 + 0.133333333333333*G13_1_0 + 0.133333333333333*G13_1_1 + 0.133333333333333*G13_2_0 + 0.133333333333333*G13_2_1; + A[314] = 0.133333333333333*G7_0_1 + 0.133333333333333*G7_1_0 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_0 + 0.133333333333333*G7_2_2 + 0.133333333333333*G10_0_1 + 0.133333333333333*G10_1_0 + 0.133333333333333*G10_1_2 + 0.133333333333333*G10_2_0 + 0.133333333333333*G10_2_2 + 0.133333333333333*G13_0_1 + 0.133333333333333*G13_1_0 + 0.133333333333333*G13_1_2 + 0.133333333333333*G13_2_0 + 0.133333333333333*G13_2_2; + A[315] = 0.266666666666667*G7_0_0 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_0 + 0.266666666666667*G7_1_1 + 0.266666666666666*G7_1_2 + 0.133333333333333*G7_2_0 + 0.266666666666666*G7_2_1 + 0.266666666666666*G7_2_2 + 0.266666666666667*G10_0_0 + 0.133333333333333*G10_0_1 + 0.133333333333333*G10_0_2 + 0.133333333333333*G10_1_0 + 0.266666666666667*G10_1_1 + 0.266666666666666*G10_1_2 + 0.133333333333333*G10_2_0 + 0.266666666666666*G10_2_1 + 0.266666666666666*G10_2_2 + 0.266666666666667*G13_0_0 + 0.133333333333333*G13_0_1 + 0.133333333333333*G13_0_2 + 0.133333333333333*G13_1_0 + 0.266666666666667*G13_1_1 + 0.266666666666666*G13_1_2 + 0.133333333333333*G13_2_0 + 0.266666666666666*G13_2_1 + 0.266666666666666*G13_2_2; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0333333333333334*G4_0 - 0.0333333333333333*G4_1 - 0.0333333333333333*G4_2; + A[337] = -0.0333333333333333*G4_0 - 0.0666666666666666*G4_1 - 0.0666666666666666*G4_2; + A[338] = -0.0333333333333333*G4_1 - 0.0333333333333333*G4_2; + A[339] = -0.0333333333333333*G4_1 - 0.0333333333333333*G4_2; + A[340] = 0.0; + A[341] = 0.0; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.1*G8_0_0 + 0.1*G8_0_1 + 0.1*G8_0_2 + 0.1*G8_1_0 + 0.1*G8_1_1 + 0.1*G8_1_2 + 0.1*G8_2_0 + 0.1*G8_2_1 + 0.1*G8_2_2 + 0.1*G11_0_0 + 0.1*G11_0_1 + 0.1*G11_0_2 + 0.1*G11_1_0 + 0.1*G11_1_1 + 0.1*G11_1_2 + 0.1*G11_2_0 + 0.1*G11_2_1 + 0.1*G11_2_2 + 0.1*G14_0_0 + 0.1*G14_0_1 + 0.1*G14_0_2 + 0.1*G14_1_0 + 0.1*G14_1_1 + 0.1*G14_1_2 + 0.1*G14_2_0 + 0.1*G14_2_1 + 0.1*G14_2_2; + A[351] = 0.0333333333333333*G8_0_0 + 0.0333333333333334*G8_1_0 + 0.0333333333333333*G8_2_0 + 0.0333333333333333*G11_0_0 + 0.0333333333333334*G11_1_0 + 0.0333333333333333*G11_2_0 + 0.0333333333333333*G14_0_0 + 0.0333333333333334*G14_1_0 + 0.0333333333333333*G14_2_0; + A[352] = 0.0333333333333333*G8_0_1 + 0.0333333333333333*G8_1_1 + 0.0333333333333333*G8_2_1 + 0.0333333333333333*G11_0_1 + 0.0333333333333333*G11_1_1 + 0.0333333333333333*G11_2_1 + 0.0333333333333333*G14_0_1 + 0.0333333333333333*G14_1_1 + 0.0333333333333333*G14_2_1; + A[353] = 0.0333333333333333*G8_0_2 + 0.0333333333333333*G8_1_2 + 0.0333333333333333*G8_2_2 + 0.0333333333333333*G11_0_2 + 0.0333333333333333*G11_1_2 + 0.0333333333333333*G11_2_2 + 0.0333333333333333*G14_0_2 + 0.0333333333333333*G14_1_2 + 0.0333333333333333*G14_2_2; + A[354] = 0.0333333333333332*G8_0_1 + 0.0333333333333332*G8_0_2 + 0.0333333333333332*G8_1_1 + 0.0333333333333332*G8_1_2 + 0.0333333333333332*G8_2_1 + 0.0333333333333332*G8_2_2 + 0.0333333333333332*G11_0_1 + 0.0333333333333332*G11_0_2 + 0.0333333333333332*G11_1_1 + 0.0333333333333332*G11_1_2 + 0.0333333333333332*G11_2_1 + 0.0333333333333332*G11_2_2 + 0.0333333333333332*G14_0_1 + 0.0333333333333332*G14_0_2 + 0.0333333333333332*G14_1_1 + 0.0333333333333332*G14_1_2 + 0.0333333333333332*G14_2_1 + 0.0333333333333332*G14_2_2; + A[355] = 0.0333333333333332*G8_0_0 + 0.0333333333333332*G8_0_2 + 0.0333333333333332*G8_1_0 + 0.0333333333333332*G8_1_2 + 0.0333333333333332*G8_2_0 + 0.0333333333333333*G8_2_2 + 0.0333333333333332*G11_0_0 + 0.0333333333333332*G11_0_2 + 0.0333333333333332*G11_1_0 + 0.0333333333333332*G11_1_2 + 0.0333333333333332*G11_2_0 + 0.0333333333333333*G11_2_2 + 0.0333333333333332*G14_0_0 + 0.0333333333333332*G14_0_2 + 0.0333333333333332*G14_1_0 + 0.0333333333333332*G14_1_2 + 0.0333333333333332*G14_2_0 + 0.0333333333333333*G14_2_2; + A[356] = 0.0333333333333332*G8_0_0 + 0.0333333333333333*G8_0_1 + 0.0333333333333332*G8_1_0 + 0.0333333333333333*G8_1_1 + 0.0333333333333332*G8_2_0 + 0.0333333333333333*G8_2_1 + 0.0333333333333332*G11_0_0 + 0.0333333333333333*G11_0_1 + 0.0333333333333332*G11_1_0 + 0.0333333333333333*G11_1_1 + 0.0333333333333332*G11_2_0 + 0.0333333333333333*G11_2_1 + 0.0333333333333332*G14_0_0 + 0.0333333333333333*G14_0_1 + 0.0333333333333332*G14_1_0 + 0.0333333333333333*G14_1_1 + 0.0333333333333332*G14_2_0 + 0.0333333333333333*G14_2_1; + A[357] = -0.0333333333333332*G8_0_0 - 0.0333333333333332*G8_0_1 - 0.133333333333333*G8_0_2 - 0.0333333333333332*G8_1_0 - 0.0333333333333332*G8_1_1 - 0.133333333333333*G8_1_2 - 0.0333333333333332*G8_2_0 - 0.0333333333333332*G8_2_1 - 0.133333333333333*G8_2_2 - 0.0333333333333332*G11_0_0 - 0.0333333333333332*G11_0_1 - 0.133333333333333*G11_0_2 - 0.0333333333333332*G11_1_0 - 0.0333333333333332*G11_1_1 - 0.133333333333333*G11_1_2 - 0.0333333333333332*G11_2_0 - 0.0333333333333332*G11_2_1 - 0.133333333333333*G11_2_2 - 0.0333333333333332*G14_0_0 - 0.0333333333333332*G14_0_1 - 0.133333333333333*G14_0_2 - 0.0333333333333332*G14_1_0 - 0.0333333333333332*G14_1_1 - 0.133333333333333*G14_1_2 - 0.0333333333333332*G14_2_0 - 0.0333333333333332*G14_2_1 - 0.133333333333333*G14_2_2; + A[358] = -0.0333333333333332*G8_0_0 - 0.133333333333333*G8_0_1 - 0.0333333333333332*G8_0_2 - 0.0333333333333332*G8_1_0 - 0.133333333333333*G8_1_1 - 0.0333333333333332*G8_1_2 - 0.0333333333333332*G8_2_0 - 0.133333333333333*G8_2_1 - 0.0333333333333332*G8_2_2 - 0.0333333333333332*G11_0_0 - 0.133333333333333*G11_0_1 - 0.0333333333333332*G11_0_2 - 0.0333333333333332*G11_1_0 - 0.133333333333333*G11_1_1 - 0.0333333333333332*G11_1_2 - 0.0333333333333332*G11_2_0 - 0.133333333333333*G11_2_1 - 0.0333333333333332*G11_2_2 - 0.0333333333333332*G14_0_0 - 0.133333333333333*G14_0_1 - 0.0333333333333332*G14_0_2 - 0.0333333333333332*G14_1_0 - 0.133333333333333*G14_1_1 - 0.0333333333333332*G14_1_2 - 0.0333333333333332*G14_2_0 - 0.133333333333333*G14_2_1 - 0.0333333333333332*G14_2_2; + A[359] = -0.133333333333333*G8_0_0 - 0.0333333333333333*G8_0_1 - 0.0333333333333333*G8_0_2 - 0.133333333333333*G8_1_0 - 0.0333333333333333*G8_1_1 - 0.0333333333333333*G8_1_2 - 0.133333333333333*G8_2_0 - 0.0333333333333332*G8_2_1 - 0.0333333333333333*G8_2_2 - 0.133333333333333*G11_0_0 - 0.0333333333333333*G11_0_1 - 0.0333333333333333*G11_0_2 - 0.133333333333333*G11_1_0 - 0.0333333333333333*G11_1_1 - 0.0333333333333333*G11_1_2 - 0.133333333333333*G11_2_0 - 0.0333333333333332*G11_2_1 - 0.0333333333333333*G11_2_2 - 0.133333333333333*G14_0_0 - 0.0333333333333333*G14_0_1 - 0.0333333333333333*G14_0_2 - 0.133333333333333*G14_1_0 - 0.0333333333333333*G14_1_1 - 0.0333333333333333*G14_1_2 - 0.133333333333333*G14_2_0 - 0.0333333333333332*G14_2_1 - 0.0333333333333333*G14_2_2; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = -0.025*G5_0 - 0.025*G5_1 - 0.025*G5_2; + A[371] = 0.00833333333333332*G5_0 + 0.00833333333333332*G5_1 + 0.00833333333333331*G5_2; + A[372] = 0.0083333333333333*G5_0 + 0.0083333333333333*G5_1 + 0.0083333333333333*G5_2; + A[373] = 0.00833333333333331*G5_0 + 0.00833333333333331*G5_1 + 0.00833333333333331*G5_2; + A[374] = 0.0; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0333333333333333*G8_0_0 + 0.0333333333333334*G8_0_1 + 0.0333333333333333*G8_0_2 + 0.0333333333333333*G11_0_0 + 0.0333333333333334*G11_0_1 + 0.0333333333333333*G11_0_2 + 0.0333333333333333*G14_0_0 + 0.0333333333333334*G14_0_1 + 0.0333333333333333*G14_0_2; + A[385] = 0.1*G8_0_0 + 0.1*G11_0_0 + 0.1*G14_0_0; + A[386] = -0.0333333333333333*G8_0_1 - 0.0333333333333333*G11_0_1 - 0.0333333333333333*G14_0_1; + A[387] = -0.0333333333333333*G8_0_2 - 0.0333333333333333*G11_0_2 - 0.0333333333333333*G14_0_2; + A[388] = -0.0333333333333334*G8_0_1 - 0.0333333333333333*G8_0_2 - 0.0333333333333334*G11_0_1 - 0.0333333333333333*G11_0_2 - 0.0333333333333334*G14_0_1 - 0.0333333333333333*G14_0_2; + A[389] = -0.0333333333333334*G8_0_0 + 0.1*G8_0_2 - 0.0333333333333334*G11_0_0 + 0.1*G11_0_2 - 0.0333333333333334*G14_0_0 + 0.1*G14_0_2; + A[390] = -0.0333333333333333*G8_0_0 + 0.1*G8_0_1 - 0.0333333333333333*G11_0_0 + 0.1*G11_0_1 - 0.0333333333333333*G14_0_0 + 0.1*G14_0_1; + A[391] = 0.0333333333333334*G8_0_0 + 0.0333333333333333*G8_0_1 + 0.0333333333333334*G11_0_0 + 0.0333333333333333*G11_0_1 + 0.0333333333333334*G14_0_0 + 0.0333333333333333*G14_0_1; + A[392] = 0.0333333333333333*G8_0_0 + 0.0333333333333333*G8_0_2 + 0.0333333333333333*G11_0_0 + 0.0333333333333333*G11_0_2 + 0.0333333333333333*G14_0_0 + 0.0333333333333333*G14_0_2; + A[393] = -0.133333333333333*G8_0_0 - 0.1*G8_0_1 - 0.1*G8_0_2 - 0.133333333333333*G11_0_0 - 0.1*G11_0_1 - 0.1*G11_0_2 - 0.133333333333333*G14_0_0 - 0.1*G14_0_1 - 0.1*G14_0_2; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0; + A[403] = 0.0; + A[404] = -0.00833333333333334*G5_0; + A[405] = 0.025*G5_0; + A[406] = -0.00833333333333333*G5_0; + A[407] = -0.00833333333333334*G5_0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0333333333333333*G8_1_0 + 0.0333333333333333*G8_1_1 + 0.0333333333333333*G8_1_2 + 0.0333333333333333*G11_1_0 + 0.0333333333333333*G11_1_1 + 0.0333333333333333*G11_1_2 + 0.0333333333333333*G14_1_0 + 0.0333333333333333*G14_1_1 + 0.0333333333333333*G14_1_2; + A[419] = -0.0333333333333333*G8_1_0 - 0.0333333333333333*G11_1_0 - 0.0333333333333333*G14_1_0; + A[420] = 0.1*G8_1_1 + 0.1*G11_1_1 + 0.1*G14_1_1; + A[421] = -0.0333333333333333*G8_1_2 - 0.0333333333333333*G11_1_2 - 0.0333333333333333*G14_1_2; + A[422] = -0.0333333333333334*G8_1_1 + 0.1*G8_1_2 - 0.0333333333333334*G11_1_1 + 0.1*G11_1_2 - 0.0333333333333334*G14_1_1 + 0.1*G14_1_2; + A[423] = -0.0333333333333334*G8_1_0 - 0.0333333333333334*G8_1_2 - 0.0333333333333334*G11_1_0 - 0.0333333333333334*G11_1_2 - 0.0333333333333334*G14_1_0 - 0.0333333333333334*G14_1_2; + A[424] = 0.1*G8_1_0 - 0.0333333333333334*G8_1_1 + 0.1*G11_1_0 - 0.0333333333333334*G11_1_1 + 0.1*G14_1_0 - 0.0333333333333334*G14_1_1; + A[425] = 0.0333333333333334*G8_1_0 + 0.0333333333333334*G8_1_1 + 0.0333333333333334*G11_1_0 + 0.0333333333333334*G11_1_1 + 0.0333333333333334*G14_1_0 + 0.0333333333333334*G14_1_1; + A[426] = -0.1*G8_1_0 - 0.133333333333333*G8_1_1 - 0.1*G8_1_2 - 0.1*G11_1_0 - 0.133333333333333*G11_1_1 - 0.1*G11_1_2 - 0.1*G14_1_0 - 0.133333333333333*G14_1_1 - 0.1*G14_1_2; + A[427] = 0.0333333333333334*G8_1_1 + 0.0333333333333334*G8_1_2 + 0.0333333333333334*G11_1_1 + 0.0333333333333334*G11_1_2 + 0.0333333333333334*G14_1_1 + 0.0333333333333334*G14_1_2; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0; + A[433] = 0.0; + A[434] = 0.0; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = -0.00833333333333335*G5_1; + A[439] = -0.00833333333333335*G5_1; + A[440] = 0.025*G5_1; + A[441] = -0.00833333333333335*G5_1; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0333333333333333*G8_2_0 + 0.0333333333333333*G8_2_1 + 0.0333333333333333*G8_2_2 + 0.0333333333333333*G11_2_0 + 0.0333333333333333*G11_2_1 + 0.0333333333333333*G11_2_2 + 0.0333333333333333*G14_2_0 + 0.0333333333333333*G14_2_1 + 0.0333333333333333*G14_2_2; + A[453] = -0.0333333333333333*G8_2_0 - 0.0333333333333333*G11_2_0 - 0.0333333333333333*G14_2_0; + A[454] = -0.0333333333333333*G8_2_1 - 0.0333333333333333*G11_2_1 - 0.0333333333333333*G14_2_1; + A[455] = 0.1*G8_2_2 + 0.1*G11_2_2 + 0.1*G14_2_2; + A[456] = 0.1*G8_2_1 - 0.0333333333333334*G8_2_2 + 0.1*G11_2_1 - 0.0333333333333334*G11_2_2 + 0.1*G14_2_1 - 0.0333333333333334*G14_2_2; + A[457] = 0.1*G8_2_0 - 0.0333333333333334*G8_2_2 + 0.1*G11_2_0 - 0.0333333333333334*G11_2_2 + 0.1*G14_2_0 - 0.0333333333333334*G14_2_2; + A[458] = -0.0333333333333334*G8_2_0 - 0.0333333333333334*G8_2_1 - 0.0333333333333334*G11_2_0 - 0.0333333333333334*G11_2_1 - 0.0333333333333334*G14_2_0 - 0.0333333333333334*G14_2_1; + A[459] = -0.1*G8_2_0 - 0.1*G8_2_1 - 0.133333333333333*G8_2_2 - 0.1*G11_2_0 - 0.1*G11_2_1 - 0.133333333333333*G11_2_2 - 0.1*G14_2_0 - 0.1*G14_2_1 - 0.133333333333333*G14_2_2; + A[460] = 0.0333333333333334*G8_2_0 + 0.0333333333333334*G8_2_2 + 0.0333333333333334*G11_2_0 + 0.0333333333333334*G11_2_2 + 0.0333333333333334*G14_2_0 + 0.0333333333333334*G14_2_2; + A[461] = 0.0333333333333334*G8_2_1 + 0.0333333333333334*G8_2_2 + 0.0333333333333334*G11_2_1 + 0.0333333333333334*G11_2_2 + 0.0333333333333334*G14_2_1 + 0.0333333333333334*G14_2_2; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0; + A[466] = 0.0; + A[467] = 0.0; + A[468] = 0.0; + A[469] = 0.0; + A[470] = 0.0; + A[471] = 0.0; + A[472] = -0.00833333333333335*G5_2; + A[473] = -0.00833333333333334*G5_2; + A[474] = -0.00833333333333336*G5_2; + A[475] = 0.025*G5_2; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0333333333333332*G8_1_0 + 0.0333333333333332*G8_1_1 + 0.0333333333333332*G8_1_2 + 0.0333333333333332*G8_2_0 + 0.0333333333333332*G8_2_1 + 0.0333333333333332*G8_2_2 + 0.0333333333333332*G11_1_0 + 0.0333333333333332*G11_1_1 + 0.0333333333333332*G11_1_2 + 0.0333333333333332*G11_2_0 + 0.0333333333333332*G11_2_1 + 0.0333333333333332*G11_2_2 + 0.0333333333333332*G14_1_0 + 0.0333333333333332*G14_1_1 + 0.0333333333333332*G14_1_2 + 0.0333333333333332*G14_2_0 + 0.0333333333333332*G14_2_1 + 0.0333333333333332*G14_2_2; + A[487] = -0.0333333333333333*G8_1_0 - 0.0333333333333333*G8_2_0 - 0.0333333333333333*G11_1_0 - 0.0333333333333333*G11_2_0 - 0.0333333333333333*G14_1_0 - 0.0333333333333333*G14_2_0; + A[488] = -0.0333333333333334*G8_1_1 + 0.1*G8_2_1 - 0.0333333333333334*G11_1_1 + 0.1*G11_2_1 - 0.0333333333333334*G14_1_1 + 0.1*G14_2_1; + A[489] = 0.1*G8_1_2 - 0.0333333333333334*G8_2_2 + 0.1*G11_1_2 - 0.0333333333333334*G11_2_2 + 0.1*G14_1_2 - 0.0333333333333334*G14_2_2; + A[490] = 0.266666666666667*G8_1_1 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_1 + 0.266666666666666*G8_2_2 + 0.266666666666667*G11_1_1 + 0.133333333333333*G11_1_2 + 0.133333333333333*G11_2_1 + 0.266666666666666*G11_2_2 + 0.266666666666667*G14_1_1 + 0.133333333333333*G14_1_2 + 0.133333333333333*G14_2_1 + 0.266666666666666*G14_2_2; + A[491] = 0.266666666666667*G8_1_0 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_0 + 0.133333333333333*G8_2_2 + 0.266666666666667*G11_1_0 + 0.133333333333333*G11_1_2 + 0.133333333333333*G11_2_0 + 0.133333333333333*G11_2_2 + 0.266666666666667*G14_1_0 + 0.133333333333333*G14_1_2 + 0.133333333333333*G14_2_0 + 0.133333333333333*G14_2_2; + A[492] = 0.133333333333333*G8_1_0 + 0.133333333333333*G8_1_1 + 0.266666666666666*G8_2_0 + 0.133333333333333*G8_2_1 + 0.133333333333333*G11_1_0 + 0.133333333333333*G11_1_1 + 0.266666666666666*G11_2_0 + 0.133333333333333*G11_2_1 + 0.133333333333333*G14_1_0 + 0.133333333333333*G14_1_1 + 0.266666666666666*G14_2_0 + 0.133333333333333*G14_2_1; + A[493] = -0.266666666666667*G8_1_0 - 0.266666666666666*G8_1_1 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_0 - 0.133333333333333*G8_2_1 - 0.266666666666667*G11_1_0 - 0.266666666666666*G11_1_1 - 0.133333333333333*G11_1_2 - 0.133333333333333*G11_2_0 - 0.133333333333333*G11_2_1 - 0.266666666666667*G14_1_0 - 0.266666666666666*G14_1_1 - 0.133333333333333*G14_1_2 - 0.133333333333333*G14_2_0 - 0.133333333333333*G14_2_1; + A[494] = -0.133333333333333*G8_1_0 - 0.133333333333333*G8_1_2 - 0.266666666666666*G8_2_0 - 0.133333333333333*G8_2_1 - 0.266666666666666*G8_2_2 - 0.133333333333333*G11_1_0 - 0.133333333333333*G11_1_2 - 0.266666666666666*G11_2_0 - 0.133333333333333*G11_2_1 - 0.266666666666666*G11_2_2 - 0.133333333333333*G14_1_0 - 0.133333333333333*G14_1_2 - 0.266666666666666*G14_2_0 - 0.133333333333333*G14_2_1 - 0.266666666666666*G14_2_2; + A[495] = -0.133333333333333*G8_1_1 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_1 - 0.133333333333333*G8_2_2 - 0.133333333333333*G11_1_1 - 0.133333333333333*G11_1_2 - 0.133333333333333*G11_2_1 - 0.133333333333333*G11_2_2 - 0.133333333333333*G14_1_1 - 0.133333333333333*G14_1_2 - 0.133333333333333*G14_2_1 - 0.133333333333333*G14_2_2; + A[496] = 0.0; + A[497] = 0.0; + A[498] = 0.0; + A[499] = 0.0; + A[500] = 0.0; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0333333333333334*G5_1 + 0.0333333333333333*G5_2; + A[507] = 0.0333333333333333*G5_1 + 0.0333333333333333*G5_2; + A[508] = 0.0333333333333333*G5_1 + 0.0666666666666666*G5_2; + A[509] = 0.0666666666666667*G5_1 + 0.0333333333333333*G5_2; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0333333333333332*G8_0_0 + 0.0333333333333332*G8_0_1 + 0.0333333333333332*G8_0_2 + 0.0333333333333332*G8_2_0 + 0.0333333333333332*G8_2_1 + 0.0333333333333332*G8_2_2 + 0.0333333333333332*G11_0_0 + 0.0333333333333332*G11_0_1 + 0.0333333333333332*G11_0_2 + 0.0333333333333332*G11_2_0 + 0.0333333333333332*G11_2_1 + 0.0333333333333332*G11_2_2 + 0.0333333333333332*G14_0_0 + 0.0333333333333332*G14_0_1 + 0.0333333333333332*G14_0_2 + 0.0333333333333332*G14_2_0 + 0.0333333333333332*G14_2_1 + 0.0333333333333332*G14_2_2; + A[521] = -0.0333333333333334*G8_0_0 + 0.1*G8_2_0 - 0.0333333333333334*G11_0_0 + 0.1*G11_2_0 - 0.0333333333333334*G14_0_0 + 0.1*G14_2_0; + A[522] = -0.0333333333333334*G8_0_1 - 0.0333333333333334*G8_2_1 - 0.0333333333333334*G11_0_1 - 0.0333333333333334*G11_2_1 - 0.0333333333333334*G14_0_1 - 0.0333333333333334*G14_2_1; + A[523] = 0.1*G8_0_2 - 0.0333333333333334*G8_2_2 + 0.1*G11_0_2 - 0.0333333333333334*G11_2_2 + 0.1*G14_0_2 - 0.0333333333333334*G14_2_2; + A[524] = 0.266666666666667*G8_0_1 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_2_1 + 0.133333333333333*G8_2_2 + 0.266666666666667*G11_0_1 + 0.133333333333333*G11_0_2 + 0.133333333333333*G11_2_1 + 0.133333333333333*G11_2_2 + 0.266666666666667*G14_0_1 + 0.133333333333333*G14_0_2 + 0.133333333333333*G14_2_1 + 0.133333333333333*G14_2_2; + A[525] = 0.266666666666666*G8_0_0 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_2_0 + 0.266666666666667*G8_2_2 + 0.266666666666666*G11_0_0 + 0.133333333333333*G11_0_2 + 0.133333333333333*G11_2_0 + 0.266666666666667*G11_2_2 + 0.266666666666666*G14_0_0 + 0.133333333333333*G14_0_2 + 0.133333333333333*G14_2_0 + 0.266666666666667*G14_2_2; + A[526] = 0.133333333333333*G8_0_0 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_2_0 + 0.266666666666667*G8_2_1 + 0.133333333333333*G11_0_0 + 0.133333333333333*G11_0_1 + 0.133333333333333*G11_2_0 + 0.266666666666667*G11_2_1 + 0.133333333333333*G14_0_0 + 0.133333333333333*G14_0_1 + 0.133333333333333*G14_2_0 + 0.266666666666667*G14_2_1; + A[527] = -0.266666666666666*G8_0_0 - 0.266666666666666*G8_0_1 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_2_0 - 0.133333333333333*G8_2_1 - 0.266666666666666*G11_0_0 - 0.266666666666666*G11_0_1 - 0.133333333333333*G11_0_2 - 0.133333333333333*G11_2_0 - 0.133333333333333*G11_2_1 - 0.266666666666666*G14_0_0 - 0.266666666666666*G14_0_1 - 0.133333333333333*G14_0_2 - 0.133333333333333*G14_2_0 - 0.133333333333333*G14_2_1; + A[528] = -0.133333333333333*G8_0_0 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_2_0 - 0.133333333333333*G8_2_2 - 0.133333333333333*G11_0_0 - 0.133333333333333*G11_0_2 - 0.133333333333333*G11_2_0 - 0.133333333333333*G11_2_2 - 0.133333333333333*G14_0_0 - 0.133333333333333*G14_0_2 - 0.133333333333333*G14_2_0 - 0.133333333333333*G14_2_2; + A[529] = -0.133333333333333*G8_0_1 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_2_0 - 0.266666666666667*G8_2_1 - 0.266666666666666*G8_2_2 - 0.133333333333333*G11_0_1 - 0.133333333333333*G11_0_2 - 0.133333333333333*G11_2_0 - 0.266666666666667*G11_2_1 - 0.266666666666666*G11_2_2 - 0.133333333333333*G14_0_1 - 0.133333333333333*G14_0_2 - 0.133333333333333*G14_2_0 - 0.266666666666667*G14_2_1 - 0.266666666666666*G14_2_2; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0333333333333333*G5_0 + 0.0333333333333333*G5_2; + A[541] = 0.0333333333333333*G5_0 + 0.0666666666666666*G5_2; + A[542] = 0.0333333333333333*G5_0 + 0.0333333333333333*G5_2; + A[543] = 0.0666666666666666*G5_0 + 0.0333333333333333*G5_2; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0333333333333332*G8_0_0 + 0.0333333333333332*G8_0_1 + 0.0333333333333332*G8_0_2 + 0.0333333333333333*G8_1_0 + 0.0333333333333333*G8_1_1 + 0.0333333333333332*G8_1_2 + 0.0333333333333332*G11_0_0 + 0.0333333333333332*G11_0_1 + 0.0333333333333332*G11_0_2 + 0.0333333333333333*G11_1_0 + 0.0333333333333333*G11_1_1 + 0.0333333333333332*G11_1_2 + 0.0333333333333332*G14_0_0 + 0.0333333333333332*G14_0_1 + 0.0333333333333332*G14_0_2 + 0.0333333333333333*G14_1_0 + 0.0333333333333333*G14_1_1 + 0.0333333333333332*G14_1_2; + A[555] = -0.0333333333333333*G8_0_0 + 0.1*G8_1_0 - 0.0333333333333333*G11_0_0 + 0.1*G11_1_0 - 0.0333333333333333*G14_0_0 + 0.1*G14_1_0; + A[556] = 0.1*G8_0_1 - 0.0333333333333334*G8_1_1 + 0.1*G11_0_1 - 0.0333333333333334*G11_1_1 + 0.1*G14_0_1 - 0.0333333333333334*G14_1_1; + A[557] = -0.0333333333333334*G8_0_2 - 0.0333333333333334*G8_1_2 - 0.0333333333333334*G11_0_2 - 0.0333333333333334*G11_1_2 - 0.0333333333333334*G14_0_2 - 0.0333333333333334*G14_1_2; + A[558] = 0.133333333333333*G8_0_1 + 0.266666666666666*G8_0_2 + 0.133333333333333*G8_1_1 + 0.133333333333333*G8_1_2 + 0.133333333333333*G11_0_1 + 0.266666666666666*G11_0_2 + 0.133333333333333*G11_1_1 + 0.133333333333333*G11_1_2 + 0.133333333333333*G14_0_1 + 0.266666666666666*G14_0_2 + 0.133333333333333*G14_1_1 + 0.133333333333333*G14_1_2; + A[559] = 0.133333333333333*G8_0_0 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_0 + 0.266666666666667*G8_1_2 + 0.133333333333333*G11_0_0 + 0.133333333333333*G11_0_2 + 0.133333333333333*G11_1_0 + 0.266666666666667*G11_1_2 + 0.133333333333333*G14_0_0 + 0.133333333333333*G14_0_2 + 0.133333333333333*G14_1_0 + 0.266666666666667*G14_1_2; + A[560] = 0.266666666666666*G8_0_0 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_1_0 + 0.266666666666667*G8_1_1 + 0.266666666666666*G11_0_0 + 0.133333333333333*G11_0_1 + 0.133333333333333*G11_1_0 + 0.266666666666667*G11_1_1 + 0.266666666666666*G14_0_0 + 0.133333333333333*G14_0_1 + 0.133333333333333*G14_1_0 + 0.266666666666667*G14_1_1; + A[561] = -0.133333333333333*G8_0_0 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_1_0 - 0.133333333333333*G8_1_1 - 0.133333333333333*G11_0_0 - 0.133333333333333*G11_0_1 - 0.133333333333333*G11_1_0 - 0.133333333333333*G11_1_1 - 0.133333333333333*G14_0_0 - 0.133333333333333*G14_0_1 - 0.133333333333333*G14_1_0 - 0.133333333333333*G14_1_1; + A[562] = -0.266666666666666*G8_0_0 - 0.133333333333333*G8_0_1 - 0.266666666666666*G8_0_2 - 0.133333333333333*G8_1_0 - 0.133333333333333*G8_1_2 - 0.266666666666666*G11_0_0 - 0.133333333333333*G11_0_1 - 0.266666666666666*G11_0_2 - 0.133333333333333*G11_1_0 - 0.133333333333333*G11_1_2 - 0.266666666666666*G14_0_0 - 0.133333333333333*G14_0_1 - 0.266666666666666*G14_0_2 - 0.133333333333333*G14_1_0 - 0.133333333333333*G14_1_2; + A[563] = -0.133333333333333*G8_0_1 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_1_0 - 0.266666666666667*G8_1_1 - 0.266666666666666*G8_1_2 - 0.133333333333333*G11_0_1 - 0.133333333333333*G11_0_2 - 0.133333333333333*G11_1_0 - 0.266666666666667*G11_1_1 - 0.266666666666666*G11_1_2 - 0.133333333333333*G14_0_1 - 0.133333333333333*G14_0_2 - 0.133333333333333*G14_1_0 - 0.266666666666667*G14_1_1 - 0.266666666666666*G14_1_2; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0333333333333333*G5_0 + 0.0333333333333334*G5_1; + A[575] = 0.0333333333333333*G5_0 + 0.0666666666666666*G5_1; + A[576] = 0.0666666666666666*G5_0 + 0.0333333333333333*G5_1; + A[577] = 0.0333333333333333*G5_0 + 0.0333333333333333*G5_1; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0; + A[586] = 0.0; + A[587] = 0.0; + A[588] = -0.0333333333333332*G8_0_0 - 0.0333333333333332*G8_0_1 - 0.0333333333333332*G8_0_2 - 0.0333333333333332*G8_1_0 - 0.0333333333333332*G8_1_1 - 0.0333333333333332*G8_1_2 - 0.133333333333333*G8_2_0 - 0.133333333333333*G8_2_1 - 0.133333333333333*G8_2_2 - 0.0333333333333332*G11_0_0 - 0.0333333333333332*G11_0_1 - 0.0333333333333332*G11_0_2 - 0.0333333333333332*G11_1_0 - 0.0333333333333332*G11_1_1 - 0.0333333333333332*G11_1_2 - 0.133333333333333*G11_2_0 - 0.133333333333333*G11_2_1 - 0.133333333333333*G11_2_2 - 0.0333333333333332*G14_0_0 - 0.0333333333333332*G14_0_1 - 0.0333333333333332*G14_0_2 - 0.0333333333333332*G14_1_0 - 0.0333333333333332*G14_1_1 - 0.0333333333333332*G14_1_2 - 0.133333333333333*G14_2_0 - 0.133333333333333*G14_2_1 - 0.133333333333333*G14_2_2; + A[589] = 0.0333333333333334*G8_0_0 + 0.0333333333333334*G8_1_0 + 0.0333333333333334*G11_0_0 + 0.0333333333333334*G11_1_0 + 0.0333333333333334*G14_0_0 + 0.0333333333333334*G14_1_0; + A[590] = 0.0333333333333334*G8_0_1 + 0.0333333333333334*G8_1_1 + 0.0333333333333334*G11_0_1 + 0.0333333333333334*G11_1_1 + 0.0333333333333334*G14_0_1 + 0.0333333333333334*G14_1_1; + A[591] = -0.1*G8_0_2 - 0.1*G8_1_2 - 0.133333333333333*G8_2_2 - 0.1*G11_0_2 - 0.1*G11_1_2 - 0.133333333333333*G11_2_2 - 0.1*G14_0_2 - 0.1*G14_1_2 - 0.133333333333333*G14_2_2; + A[592] = -0.266666666666667*G8_0_1 - 0.133333333333333*G8_0_2 - 0.266666666666667*G8_1_1 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_1 - 0.266666666666667*G11_0_1 - 0.133333333333333*G11_0_2 - 0.266666666666667*G11_1_1 - 0.133333333333333*G11_1_2 - 0.133333333333333*G11_2_1 - 0.266666666666667*G14_0_1 - 0.133333333333333*G14_0_2 - 0.266666666666667*G14_1_1 - 0.133333333333333*G14_1_2 - 0.133333333333333*G14_2_1; + A[593] = -0.266666666666666*G8_0_0 - 0.133333333333333*G8_0_2 - 0.266666666666666*G8_1_0 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_0 - 0.266666666666666*G11_0_0 - 0.133333333333333*G11_0_2 - 0.266666666666666*G11_1_0 - 0.133333333333333*G11_1_2 - 0.133333333333333*G11_2_0 - 0.266666666666666*G14_0_0 - 0.133333333333333*G14_0_2 - 0.266666666666666*G14_1_0 - 0.133333333333333*G14_1_2 - 0.133333333333333*G14_2_0; + A[594] = -0.133333333333333*G8_0_0 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_1_0 - 0.133333333333333*G8_1_1 - 0.133333333333333*G11_0_0 - 0.133333333333333*G11_0_1 - 0.133333333333333*G11_1_0 - 0.133333333333333*G11_1_1 - 0.133333333333333*G14_0_0 - 0.133333333333333*G14_0_1 - 0.133333333333333*G14_1_0 - 0.133333333333333*G14_1_1; + A[595] = 0.266666666666666*G8_0_0 + 0.266666666666666*G8_0_1 + 0.133333333333333*G8_0_2 + 0.266666666666666*G8_1_0 + 0.266666666666666*G8_1_1 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_0 + 0.133333333333333*G8_2_1 + 0.266666666666667*G8_2_2 + 0.266666666666666*G11_0_0 + 0.266666666666666*G11_0_1 + 0.133333333333333*G11_0_2 + 0.266666666666666*G11_1_0 + 0.266666666666666*G11_1_1 + 0.133333333333333*G11_1_2 + 0.133333333333333*G11_2_0 + 0.133333333333333*G11_2_1 + 0.266666666666667*G11_2_2 + 0.266666666666666*G14_0_0 + 0.266666666666666*G14_0_1 + 0.133333333333333*G14_0_2 + 0.266666666666666*G14_1_0 + 0.266666666666666*G14_1_1 + 0.133333333333333*G14_1_2 + 0.133333333333333*G14_2_0 + 0.133333333333333*G14_2_1 + 0.266666666666667*G14_2_2; + A[596] = 0.133333333333333*G8_0_0 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_0 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_1 + 0.133333333333333*G11_0_0 + 0.133333333333333*G11_0_2 + 0.133333333333333*G11_1_0 + 0.133333333333333*G11_1_2 + 0.133333333333333*G11_2_1 + 0.133333333333333*G14_0_0 + 0.133333333333333*G14_0_2 + 0.133333333333333*G14_1_0 + 0.133333333333333*G14_1_2 + 0.133333333333333*G14_2_1; + A[597] = 0.133333333333333*G8_0_1 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_1 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_0 + 0.133333333333333*G11_0_1 + 0.133333333333333*G11_0_2 + 0.133333333333333*G11_1_1 + 0.133333333333333*G11_1_2 + 0.133333333333333*G11_2_0 + 0.133333333333333*G14_0_1 + 0.133333333333333*G14_0_2 + 0.133333333333333*G14_1_1 + 0.133333333333333*G14_1_2 + 0.133333333333333*G14_2_0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = -0.0333333333333333*G5_0 - 0.0333333333333333*G5_1 + 0.0333333333333333*G5_2; + A[609] = -0.0333333333333333*G5_0 - 0.0333333333333333*G5_1; + A[610] = -0.0333333333333333*G5_0 - 0.0333333333333333*G5_1; + A[611] = -0.0666666666666666*G5_0 - 0.0666666666666666*G5_1 - 0.0333333333333333*G5_2; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0; + A[616] = 0.0; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0; + A[621] = 0.0; + A[622] = -0.0333333333333332*G8_0_0 - 0.0333333333333332*G8_0_1 - 0.0333333333333332*G8_0_2 - 0.133333333333333*G8_1_0 - 0.133333333333333*G8_1_1 - 0.133333333333333*G8_1_2 - 0.0333333333333332*G8_2_0 - 0.0333333333333332*G8_2_1 - 0.0333333333333332*G8_2_2 - 0.0333333333333332*G11_0_0 - 0.0333333333333332*G11_0_1 - 0.0333333333333332*G11_0_2 - 0.133333333333333*G11_1_0 - 0.133333333333333*G11_1_1 - 0.133333333333333*G11_1_2 - 0.0333333333333332*G11_2_0 - 0.0333333333333332*G11_2_1 - 0.0333333333333332*G11_2_2 - 0.0333333333333332*G14_0_0 - 0.0333333333333332*G14_0_1 - 0.0333333333333332*G14_0_2 - 0.133333333333333*G14_1_0 - 0.133333333333333*G14_1_1 - 0.133333333333333*G14_1_2 - 0.0333333333333332*G14_2_0 - 0.0333333333333332*G14_2_1 - 0.0333333333333332*G14_2_2; + A[623] = 0.0333333333333333*G8_0_0 + 0.0333333333333333*G8_2_0 + 0.0333333333333333*G11_0_0 + 0.0333333333333333*G11_2_0 + 0.0333333333333333*G14_0_0 + 0.0333333333333333*G14_2_0; + A[624] = -0.1*G8_0_1 - 0.133333333333333*G8_1_1 - 0.1*G8_2_1 - 0.1*G11_0_1 - 0.133333333333333*G11_1_1 - 0.1*G11_2_1 - 0.1*G14_0_1 - 0.133333333333333*G14_1_1 - 0.1*G14_2_1; + A[625] = 0.0333333333333334*G8_0_2 + 0.0333333333333334*G8_2_2 + 0.0333333333333334*G11_0_2 + 0.0333333333333334*G11_2_2 + 0.0333333333333334*G14_0_2 + 0.0333333333333334*G14_2_2; + A[626] = -0.133333333333333*G8_0_1 - 0.266666666666666*G8_0_2 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_1 - 0.266666666666666*G8_2_2 - 0.133333333333333*G11_0_1 - 0.266666666666666*G11_0_2 - 0.133333333333333*G11_1_2 - 0.133333333333333*G11_2_1 - 0.266666666666666*G11_2_2 - 0.133333333333333*G14_0_1 - 0.266666666666666*G14_0_2 - 0.133333333333333*G14_1_2 - 0.133333333333333*G14_2_1 - 0.266666666666666*G14_2_2; + A[627] = -0.133333333333333*G8_0_0 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_2_0 - 0.133333333333333*G8_2_2 - 0.133333333333333*G11_0_0 - 0.133333333333333*G11_0_2 - 0.133333333333333*G11_2_0 - 0.133333333333333*G11_2_2 - 0.133333333333333*G14_0_0 - 0.133333333333333*G14_0_2 - 0.133333333333333*G14_2_0 - 0.133333333333333*G14_2_2; + A[628] = -0.266666666666666*G8_0_0 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_1_0 - 0.266666666666666*G8_2_0 - 0.133333333333333*G8_2_1 - 0.266666666666666*G11_0_0 - 0.133333333333333*G11_0_1 - 0.133333333333333*G11_1_0 - 0.266666666666666*G11_2_0 - 0.133333333333333*G11_2_1 - 0.266666666666666*G14_0_0 - 0.133333333333333*G14_0_1 - 0.133333333333333*G14_1_0 - 0.266666666666666*G14_2_0 - 0.133333333333333*G14_2_1; + A[629] = 0.133333333333333*G8_0_0 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_0 + 0.133333333333333*G8_2_1 + 0.133333333333333*G11_0_0 + 0.133333333333333*G11_0_1 + 0.133333333333333*G11_1_2 + 0.133333333333333*G11_2_0 + 0.133333333333333*G11_2_1 + 0.133333333333333*G14_0_0 + 0.133333333333333*G14_0_1 + 0.133333333333333*G14_1_2 + 0.133333333333333*G14_2_0 + 0.133333333333333*G14_2_1; + A[630] = 0.266666666666666*G8_0_0 + 0.133333333333333*G8_0_1 + 0.266666666666666*G8_0_2 + 0.133333333333333*G8_1_0 + 0.266666666666666*G8_1_1 + 0.133333333333333*G8_1_2 + 0.266666666666666*G8_2_0 + 0.133333333333333*G8_2_1 + 0.266666666666666*G8_2_2 + 0.266666666666666*G11_0_0 + 0.133333333333333*G11_0_1 + 0.266666666666666*G11_0_2 + 0.133333333333333*G11_1_0 + 0.266666666666666*G11_1_1 + 0.133333333333333*G11_1_2 + 0.266666666666666*G11_2_0 + 0.133333333333333*G11_2_1 + 0.266666666666666*G11_2_2 + 0.266666666666666*G14_0_0 + 0.133333333333333*G14_0_1 + 0.266666666666666*G14_0_2 + 0.133333333333333*G14_1_0 + 0.266666666666666*G14_1_1 + 0.133333333333333*G14_1_2 + 0.266666666666666*G14_2_0 + 0.133333333333333*G14_2_1 + 0.266666666666666*G14_2_2; + A[631] = 0.133333333333333*G8_0_1 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_0 + 0.133333333333333*G8_2_1 + 0.133333333333333*G8_2_2 + 0.133333333333333*G11_0_1 + 0.133333333333333*G11_0_2 + 0.133333333333333*G11_1_0 + 0.133333333333333*G11_2_1 + 0.133333333333333*G11_2_2 + 0.133333333333333*G14_0_1 + 0.133333333333333*G14_0_2 + 0.133333333333333*G14_1_0 + 0.133333333333333*G14_2_1 + 0.133333333333333*G14_2_2; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = -0.0333333333333333*G5_0 + 0.0333333333333334*G5_1 - 0.0333333333333334*G5_2; + A[643] = -0.0333333333333333*G5_0 - 0.0333333333333333*G5_2; + A[644] = -0.0666666666666667*G5_0 - 0.0333333333333333*G5_1 - 0.0666666666666666*G5_2; + A[645] = -0.0333333333333333*G5_0 - 0.0333333333333333*G5_2; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0; + A[652] = 0.0; + A[653] = 0.0; + A[654] = 0.0; + A[655] = 0.0; + A[656] = -0.133333333333333*G8_0_0 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_0_2 - 0.0333333333333333*G8_1_0 - 0.0333333333333333*G8_1_1 - 0.0333333333333332*G8_1_2 - 0.0333333333333333*G8_2_0 - 0.0333333333333333*G8_2_1 - 0.0333333333333333*G8_2_2 - 0.133333333333333*G11_0_0 - 0.133333333333333*G11_0_1 - 0.133333333333333*G11_0_2 - 0.0333333333333333*G11_1_0 - 0.0333333333333333*G11_1_1 - 0.0333333333333332*G11_1_2 - 0.0333333333333333*G11_2_0 - 0.0333333333333333*G11_2_1 - 0.0333333333333333*G11_2_2 - 0.133333333333333*G14_0_0 - 0.133333333333333*G14_0_1 - 0.133333333333333*G14_0_2 - 0.0333333333333333*G14_1_0 - 0.0333333333333333*G14_1_1 - 0.0333333333333332*G14_1_2 - 0.0333333333333333*G14_2_0 - 0.0333333333333333*G14_2_1 - 0.0333333333333333*G14_2_2; + A[657] = -0.133333333333333*G8_0_0 - 0.1*G8_1_0 - 0.1*G8_2_0 - 0.133333333333333*G11_0_0 - 0.1*G11_1_0 - 0.1*G11_2_0 - 0.133333333333333*G14_0_0 - 0.1*G14_1_0 - 0.1*G14_2_0; + A[658] = 0.0333333333333334*G8_1_1 + 0.0333333333333334*G8_2_1 + 0.0333333333333334*G11_1_1 + 0.0333333333333334*G11_2_1 + 0.0333333333333334*G14_1_1 + 0.0333333333333334*G14_2_1; + A[659] = 0.0333333333333334*G8_1_2 + 0.0333333333333334*G8_2_2 + 0.0333333333333334*G11_1_2 + 0.0333333333333334*G11_2_2 + 0.0333333333333334*G14_1_2 + 0.0333333333333334*G14_2_2; + A[660] = -0.133333333333333*G8_1_1 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_1 - 0.133333333333333*G8_2_2 - 0.133333333333333*G11_1_1 - 0.133333333333333*G11_1_2 - 0.133333333333333*G11_2_1 - 0.133333333333333*G11_2_2 - 0.133333333333333*G14_1_1 - 0.133333333333333*G14_1_2 - 0.133333333333333*G14_2_1 - 0.133333333333333*G14_2_2; + A[661] = -0.133333333333333*G8_0_2 - 0.133333333333333*G8_1_0 - 0.266666666666667*G8_1_2 - 0.133333333333333*G8_2_0 - 0.266666666666666*G8_2_2 - 0.133333333333333*G11_0_2 - 0.133333333333333*G11_1_0 - 0.266666666666667*G11_1_2 - 0.133333333333333*G11_2_0 - 0.266666666666666*G11_2_2 - 0.133333333333333*G14_0_2 - 0.133333333333333*G14_1_0 - 0.266666666666667*G14_1_2 - 0.133333333333333*G14_2_0 - 0.266666666666666*G14_2_2; + A[662] = -0.133333333333333*G8_0_1 - 0.133333333333333*G8_1_0 - 0.266666666666667*G8_1_1 - 0.133333333333333*G8_2_0 - 0.266666666666666*G8_2_1 - 0.133333333333333*G11_0_1 - 0.133333333333333*G11_1_0 - 0.266666666666667*G11_1_1 - 0.133333333333333*G11_2_0 - 0.266666666666666*G11_2_1 - 0.133333333333333*G14_0_1 - 0.133333333333333*G14_1_0 - 0.266666666666667*G14_1_1 - 0.133333333333333*G14_2_0 - 0.266666666666666*G14_2_1; + A[663] = 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_0 + 0.133333333333333*G8_1_1 + 0.133333333333333*G8_2_0 + 0.133333333333333*G8_2_1 + 0.133333333333333*G11_0_2 + 0.133333333333333*G11_1_0 + 0.133333333333333*G11_1_1 + 0.133333333333333*G11_2_0 + 0.133333333333333*G11_2_1 + 0.133333333333333*G14_0_2 + 0.133333333333333*G14_1_0 + 0.133333333333333*G14_1_1 + 0.133333333333333*G14_2_0 + 0.133333333333333*G14_2_1; + A[664] = 0.133333333333333*G8_0_1 + 0.133333333333333*G8_1_0 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_0 + 0.133333333333333*G8_2_2 + 0.133333333333333*G11_0_1 + 0.133333333333333*G11_1_0 + 0.133333333333333*G11_1_2 + 0.133333333333333*G11_2_0 + 0.133333333333333*G11_2_2 + 0.133333333333333*G14_0_1 + 0.133333333333333*G14_1_0 + 0.133333333333333*G14_1_2 + 0.133333333333333*G14_2_0 + 0.133333333333333*G14_2_2; + A[665] = 0.266666666666667*G8_0_0 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_0 + 0.266666666666667*G8_1_1 + 0.266666666666666*G8_1_2 + 0.133333333333333*G8_2_0 + 0.266666666666666*G8_2_1 + 0.266666666666666*G8_2_2 + 0.266666666666667*G11_0_0 + 0.133333333333333*G11_0_1 + 0.133333333333333*G11_0_2 + 0.133333333333333*G11_1_0 + 0.266666666666667*G11_1_1 + 0.266666666666666*G11_1_2 + 0.133333333333333*G11_2_0 + 0.266666666666666*G11_2_1 + 0.266666666666666*G11_2_2 + 0.266666666666667*G14_0_0 + 0.133333333333333*G14_0_1 + 0.133333333333333*G14_0_2 + 0.133333333333333*G14_1_0 + 0.266666666666667*G14_1_1 + 0.266666666666666*G14_1_2 + 0.133333333333333*G14_2_0 + 0.266666666666666*G14_2_1 + 0.266666666666666*G14_2_2; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0333333333333334*G5_0 - 0.0333333333333333*G5_1 - 0.0333333333333333*G5_2; + A[677] = -0.0333333333333333*G5_0 - 0.0666666666666666*G5_1 - 0.0666666666666666*G5_2; + A[678] = -0.0333333333333333*G5_1 - 0.0333333333333333*G5_2; + A[679] = -0.0333333333333333*G5_1 - 0.0333333333333333*G5_2; + A[680] = 0.0; + A[681] = 0.0; + A[682] = 0.0; + A[683] = 0.0; + A[684] = 0.0; + A[685] = 0.0; + A[686] = 0.0; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.1*G6_0_0 + 0.1*G6_0_1 + 0.1*G6_0_2 + 0.1*G6_1_0 + 0.1*G6_1_1 + 0.1*G6_1_2 + 0.1*G6_2_0 + 0.1*G6_2_1 + 0.1*G6_2_2 + 0.1*G9_0_0 + 0.1*G9_0_1 + 0.1*G9_0_2 + 0.1*G9_1_0 + 0.1*G9_1_1 + 0.1*G9_1_2 + 0.1*G9_2_0 + 0.1*G9_2_1 + 0.1*G9_2_2 + 0.1*G12_0_0 + 0.1*G12_0_1 + 0.1*G12_0_2 + 0.1*G12_1_0 + 0.1*G12_1_1 + 0.1*G12_1_2 + 0.1*G12_2_0 + 0.1*G12_2_1 + 0.1*G12_2_2; + A[701] = 0.0333333333333333*G6_0_0 + 0.0333333333333334*G6_1_0 + 0.0333333333333333*G6_2_0 + 0.0333333333333333*G9_0_0 + 0.0333333333333334*G9_1_0 + 0.0333333333333333*G9_2_0 + 0.0333333333333333*G12_0_0 + 0.0333333333333334*G12_1_0 + 0.0333333333333333*G12_2_0; + A[702] = 0.0333333333333333*G6_0_1 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G6_2_1 + 0.0333333333333333*G9_0_1 + 0.0333333333333333*G9_1_1 + 0.0333333333333333*G9_2_1 + 0.0333333333333333*G12_0_1 + 0.0333333333333333*G12_1_1 + 0.0333333333333333*G12_2_1; + A[703] = 0.0333333333333333*G6_0_2 + 0.0333333333333333*G6_1_2 + 0.0333333333333333*G6_2_2 + 0.0333333333333333*G9_0_2 + 0.0333333333333333*G9_1_2 + 0.0333333333333333*G9_2_2 + 0.0333333333333333*G12_0_2 + 0.0333333333333333*G12_1_2 + 0.0333333333333333*G12_2_2; + A[704] = 0.0333333333333332*G6_0_1 + 0.0333333333333332*G6_0_2 + 0.0333333333333332*G6_1_1 + 0.0333333333333332*G6_1_2 + 0.0333333333333332*G6_2_1 + 0.0333333333333332*G6_2_2 + 0.0333333333333332*G9_0_1 + 0.0333333333333332*G9_0_2 + 0.0333333333333332*G9_1_1 + 0.0333333333333332*G9_1_2 + 0.0333333333333332*G9_2_1 + 0.0333333333333332*G9_2_2 + 0.0333333333333332*G12_0_1 + 0.0333333333333332*G12_0_2 + 0.0333333333333332*G12_1_1 + 0.0333333333333332*G12_1_2 + 0.0333333333333332*G12_2_1 + 0.0333333333333332*G12_2_2; + A[705] = 0.0333333333333332*G6_0_0 + 0.0333333333333332*G6_0_2 + 0.0333333333333332*G6_1_0 + 0.0333333333333332*G6_1_2 + 0.0333333333333332*G6_2_0 + 0.0333333333333333*G6_2_2 + 0.0333333333333332*G9_0_0 + 0.0333333333333332*G9_0_2 + 0.0333333333333332*G9_1_0 + 0.0333333333333332*G9_1_2 + 0.0333333333333332*G9_2_0 + 0.0333333333333333*G9_2_2 + 0.0333333333333332*G12_0_0 + 0.0333333333333332*G12_0_2 + 0.0333333333333332*G12_1_0 + 0.0333333333333332*G12_1_2 + 0.0333333333333332*G12_2_0 + 0.0333333333333333*G12_2_2; + A[706] = 0.0333333333333332*G6_0_0 + 0.0333333333333333*G6_0_1 + 0.0333333333333332*G6_1_0 + 0.0333333333333333*G6_1_1 + 0.0333333333333332*G6_2_0 + 0.0333333333333333*G6_2_1 + 0.0333333333333332*G9_0_0 + 0.0333333333333333*G9_0_1 + 0.0333333333333332*G9_1_0 + 0.0333333333333333*G9_1_1 + 0.0333333333333332*G9_2_0 + 0.0333333333333333*G9_2_1 + 0.0333333333333332*G12_0_0 + 0.0333333333333333*G12_0_1 + 0.0333333333333332*G12_1_0 + 0.0333333333333333*G12_1_1 + 0.0333333333333332*G12_2_0 + 0.0333333333333333*G12_2_1; + A[707] = -0.0333333333333332*G6_0_0 - 0.0333333333333332*G6_0_1 - 0.133333333333333*G6_0_2 - 0.0333333333333332*G6_1_0 - 0.0333333333333332*G6_1_1 - 0.133333333333333*G6_1_2 - 0.0333333333333332*G6_2_0 - 0.0333333333333332*G6_2_1 - 0.133333333333333*G6_2_2 - 0.0333333333333332*G9_0_0 - 0.0333333333333332*G9_0_1 - 0.133333333333333*G9_0_2 - 0.0333333333333332*G9_1_0 - 0.0333333333333332*G9_1_1 - 0.133333333333333*G9_1_2 - 0.0333333333333332*G9_2_0 - 0.0333333333333332*G9_2_1 - 0.133333333333333*G9_2_2 - 0.0333333333333332*G12_0_0 - 0.0333333333333332*G12_0_1 - 0.133333333333333*G12_0_2 - 0.0333333333333332*G12_1_0 - 0.0333333333333332*G12_1_1 - 0.133333333333333*G12_1_2 - 0.0333333333333332*G12_2_0 - 0.0333333333333332*G12_2_1 - 0.133333333333333*G12_2_2; + A[708] = -0.0333333333333332*G6_0_0 - 0.133333333333333*G6_0_1 - 0.0333333333333332*G6_0_2 - 0.0333333333333332*G6_1_0 - 0.133333333333333*G6_1_1 - 0.0333333333333332*G6_1_2 - 0.0333333333333332*G6_2_0 - 0.133333333333333*G6_2_1 - 0.0333333333333332*G6_2_2 - 0.0333333333333332*G9_0_0 - 0.133333333333333*G9_0_1 - 0.0333333333333332*G9_0_2 - 0.0333333333333332*G9_1_0 - 0.133333333333333*G9_1_1 - 0.0333333333333332*G9_1_2 - 0.0333333333333332*G9_2_0 - 0.133333333333333*G9_2_1 - 0.0333333333333332*G9_2_2 - 0.0333333333333332*G12_0_0 - 0.133333333333333*G12_0_1 - 0.0333333333333332*G12_0_2 - 0.0333333333333332*G12_1_0 - 0.133333333333333*G12_1_1 - 0.0333333333333332*G12_1_2 - 0.0333333333333332*G12_2_0 - 0.133333333333333*G12_2_1 - 0.0333333333333332*G12_2_2; + A[709] = -0.133333333333333*G6_0_0 - 0.0333333333333333*G6_0_1 - 0.0333333333333333*G6_0_2 - 0.133333333333333*G6_1_0 - 0.0333333333333333*G6_1_1 - 0.0333333333333333*G6_1_2 - 0.133333333333333*G6_2_0 - 0.0333333333333332*G6_2_1 - 0.0333333333333333*G6_2_2 - 0.133333333333333*G9_0_0 - 0.0333333333333333*G9_0_1 - 0.0333333333333333*G9_0_2 - 0.133333333333333*G9_1_0 - 0.0333333333333333*G9_1_1 - 0.0333333333333333*G9_1_2 - 0.133333333333333*G9_2_0 - 0.0333333333333332*G9_2_1 - 0.0333333333333333*G9_2_2 - 0.133333333333333*G12_0_0 - 0.0333333333333333*G12_0_1 - 0.0333333333333333*G12_0_2 - 0.133333333333333*G12_1_0 - 0.0333333333333333*G12_1_1 - 0.0333333333333333*G12_1_2 - 0.133333333333333*G12_2_0 - 0.0333333333333332*G12_2_1 - 0.0333333333333333*G12_2_2; + A[710] = -0.025*G3_0 - 0.025*G3_1 - 0.025*G3_2; + A[711] = 0.00833333333333332*G3_0 + 0.00833333333333332*G3_1 + 0.00833333333333331*G3_2; + A[712] = 0.0083333333333333*G3_0 + 0.0083333333333333*G3_1 + 0.0083333333333333*G3_2; + A[713] = 0.00833333333333331*G3_0 + 0.00833333333333331*G3_1 + 0.00833333333333331*G3_2; + A[714] = 0.0; + A[715] = 0.0; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0333333333333333*G6_0_0 + 0.0333333333333334*G6_0_1 + 0.0333333333333333*G6_0_2 + 0.0333333333333333*G9_0_0 + 0.0333333333333334*G9_0_1 + 0.0333333333333333*G9_0_2 + 0.0333333333333333*G12_0_0 + 0.0333333333333334*G12_0_1 + 0.0333333333333333*G12_0_2; + A[735] = 0.1*G6_0_0 + 0.1*G9_0_0 + 0.1*G12_0_0; + A[736] = -0.0333333333333333*G6_0_1 - 0.0333333333333333*G9_0_1 - 0.0333333333333333*G12_0_1; + A[737] = -0.0333333333333333*G6_0_2 - 0.0333333333333333*G9_0_2 - 0.0333333333333333*G12_0_2; + A[738] = -0.0333333333333334*G6_0_1 - 0.0333333333333333*G6_0_2 - 0.0333333333333334*G9_0_1 - 0.0333333333333333*G9_0_2 - 0.0333333333333334*G12_0_1 - 0.0333333333333333*G12_0_2; + A[739] = -0.0333333333333334*G6_0_0 + 0.1*G6_0_2 - 0.0333333333333334*G9_0_0 + 0.1*G9_0_2 - 0.0333333333333334*G12_0_0 + 0.1*G12_0_2; + A[740] = -0.0333333333333333*G6_0_0 + 0.1*G6_0_1 - 0.0333333333333333*G9_0_0 + 0.1*G9_0_1 - 0.0333333333333333*G12_0_0 + 0.1*G12_0_1; + A[741] = 0.0333333333333334*G6_0_0 + 0.0333333333333333*G6_0_1 + 0.0333333333333334*G9_0_0 + 0.0333333333333333*G9_0_1 + 0.0333333333333334*G12_0_0 + 0.0333333333333333*G12_0_1; + A[742] = 0.0333333333333333*G6_0_0 + 0.0333333333333333*G6_0_2 + 0.0333333333333333*G9_0_0 + 0.0333333333333333*G9_0_2 + 0.0333333333333333*G12_0_0 + 0.0333333333333333*G12_0_2; + A[743] = -0.133333333333333*G6_0_0 - 0.1*G6_0_1 - 0.1*G6_0_2 - 0.133333333333333*G9_0_0 - 0.1*G9_0_1 - 0.1*G9_0_2 - 0.133333333333333*G12_0_0 - 0.1*G12_0_1 - 0.1*G12_0_2; + A[744] = -0.00833333333333334*G3_0; + A[745] = 0.025*G3_0; + A[746] = -0.00833333333333333*G3_0; + A[747] = -0.00833333333333334*G3_0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0333333333333333*G6_1_0 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G6_1_2 + 0.0333333333333333*G9_1_0 + 0.0333333333333333*G9_1_1 + 0.0333333333333333*G9_1_2 + 0.0333333333333333*G12_1_0 + 0.0333333333333333*G12_1_1 + 0.0333333333333333*G12_1_2; + A[769] = -0.0333333333333333*G6_1_0 - 0.0333333333333333*G9_1_0 - 0.0333333333333333*G12_1_0; + A[770] = 0.1*G6_1_1 + 0.1*G9_1_1 + 0.1*G12_1_1; + A[771] = -0.0333333333333333*G6_1_2 - 0.0333333333333333*G9_1_2 - 0.0333333333333333*G12_1_2; + A[772] = -0.0333333333333334*G6_1_1 + 0.1*G6_1_2 - 0.0333333333333334*G9_1_1 + 0.1*G9_1_2 - 0.0333333333333334*G12_1_1 + 0.1*G12_1_2; + A[773] = -0.0333333333333334*G6_1_0 - 0.0333333333333334*G6_1_2 - 0.0333333333333334*G9_1_0 - 0.0333333333333334*G9_1_2 - 0.0333333333333334*G12_1_0 - 0.0333333333333334*G12_1_2; + A[774] = 0.1*G6_1_0 - 0.0333333333333334*G6_1_1 + 0.1*G9_1_0 - 0.0333333333333334*G9_1_1 + 0.1*G12_1_0 - 0.0333333333333334*G12_1_1; + A[775] = 0.0333333333333334*G6_1_0 + 0.0333333333333334*G6_1_1 + 0.0333333333333334*G9_1_0 + 0.0333333333333334*G9_1_1 + 0.0333333333333334*G12_1_0 + 0.0333333333333334*G12_1_1; + A[776] = -0.1*G6_1_0 - 0.133333333333333*G6_1_1 - 0.1*G6_1_2 - 0.1*G9_1_0 - 0.133333333333333*G9_1_1 - 0.1*G9_1_2 - 0.1*G12_1_0 - 0.133333333333333*G12_1_1 - 0.1*G12_1_2; + A[777] = 0.0333333333333334*G6_1_1 + 0.0333333333333334*G6_1_2 + 0.0333333333333334*G9_1_1 + 0.0333333333333334*G9_1_2 + 0.0333333333333334*G12_1_1 + 0.0333333333333334*G12_1_2; + A[778] = -0.00833333333333335*G3_1; + A[779] = -0.00833333333333335*G3_1; + A[780] = 0.025*G3_1; + A[781] = -0.00833333333333335*G3_1; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0; + A[802] = 0.0333333333333333*G6_2_0 + 0.0333333333333333*G6_2_1 + 0.0333333333333333*G6_2_2 + 0.0333333333333333*G9_2_0 + 0.0333333333333333*G9_2_1 + 0.0333333333333333*G9_2_2 + 0.0333333333333333*G12_2_0 + 0.0333333333333333*G12_2_1 + 0.0333333333333333*G12_2_2; + A[803] = -0.0333333333333333*G6_2_0 - 0.0333333333333333*G9_2_0 - 0.0333333333333333*G12_2_0; + A[804] = -0.0333333333333333*G6_2_1 - 0.0333333333333333*G9_2_1 - 0.0333333333333333*G12_2_1; + A[805] = 0.1*G6_2_2 + 0.1*G9_2_2 + 0.1*G12_2_2; + A[806] = 0.1*G6_2_1 - 0.0333333333333334*G6_2_2 + 0.1*G9_2_1 - 0.0333333333333334*G9_2_2 + 0.1*G12_2_1 - 0.0333333333333334*G12_2_2; + A[807] = 0.1*G6_2_0 - 0.0333333333333334*G6_2_2 + 0.1*G9_2_0 - 0.0333333333333334*G9_2_2 + 0.1*G12_2_0 - 0.0333333333333334*G12_2_2; + A[808] = -0.0333333333333334*G6_2_0 - 0.0333333333333334*G6_2_1 - 0.0333333333333334*G9_2_0 - 0.0333333333333334*G9_2_1 - 0.0333333333333334*G12_2_0 - 0.0333333333333334*G12_2_1; + A[809] = -0.1*G6_2_0 - 0.1*G6_2_1 - 0.133333333333333*G6_2_2 - 0.1*G9_2_0 - 0.1*G9_2_1 - 0.133333333333333*G9_2_2 - 0.1*G12_2_0 - 0.1*G12_2_1 - 0.133333333333333*G12_2_2; + A[810] = 0.0333333333333334*G6_2_0 + 0.0333333333333334*G6_2_2 + 0.0333333333333334*G9_2_0 + 0.0333333333333334*G9_2_2 + 0.0333333333333334*G12_2_0 + 0.0333333333333334*G12_2_2; + A[811] = 0.0333333333333334*G6_2_1 + 0.0333333333333334*G6_2_2 + 0.0333333333333334*G9_2_1 + 0.0333333333333334*G9_2_2 + 0.0333333333333334*G12_2_1 + 0.0333333333333334*G12_2_2; + A[812] = -0.00833333333333335*G3_2; + A[813] = -0.00833333333333334*G3_2; + A[814] = -0.00833333333333336*G3_2; + A[815] = 0.025*G3_2; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0333333333333332*G6_1_0 + 0.0333333333333332*G6_1_1 + 0.0333333333333332*G6_1_2 + 0.0333333333333332*G6_2_0 + 0.0333333333333332*G6_2_1 + 0.0333333333333332*G6_2_2 + 0.0333333333333332*G9_1_0 + 0.0333333333333332*G9_1_1 + 0.0333333333333332*G9_1_2 + 0.0333333333333332*G9_2_0 + 0.0333333333333332*G9_2_1 + 0.0333333333333332*G9_2_2 + 0.0333333333333332*G12_1_0 + 0.0333333333333332*G12_1_1 + 0.0333333333333332*G12_1_2 + 0.0333333333333332*G12_2_0 + 0.0333333333333332*G12_2_1 + 0.0333333333333332*G12_2_2; + A[837] = -0.0333333333333333*G6_1_0 - 0.0333333333333333*G6_2_0 - 0.0333333333333333*G9_1_0 - 0.0333333333333333*G9_2_0 - 0.0333333333333333*G12_1_0 - 0.0333333333333333*G12_2_0; + A[838] = -0.0333333333333334*G6_1_1 + 0.1*G6_2_1 - 0.0333333333333334*G9_1_1 + 0.1*G9_2_1 - 0.0333333333333334*G12_1_1 + 0.1*G12_2_1; + A[839] = 0.1*G6_1_2 - 0.0333333333333334*G6_2_2 + 0.1*G9_1_2 - 0.0333333333333334*G9_2_2 + 0.1*G12_1_2 - 0.0333333333333334*G12_2_2; + A[840] = 0.266666666666667*G6_1_1 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_1 + 0.266666666666666*G6_2_2 + 0.266666666666667*G9_1_1 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_1 + 0.266666666666666*G9_2_2 + 0.266666666666667*G12_1_1 + 0.133333333333333*G12_1_2 + 0.133333333333333*G12_2_1 + 0.266666666666666*G12_2_2; + A[841] = 0.266666666666667*G6_1_0 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_0 + 0.133333333333333*G6_2_2 + 0.266666666666667*G9_1_0 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_0 + 0.133333333333333*G9_2_2 + 0.266666666666667*G12_1_0 + 0.133333333333333*G12_1_2 + 0.133333333333333*G12_2_0 + 0.133333333333333*G12_2_2; + A[842] = 0.133333333333333*G6_1_0 + 0.133333333333333*G6_1_1 + 0.266666666666666*G6_2_0 + 0.133333333333333*G6_2_1 + 0.133333333333333*G9_1_0 + 0.133333333333333*G9_1_1 + 0.266666666666666*G9_2_0 + 0.133333333333333*G9_2_1 + 0.133333333333333*G12_1_0 + 0.133333333333333*G12_1_1 + 0.266666666666666*G12_2_0 + 0.133333333333333*G12_2_1; + A[843] = -0.266666666666667*G6_1_0 - 0.266666666666666*G6_1_1 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_0 - 0.133333333333333*G6_2_1 - 0.266666666666667*G9_1_0 - 0.266666666666666*G9_1_1 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_0 - 0.133333333333333*G9_2_1 - 0.266666666666667*G12_1_0 - 0.266666666666666*G12_1_1 - 0.133333333333333*G12_1_2 - 0.133333333333333*G12_2_0 - 0.133333333333333*G12_2_1; + A[844] = -0.133333333333333*G6_1_0 - 0.133333333333333*G6_1_2 - 0.266666666666666*G6_2_0 - 0.133333333333333*G6_2_1 - 0.266666666666666*G6_2_2 - 0.133333333333333*G9_1_0 - 0.133333333333333*G9_1_2 - 0.266666666666666*G9_2_0 - 0.133333333333333*G9_2_1 - 0.266666666666666*G9_2_2 - 0.133333333333333*G12_1_0 - 0.133333333333333*G12_1_2 - 0.266666666666666*G12_2_0 - 0.133333333333333*G12_2_1 - 0.266666666666666*G12_2_2; + A[845] = -0.133333333333333*G6_1_1 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_1 - 0.133333333333333*G6_2_2 - 0.133333333333333*G9_1_1 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_1 - 0.133333333333333*G9_2_2 - 0.133333333333333*G12_1_1 - 0.133333333333333*G12_1_2 - 0.133333333333333*G12_2_1 - 0.133333333333333*G12_2_2; + A[846] = 0.0333333333333334*G3_1 + 0.0333333333333333*G3_2; + A[847] = 0.0333333333333333*G3_1 + 0.0333333333333333*G3_2; + A[848] = 0.0333333333333333*G3_1 + 0.0666666666666666*G3_2; + A[849] = 0.0666666666666667*G3_1 + 0.0333333333333333*G3_2; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0; + A[868] = 0.0; + A[869] = 0.0; + A[870] = 0.0333333333333332*G6_0_0 + 0.0333333333333332*G6_0_1 + 0.0333333333333332*G6_0_2 + 0.0333333333333332*G6_2_0 + 0.0333333333333332*G6_2_1 + 0.0333333333333332*G6_2_2 + 0.0333333333333332*G9_0_0 + 0.0333333333333332*G9_0_1 + 0.0333333333333332*G9_0_2 + 0.0333333333333332*G9_2_0 + 0.0333333333333332*G9_2_1 + 0.0333333333333332*G9_2_2 + 0.0333333333333332*G12_0_0 + 0.0333333333333332*G12_0_1 + 0.0333333333333332*G12_0_2 + 0.0333333333333332*G12_2_0 + 0.0333333333333332*G12_2_1 + 0.0333333333333332*G12_2_2; + A[871] = -0.0333333333333334*G6_0_0 + 0.1*G6_2_0 - 0.0333333333333334*G9_0_0 + 0.1*G9_2_0 - 0.0333333333333334*G12_0_0 + 0.1*G12_2_0; + A[872] = -0.0333333333333334*G6_0_1 - 0.0333333333333334*G6_2_1 - 0.0333333333333334*G9_0_1 - 0.0333333333333334*G9_2_1 - 0.0333333333333334*G12_0_1 - 0.0333333333333334*G12_2_1; + A[873] = 0.1*G6_0_2 - 0.0333333333333334*G6_2_2 + 0.1*G9_0_2 - 0.0333333333333334*G9_2_2 + 0.1*G12_0_2 - 0.0333333333333334*G12_2_2; + A[874] = 0.266666666666667*G6_0_1 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_2_1 + 0.133333333333333*G6_2_2 + 0.266666666666667*G9_0_1 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_2_1 + 0.133333333333333*G9_2_2 + 0.266666666666667*G12_0_1 + 0.133333333333333*G12_0_2 + 0.133333333333333*G12_2_1 + 0.133333333333333*G12_2_2; + A[875] = 0.266666666666666*G6_0_0 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_2_0 + 0.266666666666667*G6_2_2 + 0.266666666666666*G9_0_0 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_2_0 + 0.266666666666667*G9_2_2 + 0.266666666666666*G12_0_0 + 0.133333333333333*G12_0_2 + 0.133333333333333*G12_2_0 + 0.266666666666667*G12_2_2; + A[876] = 0.133333333333333*G6_0_0 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_2_0 + 0.266666666666667*G6_2_1 + 0.133333333333333*G9_0_0 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_2_0 + 0.266666666666667*G9_2_1 + 0.133333333333333*G12_0_0 + 0.133333333333333*G12_0_1 + 0.133333333333333*G12_2_0 + 0.266666666666667*G12_2_1; + A[877] = -0.266666666666666*G6_0_0 - 0.266666666666666*G6_0_1 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_2_0 - 0.133333333333333*G6_2_1 - 0.266666666666666*G9_0_0 - 0.266666666666666*G9_0_1 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_2_0 - 0.133333333333333*G9_2_1 - 0.266666666666666*G12_0_0 - 0.266666666666666*G12_0_1 - 0.133333333333333*G12_0_2 - 0.133333333333333*G12_2_0 - 0.133333333333333*G12_2_1; + A[878] = -0.133333333333333*G6_0_0 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_2_0 - 0.133333333333333*G6_2_2 - 0.133333333333333*G9_0_0 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_2_0 - 0.133333333333333*G9_2_2 - 0.133333333333333*G12_0_0 - 0.133333333333333*G12_0_2 - 0.133333333333333*G12_2_0 - 0.133333333333333*G12_2_2; + A[879] = -0.133333333333333*G6_0_1 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_2_0 - 0.266666666666667*G6_2_1 - 0.266666666666666*G6_2_2 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_2_0 - 0.266666666666667*G9_2_1 - 0.266666666666666*G9_2_2 - 0.133333333333333*G12_0_1 - 0.133333333333333*G12_0_2 - 0.133333333333333*G12_2_0 - 0.266666666666667*G12_2_1 - 0.266666666666666*G12_2_2; + A[880] = 0.0333333333333333*G3_0 + 0.0333333333333333*G3_2; + A[881] = 0.0333333333333333*G3_0 + 0.0666666666666666*G3_2; + A[882] = 0.0333333333333333*G3_0 + 0.0333333333333333*G3_2; + A[883] = 0.0666666666666666*G3_0 + 0.0333333333333333*G3_2; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0; + A[898] = 0.0; + A[899] = 0.0; + A[900] = 0.0; + A[901] = 0.0; + A[902] = 0.0; + A[903] = 0.0; + A[904] = 0.0333333333333332*G6_0_0 + 0.0333333333333332*G6_0_1 + 0.0333333333333332*G6_0_2 + 0.0333333333333333*G6_1_0 + 0.0333333333333333*G6_1_1 + 0.0333333333333332*G6_1_2 + 0.0333333333333332*G9_0_0 + 0.0333333333333332*G9_0_1 + 0.0333333333333332*G9_0_2 + 0.0333333333333333*G9_1_0 + 0.0333333333333333*G9_1_1 + 0.0333333333333332*G9_1_2 + 0.0333333333333332*G12_0_0 + 0.0333333333333332*G12_0_1 + 0.0333333333333332*G12_0_2 + 0.0333333333333333*G12_1_0 + 0.0333333333333333*G12_1_1 + 0.0333333333333332*G12_1_2; + A[905] = -0.0333333333333333*G6_0_0 + 0.1*G6_1_0 - 0.0333333333333333*G9_0_0 + 0.1*G9_1_0 - 0.0333333333333333*G12_0_0 + 0.1*G12_1_0; + A[906] = 0.1*G6_0_1 - 0.0333333333333334*G6_1_1 + 0.1*G9_0_1 - 0.0333333333333334*G9_1_1 + 0.1*G12_0_1 - 0.0333333333333334*G12_1_1; + A[907] = -0.0333333333333334*G6_0_2 - 0.0333333333333334*G6_1_2 - 0.0333333333333334*G9_0_2 - 0.0333333333333334*G9_1_2 - 0.0333333333333334*G12_0_2 - 0.0333333333333334*G12_1_2; + A[908] = 0.133333333333333*G6_0_1 + 0.266666666666666*G6_0_2 + 0.133333333333333*G6_1_1 + 0.133333333333333*G6_1_2 + 0.133333333333333*G9_0_1 + 0.266666666666666*G9_0_2 + 0.133333333333333*G9_1_1 + 0.133333333333333*G9_1_2 + 0.133333333333333*G12_0_1 + 0.266666666666666*G12_0_2 + 0.133333333333333*G12_1_1 + 0.133333333333333*G12_1_2; + A[909] = 0.133333333333333*G6_0_0 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_0 + 0.266666666666667*G6_1_2 + 0.133333333333333*G9_0_0 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_0 + 0.266666666666667*G9_1_2 + 0.133333333333333*G12_0_0 + 0.133333333333333*G12_0_2 + 0.133333333333333*G12_1_0 + 0.266666666666667*G12_1_2; + A[910] = 0.266666666666666*G6_0_0 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_1_0 + 0.266666666666667*G6_1_1 + 0.266666666666666*G9_0_0 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_1_0 + 0.266666666666667*G9_1_1 + 0.266666666666666*G12_0_0 + 0.133333333333333*G12_0_1 + 0.133333333333333*G12_1_0 + 0.266666666666667*G12_1_1; + A[911] = -0.133333333333333*G6_0_0 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_1_0 - 0.133333333333333*G6_1_1 - 0.133333333333333*G9_0_0 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_1_0 - 0.133333333333333*G9_1_1 - 0.133333333333333*G12_0_0 - 0.133333333333333*G12_0_1 - 0.133333333333333*G12_1_0 - 0.133333333333333*G12_1_1; + A[912] = -0.266666666666666*G6_0_0 - 0.133333333333333*G6_0_1 - 0.266666666666666*G6_0_2 - 0.133333333333333*G6_1_0 - 0.133333333333333*G6_1_2 - 0.266666666666666*G9_0_0 - 0.133333333333333*G9_0_1 - 0.266666666666666*G9_0_2 - 0.133333333333333*G9_1_0 - 0.133333333333333*G9_1_2 - 0.266666666666666*G12_0_0 - 0.133333333333333*G12_0_1 - 0.266666666666666*G12_0_2 - 0.133333333333333*G12_1_0 - 0.133333333333333*G12_1_2; + A[913] = -0.133333333333333*G6_0_1 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_1_0 - 0.266666666666667*G6_1_1 - 0.266666666666666*G6_1_2 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_1_0 - 0.266666666666667*G9_1_1 - 0.266666666666666*G9_1_2 - 0.133333333333333*G12_0_1 - 0.133333333333333*G12_0_2 - 0.133333333333333*G12_1_0 - 0.266666666666667*G12_1_1 - 0.266666666666666*G12_1_2; + A[914] = 0.0333333333333333*G3_0 + 0.0333333333333334*G3_1; + A[915] = 0.0333333333333333*G3_0 + 0.0666666666666666*G3_1; + A[916] = 0.0666666666666666*G3_0 + 0.0333333333333333*G3_1; + A[917] = 0.0333333333333333*G3_0 + 0.0333333333333333*G3_1; + A[918] = 0.0; + A[919] = 0.0; + A[920] = 0.0; + A[921] = 0.0; + A[922] = 0.0; + A[923] = 0.0; + A[924] = 0.0; + A[925] = 0.0; + A[926] = 0.0; + A[927] = 0.0; + A[928] = 0.0; + A[929] = 0.0; + A[930] = 0.0; + A[931] = 0.0; + A[932] = 0.0; + A[933] = 0.0; + A[934] = 0.0; + A[935] = 0.0; + A[936] = 0.0; + A[937] = 0.0; + A[938] = -0.0333333333333332*G6_0_0 - 0.0333333333333332*G6_0_1 - 0.0333333333333332*G6_0_2 - 0.0333333333333332*G6_1_0 - 0.0333333333333332*G6_1_1 - 0.0333333333333332*G6_1_2 - 0.133333333333333*G6_2_0 - 0.133333333333333*G6_2_1 - 0.133333333333333*G6_2_2 - 0.0333333333333332*G9_0_0 - 0.0333333333333332*G9_0_1 - 0.0333333333333332*G9_0_2 - 0.0333333333333332*G9_1_0 - 0.0333333333333332*G9_1_1 - 0.0333333333333332*G9_1_2 - 0.133333333333333*G9_2_0 - 0.133333333333333*G9_2_1 - 0.133333333333333*G9_2_2 - 0.0333333333333332*G12_0_0 - 0.0333333333333332*G12_0_1 - 0.0333333333333332*G12_0_2 - 0.0333333333333332*G12_1_0 - 0.0333333333333332*G12_1_1 - 0.0333333333333332*G12_1_2 - 0.133333333333333*G12_2_0 - 0.133333333333333*G12_2_1 - 0.133333333333333*G12_2_2; + A[939] = 0.0333333333333334*G6_0_0 + 0.0333333333333334*G6_1_0 + 0.0333333333333334*G9_0_0 + 0.0333333333333334*G9_1_0 + 0.0333333333333334*G12_0_0 + 0.0333333333333334*G12_1_0; + A[940] = 0.0333333333333334*G6_0_1 + 0.0333333333333334*G6_1_1 + 0.0333333333333334*G9_0_1 + 0.0333333333333334*G9_1_1 + 0.0333333333333334*G12_0_1 + 0.0333333333333334*G12_1_1; + A[941] = -0.1*G6_0_2 - 0.1*G6_1_2 - 0.133333333333333*G6_2_2 - 0.1*G9_0_2 - 0.1*G9_1_2 - 0.133333333333333*G9_2_2 - 0.1*G12_0_2 - 0.1*G12_1_2 - 0.133333333333333*G12_2_2; + A[942] = -0.266666666666667*G6_0_1 - 0.133333333333333*G6_0_2 - 0.266666666666667*G6_1_1 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_1 - 0.266666666666667*G9_0_1 - 0.133333333333333*G9_0_2 - 0.266666666666667*G9_1_1 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_1 - 0.266666666666667*G12_0_1 - 0.133333333333333*G12_0_2 - 0.266666666666667*G12_1_1 - 0.133333333333333*G12_1_2 - 0.133333333333333*G12_2_1; + A[943] = -0.266666666666666*G6_0_0 - 0.133333333333333*G6_0_2 - 0.266666666666666*G6_1_0 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_0 - 0.266666666666666*G9_0_0 - 0.133333333333333*G9_0_2 - 0.266666666666666*G9_1_0 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_0 - 0.266666666666666*G12_0_0 - 0.133333333333333*G12_0_2 - 0.266666666666666*G12_1_0 - 0.133333333333333*G12_1_2 - 0.133333333333333*G12_2_0; + A[944] = -0.133333333333333*G6_0_0 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_1_0 - 0.133333333333333*G6_1_1 - 0.133333333333333*G9_0_0 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_1_0 - 0.133333333333333*G9_1_1 - 0.133333333333333*G12_0_0 - 0.133333333333333*G12_0_1 - 0.133333333333333*G12_1_0 - 0.133333333333333*G12_1_1; + A[945] = 0.266666666666666*G6_0_0 + 0.266666666666666*G6_0_1 + 0.133333333333333*G6_0_2 + 0.266666666666666*G6_1_0 + 0.266666666666666*G6_1_1 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_0 + 0.133333333333333*G6_2_1 + 0.266666666666667*G6_2_2 + 0.266666666666666*G9_0_0 + 0.266666666666666*G9_0_1 + 0.133333333333333*G9_0_2 + 0.266666666666666*G9_1_0 + 0.266666666666666*G9_1_1 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_0 + 0.133333333333333*G9_2_1 + 0.266666666666667*G9_2_2 + 0.266666666666666*G12_0_0 + 0.266666666666666*G12_0_1 + 0.133333333333333*G12_0_2 + 0.266666666666666*G12_1_0 + 0.266666666666666*G12_1_1 + 0.133333333333333*G12_1_2 + 0.133333333333333*G12_2_0 + 0.133333333333333*G12_2_1 + 0.266666666666667*G12_2_2; + A[946] = 0.133333333333333*G6_0_0 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_0 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_1 + 0.133333333333333*G9_0_0 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_0 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_1 + 0.133333333333333*G12_0_0 + 0.133333333333333*G12_0_2 + 0.133333333333333*G12_1_0 + 0.133333333333333*G12_1_2 + 0.133333333333333*G12_2_1; + A[947] = 0.133333333333333*G6_0_1 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_1 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_0 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_1 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_0 + 0.133333333333333*G12_0_1 + 0.133333333333333*G12_0_2 + 0.133333333333333*G12_1_1 + 0.133333333333333*G12_1_2 + 0.133333333333333*G12_2_0; + A[948] = -0.0333333333333333*G3_0 - 0.0333333333333333*G3_1 + 0.0333333333333333*G3_2; + A[949] = -0.0333333333333333*G3_0 - 0.0333333333333333*G3_1; + A[950] = -0.0333333333333333*G3_0 - 0.0333333333333333*G3_1; + A[951] = -0.0666666666666666*G3_0 - 0.0666666666666666*G3_1 - 0.0333333333333333*G3_2; + A[952] = 0.0; + A[953] = 0.0; + A[954] = 0.0; + A[955] = 0.0; + A[956] = 0.0; + A[957] = 0.0; + A[958] = 0.0; + A[959] = 0.0; + A[960] = 0.0; + A[961] = 0.0; + A[962] = 0.0; + A[963] = 0.0; + A[964] = 0.0; + A[965] = 0.0; + A[966] = 0.0; + A[967] = 0.0; + A[968] = 0.0; + A[969] = 0.0; + A[970] = 0.0; + A[971] = 0.0; + A[972] = -0.0333333333333332*G6_0_0 - 0.0333333333333332*G6_0_1 - 0.0333333333333332*G6_0_2 - 0.133333333333333*G6_1_0 - 0.133333333333333*G6_1_1 - 0.133333333333333*G6_1_2 - 0.0333333333333332*G6_2_0 - 0.0333333333333332*G6_2_1 - 0.0333333333333332*G6_2_2 - 0.0333333333333332*G9_0_0 - 0.0333333333333332*G9_0_1 - 0.0333333333333332*G9_0_2 - 0.133333333333333*G9_1_0 - 0.133333333333333*G9_1_1 - 0.133333333333333*G9_1_2 - 0.0333333333333332*G9_2_0 - 0.0333333333333332*G9_2_1 - 0.0333333333333332*G9_2_2 - 0.0333333333333332*G12_0_0 - 0.0333333333333332*G12_0_1 - 0.0333333333333332*G12_0_2 - 0.133333333333333*G12_1_0 - 0.133333333333333*G12_1_1 - 0.133333333333333*G12_1_2 - 0.0333333333333332*G12_2_0 - 0.0333333333333332*G12_2_1 - 0.0333333333333332*G12_2_2; + A[973] = 0.0333333333333333*G6_0_0 + 0.0333333333333333*G6_2_0 + 0.0333333333333333*G9_0_0 + 0.0333333333333333*G9_2_0 + 0.0333333333333333*G12_0_0 + 0.0333333333333333*G12_2_0; + A[974] = -0.1*G6_0_1 - 0.133333333333333*G6_1_1 - 0.1*G6_2_1 - 0.1*G9_0_1 - 0.133333333333333*G9_1_1 - 0.1*G9_2_1 - 0.1*G12_0_1 - 0.133333333333333*G12_1_1 - 0.1*G12_2_1; + A[975] = 0.0333333333333334*G6_0_2 + 0.0333333333333334*G6_2_2 + 0.0333333333333334*G9_0_2 + 0.0333333333333334*G9_2_2 + 0.0333333333333334*G12_0_2 + 0.0333333333333334*G12_2_2; + A[976] = -0.133333333333333*G6_0_1 - 0.266666666666666*G6_0_2 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_1 - 0.266666666666666*G6_2_2 - 0.133333333333333*G9_0_1 - 0.266666666666666*G9_0_2 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_1 - 0.266666666666666*G9_2_2 - 0.133333333333333*G12_0_1 - 0.266666666666666*G12_0_2 - 0.133333333333333*G12_1_2 - 0.133333333333333*G12_2_1 - 0.266666666666666*G12_2_2; + A[977] = -0.133333333333333*G6_0_0 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_2_0 - 0.133333333333333*G6_2_2 - 0.133333333333333*G9_0_0 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_2_0 - 0.133333333333333*G9_2_2 - 0.133333333333333*G12_0_0 - 0.133333333333333*G12_0_2 - 0.133333333333333*G12_2_0 - 0.133333333333333*G12_2_2; + A[978] = -0.266666666666666*G6_0_0 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_1_0 - 0.266666666666666*G6_2_0 - 0.133333333333333*G6_2_1 - 0.266666666666666*G9_0_0 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_1_0 - 0.266666666666666*G9_2_0 - 0.133333333333333*G9_2_1 - 0.266666666666666*G12_0_0 - 0.133333333333333*G12_0_1 - 0.133333333333333*G12_1_0 - 0.266666666666666*G12_2_0 - 0.133333333333333*G12_2_1; + A[979] = 0.133333333333333*G6_0_0 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_0 + 0.133333333333333*G6_2_1 + 0.133333333333333*G9_0_0 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_0 + 0.133333333333333*G9_2_1 + 0.133333333333333*G12_0_0 + 0.133333333333333*G12_0_1 + 0.133333333333333*G12_1_2 + 0.133333333333333*G12_2_0 + 0.133333333333333*G12_2_1; + A[980] = 0.266666666666666*G6_0_0 + 0.133333333333333*G6_0_1 + 0.266666666666666*G6_0_2 + 0.133333333333333*G6_1_0 + 0.266666666666666*G6_1_1 + 0.133333333333333*G6_1_2 + 0.266666666666666*G6_2_0 + 0.133333333333333*G6_2_1 + 0.266666666666666*G6_2_2 + 0.266666666666666*G9_0_0 + 0.133333333333333*G9_0_1 + 0.266666666666666*G9_0_2 + 0.133333333333333*G9_1_0 + 0.266666666666666*G9_1_1 + 0.133333333333333*G9_1_2 + 0.266666666666666*G9_2_0 + 0.133333333333333*G9_2_1 + 0.266666666666666*G9_2_2 + 0.266666666666666*G12_0_0 + 0.133333333333333*G12_0_1 + 0.266666666666666*G12_0_2 + 0.133333333333333*G12_1_0 + 0.266666666666666*G12_1_1 + 0.133333333333333*G12_1_2 + 0.266666666666666*G12_2_0 + 0.133333333333333*G12_2_1 + 0.266666666666666*G12_2_2; + A[981] = 0.133333333333333*G6_0_1 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_0 + 0.133333333333333*G6_2_1 + 0.133333333333333*G6_2_2 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_0 + 0.133333333333333*G9_2_1 + 0.133333333333333*G9_2_2 + 0.133333333333333*G12_0_1 + 0.133333333333333*G12_0_2 + 0.133333333333333*G12_1_0 + 0.133333333333333*G12_2_1 + 0.133333333333333*G12_2_2; + A[982] = -0.0333333333333333*G3_0 + 0.0333333333333334*G3_1 - 0.0333333333333334*G3_2; + A[983] = -0.0333333333333333*G3_0 - 0.0333333333333333*G3_2; + A[984] = -0.0666666666666667*G3_0 - 0.0333333333333333*G3_1 - 0.0666666666666666*G3_2; + A[985] = -0.0333333333333333*G3_0 - 0.0333333333333333*G3_2; + A[986] = 0.0; + A[987] = 0.0; + A[988] = 0.0; + A[989] = 0.0; + A[990] = 0.0; + A[991] = 0.0; + A[992] = 0.0; + A[993] = 0.0; + A[994] = 0.0; + A[995] = 0.0; + A[996] = 0.0; + A[997] = 0.0; + A[998] = 0.0; + A[999] = 0.0; + A[1000] = 0.0; + A[1001] = 0.0; + A[1002] = 0.0; + A[1003] = 0.0; + A[1004] = 0.0; + A[1005] = 0.0; + A[1006] = -0.133333333333333*G6_0_0 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_0_2 - 0.0333333333333333*G6_1_0 - 0.0333333333333333*G6_1_1 - 0.0333333333333332*G6_1_2 - 0.0333333333333333*G6_2_0 - 0.0333333333333333*G6_2_1 - 0.0333333333333333*G6_2_2 - 0.133333333333333*G9_0_0 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_0_2 - 0.0333333333333333*G9_1_0 - 0.0333333333333333*G9_1_1 - 0.0333333333333332*G9_1_2 - 0.0333333333333333*G9_2_0 - 0.0333333333333333*G9_2_1 - 0.0333333333333333*G9_2_2 - 0.133333333333333*G12_0_0 - 0.133333333333333*G12_0_1 - 0.133333333333333*G12_0_2 - 0.0333333333333333*G12_1_0 - 0.0333333333333333*G12_1_1 - 0.0333333333333332*G12_1_2 - 0.0333333333333333*G12_2_0 - 0.0333333333333333*G12_2_1 - 0.0333333333333333*G12_2_2; + A[1007] = -0.133333333333333*G6_0_0 - 0.1*G6_1_0 - 0.1*G6_2_0 - 0.133333333333333*G9_0_0 - 0.1*G9_1_0 - 0.1*G9_2_0 - 0.133333333333333*G12_0_0 - 0.1*G12_1_0 - 0.1*G12_2_0; + A[1008] = 0.0333333333333334*G6_1_1 + 0.0333333333333334*G6_2_1 + 0.0333333333333334*G9_1_1 + 0.0333333333333334*G9_2_1 + 0.0333333333333334*G12_1_1 + 0.0333333333333334*G12_2_1; + A[1009] = 0.0333333333333334*G6_1_2 + 0.0333333333333334*G6_2_2 + 0.0333333333333334*G9_1_2 + 0.0333333333333334*G9_2_2 + 0.0333333333333334*G12_1_2 + 0.0333333333333334*G12_2_2; + A[1010] = -0.133333333333333*G6_1_1 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_1 - 0.133333333333333*G6_2_2 - 0.133333333333333*G9_1_1 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_1 - 0.133333333333333*G9_2_2 - 0.133333333333333*G12_1_1 - 0.133333333333333*G12_1_2 - 0.133333333333333*G12_2_1 - 0.133333333333333*G12_2_2; + A[1011] = -0.133333333333333*G6_0_2 - 0.133333333333333*G6_1_0 - 0.266666666666667*G6_1_2 - 0.133333333333333*G6_2_0 - 0.266666666666666*G6_2_2 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_1_0 - 0.266666666666667*G9_1_2 - 0.133333333333333*G9_2_0 - 0.266666666666666*G9_2_2 - 0.133333333333333*G12_0_2 - 0.133333333333333*G12_1_0 - 0.266666666666667*G12_1_2 - 0.133333333333333*G12_2_0 - 0.266666666666666*G12_2_2; + A[1012] = -0.133333333333333*G6_0_1 - 0.133333333333333*G6_1_0 - 0.266666666666667*G6_1_1 - 0.133333333333333*G6_2_0 - 0.266666666666666*G6_2_1 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_1_0 - 0.266666666666667*G9_1_1 - 0.133333333333333*G9_2_0 - 0.266666666666666*G9_2_1 - 0.133333333333333*G12_0_1 - 0.133333333333333*G12_1_0 - 0.266666666666667*G12_1_1 - 0.133333333333333*G12_2_0 - 0.266666666666666*G12_2_1; + A[1013] = 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_0 + 0.133333333333333*G6_1_1 + 0.133333333333333*G6_2_0 + 0.133333333333333*G6_2_1 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_0 + 0.133333333333333*G9_1_1 + 0.133333333333333*G9_2_0 + 0.133333333333333*G9_2_1 + 0.133333333333333*G12_0_2 + 0.133333333333333*G12_1_0 + 0.133333333333333*G12_1_1 + 0.133333333333333*G12_2_0 + 0.133333333333333*G12_2_1; + A[1014] = 0.133333333333333*G6_0_1 + 0.133333333333333*G6_1_0 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_0 + 0.133333333333333*G6_2_2 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_1_0 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_0 + 0.133333333333333*G9_2_2 + 0.133333333333333*G12_0_1 + 0.133333333333333*G12_1_0 + 0.133333333333333*G12_1_2 + 0.133333333333333*G12_2_0 + 0.133333333333333*G12_2_2; + A[1015] = 0.266666666666667*G6_0_0 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_0 + 0.266666666666667*G6_1_1 + 0.266666666666666*G6_1_2 + 0.133333333333333*G6_2_0 + 0.266666666666666*G6_2_1 + 0.266666666666666*G6_2_2 + 0.266666666666667*G9_0_0 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_0 + 0.266666666666667*G9_1_1 + 0.266666666666666*G9_1_2 + 0.133333333333333*G9_2_0 + 0.266666666666666*G9_2_1 + 0.266666666666666*G9_2_2 + 0.266666666666667*G12_0_0 + 0.133333333333333*G12_0_1 + 0.133333333333333*G12_0_2 + 0.133333333333333*G12_1_0 + 0.266666666666667*G12_1_1 + 0.266666666666666*G12_1_2 + 0.133333333333333*G12_2_0 + 0.266666666666666*G12_2_1 + 0.266666666666666*G12_2_2; + A[1016] = 0.0333333333333334*G3_0 - 0.0333333333333333*G3_1 - 0.0333333333333333*G3_2; + A[1017] = -0.0333333333333333*G3_0 - 0.0666666666666666*G3_1 - 0.0666666666666666*G3_2; + A[1018] = -0.0333333333333333*G3_1 - 0.0333333333333333*G3_2; + A[1019] = -0.0333333333333333*G3_1 - 0.0333333333333333*G3_2; + A[1020] = -0.025*G1_0 - 0.025*G1_1 - 0.025*G1_2; + A[1021] = -0.00833333333333334*G1_0; + A[1022] = -0.00833333333333335*G1_1; + A[1023] = -0.00833333333333335*G1_2; + A[1024] = 0.0333333333333334*G1_1 + 0.0333333333333333*G1_2; + A[1025] = 0.0333333333333333*G1_0 + 0.0333333333333333*G1_2; + A[1026] = 0.0333333333333333*G1_0 + 0.0333333333333334*G1_1; + A[1027] = -0.0333333333333333*G1_0 - 0.0333333333333333*G1_1 + 0.0333333333333333*G1_2; + A[1028] = -0.0333333333333333*G1_0 + 0.0333333333333334*G1_1 - 0.0333333333333334*G1_2; + A[1029] = 0.0333333333333334*G1_0 - 0.0333333333333333*G1_1 - 0.0333333333333333*G1_2; + A[1030] = -0.025*G2_0 - 0.025*G2_1 - 0.025*G2_2; + A[1031] = -0.00833333333333334*G2_0; + A[1032] = -0.00833333333333335*G2_1; + A[1033] = -0.00833333333333335*G2_2; + A[1034] = 0.0333333333333334*G2_1 + 0.0333333333333333*G2_2; + A[1035] = 0.0333333333333333*G2_0 + 0.0333333333333333*G2_2; + A[1036] = 0.0333333333333333*G2_0 + 0.0333333333333334*G2_1; + A[1037] = -0.0333333333333333*G2_0 - 0.0333333333333333*G2_1 + 0.0333333333333333*G2_2; + A[1038] = -0.0333333333333333*G2_0 + 0.0333333333333334*G2_1 - 0.0333333333333334*G2_2; + A[1039] = 0.0333333333333334*G2_0 - 0.0333333333333333*G2_1 - 0.0333333333333333*G2_2; + A[1040] = -0.025*G0_0 - 0.025*G0_1 - 0.025*G0_2; + A[1041] = -0.00833333333333334*G0_0; + A[1042] = -0.00833333333333335*G0_1; + A[1043] = -0.00833333333333335*G0_2; + A[1044] = 0.0333333333333334*G0_1 + 0.0333333333333333*G0_2; + A[1045] = 0.0333333333333333*G0_0 + 0.0333333333333333*G0_2; + A[1046] = 0.0333333333333333*G0_0 + 0.0333333333333334*G0_1; + A[1047] = -0.0333333333333333*G0_0 - 0.0333333333333333*G0_1 + 0.0333333333333333*G0_2; + A[1048] = -0.0333333333333333*G0_0 + 0.0333333333333334*G0_1 - 0.0333333333333334*G0_2; + A[1049] = 0.0333333333333334*G0_0 - 0.0333333333333333*G0_1 - 0.0333333333333333*G0_2; + A[1050] = 0.0; + A[1051] = 0.0; + A[1052] = 0.0; + A[1053] = 0.0; + A[1054] = 0.00833333333333332*G1_0 + 0.00833333333333332*G1_1 + 0.00833333333333331*G1_2; + A[1055] = 0.025*G1_0; + A[1056] = -0.00833333333333335*G1_1; + A[1057] = -0.00833333333333334*G1_2; + A[1058] = 0.0333333333333333*G1_1 + 0.0333333333333333*G1_2; + A[1059] = 0.0333333333333333*G1_0 + 0.0666666666666666*G1_2; + A[1060] = 0.0333333333333333*G1_0 + 0.0666666666666666*G1_1; + A[1061] = -0.0333333333333333*G1_0 - 0.0333333333333333*G1_1; + A[1062] = -0.0333333333333333*G1_0 - 0.0333333333333333*G1_2; + A[1063] = -0.0333333333333333*G1_0 - 0.0666666666666666*G1_1 - 0.0666666666666666*G1_2; + A[1064] = 0.00833333333333332*G2_0 + 0.00833333333333332*G2_1 + 0.00833333333333331*G2_2; + A[1065] = 0.025*G2_0; + A[1066] = -0.00833333333333335*G2_1; + A[1067] = -0.00833333333333334*G2_2; + A[1068] = 0.0333333333333333*G2_1 + 0.0333333333333333*G2_2; + A[1069] = 0.0333333333333333*G2_0 + 0.0666666666666666*G2_2; + A[1070] = 0.0333333333333333*G2_0 + 0.0666666666666666*G2_1; + A[1071] = -0.0333333333333333*G2_0 - 0.0333333333333333*G2_1; + A[1072] = -0.0333333333333333*G2_0 - 0.0333333333333333*G2_2; + A[1073] = -0.0333333333333333*G2_0 - 0.0666666666666666*G2_1 - 0.0666666666666666*G2_2; + A[1074] = 0.00833333333333332*G0_0 + 0.00833333333333332*G0_1 + 0.00833333333333331*G0_2; + A[1075] = 0.025*G0_0; + A[1076] = -0.00833333333333335*G0_1; + A[1077] = -0.00833333333333334*G0_2; + A[1078] = 0.0333333333333333*G0_1 + 0.0333333333333333*G0_2; + A[1079] = 0.0333333333333333*G0_0 + 0.0666666666666666*G0_2; + A[1080] = 0.0333333333333333*G0_0 + 0.0666666666666666*G0_1; + A[1081] = -0.0333333333333333*G0_0 - 0.0333333333333333*G0_1; + A[1082] = -0.0333333333333333*G0_0 - 0.0333333333333333*G0_2; + A[1083] = -0.0333333333333333*G0_0 - 0.0666666666666666*G0_1 - 0.0666666666666666*G0_2; + A[1084] = 0.0; + A[1085] = 0.0; + A[1086] = 0.0; + A[1087] = 0.0; + A[1088] = 0.0083333333333333*G1_0 + 0.0083333333333333*G1_1 + 0.0083333333333333*G1_2; + A[1089] = -0.00833333333333333*G1_0; + A[1090] = 0.025*G1_1; + A[1091] = -0.00833333333333336*G1_2; + A[1092] = 0.0333333333333333*G1_1 + 0.0666666666666666*G1_2; + A[1093] = 0.0333333333333333*G1_0 + 0.0333333333333333*G1_2; + A[1094] = 0.0666666666666666*G1_0 + 0.0333333333333333*G1_1; + A[1095] = -0.0333333333333333*G1_0 - 0.0333333333333333*G1_1; + A[1096] = -0.0666666666666667*G1_0 - 0.0333333333333333*G1_1 - 0.0666666666666666*G1_2; + A[1097] = -0.0333333333333333*G1_1 - 0.0333333333333333*G1_2; + A[1098] = 0.0083333333333333*G2_0 + 0.0083333333333333*G2_1 + 0.0083333333333333*G2_2; + A[1099] = -0.00833333333333333*G2_0; + A[1100] = 0.025*G2_1; + A[1101] = -0.00833333333333336*G2_2; + A[1102] = 0.0333333333333333*G2_1 + 0.0666666666666666*G2_2; + A[1103] = 0.0333333333333333*G2_0 + 0.0333333333333333*G2_2; + A[1104] = 0.0666666666666666*G2_0 + 0.0333333333333333*G2_1; + A[1105] = -0.0333333333333333*G2_0 - 0.0333333333333333*G2_1; + A[1106] = -0.0666666666666667*G2_0 - 0.0333333333333333*G2_1 - 0.0666666666666666*G2_2; + A[1107] = -0.0333333333333333*G2_1 - 0.0333333333333333*G2_2; + A[1108] = 0.0083333333333333*G0_0 + 0.0083333333333333*G0_1 + 0.0083333333333333*G0_2; + A[1109] = -0.00833333333333333*G0_0; + A[1110] = 0.025*G0_1; + A[1111] = -0.00833333333333336*G0_2; + A[1112] = 0.0333333333333333*G0_1 + 0.0666666666666666*G0_2; + A[1113] = 0.0333333333333333*G0_0 + 0.0333333333333333*G0_2; + A[1114] = 0.0666666666666666*G0_0 + 0.0333333333333333*G0_1; + A[1115] = -0.0333333333333333*G0_0 - 0.0333333333333333*G0_1; + A[1116] = -0.0666666666666667*G0_0 - 0.0333333333333333*G0_1 - 0.0666666666666666*G0_2; + A[1117] = -0.0333333333333333*G0_1 - 0.0333333333333333*G0_2; + A[1118] = 0.0; + A[1119] = 0.0; + A[1120] = 0.0; + A[1121] = 0.0; + A[1122] = 0.00833333333333331*G1_0 + 0.00833333333333331*G1_1 + 0.00833333333333331*G1_2; + A[1123] = -0.00833333333333334*G1_0; + A[1124] = -0.00833333333333335*G1_1; + A[1125] = 0.025*G1_2; + A[1126] = 0.0666666666666667*G1_1 + 0.0333333333333333*G1_2; + A[1127] = 0.0666666666666666*G1_0 + 0.0333333333333333*G1_2; + A[1128] = 0.0333333333333333*G1_0 + 0.0333333333333333*G1_1; + A[1129] = -0.0666666666666666*G1_0 - 0.0666666666666666*G1_1 - 0.0333333333333333*G1_2; + A[1130] = -0.0333333333333333*G1_0 - 0.0333333333333333*G1_2; + A[1131] = -0.0333333333333333*G1_1 - 0.0333333333333333*G1_2; + A[1132] = 0.00833333333333331*G2_0 + 0.00833333333333331*G2_1 + 0.00833333333333331*G2_2; + A[1133] = -0.00833333333333334*G2_0; + A[1134] = -0.00833333333333335*G2_1; + A[1135] = 0.025*G2_2; + A[1136] = 0.0666666666666667*G2_1 + 0.0333333333333333*G2_2; + A[1137] = 0.0666666666666666*G2_0 + 0.0333333333333333*G2_2; + A[1138] = 0.0333333333333333*G2_0 + 0.0333333333333333*G2_1; + A[1139] = -0.0666666666666666*G2_0 - 0.0666666666666666*G2_1 - 0.0333333333333333*G2_2; + A[1140] = -0.0333333333333333*G2_0 - 0.0333333333333333*G2_2; + A[1141] = -0.0333333333333333*G2_1 - 0.0333333333333333*G2_2; + A[1142] = 0.00833333333333331*G0_0 + 0.00833333333333331*G0_1 + 0.00833333333333331*G0_2; + A[1143] = -0.00833333333333334*G0_0; + A[1144] = -0.00833333333333335*G0_1; + A[1145] = 0.025*G0_2; + A[1146] = 0.0666666666666667*G0_1 + 0.0333333333333333*G0_2; + A[1147] = 0.0666666666666666*G0_0 + 0.0333333333333333*G0_2; + A[1148] = 0.0333333333333333*G0_0 + 0.0333333333333333*G0_1; + A[1149] = -0.0666666666666666*G0_0 - 0.0666666666666666*G0_1 - 0.0333333333333333*G0_2; + A[1150] = -0.0333333333333333*G0_0 - 0.0333333333333333*G0_2; + A[1151] = -0.0333333333333333*G0_1 - 0.0333333333333333*G0_2; + A[1152] = 0.0; + A[1153] = 0.0; + A[1154] = 0.0; + A[1155] = 0.0; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stokes_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stokes_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 30 + // Number of operations (multiply-add pairs) for tensor contraction: 285 + // Total number of operations (multiply-add pairs): 318 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_20 = det*w[0][20]*(1.0); + const double G0_21 = det*w[0][21]*(1.0); + const double G0_22 = det*w[0][22]*(1.0); + const double G0_23 = det*w[0][23]*(1.0); + const double G0_24 = det*w[0][24]*(1.0); + const double G0_25 = det*w[0][25]*(1.0); + const double G0_26 = det*w[0][26]*(1.0); + const double G0_27 = det*w[0][27]*(1.0); + const double G0_28 = det*w[0][28]*(1.0); + const double G0_29 = det*w[0][29]*(1.0); + const double G1_0 = det*w[0][0]*(1.0); + const double G1_1 = det*w[0][1]*(1.0); + const double G1_2 = det*w[0][2]*(1.0); + const double G1_3 = det*w[0][3]*(1.0); + const double G1_4 = det*w[0][4]*(1.0); + const double G1_5 = det*w[0][5]*(1.0); + const double G1_6 = det*w[0][6]*(1.0); + const double G1_7 = det*w[0][7]*(1.0); + const double G1_8 = det*w[0][8]*(1.0); + const double G1_9 = det*w[0][9]*(1.0); + const double G2_10 = det*w[0][10]*(1.0); + const double G2_11 = det*w[0][11]*(1.0); + const double G2_12 = det*w[0][12]*(1.0); + const double G2_13 = det*w[0][13]*(1.0); + const double G2_14 = det*w[0][14]*(1.0); + const double G2_15 = det*w[0][15]*(1.0); + const double G2_16 = det*w[0][16]*(1.0); + const double G2_17 = det*w[0][17]*(1.0); + const double G2_18 = det*w[0][18]*(1.0); + const double G2_19 = det*w[0][19]*(1.0); + + // Compute element tensor + A[0] = 0.00238095238095238*G1_0 + 0.000396825396825396*G1_1 + 0.000396825396825396*G1_2 + 0.000396825396825396*G1_3 - 0.00238095238095238*G1_4 - 0.00238095238095238*G1_5 - 0.00238095238095238*G1_6 - 0.00158730158730159*G1_7 - 0.00158730158730158*G1_8 - 0.00158730158730159*G1_9; + A[1] = 0.000396825396825396*G1_0 + 0.00238095238095238*G1_1 + 0.000396825396825395*G1_2 + 0.000396825396825396*G1_3 - 0.00238095238095238*G1_4 - 0.00158730158730158*G1_5 - 0.00158730158730158*G1_6 - 0.00238095238095238*G1_7 - 0.00238095238095238*G1_8 - 0.00158730158730158*G1_9; + A[2] = 0.000396825396825396*G1_0 + 0.000396825396825395*G1_1 + 0.00238095238095238*G1_2 + 0.000396825396825396*G1_3 - 0.00158730158730159*G1_4 - 0.00238095238095238*G1_5 - 0.00158730158730158*G1_6 - 0.00238095238095238*G1_7 - 0.00158730158730159*G1_8 - 0.00238095238095238*G1_9; + A[3] = 0.000396825396825396*G1_0 + 0.000396825396825396*G1_1 + 0.000396825396825396*G1_2 + 0.00238095238095238*G1_3 - 0.00158730158730159*G1_4 - 0.00158730158730159*G1_5 - 0.00238095238095238*G1_6 - 0.00158730158730159*G1_7 - 0.00238095238095238*G1_8 - 0.00238095238095238*G1_9; + A[4] = -0.00238095238095238*G1_0 - 0.00238095238095238*G1_1 - 0.00158730158730159*G1_2 - 0.00158730158730159*G1_3 + 0.0126984126984127*G1_4 + 0.00634920634920635*G1_5 + 0.00634920634920635*G1_6 + 0.00634920634920635*G1_7 + 0.00634920634920634*G1_8 + 0.00317460317460317*G1_9; + A[5] = -0.00238095238095238*G1_0 - 0.00158730158730158*G1_1 - 0.00238095238095238*G1_2 - 0.00158730158730159*G1_3 + 0.00634920634920635*G1_4 + 0.0126984126984127*G1_5 + 0.00634920634920635*G1_6 + 0.00634920634920635*G1_7 + 0.00317460317460317*G1_8 + 0.00634920634920635*G1_9; + A[6] = -0.00238095238095238*G1_0 - 0.00158730158730158*G1_1 - 0.00158730158730158*G1_2 - 0.00238095238095238*G1_3 + 0.00634920634920635*G1_4 + 0.00634920634920635*G1_5 + 0.0126984126984127*G1_6 + 0.00317460317460317*G1_7 + 0.00634920634920634*G1_8 + 0.00634920634920635*G1_9; + A[7] = -0.00158730158730159*G1_0 - 0.00238095238095238*G1_1 - 0.00238095238095238*G1_2 - 0.00158730158730159*G1_3 + 0.00634920634920635*G1_4 + 0.00634920634920635*G1_5 + 0.00317460317460317*G1_6 + 0.0126984126984127*G1_7 + 0.00634920634920635*G1_8 + 0.00634920634920635*G1_9; + A[8] = -0.00158730158730158*G1_0 - 0.00238095238095238*G1_1 - 0.00158730158730159*G1_2 - 0.00238095238095238*G1_3 + 0.00634920634920634*G1_4 + 0.00317460317460317*G1_5 + 0.00634920634920634*G1_6 + 0.00634920634920635*G1_7 + 0.0126984126984127*G1_8 + 0.00634920634920634*G1_9; + A[9] = -0.00158730158730159*G1_0 - 0.00158730158730158*G1_1 - 0.00238095238095238*G1_2 - 0.00238095238095238*G1_3 + 0.00317460317460317*G1_4 + 0.00634920634920635*G1_5 + 0.00634920634920635*G1_6 + 0.00634920634920635*G1_7 + 0.00634920634920634*G1_8 + 0.0126984126984127*G1_9; + A[10] = 0.00238095238095238*G2_10 + 0.000396825396825396*G2_11 + 0.000396825396825396*G2_12 + 0.000396825396825396*G2_13 - 0.00238095238095238*G2_14 - 0.00238095238095238*G2_15 - 0.00238095238095238*G2_16 - 0.00158730158730159*G2_17 - 0.00158730158730158*G2_18 - 0.00158730158730159*G2_19; + A[11] = 0.000396825396825396*G2_10 + 0.00238095238095238*G2_11 + 0.000396825396825395*G2_12 + 0.000396825396825396*G2_13 - 0.00238095238095238*G2_14 - 0.00158730158730158*G2_15 - 0.00158730158730158*G2_16 - 0.00238095238095238*G2_17 - 0.00238095238095238*G2_18 - 0.00158730158730158*G2_19; + A[12] = 0.000396825396825396*G2_10 + 0.000396825396825395*G2_11 + 0.00238095238095238*G2_12 + 0.000396825396825396*G2_13 - 0.00158730158730159*G2_14 - 0.00238095238095238*G2_15 - 0.00158730158730158*G2_16 - 0.00238095238095238*G2_17 - 0.00158730158730159*G2_18 - 0.00238095238095238*G2_19; + A[13] = 0.000396825396825396*G2_10 + 0.000396825396825396*G2_11 + 0.000396825396825396*G2_12 + 0.00238095238095238*G2_13 - 0.00158730158730159*G2_14 - 0.00158730158730159*G2_15 - 0.00238095238095238*G2_16 - 0.00158730158730159*G2_17 - 0.00238095238095238*G2_18 - 0.00238095238095238*G2_19; + A[14] = -0.00238095238095238*G2_10 - 0.00238095238095238*G2_11 - 0.00158730158730159*G2_12 - 0.00158730158730159*G2_13 + 0.0126984126984127*G2_14 + 0.00634920634920635*G2_15 + 0.00634920634920635*G2_16 + 0.00634920634920635*G2_17 + 0.00634920634920634*G2_18 + 0.00317460317460317*G2_19; + A[15] = -0.00238095238095238*G2_10 - 0.00158730158730158*G2_11 - 0.00238095238095238*G2_12 - 0.00158730158730159*G2_13 + 0.00634920634920635*G2_14 + 0.0126984126984127*G2_15 + 0.00634920634920635*G2_16 + 0.00634920634920635*G2_17 + 0.00317460317460317*G2_18 + 0.00634920634920635*G2_19; + A[16] = -0.00238095238095238*G2_10 - 0.00158730158730158*G2_11 - 0.00158730158730158*G2_12 - 0.00238095238095238*G2_13 + 0.00634920634920635*G2_14 + 0.00634920634920635*G2_15 + 0.0126984126984127*G2_16 + 0.00317460317460317*G2_17 + 0.00634920634920634*G2_18 + 0.00634920634920635*G2_19; + A[17] = -0.00158730158730159*G2_10 - 0.00238095238095238*G2_11 - 0.00238095238095238*G2_12 - 0.00158730158730159*G2_13 + 0.00634920634920635*G2_14 + 0.00634920634920635*G2_15 + 0.00317460317460317*G2_16 + 0.0126984126984127*G2_17 + 0.00634920634920635*G2_18 + 0.00634920634920635*G2_19; + A[18] = -0.00158730158730158*G2_10 - 0.00238095238095238*G2_11 - 0.00158730158730159*G2_12 - 0.00238095238095238*G2_13 + 0.00634920634920634*G2_14 + 0.00317460317460317*G2_15 + 0.00634920634920634*G2_16 + 0.00634920634920635*G2_17 + 0.0126984126984127*G2_18 + 0.00634920634920634*G2_19; + A[19] = -0.00158730158730159*G2_10 - 0.00158730158730158*G2_11 - 0.00238095238095238*G2_12 - 0.00238095238095238*G2_13 + 0.00317460317460317*G2_14 + 0.00634920634920635*G2_15 + 0.00634920634920635*G2_16 + 0.00634920634920635*G2_17 + 0.00634920634920634*G2_18 + 0.0126984126984127*G2_19; + A[20] = 0.00238095238095238*G0_20 + 0.000396825396825396*G0_21 + 0.000396825396825396*G0_22 + 0.000396825396825396*G0_23 - 0.00238095238095238*G0_24 - 0.00238095238095238*G0_25 - 0.00238095238095238*G0_26 - 0.00158730158730159*G0_27 - 0.00158730158730158*G0_28 - 0.00158730158730159*G0_29; + A[21] = 0.000396825396825396*G0_20 + 0.00238095238095238*G0_21 + 0.000396825396825395*G0_22 + 0.000396825396825396*G0_23 - 0.00238095238095238*G0_24 - 0.00158730158730158*G0_25 - 0.00158730158730158*G0_26 - 0.00238095238095238*G0_27 - 0.00238095238095238*G0_28 - 0.00158730158730158*G0_29; + A[22] = 0.000396825396825396*G0_20 + 0.000396825396825395*G0_21 + 0.00238095238095238*G0_22 + 0.000396825396825396*G0_23 - 0.00158730158730159*G0_24 - 0.00238095238095238*G0_25 - 0.00158730158730158*G0_26 - 0.00238095238095238*G0_27 - 0.00158730158730159*G0_28 - 0.00238095238095238*G0_29; + A[23] = 0.000396825396825396*G0_20 + 0.000396825396825396*G0_21 + 0.000396825396825396*G0_22 + 0.00238095238095238*G0_23 - 0.00158730158730159*G0_24 - 0.00158730158730159*G0_25 - 0.00238095238095238*G0_26 - 0.00158730158730159*G0_27 - 0.00238095238095238*G0_28 - 0.00238095238095238*G0_29; + A[24] = -0.00238095238095238*G0_20 - 0.00238095238095238*G0_21 - 0.00158730158730159*G0_22 - 0.00158730158730159*G0_23 + 0.0126984126984127*G0_24 + 0.00634920634920635*G0_25 + 0.00634920634920635*G0_26 + 0.00634920634920635*G0_27 + 0.00634920634920634*G0_28 + 0.00317460317460317*G0_29; + A[25] = -0.00238095238095238*G0_20 - 0.00158730158730158*G0_21 - 0.00238095238095238*G0_22 - 0.00158730158730159*G0_23 + 0.00634920634920635*G0_24 + 0.0126984126984127*G0_25 + 0.00634920634920635*G0_26 + 0.00634920634920635*G0_27 + 0.00317460317460317*G0_28 + 0.00634920634920635*G0_29; + A[26] = -0.00238095238095238*G0_20 - 0.00158730158730158*G0_21 - 0.00158730158730158*G0_22 - 0.00238095238095238*G0_23 + 0.00634920634920635*G0_24 + 0.00634920634920635*G0_25 + 0.0126984126984127*G0_26 + 0.00317460317460317*G0_27 + 0.00634920634920634*G0_28 + 0.00634920634920635*G0_29; + A[27] = -0.00158730158730159*G0_20 - 0.00238095238095238*G0_21 - 0.00238095238095238*G0_22 - 0.00158730158730159*G0_23 + 0.00634920634920635*G0_24 + 0.00634920634920635*G0_25 + 0.00317460317460317*G0_26 + 0.0126984126984127*G0_27 + 0.00634920634920635*G0_28 + 0.00634920634920635*G0_29; + A[28] = -0.00158730158730158*G0_20 - 0.00238095238095238*G0_21 - 0.00158730158730159*G0_22 - 0.00238095238095238*G0_23 + 0.00634920634920634*G0_24 + 0.00317460317460317*G0_25 + 0.00634920634920634*G0_26 + 0.00634920634920635*G0_27 + 0.0126984126984127*G0_28 + 0.00634920634920634*G0_29; + A[29] = -0.00158730158730159*G0_20 - 0.00158730158730158*G0_21 - 0.00238095238095238*G0_22 - 0.00238095238095238*G0_23 + 0.00317460317460317*G0_24 + 0.00634920634920635*G0_25 + 0.00634920634920635*G0_26 + 0.00634920634920635*G0_27 + 0.00634920634920634*G0_28 + 0.0126984126984127*G0_29; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stokes_form_0: public ufc::form +{ +public: + + /// Constructor + stokes_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "d2bd1464a06122616847f30e2eb63a4d3f1032614dc5d72f0d8470e88d514e6344c826a64bccbc9fc0744cbd7b28cc4a23c844352880b1f9a091c2f45079692d"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_3(); + break; + } + case 1: + { + return new stokes_finite_element_3(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_3(); + break; + } + case 1: + { + return new stokes_dofmap_3(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stokes_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stokes_form_1: public ufc::form +{ +public: + + /// Constructor + stokes_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "33fb69dce1b5963691113bd78aeb3ecb47e147b917a8dfef4c9cea032026c68c38b9a0ca269e8d87ec73bfe4a1d02d4019db9676a8a534a56c780aca2e9a89d8"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_3(); + break; + } + case 1: + { + return new stokes_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_3(); + break; + } + case 1: + { + return new stokes_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stokes_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Stokes +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new stokes_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new stokes_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/stokes-iterative/cpp/Stokes.ufl b/demo/documented/stokes-iterative/cpp/Stokes.ufl new file mode 100644 index 0000000..09bb9e6 --- /dev/null +++ b/demo/documented/stokes-iterative/cpp/Stokes.ufl @@ -0,0 +1,37 @@ +# Copyright (c) 2005-2007 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2011-03-09 +# +# The bilinear form a(u, v) and Linear form L(v) for the Stokes +# equations using a mixed formulation (Taylor-Hood elements). +# The sign of the pressure has been flipped for symmetry. +# +# Compile this form with FFC: ffc -l dolfin Stokes.ufl + +P2 = VectorElement("Lagrange", tetrahedron, 2) +P1 = FiniteElement("Lagrange", tetrahedron, 1) +TH = P2 * P1 + +(u, p) = TrialFunctions(TH) +(v, q) = TestFunctions(TH) + +f = Coefficient(P2) + +a = (inner(grad(u), grad(v)) + div(v)*p + div(u)*q)*dx +L = dot(f, v)*dx diff --git a/demo/documented/stokes-iterative/cpp/StokesPreconditioner.h b/demo/documented/stokes-iterative/cpp/StokesPreconditioner.h new file mode 100644 index 0000000..8767895 --- /dev/null +++ b/demo/documented/stokes-iterative/cpp/StokesPreconditioner.h @@ -0,0 +1,25227 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __STOKESPRECONDITIONER_H +#define __STOKESPRECONDITIONER_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class stokespreconditioner_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + stokespreconditioner_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokespreconditioner_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 10; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[9][2]; + for (unsigned int row = 0; row < 9; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[9][9]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 10; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[9]; + for (unsigned int r = 0; r < 9; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokespreconditioner_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokespreconditioner_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + stokespreconditioner_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokespreconditioner_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 30; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 20: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 21: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 22: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 23: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 24: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 25: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 26: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 27: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 28: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 29: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 30; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[9][2]; + for (unsigned int row = 0; row < 9; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[9][9]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 20: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 21: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 22: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 23: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 24: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 25: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 26: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 27: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 28: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 29: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 30; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[27]; + for (unsigned int r = 0; r < 27; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 30; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 10: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 12: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 13: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 14: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 15: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 16: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 17: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 18: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 19: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 20: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 21: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 22: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 23: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 24: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 25: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 26: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 27: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 28: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 29: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[12] = vals[1]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[13] = vals[1]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[14] = vals[1]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[15] = vals[1]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[16] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[17] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[18] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[19] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[20] = vals[2]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[21] = vals[2]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[22] = vals[2]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[23] = vals[2]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[24] = vals[2]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[25] = vals[2]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[26] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[27] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[28] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[29] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + vertex_values[9] = dof_values[3]; + // Evaluate function and change variables + vertex_values[1] = dof_values[10]; + vertex_values[4] = dof_values[11]; + vertex_values[7] = dof_values[12]; + vertex_values[10] = dof_values[13]; + // Evaluate function and change variables + vertex_values[2] = dof_values[20]; + vertex_values[5] = dof_values[21]; + vertex_values[8] = dof_values[22]; + vertex_values[11] = dof_values[23]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 3; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokespreconditioner_finite_element_0(); + break; + } + case 1: + { + return new stokespreconditioner_finite_element_0(); + break; + } + case 2: + { + return new stokespreconditioner_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokespreconditioner_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokespreconditioner_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + stokespreconditioner_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokespreconditioner_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokespreconditioner_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokespreconditioner_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + stokespreconditioner_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokespreconditioner_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, 3, None), FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None), **{'value_shape': (4,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 34; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 4; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + values[3] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 20: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 21: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 22: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 23: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 24: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 25: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 26: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 27: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 28: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 29: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 30: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[3] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 31: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[3] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 32: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[3] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 33: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[3] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[4] = {0.0, 0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 34; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 4; s++) + { + values[r*4 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 4*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[9][2]; + for (unsigned int row = 0; row < 9; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[9][9]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 20: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, -0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, 0.050395263067897, 0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 21: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189625, 0.0608580619450185, -0.0351364184463153, -0.0248451997499977, 0.0650600048632355, -0.050395263067897, -0.0411475599898912, 0.0290957186981323, 0.0237565548366599, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 22: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0702728368926306, -0.0248451997499977, 0.0, 0.0, 0.0, 0.0872871560943969, -0.0475131096733199, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 23: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {-0.0577350269189626, 0.0, 0.0, 0.074535599249993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.100790526135794}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 24: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, 0.140545673785261, 0.0993807989999906, 0.0, 0.0, 0.0, 0.0, 0.1187827741833, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 25: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, -0.0702728368926307, 0.0993807989999907, 0.0, 0.0, 0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 26: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.121716123890037, 0.0702728368926307, -0.0993807989999906, 0.0, 0.100790526135794, -0.0205737799949456, -0.087287156094397, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 27: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, -0.0702728368926306, 0.0993807989999906, 0.0, 0.0, -0.102868899974728, 0.0, -0.0593913870916499, -0.0671936840905293}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 28: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, -0.121716123890037, 0.0702728368926306, -0.0993807989999906, 0.0, -0.100790526135794, 0.0205737799949456, -0.0872871560943969, -0.01187827741833, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 29: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + double tmp1 = 0.25*(Y + Z)*(Y + Z); + double tmp2 = 0.5*(1.0 + Z + 2.0*Y); + double tmp3 = 0.5*(1.0 - Z); + double tmp4 = tmp3*tmp3; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[4] = 1.5*tmp0*basisvalues[1] - 0.5*tmp1*basisvalues[0]; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[5] = (0.5*(2.0 + 3.0*Y + Z) + 1.0*(1.0 + Y))*basisvalues[1]; + basisvalues[7] = (1.66666666666667*tmp2 + 0.111111111111111*tmp3)*basisvalues[2] - 0.555555555555556*tmp4*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[8] = (3.0*Z + 2.0)*basisvalues[2]; + basisvalues[6] = (3.0*Z + 2.0)*basisvalues[1]; + basisvalues[9] = basisvalues[3]*(0.3125 + 1.875*Z) - 0.5625*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[9] *= std::sqrt(1.75); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[8] *= std::sqrt(3.5); + basisvalues[7] *= std::sqrt(5.25); + basisvalues[1] *= std::sqrt(7.5); + basisvalues[6] *= std::sqrt(10.5); + basisvalues[5] *= std::sqrt(15.75); + basisvalues[4] *= std::sqrt(26.25); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.23094010767585, 0.0, -0.140545673785261, -0.0993807989999906, -0.130120009726471, 0.0, 0.0, 0.0290957186981323, 0.02375655483666, 0.0167984210226323}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 11.2249721603218, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.58257569495584, 0.0, 8.36660026534075, -1.18321595661992, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.74165738677394, 0.0, 0.0, 8.69482604771366, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 7.24568837309472, 4.18330013267038, -0.591607978309961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 0.0, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.64575131106459, 0.0, 9.66091783079296, 0.683130051063973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.24037034920393, 0.0, 0.0, 7.52994023880668, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.95803989154981, 5.61248608016091, -1.08012344973464, -0.763762615825973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.29128784747792, 1.44913767461894, 4.18330013267038, -0.591607978309962, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.87082869338697, 7.09929573971954, 0.0, 4.34741302385683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.3228756555323, 0.0, 3.86436713231718, -0.341565025531987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {1.08012344973464, 0.0, 7.09929573971954, 2.50998007960223, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-3.81881307912987, 0.0, 0.0, 8.87411967464942, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 30: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[3*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 31: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[3*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 32: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[3*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 33: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[9]; + for (unsigned int r = 0; r < 9; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[3*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 34; r++) + { + for (unsigned int s = 0; s < 4*num_derivatives; s++) + { + values[r*4*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[36]; + for (unsigned int r = 0; r < 36; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 34; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 4*num_derivatives; s++) + { + values[r*4*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[4]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 10: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 12: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 13: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 14: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 15: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 16: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 17: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 18: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 19: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 20: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 21: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 22: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 23: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 24: + { + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 25: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 26: + { + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 27: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 28: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 29: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 30: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[3]; + break; + } + case 31: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[3]; + break; + } + case 32: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[3]; + break; + } + case 33: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[3]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[4]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[12] = vals[1]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[13] = vals[1]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[14] = vals[1]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[15] = vals[1]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[16] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[17] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[18] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[19] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[20] = vals[2]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[21] = vals[2]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[22] = vals[2]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[23] = vals[2]; + y[0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[24] = vals[2]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[25] = vals[2]; + y[0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[26] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[27] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[28] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + y[2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[29] = vals[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[30] = vals[3]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[31] = vals[3]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[32] = vals[3]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[33] = vals[3]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[4] = dof_values[1]; + vertex_values[8] = dof_values[2]; + vertex_values[12] = dof_values[3]; + // Evaluate function and change variables + vertex_values[1] = dof_values[10]; + vertex_values[5] = dof_values[11]; + vertex_values[9] = dof_values[12]; + vertex_values[13] = dof_values[13]; + // Evaluate function and change variables + vertex_values[2] = dof_values[20]; + vertex_values[6] = dof_values[21]; + vertex_values[10] = dof_values[22]; + vertex_values[14] = dof_values[23]; + // Evaluate function and change variables + vertex_values[3] = dof_values[30]; + vertex_values[7] = dof_values[31]; + vertex_values[11] = dof_values[32]; + vertex_values[15] = dof_values[33]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokespreconditioner_finite_element_1(); + break; + } + case 1: + { + return new stokespreconditioner_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokespreconditioner_finite_element_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokespreconditioner_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + stokespreconditioner_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokespreconditioner_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 10; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[1][0]; + dofs[5] = offset + c.entity_indices[1][1]; + dofs[6] = offset + c.entity_indices[1][2]; + dofs[7] = offset + c.entity_indices[1][3]; + dofs[8] = offset + c.entity_indices[1][4]; + dofs[9] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 7; + dofs[5] = 8; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 7; + dofs[5] = 9; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 9; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + if (i > 5) + { + throw std::runtime_error("i is larger than number of entities (5)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 4; + break; + } + case 1: + { + dofs[0] = 5; + break; + } + case 2: + { + dofs[0] = 6; + break; + } + case 3: + { + dofs[0] = 7; + break; + } + case 4: + { + dofs[0] = 8; + break; + } + case 5: + { + dofs[0] = 9; + break; + } + } + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[4][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[5][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[6][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[6][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[6][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[7][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[7][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[7][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[8][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[8][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[8][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokespreconditioner_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokespreconditioner_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + stokespreconditioner_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokespreconditioner_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0] + 3*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 30; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 18; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 3; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[1][0]; + dofs[5] = offset + c.entity_indices[1][1]; + dofs[6] = offset + c.entity_indices[1][2]; + dofs[7] = offset + c.entity_indices[1][3]; + dofs[8] = offset + c.entity_indices[1][4]; + dofs[9] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + dofs[10] = offset + c.entity_indices[0][0]; + dofs[11] = offset + c.entity_indices[0][1]; + dofs[12] = offset + c.entity_indices[0][2]; + dofs[13] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[14] = offset + c.entity_indices[1][0]; + dofs[15] = offset + c.entity_indices[1][1]; + dofs[16] = offset + c.entity_indices[1][2]; + dofs[17] = offset + c.entity_indices[1][3]; + dofs[18] = offset + c.entity_indices[1][4]; + dofs[19] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + dofs[20] = offset + c.entity_indices[0][0]; + dofs[21] = offset + c.entity_indices[0][1]; + dofs[22] = offset + c.entity_indices[0][2]; + dofs[23] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[24] = offset + c.entity_indices[1][0]; + dofs[25] = offset + c.entity_indices[1][1]; + dofs[26] = offset + c.entity_indices[1][2]; + dofs[27] = offset + c.entity_indices[1][3]; + dofs[28] = offset + c.entity_indices[1][4]; + dofs[29] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 11; + dofs[7] = 12; + dofs[8] = 13; + dofs[9] = 14; + dofs[10] = 15; + dofs[11] = 16; + dofs[12] = 21; + dofs[13] = 22; + dofs[14] = 23; + dofs[15] = 24; + dofs[16] = 25; + dofs[17] = 26; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 7; + dofs[5] = 8; + dofs[6] = 10; + dofs[7] = 12; + dofs[8] = 13; + dofs[9] = 14; + dofs[10] = 17; + dofs[11] = 18; + dofs[12] = 20; + dofs[13] = 22; + dofs[14] = 23; + dofs[15] = 24; + dofs[16] = 27; + dofs[17] = 28; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 7; + dofs[5] = 9; + dofs[6] = 10; + dofs[7] = 11; + dofs[8] = 13; + dofs[9] = 15; + dofs[10] = 17; + dofs[11] = 19; + dofs[12] = 20; + dofs[13] = 21; + dofs[14] = 23; + dofs[15] = 25; + dofs[16] = 27; + dofs[17] = 29; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 9; + dofs[6] = 10; + dofs[7] = 11; + dofs[8] = 12; + dofs[9] = 16; + dofs[10] = 18; + dofs[11] = 19; + dofs[12] = 20; + dofs[13] = 21; + dofs[14] = 22; + dofs[15] = 26; + dofs[16] = 28; + dofs[17] = 29; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 10; + dofs[2] = 20; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 11; + dofs[2] = 21; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 12; + dofs[2] = 22; + break; + } + case 3: + { + dofs[0] = 3; + dofs[1] = 13; + dofs[2] = 23; + break; + } + } + + break; + } + case 1: + { + if (i > 5) + { + throw std::runtime_error("i is larger than number of entities (5)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 4; + dofs[1] = 14; + dofs[2] = 24; + break; + } + case 1: + { + dofs[0] = 5; + dofs[1] = 15; + dofs[2] = 25; + break; + } + case 2: + { + dofs[0] = 6; + dofs[1] = 16; + dofs[2] = 26; + break; + } + case 3: + { + dofs[0] = 7; + dofs[1] = 17; + dofs[2] = 27; + break; + } + case 4: + { + dofs[0] = 8; + dofs[1] = 18; + dofs[2] = 28; + break; + } + case 5: + { + dofs[0] = 9; + dofs[1] = 19; + dofs[2] = 29; + break; + } + } + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[4][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[5][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[6][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[6][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[6][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[7][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[7][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[7][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[8][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[8][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[8][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = vertex_coordinates[0]; + dof_coordinates[10][1] = vertex_coordinates[1]; + dof_coordinates[10][2] = vertex_coordinates[2]; + dof_coordinates[11][0] = vertex_coordinates[3]; + dof_coordinates[11][1] = vertex_coordinates[4]; + dof_coordinates[11][2] = vertex_coordinates[5]; + dof_coordinates[12][0] = vertex_coordinates[6]; + dof_coordinates[12][1] = vertex_coordinates[7]; + dof_coordinates[12][2] = vertex_coordinates[8]; + dof_coordinates[13][0] = vertex_coordinates[9]; + dof_coordinates[13][1] = vertex_coordinates[10]; + dof_coordinates[13][2] = vertex_coordinates[11]; + dof_coordinates[14][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[14][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[14][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[15][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[15][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[15][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[16][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[16][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[16][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[17][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[17][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[17][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[18][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[18][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[18][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[19][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[19][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[19][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[20][0] = vertex_coordinates[0]; + dof_coordinates[20][1] = vertex_coordinates[1]; + dof_coordinates[20][2] = vertex_coordinates[2]; + dof_coordinates[21][0] = vertex_coordinates[3]; + dof_coordinates[21][1] = vertex_coordinates[4]; + dof_coordinates[21][2] = vertex_coordinates[5]; + dof_coordinates[22][0] = vertex_coordinates[6]; + dof_coordinates[22][1] = vertex_coordinates[7]; + dof_coordinates[22][2] = vertex_coordinates[8]; + dof_coordinates[23][0] = vertex_coordinates[9]; + dof_coordinates[23][1] = vertex_coordinates[10]; + dof_coordinates[23][2] = vertex_coordinates[11]; + dof_coordinates[24][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[24][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[24][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[25][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[25][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[25][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[26][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[26][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[26][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[27][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[27][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[27][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[28][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[28][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[28][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[29][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[29][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[29][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 3; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokespreconditioner_dofmap_0(); + break; + } + case 1: + { + return new stokespreconditioner_dofmap_0(); + break; + } + case 2: + { + return new stokespreconditioner_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokespreconditioner_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokespreconditioner_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + stokespreconditioner_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokespreconditioner_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokespreconditioner_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokespreconditioner_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + stokespreconditioner_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokespreconditioner_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(VectorElement('Lagrange', Domain(Cell('tetrahedron', 3)), 2, 3, None), FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None), **{'value_shape': (4,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 4*num_global_entities[0] + 3*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 34; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 21; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 4; + break; + } + case 1: + { + return 3; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[1][0]; + dofs[5] = offset + c.entity_indices[1][1]; + dofs[6] = offset + c.entity_indices[1][2]; + dofs[7] = offset + c.entity_indices[1][3]; + dofs[8] = offset + c.entity_indices[1][4]; + dofs[9] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + dofs[10] = offset + c.entity_indices[0][0]; + dofs[11] = offset + c.entity_indices[0][1]; + dofs[12] = offset + c.entity_indices[0][2]; + dofs[13] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[14] = offset + c.entity_indices[1][0]; + dofs[15] = offset + c.entity_indices[1][1]; + dofs[16] = offset + c.entity_indices[1][2]; + dofs[17] = offset + c.entity_indices[1][3]; + dofs[18] = offset + c.entity_indices[1][4]; + dofs[19] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + dofs[20] = offset + c.entity_indices[0][0]; + dofs[21] = offset + c.entity_indices[0][1]; + dofs[22] = offset + c.entity_indices[0][2]; + dofs[23] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[24] = offset + c.entity_indices[1][0]; + dofs[25] = offset + c.entity_indices[1][1]; + dofs[26] = offset + c.entity_indices[1][2]; + dofs[27] = offset + c.entity_indices[1][3]; + dofs[28] = offset + c.entity_indices[1][4]; + dofs[29] = offset + c.entity_indices[1][5]; + offset += num_global_entities[1]; + dofs[30] = offset + c.entity_indices[0][0]; + dofs[31] = offset + c.entity_indices[0][1]; + dofs[32] = offset + c.entity_indices[0][2]; + dofs[33] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + dofs[6] = 11; + dofs[7] = 12; + dofs[8] = 13; + dofs[9] = 14; + dofs[10] = 15; + dofs[11] = 16; + dofs[12] = 21; + dofs[13] = 22; + dofs[14] = 23; + dofs[15] = 24; + dofs[16] = 25; + dofs[17] = 26; + dofs[18] = 31; + dofs[19] = 32; + dofs[20] = 33; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 7; + dofs[5] = 8; + dofs[6] = 10; + dofs[7] = 12; + dofs[8] = 13; + dofs[9] = 14; + dofs[10] = 17; + dofs[11] = 18; + dofs[12] = 20; + dofs[13] = 22; + dofs[14] = 23; + dofs[15] = 24; + dofs[16] = 27; + dofs[17] = 28; + dofs[18] = 30; + dofs[19] = 32; + dofs[20] = 33; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 7; + dofs[5] = 9; + dofs[6] = 10; + dofs[7] = 11; + dofs[8] = 13; + dofs[9] = 15; + dofs[10] = 17; + dofs[11] = 19; + dofs[12] = 20; + dofs[13] = 21; + dofs[14] = 23; + dofs[15] = 25; + dofs[16] = 27; + dofs[17] = 29; + dofs[18] = 30; + dofs[19] = 31; + dofs[20] = 33; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 9; + dofs[6] = 10; + dofs[7] = 11; + dofs[8] = 12; + dofs[9] = 16; + dofs[10] = 18; + dofs[11] = 19; + dofs[12] = 20; + dofs[13] = 21; + dofs[14] = 22; + dofs[15] = 26; + dofs[16] = 28; + dofs[17] = 29; + dofs[18] = 30; + dofs[19] = 31; + dofs[20] = 32; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 10; + dofs[2] = 20; + dofs[3] = 30; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 11; + dofs[2] = 21; + dofs[3] = 31; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 12; + dofs[2] = 22; + dofs[3] = 32; + break; + } + case 3: + { + dofs[0] = 3; + dofs[1] = 13; + dofs[2] = 23; + dofs[3] = 33; + break; + } + } + + break; + } + case 1: + { + if (i > 5) + { + throw std::runtime_error("i is larger than number of entities (5)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 4; + dofs[1] = 14; + dofs[2] = 24; + break; + } + case 1: + { + dofs[0] = 5; + dofs[1] = 15; + dofs[2] = 25; + break; + } + case 2: + { + dofs[0] = 6; + dofs[1] = 16; + dofs[2] = 26; + break; + } + case 3: + { + dofs[0] = 7; + dofs[1] = 17; + dofs[2] = 27; + break; + } + case 4: + { + dofs[0] = 8; + dofs[1] = 18; + dofs[2] = 28; + break; + } + case 5: + { + dofs[0] = 9; + dofs[1] = 19; + dofs[2] = 29; + break; + } + } + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[4][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[5][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[6][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[6][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[6][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[7][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[7][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[7][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[8][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[8][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[8][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = vertex_coordinates[0]; + dof_coordinates[10][1] = vertex_coordinates[1]; + dof_coordinates[10][2] = vertex_coordinates[2]; + dof_coordinates[11][0] = vertex_coordinates[3]; + dof_coordinates[11][1] = vertex_coordinates[4]; + dof_coordinates[11][2] = vertex_coordinates[5]; + dof_coordinates[12][0] = vertex_coordinates[6]; + dof_coordinates[12][1] = vertex_coordinates[7]; + dof_coordinates[12][2] = vertex_coordinates[8]; + dof_coordinates[13][0] = vertex_coordinates[9]; + dof_coordinates[13][1] = vertex_coordinates[10]; + dof_coordinates[13][2] = vertex_coordinates[11]; + dof_coordinates[14][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[14][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[14][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[15][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[15][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[15][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[16][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[16][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[16][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[17][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[17][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[17][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[18][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[18][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[18][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[19][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[19][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[19][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[20][0] = vertex_coordinates[0]; + dof_coordinates[20][1] = vertex_coordinates[1]; + dof_coordinates[20][2] = vertex_coordinates[2]; + dof_coordinates[21][0] = vertex_coordinates[3]; + dof_coordinates[21][1] = vertex_coordinates[4]; + dof_coordinates[21][2] = vertex_coordinates[5]; + dof_coordinates[22][0] = vertex_coordinates[6]; + dof_coordinates[22][1] = vertex_coordinates[7]; + dof_coordinates[22][2] = vertex_coordinates[8]; + dof_coordinates[23][0] = vertex_coordinates[9]; + dof_coordinates[23][1] = vertex_coordinates[10]; + dof_coordinates[23][2] = vertex_coordinates[11]; + dof_coordinates[24][0] = 0.5*vertex_coordinates[6] + 0.5*vertex_coordinates[9]; + dof_coordinates[24][1] = 0.5*vertex_coordinates[7] + 0.5*vertex_coordinates[10]; + dof_coordinates[24][2] = 0.5*vertex_coordinates[8] + 0.5*vertex_coordinates[11]; + dof_coordinates[25][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[9]; + dof_coordinates[25][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[10]; + dof_coordinates[25][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[11]; + dof_coordinates[26][0] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[6]; + dof_coordinates[26][1] = 0.5*vertex_coordinates[4] + 0.5*vertex_coordinates[7]; + dof_coordinates[26][2] = 0.5*vertex_coordinates[5] + 0.5*vertex_coordinates[8]; + dof_coordinates[27][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[9]; + dof_coordinates[27][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[10]; + dof_coordinates[27][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[11]; + dof_coordinates[28][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[6]; + dof_coordinates[28][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[7]; + dof_coordinates[28][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[8]; + dof_coordinates[29][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[3]; + dof_coordinates[29][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[4]; + dof_coordinates[29][2] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[5]; + dof_coordinates[30][0] = vertex_coordinates[0]; + dof_coordinates[30][1] = vertex_coordinates[1]; + dof_coordinates[30][2] = vertex_coordinates[2]; + dof_coordinates[31][0] = vertex_coordinates[3]; + dof_coordinates[31][1] = vertex_coordinates[4]; + dof_coordinates[31][2] = vertex_coordinates[5]; + dof_coordinates[32][0] = vertex_coordinates[6]; + dof_coordinates[32][1] = vertex_coordinates[7]; + dof_coordinates[32][2] = vertex_coordinates[8]; + dof_coordinates[33][0] = vertex_coordinates[9]; + dof_coordinates[33][1] = vertex_coordinates[10]; + dof_coordinates[33][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokespreconditioner_dofmap_1(); + break; + } + case 1: + { + return new stokespreconditioner_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokespreconditioner_dofmap_3(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stokespreconditioner_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stokespreconditioner_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stokespreconditioner_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 121 + // Number of operations (multiply-add pairs) for tensor contraction: 3287 + // Total number of operations (multiply-add pairs): 3411 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_ = det; + const double G1_0_0 = det*K[2]*K[2]*(1.0); + const double G1_0_1 = det*K[2]*K[5]*(1.0); + const double G1_0_2 = det*K[2]*K[8]*(1.0); + const double G1_1_0 = det*K[5]*K[2]*(1.0); + const double G1_1_1 = det*K[5]*K[5]*(1.0); + const double G1_1_2 = det*K[5]*K[8]*(1.0); + const double G1_2_0 = det*K[8]*K[2]*(1.0); + const double G1_2_1 = det*K[8]*K[5]*(1.0); + const double G1_2_2 = det*K[8]*K[8]*(1.0); + const double G2_0_0 = det*K[2]*K[2]*(1.0); + const double G2_0_1 = det*K[2]*K[5]*(1.0); + const double G2_0_2 = det*K[2]*K[8]*(1.0); + const double G2_1_0 = det*K[5]*K[2]*(1.0); + const double G2_1_1 = det*K[5]*K[5]*(1.0); + const double G2_1_2 = det*K[5]*K[8]*(1.0); + const double G2_2_0 = det*K[8]*K[2]*(1.0); + const double G2_2_1 = det*K[8]*K[5]*(1.0); + const double G2_2_2 = det*K[8]*K[8]*(1.0); + const double G3_0_0 = det*K[2]*K[2]*(1.0); + const double G3_0_1 = det*K[2]*K[5]*(1.0); + const double G3_0_2 = det*K[2]*K[8]*(1.0); + const double G3_1_0 = det*K[5]*K[2]*(1.0); + const double G3_1_1 = det*K[5]*K[5]*(1.0); + const double G3_1_2 = det*K[5]*K[8]*(1.0); + const double G3_2_0 = det*K[8]*K[2]*(1.0); + const double G3_2_1 = det*K[8]*K[5]*(1.0); + const double G3_2_2 = det*K[8]*K[8]*(1.0); + const double G4_0_0 = det*K[0]*K[0]*(1.0); + const double G4_0_1 = det*K[0]*K[3]*(1.0); + const double G4_0_2 = det*K[0]*K[6]*(1.0); + const double G4_1_0 = det*K[3]*K[0]*(1.0); + const double G4_1_1 = det*K[3]*K[3]*(1.0); + const double G4_1_2 = det*K[3]*K[6]*(1.0); + const double G4_2_0 = det*K[6]*K[0]*(1.0); + const double G4_2_1 = det*K[6]*K[3]*(1.0); + const double G4_2_2 = det*K[6]*K[6]*(1.0); + const double G5_0_0 = det*K[0]*K[0]*(1.0); + const double G5_0_1 = det*K[0]*K[3]*(1.0); + const double G5_0_2 = det*K[0]*K[6]*(1.0); + const double G5_1_0 = det*K[3]*K[0]*(1.0); + const double G5_1_1 = det*K[3]*K[3]*(1.0); + const double G5_1_2 = det*K[3]*K[6]*(1.0); + const double G5_2_0 = det*K[6]*K[0]*(1.0); + const double G5_2_1 = det*K[6]*K[3]*(1.0); + const double G5_2_2 = det*K[6]*K[6]*(1.0); + const double G6_0_0 = det*K[0]*K[0]*(1.0); + const double G6_0_1 = det*K[0]*K[3]*(1.0); + const double G6_0_2 = det*K[0]*K[6]*(1.0); + const double G6_1_0 = det*K[3]*K[0]*(1.0); + const double G6_1_1 = det*K[3]*K[3]*(1.0); + const double G6_1_2 = det*K[3]*K[6]*(1.0); + const double G6_2_0 = det*K[6]*K[0]*(1.0); + const double G6_2_1 = det*K[6]*K[3]*(1.0); + const double G6_2_2 = det*K[6]*K[6]*(1.0); + const double G7_0_0 = det*K[1]*K[1]*(1.0); + const double G7_0_1 = det*K[1]*K[4]*(1.0); + const double G7_0_2 = det*K[1]*K[7]*(1.0); + const double G7_1_0 = det*K[4]*K[1]*(1.0); + const double G7_1_1 = det*K[4]*K[4]*(1.0); + const double G7_1_2 = det*K[4]*K[7]*(1.0); + const double G7_2_0 = det*K[7]*K[1]*(1.0); + const double G7_2_1 = det*K[7]*K[4]*(1.0); + const double G7_2_2 = det*K[7]*K[7]*(1.0); + const double G8_0_0 = det*K[1]*K[1]*(1.0); + const double G8_0_1 = det*K[1]*K[4]*(1.0); + const double G8_0_2 = det*K[1]*K[7]*(1.0); + const double G8_1_0 = det*K[4]*K[1]*(1.0); + const double G8_1_1 = det*K[4]*K[4]*(1.0); + const double G8_1_2 = det*K[4]*K[7]*(1.0); + const double G8_2_0 = det*K[7]*K[1]*(1.0); + const double G8_2_1 = det*K[7]*K[4]*(1.0); + const double G8_2_2 = det*K[7]*K[7]*(1.0); + const double G9_0_0 = det*K[1]*K[1]*(1.0); + const double G9_0_1 = det*K[1]*K[4]*(1.0); + const double G9_0_2 = det*K[1]*K[7]*(1.0); + const double G9_1_0 = det*K[4]*K[1]*(1.0); + const double G9_1_1 = det*K[4]*K[4]*(1.0); + const double G9_1_2 = det*K[4]*K[7]*(1.0); + const double G9_2_0 = det*K[7]*K[1]*(1.0); + const double G9_2_1 = det*K[7]*K[4]*(1.0); + const double G9_2_2 = det*K[7]*K[7]*(1.0); + + // Compute element tensor + A[0] = 0.1*G2_0_0 + 0.1*G2_0_1 + 0.1*G2_0_2 + 0.1*G2_1_0 + 0.1*G2_1_1 + 0.1*G2_1_2 + 0.1*G2_2_0 + 0.1*G2_2_1 + 0.1*G2_2_2 + 0.1*G5_0_0 + 0.1*G5_0_1 + 0.1*G5_0_2 + 0.1*G5_1_0 + 0.1*G5_1_1 + 0.1*G5_1_2 + 0.1*G5_2_0 + 0.1*G5_2_1 + 0.1*G5_2_2 + 0.1*G8_0_0 + 0.1*G8_0_1 + 0.1*G8_0_2 + 0.1*G8_1_0 + 0.1*G8_1_1 + 0.1*G8_1_2 + 0.1*G8_2_0 + 0.1*G8_2_1 + 0.1*G8_2_2; + A[1] = 0.0333333333333333*G2_0_0 + 0.0333333333333333*G2_1_0 + 0.0333333333333333*G2_2_0 + 0.0333333333333333*G5_0_0 + 0.0333333333333333*G5_1_0 + 0.0333333333333333*G5_2_0 + 0.0333333333333333*G8_0_0 + 0.0333333333333333*G8_1_0 + 0.0333333333333333*G8_2_0; + A[2] = 0.0333333333333333*G2_0_1 + 0.0333333333333333*G2_1_1 + 0.0333333333333333*G2_2_1 + 0.0333333333333333*G5_0_1 + 0.0333333333333333*G5_1_1 + 0.0333333333333333*G5_2_1 + 0.0333333333333333*G8_0_1 + 0.0333333333333333*G8_1_1 + 0.0333333333333333*G8_2_1; + A[3] = 0.0333333333333333*G2_0_2 + 0.0333333333333333*G2_1_2 + 0.0333333333333333*G2_2_2 + 0.0333333333333333*G5_0_2 + 0.0333333333333333*G5_1_2 + 0.0333333333333333*G5_2_2 + 0.0333333333333333*G8_0_2 + 0.0333333333333333*G8_1_2 + 0.0333333333333333*G8_2_2; + A[4] = 0.0333333333333333*G2_0_1 + 0.0333333333333333*G2_0_2 + 0.0333333333333333*G2_1_1 + 0.0333333333333333*G2_1_2 + 0.0333333333333333*G2_2_1 + 0.0333333333333333*G2_2_2 + 0.0333333333333333*G5_0_1 + 0.0333333333333333*G5_0_2 + 0.0333333333333333*G5_1_1 + 0.0333333333333333*G5_1_2 + 0.0333333333333333*G5_2_1 + 0.0333333333333333*G5_2_2 + 0.0333333333333333*G8_0_1 + 0.0333333333333333*G8_0_2 + 0.0333333333333333*G8_1_1 + 0.0333333333333333*G8_1_2 + 0.0333333333333333*G8_2_1 + 0.0333333333333333*G8_2_2; + A[5] = 0.0333333333333333*G2_0_0 + 0.0333333333333333*G2_0_2 + 0.0333333333333333*G2_1_0 + 0.0333333333333333*G2_1_2 + 0.0333333333333333*G2_2_0 + 0.0333333333333333*G2_2_2 + 0.0333333333333333*G5_0_0 + 0.0333333333333333*G5_0_2 + 0.0333333333333333*G5_1_0 + 0.0333333333333333*G5_1_2 + 0.0333333333333333*G5_2_0 + 0.0333333333333333*G5_2_2 + 0.0333333333333333*G8_0_0 + 0.0333333333333333*G8_0_2 + 0.0333333333333333*G8_1_0 + 0.0333333333333333*G8_1_2 + 0.0333333333333333*G8_2_0 + 0.0333333333333333*G8_2_2; + A[6] = 0.0333333333333332*G2_0_0 + 0.0333333333333333*G2_0_1 + 0.0333333333333333*G2_1_0 + 0.0333333333333333*G2_1_1 + 0.0333333333333333*G2_2_0 + 0.0333333333333333*G2_2_1 + 0.0333333333333332*G5_0_0 + 0.0333333333333333*G5_0_1 + 0.0333333333333333*G5_1_0 + 0.0333333333333333*G5_1_1 + 0.0333333333333333*G5_2_0 + 0.0333333333333333*G5_2_1 + 0.0333333333333332*G8_0_0 + 0.0333333333333333*G8_0_1 + 0.0333333333333333*G8_1_0 + 0.0333333333333333*G8_1_1 + 0.0333333333333333*G8_2_0 + 0.0333333333333333*G8_2_1; + A[7] = -0.0333333333333333*G2_0_0 - 0.0333333333333333*G2_0_1 - 0.133333333333333*G2_0_2 - 0.0333333333333333*G2_1_0 - 0.0333333333333333*G2_1_1 - 0.133333333333333*G2_1_2 - 0.0333333333333333*G2_2_0 - 0.0333333333333333*G2_2_1 - 0.133333333333333*G2_2_2 - 0.0333333333333333*G5_0_0 - 0.0333333333333333*G5_0_1 - 0.133333333333333*G5_0_2 - 0.0333333333333333*G5_1_0 - 0.0333333333333333*G5_1_1 - 0.133333333333333*G5_1_2 - 0.0333333333333333*G5_2_0 - 0.0333333333333333*G5_2_1 - 0.133333333333333*G5_2_2 - 0.0333333333333333*G8_0_0 - 0.0333333333333333*G8_0_1 - 0.133333333333333*G8_0_2 - 0.0333333333333333*G8_1_0 - 0.0333333333333333*G8_1_1 - 0.133333333333333*G8_1_2 - 0.0333333333333333*G8_2_0 - 0.0333333333333333*G8_2_1 - 0.133333333333333*G8_2_2; + A[8] = -0.0333333333333332*G2_0_0 - 0.133333333333333*G2_0_1 - 0.0333333333333333*G2_0_2 - 0.0333333333333333*G2_1_0 - 0.133333333333333*G2_1_1 - 0.0333333333333333*G2_1_2 - 0.0333333333333333*G2_2_0 - 0.133333333333333*G2_2_1 - 0.0333333333333333*G2_2_2 - 0.0333333333333332*G5_0_0 - 0.133333333333333*G5_0_1 - 0.0333333333333333*G5_0_2 - 0.0333333333333333*G5_1_0 - 0.133333333333333*G5_1_1 - 0.0333333333333333*G5_1_2 - 0.0333333333333333*G5_2_0 - 0.133333333333333*G5_2_1 - 0.0333333333333333*G5_2_2 - 0.0333333333333332*G8_0_0 - 0.133333333333333*G8_0_1 - 0.0333333333333333*G8_0_2 - 0.0333333333333333*G8_1_0 - 0.133333333333333*G8_1_1 - 0.0333333333333333*G8_1_2 - 0.0333333333333333*G8_2_0 - 0.133333333333333*G8_2_1 - 0.0333333333333333*G8_2_2; + A[9] = -0.133333333333333*G2_0_0 - 0.0333333333333333*G2_0_1 - 0.0333333333333333*G2_0_2 - 0.133333333333333*G2_1_0 - 0.0333333333333333*G2_1_1 - 0.0333333333333333*G2_1_2 - 0.133333333333333*G2_2_0 - 0.0333333333333333*G2_2_1 - 0.0333333333333333*G2_2_2 - 0.133333333333333*G5_0_0 - 0.0333333333333333*G5_0_1 - 0.0333333333333333*G5_0_2 - 0.133333333333333*G5_1_0 - 0.0333333333333333*G5_1_1 - 0.0333333333333333*G5_1_2 - 0.133333333333333*G5_2_0 - 0.0333333333333333*G5_2_1 - 0.0333333333333333*G5_2_2 - 0.133333333333333*G8_0_0 - 0.0333333333333333*G8_0_1 - 0.0333333333333333*G8_0_2 - 0.133333333333333*G8_1_0 - 0.0333333333333333*G8_1_1 - 0.0333333333333333*G8_1_2 - 0.133333333333333*G8_2_0 - 0.0333333333333333*G8_2_1 - 0.0333333333333333*G8_2_2; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0333333333333333*G2_0_0 + 0.0333333333333333*G2_0_1 + 0.0333333333333333*G2_0_2 + 0.0333333333333333*G5_0_0 + 0.0333333333333333*G5_0_1 + 0.0333333333333333*G5_0_2 + 0.0333333333333333*G8_0_0 + 0.0333333333333333*G8_0_1 + 0.0333333333333333*G8_0_2; + A[35] = 0.1*G2_0_0 + 0.1*G5_0_0 + 0.1*G8_0_0; + A[36] = -0.0333333333333333*G2_0_1 - 0.0333333333333333*G5_0_1 - 0.0333333333333333*G8_0_1; + A[37] = -0.0333333333333333*G2_0_2 - 0.0333333333333333*G5_0_2 - 0.0333333333333333*G8_0_2; + A[38] = -0.0333333333333333*G2_0_1 - 0.0333333333333333*G2_0_2 - 0.0333333333333333*G5_0_1 - 0.0333333333333333*G5_0_2 - 0.0333333333333333*G8_0_1 - 0.0333333333333333*G8_0_2; + A[39] = -0.0333333333333333*G2_0_0 + 0.1*G2_0_2 - 0.0333333333333333*G5_0_0 + 0.1*G5_0_2 - 0.0333333333333333*G8_0_0 + 0.1*G8_0_2; + A[40] = -0.0333333333333333*G2_0_0 + 0.1*G2_0_1 - 0.0333333333333333*G5_0_0 + 0.1*G5_0_1 - 0.0333333333333333*G8_0_0 + 0.1*G8_0_1; + A[41] = 0.0333333333333333*G2_0_0 + 0.0333333333333333*G2_0_1 + 0.0333333333333333*G5_0_0 + 0.0333333333333333*G5_0_1 + 0.0333333333333333*G8_0_0 + 0.0333333333333333*G8_0_1; + A[42] = 0.0333333333333333*G2_0_0 + 0.0333333333333333*G2_0_2 + 0.0333333333333333*G5_0_0 + 0.0333333333333333*G5_0_2 + 0.0333333333333333*G8_0_0 + 0.0333333333333333*G8_0_2; + A[43] = -0.133333333333333*G2_0_0 - 0.1*G2_0_1 - 0.1*G2_0_2 - 0.133333333333333*G5_0_0 - 0.1*G5_0_1 - 0.1*G5_0_2 - 0.133333333333333*G8_0_0 - 0.1*G8_0_1 - 0.1*G8_0_2; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = 0.0; + A[62] = 0.0; + A[63] = 0.0; + A[64] = 0.0; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0333333333333333*G2_1_0 + 0.0333333333333333*G2_1_1 + 0.0333333333333333*G2_1_2 + 0.0333333333333333*G5_1_0 + 0.0333333333333333*G5_1_1 + 0.0333333333333333*G5_1_2 + 0.0333333333333333*G8_1_0 + 0.0333333333333333*G8_1_1 + 0.0333333333333333*G8_1_2; + A[69] = -0.0333333333333333*G2_1_0 - 0.0333333333333333*G5_1_0 - 0.0333333333333333*G8_1_0; + A[70] = 0.1*G2_1_1 + 0.1*G5_1_1 + 0.1*G8_1_1; + A[71] = -0.0333333333333333*G2_1_2 - 0.0333333333333333*G5_1_2 - 0.0333333333333333*G8_1_2; + A[72] = -0.0333333333333334*G2_1_1 + 0.1*G2_1_2 - 0.0333333333333334*G5_1_1 + 0.1*G5_1_2 - 0.0333333333333334*G8_1_1 + 0.1*G8_1_2; + A[73] = -0.0333333333333333*G2_1_0 - 0.0333333333333333*G2_1_2 - 0.0333333333333333*G5_1_0 - 0.0333333333333333*G5_1_2 - 0.0333333333333333*G8_1_0 - 0.0333333333333333*G8_1_2; + A[74] = 0.1*G2_1_0 - 0.0333333333333333*G2_1_1 + 0.1*G5_1_0 - 0.0333333333333333*G5_1_1 + 0.1*G8_1_0 - 0.0333333333333333*G8_1_1; + A[75] = 0.0333333333333333*G2_1_0 + 0.0333333333333333*G2_1_1 + 0.0333333333333333*G5_1_0 + 0.0333333333333333*G5_1_1 + 0.0333333333333333*G8_1_0 + 0.0333333333333333*G8_1_1; + A[76] = -0.1*G2_1_0 - 0.133333333333333*G2_1_1 - 0.1*G2_1_2 - 0.1*G5_1_0 - 0.133333333333333*G5_1_1 - 0.1*G5_1_2 - 0.1*G8_1_0 - 0.133333333333333*G8_1_1 - 0.1*G8_1_2; + A[77] = 0.0333333333333333*G2_1_1 + 0.0333333333333333*G2_1_2 + 0.0333333333333333*G5_1_1 + 0.0333333333333333*G5_1_2 + 0.0333333333333333*G8_1_1 + 0.0333333333333333*G8_1_2; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0333333333333333*G2_2_0 + 0.0333333333333333*G2_2_1 + 0.0333333333333333*G2_2_2 + 0.0333333333333333*G5_2_0 + 0.0333333333333333*G5_2_1 + 0.0333333333333333*G5_2_2 + 0.0333333333333333*G8_2_0 + 0.0333333333333333*G8_2_1 + 0.0333333333333333*G8_2_2; + A[103] = -0.0333333333333333*G2_2_0 - 0.0333333333333333*G5_2_0 - 0.0333333333333333*G8_2_0; + A[104] = -0.0333333333333333*G2_2_1 - 0.0333333333333333*G5_2_1 - 0.0333333333333333*G8_2_1; + A[105] = 0.1*G2_2_2 + 0.1*G5_2_2 + 0.1*G8_2_2; + A[106] = 0.1*G2_2_1 - 0.0333333333333334*G2_2_2 + 0.1*G5_2_1 - 0.0333333333333334*G5_2_2 + 0.1*G8_2_1 - 0.0333333333333334*G8_2_2; + A[107] = 0.1*G2_2_0 - 0.0333333333333333*G2_2_2 + 0.1*G5_2_0 - 0.0333333333333333*G5_2_2 + 0.1*G8_2_0 - 0.0333333333333333*G8_2_2; + A[108] = -0.0333333333333333*G2_2_0 - 0.0333333333333333*G2_2_1 - 0.0333333333333333*G5_2_0 - 0.0333333333333333*G5_2_1 - 0.0333333333333333*G8_2_0 - 0.0333333333333333*G8_2_1; + A[109] = -0.1*G2_2_0 - 0.1*G2_2_1 - 0.133333333333333*G2_2_2 - 0.1*G5_2_0 - 0.1*G5_2_1 - 0.133333333333333*G5_2_2 - 0.1*G8_2_0 - 0.1*G8_2_1 - 0.133333333333333*G8_2_2; + A[110] = 0.0333333333333333*G2_2_0 + 0.0333333333333334*G2_2_2 + 0.0333333333333333*G5_2_0 + 0.0333333333333334*G5_2_2 + 0.0333333333333333*G8_2_0 + 0.0333333333333334*G8_2_2; + A[111] = 0.0333333333333333*G2_2_1 + 0.0333333333333333*G2_2_2 + 0.0333333333333333*G5_2_1 + 0.0333333333333333*G5_2_2 + 0.0333333333333333*G8_2_1 + 0.0333333333333333*G8_2_2; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0333333333333333*G2_1_0 + 0.0333333333333333*G2_1_1 + 0.0333333333333333*G2_1_2 + 0.0333333333333333*G2_2_0 + 0.0333333333333333*G2_2_1 + 0.0333333333333333*G2_2_2 + 0.0333333333333333*G5_1_0 + 0.0333333333333333*G5_1_1 + 0.0333333333333333*G5_1_2 + 0.0333333333333333*G5_2_0 + 0.0333333333333333*G5_2_1 + 0.0333333333333333*G5_2_2 + 0.0333333333333333*G8_1_0 + 0.0333333333333333*G8_1_1 + 0.0333333333333333*G8_1_2 + 0.0333333333333333*G8_2_0 + 0.0333333333333333*G8_2_1 + 0.0333333333333333*G8_2_2; + A[137] = -0.0333333333333333*G2_1_0 - 0.0333333333333333*G2_2_0 - 0.0333333333333333*G5_1_0 - 0.0333333333333333*G5_2_0 - 0.0333333333333333*G8_1_0 - 0.0333333333333333*G8_2_0; + A[138] = -0.0333333333333334*G2_1_1 + 0.1*G2_2_1 - 0.0333333333333334*G5_1_1 + 0.1*G5_2_1 - 0.0333333333333334*G8_1_1 + 0.1*G8_2_1; + A[139] = 0.1*G2_1_2 - 0.0333333333333334*G2_2_2 + 0.1*G5_1_2 - 0.0333333333333334*G5_2_2 + 0.1*G8_1_2 - 0.0333333333333334*G8_2_2; + A[140] = 0.266666666666667*G2_1_1 + 0.133333333333333*G2_1_2 + 0.133333333333333*G2_2_1 + 0.266666666666666*G2_2_2 + 0.266666666666667*G5_1_1 + 0.133333333333333*G5_1_2 + 0.133333333333333*G5_2_1 + 0.266666666666666*G5_2_2 + 0.266666666666667*G8_1_1 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_1 + 0.266666666666666*G8_2_2; + A[141] = 0.266666666666667*G2_1_0 + 0.133333333333333*G2_1_2 + 0.133333333333333*G2_2_0 + 0.133333333333333*G2_2_2 + 0.266666666666667*G5_1_0 + 0.133333333333333*G5_1_2 + 0.133333333333333*G5_2_0 + 0.133333333333333*G5_2_2 + 0.266666666666667*G8_1_0 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_0 + 0.133333333333333*G8_2_2; + A[142] = 0.133333333333333*G2_1_0 + 0.133333333333333*G2_1_1 + 0.266666666666666*G2_2_0 + 0.133333333333333*G2_2_1 + 0.133333333333333*G5_1_0 + 0.133333333333333*G5_1_1 + 0.266666666666666*G5_2_0 + 0.133333333333333*G5_2_1 + 0.133333333333333*G8_1_0 + 0.133333333333333*G8_1_1 + 0.266666666666666*G8_2_0 + 0.133333333333333*G8_2_1; + A[143] = -0.266666666666667*G2_1_0 - 0.266666666666667*G2_1_1 - 0.133333333333333*G2_1_2 - 0.133333333333333*G2_2_0 - 0.133333333333333*G2_2_1 - 0.266666666666667*G5_1_0 - 0.266666666666667*G5_1_1 - 0.133333333333333*G5_1_2 - 0.133333333333333*G5_2_0 - 0.133333333333333*G5_2_1 - 0.266666666666667*G8_1_0 - 0.266666666666667*G8_1_1 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_0 - 0.133333333333333*G8_2_1; + A[144] = -0.133333333333333*G2_1_0 - 0.133333333333333*G2_1_2 - 0.266666666666666*G2_2_0 - 0.133333333333333*G2_2_1 - 0.266666666666666*G2_2_2 - 0.133333333333333*G5_1_0 - 0.133333333333333*G5_1_2 - 0.266666666666666*G5_2_0 - 0.133333333333333*G5_2_1 - 0.266666666666666*G5_2_2 - 0.133333333333333*G8_1_0 - 0.133333333333333*G8_1_2 - 0.266666666666666*G8_2_0 - 0.133333333333333*G8_2_1 - 0.266666666666666*G8_2_2; + A[145] = -0.133333333333333*G2_1_1 - 0.133333333333333*G2_1_2 - 0.133333333333333*G2_2_1 - 0.133333333333333*G2_2_2 - 0.133333333333333*G5_1_1 - 0.133333333333333*G5_1_2 - 0.133333333333333*G5_2_1 - 0.133333333333333*G5_2_2 - 0.133333333333333*G8_1_1 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_1 - 0.133333333333333*G8_2_2; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0333333333333333*G2_0_0 + 0.0333333333333333*G2_0_1 + 0.0333333333333333*G2_0_2 + 0.0333333333333333*G2_2_0 + 0.0333333333333333*G2_2_1 + 0.0333333333333333*G2_2_2 + 0.0333333333333333*G5_0_0 + 0.0333333333333333*G5_0_1 + 0.0333333333333333*G5_0_2 + 0.0333333333333333*G5_2_0 + 0.0333333333333333*G5_2_1 + 0.0333333333333333*G5_2_2 + 0.0333333333333333*G8_0_0 + 0.0333333333333333*G8_0_1 + 0.0333333333333333*G8_0_2 + 0.0333333333333333*G8_2_0 + 0.0333333333333333*G8_2_1 + 0.0333333333333333*G8_2_2; + A[171] = -0.0333333333333333*G2_0_0 + 0.1*G2_2_0 - 0.0333333333333333*G5_0_0 + 0.1*G5_2_0 - 0.0333333333333333*G8_0_0 + 0.1*G8_2_0; + A[172] = -0.0333333333333333*G2_0_1 - 0.0333333333333333*G2_2_1 - 0.0333333333333333*G5_0_1 - 0.0333333333333333*G5_2_1 - 0.0333333333333333*G8_0_1 - 0.0333333333333333*G8_2_1; + A[173] = 0.1*G2_0_2 - 0.0333333333333333*G2_2_2 + 0.1*G5_0_2 - 0.0333333333333333*G5_2_2 + 0.1*G8_0_2 - 0.0333333333333333*G8_2_2; + A[174] = 0.266666666666667*G2_0_1 + 0.133333333333333*G2_0_2 + 0.133333333333333*G2_2_1 + 0.133333333333333*G2_2_2 + 0.266666666666667*G5_0_1 + 0.133333333333333*G5_0_2 + 0.133333333333333*G5_2_1 + 0.133333333333333*G5_2_2 + 0.266666666666667*G8_0_1 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_2_1 + 0.133333333333333*G8_2_2; + A[175] = 0.266666666666666*G2_0_0 + 0.133333333333333*G2_0_2 + 0.133333333333333*G2_2_0 + 0.266666666666666*G2_2_2 + 0.266666666666666*G5_0_0 + 0.133333333333333*G5_0_2 + 0.133333333333333*G5_2_0 + 0.266666666666666*G5_2_2 + 0.266666666666666*G8_0_0 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_2_0 + 0.266666666666666*G8_2_2; + A[176] = 0.133333333333333*G2_0_0 + 0.133333333333333*G2_0_1 + 0.133333333333333*G2_2_0 + 0.266666666666666*G2_2_1 + 0.133333333333333*G5_0_0 + 0.133333333333333*G5_0_1 + 0.133333333333333*G5_2_0 + 0.266666666666666*G5_2_1 + 0.133333333333333*G8_0_0 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_2_0 + 0.266666666666666*G8_2_1; + A[177] = -0.266666666666666*G2_0_0 - 0.266666666666666*G2_0_1 - 0.133333333333333*G2_0_2 - 0.133333333333333*G2_2_0 - 0.133333333333333*G2_2_1 - 0.266666666666666*G5_0_0 - 0.266666666666666*G5_0_1 - 0.133333333333333*G5_0_2 - 0.133333333333333*G5_2_0 - 0.133333333333333*G5_2_1 - 0.266666666666666*G8_0_0 - 0.266666666666666*G8_0_1 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_2_0 - 0.133333333333333*G8_2_1; + A[178] = -0.133333333333333*G2_0_0 - 0.133333333333333*G2_0_2 - 0.133333333333333*G2_2_0 - 0.133333333333333*G2_2_2 - 0.133333333333333*G5_0_0 - 0.133333333333333*G5_0_2 - 0.133333333333333*G5_2_0 - 0.133333333333333*G5_2_2 - 0.133333333333333*G8_0_0 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_2_0 - 0.133333333333333*G8_2_2; + A[179] = -0.133333333333333*G2_0_1 - 0.133333333333333*G2_0_2 - 0.133333333333333*G2_2_0 - 0.266666666666666*G2_2_1 - 0.266666666666666*G2_2_2 - 0.133333333333333*G5_0_1 - 0.133333333333333*G5_0_2 - 0.133333333333333*G5_2_0 - 0.266666666666666*G5_2_1 - 0.266666666666666*G5_2_2 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_2_0 - 0.266666666666666*G8_2_1 - 0.266666666666666*G8_2_2; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0333333333333332*G2_0_0 + 0.0333333333333333*G2_0_1 + 0.0333333333333333*G2_0_2 + 0.0333333333333333*G2_1_0 + 0.0333333333333333*G2_1_1 + 0.0333333333333333*G2_1_2 + 0.0333333333333332*G5_0_0 + 0.0333333333333333*G5_0_1 + 0.0333333333333333*G5_0_2 + 0.0333333333333333*G5_1_0 + 0.0333333333333333*G5_1_1 + 0.0333333333333333*G5_1_2 + 0.0333333333333332*G8_0_0 + 0.0333333333333333*G8_0_1 + 0.0333333333333333*G8_0_2 + 0.0333333333333333*G8_1_0 + 0.0333333333333333*G8_1_1 + 0.0333333333333333*G8_1_2; + A[205] = -0.0333333333333333*G2_0_0 + 0.1*G2_1_0 - 0.0333333333333333*G5_0_0 + 0.1*G5_1_0 - 0.0333333333333333*G8_0_0 + 0.1*G8_1_0; + A[206] = 0.1*G2_0_1 - 0.0333333333333333*G2_1_1 + 0.1*G5_0_1 - 0.0333333333333333*G5_1_1 + 0.1*G8_0_1 - 0.0333333333333333*G8_1_1; + A[207] = -0.0333333333333333*G2_0_2 - 0.0333333333333333*G2_1_2 - 0.0333333333333333*G5_0_2 - 0.0333333333333333*G5_1_2 - 0.0333333333333333*G8_0_2 - 0.0333333333333333*G8_1_2; + A[208] = 0.133333333333333*G2_0_1 + 0.266666666666666*G2_0_2 + 0.133333333333333*G2_1_1 + 0.133333333333333*G2_1_2 + 0.133333333333333*G5_0_1 + 0.266666666666666*G5_0_2 + 0.133333333333333*G5_1_1 + 0.133333333333333*G5_1_2 + 0.133333333333333*G8_0_1 + 0.266666666666666*G8_0_2 + 0.133333333333333*G8_1_1 + 0.133333333333333*G8_1_2; + A[209] = 0.133333333333333*G2_0_0 + 0.133333333333333*G2_0_2 + 0.133333333333333*G2_1_0 + 0.266666666666666*G2_1_2 + 0.133333333333333*G5_0_0 + 0.133333333333333*G5_0_2 + 0.133333333333333*G5_1_0 + 0.266666666666666*G5_1_2 + 0.133333333333333*G8_0_0 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_0 + 0.266666666666666*G8_1_2; + A[210] = 0.266666666666666*G2_0_0 + 0.133333333333333*G2_0_1 + 0.133333333333333*G2_1_0 + 0.266666666666666*G2_1_1 + 0.266666666666666*G5_0_0 + 0.133333333333333*G5_0_1 + 0.133333333333333*G5_1_0 + 0.266666666666666*G5_1_1 + 0.266666666666666*G8_0_0 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_1_0 + 0.266666666666666*G8_1_1; + A[211] = -0.133333333333333*G2_0_0 - 0.133333333333333*G2_0_1 - 0.133333333333333*G2_1_0 - 0.133333333333333*G2_1_1 - 0.133333333333333*G5_0_0 - 0.133333333333333*G5_0_1 - 0.133333333333333*G5_1_0 - 0.133333333333333*G5_1_1 - 0.133333333333333*G8_0_0 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_1_0 - 0.133333333333333*G8_1_1; + A[212] = -0.266666666666666*G2_0_0 - 0.133333333333333*G2_0_1 - 0.266666666666666*G2_0_2 - 0.133333333333333*G2_1_0 - 0.133333333333333*G2_1_2 - 0.266666666666666*G5_0_0 - 0.133333333333333*G5_0_1 - 0.266666666666666*G5_0_2 - 0.133333333333333*G5_1_0 - 0.133333333333333*G5_1_2 - 0.266666666666666*G8_0_0 - 0.133333333333333*G8_0_1 - 0.266666666666666*G8_0_2 - 0.133333333333333*G8_1_0 - 0.133333333333333*G8_1_2; + A[213] = -0.133333333333333*G2_0_1 - 0.133333333333333*G2_0_2 - 0.133333333333333*G2_1_0 - 0.266666666666666*G2_1_1 - 0.266666666666666*G2_1_2 - 0.133333333333333*G5_0_1 - 0.133333333333333*G5_0_2 - 0.133333333333333*G5_1_0 - 0.266666666666666*G5_1_1 - 0.266666666666666*G5_1_2 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_1_0 - 0.266666666666666*G8_1_1 - 0.266666666666666*G8_1_2; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0; + A[235] = 0.0; + A[236] = 0.0; + A[237] = 0.0; + A[238] = -0.0333333333333333*G2_0_0 - 0.0333333333333333*G2_0_1 - 0.0333333333333333*G2_0_2 - 0.0333333333333333*G2_1_0 - 0.0333333333333333*G2_1_1 - 0.0333333333333333*G2_1_2 - 0.133333333333333*G2_2_0 - 0.133333333333333*G2_2_1 - 0.133333333333333*G2_2_2 - 0.0333333333333333*G5_0_0 - 0.0333333333333333*G5_0_1 - 0.0333333333333333*G5_0_2 - 0.0333333333333333*G5_1_0 - 0.0333333333333333*G5_1_1 - 0.0333333333333333*G5_1_2 - 0.133333333333333*G5_2_0 - 0.133333333333333*G5_2_1 - 0.133333333333333*G5_2_2 - 0.0333333333333333*G8_0_0 - 0.0333333333333333*G8_0_1 - 0.0333333333333333*G8_0_2 - 0.0333333333333333*G8_1_0 - 0.0333333333333333*G8_1_1 - 0.0333333333333333*G8_1_2 - 0.133333333333333*G8_2_0 - 0.133333333333333*G8_2_1 - 0.133333333333333*G8_2_2; + A[239] = 0.0333333333333333*G2_0_0 + 0.0333333333333333*G2_1_0 + 0.0333333333333333*G5_0_0 + 0.0333333333333333*G5_1_0 + 0.0333333333333333*G8_0_0 + 0.0333333333333333*G8_1_0; + A[240] = 0.0333333333333333*G2_0_1 + 0.0333333333333333*G2_1_1 + 0.0333333333333333*G5_0_1 + 0.0333333333333333*G5_1_1 + 0.0333333333333333*G8_0_1 + 0.0333333333333333*G8_1_1; + A[241] = -0.1*G2_0_2 - 0.1*G2_1_2 - 0.133333333333333*G2_2_2 - 0.1*G5_0_2 - 0.1*G5_1_2 - 0.133333333333333*G5_2_2 - 0.1*G8_0_2 - 0.1*G8_1_2 - 0.133333333333333*G8_2_2; + A[242] = -0.266666666666667*G2_0_1 - 0.133333333333333*G2_0_2 - 0.266666666666667*G2_1_1 - 0.133333333333333*G2_1_2 - 0.133333333333333*G2_2_1 - 0.266666666666667*G5_0_1 - 0.133333333333333*G5_0_2 - 0.266666666666667*G5_1_1 - 0.133333333333333*G5_1_2 - 0.133333333333333*G5_2_1 - 0.266666666666667*G8_0_1 - 0.133333333333333*G8_0_2 - 0.266666666666667*G8_1_1 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_1; + A[243] = -0.266666666666666*G2_0_0 - 0.133333333333333*G2_0_2 - 0.266666666666666*G2_1_0 - 0.133333333333333*G2_1_2 - 0.133333333333333*G2_2_0 - 0.266666666666666*G5_0_0 - 0.133333333333333*G5_0_2 - 0.266666666666666*G5_1_0 - 0.133333333333333*G5_1_2 - 0.133333333333333*G5_2_0 - 0.266666666666666*G8_0_0 - 0.133333333333333*G8_0_2 - 0.266666666666666*G8_1_0 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_0; + A[244] = -0.133333333333333*G2_0_0 - 0.133333333333333*G2_0_1 - 0.133333333333333*G2_1_0 - 0.133333333333333*G2_1_1 - 0.133333333333333*G5_0_0 - 0.133333333333333*G5_0_1 - 0.133333333333333*G5_1_0 - 0.133333333333333*G5_1_1 - 0.133333333333333*G8_0_0 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_1_0 - 0.133333333333333*G8_1_1; + A[245] = 0.266666666666666*G2_0_0 + 0.266666666666666*G2_0_1 + 0.133333333333333*G2_0_2 + 0.266666666666666*G2_1_0 + 0.266666666666666*G2_1_1 + 0.133333333333333*G2_1_2 + 0.133333333333333*G2_2_0 + 0.133333333333333*G2_2_1 + 0.266666666666666*G2_2_2 + 0.266666666666666*G5_0_0 + 0.266666666666666*G5_0_1 + 0.133333333333333*G5_0_2 + 0.266666666666666*G5_1_0 + 0.266666666666666*G5_1_1 + 0.133333333333333*G5_1_2 + 0.133333333333333*G5_2_0 + 0.133333333333333*G5_2_1 + 0.266666666666666*G5_2_2 + 0.266666666666666*G8_0_0 + 0.266666666666666*G8_0_1 + 0.133333333333333*G8_0_2 + 0.266666666666666*G8_1_0 + 0.266666666666666*G8_1_1 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_0 + 0.133333333333333*G8_2_1 + 0.266666666666666*G8_2_2; + A[246] = 0.133333333333333*G2_0_0 + 0.133333333333333*G2_0_2 + 0.133333333333333*G2_1_0 + 0.133333333333333*G2_1_2 + 0.133333333333333*G2_2_1 + 0.133333333333333*G5_0_0 + 0.133333333333333*G5_0_2 + 0.133333333333333*G5_1_0 + 0.133333333333333*G5_1_2 + 0.133333333333333*G5_2_1 + 0.133333333333333*G8_0_0 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_0 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_1; + A[247] = 0.133333333333333*G2_0_1 + 0.133333333333333*G2_0_2 + 0.133333333333333*G2_1_1 + 0.133333333333333*G2_1_2 + 0.133333333333333*G2_2_0 + 0.133333333333333*G5_0_1 + 0.133333333333333*G5_0_2 + 0.133333333333333*G5_1_1 + 0.133333333333333*G5_1_2 + 0.133333333333333*G5_2_0 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_1 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_0; + A[248] = 0.0; + A[249] = 0.0; + A[250] = 0.0; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0; + A[271] = 0.0; + A[272] = -0.0333333333333332*G2_0_0 - 0.0333333333333333*G2_0_1 - 0.0333333333333333*G2_0_2 - 0.133333333333333*G2_1_0 - 0.133333333333333*G2_1_1 - 0.133333333333333*G2_1_2 - 0.0333333333333333*G2_2_0 - 0.0333333333333333*G2_2_1 - 0.0333333333333333*G2_2_2 - 0.0333333333333332*G5_0_0 - 0.0333333333333333*G5_0_1 - 0.0333333333333333*G5_0_2 - 0.133333333333333*G5_1_0 - 0.133333333333333*G5_1_1 - 0.133333333333333*G5_1_2 - 0.0333333333333333*G5_2_0 - 0.0333333333333333*G5_2_1 - 0.0333333333333333*G5_2_2 - 0.0333333333333332*G8_0_0 - 0.0333333333333333*G8_0_1 - 0.0333333333333333*G8_0_2 - 0.133333333333333*G8_1_0 - 0.133333333333333*G8_1_1 - 0.133333333333333*G8_1_2 - 0.0333333333333333*G8_2_0 - 0.0333333333333333*G8_2_1 - 0.0333333333333333*G8_2_2; + A[273] = 0.0333333333333333*G2_0_0 + 0.0333333333333333*G2_2_0 + 0.0333333333333333*G5_0_0 + 0.0333333333333333*G5_2_0 + 0.0333333333333333*G8_0_0 + 0.0333333333333333*G8_2_0; + A[274] = -0.1*G2_0_1 - 0.133333333333333*G2_1_1 - 0.1*G2_2_1 - 0.1*G5_0_1 - 0.133333333333333*G5_1_1 - 0.1*G5_2_1 - 0.1*G8_0_1 - 0.133333333333333*G8_1_1 - 0.1*G8_2_1; + A[275] = 0.0333333333333333*G2_0_2 + 0.0333333333333334*G2_2_2 + 0.0333333333333333*G5_0_2 + 0.0333333333333334*G5_2_2 + 0.0333333333333333*G8_0_2 + 0.0333333333333334*G8_2_2; + A[276] = -0.133333333333333*G2_0_1 - 0.266666666666666*G2_0_2 - 0.133333333333333*G2_1_2 - 0.133333333333333*G2_2_1 - 0.266666666666666*G2_2_2 - 0.133333333333333*G5_0_1 - 0.266666666666666*G5_0_2 - 0.133333333333333*G5_1_2 - 0.133333333333333*G5_2_1 - 0.266666666666666*G5_2_2 - 0.133333333333333*G8_0_1 - 0.266666666666666*G8_0_2 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_1 - 0.266666666666666*G8_2_2; + A[277] = -0.133333333333333*G2_0_0 - 0.133333333333333*G2_0_2 - 0.133333333333333*G2_2_0 - 0.133333333333333*G2_2_2 - 0.133333333333333*G5_0_0 - 0.133333333333333*G5_0_2 - 0.133333333333333*G5_2_0 - 0.133333333333333*G5_2_2 - 0.133333333333333*G8_0_0 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_2_0 - 0.133333333333333*G8_2_2; + A[278] = -0.266666666666666*G2_0_0 - 0.133333333333333*G2_0_1 - 0.133333333333333*G2_1_0 - 0.266666666666666*G2_2_0 - 0.133333333333333*G2_2_1 - 0.266666666666666*G5_0_0 - 0.133333333333333*G5_0_1 - 0.133333333333333*G5_1_0 - 0.266666666666666*G5_2_0 - 0.133333333333333*G5_2_1 - 0.266666666666666*G8_0_0 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_1_0 - 0.266666666666666*G8_2_0 - 0.133333333333333*G8_2_1; + A[279] = 0.133333333333333*G2_0_0 + 0.133333333333333*G2_0_1 + 0.133333333333333*G2_1_2 + 0.133333333333333*G2_2_0 + 0.133333333333333*G2_2_1 + 0.133333333333333*G5_0_0 + 0.133333333333333*G5_0_1 + 0.133333333333333*G5_1_2 + 0.133333333333333*G5_2_0 + 0.133333333333333*G5_2_1 + 0.133333333333333*G8_0_0 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_0 + 0.133333333333333*G8_2_1; + A[280] = 0.266666666666666*G2_0_0 + 0.133333333333333*G2_0_1 + 0.266666666666666*G2_0_2 + 0.133333333333333*G2_1_0 + 0.266666666666666*G2_1_1 + 0.133333333333333*G2_1_2 + 0.266666666666666*G2_2_0 + 0.133333333333333*G2_2_1 + 0.266666666666666*G2_2_2 + 0.266666666666666*G5_0_0 + 0.133333333333333*G5_0_1 + 0.266666666666666*G5_0_2 + 0.133333333333333*G5_1_0 + 0.266666666666666*G5_1_1 + 0.133333333333333*G5_1_2 + 0.266666666666666*G5_2_0 + 0.133333333333333*G5_2_1 + 0.266666666666666*G5_2_2 + 0.266666666666666*G8_0_0 + 0.133333333333333*G8_0_1 + 0.266666666666666*G8_0_2 + 0.133333333333333*G8_1_0 + 0.266666666666666*G8_1_1 + 0.133333333333333*G8_1_2 + 0.266666666666666*G8_2_0 + 0.133333333333333*G8_2_1 + 0.266666666666666*G8_2_2; + A[281] = 0.133333333333333*G2_0_1 + 0.133333333333333*G2_0_2 + 0.133333333333333*G2_1_0 + 0.133333333333333*G2_2_1 + 0.133333333333333*G2_2_2 + 0.133333333333333*G5_0_1 + 0.133333333333333*G5_0_2 + 0.133333333333333*G5_1_0 + 0.133333333333333*G5_2_1 + 0.133333333333333*G5_2_2 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_0 + 0.133333333333333*G8_2_1 + 0.133333333333333*G8_2_2; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = -0.133333333333333*G2_0_0 - 0.133333333333333*G2_0_1 - 0.133333333333333*G2_0_2 - 0.0333333333333333*G2_1_0 - 0.0333333333333333*G2_1_1 - 0.0333333333333333*G2_1_2 - 0.0333333333333333*G2_2_0 - 0.0333333333333333*G2_2_1 - 0.0333333333333333*G2_2_2 - 0.133333333333333*G5_0_0 - 0.133333333333333*G5_0_1 - 0.133333333333333*G5_0_2 - 0.0333333333333333*G5_1_0 - 0.0333333333333333*G5_1_1 - 0.0333333333333333*G5_1_2 - 0.0333333333333333*G5_2_0 - 0.0333333333333333*G5_2_1 - 0.0333333333333333*G5_2_2 - 0.133333333333333*G8_0_0 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_0_2 - 0.0333333333333333*G8_1_0 - 0.0333333333333333*G8_1_1 - 0.0333333333333333*G8_1_2 - 0.0333333333333333*G8_2_0 - 0.0333333333333333*G8_2_1 - 0.0333333333333333*G8_2_2; + A[307] = -0.133333333333333*G2_0_0 - 0.1*G2_1_0 - 0.1*G2_2_0 - 0.133333333333333*G5_0_0 - 0.1*G5_1_0 - 0.1*G5_2_0 - 0.133333333333333*G8_0_0 - 0.1*G8_1_0 - 0.1*G8_2_0; + A[308] = 0.0333333333333333*G2_1_1 + 0.0333333333333333*G2_2_1 + 0.0333333333333333*G5_1_1 + 0.0333333333333333*G5_2_1 + 0.0333333333333333*G8_1_1 + 0.0333333333333333*G8_2_1; + A[309] = 0.0333333333333333*G2_1_2 + 0.0333333333333333*G2_2_2 + 0.0333333333333333*G5_1_2 + 0.0333333333333333*G5_2_2 + 0.0333333333333333*G8_1_2 + 0.0333333333333333*G8_2_2; + A[310] = -0.133333333333333*G2_1_1 - 0.133333333333333*G2_1_2 - 0.133333333333333*G2_2_1 - 0.133333333333333*G2_2_2 - 0.133333333333333*G5_1_1 - 0.133333333333333*G5_1_2 - 0.133333333333333*G5_2_1 - 0.133333333333333*G5_2_2 - 0.133333333333333*G8_1_1 - 0.133333333333333*G8_1_2 - 0.133333333333333*G8_2_1 - 0.133333333333333*G8_2_2; + A[311] = -0.133333333333333*G2_0_2 - 0.133333333333333*G2_1_0 - 0.266666666666666*G2_1_2 - 0.133333333333333*G2_2_0 - 0.266666666666666*G2_2_2 - 0.133333333333333*G5_0_2 - 0.133333333333333*G5_1_0 - 0.266666666666666*G5_1_2 - 0.133333333333333*G5_2_0 - 0.266666666666666*G5_2_2 - 0.133333333333333*G8_0_2 - 0.133333333333333*G8_1_0 - 0.266666666666666*G8_1_2 - 0.133333333333333*G8_2_0 - 0.266666666666666*G8_2_2; + A[312] = -0.133333333333333*G2_0_1 - 0.133333333333333*G2_1_0 - 0.266666666666666*G2_1_1 - 0.133333333333333*G2_2_0 - 0.266666666666666*G2_2_1 - 0.133333333333333*G5_0_1 - 0.133333333333333*G5_1_0 - 0.266666666666666*G5_1_1 - 0.133333333333333*G5_2_0 - 0.266666666666666*G5_2_1 - 0.133333333333333*G8_0_1 - 0.133333333333333*G8_1_0 - 0.266666666666666*G8_1_1 - 0.133333333333333*G8_2_0 - 0.266666666666666*G8_2_1; + A[313] = 0.133333333333333*G2_0_2 + 0.133333333333333*G2_1_0 + 0.133333333333333*G2_1_1 + 0.133333333333333*G2_2_0 + 0.133333333333333*G2_2_1 + 0.133333333333333*G5_0_2 + 0.133333333333333*G5_1_0 + 0.133333333333333*G5_1_1 + 0.133333333333333*G5_2_0 + 0.133333333333333*G5_2_1 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_0 + 0.133333333333333*G8_1_1 + 0.133333333333333*G8_2_0 + 0.133333333333333*G8_2_1; + A[314] = 0.133333333333333*G2_0_1 + 0.133333333333333*G2_1_0 + 0.133333333333333*G2_1_2 + 0.133333333333333*G2_2_0 + 0.133333333333333*G2_2_2 + 0.133333333333333*G5_0_1 + 0.133333333333333*G5_1_0 + 0.133333333333333*G5_1_2 + 0.133333333333333*G5_2_0 + 0.133333333333333*G5_2_2 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_1_0 + 0.133333333333333*G8_1_2 + 0.133333333333333*G8_2_0 + 0.133333333333333*G8_2_2; + A[315] = 0.266666666666666*G2_0_0 + 0.133333333333333*G2_0_1 + 0.133333333333333*G2_0_2 + 0.133333333333333*G2_1_0 + 0.266666666666666*G2_1_1 + 0.266666666666666*G2_1_2 + 0.133333333333333*G2_2_0 + 0.266666666666666*G2_2_1 + 0.266666666666666*G2_2_2 + 0.266666666666666*G5_0_0 + 0.133333333333333*G5_0_1 + 0.133333333333333*G5_0_2 + 0.133333333333333*G5_1_0 + 0.266666666666666*G5_1_1 + 0.266666666666666*G5_1_2 + 0.133333333333333*G5_2_0 + 0.266666666666666*G5_2_1 + 0.266666666666666*G5_2_2 + 0.266666666666666*G8_0_0 + 0.133333333333333*G8_0_1 + 0.133333333333333*G8_0_2 + 0.133333333333333*G8_1_0 + 0.266666666666666*G8_1_1 + 0.266666666666666*G8_1_2 + 0.133333333333333*G8_2_0 + 0.266666666666666*G8_2_1 + 0.266666666666666*G8_2_2; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0; + A[337] = 0.0; + A[338] = 0.0; + A[339] = 0.0; + A[340] = 0.0; + A[341] = 0.0; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.1*G3_0_0 + 0.1*G3_0_1 + 0.1*G3_0_2 + 0.1*G3_1_0 + 0.1*G3_1_1 + 0.1*G3_1_2 + 0.1*G3_2_0 + 0.1*G3_2_1 + 0.1*G3_2_2 + 0.1*G6_0_0 + 0.1*G6_0_1 + 0.1*G6_0_2 + 0.1*G6_1_0 + 0.1*G6_1_1 + 0.1*G6_1_2 + 0.1*G6_2_0 + 0.1*G6_2_1 + 0.1*G6_2_2 + 0.1*G9_0_0 + 0.1*G9_0_1 + 0.1*G9_0_2 + 0.1*G9_1_0 + 0.1*G9_1_1 + 0.1*G9_1_2 + 0.1*G9_2_0 + 0.1*G9_2_1 + 0.1*G9_2_2; + A[351] = 0.0333333333333333*G3_0_0 + 0.0333333333333333*G3_1_0 + 0.0333333333333333*G3_2_0 + 0.0333333333333333*G6_0_0 + 0.0333333333333333*G6_1_0 + 0.0333333333333333*G6_2_0 + 0.0333333333333333*G9_0_0 + 0.0333333333333333*G9_1_0 + 0.0333333333333333*G9_2_0; + A[352] = 0.0333333333333333*G3_0_1 + 0.0333333333333333*G3_1_1 + 0.0333333333333333*G3_2_1 + 0.0333333333333333*G6_0_1 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G6_2_1 + 0.0333333333333333*G9_0_1 + 0.0333333333333333*G9_1_1 + 0.0333333333333333*G9_2_1; + A[353] = 0.0333333333333333*G3_0_2 + 0.0333333333333333*G3_1_2 + 0.0333333333333333*G3_2_2 + 0.0333333333333333*G6_0_2 + 0.0333333333333333*G6_1_2 + 0.0333333333333333*G6_2_2 + 0.0333333333333333*G9_0_2 + 0.0333333333333333*G9_1_2 + 0.0333333333333333*G9_2_2; + A[354] = 0.0333333333333333*G3_0_1 + 0.0333333333333333*G3_0_2 + 0.0333333333333333*G3_1_1 + 0.0333333333333333*G3_1_2 + 0.0333333333333333*G3_2_1 + 0.0333333333333333*G3_2_2 + 0.0333333333333333*G6_0_1 + 0.0333333333333333*G6_0_2 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G6_1_2 + 0.0333333333333333*G6_2_1 + 0.0333333333333333*G6_2_2 + 0.0333333333333333*G9_0_1 + 0.0333333333333333*G9_0_2 + 0.0333333333333333*G9_1_1 + 0.0333333333333333*G9_1_2 + 0.0333333333333333*G9_2_1 + 0.0333333333333333*G9_2_2; + A[355] = 0.0333333333333333*G3_0_0 + 0.0333333333333333*G3_0_2 + 0.0333333333333333*G3_1_0 + 0.0333333333333333*G3_1_2 + 0.0333333333333333*G3_2_0 + 0.0333333333333333*G3_2_2 + 0.0333333333333333*G6_0_0 + 0.0333333333333333*G6_0_2 + 0.0333333333333333*G6_1_0 + 0.0333333333333333*G6_1_2 + 0.0333333333333333*G6_2_0 + 0.0333333333333333*G6_2_2 + 0.0333333333333333*G9_0_0 + 0.0333333333333333*G9_0_2 + 0.0333333333333333*G9_1_0 + 0.0333333333333333*G9_1_2 + 0.0333333333333333*G9_2_0 + 0.0333333333333333*G9_2_2; + A[356] = 0.0333333333333332*G3_0_0 + 0.0333333333333333*G3_0_1 + 0.0333333333333333*G3_1_0 + 0.0333333333333333*G3_1_1 + 0.0333333333333333*G3_2_0 + 0.0333333333333333*G3_2_1 + 0.0333333333333332*G6_0_0 + 0.0333333333333333*G6_0_1 + 0.0333333333333333*G6_1_0 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G6_2_0 + 0.0333333333333333*G6_2_1 + 0.0333333333333332*G9_0_0 + 0.0333333333333333*G9_0_1 + 0.0333333333333333*G9_1_0 + 0.0333333333333333*G9_1_1 + 0.0333333333333333*G9_2_0 + 0.0333333333333333*G9_2_1; + A[357] = -0.0333333333333333*G3_0_0 - 0.0333333333333333*G3_0_1 - 0.133333333333333*G3_0_2 - 0.0333333333333333*G3_1_0 - 0.0333333333333333*G3_1_1 - 0.133333333333333*G3_1_2 - 0.0333333333333333*G3_2_0 - 0.0333333333333333*G3_2_1 - 0.133333333333333*G3_2_2 - 0.0333333333333333*G6_0_0 - 0.0333333333333333*G6_0_1 - 0.133333333333333*G6_0_2 - 0.0333333333333333*G6_1_0 - 0.0333333333333333*G6_1_1 - 0.133333333333333*G6_1_2 - 0.0333333333333333*G6_2_0 - 0.0333333333333333*G6_2_1 - 0.133333333333333*G6_2_2 - 0.0333333333333333*G9_0_0 - 0.0333333333333333*G9_0_1 - 0.133333333333333*G9_0_2 - 0.0333333333333333*G9_1_0 - 0.0333333333333333*G9_1_1 - 0.133333333333333*G9_1_2 - 0.0333333333333333*G9_2_0 - 0.0333333333333333*G9_2_1 - 0.133333333333333*G9_2_2; + A[358] = -0.0333333333333332*G3_0_0 - 0.133333333333333*G3_0_1 - 0.0333333333333333*G3_0_2 - 0.0333333333333333*G3_1_0 - 0.133333333333333*G3_1_1 - 0.0333333333333333*G3_1_2 - 0.0333333333333333*G3_2_0 - 0.133333333333333*G3_2_1 - 0.0333333333333333*G3_2_2 - 0.0333333333333332*G6_0_0 - 0.133333333333333*G6_0_1 - 0.0333333333333333*G6_0_2 - 0.0333333333333333*G6_1_0 - 0.133333333333333*G6_1_1 - 0.0333333333333333*G6_1_2 - 0.0333333333333333*G6_2_0 - 0.133333333333333*G6_2_1 - 0.0333333333333333*G6_2_2 - 0.0333333333333332*G9_0_0 - 0.133333333333333*G9_0_1 - 0.0333333333333333*G9_0_2 - 0.0333333333333333*G9_1_0 - 0.133333333333333*G9_1_1 - 0.0333333333333333*G9_1_2 - 0.0333333333333333*G9_2_0 - 0.133333333333333*G9_2_1 - 0.0333333333333333*G9_2_2; + A[359] = -0.133333333333333*G3_0_0 - 0.0333333333333333*G3_0_1 - 0.0333333333333333*G3_0_2 - 0.133333333333333*G3_1_0 - 0.0333333333333333*G3_1_1 - 0.0333333333333333*G3_1_2 - 0.133333333333333*G3_2_0 - 0.0333333333333333*G3_2_1 - 0.0333333333333333*G3_2_2 - 0.133333333333333*G6_0_0 - 0.0333333333333333*G6_0_1 - 0.0333333333333333*G6_0_2 - 0.133333333333333*G6_1_0 - 0.0333333333333333*G6_1_1 - 0.0333333333333333*G6_1_2 - 0.133333333333333*G6_2_0 - 0.0333333333333333*G6_2_1 - 0.0333333333333333*G6_2_2 - 0.133333333333333*G9_0_0 - 0.0333333333333333*G9_0_1 - 0.0333333333333333*G9_0_2 - 0.133333333333333*G9_1_0 - 0.0333333333333333*G9_1_1 - 0.0333333333333333*G9_1_2 - 0.133333333333333*G9_2_0 - 0.0333333333333333*G9_2_1 - 0.0333333333333333*G9_2_2; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = 0.0; + A[371] = 0.0; + A[372] = 0.0; + A[373] = 0.0; + A[374] = 0.0; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0333333333333333*G3_0_0 + 0.0333333333333333*G3_0_1 + 0.0333333333333333*G3_0_2 + 0.0333333333333333*G6_0_0 + 0.0333333333333333*G6_0_1 + 0.0333333333333333*G6_0_2 + 0.0333333333333333*G9_0_0 + 0.0333333333333333*G9_0_1 + 0.0333333333333333*G9_0_2; + A[385] = 0.1*G3_0_0 + 0.1*G6_0_0 + 0.1*G9_0_0; + A[386] = -0.0333333333333333*G3_0_1 - 0.0333333333333333*G6_0_1 - 0.0333333333333333*G9_0_1; + A[387] = -0.0333333333333333*G3_0_2 - 0.0333333333333333*G6_0_2 - 0.0333333333333333*G9_0_2; + A[388] = -0.0333333333333333*G3_0_1 - 0.0333333333333333*G3_0_2 - 0.0333333333333333*G6_0_1 - 0.0333333333333333*G6_0_2 - 0.0333333333333333*G9_0_1 - 0.0333333333333333*G9_0_2; + A[389] = -0.0333333333333333*G3_0_0 + 0.1*G3_0_2 - 0.0333333333333333*G6_0_0 + 0.1*G6_0_2 - 0.0333333333333333*G9_0_0 + 0.1*G9_0_2; + A[390] = -0.0333333333333333*G3_0_0 + 0.1*G3_0_1 - 0.0333333333333333*G6_0_0 + 0.1*G6_0_1 - 0.0333333333333333*G9_0_0 + 0.1*G9_0_1; + A[391] = 0.0333333333333333*G3_0_0 + 0.0333333333333333*G3_0_1 + 0.0333333333333333*G6_0_0 + 0.0333333333333333*G6_0_1 + 0.0333333333333333*G9_0_0 + 0.0333333333333333*G9_0_1; + A[392] = 0.0333333333333333*G3_0_0 + 0.0333333333333333*G3_0_2 + 0.0333333333333333*G6_0_0 + 0.0333333333333333*G6_0_2 + 0.0333333333333333*G9_0_0 + 0.0333333333333333*G9_0_2; + A[393] = -0.133333333333333*G3_0_0 - 0.1*G3_0_1 - 0.1*G3_0_2 - 0.133333333333333*G6_0_0 - 0.1*G6_0_1 - 0.1*G6_0_2 - 0.133333333333333*G9_0_0 - 0.1*G9_0_1 - 0.1*G9_0_2; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0; + A[403] = 0.0; + A[404] = 0.0; + A[405] = 0.0; + A[406] = 0.0; + A[407] = 0.0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0333333333333333*G3_1_0 + 0.0333333333333333*G3_1_1 + 0.0333333333333333*G3_1_2 + 0.0333333333333333*G6_1_0 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G6_1_2 + 0.0333333333333333*G9_1_0 + 0.0333333333333333*G9_1_1 + 0.0333333333333333*G9_1_2; + A[419] = -0.0333333333333333*G3_1_0 - 0.0333333333333333*G6_1_0 - 0.0333333333333333*G9_1_0; + A[420] = 0.1*G3_1_1 + 0.1*G6_1_1 + 0.1*G9_1_1; + A[421] = -0.0333333333333333*G3_1_2 - 0.0333333333333333*G6_1_2 - 0.0333333333333333*G9_1_2; + A[422] = -0.0333333333333334*G3_1_1 + 0.1*G3_1_2 - 0.0333333333333334*G6_1_1 + 0.1*G6_1_2 - 0.0333333333333334*G9_1_1 + 0.1*G9_1_2; + A[423] = -0.0333333333333333*G3_1_0 - 0.0333333333333333*G3_1_2 - 0.0333333333333333*G6_1_0 - 0.0333333333333333*G6_1_2 - 0.0333333333333333*G9_1_0 - 0.0333333333333333*G9_1_2; + A[424] = 0.1*G3_1_0 - 0.0333333333333333*G3_1_1 + 0.1*G6_1_0 - 0.0333333333333333*G6_1_1 + 0.1*G9_1_0 - 0.0333333333333333*G9_1_1; + A[425] = 0.0333333333333333*G3_1_0 + 0.0333333333333333*G3_1_1 + 0.0333333333333333*G6_1_0 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G9_1_0 + 0.0333333333333333*G9_1_1; + A[426] = -0.1*G3_1_0 - 0.133333333333333*G3_1_1 - 0.1*G3_1_2 - 0.1*G6_1_0 - 0.133333333333333*G6_1_1 - 0.1*G6_1_2 - 0.1*G9_1_0 - 0.133333333333333*G9_1_1 - 0.1*G9_1_2; + A[427] = 0.0333333333333333*G3_1_1 + 0.0333333333333333*G3_1_2 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G6_1_2 + 0.0333333333333333*G9_1_1 + 0.0333333333333333*G9_1_2; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0; + A[433] = 0.0; + A[434] = 0.0; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = 0.0; + A[439] = 0.0; + A[440] = 0.0; + A[441] = 0.0; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0333333333333333*G3_2_0 + 0.0333333333333333*G3_2_1 + 0.0333333333333333*G3_2_2 + 0.0333333333333333*G6_2_0 + 0.0333333333333333*G6_2_1 + 0.0333333333333333*G6_2_2 + 0.0333333333333333*G9_2_0 + 0.0333333333333333*G9_2_1 + 0.0333333333333333*G9_2_2; + A[453] = -0.0333333333333333*G3_2_0 - 0.0333333333333333*G6_2_0 - 0.0333333333333333*G9_2_0; + A[454] = -0.0333333333333333*G3_2_1 - 0.0333333333333333*G6_2_1 - 0.0333333333333333*G9_2_1; + A[455] = 0.1*G3_2_2 + 0.1*G6_2_2 + 0.1*G9_2_2; + A[456] = 0.1*G3_2_1 - 0.0333333333333334*G3_2_2 + 0.1*G6_2_1 - 0.0333333333333334*G6_2_2 + 0.1*G9_2_1 - 0.0333333333333334*G9_2_2; + A[457] = 0.1*G3_2_0 - 0.0333333333333333*G3_2_2 + 0.1*G6_2_0 - 0.0333333333333333*G6_2_2 + 0.1*G9_2_0 - 0.0333333333333333*G9_2_2; + A[458] = -0.0333333333333333*G3_2_0 - 0.0333333333333333*G3_2_1 - 0.0333333333333333*G6_2_0 - 0.0333333333333333*G6_2_1 - 0.0333333333333333*G9_2_0 - 0.0333333333333333*G9_2_1; + A[459] = -0.1*G3_2_0 - 0.1*G3_2_1 - 0.133333333333333*G3_2_2 - 0.1*G6_2_0 - 0.1*G6_2_1 - 0.133333333333333*G6_2_2 - 0.1*G9_2_0 - 0.1*G9_2_1 - 0.133333333333333*G9_2_2; + A[460] = 0.0333333333333333*G3_2_0 + 0.0333333333333334*G3_2_2 + 0.0333333333333333*G6_2_0 + 0.0333333333333334*G6_2_2 + 0.0333333333333333*G9_2_0 + 0.0333333333333334*G9_2_2; + A[461] = 0.0333333333333333*G3_2_1 + 0.0333333333333333*G3_2_2 + 0.0333333333333333*G6_2_1 + 0.0333333333333333*G6_2_2 + 0.0333333333333333*G9_2_1 + 0.0333333333333333*G9_2_2; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0; + A[466] = 0.0; + A[467] = 0.0; + A[468] = 0.0; + A[469] = 0.0; + A[470] = 0.0; + A[471] = 0.0; + A[472] = 0.0; + A[473] = 0.0; + A[474] = 0.0; + A[475] = 0.0; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0333333333333333*G3_1_0 + 0.0333333333333333*G3_1_1 + 0.0333333333333333*G3_1_2 + 0.0333333333333333*G3_2_0 + 0.0333333333333333*G3_2_1 + 0.0333333333333333*G3_2_2 + 0.0333333333333333*G6_1_0 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G6_1_2 + 0.0333333333333333*G6_2_0 + 0.0333333333333333*G6_2_1 + 0.0333333333333333*G6_2_2 + 0.0333333333333333*G9_1_0 + 0.0333333333333333*G9_1_1 + 0.0333333333333333*G9_1_2 + 0.0333333333333333*G9_2_0 + 0.0333333333333333*G9_2_1 + 0.0333333333333333*G9_2_2; + A[487] = -0.0333333333333333*G3_1_0 - 0.0333333333333333*G3_2_0 - 0.0333333333333333*G6_1_0 - 0.0333333333333333*G6_2_0 - 0.0333333333333333*G9_1_0 - 0.0333333333333333*G9_2_0; + A[488] = -0.0333333333333334*G3_1_1 + 0.1*G3_2_1 - 0.0333333333333334*G6_1_1 + 0.1*G6_2_1 - 0.0333333333333334*G9_1_1 + 0.1*G9_2_1; + A[489] = 0.1*G3_1_2 - 0.0333333333333334*G3_2_2 + 0.1*G6_1_2 - 0.0333333333333334*G6_2_2 + 0.1*G9_1_2 - 0.0333333333333334*G9_2_2; + A[490] = 0.266666666666667*G3_1_1 + 0.133333333333333*G3_1_2 + 0.133333333333333*G3_2_1 + 0.266666666666666*G3_2_2 + 0.266666666666667*G6_1_1 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_1 + 0.266666666666666*G6_2_2 + 0.266666666666667*G9_1_1 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_1 + 0.266666666666666*G9_2_2; + A[491] = 0.266666666666667*G3_1_0 + 0.133333333333333*G3_1_2 + 0.133333333333333*G3_2_0 + 0.133333333333333*G3_2_2 + 0.266666666666667*G6_1_0 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_0 + 0.133333333333333*G6_2_2 + 0.266666666666667*G9_1_0 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_0 + 0.133333333333333*G9_2_2; + A[492] = 0.133333333333333*G3_1_0 + 0.133333333333333*G3_1_1 + 0.266666666666666*G3_2_0 + 0.133333333333333*G3_2_1 + 0.133333333333333*G6_1_0 + 0.133333333333333*G6_1_1 + 0.266666666666666*G6_2_0 + 0.133333333333333*G6_2_1 + 0.133333333333333*G9_1_0 + 0.133333333333333*G9_1_1 + 0.266666666666666*G9_2_0 + 0.133333333333333*G9_2_1; + A[493] = -0.266666666666667*G3_1_0 - 0.266666666666667*G3_1_1 - 0.133333333333333*G3_1_2 - 0.133333333333333*G3_2_0 - 0.133333333333333*G3_2_1 - 0.266666666666667*G6_1_0 - 0.266666666666667*G6_1_1 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_0 - 0.133333333333333*G6_2_1 - 0.266666666666667*G9_1_0 - 0.266666666666667*G9_1_1 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_0 - 0.133333333333333*G9_2_1; + A[494] = -0.133333333333333*G3_1_0 - 0.133333333333333*G3_1_2 - 0.266666666666666*G3_2_0 - 0.133333333333333*G3_2_1 - 0.266666666666666*G3_2_2 - 0.133333333333333*G6_1_0 - 0.133333333333333*G6_1_2 - 0.266666666666666*G6_2_0 - 0.133333333333333*G6_2_1 - 0.266666666666666*G6_2_2 - 0.133333333333333*G9_1_0 - 0.133333333333333*G9_1_2 - 0.266666666666666*G9_2_0 - 0.133333333333333*G9_2_1 - 0.266666666666666*G9_2_2; + A[495] = -0.133333333333333*G3_1_1 - 0.133333333333333*G3_1_2 - 0.133333333333333*G3_2_1 - 0.133333333333333*G3_2_2 - 0.133333333333333*G6_1_1 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_1 - 0.133333333333333*G6_2_2 - 0.133333333333333*G9_1_1 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_1 - 0.133333333333333*G9_2_2; + A[496] = 0.0; + A[497] = 0.0; + A[498] = 0.0; + A[499] = 0.0; + A[500] = 0.0; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0; + A[507] = 0.0; + A[508] = 0.0; + A[509] = 0.0; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0333333333333333*G3_0_0 + 0.0333333333333333*G3_0_1 + 0.0333333333333333*G3_0_2 + 0.0333333333333333*G3_2_0 + 0.0333333333333333*G3_2_1 + 0.0333333333333333*G3_2_2 + 0.0333333333333333*G6_0_0 + 0.0333333333333333*G6_0_1 + 0.0333333333333333*G6_0_2 + 0.0333333333333333*G6_2_0 + 0.0333333333333333*G6_2_1 + 0.0333333333333333*G6_2_2 + 0.0333333333333333*G9_0_0 + 0.0333333333333333*G9_0_1 + 0.0333333333333333*G9_0_2 + 0.0333333333333333*G9_2_0 + 0.0333333333333333*G9_2_1 + 0.0333333333333333*G9_2_2; + A[521] = -0.0333333333333333*G3_0_0 + 0.1*G3_2_0 - 0.0333333333333333*G6_0_0 + 0.1*G6_2_0 - 0.0333333333333333*G9_0_0 + 0.1*G9_2_0; + A[522] = -0.0333333333333333*G3_0_1 - 0.0333333333333333*G3_2_1 - 0.0333333333333333*G6_0_1 - 0.0333333333333333*G6_2_1 - 0.0333333333333333*G9_0_1 - 0.0333333333333333*G9_2_1; + A[523] = 0.1*G3_0_2 - 0.0333333333333333*G3_2_2 + 0.1*G6_0_2 - 0.0333333333333333*G6_2_2 + 0.1*G9_0_2 - 0.0333333333333333*G9_2_2; + A[524] = 0.266666666666667*G3_0_1 + 0.133333333333333*G3_0_2 + 0.133333333333333*G3_2_1 + 0.133333333333333*G3_2_2 + 0.266666666666667*G6_0_1 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_2_1 + 0.133333333333333*G6_2_2 + 0.266666666666667*G9_0_1 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_2_1 + 0.133333333333333*G9_2_2; + A[525] = 0.266666666666666*G3_0_0 + 0.133333333333333*G3_0_2 + 0.133333333333333*G3_2_0 + 0.266666666666666*G3_2_2 + 0.266666666666666*G6_0_0 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_2_0 + 0.266666666666666*G6_2_2 + 0.266666666666666*G9_0_0 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_2_0 + 0.266666666666666*G9_2_2; + A[526] = 0.133333333333333*G3_0_0 + 0.133333333333333*G3_0_1 + 0.133333333333333*G3_2_0 + 0.266666666666666*G3_2_1 + 0.133333333333333*G6_0_0 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_2_0 + 0.266666666666666*G6_2_1 + 0.133333333333333*G9_0_0 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_2_0 + 0.266666666666666*G9_2_1; + A[527] = -0.266666666666666*G3_0_0 - 0.266666666666666*G3_0_1 - 0.133333333333333*G3_0_2 - 0.133333333333333*G3_2_0 - 0.133333333333333*G3_2_1 - 0.266666666666666*G6_0_0 - 0.266666666666666*G6_0_1 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_2_0 - 0.133333333333333*G6_2_1 - 0.266666666666666*G9_0_0 - 0.266666666666666*G9_0_1 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_2_0 - 0.133333333333333*G9_2_1; + A[528] = -0.133333333333333*G3_0_0 - 0.133333333333333*G3_0_2 - 0.133333333333333*G3_2_0 - 0.133333333333333*G3_2_2 - 0.133333333333333*G6_0_0 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_2_0 - 0.133333333333333*G6_2_2 - 0.133333333333333*G9_0_0 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_2_0 - 0.133333333333333*G9_2_2; + A[529] = -0.133333333333333*G3_0_1 - 0.133333333333333*G3_0_2 - 0.133333333333333*G3_2_0 - 0.266666666666666*G3_2_1 - 0.266666666666666*G3_2_2 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_2_0 - 0.266666666666666*G6_2_1 - 0.266666666666666*G6_2_2 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_2_0 - 0.266666666666666*G9_2_1 - 0.266666666666666*G9_2_2; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0; + A[541] = 0.0; + A[542] = 0.0; + A[543] = 0.0; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0333333333333332*G3_0_0 + 0.0333333333333333*G3_0_1 + 0.0333333333333333*G3_0_2 + 0.0333333333333333*G3_1_0 + 0.0333333333333333*G3_1_1 + 0.0333333333333333*G3_1_2 + 0.0333333333333332*G6_0_0 + 0.0333333333333333*G6_0_1 + 0.0333333333333333*G6_0_2 + 0.0333333333333333*G6_1_0 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G6_1_2 + 0.0333333333333332*G9_0_0 + 0.0333333333333333*G9_0_1 + 0.0333333333333333*G9_0_2 + 0.0333333333333333*G9_1_0 + 0.0333333333333333*G9_1_1 + 0.0333333333333333*G9_1_2; + A[555] = -0.0333333333333333*G3_0_0 + 0.1*G3_1_0 - 0.0333333333333333*G6_0_0 + 0.1*G6_1_0 - 0.0333333333333333*G9_0_0 + 0.1*G9_1_0; + A[556] = 0.1*G3_0_1 - 0.0333333333333333*G3_1_1 + 0.1*G6_0_1 - 0.0333333333333333*G6_1_1 + 0.1*G9_0_1 - 0.0333333333333333*G9_1_1; + A[557] = -0.0333333333333333*G3_0_2 - 0.0333333333333333*G3_1_2 - 0.0333333333333333*G6_0_2 - 0.0333333333333333*G6_1_2 - 0.0333333333333333*G9_0_2 - 0.0333333333333333*G9_1_2; + A[558] = 0.133333333333333*G3_0_1 + 0.266666666666666*G3_0_2 + 0.133333333333333*G3_1_1 + 0.133333333333333*G3_1_2 + 0.133333333333333*G6_0_1 + 0.266666666666666*G6_0_2 + 0.133333333333333*G6_1_1 + 0.133333333333333*G6_1_2 + 0.133333333333333*G9_0_1 + 0.266666666666666*G9_0_2 + 0.133333333333333*G9_1_1 + 0.133333333333333*G9_1_2; + A[559] = 0.133333333333333*G3_0_0 + 0.133333333333333*G3_0_2 + 0.133333333333333*G3_1_0 + 0.266666666666666*G3_1_2 + 0.133333333333333*G6_0_0 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_0 + 0.266666666666666*G6_1_2 + 0.133333333333333*G9_0_0 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_0 + 0.266666666666666*G9_1_2; + A[560] = 0.266666666666666*G3_0_0 + 0.133333333333333*G3_0_1 + 0.133333333333333*G3_1_0 + 0.266666666666666*G3_1_1 + 0.266666666666666*G6_0_0 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_1_0 + 0.266666666666666*G6_1_1 + 0.266666666666666*G9_0_0 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_1_0 + 0.266666666666666*G9_1_1; + A[561] = -0.133333333333333*G3_0_0 - 0.133333333333333*G3_0_1 - 0.133333333333333*G3_1_0 - 0.133333333333333*G3_1_1 - 0.133333333333333*G6_0_0 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_1_0 - 0.133333333333333*G6_1_1 - 0.133333333333333*G9_0_0 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_1_0 - 0.133333333333333*G9_1_1; + A[562] = -0.266666666666666*G3_0_0 - 0.133333333333333*G3_0_1 - 0.266666666666666*G3_0_2 - 0.133333333333333*G3_1_0 - 0.133333333333333*G3_1_2 - 0.266666666666666*G6_0_0 - 0.133333333333333*G6_0_1 - 0.266666666666666*G6_0_2 - 0.133333333333333*G6_1_0 - 0.133333333333333*G6_1_2 - 0.266666666666666*G9_0_0 - 0.133333333333333*G9_0_1 - 0.266666666666666*G9_0_2 - 0.133333333333333*G9_1_0 - 0.133333333333333*G9_1_2; + A[563] = -0.133333333333333*G3_0_1 - 0.133333333333333*G3_0_2 - 0.133333333333333*G3_1_0 - 0.266666666666666*G3_1_1 - 0.266666666666666*G3_1_2 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_1_0 - 0.266666666666666*G6_1_1 - 0.266666666666666*G6_1_2 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_1_0 - 0.266666666666666*G9_1_1 - 0.266666666666666*G9_1_2; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0; + A[575] = 0.0; + A[576] = 0.0; + A[577] = 0.0; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0; + A[586] = 0.0; + A[587] = 0.0; + A[588] = -0.0333333333333333*G3_0_0 - 0.0333333333333333*G3_0_1 - 0.0333333333333333*G3_0_2 - 0.0333333333333333*G3_1_0 - 0.0333333333333333*G3_1_1 - 0.0333333333333333*G3_1_2 - 0.133333333333333*G3_2_0 - 0.133333333333333*G3_2_1 - 0.133333333333333*G3_2_2 - 0.0333333333333333*G6_0_0 - 0.0333333333333333*G6_0_1 - 0.0333333333333333*G6_0_2 - 0.0333333333333333*G6_1_0 - 0.0333333333333333*G6_1_1 - 0.0333333333333333*G6_1_2 - 0.133333333333333*G6_2_0 - 0.133333333333333*G6_2_1 - 0.133333333333333*G6_2_2 - 0.0333333333333333*G9_0_0 - 0.0333333333333333*G9_0_1 - 0.0333333333333333*G9_0_2 - 0.0333333333333333*G9_1_0 - 0.0333333333333333*G9_1_1 - 0.0333333333333333*G9_1_2 - 0.133333333333333*G9_2_0 - 0.133333333333333*G9_2_1 - 0.133333333333333*G9_2_2; + A[589] = 0.0333333333333333*G3_0_0 + 0.0333333333333333*G3_1_0 + 0.0333333333333333*G6_0_0 + 0.0333333333333333*G6_1_0 + 0.0333333333333333*G9_0_0 + 0.0333333333333333*G9_1_0; + A[590] = 0.0333333333333333*G3_0_1 + 0.0333333333333333*G3_1_1 + 0.0333333333333333*G6_0_1 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G9_0_1 + 0.0333333333333333*G9_1_1; + A[591] = -0.1*G3_0_2 - 0.1*G3_1_2 - 0.133333333333333*G3_2_2 - 0.1*G6_0_2 - 0.1*G6_1_2 - 0.133333333333333*G6_2_2 - 0.1*G9_0_2 - 0.1*G9_1_2 - 0.133333333333333*G9_2_2; + A[592] = -0.266666666666667*G3_0_1 - 0.133333333333333*G3_0_2 - 0.266666666666667*G3_1_1 - 0.133333333333333*G3_1_2 - 0.133333333333333*G3_2_1 - 0.266666666666667*G6_0_1 - 0.133333333333333*G6_0_2 - 0.266666666666667*G6_1_1 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_1 - 0.266666666666667*G9_0_1 - 0.133333333333333*G9_0_2 - 0.266666666666667*G9_1_1 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_1; + A[593] = -0.266666666666666*G3_0_0 - 0.133333333333333*G3_0_2 - 0.266666666666666*G3_1_0 - 0.133333333333333*G3_1_2 - 0.133333333333333*G3_2_0 - 0.266666666666666*G6_0_0 - 0.133333333333333*G6_0_2 - 0.266666666666666*G6_1_0 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_0 - 0.266666666666666*G9_0_0 - 0.133333333333333*G9_0_2 - 0.266666666666666*G9_1_0 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_0; + A[594] = -0.133333333333333*G3_0_0 - 0.133333333333333*G3_0_1 - 0.133333333333333*G3_1_0 - 0.133333333333333*G3_1_1 - 0.133333333333333*G6_0_0 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_1_0 - 0.133333333333333*G6_1_1 - 0.133333333333333*G9_0_0 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_1_0 - 0.133333333333333*G9_1_1; + A[595] = 0.266666666666666*G3_0_0 + 0.266666666666666*G3_0_1 + 0.133333333333333*G3_0_2 + 0.266666666666666*G3_1_0 + 0.266666666666666*G3_1_1 + 0.133333333333333*G3_1_2 + 0.133333333333333*G3_2_0 + 0.133333333333333*G3_2_1 + 0.266666666666666*G3_2_2 + 0.266666666666666*G6_0_0 + 0.266666666666666*G6_0_1 + 0.133333333333333*G6_0_2 + 0.266666666666666*G6_1_0 + 0.266666666666666*G6_1_1 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_0 + 0.133333333333333*G6_2_1 + 0.266666666666666*G6_2_2 + 0.266666666666666*G9_0_0 + 0.266666666666666*G9_0_1 + 0.133333333333333*G9_0_2 + 0.266666666666666*G9_1_0 + 0.266666666666666*G9_1_1 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_0 + 0.133333333333333*G9_2_1 + 0.266666666666666*G9_2_2; + A[596] = 0.133333333333333*G3_0_0 + 0.133333333333333*G3_0_2 + 0.133333333333333*G3_1_0 + 0.133333333333333*G3_1_2 + 0.133333333333333*G3_2_1 + 0.133333333333333*G6_0_0 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_0 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_1 + 0.133333333333333*G9_0_0 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_0 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_1; + A[597] = 0.133333333333333*G3_0_1 + 0.133333333333333*G3_0_2 + 0.133333333333333*G3_1_1 + 0.133333333333333*G3_1_2 + 0.133333333333333*G3_2_0 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_1 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_0 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_1 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = 0.0; + A[609] = 0.0; + A[610] = 0.0; + A[611] = 0.0; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0; + A[616] = 0.0; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0; + A[621] = 0.0; + A[622] = -0.0333333333333332*G3_0_0 - 0.0333333333333333*G3_0_1 - 0.0333333333333333*G3_0_2 - 0.133333333333333*G3_1_0 - 0.133333333333333*G3_1_1 - 0.133333333333333*G3_1_2 - 0.0333333333333333*G3_2_0 - 0.0333333333333333*G3_2_1 - 0.0333333333333333*G3_2_2 - 0.0333333333333332*G6_0_0 - 0.0333333333333333*G6_0_1 - 0.0333333333333333*G6_0_2 - 0.133333333333333*G6_1_0 - 0.133333333333333*G6_1_1 - 0.133333333333333*G6_1_2 - 0.0333333333333333*G6_2_0 - 0.0333333333333333*G6_2_1 - 0.0333333333333333*G6_2_2 - 0.0333333333333332*G9_0_0 - 0.0333333333333333*G9_0_1 - 0.0333333333333333*G9_0_2 - 0.133333333333333*G9_1_0 - 0.133333333333333*G9_1_1 - 0.133333333333333*G9_1_2 - 0.0333333333333333*G9_2_0 - 0.0333333333333333*G9_2_1 - 0.0333333333333333*G9_2_2; + A[623] = 0.0333333333333333*G3_0_0 + 0.0333333333333333*G3_2_0 + 0.0333333333333333*G6_0_0 + 0.0333333333333333*G6_2_0 + 0.0333333333333333*G9_0_0 + 0.0333333333333333*G9_2_0; + A[624] = -0.1*G3_0_1 - 0.133333333333333*G3_1_1 - 0.1*G3_2_1 - 0.1*G6_0_1 - 0.133333333333333*G6_1_1 - 0.1*G6_2_1 - 0.1*G9_0_1 - 0.133333333333333*G9_1_1 - 0.1*G9_2_1; + A[625] = 0.0333333333333333*G3_0_2 + 0.0333333333333334*G3_2_2 + 0.0333333333333333*G6_0_2 + 0.0333333333333334*G6_2_2 + 0.0333333333333333*G9_0_2 + 0.0333333333333334*G9_2_2; + A[626] = -0.133333333333333*G3_0_1 - 0.266666666666666*G3_0_2 - 0.133333333333333*G3_1_2 - 0.133333333333333*G3_2_1 - 0.266666666666666*G3_2_2 - 0.133333333333333*G6_0_1 - 0.266666666666666*G6_0_2 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_1 - 0.266666666666666*G6_2_2 - 0.133333333333333*G9_0_1 - 0.266666666666666*G9_0_2 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_1 - 0.266666666666666*G9_2_2; + A[627] = -0.133333333333333*G3_0_0 - 0.133333333333333*G3_0_2 - 0.133333333333333*G3_2_0 - 0.133333333333333*G3_2_2 - 0.133333333333333*G6_0_0 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_2_0 - 0.133333333333333*G6_2_2 - 0.133333333333333*G9_0_0 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_2_0 - 0.133333333333333*G9_2_2; + A[628] = -0.266666666666666*G3_0_0 - 0.133333333333333*G3_0_1 - 0.133333333333333*G3_1_0 - 0.266666666666666*G3_2_0 - 0.133333333333333*G3_2_1 - 0.266666666666666*G6_0_0 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_1_0 - 0.266666666666666*G6_2_0 - 0.133333333333333*G6_2_1 - 0.266666666666666*G9_0_0 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_1_0 - 0.266666666666666*G9_2_0 - 0.133333333333333*G9_2_1; + A[629] = 0.133333333333333*G3_0_0 + 0.133333333333333*G3_0_1 + 0.133333333333333*G3_1_2 + 0.133333333333333*G3_2_0 + 0.133333333333333*G3_2_1 + 0.133333333333333*G6_0_0 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_0 + 0.133333333333333*G6_2_1 + 0.133333333333333*G9_0_0 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_0 + 0.133333333333333*G9_2_1; + A[630] = 0.266666666666666*G3_0_0 + 0.133333333333333*G3_0_1 + 0.266666666666666*G3_0_2 + 0.133333333333333*G3_1_0 + 0.266666666666666*G3_1_1 + 0.133333333333333*G3_1_2 + 0.266666666666666*G3_2_0 + 0.133333333333333*G3_2_1 + 0.266666666666666*G3_2_2 + 0.266666666666666*G6_0_0 + 0.133333333333333*G6_0_1 + 0.266666666666666*G6_0_2 + 0.133333333333333*G6_1_0 + 0.266666666666666*G6_1_1 + 0.133333333333333*G6_1_2 + 0.266666666666666*G6_2_0 + 0.133333333333333*G6_2_1 + 0.266666666666666*G6_2_2 + 0.266666666666666*G9_0_0 + 0.133333333333333*G9_0_1 + 0.266666666666666*G9_0_2 + 0.133333333333333*G9_1_0 + 0.266666666666666*G9_1_1 + 0.133333333333333*G9_1_2 + 0.266666666666666*G9_2_0 + 0.133333333333333*G9_2_1 + 0.266666666666666*G9_2_2; + A[631] = 0.133333333333333*G3_0_1 + 0.133333333333333*G3_0_2 + 0.133333333333333*G3_1_0 + 0.133333333333333*G3_2_1 + 0.133333333333333*G3_2_2 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_0 + 0.133333333333333*G6_2_1 + 0.133333333333333*G6_2_2 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_0 + 0.133333333333333*G9_2_1 + 0.133333333333333*G9_2_2; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = 0.0; + A[643] = 0.0; + A[644] = 0.0; + A[645] = 0.0; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0; + A[652] = 0.0; + A[653] = 0.0; + A[654] = 0.0; + A[655] = 0.0; + A[656] = -0.133333333333333*G3_0_0 - 0.133333333333333*G3_0_1 - 0.133333333333333*G3_0_2 - 0.0333333333333333*G3_1_0 - 0.0333333333333333*G3_1_1 - 0.0333333333333333*G3_1_2 - 0.0333333333333333*G3_2_0 - 0.0333333333333333*G3_2_1 - 0.0333333333333333*G3_2_2 - 0.133333333333333*G6_0_0 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_0_2 - 0.0333333333333333*G6_1_0 - 0.0333333333333333*G6_1_1 - 0.0333333333333333*G6_1_2 - 0.0333333333333333*G6_2_0 - 0.0333333333333333*G6_2_1 - 0.0333333333333333*G6_2_2 - 0.133333333333333*G9_0_0 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_0_2 - 0.0333333333333333*G9_1_0 - 0.0333333333333333*G9_1_1 - 0.0333333333333333*G9_1_2 - 0.0333333333333333*G9_2_0 - 0.0333333333333333*G9_2_1 - 0.0333333333333333*G9_2_2; + A[657] = -0.133333333333333*G3_0_0 - 0.1*G3_1_0 - 0.1*G3_2_0 - 0.133333333333333*G6_0_0 - 0.1*G6_1_0 - 0.1*G6_2_0 - 0.133333333333333*G9_0_0 - 0.1*G9_1_0 - 0.1*G9_2_0; + A[658] = 0.0333333333333333*G3_1_1 + 0.0333333333333333*G3_2_1 + 0.0333333333333333*G6_1_1 + 0.0333333333333333*G6_2_1 + 0.0333333333333333*G9_1_1 + 0.0333333333333333*G9_2_1; + A[659] = 0.0333333333333333*G3_1_2 + 0.0333333333333333*G3_2_2 + 0.0333333333333333*G6_1_2 + 0.0333333333333333*G6_2_2 + 0.0333333333333333*G9_1_2 + 0.0333333333333333*G9_2_2; + A[660] = -0.133333333333333*G3_1_1 - 0.133333333333333*G3_1_2 - 0.133333333333333*G3_2_1 - 0.133333333333333*G3_2_2 - 0.133333333333333*G6_1_1 - 0.133333333333333*G6_1_2 - 0.133333333333333*G6_2_1 - 0.133333333333333*G6_2_2 - 0.133333333333333*G9_1_1 - 0.133333333333333*G9_1_2 - 0.133333333333333*G9_2_1 - 0.133333333333333*G9_2_2; + A[661] = -0.133333333333333*G3_0_2 - 0.133333333333333*G3_1_0 - 0.266666666666666*G3_1_2 - 0.133333333333333*G3_2_0 - 0.266666666666666*G3_2_2 - 0.133333333333333*G6_0_2 - 0.133333333333333*G6_1_0 - 0.266666666666666*G6_1_2 - 0.133333333333333*G6_2_0 - 0.266666666666666*G6_2_2 - 0.133333333333333*G9_0_2 - 0.133333333333333*G9_1_0 - 0.266666666666666*G9_1_2 - 0.133333333333333*G9_2_0 - 0.266666666666666*G9_2_2; + A[662] = -0.133333333333333*G3_0_1 - 0.133333333333333*G3_1_0 - 0.266666666666666*G3_1_1 - 0.133333333333333*G3_2_0 - 0.266666666666666*G3_2_1 - 0.133333333333333*G6_0_1 - 0.133333333333333*G6_1_0 - 0.266666666666666*G6_1_1 - 0.133333333333333*G6_2_0 - 0.266666666666666*G6_2_1 - 0.133333333333333*G9_0_1 - 0.133333333333333*G9_1_0 - 0.266666666666666*G9_1_1 - 0.133333333333333*G9_2_0 - 0.266666666666666*G9_2_1; + A[663] = 0.133333333333333*G3_0_2 + 0.133333333333333*G3_1_0 + 0.133333333333333*G3_1_1 + 0.133333333333333*G3_2_0 + 0.133333333333333*G3_2_1 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_0 + 0.133333333333333*G6_1_1 + 0.133333333333333*G6_2_0 + 0.133333333333333*G6_2_1 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_0 + 0.133333333333333*G9_1_1 + 0.133333333333333*G9_2_0 + 0.133333333333333*G9_2_1; + A[664] = 0.133333333333333*G3_0_1 + 0.133333333333333*G3_1_0 + 0.133333333333333*G3_1_2 + 0.133333333333333*G3_2_0 + 0.133333333333333*G3_2_2 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_1_0 + 0.133333333333333*G6_1_2 + 0.133333333333333*G6_2_0 + 0.133333333333333*G6_2_2 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_1_0 + 0.133333333333333*G9_1_2 + 0.133333333333333*G9_2_0 + 0.133333333333333*G9_2_2; + A[665] = 0.266666666666666*G3_0_0 + 0.133333333333333*G3_0_1 + 0.133333333333333*G3_0_2 + 0.133333333333333*G3_1_0 + 0.266666666666666*G3_1_1 + 0.266666666666666*G3_1_2 + 0.133333333333333*G3_2_0 + 0.266666666666666*G3_2_1 + 0.266666666666666*G3_2_2 + 0.266666666666666*G6_0_0 + 0.133333333333333*G6_0_1 + 0.133333333333333*G6_0_2 + 0.133333333333333*G6_1_0 + 0.266666666666666*G6_1_1 + 0.266666666666666*G6_1_2 + 0.133333333333333*G6_2_0 + 0.266666666666666*G6_2_1 + 0.266666666666666*G6_2_2 + 0.266666666666666*G9_0_0 + 0.133333333333333*G9_0_1 + 0.133333333333333*G9_0_2 + 0.133333333333333*G9_1_0 + 0.266666666666666*G9_1_1 + 0.266666666666666*G9_1_2 + 0.133333333333333*G9_2_0 + 0.266666666666666*G9_2_1 + 0.266666666666666*G9_2_2; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0; + A[677] = 0.0; + A[678] = 0.0; + A[679] = 0.0; + A[680] = 0.0; + A[681] = 0.0; + A[682] = 0.0; + A[683] = 0.0; + A[684] = 0.0; + A[685] = 0.0; + A[686] = 0.0; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.1*G1_0_0 + 0.1*G1_0_1 + 0.1*G1_0_2 + 0.1*G1_1_0 + 0.1*G1_1_1 + 0.1*G1_1_2 + 0.1*G1_2_0 + 0.1*G1_2_1 + 0.1*G1_2_2 + 0.1*G4_0_0 + 0.1*G4_0_1 + 0.1*G4_0_2 + 0.1*G4_1_0 + 0.1*G4_1_1 + 0.1*G4_1_2 + 0.1*G4_2_0 + 0.1*G4_2_1 + 0.1*G4_2_2 + 0.1*G7_0_0 + 0.1*G7_0_1 + 0.1*G7_0_2 + 0.1*G7_1_0 + 0.1*G7_1_1 + 0.1*G7_1_2 + 0.1*G7_2_0 + 0.1*G7_2_1 + 0.1*G7_2_2; + A[701] = 0.0333333333333333*G1_0_0 + 0.0333333333333333*G1_1_0 + 0.0333333333333333*G1_2_0 + 0.0333333333333333*G4_0_0 + 0.0333333333333333*G4_1_0 + 0.0333333333333333*G4_2_0 + 0.0333333333333333*G7_0_0 + 0.0333333333333333*G7_1_0 + 0.0333333333333333*G7_2_0; + A[702] = 0.0333333333333333*G1_0_1 + 0.0333333333333333*G1_1_1 + 0.0333333333333333*G1_2_1 + 0.0333333333333333*G4_0_1 + 0.0333333333333333*G4_1_1 + 0.0333333333333333*G4_2_1 + 0.0333333333333333*G7_0_1 + 0.0333333333333333*G7_1_1 + 0.0333333333333333*G7_2_1; + A[703] = 0.0333333333333333*G1_0_2 + 0.0333333333333333*G1_1_2 + 0.0333333333333333*G1_2_2 + 0.0333333333333333*G4_0_2 + 0.0333333333333333*G4_1_2 + 0.0333333333333333*G4_2_2 + 0.0333333333333333*G7_0_2 + 0.0333333333333333*G7_1_2 + 0.0333333333333333*G7_2_2; + A[704] = 0.0333333333333333*G1_0_1 + 0.0333333333333333*G1_0_2 + 0.0333333333333333*G1_1_1 + 0.0333333333333333*G1_1_2 + 0.0333333333333333*G1_2_1 + 0.0333333333333333*G1_2_2 + 0.0333333333333333*G4_0_1 + 0.0333333333333333*G4_0_2 + 0.0333333333333333*G4_1_1 + 0.0333333333333333*G4_1_2 + 0.0333333333333333*G4_2_1 + 0.0333333333333333*G4_2_2 + 0.0333333333333333*G7_0_1 + 0.0333333333333333*G7_0_2 + 0.0333333333333333*G7_1_1 + 0.0333333333333333*G7_1_2 + 0.0333333333333333*G7_2_1 + 0.0333333333333333*G7_2_2; + A[705] = 0.0333333333333333*G1_0_0 + 0.0333333333333333*G1_0_2 + 0.0333333333333333*G1_1_0 + 0.0333333333333333*G1_1_2 + 0.0333333333333333*G1_2_0 + 0.0333333333333333*G1_2_2 + 0.0333333333333333*G4_0_0 + 0.0333333333333333*G4_0_2 + 0.0333333333333333*G4_1_0 + 0.0333333333333333*G4_1_2 + 0.0333333333333333*G4_2_0 + 0.0333333333333333*G4_2_2 + 0.0333333333333333*G7_0_0 + 0.0333333333333333*G7_0_2 + 0.0333333333333333*G7_1_0 + 0.0333333333333333*G7_1_2 + 0.0333333333333333*G7_2_0 + 0.0333333333333333*G7_2_2; + A[706] = 0.0333333333333332*G1_0_0 + 0.0333333333333333*G1_0_1 + 0.0333333333333333*G1_1_0 + 0.0333333333333333*G1_1_1 + 0.0333333333333333*G1_2_0 + 0.0333333333333333*G1_2_1 + 0.0333333333333332*G4_0_0 + 0.0333333333333333*G4_0_1 + 0.0333333333333333*G4_1_0 + 0.0333333333333333*G4_1_1 + 0.0333333333333333*G4_2_0 + 0.0333333333333333*G4_2_1 + 0.0333333333333332*G7_0_0 + 0.0333333333333333*G7_0_1 + 0.0333333333333333*G7_1_0 + 0.0333333333333333*G7_1_1 + 0.0333333333333333*G7_2_0 + 0.0333333333333333*G7_2_1; + A[707] = -0.0333333333333333*G1_0_0 - 0.0333333333333333*G1_0_1 - 0.133333333333333*G1_0_2 - 0.0333333333333333*G1_1_0 - 0.0333333333333333*G1_1_1 - 0.133333333333333*G1_1_2 - 0.0333333333333333*G1_2_0 - 0.0333333333333333*G1_2_1 - 0.133333333333333*G1_2_2 - 0.0333333333333333*G4_0_0 - 0.0333333333333333*G4_0_1 - 0.133333333333333*G4_0_2 - 0.0333333333333333*G4_1_0 - 0.0333333333333333*G4_1_1 - 0.133333333333333*G4_1_2 - 0.0333333333333333*G4_2_0 - 0.0333333333333333*G4_2_1 - 0.133333333333333*G4_2_2 - 0.0333333333333333*G7_0_0 - 0.0333333333333333*G7_0_1 - 0.133333333333333*G7_0_2 - 0.0333333333333333*G7_1_0 - 0.0333333333333333*G7_1_1 - 0.133333333333333*G7_1_2 - 0.0333333333333333*G7_2_0 - 0.0333333333333333*G7_2_1 - 0.133333333333333*G7_2_2; + A[708] = -0.0333333333333332*G1_0_0 - 0.133333333333333*G1_0_1 - 0.0333333333333333*G1_0_2 - 0.0333333333333333*G1_1_0 - 0.133333333333333*G1_1_1 - 0.0333333333333333*G1_1_2 - 0.0333333333333333*G1_2_0 - 0.133333333333333*G1_2_1 - 0.0333333333333333*G1_2_2 - 0.0333333333333332*G4_0_0 - 0.133333333333333*G4_0_1 - 0.0333333333333333*G4_0_2 - 0.0333333333333333*G4_1_0 - 0.133333333333333*G4_1_1 - 0.0333333333333333*G4_1_2 - 0.0333333333333333*G4_2_0 - 0.133333333333333*G4_2_1 - 0.0333333333333333*G4_2_2 - 0.0333333333333332*G7_0_0 - 0.133333333333333*G7_0_1 - 0.0333333333333333*G7_0_2 - 0.0333333333333333*G7_1_0 - 0.133333333333333*G7_1_1 - 0.0333333333333333*G7_1_2 - 0.0333333333333333*G7_2_0 - 0.133333333333333*G7_2_1 - 0.0333333333333333*G7_2_2; + A[709] = -0.133333333333333*G1_0_0 - 0.0333333333333333*G1_0_1 - 0.0333333333333333*G1_0_2 - 0.133333333333333*G1_1_0 - 0.0333333333333333*G1_1_1 - 0.0333333333333333*G1_1_2 - 0.133333333333333*G1_2_0 - 0.0333333333333333*G1_2_1 - 0.0333333333333333*G1_2_2 - 0.133333333333333*G4_0_0 - 0.0333333333333333*G4_0_1 - 0.0333333333333333*G4_0_2 - 0.133333333333333*G4_1_0 - 0.0333333333333333*G4_1_1 - 0.0333333333333333*G4_1_2 - 0.133333333333333*G4_2_0 - 0.0333333333333333*G4_2_1 - 0.0333333333333333*G4_2_2 - 0.133333333333333*G7_0_0 - 0.0333333333333333*G7_0_1 - 0.0333333333333333*G7_0_2 - 0.133333333333333*G7_1_0 - 0.0333333333333333*G7_1_1 - 0.0333333333333333*G7_1_2 - 0.133333333333333*G7_2_0 - 0.0333333333333333*G7_2_1 - 0.0333333333333333*G7_2_2; + A[710] = 0.0; + A[711] = 0.0; + A[712] = 0.0; + A[713] = 0.0; + A[714] = 0.0; + A[715] = 0.0; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0333333333333333*G1_0_0 + 0.0333333333333333*G1_0_1 + 0.0333333333333333*G1_0_2 + 0.0333333333333333*G4_0_0 + 0.0333333333333333*G4_0_1 + 0.0333333333333333*G4_0_2 + 0.0333333333333333*G7_0_0 + 0.0333333333333333*G7_0_1 + 0.0333333333333333*G7_0_2; + A[735] = 0.1*G1_0_0 + 0.1*G4_0_0 + 0.1*G7_0_0; + A[736] = -0.0333333333333333*G1_0_1 - 0.0333333333333333*G4_0_1 - 0.0333333333333333*G7_0_1; + A[737] = -0.0333333333333333*G1_0_2 - 0.0333333333333333*G4_0_2 - 0.0333333333333333*G7_0_2; + A[738] = -0.0333333333333333*G1_0_1 - 0.0333333333333333*G1_0_2 - 0.0333333333333333*G4_0_1 - 0.0333333333333333*G4_0_2 - 0.0333333333333333*G7_0_1 - 0.0333333333333333*G7_0_2; + A[739] = -0.0333333333333333*G1_0_0 + 0.1*G1_0_2 - 0.0333333333333333*G4_0_0 + 0.1*G4_0_2 - 0.0333333333333333*G7_0_0 + 0.1*G7_0_2; + A[740] = -0.0333333333333333*G1_0_0 + 0.1*G1_0_1 - 0.0333333333333333*G4_0_0 + 0.1*G4_0_1 - 0.0333333333333333*G7_0_0 + 0.1*G7_0_1; + A[741] = 0.0333333333333333*G1_0_0 + 0.0333333333333333*G1_0_1 + 0.0333333333333333*G4_0_0 + 0.0333333333333333*G4_0_1 + 0.0333333333333333*G7_0_0 + 0.0333333333333333*G7_0_1; + A[742] = 0.0333333333333333*G1_0_0 + 0.0333333333333333*G1_0_2 + 0.0333333333333333*G4_0_0 + 0.0333333333333333*G4_0_2 + 0.0333333333333333*G7_0_0 + 0.0333333333333333*G7_0_2; + A[743] = -0.133333333333333*G1_0_0 - 0.1*G1_0_1 - 0.1*G1_0_2 - 0.133333333333333*G4_0_0 - 0.1*G4_0_1 - 0.1*G4_0_2 - 0.133333333333333*G7_0_0 - 0.1*G7_0_1 - 0.1*G7_0_2; + A[744] = 0.0; + A[745] = 0.0; + A[746] = 0.0; + A[747] = 0.0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0333333333333333*G1_1_0 + 0.0333333333333333*G1_1_1 + 0.0333333333333333*G1_1_2 + 0.0333333333333333*G4_1_0 + 0.0333333333333333*G4_1_1 + 0.0333333333333333*G4_1_2 + 0.0333333333333333*G7_1_0 + 0.0333333333333333*G7_1_1 + 0.0333333333333333*G7_1_2; + A[769] = -0.0333333333333333*G1_1_0 - 0.0333333333333333*G4_1_0 - 0.0333333333333333*G7_1_0; + A[770] = 0.1*G1_1_1 + 0.1*G4_1_1 + 0.1*G7_1_1; + A[771] = -0.0333333333333333*G1_1_2 - 0.0333333333333333*G4_1_2 - 0.0333333333333333*G7_1_2; + A[772] = -0.0333333333333334*G1_1_1 + 0.1*G1_1_2 - 0.0333333333333334*G4_1_1 + 0.1*G4_1_2 - 0.0333333333333334*G7_1_1 + 0.1*G7_1_2; + A[773] = -0.0333333333333333*G1_1_0 - 0.0333333333333333*G1_1_2 - 0.0333333333333333*G4_1_0 - 0.0333333333333333*G4_1_2 - 0.0333333333333333*G7_1_0 - 0.0333333333333333*G7_1_2; + A[774] = 0.1*G1_1_0 - 0.0333333333333333*G1_1_1 + 0.1*G4_1_0 - 0.0333333333333333*G4_1_1 + 0.1*G7_1_0 - 0.0333333333333333*G7_1_1; + A[775] = 0.0333333333333333*G1_1_0 + 0.0333333333333333*G1_1_1 + 0.0333333333333333*G4_1_0 + 0.0333333333333333*G4_1_1 + 0.0333333333333333*G7_1_0 + 0.0333333333333333*G7_1_1; + A[776] = -0.1*G1_1_0 - 0.133333333333333*G1_1_1 - 0.1*G1_1_2 - 0.1*G4_1_0 - 0.133333333333333*G4_1_1 - 0.1*G4_1_2 - 0.1*G7_1_0 - 0.133333333333333*G7_1_1 - 0.1*G7_1_2; + A[777] = 0.0333333333333333*G1_1_1 + 0.0333333333333333*G1_1_2 + 0.0333333333333333*G4_1_1 + 0.0333333333333333*G4_1_2 + 0.0333333333333333*G7_1_1 + 0.0333333333333333*G7_1_2; + A[778] = 0.0; + A[779] = 0.0; + A[780] = 0.0; + A[781] = 0.0; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0; + A[802] = 0.0333333333333333*G1_2_0 + 0.0333333333333333*G1_2_1 + 0.0333333333333333*G1_2_2 + 0.0333333333333333*G4_2_0 + 0.0333333333333333*G4_2_1 + 0.0333333333333333*G4_2_2 + 0.0333333333333333*G7_2_0 + 0.0333333333333333*G7_2_1 + 0.0333333333333333*G7_2_2; + A[803] = -0.0333333333333333*G1_2_0 - 0.0333333333333333*G4_2_0 - 0.0333333333333333*G7_2_0; + A[804] = -0.0333333333333333*G1_2_1 - 0.0333333333333333*G4_2_1 - 0.0333333333333333*G7_2_1; + A[805] = 0.1*G1_2_2 + 0.1*G4_2_2 + 0.1*G7_2_2; + A[806] = 0.1*G1_2_1 - 0.0333333333333334*G1_2_2 + 0.1*G4_2_1 - 0.0333333333333334*G4_2_2 + 0.1*G7_2_1 - 0.0333333333333334*G7_2_2; + A[807] = 0.1*G1_2_0 - 0.0333333333333333*G1_2_2 + 0.1*G4_2_0 - 0.0333333333333333*G4_2_2 + 0.1*G7_2_0 - 0.0333333333333333*G7_2_2; + A[808] = -0.0333333333333333*G1_2_0 - 0.0333333333333333*G1_2_1 - 0.0333333333333333*G4_2_0 - 0.0333333333333333*G4_2_1 - 0.0333333333333333*G7_2_0 - 0.0333333333333333*G7_2_1; + A[809] = -0.1*G1_2_0 - 0.1*G1_2_1 - 0.133333333333333*G1_2_2 - 0.1*G4_2_0 - 0.1*G4_2_1 - 0.133333333333333*G4_2_2 - 0.1*G7_2_0 - 0.1*G7_2_1 - 0.133333333333333*G7_2_2; + A[810] = 0.0333333333333333*G1_2_0 + 0.0333333333333334*G1_2_2 + 0.0333333333333333*G4_2_0 + 0.0333333333333334*G4_2_2 + 0.0333333333333333*G7_2_0 + 0.0333333333333334*G7_2_2; + A[811] = 0.0333333333333333*G1_2_1 + 0.0333333333333333*G1_2_2 + 0.0333333333333333*G4_2_1 + 0.0333333333333333*G4_2_2 + 0.0333333333333333*G7_2_1 + 0.0333333333333333*G7_2_2; + A[812] = 0.0; + A[813] = 0.0; + A[814] = 0.0; + A[815] = 0.0; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0333333333333333*G1_1_0 + 0.0333333333333333*G1_1_1 + 0.0333333333333333*G1_1_2 + 0.0333333333333333*G1_2_0 + 0.0333333333333333*G1_2_1 + 0.0333333333333333*G1_2_2 + 0.0333333333333333*G4_1_0 + 0.0333333333333333*G4_1_1 + 0.0333333333333333*G4_1_2 + 0.0333333333333333*G4_2_0 + 0.0333333333333333*G4_2_1 + 0.0333333333333333*G4_2_2 + 0.0333333333333333*G7_1_0 + 0.0333333333333333*G7_1_1 + 0.0333333333333333*G7_1_2 + 0.0333333333333333*G7_2_0 + 0.0333333333333333*G7_2_1 + 0.0333333333333333*G7_2_2; + A[837] = -0.0333333333333333*G1_1_0 - 0.0333333333333333*G1_2_0 - 0.0333333333333333*G4_1_0 - 0.0333333333333333*G4_2_0 - 0.0333333333333333*G7_1_0 - 0.0333333333333333*G7_2_0; + A[838] = -0.0333333333333334*G1_1_1 + 0.1*G1_2_1 - 0.0333333333333334*G4_1_1 + 0.1*G4_2_1 - 0.0333333333333334*G7_1_1 + 0.1*G7_2_1; + A[839] = 0.1*G1_1_2 - 0.0333333333333334*G1_2_2 + 0.1*G4_1_2 - 0.0333333333333334*G4_2_2 + 0.1*G7_1_2 - 0.0333333333333334*G7_2_2; + A[840] = 0.266666666666667*G1_1_1 + 0.133333333333333*G1_1_2 + 0.133333333333333*G1_2_1 + 0.266666666666666*G1_2_2 + 0.266666666666667*G4_1_1 + 0.133333333333333*G4_1_2 + 0.133333333333333*G4_2_1 + 0.266666666666666*G4_2_2 + 0.266666666666667*G7_1_1 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_1 + 0.266666666666666*G7_2_2; + A[841] = 0.266666666666667*G1_1_0 + 0.133333333333333*G1_1_2 + 0.133333333333333*G1_2_0 + 0.133333333333333*G1_2_2 + 0.266666666666667*G4_1_0 + 0.133333333333333*G4_1_2 + 0.133333333333333*G4_2_0 + 0.133333333333333*G4_2_2 + 0.266666666666667*G7_1_0 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_0 + 0.133333333333333*G7_2_2; + A[842] = 0.133333333333333*G1_1_0 + 0.133333333333333*G1_1_1 + 0.266666666666666*G1_2_0 + 0.133333333333333*G1_2_1 + 0.133333333333333*G4_1_0 + 0.133333333333333*G4_1_1 + 0.266666666666666*G4_2_0 + 0.133333333333333*G4_2_1 + 0.133333333333333*G7_1_0 + 0.133333333333333*G7_1_1 + 0.266666666666666*G7_2_0 + 0.133333333333333*G7_2_1; + A[843] = -0.266666666666667*G1_1_0 - 0.266666666666667*G1_1_1 - 0.133333333333333*G1_1_2 - 0.133333333333333*G1_2_0 - 0.133333333333333*G1_2_1 - 0.266666666666667*G4_1_0 - 0.266666666666667*G4_1_1 - 0.133333333333333*G4_1_2 - 0.133333333333333*G4_2_0 - 0.133333333333333*G4_2_1 - 0.266666666666667*G7_1_0 - 0.266666666666667*G7_1_1 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_0 - 0.133333333333333*G7_2_1; + A[844] = -0.133333333333333*G1_1_0 - 0.133333333333333*G1_1_2 - 0.266666666666666*G1_2_0 - 0.133333333333333*G1_2_1 - 0.266666666666666*G1_2_2 - 0.133333333333333*G4_1_0 - 0.133333333333333*G4_1_2 - 0.266666666666666*G4_2_0 - 0.133333333333333*G4_2_1 - 0.266666666666666*G4_2_2 - 0.133333333333333*G7_1_0 - 0.133333333333333*G7_1_2 - 0.266666666666666*G7_2_0 - 0.133333333333333*G7_2_1 - 0.266666666666666*G7_2_2; + A[845] = -0.133333333333333*G1_1_1 - 0.133333333333333*G1_1_2 - 0.133333333333333*G1_2_1 - 0.133333333333333*G1_2_2 - 0.133333333333333*G4_1_1 - 0.133333333333333*G4_1_2 - 0.133333333333333*G4_2_1 - 0.133333333333333*G4_2_2 - 0.133333333333333*G7_1_1 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_1 - 0.133333333333333*G7_2_2; + A[846] = 0.0; + A[847] = 0.0; + A[848] = 0.0; + A[849] = 0.0; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0; + A[868] = 0.0; + A[869] = 0.0; + A[870] = 0.0333333333333333*G1_0_0 + 0.0333333333333333*G1_0_1 + 0.0333333333333333*G1_0_2 + 0.0333333333333333*G1_2_0 + 0.0333333333333333*G1_2_1 + 0.0333333333333333*G1_2_2 + 0.0333333333333333*G4_0_0 + 0.0333333333333333*G4_0_1 + 0.0333333333333333*G4_0_2 + 0.0333333333333333*G4_2_0 + 0.0333333333333333*G4_2_1 + 0.0333333333333333*G4_2_2 + 0.0333333333333333*G7_0_0 + 0.0333333333333333*G7_0_1 + 0.0333333333333333*G7_0_2 + 0.0333333333333333*G7_2_0 + 0.0333333333333333*G7_2_1 + 0.0333333333333333*G7_2_2; + A[871] = -0.0333333333333333*G1_0_0 + 0.1*G1_2_0 - 0.0333333333333333*G4_0_0 + 0.1*G4_2_0 - 0.0333333333333333*G7_0_0 + 0.1*G7_2_0; + A[872] = -0.0333333333333333*G1_0_1 - 0.0333333333333333*G1_2_1 - 0.0333333333333333*G4_0_1 - 0.0333333333333333*G4_2_1 - 0.0333333333333333*G7_0_1 - 0.0333333333333333*G7_2_1; + A[873] = 0.1*G1_0_2 - 0.0333333333333333*G1_2_2 + 0.1*G4_0_2 - 0.0333333333333333*G4_2_2 + 0.1*G7_0_2 - 0.0333333333333333*G7_2_2; + A[874] = 0.266666666666667*G1_0_1 + 0.133333333333333*G1_0_2 + 0.133333333333333*G1_2_1 + 0.133333333333333*G1_2_2 + 0.266666666666667*G4_0_1 + 0.133333333333333*G4_0_2 + 0.133333333333333*G4_2_1 + 0.133333333333333*G4_2_2 + 0.266666666666667*G7_0_1 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_2_1 + 0.133333333333333*G7_2_2; + A[875] = 0.266666666666666*G1_0_0 + 0.133333333333333*G1_0_2 + 0.133333333333333*G1_2_0 + 0.266666666666666*G1_2_2 + 0.266666666666666*G4_0_0 + 0.133333333333333*G4_0_2 + 0.133333333333333*G4_2_0 + 0.266666666666666*G4_2_2 + 0.266666666666666*G7_0_0 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_2_0 + 0.266666666666666*G7_2_2; + A[876] = 0.133333333333333*G1_0_0 + 0.133333333333333*G1_0_1 + 0.133333333333333*G1_2_0 + 0.266666666666666*G1_2_1 + 0.133333333333333*G4_0_0 + 0.133333333333333*G4_0_1 + 0.133333333333333*G4_2_0 + 0.266666666666666*G4_2_1 + 0.133333333333333*G7_0_0 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_2_0 + 0.266666666666666*G7_2_1; + A[877] = -0.266666666666666*G1_0_0 - 0.266666666666666*G1_0_1 - 0.133333333333333*G1_0_2 - 0.133333333333333*G1_2_0 - 0.133333333333333*G1_2_1 - 0.266666666666666*G4_0_0 - 0.266666666666666*G4_0_1 - 0.133333333333333*G4_0_2 - 0.133333333333333*G4_2_0 - 0.133333333333333*G4_2_1 - 0.266666666666666*G7_0_0 - 0.266666666666666*G7_0_1 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_2_0 - 0.133333333333333*G7_2_1; + A[878] = -0.133333333333333*G1_0_0 - 0.133333333333333*G1_0_2 - 0.133333333333333*G1_2_0 - 0.133333333333333*G1_2_2 - 0.133333333333333*G4_0_0 - 0.133333333333333*G4_0_2 - 0.133333333333333*G4_2_0 - 0.133333333333333*G4_2_2 - 0.133333333333333*G7_0_0 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_2_0 - 0.133333333333333*G7_2_2; + A[879] = -0.133333333333333*G1_0_1 - 0.133333333333333*G1_0_2 - 0.133333333333333*G1_2_0 - 0.266666666666666*G1_2_1 - 0.266666666666666*G1_2_2 - 0.133333333333333*G4_0_1 - 0.133333333333333*G4_0_2 - 0.133333333333333*G4_2_0 - 0.266666666666666*G4_2_1 - 0.266666666666666*G4_2_2 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_2_0 - 0.266666666666666*G7_2_1 - 0.266666666666666*G7_2_2; + A[880] = 0.0; + A[881] = 0.0; + A[882] = 0.0; + A[883] = 0.0; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0; + A[898] = 0.0; + A[899] = 0.0; + A[900] = 0.0; + A[901] = 0.0; + A[902] = 0.0; + A[903] = 0.0; + A[904] = 0.0333333333333332*G1_0_0 + 0.0333333333333333*G1_0_1 + 0.0333333333333333*G1_0_2 + 0.0333333333333333*G1_1_0 + 0.0333333333333333*G1_1_1 + 0.0333333333333333*G1_1_2 + 0.0333333333333332*G4_0_0 + 0.0333333333333333*G4_0_1 + 0.0333333333333333*G4_0_2 + 0.0333333333333333*G4_1_0 + 0.0333333333333333*G4_1_1 + 0.0333333333333333*G4_1_2 + 0.0333333333333332*G7_0_0 + 0.0333333333333333*G7_0_1 + 0.0333333333333333*G7_0_2 + 0.0333333333333333*G7_1_0 + 0.0333333333333333*G7_1_1 + 0.0333333333333333*G7_1_2; + A[905] = -0.0333333333333333*G1_0_0 + 0.1*G1_1_0 - 0.0333333333333333*G4_0_0 + 0.1*G4_1_0 - 0.0333333333333333*G7_0_0 + 0.1*G7_1_0; + A[906] = 0.1*G1_0_1 - 0.0333333333333333*G1_1_1 + 0.1*G4_0_1 - 0.0333333333333333*G4_1_1 + 0.1*G7_0_1 - 0.0333333333333333*G7_1_1; + A[907] = -0.0333333333333333*G1_0_2 - 0.0333333333333333*G1_1_2 - 0.0333333333333333*G4_0_2 - 0.0333333333333333*G4_1_2 - 0.0333333333333333*G7_0_2 - 0.0333333333333333*G7_1_2; + A[908] = 0.133333333333333*G1_0_1 + 0.266666666666666*G1_0_2 + 0.133333333333333*G1_1_1 + 0.133333333333333*G1_1_2 + 0.133333333333333*G4_0_1 + 0.266666666666666*G4_0_2 + 0.133333333333333*G4_1_1 + 0.133333333333333*G4_1_2 + 0.133333333333333*G7_0_1 + 0.266666666666666*G7_0_2 + 0.133333333333333*G7_1_1 + 0.133333333333333*G7_1_2; + A[909] = 0.133333333333333*G1_0_0 + 0.133333333333333*G1_0_2 + 0.133333333333333*G1_1_0 + 0.266666666666666*G1_1_2 + 0.133333333333333*G4_0_0 + 0.133333333333333*G4_0_2 + 0.133333333333333*G4_1_0 + 0.266666666666666*G4_1_2 + 0.133333333333333*G7_0_0 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_0 + 0.266666666666666*G7_1_2; + A[910] = 0.266666666666666*G1_0_0 + 0.133333333333333*G1_0_1 + 0.133333333333333*G1_1_0 + 0.266666666666666*G1_1_1 + 0.266666666666666*G4_0_0 + 0.133333333333333*G4_0_1 + 0.133333333333333*G4_1_0 + 0.266666666666666*G4_1_1 + 0.266666666666666*G7_0_0 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_1_0 + 0.266666666666666*G7_1_1; + A[911] = -0.133333333333333*G1_0_0 - 0.133333333333333*G1_0_1 - 0.133333333333333*G1_1_0 - 0.133333333333333*G1_1_1 - 0.133333333333333*G4_0_0 - 0.133333333333333*G4_0_1 - 0.133333333333333*G4_1_0 - 0.133333333333333*G4_1_1 - 0.133333333333333*G7_0_0 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_1_0 - 0.133333333333333*G7_1_1; + A[912] = -0.266666666666666*G1_0_0 - 0.133333333333333*G1_0_1 - 0.266666666666666*G1_0_2 - 0.133333333333333*G1_1_0 - 0.133333333333333*G1_1_2 - 0.266666666666666*G4_0_0 - 0.133333333333333*G4_0_1 - 0.266666666666666*G4_0_2 - 0.133333333333333*G4_1_0 - 0.133333333333333*G4_1_2 - 0.266666666666666*G7_0_0 - 0.133333333333333*G7_0_1 - 0.266666666666666*G7_0_2 - 0.133333333333333*G7_1_0 - 0.133333333333333*G7_1_2; + A[913] = -0.133333333333333*G1_0_1 - 0.133333333333333*G1_0_2 - 0.133333333333333*G1_1_0 - 0.266666666666666*G1_1_1 - 0.266666666666666*G1_1_2 - 0.133333333333333*G4_0_1 - 0.133333333333333*G4_0_2 - 0.133333333333333*G4_1_0 - 0.266666666666666*G4_1_1 - 0.266666666666666*G4_1_2 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_1_0 - 0.266666666666666*G7_1_1 - 0.266666666666666*G7_1_2; + A[914] = 0.0; + A[915] = 0.0; + A[916] = 0.0; + A[917] = 0.0; + A[918] = 0.0; + A[919] = 0.0; + A[920] = 0.0; + A[921] = 0.0; + A[922] = 0.0; + A[923] = 0.0; + A[924] = 0.0; + A[925] = 0.0; + A[926] = 0.0; + A[927] = 0.0; + A[928] = 0.0; + A[929] = 0.0; + A[930] = 0.0; + A[931] = 0.0; + A[932] = 0.0; + A[933] = 0.0; + A[934] = 0.0; + A[935] = 0.0; + A[936] = 0.0; + A[937] = 0.0; + A[938] = -0.0333333333333333*G1_0_0 - 0.0333333333333333*G1_0_1 - 0.0333333333333333*G1_0_2 - 0.0333333333333333*G1_1_0 - 0.0333333333333333*G1_1_1 - 0.0333333333333333*G1_1_2 - 0.133333333333333*G1_2_0 - 0.133333333333333*G1_2_1 - 0.133333333333333*G1_2_2 - 0.0333333333333333*G4_0_0 - 0.0333333333333333*G4_0_1 - 0.0333333333333333*G4_0_2 - 0.0333333333333333*G4_1_0 - 0.0333333333333333*G4_1_1 - 0.0333333333333333*G4_1_2 - 0.133333333333333*G4_2_0 - 0.133333333333333*G4_2_1 - 0.133333333333333*G4_2_2 - 0.0333333333333333*G7_0_0 - 0.0333333333333333*G7_0_1 - 0.0333333333333333*G7_0_2 - 0.0333333333333333*G7_1_0 - 0.0333333333333333*G7_1_1 - 0.0333333333333333*G7_1_2 - 0.133333333333333*G7_2_0 - 0.133333333333333*G7_2_1 - 0.133333333333333*G7_2_2; + A[939] = 0.0333333333333333*G1_0_0 + 0.0333333333333333*G1_1_0 + 0.0333333333333333*G4_0_0 + 0.0333333333333333*G4_1_0 + 0.0333333333333333*G7_0_0 + 0.0333333333333333*G7_1_0; + A[940] = 0.0333333333333333*G1_0_1 + 0.0333333333333333*G1_1_1 + 0.0333333333333333*G4_0_1 + 0.0333333333333333*G4_1_1 + 0.0333333333333333*G7_0_1 + 0.0333333333333333*G7_1_1; + A[941] = -0.1*G1_0_2 - 0.1*G1_1_2 - 0.133333333333333*G1_2_2 - 0.1*G4_0_2 - 0.1*G4_1_2 - 0.133333333333333*G4_2_2 - 0.1*G7_0_2 - 0.1*G7_1_2 - 0.133333333333333*G7_2_2; + A[942] = -0.266666666666667*G1_0_1 - 0.133333333333333*G1_0_2 - 0.266666666666667*G1_1_1 - 0.133333333333333*G1_1_2 - 0.133333333333333*G1_2_1 - 0.266666666666667*G4_0_1 - 0.133333333333333*G4_0_2 - 0.266666666666667*G4_1_1 - 0.133333333333333*G4_1_2 - 0.133333333333333*G4_2_1 - 0.266666666666667*G7_0_1 - 0.133333333333333*G7_0_2 - 0.266666666666667*G7_1_1 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_1; + A[943] = -0.266666666666666*G1_0_0 - 0.133333333333333*G1_0_2 - 0.266666666666666*G1_1_0 - 0.133333333333333*G1_1_2 - 0.133333333333333*G1_2_0 - 0.266666666666666*G4_0_0 - 0.133333333333333*G4_0_2 - 0.266666666666666*G4_1_0 - 0.133333333333333*G4_1_2 - 0.133333333333333*G4_2_0 - 0.266666666666666*G7_0_0 - 0.133333333333333*G7_0_2 - 0.266666666666666*G7_1_0 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_0; + A[944] = -0.133333333333333*G1_0_0 - 0.133333333333333*G1_0_1 - 0.133333333333333*G1_1_0 - 0.133333333333333*G1_1_1 - 0.133333333333333*G4_0_0 - 0.133333333333333*G4_0_1 - 0.133333333333333*G4_1_0 - 0.133333333333333*G4_1_1 - 0.133333333333333*G7_0_0 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_1_0 - 0.133333333333333*G7_1_1; + A[945] = 0.266666666666666*G1_0_0 + 0.266666666666666*G1_0_1 + 0.133333333333333*G1_0_2 + 0.266666666666666*G1_1_0 + 0.266666666666666*G1_1_1 + 0.133333333333333*G1_1_2 + 0.133333333333333*G1_2_0 + 0.133333333333333*G1_2_1 + 0.266666666666666*G1_2_2 + 0.266666666666666*G4_0_0 + 0.266666666666666*G4_0_1 + 0.133333333333333*G4_0_2 + 0.266666666666666*G4_1_0 + 0.266666666666666*G4_1_1 + 0.133333333333333*G4_1_2 + 0.133333333333333*G4_2_0 + 0.133333333333333*G4_2_1 + 0.266666666666666*G4_2_2 + 0.266666666666666*G7_0_0 + 0.266666666666666*G7_0_1 + 0.133333333333333*G7_0_2 + 0.266666666666666*G7_1_0 + 0.266666666666666*G7_1_1 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_0 + 0.133333333333333*G7_2_1 + 0.266666666666666*G7_2_2; + A[946] = 0.133333333333333*G1_0_0 + 0.133333333333333*G1_0_2 + 0.133333333333333*G1_1_0 + 0.133333333333333*G1_1_2 + 0.133333333333333*G1_2_1 + 0.133333333333333*G4_0_0 + 0.133333333333333*G4_0_2 + 0.133333333333333*G4_1_0 + 0.133333333333333*G4_1_2 + 0.133333333333333*G4_2_1 + 0.133333333333333*G7_0_0 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_0 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_1; + A[947] = 0.133333333333333*G1_0_1 + 0.133333333333333*G1_0_2 + 0.133333333333333*G1_1_1 + 0.133333333333333*G1_1_2 + 0.133333333333333*G1_2_0 + 0.133333333333333*G4_0_1 + 0.133333333333333*G4_0_2 + 0.133333333333333*G4_1_1 + 0.133333333333333*G4_1_2 + 0.133333333333333*G4_2_0 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_1 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_0; + A[948] = 0.0; + A[949] = 0.0; + A[950] = 0.0; + A[951] = 0.0; + A[952] = 0.0; + A[953] = 0.0; + A[954] = 0.0; + A[955] = 0.0; + A[956] = 0.0; + A[957] = 0.0; + A[958] = 0.0; + A[959] = 0.0; + A[960] = 0.0; + A[961] = 0.0; + A[962] = 0.0; + A[963] = 0.0; + A[964] = 0.0; + A[965] = 0.0; + A[966] = 0.0; + A[967] = 0.0; + A[968] = 0.0; + A[969] = 0.0; + A[970] = 0.0; + A[971] = 0.0; + A[972] = -0.0333333333333332*G1_0_0 - 0.0333333333333333*G1_0_1 - 0.0333333333333333*G1_0_2 - 0.133333333333333*G1_1_0 - 0.133333333333333*G1_1_1 - 0.133333333333333*G1_1_2 - 0.0333333333333333*G1_2_0 - 0.0333333333333333*G1_2_1 - 0.0333333333333333*G1_2_2 - 0.0333333333333332*G4_0_0 - 0.0333333333333333*G4_0_1 - 0.0333333333333333*G4_0_2 - 0.133333333333333*G4_1_0 - 0.133333333333333*G4_1_1 - 0.133333333333333*G4_1_2 - 0.0333333333333333*G4_2_0 - 0.0333333333333333*G4_2_1 - 0.0333333333333333*G4_2_2 - 0.0333333333333332*G7_0_0 - 0.0333333333333333*G7_0_1 - 0.0333333333333333*G7_0_2 - 0.133333333333333*G7_1_0 - 0.133333333333333*G7_1_1 - 0.133333333333333*G7_1_2 - 0.0333333333333333*G7_2_0 - 0.0333333333333333*G7_2_1 - 0.0333333333333333*G7_2_2; + A[973] = 0.0333333333333333*G1_0_0 + 0.0333333333333333*G1_2_0 + 0.0333333333333333*G4_0_0 + 0.0333333333333333*G4_2_0 + 0.0333333333333333*G7_0_0 + 0.0333333333333333*G7_2_0; + A[974] = -0.1*G1_0_1 - 0.133333333333333*G1_1_1 - 0.1*G1_2_1 - 0.1*G4_0_1 - 0.133333333333333*G4_1_1 - 0.1*G4_2_1 - 0.1*G7_0_1 - 0.133333333333333*G7_1_1 - 0.1*G7_2_1; + A[975] = 0.0333333333333333*G1_0_2 + 0.0333333333333334*G1_2_2 + 0.0333333333333333*G4_0_2 + 0.0333333333333334*G4_2_2 + 0.0333333333333333*G7_0_2 + 0.0333333333333334*G7_2_2; + A[976] = -0.133333333333333*G1_0_1 - 0.266666666666666*G1_0_2 - 0.133333333333333*G1_1_2 - 0.133333333333333*G1_2_1 - 0.266666666666666*G1_2_2 - 0.133333333333333*G4_0_1 - 0.266666666666666*G4_0_2 - 0.133333333333333*G4_1_2 - 0.133333333333333*G4_2_1 - 0.266666666666666*G4_2_2 - 0.133333333333333*G7_0_1 - 0.266666666666666*G7_0_2 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_1 - 0.266666666666666*G7_2_2; + A[977] = -0.133333333333333*G1_0_0 - 0.133333333333333*G1_0_2 - 0.133333333333333*G1_2_0 - 0.133333333333333*G1_2_2 - 0.133333333333333*G4_0_0 - 0.133333333333333*G4_0_2 - 0.133333333333333*G4_2_0 - 0.133333333333333*G4_2_2 - 0.133333333333333*G7_0_0 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_2_0 - 0.133333333333333*G7_2_2; + A[978] = -0.266666666666666*G1_0_0 - 0.133333333333333*G1_0_1 - 0.133333333333333*G1_1_0 - 0.266666666666666*G1_2_0 - 0.133333333333333*G1_2_1 - 0.266666666666666*G4_0_0 - 0.133333333333333*G4_0_1 - 0.133333333333333*G4_1_0 - 0.266666666666666*G4_2_0 - 0.133333333333333*G4_2_1 - 0.266666666666666*G7_0_0 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_1_0 - 0.266666666666666*G7_2_0 - 0.133333333333333*G7_2_1; + A[979] = 0.133333333333333*G1_0_0 + 0.133333333333333*G1_0_1 + 0.133333333333333*G1_1_2 + 0.133333333333333*G1_2_0 + 0.133333333333333*G1_2_1 + 0.133333333333333*G4_0_0 + 0.133333333333333*G4_0_1 + 0.133333333333333*G4_1_2 + 0.133333333333333*G4_2_0 + 0.133333333333333*G4_2_1 + 0.133333333333333*G7_0_0 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_0 + 0.133333333333333*G7_2_1; + A[980] = 0.266666666666666*G1_0_0 + 0.133333333333333*G1_0_1 + 0.266666666666666*G1_0_2 + 0.133333333333333*G1_1_0 + 0.266666666666666*G1_1_1 + 0.133333333333333*G1_1_2 + 0.266666666666666*G1_2_0 + 0.133333333333333*G1_2_1 + 0.266666666666666*G1_2_2 + 0.266666666666666*G4_0_0 + 0.133333333333333*G4_0_1 + 0.266666666666666*G4_0_2 + 0.133333333333333*G4_1_0 + 0.266666666666666*G4_1_1 + 0.133333333333333*G4_1_2 + 0.266666666666666*G4_2_0 + 0.133333333333333*G4_2_1 + 0.266666666666666*G4_2_2 + 0.266666666666666*G7_0_0 + 0.133333333333333*G7_0_1 + 0.266666666666666*G7_0_2 + 0.133333333333333*G7_1_0 + 0.266666666666666*G7_1_1 + 0.133333333333333*G7_1_2 + 0.266666666666666*G7_2_0 + 0.133333333333333*G7_2_1 + 0.266666666666666*G7_2_2; + A[981] = 0.133333333333333*G1_0_1 + 0.133333333333333*G1_0_2 + 0.133333333333333*G1_1_0 + 0.133333333333333*G1_2_1 + 0.133333333333333*G1_2_2 + 0.133333333333333*G4_0_1 + 0.133333333333333*G4_0_2 + 0.133333333333333*G4_1_0 + 0.133333333333333*G4_2_1 + 0.133333333333333*G4_2_2 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_0 + 0.133333333333333*G7_2_1 + 0.133333333333333*G7_2_2; + A[982] = 0.0; + A[983] = 0.0; + A[984] = 0.0; + A[985] = 0.0; + A[986] = 0.0; + A[987] = 0.0; + A[988] = 0.0; + A[989] = 0.0; + A[990] = 0.0; + A[991] = 0.0; + A[992] = 0.0; + A[993] = 0.0; + A[994] = 0.0; + A[995] = 0.0; + A[996] = 0.0; + A[997] = 0.0; + A[998] = 0.0; + A[999] = 0.0; + A[1000] = 0.0; + A[1001] = 0.0; + A[1002] = 0.0; + A[1003] = 0.0; + A[1004] = 0.0; + A[1005] = 0.0; + A[1006] = -0.133333333333333*G1_0_0 - 0.133333333333333*G1_0_1 - 0.133333333333333*G1_0_2 - 0.0333333333333333*G1_1_0 - 0.0333333333333333*G1_1_1 - 0.0333333333333333*G1_1_2 - 0.0333333333333333*G1_2_0 - 0.0333333333333333*G1_2_1 - 0.0333333333333333*G1_2_2 - 0.133333333333333*G4_0_0 - 0.133333333333333*G4_0_1 - 0.133333333333333*G4_0_2 - 0.0333333333333333*G4_1_0 - 0.0333333333333333*G4_1_1 - 0.0333333333333333*G4_1_2 - 0.0333333333333333*G4_2_0 - 0.0333333333333333*G4_2_1 - 0.0333333333333333*G4_2_2 - 0.133333333333333*G7_0_0 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_0_2 - 0.0333333333333333*G7_1_0 - 0.0333333333333333*G7_1_1 - 0.0333333333333333*G7_1_2 - 0.0333333333333333*G7_2_0 - 0.0333333333333333*G7_2_1 - 0.0333333333333333*G7_2_2; + A[1007] = -0.133333333333333*G1_0_0 - 0.1*G1_1_0 - 0.1*G1_2_0 - 0.133333333333333*G4_0_0 - 0.1*G4_1_0 - 0.1*G4_2_0 - 0.133333333333333*G7_0_0 - 0.1*G7_1_0 - 0.1*G7_2_0; + A[1008] = 0.0333333333333333*G1_1_1 + 0.0333333333333333*G1_2_1 + 0.0333333333333333*G4_1_1 + 0.0333333333333333*G4_2_1 + 0.0333333333333333*G7_1_1 + 0.0333333333333333*G7_2_1; + A[1009] = 0.0333333333333333*G1_1_2 + 0.0333333333333333*G1_2_2 + 0.0333333333333333*G4_1_2 + 0.0333333333333333*G4_2_2 + 0.0333333333333333*G7_1_2 + 0.0333333333333333*G7_2_2; + A[1010] = -0.133333333333333*G1_1_1 - 0.133333333333333*G1_1_2 - 0.133333333333333*G1_2_1 - 0.133333333333333*G1_2_2 - 0.133333333333333*G4_1_1 - 0.133333333333333*G4_1_2 - 0.133333333333333*G4_2_1 - 0.133333333333333*G4_2_2 - 0.133333333333333*G7_1_1 - 0.133333333333333*G7_1_2 - 0.133333333333333*G7_2_1 - 0.133333333333333*G7_2_2; + A[1011] = -0.133333333333333*G1_0_2 - 0.133333333333333*G1_1_0 - 0.266666666666666*G1_1_2 - 0.133333333333333*G1_2_0 - 0.266666666666666*G1_2_2 - 0.133333333333333*G4_0_2 - 0.133333333333333*G4_1_0 - 0.266666666666666*G4_1_2 - 0.133333333333333*G4_2_0 - 0.266666666666666*G4_2_2 - 0.133333333333333*G7_0_2 - 0.133333333333333*G7_1_0 - 0.266666666666666*G7_1_2 - 0.133333333333333*G7_2_0 - 0.266666666666666*G7_2_2; + A[1012] = -0.133333333333333*G1_0_1 - 0.133333333333333*G1_1_0 - 0.266666666666666*G1_1_1 - 0.133333333333333*G1_2_0 - 0.266666666666666*G1_2_1 - 0.133333333333333*G4_0_1 - 0.133333333333333*G4_1_0 - 0.266666666666666*G4_1_1 - 0.133333333333333*G4_2_0 - 0.266666666666666*G4_2_1 - 0.133333333333333*G7_0_1 - 0.133333333333333*G7_1_0 - 0.266666666666666*G7_1_1 - 0.133333333333333*G7_2_0 - 0.266666666666666*G7_2_1; + A[1013] = 0.133333333333333*G1_0_2 + 0.133333333333333*G1_1_0 + 0.133333333333333*G1_1_1 + 0.133333333333333*G1_2_0 + 0.133333333333333*G1_2_1 + 0.133333333333333*G4_0_2 + 0.133333333333333*G4_1_0 + 0.133333333333333*G4_1_1 + 0.133333333333333*G4_2_0 + 0.133333333333333*G4_2_1 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_0 + 0.133333333333333*G7_1_1 + 0.133333333333333*G7_2_0 + 0.133333333333333*G7_2_1; + A[1014] = 0.133333333333333*G1_0_1 + 0.133333333333333*G1_1_0 + 0.133333333333333*G1_1_2 + 0.133333333333333*G1_2_0 + 0.133333333333333*G1_2_2 + 0.133333333333333*G4_0_1 + 0.133333333333333*G4_1_0 + 0.133333333333333*G4_1_2 + 0.133333333333333*G4_2_0 + 0.133333333333333*G4_2_2 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_1_0 + 0.133333333333333*G7_1_2 + 0.133333333333333*G7_2_0 + 0.133333333333333*G7_2_2; + A[1015] = 0.266666666666666*G1_0_0 + 0.133333333333333*G1_0_1 + 0.133333333333333*G1_0_2 + 0.133333333333333*G1_1_0 + 0.266666666666666*G1_1_1 + 0.266666666666666*G1_1_2 + 0.133333333333333*G1_2_0 + 0.266666666666666*G1_2_1 + 0.266666666666666*G1_2_2 + 0.266666666666666*G4_0_0 + 0.133333333333333*G4_0_1 + 0.133333333333333*G4_0_2 + 0.133333333333333*G4_1_0 + 0.266666666666666*G4_1_1 + 0.266666666666666*G4_1_2 + 0.133333333333333*G4_2_0 + 0.266666666666666*G4_2_1 + 0.266666666666666*G4_2_2 + 0.266666666666666*G7_0_0 + 0.133333333333333*G7_0_1 + 0.133333333333333*G7_0_2 + 0.133333333333333*G7_1_0 + 0.266666666666666*G7_1_1 + 0.266666666666666*G7_1_2 + 0.133333333333333*G7_2_0 + 0.266666666666666*G7_2_1 + 0.266666666666666*G7_2_2; + A[1016] = 0.0; + A[1017] = 0.0; + A[1018] = 0.0; + A[1019] = 0.0; + A[1020] = 0.0; + A[1021] = 0.0; + A[1022] = 0.0; + A[1023] = 0.0; + A[1024] = 0.0; + A[1025] = 0.0; + A[1026] = 0.0; + A[1027] = 0.0; + A[1028] = 0.0; + A[1029] = 0.0; + A[1030] = 0.0; + A[1031] = 0.0; + A[1032] = 0.0; + A[1033] = 0.0; + A[1034] = 0.0; + A[1035] = 0.0; + A[1036] = 0.0; + A[1037] = 0.0; + A[1038] = 0.0; + A[1039] = 0.0; + A[1040] = 0.0; + A[1041] = 0.0; + A[1042] = 0.0; + A[1043] = 0.0; + A[1044] = 0.0; + A[1045] = 0.0; + A[1046] = 0.0; + A[1047] = 0.0; + A[1048] = 0.0; + A[1049] = 0.0; + A[1050] = 0.0166666666666667*G0_; + A[1051] = 0.00833333333333333*G0_; + A[1052] = 0.00833333333333333*G0_; + A[1053] = 0.00833333333333333*G0_; + A[1054] = 0.0; + A[1055] = 0.0; + A[1056] = 0.0; + A[1057] = 0.0; + A[1058] = 0.0; + A[1059] = 0.0; + A[1060] = 0.0; + A[1061] = 0.0; + A[1062] = 0.0; + A[1063] = 0.0; + A[1064] = 0.0; + A[1065] = 0.0; + A[1066] = 0.0; + A[1067] = 0.0; + A[1068] = 0.0; + A[1069] = 0.0; + A[1070] = 0.0; + A[1071] = 0.0; + A[1072] = 0.0; + A[1073] = 0.0; + A[1074] = 0.0; + A[1075] = 0.0; + A[1076] = 0.0; + A[1077] = 0.0; + A[1078] = 0.0; + A[1079] = 0.0; + A[1080] = 0.0; + A[1081] = 0.0; + A[1082] = 0.0; + A[1083] = 0.0; + A[1084] = 0.00833333333333333*G0_; + A[1085] = 0.0166666666666667*G0_; + A[1086] = 0.00833333333333333*G0_; + A[1087] = 0.00833333333333333*G0_; + A[1088] = 0.0; + A[1089] = 0.0; + A[1090] = 0.0; + A[1091] = 0.0; + A[1092] = 0.0; + A[1093] = 0.0; + A[1094] = 0.0; + A[1095] = 0.0; + A[1096] = 0.0; + A[1097] = 0.0; + A[1098] = 0.0; + A[1099] = 0.0; + A[1100] = 0.0; + A[1101] = 0.0; + A[1102] = 0.0; + A[1103] = 0.0; + A[1104] = 0.0; + A[1105] = 0.0; + A[1106] = 0.0; + A[1107] = 0.0; + A[1108] = 0.0; + A[1109] = 0.0; + A[1110] = 0.0; + A[1111] = 0.0; + A[1112] = 0.0; + A[1113] = 0.0; + A[1114] = 0.0; + A[1115] = 0.0; + A[1116] = 0.0; + A[1117] = 0.0; + A[1118] = 0.00833333333333333*G0_; + A[1119] = 0.00833333333333333*G0_; + A[1120] = 0.0166666666666667*G0_; + A[1121] = 0.00833333333333333*G0_; + A[1122] = 0.0; + A[1123] = 0.0; + A[1124] = 0.0; + A[1125] = 0.0; + A[1126] = 0.0; + A[1127] = 0.0; + A[1128] = 0.0; + A[1129] = 0.0; + A[1130] = 0.0; + A[1131] = 0.0; + A[1132] = 0.0; + A[1133] = 0.0; + A[1134] = 0.0; + A[1135] = 0.0; + A[1136] = 0.0; + A[1137] = 0.0; + A[1138] = 0.0; + A[1139] = 0.0; + A[1140] = 0.0; + A[1141] = 0.0; + A[1142] = 0.0; + A[1143] = 0.0; + A[1144] = 0.0; + A[1145] = 0.0; + A[1146] = 0.0; + A[1147] = 0.0; + A[1148] = 0.0; + A[1149] = 0.0; + A[1150] = 0.0; + A[1151] = 0.0; + A[1152] = 0.00833333333333333*G0_; + A[1153] = 0.00833333333333333*G0_; + A[1154] = 0.00833333333333333*G0_; + A[1155] = 0.0166666666666667*G0_; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stokespreconditioner_form_0: public ufc::form +{ +public: + + /// Constructor + stokespreconditioner_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stokespreconditioner_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "55da8206021e2c10190cf35b83aa9ca97a1ada78eb5f2f8ce767bb97e2f4731001a9d030e5378186cfc42bc5ac3278ae3525165ab737b02e94a691cc7fd116d9"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokespreconditioner_finite_element_3(); + break; + } + case 1: + { + return new stokespreconditioner_finite_element_3(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokespreconditioner_dofmap_3(); + break; + } + case 1: + { + return new stokespreconditioner_dofmap_3(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stokespreconditioner_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace StokesPreconditioner +{ + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokespreconditioner_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokespreconditioner_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new stokespreconditioner_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new stokespreconditioner_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/stokes-iterative/cpp/StokesPreconditioner.ufl b/demo/documented/stokes-iterative/cpp/StokesPreconditioner.ufl new file mode 100644 index 0000000..d2c429f --- /dev/null +++ b/demo/documented/stokes-iterative/cpp/StokesPreconditioner.ufl @@ -0,0 +1,35 @@ +# Copyright (c) 2011 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2011-01-05 +# Last changed: +# +# The bilinear form a(u, v) for a Stokes preconditioner matrix +# (Taylor-Hood elements). +# +# Compile this form with FFC: ffc -l dolfin StokesPreconditioner.ufl + +P2 = VectorElement("Lagrange", tetrahedron, 2) +P1 = FiniteElement("Lagrange", tetrahedron, 1) +TH = P2 * P1 + +(u, p) = TrialFunctions(TH) +(v, q) = TestFunctions(TH) + +f = Coefficient(P2) + +a = inner(grad(u), grad(v))*dx + p*q*dx diff --git a/demo/documented/stokes-iterative/cpp/compile.log b/demo/documented/stokes-iterative/cpp/compile.log new file mode 100644 index 0000000..9e79fd7 --- /dev/null +++ b/demo/documented/stokes-iterative/cpp/compile.log @@ -0,0 +1,2677 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form StokesPreconditioner + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Mixed, CG1(?)>' + Unique sub elements: 'Mixed, CG1(?)>, Vector<3 x CG2(?)>, CG + 1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.043849 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 4 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 4 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 1156 entries computed in 0.00303 seconds + Shape of reference tensor: (34, 34) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00392 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00313 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00311 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00319 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.0031 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00435 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00327 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00375 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00346 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0745051 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000211 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 4 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 4 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 1.96972 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000552177 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./StokesPreconditioner.h. + +Compiler stage 5 finished in 0.00318408 seconds. + +FFC finished in 2.09242 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Stokes + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Mixed, CG1(?)>' + Unique sub elements: 'Mixed, CG1(?)>, Vector<3 x CG2(?)>, CG + 1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 3 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'Mixed, CG1(?)>, Vector<3 x CG2(?)>' + Unique sub elements: 'Mixed, CG1(?)>, Vector<3 x CG2(?)>, CG + 1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.076637 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 4 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 4 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 3468 entries computed in 0.00282 seconds + Shape of reference tensor: (34, 34, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 3468 entries computed in 0.00478 seconds + Shape of reference tensor: (34, 34, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 3468 entries computed in 0.00292 seconds + Shape of reference tensor: (34, 34, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 3468 entries computed in 0.00291 seconds + Shape of reference tensor: (34, 34, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 3468 entries computed in 0.00296 seconds + Shape of reference tensor: (34, 34, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 3468 entries computed in 0.00285 seconds + Shape of reference tensor: (34, 34, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00333 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00696 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00644 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00716 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00597 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00496 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00345 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00345 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 10404 entries computed in 0.00368 seconds + Shape of reference tensor: (34, 34, 3, 3) + Primary multi index: rank = 2 dims = [34, 34] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [0, 26], [0, 27], [0, 28], [0, 29], [0, 30], [0, 31], [0, 32], [0, 33], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [1, 26], [1, 27], [1, 28], [1, 29], [1, 30], [1, 31], [1, 32], [1, 33], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [2, 26], [2, 27], [2, 28], [2, 29], [2, 30], [2, 31], [2, 32], [2, 33], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [3, 26], [3, 27], [3, 28], [3, 29], [3, 30], [3, 31], [3, 32], [3, 33], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [4, 26], [4, 27], [4, 28], [4, 29], [4, 30], [4, 31], [4, 32], [4, 33], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [5, 26], [5, 27], [5, 28], [5, 29], [5, 30], [5, 31], [5, 32], [5, 33], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [6, 26], [6, 27], [6, 28], [6, 29], [6, 30], [6, 31], [6, 32], [6, 33], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [7, 26], [7, 27], [7, 28], [7, 29], [7, 30], [7, 31], [7, 32], [7, 33], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [8, 26], [8, 27], [8, 28], [8, 29], [8, 30], [8, 31], [8, 32], [8, 33], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [9, 26], [9, 27], [9, 28], [9, 29], [9, 30], [9, 31], [9, 32], [9, 33], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [10, 26], [10, 27], [10, 28], [10, 29], [10, 30], [10, 31], [10, 32], [10, 33], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [11, 26], [11, 27], [11, 28], [11, 29], [11, 30], [11, 31], [11, 32], [11, 33], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [12, 26], [12, 27], [12, 28], [12, 29], [12, 30], [12, 31], [12, 32], [12, 33], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [13, 26], [13, 27], [13, 28], [13, 29], [13, 30], [13, 31], [13, 32], [13, 33], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25], [14, 26], [14, 27], [14, 28], [14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [15, 0], [15, 1], [15, 2], [15, 3], [15, 4], [15, 5], [15, 6], [15, 7], [15, 8], [15, 9], [15, 10], [15, 11], [15, 12], [15, 13], [15, 14], [15, 15], [15, 16], [15, 17], [15, 18], [15, 19], [15, 20], [15, 21], [15, 22], [15, 23], [15, 24], [15, 25], [15, 26], [15, 27], [15, 28], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [16, 0], [16, 1], [16, 2], [16, 3], [16, 4], [16, 5], [16, 6], [16, 7], [16, 8], [16, 9], [16, 10], [16, 11], [16, 12], [16, 13], [16, 14], [16, 15], [16, 16], [16, 17], [16, 18], [16, 19], [16, 20], [16, 21], [16, 22], [16, 23], [16, 24], [16, 25], [16, 26], [16, 27], [16, 28], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [17, 0], [17, 1], [17, 2], [17, 3], [17, 4], [17, 5], [17, 6], [17, 7], [17, 8], [17, 9], [17, 10], [17, 11], [17, 12], [17, 13], [17, 14], [17, 15], [17, 16], [17, 17], [17, 18], [17, 19], [17, 20], [17, 21], [17, 22], [17, 23], [17, 24], [17, 25], [17, 26], [17, 27], [17, 28], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], [18, 0], [18, 1], [18, 2], [18, 3], [18, 4], [18, 5], [18, 6], [18, 7], [18, 8], [18, 9], [18, 10], [18, 11], [18, 12], [18, 13], [18, 14], [18, 15], [18, 16], [18, 17], [18, 18], [18, 19], [18, 20], [18, 21], [18, 22], [18, 23], [18, 24], [18, 25], [18, 26], [18, 27], [18, 28], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [19, 0], [19, 1], [19, 2], [19, 3], [19, 4], [19, 5], [19, 6], [19, 7], [19, 8], [19, 9], [19, 10], [19, 11], [19, 12], [19, 13], [19, 14], [19, 15], [19, 16], [19, 17], [19, 18], [19, 19], [19, 20], [19, 21], [19, 22], [19, 23], [19, 24], [19, 25], [19, 26], [19, 27], [19, 28], [19, 29], [19, 30], [19, 31], [19, 32], [19, 33], [20, 0], [20, 1], [20, 2], [20, 3], [20, 4], [20, 5], [20, 6], [20, 7], [20, 8], [20, 9], [20, 10], [20, 11], [20, 12], [20, 13], [20, 14], [20, 15], [20, 16], [20, 17], [20, 18], [20, 19], [20, 20], [20, 21], [20, 22], [20, 23], [20, 24], [20, 25], [20, 26], [20, 27], [20, 28], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [21, 0], [21, 1], [21, 2], [21, 3], [21, 4], [21, 5], [21, 6], [21, 7], [21, 8], [21, 9], [21, 10], [21, 11], [21, 12], [21, 13], [21, 14], [21, 15], [21, 16], [21, 17], [21, 18], [21, 19], [21, 20], [21, 21], [21, 22], [21, 23], [21, 24], [21, 25], [21, 26], [21, 27], [21, 28], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [22, 0], [22, 1], [22, 2], [22, 3], [22, 4], [22, 5], [22, 6], [22, 7], [22, 8], [22, 9], [22, 10], [22, 11], [22, 12], [22, 13], [22, 14], [22, 15], [22, 16], [22, 17], [22, 18], [22, 19], [22, 20], [22, 21], [22, 22], [22, 23], [22, 24], [22, 25], [22, 26], [22, 27], [22, 28], [22, 29], [22, 30], [22, 31], [22, 32], [22, 33], [23, 0], [23, 1], [23, 2], [23, 3], [23, 4], [23, 5], [23, 6], [23, 7], [23, 8], [23, 9], [23, 10], [23, 11], [23, 12], [23, 13], [23, 14], [23, 15], [23, 16], [23, 17], [23, 18], [23, 19], [23, 20], [23, 21], [23, 22], [23, 23], [23, 24], [23, 25], [23, 26], [23, 27], [23, 28], [23, 29], [23, 30], [23, 31], [23, 32], [23, 33], [24, 0], [24, 1], [24, 2], [24, 3], [24, 4], [24, 5], [24, 6], [24, 7], [24, 8], [24, 9], [24, 10], [24, 11], [24, 12], [24, 13], [24, 14], [24, 15], [24, 16], [24, 17], [24, 18], [24, 19], [24, 20], [24, 21], [24, 22], [24, 23], [24, 24], [24, 25], [24, 26], [24, 27], [24, 28], [24, 29], [24, 30], [24, 31], [24, 32], [24, 33], [25, 0], [25, 1], [25, 2], [25, 3], [25, 4], [25, 5], [25, 6], [25, 7], [25, 8], [25, 9], [25, 10], [25, 11], [25, 12], [25, 13], [25, 14], [25, 15], [25, 16], [25, 17], [25, 18], [25, 19], [25, 20], [25, 21], [25, 22], [25, 23], [25, 24], [25, 25], [25, 26], [25, 27], [25, 28], [25, 29], [25, 30], [25, 31], [25, 32], [25, 33], [26, 0], [26, 1], [26, 2], [26, 3], [26, 4], [26, 5], [26, 6], [26, 7], [26, 8], [26, 9], [26, 10], [26, 11], [26, 12], [26, 13], [26, 14], [26, 15], [26, 16], [26, 17], [26, 18], [26, 19], [26, 20], [26, 21], [26, 22], [26, 23], [26, 24], [26, 25], [26, 26], [26, 27], [26, 28], [26, 29], [26, 30], [26, 31], [26, 32], [26, 33], [27, 0], [27, 1], [27, 2], [27, 3], [27, 4], [27, 5], [27, 6], [27, 7], [27, 8], [27, 9], [27, 10], [27, 11], [27, 12], [27, 13], [27, 14], [27, 15], [27, 16], [27, 17], [27, 18], [27, 19], [27, 20], [27, 21], [27, 22], [27, 23], [27, 24], [27, 25], [27, 26], [27, 27], [27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [28, 0], [28, 1], [28, 2], [28, 3], [28, 4], [28, 5], [28, 6], [28, 7], [28, 8], [28, 9], [28, 10], [28, 11], [28, 12], [28, 13], [28, 14], [28, 15], [28, 16], [28, 17], [28, 18], [28, 19], [28, 20], [28, 21], [28, 22], [28, 23], [28, 24], [28, 25], [28, 26], [28, 27], [28, 28], [28, 29], [28, 30], [28, 31], [28, 32], [28, 33], [29, 0], [29, 1], [29, 2], [29, 3], [29, 4], [29, 5], [29, 6], [29, 7], [29, 8], [29, 9], [29, 10], [29, 11], [29, 12], [29, 13], [29, 14], [29, 15], [29, 16], [29, 17], [29, 18], [29, 19], [29, 20], [29, 21], [29, 22], [29, 23], [29, 24], [29, 25], [29, 26], [29, 27], [29, 28], [29, 29], [29, 30], [29, 31], [29, 32], [29, 33], [30, 0], [30, 1], [30, 2], [30, 3], [30, 4], [30, 5], [30, 6], [30, 7], [30, 8], [30, 9], [30, 10], [30, 11], [30, 12], [30, 13], [30, 14], [30, 15], [30, 16], [30, 17], [30, 18], [30, 19], [30, 20], [30, 21], [30, 22], [30, 23], [30, 24], [30, 25], [30, 26], [30, 27], [30, 28], [30, 29], [30, 30], [30, 31], [30, 32], [30, 33], [31, 0], [31, 1], [31, 2], [31, 3], [31, 4], [31, 5], [31, 6], [31, 7], [31, 8], [31, 9], [31, 10], [31, 11], [31, 12], [31, 13], [31, 14], [31, 15], [31, 16], [31, 17], [31, 18], [31, 19], [31, 20], [31, 21], [31, 22], [31, 23], [31, 24], [31, 25], [31, 26], [31, 27], [31, 28], [31, 29], [31, 30], [31, 31], [31, 32], [31, 33], [32, 0], [32, 1], [32, 2], [32, 3], [32, 4], [32, 5], [32, 6], [32, 7], [32, 8], [32, 9], [32, 10], [32, 11], [32, 12], [32, 13], [32, 14], [32, 15], [32, 16], [32, 17], [32, 18], [32, 19], [32, 20], [32, 21], [32, 22], [32, 23], [32, 24], [32, 25], [32, 26], [32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32], [32, 33], [33, 0], [33, 1], [33, 2], [33, 3], [33, 4], [33, 5], [33, 6], [33, 7], [33, 8], [33, 9], [33, 10], [33, 11], [33, 12], [33, 13], [33, 14], [33, 15], [33, 16], [33, 17], [33, 18], [33, 19], [33, 20], [33, 21], [33, 22], [33, 23], [33, 24], [33, 25], [33, 26], [33, 27], [33, 28], [33, 29], [33, 30], [33, 31], [33, 32], [33, 33]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1020 entries computed in 0.00555 seconds + Shape of reference tensor: (34, 30) + Primary multi index: rank = 1 dims = [34] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]] + Secondary multi index: rank = 1 dims = [30] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [30] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1020 entries computed in 0.00589 seconds + Shape of reference tensor: (34, 30) + Primary multi index: rank = 1 dims = [34] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]] + Secondary multi index: rank = 1 dims = [30] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [30] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1020 entries computed in 0.00432 seconds + Shape of reference tensor: (34, 30) + Primary multi index: rank = 1 dims = [34] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]] + Secondary multi index: rank = 1 dims = [30] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [30] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.170998 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000327826 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 4 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 4 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 1.95159 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.0005548 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Stokes.h. + +Compiler stage 5 finished in 0.00262094 seconds. + +FFC finished in 2.20312 seconds. diff --git a/demo/documented/stokes-iterative/cpp/documentation.rst b/demo/documented/stokes-iterative/cpp/documentation.rst new file mode 100644 index 0000000..c2bb76a --- /dev/null +++ b/demo/documented/stokes-iterative/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the DOLFIN iterative Stokes demo + +.. _demo_pde_iterative_stokes_python_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/stokes-iterative/cpp/main.cpp b/demo/documented/stokes-iterative/cpp/main.cpp new file mode 100644 index 0000000..86fa6d1 --- /dev/null +++ b/demo/documented/stokes-iterative/cpp/main.cpp @@ -0,0 +1,184 @@ +// Copyright (C) 2011 Garth N. Wells +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2011-01-05 +// Last changed: 2012-07-05 +// +// This demo solves the Stokes equations using an iterative linear solver. +// Its also demonstrates how to use a precontioner matrix that is different +// from the matrix being solved. +// +// Note that the sign for the pressure has been flipped for symmetry. +// + +#include +#include "Stokes.h" +#include "StokesPreconditioner.h" + +using namespace dolfin; + +#if defined(HAS_PETSC) || defined(HAS_TRILINOS) + +int main() +{ + // Sub domain for left-hand side + class Left : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return x[0] < DOLFIN_EPS; + } + }; + + // Sub domain for right-hand side + class Right : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return std::abs(1.0 - x[0]) < DOLFIN_EPS; + } + }; + + // Sub domain for top and bottom + class TopBottom : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return std::abs(1.0 - x[1]) < DOLFIN_EPS || std::abs(x[1]) < DOLFIN_EPS; + } + }; + + // Function for inflow boundary condition for velocity + class Inflow : public Expression + { + public: + + Inflow() : Expression(3) {} + + void eval(Array& values, const Array& x) const + { + values[0] = -sin(x[1]*DOLFIN_PI); + values[1] = 0.0; + values[2] = 0.0; + } + + }; + + // Check for available preconditioners + if (!has_krylov_solver_preconditioner("amg")) + { + info("Sorry, this demo is only available when DOLFIN is compiled with AMG " + "preconditioner, Hypre or ML."); + return 0; + } + + // Check for available Krylov solvers + std::string krylov_method; + if (has_krylov_solver_method("minres")) + krylov_method = "minres"; + else if (has_krylov_solver_method("tfqmr")) + krylov_method = "tfqmr"; + else + { + info("Default linear algebra backend was not compiled with MINRES or TFQMR " + "Krylov subspace method. Terminating."); + return 0; + } + + // Create mesh + UnitCubeMesh mesh(16, 16, 16); + + // Create function space and subspaces + Stokes::FunctionSpace W(mesh); + SubSpace W0(W, 0); + SubSpace W1(W, 1); + + // Set-up infow boundary condition + Inflow inflow_prfofile; + Right right; + DirichletBC inflow(W0, inflow_prfofile, right); + + // Set-up outflow pressure boundary condition + Constant zero(0.0); + Left left; + DirichletBC outflow(W1, zero, left); + + // Set-up no-slip boundary condition + Constant zero_vector(0.0, 0.0, 0.0); + TopBottom top_bottom; + DirichletBC noslip(W0, zero_vector, top_bottom); + + // Collect boundary conditions + std::vector bcs; + bcs.push_back(&inflow); bcs.push_back(&outflow); bcs.push_back(&noslip); + + // Create forms for the Stokes problem + Constant f(0.0, 0.0, 0.0); + Stokes::BilinearForm a(W, W); + Stokes::LinearForm L(W); + L.f = f; + + // Create solution function + Function w(W); + + // Create form for the Stokes preconditioner + StokesPreconditioner::BilinearForm a_P(W, W); + + // Assemble precondtioner system (P, b_dummy) + std::shared_ptr P(new Matrix); + Vector b; + assemble_system(*P, b, a_P, L, bcs); + + // Assemble Stokes system (A, b) + std::shared_ptr A(new Matrix); + assemble_system(*A, b, a, L, bcs); + + // Create Krylov solver with specified method and preconditioner + KrylovSolver solver(krylov_method, "amg"); + + // Set operator (A) and precondtioner matrix (P) + solver.set_operators(A, P); + + // Solve system + solver.solve(*w.vector(), b); + cout << "Soln norm: " << w.vector()->norm("l2") << endl; + + // Split solution + Function u = w[0]; + Function p = w[1]; + + // Save solution in VTK format + File ufile_pvd("velocity.pvd"); + ufile_pvd << u; + File pfile_pvd("pressure.pvd"); + pfile_pvd << p; + + // Plot solution + plot(u); + plot(p); + interactive(); +} + +#else + +int main() +{ + info("DOLFIN has not been configured with Trilinos or PETSc. Exiting."); + return 0; +} + +#endif diff --git a/demo/documented/stokes-iterative/python/demo_stokes-iterative.py b/demo/documented/stokes-iterative/python/demo_stokes-iterative.py new file mode 100644 index 0000000..7a305ee --- /dev/null +++ b/demo/documented/stokes-iterative/python/demo_stokes-iterative.py @@ -0,0 +1,114 @@ +"""This demo solves the Stokes equations using an iterative linear solver. +Note that the sign for the pressure has been flipped for symmetry.""" + +# Copyright (C) 2010 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2010-08-08 +# Last changed: 2010-08-08 + +# Begin demo + +from dolfin import * + +# Test for PETSc or Epetra +if not has_linear_algebra_backend("PETSc") and not has_linear_algebra_backend("Epetra"): + info("DOLFIN has not been configured with Trilinos or PETSc. Exiting.") + exit() + +if not has_krylov_solver_preconditioner("amg"): + info("Sorry, this demo is only available when DOLFIN is compiled with AMG " + "preconditioner, Hypre or ML.") + exit() + +if has_krylov_solver_method("minres"): + krylov_method = "minres" +elif has_krylov_solver_method("tfqmr"): + krylov_method = "tfqmr" +else: + info("Default linear algebra backend was not compiled with MINRES or TFQMR " + "Krylov subspace method. Terminating.") + exit() + +# Load mesh +mesh = UnitCubeMesh(16, 16, 16) + +# Define function spaces +V = VectorFunctionSpace(mesh, "CG", 2) +Q = FunctionSpace(mesh, "CG", 1) +W = V * Q + +# Boundaries +def right(x, on_boundary): return x[0] > (1.0 - DOLFIN_EPS) +def left(x, on_boundary): return x[0] < DOLFIN_EPS +def top_bottom(x, on_boundary): + return x[1] > 1.0 - DOLFIN_EPS or x[1] < DOLFIN_EPS + +# No-slip boundary condition for velocity +noslip = Constant((0.0, 0.0, 0.0)) +bc0 = DirichletBC(W.sub(0), noslip, top_bottom) + +# Inflow boundary condition for velocity +inflow = Expression(("-sin(x[1]*pi)", "0.0", "0.0")) +bc1 = DirichletBC(W.sub(0), inflow, right) + +# Boundary condition for pressure at outflow +zero = Constant(0) +bc2 = DirichletBC(W.sub(1), zero, left) + +# Collect boundary conditions +bcs = [bc0, bc1, bc2] + +# Define variational problem +(u, p) = TrialFunctions(W) +(v, q) = TestFunctions(W) +f = Constant((0.0, 0.0, 0.0)) +a = inner(grad(u), grad(v))*dx + div(v)*p*dx + q*div(u)*dx +L = inner(f, v)*dx + +# Form for use in constructing preconditioner matrix +b = inner(grad(u), grad(v))*dx + p*q*dx + +# Assemble system +A, bb = assemble_system(a, L, bcs) + +# Assemble preconditioner system +P, btmp = assemble_system(b, L, bcs) + +# Create Krylov solver and AMG preconditioner +solver = KrylovSolver(krylov_method, "amg") + +# Associate operator (A) and preconditioner matrix (P) +solver.set_operators(A, P) + +# Solve +U = Function(W) +solver.solve(U.vector(), bb) + +# Get sub-functions +u, p = U.split() + +# Save solution in VTK format +ufile_pvd = File("velocity.pvd") +ufile_pvd << u +pfile_pvd = File("pressure.pvd") +pfile_pvd << p + +# Plot solution +plot(u) +plot(p) +interactive() diff --git a/demo/documented/stokes-iterative/python/documentation.rst b/demo/documented/stokes-iterative/python/documentation.rst new file mode 100644 index 0000000..274e7a5 --- /dev/null +++ b/demo/documented/stokes-iterative/python/documentation.rst @@ -0,0 +1,211 @@ +.. Documentation for the DOLFIN iterative Stokes demo + +.. _demo_pde_iterative_stokes_python_documentation: + +Stokes equations +================ + +This demo is implemented in a single Python file, +:download:`demo_stokes-iterative.py`, which contains both the +variational forms and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +This description goes through the implementation (in +:download:`demo_stokes-iterative.py`) of a solver for the above +described Stokes equations. Some of the standard steps will be +described in less detail, so before reading this, we suggest that you +are familiarize with the :ref:`Poisson demo +` (for the very basics) and the +:ref:`Mixed Poisson demo +` (for how to deal with +mixed function spaces). Also, the :ref:`Navier--Stokes demo +` illustrates how to use +iterative solvers in a more implicit manner (typically only suitable +for positive-definite systems of equations). + +The Stokes equations as formulated above result in a system of linear +equations that is not positive-definite. Standard iterative linear +solvers typically fail to converge for such systems. Some care must +therefore be taken in preconditioning the systems of +equations. Moreover, not all of the linear algebra backends support +this. We therefore start by checking that either "PETSc" or "Epetra" +(from Trilinos) is available. We also try to pick MINRES Krylov +subspace method which is suitable for symmetric indefinite problems. +If not available, costly QMR method is choosen. + +.. code-block:: python + + from dolfin import * + + # Test for PETSc or Epetra + if not has_linear_algebra_backend("PETSc") and not has_linear_algebra_backend("Epetra"): + info("DOLFIN has not been configured with Trilinos or PETSc. Exiting.") + exit() + + if not has_krylov_solver_preconditioner("amg"): + info("Sorry, this demo is only available when DOLFIN is compiled with AMG " + "preconditioner, Hypre or ML.") + exit() + + if has_krylov_solver_method("minres"): + krylov_method = "minres" + elif has_krylov_solver_method("tfqmr"): + krylov_method = "tfqmr" + else: + info("Default linear algebra backend was not compiled with MINRES or TFQMR " + "Krylov subspace method. Terminating.") + exit() + +Next, we define the mesh (a :py:class:`UnitCubeMesh +`) and a :py:class:`MixedFunctionSpace +` composed of a +:py:class:`VectorFunctionSpace +` of continuous +piecewise quadratics and a :py:class:`FunctionSpace +` of continuous +piecewise linears. (This mixed finite element space is known as the +Taylor--Hood elements and is a stable, standard element pair for the +Stokes equations.) + +.. code-block:: python + + # Load mesh + mesh = UnitCubeMesh(16, 16, 16) + + # Define function spaces + V = VectorFunctionSpace(mesh, "CG", 2) + Q = FunctionSpace(mesh, "CG", 1) + W = V * Q + +Next, we define the boundary conditions. + +.. code-block:: python + + # Boundaries + def right(x, on_boundary): return x[0] > (1.0 - DOLFIN_EPS) + def left(x, on_boundary): return x[0] < DOLFIN_EPS + def top_bottom(x, on_boundary): + return x[1] > 1.0 - DOLFIN_EPS or x[1] < DOLFIN_EPS + + # No-slip boundary condition for velocity + noslip = Constant((0.0, 0.0, 0.0)) + bc0 = DirichletBC(W.sub(0), noslip, top_bottom) + + # Inflow boundary condition for velocity + inflow = Expression(("-sin(x[1]*pi)", "0.0", "0.0")) + bc1 = DirichletBC(W.sub(0), inflow, right) + + # Boundary condition for pressure at outflow + zero = Constant(0) + bc2 = DirichletBC(W.sub(1), zero, left) + + # Collect boundary conditions + bcs = [bc0, bc1, bc2] + +The bilinear and linear forms corresponding to the weak mixed +formulation of the Stokes equations are defined as follows: + +.. code-block:: python + + # Define variational problem + (u, p) = TrialFunctions(W) + (v, q) = TestFunctions(W) + f = Constant((0.0, 0.0, 0.0)) + a = inner(grad(u), grad(v))*dx + div(v)*p*dx + q*div(u)*dx + L = inner(f, v)*dx + + +We can now use the same :py:class:`TrialFunctions +` and +:py:class:`TestFunctions ` to +define the preconditioner matrix. We first define the form +corresponding to the expression for the preconditioner (given in the +initial description above): + +.. code-block:: python + + # Form for use in constructing preconditioner matrix + b = inner(grad(u), grad(v))*dx + p*q*dx + +Next, we want to assemble the matrix corresponding to the bilinear +form and the vector corresponding to the linear form of the Stokes +equations. Moreover, we want to apply the specified boundary +conditions to the linear system. However, :py:func:`assembling +` the matrix and vector and applying a +:py:func:`DirichletBC ` separately +will possibly result in a non-symmetric system of equations. Instead, +we can use the :py:func:`assemble_system +` function to assemble both the +matrix ``A``, the vector ``bb``, and apply the boundary conditions +``bcs`` in a symmetric fashion: + +.. code-block:: python + + # Assemble system + A, bb = assemble_system(a, L, bcs) + +We do the same for the preconditioner matrix ``P`` using the linear +form ``L`` as a dummy form: + +.. code-block:: python + + # Assemble preconditioner system + P, btmp = assemble_system(b, L, bcs) + +Next, we specify the iterative solver we want to use, in this case a +:py:class:`KrylovSolver `. We associate the +left-hand side matrix ``A`` and the preconditioner matrix ``P`` with +the solver by calling :py:func:`solver.set_operators +`. + +.. code-block:: python + + # Create Krylov solver and AMG preconditioner + solver = KrylovSolver(krylov_method, "amg") + + # Associate operator (A) and preconditioner matrix (P) + solver.set_operators(A, P) + +We are now almost ready to solve the linear system of equations. It +remains to specify a :py:class:`Vector ` for +storing the result. For easy manipulation later, we can define a +:py:class:`Function ` and use the +vector associated with this Function. The call to +:py:func:`solver.solve ` then looks as +follows + +.. code-block:: python + + # Solve + U = Function(W) + solver.solve(U.vector(), bb) + +Finally, we can play with the result in different ways: + +.. code-block:: python + + # Get sub-functions + u, p = U.split() + + # Save solution in VTK format + ufile_pvd = File("velocity.pvd") + ufile_pvd << u + pfile_pvd = File("pressure.pvd") + pfile_pvd << p + + # Plot solution + plot(u) + plot(p) + interactive() + + + +Complete code +------------- + +.. literalinclude:: demo_stokes-iterative.py + :start-after: # Begin demo diff --git a/demo/documented/stokes-mini/common.txt b/demo/documented/stokes-mini/common.txt new file mode 100644 index 0000000..0bd4a03 --- /dev/null +++ b/demo/documented/stokes-mini/common.txt @@ -0,0 +1,71 @@ + +This demo illustrates how to: + +* Read mesh and subdomains from file +* Use mixed function spaces +* Use enriched function spaces + +The solution for :math:`u` and :math:`p` in this demo will look as follows: + +.. image:: ../plot_u.png + :scale: 75 % + +.. image:: ../plot_p.png + :scale: 75 % + +Equation and problem definition +------------------------------- + + +Strong formulation: + +.. math:: + + - \nabla \cdot (\nabla u + p I) &= f \quad {\rm in} \ \Omega, \\ + \nabla \cdot u &= 0 \quad {\rm in} \ \Omega. \\ + +.. note:: + The sign of the pressure has been flipped from the classical definition. This is done in order to have a symmetric (but not positive-definite) system of equations rather than a non-symmetric (but positive-definite) system of equations. + +A typical set of boundary conditions on the boundary :math:`\partial \Omega = \Gamma_{D} \cup \Gamma_{N}` can be: + +.. math:: + + u &= u_0 \quad {\rm on} \ \Gamma_{D}, \\ + \nabla u \cdot n + p n &= g \quad\;\; {\rm on} \ \Gamma_{N}. \\ + +The Stokes equations can easily be formulated in a mixed variational form; that is, a form where the two variables, the velocity and the pressure, are approximated simultaneously. Using the abstract framework, we have the problem: find :math:`(u, p) \in W`, such that + +.. math:: + + a((u, p), (v, q)) = L((v, q)) + +for all :math:`(v, q) \in W`, where + +.. math:: + + a((u, p), (v, q)) + &= \int_{\Omega} [\nabla u \cdot \nabla v + + \nabla \cdot v \ p + + \nabla \cdot u \ q] \, {\rm d} x, \\ + L((v, q)) + &= \int_{\Omega} f \cdot v \, {\rm d} x + + \int_{\partial \Omega_N} g \cdot v \, {\rm d} s. \\ + +The space :math:`W` should be a mixed (product) function space: :math:`W = V \times Q` such that :math:`u \in V \, {\rm and} \, q \in Q`. + +In this demo, we shall consider the following definitions of the input functions, the domain, and the boundaries: + + +* :math:`\Omega = [0,1]\times[0, 1] \backslash {\rm dolphin}` (a unit square) +* :math:`\Gamma_D =` +* :math:`\Gamma_N =` +* :math:`u_0 = (- \sin(\pi x_1), 0.0) \, {\rm for} \, x_0 = 1 \, {\rm and} \, u_0 = (0.0, 0.0)` otherwise +* :math:`f = (0.0, 0.0)` +* :math:`g = (0.0, 0.0)` + + + + + + diff --git a/demo/documented/stokes-mini/cpp/README b/demo/documented/stokes-mini/cpp/README new file mode 100644 index 0000000..3a17715 --- /dev/null +++ b/demo/documented/stokes-mini/cpp/README @@ -0,0 +1,2 @@ +There is as yet no C++ version of this demo. +Please consider contributing the missing code. diff --git a/demo/documented/stokes-mini/cpp/documentation.rst b/demo/documented/stokes-mini/cpp/documentation.rst new file mode 100644 index 0000000..f27e487 --- /dev/null +++ b/demo/documented/stokes-mini/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the Stokes mini demo from DOLFIN. + +.. _demo_pde_stokes-mini_python_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/stokes-mini/dolfin_fine.xml.gz b/demo/documented/stokes-mini/dolfin_fine.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..6f071e4bdc5c7c4478a746fdd0baaafe3c08b3ef GIT binary patch literal 88283 zcmV)RK(oIeiwFQ7^h!|x1B{i;P8%^4h4(zg$onR~|JR7Xu20ZDK$Q%1q%c7wD$u8| zDY<47kJv=A#$V=KpW`z(cdw88;m`PdoDTCQ!78U=oVSPFG(T+8&mZ5vdAhs3y1LmN z_V?2~)ZO#(`eU(4zfY&9>-GBOED#5v633R2pmZ5;;|L>s&7KkrWCsg|grM(eZttn$nl>(u zeMUKks`xdCjAs4T~b#QC1nBP7QIXyhi6)|*Y_6X(ycW` zw|;S9Ylo7>hcAYpkn+$6WEzHyk0-17~DH|_z7q*6A!_S#Ag7%w;T19w% zwRNvpfo4>{4LnN$ndg1q*%KquiZLUO5JYgv@^ zkMVLzVi*Qt=#`B5-~VDI3zRNwCi^lb;vv*)iJeAk$}EEnxEHAj)3e8zhAF`y$|s}0 zNRxOtv+#$g2*7Y6i**N2;14y*-72X1TKDdRPSUBk56dL`gt&@{4n=Qv@G?EL$5V6w z4WiKmso9ph;|X983Y@dr`6<^3aNs0S49Ro27Xo{b%s=a|s^OF3xJrwss3v(@TD^}| zUu$^$4gjqws3};;(p$cbRhtD}bzTjZwpLpHy%yY8dqIp=vebE}S+D z8g*M+I0=zGbk{JH)bS>c+PxvLHVY*dq!Z`qCTXK!=Cn~{lmkE7DAbK)LWWWj9-?vM zU|AOO1}`n{?nRA5-Dbscu8T=~c&Tx4BAg`7$~kxAGDb}>hQz*yq-za>Z>2Z03d>z@ zYZ#m}4Ut;e94qjpqu+>3l+vMU5a zP>K&ljf0halYMK?8wac9X8YJ4WB-`WC=nLb|w5F-2Y-P*1QRB z%v5isv}1%M_@g)Co84g@0UkbA$rVABUyvuZHQ-@rvR{o6Pj`q;aMw+ec{&W(Hs(j~ot0|M6U*_SvR$uM)!X~PVsaN5nt28bH_vH_UHR3TJj zB+`%0`il1ED&4RO5b%^};?@q8zSxx@G?E;{P)15Nt7^H^*oV79qcQ|^BSst;*4af> z(ZZ{-z-+Cp{%cpzI*2?(mAgW|+CraBZ;3qYgSL3SC#WN#*J{CMs0K#G=|DuDGF8vX`N~YV0RWD49ajIY4_9O2rFW zQkVj5 zwZU-=GEE-jLKmvum^?0@|Jop?uGk=>$E&%w*DFX9uHSa{_~454K#JM0Q$~(eLAF4O zrrLQTM}{EpK&p!MK#Dt8gA4eG-r6zYLyFd5HaHX0Ux7yE_B8!ury(>c^vv;*g zQ1-51iO1emF`?MI(k2OeS8w94X}G}X8ZP5jEnD)hX(viu!|18Gm|trbxrY>T6Z=B~ z*75u7M}|xd@+FB4)_IAPn1C9JNEWqB9-CPmdCLrzyEc2<8EWl9zc{ zD1zUK!Ep7=YUfO4g-F4y)d{0C93}BKE%Md4sgiGpVyH!BT)-nVsP5-U(Ln1 zFle;JQPH-VtJt9h6rDT` zYr5T*ZyEHVQlCJr--l!Q2Vo?(dho&rIjHkH&nl3cTdiuB88-s@-fwpQKPXr_-9LPq zTapAJ2n4UhLs0L3vBlV!s{X3)38NjQfld;s$-GmY`Y$RbdJHtOSCklb1)$oq;ez|C zBf=t#lN3*c#e5Q`a!~-)-oUF!X4}R5GXT}1BhLZoa^?SksadD3^;sk?E5OvIA~>e? zFPKDi4CCbe@xfopo$Ptl5pJej#|~Gyr}|%qpVf)-7`Z#t4u7HXc+lZYv&zK5gQ@L` zOPOrCfl#&_jlNa)=hw zIJ7ePK-A{V-zX*h-WainD&HH_La1^vhYqTIY1ufvb4*?@<*izYSg*+*VuSf%@BvZt zIl_W*N0Pyxr11O3kxJG4j&JRwiyt9EL^3MuI7jUBgL>AY&b~J1uUF= z;E@AQ<>9$6b~+3GKpGUBsR!a2Ar@t#sEy2^y~k8RIVUttBXh*pZCI}{@?oi$GWdnX z{aG{(aY4?yrQwS395@V{XVTDo}mz(@8Hwp+AIzc?Hcu^kj>;6kn z3B;NpgyMMK=$(W$99zKecUDdAqSS*O?#J-A^4D{Q%QTL&yCWuRcD2{-ys!KJvHV@b zN401&myH5s+{z%w^X?y+C>W~%11LzyDcqI;zQ2gkJyaQfjodeO?~rKV!;aS_^Ck-G zpXv@L@qG6cvi^_42`VxI4iYP!_N-5BXkbo6!gVU#6*g(zGrzV5_Uo1!Agw9b4u4Y*|Yuo=Wp+jcXTyQzgUL4S9Wa2H6QFj(vhR_M~*1<_$uvhXMR zq>{pOpKKO!XTV~xBhPkna#!>dTRi@AChcnc{eDZrO^VPNc*O`$$I^&M-k6!E7l(=F1^jn2B&Ou~s1!q1KKLfUdBg=wmjqJ;MfrsF`CQ~t!CJH`ld z)ZuOCbBRA8aF=My`K+gY8a7%_YB!!!G|CgM{A3EzBg*})qmh|Ml8HTN52P}M@5T{< zZ`b;t2GF{h9K&vZ?mQBJ;)(uzy1!9Yv?DVR6&h9+$ru9v+#(i?t?+qG1k$Xb`dpo& z_9&$3e(B$~$g$CziYr{`aS?w)VkIxPPTSEi($Ai~Dxn*nx#nA;+Y*RJrWZ$jxd)^% zN!Xdv9m};(Nco9c#4n5k64$LF{amM8Lx%XqW)3@aUlwkx^{N!EnV zB>Q>Wqag$Qlhe&`tAsD={OTMhZA-DA=PCgK!A7|mviCj^X@h&%o?0`C-Q+h{jS%3UtQX0)3khHKW)x8KplNKq`(KrS^MG z@)@UTKesNWlbGyN&kRF#B{|TxV93zCP)cqyii)-VQ7SRc<2EBze*#uhDgi`eph=Pg zMbLawT7=^eSEi`0m%sw3*L7Nw9Owfy!jb_nz(#p;pwSc_?<6p#U6-CdKu!vE#+=tL zNrJ{|^CtoFy4USI8}MtsgyWH6B)cgE<9exEXJNKx4@rX}8eVeN?QIJ8EryM?iWjAA z_0xTeghp*WzA@_KtNuMoQsj@p^ozMx8YNAV20j07(QkhJSVDh~;@KEu@F|uS445uR zN)?Gn#jjSG%7(3@fn+Z62p0DI@o{BW62l;@ zCEMVu|HfA2?MnVx72ruG<`6<)PIdLGf)Q$rZQqbAXoZnfc2wc2MfYyf!CQL5dt%q5csMTI9#0xo13p?{DEh4E_o6oF@7x2@qk{eqC{ zq;P{dMIhQxB&VFR%=-T|4;o;&$?gtvo`oplLHF0?|J$09PJbVoeMX5Q#^7d}agJDG zyYB8%#`NR9Jb6(3_NQO{MF4kQ_rKUy+xcv`DGuAcp_b{iWU5>xsWFE%+cI62lG63WkSG% znr*Z@GdlebBGj*fK8-_92*003gSDGC2>T9U1l?*#Yf2=<9t#9{S$3KTwIGYPg7xYI zcxPmHD8U&DBD4rKfm)zsJkh~~#zm&a=c6E1&4s$RoKek=%um`>Xuh(sUF{N!J(fbG zJ%Y5ba-WkbEEMR-Vocm7EWWDUJEeTIw3~OFu@gGjzW@*_QxXYbYA$r!CvN?}!+kHS zigEKomkefCQy4*?IGlyIWN%W{9*vsmkoa^jF}NzI&=^bO?`!I$s;SU-UsvU9zKF!A z8x1AVZZmRH{uNTyd{@q(h>FP0KpKi7&T$!bgHL`Xhn*0{E+6Vim=dg}O@&4dMLJOY zVc}*?g+>KH^>Za|WvOFLg&tW*fQlTZ*j>|HXvMAqtoe3A@#w)`!SD)IBqlv!e;bw) zRA1NmpR)+I1DZVh0RX^<5`R}Usj+naUzf;n+El2o1cT^8?|f+JkB@6Tk}w2ey<7t) z2tN96>|k#u@z16J=5t+C2uZ$0;XUc8J-U+}E*FSf!}jK+!CRvyqV8iD^so|#{1&j# zvz&C=mcy&xMJ%+=Q&1#O7r96%V4+qypJc2mygLAe`s-7i|1H?}sNkm@{Zpm13y>@T zg}M)W1POVRY2IWR8Uq<`O)ye6g_|6xV{BZdrXv7_*85NLnO9%E)Sryh$jNSURmmt? z>i`s5{Wwvws!5f(ZBW>qZs%b$DR?p-M(DbSyRl^&28#_lysv9Jb=zK1t`?(aG@P)z|58PC30f~1&sS1 zWh@-PLg$ACiV9$cD%gO9u1Y)r-o040LSUi3k`$i0yp`Z5fQ4@F?w#5Kwei%PS2;x4 zqYZNvm9*y~a(#}RY6k5e>mkRC*KQ90MHEntVb?h{T(Xo;vb$PW`FPX_U^oDU)|q^U z8beu~2awQC1>8_|j9oa9#CnEn8(fH{pAF@v>SSpX##_7XphVQ9KV#D2(|WEcqR17F zLBITLj_uFyA75vb?LY{^&@GJ!i2L8zgZGj6(=5Q#+KwQXkoma^>MqLyk?#jNMBmj( zLcNlud?!Gmw|2Tg)_o%H;GNK2GBu5ZJd&v9Ujpm^Ftj^QWR!g;)VJx z5HmXMu;R6`{1U53yy_9+hs^#2pf|G?#nLr#r*I%&; z-IJVZ2v$>ZL?6V#LhU^FlNh!pLLp#icBr}RcDZWEJ78$X-Vog$V!5rCpva3D`xn$8~(#J+yxrZ0WA1>fTN3>FxLMlT0WxDnQuHf2X7=*248>^W87yHly;?S=Fcuks^ zfRMzGAS0oE(NcC@rEx<8p>CH}4&{j{C_Gq%$QPpuoK!yNl*IddGj*} zMbbtCq4nkG6=pvxKo_jho7jhVoIOEUMg47lmkP+(PK^FAeTSd`E!^XY~4q!=Ra-f|{w? zQzKpsD&p;OypvTx2(kbUA#$TkFmLLrmyj^%v6#yd)KnexncQV0(#44@*%@dw8F+7Q zK@n%`koLFFa9G$1W55}6HGlL<3AJ4b4TE|%CWk=nH!=PnwTGUDzAOkO9|vXeap=gj zKki3Gb(K*Xp9Y|#;5ZS*q~Se(`eX+y`ZO5H!g~j$6ZffAYDU-MEcN=&h^vldqoA1+ z4^7LmzIp1dxD0EbX2-=^=IR-@jPVAOT7HjQbk(?Hu7>8+)PQJS;U8bumLx$4!mcDX zLA?LP7WRW!wY53G)Y!JR5cBx+D+1(L_MnBz!VOM5qt3-CpiC597!35>HUysvJ`~c8 z!9W}IWW2{(ri!k?Ksz{VgnPAKOy;SO^Oux%RO_&=nsKPPSav%dPJ48 z+tqWiGg)S|RsPjO{Ga(k4AgmdT8D`M@G%f*)h3Jf8_KZ|l*GFc0PS8w9g(25Uv5fB z)+dKI0O&=qK<)vGH#`7ntqL1N-7-~x637LuEi&kReM#@9M)=BGxgQ%GSN}x|H>1XS zw@sfof$-#GvE=Gl5^*a5YT~2yqth<9QcNP=R3vudpHks~R8Z85CAnDV0R`0s*n{3x z$GcS}Nh)Z6-lq$S^$ENh1VHUl8dJk{0X~6}_?DiVeT%UP;ejr>grC z0rfnRse6$vh-aOB;TFsdKg$z(f!^&zKrQV3qHv~Unf5IcRt}Wz`_*#&ziQ#2;E&ib zxh)t;)AH|HPm0Q28Z_2oSi;>)#UPqNm!JGVw^X0t{e|m#%`YR@t<>j5JB_Kk1^gM( zgjobdZ?^crgg=ipT=k7#V$nb+ZjPcdbX2DMcunK&Ge85mE1JjOLAjyHtRM6rq2#U{)-|?jd^XxZ-@G||H0GTgbr#sg>)EFktR%H7hCUv6er_XM=@rrj8XQ24Ur2RNB4?6SmY#zIx-UVv zD~*M*$H^Gx*@3r|6KI#LrLFX+o_R(89h>8e?j1gBj7EJ{SFCyVFX!5FkHs}1`1wjd zuTh=QzeUeB7&&0!TR`w233LUTAn-EoigF7ifu2RoG%wfZ%1*U|Mi|?XrI)Az6w%Lf zvDlAe3}-_N0|#54711>w*2 z2)7_>0P)Pg8H!BICf|P2{Fc`5rH$NW?pC%^X!O&nED2idLD|w?wpowSfMJE|^n)DG z$>z?m7|NKIBc@T9?f z`2dyLD4Sg`AO*UXG1;cBQ0fgqGLs~C;uJ*{f)uF7oe9`S4Iyi9EP9=+cyh)!1Dfdg z8rw#tMgYx#?jm;@J(U?rykRq-iM^x!)t;a=RBtxDNcW>t`hz?f=!Q=~#~3Yn-cbRH zZT+t*cYEcN21fKaCq`Ags*dg^K-XQnFKcBsQKjf4Ko5PRmG>iZQULyc2Q#KCvD?&O zPylNF4S=k4$Y3LQbxVLdjojkdhZNsAY(#Wb>5OJT^C_wxtC3f2)|7x&lFc~BL!pyq zKoejGz0$>Iie*9#sLd?)oEi%4vKZX1kBC&?a^$HSze6l}U4<8b6zKU`d)wsy1aS%) z;@3~O@Q>nM#b<&dP`mbMzHwKh@z??S(3H!zt*BkFSp4(-$d2EmZia6N{n*{T^LvFv z2z12%l$kv@e9O^b$n+Yu)d&-^Y%~d4`OB9g(CP*ePmL_M6C)`h)Z8Emn&A45erT1v z0g6CNs>i3^5(Z{488pwUmUQKuRI*}_1^q?EkkFL8OYj;Ri|gxch4KFQI-?tbK^TUv z1O(!;|6&I{9gq8{2Z&l#G$c-JgMzk}D5TGD_NIx?xT5f=vvyN}|Yb)}7VsH5v6J;Ox}R>4T~>)!1q ziK<*zN{8IuhjWS&hU43qyCVMVQrG^cKzEQ73Dxn&hFo9>V}$s_c$;>{09{ zgANe-Y&d?>3bn_5!PB0^OPu{X@72B@YQiHvPL0BFonzB8 zY*Vuz!mc34ff$5+DU(1<{{OKBX@xnty+^HR6u<_%4;@xQwRa~1KirWn4 zfzYhT7pFn8Y7ulM4kt9S{dq(4XsKT~2-lz^9b(I9+~L_iwp8~0RNz6e?if~4uCh3{ z;oZg@(}SoA!DaZf9W(Wd;axeLCC4ry|%u=!r!Q(sF%J!7$zo z8*@VCFe~m8bwP2rllj}q_W?$<>zNOs1gKy%M7|E1_{-)=(Q2?+Wi+s!p*ZR-v|;j0 zzl}2IyDIQQLc=?A?XoNq-$fvF2-IZ5r8q{=TfJmhK6+oOywEUcK55*AtsEq}3=jq_ zrBVVRp)B9v!%&ToYu50tO0I@MJ^y4H?0&U4B~J0l@S(f+$=(EnK?7mqDU{Xtm;`kn z8&;*)B~I~X9A{q0dR{=}xU?-;M%HReF)TC=nu&pSJ2m7XHqCLFPKb492nD%|MnSz8 zaUQw~en#VigBux;WJZsK2oZ z`_>NiU;W>UKfccB$blGyp&i{2uNQFtjUD8}kDsUjCK=m{K^D^AMtrncs;Zs|rk(59 z<Cy_#*Wf=NclN zDmTFb^)@L6vfgqnZoa7G=In4a=xW_B1ey-q`dA30FhD>LepK~c37L}s|FreoIoL`T zCd7vV3TUf_-(>N~VaG_U)a)}{K+^>>7CGE+M!UMd)Xv{gaJs$>_}fG(L%+Zl>G)yU ztLRl13HWD@*7)%y*qi|ew8}Zk$QHm*e-M5~RdzQjTJl*$p%v=`PpfTI9Y2Dgb)HaS zYExAebxVu^NmTYwA|invsJUNYthw-l{SXIou)+4L%1}M{2P5#+hg_z`Yqr$FA58WR zxN{#T)%1@s`1fE`>Pul&us|&r`f_zh)CwkqQ>df9>`~P_a-emSTt;l&|0X)L98>Tw z(gWTu)*+&xXKXyfJzYIXrj6or1;c4=%_*WrzdDMv+69rS)5c};@Cvt=0zcD+mDaztH7*l}GEpZ(;8khkGO5<-v43~lTnwv*8`AmVFqf2mLxn} zMX{OOjjGy)8BkGNLrTr-%0`6fCn)xFrn`(&Q@M-Ni~hh2CL`y^x(H%Bv0n5-bSVdj zVn1y<#SssrL{mSIE_;ioFl{$fE}T*a^oWZl9VyTWKZzsP!I4|#;z6IB%T6zaP@gLF zxr`F$>puR8s6wB4ZQ_PXSIhmNFZ_%sB)QJLNpvod{~Xuc^&1sS;A4#O3M#Wec~eDW z5NHJDB~$%P+>Sy1GbJwvODF^s!XVH9b?n!4wI_-3EIU*4=@fY-B94du?1TSuTPlMr z832`0x6%>7;|&i^O!#TDVq_na6{B&A!DW?soZ&g?mvvONtvUXJgnkw6{}1BGPCSN) zCf^lM%%|PQJ?dYCcmzT*pLXh*QPO*>u}5$Q)SQwpek+EE3JyzcP+uZxaS>Go1f=P zzXqrQx_eL_GL?!%3XLR2Jg0r``0#ZmIS#`x5d4xhlkNY1Y(xX2QZ9WDkwB5ntrvH3 z!GDrPo-&3p*LI6 zJMUm6v!CYXvhXGU*=T-t3UaPX0{ht>%}aq{xuOZ|XDd%ac6<)tqxgaNCB5o$ud@Kg z6*Mw4!^{W-`@Nt97dUkqNfaUfS%gTUtn``yf9_AR@O)yKJ&6Jo*Z9zx|8`f7kuKQp z>vPjO@=#7FTgZR@MD6B(xziA$d=r50uw(+Av1bYh6?HT&~&z{aN+Qwe)bnVBv){TF>h=T%_Sewo(YR5vpE0 zmZr@7*9zSU-4vSjB-R`eXl76IXoho-=I_NGt-TKxElprhJcOb}GcSopv+#pQ_bdZ! z(Sy+@(7^|w(8;Hz(33BgLNC4r3I*R-fu`b{9&J1b720`dD|F`xqtMzKF}b%|7q)Qw9 z?xE`OOjRKll~VG4`^g8P15la9kuGg}e{-t3P+eu#M^za=|7nGSh7OS-Y~c8>N) z#fB1m%eW!kyD%@x9Q~1s4TataXtX2D$N)aac%=G=Vwx9SjnBB%?Yk&YEMR<6x!$ zS>oDE;lgA76G=rVSkW3J!;@k|!n9>U2zS$U${Os1zKnw4t00sKh}Q6=a-|7xY0%*{ zV344pL?lZj>zq&M+VwFWT$9T>p)8rEVuK7M6YGTYdVkFq&bODcTCnLj5biXINQHH)^ZEQ>*!gfjaxsgrD@*yJ{`fi* z+lXNp2)3lxB>QhHqJz^gKyC{lWazi{`>zVwLId93DGC-_{8LQgKxy{qik%*Yq{SCw zJf*>QkgStALk^rVw`yxZcV77Ig___YW4UIe1M0wHmlxu}jOe*Q5A*@k)+4kLfw0w~i$865?*!ZSXk6Z=*^ z%2Avpml3Uf4oo#%&81p%wj{VxCXAu{!S z*Tvp-As7em5J%w^MNY+Whcobr$n($uerlm7dJ|Z?lMAdDg7dtzKKu-cv zVFdckd4BlRgeO=h%?%Kl?PjW~crkRc$@dz9&=H8L&%M&YT;ACB?^V!1y2HLbi+ZUl zXdnUQWM-C}m>P(x$Fp`tPqyj}gbPt(P11)^eIZ%WeRF>ruZHnkRd1-ObL!DpSJJOv z|D}&;q_nj~h(d3zWT?zth|h|c&>OPq6h;Cxbmew(%I>S-nTt-eo^lfE?LHv>sq$O( zL)jJJNCY+TPSEAQ&^W)&_PigeU<6HwsSfuQkU0hnj>@?Wfgr zki=7Uif)5B@>%t{Tz&hXSi#~Jww_?fkyt1{+|H$PpU&e|ih_IaHpG(GN`^mzrnE<# z>S`cJ`}gjQ;}P=Cz>xmJ<`eA7kt$-j+MV^L4fWKhJh?3fPiJ$d$`Kmx*yggURa=}g zB(xHy4X&kJqH+UE+7scBku@nkQ>aDFninX}qZ)bK{(emfqbAfF*g?yLT;ODTv0fC8 zJ=b)>)+-oJzN$q-5t#J{ohq}cLj0rbjBX@`K_J=^IEIb;Z|q>D42Chx z{41>-#D3nYW=x%hXzfRWXzkeQX#%I=a3 zxPRHBRyL4n{oMrz=vNz4nN8Q3Wgx5*pI12z4T-s+q4yqySNkz80AvpsT%O=EAjCEB z@QWG1>3XKBZc#mX)F8=|^_mY+{FPZQjFf!~G`{9b$?Ld5Nm)_k5D;YdxEtVUUTPj; zsjZ;D_IGfQ=(#buG}Ql+Hm#`aHKZBCQVy|qe^t4WA*Kw=i!DZPtwc^?KL%R!9vLB% z8B0+7dYF!@%w#u3%s}$pKB+vLvFzr(n}E=hYHEuxm)(rJfwp0~+Wv#0?jSoZf88>L z92B*Y4Xn1hY;Xfb%}6LT_D2`kz^IYVJML7sS8m{_`#sM^Pn#(}KLd64+UFwpm+2W$ z>OBfxIfg9Ena?gi!D=bCF1LYFn^A}k+d4nukFPUEq8J2$=#|)r2=~9($HrxTv0WO* zF+qdiTcjCjh%;UYp#PyvrpC7)jng6TmZv;I+Q+cTGnu*Cd`M~c;#&0nTr#N60oIMI zc^s8CYcsYU9?WIjm8V>bIn_K>9PLx`)@?T0vgC^fqa$;I8#GK z&6SWRKz#dT`W^xp>c0USg*zX#1XA1v1PE~V`G4SWVUX{i1)3AQ`*1bE)Z9QxWc%J; zz6*+;ZL^^Xa_Ev*J6n$SjXD=g{sDC<0U*ZR>pXd{BUC#%fE>5kW;HV+QqGNA2~Lnv zT?*`KvtSz=Ceiw7Ejb#Cc+3ypzD56m(~q!oxq=`BfnZ94ikg37D|@imOK$+Y85QwI zHNRFH<`jY6JK96-{|%bkP61qxZTXMj-1aR1^juO2q?r|-dl>}ek*c(20Nq)A;f3Rl-c-Z_fqR1v95iJPOEMuBrbh(_NdKy)>?;k%PDV#AfW zM9Qq!#f@#+kRI7tZJc!@HHp+%Q|0IM7!dMbt5O1Q90~XCP8mJows1jo4ik z#JgsI2d$Oeh{clsNG|)@#$m5b8R&q$QzfIAc_?>;_r5}9LOOCR>5=57_T8X+|C$v# zWtSWTldqNbZdyN-T|tt=FbMln2r-8Le{7-cNYNXxU19a-}AQ|@v~ z(QK}8)sfj@;NtI~P(&vudH8^5ZMgJB6qxviC6KbHF@&48x}ZOO^9oW%+tp75&zf;n z@M)ugufkB$+xubTj`S!r1JBx9b5U$FQ^HR0tmZEfZ)gO#+*sgQ2XC>Z?v@G{W}F0f zBZX7rL9ad<@T`$vg(YU(liX)7^OpB6x}n>3jRFT+M zoKkK&3|awe2L@yY3QAIic0fpV}-3O%F$3?@a2EE9K;r?dTe<-`6TZus!wo-5@CHpUSNp-UMd49S9Tm(%^aDx38 zj3=6v7tLvMwEdfd$@?WX<2Y-|)51i?-#nXSow(C|Yf{Fn2XJ58t=(q_V>Ys49CDC& z{Afx?9;tb(e-~2u$WmI}RxU1(L6)_CL|Z~~+1?BeCYSUS@f>L8$H8!%mVba9MLijx zMPC`SbDOGah~jSFx}=IGMi}nm;s80;d~cV@12r9g43ez7a%qlL zL%|jGK$5j(frhL}SGv6(Bw4f8ZYrr3~%1He*(Ri@I>)^qcopwcNDfJvGRm1a;AjO(B7aq??mk#XA z*oKB3x4gW@upiBF-T#Cw1N#tm1x5~oFl?n*m;n1P_Bd@N{_bBLz()%K8zIRRCcS@O zB6E*v+qS%XK;PuqE{@UMUx=%$A;tfkdQzIzNX>=`A8A4DZe$Pl?giOs&c~(mbB;LY zu0T`o+Z?Pui{(0O7)AeO1}t&>wd~fG>i<_5zJ*El-*h04f_LqYT%r^AqmkWH)%+hu zpmpIWTX%w*!-kRbT!0$A6L&Ij5Hb!z>kMgR=5P}EfC#Nu>LKK6>HNY1BDCVxt*y!h zM-D@(1KGW}09RRQ+tCi~1o$}Ds-1(Kl0!QI-Zl!(w^>Sz*1c4OsIoSI%NuzxFf;y#9Fa0&f>xX&Q!L#Uvada94&hfKP8j@Eo7~oJBK?> z8v4O|meXcm0h@t^wvLd@xz$shiwZ%z7gzf(-j~~M1Y7q}j&{JG!-?4-uyx?(4S3%@ znvKdoquQ4!RU}WPq>9{bZ9=VUFFUDkQTK2lxpKp91sFDQ|l~t-Thr!A0^I<&6lewHnOeA*~dtg%wz968K~$xWMRjc=~sZ;hIp{*f7mu&($clFfFRY`Am1&Ca=;CAXq z1}B8UJ8)B< zNRNH<76x?VjLXW*ujD_LJ`(P7zG|@_mr_cO4K&Vb!Jra{ zP(O8}tT)?pog?{w7?%ckYmSVpC{#rU`m&!(EhF1s9)WIHd~1x3BGIuWB zxDHnYi4H^ ziNq|E9(=$ZX}50bW7RDg8`Syg8g>g;(lZ8?Zm&Rvl2yno@u?2N{rxFbBzFMHvmV#XP>)`cYRW{y+mdo_uBQrWV@+4frvC{@ZV5&;&DJ&rKtF z@A87vfd(8uWKg!{5(OG?41m=7{SaowLxbi$nEm!OmHiQRMoAKbAP~J0D41~ni>+pB^7z>4JpeUjl4%j) z_4g>C0Y~uL)P&13_Kin#P3kG9t5lxpKAXYU7b-0!4-4+C1FQA1k>a?Vzy2o2%jh(l=iA7#6`?LaL z!2C_~K9_(BGZp{?&fPCV#WvNh5e*nn&1E4|3UW|m-A75%nB}t07t~liP}VK~Lq8FK z0R=E%i?g|08^8cyk;kF>?=j9F%B~~_Vi<&dDFIr@|35aR(%76lng>K(g0dJd-%*r; zcX-K2##nL~Yh)#Zx1W=pEUjS};3OQjVS{3F1PuesE%|L3s-Y1y3|N~WTE`|{@@YoL zj2h<7DJ#-^XrG}Qa(`b#3>(fP*N_OSRGl3*Xo|xKy&0YIhv4qJixCvw)2S-U80}mm zAorOwbwLSZ-rpLrwRXv^K8#Y|S|g4#^jhbX`o8I`l&Gpd0-UuydLZmB=_voUsJ^~; zdEnPpFWp%ULym7ZU4h|T&sLx+3pi^Zkbyi`6UyaFGVd`rHs9>MMpZwZSx*OKklb!^ z)&R729yuP?*A-RAz**~V(+UufJ^3$FSy!mN2OuHxyE zBpty7Ne3t3sYa<$3c#%0P{So^-){nm7zQ2Z+9WpG4|#k5XKhbRx|gO#bptqS`@zA^ z*p^GtVgP5YvO}`1<&g_3aMrG@KZb!h^4!Qbvs6RY2w>J~{V^m;DNknrS*z|nn$jUV zw*io~Jelg-E>H>_34pA*le(I;a#@c|ioaG{ZGR}cqGX9d5OyWCQQ-a;d(z!U_{z*4 zfU(`JC?O>OJM>D66 zx5K$jA@LxGHA(5tu%+Nqki)uzOi%ZBQc#2yLou4|maj}kDvTu7hog4sM>yp}(!6LH z6>dX{o`NW={SvjQ9ZPb{z0Sx!EDB`ZX$VrCQ9KgT1@!`s(@G%gUe(b#x_g|P0_UTI-ch6p6Fo-yj6S@ZStWY`~JSAZlj2!p<)QLO&|V`uCx zcylw{1DJMOHzgSG4@}0ZGT6UH#!^}s-4bPLhd)Q492wC7l|X90vGp+r-*)62iK`-1 zST~W76En9+?Jbh7&MPV=hx2T2q7l}R3=rv^v$v?UfLW`i0#>+)nZB-3_=gHdI)EG( z1O?X8GwOo1e_D|2G@;zy-O5e}l6kYJy+$59YGIAAwj}rGjy)WV{miRteFfmzEebly z_e!ZsQ`m4Yx@p=Otff(IxLOQ~t1I4r&&R1)V%e+7yct@=y;L}L4^&rIfA^<9o5YTD zg4*hOLmI!UYS_gHimSh2@gGb?q%2Z{{S@7tA*ijcBkr;8Jk$R)%{b$V>Dixnx7mey zdGZu>z3D`CgPzd*Dvk>NrMQQE85r#}={P5$-Xz(vPSnejHz=;IesV+%j5P%5P1HdX z;W|7}Tur)5*1s`*T3FQ)CYrrGel+(2uAqQ<9Wq&}lMbMqfQ-NAB1!wdL$Qj)(VPXIV5yr&3x6@mW@GBe-In=G4yGsxfP+@Mw!l9|wKL_1uPZv1 zAOvA8sTk4z8+))bM|eLez`0x36%rsJFiGPFmGh&h)qwqNyz5Tcj0&T3-lQI7{9mc= zgCbYsolWk4d@_0&-QVwEIB4XXB>*xieK2Q_I}LQ z59OIu_d)Ti=}<=Pib!5f?j#L-F^SjCld{^_Ecb3Y_y+2A1w{cyn?*GJXS)&(le{^am2(MFN1 zD>JN`>Dzbx5q5345d$IYN|^x$a{r4Jny#HnmHW4=RkF%t9$*_IH!gsz!!cq9@=No} z0g!dC@w7!IRqK+^1|a?vTZnrsDR>B41>8nWWa)Cn$QKUJ@lUU#pod6Sa6bMEAMRFi z43V59X0PUZw=~xdpsag8j&wh~sJYDSfwJ}u*dcA0H+d)$WnF~E$DK%#hXIr|I@xpj zVrgD9Xv;cglZ$pvX>uU3k@R9_)$sdf&)tmzlMRPvug2{X=cF#91Ne0H#pxTe zMco0`+8>$QOz^2MGonpNwe$S&$7=iH>xzyj24T=jjaJnC7ki<1FXW2>Jge0h34)r{ zS@XydAUBg$PKHETF(&k+n^bz&3@X*{jmGvob|Q-rPw;Z6?iG%1h^M`*k^e)^XQ47%o(3B1ydQG^W zEwB~ul!0@GrDca!apbZ-T-=3Ykwt`v0qu#{&VBya-t>&~ZSs=zAFvZyYlOlMtBF~< zhzx#PWHAFW(Gnw`7YN&10cp7@ zRc0fw?p9>MtrP;1uO`>O>rG77J8vs~S&>3CCTqsh=EY{kogw3^%+ZEOP}kvMm`%E9 zRXpaI;Q)C^la=)l3H8k5ds}h?{)*}Uy=Hw(Fhw4jODx4@D?}))H3wNoMo=EYE#rb( zK|HcltM|M%W;G(~kk4!0YOKpN1htZ@DP>6u^g%>c+NAslyMhCUVGyft8htd%$`EoHX^NZPXkMn_>J=f<>K_};zxao38Ih(b z21iy3g_9c;t*^3dXCKY)Ci%#R^cBvIDEnLXZhO?ueL*k7{VVjmcBS$SRhtIwQd7!DUYOJ?zf@eno%+! z<}nFA>|C{!V!%Lttl8{+$?eQEk3@oZE#d90Zdnc1Q25{dW+TcvBh(Fu^UgM3rC`=| zAKFZ>7^bl*2@Xacy+$$Y8bvcY_?~b9yFzJg&f|azFCUUZS@YR!kwJoCVIP95J&2c1 zj1>wUm<8n8n`AF7T`W21d*!Ub*$ z!hXn~cYOG|k{bv@7}gTXfrtJZTY|K4UM?US2^b*8N6qfI&qbMXs4{x7W>WW4Ix)3I zNM-#jhnIv&krxJ))tv$9>nPSZ8eF|2;(h15?Y#Usjor)>u>Sk&tr`UoS}hgkp(bAc zn*>)4!|Q8p_4*3q88hto%J)T=@sL@(13txtEZZcz(azlNT+4+;Y_(3mLFD!&%Rbs~ zF-P3KkoqY!wrZ6x+(UAk6h&GP@0LsNro`X&!iM?RMSw>BDL#t_oUtWlStm*}l zXLoala?n-VV?(PEBgho;!4^T6&ErW2#gn>hAgff38=l{?DC<3>0@soV5fsvoV6?>T zrb&j^GaYPXoDh*0pH+S=XFyXk_(~NfM}%&@!AT951C5DA8;~s+3&_>0<%Ky57)d~p$)vPtH$zhvGyx=JH zB|mqm>QI!lx`39m+FNl@(2Di?ZV$Fz)*yyaeW!=ku(!#R80F2qo)>n&JIU{w6>Fdo z-fLUhR)AKl;8`bGP{rw>6YG8^u}Iz^a*f4!(^-%ZX3N(}*v!yeTIK{0dE~HCR@d7Z z;)gyR&ALih&89K5)LuvOAR4jSuTZlq87PfdBeIK>BVVMbub57(Su|j+)Ap1b!n(5v zujXH@Cu7;!xGdI>!|M{b}Z<%N7iD1y6Sdk z@84lE)F`V)l<*eKCPQ+v!3aG>#?l!TrK-;S_tfWjgIcQnINs)ZtlijpiOk?xYegN< zM~Rj=T{oL_xPJ5+DVxpii@gWr8tW(Glid_zT33QSN?7%Ki6LW0q}u{$5^%orP#+-+ z@?{dPeGzsBSrUUF5WSL$V0r(G4fMRGT+FN4^@e9UF-pqfLwNUQnR;1WcST3nKjtQv)?2S9N(fA;EQE|nrmtKqEh zGC#66`gx>PBgdm=r%aeAts;1)UtnN$UYKKd)*SMF_^5C*my9+ z9~YVkqhI9uqC4nFqAglrMeb2lSY3Bm!J-e|cjGdvJ)#op&=M=E4MWg~Dn$e=0`f>4 zsf|ZHwN_YtkO6{f-J|AlE3BD(6M2Co!kRnl%3~YD zW)T9cxv?~;l6|^^D?os?BF^ntCQYvR1R>U}VIGa18VGUWC&XH?DKV{VZ2bwH8kFd5 zDj(diw=W^qlC|MAdP?@oK5fh8Huy0E{mUt4*?DJRmFk+k4j=mJoaaeCw)lkTs{suP zWji}up9cxC-aWeJTe?-Rz>Bh8LjG~*vGHF5N3yw->TU~rYKXFy5GaYL)$}<64VDtg zQ2f`lrchYQBVES^C5z&YsQ9Z{`)GEgjdkrZ=8*_}(7;Eham&bG?HAHY?#-GcLj2YF z37`KPu-MaaoI#j1GxCvNZN8}E{eduRWHrr@w7V?shLEE3uWiKNvatOq2(#9$@s7?~ zIe&z7Hs|J#EcNbTpB55}(Z|$vSF`_{_^YGIvo?zbHzx||1oZEI;lqxPKQEirLIvSR z8a1n~v_LmIlvC}Bi=#l+hAF{?JU0&a1VPrK?@1M6HERlp$M7oT4qbdV2P)!myei8R z8GKmfG;9^ES3*fUTiRvc?HK{zQejz{lK=nPeh534B!)p4hF*zJ4D$UiR@_dJrVDkK zjTcD>5Me$2l--_@vqs%-yOdx%lS>Ed`*Z&40f3zn*unY?HmseEt~C#W9jv8&CVzj! zsSnuF>d}6E3}rWh#dOou?{Z~6tG$opntbyPl(crpqsv|==R=3A_;LgR&Jjw zyAlaF)XS0`93^Oa?@kFW5ejB!-A7V0A|2j&O06 z*1eN6P(e7IKnns{S0iAimLa=K0JEMU%$*s_{--tmjVpvE(P<1W)1iI-$wL$_+i2a&I4Q=w z(TLZ`EmR@oA*6^+J+9O+Jaz%JG^-QA(JvRmQ^uGU(SLc~GuusyRN zk+m>`oRTB_BOwPZhveD4n@LO=69l>>({(>0NeU=725Ca!#U?=oNGhz`{3I~}St>r^ zh8DP%6k5+E1VPc`aavh+!C*l5Pq4C${2LSnBv)+Om5BQWaBz=>pSKOs&)KSOH`Vb zW_4|jyhiKZXAZ7D-jh@fH=|uk#=W?5NKjd0{Q2d`3fYefd$n&Tv4W52Vm1nCU?X=M zvLsQxHfzWU==0TLi9kw1*3Z!C#~NJCH7taX^*$H!#=b1HODI{#8jM_NSx+u?ikh^s zhSEc5OyV70p5C@-lJFdixfIxw)(%t-fV zPvz#SlA4qRv))ivX(u)x%0HxmS@$gd6ky%TXNYBukyT@Zu_!&%dYq}U>xL@VX2i0- z+IIh^nS__7lQLm*@H9BAGOKyb^D=r%dsHs}&FZp3v5u(J=(R;ndJPvY>`bnzG3Z5H9A^auh3$x88M^H!_q7Cx2>W!=haP&2F6sX@ixv7wM=xlTA6~$RiR@|!89q!kc6WrWH#V=M2^9v3ksT1)0 z&fNY^J3FLV;YV%`PaYNal*mg411UG|-FofFl9@}du4gw8@+XO~AHL4@x}g|^!7E|> z-hZ(|lk)jbHGp$`iERW3@wW_}07u*;Nx~9-q7x8~V>~iFQh)9qdM9j@Niy7#Z!3h> zo-l!Y-Ij6rs52u?D;?M7|?Vl4%4e zt>J*je)2ad6zx&26sdst3m>AzkQL*5a5saOE4c{Lag%5D0bemTsZ#Ox zwx<@mp3B{2q4K}%HLdj`DOD(JD*Vd-U zIl43m!=6*Ep`86bF3k@&AX&uBMr%thD@09)}b8aXGM4Y@h$o0qwuBh1nhASGEApo$-M&#$*(IS%)tINUGVB2z~|b6)n1B%|OPR zji5VpF(<{QDj|i!Tedp+ZMJ9@L`DWnzP=Qs^M7box989nrp%I0WoXt;sGngw?eWik zq~g}s@(~cyT|;Gv)*S+j+)h9Izs_z$)+SEt^H_k_=i=sf(^iyNeDdrLNa))NVROq+N<6^-xL;*+YXh{VDl8E`pAVAU@XX-(9jw;)0plH2;Ak==Z{$b;p`^X)j{NS|PJXqc6hP+Jf`dJ%SVSCP9}ZBw0TcmFX>&O*e!C+Q|#F+rw)VCDEd(ovlVCzj<9gMP)bT$DHWlhB~**l$r}UJ|tx5Ptoe5zOkwYqLOEtopV|wrXb zIP!l}ytldf{Myq9c`B04T9*KHAL6Ra)Yk=PMTN!e<$3hCkut%%rS{3?aYKFpfEJ{X ztdwhn{DAg>7)Y5bWF+cPsjTzNto1v}_Vy0@k{=g2ur@hRO zI}oz+CFza47fb}|-O7r+6Zr(qTwWO%;Q@u9VTQkyAV8Z@t<~A`;-ChpS@TP-6<~xv zzOF3WVi1IFNt8jC_ICfodrJ7q0;pA6hXj&u+OoQwg~9qNTyd`6j2?Zqd|%j8CabH) zJZvNv%s5+tho-44Yi+?tph4YtIWV@1N+GRjb^sRfxYJbx3av>dO{jh9qOBEavv$kt z*x?LUlm*GF34}adBj^uMP-_-_fuc)KWjc}tl0-7A#eThvW)fBxn|st9jcaD6$}hkC zd&vPr@*aAPVOs*IHGX%hzt8+2*#8Eo^_34na8I4KhB~Yi`hhT-G9W>Kw%*MKJfd$g z+FE@j`YiA&Y%q>U6kkcKXrk{-rE*H4tyv9))B>kwZr<~#=%N4tffSYNL@wiq1Ofub0wU4(g&9X75D-Wq zo|^9TLt*pQ1O%eBW@FOr&5*X}r{%iL;C(AhUZ;ae_sJXyrx-B#0YBOd<9(~U&G9C@ zp$R^*FaWLxMRd;xorO7^Yc_IJL+4p+ND6Sh&xgoamND>9C+u947zRNge5HU<@ctL8rc*!qquT>8i3!7Fh27s~w7+qa zr{;#>)YC>$;6qsalASTo2sZazF&R zTFaDmLa^33kqB6&p3ZIuZr!g){4sgEVT`sWZEPPQ`_Y57j#Vl__uQLytTNc@z3l6G z-12GY3cR7Xj~cwm!WE*{2=eHvc3u86=F#3-l%K{@LVX6*np**)=k*FGr2H(lc*LWtr62pP*sZ; zZp^fnt9RcDTIzGa91uNQk<^&duMWx@ZdtnDKOYj5)uZgs*>i6p%sTrrK$vakG!+fz zsC4WN3Vx{A`20<9QC5+nY{x|ky=8c!HEP&J2+JYe@D%Zk$VlRu0>%y$3d|725 zrzw>SL+<&(Q#_f6M%_jVG~=JRcwO=*rd^TJ`W=kaX3NcnL0F6;T$>_bb|n{o$U>Nl z*Y>9sFrU9l$NynjESs>4v!=q#rp!tQQ5V)AV=`5k3^qr8(8XD^$SuIi?(XQNi?iks zx+rs-1%uUK8nH>vioE_Fk@Ed26#ZVCtsvFPEY?CLI-d60djyLg?5*VC+RqJEYdR0# zpJciL*{hLlvbj%K*oB1FI!DQfn$Gr2QY!}4w}snNmd?FxXswZgZ9fgF^Nl)WSI}B} zNp7)QYX*E>H1Te0dwtt*v$J9<}^L?spL zXPD>b{M4I$GNgRFiW&CVpKkv{YE7Z6t1xj&U01{lQfmru2<58nRs>G#M;e+bv&Z4O z>M#~do9$gbsE8{T?UI~XbF1G$;~UM86w|Re8z-y}_xQ&#eVfftIAKk(vDV3PVJ}8Y zZxVJAhRxZiv<@U-<{x2aVB=5-!_bxZh7j0)u_LsNQ>pR|fT$?&N#ZKGQk>Pxvb3vFkU{!nP9b7lJ?WQ z{-^{3sAvsDVlj-C$s$xmtD&F{<(GFB3!9z$F<`c;Faa821-6PkkB~A<&%r&hpgFal=v+onnOYT>JCvw)%4dPyxJ z3ZpSLDHp%_8ci$mpvtt&YCQ(-HO^>{ssIUiBZzj%tOW$0xLRfFU8Q|i# zpp@lPuuHs;6TDTa2qTevw@7~)j&sVpc!8{uHGs9&t-Qn($a+seGYeeXRKw8latT_VZq<(Mj<|4 z0P9^b<5-(4UmbPU(G@gD=3^Ds{GZ`SrWlKQABYC{WE>z_9zqW-)vfAbX%K4fOF5a z)N07%H2Jyu_Ja6o?5fO$$t)qclC%xwk(4$(5_^Nrq2buWi zvZ}{Uv>%&GVelw;75>s_GWl}q5Q%?O)+$RVS1u%}thnIk-vw4$A>VOK5!-nfiQB70 z+)(K1@i7Ml8j_<3<1BA6H#dVx)L8^%vaTyG`jC-mYPtN4?EEr>Z0aKn3SQmu0x_(} zZlPD_?ja#eQPSctRpE09%XoaVtv zzlra>%Q6mXsPvj}*(2n!rXG-JuH=7%G*%yP{jqpKmpbKwG*+C^+*l-_g+f@PSJ3RM zZK+Eo$YTBF&XWykYCmo)*1=$~=nz+AbCAWF%3_jVO=aE~7Nx#+Xjyex-KvaI-?7oW z2URTORpEUrxm#>{ylnEL;dIPvCg&#uV^sGOVSP4Zfz#0U<8u7)b#BQOgdh;z(g+H= z|BVH5lR17Qy#PwenNq-h{2gYH2+=6W_QY0y2{YDxHtqR{WpcF%k391dqn`4vM>QaF z@ZGALQcOojHlQs=AfV(?8U>DQKvVhnxn`tH^708EVi6eJ1A>`v%(L7UGS_dk=c~Ndzf7f9-=p78lG}ZDa9Odn#oF9nFBM=iUZvx61T?Nq+HlZZ{OeAPik8 z;SrMk7rW3aVZJ;-)T&JjIOgyz8~xz7)t|aFJ3rS49C(S_pv^daBoF=IUD@PzROYu; z$gFu+UD;QAFb%(uS+k7l^7n3`J$ee6b%l0=K%I-winL``t$^4`+B2a#4u}CY{u?e3 zqt;CwLhGK&*10qR1v4P;5fqEeG=jc0?2)A%qpJ0nnTZX|fa6|s zge7T)QCNj2Xx6}~-U7Bv(b*mNle|M6p9W}v|u~jiw zqvksbT?MUGUPr|6M{5)tTI(I-d4h7CYyeujqdZqwf{E>Hw-fP~aJT znfhj}v}&=UW0XG7_4=pt0>O`h1qaSFe%*7dt0;Q=r(Sp^}L0m z*$Xa0uLkspE6(dFQ^;Ur-IeYGVizo}Fwj}I`x*{F>Si+7Sj%6FK)>lhgUL9sS^xjz zkFayG5g3GF=t>j|RcM9ViA$9|a;$~pIC9RFsK1!+wvsL6f=L-Pr+ zbv5O%)~$oaKLsuy9@eHhd~LvpM;>mb29j!QKn-X?W0&-#eX@s-DKw%aTKgPUJ%VI_ zLyYl0`a$ytmx>)yBF$?e^;$uPueMgtvRx0wvXO)ti|b|ng} zAT2|i)sdLr*CI)sGF-6Yjv^Pcrb0Ok7c5^FIc|c3YF*=kwSNsg#ngmSqm2ueSH{)j z<*CA=d?dxG$!ir+MJeDtJ`Uqe9`q1dqdO#!;R@n2gaY;lLg(1?Os0Zhtl>Op@36nG zJU@J$QI-QC2n4UBV>`2Jk23$dw=%-RcfM~QB;VRtwnLN8$}oTegV*0zJ)j*m*}!g^sG zuEOecX3me0Sz9X#g1x`eW+YyNYp=Y~bE$RLMPJnF6*iG<_I%4g(>V(^E8pOO^-4@` zX8Yj&qj+GQ{uAcl$wszDp|Sohxc(XLS~9ngSjP;c!I3KiCJc!+DL7?L`mw4T5^JLF zSeS0UYG0A{lc!mjPP=IrM(aD*?eoql#@-evXnk+ZUgz!FGgHv`7FWFU$>g8oi*+9> zL+al0Mpt58X>bG@TS52sJ5H&rsl$c+ z{ziWIy0#<X~j8NkaHwlvn1}t(R2{0VQiY1SBR-T&4pF zh*|5aIUc6e1~3*(M=qqqUr&{?u(w94G=FO(J{Kbr1>>S`px0~epv8GSfOY4;o5F7% z{66%J zZPTZr$yak=rH3A@0aw=AUl+WbxYMV>nC4s}t0dO~O=^8r^1We5~A1o{_VgqW{CQk+GTx3O3IHU~1phl7$VX=IY>lY3Fl1 zl(l{#AVuZ#{sJIt&y&sJ_sekLfHCVbPyDqO0I{&4cpeOY^ET{geIRT5(2w2r-GoS3 zLUQ5?ho!F9S=h@pmA;2DlTqjJfH7+&YIt)r0mfd5K|4~1FbFn2ULgzM!a_9kFayWjUa?!=#^kd_}u?u1y(!HQdRc=(Xt~5#Bpr<-x#i06I+s9(z==< zUzl}2U)M`I?5Az)&NeV>5vtrd3t@kaC&}@XAuOEYW&*U9fxE)4jO_gz@ZxU;^r}^j zZo_E#Ub8qPo{J5m=i63e{|BEB6%JL z7t69wd3C`WMFtlw=QB}d-9^QO#%VWg5;yX01Tw_$=6AK}jL8m)6p0<|84*&(`X_9X+V2NLPX!orn;LRbJw-|Qb4#nR$0Ybp=2kuX7 zjk;+kHry6i7_eF2P{P}2)3!^;p*8--RL-7_f>E<3T}F3Xr`R~O2ecJOc%8>SjsAeU zNR#`x&Cd4aCA)wJYa~q=bk?^@INkT3--`*uyETLD?&X!P*c{+l7k6yx_vlpo5IXCC zu{0O3<|g|p62II82GJ-1yddm(rE%MslU|0kujAuj0U6lGtMjpXj6 zA0eB~Er7G04&r&2QJoq86gX>_+j?(xx(ZQ3XI)deA9{TaE=+Fg!AZ&MeSuT(teq>y zCE~dWNc7gy!LXe34B2eh2~4Eq46pxZ<9D-IlleZjW=HbdNy?aWjBvTW zzN|HEf@dx18fQ-LLXZfqLq32vhwk8zLT6oxF-DQ_h6@`&UB8rkSDk6QsQ)$c$Je!G zSqy@(Eumu6{cmixll5Fx`x*^N|gI7ixxgDzOrOJ>=S$_>b2>$r&&r#KGj zg)H0&R!sL}Do`16)_NP)Q+$fhRmqA@dd*>j?ptC-k)zg-`YBdEO9CH2JgYfpZ?_MY zxqx`q_8QPHUzyZC!l1zOKG`xOC{k+mDa?A`C6C@vNRTT+K&zjzC|nYboGNVcGTf6n zdOIU&ZwCTegLai+EucRtjJc)VmsmjLs5NBN zveVnvTmeszqt>-Xk=TywDD`emyT#+=cLXv-J}pbu`v5C0$r5M>&RUEA^Rljk=>I%O zFt}l^x*BlOddtSv3v)$gRvKX0^St_&|CLfAjIK4sCM4{iU9Kaojoc6S$eyY_!6aaD z@~ZRh{}Tn%A7AH|B{2vB(JdJtp!?t0grtYdPig_2v}rY1!maNxT*BjL7Bxl{FdI^9 z^zRhHxz4kYTJQIWZ+9R&)FMS{wZhIA;esf~md%{euyU2w(J9{~F5&lqH|PJF@@CZ* z(7bhWyBi?~%duq>R`f>ZAF#$y4NivCdVFN=e=j_jX?04iAvVxV>!vzv45>Ay1+Iiw zms1j{HMk4pTJg14Vch=q0=o5Sa*`mmcC1=F$VM`%7%l=+aEnS`6_zP$sC#6(OZu6Z z!9=^yTfG43lt62#w9bC$@$lzTMTH$&-dn-nNqNdrXq{mrT1vJg6UQ8ukt6*C3UA6V zSVp_&7jcHuvRc|0VEJqG`)l61j=G^XEUUN~5e29KzP6E;MU=cs8%^?&B(qdZa$Y z)6{4x=+&(L(RSIc^J1KUxi^Oh>9yyNW34@EkH%-oi#d)vYq}4Z!Ie5QzL5N$?xB7= z$&3datBrPzzW}Y;`U8&DCLSrZl}Xp6u;v90&r#4cRl7Ja4JaUkg0R+FQ4fJ>z;#n$ zwF@5}6$Y-^TxhG(Btz!LSJEhp%I$NR+Y<+@Gn(1JSx4qZ-!}(lCpqOf+OQ@LnD3|A z_g0XIdK7Eyy)a(RqkvvKinY)QGe54nMyb5wQLO94JQPe49>zc#kT_&rgrn9BinZRr z#8Q1qb|f$jC}`5Ev+W9a1+D@48RiRhOoj}j7RljFb>d6rb|8$L8@Si5PrgX5gxhK} z(_Pw61uW|wEACC3s@hip%UaM5W4Wq-mB=WdS#Lh%w%lacYMr64l`&H_l%mnBgJ#)1 zL`~*K)Avui_`}y39We~TFmxpX7{mUH)#R>y>W>ECoP=PEkfm?;T(c9<;XSY3Ig73_ z>_ftP7Ua3A+-_4VoYtAR(7dhoHX3?phojesY!0zVIIVNT&7Qs4JPxH*M_mZbEmC2$ z?#_kkctKY)OuE9kPpX-=GJ=T()@b53*Pd`k*hHYUqhdPRu#Q8CKI?^Lpn-I&tC#|_ zoX*2CKm3CvoHRHD^!$jvq|YbPO8D4$xV2t7ZC z%I?K8&9EWEpcv)*t<10qR|^aIQN>o+Xu=E-6}3u{?tGZwtoLvZp&)wNX!K#7C2bdH zFFTArtooqMnk}z6tn}Sf|tzvM(XuZ8GLRPmP7a2kfI1Se4wk_`&LJTPu6`ohzr(RIf{0GoormNrnnAWVGA1!T7a4shqWTe5dD#d z8;z&ipFbc4RAIM-C}(&2)kH@`_;n{7?4QW9Mxv@-&uCpx5_#6EkiBK9|Dt{PIs+Sr zLKueb(h1-PFxh{xl3yLRbdm>%uHxDt9OwC8SxERNookhK?5gCZAuqMelx|WF(pjV2 zq2ipfeRWA@>mzIO8QqpavWmJO0Oqv+wtLm=y#}F4%jHgBaiBNnMOM{zt5cl;I-VaU z9PReLr%V|w&w$K0VS$AJEzcm;?0iVO1&XV&MyZG_L$g;6`K(2^qBCF(+ac*@ZG#@< z4*#mBnYBqmH7exVef@M(F2(8dWtEdE&d0l{`+HI z4InvSCbw{R>(+Dvk^{!uyYJZ7+8#i1zzX_AkumJ?E5es8GHiShk_6wxlpUaSqk1Hb z0XwH~d#2OWk(AJaoabu)zD#mk2PDkU<|>19))A5FL31mo5ISqh@mFZ3Jrb@?Om6d> zGqn~Ykj{Eu$!e5)toTDZYpv7rr`@c*6r{7BUmF|Ac||#aVvU-ogu9)j-jr)sE1bEj#lX-Go8x--bm4L=sl|T^*o1GF8Tvfuc2HrtYx&YLSE$ z`^d0}2D8RVA_*&Q;@qCr?Mz7pXN`#i(q%=^>iut3nrpe`@8Bc-F5YIB4O3NzJt9Pi zBXvE~m7(U04h`hhZ37g;*6c?m2r+7z*+Ye95Mf{a>M`?I_qG5aALS^D zQwysLoVBk3JR2|f+?0W#^;MKS-F|DZS)*eO{pqgovK_YY}sTT3Zo8<^J!b$}q4h#MF5~~|9dT?12y{(ZL0dz$0bSt|E zmuP%M15JR&P`B=+tZlRsP{wenMCiE~VUm&)9nDOQOOPYk6OD2td{ZIl|2lB)T?(tOY8$1P(q0D65PX z2;zCtr~qYc-ag1^tvvzE8mxOn??%j2hR|$dm7FU5Xl7?Zh{hcPE#W9uGoS*BEIHDK z%#s0)IOsn-(ob!Wwe5W?o?j#FZYtOVD+eomS}Uu*BS2Zb;Zk*BShTGGWpy=XNZF-J zvqMDxENqUH1Pegc;w&(r&GFpCAMYx9KIUbAe$21e^0qwx=4nXUGUR;w@6Yq|`|C9y z?{D9BbVfE9{8#t_C8oa;kiMz~iGCeR<)**M7T?;_nWnq&AwR?RybzAn~648yj z?ij6Xs@u=tT@^P~PefB)2<{MGi>Tj)X%p6Cb&3b~)deEUUG~q|ndL?d!!YzNJwaqU zO?>~0wWde|9-&0P=8MqwtW3P+3uj+pZ@n3(z3ca-?{DG5Y|31uYQ8R)FQb!}dASFy zomakm3a5$?Dgt%qr`Sr#i3)z<=8(+A79n#@=2(PyFBe}Bmen8;A1;hRd}l8xLedh1 z?Ah_%)=}buTl$tRFr5ZZ&r_yFNnUWCDnVQGcL|zT5*h5=ff8GPSVTJj$xJV(oonGm zM{KZyf+*+uPlPDvu=OA}xaAm1Y#4^kak+xDO^(o+vD4$6ZDJ>s*mWt$e-hgS&-&k- zVeZa0k4ep@fL+oJiAW~MR~cl*o4o#cMnj0))ot+ zBtEo=RT{W@*^b)Y$^c9GF~eV!q~{jt_&PMxbG*Zp-cNekq_eryn@^4IO436knw>Q; zXOX>USewKLTT{}e#$~Ll$c>Wt=n01jAZFHe*G_z}KLTx1m5lRvWD(vH64-SJjY9j7 z>x8H8yy62;8DqF%+0}cPR!m^fRmVVoRY}oKr?R z?2IPeX3h?*(S8^?7aM^=7>2IIH-Y^ZI~~o7M0>JsfCvbV?NDgM$|efLj(~BbfAw~TduOn$$}lSnpD?a?c;EiprQnzymvX(1z4HtC~3-y z0_zCq7`*)asQHmtxg)bc9~4$VXPe^48OVWjJU#AxOX?GcIc^gMh`=owXC`o{g9kEVvYZdHymfHPTS%OP9Yayu|Qg}ORln?qgY zn2?SGa?;bMTBIRZ3nO_xmp$n*RUTF$Rz$LAWS4f(@H_Jz*veAqv5p@kJ?DP#<0QKr z62A;#wciJD;RhuOEbvns^kFq!i`q-GdzI((>OYGFJ&5vfDp}5R(MT}QYK~G0S zTB^@37eZQTC+!uyRrREUo*3y}C{UM8;^aD~M|?5`igc6SuK>(IGr!=Yl3>W7W&Azg z{@&7_b3+yf>@=`rNRMKsknRUN6B9ZU0Yk1s>|pEYUX?92#q^kDs@N`-I8W$u zWuo&0p=qu#V0&0x-3O)~xzjBnf?6|oEq@x4w@eo2edO&6qY@y@^UIoZv?dERx;sIb z8#$(7V5BH_0CRO9ZT?%1GxzBO%vfq%J}o~ZJLf&#^|`T~ETfK$nVo{H-CS&fGC#{r ze`k!rf-*M}^t$1>RG+t6FtfZ#`_S!KMu%%$Y<{R{MB61eGjXQd1GQYngEPz2*L&vq zXO?V4IE&{cq5Pjf3o9qeaQ=?kI~?4J2sr(>qVwa~`e~jd%r7QdftlUoIC!q5#2x|7 zGHJe8THZ4&>VY+PS5`~*Bd}(f{28Wxzryj}vff(y`sepAM$Q1aVGss_UqS*L^#6}FV|S0%>74rj z4+bCNv`2C?dP}vypYzb>kU?m&GhVX*=bUQa`u?1LP!%8~L^BoX#RqlnZ73mA&*+nD zuyfEbECn6uYY^Z$1Y?daQ~G0OO5L6etC&Xr3Fet`W0Gt-EyM5TM7RpPWphx z5U>Jk$JDZXV;ONfE*n7ap^092lVIzrz44S>b1Jcg22Nzd{HI!dl8%fB!4V=dBVH zq=3IEPVSZl2L$^3{qXhZ*i!I!Sr8HKt2RWmDQ&=@gF9EHCa_sn8ZVt>crQ+eNXzB| z44qTVQ}E&8u!lomTl}1;4tw9Kh(ohm-h&Rgf2)R<3K8~Sq3am_lh)0j##DU%U{F{4 z5HCgEU)qb!q7iSO{}V4T`e)R4h=2P*r6YWea7lW50*xM6#xF+B1UG^Z27+J04a4#O zk0n}d7tu!Q%+0=T!M(W+vU`Jt#`q?s=(ql2dizj#aJv zt`;~3K-(d%l(&+}bmux)3m}!#7IF>RsMyu`=qv2O%?@^!f(bb)z_h?8hlku~lzELG?xIid9HY{qy zE36Eur>zcA?3E+345>X`rR<*U1UAAEO%3a<&-|ipYA%3#O`u5{SeM22OIYNk03@^-cBeDf41?@C(4llV&uDv8Q{vcP+WA+WV=&4tbJJHc z+=Vq?wf^c*WPT3*#)oEFdlUm(d3*xvv>)qg93j!JFXQZ{+VnmM&Adx)>DSIJ^k7!r zCFIh?#58eR<)sd$iK`4cbH@oaZ3p#Y0D}fsB-6r0ZHLGGF&Gu^7auhp*0rsWu}3eU zw(-na$1WK$mJGG)`r_MMj4Om;AlOnQ`GfjzESY3(&4bBRU@*c$%bvPpF_5qJ@gJQ_ zqLNWyfMsX-6xFVUFw8(+;h)WZv0_@X|f)eLarLDrn0H^&Oe7JbWITy7=K^&%TVRNqWbbcfOwj=@sp-x8Bg=M6GQ3?eWfN9B0v15qw()VZ<%q`2I{3i+(e51~>?WFcAFGl>);5KW3uY=|yzo0|*yAxOO`2BGUGw5cYMt!ASQ$ zwH4VeSC^~Evzgrv1)e5;zfj3PUlwGFSpHSOyH?t@SN^vr=A*zrj??zP?39NnnUIE` z*Ki%TRK@;8-~fU?d@QyJv4yos5qtBS?oU&bQ)ct%EcLpQHHEs%w$dc(^{qDnGu`sY z6xGh)tHe9M!ap$b^<+{4GT7xGxI4?mFCD*Au4UO^qF)p1MwN-J(367OB^yuB zeF!oUc!A!KNx|(@BTqE$hGEMb$$XF7(lY#PcXrMAAlSH|iZ;*7XlKEq;OnwW^EbB* zn}=ldqrd;bne%=64Etyd`yl*m-H#)fXLwG02D_?3Di)9= zc$?aGcC2iF=7hIzjbSooVl=-LkpxCfsbt#BDTTMcRau6uEoS?|kqW=sTTOWTT|#>j zb}lvygD?=C3EO{vZ3#6gKK8FHO_pPt$>Yedw*pxU~_Gf^8q;UBoO*(iv@z51YCkA%QC2D)(n7&nV?%7zg6gKAr0j4k zxUa;ho`^d#rLB#p*rFWah|@NPV@L0$aoF4jj)^sO)4anKd>|miq)6lOA4{6#z8>rF zHGvQ=3nvlxFY#Cl<(`OpKMeC)b*5b+?!YY+7)zF{MRa`IRq4$zO?|i|E+p-B%@BCH zENFKaHyffO#=1`afpKs6c7ktp)7+X?Wm~Z3F2giWvR>+&PF2dSi4G4wIghM-dhvBG zI1+;}482lI5}^0L*lIq0ph4>cAlgnyg6()hAott8@>7`={q3^GDuIA|Qv@c*)h|5? z-L>h>?aArw$fd~~u8(1%+&h1a6v2vr0{;+k7wx*4@+$wpiYDmTDV6fu*wii6g$_0g z*NWT2VIiQqU(AT%KXRAfb^b3LYW}JM*ew;~>wi9Va(qS<+`WrL>B0R2FERIGkb_Q$rt7OHE@>4TdAzQbND%_kFO)DpYfewzlso^gA)C zD6qWw%i8=ga&A`)!ypV@$$;Y6`!CinL>p2i190NJ{E)=Gl;WC(oHWyPM_{D>eehtl zs?X%%3D5sNyWZpNn@BEw!-uDo(-PAY$6}UDuNj*;N=Aoh%ud-Xht$CD+*R3igwd@y zhD~LP5~PoOSvTe4xh#!Nq2a6qO|m3_ByI2NZI^t=K{L)8v_kIDK>7Q|_11sPuupQ9qrdceDv#w)Z3QvW_Px#@*Z(#=kw{!P&AI5{iHXe^3F!UdT>P3U_q z775zD+R#_clN`0USViTQe+_vgU*A5}6W0Tt&1Pki%w!M;*1X-bA_?+iO8MI|sYfP> zVd%;m=qwFdlclMC2TP-R?&O9CRKF|pLBY~wk2Bmm&y}vb>jB3vgJ-Yuzx8m@!Xja> zz{T*MGohmg=_A5tXF?Y)SO;Ct(J)hh{I)ONQLCD7#j4leM$4#D*H*5iQh!PSw2K8N>7*9rMcG4h|OpG6Ae zRgr=ceBWeR7xwJ3GOYmL+Y9rVe98~_rcqnluMhlFX*-$6Q)Sz{G_HrA)lzv#dMEm1 zOGKBlH<$AGq&J)lKAsGw!x2FkBHnHbtVq zK2E019KOO6?48iypveA!3-+#b(-+@eTcio}mYfc?m&K(L(0gf)Bq{rAT)#U4E~X&i z^Gzqq(VC;~NRNJCVgfpPz^eIqHQCV$0PssF=F4DQOvG=A8nY;U0(!%~oV=^oA|;mE z4_zED!!-)@UOz*Q$Dqe4>J}K`FOcBgz_LMt^xo`Qxc5qp5uBG@=YLl1W$DD}mX=OUFz~-RW+vQt7a@m_ zt3=-lj+WZs%yzHTLP8E}Cy_JvS{MR7{8DNrY~BDY$Mj390!PGpVeZhTKj81f3f`;9;q?alLJ^W2_i!C{H&Zdf9r?Id|zyMJ__E| zneQ8wjZK;hq)D^7Xn61+* zrN6JpgYHugJG8pu>dwm5B&xInp}u`zTo+yuDgfNOMa>wnb;1H{0`@IAeJ-1s)xa^m z&+x_W8fxwLrnZYN-`hUg@5{1Tk6gbh_r2i1%!2F0-2SPh{jPmEM%C3qR!=0f-X>8?m#uj! z5Lg23;Kqb$^+W<~LLB`DTprs``0rHqH1xoKCTOPQ#b*B;>%U=}aApuk91Z`j>$}Zk zP%!mv9*TX^Ziu7Pzv~SshY8!0pb~2uRM3;FjqHST9G#DiHMJi&F(zEotJ~x4eE%6c zqa+4F7>Hg;fsJ_oi}fonjJ8V;(4hmU$;)Pw0DJ`!6}{NANdUg;46rQrmkI4RyVNSb zw;_mn{1$BaDXW5jFM=(y$mzFfzQv@}Ol^y((0-%Mq|>u?D`FA^oO2D5vaq5cB>}&Z z@n&U)5xI(wUvfk!qhw+52i z1Tdmyjwk1+C&zEoe5oWCfu%p3yiL>u$6`@#S4I4tQoPct+scLlu`Uu}T;~se4KX+& zuTrmJeD-MY?@n+tiG|P2|4q$6Ah<=75k5P@!TY}7y@6IGsrcdtM?Z^21H#0cm`Sso z!yc=C7(25ZhCv{PUWp|G$^9?Z{`d_lk?8> z)eH7DfxxkE_x4|mci{X6z7)#QyETyn5IlX!8MI>=Rm{F~8)(ttS+C8b#)9KBkb zB~O;=(Em7s;DhP~{_}Pno|Tr8+4fALX?Wd_^P3@&yNzxQ@-d&?B%E7(JN$8ezto>i zOYMWWlb)8DjAF3gRS>+VK^{gmtwkaP!BcttA+{X}Eq|6Mhu)`k+UPzwchA%IgfZz!Kx|EvQApr#EG-l>8gEiL0 zgJ|M}0yx&aEX`DJ8oD;#uuXCZLGURF{#`+sC9G5%g<1k^#@ggG-)3b9g0EnKBWAll z8iL?e0x?^D)emE5fFmIc!@w_*22A&5sK_N_*3XJ*w|My6-_u9Uqku2|`tizNFBI^_#N9*fssi`kx*;H6H9rXd zcdt#;y{w-}?f*vF<WZC^T z-Bt2(Z%JOD;&;`eT(EL-+#g23|<-qnb28vH64}ahC@PozgsX?4u zNCtwyK(BrnABZe|Pf8CFur?$Jfb&Kb8Jjl7lkn_+6 zBK_VxoRd^t`0NmDrLb+p66>&tJxG90JnFF}BnJs_z3O~w`V{Y}e@~=B$|~s>JeIku z^UQ+gL!!DYbvU-}f~);EXr@mrpZd4pLt!MI@xizL{bB6fjvR(z7}!$IF+r;T#_r3Y zVmdo1Kw~9-NCKC@H!1@c$#y=O{zwdT$PjqWWW6}}x5j;GKD+ILx0k8!$wv%y=+eJ; zJJ$0jJ62^)^UW|Fhp&3BS?O{Y8e+RD$5@!?aB-Ov-c_S*ZsT6iPgs}!{pUvDUg?6j zm-VJ*GM=!5zq)hC41f`7uc~`vOZjQyXdYSr-k6!5Fupmq{eCd_4c_S0 zNZ9H8&A?t&UHbRlU+7~4D?ZD$IV&hmz2lG(tz%}#v=na|V8N5D`zf21DyJeqf)r*7{_AbNz<=rq%DJO6_CJ zF*#`j+_Z2s2Z)vQwEF!JFBN!K^JUWVn(*oh&YOo0E6d&?R`Af6rGI~gu{4n{O?v!9 zN8x|Q&L{~&5Qd>w5(ESHzu3-x^pz1e?g1DSw9qt7a%kWK(I-`@2iDUbRtf;TheT;D z5K_JIhXMfa1ht7i$Fy0F3XzFag>v|?Sg8U4f6_eky{ZBMr-0eXUZ<^AshF1DKKxMb z;M~zC=eQ@7eEe;MB?4K5q;Fl8Y8zK+|_G83p8e(2mq-`E_R zy$TFmZL_uN{%gYEGV+ZIBegb5q7oQ*<{QaTwnwDUK!JYPQ=`;oIRXQpnOh;!X!UgT zzyep!>R0&MdpJ2bUY3cBj<8nJxYT|UI9z70Uy3vqzf2o(cQx^{?}`Mt=3Y1T5iyYP z6C&V&TBs*I3M70XDMPM!d0=8w60$kzUS@4Sd9c;%J1UUywWbX}&Z7Q0X`O>b2x2;Y zFghXx_{)^qOd_k>hF+ju>ju4Dvo6z<&RW8JI`Dp?Pr;#UmKk^7vBH^QS zyt|G>RRs-vBYrWePvIcp8!hQN>H!i+`1XTIFvEWa)xI54>%l~A;=qYDPd&$fYi`Ye$!_`vC+cy-+$uF$|+I*LP$^Hp?$;BysQ z5{DRHMkEM6MJNaQKf4umiay;29Z zINbkYTdB(PsI1)m>kndv4hb=~(;I!|Wzwl81Io)e!zA$MY4=?DU!~<`2Q}P%M`j2K zClqjnWj}{VQI!vTElC)~EhwS|J-{41xmwV`a;t$$Z>54T0a;g!W9ZQETIXrPPv$){pBD1R=&VnP{0vziu=SY;1mYn zI{Jd^$_uO`D`V23D=%=J;(cZv`BghGZP@N4xollqje)PGE{-SOpZR8^8UvrV<^uNP z8F46*ULq-bZeDq4bL1YpE0VCx94IK@hBBHn@>jV+5<3lgc`Eh$Cn3iNVT(8O{)@AV&ENjr^y-i29v7o4i+Iqvom}p z20pmEcZ@^*tXGMFud)m3hV|)C9k(1n&@FEeti-@)TB^k$Gv3!oRVFHV{Oc*%sD5dF zn-I3(vmTyGD4bB9YNYLs1P}ZaqA@9(esgd_!76V8WlYPZQexnPRLPD5h37shG4O#0 zb7PFz?YK*cfj?gSn_o%{=1#l8@h|=jBTy;Vh_7h=pA-72V2&dH)cxL*ae=XyH6;eV z0a5KRq`Q@wC^7KPfMSkQOlkKuG4Mgp(2@FidYy>DTu>?o6faNh*H8G-xgYX!dxl|y zFNI_KuW*2YFRuyE$2QD@4PNO$Pe<6|mu9HymKi)4AXfi#_q)81?#Q3uUM|U1Q3ImB z#i#@qJZB8iXd->ug)l;aa7M<)i~3E8fUis0RZE5y2zXYUU`!l7d{A(~pX340u;qua zYfEAn1VUFz))&41#rg$gtR)9hwdbq=N*w&XwIU1NjU+6{kwrhXi9U?}+@j<^5e121KnH$bX-;p>c~7|E;=)qhpa_ z$u=kgemUqP>eeCt``C|=*JkaC)FE~Y`5q`66zS^RQdTW54v*im?1Jjj$kc%N??=(e z29xnw$$uZx4sS%cFvx)0W30PE9K8{++ODh{%R}S3k^z6D#W_v5=Vz5@Kz_Tr-`C4f z0#gZ?M4o3w2V{d{pFCk&_S*#+@F6WXL^L5^A=i&T6AUomL}5^LOBT|oJWmaXvcK<%%kX6y)msrykPa*jd>^VMeE6X_U4#*Q3I>5NC>tPn zJ^_Nkb^^V(Oi6pJ2WjA!cvAR}Ity|a8G>o=USMh9d)u$=vOQ5jhG0qq?-?`W%M=B@ zC3`>M%QQ;Dt^h*t8&}TrRgX+Z@cVnB+WXb2h5uF7IozN8w_GClwwOu<^m!x{2Bk|u zkucotSDi})-%YgfggT{I;J2Frc9mc&lvK9c)hXSHO@ zS!dfziiDDTGBtW^zQR1Ol#P5~d)&nv4qUBt_@Rp9ky|0ptgM7~Vl}XzqVNZ~=l_FG5$yJ~cuFAGSdB(zwIefscKlnxZhQ zfI!v#lMm81bE@O+ht`uc8wFo{jBV3fHb>|(X856+5HRgP*wFqt; zYF;|Rq0}Py)9Ga~R;O}*t^mR9e(O6YlIsElN438l{xKgGAoyPmig*6i+UX2iPREeI z4}5`sIsBvSqd`ff>s##TY5PV^A2}3^#fO- zD%Z+8-0gGnycq7Bn83?2xN#C5I117N1b0^rTDD>qE>FbVEvJ>w;knbh^g(Flcb&g= ziQ5mHLt@?=;E%W8l@FMf!QWkQuBDt zzAHYAor?{_APhuTB0y}s|6;8w`5Bew)Bz$0A$-o~=avafAKiX|K$O>pNEzHa2*gaG z=o4L1`=g+u`t3is1o-HN+mKfrScPa!MAf0 z-kGM~75DCaxU!qRao`2tmNkyj^41(Fg`0yIu554V1rM}viW+;_$n~-Y5@myjUVp(u z10)Io4#%uHmwwmW>982xUI7{Tzor)MAmW_@az6Ah*_pM2(TcHg(R;K!Q_0(PtU;<%;M(tSI(Z-O&JvLhQ<_RXv+h3%{|BwcA$XLuUpenRchh;{yM1YtsfoFH4-!qG0?(UhauwkdB(0@ zjGX}zgD?mLzXVJZ<^Lb6)0V~B&cz2XnuJ8W+#O$`<7(kQ6H%G|(ls9(!dj~vr4vQA zC3yViu&!X>gP;7Ld13vzqAzA&Z-cFw1_QAK@5O<{WxDonOK=K3ev!1nPQnMb9xG>) zMt;D;ySE6`G0lBX_}~!M5WQABtj?=~#s8Vx?u+#;TzrEe#obQqi#38Bjve~e;t1EdQOLMs1-7A6 zaMNp4(D+F95&voKi@74NDt2%UHXe)d&Z~}OYdc?gBlYQkYt``K{m%0i&-;j_gF%Z> z;uf*dt?==gPsYyeSb`7)qA3BQ-pN0)yFVN(rwS$jYe(c|FKzRBF`5gr$vMVFk7`2v zdgB{Bm2wbg{1b6TB_MK&Sl&an*KUPk=0nP%ub)l$21bsGhq>l-WAn)$kg9SZh$seYROx-kxx=KzqNX6 z*=$Rfw0f<*=|Y1uYSxaot_)+zR{JDqxsa~7&ZyU+A8`4KCt1z--KCAK(9g_?eoEPF z&S+mMFQ?qlZ1#(M5Br6KQ@;fMTl>6xgYxU6ww22zexhT2Q$JAwG>09&K>2HSxQc^J zQMy4ebk#A)^!QO0=EoMv@hki}<7n4s6u|jOo`^G=-8ZjGU{5y}s#;-B1?c?A|K`>w zLYYcn=ZpNDLO!#}&yHW^pt8X-tZg+RathC8(0Y6Q%>kdsY|?|JrqmfH(DS3=&q_9$ zwTwh@y5j$goq?^xFbG6fib-tf{)@H$t2`pN;yM6Q9AgaU;{dc5UwnNgNDkuJN1O!E zeK5=ljMg8*cI_`CXzGiXk(X^oD=5|__7UP1Obp$*xo5E6=%WUFa!%2xmO){QqDmBs ze*DxP{2qL`6;>2<;^ZfezSyGy^wVojj-!BdZeNPQDNa5}dQwfzknWfv);mA`Gex(F ztS+(iq~u063z&->2U(SBL&d9>$Te2%r2hh9Oq50mrZXAHZ;S1n3NZcFk5S9*udzha z@3wHzM0JyJ`eM+@DLVoyw^;;` zDFqq>rq1;lAUP%iyGNtZeD;Uv3&WhiZfAdZp_o7FoxQ%f-y>93;MBxfw!J?Ga$?}r zwMSR)lZmW<*JKypeC`$ggM%w)+ zKlEhm3Tzk#Vc1KU&_MrxY}2$j2sYCLtac@3#c^zjrGNckH<+`YuHS{=*Jo^+8tA$T zg1ysn!fA-04H{8yETaI`kw+uF*9FBsS%>q_w;mW3a_m#*+#d;o-q^Osh9_3n^L_2u z_7ofYRXVb!_`BA2EnUDxDI@f4$|MhZI*YZRaC6zI?~_aiqGSd<@jb=g!d z8jIc9$sbue0hzx^bz4iUX{@P6c-PpVu3Bp4xxSk51`Sv!mvmA{E_15CgO^KsZN_gM zu1obfMTG3$dp$g73SY46NXnr$gb9mjrX6J3Ig?<>OmDruv|*XBInQvoZe6m(Yr%Mw zB@P7BK1ZaH+OWetx7`gcYO)VqlVsW%3(IlC+U0P~H@o*VtttE< znx(U<(p!7@@JywB29t^8xiN6lwo+t~^~61YVh8uX>Sp||5~D?9#S!)gN=#}U+ET3p5L84NBx${< zmtWnO0HpZgU&;IK@3Ct|7Po}?>rxTm$g5s>baoV)V^kEITnMSNcj|FnLRSGXK}_?) z;B_w$*23Ui8m+6v?`PW72~If}*bkr9$D_2Xg+rr25!sv{`yNCUrnT5B?VwX#b^;#y zkz5FgEf?OJ-+s)0em{(zQ4+%-2t==>9g2GYi?u(zor#H?128re71syKHZKWMUm@Fb zY?RWTsk`d-s(S5jTgeso&555!nsL|jTN!Z{3VKrgKy1Jhq?y0G;fXDU2%l+UL&Ump zFQF#Jwv=|^z7XJH64AWjLfb1YwD(flGbpCl|7#M$QrZ)0Jv5Kp_l~VmQ|8NEAFX}r zUY`Sw*#~ny-&GHD2raRFfU{1;hVe6PT%c&Rr$iWA9)D5Kb}=94*eJ364kZech?dx{ zoS|`-5+)JlMNgq|UAE^#*~qJ{@{Rl&UyXh4vmcqgti<-w5hvm1XEVQf?Y(q4{F?Q- z#CEW{PggCG$)0CFAzSBs1B#vV4fSPVmS?nfT-BFoO*3q4Q?RK=+c~Tz%N1#z$kt)T z&F7~N!Ymt*?CRP&G_LU#@UeP1^1VjaL~Gw5vzTX3t@dN=jIu2RK`1(qu*p#iWmQ^Ugs=Jf`6;)-BqzL*D#D$sB;nF=R%z=-;`5!xumd_JL^Mnv)|u5;1h zlTCCmSEI0edl3i;nV@v6oaO!&QAPJ?NHAz2g<^8a4+x7qfWoLT_ z0_yPJJ!$fe*rutpFXbo~0I}z`eFvw)$tj-ud8EKBm%+TBw&@tjJm<=!P}+?(89(k^ zsnb;2m%SgEmq$KVrXBW*+T+ET&&{^ktGeaiE{Fd)ZJZ6yBhE5^)YV?{N<7D(WY;cx z1%_0-Z{OK+d&ib*D(x3_TPSTQ_u~8ROgnYNi`)XFuSKR3!Dn0_QLPSF6`eN3NLP=G!E6%>^A6-OjBr(PNumKmvY|-oisK8TJ$R4&qFA0x3Kf`@ifQq1gS5Zs zK(~;<<~Pv`%(iw-|s-$mz0m3HmN|`gFZn# z=jC+`q}?g6d(cyRv0s}jN8hc1c&7%^{z&FL2ohIpFKkC#aR#GH%DwPapQ|DIF?L2r z48tG{T`8tD;QbeCfAZkU6*2(l#<7VigrFKSJnyNo>scj5^eUZfR3-We7fZBE!+uLt zaQeHT4879Q_O1hnRVK?oG6VyBhFIh=NDz0d+usH3VNz@mGW~hJnRbKrviS3RhIeE& zc0VI?L^)UFt3)CV&wFYtd(}%W1*V<5A2MJa;H0e@OP(CyB(nD8bo6@UbhHFnJ0y~( zd87Tg!ZV#pSxBe)IR)R?-RyH;VVCNfp1x&gShvi;GQRshV1}D%&&CK4L2KBn)8xA0 zF8KBTH`}n!zUs^`e;Ql!6_Q#Tu$f~}9P5%}`<^m^YL6bPE2<&=JM#V8S-ru)HsHFO zYR@Kem<$Y<0jeF`{-&B~eU)6?o1U@(*Lmp}#NS@}QI$)OwR4Zc7{Lcjcvg*#KDa*D zA!|=Y5ZJ$b7(1inh(Q>JUa6oZX77Ko_Qz7DW@HY)5E8O0KP#evgkRKe_ddL4f1hb< z=bn@UYBw5*w)WS4Ubka;{0!mq(AkmxT_9{1d}fDzdzHl2yU+-;9A|ha z3fkI_h@x39_tmUe#rr0aus!H-;~5}xch|h@ynMb-bFV7CQj_lS^YU;}r3?(|cE2YX ztgdS&>I>hk24OqhCa?O)YeFP!f7M4!3J8xUL0kK)?#5l+4cgkJk+j}u)_eFLRKu%T zZI_E@$)8Zmt*9!RCj;<*zsQ@F;IAh*P>v6jI;_haQNmg zPPl#Dp?V~4R}HJ+LVq;b-`MiG#3K#tbsdHyd4a3kb~9R!fxEAcC~rbg?7~b37+s812mZxV7!S z7vL?{H?QY|X#3{3U#bn!cGaf42$bhVTNs+!{>ZQ2+OkCEIXa4ae)0>#_6U;ZVO#uF zes;R+cb)Da*uL3D)X0A>Vf%XTr-o;=oJ@kGeeDX<%%xGp3u1OsE8WX#`K;j881-l9 zsa*{{Z6IXdTV6bOEiXXGzPy^+>5n3;lCblFQ)s|fe&z%6^+}gY)XYK;k*%}F!z_vb zif3J$h@wQ_eKW_*AXaCZ)#1e~bP$>P*U^WuGeD9Mgn{6f9HJoq|JYS|JI&p?oA`hf zlqiNF>5-YKzwV*={@vSMHPti4H99vnhoMKW<($QiWIf%->R}R(#w_N0d>ga1DzyJ! z&?erYYDKN3cXHzxs{<>4kD#sla{;Au^^B*X_=?aMMDJFS-F~92w`UFN0U+j2?Eb7l zJx05m2px~?w-f-^DKXso!bTV48W7`u>zJ6@SHrpr)Tz^nR@(An%ouOXp?0hzL=+Pq z@9x|*L0$NlG?rRD0C;$u^}IefEThZU*r%3@dA{)jhjFfV;$Eb@Wh5-3FUtY4;>$WU zjWuflHVhxGic$r`W{x$<)g>xLILe6 z=Ia(yA}6a;JYjE9zFOhruL83hR?jW$2v;`kIjP$^GxbpdZCX{r0&u_4mwwh{5|xCu`|GR7zSbJl|sVSaQ}<# z>#KfLtp+;)YMV5HIL5w&3NFwH>lABE%ke@B=4rraP0#-lXg+bnGLeeR>r1Z{w9}-T z{`!p>?=aML-UyxQqGmw4Aamu}gF3poz;$$Bbh*EUc}ERvy5Mrn&8a6f&v`3D{rdo0 zT}Qjn@`>o&P(f^sWV#QO8?%uHY3tEESLse`2j11_zINZzvr#Q}`Ps1`CCM(Fl^bmX z2P;={4@}f+4-0cap5q4Q~WfG5OmVyU07SfE_2NmmXlJzKNr6mI4RoLrl6 z_P==(iTlwR`N}VCUiWw`^>YD4%}#L;a?K1!tkn!|e3O2#x(0EW=z8QUDJ}J90*zmO z29`~;GXae!3pU$k>UjYfzhG6$t+I3oeMmZzCpVZbGt`|YvTy2mFbzSl& zRDAGu7irfrQ4J=3Tw9S&c$#zqCQiMtEvK1HQb7FgDa~ugnEEpYho3Uv@$ANEg2PWy z3Wo>Ir-p#1z*2=-Gk;Y3 z9IJI|p_>mF3O?u+N?oa*tJzZ$>V1nphkmsVO)&5-4cNxb)^5gfq$JdvCdH^$H_iGK z2|t?G?OF3W#loqt)Gc_K@Un$nsIRuab%=n24=Lh_vo4|C{eJcyOx6-fuEfafzb*^2)3*ugrtZ zMl=kVmN%QL5ONsUU-BaBl-*8OTmd46YPnc}|%fooIRn?Ny4 zHzIW(8c*~T{T-0*f=YYt|0F9%1s+~Q-0L-xJ;qYRDf?-59p=A^01sGqTE)v?7Wi)s z6m88=#Jrd|lAWX2bhB{%xgl_j)x{(TtbWyA=7hxx2n+0k&uX5z{pqUsU^3m9DyG

4uJfCc@7Ns zqANjm)T9(830*AZ zD`}r#?4j$4T+i&M-Twcvc*(Ah;^5IZabcH zEMs~`B`qB%%G8xgrq@5Y5dxWb+Dqctl$1mGH(x=zP{;bCFEmzEO~-90t2dfuV}so< z`xA8s@o#7Bn=(An*Z|dp>!Qw;I{nJqH)H3P!ypU;!7DXR4CVe8tBSG{1l76+@DGU} z887z5mMgVA%C7KbS2BS``?2R(r1OA^j3)rzG9R&~d6Ji6;5hDFD0@0Nm*N2n+ z7i-muhpI+g2Z)@+KX@GQnO_2hruLYUkS`331+H6t;6qj2oD#>F%9nX(s+-f|a+b%} zBXUvQoZ`EyG9G&2onYh`HV4m2=2@IR_QJp+H%EG6@`ElPBEWRIaWi%|nO{uaWsIUt zhg$v>PUGq`lT@ul>)Fk?{TwAN&u|*{y~|}(vhoL;US7e{G(1SnveH^w~2I>A0ypQ|KFn%@>=?bj5|L(x$eg+6;8 z9OLHZBM{!h@1Uf4CK61c4^x-?#B!VOKTttpyC6gG~Mvq)^9%gY8fGYQ9(=X+RwcaR45OS1$OStDNeohV#N1$ zbSKx()rt+`Mr@ z*I%BqQn&MY;kHGmRP~d;;vrbBuTsDEUgOYbdr^U1An2ZH2$pfnCEkKN9-L6m7CgoF zJXy*3!Y!yW=DM#$N5%Qj_6aPgmgijXXo{PxWN4abSN6o*K0X zLFXfpmOMk5RUzp7L93oWK6M=9 zU)-Oq-a0nBry2{R9Pk0=ayMR3fjKC83kmxT6A8fQ@Gg2JtXuyg;B%Vk8XUoH>JY)_ z&tjfDViIm(v7ilS;frSOU<3F(FM?o{83V`&mX*F$%74!qTnfSGSRM2`ZJOhG7`GQhZd7_h0Oz zhaQ9WL(Bj|ocM@D(d4_*En_o1-x@P(a+>EteqU9v03!VM+(2Ls2zVI;q$JWRO6;;bRf2}wD)gv{{jGA=OpEE zHy}|0=#w@hGV9G)N`%x_AdSnY-rxx5{NblHF>_4pRas?YlW+H*MriLx@I{`F8`RGe_zibOU3c zzH*5r-!QNZ>MIw9+i`OriGr@!aj#v!P+u9;k0vPY9FPUFY78 z8a;EBl&;j^fpJ|&W z_8ei*a0SB{&rH0cbu`_htrZakj~1Nae$JiO*KnTJ>@Jk?Y zi~s-FB_^F3(Uu1oQH#j#c3h6NsxlRq^|K`-Mq+2LaJq+{)H3;WzPm^FU`BGa)_hEF zEKsqU5WLkFS9y9HP4bRJXt#NPvgDWKbC7uYEhmm^8MofcboTq@B0ML{Sm%=+6_-}Z zFxQQ57r0MMV{R#TJ0AmxzQ_X61hzjN*(A~ohGfi|&tg~-18o+Y;Z^@AkEe>^>d4G z0ja}dk4GI}4`nN^bQooWABO5+g#0>wm`11PMVHhN4$$XzNe!e=%ot`XVX`2k3wTUH;n8 zwfA-}I$9fC-&Ej|?nOt77;_j%3o~YJW)?B#9I;2hwt1qUfYxyj7;wbMmH67w`r!CR zMBmYKXNjDUG9Yf6>5H%sZD^hLwWw*ZV(lWx zYE${OYQd};drnY%1t;F>Qc>vB!=VwSDEa$Hm(j{lj|)u$IrR-i{xV zHI0^Zq_`Qf0fb3PyAw0ZqEPIDmjZQoRp>+1|*ogV$zXi|DDgms*82F35vFr=s7IhhPc z*unzE15)3!FA-K-Y6hVbx-Bc*0;6XXWjMsKvU|3=Ztmw+lRJJDqGafmsZU?p!)XhLo3levrqd?&9ov7 z&hhLs&d)yM#n>4jAq>Jm@Jmt%z5f4W&Nya+RTCb-)Yc4y&E@ic?YQ?2a+_;c-d-lh z>K0i$rN`@0Ja^t(;%37lHbt5eqMA=|x*@BAZchgcOyw{!K$#HQ_xUvTxs5Gekm z{CxrIOXf{H=N~!2tK4wx$qf}o=+Sy;n`ern^#R^H z2dPvqDvt{r=pUcv!pgmeHIO)eP}h#mWiPMP;C_6;0h zTz2p_3O?Q~Ch1xvRvwcVu~B$K3JE(m_Tvmgh~j-Mk!BV#31wee!-m-s{m65`P~<)gE^uLLsz2-&0f*UCE^Mx zcc14(s_pAJA}1VXuXIQDkN@md0)(9k!HJWh%-U4j*TGg`_m^3lwZTMSKhY#+qCbA$ zH)CgZ z=b{>eGn|+4y8M2D+xa%WMj|t>Q-l1<3VYUX%il8;cH)MO5%p-+ErmV)Umc$*&3<*m zH>O82V*V^s*ue@+;LGQr<_O~}8S4`icJ{m0KSy5#-i`*<0UJ>h>k4l_8v-rbb89sF zectm);$&_g32hkPa}hV@?)F>tATjp9tvOe-U+Tegt5a6S`ZV?XAFW}mAg>GF4$g3B z@m)EORpISdbz!HKj$ZlPmnrPlCnHyBVjUEAWT_YWb1U;81m12RD$6(K8dm18TLG2& zH`f|k_-PZ{$$=ZoIW0y68LQYH*J++J5)3$u(NDQ{vu@>A=ImE3IY-8Vv>$)>yp%^V z1>WuvBh(b7X5D$`S7X7P+ug!ybYVz^j_C)th}Z5P{glDzcqgEu!rQ+`Z83Ds=ir;M zGeBYxgn{6fEJ(ur|6}cRhK(aO=>s|(SkL&`Zf7s~D)iO)1gdxm_P0opH9 z#Umt<3;dAVPeO;~fk>KAZb%VzhPAz^hVd8-w8OdC#W!>`^QVQ)_>q&LYo|V)|lVz$GHC1dJ)+Z;9}%O!oA$9 zS}6V?Uqm;}U;PAHJ6@HpMD5~iG`04wz4JWl`=dBV%GWM*gT7nTE_f@)*IwYQBKn$m z5PP1HKxp$=*1$rfPLJN zE7o_OT07!vf4Wj`ZT|XEo4@z7fwkkt@AzAA)B77(`?HQt=R#oZYfTb&Gg&9M0<8T> zgV*$X8|?UC%R`H~Flfc@S`X2eq$(ZMVZjL9h0jz!DUE-|sWXuouE1Y$%*Q$fdFz~Mdo$}Q4 z4Xk|z5M<*9j+=ZJ0&8FSQ^;S}F$r!v_ZK!|HuO5PrKy9WorI;KPsj^plQ zyO=)f=#~41SuE1!zkEm9p9K^1D9^StW7l8I*!Q#j&QuZ5@_FWO3$vXGyHa`E$fFFi zJu1RjcAWXYKFoHBta1D$EZYTU`-R2C?XKd?=dMt|l)T7RSesI9n1v8_aldvqvNI%2 zO!I7|8_KY79$S{*FHn0!dLNYGC@Kb+?Np*hg=8&{70h;~s6*n8^7}=cJ@(jPx7sK^ z*U_t3q79}>&$|VO+MhbBRdjR?wd;gAsZ0io?$@z)^}Nwhsp`GxtPp3PA*ct7sihOe&%4d%Rap=s%J;rFN}hQ zAZBsqwRM9d%tAd@FUHOQhk+0Tf?pD}T>byY+B9V_)q_5OXihz0U3Twc`+fJpEGi8o zWH?83lxxm3(+0CWUg!C@n-=5R@A?MQdlo2?qwRw;XyI5`&G}FbhL~nCuJ0?Du@~8- z6}bv3GUK4;SL7<#oX)->_0J-kM4Wv=RJnhPI|UV)gQ#>aa-c1k?R)ou755-IG7IC2 zaf_T`;z$`fGIRhH=NBEB#UMfcGDy%C;_RCMMxoZI4YZv(+X$9Ry1s(bDd;2`P}*~( zKpbty**MgDM;^GThuR}3YBP`ZqEX)F#UUnwStQ@MbliUaN9O&a>>n1kh|f;iCL0r;`4dhd+{!MMyR#?;Ya}5ml8Bqw;0#2z(_;6 zitKpoUyPj#4#OY}L(i1($$I~bZJL?~8mhAcM5QeRVq$xXWecR7Ycz@#GZM4YoXww& z9!E31C0GLOGs_$ISm2ZXzX0v5z|{!YhJN1!+DEp>+}Yai+$&?zWry5_3H8)R4RelG z#4Z477P0-%&L_iaXLGj%+IK~1{*k^!wFKIOX8J&IC!!cLrQm?P=MWx>@BBK~5t+SM zzv!|DYk@I$T~=8F?E|0==SI`kjc(1J;h3o}6)l1GF_wllqAHi3&k3~8Bx!hG?_1=J z)}N0lR}}9%PQRV_%Wvmq=syrVw8^*|P3@ciH4X8_?t3=1j~9-(UOe~N|LtoqqhbNt zx7hy(0AFsw&k=SqCqtLqhKS4tZFC48#hBaqohe^+32FfC93>qh&1J=y0oo^JBp|(p zo~_R_Z{Ww`MQqM1AeBaG6uJbp1ll{o)Pb;36#HNT?So6UAWxd>+@4VTP7Xn@TwbKS z2|EKE2tgPKe#sUD{r|@%)5!_$BCe{nm24}Beme!cdod;8b$30ERDXAx=wU$&(CjW9UY*_yBK?I zz4E{!a}?hfbD}`rU_RGoTh9ksXVJC`m8XsygL6Bg6a)`doD9_7&J?A@yxQ8+4b(m| z@k`%1E5?4?$*-iqvyOC1!veLRdEUtLb1$BEd=cRUnOSkS8uQ;=*BUf++{MuAvmH5p z+^$=XyJZ_x-}Gp`>(`8j%*%_3zq2MA7Nq^2Q&rwVl zS~~)s5oweY84Ox`sQ$J`P7t!Q{k{0HPz=f(XCJsZbfcma1r%0$C?pZI%p!|mwWAhp zu<6Gvo_YKS>$-|(o?k1DaLB!~w}^F+0jXk(bKkt8$Z_^g_1yvM^2^>o(w8gN_xr<{ zHSfhYjr6t3*mj@9p2eu`riGzZIPyPI_{S`wPFk{RTt97whu=7X$whw>{xL9I_VDIR z`;66S|t26B`ace z=ceizH&tAL3iN!0ZF+uEEui*AchHEto>p$>nr?Ydog74w*C;rbW&7jqf6sRwvA1WcOy{D%1bLKi-ZIqw_F z_Zqo<`DoU+_A9!L&4=hC&lONR`-VGGDO0c-pSLF&kHO~7F!c7+A6s6tQbFy{vH#!w zW$avV7=&RMdZo=J{oMazli1=^3pgC0qM%ZO?YtH|{@=Md=bkgkG-3=wTUIbj(z8X6 zhTbnR zIc{=7^yJu?pEK{b*e5&r$F7+*3SS!31Gv`SLwlZ#Ug^#QP-{Q(33^N0A#kmo`tdJx z`n6$-u`Tg{*{`H|z`#iSV`G|L^N)dXVL96~%Nf+#FIeD9$9gcxsr6??J|BvdC|qkl z7PV)pNJWn`#=7Nup=s3&)Y_v44#r;b9dxaI_ZGt1FRqKU$3{A}s2OICUiILJ>viQ? zyM@9?mSL~%m+R_aw2o)36t$Ua?R#vCbJo@`<^`uV*5oC^G)YZW{IZ*F!YO+xy+mgz3u-v)11;C3=(z8GVzsCBaa0S30nnJ#d<9c#|z2vcp* zQ%rW-7JVUSfyI~_jI*Jlwz%JO=O~zjE7k^V`;={uJl~7jz8bFMY~nlvRfN3uu=8SZ zv!a*TwP~Z8S=Y3G)bktjRYN*CXaaCVc!Ky?D z&CPL&t$j-42VGh5i_g`={|E$}?-mqWyYKezz><%tcI35vm%BPDdCP0ZzH>(D&edvl zwtb$;KL4A_R@nAwl3f0qBv;bfJu>pOr$u+ljqMtTqk<+UQ+&QQFt)qNML1pY9o3T7 zI=X6+%8OAn@1W{zdp}4qHPA+`IIFYm?#a8*tcDg>?aMUF9nbRlRu#2lorD=06Tihj zbS?I_7iQ-v=Uk2+wyUVD49lMsT>FGW**6z&KKU_`x!kbD?wIb$*qPuk48lP0OVkD@ z{QqN>Dltw&y6yuka&Ru|@pr6kDFBS#A_c&g);`v`*ral>j+ZDn`*wY2apH{Vq9c|_t^LIv-5gn8t!Ve$ z>r&7+&Z2M3TdYALHrM7UhafZYs<2ZDt%*8XJFMB>vR@UkcGFZYS=kz`YYssMJ*J`a z6%0im)UY)CxLMa+_h+>BG^wECLhB{XT+&nCCNXpvd5{V5c9I;C+~5 z?N3_5OY9M}_8EL4`eEd`eFJOXN=xXml=Ev01(^rla}hoVTKh%39-M+E=1b3A{yDUh zb0(oV)(*YAeBzhIXV)POaD7~)1wi?xMSU945qhU69r(0g0PU<5 zy7sk;OAxVk>d`s@d(S~WqcLjK!mO9IFb2>bNz}!|TR6#uv!Xc@$?76bevsPh*%V3y zM-H?Pf5g^?Z8Q-`!fM~fMzgWpCVxQtm$5UzVHkvA;Fk)RGXDRuO_Oq|+R51i5G|x7 zF|mE&-?afC+KQOmh(0z7Ixa&z;b8>Oe&s512o^E9F&a$H;P^8^LOv$rYNSbF@xFJm zL>GMFSpd)byd^oGxXO8pXO6aZ3Rq?FTO{opr4Rl&jGevMqX4hCbb0|$6b-6Eterw5 z3(0~*CxG^7V9Xk&(1{j(?a)aly)|3e ziB%x&i$2kX^jMgVJ57daCI@Z$B98Ykh&V(@%gl{g=dH$Hu*&;;t)E z`eK#W6ZJyq<1C&yq6$O>7w0c6!H$in!tG?`+xqH8fwW)A;C%VR?=G&WbhhSNb>Ho! z{)nncSI+X)x;jocRQfyJYbb!h)dsE@y^HIfoHzz zz+;Zmo+NM1SO3&GO8edo{ltsq*ti8FReeFlFP!PUwWn8XnuD1RBORq3qPCBuaf^5E zyRRoO0~(toS{059-WIfUZJ!PRBMEhrmHiZuBfTfrvRl*V7ya>gLuW> zAG)iIhtfU?=rU_OG>zaW?Q4CrCcliG3$BDP3&ua*l|yZ1hol+bCRm2L_45o-fiS1T1~ zrW#W@3cyLBwBx&?)A4t0c<%b0L0sWBcq;7+H)lJw1H4g4?ZTOUp@f9@ynnA|2KTX$ z+C^6ivUT-t6OF0)&Alr?13;hIxPETGj|M9<6(bSW)oujolH=No+0?u$R5 z=nrFOlmsCN!_X@!64Co#Y=7XDK~47n9kF(>Bx!K5Orw%3`q;xO;_JQs2m1}_rK9OK zR?Bny)hnel05*2i73PgWOw{B|cfTkZAXAc_keg8_<7Jd)3F0=u_WGiLN=!kup+BYv zZn5Uu$D+KtcrJ=~PlgIzI}RlcjG}tXO#^KgE;1WxqUv!op=+Ns@em?=vSySF=Y!C! z-rYoD*B+*V#Ck$gxX8RIg8Z3X18tv;mv4-hlRTr4p|9f~T0LH;fws>RY2hlE#15Q+ z-t3yxHS)1zzam#c${^pX2(*3b`Kd|Yw+mf+r~#ukj%3Yx#`1lSBv7P%YV*~!mxdsqKkQ$jvFLT^VW z^jt`~d~53ME1k~T9ybCIdOK&r3lbvf@+}P8O>2|$QcMvGvi)&24cYx<&A~;+_cFAR z^jY>nLejuV5*m|{!7R_kG%cBe$n6)L8Z2Sbecxfl?95X>e zZugSI)}1sLm%(-)z4=5jPb9$hW%?2t$#G-K?Tw-qOujM(N`URYma(Pu7+#jfUVKpA z6(0z{c3;apjpB5-8aRU>fhko!vaw&r&M3#B5Qc$g+6upL|C9BLakNzNI{+$e0|aMc z+StEq`Es?YaFxVF#-RbLGAo;cYiIQ?K321`DXZ;F8Ru55FlGJcw%l71-s#p++q)s~ zerE_Q)b<9Ln_~*!ci$O9y8R}w+m*O=hc0IUwtH;ZBRBk3&&6#~iBZVRP}`fYujf3+M(ukn z@f@IKr>p1QlyPc)bg?z0H|zGQ<^r z?eLFy6MbsN#0A>UoIl(KD;)brZU5aMGRN~Ku25vChSuDEAk=n~Th8j{<`UVk-Q*TW zcgRFBZ2#q<8qy8W_Ew=s6`hq_9ksoCY|;=Dl-#4X_p$388K9%KQy_R8&NJwuFJotx z1R)3m(JKLB1NXn!{0uLau@VkIA-E7by)5LY+#*Y|ODfT&h)|R)cf4;AfxAr!7z?xA z#v1iGrsUo*+doMZ;a&*~nMXsjpP9^yU{sE>ZhIAjv4YxuF)!7m;)+n^@|Kg#8#l^T z9GRh>k{PtY_Ca|iD*hz(PaAAkXDl@FF_XO-9*pHP83QsZ()VrkUhf9b4M{ag z-W1gK5AZp=W-QxHx&VQ&L6vCb0S$fsu51wS-7|?9d$p> z#T*XeS7BrA1BHm_Nh+=;1=jxY)1CM!X=CkAhcEh0CAsF?3)=dbpiS-L7#wF#KLTs# z(>|y+lC%c3>HBPqt;xLm82mAIMmG$DFc4iS1UTsai}j0VB#@92G@4N(?H@V*}QH>2^1YSuciE)=RE?W% zS2>;3g6*if9)DMPX^#2@GSqL7L9q6#wahG+WAHhlicxh@+FmfE63%X`W&%}YLgRP* z=19@yU{f?~--acz&qmeJM27YDP?JX0E!G~d!gf0{(u~q}@?C$%&h3gp7>1!MmC)K| z|Hb;#TyY4s7$66mycAhcRG!biG#Ha?Pflf-I$4>RS+0m#`S#>wK(@1$VQxR_V`84; z>aAr%l6up>wMtdU*FeHRDhjMa9%mj)3dnX0;NEO0Y2f4}+jG-}auMczzPQLBPtQZA zqrQ(O*?w-z-0#V{z(wZd=aN8R6Y~vhXKeJP-@r#^s1~a4ntb#BT&S1Hx7I#lE89%W z#}#f!HtpcXB-_u10fH)h%ym<9-k;T+qc{#0^EV$t21(m#3w$mE>-0D(5(=1tGO(@~ zSIl1^Lk;t2x}+r>1VR{mCDHYDxc|j=WBiJ76L<$8gYzeJp#8HQzIVO3@=AYt(Ej>l zzK`#!qu;;%3b6e!rBawvf1qQM!S;s+CORHN<+A|WpW_}L_v~%&eMRzHCn0+5Nhnzjvp>)zYa-G#d*Ki&p+5m@5IDf#W@8r z{sgQ};X#)6R3CCGTnqE#tUkW04N?5>7pAjG<3@&5(kvpnNN1=;lK{O%$jjMf!+C zwhzi`RbPq=&r>f7d|QIruF!^|@A+UU2G=whKmQ!t?^xsKlUS75UQd0djGy0QsX+Ss z5g9*s5&xu48{t@osXh?Q)z!fiGKFV^=f_(hNbL%@Q)9ZdaBB*lEkc2P`+Mql4axz! z^w*tWQ?Tk7Ax(&*!E(I_?)|(z#y2s>vxgb=sP``1;)5Du&H40sWp?b@8yLut`9g+f zabT?;gOV}xX^i4zyfs6Xyp~YABy{u_sWM`IZ#drnlTH^Fr{yCSGmcP9fS1$KGH=Io z7%@e-J$y`Ls32pkjbg`NhH-Hp{a>UYrhB&vU@19Pcs09%(?U2Vw7i`m)(?B#|>}+%)$oL)MLAimu>Jefo>sa&l zZ~X|lUK_0Yx9&!euwR!U0S>Qf58iphg2g$&-@xe|ieC>gJ&ld)meUaX`#SM0wJUoa z>A9}&&AAoOgw0;4CA(vE4z$w?TKlr2PSrfyOYm?$-+FcqK0g^~czHynT!-Gmf_*03 z7EiVwN()AK?m;!=TNe{Y*VhxISUuISid7=*3#z~))rf3f~l;%et0 z18}6SlM@1@r&zx^m~28dd9}sh*WgOjM~puS^b=dUp18>xr$4JWqgu-XWWbFzj+m6a znn?Qpi678VuQdudAPMd+FgyviqK?#{Mm!3WtD?w#_ z31v*GzjdmmGSTFX+srNAIaopREn27^k_H*kAkU?2&>98nh^cU2dK&~bCm$qmFU=0NJ4XbZEdM8;>ZBJs1Ej=?23{wCo1g+ZveIO?9q z+L)K-cL!xZ#X{qE3C3l@2y@Ul(-cQX_2mI;qoZV(N%0C(h@u3?gUahu)l9>*?JeQ) zPOOMWG zYahTvp#fxBSfg2Ams+e@Iy&!B2l{lPQTw=oC3iDdzhvqAXEdhzQn-FaA?<67@0D+=Jvr_C7PS$Sc{@Ks)j%@Zo%LMWC$PO1-M=XM)03MxfuN+M#;^iDj6#5_Ll^r%lV%$lpBWWhpG9czw7y5e^*Tu z2PAS)3%8#)$$2@0P8ARCmoA-GGBK(Syk^mtr|7vnRG%JQD8cz6$#@r~HOq{pT_UG8 z4#uXpl{#|1`%|itoTobU5Uxkh;k3@JFbWh#{lC0$`oIwh0hfB!jX>u)ulUH18H%AO z*Ats8(3lttdVaXyLlk99GL`(ivZBEzXRgKtKcAJk=Gf5-xwNmHYEy*KFWlYa>1&#| zB~Q<{r7|H**`N}kXRuD9Y$}7bvD7Ad)h0E~UxE1dZa^RAqC{ZW52G*>Del zl4kiZW1H_pdB4OP6ac!#GEYh}R#!8fMxqD+G10SKWMX410zgu9g$M+Ge&K>0kGNny z{3d_8v?OU_KZ2ekYkNJDwK;rp8llj*$v$MxGPeKAYSdjZX?Yx%Ou$ki2b&0|03jTe zWD|oPizYO4&YEZH0i5@6!^p?SYN?|KZr-DaN>@u0v@Dh9VUL zHJ{Lylki+`3AYM{tG_mJbB2ZUTt6Sa-6G96?7|Mp12>ON;Yq=)w?u&E>nh3Vl0Z>@ zO%qn}U);Hy(ghB;F0qN7+FsgzfB|%|On#RN*dwXH*3wvox=|Xslo-t!YpXd5$Gvo4 z-dclh7sq{CRwIu(76t+>L$h*Qrq*ZdzLbAFBV;Q4b%$Skpk7?L_N;111vHl6|mY_lNyIH3=Y|YuuU2L9w!RbY1)x(Qn z386b83}x};L#JRu=);&hn1wm&6vQzU9jE|Y(ifnxgwRhb(}glHICbpp)BXzxugSrL z&Hq5>Q{*6HMjA7D#3tBjj7$_RJanl;b%mk8>IfY=1rtHv zyZWI1qltwwmA9b9SfF_mn-F>lPh7>T(OUz<(3$~8kyOh#gh4r9SUer}mkD)PV(5E^ z1g6*2r5(di^j93JmrwnA(O-e)|4E0=UeX? z*fMmPOcZ@kCMTUYZD|#Ti226X3iegAR(bEM%SEwNX7kK>46>h3@TprSEeE z$mmEnHsOJSvzqru-rwh%7p@3_QUE+UJ#N2tXjvmHY?=Q+MmmVVY zkv{5hBLMYlZODn*#W#l=jNTT8{D*B}>H<*jDNjKy%+xvuVg-}118#Sb;RL8Yolu1g zr|u&?+Gn|n^ zbFQW~viRU(`lCamS(`m&ur|z>vDL)=KoCXf2B(^_8Y_bXa zyh|@_lCaQSbqMVEydCV&;rcu8afb;Kj+(zwO6-=YS@77$UpjeCh5Z4&V!JubU|Z5z zXh9T=rqD=@{YV&_E%dfnT0>%BC}R^QbdY)I+iJ_UvOXFc-UbbLJdNJ{Rw=YQ#%aJW zdVIlWZAL-7SqrPglFb1(r1r;V-l5lKG3Y;t5F7IGryB(Gg7O3%-e}hP|9s!Igk%Hi z9qgBy$UK_Q<*xD@?L$|u2Eru>C-mTlgoe4L(0(D>Ru8_}+uvT`E@$Izww6|4_PEYk zDo>-O%6>9Bv)Ia-S>R^&(D{Eec5X)ugD?HVw+K}!&m~Lvv z!d^N{AZio&^$GbzT0d4W)mFp8Rg8+ZAyHo?w~uM0*Jn1fuYqKOp4GDB*x|Te((8U^ z1u$f1ynwt$sBzvU?c0-nsop_Aa!*jn*BYkFMDDW^xzA+BDyp-`^<=#LWdmsa_G&co z0)%hA73AZPgm6BMS2ZzTBfZ}Eqxv|LJ)2*yC8K_FbG#>;)$w_&u1&5K$8&^Fom>~S zg>@&JIzIKuObMMLmTd&%95oQkt>Oy|CTfIkzxVMRQ6toAq5^{I!!+?_?A($Z24Nt0 zr3l$3x&OsBKWb5nGvfnLm^W_Ch+k!|U2Xm$a%%dj<`q_tgA3W|#;E31s|a|Ke3+e` zROh&LvH!(e|HMTr)puonOj9;?W7>RVOv`|;qXdZA_3C*AUx!y^-;Fe%3$*HsYNEqM z=9^2s&?(Oc`=l$2dVzY;{2k`_Exx|4BaUwKH+8=M&&lXSZmzFBN^zmb2)X*LqDHS@ z_Nr)v*Y|kQ7@EyT@%4mPbr>?k)O+qOKH94pYQWbQ{{%{p z)N=#AzVOKTj7LWC_1mNqY1&)+6%T#BvRz2JpW*8_q0`IsbMf`I(~U=Vx^Ky$sJ>pk zXx0~VT0SzTW$2_YdUT7fXD7`&I>@X?cgj3xrmyDj=-4o~XXtw0a@xpeRzlJB^+aLE z*~RjIjGb*7gdhlnuM~qB-v45|e|+8T13CZ?nguxw!=LR$*Bb-`#;ID5e7|8=5j*y4 zd8C`@`VW`xSXm)IqwtKJQuuA>zgVNnTvP)s_-lvsL=~g;{Cx&qXB@H?|F6h`$iDov zlp{9Ki~U}s71_7+J5HKShImpL>44We69H)L*@|x;2KyXaYvO!Wyc^?2LN8wFx47MD zzbuKIV$Bn^YU~$$Vkkc&v|o5uooqC!XGJw|R;fIewqjvRe<_`~%qQAMvF11v0HsB? zD*TQ|+lo9W@bz25W8}7$Ng$2fR@WNH;_q&`Ew@26}c?G z?F%mZzStW3yPJk4#J<|-`>Qs37o$Rn&V$y9A`1#8yK~nkI_Hx{T}Z)Dr8=kz963%P zFm~1~xC;gAUohE`kVQM+!V6n}yf=USCQWo?Tsu4Fn!N4 zy`q&Uk3mvhwamD?B^K@|3Np`Wws(FW=LZ*+yb)c|M(vGi2`j=dX3q6-%4k6!k}MwMRp~ zJM#SnwRcb*kM3nIqW`G<$=DfPISj%;u%)mBu={T;$%jU~vrp>^La>bFWwiRmGdKXE zN`IL(pI4!Plv2Yu3aR}DqishmFA9`>F)*A#<*!opnP0nX%s7C*r_LXB_%~>~y zEAcUiQA+*ctdQCVLpAWrQ|(RBHAsV`U#6|NGG}1YA2Io6q>?Kc252a8g-~Fc3>8xQ zKrUy%Q9I0;6H^;so#on0ZIiM?QXNYzVQVcDh<#I_e>=E<|g!Ng`D?qfzC@mygh0$IRvNJ6E5f+wK zVEcc+Krd=58~@j2FZMwv+P`6ypL=e!+{J&=2w|XqrH0j_h5#W!-oACBeR{@?46l!5 z7IdnSjXfEGgp?@n_0@^?v8Y2k_Lp2%r;oN{BS-6*W63f0nvPM$qd@wqLM(F0Z(YUH z5|KuCLncA_wBxrU6Dp*c?+OadehF)$Lz%^OZ}QgHQQo>LkukR^c9LUl7nRFVoSZ6= zF(m#ehXa}u&l+O(z>ZUFYLI9-R`-d=c4n?ni1v#egnQ1N3L0Ye!1hz@+^sXdCSQ!5 z>k-2s41-q+mIGn`#rmVQoGXdU0KN<41>&o$1G~+ zd(!~)pBqWEbET4&sKt1#t+m+_GIgyfl3u?Hw2a~FJNH6%0rQp99($ZN>=b;s=7?Z@ z#o@Eob?rlXvhShvpzC_t&G6jFTQT0b){Z?M9yr#164D}?tN|@!ZnfC!ML`JdgJH1W zxMBMRmdV=qTv0%>?8$2SxeB3uB$rMOaA+YGA+-1SY#7hUtZ5fA&@zUSN^cYhiv3VYnGVM2)D&KRd z0-5#)3nbSY9HjX=&*#_=?Ou%cTxgNJW=)#FADq*YQqlL9?(3wVoN+;A?X^ZOke)y> zS97Jz_*`k808hE4oaZ3LK8&4F5`-`aL$97HVN%!jd*{c*x9}}u z7kCA0a+1%p$Vp60!!3d#n`=AKm`Ch&m>VOp#~=+sWk6RwD+bOXF&X+v#dTNTZZIFiSV|8FY=Q0hJ?ok?+s^6fXPh1bY-iBj z;hAYe12b6d^j951L3dqq(2PlU6<@jWW9$rU7zSY=xKc2N#``Z;sS@X?A@2-;5>Yq6 zbN>Gy3n0^R2H~<=3-z5a(~BcXhArvZfNCGfY~?%aH59S^(v@PbLdSY1%yb)Arspc~ zB7)*axGosA9_>;3vRTLsp}?!+To&+r%iqo>{guVu462>l2xP)2)Ha$FFqrYo*BSuLo69z?y+iDUvbV4_|@ZG)`dg+#%tG| za!8H73i=ANXDe#k|3o|=%o+l2=l%91FnYXQZ@l)n$~z3T?y?e#=N+dVHiW+Ftmdf~ zo_Bg-!E1l@)Ae%!Ui((t?!0)l@OJUpYJ$m3e}5J+r<-5nfK=fB^TOLV0u_7c3+y=HHuk=hfLzYi4%_Ecbg-(`f~qY?GaR`0q!;Lk0oCCkbPI|JB0Vhfv?5ql@Cc zLE33YFhM^@(a+?aZb_WXZja@v{}?;B;|hTohPJdU!iN4E%SWQaox8-Q01v~yElcvg z`peFD{<4DDPQGx`V&S}+|2_Wi3>!5WNf6tq(;eXaSFIQp9x~)9`+b*1Grx4vHC@}8 z^ER4DpH?2JnNT*fMmJ=%{nOzY2~RV-0R@@U8Ly8~S43pAoy!+i-j=l^rwq1-8LD%m z2)lQ`tCgLe@7#m+#B7guhUGHYo)oNujo*kfWw8A)$Ug_>-(zoL{b)aVs8A^1n@a%$ znU5sp0L-a3QI3^`NTN}LW=ahD{x-s3QPtW#8EQ|Suz^&u(JcsGyE*Z5z%d=s#G2QR zt!?JbBy3`jHRUGN@4m~b606E-bE8U8=9hMF?zEz4G!HV=E+Br!d5c;SDnsqzXW10p z5LMf?>d8Qcl)Gka38?+ie5T&LKEb7|MPRFv@i$lXXQ}55*)Ojo592@ zAJG0XzMvUQEMPZ4JH<7lE(TE?BC#juY#s$t?V#X);p0sB%*v}A5jf6Vu? zOV;@O6!tOeM45Csh%bLs4$UMu1><)FQLt#+e$sws}0RrO~;Q6E5E ziQ$ACw08cS5ZjGFwGwC_5M-+G z>ueKf*F_TmzF_2Hg@Vkgfq92lcYmG}XrJWXvwWe)MFi0P$9YB)^z?mYS|}4Cy3EUY z53^^)k7-;`6&B3zoCO@n%Ln4sF@6NGox=VEt1|^0CD6X{--X=d>ifI2uEw^1?du6> zM=ikoM+vlNo8*7bH>+|BCQblpqc3txAPjWv5?|%^%K)5u-wtE1zeF+2`7rtD=^sAWf9WK+YS+8s|4T)r$8Vr1r*s z(}EP6?->}iPqh$Rp-p-%2?+H-FcNITdD;=SH;(V*;gx5Cu3pE+Smj$Ido#6m-a+9#)VS{}uC?D{RO9~w z2{PN-QHx*|MMMNmYQE4!QKPU42{N6@z8+#853&li_LK7Sdv3U|U|ReB+)wSfaIKv> zJvF2e>uq?BVF~f`D%Q*K9F$tfs!?h|Q~RbL)6f(5tU#@u-?5Nl03IGh2Jz(g&iDPS zSiqi(g@Q3sRS zcc^EpK|MiM`=EcA98v zE4VH`YDE0@)ty@kraL@L+ut^@YG2%9+nrmiK-!N^v%z)q));0+NWM}hly-dM3R&`? zNw%<%LABQODt^F|kQqK_CXn{NDecej)k%T0gYb{Zd-)kFnbN*u%l!^p7GCYgk_G?WKxtn% zLdXpTV^P}E)|$A~V6EPLt>%3FJ;#*xH$z{LNqK`~0SlSM^OcNbFkdWWpi`?*Rf2Uk zrTsB`A%x8w08oNxU!aeAhY`xe_H}HzvoRH7``)MQ_sf4oCbkQguEJJVf}q{R_A?aV zN3rctF$fl$f=ARpU&hV=*I^Kbp;!9Q)zJH2Y?}1*f>ac9fN2F0LL58(|1AyYKN`;F z!4KH}PTjrNMYjTMA2cKdr(GuWwNXky$E^Vh1=zkN1=LLqL26$bR=mvWqFaFNp&IHf znmFC4vc&|M00}1@t6?7AfweCtu;8gzZ5pJ&+E>9Z%e~Ae!xNp<>uj?rZ~|*jP7lN1 zy397GDJr3#qI+{~j8<`5>ren|UwHV*VXF5TTU3T+Jy-s39Y%q*?+s+@Y?Q3_%%Jy~ z`K*TCBB_2RlG30UOe_{FNK>Q)*1n%YY`*!arV!Wr4A#DN9jVvLw05%o0QWK?M@>4; zOl*cvFwNBt*1i>1*RcTBF8Dy4D>KYc^M3QonVl@N-Z)qE$y>TSm})S2?fI(voT)d~Xx_K<&SC{blTok{ASGAbKT1 zVe$SKtJ5hjj5?eC^(SM2h+%n2e$Qp9k}v3#+E+Yv2T%1bIi>a$T_&L=`3j!*E1YX{ ztjMW;iICct{%DNX%k&+oo&5DP);F_#!TE5jB;coh%#xnPc>NWfrqr%NO;Dno?zbyZ zKW2oef?xU1k+$j(;?3LcPjs1Z!$*VyYY)tf=a!z#Rl7%K)PJf;EhQnfk4PUl$p}rx ztGg}bt*>9nc=0Rn8rGkxarTm?jC`iAi5;kS07wS$+JXanF8 z8KJd@Eh1rRi(k<~fKyrVrv*)|9ow(PMB)?M?(p(tp7k8>_zz82VC{ixvgi1_1);Ua zdqil~{0UZ+Yo`H7A&vD&-e0tK>U)VA)y1PZ0&54yrEX1?7m!6?RQ@w{#cE65{lMBI z9VU=VzebgQyPbZ!q+0l+mB8AUkg$CiJJ%zIVGsuI(g{k6tz`ej`iqa;rH49zFAv)o z$wF{0n0MAB#h>E_vi6IZL&_f?^Sv}#>Sj1JhnWdvecnUS@9ZC=BHK49f5L9$oK6a| zz2}JQ>NS&ff^0{~+ivaipK4KikL|BDW7ktWMaD35b^0Z0fBz?H7ozstSaz?;auBs6 z+6sgWIg7=FTRX1W+D&fEQKP8#-CPa;CuX6xaBD9Im}3Jp_GzA5s|u(00N{jKkwvwu zFG5Ke%;8&1d(z*f>;7WCl~6J5`{Gbw6Bz?VCCiEg36K&qNKxuJmZdRY{HmDtTfjMc z^O|?Aq@C$Kf+WXm{6+UlI`8#?VuBUsF#w!JZOEE+&w^^dHETd}&{7R>&exZ*E69N$1YuvA!5ymq|JWWj6tgOTL8medoQ3K;>bwUkFCRpOs^EopG!{{TNoO6W2s5_PYtL7!VfkWMJ)k zo`&{8U*9VxN2YtWfa^b@vpee&dd=AICH#yp0V>FF`aAgj7JNel*8V%0pDov1_(EXq zv-l#*T^dhC_O+*NI}>gMC!^*7ke;HCI;=~vcJd`y!!axN+t)!l?QD<^s35cDTIlob z*TMnFUhN{R3#@&%<$jCzIk0wPBAJ4MrfVALZS9Gt59+!Eh_$CsG(%u}iZws0E$?Iz zdI#1%_41Ci)%UrRFF{o!Y9n~@P7-UMIw*KIideLd*XgE}CIbR&2RUiZq|A$df7~iP z(mptpGLh~G0w<$R<@wb2(!RjH_D|LZZKDnLW$cV{CTd1h`hjrZ>q+gB+5xP#(%I-?$e`pJ5MALFj^eH07z9kG3Jnqeu3b2Ck` z{RFm8$Wy}CzB|6mVppD=AwwDvN#;zwgr7M) z9zDsN`L8;4*-+?6L1%4S<{>;{fA+2QU_5`_fT)+;vnI44D_| zTxoZ;7AnXL*m^iOT21CWouasEsbROC?7_l)kjDjNvmW2~1w&@xbs&0M@~sZ6k9x;$ z)D+umbF;ROo2+;2kCOaX@ts{p?fgsaJadlob^&W&V(m88A~Un)NA(iKd2&GrvY+sS%9V zakd9Z4WYMRsjvS0qPJ69=m`U2thgNYVuA`-TUvViu0NZ_+<#^mGFy5Gvx;vhQhN@~ z9Nu#PwpYU>g9(a%$?9uvf+MrlGDksA*s8~1^xreq_N}(%_>D5X{T65o=4hO3>^B#N z)6&}q`ef(3KSoeH&x7)syOc(7WMsr=;|ls~W9jXK^w6Mx4wx)LZ~xFUnC|WLDqqIV z1qWgf1fo~kwJPKNFSeg#A7*L51CZ8=6oz5^+FlvgJKrPp+MNqbyy`{H|HIpfvG2^+ zZHsrFvHfdj?O!?GPOR&$Nmx8radg33xOuKJS2o3ye=G2IdLjl!p<<8h8T$+4Oh-}H z;%Le`)2ozS!IoUK=h&ve+v!<%YMh?qlLBwwY~eoVmrKYM+kIkjoJ}kW9hr?BOATB6 z%YJzK&h_T(KMLQ#uka0GyA^Q*ynQ3OIQc4nXLMwi*C|et$^A+#^cJ0hQRL6y?RVoe zg>Qhj-)dbJ>m7e}Xyam;*7KgVG&619V!f7;WAk$)H2Uaw%QZHO^{!~kw<_{yE=Pp` zIi~kC^F0D@2P-fq<`sGDYLR5#&-AgiZt^Q|!lEv7a(g5M_Ep%9XlrL=LV>q$+>Z;} zJm2^{&8FmNTOjcK(1V(m}Qyp+le;0GZj2yr%lHA6IGb^S6n&%F%#3%`Al zeLws+DC)>eyb3&n*T4$&6+R&z)aB=-f^+9!?dE*npTi2ceU+@?fnMRaPcY%J2NNpN zfr!mmk?CA>quOo8igl1PdVu`q9s%LE1E?qUX4C5&h3?4#3b}8Z6ekBroJogLD@Oh&dgptgplRa_dS3gxzXz$^x?3!x(PEkO( zev^HMW?-MW9Yyl>Wi;wmO^G)zHlem(GXCLP%Y=~(v`UOMU(v@TYWp^uG2YtYG|Jgx z%~?n?!l}0J-3zF|zB(xA_Dj`j_$s@g+fnNO6K#KtozW46APfXsdZLn~|Hj@|7Dg~< z0Sp5~#m(iCw>q)j{0bhpx1!j#5NBkIan7{f`kjMo`zBi^h)kev-;f|-HxTxFSGx4t zDl?$%6W!<^=|w?$nx-h6HKi#8}U4%wLhCW^!ghpL_6u@?bi2WSR-RgP$c>f$(ouChl zWVWsybvXN3HKePqDI5Rl$T+fS>%mh?9Ujh1}grfB$h?5LLHJXStuSKenuzgOHQ)nrE%M!L5VkD=) z#80tT&!#x7apiY)MjI#^j1}wkwYZFD;S%#^Tp{}Mu~+ByXYAUNAO=C$l@L+!{uf(+ z8am5vh8rI$ zcd%$zyK@4S^L+)g9q&A&7}hWA-Tz~qcmADK*q~DWf3-1Lc6qLT%cB7b%;k{@%=R7h zIgEP#f7Munz{@+2jMY+eK@**sde0K|Hc?93d2CnDoIy*R!9+LV42{R<{)1nw62CI( zx$_l@Vf_*(VYWZX!0NdC<(%PQJGtx*UiV?_igGA~LD-cx#W%SB#oiKaF>x0E{2|*M zgIZZx+u9R9r>)*!lI=HJ|Af7#E$|hO;K-w|!xh=~CCn+7>rWWVajh74;a2Sv6tzaS z9dg8*^M99{4jb0rQ)p?sDafGL3$~pa7@J!{Z=HV0w(psa_^ys(&JciPT5v)_KXhof zMH=*vX^?FDGKCiV>+f*V3z);&_EpF!U=G;!puPh840kQbWDRWlK<#s)svn~5e&Ua6q8}IU_*@Uy2yOm!m;uqEjfzT zwPS&9A1L|?P*CB;_QI_wWqdCSC{_!%0y)XP7*XIOQtjXgZkBpX5bY6^p=fMH*|baj z*uIPLH5(pjCUzRbryzzH2scrD7=dRWPSs{M5g4HpFL?G~(%w>8p|V8+?DVLEUsXqe z7C^LLPI%t4+Kc;Lf5y%wM`92LqF15{(YiC07`8{F zL;~ThtuW8P_DQ8aWNe@6y|>@HEge7H^5tOIe%-{29W{yyKL^_G7$`N{=k-*4^gFlI zQEB@_@hrb07|pyr7^Mf9n5Wnn%-aJIO(BA-o=D zt~PNGWHg&Y)zk{oVB$VWE0_%J>?xenOP*mQ=wa< z@Hx!fgF;2ko48uBi<`N>%kO_Dj-B~b^p?$*J%8z9h>OFhp?jeEO~$i&;Q;{MDdCJf zVE0C1=dfo^+U$)(^nMJwqxdyQb2b+@YB$KYx`mB+>#^+ zK_GY~O5JX}|HXD)K}_D0!n2!l^SeeJGI>vufae?6zGd>BCZuN~UdpPK<}%#i z?;C;F_*$*_T3a4X_;VF#(ONb5yUJ3IcXBVjGnn+e@V`7`t#B+Yd7&Hf|sE3%nm@bc|lR<-K0?7|?|BGd-oN1gm#pKUFlGKLE&zPOQ6nH-zyl-Qs!YnNJ`OyfQuD33Bb9Lqy(?%oBKSA96RJT%x$(l?O z?*81LBUI8ntOrlJdotetHN@za;_mtEiC#@9jHU(NUv~HJ+wZI`xI4uO{TjnP=2&s} zZ#lj?q;Z(c;5`N24^HsuBHI~5r?~s!+-B%_n&P4ayGvT7%&JUAcgWb=Eex^+^Nl4e z=Hb%M;`(G_*|Pr9m3hkAvI3Lw_pmsfBCN|5V|urtb$AOwNvm87Jza{r6XW-|4h zj|m*WXd6I$MWgFu|I>xlk2PzjJO4)+eaBV}i?&_)ztrG7h-VKQ?HiyG?w2*6ex$7m z`FACnbq-_8K4b{%*3Z>;Wl2HVxgJZG~XxfMhycK9K(_CGGjc)dh~BjH|s!Y$+Va_(BL5wD)y>caK&Lj&pE$9TQst{5a3 z!@Ss&utmZ}ulY(41+ed?C~pr=V89+LuVrw8_2P>J1O@Cl?Tyu^y)t00eW4&@*D#hq zRh&aua}N|HL_sLX_ft*18yT<{l`4y!UK$qt$Hd76<8Z;~Jqf^$Qk}%A9AXuK{h=7) zV3?<;8QK(!f->FwCZY#Ug0FARz=RJBVbXm4tY2JznAfHSy^-&|(Lain+SD;z>6Ts; zYjCEGZQ;fWlHdNOFC+F45$|vc4mIl97#Fz;1+p;|$jXfU}Y^mj0e^}{$@w?coR%_5xO{)(>_${7NGZH#|W0)aL->IZKno} z7XuhMDc$RoZb9SkB$I@hC{QDH1IIrK=lrj}!_xxC|3=1shfu}+{iqp;VScxfNrpP1 z)hv$GXdr>jv2WMf+92`{{qr5cv;dXOP1%2m`?{VKxN(|Btm7k0Z6RbL#~` zL}I(+UD)JgLH1OWJwfEDB=9zTf6aRAA;~y3Ol-2(dLIGh7ffISV4JZ<<(1wD3dZ`} z)bC&*D#1&*gzIZUFQxpQt{V3{SR+Cg^7qLmb9t?4G&AD{3l0*xY_D6F3OH{@i)vB* ztgD$eASx*abEGxqNEx>1Ap4=w@LHlF19D~H;$*LNHE&1!Y2@J4Jci$DNUp^5J0S=) zYP0IZ^LH96Fm%*XVS(ot8OAYXc(ZCqR{}+vkXDl}amxGfl!KDnns+Mz{UPQ(J&N@{ zA%KTCKiqG1y(aj)CF(}fZL?W4y+ovj$DSzh}2wFdLG@p{dT=yTxUOh2%9%iIN zfb1pUBb78r9Z~I?~_89OX-eFOs}sO+gv1%rccm)kGigByGoC+@Q zBnE_G)(FD{mbZ~#0!Gl;JaFW~LmdybwYrTVsQmE{V`p|FK?noUl*ZT`oquBc#jDn6 z0k@p?hstB7Hy453JX}FkD`O?5lt6(MO8Qv&-5KM_guX6eWg;Li3;9 z&aV&kdSLUaz%3jC4))Tg%>TJg4nu`aAlq$rb|86bB8y#g^*BG#y;C6=#Z2gv_(b;} za(==T`}CM6(Y=4rKE$Nwo}K2TCYrf`muMJoue?xxe9*xT>6XmMx?KL@#P=-%GHve` zt2kG~;wO4H(aK4Fs1x!9Yc>&SvVUJc3KUFR)+{8JgNQUtM4CdU4?UB{_Y5+{=8vS3 zg;cViQA^`X`az^mCbwL2a}X|;n}g{YI6sJLBs^h~mZftaD%dt*%|v3sdF~qp$&Jwy z%mmH{`Zg}nj4~4vIKPlfr*1em=@M{WmTK?IBKqhAoX^r-^0#MWfRVs?mV)52wU{Oz zZ>5N&@+4}@Bx=C zMNQb~WstV3n$JH&xch)*B^XUH&;qM>-m@%vk!aKWtG&IN0nZ1d0=D%MLyiE?mnW;? zI%Gq=m{j$pnj<@>>rdhH<-q|Z;k{7Zvd+lGqPivWYk>6<3>D`9g@PUg=LSMAD9)L+ zA>NCUEvsD`mha}a45}GB9FkrdG+3+Q(g#HU7(Wp;(6_JPPN7`YUc)ZboBrB`=s)R+ zLlm@V3`IK5Gz(Bb*?D!?c@MH?{&v!*mP3+&(l5MeG$5gSTGY-DimFhmLp#2m5_GLU za?;_I&kuF}T#;?C9grSl8(}cF^nW2mR*GXal84f;eF-)U*)JI!1iEo#}Lcr3?r*ph^K2beeivSUmJLd>Ndk^ETs*K6O27)^0bzYglDO8?cxA^g z$NM^X9^T&Qx^V1NdF5_tjEHATULH72m;(D!~pcFb6_mwRWHDUxBhv5_A2 zS3U&({RKJ?!p;B(VHk#iUusvcg#UjGA+$?HE9U`dCC%1xcFb?e4C&72B1`#MZFTW(%6iAOrKsS0_0OyUX(-s0J>2fbx5!E`;;KRrDREOdP|*dFc`f# zpi#rqD3M?z9pXBR3*TGP3Ds&5IK*xiTO9vkzm0RX73b=M@l$JU zoQy>*j2?=AWoB0pepy5`C@KD{9c%~w*#*UK+)jgKkK!vQ#mBJOIiU(|T2TBEnShTE z*(X8?ir*QO6M12}ie=ADBwid3MZF$Ak*QrwLUoVcM5qloM|jQUfuZJmyY8Z>`_Dq~ zM~+cqGF9>F1i|n9B**)0dR?0jV3FgCRX?v?`~}6Dj_fN9zn>@HgYU~PzyC0HCP)mz zAQZh)h!ErbFV>E2A6gy02gtZZ0)K(e120J2;Z42fO?^c)fdOlYhudSlQQ{o-RviS; z)|+Rq@g%tGLdj4 zzO@`lOnq^h}({fIr7jQK`kB^<%e@N`y$@9-+Rwb0;rLY!6=;jzW>0xIrb6`gyx74tE5-kn z`$FS2v;BTKz(ecew?)XXq>yn@yW-z*CBJ!Y%L_nec|fM7Qslna!}!?-xgYRh$%`s| z`E5=4mi#V4nI^JShC1;{7rv=TVTq#~@2PcZ1}}hFn&lw^izY>a-3R$Ka4v||e6ucL z{M#hwHuC-uh=K068w_~AxNGkXIo=!wIlfvK);YW~yfQv&()crWZn+V|Fbup>tt>73 z{uk?4hYRdN>;VDa|lv(_L){6+6z0Z@e2 z1#OqNX`0~VJ>ld<#3%7y1vHW_jLj%1+W0mTig!o_|3v&+jNHcNxwOJ-I}Gy&yZ@sM z1&S|(X(7%iJxmz(d~-jZHx($p@!KNh4{m5`0~GK*2vU0n9M$Gn*;V)w_FV22DE^Bs z#Er?to>44;;$IdCW}8(ZYi}o#cF2IB2+1>Aer^A%&NS68V`q@tFbo61FUh1yN&o*? zgR~kNZNbeg7r_aj$gAOU`MsEALNIR-wilQ9&5#PJ#m~N+Ubj|I4s9lZo)Jm$F{{SS zos6PO^o5fE=I0TBM%mUx**4botFiuaa&Nsi*#uU6tE@gQMj>uhm6Y?)LNtx_SptC- zKWKb#V5^G_R#yCi4ak`ka;9iLCJF{MzwK=8Vst)5y@iQli7Q#re9nSr3QPZzgy!!m z_%Ia5#n*=BC%0$%m|ma6;xpOWj|#H{lBBo{9-421DbWx-Qv~nO{2v4A`^gx{QV0XA z_{LeVQJz~UPjLRE969Me6$2MzS36N}@esH^KRVo>?42tH+iJ&QFHc47|Ie2U=M;pRiJ=z%P8PSzi2k|24t(3@^d? zLD%dCJ#H6^D>0|0O)|E%4;{`?I}Eu!dAIjsC=brJd(^+`JXxrU9RK-P?X&cm1n1w6 z+*Mp=LmiFwACpwFTRbO-t zRee!W@O%-PN`J&K4H5;XH_-6?o}B5S8* zZDl1n}5z{x`=6 z<3+)IggH|&qPVxfX{@jdTZmzgm@&tbuu7umZ+BK7JYl_OQOjJ4O~aFZeb^8~e}&Nzm>G%?H`S1>mcY z^QS{Sl%DqvQzq_#R6*~it5*2s`@0G;gppT0)Iv9L4?euaJ!W_~AIy8Gnux7|c`xMr zI`f4D7_OSM8VcS-sSQ9rA?Md|V`%2wXFz37J__FCZ;pfQ$*-5dN54kOOfYU3R=AKB zk+JvNQ4=n^#}x=qe%bPK)~|!fbU&I)v%vN?Ct=DzZy2<2zx;rK5+!{f0uZvAU-iP8 z?7zDP>u_kFsFpKK*~I3dH@aLB%N`RagO*BG3kcpr3q<*WMJ-k-w{+1S8Z&nCFU{0s4qa~B`BR9oaU zw~Z=3xO@5j9-dLv8m#|NNzB(9jQ-{UU~$C!VnkHvmwtt9#aRhRqkn8r|HS6&MN%AU zhT;V5SD+2NfjhfElFz4eGdAm$gJ zK#zB*d5Fzd8V-N0L&`xQ=HDFJB(hMhVYWf15u~c6_B@Vy%v`-#ESn5q`DIe#sQ;gl^HUKSfI)%31akgR*;BF$`tyvO zze0&q6U;OG!{6yOgvgj4;S1#ayll?%>(4WCe&U6=+zZ$!kn@Ksi0~{ImcQsiTc3+x zuvqpu++5k5>4yY4e>D*qFKB}wPvQAY*!PIM_7f&NA7E$>y)b{O6pb$;4FgEg85ar9 ze=mh|{)Hjus|tizvQ~g}ft=qt7>h9RRoock0)`PkH@!w2;Q1d>Y{W@61Bw0!JEL5S zK@f;;>6I3c{cr4ky!4ET4J^Qobs<#YvtTW6*R9}kTrs{E}1kYcP1Qr?d>Ve*T@qD9s#PE->XIN*^^C_Q; zOscNov(Gkf2a@-pxB<_11dZyJYH}YW;fIIY-k#K#7~uKOx<1S+`z`t6`G!)3@nU3y zqEQ0q7rNZGIP-^^3_#yYOT~U3%4g~9&~4-Jd56ZROdTwsp2p~&8fKf~l>$38iM~+zq@ID(GkT|Iinb#{B6Vn(KnHE-UY~H3 z=F0PsdUs21|Fn_xMfKjH4`%Uwv{D37(jbKMku!`dlU5iOZ*I69nwzlLn})7L(%;4d zP{f+)6^Wz|8RQQMv(F5W^y8NGhV9vx&xNE9J!>v9z}4p@HGox!noR3SzqJcRKVEXu z5!?Huw@~zh^U$F5HXz>`+FO@@ub^K7MV0 z8F(WY48Z0@(BJ#|L3z@LB5Ay?c$R#3OSh3NQOEhP(H_V zZw|c&n|n&mCy`(0Aq*;nCW)~d*@;B zPYRVU769AdAP`g-wWh?$G2E#_w=>kz8}MmstWg~I6(X&4jtzp?wFoS@!HFMz_rA%vzMzk^ZX!tQ#KQTObz?F7!B7^ws#J|or1 za@*lfb?SWj9eKd{%*>rC%o&N>PEb5AA}5V|b8b9e#8&IZJkUJbWa0T7?StlVnC9{3 zkYr0v_=D4YVdUQ8+a+ifGPH^;dOlgdgPDh$d6N$-PB8b2xypO zpNGi^5Ysh(ss_&g2n8@{k6HM#aA9fz;}jh02Q~-MW?ha*3XC^#_w8<4#8XM9 zmmEBhs;F7RrGfM7r5DCX?*Dbs4`XMPgD?!k&?~XFu=xHL;{)lrFcj|qktl1Y&T*bU z#durkofPAS!Br~<-x^`RS#tY7>{ypL>0;in!gEH>UjSnZ+;;Ukhm6}XJZl>t32O$o zGhKY%n>`W!e9sKRa2|o-EC=6C_m0^ly;LFO{AGG79=_^Z-Wtbmrs+|Tw*q=q!|rK{ z;XH=9Dh)>~yO`%Z!|?Eo4ETkm5ZKqd!%~?Ku3FNgwrJ-a^pdQm}3G>{~{% zpzoLdmYmxkjO7RrP8H3)dNXzgxDCTF4E$2;K(+b*j|~{GlbRUf9#B+C9oM1AQ-4%f z3i?2-DtpzG&A;SIaO>xPL^~nq=SbEGF>!|Zsq`cxjg8Q29MFpEHCC)n1M0syupS~w z-Dr4sui*)Ue!y6(6Ohb@?^lQ;(ZFU*f)Mm|(Mq`RWb|z^MLg|BU!x8C=Q*-vq=VDF zU!Dm1`-nX>Wv3W64irCAHs`P`o9>=L0IKlwIjqB>n!Q#lfIFo@N7PaMOTP~M{JMwr z*NmXQak>kOsoMZC=qI4J;#2!a5<$NN4vUGUUnB_npA01wWURT{>*;{`ioKW{wx1sR zYS1^kCxZS!=zxth4c=uQFIV;?>dm@LmZ><5!SsVQ@O7r_&F_asjCzqs(Z`|EpbssY!ExMAjpJzDxg zy23n{=3H+>DEb(1U6YFDY)%Xm{TbtdxUA;vhN6GV_?lBP%2U$Kz*{L?54egl0CW?e zuM?L3xf*+P1JIv}TQ_F1dF%T$3Rjj;rWkH-N&gS=dE>w&H{J|pfpMkT4k%bXm<2|4 z&kUs3n$NrrPTojv>JIha!H_$YQn$wXsOLObVDbZi(2sI2a6{6c8{SX%@vOh|xK2QU z0?Ou-`@`6|;5ZDzK=ewE!BFmhu}a%|W<=j(8fCdxd~IPB7#&jtg*%yTT* zjJ|UY>w|G-tbExp`iq=gUmW`sSOB9>X7-mVH-9f+^p}qtM?0=ihXOl8< zDfH)EPfUK#F#6IDp6<^4o;Rca@BH}aL@^e;3e1PmSNq6mGSBgEGx|=mgwv+$y%iTT zg^~MUuwgcG3~Q3N@(%;OQEo&FYlI2tts4E2?RO6TB3%VY!YPIoQ-um~ z4=397sJba^Gx|>cpp)t3QGfxA{=frbh$F1{!V;h_iNa(gnZ@?($XjLC8AxDe{<$GQ z--vWSqx*B{h0*`xeBX?n0S*Eo3C`R;c2K>+(8 z!O?$cp6PFBAHIn&;G4Kikbt*dEbb6((fL=1BGu??bMbXlMj)hM&kFEz?ymE=A&!;BdXqmES~ z`Wa@-cooEUavz#u#!Q42%p_EE&=U&EW<|9~5O!mu{4ip(DN(CE9LVm`qz|oJq%PcTcCBKytg340wuyfE zn|bCYyP-y3kju&K^IUmJn&`8tif~g+xOs^F7(nI)Ov|;kB`kN2&zo%U$b+A*-pp5_ zd#PBwT{;Mo*e2p?JhH2Ci6Z@Z5Mi-Uz193`8i7D}aP=J7)w2ZAw~+S+KK^-4#lZwg zta5LBN$%)gU9yQjB9H}3%e@s#578gPVjl`CDyNddb4M040Bh zLw!KRCZ>+Jnql*16ryXgJbkJj;^>P52$Yu1#sJYzQuVoU!)Su%cnDVfX-+i860FFV z!e<{nZ$$q$*z4ZTlV+0`fauTAt%^L~<1?|ps5&idC7(&DB`!#B0?KD|JcHvAbNDt0bZvA3`HN3v(tg|`>USwxQ?a+nch{;8R*VE<;0tRp}&Tq z=-+B!2REn5xSJGxg%v4X-^`gEhQyNVjOsgVNDbRBrQ*%7A=7agz>xNN)khLVKX4fU zCiWUkJWS9Xd0R}6_PYNUhsOt-GqE(Q&2?XkB zF2J9n@9;7Gsa6rM_KadvtWde(Zrr>oV8UXA{v92;nBZ03x+5kP56kSFNRER1X6DjpgT)6 z`qXv4K9Wm$?>7Q#{hc>=7(l7uQTF&XKa8Ex5yK!1LstTu1ib%Z?N6WSk&`okuc0A9 zkz`pELss}a&7PX9?RfM9Bj4^<*N^1#Gb?B#sEc3bl;o`1qg?b3%elCgZsK?+@AYK# zJ+;B{&ac^5YDWFR?5Q8gbq)e?K%5sKZe^d5J)}tMHAnUtaoIFActH)p=rgqMuSrR- zIkF3c?FozL1&G6=AD~_bK6*g`!srJoh6CcfK!7m%4Lh*|AH6_;F#0!;d5_vH)|}1? z{xIOh_*hDX0mjJXu+IqH}F7=2^zp546kZ>_{y zOYaU+7YJ}@8qc8gNl3Q=0vsAXT1(BSJ%n5qmwg>#>frlXCuDw$IVFcbbng|nYMy>2 zKKpg+-?w;yJ%jXX*vDBE$1(6_AUNrfLYG15-y<^{*(6aEleztRMQ zbfW={5u=}W_ua9sZxxjOhp{tCk{ASm=#^$#(B%FX+xeN-PPqj+fR)lH0ydAA>96>n zjlxx=^oOyF_?|JE1w-LVTtz4K?)6#Z^v84!2|KJ?u}fb_C-*3HLEQ=eV(oZ-?Qdarp(dbAeZ+eDridM5IfPsy}@gyWIv2w1w|pUnX?Ox zJecj7^$vr(GjJ;=8P~c>^E3Fn!{+U~iV*nKd>I=?eE|3`)%dRz9R0WBXN>-8EXlAs zj0KzdOdY0yr*Ba2CM~OX7%Khu^x*s1o2JG%YlSwQY4hbc>IQeDXftPQn1#6z1!|aI z3YESaa_m^-X3py<+1^#X^{Lu&`s*KxfR|^n(Rk zT(LDsFcmruMliT0m8Y!IhoUeE2kVwEsqhYqL%diwfKP>EN$zJ*(2ep@;aC#k5B_%D z06rD#bSto7`HTGiW9*D>9EM>Sx>8G6cJ`m_zV1bl)fMznI5kSlDVwIz)5(9Jz;wiq`ytL;sKu71C)dG-GPE#JCB|( znbODKW&nI5AJshl{en$~f}z8VO)~Q!Fj~UXFOHi-Tf;o(p#-JBKBhgN-x?|erC;Cu z(v2|}%#^+lcc|VoQ@z^Xi)3z)R=6>?l|Bd!mR3^wc>0T#`)k5{o%gz8WO^?0Ty0bO zG|qHNf8Hc}U+L^cwJXR+JpJEO|*G2k<3n6>%9CTgbHy$!CZ7F!d*c6>a7=zB}~ly1-@i4~C|X zvy%nK!KjNMCQ4sG9Y>>Rjz&LCA0NTX)tBag>Ti~$zvM_d-T_Mnq@QZn2{WiyB#{1=7d}aE!zdU=`dd?*yfvCw zfTVBgRhWE!n{P&}7*DiQ^JK&dN;jK(a1APDNctOfht2~QP4Gn0Pee$9I?B22GSZje zO6pnr|1U?cNN=0L2^Jvu^IV ze5kD?kr&!2j%F|rHDM^&o}*TGd??WmsxS7+*>1Ty<6`2U+pU&i+ePV91Iev4>(@ro zpKw-t#=E#fR>^ruATlkKK1OFEMN)Y&_k)BRZ(U&hYphG7r}qAN8x zfV=-!>i(LGnkh~kjtvI)_-SNI2cAFDM0$0%pgfCvQH~w=qVdqiOaorx0nIa zUx4*RvENh{1Ejx*uuUqp`(l59^p^_Xq>pwm5k_}JRW|8k8>EkC>W|-`S@U_(+NhlZ z{gDLePu*2KyD@DB0n*=xOeqNxlU9KAr6X8NH)hRweMKjhc9@xUOR{0d{tv_jNMF(s z$;@eH2I)_7&rQ>1Z@4<+yuOyKz_mY;AbokVVf!+&Z>|lHzM8ZW5ZBv*%mC@DI9LXU z*)VQNn(?abY5yky>2HuhvfF9$ZIJ#fs(PP;@nYu2LC<3n6SqU5<{Z4D+%y%L{`rOddQSaQb8IKOL zsq9~8oH!oA3Lb`B8dwoB-f73^L^@2&>mSgxGkEh73(_w@T)~NJ=EMQgZ-Azup*gpO z^tCw%d^B7smX1qG>ECB`CzdkowLwGk4+he2byX{k=9oeH>J;eRP9|n(1+F~_xipn~ zEX`rBP1!$By-TYkY6yx~rc40ow+^p%K)}ST_ORSku_k8bFh=hEH}l9K{hQ^c-%vY$ zXOKQ-&_5NO8JRf@$(-B)HQ%83eV7abKcQAI8pL zg+UkyqIZ8L#U3(+;Lo&{3aK9ae`tGon?uO-rU!|OarZGvX8E6U$7^F8Gm?I@&)|<=RD^*_j8_?&~;sIVgKy!pP&85k(ZNZUrNhbJ^Hr%V(aeE$M&tgzsp_cf0ucG z=eI_@oK?L0`K6ZogGc=K=#sEE|33EFE?@p-cJkc6eQanAw_nJ${d~x7TdOypiLup| z>zmKj#@Mdc8?1Hqh5~y_PE0F&Zcd4@pU<^li)l65YmFI}WPR)982c`Rd9(fc+8Fy! z&Gzf%_Qo8$CCFgEthXLFSapV00C1?PwLYe`MrS`)Wj~|0n2h%8rped!_VspSjKyeg z*rm6WR@rUg`s?3@+FA`3SfeJ_){tUoZ8~JImFsQhTzk{e82hz?s@4mk_DgkkOR~WN z2<7G4uQV=dy>_|4-Wp^!AGKOyYElgLQrJwh-fD`m)#$C~lMNXF(bj0uw|rY=uPN8J zUeMX=4E6xKO@A%La2~#`8hWvIWNNFuOqW-7{DpG^8}sXXr=D$EQPK2P(eKOy8(zL$m4~eDVqm zG|`6(b4=Zv*@uhZ!w2v&I%Y|ZDS|y2mYy+9gr}HUTXY96n?FeVkF4&wx`RXRtE~Qc zS;nQkbval2L=8{(^vO0dCCae0{KrK#riqfL2>k4)x~btCul8M$acSGB3r7Gjz{jVC z?Y*`=bL73RVFnw==6e4W!`3Jtc_R1HRgSgIbim@+5`QwpA53{DeP}@L@vXXps^8jA z!#DGOKG0zP;1G~P`IH8Pn)h={T}@s2(kw>1;An%^)0({Phf}6hPkaclTEsW+oN6C) z{(|*%)O$zYC=VA;x}oO}B~N8ow50syMELomd>8r^W&t7Rs&kt7T6d5mw8l8=NbvBQ zdvgHCP(h3*oB3Qgg~mI?G0i(z&Ng8WxoZBv63Guwe2QDkU7be zFhC2Rt(&fz2>+VePRkG7k{CW(|Dk{rJhAy|2!J4lXnvLL-nbAbnCGCJ&H=tyfIPj@ zaRQdHirL6GmmLHPE{qE>;&};p_MaOq?At0kuuzrQ`=#1uA|W1s!IuuEFmf~;)9@7d zP&j+>wG&dtrQ({RMavgit*2*aY|TA5XKl*S@~rc?OW43*DPFe0hO8O)Yw0AbHkNGsy zWG*)jH&k!HkU%@0S6E)9$uAA8T>yZ&=k-}nFUwRzx{;I4mp{E679gHKO= z=g(j7e)sEHzgRY9#o)ZvgOiOt&W?NHX<(Cf;gd0p}o zwjb^VTP%<5e*}J8p9`o;k2QDdyAhxVN3;MYJ)a#~5@-)R5;*>kVP|W`mIjW0hyVT) z0$$ehAbj6^$CZBX&s-gK_0B~b=VV0~zW%iE`J{mUCwpD_$6&V9Xf+mW^ZcGp8&dWEW1%KRT-O>0u=yDH(Ss zr>1P(QHj{rjq7p%CYPr6yk|I!Z%DXn1pW?R)=>ZIM#F)A`o*_Khra%2TrV>Cjcxe* zO1}qZ17&Kyc<34Yt-DfvsOoaRD@cUL4<&4`C$Ps35!i0wgz_<*x+P$TiN1ckh)^y7 z6yHwkx~yepKtz|Xa^|eH0O~u#0n0U40OPIwt&3MR($xMoPS)1%U$gO#ZtV?wi0E?n zpXq?Q3}AG8_LpqyZ)eih?|+i8f9Od(`{$D?XV3fb2x1pF{vMoAx%suRFvPU3Z+i2m zft`MZbg=as`5bHxDBl~GD39H77yKToe`mVw!M|E3J-d8(w<28h?6}AOc6-|Q=4m5; zIA1>YqrVZ@(Fk_iy73YC`$Xp3S%k=HMC3}p33D0b9S;!lgEkTJlVI>nTeQX8_s*vL zC4dh+fJoTQ)pxHL0XWsAG<1uCv2~`1Rw)pADGO>b%{F$0@(D7 zfV`9IVby3u<_sDWIDYbgvlmX}tr(F!^Xxe3XUz})%rU~LKu%l*cE-l!#sm>a{&}6L zJeEL%q`;y_x9%9YgwO$zK{)05XpSHMASr<1qyP-m2ZWIA+3xZ)0pF$rrrq1VIkcpk z2107{kW4mCCI*Pfu_|^RAp;`D2rS#cqPiJTn+k@q&!TK;eZ9t!2*y;)TomxAO+y%r znn)SN)i)?6qZASw5wV-+?q!67GsFk6alQ(2uqyG>dedMNotYR_hlif_eV-L0q+BCE zq&7=v;Sbv8yY;EZLFXa&o$DcGE$xkR+Sf#_AU@O&Uy%trU%NFkDn0r8?TpK9k<0Nj z6qUkp$W3NzU?qK(5s=Jw2m&yQ092LSOC&Q^_aK2P7hlB$v001e{a8kjJ>bHrZa#RJL6{>ZXw`Do`Jg-g}?!d9qREU25SypHXyjw-pU`W+e z`5IHqrLU@DBKKsOv}0JY?Hl3-g}(QmpKrJW0K|D^8!VAZ>GbMYM2@ zV!VG4M*?n*jDEoA)^>6slLo@c2fU(0%mbcKSI0LjS{NHa)=H$Q z!Zs7rcV6fT^=N`g7HZ-4V59K6m`rsPEz}Jk_G#=2x;`i(AgyJro<*7v8)W$AA+@15 zI$)?v2CC?$c2E?JVS3wmxIGlT@zKJJk@0~J#vmBSm?=v4UUe(vMMC`(Dp7zs+bhIM z>Ig=Y!zy?A&=t3=l<7_nR1_1gTs7g+inIYB3pWtT$;ORH)X(&9Uu%{95 zw2M8BhNm;^DH@&v_Th{P@H7gZW=-$4_~Fh$6+O3@S3Murf6UVjJBJPF`rW40!3$ z>VO5uPFWA{%kKF;4I4ni=Dxs&?Rb(_SoAJi;m2=jg`Kp*;9s*9dVV};`N=iUOe)EI zj z{+)COic+o3NPC>>>dgM1YE#}duHqZRhi3SYj8 zG|NMpt=ft->lHyX`v(m>NyGLpBSZ>lg|BFZH?PtPDYU}rh|ZyBiXTrKSbd@5*6@n_ zZ1yAg1>^07^Go9r-!JOju(QXI)OVVmI=t?YJr`puB0L$eFZ*<5*X1WSHl3ge^nc*+ zKOvmY_q@M9r4w@a2MB)HkU{lZUqj(ws~(Sw18hKwrn0sCp!~G@zhH*^>>0pr=?M|l zvG-0Nfj=4tGd7Gb+s!DR6qbifd}_^xLdKA82N1^wRh+K;LWP6d!TkR^P(Ac-n28!{ zLg_7D^V|sbG>M?MgG^{Zg}U*Ba;H!8vqvfUegNnD&7AL(1>Zk`iWvA_dw_)R*#x=f zZpVQ#{<^tA11 zmNsX%s>Kxxm43GojCAJb`%_+Fe4w>_@PaWDRdwCKy)^ezwDckSb)ThFzC?z-W&rag zls>@Z1o8!huIP>089Zh2dnS1Ui#MVNk=eAn>BPC+!x-P16Qqv9sfjUUd3?R4e@2o##T|3|%h9rtGm%UQj-R zVAVsxEZ+tL_O#`Ow&*dYUg$}LHg;l*&8g~Z-6Px=f#>AJcWd^4vVlRCI z@|I$_l}%))&Nm!1>Ma^K)ciIJL$)v^z%wIkFmh&8#SPfkPoThI6z9xWdNIj}OmJ$- zwX(otZSI3if>CiKkrY{n3}UKSXv&;4PI?FqnX=(W5VF@v;zWeshFt(?vi=tGAER^9 zQ92yXY~z=5Z>25UHwA2GJD1_>Qs-&}SB$j^V)*fMGqYUB4@;pz*EDnbstVoCVYy7@ zGc6P~RLx{Lb|@rE3o|+vP(j2v-l#DJS?HXZEsW~K)U{Bq3Ov$}$_T&a@mpSBx(96$8 z*>g@MH9*Fd3%HO3t|7dMuv@0Z0fOjyk(6nJ0BI&D3L~*;vIc}})1FbVrUqKuV<5`)u^@dP#ghTeDO5F}hn(tfcS-7&lYK$vX z2ihl2S`D$$&X#Z#nVXaruTBh^-PX*(AWx8`BTm)A-i_!3lOwqn)kC@`zKs2tOok&a zgOud-#;2K8$kVF*H*l?4IvaoEF-2TB`#)rK!jlv_auU zcykyZbxW5x*Gx1Wb}o&1T5ia#z+d=T3(j<9A_#)K^fWty{FzCbjY6NMnE{kRFKO7l%SfA1>iYAz&V zUd++YZcE&s6vloSgyIk5fq1xZrY3S(&`6S`|%k>hAREQ)#5pp78yLTp#L?NdW6RhqzPbu^`GCrNPPZ+=0dmE{y zE`7pS-~qwrp1QfoJ-aZO}I&L?rQv2oVu|B0_X>J`o{0YoCaalsnXQx%!zYG`de1Yh^}Q zo?&~@(+x@WtAp!JLuNMYgpc&qK74}ea{X2)63;hck@#dKRRNoL6)=VBjDP`_p>8c)A`2M(=fZD?q^$;E%hvA_5DZ`@KX&zCy_U z9k7G#J?dG(Q-ZI280usksJT^pXuZxj2lj>t)&+R56Ex=I+tP}!jnsmQ?2aPSZCb;C z6WtR5sRdQ+la<&z;C3g-u&&P=sdWRgMS6nee$ek(F9l$U8B#--_o>=&kR?aJOyHLo z9<1Y5A)Gruh3W%zdoEf+Ut@)9QfbbzGbB}I85fUK-sp)`^>#W{3BEIv~|R9cE3n*n%MxE0lt(td>l4QBzT~s(w(OTh1GeR%9vC zR_?`Yz9@%@Vwal%PG6rUc*Lq&=@Sea{Gi;mkNL^YqEdC&LZ(YGO&O}x_wH)FaTy}W z6=HxO+SYs_r|zqIIh5Xg$o3sB5fWw5bdv&5(A0Y|$B2lC=o1q}`pOHtrS3nnOtbgN z2{i@AGR;hTdSw1p?KDS{6>B=oSn*|(LAlFXtK~&q=!${vM}F5JS1`Dvwy9r#m~{;C znlSh)#RlrbgI=S*f=2;eO&|bT#WomN#Hqm>fRyz(_bohXPRKg!G0LOUZ_^dTyMuye z0LMWm1-3qXM(j*|amrHQMp>6+;{MvVsPkOZL`A)pDyN>7rA3`p(at7-v0X`uzr3OW zf!H}c^~+(;mS#UmW8V8TOEjtRHYjl>*sNybj-|rERFAb19j$A87RoG9Fgdvwa}->t zfn+1e(6$2<(24#!QHqtfHaSTsNDbS*HjJ8>M6;LZ2NRtw>ZfsvAD#pxZ>p3pDaM_0 z1I}3%j?P$5Ra|Hl)sbur+{+)RcD(M9En%)|#&H?cv@PaJN@SjAG1oX2bUb{@OU_(9 zOPVr|e<#=tCwO z3KnHWAVxZni|}OLA(+5#D=B|#_BbIZ-jG>T(o8jReFa1P2SMENcElc!i>uS!h7D!4kyM z(|*Hft?i;|o&L#;?TsS_3U8&$CcE=@9-VDn6 zk(*fiy@SN+`*cApnKolOrK2hAmBoV>S~^38FX*M<^p+RxhwEmrYshhM4cV7ZGaH+_ z-}E)f8?{u8m0(trXZM-i7VkBS;n*PHj78MbqQLt4v&^rt>qwc zj+4T$TrA14Zebr_1nr`JOf#GVEY_;q&8v889@UrV-JF1s+tJVGh_1_3o%}U;6&~Bo!)H|J_!a)`0#Jh4uhtH61 zElc=+&qXim$j}l)uC=%b&0T)rFbYq-Ar|;%vbz>eN#Yj-HLSWT??h&I(UjiYpx9l< zyya?*y%-)OQy^6+A`wp_5U6aby7OATnR)>Sm4)|Qp{hT90xBsiS+4#?(HL*31*Cgf zS?1+xNpehH5w00ZrD+kZcp(`W7Ew7{#?I==LTyR7`9ZZaEKrb*Czas!3~I8Z%9A|4 zPymv2_})mMpsxt8@jCm8ye=n0i-o-2OraPOE=4N~=eZL1gVLfECQdK&bmUrgy&cO0 z-?uwbl*OXXd)~NA(~LnKJ5eV%`e+}=(Jxbpr9+5HhL9B2*q8BnnwG4Y#){=ZzNFs z0FH8)n~k_V?po=y4@OpY>m*j~c&D-gsrwqi?VOYTN6wTa}mx z@Zq&WKPcxLXSCSqCMG+0Mwk?;lf2+Gl==3c|M?XIvv|QNl`x@mPkR7S5;HHJ)I2@N z=l{z<)!Xy44b~a_Eg^b&k<{UTM|+{sXUX2jCJOW2C~v*F_L%CPQ<`}6WH1{W7+!z+W&%xLVc)0M%!hzyQbmr%4J`bDB*sB>kGGFKE1g~ z3$L>CRfV$HhZmXsi4mDnwq>$rGa8b^7BH5($i9Y_`J*Wxw;#a{7c zq8(cV%F<*I230=H1o$x2?r;o=?~+DQq%eV_hP7Yv6J10nT{%Mk@IEvGP^}VMgO7Jwaam)$i?#f3Twu`>P$ET_SE% z^%Zqv>LKe`2~wt~{Gc?O-Tk!k+Dh_!!!eTg>av^0_`+S`x(k<`>K^d655-r2PG4cUNiz9!7^*8pzVCS3w+vvo5@R;oZ9#;Oz9F3Ep4A zP{;yCFMd#N-yY+*ujZ$fJ6e^-6=S$xE_rjVj)$!L!sPTuQO=?pXGvjh29U+YP>3eT zEU<#1J&NT0pfqwLDiNrk?Cz>_NnusMy5A{N31&y++x2H#OLY zuTX}LNngG8I2~Tr;Hx)S`^n|O89Q%Lcbr`I1PhiNrJ0>}7HLJ5*O}P4kqUIq5X4{i z^(ecBIsBWn?n^aTnXli@B5iz`w6=%-`3+Q{b9Pnx>%Q)i9?rbnO{nY8+ zy=(1NRr{H)~l9bt-!_m@e^XslXY)vN#2m}ZFY_VY`>$KNUP-61% zSb_)1Y-@EO{Y*TCj93ttVMuj?jctWv%!&EIzcGjb<$jkeoM_f8XryMMJwAH-uX&T( zgCsS%|DIH9eh5)(GkSSwIsHEr&@(o3c@k)*tTm~cjE}ozmBnZyEpv2KX2Le z>x04pEO)qHwjJj26C!VZemn}l{+p&E1DNY{zwI;oAM$T{evR=t{kA!N`&Qr!F+$V? zizRXVYqryBx&k}zY|Zy^eaX=OT`lhhvnB|zag)}GBYqM0n>mD_NfF&m3 z+3NIXQ=*R?mc+QW&M16Q;$|j0Sj*q~qp7D_*F*KD0L9nx^W%L<&m|TG(#!39#dV7J z@JHNcy*WaFp!Wk|=`DZUe}6_s{o2c$bWZ_^^y4hS`>&h`OXI3Yc3bR!Zf9hTq={! zDnb?xu#75IukeQjRKLu>X;@?C*}lDRe!jbR-{#WSbULrMyHY>Mn>p&4hUCJieI}-9Xu7yob4w{R>fi_79Mcipq_FhQgcI>H?7SbH@8=HO!<}~}%z`u2 z^;F7Vw_;3^ysI&Kr+n<*@*w?2KTHOl+b%BlEABFDhok3x&%{;u6OJKuwsJhruD%G| ze7|rPzAsnOcl&2P*B{sr_C>OUS|3jcr?4t}u;!#cSC%rzV;<$OJnC>-`5AQqpB*Ne=1+!Z#u?lXkZ9+ z2NF?tXFX%7+o56(H&+QgTKSDqxs+7i#DX=ijS^oNu?h*2N(8672F$_0if{}Os<#}C z4d;J8=QA@hcAc3s7ggJqHB9lHe!O08)|rkJFWvEPJ|hRPPYc{G=fxw&oqxmyP)*Q` z*B#y)>PN&WkaAR&0oDE5x4phWR7gx6I7)O3AVfAANMao4UXkI;1pD^&cyTx{XOS-V zkQh0mq+&_i6{*DbbH=$`I)9|7i$?Nh6 zK;T$L$!m1_rnP8-g?1ceQo~T+W1SJ9ro(*uq=pF=2uTVnEg}R%X)j|xyjgG(_QS^~ z^}O!^7}*G`;sp_!n+&Csvg>#X%!2?FI(|a}gX~8QlveK>BOQA^nSZDh>e3BY-5+$` zjpe>ruG^Jh_L^xl>BH&Vg39K0@Vm|4eETY(vKu*;Th}H1$L`0j%NX{l*0cJFx8X1P zbX`fICbveT8&|mwH(V8&!6qZC!7zi=SYyJKYKomlzR@_&nsI^;5E-j=Tzc3V#$bkt zDkw%t4ptO)fG;q@%6nAnm%dSR>y@BV1q_z6h zvzZbpN!e|11dBd$$!sfJPoeYxEq;Evgp)w^Z$`1-`d0D@Nm|YEvnHy@<>z|20&~O2 zs)6#*co+`@=3UQC`FTCMM8!7oHU96XpZ@`G?NG@5J|x}nrNr>%fV;=@3+)>}<`nYZ z&n$9XEb@IHE(M9Tz>)%ulqv}#2Vm=OPrz4B2H`b&tcU>W-czzB0 ztkNwb%)AL6;S@{P-?)y}idN2aHF#K1qthsA{DpFrmh$9C02aW?xXPds_RDqI`jVG# z&5;SZjsr5naiH^bbikI_+F6ABx}gZ@)bAz_oxy|PN>A40?l;J^ag<~&p)*k?Q8r1& z{CtvD=99DmW)wugp^zEUbpL*p0+M5ml9=ElWbR9K9hTX@v$Y}JYC=_bm;NI)@0G$M zS6bT+tFRKsD94VuJ2$w+M5khQ!38p`kt}egSPYUV6DylU{XBdm5v70*fCYnQ6X;ce z4gRNfoIED>of=)`ZbQ*jxkIvqG<;u{Aq%h^m@v8xn*O_|IPhCnID2saq*QaEzo>Dz z!Zvqoi6tC=uqd1eq>hkE5_WA!q(yorD6U^LE`PIgX?Jgx2MvfI1wo=g-*e-M1C3hq zjYpUHJ`Nk?DE4Y8#(oBvqK@K9|H#CqS7De#_YwhoV?-52EypmUadLj)pSO)#ulP|T zSg4-6j52M8Z8^b-pQIcABZg%Xpch?fphr)Q^96X6Z+?dl4G~5`$5d4FTYXO}Fla#; z3HaoWj^x$0LL>xLh^;FJay}W5DMfVVznts90g+GoO;y}X=I#14$7y_+IFpK22IHYR0zwJs|elSSo-pan5=d>c{N1&TcHJWUI@(}{v zMpIVjvOD(u)a*gE8a-3@-^1S_F6C448BhUZTY5!Q{;p=K)p4`7cMiPW&2#2i526a; z?=(z$`^NG7-3YgCh1dno&bI{l{OQt&GU|OR&v=tUuxK};1I)Usp@@zH)<4Qy*x{81 zXirW@qMOw?4ie#$w4QzND0GU3LAP-t0R%1Mbj8GJ-L+QuR7A@mNe@hxHZ}p&^{O^h z1j|1JIqmX}95WT`5DZHt3ucGLH8g6EH4S)A|x+Xk&5 zQ+PChcwn7nNN2>2R})QMQeaG^%hQyO2vobT5#(}Raid)K_`3 z!thcbJ4qXsLZ6_M##t|sbnHcwwwKSHInzM&N0+-095$Ar2z5qv-6|;3dE5eL^eZ{; zPfR>g^6$C#2Fj*`jJ)uI{KhYmppXIh07%qCG%&Pu6Ij^yA(I`%ZFln`UTtp4b~1s6>WErjD$dj2n7IhC}X?dfBMGqYfMUTQEPBaQGFxT#osq z69+D~!XIU#w6S);xmtqu`Hd0Dbb#$U(puPGLcg+9?#ZMR**lk;Sb& zN$OdWI468+%1{q~HTHIY@;qln4#nHqroPx7RQv!Dd6ODPC1oues^?(SlT%@k3Q_P> z+qlh&bAl!>bHOnp)bAt{8Njm9ET;_x0Ni$Q*&sV<)*4$)3mzXMBtecjr0zR;+##-> zEgUJ;jt_?7l3R4T24S&OBTlIx`;2^(smQK~g2dOv&@Bd`R@kWPh`-%^zO@1U!eF~` z`?v$)81=;FWr1NKpb+{ZIkDV8kx``%p-&6|S`}qJgf&|d`X9V*XYIv>izFVV2Htu+ zkG<3}8>ymWe3z@*m$YK^uuyS|5-*{B2>_-zu$`MW!z}iC7`-E`SfRsAK@M!7puBSZ zU&t1kg0D4xd1qo|mSB0roXz=yc}11zJem3;r0{*>=bxHB1D(KUXpHp&dC7>awDA?P zNh9f-dv%=<5ZML|#Wtz8Y4tczp{t0(>cY|v^9BAz+ud+A0%Bs?bT7cjaHHYw01@v+_QQq!$r>y4)>#G z5z@vr3DoeTg+<37=YWSdt*t$CO!JzyDDf8nM_;d?WSr@zv$ljaM@yp{3?X2DKaEdf zve1s*Q~f0YGw}XPhMP7dBjI;ktUkNw>Poh1>2hHzXVx7otP~c2%)#SiT;)vOGo#`2 zVD}_r?QJm5Uj77MLlJ=Uw%H>eHpYU78dCKr9!98m-A3RF-}9I-jPvcL9_R$-@tF>V zi{NP!*Hx4vy+f2#aqMateU74K6@i+lED4$DI3^vC!O+ws0$fc_SRE^e(o|d34{47jM9*=xV(0$wgL`QM`y)Z{(%;nD=tyK*yb0oOdYLwR4x? z!`g=|6e}YXp7MQ7R+#UBzs7J^g+XP6R>uy}s$N`UERjYAOcpR&DAR#;629P))9?uO zciZ^>1jZW6F&d=>WzV~{%S!`yjA&>F%cj^OVHe3vOy+CZ``Ee%Q^g>e2j&R_tj0y{ zDD4I0@3{R^>OL*nktNk+>ES^4XNhZ)^G+ySFsLg*a^9T)k3X?4HCjc=IuKuHq>*5k zk3D~Ca|3{um1F1VEr1D;K^&Urx->IY4Iq;}6ALu~2MbW#NH zV)BF;io~23S+c|~&BNKdsuhCD-<3a1vfbdN@VlZ2#hR3L2);r>!LsOiwgTo4uu%=L zfDf=tN_HB~<8rm3q4B3bcjA&!v0+v~-X*>b7Zb}WLIt7Hh!SITXL6fctVPx}SQBF{~d+{e)YqCO&pAh5*tGh7xq zr-A4se&hk+yJeKOGb z9IXh-YoVF4&>164H0PpLXy0|Uu+}?X&Q$YEv3~T$TRUxE^tho})@-#&Y*FRGK^ogu zC9QJ4$HSvo3FE>+<-7xOy9Hf!#r0;nHrJG*Bb?-mj@_fmHhY3)0nK-6>g!F14Da<4 zYfL(7^shK^Ywu4iV6NGd#=q9>14ISDvj8?mQQ%%0p>+K{G+?=gQfbeQPn^|%n7T7y zR3r#d^Oq7!XD1F8>40Q^^eB?)Ii$%qu4}e59&`FX($hF~#iTqe9fWbTv85%dgN~9% zs8hi3c|WI6R@fwgTs~c$d-!<%WRQm#zk@@Y;zLB_<A+tlvtnp6LmaA`d zkBWjo;Alzx1STLS;f?o*GV8u|%eQMENg5i>y$({XNX7+6rzA_ITL&5+rAH(un((7P zua7ufNu(epMpbUorjD${>-<4=L5x5Vy5x+c^W$8NerKn>!4Eb4!^JJGxye6wt(AC* z8@btMC3x&m05)S*i3+k`y*3UR9lBo;i~bieptO6(nb|uPSR%dMNro;u&WgtxyP0m5 z{X+UgZ32y#cvTiK=xGRqbYBkqHLFlBiI%z2AsGp zGVL;O`2CIEdkdWEw^)3~KKMd?DAyw%{q;{p`8bo3IwL3v!3V|$LB`$k0&7?#onKZm z6Mk815L6tKhEgH&1=u0wo)wtz8&*5C6a-oh14tpmduPbMR?x8L6$jx4P2)en;jK-%GM5oPTNT+{|8ZV2+pt3rxCDNE?gnDHOsJ0XZ3 zgKnsUQ_Cx(5U3|G^b@o%98iwraZR@X5xmIWyBN|$CmxyPWLSA*+D=}0^~y8V^A-+I zQ{tM%B~CmUJX42XABYv4Py^U$RZ7w+R9Lvo;d=d8GApBl=op^tkw(t%?!u~K%8jPH z9uC7Lp#gTe*~^Aa*On<``SI6rCqGbF#r_d}E=MWePRjiJBgMiBBk((4gZ4d)|WL_ z>FlJPTg9@PS)hiltn0lKtTK{5WERBsLw<^tL2|uMA^1|nZxPvvc}h}r){FIR(~5zk z&rO$G6v=3c21u(s?Lanx#3grB)wy&m=MFAxBcGu#(OTmS&b@dm*ksE3`5;FjJr@xnhi>Yzu}$=7G9lDnGM8&T}9Y! z0){QhB5KlMb#f#_Xs23?nYbdnzq||-A&k6oXW~I*xLh{NYkEZ z%Apf5QQoL{i+y~D7g{cM;UVdSLf*%G_)%1nGc zV#%MYhDyU!nm@VWOALYwb*F@yW3F-F$e4W6F!?(uznkO=?MD3t3N(>>yHMz%RDR$? z1j#?7puq$^)^mW0Ap~Z`h2?I#~9)J>$6pg#BUY^y2O7mm_kvbm3(Sb){ z;w5gd>31r~18)-NJu^kAM};Mp_|PtYnI=gkQIp}tuI+1un|Fj!i#r+DNVAGDm z1|gEu$f9Bd#wf?}kx84>8*vW16{YghKvJRa4n$2t+B0Yz{T{H6zW&F$la><*Nfc%C zkcF!dQi;ugD5s1%xD3?on~JVP)Flv_ylN9e)wDvbW-~B7ykwxuC$X{<1oF5NARk-T z4M_4u*2w&{=8XU`2I((rpMeA9vGrT^Rfba@hG`2%t}r!>#WH8N#lcPJtgem4!O|6YiQElwzy@APhfj>n7PVnJi6nyW)DaZXgyYRepd>bKTSPoP~D+ts$KrtwjV z)BiJw^}NKK^Wkt88yrqj?u$_S*P!8t!af`^HY5(r$~Qo;mAaA?!}hKbS&9e_CUVP% zA&FY&q{zvOYL)WDu8EW<`Ni_l$jxL8kzy0$V(SS+od>O1K4hzTaU4ss4%#9ji@j2y+W|n5bYwE1Q>I;v# z`m;0=Ei|f#1xfYRXqRXs{1A$FPI=a$D2|TMw2=Bsf*!nrW&{SSpR+IQu$yL*eZKn) z`UEJO`XHu5e9Wq1A@6jd)iY@f*pv!gk z6IOLCH(@Mf0|K($e;xwyU>iF-?zlGBurV;i0EH%@3g#Ttmzn+76=vf!uHb_gbRS6r z{`&Xg5Z7V3y{v#`hBNllM1qN{pQxm#7+F{$8{?Sa369w`Hrken$qv-_I?f$og1&Z- z?mBi+nHmZ!UHz5ezjX96-ok<^o};F{rjHeq$f6q8$OIP`mQV~{O~`MA|3?eZxV@K2 zH_i$Qb&LfjqvJ9?oi;6Wpc@pDp+}}jaI#W=&;R@8lgmICyR3fO8;c1`93Lt2PKZ>h zLnI4dYL0mCf)_hbS-EpQ{)9TZ+!v9s?CPl(Ba=3vOkfzZi4U3q&9&KDv=90u*}@RFuW}{qYkwGSyE5e?MAg3q+~$k; zL*U5{4);V3hTU)_3@&(uhRWw0bx}CJLLk@oN1Cc_Ns21p5}OOQq5)FK%e^WT_;?Ax z7con$nEosd$8pR@<|>UJa&$C=M%tNVQPBWugX^}{&Qu2y{8K1TA2naENLEgTgq|+b z%dzQDNb$+_=s`ubNdxoDvMgNJ)?7&Zrb!6}%4w9-g$2=m2pW_g#`U%b(To1?m1X(V ziTxQ+$!H7I3G-TrBSLM%hwD$Vzbt|@Lur7|oyrN2;t3V6Ig3+r$D5RV`GrB5@L9+0A52xg2v9hv*DL={j+v8XI9 znGp#n{cCp8#WC-eorqE@tRkr=VhPSPkWY|`mndGfKG4kEJ_`TdW%66^IQ+-$D5%S>s4!5*9OAUq%F(Y@3T`@1Ctzpg5RcOX=2)GolYnof6ZM>iMl^0= z@l*v28qu!9m9&bkj3abIWT_eFl!2)>@|v!~oHg^l<%ZwsJ5WU$F_U|owu9o1$9RQN zphlKvWtACv84zdxHJ^Ag&Xk;Pf$ zVHO69{cE3OjJsj5A8Bg!0@nSP7HESRo@Y>g)&^x)zIRt(U zmdV#num7)x$`a4I3oYO#kel%I6xS^%5<1V=fr@oPw+9Zc^d`8>sH($r zoYjx7_0}=j04;l0fgAB-wWK0+yiO|AQ2}jedfIxdo{tS*)gRECjkSTAvS7;Q7hi%9 zC|+3WW!Ln1l}@8WubD#*WTpJtNswCwq14Pr!TwadF7}{grl2scbKgCe2r%x19?@w; z-J^iQNK6+o$q2MdT?o$b%B=Zi@f{8Sk~#A4sx2JuB@y1ha0F{W!8Mo#(rS)2B>Bgf z!v%4l^Aya(m`6|cs_h^g@RY>ZXW5~XX2{s{3V>1jtarLFwHjeh0~n_S9Q_FnXp05G z$|-q-M%mDf-58|M1Em*>{w58FKw+01Biz&B?uDF&u5>XTb^O2jX3IR&+N|xFD zutV!CYRYC`(E^?ztqfhJ5+oCyq)Q~}Bmm6t#L$S{apo}+bjU_MLMSMyc{TOb4A)E7 z`swwBZBjQ{KC%MukyUB4^{oKx7QQY`>YoX2B=^TGf(d8_g!mJXT!LiiraF?LIAS)L zTCz5HCFE%03={iB4(koKig(=Xu=($&H`E4o z;w6M$=|$=%`}DlqI5m%G^{O6-K`}Vu3t`jR6u9@tW^3~>7_rAz_1mWmMT!5O>L^HeU)<61Yz#0J^2TN=ft(~w@xuC=Dm$6mhD7VP`HS&>1#@=|5a9$KhH`Jr${WiWz!_4SlCb?q)+#}N%U0QdH-y>P%DGKzu^AShFn{y zhVN6k&mJ3|YooTx92N#^d|qEbpoMhIYl-yIYaozFe)YSEY&+j5cl44tgUdoe?_fYX z?=vY#XltLFD28cPgUlB9I8F*2;Ec=0sT)=0?yy8!X-30=-S*!hKtb$cX46I0%7^7?|fej-Br0j^!!JP#{dq={OFhuA7(#EH3{ z9)F|Bckk%^_oSL47<-ppU!QTx_tbZv3;(lc?hAO90W)p?b}%D0d}6bJW`UIsnW1Ii zcTmEtyCw#D3cU#`_G{OtQabT-l&5ev_s^L^pk=|+a_J{_XDn{F`X{$goL#rE3oJKZ zGwRR>+Ze(-Hy0e`YtAqETrbT}O)5HM>c=&&g_8zpxrMF6Tw3PxdXw1Sm1mXo0oK$N zp(q4jkBF>e9FfS(Y%?ec!zWd;oX5nd1|2~nK%1eqayn_D-G1gS_45KeAvz*9grA8f z5NyGs93ov|8qC<6J^1Q^ckC^Rs%x_ufQD-755hNmzd@Ft4B|ReBiI2RLz%pCJIR(I zM9FnPG&dGhQZjLfiODeKD$HTnkQ+up9_p#czgK}|6TF5NQGybm6R**8h>_1N4p+2? z%QZfZuv?$&?4Q6)?ziTSUA3aQW*soDTvHf=<9P)3-WK=1K%#nQ<%e~Hycf$;VXke< zI*EZYy)>lwt2CDPi3uFvn^O8gSV_}|TR&DYhw7;l$Q4(#*n>j!sPT6x`wBitaDWyx zqb;8QQB=On+5m?x+Q8z(*pC!$S}>Ro@(g2N*FZ;HY1#wb!~NLnc* z#9w=R83yo>Ce&Wur?&5nV()?Znc|FFdvffn+Gv~_q9D0A{d1~Z#FrGxeQXVAD7>c! zOO^8z$0B<16WVBPGPLo+;Ay31aMIS2I^lNxrDP-Rz6q{-L?~)&7D6bov=FF4kYolJ zst#@Lv4xq>H?AGAvh=amNp6%3BGzQip}?fCmY<>RNC{&=SI3&5;ct3$zvsq%>Nm-U z@gBm?d-suSMQSj~SC3Yd{iK}h)-9l*Yqo@?LhxL(Ic8dE?}bC!JatgQ-*yEMKo)F^ zjV$rnn02FJ)Wr5Lbq{)tq1TwwX?gHWY_PIfR~WpeF79IaRdDohQfHI743RJ-_^f?? zhH}ROT&!=q!8a@8Z$i{fEJC)qk&g*#K4Xm%UjG)FC>L_aCEs?H5I;m>`@^A%-e6wr zgec^DEY%fJVT3*OZ$@9)8LI;8?g>|-o~3Uc_N7i$MQhAI@V%|$#Id?bF-pI~`(xxY zn&X*c>x40o+Zfx~Lduf;X&@tG6JQ7>CDi0bry^!U(aD%4h=-Ezm&^!3y7!*HoN4cl zFqRTP=MLgAg%)i1i^FCgF%!IR=|C%XI+f4ul9}5QZ!!{^D*7;l!ql`uxPO;-P98&v zaozXFB|jnmS-2SbNr8XA~<>vHR<-2S>D z-Niq0TUG`#YFvQwU!&X2#E|V;4%8ap0jimITE~-&%Er!;hPv+jit)eLqSMP@w zp2_%)B&+fLkw$H1I~(HxHzi)_ak!p?C?ei(&tY2K7 z%)uzwW?F@5y6Hxl$taqP5%~w-Nz`Uk_mg|HqN$*yw15SR@}nHp#Er^|bZ%LDbQH~j~n`l0}%O6Evn~v^yx+CG{ zcfh~&L$w`)AE#_Pt-Oe1ZXM__w~EK@vs8(RKpVxSz-1iwP>I4q>q!v^=gp6?v^++1)_ZYcH`t&FL*vp``OnW}Ho zV(cer&pz~5*BbYySSvQ~Q{O3{UYg$yq!~xm0mdgcuCIbCD6Ma~HqSPFx}uv6g4!^f#J}fA=$OqTe<|;j-#p@B8HU&n09Gna{?zDQ0A_wYRXYWRlCn8fN74 zgH@q#)vF=Tu^cTT+0C>4StaMzp{4%zA1DIKXF>dK8P<%U zHtf^IQQlS-i@gQTlggxeuO16gzeT$WIEkCXD9}?aHIkTBJf*=xBGumPlh4l)+(o2w zl9Nh)d>G>%G-$^zwapXBE)eCfqEmeb>WpHej*fa>(u9O4)FK!|X(mLnf5DC11WI%H zD#}q=bixE`QO?M1+{f=AtbQ`50p;z_MMIv`%VKH1ll9`EbJOO7;oH)77-ORY%(O!x z<6(wRToe|qlu8BOQ2iaYyhGr45b=G;TK?k=*m17O>$fu)|6QZ0`hB0*-zX@b=c^Ye zc}&7i#EU4;cs(HoVfveUuifX;kd!gKPy1AmZI6y>f2p-VGh_h+WQfryTze&|qNX%_ zas%#rMds%s`b+OuNYaj0TukY2mvkGyB26rmQ7bKtZyWND6#3qZvtbnMKyKTMUZMD* zSiyY(WUI|~r-TirBXQ@eEruT3p|`iU*<5z*Pdm{yZ3kHc;V3O(v64lVHQg^x@!o4M z_ox5qFuPAQYIF?@F4nf=r&x-1Jx>Mx>mSKs(rkv97S_s14)D++=QO_k%}B;KIc}NP z)sBteugY?U$qi14(Zz%tmM#oJP3q@t{HvX~oR`cH!}>0C|H^SR_fzSe*a(cg76_qT zk0(D2RSdv^T)jot&Wx;Wlcq8m()k{2Fm0=MI6j$*m;SHd8*$)lRn2K>Hq1+ z&xqXDu1~)7@znk|)IFc?ms$g11KSvRS0RMuF`z z)M}MZ_eK@A#2>ELqn67#gpiiy={-r@v6CSuez{`7VT>6^g~hWOXUf{ejx;%#io?~U z;VKBEdkqHSJ26jYc<_NDtYnbd`8W{ue*F7_m(2V7stE|@Kjr1a`UKK7DKISl;oTjy zj_M^kWv0r}q}6Wks6{&&V0)^34<%ecc@5)6JmkWFWdT9oe(Mjfy<~c@w><0>gK;0z zp46^d&sl$&A%)mwTXi(3fn*dK{k(fN$ebgeF6F;SS@$OG{d|;hzdZL@}7WDSYXBnILUMfX|k)^!6g)*IN&-1YCM8b!>bIzI$HRFE4!DE;qWS zy%rmCT>PKY{XJjLTm1LPNuKXYg}W@K^S%n>@=FX%tK=!G5(28Ssct*4F??O2H@J@a zZ}{_7xbR!e=S$6Mi^Jz)OZWZDQqKoZclK@+{I;$n%`{D=gRx6t1gXK%@AjjXvsRHB zx%NumaB3>TVhnrL`Fc8OGfsme2nquX2jXga4_e(&yiQD9L z(Z2;pBvH*u zk&ouuOhw*-8n*@Mr$!z1a7|^$S*w5Y7#DPPkr3H=v%k_g)a{GmwG3rtb~R%iXiC(3 zvVnmM?8$D%JgaH*3cR0VBIIEHg_7He9uwa->RVf%+LyX6c&9xTQw`G1|1~Wcynd;| zZ@s^a5F~; zU|m#G&fAsAMzn(y?>q(br!=9leRbHrxeK*hE;ds?j};61hq2bO5rh|9oa9x1zl`3o zlc9}l%Wv^B1+(>_`<~Gz-)*s-!hpzj>vT3BrARMjAR`7Rb=VM%$C09fs>tcgJwv5! z^JQdBiTro_9Q1uBP+n9FUl#8XS9}7SZlQbgE_qo8e=_2H@341u_jU7`q30rgxu9WZ zTVDItLdh=p_z~?6-umI<3pibZ=&jbTX9L$+bEW3Wk$fgR?^YrVhU;?0e1R&M8b1F` zt~I|zamu~)+ymnl4G6vm_AY}i=pZJ9lWN6(=z}RN&WDeOw-&+{GvVn8ir`MOc3N8- z;%4*V6-JxfV?-MYHTX9yv@QD28Je#YRqwOC*R*p%0RkeJIFPpV)I2Z9EwDzHBGI6tXWmF1vqB>R9A9Ic#>Prly+uHTyTz ze`H*`VEMUJ6QPFchS(5;@jF?0>Fo?uL355LS(#Y+43?+U)zOw!KiCKnAXA{TF`3}j zx1|K3&L$-99wAWTrK&zzTazF(7MK;L9Dz8&$!FB)Y|SY8p*=T==qSEN$>QC7$$YMs z9TVFqoym74e=Sej&$|~H)a9h^b`l=$7TrcSw{Gu;FXhV8znVAFyek}3$%zF`2DhXF zrap!~-nnaX-UmN)dj686|C2uB-l&J&Lg+Xk_5@=spr{4IxIeHQpl!4$^|>^B-ZD5w zaUA{!3Ytl}^E$fkw@5c1b#ARQs}fpWc!z7W-O40IUIv{Dxn*% z#j8BqdJl$CzDu)ClI2g9OmKt>rp}u>Xjs-#^2=**w>#9KWWyK&`WNgGPtzH%UO0hi zVpJ6Z?=@iSL9tU+>l!|+ipzwA13eljpHMg9Y1=m1IthZ_)ej}OA6IeMq_+R|a?m|s zDC~IWH-r7Tdn4}e`YZ~7xiE%VdD{K=!rpLivGQTn?63P^s`L$)|MjuQ-EprTZT0iU zdnjC(yLBJoEp>XL3^azzkI&Bo!FBiaY1S;bSY;UR-NPLHYQ8RJ*(}~`l=lL0_Yw)l zjEd9PXCdLmtEYpRJdfF27(AAaPnaF+z=u0`%}3cfMQPAHcs+*W(Ma0sv8ntck(&G9 zMXa2!OEVSr84Uw@R(;kd5Tpw>%j0+JuC);L7MZrJWU*AO|7F~`@UfmqV+1^$!9ANZ z`yR`I37qOox4&L=fSql0z1~bP!(6=`3V-tCo;pc=tNLw)?041vAA49EP*xW=zTWKR zh-jn^H9m|Q%u089$5?Nt)ZQ@;Mam}e`<0Ug8P5LIt{^NHD%aSV30#hj1&Itp$1;Xi zMFs-Fq~QymiGe$WG}RYC0LHxwS_BWkzWk?XKCHb&S$ZI3iSi;jIFAdtlSG_~|E0Ik zdjvhPaQ7onkJazzy6geW&OrLbqkG;vN@=Fh8tUi6*fzPp@B6Yj^v?3fVV~kzxGh!o zZq==CeiSq2NS+#&+WbI~V+iX`}?orq3h*-O8)cFz(oYg$#Pi)zz5oFSVi zKr7-8T!5AD?feBBIl6DL3RKrtq7}Twy^A#`G9}P0;ItN;zddGnpYhwPQ9)66Z}k-8 z!Vn#In*LpiYz(QUR1OaZ!1TJ58`tA)ay1q=ArWERuc(0Fh8UdM*cE*xjLK5z2?9veAA z6fB;8y~j~D(Oe11aBt^^xLb_Z0v0gYY$Mj+pnpBH$X|KUb079G!A#_OCc(@1aJlKf zr0@Rx`b7bE?#P5ZwO=GVr^tUElDjA#`L(GSAqYJ`HFTRNk!Dq7N=@bm^y|mXbXz`a z%t`(Z^}GAQcvo{RQ&Cbh83cP)Swnk(s%a_~2C0KUYL=N&;!g|9MhE%R&)`q7kB8a8 zq1fx?v#XB>l*sdzafc@u?8HhGsw7z(rN}s8@6)E+YA6!!y>aUre|@RF(?DJA_BF^b zjU={Z{V&WFe|iwCdEf^C0DY_R1C!rG zjcE}UZZw09&%m+oCtin`Z6#rAiKA%dV8)f5W)0GI%ea%s`90-w6VixcGJWv^2U53v zqRStSngeHyWQRig>a^y5tC<&4wVTTL4pl!8HV%&e`I6sx+BbX8joZBcY?fzV*3mE5 zXOI7v70GW4g5+tKyW8pZ54XdYRdJcv$x_KDhkLe#RkHhD18&MNU9Dg zX)_Mp(wlFOa2$AOSh7av#{&5ABMt(oEKIeS;upO>#05Te(`tqc!iCUGB$}%ZRRHj? z1Q?2qoDx*m3b2SHV{|0NbWl?I%r3T+;UgOC%MqX1#IH~qQ`V|8jy(eTI&fx|)Q<(rMSx7nH0o;%q!B4uQ$TaK|ndCSJ%a|rdgQT{JW z=QsN{^Vf%SlBZr6ruL)4(9qE6uh;iW|Idf>Rfn$o#g?vfJL(rm5_EM~CHM+@&&FE{ zFW)^uqmvvcfO#Y+901A7vG@r{YJ#L0x0>&#nxhIsSKibvFZW4&IqYv)kSU}5AMjX$!6eS5aPm*h4{ksr4% z`owR~tg0hqYul7!2_uG!13dE}p1uwSh+7qv)z-0|=Qf52KPxzWG77{z(6?~DTT@fb zF9K9*lsuW65HN-)dTmIvoVEYqW8B)=h&U=!wS`|Fp~FO*(&7zsslgUu_y5%O8e<;r zl^pEdGavx<(ibIY(g~@s!I%sD=-e69S>`o!*@@xj*~7X@FoNE{fY_gU7r3}~>@DK$ zI7XzsdFOtAXMLVD9aq^Ezp;Af3N~yY?zM#4Re6#gNAIVRqb14^AOG%8R4-IdeB)>5 zszvg<2^U2L(Y%#GNU2_!q`1@-p_CMxXkC0?c2%!boE4MJZeM_p z>tGxa|CGS(q?#gc3Fr5(Rr*_t{k>-~iZF+yM-mX6%vv*g%u+g7G?yytQIu?`b&e;c zo+5i_lte5i)JGk)@54qn+nB1tf-@;06iv+*Bqm>HFfSxX(Hnqt%8N>E1)Kzu;7-z1 z#RG`bQXZ`#QX;e@Q3ocVkl3_M71wnyHv7yKxr*ArE`=#(VIsmIHeBfiO)#QNdx%9X z*OOAPW2B6^T38F51fbb(h~bPFhD`yEgp;P(rj6*EYAJ!^-38jx-OkdG8Ji+qU=b{` z)$6BQCeE7bln-3tuE6t-@-*C4W7uX4Suj(2nM!x+YCkFCWl(2AR`_l8%MW=hg%l3w z%)AB!I!lvHfZLG*rtFhzywt?~^pzd=-DmXoKcFx7ZPn{#kN-#<(brO{cv}8tljR3| zs#;7-{-pg$Lx3O2U2kk&Z*+a%xVm9KvX2#opkl^F9QBUm zdp+WQafj?SYX~Y2^0`WP+~LZ*!6|}}MB9qcRpsTk_1gsO3hHZZit_UF_N;Rnaolph z<5%mwpaAZVrgPvKs);*#aT<3jW*=}>?4xCQ+0>obaf>pv%KKavOh=6f86T{{&G3Tt z(-`J(hRnyS=dfb-IqGy2q4vadO}SD_dO7jNLnVireFgCg{UsSXF?#-+9siYd^xuK> z!)SiPe4jVJ<=5TzqAQu$Hr)*6F+jVmy&td4JYc0L+26mvPdhV7SIulni1Z&{kQO>D z-+g^WD$RUnNF&lwb7wEGL_C3HWr9#{EqM5j7xP;lsy}+}4FF$_;BLPEFx8yok265O zrmrj*x=m}`A4%h7rw$h{2pZwN8U3YO_p*1ZJO@`Cjy3@6*)U_CmkIVci#!(hNf~Av zB*@;oQ$=24+~4WqOLvtQR8g_I$-;V=qN0mXSvB;?qo&>(p&^aQ?hj|PA}1I%dd;AW z!7POae|!A2o{88TQ{L(~s;Tuht-Ea~INXrM`O`X2`o)_%fZ7pgQ1=uvmr#t#ciKZME6)G67OLhw|R%S*Yk8o>jG9f}9z)a7{Dq zSBz7@+$Jn_nE62N4ItkJ$DB83J)@zHkq|g7t+eBnJ z17zzChX1HdqAZ}5ewlZ5(Vl*8(2;LgpXf*5=*+~)?tM{3pp=Z?g}_(4EI%4)jf?`p z$EQ^1=m>Pc`8##E0sZz;o}}t{v+Li5g@Nh>dwD(lVk#7+2`)l znYUMN>o9iDkpvvCQ#Zh0By~jTWDi?#Il_qty`OirJzju;5!x3xl!WsANrt~;J~K!# zmhlgLL6ao8)TOaFb2duaQ+(z<6&8G~GtCtrgkAAX&(a~7>f}e9hO6;>RQgtiPeZx1 ze#!V8-m4e_Z9__DQbPrHl}l%DIeNENXFr2c5*)H*{i+bpa81t^D+#`yhZ)*IGHr(L z_fe2cdp|)E3k$33d5~e#{V3}jt5wVA>zQ}!$IDU9mp`)CHWY(fFM7`NfFynEegHgu z%U%rEf36ir?mipNOVXN$*G8flHaSvO?-$tc2~LBJ_5SL2 zWGugri-2S00=px0sCaTP{Cz&at2%=+A47S%n{cepvlbWfCv`w`lhOSV5$SJO@-Qmb zi$As3JHP995H`ElGF?8OGjjUX&fU9%VXnS=KTY{GAh+~t^34omVD2nGHsV0^geaQb z!~yK0oWGg*knprfzTP>XFRrnTcWudzBvx>*B#|9SJXhx}pqAR3M#vjWDVC@%^eHRV z;K}lHT;gD3Nk?Jb8Ij;@VKs8vRtG1=6oaU-eU09lgIs^No`p{lr}N?$>fISWa`>gr z(HJc?+|X*Vg5_{ODB89zLz}tQAD7feCgHc8!9XN6M zRmCZ%_DeD}-fMsd{I9RD^YdY>t#;)Q+)+aniK{&NwdJXKUKy3BS|12N$G&)8>j8`J z0zovRC`br(;C;S@Kg3006wnvmW3n%Cll@QlXr!6bj-H)PbCWNf^9y3a#h9Nf4Lv-6 zK=1CJ4e9GI3PH9M9pBZ4w2%j@Wk!e&p0ySg@m22=+4b|R_yB?7#=|d{d}(DA^iQ3# zcT`2nA$j<{TV-C0+@-fs>eAnC2{VjvX@9@E%i7SO`Eyr=NPqrV@TP+R_w$NH7ZyFZ z7ZKeh5!{?EI7Yu$$qH+Jkjugh&>8^$4Nf?T+f83dKnc!2w6{v@0FLqiL&T;G1TY{Q zYq|MSJsb-DjG0*fcxr)w8NlW3Fq3(KUA_O7y2kxJF!dpqbF8%KBGk>Qj;3q;5C>F` zsT;WZGFh8KYW2{)i4GUnQMS7iiaV%&Rur%_J5q$S;@~tK(?p z3h|?+lZwjH!>bEwv(rtAMPc|eLkWo#+#}rSjstIWIZeb)VijTQtHWLr%zV(pbKtG3 zaZ&#UmbRE)ILdVMxJ#4G>TL5-&oGXgi<9R>IV=G5-V|Mg0H_wPK7Q3dUEU;XIcFU| zwW}y!bWYV15E1!7I`or_AY#j<#Scd4YL%Gc{qM%)@7JV!`a#w0_Tm;Fza?d z|59s)K+>rY?z_SI;ZXdUzC7orG)Bx*isrlp){bT``%%`Gw_Ye(e8eACX&T+7a(upg zaQAx?JLt<|A@FVSRS|qObsjGIer=Hh(j~k&ob$^d2!gna;(_sYfq}Dx?KA}EgTa@S zt{nSSD9-zLSnR4D#4$9kQ|dVC@jkOU&TOI@tELh`$91ZjW;&eei=3_9#$b)jP&C{4 zit#93mwO>`#whAN!4RlFeyx*YXHATC{uw@WMY0b1NFfrErRT_09Ym%bEi0 zDO7*)vQy5)rDJEcQSS8bakl=hvUo zb&a@+8VA~|;-N^cD-}Un^Wr#NwTxJVw@?U{cY|JIf%un9*9~a-IBE5 zx^nC^H}Rb^>#H%$3CGfM;IKBBRJwCDZ3m51(B#=49_F4AWhW5%TlZ)2OI8f3zYW0A zmsS1PiHR@1L~%?f-O(J6iS6bf;*4}8& z79*)$P+nNo(y(h2_q&(dH2zHTN1n>k{3)I&iHQc^ZTL$;cCz+k1CPyHR3Nu|Wnj+N z3kuQGZAL~_VKpFufn4zdL%jXV+8e>3PJ!;<-q$X9kxhY!X+3( zPq3pBR)8e{pq?$3sLiG^ypg?cb&JbCa(uD9sCr@%eO{6g?i~Rr*M=(uihGGA)tEZy zf6)NNTN%0G{Hy7>_4p%tMV@m9K<9U)YWQ7{=Rq8(t0+mt$!xURwWgf1$H(x|Q$n?16Y8lCza$T+_u+2rtF=w|xh(j-lkrCUgToR513%Bx^2FTygOz zSSpuo@F<|n=HS?!k}^Fn38K0|k`BMv+=q)u$))Zu|nOgreZmm?v--l?)eT<%nANXY288R-q5>*{F>zp5+B`#q_;F5`ht}Y~7)A1MEUZtZC zZp$^e_7TkvV*W7yVo6^u3pg=C0a99+r!~kWyALH{R#h0qx|es||MWg7czo}q7^X^M zSVp$|Ja-+}Fto8tl1dy=+tZHpAdZh6l8kNv@MCXW5oo3`u2SHu{*d3J&b49tCJ7PI z4mK4aA9i1egXnK#hnsUwjt7-RR}&f>Y0XBfWiC=po28osMs4`Z(M9P>X40`JuK-Q0 z4SzcHZg?T52L=pr>sq^jm_jC$TM6(X`_&qrYwhQDR+tB^tjwqVOs5oo(ZGk3MYBSFn{TR^8xWD zGLBXr*}|B~j*pdU?F0gKAe~^tM?ACTBB8LFrHnUBCYWqh0?2|R zO&{Omly8m1i%Q;tY@yVkCt^ zJ&LNlTL&&VW`ChLyvSwHR8V9vjn0@B!XvIcYlqO?rp{%I(}8W zr1M=HqZ%}l!}^EFkH^^kOxF_t5u5Hysf`#U;rH7%SDlu@oAs1lToKFrIANmZ;WaE? zn3AgWr+D>O_&P#N((90=WKWEJe80-v;t&fuVseppzBCclIG)uj&||woO}}2*9HXMZ zU+g^YUtA>tH^PmS&v7Ce|0!qm#(s+C43(n1ph*;*CW8(xN0Wl66-{ozO>80NSgeLZ zLDHJy?ddL2w?~uBtc-hFtjQ33JpTZ5Yo9_?eUw<3s_Y>ns*I%r& z6L^Lboaacv81IaMT>VoEln&Y|%E#G&fq2Rl1qQ&?4S|=aqI9M;yuH=OCN4=I2G7a$ zXQ{03E8Eat(K2Q+jb^hL1jus?Usq1256SxELj+Vv$zejYm!+6^d2ER6kA*0)8nv zXkLM1PsE@A2{WBPsZy)L0w#d zX)?}}1gS!*vI6^9h$X+ZU(GyRe@ASFKkLGQXo|;)-R9?4z~n{67gqiDqaifH>9Cqo zsuf&;7$dS{8AR77?by{Uu70UTFG-8a&u%U=!NJb7_B4n(NM3)xj0#vlpoVEPSX>OD ztxoK*lEm>6k04XX#TdOH%tasmocYnVymUoPZWYX@S0}Y5#sWbYMlN-h<6CZNcTPzZ zqa#R0C7S40AT;3QVDH4fs)*b0=$T&JA53);0i{gwyTcc#9crdr!xVmxD~r^;e`!~D zXh^kr-+L2_Ah^TPCw1sR!jr3J1deAFglv;Znp?xP36j7C%gFGXy4EmGL}R4T(m4w; zLieh{h~DCSk)8 z{efU2W8WF>HW|il7}TMxywodt%>=WA{H%f;s9m@8ue$mtT^R8^|7~@e6un2Xu}DQ1 z3o7POd0*nJ_27m5RxEln3iHR|7Y+tw&OgkL1^BUduT*@aLRE%>ix=6mWkZY`xN0#I z^PkH5hOY>fDox}>RN7UVLNc@fV-N?NvZQQUG4eQ2B=J2_%XWLr-rMbgKpK*;v&4)gc#?CIMh5$ItQSHV_dW+4Rf!pB%$gL+ry|W(n3|hu z&=gJ*tH*ojhU@A(iN@|hm8545OK}OcElId#AIamz1Y1F{bJ$tuCV(m+V#V|&<~($i;M;9=W<>TqoJ`|MnDgDA=)Y9%!f219ts|At;q!Z3 zLM1GZ?w@P8ILHQr-tJUr-Dh0lid~Q>BvVYiIog%DPEYaB{!DCn-BG{%I} z@SKO=Ck2SPxAK&_|0u*lxmuU{C(h`X00h>$$GuP2V}mlpY-u&VB_ZvA>jy+_GUci2 zR`Iv}UKHQwIK@K=^M}Gldk;im@I9P-pH%&vNpNuy$faV^F;RAJ&ls(73S0ZeYxg-| z?|z@yfcBDIkg@fcSWw+w<<|r9Ijra0_b$dmEz z?O4@EdcC6bi()qRI*%{N9Y^Se|O44|zl z2){kh4ui#==r++VLhx?wcn=I}d6zhFPQ_CP0~3)1Z13`ARokdA))Z{%K5KDS25^rF z93;~*iK0wP51bkbhId@&q5dN>a{M7Lt-!xbMz)L?1D_<={vEx;h_J6dGLSzgaOwCZ z^f&GDW&8$9zEo2yuOVw?Fipuz*5x=WvqX9xSN2@HoSuOAyy=Xl=}cw36?2Kpd|`hN z@15IV<3XrT_sc~_MkD6Bcc|98oX)%44{zWwiLE($BsT<xI+5&=sK<=tQ zYoG&MQJiU>NCNl?bDL?Jtb00nT{!41*E8Tas%b9MD3NRC7*-XKb8|7In`LUL$HbR2 ztRwC?>6T^O2H92VW>PFaKd?34Kv0(%ROP=J->(DG}g;kFb%N?oG`#TgsumSwH){n*{mWm4EF?ktznGIOGFU4|A7Fau|&@%CjwkQuC z@1KHaaLyOI#FT}8oXDFcGE3!L7&v@UDdtcj3AehrezxydlF0YW-|cc4rLc~;g7h1O z_{pd`rtMc96C+@Q)t|~3Wk0@qR0f<$nwnacJ7u%0?55#UbO&|3x$ds-RCdeaCrC|c zKM#C;gm`}hft5t+zO=p$>n2UP2tz8vfr-aF8 z$)M{f?~`YkO!@KiR#%H}q1QSYvw{$j&rn5_8j6lWx*6lR7X28ZJae9YwAuL zIy02#-mW{?i0m|OAiy`P=Z+g1tM_ZjEUGw2ffmFUL#wJ#faJed_HUveEO_h!so3JXl4Pj1rp{fdM>~*sORA4zEbu(k^|R zF>#qLCbW5kOA!TTO!4{d`WL*1g9dJYlB3UK7H8CT5)F4z0+Pv7X?tgubV2vC|2HEb zuWaUzAQ+M6Fpuj&u;QlYU`rBf`?u|eblM?E&VP_f&`AQB=1jFdBxGWOeh$L~ry0oY z8MRr}E;8|a+wVjCLD)D3%5Cm5jF(m(wSn+LBrf)U)1JZvV!@9XxMMFbbx39@X21t= zYHjK(4;*Y|d%;Zcsy)oTx0qU=QUUB9s6*&cqH5`SM=j$`@s?Fp3V2e@xtK$eskB6M zb>8cq=4f(%aJ(t`Spvv$X)w?+42?LH4#Ck4ZMwJN=P1#CSklz?EIy^=zvOOh7dZyalm}--cW60g>1hWWQ<5C}7av6UBDbUA@msbX6 z%YEfF#+)Jxj42n2VU^+b$drtSYkzOkMmmLuD9lU?H5T47VG%sOdnTv8k3i+uo&V>COkR4=ZWWWefOnN-*;pq^; zmWb$`r#Ru{uFFNgUG)w0ab}~lEY-@jbW4nc%Lw9($xzT@~Tv3PQS8;=@5DJz!Ld<$q0we6~npdTe zDR2g&)LW-rj98T<)@UZ!qkA{4%E4Wy@OF76|Jd?#{BIH`q#Zx0gFpO}h-$vx8EGnu zDMg_z_OwjT@^-Px+V*d}o*@sz$rQ(td%!>I+xm6B1iC>@Lr}k{+m^P&d#V(hu`|@S zC$UzN0`PCc`!Q=lJw~w7R9xREMQBB|Gz6I7A_)Ne+WBQ4)O0kd(cJKDJBK91K%!Lt zNh6%l9RqYius>Ws*W!y^gqUv9^%-IeYSVpt+`~brpN$p;P7$-_Phzo6+fhx25`wprgyP(e|z@!|K~k}qd6tOW#33cGuv zj(dI5nzkVjWZ|++DT1Z<{6#_XzISBo2~hwZ^u1eB3 z@}nQ625UYBHBjj&MdiXwVqFKPA5vK)X~xu*qV1;v=+q6I@i75|kNBX8I|yt1a39Ix zha)!%mn)aCX-bELP)qi0Q%=R!WL(f`6axuCw=pz;&f+Gfs+{QNZkKL0#%-`38Xct* zggsa(2ypiyzE}La*6w(koF3nn2|-3&L+^#in@eK?KJo)4EsI?9k;k9v4>UQ&!itiL z1!W&^)il*q3%JTd9ORB129*5l5?}+beai6WQ_&2T*w?#f(Dd9}_Lr4^Kz-s_4H6|P z2RoZ=C$6vrN<)IG5>aociWUd;TluAgW$(YTNa?BWV$W(S#n*y+Eu04PS)5aSu^i8i zb59z8t&i)?0aww;O@QUXDD~BQKKG7<&(4+A$M2Uj&HaB2Bd2f$#&JK@^8kCsaB|=N zC^BJi7^z3#5V)-L$LAQ?Me zewl<8t{qV<`feA^;1_?K$v{*A%i4=P-Z-WJ<4m|{BEQ}!)o@CR;t2nC#>N1{CbKtF z|LnI}N3grBQs?xANLqfg{YXpPTK01cO?j``1YOf|4AZzB8*6ojVWn2g0Y%1?a7WP= z`@sKVmob`52O;<&p>^;^l2yNAW3!`1B*|(U?iLA3 zTz2l<)viz?DVQ@}*D|@Z6)=28^mguS?@idU0J<)}Jt)g6jy2=ljd;DFTyli`BhrZE z-XjhDTd6idN)Xy6lg6L`%*9dkLb9Q9Wz=}21p=szbX^-v*ZBLlu~$)1c3fR3=RVX^ z<6NzK++%mha&neiUW%(^OnXgD++CZUWMOr&*WR(@HIVI3Hc%l4j~s;X0&7k8A^JB4 z;Bcyt-#isdc>iR%Bk7{@S+E2aRj4VN(+4 zyv>sZyx{7b-_!8aIERuk-kQ@$^#kB513y0MTJExy(aicU)+FU!WWuI>cIw}{I>C-W zhMC>Qz2u1np>Df6sD4n3NHjz;>ohc?We!SYb$v^O_M}U{K|B<{X`WnwkCy=A73F3ql4NrdNcWHfPHAoE#%Wn#I7NCPUh;lMG9>jC243gkw3z<-z`4<9z}Uxsl4B!&p@91p z=)9`~Jh{(T@+*#$L&-PKjogNp7_f7r_^BXjA2*LNorE2!|9tlifHKsB(?TsHp34&) zM2-RV9{g47VMDO$2Lpsa&2C<9;V8t_)Y{;ow|6DtyH7QjR}#{tb?hVfAeueXeA+Jl zVM|xY1WqcDKR&Np!y*wk;cDh{z;_5a?iiX^!666RQ)iGSUrzjv6i$_^J>h0AD!Sfo&S z?}8`%(-z9=f)n@&U%p`am@)houInk%yI%mrZpj9hAj78r6 zWG)Q6zVq#Rz0+-U7s(lbiY}j&^_hi;5+LqC=~3dMRv8$Q=m7WAh-|EL)f)J5Q(UL^ zw5s3RX?sOl@*pdAS@gF?`QD=z4CV*l=c~cNPTQi_DBB6cCjDRJ9Wy9FBXo^fSnCxW z@XQubT1FkkJr=w(<&-RpHNVL`$I>Y3rx2l2v!g)k{7+^ZgqLN?px?xzli?xK(Q)M= zj(AaEM-ZTm{}w9jRD>E$`#+U7EOy%-k&#Ke~W+OL5c>J;K8V6?41uR%&v?^x*+5|QTzcGJ% zYsimDa}vmM{b~F+irOui*hu;=;;s})x}o5QeJe|jA2e^fCVLLw(~+g=83!W!H_+`M z_wZ14w|Tcn7seu~Q;XcXq-#^oprZNT-SdL}U~{p%%`+=7wCu+|P;P<^gs>I@Yl~;H z9~cbKGIrKjAZo?TV4x`S4-sM--3;1vL$2S;PbjCCMkqUklxSG;8(*Rf7d-sZ+nQ3z zmP*mk&PwB9yRHHr3KdqC)4H)Nh)HbFsvRBxj^d;x7XLvp=wkYK7kp{^0|h?Kk>Yzz=_o&k*g={lbFjS@(&!-$Vxu8Qq>eV1wQ6QwlZ*@Xfag!^gWQO;=d*YTl`J z(3(#YO^{}#2*ke{`SZ+knWvL#syARx!6(MkUOQHM4phSmgs}l$HnXV)BHL06=1$hY z3bInI={((kMGkpy&GhlnfNj$+uM6z1(*cObAbLWjht`rj&@SU^XO}Xc#1EctSyhrv zksWsYMCoZTz!T1hw^E9F^Wje|ePhPcuDDZc=Wej0>is4%xZcYP!^W^T61%BcPowB* zF?6z8qE^0!0^$nFUcqR9%1l5qV=}Ku0Lrw6Ex1!WCa0N126VCi7>f~D#)vx;V9S~w z8YUhiFhZF>?&kYbt2NF?r(fHB{*K=rGz6-SS(tixWA$k>4P>D!UwDzz({vp@Lhe?{ z^GMYyGmFurE5G20jJ&Syqz)5-^OaGLz(BXp)#+`~inTADsy1_ZsRf#$@kqIVv3b~y zys_9{x#Su@G9>}9=pHn1Jb24#9Gt)*w|}y$9rcXR$qh04V#;#ZP8iFltnJj{Vs2IQ zYDx+~uJl<-l|?d}=evjc*KKHSJ@%)cCw}!{H@*vwVAs3h6XfD=8{elbGl?DY5Y5AX zYvJrrRU~4z&mjF%HoA-ui;nbvCmvhPeI(9fiNY^F1za;_c7fu2b5=Ph&C;H+x>g-gzh z)(i>Hia8zrECJK$m0WzD)aN19YE_k#blDaYEqP@*mKDFoI1&e8mOQdZ77flaq?MqR z0dt9eQ3XO;K0w2BFYOoP$uSI>3tS78$0i(m|ABMt=8bo=xS-R(TpQf`t@o8}UJqV9 zP@#sVBbX=)Qb_d?4~0P~ANKjTA*K);5KtUaw)T_z4lO66A5HG8H4!?~b6z;>ueo?Z z(o6+Zqn=70*f%?sI@%dv6r-ksKfL)rtMGBN6I}ZjqKNc)zYxqTV~b#q`S3`_$d(C5 z{auwLI~_45yxC~*2J5^(ZX+PV;L_KMfKr^#ldCV=zyD~dogZ6oom*qS-M-$od}n#D zWY>7)lm}PVu{Qg2@jB&d?C+${mO7R4JC=^n>L>*v1@Eyp*iy_cj+y1-T$HmYDp!JR zW;2#Yi_ri5{Dp`z8&T*YVMrLq_?PLMys-fSBn^Yx%A%*QaW|iS4@9i#`#4$bdvcNH zr`b`&7td2y4!@!hM6rk>no2`)a8Ce$Ie?KRJ&j*a0@a{FLNUPaM?o3~W-D^0UCihT z(0L_>)H3T%@<>JrX%2|?(e^ey5B{uyH7^gl`)!Rq4s)kt7^yJv7L;Grwe?!LrQvqW z49WwGClLi{Xwx@8MR{-IDJ~vA8+f)srB85>m|5$q1{={GF3PR^SQF0Em0VzlI-fap zDA5>iDeo6Rg9H#Xt28e1wlIvu-flM1{nmdnBWmjUCF^*S=m@VVOU7U(pc#=L#3oLi z*MlYv3-A~y#^5p0HaKd*ki_uQV@)W|2Q)!DtA(Jhgi&Fqw=w^y3jipIxQZosq+NCt zizLGk;GQr{t+$r>JQx%3+|$VNeFC^^=6Y}ThIQ}rv9&?jX098~s#kGLhqj-GwpCrP zry$91Wy$Krhq>o9Q>h38sn|P3z=t;cvOJ?IxGPuywS%i9QM)F8IU!k((G9&g$IbD? zkJw@X?5gAMkOoEBy{v&(#{&INTW_hN+|`sw=3qY_8}~%mHv;_2sckk%q6Mt=0Pun{ z0m>(i(QtZTJj9L~B;bE08AJ#RCH)uYON+ad>i-hvIch*O|7IyZtE?imQF$kF>KsVN zlRiMNFS?dcvZpt=$PNrVtM2}siYXi@k_$v-_c1piGy^+|`~HtwSN;-8lO)r1HB3DxQ7u7X9@`7;mzu6Z@;NF6C|eQij<}5$HX&7!AD>eN5~;0LH5eke7&*m@DaY5AaEn4SONXK`8s6yb@oJ8siX7#OUv*ZhePlWe1!wnQR}e$ zI4q1=zXJpjvmlFo2(YXuvreaxwi|(x;wzHip|sW{*V}P&$H|}KDzi@a z{uiO#WzV~!ra7Mr(uYbMi1W|H*1<0kbv;(1qxj=4g_*qpSi&MHBtzD6Hhk$ru=@14 zR8ha1gp(9QrGti=CUaJT;OnL)p;Xz~hvjPsB=Q_eJNV|kFokrVJu?J;ELM`e?JC1yXtyApjC>$^|s62%OXL` z5PU92x4;-R?a83%z43jmiraYhd|sa;^Q8m-jRXNqT-of-NSk$PiMJOo8q?GPD?sFr zbW}`WnosLLc*+r@tl5!Sd1}8u2PB1odk^ zhM2z&Pv>kr@t)^s_}IH0i#46hF9=8j zeZ1wNH~sDN(YR<06E{Uc%BbrH!ITGFGcE2}E)gHEKnTI0VY_o8?VK>EVrbf0qeUoSexTji*RzJ%IDT`MvN)qodWmlL6#tvK680cfo>oYE z?6Vii=dn-Q8B1?czXA$pW5bKyd~9ki)BcP(ZF4Dn{?BXUzup5%v14Up<9pvh{x6&C zKjFd?I^PYt=e@7*YBq+ldgg@n4$prjA?)GIhqeuAybKpiu)JJR;-n!+P(VVLYV5N0 z9WFoHE!s?}t`3tkAwyc_>R%=G0_;nvCB?PP$7F_#!x02{*UMCuSrZ*VJ8qy>_OdkK zZwj_Vfto65VUu0J>b$RAVtAT(y*0jm*?4Gx%#~FgI1REQsR}`H5;Ht_(7qvM7%@^JPqTbJJ9nxT5?NB=D$bIs~P}$oWMs&C z?V^LS+P*$PmKP)c{YSwcTRBY>gLAwe=W~{B9-s?`M_mvROxTUcpw^`Uu^?bxS<=Uv zaN#q2dLXeqtQQ3q`%xBcxoJ1S>DOO*+~ie+4NM69*X;J%SV4vnYH7VY9=7cLPX;Tm zj~s5D84EHKlfejj3_^uSocJMdIlPxTa5-DNS5f--2r-mhu|K?%isYe5lLBFrU?h+t zGy-k#Rdj=ObCP2FfkD^~m6pl&1xs8Ro1lVOUG;q& z?zTo_oV0V&YP4}U%Z-)o_7CUZ$s~&wU7osjI)R>h;>o^iSH0Uec=VcLsuQtiugdqi zvip6I#^+xDr43qcV-CppHY^b&+U+7u_4f}x!9rn$b~Z$=fpedcAp>-26pGOpeK!6} zx{VAD*dKC#D{ycVlSmfj3Mw_KSaDh2tZnG;j)1QxYDMbW4VEu zy!K*X?r>pbWOF4;Lev>)8giI(ULg}&66XZQ92kq|o8e8L4!UXx>`ubq&(Vv=bTsH~ zXJ4=93VVI+CBAD2KEO6eVY{S&#ZAWjaUu(I{a-DmZRTPB53CIgt=VdIUk(>O80NWB zg>P|z1^Z(Z;M;F$1T_dl0(_I6S6n;c1=SH02(|3~1s}lTf3Us_ zdkALOc(1%mgRlM!6!pF4$nhPr)vfv&u-?|$cDfL&SFA$MkbQe7O7L+?rU>V^FdPLi zqWKGHWeiKUh!xt9Kfk7eZPkRZeMYG$ga;^X4(4x?f}0Nm7=H{% zi2mSM33`CdV2J1M8t{rL#sHTfjG%__FSc@|HsXM6P>w@AF?<6CBp4Y0=Tm1EQc%{C z1#iBxCBQeFYUEv4T@YY}Yx^8%j^%g5cq28M{ug<8U&8mH$oHTq>vNm<#6F?%_MZUx zKZhhxxa;mq!PwXs03>a68Cv62V`LvgPz&PuOb8Dqk|>!SEXzDRo?b~@eGR-%Jn&*K zn4MmAwL}D3APSCJr&$-IODKvfifdPLe{~@Kb$cAH!qLs-xlrvkczd*PQALdRl4jr` zW?00elITCj;UNcrbsd?L7Voc>w3QvUB?{>FyujgKH_+- zv5pe5SGj3TU=s&jJLR2J12|*fPF1?Q9L}I8 z=(U`*O%#?|2V8&IC!Y9jW&n4zO|TFd$-gEE5-tzgOeHuM{7)jhxecXbgQ z3`0*K+Uhqd3e7{vzokES!C*Um@Ic19QSl@w8U1@@)Ff1SdSX5AJ`1$AYZ<2DuO{;S zkv)eeBr9`kGE(wTalcXbiD%XG`D{)ILKzhFZ(hR8VX(YEeew?GYTTdFHYVouak1DN z&lK@?tb#hl2rO4?B3MsZSy59t?P<}0c35F{$oHAXO-)VzVI8i^mOW6G@@pQ!D-pJ_ z{rmGxO27NIe-52KDWjW7}b6@c#F|s@tPe=dt zww>L1FHw6uVY9te&)Q&Hfj;Dhf4@Cd&$ANgPj@g(7hN-Sreu@zob1pH2LCzy%zG&w z{_3}Ud>4non|j$d)Dsrdgdkoh&e}8<5pBR^T~moww^jqpPgbI%FqUN8Jd7+DW5cBi zVehm)H_Y|PEwGC1&t}U4@*SrBe42&j5(&p1x5!z_=6p)gNCf&R=qTKmE40XL6H~q` zqtQoQwMj={S#g7+v3>qa#NH1>4#=eF`)KAtL=a}* z{%&~XCs_9P8ues@nBEK510&-(cXExPT|e?XH-doq*@D8h?>DbYrO5H#i62Wu)!p-=}uj|n9Dl8WKJk`?ROY< zYS*)(!2>V0d1{daKF8R0JT+{dehl_qhoe)-bX-{5dV*}goY$kY&$L*+jX7@ zchauB_HPRucoe{w6_h56gRBQs3~2I96yaEiYCshWU^;u(m3y;d_8Ph^%r6+-XEEp= zZZ>dA@);~HXay-8Ae4v_vk4Gkk`dbh2@&b0$WTEo3nWo;L}tKv z3`g1AoJAu-Yg-kfJV&D73m(7AT;p+Fn4Cv@q#YNY`%9aRU}#Pw|XC5qHB5e?{(yT!LeXnTl_~^Zx~&@PAT_0j0|8!CFj?}st;=b8KibZ z3paoO39k7f#U${I4i4Jc*_Q|l-lFAwV=xMc5 zo?y>yLX@3t7S5g(k9Xo0Aw2LH5jyOqfK{7~b012HEVQKjjf3X5P3WsP#lUQucr8vz zHdta^&v|hoGX~iE?@$@(>O0y98E|oOW}&4tU}{lBkijp{(~_T+*zu>Yxg7KFiOt+z z2e&iF`Q!8aWQ$>VG_pHrCRfmMdLn9!mRk%gWYe8$c|ELQ67tXnawJD#ITd~$yls$Z zONQZ(EMjk+t~h>wsbv3&SgV4!#d-OG=M|?uDi1BY9eqjiN8PR4zp93(I2cqmW`T($ zg+PcrSg;QZ8vmMD2byxxmqCW(%M(^%wh8HCn|a{&T&3*V^{n*p2SK<9rC^{ois>Jo zy?Zkl^!mWqcxO)Qvu$Rd4E$*_maC-)wuMEk(~rFZ{pPpP)5RU?7HP?O>xh%6{-&wP zpNZ<>&!9olF8N+V1B+~A-b);-S-g8MRC&)=&W3rrnA_Vi^c>8q;1;CFG!;ySSJUi- zdE|dSptq_mt9@Yc-%9-{2D#kXXXZJSXUY+B`iRQ`fHc;Sb&2o4aC3Ns&7pUYiD%Nq z7^uqQB%(3w^NDs0SqGrT0GCkyxyvrwt>lw2z#i6}2;4GZtM*@Tkqq61XnTXAn2v?w zdRC@z&OAjxAu69Gl6l3g`HLI2xbXt`rNFOYn3#^eZ_s&mOz9AEsjhO-NXv7^Lzbd5 z38I;_kT&nrZ;#G9AY~1OGl#@G=$cO%dhR9I|C5{Fajb{l=n%AOAh#> zPATi1NRaHw};%D?{AT&ShvN$)k|yYgrL`oM*Y@Pt49p0jzmzy8K|&hH!~!T~@> zW!06%M1pp7(YdMjK~!O-1frxBsC+n1XF10P{5^7WHxC%z&Mhh6oT1X5w5zfbjf` zAax~;L`Ww)3UwkiBJ4~hMTDavpu+7}8MKeD5VIpxPD|;XZgfF2v#od+F6VxilLZ;n zt?`_;5=Ccxgi&PBxgR7k^4;ZGyhCXcdJAhXUrZ`NJ?*n#@2k>DSYh(FF$jh87$m|0 z2MiMCw(jb^<1*uShEoYK4RzKP6cd(8Xsd%(#7KAg37c?E>p{c}#FgA=%7X2e&Y27P zpSzRjxf*h?u^1=HTLn_Ah0JyflYNUJ;7VY1wDP7jI zm?XtL;lLb?q?E~oTbMgCm|weuRZX%ZO7*q@Au4yViQ*FTke@!7`@^$|Hx?#8xdUU+ zl+bg=ukZW7k^eMsVHXF%MmP}R0FOnJ92QUqTghUs#hm_2b+nxOg`1p7@%dts45i(3 zx;GH)U9CoJPKgRYlIZ)Wwsl^kPE?vr0dTzJdk~OX#EMuoSp`6qW3nPug}MecvVznA zWx9=~g3`gF81i&kv;6#@W|nXL_Nz|$Q2+qG>UEbkRz2eRhd2MO8a=cCV0J7a%&DQ= zSG}Zc1C>)iQ(AxLnsl##5a$J|8AWk1(tA#NtQaIt2bF_96)40K5Q=vmLiz^g=+F!F zga~XcN>hZSL}eoYHKHvcDd&jyb5enKC1_{8X^>EwE(|fQk^+tUe$tnbBECt4WRYo+I)JckW$0w&Pw?LI6G5ON~`(v%`X5vsAukK`yI`s-UMgp;$nZisG_oi?3l7G|KIh6boBgQ;I3YiE*~Fwz9C0T5Kb>fiw^UF(O99 z1l@B~FQ*~x2%-Av>uF$()LXVZ-fn8duqp8xOgffJ6_Ns&T1?%lM@@yMgb34jE7Edd z%7XJlATnY!Y=%};d5005Hg#T(<3z)Hx`oc80gNJg6DB1;_>?1@5Qf4}=z+Te!;x7}5ux-;Eem}Tvj=g4z6K}wQ7 zi)p%?x)UAEEN{O=v!cqJUq3`3BsEn=9b_UZ>Ku82VlsEbd*Pe@?rR#On?@V!HZ}WF z<0g9Bh#2VQOoRf8MZIO4srdYzTIq?_6BR{0ftS?;5TOXf!U>KHVjKW3CudXz^EKW2 z;aVr(cC2EI0ePteW;@BORmk5hjoA5Oc0@LzDaF>_wWO^_m=q>-qs9gJM{aXl$n8QW z9LFp}(E&NKV7yQ14V@5;pR|G`ES~b;Zd{1n>97Y=iYZTi+JLi+!A3ZsgI%o|1oK?# zdd_bpwzOetjLvr9oCQG?iG62pDRCibwz{r3btS$U{XV0y37|?Oxz^d=`GSfuUgqn_ zvXHuBK92jDjX;%TjSe!A%Ei=7VhG>`94k`y0|-urufO%5l8O{d77v?j{_TuAl`4E} zdbXkfiW6&&1 zq|XQ%L-^-1J2(qw>s2Fx0@)w6&U3g!?deMgpmLhB|H|SpUkJyA)%LC@cv-f@weLUj zuICP3Gr-_1GvMGMOxB$_!?D5~V=+$j{RSR3So;=IT{{Qu&V-~>=bel#qs+IEX(DT? z&aFB|bad!G3#CabPX+6yP^!{%p->>O;thmt_XI$dw-YMKEDuw%g4nI!e&tDi1pwg6 zUwr%}&$-C4po>h{ylq>lU>a2%U0T$e;f4Vi=w;8oX2&>!vXuZdm8+U-0bgB#icl2m zHw75%Uj@tMJuic}YB@rIGhgbS?+Ik>}HPsg0JS=QU;@va1r(+vcS zbjako;a{&#HfG^i9dK?is7430XkBK2IeudI|2>r$fL-#)NTdzvZ0QMmgN*Jnt#NDN zg?2m2L_9?@9Re_>_4J{%&iFbDy5I1F>(U85UJA4VDCZ^n zwOYVe-t?7EeB%@JMBViV$G-IbdyG-W>dn8MIw=d z-ASDY)mD4%ciP7PSgHl%siz?AjcY%;$zr9qmW=;;DfVBy@9=!*1I`HsA{@{|Y8{+A zmM0dnK7q}NZHn!-H}>E{AMYJEuZZk>%yf)`UGpJB-qE%sU2@b~s&EMj|Hj^wP6a-x zO24MJ&QjNUP)Joml&h&H)`h7ns0<=vYACh!o?mchKJog8%>T+Kz5A>F$)7%b{i$mR zEwn7%V-Zb?I>&#=;IyzJ$V5VB7<5+pR%E|D9 zn30-dy`v*d|QmAa&n>n-p+&|B@NSS8ND0DQu6bD3XRtv@a9@ zoQF>IGNo>3ED4wMy*a8A*ap_b_s5jvB)FAIGP--8BL${M({m6nH@BjjN3p`u$|5Qa zxl#u%JRlfUqXRnFc>9g(*S$1+i&~=a|J~#*Ke_JCc?7ghA{plNqVvJ;@u-W&>o;^4 zq;!`0$qhxLpgXD(E{sN=Ai`29ak5}cA<|UA3J5f{&o3#&bX$aK`N;f2L7Ewa&;{UB ze*&eTax^v#;h3H9Kl7jc)iXYS;}=Y$k9_?l2$8C;?X@HDtHTH9F_j$Xv*RhkWJfn(UT)bD=fE!o$lMF z|Kfdz-~Daptcv|XfSHZY^(_oUIA9S32`jZT6aitLOI3Lrj+fB<5dg3jYEI1{y~$(o zu{kbGK6khZs!O?imfaQg(NiImX-iANQLHv5g=dHYD6_wwzLozA@03Q zT$}WpmfNPBGFQW#I`5ziTbESN{UPA|+h@r;<7 zSq$j7wTT-^n7)I5cnSgldG4wha=gUxlGLTtC9(;u^B`5;WGITu7h$x9(Hhj)p150f zHe!cXXsud*`o(wumt&%`N51sYB=U>LVhN$G!6Fk&p;v(}U%6&QS)o{RoQcp1O)2ov z0#t>{Ry1?vw?bvBS+=IL)hs`nIsOuXDaDpzE3viMTF~nBya6^w8FtGVLI71z6;y?v zE4+a1BQD}1CW=}NIl1Fk_so4;Q^D3Ew$&+iwAzX>DkFZ57nN{hu4fHAD;?RE!~<5VhNbg*}5moK}R6#-{5Odl@8cI}`bJ=YkBa6lj3fI3lcJT<_Ma8{9F~Qx&+0xtxrL2LwL}Jo|DwG;gWj=sGsP+39 zIoJifdt+o+BgL4)D95!_M^gLzJWe&8a#(tPH^`kmPb^P`X+`I`!Dzclhx)HOEC>aQ zxlrc5?8buiRO+cvx8AV5(As}FaN#+{pc);p2rfyA#6RprJJeGQMWtD*EbS^tdxY21 zeI^R6cxm61Lge}48LYQf3f}+hD*amguucNeDIs^d4 z1Z4@+gdAd!oeho;BO3=#8RZk2O^zVbOq@l_yUMyMq{#mMHUA$ehp)a=6!S}#;?H-k zCFNa}dp7xzOa!E}sY$cZfPe)FXu?8`m48u$nrJii(S-0hJ_B7xw)++Vf8FTOhv(U4PQr> zQg}7Hf*JLujbL&s4~)C}%5QqWJ?=1O;+ZK-Pt(MHV1g&0&x375gsR^9FK0gGpHBq% z{wr=CKVYJo>23enLyv#u!7KmM%I)j7{^n!1J>j&cFaQrYa7wrXeC4M%&hVg)1V$*9 z78Gv?qXvU{D;LY0;-Q!d2p?vmmuMHF;H)Di6ma7X3_s=Lw@x_IK!FZ~IB{dVs}(aq z1;mXeq$nRBkrR_Jj2|3|AcK*UnCr~=iTr%U&gH2vVltxQUM&oWEXYg zt{5+h3CF`PVJDUVM{r^OissGdMk%$nQFO#(5=(&tR7C$D$$?sVe$5Y-XfH+lKx!4% zQ+h0%niPAN{V8O1s`eC#-sw*)iWHslUAw3$tgNe;WzkVI4j|VNE*5qk^?(;W3V&}} zyK+Pm!>)x9pwo3MJV=mOZ zPCL53bA2kt;|E8S-kiU4k`Y?lE%nkYH914}p{BY-T5-bR#%;?F9RN5Wgh5HUB5f8( zS&5oKQv(`h{A$GGP(E%x_l#C5 zL_zd=jU@C`{-iUjp|z?JLE7ZP*58gG%!9$q%s!H0gBPW=Sm7Gae&Rx65K}3tF|?$R zOh7a?=9Vr2F&tB`@S8W(8*fK{qWaAb;0vw`)CErufC<#ae$TnOo*t{G`_=T=rZ4|; z{K);Q2WJKk4$6a9R)d}|$C$$uyN;RI%fFtgZ61XXBomcIu}`nur&sRNFZStC;o?}M zD2#OI2jV0pHBo%{CK<4w;d+|=Om35;JLKxPG3WY@`hlnj3^(Q)cP31+)OUJX2~mZb z-twW56?gn%Vx+fD<5MM^R46M0#edo<%*}-${vh>#THjNdUu8{G7pnFyFK9Z{TsWBG zYHG)A0?=D=at;Ioj3S(xupEKOPLQ zV zd*@x@d;9hRs{!n%Y9fNn{6{^f&RBBhkSbP+Q!&1~byLK8I!*YQ5M;ts#7eG2+R)5M z$$vz|?8cm*_8?H{l9?PtF3e`Nwu3m8!zfbVNg5;KGZ0ervd2-4+*bgxb1FzD z=ICpGFA-AB)L8F39Y>~=h|dm-U7kwzGcvD9ej3_gSjkVxj4)Y5%f2vA1TO5XJlGzA z!e4!L-z$z^L{T$)LPEVMLc{E!S(jyvD^Lv0$`pNDL(sORwzH7C{?z)GQk?U(L=5;4 zjz|FIlnJq-g%Q>j>H+EjSNV^?Jh_FpZ2>VAMQ|(n&G*;8Umv1ZX!#177^fvmd1^CF z6#US4QTI^yRvi65>rK9%>etg_)l~ofOTWGS7web3;EBB_?1!Sq-VHW}@}a~`<$e>s zrZCl?uZevudj{vIEK>ReGx-71lo#1R8uBFoDqYGZbbVKhOO}05?4dSFxbii#hth~j z%yDv!BI!anu|tOA$|i{!N##Sqdf$*KD5i8YRC#zd^dpgLq)7t`RZnGLDaS+3N#zbo z`<6+ztqbcJu4iIzL2`1sKJmK(gGrV@9~MHQY3{LkfZ1&p(W%`!*%6)S-poL{z%WH< z7>UiFyLiRPvD}*aW~cmWAy83r)KwH&jn({bK!+&Qoj~it9Wy=6@&?MHu#v5;-A@bx z^-3O8dFBdI1~wvq-LfTq+cutj7))GE^Y%&V6;v*%H{1>;lzlhR2eIeJ69#}Ed)zhS zPk%CRFL|cN?6|<@tFJlaLobhU{GPYmxS@Z*7&%5s@aR2m!iSpOASUqk0XYQq;>HSu zF9~8I=IJ`>w5WdM-4DOeJ(P)RT#`@WIdINGS2Pg%U6! zpCRZ^;+kD7t4&<_I7(6#TpHGbq|BhzUmPVMniJqK6-K-I8iFK6|bA_{G&OYajwVQtfmVOQ-p>&FZCK-6l6piuB5I~n7j_6@Jiv_`iQ~>JNzzL&XV!@EX-PZg_R=!D8)KboRrXW+@UrL(C&d6q30OB~R&L&XwUCy3 z6O`AeC!9xxi5B_Kbv(%2=tUmqIiKj0OcX94avHM1(1{f%za#iulv)b^$v?TO;@TEv zhF6vMRCd`OsQLbz{ZXXmo39OS{Wtz%FOwzA)_1FpOdN>v?G%sOKW?fj0E0Vjr-`LJ zISFFFZ4w~fx&_4Git7Op^Y$%|f7dIhM?^gN*&MRyua$1*KADGc}PXVu)QAVAR2!7aVedJQ348iday9B-tFqTuC`pv3(N2mFGHE z7)VY%%ID8SaQ%GW{eT0%Q7Iopk^&#plFZDMZ#-}9c~m1Y_>%mX<)FPOLF6@^)tN$u?%YN<7&y@qK~3Nw#l4q&-LaRI3|~hy|F7XcyNZ~S{2L6=H&(vyqCmt zF_$7RLJ_NIC(*=6g=50Si1SW>Ks`rgg9xQ|IDt@4)*P#Qlb_)L#5KX6mv1l4{d}Tn;wXA?pYa}5%}O!U zY&{AgQ+@;;=7&D~lTD^`PgrT#RWKqn%msC5yu^TVlL=S~` z6UAV|L%k>LKmF6&sYm2!;;2Mu3z|>I>@$qYgH^O z8iQ|LP^oiAh1{F$L?a$}g04W8D1+lyP4+l~eX2r(Vo4#giHq_0ZBS3e$?mB@N}}MP zM?FBn;U~vPem+KC8K0f#H4zewY&w^sEQl}ca7S=u4`4It()9OePS6cc{H^`x(-d_C>`6sN|~ zz|5+APGH2G_7@{R<2_d<#$w#L30I6e>QTc*$JBh~H*SR77Ro!cw#DkO@hG~cUhH2v z?2@%IrmzBjz%B2cYS|it`~+M%do@d1b@!&sh*cG{>3aoNQ48?& zcEnO90N_?EcjNu)_rI6Q-CXRqLgYgQ??LP*2hR0-2k#sCa?A}jZb=o|$oXR2#g`rj z1r~Uksb3H|xaj-?!HuEbGJ{~T?7MnvT`Vo&b9qos#?F-cC;tPnAAkr{5Na@SJsm8y>M{T%33OB}?*}gA8PCK#Q>mQUfUo z%ML~fX&|w1Y)I!ovTi3*q=L9^7)Uu0txB#30N0q*x8s0O1;SS?+KXR8>G5n4WYMR3 zhSMdV9a9f$Ijrorz|6LIN$10e={T3Ye6QudJqkvIhWVl69Yfh(y5s2$L;Z6n;k6-3 zL|){>)~wKs^gF2W-VgI;XgC5=B^o)EUg0Lj{Ny%(!8JJtN4Xy{57WdLPfei!m1T_c zWQJp&8PIq^{UYw-JqnUHBU4d?fYNBMWbzfek{Ey|5ED7BLqH9R!IaP7YcQjvK!?S$v1sjdELjaqy)w8M z0narML?gKn`r#{frDL$)Hb{B&(WdIS*r(^W#4!g_?5!-h_LPG!gLnfNzVewHImW*@ zm(u77p2DeGfFf~U|%t% zkeYcQCN_vV95uBiOMIy-N$k6MBrTRL`V>mjX+-jq@1kfH4kx1Qw8J)yPDW(LWiQ_} zzf&~qd>9cL=7r6dU$Ww)(?^IxArGP)ebt(ViDjj0R$^nlc?4#E1$J;@BEJq66kXWk znE}LHiQqh2vIIna+qO8IxR|D#os0JzSh6prPf|!VCyok&(sHyML zyO1kSJpywKH?7623DnywBK8C-Scx7za4MGfArlLySWG`t$FqnAO-595k&=VY&lN!~ zF?-Qmq1cO$$qHd^3QDEM(miR)M+oI{C1%`G>XYTsN_ChtcrknGt=a_2UUDZyEc!Y! zuC61hACuf`=R@J3;#JZ5S5AzP=}^l-&B_fV@*8zzlA{BSOrOp#LjwNs&o_6Uz+!^= z2n~A$I_;u?@Pa_Z@N0uRmLH*cRSc5dBO0j-UC@O@0J|j^5_vU{B#9kCQlAjsM6FPC^Qo?jhE4Lm)_=t zdb%b;s%q8oKB}PzHJWe0>!TosN_YxNvxx~{}gmu^z+C8p577}y(p1A zg(Hrd#@3?4R-YTRWU*pJ+{AesPi;@$GKBX(5fzSoMd@80=42oyM<7O3MS=u)WKRq97FF5S0vcgn8!!`BP|#KyoQylo>UsNF*1(6jDrS zOyUckv#5hOibBMw(4?ppHO7@pQ1Pmfx2O;OhHO{?nGwC>&X!PX^~2p=wGP#>3$je?5*OLj2Dl|l>dl+!eY)lCq^LLi3Pj-; zTg9WdZk7tYfw(7!Zs^d>C)I#jjYsa7IJG4Tlk%fHvsL6jAeY+)xaN zOd2~8yQNEbQk*{wKRxBfdeK!C&NIb}BCt5qSST!}X1xcaZ~((I3Ls1h;bI*eB5>`= zSH3}im6Oa zwWz54z(e9%Bh!eQOEICD3zG=(O14PfQf6SB6A)C z2)@*k2<&Hq3QVjZX@d|&sPZF1Iz7af7vxi04B=HlG(>ykU43{ z>PQ5z_i%-#@LaM60DKDLkx!tI|E^+G)9q=Hmll7bV1;W_lu*8nPxyNFq+WsVcCg42ML)sXh%y z#iqnu@~p{KkieNZHV*=aTH>yZ-a9Eq6Td`qntWPt3?E9nWhNG(387^r3Wsf;`8g8m zg-)4B2Sqh4;;->!tRX>(AWu4@T*C5hg?x@v24VV zDm@p*1`xu0gsunW&&vkV?A}ZKs+q~>8<7gJaRmmu9;FOGJtioAimtUxP)c`dVaVyD zL7bvGNk65Gq?@nI3?Zb2^v%s-IqiojbkoZM5m0i_vfcM?7!ewF5?Urx-z1*-fQV+P zrrqMg)Oq0~w=a%EI+IqB^P1++@XqWFJ^z95oJ_zJ*7ZvYbeN2y#9Y^ItPBMNqIHx( zWdZo;IMm$C%oRuCBt{V?Es`V(pkbd(XIy#LbBM3$sM>^bqZ-P*m~Esf`ZU{6k*k-* z`JmE)nBfPBq2mM?B&)n&P}aUh5k2+{UL6gmXS^h{yTNTQA1wN0}n{-k}w zBiQf`Ld3BWtpxai+>VaNXkO?qjr@J-u~zMDm%|e34Ub7g>u4vUOvrDy5zVx9H0&Xq z;D)@34QlN2DJoq^MKSdLV*sd!CzoTcDk@9Wr}F#-N)E4E=K!YhUW}SSNMPVNHm8oq zQXz$+#E4xfQ1V}9tqKw&aZ3#Gz@x8|*wM(3r({!2Gf^PwKy4&!Buk`&C;iRINSKU@ z^%O_{XmAh`r|@JWevAW&%t554jAfqNgQhbBE;s&LtS}-pJQ9o+ zg+p(oWY6rL@OwBwG+WaeNVZD-a!rug^WqqWxsZXfMBT}SHT817f3T_1@F8+XTFb@b zL6c!%v(f>aJd05)X4@XJE=(>tYLEsMgqXd~u^MM1FcVQ7X^s$9W@POcSwJcoC~=vM zlPQ2R8($MoG&1~Tgf3WQf$*JEG>nt^Vx=(AY@uz+LD@Le9!R4X&P(1tX7V#$Zg$6U zQ~!D2Sa}ujB3lKYKkg4*H`=g>U_@xxiI`p3$(%%SI`9yK;aU~8Len-EdL4So-3qdk z3tQ%|qUg4f&dkJIz*fhe(TvfF6-VVDtxbTZ!XZsb0in7OJrg2GNDOvRorGNbkl7yW zu91Z}>pTy3$_pq#m_Y0~1!U^^b%i8|3WN|%$fn4KDLge~ZU{BXMHO-DGIz-x5LabB zw7M7hXE=!ZsV7>}i5x3rY>nx2Qdg!62J?&|O!Qi&rZrgwV{pZvF^z`&cKl;(NYuBz@x9-qG4?W?8 z6W;&+_b*wpWS+ybJVL|XgrQf_sMk{~{aszfTzeu$sJX3cs4}>geEC4nL~tB+UeYL86b3z)PK214JhMZJ z24$!@`~XSPNc<;W!?-;RBXM6tG6ix^{|6vEHhOC!! zAIcXDlTknpCm%UPj){PJxGS`u4cYvKWAE=8!rqLxzV)qDRRQ?)r$0Ss>%RN$ zyY$ja=gERoQ&TT~@r!S~@y4e={pqiI)vIp4`R0#&>``AC={C>Ll%N|giLl3 zjw?Nc6G7UAB(6v3meo%g7{?>V-NS2xm1*wKq0Rg50F2mfvWETQOI>Z0@TMnhLUjS<{Ra;C0FA;~?YVZ>%#L>Ttc3+%hdFVU?B zQG*CG*ZMfH)Z2eI{!^Hp2qz~epZUyZ-gVbqKl#Z|)~s1G&pw~^tY_VN>#dtNZyp~X zPyMV|vEpe@d)m!6-#nil_5>m{)2QK5Vm{89R{I_DobcOWS@gnlb5dcq4dn`!L6-Pipey_s3g}Q*Pcq(h-%4uQNy|$ETVEE zD$GW9(I?IXr|N#DqGo9(!X(+6^}Z1Xm!`6BACW={(==xj*Q(f!I$>XlF*-!J448Ug z1{KkK8w!!9qBPm}na(0oG*dxb=fNq5W$=({A7t7}K?(=2;Z?`}e*U-05ODU{XWx0} zou{9E`utfCz#Vto@wmr5F0mkhB}B<6SL1mF8 zP4lP}R2!>5gx5PsZU}L78dCaZ$OWRKSfa+su=+O*PkP|=QwuHRYo_*-G02eM)EI&T zv7neE5%#U%E9Q!mmouJGOl(*E7eo%OAc%<5S4LUP2@EPok8SAQHZQ(x{+DC!yZX4_ z|I2a4f;)_#{NyM9@DKm+M}PE3ANtUTc4)^#4?T3lh7EV!byr%me*O9l8#b(3wQ6UN zaTmgf(D10iLPgzMXW0>eFw!Ho(07z}8#bKk10*)!;Re(zsoxV@sH`WTs;Rwu9zpz1 zSsn<5SH6&f5LbYvl&Kn+qYgq4|bRVdZ)Q^vp-kG=PQ9CPp0$K2Q6 zW|$wUs(R~N-|D?zwQALxHEYJl$B#PdsE>a1qg7YxZ40NKdMbc7yx|S&*RKb#apT4} zzxmAoPCDtNT|Mlb2=fsd9xYb<)lfnqbuvW)w>LGTX3$MkBNSt35MpW)bs-w);w}w2 zn4MdIR#u@Z4Fe&_g+ZyxXzYYyebG!hV&r2ul0X<1&shp@kt*In$OYe9P_vR~L51w% zR2a)pm`t~8FfJg4^wSux5-c(;FRUi6|DU48Y{vunG$uFpRE><@qV!vGFC=%D-VyN{VqJMFX!F1VoRn#*b! zOWt_hBRQEzipeh=JG{~qpe{%^1SCg?|a|--YKV?GW+fi zJ@n9Te)F5KykWxz?>#eb+O+Ax2OmpidMsGRuqzSXj?OhrTGV{=>Go*kziZ4Q2Lp7{ z-Uz22wYM>Vm?qJ^9|26gUWokUs-j*2=8hr&x_W95WMLv%meY03^Gd1usWJ?prl-JA z9$_pnDrz)o=pa%Zyic)1s)#5Q1p<;%IGn@I5Haj>`L}dP%0*#_!Ca*&oFa?mtD!y; zQmr^&h50Cw&6>eL0n{W{vQaWe?<+O~Tzl;AhHt6i(c_X!F1h#Kdtds}mww|L-v}ua zMD*O}KKHxd{qD1#^{i{Ix#nwM``VxV*`IapyJgFkm%Z#|H{Ep8Ti)`PGtM~Uu)_|! zP-g~(GzJp$ zqC_Er-Ipl(N25Q_4fQLBQ=%}(%QzjOBZ7~#Pfk8Pk_J^C$B05-Dt&*O-x?r4;B@+F zB^BzY7SfzMx%Q>&uYKunuX*Wjhc2*T=isWVt^#o3g%`FG2gk?9|K@N02Ef<9{`FD& zUUbn#H{Ep8>8GE5#T8eqS+i#O^5tvRthxO1%TGW3^k4kq7Z+S`!LAZqfJH$DIP&j&C| zI^Y++@C5+poO4cV{n=-q4WZb_1k5yQ*a_Ht#V0yKW;8lx)&)qS5=l&p>HXa@0OpmQ zXbC!(rwc~hO9Ek_%Z8~PTXnkCrttReU^mJm4-Lay^LZ35Rr^$ZHhWH;P|VYhMnQ_D z+L#ccW};vNxMmbFYeW+C5HklsB(D~odc*l%JW9tefQl59dyus`|a0SzyJRGuUfS##F0KGU_@wGK#U@@L$<%3KgsA zX?QaW3PbWtC0F@ay5sNaXlIxQUiiWn&R#@&POMq8=KAZe zzvrHN4msqI)~28T{O16k{p@Ft+IRKp)py=`=U_1C^?G{!U@&;#fd>vh{P6h>b zeAGJ`W*Rjt6uPU1YSQa?anf+JxPtPZbEN(no-^sV(TV(Q8}~-oLc5HA&GE3f)vlkzOez=|-hy>c`HJYYXy9)-&_p z{oUWC2A%lhKmOyvV6b-W+SdBDYu642gXcWwIXio>y9!2xhMj}CLuLX-xs>v|axN!d zs43HwjorQGax-1BZq)D?L&>$edULY}-O$M#>TNo2hLEs0`2tDQo^|I8_KLZwL6e!T zn7HO#gC_E2X0H~LNgKog$at8EJ%^%osSaq{O$drCs6HA(N`7R-JjlGY<5~%>|1Wo5 zf5NZ-*9pIdVGqE&-~H~RjymcypZUzW=boD~=%=Qp&OGzXuYdjPC!BD?D_uR^D*K4X2%U+Su6G``-7y1v`sJ2{Vlv77(4D!j=V+ z^oH3xY53dn1bE!x(i>r7mGJ#!qGaD~&da^faR1~en|4z=1SPj%!#dhF#xkLf(>5^( zq0VO<1Ix5W>HM08)|#nQZbHN~2PyDEc`ha|EUdCT!c~mbNJG-PqhU9ppQ(w`j@g}? zE_O(b0D%YX?+XS{=QIA+f4OtywKeP}jE#+5ef8C^d)@2KIp>^DfBMr$AAK}4|L})D z+_-V$pZv+6eD<@Soh3Bvu)_|!;)*LyKKbOAyyPWEAAR)UhaZ0Dop=7|M?dQIdY}5# zr;a@G$b~$SM+2)YW7wHk@s?BPh}#TrU)_X#b4^wjX>y;qUZ)slLRAm2ng9q;aWNs} zBzB^9AvsFiD-ads5-lRDT19FoF9QXsadQ3{%hQBS9+3Jh1W2iu6u(0S#h)^l6Lk5Q zAn}}Xd8WcNamJ<8e=a>EwX?%~4xXf3POLA3RCET(R~JjY6iCZFs8ffe_mv_wMUV8g zjoO*OgAg9WAbjVQw~u-p3=4@_W}ldunYrkqi@y2IZ~p9OKXcBlS+nL9uXx2Nr<|g5 zDvmtz$lGqaZJ08C``h21ciwqF{_&63ty}k`Cq3!8&wcLu-~axnJmo3#9M#y%fBuNi z=n-K0e?D_~r4gZFXJW-$PR&0?F{0+eWNuT0C;BFI(jcwSpwW+B6AznqX)I8K9o0c4 z#8e1O5h0+;n*nH2W8q|3Z3?0)Hsc}MQ@v%nWdf*7%9t~yrG2HhNQa3a2~>!OFwJ@x z2Ef9OVP-*Ho-GzpQ@w(YEKQ2Zw%PR&7TGGLQglFcVW*9Bq!qMlz3;MB0%9^vrbsbH>iu0#7m!*o z@ibE@7BPMz+e=eeY|~uI1XP}iJOJHsBs`~9rYY%JD!@=0OE9mBt(3E^R7%x^_UgDX#@h8T>ZEU6daU?7?9o|D=5yT?DOAVz~>;bBB**qPY;kDqLa!h~E_o7!s> zW;3dC7h{d!!g=+;ol&gHjn+DrbV9un1o%2Loc2(n;Y3tExt#TvkC1(nF&c${n9T># z#*)O%edj|{Tl0132tf=+2nZs*O9<^!1nC_vO+b3DQWZg(fC-3H>AeK$3L;IA8tF}t zCJ53I5NUFe7JfTE?;r8zL%t+AXP?Sqe&PvSj zl}lT}C(Z)Zm`6RGJs-OqAR`P3cBFbWu1}{TW7wzsvaf!DbU@*)ef^RjyZ(&sWe_lA z9{XZmZOZ?YN-S0dDFtn!j4dOnqmGBUwe~}k0*JoAT0BZ}rzUG-hl(|@-lX0}QGxC1 zUb^MDfA-HQ^~*e7Mis0wQ;vsm>LZl`9`q|D`spiR^hZL+=Nln_H6JFD z-$0JbnYm841sDy~)LddkPpBZ08~U1X@y6=vestE(r-an1bc1`^{V>g#jEZhSg4IWG_T&q_F7&9B5>XKzoT(^@wmea)@SEN3R#zwcgHnQxjWq&s?(w?5G z)G*8Oh33Z7xWPe}bfvS+o1ss?Y{!w&1W9SbnCMA!1x>-ji_mhnIJqS$A}n#QOACXv znBM%y`;9l91?fsfWyfpb3j+V-JpWBwG zQuy+r!K{ovvzxYngWaw|x!S&LPj%E{rE+Zbi}duQ;~GQ1XvH5^qaG{jwiSFBolAEU&$C~B_qDRj_4nz4Mq!2sC(PqzzepT35)eU>;=NZ>E z9IzRZ9Gg9KlLONHD@p$#9!F20m}J9iT^QB-_3I)^#5$k0>cr|!oI%_rv^V>}dQ&B`|*ov5t@W(WDCf$$fB<9V|`B^5-OZCTX zLd49^9qv$3@UkHo6WQ~Dj$?nd>-(5*W?9q9VG^U!B=dyrfZ%U!GA)z;CpXwh0iE*7>`ngcwQ)j8^=YcQe9YTk~Jv ziFXtvI=Sg?1OFa#uykjR`@PywGkYpw%m?$!jWDX8GKyDaG5j(f-AYV{BC+GQmw|R5E$iSmlzb9Tl?9euXTbQ^V&!lE(uwm&;illGR zMo^6DTk|)TpUy3lPvU!XUUYs|=`!P$taYurk0V`_bheV&HoFPMNd4V~4RwdVzlS0= zwTBje>RMy5;8Yu|TRGJXq>%OhJh)i@#ZMqg) z=#3agcYXA+-e{_rZa>RnX^AF}ETkrEen_ROusUkls5tgRO_c0_gT}Cvq9R|0sNjS# zN1-B%sm`@Rc8fZqv;*$D7^CypN==oMJ_pqbrE6s-2JS|jxrUUCH~d^saXr@%HylNu z+Fr<9_C^nSAZ7mp$GLFJBwRaR3>=i`-e^re-tL-ut~SD^SC~kwvjTHf$AzoksE552 zsJq8G=Bn+;mp1-i2KJ9uIc=PN_k<$SZx~{@q|C5|!}P;j))r5nTn@%tc|(Y_3Uy6V)WhoEF-NZT4y85K(fyQIh9d5U9O*aISQjX9C)u($;5 zTLT`HMlxv|IN6ohWpDZ|JY~a|7-k|jqm>ygi$hEOxbo@v{QKoYiaQmZHUY(i3=CUr zj*+g`N#ghrw=M0o>{n~cen;$u;SN?2skGrba%^hY(kFsSWSrCJeu>Fj*BM8g4!=iw$m*;~DnfQ{CH(_Q;fiOiN(y8z zWP|CFk)9)_^r2ZFZnE7%?r-{(eD?L_5cVzQ=x3KHLCSKG;UODk6YJWP5xd(vKPCLR zoraq|)p5wwpmyONgR)qK7ZF4hfdj^=gPqZ0Dc+2ngKo9)3r`j{oLdaY!BU6=g-ivQ zG8;)ICE3I_N!349j6tt%6e>R^hre_4&vC!PKCQ~v1s6_sFmo69oPvR5oVKctqkof> zb3hd;LxfB`|9A{E1-1fQN z@H=1520Em`kxfkFs=l&fMm#`lNQq|Ke4ELw_pFIl-+0VGOI!P%0Q^vDs?%x@wD>w5l44t7smAx zy{U=&jK5MQryua0r*9}2;kEkHOoHvLDf<<3&&%rN+oIa z7R30oZnWkV-z_fZM?9C$3ES_xE`fk@5E#;Bg^EsDmFD$I*za#P_XGy|(3zUAu_(Do zKAd9naCR9ikLf|OTh%aD31KuL;3&s)it825*}Vet++8}bHr}NcaVQx^$C;)zmHdEZ zR5I18E!pL6*QTVos&#vd2t}*}|C0Umg%^LeRX|ai}xOlo*i+HQ?=DvOjnN!_JG{RB@~l;<+y!VaCPat z`V1!k3a$VBBc@WgT%PvWh@R^@YhNKYM$Kk^V&B13hU`Am(1D(lpJ@9 z60A1!7z9eRm=dPK){Ju?9yeOxd;2a1|!I$?xTL%=t?Y2uF_NJrmU z`_S0sz`Opdf7eL`QI0Q~6>|$+Kk!JQSCss;94LktMbN|Rvs;GmV8C|h3A;h^)#pUl zs<0s^-q_!l$r3wj9gJo-g_zkIg$ET1amp>AX?>ASezVI)UOGr9P{P_f|Kf%hXyt3J zT$tus#WC;P(2?msRd6aKf=V$*J=4i=7@~-@mBhXI#m`VbxVZZ(F{}izIU!vZsycfU za0pYr3%aN8j#9X2oDBnC!BlLLEpfPH$Z15bR6u0s9wLh1D5~c0tK~{e*)v3J|F{X* z9y-h8U3%S+2!DxhY#dJ7bK-mL+uj;kAiXj6iOZ%+bCO@z^BQ#;mqIUoo*GVPykvx8 zz7n_t7l|$-Nr69QTXTsdB}B9`V)47{qm006n3FETvm}@)I{ii^L>FjCdmnC$d^c7S zLqJ=|K>#7(&5BMB7R&jV^ehnVOR-=+dy!jGccpbalv-wW#*J{&~sU zk)1WigzTiJ07pYIZsAKWn}aCq37fZ|2=;Fmle#pRXTv6;TT6S+f-Xo|w;aC_DKVzq zklmoiD?4+I`9Z%v5Q;}U+}!u8tuD4q+D{Kbl~UGmeE!Mzkkidl0tZ1WP0;Lv@7iJB z@yGUyxpq*3-j?m{7Z+N!-avp|67V*wXyGuRRgXVNkDC5YDAZbqU4XKb9{@X}#M}RL z3tOGdP7}m!39|JGa;HB){pk;(aZZU&cKqG{W`u*6s3`#WDX4ZbVA6H~)bE|#+_pgB zO6K$jmNj^~afD%8Mv5gv*(#?8vmP@-ZBTmkt7};rKDjTrl4q8A= znp6Wi#2${80(ti?p?63S81P1Z7(UZEZ!?Ev4}6mE)5Bn%h>qn?UUARfTKvA@8P^Ytfg61OP&S%4}I>mK?>4WS-0c0 z0Kl@}%gSnct%D5U2HS5M^S}*upH8V%mA1g7vt$|Vik>tqw-;c zX+i{ubm32rBzLXg;KA}s;ZTB*{n<{V_2Wt7meW{&s#r=Ikp12*Cg-0!SWY|V_^3Yc zn}0k_6fhdJ@WpL2=d6Q54q`)(I%^C&lZ1E$4w_>mTQ7FJD7<&-r$?kX7n%yfa)DP7 z#!98Ft9#40kB#D1z@kv&w^yX!R#-0s*k_yGMY8__g>{mv|JV#?i34cF&^d}wabI0s z1@nWEoc9~O8^!F~r)72U$}8+_PG%qO5BuN57j>kXSe*dwN$U#B?q|97BHogc66qUb zzkiE8a}Z|f0k!+a-L^A-&so4(A^Ha168t|?6aSsCnX}Fz2Fpid1E~Vvf0syZ9*qXC zi#B?EJ*c$4a0^Jk>Dffo0aIfZ(aN{Cx6jQ604z~JdjVNJtH}SXvfE35T&;oAdIinR zrQNXv{~v!k3X^zGnK{=hF9DPfe_DOX)Uj=K+>B=4@C=6)0yF%)Xxi(d&h-QMt(*G= zz<}@*rE*8$mRkgGklFp1oVneM#~-&}MlgI_Bp^oAR(la9AD3^mICfB9sT2ok1R5me z2^5+Mn&~`w0n1yHmFC%}7kFb6%cG4j{02ebyMEfL1w?|5o}SlSgOJDF%kx7uF4!*} zu=Io9Cm34*JRG<71?XLWug@YhD1tnidfp?Nw;!AB*}R#%8@vIo+UPmo{PbuGAn5Q8 zchD4qq4kH#d*)W&7!bKnJhQU0h>^|`7q^JD^1(GRz5Jd{OPFLmxexUR=HE}J!YOWL zgn9zRGEwPj;DBMC?@FBHh}y!u|J=jTfF4m`uu~ASzLOQk@9SiL6hulqoE4LjlKSWh z(0U3GbUwW-$8lc4_MxS!kP|wA%`j$Z<`#`18VBk3K8--SW|UmZ?hc=xP2wRLT zP`RCI(3EK#AYHG8LpC*da>bliKrWhu$Q@>mLcOStT=2j3E+0|!wgiE+Oqc<}eq~166O}gva)*XEVT6Ge3GPoB>g7 z!+ek#Xl3_0uItJAIOq1=LI1yTb)y-qX10%XrPfkT#N>{@`AK@r>>Y<)9p!u z7NJ$Z3!c0`>%jS{080rZsB~d#d?f4nA{hNFi1xPMuZ4%BLXJsIYhnowm-~m%f*}W> zBf^&l!qp!S2BdCY_J*DJz6XO4cb^IdO~Zr-uf{!EO;TF`lY>inXN$wU6mI)7>t1cy z9vWgftryUBJzgIFhro(@w|x8gUr$EROAV}WcPGK!-7UB~EFln*put^(ySoQ>*Tvo47haxE)%U-6f7+_u zovxX4?!A5b^zHejq9l!qM1%wY0IICaXEgwT)&T&h7)0pzZy?&gCIEl}ko_#K;hla0 z_DDCFgYaHVB)F{TdM%XwgUkJlNYzc*goA{G#9XH%Po5oW94ax@fI~lxcMpq2Q9(Q* z#iQ$$0bX)xcH4b4=V@57=aGnc>@a>b-#g>iwmRRb-B0(Mu*CTSMHzyDRlIoai-1TO z5_66PNBREoQ%YP0k&-G`6$48G@s|xwNC<|+N234#)Bi`~|6)VbUa9c<7i}gTJv}=C z%F@yjzM=b6Dz}}IJo6V-JZ3#E(CbT66JNbvMq;Apb|mlFa{ciNf7Cfj9^J54JNkP( zDXCdo@2B&-F)%XjPh^R@?hM}D-F*qiTe5F3etTL_7QUUOpKrNe^UDgj(+%(A2za`| z{3La<*6z1dW0_0$`n>+uvH62|eDE>@6X`u>$;(PBJM{9^n2kGLHn3X3A`Z)30C~X8 zRPn4{yDxXpRGze#mlrux!`GRDhX?P>{o~`~&d|I^N0smx42i&^mX;PQZ0z%v;|hEu z@6C%{4-b##=4Q9O(Z{FbO68XMU^wKChpljKyLp8Sf!hl+(A)F+fB*J7Yu-<>&g7qi z@s8!6<4!L^fd3^#^oi>Ij!G_^!4ZU<@Jtg!L$We5i!C0<#j_0Dkm@3 z69_80x<0=J-yq`urJSe+92{I_=j)TMbq2SI4;w+<$|*y_k%n!3UERO_{+g4n&)?oEyn-+!24&@xl{*g$(xQxBm+dM;C32i+PXF4$eHYJA@^WX-n?e-B z2#Et9pOYdcdX;al))W;Vrts5YRBzFg#nvkVUn>2?MN zn3`@LmT)_+@~PrPcTj_NhZ6v)2m+Vit*ByCnTMe7x&OPUig(R>dzi73L^SZ_JxqVt zf|qWz*6uC`4o6Xy<7x59Tp}Txc*Wqd>`Za#uqXLN9KEwa}nOt)ALUD z1?Zu-@^?iO`^S_Zm zlEC^^w_l+J+q(LiFx#%=dBV?pyyM1-XD2GmT>8->In(#3`1!mO^b;E4ElgAhG0Ygb ztHyG~=$($MtE;uOwW6XT**F@o+k|kf)tCTjtFpMvAYl%f3sjm8iO%Kzxvw-LCCo3U zj6;eYCju(OuU3RtpZ=Ag9@U;9mIWdOsWcz7u8~R%-oID*xC`(?*u zwWFsUPRQ)gQJDe@4LqRJaDQkWR$H=T4eGlf0dgu(gC-}@D5_d{bQYeN$pA_Vf(}~4 zJe-i7)|}2A-KDvqRIIM5-;L5o6~@=wqED{sIf7p3;~(=wMO(s;PA-(n$PZ`o~IYc-nv3v zUn>YRNfjM|^r=)kbZkN`S)y~Fz+jZ=h*mv0oWsPBo^CeQw0{T!EzygjzWj3;(w09x zPk%g(MSM^8LHd*`Q<_pUDA*NO5QF)`s42I>L;d6- zdMDy7Y%l9Woeog;1DVSY9=!E>9JWFg*>S2@JmK?zrRmENlv!v@wnv2c3l=AY%2jtS za&CwEvKo&K!w(Fe@DF@Yj;kEuifph|^8mUy08hheGO_XU4_}ext=1B3B!)PL?9jYvrH9z1_$B3W+E7oAc$WqCUYf_T(Fc?$L! z@dlYVgt<*6I#(YMUh=Z8nlF^S$u{$uq54itt%#|0M4(N9^F(ux8< z9z=eTxBXSZwcN9wZ*D)o2gjs)?v*;4=H+_8{kHIW#iF z;pXq}5}d)43QM|4^qbrqZtX|u0^1KF0v_+t0-k{=2qH`VcykJswL z)|FmG?T*~bxsB&;#wex`fe-NRx9fJ*J9;adqSf&Pa&O5EXFU+wSHhRBB3hANn=&A~ z0UD8|^+0fq5{sPsaD{6*a521+9uGYs&=n*0up5qKJ0}Q17I}@_?iU$6 zuRjItLg~VnH(@uBZYBoke4=zFh6(+`+zi;YqvoR(zCNCAnd7o$@G64FbZkgd8f_{wRg742tQk~g8B&i9CnNH}guldYsQFqR!FWi) zryVU}4WUWO0qi2ruGqbR*fWu6P|s>McU-AHO$aBe9vW2D+q#a|6=g@40JHy z0|W5-6I%^49er`V)(U%Sv{h3+uV1_Z7oPtoyB}YtGrUCYA`-x0HS2m6_OfFUv%P|w zz`4ZdS#OVEt&5{sUr-fzzx?3Xzwq^-hd(JzZT|pjRHvv4VQX}W;r0|iZ+fZCA5Kj9 z`|1KsG!X*OmI`HJcN8tD*4+-#zT`aB^Ai^0uJ7L+rHVsf8w{6n3c>F`k+ z>ZhS_&OF*c8aaCBM@mt|v&so~jMVXbiU^bvm*<^3{QSF4bVCKDjT& z!Td<1ve$(V4(!{P^d)@l^jW8dhgYYkhmTFZKYQHPm7zD5_GD9vIOwo~if$wwT05kQ zUGi*j`*LNOf*w%t#F`!-qK%P(5}x1M>%-BRgV5d^g^>2}S|{~rp(F$qfzUakPPTp0{_cI+~?F?#-MueN1GpqQja8h_;$ z^h5yaSlxI#_W91NJ*M5w<+=KNO6sV9GNXmtim9yY!=I{GR09NcILU{45`ZIY!R zm<(@%Jzy#g6f^&lxo0JTew6VO0ef^`$o>Aw?A$p#B_web7+XNaa4o=6_*%Rb{iSJn z3x|AFox>oP8F!ljW+AR)7?w)-9#gQIo+PvE_=G!`KT@5_VxJMPO+?mwyEMG65@3mhnq10eLlMvl8}6?i`Z~H-@5*;w zXT&f39cpsk_W(yx_B6Wju0ax6yHaCZ`0eMS;IdC`w9l8(Y6FO-K@S}+AbYT`H955o zds2c3Riux#dfnMg?$*r~)}ebSsu-S$*M9xu6AMCQXG0ek<+tc5=nX|%AXooFTX2!2c20MaIHsf>=FG-9I&;B@apHt?+jd1e0QP*90Va2m@G>XQ83n!npiry|8iddxU&u0THJ_w2+ zCPZ2RR0V8653QA7samTNG+RdmR7~P(=MUaQlOv6SrVyWJC#)d5z&;OmK+Lu~M`ZMj z1x{=%5Ke4J2(2rVHUBTW!Ko3U*sDKoP=`{!X%dRb$^ur9=6SkvFMIkQ8Eza1hmz$c z&}0`3oCrcljhoX%M9gN{HhV&n38w&sKB=`H7!1;nL5lkhP$~~YxG}guCi7`Ih-}_{ z)8F2G6sB?5k+pPT*a%d#%eOF_TnWL&&zip z7Na}3s)ssfhxGSz9czL%k15ESjBDtSBT1N`b|-k2CgsT99@cb!K8!%SHC*)Qc4oVT z+L2^UKQVyXckO%Ixd#g4 ziHhVC5n-b0&Zmy=F50+ZzL0_sL(4*pb{g^(6u^ppYewl0kBQts|C9p0%JazRA1nog z>_!Rt!_)v;W`|#vNC3RsW<@haej5ajH21RgVuDcYPD{P&gjXG zj=Vfb`Kzx`TpTpOYzV|83;;GosvO}20I3JWy3)){4?H+ws#UJ7#>>wEd4ksc9WvwaK=HuNt17MMzdbrk2W;ZzH0C3x1yi z+1`0pY5Etcu*H3`@LTgf!^ZG-Fx0=FYH5i~2QrJ%$Fu-Gc{%S4tL<@q9irr4+#2Z! zx#mXDU$5rw1Pgyo=se^2Ld^jz-;Gccas*Xa<#+cRq_c`c1zp`gq0qc9 zcCz0q6mx;7cJC0NiqL|Z{9Mh)MAX?M zktHMkkZ09&W>{=lT6N02&~b?I$Mr;e z?Zn+-RfSdCH7ex5r;Vy-o(@LmEmBRb1o$au@{dB`c;~?gvuo7;F{57LQig^l6N=*Z zVvP)m;V1xkq#bhRq65^npTbZU?9~er*s{uEp_r1#pxF@Om2H#1nqPKXf6wYi7n*SL zDSvB=<}Vaw&69Q^UgN*9lxa3V&9-&1>2>Ar;wTm6+w$XhrVQ9L(7cjavy1akMFE^D zp|dSZ5lyxf?#?u5gQf+U3HOho{C#AtHxqu8`LsB*KtJ67yj#`Z24*{4ZPd;q1UaUi z6n7Q<2QiVBBrCvY0r#XJ&+{A632f3p2Tv4WK0DFio0x;sz)Weh{*>l->CBK( z)@d{=N#n~D*QW_ot;t)#9j-hIDr==1VRR07$s*s*`(sw>eRiiOw0+~MrJU&N)PVum z6@P%iNnkUqEn37lflXGJ;;m#}UNG@z6wBjX>tpY=a#@ly#Y-ZKRzE&eSm=7e*l_$u zz~->8?h*yafX{^4KS`}0*4?iGPFAA5`*i|1(pX5Y{{_Bs!gWmq`h6Ch4p@xmaQuX9 zQYvj}iwLb#t){wLlmuBCC{AYA{wg)94JAW5219@mSrB>&)rxcQr?nBD2>(Wv3Hu9eYt4_Go}Kx2!?FeK zc<{4EY4bS+U;yfkI01cdR(jW8-;i{=_YxHF=l+%ZH=R#o-6LZwsWGaD@rw&&tFvWP z)xfXbpY08>c>4E4FW;LACg^KYo?H`i_`e>Th#_l|me-48yMcc~4>zL&^1HQ2$z^mv z5R&c(AY0XRh-QZdI*2~SrI8U(&{fFRh010z3k`7fBM1H(ERs8c8(y(nYmfj>uAU_Z zQQvJ$^Dy+bTm{knNpDkGm$zdFMVThO%38Kevc8#8z-EyllKyaFc{zi_P2Bsf>S#d; z__SAwHqlqlI9HuF3(Q*aOn!nnSR>MbT(4cS=EGFQA8F9=EHXkBy_icM@58*Y$hI+X z+S(duV5*C_U0;Yk7Wr64v4+i!$PL~jyo;o>-F8sqaoX#*nhNcP^i?@W|MizWi3Oid zUYzt&mJv)zXyC-)W5;vrM#SOhSfg9@B}z~W5w&3~);0kUpeZLu0?al_s+wFd61o7B zlW+k4)VsehY112s9-B)D!x>?f?O(-E#y4jlgT@9>)(63OJ#wUmk@<+}{$k97|c~qZ(rm zlf)FO(th$)d&A|TZ``8+Czs100oBSjKGn+|W!p`ip=G>Ie^#O1Gs+O^xiw9g`1l7M z$@Mic)XghoY`Y>c#t9dWlHUOZIqRb1t(CL6FLs@#PmxzHkYB!PcT5e&W}W(OR)#v% zRk0a%LlhlW#JD0V()zP1)Z}tRHJ+{jTmJW{DbReqd!AU~iw`PUDmR6r_GD0ra&0y11ek|4~r zPri!1{^opz*s6Kn14@`(ui)SMBhZ6}+0Ylm;O+b?J+u~ncFx@0>%j8E}Bm}<%yH&4_oPUks;DZU%S@w8|E{D@O}uxJE+Ub z&sX}=uQlQ=uRZQy>&O#*%~*H+C%%=emBRLVGy3tW`y>(-eY%~ z_CCrgdHMJrP#=(nQ+MUqj1$@!bz&#}eaWlP{kl>ZF>Z>Lr@DfsE&~-q6xqT83<^$i z*d2v_`b}7>Juj%T0`Em$fX4}Lmovjr*MJAmMJm&^VJqSlZR6A@%(XjM?Ia%bEDDcz zrbM?P;n9c^P8DO^$y*4Q$L`io zH_bI8Y7Z&|F>5Q|&tziHYHtVZNI}cxHHZDl+46Uu!wzY%D|+kQ{kdZnHy-l9{M&pE zD;L!m4`M)Uy~YUfl33$xZC~T1wL?FN;o-~@Wta`iyqlC#RVc}d@BnJxA3Iir$$L%p zYiwG!GP_if9@k4)t;)nzsGN$CyNSvlbY;Z)1@sIX>Tx>l70-V(nViFfifT{`|bjrcWPZ73{ zuV0O@kGoNK)dtukx+~er}TAky4n3=Z8jwB z_h&!0*B=t&UEu-Z#`%yC2~4pU;p;g!79Jo99iCi)!GB+9E%$Cg;5+l#e5a#mOP8*bl~nYc-_iH> zw1C*rzDx(4fSN*{s^`Xm&ceX%xc;<)utX3|7y>jTaCCM^5g{|R&J|w@hi#tj0mg>c zRSLWR1Sz0}+>-xixEZjxwe%)Ty~dUX6@xWqL2LH-zItwe`(Xa;6o^p=nAmAW(3ce| z!dETyK+$>L@xq?Y%uSVsw&+pkg)D&-qJAL%UoU{gGlOUr)Ww6}M(o3zR|f1xo)L49 zY&9iN0Hdf@ND9pUVgj_^#j(g7Vzzm)aa`fr<$9McC`yZ%z$t0=LNoiq{?3H%h~?*< zryQ^qo8ZjpGNpJ|voe;le{43Q0rccNXt@vr^}ht4>*Jk2LO)QHzpaTU{33spP-;qf zP@GbkXh8~ZW_$iD$$pyOs*@owJ4MUoe)nQG3LN#>V0$tClu73Dp(t~*R(iB9E6eyZ%o3N+1+c(g+pSiK-t>1AA zKTia=p#tk`AXEMU>K(r$52gk=RV|AYD2h*LjCW>t-tb-W?+bQ$0@;4S5gb5ywYNf- zl2$L}hlpifbo-SSSx`4LuoXrLFka8fNxtDu6Kf5MLh_#SL39g7z1|$Nz_KX%C{a0J zL*Ve!a2L*m*R4m#aNEuZjN{OYM}I7Y8ni0K8r1#_Md3w-oXx&MFms5E4%^~~1GF~w zxXQ+F#Lh|e&(JqIq2OhXLEEsPpBl`IPI})tp=9iKPs`7(DLv-rDgm1+FE3l4td8Mh zK=SUlcG7ikzl}(+1FO#~#9wvz6O)l^Ep@?--a7Z&VSQkaZvvk(=j^B&K?epAZ`-|P zQlC6mfS;s>K=8BOOPUu7NI!%mDmVruoIzNb_jo#Pu(QdJrCwNY7Tf2CGaGc;>Y z!NY=p$iuG=>HOc=lJJb2(;uO2iq!)HQ-FxUi#oxEh>=Y$f2$YS+~6=H@VD_gzz zCc1)rBf^BS**eB3k%$qg65M*jL1pM5YR7_7y%ddqfAgV&q(b)-H_O-~jK=^O+oS|H zpLe}ERLipUo&&#{g@PcJNXYB6^_>J8)Vu9ux0W9$fga_EGxUJRFhe-?dTIC=o+tzr zLrR!Q<#~WkBP_LiIVcsm{s&Qm%m?hbC;!Mo{nr;y>tUI|M{=RKvswJnnSWW<&>N?* zb!R5=SkRN{80FKo6 zV@xr-Ot`9lyy9OnlZfSt@vc$PMo2rYXZ03FKrxW-qVNGKF82n*Dee;CW3T-mCQ$e{ zBUcY(rS@5}-V4L|CC`-TU|u=`Vk5NluADFO^_*vd8Vy$)d*1l zu=CT&`>@^Gr-KZf6l<%^Dg?s;4Em~g3vX<>Ei4-Drv7Bu7JpI@0lP-}dg!=P?cqIF zU|Ar377MS-_%$ygV|=gv_nnU(AS(|ORqC#K{$zuUi_(|*=4L&Hjf=yZ9+`en>Rr+(M9+ZB;9+a)FH zS)0swJ1AF7j_;cHSCM>yjXVdA_)Qu36s*EOsz>h?!4??_ew*P2XxjeR(a-oDf4>{c zgeW(l8eS&$C05AMo5B``n@R1A{{p|c9zRE2`=G(q5h)c94I4mr~|$*IWTDF4g8>jJmHLWi;Ay~?2&Jx9 zUW;ty#+2^UhpR8PyPV<{7Y32Owm)FA>9w;|k6}!(EH=CRZN)R;Ofm;y4#+HBI+qZ- z{PVaAhv2$q3Kykxn*!GQ%dvvukH^~QJ_g~iFPd>f)2TeJ^7w3voR$$%0+CkXrw)FA z{Vwe{NERH6Q5>GA5pwpEXvOMR1J~Sx!}w!NV)5WTt%dp&IYCbjBSg(ZpQNK~Rp`mWRgZ}VQ$<9=dC;T=+;R@EHi_+;WtTFHq)2&#jPNtHZqd>N~1 z8ctx?P{9gsdy(prDWX<0YBy(0H#JtQs9fq#1-DiC?J#Bj8He2_J{n->sv!SLIT1LI zb&x=u_#|I3qgYf2b#cgFslKE!l*y@kI9Ceg{ccMtu24a|4OjLiBbpC1?ApMt#|0Qc z@xMyuuT(}qXHZIS7onC1WIMe`CI)kfW0NtR#6nOOYS?iict0oEYWViAP?>_+ zf%gd@as{1|C-nCT2E|t%GQ?yjbNO~^6P#$NKYzI~?P2Pzb=9+a4qC+(PdcxDR%l^p z-v*lsW9`_K{ZM|`W%AHMDb<#*5UVQi<7@V2x&$@hi<#`_aI!Tu(&%V{rWvU)-*;fs z;g@^dfp3sr$U569Y&=9QduirnVOwFI`>Y%~A;s(D;^Y~UGgYRKr$0@5DV{XlZj400 z4HdRp%UgHEJKoFqdP=G&MK+_8N1(Vk_Vu4~`;|d^{VIqJx{+_`gu_!Q4d^-xHjbXf z*vbRM5}~piU|OG@yK!h<>UtJ<%|>mc%;UBTUBSeE+m~#CCqqi0`WMOsopFCkZW`p( zX9{pPUWQ7>X}&F~`{$+i!h}rG5f7u%j1RnQH25=&L98`uwva{na{aSDbR{45L}@Yr zQdzW?Z6&tR%LmtZM%kC1BY+-n=zBQIm=ZU#PqCZXr!biCRF{w6p>|`cr|cuyC*4L| zdHpy^YbV6UQ2N|DJbI`L3M0T~EJ7JAWk&^mpZ!Fm-FoKd4g5`_HyBYmap?|87eJD5-J>!{!1nTKI6xc@ zEZ(oBd9Iny8Hx5Q4KgKEj(od7gmoSvx^r|oKKzsVf z+Ou^Z_sgZ}T`+3vLrY<+8y9*DdAk*J?E8w8vS^S*5^%nV18h(^Fp<;q&g-^J0M!8d zt;6uVXS$!rfQ!xA$NK$CAl8@4r$I^=&mhr8foU)9uBCN6YPtf08el{5>?4G7 zKf!@YmO3WN|J(3ZI_%A*Om`m9O4UKPh?cFFgxK{eiyyS=LzJa>w)&CE0Q0yE*FFs< zj^$6QMO>x&sM4L6ZLZzhengrnyh`#ULe~oQGp@+rs#D_cGHg2Xb?KRxjp1wMXzaqv zYJcIr&nuHyE)=zqsy#x4sVk!p-I1n-Bt~c}t^}j6AITkV(x?k0dQ*RWkD%Ct*!>U? zpE&ZV=3RV^29MXD(zdt)DV1*;t_V8qdY%Zu9$+vli{P&W4A)%GdYkbJypic(Y1Y3K zFV(V7V{K8Q0X`40>9n*&(gP2r86Niz0*wDIQ-%M+o3gJNVVBXwY?u@? z;e+q9z1?+<5~P_=pE?Hyu)_I(wNw=qGc4C7j0qNWysYwd^lTm+O`P)vetsZV^Z5La zgZ}r(@OHRP*#@WU!VD+G#eZuKucL6jp!ZcJb&Sim?sevdGZUo!>JFu9KXnSjJ*SbjI+B&{`rrc??R-YRzyS?|fUj4AuGvD}wUimSBC308{+v?jku8SHXprvM2 zMLK%-%I%?vt}4R93;Fi6qVHJQ1~eE=@UEFMZt{!gOKIu8#n?THOgt^e>GWb?5_n1* z#xDP>OF$;m{S4NKRY9JHLXnrhu)rXPg`Lm?#8|$ZQ+uA6SBqP}-SV~LiUYT# zkA#=pz`tMAU-$Y=qGzk{hW66{L}9aaPvd@n!(JpCiL(Y)!^h4Emy-*eQOy?y^NB*k zjvxk0({yuH{rNBO#)Wjl242m^vAVq>I(FK``XpnA$#?MI%}WJEIK8XBHQjbsoCsnu z_30@MJPAq|N3Qc8ewR@HlQ~mOnzeFWIqm5_;Ho#iep30|nYyOgF8LOv=E%yHsORx$ zr8RKNe9ou!5qdDtwuWV)=g4Qm=v(wctw6#KqI+jUZ~be?01h_Dty$ocmg|$wcda{k z05OthMKl_O9(coyJewkWr;YzXF=K#P;Uo4tMZ&RxoYCB0Lw(au=jwYa6YfVp|FAAS zU*kI)gFe>DGcWY|`Ci)I8T-f>>Bqk|h=lf-#<+~0$^Xt5HKxO}1rSJDInQ}2lCYt= zCupeOIBd5-ukNU3nN(e2v?~$$(4lnf#?a!sX(FkTFU1E}ZuJ1Yp##`d)7KkW4O78) z?VZY{{Yw|lLQtvJ<6xbHnzX<3qOxOv{0PxX(#t0>Us3^990Y)QXk4HkBi08GxDg7v z4bOv~+8&!y%oGkNp26K$s`Qb|on&lcSnYSa`a5nU*|4^L;HJ&z#KS$?x<=w99($U$Rug7^lGc_oqnkv}zqE*}^e<-gHvahq%44<7`-f!N($r10 z-9R2#{WSw?cmksZ_T=l@Ymr0G2w|dG`9_TINc&xT&Vz1Z5qrN_p~|C7ElqE_r=LLK zc1!0$#nV{F)?2y*(=VhtZ$=h_fU)fa%%B+mLKeVeq<$bhe8-ymm!Rk$^8p*QyHK*1DMr$Qi8lrfe`ci?%`}1E_cy~GHV)f0 z8!fa3yh0_8tDh#CGZzjBwJWF1tmA&`Xg8__#YlxYBl$kZ|H+I|p7vcg%C7k|0niY8u$XbD0?2ooXf7n}wU+t^ z{AT|HdC5Dhrk6I5B<7}nOmC{(Cb2G`xW}4og9B$XDnNRyctGN%7-JBhACQA9- z^YLj8atxnTIQLIXUQ1O#(oEK;_f%OeLUq0exG);09<6N-CgasOT}egqdQ~9f7{e!g z!?hS+r}TZ%Gj6qKnhksUM^Jm5HX_&`$f5UvKBq(Fv1|;u0+AUzD+?8xizCYEWT4x4ceW@bzOyei_+#F_tvb&yv{=4+sZvrcYJ+`{o*B}Vbb^l8_QmNdia6XbZyMd2(3lsGDM!iVtYJcl3EC3m#QvOmoH_gaszdg`B z)j9te*Y2fkYMmuyJ7%VaH0$=HxsvC-qva+m{{x#~XT|!P%G@BUwf3l>ySUulMC_Ke z?r`P7n?BX)-iXy zBRA2%EmT8$fB4~>Z?ua-UFG!Vnkl;U28L9pNHDL2x?vS>D>PbdQ^lk>T%DPOd@meN8dk z$>+SH84jz;6IaIi+bYXzY>n8de*ng+TtJ?g{1$bqkS{cGVEVasYxC%zvV|N(aahQ2 z$vmFOnfeMe+fkGO@f*gp&MkH854hAi~8hT4^l7MaR<9$W=%6Ky>3e2ry7cBaPB?#*J5#wfzP~LO-gCD* z1SOLNPQ47Wul$j$9i=yk{81DxCCegeHz{)#q~dh!8~8X>9vNf)-j+qnw3qs8dCP*D z!c(OAGaA_&%fo6RErGPuNZ{8AOGb-LzUzF{pJIUa=|t?8n^WwL=B>%koOy5QSehlc zC(}>I#McGIj*!W^0OFD3buRCkZrNUA(gjvzcqpy!JRUcH5x7s z*i^>(Vcm)se*7TU%0TnwzyT`{YVeN2dZ*!aCWdW-0*>EiPNHkMd1rsCLiCVk_v*vf z2q|*c&y3=gO!1fVJk&e*X^mgQw{p}NB~;>Ao;!6dQbm86N|Y%vH~UK%(((;)P2&{R zq!bj?5|LFXt!El}#2Ojfqk25o`-1LmDUan6XI#MHt&hPPajPZcky~~4*^)(|74k+l z=@Vovqf73f59IMWQiL$1Jbi{gEc$$4*}#g2L1;*OmmFRQ(M@oSo)i`Mfry7xn^a80wm zcd;59e{)E*j8Ju#Eq^<#D?ecs+W#K!5PiFNPd1e$a@xzJG_XAHbN^C|-L;Be=91sW z`S-)(U#E&gP~r>m^KEA8{Q z$7d8eO`uz9nU0pfJW^uuw=n2WHfPWFKS$zHwcgZWg52Z+$nSxQhuqmGGezTe9M|FT zw$H#BDVcM`f%efIzHJlBxb20;VnT>ncmGc_&#GzWdI$Kd;DhIl2lPB;Yco8KRN)9E z+Q!PzDrwF9Hr;JFR3ZSTnRT-GQ$9$2QwrLQ1LzOx`BRh+f)T6Rz0MRjHw! zp24v`=?GEuD{8-ykx6R&U)Ctp+b0Anv(Ybb@2&B*0!DSutww8`%g#NGY-G%~-E<>; z=6^-Vf%(616n@VWar4HVZb!$of8N{VQMCKz7s8fFzm+IG`_bNA%;n`n%tBn^=UNA* zUK-nVMU~ZcAM!pqs~`{u6Fb_d;q0c1>iw>q5+wR!Ei==w+6bADo^8L91^;8zY)gH7 zYBqUM$Y_+#6jt4uTddVXDl~C+Gg;0za7#F8_!N_yTJeF$SCTK9MVwiwkTh**Z1ZlIiGBpQwsh9+su#O1RFYL?ddK!?u66&UaZuF_w;6 zG{0kh1qZ>HMsg@0ld=2NaD&szs$r(9Dpmz60cL4SQs@$FFe{$5mj8^zi3N39X^jGq9Cn zx1%oaM{yeu_!4{4i88|R6v@Fx(+oqeAB}v}%b@pzLOn7rY|#2y>$KrD&9i)a>YgJ7Yd2(BVRoAw5x}xO(Ivx4DZd~yhH)V#ng!R$s9a;~5E9vqtjwN$SOm3AW zO3e}zB};3DQuFpE8tG9Ed_ri{stb=Nn9+*!|Lo*NQ(HWac!5~QQN<_OiUSO^{v4Kp zk1Zhq+JSHs$A>A)Cv-!fG>k!`-F?m<&sr@^h~0yVu9400qAWZZrZ&+vmfZ6=p=Q@F z<|pfwlKwqUXi_H=CVqXLL$J0A-+BJ=?$A-fd}M2L9!{-Z)9W-3FWt-vdm45n8|Hj> z=ZtDkH)4CGVbNLAuMFBeLRuV}D>q@hjKN)DevtAZgLbW>D;M_W^j7uxde}naUTvnN zmMOYsQs+{(iDi0Hp{J9=bjSq*t7?qFj6IDa`Hh&)^SRn^>^4i+rA|H!CGt?xx6c^ zzK6tf6UC1UHzXwvtb#gyA_i((;*L0k{ zk5%HV6hUXM)dMTeD=U(3WSZ4od_V8E-Xi|#LPySs@Pq8v zH{-Mb2i73MEGzxr^}@Ryy~M%z{u#EzTFt}~VP0WTPj<`W&-y);S?5*$kW2&D=7vH& zdxzbmHIvqTR8sxy5572weVJc^zy6(1ALjp}$a3!5!01*mOkSp5NIPVLp(NgHn9Qy2 z;>oxx{6xjFSf@g|j7BZJ( zMwD^cFUoFPzU4NQ+kHJh5m{SEWTmXy_Ifsu6&ZL?+1611T>b9fT!d{@7_ukzJ?dd= zsD;wdR-FA#dXL^;E$)A<4cj+Q4A^ZNgdx=+W%YTt{Uao^^bsQ8wbI|6ZmBe^*B)jMzbKb4$zHJbX=Kmm^aeZKl^d zh)Yx`640^#x2t6lsakA5Aku8agR9d{nxN*2X(ww59*gD9@MvHx zp~|$}Jc>#1PUw_AEJOTt3GWd_X@YHN7(r`-MfF`ke4)`WKH~A4Rpsf>+ac>qX%&Q- z=1idY%wdUpb!7u>AZaeVwFbRocY0hsvYq%hm6szPk1&*&pl5|u51ia2eofyKKA7Zs z&^QDvxSG{Qe0^}Oc6z1KIKk%EAh-Ilq;p%krAN#;Cut^yBTMdq!wdY}A-uG7pNX5jApKtb#W-waceRy7X z+f9$JL=TWCwGpvnk!vRR`4=T&c_{JniCFv^6R~|&H$hy@g(wepoT;|JlttrGFSAL2 z><3;_>n&EhUPgwGEZW=KBUuA$%x;%LC&O4%4o6Y;GX-%p<-8TcqDyJ{AhGm}<_GP% zDrBH5JD7Fi0EK}rM~AW^giAf^>St508P6dAbYXtfa;+bP!xhM*%S8Z?B&iOcnuM&X zkP|KvyWPaj*Q+m`8Fw1@gj*Spy59=hZWo!?p7*?iv?MGk}yuQ9x8YdCbm2kbEJ4PkqqCnglilg=P z^el+hU`P<7ppd=p)uvU>{O@Qzw?hU0q=Zf>29JmP14s5EGLs~-lF2mT)y7t*q{sf-y3YlkdVs-2Rqk4m^e zMtW%F-g7Xt+C{wFmYS0(TMg5A{fNdB=E~=(c{cCQq>5BNW!bwRx_S8e=4^`zB@wFr z(`q+Qs?N#JKQ<@S1eH7tZ({#Ck^}jWumJE(EY4HF?1$>fn&P+NJOLks;2m^GM+SYEoj>agYct_*G}dvC3cU_hfp+bzAT` z5gH){B0|nG)9B+nFTh)4NQ=J~zpYX=kq8C41F59LKgke7fWTJHgEATpsz(I$&HSE; ziHj5`@ z+|6aPtVH;&d;%Y;F0*rNV~(`2Q3}_h=}(7dg{LsgWv5J7AGkiOG%~p|ir&@}UcYLX zlA^yN;JYuL$adqB6&gC9oq7-w+zty%S0+lD2-4m6BVde9zUY;i4b_>@Zrg_T3+h(! z_x4F+g6OtriIM%#y}O*Yw(D&VhwsuXr#F#+u5ScOJj$fYn-TvOD(=a8FebTYM)%Il z=V8xhZ^og}s<>a$g;zoRMWYg9_bGqzI`Oz|Is~%@xG<_MYglxIrd*cdkHcqv#~!Py z>E0K5aBnM!`Uu9sC9*qyUkH0L|Hk=J>VXaCYOu!Pa2{FswQ>u&>NzZl-Q#*s1VVJ9 zsHaU?LasnI!?x#W*eB2{wY0gM9GmQ1O?!g{(}H7EoXVJY+$0HI^ZlFOwO@)Nv(r*# zjYseEbs1($ZFK=O2EK9_RZPhYW*{Ugba|3Yo9EdY9*5;*7LU`_-=Uv*j_WNB10kPk zje74N9)fBu@yp57i<(fEVT0eJpfTqxZIW4T7I-uhBJx)^wHijy$Dm}7zeG|%)zX1y=7z4KAa zQ`f}JK!Orj+R!SYL&waAp@{wt-P9^~@t4f$xn-CxRti%oQr}?OGt^KEk4S^Y)#nNQ z2dKt1a%e*+0;&rDS=rmUQc7KqD}~LBQVOAJil;~luTL^l7JQYifrb;dY-s(f$95;U zvGGUe4*?G|O~=N<40sSzi=|&1IyWU(ooL6=b}2DjSkePM&6N<&4;3s+RipH^x=YOe zN(KJo&eUg9&(^Mc15s0N?W8>=YveYX$C5U1^~z_xGQn}y(!=L!hfMs~XJshh?HO{~um?5sks%8}~ zVn?@*5`)ydx=y}3_%InjftlE*h54qhE;C!u&FWs=Nv>+fPlN#Eu=w5x;mSVfqJ*cy z!x|I^zg=|LP--M1K=xH3g=@_e`9 zG&j#PspshycV}_IDQ4A{PK=Kh2tdSeK(wn5%n1(ev&*AJ5C3z<-XE9s3^UyGX}kq& zD9~;u32i&O-}@SUhPgB959y1lgUU|=u(B*Y?&)YI@HJuANOY%1ZADyZ8;5nJ4l=Y>11 zhfF3kWo<8=cP}x^OWDNW^B9uMdvA>+_ndI@yk0!AshKJK-sqHWn5!~l%Jo^?XWhPBcRR5eeOgqt452tT&_N{y886~_ClXhVc6~Ku-=lxVHGDz z>dmq|FaG7`9GdV{dary-5mGjzrm9^9u>Rm>{HW1Lin)S>o-cb%R&)VWoC=}?1WX3* zvww9DXUzOLLpF+u{;Yox?oz*3ZG){j>lB=$UOY>Ytne)3Vy5>QXp6l=oYGv{8oq+Ui8CRur*y|V*k&5bg+1d#T|{?`LYZZMz3_dA%nTJ z)AEwka;=lv7TbL5YJc7X_o{TZkHg$JxJFhcH*;22+Ln3ZhIiMyB&0iL?QHbW#&+EG zLyqJwF3*+Am{Wdn^UBoIyQW(s4NXw)!ITDYemT`5CK)5~5btTE0pN$v$p2ncFgrm2 zj_b_X%Ldoj0R|lm;MMM`{o&Zgog!f}!`;o&SPF6 zXg2M+P?J8rtP~w~eCMlH=q+G}1GHVF$24SI6R^0o=6;vkZ78DwzOeN8#)m_09<-YB zUm^Qs?2h#Awh-Z$HK7s<`8EZ8yxVj8f#<}44I-s_yIlR1L8}TC9(p8>$ZoBP4(JMe z<7Z_>1;UW<<~zNdz+;rYwmLEybZAhb6A5@SGBQ>@|3CZ1LFb(+(tFgxY3@vr8>^dj z6W{X6Trqx}l^_rX=QG99BB#`|=(=vZ9yWJ$4j?!kthVmh-FVEDraXRV6$ca5F3w>m z+0ama5{TADKDn?-zf&%eu?h*D^R{G zbB$>KStLvp)~4m;CTB4?wqX0>MvGO@`U!Q>YLCQU@(OB^Ej05mT5G$CPDkK7+6GFq zO>w*M$|CWiFMCRF`8A1#hiJ}CnL7c{*EN&$DX~Nk9+*rGZ{mTw3d_+vjoynFq~3PW z@5NN&r`;691wwwbRw~u3{M0zDS@q|@$GDE}lIYAB#LH!_cwyl+5d#u>&&raI5N-MuRCAZgzymloNgEDl3R3z%3f1E_w^S+_i=&!qT{G0<_(b|#L88P`b?7#(! zH7S@$>@tx@_Dd}uM>xl6!)R?stBzXUtMP)M7K_Qhqv9tErfbU5gsK<*`6s3BNsFr# z{MeMghDk5MCGBvAAUDziPv(u5Ip1SwMe;)4<{{D$pzo+d{_Y~}=ajU=gGxI^#bdoD zV%0RowPKkrS*3i_fr5l(w8Prh-3;Vj(RS|RECK+;V~m%QX77wFwQ&DsnLu&hgP@YP zyC{hQfjskyB1_#h(m*atu-%{D)aa?x$F*?tCunxbTnm~;SzA$r-Pl}cnX8nRHmk)-N!sa<*I}x z-e__vbMXw?va7!qkCopgMp}33#x!HE-&23kugXRys5t3R1_Ixjh;e6tId<;(ElBm%D0GopC+E1!l+ z8C}h0Z?`$}Sx9lo0}4jF5aGe=xn0+AT7qt<(SLSr-@eyI=p9j!KMG@&6cq|MH?Ez4 z18D!-8mt-*&!7wh(?I31->AUjD1C%)vHF-amSm2V%8?xapgd-Hzd=>r2%S}5RV{Zm z&%GdH@ftjoz2`uEcp+1r$XtdqO7cRkl5k*xbsfD=inR$}S^|uA@*8fvCgtpV@rG|* zRfW8D>;9SFS4aS)yu=3$f#d5o1d5dwZ>}4+TE6AKN@$>h7d(jm-NOJSSpnnPU&q-7 zJ*|s2pirg|5NC$32D8<1y3JCJGashGW&rZ-R%(8dNJ&ZpecgWhQnhCr?HquA8xbc7 z$r?pf^JA6cXWxMH`d0I7-NFztYzIvIY!9{^ob- zW5&%KN2(qPs8+5qk-S6?N-AeXR%S~fpyvP97udh|zcY~b)DkS)fmqsB+(t_nyZ5A!RYrF4Y09O3T1tCLlH)jOX@eRh5 z-lx)6=1tyVXC~ZxsBtXZJrzNV_T#@MQ+96kbckZ5B@Kud{}AODDPktm+{A@4ay@C| zk%46WYQ@RvRr}jx{R1ycpLJB9sCfr<%l8{Y`~32Raqo~=e6FatxYRF{;sxyz)IY{T z#7(@tA2T?tl(Ko}3Z)Q5L_`|-)yl!{{=czj^z;>(%k#u!Q{m)~)>g^kl^DfNJVN17 zCCtG=PLoYmvLx6l3N_nK)%)?T94+0P)yCTst3C0JdxqbrWsmD7c`oz{G7z{0G*M6~ zZS45np|*{_4l8zlqNdkr5`zVf9WHTruoI&GB8L|aldCBvy3X5(3&rJqaeb@)2xA>W z96K3%Fu37&lWZ7}WT_P@Vo%MjPmCRZ@hF|BH9~ww*3uWAIqCi4vWMDP&NhlM;LN4} z2YCj4E^+A%dYfUdvIYRHbjk?YK?1N?(7@&{)hY4AB25;qM#91y=s1~elE~@Tr=eUn zDWTE(HzeTiQI-eW1D2I1LT|EOP%B^15G8<$gv%uGD#KTVQ=XqMFW?x>>Y%3AALk|b zkC{)mfAM);>Q?aIKd~=gzPP*JPNcCQXPGMa+#RPBKxR!5g9pO>ip1ctXWh=WS6TJF zI}RYU6M+Q7E$-u-vl6A`@w`2Yv+Bjd>1ehGh(0R^w-O30o};i;B(Yuj>eCnAQj*b@ z^P~MWZO`s2A#3|BiTRe87>ssUtYrNeQ27x3??cJ9wsy_wBYRwAz<5(U*@g0}oqB0m zwc5YiiW@GqpEsKu+$L+t=`gRTSA#7$5Wp9D&ozg2Iw-n~%p>vxuM=267tsq5HU<(9 zWdmmI@WKLB7;a`&xRC$q{vc=K1idhkn&Mz?RwyA`c<~qau)+hFe!lD{DE$Ef^zqme zCOaLnVTeaHKLOCE>X2P*6}hDK8UcZ>=KDMKCy^Jq_>(%@_UCtrv4X({4sEbCO3DY5 zR+FVE1Om0*1f^%2nQA56)W{d8O0du0zW#3hnQ!$~u4MAjQ*qyDsv>ANm_kz?kI8!P zkX2YRs{jB}D}jDhV0OP8AayzLn|PK~$FA0EUTd~naq4~3(u4Op{S5&yeQnuuZJ)~I zdO4}>#b(qoc5raevpQL>24=xi5|6(YO3xj8sRbOC&wcRMY=<}>N5~5VgR@O#GyRBv z8!Ee6RoUO`qyFs=nQ@dEPwzbTIVf@-RfNDOL*yS-rygT2?UD`Mc-P$M{Xkb7u6+Rd z0#q3cTG-8YB}zZtp;BkQSF%aBoHczLcuwd(;x?rD^2VEbMlowimYx%Px;>GtCB$pe z|74fu);Xn?YX}2WDXnwj4Da?B0kwQr=B~)M@NDs==B^P#GLy?rO)Dqqsda1bHSKzg zf!U6B}BjFu)#3bDyj#TF2hIbw!PFn`yc_}9$=V-^_=7}E)?QKwa|Qd`H-n% zb2*3k^>%EBaa&bY#?I1Qpfa%=mH0TBBTd!v<_oGLri>A=|JWQo#p;CUvpg>AGV;3a zh*inn8noHa@c3W`E}uUNdD*j8O(XA@1vUOe!c@;~o=jN3>w9%NVu@6sz#L~P{#=Cu zj_Xp!GmYy%7wxzhH2FXiDqVc7=>3Yhc^yWie#$}I`X_#iN=Z+$gY@@Mi|4>Lo_%2OZd(pk@8=hQrb z#1uH7L473!Wip60<@-pcqk=YCVv(rM(001{Hv}N5S4jOS(3)OZR~#1=6%_+R{Wdf& zJ9`7n`-G#AgoT7O*)B!(8*hO30~n&+oveuX-j>D3#}}*}Ol6fSA8b1y#jopKmF>Wv7D{%HEnVPJA1krtk)KQz z3iMK_l_WowWJh-|@%ChL|B1s9S8r8`AiZ^`Zf8bqv9x;cQ4^@k;$gBH^W8~vEAC8% z0BB4bj$f%g_o(ky$6`PQ@U`FWckHEqP;~gcRo;~cNM8O)`xTwj@-da_~AzT z&F#?w9#WXiAeaThV$j;?_S0rg<-TSP62XaJYwkEnxapAAzy>k7W0Dx zJ3HN8tJDs*0U%3ws}?r9K8Kst>&*yUce*Z zK?1T@0+9iwN@@ZGx}UIsd%5n@x-$P%Bxci1E5Z8wWyHP>6fho6*T9e>6lu-V7q7jY zdNe7aBAHbr?sL1MfkivfO2-t-8>gJXZZV!rx9^2ZOdJSCI@c#%99-tH3GaxNLbwOw zOIJxT)yfk|q5wSqBHe?x>Alzl4V6Dn%iPJAji?mP3+BnjjqfWJp4VkaEi|3yW6b|O zm^hS=q099!`_LikfOV}W%I?cof=;r#HnPt)@-+nGY!Hoq%n6Yo0B^28F=vbK?Y+bh zz`6|-mUdyRhkbMqJ$hsbTQ?E!a6xS-1$wVvwj8()CT_0b-l_)6R^64saHIl36w~)&! z03_o4nZ7Rd{hbMjpsprc*xe6uf&}h%{R-CbZHk`jR)2xdMmmz|!b91E27#+KJmrYdx7LBB z^GEK@%1H-J=b`HoThZjhBcJ~!@$ECXjKCYTo~m}j9@M?h--<n(#?-AQi^~?5$h}uN2KrnmCUz)*AKFK+QSzudgy{UKJZ_p8y~omN-T{Xx zfrWv~&xdjEMe#n=HHz2ME4`)6{Q+$n`O4zpa}lpu42^z~S`%p(lfE9M$VMl-c_zXL zSRhZ42pqf2b}2OdAppS(6O%@XLJhucq@HVfz?p#8R-LM3DP;4j38Z6x-anx4 zz0(91%U$n1#fE5Ui30%Rvqmo%pj%o>?gj#QID!UFnX{IxVn#lV#<&^tvdH2EEgfNb z0X>Yz71HITKmuL$R1<1#o?S(7Oo@}bS8S)O$IL&DEaKTME@C#$GSbo+uB9t(YyqA! zQa}Y^R}Vhu58;#11OVD>?ZtIEka4_mHQ8>8p@Z-V~ zujC^!@0$?j{n4%CFK?(1&1=(yDzF;|T}*L1<6^IEwC-!7IJDu{AEWr;il>FB?01gY zITWx{5?i_^f6GhJ!&4KO1AQj;gH=RxC0q`r$kPTvsKD=j!_$tf&~Ro5&`pQU(L$^h zRMdtTINqH9?0QE5oc*e_al?{Ek&Kf}9QjFjRAB+ma7JpxU?w~J z+|GmLgABbUFl27EfUHV12?e!N#ZkxGGt`QB@%@kUK!<>j%P zH0yu9h#H@OJ@A1IE5mwMDwm_{X@DzB=W)aUzMbv3(ckq{)Rbq`O%tnn8_J0Y`~eG@ z>wSEId;JX^%~@QGRw;Axbsvs8_Xvn1eeFbk^enjmuv4cSwa_^hOb8fry^3RWlQbfd zy3wZuyl_BztVvoZNb4B-Dw^^wr4!}auw;ba{JCwf;NQXqc;DU&<{fR%tIcJYW!hWD z&CDP~S+B~DC)LQ?8^~5Gq6V+|08!bPIMPH%g{n35SdlOp9)W`qR0>E{$ zXIDdzzP-Ht?5IcTHfmaK6mxn>lzGJ;V>0-n9Q#gFM_@>@%l6yDezD#s#RVFo&%>nn z*g|WI%#1vDo<5>3>Om*#Id~(Cxq%>(wL#LUWkF`IW*zDy50eX9=?tYU6smn-=f{7P z2fUHFiddKtoWUuT*6t@M`ceBHbw58$3hSQp{lf7sRmHIJbR;mA`=!s5U^5i?iETyK ze2spvSquh`Y5K^~gSo<3qd)hb28}Potts^9;eZahcw{)>JVCw9!Rm>Bz`k76k$%;tg@IS1DL8jYEPA6xw_R&B}4($>1R6!U7H7EjoOGgu6HP z=>3|LSR2w5RhI$cSdDmeH)bJ*N{kajhz;L+1*`t`A?+OMC9{r8G;pX8!wA0?=EBc> zfIdTer@0gnOh~rdm3}kG7{ABJYTT%Hd)U(M9&ga;w=q;!tC-$$-f})^X(0JI+hgF| zQ1!W5`eC6fN_)!(iTXz&@TcjuGUg(Pqk8PN8YTaq=b3t2zyI}*1&<6ec?p;Ox}`NZ z4u%`)JPL1T_N#%S!_+xmEw5hQd$#i%uD`#hG(IzY`j{~AjTOK8XYM%TlWs<|+VWBA ze=I=YRw40gQ#*GZ0eJ1%Hm(Wu4aIEo@%>5Y<}9H@C`UIKLMS8)PTs32+11?ZXSik< z;6-iGE)+Kb2s86$eX4ad6aFhyBvrvF&7M&fglbXslX5a*GNzDblI@&sM5XRA0lllV z=*>~*)K-r<_cE#MgF6i&Stdc7TTB?H00(Iwk+XwL#amJ_YWBRFf8(qViWt}e<3%|g}y=Qzm%lKiFcB4ORGL2ke zHw1$!1xj?fLP*Mk&`O$>PznHeGoPmlj*(<;bR`hU6k`XiE^vx9esDg0(Z!ksD?2s< zkFxk*boc_+6o^tEPK1HFj9IvSH#e=cR^eZ_$aBLPa3O;^_^5dCcn}62wNpRFGY711 z#UEJPvJskzEgwnD|B{$bD{fpM3K|DLo7;J|_AZtBrEN#82M8ad=C?OVr`-bJF@OJz zl^`U=laJ?15M-Ki-#Dlk>Pc|-udlT~e%URlxKONBHLRS^feJFy6+G-)*!gwehOhl4 zLVu%NPYK_Wtf6amKEa%dTt_sLb-II1@_}_a%xU)YyWGff@4PXawh#Qbe1e4OUsoD- z54+k(P|de;zh?f*ZV0Qx-$GO=Huk!Lwx63P1$deAlCIvQ8>xfef0)a}L@pwq=j*~~ z{TR#iqv}a?iO-dEjl`Yx{-gCbW&cZV9!yzhoE#n6BEo)4QSt@ZC#cF3pQ&E7Q{qxl z8gR*Q5(zI7?z0N@uC$(@Z&BrtmAa?{ z#*dG(DCb;EBh{gQ#m=1JDkot&$1nOFMTs0Em=+>&1nz@Z=BXL2n2o{AgrU;RhVHtj z{F_xlXu`qn4tsBOZvK3l7QI3C;Hj{s?gT`i**fjgkHu3(3*so2>fksAOSz98a~*s} zM8nelC`350FL2J}ewMTGO4u|hc%D}-p_{>a=kBY3*+Ik=~{JXDz!2AWYcPKo+#IpLdc z1_{597W-9HoL0E{etmOREKMD{jYxhR;{#j((|WBhYokl@gV)Jbx*z zn~k7yV@Y7bhKlgL+WkUqu-SX9W8iLqp$Qdm{-~FnjB}+o?$I7?^GrFa;QqEEASp=j z%l=8huW|fHO|>Or(=6-yl5~)XqYMswFvQRnMA%oQJ;9|_s*43J0Jz+k&D!Z(u^5Zg zms%@C?EknIL!I3(GnLM+Zevq)`1T*JjGK66&J5XTI1rz5PT!QNrD|A7X@6>jcl-gH zU4neQe8IkPtryPLt*@ww3P`>Q$j2rB17#{jrSi>!0>%e5<8Y!}gK1OtKN&7Q)23|K zRuC=Is=Sbto#ruA4cp)8`xP-)zClgx*C8-)9LJhNBT=f?+MU-Jdp+VcBT}n7+Bnu$ zb!irkF?cw|L!JG5aT*B`hd08~A%#2bYv4<@&W`^USC=E22Zxk+pBd_0QsVqfSipV`{%Zi> z_#u)a6V{d0e=m=tszwLwF&kOjk6J4DDfIQ9NlE5bU0xD7M1>mobAF)NMxf5a9ovx^ zu7_Ep-)OLKFldO4@V(tq4%r>#wePW%{W?v%OWrXzEZEC;i49+1jUbsTWCw@tvfo-B zBfKXTTmj9`_q~7x0-0t4JOIwo0QmLkE_CLy$+l)Fbu4HQIo7Z59FaJ2`>jhtjEO4= zt5*%eFJb3L%BM9vOCK%JfYzSP)T$%6O5~whOU>z}%^KYM>ja5>TNny=;Jl4^XAR=J zOm}xtduR5}0t50Y1r9gElr`;=lPuB z?*%Ow{A9eT-RGQxb6T^FMAgBZToB-#{bJy=b92_Rkk{bRIBzguEM(EfO|2SO;9UyE zQ&n@_e>2{Mg_Obk(%6L&Qc^cSZB1-nU58Ixm+JkdNcHl{0tzoiSKdTgpg{?wnkr_}eBVd$z;{pG9Nqwu#QF{I>^U{e{uH4+jS^s<; zUxKBB_F+5i#T2Bn=*XC&zD1p>2X(+ig%P4@8_dHC+m`MiO`;@CUS zyE)z8ukiKY0%l~Xu^iIoK8b06vHpA=w7nr;3l~?d_Jg|U4&1q$=K3~D!7Rlz`D0GK z=)-`%JQx72uUi|A^kyMM4ZlODhk^=AP$O3qoIK(^A(K%D5WxEwl&qm&s->a{2IGHS zj0RySZfXCRZoYj6m>@)Jm%wcO(pArasTpAG*;YK${?m`21klNuR^#*Xh{s7jPuP6H z9Qbo&L8oCtXg#me1I8StC>x2&mfd8He>oo}DQLdL3mGrlQRY56>|ozG@P1ZbuM@1g z^PN2zP1YUx{&7|`5nQ!xRQ7`sxJcSf3oDVEB_>mZan9mV+p4iYhvWd?m*dE{@#y`Z zuKVs!QXZC`7W^Y`IH+uha>?Gc6zKFGhrz>0lOC8EmVs?U?rC%suRI2e+F&W*b3{b0 ztfe6=I6Z;$^+`IA`=F1t;P47%-if{abAg@LQF~MxHNZ&6z4_kJiQLt4E8)L1kgCI#r-R9JCF~yNFMS^+EuPPirU$h zYfj_TZyWUYGyW14Bk|yf^%|NhF^?v-BL{e7z_foIM=Y=k`Gkoa;`BKJHn4Po=%jQH7qZY&2XLddPl}%fNz<*^^(Db!`&q_D}P&hSu zeAgrbo}$soIkr`wafs2Plm|2*-A&YYH7lhHe`yKAx{5#WXE9^A_}me~-k7GNoL3wr zHz@So0*;Y}opaE~@t<56Z1EFehOD=S{!w=WzB04H7sQ<)v^kJcTaM<|!FB3+6hk~Q z&68Q@kW3fzAS$-Zd+UDb&mH#{U61GR@x@<+dWpI`^s5do4BLL@`addKDyogomB*43 zzm19O_HVgO zy9pEtTCSm_Y|cyF@TvW;X=hA$>?o}xpT_47(+1HaW|M48`+ zXwX`i??lPPCLdP;6DcyA3Wgj@`_;HzP< zA`&2OsMUY506TJ9H(mNsYj05;p~WWX+MsA} zwSx+*DL;rCMT%Yh|0sa}iZvzl5i7A&xi2ZJ@&B~b?Qqf5O}}LA>nKyI+;NfV4Sq*YrGNjNczN^T<4=HH`4rqY9`oA2 zGdueleF3m&R|nhQIh%oG0#Jtnjj250vpF|zZ9vzQGZTJqFykmCmHpBa`npWCM#6fZ z%xtyn^2`t(LQc>jz5TCw3);Ul+P2J#B~GGSZ2W>pR-(vP@HS+{J~Pf8%<69fr31FK zGofn9cwNbJ#--<1orI|)`c4Tpnx6y2)uG8VBO`iCljNzoD`2yGf-2+gxS32sk(UH% z6C+!{z*NIF59K(xF5?G?8J1-&fuwER7?kcT7I;8kSK^L-!6Bu9Dc;qG)3E?YYe zZniYYE?ed9x1dHEnXHk22O&j3i@OEy^>uvr&f{0A59d1~qm%;-F+{Sde{i)kt>&H$ z r+rAXVJ@H2)l#eY|oEVD$KR-}V~6Ki4aGHXgII*uCRtw(;BZ9!aAOALjBZdRuH zw<8)w`+`%DPpW17l!Qmd{H;{!cuA zu(iu9fyWw$YKnB1K4N*ej6?sy(ut2gqJfCc!?L-m_$eX3#ziC3Y0d%sr4I=?25btg z%h^oX`k)3(M!!Kb%e&@gy!xwMpyz<)^=OykkYUkO*=HXCrVt0WufL}q&EJ06SXDfe zb8?oGY!W6o~fIIysW zX7qRNK4<9@e0qiPQ~G}_tjz&iC!2uC&ZzEBO%=gn?VY?KG3%%5VBS0V5GfCXHH^72 zR%VL3(qrlIp9K(L!vY}PQsPpnkkda-*#E{tF@hK-&^Ytkjl@WCEf2jUU4145VcosH zrrsoL_0Ql4J}PVcn%!caHXXGUCTSed)Lvz)2@m^VTP=cJy?q^Ee= zMzz(S4|>{T+|lxr?Dpw_q=FM=B9+e+4kj70`PSBq;(j3?s#QIP8kZ-p!N@lvDj!w% z1Pto2XdMp$VAIUfKaPpzfZ@_X3N+xY60@o<{Tmw)ZKL{3m((r`^j#uCf=)@IZ+=Ah zhN`n;0e~z7=ph%)#!VRjdYkjg5u(<7p+K8;D)C&K<~&JiJ+=1ynE09Ghr1Y@7kC@Z zT&7t0el67lnUmP9&8?Y1&_Aq&nRIeE^1H>T@dl&VvmBSVazZ*oFr12XcAz*_!=Jjt zkGSxMGXB!3K#PSyb;!N*pIyFzs`kT$cu?dr-QfYSg7DqbJnme=ks}J%^ebr;%_5s%G~?IU5DFnW9Cb!bf*HTf`v~Z* zl~uRP2S*=-y3Ck9`z{TuG@ZaT*Ybmdjd-(9)xlhN^p$V`uEs2IRp;$h#%;?FsI=Gq zKEwV-58;NavGLo?o05>tu)~S~AZ5e`oW%ngv~V{i!>aqAU&)Yiqz+xB#N4tJ0qLnG1y` zwBa_4R)5ZWk!A5aS3F!Enn;xUKQw16{DAdsW;2gSf4Wy};kCWjD&#bgy@|O+dN3PP zj=S}T$=9ajdK>0q1B$*Te9en;t12K!Izyt;SP|@(kVzQ@x~WH+LNM55JbE78W0|?o zfOLp0AU}3yay?*9#Zjcv?){y%Qk^VW91#%igxe$XhP)A-9iXsKy5d6^p_^jo*(#vA zUM0 zvu;$yYOur}A3qZX{AYzgEz|; zkU&^tY{BP+DQc$&kIF5wh7%Vc-#gpT`TFO`{AUnp2~;Gx|2A{)vx{L=Nh&zHC}vzf zzfIZ*)bIuBjVpL7{AIE%AU&wFh;n7cU8cvcuL6Z5j^sko{)3y+$NGq%4~w-zlUWxLLxt{zkI!`VQDv>Y_{9vQ9#3W8J?;BU-!X-bO>%jJf-r_gH-9DwpS@Ll_8ItLdVnLf#f~r zgIVlM zDM2W(Ze7%suE!caycXZWAqe`0k>C$!X(h8nQs+tP{s?CtW_69UwMr~&a7kESYj zmB-Aq?e<1ln&1C2)4^1+Sx187N2gE2x?YEr-GKJH1tt7E?eJH@zUT zE(K>|J!<>+QiT-&m$ZwJ4Tp12ue+gauOc6ldhI zpyi6gNg(EvX`8?ySFw%7w$VE4sgETX9XOR%jlH^b8anz&D4vnBv!g$WKtMoTRHhi# ziuhccw>oZ~o}Q*Flw@VCk0w&&2{$M7?KFnngL7mUrR^UY&qSNi-Fa)MnKQuR9bd2^ zjXJdnvk~O2c&H=%I|3GeLOY&{VgPY(btRwC>DWLk>6 z_1ha}eh2`F#1@C+4=oa{<6l$JQ#aTfxtYtmzYNtoM=3X z5CSo-R2Ra>Y|*U0by-sf-~j>h?~GOrq8gYz!fKu4&rP>8o6V@b{pO_u9G*42XS?d2y|z z4B2n(2z+}6>%qh&BxZ61tgNgQN(r&BmWpKJ+02H)a#5Voq2x+mC~H_84>TI#)vZF0kz%0#IjLrz-_v z)<>Ennx6J_ZrXC~66I|h1Xg13@Y%=>Puu1Xf`Et}A$!uwJZ+f1N4B zYeJp(*GXskj7zD4BXon2DQ4mM8d9{Nf>$*9XbAtL<|l-Xj*RMRToK(4C0efX(;8McDEuP9)yyQky0C3Ji7p0R0>IhELSO;HU z8G6eZj?q-~V5)oZW3G99PL3kq5F#QYcbs{d^wO=+j^=+N0$u)3*Xp=;V*i``tZO@{ zBLUV<$Zt*PU(_+ceJBvXfQuRQ!(8Px?q5t%)Q#cH^-)caO+o3hI(1+jMtukyHFT{| zJo)>}Q;Dc8thEz!xqehN?*X)meD(?Q)ru| ztkS0mEmJuncM=Nl_N!K&=;8vSWD25?PKbzL~Vfe5l7xcOmBxAq5pwC>WzY+Z-%w6 zZVAVGP09|@eCac?A^Rxi!e|SNrZDu?D>B@XC4{IYERAD^#u03)$pz3>!()ZH&f=TD zmp}Rbse9c-b07zdJNyF*#C6Mth7`nPg5(qr8{Hs4$+o(mc?)JCKr2=Jge19T89BQu zEI{87W99R(TXerM{ql`d=NZ{S7ttbxbqsg1>eKveFagTC}~bJq6IErgSc zVE@~jqO~!elToQO0&oijW0-*eFOh3sWfYu$%SAwtRu!CX|>xkp*Nef-E-t&x=bd7k^ zjwHw5^UGJkSoS8@q*+Jj=W|CHH_2!cIqOFi!pWg#nn)Ag2OVoIBamP0hiZ~<*r55~ zjoG=NCd3dkseVkw#_NjZ_6e<}PHYvaj}2QObV`Xz^=oP;h*70}^Qkzcvw)-pF3&-+ zaQfb!1%hmj>#>L#aQ63x7e}*q89z<~`tJ6vhyoFT`|sUmrJMI#8^{(Z=_d_Yv(y3o zpBB)s{(LcM)#4VZLH$fp+YwOhd{Yq|+j}^#E;1c{gIBO}!l3)8E1?`auYqIv+daf0 z6kh*s+)0^`{rwM(%t1% zmPSS50&na4j3O)s_}}Wh_46c?Cn)!AOSq)3#hncV6N{kXj5`p-N~PVB?(BuhROhw$_ zhTyYlX|8}iXS4$Q7%57EY5B`XHCTD8w&6$Ik*w%OI&o>8)@BL|=$Uw&&38yZhpUxs zGMYdBlgbbn+-kr)DR#FbZ*tkFso!{46C5}(x%^ESCXb7YCclSHr zUv;bIp=%!Z>E35;S!?Zj(=S1NfcfT|!mpPuYeP(u)wA~T!oxX{DDPxxpV#HmKsP!2=D2_Q z?(pzd{yobR08#$jA)&Fcx8C2!POaicbUXKV1B41bL&(9fqPfDso7FE6suqBWgQM|E zfrxfZ_5RZa(op6q0M<(yeCeX_#iN#OHI#5C#S#g}M^h_-kVh>ruAO!X$qEtTKg%!g zBAt$Atvw$Jyvq~o1OT9F&&aB3Yhi!w@aLVYAB%Vv2Zs~g(46_h$8-d3lGoJv_J*68 zR>b~kVj))a7PBKlGdW3UfPrqAGyvTw3Tz1^w(SwtrZbqO8L+Yd11$2eA*Ggeh=hcV zJ&?MfE1*in>m=DHHLg3$W6lIVl$;(P0k|z8Q1_m8JzUD(w}g-V*IYC4Iqp9g(O@~w z$W15=>7y&;32?Kp)PmUf`F$a@f5cFN{6+KwZpeHc{qq&02^07Nj__yN?@kOr;;KG@ zjfGIV@|>H|I_r@6A1j^t1KCiq9(0zCbE^oSP!tFytu4vtMEfRn!3#gjH9bmrfj#R2vcn!#nCYfwiUIb;yrPV z;%Of5M~H8Ev^;K}d(lBf#T9-6m|iG7<@lh%`)p&Vo$*x)^G|G9e}Ik6Fr37%f_KNl*nnt~udFQuU8zrp_y0o5BO z?lbd-zevFLl5s>b>8Yf%d|81@Re?wmDFqbnC)IiBtW{T@-%GGAAHwKtWNK0O?QRK8 zy>yV1M4&@j@@2E^qr+tY6Am5hXpqn;m?wM(H3t8g|pZa0stv)9<*ZJLobP{W6Me@*UId@eooz)y9$zJjRW1Z&VeG zTYfMb{tKECN&8mwbFg!17`y3ubCC0SoWy^`A@UMD2vQy9Ls9LLw7X6r%mQtdNJ)rQ znW-?hQE9w$wN(;U)o3#5amKOdrWp>wh@y65 z0d&Uy-~k?as(GKrO6k}5L--sL?Z1G?>;zR69&wYhpwsNHE@80!{6hlGiLE;{*%yDx zf~D@X-3doNx6*r_xNZo7&*ZY5EtRFSuQXy8DiTu46^7w&#%2w;#V~lN!W(dVn@BpA zg;sok1~4hxr+(^K9dQbr0Y;jmxsbzlbAW{FREAjl2BocxCOeLg&E{9y9 z@+ZC=jRSbVaMdV>0&d{A_!MUF!+}DcwvR$K2!Mk0HhiuEpImq}zJ*87M&i31Qu$}Q zDyVU8bv-hEu=1wIocdsQ)3H{?_+m(Mg}DE!^y002OOB}+e&u75pEjEphS=sFF&%BR|txt^WjesGMpG= zyd+*QMF*5plNd?V+iR|hjFXMRQ%wGc?kpiY<7Cu}(apMc;lj@%RyG!8PWMMp6S~|op zbbb|J5zjjh(*ZXMLIV$pdbZwvTse)OIK86RZ=6mDW_}x)(7+1fgYU5o8i0KNAitJMkO7 z+QEl-MEkT@?M$pHQbq_%+MalXE8w4HGM{2J?GIi=ag)CvE3>p|#?&%q8(+B^jaGQ; zXtlnc499T8C}7jxKJ8dUDB6IJud@zVTIZjizSk$*FkG|y3)B4lqb1Z=^SF^?GxVrT z&Ct?P|!1rnLCtB2ZU&}9KqtPrGVg~Majm|SQ*aZy0e9?L<3y%8tH2G8MqE@ z%N~bPR7bnv=WjB1+DL%ZbR^I&N!cC;mu2OwOVX?lJ7A*gJfeBM*I#le>P!xcKu?pg zQTcEO1?XP!6)Wy96(}n|l3#6n>uV-`cKLRU*~#2+hXt4nD^Nb;R~jH#E&f@A)~JOk zAl1Msp~`-vg_Tgjq5Xz)gcB>G!mOBSo2HG(tQfv3cV0cwYP86Y!?iHNeZg4bwqOuS zv+gRwvu9qobb#X0tkPZfe%2w`JaDOpGbrfK4~!UED0lFMeY(DTDOYIDcSc3=>@`vb zhQHjtFAbyLMvUV>Yzl$H1RD-ZU#jpcluLI{QlIfZoD;=epNpnZs%?N%ta}M|y7;>X zLj?~lMFEv;=Yc1GC4;gzx5U~(QI&m;0X9+q)5SFF+#_$Vd0Vn-K_;cqIlI+e0I|&H z-M_>-Jg?>QcnTq8#M>}u#D40%;%v+tAn$mpoTh7m3VDnl28qJpbjx2peqrq(CtauH zZh}7NQJSFsAZw7oyM7N7|1I@LxapTe6Af8aB0WSd84m2TX~M|k*nZSPFlZPeUonU8 zRKh;+sdNZlqJgD#SUlU6|35=qauV=|Os2SIG8iD@4YL37+2BKT;COPva|voWY}=7^ zykF(0MUJK}|6S$5WY)@fsOuYVv~;+u5_M)78TX?p_dFDUs00&2bjeuj7BoEmeg^go zvu2XQp2BWyfSA8Vz9p0H$38^2Q$LJ_JO!{#zhq zzZ2e}Vf}>%NUR8e0}x>cJ9(v9iT9a1VzrFxM3KYFuGqqA!fY*B z=hk7ouS=~U&akHF^|ELG)1!8bhG_Q;DI4gbRKJO1p+q4`p7bD)V8@J@`VPZMyWy`e zn|sj5oVS7PoeYK+l;&*2Ck)$@>n39srh{D3)2i7g4z^sh&-YYEa=)A&T0@jDN%nbXG$c(4Z5qWyT3;>rW4fjl#82PK#Xgyhrg55_r+Zm)o+k-@{TMR z=2)4mkhaZw6oWnbL?ogATdM5s7=@M z5@H<(z^aGcMzQcWxPA57Yxds&=7@UQTR+h${NZ${SZCQ6U&9ZI6@f$PEKWt z(b=uY({;arEqWl*WB~bKNIq>?+&j30A&Z!pi4<`(>Q4%CyzJpgn9S0;u zY^8K^eps>q+ml!iA@X~_ntX;T*IQ7`_e^L%at6WMHDGyZ-FXbXAOQcWthcSg{@&Tf zFeQ&~1uRMb%YtbtnQIf&M5^E)oQyht6(4;cLCbi`!Xcj9=Bpt$fbGTH$_LEVxCwFO z%)_yyeMtY%aIBFpKC)}tt`YOZ&pKus310a|{z-+cr)b>Yy!(nF5b9_`RK3F95^(WB zHaV0^s@eVL`Gp`iU_t;I|3%aEm=kiHeUi7^?lnLAH!JxqiPco=+lON(BP2j0d&NiV zy&3;ka}O75SL=0~P!Jwe2>&aK(_TMamE+FK_w~Ae?}OeA zm7(}P-8&5GdO^uY!N;UueHP(-Ho4ud^<1Zth1DZLaF;;|a+aO=>8NMx6)(Xl#MY7*S*BXeNN2g_%Eq_ey~C*Nar z@ree8RQi|Rf|m3`(>j7c>>A_yhR$fbQP6aB3XAfhgg{LGlwAAoF>VP!1ozh#9Ia8R zVf{hH$-UJQ(}~{a39dkuW6t;4zpX`qLcFk|BUl+1`dg>h4!Q4gJCw24-l9ye+Ze{5 zG$r>X5+K%IM?^u2EsdG(EiT5fZ-HfL8&JUC<-ES3WMPA{U{;+~Z?_E`h$ti0_$zGq z24YT_4OdK^(V-9i%zjk6(=fuOM0^n9PYjKKdfhM-&kPnQP0iQSR>8IRGgW>09iE?W z9Z0Q%QFcw6_uAjQ(~_0c`+mP=Mhr|iJeX9O2MI4tIo(&3#eag>wu1LgkwazY@N=N` z*D~EnQsGKYONmvJY3;+6*j>mACoEN#gxQmi%JW=Y)^=Z)m+&UC9Z#arn+EhQ_0w z%20snOLgn9-&LwMR#VDW0A1kfce!i7FOCuq$2lXp6c&GE=1p+Nyd;`ES;y=;E<7~G zckoJ1?!3F!X>f;Y)LpBz+~6uLhyXkMz^u0m8Ao)IN|ZlHss5T_*H;#O5-y&m$vCzs zM77@^?h)8Exp3_@WYM(0F;nRb_Y~l7F!ES_;CKoU&#}W|T^t{oMYRo6IV^a5E;66Ix0c`u# zn!er^wMl1pWhUw?teyW_M!oKU1%^puaFE*Amv#e8ZbYgINOyI{Rd;T ziHyER7>fo4tI`m+KPhhNfW?;pNA}V?qRUT6E7Wu{3zR;{ghWu;%zT(_p7?abq^Sjn zhUR<{G(Ld?*4Bd@OreuT)coLhRsHGeye6mEl$$GKkl!$!dUO#;YZ29=spI7|D2wFm zN_nD85GMM<22i+CJSeA;ILKZT_S_MnbhJT>azs#~F{U z7N7?QpU6tdv2*vZyPAK8IN`rQEfsfqFo?0)EpKqD#yvohH}0G_S>bZOX@>I*dW__@ z59<;M?PvcHQM?G%H#1tH_6~fO)oOVvYV{s}FLb!~N2ZBZ*JH9e~8o2Ca(w z&vxEBWxik#h*8hga%nm1Wgj6ax)BVj)`kP)a`?oMhvHUHyTXcw7V>hF# zT2j_N2HnEIK`GDnX5lMk*?EQcjXf7D#?a!%5ukL62@s$4G5QkTvk6vS31Xl;jEr zd>*t4T4xnKVQh>JvAnCO^$S6<9gER2u(xoi9C)OJDQ26pm>YI8n9=mIiF_Opu6DRx zZ`#EV=`$q;pm%0?)auA_Xo3X`onxnx%d4aS2RpFna=M}KM#?gOw=|9g09zP}Pn0BC zGL`w5X)CR9o+SauwhKk!BF_9N`+wrfN) zxEweo$+ixyx;Ks(z}M_2_2Q_9W878IaJ~7wrTHI94Syd~1-%<_gi>P;2q1f2E8^VW z60E7HV+cGEShl!b78+mYel6OK1o(v>AJbkBirfFYeZ^jFH2J!}P@AaD`Pw`kBc!EL ztYkP@m*W|l!>D8s?)o-2GvQANlpf`&ZIISm-5UpZPkbw=EClC9>bvfZ(ie<$6U*n| zX;OI}9nbb^@7?7YR>YiP-V6D4pkOg7?mZjLU9rN9x5}ZVeRN>!I>eUz&EQxJbNwrFxiK(CHeEX{(rW#>Ciln7pwg1XUt5=v> zh*L^W3V-_8j?lV#p1JaLP%&fvTCMxGXZZd*39bS$lK0i~6o(E{X1WGJZDiB>uo7YB{n7uXs~SfZxF3WGj^@KLiv ziI?M-*<`vDRJc^?;(WP5o|)EW8|9lEJXYp)&zT}9XMD2O0PPdizg>K4JBLRfgHIj< zn6wpLI~TdzNJTL>9`~Px-}s)A1b0_2T3B=E7o+FCLz2P3qhg|O%8yjD`Q&I!hl|dw zMszq$Hz+IC9*4H|Rl3qAL&4d7?AIw3s<-LkrI)YSm~htv{m!0{)a!V7A@BA)1&Am< z#JpcR0EI)&|CYR`7*5*qB(-B6(aNr=wkK&J?U9KWF3m>GUPd`NMdQE$yq;AdHRGZ**atD!92O@s^uW`;`EI%8j&T9 z#5kIEb#R-?VFSezLjZZ}oF!?AI<8GX%_5tGG@bfc(`k7x5l0dS}U8(a9XLOV`(&NywJ*_xQBjcLiaikw=mG+Rs>y55ED^^7uA z;v447!^7PfUgO7!4CR<_VMCwlZo1z5ZghCxAA3H2S2CI#I8150e>)O|@yxiXFOm5# zZ%o)sw$a_}h0)aooYI_A@GXo-ovb97Eavv)`~*Zeud%`x;WCVtt{FE%E!W4SOCth- z!p?)o?b)tiO7kL$z}3Z(qa+~2nmHBx^pJ6F5rTh`j*bx>NIhJG&7%MVSUqX?IPPl+ zDkQW56cUuynHrs0zenNa!lq+ab<1I4GLy=m_|qo6%1XX5jAG?{*3SsAFy?}vQ)^WW zGeZugr>B4taZzuwDvWOUDP|Apf*KlI6einr@l*O!HKLWJFsSr4{Sx$4g0`e-o?sg9 zo|vS@D$+B3e$kU>UwgNLAbZ=-f7bA=Qd}fdEsYF4_4?NWpri*A?HCs?SSkbE>Fs)BQDWcV2}@>3P>yKNNMHIB1!2hKshC^GIG*v- zF&^C{_U}*AFd#}AW4+~D`qXY3Q!Z?-e{>|A9RnMy5>g4-L)V&5>uf9ehN=F`CIG;- zzlr~}17$U42J|oy0wF3y0Afd=n$g>>nEwhwuQv-UFcFKuuAlzCR{{@vgvW%^;U@&x zSP8|lJ#9a4G|U^;e>qY;-7A3K%0~ix&Y&w_H2sbclDP4c%@+}KDx~(wu?M$e+9&zy z7lw#izW%{^9LbtV@VP6?bf@lqvja@5JCKroU9`x1Xm`LR*-3apm1*nUB|nPeIHNcf zV`i)M5f8}_FaV*Tn9!NzoojmpeNCXNQI(fV)CO7Z_B30pgpmOtU-ZJ1f>xdfLi`mu zzI~KG3-8oVeLXk=A4Uh(z9O?RQ``$k1w0gO|NHfHeIO`Gqz?pNvCbj(_ zE4bLou`NV@V{9XW1LvXu$89IdUmOm8%*TT?ji#DI0&%Eh4t`zdNOk^!MJtj>Mcdav z3*s8(ied#6w6Y>P*v?x@s;;dXi``-y;4PojnHnp(1Z(^+P zf5^ICbSqG%q)SB>{+Cjr0SYK-H5cQ8N&k~<&qN2F)Y)MxJ}4f^mIOr5x)FOB)_cbs znGr{KM-M>^gwSPb>YQ0t{R$StyUzM=>?uEzTQ}w}|GKSt?rMr^;igTLi)apN6&&5m z8>!lP+9PBFa2!cm0x;!CQuoT64Il5~4FoflDEphRYB@{_tdN%^`rFPgi=-OQLUiH2M524PgJr-U zXP7`>2S!p&70qg_LP(+N%jq>WtYpZbwqkA04@yH+`Uq_1^JIZwu+j~sF_e+%_ANLu}JY^6bzm^JsnpJvU z$*eRa8;XqJ1RCq!=q<-A6gysWx>iZ|#AY`3 zXQtr_g*NYp<~AF%t^Qp_X03(RwP5k7NL8Z@`^UfATz70L$@#i+u7bC=Fpi?eJQp%- z0gULj3?d$b*)KNry_!Xtk<-k=m#y$+HGE4w`jPC8?XYv?RvU+!R2h3-PH3yFGI$0% z&75~q1yYNGj}GY(7+8BKEq4KO(I~^naYprqh)#mD$52H3@BPnGOCGXTeYooh&Ua2v zqaPp6hhHDlW9H~4m(E_kpD+6?Pz}=#NfOX0Z5>z}AH0|P|H}$mGA&Pt{&Vrp&<+ls)o4TH*Ij)j)Jl}nt!9}c81yK3(o%!?C_f&uy&FtPo{1-u45D+<35`mMtpJ_OqqQMTnjZO zY3gWj?N#)Fyw=wK+uxm9vd#m=ke&pUy;-?!+uqq>`vcB9DKt_gg&BK8o<}3!J?~U$ z2x0@dHm-v0rdhpH!K?12;JCjbGf@WT{cMX3S3goSGN(PyfJUY#eUTH{|;x?I>)p|NIKyhVnp zGIE$J#hk%p)4-#>1r5o9V!-3%!1it<3qM-dsKrO6642PH>l7A+E9^x3o((zQDQ9FL z4h_7ft`s=^X|{r$qt4BUT!9ZiBwX}n*cSKhay7}BFU&uTBh+tv*_CDMU-DY1mKwn-dY%d(h)OBSg7NvZEKC* z^^MvUYbg5q^K@P?2>_e^I@Z8_GaY?1GKZOrop6F4bgjf>7<_5Ao<%{tx-b`Y!jO{5 zo`S>j*SFb!I{fiW8Y}dIHBcOMa3saaq9ehlZYIEG)QPxoaE@wED{r1oaEd;`a^WT3&3)*D+#%7tdu9q8gw=TcXwc!l`?`LBjXqf;&b9+~E#r@O zc6=$(Ayg93kG<^0Wd9FbqkNT;10j?sNB9*yhAwPr^(JZ(fvlZ8MTr8|HT_NcHfv)m z5s9f-HBafvM2dq<%UyB$-a+PRt|552vAnf_pz zmwoW|!=9X2@%Fp-!P^~B*ll!xn_JkL7R(VsR{s)3^hIEi0o?vF*s~UFA@(ua*5liJ0;s`1ncPaT z0f&SQ4Elfm$AND$ZC3xNG6hu`*QD^`@GzV-dZP*C#mMp|^4|@8R#Z99F5jjo9GY8q zQQhV_xM$7MW+Qo4tP>EFZsC+|H zVbnuAn8+29LuEuIoGUvHr~tNtB)e`tX(#UzJz5PsSl~=W|7gJ$xz1*m0a(`PfCFgB zSmL>mo@;AUM*V(Q~_p|vd)%l3+XGw}_d zF3PqrNYhkjDT)GjOX;yUyBgU?JSR^7;%+!SQv&#|)pK}|P?{MXC>MQYP`Spl_K#%+ zf4Pc2Cq_Dcg4cu*ft;s!Fg#|W>N;P@CQn_Fqq)gZ5#^HAdoA2TGg8DIS)eM4o2c9g zPW-yhybaU3$mesywF(GK`19-W?ETpMa*r>V{l8Dr9jE+bfh4`uUMMm?EYMbl4h+P+ z1{_ZA8j4|%$|q$13%m@k33lw-t)G;3P6!-8mD=@eVfcf&>%zTtg$xi_$MWQI8(hI= zJNb~r&lFwneY7x6T-*BddVyl~J4-{9CqI`m{q67b11Df2l`oqhK-ap%?=>sgLo|4m z2lC7%x`YbRSqsm8s#J@Axc*Z7*GPpr=(Vig?uRwAl&4ji`>h5!kXe@%cjQr|*xsjq z4=u7YVNJm$YeHH(TLsyJKlo6(N))RZeN#Gyk|D_|+r=TxEAriraEUiAiaMN8%ob&i z-Czct{gI~~ePbCH)|`vS$+KGpZHmtoRz$Ptl2duF>J%{fU4gLSxKIj#7ybA~Yiv>} zp$NwkQ%)@I5n2V3poZ1f^xf6ci1Ys2t#AH9M#mzIuO76=4&{E9)T{WvPNB962jO!i zxd=;J6bwAQJ^<8lOMeaR7uV(^;-JaI8fs-Qzg&TfEK|HOUV=t~0Q%OoEH<&VdS)|% zYWw%-mb~L-*RhCYLp8j6XP+~Z)shd#XAebFT1u@?9QU8jUy`~L_~?j+uY>LAPK8Cr zi~avMDw{+S2|h$?WtK&Hdj4`8_?R%2Q2`%M-2e|O{GO(IPWN%WR6f8ZANy~IeD^;3 z;_`XExYg?3WXQT22E?->c#HGr-kY>-ms?^v4KJr zLG-xe7!*$$PUHJGpzre{B>7qp>5c^k@5YiL3E08#{+y_Fte9??mK7|ieg8{=(^B<= zV(7Lx7*K3ZoSA#O_u&#?q8}h&m|4uDInoh>NidcyGw?l;AT4eAa+1Z6R_$HQbFn{c zsCvy6-u6Ty!GzVIB$`--M{g3>V$=Vlv?XoyZMkS(!z7DNae?W}7qC&5qxWwbPU1g~ksHo69J%}o!T;E3dj2>p z-~LOVKJx=)g8!ikEHV1_)l4}r7_nje$&vjG4`%f55Ad~r*auHf+Ijt^=2(iS;|G8u zTW$hW$8+i{$Ywx`&ZWD>vGvK{N1r>D_wfzkuJT8G6ZpLSTMTAiqf%J@-)4ATHFNPY zA97x8)R2#yB|J-Y^af);;pszT-r2~Xyv4=YjHIzmVuP^JN~+y_sVr%{b6b|!1(O=o zpS}w4AgR-MKHsqD6FmRS($-T9)BUFH7ZE~bEYpz6)=*enNErn&a&yIgV=VIXE!^g) zp(R9s^AgBmTjkf5@Ux;Mk2892X`U9yJ!y2Ti*Sx zSJ;Po8)ujRRNNv*RR;VpB-F}(SP&hrj@IO;20NIe8E1!WN9`A4Hks7@R7LUg4sYzw z)6@>am0v=gn28;A4*pjaZeNEvRu#HcBiw9p7wg}*l|O(RzjGt|UkQ}Uw2T!7Mc(14 zJS8!lvV^>#m?Vf>RDgp3?L<^B{8uF)ktW$?)lW<6iUF8@ywOh&&ZT-(SvQ5z^c1`$0x~P` zi~0KztFd^0n*9`ZYeiBv;S$g5`|7sK=U>XA6F8MW|15=tr^QsWhDM|k|C-6<%UvwnDHOZ47JYV+%ZPyz0f|CR3XH5-5P8KiA44IT)T2#R zrf6iGErWkhr%4&8v%DM>)H1Hni-@&wWH+b8&Oi^%> z2*%lTThpfH(R;&hoIA<{`s7YyZ=*N0e3@&y^}Ry*o>Lo$4m23$7E4eI%+Vu!yZDOE z{u{*HG*r(s75~H13u+A8fO(k2X$h4}GTsBendfLfpLVf1xiVd*Le!BT8nF1q+|jLT z=dRALw4P7i4g(UDUT^4o_0011qfj@YInnFN8di*5CQ@1Zh)qi;>(HR5Evs_~f-cdV z#o*wplcPh0WqGKSP@C6V;JKe%c?QUj1u8t)3{;~G2miV17QE-Zw{&XS=!AGeT+2FDtM>j$o_?v&&;&^=S z!z;OJObfjXXX1?rgL*@s=HOetJjfOVfBE&@356+;7|4W(9dEtzQ{*Ye-=}RoZsRiq!-Qf)KWtzZ18yx zC!Eq>cE)dxn1fUI4*uJi)csoLeipxRD;@>X$_JaSQ#61rSJQ#73byECT6xa_KAla9 z>Q`$|{N0oEFZip}7cNaCc>wdv0j{O^d{jh$1bR$y4hG2ubV&Hxs_`?!-Xi5R9hYD$ z`)z$RK>p|hfOK0|**1}Y)#L%2udV%|iS)+1bSHY1RI$2>nMp`BE9E36l&7d$eMNi{ zxS*d`sbQk1M8a(T~IoIcgdxZ3%9054$ibt)qlb!gsFSBE6uczF#}|v&0pI z8oF`wuFp=6#2%54k=Hpu&zD4&Uvt&qsG(?>czDLgTYO&0s#Fybw9ctg`9Uld(Qhgx zkOzT#lzcaK?{X>4UUwZCrlQ8t%nAbytWwX<7{GDeIV>O_>^2_=AIR7RiEGxlqaNLv zvziXVzZ%VCWy=kOhq?+b(z?LN?gDcnu&u$_KY{sD-9^O;;-<$k*VYw*7P2vuVZG^~ zXVmbXcx%zqljE?0mrGj=&?{aU_t~Vd{QufPTGjID^ncjI=72)@Ff(&1V4ykaI0c0N zIi0v^%|{`ohSw9LsCkns(q$DhdE1Nh&~~62zkNVRSVU729|PzOG;$Nc6Wi61rvWgtcmNd_J*Rty zR8jO8AcWHmgf8iVL!mmv2#Dt8tP{-{fOq zj0KDQ9>y8okcA#m!x*bn;p~!KB-M_)(GGvgxU<(>fWcz7bZ`BvtxzT}pLo_(#g{wBJqAbh025D>5(M; zvVn}XjNA69?YKHD+209QW5zogxH`+VuXSUx-gxy1K9l}IV$8ceMR6AFep%L1(oZcR zOApbTcrLF!$%-eJ88f#I6>59S)_!`qemKR8O-SXh{BKb=82z}!@LhDAC>DBz_2gQnod-=eSQ!Dnfiw>vl-vfou&=LxN90xm)-Alg8O z#FZ#NNixc%69&;YyNC6Cy_XQcZ;QC4e9;b6T%{)XTloR(EkPb zeVr$ae}O>vOevyXtCCE%7^;Ae!P_yNhu0+KMSiqt$P2O>l%w2I=my>pH6y2wbi__Y z*s_`$(H11yWRJc>n~f;HW5c2trj03HJT!N0_1$ehV}Z8)8K?DW^xlhO8^(Gg^AU}f=&E{o0E%(^WHJPjSeI!>@4K>tjA zLLhoqDUv#<^Z6eOu2!sbS0l~wh2*wkGHDOJ z4XW_&Y*Vm4UDwz4J12j)))A`us>|>!RZRi+{cn{Ey=YqP$c9Y4O#n!9_E|q}57<(V zfjy6F^yqZh&4#7Tf(0D&%gxPu1hf!wVygk%W=s}Dfo-h^8=lK1nJ=+|PuB_2A| z1sk=|NpX&H(Gui!zq2A8%UKq-eFOUv$MAWASVl}>vW7v!vgvMtM;@t0wy(1+lp6yV z%OFPism$lI zq(EvQcD!Hx$(&2KZZ%kB*feRrM31hP5zLaKM!jJCDNx{7<MsU7Xi2jcov@_N&V|1?QrCq*~U$p=YgoIcdy+#tXZ96jri|ODF(T zpK$rH-8u=oq#M6Q0n!d|efyG56BuhKP}zERYVQ2MwHVgqx0Azg#c>h{Q(%Zj`0h&@ zBPbMq{y1BEw4?qOz-=gpZknQGi?oK7|8FPUWaZq0{d zuR1Q}k1=l>whN#ZCRCxj=bg#ur2d!daV z5>sd7Kx54vdhll$AY6&Tt7!XB=Y<{?w*3c_vvz8( z3jnYlS=4|A3rgCn@mk2S!kwyzI^3b&dCFQFq`B3o)UlT+XESYt3>#AK%*PaFyZH68 zDVOqVw^U;u`2Fm6gy}tjIWlozozeb)*2I16uc<=!9aXsWK;mY+o%Vb*34furdn5_kLnT*dBYVCXf{yM-Y9tjCfKW4flZ?ck2upW5G1yC8=fJ6paj zY;?-_YwmX>V68e7|2+PU8RZEbFD~r%@Lh%$)u#|{DI?P>)@Vsuyj$R7@66FBA$VY} z`cM9zVV!53wm}5>h_O{KU-$p!?1vvu!&NOr9=DyDeywz7lCV{~ z`_}f_v|bA-Fd%gz(02`RV~tax>k-`%jaaFKUbcA_;`3`Zc6J#7TFJWQX8+ zZur@*m&z1i`=@T2U#Nlws6Zp}ey`2L8f0CSp84eg-3tKVbU5tDImo9ECdb4vAI6n^ zW%_9!x_zO4`)b7ohR%zNq9s(Pw$UY&A(B$bifvJgW&H8yxX_%S(%mcu74iEx7B>;J zT6nd5uipLGT~R6voV~%+p*njYEfR2hOxdA5nl%Y#oUi-t5ZJ?O6>U@y({z&Bp{Z6~ z;c(vLx5$vCA{}#s96Kqicz?mCVPddbRlklpJ9Y$nU!*L`z zw4MNPAZ#!_Xoq;55XV7_$jlb9kP#&T6l*p-8gxhQBhAdFYlu85R6qzz ziUbmDeFJcz`R}XE3;wM!NY!qQRF#I?K0-^ALgka43=(i-yZq;t9++o6B@Qfrd@tD; zm8IyXl_G{5v?`F~a-AB@4o8XeuLj3c$sj`(5LqivWPyW$3+YP;!1RbEzpd1P)P5Bv zg`o;2zi_@xlQ*4U2H={_%BU5@d_^uRkT663(!kVsZ5!-Sly$%)Zk$)F*sF;vfIb>7 z^ox=Ahi+rHn9J+$*8u%--bkWcIrGJ0Ze4Zao=NyF^{uZe z9HyP>xg9~Ee*X*U+Z8WbRk>Jehi01#sX8Ya9r^}RnB6vw=;sjt{*ZYTu ze52~_qcWXeu6n_{vAy)-8paP=b;ZO#lYv4@U(TCv*E<&1;o&#xP)laT#_=99!1fB^ zWV;STHAEks6dhu$St8&q4HUXUG)0HH4x`eh+jxt|i`bCifF-5)>7rE+XqrTmJOU@Y z$B2=y)}58sHhxde<4vbD_c^juV<9GEeHcMKGzrwVwgjOe-A0=pb;8G}0=9gFr^TrR zVkzNO$$C#6bYKxlD2}kpC0Wl;(5i5LjAf0L)nEWP@te)y%8g=#mxlC=4wt%7L z$7(tKLA;3ed5D_PP+BkQHmv#Gu7vZoI{KYph?`OnrZ=CUu4Cr;X>Q}OVm%&H;bHAL zsOc}?|8UNWw^`Sj+m}&vK#qLc8os`M;d!$n*s&~#SCS0h-mNJUe%G$=trOC-Y=3o` zLe0w12XA>n^*p5UA1l`p+$=(%4G$6A6-lTl8AO=%?dr|@;jh8Wmyl}XIo$a({~_K3 zc<}<>CRA$@f9L<-1)zlL31))^7G>dqWp{7=)k;Xyj)3~__L6nFUjop{-HBX>v-woz&IYK8n>e82VWo z@zrX!Fr-Cm)2HQqU3uac4yuODDrPj}#kBN#yfqBKc0wD-1?#XuWjleXzMW)AVce;9 zY0I{Vvf8CQ#;3hohyB_#>+P-&wcQtSV$!+XMFkD$JM)3f`JIy{zNA{FM3XFWTW@6! z@QtWAhX1hdXouOuxXm|P{+{}*G0v5D?d3= zfr+Ysa;^b>&7V&vwU-Q88G0w`HxX}KkW2Wt*yACr!@2p{yt=JB6qZAB$%>u!x4DY? zQV3UoB;m1ml5_t9u+4z~!OaD5(UvP`>UgxC;ZHtb%7DDGfXBCx7XQeNqLz%rYWgSG zb!{qcM_iwlSy!1adq##_u>V2Mf2S?>DQucw_fl5r*6S8N*AIoobcQEV+G%_>o;>`r z8y8M81y9F1L!dSt6*?%^(~)&D(ti63=eIr$+%b(I9DF8}*Cy+gujh z3|EDeScD@Qfc~A{hD@}Mzq@QdjM>0}|0Wj&xWZdeo8$&DzI1@}zxuz;_}@PY)&C|b zB{{1$d~rM)zYhJF&?@{?sSQ83;~y^WFK*xcwtUVgodkU}}z^4Sl)+i2! z-KuGX4}I~Q7SvKih61_-zA4gbKr;16gecKB^`H{yICXay&MJ~K9HM{;Wv91=7ger( zBeJI*P?^Pn?3C1^5!rK;B};0R@k?CUAipZ4Af=l;mlAGT?zUPgV6wPayr$;G0NxxO zyW*HP(F}zTVA9d8-5cFh`gDjP*ifi-YX7b1Rfo0QFxe*0W*+|sFg^DjNaXrT*{D;z zXskVcH-2(NjNUYMVV}vNq8wMOECm3ANkbC>*IuT_RA0Z<$RYy3!^gcVZ)nx`)4)%; z-0{;1OOMCYfRDG0z8R^|DTSh#05V{drty)|S^0hi<dH_++O8~uL34F%zFEXedq8);YV{WDw@W59fv~i%QR01 z!`=~1IoG4A^0DmiO%8kBLZ_U2s{N!g)8#t=rn-p-YrhfldRHOE^=j!rC9S4vH|u&} zE`mEwa~s?*q&84IIP>R8%U=Y*?{Axrp6SJIq&dUU-r0n+E{8N@jR_@=q<1Sj74%B6Z~BKJ0G{5_Hw;n`Zi_MKK_bH;0V@xQ$lmfuM* z5U@w||z@rG^HjySpV6k?wBk?nXdTItHY>85nZNZ+zeTJ@>i)!9Bmt?6c3_ zYwfkyUbWZCZA>BV8d=rxjhLK{O8z5b7yKS5)*U+bn#=Z}94&|y*FR)QnH6=SwPBqt zvkymh1WqXk^Qd|adEHPZbr?))KOcXkVFdtLL_~p&TBkO}AMs!%DtT$5y%O+2ahC;AbFdpj${H>W{aEPuSRowLX9J3OLY;=V;7E}(M^aV`^y z#{BgjZ;YC}l2{#KxHeepn9f6gY%u#(!8_S?a8XoL8_EaZl0E3BVgX3vyf^&U9mDcF z;)qz{c$03P$#4SSy&PeOsG~*V@7pC$-MlBkrk(0Yz{=}34<{hT1tI9hsllq-*kf`Km`n}@{u?TZ}|7TZzYNvB`) zRiYcDaZT50yX5fJw>SsmTOI~JGRBlrV2pyKcdFsZpS#T$Qe3GT)W6|=k7*f#*I5KI zomoDr>j`Hfy*-}&CzxHezIVwsKc@YusCTkE=kb#Ikc=7rEH;sZ8L|=4;d0Cq;cL=k z~-m6c%n=b8uktXmO|B~y}^vW zFlpmSKO?tue8f!}p~wt+d&_fi@I`UOiLo1%fQ^02R@0>_VMvI+0u6uEi%$Q7oF>3H zQ4Nr+ler)EZkF1oQp zrGGD^zXHnLUI3Beq#z9ko3v&Q$%^XPq`Hkz7P@0`dq>mPj^D+}%KStKBY!x9ic1Np zyz&kdO{O$DbESctDrZKO9r7`ZPb?I=k@tP4o1W&syfv3l!l$F=;2z#xAJmyWVO6;r zH}EIh8g;W<{I3x82{<{=At~huxRc~UyTYWIAAz8d{du;CmDlkc?N@; zJ@{G#)sBNmtfl6$6w<5qvU#<@UtoKwkLgPvOFm3mFi>io_q&t?;Bv*lWSt1^HRrFEx1Ep2N4*sk0ZP&c zM$)f&1+gxqoC|>$?RID}&J8n%VZ9b-_=00ZEx_Jqk|;T;aCPi1qt5EYtrn*8Fb1bo zmqKnzFw&bu!K-$A`O(-6(H)He7rK{&z)U7SnL?>Odm7 zUZi}T<_V1hTNZcA4ejQ&1ec(()K2=pb?!%wrx$w5o*%%!KI zQZv$4aGa}e?5RHM#;Ls@Z~!8s)bD&P{G+LLoGp)mq}`oFoyo?H#4!atnQxK4>8Bz5 z5BL(jSHo-RvcEzJ&V9?VF8tz0aD#r>BFYz-Y&tlXpop#A)envonLQ{UW3gahTG7Fq zYA~;5*9eL{6iK9>P2>s65U`iQm;a##&Z2?rdW8rH=(in zSmp5Kea+fCL)v~rgUC*&!0-Y*Dj&3so7DGs+Q`c*m#4T6yf+1m@wJt)(Q`@=!g;YQ zkVWX)a(Wrx4>fXL^;!|<{W;AiJn&uh-MXYn`1#?$b4V8z%38yu8^9=D{(Wd8ctgM| zuKs|$jwI+4>C})a8rcCg)+bT82gmq<>sve>F1Plre0C_m`#xJwPd_^I=FPDnv3U?9 zXY{u$s#YKKbp7xaZWVqeionMo>SVcqdDq z!c#ZE7vPk0=$)(!b1;!|;Yp-|SQnv}aVG%uyXanx-omZ1QIt&qq}bHf30u?Kw>LFQ zF>LTtZ25IQ^1yHFOZ%L5Qs(lY_nLn^##5($o&&T~fnp4r$FCJ`H@sk>hycPU zy9PG8B|IO~_`9>sNOGinIYlw;d6CaAs00#L>-BMr`=Lbg1Pq`OHDzqD(N-YV*C)F~ z=gN@qxHZq09QS_u@k~g+Kd!9@=wb1vij3@{VirXu@(>H^4pZDw+N7OIR|~C(D({S> zb10R}77TMk_7a>#kV)8%RykRaW71c*inxKhJp^{~bqjd1}+C$I&QNF>^ z=yIXFSG;I8xjO_BU|`hN@iYGRZA7nL(I!6~>^H1j4vAn~6(kBv!jsU(2YdV+Wj?(M zVEK&$UA9AUyhLv2NJO5{-a+YRbG*mW8?~~qjzS4!y4Po)R-++&V)ngSWpq_a{u7zf zTcng^NuUE@e=VgY4vaz3N}>-QL0!9KiG+v|;Zlqv1!6t9v^m|zv#LHOLhHEMpEdoB zGap(`|Aqt#=kjYo?hb!?8;)QzMPgi(-nm25^%fX|Kw-MBzgNr4-LHYb9}BxXr~oR$ zM&PPmBTs>(%l29`dsb$d7bWma+vRLpZo&?Rmv5Gu&x{m+%8Y^8qW$Y!me2mNr3f6# zsZjcO`UAXPjML9Noe;%{?%}^>;o#VnF->I!n(&ek(;#5LF&7mlvq5QC5;c-F+O{=N zuXGxZt*Oo^oJ>r$MgCyO1i~$JZSr(X&zWrnTuJ>c(*rhQ34K=Un3NMj=&P}V!?=n> z-sxWDcfjj=xlwG{UHEuvCpW!*9l+W#{uov$bZ9cT2q>w%kWef+-H&twB&Q0+z6REu z^Tf8WT46xEF;Z>=Ih=#$v~4fRkdT@`pL^;QEUDR7F6*j4YDFij7CSQyRgrM;@bP!T zv)72aJQ9-k#V>1G+;?x@X8#Rn?JNSvj>x%P?}*t?p3b#jg%XCCRxAAVL@!Ht_WGr2 zxPY04>FZMD4-YU%1t;mlD7(sUw?{#rNtjFR3CH4m-z~=vZ+802NtJfpHG#A?45?q=G~H;$s4B`qAgq^a7OfA~ z|51^t~R{|JDzicIs83 zI`_c@l1DD#yV+e=e{JA!_~_{9`uh5Gk?PX}G(a4Y-BP8JD}B_uK^M2($iQKt)@&?8 zaJg!_ZBB+Tq%YbMyo%IaU(`F9{uYWqK8mH6Qb|UobGz4c{1j5u6>H!)zEa)dly>9@ zfUJUmzCe^U%UY0tyGi8*<-aZBLJN zoU^Rhj$4Uce9bV+sCpJ{?dIjRaxF9o`TgiN$X3@X?JkAgDsO8^o@wA$d_XIqmhr-x zXCora>%7V{JAdbg%T8Kg>+}~34DI&unnMRh;F@Yq>)sOiLx2J<9d01cJ4XAft1-*# z@b?if`v2w7c_9XI-3$HsvFuAv-PWRm7`pM?3eB+gis#&lWA~D_F%D@F0<$0t>{ZV} zjJ4fWw;FZ#WTYxmNUdGhRrGZWO72OOUk4T>r_Oq|G}+KwK7Vp+Ys=KsltR?ob$2ZD z#aENwu;+@&x7x3%hsVdW-+byp{9-IhG%9VxJgRgP;Nv?r!oX_i0u-%hi>eF7*R zCTg!8&~CU)I~9mHF~{S|#-YiL$L1bNKdUezjEbEw@PVJt7CQ??Rm60Za!$r3w^jWi ztufIUn7RU?)7DDx(AP$;et`Neeeaxbl(=IoKk1D-bR{!Bp4Ij2jEMG_fW>5&Icxh=K9>6Id@g=WP%g0~jvZp1Nf3V9>4JQy>-D_{_f+z{* zOerB%qW-5{UD%dIoqp;=s`f&1Y{_w?K=DmM$tl$ec}?R>FTKxu4IhnDOd>egzkl;% z|B3?+dbfQpuKj%(C#eC)a3Itw1kLZ5ZN)}Nes||j>iKVCqob7$A4IL?iV;Ya(bHNm zPNjYe4DmMtWq#Mo*C%bzgG=wIO`%q=WH;~SR%YX&F_q2^3MJ^crO|tYRPoiEC<=`l zbIbO5)ZF$}qd4CyCx_mvY2=fj$@+nrp%%4e$7?o;2RKt+t;Drbs$+u`8306XkEOko zk6C`1H4L(3c2n2_CiJ(TeLxQ6ORZpY`X1c%v#yd`TuAJ$uBE7J(9Hqux!zvZ^mS9$83RB7b(mNj*-|gr~SC=z^UPHO-lT;q#2r+^{6JD5Etisb)*ygtGm{YQU#I9 zjS-Pi4}qY?CWmXU^}cWd0}imEp&=7Lv{t1`j~F2>a0wKYe-pWk=F|Jrw?a~yzAmN@ zjwfAX5%(P!3X{AxUud#>j>j|tFwZ-GdO2RgS^g=O#Jl0H43B&H(}MFD>e{qLg_L=7 z_O>kcW*k8#;NEV0{P9Lv2QP+46Lu2$8u(fM?ET;lD1_b#JK{c)&k2Kh$4Dm2Z(J9V z^{2|(ZF756=4wu=`;1erDWlPQPR26{?Us;BRFaYnY#uh4M`WB5cC48QZ3a&>b?|+K zuqexw>Fur-_C&+UwZk8}hbzk-6^6E*GgZJ^I}cT|RSd_EvVrZDpp6!@vOi)>=X~X3BJ^Zgj4uFU$geT%t#QL6ULql_v>8vVw{To6jp7j zPq{FohXE84^(kd$W~N6H>H^m1ARei;va&)&6$^u+qM}NDeSuo-dA4y_)g{KtY7JfK z7#F)Mm(5?Ox0;@>F=^BJU&v*TZtp-C%KcHS8jt&*A!A02{I<^_QE^Byp^gAq)S|Bz zR&AP_6a!G8zyr=OGV>HWWxWyxe6RHU4iz}5eLQ@8=bO_{i3+osLLD~C!Czuxe%Z}K>j#XA?F_ig3wMf=(}YU{?slkwNrd8> z6>h~X$Y51_@rRQ9FQd_8dXiuO7-@}2>GBi$-%zT+YSXC19Lp*?ds?FaUBr=EvZT{E zp5?9{$e4xNn{ZT%0OYnnKJmAHzEUd-ZeUH%$8-m=Tgk6wBvLND$QuQ%Uh6M}anRfr zOUFBx*G<rXNlF3|lmxg!>cknZypJk5+}ktGyd)=1vChR`^G2z#`uK`<_U6uJbd|>a zg#Fd1tWg5G*+>8;gfPvhcrY#?x{ls$4g$hJfYt`37MirvFHDNSe*D~$C3sbfvWpP} zyG;j_Q>YJ|TANplyE8q|<-rq1xlwqMggbR+7UY9!Jo?b0CYh@y-eOO;cjc}%eHD62 zbYrtntPe^Ixb@hb6=E9kqGESg-Zs%=r)?el8gKXv3u}6MnwVYt^lX62qi9T~QB2~? zhpEnQF+oaXq=fF{^}|eJ9U<2l)gFISIGMt;2Lh6(Z`pk6mdjwdUJQVJF-nddm^|a*ef>bKY+BxW`MbFy88_;r{82|fIw!Q zzg&Jd2Q%Tbj+KFIso-CLM2SY@Q)zDQr}LfBg@pwc78XMz8Ch8*W;V7%mCTg}G2kO^ z+%I}q*RG5hZ?^i7$zx-2yfsmo_=OH-C%v*LjlP&Pa`&X=TVg(VIaK_WB6#Nn z9**ub`IeoFtJuTk2}E>a?dmDNHJ@lh+U&T{>G+X-l znO*=E1uxATT)L(uc^UR>;0pDG&P5#xQ4xvF`H|eeOkrDE4Q+=NwA~NY*LM{J2Nm`> zpN5S^{fd)C3uRBGo-En6`e;GrRW%YdBx}GXpS{66+;q}a?P!>G$}rAy5;HQ|?H2jQAF~S!3)O!rl@u2 zy$H5@rAwx|m|wSDO3wl$eXUVj>-BUKsp4!PXQkkUCrR0m13%zCN`uV^t6Dlq5K%TC zar^uN;#3oG+k#!J_+?=jw`@+JRrdrjDgeyEkzQo*AbuYx5l4AP)(6YSh zu#V9jETuGD9q6!jfCbr(TNE`MGR2FV?t)Sp=s*$^A4*DwMRPUstlQptWFo>4RMnND z*aZ?H$ylF{ay4NMQKBDrU=qOR8_=5RpV)wd{GWpa=7S_JlnYf%3O{5zM7C%Zs%-tf z4tNs2?a}KXZBtLIQF~LoY;*rfp4i9q@Ffmrr%=)-61|4~KXk;65QQbr14qTh&*oz);)K1o-;f~N>SLNnQ`f;9=a}g%ONyDBlU3#PO2pByN!U`Ho9dlm=T?SXNR8R zZVwi`c~hNjYXaUFJ>5B&a_T&+@wCi4%V~Rf zKL)GeF6?D&Y`>G{_vsnlTnJ&JKyA7%e%b=t2BOfs&Zb5-SUVb$4E70aw$+X+%7~r> z75m?hKJL$%)g8Z+n%5u#+`dx)Q{EZAKu;w$Zx&xToZr_ktfF7HDSstCpq4~)=Aqa0 zBZ#JMGp$o_(Oan4{ObMe3{Ti6TZR=TLT|@k>)$g_Z9g<`cSqS@$#ET!53KL2C|a=L zVeWJC(9$F8&a6@*QS*=k^9surn>tZhd{nTNseQFrCQEjPmAlYdH5KmBj`?<{uh3M+ za2y80E`8dM3iXf>5Ju{e|LY2Y8$Sd1>#nS4*}YZFkJmz2zcl`q@0N?NZi`LOU9EqNGfowFtb?RPXhF~Q^HN3C zvR)3!SyEhvx!4FV;W3_G4S@O$n^)Vb>X0Kb_kV)8XbY(6`(B^@*7s7w1>`zXHDQLU z&qlS*diQ<)ioDUVC|0Lb)cVN`62K}&0el&=^_iY`F$%cG>87%ycMogZG(4ABi6m}xRPtjlyg!CbEKTG%k^Q3iSfrps z3Bb$^wXw1vPh73)@w;P5^>kOocdGam>#Y^vX)?j(2F++Q{aYTR8|fMyrv4JE;o=9- zL_WuC6P6<*w-(ZWCP79ucdN%I@vQseGP=|Wk0IKBaXLNPlbfJBcGcB0C6C!jNBi%v z<9PIW+ca&LRH8sGov~qUV9r`^`jg2o?(O5l=!c_cGUZF!8^)e5A-*_UiOf!~O* z#bSvYCa&^}CYX!bjod*yts?FZ5c|b>NV=mvE>Y3x(JoINYDmx2sZ~$$nu|(kA$s{R zw)ywpYOA#Dlgo!^ju!))+cls@G8^GZ%;{71OyJ0CF4;8;Tj!pyCkz$*B4Go z@n~2$m5og)fa!2XL@4;n#;rRs-cE;N`{wB9Q$o*2!=C(F+yu+MZ!n2jJsg}o9*~^z zBfOf}S~TZje728;Md1A%rWsq-7VPEy%5GswcD({?O7BrKOIxq>C}etMGQ^ktq_2~^07nfiq-wCn{Ih4}U9N}Ejb?;A zV&+H27Zl6V#Ev$2!sfob+!>rQdFA%{GYoT7R!?4Y8j+@S#m|u}(tCwMh5VVyXHoa1 z)9ow6rH~lVHw5WN;J>kpsw<%cvUw7wWkALST!2b^F1(`QVZJ5>60mFgHawe+%D=*c zKeiD2<5*|dCmlz83q{4v!&hP)Ns%cGq(Y-+)_itejUIM*Q%3aQiyPC#h%JF)n|~H9 zw8Ayb0FW`~{X+F+@8iixVUf?3yhQ}1#Inn{hlZTjw2LvxusB!oKaY`zDP0}B4_k$N z_TJn>HI^Yn-yWGBW8c^i#zxqD@sWdl%Iq!3F-!VtvLq|Qu~aV zrTxOqwU|vB?i3b+e{bPq3}$kYi!NAkHDixP4XaI$Mc=i_g^a=h=Z_*et0o$lNfq&&Mg$?)LWpg5ksc_c zmw6d_l}{e(^7XcjGvtO7!D=`}<)h6HM|2$)eLN6o$K8;9_a1|$uj+XWwdq~+zbVDlgYVj~LSja~$%cg7^ji@9J)aUP z>1MFSRX91Sd&Gqu_A)NqHp}diTKyYR5`*T!1R*qtk}-tfZa@&2qY1g;6^f3*<>$C0 zhb+it^hYdrCE!jO^aPUpm=yj`hu}z$3#W)NHLBh&P;7sQKE3@s2S?@$cczdFw8(#7 zxQPC@RvsaJMvg<`m@+1}ZNwolT6?c(XhLuU`uhd$nq@3PqxW9nS}9>5-X{LfJp3b9 z@bD!u_L-2TS49C!>3@KY{}Y!m&TJ5f#+AJPw~s?`yJX|d{`JBkR!&0vbUxGPfF!-v zGat{Yn6)lcv$C~4LO3O&C`S>CUU9i|93@A z9bMqMsJnI5MgK*}KQv;0eikZO1!>~sC&3016wIos5YVI3{aXprK3ZB@M9nVLcc-jX zm6d3?1Oy1*H3G(82!@9%iHPns89<=zm9V>K;(rxpS=s+~FMQM=RmGs$+VH)c1p{&M z@v50Z+brxXEa8!nW+Vs`HuvWtM8TB0x;h_MO@8P-o5Vlz4PH#+wE--7(%|R2PwO}V z%?MB4Z(>h`T5&leuc&xV26x>pJ(+. +# +# Modified by Anders Logg, 2008-2009. +# +# First added: 2007-11-16 +# Last changed: 2010-04-01 +# Begin demo + +from dolfin import * + +# Load mesh and subdomains +mesh = Mesh("../dolfin_fine.xml.gz") +sub_domains = MeshFunction("size_t", mesh, "../dolfin_fine_subdomains.xml.gz") + +# Define function spaces +P1 = VectorFunctionSpace(mesh, "Lagrange", 1) +B = VectorFunctionSpace(mesh, "Bubble", 3) +Q = FunctionSpace(mesh, "CG", 1) +Mini = (P1 + B)*Q + +# No-slip boundary condition for velocity +noslip = Constant((0, 0)) +bc0 = DirichletBC(Mini.sub(0), noslip, sub_domains, 0) + +# Inflow boundary condition for velocity +inflow = Expression(("-sin(x[1]*pi)", "0.0")) +bc1 = DirichletBC(Mini.sub(0), inflow, sub_domains, 1) + +# Boundary condition for pressure at outflow +zero = Constant(0) +bc2 = DirichletBC(Mini.sub(1), zero, sub_domains, 2) + +# Collect boundary conditions +bcs = [bc0, bc1, bc2] + +# Define variational problem +(u, p) = TrialFunctions(Mini) +(v, q) = TestFunctions(Mini) +f = Constant((0, 0)) +a = (inner(grad(u), grad(v)) - div(v)*p + q*div(u))*dx +L = inner(f, v)*dx + +# Compute solution +w = Function(Mini) +solve(a == L, w, bcs) + +# Split the mixed solution using deepcopy +# (needed for further computation on coefficient vector) +(u, p) = w.split(True) + +print "Norm of velocity coefficient vector: %.15g" % u.vector().norm("l2") +print "Norm of pressure coefficient vector: %.15g" % p.vector().norm("l2") + +# Split the mixed solution using a shallow copy +(u, p) = w.split() + +# Save solution in VTK format +ufile_pvd = File("velocity.pvd") +ufile_pvd << u +pfile_pvd = File("pressure.pvd") +pfile_pvd << p + +# Plot solution +plot(u) +plot(p) +interactive() diff --git a/demo/documented/stokes-mini/python/documentation.rst b/demo/documented/stokes-mini/python/documentation.rst new file mode 100644 index 0000000..f6c5324 --- /dev/null +++ b/demo/documented/stokes-mini/python/documentation.rst @@ -0,0 +1,165 @@ +.. Documentation for the Stokes mini demo from DOLFIN. + +.. _demo_pde_stokes-mini_python_documentation: + +Stokes equations with Mini elements +=================================== + +This demo is implemented in a single Python file, +:download:`demo_stokes-mini.py`, which contains both the variational +form and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +This description goes through the implementation (in +:download:`demo_stokes-mini.py`) of a solver for the Stokes equation +step-by-step. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +In this example, different boundary conditions are prescribed on +different parts of the boundaries. This information must be made +available to the solver. One way of doing this, is to tag the +different sub-regions with different (integer) labels. DOLFIN provides +a class :py:class:`MeshFunction ` which +is useful for these types of operations: instances of this class +represent a functions over mesh entities (such as over cells or over +facets). Mesh and mesh functions can be read from file in the +following way: + +.. code-block:: python + + # Load mesh and subdomains + mesh = Mesh("../dolfin_fine.xml.gz") + sub_domains = MeshFunction("size_t", mesh, "../dolfin_fine_subdomains.xml.gz") + +Next, we define a :py:class:`MixedFunctionSpace +` composed of a +:py:class:`VectorFunctionSpace +` of the linear +vector Lagrange elements enriched with the cubic vector Bubble +elements and a :py:class:`FunctionSpace +` of continuous piecewise +linears. (This mixed finite element space is known as the Mini space +where we have the vector Bubble element for the velocity +approximation.) + +.. code-block:: python + + # Define function spaces + P1 = VectorFunctionSpace(mesh, "Lagrange", 1) + B = VectorFunctionSpace(mesh, "Bubble", 3) + Q = FunctionSpace(mesh, "CG", 1) + Mini = (P1 + B)*Q + +Now that we have our mixed function space and marked subdomains +defining the boundaries, we define boundary conditions: + +.. code-block:: python + + # No-slip boundary condition for velocity + noslip = Constant((0, 0)) + bc0 = DirichletBC(Mini.sub(0), noslip, sub_domains, 0) + + # Inflow boundary condition for velocity + inflow = Expression(("-sin(x[1]*pi)", "0.0")) + bc1 = DirichletBC(Mini.sub(0), inflow, sub_domains, 1) + + # Boundary condition for pressure at outflow + zero = Constant(0) + bc2 = DirichletBC(Mini.sub(1), zero, sub_domains, 2) + + # Collect boundary conditions + bcs = [bc0, bc1, bc2] + +Here, we have given four arguments in the call of +:py:class:`DirichletBC `. The first +specifies the :py:class:`FunctionSpace +`. Since we have a +:py:class:`MixedFunctionSpace +`, we write +W.sub(0) for the function space V, and W.sub(1) for Q. The second +argument specifies the value on the Dirichlet boundary. The two last +arguments specify the marking of the subdomains; ``sub_domains`` contains +the subdomain markers and the number given as the last argument is the +subdomain index. + +The bilinear and linear forms corresponding to the weak mixed +formulation of the Stokes equations are defined as follows: + +.. code-block:: python + + # Define variational problem + (u, p) = TrialFunctions(Mini) + (v, q) = TestFunctions(Mini) + f = Constant((0, 0)) + a = (inner(grad(u), grad(v)) - div(v)*p + q*div(u))*dx + L = inner(f, v)*dx + +To compute the solution we use the bilinear and linear forms, and the +boundary condition, but we also need to create a :py:class:`Function +` to store the solution(s). The (full) +solution will be stored in ``w``, which we initialize using the +:py:class:`MixedFunctionSpace +` ``W``. The actual +computation is performed by calling solve with the arguments ``a``, +``L``, ``w`` and ``bcs``. The separate components ``u`` and ``p`` of +the solution can be extracted by calling the :py:meth:`split +` function. Here we use an +optional argument True in the split function to specify that we want a +deep copy. If no argument is given we will get a shallow copy. We want +a deep copy for further computations on the coefficient vectors. + +.. code-block:: python + + # Compute solution + w = Function(Mini) + solve(a == L, w, bcs) + + # Split the mixed solution using deepcopy + # (needed for further computation on coefficient vector) + (u, p) = w.split(True) + +We may be interested in the :math:`L^2` norms of u and p, they can be +calculated and printed by writing + +.. code-block:: python + + print "Norm of velocity coefficient vector: %.15g" % u.vector().norm("l2") + print "Norm of pressure coefficient vector: %.15g" % p.vector().norm("l2") + +One can also split functions using shallow copies (which is enough +when we just plot the result) by writing + +.. code-block:: python + + # Split the mixed solution using a shallow copy + (u, p) = w.split() + +Finally, we can store to file and plot the solutions. + +.. code-block:: python + + # Save solution in VTK format + ufile_pvd = File("velocity.pvd") + ufile_pvd << u + pfile_pvd = File("pressure.pvd") + pfile_pvd << p + + # Plot solution + plot(u) + plot(p) + interactive() + +Complete code +------------- + +.. literalinclude:: demo_stokes-mini.py + :start-after: # Begin demo diff --git a/demo/documented/stokes-stabilized/common.txt b/demo/documented/stokes-stabilized/common.txt new file mode 100644 index 0000000..1fea095 --- /dev/null +++ b/demo/documented/stokes-stabilized/common.txt @@ -0,0 +1,84 @@ + +This demo illustrates how to: + +* Solve the Stokes problem using a stabilized method + +The velocity :math:`u` and :math:`p` will look as follows: + +.. image:: ../plot_u.png + +.. image:: ../plot_p.png + +Equation and problem definition +------------------------------- + +Strong formulation of the problem: + +.. math:: + - \nabla \cdot (\nabla u + p I) &= f \quad {\rm in} \ \Omega, \\ + \nabla \cdot u &= 0 \quad {\rm in} \ \Omega. \\ + +.. note:: + The sign of the pressure has been flipped from the classical + definition. This is done in order to have a symmetric (but not + positive-definite) system of equations rather than a + non-symmetric (but positive-definite) system of equations. + +A typical set of boundary conditions on the boundary :math:`\partial +\Omega = \Gamma_{D} \cup \Gamma_{N}` can be: + +.. math:: + u &= u_0 \quad {\rm on} \ \Gamma_{D}, \\ + \nabla u \cdot n + p n &= g \quad {\rm on} \ \Gamma_{N}. \\ + +The Stokes equations can easily be formulated in a mixed variational +form; that is, a form where the two variables, the velocity and the +pressure, are approximated simultaneously. Using the abstract +framework, we have the problem: find :math:`(u, p) \in W` such that + +.. math:: + a((u, p), (v, q)) = L((v, q)) + +for all :math:`(v, q) \in W`, where + +.. math:: + a((u, p), (v, q)) + &= \int_{\Omega} \nabla u \cdot \nabla v + - \nabla \cdot v \ p + + \nabla \cdot u \ q \, {\rm d} x, \\ + L((v, q)) + &= \int_{\Omega} f \cdot v \, {\rm d} x \, {\rm d} s. \\ + +The space :math:`W` should be a mixed (product) function space: +:math:`W = V \times Q` such that :math:`u \in V` and :math:`q \in +Q`. In this demo we will use first order elements in both velocity and +pressure, which will lead to stability problems. Therefore we use a +stabilized variational formulation. It reads as follows: find +:math:`(u, p) \in W` such that + +.. math:: + a((u, p), (v, q)) = L((v, q)) + +for all :math:`(v, q) \in W`, where + +.. math:: + a((u, p), (v, q)) + &= \int_{\Omega} \nabla u \cdot \nabla v + - \nabla \cdot v \ p + + \nabla \cdot u \ q + + \delta \nabla q \cdot \nabla p \, {\rm d} x, \\ + L((v, q)) + &= \int_{\Omega} f \cdot v \, {\rm d} x + + \delta \nabla q \cdot f \, {\rm d} s. + +where :math:`\delta = \beta h^2` and :math:`\beta` is some number and :math:`h` is the mesh cell size. + +In this demo, we shall consider the following definitions of the input +functions, the domain, and the boundaries: + +* :math:`(\Omega = [0,1]\times[0, 1]) \backslash {\rm dolphin}` +* :math:`\Gamma_D =` +* :math:`\Gamma_N =` +* :math:`u_0 = (- \sin(\pi x_1), 0.0) \, {\rm for} \, x_0 = 1 \, {\rm and} \, u_0 = (0.0, 0.0)` otherwise +* :math:`f = (0.0, 0.0)` +* :math:`g = (0.0, 0.0)` diff --git a/demo/documented/stokes-stabilized/cpp/CMakeLists.txt b/demo/documented/stokes-stabilized/cpp/CMakeLists.txt new file mode 100644 index 0000000..cc49360 --- /dev/null +++ b/demo/documented/stokes-stabilized/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_stokes-stabilized) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/stokes-stabilized/cpp/Stokes.h b/demo/documented/stokes-stabilized/cpp/Stokes.h new file mode 100644 index 0000000..7501bff --- /dev/null +++ b/demo/documented/stokes-stabilized/cpp/Stokes.h @@ -0,0 +1,6386 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __STOKES_H +#define __STOKES_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class stokes_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokes_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('triangle', 2)), 1, 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 4: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 5: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[3] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[4] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[3]; + vertex_values[3] = dof_values[4]; + vertex_values[5] = dof_values[5]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_0(); + break; + } + case 1: + { + return new stokes_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokes_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(VectorElement('Lagrange', Domain(Cell('triangle', 2)), 1, 2, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (3,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 9; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 9; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 9; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[6]; + for (unsigned int r = 0; r < 6; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 9; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 4: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 5: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[3] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[4] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[2]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[2]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[3]; + vertex_values[4] = dof_values[4]; + vertex_values[7] = dof_values[5]; + // Evaluate function and change variables + vertex_values[2] = dof_values[6]; + vertex_values[5] = dof_values[7]; + vertex_values[8] = dof_values[8]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_1(); + break; + } + case 1: + { + return new stokes_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('triangle', 2)), 1, 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 4; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[0][0]; + dofs[4] = offset + c.entity_indices[0][1]; + dofs[5] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 5; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 5; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 4; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 3; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 4; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 5; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = vertex_coordinates[0]; + dof_coordinates[3][1] = vertex_coordinates[1]; + dof_coordinates[4][0] = vertex_coordinates[2]; + dof_coordinates[4][1] = vertex_coordinates[3]; + dof_coordinates[5][0] = vertex_coordinates[4]; + dof_coordinates[5][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_0(); + break; + } + case 1: + { + return new stokes_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(VectorElement('Lagrange', Domain(Cell('triangle', 2)), 1, 2, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (3,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 9; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[0][0]; + dofs[4] = offset + c.entity_indices[0][1]; + dofs[5] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 5; + dofs[4] = 7; + dofs[5] = 8; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 6; + dofs[5] = 8; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 6; + dofs[5] = 7; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 3; + dofs[2] = 6; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 4; + dofs[2] = 7; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 5; + dofs[2] = 8; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = vertex_coordinates[0]; + dof_coordinates[3][1] = vertex_coordinates[1]; + dof_coordinates[4][0] = vertex_coordinates[2]; + dof_coordinates[4][1] = vertex_coordinates[3]; + dof_coordinates[5][0] = vertex_coordinates[4]; + dof_coordinates[5][1] = vertex_coordinates[5]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_1(); + break; + } + case 1: + { + return new stokes_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_2(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stokes_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stokes_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + const double volume = std::abs(detJ)/2.0; + + + // Compute circumradius of triangle in 2D + const double v1v2 = std::sqrt((vertex_coordinates[4] - vertex_coordinates[2])*(vertex_coordinates[4] - vertex_coordinates[2]) + (vertex_coordinates[5] - vertex_coordinates[3])*(vertex_coordinates[5] - vertex_coordinates[3]) ); + const double v0v2 = std::sqrt(J[3]*J[3] + J[1]*J[1]); + const double v0v1 = std::sqrt(J[0]*J[0] + J[2]*J[2]); + const double circumradius = 0.25*(v1v2*v0v2*v0v1)/(volume); + + + // Array of quadrature weights. + static const double W1 = 0.5; + // Quadrature points on the UFC reference element: (0.333333333333333, 0.333333333333333) + + // Values of basis functions at quadrature points. + static const double FE0_C0[1][3] = \ + {{0.333333333333333, 0.333333333333333, 0.333333333333333}}; + + // Array of non-zero columns + static const unsigned int nzc12[3] = {6, 7, 8}; + + static const double FE0_C0_D01[1][2] = \ + {{-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc11[2] = {3, 4}; + + // Array of non-zero columns + static const unsigned int nzc14[2] = {6, 7}; + + // Array of non-zero columns + static const unsigned int nzc13[2] = {6, 8}; + + // Array of non-zero columns + static const unsigned int nzc10[2] = {3, 5}; + + // Array of non-zero columns + static const unsigned int nzc7[2] = {0, 2}; + + // Array of non-zero columns + static const unsigned int nzc8[2] = {0, 1}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 81; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 55. + double G[14]; + G[0] = W1*det*(K[2]*K[2] + K[3]*K[3]); + G[1] = W1*det*(K[0]*K[2] + K[1]*K[3]); + G[2] = W1*det*(K[0]*K[0] + K[1]*K[1]); + G[3] = 0.8*W1*circumradius*circumradius*det*(K[2]*K[2] + K[3]*K[3]); + G[4] = 0.8*W1*circumradius*circumradius*det*(K[0]*K[2] + K[1]*K[3]); + G[5] = 0.8*W1*circumradius*circumradius*det*(K[0]*K[0] + K[1]*K[1]); + G[6] = - K[3]*W1*det; + G[7] = - K[1]*W1*det; + G[8] = - K[2]*W1*det; + G[9] = - K[0]*W1*det; + G[10] = K[3]*W1*det; + G[11] = K[1]*W1*det; + G[12] = K[2]*W1*det; + G[13] = K[0]*W1*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 288 + for (unsigned int ip = 0; ip < 1; ip++) + { + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc12[j]*9 + nzc10[k]] += FE0_C0[0][j]*FE0_C0_D01[0][k]*G[10]; + // Number of operations to compute entry: 3 + A[nzc12[j]*9 + nzc11[k]] += FE0_C0[0][j]*FE0_C0_D01[0][k]*G[11]; + // Number of operations to compute entry: 3 + A[nzc12[j]*9 + nzc7[k]] += FE0_C0[0][j]*FE0_C0_D01[0][k]*G[12]; + // Number of operations to compute entry: 3 + A[nzc12[j]*9 + nzc8[k]] += FE0_C0[0][j]*FE0_C0_D01[0][k]*G[13]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc10[j]*9 + nzc10[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[0]; + // Number of operations to compute entry: 3 + A[nzc10[j]*9 + nzc11[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[1]; + // Number of operations to compute entry: 3 + A[nzc11[j]*9 + nzc10[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[1]; + // Number of operations to compute entry: 3 + A[nzc11[j]*9 + nzc11[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[2]; + // Number of operations to compute entry: 3 + A[nzc13[j]*9 + nzc13[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[3]; + // Number of operations to compute entry: 3 + A[nzc13[j]*9 + nzc14[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[4]; + // Number of operations to compute entry: 3 + A[nzc14[j]*9 + nzc13[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[4]; + // Number of operations to compute entry: 3 + A[nzc14[j]*9 + nzc14[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[5]; + // Number of operations to compute entry: 3 + A[nzc7[j]*9 + nzc7[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[0]; + // Number of operations to compute entry: 3 + A[nzc7[j]*9 + nzc8[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[1]; + // Number of operations to compute entry: 3 + A[nzc8[j]*9 + nzc7[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[1]; + // Number of operations to compute entry: 3 + A[nzc8[j]*9 + nzc8[k]] += FE0_C0_D01[0][j]*FE0_C0_D01[0][k]*G[2]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[nzc10[j]*9 + nzc12[k]] += FE0_C0[0][k]*FE0_C0_D01[0][j]*G[6]; + // Number of operations to compute entry: 3 + A[nzc11[j]*9 + nzc12[k]] += FE0_C0[0][k]*FE0_C0_D01[0][j]*G[7]; + // Number of operations to compute entry: 3 + A[nzc7[j]*9 + nzc12[k]] += FE0_C0[0][k]*FE0_C0_D01[0][j]*G[8]; + // Number of operations to compute entry: 3 + A[nzc8[j]*9 + nzc12[k]] += FE0_C0[0][k]*FE0_C0_D01[0][j]*G[9]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stokes_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stokes_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + const double volume = std::abs(detJ)/2.0; + + + // Compute circumradius of triangle in 2D + const double v1v2 = std::sqrt((vertex_coordinates[4] - vertex_coordinates[2])*(vertex_coordinates[4] - vertex_coordinates[2]) + (vertex_coordinates[5] - vertex_coordinates[3])*(vertex_coordinates[5] - vertex_coordinates[3]) ); + const double v0v2 = std::sqrt(J[3]*J[3] + J[1]*J[1]); + const double v0v1 = std::sqrt(J[0]*J[0] + J[2]*J[2]); + const double circumradius = 0.25*(v1v2*v0v2*v0v1)/(volume); + + + // Array of quadrature weights. + static const double W3[3] = {0.166666666666667, 0.166666666666667, 0.166666666666667}; + // Quadrature points on the UFC reference element: (0.166666666666667, 0.166666666666667), (0.166666666666667, 0.666666666666667), (0.666666666666667, 0.166666666666667) + + // Values of basis functions at quadrature points. + static const double FE0_C0[3][3] = \ + {{0.666666666666667, 0.166666666666667, 0.166666666666667}, + {0.166666666666667, 0.166666666666667, 0.666666666666667}, + {0.166666666666667, 0.666666666666667, 0.166666666666667}}; + + // Array of non-zero columns + static const unsigned int nzc6[3] = {0, 1, 2}; + + // Array of non-zero columns + static const unsigned int nzc9[3] = {3, 4, 5}; + + // Array of non-zero columns + static const unsigned int nzc3[3] = {3, 4, 5}; + + // Array of non-zero columns + static const unsigned int nzc0[3] = {0, 1, 2}; + + static const double FE0_C0_D01[3][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc14[2] = {6, 7}; + + // Array of non-zero columns + static const unsigned int nzc13[2] = {6, 8}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 9; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 16. + double G[4]; + G[0] = 0.8*K[2]*circumradius*circumradius*det; + G[1] = 0.8*K[3]*circumradius*circumradius*det; + G[2] = 0.8*K[0]*circumradius*circumradius*det; + G[3] = 0.8*K[1]*circumradius*circumradius*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 132 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + + // Total number of operations to compute function values = 12 + for (unsigned int r = 0; r < 3; r++) + { + F0 += FE0_C0[ip][r]*w[0][nzc0[r]]; + F1 += FE0_C0[ip][r]*w[0][nzc3[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 12 + double I[4]; + // Number of operations: 4 + I[0] = W3[ip]*(F0*G[0] + F1*G[1]); + + // Number of operations: 4 + I[1] = W3[ip]*(F0*G[2] + F1*G[3]); + + // Number of operations: 2 + I[2] = F0*W3[ip]*det; + + // Number of operations: 2 + I[3] = F1*W3[ip]*det; + + + // Number of operations for primary indices: 12 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc6[j]] += FE0_C0[ip][j]*I[2]; + // Number of operations to compute entry: 2 + A[nzc9[j]] += FE0_C0[ip][j]*I[3]; + } // end loop over 'j' + + // Number of operations for primary indices: 8 + for (unsigned int j = 0; j < 2; j++) + { + // Number of operations to compute entry: 2 + A[nzc13[j]] += FE0_C0_D01[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc14[j]] += FE0_C0_D01[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stokes_form_0: public ufc::form +{ +public: + + /// Constructor + stokes_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "e93f366239c0a95b7d77687ec4280e2205009455fa7d3a92b0a8033a36e3996bf2dda5cb95beeb7a6f03157d0b4b0ac507ae0bf86be7c9dcf5cc992cfc6b564a"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_2(); + break; + } + case 1: + { + return new stokes_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_2(); + break; + } + case 1: + { + return new stokes_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stokes_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stokes_form_1: public ufc::form +{ +public: + + /// Constructor + stokes_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "d4604ad643cbbe4c46e97258ce6269f7ea258a2f6592eaae95337d9841bd3a9ccc2188d19f05ef1c9ab24601eef5358c6577d0860e27ce15f476e4bd101c4e78"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_2(); + break; + } + case 1: + { + return new stokes_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_2(); + break; + } + case 1: + { + return new stokes_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stokes_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Stokes +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new stokes_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new stokes_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/stokes-stabilized/cpp/Stokes.ufl b/demo/documented/stokes-stabilized/cpp/Stokes.ufl new file mode 100644 index 0000000..e4622ed --- /dev/null +++ b/demo/documented/stokes-stabilized/cpp/Stokes.ufl @@ -0,0 +1,40 @@ +# Copyright (c) 2005-2007 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2011-03-09 +# +# The bilinear form a(u, v) and Linear form L(v) for the Stokes +# equations using a mixed formulation (equal-order stabilized). +# +# Compile this form with FFC: ffc -l dolfin Stokes.ufl + +vector = VectorElement("Lagrange", triangle, 1) +scalar = FiniteElement("Lagrange", triangle, 1) +system = vector * scalar + +(v, q) = TestFunctions(system) +(u, p) = TrialFunctions(system) + +f = Coefficient(vector) +h = 2.0*Circumradius(triangle) + +beta = 0.2 +delta = beta*h*h + +a = (inner(grad(u), grad(v)) - div(v)*p + div(u)*q + delta*dot(grad(p), grad(q)))*dx +L = dot(f, v + delta*grad(q))*dx diff --git a/demo/documented/stokes-stabilized/cpp/compile.log b/demo/documented/stokes-stabilized/cpp/compile.log new file mode 100644 index 0000000..8c8318f --- /dev/null +++ b/demo/documented/stokes-stabilized/cpp/compile.log @@ -0,0 +1,941 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Stokes + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Mixed, CG1(?)>' + Unique sub elements: 'Mixed, CG1(?)>, Vector<2 x CG1(?)>, CG + 1(?)' + + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal Circumradius. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 1 + quadrature_degree: auto --> 1 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'Mixed, CG1(?)>, Vector<2 x CG1(?)>' + Unique sub elements: 'Mixed, CG1(?)>, Vector<2 x CG1(?)>, CG + 1(?)' + + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal Circumradius. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0580299 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 3 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 3 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {1: {VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1.], + [ 0.]], + + [[ 0.], + [ 0.]], + + [[ 1.], + [ 0.]], + + [[ 0.], + [-1.]], + + [[ 0.], + [ 0.]], + + [[ 0.], + [ 1.]]]), (1, 0): array([[[-1.], + [ 0.]], + + [[ 1.], + [ 0.]], + + [[ 0.], + [ 0.]], + + [[ 0.], + [-1.]], + + [[ 0.], + [ 1.]], + + [[ 0.], + [ 0.]]]), (0, 0): array([[[ 0.33333333], + [ 0. ]], + + [[ 0.33333333], + [ 0. ]], + + [[ 0.33333333], + [ 0. ]], + + [[ 0. ], + [ 0.33333333]], + + [[ 0. ], + [ 0.33333333]], + + [[ 0. ], + [ 0.33333333]]])}}}, MixedElement(*[VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {None: {(0, 1): array([[[-1.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 1.], + [ 0.], + [ 0.]], + + [[ 0.], + [-1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 1.], + [ 0.]], + + [[ 0.], + [ 0.], + [-1.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 1.]]]), (1, 0): array([[[-1.], + [ 0.], + [ 0.]], + + [[ 1.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [-1.], + [ 0.]], + + [[ 0.], + [ 1.], + [ 0.]], + + [[ 0.], + [ 0.], + [ 0.]], + + [[ 0.], + [ 0.], + [-1.]], + + [[ 0.], + [ 0.], + [ 1.]], + + [[ 0.], + [ 0.], + [ 0.]]]), (0, 0): array([[[ 0.33333333], + [ 0. ], + [ 0. ]], + + [[ 0.33333333], + [ 0. ], + [ 0. ]], + + [[ 0.33333333], + [ 0. ], + [ 0. ]], + + [[ 0. ], + [ 0.33333333], + [ 0. ]], + + [[ 0. ], + [ 0.33333333], + [ 0. ]], + + [[ 0. ], + [ 0.33333333], + [ 0. ]], + + [[ 0. ], + [ 0. ], + [ 0.33333333]], + + [[ 0. ], + [ 0. ], + [ 0.33333333]], + + [[ 0. ], + [ 0. ], + [ 0.33333333]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. , 0. , 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333, 0. , 0. , 0. ]]), 'FE1_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.33333333, 0.33333333, 0.33333333]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0., 0., 0., 0.]]), 'FE1_C2_D10': array([[ 0., 0., 0., 0., 0., 0., -1., 1., 0.]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.]]), 'FE1_C2_D01': array([[ 0., 0., 0., 0., 0., 0., -1., 0., 1.]]), 'FE1_C1_D01': array([[ 0., 0., 0., -1., 0., 1., 0., 0., 0.]]), 'FE1_C0_D01': array([[-1., 0., 1., 0., 0., 0., 0., 0., 0.]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333]]), 'FE0_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ]])} + + tables: {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. , 0. , 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333, 0. , 0. , 0. ]]), 'FE1_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.33333333, 0.33333333, 0.33333333]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0., 0., 0., 0.]]), 'FE1_C2_D10': array([[ 0., 0., 0., 0., 0., 0., -1., 1., 0.]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.]]), 'FE1_C2_D01': array([[ 0., 0., 0., 0., 0., 0., -1., 0., 1.]]), 'FE1_C1_D01': array([[ 0., 0., 0., -1., 0., 1., 0., 0., 0.]]), 'FE1_C0_D01': array([[-1., 0., 1., 0., 0., 0., 0., 0., 0.]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333]]), 'FE0_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ]])} + + name_map: {} + + inv_name_map: {'FE0_C1_D01': 'FE0_C1_D01', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C2': 'FE1_C2', 'FE0_C1_D10': 'FE0_C1_D10', 'FE1_C1_D10': 'FE1_C1_D10', 'FE1_C2_D10': 'FE1_C2_D10', 'FE0_C0_D10': 'FE0_C0_D10', 'FE0_C0_D01': 'FE0_C0_D01', 'FE1_C2_D01': 'FE1_C2_D01', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_C0_D01': array([[-1., 1.]]), 'FE0_C0': array([[ 0.33333333, 0.33333333, 0.33333333]])} + + QG-utils, psi_tables, name_map: + {'FE0_C1_D01': ('FE0_C0_D01', (4, [3, 5]), False, False), 'FE1_C0': ('FE0_C0', (6, [0, 1, 2]), False, False), 'FE1_C1': ('FE0_C0', (9, [3, 4, 5]), False, False), 'FE1_C2': ('FE0_C0', (12, [6, 7, 8]), False, False), 'FE0_C1_D10': ('FE0_C0_D01', (5, [3, 4]), False, False), 'FE1_C1_D10': ('FE0_C0_D01', (11, [3, 4]), False, False), 'FE1_C2_D10': ('FE0_C0_D01', (14, [6, 7]), False, False), 'FE0_C0_D10': ('FE0_C0_D01', (2, [0, 1]), False, False), 'FE0_C0_D01': ('FE0_C0_D01', (1, [0, 2]), False, False), 'FE1_C2_D01': ('FE0_C0_D01', (13, [6, 8]), False, False), 'FE1_C1_D01': ('FE0_C0_D01', (10, [3, 5]), False, False), 'FE1_C0_D01': ('FE0_C0_D01', (7, [0, 2]), False, False), 'FE1_C0_D10': ('FE0_C0_D01', (8, [0, 1]), False, False), 'FE0_C1': ('FE0_C0', (3, [3, 4, 5]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {3: {VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 0.66666667, 0.16666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.16666667, 0.66666667], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.66666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.66666667, 0.16666667, 0.16666667]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.16666667, 0.66666667]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.66666667, 0.16666667]]])}}}, MixedElement(*[VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {None: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 0.66666667, 0.16666667, 0.16666667], + [ 0. , 0. , 0. ], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.16666667, 0.66666667], + [ 0. , 0. , 0. ], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.66666667, 0.16666667], + [ 0. , 0. , 0. ], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.66666667, 0.16666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.16666667, 0.66666667], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.66666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0. , 0. , 0. ], + [ 0.66666667, 0.16666667, 0.16666667]], + + [[ 0. , 0. , 0. ], + [ 0. , 0. , 0. ], + [ 0.16666667, 0.16666667, 0.66666667]], + + [[ 0. , 0. , 0. ], + [ 0. , 0. , 0. ], + [ 0.16666667, 0.66666667, 0.16666667]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. , 0. , 0. , 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. , 0. , 0. , 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. , 0. , 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667, 0. , 0. , 0. ]]), 'FE1_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.66666667, 0.16666667, 0.16666667], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.16666667, 0.16666667, 0.66666667], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.16666667, 0.66666667, 0.16666667]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0., 0., 0., 0.], + [ 0., 0., 0., -1., 1., 0., 0., 0., 0.], + [ 0., 0., 0., -1., 1., 0., 0., 0., 0.]]), 'FE1_C2_D10': array([[ 0., 0., 0., 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., 0., 0., 0., -1., 1., 0.]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C2_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667]]), 'FE0_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. ]])} + + tables: {'FE0_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. , 0. , 0. , 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. , 0. , 0. , 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. , 0. , 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667, 0. , 0. , 0. ]]), 'FE1_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.66666667, 0.16666667, 0.16666667], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.16666667, 0.16666667, 0.66666667], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.16666667, 0.66666667, 0.16666667]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0., 0., 0., 0.], + [ 0., 0., 0., -1., 1., 0., 0., 0., 0.], + [ 0., 0., 0., -1., 1., 0., 0., 0., 0.]]), 'FE1_C2_D10': array([[ 0., 0., 0., 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., 0., 0., 0., -1., 1., 0.]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C2_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0.]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667]]), 'FE0_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. ]])} + + name_map: {} + + inv_name_map: {'FE0_C1_D01': 'FE0_C1_D01', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C2': 'FE1_C2', 'FE0_C1_D10': 'FE0_C1_D10', 'FE1_C1_D10': 'FE1_C1_D10', 'FE1_C2_D10': 'FE1_C2_D10', 'FE0_C0_D10': 'FE0_C0_D10', 'FE0_C0_D01': 'FE0_C0_D01', 'FE1_C2_D01': 'FE1_C2_D01', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE0_C0': array([[ 0.66666667, 0.16666667, 0.16666667], + [ 0.16666667, 0.16666667, 0.66666667], + [ 0.16666667, 0.66666667, 0.16666667]])} + + QG-utils, psi_tables, name_map: + {'FE0_C1_D01': ('FE0_C0_D01', (4, [3, 5]), False, False), 'FE1_C0': ('FE0_C0', (6, [0, 1, 2]), False, False), 'FE1_C1': ('FE0_C0', (9, [3, 4, 5]), False, False), 'FE1_C2': ('FE0_C0', (12, [6, 7, 8]), False, False), 'FE0_C1_D10': ('FE0_C0_D01', (5, [3, 4]), False, False), 'FE1_C1_D10': ('FE0_C0_D01', (11, [3, 4]), False, False), 'FE1_C2_D10': ('FE0_C0_D01', (14, [6, 7]), False, False), 'FE0_C0_D10': ('FE0_C0_D01', (2, [0, 1]), False, False), 'FE0_C0_D01': ('FE0_C0_D01', (1, [0, 2]), False, False), 'FE1_C2_D01': ('FE0_C0_D01', (13, [6, 8]), False, False), 'FE1_C1_D01': ('FE0_C0_D01', (10, [3, 5]), False, False), 'FE1_C0_D01': ('FE0_C0_D01', (7, [0, 2]), False, False), 'FE1_C0_D10': ('FE0_C0_D01', (8, [0, 1]), False, False), 'FE0_C1': ('FE0_C0', (3, [3, 4, 5]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.236459 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Optimising expressions for cell integral + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.00423312 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 3 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 3 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.207484 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000589132 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Stokes.h. + +Compiler stage 5 finished in 0.000930071 seconds. + +FFC finished in 0.508117 seconds. diff --git a/demo/documented/stokes-stabilized/cpp/documentation.rst b/demo/documented/stokes-stabilized/cpp/documentation.rst new file mode 100644 index 0000000..d2a8a2f --- /dev/null +++ b/demo/documented/stokes-stabilized/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the stokes stabilized demo from DOLFIN. + +.. _demo_pde_stokes-stabilized_cpp_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/stokes-stabilized/cpp/main.cpp b/demo/documented/stokes-stabilized/cpp/main.cpp new file mode 100644 index 0000000..5b46231 --- /dev/null +++ b/demo/documented/stokes-stabilized/cpp/main.cpp @@ -0,0 +1,120 @@ +// Copyright (C) 2006-2008 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2006-02-09 +// Last changed: 2013-03-21 +// +// This demo solves the Stokes equations, using stabilized +// first order elements for the velocity and pressure. The +// sub domains for the different boundary conditions used +// in this simulation are computed by the demo program in +// src/demo/mesh/subdomains. + +#include +#include "Stokes.h" + +using namespace dolfin; + +int main() +{ + // Function for no-slip boundary condition for velocity + class Noslip : public Expression + { + public: + + Noslip() : Expression(2) {} + + void eval(Array& values, const Array& x) const + { + values[0] = 0.0; + values[1] = 0.0; + } + + }; + + // Function for inflow boundary condition for velocity + class Inflow : public Expression + { + public: + + Inflow() : Expression(2) {} + + void eval(Array& values, const Array& x) const + { + values[0] = -sin(x[1]*DOLFIN_PI); + values[1] = 0.0; + } + + }; + + // Read mesh and sub domain markers + Mesh mesh("../dolfin_fine.xml.gz"); + MeshFunction sub_domains(mesh, "../dolfin_fine_subdomains.xml.gz"); + + // Create function space and subspaces + Stokes::FunctionSpace W(mesh); + SubSpace W0(W, 0); + SubSpace W1(W, 1); + + // Create functions for boundary conditions + Noslip noslip; + Inflow inflow; + Constant zero(0.0); + + // No-slip boundary condition for velocity + DirichletBC bc0(W0, noslip, sub_domains, 0); + + // Inflow boundary condition for velocity + DirichletBC bc1(W0, inflow, sub_domains, 1); + + // Boundary condition for pressure at outflow + DirichletBC bc2(W1, zero, sub_domains, 2); + + // Collect boundary conditions + std::vector bcs; + bcs.push_back(&bc0); bcs.push_back(&bc1); bcs.push_back(&bc2); + + // Define variational problem + Constant f(0.0, 0.0); + Stokes::BilinearForm a(W, W); + Stokes::LinearForm L(W); + L.f = f; + Function w(W); + LinearVariationalProblem problem(a, L, w, bcs); + + // Compute solution + LinearVariationalSolver solver(problem); + solver.parameters["linear_solver"] = "direct"; + solver.solve(); + + // Extract subfunctions + Function u = w[0]; + Function p = w[1]; + + // Save solution in VTK format + File ufile_pvd("velocity.pvd"); + ufile_pvd << u; + File pfile_pvd("pressure.pvd"); + pfile_pvd << p; + + // Plot solution + plot(u); + plot(p); + interactive(); + + return 0; +} diff --git a/demo/documented/stokes-stabilized/cpp/plot.py b/demo/documented/stokes-stabilized/cpp/plot.py new file mode 100644 index 0000000..c5efa01 --- /dev/null +++ b/demo/documented/stokes-stabilized/cpp/plot.py @@ -0,0 +1,9 @@ +from dolfin import * + +# Plot velocity +u = Function("velocity.xml") +plot(u) + +# Plot pressure +p = Function("pressure.xml") +plot(p) diff --git a/demo/documented/stokes-stabilized/dolfin_fine.xml.gz b/demo/documented/stokes-stabilized/dolfin_fine.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..6f071e4bdc5c7c4478a746fdd0baaafe3c08b3ef GIT binary patch literal 88283 zcmV)RK(oIeiwFQ7^h!|x1B{i;P8%^4h4(zg$onR~|JR7Xu20ZDK$Q%1q%c7wD$u8| zDY<47kJv=A#$V=KpW`z(cdw88;m`PdoDTCQ!78U=oVSPFG(T+8&mZ5vdAhs3y1LmN z_V?2~)ZO#(`eU(4zfY&9>-GBOED#5v633R2pmZ5;;|L>s&7KkrWCsg|grM(eZttn$nl>(u zeMUKks`xdCjAs4T~b#QC1nBP7QIXyhi6)|*Y_6X(ycW` zw|;S9Ylo7>hcAYpkn+$6WEzHyk0-17~DH|_z7q*6A!_S#Ag7%w;T19w% zwRNvpfo4>{4LnN$ndg1q*%KquiZLUO5JYgv@^ zkMVLzVi*Qt=#`B5-~VDI3zRNwCi^lb;vv*)iJeAk$}EEnxEHAj)3e8zhAF`y$|s}0 zNRxOtv+#$g2*7Y6i**N2;14y*-72X1TKDdRPSUBk56dL`gt&@{4n=Qv@G?EL$5V6w z4WiKmso9ph;|X983Y@dr`6<^3aNs0S49Ro27Xo{b%s=a|s^OF3xJrwss3v(@TD^}| zUu$^$4gjqws3};;(p$cbRhtD}bzTjZwpLpHy%yY8dqIp=vebE}S+D z8g*M+I0=zGbk{JH)bS>c+PxvLHVY*dq!Z`qCTXK!=Cn~{lmkE7DAbK)LWWWj9-?vM zU|AOO1}`n{?nRA5-Dbscu8T=~c&Tx4BAg`7$~kxAGDb}>hQz*yq-za>Z>2Z03d>z@ zYZ#m}4Ut;e94qjpqu+>3l+vMU5a zP>K&ljf0halYMK?8wac9X8YJ4WB-`WC=nLb|w5F-2Y-P*1QRB z%v5isv}1%M_@g)Co84g@0UkbA$rVABUyvuZHQ-@rvR{o6Pj`q;aMw+ec{&W(Hs(j~ot0|M6U*_SvR$uM)!X~PVsaN5nt28bH_vH_UHR3TJj zB+`%0`il1ED&4RO5b%^};?@q8zSxx@G?E;{P)15Nt7^H^*oV79qcQ|^BSst;*4af> z(ZZ{-z-+Cp{%cpzI*2?(mAgW|+CraBZ;3qYgSL3SC#WN#*J{CMs0K#G=|DuDGF8vX`N~YV0RWD49ajIY4_9O2rFW zQkVj5 zwZU-=GEE-jLKmvum^?0@|Jop?uGk=>$E&%w*DFX9uHSa{_~454K#JM0Q$~(eLAF4O zrrLQTM}{EpK&p!MK#Dt8gA4eG-r6zYLyFd5HaHX0Ux7yE_B8!ury(>c^vv;*g zQ1-51iO1emF`?MI(k2OeS8w94X}G}X8ZP5jEnD)hX(viu!|18Gm|trbxrY>T6Z=B~ z*75u7M}|xd@+FB4)_IAPn1C9JNEWqB9-CPmdCLrzyEc2<8EWl9zc{ zD1zUK!Ep7=YUfO4g-F4y)d{0C93}BKE%Md4sgiGpVyH!BT)-nVsP5-U(Ln1 zFle;JQPH-VtJt9h6rDT` zYr5T*ZyEHVQlCJr--l!Q2Vo?(dho&rIjHkH&nl3cTdiuB88-s@-fwpQKPXr_-9LPq zTapAJ2n4UhLs0L3vBlV!s{X3)38NjQfld;s$-GmY`Y$RbdJHtOSCklb1)$oq;ez|C zBf=t#lN3*c#e5Q`a!~-)-oUF!X4}R5GXT}1BhLZoa^?SksadD3^;sk?E5OvIA~>e? zFPKDi4CCbe@xfopo$Ptl5pJej#|~Gyr}|%qpVf)-7`Z#t4u7HXc+lZYv&zK5gQ@L` zOPOrCfl#&_jlNa)=hw zIJ7ePK-A{V-zX*h-WainD&HH_La1^vhYqTIY1ufvb4*?@<*izYSg*+*VuSf%@BvZt zIl_W*N0Pyxr11O3kxJG4j&JRwiyt9EL^3MuI7jUBgL>AY&b~J1uUF= z;E@AQ<>9$6b~+3GKpGUBsR!a2Ar@t#sEy2^y~k8RIVUttBXh*pZCI}{@?oi$GWdnX z{aG{(aY4?yrQwS395@V{XVTDo}mz(@8Hwp+AIzc?Hcu^kj>;6kn z3B;NpgyMMK=$(W$99zKecUDdAqSS*O?#J-A^4D{Q%QTL&yCWuRcD2{-ys!KJvHV@b zN401&myH5s+{z%w^X?y+C>W~%11LzyDcqI;zQ2gkJyaQfjodeO?~rKV!;aS_^Ck-G zpXv@L@qG6cvi^_42`VxI4iYP!_N-5BXkbo6!gVU#6*g(zGrzV5_Uo1!Agw9b4u4Y*|Yuo=Wp+jcXTyQzgUL4S9Wa2H6QFj(vhR_M~*1<_$uvhXMR zq>{pOpKKO!XTV~xBhPkna#!>dTRi@AChcnc{eDZrO^VPNc*O`$$I^&M-k6!E7l(=F1^jn2B&Ou~s1!q1KKLfUdBg=wmjqJ;MfrsF`CQ~t!CJH`ld z)ZuOCbBRA8aF=My`K+gY8a7%_YB!!!G|CgM{A3EzBg*})qmh|Ml8HTN52P}M@5T{< zZ`b;t2GF{h9K&vZ?mQBJ;)(uzy1!9Yv?DVR6&h9+$ru9v+#(i?t?+qG1k$Xb`dpo& z_9&$3e(B$~$g$CziYr{`aS?w)VkIxPPTSEi($Ai~Dxn*nx#nA;+Y*RJrWZ$jxd)^% zN!Xdv9m};(Nco9c#4n5k64$LF{amM8Lx%XqW)3@aUlwkx^{N!EnV zB>Q>Wqag$Qlhe&`tAsD={OTMhZA-DA=PCgK!A7|mviCj^X@h&%o?0`C-Q+h{jS%3UtQX0)3khHKW)x8KplNKq`(KrS^MG z@)@UTKesNWlbGyN&kRF#B{|TxV93zCP)cqyii)-VQ7SRc<2EBze*#uhDgi`eph=Pg zMbLawT7=^eSEi`0m%sw3*L7Nw9Owfy!jb_nz(#p;pwSc_?<6p#U6-CdKu!vE#+=tL zNrJ{|^CtoFy4USI8}MtsgyWH6B)cgE<9exEXJNKx4@rX}8eVeN?QIJ8EryM?iWjAA z_0xTeghp*WzA@_KtNuMoQsj@p^ozMx8YNAV20j07(QkhJSVDh~;@KEu@F|uS445uR zN)?Gn#jjSG%7(3@fn+Z62p0DI@o{BW62l;@ zCEMVu|HfA2?MnVx72ruG<`6<)PIdLGf)Q$rZQqbAXoZnfc2wc2MfYyf!CQL5dt%q5csMTI9#0xo13p?{DEh4E_o6oF@7x2@qk{eqC{ zq;P{dMIhQxB&VFR%=-T|4;o;&$?gtvo`oplLHF0?|J$09PJbVoeMX5Q#^7d}agJDG zyYB8%#`NR9Jb6(3_NQO{MF4kQ_rKUy+xcv`DGuAcp_b{iWU5>xsWFE%+cI62lG63WkSG% znr*Z@GdlebBGj*fK8-_92*003gSDGC2>T9U1l?*#Yf2=<9t#9{S$3KTwIGYPg7xYI zcxPmHD8U&DBD4rKfm)zsJkh~~#zm&a=c6E1&4s$RoKek=%um`>Xuh(sUF{N!J(fbG zJ%Y5ba-WkbEEMR-Vocm7EWWDUJEeTIw3~OFu@gGjzW@*_QxXYbYA$r!CvN?}!+kHS zigEKomkefCQy4*?IGlyIWN%W{9*vsmkoa^jF}NzI&=^bO?`!I$s;SU-UsvU9zKF!A z8x1AVZZmRH{uNTyd{@q(h>FP0KpKi7&T$!bgHL`Xhn*0{E+6Vim=dg}O@&4dMLJOY zVc}*?g+>KH^>Za|WvOFLg&tW*fQlTZ*j>|HXvMAqtoe3A@#w)`!SD)IBqlv!e;bw) zRA1NmpR)+I1DZVh0RX^<5`R}Usj+naUzf;n+El2o1cT^8?|f+JkB@6Tk}w2ey<7t) z2tN96>|k#u@z16J=5t+C2uZ$0;XUc8J-U+}E*FSf!}jK+!CRvyqV8iD^so|#{1&j# zvz&C=mcy&xMJ%+=Q&1#O7r96%V4+qypJc2mygLAe`s-7i|1H?}sNkm@{Zpm13y>@T zg}M)W1POVRY2IWR8Uq<`O)ye6g_|6xV{BZdrXv7_*85NLnO9%E)Sryh$jNSURmmt? z>i`s5{Wwvws!5f(ZBW>qZs%b$DR?p-M(DbSyRl^&28#_lysv9Jb=zK1t`?(aG@P)z|58PC30f~1&sS1 zWh@-PLg$ACiV9$cD%gO9u1Y)r-o040LSUi3k`$i0yp`Z5fQ4@F?w#5Kwei%PS2;x4 zqYZNvm9*y~a(#}RY6k5e>mkRC*KQ90MHEntVb?h{T(Xo;vb$PW`FPX_U^oDU)|q^U z8beu~2awQC1>8_|j9oa9#CnEn8(fH{pAF@v>SSpX##_7XphVQ9KV#D2(|WEcqR17F zLBITLj_uFyA75vb?LY{^&@GJ!i2L8zgZGj6(=5Q#+KwQXkoma^>MqLyk?#jNMBmj( zLcNlud?!Gmw|2Tg)_o%H;GNK2GBu5ZJd&v9Ujpm^Ftj^QWR!g;)VJx z5HmXMu;R6`{1U53yy_9+hs^#2pf|G?#nLr#r*I%&; z-IJVZ2v$>ZL?6V#LhU^FlNh!pLLp#icBr}RcDZWEJ78$X-Vog$V!5rCpva3D`xn$8~(#J+yxrZ0WA1>fTN3>FxLMlT0WxDnQuHf2X7=*248>^W87yHly;?S=Fcuks^ zfRMzGAS0oE(NcC@rEx<8p>CH}4&{j{C_Gq%$QPpuoK!yNl*IddGj*} zMbbtCq4nkG6=pvxKo_jho7jhVoIOEUMg47lmkP+(PK^FAeTSd`E!^XY~4q!=Ra-f|{w? zQzKpsD&p;OypvTx2(kbUA#$TkFmLLrmyj^%v6#yd)KnexncQV0(#44@*%@dw8F+7Q zK@n%`koLFFa9G$1W55}6HGlL<3AJ4b4TE|%CWk=nH!=PnwTGUDzAOkO9|vXeap=gj zKki3Gb(K*Xp9Y|#;5ZS*q~Se(`eX+y`ZO5H!g~j$6ZffAYDU-MEcN=&h^vldqoA1+ z4^7LmzIp1dxD0EbX2-=^=IR-@jPVAOT7HjQbk(?Hu7>8+)PQJS;U8bumLx$4!mcDX zLA?LP7WRW!wY53G)Y!JR5cBx+D+1(L_MnBz!VOM5qt3-CpiC597!35>HUysvJ`~c8 z!9W}IWW2{(ri!k?Ksz{VgnPAKOy;SO^Oux%RO_&=nsKPPSav%dPJ48 z+tqWiGg)S|RsPjO{Ga(k4AgmdT8D`M@G%f*)h3Jf8_KZ|l*GFc0PS8w9g(25Uv5fB z)+dKI0O&=qK<)vGH#`7ntqL1N-7-~x637LuEi&kReM#@9M)=BGxgQ%GSN}x|H>1XS zw@sfof$-#GvE=Gl5^*a5YT~2yqth<9QcNP=R3vudpHks~R8Z85CAnDV0R`0s*n{3x z$GcS}Nh)Z6-lq$S^$ENh1VHUl8dJk{0X~6}_?DiVeT%UP;ejr>grC z0rfnRse6$vh-aOB;TFsdKg$z(f!^&zKrQV3qHv~Unf5IcRt}Wz`_*#&ziQ#2;E&ib zxh)t;)AH|HPm0Q28Z_2oSi;>)#UPqNm!JGVw^X0t{e|m#%`YR@t<>j5JB_Kk1^gM( zgjobdZ?^crgg=ipT=k7#V$nb+ZjPcdbX2DMcunK&Ge85mE1JjOLAjyHtRM6rq2#U{)-|?jd^XxZ-@G||H0GTgbr#sg>)EFktR%H7hCUv6er_XM=@rrj8XQ24Ur2RNB4?6SmY#zIx-UVv zD~*M*$H^Gx*@3r|6KI#LrLFX+o_R(89h>8e?j1gBj7EJ{SFCyVFX!5FkHs}1`1wjd zuTh=QzeUeB7&&0!TR`w233LUTAn-EoigF7ifu2RoG%wfZ%1*U|Mi|?XrI)Az6w%Lf zvDlAe3}-_N0|#54711>w*2 z2)7_>0P)Pg8H!BICf|P2{Fc`5rH$NW?pC%^X!O&nED2idLD|w?wpowSfMJE|^n)DG z$>z?m7|NKIBc@T9?f z`2dyLD4Sg`AO*UXG1;cBQ0fgqGLs~C;uJ*{f)uF7oe9`S4Iyi9EP9=+cyh)!1Dfdg z8rw#tMgYx#?jm;@J(U?rykRq-iM^x!)t;a=RBtxDNcW>t`hz?f=!Q=~#~3Yn-cbRH zZT+t*cYEcN21fKaCq`Ags*dg^K-XQnFKcBsQKjf4Ko5PRmG>iZQULyc2Q#KCvD?&O zPylNF4S=k4$Y3LQbxVLdjojkdhZNsAY(#Wb>5OJT^C_wxtC3f2)|7x&lFc~BL!pyq zKoejGz0$>Iie*9#sLd?)oEi%4vKZX1kBC&?a^$HSze6l}U4<8b6zKU`d)wsy1aS%) z;@3~O@Q>nM#b<&dP`mbMzHwKh@z??S(3H!zt*BkFSp4(-$d2EmZia6N{n*{T^LvFv z2z12%l$kv@e9O^b$n+Yu)d&-^Y%~d4`OB9g(CP*ePmL_M6C)`h)Z8Emn&A45erT1v z0g6CNs>i3^5(Z{488pwUmUQKuRI*}_1^q?EkkFL8OYj;Ri|gxch4KFQI-?tbK^TUv z1O(!;|6&I{9gq8{2Z&l#G$c-JgMzk}D5TGD_NIx?xT5f=vvyN}|Yb)}7VsH5v6J;Ox}R>4T~>)!1q ziK<*zN{8IuhjWS&hU43qyCVMVQrG^cKzEQ73Dxn&hFo9>V}$s_c$;>{09{ zgANe-Y&d?>3bn_5!PB0^OPu{X@72B@YQiHvPL0BFonzB8 zY*Vuz!mc34ff$5+DU(1<{{OKBX@xnty+^HR6u<_%4;@xQwRa~1KirWn4 zfzYhT7pFn8Y7ulM4kt9S{dq(4XsKT~2-lz^9b(I9+~L_iwp8~0RNz6e?if~4uCh3{ z;oZg@(}SoA!DaZf9W(Wd;axeLCC4ry|%u=!r!Q(sF%J!7$zo z8*@VCFe~m8bwP2rllj}q_W?$<>zNOs1gKy%M7|E1_{-)=(Q2?+Wi+s!p*ZR-v|;j0 zzl}2IyDIQQLc=?A?XoNq-$fvF2-IZ5r8q{=TfJmhK6+oOywEUcK55*AtsEq}3=jq_ zrBVVRp)B9v!%&ToYu50tO0I@MJ^y4H?0&U4B~J0l@S(f+$=(EnK?7mqDU{Xtm;`kn z8&;*)B~I~X9A{q0dR{=}xU?-;M%HReF)TC=nu&pSJ2m7XHqCLFPKb492nD%|MnSz8 zaUQw~en#VigBux;WJZsK2oZ z`_>NiU;W>UKfccB$blGyp&i{2uNQFtjUD8}kDsUjCK=m{K^D^AMtrncs;Zs|rk(59 z<Cy_#*Wf=NclN zDmTFb^)@L6vfgqnZoa7G=In4a=xW_B1ey-q`dA30FhD>LepK~c37L}s|FreoIoL`T zCd7vV3TUf_-(>N~VaG_U)a)}{K+^>>7CGE+M!UMd)Xv{gaJs$>_}fG(L%+Zl>G)yU ztLRl13HWD@*7)%y*qi|ew8}Zk$QHm*e-M5~RdzQjTJl*$p%v=`PpfTI9Y2Dgb)HaS zYExAebxVu^NmTYwA|invsJUNYthw-l{SXIou)+4L%1}M{2P5#+hg_z`Yqr$FA58WR zxN{#T)%1@s`1fE`>Pul&us|&r`f_zh)CwkqQ>df9>`~P_a-emSTt;l&|0X)L98>Tw z(gWTu)*+&xXKXyfJzYIXrj6or1;c4=%_*WrzdDMv+69rS)5c};@Cvt=0zcD+mDaztH7*l}GEpZ(;8khkGO5<-v43~lTnwv*8`AmVFqf2mLxn} zMX{OOjjGy)8BkGNLrTr-%0`6fCn)xFrn`(&Q@M-Ni~hh2CL`y^x(H%Bv0n5-bSVdj zVn1y<#SssrL{mSIE_;ioFl{$fE}T*a^oWZl9VyTWKZzsP!I4|#;z6IB%T6zaP@gLF zxr`F$>puR8s6wB4ZQ_PXSIhmNFZ_%sB)QJLNpvod{~Xuc^&1sS;A4#O3M#Wec~eDW z5NHJDB~$%P+>Sy1GbJwvODF^s!XVH9b?n!4wI_-3EIU*4=@fY-B94du?1TSuTPlMr z832`0x6%>7;|&i^O!#TDVq_na6{B&A!DW?soZ&g?mvvONtvUXJgnkw6{}1BGPCSN) zCf^lM%%|PQJ?dYCcmzT*pLXh*QPO*>u}5$Q)SQwpek+EE3JyzcP+uZxaS>Go1f=P zzXqrQx_eL_GL?!%3XLR2Jg0r``0#ZmIS#`x5d4xhlkNY1Y(xX2QZ9WDkwB5ntrvH3 z!GDrPo-&3p*LI6 zJMUm6v!CYXvhXGU*=T-t3UaPX0{ht>%}aq{xuOZ|XDd%ac6<)tqxgaNCB5o$ud@Kg z6*Mw4!^{W-`@Nt97dUkqNfaUfS%gTUtn``yf9_AR@O)yKJ&6Jo*Z9zx|8`f7kuKQp z>vPjO@=#7FTgZR@MD6B(xziA$d=r50uw(+Av1bYh6?HT&~&z{aN+Qwe)bnVBv){TF>h=T%_Sewo(YR5vpE0 zmZr@7*9zSU-4vSjB-R`eXl76IXoho-=I_NGt-TKxElprhJcOb}GcSopv+#pQ_bdZ! z(Sy+@(7^|w(8;Hz(33BgLNC4r3I*R-fu`b{9&J1b720`dD|F`xqtMzKF}b%|7q)Qw9 z?xE`OOjRKll~VG4`^g8P15la9kuGg}e{-t3P+eu#M^za=|7nGSh7OS-Y~c8>N) z#fB1m%eW!kyD%@x9Q~1s4TataXtX2D$N)aac%=G=Vwx9SjnBB%?Yk&YEMR<6x!$ zS>oDE;lgA76G=rVSkW3J!;@k|!n9>U2zS$U${Os1zKnw4t00sKh}Q6=a-|7xY0%*{ zV344pL?lZj>zq&M+VwFWT$9T>p)8rEVuK7M6YGTYdVkFq&bODcTCnLj5biXINQHH)^ZEQ>*!gfjaxsgrD@*yJ{`fi* z+lXNp2)3lxB>QhHqJz^gKyC{lWazi{`>zVwLId93DGC-_{8LQgKxy{qik%*Yq{SCw zJf*>QkgStALk^rVw`yxZcV77Ig___YW4UIe1M0wHmlxu}jOe*Q5A*@k)+4kLfw0w~i$865?*!ZSXk6Z=*^ z%2Avpml3Uf4oo#%&81p%wj{VxCXAu{!S z*Tvp-As7em5J%w^MNY+Whcobr$n($uerlm7dJ|Z?lMAdDg7dtzKKu-cv zVFdckd4BlRgeO=h%?%Kl?PjW~crkRc$@dz9&=H8L&%M&YT;ACB?^V!1y2HLbi+ZUl zXdnUQWM-C}m>P(x$Fp`tPqyj}gbPt(P11)^eIZ%WeRF>ruZHnkRd1-ObL!DpSJJOv z|D}&;q_nj~h(d3zWT?zth|h|c&>OPq6h;Cxbmew(%I>S-nTt-eo^lfE?LHv>sq$O( zL)jJJNCY+TPSEAQ&^W)&_PigeU<6HwsSfuQkU0hnj>@?Wfgr zki=7Uif)5B@>%t{Tz&hXSi#~Jww_?fkyt1{+|H$PpU&e|ih_IaHpG(GN`^mzrnE<# z>S`cJ`}gjQ;}P=Cz>xmJ<`eA7kt$-j+MV^L4fWKhJh?3fPiJ$d$`Kmx*yggURa=}g zB(xHy4X&kJqH+UE+7scBku@nkQ>aDFninX}qZ)bK{(emfqbAfF*g?yLT;ODTv0fC8 zJ=b)>)+-oJzN$q-5t#J{ohq}cLj0rbjBX@`K_J=^IEIb;Z|q>D42Chx z{41>-#D3nYW=x%hXzfRWXzkeQX#%I=a3 zxPRHBRyL4n{oMrz=vNz4nN8Q3Wgx5*pI12z4T-s+q4yqySNkz80AvpsT%O=EAjCEB z@QWG1>3XKBZc#mX)F8=|^_mY+{FPZQjFf!~G`{9b$?Ld5Nm)_k5D;YdxEtVUUTPj; zsjZ;D_IGfQ=(#buG}Ql+Hm#`aHKZBCQVy|qe^t4WA*Kw=i!DZPtwc^?KL%R!9vLB% z8B0+7dYF!@%w#u3%s}$pKB+vLvFzr(n}E=hYHEuxm)(rJfwp0~+Wv#0?jSoZf88>L z92B*Y4Xn1hY;Xfb%}6LT_D2`kz^IYVJML7sS8m{_`#sM^Pn#(}KLd64+UFwpm+2W$ z>OBfxIfg9Ena?gi!D=bCF1LYFn^A}k+d4nukFPUEq8J2$=#|)r2=~9($HrxTv0WO* zF+qdiTcjCjh%;UYp#PyvrpC7)jng6TmZv;I+Q+cTGnu*Cd`M~c;#&0nTr#N60oIMI zc^s8CYcsYU9?WIjm8V>bIn_K>9PLx`)@?T0vgC^fqa$;I8#GK z&6SWRKz#dT`W^xp>c0USg*zX#1XA1v1PE~V`G4SWVUX{i1)3AQ`*1bE)Z9QxWc%J; zz6*+;ZL^^Xa_Ev*J6n$SjXD=g{sDC<0U*ZR>pXd{BUC#%fE>5kW;HV+QqGNA2~Lnv zT?*`KvtSz=Ceiw7Ejb#Cc+3ypzD56m(~q!oxq=`BfnZ94ikg37D|@imOK$+Y85QwI zHNRFH<`jY6JK96-{|%bkP61qxZTXMj-1aR1^juO2q?r|-dl>}ek*c(20Nq)A;f3Rl-c-Z_fqR1v95iJPOEMuBrbh(_NdKy)>?;k%PDV#AfW zM9Qq!#f@#+kRI7tZJc!@HHp+%Q|0IM7!dMbt5O1Q90~XCP8mJows1jo4ik z#JgsI2d$Oeh{clsNG|)@#$m5b8R&q$QzfIAc_?>;_r5}9LOOCR>5=57_T8X+|C$v# zWtSWTldqNbZdyN-T|tt=FbMln2r-8Le{7-cNYNXxU19a-}AQ|@v~ z(QK}8)sfj@;NtI~P(&vudH8^5ZMgJB6qxviC6KbHF@&48x}ZOO^9oW%+tp75&zf;n z@M)ugufkB$+xubTj`S!r1JBx9b5U$FQ^HR0tmZEfZ)gO#+*sgQ2XC>Z?v@G{W}F0f zBZX7rL9ad<@T`$vg(YU(liX)7^OpB6x}n>3jRFT+M zoKkK&3|awe2L@yY3QAIic0fpV}-3O%F$3?@a2EE9K;r?dTe<-`6TZus!wo-5@CHpUSNp-UMd49S9Tm(%^aDx38 zj3=6v7tLvMwEdfd$@?WX<2Y-|)51i?-#nXSow(C|Yf{Fn2XJ58t=(q_V>Ys49CDC& z{Afx?9;tb(e-~2u$WmI}RxU1(L6)_CL|Z~~+1?BeCYSUS@f>L8$H8!%mVba9MLijx zMPC`SbDOGah~jSFx}=IGMi}nm;s80;d~cV@12r9g43ez7a%qlL zL%|jGK$5j(frhL}SGv6(Bw4f8ZYrr3~%1He*(Ri@I>)^qcopwcNDfJvGRm1a;AjO(B7aq??mk#XA z*oKB3x4gW@upiBF-T#Cw1N#tm1x5~oFl?n*m;n1P_Bd@N{_bBLz()%K8zIRRCcS@O zB6E*v+qS%XK;PuqE{@UMUx=%$A;tfkdQzIzNX>=`A8A4DZe$Pl?giOs&c~(mbB;LY zu0T`o+Z?Pui{(0O7)AeO1}t&>wd~fG>i<_5zJ*El-*h04f_LqYT%r^AqmkWH)%+hu zpmpIWTX%w*!-kRbT!0$A6L&Ij5Hb!z>kMgR=5P}EfC#Nu>LKK6>HNY1BDCVxt*y!h zM-D@(1KGW}09RRQ+tCi~1o$}Ds-1(Kl0!QI-Zl!(w^>Sz*1c4OsIoSI%NuzxFf;y#9Fa0&f>xX&Q!L#Uvada94&hfKP8j@Eo7~oJBK?> z8v4O|meXcm0h@t^wvLd@xz$shiwZ%z7gzf(-j~~M1Y7q}j&{JG!-?4-uyx?(4S3%@ znvKdoquQ4!RU}WPq>9{bZ9=VUFFUDkQTK2lxpKp91sFDQ|l~t-Thr!A0^I<&6lewHnOeA*~dtg%wz968K~$xWMRjc=~sZ;hIp{*f7mu&($clFfFRY`Am1&Ca=;CAXq z1}B8UJ8)B< zNRNH<76x?VjLXW*ujD_LJ`(P7zG|@_mr_cO4K&Vb!Jra{ zP(O8}tT)?pog?{w7?%ckYmSVpC{#rU`m&!(EhF1s9)WIHd~1x3BGIuWB zxDHnYi4H^ ziNq|E9(=$ZX}50bW7RDg8`Syg8g>g;(lZ8?Zm&Rvl2yno@u?2N{rxFbBzFMHvmV#XP>)`cYRW{y+mdo_uBQrWV@+4frvC{@ZV5&;&DJ&rKtF z@A87vfd(8uWKg!{5(OG?41m=7{SaowLxbi$nEm!OmHiQRMoAKbAP~J0D41~ni>+pB^7z>4JpeUjl4%j) z_4g>C0Y~uL)P&13_Kin#P3kG9t5lxpKAXYU7b-0!4-4+C1FQA1k>a?Vzy2o2%jh(l=iA7#6`?LaL z!2C_~K9_(BGZp{?&fPCV#WvNh5e*nn&1E4|3UW|m-A75%nB}t07t~liP}VK~Lq8FK z0R=E%i?g|08^8cyk;kF>?=j9F%B~~_Vi<&dDFIr@|35aR(%76lng>K(g0dJd-%*r; zcX-K2##nL~Yh)#Zx1W=pEUjS};3OQjVS{3F1PuesE%|L3s-Y1y3|N~WTE`|{@@YoL zj2h<7DJ#-^XrG}Qa(`b#3>(fP*N_OSRGl3*Xo|xKy&0YIhv4qJixCvw)2S-U80}mm zAorOwbwLSZ-rpLrwRXv^K8#Y|S|g4#^jhbX`o8I`l&Gpd0-UuydLZmB=_voUsJ^~; zdEnPpFWp%ULym7ZU4h|T&sLx+3pi^Zkbyi`6UyaFGVd`rHs9>MMpZwZSx*OKklb!^ z)&R729yuP?*A-RAz**~V(+UufJ^3$FSy!mN2OuHxyE zBpty7Ne3t3sYa<$3c#%0P{So^-){nm7zQ2Z+9WpG4|#k5XKhbRx|gO#bptqS`@zA^ z*p^GtVgP5YvO}`1<&g_3aMrG@KZb!h^4!Qbvs6RY2w>J~{V^m;DNknrS*z|nn$jUV zw*io~Jelg-E>H>_34pA*le(I;a#@c|ioaG{ZGR}cqGX9d5OyWCQQ-a;d(z!U_{z*4 zfU(`JC?O>OJM>D66 zx5K$jA@LxGHA(5tu%+Nqki)uzOi%ZBQc#2yLou4|maj}kDvTu7hog4sM>yp}(!6LH z6>dX{o`NW={SvjQ9ZPb{z0Sx!EDB`ZX$VrCQ9KgT1@!`s(@G%gUe(b#x_g|P0_UTI-ch6p6Fo-yj6S@ZStWY`~JSAZlj2!p<)QLO&|V`uCx zcylw{1DJMOHzgSG4@}0ZGT6UH#!^}s-4bPLhd)Q492wC7l|X90vGp+r-*)62iK`-1 zST~W76En9+?Jbh7&MPV=hx2T2q7l}R3=rv^v$v?UfLW`i0#>+)nZB-3_=gHdI)EG( z1O?X8GwOo1e_D|2G@;zy-O5e}l6kYJy+$59YGIAAwj}rGjy)WV{miRteFfmzEebly z_e!ZsQ`m4Yx@p=Otff(IxLOQ~t1I4r&&R1)V%e+7yct@=y;L}L4^&rIfA^<9o5YTD zg4*hOLmI!UYS_gHimSh2@gGb?q%2Z{{S@7tA*ijcBkr;8Jk$R)%{b$V>Dixnx7mey zdGZu>z3D`CgPzd*Dvk>NrMQQE85r#}={P5$-Xz(vPSnejHz=;IesV+%j5P%5P1HdX z;W|7}Tur)5*1s`*T3FQ)CYrrGel+(2uAqQ<9Wq&}lMbMqfQ-NAB1!wdL$Qj)(VPXIV5yr&3x6@mW@GBe-In=G4yGsxfP+@Mw!l9|wKL_1uPZv1 zAOvA8sTk4z8+))bM|eLez`0x36%rsJFiGPFmGh&h)qwqNyz5Tcj0&T3-lQI7{9mc= zgCbYsolWk4d@_0&-QVwEIB4XXB>*xieK2Q_I}LQ z59OIu_d)Ti=}<=Pib!5f?j#L-F^SjCld{^_Ecb3Y_y+2A1w{cyn?*GJXS)&(le{^am2(MFN1 zD>JN`>Dzbx5q5345d$IYN|^x$a{r4Jny#HnmHW4=RkF%t9$*_IH!gsz!!cq9@=No} z0g!dC@w7!IRqK+^1|a?vTZnrsDR>B41>8nWWa)Cn$QKUJ@lUU#pod6Sa6bMEAMRFi z43V59X0PUZw=~xdpsag8j&wh~sJYDSfwJ}u*dcA0H+d)$WnF~E$DK%#hXIr|I@xpj zVrgD9Xv;cglZ$pvX>uU3k@R9_)$sdf&)tmzlMRPvug2{X=cF#91Ne0H#pxTe zMco0`+8>$QOz^2MGonpNwe$S&$7=iH>xzyj24T=jjaJnC7ki<1FXW2>Jge0h34)r{ zS@XydAUBg$PKHETF(&k+n^bz&3@X*{jmGvob|Q-rPw;Z6?iG%1h^M`*k^e)^XQ47%o(3B1ydQG^W zEwB~ul!0@GrDca!apbZ-T-=3Ykwt`v0qu#{&VBya-t>&~ZSs=zAFvZyYlOlMtBF~< zhzx#PWHAFW(Gnw`7YN&10cp7@ zRc0fw?p9>MtrP;1uO`>O>rG77J8vs~S&>3CCTqsh=EY{kogw3^%+ZEOP}kvMm`%E9 zRXpaI;Q)C^la=)l3H8k5ds}h?{)*}Uy=Hw(Fhw4jODx4@D?}))H3wNoMo=EYE#rb( zK|HcltM|M%W;G(~kk4!0YOKpN1htZ@DP>6u^g%>c+NAslyMhCUVGyft8htd%$`EoHX^NZPXkMn_>J=f<>K_};zxao38Ih(b z21iy3g_9c;t*^3dXCKY)Ci%#R^cBvIDEnLXZhO?ueL*k7{VVjmcBS$SRhtIwQd7!DUYOJ?zf@eno%+! z<}nFA>|C{!V!%Lttl8{+$?eQEk3@oZE#d90Zdnc1Q25{dW+TcvBh(Fu^UgM3rC`=| zAKFZ>7^bl*2@Xacy+$$Y8bvcY_?~b9yFzJg&f|azFCUUZS@YR!kwJoCVIP95J&2c1 zj1>wUm<8n8n`AF7T`W21d*!Ub*$ z!hXn~cYOG|k{bv@7}gTXfrtJZTY|K4UM?US2^b*8N6qfI&qbMXs4{x7W>WW4Ix)3I zNM-#jhnIv&krxJ))tv$9>nPSZ8eF|2;(h15?Y#Usjor)>u>Sk&tr`UoS}hgkp(bAc zn*>)4!|Q8p_4*3q88hto%J)T=@sL@(13txtEZZcz(azlNT+4+;Y_(3mLFD!&%Rbs~ zF-P3KkoqY!wrZ6x+(UAk6h&GP@0LsNro`X&!iM?RMSw>BDL#t_oUtWlStm*}l zXLoala?n-VV?(PEBgho;!4^T6&ErW2#gn>hAgff38=l{?DC<3>0@soV5fsvoV6?>T zrb&j^GaYPXoDh*0pH+S=XFyXk_(~NfM}%&@!AT951C5DA8;~s+3&_>0<%Ky57)d~p$)vPtH$zhvGyx=JH zB|mqm>QI!lx`39m+FNl@(2Di?ZV$Fz)*yyaeW!=ku(!#R80F2qo)>n&JIU{w6>Fdo z-fLUhR)AKl;8`bGP{rw>6YG8^u}Iz^a*f4!(^-%ZX3N(}*v!yeTIK{0dE~HCR@d7Z z;)gyR&ALih&89K5)LuvOAR4jSuTZlq87PfdBeIK>BVVMbub57(Su|j+)Ap1b!n(5v zujXH@Cu7;!xGdI>!|M{b}Z<%N7iD1y6Sdk z@84lE)F`V)l<*eKCPQ+v!3aG>#?l!TrK-;S_tfWjgIcQnINs)ZtlijpiOk?xYegN< zM~Rj=T{oL_xPJ5+DVxpii@gWr8tW(Glid_zT33QSN?7%Ki6LW0q}u{$5^%orP#+-+ z@?{dPeGzsBSrUUF5WSL$V0r(G4fMRGT+FN4^@e9UF-pqfLwNUQnR;1WcST3nKjtQv)?2S9N(fA;EQE|nrmtKqEh zGC#66`gx>PBgdm=r%aeAts;1)UtnN$UYKKd)*SMF_^5C*my9+ z9~YVkqhI9uqC4nFqAglrMeb2lSY3Bm!J-e|cjGdvJ)#op&=M=E4MWg~Dn$e=0`f>4 zsf|ZHwN_YtkO6{f-J|AlE3BD(6M2Co!kRnl%3~YD zW)T9cxv?~;l6|^^D?os?BF^ntCQYvR1R>U}VIGa18VGUWC&XH?DKV{VZ2bwH8kFd5 zDj(diw=W^qlC|MAdP?@oK5fh8Huy0E{mUt4*?DJRmFk+k4j=mJoaaeCw)lkTs{suP zWji}up9cxC-aWeJTe?-Rz>Bh8LjG~*vGHF5N3yw->TU~rYKXFy5GaYL)$}<64VDtg zQ2f`lrchYQBVES^C5z&YsQ9Z{`)GEgjdkrZ=8*_}(7;Eham&bG?HAHY?#-GcLj2YF z37`KPu-MaaoI#j1GxCvNZN8}E{eduRWHrr@w7V?shLEE3uWiKNvatOq2(#9$@s7?~ zIe&z7Hs|J#EcNbTpB55}(Z|$vSF`_{_^YGIvo?zbHzx||1oZEI;lqxPKQEirLIvSR z8a1n~v_LmIlvC}Bi=#l+hAF{?JU0&a1VPrK?@1M6HERlp$M7oT4qbdV2P)!myei8R z8GKmfG;9^ES3*fUTiRvc?HK{zQejz{lK=nPeh534B!)p4hF*zJ4D$UiR@_dJrVDkK zjTcD>5Me$2l--_@vqs%-yOdx%lS>Ed`*Z&40f3zn*unY?HmseEt~C#W9jv8&CVzj! zsSnuF>d}6E3}rWh#dOou?{Z~6tG$opntbyPl(crpqsv|==R=3A_;LgR&Jjw zyAlaF)XS0`93^Oa?@kFW5ejB!-A7V0A|2j&O06 z*1eN6P(e7IKnns{S0iAimLa=K0JEMU%$*s_{--tmjVpvE(P<1W)1iI-$wL$_+i2a&I4Q=w z(TLZ`EmR@oA*6^+J+9O+Jaz%JG^-QA(JvRmQ^uGU(SLc~GuusyRN zk+m>`oRTB_BOwPZhveD4n@LO=69l>>({(>0NeU=725Ca!#U?=oNGhz`{3I~}St>r^ zh8DP%6k5+E1VPc`aavh+!C*l5Pq4C${2LSnBv)+Om5BQWaBz=>pSKOs&)KSOH`Vb zW_4|jyhiKZXAZ7D-jh@fH=|uk#=W?5NKjd0{Q2d`3fYefd$n&Tv4W52Vm1nCU?X=M zvLsQxHfzWU==0TLi9kw1*3Z!C#~NJCH7taX^*$H!#=b1HODI{#8jM_NSx+u?ikh^s zhSEc5OyV70p5C@-lJFdixfIxw)(%t-fV zPvz#SlA4qRv))ivX(u)x%0HxmS@$gd6ky%TXNYBukyT@Zu_!&%dYq}U>xL@VX2i0- z+IIh^nS__7lQLm*@H9BAGOKyb^D=r%dsHs}&FZp3v5u(J=(R;ndJPvY>`bnzG3Z5H9A^auh3$x88M^H!_q7Cx2>W!=haP&2F6sX@ixv7wM=xlTA6~$RiR@|!89q!kc6WrWH#V=M2^9v3ksT1)0 z&fNY^J3FLV;YV%`PaYNal*mg411UG|-FofFl9@}du4gw8@+XO~AHL4@x}g|^!7E|> z-hZ(|lk)jbHGp$`iERW3@wW_}07u*;Nx~9-q7x8~V>~iFQh)9qdM9j@Niy7#Z!3h> zo-l!Y-Ij6rs52u?D;?M7|?Vl4%4e zt>J*je)2ad6zx&26sdst3m>AzkQL*5a5saOE4c{Lag%5D0bemTsZ#Ox zwx<@mp3B{2q4K}%HLdj`DOD(JD*Vd-U zIl43m!=6*Ep`86bF3k@&AX&uBMr%thD@09)}b8aXGM4Y@h$o0qwuBh1nhASGEApo$-M&#$*(IS%)tINUGVB2z~|b6)n1B%|OPR zji5VpF(<{QDj|i!Tedp+ZMJ9@L`DWnzP=Qs^M7box989nrp%I0WoXt;sGngw?eWik zq~g}s@(~cyT|;Gv)*S+j+)h9Izs_z$)+SEt^H_k_=i=sf(^iyNeDdrLNa))NVROq+N<6^-xL;*+YXh{VDl8E`pAVAU@XX-(9jw;)0plH2;Ak==Z{$b;p`^X)j{NS|PJXqc6hP+Jf`dJ%SVSCP9}ZBw0TcmFX>&O*e!C+Q|#F+rw)VCDEd(ovlVCzj<9gMP)bT$DHWlhB~**l$r}UJ|tx5Ptoe5zOkwYqLOEtopV|wrXb zIP!l}ytldf{Myq9c`B04T9*KHAL6Ra)Yk=PMTN!e<$3hCkut%%rS{3?aYKFpfEJ{X ztdwhn{DAg>7)Y5bWF+cPsjTzNto1v}_Vy0@k{=g2ur@hRO zI}oz+CFza47fb}|-O7r+6Zr(qTwWO%;Q@u9VTQkyAV8Z@t<~A`;-ChpS@TP-6<~xv zzOF3WVi1IFNt8jC_ICfodrJ7q0;pA6hXj&u+OoQwg~9qNTyd`6j2?Zqd|%j8CabH) zJZvNv%s5+tho-44Yi+?tph4YtIWV@1N+GRjb^sRfxYJbx3av>dO{jh9qOBEavv$kt z*x?LUlm*GF34}adBj^uMP-_-_fuc)KWjc}tl0-7A#eThvW)fBxn|st9jcaD6$}hkC zd&vPr@*aAPVOs*IHGX%hzt8+2*#8Eo^_34na8I4KhB~Yi`hhT-G9W>Kw%*MKJfd$g z+FE@j`YiA&Y%q>U6kkcKXrk{-rE*H4tyv9))B>kwZr<~#=%N4tffSYNL@wiq1Ofub0wU4(g&9X75D-Wq zo|^9TLt*pQ1O%eBW@FOr&5*X}r{%iL;C(AhUZ;ae_sJXyrx-B#0YBOd<9(~U&G9C@ zp$R^*FaWLxMRd;xorO7^Yc_IJL+4p+ND6Sh&xgoamND>9C+u947zRNge5HU<@ctL8rc*!qquT>8i3!7Fh27s~w7+qa zr{;#>)YC>$;6qsalASTo2sZazF&R zTFaDmLa^33kqB6&p3ZIuZr!g){4sgEVT`sWZEPPQ`_Y57j#Vl__uQLytTNc@z3l6G z-12GY3cR7Xj~cwm!WE*{2=eHvc3u86=F#3-l%K{@LVX6*np**)=k*FGr2H(lc*LWtr62pP*sZ; zZp^fnt9RcDTIzGa91uNQk<^&duMWx@ZdtnDKOYj5)uZgs*>i6p%sTrrK$vakG!+fz zsC4WN3Vx{A`20<9QC5+nY{x|ky=8c!HEP&J2+JYe@D%Zk$VlRu0>%y$3d|725 zrzw>SL+<&(Q#_f6M%_jVG~=JRcwO=*rd^TJ`W=kaX3NcnL0F6;T$>_bb|n{o$U>Nl z*Y>9sFrU9l$NynjESs>4v!=q#rp!tQQ5V)AV=`5k3^qr8(8XD^$SuIi?(XQNi?iks zx+rs-1%uUK8nH>vioE_Fk@Ed26#ZVCtsvFPEY?CLI-d60djyLg?5*VC+RqJEYdR0# zpJciL*{hLlvbj%K*oB1FI!DQfn$Gr2QY!}4w}snNmd?FxXswZgZ9fgF^Nl)WSI}B} zNp7)QYX*E>H1Te0dwtt*v$J9<}^L?spL zXPD>b{M4I$GNgRFiW&CVpKkv{YE7Z6t1xj&U01{lQfmru2<58nRs>G#M;e+bv&Z4O z>M#~do9$gbsE8{T?UI~XbF1G$;~UM86w|Re8z-y}_xQ&#eVfftIAKk(vDV3PVJ}8Y zZxVJAhRxZiv<@U-<{x2aVB=5-!_bxZh7j0)u_LsNQ>pR|fT$?&N#ZKGQk>Pxvb3vFkU{!nP9b7lJ?WQ z{-^{3sAvsDVlj-C$s$xmtD&F{<(GFB3!9z$F<`c;Faa821-6PkkB~A<&%r&hpgFal=v+onnOYT>JCvw)%4dPyxJ z3ZpSLDHp%_8ci$mpvtt&YCQ(-HO^>{ssIUiBZzj%tOW$0xLRfFU8Q|i# zpp@lPuuHs;6TDTa2qTevw@7~)j&sVpc!8{uHGs9&t-Qn($a+seGYeeXRKw8latT_VZq<(Mj<|4 z0P9^b<5-(4UmbPU(G@gD=3^Ds{GZ`SrWlKQABYC{WE>z_9zqW-)vfAbX%K4fOF5a z)N07%H2Jyu_Ja6o?5fO$$t)qclC%xwk(4$(5_^Nrq2buWi zvZ}{Uv>%&GVelw;75>s_GWl}q5Q%?O)+$RVS1u%}thnIk-vw4$A>VOK5!-nfiQB70 z+)(K1@i7Ml8j_<3<1BA6H#dVx)L8^%vaTyG`jC-mYPtN4?EEr>Z0aKn3SQmu0x_(} zZlPD_?ja#eQPSctRpE09%XoaVtv zzlra>%Q6mXsPvj}*(2n!rXG-JuH=7%G*%yP{jqpKmpbKwG*+C^+*l-_g+f@PSJ3RM zZK+Eo$YTBF&XWykYCmo)*1=$~=nz+AbCAWF%3_jVO=aE~7Nx#+Xjyex-KvaI-?7oW z2URTORpEUrxm#>{ylnEL;dIPvCg&#uV^sGOVSP4Zfz#0U<8u7)b#BQOgdh;z(g+H= z|BVH5lR17Qy#PwenNq-h{2gYH2+=6W_QY0y2{YDxHtqR{WpcF%k391dqn`4vM>QaF z@ZGALQcOojHlQs=AfV(?8U>DQKvVhnxn`tH^708EVi6eJ1A>`v%(L7UGS_dk=c~Ndzf7f9-=p78lG}ZDa9Odn#oF9nFBM=iUZvx61T?Nq+HlZZ{OeAPik8 z;SrMk7rW3aVZJ;-)T&JjIOgyz8~xz7)t|aFJ3rS49C(S_pv^daBoF=IUD@PzROYu; z$gFu+UD;QAFb%(uS+k7l^7n3`J$ee6b%l0=K%I-winL``t$^4`+B2a#4u}CY{u?e3 zqt;CwLhGK&*10qR1v4P;5fqEeG=jc0?2)A%qpJ0nnTZX|fa6|s zge7T)QCNj2Xx6}~-U7Bv(b*mNle|M6p9W}v|u~jiw zqvksbT?MUGUPr|6M{5)tTI(I-d4h7CYyeujqdZqwf{E>Hw-fP~aJT znfhj}v}&=UW0XG7_4=pt0>O`h1qaSFe%*7dt0;Q=r(Sp^}L0m z*$Xa0uLkspE6(dFQ^;Ur-IeYGVizo}Fwj}I`x*{F>Si+7Sj%6FK)>lhgUL9sS^xjz zkFayG5g3GF=t>j|RcM9ViA$9|a;$~pIC9RFsK1!+wvsL6f=L-Pr+ zbv5O%)~$oaKLsuy9@eHhd~LvpM;>mb29j!QKn-X?W0&-#eX@s-DKw%aTKgPUJ%VI_ zLyYl0`a$ytmx>)yBF$?e^;$uPueMgtvRx0wvXO)ti|b|ng} zAT2|i)sdLr*CI)sGF-6Yjv^Pcrb0Ok7c5^FIc|c3YF*=kwSNsg#ngmSqm2ueSH{)j z<*CA=d?dxG$!ir+MJeDtJ`Uqe9`q1dqdO#!;R@n2gaY;lLg(1?Os0Zhtl>Op@36nG zJU@J$QI-QC2n4UBV>`2Jk23$dw=%-RcfM~QB;VRtwnLN8$}oTegV*0zJ)j*m*}!g^sG zuEOecX3me0Sz9X#g1x`eW+YyNYp=Y~bE$RLMPJnF6*iG<_I%4g(>V(^E8pOO^-4@` zX8Yj&qj+GQ{uAcl$wszDp|Sohxc(XLS~9ngSjP;c!I3KiCJc!+DL7?L`mw4T5^JLF zSeS0UYG0A{lc!mjPP=IrM(aD*?eoql#@-evXnk+ZUgz!FGgHv`7FWFU$>g8oi*+9> zL+al0Mpt58X>bG@TS52sJ5H&rsl$c+ z{ziWIy0#<X~j8NkaHwlvn1}t(R2{0VQiY1SBR-T&4pF zh*|5aIUc6e1~3*(M=qqqUr&{?u(w94G=FO(J{Kbr1>>S`px0~epv8GSfOY4;o5F7% z{66%J zZPTZr$yak=rH3A@0aw=AUl+WbxYMV>nC4s}t0dO~O=^8r^1We5~A1o{_VgqW{CQk+GTx3O3IHU~1phl7$VX=IY>lY3Fl1 zl(l{#AVuZ#{sJIt&y&sJ_sekLfHCVbPyDqO0I{&4cpeOY^ET{geIRT5(2w2r-GoS3 zLUQ5?ho!F9S=h@pmA;2DlTqjJfH7+&YIt)r0mfd5K|4~1FbFn2ULgzM!a_9kFayWjUa?!=#^kd_}u?u1y(!HQdRc=(Xt~5#Bpr<-x#i06I+s9(z==< zUzl}2U)M`I?5Az)&NeV>5vtrd3t@kaC&}@XAuOEYW&*U9fxE)4jO_gz@ZxU;^r}^j zZo_E#Ub8qPo{J5m=i63e{|BEB6%JL z7t69wd3C`WMFtlw=QB}d-9^QO#%VWg5;yX01Tw_$=6AK}jL8m)6p0<|84*&(`X_9X+V2NLPX!orn;LRbJw-|Qb4#nR$0Ybp=2kuX7 zjk;+kHry6i7_eF2P{P}2)3!^;p*8--RL-7_f>E<3T}F3Xr`R~O2ecJOc%8>SjsAeU zNR#`x&Cd4aCA)wJYa~q=bk?^@INkT3--`*uyETLD?&X!P*c{+l7k6yx_vlpo5IXCC zu{0O3<|g|p62II82GJ-1yddm(rE%MslU|0kujAuj0U6lGtMjpXj6 zA0eB~Er7G04&r&2QJoq86gX>_+j?(xx(ZQ3XI)deA9{TaE=+Fg!AZ&MeSuT(teq>y zCE~dWNc7gy!LXe34B2eh2~4Eq46pxZ<9D-IlleZjW=HbdNy?aWjBvTW zzN|HEf@dx18fQ-LLXZfqLq32vhwk8zLT6oxF-DQ_h6@`&UB8rkSDk6QsQ)$c$Je!G zSqy@(Eumu6{cmixll5Fx`x*^N|gI7ixxgDzOrOJ>=S$_>b2>$r&&r#KGj zg)H0&R!sL}Do`16)_NP)Q+$fhRmqA@dd*>j?ptC-k)zg-`YBdEO9CH2JgYfpZ?_MY zxqx`q_8QPHUzyZC!l1zOKG`xOC{k+mDa?A`C6C@vNRTT+K&zjzC|nYboGNVcGTf6n zdOIU&ZwCTegLai+EucRtjJc)VmsmjLs5NBN zveVnvTmeszqt>-Xk=TywDD`emyT#+=cLXv-J}pbu`v5C0$r5M>&RUEA^Rljk=>I%O zFt}l^x*BlOddtSv3v)$gRvKX0^St_&|CLfAjIK4sCM4{iU9Kaojoc6S$eyY_!6aaD z@~ZRh{}Tn%A7AH|B{2vB(JdJtp!?t0grtYdPig_2v}rY1!maNxT*BjL7Bxl{FdI^9 z^zRhHxz4kYTJQIWZ+9R&)FMS{wZhIA;esf~md%{euyU2w(J9{~F5&lqH|PJF@@CZ* z(7bhWyBi?~%duq>R`f>ZAF#$y4NivCdVFN=e=j_jX?04iAvVxV>!vzv45>Ay1+Iiw zms1j{HMk4pTJg14Vch=q0=o5Sa*`mmcC1=F$VM`%7%l=+aEnS`6_zP$sC#6(OZu6Z z!9=^yTfG43lt62#w9bC$@$lzTMTH$&-dn-nNqNdrXq{mrT1vJg6UQ8ukt6*C3UA6V zSVp_&7jcHuvRc|0VEJqG`)l61j=G^XEUUN~5e29KzP6E;MU=cs8%^?&B(qdZa$Y z)6{4x=+&(L(RSIc^J1KUxi^Oh>9yyNW34@EkH%-oi#d)vYq}4Z!Ie5QzL5N$?xB7= z$&3datBrPzzW}Y;`U8&DCLSrZl}Xp6u;v90&r#4cRl7Ja4JaUkg0R+FQ4fJ>z;#n$ zwF@5}6$Y-^TxhG(Btz!LSJEhp%I$NR+Y<+@Gn(1JSx4qZ-!}(lCpqOf+OQ@LnD3|A z_g0XIdK7Eyy)a(RqkvvKinY)QGe54nMyb5wQLO94JQPe49>zc#kT_&rgrn9BinZRr z#8Q1qb|f$jC}`5Ev+W9a1+D@48RiRhOoj}j7RljFb>d6rb|8$L8@Si5PrgX5gxhK} z(_Pw61uW|wEACC3s@hip%UaM5W4Wq-mB=WdS#Lh%w%lacYMr64l`&H_l%mnBgJ#)1 zL`~*K)Avui_`}y39We~TFmxpX7{mUH)#R>y>W>ECoP=PEkfm?;T(c9<;XSY3Ig73_ z>_ftP7Ua3A+-_4VoYtAR(7dhoHX3?phojesY!0zVIIVNT&7Qs4JPxH*M_mZbEmC2$ z?#_kkctKY)OuE9kPpX-=GJ=T()@b53*Pd`k*hHYUqhdPRu#Q8CKI?^Lpn-I&tC#|_ zoX*2CKm3CvoHRHD^!$jvq|YbPO8D4$xV2t7ZC z%I?K8&9EWEpcv)*t<10qR|^aIQN>o+Xu=E-6}3u{?tGZwtoLvZp&)wNX!K#7C2bdH zFFTArtooqMnk}z6tn}Sf|tzvM(XuZ8GLRPmP7a2kfI1Se4wk_`&LJTPu6`ohzr(RIf{0GoormNrnnAWVGA1!T7a4shqWTe5dD#d z8;z&ipFbc4RAIM-C}(&2)kH@`_;n{7?4QW9Mxv@-&uCpx5_#6EkiBK9|Dt{PIs+Sr zLKueb(h1-PFxh{xl3yLRbdm>%uHxDt9OwC8SxERNookhK?5gCZAuqMelx|WF(pjV2 zq2ipfeRWA@>mzIO8QqpavWmJO0Oqv+wtLm=y#}F4%jHgBaiBNnMOM{zt5cl;I-VaU z9PReLr%V|w&w$K0VS$AJEzcm;?0iVO1&XV&MyZG_L$g;6`K(2^qBCF(+ac*@ZG#@< z4*#mBnYBqmH7exVef@M(F2(8dWtEdE&d0l{`+HI z4InvSCbw{R>(+Dvk^{!uyYJZ7+8#i1zzX_AkumJ?E5es8GHiShk_6wxlpUaSqk1Hb z0XwH~d#2OWk(AJaoabu)zD#mk2PDkU<|>19))A5FL31mo5ISqh@mFZ3Jrb@?Om6d> zGqn~Ykj{Eu$!e5)toTDZYpv7rr`@c*6r{7BUmF|Ac||#aVvU-ogu9)j-jr)sE1bEj#lX-Go8x--bm4L=sl|T^*o1GF8Tvfuc2HrtYx&YLSE$ z`^d0}2D8RVA_*&Q;@qCr?Mz7pXN`#i(q%=^>iut3nrpe`@8Bc-F5YIB4O3NzJt9Pi zBXvE~m7(U04h`hhZ37g;*6c?m2r+7z*+Ye95Mf{a>M`?I_qG5aALS^D zQwysLoVBk3JR2|f+?0W#^;MKS-F|DZS)*eO{pqgovK_YY}sTT3Zo8<^J!b$}q4h#MF5~~|9dT?12y{(ZL0dz$0bSt|E zmuP%M15JR&P`B=+tZlRsP{wenMCiE~VUm&)9nDOQOOPYk6OD2td{ZIl|2lB)T?(tOY8$1P(q0D65PX z2;zCtr~qYc-ag1^tvvzE8mxOn??%j2hR|$dm7FU5Xl7?Zh{hcPE#W9uGoS*BEIHDK z%#s0)IOsn-(ob!Wwe5W?o?j#FZYtOVD+eomS}Uu*BS2Zb;Zk*BShTGGWpy=XNZF-J zvqMDxENqUH1Pegc;w&(r&GFpCAMYx9KIUbAe$21e^0qwx=4nXUGUR;w@6Yq|`|C9y z?{D9BbVfE9{8#t_C8oa;kiMz~iGCeR<)**M7T?;_nWnq&AwR?RybzAn~648yj z?ij6Xs@u=tT@^P~PefB)2<{MGi>Tj)X%p6Cb&3b~)deEUUG~q|ndL?d!!YzNJwaqU zO?>~0wWde|9-&0P=8MqwtW3P+3uj+pZ@n3(z3ca-?{DG5Y|31uYQ8R)FQb!}dASFy zomakm3a5$?Dgt%qr`Sr#i3)z<=8(+A79n#@=2(PyFBe}Bmen8;A1;hRd}l8xLedh1 z?Ah_%)=}buTl$tRFr5ZZ&r_yFNnUWCDnVQGcL|zT5*h5=ff8GPSVTJj$xJV(oonGm zM{KZyf+*+uPlPDvu=OA}xaAm1Y#4^kak+xDO^(o+vD4$6ZDJ>s*mWt$e-hgS&-&k- zVeZa0k4ep@fL+oJiAW~MR~cl*o4o#cMnj0))ot+ zBtEo=RT{W@*^b)Y$^c9GF~eV!q~{jt_&PMxbG*Zp-cNekq_eryn@^4IO436knw>Q; zXOX>USewKLTT{}e#$~Ll$c>Wt=n01jAZFHe*G_z}KLTx1m5lRvWD(vH64-SJjY9j7 z>x8H8yy62;8DqF%+0}cPR!m^fRmVVoRY}oKr?R z?2IPeX3h?*(S8^?7aM^=7>2IIH-Y^ZI~~o7M0>JsfCvbV?NDgM$|efLj(~BbfAw~TduOn$$}lSnpD?a?c;EiprQnzymvX(1z4HtC~3-y z0_zCq7`*)asQHmtxg)bc9~4$VXPe^48OVWjJU#AxOX?GcIc^gMh`=owXC`o{g9kEVvYZdHymfHPTS%OP9Yayu|Qg}ORln?qgY zn2?SGa?;bMTBIRZ3nO_xmp$n*RUTF$Rz$LAWS4f(@H_Jz*veAqv5p@kJ?DP#<0QKr z62A;#wciJD;RhuOEbvns^kFq!i`q-GdzI((>OYGFJ&5vfDp}5R(MT}QYK~G0S zTB^@37eZQTC+!uyRrREUo*3y}C{UM8;^aD~M|?5`igc6SuK>(IGr!=Yl3>W7W&Azg z{@&7_b3+yf>@=`rNRMKsknRUN6B9ZU0Yk1s>|pEYUX?92#q^kDs@N`-I8W$u zWuo&0p=qu#V0&0x-3O)~xzjBnf?6|oEq@x4w@eo2edO&6qY@y@^UIoZv?dERx;sIb z8#$(7V5BH_0CRO9ZT?%1GxzBO%vfq%J}o~ZJLf&#^|`T~ETfK$nVo{H-CS&fGC#{r ze`k!rf-*M}^t$1>RG+t6FtfZ#`_S!KMu%%$Y<{R{MB61eGjXQd1GQYngEPz2*L&vq zXO?V4IE&{cq5Pjf3o9qeaQ=?kI~?4J2sr(>qVwa~`e~jd%r7QdftlUoIC!q5#2x|7 zGHJe8THZ4&>VY+PS5`~*Bd}(f{28Wxzryj}vff(y`sepAM$Q1aVGss_UqS*L^#6}FV|S0%>74rj z4+bCNv`2C?dP}vypYzb>kU?m&GhVX*=bUQa`u?1LP!%8~L^BoX#RqlnZ73mA&*+nD zuyfEbECn6uYY^Z$1Y?daQ~G0OO5L6etC&Xr3Fet`W0Gt-EyM5TM7RpPWphx z5U>Jk$JDZXV;ONfE*n7ap^092lVIzrz44S>b1Jcg22Nzd{HI!dl8%fB!4V=dBVH zq=3IEPVSZl2L$^3{qXhZ*i!I!Sr8HKt2RWmDQ&=@gF9EHCa_sn8ZVt>crQ+eNXzB| z44qTVQ}E&8u!lomTl}1;4tw9Kh(ohm-h&Rgf2)R<3K8~Sq3am_lh)0j##DU%U{F{4 z5HCgEU)qb!q7iSO{}V4T`e)R4h=2P*r6YWea7lW50*xM6#xF+B1UG^Z27+J04a4#O zk0n}d7tu!Q%+0=T!M(W+vU`Jt#`q?s=(ql2dizj#aJv zt`;~3K-(d%l(&+}bmux)3m}!#7IF>RsMyu`=qv2O%?@^!f(bb)z_h?8hlku~lzELG?xIid9HY{qy zE36Eur>zcA?3E+345>X`rR<*U1UAAEO%3a<&-|ipYA%3#O`u5{SeM22OIYNk03@^-cBeDf41?@C(4llV&uDv8Q{vcP+WA+WV=&4tbJJHc z+=Vq?wf^c*WPT3*#)oEFdlUm(d3*xvv>)qg93j!JFXQZ{+VnmM&Adx)>DSIJ^k7!r zCFIh?#58eR<)sd$iK`4cbH@oaZ3p#Y0D}fsB-6r0ZHLGGF&Gu^7auhp*0rsWu}3eU zw(-na$1WK$mJGG)`r_MMj4Om;AlOnQ`GfjzESY3(&4bBRU@*c$%bvPpF_5qJ@gJQ_ zqLNWyfMsX-6xFVUFw8(+;h)WZv0_@X|f)eLarLDrn0H^&Oe7JbWITy7=K^&%TVRNqWbbcfOwj=@sp-x8Bg=M6GQ3?eWfN9B0v15qw()VZ<%q`2I{3i+(e51~>?WFcAFGl>);5KW3uY=|yzo0|*yAxOO`2BGUGw5cYMt!ASQ$ zwH4VeSC^~Evzgrv1)e5;zfj3PUlwGFSpHSOyH?t@SN^vr=A*zrj??zP?39NnnUIE` z*Ki%TRK@;8-~fU?d@QyJv4yos5qtBS?oU&bQ)ct%EcLpQHHEs%w$dc(^{qDnGu`sY z6xGh)tHe9M!ap$b^<+{4GT7xGxI4?mFCD*Au4UO^qF)p1MwN-J(367OB^yuB zeF!oUc!A!KNx|(@BTqE$hGEMb$$XF7(lY#PcXrMAAlSH|iZ;*7XlKEq;OnwW^EbB* zn}=ldqrd;bne%=64Etyd`yl*m-H#)fXLwG02D_?3Di)9= zc$?aGcC2iF=7hIzjbSooVl=-LkpxCfsbt#BDTTMcRau6uEoS?|kqW=sTTOWTT|#>j zb}lvygD?=C3EO{vZ3#6gKK8FHO_pPt$>Yedw*pxU~_Gf^8q;UBoO*(iv@z51YCkA%QC2D)(n7&nV?%7zg6gKAr0j4k zxUa;ho`^d#rLB#p*rFWah|@NPV@L0$aoF4jj)^sO)4anKd>|miq)6lOA4{6#z8>rF zHGvQ=3nvlxFY#Cl<(`OpKMeC)b*5b+?!YY+7)zF{MRa`IRq4$zO?|i|E+p-B%@BCH zENFKaHyffO#=1`afpKs6c7ktp)7+X?Wm~Z3F2giWvR>+&PF2dSi4G4wIghM-dhvBG zI1+;}482lI5}^0L*lIq0ph4>cAlgnyg6()hAott8@>7`={q3^GDuIA|Qv@c*)h|5? z-L>h>?aArw$fd~~u8(1%+&h1a6v2vr0{;+k7wx*4@+$wpiYDmTDV6fu*wii6g$_0g z*NWT2VIiQqU(AT%KXRAfb^b3LYW}JM*ew;~>wi9Va(qS<+`WrL>B0R2FERIGkb_Q$rt7OHE@>4TdAzQbND%_kFO)DpYfewzlso^gA)C zD6qWw%i8=ga&A`)!ypV@$$;Y6`!CinL>p2i190NJ{E)=Gl;WC(oHWyPM_{D>eehtl zs?X%%3D5sNyWZpNn@BEw!-uDo(-PAY$6}UDuNj*;N=Aoh%ud-Xht$CD+*R3igwd@y zhD~LP5~PoOSvTe4xh#!Nq2a6qO|m3_ByI2NZI^t=K{L)8v_kIDK>7Q|_11sPuupQ9qrdceDv#w)Z3QvW_Px#@*Z(#=kw{!P&AI5{iHXe^3F!UdT>P3U_q z775zD+R#_clN`0USViTQe+_vgU*A5}6W0Tt&1Pki%w!M;*1X-bA_?+iO8MI|sYfP> zVd%;m=qwFdlclMC2TP-R?&O9CRKF|pLBY~wk2Bmm&y}vb>jB3vgJ-Yuzx8m@!Xja> zz{T*MGohmg=_A5tXF?Y)SO;Ct(J)hh{I)ONQLCD7#j4leM$4#D*H*5iQh!PSw2K8N>7*9rMcG4h|OpG6Ae zRgr=ceBWeR7xwJ3GOYmL+Y9rVe98~_rcqnluMhlFX*-$6Q)Sz{G_HrA)lzv#dMEm1 zOGKBlH<$AGq&J)lKAsGw!x2FkBHnHbtVq zK2E019KOO6?48iypveA!3-+#b(-+@eTcio}mYfc?m&K(L(0gf)Bq{rAT)#U4E~X&i z^Gzqq(VC;~NRNJCVgfpPz^eIqHQCV$0PssF=F4DQOvG=A8nY;U0(!%~oV=^oA|;mE z4_zED!!-)@UOz*Q$Dqe4>J}K`FOcBgz_LMt^xo`Qxc5qp5uBG@=YLl1W$DD}mX=OUFz~-RW+vQt7a@m_ zt3=-lj+WZs%yzHTLP8E}Cy_JvS{MR7{8DNrY~BDY$Mj390!PGpVeZhTKj81f3f`;9;q?alLJ^W2_i!C{H&Zdf9r?Id|zyMJ__E| zneQ8wjZK;hq)D^7Xn61+* zrN6JpgYHugJG8pu>dwm5B&xInp}u`zTo+yuDgfNOMa>wnb;1H{0`@IAeJ-1s)xa^m z&+x_W8fxwLrnZYN-`hUg@5{1Tk6gbh_r2i1%!2F0-2SPh{jPmEM%C3qR!=0f-X>8?m#uj! z5Lg23;Kqb$^+W<~LLB`DTprs``0rHqH1xoKCTOPQ#b*B;>%U=}aApuk91Z`j>$}Zk zP%!mv9*TX^Ziu7Pzv~SshY8!0pb~2uRM3;FjqHST9G#DiHMJi&F(zEotJ~x4eE%6c zqa+4F7>Hg;fsJ_oi}fonjJ8V;(4hmU$;)Pw0DJ`!6}{NANdUg;46rQrmkI4RyVNSb zw;_mn{1$BaDXW5jFM=(y$mzFfzQv@}Ol^y((0-%Mq|>u?D`FA^oO2D5vaq5cB>}&Z z@n&U)5xI(wUvfk!qhw+52i z1Tdmyjwk1+C&zEoe5oWCfu%p3yiL>u$6`@#S4I4tQoPct+scLlu`Uu}T;~se4KX+& zuTrmJeD-MY?@n+tiG|P2|4q$6Ah<=75k5P@!TY}7y@6IGsrcdtM?Z^21H#0cm`Sso z!yc=C7(25ZhCv{PUWp|G$^9?Z{`d_lk?8> z)eH7DfxxkE_x4|mci{X6z7)#QyETyn5IlX!8MI>=Rm{F~8)(ttS+C8b#)9KBkb zB~O;=(Em7s;DhP~{_}Pno|Tr8+4fALX?Wd_^P3@&yNzxQ@-d&?B%E7(JN$8ezto>i zOYMWWlb)8DjAF3gRS>+VK^{gmtwkaP!BcttA+{X}Eq|6Mhu)`k+UPzwchA%IgfZz!Kx|EvQApr#EG-l>8gEiL0 zgJ|M}0yx&aEX`DJ8oD;#uuXCZLGURF{#`+sC9G5%g<1k^#@ggG-)3b9g0EnKBWAll z8iL?e0x?^D)emE5fFmIc!@w_*22A&5sK_N_*3XJ*w|My6-_u9Uqku2|`tizNFBI^_#N9*fssi`kx*;H6H9rXd zcdt#;y{w-}?f*vF<WZC^T z-Bt2(Z%JOD;&;`eT(EL-+#g23|<-qnb28vH64}ahC@PozgsX?4u zNCtwyK(BrnABZe|Pf8CFur?$Jfb&Kb8Jjl7lkn_+6 zBK_VxoRd^t`0NmDrLb+p66>&tJxG90JnFF}BnJs_z3O~w`V{Y}e@~=B$|~s>JeIku z^UQ+gL!!DYbvU-}f~);EXr@mrpZd4pLt!MI@xizL{bB6fjvR(z7}!$IF+r;T#_r3Y zVmdo1Kw~9-NCKC@H!1@c$#y=O{zwdT$PjqWWW6}}x5j;GKD+ILx0k8!$wv%y=+eJ; zJJ$0jJ62^)^UW|Fhp&3BS?O{Y8e+RD$5@!?aB-Ov-c_S*ZsT6iPgs}!{pUvDUg?6j zm-VJ*GM=!5zq)hC41f`7uc~`vOZjQyXdYSr-k6!5Fupmq{eCd_4c_S0 zNZ9H8&A?t&UHbRlU+7~4D?ZD$IV&hmz2lG(tz%}#v=na|V8N5D`zf21DyJeqf)r*7{_AbNz<=rq%DJO6_CJ zF*#`j+_Z2s2Z)vQwEF!JFBN!K^JUWVn(*oh&YOo0E6d&?R`Af6rGI~gu{4n{O?v!9 zN8x|Q&L{~&5Qd>w5(ESHzu3-x^pz1e?g1DSw9qt7a%kWK(I-`@2iDUbRtf;TheT;D z5K_JIhXMfa1ht7i$Fy0F3XzFag>v|?Sg8U4f6_eky{ZBMr-0eXUZ<^AshF1DKKxMb z;M~zC=eQ@7eEe;MB?4K5q;Fl8Y8zK+|_G83p8e(2mq-`E_R zy$TFmZL_uN{%gYEGV+ZIBegb5q7oQ*<{QaTwnwDUK!JYPQ=`;oIRXQpnOh;!X!UgT zzyep!>R0&MdpJ2bUY3cBj<8nJxYT|UI9z70Uy3vqzf2o(cQx^{?}`Mt=3Y1T5iyYP z6C&V&TBs*I3M70XDMPM!d0=8w60$kzUS@4Sd9c;%J1UUywWbX}&Z7Q0X`O>b2x2;Y zFghXx_{)^qOd_k>hF+ju>ju4Dvo6z<&RW8JI`Dp?Pr;#UmKk^7vBH^QS zyt|G>RRs-vBYrWePvIcp8!hQN>H!i+`1XTIFvEWa)xI54>%l~A;=qYDPd&$fYi`Ye$!_`vC+cy-+$uF$|+I*LP$^Hp?$;BysQ z5{DRHMkEM6MJNaQKf4umiay;29Z zINbkYTdB(PsI1)m>kndv4hb=~(;I!|Wzwl81Io)e!zA$MY4=?DU!~<`2Q}P%M`j2K zClqjnWj}{VQI!vTElC)~EhwS|J-{41xmwV`a;t$$Z>54T0a;g!W9ZQETIXrPPv$){pBD1R=&VnP{0vziu=SY;1mYn zI{Jd^$_uO`D`V23D=%=J;(cZv`BghGZP@N4xollqje)PGE{-SOpZR8^8UvrV<^uNP z8F46*ULq-bZeDq4bL1YpE0VCx94IK@hBBHn@>jV+5<3lgc`Eh$Cn3iNVT(8O{)@AV&ENjr^y-i29v7o4i+Iqvom}p z20pmEcZ@^*tXGMFud)m3hV|)C9k(1n&@FEeti-@)TB^k$Gv3!oRVFHV{Oc*%sD5dF zn-I3(vmTyGD4bB9YNYLs1P}ZaqA@9(esgd_!76V8WlYPZQexnPRLPD5h37shG4O#0 zb7PFz?YK*cfj?gSn_o%{=1#l8@h|=jBTy;Vh_7h=pA-72V2&dH)cxL*ae=XyH6;eV z0a5KRq`Q@wC^7KPfMSkQOlkKuG4Mgp(2@FidYy>DTu>?o6faNh*H8G-xgYX!dxl|y zFNI_KuW*2YFRuyE$2QD@4PNO$Pe<6|mu9HymKi)4AXfi#_q)81?#Q3uUM|U1Q3ImB z#i#@qJZB8iXd->ug)l;aa7M<)i~3E8fUis0RZE5y2zXYUU`!l7d{A(~pX340u;qua zYfEAn1VUFz))&41#rg$gtR)9hwdbq=N*w&XwIU1NjU+6{kwrhXi9U?}+@j<^5e121KnH$bX-;p>c~7|E;=)qhpa_ z$u=kgemUqP>eeCt``C|=*JkaC)FE~Y`5q`66zS^RQdTW54v*im?1Jjj$kc%N??=(e z29xnw$$uZx4sS%cFvx)0W30PE9K8{++ODh{%R}S3k^z6D#W_v5=Vz5@Kz_Tr-`C4f z0#gZ?M4o3w2V{d{pFCk&_S*#+@F6WXL^L5^A=i&T6AUomL}5^LOBT|oJWmaXvcK<%%kX6y)msrykPa*jd>^VMeE6X_U4#*Q3I>5NC>tPn zJ^_Nkb^^V(Oi6pJ2WjA!cvAR}Ity|a8G>o=USMh9d)u$=vOQ5jhG0qq?-?`W%M=B@ zC3`>M%QQ;Dt^h*t8&}TrRgX+Z@cVnB+WXb2h5uF7IozN8w_GClwwOu<^m!x{2Bk|u zkucotSDi})-%YgfggT{I;J2Frc9mc&lvK9c)hXSHO@ zS!dfziiDDTGBtW^zQR1Ol#P5~d)&nv4qUBt_@Rp9ky|0ptgM7~Vl}XzqVNZ~=l_FG5$yJ~cuFAGSdB(zwIefscKlnxZhQ zfI!v#lMm81bE@O+ht`uc8wFo{jBV3fHb>|(X856+5HRgP*wFqt; zYF;|Rq0}Py)9Ga~R;O}*t^mR9e(O6YlIsElN438l{xKgGAoyPmig*6i+UX2iPREeI z4}5`sIsBvSqd`ff>s##TY5PV^A2}3^#fO- zD%Z+8-0gGnycq7Bn83?2xN#C5I117N1b0^rTDD>qE>FbVEvJ>w;knbh^g(Flcb&g= ziQ5mHLt@?=;E%W8l@FMf!QWkQuBDt zzAHYAor?{_APhuTB0y}s|6;8w`5Bew)Bz$0A$-o~=avafAKiX|K$O>pNEzHa2*gaG z=o4L1`=g+u`t3is1o-HN+mKfrScPa!MAf0 z-kGM~75DCaxU!qRao`2tmNkyj^41(Fg`0yIu554V1rM}viW+;_$n~-Y5@myjUVp(u z10)Io4#%uHmwwmW>982xUI7{Tzor)MAmW_@az6Ah*_pM2(TcHg(R;K!Q_0(PtU;<%;M(tSI(Z-O&JvLhQ<_RXv+h3%{|BwcA$XLuUpenRchh;{yM1YtsfoFH4-!qG0?(UhauwkdB(0@ zjGX}zgD?mLzXVJZ<^Lb6)0V~B&cz2XnuJ8W+#O$`<7(kQ6H%G|(ls9(!dj~vr4vQA zC3yViu&!X>gP;7Ld13vzqAzA&Z-cFw1_QAK@5O<{WxDonOK=K3ev!1nPQnMb9xG>) zMt;D;ySE6`G0lBX_}~!M5WQABtj?=~#s8Vx?u+#;TzrEe#obQqi#38Bjve~e;t1EdQOLMs1-7A6 zaMNp4(D+F95&voKi@74NDt2%UHXe)d&Z~}OYdc?gBlYQkYt``K{m%0i&-;j_gF%Z> z;uf*dt?==gPsYyeSb`7)qA3BQ-pN0)yFVN(rwS$jYe(c|FKzRBF`5gr$vMVFk7`2v zdgB{Bm2wbg{1b6TB_MK&Sl&an*KUPk=0nP%ub)l$21bsGhq>l-WAn)$kg9SZh$seYROx-kxx=KzqNX6 z*=$Rfw0f<*=|Y1uYSxaot_)+zR{JDqxsa~7&ZyU+A8`4KCt1z--KCAK(9g_?eoEPF z&S+mMFQ?qlZ1#(M5Br6KQ@;fMTl>6xgYxU6ww22zexhT2Q$JAwG>09&K>2HSxQc^J zQMy4ebk#A)^!QO0=EoMv@hki}<7n4s6u|jOo`^G=-8ZjGU{5y}s#;-B1?c?A|K`>w zLYYcn=ZpNDLO!#}&yHW^pt8X-tZg+RathC8(0Y6Q%>kdsY|?|JrqmfH(DS3=&q_9$ zwTwh@y5j$goq?^xFbG6fib-tf{)@H$t2`pN;yM6Q9AgaU;{dc5UwnNgNDkuJN1O!E zeK5=ljMg8*cI_`CXzGiXk(X^oD=5|__7UP1Obp$*xo5E6=%WUFa!%2xmO){QqDmBs ze*DxP{2qL`6;>2<;^ZfezSyGy^wVojj-!BdZeNPQDNa5}dQwfzknWfv);mA`Gex(F ztS+(iq~u063z&->2U(SBL&d9>$Te2%r2hh9Oq50mrZXAHZ;S1n3NZcFk5S9*udzha z@3wHzM0JyJ`eM+@DLVoyw^;;` zDFqq>rq1;lAUP%iyGNtZeD;Uv3&WhiZfAdZp_o7FoxQ%f-y>93;MBxfw!J?Ga$?}r zwMSR)lZmW<*JKypeC`$ggM%w)+ zKlEhm3Tzk#Vc1KU&_MrxY}2$j2sYCLtac@3#c^zjrGNckH<+`YuHS{=*Jo^+8tA$T zg1ysn!fA-04H{8yETaI`kw+uF*9FBsS%>q_w;mW3a_m#*+#d;o-q^Osh9_3n^L_2u z_7ofYRXVb!_`BA2EnUDxDI@f4$|MhZI*YZRaC6zI?~_aiqGSd<@jb=g!d z8jIc9$sbue0hzx^bz4iUX{@P6c-PpVu3Bp4xxSk51`Sv!mvmA{E_15CgO^KsZN_gM zu1obfMTG3$dp$g73SY46NXnr$gb9mjrX6J3Ig?<>OmDruv|*XBInQvoZe6m(Yr%Mw zB@P7BK1ZaH+OWetx7`gcYO)VqlVsW%3(IlC+U0P~H@o*VtttE< znx(U<(p!7@@JywB29t^8xiN6lwo+t~^~61YVh8uX>Sp||5~D?9#S!)gN=#}U+ET3p5L84NBx${< zmtWnO0HpZgU&;IK@3Ct|7Po}?>rxTm$g5s>baoV)V^kEITnMSNcj|FnLRSGXK}_?) z;B_w$*23Ui8m+6v?`PW72~If}*bkr9$D_2Xg+rr25!sv{`yNCUrnT5B?VwX#b^;#y zkz5FgEf?OJ-+s)0em{(zQ4+%-2t==>9g2GYi?u(zor#H?128re71syKHZKWMUm@Fb zY?RWTsk`d-s(S5jTgeso&555!nsL|jTN!Z{3VKrgKy1Jhq?y0G;fXDU2%l+UL&Ump zFQF#Jwv=|^z7XJH64AWjLfb1YwD(flGbpCl|7#M$QrZ)0Jv5Kp_l~VmQ|8NEAFX}r zUY`Sw*#~ny-&GHD2raRFfU{1;hVe6PT%c&Rr$iWA9)D5Kb}=94*eJ364kZech?dx{ zoS|`-5+)JlMNgq|UAE^#*~qJ{@{Rl&UyXh4vmcqgti<-w5hvm1XEVQf?Y(q4{F?Q- z#CEW{PggCG$)0CFAzSBs1B#vV4fSPVmS?nfT-BFoO*3q4Q?RK=+c~Tz%N1#z$kt)T z&F7~N!Ymt*?CRP&G_LU#@UeP1^1VjaL~Gw5vzTX3t@dN=jIu2RK`1(qu*p#iWmQ^Ugs=Jf`6;)-BqzL*D#D$sB;nF=R%z=-;`5!xumd_JL^Mnv)|u5;1h zlTCCmSEI0edl3i;nV@v6oaO!&QAPJ?NHAz2g<^8a4+x7qfWoLT_ z0_yPJJ!$fe*rutpFXbo~0I}z`eFvw)$tj-ud8EKBm%+TBw&@tjJm<=!P}+?(89(k^ zsnb;2m%SgEmq$KVrXBW*+T+ET&&{^ktGeaiE{Fd)ZJZ6yBhE5^)YV?{N<7D(WY;cx z1%_0-Z{OK+d&ib*D(x3_TPSTQ_u~8ROgnYNi`)XFuSKR3!Dn0_QLPSF6`eN3NLP=G!E6%>^A6-OjBr(PNumKmvY|-oisK8TJ$R4&qFA0x3Kf`@ifQq1gS5Zs zK(~;<<~Pv`%(iw-|s-$mz0m3HmN|`gFZn# z=jC+`q}?g6d(cyRv0s}jN8hc1c&7%^{z&FL2ohIpFKkC#aR#GH%DwPapQ|DIF?L2r z48tG{T`8tD;QbeCfAZkU6*2(l#<7VigrFKSJnyNo>scj5^eUZfR3-We7fZBE!+uLt zaQeHT4879Q_O1hnRVK?oG6VyBhFIh=NDz0d+usH3VNz@mGW~hJnRbKrviS3RhIeE& zc0VI?L^)UFt3)CV&wFYtd(}%W1*V<5A2MJa;H0e@OP(CyB(nD8bo6@UbhHFnJ0y~( zd87Tg!ZV#pSxBe)IR)R?-RyH;VVCNfp1x&gShvi;GQRshV1}D%&&CK4L2KBn)8xA0 zF8KBTH`}n!zUs^`e;Ql!6_Q#Tu$f~}9P5%}`<^m^YL6bPE2<&=JM#V8S-ru)HsHFO zYR@Kem<$Y<0jeF`{-&B~eU)6?o1U@(*Lmp}#NS@}QI$)OwR4Zc7{Lcjcvg*#KDa*D zA!|=Y5ZJ$b7(1inh(Q>JUa6oZX77Ko_Qz7DW@HY)5E8O0KP#evgkRKe_ddL4f1hb< z=bn@UYBw5*w)WS4Ubka;{0!mq(AkmxT_9{1d}fDzdzHl2yU+-;9A|ha z3fkI_h@x39_tmUe#rr0aus!H-;~5}xch|h@ynMb-bFV7CQj_lS^YU;}r3?(|cE2YX ztgdS&>I>hk24OqhCa?O)YeFP!f7M4!3J8xUL0kK)?#5l+4cgkJk+j}u)_eFLRKu%T zZI_E@$)8Zmt*9!RCj;<*zsQ@F;IAh*P>v6jI;_haQNmg zPPl#Dp?V~4R}HJ+LVq;b-`MiG#3K#tbsdHyd4a3kb~9R!fxEAcC~rbg?7~b37+s812mZxV7!S z7vL?{H?QY|X#3{3U#bn!cGaf42$bhVTNs+!{>ZQ2+OkCEIXa4ae)0>#_6U;ZVO#uF zes;R+cb)Da*uL3D)X0A>Vf%XTr-o;=oJ@kGeeDX<%%xGp3u1OsE8WX#`K;j881-l9 zsa*{{Z6IXdTV6bOEiXXGzPy^+>5n3;lCblFQ)s|fe&z%6^+}gY)XYK;k*%}F!z_vb zif3J$h@wQ_eKW_*AXaCZ)#1e~bP$>P*U^WuGeD9Mgn{6f9HJoq|JYS|JI&p?oA`hf zlqiNF>5-YKzwV*={@vSMHPti4H99vnhoMKW<($QiWIf%->R}R(#w_N0d>ga1DzyJ! z&?erYYDKN3cXHzxs{<>4kD#sla{;Au^^B*X_=?aMMDJFS-F~92w`UFN0U+j2?Eb7l zJx05m2px~?w-f-^DKXso!bTV48W7`u>zJ6@SHrpr)Tz^nR@(An%ouOXp?0hzL=+Pq z@9x|*L0$NlG?rRD0C;$u^}IefEThZU*r%3@dA{)jhjFfV;$Eb@Wh5-3FUtY4;>$WU zjWuflHVhxGic$r`W{x$<)g>xLILe6 z=Ia(yA}6a;JYjE9zFOhruL83hR?jW$2v;`kIjP$^GxbpdZCX{r0&u_4mwwh{5|xCu`|GR7zSbJl|sVSaQ}<# z>#KfLtp+;)YMV5HIL5w&3NFwH>lABE%ke@B=4rraP0#-lXg+bnGLeeR>r1Z{w9}-T z{`!p>?=aML-UyxQqGmw4Aamu}gF3poz;$$Bbh*EUc}ERvy5Mrn&8a6f&v`3D{rdo0 zT}Qjn@`>o&P(f^sWV#QO8?%uHY3tEESLse`2j11_zINZzvr#Q}`Ps1`CCM(Fl^bmX z2P;={4@}f+4-0cap5q4Q~WfG5OmVyU07SfE_2NmmXlJzKNr6mI4RoLrl6 z_P==(iTlwR`N}VCUiWw`^>YD4%}#L;a?K1!tkn!|e3O2#x(0EW=z8QUDJ}J90*zmO z29`~;GXae!3pU$k>UjYfzhG6$t+I3oeMmZzCpVZbGt`|YvTy2mFbzSl& zRDAGu7irfrQ4J=3Tw9S&c$#zqCQiMtEvK1HQb7FgDa~ugnEEpYho3Uv@$ANEg2PWy z3Wo>Ir-p#1z*2=-Gk;Y3 z9IJI|p_>mF3O?u+N?oa*tJzZ$>V1nphkmsVO)&5-4cNxb)^5gfq$JdvCdH^$H_iGK z2|t?G?OF3W#loqt)Gc_K@Un$nsIRuab%=n24=Lh_vo4|C{eJcyOx6-fuEfafzb*^2)3*ugrtZ zMl=kVmN%QL5ONsUU-BaBl-*8OTmd46YPnc}|%fooIRn?Ny4 zHzIW(8c*~T{T-0*f=YYt|0F9%1s+~Q-0L-xJ;qYRDf?-59p=A^01sGqTE)v?7Wi)s z6m88=#Jrd|lAWX2bhB{%xgl_j)x{(TtbWyA=7hxx2n+0k&uX5z{pqUsU^3m9DyG

4uJfCc@7Ns zqANjm)T9(830*AZ zD`}r#?4j$4T+i&M-Twcvc*(Ah;^5IZabcH zEMs~`B`qB%%G8xgrq@5Y5dxWb+Dqctl$1mGH(x=zP{;bCFEmzEO~-90t2dfuV}so< z`xA8s@o#7Bn=(An*Z|dp>!Qw;I{nJqH)H3P!ypU;!7DXR4CVe8tBSG{1l76+@DGU} z887z5mMgVA%C7KbS2BS``?2R(r1OA^j3)rzG9R&~d6Ji6;5hDFD0@0Nm*N2n+ z7i-muhpI+g2Z)@+KX@GQnO_2hruLYUkS`331+H6t;6qj2oD#>F%9nX(s+-f|a+b%} zBXUvQoZ`EyG9G&2onYh`HV4m2=2@IR_QJp+H%EG6@`ElPBEWRIaWi%|nO{uaWsIUt zhg$v>PUGq`lT@ul>)Fk?{TwAN&u|*{y~|}(vhoL;US7e{G(1SnveH^w~2I>A0ypQ|KFn%@>=?bj5|L(x$eg+6;8 z9OLHZBM{!h@1Uf4CK61c4^x-?#B!VOKTttpyC6gG~Mvq)^9%gY8fGYQ9(=X+RwcaR45OS1$OStDNeohV#N1$ zbSKx()rt+`Mr@ z*I%BqQn&MY;kHGmRP~d;;vrbBuTsDEUgOYbdr^U1An2ZH2$pfnCEkKN9-L6m7CgoF zJXy*3!Y!yW=DM#$N5%Qj_6aPgmgijXXo{PxWN4abSN6o*K0X zLFXfpmOMk5RUzp7L93oWK6M=9 zU)-Oq-a0nBry2{R9Pk0=ayMR3fjKC83kmxT6A8fQ@Gg2JtXuyg;B%Vk8XUoH>JY)_ z&tjfDViIm(v7ilS;frSOU<3F(FM?o{83V`&mX*F$%74!qTnfSGSRM2`ZJOhG7`GQhZd7_h0Oz zhaQ9WL(Bj|ocM@D(d4_*En_o1-x@P(a+>EteqU9v03!VM+(2Ls2zVI;q$JWRO6;;bRf2}wD)gv{{jGA=OpEE zHy}|0=#w@hGV9G)N`%x_AdSnY-rxx5{NblHF>_4pRas?YlW+H*MriLx@I{`F8`RGe_zibOU3c zzH*5r-!QNZ>MIw9+i`OriGr@!aj#v!P+u9;k0vPY9FPUFY78 z8a;EBl&;j^fpJ|&W z_8ei*a0SB{&rH0cbu`_htrZakj~1Nae$JiO*KnTJ>@Jk?Y zi~s-FB_^F3(Uu1oQH#j#c3h6NsxlRq^|K`-Mq+2LaJq+{)H3;WzPm^FU`BGa)_hEF zEKsqU5WLkFS9y9HP4bRJXt#NPvgDWKbC7uYEhmm^8MofcboTq@B0ML{Sm%=+6_-}Z zFxQQ57r0MMV{R#TJ0AmxzQ_X61hzjN*(A~ohGfi|&tg~-18o+Y;Z^@AkEe>^>d4G z0ja}dk4GI}4`nN^bQooWABO5+g#0>wm`11PMVHhN4$$XzNe!e=%ot`XVX`2k3wTUH;n8 zwfA-}I$9fC-&Ej|?nOt77;_j%3o~YJW)?B#9I;2hwt1qUfYxyj7;wbMmH67w`r!CR zMBmYKXNjDUG9Yf6>5H%sZD^hLwWw*ZV(lWx zYE${OYQd};drnY%1t;F>Qc>vB!=VwSDEa$Hm(j{lj|)u$IrR-i{xV zHI0^Zq_`Qf0fb3PyAw0ZqEPIDmjZQoRp>+1|*ogV$zXi|DDgms*82F35vFr=s7IhhPc z*unzE15)3!FA-K-Y6hVbx-Bc*0;6XXWjMsKvU|3=Ztmw+lRJJDqGafmsZU?p!)XhLo3levrqd?&9ov7 z&hhLs&d)yM#n>4jAq>Jm@Jmt%z5f4W&Nya+RTCb-)Yc4y&E@ic?YQ?2a+_;c-d-lh z>K0i$rN`@0Ja^t(;%37lHbt5eqMA=|x*@BAZchgcOyw{!K$#HQ_xUvTxs5Gekm z{CxrIOXf{H=N~!2tK4wx$qf}o=+Sy;n`ern^#R^H z2dPvqDvt{r=pUcv!pgmeHIO)eP}h#mWiPMP;C_6;0h zTz2p_3O?Q~Ch1xvRvwcVu~B$K3JE(m_Tvmgh~j-Mk!BV#31wee!-m-s{m65`P~<)gE^uLLsz2-&0f*UCE^Mx zcc14(s_pAJA}1VXuXIQDkN@md0)(9k!HJWh%-U4j*TGg`_m^3lwZTMSKhY#+qCbA$ zH)CgZ z=b{>eGn|+4y8M2D+xa%WMj|t>Q-l1<3VYUX%il8;cH)MO5%p-+ErmV)Umc$*&3<*m zH>O82V*V^s*ue@+;LGQr<_O~}8S4`icJ{m0KSy5#-i`*<0UJ>h>k4l_8v-rbb89sF zectm);$&_g32hkPa}hV@?)F>tATjp9tvOe-U+Tegt5a6S`ZV?XAFW}mAg>GF4$g3B z@m)EORpISdbz!HKj$ZlPmnrPlCnHyBVjUEAWT_YWb1U;81m12RD$6(K8dm18TLG2& zH`f|k_-PZ{$$=ZoIW0y68LQYH*J++J5)3$u(NDQ{vu@>A=ImE3IY-8Vv>$)>yp%^V z1>WuvBh(b7X5D$`S7X7P+ug!ybYVz^j_C)th}Z5P{glDzcqgEu!rQ+`Z83Ds=ir;M zGeBYxgn{6fEJ(ur|6}cRhK(aO=>s|(SkL&`Zf7s~D)iO)1gdxm_P0opH9 z#Umt<3;dAVPeO;~fk>KAZb%VzhPAz^hVd8-w8OdC#W!>`^QVQ)_>q&LYo|V)|lVz$GHC1dJ)+Z;9}%O!oA$9 zS}6V?Uqm;}U;PAHJ6@HpMD5~iG`04wz4JWl`=dBV%GWM*gT7nTE_f@)*IwYQBKn$m z5PP1HKxp$=*1$rfPLJN zE7o_OT07!vf4Wj`ZT|XEo4@z7fwkkt@AzAA)B77(`?HQt=R#oZYfTb&Gg&9M0<8T> zgV*$X8|?UC%R`H~Flfc@S`X2eq$(ZMVZjL9h0jz!DUE-|sWXuouE1Y$%*Q$fdFz~Mdo$}Q4 z4Xk|z5M<*9j+=ZJ0&8FSQ^;S}F$r!v_ZK!|HuO5PrKy9WorI;KPsj^plQ zyO=)f=#~41SuE1!zkEm9p9K^1D9^StW7l8I*!Q#j&QuZ5@_FWO3$vXGyHa`E$fFFi zJu1RjcAWXYKFoHBta1D$EZYTU`-R2C?XKd?=dMt|l)T7RSesI9n1v8_aldvqvNI%2 zO!I7|8_KY79$S{*FHn0!dLNYGC@Kb+?Np*hg=8&{70h;~s6*n8^7}=cJ@(jPx7sK^ z*U_t3q79}>&$|VO+MhbBRdjR?wd;gAsZ0io?$@z)^}Nwhsp`GxtPp3PA*ct7sihOe&%4d%Rap=s%J;rFN}hQ zAZBsqwRM9d%tAd@FUHOQhk+0Tf?pD}T>byY+B9V_)q_5OXihz0U3Twc`+fJpEGi8o zWH?83lxxm3(+0CWUg!C@n-=5R@A?MQdlo2?qwRw;XyI5`&G}FbhL~nCuJ0?Du@~8- z6}bv3GUK4;SL7<#oX)->_0J-kM4Wv=RJnhPI|UV)gQ#>aa-c1k?R)ou755-IG7IC2 zaf_T`;z$`fGIRhH=NBEB#UMfcGDy%C;_RCMMxoZI4YZv(+X$9Ry1s(bDd;2`P}*~( zKpbty**MgDM;^GThuR}3YBP`ZqEX)F#UUnwStQ@MbliUaN9O&a>>n1kh|f;iCL0r;`4dhd+{!MMyR#?;Ya}5ml8Bqw;0#2z(_;6 zitKpoUyPj#4#OY}L(i1($$I~bZJL?~8mhAcM5QeRVq$xXWecR7Ycz@#GZM4YoXww& z9!E31C0GLOGs_$ISm2ZXzX0v5z|{!YhJN1!+DEp>+}Yai+$&?zWry5_3H8)R4RelG z#4Z477P0-%&L_iaXLGj%+IK~1{*k^!wFKIOX8J&IC!!cLrQm?P=MWx>@BBK~5t+SM zzv!|DYk@I$T~=8F?E|0==SI`kjc(1J;h3o}6)l1GF_wllqAHi3&k3~8Bx!hG?_1=J z)}N0lR}}9%PQRV_%Wvmq=syrVw8^*|P3@ciH4X8_?t3=1j~9-(UOe~N|LtoqqhbNt zx7hy(0AFsw&k=SqCqtLqhKS4tZFC48#hBaqohe^+32FfC93>qh&1J=y0oo^JBp|(p zo~_R_Z{Ww`MQqM1AeBaG6uJbp1ll{o)Pb;36#HNT?So6UAWxd>+@4VTP7Xn@TwbKS z2|EKE2tgPKe#sUD{r|@%)5!_$BCe{nm24}Beme!cdod;8b$30ERDXAx=wU$&(CjW9UY*_yBK?I zz4E{!a}?hfbD}`rU_RGoTh9ksXVJC`m8XsygL6Bg6a)`doD9_7&J?A@yxQ8+4b(m| z@k`%1E5?4?$*-iqvyOC1!veLRdEUtLb1$BEd=cRUnOSkS8uQ;=*BUf++{MuAvmH5p z+^$=XyJZ_x-}Gp`>(`8j%*%_3zq2MA7Nq^2Q&rwVl zS~~)s5oweY84Ox`sQ$J`P7t!Q{k{0HPz=f(XCJsZbfcma1r%0$C?pZI%p!|mwWAhp zu<6Gvo_YKS>$-|(o?k1DaLB!~w}^F+0jXk(bKkt8$Z_^g_1yvM^2^>o(w8gN_xr<{ zHSfhYjr6t3*mj@9p2eu`riGzZIPyPI_{S`wPFk{RTt97whu=7X$whw>{xL9I_VDIR z`;66S|t26B`ace z=ceizH&tAL3iN!0ZF+uEEui*AchHEto>p$>nr?Ydog74w*C;rbW&7jqf6sRwvA1WcOy{D%1bLKi-ZIqw_F z_Zqo<`DoU+_A9!L&4=hC&lONR`-VGGDO0c-pSLF&kHO~7F!c7+A6s6tQbFy{vH#!w zW$avV7=&RMdZo=J{oMazli1=^3pgC0qM%ZO?YtH|{@=Md=bkgkG-3=wTUIbj(z8X6 zhTbnR zIc{=7^yJu?pEK{b*e5&r$F7+*3SS!31Gv`SLwlZ#Ug^#QP-{Q(33^N0A#kmo`tdJx z`n6$-u`Tg{*{`H|z`#iSV`G|L^N)dXVL96~%Nf+#FIeD9$9gcxsr6??J|BvdC|qkl z7PV)pNJWn`#=7Nup=s3&)Y_v44#r;b9dxaI_ZGt1FRqKU$3{A}s2OICUiILJ>viQ? zyM@9?mSL~%m+R_aw2o)36t$Ua?R#vCbJo@`<^`uV*5oC^G)YZW{IZ*F!YO+xy+mgz3u-v)11;C3=(z8GVzsCBaa0S30nnJ#d<9c#|z2vcp* zQ%rW-7JVUSfyI~_jI*Jlwz%JO=O~zjE7k^V`;={uJl~7jz8bFMY~nlvRfN3uu=8SZ zv!a*TwP~Z8S=Y3G)bktjRYN*CXaaCVc!Ky?D z&CPL&t$j-42VGh5i_g`={|E$}?-mqWyYKezz><%tcI35vm%BPDdCP0ZzH>(D&edvl zwtb$;KL4A_R@nAwl3f0qBv;bfJu>pOr$u+ljqMtTqk<+UQ+&QQFt)qNML1pY9o3T7 zI=X6+%8OAn@1W{zdp}4qHPA+`IIFYm?#a8*tcDg>?aMUF9nbRlRu#2lorD=06Tihj zbS?I_7iQ-v=Uk2+wyUVD49lMsT>FGW**6z&KKU_`x!kbD?wIb$*qPuk48lP0OVkD@ z{QqN>Dltw&y6yuka&Ru|@pr6kDFBS#A_c&g);`v`*ral>j+ZDn`*wY2apH{Vq9c|_t^LIv-5gn8t!Ve$ z>r&7+&Z2M3TdYALHrM7UhafZYs<2ZDt%*8XJFMB>vR@UkcGFZYS=kz`YYssMJ*J`a z6%0im)UY)CxLMa+_h+>BG^wECLhB{XT+&nCCNXpvd5{V5c9I;C+~5 z?N3_5OY9M}_8EL4`eEd`eFJOXN=xXml=Ev01(^rla}hoVTKh%39-M+E=1b3A{yDUh zb0(oV)(*YAeBzhIXV)POaD7~)1wi?xMSU945qhU69r(0g0PU<5 zy7sk;OAxVk>d`s@d(S~WqcLjK!mO9IFb2>bNz}!|TR6#uv!Xc@$?76bevsPh*%V3y zM-H?Pf5g^?Z8Q-`!fM~fMzgWpCVxQtm$5UzVHkvA;Fk)RGXDRuO_Oq|+R51i5G|x7 zF|mE&-?afC+KQOmh(0z7Ixa&z;b8>Oe&s512o^E9F&a$H;P^8^LOv$rYNSbF@xFJm zL>GMFSpd)byd^oGxXO8pXO6aZ3Rq?FTO{opr4Rl&jGevMqX4hCbb0|$6b-6Eterw5 z3(0~*CxG^7V9Xk&(1{j(?a)aly)|3e ziB%x&i$2kX^jMgVJ57daCI@Z$B98Ykh&V(@%gl{g=dH$Hu*&;;t)E z`eK#W6ZJyq<1C&yq6$O>7w0c6!H$in!tG?`+xqH8fwW)A;C%VR?=G&WbhhSNb>Ho! z{)nncSI+X)x;jocRQfyJYbb!h)dsE@y^HIfoHzz zz+;Zmo+NM1SO3&GO8edo{ltsq*ti8FReeFlFP!PUwWn8XnuD1RBORq3qPCBuaf^5E zyRRoO0~(toS{059-WIfUZJ!PRBMEhrmHiZuBfTfrvRl*V7ya>gLuW> zAG)iIhtfU?=rU_OG>zaW?Q4CrCcliG3$BDP3&ua*l|yZ1hol+bCRm2L_45o-fiS1T1~ zrW#W@3cyLBwBx&?)A4t0c<%b0L0sWBcq;7+H)lJw1H4g4?ZTOUp@f9@ynnA|2KTX$ z+C^6ivUT-t6OF0)&Alr?13;hIxPETGj|M9<6(bSW)oujolH=No+0?u$R5 z=nrFOlmsCN!_X@!64Co#Y=7XDK~47n9kF(>Bx!K5Orw%3`q;xO;_JQs2m1}_rK9OK zR?Bny)hnel05*2i73PgWOw{B|cfTkZAXAc_keg8_<7Jd)3F0=u_WGiLN=!kup+BYv zZn5Uu$D+KtcrJ=~PlgIzI}RlcjG}tXO#^KgE;1WxqUv!op=+Ns@em?=vSySF=Y!C! z-rYoD*B+*V#Ck$gxX8RIg8Z3X18tv;mv4-hlRTr4p|9f~T0LH;fws>RY2hlE#15Q+ z-t3yxHS)1zzam#c${^pX2(*3b`Kd|Yw+mf+r~#ukj%3Yx#`1lSBv7P%YV*~!mxdsqKkQ$jvFLT^VW z^jt`~d~53ME1k~T9ybCIdOK&r3lbvf@+}P8O>2|$QcMvGvi)&24cYx<&A~;+_cFAR z^jY>nLejuV5*m|{!7R_kG%cBe$n6)L8Z2Sbecxfl?95X>e zZugSI)}1sLm%(-)z4=5jPb9$hW%?2t$#G-K?Tw-qOujM(N`URYma(Pu7+#jfUVKpA z6(0z{c3;apjpB5-8aRU>fhko!vaw&r&M3#B5Qc$g+6upL|C9BLakNzNI{+$e0|aMc z+StEq`Es?YaFxVF#-RbLGAo;cYiIQ?K321`DXZ;F8Ru55FlGJcw%l71-s#p++q)s~ zerE_Q)b<9Ln_~*!ci$O9y8R}w+m*O=hc0IUwtH;ZBRBk3&&6#~iBZVRP}`fYujf3+M(ukn z@f@IKr>p1QlyPc)bg?z0H|zGQ<^r z?eLFy6MbsN#0A>UoIl(KD;)brZU5aMGRN~Ku25vChSuDEAk=n~Th8j{<`UVk-Q*TW zcgRFBZ2#q<8qy8W_Ew=s6`hq_9ksoCY|;=Dl-#4X_p$388K9%KQy_R8&NJwuFJotx z1R)3m(JKLB1NXn!{0uLau@VkIA-E7by)5LY+#*Y|ODfT&h)|R)cf4;AfxAr!7z?xA z#v1iGrsUo*+doMZ;a&*~nMXsjpP9^yU{sE>ZhIAjv4YxuF)!7m;)+n^@|Kg#8#l^T z9GRh>k{PtY_Ca|iD*hz(PaAAkXDl@FF_XO-9*pHP83QsZ()VrkUhf9b4M{ag z-W1gK5AZp=W-QxHx&VQ&L6vCb0S$fsu51wS-7|?9d$p> z#T*XeS7BrA1BHm_Nh+=;1=jxY)1CM!X=CkAhcEh0CAsF?3)=dbpiS-L7#wF#KLTs# z(>|y+lC%c3>HBPqt;xLm82mAIMmG$DFc4iS1UTsai}j0VB#@92G@4N(?H@V*}QH>2^1YSuciE)=RE?W% zS2>;3g6*if9)DMPX^#2@GSqL7L9q6#wahG+WAHhlicxh@+FmfE63%X`W&%}YLgRP* z=19@yU{f?~--acz&qmeJM27YDP?JX0E!G~d!gf0{(u~q}@?C$%&h3gp7>1!MmC)K| z|Hb;#TyY4s7$66mycAhcRG!biG#Ha?Pflf-I$4>RS+0m#`S#>wK(@1$VQxR_V`84; z>aAr%l6up>wMtdU*FeHRDhjMa9%mj)3dnX0;NEO0Y2f4}+jG-}auMczzPQLBPtQZA zqrQ(O*?w-z-0#V{z(wZd=aN8R6Y~vhXKeJP-@r#^s1~a4ntb#BT&S1Hx7I#lE89%W z#}#f!HtpcXB-_u10fH)h%ym<9-k;T+qc{#0^EV$t21(m#3w$mE>-0D(5(=1tGO(@~ zSIl1^Lk;t2x}+r>1VR{mCDHYDxc|j=WBiJ76L<$8gYzeJp#8HQzIVO3@=AYt(Ej>l zzK`#!qu;;%3b6e!rBawvf1qQM!S;s+CORHN<+A|WpW_}L_v~%&eMRzHCn0+5Nhnzjvp>)zYa-G#d*Ki&p+5m@5IDf#W@8r z{sgQ};X#)6R3CCGTnqE#tUkW04N?5>7pAjG<3@&5(kvpnNN1=;lK{O%$jjMf!+C zwhzi`RbPq=&r>f7d|QIruF!^|@A+UU2G=whKmQ!t?^xsKlUS75UQd0djGy0QsX+Ss z5g9*s5&xu48{t@osXh?Q)z!fiGKFV^=f_(hNbL%@Q)9ZdaBB*lEkc2P`+Mql4axz! z^w*tWQ?Tk7Ax(&*!E(I_?)|(z#y2s>vxgb=sP``1;)5Du&H40sWp?b@8yLut`9g+f zabT?;gOV}xX^i4zyfs6Xyp~YABy{u_sWM`IZ#drnlTH^Fr{yCSGmcP9fS1$KGH=Io z7%@e-J$y`Ls32pkjbg`NhH-Hp{a>UYrhB&vU@19Pcs09%(?U2Vw7i`m)(?B#|>}+%)$oL)MLAimu>Jefo>sa&l zZ~X|lUK_0Yx9&!euwR!U0S>Qf58iphg2g$&-@xe|ieC>gJ&ld)meUaX`#SM0wJUoa z>A9}&&AAoOgw0;4CA(vE4z$w?TKlr2PSrfyOYm?$-+FcqK0g^~czHynT!-Gmf_*03 z7EiVwN()AK?m;!=TNe{Y*VhxISUuISid7=*3#z~))rf3f~l;%et0 z18}6SlM@1@r&zx^m~28dd9}sh*WgOjM~puS^b=dUp18>xr$4JWqgu-XWWbFzj+m6a znn?Qpi678VuQdudAPMd+FgyviqK?#{Mm!3WtD?w#_ z31v*GzjdmmGSTFX+srNAIaopREn27^k_H*kAkU?2&>98nh^cU2dK&~bCm$qmFU=0NJ4XbZEdM8;>ZBJs1Ej=?23{wCo1g+ZveIO?9q z+L)K-cL!xZ#X{qE3C3l@2y@Ul(-cQX_2mI;qoZV(N%0C(h@u3?gUahu)l9>*?JeQ) zPOOMWG zYahTvp#fxBSfg2Ams+e@Iy&!B2l{lPQTw=oC3iDdzhvqAXEdhzQn-FaA?<67@0D+=Jvr_C7PS$Sc{@Ks)j%@Zo%LMWC$PO1-M=XM)03MxfuN+M#;^iDj6#5_Ll^r%lV%$lpBWWhpG9czw7y5e^*Tu z2PAS)3%8#)$$2@0P8ARCmoA-GGBK(Syk^mtr|7vnRG%JQD8cz6$#@r~HOq{pT_UG8 z4#uXpl{#|1`%|itoTobU5Uxkh;k3@JFbWh#{lC0$`oIwh0hfB!jX>u)ulUH18H%AO z*Ats8(3lttdVaXyLlk99GL`(ivZBEzXRgKtKcAJk=Gf5-xwNmHYEy*KFWlYa>1&#| zB~Q<{r7|H**`N}kXRuD9Y$}7bvD7Ad)h0E~UxE1dZa^RAqC{ZW52G*>Del zl4kiZW1H_pdB4OP6ac!#GEYh}R#!8fMxqD+G10SKWMX410zgu9g$M+Ge&K>0kGNny z{3d_8v?OU_KZ2ekYkNJDwK;rp8llj*$v$MxGPeKAYSdjZX?Yx%Ou$ki2b&0|03jTe zWD|oPizYO4&YEZH0i5@6!^p?SYN?|KZr-DaN>@u0v@Dh9VUL zHJ{Lylki+`3AYM{tG_mJbB2ZUTt6Sa-6G96?7|Mp12>ON;Yq=)w?u&E>nh3Vl0Z>@ zO%qn}U);Hy(ghB;F0qN7+FsgzfB|%|On#RN*dwXH*3wvox=|Xslo-t!YpXd5$Gvo4 z-dclh7sq{CRwIu(76t+>L$h*Qrq*ZdzLbAFBV;Q4b%$Skpk7?L_N;111vHl6|mY_lNyIH3=Y|YuuU2L9w!RbY1)x(Qn z386b83}x};L#JRu=);&hn1wm&6vQzU9jE|Y(ifnxgwRhb(}glHICbpp)BXzxugSrL z&Hq5>Q{*6HMjA7D#3tBjj7$_RJanl;b%mk8>IfY=1rtHv zyZWI1qltwwmA9b9SfF_mn-F>lPh7>T(OUz<(3$~8kyOh#gh4r9SUer}mkD)PV(5E^ z1g6*2r5(di^j93JmrwnA(O-e)|4E0=UeX? z*fMmPOcZ@kCMTUYZD|#Ti226X3iegAR(bEM%SEwNX7kK>46>h3@TprSEeE z$mmEnHsOJSvzqru-rwh%7p@3_QUE+UJ#N2tXjvmHY?=Q+MmmVVY zkv{5hBLMYlZODn*#W#l=jNTT8{D*B}>H<*jDNjKy%+xvuVg-}118#Sb;RL8Yolu1g zr|u&?+Gn|n^ zbFQW~viRU(`lCamS(`m&ur|z>vDL)=KoCXf2B(^_8Y_bXa zyh|@_lCaQSbqMVEydCV&;rcu8afb;Kj+(zwO6-=YS@77$UpjeCh5Z4&V!JubU|Z5z zXh9T=rqD=@{YV&_E%dfnT0>%BC}R^QbdY)I+iJ_UvOXFc-UbbLJdNJ{Rw=YQ#%aJW zdVIlWZAL-7SqrPglFb1(r1r;V-l5lKG3Y;t5F7IGryB(Gg7O3%-e}hP|9s!Igk%Hi z9qgBy$UK_Q<*xD@?L$|u2Eru>C-mTlgoe4L(0(D>Ru8_}+uvT`E@$Izww6|4_PEYk zDo>-O%6>9Bv)Ia-S>R^&(D{Eec5X)ugD?HVw+K}!&m~Lvv z!d^N{AZio&^$GbzT0d4W)mFp8Rg8+ZAyHo?w~uM0*Jn1fuYqKOp4GDB*x|Te((8U^ z1u$f1ynwt$sBzvU?c0-nsop_Aa!*jn*BYkFMDDW^xzA+BDyp-`^<=#LWdmsa_G&co z0)%hA73AZPgm6BMS2ZzTBfZ}Eqxv|LJ)2*yC8K_FbG#>;)$w_&u1&5K$8&^Fom>~S zg>@&JIzIKuObMMLmTd&%95oQkt>Oy|CTfIkzxVMRQ6toAq5^{I!!+?_?A($Z24Nt0 zr3l$3x&OsBKWb5nGvfnLm^W_Ch+k!|U2Xm$a%%dj<`q_tgA3W|#;E31s|a|Ke3+e` zROh&LvH!(e|HMTr)puonOj9;?W7>RVOv`|;qXdZA_3C*AUx!y^-;Fe%3$*HsYNEqM z=9^2s&?(Oc`=l$2dVzY;{2k`_Exx|4BaUwKH+8=M&&lXSZmzFBN^zmb2)X*LqDHS@ z_Nr)v*Y|kQ7@EyT@%4mPbr>?k)O+qOKH94pYQWbQ{{%{p z)N=#AzVOKTj7LWC_1mNqY1&)+6%T#BvRz2JpW*8_q0`IsbMf`I(~U=Vx^Ky$sJ>pk zXx0~VT0SzTW$2_YdUT7fXD7`&I>@X?cgj3xrmyDj=-4o~XXtw0a@xpeRzlJB^+aLE z*~RjIjGb*7gdhlnuM~qB-v45|e|+8T13CZ?nguxw!=LR$*Bb-`#;ID5e7|8=5j*y4 zd8C`@`VW`xSXm)IqwtKJQuuA>zgVNnTvP)s_-lvsL=~g;{Cx&qXB@H?|F6h`$iDov zlp{9Ki~U}s71_7+J5HKShImpL>44We69H)L*@|x;2KyXaYvO!Wyc^?2LN8wFx47MD zzbuKIV$Bn^YU~$$Vkkc&v|o5uooqC!XGJw|R;fIewqjvRe<_`~%qQAMvF11v0HsB? zD*TQ|+lo9W@bz25W8}7$Ng$2fR@WNH;_q&`Ew@26}c?G z?F%mZzStW3yPJk4#J<|-`>Qs37o$Rn&V$y9A`1#8yK~nkI_Hx{T}Z)Dr8=kz963%P zFm~1~xC;gAUohE`kVQM+!V6n}yf=USCQWo?Tsu4Fn!N4 zy`q&Uk3mvhwamD?B^K@|3Np`Wws(FW=LZ*+yb)c|M(vGi2`j=dX3q6-%4k6!k}MwMRp~ zJM#SnwRcb*kM3nIqW`G<$=DfPISj%;u%)mBu={T;$%jU~vrp>^La>bFWwiRmGdKXE zN`IL(pI4!Plv2Yu3aR}DqishmFA9`>F)*A#<*!opnP0nX%s7C*r_LXB_%~>~y zEAcUiQA+*ctdQCVLpAWrQ|(RBHAsV`U#6|NGG}1YA2Io6q>?Kc252a8g-~Fc3>8xQ zKrUy%Q9I0;6H^;so#on0ZIiM?QXNYzVQVcDh<#I_e>=E<|g!Ng`D?qfzC@mygh0$IRvNJ6E5f+wK zVEcc+Krd=58~@j2FZMwv+P`6ypL=e!+{J&=2w|XqrH0j_h5#W!-oACBeR{@?46l!5 z7IdnSjXfEGgp?@n_0@^?v8Y2k_Lp2%r;oN{BS-6*W63f0nvPM$qd@wqLM(F0Z(YUH z5|KuCLncA_wBxrU6Dp*c?+OadehF)$Lz%^OZ}QgHQQo>LkukR^c9LUl7nRFVoSZ6= zF(m#ehXa}u&l+O(z>ZUFYLI9-R`-d=c4n?ni1v#egnQ1N3L0Ye!1hz@+^sXdCSQ!5 z>k-2s41-q+mIGn`#rmVQoGXdU0KN<41>&o$1G~+ zd(!~)pBqWEbET4&sKt1#t+m+_GIgyfl3u?Hw2a~FJNH6%0rQp99($ZN>=b;s=7?Z@ z#o@Eob?rlXvhShvpzC_t&G6jFTQT0b){Z?M9yr#164D}?tN|@!ZnfC!ML`JdgJH1W zxMBMRmdV=qTv0%>?8$2SxeB3uB$rMOaA+YGA+-1SY#7hUtZ5fA&@zUSN^cYhiv3VYnGVM2)D&KRd z0-5#)3nbSY9HjX=&*#_=?Ou%cTxgNJW=)#FADq*YQqlL9?(3wVoN+;A?X^ZOke)y> zS97Jz_*`k808hE4oaZ3LK8&4F5`-`aL$97HVN%!jd*{c*x9}}u z7kCA0a+1%p$Vp60!!3d#n`=AKm`Ch&m>VOp#~=+sWk6RwD+bOXF&X+v#dTNTZZIFiSV|8FY=Q0hJ?ok?+s^6fXPh1bY-iBj z;hAYe12b6d^j951L3dqq(2PlU6<@jWW9$rU7zSY=xKc2N#``Z;sS@X?A@2-;5>Yq6 zbN>Gy3n0^R2H~<=3-z5a(~BcXhArvZfNCGfY~?%aH59S^(v@PbLdSY1%yb)Arspc~ zB7)*axGosA9_>;3vRTLsp}?!+To&+r%iqo>{guVu462>l2xP)2)Ha$FFqrYo*BSuLo69z?y+iDUvbV4_|@ZG)`dg+#%tG| za!8H73i=ANXDe#k|3o|=%o+l2=l%91FnYXQZ@l)n$~z3T?y?e#=N+dVHiW+Ftmdf~ zo_Bg-!E1l@)Ae%!Ui((t?!0)l@OJUpYJ$m3e}5J+r<-5nfK=fB^TOLV0u_7c3+y=HHuk=hfLzYi4%_Ecbg-(`f~qY?GaR`0q!;Lk0oCCkbPI|JB0Vhfv?5ql@Cc zLE33YFhM^@(a+?aZb_WXZja@v{}?;B;|hTohPJdU!iN4E%SWQaox8-Q01v~yElcvg z`peFD{<4DDPQGx`V&S}+|2_Wi3>!5WNf6tq(;eXaSFIQp9x~)9`+b*1Grx4vHC@}8 z^ER4DpH?2JnNT*fMmJ=%{nOzY2~RV-0R@@U8Ly8~S43pAoy!+i-j=l^rwq1-8LD%m z2)lQ`tCgLe@7#m+#B7guhUGHYo)oNujo*kfWw8A)$Ug_>-(zoL{b)aVs8A^1n@a%$ znU5sp0L-a3QI3^`NTN}LW=ahD{x-s3QPtW#8EQ|Suz^&u(JcsGyE*Z5z%d=s#G2QR zt!?JbBy3`jHRUGN@4m~b606E-bE8U8=9hMF?zEz4G!HV=E+Br!d5c;SDnsqzXW10p z5LMf?>d8Qcl)Gka38?+ie5T&LKEb7|MPRFv@i$lXXQ}55*)Ojo592@ zAJG0XzMvUQEMPZ4JH<7lE(TE?BC#juY#s$t?V#X);p0sB%*v}A5jf6Vu? zOV;@O6!tOeM45Csh%bLs4$UMu1><)FQLt#+e$sws}0RrO~;Q6E5E ziQ$ACw08cS5ZjGFwGwC_5M-+G z>ueKf*F_TmzF_2Hg@Vkgfq92lcYmG}XrJWXvwWe)MFi0P$9YB)^z?mYS|}4Cy3EUY z53^^)k7-;`6&B3zoCO@n%Ln4sF@6NGox=VEt1|^0CD6X{--X=d>ifI2uEw^1?du6> zM=ikoM+vlNo8*7bH>+|BCQblpqc3txAPjWv5?|%^%K)5u-wtE1zeF+2`7rtD=^sAWf9WK+YS+8s|4T)r$8Vr1r*s z(}EP6?->}iPqh$Rp-p-%2?+H-FcNITdD;=SH;(V*;gx5Cu3pE+Smj$Ido#6m-a+9#)VS{}uC?D{RO9~w z2{PN-QHx*|MMMNmYQE4!QKPU42{N6@z8+#853&li_LK7Sdv3U|U|ReB+)wSfaIKv> zJvF2e>uq?BVF~f`D%Q*K9F$tfs!?h|Q~RbL)6f(5tU#@u-?5Nl03IGh2Jz(g&iDPS zSiqi(g@Q3sRS zcc^EpK|MiM`=EcA98v zE4VH`YDE0@)ty@kraL@L+ut^@YG2%9+nrmiK-!N^v%z)q));0+NWM}hly-dM3R&`? zNw%<%LABQODt^F|kQqK_CXn{NDecej)k%T0gYb{Zd-)kFnbN*u%l!^p7GCYgk_G?WKxtn% zLdXpTV^P}E)|$A~V6EPLt>%3FJ;#*xH$z{LNqK`~0SlSM^OcNbFkdWWpi`?*Rf2Uk zrTsB`A%x8w08oNxU!aeAhY`xe_H}HzvoRH7``)MQ_sf4oCbkQguEJJVf}q{R_A?aV zN3rctF$fl$f=ARpU&hV=*I^Kbp;!9Q)zJH2Y?}1*f>ac9fN2F0LL58(|1AyYKN`;F z!4KH}PTjrNMYjTMA2cKdr(GuWwNXky$E^Vh1=zkN1=LLqL26$bR=mvWqFaFNp&IHf znmFC4vc&|M00}1@t6?7AfweCtu;8gzZ5pJ&+E>9Z%e~Ae!xNp<>uj?rZ~|*jP7lN1 zy397GDJr3#qI+{~j8<`5>ren|UwHV*VXF5TTU3T+Jy-s39Y%q*?+s+@Y?Q3_%%Jy~ z`K*TCBB_2RlG30UOe_{FNK>Q)*1n%YY`*!arV!Wr4A#DN9jVvLw05%o0QWK?M@>4; zOl*cvFwNBt*1i>1*RcTBF8Dy4D>KYc^M3QonVl@N-Z)qE$y>TSm})S2?fI(voT)d~Xx_K<&SC{blTok{ASGAbKT1 zVe$SKtJ5hjj5?eC^(SM2h+%n2e$Qp9k}v3#+E+Yv2T%1bIi>a$T_&L=`3j!*E1YX{ ztjMW;iICct{%DNX%k&+oo&5DP);F_#!TE5jB;coh%#xnPc>NWfrqr%NO;Dno?zbyZ zKW2oef?xU1k+$j(;?3LcPjs1Z!$*VyYY)tf=a!z#Rl7%K)PJf;EhQnfk4PUl$p}rx ztGg}bt*>9nc=0Rn8rGkxarTm?jC`iAi5;kS07wS$+JXanF8 z8KJd@Eh1rRi(k<~fKyrVrv*)|9ow(PMB)?M?(p(tp7k8>_zz82VC{ixvgi1_1);Ua zdqil~{0UZ+Yo`H7A&vD&-e0tK>U)VA)y1PZ0&54yrEX1?7m!6?RQ@w{#cE65{lMBI z9VU=VzebgQyPbZ!q+0l+mB8AUkg$CiJJ%zIVGsuI(g{k6tz`ej`iqa;rH49zFAv)o z$wF{0n0MAB#h>E_vi6IZL&_f?^Sv}#>Sj1JhnWdvecnUS@9ZC=BHK49f5L9$oK6a| zz2}JQ>NS&ff^0{~+ivaipK4KikL|BDW7ktWMaD35b^0Z0fBz?H7ozstSaz?;auBs6 z+6sgWIg7=FTRX1W+D&fEQKP8#-CPa;CuX6xaBD9Im}3Jp_GzA5s|u(00N{jKkwvwu zFG5Ke%;8&1d(z*f>;7WCl~6J5`{Gbw6Bz?VCCiEg36K&qNKxuJmZdRY{HmDtTfjMc z^O|?Aq@C$Kf+WXm{6+UlI`8#?VuBUsF#w!JZOEE+&w^^dHETd}&{7R>&exZ*E69N$1YuvA!5ymq|JWWj6tgOTL8medoQ3K;>bwUkFCRpOs^EopG!{{TNoO6W2s5_PYtL7!VfkWMJ)k zo`&{8U*9VxN2YtWfa^b@vpee&dd=AICH#yp0V>FF`aAgj7JNel*8V%0pDov1_(EXq zv-l#*T^dhC_O+*NI}>gMC!^*7ke;HCI;=~vcJd`y!!axN+t)!l?QD<^s35cDTIlob z*TMnFUhN{R3#@&%<$jCzIk0wPBAJ4MrfVALZS9Gt59+!Eh_$CsG(%u}iZws0E$?Iz zdI#1%_41Ci)%UrRFF{o!Y9n~@P7-UMIw*KIideLd*XgE}CIbR&2RUiZq|A$df7~iP z(mptpGLh~G0w<$R<@wb2(!RjH_D|LZZKDnLW$cV{CTd1h`hjrZ>q+gB+5xP#(%I-?$e`pJ5MALFj^eH07z9kG3Jnqeu3b2Ck` z{RFm8$Wy}CzB|6mVppD=AwwDvN#;zwgr7M) z9zDsN`L8;4*-+?6L1%4S<{>;{fA+2QU_5`_fT)+;vnI44D_| zTxoZ;7AnXL*m^iOT21CWouasEsbROC?7_l)kjDjNvmW2~1w&@xbs&0M@~sZ6k9x;$ z)D+umbF;ROo2+;2kCOaX@ts{p?fgsaJadlob^&W&V(m88A~Un)NA(iKd2&GrvY+sS%9V zakd9Z4WYMRsjvS0qPJ69=m`U2thgNYVuA`-TUvViu0NZ_+<#^mGFy5Gvx;vhQhN@~ z9Nu#PwpYU>g9(a%$?9uvf+MrlGDksA*s8~1^xreq_N}(%_>D5X{T65o=4hO3>^B#N z)6&}q`ef(3KSoeH&x7)syOc(7WMsr=;|ls~W9jXK^w6Mx4wx)LZ~xFUnC|WLDqqIV z1qWgf1fo~kwJPKNFSeg#A7*L51CZ8=6oz5^+FlvgJKrPp+MNqbyy`{H|HIpfvG2^+ zZHsrFvHfdj?O!?GPOR&$Nmx8radg33xOuKJS2o3ye=G2IdLjl!p<<8h8T$+4Oh-}H z;%Le`)2ozS!IoUK=h&ve+v!<%YMh?qlLBwwY~eoVmrKYM+kIkjoJ}kW9hr?BOATB6 z%YJzK&h_T(KMLQ#uka0GyA^Q*ynQ3OIQc4nXLMwi*C|et$^A+#^cJ0hQRL6y?RVoe zg>Qhj-)dbJ>m7e}Xyam;*7KgVG&619V!f7;WAk$)H2Uaw%QZHO^{!~kw<_{yE=Pp` zIi~kC^F0D@2P-fq<`sGDYLR5#&-AgiZt^Q|!lEv7a(g5M_Ep%9XlrL=LV>q$+>Z;} zJm2^{&8FmNTOjcK(1V(m}Qyp+le;0GZj2yr%lHA6IGb^S6n&%F%#3%`Al zeLws+DC)>eyb3&n*T4$&6+R&z)aB=-f^+9!?dE*npTi2ceU+@?fnMRaPcY%J2NNpN zfr!mmk?CA>quOo8igl1PdVu`q9s%LE1E?qUX4C5&h3?4#3b}8Z6ekBroJogLD@Oh&dgptgplRa_dS3gxzXz$^x?3!x(PEkO( zev^HMW?-MW9Yyl>Wi;wmO^G)zHlem(GXCLP%Y=~(v`UOMU(v@TYWp^uG2YtYG|Jgx z%~?n?!l}0J-3zF|zB(xA_Dj`j_$s@g+fnNO6K#KtozW46APfXsdZLn~|Hj@|7Dg~< z0Sp5~#m(iCw>q)j{0bhpx1!j#5NBkIan7{f`kjMo`zBi^h)kev-;f|-HxTxFSGx4t zDl?$%6W!<^=|w?$nx-h6HKi#8}U4%wLhCW^!ghpL_6u@?bi2WSR-RgP$c>f$(ouChl zWVWsybvXN3HKePqDI5Rl$T+fS>%mh?9Ujh1}grfB$h?5LLHJXStuSKenuzgOHQ)nrE%M!L5VkD=) z#80tT&!#x7apiY)MjI#^j1}wkwYZFD;S%#^Tp{}Mu~+ByXYAUNAO=C$l@L+!{uf(+ z8am5vh8rI$ zcd%$zyK@4S^L+)g9q&A&7}hWA-Tz~qcmADK*q~DWf3-1Lc6qLT%cB7b%;k{@%=R7h zIgEP#f7Munz{@+2jMY+eK@**sde0K|Hc?93d2CnDoIy*R!9+LV42{R<{)1nw62CI( zx$_l@Vf_*(VYWZX!0NdC<(%PQJGtx*UiV?_igGA~LD-cx#W%SB#oiKaF>x0E{2|*M zgIZZx+u9R9r>)*!lI=HJ|Af7#E$|hO;K-w|!xh=~CCn+7>rWWVajh74;a2Sv6tzaS z9dg8*^M99{4jb0rQ)p?sDafGL3$~pa7@J!{Z=HV0w(psa_^ys(&JciPT5v)_KXhof zMH=*vX^?FDGKCiV>+f*V3z);&_EpF!U=G;!puPh840kQbWDRWlK<#s)svn~5e&Ua6q8}IU_*@Uy2yOm!m;uqEjfzT zwPS&9A1L|?P*CB;_QI_wWqdCSC{_!%0y)XP7*XIOQtjXgZkBpX5bY6^p=fMH*|baj z*uIPLH5(pjCUzRbryzzH2scrD7=dRWPSs{M5g4HpFL?G~(%w>8p|V8+?DVLEUsXqe z7C^LLPI%t4+Kc;Lf5y%wM`92LqF15{(YiC07`8{F zL;~ThtuW8P_DQ8aWNe@6y|>@HEge7H^5tOIe%-{29W{yyKL^_G7$`N{=k-*4^gFlI zQEB@_@hrb07|pyr7^Mf9n5Wnn%-aJIO(BA-o=D zt~PNGWHg&Y)zk{oVB$VWE0_%J>?xenOP*mQ=wa< z@Hx!fgF;2ko48uBi<`N>%kO_Dj-B~b^p?$*J%8z9h>OFhp?jeEO~$i&;Q;{MDdCJf zVE0C1=dfo^+U$)(^nMJwqxdyQb2b+@YB$KYx`mB+>#^+ zK_GY~O5JX}|HXD)K}_D0!n2!l^SeeJGI>vufae?6zGd>BCZuN~UdpPK<}%#i z?;C;F_*$*_T3a4X_;VF#(ONb5yUJ3IcXBVjGnn+e@V`7`t#B+Yd7&Hf|sE3%nm@bc|lR<-K0?7|?|BGd-oN1gm#pKUFlGKLE&zPOQ6nH-zyl-Qs!YnNJ`OyfQuD33Bb9Lqy(?%oBKSA96RJT%x$(l?O z?*81LBUI8ntOrlJdotetHN@za;_mtEiC#@9jHU(NUv~HJ+wZI`xI4uO{TjnP=2&s} zZ#lj?q;Z(c;5`N24^HsuBHI~5r?~s!+-B%_n&P4ayGvT7%&JUAcgWb=Eex^+^Nl4e z=Hb%M;`(G_*|Pr9m3hkAvI3Lw_pmsfBCN|5V|urtb$AOwNvm87Jza{r6XW-|4h zj|m*WXd6I$MWgFu|I>xlk2PzjJO4)+eaBV}i?&_)ztrG7h-VKQ?HiyG?w2*6ex$7m z`FACnbq-_8K4b{%*3Z>;Wl2HVxgJZG~XxfMhycK9K(_CGGjc)dh~BjH|s!Y$+Va_(BL5wD)y>caK&Lj&pE$9TQst{5a3 z!@Ss&utmZ}ulY(41+ed?C~pr=V89+LuVrw8_2P>J1O@Cl?Tyu^y)t00eW4&@*D#hq zRh&aua}N|HL_sLX_ft*18yT<{l`4y!UK$qt$Hd76<8Z;~Jqf^$Qk}%A9AXuK{h=7) zV3?<;8QK(!f->FwCZY#Ug0FARz=RJBVbXm4tY2JznAfHSy^-&|(Lain+SD;z>6Ts; zYjCEGZQ;fWlHdNOFC+F45$|vc4mIl97#Fz;1+p;|$jXfU}Y^mj0e^}{$@w?coR%_5xO{)(>_${7NGZH#|W0)aL->IZKno} z7XuhMDc$RoZb9SkB$I@hC{QDH1IIrK=lrj}!_xxC|3=1shfu}+{iqp;VScxfNrpP1 z)hv$GXdr>jv2WMf+92`{{qr5cv;dXOP1%2m`?{VKxN(|Btm7k0Z6RbL#~` zL}I(+UD)JgLH1OWJwfEDB=9zTf6aRAA;~y3Ol-2(dLIGh7ffISV4JZ<<(1wD3dZ`} z)bC&*D#1&*gzIZUFQxpQt{V3{SR+Cg^7qLmb9t?4G&AD{3l0*xY_D6F3OH{@i)vB* ztgD$eASx*abEGxqNEx>1Ap4=w@LHlF19D~H;$*LNHE&1!Y2@J4Jci$DNUp^5J0S=) zYP0IZ^LH96Fm%*XVS(ot8OAYXc(ZCqR{}+vkXDl}amxGfl!KDnns+Mz{UPQ(J&N@{ zA%KTCKiqG1y(aj)CF(}fZL?W4y+ovj$DSzh}2wFdLG@p{dT=yTxUOh2%9%iIN zfb1pUBb78r9Z~I?~_89OX-eFOs}sO+gv1%rccm)kGigByGoC+@Q zBnE_G)(FD{mbZ~#0!Gl;JaFW~LmdybwYrTVsQmE{V`p|FK?noUl*ZT`oquBc#jDn6 z0k@p?hstB7Hy453JX}FkD`O?5lt6(MO8Qv&-5KM_guX6eWg;Li3;9 z&aV&kdSLUaz%3jC4))Tg%>TJg4nu`aAlq$rb|86bB8y#g^*BG#y;C6=#Z2gv_(b;} za(==T`}CM6(Y=4rKE$Nwo}K2TCYrf`muMJoue?xxe9*xT>6XmMx?KL@#P=-%GHve` zt2kG~;wO4H(aK4Fs1x!9Yc>&SvVUJc3KUFR)+{8JgNQUtM4CdU4?UB{_Y5+{=8vS3 zg;cViQA^`X`az^mCbwL2a}X|;n}g{YI6sJLBs^h~mZftaD%dt*%|v3sdF~qp$&Jwy z%mmH{`Zg}nj4~4vIKPlfr*1em=@M{WmTK?IBKqhAoX^r-^0#MWfRVs?mV)52wU{Oz zZ>5N&@+4}@Bx=C zMNQb~WstV3n$JH&xch)*B^XUH&;qM>-m@%vk!aKWtG&IN0nZ1d0=D%MLyiE?mnW;? zI%Gq=m{j$pnj<@>>rdhH<-q|Z;k{7Zvd+lGqPivWYk>6<3>D`9g@PUg=LSMAD9)L+ zA>NCUEvsD`mha}a45}GB9FkrdG+3+Q(g#HU7(Wp;(6_JPPN7`YUc)ZboBrB`=s)R+ zLlm@V3`IK5Gz(Bb*?D!?c@MH?{&v!*mP3+&(l5MeG$5gSTGY-DimFhmLp#2m5_GLU za?;_I&kuF}T#;?C9grSl8(}cF^nW2mR*GXal84f;eF-)U*)JI!1iEo#}Lcr3?r*ph^K2beeivSUmJLd>Ndk^ETs*K6O27)^0bzYglDO8?cxA^g z$NM^X9^T&Qx^V1NdF5_tjEHATULH72m;(D!~pcFb6_mwRWHDUxBhv5_A2 zS3U&({RKJ?!p;B(VHk#iUusvcg#UjGA+$?HE9U`dCC%1xcFb?e4C&72B1`#MZFTW(%6iAOrKsS0_0OyUX(-s0J>2fbx5!E`;;KRrDREOdP|*dFc`f# zpi#rqD3M?z9pXBR3*TGP3Ds&5IK*xiTO9vkzm0RX73b=M@l$JU zoQy>*j2?=AWoB0pepy5`C@KD{9c%~w*#*UK+)jgKkK!vQ#mBJOIiU(|T2TBEnShTE z*(X8?ir*QO6M12}ie=ADBwid3MZF$Ak*QrwLUoVcM5qloM|jQUfuZJmyY8Z>`_Dq~ zM~+cqGF9>F1i|n9B**)0dR?0jV3FgCRX?v?`~}6Dj_fN9zn>@HgYU~PzyC0HCP)mz zAQZh)h!ErbFV>E2A6gy02gtZZ0)K(e120J2;Z42fO?^c)fdOlYhudSlQQ{o-RviS; z)|+Rq@g%tGLdj4 zzO@`lOnq^h}({fIr7jQK`kB^<%e@N`y$@9-+Rwb0;rLY!6=;jzW>0xIrb6`gyx74tE5-kn z`$FS2v;BTKz(ecew?)XXq>yn@yW-z*CBJ!Y%L_nec|fM7Qslna!}!?-xgYRh$%`s| z`E5=4mi#V4nI^JShC1;{7rv=TVTq#~@2PcZ1}}hFn&lw^izY>a-3R$Ka4v||e6ucL z{M#hwHuC-uh=K068w_~AxNGkXIo=!wIlfvK);YW~yfQv&()crWZn+V|Fbup>tt>73 z{uk?4hYRdN>;VDa|lv(_L){6+6z0Z@e2 z1#OqNX`0~VJ>ld<#3%7y1vHW_jLj%1+W0mTig!o_|3v&+jNHcNxwOJ-I}Gy&yZ@sM z1&S|(X(7%iJxmz(d~-jZHx($p@!KNh4{m5`0~GK*2vU0n9M$Gn*;V)w_FV22DE^Bs z#Er?to>44;;$IdCW}8(ZYi}o#cF2IB2+1>Aer^A%&NS68V`q@tFbo61FUh1yN&o*? zgR~kNZNbeg7r_aj$gAOU`MsEALNIR-wilQ9&5#PJ#m~N+Ubj|I4s9lZo)Jm$F{{SS zos6PO^o5fE=I0TBM%mUx**4botFiuaa&Nsi*#uU6tE@gQMj>uhm6Y?)LNtx_SptC- zKWKb#V5^G_R#yCi4ak`ka;9iLCJF{MzwK=8Vst)5y@iQli7Q#re9nSr3QPZzgy!!m z_%Ia5#n*=BC%0$%m|ma6;xpOWj|#H{lBBo{9-421DbWx-Qv~nO{2v4A`^gx{QV0XA z_{LeVQJz~UPjLRE969Me6$2MzS36N}@esH^KRVo>?42tH+iJ&QFHc47|Ie2U=M;pRiJ=z%P8PSzi2k|24t(3@^d? zLD%dCJ#H6^D>0|0O)|E%4;{`?I}Eu!dAIjsC=brJd(^+`JXxrU9RK-P?X&cm1n1w6 z+*Mp=LmiFwACpwFTRbO-t zRee!W@O%-PN`J&K4H5;XH_-6?o}B5S8* zZDl1n}5z{x`=6 z<3+)IggH|&qPVxfX{@jdTZmzgm@&tbuu7umZ+BK7JYl_OQOjJ4O~aFZeb^8~e}&Nzm>G%?H`S1>mcY z^QS{Sl%DqvQzq_#R6*~it5*2s`@0G;gppT0)Iv9L4?euaJ!W_~AIy8Gnux7|c`xMr zI`f4D7_OSM8VcS-sSQ9rA?Md|V`%2wXFz37J__FCZ;pfQ$*-5dN54kOOfYU3R=AKB zk+JvNQ4=n^#}x=qe%bPK)~|!fbU&I)v%vN?Ct=DzZy2<2zx;rK5+!{f0uZvAU-iP8 z?7zDP>u_kFsFpKK*~I3dH@aLB%N`RagO*BG3kcpr3q<*WMJ-k-w{+1S8Z&nCFU{0s4qa~B`BR9oaU zw~Z=3xO@5j9-dLv8m#|NNzB(9jQ-{UU~$C!VnkHvmwtt9#aRhRqkn8r|HS6&MN%AU zhT;V5SD+2NfjhfElFz4eGdAm$gJ zK#zB*d5Fzd8V-N0L&`xQ=HDFJB(hMhVYWf15u~c6_B@Vy%v`-#ESn5q`DIe#sQ;gl^HUKSfI)%31akgR*;BF$`tyvO zze0&q6U;OG!{6yOgvgj4;S1#ayll?%>(4WCe&U6=+zZ$!kn@Ksi0~{ImcQsiTc3+x zuvqpu++5k5>4yY4e>D*qFKB}wPvQAY*!PIM_7f&NA7E$>y)b{O6pb$;4FgEg85ar9 ze=mh|{)Hjus|tizvQ~g}ft=qt7>h9RRoock0)`PkH@!w2;Q1d>Y{W@61Bw0!JEL5S zK@f;;>6I3c{cr4ky!4ET4J^Qobs<#YvtTW6*R9}kTrs{E}1kYcP1Qr?d>Ve*T@qD9s#PE->XIN*^^C_Q; zOscNov(Gkf2a@-pxB<_11dZyJYH}YW;fIIY-k#K#7~uKOx<1S+`z`t6`G!)3@nU3y zqEQ0q7rNZGIP-^^3_#yYOT~U3%4g~9&~4-Jd56ZROdTwsp2p~&8fKf~l>$38iM~+zq@ID(GkT|Iinb#{B6Vn(KnHE-UY~H3 z=F0PsdUs21|Fn_xMfKjH4`%Uwv{D37(jbKMku!`dlU5iOZ*I69nwzlLn})7L(%;4d zP{f+)6^Wz|8RQQMv(F5W^y8NGhV9vx&xNE9J!>v9z}4p@HGox!noR3SzqJcRKVEXu z5!?Huw@~zh^U$F5HXz>`+FO@@ub^K7MV0 z8F(WY48Z0@(BJ#|L3z@LB5Ay?c$R#3OSh3NQOEhP(H_V zZw|c&n|n&mCy`(0Aq*;nCW)~d*@;B zPYRVU769AdAP`g-wWh?$G2E#_w=>kz8}MmstWg~I6(X&4jtzp?wFoS@!HFMz_rA%vzMzk^ZX!tQ#KQTObz?F7!B7^ws#J|or1 za@*lfb?SWj9eKd{%*>rC%o&N>PEb5AA}5V|b8b9e#8&IZJkUJbWa0T7?StlVnC9{3 zkYr0v_=D4YVdUQ8+a+ifGPH^;dOlgdgPDh$d6N$-PB8b2xypO zpNGi^5Ysh(ss_&g2n8@{k6HM#aA9fz;}jh02Q~-MW?ha*3XC^#_w8<4#8XM9 zmmEBhs;F7RrGfM7r5DCX?*Dbs4`XMPgD?!k&?~XFu=xHL;{)lrFcj|qktl1Y&T*bU z#durkofPAS!Br~<-x^`RS#tY7>{ypL>0;in!gEH>UjSnZ+;;Ukhm6}XJZl>t32O$o zGhKY%n>`W!e9sKRa2|o-EC=6C_m0^ly;LFO{AGG79=_^Z-Wtbmrs+|Tw*q=q!|rK{ z;XH=9Dh)>~yO`%Z!|?Eo4ETkm5ZKqd!%~?Ku3FNgwrJ-a^pdQm}3G>{~{% zpzoLdmYmxkjO7RrP8H3)dNXzgxDCTF4E$2;K(+b*j|~{GlbRUf9#B+C9oM1AQ-4%f z3i?2-DtpzG&A;SIaO>xPL^~nq=SbEGF>!|Zsq`cxjg8Q29MFpEHCC)n1M0syupS~w z-Dr4sui*)Ue!y6(6Ohb@?^lQ;(ZFU*f)Mm|(Mq`RWb|z^MLg|BU!x8C=Q*-vq=VDF zU!Dm1`-nX>Wv3W64irCAHs`P`o9>=L0IKlwIjqB>n!Q#lfIFo@N7PaMOTP~M{JMwr z*NmXQak>kOsoMZC=qI4J;#2!a5<$NN4vUGUUnB_npA01wWURT{>*;{`ioKW{wx1sR zYS1^kCxZS!=zxth4c=uQFIV;?>dm@LmZ><5!SsVQ@O7r_&F_asjCzqs(Z`|EpbssY!ExMAjpJzDxg zy23n{=3H+>DEb(1U6YFDY)%Xm{TbtdxUA;vhN6GV_?lBP%2U$Kz*{L?54egl0CW?e zuM?L3xf*+P1JIv}TQ_F1dF%T$3Rjj;rWkH-N&gS=dE>w&H{J|pfpMkT4k%bXm<2|4 z&kUs3n$NrrPTojv>JIha!H_$YQn$wXsOLObVDbZi(2sI2a6{6c8{SX%@vOh|xK2QU z0?Ou-`@`6|;5ZDzK=ewE!BFmhu}a%|W<=j(8fCdxd~IPB7#&jtg*%yTT* zjJ|UY>w|G-tbExp`iq=gUmW`sSOB9>X7-mVH-9f+^p}qtM?0=ihXOl8< zDfH)EPfUK#F#6IDp6<^4o;Rca@BH}aL@^e;3e1PmSNq6mGSBgEGx|=mgwv+$y%iTT zg^~MUuwgcG3~Q3N@(%;OQEo&FYlI2tts4E2?RO6TB3%VY!YPIoQ-um~ z4=397sJba^Gx|>cpp)t3QGfxA{=frbh$F1{!V;h_iNa(gnZ@?($XjLC8AxDe{<$GQ z--vWSqx*B{h0*`xeBX?n0S*Eo3C`R;c2K>+(8 z!O?$cp6PFBAHIn&;G4Kikbt*dEbb6((fL=1BGu??bMbXlMj)hM&kFEz?ymE=A&!;BdXqmES~ z`Wa@-cooEUavz#u#!Q42%p_EE&=U&EW<|9~5O!mu{4ip(DN(CE9LVm`qz|oJq%PcTcCBKytg340wuyfE zn|bCYyP-y3kju&K^IUmJn&`8tif~g+xOs^F7(nI)Ov|;kB`kN2&zo%U$b+A*-pp5_ zd#PBwT{;Mo*e2p?JhH2Ci6Z@Z5Mi-Uz193`8i7D}aP=J7)w2ZAw~+S+KK^-4#lZwg zta5LBN$%)gU9yQjB9H}3%e@s#578gPVjl`CDyNddb4M040Bh zLw!KRCZ>+Jnql*16ryXgJbkJj;^>P52$Yu1#sJYzQuVoU!)Su%cnDVfX-+i860FFV z!e<{nZ$$q$*z4ZTlV+0`fauTAt%^L~<1?|ps5&idC7(&DB`!#B0?KD|JcHvAbNDt0bZvA3`HN3v(tg|`>USwxQ?a+nch{;8R*VE<;0tRp}&Tq z=-+B!2REn5xSJGxg%v4X-^`gEhQyNVjOsgVNDbRBrQ*%7A=7agz>xNN)khLVKX4fU zCiWUkJWS9Xd0R}6_PYNUhsOt-GqE(Q&2?XkB zF2J9n@9;7Gsa6rM_KadvtWde(Zrr>oV8UXA{v92;nBZ03x+5kP56kSFNRER1X6DjpgT)6 z`qXv4K9Wm$?>7Q#{hc>=7(l7uQTF&XKa8Ex5yK!1LstTu1ib%Z?N6WSk&`okuc0A9 zkz`pELss}a&7PX9?RfM9Bj4^<*N^1#Gb?B#sEc3bl;o`1qg?b3%elCgZsK?+@AYK# zJ+;B{&ac^5YDWFR?5Q8gbq)e?K%5sKZe^d5J)}tMHAnUtaoIFActH)p=rgqMuSrR- zIkF3c?FozL1&G6=AD~_bK6*g`!srJoh6CcfK!7m%4Lh*|AH6_;F#0!;d5_vH)|}1? z{xIOh_*hDX0mjJXu+IqH}F7=2^zp546kZ>_{y zOYaU+7YJ}@8qc8gNl3Q=0vsAXT1(BSJ%n5qmwg>#>frlXCuDw$IVFcbbng|nYMy>2 zKKpg+-?w;yJ%jXX*vDBE$1(6_AUNrfLYG15-y<^{*(6aEleztRMQ zbfW={5u=}W_ua9sZxxjOhp{tCk{ASm=#^$#(B%FX+xeN-PPqj+fR)lH0ydAA>96>n zjlxx=^oOyF_?|JE1w-LVTtz4K?)6#Z^v84!2|KJ?u}fb_C-*3HLEQ=eV(oZ-?Qdarp(dbAeZ+eDridM5IfPsy}@gyWIv2w1w|pUnX?Ox zJecj7^$vr(GjJ;=8P~c>^E3Fn!{+U~iV*nKd>I=?eE|3`)%dRz9R0WBXN>-8EXlAs zj0KzdOdY0yr*Ba2CM~OX7%Khu^x*s1o2JG%YlSwQY4hbc>IQeDXftPQn1#6z1!|aI z3YESaa_m^-X3py<+1^#X^{Lu&`s*KxfR|^n(Rk zT(LDsFcmruMliT0m8Y!IhoUeE2kVwEsqhYqL%diwfKP>EN$zJ*(2ep@;aC#k5B_%D z06rD#bSto7`HTGiW9*D>9EM>Sx>8G6cJ`m_zV1bl)fMznI5kSlDVwIz)5(9Jz;wiq`ytL;sKu71C)dG-GPE#JCB|( znbODKW&nI5AJshl{en$~f}z8VO)~Q!Fj~UXFOHi-Tf;o(p#-JBKBhgN-x?|erC;Cu z(v2|}%#^+lcc|VoQ@z^Xi)3z)R=6>?l|Bd!mR3^wc>0T#`)k5{o%gz8WO^?0Ty0bO zG|qHNf8Hc}U+L^cwJXR+JpJEO|*G2k<3n6>%9CTgbHy$!CZ7F!d*c6>a7=zB}~ly1-@i4~C|X zvy%nK!KjNMCQ4sG9Y>>Rjz&LCA0NTX)tBag>Ti~$zvM_d-T_Mnq@QZn2{WiyB#{1=7d}aE!zdU=`dd?*yfvCw zfTVBgRhWE!n{P&}7*DiQ^JK&dN;jK(a1APDNctOfht2~QP4Gn0Pee$9I?B22GSZje zO6pnr|1U?cNN=0L2^Jvu^IV ze5kD?kr&!2j%F|rHDM^&o}*TGd??WmsxS7+*>1Ty<6`2U+pU&i+ePV91Iev4>(@ro zpKw-t#=E#fR>^ruATlkKK1OFEMN)Y&_k)BRZ(U&hYphG7r}qAN8x zfV=-!>i(LGnkh~kjtvI)_-SNI2cAFDM0$0%pgfCvQH~w=qVdqiOaorx0nIa zUx4*RvENh{1Ejx*uuUqp`(l59^p^_Xq>pwm5k_}JRW|8k8>EkC>W|-`S@U_(+NhlZ z{gDLePu*2KyD@DB0n*=xOeqNxlU9KAr6X8NH)hRweMKjhc9@xUOR{0d{tv_jNMF(s z$;@eH2I)_7&rQ>1Z@4<+yuOyKz_mY;AbokVVf!+&Z>|lHzM8ZW5ZBv*%mC@DI9LXU z*)VQNn(?abY5yky>2HuhvfF9$ZIJ#fs(PP;@nYu2LC<3n6SqU5<{Z4D+%y%L{`rOddQSaQb8IKOL zsq9~8oH!oA3Lb`B8dwoB-f73^L^@2&>mSgxGkEh73(_w@T)~NJ=EMQgZ-Azup*gpO z^tCw%d^B7smX1qG>ECB`CzdkowLwGk4+he2byX{k=9oeH>J;eRP9|n(1+F~_xipn~ zEX`rBP1!$By-TYkY6yx~rc40ow+^p%K)}ST_ORSku_k8bFh=hEH}l9K{hQ^c-%vY$ zXOKQ-&_5NO8JRf@$(-B)HQ%83eV7abKcQAI8pL zg+UkyqIZ8L#U3(+;Lo&{3aK9ae`tGon?uO-rU!|OarZGvX8E6U$7^F8Gm?I@&)|<=RD^*_j8_?&~;sIVgKy!pP&85k(ZNZUrNhbJ^Hr%V(aeE$M&tgzsp_cf0ucG z=eI_@oK?L0`K6ZogGc=K=#sEE|33EFE?@p-cJkc6eQanAw_nJ${d~x7TdOypiLup| z>zmKj#@Mdc8?1Hqh5~y_PE0F&Zcd4@pU<^li)l65YmFI}WPR)982c`Rd9(fc+8Fy! z&Gzf%_Qo8$CCFgEthXLFSapV00C1?PwLYe`MrS`)Wj~|0n2h%8rped!_VspSjKyeg z*rm6WR@rUg`s?3@+FA`3SfeJ_){tUoZ8~JImFsQhTzk{e82hz?s@4mk_DgkkOR~WN z2<7G4uQV=dy>_|4-Wp^!AGKOyYElgLQrJwh-fD`m)#$C~lMNXF(bj0uw|rY=uPN8J zUeMX=4E6xKO@A%La2~#`8hWvIWNNFuOqW-7{DpG^8}sXXr=D$EQPK2P(eKOy8(zL$m4~eDVqm zG|`6(b4=Zv*@uhZ!w2v&I%Y|ZDS|y2mYy+9gr}HUTXY96n?FeVkF4&wx`RXRtE~Qc zS;nQkbval2L=8{(^vO0dCCae0{KrK#riqfL2>k4)x~btCul8M$acSGB3r7Gjz{jVC z?Y*`=bL73RVFnw==6e4W!`3Jtc_R1HRgSgIbim@+5`QwpA53{DeP}@L@vXXps^8jA z!#DGOKG0zP;1G~P`IH8Pn)h={T}@s2(kw>1;An%^)0({Phf}6hPkaclTEsW+oN6C) z{(|*%)O$zYC=VA;x}oO}B~N8ow50syMELomd>8r^W&t7Rs&kt7T6d5mw8l8=NbvBQ zdvgHCP(h3*oB3Qgg~mI?G0i(z&Ng8WxoZBv63Guwe2QDkU7be zFhC2Rt(&fz2>+VePRkG7k{CW(|Dk{rJhAy|2!J4lXnvLL-nbAbnCGCJ&H=tyfIPj@ zaRQdHirL6GmmLHPE{qE>;&};p_MaOq?At0kuuzrQ`=#1uA|W1s!IuuEFmf~;)9@7d zP&j+>wG&dtrQ({RMavgit*2*aY|TA5XKl*S@~rc?OW43*DPFe0hO8O)Yw0AbHkNGsy zWG*)jH&k!HkU%@0S6E)9$uAA8T>yZ&=k-}nFUwRzx{;I4mp{E679gHKO= z=g(j7e)sEHzgRY9#o)ZvgOiOt&W?NHX<(Cf;gd0p}o zwjb^VTP%<5e*}J8p9`o;k2QDdyAhxVN3;MYJ)a#~5@-)R5;*>kVP|W`mIjW0hyVT) z0$$ehAbj6^$CZBX&s-gK_0B~b=VV0~zW%iE`J{mUCwpD_$6&V9Xf+mW^ZcGp8&dWEW1%KRT-O>0u=yDH(Ss zr>1P(QHj{rjq7p%CYPr6yk|I!Z%DXn1pW?R)=>ZIM#F)A`o*_Khra%2TrV>Cjcxe* zO1}qZ17&Kyc<34Yt-DfvsOoaRD@cUL4<&4`C$Ps35!i0wgz_<*x+P$TiN1ckh)^y7 z6yHwkx~yepKtz|Xa^|eH0O~u#0n0U40OPIwt&3MR($xMoPS)1%U$gO#ZtV?wi0E?n zpXq?Q3}AG8_LpqyZ)eih?|+i8f9Od(`{$D?XV3fb2x1pF{vMoAx%suRFvPU3Z+i2m zft`MZbg=as`5bHxDBl~GD39H77yKToe`mVw!M|E3J-d8(w<28h?6}AOc6-|Q=4m5; zIA1>YqrVZ@(Fk_iy73YC`$Xp3S%k=HMC3}p33D0b9S;!lgEkTJlVI>nTeQX8_s*vL zC4dh+fJoTQ)pxHL0XWsAG<1uCv2~`1Rw)pADGO>b%{F$0@(D7 zfV`9IVby3u<_sDWIDYbgvlmX}tr(F!^Xxe3XUz})%rU~LKu%l*cE-l!#sm>a{&}6L zJeEL%q`;y_x9%9YgwO$zK{)05XpSHMASr<1qyP-m2ZWIA+3xZ)0pF$rrrq1VIkcpk z2107{kW4mCCI*Pfu_|^RAp;`D2rS#cqPiJTn+k@q&!TK;eZ9t!2*y;)TomxAO+y%r znn)SN)i)?6qZASw5wV-+?q!67GsFk6alQ(2uqyG>dedMNotYR_hlif_eV-L0q+BCE zq&7=v;Sbv8yY;EZLFXa&o$DcGE$xkR+Sf#_AU@O&Uy%trU%NFkDn0r8?TpK9k<0Nj z6qUkp$W3NzU?qK(5s=Jw2m&yQ092LSOC&Q^_aK2P7hlB$v001e{a8kjJ>bHrZa#RJL6{>ZXw`Do`Jg-g}?!d9qREU25SypHXyjw-pU`W+e z`5IHqrLU@DBKKsOv}0JY?Hl3-g}(QmpKrJW0K|D^8!VAZ>GbMYM2@ zV!VG4M*?n*jDEoA)^>6slLo@c2fU(0%mbcKSI0LjS{NHa)=H$Q z!Zs7rcV6fT^=N`g7HZ-4V59K6m`rsPEz}Jk_G#=2x;`i(AgyJro<*7v8)W$AA+@15 zI$)?v2CC?$c2E?JVS3wmxIGlT@zKJJk@0~J#vmBSm?=v4UUe(vMMC`(Dp7zs+bhIM z>Ig=Y!zy?A&=t3=l<7_nR1_1gTs7g+inIYB3pWtT$;ORH)X(&9Uu%{95 zw2M8BhNm;^DH@&v_Th{P@H7gZW=-$4_~Fh$6+O3@S3Murf6UVjJBJPF`rW40!3$ z>VO5uPFWA{%kKF;4I4ni=Dxs&?Rb(_SoAJi;m2=jg`Kp*;9s*9dVV};`N=iUOe)EI zj z{+)COic+o3NPC>>>dgM1YE#}duHqZRhi3SYj8 zG|NMpt=ft->lHyX`v(m>NyGLpBSZ>lg|BFZH?PtPDYU}rh|ZyBiXTrKSbd@5*6@n_ zZ1yAg1>^07^Go9r-!JOju(QXI)OVVmI=t?YJr`puB0L$eFZ*<5*X1WSHl3ge^nc*+ zKOvmY_q@M9r4w@a2MB)HkU{lZUqj(ws~(Sw18hKwrn0sCp!~G@zhH*^>>0pr=?M|l zvG-0Nfj=4tGd7Gb+s!DR6qbifd}_^xLdKA82N1^wRh+K;LWP6d!TkR^P(Ac-n28!{ zLg_7D^V|sbG>M?MgG^{Zg}U*Ba;H!8vqvfUegNnD&7AL(1>Zk`iWvA_dw_)R*#x=f zZpVQ#{<^tA11 zmNsX%s>Kxxm43GojCAJb`%_+Fe4w>_@PaWDRdwCKy)^ezwDckSb)ThFzC?z-W&rag zls>@Z1o8!huIP>089Zh2dnS1Ui#MVNk=eAn>BPC+!x-P16Qqv9sfjUUd3?R4e@2o##T|3|%h9rtGm%UQj-R zVAVsxEZ+tL_O#`Ow&*dYUg$}LHg;l*&8g~Z-6Px=f#>AJcWd^4vVlRCI z@|I$_l}%))&Nm!1>Ma^K)ciIJL$)v^z%wIkFmh&8#SPfkPoThI6z9xWdNIj}OmJ$- zwX(otZSI3if>CiKkrY{n3}UKSXv&;4PI?FqnX=(W5VF@v;zWeshFt(?vi=tGAER^9 zQ92yXY~z=5Z>25UHwA2GJD1_>Qs-&}SB$j^V)*fMGqYUB4@;pz*EDnbstVoCVYy7@ zGc6P~RLx{Lb|@rE3o|+vP(j2v-l#DJS?HXZEsW~K)U{Bq3Ov$}$_T&a@mpSBx(96$8 z*>g@MH9*Fd3%HO3t|7dMuv@0Z0fOjyk(6nJ0BI&D3L~*;vIc}})1FbVrUqKuV<5`)u^@dP#ghTeDO5F}hn(tfcS-7&lYK$vX z2ihl2S`D$$&X#Z#nVXaruTBh^-PX*(AWx8`BTm)A-i_!3lOwqn)kC@`zKs2tOok&a zgOud-#;2K8$kVF*H*l?4IvaoEF-2TB`#)rK!jlv_auU zcykyZbxW5x*Gx1Wb}o&1T5ia#z+d=T3(j<9A_#)K^fWty{FzCbjY6NMnE{kRFKO7l%SfA1>iYAz&V zUd++YZcE&s6vloSgyIk5fq1xZrY3S(&`6S`|%k>hAREQ)#5pp78yLTp#L?NdW6RhqzPbu^`GCrNPPZ+=0dmE{y zE`7pS-~qwrp1QfoJ-aZO}I&L?rQv2oVu|B0_X>J`o{0YoCaalsnXQx%!zYG`de1Yh^}Q zo?&~@(+x@WtAp!JLuNMYgpc&qK74}ea{X2)63;hck@#dKRRNoL6)=VBjDP`_p>8c)A`2M(=fZD?q^$;E%hvA_5DZ`@KX&zCy_U z9k7G#J?dG(Q-ZI280usksJT^pXuZxj2lj>t)&+R56Ex=I+tP}!jnsmQ?2aPSZCb;C z6WtR5sRdQ+la<&z;C3g-u&&P=sdWRgMS6nee$ek(F9l$U8B#--_o>=&kR?aJOyHLo z9<1Y5A)Gruh3W%zdoEf+Ut@)9QfbbzGbB}I85fUK-sp)`^>#W{3BEIv~|R9cE3n*n%MxE0lt(td>l4QBzT~s(w(OTh1GeR%9vC zR_?`Yz9@%@Vwal%PG6rUc*Lq&=@Sea{Gi;mkNL^YqEdC&LZ(YGO&O}x_wH)FaTy}W z6=HxO+SYs_r|zqIIh5Xg$o3sB5fWw5bdv&5(A0Y|$B2lC=o1q}`pOHtrS3nnOtbgN z2{i@AGR;hTdSw1p?KDS{6>B=oSn*|(LAlFXtK~&q=!${vM}F5JS1`Dvwy9r#m~{;C znlSh)#RlrbgI=S*f=2;eO&|bT#WomN#Hqm>fRyz(_bohXPRKg!G0LOUZ_^dTyMuye z0LMWm1-3qXM(j*|amrHQMp>6+;{MvVsPkOZL`A)pDyN>7rA3`p(at7-v0X`uzr3OW zf!H}c^~+(;mS#UmW8V8TOEjtRHYjl>*sNybj-|rERFAb19j$A87RoG9Fgdvwa}->t zfn+1e(6$2<(24#!QHqtfHaSTsNDbS*HjJ8>M6;LZ2NRtw>ZfsvAD#pxZ>p3pDaM_0 z1I}3%j?P$5Ra|Hl)sbur+{+)RcD(M9En%)|#&H?cv@PaJN@SjAG1oX2bUb{@OU_(9 zOPVr|e<#=tCwO z3KnHWAVxZni|}OLA(+5#D=B|#_BbIZ-jG>T(o8jReFa1P2SMENcElc!i>uS!h7D!4kyM z(|*Hft?i;|o&L#;?TsS_3U8&$CcE=@9-VDn6 zk(*fiy@SN+`*cApnKolOrK2hAmBoV>S~^38FX*M<^p+RxhwEmrYshhM4cV7ZGaH+_ z-}E)f8?{u8m0(trXZM-i7VkBS;n*PHj78MbqQLt4v&^rt>qwc zj+4T$TrA14Zebr_1nr`JOf#GVEY_;q&8v889@UrV-JF1s+tJVGh_1_3o%}U;6&~Bo!)H|J_!a)`0#Jh4uhtH61 zElc=+&qXim$j}l)uC=%b&0T)rFbYq-Ar|;%vbz>eN#Yj-HLSWT??h&I(UjiYpx9l< zyya?*y%-)OQy^6+A`wp_5U6aby7OATnR)>Sm4)|Qp{hT90xBsiS+4#?(HL*31*Cgf zS?1+xNpehH5w00ZrD+kZcp(`W7Ew7{#?I==LTyR7`9ZZaEKrb*Czas!3~I8Z%9A|4 zPymv2_})mMpsxt8@jCm8ye=n0i-o-2OraPOE=4N~=eZL1gVLfECQdK&bmUrgy&cO0 z-?uwbl*OXXd)~NA(~LnKJ5eV%`e+}=(Jxbpr9+5HhL9B2*q8BnnwG4Y#){=ZzNFs z0FH8)n~k_V?po=y4@OpY>m*j~c&D-gsrwqi?VOYTN6wTa}mx z@Zq&WKPcxLXSCSqCMG+0Mwk?;lf2+Gl==3c|M?XIvv|QNl`x@mPkR7S5;HHJ)I2@N z=l{z<)!Xy44b~a_Eg^b&k<{UTM|+{sXUX2jCJOW2C~v*F_L%CPQ<`}6WH1{W7+!z+W&%xLVc)0M%!hzyQbmr%4J`bDB*sB>kGGFKE1g~ z3$L>CRfV$HhZmXsi4mDnwq>$rGa8b^7BH5($i9Y_`J*Wxw;#a{7c zq8(cV%F<*I230=H1o$x2?r;o=?~+DQq%eV_hP7Yv6J10nT{%Mk@IEvGP^}VMgO7Jwaam)$i?#f3Twu`>P$ET_SE% z^%Zqv>LKe`2~wt~{Gc?O-Tk!k+Dh_!!!eTg>av^0_`+S`x(k<`>K^d655-r2PG4cUNiz9!7^*8pzVCS3w+vvo5@R;oZ9#;Oz9F3Ep4A zP{;yCFMd#N-yY+*ujZ$fJ6e^-6=S$xE_rjVj)$!L!sPTuQO=?pXGvjh29U+YP>3eT zEU<#1J&NT0pfqwLDiNrk?Cz>_NnusMy5A{N31&y++x2H#OLY zuTX}LNngG8I2~Tr;Hx)S`^n|O89Q%Lcbr`I1PhiNrJ0>}7HLJ5*O}P4kqUIq5X4{i z^(ecBIsBWn?n^aTnXli@B5iz`w6=%-`3+Q{b9Pnx>%Q)i9?rbnO4mE-?TeFOBjKW57=D3DHAq(V^WKf}jL2DFzY4+J-UX*9yP3JT)a;scTs&)^DUK#b{7)i|fQYMu!*+&EN~XMrjQ1@X9vmAhEAsR!`ol64 z&?gcSOOQgn4;9b*+Q3QK8lVv!IO}Ft5BTeiywefKA6kpT%fq8Xg2%6GpBO+JroV!S-i$*hE z#Usqi-OW%fA)(BEr*{SJj?IPF@^vTN`H2wYpL6JMVbb>NFO0A~{FTZua=)0ULkI2l z2VrW4!s%p9RzgThl5I04#)Wbk{mjIC{0KYFNu2ONz{;4Fo=s!ElsQ5Ku%|qV&&N(4alV_)Dka4K<*T_v+ zlqTEGY3!6Fn?#v2L3U@%%N z^Gh()i%&YhnTOVV_(ko&=i`e!s9tIl5zg`!{DF2C#NtMoDG3R-6qVUA*bn!J~Y?NOHTXi(+@v2 zbd82+tWk=G(Tdt=J|YEz0@%-^D|kYaTIc z+F5x(b&k~k>7pgcgW@d)%zc_^U&Uht++|H~Jq#iX7#6XTg$1e$CTNqN4o((Zyh?%z zL(-Cr_eNj}{aZ=Wx~RXlra-4(nvw2w;o90xPn1ByJd{DniKi_4y%k|Rj>0IFd+$H- z%qMI{?&4m}{LPi9@2$eWtnW2nn^`RQM;3BGH%Gu%giohzGfnlAm<6CLl{>+^WP7E- zv=ojJQ0*T^fwbTQP=T`zi8at5qO4XR`N$Est${{iLpY@e_)lywKQczhWIk>F=yRod z?Fi{@dCb5igrb>48e!6dV6qdc<0J}}s{z1y);UcGhU2feV+`1#HuRq}94C_tmp;jP z7#}HKW*%Lsk*Ap#`?G`4l1HPIBzNn_lnrFCs5K5G*I0e+kASI6nG;v$B5w=J zj9tD(DDRB~ZE8>Bp_ZL=cm*HP-SB0AAyC!a3baXi?@Y#W0uOU)C#-revh9tnEuFlp zj8NafxDtYQLRWZPHeM)jzSv%>?rwfe#eI3{a%Gj(wkzW+BB*&q_d}fbRH37ZmBN>S z#m2=a@`KXjM_|a>`K+8&RZGSPNI_sUVxdwFn=<~?Y1ZZwN%(l0wueX?3iW%@al_WE zi9RLiXq!ekkW?X{+HhQ4IxU|0=*B?D$5)t;xAm8v+`BKjt*T;YD>|$lfDg?bmJ<#a-=v$N@&8aVPM4H#8lNkIWZIf(%<)?wB54;DljRJKi6Vk1VhIOBqY8)jYzBmt5l zzV6oB<-|{AkR-Wddkwy{C3cz&ozV;+MvOzm6ms*!(&HpR!M-ZrpJ4bHN+%GN)T zCJPSHpA$Tmpm%)OM;R2nctJ(j?R*>C{qln&ig3hL>{BGZL0UwbhL(~&GmADC4}Nz) zA)t)=I;L1!E1g>~B?NFa&pOd*D&;tiPaVw8L%v_u?$fRlLP{*Vc{GQ#B1DS0REn_ba9`>~r0YdyY_pIC-j?-=n)%W0HS#rrfKI|z zZZtXM9W!e}8+QFA`WtpVcULdJ63vDDCA)ta_9$5RDG^Q_SOAPtpkPqM#-G$Km7Ft^ zlGdk3S;m6^a+cDW9rcnB_`&_8YKR6>_D3<*$o(X;@C0^}6?bs$ymuO`iwZOfI4OK4 z5|iInR;u`mz(vdQdW*Q0?b58dVV`kSKd)x-@YSxBO*lBj@iTnMBvs|_;<7(cDCrmN zQi+gy2XN_x(@S6M!G^bo;L|`43H(0y`xo#Aia3xRS`38JeDB;3gNwmfq?bV!Mo)<$ z@cmrARh*Rhjcn#fO4Aq?Q6@SZt}PpDT1n7Yid8EI$VM@kQhquFj1n?G*@^^#@n|jn zGD^zFkQx+~?q!EYmnyC^ewV@@QwUC+<8^M)RSl%UxzbO?(S7&(KL+XIUU_&l-XjPh zyUy2yNSd{P!y%ZyfK_Rj`o7Z&umL{J=r{W;&Lj!K2xuA*mPHT4Ixc=C`;dm#*|Lt8 z$oKDcbbwrD_Ag|LY|&yTyGmg2-HLKCBQ?F3EPDc4e1i&z$ZRRpsskUJp;DpqVL|dA zx0&Sz{^ImHw^qGmlHKx8UQO72T7CtitNH)RhimB6Mw^X+#3-_Lw>mg(6|0qJa9xz4+)6jQq&YcXj5Q@IlrKZ5a%S;aY%KV+41Dn20aX;W1DGjB~f^<#YfMpAnlCi4G-?WzeQL37l zUlUZG4pIJ#C(z%+y|}?UDlwZ^m%bNn-UyezeTcL-_LvXFXs4vW!>9O-a(g+GDmoU> zN+~ea9IRijXr=c7hD@aTftbKC@Po57&c zS2-IkR8moWOi5q86fY32&!oPK3%YQmD81}0TO=dczvhpph%RrMTzXAb1#l8=?EF_B z8$Z0ObmZE`U|C?qIP?zUNH9))-pE1D9b&yN@`>=+-1v4{`FLCL?UGNERd)3Iozo<-dh0h%qC~4Jv77 z2a$rJC#o8Qi<-RoxO{w#iEZ&fT2jnmIk@u)bGaZz44~rpEHe+5dx6>t{%>y+RafUf z{N}lPfw?xb-Qi)Rp-5PX4=ovc%LkKj{D~@Iso~BYXJKYf>>|`_0X1)ij_Li4BwDGX z{el-L<3C(KCJ*DiyWSCuNDRlysKpR$JQRlzaGVUTuVs~8UF=mHEq1DlI^LB1!g)_% z6HrFwdq}@9fwWE&+dMjX{6$Pq98gInE^w)ph+PHi$pZW&glB7*%fsuiAz*JIlIwVd zB))RB4O^V$=+e3H)4GiJtQ(Ir9NvtR;!hlCa zBBQJB)gG6j2#m;Q9v%3>=k7Mbrt^$^nD*V~MVDCO=|kaBJG!O7y>zNDxXZngP527T z^M~{A!!{a*va#6TUG4f0WY^3fsC0HAVoGRyF-mC>T2LizJ7yMU7DzfURjT1M9u&JK zgI3l$(FR3Axd86ebkvoUCjy$4Ckq8N+Z0r8I}nghfmo*~zjevFLy z^F%ef&T(w_?Y54wn7e|YDk5-|`SVp90)&pj6bHw=V((k94!~#~`*$v>@yk>Nmd?T> zPPA^%iMF*qT<1x3jX|`VyZfK@*?>E&fUD4!S@EaVMYX2`!M=Zsg|9auXdIo7Cp8S6 zw{L%_-rV=Xi8$EU@_aVzXMI;%e9qR~hcE=sw!hvlX{z^Jbf2n8yxa`=YDXgK<4}&c zZAH9m)mp%*8l71CZa3Ohi3)WI{WeZXhKuF5ghXy0{>ZhP%3Z(+Veyw4%JWaok)DF% zU&V8Zh#l4Ws-uh3)fJjhqm)i2TlOXD?3bFt1g)C|#=3+wS~M-#6+V#J=ZjOFXbV&@ zhu@;`sQKOd&RXft{a&x2ZRBpr2_&8gaB@-pfLyh@rii84Z1IG%)FjWY?x7f0av`VC zPta(#u<>h6SK@gOD>uHTzPq}uA6fh=nCkfl^4nA3+odvRkCx2c^nQ31K!Atw8d`YlwGd0jzV3w`dv|$ z&T!lxTXf=G3}Z3Xh(;S9)!p#bzQHke0)3;eOvB?Sr9DEup536E)*B6+wXe$enYY_2 zE_(90mNbvI!<_Q0AnHpj009zKUrRrI=&u4Xzjmi}+>@@BnGb0F>>XP_@4wvEm?B=q z=zfE)4;H?x7s7VlZ8&0i>tabX(;DF^5QGvTsj7iwcqi=8U9D@;;`n{(M=O2a)cs7I zKk_>dD<}v8XaSWcI_XPLY?lKrL4mI%^&^Bns}{4hwI(v>UL}`7^MNM1v4zjFc^pp1 z-xd{vTdQ4Rr(4~yPZ9Zi)N@5}j6SpfqX!4qroIl3a*RZWRwc;X^phAONW)99!G^K| z1Vok!>NY%D{Q}y!2Ojcm^@$7j7{^pL!lIs!G_kY1l&meL86=LX3tyxF2ch--!#-DHC4G~gZQ!>!KbS#KkXiHrrrgjA#1?pk0{AMLzjNBfb8&otnUN>fN?@9=FEd|zvI=DX@PdKM zYE=6LMa#!LB`vg1?O>cWJ-a*l()Xz>H@su`X3;@|1+$)EfQ z58hs8iUe!gla?t&mfeR1esSYZ`x38~eb)oXR9mg~nvS1`G84rgkM@pt_GJD$dwZVu z^H;abb(c7rfyuzBkdRMd@|K-SeeIZ8)1(J+{Ak1catUrXI2CSQ<31~`(76}^c^6QW zEz7CDmNUhjwAl;gk5Zj;TRbIc95*Sl%dayJ5;c_9A6TzH%5z;F=Mw|? z$T4^S&3x>A7~#B&R8Uh_?^wyn&W0^&a}n$Ic>cZDrr+1}d%#wCZ8f7D;}QR-?6~mDGXQQ zLrX0fu6>Y?U$F1?2j54n;@wLkS@S68)0MjWcW`vLw@XiscEbp@Y&5Hk|A0I@s+Yl- zQ)W#n!eGzk6if3Dao;YX1vO=9INAKYuV~dl5bzv?j$5D zUB0A!owJXpa9z5Oem5^>J(nPO|6!V~xQifuXM-r7duILaC*AFJMq2K1gLn3sb&Jjv zDkjStgU~mNUkU>f&qESl?!WH({|H9r=zIQqTL1N;Yu5jQE>X03Bi}&PidHnneMf&R zF%6?2JO|)-tQ6niB%IUAio%wM5_x1NO}cMUabp)3Nbg1ArWl9>x5EdJ{F*QKD}v%r zHnD&k=xD{SnF#}`SfcEBUPM){y*Y^AYD`I@u;5{ZP&aDP8fw0k?}&G!T)-|qcWaa4 zBk}2^?h<=D|6KH`_*Wk~44Ht_r_IeBpX0L3*M~8QfLXttmW^%w{|?p-8JpzeH_{AS zuJYp+ULGAPH})bgv0E~Tt+xM^0attwp^9n+;dSQ^O>$v6<%9Npy*AH!g8(1hh3VWvK;j?vgRWvXO6Hf zBCFUAaP9UYFs|;w6-lr3Kp6bgUwgWAMTuH5#`Vu|U*p}oZI zXu(k@?I3fUW8)z_j)|u1pAi}1{7Q{pHlHZH-d_Ss=e>6u|8_Nq_V#-D*86#!URm_{ zYUtopktu(PfT-JY3=^gz&*Qt)Mc#*Rg$W#1kdJ98#P>_FPF>YbI1 zZeq8qV6kjhX7;nx%i&FSvck$QUNwuHHeKn+T^xiBJLUih-zFc#WrvB+`KRd?J|z3HmL`n^(#jjxVD0N4DrQ`yn= zVfX~;8FaC7VE?P6C1b_{WZXI6Bv%ZMCo}*IFP6%R-Q@D)@MjB`dPNv|#ct&|vm;d2snAQQrYzZrf%fqc za8#O*Cc~Fx((o^Da$2lD@DN~kJ6+9c(Ag>fjabc9oRE_(ls8pJUt|+J*-|t$JcoMk z!OvErb#blFwo_TPUS4GZH=T;hv942-H3QeJGqtsE2j5SeAaZdf((o>b|H719LD$~1 z=EtZQ}^c!Dv=w*AF@WXKA`A%mQLhC-(}$2)7$gx z+jAW6%tN^8LpblO==DLaYwzz2Ljl*F=Lz)ykL!c!@-^mn6Pe~;{dOeF>HC}2^dC{+ zAENiTy+zPv>(hH2{$J8FM(#OfD}J3_@AZ_vk78C_i<0QV_azKTjr1|_>Kwu5tsH6D z>zRTXFmzz(!L&e2aiG9@tl^i9BR}Iu%q)+S`R~W|146N@`d5rab_~eOt-`9!@?7af z=_`9k5Gs6KM0|ZmTuT!M&kx^SZpU6@4e)4uoLnZgqwD+=vvfU0rkA`I^{2b|c3ixR zVo(jcn4D&jT1evDkK2a8myX`sx>$~GyRig{RTIDSv$Hct)2EGhLjS${d>6el;n~kK zSb+~if<4EoOodp|)bZzLTb%NA>)KF+w%wJ*2hUjlDfZTwzd@BVPs+)XbCRz4mRe+_W~>#@VDh z{Zku0pYlTv!AEDhHDRYqkJA)$(7>SB}$_qIJS`{@aRW zCiF=*Vc|Z#L2|r~AuL|##wMK8Tm%9-h#MNQ@mY+rR$Zl=OzKwa*3qmp_V{BTW7z4? zSC88^e`cODq!k0>KZF3I=sXgaR55<+${96chp@ah`T1fQC>$D8S{9J<)Z2gdmT1dL zCc6tqG8YJJau1#-7WRtY9smD3SC)jcLPv8{Vzs_1FMaG2D)K?VX`wLUq0DgivqGs@ zFU`#5oCWJRL$OS?QHoFH8}Ug#)OY7RddjntGJ;g)`VrflQ<4BaAiiK?8#_6vf-zXF zr#oylf#4kU_vSzoTIt*b*Nq@Wv!&(Mt{kuZ3IpL+UQaAtYIEY63n!oDV&y*NtM(H6 zW!2Z_kRY@jRZ@2_*LckRfy-tjU16FHHUa$#rBT_2R`lc@wR5`(XoA|MXpMY|*|*mdUSrl_MP`8v67nE!PpIWvYETCX0*`^wqdzG?vGKsYfzqY&J%xtUHI9V-ie z)}u$tY{O~sjgg#_-pI6aL`E{{fm)4m4uij<__!%Db^OYSl+$JIh+baLFO= z(Abk>cz!TiFrhvU>0Y5&OEL_D+nZce!=sy9@mDyvkZ&_q7FW@rm(_Ivw9|Jre&&bM zYQ$7r?v_lE`Im^hEN2%W^F!)pq5Jn8|Az&}-Az{)!~4wG6_)*Rh-vFK_C`@F#2@WT zz+MX#+Wuz@UPkh46eg?!OtK*_`F|0<$9CM}Yct{V5X;EYYfVFO_z#+@gNDDy)% zLBk+ksmV~%vC8rGeAfM#vWyeskcEv0*PCMlak|;l&Ah^_PuX!g?_hN@k0Z1pnM>|8 z$!cj}*9wz#BvCgOA|RUj*}~lt(rGT{)`(NE!R{crrT|g5B&C*N-q2riAS`XKIeV0x z&X^QnjwbLTVT)3btZnA)p5}oT`jjh?!Y|xRQ-4hOqt<{zqVo|BVqt2wnSZO%%-lAr z9dLoFe6KIp)`HJG%4q}cDhTaa=q!g0WuroTN)2Pw? zaTOMJL{RJBT@;P9i;|m@*;xx!RS2L`0jK*7GR)@bm=_$DO<{=O;^5SD`iFGC0;P4W z%-5JLOPC{^49Rk`{=SC$h_p362M31!y~Bkjqa4XNu^p>mKCO81XndHLGNe;2(H*x z=PR;4PCZ6zEGRniSuzI(MTgRXN-N_Ao*ko)1Gi_kVL6D19BTS?fQZnQ4r2r2V`$g| z)M&(YFt-+Oq&gpRKu8)NKKWp$ZqYfn&Fzp&t5KsB9HaypmcI;J1-owc>k#c21P<~v zl9SU*$RU2ibuNJJyU3H7SW_YK*{(>3-hJqcc-p@YCFC349nkRmj1hzS-oNILSwbPO z!}|K%&5DC(B~Pb34`s?7*IE|XT8;yHlei~Hdg>tgKrFA88j&<=&zE{6L##0x=qQ-XBEOLzOsB~$pqw(^Ulgk6BH_p&2upG0s)qWc4D$Ci& zmbizDoJUT?C^~Cyhszscv8xi)CG-eXI|>lTY&ZVGW$UCzr(TNct2oU z(Dlp)zQ1b%cHKt9V$$(Lv1N0()fZ$Cp7|FSs>5}GRTMEITo)Hr_h4Q))qS+uNxNb~ zhYreOowhl?v!kv#_70h^0^!3{M+-OwmmMC25<`OCq#~e&cF=TW1b{4L7R|*^#OXE) z{+T7N>b+LV-W;xrJ-f5t=G+oq_K6ntT3;A6YMjA`F2b7wC!eWLl4X#^%Sf^=-$~f` zyLNv!{AP^x{auQPbk$+!E%djBEp;txM}vSd*X+J7>3<8b5s((v#|VB z8Vf$}C6K*Xcq6ok7UhO5JxXKAKt_d_k-sR66rao#{`ZN)*Y60T#}TZD4ubQ_=kt8J zKhkUWeX0~q5C%x21*o`xy+x^}itW9)0J|iGI<~Jl1g#q9r`sU0b%Zl_sqL4F%w6lV z){Qg73A4Wi(%b2719>UxX>V})LGqGBJeY)XZ;l5%Z(U?If2BW9XGMG!^&WL(N9-QY z;6Gs$5{51A+}mwKqW!^wqJWcA>)RsVwd@x(YBvq~ z{1+z^hjR)4z9ATa4i>!tW4Soo}9gH7$1DL$S68zMRp#eLD%>k5*FVl;D{ zsODI9;VMRGWxAG6wn<%d$dREE@2Oxo5qWliYLJTgbox?I)^ElXZ9+^5RB72=Q&lWLz7*asiqT}zy&Q_V?0oBL=d7dV1PLW? z%T_8#&53T)!G9_!ww)$gRYaG(6mv>l95V-*CH?P*IXPyJYO-Op^c#xnDr@xsw%LE8 zBk*|}+H%2iK_Lc02$6H}TAn%Z&CqzpI>~9SekPQ{V3bPKZ5OK6Z^V-W)bSF)AI+R| zJ)=E+$_W$X{}2;teoHtm)j8KGHa$8@vyEo*5OyOnIHul5mC0i=(09eN!h5Q{$k5^K zkxJPb_jU0}r3^`Bs=`u}NR_1& zC;Z)xtw>m8ooOx7^uI}ICPUkjG%(uob;_ajC?N!sh|ai7Cz4>>XPFU@6f+tA{=}BC zGcEGzSM0DXBzL#(E~FGt@#=YV2*bqCcO;q*wzR&cs;hN>HnZ z9_?iX;?)>8A{xh|*KE*kl~oiBVg)XH=D!WAE+^1~@T;a{@J40Ox<9wK5faH+3|dV& zt!C8nf$exPV^OqVRW)SbEp%&E%eZrM$UoJwLTuP8HEtwp?B|-Cv^DH?lf7qq% zNI^?aO29xsCAgJD#DSRNL^r!J?btgao)H;s zMlT8D_^C=(P8$Bmq2>52E%EfW&bQp^W?1=?lap(~J0)ahTUpT>(djv00I)u!>y&VV z%0it^{Uky|CX&)H!L0{#L9(Umb~YWZCXnJgZBZCN`f}!nn)<2 zgRHS1cAaSw6xqNLg#HE_gmTkAO{8frg4Rx?Z2 zt6w{bhhpJaDno!%N-8VS3WBg?urVgotj%5tnhd}RjTR`3QZ|@~C0Ij%-88z&Ua+a|Axy#K)ek5Lv+Va4)Q7hiPUzgoDjj{e=scbgJgCjF7d5O_`82Lx^pK3%09BO2qtEeJQEZn za$QKn{FL_&PGsXh_F4I;&_Y~1A*v-X*@%FWL8`=Bmrveyr;Rzl3|pGR>F3{%h8ApM z=9)npR37H(fX8;uw*^O9pcw-IixNxDPl!%DcWoh=#C1lHX=S!=nFE;_i2@6Op zPggX6wlYXb)1ELLmyov-3A?Tf);BpUf|g(39_2PEi?J;NdJ`10gfE+x)>|S5Mgu;=A;*mYIU37S7dEckT&Ey<1!BCr zK>3i(rwS&CKvOtC>w)oD$gP}ADr8udNn^-s|8wFmQLkkOcF_&~@z(y7FqS{IUxqUY z^VXc}d+8_iw5@3Kuo1oxyOr=TXbr*M|? zEkhAsAvp#*jMy866ux9I1?t|os+ZFy{eYXxw^reEx{Sq43q&v|h3aUL`X)OdvFWon zbFGt&@+%O6v`;L)%anLH4VRE)66E zd}iS!InBfgG|Viq|2aql-)5!CXOi7bZ`RybBT*M77=ozzYRJ8Dy0UW?w+vc0J*Ry4 zk;;{;MG8MYv-(UVE6Wsipnv|Exb}%i#JSB4O4HPxk@P}F;YT;Cg zRfu1vHJd>WoCKFa8;+KPa{@pprDkQu2f(F4i*(ZKwTiu%;h@MGCGuL@ffP4Mq{D3A zU$k8*Ajz=?k4tFjC}1!POZZ^zoeauR9CU^6gn7Er3|1yiuR+HyzAR!v>$^|em-dcQ z#uPkNFO;OQzVfHy5*(u!~O71xW7Jc7x~iBc?nIku5oW zT)NaeaUGN*pq62`=+*mT%4E~$&SP3QF^h55vdOh`;PVkl|p@i zr?^a$dL`pAZmN6VS`sdO@O)*UT-a`Ovc% zlMjFJ0kHF7`t_MQI2#D4ElBks#H30-R(8aGaUvyV85A%YDh7v!WHtdhFx0_8EJ9>5 z+rEELb>_{o(F6$a9ImT-*7Vm$%+8#JZJ_>OR zX+x*Oy(M4Kil6Qz=BymbZ(?pM_`yh{JUrWXtfUfvwfFj`x4f<{3Ne?{n*F?Gzh5KX zmOMaf#NqzGVHQ#IY}knSWx)D}yP|US!OsA8{S^!WgfjloK@t&+>-j&?59a#e1)z{Q z0YC%@9IHPHM!C^X2V&AH??Eq%c-%JFMV zKIaTi9%wlH&L_-8Rz1=rLNL3*vBDn?7R^U=^A7pqF&{~mJrYqKZ05T&&(_KF_gdn5 zKAZ=W&dVfA&{BJz0b?_UCQqqc8z1V!m*ZT>d70HVO{d6I&-a5o6DoPGFN+WqBH%ZS z+u*?-TU1M(W6%PpkPK%K3Q%e)rJRYy-;&UE588uDp7yRhA@MSe559y}Y05epH{}Q? z@Kly3N^$=>L&9eemI>^+k<^BjoF|&cmof*gRY^X4k>XsPiYV2YRv=AL7&axBx7>mK z26VC>kip-mSYAWvUa^bdclp|8 zijE0u4+`%aQWP-v`il2?N0m$}6hnB|AoDyjhhgl4>z0lD*aEJxw`P0lodpR=Hp(h~ z#!OM;)sO`{pstCh>_b(2HanCnOMjY;DQZJs0Vn7uYH~7P>&0**9dL?P#f3}oPZ8-- z5J1jmRZ(>uzj`6eStD~ayn;204XuYO(HwRLYBU!L>opQQ3f3jRSX9+PmXW0_$g2pyWsE6RgCSP$87qK5;XzTe$k zOs)+0k-mGN6RNZt4-2*#d!;EZx(e!TtC|5p1w(5NQ?)!RUp>~-p8%Dcq$DiUtRFzm*V6GIQ2%-OwosN2-9 z_&gm_IB5KIsvJ0k%Us9=XONe?&O{4WK-=~w6I&L&V>?Q-BwM@Us6ecp8z1vrvsef| zS-!nT5+Zb<1knO@R9}`1+PIRe$Zl(a z5j&uf(?o9|RdUw(I|l)VTR#M`YJ{6XL31smc;Db$q(K1|mA!V#gAkGEPzYwtQn`j*P#N5~HiMNo~b z>)XEsW~lfx1lJKoDK{x|1jeYyEcn9+8^`uwmipP|EVVrX zVAPtHd}qZu9MTqj-N*lZ&d_f2EEqfXk6muE4Uz8Yj2-#lv;}jv7p<=GTg_Ol%A2?H zuDNu|3BRYX2Sei~+zPTpxx9o#Y}={1DZB;)mQDsqj%hYW=iAKWNFtj3(2uJtO2+m& zBfhY|t9bqJ_=0@CmGlLpfg{;^-*Lblh;9G2so%J+b&n-VS3>b#freMkiKP9ssG%Bk zUNG1gK_dX`w1L>;jSo87&~wAHoj+N$a+aG^s5SX}N5bdEf|$>A>5;EiMsM zr{u69YBHUOB_8)&1E0usfEC{QAq09!8W+1Y75!aGST|E_v4BM}vqJQb$KJVCd*(eZ z1}lX{dco3ab$FP1D#Z&L82T#08|8}~{Dt#1>l?3zu<7p56*)Bm)ZPffI9@bOPdj9^ zb^{?p6Zb*+Z3c`~q^}+GjoJwhBNSfII6#nkH&WAigbUiNd!ssY-Pc}T*n4*@M4TThcWhnzGJeanKsU(7G z+%pI(2b(03uY17|s9cTqP+vS^kCuoP9kDyHy8A-n_4=9p(Epd|&OFuMmbbe*2dWEy zVs$aJP-gNLSY9&lMe0CWftZ@M=R#owt`=GvrNTVmCtrRi<_6*gMesin7Pz`%7&|;` zhr{Fc#c83TDsS=#lKTTSKD@(RWh{ZI(3GtOMu{f>uiJob9zrJrw$w{xbu=IM&rJLr z6>g)&LuL-Qm%i^+(+FTF)N{>|5<^Mx+qp0&UvNY>*Uq_)H7#|Tki$}8rZ>gcFQTAL zW&}C9M;?TLg`L>eus=IFdy>O`fHIMg&?E%)FUN((urr#-rI;64K1T^mWqKv4Ad?_Hy$GC| zixxC$p$OJhrb^bU@T~%mbh^tX!eQ)nNZ6*7!sY;4bB#5)AjmzKSqqV6q}oioh-F+{ zc)EFvCP@F7LjJC}VqPS9D5e>eU?RS+FavuS2wqnZr?_pevuG@2(wKr<)# znRQzfC08CDYg#P6Y|s)La;=hG$W;q8ri*pw%8&z&pp?g)M=Q)OO8+eLhNgri>)Ukr zS|>(=#Q-ojsS5k1D(3aLe6z~!7tT;f9Kic6#t@@)p^_iaS{UwcI0npbT1kp_V}~lE zB)t1pF@x5gk`8wo4Gx6-(8PKGBI#TL;!DKdAb|fG!sfrGE|pWZ?^gup7qq@;tL>(s zgJ_k}9PA5dPDsa{f%avG%8vhmCP-Z>0@dU$GgE6sUP$`>e2e8Ym0)f0KZ1>jO#+a^ z5mdwa#sHS!bEQlvgC#P-Eg`G%`hvsP9+g(WHk8*U@`1c ztFe;iq!8>?%p&T;T7yeaRl6f`d!JjAjO=urhck0{+q0y<@?6U;?hKd@m<66TbgH5y zl=p8OOg-RjLU|c6-jm6dA3VVB2q-4x)IIvj`mpguPpnf*ggLEm(?TF*;M`e#eq zBvzs<$0}!XW`3_Ep<+aEl6@4CFO)?Ik+4#!`NyD|UGS770nn!G6I|mT$JN~@vO{qO z(SL6*er&O)j*^2^h_I^v&KxqlfvuxJUm zKG7Z&>#&LeXLY2>f9ht0zFpNP4qe;JzPq8AmEhR;_!W@3G3UsZ&-ZW?6s)%2cms3a z-Q1Mz^exKMAXLsPnmmsUK{vs@`m}Q%)kt1ab(I7$@%{KqX$n-ov3X)G=vH1*YDJ7~ z)Z~g!e?#F!Uk(HJf9e_qY@s&Wx1=$AUvQW)p|Z9g@`@ui$=m-aihNDXW}ydyXDba! zBRIHsU)}%q^yIrbZV?&7#zzpp+>K1p$$9X?uG3t=s%Zi_susrf(u$r4tqZ2DLs z?h}gttD9Ltk>MztfvuH4Qps!j%$GWPspe8=(mB2g>MY_^oO+d`%CEk(GHZjiIT<$_ zLRZ<;=2yo=QIZ@N4blm7#5R;uXK_mmu-s)Z|X7+tUq0F^~c?mt{_Q*91rkZJlF9t3g1aawcS6>||ygzmIUr3!@ z4N+2w`DTn-LJlpjF{*Y8p&x?1uz{KnvGwOV!-!M; z3_5?J^HrA!&@w9;+oXRJwIAnd{+WLebkw3&L1&Q)Zs#uJ3eF|i{#FtaV?|ZnXyJY$ zqxChM!5W?=_#_mL-=X$3u;AnNVY}Gn404C6YyabZDI0`EGI}Cm&Oj+X#V9M)91(+K zrWk*obO^QvF%6Ap>F?s#o7$raQEkF|bMT3ULBvyKv^iC{By3*DNo{SeB7$rSOj-1qVx$-yxH zGgq9UTR)I;WG8i_fof+DCP6mi?=%YbIc*_+!*cdmm zs+JCTx0JBKl<9ERr>akKrt2*;UnVKABpR}C*ym`$b25l_$pf^lA<3Qwie(UhS1?VG zeOsfhF2h{r%Tv=6cRg#-{plXZ>-RT?G3T^wl9SKJs>R?RFz;6*r>D!0>c*7@NHR_h zfzB#xt;~rVn3;~)|FW3zmcmkRMO}<)>-N&p=fI*wH%W( z2gnM!flR?DfhDJ*M|hIlp;eX;d?0nW0*wY+)8k~S`o`as-3JLWb^PPl95}Rjj#UVJ zj>bRH#{%?-{W zm;DY`^SL^ux|DL`235y9rsrsb({Aw!=Ze%kR`EEoub7WJ3cBeHIO*uR?63w0UZ7aXpd5*bnX(d72%pKW3HuO6YNUxJ1H ze{)?w-5Brso*CmuHUEoeTvtbnfKQW_R8*X&RhRhxX!_=;&c5&OY@3stY}?jUlWp6! zU7u`ElWVd$+4atxY9`zD+`jAi)vC4Xk6P#6efHUVzi{sL-q`{l!YnoUf4ch{yo7tI zzkq}dJQQw9F&l0~c^z;Fxy4{qAh1N>|7x!orL7m{GA_QA^?Fvzx8o!06e~~+8ZCrn z8)dmTtsX9zH|+ezxBnLt&+#$c)XL>WD#yJ~YRviq$Bu%&#zr&JZ`Fuoh3ddgka?2T z29GO*nK05HnAL0Bo9u*-+-7C2ZfLGcJx&wE#1*_r`SOrxVNicACj9SpiT{hfmj z+9nCD`^@)c`>8>C`+9t8evG)Janu+=*LDf>au^!TaHkEO7Q{82DW7 zI=gz;cGG#7|B+fOWBMME6k zgy><<3{P+u!}$qL%|!W?TfaHQSU9NGd;>ofRm?hs)eZa-iE+_$!0UUl?(;9T2=Taw z$QOd^ORQp!^9J=CLbtUsIPGjfW4{#5j$^3HiOLgpLMZR7N%!^@3TA^5EFRW5-!f$l z)oHQ5i<3D6=oOiX3RyaEIEqlrPT&vYXzulL?Y=ZM4leHYP5y)5xobh^+x@ySAVtFM z+JVl{_gFnWt!BP#Y3)8ca}4y=y!+%AUIaXJN*C;{Z@=HaY(4Zi`k&~c3cp@vS>}6B z^B(DWtePwP%%`H%AFW(u>UYfc54MlaaC=%v@^~A$B3TiN{ylSRpqd^;?JkVW*3ytLZ;x38GExVWFRU&p|gbzmWfhz6G-pE9@$ zpOsF4^UJ*9G>Dv!2uQq6g`Z1=ZI-)lrukbPHu>1u*`KjU-j1aW@2WIu%K)j&HGS_j zee0Ibi8R0y4t!e)d;^UNc>waSFR$`^UBGyI%H(b0{ikc+@v>79nVOCXcJ{?byeNPy z!`HeSq1gFu;ryfRdzBg#@PAmcShdZZ^f}_E`~~4ds)e2jF)YynCa5B6i%YGcf)&*7 z-V0j2fgE8B{K$p90Qr0fO~P~K(JY)eZ@?$f+VROgFNly0W5L~)=azFe2p#?rk+jR$ z2!fmH_tjqRO&;uPGx<5Ev`&c2uZ>_o$4blq+KOZiyeLs5>|2ar{3`TDA74w<-u8Mu zv3-@`spm3A^|_#$w5qCq?sdMKfRd>Q5PRLm(AVPWKNQC@Jug-Wxv$%|<^g&`eRGGd zs}WZqBtFTxd$_%i%@u-Er>}J%&vmiPJzhLS0Us~hf&bJBI`*bN0y|e~+RhO!H%xWK z4qO(kq~bhKRolMeSk8Gd#4FD-2zFDgqF3ex3Te-_8flD{*iL!OD1XPy-w6C}qVXIq z`>g^_G8$`K$wwcH21>4wCPp{k+vV@QsK^d!$$#ogD3U}M3dS8hM))s3l!b) zILz;uJm(xRJcVw>QOrBHlKyx_>Jt16=#!)Q>&xN_Jgk#fg4n9inGpGVV*v?&xLUzA zclF(yf)Bsm?La_!QIiItf;DXT{>Sj%r`xu!+rw@6Q&05oXWe_=_ER1@1Kf_iqc35Q za^UkqJ~X(%$J5M5PVZBW|I2;%P2Pn-(liM?`vicrHSt_b?wh*q!8L#I$#`hm9j7%n zQgFd=;CxR6G3nF{s1<7S%&dt)qebcWW(4Tn!F=CtG!+#wTH#}ZQH^=z5EM4lc7JDI zPVC`_4JmjnXuasL{0Z~y50;rX@JtK$4Q!SMO3;(FMH+mNvtk}*qwlO`op#jVRR+iI z((q*N*;XtjzRp_hZzqbzWC%viml0LpDb3*Wcn*KfN>Aj3mfUCl^EOj}NL}RZ`u2SH zHP3DStaV$cWA8Hns;ZdU4^q(0#~WYA0Zw_frQiu}AS-9Cp4V?IS)Or#bhx1tJ>ugE9AOl{-gNN@?X<<6ofLDj{pW9s$G zhQ{gdp`ibg{#DNE*cR7f*RUlT)_RlW%--Ifbw%E? z0EeKU{{Z~g4ez5o`m@JRNxv=5QQof~H(C?I?tgjc@_mtLM<^sG!zI`{T3n6CjdzEv zF}@j{A!EMiB1bQryTvcc#)qj=Z$Xi!E#exR+8(zSIlVL6A9sC&jaaYseGy@)=od;@ z58F?~gpfq-{sLyVu>)&P(8JZG#h#UrZgAbony12FUiOV{wn(xyo+F-VEaYBZoWSE3 zn!ANILnhjdOPZlA?7SxU%6f@BR?qWN9gNe}Fz&YRMK{p3X?=H|as=2zLQ%^~MPa+%5<12~g-=RRj85#CNeWjQCo)p|W*IH0bO} zegu*1ry6Ve7}DvR?Q40$^$vd#kn{F3Y|qpE=7WQvL#q1F82fBU(a0i$j~Y$%s?aku z$LZpBcC&(#Z*X}N*wt%BtOzmpoCs>`o|*IysD13$1e^_>6xs1VwPSM~x{CDU`rS=W9$FW*^})O9^h zp9nv__`T1 zMUm9oQ8hCRPJ~u42e0uyCcG#y*0^0IN_1W@2%mKLXNTd#bVGsP3_PF)_oEuez=MRE z8`on+aZR*htf+xghS^XUuIh}tlTfCT7MmEYReeuQ@w84s1wi=y%jgkj?k=B#f|l|r z7>d6WkXjt4;H5$@=)^ZQHx_c-bNq3U&nm&>_dLJ#n1lV|)n|7K$WD)@^K!UbXKjdfAle6c0N0*u9AKJH;^}Bf0>p}6OCLYAgHIY~}&pd~CS$W~hvs+zb&)QHN6k9`+Fsp&)$SYwsrUU(VMS+5TBDf>-E6Ms9VN~M#n-2gr9OyK*C z@Kv;O*B*9V+u!n>`_ok*o%$W2eq5q{JQaLAaR=UTd!DT=>6}24JO-(bgVZ&HnEn6C zGY4G7uGHv0{8bM0Stxg4p8OV44YwkYZVQ2oia!L?W<;OAI)R~k!?>aI2nC)69WR0N zO}UbcD$;}%Ct>#sdVO zY^Qk*4Ex*AT0sid7*GCeIVwlb;cpdMa!u5Wh(^vA%i@3dgg|XTbUJqYEtdyU?&s20 zZ$2d}rX(*QRzSY;=ReJ!kGBg)B^uY4v(~`B@`fEdA&3F@mVqA7mao?ty?*`BxLA@` z!@zR@G|Iev@1A8GL`nx?&%fffd-g`oTF;K%YU1$N*XG_ww#*;m7`+(9Z4Wf7Xc@D# zVbY=O!1v{l*qCfM;h(8aDJZHO*)wafz%CDC^ZiyOmCt*&aF9G5^Lmen2RD=TSc+xf zYHApp2^tw#8AR8P@x(1HS{$&*p-Wj(!NH(o@-zQ-`S(Qcs(0!?#wI=AH^Y^&qNShC zi(g$y=yUQ=c;Wx0I}Ajmpsm-Yub%HXHuBw;(v`qeMcSSYNl_!55q^&=p{RJTZkp}@ zPBTDHpG?y^9dJaOT5MUozLip{Kp5j zvkf~+?e_C#aB|0~xV%%p}d-Hbq5n z)YbW;cm=LEE;8&W*6}z~59B;t^J{%rdr^!Vk!iTGCngXeB-Z~D@pY7LGAd!eKUy^! zErI(~n_}i)hL!tYhhZx5{7F+&AhM3q@AUA0-6sh=WH0dE@;+jG&@+4-z-0mif>~Kv zpFs|&gU`qL{lmy!;8xgx?ih!5?v)RsL|;^?fK}jIJxr17I19S{oyTNIJnxXrvjQ_^ zp@^e#b?aLe`oSDz$OMzmIA|rIJpxUE4}3ISJqV-ZfCd7+$*u@X1zH`vjVf27AG&sh z!r5w)n%fhyumZI>=<-T*HD#7vZij_0mv!;*Np+D*xFQ6P6V(KJ%=G39%KER7QO~J1(&6eCN-^{$@j3Cj#Nx}QJy5SCD&1@d zqa*DZ^B3oS$erHXuo~P$C3J1t{h7zjq|!g=`UD>x*%sloQaTb5yo zwuoyR5#6HncVSgb_baHeu0&3cTF0z<|2i?fZ?3iL4n{9itm zWk4)VFm*C8ygmWR7N}_hmVO#=nzTn-3hd+WJ}ZK~pKZUN?Zq;0b$Q<`*XR~p#aR+< zyff3d^9a}Y16D$BUrCu%I+9B)o+*(a%@26~OY-qJ3WScP z&=Kzp@5^aZ!F_WDa2)D?0LCZmf`V_mfNJjZIM8|=r>{GGcnN&22;>WR`Si9he4fv+ zshQzBseS-_9BRzpcRv6(u@XjLOxo`_+Wyd;5n4(_NmghMZ#N5;f(&9x$H}TQ8q?>R zRc~E`_y)2`?-ve3#u}MWY)zx3AY-AjVf}4{i&F?;vkGA+T2dUS)s{!wN=0T1W-AwJ zjUUHaNT$Zy<9QLiDQvRFn(KPu@7m+p<9>IY%j3K^gpXzD=X(*=_H-z@IcQTtF@T)d z@a{;G^I`_3&~*NDHl9BZ+A>L1YT}+zKaAum!s3IMhc^6kJ5Q7lF{xOfdLtLc_{zuB zXzqKq!q#}=oU(I0!5sKBVHogsxAIv+eunX9*9=6DVdr7CEe4JsP&j{Df0T1~|L{kd zhk`}@vZw?3_$e|i7a&IW&{_bwzbEjM_|nOjS2yHVQsI@LE8;N;vsR2L;3gP}V$n}W zM4VQe5jBy*^)1N{gzz>>;~ipuwc?p6-*>Wgu^ zE-YOxbJ`0YfyAgFL2lpfHYkr-yQwjFZKqpW#tLPnU_~zF7dknHC~`v&t$<@rkud$m zV?JqPsNs~4!2E<*tEmLvJ$4Uu4P>e=_ke;knZ_upQhJ2H+47 zv%4U>z_eG5CXob^C=n6D>Pxr|NKnaIuKyVddWurTIV0bouHG*~MJ?+n;GO%0U80DA zk)}F8QCSWh4q6ufEbP*)#p`sDTHMmn8QYAKNn~!xWdI#uG2p1mFc66CPntFwRiJ1h z4Gw$$!HG|R;|3eKMyKlfy*gL+a}om4j;BoIcon(RFSQVhymVVii(*4Vw31-qEj3QM$uop(XV7GWCzEfpzbOGx}?`GLN0} z=TiUHn3&LOYOPi>NC#QwLY*cQL3=~?aUCw;h;W`6H-S<T%N(~Q`-ksoT} zcTS=Zf&)Pw*oKaU=!AeEQ3NwFuRb)fnivWXH5Sqx8XpQL5Ar$RnmRh=T(8JA#VmM# zcUKPl;6uyeH4k|}z6yFqLPs3AR1(Z^gjd-CB!=cL^`hxgzKaUqyx+r$rCgloUeKf? zxdeuiTLl6u+2bAH+$7rG8(u<)FM7{NM#uSZ;A=!8vl`=JnwO~fJf98mF*+degf#1D^aw(UQlS{T+02} zXbye%c~q;PtR7A@euP->!^X^?f1O>bG zk1GQ@1R`YR5GpRB{t(kNK~YI5K4`)|dCo{Z8fVdAcOKq`=j`S|1f!KFNv7Q9zgBRM zb`uw~^VJ6oc*S4+C(GzrEJeAd^Xm`k2d5iM0zQr!Sq(o`Xhd(Ry!UNmr_FN@l-PS<-XY57UKNFOsH=&Z?Rp( z-S6XDIEE3efa6z)sg$*zVAl{o%pUjnmI)INg~LD_Jekk|fmfI6wB~wG^l{&FMPl5T z$FY1`fk|8uLZR?GSJS#5XKs#-ez)u3w(Ps<`}Bs?KIDn|j*U^irbgm_27$m|W^k3AI_4Y>gGf}v~7%P8Cy%Y{l#{S(PX64v5v>gAM~Vz#l+5G zMHM*A2ZR|}{Yl8#gql<8FQ(}v?p+2c$<`dHh3lL_aK@+P*Ru|%2JWr%CwZ26J_Mt6 zZC`HtJgTVwXi}2zWN8!wW+>ma(TH`VkZ#jyPwc4Hsbj5V+Y*LD)Snq^sP`v5H`F_? z$1o4hom@T-|KLA*p###|9B};{i&Xh|rN2X>B{@pd=!m0-o2NPt?~at5=&2MW!c50U z7pB)Rn;rDbd5v4gWJzL zIwHv7kq&&_B^H7f}qvheQBLXi&mF)SOyL^`MsV*YEL=`%(>?DkyfX(7SU) z<-F1qdnP85Z}3yOpGaQ|Arx=|TBjjG8b_>ZvnuVF?E(Gjorcl2UY6w?>zs#Pvt>U~d$3!wRuno9_^)#h zkj!zEQ;E?kg!HJikeo=82?56*TiV1G1rrUPWH)Q_VoIycu&e}bmg|eQZ`%-)A0RcEweui-|kN6-tFq=>cF+vb~$v8?6wSpgS+0!{AkD843loch79L0-SZ z_TBDhWUIe0CwFc!fTy)3rAp(GDojNyxj_&`%`5UKh&hTXOPvrXg&ZoID4^J*77{l> zdABlG*|z-=Uj_%3{Sh#yA_XtF4XEE6QQvtz+?OzH;+r|``131A1lK4 z9`k4mXBI@z!{EjF(2&v?U*#C3YJW{O8;64w8Z#=kL=B|z$`k*&-{}u3 zMz$7mPIGHpIZ9d_rCpj|ZF%~M4KKs;cDRZx0TPokc58h6P3HHH$^O~k*xPvg7E$(@ zR`$i_uq8C_alE|F=#8$|lDo{&cn@MME_5yGCUHY1T%JpPv1N8t%Ey%{QzRbYqmkof zHPD3P9V77iH6GYN-j^CN>FkiiakHoW^JId~TI_!npT0ez#V*{jeV!Nss>ni}Ha6ZX84|agfriO6FHq9cr~!l|y9?dliZ)7& zov*drWJA{$o1y*ixzHk@wuN|1qU?mn)z9Za8EI%78*xSQT^)-cwmc)lo=b@hrg~Cw zm3a?cXL>w5Xe46WOuWWgK_UB^_DZi8>OhgDIQ3=6?tPv?IaZdvBj#uThS_v|LDny$ zs3MI7`9EE_84sQ@;B1B&I4^U?Oi&K?UI}EI!I1uFp6E{{S}lT=%%@mvbR*^6RKO=(e= z4viwaWsbX0g?PqHDA9L`Os-yn}Ii1qboeN9!>|8GVR@MHUKu43NK7>lNPv{cR8xQJquBU8y_Ow-D|1D7}Yv z#bUi&Opow=4ZL<=r`hlAwi@|63bcrQFiV3i`~9riW#v0De7$- z>Zbomz!9!gcN-xth&I^4%i`q3Xz`N5l8>AyoSZCL zM)qlh+8!g$3As})g(Ih87W}u|4W742LCXT)QE%Mo3jzO`!>P{X2XLe=k7S*gy*_*l zR!*iS-qI#ZS-`dSuK?*#V7Xd#^chVH^p$+7^suz)AKS_7{ebYr=bN%&r3p}o3aDk3 z=iszHVeScz-zzGiqqUB)5^pZ-4;4r0!M|Bw_qc*MeUnFBHk1&s)4=1|F|?w49n&#(DQASlTSx_D20?D>JnN&Q1SW!LIZunScbf8@z8$52rK=a~oVygGxs4 zi3NLlyLW{={0hFsNGG0g-=?J&>eA^;kKAg8H5o^JgVi}?s8@5$KtH7EeTda5P%&8v*d zh42qJ{dlolPPKL;vRf7C9R6m?e*ZhKMEU`oC&2F`Rk)oA&YKsU5D|Kebno}z(Qqp7 zH;1q6iz*bq!rWR`yZUqVxT_V~;MKVNCjYAMhakSeVUk*m4l(wLSQ6-802$Df423BE zFFoZ*yj)3^8wQCI=FESDyjktqyW!>BKb<03>&+*spM0PH`sTl0xyLwNj;;*Oh5C06 zFvAr=l!&86!%#8dMI~#Qw z#PxXgh}f3D%p6*i*M{1x84rt!{Tcb{1|>k=hX!ElGaz5!9}vH;oFE^uii6*w37U9N zFw*P`hxYl8kS6gQVesMCVSYai^2TAf54pymF%?pdQIK%ZA#j)tfpLvQ1eYUDhYIZ= zRM|EjCX+B$vxWHzpAG>%Hfw^V_!A2Y?&}YGI-?Kq83om06!7)w4d3(OPgVr4q^!bz&rVP$VnmQY8JPzPq1{L?it(A*ci5NM2&0r2 zcVa*?15~A7s7c$TpjWoo7^+s2zPdV_N?hg9+FpS?mbVIg#&#AhFM_l97g-BTXa@Z_ zA$*Uc(1S&U81SOe(6OTJzDPlEeIupFHeNar+igRl{kF<#Xd~=T-zV`@{fDm#(p{kK z95_NE#0LqmV#SNftf=SEu$b!=(SOT?l-!Ry8OJxUGJ~Kuyv;_X_F}4 z5g9TOS%*6JDmf-`^IW$mthT$vNMn5kVb z7A(0zci=hgF&cew)IGF~`=e$zy`0Ik{7YH&w9;4jwP!HJ_@&*KKE9nqPg+Q|xh=c& z7QM+oI(^J9jCo_iot6>2?D9`k0@@!gmo}4}9sN+I98bYUR44a)WfKdG6?SN}LzD~K z9+5~%V-`Js0-ZMkH!WmJ_0&4;o|NAMWJ6?)jM$RA;&;4zVxA-Kk^CgPs(Xt^7lInQ zkNYdEp`3KA)1tg37`_N$XGtJ82y3zyiF0(U%u-Ss{|j28qa5=zi&p3D#1Ryesa(Mhj+NDK0RD`s~Rh-7oO8paC zQ^vs_->3}5u`kg|xBDy!6pDnHokHp3ntRbTyJ(z83}KYyM+1ZoZ|^22AhMCg`_(h% zw+;vyabAMmT*N<=n+ee7d=s*Y!?6EJ*+oFkP6y%V_B9MOcMUTMz@k%d@ny(j{XyW^ z5^W!MrnBU)<_CI7^f|r|6KfSZ&r`gt(n>aHxgNK5Q67_z!AQPuZ3oBp1!s;q$jNL> z@AGx&7nHhDq{wsBY=@LM_wjT|14TQ;)5l4~(T$xwO3S$^ei|up?{sU5+9*Zn{7iZp zi@*L?;O8YeiJRvzYgSt0yW`2O$&Qa^11zgqj@0KYwNzY<8D zM_o{A%9wUuq?2|74)vzNXE=CsBo=C|ee6s6reGE02@_>Z`}@fQC0WmoTD9xj|z_~ zq#4;9<0ZL43dcx!b>Y^&r%uK|n#Jp25yEZTMciJ0+l!^{T0)^APHN=;o7x9x6l(y?VxFO&UJ6X3S5uc9&wzduIW~F7yk2EcWp0Nz1aV(~ zJ0<>b;2>ha{Xy8z3V7`vy_M`qOjJJn7C(ub?owY)>!Fa0pX`G_bw$VW2*xEpy{$S_Jyee}q}A!S{2?a%gi`a?DK-IoB$-V@+% z>2F+Vti~G*)w{w#B%Si4`w}lk5n@7M!+jnm$8gNiI zn!{FLCA!zV)~pr>W)Vo~<{E75iKYQRemjRnx6R_@K)V|7DF3`22Tt*#C}OzdJHp#CD&$Dt8@=-K?Lxs zLg|Zwkp2_@?NK)L-&~39CWp`6lBV$c<39J6*ZwEYIczC!gtfb$C>#J-`<`#K-+VgQ zAEd|&0ZzKtzwgqNVch!J2(dbufJ-_|mD3X_MLFOVudVhJ_J#Eu6J4!4v*BE5hNe|g zrW99C#b|e!6t8F}x&5vRzAGoVnTIINNL=(d zyy&2%=y$18Npe4!^U9;)Bn+lMEeEqNlwT{f2`xSLQ%&*9d*9Z3y8&K^g{9@^T?b4; zx+o=Z+m9pM5FlXR8L_l|dL?(9)UE?00RX<8Y_VU*(YtBKTtF1^{4q;AfE=?q?1jH= zN4iRL+MWhOXhFLPMP>G5qiww$(O%AGjWs3-DB~fbwm-@OJ9c9eac$O(iz+>)HTW&{ zODnwY11#{7Yo|Eus);AYmfk@>Ws7wtp&@zZs6G7E5pz*dp=jve^)BUEtjC=QHO0C% zkC~Ak$e{PKhodpSZe6FhDkv*|j1{~_tH#$nXRf*+!GuD>qJRN3ovq7R;Pqb(VMd~o zY_&RWhvOPN{s90veSoEku`yUxtQJOy-~MPj7lM2~px!#xBtJik>KBEv|0{K5F`Qzj zJ!!`T-|=yNpS0&$vw+(Go>2rzgL1%2S7!b7=Vtq=e`56rp%`|v(}G^FLz@U~K~P=* zI4FD%GX1;{!0<8zmjQVG7Cl!Zgs`Fgz(#l2*HD)`+v~6Q-J) znqoU5ze`rYanlr|V?hTRVxOJ8fotAAIf!8JjeEMPn1k3NZoW zLWIfb%My4j;}zl1(~%lYyS5#fD|yj4qHWy^hW+xm11tPE4;b@%1{`_f6x2lh`0>ND z=O(ZBrL#8&YQ=7|;|^fofCZ)cyJRV$JLmzB-DqAS0e8`Ch~)6nK*$&5TG6k_YK9c( z*ltCqwG|!pKLUixv>Dc*gYD3{{r)gA|3{D;i((a5@3aSJM40EeZGRUB3brbQp_|eDW(HGG5n>ua4ZFPJ`63hr^Y^7ypYlqQ>JXJbH?+}pD4%n_ zR+eP4q)o#cbaa0BT*=&9v{!`gT6aX0tVB5RmL_=1m0Ka@;xx zZN$0AQ0BC1c-FNf%csQyaK>n&C6Wh~;98u7r6jl5hMk5KJs7^a*ZfI+uSs zEaM@u5Q(v>go3iAv`fC2R5B7St?@y0_q%GDs;r+G{Zt>4sNOhW9nAK}4} zrU-mQ8}xTzSUgW?UD)yBa_&S6lG7*diNIBS64+|=i%5&d%Hp<{XvfBtMLw0bPS6%r zoXui&2n^;@7h{rsyL(nU*0eMN7@g6*+IFsZ78Ls?e$vr<7x8(cb9gu?Bu-j2grp&0NLSV>*6h6 zptbhoq359+Z0ok1n{n!`8pFyTDe|-)Y~$%zt@riamwo!Ob4#^@RAPf`t#d#&AZmnp zo91XTF=DSNKImuQoi}jgz{4c=c)nlMnZ_GW`9wXD!Nh@MYT`kNLp*10h3F*zE1|Z6 zR-Z+vmH~*nRj?8G=*F+%W_l4q1|valOwf>G0$Yg-s714@80qRy!oe)enRuEXn}RR5 zw)y_g`QZZDOJL}EfH8NX;612x^|QPKlB0|bkI(J#Fs|Y2=ZzbKKq;}lbQ zh>+OCMBbFrFLE)Bj0E1(S=HTO75-MhH&yHUsT_{A?kT@SHdL|aaf3$xH23XsR9@Vp zL};z!8zH1_i`~=OO3(f07a+5EiRa#WYy^n8K$RBw;2G%oc)7dMb;$WiWx-WztNmG4 zbrb@Og1DJB;9{s-bW@qo5vM(d-PW&h|4g0#j^|nbxLn}&+r3ikeZC89eRzM^eBLy# zd43*Qlw3J)Q=QTCV?;F$7)>-`nHdCEnk)jA!#ato!frF7Vrl?yZb8JCv zXF8*=5o4GV(lnOf_yt>-N3+a|B_xQ@kP*Z==Ed?U>>dV2Cf40)FQ=m(0k6gXVe_E~ z)!z!Bo_cOLkGA%{oqhU@169M(C-?Xq#QJW-Ws8+(?IymTu^o7kmneiC`OG-?z*1z5 z6#)K46Lk*tLGn+LAg}IGvXJ#u5Q}bf8_oJEb5@_vL-@L9x77>hN6|tQ;%Kt(*305{ z&jSc7k!0vrBOBI{H=Zjmh62)#H~e3WyX0}O@9~sMAc6`Q`ke}U;m)5zcie}TxPY9Y5u zFXp}JU*_cSW&DmCVYr` z*M#F!M+lc=7;u*Qa<5nr@-@HTFR>zG@j|U2n1Hk1nmwXExme?X^%>g+EXWztXTLNr zHeNp_$sd}(V^vWY@dmwZmT=U*J(LDLBjP{Qyf#;K<>J9LNnD1eqHj8(CefKrdnR&o z`Dtc5Jjuk;F&L)1Ps5&t^DkdW&k=%f;V8Hu)yEI=880gn!K`{5}t@7)ts>EoLF zA@HYwz|T<8-hl*09ybVKF9LDNQQPbVo+4Jty%>uYRYg3u=3;_Ma1A`R%tF8wxGp>h zp}G*BlV#Dv9A2?B)%^&OjQxJWn2=MP;4h7D<-9f-W#r@{>fIW9hMN|Kn*_*MvL4M~ zG7B~M34>1|A{4uw<=;Uk*(&*QQqiQ}ToCvCw^IJoB|jD6zQ?ldm(dg9kGj;Yt&#q} z%&)D&egui{U^m#r3w>BD$O_*!#RCx!BQxvzv8~yw>n&Fu;5u)^j3qRpK)~g9i(F}G zs@FG$iTEiO6k>`zG-7Sm1K}Yk{zN~_6{jkJ+03(~CBfz_=)2y3PFYD3x7bZQ`ZMdjd8p)Qo6zD1wQhqeQcBM}zq!T#d7e4sEOE=*FTZRT zwjF)Eo%nBC{L1q{o92m6u%4VMsjIg}$a%(NdG=ov(Jv8JR8aWO83!X(b4M&|T~(H; zgK+ZS93e`9A}w{?9uHpY-v}HX(`x?I&F8*IrBh*hiw6@DIoRM`0mT<|oYQ)FkihkBk)zjs!mdQsLtamfQd4ar;i` zOcWiRHO=@R?nB@gBl51w4>t0`LtMqTF0u(}m~ED4gfPfE!SZIvLEqCwiFanFRux6`8FtjWMI_|JzfTm^9GbILGfO`z;ra9Hp2e3Vo!30yGkEyQXY<<=N zsd^fAxzE(q4DCEKzaLN(_`a6p%;ae-#AJz7miMp4hj9>Dtob#@^MawN4TJs6M^0Cm zii84_3&u-_ivA5)ud%?Ux(LP~sO3c2QXAcHg&aP^X=2aVi6&aBEMU=QLrxj16};@o znfk<7KC9nlKC9E-VnwmcRASv>Y5J?iApgg1YIRzS{aYeZ^;R2-jK-0o0lIJazij4^ zFk>DP?9~6`0_fi7?9Bw@uL+AHm@FzZC;4j-FQWob)iF(6VSV25AK-3nbU7*`yBRuG z6KXWmh00s%arv=z6JnWuK9s2go1UwOn>?`EA`}>Yu27C!!}p2;gWr&uP_Qr$ufxfS z{x`Fm3l*AB6uF+oUsjLw(|QMc10ezu)*wSP&4+2^8wEDx#NHBT$A{MFyb$M{Z%&2Axfe zO>aVD9O+?Zam?$omW;>!?|4RUAn^CrH2(G23n#;|vh$zEUZf znztE4DUZ1PQ@BnZ7>#P+MCxl2!5YgY*gJnxrq$O3@OKtQOA#WDftLSRDr)cs` zzleNSpK>yEPAufmaz+*bSC9&$Cq&=3*wUc3Q3o+@`ciydoSV%-SkH0?`z?gvEN8~x z#DFKH2wkJg?@f#o=F{^z0U+qZNGyaqb6VeZt80+Ogl~^zwonu1T03cFky2QW!sK#- zSnyiEO|td4sr$vvxu|=$xgp@b7IMO(zQ+^a9uunc=2Ou(I6(%zAZ*mLZgU) zzsNlnnp*=c(1nW^_X$IAFPB)~WJdF{v8QIlfXuXKu)YRrZKJW# z*tXr+wv#4lY}Y2 z46v-P@_(`rM(jp{V}pfiWS7(aPARmeAS#K8QAA2DF2joMrCOYUtK@TbFFe7QpNRt} zgG!?Y7dczGgTa`u)#!$jm4?k|fqjH{FCF$b!Mhh`O_0c0%3g*4Uyet)O&5w&eGb;-y@eSU5`@JT^?(TP7!EMRYQ8!}PWL=w<+M53(JB zbGRyhs}np!$4S28Eez|e*V`W(H}$uay(6=2myhzTguSr(`D^36WYpXeE`3Z_!yB7o zub;42_jALdyOR}(J?80;VOP-wtz-+=^jB&O%!r!xszvYpNu&xY!sXRY*_07$a3L1S zpjgq9Da=K8%n1sr1D&y?Td?d!eN$u%h zUZ65p?}P&c8BElzSnzaZG-d~o!v&&T67+XBdbm??FS+ky;ITsEmV?n;%zaolH$6 zHk8^mA)RUA#E}CVV$fdlxh;rORMwfmI%SwuArTV8;Gs`vVE5dD<(!JDZ zgc_F~5UrepBB4~V#(&7Hji;~X#mmC>( z1Dy2^!z2naogHY6Is2?OHiZga8l)3_Zt zbNushW3mAa%C4r+UI_J4V=b+Li6()2kR@&l_?y|wGZQBSDTZr?lU|>zjPOkLZX@!p zZ+;8g{n%=B?|rGN^)rvqx|R)lzm}C0w1=i{Fc3&UxoC#)_>zxLvP=7U_zw3~rv+3h zEoOhkLhL2^hAIvT<7UZNGl3#F`gAfn}dh%&&J7zAMi!V|6Gwm9}9MkHCv$qdH)xeZQ*vJcDWkZAh`4 zPff-VSz7(IF4*g9a?6e|O=hwoVRNK(K(o#Gi;|CVAQauv8VfA45)m}G7n1Hxgx|1# z{ZrRwZ`)z*+l62D<8anZh$zu}|888Tk|N7rQ>)3*&kmp1qL{>xA)+lQ_<7}+yoikj z`PcDDs!iEUQ#C)+F#fzjzgXa9jGN3~K~lMMQHqRiPs>P8_X^I$g_vYldNPVa z;B{5vUWzf!>7T^?SJzGuCH!~yD2F>a#EQ=gqCt(>CmK6E5PRTpfzP{iV6ULlDVT5x zM#e@dI;;T;gQiH!F=BcN3OEZ>6))Pqd4*v}4 zjg7YNuf@?X;=-Y(Vws?=Y}8GJ60&$#ao2v9(H@Zq;Y^7xLrh{Cy-Atcd5>E%1{)1W^wr!B-5!;6K%o z*JBM>&D&uW&hWxqqPONm63g=6aAk~6dDw^*m{X&Cjg{q=JAgANb@`13*>KxsZa@}d z_XToDuj4GN(<~64vefaN<%g+%h#J`Ev*UH#L3ot^gE(vli>E6glC#=F37r=Wi600iqVK3gMmi z`G!$rJ+@|}^lsYEnaL0BLcbh!Fp8@5yDi1l#0|`LY|+=3c;o#H2uoymF+A@jUOCO_kH&L*}>o@ zF~a^NfDC!#Pm-eOIW+QCB?h`x1?{Bvvi~2ncpN#rVqDBsR4@YOm~IlPv~16rY1%XU zuN{L@E09C1*W=S;95+(jzM};EqAbhkW(mK|N9*+V_p2ZyxS5AAmR8-?FhOji9ri{= zX@#Hu+*CiY@rDixWTJGPoqxt8#?|K&eb6g!`nA(CAJ{pzmb_egpL15S6-{JI zOaF=I4*lAGq-A(@gWn_+KNUkVW_omtNxzdD^VpN+$|%P>vvI?2n|@NM$U?zeuC9|i zM<_6C>`&?R-!Hs|CJ|Sg)nuASit}MBB{CvP{Yx6zN$(RSY^?IIQ6&aVY^_6kMm50u z#nP9SkP`Bn*vhWy069IEJu(j+>tAhY2@I$iE{b}jqcmbr@d}dU{2E6D<_Z`3ah%fE zdA8H`{gsZ4yfA5NzqjV~-#gy-8~omL>9$CJb^o3T`b+eD^eWlww#~Y& zmJ;#Plu1pzctWTnlJ=Uw#{4TyweTRH;nx5!F)?E7$%@NSrvk0)Z}XFN!@e9Ca16aq zVXSk180*MqJD&@o7p6QLf=`|rtD`F;b1IPr4G%-PGGRe09fw`1$e7d`Wl)Rh#t5N&erk4C!uJbD*g}&=zI3}Z z>^`*e<;ZVO7J`o!ME|zm)7~$?rd_=iNeaB~TpKN_S|^Dp(i|Q=L;NgeN5>z@)~bsr z$Vkx|iAQvyHn$r_p#EVuieSuU7LV&1&j(|o-kgZCWT44m5(SNtTS&oRgL|MEo7Ac@ zK9ZZ9i6C`-f1gH%{rPNPXB7&nKI>v+OoVhupM5QfUrRY(v}7j@&b;ljh;2V61hpUv z1h}XxlMJl!DkfT0X|iv^(5Eay1?&IZb2KW3y!$MqiXq>uw56XeiJ3&S4oNIaW@=ov z(=-t)tuPw6jkz7i&oz&;vIwdKB=tIpNoEPy@F3S z{{))v_vR~90n^<`%*RnB`AX~1a2$THtZOweQM!`+@*hf#xTIyYV9c!Nc!Nv`GUMZv z>y|b+C1uG8zKpuVI&wqqD4YQ}k+n46eK5#V=fkTVNa&_dRZufbFIs!3L>L)|m*V+c z{=sFm@7ews>=omBk_d%FZO65{mlYTqG!=U5wY3k>WNGXa0DlriF!;O+dv&y_FXK8u z#glzOt;sHVEZu-PnQNthwT{9_o;Pw%iWQ@yX}>(pL7b>c(2EZPlN+iK7ueG&bmq5z6}?C1s&Bg3te1U<*gm*LBr$KCUKAE^WvNW(NHP{6G=oyaj_|7!A(4}n$S)LUT0CY ziotV|h@tDOHeO=#BBGWRqtpE3AOD>TJ6hrhGs9*!<-53H#tt?bm}8{3OesH-IxRf+ zXI<{JDP`x1{c4171R`nBhVqors>tE#9-z-)R0~I+XUH;z`SUXb?()|>X%QFi+F2JW zGtT;$ORM=8Yc*Mup!^GPnLk6B4Xpjug|GMoMq}1(GNH|CqXhZ24^85QTx-1ekHEFap+1x&4XW4{?RKY=6LB}9hszo^CuEvQQt}Ovv z5PSGngMwUeWMTGDDodH93Z=$1mZA#o#cer+ic(zFGU)Wvc{UeBeq=RJM!DKb4LN*E zqY^7laYiy_+0V(AdiN_fR`4iXO$9i(mJoCQ@McP5^%kLNKT5bEBuQj`h-v+D^+=-f z6mxqoMGJKbqul5npL}0!u*Bd)SqiYEjGmuE{WyUpNb2%J>0E^65$B0{WItKH;{;Ok zM+83xB?NMJZ}$hpW0eafcE)ChV7)l`9A|vxEcJZ_>-8%Z3X4+?32Mu?~$ye zAp}2d`BNemST-j}NaI5GSF@l(lpw8YCe4u~ShGZ3)R*dutHR-kC>G3}eAQj7;1uT@ zoItpLW~&bPWOJ0sW<&Ogfr7>#GeFN!FdzjgsYO6U$BL915Ex}nqVOM2SFF;{A5Y|x zTqhzbKQf=KS=mt8fQfrxY9GHGT?nZgIqF3q)ZAxR-~p{D_vV|S*E49q|CX(2`2&dk;Mmm=APzgE!-)l-@qt5?Bl ze;R*;)Y5@2c(JlOs-nb)JsSxE_$8r_V{+-q3jGU zxeEC*!3r}cr=lp=5%W8UR_8^O zhk$dPlh`qZrEHMHNaXY%zsn5E84-Fvfq;Nz}bct|6Bqt87!elMCENh z6$~>7hc>>@OxTj8*wUAcyre*gf5uhO?yU0k^RszAQKh_(3It@c6LB`$I6Mz+BY;+*P^cUD}lH(G>=^-kv)rLMQ*b^r}-<_Sm2G4 zzyf813+~0Ky-aF2rb=@-TQ!8_5rv%@MJ-J>nEbHAtX>?c{)A_gF1E0Wp+uM*L|J-+k;9+nNz+@lp#*Tl1wQ8>f>IZ?iiGK_o@#ZPBXUdPm~)5hUpV z6GaodB`uUyAccYo@thj-J?#-3&ddaxC5+|S-*h$`b92jlmDF5K9YhO+?|2KWtofFd zkmjTuvgpi)>a`(}T_(k!4*Ti({c!%~+@M)=3}C$S*49@7$a-42SAXbSi$X}gkwBksw_DqZRXN53? z5=2o#&AMOvq?dJrMm#AeL@{#VStx>{RhrVuM$R>n13Cu7D8`fDSrxK1>5JBs;-OgD z$LY$Pb=xT$MT;agFHKk2NF2bJCIIJT2>kY%(3zcAzM$rxUE17Ex&_ZWgs&iQ!~$Qc zD+RhHd*#HA@iHbH7UPVq8(16kXmEJxFKpr5<%p9z7Vobw1KW()f|4M0fe8yJk)F$C zslNZ!U?{)!4REVUngivhC+q2@=9fzrKTog+m8mEpSXN-bARx+%!D%;UFv%~MC1dj7 zIm(`)W-((%YJDgBVf3|@tI0f2D~V>}m+_0Y`(rl#wGkXAHiBIbzXC@Te^L$##&lMo z2W?lY(BM_HsdqOoc}Y64iKGE(ZIPW{V4gN&z!$R1Lzsj@=asM1%-?Z1(;L05QobkY zUuBxnQ#ZJA%pLy3OV=|0NKTUngo)LKjxSH4s++0loaoKiU%K(_9LeCd`KdISVsi>m zC{5ln3$7?F3YLT62@p-f3eF`&2(!sYzc(tMVA+}AfC>7Sm<<}=7K8#4`~$hydb z=(265+CnGTpDX(AJGL8A7rw$KuhNoOLlxcj9##$}ZVQhsM2zFt{yj+LMoq(?0 z=~O1V;+uQFB|Y)Tw0e)sgMgIPNOX$&z;}e9!6Jm9b~N9hE}39Qs>Ip~9{?ld)_9$K zxlx>gJis)F$>7#b*P!&Pz}SciL$j@qx~<9eopB)UZaX0aOA(lYZN_3C~nb&LZkFC)YtAubPpRm;Ki!yMX!2LAK=D&ttqY(<2Sz2sR*@{Y0 z=;WBs+7auZ3^{+xyTUkOZs-k^9nUm6-DN8v(jlG`AQTj^%z|J0gdXYR4sGYqjq6dc zSc=WfYxE4D6?|+GWDeliC`p9_&WU!1snl~WklZVl9ZB+8*D#^8W+KG>bY01i;yfUE z`}`1TgchYk`btdhkU=$?{1#JV^#uwrjOg>&2=+#>08N|5(qIal3YDAWuuajP46OZxFh*IWl?UQ+DrjL?l8B?^LKHM=*aai$sIXdv<8Z1yQ605<RI7Zw%~|Xz(j7A0+T;=N+qbbYre63;!$X7K1dtk z+Q^oAh{O|8ic==?Cx$dLr)B8-TQJB7^1!weX(e33X+AhEdZ< z4(e%pbQp{hP?QUxoFi5GYL9vk-Wv-Gi&<(2!JyE^xV7XiqHm~A==l(N%KqA9_!Q(f= zg%~FKeaf)RmY+2tXbo{i9BKv*u2jsQd9^0MI^}wvC|{tJ{ZU_Oh=I)XrS*>8C%Qq5Y&l4(fX!?BW^}27L=`$zb_8c5YJ8K zM-qLQq$@;|97nlm4p9I=bf?Y^YpjpJ?$_j&Li;(=N2f8)up&y@BJK~43QZd%hvzD= z5i0)#aF5W0(P$qKKi{o>(naGOgO}YVif9~Klyr(tsU)x(K{c512npNI&~8pbT_G&! zZHz0Y&NKTF4YQhr_v3+(Qi$`^J?uWJsd|(_5s5*eFWz4JJN9t|800X`+8W;_$AA?K z32AeVeO7vM%gys#m33*Qno9B@K22*70s$(IB8g}9t{Ewry05Jo*@fxG6^nq*sW4o` z=ot97mub)i#I_33(OKO>Q`#L7uG8sO09|naE`4`WWOUCBl@LrJ6A!yl=}T>Qpa*Y= z^<%l%Wo4W%hZcb|{z0*adg=Gyf_wH`m-inzF~w3q9C>9P&wb>aI_>2PjJ&QX24XSJ zx^hmyxT;~D_wd(g&H1eP7cY#P9k}Hg$nT~~8e)5f3v$m?hG1f_V&=-8ts4*<@t$1T zqz?-x{7I?8A(*r5yIbShb$+DZNgSK-EHEI)kEzpp>$#jt4h)}4sM0{;7ar~yzE?{$ zGSQqUO%4GM-Xt`tEnD%~PCD5s;*(AK_xsy#Rn{#4sXaQO zq3>zNybj=Ud-yn;oKNJ62vy{`0t*Qlv|7%iFuS03t!K<=fa6*-MP6Bv}N6! zu#;kGR&L6&{3)0G-sWmddtd0d^<7&{Bvx%gwO9j%uQIru1WMC*B^yh1O(TmkT^NK`y8f}gIL&6>Oy42p7Smu>HPoxI`d=;p(!p7+ zF5U(2L7S;DZ+XWgd2XuG>1h%QpxHUnuoWf9Tt9i%=kI!&boh)E1`@b0SB&u-mj%FR zAK*C8=Z~Ct0A@TnAtvz)V8dDh3B~|3Tr2VEqH$VZ$!8e_7*CkE=Vqs1_pn;1XJ71_ zlrJVZ@rHx#=A@9yDMJ=etByn@4o|)tq*~=RYY-N^QUvC-WTEImHn_22lM!`{r8{Yxv@Onk^C%K0%JlPlE*=X-@ix?AP!hFK+qqCYUmv|8~P-whT~#fJKfkMo6r zg}|tGpF2|*O5cJtsuSk;SR{F`ca|iQ14ya+O;uwjjFjqJ(`T3=__i;|fxnNw`=Rn# z?!I#KdEWh>_k$abR4RqG{ta zrYI4~FHs)7D^)|28a&?pQL;n^XX7NwRjOh15yIk!>l|y;GRJ+vrhO>C6|c!q?VM^3 z|60-O7&drL2;vbp%8Aazk*-nrU`O1+maEW6#I>9fV$Mkm#2=}yMsNfC_rD^$uEAQX z2lrB2A?L^*>QsWxWLVzDYb|%5|46GwwT?VJWUBhm1^o7V|M!8c^F7q?Jp{7qZzBLv z)i*@|9tTiA>0j@ceonAd8U!KPpa994YEZ;SZL{hnH}S1Jr5OhohCCqVEw=&kpD6Y; zyYQ|d_>2g$ZxlzWtPP*9MR7(|K8s{X@?CaX0J}Jv?g7Ct%8M#OJt$lW18l#*viR zWP5XUB2Ev73qcbaQz|iM7o2AU3gJoKpV=$waf&5~R5p9LpUk$s2xMiT3V~X_>?ky8 zF+s%tVObhF(g8e#0#PQLlicSkoRFs(f7~G?eu$z!81k18=%Sg*s3E0 zDTaNfU~GCCrnhIqyD04MkX&_ImV*0{Z_`T}iWZEg5WqWRBUyeu*z9xvwPpZrO@W$~ zglN}eN;jqGm(xoSkxjuXCK*;V%v^6db!~pGu`U9Y+a!_4ZZ&()X!yAZ*hqwX7|Lf4 z^$4hbbQ;ueU_Gj6c_(4g9$NYeWA+rqRVK_Z-fy>gegN8d3&6EgW7Y>L2gd=@t&%kT z4wvI8RYm@LKos(HVIlbI@->I~XV9C>Tcq0uQUb2+xgqcE@Gobra6)vrxuU@7JK9DS zjy4kJ%+?;JPU*tR5vCC-I)6+^AI?%1JT&i#k4O1lxc`lK+owPg!`>)5?W$d= zsgB+Oao70b=nFQxe3WblIRSn7n3?3i?sC`ObJ&TO**IU<^%lF2q11VlS_EC75g2v) z3>}yCzJ0J9TQ}X;0Ss=2-FgedOW^7I+Ov3*rh%?o~rF6wQ9dEjGf~%Vbm~1P*57nohmf+=xyWUF7k?g z4I6dtBt`Mihve%ip#S*}$2%B8P>!eY)z(>vFN;8VveAO(u5&`pvhpdsvWdWob~uc` zx|jL>BLki+j_=P>YmeKnR0b9wCL97TN6=3|#})d)(~h9ZK1~h3O_|^}w;)mOS zdU=m*=!YaB1RXPEiR^BM#>(OLsHOZOVItjp^g`A66qc>&XT;wL)qER`OHKH~s#7e? zlq2yBs*48nz(J9Q2w$*}FxdL=>Q{XAm0JyVudm`(!vCnhHKg}VbjKGOOQVe>vso#Z zZmGp9R(q8{mP*1@I$ibif&Ep&8*OG%*4`hI^iENcdzX4gtVr#mA_9C2;;2h}&s%-z zq%Dr{9lD&DaJv3&{^q!umMP!t{I=~f&5y0;I?K?y@#l!M*VEnIoxP%q4M>&{{q&It z&VvvmFQ~ja)s=?3b;= zS2`m}j26kFkx_hc^gi;d?Thx=N8d&GKEG6lAm;g)sMb|yO2|kT^F;iogx z&ml5(+nrKX(OP0X2QJqyB0Z@J+A4+vHPyE2Dwz$Sq~Wn3zsE4YM?hx*m{g?Y0Q$4B z0zleD9=>1*P*8~;e?o5oD#0z^f0yu7{p?KM0N4P@?7!l!Vf%hCLJn^AUdqRr7m8w$g}RXB(Ol@pgkXcxjaI4O`_zT#393>%)fu^x6Bm57OWp1N}tjv)aZkIXKw^;gOwes^AkZ z2i`awzF8+V=Cm6XRG@u(MO$Anp}CV&JYAfK!maneI*(VDx) z#OhYw=Vj(S)mD;&y7bUwm#;W9S9?Xa3F3Tv9%O}AUtM{%!t%X+)#p`?j7KWC!=w;c zU8C-ZZk}-koUV8JfK2GaW8bS|_sg{uf;nw~fBXI*&$+3_=LFDhLAhQP+$~q80Ah)7 z96*dK5S#gnFBzv~Y05l|2vLV8mZ~>|sgYPMj2`HDj-P2XBn;7~ZxBPuG?Kw2;fZ(9 zJgvIukvPA?^$mjX__G>JE$a!tI*W(}FD4h1lcHxYw$!=!+6UzyJl>9uNd4?BZsSY* zA(QY0Z3*{d&O*rVbqBmxsLbN@Y24ml|NaKrEECQF)z-IdACNvkPp%PTNJ9h`ztkpw zPa>8YmVV3-lpLfHP?y9?YD20XA6(9JrA4ldqAfZN2Kv%>z2hGjXzmZP+tS>fG(w!f2M9iS)ap$iy&7X)1Y16VOSnSEQt4%vivu^OX~F2B#{_L!#_lx zt!r|2d~~Fc&6V(D+3gi*lwlUxPN5mbY$KHbR5b`1+4pgPXiCxh_xEl19eD?@`NU;+ ziVyw^Jr0KUD$6{3i{3uUl2j0Z_zQMr`51GDjAuxoUor>^eI3(jsJk(TWIdg1)4E>F zCCenpUM^qeyGs01{1O7^LUcBW!&&+ zBMMAV@oF7e3mKJeI`1&SAK87Vu)O>#!!v}|bojoNI&BOltE|a{Zzvokubu}GtP=Kq zuVBVCbPAh^YW%$(q!S4I__?GSw#6?JOE$&u%8mdfu%l^v!Fs=l=+&}!`vWkY$zr?O zaQJ~ZZa>cb_W%f#JONt=K#TuSq0xN?FrC})mvjtnGnc&q$hN`Q8Y46?hgBK|LJZ0A z9*5&o{RoiFt^TqKN^kwLB-|~Vf3jH@o}uPT8gs7cs}eu|gK7WC>zon2B1xU>puO4j zaEf6RZ5ybOddS9~@3j8!!8>@A;aGt>4+GsasJ`vh8S%4d^t+yTcNrQXk8%&v@Pgp= zPw;<#fBU_j8@vNA>Q0Jvz+3`osDFJ^bUUUm(RCaFt!!ZMreFQjAjR$POYY3>#&F#+Jy%=~ z3taKVsvz{%5yAS3Ey6TQJuV4Gi5Lk*~aH2kP=N*iSy*{8R5x2F+MDrx@_%u?dmz7dY1-I zB(|327YePukv_U)nUip0JFwI{zuz|uF_l>D|~5_CrOxJ zvxU7uk9#HF@Kk+xAN(k z-;3Aak+L}xk+`3K4DbjYlU>Y&&ju99UXeK=u`*6yq)S(G{8mkD-;`cbN~)6x)q!xnJ9XwVM;HIZba zg3*kP9cf~ZDan6;X)FH4ls=~nXJE>vj}$Y(xuTxQ)gsiGTC)>1G{$NI3&S;jvw4`C zpo1^Oaz<;7ui9L9{55D>Xua=>Cf*iV5@$AeFB#OH&r3C2){1xDg@qN(5jmuCDmCc2 zXZ(`+NH4 zeb)3^rnJvl#e_^8E#mYiDqI50ku>c4=kMJr*;H4MU&p$KBlD5PMKs3x8zVaS3hI5-(-(i0)Ope_`r z__Ro$AuN2W@44UV9<Vbvo{VK{yvG;OzYZ`^EZ{tm51mxioomYT%DF$%-7kfu|b=!`M{Z>5a&xH zoIgsSIa`h}iBY<>z?X3}BKA|ZUk@^?+YCC|PVFw>z<7lclKPDC@9ng);<1Iqx z%2s#vC4XgIELo$81!PGn6HnD|+e$d~+KpC2)NE*+LS15n1zGBp8D>2SimK?+EyJio z=O9l79!~h6<8KwekL6fxP1G%p4%Rf=@&!AqHtki3{RRA%*BD0i_u?+`R-Im>?DQrT z?n)(H6u0WUWjF z*2G)#34W4d6PkH)NKK$Apye28W3X9ciF(Hr2X~>=oF+!7$f5s}kxXK0v0b?uEY4S( zp27@$DV5~>SfGm`3l?wGuWpU&r(Nc=8N{wx&0bsur{X2}RMR&RJ^jbRXWt!*UWYh1 zA9u_!qeG7W5J~wiT1{R27(l%nkismrVjSY(Ukdl3Wwh&NUvc?YM zPjNrWI;ZwCGUz!$B(?3V)_`D4E2}GswHI9N<(#eZ9$s}=kLR$@Y#bor#SWAlb zn*L&BRQ}PhC7UH;)Tpb?yxcSVAcB=(tcPus09A>9XD*wyTqxIgZDyJ?xRu|#?f#>( z(#=tqe|5P)6F2|yAH?4>B(g7Ap2Q5asGrSqt&pOqC#l?bwl~d4;G2h(JiwT%N#D!{znSq2zQ;*@5~OA`$fv{)eFM6 zwD7?wO+Tmd9T{sWXwBvXR=;q`{cOMM31NIOI?#}!P-pPi6PHQEu^YE6$Q4f5$Yc+x z;(dXWwCR9~QDTY+Uu8|7mw`cLwi)}&pNwJ2r6X8!#g1

-v)}FOiJ|`}C_#KgBm| zMBQQkmVL>r8Qt2%$YO;Wk2Tt=v76H-h|}st=`x4O;-n6J%g;(eFn!rG<0e6BCGt8b z0SGU-tlm5z&Cv*CLCVq@at4vOgnd}JxiMBu1P#RdBHKhrW!JC!jR8rf^_sT zQ1u*X!b6GBS(n+r9xqavRoty~MwmpwJ~4XYOEqQ4z%%;|t>j9qvXfN0Jhj3X3gns= z_GovkvdrH3}OaDVg17E>8d z?#)C2LF5)sOg8EjCd#YB!=aP+KH;*asTR9H5X&a!buxK~&&}>Ww8Oo)^7~dzWn+`X zVdQ!!T!pvm9(miw-E@suPIx%S4LK_FJZ0|17YW;ON|>$jl7LOBpE5)2=Hs>T&;3*g zS@(|?JCzp{+`QE8+0f;5-U;oa703k@+W&5C*FE*H(520JN%U~P3`-xjOStMSj!c$Y zmi+D0V$9WH=uzblUWC@#-vB!_|H7v%rM!A0f_NK9*vsEk$e?U{XbJ6+7?E!3PbF=c z&mk@L8oe3&vk*iAQC+TR`?$9;bj{27R2J%1>H@_gqp3R>fI!Z&e>jseJYF?e?Q&Z{ zAdW|ZG&t=`Ug>G4Dzz{7_8&5-ykw#;QB|@%tw8P7f zqf&<>t)<#1zbL3FEh0TCNO;SpXB(jzTox%9Wg>`jmh0R+aP#e@sY@5)>#0)tRvEvu z5302DH;!d3OR%_#``DQL$^H=O%N><^NLp3PBiN2C+9l!`u}UdZSqzfap+usedv~-z zo)3O0lTNjCz3Z8)Hsqp$N?lF;>fn-#$O(7|L&}XM#^ky60U8Zaq+jPel*;Fc+fr(4x4rjMpXn zf%-{z9cCCjxW5f;SD3KhWc#CQC^3*&rDO7!MV5%jGT6kiDhwyGxs2upROBp-9tjFt zKUIcI-PGgL7m=lm;ftpK@G7tmUx=)$_wtTt>p)iL__g3y-119m6Xv&ZVZs_?(jC&4 zo--tf4h@DRol3lGW&+J3Qs<2H;iQR4jhA0uV1KuPW~_BX-8uVGj+I)hK?#E*{^0qg zYJZk6-goaiag1*{yP4tuH%|TUrc-oGjFiUP5VSGw@O3GcMMjO3~JM(BN; zZ!8g7^X9gb3Y2&{F12HOzir$Pb7?@8STH1(F*(AhE5f9IN<~LuM2vaJVPecjyp+h3 z%B7_{alkv%%B-q@{H{eLb~N^r{yX*q!+YG{ND)J;!oLkNMEczKu(`RVW$2rf&={ig zzC914VB=&LRok?(s#Z(rEMFOxR_pz3dpsLl%Ygs^gN<;On6R=8nRSRD-Mk3lUzbuU z^uJO4KeQ55x68!UFKX-D-FIzlMn~_jF)hd#$O&Vjo9o)tsd4B;0ZZXMSBw#Dh!-_8w&CYfIUmHMR#cmQY@pf9_S zBScb~hGJLva^Yt#!0QbgjSUi7E4y0#xm~kGb<$;H3#mUPk6d6x7!CzD58vE~Fho$W z+*x3_=yD5e>!TlRa@lW-=-O(0Q{bGk9AS8;_Dl!)mw-fI*7~RO4aeJhKvS0<7NVJQ zM$yT8b;S&1*ckG|`{|RmZX*SeQIUG#l$){5U7U=yAx^Go=~C|Z+rsp^=tsjf0jQ*_ zi-O}VZQs9-WC~D#emVowiZzkRe3%Gx%C=h8*N{+=>FB`vZ;^AkZy}$jw4{BuAjQX^ zxg*p@$V;4*-Gt;wzuV*QWupAbT@MX60|*}y?kHzheY=#%a3Chm8k1_}I#OwJMotMz zL3hf?gf$1Q7{6!Fzt&Q+EPKfVI9ALFebC}#5Aca8a+ImvI#3ZIlb^=682s329*{QO zO%$O(Op7s9*4BgLC0>hLbh!Ic`Eu#u&^Gu{+kUz!f(k&sc~SueYb0AIjQ z`$$w_oUIA?pnPqhZFL@`Zc!FeYD<|BeitA(`?t0Ci#v5d^9z;azv#*=f>kx5OIG#_ zf>VR=?~ouh7@*&=;%22TiwM?{_vH3VL-Oo1NoW)OW-pPC-P9&JrywOQfA4lM`V9k` zp_%xcp93iZgB9*LT|M_eY7(OZQiQO3JAKh&$}ZFdzXR zvy(8#2lE+Zh}6W&K_`_yO2(jilNJvH+%6KaTVKd~IznO0(=c4pVgi zbG)0QEC>A_Z_i!p?h`{ZT;M+-^1T0y0b38@mcWTGPq(wHAJ#}~%{F3pfd8oly6My1 zydn|c5W2d$y1To3x!!8f<#AJ4+tcBCIyW;jlfh~sAt9lCq=c`jf@nQqia;HV0s^TE z_5uddz@^k0^!o1hhaB;YOxVHg*7m-2nEgrxib|qV6aWBr6LMl2wfa7QD{?H6pa2ig z^XuR3Z*Fev)5S}@O(KuIxFlkh7$3!b>3#V#F)=Y)B#F&54Pc*+=SpOO(w>tP1+3KK z!#g@UVgb0d-}@V2{dWVn%2{VbuzAqDo1FvQ8|43W3b;&x$DJU_&z=W>(VWgtTfu)9 ztfV}SJ3?M(Km?GiaQ=tl7el8g=>J?jYuXnB-=ho*FE1~k*dy=t!0X#-!EJ!5mc{9y zpqR1M2Nu2TW0{aE6(9qD>9LK=7_vgzNigp`q3E{p^hiM@U zP6*7Lg700uz3%|VliT@V6kr?bd!3fVF4#c=O&a8%G7dZ_W_ET=AJ5CR=8FB~P!I@= zTv|+6tx}^FFM!YU&%s)A)Z$dFR^!ol3f-zIfaMcgaOQYr0R|uth%N=7xG{C|tn3bi zeblsufzLf)52xQX_wV_6d^kkE%OfEi3JMCV_6`za^9Kl2x5njmhJgz3w{)_F#8g#P zCtiT_w+v~5f`T+^bTe{u6%=2u2av^*bBx;%{(FzZGc!u7Z^*#OdU|>T0|RENpkI$b zJ%|rZL@`~gxBfn_?e+cL{TGQyfPmr+_;JLCHEpKJ5HC2^CKSjYZq`};vH@a$e;+79 zo5kGR{0i6)2cG-uU<5ie5&@HY-_w@89HJbCQJ+%2$YTt4i5f9 zA?NJ$l-uLl(81yN0J2~g(7u2^AR2~re|P8oax+3F0tx%^I1IP=fN(7koZY0W?P{=^ zFa2n)cc=54o10&H9`}G~t^4n-&C|7Jc#$HYf72pW~;io`qNe2 zFV1<+InPmql7bW>JRUp%06>(H7FPiPz%>B?uy|PTuQ%@+5mNvF2|z|%M9m}XY{T7< zV4#Qd%DhQeXrl}pd!!C%tCec1rDyJ70fr{(AwvR|C>%i14#_ew|M<;N)z}L;csdCs z3B`+byG^w^)kJ3iSm(8L-^O_RPWm&t*0Bd_`t2j}!OZ>8#of!!%-jsF2m_&y1%XY^ zk-8Q9zb9w1S`rhSP@`fFtl+Qnc*9^&yb(@l#-b+5_pkFD-Z#-uBOEjBpCZF72z_$a z46wMNM(LI@P^AC;rt<%P{Qp>B>Gp;952NUMP-d+p$+PHsFkjjV)UFB)mmXQ~G4e^dwezY*Z$Ur~)m9vpyU`<#ichaJkJRw3~}nm)t( zKPs+L4mIjLU(~oq6@&-D1XPmjife>DcN*yxA~^Rld=6~cn1%pgiPclBYxi*!U1A>W zJ3126od6Zp>zx%e1F2(GpR8N-U%)x=9?;*ouviMXieCo^KdmuOEZdLlclr3O)R~eH z0L6m2k{R=wit1yn^>7c?0>2DE)V$zv=;dN&JShZFK%|B*iI?tuh0nx1YjBhSWPO741r~aH8dlSRhZ|J~j>+#sc z7imUG^pY^;yB`?I_?x>h7FtZat1V6O{sm0Q9|im~cdLRyVe;?k^$@#d*~9(AtVC3& zSN!kK!#4q;we0;SmBmGqbo5Xt(%Wp4YP)~EyXUTzleR=;N5UyOlM_s1nH^ib=0bJF zP8!$%Qy(WS%d+o+Opl1mKV)UUAE;Ji3m+Hs;g@+lCdFmBtkODt(g1X1j=B6ew`Bf< zNlqo*SoXQaQ9-_pj$;)gABchP<|t=ilf`JPk*Ftj%)fR~Jrl-rT|L>)rTWMBEg=Tj z40}SUs3HC4zRhL-*P?H>QF{-*E`5u0cF$pqLTx5?>9#VVCq#AojNHk6yj<*rcH6Af zSsgR=o60imwE&xtvL=G}h$_@uf&QTQ=cXEaoR-rS=(PgrwONdl%Vx|!#JRVNZc9M> zO4{@^^u(MO^RuWPoEdj{LQx|l%EBa z9;^VAPKKoA8>Bri#y$efFG=q8Z2ptT8&dZOmd#3bxA}LsTChS3>>!*xXw`P-vR_PV zw)NQS)%mvD#g5fwEEa;2k2)?oQPoOiA7zMU^?H&^?@2b4j+mF<3>wgDX0f3Kutrx~ zIdaA>E+Mj~9~>{hZOu#Ca)Z@OC%gNfL>U;AgC0(>>W()LFAe+-oK`3=yT%_R^?pEd zgWpFX6!mHGrrxO&TC z@2mK4hZ4V)S`1?UG`RGAWJ8%$)=-Q#ie2@Z#DErI(2MuGT^Wly9AAE|DgUS?0?E0U zdCQZ}WDv&uwhi%Yeru>`cSB}FUBjY}`gNOvY0dn*l$X9TFYII<}oxk5YnQEPS!&T)6Z!f9>MWPNE6e=uW zt18};>heUroi7OQ8+E8-u_jZJ0UCiS;0h017<+=a6jVN|@2ti<8j19zc(~d1(ZV8N z5IujfqEcIn*S)Dz#dAFRe&+d<#V8NRlD}`(y;=K(^`Q`_-f_D!AgIp(g*+I${aVC=T78__+E;ekCl}c!F*|yK+ue1@ESg~HFck+UtbLwB~_jhKF zx9qp+HmL}(?{FA>BJk=NZ${d61{`iAA3zGOJV-esXHrcUC#_A73JI!ph}6KmpGWC~ zPy+H3H~OmPJ=o(DtrwJGBM|K5LjnOk%BH!iD)+Koo&K}2g-<0<13F6)$}gbvm}j=S zZ)Qy3Bylic|0K-8XtJEMuw41*2r7TMh21^~Ww{s7-w3$xgkV?cwLSbo7UX{ZmsHXe z9T%7DJjsI;wim;-$^E$QjJ!`09A6Ec-?vkn0z58w~5tLQ@kGTb6j`Z zL;fv~17S9lrlP^IbKe>vCIFD-sjviqh3bI5v64@oDc(=brGNOXuM3E=p$d2|sA33e za0K=`t=o&A8SVwA_Z{E4xpA5NBdW-M-4E2zbDiK=;=h{~+j^t*!T$<{u{`G1)U3f9w{8Oy=9p+A zo%S2%`@h$Is2tE%jr^W^PB^(u-9IxQeKxWrDxKH-8+E~VDutchKBozTw0ExJAUeU0 zA-A7pucVc!58lm{myEfF)OY}V2yGbBff+@d;RnD&QUd|Or;D?VF+;S%tL0bgoY$38sRx2{Oe9iKjTvon@uNt#n;UbVIic0-=1t|= zifBf7FLvLz>!FeyuanhAYyX$I+>2W!U0q!o3_N^%zT~|#E?89+6)$gZ0V3of$1llr z`o6BWI4cU=&kHPJcb$Im`=S1vtNJDOPgj-^+1XNls>be9hy7A&Uj)@4mi17#JAjeePF8 z(QE~5bo9B6jSfYl<~2ertkjg0h1uB~#M4j4o-YI8C795O*aVlLn~>)Ixo|s)_&dtj zwfXadt0-e6%r8Fk;^n0lal)b;-_FbKSga+L`GDfh_Y}gul}P`4^B>bvr^{vM^LTb8 z>LzI{`hBrT+R!;GHB|)j=zqmz^6*L^(dwc=nb8on>=bnNZ8#_ri--z<@bov}%HuDT zI{*M!YM%VTa*tJ2U(;}PnwhBR>#=pI&^DrM$<==YAV_fo?BKRJH#YSh(K+qI#_s_OFe(nc5=R8JClr1cFmN8Al+hsEC9d?+kagV}%nXbPiCB>x zFOzWYva9ECZ+6T7B#TPNn=Ary0|O1kz^US4Sf+-`pZS za>MK|bNh{A`ZJD2LRLc=(lZ9(wVsPMX+P$B-HcFwUWEziI*m{=w_o+xqpuW*WQLug(4A@WxHiZ)$k*$mH@P%o-`wHZV z77efstogUue~ybRxGV|X948e^?6~&H0}?{PWz7#1xWhht*My4U+v_YRbUvgS)RBZ8 zeJSi!(#h@J8jUCil+(?sQJ^~fEI)O=rTy* zTa0i7e1g&x4TmOdfD&Mk1&2Kuw7mLfGSM!B*V``D)+rvGhLLw3X`yeww88qPIA9XK zjYkiLgqy;^_W|)0qx={I5uf`vciyvfHw9+t9WfbxMv_#w8v4)M6Vy#L%R<=|4jD>qD-)8YGi+30Rk4#fpZWafqyHsM7VD#?5c$EfrInR- zr%%h)rT^oG`(re@01Z|!18kT5nJbw0FDo5(BYJ6WkK=d8hS<$}A4*}nu7-54SKH?d zsUl-nazyM4mDx3i>`(?07fso*HjY znbj9MwJlZLw@2=VL>X-cAAfwtERNq+Otm74GOmY?7`{MqRZ!^H*3m+&*781^SO>K; zbfmjQbbo(elI^C=g5z^q*^DFr)zd1eh2l50T<&FQamdwT)ZAeNv(sOf^(8UEMlnWY z-v{gs2Iq5!sNICrK_-MV7v{nBy4|{hXov%YF~fl<*GFm$%e8f&7kWbhC|VlzTATzF zT9WSw)qTXtag@JjTc`hLM-mTJ!Wf;zN?MZwto!z=l_p>{4Zgbb3<ZuK@d7& z`>^%-WA)W#s@=!jai(s0Hf_$c;3-otaUq`EoEDT6M>`-tw1d7^;yE34UZ$1Fq zleP%((xh_ApKn#SiZgM{Kw(zE!q!B=A|u7SU!>JE4)JfdF*mz93bmg_!Ko}`wdfnd zGY?!y*hh2aNof_n4Mv5rgsSO86|Y!i3k&0Ch6FP43+jXV$^u+od&m9Y98#PAtHZ{7 z^P?~>qbhe{1v)uapphg4B>}(#Ts-0E9|agojk10wFx89^PEO@Bm{+Lj?nC3k z7NtT+!ot)hGS8|Y^1{V!IVdUjrG#E){6Al}>@{s)jvSGD%eB6E(3jT%+ZKLa`mUMZ=wN>* zRAX5}&L0^$!dqBc3LiWYkE2GzvR(!Y#vu@q2?^p5E?gt@o)?QSxTo#El=vHX0|ws> zc|!O{`Ib8dIuc$V3XmJui<}!LDS@7g9R%q3`+BCDYnKyt^L)bE;rr@Gz>e2Xxt^2h zCgr*B1=!fUIr}#o`GXH|dWg$&uVf4jvpr`O#+j3wBm+n%gBubvr;yhP3HJm?RHjkG zmt?0ZfXtW15T2G#S={CEQ8tvTHM6i@rRPLYlVqAXEr6UEKaUuM8uYP`OGY>Fm}!5% z^C6O$OdXsJiMsT=QMMgrFt=9Sk9BiYCqN8^FEH=$+^>Y$=i$FxP>f~Yd-Ev#JkuxbqW7jx`0;wJ)3pOVsVb6@59@A?Ra zlfA!%{n9N^0-{veSnjm;`DX5?oHEwx&LJJDT5B-2Oj<Vid+dbB zGIuoOaG+S=ONeY)Z4OsbT0eHL}5KW zy`rKb0Re%vCfnBo*@~~CdT{~>>u^x1gMh5fteL&-r1z)kMDQ9{-uOOzm^H*$)Sn|;^*=fkGs9M)^e?@LbY;YBd1S>sI{`Gx>fQRN}EPwtc$ada7FHI}=^0<1?ESoQK1ls@8c=Yu0!_J0bq-H7_r=pSse{8afw>sz3q~|7C}lt~6Ik zdAu_a2EK{ubgN`JlZ)8@FTDRawthPA0m|mG+UDnw@tbR|*Aj_P42rR{8SJ zIprn_h?6w+ppN@?u~v!O$C2OmozF?RZ{pQU2LA8&(7$%dq13B%dG5u$yu75Oh5|o! zh%GRV2;J8mm-O7V7*hAg(n^Ypn;IIH&)uq*ytjNGH$3(_w>Dz~UjAJpiC#Q@Q3!)G ze4mHWMLxf-%g-MBh|p`q)1~U>eQZI!>#ONAJo{!0XQ%WN_|mYT!5)|z@k zhUxUOZYo;_FdiOKK=yqU1ixehce>&m+m1}azA8VQ1tCV7XGhklqNPqYhnbl{|4t%Ey=m!3VPNZy*@lhkhLZF7 zHZ<#xl9!bB<+C?jo>|Q+|FpM*8jvpm_nH@=Gzp?9h|<7dR=@eU9N*S+>)~D_u9d@j zaowS>Q&r)y=}_n`0g5!>t5_rO@wB(Fuuxc7s9xUqWhj}}Ra%`s&s^2~fP3a40a#{p zk*5yBt?icE8P}#a6P*u&HL_b&f}R!Dx|7C89cCH^`8b}F1#6tGtFx*!t0pxZ)oAVA z89dAUbS;ZT+c_sCKqtg9kGPF?;gMdS--RZ%+|Ha;DW@B5w=iF@Zu^A4SaD z?m`}qlCFI>Y-vmPi=40c_w_Dn`H_kfS4_jdTiA!{a#M{>y=`s%lc**gKCO{)RTzFV zf1EkcdsbAw9GbfeUOmZ}XUnofd%Jcp`a7=lVu0wHv)*0D_F1;{z6b@mQMFYV(`M>V zo-@L7{FbYg@(-z^y;xo@WiIgeXH{di8GtAMPod>g}S+- zuHq^Ah4Td=G|HA}eh~TkC-Wm2K6q@cbBw_(Nyz z*D8%ZF||dn2e7zMK5#5bJ(z02vva-oj2V%#a#Ll2Ti0L>xItj^y$BChaXx@|LGx|m zZ0r%kyWsqCA0NbBcy$s-#NV&s7I*Wo2xBFs^VF+VHe}9TR%rB9CH`?pO&I3P zIz;?U^x%odcAx&?q&P0OQwH}$SH0=;R57-dSCI4J!}TQQrVaG#r(4-naj|JKiG9M2S1F8;kK%Nne1H2BQg9rdgRQLO3&@iSa7+;-`os2@r z1P=Uj;BUH-5JjW~A%>winHjkY9j2+r8$j3-CkBUF9LA#S#^_J3{SLPSzbG2OWw>c| zf}Ju%O|1e3z&N5n4GmGT10XpK-x`gRfO~PIl&Su~uPpB2sQ@pMK(n)*-9I^Tf@$uD zVNL^am18}@_Y>Ix4+V*oO8}_Lx=Cx`b~53u@$+8HeZ%Se9J#Z7H8H>PymT2RpXEW1%)ya175QHo)_;xp{L5D?7T(I0-%Kl0Zhd+c=d%=&^lJHI>9uAh%}$Sy|0Zz z3hG_0Jez73nE5Lwr0Jr6JNvGzNYo=g9kg7|MS6eSGMTiv_<6}l(%t`!I;5)A%{us( z7VC}zk6r)Ox-`C*WlnK-!=k3#@LKuknqNY&fh6_5VV26&V{!Itb9J`hE`9npFc?Db z=j6e*#_6HH#I**5+UIyU!q7*b9QbqPMbC;($qquY(|~CzyMCD^K3sp8@_!ovxl>S) zeorj*gEyR4Of>JA%g4iTxu514q448OpqM6k39}3$67W@`kDi}r%_ zTC}&XokAFT!#(=((IwBP)PMub{je0Fv$QNM2!F=y&!hgzg26pfK>F$OSFMJe;N6-S zhu|4Jd4PB!VvCa-!##yRS=XPDvvzB@XCJi}RTo$s45{Pe+nIcX4*s7#h#I0}|xq~;%8bUMc; zDonaAbAF%csxbo-`Kz+utMqXEN)5yxlxNh}wk^vo%54$c;FVk3YsS-3x7`22w7ix{ z*}ra($}c#ubELW3?G^52O;lp?dH*<|s(hQV9FUPR7pA@4=>2L+A#r~eS^tjlz4V-g$oD2_u z2^RA&c{yE2HuLH9Xs#dKJT6C2MAffq;o_8<*KR4(!m836RXkir$@(KCzdA+JbHWIW zA-`{rfT`Ky!Gr;_)u49!Rtq}KL22w$n-Dj=&ForOF^%!~mHg}k{#S(0s;?jF^n15W z`@9);tG=+S!d<06^sN5ev5))V+XPLQtKG(bOd+p{fvV=J_+j~yB7w_!QW7C^^-926 zD~`d+11C_l*H$X=D)AISMDr2h_VFJD7!0)?twe#goCG>{-7w;Mo>W;0TWj0K|+!gV8yAKgHb@PPe_*o zkbJ{IOg!H{kW@l10%JV9f#{AsXQypv7*yljm9X;B+8y6$c^aiIZ<0?f|9(!6S&wz= zMPI@Jo)oz$2Tp!68~(eGpOQlEX=)n+1W754J&2u)?z)kqt_b+@ol~Vlwcg9cIV>IJ(WW z6sgKAP_gt#&CD;2*=TXFj<5JSVs!3twp@LR0den zA(MfV*TXnqo@>m8!p9vp0~-^nM2tyQMux&zWJECNrc?+O$|B0Iw!Mv)hbPR5QV&?7 zC=&Tgg@TUML6j_7q@;G_0ho5cK@tYrZNy1qq38jL;7E{!k2s*Y%t+(r005BkHGdKV zV$)4dhyzz(>CTC)**JWIMp2*uILJMO!62{z4f+J`sB!54`rs8-gFipRfBi<;lxxNG za{$+ZUfB!UQ}vqsd^4C*_u9m5R(y9HEkEP)-Pe)K_6{@d{*@Pn)B1Q>Rwnn7O_l!eaUI;I+^%gcG`3W@lu~Y~t9KAj}pdO2~QCtwTlbdnY zw#)xZGt^2EWkPI>U;AHI!CqGWb1?HmopiKjKCzSC&M$|y^2+-1k%N_E#QY31d*(0n&balW0b3!w!l`=S@&MwqsIBY|2unzR2s zeLBPk%W+sw@}}?Hbm_$2q=pn~G39XRa=vr`0svE|mVpoy>4@1T$>Psx5<3ib0!O+H4iE|ZK!F}2 z^=3UNPK>1?OEgbBsWdHfCUuU5Dg&UHk?|wf!vWfpSTtD(D1xH2In>}uFoOO`rGo)_ z%~x9+-AxV|$}2RtRxIOU#s8+*Y_|K!h6y-gMPyi)lLH-{TX1Jsr0Fh!F_M4P6qL){ z(bl-iwVX064f!}PWm3q|V8&a>veaa&wS zL0d=D^S9!R#ST+vVeZ**!aKM9{bTtXv0oBA`-4VD`+0(b-Y<)T2);kAue;`SY(FtR z|MJd=#rTFC9&9EGJVsd_*uQyuviwWeMr!Da8yqZTM-_qV>rgYN45bm}qyh5x(~VVTWpa9HaR~Fw>hap&`)x^rKo{w;3Buip7q~>uVkm6=K!N#TQ zCNi2U>ap1pZM=)&)YaC``82Mg-#gX|#pLdze)VR!FJR4vA=Cs~!&HO90y*_c1kzKEZ zjqN24=bQ#@2sAXRGrqzRV~M!2m*;T0j)n zZm9co%TVzi$2=^wf2{e3KD@^Fs!1Bap(C|h<-{4=T`t)-(Njif1Ir5y=&`qEOJMzn zpDg%Lxmxuvb#<2FSg4Ud<8iSlT7j%GEJKcoaTlNz=HafE67`pR%jQ=37Un@)tAF?ml>R)+)(RDc74A4X>{WE6@JBApE)t3W9^s_A*q&|vm8bLnmGwQ*Whn{HphQbwbp})*(&?fA#a26ctl`0L2wb` zh=wjf(9lN}u*U49e*%vN`cYiv^TuM5R8e6?xARcD9dT}Z2_d1(GKF1n_N3!~vDChH zoF9@$%KF!7;bOq802A_cbwPYPH)axgH$E%V3j{8-7Pkf)f!MhtI}iCYPSC zjCXK-oH4=mO+3G!I;%%dh!?KdVabqIA~B1Fb`?k56D37(SRaNBu1&1yuk#Q)ZV%ot zAo=1ddV+_kGdG4RMLe0`qR6jGdC9lcT_w45X=6t)R-v;;iV7xwsNs?_H=fZ+!_jZr zlkt9i)0$~;aCS%qKyG(ZbV=CR{U>zs2=o|#Ho1>ojSaTVO1*7psn+rXHpQppdRz%k zfi4zL^zh5QxfWWQL5Z!#E6jh4E?tYT{oeIc1a#m?Cu8s<(coQ#0D(22Am(eL_dEv`n%32H{&&1 z7q~4hIEVG`%@4Np*!M^}Y`=I) z*4_H~W8Yr>yYCeo#l9S=in6@hicLWGuS3+M5-(x0@M+TRf-5m*aBxV>I>=mNJffh0 zfZ$D;^oAPko%|!bV4(0bXI2JGOo#(G;0Oq^f*b1jNg;w%fKV9)zRiQsA0Hoh6k4`_ zTa$GsGArULra62saZ3TJ^H)W01_ls}Pj`uP$%TV_?(U;m)PV1-t;Ue5IUen%VYx(KZ=h&bgseFP{hE8#D7?&QJPpR+m2wyDv)H>)rhb zvq^EddFSvE(&o2WvN=FEb|*JvSxPg=qJVB@l4uC7A3*pYwblq;M7&6wBmnVA$OSYl zVRM*$iGB$ZIfxk8oC|#p7tw(lWM%Dc;dV*m>^~wzk&zCuPJU1F!F$s-RAu}OKj{E= z)or(?EmS>q`)ZK-b2$x=l(_BQPrNK3RMW-Eo0XL|ewU3Xlv zRa>fuU5bM5#!E?&iduPkH%gOHQdiI(U)sBq2_2%(ZM_)sZ)d+q>|0&Z->Go6uRPg& z8r(-FXsD?#D)X`^`MR66W4CG0PmJ$XO7RZ_RT{ixf9;*{*zD^xZ$0)5sS@UMWji^^ zXpiP!>MX2X3qRv8G4pkixNQm|FWhkgFH4ahykzU(qrP`td@73>+>dR)H~Q!qOC-M_0E&QZmX-iwE(a5(1;lb)@LDTYh9phIeN#ZZ z>6ugD_})CMopDemSp-1<>Q9CPE5&B^l<=u}!MD}rxj}Kp zqI9k%7HX$s`|lr*(_2K;!5!;b0(DVw4Y~$i2ZG2vCst!OsebPl`#SDfj_;MmPMP0% zI2%Lejvx7XKl(eQnw!RJx4jQNVDfhuu!6TtC*^;C>guCgt$B=5ViT&P*LXRciXqzb z{XV^6hvUlf5|LRM_# zjo1Vwld687(V~xTegk3^oQ~zlg3f>K6)J}B6>5acG`ys6Trmy@t^J$ZYB=&FJ^FWNpf-RHx>%5LUzzHX>WKgWtZRTHG z3b|BQwFP(SJ_wg3g)H~M);qPep-)~O(NiVbf?g3=sykhSU&iD6h^z#-`HMu9-y8To zMR|j{MNO>Wj0&RgI9QJIOK~2=fJO^s!}(Tx3X{SC)Ey#LoG5X`?colHy`HNF)Vklz z;Z&C71X~p&&NRY2(DDP9qTh>gX(!eb+|ElRjbvwp4nurfcIDznjqsS{!chj+1 z_v*gOkSB6;WD={7H1SI8sqdPj$wEfNQUfT!HR2tDPhu$Yb|?a)>3r;kuWS+&vTJ8| zne2!eON3J{0{?~t5k>wJkxM7I$?p;)mEn!kD)%Uxfk#vp(+64WWt!1`cutOb6ScCP z^S^KDT*i%KKryZhjCwlTA5|wY37sE=>FW`yR`};Xi&(dYE+wvrwS4RQ=9l5b7%(KL z`}4QL< zH;S1%qYD$nAR6z=0Wb+|G1raJACC;JsJKs8ryb+oTO~}Fk$&_sDH^qgvDAUANr^s)`O5-!NRC9B zUux)*|46M^g{gb-0f4|?D4{#3(d7Q&hizXj06AJ7|g+$}brHz12L5 zAj}gYkzy_oQhtpB8y$|B(hnOk5ORYB59K7$TxkVOB-wCfD7V5ucQ7ObePPr-x#8IH zJ2T04aV6#n&q}k+iu4w~0b85+&j@mD#OR**JW_3mV>}F>`;g5nXjSlPQY#B-EEf~d zSVOaV>s^D+$IFPoPFe4Nn3$R?{Z43;sGfbdrRIwoP$JkV#31qZS|!zcXkF4Or~0ow zE0_%MpZ7lEvo`yn$eMFXV(i>X(eqaBU8-bIUE5OQo4)J*9hZ?NUPgL9j8^NT>U+Mt zcq5PKx=EO&pzAmra#M3CJR$Ba!9!DtcZ^EL5WAXra;-m^N1w$}O+jAHV)h^yBXQvU zwXWrS2YhtTdF}ly1Uo+Q9E(c)Zd+suvjqcC5?XwdTN=AB#20=4XvnVr^q9T;8t3ow zefPgnjq2bNgUT3qE`zazYC_~bkG=2tcT!seFAHv-it(Mswn{C;crI0Yzx5xNY?Lj4 zb7|xFq{aCp^d@_)j5IQMt-pqqqfUa;BEK{qGkASowA&fQQwdis^iKdetn~7CgkPwA zA`H^h+E4}1fL2Kh707Em6cX698SF7F+Iv^kEpYw4d=)@P08s1=JYn}QMfKUN!?~Rb zS|TQ!GL0p|RTM&`2GwtL4z^#Bp5iOGBn27c)1_)8`6wI5`yPlHm@48#eFR)~yBljM z6`l_C!P40hWo0kTQ5KDJ{9jle+NXfWcHz+ zXe}$17Nlo(X^EmMBlJit@_zh^oRNcZpKglVU(VIWOf!yzEGadDBk+L-vaVFVaX%N& z_1OcimJ}~MUp5way13p=^*;rxd)3k`ZOV44JgZH^4es>#Km=2RlOGvh2 zv1eU1uj|0(+8T5gGhz-$jm(6g#+jvxnoy&ewVqhR7D6c&{RzYrf zy@I{qgj-pWibAjyO`_oE+5)loy2nG-#?<@1qK0n}%+H&KL=E`}gljtq<(k?Q{H0Se zHi;40KJbqkNQG}4N5%Suo#vY8c(5T-bj6TFf*~&p>G^Lwv?W649)^}bu0@?UrHdZp z4lCC$$Np8+rD0vHxqVts-R37un_v3fy;Ob*-ZjH?CWhntzl?klU4iB2q!K%{icrj^ zT&UGob$y3r9xoHRCj0WE3p#u2Jvm8lPaafAJouH!$mHwm=IXU6`HFOO({)mUL$=Vg z5rd84AO~JLdk_XWyJ|;Xq?CTY`3KXv22AF6R#Q4~zUT?@?&#u%L;vTOoUjjIJ&5vb zsu-v4SP#x9$TeS`J+TLCWWDpQcYt12=u&=zbDL(Xg$_dtmAHcs90p=NY%0v<*GW5f z-Jj$mSDcJsp2WWbI9Vh_*o1T%4bWMsvS_^`lyuK|sCf$kDp%l5h$5T`SKPD9aOWzSv-og5 ztq=O$qN-jnP^3qqOT;SSPvpP`)EF=Kq}q z=-KQ;Lyox5G;MvogDPwG+D4IBJ(0ytlQthIaO|p*wv<#*XI+X|8R5+0i8L`O@RqJK z=qIL&T)B5`sbs|ES*aGhB>)Js>!^_X+xyMH`lFDGa`zHXhE~rxSL+M57`{Hj-2RR- zV9@-roFG@t@pt95h#Kp&0Mf5?Lx-BVxnb@@0F`Z!K@RrEmw#w`c7Gflkgs)$JNM$48nTVoGhjqJX7DOR$Lqsh*jL|}pEE)_us6pAY=_PPbXjR$4Z9E>^I zLsTaQk=aL#4?Y{ckwjqf$X;4=!4a^Kj0YZAA_$}24Z}5d1L^-j)54qDETOCj!isHh z_mJT2bK63F$G3;^j6lGuMdR|$p=8l(GfYH-7j-bT_<u#00_DEGk@yA!K^8ukl23=&=Od;}?dknb={+F4Y{h+QfO^Avx zmU>O3@5HX5P;$ty1Mc_vWfQzSH^^jxc@C#MlCqUbU0gXMw7X;ZgzF9EJLsl~-qHNr zo0P^PPt0mb{|nMUEx)-T*;OTZE!DX#RYj(jVNqNh_0TULSX+stl9BzwzaAq(IKm%A z?$yg%3qLMqnr)2((Y(hOs}B!FBGG>xdaaJVdm;;Q?4PP zP^v-t9v~=*Kq`5K%kiO4ODi+7n^zH|a@-`M!oo`=u-giCjs)JuQQe$G1YsVc#R?2Y zv91Raewe=taLr~bn#J44K!E_X4d9H3LjXm<^1#M`D;>auK-^eJ5G8f-#aX+o8y22I8Pej@xm9#w2vg37QbmfMB))(G6>{k`l;w6F6p% zwmMR^rVWbrQh-&eZ0WSjpc7C_M z(o)zSP>GS~S2o4Gc>sV z{O3q6U3cb`V76ioD#2h*jf@ekG_Ny`k4q4&wj}paDIvGi9BPFBHb#VSgnvH;-8I{) zPv&=2#jArBMm?G2eXAv`3R;U3y#Lj_dsqUEbyokLh}lVte=33dzh3PWj-Rt_kh@}L z9k2mhz);(F*2kQd%z5C|V_&Uo>dSP9%e8ldN{b*FW!*wJa-Ocs!&_qE$UZ{4UtQ2%=pe?~Sph&m3I)9h z+E}D<5iJ8Eq#z}StbnX$VB-;?LjBcjeZPO7IfE*VhnMf}%7Sva(W~#V}Fj1U>rW7JHrgxMkD(l^dO6BtR4&Bo?-Q zZC*O%H2}b>%`3egRv$O)!ez+P!P*Qc6pw3gu0kYwUNf`z+~D$QH>guO#EzVuJF<7E z6YWGsoDuM%vBJ3Y;ajTT_Fno%*%+tatcdr_oTR)nT;zpB*PwW%&-mEuc^&T^J3s}v z=eE>lRg~ZkDsI4#>=l$670>Iqfh9v^B+qN43`W3)eyLJq>?zjF z;)Dbs8z)gC5dZ;4MjOH@Xc`2{j&c1t=7%00|4I866ew2!#$9PObO?9aFaP*(hUJku zN@UcI0Ao0P7hrM1BoLSs5j;mhR^f&XRI^X{zx1%f(!J-`p0;kY3n4KQJ}g~mY+mR8E+mP+>azEcrYS@jJ~0>bcpK)V%>hqjWX4kDqkqS z^>^?4iiqSgx{C$~EsCAEDC()3AGqPt@%3LH6-+iN&=o+Cp!ORV7R_AkdF7dZIV!R% zOLMMW!5vgNja9kLwU}Dgv3U2bU)u=({qz?6*+S@?Fd~G1MYfio*j{rANpV|k&#?zq z{wfLF*LF92Q6IO(3k)=tzmxS415PHQvZ247mm( zMKkZ%!$SbfR-i`!`XI^)_UHg-hshYRqELv1<6Jy4r2=5}fM-P!fa*378jU0rz(mkG zAbL8(E)}v7z*j5i<)}tNgtAN*j+LG^me>gvghQPc5)!DSSPo(4L0}dL zrO3!!kiLmyG2F=qP)O*YWyr`n31-5L;y7R%6cief$M84d&FQe zHP9%z5G(;yCW-cvPtCh9DYR2CY8eXvfEKP(E8|2kB!|{Ui|2TWse?Zl)D8gHdw%WC zFV}?6v%^UEfp^pQpU%$j*1vysn^USBBhl%gn)LdedyBVgl9a|;>x}UEH}RJO05*TM z1(9&kT|XRIvh%`z7O0IT+Fk%YQu zSCteRTQIeZY3X0_)Qlz35B`SB7~y}55g{Dm-@ulFkG7T`M-nW-DRivSb;YDx3I*JH zao2&)4@hS!+!{PTepZ}obh*B0`mv|SMW^bkEQ=m|Dcbp8;WN1v*#Lm#G1o&Xn)uwe zavm1sguWy->o;Sa&(0@vuN!SLolJU2N>#kK?x=P(B2IhaEQ5L@>$)}WHlOro>1x#X*F`rQY(X?l_8k{nsHQ-cAQm*Q7UNZXGkTonIYyt81$IE zoIw;C=mau>QF>t7eniM2V-Ro(kSfIJ1YSh!Agk~pFbdK(#PN`~iA1j%@3Trg2vQ9x zC)}hHP3`<$*iy`aJi}~~x#G}7H-2Via8gi9?7}4yjFk~AF7R!oqUfo{WSGPb-~vPN zoL7I$nxqrMk7o7ecOII4SGf8H4Ig%Xw>~9q{8;i%bn7!!J#Hp6xX+NqO#<56sRg&|MoJo0#Yt zbSo#yEG`%y`x^^(kMJL7L_GZ?8U4&{Y+y3|tg7G0|(xFCLP8Id{*M^cuTH zffmN1uvtOVl0&ZV&E(hRCI7m`Vh)=JGJPG!pKo1VWL=~2LI#Krn6dhA=zAPqo^ju6C%;?SDXt2LKsK}3 z+6s6(qzOQ@8ORzKe|KQDfIcH2Jun)8fI8ORB48MR0Pq4ZnnAk;Ggk4W5(I`IN&*NB zSVUl>U^fo|08TFO8jj0o!IkHWT9CUN5*$FSD8q0t3bR50L|$yt$t4(5*yrHkY2j(H zmvF!Y+Rlj;1R(H`7XU^=ZNIG7Xzxz6b{U%~h)9;9r4ru2k!r*nIfMX| z;n2!p6u{(!%>bnYEl5c#jVlDRK#PJ($`}Q?j1zE-vx$NT4Ydqw22!cu6Ub1`7!W~k zEnok+ZQ+am_?+2p?f%bmx`fYv6(Sxf?HLZ;PH7|UQ3AaTyp!97aN zL!RoO-q3N8w-oR>%(ibg%123#>i19co-^6y2BA_r$`0;p{SZ?Va{?z@>J7gkeg1}Q zJaZ6tR&2>Wisa&U% zivMgObc-Dk!oLIsJ=HtvPG(mY#;JoAMNJ$x`j>s71uaD{WXz{LWW13JGX&0$pE)dn zKSz4q&ZD}0m=p!}g-`XGQ)|pVZQP>r!x0W|D1k%lue`5Go8=RYu{i28ull5*a?WG!PRO}%RskSOzjNeRnC{yv;ZV}sh zfk!0jFd~aihz|y8C2a2!%~s$RimY-7Y@*f%MGAUo#2On808knEI#0Qc#KuUhA}{uv zFe^uJCZ2=5BXZOD~9jaZd2B>&o;aavRGwWq*WgWFpJQ65cOA zG~@TI_9HT~v-0{{#`*tjrI^$)H!Bb^!hf8O%fz32MvqALr-LIx_`k%q%1_sRxSblM ziRg7${^;ymkw5^z)^j^Q!2c=O_`rJaxzRJyQhuTC%#S26At?Ey#tomFwn&|^&Me!* z^2I|DF#v$P%B-VJTO$++v+sBr0I>POy)ZQQYCi9DyUdE?9hdnft|y}WQ*&$I?F6ex z66gj%VW!{|fw_7^XQ>Fayq5+HYC(qys)I3`S(LT#fdWqwz-j}XG(;{4LqOimtCWxz zfgl15fk6+fxq|l$geD`Pp%@!MPbH z0ELSdy=arjdIqIc*)A@D1DskeaKJJs2N=RIM&`;hS`J7h7Oha zDUxLg(L$4IfU9vdXs~FZ#FcoxPd=$W$urv2>9+{{W@VRu&F}^Vqs4OZ)Q0iof>_E5UQK7Df?KF z;c7uwwZIDTO8?~0n0Qq{a==KQ`~UBZ2;m67jwjO>;~J^CtZV7*QzuNAaEnKk7|JuV zGsi_Hb9y#8^aoa8$>8M}`yc!!`l$p00FIQdKP%bh&nNVkGt&~5#|BkI!$CddN6D|Ap;xDziU~+5?|iq(yvk+)*J=b{k5oYzC4(N# zv{D6WS{yJ#!5*oUKxpEXO5nx_hJIi)iAHBk;frJqoJI{9D=?XW0SAHrOj@zU4C9ia z+8z#QMFR&-?u5+@$csk4*G}4Lli(O|RMH#^SUumXm-OpMqu^vV%UnbH z0D%M%ng%ccfT2f*B)GMM7I-C)P&A`LN?;vS$Q^YuqLXG-oC#41Gr)0#Si%k$tt_Dg zz(y1HIHzMF#~}(5lwchYF-)YSJPRnEN6=`Nc*&GXi(nCGD50z-OpZ&D4M=c|f@YfP zDP=94T$FQSZ(ym6q}$J!r$oKP8u(-U`%*6onXJ=%XAQ~Wr>32l6g{b!*ZGZ66)rn` zZKry))Y@e6)5khho?)6Y(}e_>wA!hKiMcbDyr_lk>gh@Kg6<0>#4KieYn zR~+d101@a#kI6TYLjb_W&$pLatEv=NSuM>OMb3&SKXsfsEK&?udgre&?=o_;(vnkG z@7pXL?Yj1pJcYL=G2!X87WwpaX}-Emj0TI2;m6-F?Ln# zPw)BwNwHl)8{%AJ006slwj9;%lX_8MT;#Kg8Q)KtsHO8ms2?b3Sy$fYXji47pzD%( zlIz0x53V@dvF5C01LcNu5M3)56-Chp7JUT(sOow5%Z!yuFn(YV@V+^t5;1*`=w;;8 zxX{-l_8Fk(c*15DJ-b+`1lnw%*@Cqev7^(lE**$<5iyf!GJ!5Lu#(W(4+&5tIgzIU zF91OXEh@~4pwb>#Es&A}o)MdoWYB^zK}2#?Z*=f;Fp_3#hf$%IDiAIj2kg|cp3XWC z3+-sE?PLjiMzrG$Qo?}-gbG(Nya5To0l{8q?Ue*L&^iSs_6i&h5J@@kxRkb5_h1xE z@)^tYS_-=-OEZH5mHe+hgmF?oH8pU7AVDN2Dc3Y z+-OERv)r4Mc#@1jHXJk3gS;YG=9NlNob}HBIRmvqgWHvM`vTr3Jjl$vyMVeVKvTODd$z0?jXs zn_{l$TmHmvX#%|V(>>HEhc!ocN`svjL_D5Zkh3gp(y$_K%0GoDd_%^kh{Obj8y6fY zTA3uja9(c#03>;Yj0^lN>X=hsfn-#YXYg-0c7%UBZ54mE5PFRn5yJoP8InMO7Q*y_ z^W$bEg(S}W;@N6cCUGZ6i&0a(=R`Z+tSxw1SKbNZjwW@9{tE3_7V-X)&p$3(Q&g1+ z#uro0_}~C^Xpeu?aaqj&Z6CJvWda%e^y0f@SPm(HS}gz$xIjSmyd@wEs@zdyxey^2 zkVWk66)#>C#=NHRv(WNEUM7b$4fHzDZw7Au$Y2y3DuskZ2m!Fkv0e_D`vtWRvYLTP z10V*wSR6>8g}@mAZ5%GgSrbQeTVxE56Ql?P(a^;9R6!r~P=05rJi-w|&OBf*ass1Q z3mg(`NaPfNl5i#hmueZkFCnW#$V9lPc&(1GM*_!T5{L)^S0a8uhe#0!{KDvGa*NMZ z*)+hl_+0EuG;)nYE0wX-Dn)zb*{H@<^KGJtU87dD0F%c+oZuG28$KG>FlHm$8 z$?3Z49BSP0kzp@J!AW+rCwt7@`pxDe{Rfnx@)t(UdgIl9yt?4co%y@uA_D|3QQ%!J+^V(_wgjpp8x!0<3S3680&AxIONl9LBdFhU)mL~pkUAGbb1g>5AvxU$v zbVLaMeY`7L7(eqRF13?)&jA9peQzAto=>%zEzaRFIYYuzo!^mb9o0@>& zjLTfHE9utYQDSH!VrgJMz>yT}?GXuoTxtiH0TFPb1c34q!6h8CT7lUDoWd~?0!jh3 zeWKL_I47c?AaDv2glJ}oPP0_TSvv=13Ri@X*x#z?D3w^HE_MNC+aO`>u(!5!TJ(1@ zo!l!=Kbu)nEJB~W&MMJn6pTi~*PS;jal1j$W(F8ULOWEc2zwDBgJ>B{RBB4eKGABW zd=!ASAqftwM*5moFxy0n+2Ns4`kd~i_sm12c%btGxzY&Ls=+*?(g!JBY&4Kt%~Crj z3)`%dxkFy2=xbJn4f?ORYx?%QT`g{90xkAlGBRe-ce=A*b6Ajm%;JY%+F!eSSJh#e zA2mfiWoEz&J4^PFZc?VpIu?#jiN4+#>rmqkT!Eff*eXYTQYY*Hn?$UX9sFMVgOS`hEKRs#{!V-4`EhsW^iqMDnO`uHV29 zno=U;#s!WMOx9cP%{juK!-x=$@Mn;7Id@NO`W5G^yovk11OfokYjWh?c}H~|Mcg|b2r`JBXdjSZBs1O>nQfOm~2ToMUGuc*ss#)gWHuCTvL1PX-NMA*Su zA@qqv^q@!q0D)*46q_1E7kB&h8o+9z*%`MWeq`X z(Xxm=5u0xE+=u0GOTg|ZyO=#y`)^SW*B)MPm*RNyUBjQ_z4VRpv5q1uB0Kq}^M`O1 zmEbZu-ZeZ<5tQWr8>2TfaVwD*0Rh-^yo3N8D{3W}qag5oLQ{jtIb(j~aFG`cMnGbK zl!9I(YHo#2qj5$6W&@C_pq7&uL<%DTDdz>%WLB8c;vC-ntSAmxi5lV=A_0|1ohD+{{Hcmo@ShYVYa0D%3qyJv*_ zs|W8-Z{GHtefUir7!g6|p zMO({+E;RynYSZhaEAjH93%1vtl6!NIv5a8@3tCI;V-(sN*`l~7OByeg+x19fIsuZp2EtO_ zPr^afUA{9spSLy`_jMeV25Un5gJRWTgkVaq-*tJx)!{4LU%UJL!E}KUpSOEaK*WKr zqwE0vqU-aEZkwA|U-&}d%Y>8UMf;}~#NSM8hU9S3-3wpzp0=~*gYCtK5QWY5owP7v z`j2K7_Ec=IILh@|7bZ?k8uh!JiW|?S=eJdq(2cl*EL!wU@E8L`xFq$L3(fqL?5g6e zRbS*bl#d%710fW70RX@otN?)2nCsq-c$shVZwjRu;ZLUSD)}d$G1#B^=^*xxfBfT5 zzK#+8PzqX#U&~$fEy$ufY5yvZl~J#(cz&6$x6jYb-(RzPgKl*n-V@Ln@+K5w_+(&vE_QmL)Ta10^uV-J9vW`|z`^<*2lOlK+{A`Y&98c&m_B}mkGF57xo}4P z9a^G`w+Q$6JTbKFx3$OcltQbdt-b~es93yX*_jicWhlc)r_?Tng*~U@!|w}f^Dk*q z$`J-I4YET5vWlH%)TF~0B{HXIBudd?!0N)YECUP>lSqMaK&)v*j2mSaiZcKS2qFaZ zTBMiCc?sf0Bz49)oEYq-bp3Lk0TNG%u8J@kLL{DWN%#ae#kivvI}=qd<71-UoO6TU zl2e}Wcx%30b6we6i=xvaCBA;K2Uk5Hvh2mr-=FgQl)t@Ik{amp?!hmzN-KSX6DCGP ziX3ob2p>m<2qi6An(H&?G*)7+UW|cE9u&U-ou%Kizw&NOvXHE$;B+hrWM>F^+Lv zCwehCevZse@QUq7Z}#=`J1@%y2tML}zv;3TQxabpF6Le-Z0%@G{6AAKuc^e#-hFtH zSm&6z(X*q~Q2>B=r?IB8{=&ZUa=dX{UOJ+%c&C5e84ra^ySDQSUDg-cEF{6QigSLm z947lmKNWTFqPS4YGZ)bORp!9Zf zYpSSCbPMqy)SgO5UoUTOXLrC085tSP*P5Y}NFMdewU$Qsk25g1@=rdaqvnmD4vtua ze;o>1iieucv%R(%p3g15ZO+Z-@66iv5qKYyq2T_o>AtfPga4JtRl^i+KfQMLZ7=KV z=pln|s4-KOP-@85#wsJHCN7T+Oa%Ze&YsjhszP6Fd&o9(!GqU#p3e8J$>rBEX0aw$ z{Cn~jG5)EiN>?>Ft#7-`%N?LXpHeU6`QJfe)t1ga6gF1uEnpcA%3~#t?xLxc?@}pM zDqhC05>ddloQ(kx0*nIPqD1Ke~C`!thF=u+TjXeam4-SGP#Vryk!3;_|E#Y7@xOZp73+GB_q#p+mq+tS}|cltTv-s zbLrb-6YiPx=8GBtKxUObtETVm)f>*G&(G;*-#v7aaCaQ%W1kxA_sRpQ>&|?U+j4bT z(u9J6#?4ikf{9)fl!hpATf;?}Q_rHLDaOp^N=ajtYbV`F(>)?`&~R5#Ya7j>v-*(_N?7x|u!I>BFAV zjh}Dda(<8IKF>LU&(9w98~|Wv_0b(wAJA>4k02udWak|A=&+BzwHlsduIbM6#}U* zl!Z-*$1+O006=d{z1}K4v!p7!&6ItmCbwfiWNoiLaqla4#R34{J9c>OH(x7LeYmdn zPaj|L^yllOe)v59hnB=Y;rjX{sTU)02W+>Mvysd0nu;+4`@25Wx7qPVhEPFuplzo2 z^PydS``V6HyLDQ+s7TKD_%j;-0EPWE@s9s0C$^`0|H0lPg|}q`0CrU#IM8*}(qNnu z_QImu=5G9a``*@L(m>TL?`P(QPT6vC|K7e6n3R||=J`23Pv7MGZZAE&v+8}qQ8L?i z()ZdQ|qzWMw^9s3S6?6ovmpHogFoMi{Q zj~u*jU$pYZ#jf_`ZaG1uV>0C56ETsRF|2lTPCeO|P@}K5J*ApABVp;#;HQo2JM9au zVfmefbaMBi#gktj8sC=G71L(0B>*l=EBF%y|X(L%6&4+t^!<{7ON3WP2)o~X~{9~ojRXcR+(qQlI^iq zpLi%W)N|e0&(~*sz2e@-UK)4z!(0DROj?qpxV1&dAJkHsepQSlxFN8pCpRrAX^z`H zIhBR`tQV~{y%X-Zqo}KR-q>kNQ=Z;gad6j_4+V++7_;B;XVz!tXFs30^5utTMPt6n z0nq?}{Dy+W!0Wvi)*e~EtKxvu1MbDQT^t(Oarw}`_G4^6JvVGhj5;E>wrF?L$I<}x zoKX|!jlS9b-1gGLTQm1dgVgiFCl8)!dv(Uk-~V*|sh!29D;3gaPDf+*a!$`d1Q$j> z6UqAgwmib`lh<02bERZg$2Sm1@tR<6z>*r1#Otg~ry(^uaYP#bVpO$IfASf_edwPK zjtJrZFa<5eds~lIpjtyw{|t}keo+De0GG|BYxljk?3v{S*NUo@b;Z4$=6fgLia}au!+{1PB%;*F@tjB_oP@&F zYlKBkd5(obuT7zbW`jtnQCp{!)IgkP^+qYDln6$~!pp5@Lc|H(6;VV;R5|Mk86eYe zCV1kph1ul2B(mS<#VkshkNw#uQ(-9Q8hu3?K}o=S8Z z{d-O^!hZu5ZGW~9j`121!oLc?K>~*M~>*un4hFbbb`P^Yc5CCxO+UD<6J585O9$m4M6IR3oUeDh;RKH!~N={PE zdf}4BWi)QJp{{m#AF*U|?DEr%Yx1cL5QFk7@wJ8=krfdEyh0GmL92|EJ0p`38Lhah z8_Q}rfI*QJ1yRV4_0KV$$w!jqZ?%h)k^x50)nBH{$;HXRa+=RqmZvHZC7v7MJ5?x0AH9)z&`J(I4 z$jbDy$j;~8BRQ{68TZ=bL2J$wt^Q}_I8X4+o72~wKfmtcnNt%dugj_^(v>WYN&*tq zniHRl_g7w48!a`4abB+ZEWYBl#Ax38xx8JZBh7Re0ZAd1YQE1sFWoU|&EZY^^`DXc zE_3~!j>ddT=%(#eC+3Gez9{PHNvB>dwqBj<_281!AA2%~S#x+prKIu0iF<}ewwD~) zl9Mj=Q~jbG-Z~jMS(owVO_vT)9?E#AEvV_mQn#U~i zc<-Sx*Y}yKP5C?9UMjTzrlUx>t##JQse9ZVu1BaYtD1U|{c0f3B)GKoI2SP#(O%3Y zwJ)4~@2iCsndcOXI0kfG<{Uf%rSUyVr6^hi9VS6;goF@my}X`MIFn{WGb@Ua=1}=5 zU=%6bPc~RZ3vx>4FYPU|4G{h~$#WdmUrCs*m~mINzQh{qIH8#Dvs7EYSiCsvn)$*P z-=vLuJT<_Y7VFj0!KTH@eLc~w+%8|QA543Dt93#m0RXs^RngK#06#PiQat$&bD99|_{x3pyhT3$bk?LX0hg-HMRZ%T zXHZU?zRhf2=$DuplXASKCdtA6ld^0t_kfK2GQkQ+7eqJo;R>t-?-6X`%lA%OlsFA? z?3SXBIvL%Ak{D-;Y-{1MO&1P7D347JjM{niGbAPA9YTjMczf+hUT5>txB&oCB9k8v zf8hIHC&4{(QNlFd#BRU*{`SH{30~12a+h0tk$(1$dHW=Kj$M*6C7K9;5PVYlbvJJ4 zM*7ped7Crd$CPAtY5wo@ZF)Pqr$oe!I7t68^cdd#lh5d)9*G+LA7{(iT}R+a!Nxyp zd~o@srN4Z@|54ahl-_Z;lB}^bnxDreE_?jO#~!HO{wX-X83kjTh&jnwEj!g|+Wgc7 zhikWdhW650{xLZF`-b3$^_#u~+W~_08TiiB!-@Y_s=K5!e_8c3sR#M6ewvJ6zINEJ zvg7Iw>Nh>|d5nJw0N{do{l3%h)}Liv?~waGrZm=b$_t^_oJzg#mWurhq%d6_EsIu& z*DN}fgS`vW-KhjUgPJiEYZSY)EG$N)geQDgSu6FSa8fjA?MGF4)c6{?LCXheZ{5H3 z2np4LdvM2 zzh)G1X>tFuEHjGxGApt15qxGj3#H=9L*?JCO@J7g(|+wzR_B>D_q_LIZuXU?aY2FW zGjdbIHG)}^T~&%Hj4$8z5GG~TpFh1MGHr8Zc1rMQk!7+AGyeX}#3iZEO+5K}5!W4q z`F`^F^*z@ewI{cheLUCmfhDPvx0Qdgt?c-Mu}?)>-FMWTye#RMAM*I3sHXt{8_yov z)$vt=Q`oWl-?{ns+Fo*GLCo)JI{0(EcVN?P_uff2>x<0|`E3=&wyU^eI^Ue{4gk26m6z4z1^^F4 z3{wsOO#b&rLf$)FkX_%95*+m2$VLREsKN7pCA~U*=D=_!|ecEhD zpq$!@larSL049F9HlwHvw?lKCQeS;;4gg?F!Lc0;r;gqGPP{|t#&d^u)SrsC3!WeJ zXbFF9YsvAUpHpL#H=aF2daAdU9bXXg*rMp`Mtpu-WujNaA8{XUh1L5v$--UMo!l)A zaRLA=jGic%*x!~}e{-@*^HQUe@|wy306BFfgrmHmry5C#{I&{_6Ofen@NaL&JBI$^ zIwSm{6!l2{tF?29)ZS8 zv7egse>oME#)1fC!tk6!-RYH}!hFS`3MAM8?m7DzbCUm6x$RK>_LJnn=A-=wo<4qB z*jWpU)yUj>);eKu;TwN{3ji>$WELhv+d_9wF89DCu(cXJ?z;3Mx7IEI*OuD)Ii*_+ zP9Y|9Zr|hUpKgJf=02?UBoj1UrLVMFkcM)^cwA$t>Q+aR{go<(AE&S6nwDO4e|J)f zpYJEnzGpXUF7D>NEHYZ)d@_s6$H#=f_GB0ldx0&!{q602Z!K`Tl-)KV<(3k+Z;?y6 zx(Ug4mvXK`+zkjcKnehi0FnR_X>rubBR%izJp1O{yO6Y3Fmh>eZuhRc#CPQ2u6_`- z7(d>6|N28Yjg`2wG+yG87U8m?sC-#$Lcu^oN_dpW&>JqCKJnx{NKsFm+zV(euHqMk z-IwGSCDIH84B;dn{#CxC_T<*G<3}gFk>D1-z4o8m%8n14hU@;hXM5c#B*hoUP8`}t zoOtr}f}Wbi@e>!tJoTfmv;E4+&6yu0dW0{Gc{jyqyGBt36 zwxts$FN*rHj{XMnTPrSndrlhel2wvdsI4VER7g(JjRVUco6YI0OUC^cV==$ABD=aU zWpq5ve#j6kXUoksMuOzkV`PqJd_P`(a(F^XXZ|tmo*Gp4uznhj@n5O-@>cO7 zc6Lub{o2C60|0W$a~4$2#+BF;0~6B=)`!g3&^G*GcGjHa#j6^h=&1vW2ziCBz^^@= z#_X%*HEJhQPpL@y+Jl}xQiBgNqoA%=;mr1)HO9x>lUb0xY|_ddRqrnhdw5~wM3;Bx zaNWYG>GK}gmj2o^Pw{3XicUiJ<&5ICwA3fxnCAJ;-i|kCdAz;3`mH5@cEEi`A$RHG zXK$@|V&%cU@uN-eequPgaqL|SK1z#{XI2<;nl1~h^7ZHM%-C{3v?|PE|eCs7F?oT8gs|;d!N`?a4!2w<*BJl-up1UkkLX6J30AgTgCb9m5H7| z@Pcl?a&ptfBTL3VzcBm>0Kn$FV>{|j(=CIG<0pP!4m0zz^E<1gVa{6%KZ+sz;xxfO zlEck;AFeyGM>g7JNy@WquX#zzb-Bta$@~2QqB%81d2N+L$@L#Uw)%IjHo|{1BSJXB zznT2zqM2pOEVYL5NvX4gr^UPda;1;(ouloO>;^6j#CRr;rN+MW=ndLa3>kugjWd+$ zoNrUH1KgAB)WwgyG(2H=Q*e@M*6gIkcc1Yil&JljHSz983tEeIkKKmL(URu*%mA}3 zba&-o?pN}?Hl6q|nl~r;dSb@y-}*~k3Fo4)(T=yBkRP-6v~-;_Nn$<3euK}zqP zToGN@$0~f8ZllD93cluF?w}KG;?XMWEAQFMrD*}Gt0ZuqOgq1y%UnX$A_!#UV6xO z?zO+YdOXDsTX*i#tCLvi9rcq!$+<@Y?1S(sl0jd7xKeEcu$AFuo8o(ygYaM3wfz9$5k1aVzA%$aVDK}sR5H60N7^nJUYoukB z=8^8o%@+?Rhs6q(8#EIbVsX;X=97%@UqZH4`X`?;MPvQx;7Iz!UxfVTq8G9kvAy(y zq*<#|-|$fWvL|qM{;Xcu(|uk5OmRr*{Di*QOi$bKo2Glt80%tI5@8Q9v^Y5@Kc zXEsU*yk-y?Eh`V8LasU&*!0{WFqU#&5^`fn)=PIh!?o70`RZJf96R!P&4lEXwAkSB z5pFF#*qd{ceLb%KOY`;ov;XfoOmj=`gan6`>Bcvv5HGAOO8@(q8EZ>@?2Ku#Az8JC zeT#1U+mZv{y!PyjclM-?i9&J=DO5>n$-I+iQhYt0Ns1RO^qOz8$N6~rI6Ei%1PTW8 zmiht!z{}(B7fjYo1>YeFIVo{MR!Pya+|yZQ#gh^z+~i`$g~h)7(9C%I5KqEMV(_!ptL z|1#5SyY*<&;_jmC%eh-F?A83uEfNd+kp)@UT2RjG$J%!swgUEgN z9sT|y>DAjmGVC!m*dF6vlt(+!9oCe|(2 ze)%!|VbJz*kY|=8Pu^K|i0-u2zh2|B=1%(v-co0nciSr) zzC7^i#Hp)3II`^iIjaxu5G29NqGJo0!AsedDWk`KwS4O8Pfm*{0I<5$FwgO0ecsty z4hg$AruzT@GV(gok~{zax0p)*N03p-0%!tAddJky&+YQds>8Dy$nVyUUUi}&HCO={ z{pv59zJ2Syd)_$q+N3ln5&5q6`}bVLh~6)k%t(z0TXp#T4TYsE?!M!dM;-(KWK~{% z{P?cZb6!dE7zF@$c=oDI|PPbGVU3E&;kIs#puv= zpYD=|Id94TP_VEfClD@jkr6~uOmH0yI5EjTlGE7$085hp{jsM1kG=B@Xd>(S_?aYh zP*B&dpdtcNq=$rLVy~-feOPR)y{x)+DG5uc3ijSzJ1Uk{v9Fo*K<=&GCFr{w0$%}faS&pr1PC106uWJRbH!XFJ`cI45l3y2Et6e+k3vx6}wj=wrD zDX3oBZ{E6*tD3xOe$Z6cp=(KM6?E4#d(~(2oIeU<$`nls8?qtZbzZNP);%4Ly*PLH z*_mYn=R;NX+476V`9od1&Wo4FUXq_H;1?dDoS>3X(k)Z(_ESJ|$;sISKW03ZNKL_t)*_3m{z^)G3DdA?AlIk7A$&N^}L#5Ve3Ad1^}8f4wqkF2>>i!G$*AieewS% z{D}%s2ffbtbUy_aH;3lb-+OS`fquz-hBeh{nD42p0e1xV{nt~B2XNDK1FqlaXT{ZNVH1M6VZrP>*XRC0 z(l-ivax<8Hck}3Jo2XL&0ORxKJU9+g>D8&L+jX1*0LJH_q)zMY9{k|6>HyuH4^HEC z)Bpj8UZ#!)meRtC^-djaVS(}31U(IITsT2bU8Scs#$&7Y>*6@rYOQ4_gzEe-Oqej? z!Gi~i$HRsVOG!y-_mGN;3LPCCsZ`oz{PykJQ>N6HUr0_)c5`zR3WYM6%)!CI&(F`o zqSIPjDTPo;C!>(SsPY6WHPcll3+?-~yh)=7C>4K*F)JCmxVua9n7Y%sCl7@ms42rq z)wLIQb8fqx6E}u`x->+TEneDpo@#genSygevj(4E_}ARS&aa5sL-UO1Yr9g(=;^FO zXWt&pxm89aPCPetzv5WS%S1`m`;)(%jZw`y7=Om)-B>L{jT0}c zuDsm08sjHuVg&ie!8^n28lfQG%A4tj&hMlBa-Jbhz$+}#)LFIHnUw%ORW)7VZLwz1K)vE9bDlZkEH zHXGY_-v4v&{W9}BGaqK=oH=Ljwb$BvUBI_dei1;PEO8_qnKD=Mn*<> zcz9V^nLe|y^MQhfMv@F=ZS6_A;FfwN-7 z50;tw+JJzgpvR>MXI1Pgd+0a~=VdBmNCT{ts3CM?5gt0hU zOfj44nTB4LuRqN*63vcj4DJr9>b2d-caN4|)p`*XVq&V!7+RUVrn4Itq{Gku`XBkb z?yCZS+)raJ-5m#`J|bs_c;2ba;|5s#BX!Z^7?QE(W$3pWm(Dr~CgagtF67&oM@J2o ztp+m3hEAQ6&#=~tC)Dy*mSjgkqLT9$eF*M{A9TsTZ1UW+-s*^fwqML-EnJZWQWd_M zj0z&+oimfn5ebTUM+_s$rsN1BcqdcX5#{FR`@+2Zh=9+8`LqG@(v_sP1gviyCx1?W zP2pg)916UA>me^Tz)B3ZthPmDy6tqKx%BJHK%P(^MX?CvHo(7binA#YMXj>WSK5^b z>#Kc5cEjY3FQSk9rK9D3^?itH=1w!A@wF{`TEN8Wq3>1kv1Al>@GrI_OJg%w*&|rf zC_EZwoMg|os-kLbcnFd!J_y)+Y#dU5<+K<3N6Y<`&&AiP^a0+!qT$v z=TA{vuJE8j@NPCX!T~udM@L6IU{CcBR1&w5Wg+JG6)~Q|2=KN_ph#r!JzwYMS9?7H zDZ)|}-^Ty_7&*rL&aA$l*jhTd%u%*azMgA$HJpnks_Q|3)D0C^6w{7SQ%v~vt!1xy zo?!Oj7p}W|vkZJ#0!`E0n2xvsGGIP7L0F@|RYwb%DUjAJHtiun0T>U2BKnI9hgAw^gc`oH0p~=O`eNKGFSS?yR^kN#OsIWGU z&HiR-Ib7>kO<6Z83z-dl+TdHu&m~%q5it416w=-5u}F_;WS;@*)2#UTSssF(#8NhM z)1Y9~w&5^PS|O--#bY%e7^o-Id$w+ag9vLmZC}<=NQJ&|S-YDTYtD4GVSd z-4#iWCnX2iQWZ?l&0k(IVREK9hdZ~6Y*6OE+97IE;{JB&G`wp858SqPaZIe&w^?0f z&Lv$|nuJa*+3Mayf=if~{9x7fjlCbvRbjwRa8`Su+c0h9u`?R8$Uo@SK{T6KH_L~3 z_Wu)ui*ry%@!S9V<$23D!5sPVyE+_&mG@J=REa_=7Y29$wGkY1YfGhX&5ooGvsLY#ns8BeuQmm z2`P1Reiv@av=tY9^oLO9t9XhlgE=B(M*7(sS#c>^qWmo7!Jw&$iAwK>^NEQGtt!Lu z@o^%KZ&R;NH$}?d_XtQhzNt7koWDF=xVpFi+4c4H(lNv>EiKa%gDBy;30i@OSA8iXb zf#^?;5ldMz!d zC8RXrBut8esot((3-xzq$wW$>T@kpI9I4X8=K#?Cp})$6(yL)%Tjxh>H zmCUfO(zy)=tlRvFj~5px3*DyD84+;v3f8XvR$;Nd=fXFJ>P3K0m0L{-|qAlVns%~1!?6G>x@4T$R?X~Nz<`Bgy zcaH8rzfET!6t)0k>^L>mDXW_MZ6gozwAJt;KMzJi^h0C zp(3PQ28%uXN32WqK%X@RekBZQUxwiI^@u5`6D9@4 zNZqgVbhkO~L#YT3#%C>y_Dw!-9gFKz`_6`w7A*zIsd*JU!fSTZpsF2k&|HlA)4pJO zAZ;M|_E+L2qg)0c9SesB{8F`V>7^<VJzT5XEuy}>PrE-LW5J3EX_ zOpZM1At8fff7xH|P6zj$7ORZ1l9E6^PuCREHhNle1vA;%q}<$%El^-<(vR00Wr2=) z%?y(MO>Col6h8umd0KlRFjBfebu>w@I3EmR3F(Z<^7bVn9g_R?VgI?c+~HN`#0cGU zdZ6ld_#m3;fRuhM2mQNQ@;k>%%rt}48iCGx`5t!#uY-Ie2L}=ge+gf8S+31u+hFFa z)y@GuJV32A5L1ljWPP5qlK0-+phwssx7uSiPf{o5#&b{75GN3ohQWWh@a{Um5tLS0 zl=a}nPOhXU{d^wPdh^N6Ze-6OhsxixIOew4=j0FGm3|`O}MoQ-B_ZeDKGxiLTQIuQBXDQRMo z^Y^cggM)*IM^i-w6A;>Os-?Bq*Vo5v&_W9TRbAcO)YR!@j*h%0k8adH4@->72+Blr zF6UN$XJ!w5{#VLF#(W%PA6%wEl9ueEHV=t{fH&o?n5510^02ooHOfw)woY?jN0uVy z%la!4T-K(p8J}~;-N%98t#O3Mp%j~Bb4}6SLq*r+%*Q?b*uC*!ne%Alt1iLxhVzm;7 zG?4f9FVN?SXWXwspGlv|ZL`#dZzZXPXf|hXA54io$F-;7fVKxq?~2)rw#i!ds|~#^ zkP<4us)~N1(yH5^I|>1SW^Q?tB#q3crideCh(4@5_Sc`WoIdnq0|H*uXQ|oY*1RIO zE?51C5rChKB(NL)EoX<0dqV3)#2*pmU=yQ*J0js>NX7i!FcV z9gw=Cu8rFY?7aaT=1Xd9h@YI$z*xJyi=8)uv#AJm$Or1Jh`M8KEq+^rT*lvwOl$Py z-3FH%R637}=_|n=9A4k&+g!3F<8 zKgLj|JUvxda_jm}8F8HeyEb>wqc-ktjg>pZ4=1JY0s!)6cjfXn4N^gH1q&prgQHY) z^9dY7Simz3(}qZDOPm1HW0oy{GdD|&ZZw}NknLVQc+v7pFoh8oSl2iY3VC(aYTkTy z#gKEn7IY>l;_rG(*|zD^(C862!+BDb{M=3@z?%VE%Y5744gi>1c@3pN7e+@O z=LUuORhc#Ayz+|xKdu6$C=omm5Ej0tVa;K4mJ1ibEM36?VSM|FsXW2?l@v$%$Xh75 zqYIX55r^ppH3~AY<%L5H*vjwN&hKzMsS+jnQa5%VOaiiLbuK6TTdO&rokAYTBJ1&)AM>j7&33xN%#()y3UW>K3$iTu#2K z6FTdGSw>jvlMzF;f4||GZsh=YYdYzyV}t68+mvuUWzj>}zF%fa?#v;$8HA{o6G4cm zDoTCTmL;}C0)#|6c5&YsnMyQ$YN#aV$2ZF;HlIjhCb4=VBR`3Y_sS+vueWQ+$kIjlYX!_Zcy-FI;{rS>OVMK5oZZaLNn1Od@o5NK<@=MLS=Xr+nJS`_8y0iHFe3@nlxmT!jET z|643ojrG8I2;&#Exbh~nZcGv8)%zQ5KqarT!t~;%HIuQ5_A*@_64*pq&UCh2^cmaL zi7bF+GQ^KClAw4?^Zsq$yOuJb&5s2>p8Xyb6>nxHsuwlIJ_GTErCj$hDw9vi#flZD zGY|j79Zo`CIwpWE_w&pT#he$r(vX`YYH7OUVD|+UXEwt6U;TIdo?fSW2!Zb3AD5TY z{++EK%q4$YzS_DtYpjyLMq0Pz{hoIG2}pnZ)}8i`$i0f}q*RY)d_^Lo{%xT@V<*Hz zFhena*v-SBln5PwZa#JjQ`a<{?-p}#{ejsRh#Q6o_BY{P-O^6$-}d)OIk?P%{yV+5 zeg8QoZ$*m$?Kduo(v%t;q1euM7#F`GdQDSW**r7;R?(4S3z1@T2JrgY_&1VzX2@F@p-2t=_j1uIrt?< z_6qU$!#JUd$FaYQ_mt4@G_;+T#biSq)l_(NUfc@fg?ruYE9=X@1)1eh4Z%UX)OvW} z5${Wg)49w>O4UD3GED}nL6A6#@3^=YiRNb{BPmQc4#a!g;=tB^leNC1sUSq@BO)Ei zJ8BnL;0H#6|Av3l<&Y2n-{hK=a&R=Z*$)HiKOv(t#@mMgFowr<>&?$ z61XuJvQhoDat8}s_#znEj&FUeD$dR0YM6uk`wkyLUF4;z{2D+Pd6|eNU6q0b&4U@^ z>8Jok1X>GcWVR}++c=D}RtO&$i&EDm7=mF>o(KL9ZWLgRx{*r8&p!jn^kyA*qH0(U zwaqK3!?W&oJdKa{R@k4K^|tn8>!)7P*ph&g*jYWU62i4%c=)CRF|P%tYy3r=FFsdq zAh99MF+tp?VA-39z~x4G;bRA4ZuwNBHqU=FmAL#U0~QPf$PF^mzpKI1`?SCXik*Hq zRARg9co9<4I2rIHJVCdAe=;*OOG|B>yHDrKQY6TSCnrB%>)xb(qb>T#47-na=OfwL z<7BeF)ltw7h2e~~A9iffnay_{gTtMkx~QMj*qT42y4OiM$e>C^bULl?>Cbo1f2X7D zZ>lsW@4wN)qs%f8Apyq#jjpF%#!qSj8Lpf%*M%xMft`f6Yv^vOIf1~|(xMFbiPd7T zl8M6Bf2Bd#m>^TbXL*QqDdGA15e+N zci)5*6e2!ofHoX5ASp@1(9lp*Q&arc*w|QG8@PeG<~}N0AN{>Lbb~thkf!2G#(L_{ zn|E`6nZDLOin*yyYzuvrAyc<17Q`@FdxJb-rm^cst=#9bb zLfvhYyUrv^hM|FD=Pa=fOQ&fE@!pK z*VO25ix@jHh0Lk(dA~}ypiRZLGkJ(jfli9)67*&S!oQ}qke|D$kuL_@(E7Mdt&xsd zHiE++jQt~H_NM%Abd4cFFl%kcHOAeRG(|0<{U=k-{U=Pj1RBo=hXOQrBx^q?kA|a& zOtd!6+SK`1H*xO|rH1HB%d$E*4%)t9HV27qBi@Hr!MuWuX1#zRQC;<)vnpiwoJsQL zl)dOPxrhMi{TDL4hKr3V`Q$CB8w4*KAYf6m#G7#}+@+Shg77+zN}i(#gq;%+F&cr( z(xhLxQvyCj3BzWC(d|A@wV9d3z|j7+cnHed`^yCuVo<;7_K&96STrlELj+9f-@(B) zHa3tVo}N!&z;UtJ>3=*!1%7K%c=i7hE@<61N8-!eo^(5$h0Y6kNP6|lS!lH^&pRh% z>>s2|-=+gFsRSOciG>9%HL@I6^)(q_ANmc~35c#=Vy#cxSo**mG=fB2>sY7 z(m;#^J>0UL8}|(w(_kl(Rui*%-b1bmqA!EPZTGa@r;)*b7qeBmS8=Px-+!5!2;P(n z514cc`*lWPZoG%0!ee+axUes8tT$V05xKf3QZ-~HylOr(CrK3m0h7yCq;z>KwFBgt zd2YWT0L*>kxS&W4OQ1{O_GeA0-~MleQPrJA=B-=nIVMC~kcvKdJWU1ujWObUZlqL= z$+_8=g_)Coz7w60I-I_uzE6K@I;(?F=09)lYQ0rO2&7E7Wo@JVU>UiX!+u!K zLsz^DAoysS#P75xM+YD;ZV2zxRYO*UIRQT$V?LN5gg!f*aD+Xy4J~*&0Bq+~g>= zaX1=KBCY$$e(HS8zX4L5h{o@m6NfkQ^70ks8>!(YQ z*Hl+)H`pzw^E&fM!iduSmgCD1?70CavMX+Q4GTN|eGq4G7YIf)7m7{o`u!cUchl|D zIsBC*>#R=i1F99wFThqx@5b8R(!LwOzB_x6tc~(wucZ3CGg<@jSXPea9`hN+N^+-+a*V z!%uOAJ*L0&tgE_fwQ=3=Nisf74_C9-JCm%c+=cB8-ZkBEB`qs6ptxjbZhjG8HAA6d zNQ%ivi#HC^N9(TT+2$pe1?Z}jrb*@5#+DHRf76=I{=yP_&?mKP)-XK4V^tp%u9xphkgNI(JW%h_#(p7Y@D z%dIP$-R)|HlZRA!7{vlt zKr0r3{Z%<}>bl-{n?e225_62$!$FAEm!@+aNPzK<*qkOVxUO{rkL$`RR^hb}^N;V$ zonp}}n#@db6nh%0IuE0G0pxgt$m{ZAfu$rp_;F$|xv7soVzQO-@{`-4c`}Q^^Ci{P zuFv~!1& ztuM##COa)Z z<<$L-ut_=0Kot#ZUqSuEqGpwTy~*JHmOSawdGD=T}cQk1uUT9-+*bdpv|r)ThuS(#6+ylnroeavP)7M~EK%(1d-Labn3 zUTGBVLBjZ;`$qIArUQvLUK12xkHeBCwEzb&w!wn5x+Q|NJ-(PJ>J>~^7Yod_SS55{ zW$Kq&7{x6Ag6Lx52x1Er0XdYJr@C*UaHdVK4y*toT@{1zqbdJ?F2H+=gBP>Gk_tHX z@)fat3*8J$aBmmL2>x`<>!C8fCUAM6*oenoIy>} zJBL@~^(qtDj4Vy)4PItQaWKsk?v*);l|CeGIwEug!F~n9n&@pSiSgEp=Li{k~Fet|W5-Am&jScwOi(bF-v@E(uj zu*E|M2Qzvl(~-%S$=CMRMLuj7HvD>fjEbTLOjLPM{~lv0E4GIr*QS0(yq{ z7a%`G>i2*ZKawxG<0e<~*7?b!Hr0ry0xT(hVkCY2*IEtPS|S9FGC$J|`(-^S>0 z{@eF;+(3d}t!cIX)8f$D{x*r6XAvgRQW;Q6iySxSm*xt4J1V0@v)Zb+kJe8QIsZk{ zPBV!rOu}cEqm&>_I)T_X74_JT0b?Ibqi?p*f(Yw$@TrRJpse z(YFXN4iS`PY|wT&MK!wKTCxA*fHa^QmLHrJXkYz?5Q9nJZzXO&nL+n584Gvsmd2HH zmiOvF$%hQgHB3AG_*W_)gTiU^O{;-CL=A8inf5)M%>mqC}bn2 z!6uvuJckb&kFlFwGEt?X8|;s;5%I34hFg5mFLCli5PY10%hvZ#drmQb2mDezJ7~Vo zYQ3EZt_8Y+$?Zk(7Fy(Jw{;oC3B89sG7yWCvdf{qh(c6naorYN=a>hx{e9Pz zvyNdFN#kX4Lkd1qn(iwsIyNCG04!j)OY+7=i=Q#&577Rlrz<7H`;Zow?bJyWE8eq3 zd%a9Q5>ItiWEq6$)jL((j6LI?I8!oT-fmrYLno#*}#49Ld&2?(^72eW+0V^la!Si>DsW_vew&YBps-YRy1aLH}`^NsoJZ;%zywOr)?n=$0_yHn&u7p&Vx#au4F&l{ONISz?3Kgf8ufjl z>S??GXW`VF+>jz?3aU%qw_xyJXORRGZRQdhDLa4V%e{#R9 zfXV_8!3Sg6RBuJ>-<|SnxXwC{F z)a*jzQL#rjHy@(^(>RDj*L~-`=cFWXJJO0zNF?k-k43(1jIOeO_!ZXUUi}+O{>C0t z*YzhPaJcL}QvH0Ff2R5+hMF~*TbG$NCXr3E9?dK; z%)GewK~=6J%I^6-X1{NW7DV1HkcnE0IB@-5f%o#76u31faEN*>m_?bQDYg%n_^l^; z;@-ucVJkG@kKj+o3Fm2+>+px#8Pv>5b|2-C9dA_Xhxxru=BrK&O`q_b>Q8N>SG+Ee zR4c6?-x2xg5jXQl*0aBsda+4zmE(`wUZgD zk^>Z|8LC9pf6VkC0xB-$&_IY`@4~8E{a}0icf0~L`X~JAelRxwJy?5R_m5v@>#X`L zCd+}1`%3$37D>a~7imL-cKffhTpq~aOhL51WzkjLO1j|5Aj}hOshFCFdSXi;!E3_) zq|YpK%#zUoi|08b8T*WsF(*;VZjJ#86DOzdIXQgn*Hdu@y-k(ccTz91Do@maA78y@ zQaG4OdZYcsL8Y#YFNS_foU^->`=bm<|1EUEF3@%H%w8l^P;53kF1cA}@^}ul&sK7) zLGBwA@xh71&xb&TxnBTt?kvUa7vWKwHgcz=X(2p?wqq`_oTojFJbs8*JpK*s9}`g8(cxG z;DI(&7xW~Oy0`ps8PCem^z}9QM;T%GlQHUH-20;T&vJ#vs{;q&#!i>j_bqgOW|X4B z=;E>(GgEX(QA0x|5Xg~@IJg)0>g%rKN-9|9fD==}po{e`MD}X`O8n02sR2?5PtcHo z=(hh{M|)inn#DNBIyZp+qd}0d%rGfVfw0s_D^`J!GH70I|HV@EKXwoj3?|*zFmck_ zyDi&ZdiKvq05p%?lZNAp2BuG+ya|82p>#wXB!4+-kR?K#xb4i?;*bfkDMSVSusT8R zt_V&JgALkGFL{Z=R#0+Mxl6f^oKJXtRr3OH53a}uW-j~?9<8fAcsZO#%ghhJ28+LI zN;Bs3C;z&Wrp)-Cjz=@)=$_Que?sJa9sa}D#!a(dG1)zuIqG-y$83DfIi2-)WX-aA zZdBVpBBiRV&11dH2&*|tL9$Pv!@k16aK8DT*g0`x4pWI@#*E+uouwz11n3JMz>TR|2WFL`&sgqzlCh?1=v8LRH}c-loYC!cq`1|2@&x+|kXd4#h&Z zl1FdY=q<13%XBw#ZJ^!U^uWi3N0vD5Q5kO2hh6ECXkU+6akA7o`@grUTC_6TR#BOvTu9nRH#$# z&;FYwr2I;WDW3pkhYe?=4pq&s2tdUhuG;l_&VNM<*(u>g_poyv+!8xyowa;u-H6Lt zw!o)9`sB;sOr-Iqdr-?h3T#DRkC-UJ9N2Zwm^RW83{%o0y}TwWkn@ZOEk?@ZPHn8X zO>P6TX{-n|XzzG&kf1B5#fAh@2emhjI)kW&3Va(2%!QC~F0iBYy%_=!!c_(fPt9=j zWb)kVssBzMbC7lcMzZY2_!=tQ?}YB{$WD^>^H> zq{djnSIH}h4Gt1@#O)YB_yv!fF4)d|A^*uc;zt7JFCJyqpIgx{SxVv|oZMTKlxJI^ z5TacC+O#(2?y(3R+{5c~$7Khg?}%H@Tw#2lM2YY@(LUGh4eVmhrfGBG_HY>^P;v}v zuCl%@v7#mgmPcNBSD~z!O+S53iE;TNrd}^-@C*SiWl}x|;w;uqU^kFnmi zlXm@%t5-FngMDlXNR955m9Z4`l{2aqnizjrRP);7>jj(@&uA=z7vL-=As$(=W4cK$6&)&bS6T;(4U*Wkkpd#r}{#M?)M z9B$?))&6Zz)=Wf~chQjTZcGEh+#3H1^9H|%q25r1(omS?;DdSj2^^rUjyDixRc`Ov zK4f~s`*$53+rGJe$@>MpiizO}Nnz=VWN$vGc-$DcL>|umO#b;E>wCb+sIbRGot2|U z+k+r&u&(;eeV)(hWv5Faq^G)yxgur%%H^cM?2)3~!&lWJBZnw|PXK(Z`xi3QJ= zEBPIR=ZhF8ltFr7_@xD-QWPmuIpq3TUH7DJ?CK)UbKuEZD~& zgxF(iu2tUbT){PkZtXzwP_F(|KCleBYWyWl$VJAH5M z%7NzMg&Ao61QZ`IX?@t_1_E8tEZM0axVvJ)m=^|;0i=efX~}yI^Fl{l_In58=3U!B76Ya3n zGgtW4OSmLBY$6%?2H3>{snSFJJL&SE~}9pn5TeL=5F9K;`~_ve8`seM|e!xFcw@*n2pq z=XnQLszWtC{6B3wRJ4fE6fI$xXJo&&6cn&II=P<&Lz*(>?+pG+7@rFaFKwM1+wHki zMKzy7o6S1K==}0k7L;(gYkv!D6KLc^EN?5#VS4@ANt2WEroX&3{f}!of5P-0(1l!wm8;mg5r{%?se^xtAY2XY-Ww?m7`+<7C zKIulK`ENFz5NSLbkC3V2{uoiH6wMA^HU$7 zfh^1z)p+FjdNuU7c5q$4;GIMcxYuSBijV#sc zif!f>_(iXxt(Z}3uy#<4iUfk6i)gPF;r8YM3a7DwNZS_gBiiOYVKPVWR%2F|G-HF8A#`~15?P!$uJB7zZ<&|#LOosuSF|lGUN|h3td<)|XVf^m^t2Btq*Ux|RMu!mxseoq&7v-isalEIgxE-OUdnGYcf5tv2_N=^@L2MNxb35M-Z;_Itss8`^K5 z=W`<_OFl2`wo=eEdrT1QIWq_KKU?kn$pU{0=UpJtUAoPij=cz^_@wGt*iSO6OX1^d za8h|@sl}p+m!8`h`oP=I0-2QdFu;-T-hz8<9}? zL_0(bEM38nCa5sk9^STp4nfF8cNL7CAF>@mp>TTl^cyC8YlKOTEfY#);Us&>~#bk4iVzNJu8V_kUEhU_Xq`srQ{As zBhZ0xN#M=Bm3V|B?0cyFjIv$V^)U2~5!e5MIx07X?F-bHb?E!TRXvWOqBr{IfutlX zyBytmZT^7|O)Q!(tM=(+^9>mRxRE6L-eiCI+K_xT^mre&J#cKkU!vn?=PS0k?|a)n z9&v4s^tk|0s@V1IB$h~Pqz5{5g0;ogx2a^( z5j}TWjky9=7GcO1t-|m6gj@nt*0y6WzFBfn;;r7g4FsTZusV_lmgVTi06Kr$YJc0z z_N0U-Bu1)fp*CRzemizDHNBWw$8Tu2vmvDFa@W}OyvQ%@FnnyKl)%22vTf3EWl5(e z_rlJzE~gm@>nTCExn__Rx0far2bZ<{|5+96jn=5n_*p+rSkREQ{*SpeZ^F~z&qUmh zPpzOJ$_VBh_pMCmvQJ3Y)rWu1>=^cDa%Y>m`hhq5I)6~TyZNg=oG*7@_nWp08R;YS z^cQd;R?!Q~`@(k{J_e2Lp{9;$z`VGpp;DH|NiQ?@oIDAkdk6#!Ra zu6$nB;X;F{xp{+3E$JDmNbgP+zi`GKw2RUyUQ9k7Pv=e9Ni98~8-%En*~43)0Aj%$j8pHJr`Qkr1yQvYC?t4QD_6gsj?3l6^2j zJJ_%aI33ZRB>=QvKjD|$Cx?3OQEk4(e%NYB}e zm4c&^)7BCtBn$+P96z%#tPjtPiE3#4Nkdaj4k|9=M{cZC7+PjCLm$q5+XI?RPp8ZhF5B8u=if6;=L|<}v53R|aUv*~8#lpm8*Q95M>EvNF zWR6<9b-owUJ^|?x0Ds_&*fkfEpNxqa;urTkD=L`~dj;ahwR2E`G0Z9mGFF^LxD{5^ zYms(TGsicB=*ho_0b3=>d@5>zE5|RH^0AAF^oBjwrzYFm>hivG3%@gB2NdNXusOlf zfb5odwzjz4pK0k`qa#~Z`3uQu)2iLJ>O1NXMPU>KIty)dYaGv7Ib*Ihkdjq&~bFewXf7(3O`J=1?Zw8Khp6| z(hD|3rw!98fPntVf;bz==@${QaiwTJ4g-Jo7#uLbsHr7!&Wf!`K59=n1Vw)W#?(ku z7&zxj8!Vu441y6dAq*pG+B$;yaqfbd{18gliz#lW(AR}d>>59O?FW1LMM&*3t_Y|j zuUzo3Umr0lBZAGcOzu~pgcV;;@|6;qU;$CDrX$Jx;M{XJCCc3Jy6GAo*_Ag0c7`Xy z|F%gQHiFq$+CQ7c#uch|LE#aD%J1yan#$GVLhfP37#`5}z_zJ^1vXwXy(@?!5u8*8 zSEBe1YD{D0@ka0dyhucXKu_#ryBEd1Gs{|77SgfuGJLd93ZnVIe?zTXRN6V6m0>4Y0u-CRxBxqMPP4mUxG*_SW z_8T!#-ky9fhKzNz2XKkvcM2*AY6$vMors+ixYAY>_Y48ts34eW*qhTi8)2Y%ebIEa zB4(1PFfaBEY0LP`0y~W#7-nP~$Fj7;@%)wC_pc!THYW{TjOl{3;XMinY}WU$SldAg zWoTciH}XyV2`k~9xHH;@4V&f06YW0Hj`bV6Jr@7h{2BT0T8{>XPM@q}k6}Zu5Z`*O zi+N7;DnY4dJeRW(ZD5*#vFu+x>?qORA1~einvve!O$G~|jP}X#SI+BbvGQa}3w#HQ@$+@IA?S`7MS>$=(bl2#hm zG#e5OG+1_Fv=#FDoxPjO34Q77T>F1>0dNl97b7|E{HYJNedh2*iG-NRVRxk|4B%c2 z^ib5lubYeG6bS-McF<0!9!G}c{6hr7(%*Y~#grSszKBw(x-=f7o) z6BfMtf~OIv40i@^HnWB&eVPB~+6!*&28hF!+q_8u2LC%27&v~nQf||YHhksX>}nQ z;Rj+4@`pv8Tr!mF~04HqCF#t|01{P|99I$ZUsY`O%XmI{Pi{(mWrF>& zqxLH9046Te6@o*WTN`+2SWbDDvp2v4Kq6L$n`xO4 zgb^9(BZ!{TJL-?WC&ZHw;85r0oSCoJJT}8C)onwfM--dZz;GmfnlYWrv5uf+Y)K?C z3fwACcP1*8^j)H-p<4Wq;^}Xydburxd1@M#6-_S+O+K(3k+~LuGSpo=A7Y(uJ#;(q z#h1$_k6~@0*Da`Wa8-h+`3T(%X;rtx$x~8SxmNs7&Siw=CPtl`OI=lxn+lrc&wVSw zi11OW&M8dn_`Txhcy?gCgQ0L6Uh_Qa09DO{$1!4sO`~*!3D~!;8#$>zqTTD8F8mfZk~IknudK z+T;b7!tJ(C9A>}XG@^VE%mnvMsj(2*Ei?SwzqP+hn}Lxq4VT~F(yLis26w0uW3uXq z+2$PLqM7Nw1D-8^8krTn{;P4f!I&MV24Wxs!sjntuh){D;r{#lwg32RP_0MC^IH+ZMJs4{CPjW z59`OaO^V~5@!mTQA>io>3k(hlKLRopI%LrPhe)`xH^!&PP(URkeMq1nS{I3r>34sD z|A&h2qZ!>4v(K3~Q7GT0*Fmyo7{h~grPV=GR2T+=FZ?+u8Phajxnq`aVlBWO&oogn z47Awd!^b2H4N86AaEk~ryu&HEd>U|DZ2MzqGa#bxNxxdR=sXY>2&o^)TtTarh9)yJ zU!R1~&hBI$TB9d0_!3hKp^tVnT zkqOx#-}IWpq;5o~-Xya;?0R~Fd51#>s;2nfeO7v0wmoI#>?bQs@l2yg3Q&kO1}p~x zGsrNZ-n+c^np43Ifvq?@+bmu-+b^XFwu_87hmrrHZz~UaCbH*zr808jb=O<3H@j~W z`bj#triiZl_?5mSuL$Zr^f5ag*;={{?g1sc=Dp@JvE2YrR%SWHZ~b6ia|`1kkI zi9Hs6Vf1t^DwijXLuU=|Faqr;x^A}1T#HBc#z{(6qSftwn5>iww`zRHc<#Okq87cq zLgEQk-z9P961zFcZ##A^yq+5(d0~aC2%uYuzsIDxFWWas`nGa+q8j!6=LNj8B@X@)8;Phaeo3yMd!-l%3fas}Cas5vXvQ-6EgOV?Fp=H2jy<5iPfy4&Ch|p&bAyDsu7~X^ccKzns{E%(H+TJjvBvpI zeKDof%D~&m48@fnR-$96v+Y7&bb=l~a%K7!kvAdt&&^f6^~)Tg8LCGd3^ zK!zHf!21S6hpi@ezR(@j9S!U5`Dg+GO)e$3TUPomN;>Zh#D)iqEUW{c$wJQAXp5nm zV3*BKs7o=Zq|=A+%Dzde>(ZR>G`{|vEASOm(#sMLh-Fw-KVP|3Gu_I{%Tb!LHPCw_ zIH)u8cp|*nd#A3ATb(UzYSC#{%a$vr=jNuqET^R&my)Wbnb^}PR>S(O?J;>zfb;96 zqCpqe{d*7!t~47W6u`DH-fJe8nA*K6})S-*RgG*cO63UrM326>)kF38;L$T63pxkylj6k9~p( zRi8Q&aFqY+W!a>0NtLAKDZQTH6wzmUwo<$gZ-Pw>2Lz%O*KD1pP89yV`H=Jc~;%# zboBZv74fNK6o;sN5fIK^8c!;k-@lsSsj~tAARay#IQextN z{UPv6OUV4tbMx~sNcbx=Gm7f!ho`4-fb|x;Twa&cXgn@mU0wYl3$JaI?xSE*KWpdhPCO*$qwFVvTaTo< z@=^MO7TRHPN6{iN>+TUKAs}LBMwtDykku!EwOXH4&VaM_OQn`^d*l8X>o}J*ej8Kr zt4TB*S|7|LLq0*Z-8zN~aG#L|qSEYD=tl-dc<$yAG``?!m1Cbp3r10 zt9|#11w1I-%-xX?S#Iz>?5Ey$=1bi^{>|PLEuz=v@=7*eO-+sQP!tZU$p{D^!mB4`hs_UIme^SG0*3j+a(He+uv~*`;#F87pOo^N zzvXvHL3_5Cw`QC&>Hb_g29D%Iy*C$Qlm6IZ*b?ZdNou>il&QQL2|0Ro0-l9VHizEd za<}z#)G#8Ah<9(uddwD(fGVokX^P+A{-7q{@8~ns0Hxn0oBQ*phvicQ60!kOOv zZ>-_*XZMYixaIoU6y(ljsDxmOI$w1O^TZGyAR&TPnf9*x_-m9dH&f%U6C6qEc+;Oh z$CR8%u166G`HrVBfCm6RS?t14aGNC%J2`)r z;;|-uE~7|pV+l#%uSzATGRB;KZ>bJ|wWesWv@EBYr^k9}rNXb#~Hy?b#-pzi% z`7?ik=G$85-0wd~w(aFMNJ~mf`?9o1P4zbK)V%F?7)QVYTnS3+k1y4r$L8cwG{4(9 z!A_}G8a!?&Pxg2@eDX!FU0SAI&R*3wR1&DZi(4(Yxe!Y@C;}z5>{VrD-d#ul&?DrX zOWpSiC0b%&Pk@3hF+Ls@V9}%vXmvb@kSG*UVyC1uJD$l$LPBzE^L{*E^?E$tvF8Te zd_S-O#U9kA6@*fn|B}}%u`U1*ELPGI(J4)CdElQ%N~G#KKxG=3A+tkH9sALWtZ~CVqu1Q`wPIXNm@}{vj|}&z5_zO$3n03dZm-VuRZb9d^6v!o9kKQg8)jzI?}Ob%}LIh#JKLh8yg$)*}RK= z7G`FcL_|UkyMOnFV_{%mdQt+q>_JWIKP_^6YOvpkuyA?Zb|S5lq_syfwONJa2W?@! zL9-kYoojz*{e&QHZyDrv70JXXoBdG7m*Y}n9#Tde0pKGO9X)<{W2gkWyft3^G4o;Z zIA%uy+8L5dShd}0;O&%_W}Jam})Phg9mN9Mzew9C4eCH;Qo<+h|RhtLHZUX-iHdatq%*p zaPoUG97nIIT=l`g_i+Uqo^(_=u7A`Hdcq1^ZLcQ^)>)s-`^KRlGm zn9@_C?d1YWP@4T`8|ew|QtC1%>97H)J2zPjIC>2JQX9?df94T(P`=c|sAT{EeScs| zleH`GYShj5jk9z5K5GRB;%!o>&AHQJaLdlPBuZ}OkDX5&E*o1c65@{<+NJHTE{m10 zzeHU0InOT}b=`Q%3Z@O0lea!@AH@*VFfcY}B}H8g1w%f`uVUR&i(CI%->gJPmANNv zG&}wwZga4us^DB6fB0CuH>fc;wY#gV?L-|~y=lSc#^=8YMP+AiR_nA-NAxqFE4_hS zAOO9yv$HEJ?x5a}2;`;(a?;}4(9zXJ0QmYc<;}2&^`QFFLX*5-k)4}$nSh)f!d;Ol z0=JJzi+6u;0o(~O$mg39k}6Dd-8^1`Sg)}}pa8^3dkI>MphpvpQa5#dm#IAo|zpmIJzbUGJr}5!2J({M=Hm@<5N2 zHb88x&N?${p0w{gWv^dlXZ++!TT(P;V#s;gYP7T+xO__YWTU&VH3~S$CLa5MxgnDH zD?^?T)qGofr;w++WZr!>ZI5@|QyvIF!N>Oob#fqW_~X@=Cim6Bcq&*PsO!^Zo2g_7i>Tz})CkFvQCw7(g` zMIkAo1Hu5!RY?&qBMdwLcxIOBx*+b8#ep-DXYe)j_#1vkx%Owz;-zF>Qu8WYW;wZd zAA*3Yj%$cx_6AC1aDSfucw4@$7k=-kL+t^#(>pdF!TVBOzOsMEXl#!6#pnY$v&IVu zxuxW)>-IM~3&Bj2Kc;uKBJW|jIUV%UCL^ViUzmO_lqn@ACp)&ie~yDZT8IQZoew9{ zkEV0o-2CDOTM7zD1qBI3;y{0b5Ec~`RaIS(B=P~Nq)D8doB)Q{W}xGOJoB*NLWq2y zcZePyY6pmep+6}d@Q@3dVUPb(+o8rYRSsEhJmLbvvgaJIT7n=GEUSTOH!8Wr zQnnb9f*%P1Sdru*?LDMPMY@vF_`A)fXa$6G=asOfghmdEJVvg9U`gY_?OhFC@(UZ*ga(** zWpE&ru)24ja`82kmfL!Gfxm&bBmiT7;bFK}>Z?Jf_x${PZf@=|74%8RgolU6#v&sj zU4kq#LPI4%ZM;;1bTKQa{QDNnhJ}R@@VUySvlfHGf7Sg~lb)U~ODUtE@N{>#-r;5! zn#AshtR4H|QJ5M_(hwD3PQp+@rs5c|gw{t0Acpg{rc0Orjl@41Xi-F{@*bS$lUGiz z1m6N~I_y~1Z~^?TV+P!Y#2^&fAGXO|J#)cKD&yzs5ps)KYVE7#Y5`UX{8;ZDar`zI zF!Wz`ik-aJaV0Pb&2VK*g#q@A^BB*b4ylfwv`svn60>1b4^_46PgSGs0j{Ol+VMno z?$a@c2KyXM_cqp*@4E+xMZ1zzf0cO~R7{lZqPKn*Nitv3f$S6$i5Vgps^zk|XzyNW z?9Hg${BdZchxc0k;MGt-<%%7}Ph~23F`A^KA!-dSbm#S@K%tnC{yY6Tp=SRlri4?- zRZkU<=jgkVS-S0JdvZ#O>vR9tMawowp`DPCp>1Gb2P$rago0K}Rr+0?0&A3PY-}tn zEId3~`HGN`koRZHc9$D%)|_u4QJmBlU0AnSM^tp@M^w?!BloKf0hi7-)*J@GYhuAFdq7Xvdb2_ zrSVxIZc2ys!(J09X+%N&%_~=%ae!ybkhzEcB!_qmZ`y+Yx6gT_M9dwF2z?x;=B&V1 zKYVyOpRzf6+j=X_DL((0r_auAqAjexDc1`T+t=M;Y_aMELNMb*$aV5hb%%@jhs#u2 z8>-pRiwJhEz5ygVnM`{lmH^M9ah1N*Rhi%vpnLsmoH;aRD%VQEdb6B|$a>+Tx3@_F zNjW3E`SOXZV8-4YpbH!)0*S-*z2GTKgH`A23_EzH7Y{C73ld=0 zsx!GQk+1<5CX9b0@m%pirPa-tIFXMkNX8UuG3>3S1vO*^ya=?n3ad8_&Kbgks}24J ziO*O4z839e;G63H+S`ol5eNRQ>1I`($#`cn?^m0k&S86vd83AKnBGjvu9#e@G+(sC zGpBpkW6kUQoOrId?A+2xcctJtynxwr%r`erYaL&i$IGhi@e(T5s%+I)e=qqf&JGmPr)KO?{i2SzCUsJ_c}46jV|Z_ zTjvK-XM zA8}`VjJImxp%I|`5l78ikzPfu2#_eT*&PU2TF^@;p+dRkB}A;B?lby{f^YV8gb@FE zgswq(;v+?#qn1?9UsMUOj@mv?(sklS$~#SM{GUGZxD$q2Cusb@cuNqZR%WD ztLH%-(0`4>em2GyGt!6nQY(7lAl>dE%ExXIz_L$VQTXI%|M~KJ98}&&JMX@FWGO^f zF0@;{^-k-Va?}!Z6J*25w!<1;zYrYOlZ4g2qsI6M3I(sO<>?X>(nCJj*w(ewRK=MV z4qA6uMATrvG+6vqwwRt&ML%6A!S@YnRu5X&s#}q32+lpuEVrYLop0g*$C{EH69Knt zxX^gof9&DE?FiR6r=!9~{?dP#FU=OpS~8{wSdYKix(x(OK30;ohuBGPH8gx$a91 z=m|dDq#uTCYaR5CJ8@m-I?` z>xni+ZEi)yyrae2KTDCnzi11s{^N-!H;pX(G?`A6t+qD6b?rj+6N8pnWPxk7MtyC}EaeZl|Ij4Qk9j#mcW)JGC38ljvo!C_S^# zPNItsqEXBbyZ;@R;9kc&4))Gmb+X@9J*px-?D$xbc(OJjx!k{mT*{Iq7YY5rT|Ev0 zKz>fA%Ufdn*l&*Zn48p}SMJ_X`@PsLj>eV_RehxXZJXv^k6 zvN5_8we(l z){IHY{~TYr=wtquj9*1559^qtUf{Kzb$lJ0Ipq%(`zZ?Cy6GWK!x~ z&TY~_oZbt=O`({O@>rkt)E#YiaRY=wyWqx^^e2Y(+@Om*MNeTea-x#70`KR~LsZZ}jVEF2@Spm$e# z-U+4qTcKs*A^I0G zwh{CkNF}Fj<@wVlL1E4)JqPOj^+?>r40v?{xdvnAhfs#Xz8%N`4JC#M)re7QF?>La zpeCVQt+zgEU0F8RE#Z)QWM3vsm>APzT-pgWMgN%bM|n>)@ghB*@x+h94i7A@;%7qZ z3eehc)!R*1si;1pXyJgNA^gv}-IuP@amFM-rUvSG4JA0F{1;36AE@Gm6eHbea1D(L zS$@rE)0N8{gAg7_d2XIREB9k{UPRv8p3EBp)~W85M~^>Jpv+tB#X8_F2mD?ad^S|4 zZ-_uiw6fa7AQz|?#JG0!C*fYo6e_$FxrAfuJM`}fL@%oTzK=z@nt)*z*nBVu0AQ}) zEdD8oBa8hBDLny??ZLyXY`1$fEF1T>D0@OVzC8KQyZ}+>#0(e!b?%0b06<=z#Qk2& z6C=GpxqEz6G4eci{O^-i%IGhu-(@nRlu{&FD}Y$40#kC8!638CdTSo}=O}%3a1t3f z(aaVJser%o_k8ua&e!0eWRpXX1A)jlp{#!TYG!?b<4h$ohQh@iPIc=BKG>nYSw4jR z<>jSs?U@xdP4@JQ-dx7wW=&emOf&TRwDQOLR12N)Sio z%r-U0SWQ1mLjZMMhQnKjM8Bpt4xBmrt06rGRJv*2jLa92jg|zOU%U}x%kmU5kJ1c| zB1wZ28MY%&Z!}r@o6NhnRY{B2h&R?u^?QtdQ~a~~FZUtvhXfCBfu$9btK~#UF@evY+fLR#G@2YmIA3Ajd{8 ztknE%aL3G#kWWZe>&8&OWqy{Hz9Sv9G-n zmED+))f0UA>!RENM;npU;cOlh-G1fgrWfk>YXup;{#Zw)3TD#JZQmfv4uT0Dl<=6Z zL&?vXApMIAyNbo5=lXwxew^KeHKg=PNbPSGw7U+|bFDU9VJJ?de-Qv9vWTb?ZFZ^T zYQ(K#9hjeIn%y-yVZ8tj@EJE0At_}JV&a&_Gy6y&DQMOi6!kNtCXJFSX+kyfX6?dI ztl58339~dHh1L3W>E`aw$=4o4tr4~gn;D++AKlNwC}j@kSHnMHIG-W~pHR=4NHnkm z2Qu6?r(j_?Y`jF}{5&1w(VJj#ZK#p>hELXA_z2Y`UDXp+Qe0*==boEeI zo~^JHb>=MD@I08=vrBzok<0QW8?bl=0E-5HP;+Hyps!2z+Cb<$P`Zfsr5i6OUHoxy zJsoC=H*L*N%FW(3T#9B*wWZN#*^QPu5#55n_Aq+BKDz7_dSyTk7nyOm!nF2AqXP@A zkF_}!1L}!VIvbAu1F;d`$+q$Y@uIN#Diy(%l~V&Xc*{>k>S$w4q#Ay?TEE*TAgeLNL~p2M`f1H(b311G8z0 zu!{}Q4l+_ziAGhJ8RCGkiH2supuWSc76-pWlc#v(>fh*3!&Lk8!qLJf;QMT7uB<;- zrIQPj0dpDl+N=kq)^fjYi=Vz_ykHI%%fQM>`O!-AwsIbZY!3A$^&Q7jg7=pRIURLe zYVxkSI#sFc+xk^Tz|r5m1*+QC;d&9iTy|X0=#xuE*98S|-s>u@*c?MU@o(5|xs3ie zM{94g9sO}rs8Jk}eCsIwz68OdB0*2M`_?iXXJ3X6NQt@kmdJc2NG|}$kS<^VMs%Te zzBHX7)62nx!wfkAKN9T1$#OBGZX`&gj7HEAQJ3gr>XVC(!N36MA~;ggXs8w9iYmgZ z-&w`!;UI(MN>m4Z58(hNr#7S;B(_#Gs7v9p9g@LmsQKz9u6XI%;=!w6|MIFyN%;vc z%AOYBO|*T_qriZ10)-V4&zuOwq~Q1f;S4{QL6Y!J&^`PNj0XK7O0#9tY&4enED#VHA;AOD-S(On&S3~Dqv*`{w(-tN!=>7 zc~y|j=p`!4`nH@%%xtdUa%y;ksC7KNIT*X{#e7ibKj-OGHioad-Zt$oRxFirDGn&) zCeuhGP;742)@lM1vxlMtx$J&Fl}X;kjMb~OZ1JWlYuQ^|-%`maAZW7*CECLNbd#a& znL2hZ3lE=J#=3tUnPO}dMcpivbk;y-zD@vDsQ|9X#Uo|xhyuJTaW7}eeqLLmYQa?7jJ|&->-zKGEv{ckckl;){5Af`R0K|jL-y>7#2f!XY-Vip2~CS zk&-g}gJ%$)}oRj3C~CSvH%rxbm* zJAG`Q$!Dl72z`#sNey6jy=gk9R-Na}6c&aFx*C59#Md$as<<5yQA|dexd6m$W5UbQ zK*7Vi+cL}{n@P%kz3{wHzJP>%IEQ_MunqSI5DUhHw#%ARhm?-kNmt4;1(-v5$q@`I zGN?2K_yr)IKlQgEAxT7S#xeBnH-OirvUCj^sU%$C1Rw-{`$_5g-X}tN^dnNc7%JN2 zF?!_$#9`qE3R3}otaw=tDil*|_+M+z>P4Ye$@vzFtSmat#vNm9+sdd}GNX}6EdMq{ zD6lhKy#?HJE67;6(8D8uWgn_nI%pu)MWJLJrZ)$wM;lTPCoR#S*5Fjv7^85~GON(o zDS5-_YSiwmIRPZKcqyc9r(!i|RS4}T|wb(g?tGLhNr=Jb?0|p6s;KT=491Le_*3a}~vyiB?!_T@r zWo50t-xE&Mxoqn#3PpXU_lS9C(}@NSu^QWNkN>wQk<6WYzdZ022W!00TTd z{n+cKiOPOWisBsS+SKPf+YzFc%HNJ7l^f?;0+@-8v5s0NuB=|>F~x2NK#WlaHubVb ze=MM5WB5nNGNh)sf@@D&Tn1bNQ&x4$jS3yb$&*?5~q)^PwP;)CHm`tsdAsY*?x zGr#K`QnG0%0gy`hx`s&%YiDW_`7sM!xOw-w8f54T^xa4zIKTT8qjodq0kFkT7HWC? zm}bGG(iF?M^Ry_2*l@;9vz*=K-6u%n3pn^Pp6K;(FGHSPNLr?!h~p`EJ+znl)0riN z^mapTHmQ0Yw62%kU6F%xa?T&lJ6M%lo~2LhSK;vjguo74?uSLNt#5uQPmDK9`8p*S zS{nSP9AuNSI!qrtXf_#(a{N~|V%2?IA&inGJ-dYCp>{qXB9bUXZ7$V;{o=`cE8;pP zGS-mn$K5W#$DBxqbuAaxQGr`?tnAE~5(w_!Sf{kVIg3VqnYp`CF7R)(^=$!@^gWt- zhfYcfqMyXH?Pq=qFb5f5!Jl(R13d5tyfwKp4eFv=#@Y;8y7+@KiVl}W% z?!Bh!S-`Z{BEZP^%?!5C4nhwNb?GDaH6d9w{0YfRH;v57QOsuXh)`ME~fHwvm-3E8;J z(wTLg2o{IxJa}Vx24>3IQ~DmHV;TU)jTK((>j-FR7PvJetvKTg+JzM`(J7l@@nCdI&c`3)+h6Of(+*zPOm=OoUE}|55#ntGG$U6s>PykR#=*cvWBl zk}&Cg;$V^sCDr01$Vm9{ElLM2{;! z0J>uV!q&-SvoU_JEViXU^^O6fDmc=8Cr1GWTY!989F!@QxWMiDj9wl zMt8;OFSnVK{!RsaJN5M)GDAp^*%HSG;7?e7Jz2w5RR_y81^93lyzP~Eg(_z?dee#; zMrPni)5Nd?^?y+%rt5_jWhE=`RT~nn`U|ulV5<*YMDME+)|1SPZLo>vIZgl~586=! zv&7a>lcjCmHclL&!)oQfEG7cSF^IbW!(Los)dh6Qo9Jx(*OG&G!h zJm(oT3~FQ8UKl@YmtyaIYbZ_^mwaSaE|D6RMWA}hc?Cx;db0$PA2*it1mm^65^bv{ ze`hv;hfcx0{7ddEhR*qK3~^r^iHHCbK7O#{#no~EHvgP1hd&ca#V{~%cy1XK3#TCS z-0r!bYEN_?$iAa1b#0~C`O!8qF1l|@IoW~NLv^+s4N=s#c(Z-<{;KvRnHi50?SD(C zht;h=qKc7c9Znw#%Oz&7)2r#QZWW-8vh!%Nre>Lwk^d{)kj+vZs=o=QC^_sNke#5U zF(mJmnXd{9Uj(H#H$gYIE8(CDTi8km=WM{bQM(<;Af@&zzl9C}?8pcQ?-DNUuJr~9 z;JX7I+baEd18{E=tWJ+hO3E1Z3IsL-^2w?$LO#K)rq179Pp|w7TUo$us_AvWju)|s z?w_=Ut9QBWH7Th#=YHQ=2m^Nh;j;-_RySjCG+U@N)zQH1*)K>mH#Q@R`%64%r=V(Q zmMoQ{>IBx-SPaOmj5%Ud7n~Qg{X%>r%Pcphr-JCMxxElt@C{{KGnyDyAvJ@-zvpu8 zb3h{aiI;SIy;*qo2m-$Nnb~3u{!pM{3_IhVz66l?1&(?Crh-0r4vd`5QvI?f4t9PLqo`JbQajb8N(%6d!$#7$7ktR%jiEh)`y zoVH%{d^LZNfo@gHOtr?K5;Er!uXSQK<_J3hfcX{9A&DkJR*D0uvgD4D7PLYe3=g;OFWj&lI$vLj zY%K72tO8=b2fV**DQ@o|vz7II(GKoRp~OY62pgp-Zg28%@d~r_aJrz`c2pQ_MwcBG z!MIeM=&DPwIWYYt!s~I8!~-M-j_=pTpmWF~FDzua=oItp@qCF-b3Eym7a|8Z=9G9L zjajym6vi&VoBivLtBTQiReNo_YIar|v?CT_;Z3y~PH;ntL421%+*|hMK6-+>GuB08 z8=-9Z3F)cS;b!?m%{_=SD*5oVCJxKH&y;L$uPkHP*nhIPN6*ZiAo}yKN;NN-OYCMp z#y}Dn=xRSzDAUz)9a=_W`g5n;KGZ3NQLao?U$z^!?;^7=U4yD(UDUl_qnyzCgi}Hj zK7#`4Q9coVM2`ol2Hm?3*zS734%biS8MmDdAA;4ik>w+GF)}l=n?ici*SA&yYdP=02P0AI)_kI=YyTkrvhI{>s1ABN>vptKimRf8=ml!$TT!{CXl|&? z+~4gY1)DEP*p9W)Tbb=oN35B~k&eijftuZ^uFspdlUG_Ss$rUK1IUc;9vxu45fE4h z2Xe-qFWl?)kJ-|Ae9XOrvu4|NZouvot}FKOn!Mm1@%J3O;2w{`i={5f2Gor5vcop+ z&Kzep#u!cUCg}{Z!HY5~(aFclb&APlKAom0uW6t2^;YgVhn^y6qj_T(ZkdKVy3Bjn z65y(~IUijpI_R7KI9@pC8_y44YHdMb(uf zkCcWZ3ex3>Q7jyCcpdvTr*9)fG3LXuvXWLxew8NE+X+zaGrVG=Fr>$n#Z8lwQuwU4 z*d(Yv+*rJjo?yPfB%PRF5}yk^<=Yr%KKEf+iG&PS8G7@gM2!C*3t;WA$4tU{hFkp# zB{o-miE}mkkXQh8GgM6{JU`Hq;IA3FHk(G(1EX^4mf6K{0nP+(n~v-ZZSl*+UPbk` znV-$+I8i}1`{)-N;CcU9(oE1hOU{Qn?OhdP-=*KLCgoSAVa52hQ2@jm9=XBz$8{>C zB-+`4Shq8)*93;gLEiv~Hb2Sz=wzz*5!eERf4x7qHaoT6W+96WNS!R{j0DZutG*vO z?6@G7>L<9=LGo>;TK&21%R{EpR7?S2`v=VWqf1Wbea5>)^81*Ymc!~U>eUHt4a0}~ zMqx`W|2vx5yyZcxBvzM@p^+a8fLy<|@$^1qa9}G_fnQl&kU^lSjb|=Dac2BXqz3~- zX(~2*riiep#pl1wvkNE#wAuJbXy~WdbuzenZFXWvfO_^Qj4&o5$XkSUpG!M6 z%2OsoC)@rR8r1^h!j_g{E^=G>|7{0V((9G0ZL!ZtCHF?xIHb9_tFx26diL2YubP7;R9z#{j9VcIA-AT z*nz;_HgO*lC<;2?cZw5r1~XG+VK$rUSv@{U7gnuzrQuV2kc|Vw58AQSxJUSYGZKDR zXEz}qITavPi>w|7abtHgMMWi-;%oF=S1S%4SHB|CB&#tAY!DuV=$Snyl&}$amhCKY zV+w;IiXk=P0PC=W#Qai}6>ZXz05-z_s7_C2S>pDw%OPx*^}Dx*pou$aKGi!@GP*A} z3%f*jZ;*ysO%qn-u+KUjHs%VIAyOA9$;Q@inN!9(Wi{WPVQ>^!dAxda=Hi;(roq*` z7;PH8%|EFz_p+WRP7#G_@;iS^F)cPJv$bt|y*t0&Ve4?K0`}bg+gVs@E}N2v-@5!r z*iwg>9{qm=&Ytkjd+oVs9oW>C+w1TWyCvt=_Sa6xoojW%PsopSNZqlj!|9 z?;D*9CXMXL$je`J=f7G`br}Klr&q`TI=`_vv;ACy7l$vko*B6oCUSXb|KOky*uXhB zj=Bkd5piD$hfLF+D?)I9i8R!|$BPGe1Hy!&N&s=pskB)Ipf8M=GhGR%ry+RODh!ZP z1!Q7Sj_Bm>vGu5Z8n#01#`ra>mZ1XK2+r1k>bd%@0}fzh5)x9@)8_&)kKX;MF08gxbIk#{Vow+2HsSm0IN&2S}UX_7c1r39Ujofh+zW@ZJK14J+Gug z`Eds@Lf}rq@aBC#^B9YMC{5N8xDRlv2(o^$zuAu6Z%aDyPuOz`44wWVn5`w(d7?!= z!Da81e=ZfE^syGoAGlwW4d=W%!jIy?$6mNee4(a$y3*tK++f4Sc3=IEZ14qnJ9jpl zqcDxye!3u@S0*k-_*_S>FMmoMs{ArGAbA*BfE9}^Pf1lfK9!Q1G=T+&6^#uBs8q<+ z&W-2gBDdb@?E?_^xT>XOcUe4xr0_1ZYU<9$0V~mAAo=lC=ehP~fiI!dgLj^@C=;KN z#@m14or+%fW;RnckQhL7ou|Z~i3E@ON#&I|$`!D9(v2xyq{Y<943(~~P{J|nyL6CG z(Zb>@nKGgv4B0`9Z@WEs5_Ri2p-E)vi_zbrd8=g6KV@9jtE%pZhr-d{A7-dvsh%@a z8CjP}V5m9waONyCzq-N%5Y|@?zFqlWWUKZy;1mU+8yVNub1SU0n4iV83nNeG1YSHD z$INSa+Os!T`Cqgd$MGejd0=Pq)pOcA;G(8Yn)Zz)=u6}V8ZEhz_>;u;@S#mfWHaHo z`n7a%ji{p_8kL7x2Nkm{$JCF{7E%Iqvtn5hz_I&}ag4oy8kK4b5WmTEYqmzd+1dPE zh-NQXb~6^$uC=;)!T2+&h*?mZNY`moc>7NWw$EtEf5mT z`dXw1m3Vg$-#sh%21+>ne}K6afp`aRE&5-UB~NwJL7#PFz`4n@pl)rvlXFkcr9iB= zPuyo2?hD=L2(QkE(bNAiZLZD!yiSBHVljTOx=AEOq5-O&jflpZ-~kqn^*;sQtQT+g z!p)}{)0vI*o!J3ZyuQ{C3d5iwJis!U33oR@*tU<9zU2gaDhWTE)~KG6p?Q31{LJ!8 zwi*>+mJB=EekG~|>A(S%F|(%jdq{}>=ZoRQ5!-&T2aTH@`0q&XE}U%4#tILgP-a}c zBpog-{gfFd>KEgR+%dUQ*Hl4<=8n)ObGPE5;o?c zNT|nxhYIeiZt13fzGu|Kahu`cMWbcv5TpyL-m|#v;`nYkZR_Ln($xZ%nP+U)3D;@) zRUkW=kB==c?Z0Wn@QBOTA7e$GtimY41F2^FQg^ilC7iI44aZ%u`Jo^1AL!Wb2*Y+* zpbbSOWv%!BHWbM5SXif4r-TfeU%%^K&)fb+_Aue{+xsej1D1XihnFf$qrqVz;X(qe zO!q6uLXWZgGZWp^Z!2G)b)VxCR&-klTNrtMF3rKgh%3lj-+%`o*PB#mPe}A` zh%+_E{B_P>`*rMc)U9AgEk!deu1VdIsFddNl)edFx-}u)meY6fGeJ3H>cqOLQpKr? zMHjI4E4fDf!(*D}47rBmbcpTtAH?sIt0q$PLARY>r!LlLNw)KB{>1DdWa!gK8e59< z{@5LLkcUz7LDaMll$?#~LCT&B3o#{Xsx~FKt*zx)wRQ)8@v<7}-o3L4jg;CMCj;8# zaMb%chpaqpsUBgfXdG9IUuQ^h2dJUvjjLEVRfJf-?mweIf&XB6d`kL#qKu|^s=6ft z6>5XqaGdB-U$9ZV93vnGg*Kh7PuIiVv%G${?KxpA>e}Raz(Ui12)Aid*x_ayTg`r5 z|9_YH96h-PF7`sU=GC>;2K=7E|Hg)4^=vhIY#%duvT75KZczxM%B2MvV^3X zs1L=TP(uVe+YkG1ewfD|+bTGieBGfY)V~DReH>`Fc^_=qrN$89_BSV|CRLCB(7FGF zx%(@ik;~nD*b)i9{blHT)g68`UDM?(I5&E^Ffll{5!mGTz3)b`nWCR_xQbq#kRSa3 z$KLiP)ThKQUeB^<9rq{YJt_PJtY2kXtlkI$B5MB&-kx>ngzB)39Z8@TkU16BH||S2 zLnGJzIb}u-jg1BY@G85VubMvxJdCh!9lHsfqXEQKI?fa>HFN$o5fy5$ zrTT!lvGyGsG0=E+bAu^YVBTtGeUvLwk&$oWZ=k77maY;4LQo$1;tCuuhi%_LwBkh4 zco~P0tA0H@>l_<#gJ7y@z|IhTQlyIXru-L%B^TSAooU^~^?6Aa?6N<;IOCYOgJ6N( zf`crMgygIZ`ZAm;PN65oqI$``c7a5VbyD=P4vk**+TY}26*2^XBw$TD`!ENyPbmgM z((v1>XLUsixRd_6O}0+7U62OSFnBRe@Elo+hi}N5Y^9;TT*}Z$;*svjzz)lzz-^OF zn0A1owJQw9`|2+Pe-Ha;UAQFf1IhoiSn^XLzi3iw6I72;$P(`ZjH{tx9?OH%To=_`^e z9rW0@#1QJY(Yr-fA@SKA;vRxk^GVu190#^Ii+Rrl%Rv)y zn@-Gg1h5bY*-XB;Mm3b>qq5NsPI}ZClS_(yP#J(P8&BPv{`NOa{a#G?yuT1>^dvu7 zhlPIag|>UPMLxWZCEV;Q_dSmmADzuXd0NA@DXRYlL8Fm z_*_l{F1V1hD%hfx53SMxw2{g30z94^GYE6pSgw0i2b+XYx>g&-EM*&{rRpUp&i#}8 zs|c}bsnupYu&QcnMNiUze{c1Z>1ySJ@BPA+aUH3P8rii9u5Yb+P!!)s1>Z}p)r_2K zQZ9bBQT_Zs02e{%zInLgQ%X)IoFN`QaXahP#|{Ak3x|x*->Y3X^r4@^>Yond_ST7~jz-u!N4a}O zI=ZCZt5|dP2*P2{e`nYi!gm2+W7fI#$tPzAy)!p*Q2UL^H;ad#TuU`7X9o_LKWHof z3_rRYFf>qQweX{d31!wvj&IEP<%>SUgS4hw?nqPaR?QB0D+ISoX;CJgK6z^9tf($- z>r;Q-m~}ExYkF$-io{=kUzeV~pjX5f;o?=NQj>01C*7>lT`yTOegv(vN!ax}ReuB6 zo-t!Xzf3qDJ7<_U#Eb}kdc`O*UCB_*WVR_0*dmUwCo`3Ru!x|?4j0Lk9BFZbywVg< zSTfvA)ZIMc`_oDHP)SmTIK&~UlOU12hS^vkNGs^u5S9^U0#tJo!o~q;mNlDhs09`V zdJS&IM=*wJs>dxj2u>q7Ml~rxuSIbk#%E!CU}zdQVKF+2(dtnSFs(|iGn-NCLv8&P z*)`FD5mNH<{86*h%F}Y%a#-8KS(_Erf-O*Wx@F)hwfkJ4C%>#}FrfkLZ&3a2$=%Nk1 z@SB{W5lc5jV2_~)gBs)3r2(~hx+YPvx>i5RX2y})uPnQ>)GffUFpUazR|ck5Wrey% zjIo;%XcIR1*ofPHSAd1PR{M6T_B&*HG=S%~BmA5D6D!Y69(QIc&&}AE9h|8tpXM@j zR^$U0&`l`^W<@;AQk!(M9JES=$BA?@lo))ou>blgvh-59``J^Z*C2!jUNCDfpGUYH zc}ell6FMeOT66IfYHGatr$Y;ejQk?3=c*rfbGkaM`Sqvyecx9X-w+F<(i$t)C!d-f z*k6@%ed+Ys_wQOq9@~_EPF-|s{yU@R4;nk-^vbk*WuN;FoExrUAk*V4=TTBkbOV(VH&$D45Jv5x&NfWEJQe7{m<0j2N8`7&Xv$5taiH zVhoIi2(!3905Ulj`9Jo~J3h|h+WTi_p0a(_R+ePRMa5l`)w^s6CDZ_+L+BlYD>#ty zx%VbCgKdnv0Rsk85(orhLJhWhmsKoFvMkG%)!X*nr_9Xzhx{5Y7?Rv1+}uRpzofJC z%xpQI{q33OoHLfh1NA3+w)Z_^ zWyl~SA|qKu1|6t^M2zJiLK;_eBn!j>>fs~etQf8YvB-o_1J?pbK-d7>7Zk!I?ZgNu zKGWh@z#I!47$pY8b&UrVV#F+{A)s8L)D@7Y%ZO9iAu^{|ij=5_0^-!8A*xHE0v0#` z=pG$ZT{3eiLgG5Zi2IKR%rhj>jHsUpCL~)C^=McGrf`3+N`2HmTQEimo)bFOb=i&u zGv)+KRty?T)G{xXmU~a?Z}e<%W;P+tWfS-N$R)yq?jC)gZKv*Ii4%(lW;PH5(sZnA zm~x!xOTT%+N=_lwl3CGQ_FH{dS7?)_lN-YB{z>@V*KE9Y?QLt*?P;|qYqDaq%MMoD zUbehAugKjJ1R_3|c0<9U?8y(}n!Rgk-JP#r{OjDfQyUCVfBw$;st;GCpZD+uQ|C_n zb1@}^Q~di<(R(aE?#rW4*VlaV)Vr@UUtsjPw*X*c!ylji=*@>Nyxv#dc3KWM9^Ciz z$8S7*!42NB_MhLka#QpB>-WF0GWW{5k-D;jl@Dg#xcdA%o_y=YT5Y(rv1WDg6_SH& zYTbuea7ETN%QLP9fGc-CK&7N z)`tM`G3peTfNB6B zM3@U^&Nxu|xfm5nOc>wM~JbYE`~}7R74P0HAEP5E1)Yv zh=@4F20?eLJfJCkK0}mfjFW+JViCB?m_?+Q;Zp&J8QDuTD42gtFp(HTIz#u9<09m-oc<&9-%eH;8&XH@1_hvqD z;D*o)v+Bn;gx`Hj+?Ub+&OS6pgCS9HW3>LCcqVq`BVf9 zs4hnvbdT=u^olmD^!p7Ff+b!;0>TpFD#L^`w<1pyc|a!ytWHpbxFCaULr6ee5)g#y6 zzAEDkU9|wUw_Xl4zBq5H;q$5`0vHKPu?x> zI8>aITYjXiqNh_E94ky(P?VOz{7P_9AKYAGt3K9 zXwu3b+*3Kwl^2~@(O$cyb#DW7A*+4jk0(~Q*#k!d#4ZUD zM(V?BmRy{HVk(aJ3ek~I{O)7ou<4_idQ<>`Qvv|M2-8D~;*G^Au^<^9xhT7|r4wZ1 z<8S^EnL~;fC6pdMR#MkcoU-7NE6!rBvEq!BvaVwnJ+WSJSTVSfNqYCD`__Hs zqsAyQ`M2t3&Q8rXQwVs#9xrGv=IqjtQ2@@(;b4ix-XSJfF(+iAL*tSlg$h^NmeriB zPL?wlN93+5zt)jw8f#XBNFzvufp9~}owvl@Ti0Km8Ix1qRDS2Dw}lmi4u0gcWJleX za{FCzr+yn%9k0)wnX&He?Yq36J&=0!^0ZT%pHF}O&ib+sR%Kss#_iD3_TIs}RsSJvz+IG)_tk0357$;6Ys{Ip2mp#QzC4xixvJe+k*T^gH>aef zQJ4|Ikx}bBNhEdol6$#m-g0O!Hc3jKrg^C56r>p;92xWxZ(dYGKe+hpn!zSwM8E-Iod^sYi0)L00TGE~fpH4@gn|&)ClqZY zC`XFKM65|Nbt#A->d`$N{)h~N6oQ$?H5a8miYOCpSTKSyN~AuvP|p7JgU|0>vRa*> zwVkEmiw#{;ttpx)<5VypWsKQoV$H(QMeihl*lyW1=K zjxvAn;qyDNN6aNP6g^Tguz&wjBFI zRbT6hjH}amTv6sJMcmT<+s#dHWQEL2L-DK6I~8tjJNm}f)>i{ZTn{Y1Y2`V0pI-X8 z`d2oUy=Yq?_&YrJExK*_(o=hATWX$v4c<~ml<_Lx@}+ml4)Vglt3<}$b`K*)WHiZk z4M|uVQ_{_;W$jHI$)*$so$yhws%s|AiMgUl@p0;4Ky;Wn=UgXDBY+SK=**+6DY_tU zW+ro;BsL>9$p>oc%8zu2aZzO*hnU}w0Pdxz^kF{@SPVV-w0do1T1Qhbd!L zt+So^6-1c7dDJ-HK}?W0GgTiCR351?CRi8~3ue#v9ronLreufC+3?AZ_L=>HUBsX< zg&N~z-OISD1Ecc?6O6H9?eR)EQr29WWW{onD3}S?nKG=f01ck-8yrI3{JdswtszR% zJXCX2>QsX#m8HeSM-25e$fQtVq}1a-rWm6H%XGmQC2)mGAs7)PhhXYwnwy#;F{fPj zF=H53-E6i$J9ap;TdX<}T1yOgs78^kC?rW>8c0T<93cTsv??Jp1xqXeg1p0waYW2S z^#ez!{bhH|c{XbtxtQMX?od99+98+_7{$?pO3;f#vn*FjcU81k-5h%_Q`qi~t^FCD zBV}H3hCL%PbMu02w|sK{vaGu@Lr)b*T=U|chogFZJsgMFUoHOm>C_neWrgS7c-7li zF8?0iw6{2TIlw} zFLISBZh;DBBIuIf;AAuoEA#m!KZ%z z>XO`i&Ur;=3o^?fT9GJFr#nABEyq3$8>PyD?uxF%bbOqIT0rys;OxZ}T?gO1;#W_- zyQdxxAr>@56CMaKm2!sj6VjDlPwm)21ey?T)Zu2`ZV9Xhyn^Q7@H4F)-ka&-Q1J zHY$z1Wz(|ch*Sv+z*X)(u1j`ojV8c2)j?Omdt5h$AX7A9fb<~Ob)*M)&;wG0kVLbG zO8x!ObrGqO`vgrC@_VP%YXMLKc>Iux!(?N$bm{o5DWifU=iEWX|*`^xj zhTIf-%N?`t`fsk)Sn-1Mox0Jc#n$Yqq0ajgezdai)K2L$`+u9CkUCW+@qdLWA)Mmh zh-db{Ergi4MptHCTz06wp7uTS$*WvvYkqiB@NmB=HEP3WuP~jiUiy<@=jhsN?*o9% z&2Mf#^p-vzSW$Shx2o^ayVn4~_U<>IKeCM&$Q{#f^0v5EU%p~;{+*pKz3SWvqU3C+ z_sqE^U6>C5`Kg6FTA$x}xN19J}t60#5P#Hvn?&Qm}u7SWrowoyg`Vnx7GhxB>(^Dm-{D<-!R^od_E~F=L$J$Pk&8>q zJ{7UAeN{{K@!IG1Z!;xXn)GHQVPA(o&9*qhv{15PuCr#^)D&zKY=UUUoH80@i>(<8 z^^~mG?Cl5E_slp%%mj@sb(Ua?7MRKdgZg}9ZtHltb%uZmj5Vt_E?B+g?Z-pn1#_Heh$ONFQ6CMAG0~0< zAy{)W-OrJT1Pi7g=0V72OB`n`&MY!i~>0yq?Bq zWrfUNecm0Foz>erUa9G;x6U^?_YbT%=f3+39t41`6F&>#ZFu}R_@)kXuvYGhm>7CCry3=13uouU;H1NV=agfN2~ zC5vJJfa#;Y?CI$@vCEe(UApb)n;SmZ!Zl4c2F-~E!6s-Pt_u6~|NdRo8}k#W| zupxo~XN*oJ+15QNfHtuFsK9Pf(W7+$)Q;Da%G(A0cMK801(-kc6-6Y z$)S07Y`(aYR+*!TY(pW5qS=7~fXEP>VBSHdIhkZbVROWRdewPEV?jRiJfkIsP|6uc zdXNVuI5A-?qG?^}q7epWHDJUA3z;~g^_3{bSjj$DW(8;|$|<{KjQP4@`PX`N4{p{ckiXEexCPa9n%ef}6hPPFKG4 zNR9L8TUY$@vi#gu4zv2&Y5f<(qxMy?h=F<{L_ z!?Vnou)r|&cB^-1uPAFMYqfTnW{8;SG|0T|ei9-JVG?H?8%3%k7G&GzKU+Q6`fT|g z%4H;zg1C9Pu_-J-b7E6AeDXp)>k&gFEU1Esa)lugQ9s2JMkb@~QUt8fao>v^Zcd zvZb_>*BBy+Ig$uwB-yaHR}Tzm2yxpC0SRDoka#WU#6Dm6La{wqX^s(04onDe&Jjkg zV|rkSat5{;f+dD%KGt8QEDFsROt{xpBiRt=pi{sCnsy?ys;z8Vj=|rrE8}!pmLys* zV59}%_=o;QQH6tv2LYjg7nx#2>qqlK=1JZ52El~-z6jV-%~FWq?PFr3e7W=Hjh}9@ zCR^vb7rc7&-pQA|;e$3@J8K{3DnW!YTgQdFuVWLbweZ zr6=FrLu}^$hjx8!z%%=QQ$5tlIjV%}g*L_&U2>fcus0ifzg)eAk(*Bq~*Uj5WR z7y1AIAOJ~3K~(nHcdq);s?!f``s2n!Vly$5c5ADDh~E)^XYlYu#`N6$)FJ?QX?XYZ z9XkcA2_{UqN{m={s=xsOlfp$}5p*y0bt@nVR7L*dLE~Jz94S#1L<>R~F@;fu5(5T6 zfDiyMjydB&mmnB84{89Qd-O%doOFBI=Bnq#Fi8lJL<{$KdTg^1MwA$_=G3kV+*Ez6 zCgR+P`muV!z*&Hr!kB2}no3+fP`oJfgYElXU-35A*o%j^w#u!7Rj@=b47#Io{{2f= zrbT2|HkZi`GAVusN2@~?7_fv8L7JPokE)9dS!s?ObyQy*o&x{|2iaZojL|{b0#&AH z!4xHM&OztCe%(9`bB#+Dq_~;tVhDk+R|}gb8pAOF2r|-q3;?(e{t-IUmrX>}jjJrv z1y1=4U(SyrR+ZNr_`tm}ZmEH3e4ve{SL1QYTc(+tx@V#Ll))f6KNW<1)cfKdodGX=+4U>q{z@~)z{NihaskY-B< zfM@q@v}f2q`=so+FhVA%|Y=dCp|hbsxJSX4!ayzgw(PU93esq^P1e(@L0{H7%o6tpNtE zI(OJ?UUMfVbtA}2B@c(OW~5gPYXK1vd9hqY4&sg_eLWooTpP9d-0sawtw#{9kdAYBj{$kNP83~1Z z53c)M-Xw?MkwY3GKm=}|C13)&3PTNQ=mOasO;i;qLwbP6t2r?PnR}0Ioc;qdQ#q#` z3lMa1Y!rZ?{!hJJ5<)V}EXV_HWQ;RhZ@ug0uhh<$Hes!RZ-g0EZ4PcBSR z5|q4czFO}ws^Hhp|9S4TQ{C7veeQ|M!QS_7d$1t!RC9(4ezCqdJL8c{ zmi`Ytdy0P~VL#vTJ+CwCUwoD#w*{?2Ty*t=o>>+I$)1*+7oUE5@U#1O?l}6Y5F)3W7N#2(tT^i)0NB;_;?9m25J8Kjlm+g&t1dg$ zWvyb*G>0buy*&6Ev@dVW291wlCg-8sxytNL4<7*=#=V+0_GaO+{mn!3U+%<(=bpjhoY3Qys<;9l{Oe- zB}Bm29W=(ux{A_5GH;uCci^OwJ14JUpz^hWZJm}T23P>y9Li#c(r<`IM;KC0;JdH4D=eA7+w&q>&$U*Bi? zM>GETUEefL3E>p~5H?oq6+(?0K6{yjo0OwtYc9TX{U5ekGacGkz*{}A_J-x@V$$iV z`5nhzLl|vqdqo>nmSx?p4)}AXFMhG_m^?cD3! zsZogqsbuCRIjH;DSgrrg%$1{6zQVMks;){~X2|P4;W`3g;BqabMR)aX`=0jh2 z@A=_R-AB|9?K`QC?a`b_z!72^2xdf800g3qFoo$s005O3oCBD6{py5n3`Imj>V$5X zYo|JBJ}%14;^4t?rn*^rbZ&Wbg>jY%1fu(CvXJ5F4BWqTC8Mac^iR3TMU~BE?NEEf z)@X7#h(uN2Iz&?pVR8EF-8l)F%~$f>JwU6A`y*Xjv;rPe8uP> z+dq6FVzJyU*I>Iy2nZ&G5ZBzydt6U(($!m2_9p#mwiGnST zFbbNV%Qnmb6ekOeGsVpnFSpJRr4URR1V`CWgBr3xN}X2V?$MGUr_Ej2W37!yGbmm@ zaYR?V$UIA;LDs)Nke9in%YJZiSk5(;dyz~4Ak~t2+HGo2*6beG-K;hFdZ`d;x-<5s zyOVDFs$bQNv^@2joy{S`nw#ZBr@nRBFTVO{*^$GAN%H}qyr;WhR{U2VI#6A=BqtNT zlLHlvOY*0VD*RrV62d9|&ro^t@Q+`7l!Ta9<^7oXl`PAwzv?dF#>%}ysA*%_t6bI9 zUZ-(x2+|cH!WitFSaspufy3huU$ty<^dE8-Bxko-+qYD0mmRXV z&2xYDJ;{7gVOl}sSWR_TrFD+srS5H*>6mbCHX6ksXPh|w0%mi?oaucTHLhlZ4VDxX zzFhN^dAewg1PL?%;Ig2&xbCHjiwS1z8)B-9THme(DxI2PJ?nAIQwsY9ANp$nKuk=VvXNDuQw6#tMm2Y$0cz@cL z-&vK%8n$)4)u4B$iHnxayYGNJ`NMC-Uc{{DrEv zvHEw&AXc3`TzRsMt9owig1qVT|0-Q9Z>y_Qx~q;iBUL9F>w}&8cyM{% z&Dx-E)j6l`08J`lz3&ipYs<234>k`q^JY`Lxz5vyB|P@|$b)Aso2;D&fZd&2Wry%m z_cm-6Q7|ZJiq)#hQ4;g&%&UXKF1D^xU37nA<#|`0`*zRMMk|-C2z;7k!;B+jz%5eC_c?1>_g(d4e9 z;$~PtGhEq&Rl(2&QhTt<6irMHqHBm4P{4(d5$isl5X_wA%v>Cio0V7q0Q>jvABaD= z{nK@#2^k|vRJwqHV*v@64YyMoSYn7CWReAIUPdHPCYb7GA@PD9RU>T>Erycx_~kLAD{!Fi%pm2J5wxGn>pa#F>L>SA{%)jrgIqn-+)X{3LE!a6o^# z>$zp;uTfllcgL0va}&o{4G5fww?^IO@71chYgU~9Kz7WRhebSB`^vWN-(b7-p6Dwc zOuhQs9PF`|cdtKK`_oIWc=+sdCoQEdolksNRkSeSk&6q?c*!}pY*_lktBM!diWg1Q zNc=Al`qLM_=M^WOJVV;>lo0+q^5pB!OS2=fQK~q8xU#pM2Q_WjnV+y|QW}4H{TY5S zeT}l#`s(p6VmF=E#S;&__CJ0;n`-w6p$6(vA56RPYY$B-V(#oLTc~Hxi7iy&iW@UQ zR=H7DoG|2EWXZX^U=;vVHJ9%0+?t#FgErjAy&5(E0&tkUA=80rfEb%-Rk%^`^y&dO zicZEMGq7kzs)tJ!3<3&{Qz=Y97_bP8BC2prfr+D(j;IqSS!BMENa$;t=Q*x3o$Enx zcB=LS2@x<)7tGOQGAC2O92BO98nFQ{H02JK`tK}yC?zzvb*QYmwY1+>bxG{n6iwY;$(uE_=jj{45%&|8ZWr}Sc)TW^pJMl{D-PrO8%%l z>qwUYKr|si1kKBIKO+)C7^upzfczuW7>0p!8ax#U21Xg@d~!L_f;B%Ej7V`Z&LBz7 zyTG(6Fvbo$E37jFPPzL8%}6X<7*?>)zftpY{|ME5T(Y9FsslY@)wE365>33rOw*A$ znrJ#!6%;p|ak=%uW@q(@sK($3O$=nDM&xDBDX8zO%$T0nFi`dKk>@&14T1^#hd45e zRAIhBEI5oAj?7yew`N9uefP5RSi{vX+-uE`QwHhY^ZxU6AGL3C$%b`gnqy6Neqqw7 z#F;04f1s?Z|ECw^6fKDVwyR2-$BI+J|3_{+#ovLD)qB3@6`kw9UV#czLO8`F6+LZL z14pn?VnJ=a**B_vuC>?P_xE~Adxmy=@%erLxW9Ns zW^671)O1z6KC!)3t&<%ha4tzyHZtmGx{q6II>B7^u<1jYDfZl#j%;BZ-+95KH`wob z{n$pc1AjE|ge8h_j2J?QAT0=*3Yv>fv}-XbSP%hW#2APc6mW9I#X}Pa03eJ2KxZ)8 zk1bXv8@T4>01zCbq6kDr?x27OGDQ(tVvNFAH?vq709eBj0BC-GvQ{&;=B&N-r@KCU z!m&s=qEy;qi7^~&e(uu+kV#;I8_i4|qXe^AG_PTx(hyF##zX-OA!t&)lrcRx#(tjq z?sIQEb`({`I zc+ys_`nc)?+blu0W6B`tM@T|Uhnb%2pp(rv<}HrNSH@{p(iu{3CMEEQwQ(}YHpCef z7rViJ_omVv)@18^_x#-#f7$T8`b1rWw|V|>{MODlTO;}w(*$);TXX4Mc{9(Dgj`Zr z^Yj-VRE~^4{KLym2ZFzT{j z+?pNO5mKYL`@ujI`;HAC6Kid`r6G?R83fWR;*NY1%0{_33Ri@$CDCx5qhea+{{ z?D*Zax1A0I0pP-4?Rxau3k#E`nyCG=GbMym{0mZksIJDg7!*%R-X` zK!7k3O-S=||0r{I=@|3z!&*oz);O{l`Lsm>0GMNlp9`9w#|3f^_Lqwxf)q}49}@_7 zb*hdzcrt2K{amL=!6G6M82nQFj1fc+GSQ6PC#e)h1Q`KAROM6y%}GTAxVrTycb?+n zjzvQ2S2T=>pnAC=a=#OZgeJ@9gHDbR$achZU^<_aLt;RxmrbUF>Oqc0LM726KJ(B|mQjnDe@!wNYu;=cH+mnGlu)iD)aO;sbEtMaY_ zfU=I(^;Mr@qhVFXS=8+>PD}shoKyVsGbMym{3}yCacE21>lK}iK%{%8Uz8QP@bqbd zyN>VK*|UdJ@VC2GoO{2o)itSzTgx}^YTs!~v2xCpK{c5rr#mv!Olbvar@nAs?AR(h z#N9`?5*Y^u)CJn&wD9ctO6t<3O95b4%|>IawEOULmf3RR(4w69+*doFwaRL^O%-Eg zbyPD)3jm<>DqP{_XhJ9>oCyYm2+|agEC^u$0A1mXA%sC!xYq?D=F>)Uy~C`}UTt#V z@e#x+*W8SIDaK&1qKG6S$Y2V`z93dP78wPASYPgFhkjk&qg&tn^}Uz>>}Q`|YIfl8 zIYcxg0KmXwyt(`LADC+^2#mA-uo`nD27u}5LeR|wBM!K^V8I3>_&vaM&NM*4O;*sn z+#HUAZYGBizY72((S$hTf{Z3pLnSjH0R>$g5yUyTPf}wTo|Hp9$Qc9G%jFOR42S_~ zeoht67yuxqpSp?20kDJtz|%+P8uNY>u^LI}efLJDan;QdA@_!b4}J6F-oJl;$ULbn zP(9n5^?cR(!$L!3t_cZfzK}K6q;%L?jImPu$wfEE-kUQg|7+KNRRZsfxv`?BrK-1a zdG0OQ5y_{=l-5^msC>Jg^=DaUy>sj1>pp#NedQ+)ExBmTl8e5>3Cp^M{_MH)B`u!f zWa}9pI#7KQ0D%~OprZYk%f2-#o#Jo7cK>g_=M~*s&yZ|2C4^IaNqJ|}v(5WHf9DU6 z-nCpGbmk|e{*BGjwjO!2W}vxds2Ryv8wq5Z=jYB&PZ#IZoUD_h3{tf5xw0KngniI0Hq+C0006$r1^Qk3+4zc8-Y`f1q1+GVT3>wE;`o8jNv#* z&X4ovSR+wwYsveg&o~wcj(ChQs6HOy&I^q3E9R{Iqf`VZ!k`Y6}I%xG5ZK0WgLkJ-|Kv%sa%aaU>*OU<}6E_2^WA2%z|Qz=IG5 zcP|Z$vG9334M;K;E(ToZkr*5&JnG#1QCd5dCqP< zZFZsiIJLwH0HAr<)rn^iywg;*l;$QERkf5>9V+Xe+1PEVGer~C2i`F(*a@X*0nWTG z^gcbn-v~TE*OQtVo0}e){okCeseJQ+Ev<&bIMT)xcK58C9>_U!me!^Jb??ClPyURB z%aboDJ>2o+yKgLAx^(4&{G!xvjRH$M`kwfGb-@hV&#pb^+s6EA$AOY&&oAyNDo#0b zzUYBE7a(y-hUq)rhbjI>ri5^ce@33!|5im;b8&Wl<%zb+-os4M^dVP%d~#uG7V{~2 z)93x!u4!ka{BTXZ_plIV*tq{iViBoZ&9u(Xot>`sdLO!S*`@>Ajq#Sv>wBS3WU4T_6G=3i2D05B2>GeF?%WuY?(ryKwf zL6pJh5Qrk!?OgS8Mgahvy$k@7XBCxK9Y_i-96idS7n0WA(&$A*kdZkYDH`e@Ky-{| zOwW(f3!>D5`a=gstQE&;MQo7_0E4|;9ikC)h{1vc2_^=(Yz7VpNr)Jb>gTQ=IzOUd zw4Jt%mrqL-CWVtTE=UM;js>K7nRl2a81e&S{6~pvkN7KU50{!EaocD)RXNvrSdw6k zApkIPNLK=Uo;m-BT4{FR%V$0`)S^$mKR?M@JNfSABp084(XJb+|Ebx2Y&7FlzWO<4et<~Z}OsG8o|9j!ZSh7Ot%E$Wzl zd(^i|;M0G2c~i>=g~^%AlP}4ex#+2P->43bD>>xg&ubJXUJ3 zfY$})a4eY-0B{6)fCB?l6p<|mD@?W_=K%BcGu6v|V>~OlIF1xhj?xp00ATx@zv@Hf z3#S)ZBXN&XZjD6d2rNh-%D^dbokuDK$7*PTwE$uC;vXNo=+dPcj1gFpfC~r! zG{CwJs-Fi&SzwHr6GXv+H6NcI$ej!vpWgCc=UseOmr^lctPF|60N@b^6fO!`J=&_Bu+}sWm4_sWmS{55pM5@F`BLrEovhlPD4Jsk z5X?BJ9_}Azlp>0V7$PWR^ogWBsbSx>e=vFY#@6a>5$8uR9sBxuiZ<`nD|UWuSZPD$ z`j1{%vg8MqgGaGhT9J0y={}-oKA)a&q$O)vJq(i~rhrzKtm%oMMWE7N{M5qQ zqva>2HN4~9!ZohC8B%qFOaZ{#N3Ts-tvcBpAtyJb_}!j$Z?-&@99=kMuL_LG0RRFB zPbA%1xjh=oMuZ7q;23~W(7X%)#(EfK5FRY-_Ln)5$fQ7OK~7BA>jEw!K|)%P2geu< za%(uyAh*Y008st>a0yG0^RLZ*^f&d7niwU*B4&>~38D z(F;wMerz=d`uT(NE?o128{pe1>pFhHBmY^PzIfjw4+6jsAKhM@neylr|Bm$%D_5?3 z_St9ccKebgOBO6x(9+WK*=L{Wy1sk&?wf8pLvF|<)z#Ixxw$vreDl0{^S)}o^2#d{ z6B7YoaB%S4bI)ySYrE*8i&9fl`}_Mp_~3()k&)G_S3mR2Gk^I!-+|?>_x>j@_;0|w z>#}ber-X2de^R!WZTKB|0by{r2k**R;pdPAOJ~3K~!VZ z7Doa;5L9ND7{)-^sYNBr*DECufNz2ut-w$1BZ44gT>uKFd&Wp!7h3weXl$ zAz4vG60uF{qK}UcfF9&$i)$7q6ghjD#erY^<71Hvg>JRn?7(s)(HItGq&TT595V_5 zKQdTRV4S&n>7?@chS_s(Jhu9-Uo@R8GdajfTlFdB3veu#gmX@0toixaVGR&q zvj7O}Nuugvii-h4*g~iZ3yrx~M=$rD(6SQ0D_Io2qJOppCS5_AQ`f+#yY+b!bMMQ% zH*fA4YAq_e8#mRzQRnH%owZo^krkO&v!IqgJNc_)N@{D?ef<6-H{Mz>E1~pI`?`{P zu4_L%x3F;DpZTi&m#3tpWXX~xX=!O6fBdn-;g~em)YM#Z$tC0Cs4f<2CSRD=Mq00^UKEk8;xm_My({}=oFaJeU@QVnqHG<-Vj8}DIrBMOJw*$G@u z448;uiNv-T9CUFkz<4+1I zj535_tV0i9DC#O)k+?S2o0FbU1OR)gpW5fy5WYYVO_=FiG$H3PJ?P?67?DE=An*^< zdB(hWJtrlqpv77Beqa+Izyu}o>?<8BgJaYbE9$;ezY)HzQXT**n#O!vwKeNL|FGISk>`lc zjhOMo2m6;48q<>U?dE;1hT6oURnvJGdsbQe14L3-3!Zhyh z)8?sZS+nvcgT>mT36 z-BNNysq73^#4VArggAxKLt1E}5a-MB4)e6xg;g!3ZLW&(cJ1tQ&uR}=zP)5%@+H)D zl>vYpMv}wM5VSQ8RMs7@xHEV4X-j>7)u#8Kwj>!l&5dH1%n%9mDTyPCmMvY8?#SL+ zvn_9K9t}|4shzHu|0)~H_iQ=zTi}psNqTVcbp;F0&_TPb{m_%|{kGaW@$fkp=7vTV zrKVl9Vb>!+I=?Vs=3nbY2M&${z>>vb-!-OQ1*R^^vi!A^|L>BNl+@SP=kzsuc=aix$yp7y78RtyHa61x3m1lbP(3eE~v%K**li@Ams+V!$v$2nY%J zzW?wA=iYnnnMm@Q?bW}G==K2 z^fSFzKb5t+k#qU1-A!~{7%3OodYY|Angk!qdjq9QbN+G5|9-8Fhc8x^k;c)lR&A3n zk_0=8pA<9&k9K*@cBkR3mgguxvphjF+$%HU-uAJtq)%~Fi%wbC%xcfwC#1ODo5~h&jG8n@&57a z0#>`yoV@zf*SPF8@dNX$lPL+4VXgf78u)5&S&$?xq$GQF19fNhUFTBshAm6u{M=wf*+^$ICj+0WUvd8V!UR9NOTB={wi7``)^xNAz{pC31RP&L#)y8; zzr{~y(6x(T-=)JoDNc?)xDZ^^EtQ@rbgfJgp-mhZ93?bd8S6A0>->%L# z2Md)ZQV1%WE;oz4r_p+z=dBeWeWdBRvg20P_DEm`G=_Fty9%(YZ$hX{9P>hVbxmD* zaK+tCGc*Oo@;rRd>X*ZI^A`JZQzI&Opo*jh&Zl_%4S=y!^|B;@#CnzbYVfM7n!D~@ z;YppSR_a&>eldU5?BrsI-*^&~LS`TZy}JuS0KO3IE>pSAL1N&_=)*K}I7bdEl$VvR zTz7co5|srMu`m_XxUN;@d)ruR3N$+n-m^g>;i1{i{czv_Mt;t@eyY!@1;o8QHepF1 z5#yMuggoRk6wx!L;x3d&IhzA;PKc( z6y_a3Pc9vNH@Kj|63ZY*67r|dG+Kro6x1ie&LmG7D@;+$e80}=dxh@%EmM+| z2Kc2wO>B9wGog&Fgavpd@Qxvveag7*tZhF&Bcj!;dwN-l&lPDr@p|Pt>|VFw!1m#2`jd9uu(Dtn@r;3 zK!(zOyJWsJBjy}W9*=DEOH~hoU1cF3^3UJV0eA4~7-{ddGk+zm{OFiEVZEZId!1@y zBM*(E8S3_b`UR6@9(X3IMJ$1+u6fCn*99|y3X5U65od70MC^O+;~jDu$7SO1t#;z0 zOt$|J5_u0t*Gw$yF7_UBnB%1;R^p-H8jHV_CNYgZ_0E%rLC6RSq{Vn$0ZzomVR38L zu%M@<(|JUoK_Ytmf9D+4f9-4QX{1(mS?*X0w*4?658Wmf4hP zOKRbFd7hp&2Hq};Q^9V&i`nMckc`7XoM!djDNZPW{d;I38Q_*DF*TXW& zY!*u^B?T`v4FH5_zKSa|gKiIZIT06L!JR6#4-?+6vn_v#AB&u3+VUwRk=@=1)%uZA z?n4lxQ3)rp@D6cBnPCk)zD3ZdBR3&PaSFwCF~gp9-3ekL0&5PKMqDAHYuB)!MZ2Kr zd#pHvd1ym#Us6(;`~G!dMaOzr1ye3_N)9C{8kH+CUKR)$EW_bl3>*EvWPg{W45^@3uJ_3rHy}8 z6W=^8U_hd25rEQ}JF~&lD2mx%87{GaM$cJzA!Emp zq~-7Q65mJSlI@zl%DK5O_WcYCLv@V4O=;x!-pI5UaE?Dn@n*NG#b(v4p0WPBZRjp^ zr}}b{-1)R8A+XrwunE28QW2Gum+RJ=Ma~~SpY>u;4aCalW-1$ka=5yko4Qw4g(WRz ztY@`3y!N$wRX4P}+8U=wDQ(_d#8`0s1fuKwn=iKQKykZAZy zK@IPo1RF^sDV`XF2;~F%V+j>vC`8c{TMz@RXGqGeSnJ;6>!OwAwm-GKp{38vvoP@J zy6h&)P0iG*STRx1M@r+x;A0OWHT3PQJ1+{oMp2}>x}cC#&f@wQi7Fq1;R>&a zx9^M@KzattG}-gnXv3B0Lns9o&JM1OBtEg+vpVW|zUJ{KS<}s;@|_qlLMd+UG3~II zb%Hhd3|PZcMwuL%@4@$(aY*a1)y}hkkWHz_vezh$d<3;h-m3l+oN;6?zk3YPw@OHJ zJuisj^3=a<`6@7FRK*C6+gvEH|r#f`^)XKmn|bG!g*RuNT7FvI3R z+hWf~xTA!Ob$)xJ-SPpb60h{3goY~-mz|%n-f(hdh>o8u&-B=* z>=77JDoq}C(yrve@HrR!chWgOXMV(&NJY-o5wdh>HxAYQ!Y5XUdDndx@ROMTgBmuU zPHI|?)9qz5%_2i(^L0S6=kKi}rcjeLA{@Nvt_MShl#nFgXEricpAtwk&sy^A=CXKN zX#(g>ps#1c+q~>&(-oH%zn~Y*5Azc-=FD2->du#u@ql}BVJ03A<6dw=Lw7CaGO0MO zpUbLRY21lDrL1fveXW%@FR9mPEjbj`z3HvzEzi!)3tWGHi~A~=pFWMxkhZ!~KWj2& zVlI#~lfDRb>WFwg7Pt_>e}ZQ5Hch60y=I3X^Xm@1@f@a29?8wgi6Z9XE`|mke-set zY-w?y{)tT`-v&h-)%Dy=oo}{+r$2o7ps1)wn^;m)^EGGEfYD=?e^2vB@pkuk5GuPtNbei4Ormx?uX0cpAJJgJp@a;5&7d)7lNA0PT^+IS^Ts&!nzz>-nQXdidQo1I+wVYA1H%aE*q0bbzi z7xQS8#NZMe-5Y%MXN%d%*3O5*;yH3D)W2pgwe5}ay!zef_hHzVVH;}9BBOAn9bbzl zYNyrJ_QMpM-$#B5W*cGH8uxQ=C1_IA9Wt$%wD|htf1Fl`DPr=>=}AB;jf@c0Bk z_cP$LW}!Ou;A2o7d^WV&Jbh+@7#1T5K>Bp|h+YT-v^;OFcCFHS&^xZ&iJAq^fN&IC zB?3m>Qgci`QNRIzGJ-JBZ5%$;ON|V@UfOE6_!1I>aUeKvNw&nJ&r_zhEBIgL5~C|* zXMcaghY`dPVxXh7zSOv-X<&=iq9~@25~7eO4E^2udVN1~>$P`%hOn>=0L2Ejj2%^zSEha)FtHL5v>XgTmEjThV$i#BQ7ecq^8p|wPZYYN;w`WAwnvzfsYON znevr^MsMui?aoLxzj=i|408cPWzOB|le~}vC-Go>1ob$YB*8lf1(0?CefhD@NE#1$V827U+z3I4N&o|ZV9v= zvYI?gSXi%SbGxGU!*Jzky$^1Koer8tJ|e(mS5=*L`NCy+TnyFEds)UDcX&QROJvZA zM(fZfCM71eKi~ZAe3-2?GVZ(za)LSufb5xlKkwyw>v?EZ@XXB2fB14=-%w|iYo7mgEyN){ zOXXjBP2+FYEF%?V_RI4n?K&kEkPa7ILtqEUhwhY>qrkwxtMpXYJ$xpd78LyX(#7

@cyVt>FiK2ZSpB!S|-|+WKQpOWQmi|{ee!#8w##g+YZ=4K6pS%4 z%2B?1?Rogf)?qmb3-GM`eV0MTym+;Eq55`kOtCn}be)nQeg)BIF*k|h*8VU-Rm#{> zN!B%rd1U)w`SpRGN^5zo!CLxTgM69|@i7VJyCEzsd8~Jsct&VAMa#>+-)9dsIR=|h z%tBHm`3DVy$;BALzz)WQgIK;DJ{CfphcKjq^;KOn{5RpM0^5A)#(7R@=h4DGbV?OX zoll(;R8Mc5gVj{OF~4#~9Ui(pMcG>>Q7WY8HqP-r5A&4Tw<+7#@jA?d7t`~UttaQ- zzCS>$Pl=HCtSQW?bl$gyYw>7i(C0pG7$b+WM7P!1R$6-aWVw}U?&j#^WX^&$7=z^G z-~g4O+WGOg5o%ihGQodE7`Lj2a=Bc$_2$(3_4_wyHfUtOD&xVZtkYcQM! zfszq+cSpze#P6pDpP$BbH(cg)~N0GwEAu~`8KfwD2Q>vuc2Pl}x>^{oO($#^M zo~WbTw{ypaw>Jzf5X?mxiMx3iJIEJZSV$V!@qB^Zs^iET+kgZUUO%4gg~5C7Hp_lwuf3Ahva%~$LX0>{Bem8@+`lH4@!DZ{|ky*6I5zPB-rob^}v zEdolISbpRed30)Fwc)s6Fs07g*lMI)`NWZjZhDLCn#KxJ!FWfU6RM|$Szg@C%wNY++4lGM-@bk8-oA3| zY`;*m9V;=AwPa#u)=*!c@c{Q)Kd;w%+VQxtxmnry@=#PnojYaG_}9_VaTUtUe3|49 zDB{nt{4HMgh9j(DG$1&m1dq zA}$P<&Idhf|7yz5n#;E57!CrD13_KLr##&qtGC*2O`r@ie4bH+`9(w^CGK5dY++RR zPtna_WGp45i<%y37gc-r?5hue>t?OFI5vHa1v76Hsifbo&>8}O$NS5X{tJCyfg&NA zA8>&O3wY$hO8K|yuOVdjNM^#tA?o3Iqy2ga`02k?^XKb?&llqdMBrBl;p^Dd&0r;0 z<`(tXOnrvVO&}FAd88VW`2Ctz_T$a|$nR1cdE@v(W?C7g<cFgRbWbiQ1>(QGU=6k8rc7$_BO2)^T%lgPyb3P*tPG z35QvO9=qS~)>&-FJ*-sCi*`pDk*Da*_@)iZs?+eTowze9&$B=3gTLNImwd1){we+oj4uXqchTk()P4VmrzGwGV_3%m0R8W`JFsnDHfrdNp3;OK z`U$#I88&Y(sVa*bO0ATy$ZIM_iYkj-Ukbnb_43~mK98Mz&?euB@7B@jN@_;B>sQg- z!aB%E`V)A%e9PQ_b?O%TWY)K_JKOANysBF%$v7BCjh&v)8lBF(tSwC@*VW*`YNT&Q*TA@DU zrNOR+qP}ioOFsseOuU~?zUvoxW5D~~GLN25P4_QsbJ4DBVh|Ed;S|x)^4n{Aj7}Tv zE*(9v-2#GZXBuu^G(1}~TMFhUH&J}rUhdb363LoaA~1rg$x>L*+Zh){cMX7+>YQP(`_Xz_?0!5QoTxbI2HlX&lm|v2&2XJpsYoRkNz8bYY=1wWR;pI%RkcOyzihYI zxw`mQMqC`95Z%^r{e!w5&E50%eytf4v!QD(fe!}h@j}7!X%-ifKUWX(x|+pnmn=x% z>k!1WW>qA%Gsd^d$a?dj_qXy0YB^24xEL(@MrV%H)RMiXFG|vBY1T!O#n)eIyUq^o zQx?nWCRYA_(67iN?~lTk2iBem0r;q<5w&+Lo|!ry@25yId%LD$UKU<#T(PdjuaiP3 z>m=o6%gWfhIl2&Z$T~3fApGp@JZju;0n+fouRC&4r7e0gwSU>&eJsxxjgrEx(KWX& zX*3DJc-ttczutkPi49PblKyIa0?wBE9>bLi7yq)%ru0k47LWI!vs??uQwV9zs(%WL z|I94C7U);RyJ~nkZl6v#V#oK{_?yNNoZNJN?9N=t#dgX3ydA1$ZS(RFA(2MCRbufh z3cR6JStTKlos}hg)XdgSGJ_OEH+4Mnq0#FCg)G^=>A}j&LbCSaa4`~ISDs>iPIrsv zK>+<6g6;pM;_t(Pov}!JMbjS*eF;g*q)h*(A2J3SV`1sR^E%266x)Zb^~Kc(S77nc zPtM%J8+camfVNAyyXDJ7t)0Miz#8}Rj(a?9ag)tABL@lOt1eg zQ8oR?$ahUABL?_+rI47kRBJjU^i=$k{Xl7hrs)XY6$y=Kr(_0c)5jq8C07Ct#+;${ zu1$+^{lM)%CDW7fCv-NWwDo)BjYt_OTd5!(X|kUV0D!3_B`Tz1>{0&IDq>UX54HUm z=jLNk-;?1aGjNY&SB4+W&IueHJz|5!(aO5qIQ=MeZ0!JQZOxt2>)Kps4%on5A6#J0 z+fn+j=AZPSPBlAQPP-`CpO?uAGUQScttddww8h;9Q!!^mx~tys{av@2SxOECo+}_Y z4HZUYU=9Mmt8ypdrU)-3EqRIzi6&URH!Mrj#Z*7w9|+Ga*2b;4#rP5d1<|KemvJoV zJtYpF%`Nhv_j$FjhNC5XRXjsmX6yRW(%=JXE)>Bk<1*UfU#o*Ls8gPruVZdaIc^B? z46ipN-fC!%QYl5Ol&dZVcfO@3DIx7B+AGh8mp2$Fm|{Ug!z^E28#^_c^XNUr_NU{q zry{P|aLJyoZhE!7Y4rE6rR&XR<1a={DWiwtAr~gT>o_n4 z+I7JJ)x2)5HVx19=fGm$m^?V4ebj0h7tL-`(LHMu>&CEmXGh~>)mDMUi$&7>Gn(z*m88QG$(~^c${ZJ`9)e$RX_BtuPc#S-)zZ-l%;+=DmAZ@C(c@99*GrGG=4zon;f5ZNM2J z>8y@-yhJFJJLRF1G3NuGcI+YH$$eTa1eW<5zH#=IBdrejBD!+5fn`!y3W%TB9gWmjI0;q)W*06r5JqKHLaLSe~udQ+OCG_2&<%%uP8ZFGm) zLy4U*794Nx*xPFA-tk!r|hf>Y3K!jX*o(>GWPzYtv;={%0@5uR# zrR}dXX_YgfXbmUJ(ErZ5Y64V-Gxp|7RA2`$85%1judAG|<#-wa;PfW3uo79XpP1zL zJ1`s|a4?0FA&cf%o4YtaboE{IJj@`pzBLLx8SrVY56hOi-bl39d%n8jSDZEc+i;s{ zU2td;y3s@7#CR`?S;v|5v44|g8%7X|4%P=8_hcSFUg!5R#6F+aFTJQ_UqMukLnpSO zp}6gpW|FB<_KvU9bx^v0%kX1?R(SDv%|X~~1N!$_i(G2)BThvH8Vi70e%KuG$!)q! zzvvVOkTE9$erQ{l2dC%U$0kK-G0T!O>S($X^BisR9f_!WoyPU)#dPfKK?@2VsO*Cu zZ}^)}aC{y1FCbZ}pRAPXy6CRNA#KZCuh9t4piPRrcY{vNLl&F$9%&*BnI#{ z^!cF|@Q=z8jm5R*mz}p(HA=p_*HQRN1#9hgx{4hic^rEacdLZQ>}^Tx@7Ky}61KZn z$N+erkf$F=$Q$k7Ngyd%9&^%u^q&&*N5-vZ3?9iIFG*~y(d`qV4z4f&h*j!~bO5@d z-DH@hH5%8T6CV1^(mSev<^>Bhu$MlBbG<3h8j-p7Ef9K^wfKknLP%i|Y>v(H?wPW+$d)zxAzkVR~3*&#Buvsk9 z1pNjIt+Y-ZyyJNs*^>dj=f&Ni0?Z8ez?GGf5t-?oPt#@-ljVP=w*QHJ!<+iIi*2>H zU(L#r2_fO+mbuHWuZxc`KJU$>nG0I%TxUaOR+QfYN7TxA8ID%8+S~_a5?ZoOi5p@} z1v^&UYC<7gxC~eH}x_vKFJa0)I+}v>yJH zTTc`d2QYx&2nURZ|14qNO2TECX*h84dc03lNof0=pb}TtcBK>a4WHmIa_G@KHR%1qUv4g7Z6;viAM%P3DhdIL}^=qqJ5t03R8j&uyn z>SMP25Vf157w=DA6vH$lx?1%*a(b zqW(@6x(!W*iqxi7H!H_G6)am93hVQs253O@VUo%T@4;e$Nt%DTn9$;8>V*h}bU076 z)qlTi-3c|shaE)DR0Ld~kXC=2$eP=lvVtE<4BI!G&9L+eYKX zU^sw;!hUPVnU7gZi&CJUhcpwMyHvsR0+$inXNIIw!t{tjpeHX~DHPz0p9E-o-6Y9U zwiP$$0q_n|ht4c!x;G03#BIGQ)^6q7X0hAsY+n`zC-L!vuT*sdBrC=;Fv=uanfn?K z;XTUd zVSLs|D8c8zSs%u{MUq@*`14`L>l9c%bFN^h1K?|`WuBYO*u^=R=X*@5F4vB4#`Bpp zp~q@tu=Q#HouPFo+IpSj#lIcjbpIY-y^Ns)xCX_Do-VZQc$`E{Zu>IqwLBY6Lj}zaw?QBb)be95{U=lj8p!&TTJQoa za9B7cG8d}};5AhFJJeE~#S+*#`ar}1lW(Bf2NJfBPa_kO)ZY@%=91T6_`v872!N6pTH(1vO+5(#aCh8{e|6+4GmHeKDi)PhL%*tm>*-4PjqnxQG|!V@4C$F) zr>*L}Is;2VpMN2Kwp3$UkLF%w$)4|F_i|k8l8#Hts*Ktc8aE zZAV1*uN^$q?+^dT0^VZ=+*!OM3z$p~`rifZmB@vT%z*i#!~p>RnT9U&T@;8c0MxSe z@72N?8-5)MuQk0q9ByuG^cguQDNSd%tSn4UetA)stK88H1_h*4@6kYqvDEDJdTy}& zOa9@56SuCKTGGt^QmYGOq{jQ@GV8QyGwQP0%AHMtDCJ8vT!;Y9h9Ny7^y|iq5dDP; zXSTPuj~8mG7#J8dpulVA{g^#EI(kE6BLw=Vm;1kg9EJO`%n^2F_s|qWqQ#+KhV!?@ zi4JHx>p{cTL;z?L51_HOCYm?>xcccgsxzf-?Elv9r)F7sx!lM2#Kc57+RmFrYnbfj zX1B$E9WFpOJhA|@YN%fZ8Z{S}{?yC+C-U(4IOD(6Zcv`EhTlJXrN}zFyJ=|P0npe< zOMSNX)Cs9y9L~5TH~(3m4KV;?k@GWPheE@SMG}%8dNaQsc--N^&}Ezz;ga4@Z*-paY?yp)(!O zC7TfcCm*cgU>uwp`hOwCvb3v>_9TFbsj1xKzrN{EpiDF?R}gr92Pi2iadUHjM8zQH z{gIF$3hH}#e)OkYeLis+86FhW92y0` z5imMB+R)G-C2%(3KKpJW<@moE!Ks1x{|ejxEe=!||J&rhq7OZ$LBfvs|0Lok*V})b g`9B%`|4;Tx(u#0&GH>B22S6VwF?rDnVFSPa0lk)@2><{9 literal 0 HcmV?d00001 diff --git a/demo/documented/stokes-stabilized/python/demo_stokes-stabilized.py b/demo/documented/stokes-stabilized/python/demo_stokes-stabilized.py new file mode 100644 index 0000000..ace0d2e --- /dev/null +++ b/demo/documented/stokes-stabilized/python/demo_stokes-stabilized.py @@ -0,0 +1,85 @@ +# This demo solves the Stokes equations, using stabilized +# first order elements for the velocity and pressure. The +# sub domains for the different boundary conditions used +# in this simulation are computed by the demo program in +# src/demo/mesh/subdomains. +# +# Original implementation: ../cpp/main.cpp by Anders Logg + +# Copyright (C) 2007 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2009. +# +# First added: 2007-11-15 +# Last changed: 2009-11-26 +# Begin demo + +from dolfin import * + +# Load mesh and subdomains +mesh = Mesh("../dolfin_fine.xml.gz") +sub_domains = MeshFunction("size_t", mesh, "../dolfin_fine_subdomains.xml.gz"); + +# Define function spaces +scalar = FunctionSpace(mesh, "CG", 1) +vector = VectorFunctionSpace(mesh, "CG", 1) +system = vector * scalar + +# Create functions for boundary conditions +noslip = Constant((0, 0)) +inflow = Expression(("-sin(x[1]*pi)", "0")) +zero = Constant(0) + +# No-slip boundary condition for velocity +bc0 = DirichletBC(system.sub(0), noslip, sub_domains, 0) + +# Inflow boundary condition for velocity +bc1 = DirichletBC(system.sub(0), inflow, sub_domains, 1) + +# Boundary condition for pressure at outflow +bc2 = DirichletBC(system.sub(1), zero, sub_domains, 2) + +# Collect boundary conditions +bcs = [bc0, bc1, bc2] + +# Define variational problem +(v, q) = TestFunctions(system) +(u, p) = TrialFunctions(system) +f = Constant((0, 0)) +h = CellSize(mesh) +beta = 0.2 +delta = beta*h*h +a = (inner(grad(v), grad(u)) - div(v)*p + q*div(u) + \ + delta*inner(grad(q), grad(p)))*dx +L = inner(v + delta*grad(q), f)*dx + +# Compute solution +w = Function(system) +solve(a == L, w, bcs) +u, p = w.split() + +# Save solution in VTK format +ufile_pvd = File("velocity.pvd") +ufile_pvd << u +pfile_pvd = File("pressure.pvd") +pfile_pvd << p + +# Plot solution +plot(u) +plot(p) +interactive() diff --git a/demo/documented/stokes-stabilized/python/documentation.rst b/demo/documented/stokes-stabilized/python/documentation.rst new file mode 100644 index 0000000..6a2efae --- /dev/null +++ b/demo/documented/stokes-stabilized/python/documentation.rst @@ -0,0 +1,136 @@ +.. Documentation for the stokes stabilized demo from DOLFIN. + +.. _demo_pde_stokes-stabilized_python_documentation: + +Stokes equations with stabilized first order elements +===================================================== + +.. include:: ../common.txt + +Implementation +-------------- +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +In this example, different boundary conditions are prescribed on +different parts of the boundaries. This information must be made +available to the solver. One way of doing this, is to tag the +different sub-regions with different (integer) labels. DOLFIN provides +a class :py:class:`MeshFunction ` which +is useful for these types of operations: instances of this class +represent functions over mesh entities (such as over cells or over +facets). Mesh and mesh functions can be read from file in the +following way: + +.. code-block:: python + + # Load mesh and subdomains + mesh = Mesh("dolfin_fine.xml.gz") + sub_domains = MeshFunction("size_t", mesh, "dolfin_fine_subdomains.xml.gz") + +Next, we define a :py:class:`MixedFunctionSpace +` composed of a +:py:class:`VectorFunctionSpace +` and a +:py:class:`FunctionSpace `, both of +continuous piecewise linears. + +.. code-block:: python + + # Define function spaces + scalar = FunctionSpace(mesh, "CG", 1) + vector = VectorFunctionSpace(mesh, "CG", 1) + system = vector * scalar + +Now that we have our mixed function space and marked subdomains +defining the boundaries, we create functions for the boundary +conditions and define boundary conditions: + +.. code-block:: python + + # Create functions for boundary conditions + noslip = Constant((0, 0)) + inflow = Expression(("-sin(x[1]*pi)", "0")) + zero = Constant(0) + + # No-slip boundary condition for velocity + bc0 = DirichletBC(system.sub(0), noslip, sub_domains, 0) + + # Inflow boundary condition for velocity + bc1 = DirichletBC(system.sub(0), inflow, sub_domains, 1) + + # Boundary condition for pressure at outflow + bc2 = DirichletBC(system.sub(1), zero, sub_domains, 2) + + # Collect boundary conditions + bcs = [bc0, bc1, bc2] + +Here, we have given four arguments to :py:class:`DirichletBC +`. The first specifies the +:py:class:`FunctionSpace `. Since +we have a :py:class:`MixedFunctionSpace +`, we write +system.sub(0) for the :py:class:`VectorFunctionSpace +`, and +system.sub(1) for the :py:class:`FunctionSpace +`. The second argument specifies +the value on the Dirichlet boundary. The two last arguments specify the +marking of the subdomains; sub_domains contains the subdomain markers +and the number given as the last argument is the subdomain index. + +The bilinear and linear forms corresponding to the stabilized weak +mixed formulation of the Stokes equations are defined as follows: + +.. code-block:: python + + # Define variational problem + (v, q) = TestFunctions(system) + (u, p) = TrialFunctions(system) + f = Constant((0, 0)) + h = CellSize(mesh) + beta = 0.2 + delta = beta*h*h + a = (inner(grad(v), grad(u)) - div(v)*p + q*div(u) + \ + delta*inner(grad(q), grad(p)))*dx + L = inner(v + delta*grad(q), f)*dx + +To compute the solution we use the bilinear and linear forms, and the +boundary condition, but we also need to create a :py:class:`Function +` to store the solution(s). The (full) +solution will be stored in ``w``, which we initialize using the +MixedFunctionSpace system. The actual computation is performed by +calling solve with the arguments ``a``, ``L`` and ``bcs``. The +separate components ``u`` and ``p`` of the solution can be extracted +by calling the :py:meth:`split +` function. + +.. code-block:: python + + # Compute solution + w = Function(system) + solve(a == L, w, bcs) + u, p = w.split() + +Finally, we can store to file and plot the solutions. + +.. code-block:: python + + # Save solution in VTK format + ufile_pvd = File("velocity.pvd") + ufile_pvd << u + pfile_pvd = File("pressure.pvd") + pfile_pvd << p + + # Plot solution + plot(u) + plot(p) + interactive() + +Complete code +------------- + +.. literalinclude:: demo_stokes-stabilized.py + :start-after: # Begin demo diff --git a/demo/documented/stokes-taylor-hood/common.txt b/demo/documented/stokes-taylor-hood/common.txt new file mode 100644 index 0000000..231771a --- /dev/null +++ b/demo/documented/stokes-taylor-hood/common.txt @@ -0,0 +1,79 @@ +This demo illustrates how to: + +* Read mesh and subdomains from file +* Use mixed function spaces + +The mesh and subdomains look as follows: + +.. image:: ../plot_mesh.png + +.. image:: ../plot_mesh_boundaries.png + +and the solution of u and p, respectively: + +.. image:: ../plot_u.png + +.. image:: ../plot_p.png + +Equation and problem definition +------------------------------- + +Strong formulation +^^^^^^^^^^^^^^^^^^ + +.. math:: + - \nabla \cdot (\nabla u + p I) &= f \quad {\rm in} \ \Omega, \\ + \nabla \cdot u &= 0 \quad {\rm in} \ \Omega. \\ + + +.. note:: + The sign of the pressure has been flipped from the classical + definition. This is done in order to have a symmetric (but not + positive-definite) system of equations rather than a + non-symmetric (but positive-definite) system of equations. + +A typical set of boundary conditions on the boundary :math:`\partial +\Omega = \Gamma_{D} \cup \Gamma_{N}` can be: + +.. math:: + u &= u_0 \quad {\rm on} \ \Gamma_{D}, \\ + \nabla u \cdot n + p n &= g \, \quad\;\; {\rm on} \ \Gamma_{N}. \\ + + +Weak formulation +^^^^^^^^^^^^^^^^ + +The Stokes equations can easily be formulated in a mixed variational +form; that is, a form where the two variables, the velocity and the +pressure, are approximated simultaneously. Using the abstract +framework, we have the problem: find :math:`(u, p) \in W` such that + +.. math:: + a((u, p), (v, q)) = L((v, q)) + +for all :math:`(v, q) \in W`, where + +.. math:: + + a((u, p), (v, q)) + &= \int_{\Omega} \nabla u \cdot \nabla v + - \nabla \cdot v \ p + + \nabla \cdot u \ q \, {\rm d} x, \\ + L((v, q)) + &= \int_{\Omega} f \cdot v \, {\rm d} x + + \int_{\partial \Omega_N} g \cdot v \, {\rm d} s. \\ + +The space :math:`W` should be a mixed (product) function space +:math:`W = V \times Q`, such that :math:`u \in V` and :math:`q \in Q`. + +Domain and boundary conditions +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +In this demo, we shall consider the following definitions of the input functions, the domain, and the boundaries: + +* :math:`\Omega = [0,1]\times[0,1] \backslash {\rm dolphin}` (a unit cube) +* :math:`\Gamma_D =` +* :math:`\Gamma_N =` +* :math:`u_0 = (- \sin(\pi x_1), 0.0)` for :math:`x_0 = 1` and :math:`u_0 = (0.0, 0.0)` otherwise +* :math:`f = (0.0, 0.0)` +* :math:`g = (0.0, 0.0)` diff --git a/demo/documented/stokes-taylor-hood/cpp/CMakeLists.txt b/demo/documented/stokes-taylor-hood/cpp/CMakeLists.txt new file mode 100644 index 0000000..08a1c6b --- /dev/null +++ b/demo/documented/stokes-taylor-hood/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_stokes-taylor-hood) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/stokes-taylor-hood/cpp/Stokes.h b/demo/documented/stokes-taylor-hood/cpp/Stokes.h new file mode 100644 index 0000000..7ebd9c3 --- /dev/null +++ b/demo/documented/stokes-taylor-hood/cpp/Stokes.h @@ -0,0 +1,11114 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __STOKES_H +#define __STOKES_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class stokes_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokes_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[3] = dof_values[7]; + vertex_values[5] = dof_values[8]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_0(); + break; + } + case 1: + { + return new stokes_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokes_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class stokes_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + stokes_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (3,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 15; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 15; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 15; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[12]; + for (unsigned int r = 0; r < 12; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 15; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 12: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 13: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 14: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[12] = vals[2]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[13] = vals[2]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[14] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[4] = dof_values[7]; + vertex_values[7] = dof_values[8]; + // Evaluate function and change variables + vertex_values[2] = dof_values[12]; + vertex_values[5] = dof_values[13]; + vertex_values[8] = dof_values[14]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_1(); + break; + } + case 1: + { + return new stokes_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stokes_finite_element_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_0(); + break; + } + case 1: + { + return new stokes_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stokes_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + stokes_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (3,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 15; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 8; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[12] = offset + c.entity_indices[0][0]; + dofs[13] = offset + c.entity_indices[0][1]; + dofs[14] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + dofs[6] = 13; + dofs[7] = 14; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + dofs[6] = 12; + dofs[7] = 14; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + dofs[6] = 12; + dofs[7] = 13; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + dofs[2] = 12; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + dofs[2] = 13; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + dofs[2] = 14; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[12][0] = vertex_coordinates[0]; + dof_coordinates[12][1] = vertex_coordinates[1]; + dof_coordinates[13][0] = vertex_coordinates[2]; + dof_coordinates[13][1] = vertex_coordinates[3]; + dof_coordinates[14][0] = vertex_coordinates[4]; + dof_coordinates[14][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_1(); + break; + } + case 1: + { + return new stokes_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stokes_dofmap_3(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stokes_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stokes_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 32 + // Number of operations (multiply-add pairs) for tensor contraction: 282 + // Total number of operations (multiply-add pairs): 317 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*K[0]*(1.0); + const double G0_1 = det*K[2]*(1.0); + const double G1_0 = det*K[1]*(1.0); + const double G1_1 = det*K[3]*(1.0); + const double G2_0 = det*K[0]*(1.0); + const double G2_1 = det*K[2]*(1.0); + const double G3_0 = det*K[1]*(1.0); + const double G3_1 = det*K[3]*(1.0); + const double G4_0_0 = det*K[0]*K[0]*(1.0); + const double G4_0_1 = det*K[0]*K[2]*(1.0); + const double G4_1_0 = det*K[2]*K[0]*(1.0); + const double G4_1_1 = det*K[2]*K[2]*(1.0); + const double G5_0_0 = det*K[0]*K[0]*(1.0); + const double G5_0_1 = det*K[0]*K[2]*(1.0); + const double G5_1_0 = det*K[2]*K[0]*(1.0); + const double G5_1_1 = det*K[2]*K[2]*(1.0); + const double G6_0_0 = det*K[1]*K[1]*(1.0); + const double G6_0_1 = det*K[1]*K[3]*(1.0); + const double G6_1_0 = det*K[3]*K[1]*(1.0); + const double G6_1_1 = det*K[3]*K[3]*(1.0); + const double G7_0_0 = det*K[1]*K[1]*(1.0); + const double G7_0_1 = det*K[1]*K[3]*(1.0); + const double G7_1_0 = det*K[3]*K[1]*(1.0); + const double G7_1_1 = det*K[3]*K[3]*(1.0); + + // Compute element tensor + A[0] = 0.5*G4_0_0 + 0.5*G4_0_1 + 0.5*G4_1_0 + 0.5*G4_1_1 + 0.5*G6_0_0 + 0.5*G6_0_1 + 0.5*G6_1_0 + 0.5*G6_1_1; + A[1] = 0.166666666666667*G4_0_0 + 0.166666666666667*G4_1_0 + 0.166666666666667*G6_0_0 + 0.166666666666667*G6_1_0; + A[2] = 0.166666666666666*G4_0_1 + 0.166666666666666*G4_1_1 + 0.166666666666666*G6_0_1 + 0.166666666666666*G6_1_1; + A[3] = 0.0; + A[4] = -0.666666666666666*G4_0_1 - 0.666666666666666*G4_1_1 - 0.666666666666666*G6_0_1 - 0.666666666666666*G6_1_1; + A[5] = -0.666666666666666*G4_0_0 - 0.666666666666666*G4_1_0 - 0.666666666666666*G6_0_0 - 0.666666666666666*G6_1_0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.166666666666666*G2_0 + 0.166666666666666*G2_1; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.166666666666667*G4_0_0 + 0.166666666666667*G4_0_1 + 0.166666666666667*G6_0_0 + 0.166666666666667*G6_0_1; + A[16] = 0.5*G4_0_0 + 0.5*G6_0_0; + A[17] = -0.166666666666666*G4_0_1 - 0.166666666666666*G6_0_1; + A[18] = 0.666666666666666*G4_0_1 + 0.666666666666666*G6_0_1; + A[19] = 0.0; + A[20] = -0.666666666666666*G4_0_0 - 0.666666666666666*G4_0_1 - 0.666666666666666*G6_0_0 - 0.666666666666666*G6_0_1; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = -0.166666666666667*G2_0; + A[29] = 0.0; + A[30] = 0.166666666666666*G4_1_0 + 0.166666666666666*G4_1_1 + 0.166666666666666*G6_1_0 + 0.166666666666666*G6_1_1; + A[31] = -0.166666666666666*G4_1_0 - 0.166666666666666*G6_1_0; + A[32] = 0.5*G4_1_1 + 0.5*G6_1_1; + A[33] = 0.666666666666666*G4_1_0 + 0.666666666666666*G6_1_0; + A[34] = -0.666666666666666*G4_1_0 - 0.666666666666666*G4_1_1 - 0.666666666666666*G6_1_0 - 0.666666666666666*G6_1_1; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = -0.166666666666666*G2_1; + A[45] = 0.0; + A[46] = 0.666666666666666*G4_1_0 + 0.666666666666666*G6_1_0; + A[47] = 0.666666666666666*G4_0_1 + 0.666666666666666*G6_0_1; + A[48] = 1.33333333333333*G4_0_0 + 0.666666666666665*G4_0_1 + 0.666666666666665*G4_1_0 + 1.33333333333333*G4_1_1 + 1.33333333333333*G6_0_0 + 0.666666666666665*G6_0_1 + 0.666666666666665*G6_1_0 + 1.33333333333333*G6_1_1; + A[49] = -1.33333333333333*G4_0_0 - 0.666666666666666*G4_0_1 - 0.666666666666665*G4_1_0 - 1.33333333333333*G6_0_0 - 0.666666666666666*G6_0_1 - 0.666666666666665*G6_1_0; + A[50] = -0.666666666666666*G4_0_1 - 0.666666666666666*G4_1_0 - 1.33333333333333*G4_1_1 - 0.666666666666666*G6_0_1 - 0.666666666666666*G6_1_0 - 1.33333333333333*G6_1_1; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = -0.166666666666667*G2_0 - 0.166666666666667*G2_1; + A[58] = -0.166666666666667*G2_0 - 0.333333333333333*G2_1; + A[59] = -0.333333333333333*G2_0 - 0.166666666666667*G2_1; + A[60] = -0.666666666666666*G4_1_0 - 0.666666666666666*G4_1_1 - 0.666666666666666*G6_1_0 - 0.666666666666666*G6_1_1; + A[61] = 0.0; + A[62] = -0.666666666666666*G4_0_1 - 0.666666666666666*G4_1_1 - 0.666666666666666*G6_0_1 - 0.666666666666666*G6_1_1; + A[63] = -1.33333333333333*G4_0_0 - 0.666666666666665*G4_0_1 - 0.666666666666666*G4_1_0 - 1.33333333333333*G6_0_0 - 0.666666666666665*G6_0_1 - 0.666666666666666*G6_1_0; + A[64] = 1.33333333333333*G4_0_0 + 0.666666666666666*G4_0_1 + 0.666666666666666*G4_1_0 + 1.33333333333333*G4_1_1 + 1.33333333333333*G6_0_0 + 0.666666666666666*G6_0_1 + 0.666666666666666*G6_1_0 + 1.33333333333333*G6_1_1; + A[65] = 0.666666666666666*G4_0_1 + 0.666666666666666*G4_1_0 + 0.666666666666666*G6_0_1 + 0.666666666666666*G6_1_0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.166666666666667*G2_0 - 0.166666666666666*G2_1; + A[73] = 0.166666666666667*G2_0; + A[74] = 0.333333333333333*G2_0 + 0.166666666666666*G2_1; + A[75] = -0.666666666666666*G4_0_0 - 0.666666666666666*G4_0_1 - 0.666666666666666*G6_0_0 - 0.666666666666666*G6_0_1; + A[76] = -0.666666666666666*G4_0_0 - 0.666666666666666*G4_1_0 - 0.666666666666666*G6_0_0 - 0.666666666666666*G6_1_0; + A[77] = 0.0; + A[78] = -0.666666666666666*G4_0_1 - 0.666666666666666*G4_1_0 - 1.33333333333333*G4_1_1 - 0.666666666666666*G6_0_1 - 0.666666666666666*G6_1_0 - 1.33333333333333*G6_1_1; + A[79] = 0.666666666666666*G4_0_1 + 0.666666666666666*G4_1_0 + 0.666666666666666*G6_0_1 + 0.666666666666666*G6_1_0; + A[80] = 1.33333333333333*G4_0_0 + 0.666666666666667*G4_0_1 + 0.666666666666667*G4_1_0 + 1.33333333333333*G4_1_1 + 1.33333333333333*G6_0_0 + 0.666666666666667*G6_0_1 + 0.666666666666667*G6_1_0 + 1.33333333333333*G6_1_1; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = -0.166666666666666*G2_0 + 0.166666666666667*G2_1; + A[88] = 0.166666666666667*G2_0 + 0.333333333333333*G2_1; + A[89] = 0.166666666666667*G2_1; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.5*G5_0_0 + 0.5*G5_0_1 + 0.5*G5_1_0 + 0.5*G5_1_1 + 0.5*G7_0_0 + 0.5*G7_0_1 + 0.5*G7_1_0 + 0.5*G7_1_1; + A[97] = 0.166666666666667*G5_0_0 + 0.166666666666667*G5_1_0 + 0.166666666666667*G7_0_0 + 0.166666666666667*G7_1_0; + A[98] = 0.166666666666666*G5_0_1 + 0.166666666666666*G5_1_1 + 0.166666666666666*G7_0_1 + 0.166666666666666*G7_1_1; + A[99] = 0.0; + A[100] = -0.666666666666666*G5_0_1 - 0.666666666666666*G5_1_1 - 0.666666666666666*G7_0_1 - 0.666666666666666*G7_1_1; + A[101] = -0.666666666666666*G5_0_0 - 0.666666666666666*G5_1_0 - 0.666666666666666*G7_0_0 - 0.666666666666666*G7_1_0; + A[102] = 0.166666666666666*G3_0 + 0.166666666666666*G3_1; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.166666666666667*G5_0_0 + 0.166666666666667*G5_0_1 + 0.166666666666667*G7_0_0 + 0.166666666666667*G7_0_1; + A[112] = 0.5*G5_0_0 + 0.5*G7_0_0; + A[113] = -0.166666666666666*G5_0_1 - 0.166666666666666*G7_0_1; + A[114] = 0.666666666666666*G5_0_1 + 0.666666666666666*G7_0_1; + A[115] = 0.0; + A[116] = -0.666666666666666*G5_0_0 - 0.666666666666666*G5_0_1 - 0.666666666666666*G7_0_0 - 0.666666666666666*G7_0_1; + A[117] = 0.0; + A[118] = -0.166666666666667*G3_0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.166666666666666*G5_1_0 + 0.166666666666666*G5_1_1 + 0.166666666666666*G7_1_0 + 0.166666666666666*G7_1_1; + A[127] = -0.166666666666666*G5_1_0 - 0.166666666666666*G7_1_0; + A[128] = 0.5*G5_1_1 + 0.5*G7_1_1; + A[129] = 0.666666666666666*G5_1_0 + 0.666666666666666*G7_1_0; + A[130] = -0.666666666666666*G5_1_0 - 0.666666666666666*G5_1_1 - 0.666666666666666*G7_1_0 - 0.666666666666666*G7_1_1; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = -0.166666666666666*G3_1; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.666666666666666*G5_1_0 + 0.666666666666666*G7_1_0; + A[143] = 0.666666666666666*G5_0_1 + 0.666666666666666*G7_0_1; + A[144] = 1.33333333333333*G5_0_0 + 0.666666666666665*G5_0_1 + 0.666666666666665*G5_1_0 + 1.33333333333333*G5_1_1 + 1.33333333333333*G7_0_0 + 0.666666666666665*G7_0_1 + 0.666666666666665*G7_1_0 + 1.33333333333333*G7_1_1; + A[145] = -1.33333333333333*G5_0_0 - 0.666666666666666*G5_0_1 - 0.666666666666665*G5_1_0 - 1.33333333333333*G7_0_0 - 0.666666666666666*G7_0_1 - 0.666666666666665*G7_1_0; + A[146] = -0.666666666666666*G5_0_1 - 0.666666666666666*G5_1_0 - 1.33333333333333*G5_1_1 - 0.666666666666666*G7_0_1 - 0.666666666666666*G7_1_0 - 1.33333333333333*G7_1_1; + A[147] = -0.166666666666667*G3_0 - 0.166666666666667*G3_1; + A[148] = -0.166666666666667*G3_0 - 0.333333333333333*G3_1; + A[149] = -0.333333333333333*G3_0 - 0.166666666666667*G3_1; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = -0.666666666666666*G5_1_0 - 0.666666666666666*G5_1_1 - 0.666666666666666*G7_1_0 - 0.666666666666666*G7_1_1; + A[157] = 0.0; + A[158] = -0.666666666666666*G5_0_1 - 0.666666666666666*G5_1_1 - 0.666666666666666*G7_0_1 - 0.666666666666666*G7_1_1; + A[159] = -1.33333333333333*G5_0_0 - 0.666666666666665*G5_0_1 - 0.666666666666666*G5_1_0 - 1.33333333333333*G7_0_0 - 0.666666666666665*G7_0_1 - 0.666666666666666*G7_1_0; + A[160] = 1.33333333333333*G5_0_0 + 0.666666666666666*G5_0_1 + 0.666666666666666*G5_1_0 + 1.33333333333333*G5_1_1 + 1.33333333333333*G7_0_0 + 0.666666666666666*G7_0_1 + 0.666666666666666*G7_1_0 + 1.33333333333333*G7_1_1; + A[161] = 0.666666666666666*G5_0_1 + 0.666666666666666*G5_1_0 + 0.666666666666666*G7_0_1 + 0.666666666666666*G7_1_0; + A[162] = 0.166666666666667*G3_0 - 0.166666666666666*G3_1; + A[163] = 0.166666666666667*G3_0; + A[164] = 0.333333333333333*G3_0 + 0.166666666666666*G3_1; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = -0.666666666666666*G5_0_0 - 0.666666666666666*G5_0_1 - 0.666666666666666*G7_0_0 - 0.666666666666666*G7_0_1; + A[172] = -0.666666666666666*G5_0_0 - 0.666666666666666*G5_1_0 - 0.666666666666666*G7_0_0 - 0.666666666666666*G7_1_0; + A[173] = 0.0; + A[174] = -0.666666666666666*G5_0_1 - 0.666666666666666*G5_1_0 - 1.33333333333333*G5_1_1 - 0.666666666666666*G7_0_1 - 0.666666666666666*G7_1_0 - 1.33333333333333*G7_1_1; + A[175] = 0.666666666666666*G5_0_1 + 0.666666666666666*G5_1_0 + 0.666666666666666*G7_0_1 + 0.666666666666666*G7_1_0; + A[176] = 1.33333333333333*G5_0_0 + 0.666666666666667*G5_0_1 + 0.666666666666667*G5_1_0 + 1.33333333333333*G5_1_1 + 1.33333333333333*G7_0_0 + 0.666666666666667*G7_0_1 + 0.666666666666667*G7_1_0 + 1.33333333333333*G7_1_1; + A[177] = -0.166666666666666*G3_0 + 0.166666666666667*G3_1; + A[178] = 0.166666666666667*G3_0 + 0.333333333333333*G3_1; + A[179] = 0.166666666666667*G3_1; + A[180] = -0.166666666666666*G0_0 - 0.166666666666666*G0_1; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.166666666666667*G0_0 + 0.166666666666667*G0_1; + A[184] = -0.166666666666667*G0_0 + 0.166666666666666*G0_1; + A[185] = 0.166666666666666*G0_0 - 0.166666666666667*G0_1; + A[186] = -0.166666666666666*G1_0 - 0.166666666666666*G1_1; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.166666666666667*G1_0 + 0.166666666666667*G1_1; + A[190] = -0.166666666666667*G1_0 + 0.166666666666666*G1_1; + A[191] = 0.166666666666666*G1_0 - 0.166666666666667*G1_1; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.166666666666667*G0_0; + A[197] = 0.0; + A[198] = 0.166666666666667*G0_0 + 0.333333333333333*G0_1; + A[199] = -0.166666666666667*G0_0; + A[200] = -0.166666666666667*G0_0 - 0.333333333333333*G0_1; + A[201] = 0.0; + A[202] = 0.166666666666667*G1_0; + A[203] = 0.0; + A[204] = 0.166666666666667*G1_0 + 0.333333333333333*G1_1; + A[205] = -0.166666666666667*G1_0; + A[206] = -0.166666666666667*G1_0 - 0.333333333333333*G1_1; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.166666666666666*G0_1; + A[213] = 0.333333333333333*G0_0 + 0.166666666666667*G0_1; + A[214] = -0.333333333333333*G0_0 - 0.166666666666666*G0_1; + A[215] = -0.166666666666667*G0_1; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.166666666666666*G1_1; + A[219] = 0.333333333333333*G1_0 + 0.166666666666667*G1_1; + A[220] = -0.333333333333333*G1_0 - 0.166666666666666*G1_1; + A[221] = -0.166666666666667*G1_1; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stokes_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stokes_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 12 + // Number of operations (multiply-add pairs) for tensor contraction: 42 + // Total number of operations (multiply-add pairs): 57 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + const double G1_6 = det*w[0][6]*(1.0); + const double G1_7 = det*w[0][7]*(1.0); + const double G1_8 = det*w[0][8]*(1.0); + const double G1_9 = det*w[0][9]*(1.0); + const double G1_10 = det*w[0][10]*(1.0); + const double G1_11 = det*w[0][11]*(1.0); + + // Compute element tensor + A[0] = 0.0166666666666666*G0_0 - 0.00277777777777778*G0_1 - 0.00277777777777778*G0_2 - 0.0111111111111111*G0_3; + A[1] = -0.00277777777777778*G0_0 + 0.0166666666666667*G0_1 - 0.00277777777777781*G0_2 - 0.0111111111111111*G0_4; + A[2] = -0.00277777777777778*G0_0 - 0.0027777777777778*G0_1 + 0.0166666666666667*G0_2 - 0.0111111111111111*G0_5; + A[3] = -0.0111111111111111*G0_0 + 0.0888888888888888*G0_3 + 0.0444444444444443*G0_4 + 0.0444444444444443*G0_5; + A[4] = -0.0111111111111111*G0_1 + 0.0444444444444443*G0_3 + 0.0888888888888887*G0_4 + 0.0444444444444443*G0_5; + A[5] = -0.0111111111111111*G0_2 + 0.0444444444444443*G0_3 + 0.0444444444444443*G0_4 + 0.0888888888888887*G0_5; + A[6] = 0.0166666666666666*G1_6 - 0.00277777777777778*G1_7 - 0.00277777777777778*G1_8 - 0.0111111111111111*G1_9; + A[7] = -0.00277777777777778*G1_6 + 0.0166666666666667*G1_7 - 0.00277777777777781*G1_8 - 0.0111111111111111*G1_10; + A[8] = -0.00277777777777778*G1_6 - 0.0027777777777778*G1_7 + 0.0166666666666667*G1_8 - 0.0111111111111111*G1_11; + A[9] = -0.0111111111111111*G1_6 + 0.0888888888888888*G1_9 + 0.0444444444444443*G1_10 + 0.0444444444444443*G1_11; + A[10] = -0.0111111111111111*G1_7 + 0.0444444444444443*G1_9 + 0.0888888888888887*G1_10 + 0.0444444444444443*G1_11; + A[11] = -0.0111111111111111*G1_8 + 0.0444444444444443*G1_9 + 0.0444444444444443*G1_10 + 0.0888888888888887*G1_11; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stokes_form_0: public ufc::form +{ +public: + + /// Constructor + stokes_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "c9e96217bdf0b022e1a9d4f90d63fa9416a1eee23b1a54c975139f2f6b9c7cdd37541ea9b58f1cb326bf42f666b50c6dd5e092cd12a6ee87d8ae82cf4a165465"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_3(); + break; + } + case 1: + { + return new stokes_finite_element_3(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_3(); + break; + } + case 1: + { + return new stokes_dofmap_3(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stokes_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stokes_form_1: public ufc::form +{ +public: + + /// Constructor + stokes_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stokes_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "b3978d478cbb126b3ad3d96db8c676051eff4290c965fd25417010587d83bcc7aba002f10838a92bdf2eb21220165f78c8d99743bd98f2c7fcef11cfc5d7530e"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_finite_element_3(); + break; + } + case 1: + { + return new stokes_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stokes_dofmap_3(); + break; + } + case 1: + { + return new stokes_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stokes_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Stokes +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new stokes_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new stokes_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stokes_finite_element_3()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stokes_dofmap_3()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new stokes_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/stokes-taylor-hood/cpp/Stokes.ufl b/demo/documented/stokes-taylor-hood/cpp/Stokes.ufl new file mode 100644 index 0000000..4f33cc2 --- /dev/null +++ b/demo/documented/stokes-taylor-hood/cpp/Stokes.ufl @@ -0,0 +1,36 @@ +# Copyright (c) 2005-2007 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005 +# Last changed: 2011-03-09 +# +# The bilinear form a(u, v) and Linear form L(v) for the Stokes +# equations using a mixed formulation (Taylor-Hood elements). +# +# Compile this form with FFC: ffc -l dolfin Stokes.ufl + +P2 = VectorElement("Lagrange", triangle, 2) +P1 = FiniteElement("Lagrange", triangle, 1) +TH = P2 * P1 + +(u, p) = TrialFunctions(TH) +(v, q) = TestFunctions(TH) + +f = Coefficient(P2) + +a = (inner(grad(u), grad(v)) - div(v)*p + div(u)*q)*dx +L = dot(f, v)*dx diff --git a/demo/documented/stokes-taylor-hood/cpp/compile.log b/demo/documented/stokes-taylor-hood/cpp/compile.log new file mode 100644 index 0000000..5f7ba02 --- /dev/null +++ b/demo/documented/stokes-taylor-hood/cpp/compile.log @@ -0,0 +1,738 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Stokes + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Mixed, CG1(?)>' + Unique sub elements: 'Mixed, CG1(?)>, Vector<2 x CG2(?)>, CG + 1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'Mixed, CG1(?)>, Vector<2 x CG2(?)>' + Unique sub elements: 'Mixed, CG1(?)>, Vector<2 x CG2(?)>, CG + 1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0582302 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 4 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 4 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00522 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00502 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00475 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00479 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 900 entries computed in 0.00474 seconds + Shape of reference tensor: (15, 15, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 900 entries computed in 0.0047 seconds + Shape of reference tensor: (15, 15, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 900 entries computed in 0.00465 seconds + Shape of reference tensor: (15, 15, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 900 entries computed in 0.00454 seconds + Shape of reference tensor: (15, 15, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 180 entries computed in 0.00456 seconds + Shape of reference tensor: (15, 12) + Primary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 180 entries computed in 0.00446 seconds + Shape of reference tensor: (15, 12) + Primary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [12] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0903139 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000355005 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 4 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 4 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.594072 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000649929 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Stokes.h. + +Compiler stage 5 finished in 0.00156903 seconds. + +FFC finished in 0.745597 seconds. diff --git a/demo/documented/stokes-taylor-hood/cpp/documentation.rst b/demo/documented/stokes-taylor-hood/cpp/documentation.rst new file mode 100644 index 0000000..72d0391 --- /dev/null +++ b/demo/documented/stokes-taylor-hood/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the DOLFIN Stokes problem with Taylor-Hood elements demo + +.. _demo_pde_stokes-taylor-hood_python_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/stokes-taylor-hood/cpp/main.cpp b/demo/documented/stokes-taylor-hood/cpp/main.cpp new file mode 100644 index 0000000..9e90191 --- /dev/null +++ b/demo/documented/stokes-taylor-hood/cpp/main.cpp @@ -0,0 +1,118 @@ +// Copyright (C) 2006-2008 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2006-02-09 +// Last changed: 2012-07-05 +// +// This demo solves the Stokes equations, using quadratic elements for +// the velocity and first degree elements for the pressure +// (Taylor-Hood elements). The sub domains for the different boundary +// conditions used in this simulation are computed by the demo program +// in src/demo/mesh/subdomains. + +#include +#include "Stokes.h" + +using namespace dolfin; + +int main() +{ + // Function for no-slip boundary condition for velocity + class Noslip : public Expression + { + public: + + Noslip() : Expression(2) {} + + void eval(Array& values, const Array& x) const + { + values[0] = 0.0; + values[1] = 0.0; + } + + }; + + // Function for inflow boundary condition for velocity + class Inflow : public Expression + { + public: + + Inflow() : Expression(2) {} + + void eval(Array& values, const Array& x) const + { + values[0] = -sin(x[1]*DOLFIN_PI); + values[1] = 0.0; + } + + }; + + // Read mesh and sub domain markers + Mesh mesh("../dolfin_fine.xml.gz"); + MeshFunction sub_domains(mesh, "../dolfin_fine_subdomains.xml.gz"); + + // Create function space and subspaces + Stokes::FunctionSpace W(mesh); + SubSpace W0(W, 0); + SubSpace W1(W, 1); + + // Create functions for boundary conditions + Noslip noslip; + Inflow inflow; + Constant zero(0); + + // No-slip boundary condition for velocity + DirichletBC bc0(W0, noslip, sub_domains, 0); + + // Inflow boundary condition for velocity + DirichletBC bc1(W0, inflow, sub_domains, 1); + + // Boundary condition for pressure at outflow + DirichletBC bc2(W1, zero, sub_domains, 2); + + // Collect boundary conditions + std::vector bcs; + bcs.push_back(&bc0); bcs.push_back(&bc1); bcs.push_back(&bc2); + + // Define variational problem + Constant f(0.0, 0.0); + Stokes::BilinearForm a(W, W); + Stokes::LinearForm L(W); + L.f = f; + + // Compute solution + Function w(W); + solve(a == L, w, bcs); + Function u = w[0]; + Function p = w[1]; + + // Save solution in VTK format + File ufile_pvd("velocity.pvd"); + ufile_pvd << u; + File pfile_pvd("pressure.pvd"); + pfile_pvd << p; + + File pfile_mf("mf.pvd"); + pfile_mf << sub_domains; + + // Plot solution + plot(u); + plot(p); + interactive(); + + return 0; +} diff --git a/demo/documented/stokes-taylor-hood/cpp/plot.py b/demo/documented/stokes-taylor-hood/cpp/plot.py new file mode 100644 index 0000000..c5efa01 --- /dev/null +++ b/demo/documented/stokes-taylor-hood/cpp/plot.py @@ -0,0 +1,9 @@ +from dolfin import * + +# Plot velocity +u = Function("velocity.xml") +plot(u) + +# Plot pressure +p = Function("pressure.xml") +plot(p) diff --git a/demo/documented/stokes-taylor-hood/dolfin_fine.xml.gz b/demo/documented/stokes-taylor-hood/dolfin_fine.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..6f071e4bdc5c7c4478a746fdd0baaafe3c08b3ef GIT binary patch literal 88283 zcmV)RK(oIeiwFQ7^h!|x1B{i;P8%^4h4(zg$onR~|JR7Xu20ZDK$Q%1q%c7wD$u8| zDY<47kJv=A#$V=KpW`z(cdw88;m`PdoDTCQ!78U=oVSPFG(T+8&mZ5vdAhs3y1LmN z_V?2~)ZO#(`eU(4zfY&9>-GBOED#5v633R2pmZ5;;|L>s&7KkrWCsg|grM(eZttn$nl>(u zeMUKks`xdCjAs4T~b#QC1nBP7QIXyhi6)|*Y_6X(ycW` zw|;S9Ylo7>hcAYpkn+$6WEzHyk0-17~DH|_z7q*6A!_S#Ag7%w;T19w% zwRNvpfo4>{4LnN$ndg1q*%KquiZLUO5JYgv@^ zkMVLzVi*Qt=#`B5-~VDI3zRNwCi^lb;vv*)iJeAk$}EEnxEHAj)3e8zhAF`y$|s}0 zNRxOtv+#$g2*7Y6i**N2;14y*-72X1TKDdRPSUBk56dL`gt&@{4n=Qv@G?EL$5V6w z4WiKmso9ph;|X983Y@dr`6<^3aNs0S49Ro27Xo{b%s=a|s^OF3xJrwss3v(@TD^}| zUu$^$4gjqws3};;(p$cbRhtD}bzTjZwpLpHy%yY8dqIp=vebE}S+D z8g*M+I0=zGbk{JH)bS>c+PxvLHVY*dq!Z`qCTXK!=Cn~{lmkE7DAbK)LWWWj9-?vM zU|AOO1}`n{?nRA5-Dbscu8T=~c&Tx4BAg`7$~kxAGDb}>hQz*yq-za>Z>2Z03d>z@ zYZ#m}4Ut;e94qjpqu+>3l+vMU5a zP>K&ljf0halYMK?8wac9X8YJ4WB-`WC=nLb|w5F-2Y-P*1QRB z%v5isv}1%M_@g)Co84g@0UkbA$rVABUyvuZHQ-@rvR{o6Pj`q;aMw+ec{&W(Hs(j~ot0|M6U*_SvR$uM)!X~PVsaN5nt28bH_vH_UHR3TJj zB+`%0`il1ED&4RO5b%^};?@q8zSxx@G?E;{P)15Nt7^H^*oV79qcQ|^BSst;*4af> z(ZZ{-z-+Cp{%cpzI*2?(mAgW|+CraBZ;3qYgSL3SC#WN#*J{CMs0K#G=|DuDGF8vX`N~YV0RWD49ajIY4_9O2rFW zQkVj5 zwZU-=GEE-jLKmvum^?0@|Jop?uGk=>$E&%w*DFX9uHSa{_~454K#JM0Q$~(eLAF4O zrrLQTM}{EpK&p!MK#Dt8gA4eG-r6zYLyFd5HaHX0Ux7yE_B8!ury(>c^vv;*g zQ1-51iO1emF`?MI(k2OeS8w94X}G}X8ZP5jEnD)hX(viu!|18Gm|trbxrY>T6Z=B~ z*75u7M}|xd@+FB4)_IAPn1C9JNEWqB9-CPmdCLrzyEc2<8EWl9zc{ zD1zUK!Ep7=YUfO4g-F4y)d{0C93}BKE%Md4sgiGpVyH!BT)-nVsP5-U(Ln1 zFle;JQPH-VtJt9h6rDT` zYr5T*ZyEHVQlCJr--l!Q2Vo?(dho&rIjHkH&nl3cTdiuB88-s@-fwpQKPXr_-9LPq zTapAJ2n4UhLs0L3vBlV!s{X3)38NjQfld;s$-GmY`Y$RbdJHtOSCklb1)$oq;ez|C zBf=t#lN3*c#e5Q`a!~-)-oUF!X4}R5GXT}1BhLZoa^?SksadD3^;sk?E5OvIA~>e? zFPKDi4CCbe@xfopo$Ptl5pJej#|~Gyr}|%qpVf)-7`Z#t4u7HXc+lZYv&zK5gQ@L` zOPOrCfl#&_jlNa)=hw zIJ7ePK-A{V-zX*h-WainD&HH_La1^vhYqTIY1ufvb4*?@<*izYSg*+*VuSf%@BvZt zIl_W*N0Pyxr11O3kxJG4j&JRwiyt9EL^3MuI7jUBgL>AY&b~J1uUF= z;E@AQ<>9$6b~+3GKpGUBsR!a2Ar@t#sEy2^y~k8RIVUttBXh*pZCI}{@?oi$GWdnX z{aG{(aY4?yrQwS395@V{XVTDo}mz(@8Hwp+AIzc?Hcu^kj>;6kn z3B;NpgyMMK=$(W$99zKecUDdAqSS*O?#J-A^4D{Q%QTL&yCWuRcD2{-ys!KJvHV@b zN401&myH5s+{z%w^X?y+C>W~%11LzyDcqI;zQ2gkJyaQfjodeO?~rKV!;aS_^Ck-G zpXv@L@qG6cvi^_42`VxI4iYP!_N-5BXkbo6!gVU#6*g(zGrzV5_Uo1!Agw9b4u4Y*|Yuo=Wp+jcXTyQzgUL4S9Wa2H6QFj(vhR_M~*1<_$uvhXMR zq>{pOpKKO!XTV~xBhPkna#!>dTRi@AChcnc{eDZrO^VPNc*O`$$I^&M-k6!E7l(=F1^jn2B&Ou~s1!q1KKLfUdBg=wmjqJ;MfrsF`CQ~t!CJH`ld z)ZuOCbBRA8aF=My`K+gY8a7%_YB!!!G|CgM{A3EzBg*})qmh|Ml8HTN52P}M@5T{< zZ`b;t2GF{h9K&vZ?mQBJ;)(uzy1!9Yv?DVR6&h9+$ru9v+#(i?t?+qG1k$Xb`dpo& z_9&$3e(B$~$g$CziYr{`aS?w)VkIxPPTSEi($Ai~Dxn*nx#nA;+Y*RJrWZ$jxd)^% zN!Xdv9m};(Nco9c#4n5k64$LF{amM8Lx%XqW)3@aUlwkx^{N!EnV zB>Q>Wqag$Qlhe&`tAsD={OTMhZA-DA=PCgK!A7|mviCj^X@h&%o?0`C-Q+h{jS%3UtQX0)3khHKW)x8KplNKq`(KrS^MG z@)@UTKesNWlbGyN&kRF#B{|TxV93zCP)cqyii)-VQ7SRc<2EBze*#uhDgi`eph=Pg zMbLawT7=^eSEi`0m%sw3*L7Nw9Owfy!jb_nz(#p;pwSc_?<6p#U6-CdKu!vE#+=tL zNrJ{|^CtoFy4USI8}MtsgyWH6B)cgE<9exEXJNKx4@rX}8eVeN?QIJ8EryM?iWjAA z_0xTeghp*WzA@_KtNuMoQsj@p^ozMx8YNAV20j07(QkhJSVDh~;@KEu@F|uS445uR zN)?Gn#jjSG%7(3@fn+Z62p0DI@o{BW62l;@ zCEMVu|HfA2?MnVx72ruG<`6<)PIdLGf)Q$rZQqbAXoZnfc2wc2MfYyf!CQL5dt%q5csMTI9#0xo13p?{DEh4E_o6oF@7x2@qk{eqC{ zq;P{dMIhQxB&VFR%=-T|4;o;&$?gtvo`oplLHF0?|J$09PJbVoeMX5Q#^7d}agJDG zyYB8%#`NR9Jb6(3_NQO{MF4kQ_rKUy+xcv`DGuAcp_b{iWU5>xsWFE%+cI62lG63WkSG% znr*Z@GdlebBGj*fK8-_92*003gSDGC2>T9U1l?*#Yf2=<9t#9{S$3KTwIGYPg7xYI zcxPmHD8U&DBD4rKfm)zsJkh~~#zm&a=c6E1&4s$RoKek=%um`>Xuh(sUF{N!J(fbG zJ%Y5ba-WkbEEMR-Vocm7EWWDUJEeTIw3~OFu@gGjzW@*_QxXYbYA$r!CvN?}!+kHS zigEKomkefCQy4*?IGlyIWN%W{9*vsmkoa^jF}NzI&=^bO?`!I$s;SU-UsvU9zKF!A z8x1AVZZmRH{uNTyd{@q(h>FP0KpKi7&T$!bgHL`Xhn*0{E+6Vim=dg}O@&4dMLJOY zVc}*?g+>KH^>Za|WvOFLg&tW*fQlTZ*j>|HXvMAqtoe3A@#w)`!SD)IBqlv!e;bw) zRA1NmpR)+I1DZVh0RX^<5`R}Usj+naUzf;n+El2o1cT^8?|f+JkB@6Tk}w2ey<7t) z2tN96>|k#u@z16J=5t+C2uZ$0;XUc8J-U+}E*FSf!}jK+!CRvyqV8iD^so|#{1&j# zvz&C=mcy&xMJ%+=Q&1#O7r96%V4+qypJc2mygLAe`s-7i|1H?}sNkm@{Zpm13y>@T zg}M)W1POVRY2IWR8Uq<`O)ye6g_|6xV{BZdrXv7_*85NLnO9%E)Sryh$jNSURmmt? z>i`s5{Wwvws!5f(ZBW>qZs%b$DR?p-M(DbSyRl^&28#_lysv9Jb=zK1t`?(aG@P)z|58PC30f~1&sS1 zWh@-PLg$ACiV9$cD%gO9u1Y)r-o040LSUi3k`$i0yp`Z5fQ4@F?w#5Kwei%PS2;x4 zqYZNvm9*y~a(#}RY6k5e>mkRC*KQ90MHEntVb?h{T(Xo;vb$PW`FPX_U^oDU)|q^U z8beu~2awQC1>8_|j9oa9#CnEn8(fH{pAF@v>SSpX##_7XphVQ9KV#D2(|WEcqR17F zLBITLj_uFyA75vb?LY{^&@GJ!i2L8zgZGj6(=5Q#+KwQXkoma^>MqLyk?#jNMBmj( zLcNlud?!Gmw|2Tg)_o%H;GNK2GBu5ZJd&v9Ujpm^Ftj^QWR!g;)VJx z5HmXMu;R6`{1U53yy_9+hs^#2pf|G?#nLr#r*I%&; z-IJVZ2v$>ZL?6V#LhU^FlNh!pLLp#icBr}RcDZWEJ78$X-Vog$V!5rCpva3D`xn$8~(#J+yxrZ0WA1>fTN3>FxLMlT0WxDnQuHf2X7=*248>^W87yHly;?S=Fcuks^ zfRMzGAS0oE(NcC@rEx<8p>CH}4&{j{C_Gq%$QPpuoK!yNl*IddGj*} zMbbtCq4nkG6=pvxKo_jho7jhVoIOEUMg47lmkP+(PK^FAeTSd`E!^XY~4q!=Ra-f|{w? zQzKpsD&p;OypvTx2(kbUA#$TkFmLLrmyj^%v6#yd)KnexncQV0(#44@*%@dw8F+7Q zK@n%`koLFFa9G$1W55}6HGlL<3AJ4b4TE|%CWk=nH!=PnwTGUDzAOkO9|vXeap=gj zKki3Gb(K*Xp9Y|#;5ZS*q~Se(`eX+y`ZO5H!g~j$6ZffAYDU-MEcN=&h^vldqoA1+ z4^7LmzIp1dxD0EbX2-=^=IR-@jPVAOT7HjQbk(?Hu7>8+)PQJS;U8bumLx$4!mcDX zLA?LP7WRW!wY53G)Y!JR5cBx+D+1(L_MnBz!VOM5qt3-CpiC597!35>HUysvJ`~c8 z!9W}IWW2{(ri!k?Ksz{VgnPAKOy;SO^Oux%RO_&=nsKPPSav%dPJ48 z+tqWiGg)S|RsPjO{Ga(k4AgmdT8D`M@G%f*)h3Jf8_KZ|l*GFc0PS8w9g(25Uv5fB z)+dKI0O&=qK<)vGH#`7ntqL1N-7-~x637LuEi&kReM#@9M)=BGxgQ%GSN}x|H>1XS zw@sfof$-#GvE=Gl5^*a5YT~2yqth<9QcNP=R3vudpHks~R8Z85CAnDV0R`0s*n{3x z$GcS}Nh)Z6-lq$S^$ENh1VHUl8dJk{0X~6}_?DiVeT%UP;ejr>grC z0rfnRse6$vh-aOB;TFsdKg$z(f!^&zKrQV3qHv~Unf5IcRt}Wz`_*#&ziQ#2;E&ib zxh)t;)AH|HPm0Q28Z_2oSi;>)#UPqNm!JGVw^X0t{e|m#%`YR@t<>j5JB_Kk1^gM( zgjobdZ?^crgg=ipT=k7#V$nb+ZjPcdbX2DMcunK&Ge85mE1JjOLAjyHtRM6rq2#U{)-|?jd^XxZ-@G||H0GTgbr#sg>)EFktR%H7hCUv6er_XM=@rrj8XQ24Ur2RNB4?6SmY#zIx-UVv zD~*M*$H^Gx*@3r|6KI#LrLFX+o_R(89h>8e?j1gBj7EJ{SFCyVFX!5FkHs}1`1wjd zuTh=QzeUeB7&&0!TR`w233LUTAn-EoigF7ifu2RoG%wfZ%1*U|Mi|?XrI)Az6w%Lf zvDlAe3}-_N0|#54711>w*2 z2)7_>0P)Pg8H!BICf|P2{Fc`5rH$NW?pC%^X!O&nED2idLD|w?wpowSfMJE|^n)DG z$>z?m7|NKIBc@T9?f z`2dyLD4Sg`AO*UXG1;cBQ0fgqGLs~C;uJ*{f)uF7oe9`S4Iyi9EP9=+cyh)!1Dfdg z8rw#tMgYx#?jm;@J(U?rykRq-iM^x!)t;a=RBtxDNcW>t`hz?f=!Q=~#~3Yn-cbRH zZT+t*cYEcN21fKaCq`Ags*dg^K-XQnFKcBsQKjf4Ko5PRmG>iZQULyc2Q#KCvD?&O zPylNF4S=k4$Y3LQbxVLdjojkdhZNsAY(#Wb>5OJT^C_wxtC3f2)|7x&lFc~BL!pyq zKoejGz0$>Iie*9#sLd?)oEi%4vKZX1kBC&?a^$HSze6l}U4<8b6zKU`d)wsy1aS%) z;@3~O@Q>nM#b<&dP`mbMzHwKh@z??S(3H!zt*BkFSp4(-$d2EmZia6N{n*{T^LvFv z2z12%l$kv@e9O^b$n+Yu)d&-^Y%~d4`OB9g(CP*ePmL_M6C)`h)Z8Emn&A45erT1v z0g6CNs>i3^5(Z{488pwUmUQKuRI*}_1^q?EkkFL8OYj;Ri|gxch4KFQI-?tbK^TUv z1O(!;|6&I{9gq8{2Z&l#G$c-JgMzk}D5TGD_NIx?xT5f=vvyN}|Yb)}7VsH5v6J;Ox}R>4T~>)!1q ziK<*zN{8IuhjWS&hU43qyCVMVQrG^cKzEQ73Dxn&hFo9>V}$s_c$;>{09{ zgANe-Y&d?>3bn_5!PB0^OPu{X@72B@YQiHvPL0BFonzB8 zY*Vuz!mc34ff$5+DU(1<{{OKBX@xnty+^HR6u<_%4;@xQwRa~1KirWn4 zfzYhT7pFn8Y7ulM4kt9S{dq(4XsKT~2-lz^9b(I9+~L_iwp8~0RNz6e?if~4uCh3{ z;oZg@(}SoA!DaZf9W(Wd;axeLCC4ry|%u=!r!Q(sF%J!7$zo z8*@VCFe~m8bwP2rllj}q_W?$<>zNOs1gKy%M7|E1_{-)=(Q2?+Wi+s!p*ZR-v|;j0 zzl}2IyDIQQLc=?A?XoNq-$fvF2-IZ5r8q{=TfJmhK6+oOywEUcK55*AtsEq}3=jq_ zrBVVRp)B9v!%&ToYu50tO0I@MJ^y4H?0&U4B~J0l@S(f+$=(EnK?7mqDU{Xtm;`kn z8&;*)B~I~X9A{q0dR{=}xU?-;M%HReF)TC=nu&pSJ2m7XHqCLFPKb492nD%|MnSz8 zaUQw~en#VigBux;WJZsK2oZ z`_>NiU;W>UKfccB$blGyp&i{2uNQFtjUD8}kDsUjCK=m{K^D^AMtrncs;Zs|rk(59 z<Cy_#*Wf=NclN zDmTFb^)@L6vfgqnZoa7G=In4a=xW_B1ey-q`dA30FhD>LepK~c37L}s|FreoIoL`T zCd7vV3TUf_-(>N~VaG_U)a)}{K+^>>7CGE+M!UMd)Xv{gaJs$>_}fG(L%+Zl>G)yU ztLRl13HWD@*7)%y*qi|ew8}Zk$QHm*e-M5~RdzQjTJl*$p%v=`PpfTI9Y2Dgb)HaS zYExAebxVu^NmTYwA|invsJUNYthw-l{SXIou)+4L%1}M{2P5#+hg_z`Yqr$FA58WR zxN{#T)%1@s`1fE`>Pul&us|&r`f_zh)CwkqQ>df9>`~P_a-emSTt;l&|0X)L98>Tw z(gWTu)*+&xXKXyfJzYIXrj6or1;c4=%_*WrzdDMv+69rS)5c};@Cvt=0zcD+mDaztH7*l}GEpZ(;8khkGO5<-v43~lTnwv*8`AmVFqf2mLxn} zMX{OOjjGy)8BkGNLrTr-%0`6fCn)xFrn`(&Q@M-Ni~hh2CL`y^x(H%Bv0n5-bSVdj zVn1y<#SssrL{mSIE_;ioFl{$fE}T*a^oWZl9VyTWKZzsP!I4|#;z6IB%T6zaP@gLF zxr`F$>puR8s6wB4ZQ_PXSIhmNFZ_%sB)QJLNpvod{~Xuc^&1sS;A4#O3M#Wec~eDW z5NHJDB~$%P+>Sy1GbJwvODF^s!XVH9b?n!4wI_-3EIU*4=@fY-B94du?1TSuTPlMr z832`0x6%>7;|&i^O!#TDVq_na6{B&A!DW?soZ&g?mvvONtvUXJgnkw6{}1BGPCSN) zCf^lM%%|PQJ?dYCcmzT*pLXh*QPO*>u}5$Q)SQwpek+EE3JyzcP+uZxaS>Go1f=P zzXqrQx_eL_GL?!%3XLR2Jg0r``0#ZmIS#`x5d4xhlkNY1Y(xX2QZ9WDkwB5ntrvH3 z!GDrPo-&3p*LI6 zJMUm6v!CYXvhXGU*=T-t3UaPX0{ht>%}aq{xuOZ|XDd%ac6<)tqxgaNCB5o$ud@Kg z6*Mw4!^{W-`@Nt97dUkqNfaUfS%gTUtn``yf9_AR@O)yKJ&6Jo*Z9zx|8`f7kuKQp z>vPjO@=#7FTgZR@MD6B(xziA$d=r50uw(+Av1bYh6?HT&~&z{aN+Qwe)bnVBv){TF>h=T%_Sewo(YR5vpE0 zmZr@7*9zSU-4vSjB-R`eXl76IXoho-=I_NGt-TKxElprhJcOb}GcSopv+#pQ_bdZ! z(Sy+@(7^|w(8;Hz(33BgLNC4r3I*R-fu`b{9&J1b720`dD|F`xqtMzKF}b%|7q)Qw9 z?xE`OOjRKll~VG4`^g8P15la9kuGg}e{-t3P+eu#M^za=|7nGSh7OS-Y~c8>N) z#fB1m%eW!kyD%@x9Q~1s4TataXtX2D$N)aac%=G=Vwx9SjnBB%?Yk&YEMR<6x!$ zS>oDE;lgA76G=rVSkW3J!;@k|!n9>U2zS$U${Os1zKnw4t00sKh}Q6=a-|7xY0%*{ zV344pL?lZj>zq&M+VwFWT$9T>p)8rEVuK7M6YGTYdVkFq&bODcTCnLj5biXINQHH)^ZEQ>*!gfjaxsgrD@*yJ{`fi* z+lXNp2)3lxB>QhHqJz^gKyC{lWazi{`>zVwLId93DGC-_{8LQgKxy{qik%*Yq{SCw zJf*>QkgStALk^rVw`yxZcV77Ig___YW4UIe1M0wHmlxu}jOe*Q5A*@k)+4kLfw0w~i$865?*!ZSXk6Z=*^ z%2Avpml3Uf4oo#%&81p%wj{VxCXAu{!S z*Tvp-As7em5J%w^MNY+Whcobr$n($uerlm7dJ|Z?lMAdDg7dtzKKu-cv zVFdckd4BlRgeO=h%?%Kl?PjW~crkRc$@dz9&=H8L&%M&YT;ACB?^V!1y2HLbi+ZUl zXdnUQWM-C}m>P(x$Fp`tPqyj}gbPt(P11)^eIZ%WeRF>ruZHnkRd1-ObL!DpSJJOv z|D}&;q_nj~h(d3zWT?zth|h|c&>OPq6h;Cxbmew(%I>S-nTt-eo^lfE?LHv>sq$O( zL)jJJNCY+TPSEAQ&^W)&_PigeU<6HwsSfuQkU0hnj>@?Wfgr zki=7Uif)5B@>%t{Tz&hXSi#~Jww_?fkyt1{+|H$PpU&e|ih_IaHpG(GN`^mzrnE<# z>S`cJ`}gjQ;}P=Cz>xmJ<`eA7kt$-j+MV^L4fWKhJh?3fPiJ$d$`Kmx*yggURa=}g zB(xHy4X&kJqH+UE+7scBku@nkQ>aDFninX}qZ)bK{(emfqbAfF*g?yLT;ODTv0fC8 zJ=b)>)+-oJzN$q-5t#J{ohq}cLj0rbjBX@`K_J=^IEIb;Z|q>D42Chx z{41>-#D3nYW=x%hXzfRWXzkeQX#%I=a3 zxPRHBRyL4n{oMrz=vNz4nN8Q3Wgx5*pI12z4T-s+q4yqySNkz80AvpsT%O=EAjCEB z@QWG1>3XKBZc#mX)F8=|^_mY+{FPZQjFf!~G`{9b$?Ld5Nm)_k5D;YdxEtVUUTPj; zsjZ;D_IGfQ=(#buG}Ql+Hm#`aHKZBCQVy|qe^t4WA*Kw=i!DZPtwc^?KL%R!9vLB% z8B0+7dYF!@%w#u3%s}$pKB+vLvFzr(n}E=hYHEuxm)(rJfwp0~+Wv#0?jSoZf88>L z92B*Y4Xn1hY;Xfb%}6LT_D2`kz^IYVJML7sS8m{_`#sM^Pn#(}KLd64+UFwpm+2W$ z>OBfxIfg9Ena?gi!D=bCF1LYFn^A}k+d4nukFPUEq8J2$=#|)r2=~9($HrxTv0WO* zF+qdiTcjCjh%;UYp#PyvrpC7)jng6TmZv;I+Q+cTGnu*Cd`M~c;#&0nTr#N60oIMI zc^s8CYcsYU9?WIjm8V>bIn_K>9PLx`)@?T0vgC^fqa$;I8#GK z&6SWRKz#dT`W^xp>c0USg*zX#1XA1v1PE~V`G4SWVUX{i1)3AQ`*1bE)Z9QxWc%J; zz6*+;ZL^^Xa_Ev*J6n$SjXD=g{sDC<0U*ZR>pXd{BUC#%fE>5kW;HV+QqGNA2~Lnv zT?*`KvtSz=Ceiw7Ejb#Cc+3ypzD56m(~q!oxq=`BfnZ94ikg37D|@imOK$+Y85QwI zHNRFH<`jY6JK96-{|%bkP61qxZTXMj-1aR1^juO2q?r|-dl>}ek*c(20Nq)A;f3Rl-c-Z_fqR1v95iJPOEMuBrbh(_NdKy)>?;k%PDV#AfW zM9Qq!#f@#+kRI7tZJc!@HHp+%Q|0IM7!dMbt5O1Q90~XCP8mJows1jo4ik z#JgsI2d$Oeh{clsNG|)@#$m5b8R&q$QzfIAc_?>;_r5}9LOOCR>5=57_T8X+|C$v# zWtSWTldqNbZdyN-T|tt=FbMln2r-8Le{7-cNYNXxU19a-}AQ|@v~ z(QK}8)sfj@;NtI~P(&vudH8^5ZMgJB6qxviC6KbHF@&48x}ZOO^9oW%+tp75&zf;n z@M)ugufkB$+xubTj`S!r1JBx9b5U$FQ^HR0tmZEfZ)gO#+*sgQ2XC>Z?v@G{W}F0f zBZX7rL9ad<@T`$vg(YU(liX)7^OpB6x}n>3jRFT+M zoKkK&3|awe2L@yY3QAIic0fpV}-3O%F$3?@a2EE9K;r?dTe<-`6TZus!wo-5@CHpUSNp-UMd49S9Tm(%^aDx38 zj3=6v7tLvMwEdfd$@?WX<2Y-|)51i?-#nXSow(C|Yf{Fn2XJ58t=(q_V>Ys49CDC& z{Afx?9;tb(e-~2u$WmI}RxU1(L6)_CL|Z~~+1?BeCYSUS@f>L8$H8!%mVba9MLijx zMPC`SbDOGah~jSFx}=IGMi}nm;s80;d~cV@12r9g43ez7a%qlL zL%|jGK$5j(frhL}SGv6(Bw4f8ZYrr3~%1He*(Ri@I>)^qcopwcNDfJvGRm1a;AjO(B7aq??mk#XA z*oKB3x4gW@upiBF-T#Cw1N#tm1x5~oFl?n*m;n1P_Bd@N{_bBLz()%K8zIRRCcS@O zB6E*v+qS%XK;PuqE{@UMUx=%$A;tfkdQzIzNX>=`A8A4DZe$Pl?giOs&c~(mbB;LY zu0T`o+Z?Pui{(0O7)AeO1}t&>wd~fG>i<_5zJ*El-*h04f_LqYT%r^AqmkWH)%+hu zpmpIWTX%w*!-kRbT!0$A6L&Ij5Hb!z>kMgR=5P}EfC#Nu>LKK6>HNY1BDCVxt*y!h zM-D@(1KGW}09RRQ+tCi~1o$}Ds-1(Kl0!QI-Zl!(w^>Sz*1c4OsIoSI%NuzxFf;y#9Fa0&f>xX&Q!L#Uvada94&hfKP8j@Eo7~oJBK?> z8v4O|meXcm0h@t^wvLd@xz$shiwZ%z7gzf(-j~~M1Y7q}j&{JG!-?4-uyx?(4S3%@ znvKdoquQ4!RU}WPq>9{bZ9=VUFFUDkQTK2lxpKp91sFDQ|l~t-Thr!A0^I<&6lewHnOeA*~dtg%wz968K~$xWMRjc=~sZ;hIp{*f7mu&($clFfFRY`Am1&Ca=;CAXq z1}B8UJ8)B< zNRNH<76x?VjLXW*ujD_LJ`(P7zG|@_mr_cO4K&Vb!Jra{ zP(O8}tT)?pog?{w7?%ckYmSVpC{#rU`m&!(EhF1s9)WIHd~1x3BGIuWB zxDHnYi4H^ ziNq|E9(=$ZX}50bW7RDg8`Syg8g>g;(lZ8?Zm&Rvl2yno@u?2N{rxFbBzFMHvmV#XP>)`cYRW{y+mdo_uBQrWV@+4frvC{@ZV5&;&DJ&rKtF z@A87vfd(8uWKg!{5(OG?41m=7{SaowLxbi$nEm!OmHiQRMoAKbAP~J0D41~ni>+pB^7z>4JpeUjl4%j) z_4g>C0Y~uL)P&13_Kin#P3kG9t5lxpKAXYU7b-0!4-4+C1FQA1k>a?Vzy2o2%jh(l=iA7#6`?LaL z!2C_~K9_(BGZp{?&fPCV#WvNh5e*nn&1E4|3UW|m-A75%nB}t07t~liP}VK~Lq8FK z0R=E%i?g|08^8cyk;kF>?=j9F%B~~_Vi<&dDFIr@|35aR(%76lng>K(g0dJd-%*r; zcX-K2##nL~Yh)#Zx1W=pEUjS};3OQjVS{3F1PuesE%|L3s-Y1y3|N~WTE`|{@@YoL zj2h<7DJ#-^XrG}Qa(`b#3>(fP*N_OSRGl3*Xo|xKy&0YIhv4qJixCvw)2S-U80}mm zAorOwbwLSZ-rpLrwRXv^K8#Y|S|g4#^jhbX`o8I`l&Gpd0-UuydLZmB=_voUsJ^~; zdEnPpFWp%ULym7ZU4h|T&sLx+3pi^Zkbyi`6UyaFGVd`rHs9>MMpZwZSx*OKklb!^ z)&R729yuP?*A-RAz**~V(+UufJ^3$FSy!mN2OuHxyE zBpty7Ne3t3sYa<$3c#%0P{So^-){nm7zQ2Z+9WpG4|#k5XKhbRx|gO#bptqS`@zA^ z*p^GtVgP5YvO}`1<&g_3aMrG@KZb!h^4!Qbvs6RY2w>J~{V^m;DNknrS*z|nn$jUV zw*io~Jelg-E>H>_34pA*le(I;a#@c|ioaG{ZGR}cqGX9d5OyWCQQ-a;d(z!U_{z*4 zfU(`JC?O>OJM>D66 zx5K$jA@LxGHA(5tu%+Nqki)uzOi%ZBQc#2yLou4|maj}kDvTu7hog4sM>yp}(!6LH z6>dX{o`NW={SvjQ9ZPb{z0Sx!EDB`ZX$VrCQ9KgT1@!`s(@G%gUe(b#x_g|P0_UTI-ch6p6Fo-yj6S@ZStWY`~JSAZlj2!p<)QLO&|V`uCx zcylw{1DJMOHzgSG4@}0ZGT6UH#!^}s-4bPLhd)Q492wC7l|X90vGp+r-*)62iK`-1 zST~W76En9+?Jbh7&MPV=hx2T2q7l}R3=rv^v$v?UfLW`i0#>+)nZB-3_=gHdI)EG( z1O?X8GwOo1e_D|2G@;zy-O5e}l6kYJy+$59YGIAAwj}rGjy)WV{miRteFfmzEebly z_e!ZsQ`m4Yx@p=Otff(IxLOQ~t1I4r&&R1)V%e+7yct@=y;L}L4^&rIfA^<9o5YTD zg4*hOLmI!UYS_gHimSh2@gGb?q%2Z{{S@7tA*ijcBkr;8Jk$R)%{b$V>Dixnx7mey zdGZu>z3D`CgPzd*Dvk>NrMQQE85r#}={P5$-Xz(vPSnejHz=;IesV+%j5P%5P1HdX z;W|7}Tur)5*1s`*T3FQ)CYrrGel+(2uAqQ<9Wq&}lMbMqfQ-NAB1!wdL$Qj)(VPXIV5yr&3x6@mW@GBe-In=G4yGsxfP+@Mw!l9|wKL_1uPZv1 zAOvA8sTk4z8+))bM|eLez`0x36%rsJFiGPFmGh&h)qwqNyz5Tcj0&T3-lQI7{9mc= zgCbYsolWk4d@_0&-QVwEIB4XXB>*xieK2Q_I}LQ z59OIu_d)Ti=}<=Pib!5f?j#L-F^SjCld{^_Ecb3Y_y+2A1w{cyn?*GJXS)&(le{^am2(MFN1 zD>JN`>Dzbx5q5345d$IYN|^x$a{r4Jny#HnmHW4=RkF%t9$*_IH!gsz!!cq9@=No} z0g!dC@w7!IRqK+^1|a?vTZnrsDR>B41>8nWWa)Cn$QKUJ@lUU#pod6Sa6bMEAMRFi z43V59X0PUZw=~xdpsag8j&wh~sJYDSfwJ}u*dcA0H+d)$WnF~E$DK%#hXIr|I@xpj zVrgD9Xv;cglZ$pvX>uU3k@R9_)$sdf&)tmzlMRPvug2{X=cF#91Ne0H#pxTe zMco0`+8>$QOz^2MGonpNwe$S&$7=iH>xzyj24T=jjaJnC7ki<1FXW2>Jge0h34)r{ zS@XydAUBg$PKHETF(&k+n^bz&3@X*{jmGvob|Q-rPw;Z6?iG%1h^M`*k^e)^XQ47%o(3B1ydQG^W zEwB~ul!0@GrDca!apbZ-T-=3Ykwt`v0qu#{&VBya-t>&~ZSs=zAFvZyYlOlMtBF~< zhzx#PWHAFW(Gnw`7YN&10cp7@ zRc0fw?p9>MtrP;1uO`>O>rG77J8vs~S&>3CCTqsh=EY{kogw3^%+ZEOP}kvMm`%E9 zRXpaI;Q)C^la=)l3H8k5ds}h?{)*}Uy=Hw(Fhw4jODx4@D?}))H3wNoMo=EYE#rb( zK|HcltM|M%W;G(~kk4!0YOKpN1htZ@DP>6u^g%>c+NAslyMhCUVGyft8htd%$`EoHX^NZPXkMn_>J=f<>K_};zxao38Ih(b z21iy3g_9c;t*^3dXCKY)Ci%#R^cBvIDEnLXZhO?ueL*k7{VVjmcBS$SRhtIwQd7!DUYOJ?zf@eno%+! z<}nFA>|C{!V!%Lttl8{+$?eQEk3@oZE#d90Zdnc1Q25{dW+TcvBh(Fu^UgM3rC`=| zAKFZ>7^bl*2@Xacy+$$Y8bvcY_?~b9yFzJg&f|azFCUUZS@YR!kwJoCVIP95J&2c1 zj1>wUm<8n8n`AF7T`W21d*!Ub*$ z!hXn~cYOG|k{bv@7}gTXfrtJZTY|K4UM?US2^b*8N6qfI&qbMXs4{x7W>WW4Ix)3I zNM-#jhnIv&krxJ))tv$9>nPSZ8eF|2;(h15?Y#Usjor)>u>Sk&tr`UoS}hgkp(bAc zn*>)4!|Q8p_4*3q88hto%J)T=@sL@(13txtEZZcz(azlNT+4+;Y_(3mLFD!&%Rbs~ zF-P3KkoqY!wrZ6x+(UAk6h&GP@0LsNro`X&!iM?RMSw>BDL#t_oUtWlStm*}l zXLoala?n-VV?(PEBgho;!4^T6&ErW2#gn>hAgff38=l{?DC<3>0@soV5fsvoV6?>T zrb&j^GaYPXoDh*0pH+S=XFyXk_(~NfM}%&@!AT951C5DA8;~s+3&_>0<%Ky57)d~p$)vPtH$zhvGyx=JH zB|mqm>QI!lx`39m+FNl@(2Di?ZV$Fz)*yyaeW!=ku(!#R80F2qo)>n&JIU{w6>Fdo z-fLUhR)AKl;8`bGP{rw>6YG8^u}Iz^a*f4!(^-%ZX3N(}*v!yeTIK{0dE~HCR@d7Z z;)gyR&ALih&89K5)LuvOAR4jSuTZlq87PfdBeIK>BVVMbub57(Su|j+)Ap1b!n(5v zujXH@Cu7;!xGdI>!|M{b}Z<%N7iD1y6Sdk z@84lE)F`V)l<*eKCPQ+v!3aG>#?l!TrK-;S_tfWjgIcQnINs)ZtlijpiOk?xYegN< zM~Rj=T{oL_xPJ5+DVxpii@gWr8tW(Glid_zT33QSN?7%Ki6LW0q}u{$5^%orP#+-+ z@?{dPeGzsBSrUUF5WSL$V0r(G4fMRGT+FN4^@e9UF-pqfLwNUQnR;1WcST3nKjtQv)?2S9N(fA;EQE|nrmtKqEh zGC#66`gx>PBgdm=r%aeAts;1)UtnN$UYKKd)*SMF_^5C*my9+ z9~YVkqhI9uqC4nFqAglrMeb2lSY3Bm!J-e|cjGdvJ)#op&=M=E4MWg~Dn$e=0`f>4 zsf|ZHwN_YtkO6{f-J|AlE3BD(6M2Co!kRnl%3~YD zW)T9cxv?~;l6|^^D?os?BF^ntCQYvR1R>U}VIGa18VGUWC&XH?DKV{VZ2bwH8kFd5 zDj(diw=W^qlC|MAdP?@oK5fh8Huy0E{mUt4*?DJRmFk+k4j=mJoaaeCw)lkTs{suP zWji}up9cxC-aWeJTe?-Rz>Bh8LjG~*vGHF5N3yw->TU~rYKXFy5GaYL)$}<64VDtg zQ2f`lrchYQBVES^C5z&YsQ9Z{`)GEgjdkrZ=8*_}(7;Eham&bG?HAHY?#-GcLj2YF z37`KPu-MaaoI#j1GxCvNZN8}E{eduRWHrr@w7V?shLEE3uWiKNvatOq2(#9$@s7?~ zIe&z7Hs|J#EcNbTpB55}(Z|$vSF`_{_^YGIvo?zbHzx||1oZEI;lqxPKQEirLIvSR z8a1n~v_LmIlvC}Bi=#l+hAF{?JU0&a1VPrK?@1M6HERlp$M7oT4qbdV2P)!myei8R z8GKmfG;9^ES3*fUTiRvc?HK{zQejz{lK=nPeh534B!)p4hF*zJ4D$UiR@_dJrVDkK zjTcD>5Me$2l--_@vqs%-yOdx%lS>Ed`*Z&40f3zn*unY?HmseEt~C#W9jv8&CVzj! zsSnuF>d}6E3}rWh#dOou?{Z~6tG$opntbyPl(crpqsv|==R=3A_;LgR&Jjw zyAlaF)XS0`93^Oa?@kFW5ejB!-A7V0A|2j&O06 z*1eN6P(e7IKnns{S0iAimLa=K0JEMU%$*s_{--tmjVpvE(P<1W)1iI-$wL$_+i2a&I4Q=w z(TLZ`EmR@oA*6^+J+9O+Jaz%JG^-QA(JvRmQ^uGU(SLc~GuusyRN zk+m>`oRTB_BOwPZhveD4n@LO=69l>>({(>0NeU=725Ca!#U?=oNGhz`{3I~}St>r^ zh8DP%6k5+E1VPc`aavh+!C*l5Pq4C${2LSnBv)+Om5BQWaBz=>pSKOs&)KSOH`Vb zW_4|jyhiKZXAZ7D-jh@fH=|uk#=W?5NKjd0{Q2d`3fYefd$n&Tv4W52Vm1nCU?X=M zvLsQxHfzWU==0TLi9kw1*3Z!C#~NJCH7taX^*$H!#=b1HODI{#8jM_NSx+u?ikh^s zhSEc5OyV70p5C@-lJFdixfIxw)(%t-fV zPvz#SlA4qRv))ivX(u)x%0HxmS@$gd6ky%TXNYBukyT@Zu_!&%dYq}U>xL@VX2i0- z+IIh^nS__7lQLm*@H9BAGOKyb^D=r%dsHs}&FZp3v5u(J=(R;ndJPvY>`bnzG3Z5H9A^auh3$x88M^H!_q7Cx2>W!=haP&2F6sX@ixv7wM=xlTA6~$RiR@|!89q!kc6WrWH#V=M2^9v3ksT1)0 z&fNY^J3FLV;YV%`PaYNal*mg411UG|-FofFl9@}du4gw8@+XO~AHL4@x}g|^!7E|> z-hZ(|lk)jbHGp$`iERW3@wW_}07u*;Nx~9-q7x8~V>~iFQh)9qdM9j@Niy7#Z!3h> zo-l!Y-Ij6rs52u?D;?M7|?Vl4%4e zt>J*je)2ad6zx&26sdst3m>AzkQL*5a5saOE4c{Lag%5D0bemTsZ#Ox zwx<@mp3B{2q4K}%HLdj`DOD(JD*Vd-U zIl43m!=6*Ep`86bF3k@&AX&uBMr%thD@09)}b8aXGM4Y@h$o0qwuBh1nhASGEApo$-M&#$*(IS%)tINUGVB2z~|b6)n1B%|OPR zji5VpF(<{QDj|i!Tedp+ZMJ9@L`DWnzP=Qs^M7box989nrp%I0WoXt;sGngw?eWik zq~g}s@(~cyT|;Gv)*S+j+)h9Izs_z$)+SEt^H_k_=i=sf(^iyNeDdrLNa))NVROq+N<6^-xL;*+YXh{VDl8E`pAVAU@XX-(9jw;)0plH2;Ak==Z{$b;p`^X)j{NS|PJXqc6hP+Jf`dJ%SVSCP9}ZBw0TcmFX>&O*e!C+Q|#F+rw)VCDEd(ovlVCzj<9gMP)bT$DHWlhB~**l$r}UJ|tx5Ptoe5zOkwYqLOEtopV|wrXb zIP!l}ytldf{Myq9c`B04T9*KHAL6Ra)Yk=PMTN!e<$3hCkut%%rS{3?aYKFpfEJ{X ztdwhn{DAg>7)Y5bWF+cPsjTzNto1v}_Vy0@k{=g2ur@hRO zI}oz+CFza47fb}|-O7r+6Zr(qTwWO%;Q@u9VTQkyAV8Z@t<~A`;-ChpS@TP-6<~xv zzOF3WVi1IFNt8jC_ICfodrJ7q0;pA6hXj&u+OoQwg~9qNTyd`6j2?Zqd|%j8CabH) zJZvNv%s5+tho-44Yi+?tph4YtIWV@1N+GRjb^sRfxYJbx3av>dO{jh9qOBEavv$kt z*x?LUlm*GF34}adBj^uMP-_-_fuc)KWjc}tl0-7A#eThvW)fBxn|st9jcaD6$}hkC zd&vPr@*aAPVOs*IHGX%hzt8+2*#8Eo^_34na8I4KhB~Yi`hhT-G9W>Kw%*MKJfd$g z+FE@j`YiA&Y%q>U6kkcKXrk{-rE*H4tyv9))B>kwZr<~#=%N4tffSYNL@wiq1Ofub0wU4(g&9X75D-Wq zo|^9TLt*pQ1O%eBW@FOr&5*X}r{%iL;C(AhUZ;ae_sJXyrx-B#0YBOd<9(~U&G9C@ zp$R^*FaWLxMRd;xorO7^Yc_IJL+4p+ND6Sh&xgoamND>9C+u947zRNge5HU<@ctL8rc*!qquT>8i3!7Fh27s~w7+qa zr{;#>)YC>$;6qsalASTo2sZazF&R zTFaDmLa^33kqB6&p3ZIuZr!g){4sgEVT`sWZEPPQ`_Y57j#Vl__uQLytTNc@z3l6G z-12GY3cR7Xj~cwm!WE*{2=eHvc3u86=F#3-l%K{@LVX6*np**)=k*FGr2H(lc*LWtr62pP*sZ; zZp^fnt9RcDTIzGa91uNQk<^&duMWx@ZdtnDKOYj5)uZgs*>i6p%sTrrK$vakG!+fz zsC4WN3Vx{A`20<9QC5+nY{x|ky=8c!HEP&J2+JYe@D%Zk$VlRu0>%y$3d|725 zrzw>SL+<&(Q#_f6M%_jVG~=JRcwO=*rd^TJ`W=kaX3NcnL0F6;T$>_bb|n{o$U>Nl z*Y>9sFrU9l$NynjESs>4v!=q#rp!tQQ5V)AV=`5k3^qr8(8XD^$SuIi?(XQNi?iks zx+rs-1%uUK8nH>vioE_Fk@Ed26#ZVCtsvFPEY?CLI-d60djyLg?5*VC+RqJEYdR0# zpJciL*{hLlvbj%K*oB1FI!DQfn$Gr2QY!}4w}snNmd?FxXswZgZ9fgF^Nl)WSI}B} zNp7)QYX*E>H1Te0dwtt*v$J9<}^L?spL zXPD>b{M4I$GNgRFiW&CVpKkv{YE7Z6t1xj&U01{lQfmru2<58nRs>G#M;e+bv&Z4O z>M#~do9$gbsE8{T?UI~XbF1G$;~UM86w|Re8z-y}_xQ&#eVfftIAKk(vDV3PVJ}8Y zZxVJAhRxZiv<@U-<{x2aVB=5-!_bxZh7j0)u_LsNQ>pR|fT$?&N#ZKGQk>Pxvb3vFkU{!nP9b7lJ?WQ z{-^{3sAvsDVlj-C$s$xmtD&F{<(GFB3!9z$F<`c;Faa821-6PkkB~A<&%r&hpgFal=v+onnOYT>JCvw)%4dPyxJ z3ZpSLDHp%_8ci$mpvtt&YCQ(-HO^>{ssIUiBZzj%tOW$0xLRfFU8Q|i# zpp@lPuuHs;6TDTa2qTevw@7~)j&sVpc!8{uHGs9&t-Qn($a+seGYeeXRKw8latT_VZq<(Mj<|4 z0P9^b<5-(4UmbPU(G@gD=3^Ds{GZ`SrWlKQABYC{WE>z_9zqW-)vfAbX%K4fOF5a z)N07%H2Jyu_Ja6o?5fO$$t)qclC%xwk(4$(5_^Nrq2buWi zvZ}{Uv>%&GVelw;75>s_GWl}q5Q%?O)+$RVS1u%}thnIk-vw4$A>VOK5!-nfiQB70 z+)(K1@i7Ml8j_<3<1BA6H#dVx)L8^%vaTyG`jC-mYPtN4?EEr>Z0aKn3SQmu0x_(} zZlPD_?ja#eQPSctRpE09%XoaVtv zzlra>%Q6mXsPvj}*(2n!rXG-JuH=7%G*%yP{jqpKmpbKwG*+C^+*l-_g+f@PSJ3RM zZK+Eo$YTBF&XWykYCmo)*1=$~=nz+AbCAWF%3_jVO=aE~7Nx#+Xjyex-KvaI-?7oW z2URTORpEUrxm#>{ylnEL;dIPvCg&#uV^sGOVSP4Zfz#0U<8u7)b#BQOgdh;z(g+H= z|BVH5lR17Qy#PwenNq-h{2gYH2+=6W_QY0y2{YDxHtqR{WpcF%k391dqn`4vM>QaF z@ZGALQcOojHlQs=AfV(?8U>DQKvVhnxn`tH^708EVi6eJ1A>`v%(L7UGS_dk=c~Ndzf7f9-=p78lG}ZDa9Odn#oF9nFBM=iUZvx61T?Nq+HlZZ{OeAPik8 z;SrMk7rW3aVZJ;-)T&JjIOgyz8~xz7)t|aFJ3rS49C(S_pv^daBoF=IUD@PzROYu; z$gFu+UD;QAFb%(uS+k7l^7n3`J$ee6b%l0=K%I-winL``t$^4`+B2a#4u}CY{u?e3 zqt;CwLhGK&*10qR1v4P;5fqEeG=jc0?2)A%qpJ0nnTZX|fa6|s zge7T)QCNj2Xx6}~-U7Bv(b*mNle|M6p9W}v|u~jiw zqvksbT?MUGUPr|6M{5)tTI(I-d4h7CYyeujqdZqwf{E>Hw-fP~aJT znfhj}v}&=UW0XG7_4=pt0>O`h1qaSFe%*7dt0;Q=r(Sp^}L0m z*$Xa0uLkspE6(dFQ^;Ur-IeYGVizo}Fwj}I`x*{F>Si+7Sj%6FK)>lhgUL9sS^xjz zkFayG5g3GF=t>j|RcM9ViA$9|a;$~pIC9RFsK1!+wvsL6f=L-Pr+ zbv5O%)~$oaKLsuy9@eHhd~LvpM;>mb29j!QKn-X?W0&-#eX@s-DKw%aTKgPUJ%VI_ zLyYl0`a$ytmx>)yBF$?e^;$uPueMgtvRx0wvXO)ti|b|ng} zAT2|i)sdLr*CI)sGF-6Yjv^Pcrb0Ok7c5^FIc|c3YF*=kwSNsg#ngmSqm2ueSH{)j z<*CA=d?dxG$!ir+MJeDtJ`Uqe9`q1dqdO#!;R@n2gaY;lLg(1?Os0Zhtl>Op@36nG zJU@J$QI-QC2n4UBV>`2Jk23$dw=%-RcfM~QB;VRtwnLN8$}oTegV*0zJ)j*m*}!g^sG zuEOecX3me0Sz9X#g1x`eW+YyNYp=Y~bE$RLMPJnF6*iG<_I%4g(>V(^E8pOO^-4@` zX8Yj&qj+GQ{uAcl$wszDp|Sohxc(XLS~9ngSjP;c!I3KiCJc!+DL7?L`mw4T5^JLF zSeS0UYG0A{lc!mjPP=IrM(aD*?eoql#@-evXnk+ZUgz!FGgHv`7FWFU$>g8oi*+9> zL+al0Mpt58X>bG@TS52sJ5H&rsl$c+ z{ziWIy0#<X~j8NkaHwlvn1}t(R2{0VQiY1SBR-T&4pF zh*|5aIUc6e1~3*(M=qqqUr&{?u(w94G=FO(J{Kbr1>>S`px0~epv8GSfOY4;o5F7% z{66%J zZPTZr$yak=rH3A@0aw=AUl+WbxYMV>nC4s}t0dO~O=^8r^1We5~A1o{_VgqW{CQk+GTx3O3IHU~1phl7$VX=IY>lY3Fl1 zl(l{#AVuZ#{sJIt&y&sJ_sekLfHCVbPyDqO0I{&4cpeOY^ET{geIRT5(2w2r-GoS3 zLUQ5?ho!F9S=h@pmA;2DlTqjJfH7+&YIt)r0mfd5K|4~1FbFn2ULgzM!a_9kFayWjUa?!=#^kd_}u?u1y(!HQdRc=(Xt~5#Bpr<-x#i06I+s9(z==< zUzl}2U)M`I?5Az)&NeV>5vtrd3t@kaC&}@XAuOEYW&*U9fxE)4jO_gz@ZxU;^r}^j zZo_E#Ub8qPo{J5m=i63e{|BEB6%JL z7t69wd3C`WMFtlw=QB}d-9^QO#%VWg5;yX01Tw_$=6AK}jL8m)6p0<|84*&(`X_9X+V2NLPX!orn;LRbJw-|Qb4#nR$0Ybp=2kuX7 zjk;+kHry6i7_eF2P{P}2)3!^;p*8--RL-7_f>E<3T}F3Xr`R~O2ecJOc%8>SjsAeU zNR#`x&Cd4aCA)wJYa~q=bk?^@INkT3--`*uyETLD?&X!P*c{+l7k6yx_vlpo5IXCC zu{0O3<|g|p62II82GJ-1yddm(rE%MslU|0kujAuj0U6lGtMjpXj6 zA0eB~Er7G04&r&2QJoq86gX>_+j?(xx(ZQ3XI)deA9{TaE=+Fg!AZ&MeSuT(teq>y zCE~dWNc7gy!LXe34B2eh2~4Eq46pxZ<9D-IlleZjW=HbdNy?aWjBvTW zzN|HEf@dx18fQ-LLXZfqLq32vhwk8zLT6oxF-DQ_h6@`&UB8rkSDk6QsQ)$c$Je!G zSqy@(Eumu6{cmixll5Fx`x*^N|gI7ixxgDzOrOJ>=S$_>b2>$r&&r#KGj zg)H0&R!sL}Do`16)_NP)Q+$fhRmqA@dd*>j?ptC-k)zg-`YBdEO9CH2JgYfpZ?_MY zxqx`q_8QPHUzyZC!l1zOKG`xOC{k+mDa?A`C6C@vNRTT+K&zjzC|nYboGNVcGTf6n zdOIU&ZwCTegLai+EucRtjJc)VmsmjLs5NBN zveVnvTmeszqt>-Xk=TywDD`emyT#+=cLXv-J}pbu`v5C0$r5M>&RUEA^Rljk=>I%O zFt}l^x*BlOddtSv3v)$gRvKX0^St_&|CLfAjIK4sCM4{iU9Kaojoc6S$eyY_!6aaD z@~ZRh{}Tn%A7AH|B{2vB(JdJtp!?t0grtYdPig_2v}rY1!maNxT*BjL7Bxl{FdI^9 z^zRhHxz4kYTJQIWZ+9R&)FMS{wZhIA;esf~md%{euyU2w(J9{~F5&lqH|PJF@@CZ* z(7bhWyBi?~%duq>R`f>ZAF#$y4NivCdVFN=e=j_jX?04iAvVxV>!vzv45>Ay1+Iiw zms1j{HMk4pTJg14Vch=q0=o5Sa*`mmcC1=F$VM`%7%l=+aEnS`6_zP$sC#6(OZu6Z z!9=^yTfG43lt62#w9bC$@$lzTMTH$&-dn-nNqNdrXq{mrT1vJg6UQ8ukt6*C3UA6V zSVp_&7jcHuvRc|0VEJqG`)l61j=G^XEUUN~5e29KzP6E;MU=cs8%^?&B(qdZa$Y z)6{4x=+&(L(RSIc^J1KUxi^Oh>9yyNW34@EkH%-oi#d)vYq}4Z!Ie5QzL5N$?xB7= z$&3datBrPzzW}Y;`U8&DCLSrZl}Xp6u;v90&r#4cRl7Ja4JaUkg0R+FQ4fJ>z;#n$ zwF@5}6$Y-^TxhG(Btz!LSJEhp%I$NR+Y<+@Gn(1JSx4qZ-!}(lCpqOf+OQ@LnD3|A z_g0XIdK7Eyy)a(RqkvvKinY)QGe54nMyb5wQLO94JQPe49>zc#kT_&rgrn9BinZRr z#8Q1qb|f$jC}`5Ev+W9a1+D@48RiRhOoj}j7RljFb>d6rb|8$L8@Si5PrgX5gxhK} z(_Pw61uW|wEACC3s@hip%UaM5W4Wq-mB=WdS#Lh%w%lacYMr64l`&H_l%mnBgJ#)1 zL`~*K)Avui_`}y39We~TFmxpX7{mUH)#R>y>W>ECoP=PEkfm?;T(c9<;XSY3Ig73_ z>_ftP7Ua3A+-_4VoYtAR(7dhoHX3?phojesY!0zVIIVNT&7Qs4JPxH*M_mZbEmC2$ z?#_kkctKY)OuE9kPpX-=GJ=T()@b53*Pd`k*hHYUqhdPRu#Q8CKI?^Lpn-I&tC#|_ zoX*2CKm3CvoHRHD^!$jvq|YbPO8D4$xV2t7ZC z%I?K8&9EWEpcv)*t<10qR|^aIQN>o+Xu=E-6}3u{?tGZwtoLvZp&)wNX!K#7C2bdH zFFTArtooqMnk}z6tn}Sf|tzvM(XuZ8GLRPmP7a2kfI1Se4wk_`&LJTPu6`ohzr(RIf{0GoormNrnnAWVGA1!T7a4shqWTe5dD#d z8;z&ipFbc4RAIM-C}(&2)kH@`_;n{7?4QW9Mxv@-&uCpx5_#6EkiBK9|Dt{PIs+Sr zLKueb(h1-PFxh{xl3yLRbdm>%uHxDt9OwC8SxERNookhK?5gCZAuqMelx|WF(pjV2 zq2ipfeRWA@>mzIO8QqpavWmJO0Oqv+wtLm=y#}F4%jHgBaiBNnMOM{zt5cl;I-VaU z9PReLr%V|w&w$K0VS$AJEzcm;?0iVO1&XV&MyZG_L$g;6`K(2^qBCF(+ac*@ZG#@< z4*#mBnYBqmH7exVef@M(F2(8dWtEdE&d0l{`+HI z4InvSCbw{R>(+Dvk^{!uyYJZ7+8#i1zzX_AkumJ?E5es8GHiShk_6wxlpUaSqk1Hb z0XwH~d#2OWk(AJaoabu)zD#mk2PDkU<|>19))A5FL31mo5ISqh@mFZ3Jrb@?Om6d> zGqn~Ykj{Eu$!e5)toTDZYpv7rr`@c*6r{7BUmF|Ac||#aVvU-ogu9)j-jr)sE1bEj#lX-Go8x--bm4L=sl|T^*o1GF8Tvfuc2HrtYx&YLSE$ z`^d0}2D8RVA_*&Q;@qCr?Mz7pXN`#i(q%=^>iut3nrpe`@8Bc-F5YIB4O3NzJt9Pi zBXvE~m7(U04h`hhZ37g;*6c?m2r+7z*+Ye95Mf{a>M`?I_qG5aALS^D zQwysLoVBk3JR2|f+?0W#^;MKS-F|DZS)*eO{pqgovK_YY}sTT3Zo8<^J!b$}q4h#MF5~~|9dT?12y{(ZL0dz$0bSt|E zmuP%M15JR&P`B=+tZlRsP{wenMCiE~VUm&)9nDOQOOPYk6OD2td{ZIl|2lB)T?(tOY8$1P(q0D65PX z2;zCtr~qYc-ag1^tvvzE8mxOn??%j2hR|$dm7FU5Xl7?Zh{hcPE#W9uGoS*BEIHDK z%#s0)IOsn-(ob!Wwe5W?o?j#FZYtOVD+eomS}Uu*BS2Zb;Zk*BShTGGWpy=XNZF-J zvqMDxENqUH1Pegc;w&(r&GFpCAMYx9KIUbAe$21e^0qwx=4nXUGUR;w@6Yq|`|C9y z?{D9BbVfE9{8#t_C8oa;kiMz~iGCeR<)**M7T?;_nWnq&AwR?RybzAn~648yj z?ij6Xs@u=tT@^P~PefB)2<{MGi>Tj)X%p6Cb&3b~)deEUUG~q|ndL?d!!YzNJwaqU zO?>~0wWde|9-&0P=8MqwtW3P+3uj+pZ@n3(z3ca-?{DG5Y|31uYQ8R)FQb!}dASFy zomakm3a5$?Dgt%qr`Sr#i3)z<=8(+A79n#@=2(PyFBe}Bmen8;A1;hRd}l8xLedh1 z?Ah_%)=}buTl$tRFr5ZZ&r_yFNnUWCDnVQGcL|zT5*h5=ff8GPSVTJj$xJV(oonGm zM{KZyf+*+uPlPDvu=OA}xaAm1Y#4^kak+xDO^(o+vD4$6ZDJ>s*mWt$e-hgS&-&k- zVeZa0k4ep@fL+oJiAW~MR~cl*o4o#cMnj0))ot+ zBtEo=RT{W@*^b)Y$^c9GF~eV!q~{jt_&PMxbG*Zp-cNekq_eryn@^4IO436knw>Q; zXOX>USewKLTT{}e#$~Ll$c>Wt=n01jAZFHe*G_z}KLTx1m5lRvWD(vH64-SJjY9j7 z>x8H8yy62;8DqF%+0}cPR!m^fRmVVoRY}oKr?R z?2IPeX3h?*(S8^?7aM^=7>2IIH-Y^ZI~~o7M0>JsfCvbV?NDgM$|efLj(~BbfAw~TduOn$$}lSnpD?a?c;EiprQnzymvX(1z4HtC~3-y z0_zCq7`*)asQHmtxg)bc9~4$VXPe^48OVWjJU#AxOX?GcIc^gMh`=owXC`o{g9kEVvYZdHymfHPTS%OP9Yayu|Qg}ORln?qgY zn2?SGa?;bMTBIRZ3nO_xmp$n*RUTF$Rz$LAWS4f(@H_Jz*veAqv5p@kJ?DP#<0QKr z62A;#wciJD;RhuOEbvns^kFq!i`q-GdzI((>OYGFJ&5vfDp}5R(MT}QYK~G0S zTB^@37eZQTC+!uyRrREUo*3y}C{UM8;^aD~M|?5`igc6SuK>(IGr!=Yl3>W7W&Azg z{@&7_b3+yf>@=`rNRMKsknRUN6B9ZU0Yk1s>|pEYUX?92#q^kDs@N`-I8W$u zWuo&0p=qu#V0&0x-3O)~xzjBnf?6|oEq@x4w@eo2edO&6qY@y@^UIoZv?dERx;sIb z8#$(7V5BH_0CRO9ZT?%1GxzBO%vfq%J}o~ZJLf&#^|`T~ETfK$nVo{H-CS&fGC#{r ze`k!rf-*M}^t$1>RG+t6FtfZ#`_S!KMu%%$Y<{R{MB61eGjXQd1GQYngEPz2*L&vq zXO?V4IE&{cq5Pjf3o9qeaQ=?kI~?4J2sr(>qVwa~`e~jd%r7QdftlUoIC!q5#2x|7 zGHJe8THZ4&>VY+PS5`~*Bd}(f{28Wxzryj}vff(y`sepAM$Q1aVGss_UqS*L^#6}FV|S0%>74rj z4+bCNv`2C?dP}vypYzb>kU?m&GhVX*=bUQa`u?1LP!%8~L^BoX#RqlnZ73mA&*+nD zuyfEbECn6uYY^Z$1Y?daQ~G0OO5L6etC&Xr3Fet`W0Gt-EyM5TM7RpPWphx z5U>Jk$JDZXV;ONfE*n7ap^092lVIzrz44S>b1Jcg22Nzd{HI!dl8%fB!4V=dBVH zq=3IEPVSZl2L$^3{qXhZ*i!I!Sr8HKt2RWmDQ&=@gF9EHCa_sn8ZVt>crQ+eNXzB| z44qTVQ}E&8u!lomTl}1;4tw9Kh(ohm-h&Rgf2)R<3K8~Sq3am_lh)0j##DU%U{F{4 z5HCgEU)qb!q7iSO{}V4T`e)R4h=2P*r6YWea7lW50*xM6#xF+B1UG^Z27+J04a4#O zk0n}d7tu!Q%+0=T!M(W+vU`Jt#`q?s=(ql2dizj#aJv zt`;~3K-(d%l(&+}bmux)3m}!#7IF>RsMyu`=qv2O%?@^!f(bb)z_h?8hlku~lzELG?xIid9HY{qy zE36Eur>zcA?3E+345>X`rR<*U1UAAEO%3a<&-|ipYA%3#O`u5{SeM22OIYNk03@^-cBeDf41?@C(4llV&uDv8Q{vcP+WA+WV=&4tbJJHc z+=Vq?wf^c*WPT3*#)oEFdlUm(d3*xvv>)qg93j!JFXQZ{+VnmM&Adx)>DSIJ^k7!r zCFIh?#58eR<)sd$iK`4cbH@oaZ3p#Y0D}fsB-6r0ZHLGGF&Gu^7auhp*0rsWu}3eU zw(-na$1WK$mJGG)`r_MMj4Om;AlOnQ`GfjzESY3(&4bBRU@*c$%bvPpF_5qJ@gJQ_ zqLNWyfMsX-6xFVUFw8(+;h)WZv0_@X|f)eLarLDrn0H^&Oe7JbWITy7=K^&%TVRNqWbbcfOwj=@sp-x8Bg=M6GQ3?eWfN9B0v15qw()VZ<%q`2I{3i+(e51~>?WFcAFGl>);5KW3uY=|yzo0|*yAxOO`2BGUGw5cYMt!ASQ$ zwH4VeSC^~Evzgrv1)e5;zfj3PUlwGFSpHSOyH?t@SN^vr=A*zrj??zP?39NnnUIE` z*Ki%TRK@;8-~fU?d@QyJv4yos5qtBS?oU&bQ)ct%EcLpQHHEs%w$dc(^{qDnGu`sY z6xGh)tHe9M!ap$b^<+{4GT7xGxI4?mFCD*Au4UO^qF)p1MwN-J(367OB^yuB zeF!oUc!A!KNx|(@BTqE$hGEMb$$XF7(lY#PcXrMAAlSH|iZ;*7XlKEq;OnwW^EbB* zn}=ldqrd;bne%=64Etyd`yl*m-H#)fXLwG02D_?3Di)9= zc$?aGcC2iF=7hIzjbSooVl=-LkpxCfsbt#BDTTMcRau6uEoS?|kqW=sTTOWTT|#>j zb}lvygD?=C3EO{vZ3#6gKK8FHO_pPt$>Yedw*pxU~_Gf^8q;UBoO*(iv@z51YCkA%QC2D)(n7&nV?%7zg6gKAr0j4k zxUa;ho`^d#rLB#p*rFWah|@NPV@L0$aoF4jj)^sO)4anKd>|miq)6lOA4{6#z8>rF zHGvQ=3nvlxFY#Cl<(`OpKMeC)b*5b+?!YY+7)zF{MRa`IRq4$zO?|i|E+p-B%@BCH zENFKaHyffO#=1`afpKs6c7ktp)7+X?Wm~Z3F2giWvR>+&PF2dSi4G4wIghM-dhvBG zI1+;}482lI5}^0L*lIq0ph4>cAlgnyg6()hAott8@>7`={q3^GDuIA|Qv@c*)h|5? z-L>h>?aArw$fd~~u8(1%+&h1a6v2vr0{;+k7wx*4@+$wpiYDmTDV6fu*wii6g$_0g z*NWT2VIiQqU(AT%KXRAfb^b3LYW}JM*ew;~>wi9Va(qS<+`WrL>B0R2FERIGkb_Q$rt7OHE@>4TdAzQbND%_kFO)DpYfewzlso^gA)C zD6qWw%i8=ga&A`)!ypV@$$;Y6`!CinL>p2i190NJ{E)=Gl;WC(oHWyPM_{D>eehtl zs?X%%3D5sNyWZpNn@BEw!-uDo(-PAY$6}UDuNj*;N=Aoh%ud-Xht$CD+*R3igwd@y zhD~LP5~PoOSvTe4xh#!Nq2a6qO|m3_ByI2NZI^t=K{L)8v_kIDK>7Q|_11sPuupQ9qrdceDv#w)Z3QvW_Px#@*Z(#=kw{!P&AI5{iHXe^3F!UdT>P3U_q z775zD+R#_clN`0USViTQe+_vgU*A5}6W0Tt&1Pki%w!M;*1X-bA_?+iO8MI|sYfP> zVd%;m=qwFdlclMC2TP-R?&O9CRKF|pLBY~wk2Bmm&y}vb>jB3vgJ-Yuzx8m@!Xja> zz{T*MGohmg=_A5tXF?Y)SO;Ct(J)hh{I)ONQLCD7#j4leM$4#D*H*5iQh!PSw2K8N>7*9rMcG4h|OpG6Ae zRgr=ceBWeR7xwJ3GOYmL+Y9rVe98~_rcqnluMhlFX*-$6Q)Sz{G_HrA)lzv#dMEm1 zOGKBlH<$AGq&J)lKAsGw!x2FkBHnHbtVq zK2E019KOO6?48iypveA!3-+#b(-+@eTcio}mYfc?m&K(L(0gf)Bq{rAT)#U4E~X&i z^Gzqq(VC;~NRNJCVgfpPz^eIqHQCV$0PssF=F4DQOvG=A8nY;U0(!%~oV=^oA|;mE z4_zED!!-)@UOz*Q$Dqe4>J}K`FOcBgz_LMt^xo`Qxc5qp5uBG@=YLl1W$DD}mX=OUFz~-RW+vQt7a@m_ zt3=-lj+WZs%yzHTLP8E}Cy_JvS{MR7{8DNrY~BDY$Mj390!PGpVeZhTKj81f3f`;9;q?alLJ^W2_i!C{H&Zdf9r?Id|zyMJ__E| zneQ8wjZK;hq)D^7Xn61+* zrN6JpgYHugJG8pu>dwm5B&xInp}u`zTo+yuDgfNOMa>wnb;1H{0`@IAeJ-1s)xa^m z&+x_W8fxwLrnZYN-`hUg@5{1Tk6gbh_r2i1%!2F0-2SPh{jPmEM%C3qR!=0f-X>8?m#uj! z5Lg23;Kqb$^+W<~LLB`DTprs``0rHqH1xoKCTOPQ#b*B;>%U=}aApuk91Z`j>$}Zk zP%!mv9*TX^Ziu7Pzv~SshY8!0pb~2uRM3;FjqHST9G#DiHMJi&F(zEotJ~x4eE%6c zqa+4F7>Hg;fsJ_oi}fonjJ8V;(4hmU$;)Pw0DJ`!6}{NANdUg;46rQrmkI4RyVNSb zw;_mn{1$BaDXW5jFM=(y$mzFfzQv@}Ol^y((0-%Mq|>u?D`FA^oO2D5vaq5cB>}&Z z@n&U)5xI(wUvfk!qhw+52i z1Tdmyjwk1+C&zEoe5oWCfu%p3yiL>u$6`@#S4I4tQoPct+scLlu`Uu}T;~se4KX+& zuTrmJeD-MY?@n+tiG|P2|4q$6Ah<=75k5P@!TY}7y@6IGsrcdtM?Z^21H#0cm`Sso z!yc=C7(25ZhCv{PUWp|G$^9?Z{`d_lk?8> z)eH7DfxxkE_x4|mci{X6z7)#QyETyn5IlX!8MI>=Rm{F~8)(ttS+C8b#)9KBkb zB~O;=(Em7s;DhP~{_}Pno|Tr8+4fALX?Wd_^P3@&yNzxQ@-d&?B%E7(JN$8ezto>i zOYMWWlb)8DjAF3gRS>+VK^{gmtwkaP!BcttA+{X}Eq|6Mhu)`k+UPzwchA%IgfZz!Kx|EvQApr#EG-l>8gEiL0 zgJ|M}0yx&aEX`DJ8oD;#uuXCZLGURF{#`+sC9G5%g<1k^#@ggG-)3b9g0EnKBWAll z8iL?e0x?^D)emE5fFmIc!@w_*22A&5sK_N_*3XJ*w|My6-_u9Uqku2|`tizNFBI^_#N9*fssi`kx*;H6H9rXd zcdt#;y{w-}?f*vF<WZC^T z-Bt2(Z%JOD;&;`eT(EL-+#g23|<-qnb28vH64}ahC@PozgsX?4u zNCtwyK(BrnABZe|Pf8CFur?$Jfb&Kb8Jjl7lkn_+6 zBK_VxoRd^t`0NmDrLb+p66>&tJxG90JnFF}BnJs_z3O~w`V{Y}e@~=B$|~s>JeIku z^UQ+gL!!DYbvU-}f~);EXr@mrpZd4pLt!MI@xizL{bB6fjvR(z7}!$IF+r;T#_r3Y zVmdo1Kw~9-NCKC@H!1@c$#y=O{zwdT$PjqWWW6}}x5j;GKD+ILx0k8!$wv%y=+eJ; zJJ$0jJ62^)^UW|Fhp&3BS?O{Y8e+RD$5@!?aB-Ov-c_S*ZsT6iPgs}!{pUvDUg?6j zm-VJ*GM=!5zq)hC41f`7uc~`vOZjQyXdYSr-k6!5Fupmq{eCd_4c_S0 zNZ9H8&A?t&UHbRlU+7~4D?ZD$IV&hmz2lG(tz%}#v=na|V8N5D`zf21DyJeqf)r*7{_AbNz<=rq%DJO6_CJ zF*#`j+_Z2s2Z)vQwEF!JFBN!K^JUWVn(*oh&YOo0E6d&?R`Af6rGI~gu{4n{O?v!9 zN8x|Q&L{~&5Qd>w5(ESHzu3-x^pz1e?g1DSw9qt7a%kWK(I-`@2iDUbRtf;TheT;D z5K_JIhXMfa1ht7i$Fy0F3XzFag>v|?Sg8U4f6_eky{ZBMr-0eXUZ<^AshF1DKKxMb z;M~zC=eQ@7eEe;MB?4K5q;Fl8Y8zK+|_G83p8e(2mq-`E_R zy$TFmZL_uN{%gYEGV+ZIBegb5q7oQ*<{QaTwnwDUK!JYPQ=`;oIRXQpnOh;!X!UgT zzyep!>R0&MdpJ2bUY3cBj<8nJxYT|UI9z70Uy3vqzf2o(cQx^{?}`Mt=3Y1T5iyYP z6C&V&TBs*I3M70XDMPM!d0=8w60$kzUS@4Sd9c;%J1UUywWbX}&Z7Q0X`O>b2x2;Y zFghXx_{)^qOd_k>hF+ju>ju4Dvo6z<&RW8JI`Dp?Pr;#UmKk^7vBH^QS zyt|G>RRs-vBYrWePvIcp8!hQN>H!i+`1XTIFvEWa)xI54>%l~A;=qYDPd&$fYi`Ye$!_`vC+cy-+$uF$|+I*LP$^Hp?$;BysQ z5{DRHMkEM6MJNaQKf4umiay;29Z zINbkYTdB(PsI1)m>kndv4hb=~(;I!|Wzwl81Io)e!zA$MY4=?DU!~<`2Q}P%M`j2K zClqjnWj}{VQI!vTElC)~EhwS|J-{41xmwV`a;t$$Z>54T0a;g!W9ZQETIXrPPv$){pBD1R=&VnP{0vziu=SY;1mYn zI{Jd^$_uO`D`V23D=%=J;(cZv`BghGZP@N4xollqje)PGE{-SOpZR8^8UvrV<^uNP z8F46*ULq-bZeDq4bL1YpE0VCx94IK@hBBHn@>jV+5<3lgc`Eh$Cn3iNVT(8O{)@AV&ENjr^y-i29v7o4i+Iqvom}p z20pmEcZ@^*tXGMFud)m3hV|)C9k(1n&@FEeti-@)TB^k$Gv3!oRVFHV{Oc*%sD5dF zn-I3(vmTyGD4bB9YNYLs1P}ZaqA@9(esgd_!76V8WlYPZQexnPRLPD5h37shG4O#0 zb7PFz?YK*cfj?gSn_o%{=1#l8@h|=jBTy;Vh_7h=pA-72V2&dH)cxL*ae=XyH6;eV z0a5KRq`Q@wC^7KPfMSkQOlkKuG4Mgp(2@FidYy>DTu>?o6faNh*H8G-xgYX!dxl|y zFNI_KuW*2YFRuyE$2QD@4PNO$Pe<6|mu9HymKi)4AXfi#_q)81?#Q3uUM|U1Q3ImB z#i#@qJZB8iXd->ug)l;aa7M<)i~3E8fUis0RZE5y2zXYUU`!l7d{A(~pX340u;qua zYfEAn1VUFz))&41#rg$gtR)9hwdbq=N*w&XwIU1NjU+6{kwrhXi9U?}+@j<^5e121KnH$bX-;p>c~7|E;=)qhpa_ z$u=kgemUqP>eeCt``C|=*JkaC)FE~Y`5q`66zS^RQdTW54v*im?1Jjj$kc%N??=(e z29xnw$$uZx4sS%cFvx)0W30PE9K8{++ODh{%R}S3k^z6D#W_v5=Vz5@Kz_Tr-`C4f z0#gZ?M4o3w2V{d{pFCk&_S*#+@F6WXL^L5^A=i&T6AUomL}5^LOBT|oJWmaXvcK<%%kX6y)msrykPa*jd>^VMeE6X_U4#*Q3I>5NC>tPn zJ^_Nkb^^V(Oi6pJ2WjA!cvAR}Ity|a8G>o=USMh9d)u$=vOQ5jhG0qq?-?`W%M=B@ zC3`>M%QQ;Dt^h*t8&}TrRgX+Z@cVnB+WXb2h5uF7IozN8w_GClwwOu<^m!x{2Bk|u zkucotSDi})-%YgfggT{I;J2Frc9mc&lvK9c)hXSHO@ zS!dfziiDDTGBtW^zQR1Ol#P5~d)&nv4qUBt_@Rp9ky|0ptgM7~Vl}XzqVNZ~=l_FG5$yJ~cuFAGSdB(zwIefscKlnxZhQ zfI!v#lMm81bE@O+ht`uc8wFo{jBV3fHb>|(X856+5HRgP*wFqt; zYF;|Rq0}Py)9Ga~R;O}*t^mR9e(O6YlIsElN438l{xKgGAoyPmig*6i+UX2iPREeI z4}5`sIsBvSqd`ff>s##TY5PV^A2}3^#fO- zD%Z+8-0gGnycq7Bn83?2xN#C5I117N1b0^rTDD>qE>FbVEvJ>w;knbh^g(Flcb&g= ziQ5mHLt@?=;E%W8l@FMf!QWkQuBDt zzAHYAor?{_APhuTB0y}s|6;8w`5Bew)Bz$0A$-o~=avafAKiX|K$O>pNEzHa2*gaG z=o4L1`=g+u`t3is1o-HN+mKfrScPa!MAf0 z-kGM~75DCaxU!qRao`2tmNkyj^41(Fg`0yIu554V1rM}viW+;_$n~-Y5@myjUVp(u z10)Io4#%uHmwwmW>982xUI7{Tzor)MAmW_@az6Ah*_pM2(TcHg(R;K!Q_0(PtU;<%;M(tSI(Z-O&JvLhQ<_RXv+h3%{|BwcA$XLuUpenRchh;{yM1YtsfoFH4-!qG0?(UhauwkdB(0@ zjGX}zgD?mLzXVJZ<^Lb6)0V~B&cz2XnuJ8W+#O$`<7(kQ6H%G|(ls9(!dj~vr4vQA zC3yViu&!X>gP;7Ld13vzqAzA&Z-cFw1_QAK@5O<{WxDonOK=K3ev!1nPQnMb9xG>) zMt;D;ySE6`G0lBX_}~!M5WQABtj?=~#s8Vx?u+#;TzrEe#obQqi#38Bjve~e;t1EdQOLMs1-7A6 zaMNp4(D+F95&voKi@74NDt2%UHXe)d&Z~}OYdc?gBlYQkYt``K{m%0i&-;j_gF%Z> z;uf*dt?==gPsYyeSb`7)qA3BQ-pN0)yFVN(rwS$jYe(c|FKzRBF`5gr$vMVFk7`2v zdgB{Bm2wbg{1b6TB_MK&Sl&an*KUPk=0nP%ub)l$21bsGhq>l-WAn)$kg9SZh$seYROx-kxx=KzqNX6 z*=$Rfw0f<*=|Y1uYSxaot_)+zR{JDqxsa~7&ZyU+A8`4KCt1z--KCAK(9g_?eoEPF z&S+mMFQ?qlZ1#(M5Br6KQ@;fMTl>6xgYxU6ww22zexhT2Q$JAwG>09&K>2HSxQc^J zQMy4ebk#A)^!QO0=EoMv@hki}<7n4s6u|jOo`^G=-8ZjGU{5y}s#;-B1?c?A|K`>w zLYYcn=ZpNDLO!#}&yHW^pt8X-tZg+RathC8(0Y6Q%>kdsY|?|JrqmfH(DS3=&q_9$ zwTwh@y5j$goq?^xFbG6fib-tf{)@H$t2`pN;yM6Q9AgaU;{dc5UwnNgNDkuJN1O!E zeK5=ljMg8*cI_`CXzGiXk(X^oD=5|__7UP1Obp$*xo5E6=%WUFa!%2xmO){QqDmBs ze*DxP{2qL`6;>2<;^ZfezSyGy^wVojj-!BdZeNPQDNa5}dQwfzknWfv);mA`Gex(F ztS+(iq~u063z&->2U(SBL&d9>$Te2%r2hh9Oq50mrZXAHZ;S1n3NZcFk5S9*udzha z@3wHzM0JyJ`eM+@DLVoyw^;;` zDFqq>rq1;lAUP%iyGNtZeD;Uv3&WhiZfAdZp_o7FoxQ%f-y>93;MBxfw!J?Ga$?}r zwMSR)lZmW<*JKypeC`$ggM%w)+ zKlEhm3Tzk#Vc1KU&_MrxY}2$j2sYCLtac@3#c^zjrGNckH<+`YuHS{=*Jo^+8tA$T zg1ysn!fA-04H{8yETaI`kw+uF*9FBsS%>q_w;mW3a_m#*+#d;o-q^Osh9_3n^L_2u z_7ofYRXVb!_`BA2EnUDxDI@f4$|MhZI*YZRaC6zI?~_aiqGSd<@jb=g!d z8jIc9$sbue0hzx^bz4iUX{@P6c-PpVu3Bp4xxSk51`Sv!mvmA{E_15CgO^KsZN_gM zu1obfMTG3$dp$g73SY46NXnr$gb9mjrX6J3Ig?<>OmDruv|*XBInQvoZe6m(Yr%Mw zB@P7BK1ZaH+OWetx7`gcYO)VqlVsW%3(IlC+U0P~H@o*VtttE< znx(U<(p!7@@JywB29t^8xiN6lwo+t~^~61YVh8uX>Sp||5~D?9#S!)gN=#}U+ET3p5L84NBx${< zmtWnO0HpZgU&;IK@3Ct|7Po}?>rxTm$g5s>baoV)V^kEITnMSNcj|FnLRSGXK}_?) z;B_w$*23Ui8m+6v?`PW72~If}*bkr9$D_2Xg+rr25!sv{`yNCUrnT5B?VwX#b^;#y zkz5FgEf?OJ-+s)0em{(zQ4+%-2t==>9g2GYi?u(zor#H?128re71syKHZKWMUm@Fb zY?RWTsk`d-s(S5jTgeso&555!nsL|jTN!Z{3VKrgKy1Jhq?y0G;fXDU2%l+UL&Ump zFQF#Jwv=|^z7XJH64AWjLfb1YwD(flGbpCl|7#M$QrZ)0Jv5Kp_l~VmQ|8NEAFX}r zUY`Sw*#~ny-&GHD2raRFfU{1;hVe6PT%c&Rr$iWA9)D5Kb}=94*eJ364kZech?dx{ zoS|`-5+)JlMNgq|UAE^#*~qJ{@{Rl&UyXh4vmcqgti<-w5hvm1XEVQf?Y(q4{F?Q- z#CEW{PggCG$)0CFAzSBs1B#vV4fSPVmS?nfT-BFoO*3q4Q?RK=+c~Tz%N1#z$kt)T z&F7~N!Ymt*?CRP&G_LU#@UeP1^1VjaL~Gw5vzTX3t@dN=jIu2RK`1(qu*p#iWmQ^Ugs=Jf`6;)-BqzL*D#D$sB;nF=R%z=-;`5!xumd_JL^Mnv)|u5;1h zlTCCmSEI0edl3i;nV@v6oaO!&QAPJ?NHAz2g<^8a4+x7qfWoLT_ z0_yPJJ!$fe*rutpFXbo~0I}z`eFvw)$tj-ud8EKBm%+TBw&@tjJm<=!P}+?(89(k^ zsnb;2m%SgEmq$KVrXBW*+T+ET&&{^ktGeaiE{Fd)ZJZ6yBhE5^)YV?{N<7D(WY;cx z1%_0-Z{OK+d&ib*D(x3_TPSTQ_u~8ROgnYNi`)XFuSKR3!Dn0_QLPSF6`eN3NLP=G!E6%>^A6-OjBr(PNumKmvY|-oisK8TJ$R4&qFA0x3Kf`@ifQq1gS5Zs zK(~;<<~Pv`%(iw-|s-$mz0m3HmN|`gFZn# z=jC+`q}?g6d(cyRv0s}jN8hc1c&7%^{z&FL2ohIpFKkC#aR#GH%DwPapQ|DIF?L2r z48tG{T`8tD;QbeCfAZkU6*2(l#<7VigrFKSJnyNo>scj5^eUZfR3-We7fZBE!+uLt zaQeHT4879Q_O1hnRVK?oG6VyBhFIh=NDz0d+usH3VNz@mGW~hJnRbKrviS3RhIeE& zc0VI?L^)UFt3)CV&wFYtd(}%W1*V<5A2MJa;H0e@OP(CyB(nD8bo6@UbhHFnJ0y~( zd87Tg!ZV#pSxBe)IR)R?-RyH;VVCNfp1x&gShvi;GQRshV1}D%&&CK4L2KBn)8xA0 zF8KBTH`}n!zUs^`e;Ql!6_Q#Tu$f~}9P5%}`<^m^YL6bPE2<&=JM#V8S-ru)HsHFO zYR@Kem<$Y<0jeF`{-&B~eU)6?o1U@(*Lmp}#NS@}QI$)OwR4Zc7{Lcjcvg*#KDa*D zA!|=Y5ZJ$b7(1inh(Q>JUa6oZX77Ko_Qz7DW@HY)5E8O0KP#evgkRKe_ddL4f1hb< z=bn@UYBw5*w)WS4Ubka;{0!mq(AkmxT_9{1d}fDzdzHl2yU+-;9A|ha z3fkI_h@x39_tmUe#rr0aus!H-;~5}xch|h@ynMb-bFV7CQj_lS^YU;}r3?(|cE2YX ztgdS&>I>hk24OqhCa?O)YeFP!f7M4!3J8xUL0kK)?#5l+4cgkJk+j}u)_eFLRKu%T zZI_E@$)8Zmt*9!RCj;<*zsQ@F;IAh*P>v6jI;_haQNmg zPPl#Dp?V~4R}HJ+LVq;b-`MiG#3K#tbsdHyd4a3kb~9R!fxEAcC~rbg?7~b37+s812mZxV7!S z7vL?{H?QY|X#3{3U#bn!cGaf42$bhVTNs+!{>ZQ2+OkCEIXa4ae)0>#_6U;ZVO#uF zes;R+cb)Da*uL3D)X0A>Vf%XTr-o;=oJ@kGeeDX<%%xGp3u1OsE8WX#`K;j881-l9 zsa*{{Z6IXdTV6bOEiXXGzPy^+>5n3;lCblFQ)s|fe&z%6^+}gY)XYK;k*%}F!z_vb zif3J$h@wQ_eKW_*AXaCZ)#1e~bP$>P*U^WuGeD9Mgn{6f9HJoq|JYS|JI&p?oA`hf zlqiNF>5-YKzwV*={@vSMHPti4H99vnhoMKW<($QiWIf%->R}R(#w_N0d>ga1DzyJ! z&?erYYDKN3cXHzxs{<>4kD#sla{;Au^^B*X_=?aMMDJFS-F~92w`UFN0U+j2?Eb7l zJx05m2px~?w-f-^DKXso!bTV48W7`u>zJ6@SHrpr)Tz^nR@(An%ouOXp?0hzL=+Pq z@9x|*L0$NlG?rRD0C;$u^}IefEThZU*r%3@dA{)jhjFfV;$Eb@Wh5-3FUtY4;>$WU zjWuflHVhxGic$r`W{x$<)g>xLILe6 z=Ia(yA}6a;JYjE9zFOhruL83hR?jW$2v;`kIjP$^GxbpdZCX{r0&u_4mwwh{5|xCu`|GR7zSbJl|sVSaQ}<# z>#KfLtp+;)YMV5HIL5w&3NFwH>lABE%ke@B=4rraP0#-lXg+bnGLeeR>r1Z{w9}-T z{`!p>?=aML-UyxQqGmw4Aamu}gF3poz;$$Bbh*EUc}ERvy5Mrn&8a6f&v`3D{rdo0 zT}Qjn@`>o&P(f^sWV#QO8?%uHY3tEESLse`2j11_zINZzvr#Q}`Ps1`CCM(Fl^bmX z2P;={4@}f+4-0cap5q4Q~WfG5OmVyU07SfE_2NmmXlJzKNr6mI4RoLrl6 z_P==(iTlwR`N}VCUiWw`^>YD4%}#L;a?K1!tkn!|e3O2#x(0EW=z8QUDJ}J90*zmO z29`~;GXae!3pU$k>UjYfzhG6$t+I3oeMmZzCpVZbGt`|YvTy2mFbzSl& zRDAGu7irfrQ4J=3Tw9S&c$#zqCQiMtEvK1HQb7FgDa~ugnEEpYho3Uv@$ANEg2PWy z3Wo>Ir-p#1z*2=-Gk;Y3 z9IJI|p_>mF3O?u+N?oa*tJzZ$>V1nphkmsVO)&5-4cNxb)^5gfq$JdvCdH^$H_iGK z2|t?G?OF3W#loqt)Gc_K@Un$nsIRuab%=n24=Lh_vo4|C{eJcyOx6-fuEfafzb*^2)3*ugrtZ zMl=kVmN%QL5ONsUU-BaBl-*8OTmd46YPnc}|%fooIRn?Ny4 zHzIW(8c*~T{T-0*f=YYt|0F9%1s+~Q-0L-xJ;qYRDf?-59p=A^01sGqTE)v?7Wi)s z6m88=#Jrd|lAWX2bhB{%xgl_j)x{(TtbWyA=7hxx2n+0k&uX5z{pqUsU^3m9DyG

4uJfCc@7Ns zqANjm)T9(830*AZ zD`}r#?4j$4T+i&M-Twcvc*(Ah;^5IZabcH zEMs~`B`qB%%G8xgrq@5Y5dxWb+Dqctl$1mGH(x=zP{;bCFEmzEO~-90t2dfuV}so< z`xA8s@o#7Bn=(An*Z|dp>!Qw;I{nJqH)H3P!ypU;!7DXR4CVe8tBSG{1l76+@DGU} z887z5mMgVA%C7KbS2BS``?2R(r1OA^j3)rzG9R&~d6Ji6;5hDFD0@0Nm*N2n+ z7i-muhpI+g2Z)@+KX@GQnO_2hruLYUkS`331+H6t;6qj2oD#>F%9nX(s+-f|a+b%} zBXUvQoZ`EyG9G&2onYh`HV4m2=2@IR_QJp+H%EG6@`ElPBEWRIaWi%|nO{uaWsIUt zhg$v>PUGq`lT@ul>)Fk?{TwAN&u|*{y~|}(vhoL;US7e{G(1SnveH^w~2I>A0ypQ|KFn%@>=?bj5|L(x$eg+6;8 z9OLHZBM{!h@1Uf4CK61c4^x-?#B!VOKTttpyC6gG~Mvq)^9%gY8fGYQ9(=X+RwcaR45OS1$OStDNeohV#N1$ zbSKx()rt+`Mr@ z*I%BqQn&MY;kHGmRP~d;;vrbBuTsDEUgOYbdr^U1An2ZH2$pfnCEkKN9-L6m7CgoF zJXy*3!Y!yW=DM#$N5%Qj_6aPgmgijXXo{PxWN4abSN6o*K0X zLFXfpmOMk5RUzp7L93oWK6M=9 zU)-Oq-a0nBry2{R9Pk0=ayMR3fjKC83kmxT6A8fQ@Gg2JtXuyg;B%Vk8XUoH>JY)_ z&tjfDViIm(v7ilS;frSOU<3F(FM?o{83V`&mX*F$%74!qTnfSGSRM2`ZJOhG7`GQhZd7_h0Oz zhaQ9WL(Bj|ocM@D(d4_*En_o1-x@P(a+>EteqU9v03!VM+(2Ls2zVI;q$JWRO6;;bRf2}wD)gv{{jGA=OpEE zHy}|0=#w@hGV9G)N`%x_AdSnY-rxx5{NblHF>_4pRas?YlW+H*MriLx@I{`F8`RGe_zibOU3c zzH*5r-!QNZ>MIw9+i`OriGr@!aj#v!P+u9;k0vPY9FPUFY78 z8a;EBl&;j^fpJ|&W z_8ei*a0SB{&rH0cbu`_htrZakj~1Nae$JiO*KnTJ>@Jk?Y zi~s-FB_^F3(Uu1oQH#j#c3h6NsxlRq^|K`-Mq+2LaJq+{)H3;WzPm^FU`BGa)_hEF zEKsqU5WLkFS9y9HP4bRJXt#NPvgDWKbC7uYEhmm^8MofcboTq@B0ML{Sm%=+6_-}Z zFxQQ57r0MMV{R#TJ0AmxzQ_X61hzjN*(A~ohGfi|&tg~-18o+Y;Z^@AkEe>^>d4G z0ja}dk4GI}4`nN^bQooWABO5+g#0>wm`11PMVHhN4$$XzNe!e=%ot`XVX`2k3wTUH;n8 zwfA-}I$9fC-&Ej|?nOt77;_j%3o~YJW)?B#9I;2hwt1qUfYxyj7;wbMmH67w`r!CR zMBmYKXNjDUG9Yf6>5H%sZD^hLwWw*ZV(lWx zYE${OYQd};drnY%1t;F>Qc>vB!=VwSDEa$Hm(j{lj|)u$IrR-i{xV zHI0^Zq_`Qf0fb3PyAw0ZqEPIDmjZQoRp>+1|*ogV$zXi|DDgms*82F35vFr=s7IhhPc z*unzE15)3!FA-K-Y6hVbx-Bc*0;6XXWjMsKvU|3=Ztmw+lRJJDqGafmsZU?p!)XhLo3levrqd?&9ov7 z&hhLs&d)yM#n>4jAq>Jm@Jmt%z5f4W&Nya+RTCb-)Yc4y&E@ic?YQ?2a+_;c-d-lh z>K0i$rN`@0Ja^t(;%37lHbt5eqMA=|x*@BAZchgcOyw{!K$#HQ_xUvTxs5Gekm z{CxrIOXf{H=N~!2tK4wx$qf}o=+Sy;n`ern^#R^H z2dPvqDvt{r=pUcv!pgmeHIO)eP}h#mWiPMP;C_6;0h zTz2p_3O?Q~Ch1xvRvwcVu~B$K3JE(m_Tvmgh~j-Mk!BV#31wee!-m-s{m65`P~<)gE^uLLsz2-&0f*UCE^Mx zcc14(s_pAJA}1VXuXIQDkN@md0)(9k!HJWh%-U4j*TGg`_m^3lwZTMSKhY#+qCbA$ zH)CgZ z=b{>eGn|+4y8M2D+xa%WMj|t>Q-l1<3VYUX%il8;cH)MO5%p-+ErmV)Umc$*&3<*m zH>O82V*V^s*ue@+;LGQr<_O~}8S4`icJ{m0KSy5#-i`*<0UJ>h>k4l_8v-rbb89sF zectm);$&_g32hkPa}hV@?)F>tATjp9tvOe-U+Tegt5a6S`ZV?XAFW}mAg>GF4$g3B z@m)EORpISdbz!HKj$ZlPmnrPlCnHyBVjUEAWT_YWb1U;81m12RD$6(K8dm18TLG2& zH`f|k_-PZ{$$=ZoIW0y68LQYH*J++J5)3$u(NDQ{vu@>A=ImE3IY-8Vv>$)>yp%^V z1>WuvBh(b7X5D$`S7X7P+ug!ybYVz^j_C)th}Z5P{glDzcqgEu!rQ+`Z83Ds=ir;M zGeBYxgn{6fEJ(ur|6}cRhK(aO=>s|(SkL&`Zf7s~D)iO)1gdxm_P0opH9 z#Umt<3;dAVPeO;~fk>KAZb%VzhPAz^hVd8-w8OdC#W!>`^QVQ)_>q&LYo|V)|lVz$GHC1dJ)+Z;9}%O!oA$9 zS}6V?Uqm;}U;PAHJ6@HpMD5~iG`04wz4JWl`=dBV%GWM*gT7nTE_f@)*IwYQBKn$m z5PP1HKxp$=*1$rfPLJN zE7o_OT07!vf4Wj`ZT|XEo4@z7fwkkt@AzAA)B77(`?HQt=R#oZYfTb&Gg&9M0<8T> zgV*$X8|?UC%R`H~Flfc@S`X2eq$(ZMVZjL9h0jz!DUE-|sWXuouE1Y$%*Q$fdFz~Mdo$}Q4 z4Xk|z5M<*9j+=ZJ0&8FSQ^;S}F$r!v_ZK!|HuO5PrKy9WorI;KPsj^plQ zyO=)f=#~41SuE1!zkEm9p9K^1D9^StW7l8I*!Q#j&QuZ5@_FWO3$vXGyHa`E$fFFi zJu1RjcAWXYKFoHBta1D$EZYTU`-R2C?XKd?=dMt|l)T7RSesI9n1v8_aldvqvNI%2 zO!I7|8_KY79$S{*FHn0!dLNYGC@Kb+?Np*hg=8&{70h;~s6*n8^7}=cJ@(jPx7sK^ z*U_t3q79}>&$|VO+MhbBRdjR?wd;gAsZ0io?$@z)^}Nwhsp`GxtPp3PA*ct7sihOe&%4d%Rap=s%J;rFN}hQ zAZBsqwRM9d%tAd@FUHOQhk+0Tf?pD}T>byY+B9V_)q_5OXihz0U3Twc`+fJpEGi8o zWH?83lxxm3(+0CWUg!C@n-=5R@A?MQdlo2?qwRw;XyI5`&G}FbhL~nCuJ0?Du@~8- z6}bv3GUK4;SL7<#oX)->_0J-kM4Wv=RJnhPI|UV)gQ#>aa-c1k?R)ou755-IG7IC2 zaf_T`;z$`fGIRhH=NBEB#UMfcGDy%C;_RCMMxoZI4YZv(+X$9Ry1s(bDd;2`P}*~( zKpbty**MgDM;^GThuR}3YBP`ZqEX)F#UUnwStQ@MbliUaN9O&a>>n1kh|f;iCL0r;`4dhd+{!MMyR#?;Ya}5ml8Bqw;0#2z(_;6 zitKpoUyPj#4#OY}L(i1($$I~bZJL?~8mhAcM5QeRVq$xXWecR7Ycz@#GZM4YoXww& z9!E31C0GLOGs_$ISm2ZXzX0v5z|{!YhJN1!+DEp>+}Yai+$&?zWry5_3H8)R4RelG z#4Z477P0-%&L_iaXLGj%+IK~1{*k^!wFKIOX8J&IC!!cLrQm?P=MWx>@BBK~5t+SM zzv!|DYk@I$T~=8F?E|0==SI`kjc(1J;h3o}6)l1GF_wllqAHi3&k3~8Bx!hG?_1=J z)}N0lR}}9%PQRV_%Wvmq=syrVw8^*|P3@ciH4X8_?t3=1j~9-(UOe~N|LtoqqhbNt zx7hy(0AFsw&k=SqCqtLqhKS4tZFC48#hBaqohe^+32FfC93>qh&1J=y0oo^JBp|(p zo~_R_Z{Ww`MQqM1AeBaG6uJbp1ll{o)Pb;36#HNT?So6UAWxd>+@4VTP7Xn@TwbKS z2|EKE2tgPKe#sUD{r|@%)5!_$BCe{nm24}Beme!cdod;8b$30ERDXAx=wU$&(CjW9UY*_yBK?I zz4E{!a}?hfbD}`rU_RGoTh9ksXVJC`m8XsygL6Bg6a)`doD9_7&J?A@yxQ8+4b(m| z@k`%1E5?4?$*-iqvyOC1!veLRdEUtLb1$BEd=cRUnOSkS8uQ;=*BUf++{MuAvmH5p z+^$=XyJZ_x-}Gp`>(`8j%*%_3zq2MA7Nq^2Q&rwVl zS~~)s5oweY84Ox`sQ$J`P7t!Q{k{0HPz=f(XCJsZbfcma1r%0$C?pZI%p!|mwWAhp zu<6Gvo_YKS>$-|(o?k1DaLB!~w}^F+0jXk(bKkt8$Z_^g_1yvM^2^>o(w8gN_xr<{ zHSfhYjr6t3*mj@9p2eu`riGzZIPyPI_{S`wPFk{RTt97whu=7X$whw>{xL9I_VDIR z`;66S|t26B`ace z=ceizH&tAL3iN!0ZF+uEEui*AchHEto>p$>nr?Ydog74w*C;rbW&7jqf6sRwvA1WcOy{D%1bLKi-ZIqw_F z_Zqo<`DoU+_A9!L&4=hC&lONR`-VGGDO0c-pSLF&kHO~7F!c7+A6s6tQbFy{vH#!w zW$avV7=&RMdZo=J{oMazli1=^3pgC0qM%ZO?YtH|{@=Md=bkgkG-3=wTUIbj(z8X6 zhTbnR zIc{=7^yJu?pEK{b*e5&r$F7+*3SS!31Gv`SLwlZ#Ug^#QP-{Q(33^N0A#kmo`tdJx z`n6$-u`Tg{*{`H|z`#iSV`G|L^N)dXVL96~%Nf+#FIeD9$9gcxsr6??J|BvdC|qkl z7PV)pNJWn`#=7Nup=s3&)Y_v44#r;b9dxaI_ZGt1FRqKU$3{A}s2OICUiILJ>viQ? zyM@9?mSL~%m+R_aw2o)36t$Ua?R#vCbJo@`<^`uV*5oC^G)YZW{IZ*F!YO+xy+mgz3u-v)11;C3=(z8GVzsCBaa0S30nnJ#d<9c#|z2vcp* zQ%rW-7JVUSfyI~_jI*Jlwz%JO=O~zjE7k^V`;={uJl~7jz8bFMY~nlvRfN3uu=8SZ zv!a*TwP~Z8S=Y3G)bktjRYN*CXaaCVc!Ky?D z&CPL&t$j-42VGh5i_g`={|E$}?-mqWyYKezz><%tcI35vm%BPDdCP0ZzH>(D&edvl zwtb$;KL4A_R@nAwl3f0qBv;bfJu>pOr$u+ljqMtTqk<+UQ+&QQFt)qNML1pY9o3T7 zI=X6+%8OAn@1W{zdp}4qHPA+`IIFYm?#a8*tcDg>?aMUF9nbRlRu#2lorD=06Tihj zbS?I_7iQ-v=Uk2+wyUVD49lMsT>FGW**6z&KKU_`x!kbD?wIb$*qPuk48lP0OVkD@ z{QqN>Dltw&y6yuka&Ru|@pr6kDFBS#A_c&g);`v`*ral>j+ZDn`*wY2apH{Vq9c|_t^LIv-5gn8t!Ve$ z>r&7+&Z2M3TdYALHrM7UhafZYs<2ZDt%*8XJFMB>vR@UkcGFZYS=kz`YYssMJ*J`a z6%0im)UY)CxLMa+_h+>BG^wECLhB{XT+&nCCNXpvd5{V5c9I;C+~5 z?N3_5OY9M}_8EL4`eEd`eFJOXN=xXml=Ev01(^rla}hoVTKh%39-M+E=1b3A{yDUh zb0(oV)(*YAeBzhIXV)POaD7~)1wi?xMSU945qhU69r(0g0PU<5 zy7sk;OAxVk>d`s@d(S~WqcLjK!mO9IFb2>bNz}!|TR6#uv!Xc@$?76bevsPh*%V3y zM-H?Pf5g^?Z8Q-`!fM~fMzgWpCVxQtm$5UzVHkvA;Fk)RGXDRuO_Oq|+R51i5G|x7 zF|mE&-?afC+KQOmh(0z7Ixa&z;b8>Oe&s512o^E9F&a$H;P^8^LOv$rYNSbF@xFJm zL>GMFSpd)byd^oGxXO8pXO6aZ3Rq?FTO{opr4Rl&jGevMqX4hCbb0|$6b-6Eterw5 z3(0~*CxG^7V9Xk&(1{j(?a)aly)|3e ziB%x&i$2kX^jMgVJ57daCI@Z$B98Ykh&V(@%gl{g=dH$Hu*&;;t)E z`eK#W6ZJyq<1C&yq6$O>7w0c6!H$in!tG?`+xqH8fwW)A;C%VR?=G&WbhhSNb>Ho! z{)nncSI+X)x;jocRQfyJYbb!h)dsE@y^HIfoHzz zz+;Zmo+NM1SO3&GO8edo{ltsq*ti8FReeFlFP!PUwWn8XnuD1RBORq3qPCBuaf^5E zyRRoO0~(toS{059-WIfUZJ!PRBMEhrmHiZuBfTfrvRl*V7ya>gLuW> zAG)iIhtfU?=rU_OG>zaW?Q4CrCcliG3$BDP3&ua*l|yZ1hol+bCRm2L_45o-fiS1T1~ zrW#W@3cyLBwBx&?)A4t0c<%b0L0sWBcq;7+H)lJw1H4g4?ZTOUp@f9@ynnA|2KTX$ z+C^6ivUT-t6OF0)&Alr?13;hIxPETGj|M9<6(bSW)oujolH=No+0?u$R5 z=nrFOlmsCN!_X@!64Co#Y=7XDK~47n9kF(>Bx!K5Orw%3`q;xO;_JQs2m1}_rK9OK zR?Bny)hnel05*2i73PgWOw{B|cfTkZAXAc_keg8_<7Jd)3F0=u_WGiLN=!kup+BYv zZn5Uu$D+KtcrJ=~PlgIzI}RlcjG}tXO#^KgE;1WxqUv!op=+Ns@em?=vSySF=Y!C! z-rYoD*B+*V#Ck$gxX8RIg8Z3X18tv;mv4-hlRTr4p|9f~T0LH;fws>RY2hlE#15Q+ z-t3yxHS)1zzam#c${^pX2(*3b`Kd|Yw+mf+r~#ukj%3Yx#`1lSBv7P%YV*~!mxdsqKkQ$jvFLT^VW z^jt`~d~53ME1k~T9ybCIdOK&r3lbvf@+}P8O>2|$QcMvGvi)&24cYx<&A~;+_cFAR z^jY>nLejuV5*m|{!7R_kG%cBe$n6)L8Z2Sbecxfl?95X>e zZugSI)}1sLm%(-)z4=5jPb9$hW%?2t$#G-K?Tw-qOujM(N`URYma(Pu7+#jfUVKpA z6(0z{c3;apjpB5-8aRU>fhko!vaw&r&M3#B5Qc$g+6upL|C9BLakNzNI{+$e0|aMc z+StEq`Es?YaFxVF#-RbLGAo;cYiIQ?K321`DXZ;F8Ru55FlGJcw%l71-s#p++q)s~ zerE_Q)b<9Ln_~*!ci$O9y8R}w+m*O=hc0IUwtH;ZBRBk3&&6#~iBZVRP}`fYujf3+M(ukn z@f@IKr>p1QlyPc)bg?z0H|zGQ<^r z?eLFy6MbsN#0A>UoIl(KD;)brZU5aMGRN~Ku25vChSuDEAk=n~Th8j{<`UVk-Q*TW zcgRFBZ2#q<8qy8W_Ew=s6`hq_9ksoCY|;=Dl-#4X_p$388K9%KQy_R8&NJwuFJotx z1R)3m(JKLB1NXn!{0uLau@VkIA-E7by)5LY+#*Y|ODfT&h)|R)cf4;AfxAr!7z?xA z#v1iGrsUo*+doMZ;a&*~nMXsjpP9^yU{sE>ZhIAjv4YxuF)!7m;)+n^@|Kg#8#l^T z9GRh>k{PtY_Ca|iD*hz(PaAAkXDl@FF_XO-9*pHP83QsZ()VrkUhf9b4M{ag z-W1gK5AZp=W-QxHx&VQ&L6vCb0S$fsu51wS-7|?9d$p> z#T*XeS7BrA1BHm_Nh+=;1=jxY)1CM!X=CkAhcEh0CAsF?3)=dbpiS-L7#wF#KLTs# z(>|y+lC%c3>HBPqt;xLm82mAIMmG$DFc4iS1UTsai}j0VB#@92G@4N(?H@V*}QH>2^1YSuciE)=RE?W% zS2>;3g6*if9)DMPX^#2@GSqL7L9q6#wahG+WAHhlicxh@+FmfE63%X`W&%}YLgRP* z=19@yU{f?~--acz&qmeJM27YDP?JX0E!G~d!gf0{(u~q}@?C$%&h3gp7>1!MmC)K| z|Hb;#TyY4s7$66mycAhcRG!biG#Ha?Pflf-I$4>RS+0m#`S#>wK(@1$VQxR_V`84; z>aAr%l6up>wMtdU*FeHRDhjMa9%mj)3dnX0;NEO0Y2f4}+jG-}auMczzPQLBPtQZA zqrQ(O*?w-z-0#V{z(wZd=aN8R6Y~vhXKeJP-@r#^s1~a4ntb#BT&S1Hx7I#lE89%W z#}#f!HtpcXB-_u10fH)h%ym<9-k;T+qc{#0^EV$t21(m#3w$mE>-0D(5(=1tGO(@~ zSIl1^Lk;t2x}+r>1VR{mCDHYDxc|j=WBiJ76L<$8gYzeJp#8HQzIVO3@=AYt(Ej>l zzK`#!qu;;%3b6e!rBawvf1qQM!S;s+CORHN<+A|WpW_}L_v~%&eMRzHCn0+5Nhnzjvp>)zYa-G#d*Ki&p+5m@5IDf#W@8r z{sgQ};X#)6R3CCGTnqE#tUkW04N?5>7pAjG<3@&5(kvpnNN1=;lK{O%$jjMf!+C zwhzi`RbPq=&r>f7d|QIruF!^|@A+UU2G=whKmQ!t?^xsKlUS75UQd0djGy0QsX+Ss z5g9*s5&xu48{t@osXh?Q)z!fiGKFV^=f_(hNbL%@Q)9ZdaBB*lEkc2P`+Mql4axz! z^w*tWQ?Tk7Ax(&*!E(I_?)|(z#y2s>vxgb=sP``1;)5Du&H40sWp?b@8yLut`9g+f zabT?;gOV}xX^i4zyfs6Xyp~YABy{u_sWM`IZ#drnlTH^Fr{yCSGmcP9fS1$KGH=Io z7%@e-J$y`Ls32pkjbg`NhH-Hp{a>UYrhB&vU@19Pcs09%(?U2Vw7i`m)(?B#|>}+%)$oL)MLAimu>Jefo>sa&l zZ~X|lUK_0Yx9&!euwR!U0S>Qf58iphg2g$&-@xe|ieC>gJ&ld)meUaX`#SM0wJUoa z>A9}&&AAoOgw0;4CA(vE4z$w?TKlr2PSrfyOYm?$-+FcqK0g^~czHynT!-Gmf_*03 z7EiVwN()AK?m;!=TNe{Y*VhxISUuISid7=*3#z~))rf3f~l;%et0 z18}6SlM@1@r&zx^m~28dd9}sh*WgOjM~puS^b=dUp18>xr$4JWqgu-XWWbFzj+m6a znn?Qpi678VuQdudAPMd+FgyviqK?#{Mm!3WtD?w#_ z31v*GzjdmmGSTFX+srNAIaopREn27^k_H*kAkU?2&>98nh^cU2dK&~bCm$qmFU=0NJ4XbZEdM8;>ZBJs1Ej=?23{wCo1g+ZveIO?9q z+L)K-cL!xZ#X{qE3C3l@2y@Ul(-cQX_2mI;qoZV(N%0C(h@u3?gUahu)l9>*?JeQ) zPOOMWG zYahTvp#fxBSfg2Ams+e@Iy&!B2l{lPQTw=oC3iDdzhvqAXEdhzQn-FaA?<67@0D+=Jvr_C7PS$Sc{@Ks)j%@Zo%LMWC$PO1-M=XM)03MxfuN+M#;^iDj6#5_Ll^r%lV%$lpBWWhpG9czw7y5e^*Tu z2PAS)3%8#)$$2@0P8ARCmoA-GGBK(Syk^mtr|7vnRG%JQD8cz6$#@r~HOq{pT_UG8 z4#uXpl{#|1`%|itoTobU5Uxkh;k3@JFbWh#{lC0$`oIwh0hfB!jX>u)ulUH18H%AO z*Ats8(3lttdVaXyLlk99GL`(ivZBEzXRgKtKcAJk=Gf5-xwNmHYEy*KFWlYa>1&#| zB~Q<{r7|H**`N}kXRuD9Y$}7bvD7Ad)h0E~UxE1dZa^RAqC{ZW52G*>Del zl4kiZW1H_pdB4OP6ac!#GEYh}R#!8fMxqD+G10SKWMX410zgu9g$M+Ge&K>0kGNny z{3d_8v?OU_KZ2ekYkNJDwK;rp8llj*$v$MxGPeKAYSdjZX?Yx%Ou$ki2b&0|03jTe zWD|oPizYO4&YEZH0i5@6!^p?SYN?|KZr-DaN>@u0v@Dh9VUL zHJ{Lylki+`3AYM{tG_mJbB2ZUTt6Sa-6G96?7|Mp12>ON;Yq=)w?u&E>nh3Vl0Z>@ zO%qn}U);Hy(ghB;F0qN7+FsgzfB|%|On#RN*dwXH*3wvox=|Xslo-t!YpXd5$Gvo4 z-dclh7sq{CRwIu(76t+>L$h*Qrq*ZdzLbAFBV;Q4b%$Skpk7?L_N;111vHl6|mY_lNyIH3=Y|YuuU2L9w!RbY1)x(Qn z386b83}x};L#JRu=);&hn1wm&6vQzU9jE|Y(ifnxgwRhb(}glHICbpp)BXzxugSrL z&Hq5>Q{*6HMjA7D#3tBjj7$_RJanl;b%mk8>IfY=1rtHv zyZWI1qltwwmA9b9SfF_mn-F>lPh7>T(OUz<(3$~8kyOh#gh4r9SUer}mkD)PV(5E^ z1g6*2r5(di^j93JmrwnA(O-e)|4E0=UeX? z*fMmPOcZ@kCMTUYZD|#Ti226X3iegAR(bEM%SEwNX7kK>46>h3@TprSEeE z$mmEnHsOJSvzqru-rwh%7p@3_QUE+UJ#N2tXjvmHY?=Q+MmmVVY zkv{5hBLMYlZODn*#W#l=jNTT8{D*B}>H<*jDNjKy%+xvuVg-}118#Sb;RL8Yolu1g zr|u&?+Gn|n^ zbFQW~viRU(`lCamS(`m&ur|z>vDL)=KoCXf2B(^_8Y_bXa zyh|@_lCaQSbqMVEydCV&;rcu8afb;Kj+(zwO6-=YS@77$UpjeCh5Z4&V!JubU|Z5z zXh9T=rqD=@{YV&_E%dfnT0>%BC}R^QbdY)I+iJ_UvOXFc-UbbLJdNJ{Rw=YQ#%aJW zdVIlWZAL-7SqrPglFb1(r1r;V-l5lKG3Y;t5F7IGryB(Gg7O3%-e}hP|9s!Igk%Hi z9qgBy$UK_Q<*xD@?L$|u2Eru>C-mTlgoe4L(0(D>Ru8_}+uvT`E@$Izww6|4_PEYk zDo>-O%6>9Bv)Ia-S>R^&(D{Eec5X)ugD?HVw+K}!&m~Lvv z!d^N{AZio&^$GbzT0d4W)mFp8Rg8+ZAyHo?w~uM0*Jn1fuYqKOp4GDB*x|Te((8U^ z1u$f1ynwt$sBzvU?c0-nsop_Aa!*jn*BYkFMDDW^xzA+BDyp-`^<=#LWdmsa_G&co z0)%hA73AZPgm6BMS2ZzTBfZ}Eqxv|LJ)2*yC8K_FbG#>;)$w_&u1&5K$8&^Fom>~S zg>@&JIzIKuObMMLmTd&%95oQkt>Oy|CTfIkzxVMRQ6toAq5^{I!!+?_?A($Z24Nt0 zr3l$3x&OsBKWb5nGvfnLm^W_Ch+k!|U2Xm$a%%dj<`q_tgA3W|#;E31s|a|Ke3+e` zROh&LvH!(e|HMTr)puonOj9;?W7>RVOv`|;qXdZA_3C*AUx!y^-;Fe%3$*HsYNEqM z=9^2s&?(Oc`=l$2dVzY;{2k`_Exx|4BaUwKH+8=M&&lXSZmzFBN^zmb2)X*LqDHS@ z_Nr)v*Y|kQ7@EyT@%4mPbr>?k)O+qOKH94pYQWbQ{{%{p z)N=#AzVOKTj7LWC_1mNqY1&)+6%T#BvRz2JpW*8_q0`IsbMf`I(~U=Vx^Ky$sJ>pk zXx0~VT0SzTW$2_YdUT7fXD7`&I>@X?cgj3xrmyDj=-4o~XXtw0a@xpeRzlJB^+aLE z*~RjIjGb*7gdhlnuM~qB-v45|e|+8T13CZ?nguxw!=LR$*Bb-`#;ID5e7|8=5j*y4 zd8C`@`VW`xSXm)IqwtKJQuuA>zgVNnTvP)s_-lvsL=~g;{Cx&qXB@H?|F6h`$iDov zlp{9Ki~U}s71_7+J5HKShImpL>44We69H)L*@|x;2KyXaYvO!Wyc^?2LN8wFx47MD zzbuKIV$Bn^YU~$$Vkkc&v|o5uooqC!XGJw|R;fIewqjvRe<_`~%qQAMvF11v0HsB? zD*TQ|+lo9W@bz25W8}7$Ng$2fR@WNH;_q&`Ew@26}c?G z?F%mZzStW3yPJk4#J<|-`>Qs37o$Rn&V$y9A`1#8yK~nkI_Hx{T}Z)Dr8=kz963%P zFm~1~xC;gAUohE`kVQM+!V6n}yf=USCQWo?Tsu4Fn!N4 zy`q&Uk3mvhwamD?B^K@|3Np`Wws(FW=LZ*+yb)c|M(vGi2`j=dX3q6-%4k6!k}MwMRp~ zJM#SnwRcb*kM3nIqW`G<$=DfPISj%;u%)mBu={T;$%jU~vrp>^La>bFWwiRmGdKXE zN`IL(pI4!Plv2Yu3aR}DqishmFA9`>F)*A#<*!opnP0nX%s7C*r_LXB_%~>~y zEAcUiQA+*ctdQCVLpAWrQ|(RBHAsV`U#6|NGG}1YA2Io6q>?Kc252a8g-~Fc3>8xQ zKrUy%Q9I0;6H^;so#on0ZIiM?QXNYzVQVcDh<#I_e>=E<|g!Ng`D?qfzC@mygh0$IRvNJ6E5f+wK zVEcc+Krd=58~@j2FZMwv+P`6ypL=e!+{J&=2w|XqrH0j_h5#W!-oACBeR{@?46l!5 z7IdnSjXfEGgp?@n_0@^?v8Y2k_Lp2%r;oN{BS-6*W63f0nvPM$qd@wqLM(F0Z(YUH z5|KuCLncA_wBxrU6Dp*c?+OadehF)$Lz%^OZ}QgHQQo>LkukR^c9LUl7nRFVoSZ6= zF(m#ehXa}u&l+O(z>ZUFYLI9-R`-d=c4n?ni1v#egnQ1N3L0Ye!1hz@+^sXdCSQ!5 z>k-2s41-q+mIGn`#rmVQoGXdU0KN<41>&o$1G~+ zd(!~)pBqWEbET4&sKt1#t+m+_GIgyfl3u?Hw2a~FJNH6%0rQp99($ZN>=b;s=7?Z@ z#o@Eob?rlXvhShvpzC_t&G6jFTQT0b){Z?M9yr#164D}?tN|@!ZnfC!ML`JdgJH1W zxMBMRmdV=qTv0%>?8$2SxeB3uB$rMOaA+YGA+-1SY#7hUtZ5fA&@zUSN^cYhiv3VYnGVM2)D&KRd z0-5#)3nbSY9HjX=&*#_=?Ou%cTxgNJW=)#FADq*YQqlL9?(3wVoN+;A?X^ZOke)y> zS97Jz_*`k808hE4oaZ3LK8&4F5`-`aL$97HVN%!jd*{c*x9}}u z7kCA0a+1%p$Vp60!!3d#n`=AKm`Ch&m>VOp#~=+sWk6RwD+bOXF&X+v#dTNTZZIFiSV|8FY=Q0hJ?ok?+s^6fXPh1bY-iBj z;hAYe12b6d^j951L3dqq(2PlU6<@jWW9$rU7zSY=xKc2N#``Z;sS@X?A@2-;5>Yq6 zbN>Gy3n0^R2H~<=3-z5a(~BcXhArvZfNCGfY~?%aH59S^(v@PbLdSY1%yb)Arspc~ zB7)*axGosA9_>;3vRTLsp}?!+To&+r%iqo>{guVu462>l2xP)2)Ha$FFqrYo*BSuLo69z?y+iDUvbV4_|@ZG)`dg+#%tG| za!8H73i=ANXDe#k|3o|=%o+l2=l%91FnYXQZ@l)n$~z3T?y?e#=N+dVHiW+Ftmdf~ zo_Bg-!E1l@)Ae%!Ui((t?!0)l@OJUpYJ$m3e}5J+r<-5nfK=fB^TOLV0u_7c3+y=HHuk=hfLzYi4%_Ecbg-(`f~qY?GaR`0q!;Lk0oCCkbPI|JB0Vhfv?5ql@Cc zLE33YFhM^@(a+?aZb_WXZja@v{}?;B;|hTohPJdU!iN4E%SWQaox8-Q01v~yElcvg z`peFD{<4DDPQGx`V&S}+|2_Wi3>!5WNf6tq(;eXaSFIQp9x~)9`+b*1Grx4vHC@}8 z^ER4DpH?2JnNT*fMmJ=%{nOzY2~RV-0R@@U8Ly8~S43pAoy!+i-j=l^rwq1-8LD%m z2)lQ`tCgLe@7#m+#B7guhUGHYo)oNujo*kfWw8A)$Ug_>-(zoL{b)aVs8A^1n@a%$ znU5sp0L-a3QI3^`NTN}LW=ahD{x-s3QPtW#8EQ|Suz^&u(JcsGyE*Z5z%d=s#G2QR zt!?JbBy3`jHRUGN@4m~b606E-bE8U8=9hMF?zEz4G!HV=E+Br!d5c;SDnsqzXW10p z5LMf?>d8Qcl)Gka38?+ie5T&LKEb7|MPRFv@i$lXXQ}55*)Ojo592@ zAJG0XzMvUQEMPZ4JH<7lE(TE?BC#juY#s$t?V#X);p0sB%*v}A5jf6Vu? zOV;@O6!tOeM45Csh%bLs4$UMu1><)FQLt#+e$sws}0RrO~;Q6E5E ziQ$ACw08cS5ZjGFwGwC_5M-+G z>ueKf*F_TmzF_2Hg@Vkgfq92lcYmG}XrJWXvwWe)MFi0P$9YB)^z?mYS|}4Cy3EUY z53^^)k7-;`6&B3zoCO@n%Ln4sF@6NGox=VEt1|^0CD6X{--X=d>ifI2uEw^1?du6> zM=ikoM+vlNo8*7bH>+|BCQblpqc3txAPjWv5?|%^%K)5u-wtE1zeF+2`7rtD=^sAWf9WK+YS+8s|4T)r$8Vr1r*s z(}EP6?->}iPqh$Rp-p-%2?+H-FcNITdD;=SH;(V*;gx5Cu3pE+Smj$Ido#6m-a+9#)VS{}uC?D{RO9~w z2{PN-QHx*|MMMNmYQE4!QKPU42{N6@z8+#853&li_LK7Sdv3U|U|ReB+)wSfaIKv> zJvF2e>uq?BVF~f`D%Q*K9F$tfs!?h|Q~RbL)6f(5tU#@u-?5Nl03IGh2Jz(g&iDPS zSiqi(g@Q3sRS zcc^EpK|MiM`=EcA98v zE4VH`YDE0@)ty@kraL@L+ut^@YG2%9+nrmiK-!N^v%z)q));0+NWM}hly-dM3R&`? zNw%<%LABQODt^F|kQqK_CXn{NDecej)k%T0gYb{Zd-)kFnbN*u%l!^p7GCYgk_G?WKxtn% zLdXpTV^P}E)|$A~V6EPLt>%3FJ;#*xH$z{LNqK`~0SlSM^OcNbFkdWWpi`?*Rf2Uk zrTsB`A%x8w08oNxU!aeAhY`xe_H}HzvoRH7``)MQ_sf4oCbkQguEJJVf}q{R_A?aV zN3rctF$fl$f=ARpU&hV=*I^Kbp;!9Q)zJH2Y?}1*f>ac9fN2F0LL58(|1AyYKN`;F z!4KH}PTjrNMYjTMA2cKdr(GuWwNXky$E^Vh1=zkN1=LLqL26$bR=mvWqFaFNp&IHf znmFC4vc&|M00}1@t6?7AfweCtu;8gzZ5pJ&+E>9Z%e~Ae!xNp<>uj?rZ~|*jP7lN1 zy397GDJr3#qI+{~j8<`5>ren|UwHV*VXF5TTU3T+Jy-s39Y%q*?+s+@Y?Q3_%%Jy~ z`K*TCBB_2RlG30UOe_{FNK>Q)*1n%YY`*!arV!Wr4A#DN9jVvLw05%o0QWK?M@>4; zOl*cvFwNBt*1i>1*RcTBF8Dy4D>KYc^M3QonVl@N-Z)qE$y>TSm})S2?fI(voT)d~Xx_K<&SC{blTok{ASGAbKT1 zVe$SKtJ5hjj5?eC^(SM2h+%n2e$Qp9k}v3#+E+Yv2T%1bIi>a$T_&L=`3j!*E1YX{ ztjMW;iICct{%DNX%k&+oo&5DP);F_#!TE5jB;coh%#xnPc>NWfrqr%NO;Dno?zbyZ zKW2oef?xU1k+$j(;?3LcPjs1Z!$*VyYY)tf=a!z#Rl7%K)PJf;EhQnfk4PUl$p}rx ztGg}bt*>9nc=0Rn8rGkxarTm?jC`iAi5;kS07wS$+JXanF8 z8KJd@Eh1rRi(k<~fKyrVrv*)|9ow(PMB)?M?(p(tp7k8>_zz82VC{ixvgi1_1);Ua zdqil~{0UZ+Yo`H7A&vD&-e0tK>U)VA)y1PZ0&54yrEX1?7m!6?RQ@w{#cE65{lMBI z9VU=VzebgQyPbZ!q+0l+mB8AUkg$CiJJ%zIVGsuI(g{k6tz`ej`iqa;rH49zFAv)o z$wF{0n0MAB#h>E_vi6IZL&_f?^Sv}#>Sj1JhnWdvecnUS@9ZC=BHK49f5L9$oK6a| zz2}JQ>NS&ff^0{~+ivaipK4KikL|BDW7ktWMaD35b^0Z0fBz?H7ozstSaz?;auBs6 z+6sgWIg7=FTRX1W+D&fEQKP8#-CPa;CuX6xaBD9Im}3Jp_GzA5s|u(00N{jKkwvwu zFG5Ke%;8&1d(z*f>;7WCl~6J5`{Gbw6Bz?VCCiEg36K&qNKxuJmZdRY{HmDtTfjMc z^O|?Aq@C$Kf+WXm{6+UlI`8#?VuBUsF#w!JZOEE+&w^^dHETd}&{7R>&exZ*E69N$1YuvA!5ymq|JWWj6tgOTL8medoQ3K;>bwUkFCRpOs^EopG!{{TNoO6W2s5_PYtL7!VfkWMJ)k zo`&{8U*9VxN2YtWfa^b@vpee&dd=AICH#yp0V>FF`aAgj7JNel*8V%0pDov1_(EXq zv-l#*T^dhC_O+*NI}>gMC!^*7ke;HCI;=~vcJd`y!!axN+t)!l?QD<^s35cDTIlob z*TMnFUhN{R3#@&%<$jCzIk0wPBAJ4MrfVALZS9Gt59+!Eh_$CsG(%u}iZws0E$?Iz zdI#1%_41Ci)%UrRFF{o!Y9n~@P7-UMIw*KIideLd*XgE}CIbR&2RUiZq|A$df7~iP z(mptpGLh~G0w<$R<@wb2(!RjH_D|LZZKDnLW$cV{CTd1h`hjrZ>q+gB+5xP#(%I-?$e`pJ5MALFj^eH07z9kG3Jnqeu3b2Ck` z{RFm8$Wy}CzB|6mVppD=AwwDvN#;zwgr7M) z9zDsN`L8;4*-+?6L1%4S<{>;{fA+2QU_5`_fT)+;vnI44D_| zTxoZ;7AnXL*m^iOT21CWouasEsbROC?7_l)kjDjNvmW2~1w&@xbs&0M@~sZ6k9x;$ z)D+umbF;ROo2+;2kCOaX@ts{p?fgsaJadlob^&W&V(m88A~Un)NA(iKd2&GrvY+sS%9V zakd9Z4WYMRsjvS0qPJ69=m`U2thgNYVuA`-TUvViu0NZ_+<#^mGFy5Gvx;vhQhN@~ z9Nu#PwpYU>g9(a%$?9uvf+MrlGDksA*s8~1^xreq_N}(%_>D5X{T65o=4hO3>^B#N z)6&}q`ef(3KSoeH&x7)syOc(7WMsr=;|ls~W9jXK^w6Mx4wx)LZ~xFUnC|WLDqqIV z1qWgf1fo~kwJPKNFSeg#A7*L51CZ8=6oz5^+FlvgJKrPp+MNqbyy`{H|HIpfvG2^+ zZHsrFvHfdj?O!?GPOR&$Nmx8radg33xOuKJS2o3ye=G2IdLjl!p<<8h8T$+4Oh-}H z;%Le`)2ozS!IoUK=h&ve+v!<%YMh?qlLBwwY~eoVmrKYM+kIkjoJ}kW9hr?BOATB6 z%YJzK&h_T(KMLQ#uka0GyA^Q*ynQ3OIQc4nXLMwi*C|et$^A+#^cJ0hQRL6y?RVoe zg>Qhj-)dbJ>m7e}Xyam;*7KgVG&619V!f7;WAk$)H2Uaw%QZHO^{!~kw<_{yE=Pp` zIi~kC^F0D@2P-fq<`sGDYLR5#&-AgiZt^Q|!lEv7a(g5M_Ep%9XlrL=LV>q$+>Z;} zJm2^{&8FmNTOjcK(1V(m}Qyp+le;0GZj2yr%lHA6IGb^S6n&%F%#3%`Al zeLws+DC)>eyb3&n*T4$&6+R&z)aB=-f^+9!?dE*npTi2ceU+@?fnMRaPcY%J2NNpN zfr!mmk?CA>quOo8igl1PdVu`q9s%LE1E?qUX4C5&h3?4#3b}8Z6ekBroJogLD@Oh&dgptgplRa_dS3gxzXz$^x?3!x(PEkO( zev^HMW?-MW9Yyl>Wi;wmO^G)zHlem(GXCLP%Y=~(v`UOMU(v@TYWp^uG2YtYG|Jgx z%~?n?!l}0J-3zF|zB(xA_Dj`j_$s@g+fnNO6K#KtozW46APfXsdZLn~|Hj@|7Dg~< z0Sp5~#m(iCw>q)j{0bhpx1!j#5NBkIan7{f`kjMo`zBi^h)kev-;f|-HxTxFSGx4t zDl?$%6W!<^=|w?$nx-h6HKi#8}U4%wLhCW^!ghpL_6u@?bi2WSR-RgP$c>f$(ouChl zWVWsybvXN3HKePqDI5Rl$T+fS>%mh?9Ujh1}grfB$h?5LLHJXStuSKenuzgOHQ)nrE%M!L5VkD=) z#80tT&!#x7apiY)MjI#^j1}wkwYZFD;S%#^Tp{}Mu~+ByXYAUNAO=C$l@L+!{uf(+ z8am5vh8rI$ zcd%$zyK@4S^L+)g9q&A&7}hWA-Tz~qcmADK*q~DWf3-1Lc6qLT%cB7b%;k{@%=R7h zIgEP#f7Munz{@+2jMY+eK@**sde0K|Hc?93d2CnDoIy*R!9+LV42{R<{)1nw62CI( zx$_l@Vf_*(VYWZX!0NdC<(%PQJGtx*UiV?_igGA~LD-cx#W%SB#oiKaF>x0E{2|*M zgIZZx+u9R9r>)*!lI=HJ|Af7#E$|hO;K-w|!xh=~CCn+7>rWWVajh74;a2Sv6tzaS z9dg8*^M99{4jb0rQ)p?sDafGL3$~pa7@J!{Z=HV0w(psa_^ys(&JciPT5v)_KXhof zMH=*vX^?FDGKCiV>+f*V3z);&_EpF!U=G;!puPh840kQbWDRWlK<#s)svn~5e&Ua6q8}IU_*@Uy2yOm!m;uqEjfzT zwPS&9A1L|?P*CB;_QI_wWqdCSC{_!%0y)XP7*XIOQtjXgZkBpX5bY6^p=fMH*|baj z*uIPLH5(pjCUzRbryzzH2scrD7=dRWPSs{M5g4HpFL?G~(%w>8p|V8+?DVLEUsXqe z7C^LLPI%t4+Kc;Lf5y%wM`92LqF15{(YiC07`8{F zL;~ThtuW8P_DQ8aWNe@6y|>@HEge7H^5tOIe%-{29W{yyKL^_G7$`N{=k-*4^gFlI zQEB@_@hrb07|pyr7^Mf9n5Wnn%-aJIO(BA-o=D zt~PNGWHg&Y)zk{oVB$VWE0_%J>?xenOP*mQ=wa< z@Hx!fgF;2ko48uBi<`N>%kO_Dj-B~b^p?$*J%8z9h>OFhp?jeEO~$i&;Q;{MDdCJf zVE0C1=dfo^+U$)(^nMJwqxdyQb2b+@YB$KYx`mB+>#^+ zK_GY~O5JX}|HXD)K}_D0!n2!l^SeeJGI>vufae?6zGd>BCZuN~UdpPK<}%#i z?;C;F_*$*_T3a4X_;VF#(ONb5yUJ3IcXBVjGnn+e@V`7`t#B+Yd7&Hf|sE3%nm@bc|lR<-K0?7|?|BGd-oN1gm#pKUFlGKLE&zPOQ6nH-zyl-Qs!YnNJ`OyfQuD33Bb9Lqy(?%oBKSA96RJT%x$(l?O z?*81LBUI8ntOrlJdotetHN@za;_mtEiC#@9jHU(NUv~HJ+wZI`xI4uO{TjnP=2&s} zZ#lj?q;Z(c;5`N24^HsuBHI~5r?~s!+-B%_n&P4ayGvT7%&JUAcgWb=Eex^+^Nl4e z=Hb%M;`(G_*|Pr9m3hkAvI3Lw_pmsfBCN|5V|urtb$AOwNvm87Jza{r6XW-|4h zj|m*WXd6I$MWgFu|I>xlk2PzjJO4)+eaBV}i?&_)ztrG7h-VKQ?HiyG?w2*6ex$7m z`FACnbq-_8K4b{%*3Z>;Wl2HVxgJZG~XxfMhycK9K(_CGGjc)dh~BjH|s!Y$+Va_(BL5wD)y>caK&Lj&pE$9TQst{5a3 z!@Ss&utmZ}ulY(41+ed?C~pr=V89+LuVrw8_2P>J1O@Cl?Tyu^y)t00eW4&@*D#hq zRh&aua}N|HL_sLX_ft*18yT<{l`4y!UK$qt$Hd76<8Z;~Jqf^$Qk}%A9AXuK{h=7) zV3?<;8QK(!f->FwCZY#Ug0FARz=RJBVbXm4tY2JznAfHSy^-&|(Lain+SD;z>6Ts; zYjCEGZQ;fWlHdNOFC+F45$|vc4mIl97#Fz;1+p;|$jXfU}Y^mj0e^}{$@w?coR%_5xO{)(>_${7NGZH#|W0)aL->IZKno} z7XuhMDc$RoZb9SkB$I@hC{QDH1IIrK=lrj}!_xxC|3=1shfu}+{iqp;VScxfNrpP1 z)hv$GXdr>jv2WMf+92`{{qr5cv;dXOP1%2m`?{VKxN(|Btm7k0Z6RbL#~` zL}I(+UD)JgLH1OWJwfEDB=9zTf6aRAA;~y3Ol-2(dLIGh7ffISV4JZ<<(1wD3dZ`} z)bC&*D#1&*gzIZUFQxpQt{V3{SR+Cg^7qLmb9t?4G&AD{3l0*xY_D6F3OH{@i)vB* ztgD$eASx*abEGxqNEx>1Ap4=w@LHlF19D~H;$*LNHE&1!Y2@J4Jci$DNUp^5J0S=) zYP0IZ^LH96Fm%*XVS(ot8OAYXc(ZCqR{}+vkXDl}amxGfl!KDnns+Mz{UPQ(J&N@{ zA%KTCKiqG1y(aj)CF(}fZL?W4y+ovj$DSzh}2wFdLG@p{dT=yTxUOh2%9%iIN zfb1pUBb78r9Z~I?~_89OX-eFOs}sO+gv1%rccm)kGigByGoC+@Q zBnE_G)(FD{mbZ~#0!Gl;JaFW~LmdybwYrTVsQmE{V`p|FK?noUl*ZT`oquBc#jDn6 z0k@p?hstB7Hy453JX}FkD`O?5lt6(MO8Qv&-5KM_guX6eWg;Li3;9 z&aV&kdSLUaz%3jC4))Tg%>TJg4nu`aAlq$rb|86bB8y#g^*BG#y;C6=#Z2gv_(b;} za(==T`}CM6(Y=4rKE$Nwo}K2TCYrf`muMJoue?xxe9*xT>6XmMx?KL@#P=-%GHve` zt2kG~;wO4H(aK4Fs1x!9Yc>&SvVUJc3KUFR)+{8JgNQUtM4CdU4?UB{_Y5+{=8vS3 zg;cViQA^`X`az^mCbwL2a}X|;n}g{YI6sJLBs^h~mZftaD%dt*%|v3sdF~qp$&Jwy z%mmH{`Zg}nj4~4vIKPlfr*1em=@M{WmTK?IBKqhAoX^r-^0#MWfRVs?mV)52wU{Oz zZ>5N&@+4}@Bx=C zMNQb~WstV3n$JH&xch)*B^XUH&;qM>-m@%vk!aKWtG&IN0nZ1d0=D%MLyiE?mnW;? zI%Gq=m{j$pnj<@>>rdhH<-q|Z;k{7Zvd+lGqPivWYk>6<3>D`9g@PUg=LSMAD9)L+ zA>NCUEvsD`mha}a45}GB9FkrdG+3+Q(g#HU7(Wp;(6_JPPN7`YUc)ZboBrB`=s)R+ zLlm@V3`IK5Gz(Bb*?D!?c@MH?{&v!*mP3+&(l5MeG$5gSTGY-DimFhmLp#2m5_GLU za?;_I&kuF}T#;?C9grSl8(}cF^nW2mR*GXal84f;eF-)U*)JI!1iEo#}Lcr3?r*ph^K2beeivSUmJLd>Ndk^ETs*K6O27)^0bzYglDO8?cxA^g z$NM^X9^T&Qx^V1NdF5_tjEHATULH72m;(D!~pcFb6_mwRWHDUxBhv5_A2 zS3U&({RKJ?!p;B(VHk#iUusvcg#UjGA+$?HE9U`dCC%1xcFb?e4C&72B1`#MZFTW(%6iAOrKsS0_0OyUX(-s0J>2fbx5!E`;;KRrDREOdP|*dFc`f# zpi#rqD3M?z9pXBR3*TGP3Ds&5IK*xiTO9vkzm0RX73b=M@l$JU zoQy>*j2?=AWoB0pepy5`C@KD{9c%~w*#*UK+)jgKkK!vQ#mBJOIiU(|T2TBEnShTE z*(X8?ir*QO6M12}ie=ADBwid3MZF$Ak*QrwLUoVcM5qloM|jQUfuZJmyY8Z>`_Dq~ zM~+cqGF9>F1i|n9B**)0dR?0jV3FgCRX?v?`~}6Dj_fN9zn>@HgYU~PzyC0HCP)mz zAQZh)h!ErbFV>E2A6gy02gtZZ0)K(e120J2;Z42fO?^c)fdOlYhudSlQQ{o-RviS; z)|+Rq@g%tGLdj4 zzO@`lOnq^h}({fIr7jQK`kB^<%e@N`y$@9-+Rwb0;rLY!6=;jzW>0xIrb6`gyx74tE5-kn z`$FS2v;BTKz(ecew?)XXq>yn@yW-z*CBJ!Y%L_nec|fM7Qslna!}!?-xgYRh$%`s| z`E5=4mi#V4nI^JShC1;{7rv=TVTq#~@2PcZ1}}hFn&lw^izY>a-3R$Ka4v||e6ucL z{M#hwHuC-uh=K068w_~AxNGkXIo=!wIlfvK);YW~yfQv&()crWZn+V|Fbup>tt>73 z{uk?4hYRdN>;VDa|lv(_L){6+6z0Z@e2 z1#OqNX`0~VJ>ld<#3%7y1vHW_jLj%1+W0mTig!o_|3v&+jNHcNxwOJ-I}Gy&yZ@sM z1&S|(X(7%iJxmz(d~-jZHx($p@!KNh4{m5`0~GK*2vU0n9M$Gn*;V)w_FV22DE^Bs z#Er?to>44;;$IdCW}8(ZYi}o#cF2IB2+1>Aer^A%&NS68V`q@tFbo61FUh1yN&o*? zgR~kNZNbeg7r_aj$gAOU`MsEALNIR-wilQ9&5#PJ#m~N+Ubj|I4s9lZo)Jm$F{{SS zos6PO^o5fE=I0TBM%mUx**4botFiuaa&Nsi*#uU6tE@gQMj>uhm6Y?)LNtx_SptC- zKWKb#V5^G_R#yCi4ak`ka;9iLCJF{MzwK=8Vst)5y@iQli7Q#re9nSr3QPZzgy!!m z_%Ia5#n*=BC%0$%m|ma6;xpOWj|#H{lBBo{9-421DbWx-Qv~nO{2v4A`^gx{QV0XA z_{LeVQJz~UPjLRE969Me6$2MzS36N}@esH^KRVo>?42tH+iJ&QFHc47|Ie2U=M;pRiJ=z%P8PSzi2k|24t(3@^d? zLD%dCJ#H6^D>0|0O)|E%4;{`?I}Eu!dAIjsC=brJd(^+`JXxrU9RK-P?X&cm1n1w6 z+*Mp=LmiFwACpwFTRbO-t zRee!W@O%-PN`J&K4H5;XH_-6?o}B5S8* zZDl1n}5z{x`=6 z<3+)IggH|&qPVxfX{@jdTZmzgm@&tbuu7umZ+BK7JYl_OQOjJ4O~aFZeb^8~e}&Nzm>G%?H`S1>mcY z^QS{Sl%DqvQzq_#R6*~it5*2s`@0G;gppT0)Iv9L4?euaJ!W_~AIy8Gnux7|c`xMr zI`f4D7_OSM8VcS-sSQ9rA?Md|V`%2wXFz37J__FCZ;pfQ$*-5dN54kOOfYU3R=AKB zk+JvNQ4=n^#}x=qe%bPK)~|!fbU&I)v%vN?Ct=DzZy2<2zx;rK5+!{f0uZvAU-iP8 z?7zDP>u_kFsFpKK*~I3dH@aLB%N`RagO*BG3kcpr3q<*WMJ-k-w{+1S8Z&nCFU{0s4qa~B`BR9oaU zw~Z=3xO@5j9-dLv8m#|NNzB(9jQ-{UU~$C!VnkHvmwtt9#aRhRqkn8r|HS6&MN%AU zhT;V5SD+2NfjhfElFz4eGdAm$gJ zK#zB*d5Fzd8V-N0L&`xQ=HDFJB(hMhVYWf15u~c6_B@Vy%v`-#ESn5q`DIe#sQ;gl^HUKSfI)%31akgR*;BF$`tyvO zze0&q6U;OG!{6yOgvgj4;S1#ayll?%>(4WCe&U6=+zZ$!kn@Ksi0~{ImcQsiTc3+x zuvqpu++5k5>4yY4e>D*qFKB}wPvQAY*!PIM_7f&NA7E$>y)b{O6pb$;4FgEg85ar9 ze=mh|{)Hjus|tizvQ~g}ft=qt7>h9RRoock0)`PkH@!w2;Q1d>Y{W@61Bw0!JEL5S zK@f;;>6I3c{cr4ky!4ET4J^Qobs<#YvtTW6*R9}kTrs{E}1kYcP1Qr?d>Ve*T@qD9s#PE->XIN*^^C_Q; zOscNov(Gkf2a@-pxB<_11dZyJYH}YW;fIIY-k#K#7~uKOx<1S+`z`t6`G!)3@nU3y zqEQ0q7rNZGIP-^^3_#yYOT~U3%4g~9&~4-Jd56ZROdTwsp2p~&8fKf~l>$38iM~+zq@ID(GkT|Iinb#{B6Vn(KnHE-UY~H3 z=F0PsdUs21|Fn_xMfKjH4`%Uwv{D37(jbKMku!`dlU5iOZ*I69nwzlLn})7L(%;4d zP{f+)6^Wz|8RQQMv(F5W^y8NGhV9vx&xNE9J!>v9z}4p@HGox!noR3SzqJcRKVEXu z5!?Huw@~zh^U$F5HXz>`+FO@@ub^K7MV0 z8F(WY48Z0@(BJ#|L3z@LB5Ay?c$R#3OSh3NQOEhP(H_V zZw|c&n|n&mCy`(0Aq*;nCW)~d*@;B zPYRVU769AdAP`g-wWh?$G2E#_w=>kz8}MmstWg~I6(X&4jtzp?wFoS@!HFMz_rA%vzMzk^ZX!tQ#KQTObz?F7!B7^ws#J|or1 za@*lfb?SWj9eKd{%*>rC%o&N>PEb5AA}5V|b8b9e#8&IZJkUJbWa0T7?StlVnC9{3 zkYr0v_=D4YVdUQ8+a+ifGPH^;dOlgdgPDh$d6N$-PB8b2xypO zpNGi^5Ysh(ss_&g2n8@{k6HM#aA9fz;}jh02Q~-MW?ha*3XC^#_w8<4#8XM9 zmmEBhs;F7RrGfM7r5DCX?*Dbs4`XMPgD?!k&?~XFu=xHL;{)lrFcj|qktl1Y&T*bU z#durkofPAS!Br~<-x^`RS#tY7>{ypL>0;in!gEH>UjSnZ+;;Ukhm6}XJZl>t32O$o zGhKY%n>`W!e9sKRa2|o-EC=6C_m0^ly;LFO{AGG79=_^Z-Wtbmrs+|Tw*q=q!|rK{ z;XH=9Dh)>~yO`%Z!|?Eo4ETkm5ZKqd!%~?Ku3FNgwrJ-a^pdQm}3G>{~{% zpzoLdmYmxkjO7RrP8H3)dNXzgxDCTF4E$2;K(+b*j|~{GlbRUf9#B+C9oM1AQ-4%f z3i?2-DtpzG&A;SIaO>xPL^~nq=SbEGF>!|Zsq`cxjg8Q29MFpEHCC)n1M0syupS~w z-Dr4sui*)Ue!y6(6Ohb@?^lQ;(ZFU*f)Mm|(Mq`RWb|z^MLg|BU!x8C=Q*-vq=VDF zU!Dm1`-nX>Wv3W64irCAHs`P`o9>=L0IKlwIjqB>n!Q#lfIFo@N7PaMOTP~M{JMwr z*NmXQak>kOsoMZC=qI4J;#2!a5<$NN4vUGUUnB_npA01wWURT{>*;{`ioKW{wx1sR zYS1^kCxZS!=zxth4c=uQFIV;?>dm@LmZ><5!SsVQ@O7r_&F_asjCzqs(Z`|EpbssY!ExMAjpJzDxg zy23n{=3H+>DEb(1U6YFDY)%Xm{TbtdxUA;vhN6GV_?lBP%2U$Kz*{L?54egl0CW?e zuM?L3xf*+P1JIv}TQ_F1dF%T$3Rjj;rWkH-N&gS=dE>w&H{J|pfpMkT4k%bXm<2|4 z&kUs3n$NrrPTojv>JIha!H_$YQn$wXsOLObVDbZi(2sI2a6{6c8{SX%@vOh|xK2QU z0?Ou-`@`6|;5ZDzK=ewE!BFmhu}a%|W<=j(8fCdxd~IPB7#&jtg*%yTT* zjJ|UY>w|G-tbExp`iq=gUmW`sSOB9>X7-mVH-9f+^p}qtM?0=ihXOl8< zDfH)EPfUK#F#6IDp6<^4o;Rca@BH}aL@^e;3e1PmSNq6mGSBgEGx|=mgwv+$y%iTT zg^~MUuwgcG3~Q3N@(%;OQEo&FYlI2tts4E2?RO6TB3%VY!YPIoQ-um~ z4=397sJba^Gx|>cpp)t3QGfxA{=frbh$F1{!V;h_iNa(gnZ@?($XjLC8AxDe{<$GQ z--vWSqx*B{h0*`xeBX?n0S*Eo3C`R;c2K>+(8 z!O?$cp6PFBAHIn&;G4Kikbt*dEbb6((fL=1BGu??bMbXlMj)hM&kFEz?ymE=A&!;BdXqmES~ z`Wa@-cooEUavz#u#!Q42%p_EE&=U&EW<|9~5O!mu{4ip(DN(CE9LVm`qz|oJq%PcTcCBKytg340wuyfE zn|bCYyP-y3kju&K^IUmJn&`8tif~g+xOs^F7(nI)Ov|;kB`kN2&zo%U$b+A*-pp5_ zd#PBwT{;Mo*e2p?JhH2Ci6Z@Z5Mi-Uz193`8i7D}aP=J7)w2ZAw~+S+KK^-4#lZwg zta5LBN$%)gU9yQjB9H}3%e@s#578gPVjl`CDyNddb4M040Bh zLw!KRCZ>+Jnql*16ryXgJbkJj;^>P52$Yu1#sJYzQuVoU!)Su%cnDVfX-+i860FFV z!e<{nZ$$q$*z4ZTlV+0`fauTAt%^L~<1?|ps5&idC7(&DB`!#B0?KD|JcHvAbNDt0bZvA3`HN3v(tg|`>USwxQ?a+nch{;8R*VE<;0tRp}&Tq z=-+B!2REn5xSJGxg%v4X-^`gEhQyNVjOsgVNDbRBrQ*%7A=7agz>xNN)khLVKX4fU zCiWUkJWS9Xd0R}6_PYNUhsOt-GqE(Q&2?XkB zF2J9n@9;7Gsa6rM_KadvtWde(Zrr>oV8UXA{v92;nBZ03x+5kP56kSFNRER1X6DjpgT)6 z`qXv4K9Wm$?>7Q#{hc>=7(l7uQTF&XKa8Ex5yK!1LstTu1ib%Z?N6WSk&`okuc0A9 zkz`pELss}a&7PX9?RfM9Bj4^<*N^1#Gb?B#sEc3bl;o`1qg?b3%elCgZsK?+@AYK# zJ+;B{&ac^5YDWFR?5Q8gbq)e?K%5sKZe^d5J)}tMHAnUtaoIFActH)p=rgqMuSrR- zIkF3c?FozL1&G6=AD~_bK6*g`!srJoh6CcfK!7m%4Lh*|AH6_;F#0!;d5_vH)|}1? z{xIOh_*hDX0mjJXu+IqH}F7=2^zp546kZ>_{y zOYaU+7YJ}@8qc8gNl3Q=0vsAXT1(BSJ%n5qmwg>#>frlXCuDw$IVFcbbng|nYMy>2 zKKpg+-?w;yJ%jXX*vDBE$1(6_AUNrfLYG15-y<^{*(6aEleztRMQ zbfW={5u=}W_ua9sZxxjOhp{tCk{ASm=#^$#(B%FX+xeN-PPqj+fR)lH0ydAA>96>n zjlxx=^oOyF_?|JE1w-LVTtz4K?)6#Z^v84!2|KJ?u}fb_C-*3HLEQ=eV(oZ-?Qdarp(dbAeZ+eDridM5IfPsy}@gyWIv2w1w|pUnX?Ox zJecj7^$vr(GjJ;=8P~c>^E3Fn!{+U~iV*nKd>I=?eE|3`)%dRz9R0WBXN>-8EXlAs zj0KzdOdY0yr*Ba2CM~OX7%Khu^x*s1o2JG%YlSwQY4hbc>IQeDXftPQn1#6z1!|aI z3YESaa_m^-X3py<+1^#X^{Lu&`s*KxfR|^n(Rk zT(LDsFcmruMliT0m8Y!IhoUeE2kVwEsqhYqL%diwfKP>EN$zJ*(2ep@;aC#k5B_%D z06rD#bSto7`HTGiW9*D>9EM>Sx>8G6cJ`m_zV1bl)fMznI5kSlDVwIz)5(9Jz;wiq`ytL;sKu71C)dG-GPE#JCB|( znbODKW&nI5AJshl{en$~f}z8VO)~Q!Fj~UXFOHi-Tf;o(p#-JBKBhgN-x?|erC;Cu z(v2|}%#^+lcc|VoQ@z^Xi)3z)R=6>?l|Bd!mR3^wc>0T#`)k5{o%gz8WO^?0Ty0bO zG|qHNf8Hc}U+L^cwJXR+JpJEO|*G2k<3n6>%9CTgbHy$!CZ7F!d*c6>a7=zB}~ly1-@i4~C|X zvy%nK!KjNMCQ4sG9Y>>Rjz&LCA0NTX)tBag>Ti~$zvM_d-T_Mnq@QZn2{WiyB#{1=7d}aE!zdU=`dd?*yfvCw zfTVBgRhWE!n{P&}7*DiQ^JK&dN;jK(a1APDNctOfht2~QP4Gn0Pee$9I?B22GSZje zO6pnr|1U?cNN=0L2^Jvu^IV ze5kD?kr&!2j%F|rHDM^&o}*TGd??WmsxS7+*>1Ty<6`2U+pU&i+ePV91Iev4>(@ro zpKw-t#=E#fR>^ruATlkKK1OFEMN)Y&_k)BRZ(U&hYphG7r}qAN8x zfV=-!>i(LGnkh~kjtvI)_-SNI2cAFDM0$0%pgfCvQH~w=qVdqiOaorx0nIa zUx4*RvENh{1Ejx*uuUqp`(l59^p^_Xq>pwm5k_}JRW|8k8>EkC>W|-`S@U_(+NhlZ z{gDLePu*2KyD@DB0n*=xOeqNxlU9KAr6X8NH)hRweMKjhc9@xUOR{0d{tv_jNMF(s z$;@eH2I)_7&rQ>1Z@4<+yuOyKz_mY;AbokVVf!+&Z>|lHzM8ZW5ZBv*%mC@DI9LXU z*)VQNn(?abY5yky>2HuhvfF9$ZIJ#fs(PP;@nYu2LC<3n6SqU5<{Z4D+%y%L{`rOddQSaQb8IKOL zsq9~8oH!oA3Lb`B8dwoB-f73^L^@2&>mSgxGkEh73(_w@T)~NJ=EMQgZ-Azup*gpO z^tCw%d^B7smX1qG>ECB`CzdkowLwGk4+he2byX{k=9oeH>J;eRP9|n(1+F~_xipn~ zEX`rBP1!$By-TYkY6yx~rc40ow+^p%K)}ST_ORSku_k8bFh=hEH}l9K{hQ^c-%vY$ zXOKQ-&_5NO8JRf@$(-B)HQ%83eV7abKcQAI8pL zg+UkyqIZ8L#U3(+;Lo&{3aK9ae`tGon?uO-rU!|OarZGvX8E6U$7^F8Gm?I@&)|<=RD^*_j8_?&~;sIVgKy!pP&85k(ZNZUrNhbJ^Hr%V(aeE$M&tgzsp_cf0ucG z=eI_@oK?L0`K6ZogGc=K=#sEE|33EFE?@p-cJkc6eQanAw_nJ${d~x7TdOypiLup| z>zmKj#@Mdc8?1Hqh5~y_PE0F&Zcd4@pU<^li)l65YmFI}WPR)982c`Rd9(fc+8Fy! z&Gzf%_Qo8$CCFgEthXLFSapV00C1?PwLYe`MrS`)Wj~|0n2h%8rped!_VspSjKyeg z*rm6WR@rUg`s?3@+FA`3SfeJ_){tUoZ8~JImFsQhTzk{e82hz?s@4mk_DgkkOR~WN z2<7G4uQV=dy>_|4-Wp^!AGKOyYElgLQrJwh-fD`m)#$C~lMNXF(bj0uw|rY=uPN8J zUeMX=4E6xKO@A%La2~#`8hWvIWNNFuOqW-7{DpG^8}sXXr=D$EQPK2P(eKOy8(zL$m4~eDVqm zG|`6(b4=Zv*@uhZ!w2v&I%Y|ZDS|y2mYy+9gr}HUTXY96n?FeVkF4&wx`RXRtE~Qc zS;nQkbval2L=8{(^vO0dCCae0{KrK#riqfL2>k4)x~btCul8M$acSGB3r7Gjz{jVC z?Y*`=bL73RVFnw==6e4W!`3Jtc_R1HRgSgIbim@+5`QwpA53{DeP}@L@vXXps^8jA z!#DGOKG0zP;1G~P`IH8Pn)h={T}@s2(kw>1;An%^)0({Phf}6hPkaclTEsW+oN6C) z{(|*%)O$zYC=VA;x}oO}B~N8ow50syMELomd>8r^W&t7Rs&kt7T6d5mw8l8=NbvBQ zdvgHCP(h3*oB3Qgg~mI?G0i(z&Ng8WxoZBv63Guwe2QDkU7be zFhC2Rt(&fz2>+VePRkG7k{CW(|Dk{rJhAy|2!J4lXnvLL-nbAbnCGCJ&H=tyfIPj@ zaRQdHirL6GmmLHPE{qE>;&};p_MaOq?At0kuuzrQ`=#1uA|W1s!IuuEFmf~;)9@7d zP&j+>wG&dtrQ({RMavgit*2*aY|TA5XKl*S@~rc?OW43*DPFe0hO8O)Yw0AbHkNGsy zWG*)jH&k!HkU%@0S6E)9$uAA8T>yZ&=k-}nFUwRzx{;I4mp{E679gHKO= z=g(j7e)sEHzgRY9#o)ZvgOiOt&W?NHX<(Cf;gd0p}o zwjb^VTP%<5e*}J8p9`o;k2QDdyAhxVN3;MYJ)a#~5@-)R5;*>kVP|W`mIjW0hyVT) z0$$ehAbj6^$CZBX&s-gK_0B~b=VV0~zW%iE`J{mUCwpD_$6&V9Xf+mW^ZcGp8&dWEW1%KRT-O>0u=yDH(Ss zr>1P(QHj{rjq7p%CYPr6yk|I!Z%DXn1pW?R)=>ZIM#F)A`o*_Khra%2TrV>Cjcxe* zO1}qZ17&Kyc<34Yt-DfvsOoaRD@cUL4<&4`C$Ps35!i0wgz_<*x+P$TiN1ckh)^y7 z6yHwkx~yepKtz|Xa^|eH0O~u#0n0U40OPIwt&3MR($xMoPS)1%U$gO#ZtV?wi0E?n zpXq?Q3}AG8_LpqyZ)eih?|+i8f9Od(`{$D?XV3fb2x1pF{vMoAx%suRFvPU3Z+i2m zft`MZbg=as`5bHxDBl~GD39H77yKToe`mVw!M|E3J-d8(w<28h?6}AOc6-|Q=4m5; zIA1>YqrVZ@(Fk_iy73YC`$Xp3S%k=HMC3}p33D0b9S;!lgEkTJlVI>nTeQX8_s*vL zC4dh+fJoTQ)pxHL0XWsAG<1uCv2~`1Rw)pADGO>b%{F$0@(D7 zfV`9IVby3u<_sDWIDYbgvlmX}tr(F!^Xxe3XUz})%rU~LKu%l*cE-l!#sm>a{&}6L zJeEL%q`;y_x9%9YgwO$zK{)05XpSHMASr<1qyP-m2ZWIA+3xZ)0pF$rrrq1VIkcpk z2107{kW4mCCI*Pfu_|^RAp;`D2rS#cqPiJTn+k@q&!TK;eZ9t!2*y;)TomxAO+y%r znn)SN)i)?6qZASw5wV-+?q!67GsFk6alQ(2uqyG>dedMNotYR_hlif_eV-L0q+BCE zq&7=v;Sbv8yY;EZLFXa&o$DcGE$xkR+Sf#_AU@O&Uy%trU%NFkDn0r8?TpK9k<0Nj z6qUkp$W3NzU?qK(5s=Jw2m&yQ092LSOC&Q^_aK2P7hlB$v001e{a8kjJ>bHrZa#RJL6{>ZXw`Do`Jg-g}?!d9qREU25SypHXyjw-pU`W+e z`5IHqrLU@DBKKsOv}0JY?Hl3-g}(QmpKrJW0K|D^8!VAZ>GbMYM2@ zV!VG4M*?n*jDEoA)^>6slLo@c2fU(0%mbcKSI0LjS{NHa)=H$Q z!Zs7rcV6fT^=N`g7HZ-4V59K6m`rsPEz}Jk_G#=2x;`i(AgyJro<*7v8)W$AA+@15 zI$)?v2CC?$c2E?JVS3wmxIGlT@zKJJk@0~J#vmBSm?=v4UUe(vMMC`(Dp7zs+bhIM z>Ig=Y!zy?A&=t3=l<7_nR1_1gTs7g+inIYB3pWtT$;ORH)X(&9Uu%{95 zw2M8BhNm;^DH@&v_Th{P@H7gZW=-$4_~Fh$6+O3@S3Murf6UVjJBJPF`rW40!3$ z>VO5uPFWA{%kKF;4I4ni=Dxs&?Rb(_SoAJi;m2=jg`Kp*;9s*9dVV};`N=iUOe)EI zj z{+)COic+o3NPC>>>dgM1YE#}duHqZRhi3SYj8 zG|NMpt=ft->lHyX`v(m>NyGLpBSZ>lg|BFZH?PtPDYU}rh|ZyBiXTrKSbd@5*6@n_ zZ1yAg1>^07^Go9r-!JOju(QXI)OVVmI=t?YJr`puB0L$eFZ*<5*X1WSHl3ge^nc*+ zKOvmY_q@M9r4w@a2MB)HkU{lZUqj(ws~(Sw18hKwrn0sCp!~G@zhH*^>>0pr=?M|l zvG-0Nfj=4tGd7Gb+s!DR6qbifd}_^xLdKA82N1^wRh+K;LWP6d!TkR^P(Ac-n28!{ zLg_7D^V|sbG>M?MgG^{Zg}U*Ba;H!8vqvfUegNnD&7AL(1>Zk`iWvA_dw_)R*#x=f zZpVQ#{<^tA11 zmNsX%s>Kxxm43GojCAJb`%_+Fe4w>_@PaWDRdwCKy)^ezwDckSb)ThFzC?z-W&rag zls>@Z1o8!huIP>089Zh2dnS1Ui#MVNk=eAn>BPC+!x-P16Qqv9sfjUUd3?R4e@2o##T|3|%h9rtGm%UQj-R zVAVsxEZ+tL_O#`Ow&*dYUg$}LHg;l*&8g~Z-6Px=f#>AJcWd^4vVlRCI z@|I$_l}%))&Nm!1>Ma^K)ciIJL$)v^z%wIkFmh&8#SPfkPoThI6z9xWdNIj}OmJ$- zwX(otZSI3if>CiKkrY{n3}UKSXv&;4PI?FqnX=(W5VF@v;zWeshFt(?vi=tGAER^9 zQ92yXY~z=5Z>25UHwA2GJD1_>Qs-&}SB$j^V)*fMGqYUB4@;pz*EDnbstVoCVYy7@ zGc6P~RLx{Lb|@rE3o|+vP(j2v-l#DJS?HXZEsW~K)U{Bq3Ov$}$_T&a@mpSBx(96$8 z*>g@MH9*Fd3%HO3t|7dMuv@0Z0fOjyk(6nJ0BI&D3L~*;vIc}})1FbVrUqKuV<5`)u^@dP#ghTeDO5F}hn(tfcS-7&lYK$vX z2ihl2S`D$$&X#Z#nVXaruTBh^-PX*(AWx8`BTm)A-i_!3lOwqn)kC@`zKs2tOok&a zgOud-#;2K8$kVF*H*l?4IvaoEF-2TB`#)rK!jlv_auU zcykyZbxW5x*Gx1Wb}o&1T5ia#z+d=T3(j<9A_#)K^fWty{FzCbjY6NMnE{kRFKO7l%SfA1>iYAz&V zUd++YZcE&s6vloSgyIk5fq1xZrY3S(&`6S`|%k>hAREQ)#5pp78yLTp#L?NdW6RhqzPbu^`GCrNPPZ+=0dmE{y zE`7pS-~qwrp1QfoJ-aZO}I&L?rQv2oVu|B0_X>J`o{0YoCaalsnXQx%!zYG`de1Yh^}Q zo?&~@(+x@WtAp!JLuNMYgpc&qK74}ea{X2)63;hck@#dKRRNoL6)=VBjDP`_p>8c)A`2M(=fZD?q^$;E%hvA_5DZ`@KX&zCy_U z9k7G#J?dG(Q-ZI280usksJT^pXuZxj2lj>t)&+R56Ex=I+tP}!jnsmQ?2aPSZCb;C z6WtR5sRdQ+la<&z;C3g-u&&P=sdWRgMS6nee$ek(F9l$U8B#--_o>=&kR?aJOyHLo z9<1Y5A)Gruh3W%zdoEf+Ut@)9QfbbzGbB}I85fUK-sp)`^>#W{3BEIv~|R9cE3n*n%MxE0lt(td>l4QBzT~s(w(OTh1GeR%9vC zR_?`Yz9@%@Vwal%PG6rUc*Lq&=@Sea{Gi;mkNL^YqEdC&LZ(YGO&O}x_wH)FaTy}W z6=HxO+SYs_r|zqIIh5Xg$o3sB5fWw5bdv&5(A0Y|$B2lC=o1q}`pOHtrS3nnOtbgN z2{i@AGR;hTdSw1p?KDS{6>B=oSn*|(LAlFXtK~&q=!${vM}F5JS1`Dvwy9r#m~{;C znlSh)#RlrbgI=S*f=2;eO&|bT#WomN#Hqm>fRyz(_bohXPRKg!G0LOUZ_^dTyMuye z0LMWm1-3qXM(j*|amrHQMp>6+;{MvVsPkOZL`A)pDyN>7rA3`p(at7-v0X`uzr3OW zf!H}c^~+(;mS#UmW8V8TOEjtRHYjl>*sNybj-|rERFAb19j$A87RoG9Fgdvwa}->t zfn+1e(6$2<(24#!QHqtfHaSTsNDbS*HjJ8>M6;LZ2NRtw>ZfsvAD#pxZ>p3pDaM_0 z1I}3%j?P$5Ra|Hl)sbur+{+)RcD(M9En%)|#&H?cv@PaJN@SjAG1oX2bUb{@OU_(9 zOPVr|e<#=tCwO z3KnHWAVxZni|}OLA(+5#D=B|#_BbIZ-jG>T(o8jReFa1P2SMENcElc!i>uS!h7D!4kyM z(|*Hft?i;|o&L#;?TsS_3U8&$CcE=@9-VDn6 zk(*fiy@SN+`*cApnKolOrK2hAmBoV>S~^38FX*M<^p+RxhwEmrYshhM4cV7ZGaH+_ z-}E)f8?{u8m0(trXZM-i7VkBS;n*PHj78MbqQLt4v&^rt>qwc zj+4T$TrA14Zebr_1nr`JOf#GVEY_;q&8v889@UrV-JF1s+tJVGh_1_3o%}U;6&~Bo!)H|J_!a)`0#Jh4uhtH61 zElc=+&qXim$j}l)uC=%b&0T)rFbYq-Ar|;%vbz>eN#Yj-HLSWT??h&I(UjiYpx9l< zyya?*y%-)OQy^6+A`wp_5U6aby7OATnR)>Sm4)|Qp{hT90xBsiS+4#?(HL*31*Cgf zS?1+xNpehH5w00ZrD+kZcp(`W7Ew7{#?I==LTyR7`9ZZaEKrb*Czas!3~I8Z%9A|4 zPymv2_})mMpsxt8@jCm8ye=n0i-o-2OraPOE=4N~=eZL1gVLfECQdK&bmUrgy&cO0 z-?uwbl*OXXd)~NA(~LnKJ5eV%`e+}=(Jxbpr9+5HhL9B2*q8BnnwG4Y#){=ZzNFs z0FH8)n~k_V?po=y4@OpY>m*j~c&D-gsrwqi?VOYTN6wTa}mx z@Zq&WKPcxLXSCSqCMG+0Mwk?;lf2+Gl==3c|M?XIvv|QNl`x@mPkR7S5;HHJ)I2@N z=l{z<)!Xy44b~a_Eg^b&k<{UTM|+{sXUX2jCJOW2C~v*F_L%CPQ<`}6WH1{W7+!z+W&%xLVc)0M%!hzyQbmr%4J`bDB*sB>kGGFKE1g~ z3$L>CRfV$HhZmXsi4mDnwq>$rGa8b^7BH5($i9Y_`J*Wxw;#a{7c zq8(cV%F<*I230=H1o$x2?r;o=?~+DQq%eV_hP7Yv6J10nT{%Mk@IEvGP^}VMgO7Jwaam)$i?#f3Twu`>P$ET_SE% z^%Zqv>LKe`2~wt~{Gc?O-Tk!k+Dh_!!!eTg>av^0_`+S`x(k<`>K^d655-r2PG4cUNiz9!7^*8pzVCS3w+vvo5@R;oZ9#;Oz9F3Ep4A zP{;yCFMd#N-yY+*ujZ$fJ6e^-6=S$xE_rjVj)$!L!sPTuQO=?pXGvjh29U+YP>3eT zEU<#1J&NT0pfqwLDiNrk?Cz>_NnusMy5A{N31&y++x2H#OLY zuTX}LNngG8I2~Tr;Hx)S`^n|O89Q%Lcbr`I1PhiNrJ0>}7HLJ5*O}P4kqUIq5X4{i z^(ecBIsBWn?n^aTnXli@B5iz`w6=%-`3+Q{b9Pnx>%Q)i9?rbnOeGjubQG=enJIphp5fOI!QBcU|Iz|b8MLw7fa z=leXr^GBS|c{TCo-h1EowXSuowRX6Q(ia>o3am$u9^uH!NUA-0^hEp7qsOtBPagic z)e1*Fdi3s*tmJ16_q3g#cFuIHl{JTy-;E|pZG~BnkqCD`2-Fjz`R-@T*F`fx$5N~w zpCSfhU-1*ewX~dJD?SRa`r&Ok1l$3%CWy6qi)DSErzmes5oFYU%jlvg&vEcV(o4#t(P}Z z<`+pbSAAbfy6&N`a@_HFqw2Q9S3W0$dGQr}8jC8hbu`c7B6V(*IVE$4 zkG&ju-@?KgnUs*r5>)K)PPFHucis82p#;gbUMWisQh%v6Ze>&kn1j!Z<)SM+`4)A> zD1{gKhF#uTydUmKx87c-zV#NIjj{Bc6P56p%~=uJ$QONfRk09db%R=Tq;Z*w0U;fE zOUWLu7g#|!_ZeKDT^@!5Oc)zAHCMNr;>GY8cF~Yhy%uNRo^idTuIl=Q=AR6yDEt=${v5>HSnGn5fT!r!0T{T!kd>cH?~b4YlC|?`kQ?1DiOK z@Se=xNIpqSeA=S?1a^LZ{gXi;FG`_!Mi zksLvnI3L6j^tkJ&5xA}xwEh<~csb=ebFsgI22~dM-BOrEWr!uc1hO21+x%jT+9E0g z(w1VVSJqLf=jF&D=j+q$HQc$s=liKde3oBPn(4rJo>`fk*)sRTbyUVmPt3#C8X6_( z++MkQ&9$ES-dtQ%a;6JwpV^ohz{KrS=1S3BJUSjNw%bR;Aesy|<-y8Q6r3LKk)i#olQUovmm&RvRNy=8*gnn9Mo&<_ z`QrdzZ4xImO#vXUMXIkh5Cs*Twdi1t_dkB6-7SW6SbHq zt&tpay(M$q;m^bI_?kmm=G3dph999cWELa(40_~%Aj+pMW{pT!7R*Lh%E1O=lv5NkqCBS0 zyIbsF4EpHN|ISLu{Z?4-kYnX}NBARzH{agPaUmAva{rIlaENMTvaCJ{3NUZ&pqXp6 zDHo;3v%5>@>{80osM0mGOSx=m->e$!u~9MaB@LSmd0x77CsfUI*kO*2>~RgjD*3hN zN2?Rg*zPivKdi1Y<6#vRS!+ru3FqqR+LyV%x;muUk@s)u<5p1fyBlNC1due;*o{={5XraN%a9Q5x>gFxO}IT*mqI)&2Pjhc|MlUXf}iIk@QuI&qu7w zl^zTiqg6)K29{S2ZC3O-SKiF+63>~K-(GR_#AZLJxz%^I`g{iWTkgogLjJJJ|F$$a zfZIOkWXO^+DLKS-p4sqK{lqZ_EW{UT6E&-A5v?e#8}|usWHwlj**VjNx%>shu1{eJ zldoX@`nv293_~DD*Fvf@T1)_|x~fxwa&J-jb9Q<5V9)3tQie)WZGkXYKRBDK#C>}X zBS%Bvk7sMp%FJWLK}lwZqE?OEwlOSW_~Bs5kX&WdS9yt9#!vzM!~R6lc7<{&k`I9+ z;#7rn>X>C&!UNn54fmc{c8f%+huc4qlhCX5rPaw7fhM5fk!Ek|3047FL_H;Y|7sxIT<>Bk2nmS^t+zeFZ0GI zl8P9wR2y6;;y)^jQC}WsBfcoo{YjFyzsg_L(82EFFnj-9bo4{bqhmMg_qUfx0yHag z*=Ya~AsWhAA=v!2W7i<#-^TERciv@@@Iz}dGkXC`6L)d)vP!IWwqp)0&)i z$;g6f!Y?N;k4zBo7`yx@LiZ%Y<%xQ>5xJW(EBOE1%mDe5lBIC@SMobrmCzL>SugVS)-6#cPh>*Qs`z$EX#&qKBsJbr z8v*Y0wm7}be<4cj?RjM*+T)ssXB4FMAL4WQQC3lhY&_D#S;pf>Z+)iB$zx!?8D@13(dd*&N=#{uHsHo?(}SjrN@k>*0H#l9hD>A5f*&7ET-^kuWp zh_i14OAvb@>gyIYpdD(Rb=We@G)5hoA=b0K-SakzQj*JDaf@hL6U#+ukwr#v_MX;dNAN}cHk;OR3UL6nn$YL3GFnOh{-JcNLbBI{;6dvjUsJ<(w`-d*3N#p|?^ z5X%tItm2`j@TZE9sD@VhYUJc(=)0!p{93d1dzLIJIx{r~;H)p;Ac)hwu|c#y+dt!& z{ZI$gD^5>$U$0}2u6N6;X%!v&fR|$?kYX#^QZTcy*Mc}$%E_r10hZROj5_H5<>hDi zRlkR*Ki_c2^?b9$qWzQpx9j#yXD4G<>byjQL@H^bwL0M*EAXvKY$W$ylEb!K>E((N zcio_mv8%zt4MRl_N^jf>+_w8s-NKX-(<(SEaT?vV2EuWy@>rOP3g*+XwfwddGc>~) zo*?SgP%-2iw`h}P9u7By%nsn^k*_QL^vc8VcpfGY1R1>SE@4bj?v1E?5#24vGtqY^+thVfk1v zt_|_4os2=`;H-aJk#UpyQx~(ex&oV*b0MLDPv=_|zQXx<<&lzh3mDIzBP=ccw z+Y|m-9C$xY$dJ_UJf&+F&k{1_@Sdd}=3EK!_)7BYcKwzyBWDJCw$5ZUKc|jiimcvq z2x#|*NE$qomhj}e#%#(?7c5LTlU?GH)}y|1vF)oN(kt^RkkBsbW2nBYfGPT2W!04E zTEM`BAZ2H%%-8Bht40uW)gnLp{%Q4P0(v+y=}krW0TmxXdcgQ_5e7yYWGDpu&CEIh z8B6;Tk_wq&v}DB|kMNSC%vY*KAJ$P#NR&)pC+c}^v&{Lr%#~Qq-a(Y9Vnr`wr*3h} zvt{Q&&4q*ruGH`3n$|r5w&`=C9~YKkA~HGU3yauvOtKpBA5a)!p`?@gN0xlcpCr{X z6?4{?zZyWm$`Xwu?_Pvh9TQ_OR*pO4y~do8Vz=(y?i4)S<_)% zZ$J=ykdEfP_7bVhDhq^P;3I=8i_{o+|d4h{ZXYa zTRM6vM=Og1Z_;5$(7SS+g;c2vBsK9to4?dj0(>TUSFY7OAfQ7Ey$^+ zwcLAMNcX`%?Nn5yR>mPLiNn!DzXn%!#rYG;tZhS&Dx6}B%+I(6dOTIR{(T9*5GkR|1IQ~?hU z^b^TxGxJ<;rfmX}suHDtV>9>yJ z$O+7&cm;r?Em;+|k*9(&W{BV%dX63{Ehr$oJ zn+%G{(^)m>^u5E-R2BLSt&_wxXBAU<%e}cjro~3t2*VY>p0H~81`Y4arBh^Vo%bqM zFp>+KorUs5n|TVMdf9pEyHVpR<(FU^WxyQqJuhQWOR2`4MXb9FZ?U8L$b{ZmqDcuy zs`t)EZ=$9D%_bhry-_j)s?H0(opCKy^fO2f&k2csO`wvH9+5Qgkqv)zNcZB}YYkih z#t3$WcDQiB^*c+(th0R$$#iqHi0rya$gVeS$mz;*@S%g-}?Nlh$EK@bQVa|eN!ycq&?BLMs86vM^*#Xmg3=I9T+5{eQzoMvv@&m zt&+zp1;MnddR>fyFzASEc<>}NES{YGx9-_WX=^rhm4Ze6tU@y~t@>J6RE=>OHV5>n8u6}NxTM4bMQA=?|6;E1_$;k%t&N}7gAM#haP@C<43HS^^uhRkkk*tWnxo z$Ov(!uWu+P6>f%4n0EU=aEl5|OM+OGJb!inh}B5GpKUQn0=_4#hSD#>k91Whl3%Jy z*0vX>L4doILJSj}psQlaO7=5)^Jnf0M?&@f0>#;|n$5LMutUtlA^m;7b$ejBXdz9n zPJ!tA$l?Z?LT;AHjD66NmazyAy)XkJV5C8vzc$WGFBZJ5J(sV2f&jsc*mU_dX^I?e z2J;R864fRQ`Su(Pwm{df?C^c2MA68391K+~htAuz%?Zu76vjGB(^$o`T9*$P8+d;{ zuGh@p`lw1hug*65Cr#~ew$JtPy1O6s%+Y(?HLxAixh3{f+k!842?Om`k(T-4IP88m zWSpEUlNGaB6*DP3bxBd#TS5O&j5KN^YbK<3TCkGYkVSk|@EX~7<(Gx-b==m%9}Kya zyfqm;33lTtlxyOxlC%;fErAdw66~46(V70Em}ACI0hDEgApLC%_mopX!zxW4SI zxwV|UR{BLn{sHn&^Mgu242Srj!6lu1<7!*7ONtv>5xh18yvRYXYIFN13m|^mXBN9q zS~kBrZ?-=Os-N4!S`D89?KUq{p%CxZ7b73+GTRNUL5VI7gS!tr_d(})O_P-iKsfLg zig!2k)keK1`myB?up3V`HLmO=v|0L6J*qWrdkf&!~hAxk%xcdAX{%6?xnz8Ne z-O9IbbaMkU#0{iUdeyUq3?+r+J!It8=w5$=_x$E=cY7|y(xW(`q6FjMn-l{hu>ow4RnH)+Yv4Fk0DjVFV-A# z{KD?IIuLJ|tGb?Q$P=ppUShmvPctW>Ejb4ju6M8Gea{M1nPd^o7N9=`el8#ikQJTu z;AC|{r>?k={Nk(k<;-Kd-@I&%AM{*=*34Xg7Zh!VLiB}-ccqv=Xf+*YVOKT}uAeNwA%R5p1yB- zZ8LUTs^^m*R9olO-Dp*-IzcJ_%k#F;O*m;^llJZW|0b5qs4qi>y3quDJ-Z#u7m)DJ zi1#ddm>@-H3oDbwL0F5FFmozj-$s*DduFkB)KO!;sj&xjsDUpd_SWa(5u^n0=%p#J zj_s561qo_^FQu(*(S}DojI3pK5YB`&r&-N2JFJxe8K1EF_5TY zm7y2A84eEAKuI*?HIrQ%+$6dL&2Af_+xNRSsS+W*?7m!KM4c}`ZLy-`X{G&G#FA7lwtF|A37P4;go-ATNFum9|;}{;FN% z9?kl?Yl6;${Fw`tO_4tFN5-c>nWh0YW#6v!SP6yGQW;=*3>(dJ{%*qH9?F(BKgX$% zkKlD@{3F2fH~l~*ttEunoCO~EA9ju}pk^F(cxPDAJRwt%^<^cDUF)yh@eOf!NM?&4 z+*gN202uF_nIx?t6bP`z^OqqH^pz2LHW=2YP10@1-KzeidqbEop@>2&(6up*j%PUP zGe$iEXaO|~K50!O(UAqRT0XVDa{B2f{IU#kaqIOk6X}1gkb!BY$?LeHBT@*r9x*=d zI2a;!r)`}Pn7yEPB&d%SQCPEIqIm97K6T{M0jNy3FCO`B^>qsUSeJb&Rt%ZuNJ=Lm zHm5+qTt`U9nf8~CEG9>9;~kR!;i9~P7R3GKLA`y=cx-UDD#%U!LTO6nyP`R55YY1( z`euku=0@}N-y7D}7IzlUTFsJ6CQeiClZV=W;EVouCG11Syg_9R5#d^_NMMv+cRyGB z=o12x1zHLs%~dk;9A-*5Id%uLVoQK~QkxFf5ywkyr{v{2;lGA^IeLr5#s(!wO-F0; zZ`GFkN33x<;HTq{0--RN2A-uMzj0Hz;&5bpW~G(gw0Q2yd7bk_T%4v zIglyzn$`^1!SIr?fV1d({$Vhc@g*gTF2x8F-CO?dIRC=cwU#Eh`D(w~y^ek9V{Y1M zReoch{J~eMC!oL)+Sra%ga;B0vO2Lrx|1O_jG05SZ*|&&A@fY3|6;wr| zf%VKuHh;w9O>tqYl?@$iQ*a#Pi}$E^-bMBH^iJYs_j42L>%5Xrh*U-BugS(6{^{H(CcADmAk8@h53A;c(k?%*ts*sB zH|;Q$(s16LC#yf`cdqLEl$o;|UP|OaYjuD|b12<1;i^)ce~ypJ)>xvebaaKp)ABAZ z>|s$8DjlR;@?636mh4!=tA%7=)lD0!O(d?JrdH!7_`g46y zlDaEUEr{YAXOWExiOuC{S(|hCKlFzvDyqW617lTKT~`@hJnhM{VsWxO0S*t7|`hREG)9C3n*6NEV<&=+g2E1 z>ObEZXLU$B-qZ1X78&4?yt|d{ob!8LPqcbQuV{gdR*TNazO?)0Kjy(r1u0Eg+NY93 zRwC_pF*>X+R6To8ns1DBb^-u^H(jcPofQzat6Z&2(K5Zl(+71^;;!=Tbt%>~)Q3sH zoH@j$d5wyp;Lp=1NdK00imKelsmf&cP#w@~@MA%jUR+Z3UFIjNVuNv38nHrAgF9(+c9{0psHkFZ*%8y;C^vw8uAR=C%q z>j$Trl`iLa(CL`a2jKpn7C17OdpO8u>p^8c_l4BOi$okw) zz5eJRc!O;T|7zKf>EPkf*k#(;s$)hhB*|FU#w>{N^tr_xV8)ZBo(v<|wY%N+9Q3mF zdQ-n`EVaum(#`&kd0Fmci0UBQfdrQqU(#%tuerQ8=b=x6r@P7aAKVl)9j+A3+lmV6 z;QCtuXgH|+yJc-*)tI-p;sUcI7o@xg>`A-GipalRr`=+TDA?^GZarD~GH;R%cr|R9 zO*TWu`DI{Zm|zR;8HB#s_O$R>kmOqz>vs2O^xBScPW}CVTG%_G_zEI{Mho)@hQB0R zOdU4M4i;)f*&|6gTqxJL9hLU0W{AcZF7wWcn) zxFSsUP`Lq&E=4v{_o$YON=BD8Btw1c7HPbNFAz!tGg_^@Ob6|dV^-`v|a*n_M@@x zAyuZ*rNXD>abZLERz1z8e<xA}Z?J1~M|dRUerpzt$i3pX-;=pC^kT7Z zR4StA4(CDr&|I_evm+^GlU?yzE`c>1${MSSMRCR|A*LGe$d9i`!5_);h_ClSDE&eXI6EYj68E2GeGpp;C zQ@+;RZ_bb^=Yu+#n7+^?XOb%IruR~04TQ5_A1mztdijENG5bMleVC1bj4C-ClwXhD zLopo-3~i>3oq*gdvf}$uCEGN8V2{KFw3rz%fZ2 zM;cOHk$;hh$Qz$*H#c85KP|V>(=z|~6T5m{KLH0^()dgZHGlHhkT05(x&>w8+P@|D zp8$}z4bnHTnojt#tTV9D@6XT6z_0HyA2P4@sLEF7EbfwrByK&bTtURl`*X0{MTmT#OM^-%=;^Z8F1XLw$hhpAj{6ez^;5bFalcw?T$r^s9!pwPuZ@L#8!3QnOJ~CB%*Db#fQt6x4_3V^ZZ3=)RKfZKeuE5CVHAz_p_))M z*XI!AA(d631Ur3?Gv#m@k(jCOTrR#L5mT8RUeJ!Gg{4cf2GCCyD zPNjbe*BGYgxQ<@|$ZCI@CT&gG#{iM&5r7Jv$nMs&ILRfTbtGZO<#&*nUolLNcucU*O~-M!Js7xg3z}{^!B+2YhRP?zhAd|oXtaysi`@a;|7V| zCRpyBFSMK7cW)|Ywl~kI$V{o{P%Y;f(^cc(ou^xXKohSGci5E*W2{%4zard6wRswJ z*$Q8K`1t7KfgK_%ES9^O{tzeUVpxu*ohF$oeNfQiOSKT?iz|zYjpsbM*<=C4*ygI0 z6T9gM+u0^xW$Ekn{TY$A5wd;Cu#M=<=HuASc3GG&Ny@_=Z2j%g_M(U{gWOu)@2$~+ zM*&4J%d^5f?wqSNW$Z%k`DSikIaJl>e_Eh2sq{>hPf$r()-sIycaf(RF2YXn7BEzI(;XS(4eysWEcaus$4Fm<{a&)P)Axp8Eh+~>Y-Hm z=Ih9U6naeJG;FT*akb%yr|omQc&rjr39dXG_4>l`6Sd9`8P*&Re*64Y_uFydA09_W zW)dx6hp2zlR0`65Rt;YP1jIS(#LPsaucba?lW=8S0auBxb0Od=UV_7{a6uZHIqcLWB?j92=32v-iM!4s&AxuCKCP^a?J{|a)T6GgE6ZEayI%`YUfmq^i~%L;XE3<=8BDZ6kl~p=J<7coCM*JUU(N_=~7^ z=3dz|AQrtK1+1$$GPR$#AF(|5dS>k;IQFg!^C!r7eSfiDg!dsuU|z&yRgcuCf17f6 z+DY-@lxY{JBR-8tHBk0FHZhrF$YB$qjUXX`V{e$YX`A^A$>2iB2y&i==Lz zp1Rejm*!mf_;rrh>;^%e{+WdQSaAh6n|^)C$bSEKZKX-oZ!KQ3_C?2oeqr&-^!x%J z%F-T&mzCAyqCmZ)NAXIatmuf+C_YFWjrR@OkFIMKH((|GeZZ1$UbrIw@BRzL;w!}Gc&kFqn577wNEaGm`92aCB17C;D@r6Lk(0Pdc&Yc90n#_xv~4Tj)d&4y?Agq zH#{SYmNXAWXGBJj)8$b&DLeSNZDm%m#wWT$bx=q^Gp_#C(y%g2FB%(!i7XYDAZN=N zA`3=3q9y*``X;3Cyf3sp4+rI!m;{brb4^&BYLdet`=*&Zerx<3Y)RnZu975l{eRAi z@%^|oo`b{bfq4f^YBUbFOQKt^-KO%%ok>MUKhNYcZ|))KeI9@~az#d-EsxO@&Ww;#vg z?c2uIiYwVdrn1ZfY`*b|ef4(u$5=jUOYy&8KyaNPqw`U{jtaINFsqL4kMUU41CV%6 zHoQ~P9*{H17n_yJ{s)Y}qQ_eh*F~tYMM~v-qPt`Bt}e}OwiqY>nL5YBF;xnMtBrr< z90XC??g{R!^Xv<9tH9V3MD!;;}TbuI#{GC5rZMuOw5)uz($f5J_QEoFh$6L*Pxf4{#hR`P?tD}?Jl>tYwj{jd|KY6r+OK>yYTNg z^7*c!E~^<5g5KH`Zi_~0NvLfuXA|(tD^M!ieL}(aaaaddI7q_j8p1Wu5&|*KoV`Q;4za%I}_rK(nmzA0_-e>5*IWZO7b6k75@YN~FPrHxw@OUmg@(>NPx{@fp} zFtl^c$=3(T{%5fFc5{G%HvqjFW;u6G2b1NI;{t!f8%yuRa24vK4Mt7#&K#2uUwNW) zr6VYQ${XkfJX_hlY??}GyDUXQx|5cL)%{(r-YI1vUliHql^rdy1x;x`vrSZAP}<*# zc($HhQEb5@kwn$z@%rpj$$}y`#Uj~1$UhY=AtB@^XkTfPofgO|_{-3<()}Z6;#JHI z6YFxbmaoM?>bZEQ^Is_v2T_q5STx%++6r@fM!K2Mov-xgqcSq~IrPxsE_|!|MMq4n$y0HdL^dfv+PtrR^hILAnPF>w zvCQ!!ZjPSsbh*NKl?nppb^8J^Uf`RKl!hH+??^@R(qVaB{sHzov!7fN79;;|tpD?A zVeQhj{bS$KK463J`@sjnEF@ixWky@VJ_o*Jkgv-Zt;)7=P5#q=_MpTW)TLGco* z@H{84|Pu$f5(U;4q zO6AYY=c6^3iu>GOXUIJovDMwa**hoG1PC!s{1I9zykF#Vte@xzm3D3AF%^6;z5XGD zmlbQVR|jV}uIP$|DkI(W6_+q%V>qwvBlL>)+KvD(yOcjII6EMY^ImH=yE^~~$XWMj zE0*kH)M+&^2qgYfitilAT&-c9mj)=Z=Ou?nP8?2sqVEs&jGL6*ZJZ3Bb;cd@yT;9s zU%2SrIL4%`&r#$|iW&WW>>vCgm}9V=;ekID%(b*G4F1#tevqjUKI6o-8h85s_)Wav z9?Eol_~1i~3h3^5o$kfY_1B@7UBe9@#s!q_A~PQHchMn};lJ+XEr+FG$Bk!KWh>^c z4aUt!8DjO-FMArilHMo1zl(B-%4zp#{`F>M@YsLlul}1%?ex__mnaN3(~LdSCvQL7 z7Enrm-I7|C>9WMd_dUwJX2x68^-*&r6q?c*0=xVxnw6&L2C#ihgcsRVTmtJDJyza7 zMiIHCSjyL$bbs>w3Mk;~K0*X#nx|YG8@-r!XT(w@*kY%D(KG%>7N^YI+h{zw_UBfD z+aUDvguKLhPkuVHr71~;2y!&WGo7s2U*G#C6WMk`S8iB+Xz+Xz!pNSLL&(F z?$jgzuhdsT@N0-kRNf1_Ie$-rK9&(ekzlXMdHsV?#!odjh&3z*n8>E&+`Ik>FumQs z{XZTo@bVQOH^}j#I?Iv7=5u>xRceUNbOpUMloH1XuzGzx&kg|+YIa9jBzV827bfyP z)9efO_R$P03_Hd<^tYOgcQSQqoE&1)wB|(rdOAfkMdbzVLZJShj_Wfm!W|&qIe-YF zpCmhH$l(9#E4c>IF)dAC6Xm6LJp3BU@Z{9U?U*d9oR3y2S=#1#3Po3h4020G^+HR> zvCEN_CixllrcR)*e%jak`X`X%M|A;)VBS{`)2akyo^CdcrBrsLWGnuguXO568sm42 zU#jXpa1kYUB66XE&AjJseCT*Z*6DBeM|UlylMBOyaKrJAYpc&kL;Ou z+D53*Re|^&h=H?Y6wVbkTa1 zDCBH5ZD?rE`nkuIdxPwIB!T9Iwt&sWVaIEJ={uVS{}1(DkpROzXOG}zvijg3-a`@_ z!>D(LxlZ`4DdChEPiM%qUIvAV`@gn+4w(p-{U9N7uERn;kj~25KzJLveg<-~Q4r!(@b|L|Q& zqTcxvdn=z1YvkiDIvOsj&Irr~>=r=Iv#hLcWIig6R{w1+hZE^>x2{h zNb~}CNb=uM0OC4IhE;Nq<~xLqSWOAl`FK>?zgcVWInaTSq2!BIMhdgSjujDQh2&4G z{nQJaC_IKY@gJO{^)$w_?h9M8XUuZa+|%3)RQ2vJT}G$l*iRF6RhCij*gtmve7FaT zZpXgDr*#sFg-t>ZEzDwq^+|Rd9fHu#xpxTIN58P6*sess|BDq&jFEoFe<|<~=hba` z7Y-amSdvtKa!7zLQ>9&nKa`9~Tagf1CU=74m|nlsd6F^Od`$-z@OU5oG(H5tb(*~e z2yJd%tVm9?GWB9ffC3XPu}%|HYF}CRp-f@Nba0iNfgcpysZX6%6iD+yFZzcbl58{V z|BWdscUmr$tUYo8a~=L6kmDh7&FIhcyij!vk=^p<__E*{7dRKg%UhhBjkIT>(78mv z-Y}0j!Bl#?x?(E0MY&rmrw}wzZ6#U9t|mX^uWMr3bJ<#hJ%O}*%skg`nuLlvQ?g;u zvUCT;k2e-wjl;#Le>!6liODVF&x-xoAXSq$j}2Mjqa&^O3b`PuY@=yiT#xD}~i_`8i70;ZN68fNPqTlhc+JS8(#w$C5lCDmj zruM4k!#xdPf>sE_6SOUG@+NwFC&=zKO~qL!vnGdx#?NSI11BA@|={|Sz znQ?V|U>>M?b z!B#yd5&pkW%q~X%h z+sQPk;SuTW`Z_I)vQolyQ-_L+BqW0^b#VENxp~5@*Q8quTTj1~wX*gYPIbqy>Vsjv z30iV(*dx13-PB|0;EnTy(+C}(?=2E64_7lu1E=d71yq;+AEyEyB~4B z?iTF)H+GzJ^a|bVOZ^N0qm|dN-ZdAUSg|_EiOnX9x6QWTNhk__2CpIAXyZ=WRqb|5 zDdV|^0EUpMuVTj3t>$YTK)Sh^=Aa`KJU)k@x;OQBk05W!6X@B(XR5cBKk0H>EdDC5 zOg#Kps{}-I*1)q2dF}P>e}duPtSV-_qLSnb@0EpdzWsskbpVcE4I0J_0<`)f;$5+Q z(U6SL{k9+y6l`FWuu$WS-GMuL9ZWBFL|zR(haRf$$gJh#Bzy&wQk220cxt-`qBMaO zaZb~Y3XOuWLBvMOk;+;m-BE~a!9%5_>^FY;jt zt?ydu*Sn39v|0#D;lV{(ds_73uGhK!fuPQ8%tnE-!N#r`3E>s&xr;W+MbiIessdm~ zh2_YD3ttgCjzEF>k<|9^x`92GBVan2i;>O~c^1VENK~CsUr(EVX#`N*k>SH4zM@V2 z=!JE}gn12lXb~N6OF-5tHr8bNTK9q)?AYt9h zKXe6%EBj!gDTw=-vrr6kuD8Rj=~jlGqyC=7a#gMf<3*iT zq_~8KYHFQ~Oi|E?LY8mtJDuL7q~*_kBy$2?btYTYcl=0+JR?cX732MeKB8C zVx0FT`gSEBKqCiaY; zaJlHk{L76xWVq&Y&|7yNg)#4@OSda*cI7_cw(y!D)WnSB82YQ~pyCA9?T7iGdAz$T z5!5d(mHzq@m5|`gv8!YSiO^#~XdBnu2=+P*e_IM7hGxk|j-@Y5A(yZuId2 zt}Gp|g9$fZOD2J4VCw*3FC5mPox!Jy1qe5Q6=`XY8sVEF$dj8$_YK&6D=nQuYBtv` z@CQ{UZT{8vKi!X)G*1~}1DdQcrIpVD zbgTEKcy&U4cUL>a`L5^WI#i&Q``vS9YkQfS!hD)JL>APe~##)=@pMU`a`)?wJP7AKQ!11BLo?ifTSNK1+YgzbBzaC!==Q zL~u{8r9t8el14>y``%JKFo6Q#W+(I4kK<5Ual4jGUslj+er=#FMMyuuNq;y3^}d63 zQnS=EiXqBrgh&sTRa~X7Sz2F6R~?;RI#h7mdB6BKbXt<1_{CDp zC_Py{6{@h@(flzVbKsi6JiNnFr>e*n`KqMiL}+&4PQa?xOPY9ZKIp+f1HJv|8#`w9 z_=4RozIfI4LtRte4)3O|??+MA*i)k5H+hs8I$+o z%H-}pE91HAk@_SA~x7cVWngGJG-?(LBE9hu~WE z+@M#nUr#M2fSwew-=IboxCP-$S9#X}PC!90XKXV!gJeM4*I*MDga33uUM zyM3#hlAeH3s8aOsatNaXrSv_!FmZq~-1wbk*SYD>Fbn#lqt)N^bb7q3V)3!Q2_afD z58+@%6-jWlE=mh-CKNXkSy&!5IlUoWj+|R|g8!uR>+*}}ruoNPwy+13eWK(*@;dz* zWbKw!hd(^xCX47C*!=%UznzMq>e4{&h}p@`4QOP-Q2j0 zm->C3Tcaa^PhY@ez)P``M*zxoYfhc4LWj?@dltC`UY{e7V}0Nsu<} zKGmS`&=3CsJB=OStR7ZSV{xQ4+u-^fqtgFn0VHItj}VFVpR7}t4_e4q_-a(SU@14> zRYy$9{YA*;Xr!~OA>;jcO@iuAps@|S#x8F}2ZMCo(1}3>+qoY!Mdb_6HH(HhfEI(`Tm8(Yg?_4`|ejMg>`Jt$mWj20yX_FNo$csEzB-k1$&6=C% zNGYU64x~S71r^|J{f*Z4J-_;3>T0}7wXQ-jW|@6QC-|nQP%HU3XQs!s$cl=lJ#l21 z;SjE`&?rnvA^oZ8p;T@NmQNWxC_Y`zQbAsvEiop-o)hgOWwJU4$kF zbxkq~bQX|-WShGjm#E}$odtSjYuRi0<((2^#0Xn91XxVflER^;RRvIZlY);DuoHN3 z>t|t{JHeNfMG@)NWh;fc6Ph=jQ9`6U*i3IJmo%~QVF;C^=}nVRE|PH`8!fu$9QqM* za(;JNZ(fqw!&H0e_H_O?@`F9w@y+2%VpQXy=Nz+$V0mi%)4Q9-zGtIP<5><>pkj3_ zs??^DC<)OTV%-za1(iU>q!ag8hmcz&1T=9d$;%1yxSaSeRy|8eEuovhmw;M*l;Noc~Lb zE6<;le+UpN6o~#LRP*#0Pj(#Y44w(|e@iT_Q2JCsng77Ze@wf`iD8UB`9cTWKABXW zjZ%goODdwHn_#qnQ+=EFFC|HoVJhKjKaO@G#^POT1?yyKjfUZ<)-1!6eV)92@0|}s z|0GRkzPQuEUmwtzrlidq3nz-?nhXkX*c7MVYBz~?yL(+9)IVf)WnwSh;Z6U*hb(fp zrW|vA+-ju~b}+zX5ssISdJEh=MO@)23jLF-+C8}3o=iT@uWsZo{MOj{eXN>KCykLh zy2(m19kb%qiks|I1KAtt>Hh3q#VW24j10=biMwt!-#TTtuqd#+*PdK4ACLb3;pr^H+Sd9?e#Tb3{TM zhEp(*DC*G&0WB*9uiinMDqQ&CfTAfH8xdvZ!R~Dp! z<|%@P>sn2c&p*#i9#AiHPo!dcV*ZiVpK2Gs88K|bUT>zu)ll}g{khpi;_mb2st0f+ zFwBC+)w8$!5qZ%x?PUl6q{sA&$=9Ldv~uMiZ#M9Q2>4UQ+5Z-IsgWHx3m=w4ta6mq z1I24}T8zCg++tyyJkz_qHXJt|{D7oeN7E55=xw-&of>u+;(Kf^(?ot-L&guesrC2} zEmdEt)x4LG!Yh06H;&ym+%Fy3BBVPFRegG-_z|9kok5PK9;f6na^-bDSqMVL9$NPk zC6O}KmEhp4^DT=KLI8Owv2{zz3}o0OM0ZO8t}$K|O-46$e?AUdb~&9(?eoTNup7xY z6_?#mTvh)K-RZovg_cyzCU`1pg1^WvzO)ono4j4_?3hGLqW{RJn$r6vfWug3sy58& z;BN$adVSvE&?G5@B7Iq-`6zZTiBk23z8)U zffXtu1M_o`?$ijQR!Hgn>Qw4ukTk4>=J5f1PVv@FcBg)QV zEYfYo)1JjVYnC-jKeW;u`r^h85EdixLCi(W-$!e5J0JS1NDuOl%WlhW3}i z+A-pK1$(6N3mgchqh`o+?Wezf>7so##iD=SA2xB6bNK|4l58_tYZ0HZNkGU=ehiU|?DLhZ# z8awzRxQNhb@kRND&yt6}{1|R(P)62$V3@%8zg)Hum1=A_Mba^_W2F{0B#{Xuy~k%CyX%Acr% z5orYcAxtizpF5&`1)@@$LQ2@|3%K%8e9Y53-#`u&4jNI{hrE2^&Y_E zeoqk67*dgFhyDpW{&Ws5YBh3lQ~@u9j^77M(UA|`1k-OqX*Z@2x`=Tg?-aoD@R8xl zSf5~wAvbk-S&w6f9Ov58sjH|zjqoPSvi53Hj7bq;h`Es?FzA^tp95UVNJGjTwA;s5 z>PaJI3pSR>citQ#eu^gIitA+Ov6e-yzD93lz*UK3u~(d2R*|WNoV|dB$=L!37seTN z4Euy`!d=43CY){_#_XbL8k|`^O?Qbv&Nw`!sD#ka8F3L_uYXYeD`=?~!pJ ze`qlCXpV)ahN24VJ2^cz(ZhsMl5_w6Pz*Vm9i5=dG7e zmdS68OpjnZcRf+QAn`$I6>n=*Y9(H#MUI~Ct2hOWBtYNICjCbamkN{^`ku3xMFmmJ zEywWpCidWY2m+#+zmUJoz;E7qvH?M^omh~2=MM^3)<&*HzV~TkG3fZY7}J(a1rNT0 zAC#~sb@Adv7uBX?tlPlh5XsN%ear>=;|G70BgC6RMeVr3x5i&Ru2T;V- zsd+y&YyaW-pHrs9LM%F@6p(7HAsK-AJcM2OCtI7C11PRu1T$car)z9@HsH|B4bn%z zm2yD-)WV?Zr5l>S9a}d-U@)}`VSS>mM>wS8tr*%6(HH4s#91n!xnlPF`I`mYzuTQ} zm)i4Ble;Y@K0eSOI#v* zCR@^Xfsn9t2~rW&7{?1sWa}a-=je{nNKn?UK&3iA0}s;AJ_c*yb_{X-{jNDDi95da zGI(RpZ*2w28Nkszx796-Z}LOHEA`LXzvV6MvIA>Vi=g4Sit>i)qYT1p91;$L(Lpf^ z%gJVrN+(#td&g8``F$b3F?mZAj+i&~stQMQ)xBB1=TStorsp;d&rhu?4$K;8lk-id ztB&igQm+#lZ*@j`ZCcE^>JS>uKCW&Cs7o3Ff(b{lBE+b(g0Q<4^L~h3iYh%Xny&3M zzioygA#A@$jM9oU`eQ0sh5Mh2Fiw;g?PHD}aOB~(cVGxR z?fLcXC?!8JYTOm;9q;U5u*rQPYid1r(-dn~BCe1f>7$ia3R~BoG zISA#kW{7CHapA`9*4f{o8aGZ3DrV`9En}>0eRh-Jf)wK92PZ764ovV9gPWn<*E339 zqa&4XohCm0Qyd2q-@MxF%GVwUe@n3LJ&D+Y+}d(plY{c--vdQZ0UoD78TXxUQ_)q2 z^7Eoiy+N|&t||G1;9` zjBB%OACNfybLlECmI|(QE;>mYT0)rVnnaC8*k7DMH&1(9Xvb5Y2p)U7NGygE+^Ppn z9E_QY`RVChUVB-HbI<}J7KG|rr+J+8_;Z%n+Uu$letX45%YSp-$=a#>0R=t;ikq^# z_1^s+N$_~Q))R}Yal=M;Iy7R=4?&@~lz?bCAP-pbx!r8Sx_4-F{7k`@t-9M2*SEw& z)P?kaALF2x+pYD$IT5d1@4^=tvS*^r9QA_g`ql7?!TbB!1Pr^z*s4l3i}kCvVX;;G zGAWx7tv`10!s>jpUiedtl4rG%+-c|jU}nIx83!1 z2!a^_aaGwneA@u5q3M$Hr_uf87m1yX{x6S9?=>t73MHn7rcO{+I_pW{8^?K@#Wg&> z2y*N|tX)3Vplt{RZL?qz(C2RMwUIy zn?g-7&!G4$w`~;by2I(-soWMYF_}Ug`Ysuc2vTnXhS+vGD?*~sIInZo7@IYYV~QOj&TXQ&CtE|p7xIYz#=*dk!2Y;^FAi= z*N(IQCuY8JLe4V4__Lo4>JP*$8qLFoUL6nXA>G?}65@Z^XtaMTZHqfS6u$0dnzuX4 zIC!w%(ML>6a9i~2UIkPxdy5Uv4kXlEQtouomPb;>lS# zfkzt#XYhq~RaAG26K}IR&)^m@D6(PX@4|{By=;2~#i=a0_8F(D(3psh6E#5vJG#Ot zmMOn|T`|5@`sME~v?W_$=4=J|(Z{#!}=_B%x* zk?9dRs4vmVJz)Xp-J|Dj1K25@+33tAkq*i%YA`T%$H%QVt-7-M&x}S$EOW*Qy`l-) z*gaDDSO(;b#jJ#w8k(d9!zw`N`fcR|{xJ0h`#My(PWzOar1~!H%-HEnf2_+HAI8nK zG7pa^)F4;aK6d8fJFA6hirKIvmPrX|vzTrMv&ZeWH6_^@ewbkVxL60FGt=@AeA7B* zBKII~e^N)V!N&w}ZWhcj!PK{oJndC0K;8pazYqnAstrj26S$ShE~0fC{!J~tOoV%( z(1ZFHUJKcjmU7`9TU{+0zp>}E-8bzNS(_)Le!$Ea4T=cSem8kO9{-*2?w&QA{@?52 zFp?OTl{Cs`*gAO`5`QBz_{T+K409lwSw@Mh56@5S6TM~NtW zQ10x5DqUNh@=eQOh7K%VmzsB*BSpUB9{oC=pjZpTWeH7XP|5+&3Ho)he43z69E^IV zs5+#Z8ua2Hs@?cO*8;mar`5PUf=yUdU`Wpne(L7wpxyRKfr@ ziRm|Xw`pKIL zP8ZV2Q+j#!k1vezytAmR)4-u*D-X#m*XmFil0p%$FzB@GExmL@C?B1JV{1QI;i%tH zGDYAci(&`*sUxQRgtAxH&}HR>x%2_4rX>99f#6w!>O>pRx#T-j((l~Lsejy2(8UkW zFQlmieBSTn(#{@d$KiKeRmH04=B-EzQ;xpXj&NhP0pZrXdx9G86e>s1LstrU4IFw~ z32c~7!#ltT42Jdi0~4$yG30YDYE7Ux7hb~}$%VMeAXXAw$}$E6~6Bzz#n1X~Qr zlj{MjDbPXlB9XvokUI92T!727rD;O~m-9V)b5w06Y#dlqb{0&N53)XoF&W|Sth)QXWUo6E#lUZN zH#gE^d1NKCAe&LFhSSiwgBxSN+&#=-%eZc2j?P)Q2QkQ84_HoSDsA!-A#<129|e0p zMm$d6KRc`K_V`#p<1X&v(Ct*~Rdehp5$*%;qtkAbukOB;|FL_l%BUD^?Np?RI>;c6 zM*80Rq2WUk3h!H{f9287kCu20%?(jE7yCCWJ!ek(*cCSt-qx41wVjuU``QV1hVs7u z^oVLH1YmVsQt}1sz+E;p+mmpqZhIXXQD`?j8KO-BV{)~8aR#Lqv-JE9Bp2WHWf{7F z&O1!aTJqh+T6w93e{TnU>Tq?;rpJ27`Mmt;1b!aOuNJ<<% zlyrW}ixV?+;DOl2)dZKtrQD$hetu@sHjofJ$K_Au{|r3ho^b&_ygpBEwf7}CqtsKU zjVHO-;tXY=jV6wvHQkfo5_|%^_v=jP{3Rd!KN+vLWKy>F%9=@5&w_Rb12=M1fK$TJ z)Qyz=@|ftmr~L}F+Sg0r2!p&(c~^DHEVDPaTr^$$9E3<@5{Gg4WtKXaTr{386t-yL zwuO;Cj6sBB0Tl?m;bq?LR)Sj>DM(P++*h0doBjX1<)>8ehxaA_h3ExIRj6? z)|P6oB}@ciCmoUD`s74@ygWFenrm@OlfD%HNuy(;tLt{=BexjK%97Lq&I%&`#X;%B z-+r0$1(tSAL3#p_fWj3WT9&rYyd$?&2|U&FzLTBH=v}&=h7t(VSD13Z_V4K>eX}6tNzsY+@SP; z*Qi9PXNi}kyP-kHabo^HV6axB{=;@_r9}0~}cvM_yp_yq75{~kbuKM09*nQuX zn`AcV${gky`|UCNb0d6cgDh?=<{Ot&YF~>5GzPDJU@g8G<(3?v46JkbS23B$jPZmgt%wG`XpoQjqkR04$vKU_zak{ z;q9~~Erfm0OP^9t+gelE|M4K^KuzQ-5~aXEpxFErOV1Fhe}f0CGw z(Lge^cRn^+-H45hT}{uJqbH(wVc79*kc7^GX#UZoL)8^*2OCir`jJNAlat9f#@aM{1!E>^1|jVDS-iEJ*6@1 ztnJ$vg;eC37MhW4XaJj=1-4^s2{jTW{HOl-r_Xn5D4&>qf3T;Mxqt&8_!&LUZu+@W zQ0S0j8}n#oD+A`Ts?$EayZ%L80Vie0wRwMUDz`UKQN_sW=j-P0p|Cc=HsLsGB1U>| zvX<{O=99Z0IQZ$S%jp|D-^Q<`@6=hy|Jk4~IK2?K2x&ssrQwG5ZfD#IbT_Kmkd!)= zaY}!FAF|&lyJA&5FR!*u)~00YCDl4Ado?GY+FTM97_Y|ZqrEO)1Um0Y;4N=67i&tt zwYU@cwr1RZ(p$+d_O9dz4O@jjbkn7-lga+I02GB`iVUyn&ygNDYHhZ4hASA7@+i;l}5c1cV@i2$ze2@H{t@241BQ2Te@R<3GbLmcpfu1J45(oE_R z@5G)-U{}=KS`y@gU%!zm`ZFt)wVf@FAOEYF+RCk9)yEAYQoN@?^1Kclt7=xWW@tu}*^^&&4ENd^ zZ*Zu9IW&BT*q-)mkrrf}_KSZL#noUR!oDv5D0eTCS3zb1)YkkVf~GvDuy*oY)%^6d zo2}Z5i1}N>zr|ft^$T0sEUb2^+k}lDR!sfRTAKIw*ym=j6II0!wiBK(Ex&kP^g6x2 zj;EpO6C;JD^E{nkTei=r5?R7~o8HJeg2lhwT7NbRp#4XQt!)x-ijMvjRr5?udsU+` z%RO7p_8;m+iLW^+Ns59pl$sih{JX8pYE23TZWqun2?o?j(ue2Xu=7$KAEF~|%A3(` zA`qpIH%>596toc)A^pyW&r<|JiaD-k7<1P)?f8*E!7SdRW4!DrqoJIWo zxCeZ*pCMs!(&-HaxB~S|zB0&ANGCJe2uQMPZ1Y}NXPw!sm0Ma_i+ICy)VY3t$7?gc zX!3tv07iF#PcwL>I>RO^O@JEh1|v@!*c$}kpL&TZ%o?Qx-%W4 zTuE|d?}>Qyau~;?CdjBEXSl5j=>k4S-!KbP1&vQ zK-!CeAw2vk00o4uk7~ozjlQ$7Uqe*oEXH2a7}V|4g5DKuUar0T7t&J#atq`0uRpBB z3u8FzJ(F;M42SWcA~(hE$;o*xoqXn$72SE>`Im(;BF|K8o@CcjUbYyY?l5tWr5=NO)-2OhS`TGFsh6m4BHmk@Xf^3!iD zwQArBa4zu`N2GqM4f{;nG{HkHv6a1)W)4vS4_jP~k@WzlO)3K%oqg4j_K_u&D=`cH zlzoh5GxkTAV1-^+;W;F=emQyq8=|oBQ1g$Wr}D3Lj28o&*lix$h!dbToemX6eV<>C z7pq}1>-tVx_?q7Bh+sE8eb|n0E?3z|``yqElu%<=NWT!RES_-?*{0bjFVs9JqZo%v z3Z+HCl3^d|LqukArNnDQtTWkbRN_=|tlYZ;Ba?$f7VeqvPt2AIHC`7tE}fc)ep+xf zbp2Nu{Uc$?u^6jffwqdG^B4;S=mC`GI+w}$i76F<$)cG>RdlK~Wp=lwHx|^AenY79 z5@5H-f#Zc!802)`_tI%1ZW|0%I361;)ykGiTe2(6n=9Shdcx}z7~`IW5<8ULQ8l~E z>fI)}&?9}u*-{;E!>DgP6x;-@pHF*q=B~A47@r9_o7s~*zmiNeA}D2~ff)#^H#T0j zJ6HPBL$e|F!wYRGVOI+twwa)z5H5%7vwESi%+Z>I#HyuVk(#s75TjeuPYxAjjA-h` zjM1YVdZzoa3qfikHt-ro)B;IY^f}QP1%K9Lm-W>@b+K16+zUQSLMz>W&LB|3Bmw%z z*@%SYs!*8Nez6i28BA3?a;8)W`{)cZJ;`khi5kix^?P0{A!%Ml4kGda)mAa7lLMM0I!7q-acZM|Xnmc~pxNfK? z0iK`Yy-{+9q`xPa?|2tNw@u*3DYapS{n@MtcwQF*8GCt>EU9-Y?=T%P&6j!n*c6eg zN}QN~!WkHm%(uLNo-B$-)AP~4zihx?_e z4};a48hSI@?!O+ZWpm4=o7rOIxs~Q76059#k1pfWR8*~NsLMaiJqB@XaVdNw9rs4t zUb}OG!~fE3@_1?b@_1eMeJXZZo#)cgo)bU3CIhVh>r*QmDHGwU z|KaqC7G_D8tjDoEBLPJLQXR?p?d=Y_3{KQ>&gPQ%*o?_5{#b92kESRoDlFob?viXNPpX-CE)ri(d){TIs@9hc0!T2k- zp|vm{83{4Fl=hG%X2%o0W=65CB<06jzRSnqxU9~7yHsVE*}f__TOYof557%NF}nor zR`}9N^Z^(Q1BN|ziE7oDxSN|_>1irBE>J4y7c2xTg3$`??FXRABupE^G!OY^CxOe? z*TRj)0NL<2U=@^d+5ul~Bb__b*vl@fwEx4V9zIsGjHTQ>;>u)a^*^o=9y~QiGBlWP zl4C!5eaU-aCY;gZ+M;5jV_YPQ*PWl7ESzYfCIyIyVBa3twgE5vl@xAp61_T0Kj=*B zDNb(8t5q8Z;Pi1(!j5$V@?mtGZpoVg_4ImU~s zh=&>HIxd1F)F2E=e<`bF=E)2?uk)}IAP+_-j;D|KXi}6v#s1=Oh3uTBfKA<~^B`X+ z?D|m*Co) z>unK-Rf(8glzB8B1<<0Q5s!IQ#z=2YRIJ4u>N!8IDDj1TYl*>rD>spBA2$0QBluVe zwIDr9nkUmx$)A2DX(f5Gjn^JmeyG0pNv@PwyqZ0EvM@`DK<#rCHZ8NZeTm)j`F>1c zvZbzSN`1a&N#I&ja*7q?6s^g~Y8l%pfN+zLnA3~AKMKeB*ynJNzFtlBExc(g=PSQ4 z6x^aDfDUHGIi_1tSeSv+oq&3RUKV zXlIIi>7`5`k!lv3b_mu&@!BN$80wU*#b&oi@?t!5|X zgU=}4Sa-=;{!%nc+i{!8A(Ea#?*8doOvTLp=^%TELAQacTkxOi;<#r;0(@XU4kOvS z4de=?1}s~>n*fUfk{!_+!;wOv8Z4+<|P`XUlYFt2C6(o=v2P$Pj$Z%BDaiEDw=N(`2y)8%wgV&ur1Dfdo|S(Yd@| zw-XzIVq^B;1tF`h5JXMLEhT9C@^IH|W%L#SX`NsoO-{^k_Cx+b8Xjji>c3&oU?&`? zr3ykn$mJHSJ*!gXK*(|m=l<|=1YFY#%hvtRfVo2objf>farqo$^<4?TVaWV|z} zD|Z? zo16A=tbQ0BQ_tn!4Fa4rP}KuZbF<)`Mx$lf4X{BalS%ePvnuaTZ?!}3?^l@s@)cU& z*F^6|EjXRo(@hsB_djZL{mYM!M+X65aiR${y&O4J(qH2XE3g!`KY4$=4Hm=j%v7Pq zv?NL9?A3k<9htr2P@o#th49*6NPTG7S{SS}=lPNaD%#h7bfzPx^Q=yhhttiWPlqUO z{J76HOTtL1fK1~>5siMB`v7_kKrKelL`klKv$*QerJdB-b`-MhJcwR z`Ic(cBfI!=E=2frvSf5VJu4ly@Nl<73odWP^f}eSz#AuPX&>!4jL}B{EKTxx{Ha;~ zqim*GnALy(f+;l_A|=Fg}N#LeE7qBQpEFJ)}8I>v~{p08v30MOt16lsbhPM zgC}#N(Pblkd9zoYDw#`OU+ZR{O1S2t0xciE(&ONEwT3|%$7ZZ&SFQ4q+^C%Xq3SiV{DZZGF|WlaAy z^M>h~Ml&oRLdPX%zL)+RRjZ!+@}f0w%)AT;2_iU3&M?8+80%nEZRV$H3tJ<2+<469 zSAh3^l}A3eX@z~U*Q$l}GQRmk9F0Uh?+N)(RQQyOfy$bR?5hWPqF>`Gj}3*)?bWva zh{i`J*>hl(*56XUj^nPLTJOP1o&8rfgPz*w(gW}6G>J?tj1?%ooJks*Nat!|G}>zc zRM)aT>mEr%npGS4ZAI`j=$v^5I#Gwy8(6zD#5r^&tqO{|l2f^L%#V_?G@b3ZdNW6V zF(yG$W0?WPSH*__0H)2+QiGS0@q>gD8$$hw&R!blR1~j26gfp>TY8si-rT95Vxh<( z>ga}Vab3RLwM@Rxw*I0DJvsiDdNN>B69lDonQf?vk|#XR2SD$@1qeJix1#nn1paoWq{3hbl!5pU+dtiSAc*p53M@$sMUu0 zsi}QtZ~rfqnMtV5wss@z4IcYC3ei={j4l7sVfXxRS2-C2WvCi-NGJx`vhcDqwlOq4 zYappGq#PPLLdDQ&V?a#*q)^Y+-MsOH*VlIT#KsDw(GFg;pn(?k4@cU?U3#KUYS`qg zRs`(ahipV0~}((`lr>Fasn5X-qzbS4sbvLjQHp=}-p`)wOJp-Ill za##RVzwH|vC)owNiw#mFhXWCL{p#I=m02Ib?|WuWDrus;{a^l+jN^V zmI{-%&CrasI_We$RF8V1R_;jpfVuQC#?g(R39s0<-=i}iJnCl37EY@}8H###1ezcD zvPwb#(}gYfg^8#N`!=utFv1KzB_3|Y@y}ijM3^g*xM|>pr@10nSn3Hqj{Z>MF?_VO z_(AGs%9~<-sGp2UDcoP@i@)Ji;_lqgb^>;Jh;m+)^bjd*)S+we__s`Mu?Ll199{r5 zfCN`_ej6ew=up&M@fdH=XYo03LS)I)BZ`E0M${ao4KL;*`d{~<$nw0)cWp74I`)`J z$h)%a1}gayUPLK2Oj69M7k@?xW)h|@FJGNepm)(_>J}3RAoF=*yr}Wv2w+I_Yc;r- zBP+a`)x0rET_KjuIB1_I?bH=82Rz~#R~Yo%Yyy@}RL8GI-Dlz_8HjqxS=KiK-WzT{ zb!t~T+b!QO{|BH)N?i_&MGBVTjj zQV?KWOPBiWgtFKxlH%VJSI(tp(A z`%7SjamOza{Rfq8qeX`r+LNSlhdJH_+lOgABh|Yii2-YqU;m>R!7W#9LE1d2d$5aB zL_g)KRDe~asv!V2`27cPRjL*eVfk5G+H(&v{TA+!PE3xkrl6&ur_?Z`GMB7pHor0-Y9IUg%BQ{(S+LyDt0&+T+ z)Bx6sUBjO9JB0?{s9<&!?S+Cad#<1Gnc(~3e}nHz1R=pOo~qY}@|MdUM_S(}av8qH z2#VwMsN_j8rGVukkgk(5zS8L;PJA!#Pgd8d$X(#ij8ME&l<8_Y(V5B^)UZM{-=aEA z4xPY)^#(q#Q*xD-9B-=O4%I|AQXlQFFbezAFlZ~98K;lR=&lAq-WDVO&_ZWwz?UfG z1Q$%1ZV6|=Xv$PA!m8*jyN#MwBZ_hd_eYi5(2OrBsvJ`msca;vKCV(wvY5<3v*b++ zmIBO_npj$67>x~ktEF4r&T?-7((K}!3Jvcpwc>FR8|RP4F<7ZVD@r?We*Lj7wx z`>^wv&e^a*@`sBBhvW6*)}ghjutZT^Dk9h2`t>8ag5tNT?OdAl(+C=&?cXY7{ z1UcRH7JMuF+#Vh#6@{P~xmq8)`#xC|JB~zz`EK%M(iRPlYym0)FtYp|=AoMfxrS;G zJ7wftpkCMZ5W8D4r>YL4E8^o4sFTXI`ZN~;DG_SJu&_4CkhYD~aJ#*l8DH%G0i}|; zr}Dx!%ZK8#o+;XnC&WnY831>zOB$+GPCIipe>LnCQ1&>Y7*fWrOJCVhSDFAQ!&pWh zaL*Ab_$^N#io2G%I^qu_#{C<<>QOdy&E3Qzk<}wvQI313AcJ1}$e#U3Xqykt^otx~5Av>35btX*rF30mmj}_E_?)hQi*ccg(eUP}7oOkkxLO9Ov zH}Sg~#+4tesqK6)WX=j6>*XUgO>FFEvqwWy<;!t6zKm4}o_J!`L}tP=FnKT_QbwgU zF#S@{!e?wzsh5gL+3)itJ+6nye`PRE9%4SB857e;)~2>PDDpAuGh<~nd*0o1@(#I* zQTxtFrTNO0H8FP2E-y#;sl$Yh=zkOkqbcL8{A$Xe>;dZc*K`B0xl{B#Au;ZEDWK*` ztzm80*x6$n)XY(bcJ`8#+@X)Vlo^5MO8T6U8S1y^na0y`V;tjV=6sX#Q$+9$A`KZ3 z4b!=~2W>lgsHZ|2!P({bI+*$~M@ zL)A8<9bkbGZ=a~1NoVPrkZrj(DlJ-*tFCKSHR1;aECv6Q@H!|3sbJQlD~d{Zj>%*z zD^yb-`K!le%EZGeQc%05m?u6?ZDc~^)WwR2Oe`mJ)W5}86|#4!Tt%cBQPs*m|Ktgh zP{U-$=VqrGlh z(0?Qj`QOYbnd&^@37`>Y^W^jAXY0Y`kyb`8jgq#je4^8O3<$58i~%oQgL*ZQk7niq zIm@YH2Lm8GrFniro3K3i?rFb$wS|lZj`6Gim1fBu*X@AQ{wI~F75-Yu0p1rW%SEIdK%|;x)6Cf{A`@wcmrw6>1t%G^&Dmro ztcgSgC`Y=?6?v8L#5MLh{s^bCAH)M@pu+$u?veG=%A0r7kryVOHAYl1kJrPx#3NH* zY}J0;@_Ao{{yfwFr(F;IS>rDOsPCy@CS0@IKamCOAW9Zz+w!)WePG?-)CDphK&*90&!9oO^RhXl9^ZBgh&)cpTbEWQ!`V9VXjjFB(qbTXZ( zU%UE7kx{Qq;~i3`sHm7Iu>~F4$@kPS-#u&nG^2YM7W8aTomprj{*_Ue`TIs722Glw z#7yFED{RJc=7ZcQ$bQMp?27|qv$U3sK?a&eL$(TRDzODrSK#nr$w2$xlKJWIDW*TW zfsjK5q(=64H(tkyavcyFlTp*jelcuvWjMM_zdms%MJC7ni}_T#F<;NDMr)p`<>A^Fm$Pu zRhqgJ#Zp1Aw=|HfXKB|l?IoV|!MherbA7IG#7Vci3}(HaE?YY!-2#T8K(xt#njDcm z<;3#>;t)ldCb8uxnJ1+S@DH^{`h}TW=~wRJ#HllgS-YXD4@t*dxuseMq|>Fq6DtOU z$&s{U(N9dMg!?XQJ2QrZzbOXjIGKJk19`Kefiy>{|EUtNNhy@7M6+i1&hMfWLRO3U z)RXS-_k>6Lz_yDdAUHln!q>XkzWF-p(6YL-Cd8|M;iR25c1`47 z#hKkP$dge^Ys@&=MsfrYiI&~Y+MgYqI9~uGymWSN+c!3$Z%?Qpl&p}p;py#7Bn^z2 zIo`C3!(^r+9fgqe(jgzldO&H4!J>6x-H?ZRcHYL35h^F3Bm=(VED=36)^>Rh3jVwp zN%q^az+UgF8X__ImKzAWp;*Exu!gWU#N%DptVviNJts^@xXz&g@o?oHp!1N!Vr!skAMT zYb_NwPO<|)KQ9>s{|Fa#`di$e9sG-9bvlPpl|Gp~b|2LFJsmMe_{`N1U78IXCs_5@ zU3+){*;C=yRMP$h9r8_OHn;`r=gH?5+AI*DfsXtHlfIp6(_va)maC?vL<$*KmBzH+ zHrM0q`kr;bO2$@qWY*jfN&a1eezYqq-#=?B(AhA$hoJ(FPwGf1(TlXm)R6C#t1xkW zaz)Hmc6g zl)$sYTuX3b>8#zQcJj6()r6Ef*rjyY7n?ADW#OFrXOp}UJWE*BO0WIF-d>wmxv!n( zAIA0zbKFA8I!5kgSy1T7waKs7Zo3xfYFKsvOYwHEWb zr^pkfIlBhTq@JJ7z^ZH4SB}pinp-m9Gz!(?oowgm`pWmntJX{*R=XvEe5j@Wfp_I-|+5YsX8J@m2;UH4YiM9F&d^M7&b5L{4; zXRf4F4H?WVMaW#aR^Pot`->F?Z|u?|!(w<+hh2SV$Q)NIMzMoThQgo7cvla4fBd?( z_Vw2Z#q#UMI@6!$Z}4z49X0S8fVJt`5j>{2V>g#1n}vj_63y2+q#uJdaskXP)tH6Wep5Sz$aMRmf|Y4(2)reo@kaEs;r4gmFR^ z`VGlllMgAH;=Jyu&MlU0D)V}6m$ZBEQ&-l!Mb*x~+<_IH9VQv;fWO%7!sNbQP~2CJ zw>Sp41ywr{@-`gpF_$+haOTvDu z(VG5vot2%ah!TcVxlN&~IUM@QohH?VG)nC6|Vi z$rFU?m4^*Ffw?N@K2B@k{$3HRW^IOxQR&dt7+B}_l!UVRy7Z&jtv&qMU>oy7c$tT^dQ+QxpfZMU$`pZ{M6}-~Re*hs#}^>(9lndHg!2c}y%s^|o3-veb0p zkJ{Jn>#kG1{73ba>fYmPPKW-Qq~Ix#Z~t}G)7Wfg#l8Zr%z!C9BI*C0pH9%#%)N8f z=wgnRhtkHC`n#3%)=WQb)#q>6y3M7~<;_IL{gc3 ztHJ3go0{HZq?6t8UL{QHNp z;`_3qi?WyRtxsC$HMQAnWl8(7Z#VWS^cC=(;c#DkIAFcG)sisg`8?+9*T1f-w|lw% zZnaD5gKM2Dc~?&`T)`QB;g74%`6KRJR!#ZO51MT|*t=Zl?u$bzDjgdncdx(xe2rgx zWWwXWxvnLj)Th7bSaa_0It9VDt@E6+qpt!_YTL;8a`DOOLOW8zuI5Ztz2TNK+4^`} z>zALWjVJgjZ{N61!{eD~5&w(L=T81+uT$lC7-O<#L;a`FryD*`5|P|SE(|K-#(hR zPVu#l@lm}+dEx)xgskM6wMI@*CS5LLP1@}lr*%L26(6d!6Pxhi=gU7|)Kved2Kl=# zET5L?^iIqC``Yim?>!&-p3TPu(`KS&p5f(&gzC_=6&|t z;aa>=D?a5giT2HP&zQC86Mxsksp&Fp{br8>^tYG3)CJz4$h=>AR~1*S$&Hf*kJbKF zNuQ0a4P`x#0|C(1dcgmB+63cV)(q;Z` zFDx=#{W&oE>~p;(=g*!qZCEn%!kw<|k~z$bm-#PCKUiW?r@uXJ-7J}3|9*XY+_$Y} zDnp%N$ybqWicfB5c0Iagzu)BWi_%5$!E28!)+*0V)G3s1N&oEQ>l^;(mpZ@o@*bnG zm)l?K?A$T(QEE=u@v?x_C*hxMZfV_4Z~bTA^sEiiI{d{YaoqE%MUV4wv!`WyHoMN3 zth#sT;r7tBDz-OfPwS&!8!z5-HsI5pbxm^C7p>+${CG6#zTf^A&%Mv?cst9uU-r<< z-G_FW&V4D~QozS@#ov*CJ9C4vK#T=@ivR3RZ z2skk?NbovwFfc53e#kzt7F?%#~s`1q$i*6)XX0-HT#!$>(r}T zr|#BT`>Ye8q#%imfR6wM28Jvx1ylh8gU|#61CNJ;_*(hUh?oTfBL$NNepmCzzUcO? zr_%T#)O7_FsP+d|nO(EQ7wV@B8C8fxu;sz2>`!%2WE!w)DyNJ7C8Qh|m`?Ws*{L|( zNbg?XCsLpS4RJWxEmj{59HJdQC0N8kyhl{ug*H;AFMExi7*(VlJNEtO@#Ob(*6sex zo0QRhKmT5#qxzh?*zNs%mHTngveL8y+T7es3jQB!*ze1@5)u8+1~P!;1OKzAOo49r zKP%-4;jCm|X1F8;OppIERx3(!IjJwh<-$Oxru?#K{0KMz#+OON0E6NGvm%NA|C;|7 zzYVc#DSv#u;>)t}G=J=26`_`i>lSv|Sv^P8*yaFVA)fo}t zoGFBQPoJC|T1)J7l=|FU_O%h=Cc|_67ECN9TM4C!U1x$$)_NOWouF0(g1V8-=uXtGC?#C)f!#R;hy_dU2U=izqQk( z8@l?%nWircyqCKr<4{^s9ePOHB}Sp9iqmxqEzCl-?^Ie>rXP3$V%iTvdte;5#Jh{R zborW`PmZ*U^M0-DwP#rM_wN}-X>+eqvd9OCG=I;HwL}N_?tJa1)c&Q-9=99j9mYpF z3+8^}x5AFpU2Pak&9#@xSTU~GTw(6xouq088;M=KWbMn>);PCEu&zrgLQyy%d#eB2 zm<{haO}65iEH13w@6MsWZjvqTlFQEVUL->NJKl;7&+DFlShqxX*bIYso_cL;&~T9J z?$%$oV-_|u2!@F~B@eaxu-3({$GSfY;DnE9_E_+*>Bvb!CC?fTnZlme+*jwXJlzEy z+_w$As{}K?KwnIO^?gwCBu2whov) z!a|VGI?pMhf26YSY2oi}l%u|l1vcp2E`@f85&GeF+qq8x&|_igB)(zWO!OBy z)xGmabKBMqL;7te>_zz27T14&DeYQ|Ud>0%C+hNuHqT24{ltGQ{bRdcR16`OAZL|Y7vN}ftMK{}Zr_0Od!@RA>WBvE7jl$GR z*Y)(#FsZgywUA^7zXQ3fV)*yqSnK5cAPZ6%C<|c|%v{-~>v|zcQxB%k0oAvkwl8RH zbMBISD&Yq^s^7}a`zprK0qwG{R888I8&5Lym7c_0={`cg=>XWsH_IcAVra7PSwB2+a2o=D zOr-)n=`Lem zO;Q9L@eQLka>fj>1`G%$S5~FMXi}V34x-H%)X+;koLj{;;h0W#(S%^vY}C?| z+|S`}aNPoW9l*MKq*vpSvlc`Ux_A(+@A|ZG9XHtJ4b}6LK} zaD@g4#gd4bCWDvilB5vdu=RmcHR-`&~6cVbyR>TEsEl+^L-cHtPMP2mB)F zD&=V7rXTsCzD@*5(rni^w&z|K{;-6SoDh&`?PAiGywny&P20^Fm$Gdve{8G|2nHppNm&xCMf(pwex3Y_A7Aj+9EctK+#a)P1j8)VJf1faK7y4epLU9@VHkM&I~O@tn7p2XU4WMW183 z!n%^X_$dFi{;3bXhmL@g3@vfSj!(<6luZJl%_MrE;HQf{0=XOZ!!0Nla*pIU8(8<6 zi@cp&X0dl``Px=iVlg=w&gOsUH8UuN(ezil^qtL-{%BcOYaFOYsYMB^XXdW)OasX* zv|=ZO?tZg>K9?F6LYGg?{}=BLUyBOV6<8LN;_ywbfHhBNX;Jmv9lIfla#Ps}S*7m4 z*8}YalynepnJ4IZp50LZW)T02H5jvTwDf+SRTFDL;`2K*X?ybXEV1qgxlMCJifyN! zhD}mdx#82b2qGi3Gd(o|pE*;L5EIoh!F3SNEq89p`T*NE&<>Gh9KbFe8{*BzddDN? zCo*|_dyCy$dpZBT5dW+TdMHy7Mcpba#+r(+=3%`dKvj6LhljQKPoah+kX4s(_iWyV zFw{md9$GcpK}`zyjXl_I*3jTBlt+a@HDJ*BKrLFqWRDPE!GurT_ZRx55>`pu1NFN2 z)+@Nd>@C3d#?hN%y28PA;9mt(yKTw>&H}MkBoaa|RVXt{3>{s+f+D4vmwf*;t4|BA ztFt_IOOu7GQRvFdO*@*hW6W_?G=|7hG-BMv!DP9rFV?6{b5g}JW~9P$x0eu7A|>`(u^Nv@C*1W^gh2mq((~VHhJt~qWn*xQm-sH zWh&xi#T;d-N?7DeB5acgg!+FFJFbVEA< zR@HW#+5da8f1m02c-kymJZ;MRxY)GoyiAm3?hhmRIFZzUD8%tSWYB+I_5WD?&(&3g zO{hG-P^CPBjfaa_O~2#X1BRs`H^1MA)hs~m3Se4u2jVzmgCRzGd)CUL=gD@Vn5(Aw zx0dTcbFp;Rsm%8jiaj zEL%EsRAxW_(2-=nKLMYad;x!>CwI(*dH{PGz6Zvvsocb(%<{8HH2;n+Pa~7*L$vnc z5u^)vd%D+b+-*NahZeexQ1p4<-1!XAe}S&g4;T3NI_tlXl>3kn=VP*4Jv}Xt{(2z% zY0RD-E^y2{`}(o-??a<&AB$(pWszX#W#mUJFH>9dwG{TA=B`d~FwQrvv$4AwEdHd> zQn1P?Fyg8Zwb4r21y#051`3RBPT}JI0^78?L5U*ZyLSIN>%0ZDgl%0p)26x4Nd-2I z7nR2y`<0I!{d&4&E5PXAdv^K7>`Zp62yjwr;BP9=U7{ev)ei7r`R1$;R=ZhSxse$wm>g=-J(D zrEeiNSd|Qw@+ukR?G;`Mi*`!$Hx9}SX=5b~(E0WOK-{982aVL383j;@Rk@(|XbxK+ zC6vLnJs>Yk#Xh=tD(8y)<5G@-GOo7eUb=@^*yiuXQkwCRAr{+I2q7~0O!O>Qnbaa0 z+?W&B`_ITTW$QXs_U1e;wn`5)@3z_~>KMMHky|Ghn58zC4-Q?Vy!x1u1A`)vOD~|q? z7}GAi#Ur>pK)d>95q!>bBdS?TFf*aAPHF>j?=@1KPce0^ae3;L+3Z9i@29=;LpDPI zE%;!stzA>zX7eAevwsf@u&_SG0^1=lDaoh5U1Bh<{r|n!^?tt1`d&Gs3O>wLfgUSY zd!AY#VRzhjd~rY?hA*$~e#h>SV;|2uz58r5h<3kP?ZaO=zE~Dk%*K@Bg%7e=*;WKA z`8c)7_tOZ9$UA^j=FLJJj#6%hke4MY8w67OpeXa$+zAyyqV%^YN6kd347!eQ{%N z=D`EN;Z5Z`VCcL`#LAQ*Mv9J+pRm3^%5{WK;{Zh-*?gXxB{NxARgE&&T9c14bN~LK z(RZHavfbSFIU$CBF&n3U`H14r8C21Nf8J zePiIaUQ$2%$`$1lKmOy+zg;*Q$T8F9-^S{Rbki2AMt`--FzT#Px?fHNi6tg6HmzW{ zJ|WbAcSFJ~%>gALJ-Q_ZH5W? zP^hm#+$7A&n<^|D2(t|Szd6$%%jM;+!Spg13F9O5I1VelGEUc;7c&B7t)VS<41+<* z!E}jlxQuZdM9)f^@lp^vs^*i~K`#j;uL(Row=vh=JMTh|6^eR3x5L8!?uGr|FWd4? z6>)e9bBbDcns~?|m)zl&;i8Ryp zA{I?9%?uVuzR27-nU!G-x51$KIcOv@&Fv-)A+viDXg_8fc5IgXkUVi_T`0%w7ZqcU zH((Ngwrbl!WjqB2GdME{^paLsx{+vCIu4eK{v!%2LZTm8Dks}L7?oSU7Bl2A#xF;L zwBA%kCYsl_l4BbwNyxlAa6`6gc+5x?Ii{NTw$#@9afvGQvWv{~o7F*6jqcR<*Th$& z{(|3(W7w#`U^q^0bNswV2cD>82><4u?+|i=AW^+Vee*REv-N5u&KHVyK&%Z^Gg`s4eK^OADIATcA@hg+7 zg=&X_F>+kc;Gk$wXOcO4l<-73;D;)8HzMR+Dr@dUYRf+XFI-gY7AyGY3Y?Vb1)7Wq z?yR)N7C$LJi;{y`+OKq~`xy2AJGz+r#5r^sKKT`aw{iY||MSgrj>ldI&gbmEzltxf zU(Q2DZ$BxFQWrR)Y}l#R;x)b75ChGtnS!&4Y6R>~%eBJBLQ2VuW%dln>oU@_3;3 z2Ai+I8yYg+*>JErP5I`BHEc!CMguwD1cz1)5{$pA`8C69F8D|HJYgp?KAhw@pOTh0FzmADPoXxUPdH!FCls| zQmRO<&l&Iqva^I=#}z+U>_1jIcRsH2{*LGUozUpH`wv^{f1GLX@bKh)!S37o|H3`j z`)V&w1LS#luK(|i!0y*x<0NzEek6n64XppoRp<5g`ugh;Pp{`e3{PSB3H@j`<3DOmyAOmgB92w z_RSZ12_RALVRTVDTL(pV+k=`1FiZ!JojkIM^ZaH7pFIGd|B;Heu0y7O z4~qXDzF_H&qQ?Lr_x<94-^bykM+U5u&?19Ng>xbuteCJ zF0!Je5Lek-((($eV3^v9`Yv$~3}45Sr-AR`Vowa0FS+c@Y*Sm?db5EB@w}t>aA=Nn z(#(rlMwy%3w`+`r(z&mzs0FqNzyo1U7e3Kcegd>jzH6=Ff7g^x{>d{1+Ep^()D((o zO>Q?jElg1k{x0K&G?<%4{TG|pojPhm(}1ad3Itr?pFC)KQ(n3&*wbaF+d2$-Xb zdlk=iA&H_krKI0bd4GO+tq!o*HJt6u)cR4=MJ!VdF7Nx(!Zsb zp2->NwwiORrKZ(ZQ9p4zFL5R3*z!Vg$rcWdCQDDgS_$uvE0zzk_v$V8W;IGU6|<0{`;-3C z!s(?F_<<)Y+v507p5mLR5*2jS)tFon6zHw``CXErpBOI$r}WY4dAFrbwhErQxL%k! zo&5RO+fFZ>X+|nT`b?;vc>Z{WDa%7ndn+BDKF$2RN)LX=Kk8}-FGHbpD5;|%r5QQY zmH1)pK^B$VZZ+J^J9$IVUu_M#2qkZa44f3eCE_OK+IW#3>lmOkZXVb~Ycs}LXU zkV|v%bUFn?%1CZ0t53L#1w9Z5L6>ZyL!~u2^Xp-TB&S2z_JgcOl(z?`_NT?evW^592 zEw!!b8W{fM=AUAhIJq!4HJ|ZGnNmQ)dEN#L_*Qn<=kU8^GjVfnbKwl%a3Lw4bjeTy zaZY3BWbUmw1f9DDM_%K+QjQeFxorVRgc$gaJ{F9JzI0;>m#UZ~W^?Adr z)*8)~a^ov_4DCLDOrk1$;}!V3#<2y7E{(nSYpyJ(Xua5$zuOqW~QFBe>*iX_k84i#28CNd~pO|8$i0lWZ1?ef|j@6`dGw41# zd~gz!bUo%Jv)2^zKUpp-hD)OhGepL=>$dZ(aJ=IlT{JxnJodw9c#RVh;(ZkecwY{5 zX!PJ*J{mSf158dl4r_r^WIuwIP8Ks}dmZ4V{_>|B422^CugGlZm4{AIMoofi^R)&C z_SoQ>SV%j9xk)X|lsJR4<&BGRRNJ0**U6KYWT)aL+e5NfV#aS7XWm_}y@5dJ4`c0B z6>0f+)(@_b=6$tV;y!-|EteUa4lwv~5?c zBEN~NcNP85Bz!a&Tvg;k;fgq0uGv8q^%#AoELTRf^YdYusOGBr4=q7YLOsoV1aYn$ zQ)B^83Q;Kw3Jl5LNEd}few-GYDgMA_xs0q__;f6ENR1(6;~kS4{!^`ST{egPQY`*_ z3e%=y&e=Oe3adfIFz#-=suU7aI}WN1?TwsmU2i^aZ^68Vf+({kU_VYD2l$?c6y~ou zj~C_l4}dtvWHgfJKOq?-KvfI$(QEhv`IafEix%3L+B7D2h^$MgnWl{lFsL2g+6M|< zEJlpu+<~d7j5o_V2I&a+5S9VCRR2YNRuj{h0g!pS&(#jpX$30i4V#aLDFtY$d}1m? zz;(Cwt#qXhBP!6(h2jW35+x^gx@?Xl4BS%~V4Dq@(?_vK7Ni!SeY?NXKkuzHt8t;6 zD2f#yv@xjiO{Yn_!p(yC!t`68v!|kT`^kPB#&4jXIf{3jwvON2sU-P8!uMH6*26`Z_v>|=L9xgvBdq!L!^V9(+toZU6_Cm_UT>RAvEV&u# zfSFkn7z4+w)7cb)dzl$|?bP*)_|SzsODeVNOrFcLaG}jmd^yHB{&+bC$ctP@#+;+Y z9ph;elETa_PGlP3QOZ{moKLAqFbal8rOE|+)1G>9=5DNsf0l6K#^i~Wh8>n4-E_G= zsT5@_&X(PigH}U-9nWf4Y@0p;(T1EzpC9okT4Y*E3}LR(~yqjuR66cc3EdY}epR*$fX@yH{w45E#YWTI43Fo}FA> zPMDHgfL~^Y^9hsY?|k-$K1fb1ORX55bX;b;ioHXH8{%nlG2V{HZ5%sIHy^tvI0_#U zfv|S&TX8Gm;Lu49R8|HP}Gs2C~)8E5w+y4DR`nLoB-V1I9 zzsfR3*t@lCDx;ZYKqNOJ`y}CZa&dQQa%vys`coQ9Am04SOvRXxMH!y< zij|n&AT-bRnjraZ=&*V z`N#+Zl?Ti{xY&R9nRGqCIwJ{oT2GmY1#NVgXG=e4Iz*Pbqfz9%h!LWdk+;}TEPwSx zg)|)Q!=ro48^|mU3zomu&U@duyAS*Jb@I>{oE_}b#Ne$%qj7!+L57jFXtXiTS z_nGB%LSB~C>F1gnOM@$GALJHf5nQHyg2jBH>(Ru;jUcY7a4XwQsWdHq+ z(9MewI3I-^bX!RTL29e-eGbOPva=@wF0s+EjA!$62hosy$%Sx8uXmZmtf!0fl^>hr zc3Nl+eQFCGX%;&;`JeO5TFG#tw(tU7U-O{aqwL&Ll(4X!z6 zQ1}$q{N*BNplVv2C7<~c=;=9JwMB7-DDUhb^sS?eZP$rBSt|+{%Vq$_%OwnnNbAXO zu{|}(C(n}%&K+!VHV{Jgtj4i=mm90hz=jAyX61e-O&xblj=F4>Py`h>_~-P^F7MK| z^C@>*svy!p)*y%~WMlgu%#IK--ly(pi(WFyA2sT%r?PWqiFQYFn3#=6ZqG=1IwBO> zqT#t9nB49u1bW$1`nW>n^H6F3eS`FXgt7^%199>J^g%g?RC-RPKuf2T%hA_xKw++3 z;W&ooi~W>5zo(LCF^gWNOSlirjMg7`jjC#I7V=tpY6V?Q;)%=FzK2R>>J3e<gOW zcYNkhRC?!#Qm1EG=BZ1RZqO0}lWJzUGcPqa()dsF`b!IfjKwnM?9ggRLN}M$+uB%n z_7e-Q&8?il$vjJ&BhzGx$D79eDlK@e9(Vw_Wo#WtDO6)Uo!@)wK=^u$*50#~8cm)M z3BXGIo!w}_BK`};=flGxF^oC?aF3C`A}%ovj1OiOx-6%hG_&G)o%@X$F|}Hbyyey= zVPp{x0w&DJkbKzK)+qawSVs3CN%xt46jdrf(+ zdFq5iVl|?JRCEC|=jm5s-js7C02JfV^9G$3c8hBD4OraqjVyMP`zgxd>`;e6rzOx(n|F4Gh`MZ+{~C|hs>S3J(X=}>p~mCW_2n!!minaAbj4km62sI#$ zIOyIlhApzE{s_U8Vx=j?&ep7Sn5%FPa^R6#x z*#oTyBad(o%_VrchMa|}s~yae7K56=?Wyg-{{dIyPV?!%+UNd7K$&KD?=|^M2Z%_ zhq(VXTWF-(;gXJZD@qnk@7Y8=9(^Qhr}`i;0rl`VBqIvmEn~|Ft$J|7rnn=fef&FS z3N&gfr0E!@E^p{0opA{ zj4<-ja9+NQG-k$7P=h2X|AS>+xG`S?b6q0?e@UACgJ#>3eTH(S2F4a*{wf z;4wG4*QHKBob<9PbtN9yvU$>dA=ow>)U?bI!eOy^fFUz6@?7$*j#ut|HTB}x(H zr_@R&kcs{6Y`Jn$FklF?0wHDM5Dg(f*36S^rtRzp&N9%mTAKO&)_C^8`c8*B^4_OZ zg2K$qNbxjo%7rLHdcDw{;zuw4ZF!Bqen(jOD`2SJTpW{c=3!f0a-9%n7n-YUc-T{) z=9S+PbnxNW=;Tr^yUx<_bGN}6x7CPBiytfSV%xnk)9GU1*JJ$?WnNjZ*tGV3w1Jbf4F=azGEfsY_V!T@m05y!f00oi9-~oaRkWDu};XgF~Sv@8h)C3h-`0(S&82k zgAACK=Gv1-*TfHgE({1G5gklO4_#_0TDbc@46iWK>OC?hXgXAXRS|Uu!EKs70GHz9 zJQ=lmH|6TY;Ej_nh+nayTy-LILVx#Iy(g}THhKyHkeY=V8#$!y3VIXBU}wR)u%{f_y`qG5D5yLwk;7=CtDSbg4Sm+%z~aKM5SMtIR?OeifOMb=<|=>ZIklCG3nu!^N@>Im+c zqa}GW> zkUDs5S9s@YI_%ueLH|buRAOQYk_kMxCE+f20G-!B65QK~(pa_PD$>WkZqfmaaTm8e z{q9jTs!UeEo(CpF%pP`-(WPj|D!VD_>5gC#E3lN4OCS-et=sKxLaSM=ncM0d*eXpC zO2B9`u{u#9teP^BK)v@Wi;L zDMN_Unmsaf)({ks`cRm=-No82KXlmbC~9xUJn_r4q+VxbZGz#ROuTGkajY0RViB~3 zEsp)#Wo(p*;y$STkpJ^?$PN=4x3wIYj;n+>Op$^5ciLVY>DW|!6k$j^xUpzT;4;F>SZo?OO z&}39;Nd#qaPY~Y+lsyX=NQW~z?71{*)mc`VaXa6Smoq)WRqm7%&tNf3pM#UEsZxy# zJtiM9oboLmgPz0$-PX%br7=sN;L~c7@3!~3neYru@lGhUM=Yy!>;q=iG9|b3OxKj* zAF~oqz>q&is5Ow1XjLq-3A*l3?V=7xm_wUuG^r$xh% zQnABHDP-M_%9B@^oP78qeJWGbWXqx8sT9LRt3wQ4?sh7I^GGiZGiP=FNFbhK?^--u zIgV1^)~DPZztFd|$fY0wId&*a?({%xzCflF*XwM(OPdSogeg5;Udmr&Y4j?=!Wg=3 zBPw9NZ!3hFi1DcA5u`f%>Qn_v;@RUo*lQ9iP5e6c%V#V^ZLd*JNn<{c2bj}3jM`k0 z`+#eagT`J%==8m|=aU|XR#p<%U>;&NerEHDO_RVy_rGVR&A5ScWYF0aXN)y^V^_=|6bUe~f0w z^YiSf?e<@PTNFe~D8?tk30)k6Q_xwEk3SJJ=J?Ynvbs&bgW0=4r*DK6kv=+nq~Hi#bp_Ee32RD&C$M4s7JDKR2sGJq98sgSdY+OPiMrt!DwCG|E0}uHi zK+E_xYk$eOqlt+>nTy+v*9ig|GZDX2}&$d1l(xw^7AxVOE5pP=V-ic zi#0P}e?z#1HKLwTW>Esoe&R^8;Ga?_g0z8UD7eWnj>v&#Bke*KLVyn4McpqC{3sI=3uSq;Pf;9D~E zy>zsz6C!B&Fo9NIX2L{B=EV|S+SUs=g4rsmcCHDM?8pN4OJ|kInorTuY_!11QU&D* zUB06I2D&rBcEF-o1KT))Ic6b2GXyxF_`O{>&((MEo-&Oj8ulLooQhgmm_ndS?9yt9 zG*W}|IPT^bIg(Kk&)~qa@lS7`3h8oqgc$NswP!$>ZH;^F{(9XT<7LOg?|Mw>L$?q^ zr@!vNi+y7(Y&pOAkAaUk(B^TT1<%(A5oyr+uXyk2E;Xr+wyA;Wt(hXefApH+(;rTp z7HZzSg?%X2b+&K|+5&br)Eb6MmK@9(s6ccx?OLE(wqmiJaX(YSD^sK2?+rtXyg-IK zk|cJ5AM+!NN8ypCk+|X(I#~u})qEWyT4Kj1xlDpZjCwcZ2y?-~{f4W5BQ1 zd;>c2#+tiMEl@CWYa{`F)eU6^(KS))S@=|DW!Fls0(;gPk}pdfL{Nk;nkP%NWuQW9 zb;2k;hxV=vYiH~@nA+e`3Ii9ZI>iJ&gs0`5^pLgzYh3zOqY*iMlS-NT6&iw~(V z1i#oC&pUSdM2in<&C=ZNidjy4y6TY1NiHQ~=;y(I9fn+^9aaQjLkDXT(v&weLp^sY z-g3m3g?v+r<&dlJSu~sEYdklGNEA`aQ$tx1vph<0oiUwhVRM?{Hk#qME2Un9eVD4d zG+gjYoHiVjxzv?Ge5HgzKCtjtnBzp(9iGOHHi);-$}HzcxTi!5=l<`SZzI(-LzD-L z@8%a|;-Ye8#%Zh;h*i~Eg6KajOW&|v)H~J5=ApY0nw@p3&%F&wLU^ER{oA+23pDz=l@{ zuW393zW%moBJZtlAV@o=Z_3R_AFn4oap=TuKmt0kV=u%?kqM^TVK$wY{A!)Fy09wR zPutaof@_(sT-TUg?Q)#Wnh>GJ;w(I}Mu{S(vQ_d5T$X-jSaKKFFcg2p6U)4}7+7d_ zeZ#koX^;o`g2~61)9c~Iy7NVI*CL^9J?w7PrTxX%8>IRVkdQ9p%YVDiuTmY-{|>o9 zwG1^(ydJ*xD%(V7)@E~7N~w4N%WPx4Uf*l+O#M;vwy@zi0Su{T<=w~)2$7(K58|q8 z8kjy!4lomEGOd%QRr%A{q&$UvufmAT!9Kc`KS%m&1=%+3BJrmYuYRe1a05WsQ z@xo_;)RIA_trAe3O8XD8!99>?Nh+VWegMB z#&Oni^zzC`#2Ulb5!UQibduf76D}foB;v5KMl%%djmA!iPqf2G$&bZ4tNL zC3T&>JisUuqi0|?ZB1DGz~}!SH12@aJT4A7EvX$pe<6m%Qfh-1M2B5jo)H5l-sLKp z3SY;iEmGIKY$1b2%NFjJ?4feO{cp$_yn(HV%}4P@sW4QJ7FqA%dYwSVb&cwmrGPwyf7m7cP`$lDECi8pif5L-P|jE6cDUt31GM@C*7 zEEIZTIec2UdFFBk(?)#}!}BT}^Pi5n{@#zv0Rn;^HfbbGDe?I-Qj?XvZ_AJ$f8 z{IoT%@$4oTB*fzMt=j@%=hW1tRIwx{z1&}43UE(1xJnG=lj@Z-NRF6x6)#_xelDxS z%ZOvmLZKFH(pm&8x`JVuoL*insU^zmX_F}gXNKnA0$mts-Z{N1Y9q6$CRRHz5nU&J ziQzs(orXiRN*pWj5+n-DU-z8f#QFbfWTq(%y_x}VuK0;ToB#W08TDmHs5*U>xTd@< zUNz;(?M}A|DbKBx_y)YojR4C;XiAcQY8nbv9IqRVq-kebrC^_TOcF#Vr*sRX8 z8d+US@b4Y%5PiK`)N( znJKhO-`NAL>=U_3cfg0}u6S5y#-Ba35vzJ3VIC@92BWq7i8SN6E7Wb6A6VQ*WZxg@ zDxz69kf6}HC$ZG2>o9RRcn@9-fbB8-3MZs*y zJN0dDT5SBFrB0P&Z?}=UDOaAO$J!-ZGFv^_L;O_+q}cIRSIaXOxLWOBNBK!gHd};! zSvy>04YKvm=LS01IJ*xAUHrEC*Nwd}q;}qUvl5IX>$D+>^B9h( zvf@Pv--Xube&~owy6f ze2s`<#jUj~-cBK}qGI^+Su75@3LyqMT_Zlhj$%`eD7~|``mfHuwZ^2Wt2zC{)~hYx zWvutNQcyuA4l2$du8_6Q0NFwa3QR6$pUIp>^Q`Rs4YAA1#BHQOrv)0@27qYqe%nEi zk)f6PNKlxTXWRS1;!h8T0@3H|WZc#oH(9>ab=!C(Y@lM1zfmsGuCz-MEJ3c@? zPi4%;JVdG>>@GZ6(!?+7VvFHWUi=H@6AW*6H@eqN*?)l%m7ezW9gOS|IPxOhH%F5Y zj)EI3b59Eyal%C@o=OBc8=nL_oolVZfEgPBm9QOyKxGser4|Ov_o*p5<+dg$6ToB6 zUHz0FL5G}RkF%?^zIpAO;Bm$2l(Laha-9czy*}MZ1{v9P}N!+CJr`)2d zX=r{0S%W6UM@HB(%A>7KT0klLeP_eJBl4B#0CPqbej0KRz*YkfMPREfwZ1WAAkund zxAn+W<3L0-rN;`yZH>$)K-R`A!honAWMAYNOwKIN+H{&CYt7}s^mVbSv`MKVrkVeK zqT6`8GxPa){`h-n&oNF3KuOKlH)&B=~{A-3^BDCV3CF^?iM{ViYtJXEOKbXfmt=j>ambTE%zPNRp!8w2#ROQv z@wZ`8$;ZNn-;K~LLdV@|9l{{FGcCf?K~1 z7;vucvHb5kd$9b{b&HCC+cnRMW$J1&fS>!}U7d#&LrX!PmP>?6PpVyI47otIhOAf1 z@$waEs}xwu~X@)imj5o`_-YM3_HR2|2UFETicma~p9SLW1Q?5ld{Gf@5 z!nXgT1yIs<#RVx->AA33o5_E}lEX`=l3HD)RmX>ffXj0&&wyAo31L7uU?R0J3lZ5V z4b6 zk>BtA$IVzdc4+xO7gaj9uv^x-$=ay8vNGTSD)VQL8J@u-mg*5}HI8l79bwGh zU)Jv?8eBo}MjmCOEFFF=Q+0aJ<8m|`gLL$%IEKt^EzRPRs~xr!b=8yxcOs=_y&ChiqqCf%xZQ_}eQB2--=hA z9Yi+lGHvX0Z1F-t%@(&9+6$Z0%4sD+ZpLn5<<+!&=)9o?U!!Grw<^%RT$pz$W-3;i ztckozT+NEwe>T}cty(K-6Te2&$KugUwLJ(AHb+yHfRJRF&5|6xgzbOPbWVYJbkQ14 zlO}0wtBq~jNn_i#ji!xl+qRv?X>8lJc_#lk=O)*gZ}#lHX3g`gSBulFhAry2y?>H; zu}OgdaXOzIxu0m#2-iA}f|j;m`npVhGX7ngIl*)FmdAf>@;b#4rR%}7%N5`mUwipp zdvCHnyu7aGs(#%amsP#z@jd4W1;M|aPQ0J~OTVj$@|F@VE%msL%ktvn+)zC>&Wh2> z+Yu$$+ZC8Y@Tft=uri_D6m#iwLXp+XOf_LU6FtZ=h=#hJ-pLs&952J#|1&wPZxQ4Y z=Ye|O+6@P7VQ#|JMwZUY{<}5iuFUu>d$h7@#Hypck@amiSD^0u`)Eb1O8FpWmTjeT zXk>15glm@@p;>83`h=Z)+x+wK@sw@LtR?Wlv3`lgUxRt%eG;SigWt-waz zo)0#%*9FWKAB+h@d8u)MD_*Fnl%bANefCa6U6O%MpaAx`#=YMRICxzPhFpe)82OZz zJZoJ0g0o$_IHiWDk=TO@PSwQo|D<~kF6@Vxnbs~kg}Hz~5J~?;&O|?)Rz{Sr2zgfO zwS~ej{I|#?D>53XB(H2SUpK>(=cl$^zHJ}i_`bRtas)uP=rOtE?Gto>SVYEi^wV|S z{orTj=iNIU{B=6Gepl(b=5;gnxu`R*1>bXO>{ZZZGvX3s&DdD->M9u9}|(QO(f=F zRRi`!m8xgNVxpZ&cLuHB?66N@=A)F!I}FpitK>T+;q=n$w;eFWG)*14hxWGQxe=4i60K3(h|^*vH^%L9f*)BHgMg67UxrlQuP z5Z|qk&-;PTd;0;;#LFvy?Y;nzvcpwBM%Ji00{7+LLB97ZNPM@=#ub}hvX5)Jk84$* zJ5@UGBgu{H#3n7LDG{=b4@mfQw9YBOL8|6YiXiOLgc1rfNTtoVqhm2YNh52Pw%R!OL39Ve0#<-D|aA1pq zP(hM3c1ibHEqed^3q6I>-zr8wKm8xdb-zJuf>bseDd|A`k`Ja6*3b(BM6E|;!Yq(Z zT}Cd`)Ryx&hNx-}_Tx*=GCN`}E1heDev#bnfpD)zw3N_9+RPvz@gNBptb>p3$py_p zQj>00vbzcf#{JtZpz}6=d;&DO`_GFmEvw{Asrxiw0I|>;K-S&f06^Q3@4<27rDMZ$ z5YM&!Sh>pMfNSFkV0;TFE<6O?zJ~x~KS1yqU}T_~-taPCSarXR*E#)hKqlts9)>bT zZAH4qf`t#I$jwD~p6Qd>SZVknqsC;tKu0-@wWu_QW8_?8Cib)~z=Ufq^#Mgk5(tVn zgXY*Q{C76$E=XlS!WC(9KEoNLBgqLP3=b%RuBWd;o#48^FtdgcWVo`m?Z9VSOK+8t z7tZP^UW9m-kz6G7`W1%pDzV&{Uw4-BK!M*7np#MC2qW0{Lo%Q}}%59GJg zWN{`ctS6Z6fnM_Ozlvo1(J9XwtteOSodTPkzT35(WY24C$OxK#Xoxi>-nrrZlS(zw zQ{L&m5^p?`Mj%XQ3k%JT-RIs`sd+|HXc`mam};0abxrFx9x)NF{z%0Thn z*FL)XXKddw$i4#4(-x=#tZPa|EgBR7HH;w+qu*ngno zvS%X8C3|~tbX9vI9!uM`*Wz)KrFtmUJS)f}i{blajbay;%g3V8;s%2`IWyemJL)EI zjGVh`HqErssJMpCM@aE#B6b*Tv`>7oP<(=MhcSPrm;DiidbA3zxWh!nZ0))#_-CiE zs$fq%u2MgAp0w09Z4K{BogRkqCFBgVPy`7(qiRCnkR~@z*xcRx8jLQ-bS4D$YBCqp zRcK+Rczy%<^pXRZIf47*Ket}xA0-yBrfNu*;aY~z%`6Xih}iAJ*dfr; z8UiJ4(?Tt|R=CI#83C?|BGiQ9%bgUzHTE>I1*NNHaz?{8pHf?P8Ap?%YX9$Ih-trG zq?xtXnN@b%Axny13n*X>$6_K+&!jVbe;d)pgNDFZJ+zdc#$%%fxq&??7JQ?$ju-GOM~d{Izt7c((d9LMcv#AJU(e?CRfAb!Q|gyj|q$Z zkkr)Smi3JHC{~Q4*G`uPB=%}&5_D?~zB>BB+pN~M(xLD~ff58~APb4Q$#h#O;W}pY zQaXJR{{O;|7i)8awJz8NG_)-S?(Bak8Y;iEUC)wKWJo`5Lh?N_@!c?C=z3k@xvpM) z8ri!O9;<+8z6_X?vhTaHJ$1Z*L=rkwmw8tncX6-o3&7!EG$2Pd-{7e&P#i;_Qx6$X zIw+f1b=BaN!1jsgiZD(s;Aja+FNJ3OZG>bR4k7%)mbW0}zRJe@i2deFgyN{;{Q5OL z7qsi}$BJx?fS8H2{}5GbX5}>7{+l%wII;+_-SZdb68XsAfvI)Jr8cB(+CtT2Zu1@i z4DFp)_07|J@)H^?U&e=R6;al6xlX634B|0)=5!S08>w|;&CIPBR~3SS_61w7{>>kl z9GyLMTzCUjZrJBBT4=69_lwnQ-jLvBk$b`xP<Dez%#6q zzp*7L+wgUDs{eN2wT+nI6WaNX+H)DoNhM=-o>VLaTm04BUSVm=nE4vHKIJgL(3Bh& z$@s*m|J2Q1a6j8Ejr`{*%ray+ePou}8Xwna74v1n&p(StR{w~*tJBKjGpfX`Mkj~L zWJs877Ku663K)=a=KDZ z+e1}Tq+U;rhYhvV!OZ~s{FO-p{lS;rId;2v`#2%iWS4(^&HIpj)c^c6 z?UW}UmeU{PpLw2^44PSC&Qem`N?%!0vT{C`=4ZBNci(qw%|2l>LpiT=^&Ac9nFN*` z(`2b?qbUqOVcMlA`O9E`^E6p02=xSbfl611OEKZ9sT9Fu*%h9c5rGXmIi{Bj-M2W} zG+x^)r&eqMd#t+ui7lA%q;ycA>0dBXk2CLW^Mr%3XW1+8_xGVUkCE)M5t*or0<6i$o2W!G@3r6?RpNxBp;Nyyb?|CYU_e6cdW1(%``I?%XaDx{u zBApwUyQWqnw34MRutN<^<1=9m%{0H0j>0h4L%kEUj{9}K4;8AcKt5rG^vly#u0a^1 z<1)$Cl+LIXi-jbavt~R_StOzyo5FGIYCR*?eOx7fpbINS^h2cXA?X;jV>OC`#tSB- zKnE|kr_zcKXKzl8=cFYEtTLs%gxaFhi>MYCi0zW6wbQAb)sP|+;m~560e;yS zjmx3<@p?dytd@E+r9&t$W1apo+CwKh)fMoXCo0@|S7Ezm*9$iVChi|~TCV$Xr|WZH zm*ov;T)!^;2wn#OPxI82?*-xG65-Pc`|t8ufTDS`TyMvp2`a;FQp{OTpcFlbh#~I# z9|79|Pd6J(Haf1<3{fBNW+C)_MIYzdNDvQ&ggnm(?K2@%Pb!oEajFO2p%k!J?Xq>p>hA^N?GIl6!F^FZF zENg2}$ui$-%!@0u8;oZh)9Cq&&^?CGc(9Gm*apf@6Q$}53FA=6D=TX1sQMd34v4J3 zd%(*=fIB-?D?2)w6jW=l2zgKD+g)S5N(zEUR|b6*{@%oOYvAv!ZcWQ_y9_$v`$G-m zwJg7aOICLVqMn0O8!vpt39Y|XGP5;VHNKKI(AL*>g9;B$c1goEar@GMwyBL8uIth( zOhsvrI31dMwO8sT9AK>xGRxw!zx<%`lqL(X{ds7H*pZ=SV^}gy%|8I&551)ScT3Dl zzOou2=q#xHt9l~E0SKvCV`FidVN^7DnV|xHX*x|Y4R_R;FtBW3n1l<-oDVRh)4y}5 zx#6#1(HR(z@~&f;)he5IYl$Y&=QOzx=|Y$>on-kpCj}B!g}H*Yy?Zn!4Q%lfNYGu7CLa{P)lW6!ZQw@c6xl}@7&tTZ*8D}&E`d70ixmObRG52mi1xzolCpmU zjSbaiLx+@=4+nnr;JMc28gjZ3SX5zH!x)y#Rw7M+4?5l9#*UXrg)ZH3&BbgM%6wZ6 zkNcjm{?52kVL@Tq=3LW8q~J{HWI6BuCdOoM@IlhuG>q))f$};GN9A^rYX8JFCQS?P zWLb#As;PUR1VB;XRW)&xNLM1X)e9_*G;mDHF;B?7i7JMQm}6mVu39qmWU;pJ(CLjX zlF&tiP%iJtZDyJp9$ZTSdB6-z2K~i3sGx))2_3~FPQf4LW(JyQpsB^&q1JPqwUJu} z1O}Bx#6PXJ4GkUPaOh`d)tO40?kdH3eT@D)V-{WMQN02oFH~ZaZiomKMkCP(Ydd*p zYBOSK{(gl;p-jH{zC8`nml}@Jwgh?tRiC(i%lbXjNd@B;$-cK=l8y3(Fm-N_=uWd+ zJ2!p7qp&BjE>aicVLFLAM;rB&j7Bv)x#=JfB1$WuLuIOe(jf8C(xFQE!1tL= zo!Ln6lqaAg2NIs3%@N-2t*seUGbd7QmTfMQODJhw!DX?#IDOwE2>Xq{QLCjZ=_wIDH12=Oja0;R zN3_EqT3wOLflI^qj!P`F7k@aJLBGpK>bFqMYb0II|Odb_l&i?pjf-g9ZUUT64Boj=ZcAUzEJawi5v4T1!wcO z`|Hx2V}vg>MsrDyW9va1JF zI$h{XJe2ByQ~y4Ja54n+G#5Z~L$uOP>S=x>3D7a-3(WX`SjZv#OJwMdQE8wkNgyJv zRZBB$To5s8)XWIyI3!|*PAIA$I&P(SwwMRLncNXjg$b>BShaf(fd1QS<)u`mGaxl1t^W-Yg|~r`9xO$8fZQYRcfvu2 zxc6;Fn1Th!+y&$W=^6$$z^2_4vPQwQ=f8fQAhLrg7FcIhX?MU|L$90c(OJ#A4EakfM3q` zuOoN2F>hLDkeB@{MUlbl>~PWhKTe)^@*it94Cbcb1?GN=IrMIP{=!9{pf$A^Bt}>6 zzHbM(TJyBlY%S<+;=FO-^B9P`-^dI6GNgxs;`~ zHH2KbVoe3y+YD;&C2PW)2;6tm`vG(n5q|mn8?);8sR6`HLrvFYem=ZP`r96GBdIdH zUFh1|_BJaC#VO%}%4ys_vqM+Wl|m40cr_t2=w1Fjfit!!a1v_6G&Q??fDn|BDxZj$ z@h8)W!Nd@aVn_|+tfgF7Fi^a0%k{R63~M!VrXIvZObBLSoTTo@21WA!7s2&20#+Uu znz!e)%A8*~H~xqvA*7Bb_io3np8XJ{BSx`dPxJn=scg)hN z#A+>*F(nd%K9eZoksGRg8o7OW@wYkD9{YK*WAg0z00;d(GV;XsBSp0Qy;I=kZ!fp?Gn`N8i2UFn#~+oAjNIg7CmT2 zM@|jWy7}B*l1@OPwm&muX22BlPEQvxBc%ij<*g?{5YZ#1p~V$?9eg@DJHuj3Y=A1` z%+CN}mtTkH4AZIwW2?gd)bOMtDYfLwVZ5(GM$RC#1sl$)ap`}rohDZn0kbVjS7M^j zY!xx-w_MCDjDJDcEHU~su-8UWo=LtO8G7wfic?!CNC)!X#ZtR*UK&?Et>t;Z`D<&* zwuy1iQQw;<BwFa(MA=#?V235|vX;pzv0{#`oVkt}LIoI%RM9VVLOC3WJbF5}vn%iG#f+S)aaf-aDypBoF{Uilkfh-yiW#}Q z)w@aSYuK%iET4;%OSxd0HWN~lMdCyL;ru6Z7P?sTirGNvA<~nmnZT6SkT;N^!H&bA znt~6@pny6InFA-LgF1g^wC-I+`LDGpkEBrAhaym}EL~cg&5a9X?>-pYt6iP$Z+bPI z8@qDiPxhP1^RdEf(?t3louHH4Y&w`5Y%)fk1*y=;slR3P&HapNkI}yb72w~%Va0=_9U>9 zV|AzJTp-v7$8yVfm$)rhpjz5sZ%Y5E!71@PIGCA96(eFlPgPOW58S+eUdPPjT>-+Y z_c1FHT5QSQbL~xL*~T+;+^#^x$FKNr&dp@$b3HpFaZ52Lsr?pti~-Ov?;(@^ehq7! zi%+`7v-hWZns1q{%hmaEdW_5vAAH|tz-p3eR98uG8a(tD_J!HraUM2Gk;8h6Vgvx$ zxs1SHd4_?+SUdy_SYphL9!qS z{EMtyh8^eC=K3=4hj1J4GfOSj;0lalv#|y8F&bWB4fT#Oe&;$T+JEsIKCacd$$nLOiF+UTs^YW9$_d-cY2ktObQS`?s&}`VsM>vp%$g?;n zf8oteG)l$yH%j>3`>aT649O(SfVG{QSlezMB1#JC!P1};awU(+lis{#H_&+PVW~xj z(L-%USu}l%O0Ff9oSd#b%*@0`PA(Dp6O=Who>+K!+zLB)F@sr3X}Z$9xbu%~TzYG@ zCZ&Ta9RDDDKeP^}!R+~Jd)05xicu|1Ulz?XzMgxrB-}V)a5qq`_^O)aA>?RdLVz-u zPCd<=8hDI(WU^goYJ_I=3Fzd8;*O?SP}cQY>kLnIWHjV3cgBgi_l-`?L>!f8T!?e< zD2&^3FrYK1+$p5|Oz|U{C*8R;Kveq$+b{-VNV9}O_9sR-j8gFq(m|6K&Jw16wJ+51 zI-~p1cDZBcpVuZ6YAS=q%9~Kg`j?zc zwg85@VUA(M=4G8E6BRZ_9v<``!0`i6I5_>U=oB06sZz}RF=c%M68r+NMs(}!VO>_E z8J>zN4+^|<<5}&I#JW1;;cy^St(*RnmgQkg|vDG^!ctTMz%?{X{g<61lXb6C>(w!2mrqvJqgd3l)uVnW@M`TX{}(YGgPtUy*sE6atgIBLz02ttj-WQ@ z^obbhc&oN;u{RP$z1b;7&m}d7lXsB+(6tv%9Qyco#^ysEumI#tJf>XG{TI$hdcL>K%gt ztdLvtg_p^tQx)gDI9n(F_zDW1i#7rcatV;P?>NuXn6z&mZXZa^_{CYqwqN#|AFB8~?8DLyady+VS-mq$ZX7Z4YghdAQvH8L}squXSg~-0#jTHn5zNm%I`j}U|n}X#65{Bd7oaW*RK*Xps{x;4iPpxGo zFgNbP)uHKkaCC&z4ABx+u<*yk2HPatmDGM*mTqDK7fph!N3EK{lVNd-g?tsymmYQqj-g*LcF7=v9f&-Hdm8;uaA-;R{x8qk4 zT7dP8acJaWSw>ln>r$}csI0$@{`XJZJx)W>%N;=1rngs#`Vyk7MlX+vH+cYH(z*W zTtxAzT(PPh@sljT#jz$-SFBaj9Y3ZeVnO2r~t_V#{QRK!yskx=A+#3-~u*ykOn+mRH3=^*6 zS10Xch{~P$O3%OX^{=;&Y2jhRLryotk0#w%DbjJ9sUbUbiCLGl=0xRlX?QB*{vxX} z34Us#zg6^fM0F5ugNCu&ZIP41Q}3O&`bE&pJ1g0(KTDi8-k( z*=X5yvrcwEO^t_cSw&qcRCldWc9)$U;@GssQKrwpn36J=T)c==r_L=icL8?jXn4+g zy;d2)t~k51TlG8Kze6BXX6RXCxDFba#M;*EkMVKfvME8h;4V-x0*`Ae3b z^jSRWQ7F>tMCcl)cY=JYT>wa8fI?M-HJrX6J-hMk8J`68Cl9=%mP45S*q2raIveNB z{<4VMg7)$U3h|jU3TStAc!~f`J-9uq1q~4+f!`!`;5eNt%&@TieWZeab*!vvlILw6 z^$xtzKFVNgx&kABtKnxiGfej!-#cYH>aTJQQ8o+Vw`FBbaEjg#oL7_n=ut z5epnHWL2?O!pbvpF*2;uazeEEboxEoE!F0U5# z6Y8d`1vvC1Ecg;2tEurCrJ4@9wT>L;3(@ZDEiYNRb+tS}Bn7OuIuW?t;RWMZThQgmXO0U^Gzr8nQub zW&PE626;I$m*z41N3IiFaVJBVXZmsXPe-rFVW#-7sdvlIUoj{MpZCB0AK0G=ihFTE zn5ejayd0ld&P20xeB0-8`~mPS$v?7X52(X8o|MhP(xdnXeqh?0GG;a0G^mc7o_RHD zh7>Q)yYER+MdJ<>H3YO^ZJ``R6VeDS`^4*pvfzqfj8v|wHm5gzfDv_bYAaJS%v?x= z!E4NzErV5jSnp+Jp^gik|Cr4<_KHG$Wv$s9`W%Z9+{*BUuFjXr^=Kk2s&OLXBf zf!KEahZv#I--5BTA>p|dBL*q2IX1M+E)b$|TVN4Ju(aO~KP}_j&qqxxL`|3u0*%7C zIQOF2NcqUwec5>(Bpg@&BLthgH&d_i$7)70Y}@>2x$>XOB@fmls__P~0!MSFeRy;0 zaV^Vn#PuKTo4Q$VMNrOv@mgoqQ|)w!&cxW!o8P{%a9*{WbJq#J(DbsWzpMBSDvR=CGX1Fs%=np)**(-Cj##laeS0={pCMW$eR$*5Am8yu<3m#CJn8-AS~m$V({RdI@1m zG1(AIuw{uTQ;n>Q`70&$f^-h{p7n9l`{LFA@!<33vlRq%CRgcCZYBB(i4nL09NI4Q zI;mTFaH$DHr~TnuGh`SWij@Rq$G%LOLmYx(QZN%lYVZ6O0eRn}#dTIZJw+$1y&qN( z-mgkI!%e!5c0#9OhGsc%pCD8<#~H}1lf*(vQ?foj?fAJs-#;I#!z*hjIe^Kq zwwNYY1RLs%(~SC8Ef!&`!vT!WvB!J>456QC^#Kd`3W=a?nMWtbCVv{6WYcL zffQd6y+DD>K^!(uQ|Z@+KgmsE#&J#3Hil(w40wob6HIDDsxY1Q?Sij}5zReT4dSxu zfuanRzrdD$YJ`@Vc9R08F+&fMpMA{ez`9CQjl4Y=gEw2xz{f zVNWrlbt4O9>~}RY9J)_ohpR>(^G9?=)aEu|yI?WUvefqUgMN7y&mkIvCc87@gmY#t zr|`3F3HvtB<8_$d+pfTYKc9S~b?y{v8sNSpRV%!=&JZedrN7YwpY5XL>(%$4ajAwB zIwY%vBt%27EtE4aQ$!XR;`h4BMA1wTUCazsK{<;9!Qv99GrO%Z+drjXWksz|kzCF9 zvg+lc^;5K;Quo_F1?cR_G}=GD5*MTsG*i}6Dk+Vntdu(8yN2Y7WM@YdbK_LiTt==q zCzrUx2`4=`b|0X#;1w+M^>1iMU~4CAHFJxBf|CiA1vp7H21U{XaEK6; ztcjVTk6WtZ#{e-vh?{g7Hd3Z-#z7y4F@aFUaKiiaastENNrF$67zpSIMQ(2A<*iz1 zaD!yad*4~B7_2rt+kO{!2^_3>Vn!>FrL%HhZsz^ht3xHi#cI|gpk-SgC3KjihaRGr z#biW1QiCwK!L3K%Xv?L@E)a}up}FcOhc_9BXi2-1vr_Ck1rCA8pl>yGbk8R=>+$pgY2cT@Wp~6yW`^tDhrMQCZ)MO2a`>vrQDu`-(Nmj#yz3y0X!o%`#ubaRL|so6s9AZ(u#(iA-g02}`|50J zg@xvkKKrv&n{4=h;U;qnEwJtS$m$GrzFOi1;SdL0iCo!Em~eHty9abjBp zBWID&s3^1+46!M~{!xgFciSJf7cYj?6qSw>dY)qtxWTpGiQB5A#SQB1@dfwQ-B#Q@ z@V^HkW>&wwCf69x$7GPl*zf9=SEG8pq_&g8+QV|&y-FsA_?o!kjKl~?{5@Rr4DsAK zb^NPAJj%%sdEtDDX(h%WjCnuU&L=acs;jEJ(K32IJ}$LTgqC`AR9RVRb6n;)?kaOv zTH96@et=_q=W`xmls1kZXHEsADM+Hu5-RJYph9b`30 z-**`7=H!;ZM^T(hKa8;d+lqgwm;Q&RBR{Q9a!uy%et9fgsHo~(3UUp%gm;nC_@Z+P zW&YqXn_WHqAlP7d)*qBokkhZu+>;$T#25GX36bD)ETvUMWMwcaT=g_ss`D_jR}$Z< z@Eyo#CI;xHym9Jl9F?nH*K0uK-*%-C+V<1ab2DdraMGn>?Fj96hbT^7>6U@qC+nVD zw5A`$Q|?B?WyGvk?kg(6W4fY$Flk9j<;m~EYfhA@?`UtOPZ8%fnK=PdLz(pKu%_2; zE7>b#7_N2aD=%z~0ydI*dP#z{;vuJKpEm@d2@y@Z7Lp-p&vKmJ+Q73yU3#i>R;c5e zqPCWG#K>3Lv8T#e#B}u-JKva48?tm*DJHyT;)+TiG@|3zzJF+E;V3qmUp7o`9WtRC zSQ5c~^VNUSZJShb5NQyB!_*wf%(ZD2G~^Ob5A}fXt~X>5miSPR|oCs|&Xh)R`DN!&E++LzXF@;7 z@_A=Y;(j@;`{db7L017JnBCOacyHbFqT_m)YJ&5m+-dh>9BHdK}BNZ-MyH6+%_&!-zI%hsx6Aw*mw zq8O0WPRcG%?F5|PO}7>32BQa4jLGL=6c9rR?E1!RN@3iDpaL`k{-`vV3UiOW&z`Ct>p z{=&)vTy3qaEr-NozTBCoSY};gBrjGid*=)BjN`O%ShFsm7wV>gM2y$Z_)! z&A^c{t<=~tfBn`L0)JOG6{UN_&&mW7Is|a`d3;i`{!!f5!NKvyPe57?rALnt0*?~_ z;pqT#@El#<&0vPt_bL#&0}xxAaskY0U*kO-@(`V5Yop z^9VYC3E?(fZ}+lZ+bAbfQz%iw{%3)e_V8j9gyaR%{?-vbEme){#@HHBU zZ9=U|*bh9o@F>Zm1iQNYVFy`u68rCn33KtSZmssbbJI#tP?CAwK3p3QbhAr}5wICM zlx<%)ou2Xp z5@j|XrvZJb(zW9R7)#H7RzD+b#EqZjeZN$czHLc4$N$=m@T+>^r>9h0+KI^ zgm+sGGFLiz6im-=XJj#AK6kUlwyV_%9goupTrP!YVCHKf6k~3Q5}sx_`zSB$19td6 z24NZYii-cgfM#>WUt9j=u-=I^6>SwMYsD|^>@yoIOzj0p3a1O<=XZ>_7?H07M&CmB zdZzy7H;g`LKViOMat4eD@2cf_pboHp@eBL9h2~f|=C+B>k0)^)T${Z}2VFW#Zyq#N z7y%{Abyg1qG+A7%cK~qkAT5xIfXC&c<$X5?JmW*aHC=y3C45SBcl9YL!KF+dc8Wk^ z@5p34X>sys%#Q<+D6tzDcL(#Gw*{!Um~3sPMDMPa?YFMs++eZtLV@F zmhkgLcxcENISt0uvS27$)tZ-2{eFINoaZqPz%uO&+3 zz(!An`cs(8LXz7+)JQlEL^aU)JdN18k7zz_rkG~B&q%XXl$Uz}fj!*ncw7|Xl~b(x z4ygGQkSR!GE`P5kE56c^_hsQuTY|nSCD7PV%sUsR3QcqeWLo-%#8FK$#29p9(js^? zp;D+dyBGz8k1SWAUEKd})}s&{$c@ojVp@_e-B{TUUm2BrJD^R-JuwJ{zTsJfiSS#~ zsodY+&F6RV7yYncq_WAhkZMFD)LFC9h)-$`_97Rdea zlTuZeC?PRYlrqBZFCoFuP%e6hdQKwcG)nMNA{fGomUQeiwdyX^-z^yNL;)o9bL`u5 zto!`5W;?h;9l8#_WSYvFE+Xck59P)Ys~DTgVvsLI*a4FB_7w+ZS4~z0`Pn?>Zp;!XB+kR?H*R~aiv;KDOy5WA1v7W_Du?$Hq zP-+xaZen^+`w1x{T8kNh8&npXlBkFPinad(^dx$157t-1vfmXFNJqL%3om}Cblj}f zw5Vd3obMi!N_3RQIdmy&9FjsIsRN-Tslo1wlJzH5xs-Smsjn&1uOVHCykdO#XeB21 zeg|~ibp?u!n!74h+B!5h&T%`lin3!jUcl36@x<`I3c~4WdGM$16@)MjARmEm3`irV3;BkjTlQZ|%;h zL9)LNu5IC(uf$tP7ul_pk1p{UOAj7R&u}Sr)Bjvr-Y$#135ax2(Y>?^D_R)Fwf(J~ zgJ6m^vQdu0)gkwZ6*cVG&FswaEQFB)F%Fd7+vOo=iTf5m%QV4leSieC%Rsix1wgs{ zgsFesM!L4|d}d1A4Gj+uXSl9ECHXuhC22YQ>*?_gegy(1DudfEyf0n=10`l<~H!I=%?4pZ(T~FF$jIT)902j`rz_R`uOn zwF}bK0vl)$$5dvpQh|KvwxMF^oZoR^#i@+ccO?+3gSU{kOHCM{IIvT0dCmExsIve+ z76{+#&fs$G1StBa%OE}=ml?79K#py20i5};{Cu&qCy0Y64=7_A53S3Cn5 zaJ$1)Rj&=YFAZ02uVg;gWP>_pO2U!&zos}p!d!rzl!~F7)}NFKx;kTWTrAYi8!j(` zO#~ZU^UmYQKoZWAMDXhm)}j3UfDn1O3~)KNcVVkZ@t0BNC5qMsSe49p;h>qkMdc=N z0XOxG?>w|q^`TRL?SACChPFGsyK8&a3?jcPd!-DQq=vRmCS6T3w@tdrIA}AmEP2T{ zuC!8P_Fue?U;O9J;;df=c0HwaJpo{R8&E;;z3=d?clq!!tquYSt9g=)ta)BBkgdLxbK67ZJ znn~2_PDn@?B=F(pet+DF3NlB)01UhJ4o^S=__+JLDhR)BF`yy`-Wl8vw16!T2!`=_ z`%EYdg2(eXE-5pN+&_XQp0slzcPc}jqQ3K^)ci3#Wgjn zqfX)XqcSg*!1bs#Erha@yaoG59)>&Au}~$zn~FI)R!J+Qieg@veJdB= z{Envjw)$!=>@#fT%sf^e^jpzt>??JMg(aSx_Lfi6Vw%oc(X;*`A*@re71?%sxwy_M zGIeq_EAUXTsU;ssQ*HJ{R;1z?x0ww^_y00jOQ4?CbcTGgnjg3~fX0?x_M2uM4lBMO znb%E18;I3oLh6I6bKs6HC$AOw=;bN#=+KOH#uRh+4u|2O`SHpSbu#h)EI@-H!m)!t zRlV^Y^JIH@3!?C9k9fI@5@-Rr&7bCMwMu0K;lXv)g3?px->y9RYc&o|CK(?hZ86v1 zG!gPJn#v3dImeceLr`K1`Ph)qj(-X^2Dw}05Tx{j6#rlxY11F(23yyjxH&pvv`b|y zHo+BT;s+|c&l8RkDJDg;b??snAQana;#q(0&lO*3k!R^40pRVCd)P~SzszLwv%l3khde*a1Kd@Ok0vm zmGYZJf?lX9dMDr8eQkJXK5y)yZaFp2`$IjE1G}{p7AA{N_ETIC<$Xlx!!hH+Z8PG7 zj5|5Fnx+^@zZpqkM(W2G&lYr3To~vx$w6UXEVyqZP?r`SFfJ21wbz;3>jN%6JWy7PkaU3`sJtGZ!^SpabqGH?ex z1^?DyaeX=zLspG)%P%Bzbg%-F5NV53&kqqm6B=RDJ1`{J@~~6P?6JO?Di!30Ad)Y3 zFH}Mk3sjZnF=W)o3a;(5{!*abfdx`dSgza%Wlr@e24YgQG}iB~ScR1z0RJH1jZ0BFgS!rS6%2e@<-e@E}fXROqc+D5vk! zrfn5b3fSpo;)C<<(R1jWTtvn+PPvqa;;yPoWBbS$jI9fjwzxZjk>G+9(B`py$CnY- z(t+*FZDuV73mn(+iBT9n$l?>_)OUV4;;)u zMv}NrWi3Xw?;J^Jc>Zyw3>~(>tdmg2KKEN|6XipCr8uWn?av_nXJPR<@kGp(XLjyC z$7fC`Tmk2+VQ(I@I?V7j)6z?Dz|;4mgP7d-_9IoI>ZcSt_OS?)20aD+qutbrMIaw? zr4KVcyP|ADuVLBK_8dMhb3F!~w{I}yrKaw3XWk9K)QiNyJ*>Cs+$Z27>3gtesY6Ybnl|mQTuzXS_9;78Q zO_zs|uL!{2?r*-D2}0Mw@(_7aW}l{mhAAbK+3}5YR*TkLCxJ@(7YN67L&e8r@fAokJ3%($*O84dA>T9uC(k&(sCiICC0V*teT<(#!Kx_N(IqQdZkbkO2Fdgq??&!TS6fiE(>bfPm}yWFqG=_ z-&g#?5HF+|vEPw*XHR@uI8%ce#&Ue8K1$JoVR54kL_}umLak8QL368 zX8@9};#X@|ofWtz=l@LaDJaT?KxQimj+Bj!6}Ctv^@ZH-+Qi9;qa)PugZhW-|Mn04 zWm^^|^aNp5+G!3+bOv>0IzI;yQ=;1vNOJVbl1#e3lo@3tqiGDNy^1(vzys#MX9@{u zH3q=rc|uVNpJ3Zvc$k)bLtaHGL*)G0MmLs z^t1%iiPO^6?%!V6#4NN_3tMvRjCZvSfoF#hrs+OshJ`E%>{5<}437P)>7|p8lGHW_ z<_Dz~&1HF7npt=p#Xz1qjAF-x#@E``|d1r zzB&H`h)U; z>Z~`1vImYOGex%9P#KaL9Mt;$Z4Z2~pYg@1)<$aJzWJZy@GChgG6z8d$C_cC?sn)t zQ+fBYaYSNl3`Hu{ki}{@cN41S-%uGvHiAihnp`TycwocbICxG{b|kU9Ey&VZU%>>C z%@TEY&s7(CIbAwzHhda{7+~Sgjo2?Jl*brYja z0DO9yNF^&+YbHwiS5KZCsBsx`^{bqbKhGrfSsM`Vt>aP5H-I92aw}v>jYn zc3uzuBH=!^&a_05Z{Vx`l>tT#CLJ07JEW5%S^6!DwJFDuxPh}M&%*R)QSd#vHpUE( zG>lP<`@p52f*z--^-FDI^HJlM+U4lDdRn(iJ-K|6!JmttWdU01tD%)P!x~YQFOrzc zQs)=+)<@Pc&$0u}R)}=Cm+YSWT`P#o^AcL4J}MS!GPGUMb%+)#CM2aER+bz&Q{nTO zsa4!H;lq_YL~>mG^gV?hrRpBdykqc!y1&opw-cbr1Wz#7PNPOm@)4ysbx&-0W_cW% zjY^hneu^aYdKd;Dv^JsOfAx`m;%Yb!Ds@_BGW$4Pf|U>x4Cz?-kxlxF;>yq z*SU!$;gxT~Ory1-h(9|(wGTg(H_n8yiMu;c^9?RoiUw=k@TTeA#Ta?BUp@M^aRo9^ zGd>iGWt-cbzLi$xOnoY87LuY-;cwm^03*%*{W#COJizsDSkl7Q#0EzCFo=BX=3BzN%4#Bz%2&!?c^!T3D$Q4) zyYTE|e$RibyCuwj%J&Y3;ST-AWoj7oW_Cc@cgCZr7gpDwWH8E6<_FnJaN?H%Ux=|( zsfbPl9^Zjj3Q$*yJa1|-{ZUu_>|&9AkP+y1fHd;K))VHH0%^4cT|@? z!h|?+aoa*foB)>HcWWRB9UJFVTEd@YB>nrXB`>T6Gf~0|JjF{25Sb>s0*OesV$#T} z9CUGimi<0Gw49RWYyETAt&DsTdqLD)9eALkD(fyJ1x%B2i))2bC5<%`V3D5W3cNRg z`=}aq?D?EcsOlGMbS11H-9cB^_!*Eq4DQ)dcW;)_x9GPpeS8qcbwG;oefM!jFMRv%r0pc|_=Ue^cXvRYJa*;U(oB@kEXy z?3@ak-6xGG@YM0#G^;CnVM~B!L@;Z|DvUv<;3Sle@M%2FljCZW0`mG`KK;V+B*C#r zjh>rq1WL6kTE$)vtMQT#ol&`;eXUTitf)!B^_l}|$7uR=zO?(I&Q_8)`yGM-Q-JZ) zWOEBq7SzBcu5_47->{tg_R1s32fh?iP%`*ol|iJvszi9^n7M9RI9U|1y+(emd9Q@y zCEB+%EG$=NrEPU*+u|a2R=Te85s?#BIz+>xOAs_%Yc<)h)v}hnt)@665p%^-l0U*J zygW65bz3%sy#$;wr}{al)qoPc8MJeDU&swyrIOYHyfjXMwyy>H0Pd9dniN!IO%BWP zFl;uwyWxPO{o!C&>0?OceY`I*Bj%OSIxyaYCVN$&>xYQxH-G$7x!l%gKt{p{S8;e| zJDoj)epd^oSJ9=RRVDIv2$s9ZKBhK+E}$x9=`H6?`@I3cR^gW%?bHSbs^pML6{A+&NN zi~8czZ7c04h&Z=P3H+NU#y4Wk{vt}*^N1AQc1Hjejy!-3>2*;=*y?frs|=4?^8jEb zL;I?+Ac$)>QEfhQNLHBhK3il*oECl zw5SL8kVV|>eZ(Az(@13GDCn6lFGe)vFoOC%BK+L~c5U!?StEH(A;P-Zkh-f)f@BTv z_myTz8K+uU&iU?@YGLCXW)&m-mTxd z=`O=);Q~9ADx#r*ucA%N0~bZ3-&s|g)@4-@oi%_*6cU( z@a;Ua#Kl>zVOw#(YJ^p&o}Ltbv2N~j&PglH!hMKgyoS=uDjeM_ii~huC=y^uB6D#+3W=u|Qh6!=LgY0_^>S{OA z-=?biNI$r?xy4zD_^1n$qpgr_>;?RyH`46qG_ZO$^Dvtik5`cwVQRe~xoB>y^?UDP zzlQT_7GM)bSFnr3YG{@!fAL|WSLlsOq+&@9uVBc*<*70$uuszL%CZ z-zJyRFb|*ycaNEcNa89QdB4-9nol& z&y3^rGg43L7s8E=G0R7MB*r}#McT~6^HB#^&u8I>OVYFruJJ13cHYplRf(`uho@-uZ<~n3USq*b@l`XI zHZ0rG7P);!eb_fC)ag-Ps;-U0c%oY@99KO}T0*++L^@-~XuxdreH53Tggc8bLjqsH z#V(Q&Tk^?E8D0O z;6dVk@1TS=qiqr!4lzrwInTmBPuXqH=qS}cXG_OeQ<*unf*6bbsB023N1lr7c5s>{ zO-Ps^B9)(GSMG_oCC{sX5y;XPMRhR#*>^wY5xMiCo)vYu9yArp;@7aw-)fRghKGP5 zw`A>_(%XAI8_BzC{=IgLihr5ggunUAX;fsfEa^7YH&q$}kb;X@+Ko;>dUwik?Xpqv zRkm*K9wABg_(Eb(MqWj= zkSxKAhNLbYE~}`L4btCjlckX1gN6kmuB!4r+y``Qtyu`Um7ZFfU7?Pg@v*`AY}uWC zFdfurv!v|Y&0QaG2*KldvFEUbPfWLv&YN}nWe|UI%l_)=Yn`RROtHiCxD-D!Tq-8H zXjK0>>6)EWxeP5#Xsc8e{Lt|53}cioA&Ns@aeOl!!2HYjN&t$R)!b1cXE{jLudJgG_55u4~#)D`y3M2W8Hj%~|P`SljOk6duit!kVtuValI1reX zQpHld;(1qwo7j#To`qL$RH7?^_0l4lKs`L?(gff8Gv)jhGr{u0DILxcBdTaBLE6Z}(f7FbCV0Cx{=QtYGbU-WtW?O2TMXSuEc&=rLa_dhfp1>O>F8etg#G zfT+}#WYJX_b8p5OJ|XcayEcWn#wv7y%NP|MqF6`NoS8@-^Z3(WEU0Btvd zQClMKmG*lIW^K6W_ko*|JwR*wkxPTXqCXv3 zSy7VNrwo#<{7jRMP8Eqb(NJtO$?;|g4Sqe|p+=-VFviHC?31~NjK}oyk|3Lqc%fex z7T%&10Mo95!G#}q^(rx7Ezi0(ePdx05XHYnZ8?$hQxi>(qAWeYfrGUgLC@OM62@A3 z*1gfKc;09kMQLQi0kgc?&CQYj4D9aiCTt-1AZz-cS}& zFXK3tzG_BtF69IlC-3``NxcQH85@2hU>AQSYvNJI?}XAX#8AN}?b$uqb?Q8rjzif(&RAXryu}J)R z@}VrdiU#_gM%7J%`Q?CpUo;MUU_p%UE|}^3FxiAm{TQ-#2GJPL z3Fc`xk|$DbMJxyEpon1JO?!>qsUzFl6277Z1f0S@1c${Q_lGiq$RkG}q^%7`BCkaH z1!pBV<5+sOJSUr|AG)rjKc!zd_Q#p5GC*Fxtg>0XU00u87H{lhwmpn=Po?iq#+)!f zJySB0(^F`vGUr~@fnXq5H9zl#+EkA0t;0Gjr}F_O36@#xB*h!)odxQ!bpLOaM{#)^ z&+i@=XKM$-*utO+DQbz5f@r1Pyy*?U5OxN57ZxCWDXXwON0$*E?-celj?#B>8Y z5{PyzY*lYgw^?GjT|2b@5-vBAl)!uka8sgeeC%V-yKO$ z<+;;<10LCI3&+u21+Fc(P78CIl?TlZp`~(-Ok9a375Vb-F?q-ggYY0Z_p#M12^Y_3 zMFvq=t<%tQ=%TR}8rv)X_}f|K#zW@dq)x1$$dw!cdk480q@94ELwR~b7Y!I(k2<6q z7un6oMf4|#$iRx1r&DMYZBK#LjonZ$5`gJz!DocBOiG1AYvyzU+U+;LBw?ko*-x`x zcK78zgCP;}f74raeEOGeqXcL(Bpe+v0*H7JcRXfTDJEFg&aWUIh?N`PF~dvUnPfW} zUNB2mY%Xrh_v`3KP1J2_0x1A|H4MRSa+E5BcHp5}y3(6kN;P{@`c|5dIv|8;H$^z1weXuHZk2_6MtpM_N>HH%oz;U>4hQ-o`t_gQv|EE zwVXhMyOW+jUR7T01nn#>lif*GEJNMf!9iRA{46ON#7%gO1e69Mo;wg=fgXJihG&=K z`9MrBoXVz2rLKD-0AF^{nuCK6Llcyi?iA0pHKBXtzAxrvcBJ^@5~CW#r!YD;!#7Ks z>8e}ow4>1tzMIK{pTznZ-@!Nk+5&8(ta*sIu)pOu5MHYpX!~DU7K-NHfwEcYd5Ri= zv%M!+SbU>08nYz;$2j3HEj)8ny_7~_1@d}zxiB#Fq}05vbF(Z1L6&2=y_*f(Iz)`W zBX_=T78o>f%5=2(R3v7gD^YOC5SfDJAov8HDV->G;|SVIa}{P`hLss11r6UPlu8aw z)f2D?EMZBOoV1tsV!}5k@K{;yOm{IfdEsg*Y9bk+Cc_?<30U^UxEj27vnCuj?J$bL zococ(e_}2o^i&*vfwgS5$>$sZyVfq`uE4HBg2ye_DYNjl(d-20AirsEa$bfISfcSB zX`AK3w$4dOTVag^`Z+hqGVDJeOfiNB;w7wL2p8*McY3dj2{*M4l&@ki%kYTu_>KF0 z#(+Mwp6zNxHm4}vesPRcSe!FC1qGk7IW&1V2q?Q#haNgv0(i^|l`CmP^~>jSqAkb@ zRqENUYtpd(m}yQhuX|%=5ch+&GoIeoCF9 zFx7%6_(+8gL1Y~o@9iBUg8j>m0CI&HhlCjthq4tzNCaJBSm1-}*v*R6MSk=xs#BwT za^$^CH)H5(klhzq%H>~u!2Js)%RdG16;ucgVhS`$&+tE~XxHm9k?q90| z_@(0~f`VHU6Ll(zVRzeD0Idwhjv$vaStZ^=dx4mY?gKsJ7^QSYi)SQBY?xWDZb_rbt#4oARlCk6U$*oG9Gfd2nTW zLMyK{R{Dhhq^25~#1k3DqlL$lVwv<9!Fp_qSqMJ*`v7pTe4JIwhpFd1+xRi*7LFE;|IF{B_z zxVAE3{0Khq(3M!S{-3S~^BneO=lQN^Wsjo_$p9GwyftzpJ)=u79)n*}%gYS-HG-T+ z@dD+EcP({%{u^qB(wWST zFGh>g{V&+^>tosx8~)Ke4dP0)i>7y6&rOQa2vhVCgx3?lu-xh$u}d83__-dX#2aC< zHM(smFB~G`zhcMe!L$horsMu7z|o6g3?4;in7s&IoWQZSBK9+fBT6W;DL85(`iR!r z+g~=^$&#y79G233Txd-fE|Bg4GA62548wr-Nxo&1>nCkhSI0_yMl;(cb)Fu7C(Q5W zbS$-P$E!UnsgqbQmuvTs3P~B4tS8xe2IA?K{lld~@*{^RF6+Z=L$@Akb$*;&X8MCH zPPQ}==H`6r)vB5}-a5bjs|83Bq~1IA7H^E|E3}r-5@aWNF}5({DKE7oLBwdQClpWL zA=1`G3QhO3w{f~(@-M5>u119W(B19jXtdMmh9&$;IB=CB{;7F4@jw=miz=eI?G7PE zQF&y-Fjcxqy&eK;RltGN)xqyM?ONbiq0&i>7HykBoW&~S49%icR?<*BXzm;aVVb(^ z5>g%(nGZB7nuQNlP0x0Obcl?5GO9HITbo{w1UO;*SdAx&RMI;O7kmY#(w{b1RQMyP zciKH!+-L)wt)-kxh3hByZ6&=z&b`ah-&^33p;^hX(RaB8N7=BL!$%0!<%qDA4B(G; zlWVa`1XWD|F~)3Xi5B70w!&pOP5dVD=173Rh?b2g;C;%i8GTjA=`(KW*pD2uLv z&mffZ#A8KcO%gcij3QcBqTpq?+gz-?i-N-&!zYVZGKmeY%7y=RR%Es#Q&>dTAV$|3 zU@IWXiwmqSwe4R$qnx^@)E$7p)`KuN)$!m+v&p7-@CwH3Com!8WZh-JWTi*R@W$&4 znTifE&+xN2@N{rURut(Lovw!a#rid(p~ROpB5xo+iXrf4WxXv2i>AwSHsU~#$zW+m zz`pSfe@cTSXeeU|yO2Ve#))#^sXA%Ff*{qS2H#4q3l*X%?2QsAkHd6K*PYZcHFt=M zYa|q4!E<*r54D6Lr^-^rGmrowdG&Z&Y#ZO9$DTTMoZfk8BfvrcM-M4*aNX~7Ttky# zrdAJEU;rFuEnzin&>CEIu~Ro|DYRyq=F!g)?0oTB<-xLNh<8-C;uy?{P1juW<7k*R z{EUciM9kF>O786%!e!5x)iFf^BvYpF_2L$C#Kxxa`!)62J9i=4KFNt@PQ1R~qQ`Up zryL~flqrs$os3n3GTP9i2PHUkPGVXP#LyE}Q=Njg7Y7>r=R(xBp~i9zIw^QZeScJ= zB8PILP#v#8N}(H|N_=Xgz>(wX<(n>VAX2H!52EGRo$`t5NbY=7`j~j^Fs(iDT_D z8;qWw{t<+kq-q=aF6&x@6l07NO`Bcb#5^u0K+3-$w_Gc{E06@AxLol6@RR{}P=G}iI7nE7(~){$+PINn43M~IagLYuSn)upc>Ti6HNYm^%W?pur2l&5cii&DcPI}N z`*b0bqq#*;++IzSWu46_bT&6JD`Y?q&$(JooMkk3XA)jzbd@eaYz(@4HgSojU9I&a zaZRn1gsymjlpjY$Z$3NAHN#Vu#Kq0-3#L~`B*UFzx&|jX*Ex(NA`wfo>Coh`y{Aj; zlKfici_*QND9qrCTKxTTQLT7>b`XmN&Tw}RxevM6Mt3F>NNE56!KTc~Z#}fO<$n8k z-s%TQIsN}7HGm}9QRE=Qejc}j(aX)Qo|NYm&J9AI^~BY-=?q=a-+N8yRDvY0e}Vw+ zCq71k*z$L8u?5#jGb{MKd*ucDmU$S6GN}~N6HkRf0NS?dU?Qr#n2t};h~OBCeq2oy z6eyz1li|*uop~njn0*-RA~Lth6iyQ)9kAc6=sttiswKt*iZJdOGVP&AN(~o97Q5hx zyks!M?e?2SP*_ljWRU;Oe0m$_i3)>(A(EkFH`4T(0s1K^`^P%%_nuB2zDYLzowf&q zDc-({w9AD#>uAQt&fjR3<`N+CJ1$&XTl?p-46=L|KC5ZI+xd8Zt?xXo`j@t{4T_Ta zhq=&Zzx>mOf`AyI>p}EfCFz8(r|S7H?;tVk->*mf^?pm$N`srq-)7Rw&wpP7+4Eoj z?)F;%s3H#x^_}cG8N?+eeUZtS)G(=F{SFJjb>H$>N3`M>#m%|{61vQ7>&z~Q^JE6s z2+XYYC-ds=vM!9Yn2{rXg|9*R+Jb@yglFTWBM8rH_&L6X_3#sA5u3Qkv%Drix45bt zk$S5kFD5af;{J#RK*tm8FBb=yt2eqXPlXQ+Ndh`9T7UP6lihT# z^jsDbzaN7L74O%Jwr_jr`59%o|1`Au@8{Orpe+*wC3&zLLA=#yK0PXd-M|R0k8Zr-Q}0_$0VhF>ms%_ zBRY#5Ab)HECM*n;D$LdQGn08c!`U0lg19kJn9Tf!;upHluwB4Xe2rYaLia){{XEmZ zdnUT6WMhOL8Id7vTjS%@ejC%<^cFeqk zJel8TBZLNFh)y;{ z{=DK2IXu1}u8iW%&BYK%3deI(EG2+~A86%mCW)!mZV>71Hib;TNw~}Fp})6gzqS#2 zreLiTm(z%e-+5A!w^a^}KD;)e66!cI-4i|TLQiV?GHi&dB>_6KG)*IDnNMrQ(`}#T zeJQB@@m#yjL$bu)aseYgLPjJnjhddmwU0&Fe3Rs~2d|j+RHv{eUwTs22hv-04T{V2 zKsm_P`GRsovEOp9gxb~_XxzVx$qo>F#E4fAQSR=+#Rb5 zJsW~5CCF&sb=|g{@O4x9_d9p>!^P8{@ZV^SY5A%-t>Dx>q9D`odkVO(jPi68Y0R({ zxgfSz>Ctz^qTH0ZaN}}^y`TQ<1P^1vooPam;g_E~eZ;JSn-QrQRQ{Ixi35LGU3BRr zRCb2VdC5E{0{NIc_6bJI0g`8R)`qBBTzEowTZ;GQAA@Fn2P^P`J%!X#n~B>1Y3NkV zJ)GUihP3iXf4H@^JZ^nikl(>aRQt__4-Mfi+;2D67QEI^5=AkmaO+QB*AW(1aAF)Z zD<4P_4kTfJlI^d*SwL^R`|mbql!SlK1li5o?Tqrm=s$1zxDoRi0?_aK>lx&~9yR(; z8Xo8Tb-%Ja50vxKdj~@2PC*9j;L`%bUG)TkWB(`Tn)u@SZL0=jX5avRyv6J{!qI^K z=y%-RD2DG=~pYUx&Iyt<`AbZBkV?is) zN@M~4n5P<)eNBoFFSjm;hDdvs4e)g7`qK_b(H_q19lu~cqL#dk`JCr+!4>T2kgGkq zn0;ax!c4<%Wtj+!pDT@(nFX3DKg>3hZ#7Vs#g($}4u9|f6!n(gv|~k#I@9^VatJzP zS=iax|Mb&nX=w?4Tqk^v*T0QBzb`vqUoR-}Uw~3v*1Np_{*#X*FtwYE#1m>82i%i` zz#>qV(HndI^W;Bq{l42{-1mRi0p{P@m_wmuraz!Cci;A&um~>pizxQ>U%j~|(AHDSj;)F%%aUL4AYq+aC5xTQ)W7KiQ%!4eHhMeM4rE_06EFMoE*;uQpEQMS-X-6 zw5$nye)P-ug-1As34er{t)lGj3!3=Fn$OkpcD`f!&7IFgyn3@`y;0($saB5My(A=j zd)xo@6!WVc#2C`fd;_t0G-R+JgbSMqc}-iNW-?WCT%y$D*e~CBa#VHaWKc%G5e}_%-<9Hh&Jb*CUG6ZE?^Sd& zZYDO(aCuxWVG&y%q>4Tj6N)1#H->UJOVX>=*F{bDeYk5myl*nz5yD-+iXBEhqV3XX zJx|^kTnzOa!SG2sA{cLM#^6~=QXr25L}$Pz7%INvzEFn>wW7`@Iilr&kSJxr`^6-3 z>F#~uw_Oy;gMVol2NR#5gfxfWt&abixSsugrTbqvkMQTMFbeZrNhIjy-C6zHE1Jjv zOd~DNRnq1}V)Z0@kAF8Ir|%B61%IW2&mhlvf$p0R4x#_sSz{-pSiT6wPiP*z&v0G} z&CCQIO#=7Vx5M)2_s^0EM?1Fdz1THmm7o;O$5Bed#TSVQmRPYf3yU@|yx-KdHtu>j zEmm}GTN;6dD$usb#E5HEz4=MyOeYv0UFy^7+iV5rO&Z(XQ43FtEMe}c(o`NeBmpYN z7qGfxJl}xc*>jhAM!1CLcii=p83?RS3lS(>Uzj?Ni~b$Bpk%G@WtU*@fyNSEmm9ph z>(u#QZ$JTJ%v+!=wSVigm9GR^A%U64%gx_s_luB_|Any5S+@fAN&bLnzCfZvZerhG zWE5CTIoUq(6E!}bE8SM4IHorf4t1o5v&V7WflU+<>Ki&M19bu!662SA@@`GMJiS%r zy?+da$CSY}Bf%}X+^cfKtq)|mCh;J<_4iGC>?}-$=U{pGC*KBa_AQvpQ+6@UZ{LRb z{N@wCoaW5@C_KKGe*Ln*e)q$#ir$gHlE7q?ZNHOJPuHL6!Ni}AB9?m7zWD$k^t2O_ zZXEawV&NX!zP+}A!j*p2!2AMn*hX$+l-vKpnBFg(?US0@e!X85&mC7Aztb7(r&-po z_}|S*i+`3!zJXfRfV`uB|K#T8hWQQ19Qlvoq85H010`2oCd)J7B0_`6*YO|T&cKJy z>m|5vf&ia~`Ylu<1uRqjxu1hp*tpEqNmI*%%Hvrv>`9wPg?DGGi_UrR;uFqGsK}`6 zVes#%7eLB<}&c4A;n?g`5V+R$`O1%!=t5`FBaaf?!w?((#U3aMKzVUVjT2Dtwqk z!AK10eL_;a?Tb(KS^;u13X@%fFMG>ic>}(g%QR#k(4%va482%`S7{EK-KD%o#C08f zj`;(YsQ52rE!u~ZXTX+B{o22ybpj%pE~45RuqqW~Gl#AbZ2vMd@SVG_LHrqLm&E)_ zsrq+*3%cy|folD~9tV`Dfh%x#HGo1a;FHMw^=VO8wdiMgVc-OsN@4zK>Kj0-y8ytk5IT7NDIJC)qX-nRSF0 zoh5CG;J_~hhj>^pi1ne)^=A!TY{3|_#48qh+IqtK4zJR0+GAFir7GYH*sc>Qf=Tcbk#@RsmmZX6oMk;0}5IDdSP$; zdY$m?E9g`+0ugV2zkR-fxG1$8myhS8e``Vgm9pbsUfazCbN=kjzl8uTmG5?Mz>L7{ zWEi&5QyFNH#ED;KTOB!*CaOUDrSkLrv**fMkm~Jx;*;|~_)EsmSI7(!JjKkNIK)pn z);cvGDG?7dc*52^SeA7j*qIoA*IdRK!5D=v2^2dfv6od~XY4-d$@bu4EybE1ms@&&g4Ia0HNAD5ChfkGXVuORz|$WTF4tsS;J{ryTK0h5C!d<-zIE z?vuj98++DhU^8HsY6zMXSc2y$NOdMHW@3eXqsUs6oqbDDP1J0o#*UHKj-7wffgT3` z2R7B9UwF|7!1gt%6!~wpQh$YXmc3|;nuOigdSoLTUlA)C#jye|6~8k+qyz^{R$HaB z$u25$w(JVLKdN?i62{ePi;x!;i|FS9hohBO8Pr&kFpE%Gm~{oBl5}PU^R#xf+0m?} z1r1eP^ah{Ur}(q+Ql(wQcyNw@6p)e_G+4mTz)HVBMl@Y)s5)vS4O}j% z-?!lGjcMAka4g40MT>s$mBKkkWFOJRwLquTpy*!Y?Gcwk`x<-PaLnKUVFK%VJ?olN zNoUA`JbKE1420qkocQz`TGS^7l9>HMMt+%eI!XRhYKu>b%Q`rV ztbpU8IFG%7;>y%RC|drXA-uoQ-@f~hSxV2WM7z(%3r+a!C|~k4+x{VKl&fmc&iLhd z8i9chG0MDxFPqw<5%jU3I|*@Xtn3zL4VZWlGcvOXIX>E*us%;DGl@zM2Iw#IIQ0y? zy<`o`of=23QmQ^#`WdtnIACoy`bNzC(EvvEjsLI4o>BCOI)9O*&F^K(fc$3>bt3&ukjk4{pT{ScW*#%g~?Qf-M|{ zRbKyT)_0DW&r)v0!f_Fb(EFYG@O9eeA=cB`7hoqnhu#Q3f7~3o$R&M;s%Cgm?OfsKdscG}b~&zWn+Yl;B+cs9}384mX)Q`C-h zkH03=Oqj`if@(!RWLy|hjfAB(qC49=_dyVn-DaUE(4u)U$(-mBLLDc0NTDV{0pt3c+i;kc|n*n43`;)IpmfGpfanvNW=3QAROuc6<_IgeI+UCCTFp78vh$} z6TTn9qBTM~ZB8Goi(G(Ui52my^R@2jsVD;CbyyD1u2*@}NRNihBOh58!av;znFBgc zdc5jTm2NzAT&AOnzKJbLOhg=7W3pskYSFZE?#2j2<=}P2k-UbHDN5lA@pnfCM>*!8 z45D)1#sMn!Ir^}D2Wht=zgFarP=LwS{i=q;6w8cZ)PjKWy%>qK*_pb$hW|-`sx>W< zM8EfS=TS$Dpc+agvXy;>e!uv2eqTIqs@~GVj++Z%Lu=CtOjNDRRX~<>Uh1D9S2q*S zp|%j`Vme8uv{3ZeRB~p%HA7TciB%$tVsWx5BROa*O-53xz1OClhG;w(G#qioLP8s( z)fP;}o&{ z4km~6EII$u*AXJwosoW3-4HaV!s;4Ueqy8`@FrM8CHQdz`#TskS5v;CQ53@28uH89H#u2TA{GhO0Wo|Rm^S_J<9@@yPlonf?vPulmMKVMI;cEUj+ zTb^PmsztLjdPEpmH)*SRZkz1WJg4Yecx(|4Txu%#NK)iq6`&cScRzf_@g_geqhr~x zBea6GTppM>W^|V08&Y{izttDvQ$jH7ZiOI2bwLKj8;1GZ$jnIAB$&&Yc)yb{)kSBu zQi%~@aD3_Z+c4z{3x3@O8(V`RK*_xTy$ur>-1kB(%f5%L?S_l5ryZ38?LH~HkveYW ziFT|vJ8=2{kcJ$F*{IYVOnUBn1$VNwzBAYLn;{Wh_9sh~^^|nik*g^U%^!X_K^ZJP z86yVNW@{X-TfQ9qAqN?J2jxB{RS2f>E>7$U9OF`K=QBuM0)+SWi(scvTyh>T51>OR zN!?9RI>T;e-l=d!FkwB$C}NbA`uFl4*I8}22vMai6FA`NTaa&(3}B`0>iT+!YiNkl zL>Eyn#a+nsj0`kZ2ie(@n<_vxa;Jey#gKTLrPAR#2ugS+6c*xg>f@Gam&%Cm)*X|_ zlpe4+EEi(LSJ=i-z}qIKWH>EyEA3(UP-zI*YIM_43?%s}$t)P(FNJnyxD2njkR-pa zaU)dhj_xU-RE!Xonl>BIkQaw~LU1ET1T|AR_F64f^E$7+NFaHm;1y|w^x7^BG2mmO zQ|9-Coj@kt)jS>wI~nVw(-IETi1-TkehSPH>w#pzN7fU| z{`Zl7R#x3QVwMK32lP~83`jL)?&|8xCMl&j%TqU~FYg(jZrKKfK}8k*EPM%PPg`J$_RD@K*8zga@WH=hCL9&EA+zmqDmtw^P? z(I;mpO_yDz14{YhwvjJK@#q;4(qJyNeaKg(36X28x?{84;pydM6~ax<8cD~0Q{+Hi zS)_aCg0tj&3vyV7Oc62Zs8!yi-D6aENWY=L37c+}Ls@U~@+756OjFio)s17EjP-E| zD7v1d*!69ssYJnc;v>p{iEScLKJKOzLtkBw&#U}qIcB4TIXp)X@)>jGtS|gBpYQpj z+gG@lj%zFBP{YYT3%&c7A7EoP@&4n$*T%HNPpcrZ@}1DnqXUJdz*YKPW77LKr)1B4 zijoa0=sUEW1cXUmf>Mu8Mmg0JsjfQ21Qmi8*a7=xIhfMpE}C9K+gAu?h;6L zD@{H#ljZAi=e-@ChQ1>B_%fFQ>qEQFHb^;DuJ6EKOuFRBX9Z*=r>FZI#~P+>lK77` zotjFpXfScFt|}9O0Q*c+=Dr3_LfkFQ@!O4X@AOXd4p}_9yLgXdwWzt2Fme3g5YR&j z`Di7<2wvivHVn*yn;YcY+|*4z))KhVRD&1FC9OXQ>U6|tswpff-Og`STM+gbC_-lF z`fE)ZDUq>lbN|}Qml;H^t669FLvX<7AR6_td63-Oor)d}@j3K=TB+d2fQXb<2}Ze) zY;npKidEXhvAltsR3`sju)bzy%;Y>1+E>B^09jxR=p<>SG5(?|M#m2SIUbocR2?V) zM-59~Ui0`1hYJ#)x`w_;3jmQ;bhJdETU~l8S!O6yd%6}79DYrbGgu{UC*<$(ny13M zws>3CZjP?+^38-S^2ypN>~j&e{?HTd@<69x)y~fBV!r}dVU-0VrL$lx_zWl987qh<4A{BBO2`xnG2)d@^J8f^JtV@hsg+;yfYBc?Th+1b z)VtnG52ug)Z!$Hel_X}JQbsqQhdz&<4&49AL!R4vdl)=$r}E_slCZ3Vs0JxGwde0? z8aDU^jS_YZKKbSGFx3d60fdvVoOBr8Z$y9k>cU!g|Y;pSWoqN0Vk=vhWKnh;BR2-9Vl$W(RUDYEOk|(zF+s9FJl;05MXIC2B}mp zp;5T4dsBAE{to>oXXL0hJd7>tlT})x5`^krC2+AC$#H|5Es$ z6H6Vf9}nK3j|#)*6jp{RDzuHkx~o)8i+uzOr)FuhrSNs2hGCX&R?qleTK?1*;;(dK zQ?C`^#Tllm&*ayHonp^NIzD(Vqr-`ejaTo$u$SYqjo3>Fku*`G^S+$%S-M`)C^+zRv#xDf2wON-n+jq8YjAwz-|4J?YC9~W3PT>JX&4ybJ(w_0 z3ZF1%Lijpaj&6|DV3Whs;#TujTtUIuL_2+blPn2Y968qTyx50{`f7>qVE4F<^%8o? z^F^q^u_S@%JmZw)Ws!p;G`r2OQ{1kF3ECVgxy{9;P|vAU}5WEyDdf&S+}#aZ_tAF#brYYL%+)u(q=6ZG+9M$&Gypor;x*LuKO)~#i7G= z_NihMPQOk;03{tgI#=wM24ksMEWEaib6BldiF8M-HT4^+u${9}xO|dd^kL0I^Ma|q z4jE06+!@;-N>4@69GBNY7ZH~bfdH~9@tu6#A3x&5%lmCeiu;*lyOe)|3@m?#!mT+d zDrjX_LZFn4la-l@a#6l_|K$5^T6X(ZWK^Hku2Qa1?A^l2l6^x?eYded=C_HzCPwX` z7`zqA1Kq0volr7@gvxGy!2R@&^`UpWw6mH?FvZui9=_L)~b;h3z z#S~%E9iE8z4jpY_RBt>`j5Nu-9hJ}^6~Xb_!x(d|n-x$?lnj^#hRl?Qtfg4-9refV z9}>TBS*ZE9Wu6Ha28mWhZ}a;=yw5cU$Oc$yUImjMSN#J{eKsk5M^Pug_i++%y1!JJ zgw|sJ#L8x{L*Xx+@#}IGp;PUXa`v;!!OEIQF(#hwH}nbkUI!e$_i@S!JiJFM+lWXU z9k5JOI1nQ|DEk0)Z8eks%7YpRni@T`{YwUzAnAte>W;?5wbB}m!0aq%$~3W*bEl9! zQaqpRrPGkj7+QSZA~%6vu}bwUQd??}C$I|+4|_%Nv(M@(z9BP+Sy)9giw`1SH@Ezy z<4a4{5|^g4S$w37I&>A6rKEokxsqw6eE@z@gTHLOlN8%ppSCS_j=#_2^rQUN4_CkU zFNb|(=zh!qsJ6}zcRThM<@8AB-6d%C2X-j-)m4eza+Z@t?Z)kRrq?l$A^ngCB{Qbj0_a;Z}V)rpMJf)@@-#V1sO+rnCJ2*H8ipmIqp%5lrOpt5Y?KMXFDug%tC++ zK2TYKEK5=zRPzBd)Ft!<0hAM(o+V$JptM>-s*R>rtKKU)OnD1AqN;MLnz*RdfzeB4 zPogGonxb*%bZHS^N+~1L)`r;awBu4l6FLvkyB9K+o{~7%q+ZL6kyl-p9z2l-kB+So z6M$d8B@fkae|H*PlJ#uU2U&zNLWdHK^C^mqVa5$8W-!MxJ4L^7k)r4b zLEZFgHNTe#%RSA;g2lS)lsA7~;?4<$kzJP`Qi?5d{b6r3gUyD&*G*-V|5+6u#g3e5 zHb?L2cGb*rKP!ojj-3Zt;}DAj%2IAc+mcxLK}W)RFHqk!;;9z8!Bpj%uqBv9aRf&I z@<+=^R1ZoMM6w{V7^3a|@x}QokOPh~11^E#01nYSdW*dI&}I#*3i*?D_gdUC$nf|N z2A5!q&_rG;o@T_rG~cAaXxLRA_T}Z(l0+P@_Mf`gpR}UGg^!|cAk*s!x~O1m7_zzo zL$Oy-^A`}w)K-ixr{h){wOd6(TWcHbko*i*xNd~k&N5k_(HEwuOz6d?7oW;MX1l}C zl20=AcqtSl>{0X=BTnCF$Jj_t3n#|fO-N+x9!8+sUqc5Y5Oa4&!dNjQk=-{Ft?W}; z{Z-u5n!>oKw<;r%|Csf~BGVp(CW9(X;TVV@H?R?={ht~1`uRyrXv;L&V|_m=eai~{ z)3XZ}pQ^~5QJ}u#)*e5zsmVuMPW#KI_Dx6*i>)lUrTXUd9_y0}9`5w|caZ7jq z3hmpAXD;(sdUD9%bX=48+?&T1zx*HAwmM0&?vIYIvo51}+kO6|jh)=L+rhPG=jS;m z4IZ9Zm3~BA_}rHhrB1xMcd9*+JvI_1QmIoqO|R`;K2P8R>sg=Ao*J{RX$TcudU9p&golgf ze)(xyp#ETAgtpHQ`NXEk`2|V^Ph4OB)o+{PenU*>)XnN?b-ALZ?S4LQUSv0&`#S5D z`A;AH%Dhi&E9F0P@^)ExXE-(A$jqNRU+VMkRsOuEuB7aCE7V!(q2^t*EGHoDL9lo1 z!IC$;N{b6aD+M>aN>^K5EBYdFf|11Ahc_Q<2gyC`Jl0+J^=9e5#}o5i%|wBncCkO} zUrn>G`TTYDys(t!gF9v{JNWXv&AS<&t^p5yoTz!;rqjRn&h0xtc;|JPE&s2zY|s0r z*L&oC+@G8LCiGB>ijt295M-E|aR}yh$n>>6>C`2trUC+UO5nx=uh#~NY?0D*n=t_h z3MNeudIi=S)jO5fvE`)cERgVpEVzzI*(QoW@KEL9i<9pfI-uefnZTpW!Irm7?sIA3 z1cKSpxR)+HxUoJe`t)qR%=TX(O=o*SbD5YY(H>-%x2gH@;W_Xq+U)gvzeTJAYP$S* zO7XSX4SoNjk4Vn$FaSCwQTXw~cDY$|=kEP*i2MEi|Nl0hv-0MDcYptX;PmgWlm2y| zfQMtg22O#;-VV*q{>hs7>`ijc1J>lHCr=!FBIOGV<{L*MVq!!l-p6bUzWVNK zJKza&a&|R8zTM7`{|wYsX$T!w3A1i=U&A>B5{hwtW z`}=_1J_2gSQ*dzSB-vn0*{}b(YU|cNO#;0)*4j^U1;xdNorcE3!A{5c_FY(g?b@eh z&hXfUxa66e33uMrD?2hlp)#AVlLHiOW`^7H@BafH^VxoUe&sVsK}+Bnrq^n&-io@{ zKBh=>!P z|FFiIrk;*wfV$2+Z_h_JLCeQI#`iu=+kOXlKRW2Vx0Q^0K=T{V_x!rL{+rJH%yqM# z&CzWLDX|7c?&Zh8RIul9pEYp(%KE=Qj@#RPK4YxE@5iI>z-27c1?>d!>xxP8~NHE}^Mdv#8J|bS?9)-e+V59pcs*-5QC%jk+iD&7=;;yWl%tYJCyORaJLEwh) zxCn>{FA`rL(l+u2zNvJRHg`gJcYH*syJmo~VqV34AgoXjb>nZ&|4wqEQ-ZJ%_oh6< z2A#h6Z;|7r-=r@f{h{+spN^I_0J{zXOEKNMKwT9I zf?>qWHAv|p^$IRs$PvOAP>ZS&cYPkkMA10VfylTM6>}sCl)WRyhN?dXE&i5mHl_0J?9lKf&1O zs>1R((J@bJvYy)2(-XhTGYnlfua|10Gt5P3mszfPCvL)U;(_R|F!cz{n!$UW@G<>+ zZ6t>q$JkidFo6$h8{Dv|gv6cZt(5?;h-DovVq0CMVJMS8`=ANzqi9GL>Xd`=@m92T zmsZcLCD{JJK;JK=*r1{Kz50c2OuwcOb>D1Bu%1b=8q}}6pSY1iv7vV~r03>6<-~eN zVqsd*D#<69d`Y%qo=>2!QIsT9k#JrM^oYTNjU?x_CM3MyUll|j1mi%m8oH<&hH)I! zs$(}*VfQbQvaqC{(=QvGl}=uT$ak_S%dUpNlp$a{5HH|NSmeKPc}v$wP@`zQHEBjt&_t@%Wh{K(qs)^y&T-a4Exvk-0|$qwGgia)Vrx~^yXK1%ph;O}5e3#jEQVFz_FUqqQa=#{ct|b>Xhe!aPP(lRF&=`_ij08Xyz?-(8DQ$FY5n zU56y8><@l;w;5l7!0Syc(tzC_UNPPyd64$ZL(*B>yqamAX#Pg40rHkU8fFD?4Sd{rZ4mLK%0GsU_`81DB>E8{oDtv?_1f9$+hGnLp zu{pL>QxT1t5`sA-f9z)%5AlX83l-H;zy>S+r~u+_q%$Rc6BT{iq-eyQNhi`T8U7=O zofRu|k}A;|RPkVrNDG!j9oXcAeCBo$#8CAvv%63w_i7V_ztEx1F4*;PdHfODtoag~ zsgh(KC%>?cG)ab&wg-VTT|?mUS@)cU~m3hS7E#PoJ(s)S+Sw z(KXU&6Mq>M^oT#qpROh8@QglynI9&I_v$P*8Jx)vfR7+5a2S^~=yM)H;!rSrZ7(`> zwdDsUR8u^5m?ln;Kfrpt?`$#vZcsJG9eb3$8oNT$VbWBk)6AR>Gq*3P2N?6qn`zxb z;`A?26&C#&j37ac0}C4EVbk&~A6+tC-)Bse!10HrGXRRB09fd;)JseMMx!k;s$anI zTd+0XLpZ@@&;z1377&IZ*+>1Ioqts#R|sK^I>nW7G}#NHh;8{ce?CMuMlzAev8qJ} zn?>`=w7cbZ-1lGrx6j2x_V~_f-cH|JB+K$3SMr&lIr-7EiZ0!4_LUQK&wRmQWXl8-^hBI z07UMXU*Gx9ZU9b{)pVwkP2uA5VcaY^=JPB><{PeC2G*tLTr|JDh~+Q4!)YMc>*#CDPdGWE-j6J%+E3jEWOu)nHXFbHS; zWYFcb2v$;zYNi3&p1N|_Z1aQXjA7zhe8zvR&Df}&@{{{9rxjcud92KIt-x(Z-n}&N z&wDfijD^UA#RDYzrtme5SJhHR=`09%Z4VWuS`ucl7M9^K!bWEa)zckma^1- zU%1kdJd2tYNFcrhA+gk<-WZ$In{MN)nq}-&1)X`M>#*(@^VXu=F^T1kjpGkf{k~$m^R@zRp~f+GDtLx9|kR!9N@=? z21WWiwspICO&dvlt~M`CFm7LKJfNDaxh>=8psBob2q8n-Dmtc} zNPcdHSggMEo95k5_97huiFKJx{3Q`JZbcg>zZLgD28a7)n-gqZ0G4;{Z)PY?9?DrXzMH ze)`BN|GWz_8jg&Dk{<=rb0!p_6B$zhhzac`>**Xuf4Kd4tS|#-8{}efb(qvZ+dU>} z>#3ADw_Zu2l?8#w0chJu6p!0j_Yx9uoD$NvGvXI@S@Rh*VIc3_!ne6=l*2`&Y2F z^Bv{q3l;w@#EfA#%kn5=KJSj&i}M;vQn0n;;C$(p^-H%9TIW5Z_A;Dm0PeN2mQgVy zDF1%Th~?}Q^Vnv(mT4smCejC!eI=ROOj)L78E5#+6>X)tJzka7MTBr`@I9c1B3N zY&N@nR6NEtVn~Em1z)#CR*$_eW&;i^*#2JcsAU3#}a6kO13jl@rBtG z!iM|Q3hb>SO7&47qAxg=PX4InK{l;v3T`Z}23o~!{Y2bNtw>k0uJfj5+Et}?n;4zS z<}FrazJ}Eq+n@TKhs7-CPF79zpscQL`0;PqiK&AP_2I+cMBXhLpz`qi2TKkzPMDe} zHJGkv^4dvR3DFTo`XrXRVo0ExnU5kh7+BqAAxHw*dcUYgL+yJgu=)Ic>GzqeXUBKh zd0VfM^Z9mY^w_?{#LR5yG)7h9`L`m5Sip6J*o{cg{R%VZX)vYxu1JBU%f&#qr!2RB zJUg%f{qXHk1QIQ+mo^m&e-t1RU>WCSgNwX*yo$b2KBlH7JViyoiyGXAapC@hC{HO@ zt}Q7wF~>!-V<`2Xe6Yng@wtaYqwKhUCqaWhsKn=dk;Oa26br|yMiTH^0yjCZ2p|| z_#2>PH=anAKf%)TmhE+6rEvA=_xZ@;F{Y6H*m>x)&tRlRUx!E{tH^wF@obcF$)$9V0zQesu;BsHB9XPmNxj=>LsWP6@0@PLL@9IumwGNacfBMtd=@7qay zM2M%E-@-0CgW-?ek6rfOyM*tZfdkuD2O0Lh@25t7pYM-;FY`GYSJX8EUn>dcI_zBf zP$K$+6&ovYmJowE3L2W~SK4m)8iOG&;1jDuQslTq;M6jxZ;ac!Os8cyV5fvN?9Oy0 z@Up6@aZ#>oH`JW*NMVY|=3i-gM&f}RA*9Hg5>ty{G+DI9aJZMDSH3je2l7+k0IG?> z?1P|JS7lb+Q`hEe7c7bU7LVU8PfhDi#K8)S-}3}mb=yJuK^afa^CXyE$9eNFyDe(b zFo*AGLlccae;8tESiQm@Hu4e!Rw*a_g-?>2g9DU*R5lhRYq+tk3tewuBv-l&T4uM^ zT(Nbeb2wxC;YSQ`vq>*+yjDDfv2*k3er;XKCk)R^tJQDEl(5h#tx9OBEo8IaTMnvh zuW6;*Jpsi~nG1Ve&glxUPRB!r`V&ZpbVh>QHareVKd(uR+_yt6y*6JX;7L4>@`St| z^u4c#CN+iy-1kP~?`?N1zJyKglY870T)Qzixy!#0j$}}5W#wva8j2aNpTS+w=urC? z^a4|el}UPKo8@1alGB;_O+9bB{LIeDDRy*1QhkqF0cbj_s=!F>j4fr6H;8fGl%lP= zGduJ$=Onc@s>$i>8t=JyGy1*O5zbZ^QO7}$q~}=4eopstt>rR;p;}v8+x?*-$7f!N zCk>4-h(adjY`vo;bv^j6;LRun;le-UV996%qB+Jm3S}VP)CLNj(uOSZKLbPU-U+s5N()z+ zM^4}pj$^VHs>@`zafBMbTaxr`GOFSvRzs%>)a8mAnMUAc*V;@P4OJ2Wor#&huq>|* z{XPyqAM8J2woZ*cU-%9)Ifzg$yI(I(YkEGK*X&+FKZP6YH-*7Kf+8YDpzhjQFi~LF z@Z`%tbl3VN{TrGj`V?<_7kL{|A)_N%wVkO6rEg`c0#gFAo|#t8kZl?5yT}gsC9k4V zC~=Y`blat3-hp2AqD27#j_lJ~-#i!GRRK~LBLia17;L&_S$2lj`Y4;&VG@0gI6<{0 z?l22l)ym|{*y6F!b2bk}}Prrw+CC=}9wv4GF=y;grX82|9jh@G~ zeBYP+d>RN_)4tA{g<-$PXyj40-NoasLK~s8?#$##q!_ra z7`^{B^4Uf-T0Y~pBlvQl(}Ks*k|%(LEF^RofeZ|bDyMhF#QOSq2(B7I)VpGxYTVqe z)cnn6vq67{3flVmP_+jI#~yYP zq%w8vYQYVG?(J&5owzb0;mzbu(kR0|)8l@PhTo-!n)Et!U-^L>je#*M^xe&@$_IPw z@8*>0q3?nM)R9T7-SOcdhJWxd7)A!%dt}Ng*DzE$ixn43mpn@I>xTm65q8SJ>QGun zMG4)hdJ_(-lr}L|@Y~zlf$cbXzhi2I;%XomuD*kqp8ipt=?GYAYI;-f>avOgCR78g zy;;Qf=toQXzPT~80!vf+x4vi35}$&{fwrK$xXd=pu%DO`SBUjL#9S$lk0%8X<2A_8 zMnYRL%Wx|_`plA&Gz85*oSy-Rq(v>KXFyFHgU!-1*oR@_!_4$1{7gp3A zuNNKQSikYIkG~=WTv&%PbTdCZ+fRGtUy@xp6+?AI8jEOp$;^W)_(vg>Z}-{U zg=2hJvw07Mb2E-tSouvnt z-wy8pL23VBjRRqTqJ#{k{0_dvD-h#yQ5i1SQPJ@gdEO`0iV|gpZ|8ObD)vedDBw& zZPumtg>y~^aH(40qII_qmh@kj*W;n^V_Wm~1H%Z8G5LRMvf|-V;ULn?HC?tOnLQTX zqH0bWSe;2XfHkGo-HbqCfTy>i-rO`E;j=XHfRUDkJ*~@3;V~TV%84_dtQOiGzi0Pn z4D7~63vbOXb(Ii1VXM$V1mRxkVsmUGHAWEm=5(u*3kVIsLer!8u-)8zfr}#ZD`ModwCm!khk<8~;3pq-F$91I9TlAOjwSMXQ7=ml) z{&cmyX4hf+rImAgzt{g9oI{b%=Zxi#`=Cmh{~!M|y02pavpheBC)?+Lv^*DmC9YzJ zlU(Fk79Jw0tH6++KrZf3OZx%tijBd!MBO-nCN9A?%E)YqL*cSnTY)6Lk^~L^Yx#S6 zuPPT^75zg627M8oVG?VlaOpQ}Cb`n(i}qg#72{RBmcrwVig1AHM1$tM4| z!D|Juc_&Lu~fhj?#<00tJ2yhMut914HO`n*C|9Z8$Y` zKx}W8oyHN8PTlkTtI4ee6^_(`6jAM7T&5HudeQ4mF-;m#p+A+NXfRjUJdvosE2fJM z@;fwZ0F^VimyCX=OijANYLs;7V)|O+uBg(}3+~{hFc3X*Xlb<5+Nm@mCxK3E>>=Hi&42_W=x8hgzusH15c4RAYA3h`|%|O)wn`}LR@^>>(8)-PEs{0h?HpS z{{2}1NgLZv18*NCpe*VuR=k=N##s>wVTqqZen;^Fqrb*7i%W+h{q?SoJCvTrPm}NMy_Nu)i5mM01|DtjYhR#Ldz zHRzEE_v1r*?fZX)udLG8>afXh+iMqN4Xk8? z=UZ7}Vit}86s!gm+wR|~7$~Zbo-IaNKClrN(Zz!sB3f?|U3lrT^UF+}8taT*0`)Md zrJNOWrasMiW5*sAZL*B|pbtXjmf0{&Eha0od{`ZNo_ES)|L_&7x$LHu^ITP#Gr)FAZ7EBkbsJvWEn<0Of$5Q zJ<42aONU8|vs~0IIbgIkPdKD`sF?3@;=kikcxS&i`d0sx{EuSvA)EzDhNPG$psijW z_dL&fuz`0g8!EB6nVWZ*K?44w)({`M${dHl~Zf+U*NRjL|WP+sYg z!7j+Cun#+E`43U5W>|c9382BPf8hk;58%PE1`Hi_1uV_wk8%X}4(&{3TJy3iuI+Vp zo~ovylT6^E2IgtjpV7sPIPpjX=7ERJMq}b!T<#9&d^l)i7o-Ba@fI?A_S>K7taoqW zw0o2RJihJbE<(`m$TCRm5~S;RvODQ&4aflj_28_b&$7@QR)B*rE=T0*mBfK=AtJ63 zJ>{kXK)sfnv~T>p$Hg@5wiEC+p!h)j_l4 zhGETxl2&0WennIbK&N4%Z!-Y-C&JgHiI$|0^!vo`tJ->Be%Us;%o4iL8ToD;9p@XD zdV8BT7&Dv-J~?ydDQ?n?BQy~>Jf;-{Z2tB;7pK)%1zMf5wkbVu1k^;VdI`#%Rf5o7 z3rMP_vq{R?oe&K`$6Z}_h)ozGrl2TakIf2%-v;0A%B4ib%-9$d&A6MZzhs;oz7q3g zNdLLiWZmeLH?tk}b>13A*L!3i(5ZeU@QRmr8K)W3HCBmmdUiONpj+|4!=!Mvden~BMmRQ$5GX*2(u)6~;!)UcaRuq*; zp%-JK5x~tjN)`%()fkyD3*z)QDGh)~Z5orOZcoJ5=lC|&G#2yYEvlp%Jtn#n76Xd* zMiE~&-WXD5d$K!?Gpc%wK}5U}U~(;{n#xX1G?8T({d?~3fLoTH#DU%qH4U|2(=J55 zphP3T=kExMIG%{LGdPxk#sv<4KO#{?u6#&m(WMZvI(kZ%qWjV@)_zsSy zr_O#*0Evj(^RBL(N8Ow61noXi^JhldXa(}3V6fuTw) zJSv6X68xdciUkgh>j)>Vn8|paleJ?1=6(10kPc6S^oCauUSQE$uEu#^1pNH~Pq#LN)(T0%91@(Go4VY#BOj> z;}|r(3X6tL;#&LG2^2srNpqj7&$9ph6~m=N6GQKJgo)46;Z#H;P#6fljlkL4Dqs(t zX%^1XZPp`o+;vcyDhTg*_iR8uzb!VYi~bdf(2Vt87)Ad`QUP+dU;Nyz$AH+?|He0T z7g?pqZa~#kk)LQN#u~40guvKhGMk{vJ{AJV&fu`G6PLCe%^Ou*0=~3Gpv$oY0$Zva zas6I((9pd+udKq3mRxbG-T>30s@_EHf@(#Gq$kVh|8w%`7T(ddbJ{-|!mhO3q zQODm{n1nh%bE4hSc$4ai2nY{%mLlOcr;;p{(>(-}ZmHPO^kEMbQ}5M#WqChJZ-1?tku;C zk%;8+CB;lGgHYQP2L0B$(w5%BwXd`y3TY??=@?o_I~IbaP8Tgs$n$m-#aDEHja9Aa zddoE>%j6v%u!wa`Ii#E5G%=arRB+a`A0`iuglsaI#1tdP1{5*@SinOlCgE7MpED5#p|X{FF`@}RS&f^y7$!C~B~7MqWXALe{TTgk zq;9NstoBlAO4RA5Gx#aiIPAuZg%zciekD~NxYskb5*OiGoSe;Ao4iY73C)Zem( zqj;>>Z-sag$^-ygFcNnTm^IA2u-L~%!O?gS&$v$bvnl^(xSQDrjoxXf9Y3M!uqc6* zMzb6zJvg@$J@^KNcB_R1n$dChliotR}_gH(3Wp7Jsi_7)99uEU;s6`w=v$6?! zgA%&D6^0&}mc*(`_FEyal+SWf^VGT|%}tMC$g}YGZIrIYBxmhQtg%*63vfOtiIBZi zGtMMptGFfLu-|grKNvcL@Twi{Lx^IEut$Teld*SAVNJW1)dAp9JC7!swzt!s9%#=G z-@53sV1!#Ou^(6kPc9Bl;CI2aIJj6Df-s~+ry-3%^RK9sF2}d1h;Kz)oRdMoMTK8QsVQ8j zsoIzUjpo90x^!`i)?g;zu@$wg*&Rr(B5~=(8DWFg|8yQqy8IA((}7VM18sUX5atvG z`zLt%Eb5~?7zWlVZE(dL;)Gb7Yy53WK5AWzjw=d;+6|fPIsT%Wf<_hjwtpU5)i8vz zV3`(3@7mXpN%%))0IA8`*Y@AQzEffKsMP z5sl$L)#R-VSgb%nDV)+xt5dtXyM2apkpz%c2VXM=24wmjvf@?~ngQVlQ+|2$E zS@IzsACtLo=NtB*7p72?wzQeRB##t{SOyt}b6)ZtS^f#Xek^p+a`#$)VB1mygDIk5 zhlt}1JTAhN>lcNEWCD{;VmM57pk#OKf-KfbH-XTX?}&SGVA4=oq78J?-(E;@ zDzajYXYUwnryj}$j~$s|-ucP97Z1~0iUssPMXw0h(Z!56oNG530-0J=ok|Jev9efk z1qV_$ztpI+n$jfVYp7Ii!OVIkJH@lxIpm3uqzNUcoG5T0u(Lb$o5%jmC=o)i*`si* zOk3D=OzFNBYy}xck1S?U*W^E?FZ2o9zAcsJQ8h$5$f>)Ug&(Xim0%TT;(rMbX0{pw zz%-9I6Ka3f&1!v?7n0)y07|BVp(&tO_QV&V{KMsf62tErZ+~`xV;e(oG{&b#u?1nD zrb~0hrj-^)v{@{e0xZ4(3A6^Tjk9GUCvLsiJiQxhf8Uo8tbr|Z!k}wy1>p1Mgtxi#aK-UoD_E(Pk~eFk3^yKDG@}AMGcRIV4MysZ zV{=&uqDDhB=6NA#G>m1Ge@@UQv*n#!AV_gdA${$1a9Zb^u-;wX%rWd^A8%Py4SUp4 zP)0H}eee~0e0a0AyhY$xDr~S2&{#msF)PK~YIF-tC?Hx8m)g*MYIwLD5Kx3Cv0zF& zM=|5Bh$jjREEXH`R3!LS)mD9vvNKO%L!-_Wtv1PFRoxpAZcV+@NAwL_3oJgGK#J20 z;>;p}Jm!f7@prhrg*c@hMqAu)14X_Q8txxu9{E|Gxu73BYU`8Xe(lX`s*0OgY`e47 zX3<(rjHm4mIJ=fUN1Z3Vo{3DXc&I!b&|jHLW!2LRSKv-@8HYT^C_8&5|482BExL0) zoDi-xPxp)^)ncsT@tpBd9a|W(J0}c>^~_BwtZ9^tAW!xE z%|AOvVx84y+=*CbdjZ&&!tWBsX}>#4=RCoX!mtwn-zA|)G|Bw2Kyc!{1R_aZezIMj zlQXHB)J~oq7}r`BVhD_*-ErI`8F7$xQ~)S#~M%`^HP`38N+u}j81eoAjDi0n9~BJUF3y}K?fYQw9vM$w~Kr1 z8PvgY9yBR};qpt#pY<(VeU)Nis&Rl|mzxD2@d17U;;WNdbUMh^cyu)=I=God1!>)pIXq2It@+Ww=u{Sa)v_v#GxkC4(cxR?|iMsAD*})ubto&biw4&|M7K z(Pl2{xf%}`;ehN?)rby_wz{QhKis(kD8wv5pJ}p*Wz(#l;YJ zP`ISEpv3HOkqgMrbXrMPrw9pX(PU+i`%!++SS)wWNBW}uuq<*#)~Mwuv;wPK8J-Z8 zK<(vX-Alil!#Dv4e;G43EYCY+gNWri;S+4r<~SaT-w;#TaPwT-Px8$tVKMb(i6vRQ z74WyUZUtjZ(9M+(@DG5XGcf@OfCf}`YnfN?-6>XWW2UD!D!_+FRq4xk76hfz;f;?rGoepicwaSI=<1Opb0{e_UH7q+BYi zwy;ugB&mRT#d_qvXXfMwUEYgf=fL=6?k@{#0hSs~(XDl2&Y{-1I=3_|*EY;-W> zZ)wA!e18@1s2lWHAk*rmVJ31110xK`>&|Y)3O`yYwETC?y|#JTwX~4y{x+}uJCgmE zWfPKW7+=MQSPiTTMDj#r1TjeRN?4`=7kW7s?+#QsU!&Z+Q#onbn?eZc$;cA^L~!FO~yfLCbusc8Woi-V>I=+2Yg`3L5cyBY_Prf1=DQG zA^yikK)~8ND>fScBX9bpTsO(l6oNDQH$qUxsV)Qy9U4$eHaZ-rixbsOO&Vm9I(J3N zp}LZ0ZVf|kIjI{2BdB{Y3ug+wI>mK2h8}z9;aI7%&nl51ZjD{ z&J}yrL{7;z$r1u8&yG?@8g@*qk!mK98U#A-kN)1eAEVIAgi=aQwuyjKg4H?*05+(CU@gbHHU6~`V*UIPzu0-jX%m!QQ${e$*U=_i=4PP( z7qpA%Y1cAmT0D-P9cbF3Nmz#)29G$rdx||?2v>vRgA~(4p2oMZ{#Tn~6(=!NeejYm z_)QMSC3`bwl&-pnX@Vg4T0##s{J_4zVS89&;tIYGN8ASG6sCm+MeqoLY5E{DLh4n- zQE+F&ZFcWHBoCGI48B)-&|%LZmch(|dI6*_rlr3$7@;=b&uv(JZz|)_i7XguxYs^h ze^5kKKIO4w-@VV__sd}frCND*=X2puSb<4Icgc(GpH#^wVn_COD}QUDOs)IW3TP8n zpv2Bz3Cy$|-02(~!ox;4CE9}7oyJ^h&?FimnXripjl`}7q=gQm)0A2FzWMkuXM}6* z!Z>`T0YNo9-S8#LyJo2|6FKAwv>t2`9PU9eCLMrQ(wWOCn}-o^R=PTr^exU~*}!kn z6EkRt&06v#tx`X%;`x;tywdnQT=TQwG$xq8Fq;Up@fM%XD!2<{H7*L1i30CaA(~2a zRsOm61Bj%&SdU6DYv{oU9&b5lncjH!5|9X?wh;JiI-$*K_j8yHbGbT!pLT7#`klS4 zYU6%6@X9pCSK}*=gsdl;h`>!sETonvVwMx|jEBgp=k-hrkfA#o8tqs8bQ3a z&vtC37Aw?8c4ZpC&=~|lc&WrRYLq^HZiJ7(nA$9>?chpQJc}=52XU$%RQEj3r_q`? zLqI>EUyyjvVg-6~zxf#i9S_cf5Rj4eO_#7EDj7GkDRu>;Ha?%4=xC*Ub+0pk>||ynrp#**Lln4N7xRf9(-$afae+ z&+i23N_=yb%@fLae#X=1SW+B5uv(1R(Z{9l$%LlJ{6&47`zbEn0Bqvsv%)(a#jeX0 zT3*%qh5FYXZ=FI(M=?yDT?<)iWcQ`nqQ@f_IeB^CIIyrR2T4u&{an%qvHf?!avS^aMr_y+lcQ0xz(T~`e`m-JlUd-MuhOhow@Xyb* z2ICIm`jQFOm2+D}rdr(+$9g8m(gmOXB&R1VzuH7!w@!YzDfuuf7w%ar^d`9o`drIB zn<`30%w6QdA8#J|!j7!<{0&$#`-3t&-}#t9uql{PDbZ=*LzTJVX?fTSU=g|4->_px zR3VWL;3P`H%Y^g~Qy!w;SvqY#BV$ldzkYF_VBj1qfW90UW$iEKZ0t`zuV@nO3EGva z9+AYB4G2gVliWp5kRB4ughcKo07Z?nCj)?tMXX?(Awk@WvQx)2h#xjQ^vx0d7mQ3l z_4K|e8|C&AC4lmzaBK{O3N|krgO*BYr5vawz5u2^I$&WV2mJd{91$)A9dU9Ss|}@i zgIVf5?iO9#wor&oXK0-@r(;PI1adAtV6yPbJfX0eFrIDiv;7_X_TK;V($;XKrfbJu z#O-r}gx6ITxr|`W9V$Dhy3fBH4h*=UFcYQAf%$he-Fp(@Ha%^)bfmME*m!~KiBf9~ z6uj@nvH}$!4k8vzxq0%q_yP%Ks1++iU`OU>;9d6U zlR&;`^HeKBL>_j4_P0T72B}haL71RW#MCwLDz=^qcVdxW*L|1FJ>DR^zq!z*9t0e0 zxm-)8CMMOIlQU#!vtakj+*O7n<&tyVO6XR zp#K8i34Kg!LbG!f?lmOpb`u`VI~OP6Eit~SWXxr4b}34Tc!00>9%fq<0-$Nm(^ht4mY;(|oce;F5LRcZ zu?Xqb;b7>aOTwDS{52^;^{rrsXi39kOMKaY;Yem_cCBZM+4&M|Uwb3sLEP2-dRceYxphr>kDe!3hOpYUE7MsFBFZgUKy8-?O#* z>@N55Pw{)W5|Y22{zK;3Ycj^5NynmaIAao8FNt&Hh)h2N%J?pj>c?IB_xZ*A8wfs+ z_;xi)I`ElnaFc}7NFJv1raT}u}TjXSXDM++Ho!*$1hj{8J7OC-c@ zrhD^CkD4v+OsT-aQl{`h7b;b$A7P{g>eSNE^7F=Ub9i&-=lV~6f{%zI9iN^}qSgTm z5RIYaQU(d@#<}?foFqZmf911;V=jFPeBZoY!Y@xcM0&h8H<>W6mi^O5W5uFih;N--r@2P(JlL`l8e-QBe$eTB27zU^muGM-e&v7C(D)UGi zxTH4oPX1uy?9 z%J*s9?ZAX6i@>0{D4mLRuxpM_NyNmZG|IAXM0?M4Mr!D>XpYblH8=K~p{~cQLX7p2 z|DK3Q-`)^hS_ap)C&aK&p^<6m)zwsLDs{{nk<4@sV!| z>)N#j%AEAKn2TzM!O8<@y1a!M@=K|Z?C+a5xulbLsrtRvsEB+RPf{4ZvH09&?Dpjg zf8=m6-AtY5vT1>^Ijp~fBH94d&5oQZ|Mgkwu!B2^f7f2>aYYD4%$xPndh+UbR_ZS(a+y^xte>*)-uD5Aoawi|0 zo1=s|suaGBk*^#hYPO^M*0^XE%1f&hp~m(tz5FHg({XbU(RX{wt>-ac#;EbuU@A@; zWDJ;WyrWz)C5W{GMO0WL{rW6Xd4Hl}ArdKO@g$fA3e|XAD%;EpR;DHEM5hi5Qfj7` zNlU5Px!Q2hDdP|)Y{VN={DK@_4_-Z+%vK6c>yD&MNi`&d^{O8l*Jf1_86#SS9UG#4 zTk__@1OWy)`3J&Y+io~1F`)q-^(XSCDS14^O8Od^JUJ`Wvct3mGIVlO z*)^jJG7-K0^`{#_(W@pVlj&mKM;kKK2CYNWXWmQyU62Y!&x>_Yf^^hhTQEtkaj(jc%oEhU_#Lq#-vHfDg?rjuWkVcA9dxw$4obdCkPmRQjU8 zzDd4+|9~Y`vF77=$w*Q1J)rL<+NgVC!p@X&1UE<~4Z_nj+#!O1j$F0U&@D zQu0-~kpDzJ=U)%~2znGtO3ix&iDfgG|=y16gHQKte-99+Mlc zZ}8mjD(v_Ie|I1x9KSS^G#sLfc9%1;$GzME9}YIBnl5Yf9@Q@itQc9keEMCq+gZt` z-)o*SzmfH}M**TR6zm(Xx*%i$oeG6)WJEk|6hWRKKC)(5tO^X}fB2d+;{6MzLrh+` z(WoPki7hSKfbgs}{*8N8>4?V6$QU=kk$oLyk`7DieN|=ebGn~m)cu8PIe*nTj5E}9 zUJnzhWDBks+^~G?u(&3A;D};vgDBK=m>8FieiU>f`>eFotB*meXoxZ5C_3(C#u<`w z*+zmruXJ@a#U~yjaHIy}pBBR5%DC@g8NSTlC5T8Zhh}xaOEB6{sF!-1Rlv}}Bmf$Q z^LoG+)keuA*%aGA%;YJ7w!tz(0))iJ-cvfmV?iid_QFyPeYQO%R^yx{i!&UxYOM$9 zz~Nmse?9xIrqr$5uL6ft!^ifap&Ueta^K9) zxn5a?(&A6AI%uS~2=<+oHR8z(%znpVG=rNKR$(L8r?OYn7tJtXAXC|VTfeIi@~9A? zc%I%>`PfqdNyo#*k_f#h^xP@@GWZ-adK)6#xPk#duo6UXJT$lXoSBk(4KWxxE*ZEX z{~lmm+Kmb~Rt$Rrmy&2x2?MlRaC?J?YV)GZ#QK<&EBk37DnvDMT0F+u_m z=L$~aPue=bjn>+^w>^AfZgoUoOx7l%m@TSK7hEWUHb^KyMT=UUtr(ZCBdZF7PRKEM z@Y?0bfTr1zAbpt$$E4YK-N2vxe(*mmz+?Ayv_0h`4?7WxefRUhQqRZzW@^j-x2ycFqCnV#+EYjkEAj<7^IJS*x0Bh!T1#dYBbr)cY}R2w^~w;QB_1Pw7~ z*Kd&K5e?$5TRN1dAyAJLGd0pcKbZC1pbo9)nDq!K#DBK#pAEuf);-;%^dN1e1FNmF zJ#RBMk+!}N_K6t3V+Es^d6D;dt)7>^BA>S+Js-&b6vM1EXQFZD%`MQGmSr(3EEra0 zIpO+}haDURvc{3s8mSuKk)Siu{(ARX212TcdRne#eQvk8dyk0>c=lsf+i?_*1{JX(uwHB+Bh-G~PXcJ5$i(M$7MB%k6T* z=XR3E3)-Xkt2Ta1%)=fXRZ!GU#(KYBc-`c8ENgjp60}c~9PatQpCO4hPn4AxG6ai$ zshr2X=7*1#K1M_$KCeQkA0GuWcyF;HcSx(vVCAYD&6mY&65mQ;j77hxLUtr$jmk4L zPfFwQpwE&6nh_UNxLv5bOQ6-Grd*VW2OaC#AxKAL(#;cFYU3(Xm=gPA&75{V z;HOlH_?-4&{jOjmOQr-a{~t})6kS;ptYh1@?M!S;Y}+|8CdtIMZF^$dw(VqMPV9UB zd)Ix)Q`XvNuin*F)%BtILE`umr^uad_xf+VPx$_0`~o@2Wi>W~l7M@Mc9i`oV2ktL zLFU~!&+Gfll8i1Q)##hEKADKk$pku!u=PAi>=o5e+%(=vc_+?vDWWzBeh{a z1%JKkyF0O;5NMpx?@p@R-5AddEEsVm%=G#y)?PwDIBPzg2Dr&uh9iNwlpO~*uc{Yf zKzeta`0Bd%KuIe;b|gCC1>5guZ&Cf;Dy$IR2uLqjkz`lE^DI9nWSAImR$Pmk{@d5L z#{*z&4C)_?b@*`(jG6=>wLgT}dp~REq4d#y%?ci35-2<+(YSAvh5UJHf)8lOuwj$O z!iCR4v@rCD>YzzI)DAJ(TyJ9V@P2)|$@LcUKP=i53&N=qY4-W41fID&^B50x4`L*0 zn$EIf6j;fEQ<|j1E-dHvg|n;m)Kakq7b)GOn?(m|EG^-?KBho*gx5PU2Z5EHXbN{a z9cUvOpdXj$LqssV92Y2fgSi2g&j3=NxWZqaMVZhO9X zM4Kp_L$Oteo`$hynb+m)k@?%s58eKuZQ^(zO8x$~W#lCx9crN9w`ML*LQUzFP3 z#O-_U_xtmf%Ph3uZNPsCJZn1@F%USs=Ki;QqVJGR*b?!cwzsNrhuPsdJ;kUssv$w45hzCw5!LIRA^Rx1dJtr6pNlETeo zm+nL98)U?jaaI%L?ya2smv}hsw)Y1(tvYB(yf=qe0kbnrEJ1d@myOk)rvPN{y-~l9 zQNN2;UmH_^E&f7X0E#+LutCqg-Z%#@4^e6RP@+6#P>F6-eu#G#=rj; z4oC%^dppEcIQqo6IQjwHg_W6Cg|b7QvJA^>P5&SHXf9GM1%BGUc#TG7Q;bWTNgpRp z{gBvZP6b3j@c?+8!)_0<$t`m7y(JW zG+8h?H9E;2{yr%JLd9!gg8x}Z-&lo?ULJ^7h$o6D49*?(Lj+vzD2*((cC5idiT`p% z-!*NyYmUE$S*j8SOQ!MOk5->O*1O=r8YI1iWGr82?ChqJ}q*BSTBvg@9A zdk}0x?>kGOcWn^vZC7+oki8wR8_L4}Y}cU%4HtglfDmcX`fcJZ^Y;Qf#IU^YqA1JL?Tod@MeueiD0xRY;pwY zB;OE)4hQ*|0)Z&ezoQz!7YllQ=``4tvs(Bd6Y7oXYbqY}o||3u@oEo{>{+{xIcwYR zXZVD^?&7}ti9bZ#fck|u4FCVsnA8f{R=N=f!1p9X3QN;-9^dJ9vr8>0p|s!-JnR*2>hUxgMh!c^e&p9R06(;?H?#p_l$i zrp`-X;bSFJwE3)$^SN9Bc3h{0Q3mfDt6%?^znyj6$U2S^Wv|;$i2RQJ(FYDy1UBZmDp<#I4czwUcChsS65=L=f2xlfKs>dCc&A2> z{zv{-a=;7j$g!QI)t1a8aMlnuQlY7I0v2m&N40!mLaUAfny*s2kG0i_9^N^%LCLoM zNN%Aya`=?`MDsWQ-*H$>3-Amv|%$V^!<_6`|-Ed@AHDW{V4H2@dfZ-Ut1@F zt6W>YSR~><{+!CM&?! zwQGY#FPV8qZHG?kplThualU?BdU zTr7T@vUr>q(Yo45uN6shzT5-E=-(e`s_E$3$ikgg9)Msfea%raIa~v)ltmp^aN7Ji zT(FUpzEiy(f56W19Iah}oi<$Y+Uvx;`d6w{So^<&DCVBC(k%Oqv(n`>+^nCo!04GF z_|M+pMdwV;)+M{+-db^LSnn)PT{bQKdFAIxbEf;_g~3yi>bQtpLll*nSgLh+e$nCn z*PD%saL{)mT2{}Wwo>a6*`@{K!)4QH6nH_&x9_*QJ&0Wc@d`X)#$Sa-d~2-VD8}r}W}0Y36F!&E`bco?Gd8&AG1F0l#IlK69PEgJBEMzU?pv_ zUo_oN)Bn!1PG%t$F?z8rlCoxGSfc{v%Uq&ZjW7?r%~;;0>c<5G8s0RezuB!<^jX_g z3i@>c4EzKE)%K9iw=e&$?*53P-n|E9m~bQn(ZXk{V%S;gl;ry+?7pYNXIXY8{1kiG zZ|N}~N_>z{G|7BVAM+L8z8WaxrgPEBwB^jJ6R*Fsg#j z=X(6hxW784{sjgSKkmPDXL$lV+}KH;mW-{Ltp@+{+G{Z)G?V^*vrEOc9l^tt z%eUL}*0RMrAN8&f(V_0BgA$1KngsOpbOG#+R%}mH_1RxPu{JyXv&8V!f%U0|&Cn^% zwbrnULG>j(q{S5a-Ir3e9S;MT zW*kTZCb#1Edy8&gEtVo6LQVIrpxK>Q=X`Nr1n3+=<>CPqvQ5yXy_h~kzve$S{20qp z8jP6B^65Pr_*kqZ0wA+u`(hgdwf(0U*#D3`6O#@xs1${{1u*GLl~&Y#z7&5|Tjpf@ zOtJY#V-Anu@b8OCM#+z9-9o#4xv@{T-)kDaCNl@ZRQ3mAbe!8VwOhn|HLMf`DS(NI z#w(@`)@l!QG#KfYB=LvPTZ$xvvV#HTPLYxy`<^By-x-q3Eg@5`MbROSRjh4B_t$nd#9tHw+ z!K0d9J#FuGN!Ivn2|JNf*7~LuLtO(KETD%`GwQOy7MbrxAxbX{zf9@vw}5?`SLtPL zoa=XNP@1ifwAx#v&6(>xE7(`&0f(L(KVf8pEgV&NbRqsoAo?ad<}57y3>&Z)B;YT2 zX9#nVdnXg5RW?o*mK8_fwha#u`RqV;Q?QvuS?%@?k(}oo{knpFMnYzhxVLX*^&-~@ z=5qjq-MP`paTwR`*@7Zgx9<$GL;m+rBH%+&WBTUX;^eE7_dA`O5#!fibjZF$7ule7 z#Hk2WMTXd`YC0YYFSsLN-mOMuTL`145`taX{K?U^4@NF~#JGx24Qz zjs@ljg=3m2Mgo5OpjfwoY8}Tco0f#p0l`Pqswf1bWqNtV7&iEk@V`c$@r|k#CCRwu zTAF%`kF|R3?v9YBjkf!gn@DfXXF#R09T;Q&pyfv2(Lm!uVb+$AkZEqC6qKPqrn2$_AwipC~x70h9~36)J4=+za4BypxtNn zx9zT?oqz|EFE_PWz!n-l2DRMYg5txZliAZHdQzgA_}zClkr*xMoP~w0qEG>6EF?9x z?8Vh1yPX5TgBpW-A3+#+44ogHZ|X1zklnTx!{h1@gu{2*lN0>n*M#<=&``t(8?S{D z>bf$*d7AS*q((DSl+hm7&rc8T(5kEEkzZbGM2V7y;j)RSuANr(A@a#GWLd|;(({YX z;QFU(8-%jYZ~z>GQ&9uVt9-2hZ3hX?&{@zk96F+;t@sRMj&C&H_g)5%yQS8y^lwoE zwvo+TmxL77nXN1J-s@yIM@EXCaOOn2kc0jFolaYQlg}e)mdDqzMI*i_$D=4mn`>~FJn4052G!w zb{Hp&u~_Xyh#2cNFr7jNHjZ_=I-~vAXA_aga&z7R8*9VH;9#(O)$XNlHF>xQ35*$_ zO`RnU{s*?gG#z@o_7n8q4we=QNkWp*?b_|OuM`_{XhgSJ{m-VK6x^&L2v4cAq2Ted zk(5P!8iPcS>S4#dZdeG=R1HQ_922fIoJB!kol$VLXa$$Bf0IjE_iV$W$uX+9Jw%_! zzW$J6!2>AHe>FA|lpU!vsVfI7drddPB5qi0*$;l%LErG-HB^)r{n1qzv>dR@R1)uQsb7GfZ~G~4kh_Jk zI2OfCcrKpComZCCy3zQc3)S7X`Wc-#2)X|Iq~cieR+J5ZIzg(v9^`;RzoF!IqfHIH zSX`cqgdrd2RL*`}HT!&Ra8C$C?6V4jUP=QtcTrly8(sJ-Va3kzqG8uV5Sx_9V(vE; z3Dc_qlPkF}h%0pAuHP*|$k{ys|J?o2gq{py)-0dSHkS%WCo3p47Ydi_jWqG@cXiS! z?{(MpOJVx8hmTe3jo9mkzZVE!F}oDGV##7HqGtk|wFBd8{FdWvl}t4QWLpX4$OvKO zmN-xpQiEtyLLZbVN(2&oG{m`^uo$$WE3^+m%F3Hyhig2w#rts)fvv@gBmvcY^o8^T z2=%zSxEdZ5UoY%Me$UbS9#j7kfd;T+JIMG~n5 zQuTXviT>1=l9H+f+IYew zB&@3G3h1`Cvo)+bsBkm1#s=Ec7#jC$2LR9Q5zF77wfVt23T1oHQPc@et{zapp-)Iq zwsSkssz|l!ckIE4wDa*%65$!7#Spy&PUztf+4*^EHEfG~-U8)mU2F|&b`ztD(K?+j zjPyUsf)m;By-OgS%?LcfU0OB4Ffk)Z^>klyv*U-m$D`uaTb2tn^pw3(Gk+$B$Q=o1 z=f_C5dGV68va_NosuO0^C4O)N-h)^Ea5KH8hMLh^jA5c&T?Gp9K7+}^ZG^lBa%t=g zokf2s0fY>LM`-s%9^a4KB);!s-6-y@UJr7mIv0!8RaS@$n9FQaxA32yF6$-rVBv#g z9i--q7nycV%xX(+UCga=<03Js3ijik9Ab4Q(JlUQO2F}^xYTY#%V~KDY6nmP(zI(S zoA>K%Km_XAumd$Tuh8a-{Z*2|6aiZ&WRT#;EOWfN=VSgQR$0=FT(PjL;QZ2U8y!ZV z|J#Wjt5~*it%4zTv3+pSbSri|&Vp`bj@+BgvC*lxbhJ>;Y{{jyvu}1x4xvAubQ0Km!C>1d z7TC*j$JnLrGs_%c(vBKHv&%YAEAn1n*60#8nzJ(eZOnb(cu;Y^k1=!-3#sQ{HZ^mO zpQ2NBgvWH`o|5Z4o$^|wVs`LPt~0YjsVa{+v1uN|#<)!DIkPzG9RqnDb*}^)vu9xxU5oyR%?i>gYK)~uiaIC>Z1Q$b9wYYvo|Dq1dr!K~K~OHUp+X_6r<2eQEvuFe z^jGFK2#xXil6JYUh1LaA@Vq9CFZrTBJLLb+z82<8$N{2-D3gioEXT^j+u1>zHU76w zV-y%o=F{9v^)FOpIPdCl`JvqZ;1ztZ@_8>h9F%$_EviA7Md?GhN*_5QvsTvCl4uQkuevzm6aBd{ia=)ef)Me`6Ht%L^2R0ZlNOG*;qX zStdl)iWnblhkgfvpCBUX2_l0$Gi}4{?aar3G{pwzs0JI9TSwZ*$52s%g(+j%t}g-4 zS(|43+^kcH8^mSQEP)km8To0WYl8;0&Hog_X>`uw298ln7w`Jao1IE6-; zSJHV#i}P#VB-5gA(w!DOsoLXBQGEZX0Ui^EW4W(?$|gzD(R7VpfCr=e2+nVPH;nXb zvdDA>RMhcM*~8#SO)@zqlpv(-=P_Ku9~;Dq6-fLgyeP!K&Aegy1`owR`aC>bPn88Z z(!~V8Z1M|LsoPc34M8~ktsF^JifBGOBE#XG_;7j~zw+Pj_eePiz2eLongwYNO!V2O;@XfmJF~FzKNTVh*~N?x zptsHS?sG)l6zyIrl7Dkz$V?sTj7x0dNMgujs{=@<>8$+`-PXG^(nVNTwszniYi>wFHK!2C3x^50)GkW?UBVW=4RS-L)pBo z9>yoq>gey0etDH%ug{02ktc?F)cQwCp&%-$+lF%2sEdj%e;`T%F%-&6E@`;YQH(9$Al`)h(O6TzA|yHz-`4OR^-)(j%;)7R40-$eR)_P6VWb2e+RuKr;u9X) zIMl$ZF5+kr1f-XrbO2h~EeRQX>(y~RHG=?_nMLchc8-tl6S-tR@!B5Gd+KTgPsRdw zswpAQ1RuCS_~xy18>zhq?lw%g6$>GTc2dvZt{rjPpY^4dh&Ma$*+)m&X0`7d*5Z!>DXg9fkQ5QEY@DFzWep_iJiDS0N;OjVN< zVi_UuUQi)0@G48nnytxPXNcj8NSB5i-?3t>jXJ}sGc9afw{)I)^$N0wpm zAS&~5hLonRE#KF0>%(u?q=lX6c^wNzwyhiZti|PQ9aOqzp(s=>7U2Vj`J6E>i)qBy zilkTZwwbthTW+e$qsNaBCzSZW7?Y{Li-j-|GZtKRmpGpblfRfZsYB z2HB;y9JGUf&Gz!)leA;OuOpJ50itEu_xI|Xm2CncLchmxp)Y-YfDT1RVg~apg_3&k z;Pg2eA9;}dP%-h|Ej*lY^=5;`AtceMCxxR@F-nu@r!eJZ=+Fvp)Fty|`O4!|?ZSqQYCm+m+;8g@OZ>--9 zb$FSn-cp*^e`7$CCo`=f0r0wkNP11jdFAN=X&Ax3ePq8Mh##j#aXUb3ouHtgtHrLb zw~Jk%&m1Bm;#KEOj}+mrrMJfm%^JOS@7I6-4fcm4G2d@`zq#l?)$&n{MFd(JNbBU~ z!tb1oNA>l@h~XQGgl$hO(ZAp7g>qd6ee%8=HDemVAVF@0Eb{J#4!Nh-!ME5<>*bz6 zEEWp1?`GD}uEOoySB6g?M~DYJXj!5Gy&{?hZOWozsRcYsN2b4Br8r{j*Xs8F^DP_* zf&YH*1=k&$mm>Cgn3pQs7rG5V2Kn*za=2OiI>kOq;P-J?t#Q%0`*|HE_&^Fo(Rq12 z&nwCdd|&@c5&b?oU;gv{_C}?#SDE=%rYBbfiI#LLVd1tK0TtVzNmFMi-3uQC&sxuP2my{~@5BI=b?g$ww#HJ}aVFau$8riHDuDM6 zQM`1%t1SAq$SGq&jf~ye3aKQsV2ThN=!oanXusV79Lu(4_4WQ|p7S3o0qBZzaxfgV z3DLP12+w7|<*}k|nd3MBYxa)hg%& zxgJ17d~jSF3%_YlZ}Dg8urTY=j(rT%$X80=Q*3`A!uV;A4HAXDRoLHTaq+fCW*>$O z$J1HDKovHP$^~WH^3U;rpi(N>y(8G1?=V>%4OLJ;q<~YT@?b?8EqY%hCjEadn1sM3 z_PfLOo0oq9;sRC6fE?gbUIlG?9L9hs@ZSwRtWXQR{saLM6SmtXd2^J)>qsCi6-GrO zdlYXH{ti^t7Fd-^>#WZy<58{KO93wp_`f>>rrBAO7g498UF_S+I_WTm(zkn~>7*Q> zDr$d<8w_b|$TmcPh0~+Xk}m!Jr?GAA3I8U$kX<$&7m>3iNA|{vXXWh$smNmhwC;=Z zeJFA{nd!c4m@J1U+wJ;&kEy9wZ#JIT+I?krCHD38+zZSt`cG@7aSy3PgnF&^+d~ul z^1v4r7Tt(Ii!O@m!qf|23#4pgp+@AZloZ$-gecV|dOhr9`jS{}rnz17`N|0WN%C`$ zsT_(Kk@MqEoqZREFW8P^NI$83X*fgPJR>fZz{<&2D%W-*gOPB@nsK}1>%YH1t0RH$ zkNf}dOZx%8@AqB9Uf<9ET-#`u17KFFb-De%J}#>v;jutGfWbMUyI~!2z@Tc>Z}+$Y zA$itRCKE3`dyzoukf2B!PGnxN^{7kqe#pbU_5LdKo^-cTHp*%_ z(!j%>YKQlpk}F=j+RRluan9Iwm7N#^`p6Z=AP6edN(ge)QUBF}nzT>7$jGi;i@!?? z|E`}3pJ5v??&nSQhBOq|3iO~F2Et}9`(b`Z^b?pfPjEY z#w&Xr_2o7hdRG2q#ou0qGy{P@B__PA!vt-fY?%?atE(s(;Pc+vxwpJ#5TD&Nzrf-I z3|vbaM&uUYr}K{?LvKiZHRom7-x&1rLn&!rrGGL1@S^{Ep`oXbxLO(PaZO!y$3Q?t z^m!R1Cc?pa8R71kSKhI%(yBiQfF^nYvP9TyR;tFCb{?dZg9YNAL>=)tpa@Py(+tcy z7M{U=(Lm%a`?>k$(0Hd2y00FN0$&6^|8(GP;FPELKE6Bzwv~)0_D?T>$>NYPR%f$a>JE z1tL>WHYe(}288P|HlOEh_dK9oWf+0;nBn)Mp*!y1{V?J$AdKWY#X5S~I4hW>-9!ild=<8)9kR_| zikI4(g6tX4n_Cylq*1D_iJ{GQ8ruSb&!L^WP2W*M&z50w`Mli`+wMH~_4}=7WffBt zLiDJ^2MotvWZ#MF`psjWqc576p~0ri?t0)zadNDQtfI`&!&>=Cp?l?Zi`Yd)MbtU2 zX#POHSi|~di$E_B9|UpD=G>pN;%Kp5PweL8;D9h1XgmXrj#Usql=p#!D@CHc*KX7l zd|BZ@Dy_gpCX|u2o{@vI893hpgsihY95-?cbzL7ztypLLYj?-uy^Pilnv{OX{CH#2 zxzx_U31>vKSUrK$Gh%B2YfCrSFCh*W+gW3(LYZ+CKAwhVVprDd%#YU2ci4EJ1hS$a z|J!%}8F&RD3${(t;B(o&%((a5|3|^78$`Nbn*f%Pix1J&T0>-``9cYOs+2$*tbv`} z^fxpNId<{rfo6BAz&<8S!`ZjV7jN=G>lNP>^Dhuu;Q(07ocG#iVBgVs;(MNTqUZPA zhJGn9g{KGgqRu;fzBzzktu5}gQg=&}%z&c>bg{Wwfk8^DQHx~4ccz-|le{>D1FzsN zPs|b_70h>RLK|q~oxVFH{>JHRKgrFiDMH*U2qPjZglFzjl6*bp?rpbTELBw$XwGU6 z#q$D!uBnW=D>eFAJDz(1&>&`IIM>27;#zxk+h1k1MT54|BrtgOrta(GEAyN&OCT6H zR%hK$OY5uK+|TH{d?y|6Bbr%6gHi50i%D_5?AJMM)t<)Kri;)|<|ShG>h=T*vCBW5 z8zkYu!p9ehw)Ev=%zi3U9h@pX6)cE|OXZS44A$DJknY!=ac;%9 z{5Y|=`#Ax-3OE_5+|7tETyVu*K**qvj#NSwE>ADU`%}eX);FbFODVLb$S#>HPFlVy z{-oiQA-A_}T8+l5yn5rg8Fg=Jx=1YEzFC!7ux#cBh>gs8RzOUodd0jwX#9IB%7W+bDsjjD3 zcSVMSA;D{V+`fv-zL2FtUW4s$E z?a3K^t~1SlW?$FA^ZcIaL9%@xM3R(C2(cTXfGPb8^Qf$^)Llfz;f#d98l(=#&_az2 z4P;u?){?;k>w!7RTdF+t6)=hy(~FQ{OVc$|qx1y#p+!|UD3^CiWC(=q-`?H??;;eV z=~oIRqI^FNiHW@~>wz11!MZHx3CL-2o5|*(*R1jWxEnp0$?KS~1XZgZ2|l!^ z#~@=^Q=W?rvT0*UO}{h`Svc`eVrPKLpSsD;6Bv`@uKj&nH{6-?l?&eTJH<_jVe9YI z_xoro=vPP^E1v+9RR_TYOO~>hy`3WI(B*-9257r5cEgWUZK}OYRk5&KotS5&(VF5J zQl8DTjd~|ws{8(LlkPza{Q%uf{m)eIk4AL|FuwpvE*n61#gb(JkgQ;k_w`Vw$amF5 z=;Mzv%&{@~<9YX55coHfE(!jwe6U;>gK3;rI!_}kXtpDHJ{sP)KszwPx-lGs-5w&D z-#4^lDVF2=a4?v9>A98&iC%S~5WH+t4HggIAe<%K&w`~)1?bO^R7MpkXsBm^OvLYo zRBE4zz7>t>vpbnItL3ZYijbik|M%@r!td{X+0uTvNVA65b=*2?J9~NUy{)(yC4q|7 zBvn4Ru}(yt`&I1Ttv?Azv7+Aj4GK@zBu+0C1(NMEJ=k`y1dNr=`pRr`mxRrAte@$rpT(GiH+sri|9Prn`~ln) zrG(uf8??uwb|`QhL@_AlH#{oVk&;bl_7dwrwOp5A4PigqbmJ=cr36K`qIJ4XQxuQm zeWsk7 zL32CbuaO_-b=eh*+A=?p_*6WUqRlrUO^eX;qI;{AN)>^*Q)$(9O`c`*qSYR40Ln77 zj0CDe4}|+kqTr_20dKbFc)zjscX?;vb#OXon{DfF%Lc3^MkUDT0z8RjQ5y`afKh*} z%G6)7CXRo(tIC@)bS9Z!6+pU!jQ_SE2mA4yHF>(V*mZt8AN0Z@ttup;Q{*Ey&Wv(~ zV|v3t@^Qlf%kfT=A)67?aJ)mtK&(?%Dd`g@tafz{HNd%1mUk+2pC&jN|B1+Eciu{A zZcXCq>%8#lNG@RJ>ugXT!>Mf8{(g4LZYP5us;190pLGt$0|Lj?zF?sjt{UqC{Bx0_ zY`nfw>1+{B4_2ed|AU{W{#AE94Bmf6lmHAyyRFp}1L; z+Jk9()CLvfqRK5vSc@BI^De1TqR%D|{rYNtg)fAlQr?F|KfdH{(j4ms{Pj;=Um%o-W>gG>&bs$vDk)KRL@F5fJb>kKQ48{1N}ZK^ES(oK-+Fe2(2VQ;qqs8Yi;i5^YI-z1 z9b>?;pC$k9_)b|%+~mC$Q4M3?txsz`z164#c$Yv9V;q+eH>0Ei`EkR8K~_DlTn$7= zJm^!9=g3G#ZHV<9nooZKO7y`>qxr-MwdCc&^JSi?Qw!}G{XHDjO3^m z@^*~6#Z;|IadlA&!CDkTLBd61t1c9LBmgw6>PIGxL;~LC@~)gTnmc-mHYU|2B8J4; zVf=(50n7Pw{#Z#u?n(=ZXgnmTDJa0fIUaP~MiBDC-GPiHpIRcyT&!GjvmP@F!KQuD zjD|Nn*Pb2u=;8UH=Flp*+u$iA%i$vqa9P^_`xJT}2PzXHWFA!wGavw}e1U&Rjzj`Q zu+YFa>FdpQH53%?q!(n}eLl2t%*{i3Mzx8yqtimA`Q@LCRGE|#hH-$z`-}q%j4Ju0 znW%OxZlba1FKMO<*S4@jh67{Kr^Mt!vhhL{9py&3ruuL+Emri#PNbTL`hQi{PH$cY zJI4W!BuGLBQHnwlCwas7v&Lq?pjmqXlN=dCYFxl6GPjUdntY3GxJ9bQsfNQWAGWH; zj#8)lmzWpSE7}h|bbA;Agvdmd7}ly?^yXHtBqbpEI3md|^(pw4!oY(sJ4c-AKu{%| zJXp_^Th#;lS+e8pH&iAv`b_Y+wC$i<6G%Iisgx-#flaLNxTNwW)sb4!&tS~{+TRh2 zyZ8SLa;4ITbKi*sSAKlN;rljwptc~~S%CwnVw&4HWs0RQ_$_Ee^vwuGDhdp#SVKm_ zjaaxFok|eU`{>UNI^;W%O8^)lP{xC z$ysv#%E{#wC#1Sz5j!xw%j>*yZ69814<(0h;i;^zC@ZL77U^#iUxG2CWntBH3*p72 z(SIOQxr{~1!9tiAZjWNIR$GxOU5F*{{Fxk@aXd0aLiRU_%-`vaHL8^we&^M&RluL` z{g_iDW~-lZtMRLK8OF&kX@wrZVZh@t_6G_H^mZa(^)#qrc<#30B)8Xz+|)Mt4W|)m z-fCeD=k0xJk04(Prl9JOhE^CCoR$X{8YC0r5IJ-`n&eooDVvp~TWp^jYm}W%-J321 z(hC|mG~6JOvd<6^3A@gU<)TCREd|-Y#GebEGd)>3^}}yAa7TzNUzb}xz8@~->4MsS z4ln3jY*>yFMO6$QH~Z^kGY(SI&fqnujH%sg@G2TJxg6^uC@{`8n8T; z^BlJY3xeNU5Hj_h`H2eUfkA!wG;gPs?v>jUBeGOx&^>9hJ*<1(^_u;C^WFW0?;F&r z-I)4m0?E9V=C%plXjw#zgFm<@7tK~KF)i4n0}&!gtdrv9AnBKpHh2kiGzc~BzSW(p zRk6)U*_jCxy^g-B8ku22`=d064s4l$?vQFm+^riFmp+Q;_laDJKJ(4$fv8u-zqwq< zreE@w11Ua@*54-aefoeqL`hu_b!4Qiat;uXsf3A#sDg;X-Yh+T=GXJ`V4CWxJ6+ue zK1l!l+Ae#u+mM(6m6=U)^H-WWOO06^dT?3f8utBJ#tPaw} zmwdNe%u%e>>-=hO?0xH1{GP%Ex$b%|rLTSYH`qJ)=eg{pMadKc5RB(zh4S_uj*nwr z2$lJ%c6OQEtUV$=GGnu}!UEckZL9FvOV&g{j4*K4>3llJ&`Q;w=z{eeXopZ!x?|Z0 zoa|9YM;(piu=!^ii=vM#6d)t?2do&JQ!i{*b;+SXtxL#*boXJ$v9<+7wyWTP zYvv#OyRjZgN+5~?lh2d?Uq8V!9mmJp3BPrZv&#KV+=Afv7As5r5CBp4Lg*oIwu^RCfO~SSG-t+%Es=x$a zL!|v$6q8m%)I;bg0w@_>_`sn|=rQ4^$DMKmhwT4E5Pn2Y&~7W?QB@biWLK)krTUZJ zS4q4~gNv+CM^pmNP8ZJ>nHjMJQV_C26J)*96H_T_6I>56#PPNyouuRQ*>(C0{QLF6 zVVNlg`sM)pM!xfMF`bjRno5!mp}8EdD8QEk+N$Y5k~l`)ibELDzr4iI|4Z?m0p4z} z^%LbrX?5P+nW|590tcm-N3>(Au9YQOqSXr$m?hQWNTWwsn8%PLX%N0;e8PTfiX<&fi{-%QrXZ0OQP#83QHhEd1A zx}rpf^~y#lReh18nKdAESX7*(d)RN#kvbx-suZpPsQwpD1U%=>AE~NB)|+Cew<8RnqD~*%XCQvM~ZH z-*&fXJ{W(CB6X&{3T6R)WSQYrlBR=LXL#{Pfqua!wOlz)C+F@Gmr}n%plC4U_Mlgp z97Mx%s?02l$!DU*0G@>kiF?pb-Y6}Xa&5-RmJ$dP>fEg!FgS6&m{@Vq(12 zc*%n39KjT}@00#~OWpAeM2^CUH*yr3r&PQn3Z0Ubi)Oc|04;AE_>c_qm6v!q^0y=oeU30l4~$ z=SC|7j!9@OENa3zF8&CTou+tCHL#^<6j*3;n$$U$H1Mu!ds0%|Po^5vpgu1W9{siXnJX&**?0B?VWn|hDa5YyVca(G?e z07s}_#4llRn zJJ?$)Kv$osnAL+~aVF{Yrt7;8^VV0;Nv#sNg@v$s#{3U^P)uo5R4pD>2!G{vR^I!t z^~~sDPx^>-c20Tqq_sH0_$3^E$Gm7lsU`**pv5mO6$_n4WIL#Oz}vi0Jlo`rnh^lS zzw{}D6e>Y`L_txlB0pK1AvEO-TFs>XJ|C>1G+ATr!7q?i(eN(*9@R(us^`8-(YpUA zpY9$8z7&;hS}qtCG1Dx%@Si7Fm(BWlLlSw&e#KKr{Y0HdsI;ghAtorAIrGTEVfS!;x6M(pmR+-{TW_{+Ln6RM~A00fx=GAgo?{A5xcePnBF^LVnS1I52G$z*;( z{|o_+oW^6~7%i_~a4n=06Ks%+MCeKWgeV?#N6rVp?O|%PFKb&}e;>|mj~Wi^S(GQU z`Ier=SQtq^w-%pSosI|4h~gGh{2b)2?RwSh?KWS(*l3^Gef;Pqp$c*Me0B%j`W)Ei z=aAH+RafWdYPt?tf9J4<06;Z|27soIqc}rlr9&Bqwey>|Zh6a@0p=7)ZzKI7z2&Lc~xE*e-|g9xLa$y?HY2wj6| z+t-J+KoOQHDwWi?tP;W64kVNCBIisR2g$=D=;K!cH-3gEE37+^!}8G48I&6euJ|U@ zLoQ39abQ1C4`pa&aC#RX@5<;gN3W3ssSAr9i@s6*ofkJQrORhTxS>&aST#TS)q}Ze ziW1t4?mXhTy3Y1Wf7!AqX)9tL1ERyNCDGaOyR5;X!r!5mNGkP@kuF;&qcyu;jyH*3 zp8Y<}A9odZ#cVWYJ?h$xBu(v!AGy{12GOtz4pvb9_=>Rrgzuz>F`t<)H4#yqhUGke z)D2gq!^lV=*wIxmwype9i_%z%;KHZyuA|5$@LH$~WWl2{+vWTT*%3v9UhjflaMcDv z+Zd1s04qXZqmnm$v;)JeHz1W-uTC11u9@iAUn?_W9AWZ%4!335MNN!P&T!k#<_1ui zOs5wBTJgO5xun+P>Wp}e{+Jtb{RCfskrYHk71=0NfI_VYmOMn7cA%+LvaJ_E=1d=> z><`Q)Q=wKXi=^@ci=ZWG(^c$dt{8;x-7>t!Ou&5fB++-;SIBgaMP4Ny4p@vjf9MDa zs6X4Z8|Q!wXs`^ZOaUeI)1{$=8yYwJrVra*I&$tKzm%s!Q%I}Eu#ugW^4Te`VC@b=J{}YtOUzNT!Q@irOB3*j$8#)c!h}uiAq%`I3_;yLgb^jXHtv46jZ{5 zy8z-h!hUbUn0Mw9iQseO+AqNa3N4~``-#F4<6r9-w)Bpq1A%9dHAz*1D{S^yuK$DMeZQS_FngIBU5_BDHmK2Nq(Cyf7HrnB2MynAnT6L773rIO6m$LzvNnCTwbzJi{8=YHyxOZujbGX65sE$h zxdyJp!tWG3;1xt5OOcwiRAg#K{&);9@~f*$)3p@KUYdOW&jpw<`TU{ls0;3#!i_E9 z5P7YP(LO^KNh0T(%^i<*c?s-fNWR@29H{L0%+g(&Cwa!i`wvtncHnSWaTm$_asol- zL3B%2HOav=<(Akc6}WMHe8k~!lpEj6@k#_k0J5e}Br(lz$2Wm1(jlqm+MS)x%O}g8u$}{Ac3W?}v7|V7|u`$zKcFL43Bhx91oZfv*4zeYT z5kh1Hj$VLHG0rlLvg{+cX=J8cB{3iw>b<>E&9ITR5w>aV(!`K8;BAP;==8;*ZAt+J zgWMA#K1&d$?T>wsK;uj_EiXKBzO5=#N`bm=vh*K{fH5trRjTITlhtD`u=&KcEE!|; zhcAW|6`7X3>-9F06sP(-op|Y5TGQIKPKpu}duv;FWqyKIIXqqCt4EidjDZHnul8^x z(SC|TymhDxOvXc@&QcM^H)qkZPbs zuFgT}2U(-F4@HuIBkAmC1l=MtQId!ZfU6|yrc@15X5~!J6yE|FnX|R(FL}$HLZDIc zH}TiL53#AE7haZsZjFXE#l?s%h{alC;vGz-Z04iXRdMQwNbj~!(lB(9+>eUyr^sgH zTzsQ06`vdmjAl&9cyta9Z*eYg^(BIWHy*a1hN!SV$D0(vVBp8+4{K$)ze& zgIoeXK@ZjhRK}|EojRd%?(vZ*NwL%84C2lX?5J#@BON!6{CtT8J9Paiw{i1(rbD&l zwV1?}e_&nz@uIQj60(R*qlv}`v&+pO=Q;re);bzN6QS{RGwP&JjGiP$ncRyfof0i| zsTDL>7lWRo;8N>h9oEOVI_RU>Y8!SD8z;#JebW*O_7^yM|3|E<$>ha zRljiuc7fzFEIm=2U~;p4MdW6Co`^&tsY8d8GAvaQNCZU!k(y@d85{B0!%b!n18Gq| zvM4f{K3F!q2rjD&3s%kIt?U-_PbBI5Jj%WyJNOG zZ_YO|lqXSJs=PhsKDEe`lhniMuG@OjxzNPT&8a1iy$s2}REKBisXr*E4!&~=7gB2p zo9q2+XOrh=6h9lN5zgWGVvKK4l@Una+ zdz&dXgdptL2*q@Y#7*p^A#8+4(y4pj@ksOH_LTm9crzCJwo(Eg7uf?E0s#ASnQXld z^6;n4lh~KQOt&5+cX9x;4YdzZ1y4#mP!SFp$s9WeNhuX~f+PhgY>)&!k)kb@k&CmF zZubWkKhpFkCNR@Ym0a-@NKC`z@!rkx-;A@d*3Nw%+as}oQF!ydX%V%$x{Y7>HH-B; zR;KE5H7D{io+OMV=JMm4C|hB4Z)==thbN>$IbMtYL!&#-X-mtUuVf8Qggtn2&6{5W zd@VKJmF3q=jWw2*d3A2)4pTCw#Pp-<5#voe=A%+B{Uz729}Cc``Lb!YJEDv2wsx4s zj!(tnVL4=SFS=Jf zieGuVD`uoUC+5(BQ{Fz9IJyxGN5|@0f}pnrS;wBW|DVTCaI%#)>0&^ zs~&H3PlF@08BK%Sdp)1x@yd5QdkQ|ZnKyY);`WE`Y92KnT{P%TXZ3^C-XNEku$+-;Ll{skLGknL8mlVWL-n1YTuX{?fbYM9g;Sq z``1Ue?`n3H#fHv663DX+Rt|^MGBkei6uJgCj5JlH*CQ5Jq$R9gTeW!oQ3r zU$gFe219h7l=qwI;07j_7>)pzfkumI`7|OZR5;NHQ3Day*N6lrd%M4p1sL|BHtyFI z^0+f~6(*+#()bQv(Cr5?teUB3VYX7d-ryxnA^};*V7s3r%Jk2JXzCU#VJJ=Gy6Y@qul@ARvgC z&IVO6KwfFKuQTRAlPR4qCSFZz&VoetC3kl^(W(~BNeiaLSk!Rkm=A5WA;Iklw~B=G zXV84o{=8xhzw|M-zq_Q;N~ON=k?3%;5qcQiwpfc{JIs6V3Wz^4B!+#Y+$vB*FS zcH^2}w%UH}N>t0aMgNYhFZk+Z=wxn-Ob*O#eU7pfeQj{|Y6wf}ig_1XmW__MRVpPP z19ZWnac8^%bDHSacppDK4Zh%GHmj0(|>KQFmpuFft^wpO?bD#S_fTZFq@ zqLs-Sq*L-87@J_7)SRnVF?Hmro`8A#;UjB3`Xo)U!aIWE#(9?foZbP1ycow$d8>u*wLhUQ>UgmeeIV+pI3f)`8NzSA z3QkU zhKR%-Q}Jq}ZJtv2tJqyw7go`dZbSoVSwyms6N-QnM;!q?qQBi@O{gfM0w*>q`z)|2{ z)vhbBD>iYzwHIBd24b3*Z22i{%xnTl>~jRF3`H96yJ$hp=NC-H>E=AIy37=Opp}(F zjNfTdQF@En$_##9-SjaW^_4i7Gb5|~RoEJ1<7xxNr>T8zOZ)chL^~bPt zB_eH_E*GLh)+x>rU+HL8P5(lPg{ix?zR?@f_H zn60gYNBpmqQ^TJc=rpnhFV>lQ>j-N+JAz%O<-PRB! zQ=65!t~!|-`Wzv54%>CKRhN^WjNq#`;VKo9H@VI0o~aHp69(FE)l>d$E>j<}km%DE z@OJ5iyVG@FB)lC_lN+NjNs*MEOJ;MQXS7U3>P`(M3!wCIqgY^dwWj<&B*2TS$Y!k- zSFD@!%gOahpLnUV(zLvMI&5FXR%1q9jUzSm@PO1fDbr19(f9eW4^-Yw1=OWFh4AW;C8TF$WK?W8 zXqn0|O_i60S26>G##lw>FeT%`S& z^fpOTt?st4rf#S9`gSF&wA2}YoBF#Imo<7-E%^uX#O=`#*gC1gNIsGmQS9F)GUGVL zE(l2pr~iKQb%b6cuXuQ^Z|9vt{b+#zMM!99EGQ)$O6qgddOmue-hP`dl?S~Fa%cr^ zHxnTY3tym`ct7yoCxHO5%Di6t)!Um@3~3@r!Q$!Q&mhk;M)>JQz3dWF%@+t3#wpr3 zJ6}wxzHfUt8;TV?>;F@xaeaAN&tj&wje&b;-e3O;%Yq~5t(^8|3JM(D9YgA~Z|&Bq z5*|fEhL)r`K3kdz;zoq#Bq(t4)|2)Oqm;hT`$Rch8#BtP>nvOD+#;pXzN~I0kVaOt z{Nen|nj`sQw(Z3t-RC@ejbXj}Y$sw0ym<6>F|vxJqwO0#V=QzeDVM)P%<{V}nTj_c zC9>IcBu!P3Z_Doa%8m==#VjB-{JdW}fru)$LI^!S@AkRJfh6Ixlezh>AIwX0tnC04 z=Gi8P4ZtZWh%UY})YF47AzT+7`h?ED74-8fGi%~G14$p>u2G^nd(62P36c z)np(_YB$%i&2F4!s6Q=rbXtrg5d*z~m@-ANchWIPP0kkvwZL>lgpwVU)EBbQZTrSq zWPS4!s0W^R-ietOH#~)Aib}6{7=W-liTG^)y4wU z2P}mBN#>%7tkBn1432YeU!)=ztnpKHU)vN5zvIW8;Z{n3>S2-EB$oB$^;yri&&(?4 zsc1WH#?IB>6PGDrn+fiZJ67xr2Dam*0?3=0EBC%WjuQuoH-I?R5Du0Xy)#AE%Jb88 z3m~G9cpkho`5IKh|ny{KS{r->yzdK)wziqA> zH+fpX?vOMD`>9-sj8A&uho=7&W0*ONui0H5EyY7Bbtd2_kCc zJJkazeX!w+!U!kZEwo)6Sxw)5CVSR6`Hcy`^*6YB?b2|9dhfSchbp^;kP^{-29U|O!tE*&wKsPTbv5((< z(i#D{4OLu-76aPHyxeQ4thtvwzD|y;W`c zojaq;o&CNdth+*BI!ACLhtx*RD)m9sXyu+--)pHBu2*IVe_d8L7pTdSsrM*o`Q|agYvy$iCxpM(;WE zx^)L+$s28}m$@w1G!lF4=ET0e+XaM$yJNTZ7G`D+kR*Q#$&`Nuqy+1W6+EHIL9jdlB{%&Mf7c35AWeu${PV~4lV zpK#vUaK;VeGKnekL$3opHQ<;mtX@4Is5#EXawX^hQpLKW{ze^M=laCQa% zc3l?V*>4oR;*!L(`ef2^wQNz#pP>zF4?n{rC1ycM(qv?>eI5X+m=A zFSryAvr*xPZsBs>7FT!ooBguNC$J9#o>^-ob91pmni?qLbv6K~XbxA$Q3M=N<$CQT z9sg2xT>K6EA8ne#XXT9)=p!cI zpv3U>{p~S<9iwJe*%wWdop5+}g!(wUt9|}KA|e2Vqe1t5PsW+vM`ma^g>d8R>|&Ir zNx#(hZ*Mop$H&_N*VJz8{ksxi^bb(vrE&LMLGiWM=)`>nXWEJNWDx99;u6l$+!Lr!ol1^DsUPx?xk#-bjwJW!$ zd8Ci#fP`!Jc}NE$$;jT!B`8?Vl=>1vZw*0v{qycmr4+f&_i3Oi`38#gVHE+I2zb0u zKc6lui{>6rLxo{auNvFE7yjsDLO>)G`KT+)iCOLu`NMbfy3-Dlm@BExi;m$gc#Tep zS{?_A)zox7_6i_|-wiBUqgbH^qd9kDeb1*F6W|8?CRyTq zX%U;2r?Vh6Z+yOV7s80gWcsri*|@fx0QZ3COP@GeXBX#EQm*P}>L6zkW+oAl@^Jc> zv2@^=@kWUe%}RhY%07`v>Y?B`A0ixn@eAv{*A|1`oL&24Gmqp`;-TjUA6?8jZOjP8zXk2pj+!0v$44f_q zmzpNa>um9dQzdZLn)j|I(I8P-(Z_6k!H}Z(G}y+5ZvzdbE~?ipa#kOgsR<$?LfKme z>qgv7LY*m)GQy@DT)6@7qdr<=Y(^K?u#CvtaR%$0#xnX(z+DYv(>dEZ*gcqAPrC}_ zl130SI{|flElwgBQha3d2g@u(&Acv4bsNGd4-EfiuDZza8WP?6erVCI$r!w+rIe!<>IT(GU?rkw8S5s&}W za>Q7(OZ|=$E|hpPf-B0M`&Yf1TV=rwy^q=Ce8!7|Ti}sh3-;8vXIpVSFA}}vK-;N- zNozET?4`M#NB47{Pr|lpl?|Kw#nA#sOHNiBcbg_~@8uCug*}H!Y8&+jxO){}Zd8e$ z$vI6I=sE4j@GTIFo}y0JoReIEQRa zc|E?XSIA|-*vc1DDaS~d>~$@+DrIdrE>BL)_6Ne{0k+DG=vP+~0HIdQ z-esK`-U_GB@5mmArI7Ze`PdOtEZhEC5v`kb2X8HnR$wSo!VRvjEPY1FVrDOjbUbmF z`qlLQ2iR@%v*siG__7a%yUx$nCOAaWH3}+3DQMJ68@Pe0=&Z>F=0TxjW;+lL$ zYMe2_4|KgwZeoZDs9SWFQHDnbX+5p5gGIGyeMG!0I#967aSPj`t}+D`+Fa~xH5xHR z?HlUWU-#@;8ydgL3>~61fYfjZjKH5W8W$9YQu_pdl#FTBO;NA)Vu|yH(bqB0BVD8j z2|3mEcZ^FziLUxSwFd1ExjhT}NXyTKfuE~XKll2Nnhr(1i;~agDwz(M4e<_lAhVNT zo=sH-H2i;(G5F00@aI`QXxXXXkbm9chM?jDbg@NmEptSwhzGa~qZsG;`IF-WC5=V@My_->d_QB=k;+XagVt=2#XjNIMl>7m0D8#7W9eKrMp9Siq@y`lK{}m+Lmzbsl+gF0(DGG8*$1@9=}U zf)EYs(@ZWb^DKr+RWY7Y4P6f0i|M< ziG;5@x6kDCWC^?7*m;{02nL-_$czZM6KTo%juKu(B^Cx4Z#vG_+mX3XC9=m3SX?$&)=STZF9eOtO^ZCBB>K zT*Zqy4!Sf)4A^R<29$1P%xvx!Mg!+I-;lB5UR;ubtlQ&$^z$2~_s#_Cq;~6Y0_*^5 zoa#s^tzr6#823Z&sEItH=ge?QTh4o%Spv<}*gCK24`-Qtf*l+da}*x;!LQ&9gNWnw z5m{S(j$hmFRrlzli$4j>XUggX{{nQ8wy?i~0+_+h32Zv`qrxpzf~v2Ap`c#P%SwoT z5a$l;@@k7J;Tgr1cazBDEGDSi^MUG%n(E07Ox^me%PY6E^nK_{U6;NXEe?HB0!P*Q zo3waK+dt|?jv@mq<<+VCqw8OC88C<&Hst!yiM|#INm$V7FUlV_WGQqcXW)G+QOLGo z|NGfIg4Jy!wm_dmgxU9#yoL?uJ4$nm6+jp|N6ac%DQy(_P|fL0_r9<%RSfoC-g~4_YQk$4t|2o>Z5( zA-tO3u1MQ4chdAk{YAlYHx9k4>tsW#Xrr(RuYXPLPCzXi|JV_CQ$`TU1f!LP{VVkg zlV#t28rS%7HEj-)a#!JPvvV)E$}6hpHv|>w!{FC0aQ(fKMP`*^??IIwW z6?Q2d_ku2W@UGq`?1=&9E>K+5G-NY*++JFw>FeyAx|W6^|!VA#rK8Bt;u{E4mwJ~ zpI4Lis?>c#MppU4*7d?)21ROv2bFrzDqy}-OsHW;>f!K|EV0c9?+5NoXPgrj0ira* z5gCO@SRuK}&YmB$gN9;=!U)c6a(nG+3YB4b3mrdAP{r9UI@J&2OOyUfkql~-9s+1X zH^f^|nL;(4;?2HtvD>@1y-kViwic~6fq2$%Qbm~|g+F28CQ%Jg(3#LFf3P;aK>|da z5uv+W8oq!W=|0~OI0f8ZBT-C7{jNV>7AyTIo$$DIkAm}lXgQJ_i(BolZ!d*T(V}pW zXfBhuNg(uH#fw?zC0W`!goeDGSSxXl#&H$_A~`sWw3A3|SS^vtH8noLO|Bn7#yd(O z%Y?y?UH*Ag+&hEzDlHV$e0~vD<6Q(4as{nni_cI>PrMG{s~tjOX1_$!;yc1hlIAm9 znlr>U=heC{c>vE$;X>~A8sE*P`s|8wPfDX888l#VKijgWtH}+ zpVACv4s@B!*hyt+Bbc^fK;F_n%yxO>Y}E`aA-NYy5fOT7mySTFCE<-pq@LK~{RT@4 zBegBikdVn7Wkh&0tY4F}jbJKvIcQorNZdOPUd4{^J1HYJU1vkY1TFkR(mc~E0%{DN z!W1?r_>F*N{(bqRAqpJApSve(F zc7MEe>0xDxyU)4SmF(?r?kE(p&zzH*)V~;Ca3p?G<*KD`yk3`0k;qU(Ju3_9*q2GfC;Rbqrq%bU=lo5Q+yEzr{z*`%7$ja7LmyWA21y@OrsOp?{IsXyHYuck$_Hh81747=68iMT_W_u4c71H zB)?b*IXT8z&cSw_nN=#qDG4y6W|?*1Uh-|P8&AqN(+x}xVCfjX`}!v0U9#rDk^hN= zJ$g$%dRi=g z{Cf!yxM^xr_`zBl^CtsQeZAtG8wn?sQt`QxR{TRwz7N}NbYm*1-c8lmgd&}3dCQ)~ z*)di$enN&9g9Mr5y2`KbW}TaBE|I7x+xRW^2Cs5cq)_(B2w_#`%Yu%)UO+i^u;AY~ z^~&-g7Jcr9V?U?n<*+PXW7M1AEPXvtyylu0c}gs z(0ajl_CIW9A8L8iyp~0k7kcDnesUQ5QYp};QwBr#Cr`87X0@NKcDK3Ch)))asHz2rCj=2&*)lFMX{^p=tBNmrf7PcUqkiCy)qugq z$-tptr1wW*4WDj*r*LW_S-41hh`>4pMfG=^IwPs_S4n(0VuIUUr?~>IrFDvg5t{yz zoQ9&M&-ImrKipW}4$gak6t@%)dgheOe$-;#octX@{J&JX3<@WA3im7#b&6l2+Gyd6 zFG?9|9A1cc9c=iXHY=q`ZLvuXjmYTY?n@O|k<$vWH+qOyR2ZRGHGHlMVE>Yv!7Pi_ z&@W0Z*li|ZaBM?mk|J~dO=7@NHXR>Z4^u$1@Kg3WZ>n<&e*dr)V&$gXw{QZXMcSl? z%vMt8QF-m(DBw^91(oG_-)T2*7vHMF(c{zC@x5J-VRyQwoNs$Y@Nddn)}wN25<`l` ztG>`E?}U^v(bls)E}vV~mUkJ|UD{SQgQCmwXE9Ja#88MAo+UQ$B7z zv0UWCi89keqwkng6Z4%0d(IB1scs_~);y}XdWIDr#3CuGd%dMI%e%*Rz#R+wn{J?PsY7tES@^P>ap@luBxYF8zH$n{m)8nHz5g<@o=qn4K9t4yumXz7?}I9<)L;S4dv_Ya=qQgx^H zYkex`=zz~pK}8NJ7{-P%$T_giCnDm2I>JDu|2XTEeHiB>Dk@sJwl-}CE#Zhpo+YHd zv^|{Zk2d)YIld9MJ%`h;Dl(#-z|&Zr5_$96v7VTnwQ65-_L44?XMOZ1RswUPCI?T` z84rC$k7_{W1FiFm0YAC{TQn{rb}kn12H;L-&y$iH7Sh;IP7iD>6k z?!ONr`abW!FQWeYsi3=m9wk!>p!V62rf&&xa3QS-az21G)lkb)6iCuKX!`WZy@)8t zpf$i`dSA^+M&cedA5@G1QqD9&qB{_?c+a=>r6&?^EQ8N!x%IPLGP4jk!s`J69~`XAcmTH#y8Ptv9=j3z- z*ptt$I4K1M6j0D9%JkR=#n+x{lH05=_x}LFuOlqw7CViXrJ2K;hLQjD^=xYO=ksk) zgv01v2}FMjt<8l%e*ORAIxbyEH0HRlzh`FL=1hRz(V_zcx>D27{lkV)Vg8@+h?0_0 z6~{)T-orWwoLoV)i&g_)E#K*50;G`A59_@kTiYeT$uK)WOq1t$T@elhW+DAs)B|q# zw|S<`7DO?0YE4H#$hv`DGe`(%>r56Z08JekyT=*d#~Ha#X9*w*wgdv!M_4(*y4wvl z9nar>Xo9o>FzTZqWLXW$9#N{PF=^NBg6}3FA`;xq4jctH0)Ik+m8%BQXds4fW@n+7 z4!Xrs=Z}dBBjFsNayxmL(zjeZD?$>0sRZmOMk zJ2;qqt{)&_WjRbifIC86Oa%kwp5F@AzwwEP9$MP(1)#u5^A1zUY-H_pT!Hh0%#z) zgLgsc8`23Kps+&f2dQ5MzQk}03_*>_(0sksq|PhBQz$8jB#FwGjl9t;5( zgV3Cu8~_3!b`Y3lu(7k}ve+)SYO(lSRk*d4m6jd{vYi9*JIX=#^>CW)v8)wyPKe^% z4}BosmmtRsT?GP#uh7tJiso&J2mdt=->@Jk?mfWSfc~KGT30YwmnPd^88qIW4|9YP zyUv1{zXgBVjN0(8dJk=G6hIFD0(2bM2QvU~o&Nu7H{EDFL;%NFXc@&4`_~$N!=JXa`8F_V;N3Ah>MC zOJ@RvM_>?&{67}(f)~JOkRJJe?cRS4;Q#g)8_x*qu{3+%q~H&sK$DeJl&BEX5BNW_ CbJqv} literal 0 HcmV?d00001 diff --git a/demo/documented/stokes-taylor-hood/plot_u.png b/demo/documented/stokes-taylor-hood/plot_u.png new file mode 100644 index 0000000000000000000000000000000000000000..4f3c0cfa0f6543f076e0e3c90bc9b45066013606 GIT binary patch literal 95531 zcmeENWlts1vOO?34DPOj!{F`=?(Xgk?k>aNdT@7lcXx-u-QC?ek9(8%BVO{7PI`A| zcYml#RjswEc9?>k_;)y5H~;|fT~b0+2><}s006*ZVZguMe5i*_0|3MTNl_sc_l)xm za|8T^T>kf?iHXND2F*cLV7iH9(%0qsm%#G{TIupTa^GKaLE->~3+xd*`&y3NuyhCRIA=I?uI*$Bk63D`@H_rlDnYWoO@PwRUr}Xjk)xpy0!|Nrs-Rf7fDwSyzDIIWzvRkS+Al$!h*R+}@Olm-Kg z+DuBnnpqG1WP#01@Lh8;NMY<(TY*u9KtTY|jgxkdRgJkl{ImBjX$axh1ZKHkYb>}d zVzdr7l=F!kv_nZ@QVOFY@lt3qO~mF((jUnNE|yy%nJussFP@Ua4RNoXf|bs zo-G6iRDUy=TqKe)`1}!sf)zEGplPegXa=wW0uUYDHMg`OEfO$I*mrjog6L)TaYqDzFnKNd zricg7U^YuG81@Ns`(v1b<_}47Ct_A^({yM`==DM*a3g5yW_|-iNbh&pmds1HrT#oB z!wUz-oJjp}I{&y7={uNO#39=y1T27lA6n&b}G5*a? z)pJX|R9}2a@4ywScA-!N+= zv^QOwQ?^JY@_G4sgSdY=R`8xsXeIKV(2nW~`3M12if#+4$vHr)>vLc#&Mqnq7c^;n zNdD(HT8?+!V-8E*^E#W%qQ8g$5{7xqO0#}|El(_20N`KPWN7JjITiQqH>=yx z@|}>sJzC|d(U2}=AOos{@xcMOzzlwgy8V022zp2247)6SY(8_-#j$++s=QM0o-tE# zTID(A_-sdS>c*Q^ap^iouxn3Q&DKnglcFrFJXt^$E&ow8haO5EDSPLwytJ*Jhw-;W zQ~oiT4=@_3SaNCGO>5AbH6VKGlIQczR&ogS^bUhjQ{tO1fI?bM!6I=5|KLJ0+qkDz>9p@1|8ZWb8Mhc75u#r^3l1?NN3Lt}p%X1;Y_S>m8I&V*}r14df}EW*fqy zUF3l<0e$nAb!MbRCCj>bC74lohjp!#Pd2q4HQjOXp>I@M3zF!kx4N0c8J$(R?w@p~ zz_z^lOeHwUBr!25d2UJE>{#7+it%LW{QR<)S#AB#Cwh)`a<6v)%>Gyv<|qM`W)hO1 z<7)*4v|s+~&4v6Uzv6~wW-<^-@Fz?LkQ0|CAujxzDJR7+-m__01@v4IPxt(j&A238 zhNljP#@qSw99t(_S0{fzs?RcY)r1ZXE)v0Od(coHEsOe?p{BERGJV&(wY$^UMMkf` zNY$|I>(g5FA|C~p=Hn{2oE^EA?#rWRo{FMWCeqf+Ld?id7R;{*JTtVz0V}SdVw1!eZ@TE~~yzcPa65Oaaq%fpLibuY5@vCp=coTYeyVb^Q+v z>j(EYV*tCISE%ycO7Qt>mkk^lR%fU?6d3W0TMb#szY(X{q~U`yQb;|K&5xr+;8C0y}{2Tmjp37o%vVl&z(6{;ANiIr> z)3E7c)huIJU)`sxZvaf;xG039WZt=846juN&3P0WE<|`>0XK3~NeMOx8lc%L-|1{1 z(kD;3TkhmW@G-MCd~ZV#)F?>wMJE2t7#5=%=T)i65kwq+k$lOmMfOLqJej>x zW=6PcG*+%)+ER2eeqif#2_jPt7{&`){p9{tpyV78MA`cZ@aJVx$0<*v+2U20ow>l4 zEUmP5Gl7o4^CDQq&QeFw%u^64&q5TQGiAl2p+=xl^#2iE`Ml&qqyt*hj#l{72~D(0 zJ61$Uesrj*rnP{wZfxpC%_`NHdOo*!fmfl7%LPyh?Haa$B9=z~2GeR1P3bE+28X3r z_GxK*N;8WArO@h>&MXECwy=3BsGrl;-n6+U>_NdY~`>;eK;u?BN?FxLyuKlVrChOy*SvNVql)&=+xidyB z^Cmy-Gq~->>~C24+1d~_*BI?D^^xW!bxwilcBedh!`?B9zW_KaO#C(vFZVSfJx(5W z>D(EIpb&FG@SIrFsIY4i%L*cZJD9LS8qE~}@ZA`=C<@5%U3LDWq#$>7ps{BG#i2>b#3Q_^(oxfCuo$epx`=D$ zxX7eJ;u*|v!uX~G326K@c)~o52UEbHECCQ7gB5Anh0Gj>mg};L#&5Wm7A(^Q|Ky^3 z)79v5ew`jO2FKqbZ83h`lon^T9p^=KmFk}aePL+taT+%@F0CeN zQq=&Ttj6xno0cXUoHD@7@|gurS*Tvw&qXtBxK1z1Wp`ktX%XzT?qA@0G%~57r4?1rD(74nYM*3{~t0fs7cix8o-3=R;0^Md|%S zT+Qwj7)$x+^{a4=g zE&PyyZd8k*z4O;-DeYXc?_3CfWT)jo9o-=Wk#jI7=>4ww_sZ?2*Hxufqt$6@SXdYl z=y}++{bNC0pYN*UF4~kbD0Uhucf+<>t8!&!<*FOxD>HFFtgfu=^tfUk6BEo&w(@zl1xOtn-v9NQHdt}E!uO!B(S|X!U zUaxcp+v+(`f?A1*s_Fnm4I!A6vs)To3>ZLGb(lZO0|@ss6D4f$hw`7|B^slRzN-ZO zRHcGdlpRjT1|J6N>G>%cn)zuJBy#NuX5bxKM#|YpxI+v;KonF$1-w#$`|pLhxjE=V zPiiaWMID~HCZFxTl>PA9g`)uI(iOAX=Sf+Bh!Y%W7^PYFbEz9F*uycc;6BKddjIVm zi@lXsE;(}la+!WCuVYB!-RUTq2;>?UsJ7>p5A|6)uD!m(zvNDY^UZm+Or=(=bi(!I7XupjXTd9C2Qk205V}MEKlIQl^ zbJ0ET2Ox3*jOP1T#QqRksmOE>yqIR9hz3tf?!||41p^c;g}5Rk14b_!ID=}k9eIP(!i^g-r^zAZ>yov=Oc*$Cb#c7@$`Va4H1QzZB``K@ z?pYyGRwShBuIfunrc1F9h>gD$FGtKW0Yb(ne{-?WQusV6GD{bI7Y4A z^!sI0-q&$i`sU^)SHZ&D`(5MFX@FQpR`%lT?9QDR|EZL4-s|ZyQ^4<&x;Vpe`*Zh+ z;0tQCaJe?3My<{^73Y=zQMR__Jo$pehu*Eas;p`y=GMvLCU({geumRqQqq-;-x^P` zb4`u3omF6}katLE(8+lEU?qXk!KScXOk9&HytVSoC&!loj(vuM>qdpMh)7YXzuxt% zA_0Ib0c>OFs=uC;0xnHnKfrp};?|0whQ~l;3c2N8>P$U}U9h0moMbD>!OPFq2cy^T&u@e<$ny zaX;i#^`o?Elt%BSLD61dG_`mqBA4Eem6a^lNYTHA6n?b--NMwx%SzzO?4^}&-MQNw z8e2R){S-3|Y_i&VOzR!`Hv4>j+I^VT<=sE7x3#}K*PBWJQW(5>iql3yb6bdP1dq zp|-a6Yg-70Yx{;+J`)*PerxLs?IMUL@GBw7TzWrMj&xeRZ@P4M zMtb@TH~#2Xxm~zlWRqR|eP+X6M7#5FN0`h7tJNvW2@d|WdA+}>@Yx5vvC*6MciuQ? z-lwO6vIosIpY63sPiwdt*zJM6^~Zn)IoAxsiLD4sU}?Swzga|r#o?<4TgH-U5qNK& z+)6~ARMPwPRFI5zv%ZX4l;DW(HZa9Dd{IT_jn=Kn zK}d4@MP>DKjO@fcl*wkT#`)jvH%ybI|MV{c8N1ROE6cN%sEJDa0_JEs9z+DR5|_4Z z$~M)@Wf%VH=BXX9i9(s6bO4_{MOGXj0|>hX3&S>Yx3b&KXda^#k8%il#G}sKE^7-5 z(2_$YCbyN`Q=O%?zC-XONJ*dq>`{XxX&`gvgw_14C`pJq7|Lc)Nr~~Ze3{Ro{3Vef zf3im_U;~)zD?Wqb`Aa(axS}HD1jpIA%7c>0#~iRvisAT<;$i(qNlvq4W#a$_y57=q z@7&&yY!?_&#tUN-UA{S1<~3>bS#l+2&yq%)GW+kbvYljyKlp+~HoQCu|2z{FM zY+J5{T?7vg510|ZN>vt@mZno#jx^X`I*8vp8hFN}heN)^g-TjGOEN9vm0_Z-_w>8& z-Krws)#hz62GeRLE#Dg42{gT}Sx5kRcivkHyNY(weLZ9sE~Osmewm&%J!N@4MYZek{CfE% zg8cyDzZ1(J3@z+%8nE`~wF%XVA+tVozG3x^@*)mupb*)Ze8>G*cIH@uGpICpuSIK? z5$@gaYDBt>;b&RAnuT&VNw8Ln{G^A6DZ`pBa9LX|y5G9&U zoqj}-fok+~efDF^)RaA>(>FGyo_-}x-wXc}Fu$;n>3Le(Yj7<9dYP^*CSER7{Ice7 zk=v=Q-*zpq@XoGl|7iZIi4IieB%<=bx)^yGBqOkXJCznurP=ySTS?_r;v3WH@OzJQ z%oG+5gB%6W_W?}JuY-t(qsgwIm?>d;U{j(ZZYwLF%n(`QovDid(u=rR#2r=jCPi$&}X!*{V^ier0`Y%THscbc&ga zi)*df4ixTE^h97Nwq=LjD#qUz{~xI!ZAal{vFO1ou`se~WdnJREh+P*jtjtQSm9h%ZQJ0shS(dVaFR`7a=#GWY_ASwd^FZ@uH05OlUWK;L zRLteabmw87#9v7i*Wlz}EGz~Zogq^~n8EN&Hr2OubcfeB{An7a21kX7g(56^ovd={ zY`DR0wN9s}H_&e6>Y4O(;irMn{duD0mO*j)8j)XegoZ)6Ef~q-d*Qr*?;T^eyz-7W zR>#|A`%$Kw-tXV%Z&%&j_B#&M%iaUT860+cc6N5e$lEXSvcj{ovvFx@o>N>$9XCUG z`n9X~0ceCleg;A#_}$@;W^(y$Z-0_+zmHn`x{h-Av_$iJO(MR9|BKhN>>~RoO6kpB z2<{-MfK~=9^$G+(UKJV+ImWjH)c6Z6e z+MwMcj%L8CnFp1|9QyC7)fhx|{aI_5e$CDc)Br(rmD|nN^lB%c zldC{_?WPRB&lgKe%d5^OJtd`o$;^{0;~|q=$Wq+PaUAh&W_;!L@Fj zQ|D{r6BMMUCNl`;*eVZ1-6ygd(7bOA54>XLl9^uD{U&Zqe1VZ8FQ$H01hCwPVirav2=M>n2`&BSpaU!@-c~oeYRyKvGNx^K$?=cT_=- zY723_WX?g3ZcXU^5WVdEkeiz_Rc-GQ6pb40#_Lf`J>B6`;rn*{SS;s7x)$rAL!{<$ z_gJ>$qnsxhB_0+$Y@p{r3A2Ulc?|@ufAa9e^~LQ z(rn;J&CmdH#)p^Kf+9U4(gX$SZHNAo0-*oC`|gbhr29wgH&)KDG(=B5La-bagDt8C z$;BgmdKPiydKB+iu`^hIP1sOblH8x*LG!Ak#byCV0RJN)@@xFQb?0wP=tEJi%mQEn zJb!{U!1bTsj|3Zi5V-NAty zxQ9H)N3u=XTC!_;STv_~ce@o+t2z*)Qxm^fjxFEv!0U0n7GGl|a@aABzOUnKAS#mH8uT}K|p&`aDoAsg$pGJ%QP8OdR z{}s~b(F1tr!=m<=KHwTZ+Ti(c+R)H&cxaYBdHCS@rRGfG+3|Lz2E<7CK8r$=Jn?+t zgdPIBF72-3KOCtSQImu4bBkFnW&8NeCVn^FAh+&2(qeTxpO+|?WPRO?n?b+Bvi38p z;q>(5%heqynz?HW`&N>@7bl|6-=jA42SYDoM_Qo8-Lmirl`y@sf}L1tIkh*`d&9rs z5~u_#w9vfHwk0KfYG%dalV7g7E{jv&tg(}bQ?oXy!%TPt=PAGu49&*?zo4vfz$X^J)dt7^b6W9cRKh;hm zfrK0-iW&AjIaLp3EIPq=s;~<3JpbOGT&(EwV_g48LqV!~hSpDrpTszuOoI0Q$4fuay|0#^r1=gwV63tjy~7?}^{+Sm@|FPLpiq>eZj8 ziO|FXu6=*5o9STujxXKc{@e!tuyj6_?{2%+=(}oBaamZQ`CSHaF%?=R($ANMER`icFC_a;(kKsse4_g@m*7*{Spgt;CWk&P9y{!hBtc#H<4jrp-E{G{Xqv>4 zFE?YHNwG*dB^((b)EC?1nHT1{R7p@GDA0%wU{kPw=4ZWTt1ZI{^|Y z$)ObcCKjpFGjMT9;$&nJbM`Fk@MJNVlgsQ{o5PN#Cj`#GWxn4A()8W$4Q+fY2MZeR z1B53L_~u{E`Y;BG|51*q9^;FKL>y0V+WOeBc3C$OT3^rOI{7~3+by}FKf&5X^H-KT)O-kf4w`Q<5SUJ5%(O!KRs zDmveb$g0qv*Dt;Fal8a)P<4UCo+r=I24MqKAr4n=E|ufK(3$R^DI(eR14%xoIab}k2w|$2c`t1sS;5DtM>!iJWQ7KKdid{cbyNW;81$@OtIh--26 zqAA5fG-WixZoTQ+Th*C)R)SS7fz|NzOPPa}hf&UT9}Cy!jpy{FVs}nz<|0^gOGd(_ z;TuH>>UVdtS6&>4#K}&(JX#4DCbV9u_<57X4m$AY20ip`5j16sb7ya@KciP;B}u~H zq1IK8@kiS#9LTQGK3E!_S_C%;7CwU$jt6`EpwYVI$1II zx+qi)AXYkxFOdKuBS~g;5m1dKV41j6*68{&=9ns6JS4_f}8R$z*RT zpmO3Szw~(cOzVZ}tyni)9k+D%d)sF#ul}N=noMsRS0FHr?iYTSq4y|xfjk*`YALzS zO-EP7+hk4PZvB`WlAZgg;i#rW=iZrbZ{S6Ur04Ee*#TL9jTiy8tD3Xx_c1;zPqz{? z=~<~TC$-biBI!oQXs4c~q-QSf)g$y;D<;$gYHX@odt<8>e^8TG^InHhiX?;5->vVu zE!Z2ge3~|^)&~4#^GUo`Eo~8RUbbD8kC6Mg;P}LS$Zpp;sSy@(bP@%MSRE6;{gs$QA{C9!c-P#;?0#wg>#6}0SVybD5SqA16D*`+a%U`QHyhdfHHDc1l+#Z z=sU~SF56bBy`HtALZ^ zpbm~e+|&Ht2xGyLtbfziWoxAhF&DM9mP1Ghqj+v|KfC>)n= zt+7dnonTG5C;tHs6NpAV9RNiFLGqV+S|~pdKbS60mRtyDmC79~KMVUFThXc7J4jlt zn4j$EE~gSHI|7vrEwa$hHg?dnQd?(DpX?c~@Z5_0@l_w?Bkpzzz;#dFdR%Ldz zP)yVTWj}5GRDN`P)htk^YmsNz`f?uAb((sE6aDDp*74vlT1R2z_SOdCiQaBlxZFml zrGPi?exzaA!o&=kXwGr8g9nVF(T%)>60 z>aLdvbfT9BNoTt4;L7Ef1o<)Jc1twJem^efQzT4+i5Ejq6K*>o%C3N{J_$#;YQ*^d zoRS!*r>`}hOdWFWIuRKlJvBinDDVghO4s;QF*{UBoe^0$U}b_55dNL0ZLhJ+@PK?Imk=x*0~ZRu$t( znqVDj^|`A~AvwZ2G>j1BKI9|}sp{b99|X<|eJ(``H}CG_@kGCW6S&|fg?=>dfV4k~ zMYbkFwmRn$ir&qqJHI>|sGz6zey`NY9%4gj>D{s$P=XrYN0(9Eu@8JnmhWuvSc>>( zBH;`LuT%$F&n&RRxwy>jYI<;>8lTtc>UEIgbTK_uw4rS?DQfO3rzm#ECQ!K_A)MVqp%4=Z@O{nOm9qw6!!_2SVmBzcT; zC?Y$10nNT+rK6W}?I=3P^)7tZS#w%>Q{0C?hJ7>=)Fi!DFJ!m#rRGXu1x}dlEhh5Cm^G)ty%7bYg1;ZQkB$teRu516g$d_(dqJ-k$Fx!VIEuv1|2h91%?L8vC@z%|Wf>o-% zj{mW1z6A=Qy##HHl_R}>g$YlZ3v(BB zOV8AJ{g8Xyy1`Bb^KfF-n@ zQQo2^={t?7dfadUvVON<`5z~O(G|2Re;+Vjs@?kZ1^p;4?cckMAI3xzaLiSvB1j-oG$a?=AG-kaHvj?^t{-i{VDH|o7ajJFL?1p) zY+q&SxF8KBRXG4j7L48-6bUhsW%eTexB1#vTCJ$DBk#A2?oFMI$RUof z2^7s(Bgg6<937S%f9X zsO=-?2b3iIj7ZqaMWsFh`>xc8Isgs$Mm%Lvr#?6tAsnfX=n#acoR0`ZknE#1BD(@YI7I9Di^NH8w7uHf`=Z*` zx6r6R&Kacu$D_MF z@%|a2j?baX@U0^F^8NBg+xc+_ZnpZ=zeC)l{XsLm*6YB0yW6EQw@Yd-UHmi+ug^kS znXl0Ky)p6Mp0u{Ymw&oeldUqn$klU*x%wZ3hTFDuyB$aGSqoh9zsEH3>GG%$;lu4) zuvBv$(CCK@YkAAe5!qc;du|K3QDm9c+12y-E_y7NKds7TFEfTH(Ztug%lWTRqsF`+ z?ipQXNA0~G;7>omyUZ=Ah(9Gsel$;qgH7i*#urUfI3jSQjD*k*ltB6?QRzBcgifX9 z6d^B^<)9)b5uYJrGHp|mRXPi?y2IuZHhkY(r+cPwmLcARF|@+x`F>mtw*sX60Bl0_v~L=5n+1P-vfd z7o21X=afxq*)B8frc1eN&8HhnZ&G)?P$C!G(tT_@f820>e9^Zf&FcC*08Y&BazRNS z&IVg8r?+u*G;9DpE-|`RoRf>IAmyffZ=xtdYr3V$sa+&*N8n8f7HIo0|5A54u?hv zugLjg)8ynVOzAb9S%(^7e%KEDAXC)g6gKv z_xo%|rWHOr9}hPt>*=z1Xe`g6k8C_*wBF;*c*^cf62-Wo{6wJYun-w|Rbu-l2;av2 z7_6!G!=7P>C1tmBrYj5kgo2eH;RDA!Td$NX~6EtN*ZCRjwFoO$wlt{UH07zsJp<>3F43HlH!<#E-nWK8)VhMxB0s=0)miy%yWD zfR>k)HEznW>GvB+Qy;uNC67#ES~gJ}V877$#hyF;O__UQk__UQ`Gj8n75#*^mE~oF zysVUYbxjoc;(Pu{RSJS(SpfE0w%u|Z&l~Sv#Kx02gEF+(04VH51O%NWkmYC3-}JWm zUQVt2Bm*+;NW!Ca`|y1r^6NalUNJ{>(jR0=U(?^2?^DGArI*VxW~4jm98DBq5vmtb z5>dbq5a_1sc_y;_LNA`|KAHb#ymj|#zO^68G=HSy*1Hs2HxY*Jejy5-`^x*J;!2vD z_rKU}^qnP&_8$Ez2=UaZ)_d7@xX8_`73R}^8~8Lo6FVcC^dTOORbA1j($C?K^{dJZ z7&Lh)l&Qh>7$MlSy~OqG`}C>q)FlNQdF05$~%P@THRNmqvD7Eb;zR01(--2HE$ z$vNgPL|M-%d`THnf>nBHu{8Ym6vd;qInDZE=pd(mIiT9sl)$A2|*NczlV= z>g@e>drM2VWcG`|1Lua|a=RkR$H7P@|8_-t z0}pykAY6Yc9Wq?<^vPIacRegH`Di}+{d!9NuvoDA4_!YOEZbksuv|6n%fio}VJtlb zf2SiFAYh~>qHJkcA{BTx}dN5*PBuAVPE%RDq zN2HtO?4(Y#!ltR{sdSRhxcyjrRq zH{XGB|Ea*5pf|U*{aw2oj&hDTGnFo%H4$CV%X8Ed!eG7n0Anlnkzc{+cJg?4uz`~WaV%OK z-@6uQb!$_lrDpqN1F3`cIk4%b@ z7vt)84Dy>@Vqn60kX$Y-YAud1z!?r>i4>yCIBE&7iq z(FTUBQNBc-GGW-^t0@o}2yKEI8_FCmgWUonw-`Bh)7rr#`27!1Uf%hwR2U5KfgcbT zab)s5n@&1GfWE-5`MqHnh9GDOAqBDIhW$J#3`e!9*rKl61XJ*-JtXX&rJKBrBo*WkI4OEjSJ&EcW6@JN)XgYeUP z*hil2{cDb2%5dM;?DNBW`u03X81SFLlBXeYbVVtTK1#&5Py1UUM!B|g4Y~AoJr9Xy zy2pSvtP&Z&Y#(1W3%Svwn7Wp;PI|xcmsksxCG9CVmveouUZ%-=T{XQfoAvrfQ0C|0 zuhc8NFZ#N4vN?tYJKYJ|FSllR?Pq$t`#mj^{0_{L*Y;Av6o@6M>dixhjQ; z3|-tM3)0usSGC>k1rl*zy^c7!EsJk_tNST0qWUgjOf{Ma8qdH>o@RtHSZnOEG!fYd z`RAcd4bD&VAf*W8Wkx8DKV_W%Cr4e%^z$czG(QQ1Et2b1VJG2$`At1p&bweFhe&x) z&o|~^aTJ@O6f`KdCKuwBNNlp*No)im#QthBPcn4U1aQ|j#pd|WXF6LA$d8|@!;XK< z7|dj%9Y!~5-z}K4H&JZmFk93`{^AsnjF`eOF9@mt%ecl8P-c<TD^bz9|K1!<9%@ z#!n~x$_i2H$r+F(hx0HNa)Z(J8AvaNn7O&K{|$G;Q%kPMo?49NKqnZ<9m>sIwXZA0 zJi}maxioa0v|gCxw`5bIyk#S|YxE;97$)!gcrNjUBRn6Flsl1Vg)EcJe6puWVet5e zU0xHp04u7>ed8SJLsWo}!*t2F)&=DyX>099>3hgC7Ldy^v`KZ1&trGe%(LZ)ajLKfF8Vs?S8>n z{mk95m^h4^C!4j3HB7icy<`{eN2eSQZ}60|x6tY4CO%JNT$JuVTJ^5a&|O<#@rvXy zHxir__8mWDh?$yxP)pNzoJU^a$E^^Nr*;9C@eX*r49vP-B#)&C7ACr5o2E`*K?Ne2 zQA`0ka?%WMc%UeR&Q~RFFdpOuz(`{|8|ny)af8h)|H7L3p_}h)%Zh>;CN8|(3suEls`}g-4eO*ZNEAHB z8sa8wU>Hqv_yU3YMYC8n0gSSr z8!NlhtouZZJooiDmgO}8c?&IXwR|z<@vPF`5p}HNRWxn4@bXaU{Zp106kNj`(33+) z*$Rb)>o14W%3)wOcF1OLR#Qt?Wq8e*_ zSGjd$@co>QzhYY_J|kpr@~Ra}dM8)W{bPGl6ixaN^9CPUH_GBs`Ad z{gcsgVFt(}NAa;Li9-c)*2mi8|L9by{-OB8Jpmh@7z}$3tyiLrw%{Lv5!R?wv@6A} z-6dIa`Cx34cY_Rpz>iPRd8Vni>hNl_`H5>-I|^1PC3z6Jf?cVwHh#GFjgp-_e4)ZR ztlGL(j#MYb<>h78Mc405q@7%JC5db&MENZz$B$b>^U74d_!aoix2)E|WFx$N(aa$C zj%kgYf!9Hex}e$Z5r5q4pTw*VsIbD8xs8AOpCx$0T8%5hps1jT0~G+roPts)^(b1u zf0`1--sG^ss)ElCcp3Xy2XKq;Koc@mdvt?Jzz?ZPQu(4&~&}7RPf>8 zLDA%JnK+Y{<4b4dKY`yP%)&o=e{kcH8C~^&ojwi4Ex z-V@UH#udv76#sV?ARkLy>m$p)HHXD~T74}etD$T^JTf!E&2HqjpmC>(sW3AYMCBX6 zB$N#CDfmL@*tq-dfJlQw}l=dXt*JkYTcHJ zX2dSkg*(Q>X^r`h?pXaBF;oQ$jiacHSxyn4W|+IIrHUwp@&^T8y6v^)wjs0zqDq5s zDnjY;H#Aff1F$A^2*7@7oCI}++aMhLw$o+J9Ofj$H%3o~59W&Ckhdr0Xqa>0b_t|Z z6dj^%FiE&+j<(!=cvudYayq>t>2ApEk3`JU`XlkQiG-xNuu!PL&=U@|dd?rB7Zk`G zwYD&8w!iMJk=+tzX@q>?aoNBOUs8l2?YWB7z5xUkt~{5g3OGzUo>g`k2h(}~D1>2v zlguwtct6UP-LVJ{E9eY_pt4M&k?9Dm6%K#Lj^;+;4ca3)&vAKK!T-^rKRL4EOTChSZqW^9!znLAsG7n5k zho?_!KAP&X+qJ2ubZx}M}$e*<)lZ2b=a zu|Q70RK{+RJ0c>hKS?Hwf<)~} z=wyTnDR#6Pd(DaZEKF>BSs&z$sCdSPlcq_;BlXY;vi*IK zCq<%h3jm;7h>LNK!jK*gGi!ldP1`yl-4t4`BV0xyLdY>qw8D)q&@hfd4&wpZ0yqTd zR8ZiIwJR`*Jz}vSW04J&*QsUG-UR^MXx{u&*q7yS`2A!@F!ej0w@dB!>WiLuDxkvJNCA zB_9afd*8;pGS7Z;`Jgb&IZEg~)@{t1`1@pK8xC84N!{}KRYWLyvpLWH(h5I>Tu zwkL4}y0UCpFB)ynS`efgBY}o-6mwk&(Ls_CX2Sr6OGuVM5hIDxBw~P=62bIsoKS{X zn<$YK5Gq#3B2p4+?QspjT_`%cpY)Qmav^6B;H|x=nBbfk8Yck8Lk7$kfY4$Fl$Nvg zMrj0P_^4L*yBuC9*pkWLA$3LFfmwoav;}n6bImkg62e1JAc3?@z|v;W+>BX-BoATu za#SLP_m#u6%+yY&!aL+}(;hsF+SVdR=&J}m{k1yK&eEta(T@D5Ro>#mHm zsEAx0H8q@d{i}zFcXJ~>Jx8rWrLxTzE{z{OdVEkooP+K7puizorln)HE*TA-2v3++ zRF+;@uRFW>_6BJMWe8sk5M=OIXwnb9NQ@duj{4wGrQr{FM5{#R?u#Qr_+QH2w1XK% z8P*f*O6W?e+jvX=2JfDz-G8#>03pK~Q~IuL`zG8rW;pLz+?{o?V^4#yfDoZwzZ#qx z!j?~Z9rw#jS8p`~l%asK51_sR>(1Dh{ay=_$7h#s?4>pdgox1qJ6oZ`g4%{)%5rve z5-L}*asUw&^z}l<8U-TMtcIkL3(~Vd4*&o<%hG0Ns#W5ttpa@5Dy*S_0K*>d{ogFmmAgzZy5ikPGUd-xA+(4ru zl!G0#l_OGbA$b5waIQ;(K?1S2g7yrh*8n|=$s`=hLp#i5cQ5MF7yb75Z;t=4xgF0^ zx#!wD02_`%Y1rNbit7lEhj>yM6kse5a6G{2ELa;YV$4uXTL=*%bGzwi^v?KzKZM4Y>hn#VGyuTTPv7oDQ=% z5Dkk&K8^FbSecTM$`G0cwKb6MigF}k=YyJBIHzX1wi!H>h;%eTEkwHe0U-cD$)Tfg zYl?HQ0TvTrIbd%C`gjPBgN=Fw0O03`^ztwR2S%CL9wQ9xl|Fcqobih6M#m8!xH8Ud11rP?3ORRUCsMv=Nd*ghddFMg-P~&VVu~%CUfGH-i?l zRRDq55E2{MTERWx`DT*r_08Kp$Pn)enl2I{EFZA?X1cu&8hE6~!#qC1B6>zDfqlK0 z3gZJ5uzi$N25}7X_%N(zT@hDO&E$KjB0{ZV$N7v6kl$Gwa!?M%Zp3j}!>x;-*6qEh zK19edA7xlD5&36wxb5=p6S~j%?xLl^b9MOx>z@4!3A+bL%}Bds`)7>IEX^p<7B)Ckl^P25^`l=AmduKSdTm3QNqYrcEE^Q z@i;yXSr%mLY{$TXHj7Zir%()V2xzC|-4s6n>FtoqTsfVYMy!OaNkHIcmX=^9lF+FD zp`rVYB#_{44i*4FZ4K`0Me8}7HA0F{$WY3PqzM61(<6|XOgxsgaz`Nm5P;rJgs{Uo z6j3y=oj;iq!xNxehQJBqiI71#6c3Es);`6?2a`G?GR7hVY;P^6M=*sRw;6>=?Et5w z)h(Qk!wC;Qt%qVUhnX0j9C-*`xADvl*XLvwB|Am5e3tjnUM=OS?7IsS-jc(uUMGWz zp*KIXs&n@j9?u^r5skK57C6V$pj(wVtf2dy=@+xxDp4U3Yva2%@%|~UGA6jNThNr2e+&aVOMXeu{Kmfo;sgv~HIkXX&Da6K@aJvNF;&k3)*Dl?7`7Od? z1PV2v#W-n;3d${}O3G_2CbCEM?VN*>5eg6pL3Jf0NYK#)$4tRR3=|J=rPVON8DTk~ zA^?Vf&Iaflg^I)o$3cz*IvwD9VG15<$8f9|DXRj35h#X&FPj9fg^sL2jo>JW5G3F*q@mr(!?}lM5JG@Z6o4q&KOllEi}4XuXP`*25Vg<{*x6D> zmH-f7G)rpDgb<-cq!gpH{lH8TQa+3GQAHP!S##Drx=TsY1m-0%4ay-)Vp9`OrNMXUwqTH`L5vP7}o12FnY)JUHY650@ z`NUzgzqV)BPls%ubY=DQ68||X!tb9TCN(2%%IUX-VQ!qkvTovx)sZjUw+pyU5&Jfs z7*6{U{=cI?`#}q#UEGKe{+E%{oPV_ITxMCeINX{wa_SqsCm-EAoV+sy9k~ZG_Eh1e zLQlS-$sA}Ly)=H+SihTQ#D&h?*NpoC3N$s8Q$y&y==F*5NdSP9>mM^Fs0%ObvdO27 z(7rwDS*tY>zC#Rmq4aU1IHR$c6*-`^1e1B=go#t$Fnf(cY@HB`2{twZPkY3+gRX0U zMiZcY@rX!7mrwT_ka0dx)dh?uXtqOjTHxe`vH;>1h!X$+z!xEu33O`#=8t!_LAeWJ zD+6r|0a@rtGD;d%_CdV^iD96QvhtK_aR6~1fE45aV%9^w8W`0OI0zYlKol`(rKH55 z?dO{?(#=uP%i0)ARAv`@TYZ;(IH}PP1OXv|>UuargpxEx*y1Pxr5H8Pjo>1LFGWxQ zENTwH08X<;i1UpWksQIrm`TmK+EOfuwdn)~9rChd#hH(O>~tvbnJu#=Ei%fi?c!pQ z4aH1Rw>;a*9uOScRmS$4`L^La0m*XxW*aBKN7(V;wZ3ljYtwF0jyhaa>A`+Or6w{*j0CbB6B~R-Q?R~Y&5;%Jb!uIis3w6 z+pq1BMA#fGKgsIp<&pE3`rbdV0RXTw?ZTFeDS|OB>k_9i3jNygQ-{;*ZqoAe5~GK8 zbUnh~nZDcyErj;5BSQG!#QuU~#}pSK3m6R*AqaUjc43TD_`SPi7H4EvWwr&?-)#ck z;!^LPOTBy4RaE17P3u>>Th~*rf1GBu*UArPDPZ3ob;}COE=z9^7S8hdeVgub<>LyN z-d4qtHkde+gdC*1SZ|c#3z4dP&dv{`WEg3SQoUTs_e_`*8yJIGOi-%f_#CXPg3dk& zDnm7Dh(I8f06+s0K$1X|DySwfwHi8xq5uH`5dslVn#Bc0qYVb!K%f%HsY$%fV(n#P zw3ARA1&G9XI$ndbrRwp}e0|Rgjha5z8eF!ec4JrvwsKbRArD7n-#{rF_G=f7~ z4^RYADMbP~Cl{$HmLw%8rqvSy00ksYQ$SB4kV6DGNwByC*QroOL0dU;7!N^3n5q+! zGK{A*G1Yp9D4rhRGJBwGhxUrG8U>PWhJ4XH{~@Gq`k|?{)-}RW0%fLpS?uy*%3*3oTDh?PXx9ZqfGu{PF-$r9@Z(LA zhXQt{UPMLY+Ju)Q7>Dr@WAARZBj<-tu73tt_O&NpjN#cPM%`4tZRx*k{rVcfu-Bh@ zmeU(vfBfkoN6DzJ%V=mu_yTA$B?JdRvuS*Az;LEF!UJPO2uJw0P@pK?n{%`jt3_}m z91B_+FvrxW8;%uNtSVTZJI~TXVM6Q<6YzFQ2eK_nHpcJwtui}5QkThMU35Yuw3uK^ zH5B{fB43;`0aFd_%IEq!Vdz-2R}CNlb{$MsE@x|vgglF*95D7m0)v2pJRYLcz`9y! zlSBdt0RmVS=v2_w1rb@JReHi&4h;yZG9Y4W1OU+2i&1(AS}@1!&; z0Lub>J4?~1g|J3Nq(#L*1VEH9cN&ErB*ofDZTs5Fefh8xwU_e{CC=yo562}0!g74R zg*CEb57N?0iR>T_Sq$TJ7M_gL3hgju7i#aypa3Wg0+xaTjN*v_hoTlOBzlaD9&TFdGO5R(S6OOz^e^>aO! zEsh?-G~A!Q?`TbmG)%IuNy{%l#nQC=0?gVLLO4Ds;EhR-jPrE;OS2u}U(SdSj_|J}qbT!e|Hb^i z62gWTDH`2>t@X_%uixPddJpp3a!&Oewe(V&QbY8p_!|4VB4tsmckJQF1NZ24ICE!< zTSciRPgiFSG=?r7yBYuxuK~*6)E(q3@aq$x|Gl3vI z9F72%h9)g+Y=rVhc`_+rbsS{@wZ&Y-BRI=}z5!siBYM?{*a^c4*xbqMC}pD_=K45c zznb955FBMu1Xwg&PbIFbgMPl#iY-+DLm4w-Xt6)wau%K=4}%nr(g+S%g&DF?C}xa(EP_DCAOK9XSpgjbp;-$k z3(Dgt003!?Q5*_zOxFhu6i=+xOZk+&A7U~9SzUBSb(USc(9RPO6kYox^K#VN*Qosx z8Aq5c)=r?gfoHOyJUPnev24FZDrcW_dhH3pS^&VM<{h7P?2vjBiZbfMu+Kvs#{mEi zeD}#`y8VL(hw2tcvzS%5XomG-pZ?K9mZwjtICL=kz@QxVe$#*7?Ar(G&L5~aODiq& z&?n!Vw{DnET~2S^uH37TV$3z&U%hj$CvA|;XO58`j-UK^6&3I{JU)e0Xh#PG0T&U1u+AKe8HS_qw@MuhM`lmcbx>~B}F21fNu z_ZJ&44PXE6ph#VOyzA2vs?^eD2~_(pi(DG#Kg5O=0N~TweJ5)6ibwJKGxW1umalr| zwOhB2W^eyoyI?3M(Ub!G@`(2aS|I*cK7r6!y9SVv~ut8?E40Gud$LMzSW36ZSxlod0ciOF*g z#c>lv_^2ypru#X`0HfDHqW~-Zm30e2^#B)6lE~C1#~yP_2NDv4YWg@RKzRt%tD(u6 zrzbH9!crWf9)J=j4B((kMN$xfQo_XI2+L7Mpi+<>zp=D~Bi{+Ut*)`Rm?Ti> z!kP(sfMc}IjLPQSIiVRfnLyw&KEP?~4~5WZKyW2)15s4Lv(Z^}P9m29R&OC}c^GEq zEEcx2ciq!VcYn2mFQeq+tWdxKodE%m0X&|NCZS1PL)#~bwH=5^&WU(N6hJfJi%E;M z)C>uf;!p#{Q#QliZ-{Vrl(3qOOJPbT5K-2ben@Te)li|kC*SMWD6^p!h1+y4b0cnTI|b4 zpIY_Rty@RF-JD~y%i0g;XdtPMe$M^1@KHAlqwo3kaoQ!Ty@Ks;=0ZXzfU$Wjj=?V4 ziBEG3$h}5;IDlS=1x?|}D7sIF53q#9761k9WwwwMEK1{opCeEWXVgI@j#CT}Ss|!B zt{H%BjnFL+)pT(xxx_>v5JknV7~nuht5jzcPu3?31^bk7zt+yCWjbbkI)JP7;!O0I*Kup zMo~SAaw|fnZ+!0!yUDIRTO2VPG1|y?6W}EES|EirVmkAXFo0s0%>A&D0uz?qY- z%_r;kUPX_fW{Qu~qzuz&_Tr??EQB8@!I{aQ*87Nmg$m( zLmnIg08%Orol<_9m6$i2N9)5ao2(~!9;i9bYAmbb=M7&DQ`6H5*skqAohL`xt&M$w zYFEDY#H?ZV9pV2+Muc#L|4ZgxomcBv2LWpCV}rH+D`FPiUWxY(j+gKG3?5bF=ou3* zsZgtATi$}R2dSGT{I-6UO7PmrR?S(2dxHZX&drby4%>R-Z6E_jFNi(RSR|M8c^R#Bv z#hv8_SWO*c?+Bm;0x@Q116x{9PJ;3sQ5nXn^eBxY7A1$0NFT)mGQ9C;%HvUizLVj( z@{|fecZ-CBI4*zy$NEd%v~4z$09^#@6eWxP_@~x5TQ|0kes^h7QiS8Jd8QWYQ}b0H z?!5B;>yK>u^jFj-7_%Bk3X^1Y)B#$95G;zCUVHd)oajdoZddLVo~H~KSP<3_MS7=a z{VE$PXY~wJXeY!*=L}R6GD0p>@}!7G!y#fm)oT$-If0C&Il|DxAw61qKS*;Z<|u5w zZVJL<27C(bMseMl=1KUDfJx)o++C@E_8?^z`Hq|z57Jt0jqG)cHiTp$;dnIW>x2uqBX{9?Yigw zT0)tmw8WRS&~(oql7-g$vFDap`C&VPXs~M#616(MjR#?Rh2hx+!zeN zK*gflZzTi<{X0e+VMyA`9<&g;jTsTb|9W!U3JzBtFT-n~$ugSukF<(fIpIEe8c((C zFEiw)W@T_FE(o+@^^CtVaB0M{v3_wIil#LR3yhtNM}PSIsCBmj>We!vt4%qV+IC63 zagB;}{MCE$GjB!u-ZTWWN;9rvN9OvkG*lXn^*-Yoj-wJ>p~bq(nMrmL-(F9BKH;5T zG+X`RF|mO$YG5zU7rUT*g@qsiN<)N$9p#++XcQ;G0KsD*VvW&&kM{Kfj07kKn$#kK zV{mKC!k{J%1USkGcm_tO=oTVkK7u30UY@E>hDaoUVV2n^vv|m+a|Kj`B{A~ppZ9s* zy#fY9H(y5QsQOS2R#O6UOH1t{ZNFFnHPxmO7k&O>Pk1$IrpQbFk_cH9UP@XKv#b{^2wVmLC^nRYi~iI-TG%z?XRRFb(w{ZX z?yB8#{xIob7v~nZcI@vem|0u4J?#rr#Emi!v9uM|8Ow4 z001BWNkl03bCZH7Ow}yCiL!e!9$u&>DEnKhSerm#%u|_y0E!XYTxh ze+(C+&uHe~sC(aMBBAZ#EK;6zSM1}wwd3QGmV7U>_s4i5&|5%jT3ENqVu1vR%rs_X zjT$JC0;2{h+9B>pa7LE&<&jFNvx>7B$7d|Cw~9sWd59fB@PST;ViJtS2~9U*0eqcN zOq(&tA?7YxtqjDaDAl1{YWHZS!U`eqACG4xj(sU9od4ePF+;3gw)#d!N%DkoNm0bZ zD=OYy=#^gHzv)svFxDl8@{{8|H-G-qgomOt>q;=bif-#l@bNC<8hE2@0L$V$6ELYU z5rJVQ(h6DPGyBG`HyTIPQwEaKBV0qf(?fjBN?@i0JhKK>t4S|;Z@Xlkd))j%SnNs&B}APt_A=o(iDB# zeY{vxWNbA0wEL|{STR_JaFEje>`=R#dtCYLdB^Hg@;h>0)J?NIUsGerQ5EPXyS}z4 z?)Q9Mg`GJUR0pe&!huZv{)rd9q4%gN+LS)8KIxRz!Si3gUka{83h&% z4QSX~M2nIgEi^%y2wD$0La3?3EP5ekYiq1Gg( z{%3h3n*~f|TB*l-D`X$0^t`v&apS3)w4(a-%FcJ@#Y0sC=3txP>zJ+R-*V+M!o!gp zXo9+aTx{V7I@3+!4#+S#1 zja&KKjB!D+FFULR0HkH6Ueq4y39s@sggbY}+rNqauF1t6!W)z*rlPaekxI zON%lat8p87MqOoQeHAJZeKCK1oU_;eZk{9jyBQI}5gr67jVE&&^B6Vl*W~{08}AOM zOI~Ykk-DgoS5c%YROhJYdo5i1+`S^hUioZxgKMp&pJMur@(>;_#yn~RW;rgo{jl)U z+P#mo)a004efZv9oUweA;+!7-~SfrC2$ zy_Vh@mUJd@UjbibQZ=)jt5|?Dav4J#AwU3Y0SEv+6$}irlGt)=Kh@KM3&W+X%EB0+ zPGEzQsHP2L%@FW;#sPt`U&iVfNXV9oLbqn>IaS-6GvEC1U@kN}y)!f5{gt-&U7XZh zOHwQ^waA>BRh1NNpA_r5>0%3l!?e8Ow4(2m;$spc$7EDwCb&sSAJ1)RKcG+r^u4%) zRP#f_`>Pfa_JTuA=lQk>-Kh!%0gc`btPxq@Hk(J7PAiXde37n|RejMc^Cui1lTDW| z{^HZL=J0Mi4;@CETp5jxX(#i_FG>Vyi3(Lfua zU3=7)$8P$UzEwO!alK#YK{S!Mo{tGkEZ$H^gbn!F$MD)EdAN}#ER0TrsA$s7-qKsa zkoE*A1hqF1p`XAe6k{!rFGW;cfMRXm~2Gyvv1&OVra$R?gY({734r`~gdFB~GlQyp_7 zdHz?(<8|WF>GH+1oR;nRcE=@nf^?P4Am{v+o6{8B7D5FbOSl=CzWvn4LN{XB#GCul zN2?E>RUQKX%(7mft+$-$`BXYaI?wTyAx%R7z@f4upZ1?-bj-q0^OlZTG-R9oMaPbI zpGW!FV)vP}4rI3!#rs7^iUQ-j?sT{LGxnB!PPJ>Yn~T%(GvC|r_N&47i3=Q5#P!J| z!4>}@)Hae2ctn41>h6mpLipc8zM}MS1fv7Bs)EV^=g@h1Q*U^Nx*rH{v9XVwU ztt_!PJS8J=uBq9^bfYzJq0BtM;u4HD1KI$4d#pHnYo4(ekfgFl*8gRf;|zCmKeoVn z%9iUt@dNBv2EXuHLXvdB_SYXC18FyalAKQN6TAmsPkdp^`)|)l zD>nj^_wMYQDZ4gb{w<@aA*)CA##7?~MU54~2v^ik0-z&2|TO?0*>i+5>!+$r#frFPLmnK0|B*vRO)(Y%w-uS2v@1eq zt(h>afclRP?>N};9pBe>_1I}tt7_e&bBFsGjPM`9-$V$pfBfSg4|pCUJVo+Z1aGx3q2g z$@2YZFs7ra&NfECnc0`|`A46>FxLO3A(&a5-p_UK)4cnu=__AN*jl&E26@+)?17e+ zmPyPqH)P_wkM44|@$hi>JX(2hH@(GBZ`>DgtW%oPWnZA^#U+_z#=1t=x_`l0VDUi% zFWQRaLm`h+RMDE0ImHRc9#*nG4>?TaSYJ(N#}}Z zRLSaSJ+j1SHpBVn4U`&d^j|GsyZK6HYF^Wu&%`g>(frf)nA9BQoagO7*r7;{7Y=h( zJ>9Kuy>3+nw=^}pw`5FGsC47mo=wLx+jVffkM&zGK15ZQ;*M@xe=F={_^sWV4HF+> z6s7{IdvDd}J0E_fxwiFdV=lC?zfQZ9mj0X4ooj8V);B;XwH>W-Q_2Pyo_+t9?OHe0 zmv!G9pRm76*Qs)&nw#4;CH})l73yl^HaLN2L#9{;=raRH`pxZ5zq%-`H9wQ7tbvJk zjC7Sdd%O|CcN1DVjP8zZ9`2sc1iWAwpnqk)_i*!A;JsM+t0K24w{cVxWMG8+&Mibw zcaI23n6^k$LY37z)g8J z(d{Hg#jl$I-={Se4Ghc_gRk-xP&v z;{zVi)_RB&q7jSmKbAoguwbAxLKqy>?-}D9K4h|(L2}#j4_BQi!)sUr6Rh=J5j{j$ z;j#LZ%+kyTw_1xD&i7nYsm-XM3kNcF^8;6`n)C-laCPp?g4S%(2Ae8bx+rGNsmh(# zO#8JBl(LRXm^vk^BI`iN{y4v}D+(7>a3%iQkQst`?=?+xc|@e?LY}6UE{0$PP(c6AEs#DTPz!VomSGG-eB68a`oM1liz;ccjKM|WJt`G?{nj9ZLYsQZPUR$ z`+ADw+{4z49=E6Z=K`i{T|`o}edJ45HcNffh*@K30i1~&D{^ca-D+m-L)4>6U@a*$ z9u50=&#wn-eEP<)!6%bGxnnYiviF=;9One0S%R6_b$RvPEel-cEE+X0ud8T5-dbEr z9P<7+)??_3yNAnD?rj9%{S%SM$qk|L#O~TUin4 zUh)@{^@#9jm894BjipE{qSnSHi6WMMulA>H=knzCshM^Ie&= zY)HL4(R%bm`%z_viXY|#5j;xhzanhDsf)U01>WLp_kpvW`!!YO={C#a;vO+nX|C$` z&5K%>-Bo&)J0ENgnrl557a$k7lLZ~QQ_;E0;#OYj+jB*?&!hkk_bpj9X?;O`Isjnh zuhU$f5Vw4$iT92*D3R94R)N^kR|*h&8Pe4+4G<`50C2Do5LyO^JbK60g5QAN+*2rb zcv|9_Wxf8zwbRp&jFre%hD?5H`vJmDzCL*>qp{v}1ccbkrX_uhtA0d0cX zQo_@J)3I}LPF`=nJbp*kwah;LwJDG6EJ`coSFZ_w`nQs+gnRbRbSIMiK=lBYxVNdj( z83Tjo+0QCamhJiNkUZIbfz{OI5kpspNX<+=(er7eSJOPlSH_5<^4bfj0n6&-VHKdi z2ZM6Rsx7O={gwPO8EHkJeaA1S_`bHQB42*h|Jncb1ky_j$A?A&0Mg3}(~AmFnFzO$ z0RS=^D%U4HJI*`sfBnuQ{7a~4o` z44f+%C=M5mS>pG~J;EwV^hI;7%)@LY5GO`k{FnI6{j%V9(TO!L^&vTNptyZ!{wuu2Tv=H(Q0OQK+0I(xZ~CPzY-s9JJpx+(r34- zJDqMna8eP5TBjDOADZ`TQl#XU6ORA@Hl5A-=(BD_ z1dQh=e|+u7&0iHKhIoFv?&a;-KY#M$*M0BrdH(n(qysU!o!H%2f)fLR04qZ!OJMDo z2s`)0#ymw;it;;CjY1mCi?oaOud}g=6(3VvGHE2s1E;PCcnJWozv}Xepqnn2hs#q= zX-+R3wLqP(Ic2_p%Za(7>8~a%J5YT5xcbuKQL`3%%mM)9v=o*gwINE+gz(?L${a3F z;V5odwTNV23tt!4bJ+<3^JeSp6o-jHp*4AevG3o!ml(j!-Aspj2gb@;i-n$kUhM;&PkYb!Qk{z!22RC) z@OfM9`HWm+4Kg)m?DDf$5`4X;N5`aA(p+EFsS6p2(T^sDiCg<^lOhBND)n^1Jl$pg z%;JCWNkQ^B=j2$Cr>o#bW_@z3%X>=$=RE7Z@kH-Kb3RXuiX89O3Dy0JQ>w>DjDG8x z(H~v<1)%cRABhLJ;NvSlZg}LStv~#X3F&>)7GEf>j(2cW*y*F}6FptzJM+F>JK>ea z>K3Jo*-)+PA&vP=|Er9i}aL53Ua78>OcWo|WLVto17 zWlKXAW)x-qDo%$iTpBcASE@{DIDM$%1g)Z`gg%qoQS?FE{+-_)TsiipnHc2|73~}i z0C15wX|nnVEAl%_8bHw~t3Mp|eWOdC_1(JM?hCg{2=!w@Jp9MMS;q12K zmkWEUuJ6jZija6_T?wFBH*3dxzwHQrA9}T$9`J|`vXL{w5r!hCrLaI#xgzw=FX;u! zl9cAt1p_7bwgLeF`HIrnU#&neWQOL6=CH0}sv^YbA7b=v@Tf0k%7XPlbELDy0m2i_ zhbytt7frL4#jOMYobEVys^gG%PsowyF5G&n=rjHRfYH3j6EB^gd1Yy_xiS`W$>}Jv znqWVhKhxMo9qza+^yEk2exdTjUD;>Hx%d>CD*QYA3UDncW|jxMO!pdhBZ&ZCaTN0 z$aU)a=U%;g^4qWOO=&$R3YIVSoUzpJ_a|g;?x*|9&XCT+rK6?|f6wz4yR%R4`t4J` zzs<_9X_glC+J}Y?;kbj0ih?|4eNI<(?m#_fVb(t~lkV26e{41Y;FGUU;&#%krt;kW zI)EUt@=@y^o*w5sQjh-c&WJ@g!v8(_{blcz?>W?X5z^4Qi+{_AJXm>R=A}j7TW;8> zWcRiLb6N`CE#8*WdM=y@vh5e7k1A;I@9?X49qSQ!k$vw{=Wa~Puf3h ztZ00GV8-f6>i__!I}R4B@)P+}E_WB2s#W8HV*vn1>WQJDi9hJNm0&8Q8G_An^T{6CCAwT06g8T{F*sPi9n>PL6Z6^JwWe2t5$0SwXsqFIQwv_DP-`@F=uU z*O|Pm=F;?eX90?&D8FSj7AM5|q3>5@l;ydK?cJ=Mq8%ecOaYU_Z|3ccl7+Gw`bf)} z0!7Ipm+4QCg(n!LWiTEi)-^mr5a3MO z9cs9+C;J2{!0+oIdOKs?Lf4F+YpU!g?1TsEKHu@fQB20WuYu@p?;Phb`o)k5YhtFb zDg!1H?8>^lr}WD;(UZsdhsC)DzBD>{?byjNLU)A3UK*YJ7e25N{*UO^ZGs4RkUx&n z5sPpH0000P#aTs6-TvZJ2#H0C16Re*k9Gb%9rNM(lLtzV8>%#moM*nV;7@C@W)x=~ zSASMyt_ z;}iIgeq#P{!$%hj*`Dsy3YZk@^WMS-?ILj_qaiuL=flIw_m)@#05+a%OwBC$`RHW9 zBd>q|kC#9CESDJNoZ#uO^}FkdVJ@6mnB7r;ifyAcAvRCV!^(`6Gu8OTG|bNW*Vkuq}8~#AFMjHJoJ^IK9Aea2>0fH zdbsT}YoM37zdX!(ym!2FG1juLdSP>1hu*4ssB18~^|zFjRQcE=eoQy|#GcSckvnJT=1qn*3h=10FHj!F>0{5h48V zBB!PBV8g{iLlr$>3Q@SNe|mX*;2*LQ=XDmM0*vZ0#|PajCHMZq6DjTISS|gEaPoni zLpF~&8ftZCrW}oSj5yYI{7B7F-!`8`feVwyB>@0(YO(+TV*}#%WShP~ZP(ANdFWMWq2fJ4wtasx-v1$1V|r_H5&&THwF+p_ zy*)J!0Pw-KbIB7XCPg^`08+DBlHxrF|CWD=r_AuVkzSlUKK!9+C)1j&e?A=Z(fQVQ zX1G26kI&zpHR0ngZcG>}d@Vlu=>wONqny$k2iAxC?Wz53O-S_-19q^w9&3hX<}_R^?xsx;<{x z(7JM{<|Kk4gE`VtGtyF8&R5#DF7}$f%zx-AfPc1A3II4zappknc}s_WMd)nOMIM29 z$Bp`Hxy^QGpGL*P-Pz{=hOUX5PIYS6Ju<9Njlaa!YbS9VXCrU3w~#s~ly ztU&<)i1!Nqmk&C^pD`kYBRo*He|ezNt|PC%EK(G-JZQ%4Cg6R^ZYs)GSFMbg2>{sf z<-Qt^j_mrpfHt?!*PWjK+lnH6S@*e?o{Mb&fFf-%;Gm`35*K)<_sz`fuV=TFEcbqK z?IR0j|F}N4qiBKj`PZhr3II6VcG{$ZRwpkG{pMjtLk+6nV8<6Pf1KC!BW}ez zG5YOk87ByViRtJJBO?kB{pH7AnSAoy_~1tXPyE%=m6Dn7y)n^$^OrXaUmgVjq?Pq; zI`h+y+isp(>|GoH2i0?BkQq z@5${iM;P^Tmxl+naLU1DrIOCm<*}dq!ujF*3Fes=TB%y)BrhdYUDtKpJU>4qH)m#UM$MUX?>YbTRX2y55ifj}re>nMS#%1Q z;$P(vg>Q2Ck5U9LvK^7mRC^b455<*UB|jTVN2uh-F^BCXdX-Yld3A2teuWUQc?6G> zc04?r@FmAV%lyQ!@L4xj2p-0{nmR5qpG7uzNi0f@Iv>4y=*sef5|mO;xs9KnoLHW} z!fFBl#Jx$Mao5MyxbN=1z7I372-S zwxWWj5jQtS@FM5J@NxVv>e7#|BCu3XCo{hV(*Qty(DsVE@_s`DS7hGXR{Nxn3E!ix zElX_wO<-}=AbE|t83!GFkJ?u;w{aLNsDu5k-ie$rG~}}HRNDs+l1c5WsaCxa6%sok ziDuKC|E|=lzwLyJJDiAy!gmkX_Z#DCXf`Q!KS8COK=@);*_l3Q*czuHTT@TDbhLIc zw8FUTJs+;~vf_>p4o$4g-}&V7@;(z++DrxjBY(P@iS7!^2_EDbjZg3Yq2YeV2q*oo z*!h#O@xnH3TYbw{T~f84Mc>`8-cxT`&xtFnrnY=!1EOvosOu5Sv)(qW@d{ao&DZm0B)KNU(xsN}~Xe3mRJu979Bw350maD~lO zSEIf&uPj4UiRHPU&v`T{!!2V=+{x{aF55%bGt;BCCLZ7U_`KEoPUn~GioU&jU(qFd zQtuPvx5_Mg?QmDo*VxxLlx*${0F!smEqkjeDtdZuoEJ)=Zce+&O;1#7Q@pg>gt+QY z+_Z!XvwQ(y+|g*aF5M~%K1Ic45Y$V(h76aA^*~hvuc$;+HKb)a)Lt6wj3R_Y^qpi5 z06~Y|07(4jb_RfN){*(XVEo6RVgw{HNGk{Ze#LLLLCD3=ccNTEFF&GLX#r6a#Fc`# z`Q%O=`Gp0PUS^02k)4=Cv+5*x^OF7Wy^3z>Iv2XLhQau=+trLU$sIepn7VA@T)i-3 zJ-KV|nyXAYxH4Jg=~4Fp{-fj_`4`vpo3q?vA^>dWAK#XJ!NYC(3d<%%uD2x~T;b4o z)c93w5gv{H^MHm$`xTZ`Y|4zOb}hH3Z%EY512lbQSX@mL1()FN?(Pm5+}%C6yR-9tyZdL5;dzGc+g)|)l$>63%OP4Obxpa8pQ+QsdCiB2 z>9bt1mDD8xsP7J`o0f3GDyJvAfJWas18MngaQAERWk8jrrN;VC#Y2R55d;#NIxd^@ zr84bracx36p-V_Nz@I%f%8aN{o7 zFM5U&a(=m;gyCI3?}P$~=jC0GS6`2`3(sP2=c1MIkNMl-&}K4gw}KYR4W~4uqkaXa zk6mS$lpGzMcUi!VsiQS;BJjM7`^dus26jURxYrzN0xoq${HFw2uC_I&zq<{U0TKfb{c7#}f_4QS_Q$E#h*?Fg1h*dm$gJyp zkuu3s_ULyU(FRxKwKmIzl{5qlZq~2U6>S*@w)18^QX0m`YIi;|4(_`xr)hR)bA(HM zQUke1UIlF}d2#agP3q=<0f3W2;7w+IKEF=rvs<%l#i++Qx8damiyD<+Y}Q{4+7X&J ztdMmRH=486w+sLLVx!vYi^5TkwWX%(sTMs2M!fjrKuspS8GG*qR6T-*-Tk8S{gXv{ zF15rf|D!JoWUH92(=@hS!Zq$8;Py<^JttAW4Ate}rK)6U(l(0ghdEcYQ4$NgOe|#& z93t9vYq@%SG7nsacB0$ORY#H9iB(g`)9al$iFV8|Tb`plnz&BW#AO=2I<%Vn`f`FX zm9!noPXucp{*}LN&EQGJ{pMp^g5=@ynN|u%frpNKl<1Xi_t)7xt%kml^>GqoLg$By zcOn@2n$`L`q$4XuCkNS!p;^thtjXErn+3az1w$)Yz?VWp)l7kz$NgX52@7?$neTEj zJn2}dy=oo^8vNChDMmqY9&V&DM%c1LSx_{@ra=S5=Bv&*b=y-1 zW$4~UYUuHZPO5J3IAHjbku*iO;wOXVlFow&8e%k(Tu&!WPwlTCTSBc0TN&ZJicxpj z>$NDoDo}H|`SFp1G<>JM!sw z^qSV!nD*ABzKpfK#L6gAIK;uqQC)qRoXZYRs{x6RXWdISaUsyyuZ^uUW%@*W))t?rjhK=7T%NVFx?Bt%W28C z)ic&?#}H4S`bH|SDv{ABRqs4TK1@WP#8lEeJrBzdPAIHD?$R>Rc{>E>=&K~kao5oP z`!|Elp`x)U8%GS5!#+75an90h;~0s;J#%9y_kOix;2{BwFpW9axj}a6G~i)!>dWQ+ z6`F}C{oqy=C|vu7O|xJl3bxv|tlieDqZdxWQW?utc@gC;2Q7~} zN8^US!EQrER~04Z=-9ojIoDvC5iLBNF@eTjqZh0D`jvTk z6fu&Y`m6NXIE?;=q&7h$zt`8-zvn2@CbTv;2L=W%LUhT-FBKrc@>?pzUfWA?rBMFT zy*$X{FIlOXf*NZU0v0ntt!%Gr?PoCUg;h5FHgyL#iSbUA8Bav#`^RQBC_p;wTj6u? z%*{HF*mLoFqWZnJHQTt96+58vH&weiy@SEoFN!wCu~q;wMgy7?_k-I3G=LnQm-i!v z|E9y>Qs&Tv0_XfgNP%-I9q&Fx;>D5=VnW6ZM!3&*lf~ce5Af%wS)9AkWle8*kT0yW z>z{x{=5EKoiS%z}_o{S%9(y7Gq`9E#9`Zoes=r2fhqwZ~FT*2WFaH<{);`|T#IE3Y zE7wR_Ns8MabFPL{{!3qp`lT4EAdv~CRiZxLn%60+1k}_Kk0I*|C8W~`eUtB|Z}YQt zN}P99j_KN*k#WUk0!&oHj}_oh@`~7zE3JA|AR8CxcDzPRdmP9$y0@L+?wYo<`WKhW z4x`h?a@gi(J9hkMEsd?s1#&PPT~6nQ`+QjT#xrD!W}v!PR@xGR^9u^3C}WrE%+t~q z;xYXRn@L`S8<7hXbR)#NlYixl&p5mlh3!PdL@69{^d! zz*a9Y!u2i~oOk4m@&LpzzhXb0GJ{ZT`bIJXkRX89{4n3KCIVN{yv12Sam2X6KZn=KF8mM~czjF^-5p}P-_qhBuoLWYCj#Xgmq_WRwaIP52Z-u&*HC3OEt_>e z`Rz#9Us8Z3JD6?tW@ey(#Z*tYBuNc!`42$E$am1-HBZ_86Q~?BfUPc-d?}HvP?tPgKhy!qUIZZDuDgj13|~m>v%K zd4IMh0|CQdzA&@1+YXE4ScHjwHa9m1(2;)I+1Ulap|m>fkGrOvc5KgcK)vdJv{9KK z{8G7#`&stK2jj;*P@}rQgwk zRjmE}^n3Z?se+G%&Bt&8Dk9NmJr15b9jxLyxZ=9J)bC&3tOmNJ(r;jwbmXo0XxR1d zQZr(5+Dy24sl@IYPq#s%r@RhC`@7hK;@=sI;E6kb7w{u@CaXAAWMfU3FhMs}L%W)f z=+|x2IS~1DZ#Nz3zX*~1%-Z4_$Mo)XNC!_CQ^iAmSj_^5(HVp~!c{`rEFZE#_nL^0 znon^(qsX;+-{m(@Be5ZWG(NnLdA4NM<9IgH8$^S)+_Kbd&QryVJ8&79UPj!9^V4bC zgw(-FnKQJqfvdyf?9wi{-+rW{n3=@eOhN*!DYJ;iR*GB2m2Z3W4z=$2j*r(+X8EwH z4FeRiMSSXF5V4dwrK3C{n!fTlw*NQ*4Rmm4q zF_zHNTkB#2^Q^v>Uk1Fh@t~NBKKzh)ptY7cqSAMXr5JLP>%vE}QtQRVkCS(60X5XX z8&`dmNfVq))`KdmfXkj;*8G!{hLhn;ScO?tLn>R-7%kOIg70zCO9ZzxiwSV7^FRWY z+WudkTGEWDX{a$HxgFdy^nPr#H~~WDs~I$xX;gC>2hi-jzwxPbQG~+jikF{9TD{>i zu;qljOK(a)XLR<8knlSK+p!`b8|Jb&4?jGzhBf^BG;?I!O}Z{NyeDWwIx!LZIYNYc zDLPn!q_feD@@RT+nv;e<)QTbcE9ZI_dWM^McUY3^~ow#u_Q4_7`8jyxG#l+cSricETE@=|kox$GvfYeos5qrU9Dp-8W z?625{VEJ-^-1kEYU4M^exhi+1c9+e2jg&_!OE1xb-QC$vujj8Sh3UMmXa7c$%*@PK z&Buv&U2OCSSy}6nn0|Enyz5Iyzys3K(l@uaAQ0$Bm-nllSy==^!b_h`J81EXk@JEr zmc%#Q8ZON|j$Tf!3U2Hw=7nzizW*zhX!2 zh)_&aJ0Up`p)EU^EEZzbDscb$z2%zr(X)?uer@i?2_}OGJadGJGgQ>hM0k5Z{xw4@+ z8W`WCq=oy`(@3UN!3TxB8Ab8HcQIClnbkZ$_~mB0V4v4R4aUDxyDPAwXVL&ftbC#r_&Q{V-@ z?KQyw^qrqT)6l-%7iCa{;!r?%nnIB?Jb=>`A^$d|kjLPUcqQDxdX())<=s1yHTm@_ zK5%nJ;iWJcTIj;BEj^g3iK2g)5^S0kl-}Iy^ZM^;86RMt!?PuXp?K+$6Nw<#w#WI1ORMjb<$ z=AbcuW0rCX`BQpDTCci;`1*GDhUbU`FBr&GkGn1p*!-2|4HGx-YMjYIzx2f#sWocF;S;^PEA?>{QuvcLA)OaOvFuQ1#4qkL(TB0kQ@ z)}BDZWA6na-u+bEqFP;AtDW;p1-rb6)p|eWdc@PUC%6yysH3f%kjt{+)L`l1Kr%Ys z#k9;OsKS9n<^JbZn(o$!&Cvc;!%Y>IeE1geMywkgFrQu5IYtZ(FtK(%emW2j^+@^v zVBL8XyUfQVYRJ%00c4M=r~s0_r&Q6_#?QB`V0E6}mzS5hGL4B8R`b3M2oHC1c82wZAb7}KGchx3w48wx{xgv!sH3S##OF3Scl$hB{Dn9t)(0gow|$3h zqqY9Hb>53|uAc;OYq3n*w)+{oT~+>(I&H43i=>SgU5Q*jeM552N{n|c8P_K2!=lXDY+p^uC=FF@R#Gpk)l5s@h&Va>4ca?FXf1kH$%vOfCZ6rUU}eiX@0TbM3oC(YvnsE zfUtyJ$9>vb8rm5=c5&NhrK2pW&s+aGL_CxvjrPoP99)n7jTXI+m&EHm#C_r}HWx_) zi*Th@o`E(530VbQ?KAK*?t^tOqgB81pRC>aj+RPXykI?7!sms&TaUm<$Aih7U)OuK zi`C@x^z<||19Nj~Dk|3yV+I5F5%7J!Kc7ftKORY9@)X!ue&T%*ROb0k^$wk@nZ$W% zthWr(lOZ8@@&l?veQdFwhqaFm8qO#PNqVK^^6x+vT>2B#6dt=#BALz$1Wb7Dd&(zQ zOJBfxJ>PDuI8>9iwvj~jR?O>l8B;R!MeF8Kcv63p!KP4@`+;$$Eh~ZU)w{r&-uewkxdZ%ySs!`;sx(aEnj^o;g{e?A*7LD>~UUYOUex zlH*r0^UUT0gOtiy)8dR5P|}YK`OBlc{11%R=gSw_>%UU9^KFQcDBVYuIonXYDYoL+ zaw|u0)v0ty@J_YaY}Gki7Pz5+3N!vTr)WPggwjBQ84GQfZaOgPQODpO>OV9=_oz6g zlk0EWsyvno+->Rw0g3hH!v*1y4|*wW33c`Ltyf^&(u}mUr7pLI>#~RNC}u&yE{SN8 zz95t~@7JgJuPTs$#%ZTNGDjqM9uIO|j2|wxj0d7R+%C6&WS#yCBRxeJD5is433b+0 z*I&?|l<1!-siMhT%OW3}mr9iG$16yA<~k&-R~mn3@*!h}PRKq+Q*fRS4JNNGs555Y zoIwGG3uof157)yt7?Ey0G9^N)m-wbb^20exBg7<5Bi#OebsMT!37wg9B{87W6pzeJ zQ#2U$_dDAkj{|*1MU$3cuhq#qwfJS9#K!%j+Ap*8m_|_qV#bFUTZ!q>phT)npcwD) zRjO>*Ze|NY;2mn{%y;Gz^6p43Gr8u=e4IS$0W!D8!3rmZhj;fw+VHnbid|43%h#GT zO>>QvC{39v8b-*SI4blQSU|~aD4hri9eCLu$tus0EunpBuAGZ8`grcPyOfdIm{In_ zON-M}n6<31xA&92OM6&O1kSQ5!;9n z_0wDi_n0Vj3}s%Fz(C0nZ~{|jdRp7uQZ`1%(vP5du3iZHkiq3(wAt;at{&F34N)A2 zAYq8Y_~)2n$itwbq5^}#ASbJQ<&vnVsK&;-G*0`sCz}cNSBnoXQl(%N_=G4$DGD1* z{pbk(hJM59g~fit`o_$VXWjKYe^4a{+e#;dA$Syji1g4%8qZl8_Nfh)I9p|QM4!to z>h()6Pa>zO(dh}R`7NDAHJ8%1XnB5l~z-_fwp zP${zd5C!q|4v*WL8&x$mLLNR55s@0rm#x0wE&-ha3e_u-Eq+Dm2dNr-Wsl0`WosXj6&%U5(sw=EyQWa;ny&k-oSL9PW6vEM;QJ^;{ z!n5ynE=2q$PI-1z@_WUGX4+zJ0rnKF%WKU0~x-q-5{5k%YqT zeaI`mYki4hdtC3WY$40V#@4}zC6rTx_hSWTEG8X8h3>I{e$Tg;*)xkfOEuQlYgT_< zUL6~$HcSex<9yS-+>Nr^Gjx-(LjDyBSd)T^+)7JU1Kq|{OC7DU$oFp*x&*|`214%c z?&|7^o!%YW%MfQvBIy0{aJe&6q;S5`^&S9^_9@>S2??ncbj)GU?dx%W_IkTS3$Y}m zftyQxU+zq|+MpLu&8&wg2F(&T?qAwp{6jp@{!V1AAs`jw@9y#Ax0qI$`_$fR{#wLv z*`j?1uYg=Sl&qY}oN|(!RwMI8`0h8>n|=2b?Mr(GoPdE>vw0nkkIVP7J~>i-*I(i% zIGtJFk)WGQ;mQvJs1l&i6+LdVUlm?)zj!YRk3_Gn=@T{w>ks9o5-NHeJAFfj^RT^6 zW1lux?rOcuF&~$x6(fYZmzb5@TCjI}<@nhbLQNR!36oYm^GU`d3Dt3I!s4!^VyQ-y zzv3uK%&u_$P7O{!&fETIvH5<qAHaVRh)1!GIWSVW;Gp-hftHc%|C@zRIq^I;o<&hQlI1b z3Y8*xxs>VU{y$^c&VkZzF0d0M;xub}h16WChi-DI8gZvr9R>qn+fP*FM+BK)Ql`sX zY@OT|&E(z1%lDC%9E(57Yg5k^{>S}s{OI< z!e}^2D54Fi*@}KSei9a_^Xn8xuXA;ADiWsxyZqkuX@2X2w!B{E<7BQJA9-DIKn|Bg zUp5RQF<%gY?FDlzRADla)EuOTfY zs5=A=tBD}*x&umK5mVC*DF{e`Z?Kb|nySkEDq&$~mzkEPa}V#c(diYA%f!LVj3?mP zTv^E&+!q=ie!S9jULcb+Iy!2?F_Orz(&A*^WVaTCMk-H+UiqUdGbxGFd^{a;c0Uig zPL2rBzD<>O)k%u|XJ9WDOjdi)BL;Hr&);1GeZPISTSaX1oU>juIA^(alz^nImWE0e z_%+x-*&k*9__of)IU#raiIOSvqM3gmlJ^=Ir@c-q#e*Aa{rJt;?wk68PD7k!g4b=* zV@h|Rn9!tnhScb(J^lzvb)YnQmxx}Z$?b1V$FG3@GCSi3bmx$OyVLJ=Rr{ZU#qGjeW*vYc-Y22vqyzq zCVi@dL;i)6_WxfCAT8*1K{VTCHwq7|4k$nkKq8W~E*#!}QwAG({}uwQ#J@A;!zh8x zBU=3bWrHQo&(v4-kyf3l4QzK#kCS-?z9lwTza0q*CKrDKP4$Xq`DRD*lrT35n$mOj zV2%Ljv%&!_RlYTfZ{6cY*CONIEp2-G`{?!OB)q3{Yqqz_>5HL<0Ua*P^YoV_^PDHN zXd#s6TVdpSZYQ^r920SS@-}(IE?X}=9`IR9P5`j;b6c%cB$`BXpQGD+j}HiGb~d7L zi8Qj?$u&OU_wsh`wY4)tYH2fFs|>CnhuGbYx$l<0K)1)+X3(PgW}d72x{y~RvCc5R z#JI{9nIZu?+fJi%#i5B&g>8fc;v*m7!TyfIR#awoOOyR_rRJp+I>yZPhkarSwOiYr zLPdH)1;+h7K`rk~vxfvi>I{^!x@mjZSHtO=JbyV2{2mP`UJ z=P*`fXh5+DCzjWo*wkuDfVHc#91r2s7(vgF*O=GMyhlFP`6Z#3LgN?9W0Mr;;6VgEx*_h!xC^US2|jz4Mnt^wxz?NF<~id34kL*mFW$(be98+E0lTdY*k-z=u}T|66MsHDHiS zJ1dp|_J}CP%NwUk|UuA+qA)+Q776okn9?r!|p3BQ8?bZ{4`_v7dj zR9^?&$gL!2=$Xy-n&!^S3eRwL&r9Prm%S?o0=|4j zKDVQHj)pNY6w|)cd(ZOiH}VgzB~+dX_IQWtkBDz1eE6#Xv6>iLKJg)G8vG=yp8DGD znX(%!)=+b;mm3+A#zhn)7mpMAzfgW|Fgpuryh2(pKX#-?fQugA8Gj5ujTv9pVfHc< z8r9-gDC~=)WwGnBaImvm1uuUsOsT=5RiYubfM8RjHuA!L$1HOzQIkuOnYA{4FLIXC z@36pL5P{@49SlbVI$xeQC*t`_7nW^K_A8Os>YQCySFEASEZG zxn`_Q7O!v-Ay;hiYxH+x){-@6&!VAdln(TXZKU(RY$>9BtL~XK$~7(Ai7yxp*5l7c z{?M~yC)P#x_OLR=aF$d@x^z;%sgm+s8h*zne}M;;G!5}sERoMHP1`pb$@c%cNnD-* zfL?nVC?QakkY<5!UEL+Y0Rmu{WcMq&VlHcEPv9@u$SSK!vSr!r{JZn?+AYjLn}zGH z;K-WW^+#bHuh-2X>ox5!TUGphw<4u_w->ab!2#{s4mx`&V=sC6999U3Unib-&5Y<& z6zeojg&Uk!5*_2yC?(1N#oWv~AVQ=o8ejq1tR%&9J+N59nU^kXG!~XXA=XOqCWNBn z7yT_Xs~!`ty3lcBs2v!$UPaG;tx}`$l;?Vbiy^>4qzd6IHnRTI@tx(}uZy(K5Lx*s za&cFc?1g!RvBQ#%6lxt$+Z^*pu(~?p%X~#j^h>LRFHczLU_bg`nw#Nsi2O2B-Tc8> znqr+;rdXW#*o$5E<|8O3nCm2dLQ@;kz2?4kYw&|(tT69q-h+KGG1oToEP$1Z9x5zTv%F}PR{^*@3}TQbVjVF2+#HYutUN5M&3_I ztnn93i*5APZnQ#$Me|mO7A7&wgv6AThwA6YEn9ESVeUuGSN3}e>W><_JsazClw=T; zR1h%9h+372Pf}jiiNZ2q>$eV8v<1}pMe0N^JDXnaOaCrw*6{{8gv8p5|L5eDt5ryU zgUvjm&qlm%pb-8N_?-k9ghpeBt@}ssPnIv!y7gpJR9Vi$&UWfYk~y6d&bGpWtRFQV zHhzD162+m0WjAl7^ZSi>P;7*)r{@|%m0%G10}uIMQ&h_-PVU-_kKO5O&vtFI0=tm* zDQ}C$V2TM@@q@h0w^hXDT8fv(L7zG0!{8)Cjq|6mtV8w?`e#V>ko(^b!H$85yZo7E zG$)DE)iXO2XInjrGFiDEDVYeVX2vJYFOWz`hOndZ$Icn^$zY@E8d|gFcaCFgH1V;) zpCeslNg0Z%GB$brBVmG^K03$ydAsHYMK==mD@;^uxgU!l7`zjPeE%VRwMoGE1U(mt zu`*wavqgPK-iNUMetpfhVdz_cI#}65^_%+a%rO$r4c^aHAASDdU_|8VkNo}qd$r11 z$stj1+X^?Do>bJHJ(}b`$p&YVP-=YyKSHQF42y7{Cn}282pkzn0Z$qiw3a^~5T;yp z&;MZgd|rO~goTn?kvnYtKpb=PN|$A6{P_&=yTT91g*svtTaRXr1*7u%Oj!@wpNVG# zg0mob;Ts~Z!Mb-L0HMp#Z+ax%XsY&;$Ly<ZTwVBq0if8>KXEWe7-xT zZY}jlLSto_WIxO{Hd-_x(7dS0FUmrAURY4)tep|az7ww#=cY~Fo~sM`O3lm1;K}RZ z98l<$`&lJV`%zIvMJ&LFg8t21Wyd|Wm|i}$B((iG5CSv8(}Moo$h8$i14pYESl9-k z;9_GBh+WS|NjS%aUCm-|<+#ebwG6(*3P5wZuOR-rM}w-}IA%Y-SyZ*o5GD|v)G0xH z3=WAu6IZo%02h1C^+_^&+I#s=6WLF> zrAO?}f3KVdG<11jM049Loyd7xbV#d|Sc$={On<4An&j=}+e9W+_bJ0xJ%+F?)?{tx zQPVq8`9KM$ZkNYQ)OvET(JD;*`}SkapFpo1sa?uZCHrL^CcJS5S0)EsE4$a~C5 z1Dbp7mp48;T_5*gN*`7>bl6vOAxhFIEl^|qVCfN=t#G0E)AA1~cYWyHb>E%CK`SJv zvs_1P@R1(4$S}ZnXF$$3%9`THNeYA{IPXKm=j;3ItA%LSm~$I5a%>82X7=O&bjOE3 zRud#S!Km)2#HiC&%0*FIN#nmFiH_~82ps+q&Gp-Pb>*N;AOgJ$Xq@XjLnAUYjn)(l zCEj4J^%s6ff)N>cMhcE+dU}}sAYv~P$`_(cw-}?trgDXL6(<@fE%A`$oAyq5B|wM; zZXpC+rEr8!>o~A~1elee&o5=(f|1&5J^Pr$zJK#VIhmEnNs99;mOh<|S{`UlQJZZ2 znB1NyU-ZoM$a5L9hq$UlR4rQ*?@tv!sTUf#{7z_y2zJ)^bzf{R35~Rz^u5kDm7|M9K=%9lRs9hXTlPx4FOmTJQ6?T*vTtA-TjqKI*bSqPfR!aHYUTki&2}v)Rp9 zS-^)f*{Sr)Ax~vrN$&)SjNV6 zq5z6EL)!|su|_8L{BU0uwBHTmqZEfWQ17R9sz+*GaI3zqjkSB{aUQ*MSuTYHsV^ox z<0)*~m7nvPBaL-lZe$bS9^2)8rLo3#BPvEWn-$ZY%%Q+xln)eF&=E z!RnxiDsX1CEWO6yJb&CQI6e#rX2XJXX7h4$o z>4|j!-F?^BN@3<=@tROv!NqpP&uHDm426?lSoJC*E6dvu4hAq8C1_ujl}v!lJyY7IOnOog1BVg{ikro8M`KK7C|cq__kI176k9r6 zaGJ;_jgzq5J87eRN;SOy_6I?)yce;vW9X znl?X^HKT7R^D#hmTHx=$iXme_79dh^Y7{!Psto+o_(p9{6Q89AcIBR#N3dQyCa11tzJ}>rQ8&7 zKjZZZyq8?q^cs*V!~v=e|A;JtbqpaRQ^!+I=HBVl75kXd6%UQj9d6ljbI!P(+jmuJ z_On?anTgB}?nhc0tzB-b%KYZhiaPF=U}fhUjsKx49s{WltC&=~%0OSgMCcg+;h_gN<-@EHmR4 zr;qua3hOxa18EC^H{FW4qo8QQ0sknZyvh=-<(Gm;l-|vcR)apW;A$CH2zG&2c)Lva1r=m%@<<@#7S2NeOYDw{ zuq{|5BLag@Zteu-YebF8pC#;6cTJr4;QEOm4YU2eenK>LW7N=aVW)Ro@PZ^5S`~)z zl0*#N_rE1hfS(wWAA_szNe#(!iWuFa2|Ep$Bh%jTs){XCE7*|QhNWb3xp~?ekB5h3 z3%J{2Bah0y{9Me<9mq$uML43}qH!&AIahpu)LZT=sY}1e7;Xz{Z>RgUTX7Zt2MIGa zDI7GfSi39}i=CXd*S;n5wuFdlytj-c(9l}OwBG(k`hcB$Kyfsk?nvPTPYB?RSl|hM zpyI4$A@cl&&BS=~gYVm}ET+>6OV?u``e!J~Qtuh7I^$lue3&Q?v?j>0BMcSRxqlcZ z`p4U$E~m4H+LgYF1Yq1h8txm1KDACy*cX7oopt7|R%J8kM+~{*>pV1159x6k(v#DF z+F$DphjlF-zAiNt%6JE3P}z(36q6h9&kEuA4EnTaD&P zVNs8?>i@QTCE}vXb7bTvQ_yK#0cvi>dx+gxu|di*1pt}I}% zzrj?{n3HkR<%Duj!R2&WW8U=pRf~TX6=j18Ru=-_Rqb>|5WFDnyNg=k|4TaVK-mO=wkDSz|cW9?fiq&pG++mVR?L@e~N z#vYG}KeA8T|G)w&aFY7_>}nSS<8Pll1H+TruhPVXGj!^-~KAFLj+f~7G}}dg3U(bb{;yIudv>i(ILUZ z>BNCgk1C<64j%Iw^ol2KvrA}`inA=++D9$4>e?2R?g3-&-*pt)|-u-P;~M5`3=>Jmd>dtK=tCGvvyhHdGd-Q9^Ggf3&L_1bg3<~@NkFTPAUts zK)=ZBT=GiP`dVw4*$V%SwEN`Q%p3B6)VcsAz7CA<{m-(TQIV4y&y5rcFLCw~kMWTS zv@Un-smbi*v~Xl(FSD<3zfqQMHeor%LX<6lZYD{Jqhcr4ZDIeokIolXh-4QgQzbYG zxx4#+C7$xYejp_!eD(sM0)m`~w3)%acMrrJ(x6&`%QR2@uU-chKCOe7}9&9nd)9P0R5qp#QI{(c6!T{i-l?MCxm%9Iz zy#OxDBK~GNy2^5=uXN6qiqq1`9@2PSBc$xf9$7HC!L6 zuT^5w4Qsov)!xxm=+#MKdaC-Lk0di0XWBjSlEqVSrHQ+Bn4JqbgEs^}1X!UeLm zni`$aWa!Ne{e9WPu2`fykrK20&(!VPK4B&1RT40ee6d#RS=I3UdXmlWN%*6*!6CZ_XzGF~b0|er8|fPa9q15@vS)w- zocv{bYa7nCkqDQ9uq$?V-;!$F&&|Tgc1F^E$ zA)d7N2fn=c8~QtcJV_86ymcyQ;{5mp@XdH)IZ&k5f9&zeLAKghK4IFs)1B2K1-(sW zlq9ghV(t3ZL(4E4(?dQGs?Ig9QaysIVM)1%hSa#7>k|k@_lR?e{=pfQ_c8PwPegv6 zaFV$@oaC7)1Kph}X}OGeE?305a?r?0GNVl@eB=5DHn|l6xrF>ZsmXwp0SuI|s_M_s zKr7Ro^${Ybs=ri5u5o9d!k064zV3H~+Rpt-xwPZAD%c4`6BD8g5loC*E`#xP;&sx0 z$#QoV0mv-KU_olYAI}mC=WpR-W{eG~*C_XLL-$4%565@9Z#-#|3jg<(*;5`!l33X< zK7F}hnwG_aqe7}~{^cwko!X?S%YC$}n~Yb_6b)AB@Uh?nV2Qm@fw#H{Kxn=l5z91> z5ofg6>!cj>$(P)FhT;1-F2GojtQx30C_+5uMRSKLkbv%(zR%f~bxui0F90)TBXKqBF(Bm(|cG-O1z$}Whn)gLC)nnUrAoizoo7^tUxx2Un4OVCtoAb6wMH8Ijn)gj;datTeS(dKwzzWT@8WCji1_0fp9<^}UL+wwU1+R$_ckRN zL*-#*c78(jgP5~phdZL|1tKVJqrdxrQnBfyChZRil!#XBYP*nLe1FsqXi>0FlmKLT zgesdCP4aKuLHLqISEKXIotJD|8azTi zfXR5EAkXg3?T{w5;_IBU(l|BW9Z7B>hUWv9QV~NzG`GI`cc<#4MDLs%=A65dwPd0W z%SdfB5j*i*k1A~~b}5HnW7er1;lXS7HjX8`@Ol4bqUEY*)>&Qk3+@Re4RctjX?RT!Kt6HfzNGO3(vVM;Ww_@Wl)$ag1AMVsnwX@o)nN*Yi=uDq?Y49Drt^5yf$ z?bk=c|5-dJ;o$AXuS~+)r|-`~?Kjv*)5|>WRDyz|Yv)i(hA)ig#=of&vhS7wbms#U zvXFP8U)q+FB!-iI@ojAqd3PE93VcvN*I{7~&GqH5f}-AbSIGMI@9Kw-{!xDQyC~;s z?40+A)Y1h@&UxH-U^?k9Ybcf+4ZSQU4_vvOB%Hi3OjQ6-nun#Y&-5sk^E-!3aHyiq zYYjubR_M+@zYGqrGrJW~yQ-@xFI_?F+(w-n_`k(I$kohuf`rhuZdC_o8As8c`E8su zr6u`6-3K&ezeuasmEJh6TzvNp_M(^~Os~e)x*0AJl!9wki6G5itN=npK_bu{5&B`y z1@i82VD?TGRMN1Cg}=flKzPpHDrqw=8VXXIt?`~%! zgUkxjocBss@n|{!vTAa0HHat<*pHT2 z9(+is$4nHGb+!K1@rC&WcG`u=xC9O`a5z^o|Aq0vi4GUQqx+gn=Gy)FFDJHkk|&WX(vuBR~s$4t*{Ls=f@2NCUomyCE9G zu29EkxEv-kk^Hnl+T%g<>68%h&lM|G!DqM4Ywo$IqkN8r57_MJsu*OSr==miRgDcb z3)Q;?S5UsQ^4Ngt&2DU?4E;V&qjip2L+ttQ|5nptKqDy5=3JA{_cDU~zA^B2i)C~v zR;+^Tm?ZtCrP(gw?D{xN=`>+JTS)+#AHbCH6B0e0g(5qcga=CAS5bw7^`XCCWX)j6 zc!K5KktvDaTduOIv-`9ZA4#STg-`WAc`~D(a{4ac29&pn4W^8CAHYBzCvE;CeKq4? zM8_iWKtqQ`fS|@e-{R7mI2FhxPz%>%De9NKp*G(c6LHA8f+U?DA4>osn>9J?@(f8EYn7h=wo>c~0si2ygPq9t1fc9&SvNko8 zFSuj>4}!$nyh2S0zLRjaIjr zkVrs>He*%cZ*Ev71EH73U8&&zi|)`gl`+UDXDiiWbLiJa=!LOCpD1Yii|e#0;9fo# z%NOOTf-iYSyy*2mtm!QU<(fiMu)^?JJIO**oI&L<6sN$K$5(08!7|k}*ZQjQACZ7p zd*QJ~`lrtzJJAm=TZbQ$A1gVg`+h0cYFHPjFSTp~{ZEZ+UG~eH>>t9)UGlHwNQdky_^9sJEdt6e4us(tz(KQ7q-hZ*ie;LMB+s>{{dE;iP1 zSzg)9`|1Yfon1pjhkk1T3U2(4u3DY4mt5chJ3GdzY@w$|R(+}hO`Xjjo!P43f0wO4 zF+Zrnw|oO=w1lk6;$&b?2}?iyVIxlFazFEQLX<$Dik0K ztN0+}8TO~%(#xk_lOz0x6b)x>bnz}PCZ2cFx;=38y_k1!^$iJuC!$~(@C7I3$fqV> zd`Qgg*L-=`4u8!8a9MGN|1}1ncJ#?O3Kb9=JCFk1f!rrHupz1CytvSOxRW;Z5C?AR za7D*;7_Ep)2yF7XgQeuYt2+Bp7T(!G`tJ(3HDSI3y6(oWyJpm*6Ee%6c^KW}q(Ed& zGlBVyM1n>yhaB1Fpijx&IwZHi=0A5?-B;b3ZIl3&|M8GCXE%;;}KhxcpXzp~wt=>kfSk zr~5EuK3l;Wo+e(jID2|S7tnIgjoyHN4H>f78X3@;2jN z=UnIPy{l@kT5DARBNJ7E)huEYYXo;g!ml0rD#+dh1Toou$B{&W&dKycn?Ip`kXR{d znu2uVG^LGlx*uinzjjC&%j1)!M=%)y|2DK}T0W-#tB4Y*U$lPO8_d%XoHakgL{8-= z@Qp4^LvWeTZSv+ZUZi$J;6$v0V&IeH&~A_BMu_G$bGRd(vigomA>e!BR&u5rqkp2R z4Z#akS!o3Pm-M%Mkwh=Xk{>JTJv5XV+EsYmh=Aub5hERSEV823wI0BKh(iuBvlEd8 zA90}z`*?{{yAcK(CY7PRBg7Ilg`BSnvoa3jiyW0JI6&?h#o1=y1xjKQ;Rjdaj+>~z z%eHu9hmkId1vUU6HTVg?A$*IXyl7N{VHCDn+7NXm=AO$*nm9V?DK~RLS`{0Q_yB#+ z7R}wFSd_q66w{TE4BHlh2#A%h>R#qjzl~w;Y8|zm@I|9qGx`4wb07@|4!%5|)UnAf zQpU6|7-miAWp(TQWZ!dWJHu(d7Mp*VAb_|u;@ysl`PAcY`_7*XG;sd?@ZujTI767= z(nt%DN^e#!x6qhJAb%WFFZAW*;pvIW;V4LOWnvPN%X+>D^fglPaLkt7OKp+gblTzQ zH0X5tjg9A(W_xhbQc`{}u*ln$)BH@FNT@35pEQ4(-#+dKFVpy*wg}QcF1nti@cU|u z*fC)Gtp@j{_(u#cR`*vRdj7=;>t1o1h=UR0$dy?YQc%QqO7<-v@bkhstx0*x+L|NP z>-WOnLy&z*eADc_{*G^s1870JUuCgQUzX5 zM0!EOn8^4HeC41IspB?Fhd~k$ia_`+uA97D81OF?=CP2Vm^BUtoVYz(Q@Do(mbghZ zgfBH21<#{QzYI0H#f|JG_cC}K$*!g(NdtXTGq*zH4vELC={%Gm0g3v5T#K(mlcV9l0e=e9i59tIQsR2x z1K{AqPQ0o?Dk3o)uWBSvkCB6LiMuk0Xf=-L<;WXuJ_lBn5UosH==7SHYqZ}4U~+=& zQ%Ep+#PJz9!C3mQ)Tn%5cnhm-Dz!M~J4a<%`1YXmvbUQ2@3>kKlgJK*B-oRWOi7 zykX!8zO8%fHZ$R#b1BYt>n{IIvfTqokd;gN3D7&E#8>mP;d`7dm^^JxTui3V0Yetg zqftd6SCj+^`z>dn=V0F_MGxYZ~%elg=yHY@eycE#uH@8P(SAk60`Q~(?cmt^Qa>HI8#{|H* z^P64NULIBKWC^a$|untkCFIZo+=M(uJ@S}?ZXM|Uf2@=V;rwAvmTrBpL1KL;o z`2N7Sy-P~7@$q>Y?}{9Z`2pi$y!+MYBt@Bl)tZdxzjI{C6Nm%FPozo8f@YWo1`sg^ z11$G{icX)|2@%U3-9>sDT@m~#^_zCakZO7#N%>5!XjudtYfReMhU1W`OOq$Vqs<4E zA=wgPkKb8#X3&l?YWdQn%~_{>kNoGs-gU)5Gm#=ltNZutv0Par6A^$CP4riDe57Nh zguO6GvU84i=fB_))rl2aC}Wr&y{xtQo|!NyMoa^BTh<#eI|2kJ%~K$5gKjT*uU2;Z zIse&}Blj7+w3aZpz;r=025(Dh5c#aX6bx^E;H(~3eF^^}kk9J|@B@vD7_R}2(h-Sy zLQg(kU|e2@aCi^UsH9`4x&T?qJ_*faa!~jwSNd98ZgyTeK?hN?^N`wi-U3~O>?$s` zOWLpgn)%2~quP!#uo5nY`SA0z6?q`;{dZ$rTLEy9T&WB0;T|L(TI3g&%akFsml_ZgiP5|U;Lf(swoD&6<^)LaqDtQ&)7z? z9fY!3l5*|jj39QZ>>Ud@z$>p!X_p;xhia>=Qfk51_Dx$3w$(11?!0h07lP1m1qaGlu>yi93Khr zWqa^;Kd)%F)oJN=v9lAGwJEmPC831=FwWF-zTUzlDA?WJzP7d1ZM|H5cQ|?X;N7;F zuSPpLF>&wVUEo=x+cpPMhq~rGf@0*5p9dKcyqGQv;g*;T!=K7PqS-_FxAAXtv_AV^ zOvn#NV7lAG_mS*q{0LCBuLTw0_T|hGWO7~bg=T|pO#JtETu*} z@CPgOr=uwc6u%Uyhv<3kHlQc3co$|=63Gj+>d1MdEi2<&;}NptFpPF?n!JJOJea>u z2o4tK4C;wu>x_qS9rziv>I>6aCbIaR*6n(lYHR=6Z;X%Ak&*4)pUhJ!WIpeN5J^Pg znpz}eXIC$ufkb2%CogL+)&(tJY~-u0a`(`^t)%aYWMhn1EMLge(}+k9P%4ULo(0zB>HBCZ0F|wYO)*{j*#CLMmf1 zR-1u(<@=J|ldiKPZ^5Az!~Hw}p@C)PF?K^=|HI*^}B=$@O9 z(BH`nu8VVA5&pfsy|?=lRb}P4jEu9>Q#ioe<3$Fmsf@7jpNNR@w^W-a|DmwJEv^=7+dzTM7|l_(0M?%jl372E6wE~;Ulj(jyt%uHHd0R5*z0SY@NQ0rzyh3Sy3lK%U0S53DF{_S_ z2aVZ)8RH#s`z>SsmAEsRb#ipcjt=^B%!d$Ew=*vh8=pi+9pW-2&np;nW1H|4c2yXV z&c^%UR6S2=AnFwM=dCa1{cljig$pS}Tq1w!L0|>hw+@V)MVry%+KQ&oL zRX|VM(Oi&Pb7$km2DZlm!v84PDaPUKUXzNbOY+m~>SFV26da2mz26p)uzg}r&+4tXGZ@)bJ?BNs>^Lx)D(BJ_c{O0*hRHbnPX8P$RD8`u1zH&15CE)TMcS9x_pbi|KY= z0+o7Fc0JAo#c)R9LF-X+Zz!cCs+Bdwc3grvaE|MysH6sDqxADQCdUrG?iG6Z&88T+ z{zs)om9~J#eQ8`*bMw;1#>Vh4m4JX=#bSC|nq`xAJh_1lo7qI_W`}D=YHH`(FCZ!j zJMTEQC67k5E0kZVfXdG%EuO6d#r3_s=8Be&ZY$g6p+{s~63u^x@?QkF>em5ev5VJa z6JQ`l%Zr;R2OMc$uoNv+WWdZ>AkKccy`c5?ZQ<19mgbmmfSs=t#25h&;a4$ZCH*9<$mT2p*4kP2ebY3<$1E_ROws}^mX8Ml zm7Igw${&8DZ0`~Z_5`;+Ieo)X+Er!^8PBpT92`)9CTyy847-M{+*KS9ZZVRFneuA;@@+iy#SJ$1(pxWcEGI0D>N z19f3i{iqNhbYF!p0!UO0VEGAoK6u(xu0P;f1PUr2-H;N3`eSUAP)vn|a32N$GoE!; z4e7U%vkw!{e`niu*{K9Ffo`@4r9Qh%e%>Exjt+gic`ST~+I-C-61ZAa)=&DoXV{R> z2i?<3?ipKu@cM^bop5|`!(fxLjx}q?qFh#8+#~3D+ZxF9YpjPaI{$^;{rstXc3_}T zF-OpNC=!SHr(f?}jR8$Fb0vA?4d|t>fAOSvN{Vi}L%R7eb0ODP`=M6xhY7{gG zfXMv?2o;D!D#S#3i2RU_u4PDmc+&OdKrzfP(D{4TWuH-4ct6%CUEhZw6njT@DB*m~ zdQT%4J6p-kME={OBm2%X(v79@TzIV7(|m8d-r|uwWQg+23g>YGXR4r24;*iR>Ggv@ z+Ls2TR0ElN*qSspHtIH*O}5(aO@Y!w4T{Jf&W`?NEMIOyYq&+Wex{j^r)F0vYU&ex*r1~Kt-S6t=asqcZ$PGs?W0p08 z<25gWIH}ZqjrxKUmKW1$ezUFB3&9yD8wyi?hI7O2iTUp-?hRY#GMQO72TzVavhe*+ zF8q~-O%={D}$p zTqZ_GElo%yK&rC0Y2ep8$e81bTj#Rt@@l2uKz!lk@xMa-6AOj1DB>!G zkznmk-S~W#F13m+E|zwTrVE8Fc|8vU00Rj=s;U||6u$bgH>PDwGkB*d&hnUwV5kED zC|c%J8CXep@!z(+?QqijRCk213mb4C-MJZ~@y(9P4yEhsk1BE(WQ2_8^-&Wg?ONO} z*POInsf=FL>vU)*0}PzU*JPqBT~z3~72;X#^g35*KUMf2nKLC)gx*~;;jN+>G9yP~ zUi5`M-n%t?As+c`Wc!4y_qyAv`PzHTT}t)@t-2_gVifD3vk^@8>3x*AVq;sKHR*Zq z&oK~B?DW5J`ci|!H~#nGxw-nn!os-CfAnbB*lr;CI2x6L)74g&(HnwIt_>duM$(W0mCz{{4~|EkH!AgK{_tls)hdG3Y5Y&ku_$}mSPLo1f)FQgXs z405v+0FvXd=z5n8r8F-8@xdV#ia|)or#qvn=tp1=I}X_u49XKaQVUtU8n``wpNn{^ zQ#MljVeIu|HWM(-`5Tg}@G52?z3t10#Z5mPWC6qH{Q<5mn?2RoBE#G$4uEr;w?*9L z;(g@hHT+Z$$tOu*?A3kXwDtXYlLvTq#!dzO3&HNJ<6x~!AOyiHA;Y z{8O$_c;j+y>WhSQuXmf2p>$FgJI-!?^MNA4xX>HE5=X3za`U&RrWgU$zjt+_%m{w% zZT5}NhC$SHF_pC5_E%=R(bRO~x&8*{+60>F?{|Kd@sX`4^_ztvdhB0ntpUU5rE%_i zj2IK03gr*|HT2tW$G7L#JHw zpkN3M=N+&_$X)wU>O>&wQ{Qu(qKsZef8GQz5O9!$SrL{N_ zbf3jAR;7>o-ryn`!jba?Rz3#>g)ZahUl&B}E{nhvk^^8&oB_2Sk`#c-^eHgE)T{Ap zC2K)K*s**JV?E&-uy2TdBFG#+5oENC1RtOw3&P^#3j}cE(QwqRZx>E>&m+NxTk`b-LK{K^>Z_R`K6#;fDiP^96$Ju$609#?DZUI<*+I&3KK{}qV|4? zH7hcSSWT&QxLucV9Xj`{cW~H)s}|G6Ahdnyvqk|x+VlFf&Pu*|lf=fqOWiwpWW=YqbUgtqm8wOIzdUa&90wD-Rq)k# z>)+?wNP(y6ffRFMb~Vi^iL@V}yBF~(;Uy~e)}ujo%tcJIgn)p6ql1I~N1s8P!$CTS zHOS}#B=KGX-68Jpo&1T>;Rc7I@UR$lEi4>C#R15@sKsirT(d?W6cb3}s09VLrl+q! zmS4dpg;!EiMzS^IX#O>wmh5nOaY%pDKU&;{FK&oa4%wq$6sGP>Zwu15yrWii{6bcC zNzCl@N%yq@=t%tlA!0`6>hC(={!}It8B)dyq8Dq`WEx2nE}+rKD4FDHT>1fK*mX6X zrw2>yZ1Kq%3PQPQfOAAja*32(?H0v`4Acq{1w5&<6PD(0ict<{JMF(b zZak9?;Yk1>FG*1Sy=iZ64>FZ$X>3G5LIRx)7m&nQ-zFh76_h_E%G9(qHL;M9XBy0> zK~^a&*uIK^DzTm0+jEL{(r_Km#k16bUzP)HNXyx+p}!{zGJmBYTJM%CEb}F3)8RB*Xttl zS*)DFvNL$dBH7pGkNmu3W4|rI#tic37C0tEfjw1so`ad-FDq*&G(t zD{Yq>s231fMjJpBB&3uZixr^JVclm-%*$J#wO4@ipH<={9hHr+y%Nk>rYi4hVHQr# zrB5HmGr=~^xE`p^97l=PFW+F*w-~tGaO|yoED5$np%`xlxu_1g2d2%GxPMP05P0kt zL?oLWpbnG}#9Yei4%c3dn7aZCcj)3f4!=!~A+l|4{FL#hzJk@#n}R>@Y`n5w++4~^ zAaUX(Q9OKYHsB0=IxT7fQiaD~ZvFUL`!l&7CJ+balyDHR`Pq1o-XG)kY3BCV8sjQ7 za1AR$gj5*O4_wJjsy}8)vmXwMbu%K=j?9+{90wL=5NSBnjX_9&&`Nj&K5U%tZB6M%s{Mx`S+nS>*TLSbS8lAOYrs z7XSI#>Sq_&PtZrWgw`zKy@zSId#=6@@8mXaUry=G{Jt$9m{U0w_8UI^R8UH@Xe+^! zw~X;^D$3r^mLADy_8v7>rY9JIq4|88s8jW>DN@gTl)Kx>0*8Z6|8Sz zH`RMtBNDEU?5l9dFhLuphWvyQbwP;4kJv5Lo@Zqa*?~ZbLvI-Cv;o|*8+bAoGECUP z6ia#6cCmae5c6BE-3cCjqubvveg_X(A!)SS8oAJFG&e65R@8|Lg5<2VH}6iw1N`ql z$1^g%=c&gFD1ZT>KJpj+(fv#lDEoLHXp&{VQ}W$Q;2h5+H2lU#;=Dl++Hf6d)s5;!IENWWO8tX4A@cx%PlN0r`xV63JO+$_|daktsd4VANYsj-p_JvT4xF zh=K8@I893e+H!$C|J$0XKQ%P-!ibM0KMiUz)~?~F?Ar@_!`F)HllxXOKM|kV0#^&? z(+8PyB+qZ8C$3&m{kv9@-5iv#Cc2XL&o3QBLaT|UrT;!d?4X|(AV7hfUmV-ndU}D8 z$c$D_VF$`3p1-^Z{V631WJIz#Wm?el!}Az=BC^?OL8-o-wYrmhtSgKBYb%Haeg^{s zonq{fzdbsg89cFSUvX}pAzRLJ-Tb>NJ754f3Db19`uPT?B6=|iM7ux}T=Z5--Lt0h zulL^%9P40%z+UYVqM=5Q z!~W0ix7FH3 zmror~090=~O}ciVpuI6}eu%YPE)%?Y^jDDw27wnr$RV-kqI2L)W$Us!%@m)Rk1rE| zxMtf-QFN31Y`??UnM_xhDhhZ*-)9U ziX+%>kQGx&?5=rxV?xVR8No2u@_$@_#qp88moCcYeKwZcn7`PP&rDQn4P<~3+KMVO zhU2%*UU^qB>li}o9UgkTA&ydFKPKLsI1jgR7*4B4@a?PGha~|@;^c|rC=n} zT8{fW6`1^?uu`H9Or*;41IwJNcc(TSHQgAY5gEVC3STO>ZX;tg0Di>65bS6G;=;5# zpjjnPW_UVnU9;hP=~Nwb4HF(}^W}Zh162%!#S)>wpSmRYjt5=eQ#UN1zf=6ZL1D6B zKmR_-Cg3Peeb;Y#Xff`$tIFCoe?MVbE}S9E!f%z%Qhn9iq3I9Jm^#NzshwbNbgoUC z7QQmADbEFchv&97i zdxKy&0EMuoNTHEf=Fi26Yemcvo=hJ5J^OsyK zI(F9m5vBoa5aEM_ir@f4jlnh5RY0v#B%41g0D!~{0ZA55XVA4=>dz1$^p1^GgmR-U z#D-<6`KMb%O)9_GPs{UPx0QCrQldnV3TSkdX=t(j@3*1iv!f%)M@T=&(>B(p)y~*# z>!)9<37#JMYCWsM5MV!N|BZTHaV5F={c8~H!NN2hk{OLSZod7UHZ|@kU`KP85I|6w@{+{ z)kW5wzn5(#&hUfP%${k$3zsofuhMB=AhU%uXiY6C< zDwMw`80IwzO(2kFF?d-_1tU&vaYE5bD#>!+_ggQ$#+8>GxnTIJb4KNB*7n`_3XzFg z5M*A;c=nRjoGs($fU|5p|JrgP`Ne^8q}D-NJcm8iPRbqVR`J#815+CF*y z9+cOQvWzM55}0+|bP@z7!+NlXnk@b%i65p*bb?!7}gVg-0birHH72CtH=FW|PrDQP0^!dak*6q&wS*%1#CPZh;1 z6MEu&(2iMAQy9*O>}-x5i1OuOR`*3Z0FcczDpy_602-05T3rw9fPcctVlv)rK(hk1 zG>K1Ibgd|2b(p<0YDFrVCOyx4tch@G$20%*@=;!g!O9w~EgJwEMb35#a6Gz#rib0M zj#GFtSJqZhYha1v2gtE*6hd%x#^?f`B38& znLp13qKyj`A#b?8$T7l8LSq=F0setqq!*dXwYvWCw$!Z0M4-LP`_j{=QslcRb2bX@ z%Xnpv6G20xerQj!h1uR!yfZLMkGJ(JpO7h{A++I2HizG!!FoEL1S0vnZD{7E+gXda zfWEBRGvyiMfHLnzz3|5L68@nFF9X2>A|OyYEvM?^A3GvHbSmZji&1JFY>Q;}RmpR4334RbC{)1!@-II(af z{T9MX?`oo#a3FIS=pEKnzk2r%m7hsaz)Z2WXga%c@9owXKfotWgzm2#j%2~I4;^n} z{&ZE3POpOy8+Th-&em#{+ws2!RrDx~k(=yuR`yDHv@#3v(YejC;p0bqc|-S~E;kI@k_6SoV{|mkSvj%`N%In%$A^ok1&PzAxRlCvEUPIIFLpGFLdBQ&kq#7Xf@Js6 zt8rlL9V@Cax@&)^Pg+Q|>1LMa@GA?}jf#F~aYxX%lu;#l*eF*?T4Wg6RN0ZJtHqOe zC+3v8|2nP4GAAdeg=20HKk=)2$Y~LE*?-$rMWg?AKE1p48BZYKsbePkm;c`u@YZ|U( z5@>I1sI_~MG}(_?algU}7t^`z!6EeC&J6yKPa@`e8(rbiEI?-2KV71vn!v|pd+WbV zvnK&sm|gu%qNF6gRqY;T2R={47#PfAQw5+eMBY4>^HJQxL&hNM!T|f&;_A%do#}YE z6zke%SD4^BpVaO6z>DeZ1wrdpHGj@yj$Iq}W-p;1Z`!kvf%5KL^W?}huFqb~=>ea8 z|5bsd$?9oQ9fv zs<)N~S7?e9v2)CW;osXjs7RQs{8uHMwE>CYjNMRqf@^$8=5Eh|6WfALH|v*d8CA8y zA;p?ZWEIy*E=_sOjOGb1ByX{iyP_O&aGHn0g63`|LNGyJBPEqK!ioZZn{`>q6X|~2sGQ|4t&wVfRaYsE0vu06--@CQlsmf>tR!9cw{kq$hZ-*Q)VPwjVWYL=S z)Ma>quAhC3R%ay*&~FdSr`yA$)tSi(7R!ampd=jy0EDWj?w-<8JUNP`okYAL%>lhZ z3g6r(mYJb#3d7Q+*f5&}p~lbimmsfdlCw!H(159?Ce6bMmPYiWLpam9qJm-Ut?C|n z3{zlt^KY2W6|xVr$iiIRL{%r79VO8W=M>ar9~4qK29&KTJ;4pKM>o#t<)K8=KSm(G)xZvGCgnYhn?mDNsnBUP+Zg<`4|AKu6=J2B(@g)cm0KlWxEqM`~F7 z-0ZOhjhVu{23UVI?1Q?`kE6hFIT!12!+iLkZqnoMO3qR4lE3`-j@KH~(Iy;KKd2Ob z7Eh=HeN&v$jd7LbWbD`+Q%};Imcp_RQ@;OD^KY@@k z#t$o})G!RD!kd;zZa%iPhC2gX+0^*DZSgl6)+bt%S!3OqcBwNzhSlMVyOVFW@Zeh#fk*HK;GzOP?*G62)O zykRTh0)hF1G2ri zU#?#o+AS(^QeY>{(Km>2)SE%SQrOumFF{4OClX*~SK&R4dPamcAMtBRYEU@6G+UUJ z?8%8EgxmVwbi6uTdjrS3Mpaesk0mQ!$vj$;2di+?DiwiJE+p2X1=<;_)#gMA;R^Yh zrt3V#hn)R_n{?_N93vvP&>r*5pJrZK^}`TH8wy3jW`dIK7XW~L`2LTNuvpGsG`(T4 zzrkcW(WF>fwo5*xPw2}e@`O0xe&keDU)>mTT+sFUQR$r<-)5F+4LTXM=EO47;-17p zA`(D}>h0sP2Lu%E^bi^5XJTzUAKiUL?)$i$cXz=$d7J2@NJ$&ue`r8WnAeZ zwm7x&+btTL&eyV6ZZr@8#LCLNk??=8{`}i#y9xS{QABEMo&&`%2nfA8y5DTryDhYw z)!zbLn8(EA=-aYwmJO1-XZjvA=V?qQ=a>q_c@$d-K|>@*8&&Cw9{>ardFaRE zep|`NLl9$V9?1+$$h^eb?yBT@42e9*u-Vl!HsSs-!-p!Zm(e6nl}Asmgd-Mb|pne6BYkDl$)&2P<7T2^atn zE5ymg%bD`le;2zzw8d!TJDIukq&iuefK7(TKodmiaFl&w@(gORwADi=yFzMVn+L5a zbimVp;O|aPX4S2Z&ZTa(;G53GR253If-<46&EO*@r+!bMmXazZTh9mXj&{oX;La+#6sXoxcv8ae4wF;q1+Szr8WM*ojMOmsN7d|w#sW} zg=J+5w_3tpIcghN;20FL9Puc4ZlGl`x>k=>Fo@-7AA^{6{f_=_v7OrG4#4&!MB4pl zXanH5BAGfH(A@A+(@#SEFn<2%I|w zD_5orPY27dkxa!NQ)8Q;Rj0r&o>VQ)($~?L26+!^i`%r%@y1uxRAv$K??@f&*jEjY zv)P)b9#mN4(3>$-U=&jqSjt){@p904^(CKevk|N+D+r!6cBs2E%K-mT>x!XdiF;aw zj5F#9@H~!*nOQIC=MbO}^!M;SI2Rv45ZRamo7VlA%sW5!r0(XLN2kaaFebvV`PX}j z=yq`2(f%XTkt`AL`K8-q+vwPEyW;oO26>0XH-$rOel@fH)FJP&Yjv=-@9Eu1Zl2BF zLX=p&z;bBixO^?n05Y8lGz#u)-Hx(>32DU3E|ul;c3&`??bY>+zY{Y9$d@ zf4h$XGewiGwF(|TwVOwFp(?+`G#V;t9DKiaaVw?BMc@w=CRYddN0mvlB-yU1 zw=W{28U)=2UOf15v1}lXw&e{86U?e^;tVyZ5|ql9>%<|lXh=ytR=EiD8M&_=#^w!Q zP{Jrepu$sHtf&vK1lkizH)?2G%`fJEvP^`%p9;;g;Of<=l3+v6FDI0%Fhq&w%LGYN zHKc>jV5qM-HB_|95?*i1oRkG1AswulMK|FsjH8^b@J zc8m=#5yIF_=^B2^refte#o_%b$ zv$h%WK7(ilJXe<+x}OaVoIGQoIvF#3dO%N9#2Qu<#f}6!ikU{*V|;yww^z{LhM;1K z#wYbrV(?L7lu;-ZxRH+u!lKE7L$XpVlXL6FH>3ndZ!*ecL#g=&`JqJN73S6@R872V z?N=#kaY$F9rIhX!cp*)`FnCV4>s}moD?($6+vj4yvMQc>kASob5Qi(&@|)98xPb&aAcKp|W~CM0Wra=Xw%v9hHaqc2==hLML}!WURaeA%#4luUZ!ev$ZDIF;*D-0KDY6n?-U8HuHo)Qf(b1lF z|0DsZU7rLweJJsigSYf=rc>VKa{WJu?R65?@<*+0n~%w-xv{>}qTSaaxx7p6-0qye zO$G(zv2*~YZMWlH-}Oyj;B(ceeZsa-NPlE4|8}(i&$uvknTi`k2^U{?Eari*ghw{u7_{6 zd|*ZT9DKB9+oB@b5QV69_ebuSV8^hQx8>pmLYhI)Ed}ULD5_YbFDL+9PimYM7Z5Y3 zZvSN!a17?oF!Os*YMKzfW=Gf-AT+{8lZ9%i%|Ns>eP<01=u6}`l*zufrRi%H`SB}o zh%=OQ4*H^?{T!bzlA;{fplu- zI*3`jENj;+PsQiJAFq4DmzP3pKrP|9*nk9i|F!b$+`p_Wj9@^s%$P~*9TcKyE7F44 z|5%4SI%1mS?oTE~FYxV%GfA57)8Q6EiP@RC-rYNWVeWYXqwQune*{$mNg? zQc=ldrdLs^GSARDofcNWfEQpYjy?nUpyS_T9MZQU*9B^zWk;`SNv1j^%VXC)I>C{k zmDyHB^TakCzAdan3qoY!9Ag03`8V$E-1P0liDix)@g4)i2G&wHdE9Do2rtD(h;~sf zmhh_qN@%+Xxeb1mpgSIRJ=jv5<(Gb%q`o4>L6z4EUFk5#Sbilg1KGm zW?Y_6$C?onHipPQpKGFm5;7;FrbU){(Q8*-%)&(LC(*duVCxJW6PW@usbFW&7INZ6krejlAqV46DnCsEdSO1qnt=B z!{z6~;fdd%p|-^+Zc$l*eocunzMNjU$r=lF6y}0y32l zXp9q&XJ~!4Eo^&6UW*@TS#OgE-RS?Ae8VXg*O>2II&P~I;3n@~^llh)d~ZIcp!7T? zc$+tIpDMWN4&Fm~;{Au$9aOL!$okhIBiQCSKN)ow(3VZMw^J=(%j-=GfMnLhX2S$F zWBaKBP@RBpz*~X#7}T2wf5>p6F-S4#fh3sSoSS}v8)i?Tg-xpWaLI3#sWaai7yT@d z+qEWKMU?Xhim3ldx})BD`jO_=42x!g6)_RbriD%;A1$Mfwz>VLGL#WCS_@yFg=5B@ zo)50{3DsV^d(Q+Dq6Xpg0~5Fap&GQK6bNEJ(m;M#B}~G7C~DNrEgwtY%Zj^=-w$iS z5h=>>@a5IXYBbDj-^N5No6Qon1DL7XIl^;ky-f)wGZom1lqicCycLX3lw?(HCrUw0;HFc=1~&!*_;r96;ws@ zH1HQcaN!kSHIoxga{`2+_8j)`Usn+ahZG!$a+H!;cb;mhI_u&vjfeRZQA?zvsTGQ? z*d%Aag)}0rdw!XCS+3P7a`xZ|lE}o{2auAt;haTZm_xh7nv_Vozn+fKVLiOi_SFes zzX)N2nzt}Ssue9a3=v1Rl9e$WB$yJN6c@J@IWFIO)uB+i#-%Z!Mp38=HKs} z53j{^z^SN9V9z))0NI@KJ1<57Ls=)YjiZQn?^I-jV{1RN5-~!f;N6S=pZS&&-A%8L zXSroYdb<#UQJ^(^xY={m3VEVIb{F&5p!anU;%>(YTV}^?U%}gllaaFP*87Me=Z4hk zb4Q{|Vn|)3n_;JO4?6wD^2^i}RIZ!H+x5sIpQ^^>ufC&Q0+L;fz)Bb-j()N=03hxM zG)ypb9hgvR^)as(646mr<}qTft|K!TGJ;_XX6Plc947z}1>S{=jO7IoV;}}`yY+Shgw#{+{0(HSsYa)< zj`m>^5?HLQ7ZwtcBUtbp7ZSzG781+jw}$YkdB>E#6=2LCx*!^^P88p_t!DlxOPj?FcghHHWX? zJ}$nNK%IyG7!Q9|vz@#nu0>MCJEWEs@(wTDgs%!i*Hx=+F|x^$PG9t(3lOY2_8WPx zPTsQ%4t;rPKUW3ZwUVo4w5XW$SzK>)cvqcXhVACo}wy<9PJT61GrdfAeNT#O9%95_+GfT%r zEIv3kY1i<(+lV#IMqt?@%iDlZi#AUlThWMtr@nZh;Ni7Nx{ASy~M0VL2x*JZb^|e3*=RW&{b* zv>zsX(6&^rh9cmATuMrz0$4OuW^4Gr$beYP6k-@CYMC;0-7AGe!o1ULRc*ceLzbd> zVs>;>73>fRnllv4ta8oV(D1GB$yyO~nxb6g^yd|2+^9$8Agv$PVtOGC7Sst60UnTf zE6KcFgjL>=xpET|`UP&4qTIjq?2D4H^a}F804g=~7*=bK4gXTlXs=ZN8nT?wD$tn_ zb4bThPunESYaJxT(i!ow25ZY@5wc)>8bF08lNC!$ta#k4qeVKB*!XWWY<^$R6FE6v z_};&TK$>`1f*{BmV`j&>=_!{Qm7x4Ch>{$-{eN5l&NTwBb*#R(e>Z`M|4A~QbIdl8 zJh7*$n5`QaTz!@V%Cy;kHWugpx~csVIGIi6Gq>P0%kbqBU@HF#Hs)K+u3C6eJbJ>% zxH$M)tWt*wR83(zG8FNcs|AwIG5pPCv$s`Xt~`@ycv~srVSqc z-~>6OJlX6{ulw-zIT#iw0q0#ySxZ>^de;9IRA4>gVD$aQPU(cpD^S&go`fT6qI$YN zboBh&$q-hLELXu$KBJLAy5!QZ30}|@;Ayj_=xSZV(V~9m&LzYiOsS8kOtVNnW%~os*#u+rrjtZe{3R; z(PyMgOHrgk|6%pB(NjmJKmu7NF$six+UXAV_m94MRHtA8l*pxN&;fq6I3~`BT*Q7V z3yvQKI*`LjCQo0sD4?qcN8VY*sRbs2jIwMCSDrm`r2Ofb^IC~aG@Yo9wq%PbXex_mQ$KYVN&X>O7m62Q(Cx!IC7DGZftnfIpnPT z^r1S*9P?9aqEqc4W(3+Fnj(Z1f~XdUIT|GM{EL^-{HRNUBJrexc>>A8#W-re?Z!UI z!V~rgBwqZdsg0Ba9di|vR11hjEPckRD;;4u+CXy-r{M5!fnNc*?lp~@J&i$<^y!V4 z|I^;F6En2pX)3qAoGMa>;Fw*oGPN714W}$xEfK9w-daj7Q6D+uyq4&NvBjf0DK^9T zGNwDbWnAx1dG^FUtSOt&B2X|kt~9h!#l^G1sH zO>wMbY$ElQ&d+PPXnCsJV0hemvkzbYT|;GK*<1|bhs*W)iIn)V`#5iG~C17qJ>V z#J|2zZzriFG7@07J|+sOD23JHz@R}uLJ

{PSp6epn2Y3k`w%7iUpW;?IFk? zsXpM&VJ+^CyKzRt)K zXQqui;E;2`MLqVGbvuIRUh`j3Gd!*_T15Rcwe!8^0?k&jyYXR)Mn-Y!idQbnpxbT4 zKnk^0-pyhB0*#$+N_R^sQuHDeSk|d2*s{Ljo)ek05v5p!b=mFd0OF9$cZGoc-Kr$p z#>!d{&{TB5=Y+QlrP)YwbKBlirPs(ZcMm};h&dnWq@GN4jymq-+N;gk>hBn{nLUOY z<)FC*2TeyegX^diROHw!`07*~x@hw?b6t{-@-NUdYA@kPBowaFwoJlor<(S=D5P_T zONA;@Cd0H{b8wRGQ51@a<3RdtfcMiSUo8fCLYvsrk6G7mPUVzekPBT3iqIAU5ZH-t zk(}5bOSGz1*-kH>DmzFhJzU_Og5=Y%g!%OhLM*nOEPihF|&j!#NDYy!G#k#&G~;cT~mBrZ?xP|!^XC4+iYyxjcwa( zj5cYUhK+3}jcwc3J^y=u_h~% zfg!g^{jDNj=JwL+ElGzMe3X2`iv4Fo9ctbcFN?M-+E~oA$y|wgutwN*>g2vb2Mx>n zT?}I)+4w+mNLu}!E!D0V3`p+%i#yjZSzShc?>#rDUE&#^9GInBUVd}`R|7vjOhNzm z9GmucDBSLwS@Z=#_{o`>Oo*hBLj027YE%w<9mh_GJ{AgEepMzFpDgkOa_xc(q}`!* zB8Xg>HQS>iYymL>_PU~H5SzXS1>(o<*ViCDK~(y2DyQN26~TuEo{YWsTFM)88X3@z z`#m^|le{SAVsHNKvo@}s>_5~rC6<#!%`k4py=?n@AKEF|QggXv)W0oZ)R%9P*q5AP z2pBDPxU5E*p7eeT!M{i(de`vGu$aiYVDr^Dq6VHiulhY&hFrt;H|}#4rangg_5FUr zp}Du_xc*`2k;U9JMGrjvdioa>5%GhfHR=Mb1S%GZ8?FEQPG@&3ukFELs{H+)SGQ0=ruZ+`u+*i~1 zPL;5Kl{Dth(bexj;GwAni~<%6Wa$s4pRS~}z+E{88ZHQs&>#gG2OHfj5m5w(I{Uj) zDQT?fZQ=o;$B&D-3dk0F*Vn_P8sCjI1T7B9C;bBJl!X(ieH!;<1OgF@D%|#`lvQ2+ zEf!L`{*?BUfXc@rRfsuse~^@ur+8GMNd^~yP0hl>7qxaX(-&AAlJeyeC}^Mqe&X|L zSI0kGK>^Bj^mT<@+iG&D^o81-sU^r1vN-W+W*u2G$DpMNS3X3GZ|P=KGw0mY1OrPj zR_ekk*w7-viuFH_F?j0~1{#N`3Bqcrqs1}2zNM@2<2fgQDaQkH!s*Qc~=~?m4kid&4rlFjrtK#Rtr3U zsM^N^W~cQqr}h{$+abmNvZ<(%TF>x78~kgG7~4IZCa(1tii|-P_jC1| zJhm6r%9;LhFIk#goEK=O+8e-AH?$01%UoW_RK4sxFV_gCV9Z&p8}>Q0;T689p7Z*V zTX#}*lAKMhn`YOd+p$98m;wZ$&m0kmdX&;U<{ajwgjz(ye~JD2WtIdC9L!lXX}*m? zHZ4ZaYz*YnSk1}y7~(5Wm6#&de0cO|EmUv$hr{R6L+JA`*J~{1;3H@?z;k&5BVdYU zT!zQ@d9-1mKE2w`_hvgUeZqA6G(G<@MwPL8bJfvp_5MVT;nZjl_3zO`j6Fo)J%b`Y z)+*$9C;RTn7#kyW;1Htiic$l}T!8)QaGIjFvVV4m&yfnAPg1G)I{M7yp|s(j-V$@G zVQ$J+D2j(tm4}4OU80xcS#d#rh7>8c`36MW$LJt~PdCk2o@%FWSY+nvYWPMq?tUS` zFq@0{2fr|Wq)M&X!NZHdr}Mc-D4Hax$~;GNM=ivwg@zlUln%evcC^H-|9d?@;fY~p z7c$`g*!$WQ0Mg|}Mt(KQ)z~|5a5yEshV7?=h=##4l|ZEr=LnM`Gr}XEL>dO4tfj2I zcA_^(>djjIqfd5kdp805Xm-`8YPA146kA zzZyz1j@#64sq*HXK5pFGYDZXo9%w_3vfzZqKLOq*s&Dvzk<$XETFS4bZ(Xdivmz5s zKZje%g?uPtYLR4#0o%0}Yn#2yF%`yE+S3^q!&h_J8UonYGF72uL1k_2Wp1atk7A)} zdU}K00LkmWicCf9143bc-SSCgKa1`*uV`lYC_+CcTDqPUAMFBQVHl&w=qI(XZ3OPR z96H}`nXIwbhJslD>fG1k4qL(T*2#22t2eUbqJg2iMgQmF&8Fevq^jV4q=!Pn6MrZD z)5fib4XkS4W?!%C!Q5;vB!2lwKd%+2nCF6I3Ueg&YQJ~~im1G9|JS-bcxM6GZ)vFl zE6>9V(^R45hWG*3^Da!@?VnLYi1zUhS@<^JTJc1UG2PQf$ME--iwJg<$?6tkA80Nx zq5>s6hn~(4_1quvsz?>cKfb(gv-xXTvVHlXA5Y@P{{GOI1`-2 zw+?;?RoPcap<3fE6`8$wjeiNWIsB+0H+53BFqoKZ9qi2gD&>)8!Bpb(?R=8gF22OP z9RisZQU0ptcqERB7ByT#U=Ek_2jnO?%Lo$~Fdz6G0I*qtbB>rvX(J<{vU&$6nyuYE zb4q2@?wL)&nZFFc3t#ms|3)DbRE_;Q#_GmS1PSeQm2p)J>sQR)j`Y<5$zJbXO=4uU zjqCkGaW>y+B9#?!eDf~k5X@+xaiD5Bnw$@dQs2pGumpXl^=g0Yf!y6taCfJojxl$< zaO#$E?I9N_c(+0acd`A^nU0VtGq>LRxk;9_A)D(dX$bD%6;ZSSDk z>-^VEyNVBW>q}}v4w+!P!zr9wl7RgW2D<0UHi3;>tKFXPwbVC`OMbWACWlt{kEo>_ zn{uX&iUz4K|Dc@G4K=;x`#N6`8%OJPUCiZU#rW$ zKl`-%a1kw&1{%RBberU`Lf}j7%t0ZFv2r3pa$k!_v{%5TbA3S!IoB#QBE+ZHP1WpV zudZu+ejj8ZryD-U`c)hKhQYDkL5%JG`fWC)JWE#-6AO+^gOjPl*1%#p2M17^Uz0;c zyY#QFZ8bFk zCuw|bP9wlNuYw7Kk?1nSGfXcdw2XMip~4JemtXj_h$STdQB7 zQ0fC}Pf8Yoeys-FT-U7-S-j^7t$j|S0ZJL{UDiLf$L>P2zG&vV@1Lk^$|-m@pGHMI zI!ItM#=I_n-PeQ=UiCcfW59D!y)luBo43q6lJDBzB2$#guNlg9*^jBFc_F6!h{}r~ zs?x2nc#WX#)0}AYz4vec4;*Ucw9j5DXrbpIl<*$MPhAw;*qYE__(jRZpcRd2ntwL+ zC^X%K1C-Jihy}xb+hKP>5FZ~jn1~AIFxyaaJ#M(2@~L^=KOvAG@72=O8t%z5A;hK2 zO<}{y*Iu8G^JOdlzGHlNNwSGKC%QQqEeula{lm4xt{Tdygn2_h*#oDq~t zE(dF=Oi3mEP>LadKf9BZCRY=BR^w=*cY_9875^MIPC*G)--*rg=2v2Jv$e(9g2XwR z!RbrCz%3JEtq_w>vA{R*HaKy!i>Ua_dMnKmufzs#y76*@3Cx14;vuNdK7l^nJw-SN@HO9&|=&0`FNx6J=zd*SimA*Q+wLY zzL|Vx4M?Ktc56bqx9qFMVc_Wfv-(IK4g#SGF>$AB;I}zK}b>d~u-Sk#{ zd;Srn+vT@yDQ|H5fJw35)p)$T)QO@QkL3gbsn>SZj(5ZOB@lXZb*b#q0msG?!MvJ2L070)vLZVOHRxuE=gneBsv=}!ky#3sl|ogmfYm) z>IZ+daj6ARgW#S@8V#vr`q}JAfj9k>5I`=o|HTLc=sr2@wJ2KVxgSERi9&|a;Po+h zzlP|)1Q({zhCkofUY!!`YHT~L5)u?kdCOppB?S<#E0!o$MR3Mpk|7t!=^?lv-RgVi za>@t2N0^+(l6FdgXk;#=xYo2H@B@B)F-R1wTIj+R+a>{QQYT(z0Lc02W&)Dk$1DYQ zI86>`uz-zU1!}7kc*lw*4GAYoRYblj%IntA2_SYg&K!uZD7VVpLX_|2DoOarmq{2%L`2KMOr& z-!5Kwe)MFO)XFl-9iPXIM#9;<`#L)!fIcx>VL_@h#mc8YYVtO-ee%K;Yw4aV>HnFaJ>xY`sY2lb!5{+H|8+k zz9Y0zzJk@II})X;k3bquV4_1>ERIa%MoKz!sHGhGj{BoUU^4jiD}z{*nCQrrR^z0J zZzUtK;%ua@ie;%nBw5r78mA>BfUi0=kG1!TdF2>u)$YDo^>Xd6wChD2s9z^wHte5r z)c!C3dFBV+g_oV|`Y-)&-lBb5f+G=O6WEJSo&XF5Ic*K8SF#m(vZ6 z#=t_E^BCqEuGCtA!Kf$#P#S?fBo7%&9jObBEd^;N^d(#7dJdL1Iiar96hD5{Nn9o^ zDn1TuESrW0g%Ty6T%4nybR63mor^oX21;G+;#B>OOjcSC_QR- zKV4>@`{+iIhBW?7Bjw)r*2!**K0b!uTcP_aRwZF*YA1!3@%rxOA17ZO)^9a-Oi@&C zC&hn33_^_M>tKE+{dslCZ$2`bRBmJ1$zxDF+a6OLOD}ABj*5}R@@M|j+Th=p)Wt53 z-^_Ts$`!D?3;t|e?s3_2yRT`r61&>v_RabwmgzkpV~40G6ljxMsP-pSl+3|JT z(9k8OHsG$&#s7ngN&EI8O}Enz2dK1Jp)ESX<82H(fmXOk{|`D9Lg(kC_6biY-87+b zp8L3}ASMVny%~Pq8|E+7U$jKU>15evsX4*YVB)N!v>9ET$fkepfTW;Dv%gEc7wGIs zRO9I*2KpV5aEMepWcBLyj8@6v;5_hJ)6tNWElQI@C~ro#Auw-fzek%%LG9!?iLTEf z>`E;3!oQ{GeLkGCFUz;H4uVq~8{+{rl2B-o$mA&7SJFc;QMYIW#&MWMOuH;YCrCkk zM|XSS9|Dq^T}|95L0|P8LrC;FpfhR%Vm+m;AL@#KP2Q{pzlibeiAN1#$MA-+rD?w_ z`*6?HboKD_U$3wFs|Ebj{2oiE6Ois<+TC{C(2^dIXWK8I6nrp~V z=a{!P6&!MgheKZ}oBgX!^d~Hb>6tlz8kicNK_Th0w6>eRh&Q$s_22bweE=aww7h zKJKC}vH%S|;vwk0SoqpVp8MkfLEjnF+Zcz39>KS9TT5 zmRV?T!C_XJc}H3hnD}bx_6%jHgrdmbR8gkS^S9A`tP}pz+xhAjK{nAwo4SH}b&glh z(4OO8XIpb+>)D{ze$>a9X{ks@z}PHnkodLJ+0Op^FP7eiA&+)+KP@yC85A9SXK>p$ zVCu?u*JoSyCH>s1^U&XrR1914fprR>2en^qXz=G(LJrnwCeI%6UjQ(5APIE59hR{BtYDkfLUQn&IaJvgd@|O&JEscQ#=q7Uj=F4b z^B|TU&U@rgWDS-Coqh^fM$c3kL3CTf+k+vpey>;*3}c+^_b>C1X;B>ZrdxAieXj*- zP~zQ$^{L_~quk115mv*vwIGY;v?LB&6YxOc47ms6e(nP4Yh$|MP>Ao~BC%jtfUrJx z5X}8j65$xW+i&iy8u9s^q{^tJKmwlct6$`p(ztua(IL6jjh>j(Qi{ft_UrmzRCKw; zens{NYrHsCv5*Yj@R7ccH`eAzvxTP(dB;vu@L^G;pIiJ13Te#x6+q8!F_!n$8T>un z=kl@gszN3-VnRxmYoF3jZ|}nU;8)!HrIq#y9Myh{3*po6?e*uCY>%#Y`+=LHfsyNd z_yhT<&Bf6FZm0b5kn`$I!`C_iW~Wu{bnd=ix?L_k=^cH0PFtHLk@(nHi}A=l4ydbZkMvcuYF{Fv}TlUr*U1iv9zYOjMqs$2W`8`bs3iDq4^KFvOO%OlW-uX zK4V7SBBv6QSCkQG-pcJ}jEM$pg<`9N(M2K~BW0@;R6ZvmQ?DITUxy-tg@>4jG6QIX z+)~75T%wT1;M1m!XeMiWAGR`zh4CaN@9`W5PZnqlU}VvhFV~Kyt{ac)e8YneJk$zN zaj=9=sE4G>Aq4O!Oqr&bzZLiF&V7lE!+2-Df1`0&!+Kg`JdrGfi|uoQSXR)GA4#kUvClRhaonTiq#Xw$}X&motJ0JO*QY4O}ijf z-+S_p)m9K*A^UXhqk=98y$WD|Y=3|>BA=3Lemu9+O3zLDXJ@H@V?I^_)_vAcg4{Lv zwVC9x9q(4b)$lvcy78UlSlSQ&kA|sOfjaZYmjP${-$QR+%O`8c62R5lQh2&39#ljv zq1>)oE_9#%ullQduH08Tz|($b8+6ZPL%2JqT@A7^=NfuD2^Wojxy^X`F{r{<#{2c;oyqv%#QQjv3JOvQ;3udj!-EOXCU*G>EDb&w z0Ik=_FXma8D+C&EMhUBV^f*AYrf*?O^}MhFEsL?su9jRJgebNnzkP?!t4V2v1(&hQ9BAs%&_V`?BrF3RYFQ;??@ADiU z?1c8d&DId$VAyYT{4k;DR3sp4EM)K=NG@&wTP%&um@bOlyC0o$EI)0LbME&?~i!DMzgUoBvrdpF0DB2NAEq#ML64H%Ac5Y$ucWce7X>H{S%>&NU(x~V% zwBrA@00JlwXrh!sh5Ywd(ZLcJ)fsr?To0Y;F4V@BdYBwTnR}w&No!HQJ}}2er4k2l zvls7c^-XPdba##4qxmjB5X4EPJ?I^E9Nmo5DP+m-CLQ#G0DJS{{?`Q1K3L=LqtX8Q zZ&gnJtxtYnMX5#+ZHzC z2E*wa-XG^cjcN1sU~$Zy>oTqrV`hNgWlUjL>o%9}qagL`unQSpX}rw1Yl(?zY|Kx2 ze9R*!3%)Q4%e)V@DQ^k1$Y9K<-wGa(5yD8><`^Bix-Pp&_5p0Z`8JK^-{Q%bla%RU zrkzmuC(FX`*n>eIZ!dbNu(+5zI=*Zy;^4)OZu?XIBUEO{lqbz!HGkBoguCC6P>;`t&F__TEd+lVrRW$dH%7U!M))q3JlDy}MB^FiLqHGWT zQc4q!Fjg@jFiRS&8<7yDMO|4XND{ptA;{befoE(sy5giU zyYQ?$T6aQON|tn$j;^iXo=#Ttf&(`(*w2N!csRPaY1(!aQs+k{T9L*p`%KjJ@9%4#6foY;Y~A(xW-gU(UHZw#|9bcG8)Id0kY z6)9?!70}2{^`Qe@DFmI zo=Oj>S+03lk7&eYvZXQnd@bR+P{3)Xe5G1s`be!SpekFgf88kesFm$%*vY1-XYINp zGL8OZ{ol%B;vit)Xj{E_I!?cWw`s%8esM3)+;E%FZP{K^axD`;?y#Q6$d0%5YxZM{ zODTBm)12yZt?e+HFIU%nS91(F1@wB&IpIshX;m;s+H0{RUHMcle1ZSdd+w@)mwJ zn0?&Rtu+g)y#3XHj{WspGPGfvM^`|TWoLL4F=KFIBz|qsb?>r764`-yi~}-)v#Q|E zrmg2`9<)K{VOx4Y#l4n5y~sjOl;bD=NSyBKhOv=nK7=VI|*+hli6iQ$c z>9QsIfWi<36BFS>|H+S|`Y$;OV=Eai6AfG@GCK!ZM18M66f>a~0UMGH3fu_M2nxqk zR0S*}ah=*X2L-$eM@=cTIT8|C<$B5BaMQ&=YmbR>lb@kXIEC6{(C!m_8387q*~rXk z6f75`$q>_<1F$*&5jSlb%(z#CqPl2NR4^?=#|UL zZB9d`uQLhs?wB2~{wZlGHRstLm05u#c9W60 z>ut@U|0vaFn%jh;w9HEQgB`t*fuW;}?Ikz(P&U@5^r8iF4K*(llULZz{+uk)=~}5m zdY?~0`ef(JVHj01R6cLx^>I%`R6LctBx9z}`VTKI(DEMFr3|BsfY1$czb$$5P~RQo zZ{06VB#xELY_Knmn?1{@yCp~Q#Oldn&JCfV5%tK566!_f2Ai>py;E)^@zx-hD z$3{4__=b;y8Xua7hN1v!w^8Mi{s(p-{PtAwAJE2G3%ikXaBW_ax z2jf0MV=$Ng?>}CqMZ}Lwyo2Un;}_3(H0Ir~$Cvh`CAOp7F}wKR$HEfiuk%ShxB@Ko z2fMOsH~qgU--9}X4hnvk2B0?TPj;UX&CfefF|i|goFTvFDx0nzKORysE;rxSE?nof zS)~iu>erv$T%VvQrtM5FG(HGeAn0iB>7lJ*bY9;X0^Pf>3l856@X}9Nq0eOx427N) zw$g4dfk3PfBs;#k_!BMCSU2dDLliJ-mdxe8$tNeLm%pooD=!X3W3-4FZXXD!U!y|t zwQr2+Xvtx<0!hH7CACB|0#PvM!~h6@yZET09(>nodAzQ%&@IR4liozWX4q*}0JN2@ ze7zTOGs!)j&5WTDF8R+V!0Yok+kj;VpBV=@lG*zs)UN3?%4Lq^?R*L09;ryHy#|-w zoneHsL7>2>RD!gR(>E#F5_t4fyTUQ15;IR;&_DYy{pDmZ5_CWP0cKHQv0%`chceO7 zrUl!mOU4l$UB+pKY2)x4ZV%J4$mHUNUd2sUlR!AfttvB_XNOs}-+Wpr;XF^`Jkhbp zxPX|iKPt8q-Z(gx#UkEi8wU9ICJpm%x0YbPR$0)H0r8$!w&aI9)X8J^{RTq$)0J>V z7>i>{1uVCJm6?=;Z7M95TY*U_<;fIzlConF$`t#KLXR*C+AwDzn6n(rJ?l>K8j2X- z`IGOWZ)*Bnvr@j~XDHz}t#SpT$y3LbQbm*4y{)xdUrk0uYO7<1FM;iU-@dLcwjQ=I zDzv=)B1o{iSZx$FtP>w|h`NY#i|h1VFCHN(sH>}+5WI_-6$Cj;_>{ipjdo!UQLJCT z6ZuIr3Jz>ayj64h4JhKjzL(g#%EN94xRiS|{N)z2+3*>`fnB@a9XtDo+L^1IqGfsM zQMdbg>fSYK>hAQiquc3r9pI0Hxr$Z9WUX!JSJTMGGyTrtF+~en*9M3d2_Z zMI2N(Y1X=WCGzFEZg1!ya95#ckXuntxP?Y5mMmCJsIDLoqaT|XHX+^^B$4R;Fx1Wa z)iD{7e%>F78z2fJ#rvoI%y}R}x3yxojvOF{OJ1|e)8Y5TKCja?XG+rl=>-YYB%2g7nwJe_FseOL1!$VL}kGun}Z80{lsjaIGmBB6H^^3goG^>%zb2?c4>y znJlh9SIKMH4rR|W-@^!bPckSMX6Cg3)37(Sww(eTB7De&i%PErFXw~}ma9Q6r|Twn zom|by)~oWCboMw`OmcrE`h!UZB!1op4KMraMpZ#-YMuGDW{cN~F8<4#oxcfpb2&Sw zga2Jw^U5BjXvpQ4msLW4+l-%(6SAIH{@(0Eg>7W!Q$#;H1iS==V?}C8VDDRJQn;jP z`+-CtcS!d0jaAO3%h59!8%Ugm_TM{^>C8%&>=1PDVjAgh^Q_u#pE~aq@9iu3-KHX# z9EfbRa19{=kMsBK3xP`!k#-w?QkEeB%|@hb_rwy$k^|;h-(eOo7}h>gOb8A_=po^Z zHNKQ#d)rtRWMQ*V82n4r<1rRXVKV@rgX@N*WM++w_lOR~w^licj0L(896?dxl`P@> zb0!%l87ISt@DU^~sT0wds9Q0+(dor$8HIBB6apK*hD~#ol&C#ms%EjQ!4f}LH3WKp z1oxoih$$-^Pi%lPOl#|PWP5XZT-G1=%~R*x<~-SoIwV7~#Lc+CA;l$qS+#><`6x>f zGDzvV17U$~$WnKcGL1yVJYtL8f^E*(A97|y-`5Ry^JT#Tsik9vG62g!8b@eSG2eor z>ta%dpe0UH+8JM?co#D2(uDrOP%0F1C}fG?APlrdu%AYiKbK0k@Pk6@&Vq*%x%cca zM9D9-Zf+gcKh}P|BKhc$b4ACK1S!>|(;VZ@JGr9EpGE7}o`qMyJJ|AUByx4Y0Gw|2 zzTe-R?61egc=XxgF@GNz2%ZNka_+uwzu54iMpWrKPJSKp2Q}j^gzVe8?wN{Qu&O5C zHJ*1Ak2m=S79;+*c_Rs$Pf*U2|nFND6^PY~iF#SHI(dKhaq3X)av=M9>FbnaiK+nVM# z%3cz2Pyyyy8f}-2?3Bkc#LfHkLXTr77(h+|;Tt|)(15BRCx8qKCMg`m*A2$+LGI&v3!Vx;lAnoqP2GnmXqxk7fA`m#WQiw zaDmRCsRTTVP#L0(;O1oM(P$VG*OsE3D(x}@*kp2wl-}S62#^p3fdt!YsCDT^;1+=p!mg1L5zWXysZ7gBAK6X5wD6Ev z6z+sio>=9ls1Uzessc5IfL?R4Djhwk7`_d*47F#!F@B4MGJVMP^ z=UgW${_HN>{cC?L{olyTKDOfXJG`ZyZwhSc1GLz8`x^t!JL6xoHhLNFvBnhWGCQ`2 zO!8IV(osEz4nW z6%5`sA&a@0O17_x@qw-7!Co77q9vXgZpTL|$y=E}-sSe9)dM2w8?c+N-k0ka=&`W4 z$L@$95e+65$8u$7EBPM>6A&I65tnrZTe5u{>}C?i&Dmb6SDpII9!2D2jIbyKMmpe> zxV@0vzz=03EhAV0n;MG(6$(P4TP_+wNZ_3>=lB^N;10Pebri)1D7`Zpb~*5g=^-5ADjc3p*=uZ8mDJ7n{2{QY8qxN!}>@pD#5p zNrA}kep6bq9!Mp#Fi26V&irl?KB_8o)f&nt(STY4OfPNoS`aE&UrDqZI1 zI!sG{y-3Js8sp6n5fK=UijE42M*;UJrf;dWBN=phxr+XL8hgMw?5{0-B56G_Ti6Oq z$Z@f~HaMZ2216{jh0cwW$kwIgCAwIv(=)v3Z{k!?usO1B*+N>}Q1X{BH`SH8`R8^k zxC7(=IH{}K|HOb{xvBTCKE>5?;x`oVIKGM@d-#45VgBg_k+&lh@_A6wxkII}_DJ&; z;y)VAH1x90R0BF9xqkRsKtwai&VH;M4sp8HVm{I@!_|Cvh-zxC?LZQYgzY%*VfkFB zW}N5J@qtmXcE93{$9%Kj{2;n?yVv|Y(EMCM@PL&f7vVr=*4`~ei1E-qea;1FXC1BP$(oE!!RgOt?uK3Gha( z+Em`pQ`o6fuyq*ybeQ7&*LTnsgNAen0s0*pxNQe5lzLv3E>E8EY5UG`;!Xm z-3QbU?--X(bql28mo1Qw>+hd?!m<@sS9n1trOxkEyma$trK|ty%mds5O4)4V6MyVu z5V=DJbloR4taI#--Pq?CUi0|;N_mOU_b0^pyjN6UFwD44VBMnmu>bG>|72>p{4=!B z$p2^j#;I@Qae_%&CzYt{CrG`w*Y;I_VKS8C`NgI6(jOCVqn*k>^I`9!;YDr)+x2Aw zas8@e^$;@sk^@&|^d2i-U`rl71AaUMEhMk2pOLoZy-etR^{*GTHKVehw0vO(F&P}M z2l^nGuu33HB$T*Sq?Bl4qR0zx&JzL%nMcz%Q!tAphcko80RRI00R5gDJYpd14gxn? z2Js*mFrFBxO-&m4o6MxN~ZEJo!}KEJ*AG)jC@MqygNq^D~JQRs_<4VOo@Tj%m!plUUR zF)3L&aZljzRzGACN-;9tZZar_0-Ad|Byluyn3*Oz7_45RRekQZs*K7+0Eg?W^hU1l z)BogD`6I7AsN=R+YZ3`ito%?02M@5nax@9XD+7{<{p+peKZM|t{nzvXFn&MmDQ5tEBpM4a)S4QYRqTJpRqlttQEei3$@D zloyDPh7BQS)SiwjiUWj(OI#Gdjl}2+iq|Z;)qHnmNx?l<=ms2h2AR0l zKmDCKpEuT41!S-R9ljlGwu{4#&gLlaP{F z!1n}7gNjC6QX@kaHw%FX3b-LrW{1F6CNDDz8LMzseRP z4SRDLsK>5nOV5y|2PKy`nxfJY>Q- z3v-pI^>{8{suldTy{+}Hg8fxgad%uvHR4|=hqf)%(e8lQA>7MH1|`AD$WsL`LLg7T zwJS~3ko!ScM5iZj8vLl|G54;fc7=r;VF|>_u#~wpDxE|m-tZn#!`y(ip=m&}UMO3J0Iq^gUcL-3( z`BP137eQy!5%YI-&LJH~pUHF1&HdEJ1I(OpG&1<7Eo!<<6nI^9DLBxLt)&cxj|?>i zkdlQ$7E3$->J9_|LtM^2QRXc* zX&}yyH!BIPvm#j|7#|@bQ|GvV|1b)6i{&?WwcpUU0i2gJ?0VY1<}>teB<=diPIfAb zbA|p%-@e%S)I{|z1}k{CtB9xoIx472`PS4o7vtRaFEsPW4LXURWi0k;n=Y<8oRD0n>k%vAtc|OBinjP*QQLXFcS4!qP zi<5sy=8iDe4J)Ch9s5~*T>;`F4Fawney8rVh4I%f)@V>D*}kt-n{Q$h4p=r}bO+UI zd|K;hocV99L?awyBh(tZuDb8nAo85Ao5)7Sg6pmAry!; zL2(!W`1qI1jg|w(&HUuAyyl7kg!q*<+`s>zpkojlzy3kQVFPSsXk2Cq(X<3o%iS?c zK+6edfb)pvOUlWW2J`b?@=@0WBTJx%U>wwiS0XRI!vLVsE$px4=Z~2X3xfZy1LH&Y zOLkNtkC|8T;2=6!#XILsIomH!8=CUvh07&0<6oA;dLe9;zhz=zYKXfcF1}bK*>cgzJG#6%|A+%>h|xaRV4xI2H=~HY$jRI!;};Q+(OU7U1a!|!u9LeixkDHPJ5eW8Z|{<)5`K4y^ar`4Kd`q1aoOF=@mp_@(LyBkxZ$fmr6 zkWTJrU&=0rkNc+XyC(Ux?wBIoM3#s1o5$)$WXE+Ezt21t*Dg)x|BYxkY&QI&`h7x; z-wU291BSnH{k2O&{Snue*UgLbDf`J_X|O-KK(zWuJsrtoJ3*wc#NBkXQgGTz`t`?; zA6lY74gH_rR!%%XJ4Wl}RG|&N7_+P#62`=18veRHra@)9kULirVC*Od^Yxm&!qr52 z{5EY;k#WjUZQ8%)DbC;Yy;Fb|ORU#<9XR zf(!mh1}&o4%};p;2?vX!CLGy#svpY`;Udn>K!+FnufzZbSIkX2ZW?MlwG;@k6huToP?#8H8@}7*A z1k4Ch+#$OU8o#V*53i(hRDlLMa7}^^NkNS$r&M|UD6H$_^)J87W1+9>s^^rM3h$BA z@V*4_&uOdw*hqyJJTN{4lue8e;YaC2MWQX0i~t1EWEgMB0o~F_j}zpQTF6Wmfz;q4 z#&y(Iwy6-pW@=XUO1?`ArIm##-z~!jg8S=+OKS?jQI@bO@8$YxmA7T7%83*ySqZ%t zvmObSVPH-qEzsGSL?L4Xx8#&CmRZ06NnvSRQdYTWQa}mE7^gHA5JaAyOh=fKaZr)0 zgMLQB$Pu`0ES@}puvi~a%5tTiPLVlOlGnqefSW;O2AUty@$cDNij#&RsReDN#3lc3 z8N{%M{l6Aq2!|^_;L$@>qjg-l@dU5J;(@`C7{mU1dsl#Q$sWb=PO0xGtIetnm)f6Gh4qRFl|KNqg!aW)?jl!-*WcSg2R(i6-H@%R(b3WST&6~!mzr{% zp;)Y`t_tdXh=|LJCIem7*9*InJg3ughg|%(9aOD(L2@m0<;RhvXo@Jq;rK2E7?KUo z-8d;iuis^5G{`WZ=&T&)Q5vpI-`ix0d`&GD%os0z!oj7XLBoLed$uWlmm4=?WUVg$ z_uDC<08rLYYHI303>N712@DJj!w13q0Z^BeWk4!Jt$)nY5Ehs^>$?2WtuutaAqR^R ziSH7g6`P;$FD0hBFVWKUkm&6}>*ap9?&MO6ywxx68aY)L9c#Rx^t$ocxob!paq&&& zOARCpNf|XJau12IE-5>`1@%5qV`SmwsCCAx<)$!F?Sl2^E!&2VS!dm50qDld?Q)^` zsidwfF;HIQLfc!olXUnY;6s4{?oRMWAxD;-C>b3RfP_c**{oPfY1wVNB^Qf8=8}`% zYEQ&BI2NN(<@eGA;r(vCX)wQRxGN(%7h-CBRcyQ+Ibx>^)b#qYRwS}<&z#Zcs@8fG zU?M-w!UEE~b-g*Xk!;v(Se}Jn;+2 zdV~RP#3hsG6MY6LMbR z0RH6;cO;v5{06LJDA{%>4}rV3MM6J3KqsDyzcZk(%5jVXqvG>M(#_+Bq-F z(}nMThhgq#2h$PMhx;m{v6KepxDby@E%il=-cy6g{mDF%;M32kL){ih#O=pE`S>}Y#gonpexDTUPWS0}~T47WbUT^KGax4aN*@|G{L#fF$*M@$VZ;@2?QM^PrUF zQDF>mn598jXs5psOrw>|eFZIrqbcESO?&>BkXX6|_*36Csnkg#(Qj+TK2zLy=iYAWc#C zp5G)8A9H+2U=1%i4*4x{@Qi4EY@81d+Fd4}dReCId~X}uECb-Hqe2Z#!=Ug(CJ34M7WRl~+`~fbx(Rs|~wM2HL;GFTI&z0$%7F<`1$?4p&d$Ee1}KRhtP9 zAr>pM%r<2=d|^CA@-wsPGX2(6)>9sJj$;BUd^lV)X}1u_+tMv1_dl-Rgb1262RLo` z)HlwYZPR~@ky(ob_Sk(4*lx_rc(nD6pL+2BiYES>3P~Lu$_6sm4zbXT2+^&LCNU6n zW`qLRA#y^KulR@1q6y2&2Azb*BsVs`K3?bkSZi16@RYnBRDR=@6O*GT{%2KyfJgIE z_h*XqAX82L;m_>H^WpdqyZN&GGo?Rk&jiphLBWv zW9*slL%N3%6-LevV2qkswHc45{$5+jtX_z>G!WiDO-R*6^}DiQfL>YUkmi4y`^ttm zf~DQTA%Q@UKyY_Skl-vD+}$O(Tae%y+$Fe&;O-8=Jy>uFiv)LFxRdjq5BI&l;O@8C z>6z}S?yl;pdb*$E2~h83db`W@qckWgqvsV>cNcfCLk(gRClz=CmY7VQjtrElzKu`4 zh`8$M*2tk0LBsy?cDVL~=Fl$FqA_c-VjIPixt)rLr>5E3N~Tj#*lT*lFjM_)ceE~2 zU4B~ngL&H3UuKD2Lpj-ztgV)-t)I>7w5t|k?fkChG#$EN*PuGOxZBOaTsqsyaCmyW zn8YOJ5&n2U5MAT<`~)%ruKPY5v2{J3|Gqu~iLnjZZ!=vc7D4(m(}6SsWD35bd0!aP z$(f9aMMhbfZ5yA*f}`;vypMvybRgpDuOu`+At_J-FbJ)w7{n$NW0(_v17D8m@#?W7Q%?dpGq5eS_^nbf*3u*gw$kKxtuEndL?Fr9 z$Y;a-rEwkoJe?A!u@6-XmyVJvu~S80=r7Fqs1=r@E1l5$kf6NAsg|S#OndJA#Q_>i zt4R?G>InKiv|XH^yj%s+^G%vcUarw?EK%tBI954CT2)wyQZp(>yj#~eA7w1x-s;1% zz@<Fs*+X{%UR+5r+L|dxKwM@>p5bL zMf+jtS+aw=801Kva5TWW^{C3bLnDjQ#yK^FISyXJ8_OW zosTLh(`3v@r~N!e!6@}W?fmcTtbdh$_oEPBnS={A)u+X?X_eHkC@_`s47*yYS9Yn!d!AUH@KU{9T$ox@Qa z@6knF`LwNV4kutqqMgtThb~XoBhyx`gEHa{l6oDh^;PQw%dJ%*+RSYw<+)zcM)%v} zx~eO8jBT5Qe!@k%?S^0Ycuut=$LDX%g2+)j5dzF?zpRNKQHz~vfv`Zae5qA8*;)8f z`!-KZ8x zRT*<=yD5(_r!jm#fbz31ak?o8=!QG15$^>m$fKe>z;2`~cc<>~AkU@<&`>UzG4@B! zMo`SzAljyp5lu=W$6Al;z6*)+fc5AT1Ew^4+}>9{=7HH*j{KfQp%XF$XaY5z>FlAE z%XWE1)aO$MI1A`7-IBaf!tod#msyo?6*2vm$4=_IO>b=OPArI2VZ-ZT70Cj#vOx;_ zJKRpK{CcxeRa1=4k!qfFv;r9G-qJhjp|_sx?56Q69SdEYaZWSm5YvylaKfJr%`~=e z`MYW-M(~^3brjQIs=j!o(RQHD@0l_gE@ko1(l&9QQ&YARYtG8%w`9+1=g@Yt@>0Xl z`!+eYDDNu#GgSQTmuDo;)_xbdr(NUPIl`Ag?a7&L+s>YHa&i_HyUo`i?`w5+HFPv} zVPS!6l?e+qI5ZR)9xi)#u(3*~;cv30fpUpjR#uj7qb)BuAa*ANxA^xj?nK4Js3<9~ zPu3x6PPCmKbD!50o|ps~LZ6+UrlSdhEhEaW)aSqdozq;q%-lzC3GwL<*%i8&TXt=x zocc3@A^mRq%?|w=#y6#7ct!0@xueXptYg_@)skOLOeSk@D(@|(f<}oxes|wtA@hrz zshw0=G_qc_xU*Ls9=)+c1T?FZ^z;Nikd!fYo+Kx~39ckvcG~dAA{7%YKm{(P%a^lK zPPNs#F;)79_yt74jhwB)6vf>x)dD>mpV3&0l@={u8H$hQ)2F@A6YO=YBF97mwZX<~ zQ7+uc7j?gAqM{C$sfLytUSE_%A&RXlOq_(ea|^k7PQWCP`rSKV99Qss)S;AL1HV}W z#EW{YNc9kEqjJ^9f*Ut|b|s=`DJ_W_eY85 zPWe%2H1INPyiiJ@cvW+dk+Z&IfVf4C(%w67Y6_U@!ly^ZeP2I`R3CK;w?V&jf*d!U zji497dGfc#9gElJ&!FayH^a@wPpwE@Z4}U$Pfv9vEIwAFHt|dr>X);(*ALz(JbZlh zj@mtTFWDxer35vqlofri^ExK2tSmcE4s%FI0=lJ+yT}c5upg7Z4e9NAZzoqpYG$&a zA9?KUFPReJy`QP=^$f|k@CFS!FdYwBe?l$LADwu z5~fgV(djA42kD(&wO!Z7L=4WZoT^t^8@#)I^}N5L3wv1M-7HCD7Gn%GVKQ{H8)Jz< zmX#<&0t~v2M_)}0+y(Et>4{Ev-yu14VI9nW@84e$e5@tVHz+l}$fhGcrh^&>@A~Hl zT)-XRtRVC%#dhB#YF5Qzm!bG4d4}eZk^*`iqHYmzfOFtDIc(+3Qi|H@pf(sC*NlY& z-d|ke>1?jROZ%W)e1xA`V?9(mQgUnbBqU5r#(B?*aT3mJFXmm!v?tLE-7F1lRKTA- zVu{9Ss1KC}4p0gO?S+Frkk?PKP@Y>ES?!2MQ?bqm=5K$8q5N1N50`Xo6|`6hw@WLPAqQRDDyi*mK~3 zF5TQhTq*=ORLq}{?hE0RcXzar;VSGAJPbvJJ_@W{%n>Bk#FL#m2Gj^t4eb!|2cKYGMl$eYK>Bddj|1CtWxy*kWT+e&(`M_ALSCxpZO zSP+TnSl4M{ub9;5!e_af*yE}Bb@NWgN0-%rua%SUnKAi~xfH2_<31IwBIYcCJlp#2 zs|_G`>@+VM;CQ;xGdnw5Sy_30ex8|m#(f4T>Fe9QBPaw9&H3EG!)0#$C#siR9O835 zfh@zyuy|{C7O^$*G*CP7mr;?UC>KG&u#sJ&jeNAp>o(hP&3DDA)3M`r`r5+mH7CUe zZ#Tv^6q&UVjkrFTOyLV2ovyneS9Yr@xYU@wuM~pjdsi$7*uZ z_4dW?2qq=P&EHjJEhfjH*;*EHS}+Vi_(1Nl@^hCiYyDw|xgd4o7Y2U_k4|cQZq=%t zPt|t#5RIG`bH%I@Hgt$HxaKYIyK_pVU3WAe5=2rB_;ujqvvXFu^*S*5gPuGN_0E9qd3n1Hj+`qW z00=`z=m~AP-T*_gj4}(ja_0_R-tKo7h64Dt%!Sz%1#^tg?~*C>-ImXZ>iT}c<@PSd z5#bdk%=$zD5GZ&}c8CVy|(A>8DeWj}T z50$-3=h_BL-kBlR!>yu8)r!+Uw zP}Oo{)q~-UJtz8MhxuFc6d8K*KP_EPpx+$-3R7i#L*DFG;Z)+Jz`YfOm%#C)zZE2Z z`8LgV>jqT?X|XFA$-h(Z>$A;@@?}Lcqu;DW%%EEQcH213Lgo!VASKJQwP;JH+v+=+ z=oPF2?3I4%+ffoq-EcuO=}GU97Z5}H%VQlN#~sV6BCfiHGa6y;VhWD|Fk;MA4-%3p ze(nDS-@T^e=AbQH7iHX$JF9eTV1OrvafMowh7ODoGGiga0~jbWa7M10wAnbOn@P8i z7jDqO$h3IC#&wBtnWe1WkM!oK!m@6JssuVs*Ju$|vBnr_&gjNhI6ZbH-IO|?oN~f! zlf*TTJ|E1i?nK(_Ea#?mFFdz#05Qx7^%_UvZjdY(q*Qp(u@U%kzCxF~u>(wcwqHzK+<6=N-a(yI9Rr;P zlnq+U&KKNNnjtTo&j^B1%Sqb&cm1AzWrWn!T`>%2)=B0h*bZe__O3}^KJIXz@I9n3 zxY`~zabGS|Q>fYGmV5qIkVRvmgG=4m-weH}O`U8}rNvKDPU1}BJO*hy7b&qV6}fN9 z_8=8D-U8m$QVQoot=QR#Z~Myx5dQPDg;(kA`lf1x))^;B$HOgNGK z+`UJ}L^$^R`&P>pJ{jx#GPEutnu4&jXfQup(#1f8R6%&9OG)(Ji`@P-AgqYFX$9~2 z(;1bL#;5Ie$m0co7;p;%W;ZdCKgPtX8gLIK1Dt5hh@>C0z2Sv5+9yu11r%8MMNXW~ zeerX$a@{$#RAxgW2nYdUj5omVzn|M3r+5E!7J1Z2Fh|+g@j*7NUvJt4bMZ z#DZ^380gO86PL4R=UTiJac{G^v>;k><)2nXeZ5(M?S5oWG24j{Z)3zTB!4Q&4$t4&Y8Xg_ZIOma6eH`H%X1g#w^CsNx ze}_y#Xl!SNAX?7P$I#MS+c5X*ce!DsT56^m55G)K?d2^@F+o>W;PD{4$+458xqyFsLaq%pvKQi+RjH+`?>=!plh1mUbS@zLR^ljmNt6>;BBN=?Ex=* zYk~%Z5pjfrM)?WO;MyltAR@)aQZiAURN^a*6#d)RJk8EeSuXCT@czu{CBMzej-91u z4h|&FZLYEv1d(M$?mbSMh(>PvEBGh?GHX{m50bKL5$jfQJPH(%=XRHMq}~ z!)`|B0*-3$HU;nq9g%uoCHu+5^+l)ZnQP~uBPRjisA97kt=?L{fP2U6;rp? z>obO*AzbxeHT#ubqj3UL*rJvjkAYggF1G;0+kf}5*F-z7Ep@@1;7x*P8hUHb{b5;b z``Pn{@IQyf6$eca3j3PED4up1EpLv&Az@00$!7KM?Px*H z!N+D%siB8|HYTaa^oEhfI@HCb$qZ({)urJjIW9X##^<&m{ipXlKh?<>jhh+q6*_Ep zzL@ST7M?kpMX_@Eu^XC-+dl~JUu1UjDMu@e@-iT@?n=6j?%1aE(0eGJi_(_2Xz!fltFS zXJLxu=Dwexiq7jfcmlDC(a`;@7-EuLZlVZMkQRBzBuSy3;Dzd}E~c-vhb-ax-A~^{ z>ORP%etZKbeB~C&9#OhxuRJ&dOf|2UM&(<(>qv570|_=y)up#jPE@mv8CeuXEcz*| z)xT6~g-eKzN$wneZ8plNQJbHhIR0;ZM^sq~GP7a4-Ldsf+=TJs;3g>F+bv6R9 zP|;7dT^a&JSg9D-SNA7nna^)(l2@U>Q11tzgMQ&&oU+Lk)b4q~yPKI97gy~IyPsal zZgV^Ob#Uc%eYn`^)23x|1orFS!^3(V$-qJTCVV`+ESCx1=lg{&N=iyV7%Oc;Y`-t!@(y!kKskR zA6A6qQ_YD}te=lJ`L*na?vBiBTQfa-4|6@{@>h3t8BJ{EayvpFhz?2AQwSfjkjh-s z60^dzR#lbfR9PeA=Xsb)9~kA4<`NIJ=8ZHys!n`p{H=xliT%9va1O`a`|L>a$>UGo z*5LY~w@Ojolm0b$CXEcKLMDj-P}qL}V-;z?L-3F44;6A^-_6_S=u;pC=xMS(6#pnJ z6n`xb=dU6b>-*Snp*>H>9LcC+y|=Wgq4V(=753Yb{!QER0ZUbtAyK1LLh1bcVa;%X zB@kz0sT-}$^%c&)x?cszEehU6vf{Z){pQD-7laREaH!j%AvsgcEpMp*KA0Dkc>l0S z#6h=&=lmiYc3q+A?)`C?z|MQ%NY=L^S{4P6Z4k@B^B#$6DB3SM=>$V5@3(CrUFRu- zkjFyTNnaT}9fC53h*&Pu80MO$`a?W;p}up8!45!Gp6yiVliQ*6WB!C3Cgkxnoy(@T zuTQg5FD)ra&Ct++JuUR>*M&-buXP_PS%t*JL|t9o!KZG&gNi2mj;r}^-@d(MYgek! z&}B{mou$jm%Sp(y_hxShXcqcuQuXqc=#N`=NsClGFQqlB33tNjD?A!tpC+Iv{=%tD4)f=MKZ&2$@&a$mhs6sz z)+oWns{7JE^~(A*kO{fVJe6WuA*Dcihr$D#XRi?N*pm|Auqx;YHBkN|s z_H*Hnmv9?ZN1B|kenY1@^UzqR;P4e?(I$f?hmrKWk4;D>(JJ+sfo)bW*qWzseZS%b zbgvm90ot4_zK;(sCxXXCPae#3ulV$y##-ICWi5EGKYT9d%NOXCda|?O+J>%|@qaxa zB7bp}c+knAx!`-zxFtjtCVdx3P``WkZ$~R}-pi$OwF~JXZC-0Z;X%SQa z#DCZo(9ODpFwp1TMxnZr1pxAsIDd^6w^ozC)e1GO{{mSD!sd z{YlWEnig(hw`hL!Tg)_q<@wH|uWVA`y6{T9F~*#hFH>cNCv}&!Z!?g*NZw3h^qj=& zFXMeWJ(B9YzTw)8FhRsk_3?c+A5|%Hb@wJ2^1Cj+HFR>&z)te?Y)@_RM)HJ-~OJ>ml-pJ3+7%Z{o z#L;iovBV2UO!zrWr=zH&SRGi90BIhU$U+2`0sz3ZmlhXM`_8~X;|LE7aml?%Y%`y4 zOMDznXMc#X29IUy!^qXISE<;`#LJ(FKa_kd~iP4(E->C8j+k0(vPpf`ppXtNyS!XA9+pG$} zarnRwD)Qf6 zC6vK|4MU$E`WPrKah8ciuz@NcN~D)j_4_4IVZThJ-W8?A3;k zY>F_-_3I>rJ#!41FMRJucwpU>1n=!)5=Ll>u#y?qkA0h+B{P&~Da9W~NWGbS$ik8#q z8N`xmd+&xrB2&(Tj=eOZ*c|+r=a*FU2MRyv;U$Ca@D;DxMG>I1YUf9La4ObvL!uZu zZjtR}F)r97&IU_&KXFM2(Z{^a0aVPe5W9fQutH2Z4yGbbU{Kd_NDgLC zpbyugS0`kF1Ki?}{9Pq>dcHsadi*jOIof`K5NeedoN)d&$(p+Z(B%2wha|~z&1yCD zW1SVE*eobO+^9BLMYKHTrKhvn@X{@_{gh@>!p))kiK+|(u%hmmd6WorFRjSoM$mQL z_SSwrK+rVsT-UZBX^L$5{%QOm2k-e18)lM5VfU!2s%p2M&do&H+0Y&Ll*pKWjYG@d zb&Z=dePb6Vb3hQhcS-Qjepy+5K`Yd3U9Et6%AI}!MBLtZUYOLal2n>}s%dihCP+Xp z!^A8DF~RVdGiaku^1WLw*2d2v(FA}HD?UTEmw?DRRSZPGjpkvBR@_d=%d6X9(f$bd z${EFs!Gim;6iJWj;1Mu#oe_#nq{CLJYfHL7D?2~N(FOl|wX20^H@{LyR|a`^;@&=J0k;pGH{rqg+t>m4fIrcW^CwAjQBQZT7YPm5By-6K zx@hu<=@gvCnD-56yuijfe-p+5VKL>-U}&UY@JNW{sKZSJ+p3sVq6f zbVj{_m7EQ}h<&N+I&%I`k3YN*W@7Arl8es_aO4P*rQp?=&D=0e8fs6g{;_0Av^1?x zFvmm&y6gJXla#mDPdbFQN-OJkQWpeCD%5NG+SSIxWYHEyUKyF5g!NPy0H;?qp`t-H zZO6dAHa2s((!4+0rmg1-Dl_WNN~=I zlK^2=mjF47sMl&O1Wwp0tAQSN8l79wsrD#L*bn#@l_n(sI3vyOUufd7X_Ml`W#qnN zO9uzPN=`bW=XkRxunO0!lt9lw`~m{rwKfIfiYC0Nyu71ht$Kd7p47y4Qq^wW^RSvR(HMo!hD_$6`<8z_3)e^BSf!?%*hYY5IC=ZX$}wC!}C zyl?1PHzG;(agS^n5uujrITZJCJ5_grD211Z>#6dXLG9+>R0iI>98J1w2_NjjEaTO> z``FKfp%?Ao2LMSgp-HZVTIhgO0nL*L9DVN)94bwx9wHzk`ZytMpl5LRwA5{sYvk0a zWx_v2X7p9-EG6a$6A)f&*8_&qKL3oEOh~|{)k6kcgUiXEF7c1*IUCat(#v(5X6knQ zd7D^SdTv(W`(_Z4x0nPSjF(c1Bv+UyMZ&-@Ejv-Lg)D z2PlNTCHR%<`4ez*ULzQEUvI0g^XlZf?%`Es=hpXWds1c7%?D4l{S*~K|jV|g`uhNCv~)G3~3_BKvi7%{72$O&T*~O z2ikCK{ZYEhwy zlH4X(`8d~ml6X6<3ZE2ehc(cGX|a(`-0Z*X@6-%x>9mo;mbf0Y*;oRfT?QSO>nFdsJ>=Y zjW?Jxn^a^Z)K{W#gr^9!h;_Imuv4J`ex7LYr9H^nRLDOHWAmQJeVE$K+5XUv<5hD1 zOpkQ5_hWuy(iFuTP^xyMRtD)5LAxGR_Q#AQ&Sx7}`1_~?|rJ50~5 zT*kC;sKKXJY^-0_nos{_(dAKN-d$^pbzt5&k^Ya11lmwNyUDsOgDSH z4Ym`(I3fFf+B)D5ssx%qmEtG}W$2xHtS+Xv@)TM5Rs5lrcOe&l zJX2+J;;mS#7-Y08hXexr=yrCpC7(N=@-kR)ANvL~QB|jp;=@bfXA?^r}$=v?gXMhOxCFH)`Hx>d~l?hl$YpRZrpM2qPKOO`rUE!~>E3Mk4B(6V*fxUOUz+pSIK-%D0)vk_qdP7_vRhf_X0c5p*ai6W>f^ z{PmKwNeLW#4uXuT*Q8a zCm-4PPTc2J6um$UP?3f+x;(}JJRJO$#Q7md1uvi18QQ3WzaycG1}g~JxcuS3D@tkA z@%if1kJqc6Rn$aQqKS>JL6!7W~7+eJyO<_QY}eyzjCickVUB zmaqYO1_p`E}9S%^HM#C!sx0IplyDxkO zLt5*wTZ;^TN@03Y4)O1gzB6BBUcUgu$OI7pT1m70wLH4c>c2Ay0PwRY2A<7B@5b;O zKNK$$l8vX?u2nutT`Ioe6X<@@*98gK+TSad$zSz}m?UsSOv{M^)B5Sj3%=&FyYMF{ z0UYKfQJzi^$L>FsEAJeRv@ezhL!%@BqgitiBLd(j1et6~S-Qj`*;dCvzue z%jJpn9V{wKaZYS7v{e=x$N`6R@-q0Rnat3@a*C z`tb%qT1lKCN;Di5lNua}F)?myj8U}mz%TE!6YrBFx%Hy zB^!1O^DH?VQi&agSl+?Y1R&fT4-KGc4C)X0`zQNV7BBUkm*Ux51hbm|7zYjzPM;B= z6r2F~cejRYc3?i+Kh~#nRr%No95A~`;9x}z^#a{-9~5(l@mz&v4-9O)+{26Nn}2&W zCx5!@$wsN-^Q+$sf3~OKt^d|X_c7y%u0u+ZD*h8t2E)d)i#lQe}5x;bijZG8-woI!n2UR zitTK`2KNq%VJSNB+;*L~mE6T#^8wGs;%$SA0u-9146X$wNo6Cb8O5yS;`#`$Gl)M6 zO9TExv!HO5iE4dS*qC4QDTCVUBYn;M>pN`V1rWviD|hf)X{a3ZA?ofz_%ws@3uz~p z6iX$?OnR5YchOHsPgA`@>*T;Aw3WOKUFhC#F0>p80Lmq8-xoelNe-gQyUW?%FbGlU zzTR$f183I+`S)`L)o2ud$|N<^OQM9;T~3lyjZXB8@i>z7Ol5guPYKopgNv%tv8Ef`C*I9xc!Z!8uw2#X?k%BnZ}_1oas zkFP~h$1TB3C`GV2Cs-qvD96&M!5ZF4Ru*u1Dvi6-zeZ|2p1 z@BXLuEZWEYP5=O7gP;tS{_hXS+n2`*uIjx1+xwDj){;}D#C5IR6GZUn`}n{xPq-T5 zi%BR^Ej~`Gf)%SegEu-(dtZWp^p6GaX=sY_@{BKb#+gSu!Jyc`U^M1F_yk>Sx=$%W z*gF2UG4sEc%6~GiTeRdfH#fKcT`f{D9Tp9RLLtw0lOVi(X=&*Vs~%5-fhy5maNIXC zo^CXpSBO?WB?~~&Mhjlessg85k!&&Mc)&IkD)@NX2UZ5Ay;P6?HI3?D*Q5{V=<4FV zkWf~hZoUThT#y0j85zYZHr605!arGZMuSNbvv^6&3+ zCX1EmW9%`}&_F!RIt2Qkwjla^a{s$Y@~`<0!H5}XZ_Cfbz2xn-tx*0eSCKF*(HY$- zb;m({Lhdy18PBDELoClqE>8&^1A}Ds*trD|E>e+iS(yEp9rF(CBul~!K`%E&Ma)5` zKT9_!>zII(lhgnD5@%;;t&~*|YTJB$()COVfT*kQ|M?PGc(6~cY-Ya8195S2Q)_EN zOU)qs&hujDwJ0AS-_I1Ls`lC+KlXyZ$UAT60RNH88tIok3IG)ovkMd$7%cYbLBbDX zJDso8=l?R60FoK5-pPGmFparG>&{;W<#c4X)_w;<{G51*6^d0WG;A7{K%}q>n0_ii zp{Ap2YHW;o2=H4mNE9${{qNY{G=2MTZV>+O0r^ifmLLE3^!WGv|L>Ig|K~B7pHZg5 U*VgS40Ra3-ODKp}iW&v}A0Pa4wg3PC literal 0 HcmV?d00001 diff --git a/demo/documented/stokes-taylor-hood/python/demo_stokes-taylorhood.py b/demo/documented/stokes-taylor-hood/python/demo_stokes-taylorhood.py new file mode 100644 index 0000000..e52dffe --- /dev/null +++ b/demo/documented/stokes-taylor-hood/python/demo_stokes-taylorhood.py @@ -0,0 +1,92 @@ +"""This demo solves the Stokes equations, using quadratic elements for +the velocity and first degree elements for the pressure (Taylor-Hood +elements). The sub domains for the different boundary conditions +used in this simulation are computed by the demo program in +src/demo/mesh/subdomains.""" + +# Copyright (C) 2007 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2008-2009. +# +# First added: 2007-11-16 +# Last changed: 2009-11-26 +# Begin demo + +from dolfin import * + +# Load mesh and subdomains +mesh = Mesh("../dolfin_fine.xml.gz") +sub_domains = MeshFunction("size_t", mesh, "../dolfin_fine_subdomains.xml.gz") + +plot(mesh) +plot(sub_domains) + +# Define function spaces +V = VectorFunctionSpace(mesh, "CG", 2) +Q = FunctionSpace(mesh, "CG", 1) +W = V * Q + +# No-slip boundary condition for velocity +# x1 = 0, x1 = 1 and around the dolphin +noslip = Constant((0, 0)) +bc0 = DirichletBC(W.sub(0), noslip, sub_domains, 0) + +# Inflow boundary condition for velocity +# x0 = 1 +inflow = Expression(("-sin(x[1]*pi)", "0.0")) +bc1 = DirichletBC(W.sub(0), inflow, sub_domains, 1) + +# Boundary condition for pressure at outflow +# x0 = 0 +zero = Constant(0) +bc2 = DirichletBC(W.sub(1), zero, sub_domains, 2) + +# Collect boundary conditions +bcs = [bc0, bc1, bc2] + +# Define variational problem +(u, p) = TrialFunctions(W) +(v, q) = TestFunctions(W) +f = Constant((0, 0)) +a = (inner(grad(u), grad(v)) - div(v)*p + q*div(u))*dx +L = inner(f, v)*dx + +# Compute solution +w = Function(W) +solve(a == L, w, bcs) + +# Split the mixed solution using deepcopy +# (needed for further computation on coefficient vector) +(u, p) = w.split(True) + +print "Norm of velocity coefficient vector: %.15g" % u.vector().norm("l2") +print "Norm of pressure coefficient vector: %.15g" % p.vector().norm("l2") + +# # Split the mixed solution using a shallow copy +(u, p) = w.split() + +# Save solution in VTK format +ufile_pvd = File("velocity.pvd") +ufile_pvd << u +pfile_pvd = File("pressure.pvd") +pfile_pvd << p + +# Plot solution +plot(u) +plot(p) +interactive() diff --git a/demo/documented/stokes-taylor-hood/python/documentation.rst b/demo/documented/stokes-taylor-hood/python/documentation.rst new file mode 100644 index 0000000..49f13f6 --- /dev/null +++ b/demo/documented/stokes-taylor-hood/python/documentation.rst @@ -0,0 +1,162 @@ +.. Documentation for the DOLFIN Stokes problem with Taylor-Hood elements demo + +.. _demo_pde_stokes-taylor-hood_python_documentation: + +Stokes equations with Taylor-Hood elements +========================================== + +This demo is implemented in a single Python file, +:download:`demo_stokes-taylorhood.py`, which contains both the +variational form and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +In this example, different boundary conditions are prescribed on +different parts of the boundaries. This information must be made +available to the solver. One way of doing this, is to tag the +different sub-regions with different (integer) labels. DOLFIN provides +a class :py:class:`MeshFunction ` which +is useful for these types of operations: instances of this class +represent functions over mesh entities (such as over cells or over +facets). Mesh and mesh functions can be read from file in the +following way: + +.. code-block:: python + + # Load mesh and subdomains + mesh = Mesh("dolfin_fine.xml.gz") + sub_domains = MeshFunction("size_t", mesh, "dolfin_fine_subdomains.xml.gz") + +Next, we define a :py:class:`MixedFunctionSpace +` composed of a +:py:class:`VectorFunctionSpace +` of continuous +piecewise quadratics and a :py:class:`FunctionSpace +` of continuous piecewise +linears. (This mixed finite element space is known as the Taylor–Hood +elements and is a stable, standard element pair for the Stokes +equations.) + +.. code-block:: python + + # Define function spaces + V = VectorFunctionSpace(mesh, "CG", 2) + Q = FunctionSpace(mesh, "CG", 1) + W = V * Q + +Now that we have our mixed function space and marked subdomains +defining the boundaries, we define boundary conditions: + +.. code-block:: python + + # No-slip boundary condition for velocity + # x1 = 0, x1 = 1 and around dolphin + noslip = Constant((0, 0)) + bc0 = DirichletBC(W.sub(0), noslip, sub_domains, 0) + + # Inflow boundary condition for velocity + # x0 = 1 + inflow = Expression(("-sin(x[1]*pi)", "0.0")) + bc1 = DirichletBC(W.sub(0), inflow, sub_domains, 1) + + # Boundary condition for pressure at outflow + # x0 = 0 + zero = Constant(0) + bc2 = DirichletBC(W.sub(1), zero, sub_domains, 2) + + # Collect boundary conditions + bcs = [bc0, bc1, bc2] + +Here, we have given four arguments in the call to +:py:class:`DirichletBC `. The first +specifies the :py:class:`FunctionSpace +`. Since we have a +:py:class:`MixedFunctionSpace +`, we write +``W.sub(0)`` for the function space ``V``, and ``W.sub(1)`` for +``Q``. The second argument specifies the value on the Dirichlet +boundary. The two last ones specifies the marking of the subdomains; +``sub_domains`` contains the subdomain markers and the number given as +the last argument is the subdomain index. + +The bilinear and linear forms corresponding to the weak mixed +formulation of the Stokes equations are defined as follows: + +.. code-block:: python + + # Define variational problem + (u, p) = TrialFunctions(W) + (v, q) = TestFunctions(W) + f = Constant((0, 0)) + a = (inner(grad(u), grad(v)) - div(v)*p + q*div(u))*dx + L = inner(f, v)*dx + +To compute the solution we use the bilinear and linear forms, and the +boundary condition, but we also need to create a :py:class:`Function +` to store the solution(s). The (full) +solution will be stored in w, which we initialize using the +:py:class:`MixedFunctionSpace +` ``W``. The actual +computation is performed by calling solve with the arguments ``a``, +``L``, ``w`` and ``bcs``. The separate components ``u`` and ``p`` of +the solution can be extracted by calling the :py:meth:`split +` function. Here we use an +optional argument True in the split function to specify that we want a +deep copy. If no argument is given we will get a shallow copy. We want +a deep copy for further computations on the coefficient vectors. + +.. code-block:: python + + # Compute solution + w = Function(W) + solve(a == L, w, bcs) + + # Split the mixed solution using deepcopy + # (needed for further computation on coefficient vector) + (u, p) = w.split(True) + +We may be interested in the :math:`L^2` norms of u and p, they can be +calculated and printed by writing + +.. code-block:: python + + print "Norm of velocity coefficient vector: %.15g" % u.vector().norm("l2") + print "Norm of pressure coefficient vector: %.15g" % p.vector().norm("l2") + +One can also split functions using shallow copies (which is enough +when we just plotting the result) by writing + +.. code-block:: python + + # Split the mixed solution using a shallow copy + (u, p) = w.split() + +Finally, we can store to file and plot the solutions. + +.. code-block:: python + + # Save solution in VTK format + ufile_pvd = File("velocity.pvd") + ufile_pvd << u + pfile_pvd = File("pressure.pvd") + pfile_pvd << p + + # Plot solution + plot(u) + plot(p) + interactive() + +Complete code +------------- + +.. literalinclude:: demo_stokes-taylorhood.py + :start-after: # Begin demo diff --git a/demo/documented/subdomains-poisson/common.txt b/demo/documented/subdomains-poisson/common.txt new file mode 100644 index 0000000..a242e5e --- /dev/null +++ b/demo/documented/subdomains-poisson/common.txt @@ -0,0 +1,53 @@ + +The main purpose of this demo is to demonstrate how to create and +integrate variational forms over distinct regions of a domain and/or +its boundaries. + +Equation and problem definition +------------------------------- + +For illustration purposes, we consider a weighted Poisson equation over +a unit square: :math:`\Omega = [0,1] \times [0,1]` with mixed boundary +conditions: find :math:`u` satisfying + +.. math:: + - \mathrm{div} (a \nabla u) &= 1.0 \quad {\rm in} \ \Omega, \\ + u &= 5.0 \quad {\rm on} \ \Gamma_{T}, \\ + u &= 0.0 \quad {\rm on} \ \Gamma_{B}, \\ + \nabla u \cdot n &= - 10.0 \, e^{-(y - 0.5)^2} \quad {\rm on} \ \Gamma_{L}. \\ + \nabla u \cdot n &= 1.0 \quad {\rm on} \ \Gamma_{R}, \\ + +where :math:`\Gamma_{T}`, :math:`\Gamma_{B}`, :math:`\Gamma_{L}`, +:math:`\Gamma_{R}` denote the top, bottom, left and right sides of the +unit square, respectively. The coefficient :math:`a` may vary over the +domain: here, we let :math:`a = a_1 = 0.01` for :math:`(x, y) \in +\Omega_1 = [0.5, 0.7] \times [0.2, 1.0]` and :math:`a = a_0 = 1.0` in +:math:`\Omega_0 = \Omega \backslash \Omega_1`. We can think of +:math:`\Omega_1` as an obstacle with differing material properties +from the rest of the domain. + + +Variational form +------------------------------- + +We can write the above boundary value problem in the standard linear +variational form: find :math:`u \in V` such that + +.. math:: + + a(u, v) = L(v) \quad \forall \ v \in \hat{V}, + +where :math:`V` and :math:`\hat{V}` are suitable function spaces +incorporating the Dirichlet boundary conditions on :math:`\Gamma_{T}` +and :math:`\Gamma_{B}`, and + +.. math:: + + a(u, v) &= \int_{\Omega_0} a_0 \nabla u \cdot \nabla v \, {\rm d} x + + \int_{\Omega_1} a_1 \nabla u \cdot \nabla v \, {\rm d} x, \\ + L(v) &= \int_{\Gamma_{L}} g_L v \, {\rm d} s + + \int_{\Gamma_{R}} g_R v \, {\rm d} s + + \int_{\Omega} f \, v \, {\rm d} x. + +where :math:`f = 1.0`, :math:`g_L = - 10.0 e^{-(y - 0.5)^2}` and +:math:`g_R = 1.0`. diff --git a/demo/documented/subdomains-poisson/cpp/README b/demo/documented/subdomains-poisson/cpp/README new file mode 100644 index 0000000..3a17715 --- /dev/null +++ b/demo/documented/subdomains-poisson/cpp/README @@ -0,0 +1,2 @@ +There is as yet no C++ version of this demo. +Please consider contributing the missing code. diff --git a/demo/documented/subdomains-poisson/cpp/documentation.rst b/demo/documented/subdomains-poisson/cpp/documentation.rst new file mode 100644 index 0000000..6ba9b3d --- /dev/null +++ b/demo/documented/subdomains-poisson/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the DOLFIN iterative Stokes demo + +.. _demo_pde_subdomains_poisson_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/subdomains-poisson/python/demo_subdomains-poisson.py b/demo/documented/subdomains-poisson/python/demo_subdomains-poisson.py new file mode 100644 index 0000000..06a67ac --- /dev/null +++ b/demo/documented/subdomains-poisson/python/demo_subdomains-poisson.py @@ -0,0 +1,117 @@ +# Copyright (C) 2011 Marie E. Rognes +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2011-11-09 +# Last changed: 2012-08-06 + +# Begin demo + +from dolfin import * + +# Create classes for defining parts of the boundaries and the interior +# of the domain +class Left(SubDomain): + def inside(self, x, on_boundary): + return near(x[0], 0.0) + +class Right(SubDomain): + def inside(self, x, on_boundary): + return near(x[0], 1.0) + +class Bottom(SubDomain): + def inside(self, x, on_boundary): + return near(x[1], 0.0) + +class Top(SubDomain): + def inside(self, x, on_boundary): + return near(x[1], 1.0) + +class Obstacle(SubDomain): + def inside(self, x, on_boundary): + return (between(x[1], (0.5, 0.7)) and between(x[0], (0.2, 1.0))) + +# Initialize sub-domain instances +left = Left() +top = Top() +right = Right() +bottom = Bottom() +obstacle = Obstacle() + +# Define mesh +mesh = UnitSquareMesh(64, 64) + +# Initialize mesh function for interior domains +domains = CellFunction("size_t", mesh) +domains.set_all(0) +obstacle.mark(domains, 1) + +# Initialize mesh function for boundary domains +boundaries = FacetFunction("size_t", mesh) +boundaries.set_all(0) +left.mark(boundaries, 1) +top.mark(boundaries, 2) +right.mark(boundaries, 3) +bottom.mark(boundaries, 4) + +# Define input data +a0 = Constant(1.0) +a1 = Constant(0.01) +g_L = Expression("- 10*exp(- pow(x[1] - 0.5, 2))") +g_R = Constant("1.0") +f = Constant(1.0) + +# Define function space and basis functions +V = FunctionSpace(mesh, "CG", 2) +u = TrialFunction(V) +v = TestFunction(V) + +# Define Dirichlet boundary conditions at top and bottom boundaries +bcs = [DirichletBC(V, 5.0, boundaries, 2), + DirichletBC(V, 0.0, boundaries, 4)] + +# Define new measures associated with the interior domains and +# exterior boundaries +dx = Measure("dx")[domains] +ds = Measure("ds")[boundaries] + +# Define variational form +F = (inner(a0*grad(u), grad(v))*dx(0) + inner(a1*grad(u), grad(v))*dx(1) + - g_L*v*ds(1) - g_R*v*ds(3) + - f*v*dx(0) - f*v*dx(1)) + +# Separate left and right hand sides of equation +a, L = lhs(F), rhs(F) + +# Solve problem +u = Function(V) +solve(a == L, u, bcs) + +# Evaluate integral of normal gradient over top boundary +n = FacetNormal(mesh) +m1 = dot(grad(u), n)*ds(2) +v1 = assemble(m1) +print "\int grad(u) * n ds(2) = ", v1 + +# Evaluate integral of u over the obstacle +m2 = u*dx(1) +v2 = assemble(m2) +print "\int u dx(1) = ", v2 + +# Plot solution and gradient +plot(u, title="u") +plot(grad(u), title="Projected grad(u)") +interactive() diff --git a/demo/documented/subdomains-poisson/python/documentation.rst b/demo/documented/subdomains-poisson/python/documentation.rst new file mode 100644 index 0000000..f429b6d --- /dev/null +++ b/demo/documented/subdomains-poisson/python/documentation.rst @@ -0,0 +1,240 @@ +.. Documentation for the DOLFIN iterative Stokes demo. + +.. _demo_pde_subdomains_poisson_documentation: + +Poisson equation with multiple subdomains +========================================= + +This demo is implemented in a single Python file, +:download:`demo_subdomains-poisson.py`, which contains both the +variational forms and the solver. We suggest that you familiarize +yourself with the :ref:`Poisson demo +` before studying this example, +as some of the more standard steps will be described in less detail. + +.. include:: ../common.txt + +Implementation +-------------- + +This description goes through the implementation (in +:download:`demo_subdomains-poisson.py`) of a solver for the above +described equation. + +In this example, different boundary conditions are prescribed on +different parts of the boundaries, and different parts of the interior +have different material properties. This information must be made +available to the solver. One way of doing this, is to tag the +different subregions with different (integer) labels, and later +integrate over the specified regions. DOLFIN provides a class +:py:class:`MeshFunction ` which is useful for +these types of operations: instances of this class represent functions +over mesh entities (such as over cells or over facets). Mesh functions +can be read from file or, if explicit formulae for the domains are +known, they can be constructed by way of instances of the +:py:class:`SubDomain ` class. The latter is the +case here, so we begin by defining the left, right, top and bottom +boundaries, and the interior obstacle domain using the +:py:class:`SubDomain ` class and creating +instances of these classes. + +.. code-block:: python + + from dolfin import * + + # Create classes for defining parts of the boundaries and the interior + # of the domain + class Left(SubDomain): + def inside(self, x, on_boundary): + return near(x[0], 0.0) + + class Right(SubDomain): + def inside(self, x, on_boundary): + return near(x[0], 1.0) + + class Bottom(SubDomain): + def inside(self, x, on_boundary): + return near(x[1], 0.0) + + class Top(SubDomain): + def inside(self, x, on_boundary): + return near(x[1], 1.0) + + class Obstacle(SubDomain): + def inside(self, x, on_boundary): + return (between(x[1], (0.5, 0.7)) and between(x[0], (0.2, 1.0))) + + # Initialize sub-domain instances + left = Left() + top = Top() + right = Right() + bottom = Bottom() + obstacle = Obstacle() + +Note that the DOLFIN functions :py:func:`near ` and +:py:func:`between ` provide robust ways of testing +whether a coordinate is (to within machine precision) close to a given +numerical value and in a range of values, respectively. + +We next define a mesh of the domain: + +.. code-block:: python + + mesh = UnitSquareMesh(64, 64) + +The above subdomains are defined with the sole purpose of populating +mesh functions. (For more complicated geometries, the mesh functions +would typically be provided by other means.) The classes +:py:class:`CellFunction ` and +:py:class:`FacetFunction ` are specialized +versions of the more general :py:class:`MeshFunction +`. :py:class:`CellFunction +` represents a function with a value for each +cell of a mesh, while :py:class:`FacetFunction +` represents a function with a value for +each facet. We define a :py:class:`CellFunction +` to indicate which cells that correspond to +the different interior subregions :math:`\Omega_0` and +:math:`\Omega_1`. Those in the interior rectangle will be tagged by +`1`, while the remainder is tagged by `0`. We can set all the values +of a :py:class:`MeshFunction ` to a given +value using the :py:func:`set_all +` method. So, in order to +accomplish what we want, we can set all values to `0` first, and then +we can use the ``obstacle`` instance to mark the cells identified as +inside the obstacle region by `1` (thus overwriting the previous +value): + +.. code-block:: python + + # Initialize mesh function for interior domains + domains = CellFunction("size_t", mesh) + domains.set_all(0) + obstacle.mark(domains, 1) + + +We can do the same for the boundaries using a :py:class:`FacetFunction +`. We first tag all the edges by ``0``, then +the edges on the left by ``1``, on the top by ``2``, on the right by +``3`` and on the bottom by ``4``: + +.. code-block:: python + + # Initialize mesh function for boundary domains + boundaries = FacetFunction("size_t", mesh) + boundaries.set_all(0) + left.mark(boundaries, 1) + top.mark(boundaries, 2) + right.mark(boundaries, 3) + bottom.mark(boundaries, 4) + +Now that the geometry is defined and labeled, we can move on to +defining the input source functions: + +.. code-block:: python + + # Define input data + a0 = Constant(1.0) + a1 = Constant(0.01) + g_L = Expression("- 10*exp(- pow(x[1] - 0.5, 2))") + g_R = Constant("1.0") + f = Constant(1.0) + +Here, ``a0`` and ``a1`` represent the values of the coefficient +:math:`a` in the two regions of the domain, ``g_L`` and ``g_R`` +represent the values of the Neumann boundary condition on the left and +right boundaries respectively, and ``f`` represents the body source. + +We may now move on to define the variational equation. As usual, we +start by defining a finite element function space and basis functions +on this space: + +.. code-block:: python + + # Define function space and basis functions + V = FunctionSpace(mesh, "CG", 2) + u = TrialFunction(V) + v = TestFunction(V) + +With this function space, we can define the essential (Dirichlet) +boundary conditions on the top and bottom boundaries. These boundaries +correspond to the facets tagged by ``2`` and ``4``, respectively, in +the ``boundaries`` facet function: + +.. code-block:: python + + # Define Dirichlet boundary conditions at top and bottom boundaries + bcs = [DirichletBC(V, 5.0, boundaries, 2), + DirichletBC(V, 0.0, boundaries, 4)] + +DOLFIN predefines the "measures" ``dx``, ``ds`` and ``dS`` +representing integration over cells, exterior facets (that is, facets +on the boundary) and interior facets, respectively. These measures can +take an additional integer argument. In fact, ``dx`` defaults to +``dx(0)``, ``ds`` defaults to ``ds(0)``, and ``dS`` defaults to +``dS(0)``. Integration over subregions can be specified by measures +with different integer labels as arguments. However, we also need to +map the geometry information stored in the mesh functions to these +measures. The easiest way of accomplishing this is to define new +measures with the mesh functions as additional input: + +.. code-block:: python + + # Define new measures associated with the interior domains and + # exterior boundaries + dx = Measure("dx")[domains] + ds = Measure("ds")[boundaries] + +We can now define the variational forms corresponding to the +variational problem above using these measures and the tags for the +different subregions. For simplicity, we define the full form first, +and then extract the left- and right-hand sides using the UFL +functions :py:func:`lhs` and :py:func:`rhs` afterwards. We can then +:py:func:`solve ` as usual: + +.. code-block:: python + + # Define variational form + F = (inner(a0*grad(u), grad(v))*dx(0) + inner(a1*grad(u), grad(v))*dx(1) + - g_L*v*ds(1) - g_R*v*ds(3) + - f*v*dx(0) - f*v*dx(1)) + + # Separate left and right hand sides of equation + a, L = lhs(F), rhs(F) + + # Solve problem + u = Function(V) + solve(a == L, u, bcs) + +Now, we can also evaluate various integrals of the solution or derived +quantities of the solution over different regions, here are some +examples: + +.. code-block:: python + + # Evaluate integral of normal gradient over top boundary + n = FacetNormal(mesh) + m1 = dot(grad(u), n)*ds(2) + v1 = assemble(m1) + print "\int grad(u) * n ds(2) = ", v1 + + # Evaluate integral of u over the obstacle + m2 = u*dx(1) + v2 = assemble(m2) + print "\int u dx(1) = ", v2 + +We also plot the solution and its gradient: + +.. code-block:: python + + # Plot solution and gradient + plot(u, title="u") + plot(grad(u), title="Projected grad(u)") + interactive() + + +Complete code +------------- + +.. literalinclude:: demo_subdomains-poisson.py + :start-after: # Begin demo diff --git a/demo/documented/subdomains/common.txt b/demo/documented/subdomains/common.txt new file mode 100644 index 0000000..91ab07b --- /dev/null +++ b/demo/documented/subdomains/common.txt @@ -0,0 +1,29 @@ + +This demo illustrates: + +* How to mark subdomains of a mesh +* How to store subdomain markers as a mesh function to DOLFIN XML files and VTK files + +Problem definition +------------------ + +In this demo, we focus on how to mark subdomains, so we do not have +any equations to solve. The mesh we will work on is a unit square +where the shape of a dolphin is removed from the middle of the square. +This mesh and the subdomain markers produced by this demo program are +the ones used for the Stokes demo programs. We will mark the +boundaries so that the boundary to the right (:math:`x = 1`) is +inflow, the boundary to the left (:math:`x = 0`) is outflow, and the +top, bottom and the interior boundary around the dolphin will be +noslip. We thus have + +.. math:: + \partial \Omega &= \Gamma_{\mathrm{inflow}} \cup \Gamma_{\mathrm{outflow}} \cup \Gamma_{\mathrm{noslip}}, \\ + \Gamma_{\mathrm{inflow}} &= (1, y), \\ + \Gamma_{\mathrm{outflow}} &= (0, y), \\ + \Gamma_{\mathrm{noslip}} &= \partial \Omega \backslash (\Gamma_{\mathrm{inflow}} \cup \Gamma_{\mathrm{outflow}}). \\ + +The mesh with marked boundaries looks as follows: + +.. image:: ../plot_subdomains.png + :scale: 75% diff --git a/demo/documented/subdomains/cpp/CMakeLists.txt b/demo/documented/subdomains/cpp/CMakeLists.txt new file mode 100644 index 0000000..75cedbf --- /dev/null +++ b/demo/documented/subdomains/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_subdomains) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/subdomains/cpp/documentation.rst b/demo/documented/subdomains/cpp/documentation.rst new file mode 100644 index 0000000..79780f7 --- /dev/null +++ b/demo/documented/subdomains/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for subdomains demo from DOLFIN. + +.. _demo_pde_subdomains_python_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/subdomains/cpp/main.cpp b/demo/documented/subdomains/cpp/main.cpp new file mode 100644 index 0000000..1a523b2 --- /dev/null +++ b/demo/documented/subdomains/cpp/main.cpp @@ -0,0 +1,101 @@ +// Copyright (C) 2007-2008 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2007-04-24 +// Last changed: 2011-01-25 +// +// This demo program demonstrates how to mark sub domains +// of a mesh and store the sub domain markers as a mesh +// function to a DOLFIN XML file. +// +// The sub domain markers produced by this demo program +// are the ones used for the Stokes demo programs. + +#include + +using namespace dolfin; + +int main() +{ + set_log_level(1); + + // Sub domain for no-slip (everything except inflow and outflow) + class Noslip : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return on_boundary; + } + }; + + // Sub domain for inflow (right) + class Inflow : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return x[0] > 1.0 - DOLFIN_EPS && on_boundary; + } + }; + + // Sub domain for outflow (left) + class Outflow : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return x[0] < DOLFIN_EPS && on_boundary; + } + }; + + // Read mesh + Mesh mesh("../dolfin_fine.xml.gz"); + + // Create mesh functions over the cell facets + MeshFunction sub_domains(mesh, mesh.topology().dim() - 1); + MeshFunction sub_domains_double(mesh, mesh.topology().dim() - 1); + MeshFunction sub_domains_bool(mesh, mesh.topology().dim() - 1); + + // Mark all facets as sub domain 3 + sub_domains = 3; + + // Mark no-slip facets as sub domain 0, 0.0 + Noslip noslip; + noslip.mark(sub_domains, 0); + noslip.mark(sub_domains_double, 0.0); + + // Mark inflow as sub domain 1, 0.1 + Inflow inflow; + inflow.mark(sub_domains, 1); + inflow.mark(sub_domains_double, 0.1); + + // Mark outflow as sub domain 2, 0.2 + Outflow outflow; + outflow.mark(sub_domains, 2); + outflow.mark(sub_domains_double, 2); + + // Save sub domains to file + File file("subdomains.xml"); + file << sub_domains; + + // Save sub domains to file + // FIXME: Not implemented + //File file_bool("subdomains_bool.xml"); + //file_bool << sub_domains_bool; + + // Save sub domains to file + File file_double("subdomains_double.xml"); + file_double << sub_domains_double; +} diff --git a/demo/documented/subdomains/dolfin_fine.xml.gz b/demo/documented/subdomains/dolfin_fine.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..6f071e4bdc5c7c4478a746fdd0baaafe3c08b3ef GIT binary patch literal 88283 zcmV)RK(oIeiwFQ7^h!|x1B{i;P8%^4h4(zg$onR~|JR7Xu20ZDK$Q%1q%c7wD$u8| zDY<47kJv=A#$V=KpW`z(cdw88;m`PdoDTCQ!78U=oVSPFG(T+8&mZ5vdAhs3y1LmN z_V?2~)ZO#(`eU(4zfY&9>-GBOED#5v633R2pmZ5;;|L>s&7KkrWCsg|grM(eZttn$nl>(u zeMUKks`xdCjAs4T~b#QC1nBP7QIXyhi6)|*Y_6X(ycW` zw|;S9Ylo7>hcAYpkn+$6WEzHyk0-17~DH|_z7q*6A!_S#Ag7%w;T19w% zwRNvpfo4>{4LnN$ndg1q*%KquiZLUO5JYgv@^ zkMVLzVi*Qt=#`B5-~VDI3zRNwCi^lb;vv*)iJeAk$}EEnxEHAj)3e8zhAF`y$|s}0 zNRxOtv+#$g2*7Y6i**N2;14y*-72X1TKDdRPSUBk56dL`gt&@{4n=Qv@G?EL$5V6w z4WiKmso9ph;|X983Y@dr`6<^3aNs0S49Ro27Xo{b%s=a|s^OF3xJrwss3v(@TD^}| zUu$^$4gjqws3};;(p$cbRhtD}bzTjZwpLpHy%yY8dqIp=vebE}S+D z8g*M+I0=zGbk{JH)bS>c+PxvLHVY*dq!Z`qCTXK!=Cn~{lmkE7DAbK)LWWWj9-?vM zU|AOO1}`n{?nRA5-Dbscu8T=~c&Tx4BAg`7$~kxAGDb}>hQz*yq-za>Z>2Z03d>z@ zYZ#m}4Ut;e94qjpqu+>3l+vMU5a zP>K&ljf0halYMK?8wac9X8YJ4WB-`WC=nLb|w5F-2Y-P*1QRB z%v5isv}1%M_@g)Co84g@0UkbA$rVABUyvuZHQ-@rvR{o6Pj`q;aMw+ec{&W(Hs(j~ot0|M6U*_SvR$uM)!X~PVsaN5nt28bH_vH_UHR3TJj zB+`%0`il1ED&4RO5b%^};?@q8zSxx@G?E;{P)15Nt7^H^*oV79qcQ|^BSst;*4af> z(ZZ{-z-+Cp{%cpzI*2?(mAgW|+CraBZ;3qYgSL3SC#WN#*J{CMs0K#G=|DuDGF8vX`N~YV0RWD49ajIY4_9O2rFW zQkVj5 zwZU-=GEE-jLKmvum^?0@|Jop?uGk=>$E&%w*DFX9uHSa{_~454K#JM0Q$~(eLAF4O zrrLQTM}{EpK&p!MK#Dt8gA4eG-r6zYLyFd5HaHX0Ux7yE_B8!ury(>c^vv;*g zQ1-51iO1emF`?MI(k2OeS8w94X}G}X8ZP5jEnD)hX(viu!|18Gm|trbxrY>T6Z=B~ z*75u7M}|xd@+FB4)_IAPn1C9JNEWqB9-CPmdCLrzyEc2<8EWl9zc{ zD1zUK!Ep7=YUfO4g-F4y)d{0C93}BKE%Md4sgiGpVyH!BT)-nVsP5-U(Ln1 zFle;JQPH-VtJt9h6rDT` zYr5T*ZyEHVQlCJr--l!Q2Vo?(dho&rIjHkH&nl3cTdiuB88-s@-fwpQKPXr_-9LPq zTapAJ2n4UhLs0L3vBlV!s{X3)38NjQfld;s$-GmY`Y$RbdJHtOSCklb1)$oq;ez|C zBf=t#lN3*c#e5Q`a!~-)-oUF!X4}R5GXT}1BhLZoa^?SksadD3^;sk?E5OvIA~>e? zFPKDi4CCbe@xfopo$Ptl5pJej#|~Gyr}|%qpVf)-7`Z#t4u7HXc+lZYv&zK5gQ@L` zOPOrCfl#&_jlNa)=hw zIJ7ePK-A{V-zX*h-WainD&HH_La1^vhYqTIY1ufvb4*?@<*izYSg*+*VuSf%@BvZt zIl_W*N0Pyxr11O3kxJG4j&JRwiyt9EL^3MuI7jUBgL>AY&b~J1uUF= z;E@AQ<>9$6b~+3GKpGUBsR!a2Ar@t#sEy2^y~k8RIVUttBXh*pZCI}{@?oi$GWdnX z{aG{(aY4?yrQwS395@V{XVTDo}mz(@8Hwp+AIzc?Hcu^kj>;6kn z3B;NpgyMMK=$(W$99zKecUDdAqSS*O?#J-A^4D{Q%QTL&yCWuRcD2{-ys!KJvHV@b zN401&myH5s+{z%w^X?y+C>W~%11LzyDcqI;zQ2gkJyaQfjodeO?~rKV!;aS_^Ck-G zpXv@L@qG6cvi^_42`VxI4iYP!_N-5BXkbo6!gVU#6*g(zGrzV5_Uo1!Agw9b4u4Y*|Yuo=Wp+jcXTyQzgUL4S9Wa2H6QFj(vhR_M~*1<_$uvhXMR zq>{pOpKKO!XTV~xBhPkna#!>dTRi@AChcnc{eDZrO^VPNc*O`$$I^&M-k6!E7l(=F1^jn2B&Ou~s1!q1KKLfUdBg=wmjqJ;MfrsF`CQ~t!CJH`ld z)ZuOCbBRA8aF=My`K+gY8a7%_YB!!!G|CgM{A3EzBg*})qmh|Ml8HTN52P}M@5T{< zZ`b;t2GF{h9K&vZ?mQBJ;)(uzy1!9Yv?DVR6&h9+$ru9v+#(i?t?+qG1k$Xb`dpo& z_9&$3e(B$~$g$CziYr{`aS?w)VkIxPPTSEi($Ai~Dxn*nx#nA;+Y*RJrWZ$jxd)^% zN!Xdv9m};(Nco9c#4n5k64$LF{amM8Lx%XqW)3@aUlwkx^{N!EnV zB>Q>Wqag$Qlhe&`tAsD={OTMhZA-DA=PCgK!A7|mviCj^X@h&%o?0`C-Q+h{jS%3UtQX0)3khHKW)x8KplNKq`(KrS^MG z@)@UTKesNWlbGyN&kRF#B{|TxV93zCP)cqyii)-VQ7SRc<2EBze*#uhDgi`eph=Pg zMbLawT7=^eSEi`0m%sw3*L7Nw9Owfy!jb_nz(#p;pwSc_?<6p#U6-CdKu!vE#+=tL zNrJ{|^CtoFy4USI8}MtsgyWH6B)cgE<9exEXJNKx4@rX}8eVeN?QIJ8EryM?iWjAA z_0xTeghp*WzA@_KtNuMoQsj@p^ozMx8YNAV20j07(QkhJSVDh~;@KEu@F|uS445uR zN)?Gn#jjSG%7(3@fn+Z62p0DI@o{BW62l;@ zCEMVu|HfA2?MnVx72ruG<`6<)PIdLGf)Q$rZQqbAXoZnfc2wc2MfYyf!CQL5dt%q5csMTI9#0xo13p?{DEh4E_o6oF@7x2@qk{eqC{ zq;P{dMIhQxB&VFR%=-T|4;o;&$?gtvo`oplLHF0?|J$09PJbVoeMX5Q#^7d}agJDG zyYB8%#`NR9Jb6(3_NQO{MF4kQ_rKUy+xcv`DGuAcp_b{iWU5>xsWFE%+cI62lG63WkSG% znr*Z@GdlebBGj*fK8-_92*003gSDGC2>T9U1l?*#Yf2=<9t#9{S$3KTwIGYPg7xYI zcxPmHD8U&DBD4rKfm)zsJkh~~#zm&a=c6E1&4s$RoKek=%um`>Xuh(sUF{N!J(fbG zJ%Y5ba-WkbEEMR-Vocm7EWWDUJEeTIw3~OFu@gGjzW@*_QxXYbYA$r!CvN?}!+kHS zigEKomkefCQy4*?IGlyIWN%W{9*vsmkoa^jF}NzI&=^bO?`!I$s;SU-UsvU9zKF!A z8x1AVZZmRH{uNTyd{@q(h>FP0KpKi7&T$!bgHL`Xhn*0{E+6Vim=dg}O@&4dMLJOY zVc}*?g+>KH^>Za|WvOFLg&tW*fQlTZ*j>|HXvMAqtoe3A@#w)`!SD)IBqlv!e;bw) zRA1NmpR)+I1DZVh0RX^<5`R}Usj+naUzf;n+El2o1cT^8?|f+JkB@6Tk}w2ey<7t) z2tN96>|k#u@z16J=5t+C2uZ$0;XUc8J-U+}E*FSf!}jK+!CRvyqV8iD^so|#{1&j# zvz&C=mcy&xMJ%+=Q&1#O7r96%V4+qypJc2mygLAe`s-7i|1H?}sNkm@{Zpm13y>@T zg}M)W1POVRY2IWR8Uq<`O)ye6g_|6xV{BZdrXv7_*85NLnO9%E)Sryh$jNSURmmt? z>i`s5{Wwvws!5f(ZBW>qZs%b$DR?p-M(DbSyRl^&28#_lysv9Jb=zK1t`?(aG@P)z|58PC30f~1&sS1 zWh@-PLg$ACiV9$cD%gO9u1Y)r-o040LSUi3k`$i0yp`Z5fQ4@F?w#5Kwei%PS2;x4 zqYZNvm9*y~a(#}RY6k5e>mkRC*KQ90MHEntVb?h{T(Xo;vb$PW`FPX_U^oDU)|q^U z8beu~2awQC1>8_|j9oa9#CnEn8(fH{pAF@v>SSpX##_7XphVQ9KV#D2(|WEcqR17F zLBITLj_uFyA75vb?LY{^&@GJ!i2L8zgZGj6(=5Q#+KwQXkoma^>MqLyk?#jNMBmj( zLcNlud?!Gmw|2Tg)_o%H;GNK2GBu5ZJd&v9Ujpm^Ftj^QWR!g;)VJx z5HmXMu;R6`{1U53yy_9+hs^#2pf|G?#nLr#r*I%&; z-IJVZ2v$>ZL?6V#LhU^FlNh!pLLp#icBr}RcDZWEJ78$X-Vog$V!5rCpva3D`xn$8~(#J+yxrZ0WA1>fTN3>FxLMlT0WxDnQuHf2X7=*248>^W87yHly;?S=Fcuks^ zfRMzGAS0oE(NcC@rEx<8p>CH}4&{j{C_Gq%$QPpuoK!yNl*IddGj*} zMbbtCq4nkG6=pvxKo_jho7jhVoIOEUMg47lmkP+(PK^FAeTSd`E!^XY~4q!=Ra-f|{w? zQzKpsD&p;OypvTx2(kbUA#$TkFmLLrmyj^%v6#yd)KnexncQV0(#44@*%@dw8F+7Q zK@n%`koLFFa9G$1W55}6HGlL<3AJ4b4TE|%CWk=nH!=PnwTGUDzAOkO9|vXeap=gj zKki3Gb(K*Xp9Y|#;5ZS*q~Se(`eX+y`ZO5H!g~j$6ZffAYDU-MEcN=&h^vldqoA1+ z4^7LmzIp1dxD0EbX2-=^=IR-@jPVAOT7HjQbk(?Hu7>8+)PQJS;U8bumLx$4!mcDX zLA?LP7WRW!wY53G)Y!JR5cBx+D+1(L_MnBz!VOM5qt3-CpiC597!35>HUysvJ`~c8 z!9W}IWW2{(ri!k?Ksz{VgnPAKOy;SO^Oux%RO_&=nsKPPSav%dPJ48 z+tqWiGg)S|RsPjO{Ga(k4AgmdT8D`M@G%f*)h3Jf8_KZ|l*GFc0PS8w9g(25Uv5fB z)+dKI0O&=qK<)vGH#`7ntqL1N-7-~x637LuEi&kReM#@9M)=BGxgQ%GSN}x|H>1XS zw@sfof$-#GvE=Gl5^*a5YT~2yqth<9QcNP=R3vudpHks~R8Z85CAnDV0R`0s*n{3x z$GcS}Nh)Z6-lq$S^$ENh1VHUl8dJk{0X~6}_?DiVeT%UP;ejr>grC z0rfnRse6$vh-aOB;TFsdKg$z(f!^&zKrQV3qHv~Unf5IcRt}Wz`_*#&ziQ#2;E&ib zxh)t;)AH|HPm0Q28Z_2oSi;>)#UPqNm!JGVw^X0t{e|m#%`YR@t<>j5JB_Kk1^gM( zgjobdZ?^crgg=ipT=k7#V$nb+ZjPcdbX2DMcunK&Ge85mE1JjOLAjyHtRM6rq2#U{)-|?jd^XxZ-@G||H0GTgbr#sg>)EFktR%H7hCUv6er_XM=@rrj8XQ24Ur2RNB4?6SmY#zIx-UVv zD~*M*$H^Gx*@3r|6KI#LrLFX+o_R(89h>8e?j1gBj7EJ{SFCyVFX!5FkHs}1`1wjd zuTh=QzeUeB7&&0!TR`w233LUTAn-EoigF7ifu2RoG%wfZ%1*U|Mi|?XrI)Az6w%Lf zvDlAe3}-_N0|#54711>w*2 z2)7_>0P)Pg8H!BICf|P2{Fc`5rH$NW?pC%^X!O&nED2idLD|w?wpowSfMJE|^n)DG z$>z?m7|NKIBc@T9?f z`2dyLD4Sg`AO*UXG1;cBQ0fgqGLs~C;uJ*{f)uF7oe9`S4Iyi9EP9=+cyh)!1Dfdg z8rw#tMgYx#?jm;@J(U?rykRq-iM^x!)t;a=RBtxDNcW>t`hz?f=!Q=~#~3Yn-cbRH zZT+t*cYEcN21fKaCq`Ags*dg^K-XQnFKcBsQKjf4Ko5PRmG>iZQULyc2Q#KCvD?&O zPylNF4S=k4$Y3LQbxVLdjojkdhZNsAY(#Wb>5OJT^C_wxtC3f2)|7x&lFc~BL!pyq zKoejGz0$>Iie*9#sLd?)oEi%4vKZX1kBC&?a^$HSze6l}U4<8b6zKU`d)wsy1aS%) z;@3~O@Q>nM#b<&dP`mbMzHwKh@z??S(3H!zt*BkFSp4(-$d2EmZia6N{n*{T^LvFv z2z12%l$kv@e9O^b$n+Yu)d&-^Y%~d4`OB9g(CP*ePmL_M6C)`h)Z8Emn&A45erT1v z0g6CNs>i3^5(Z{488pwUmUQKuRI*}_1^q?EkkFL8OYj;Ri|gxch4KFQI-?tbK^TUv z1O(!;|6&I{9gq8{2Z&l#G$c-JgMzk}D5TGD_NIx?xT5f=vvyN}|Yb)}7VsH5v6J;Ox}R>4T~>)!1q ziK<*zN{8IuhjWS&hU43qyCVMVQrG^cKzEQ73Dxn&hFo9>V}$s_c$;>{09{ zgANe-Y&d?>3bn_5!PB0^OPu{X@72B@YQiHvPL0BFonzB8 zY*Vuz!mc34ff$5+DU(1<{{OKBX@xnty+^HR6u<_%4;@xQwRa~1KirWn4 zfzYhT7pFn8Y7ulM4kt9S{dq(4XsKT~2-lz^9b(I9+~L_iwp8~0RNz6e?if~4uCh3{ z;oZg@(}SoA!DaZf9W(Wd;axeLCC4ry|%u=!r!Q(sF%J!7$zo z8*@VCFe~m8bwP2rllj}q_W?$<>zNOs1gKy%M7|E1_{-)=(Q2?+Wi+s!p*ZR-v|;j0 zzl}2IyDIQQLc=?A?XoNq-$fvF2-IZ5r8q{=TfJmhK6+oOywEUcK55*AtsEq}3=jq_ zrBVVRp)B9v!%&ToYu50tO0I@MJ^y4H?0&U4B~J0l@S(f+$=(EnK?7mqDU{Xtm;`kn z8&;*)B~I~X9A{q0dR{=}xU?-;M%HReF)TC=nu&pSJ2m7XHqCLFPKb492nD%|MnSz8 zaUQw~en#VigBux;WJZsK2oZ z`_>NiU;W>UKfccB$blGyp&i{2uNQFtjUD8}kDsUjCK=m{K^D^AMtrncs;Zs|rk(59 z<Cy_#*Wf=NclN zDmTFb^)@L6vfgqnZoa7G=In4a=xW_B1ey-q`dA30FhD>LepK~c37L}s|FreoIoL`T zCd7vV3TUf_-(>N~VaG_U)a)}{K+^>>7CGE+M!UMd)Xv{gaJs$>_}fG(L%+Zl>G)yU ztLRl13HWD@*7)%y*qi|ew8}Zk$QHm*e-M5~RdzQjTJl*$p%v=`PpfTI9Y2Dgb)HaS zYExAebxVu^NmTYwA|invsJUNYthw-l{SXIou)+4L%1}M{2P5#+hg_z`Yqr$FA58WR zxN{#T)%1@s`1fE`>Pul&us|&r`f_zh)CwkqQ>df9>`~P_a-emSTt;l&|0X)L98>Tw z(gWTu)*+&xXKXyfJzYIXrj6or1;c4=%_*WrzdDMv+69rS)5c};@Cvt=0zcD+mDaztH7*l}GEpZ(;8khkGO5<-v43~lTnwv*8`AmVFqf2mLxn} zMX{OOjjGy)8BkGNLrTr-%0`6fCn)xFrn`(&Q@M-Ni~hh2CL`y^x(H%Bv0n5-bSVdj zVn1y<#SssrL{mSIE_;ioFl{$fE}T*a^oWZl9VyTWKZzsP!I4|#;z6IB%T6zaP@gLF zxr`F$>puR8s6wB4ZQ_PXSIhmNFZ_%sB)QJLNpvod{~Xuc^&1sS;A4#O3M#Wec~eDW z5NHJDB~$%P+>Sy1GbJwvODF^s!XVH9b?n!4wI_-3EIU*4=@fY-B94du?1TSuTPlMr z832`0x6%>7;|&i^O!#TDVq_na6{B&A!DW?soZ&g?mvvONtvUXJgnkw6{}1BGPCSN) zCf^lM%%|PQJ?dYCcmzT*pLXh*QPO*>u}5$Q)SQwpek+EE3JyzcP+uZxaS>Go1f=P zzXqrQx_eL_GL?!%3XLR2Jg0r``0#ZmIS#`x5d4xhlkNY1Y(xX2QZ9WDkwB5ntrvH3 z!GDrPo-&3p*LI6 zJMUm6v!CYXvhXGU*=T-t3UaPX0{ht>%}aq{xuOZ|XDd%ac6<)tqxgaNCB5o$ud@Kg z6*Mw4!^{W-`@Nt97dUkqNfaUfS%gTUtn``yf9_AR@O)yKJ&6Jo*Z9zx|8`f7kuKQp z>vPjO@=#7FTgZR@MD6B(xziA$d=r50uw(+Av1bYh6?HT&~&z{aN+Qwe)bnVBv){TF>h=T%_Sewo(YR5vpE0 zmZr@7*9zSU-4vSjB-R`eXl76IXoho-=I_NGt-TKxElprhJcOb}GcSopv+#pQ_bdZ! z(Sy+@(7^|w(8;Hz(33BgLNC4r3I*R-fu`b{9&J1b720`dD|F`xqtMzKF}b%|7q)Qw9 z?xE`OOjRKll~VG4`^g8P15la9kuGg}e{-t3P+eu#M^za=|7nGSh7OS-Y~c8>N) z#fB1m%eW!kyD%@x9Q~1s4TataXtX2D$N)aac%=G=Vwx9SjnBB%?Yk&YEMR<6x!$ zS>oDE;lgA76G=rVSkW3J!;@k|!n9>U2zS$U${Os1zKnw4t00sKh}Q6=a-|7xY0%*{ zV344pL?lZj>zq&M+VwFWT$9T>p)8rEVuK7M6YGTYdVkFq&bODcTCnLj5biXINQHH)^ZEQ>*!gfjaxsgrD@*yJ{`fi* z+lXNp2)3lxB>QhHqJz^gKyC{lWazi{`>zVwLId93DGC-_{8LQgKxy{qik%*Yq{SCw zJf*>QkgStALk^rVw`yxZcV77Ig___YW4UIe1M0wHmlxu}jOe*Q5A*@k)+4kLfw0w~i$865?*!ZSXk6Z=*^ z%2Avpml3Uf4oo#%&81p%wj{VxCXAu{!S z*Tvp-As7em5J%w^MNY+Whcobr$n($uerlm7dJ|Z?lMAdDg7dtzKKu-cv zVFdckd4BlRgeO=h%?%Kl?PjW~crkRc$@dz9&=H8L&%M&YT;ACB?^V!1y2HLbi+ZUl zXdnUQWM-C}m>P(x$Fp`tPqyj}gbPt(P11)^eIZ%WeRF>ruZHnkRd1-ObL!DpSJJOv z|D}&;q_nj~h(d3zWT?zth|h|c&>OPq6h;Cxbmew(%I>S-nTt-eo^lfE?LHv>sq$O( zL)jJJNCY+TPSEAQ&^W)&_PigeU<6HwsSfuQkU0hnj>@?Wfgr zki=7Uif)5B@>%t{Tz&hXSi#~Jww_?fkyt1{+|H$PpU&e|ih_IaHpG(GN`^mzrnE<# z>S`cJ`}gjQ;}P=Cz>xmJ<`eA7kt$-j+MV^L4fWKhJh?3fPiJ$d$`Kmx*yggURa=}g zB(xHy4X&kJqH+UE+7scBku@nkQ>aDFninX}qZ)bK{(emfqbAfF*g?yLT;ODTv0fC8 zJ=b)>)+-oJzN$q-5t#J{ohq}cLj0rbjBX@`K_J=^IEIb;Z|q>D42Chx z{41>-#D3nYW=x%hXzfRWXzkeQX#%I=a3 zxPRHBRyL4n{oMrz=vNz4nN8Q3Wgx5*pI12z4T-s+q4yqySNkz80AvpsT%O=EAjCEB z@QWG1>3XKBZc#mX)F8=|^_mY+{FPZQjFf!~G`{9b$?Ld5Nm)_k5D;YdxEtVUUTPj; zsjZ;D_IGfQ=(#buG}Ql+Hm#`aHKZBCQVy|qe^t4WA*Kw=i!DZPtwc^?KL%R!9vLB% z8B0+7dYF!@%w#u3%s}$pKB+vLvFzr(n}E=hYHEuxm)(rJfwp0~+Wv#0?jSoZf88>L z92B*Y4Xn1hY;Xfb%}6LT_D2`kz^IYVJML7sS8m{_`#sM^Pn#(}KLd64+UFwpm+2W$ z>OBfxIfg9Ena?gi!D=bCF1LYFn^A}k+d4nukFPUEq8J2$=#|)r2=~9($HrxTv0WO* zF+qdiTcjCjh%;UYp#PyvrpC7)jng6TmZv;I+Q+cTGnu*Cd`M~c;#&0nTr#N60oIMI zc^s8CYcsYU9?WIjm8V>bIn_K>9PLx`)@?T0vgC^fqa$;I8#GK z&6SWRKz#dT`W^xp>c0USg*zX#1XA1v1PE~V`G4SWVUX{i1)3AQ`*1bE)Z9QxWc%J; zz6*+;ZL^^Xa_Ev*J6n$SjXD=g{sDC<0U*ZR>pXd{BUC#%fE>5kW;HV+QqGNA2~Lnv zT?*`KvtSz=Ceiw7Ejb#Cc+3ypzD56m(~q!oxq=`BfnZ94ikg37D|@imOK$+Y85QwI zHNRFH<`jY6JK96-{|%bkP61qxZTXMj-1aR1^juO2q?r|-dl>}ek*c(20Nq)A;f3Rl-c-Z_fqR1v95iJPOEMuBrbh(_NdKy)>?;k%PDV#AfW zM9Qq!#f@#+kRI7tZJc!@HHp+%Q|0IM7!dMbt5O1Q90~XCP8mJows1jo4ik z#JgsI2d$Oeh{clsNG|)@#$m5b8R&q$QzfIAc_?>;_r5}9LOOCR>5=57_T8X+|C$v# zWtSWTldqNbZdyN-T|tt=FbMln2r-8Le{7-cNYNXxU19a-}AQ|@v~ z(QK}8)sfj@;NtI~P(&vudH8^5ZMgJB6qxviC6KbHF@&48x}ZOO^9oW%+tp75&zf;n z@M)ugufkB$+xubTj`S!r1JBx9b5U$FQ^HR0tmZEfZ)gO#+*sgQ2XC>Z?v@G{W}F0f zBZX7rL9ad<@T`$vg(YU(liX)7^OpB6x}n>3jRFT+M zoKkK&3|awe2L@yY3QAIic0fpV}-3O%F$3?@a2EE9K;r?dTe<-`6TZus!wo-5@CHpUSNp-UMd49S9Tm(%^aDx38 zj3=6v7tLvMwEdfd$@?WX<2Y-|)51i?-#nXSow(C|Yf{Fn2XJ58t=(q_V>Ys49CDC& z{Afx?9;tb(e-~2u$WmI}RxU1(L6)_CL|Z~~+1?BeCYSUS@f>L8$H8!%mVba9MLijx zMPC`SbDOGah~jSFx}=IGMi}nm;s80;d~cV@12r9g43ez7a%qlL zL%|jGK$5j(frhL}SGv6(Bw4f8ZYrr3~%1He*(Ri@I>)^qcopwcNDfJvGRm1a;AjO(B7aq??mk#XA z*oKB3x4gW@upiBF-T#Cw1N#tm1x5~oFl?n*m;n1P_Bd@N{_bBLz()%K8zIRRCcS@O zB6E*v+qS%XK;PuqE{@UMUx=%$A;tfkdQzIzNX>=`A8A4DZe$Pl?giOs&c~(mbB;LY zu0T`o+Z?Pui{(0O7)AeO1}t&>wd~fG>i<_5zJ*El-*h04f_LqYT%r^AqmkWH)%+hu zpmpIWTX%w*!-kRbT!0$A6L&Ij5Hb!z>kMgR=5P}EfC#Nu>LKK6>HNY1BDCVxt*y!h zM-D@(1KGW}09RRQ+tCi~1o$}Ds-1(Kl0!QI-Zl!(w^>Sz*1c4OsIoSI%NuzxFf;y#9Fa0&f>xX&Q!L#Uvada94&hfKP8j@Eo7~oJBK?> z8v4O|meXcm0h@t^wvLd@xz$shiwZ%z7gzf(-j~~M1Y7q}j&{JG!-?4-uyx?(4S3%@ znvKdoquQ4!RU}WPq>9{bZ9=VUFFUDkQTK2lxpKp91sFDQ|l~t-Thr!A0^I<&6lewHnOeA*~dtg%wz968K~$xWMRjc=~sZ;hIp{*f7mu&($clFfFRY`Am1&Ca=;CAXq z1}B8UJ8)B< zNRNH<76x?VjLXW*ujD_LJ`(P7zG|@_mr_cO4K&Vb!Jra{ zP(O8}tT)?pog?{w7?%ckYmSVpC{#rU`m&!(EhF1s9)WIHd~1x3BGIuWB zxDHnYi4H^ ziNq|E9(=$ZX}50bW7RDg8`Syg8g>g;(lZ8?Zm&Rvl2yno@u?2N{rxFbBzFMHvmV#XP>)`cYRW{y+mdo_uBQrWV@+4frvC{@ZV5&;&DJ&rKtF z@A87vfd(8uWKg!{5(OG?41m=7{SaowLxbi$nEm!OmHiQRMoAKbAP~J0D41~ni>+pB^7z>4JpeUjl4%j) z_4g>C0Y~uL)P&13_Kin#P3kG9t5lxpKAXYU7b-0!4-4+C1FQA1k>a?Vzy2o2%jh(l=iA7#6`?LaL z!2C_~K9_(BGZp{?&fPCV#WvNh5e*nn&1E4|3UW|m-A75%nB}t07t~liP}VK~Lq8FK z0R=E%i?g|08^8cyk;kF>?=j9F%B~~_Vi<&dDFIr@|35aR(%76lng>K(g0dJd-%*r; zcX-K2##nL~Yh)#Zx1W=pEUjS};3OQjVS{3F1PuesE%|L3s-Y1y3|N~WTE`|{@@YoL zj2h<7DJ#-^XrG}Qa(`b#3>(fP*N_OSRGl3*Xo|xKy&0YIhv4qJixCvw)2S-U80}mm zAorOwbwLSZ-rpLrwRXv^K8#Y|S|g4#^jhbX`o8I`l&Gpd0-UuydLZmB=_voUsJ^~; zdEnPpFWp%ULym7ZU4h|T&sLx+3pi^Zkbyi`6UyaFGVd`rHs9>MMpZwZSx*OKklb!^ z)&R729yuP?*A-RAz**~V(+UufJ^3$FSy!mN2OuHxyE zBpty7Ne3t3sYa<$3c#%0P{So^-){nm7zQ2Z+9WpG4|#k5XKhbRx|gO#bptqS`@zA^ z*p^GtVgP5YvO}`1<&g_3aMrG@KZb!h^4!Qbvs6RY2w>J~{V^m;DNknrS*z|nn$jUV zw*io~Jelg-E>H>_34pA*le(I;a#@c|ioaG{ZGR}cqGX9d5OyWCQQ-a;d(z!U_{z*4 zfU(`JC?O>OJM>D66 zx5K$jA@LxGHA(5tu%+Nqki)uzOi%ZBQc#2yLou4|maj}kDvTu7hog4sM>yp}(!6LH z6>dX{o`NW={SvjQ9ZPb{z0Sx!EDB`ZX$VrCQ9KgT1@!`s(@G%gUe(b#x_g|P0_UTI-ch6p6Fo-yj6S@ZStWY`~JSAZlj2!p<)QLO&|V`uCx zcylw{1DJMOHzgSG4@}0ZGT6UH#!^}s-4bPLhd)Q492wC7l|X90vGp+r-*)62iK`-1 zST~W76En9+?Jbh7&MPV=hx2T2q7l}R3=rv^v$v?UfLW`i0#>+)nZB-3_=gHdI)EG( z1O?X8GwOo1e_D|2G@;zy-O5e}l6kYJy+$59YGIAAwj}rGjy)WV{miRteFfmzEebly z_e!ZsQ`m4Yx@p=Otff(IxLOQ~t1I4r&&R1)V%e+7yct@=y;L}L4^&rIfA^<9o5YTD zg4*hOLmI!UYS_gHimSh2@gGb?q%2Z{{S@7tA*ijcBkr;8Jk$R)%{b$V>Dixnx7mey zdGZu>z3D`CgPzd*Dvk>NrMQQE85r#}={P5$-Xz(vPSnejHz=;IesV+%j5P%5P1HdX z;W|7}Tur)5*1s`*T3FQ)CYrrGel+(2uAqQ<9Wq&}lMbMqfQ-NAB1!wdL$Qj)(VPXIV5yr&3x6@mW@GBe-In=G4yGsxfP+@Mw!l9|wKL_1uPZv1 zAOvA8sTk4z8+))bM|eLez`0x36%rsJFiGPFmGh&h)qwqNyz5Tcj0&T3-lQI7{9mc= zgCbYsolWk4d@_0&-QVwEIB4XXB>*xieK2Q_I}LQ z59OIu_d)Ti=}<=Pib!5f?j#L-F^SjCld{^_Ecb3Y_y+2A1w{cyn?*GJXS)&(le{^am2(MFN1 zD>JN`>Dzbx5q5345d$IYN|^x$a{r4Jny#HnmHW4=RkF%t9$*_IH!gsz!!cq9@=No} z0g!dC@w7!IRqK+^1|a?vTZnrsDR>B41>8nWWa)Cn$QKUJ@lUU#pod6Sa6bMEAMRFi z43V59X0PUZw=~xdpsag8j&wh~sJYDSfwJ}u*dcA0H+d)$WnF~E$DK%#hXIr|I@xpj zVrgD9Xv;cglZ$pvX>uU3k@R9_)$sdf&)tmzlMRPvug2{X=cF#91Ne0H#pxTe zMco0`+8>$QOz^2MGonpNwe$S&$7=iH>xzyj24T=jjaJnC7ki<1FXW2>Jge0h34)r{ zS@XydAUBg$PKHETF(&k+n^bz&3@X*{jmGvob|Q-rPw;Z6?iG%1h^M`*k^e)^XQ47%o(3B1ydQG^W zEwB~ul!0@GrDca!apbZ-T-=3Ykwt`v0qu#{&VBya-t>&~ZSs=zAFvZyYlOlMtBF~< zhzx#PWHAFW(Gnw`7YN&10cp7@ zRc0fw?p9>MtrP;1uO`>O>rG77J8vs~S&>3CCTqsh=EY{kogw3^%+ZEOP}kvMm`%E9 zRXpaI;Q)C^la=)l3H8k5ds}h?{)*}Uy=Hw(Fhw4jODx4@D?}))H3wNoMo=EYE#rb( zK|HcltM|M%W;G(~kk4!0YOKpN1htZ@DP>6u^g%>c+NAslyMhCUVGyft8htd%$`EoHX^NZPXkMn_>J=f<>K_};zxao38Ih(b z21iy3g_9c;t*^3dXCKY)Ci%#R^cBvIDEnLXZhO?ueL*k7{VVjmcBS$SRhtIwQd7!DUYOJ?zf@eno%+! z<}nFA>|C{!V!%Lttl8{+$?eQEk3@oZE#d90Zdnc1Q25{dW+TcvBh(Fu^UgM3rC`=| zAKFZ>7^bl*2@Xacy+$$Y8bvcY_?~b9yFzJg&f|azFCUUZS@YR!kwJoCVIP95J&2c1 zj1>wUm<8n8n`AF7T`W21d*!Ub*$ z!hXn~cYOG|k{bv@7}gTXfrtJZTY|K4UM?US2^b*8N6qfI&qbMXs4{x7W>WW4Ix)3I zNM-#jhnIv&krxJ))tv$9>nPSZ8eF|2;(h15?Y#Usjor)>u>Sk&tr`UoS}hgkp(bAc zn*>)4!|Q8p_4*3q88hto%J)T=@sL@(13txtEZZcz(azlNT+4+;Y_(3mLFD!&%Rbs~ zF-P3KkoqY!wrZ6x+(UAk6h&GP@0LsNro`X&!iM?RMSw>BDL#t_oUtWlStm*}l zXLoala?n-VV?(PEBgho;!4^T6&ErW2#gn>hAgff38=l{?DC<3>0@soV5fsvoV6?>T zrb&j^GaYPXoDh*0pH+S=XFyXk_(~NfM}%&@!AT951C5DA8;~s+3&_>0<%Ky57)d~p$)vPtH$zhvGyx=JH zB|mqm>QI!lx`39m+FNl@(2Di?ZV$Fz)*yyaeW!=ku(!#R80F2qo)>n&JIU{w6>Fdo z-fLUhR)AKl;8`bGP{rw>6YG8^u}Iz^a*f4!(^-%ZX3N(}*v!yeTIK{0dE~HCR@d7Z z;)gyR&ALih&89K5)LuvOAR4jSuTZlq87PfdBeIK>BVVMbub57(Su|j+)Ap1b!n(5v zujXH@Cu7;!xGdI>!|M{b}Z<%N7iD1y6Sdk z@84lE)F`V)l<*eKCPQ+v!3aG>#?l!TrK-;S_tfWjgIcQnINs)ZtlijpiOk?xYegN< zM~Rj=T{oL_xPJ5+DVxpii@gWr8tW(Glid_zT33QSN?7%Ki6LW0q}u{$5^%orP#+-+ z@?{dPeGzsBSrUUF5WSL$V0r(G4fMRGT+FN4^@e9UF-pqfLwNUQnR;1WcST3nKjtQv)?2S9N(fA;EQE|nrmtKqEh zGC#66`gx>PBgdm=r%aeAts;1)UtnN$UYKKd)*SMF_^5C*my9+ z9~YVkqhI9uqC4nFqAglrMeb2lSY3Bm!J-e|cjGdvJ)#op&=M=E4MWg~Dn$e=0`f>4 zsf|ZHwN_YtkO6{f-J|AlE3BD(6M2Co!kRnl%3~YD zW)T9cxv?~;l6|^^D?os?BF^ntCQYvR1R>U}VIGa18VGUWC&XH?DKV{VZ2bwH8kFd5 zDj(diw=W^qlC|MAdP?@oK5fh8Huy0E{mUt4*?DJRmFk+k4j=mJoaaeCw)lkTs{suP zWji}up9cxC-aWeJTe?-Rz>Bh8LjG~*vGHF5N3yw->TU~rYKXFy5GaYL)$}<64VDtg zQ2f`lrchYQBVES^C5z&YsQ9Z{`)GEgjdkrZ=8*_}(7;Eham&bG?HAHY?#-GcLj2YF z37`KPu-MaaoI#j1GxCvNZN8}E{eduRWHrr@w7V?shLEE3uWiKNvatOq2(#9$@s7?~ zIe&z7Hs|J#EcNbTpB55}(Z|$vSF`_{_^YGIvo?zbHzx||1oZEI;lqxPKQEirLIvSR z8a1n~v_LmIlvC}Bi=#l+hAF{?JU0&a1VPrK?@1M6HERlp$M7oT4qbdV2P)!myei8R z8GKmfG;9^ES3*fUTiRvc?HK{zQejz{lK=nPeh534B!)p4hF*zJ4D$UiR@_dJrVDkK zjTcD>5Me$2l--_@vqs%-yOdx%lS>Ed`*Z&40f3zn*unY?HmseEt~C#W9jv8&CVzj! zsSnuF>d}6E3}rWh#dOou?{Z~6tG$opntbyPl(crpqsv|==R=3A_;LgR&Jjw zyAlaF)XS0`93^Oa?@kFW5ejB!-A7V0A|2j&O06 z*1eN6P(e7IKnns{S0iAimLa=K0JEMU%$*s_{--tmjVpvE(P<1W)1iI-$wL$_+i2a&I4Q=w z(TLZ`EmR@oA*6^+J+9O+Jaz%JG^-QA(JvRmQ^uGU(SLc~GuusyRN zk+m>`oRTB_BOwPZhveD4n@LO=69l>>({(>0NeU=725Ca!#U?=oNGhz`{3I~}St>r^ zh8DP%6k5+E1VPc`aavh+!C*l5Pq4C${2LSnBv)+Om5BQWaBz=>pSKOs&)KSOH`Vb zW_4|jyhiKZXAZ7D-jh@fH=|uk#=W?5NKjd0{Q2d`3fYefd$n&Tv4W52Vm1nCU?X=M zvLsQxHfzWU==0TLi9kw1*3Z!C#~NJCH7taX^*$H!#=b1HODI{#8jM_NSx+u?ikh^s zhSEc5OyV70p5C@-lJFdixfIxw)(%t-fV zPvz#SlA4qRv))ivX(u)x%0HxmS@$gd6ky%TXNYBukyT@Zu_!&%dYq}U>xL@VX2i0- z+IIh^nS__7lQLm*@H9BAGOKyb^D=r%dsHs}&FZp3v5u(J=(R;ndJPvY>`bnzG3Z5H9A^auh3$x88M^H!_q7Cx2>W!=haP&2F6sX@ixv7wM=xlTA6~$RiR@|!89q!kc6WrWH#V=M2^9v3ksT1)0 z&fNY^J3FLV;YV%`PaYNal*mg411UG|-FofFl9@}du4gw8@+XO~AHL4@x}g|^!7E|> z-hZ(|lk)jbHGp$`iERW3@wW_}07u*;Nx~9-q7x8~V>~iFQh)9qdM9j@Niy7#Z!3h> zo-l!Y-Ij6rs52u?D;?M7|?Vl4%4e zt>J*je)2ad6zx&26sdst3m>AzkQL*5a5saOE4c{Lag%5D0bemTsZ#Ox zwx<@mp3B{2q4K}%HLdj`DOD(JD*Vd-U zIl43m!=6*Ep`86bF3k@&AX&uBMr%thD@09)}b8aXGM4Y@h$o0qwuBh1nhASGEApo$-M&#$*(IS%)tINUGVB2z~|b6)n1B%|OPR zji5VpF(<{QDj|i!Tedp+ZMJ9@L`DWnzP=Qs^M7box989nrp%I0WoXt;sGngw?eWik zq~g}s@(~cyT|;Gv)*S+j+)h9Izs_z$)+SEt^H_k_=i=sf(^iyNeDdrLNa))NVROq+N<6^-xL;*+YXh{VDl8E`pAVAU@XX-(9jw;)0plH2;Ak==Z{$b;p`^X)j{NS|PJXqc6hP+Jf`dJ%SVSCP9}ZBw0TcmFX>&O*e!C+Q|#F+rw)VCDEd(ovlVCzj<9gMP)bT$DHWlhB~**l$r}UJ|tx5Ptoe5zOkwYqLOEtopV|wrXb zIP!l}ytldf{Myq9c`B04T9*KHAL6Ra)Yk=PMTN!e<$3hCkut%%rS{3?aYKFpfEJ{X ztdwhn{DAg>7)Y5bWF+cPsjTzNto1v}_Vy0@k{=g2ur@hRO zI}oz+CFza47fb}|-O7r+6Zr(qTwWO%;Q@u9VTQkyAV8Z@t<~A`;-ChpS@TP-6<~xv zzOF3WVi1IFNt8jC_ICfodrJ7q0;pA6hXj&u+OoQwg~9qNTyd`6j2?Zqd|%j8CabH) zJZvNv%s5+tho-44Yi+?tph4YtIWV@1N+GRjb^sRfxYJbx3av>dO{jh9qOBEavv$kt z*x?LUlm*GF34}adBj^uMP-_-_fuc)KWjc}tl0-7A#eThvW)fBxn|st9jcaD6$}hkC zd&vPr@*aAPVOs*IHGX%hzt8+2*#8Eo^_34na8I4KhB~Yi`hhT-G9W>Kw%*MKJfd$g z+FE@j`YiA&Y%q>U6kkcKXrk{-rE*H4tyv9))B>kwZr<~#=%N4tffSYNL@wiq1Ofub0wU4(g&9X75D-Wq zo|^9TLt*pQ1O%eBW@FOr&5*X}r{%iL;C(AhUZ;ae_sJXyrx-B#0YBOd<9(~U&G9C@ zp$R^*FaWLxMRd;xorO7^Yc_IJL+4p+ND6Sh&xgoamND>9C+u947zRNge5HU<@ctL8rc*!qquT>8i3!7Fh27s~w7+qa zr{;#>)YC>$;6qsalASTo2sZazF&R zTFaDmLa^33kqB6&p3ZIuZr!g){4sgEVT`sWZEPPQ`_Y57j#Vl__uQLytTNc@z3l6G z-12GY3cR7Xj~cwm!WE*{2=eHvc3u86=F#3-l%K{@LVX6*np**)=k*FGr2H(lc*LWtr62pP*sZ; zZp^fnt9RcDTIzGa91uNQk<^&duMWx@ZdtnDKOYj5)uZgs*>i6p%sTrrK$vakG!+fz zsC4WN3Vx{A`20<9QC5+nY{x|ky=8c!HEP&J2+JYe@D%Zk$VlRu0>%y$3d|725 zrzw>SL+<&(Q#_f6M%_jVG~=JRcwO=*rd^TJ`W=kaX3NcnL0F6;T$>_bb|n{o$U>Nl z*Y>9sFrU9l$NynjESs>4v!=q#rp!tQQ5V)AV=`5k3^qr8(8XD^$SuIi?(XQNi?iks zx+rs-1%uUK8nH>vioE_Fk@Ed26#ZVCtsvFPEY?CLI-d60djyLg?5*VC+RqJEYdR0# zpJciL*{hLlvbj%K*oB1FI!DQfn$Gr2QY!}4w}snNmd?FxXswZgZ9fgF^Nl)WSI}B} zNp7)QYX*E>H1Te0dwtt*v$J9<}^L?spL zXPD>b{M4I$GNgRFiW&CVpKkv{YE7Z6t1xj&U01{lQfmru2<58nRs>G#M;e+bv&Z4O z>M#~do9$gbsE8{T?UI~XbF1G$;~UM86w|Re8z-y}_xQ&#eVfftIAKk(vDV3PVJ}8Y zZxVJAhRxZiv<@U-<{x2aVB=5-!_bxZh7j0)u_LsNQ>pR|fT$?&N#ZKGQk>Pxvb3vFkU{!nP9b7lJ?WQ z{-^{3sAvsDVlj-C$s$xmtD&F{<(GFB3!9z$F<`c;Faa821-6PkkB~A<&%r&hpgFal=v+onnOYT>JCvw)%4dPyxJ z3ZpSLDHp%_8ci$mpvtt&YCQ(-HO^>{ssIUiBZzj%tOW$0xLRfFU8Q|i# zpp@lPuuHs;6TDTa2qTevw@7~)j&sVpc!8{uHGs9&t-Qn($a+seGYeeXRKw8latT_VZq<(Mj<|4 z0P9^b<5-(4UmbPU(G@gD=3^Ds{GZ`SrWlKQABYC{WE>z_9zqW-)vfAbX%K4fOF5a z)N07%H2Jyu_Ja6o?5fO$$t)qclC%xwk(4$(5_^Nrq2buWi zvZ}{Uv>%&GVelw;75>s_GWl}q5Q%?O)+$RVS1u%}thnIk-vw4$A>VOK5!-nfiQB70 z+)(K1@i7Ml8j_<3<1BA6H#dVx)L8^%vaTyG`jC-mYPtN4?EEr>Z0aKn3SQmu0x_(} zZlPD_?ja#eQPSctRpE09%XoaVtv zzlra>%Q6mXsPvj}*(2n!rXG-JuH=7%G*%yP{jqpKmpbKwG*+C^+*l-_g+f@PSJ3RM zZK+Eo$YTBF&XWykYCmo)*1=$~=nz+AbCAWF%3_jVO=aE~7Nx#+Xjyex-KvaI-?7oW z2URTORpEUrxm#>{ylnEL;dIPvCg&#uV^sGOVSP4Zfz#0U<8u7)b#BQOgdh;z(g+H= z|BVH5lR17Qy#PwenNq-h{2gYH2+=6W_QY0y2{YDxHtqR{WpcF%k391dqn`4vM>QaF z@ZGALQcOojHlQs=AfV(?8U>DQKvVhnxn`tH^708EVi6eJ1A>`v%(L7UGS_dk=c~Ndzf7f9-=p78lG}ZDa9Odn#oF9nFBM=iUZvx61T?Nq+HlZZ{OeAPik8 z;SrMk7rW3aVZJ;-)T&JjIOgyz8~xz7)t|aFJ3rS49C(S_pv^daBoF=IUD@PzROYu; z$gFu+UD;QAFb%(uS+k7l^7n3`J$ee6b%l0=K%I-winL``t$^4`+B2a#4u}CY{u?e3 zqt;CwLhGK&*10qR1v4P;5fqEeG=jc0?2)A%qpJ0nnTZX|fa6|s zge7T)QCNj2Xx6}~-U7Bv(b*mNle|M6p9W}v|u~jiw zqvksbT?MUGUPr|6M{5)tTI(I-d4h7CYyeujqdZqwf{E>Hw-fP~aJT znfhj}v}&=UW0XG7_4=pt0>O`h1qaSFe%*7dt0;Q=r(Sp^}L0m z*$Xa0uLkspE6(dFQ^;Ur-IeYGVizo}Fwj}I`x*{F>Si+7Sj%6FK)>lhgUL9sS^xjz zkFayG5g3GF=t>j|RcM9ViA$9|a;$~pIC9RFsK1!+wvsL6f=L-Pr+ zbv5O%)~$oaKLsuy9@eHhd~LvpM;>mb29j!QKn-X?W0&-#eX@s-DKw%aTKgPUJ%VI_ zLyYl0`a$ytmx>)yBF$?e^;$uPueMgtvRx0wvXO)ti|b|ng} zAT2|i)sdLr*CI)sGF-6Yjv^Pcrb0Ok7c5^FIc|c3YF*=kwSNsg#ngmSqm2ueSH{)j z<*CA=d?dxG$!ir+MJeDtJ`Uqe9`q1dqdO#!;R@n2gaY;lLg(1?Os0Zhtl>Op@36nG zJU@J$QI-QC2n4UBV>`2Jk23$dw=%-RcfM~QB;VRtwnLN8$}oTegV*0zJ)j*m*}!g^sG zuEOecX3me0Sz9X#g1x`eW+YyNYp=Y~bE$RLMPJnF6*iG<_I%4g(>V(^E8pOO^-4@` zX8Yj&qj+GQ{uAcl$wszDp|Sohxc(XLS~9ngSjP;c!I3KiCJc!+DL7?L`mw4T5^JLF zSeS0UYG0A{lc!mjPP=IrM(aD*?eoql#@-evXnk+ZUgz!FGgHv`7FWFU$>g8oi*+9> zL+al0Mpt58X>bG@TS52sJ5H&rsl$c+ z{ziWIy0#<X~j8NkaHwlvn1}t(R2{0VQiY1SBR-T&4pF zh*|5aIUc6e1~3*(M=qqqUr&{?u(w94G=FO(J{Kbr1>>S`px0~epv8GSfOY4;o5F7% z{66%J zZPTZr$yak=rH3A@0aw=AUl+WbxYMV>nC4s}t0dO~O=^8r^1We5~A1o{_VgqW{CQk+GTx3O3IHU~1phl7$VX=IY>lY3Fl1 zl(l{#AVuZ#{sJIt&y&sJ_sekLfHCVbPyDqO0I{&4cpeOY^ET{geIRT5(2w2r-GoS3 zLUQ5?ho!F9S=h@pmA;2DlTqjJfH7+&YIt)r0mfd5K|4~1FbFn2ULgzM!a_9kFayWjUa?!=#^kd_}u?u1y(!HQdRc=(Xt~5#Bpr<-x#i06I+s9(z==< zUzl}2U)M`I?5Az)&NeV>5vtrd3t@kaC&}@XAuOEYW&*U9fxE)4jO_gz@ZxU;^r}^j zZo_E#Ub8qPo{J5m=i63e{|BEB6%JL z7t69wd3C`WMFtlw=QB}d-9^QO#%VWg5;yX01Tw_$=6AK}jL8m)6p0<|84*&(`X_9X+V2NLPX!orn;LRbJw-|Qb4#nR$0Ybp=2kuX7 zjk;+kHry6i7_eF2P{P}2)3!^;p*8--RL-7_f>E<3T}F3Xr`R~O2ecJOc%8>SjsAeU zNR#`x&Cd4aCA)wJYa~q=bk?^@INkT3--`*uyETLD?&X!P*c{+l7k6yx_vlpo5IXCC zu{0O3<|g|p62II82GJ-1yddm(rE%MslU|0kujAuj0U6lGtMjpXj6 zA0eB~Er7G04&r&2QJoq86gX>_+j?(xx(ZQ3XI)deA9{TaE=+Fg!AZ&MeSuT(teq>y zCE~dWNc7gy!LXe34B2eh2~4Eq46pxZ<9D-IlleZjW=HbdNy?aWjBvTW zzN|HEf@dx18fQ-LLXZfqLq32vhwk8zLT6oxF-DQ_h6@`&UB8rkSDk6QsQ)$c$Je!G zSqy@(Eumu6{cmixll5Fx`x*^N|gI7ixxgDzOrOJ>=S$_>b2>$r&&r#KGj zg)H0&R!sL}Do`16)_NP)Q+$fhRmqA@dd*>j?ptC-k)zg-`YBdEO9CH2JgYfpZ?_MY zxqx`q_8QPHUzyZC!l1zOKG`xOC{k+mDa?A`C6C@vNRTT+K&zjzC|nYboGNVcGTf6n zdOIU&ZwCTegLai+EucRtjJc)VmsmjLs5NBN zveVnvTmeszqt>-Xk=TywDD`emyT#+=cLXv-J}pbu`v5C0$r5M>&RUEA^Rljk=>I%O zFt}l^x*BlOddtSv3v)$gRvKX0^St_&|CLfAjIK4sCM4{iU9Kaojoc6S$eyY_!6aaD z@~ZRh{}Tn%A7AH|B{2vB(JdJtp!?t0grtYdPig_2v}rY1!maNxT*BjL7Bxl{FdI^9 z^zRhHxz4kYTJQIWZ+9R&)FMS{wZhIA;esf~md%{euyU2w(J9{~F5&lqH|PJF@@CZ* z(7bhWyBi?~%duq>R`f>ZAF#$y4NivCdVFN=e=j_jX?04iAvVxV>!vzv45>Ay1+Iiw zms1j{HMk4pTJg14Vch=q0=o5Sa*`mmcC1=F$VM`%7%l=+aEnS`6_zP$sC#6(OZu6Z z!9=^yTfG43lt62#w9bC$@$lzTMTH$&-dn-nNqNdrXq{mrT1vJg6UQ8ukt6*C3UA6V zSVp_&7jcHuvRc|0VEJqG`)l61j=G^XEUUN~5e29KzP6E;MU=cs8%^?&B(qdZa$Y z)6{4x=+&(L(RSIc^J1KUxi^Oh>9yyNW34@EkH%-oi#d)vYq}4Z!Ie5QzL5N$?xB7= z$&3datBrPzzW}Y;`U8&DCLSrZl}Xp6u;v90&r#4cRl7Ja4JaUkg0R+FQ4fJ>z;#n$ zwF@5}6$Y-^TxhG(Btz!LSJEhp%I$NR+Y<+@Gn(1JSx4qZ-!}(lCpqOf+OQ@LnD3|A z_g0XIdK7Eyy)a(RqkvvKinY)QGe54nMyb5wQLO94JQPe49>zc#kT_&rgrn9BinZRr z#8Q1qb|f$jC}`5Ev+W9a1+D@48RiRhOoj}j7RljFb>d6rb|8$L8@Si5PrgX5gxhK} z(_Pw61uW|wEACC3s@hip%UaM5W4Wq-mB=WdS#Lh%w%lacYMr64l`&H_l%mnBgJ#)1 zL`~*K)Avui_`}y39We~TFmxpX7{mUH)#R>y>W>ECoP=PEkfm?;T(c9<;XSY3Ig73_ z>_ftP7Ua3A+-_4VoYtAR(7dhoHX3?phojesY!0zVIIVNT&7Qs4JPxH*M_mZbEmC2$ z?#_kkctKY)OuE9kPpX-=GJ=T()@b53*Pd`k*hHYUqhdPRu#Q8CKI?^Lpn-I&tC#|_ zoX*2CKm3CvoHRHD^!$jvq|YbPO8D4$xV2t7ZC z%I?K8&9EWEpcv)*t<10qR|^aIQN>o+Xu=E-6}3u{?tGZwtoLvZp&)wNX!K#7C2bdH zFFTArtooqMnk}z6tn}Sf|tzvM(XuZ8GLRPmP7a2kfI1Se4wk_`&LJTPu6`ohzr(RIf{0GoormNrnnAWVGA1!T7a4shqWTe5dD#d z8;z&ipFbc4RAIM-C}(&2)kH@`_;n{7?4QW9Mxv@-&uCpx5_#6EkiBK9|Dt{PIs+Sr zLKueb(h1-PFxh{xl3yLRbdm>%uHxDt9OwC8SxERNookhK?5gCZAuqMelx|WF(pjV2 zq2ipfeRWA@>mzIO8QqpavWmJO0Oqv+wtLm=y#}F4%jHgBaiBNnMOM{zt5cl;I-VaU z9PReLr%V|w&w$K0VS$AJEzcm;?0iVO1&XV&MyZG_L$g;6`K(2^qBCF(+ac*@ZG#@< z4*#mBnYBqmH7exVef@M(F2(8dWtEdE&d0l{`+HI z4InvSCbw{R>(+Dvk^{!uyYJZ7+8#i1zzX_AkumJ?E5es8GHiShk_6wxlpUaSqk1Hb z0XwH~d#2OWk(AJaoabu)zD#mk2PDkU<|>19))A5FL31mo5ISqh@mFZ3Jrb@?Om6d> zGqn~Ykj{Eu$!e5)toTDZYpv7rr`@c*6r{7BUmF|Ac||#aVvU-ogu9)j-jr)sE1bEj#lX-Go8x--bm4L=sl|T^*o1GF8Tvfuc2HrtYx&YLSE$ z`^d0}2D8RVA_*&Q;@qCr?Mz7pXN`#i(q%=^>iut3nrpe`@8Bc-F5YIB4O3NzJt9Pi zBXvE~m7(U04h`hhZ37g;*6c?m2r+7z*+Ye95Mf{a>M`?I_qG5aALS^D zQwysLoVBk3JR2|f+?0W#^;MKS-F|DZS)*eO{pqgovK_YY}sTT3Zo8<^J!b$}q4h#MF5~~|9dT?12y{(ZL0dz$0bSt|E zmuP%M15JR&P`B=+tZlRsP{wenMCiE~VUm&)9nDOQOOPYk6OD2td{ZIl|2lB)T?(tOY8$1P(q0D65PX z2;zCtr~qYc-ag1^tvvzE8mxOn??%j2hR|$dm7FU5Xl7?Zh{hcPE#W9uGoS*BEIHDK z%#s0)IOsn-(ob!Wwe5W?o?j#FZYtOVD+eomS}Uu*BS2Zb;Zk*BShTGGWpy=XNZF-J zvqMDxENqUH1Pegc;w&(r&GFpCAMYx9KIUbAe$21e^0qwx=4nXUGUR;w@6Yq|`|C9y z?{D9BbVfE9{8#t_C8oa;kiMz~iGCeR<)**M7T?;_nWnq&AwR?RybzAn~648yj z?ij6Xs@u=tT@^P~PefB)2<{MGi>Tj)X%p6Cb&3b~)deEUUG~q|ndL?d!!YzNJwaqU zO?>~0wWde|9-&0P=8MqwtW3P+3uj+pZ@n3(z3ca-?{DG5Y|31uYQ8R)FQb!}dASFy zomakm3a5$?Dgt%qr`Sr#i3)z<=8(+A79n#@=2(PyFBe}Bmen8;A1;hRd}l8xLedh1 z?Ah_%)=}buTl$tRFr5ZZ&r_yFNnUWCDnVQGcL|zT5*h5=ff8GPSVTJj$xJV(oonGm zM{KZyf+*+uPlPDvu=OA}xaAm1Y#4^kak+xDO^(o+vD4$6ZDJ>s*mWt$e-hgS&-&k- zVeZa0k4ep@fL+oJiAW~MR~cl*o4o#cMnj0))ot+ zBtEo=RT{W@*^b)Y$^c9GF~eV!q~{jt_&PMxbG*Zp-cNekq_eryn@^4IO436knw>Q; zXOX>USewKLTT{}e#$~Ll$c>Wt=n01jAZFHe*G_z}KLTx1m5lRvWD(vH64-SJjY9j7 z>x8H8yy62;8DqF%+0}cPR!m^fRmVVoRY}oKr?R z?2IPeX3h?*(S8^?7aM^=7>2IIH-Y^ZI~~o7M0>JsfCvbV?NDgM$|efLj(~BbfAw~TduOn$$}lSnpD?a?c;EiprQnzymvX(1z4HtC~3-y z0_zCq7`*)asQHmtxg)bc9~4$VXPe^48OVWjJU#AxOX?GcIc^gMh`=owXC`o{g9kEVvYZdHymfHPTS%OP9Yayu|Qg}ORln?qgY zn2?SGa?;bMTBIRZ3nO_xmp$n*RUTF$Rz$LAWS4f(@H_Jz*veAqv5p@kJ?DP#<0QKr z62A;#wciJD;RhuOEbvns^kFq!i`q-GdzI((>OYGFJ&5vfDp}5R(MT}QYK~G0S zTB^@37eZQTC+!uyRrREUo*3y}C{UM8;^aD~M|?5`igc6SuK>(IGr!=Yl3>W7W&Azg z{@&7_b3+yf>@=`rNRMKsknRUN6B9ZU0Yk1s>|pEYUX?92#q^kDs@N`-I8W$u zWuo&0p=qu#V0&0x-3O)~xzjBnf?6|oEq@x4w@eo2edO&6qY@y@^UIoZv?dERx;sIb z8#$(7V5BH_0CRO9ZT?%1GxzBO%vfq%J}o~ZJLf&#^|`T~ETfK$nVo{H-CS&fGC#{r ze`k!rf-*M}^t$1>RG+t6FtfZ#`_S!KMu%%$Y<{R{MB61eGjXQd1GQYngEPz2*L&vq zXO?V4IE&{cq5Pjf3o9qeaQ=?kI~?4J2sr(>qVwa~`e~jd%r7QdftlUoIC!q5#2x|7 zGHJe8THZ4&>VY+PS5`~*Bd}(f{28Wxzryj}vff(y`sepAM$Q1aVGss_UqS*L^#6}FV|S0%>74rj z4+bCNv`2C?dP}vypYzb>kU?m&GhVX*=bUQa`u?1LP!%8~L^BoX#RqlnZ73mA&*+nD zuyfEbECn6uYY^Z$1Y?daQ~G0OO5L6etC&Xr3Fet`W0Gt-EyM5TM7RpPWphx z5U>Jk$JDZXV;ONfE*n7ap^092lVIzrz44S>b1Jcg22Nzd{HI!dl8%fB!4V=dBVH zq=3IEPVSZl2L$^3{qXhZ*i!I!Sr8HKt2RWmDQ&=@gF9EHCa_sn8ZVt>crQ+eNXzB| z44qTVQ}E&8u!lomTl}1;4tw9Kh(ohm-h&Rgf2)R<3K8~Sq3am_lh)0j##DU%U{F{4 z5HCgEU)qb!q7iSO{}V4T`e)R4h=2P*r6YWea7lW50*xM6#xF+B1UG^Z27+J04a4#O zk0n}d7tu!Q%+0=T!M(W+vU`Jt#`q?s=(ql2dizj#aJv zt`;~3K-(d%l(&+}bmux)3m}!#7IF>RsMyu`=qv2O%?@^!f(bb)z_h?8hlku~lzELG?xIid9HY{qy zE36Eur>zcA?3E+345>X`rR<*U1UAAEO%3a<&-|ipYA%3#O`u5{SeM22OIYNk03@^-cBeDf41?@C(4llV&uDv8Q{vcP+WA+WV=&4tbJJHc z+=Vq?wf^c*WPT3*#)oEFdlUm(d3*xvv>)qg93j!JFXQZ{+VnmM&Adx)>DSIJ^k7!r zCFIh?#58eR<)sd$iK`4cbH@oaZ3p#Y0D}fsB-6r0ZHLGGF&Gu^7auhp*0rsWu}3eU zw(-na$1WK$mJGG)`r_MMj4Om;AlOnQ`GfjzESY3(&4bBRU@*c$%bvPpF_5qJ@gJQ_ zqLNWyfMsX-6xFVUFw8(+;h)WZv0_@X|f)eLarLDrn0H^&Oe7JbWITy7=K^&%TVRNqWbbcfOwj=@sp-x8Bg=M6GQ3?eWfN9B0v15qw()VZ<%q`2I{3i+(e51~>?WFcAFGl>);5KW3uY=|yzo0|*yAxOO`2BGUGw5cYMt!ASQ$ zwH4VeSC^~Evzgrv1)e5;zfj3PUlwGFSpHSOyH?t@SN^vr=A*zrj??zP?39NnnUIE` z*Ki%TRK@;8-~fU?d@QyJv4yos5qtBS?oU&bQ)ct%EcLpQHHEs%w$dc(^{qDnGu`sY z6xGh)tHe9M!ap$b^<+{4GT7xGxI4?mFCD*Au4UO^qF)p1MwN-J(367OB^yuB zeF!oUc!A!KNx|(@BTqE$hGEMb$$XF7(lY#PcXrMAAlSH|iZ;*7XlKEq;OnwW^EbB* zn}=ldqrd;bne%=64Etyd`yl*m-H#)fXLwG02D_?3Di)9= zc$?aGcC2iF=7hIzjbSooVl=-LkpxCfsbt#BDTTMcRau6uEoS?|kqW=sTTOWTT|#>j zb}lvygD?=C3EO{vZ3#6gKK8FHO_pPt$>Yedw*pxU~_Gf^8q;UBoO*(iv@z51YCkA%QC2D)(n7&nV?%7zg6gKAr0j4k zxUa;ho`^d#rLB#p*rFWah|@NPV@L0$aoF4jj)^sO)4anKd>|miq)6lOA4{6#z8>rF zHGvQ=3nvlxFY#Cl<(`OpKMeC)b*5b+?!YY+7)zF{MRa`IRq4$zO?|i|E+p-B%@BCH zENFKaHyffO#=1`afpKs6c7ktp)7+X?Wm~Z3F2giWvR>+&PF2dSi4G4wIghM-dhvBG zI1+;}482lI5}^0L*lIq0ph4>cAlgnyg6()hAott8@>7`={q3^GDuIA|Qv@c*)h|5? z-L>h>?aArw$fd~~u8(1%+&h1a6v2vr0{;+k7wx*4@+$wpiYDmTDV6fu*wii6g$_0g z*NWT2VIiQqU(AT%KXRAfb^b3LYW}JM*ew;~>wi9Va(qS<+`WrL>B0R2FERIGkb_Q$rt7OHE@>4TdAzQbND%_kFO)DpYfewzlso^gA)C zD6qWw%i8=ga&A`)!ypV@$$;Y6`!CinL>p2i190NJ{E)=Gl;WC(oHWyPM_{D>eehtl zs?X%%3D5sNyWZpNn@BEw!-uDo(-PAY$6}UDuNj*;N=Aoh%ud-Xht$CD+*R3igwd@y zhD~LP5~PoOSvTe4xh#!Nq2a6qO|m3_ByI2NZI^t=K{L)8v_kIDK>7Q|_11sPuupQ9qrdceDv#w)Z3QvW_Px#@*Z(#=kw{!P&AI5{iHXe^3F!UdT>P3U_q z775zD+R#_clN`0USViTQe+_vgU*A5}6W0Tt&1Pki%w!M;*1X-bA_?+iO8MI|sYfP> zVd%;m=qwFdlclMC2TP-R?&O9CRKF|pLBY~wk2Bmm&y}vb>jB3vgJ-Yuzx8m@!Xja> zz{T*MGohmg=_A5tXF?Y)SO;Ct(J)hh{I)ONQLCD7#j4leM$4#D*H*5iQh!PSw2K8N>7*9rMcG4h|OpG6Ae zRgr=ceBWeR7xwJ3GOYmL+Y9rVe98~_rcqnluMhlFX*-$6Q)Sz{G_HrA)lzv#dMEm1 zOGKBlH<$AGq&J)lKAsGw!x2FkBHnHbtVq zK2E019KOO6?48iypveA!3-+#b(-+@eTcio}mYfc?m&K(L(0gf)Bq{rAT)#U4E~X&i z^Gzqq(VC;~NRNJCVgfpPz^eIqHQCV$0PssF=F4DQOvG=A8nY;U0(!%~oV=^oA|;mE z4_zED!!-)@UOz*Q$Dqe4>J}K`FOcBgz_LMt^xo`Qxc5qp5uBG@=YLl1W$DD}mX=OUFz~-RW+vQt7a@m_ zt3=-lj+WZs%yzHTLP8E}Cy_JvS{MR7{8DNrY~BDY$Mj390!PGpVeZhTKj81f3f`;9;q?alLJ^W2_i!C{H&Zdf9r?Id|zyMJ__E| zneQ8wjZK;hq)D^7Xn61+* zrN6JpgYHugJG8pu>dwm5B&xInp}u`zTo+yuDgfNOMa>wnb;1H{0`@IAeJ-1s)xa^m z&+x_W8fxwLrnZYN-`hUg@5{1Tk6gbh_r2i1%!2F0-2SPh{jPmEM%C3qR!=0f-X>8?m#uj! z5Lg23;Kqb$^+W<~LLB`DTprs``0rHqH1xoKCTOPQ#b*B;>%U=}aApuk91Z`j>$}Zk zP%!mv9*TX^Ziu7Pzv~SshY8!0pb~2uRM3;FjqHST9G#DiHMJi&F(zEotJ~x4eE%6c zqa+4F7>Hg;fsJ_oi}fonjJ8V;(4hmU$;)Pw0DJ`!6}{NANdUg;46rQrmkI4RyVNSb zw;_mn{1$BaDXW5jFM=(y$mzFfzQv@}Ol^y((0-%Mq|>u?D`FA^oO2D5vaq5cB>}&Z z@n&U)5xI(wUvfk!qhw+52i z1Tdmyjwk1+C&zEoe5oWCfu%p3yiL>u$6`@#S4I4tQoPct+scLlu`Uu}T;~se4KX+& zuTrmJeD-MY?@n+tiG|P2|4q$6Ah<=75k5P@!TY}7y@6IGsrcdtM?Z^21H#0cm`Sso z!yc=C7(25ZhCv{PUWp|G$^9?Z{`d_lk?8> z)eH7DfxxkE_x4|mci{X6z7)#QyETyn5IlX!8MI>=Rm{F~8)(ttS+C8b#)9KBkb zB~O;=(Em7s;DhP~{_}Pno|Tr8+4fALX?Wd_^P3@&yNzxQ@-d&?B%E7(JN$8ezto>i zOYMWWlb)8DjAF3gRS>+VK^{gmtwkaP!BcttA+{X}Eq|6Mhu)`k+UPzwchA%IgfZz!Kx|EvQApr#EG-l>8gEiL0 zgJ|M}0yx&aEX`DJ8oD;#uuXCZLGURF{#`+sC9G5%g<1k^#@ggG-)3b9g0EnKBWAll z8iL?e0x?^D)emE5fFmIc!@w_*22A&5sK_N_*3XJ*w|My6-_u9Uqku2|`tizNFBI^_#N9*fssi`kx*;H6H9rXd zcdt#;y{w-}?f*vF<WZC^T z-Bt2(Z%JOD;&;`eT(EL-+#g23|<-qnb28vH64}ahC@PozgsX?4u zNCtwyK(BrnABZe|Pf8CFur?$Jfb&Kb8Jjl7lkn_+6 zBK_VxoRd^t`0NmDrLb+p66>&tJxG90JnFF}BnJs_z3O~w`V{Y}e@~=B$|~s>JeIku z^UQ+gL!!DYbvU-}f~);EXr@mrpZd4pLt!MI@xizL{bB6fjvR(z7}!$IF+r;T#_r3Y zVmdo1Kw~9-NCKC@H!1@c$#y=O{zwdT$PjqWWW6}}x5j;GKD+ILx0k8!$wv%y=+eJ; zJJ$0jJ62^)^UW|Fhp&3BS?O{Y8e+RD$5@!?aB-Ov-c_S*ZsT6iPgs}!{pUvDUg?6j zm-VJ*GM=!5zq)hC41f`7uc~`vOZjQyXdYSr-k6!5Fupmq{eCd_4c_S0 zNZ9H8&A?t&UHbRlU+7~4D?ZD$IV&hmz2lG(tz%}#v=na|V8N5D`zf21DyJeqf)r*7{_AbNz<=rq%DJO6_CJ zF*#`j+_Z2s2Z)vQwEF!JFBN!K^JUWVn(*oh&YOo0E6d&?R`Af6rGI~gu{4n{O?v!9 zN8x|Q&L{~&5Qd>w5(ESHzu3-x^pz1e?g1DSw9qt7a%kWK(I-`@2iDUbRtf;TheT;D z5K_JIhXMfa1ht7i$Fy0F3XzFag>v|?Sg8U4f6_eky{ZBMr-0eXUZ<^AshF1DKKxMb z;M~zC=eQ@7eEe;MB?4K5q;Fl8Y8zK+|_G83p8e(2mq-`E_R zy$TFmZL_uN{%gYEGV+ZIBegb5q7oQ*<{QaTwnwDUK!JYPQ=`;oIRXQpnOh;!X!UgT zzyep!>R0&MdpJ2bUY3cBj<8nJxYT|UI9z70Uy3vqzf2o(cQx^{?}`Mt=3Y1T5iyYP z6C&V&TBs*I3M70XDMPM!d0=8w60$kzUS@4Sd9c;%J1UUywWbX}&Z7Q0X`O>b2x2;Y zFghXx_{)^qOd_k>hF+ju>ju4Dvo6z<&RW8JI`Dp?Pr;#UmKk^7vBH^QS zyt|G>RRs-vBYrWePvIcp8!hQN>H!i+`1XTIFvEWa)xI54>%l~A;=qYDPd&$fYi`Ye$!_`vC+cy-+$uF$|+I*LP$^Hp?$;BysQ z5{DRHMkEM6MJNaQKf4umiay;29Z zINbkYTdB(PsI1)m>kndv4hb=~(;I!|Wzwl81Io)e!zA$MY4=?DU!~<`2Q}P%M`j2K zClqjnWj}{VQI!vTElC)~EhwS|J-{41xmwV`a;t$$Z>54T0a;g!W9ZQETIXrPPv$){pBD1R=&VnP{0vziu=SY;1mYn zI{Jd^$_uO`D`V23D=%=J;(cZv`BghGZP@N4xollqje)PGE{-SOpZR8^8UvrV<^uNP z8F46*ULq-bZeDq4bL1YpE0VCx94IK@hBBHn@>jV+5<3lgc`Eh$Cn3iNVT(8O{)@AV&ENjr^y-i29v7o4i+Iqvom}p z20pmEcZ@^*tXGMFud)m3hV|)C9k(1n&@FEeti-@)TB^k$Gv3!oRVFHV{Oc*%sD5dF zn-I3(vmTyGD4bB9YNYLs1P}ZaqA@9(esgd_!76V8WlYPZQexnPRLPD5h37shG4O#0 zb7PFz?YK*cfj?gSn_o%{=1#l8@h|=jBTy;Vh_7h=pA-72V2&dH)cxL*ae=XyH6;eV z0a5KRq`Q@wC^7KPfMSkQOlkKuG4Mgp(2@FidYy>DTu>?o6faNh*H8G-xgYX!dxl|y zFNI_KuW*2YFRuyE$2QD@4PNO$Pe<6|mu9HymKi)4AXfi#_q)81?#Q3uUM|U1Q3ImB z#i#@qJZB8iXd->ug)l;aa7M<)i~3E8fUis0RZE5y2zXYUU`!l7d{A(~pX340u;qua zYfEAn1VUFz))&41#rg$gtR)9hwdbq=N*w&XwIU1NjU+6{kwrhXi9U?}+@j<^5e121KnH$bX-;p>c~7|E;=)qhpa_ z$u=kgemUqP>eeCt``C|=*JkaC)FE~Y`5q`66zS^RQdTW54v*im?1Jjj$kc%N??=(e z29xnw$$uZx4sS%cFvx)0W30PE9K8{++ODh{%R}S3k^z6D#W_v5=Vz5@Kz_Tr-`C4f z0#gZ?M4o3w2V{d{pFCk&_S*#+@F6WXL^L5^A=i&T6AUomL}5^LOBT|oJWmaXvcK<%%kX6y)msrykPa*jd>^VMeE6X_U4#*Q3I>5NC>tPn zJ^_Nkb^^V(Oi6pJ2WjA!cvAR}Ity|a8G>o=USMh9d)u$=vOQ5jhG0qq?-?`W%M=B@ zC3`>M%QQ;Dt^h*t8&}TrRgX+Z@cVnB+WXb2h5uF7IozN8w_GClwwOu<^m!x{2Bk|u zkucotSDi})-%YgfggT{I;J2Frc9mc&lvK9c)hXSHO@ zS!dfziiDDTGBtW^zQR1Ol#P5~d)&nv4qUBt_@Rp9ky|0ptgM7~Vl}XzqVNZ~=l_FG5$yJ~cuFAGSdB(zwIefscKlnxZhQ zfI!v#lMm81bE@O+ht`uc8wFo{jBV3fHb>|(X856+5HRgP*wFqt; zYF;|Rq0}Py)9Ga~R;O}*t^mR9e(O6YlIsElN438l{xKgGAoyPmig*6i+UX2iPREeI z4}5`sIsBvSqd`ff>s##TY5PV^A2}3^#fO- zD%Z+8-0gGnycq7Bn83?2xN#C5I117N1b0^rTDD>qE>FbVEvJ>w;knbh^g(Flcb&g= ziQ5mHLt@?=;E%W8l@FMf!QWkQuBDt zzAHYAor?{_APhuTB0y}s|6;8w`5Bew)Bz$0A$-o~=avafAKiX|K$O>pNEzHa2*gaG z=o4L1`=g+u`t3is1o-HN+mKfrScPa!MAf0 z-kGM~75DCaxU!qRao`2tmNkyj^41(Fg`0yIu554V1rM}viW+;_$n~-Y5@myjUVp(u z10)Io4#%uHmwwmW>982xUI7{Tzor)MAmW_@az6Ah*_pM2(TcHg(R;K!Q_0(PtU;<%;M(tSI(Z-O&JvLhQ<_RXv+h3%{|BwcA$XLuUpenRchh;{yM1YtsfoFH4-!qG0?(UhauwkdB(0@ zjGX}zgD?mLzXVJZ<^Lb6)0V~B&cz2XnuJ8W+#O$`<7(kQ6H%G|(ls9(!dj~vr4vQA zC3yViu&!X>gP;7Ld13vzqAzA&Z-cFw1_QAK@5O<{WxDonOK=K3ev!1nPQnMb9xG>) zMt;D;ySE6`G0lBX_}~!M5WQABtj?=~#s8Vx?u+#;TzrEe#obQqi#38Bjve~e;t1EdQOLMs1-7A6 zaMNp4(D+F95&voKi@74NDt2%UHXe)d&Z~}OYdc?gBlYQkYt``K{m%0i&-;j_gF%Z> z;uf*dt?==gPsYyeSb`7)qA3BQ-pN0)yFVN(rwS$jYe(c|FKzRBF`5gr$vMVFk7`2v zdgB{Bm2wbg{1b6TB_MK&Sl&an*KUPk=0nP%ub)l$21bsGhq>l-WAn)$kg9SZh$seYROx-kxx=KzqNX6 z*=$Rfw0f<*=|Y1uYSxaot_)+zR{JDqxsa~7&ZyU+A8`4KCt1z--KCAK(9g_?eoEPF z&S+mMFQ?qlZ1#(M5Br6KQ@;fMTl>6xgYxU6ww22zexhT2Q$JAwG>09&K>2HSxQc^J zQMy4ebk#A)^!QO0=EoMv@hki}<7n4s6u|jOo`^G=-8ZjGU{5y}s#;-B1?c?A|K`>w zLYYcn=ZpNDLO!#}&yHW^pt8X-tZg+RathC8(0Y6Q%>kdsY|?|JrqmfH(DS3=&q_9$ zwTwh@y5j$goq?^xFbG6fib-tf{)@H$t2`pN;yM6Q9AgaU;{dc5UwnNgNDkuJN1O!E zeK5=ljMg8*cI_`CXzGiXk(X^oD=5|__7UP1Obp$*xo5E6=%WUFa!%2xmO){QqDmBs ze*DxP{2qL`6;>2<;^ZfezSyGy^wVojj-!BdZeNPQDNa5}dQwfzknWfv);mA`Gex(F ztS+(iq~u063z&->2U(SBL&d9>$Te2%r2hh9Oq50mrZXAHZ;S1n3NZcFk5S9*udzha z@3wHzM0JyJ`eM+@DLVoyw^;;` zDFqq>rq1;lAUP%iyGNtZeD;Uv3&WhiZfAdZp_o7FoxQ%f-y>93;MBxfw!J?Ga$?}r zwMSR)lZmW<*JKypeC`$ggM%w)+ zKlEhm3Tzk#Vc1KU&_MrxY}2$j2sYCLtac@3#c^zjrGNckH<+`YuHS{=*Jo^+8tA$T zg1ysn!fA-04H{8yETaI`kw+uF*9FBsS%>q_w;mW3a_m#*+#d;o-q^Osh9_3n^L_2u z_7ofYRXVb!_`BA2EnUDxDI@f4$|MhZI*YZRaC6zI?~_aiqGSd<@jb=g!d z8jIc9$sbue0hzx^bz4iUX{@P6c-PpVu3Bp4xxSk51`Sv!mvmA{E_15CgO^KsZN_gM zu1obfMTG3$dp$g73SY46NXnr$gb9mjrX6J3Ig?<>OmDruv|*XBInQvoZe6m(Yr%Mw zB@P7BK1ZaH+OWetx7`gcYO)VqlVsW%3(IlC+U0P~H@o*VtttE< znx(U<(p!7@@JywB29t^8xiN6lwo+t~^~61YVh8uX>Sp||5~D?9#S!)gN=#}U+ET3p5L84NBx${< zmtWnO0HpZgU&;IK@3Ct|7Po}?>rxTm$g5s>baoV)V^kEITnMSNcj|FnLRSGXK}_?) z;B_w$*23Ui8m+6v?`PW72~If}*bkr9$D_2Xg+rr25!sv{`yNCUrnT5B?VwX#b^;#y zkz5FgEf?OJ-+s)0em{(zQ4+%-2t==>9g2GYi?u(zor#H?128re71syKHZKWMUm@Fb zY?RWTsk`d-s(S5jTgeso&555!nsL|jTN!Z{3VKrgKy1Jhq?y0G;fXDU2%l+UL&Ump zFQF#Jwv=|^z7XJH64AWjLfb1YwD(flGbpCl|7#M$QrZ)0Jv5Kp_l~VmQ|8NEAFX}r zUY`Sw*#~ny-&GHD2raRFfU{1;hVe6PT%c&Rr$iWA9)D5Kb}=94*eJ364kZech?dx{ zoS|`-5+)JlMNgq|UAE^#*~qJ{@{Rl&UyXh4vmcqgti<-w5hvm1XEVQf?Y(q4{F?Q- z#CEW{PggCG$)0CFAzSBs1B#vV4fSPVmS?nfT-BFoO*3q4Q?RK=+c~Tz%N1#z$kt)T z&F7~N!Ymt*?CRP&G_LU#@UeP1^1VjaL~Gw5vzTX3t@dN=jIu2RK`1(qu*p#iWmQ^Ugs=Jf`6;)-BqzL*D#D$sB;nF=R%z=-;`5!xumd_JL^Mnv)|u5;1h zlTCCmSEI0edl3i;nV@v6oaO!&QAPJ?NHAz2g<^8a4+x7qfWoLT_ z0_yPJJ!$fe*rutpFXbo~0I}z`eFvw)$tj-ud8EKBm%+TBw&@tjJm<=!P}+?(89(k^ zsnb;2m%SgEmq$KVrXBW*+T+ET&&{^ktGeaiE{Fd)ZJZ6yBhE5^)YV?{N<7D(WY;cx z1%_0-Z{OK+d&ib*D(x3_TPSTQ_u~8ROgnYNi`)XFuSKR3!Dn0_QLPSF6`eN3NLP=G!E6%>^A6-OjBr(PNumKmvY|-oisK8TJ$R4&qFA0x3Kf`@ifQq1gS5Zs zK(~;<<~Pv`%(iw-|s-$mz0m3HmN|`gFZn# z=jC+`q}?g6d(cyRv0s}jN8hc1c&7%^{z&FL2ohIpFKkC#aR#GH%DwPapQ|DIF?L2r z48tG{T`8tD;QbeCfAZkU6*2(l#<7VigrFKSJnyNo>scj5^eUZfR3-We7fZBE!+uLt zaQeHT4879Q_O1hnRVK?oG6VyBhFIh=NDz0d+usH3VNz@mGW~hJnRbKrviS3RhIeE& zc0VI?L^)UFt3)CV&wFYtd(}%W1*V<5A2MJa;H0e@OP(CyB(nD8bo6@UbhHFnJ0y~( zd87Tg!ZV#pSxBe)IR)R?-RyH;VVCNfp1x&gShvi;GQRshV1}D%&&CK4L2KBn)8xA0 zF8KBTH`}n!zUs^`e;Ql!6_Q#Tu$f~}9P5%}`<^m^YL6bPE2<&=JM#V8S-ru)HsHFO zYR@Kem<$Y<0jeF`{-&B~eU)6?o1U@(*Lmp}#NS@}QI$)OwR4Zc7{Lcjcvg*#KDa*D zA!|=Y5ZJ$b7(1inh(Q>JUa6oZX77Ko_Qz7DW@HY)5E8O0KP#evgkRKe_ddL4f1hb< z=bn@UYBw5*w)WS4Ubka;{0!mq(AkmxT_9{1d}fDzdzHl2yU+-;9A|ha z3fkI_h@x39_tmUe#rr0aus!H-;~5}xch|h@ynMb-bFV7CQj_lS^YU;}r3?(|cE2YX ztgdS&>I>hk24OqhCa?O)YeFP!f7M4!3J8xUL0kK)?#5l+4cgkJk+j}u)_eFLRKu%T zZI_E@$)8Zmt*9!RCj;<*zsQ@F;IAh*P>v6jI;_haQNmg zPPl#Dp?V~4R}HJ+LVq;b-`MiG#3K#tbsdHyd4a3kb~9R!fxEAcC~rbg?7~b37+s812mZxV7!S z7vL?{H?QY|X#3{3U#bn!cGaf42$bhVTNs+!{>ZQ2+OkCEIXa4ae)0>#_6U;ZVO#uF zes;R+cb)Da*uL3D)X0A>Vf%XTr-o;=oJ@kGeeDX<%%xGp3u1OsE8WX#`K;j881-l9 zsa*{{Z6IXdTV6bOEiXXGzPy^+>5n3;lCblFQ)s|fe&z%6^+}gY)XYK;k*%}F!z_vb zif3J$h@wQ_eKW_*AXaCZ)#1e~bP$>P*U^WuGeD9Mgn{6f9HJoq|JYS|JI&p?oA`hf zlqiNF>5-YKzwV*={@vSMHPti4H99vnhoMKW<($QiWIf%->R}R(#w_N0d>ga1DzyJ! z&?erYYDKN3cXHzxs{<>4kD#sla{;Au^^B*X_=?aMMDJFS-F~92w`UFN0U+j2?Eb7l zJx05m2px~?w-f-^DKXso!bTV48W7`u>zJ6@SHrpr)Tz^nR@(An%ouOXp?0hzL=+Pq z@9x|*L0$NlG?rRD0C;$u^}IefEThZU*r%3@dA{)jhjFfV;$Eb@Wh5-3FUtY4;>$WU zjWuflHVhxGic$r`W{x$<)g>xLILe6 z=Ia(yA}6a;JYjE9zFOhruL83hR?jW$2v;`kIjP$^GxbpdZCX{r0&u_4mwwh{5|xCu`|GR7zSbJl|sVSaQ}<# z>#KfLtp+;)YMV5HIL5w&3NFwH>lABE%ke@B=4rraP0#-lXg+bnGLeeR>r1Z{w9}-T z{`!p>?=aML-UyxQqGmw4Aamu}gF3poz;$$Bbh*EUc}ERvy5Mrn&8a6f&v`3D{rdo0 zT}Qjn@`>o&P(f^sWV#QO8?%uHY3tEESLse`2j11_zINZzvr#Q}`Ps1`CCM(Fl^bmX z2P;={4@}f+4-0cap5q4Q~WfG5OmVyU07SfE_2NmmXlJzKNr6mI4RoLrl6 z_P==(iTlwR`N}VCUiWw`^>YD4%}#L;a?K1!tkn!|e3O2#x(0EW=z8QUDJ}J90*zmO z29`~;GXae!3pU$k>UjYfzhG6$t+I3oeMmZzCpVZbGt`|YvTy2mFbzSl& zRDAGu7irfrQ4J=3Tw9S&c$#zqCQiMtEvK1HQb7FgDa~ugnEEpYho3Uv@$ANEg2PWy z3Wo>Ir-p#1z*2=-Gk;Y3 z9IJI|p_>mF3O?u+N?oa*tJzZ$>V1nphkmsVO)&5-4cNxb)^5gfq$JdvCdH^$H_iGK z2|t?G?OF3W#loqt)Gc_K@Un$nsIRuab%=n24=Lh_vo4|C{eJcyOx6-fuEfafzb*^2)3*ugrtZ zMl=kVmN%QL5ONsUU-BaBl-*8OTmd46YPnc}|%fooIRn?Ny4 zHzIW(8c*~T{T-0*f=YYt|0F9%1s+~Q-0L-xJ;qYRDf?-59p=A^01sGqTE)v?7Wi)s z6m88=#Jrd|lAWX2bhB{%xgl_j)x{(TtbWyA=7hxx2n+0k&uX5z{pqUsU^3m9DyG

4uJfCc@7Ns zqANjm)T9(830*AZ zD`}r#?4j$4T+i&M-Twcvc*(Ah;^5IZabcH zEMs~`B`qB%%G8xgrq@5Y5dxWb+Dqctl$1mGH(x=zP{;bCFEmzEO~-90t2dfuV}so< z`xA8s@o#7Bn=(An*Z|dp>!Qw;I{nJqH)H3P!ypU;!7DXR4CVe8tBSG{1l76+@DGU} z887z5mMgVA%C7KbS2BS``?2R(r1OA^j3)rzG9R&~d6Ji6;5hDFD0@0Nm*N2n+ z7i-muhpI+g2Z)@+KX@GQnO_2hruLYUkS`331+H6t;6qj2oD#>F%9nX(s+-f|a+b%} zBXUvQoZ`EyG9G&2onYh`HV4m2=2@IR_QJp+H%EG6@`ElPBEWRIaWi%|nO{uaWsIUt zhg$v>PUGq`lT@ul>)Fk?{TwAN&u|*{y~|}(vhoL;US7e{G(1SnveH^w~2I>A0ypQ|KFn%@>=?bj5|L(x$eg+6;8 z9OLHZBM{!h@1Uf4CK61c4^x-?#B!VOKTttpyC6gG~Mvq)^9%gY8fGYQ9(=X+RwcaR45OS1$OStDNeohV#N1$ zbSKx()rt+`Mr@ z*I%BqQn&MY;kHGmRP~d;;vrbBuTsDEUgOYbdr^U1An2ZH2$pfnCEkKN9-L6m7CgoF zJXy*3!Y!yW=DM#$N5%Qj_6aPgmgijXXo{PxWN4abSN6o*K0X zLFXfpmOMk5RUzp7L93oWK6M=9 zU)-Oq-a0nBry2{R9Pk0=ayMR3fjKC83kmxT6A8fQ@Gg2JtXuyg;B%Vk8XUoH>JY)_ z&tjfDViIm(v7ilS;frSOU<3F(FM?o{83V`&mX*F$%74!qTnfSGSRM2`ZJOhG7`GQhZd7_h0Oz zhaQ9WL(Bj|ocM@D(d4_*En_o1-x@P(a+>EteqU9v03!VM+(2Ls2zVI;q$JWRO6;;bRf2}wD)gv{{jGA=OpEE zHy}|0=#w@hGV9G)N`%x_AdSnY-rxx5{NblHF>_4pRas?YlW+H*MriLx@I{`F8`RGe_zibOU3c zzH*5r-!QNZ>MIw9+i`OriGr@!aj#v!P+u9;k0vPY9FPUFY78 z8a;EBl&;j^fpJ|&W z_8ei*a0SB{&rH0cbu`_htrZakj~1Nae$JiO*KnTJ>@Jk?Y zi~s-FB_^F3(Uu1oQH#j#c3h6NsxlRq^|K`-Mq+2LaJq+{)H3;WzPm^FU`BGa)_hEF zEKsqU5WLkFS9y9HP4bRJXt#NPvgDWKbC7uYEhmm^8MofcboTq@B0ML{Sm%=+6_-}Z zFxQQ57r0MMV{R#TJ0AmxzQ_X61hzjN*(A~ohGfi|&tg~-18o+Y;Z^@AkEe>^>d4G z0ja}dk4GI}4`nN^bQooWABO5+g#0>wm`11PMVHhN4$$XzNe!e=%ot`XVX`2k3wTUH;n8 zwfA-}I$9fC-&Ej|?nOt77;_j%3o~YJW)?B#9I;2hwt1qUfYxyj7;wbMmH67w`r!CR zMBmYKXNjDUG9Yf6>5H%sZD^hLwWw*ZV(lWx zYE${OYQd};drnY%1t;F>Qc>vB!=VwSDEa$Hm(j{lj|)u$IrR-i{xV zHI0^Zq_`Qf0fb3PyAw0ZqEPIDmjZQoRp>+1|*ogV$zXi|DDgms*82F35vFr=s7IhhPc z*unzE15)3!FA-K-Y6hVbx-Bc*0;6XXWjMsKvU|3=Ztmw+lRJJDqGafmsZU?p!)XhLo3levrqd?&9ov7 z&hhLs&d)yM#n>4jAq>Jm@Jmt%z5f4W&Nya+RTCb-)Yc4y&E@ic?YQ?2a+_;c-d-lh z>K0i$rN`@0Ja^t(;%37lHbt5eqMA=|x*@BAZchgcOyw{!K$#HQ_xUvTxs5Gekm z{CxrIOXf{H=N~!2tK4wx$qf}o=+Sy;n`ern^#R^H z2dPvqDvt{r=pUcv!pgmeHIO)eP}h#mWiPMP;C_6;0h zTz2p_3O?Q~Ch1xvRvwcVu~B$K3JE(m_Tvmgh~j-Mk!BV#31wee!-m-s{m65`P~<)gE^uLLsz2-&0f*UCE^Mx zcc14(s_pAJA}1VXuXIQDkN@md0)(9k!HJWh%-U4j*TGg`_m^3lwZTMSKhY#+qCbA$ zH)CgZ z=b{>eGn|+4y8M2D+xa%WMj|t>Q-l1<3VYUX%il8;cH)MO5%p-+ErmV)Umc$*&3<*m zH>O82V*V^s*ue@+;LGQr<_O~}8S4`icJ{m0KSy5#-i`*<0UJ>h>k4l_8v-rbb89sF zectm);$&_g32hkPa}hV@?)F>tATjp9tvOe-U+Tegt5a6S`ZV?XAFW}mAg>GF4$g3B z@m)EORpISdbz!HKj$ZlPmnrPlCnHyBVjUEAWT_YWb1U;81m12RD$6(K8dm18TLG2& zH`f|k_-PZ{$$=ZoIW0y68LQYH*J++J5)3$u(NDQ{vu@>A=ImE3IY-8Vv>$)>yp%^V z1>WuvBh(b7X5D$`S7X7P+ug!ybYVz^j_C)th}Z5P{glDzcqgEu!rQ+`Z83Ds=ir;M zGeBYxgn{6fEJ(ur|6}cRhK(aO=>s|(SkL&`Zf7s~D)iO)1gdxm_P0opH9 z#Umt<3;dAVPeO;~fk>KAZb%VzhPAz^hVd8-w8OdC#W!>`^QVQ)_>q&LYo|V)|lVz$GHC1dJ)+Z;9}%O!oA$9 zS}6V?Uqm;}U;PAHJ6@HpMD5~iG`04wz4JWl`=dBV%GWM*gT7nTE_f@)*IwYQBKn$m z5PP1HKxp$=*1$rfPLJN zE7o_OT07!vf4Wj`ZT|XEo4@z7fwkkt@AzAA)B77(`?HQt=R#oZYfTb&Gg&9M0<8T> zgV*$X8|?UC%R`H~Flfc@S`X2eq$(ZMVZjL9h0jz!DUE-|sWXuouE1Y$%*Q$fdFz~Mdo$}Q4 z4Xk|z5M<*9j+=ZJ0&8FSQ^;S}F$r!v_ZK!|HuO5PrKy9WorI;KPsj^plQ zyO=)f=#~41SuE1!zkEm9p9K^1D9^StW7l8I*!Q#j&QuZ5@_FWO3$vXGyHa`E$fFFi zJu1RjcAWXYKFoHBta1D$EZYTU`-R2C?XKd?=dMt|l)T7RSesI9n1v8_aldvqvNI%2 zO!I7|8_KY79$S{*FHn0!dLNYGC@Kb+?Np*hg=8&{70h;~s6*n8^7}=cJ@(jPx7sK^ z*U_t3q79}>&$|VO+MhbBRdjR?wd;gAsZ0io?$@z)^}Nwhsp`GxtPp3PA*ct7sihOe&%4d%Rap=s%J;rFN}hQ zAZBsqwRM9d%tAd@FUHOQhk+0Tf?pD}T>byY+B9V_)q_5OXihz0U3Twc`+fJpEGi8o zWH?83lxxm3(+0CWUg!C@n-=5R@A?MQdlo2?qwRw;XyI5`&G}FbhL~nCuJ0?Du@~8- z6}bv3GUK4;SL7<#oX)->_0J-kM4Wv=RJnhPI|UV)gQ#>aa-c1k?R)ou755-IG7IC2 zaf_T`;z$`fGIRhH=NBEB#UMfcGDy%C;_RCMMxoZI4YZv(+X$9Ry1s(bDd;2`P}*~( zKpbty**MgDM;^GThuR}3YBP`ZqEX)F#UUnwStQ@MbliUaN9O&a>>n1kh|f;iCL0r;`4dhd+{!MMyR#?;Ya}5ml8Bqw;0#2z(_;6 zitKpoUyPj#4#OY}L(i1($$I~bZJL?~8mhAcM5QeRVq$xXWecR7Ycz@#GZM4YoXww& z9!E31C0GLOGs_$ISm2ZXzX0v5z|{!YhJN1!+DEp>+}Yai+$&?zWry5_3H8)R4RelG z#4Z477P0-%&L_iaXLGj%+IK~1{*k^!wFKIOX8J&IC!!cLrQm?P=MWx>@BBK~5t+SM zzv!|DYk@I$T~=8F?E|0==SI`kjc(1J;h3o}6)l1GF_wllqAHi3&k3~8Bx!hG?_1=J z)}N0lR}}9%PQRV_%Wvmq=syrVw8^*|P3@ciH4X8_?t3=1j~9-(UOe~N|LtoqqhbNt zx7hy(0AFsw&k=SqCqtLqhKS4tZFC48#hBaqohe^+32FfC93>qh&1J=y0oo^JBp|(p zo~_R_Z{Ww`MQqM1AeBaG6uJbp1ll{o)Pb;36#HNT?So6UAWxd>+@4VTP7Xn@TwbKS z2|EKE2tgPKe#sUD{r|@%)5!_$BCe{nm24}Beme!cdod;8b$30ERDXAx=wU$&(CjW9UY*_yBK?I zz4E{!a}?hfbD}`rU_RGoTh9ksXVJC`m8XsygL6Bg6a)`doD9_7&J?A@yxQ8+4b(m| z@k`%1E5?4?$*-iqvyOC1!veLRdEUtLb1$BEd=cRUnOSkS8uQ;=*BUf++{MuAvmH5p z+^$=XyJZ_x-}Gp`>(`8j%*%_3zq2MA7Nq^2Q&rwVl zS~~)s5oweY84Ox`sQ$J`P7t!Q{k{0HPz=f(XCJsZbfcma1r%0$C?pZI%p!|mwWAhp zu<6Gvo_YKS>$-|(o?k1DaLB!~w}^F+0jXk(bKkt8$Z_^g_1yvM^2^>o(w8gN_xr<{ zHSfhYjr6t3*mj@9p2eu`riGzZIPyPI_{S`wPFk{RTt97whu=7X$whw>{xL9I_VDIR z`;66S|t26B`ace z=ceizH&tAL3iN!0ZF+uEEui*AchHEto>p$>nr?Ydog74w*C;rbW&7jqf6sRwvA1WcOy{D%1bLKi-ZIqw_F z_Zqo<`DoU+_A9!L&4=hC&lONR`-VGGDO0c-pSLF&kHO~7F!c7+A6s6tQbFy{vH#!w zW$avV7=&RMdZo=J{oMazli1=^3pgC0qM%ZO?YtH|{@=Md=bkgkG-3=wTUIbj(z8X6 zhTbnR zIc{=7^yJu?pEK{b*e5&r$F7+*3SS!31Gv`SLwlZ#Ug^#QP-{Q(33^N0A#kmo`tdJx z`n6$-u`Tg{*{`H|z`#iSV`G|L^N)dXVL96~%Nf+#FIeD9$9gcxsr6??J|BvdC|qkl z7PV)pNJWn`#=7Nup=s3&)Y_v44#r;b9dxaI_ZGt1FRqKU$3{A}s2OICUiILJ>viQ? zyM@9?mSL~%m+R_aw2o)36t$Ua?R#vCbJo@`<^`uV*5oC^G)YZW{IZ*F!YO+xy+mgz3u-v)11;C3=(z8GVzsCBaa0S30nnJ#d<9c#|z2vcp* zQ%rW-7JVUSfyI~_jI*Jlwz%JO=O~zjE7k^V`;={uJl~7jz8bFMY~nlvRfN3uu=8SZ zv!a*TwP~Z8S=Y3G)bktjRYN*CXaaCVc!Ky?D z&CPL&t$j-42VGh5i_g`={|E$}?-mqWyYKezz><%tcI35vm%BPDdCP0ZzH>(D&edvl zwtb$;KL4A_R@nAwl3f0qBv;bfJu>pOr$u+ljqMtTqk<+UQ+&QQFt)qNML1pY9o3T7 zI=X6+%8OAn@1W{zdp}4qHPA+`IIFYm?#a8*tcDg>?aMUF9nbRlRu#2lorD=06Tihj zbS?I_7iQ-v=Uk2+wyUVD49lMsT>FGW**6z&KKU_`x!kbD?wIb$*qPuk48lP0OVkD@ z{QqN>Dltw&y6yuka&Ru|@pr6kDFBS#A_c&g);`v`*ral>j+ZDn`*wY2apH{Vq9c|_t^LIv-5gn8t!Ve$ z>r&7+&Z2M3TdYALHrM7UhafZYs<2ZDt%*8XJFMB>vR@UkcGFZYS=kz`YYssMJ*J`a z6%0im)UY)CxLMa+_h+>BG^wECLhB{XT+&nCCNXpvd5{V5c9I;C+~5 z?N3_5OY9M}_8EL4`eEd`eFJOXN=xXml=Ev01(^rla}hoVTKh%39-M+E=1b3A{yDUh zb0(oV)(*YAeBzhIXV)POaD7~)1wi?xMSU945qhU69r(0g0PU<5 zy7sk;OAxVk>d`s@d(S~WqcLjK!mO9IFb2>bNz}!|TR6#uv!Xc@$?76bevsPh*%V3y zM-H?Pf5g^?Z8Q-`!fM~fMzgWpCVxQtm$5UzVHkvA;Fk)RGXDRuO_Oq|+R51i5G|x7 zF|mE&-?afC+KQOmh(0z7Ixa&z;b8>Oe&s512o^E9F&a$H;P^8^LOv$rYNSbF@xFJm zL>GMFSpd)byd^oGxXO8pXO6aZ3Rq?FTO{opr4Rl&jGevMqX4hCbb0|$6b-6Eterw5 z3(0~*CxG^7V9Xk&(1{j(?a)aly)|3e ziB%x&i$2kX^jMgVJ57daCI@Z$B98Ykh&V(@%gl{g=dH$Hu*&;;t)E z`eK#W6ZJyq<1C&yq6$O>7w0c6!H$in!tG?`+xqH8fwW)A;C%VR?=G&WbhhSNb>Ho! z{)nncSI+X)x;jocRQfyJYbb!h)dsE@y^HIfoHzz zz+;Zmo+NM1SO3&GO8edo{ltsq*ti8FReeFlFP!PUwWn8XnuD1RBORq3qPCBuaf^5E zyRRoO0~(toS{059-WIfUZJ!PRBMEhrmHiZuBfTfrvRl*V7ya>gLuW> zAG)iIhtfU?=rU_OG>zaW?Q4CrCcliG3$BDP3&ua*l|yZ1hol+bCRm2L_45o-fiS1T1~ zrW#W@3cyLBwBx&?)A4t0c<%b0L0sWBcq;7+H)lJw1H4g4?ZTOUp@f9@ynnA|2KTX$ z+C^6ivUT-t6OF0)&Alr?13;hIxPETGj|M9<6(bSW)oujolH=No+0?u$R5 z=nrFOlmsCN!_X@!64Co#Y=7XDK~47n9kF(>Bx!K5Orw%3`q;xO;_JQs2m1}_rK9OK zR?Bny)hnel05*2i73PgWOw{B|cfTkZAXAc_keg8_<7Jd)3F0=u_WGiLN=!kup+BYv zZn5Uu$D+KtcrJ=~PlgIzI}RlcjG}tXO#^KgE;1WxqUv!op=+Ns@em?=vSySF=Y!C! z-rYoD*B+*V#Ck$gxX8RIg8Z3X18tv;mv4-hlRTr4p|9f~T0LH;fws>RY2hlE#15Q+ z-t3yxHS)1zzam#c${^pX2(*3b`Kd|Yw+mf+r~#ukj%3Yx#`1lSBv7P%YV*~!mxdsqKkQ$jvFLT^VW z^jt`~d~53ME1k~T9ybCIdOK&r3lbvf@+}P8O>2|$QcMvGvi)&24cYx<&A~;+_cFAR z^jY>nLejuV5*m|{!7R_kG%cBe$n6)L8Z2Sbecxfl?95X>e zZugSI)}1sLm%(-)z4=5jPb9$hW%?2t$#G-K?Tw-qOujM(N`URYma(Pu7+#jfUVKpA z6(0z{c3;apjpB5-8aRU>fhko!vaw&r&M3#B5Qc$g+6upL|C9BLakNzNI{+$e0|aMc z+StEq`Es?YaFxVF#-RbLGAo;cYiIQ?K321`DXZ;F8Ru55FlGJcw%l71-s#p++q)s~ zerE_Q)b<9Ln_~*!ci$O9y8R}w+m*O=hc0IUwtH;ZBRBk3&&6#~iBZVRP}`fYujf3+M(ukn z@f@IKr>p1QlyPc)bg?z0H|zGQ<^r z?eLFy6MbsN#0A>UoIl(KD;)brZU5aMGRN~Ku25vChSuDEAk=n~Th8j{<`UVk-Q*TW zcgRFBZ2#q<8qy8W_Ew=s6`hq_9ksoCY|;=Dl-#4X_p$388K9%KQy_R8&NJwuFJotx z1R)3m(JKLB1NXn!{0uLau@VkIA-E7by)5LY+#*Y|ODfT&h)|R)cf4;AfxAr!7z?xA z#v1iGrsUo*+doMZ;a&*~nMXsjpP9^yU{sE>ZhIAjv4YxuF)!7m;)+n^@|Kg#8#l^T z9GRh>k{PtY_Ca|iD*hz(PaAAkXDl@FF_XO-9*pHP83QsZ()VrkUhf9b4M{ag z-W1gK5AZp=W-QxHx&VQ&L6vCb0S$fsu51wS-7|?9d$p> z#T*XeS7BrA1BHm_Nh+=;1=jxY)1CM!X=CkAhcEh0CAsF?3)=dbpiS-L7#wF#KLTs# z(>|y+lC%c3>HBPqt;xLm82mAIMmG$DFc4iS1UTsai}j0VB#@92G@4N(?H@V*}QH>2^1YSuciE)=RE?W% zS2>;3g6*if9)DMPX^#2@GSqL7L9q6#wahG+WAHhlicxh@+FmfE63%X`W&%}YLgRP* z=19@yU{f?~--acz&qmeJM27YDP?JX0E!G~d!gf0{(u~q}@?C$%&h3gp7>1!MmC)K| z|Hb;#TyY4s7$66mycAhcRG!biG#Ha?Pflf-I$4>RS+0m#`S#>wK(@1$VQxR_V`84; z>aAr%l6up>wMtdU*FeHRDhjMa9%mj)3dnX0;NEO0Y2f4}+jG-}auMczzPQLBPtQZA zqrQ(O*?w-z-0#V{z(wZd=aN8R6Y~vhXKeJP-@r#^s1~a4ntb#BT&S1Hx7I#lE89%W z#}#f!HtpcXB-_u10fH)h%ym<9-k;T+qc{#0^EV$t21(m#3w$mE>-0D(5(=1tGO(@~ zSIl1^Lk;t2x}+r>1VR{mCDHYDxc|j=WBiJ76L<$8gYzeJp#8HQzIVO3@=AYt(Ej>l zzK`#!qu;;%3b6e!rBawvf1qQM!S;s+CORHN<+A|WpW_}L_v~%&eMRzHCn0+5Nhnzjvp>)zYa-G#d*Ki&p+5m@5IDf#W@8r z{sgQ};X#)6R3CCGTnqE#tUkW04N?5>7pAjG<3@&5(kvpnNN1=;lK{O%$jjMf!+C zwhzi`RbPq=&r>f7d|QIruF!^|@A+UU2G=whKmQ!t?^xsKlUS75UQd0djGy0QsX+Ss z5g9*s5&xu48{t@osXh?Q)z!fiGKFV^=f_(hNbL%@Q)9ZdaBB*lEkc2P`+Mql4axz! z^w*tWQ?Tk7Ax(&*!E(I_?)|(z#y2s>vxgb=sP``1;)5Du&H40sWp?b@8yLut`9g+f zabT?;gOV}xX^i4zyfs6Xyp~YABy{u_sWM`IZ#drnlTH^Fr{yCSGmcP9fS1$KGH=Io z7%@e-J$y`Ls32pkjbg`NhH-Hp{a>UYrhB&vU@19Pcs09%(?U2Vw7i`m)(?B#|>}+%)$oL)MLAimu>Jefo>sa&l zZ~X|lUK_0Yx9&!euwR!U0S>Qf58iphg2g$&-@xe|ieC>gJ&ld)meUaX`#SM0wJUoa z>A9}&&AAoOgw0;4CA(vE4z$w?TKlr2PSrfyOYm?$-+FcqK0g^~czHynT!-Gmf_*03 z7EiVwN()AK?m;!=TNe{Y*VhxISUuISid7=*3#z~))rf3f~l;%et0 z18}6SlM@1@r&zx^m~28dd9}sh*WgOjM~puS^b=dUp18>xr$4JWqgu-XWWbFzj+m6a znn?Qpi678VuQdudAPMd+FgyviqK?#{Mm!3WtD?w#_ z31v*GzjdmmGSTFX+srNAIaopREn27^k_H*kAkU?2&>98nh^cU2dK&~bCm$qmFU=0NJ4XbZEdM8;>ZBJs1Ej=?23{wCo1g+ZveIO?9q z+L)K-cL!xZ#X{qE3C3l@2y@Ul(-cQX_2mI;qoZV(N%0C(h@u3?gUahu)l9>*?JeQ) zPOOMWG zYahTvp#fxBSfg2Ams+e@Iy&!B2l{lPQTw=oC3iDdzhvqAXEdhzQn-FaA?<67@0D+=Jvr_C7PS$Sc{@Ks)j%@Zo%LMWC$PO1-M=XM)03MxfuN+M#;^iDj6#5_Ll^r%lV%$lpBWWhpG9czw7y5e^*Tu z2PAS)3%8#)$$2@0P8ARCmoA-GGBK(Syk^mtr|7vnRG%JQD8cz6$#@r~HOq{pT_UG8 z4#uXpl{#|1`%|itoTobU5Uxkh;k3@JFbWh#{lC0$`oIwh0hfB!jX>u)ulUH18H%AO z*Ats8(3lttdVaXyLlk99GL`(ivZBEzXRgKtKcAJk=Gf5-xwNmHYEy*KFWlYa>1&#| zB~Q<{r7|H**`N}kXRuD9Y$}7bvD7Ad)h0E~UxE1dZa^RAqC{ZW52G*>Del zl4kiZW1H_pdB4OP6ac!#GEYh}R#!8fMxqD+G10SKWMX410zgu9g$M+Ge&K>0kGNny z{3d_8v?OU_KZ2ekYkNJDwK;rp8llj*$v$MxGPeKAYSdjZX?Yx%Ou$ki2b&0|03jTe zWD|oPizYO4&YEZH0i5@6!^p?SYN?|KZr-DaN>@u0v@Dh9VUL zHJ{Lylki+`3AYM{tG_mJbB2ZUTt6Sa-6G96?7|Mp12>ON;Yq=)w?u&E>nh3Vl0Z>@ zO%qn}U);Hy(ghB;F0qN7+FsgzfB|%|On#RN*dwXH*3wvox=|Xslo-t!YpXd5$Gvo4 z-dclh7sq{CRwIu(76t+>L$h*Qrq*ZdzLbAFBV;Q4b%$Skpk7?L_N;111vHl6|mY_lNyIH3=Y|YuuU2L9w!RbY1)x(Qn z386b83}x};L#JRu=);&hn1wm&6vQzU9jE|Y(ifnxgwRhb(}glHICbpp)BXzxugSrL z&Hq5>Q{*6HMjA7D#3tBjj7$_RJanl;b%mk8>IfY=1rtHv zyZWI1qltwwmA9b9SfF_mn-F>lPh7>T(OUz<(3$~8kyOh#gh4r9SUer}mkD)PV(5E^ z1g6*2r5(di^j93JmrwnA(O-e)|4E0=UeX? z*fMmPOcZ@kCMTUYZD|#Ti226X3iegAR(bEM%SEwNX7kK>46>h3@TprSEeE z$mmEnHsOJSvzqru-rwh%7p@3_QUE+UJ#N2tXjvmHY?=Q+MmmVVY zkv{5hBLMYlZODn*#W#l=jNTT8{D*B}>H<*jDNjKy%+xvuVg-}118#Sb;RL8Yolu1g zr|u&?+Gn|n^ zbFQW~viRU(`lCamS(`m&ur|z>vDL)=KoCXf2B(^_8Y_bXa zyh|@_lCaQSbqMVEydCV&;rcu8afb;Kj+(zwO6-=YS@77$UpjeCh5Z4&V!JubU|Z5z zXh9T=rqD=@{YV&_E%dfnT0>%BC}R^QbdY)I+iJ_UvOXFc-UbbLJdNJ{Rw=YQ#%aJW zdVIlWZAL-7SqrPglFb1(r1r;V-l5lKG3Y;t5F7IGryB(Gg7O3%-e}hP|9s!Igk%Hi z9qgBy$UK_Q<*xD@?L$|u2Eru>C-mTlgoe4L(0(D>Ru8_}+uvT`E@$Izww6|4_PEYk zDo>-O%6>9Bv)Ia-S>R^&(D{Eec5X)ugD?HVw+K}!&m~Lvv z!d^N{AZio&^$GbzT0d4W)mFp8Rg8+ZAyHo?w~uM0*Jn1fuYqKOp4GDB*x|Te((8U^ z1u$f1ynwt$sBzvU?c0-nsop_Aa!*jn*BYkFMDDW^xzA+BDyp-`^<=#LWdmsa_G&co z0)%hA73AZPgm6BMS2ZzTBfZ}Eqxv|LJ)2*yC8K_FbG#>;)$w_&u1&5K$8&^Fom>~S zg>@&JIzIKuObMMLmTd&%95oQkt>Oy|CTfIkzxVMRQ6toAq5^{I!!+?_?A($Z24Nt0 zr3l$3x&OsBKWb5nGvfnLm^W_Ch+k!|U2Xm$a%%dj<`q_tgA3W|#;E31s|a|Ke3+e` zROh&LvH!(e|HMTr)puonOj9;?W7>RVOv`|;qXdZA_3C*AUx!y^-;Fe%3$*HsYNEqM z=9^2s&?(Oc`=l$2dVzY;{2k`_Exx|4BaUwKH+8=M&&lXSZmzFBN^zmb2)X*LqDHS@ z_Nr)v*Y|kQ7@EyT@%4mPbr>?k)O+qOKH94pYQWbQ{{%{p z)N=#AzVOKTj7LWC_1mNqY1&)+6%T#BvRz2JpW*8_q0`IsbMf`I(~U=Vx^Ky$sJ>pk zXx0~VT0SzTW$2_YdUT7fXD7`&I>@X?cgj3xrmyDj=-4o~XXtw0a@xpeRzlJB^+aLE z*~RjIjGb*7gdhlnuM~qB-v45|e|+8T13CZ?nguxw!=LR$*Bb-`#;ID5e7|8=5j*y4 zd8C`@`VW`xSXm)IqwtKJQuuA>zgVNnTvP)s_-lvsL=~g;{Cx&qXB@H?|F6h`$iDov zlp{9Ki~U}s71_7+J5HKShImpL>44We69H)L*@|x;2KyXaYvO!Wyc^?2LN8wFx47MD zzbuKIV$Bn^YU~$$Vkkc&v|o5uooqC!XGJw|R;fIewqjvRe<_`~%qQAMvF11v0HsB? zD*TQ|+lo9W@bz25W8}7$Ng$2fR@WNH;_q&`Ew@26}c?G z?F%mZzStW3yPJk4#J<|-`>Qs37o$Rn&V$y9A`1#8yK~nkI_Hx{T}Z)Dr8=kz963%P zFm~1~xC;gAUohE`kVQM+!V6n}yf=USCQWo?Tsu4Fn!N4 zy`q&Uk3mvhwamD?B^K@|3Np`Wws(FW=LZ*+yb)c|M(vGi2`j=dX3q6-%4k6!k}MwMRp~ zJM#SnwRcb*kM3nIqW`G<$=DfPISj%;u%)mBu={T;$%jU~vrp>^La>bFWwiRmGdKXE zN`IL(pI4!Plv2Yu3aR}DqishmFA9`>F)*A#<*!opnP0nX%s7C*r_LXB_%~>~y zEAcUiQA+*ctdQCVLpAWrQ|(RBHAsV`U#6|NGG}1YA2Io6q>?Kc252a8g-~Fc3>8xQ zKrUy%Q9I0;6H^;so#on0ZIiM?QXNYzVQVcDh<#I_e>=E<|g!Ng`D?qfzC@mygh0$IRvNJ6E5f+wK zVEcc+Krd=58~@j2FZMwv+P`6ypL=e!+{J&=2w|XqrH0j_h5#W!-oACBeR{@?46l!5 z7IdnSjXfEGgp?@n_0@^?v8Y2k_Lp2%r;oN{BS-6*W63f0nvPM$qd@wqLM(F0Z(YUH z5|KuCLncA_wBxrU6Dp*c?+OadehF)$Lz%^OZ}QgHQQo>LkukR^c9LUl7nRFVoSZ6= zF(m#ehXa}u&l+O(z>ZUFYLI9-R`-d=c4n?ni1v#egnQ1N3L0Ye!1hz@+^sXdCSQ!5 z>k-2s41-q+mIGn`#rmVQoGXdU0KN<41>&o$1G~+ zd(!~)pBqWEbET4&sKt1#t+m+_GIgyfl3u?Hw2a~FJNH6%0rQp99($ZN>=b;s=7?Z@ z#o@Eob?rlXvhShvpzC_t&G6jFTQT0b){Z?M9yr#164D}?tN|@!ZnfC!ML`JdgJH1W zxMBMRmdV=qTv0%>?8$2SxeB3uB$rMOaA+YGA+-1SY#7hUtZ5fA&@zUSN^cYhiv3VYnGVM2)D&KRd z0-5#)3nbSY9HjX=&*#_=?Ou%cTxgNJW=)#FADq*YQqlL9?(3wVoN+;A?X^ZOke)y> zS97Jz_*`k808hE4oaZ3LK8&4F5`-`aL$97HVN%!jd*{c*x9}}u z7kCA0a+1%p$Vp60!!3d#n`=AKm`Ch&m>VOp#~=+sWk6RwD+bOXF&X+v#dTNTZZIFiSV|8FY=Q0hJ?ok?+s^6fXPh1bY-iBj z;hAYe12b6d^j951L3dqq(2PlU6<@jWW9$rU7zSY=xKc2N#``Z;sS@X?A@2-;5>Yq6 zbN>Gy3n0^R2H~<=3-z5a(~BcXhArvZfNCGfY~?%aH59S^(v@PbLdSY1%yb)Arspc~ zB7)*axGosA9_>;3vRTLsp}?!+To&+r%iqo>{guVu462>l2xP)2)Ha$FFqrYo*BSuLo69z?y+iDUvbV4_|@ZG)`dg+#%tG| za!8H73i=ANXDe#k|3o|=%o+l2=l%91FnYXQZ@l)n$~z3T?y?e#=N+dVHiW+Ftmdf~ zo_Bg-!E1l@)Ae%!Ui((t?!0)l@OJUpYJ$m3e}5J+r<-5nfK=fB^TOLV0u_7c3+y=HHuk=hfLzYi4%_Ecbg-(`f~qY?GaR`0q!;Lk0oCCkbPI|JB0Vhfv?5ql@Cc zLE33YFhM^@(a+?aZb_WXZja@v{}?;B;|hTohPJdU!iN4E%SWQaox8-Q01v~yElcvg z`peFD{<4DDPQGx`V&S}+|2_Wi3>!5WNf6tq(;eXaSFIQp9x~)9`+b*1Grx4vHC@}8 z^ER4DpH?2JnNT*fMmJ=%{nOzY2~RV-0R@@U8Ly8~S43pAoy!+i-j=l^rwq1-8LD%m z2)lQ`tCgLe@7#m+#B7guhUGHYo)oNujo*kfWw8A)$Ug_>-(zoL{b)aVs8A^1n@a%$ znU5sp0L-a3QI3^`NTN}LW=ahD{x-s3QPtW#8EQ|Suz^&u(JcsGyE*Z5z%d=s#G2QR zt!?JbBy3`jHRUGN@4m~b606E-bE8U8=9hMF?zEz4G!HV=E+Br!d5c;SDnsqzXW10p z5LMf?>d8Qcl)Gka38?+ie5T&LKEb7|MPRFv@i$lXXQ}55*)Ojo592@ zAJG0XzMvUQEMPZ4JH<7lE(TE?BC#juY#s$t?V#X);p0sB%*v}A5jf6Vu? zOV;@O6!tOeM45Csh%bLs4$UMu1><)FQLt#+e$sws}0RrO~;Q6E5E ziQ$ACw08cS5ZjGFwGwC_5M-+G z>ueKf*F_TmzF_2Hg@Vkgfq92lcYmG}XrJWXvwWe)MFi0P$9YB)^z?mYS|}4Cy3EUY z53^^)k7-;`6&B3zoCO@n%Ln4sF@6NGox=VEt1|^0CD6X{--X=d>ifI2uEw^1?du6> zM=ikoM+vlNo8*7bH>+|BCQblpqc3txAPjWv5?|%^%K)5u-wtE1zeF+2`7rtD=^sAWf9WK+YS+8s|4T)r$8Vr1r*s z(}EP6?->}iPqh$Rp-p-%2?+H-FcNITdD;=SH;(V*;gx5Cu3pE+Smj$Ido#6m-a+9#)VS{}uC?D{RO9~w z2{PN-QHx*|MMMNmYQE4!QKPU42{N6@z8+#853&li_LK7Sdv3U|U|ReB+)wSfaIKv> zJvF2e>uq?BVF~f`D%Q*K9F$tfs!?h|Q~RbL)6f(5tU#@u-?5Nl03IGh2Jz(g&iDPS zSiqi(g@Q3sRS zcc^EpK|MiM`=EcA98v zE4VH`YDE0@)ty@kraL@L+ut^@YG2%9+nrmiK-!N^v%z)q));0+NWM}hly-dM3R&`? zNw%<%LABQODt^F|kQqK_CXn{NDecej)k%T0gYb{Zd-)kFnbN*u%l!^p7GCYgk_G?WKxtn% zLdXpTV^P}E)|$A~V6EPLt>%3FJ;#*xH$z{LNqK`~0SlSM^OcNbFkdWWpi`?*Rf2Uk zrTsB`A%x8w08oNxU!aeAhY`xe_H}HzvoRH7``)MQ_sf4oCbkQguEJJVf}q{R_A?aV zN3rctF$fl$f=ARpU&hV=*I^Kbp;!9Q)zJH2Y?}1*f>ac9fN2F0LL58(|1AyYKN`;F z!4KH}PTjrNMYjTMA2cKdr(GuWwNXky$E^Vh1=zkN1=LLqL26$bR=mvWqFaFNp&IHf znmFC4vc&|M00}1@t6?7AfweCtu;8gzZ5pJ&+E>9Z%e~Ae!xNp<>uj?rZ~|*jP7lN1 zy397GDJr3#qI+{~j8<`5>ren|UwHV*VXF5TTU3T+Jy-s39Y%q*?+s+@Y?Q3_%%Jy~ z`K*TCBB_2RlG30UOe_{FNK>Q)*1n%YY`*!arV!Wr4A#DN9jVvLw05%o0QWK?M@>4; zOl*cvFwNBt*1i>1*RcTBF8Dy4D>KYc^M3QonVl@N-Z)qE$y>TSm})S2?fI(voT)d~Xx_K<&SC{blTok{ASGAbKT1 zVe$SKtJ5hjj5?eC^(SM2h+%n2e$Qp9k}v3#+E+Yv2T%1bIi>a$T_&L=`3j!*E1YX{ ztjMW;iICct{%DNX%k&+oo&5DP);F_#!TE5jB;coh%#xnPc>NWfrqr%NO;Dno?zbyZ zKW2oef?xU1k+$j(;?3LcPjs1Z!$*VyYY)tf=a!z#Rl7%K)PJf;EhQnfk4PUl$p}rx ztGg}bt*>9nc=0Rn8rGkxarTm?jC`iAi5;kS07wS$+JXanF8 z8KJd@Eh1rRi(k<~fKyrVrv*)|9ow(PMB)?M?(p(tp7k8>_zz82VC{ixvgi1_1);Ua zdqil~{0UZ+Yo`H7A&vD&-e0tK>U)VA)y1PZ0&54yrEX1?7m!6?RQ@w{#cE65{lMBI z9VU=VzebgQyPbZ!q+0l+mB8AUkg$CiJJ%zIVGsuI(g{k6tz`ej`iqa;rH49zFAv)o z$wF{0n0MAB#h>E_vi6IZL&_f?^Sv}#>Sj1JhnWdvecnUS@9ZC=BHK49f5L9$oK6a| zz2}JQ>NS&ff^0{~+ivaipK4KikL|BDW7ktWMaD35b^0Z0fBz?H7ozstSaz?;auBs6 z+6sgWIg7=FTRX1W+D&fEQKP8#-CPa;CuX6xaBD9Im}3Jp_GzA5s|u(00N{jKkwvwu zFG5Ke%;8&1d(z*f>;7WCl~6J5`{Gbw6Bz?VCCiEg36K&qNKxuJmZdRY{HmDtTfjMc z^O|?Aq@C$Kf+WXm{6+UlI`8#?VuBUsF#w!JZOEE+&w^^dHETd}&{7R>&exZ*E69N$1YuvA!5ymq|JWWj6tgOTL8medoQ3K;>bwUkFCRpOs^EopG!{{TNoO6W2s5_PYtL7!VfkWMJ)k zo`&{8U*9VxN2YtWfa^b@vpee&dd=AICH#yp0V>FF`aAgj7JNel*8V%0pDov1_(EXq zv-l#*T^dhC_O+*NI}>gMC!^*7ke;HCI;=~vcJd`y!!axN+t)!l?QD<^s35cDTIlob z*TMnFUhN{R3#@&%<$jCzIk0wPBAJ4MrfVALZS9Gt59+!Eh_$CsG(%u}iZws0E$?Iz zdI#1%_41Ci)%UrRFF{o!Y9n~@P7-UMIw*KIideLd*XgE}CIbR&2RUiZq|A$df7~iP z(mptpGLh~G0w<$R<@wb2(!RjH_D|LZZKDnLW$cV{CTd1h`hjrZ>q+gB+5xP#(%I-?$e`pJ5MALFj^eH07z9kG3Jnqeu3b2Ck` z{RFm8$Wy}CzB|6mVppD=AwwDvN#;zwgr7M) z9zDsN`L8;4*-+?6L1%4S<{>;{fA+2QU_5`_fT)+;vnI44D_| zTxoZ;7AnXL*m^iOT21CWouasEsbROC?7_l)kjDjNvmW2~1w&@xbs&0M@~sZ6k9x;$ z)D+umbF;ROo2+;2kCOaX@ts{p?fgsaJadlob^&W&V(m88A~Un)NA(iKd2&GrvY+sS%9V zakd9Z4WYMRsjvS0qPJ69=m`U2thgNYVuA`-TUvViu0NZ_+<#^mGFy5Gvx;vhQhN@~ z9Nu#PwpYU>g9(a%$?9uvf+MrlGDksA*s8~1^xreq_N}(%_>D5X{T65o=4hO3>^B#N z)6&}q`ef(3KSoeH&x7)syOc(7WMsr=;|ls~W9jXK^w6Mx4wx)LZ~xFUnC|WLDqqIV z1qWgf1fo~kwJPKNFSeg#A7*L51CZ8=6oz5^+FlvgJKrPp+MNqbyy`{H|HIpfvG2^+ zZHsrFvHfdj?O!?GPOR&$Nmx8radg33xOuKJS2o3ye=G2IdLjl!p<<8h8T$+4Oh-}H z;%Le`)2ozS!IoUK=h&ve+v!<%YMh?qlLBwwY~eoVmrKYM+kIkjoJ}kW9hr?BOATB6 z%YJzK&h_T(KMLQ#uka0GyA^Q*ynQ3OIQc4nXLMwi*C|et$^A+#^cJ0hQRL6y?RVoe zg>Qhj-)dbJ>m7e}Xyam;*7KgVG&619V!f7;WAk$)H2Uaw%QZHO^{!~kw<_{yE=Pp` zIi~kC^F0D@2P-fq<`sGDYLR5#&-AgiZt^Q|!lEv7a(g5M_Ep%9XlrL=LV>q$+>Z;} zJm2^{&8FmNTOjcK(1V(m}Qyp+le;0GZj2yr%lHA6IGb^S6n&%F%#3%`Al zeLws+DC)>eyb3&n*T4$&6+R&z)aB=-f^+9!?dE*npTi2ceU+@?fnMRaPcY%J2NNpN zfr!mmk?CA>quOo8igl1PdVu`q9s%LE1E?qUX4C5&h3?4#3b}8Z6ekBroJogLD@Oh&dgptgplRa_dS3gxzXz$^x?3!x(PEkO( zev^HMW?-MW9Yyl>Wi;wmO^G)zHlem(GXCLP%Y=~(v`UOMU(v@TYWp^uG2YtYG|Jgx z%~?n?!l}0J-3zF|zB(xA_Dj`j_$s@g+fnNO6K#KtozW46APfXsdZLn~|Hj@|7Dg~< z0Sp5~#m(iCw>q)j{0bhpx1!j#5NBkIan7{f`kjMo`zBi^h)kev-;f|-HxTxFSGx4t zDl?$%6W!<^=|w?$nx-h6HKi#8}U4%wLhCW^!ghpL_6u@?bi2WSR-RgP$c>f$(ouChl zWVWsybvXN3HKePqDI5Rl$T+fS>%mh?9Ujh1}grfB$h?5LLHJXStuSKenuzgOHQ)nrE%M!L5VkD=) z#80tT&!#x7apiY)MjI#^j1}wkwYZFD;S%#^Tp{}Mu~+ByXYAUNAO=C$l@L+!{uf(+ z8am5vh8rI$ zcd%$zyK@4S^L+)g9q&A&7}hWA-Tz~qcmADK*q~DWf3-1Lc6qLT%cB7b%;k{@%=R7h zIgEP#f7Munz{@+2jMY+eK@**sde0K|Hc?93d2CnDoIy*R!9+LV42{R<{)1nw62CI( zx$_l@Vf_*(VYWZX!0NdC<(%PQJGtx*UiV?_igGA~LD-cx#W%SB#oiKaF>x0E{2|*M zgIZZx+u9R9r>)*!lI=HJ|Af7#E$|hO;K-w|!xh=~CCn+7>rWWVajh74;a2Sv6tzaS z9dg8*^M99{4jb0rQ)p?sDafGL3$~pa7@J!{Z=HV0w(psa_^ys(&JciPT5v)_KXhof zMH=*vX^?FDGKCiV>+f*V3z);&_EpF!U=G;!puPh840kQbWDRWlK<#s)svn~5e&Ua6q8}IU_*@Uy2yOm!m;uqEjfzT zwPS&9A1L|?P*CB;_QI_wWqdCSC{_!%0y)XP7*XIOQtjXgZkBpX5bY6^p=fMH*|baj z*uIPLH5(pjCUzRbryzzH2scrD7=dRWPSs{M5g4HpFL?G~(%w>8p|V8+?DVLEUsXqe z7C^LLPI%t4+Kc;Lf5y%wM`92LqF15{(YiC07`8{F zL;~ThtuW8P_DQ8aWNe@6y|>@HEge7H^5tOIe%-{29W{yyKL^_G7$`N{=k-*4^gFlI zQEB@_@hrb07|pyr7^Mf9n5Wnn%-aJIO(BA-o=D zt~PNGWHg&Y)zk{oVB$VWE0_%J>?xenOP*mQ=wa< z@Hx!fgF;2ko48uBi<`N>%kO_Dj-B~b^p?$*J%8z9h>OFhp?jeEO~$i&;Q;{MDdCJf zVE0C1=dfo^+U$)(^nMJwqxdyQb2b+@YB$KYx`mB+>#^+ zK_GY~O5JX}|HXD)K}_D0!n2!l^SeeJGI>vufae?6zGd>BCZuN~UdpPK<}%#i z?;C;F_*$*_T3a4X_;VF#(ONb5yUJ3IcXBVjGnn+e@V`7`t#B+Yd7&Hf|sE3%nm@bc|lR<-K0?7|?|BGd-oN1gm#pKUFlGKLE&zPOQ6nH-zyl-Qs!YnNJ`OyfQuD33Bb9Lqy(?%oBKSA96RJT%x$(l?O z?*81LBUI8ntOrlJdotetHN@za;_mtEiC#@9jHU(NUv~HJ+wZI`xI4uO{TjnP=2&s} zZ#lj?q;Z(c;5`N24^HsuBHI~5r?~s!+-B%_n&P4ayGvT7%&JUAcgWb=Eex^+^Nl4e z=Hb%M;`(G_*|Pr9m3hkAvI3Lw_pmsfBCN|5V|urtb$AOwNvm87Jza{r6XW-|4h zj|m*WXd6I$MWgFu|I>xlk2PzjJO4)+eaBV}i?&_)ztrG7h-VKQ?HiyG?w2*6ex$7m z`FACnbq-_8K4b{%*3Z>;Wl2HVxgJZG~XxfMhycK9K(_CGGjc)dh~BjH|s!Y$+Va_(BL5wD)y>caK&Lj&pE$9TQst{5a3 z!@Ss&utmZ}ulY(41+ed?C~pr=V89+LuVrw8_2P>J1O@Cl?Tyu^y)t00eW4&@*D#hq zRh&aua}N|HL_sLX_ft*18yT<{l`4y!UK$qt$Hd76<8Z;~Jqf^$Qk}%A9AXuK{h=7) zV3?<;8QK(!f->FwCZY#Ug0FARz=RJBVbXm4tY2JznAfHSy^-&|(Lain+SD;z>6Ts; zYjCEGZQ;fWlHdNOFC+F45$|vc4mIl97#Fz;1+p;|$jXfU}Y^mj0e^}{$@w?coR%_5xO{)(>_${7NGZH#|W0)aL->IZKno} z7XuhMDc$RoZb9SkB$I@hC{QDH1IIrK=lrj}!_xxC|3=1shfu}+{iqp;VScxfNrpP1 z)hv$GXdr>jv2WMf+92`{{qr5cv;dXOP1%2m`?{VKxN(|Btm7k0Z6RbL#~` zL}I(+UD)JgLH1OWJwfEDB=9zTf6aRAA;~y3Ol-2(dLIGh7ffISV4JZ<<(1wD3dZ`} z)bC&*D#1&*gzIZUFQxpQt{V3{SR+Cg^7qLmb9t?4G&AD{3l0*xY_D6F3OH{@i)vB* ztgD$eASx*abEGxqNEx>1Ap4=w@LHlF19D~H;$*LNHE&1!Y2@J4Jci$DNUp^5J0S=) zYP0IZ^LH96Fm%*XVS(ot8OAYXc(ZCqR{}+vkXDl}amxGfl!KDnns+Mz{UPQ(J&N@{ zA%KTCKiqG1y(aj)CF(}fZL?W4y+ovj$DSzh}2wFdLG@p{dT=yTxUOh2%9%iIN zfb1pUBb78r9Z~I?~_89OX-eFOs}sO+gv1%rccm)kGigByGoC+@Q zBnE_G)(FD{mbZ~#0!Gl;JaFW~LmdybwYrTVsQmE{V`p|FK?noUl*ZT`oquBc#jDn6 z0k@p?hstB7Hy453JX}FkD`O?5lt6(MO8Qv&-5KM_guX6eWg;Li3;9 z&aV&kdSLUaz%3jC4))Tg%>TJg4nu`aAlq$rb|86bB8y#g^*BG#y;C6=#Z2gv_(b;} za(==T`}CM6(Y=4rKE$Nwo}K2TCYrf`muMJoue?xxe9*xT>6XmMx?KL@#P=-%GHve` zt2kG~;wO4H(aK4Fs1x!9Yc>&SvVUJc3KUFR)+{8JgNQUtM4CdU4?UB{_Y5+{=8vS3 zg;cViQA^`X`az^mCbwL2a}X|;n}g{YI6sJLBs^h~mZftaD%dt*%|v3sdF~qp$&Jwy z%mmH{`Zg}nj4~4vIKPlfr*1em=@M{WmTK?IBKqhAoX^r-^0#MWfRVs?mV)52wU{Oz zZ>5N&@+4}@Bx=C zMNQb~WstV3n$JH&xch)*B^XUH&;qM>-m@%vk!aKWtG&IN0nZ1d0=D%MLyiE?mnW;? zI%Gq=m{j$pnj<@>>rdhH<-q|Z;k{7Zvd+lGqPivWYk>6<3>D`9g@PUg=LSMAD9)L+ zA>NCUEvsD`mha}a45}GB9FkrdG+3+Q(g#HU7(Wp;(6_JPPN7`YUc)ZboBrB`=s)R+ zLlm@V3`IK5Gz(Bb*?D!?c@MH?{&v!*mP3+&(l5MeG$5gSTGY-DimFhmLp#2m5_GLU za?;_I&kuF}T#;?C9grSl8(}cF^nW2mR*GXal84f;eF-)U*)JI!1iEo#}Lcr3?r*ph^K2beeivSUmJLd>Ndk^ETs*K6O27)^0bzYglDO8?cxA^g z$NM^X9^T&Qx^V1NdF5_tjEHATULH72m;(D!~pcFb6_mwRWHDUxBhv5_A2 zS3U&({RKJ?!p;B(VHk#iUusvcg#UjGA+$?HE9U`dCC%1xcFb?e4C&72B1`#MZFTW(%6iAOrKsS0_0OyUX(-s0J>2fbx5!E`;;KRrDREOdP|*dFc`f# zpi#rqD3M?z9pXBR3*TGP3Ds&5IK*xiTO9vkzm0RX73b=M@l$JU zoQy>*j2?=AWoB0pepy5`C@KD{9c%~w*#*UK+)jgKkK!vQ#mBJOIiU(|T2TBEnShTE z*(X8?ir*QO6M12}ie=ADBwid3MZF$Ak*QrwLUoVcM5qloM|jQUfuZJmyY8Z>`_Dq~ zM~+cqGF9>F1i|n9B**)0dR?0jV3FgCRX?v?`~}6Dj_fN9zn>@HgYU~PzyC0HCP)mz zAQZh)h!ErbFV>E2A6gy02gtZZ0)K(e120J2;Z42fO?^c)fdOlYhudSlQQ{o-RviS; z)|+Rq@g%tGLdj4 zzO@`lOnq^h}({fIr7jQK`kB^<%e@N`y$@9-+Rwb0;rLY!6=;jzW>0xIrb6`gyx74tE5-kn z`$FS2v;BTKz(ecew?)XXq>yn@yW-z*CBJ!Y%L_nec|fM7Qslna!}!?-xgYRh$%`s| z`E5=4mi#V4nI^JShC1;{7rv=TVTq#~@2PcZ1}}hFn&lw^izY>a-3R$Ka4v||e6ucL z{M#hwHuC-uh=K068w_~AxNGkXIo=!wIlfvK);YW~yfQv&()crWZn+V|Fbup>tt>73 z{uk?4hYRdN>;VDa|lv(_L){6+6z0Z@e2 z1#OqNX`0~VJ>ld<#3%7y1vHW_jLj%1+W0mTig!o_|3v&+jNHcNxwOJ-I}Gy&yZ@sM z1&S|(X(7%iJxmz(d~-jZHx($p@!KNh4{m5`0~GK*2vU0n9M$Gn*;V)w_FV22DE^Bs z#Er?to>44;;$IdCW}8(ZYi}o#cF2IB2+1>Aer^A%&NS68V`q@tFbo61FUh1yN&o*? zgR~kNZNbeg7r_aj$gAOU`MsEALNIR-wilQ9&5#PJ#m~N+Ubj|I4s9lZo)Jm$F{{SS zos6PO^o5fE=I0TBM%mUx**4botFiuaa&Nsi*#uU6tE@gQMj>uhm6Y?)LNtx_SptC- zKWKb#V5^G_R#yCi4ak`ka;9iLCJF{MzwK=8Vst)5y@iQli7Q#re9nSr3QPZzgy!!m z_%Ia5#n*=BC%0$%m|ma6;xpOWj|#H{lBBo{9-421DbWx-Qv~nO{2v4A`^gx{QV0XA z_{LeVQJz~UPjLRE969Me6$2MzS36N}@esH^KRVo>?42tH+iJ&QFHc47|Ie2U=M;pRiJ=z%P8PSzi2k|24t(3@^d? zLD%dCJ#H6^D>0|0O)|E%4;{`?I}Eu!dAIjsC=brJd(^+`JXxrU9RK-P?X&cm1n1w6 z+*Mp=LmiFwACpwFTRbO-t zRee!W@O%-PN`J&K4H5;XH_-6?o}B5S8* zZDl1n}5z{x`=6 z<3+)IggH|&qPVxfX{@jdTZmzgm@&tbuu7umZ+BK7JYl_OQOjJ4O~aFZeb^8~e}&Nzm>G%?H`S1>mcY z^QS{Sl%DqvQzq_#R6*~it5*2s`@0G;gppT0)Iv9L4?euaJ!W_~AIy8Gnux7|c`xMr zI`f4D7_OSM8VcS-sSQ9rA?Md|V`%2wXFz37J__FCZ;pfQ$*-5dN54kOOfYU3R=AKB zk+JvNQ4=n^#}x=qe%bPK)~|!fbU&I)v%vN?Ct=DzZy2<2zx;rK5+!{f0uZvAU-iP8 z?7zDP>u_kFsFpKK*~I3dH@aLB%N`RagO*BG3kcpr3q<*WMJ-k-w{+1S8Z&nCFU{0s4qa~B`BR9oaU zw~Z=3xO@5j9-dLv8m#|NNzB(9jQ-{UU~$C!VnkHvmwtt9#aRhRqkn8r|HS6&MN%AU zhT;V5SD+2NfjhfElFz4eGdAm$gJ zK#zB*d5Fzd8V-N0L&`xQ=HDFJB(hMhVYWf15u~c6_B@Vy%v`-#ESn5q`DIe#sQ;gl^HUKSfI)%31akgR*;BF$`tyvO zze0&q6U;OG!{6yOgvgj4;S1#ayll?%>(4WCe&U6=+zZ$!kn@Ksi0~{ImcQsiTc3+x zuvqpu++5k5>4yY4e>D*qFKB}wPvQAY*!PIM_7f&NA7E$>y)b{O6pb$;4FgEg85ar9 ze=mh|{)Hjus|tizvQ~g}ft=qt7>h9RRoock0)`PkH@!w2;Q1d>Y{W@61Bw0!JEL5S zK@f;;>6I3c{cr4ky!4ET4J^Qobs<#YvtTW6*R9}kTrs{E}1kYcP1Qr?d>Ve*T@qD9s#PE->XIN*^^C_Q; zOscNov(Gkf2a@-pxB<_11dZyJYH}YW;fIIY-k#K#7~uKOx<1S+`z`t6`G!)3@nU3y zqEQ0q7rNZGIP-^^3_#yYOT~U3%4g~9&~4-Jd56ZROdTwsp2p~&8fKf~l>$38iM~+zq@ID(GkT|Iinb#{B6Vn(KnHE-UY~H3 z=F0PsdUs21|Fn_xMfKjH4`%Uwv{D37(jbKMku!`dlU5iOZ*I69nwzlLn})7L(%;4d zP{f+)6^Wz|8RQQMv(F5W^y8NGhV9vx&xNE9J!>v9z}4p@HGox!noR3SzqJcRKVEXu z5!?Huw@~zh^U$F5HXz>`+FO@@ub^K7MV0 z8F(WY48Z0@(BJ#|L3z@LB5Ay?c$R#3OSh3NQOEhP(H_V zZw|c&n|n&mCy`(0Aq*;nCW)~d*@;B zPYRVU769AdAP`g-wWh?$G2E#_w=>kz8}MmstWg~I6(X&4jtzp?wFoS@!HFMz_rA%vzMzk^ZX!tQ#KQTObz?F7!B7^ws#J|or1 za@*lfb?SWj9eKd{%*>rC%o&N>PEb5AA}5V|b8b9e#8&IZJkUJbWa0T7?StlVnC9{3 zkYr0v_=D4YVdUQ8+a+ifGPH^;dOlgdgPDh$d6N$-PB8b2xypO zpNGi^5Ysh(ss_&g2n8@{k6HM#aA9fz;}jh02Q~-MW?ha*3XC^#_w8<4#8XM9 zmmEBhs;F7RrGfM7r5DCX?*Dbs4`XMPgD?!k&?~XFu=xHL;{)lrFcj|qktl1Y&T*bU z#durkofPAS!Br~<-x^`RS#tY7>{ypL>0;in!gEH>UjSnZ+;;Ukhm6}XJZl>t32O$o zGhKY%n>`W!e9sKRa2|o-EC=6C_m0^ly;LFO{AGG79=_^Z-Wtbmrs+|Tw*q=q!|rK{ z;XH=9Dh)>~yO`%Z!|?Eo4ETkm5ZKqd!%~?Ku3FNgwrJ-a^pdQm}3G>{~{% zpzoLdmYmxkjO7RrP8H3)dNXzgxDCTF4E$2;K(+b*j|~{GlbRUf9#B+C9oM1AQ-4%f z3i?2-DtpzG&A;SIaO>xPL^~nq=SbEGF>!|Zsq`cxjg8Q29MFpEHCC)n1M0syupS~w z-Dr4sui*)Ue!y6(6Ohb@?^lQ;(ZFU*f)Mm|(Mq`RWb|z^MLg|BU!x8C=Q*-vq=VDF zU!Dm1`-nX>Wv3W64irCAHs`P`o9>=L0IKlwIjqB>n!Q#lfIFo@N7PaMOTP~M{JMwr z*NmXQak>kOsoMZC=qI4J;#2!a5<$NN4vUGUUnB_npA01wWURT{>*;{`ioKW{wx1sR zYS1^kCxZS!=zxth4c=uQFIV;?>dm@LmZ><5!SsVQ@O7r_&F_asjCzqs(Z`|EpbssY!ExMAjpJzDxg zy23n{=3H+>DEb(1U6YFDY)%Xm{TbtdxUA;vhN6GV_?lBP%2U$Kz*{L?54egl0CW?e zuM?L3xf*+P1JIv}TQ_F1dF%T$3Rjj;rWkH-N&gS=dE>w&H{J|pfpMkT4k%bXm<2|4 z&kUs3n$NrrPTojv>JIha!H_$YQn$wXsOLObVDbZi(2sI2a6{6c8{SX%@vOh|xK2QU z0?Ou-`@`6|;5ZDzK=ewE!BFmhu}a%|W<=j(8fCdxd~IPB7#&jtg*%yTT* zjJ|UY>w|G-tbExp`iq=gUmW`sSOB9>X7-mVH-9f+^p}qtM?0=ihXOl8< zDfH)EPfUK#F#6IDp6<^4o;Rca@BH}aL@^e;3e1PmSNq6mGSBgEGx|=mgwv+$y%iTT zg^~MUuwgcG3~Q3N@(%;OQEo&FYlI2tts4E2?RO6TB3%VY!YPIoQ-um~ z4=397sJba^Gx|>cpp)t3QGfxA{=frbh$F1{!V;h_iNa(gnZ@?($XjLC8AxDe{<$GQ z--vWSqx*B{h0*`xeBX?n0S*Eo3C`R;c2K>+(8 z!O?$cp6PFBAHIn&;G4Kikbt*dEbb6((fL=1BGu??bMbXlMj)hM&kFEz?ymE=A&!;BdXqmES~ z`Wa@-cooEUavz#u#!Q42%p_EE&=U&EW<|9~5O!mu{4ip(DN(CE9LVm`qz|oJq%PcTcCBKytg340wuyfE zn|bCYyP-y3kju&K^IUmJn&`8tif~g+xOs^F7(nI)Ov|;kB`kN2&zo%U$b+A*-pp5_ zd#PBwT{;Mo*e2p?JhH2Ci6Z@Z5Mi-Uz193`8i7D}aP=J7)w2ZAw~+S+KK^-4#lZwg zta5LBN$%)gU9yQjB9H}3%e@s#578gPVjl`CDyNddb4M040Bh zLw!KRCZ>+Jnql*16ryXgJbkJj;^>P52$Yu1#sJYzQuVoU!)Su%cnDVfX-+i860FFV z!e<{nZ$$q$*z4ZTlV+0`fauTAt%^L~<1?|ps5&idC7(&DB`!#B0?KD|JcHvAbNDt0bZvA3`HN3v(tg|`>USwxQ?a+nch{;8R*VE<;0tRp}&Tq z=-+B!2REn5xSJGxg%v4X-^`gEhQyNVjOsgVNDbRBrQ*%7A=7agz>xNN)khLVKX4fU zCiWUkJWS9Xd0R}6_PYNUhsOt-GqE(Q&2?XkB zF2J9n@9;7Gsa6rM_KadvtWde(Zrr>oV8UXA{v92;nBZ03x+5kP56kSFNRER1X6DjpgT)6 z`qXv4K9Wm$?>7Q#{hc>=7(l7uQTF&XKa8Ex5yK!1LstTu1ib%Z?N6WSk&`okuc0A9 zkz`pELss}a&7PX9?RfM9Bj4^<*N^1#Gb?B#sEc3bl;o`1qg?b3%elCgZsK?+@AYK# zJ+;B{&ac^5YDWFR?5Q8gbq)e?K%5sKZe^d5J)}tMHAnUtaoIFActH)p=rgqMuSrR- zIkF3c?FozL1&G6=AD~_bK6*g`!srJoh6CcfK!7m%4Lh*|AH6_;F#0!;d5_vH)|}1? z{xIOh_*hDX0mjJXu+IqH}F7=2^zp546kZ>_{y zOYaU+7YJ}@8qc8gNl3Q=0vsAXT1(BSJ%n5qmwg>#>frlXCuDw$IVFcbbng|nYMy>2 zKKpg+-?w;yJ%jXX*vDBE$1(6_AUNrfLYG15-y<^{*(6aEleztRMQ zbfW={5u=}W_ua9sZxxjOhp{tCk{ASm=#^$#(B%FX+xeN-PPqj+fR)lH0ydAA>96>n zjlxx=^oOyF_?|JE1w-LVTtz4K?)6#Z^v84!2|KJ?u}fb_C-*3HLEQ=eV(oZ-?Qdarp(dbAeZ+eDridM5IfPsy}@gyWIv2w1w|pUnX?Ox zJecj7^$vr(GjJ;=8P~c>^E3Fn!{+U~iV*nKd>I=?eE|3`)%dRz9R0WBXN>-8EXlAs zj0KzdOdY0yr*Ba2CM~OX7%Khu^x*s1o2JG%YlSwQY4hbc>IQeDXftPQn1#6z1!|aI z3YESaa_m^-X3py<+1^#X^{Lu&`s*KxfR|^n(Rk zT(LDsFcmruMliT0m8Y!IhoUeE2kVwEsqhYqL%diwfKP>EN$zJ*(2ep@;aC#k5B_%D z06rD#bSto7`HTGiW9*D>9EM>Sx>8G6cJ`m_zV1bl)fMznI5kSlDVwIz)5(9Jz;wiq`ytL;sKu71C)dG-GPE#JCB|( znbODKW&nI5AJshl{en$~f}z8VO)~Q!Fj~UXFOHi-Tf;o(p#-JBKBhgN-x?|erC;Cu z(v2|}%#^+lcc|VoQ@z^Xi)3z)R=6>?l|Bd!mR3^wc>0T#`)k5{o%gz8WO^?0Ty0bO zG|qHNf8Hc}U+L^cwJXR+JpJEO|*G2k<3n6>%9CTgbHy$!CZ7F!d*c6>a7=zB}~ly1-@i4~C|X zvy%nK!KjNMCQ4sG9Y>>Rjz&LCA0NTX)tBag>Ti~$zvM_d-T_Mnq@QZn2{WiyB#{1=7d}aE!zdU=`dd?*yfvCw zfTVBgRhWE!n{P&}7*DiQ^JK&dN;jK(a1APDNctOfht2~QP4Gn0Pee$9I?B22GSZje zO6pnr|1U?cNN=0L2^Jvu^IV ze5kD?kr&!2j%F|rHDM^&o}*TGd??WmsxS7+*>1Ty<6`2U+pU&i+ePV91Iev4>(@ro zpKw-t#=E#fR>^ruATlkKK1OFEMN)Y&_k)BRZ(U&hYphG7r}qAN8x zfV=-!>i(LGnkh~kjtvI)_-SNI2cAFDM0$0%pgfCvQH~w=qVdqiOaorx0nIa zUx4*RvENh{1Ejx*uuUqp`(l59^p^_Xq>pwm5k_}JRW|8k8>EkC>W|-`S@U_(+NhlZ z{gDLePu*2KyD@DB0n*=xOeqNxlU9KAr6X8NH)hRweMKjhc9@xUOR{0d{tv_jNMF(s z$;@eH2I)_7&rQ>1Z@4<+yuOyKz_mY;AbokVVf!+&Z>|lHzM8ZW5ZBv*%mC@DI9LXU z*)VQNn(?abY5yky>2HuhvfF9$ZIJ#fs(PP;@nYu2LC<3n6SqU5<{Z4D+%y%L{`rOddQSaQb8IKOL zsq9~8oH!oA3Lb`B8dwoB-f73^L^@2&>mSgxGkEh73(_w@T)~NJ=EMQgZ-Azup*gpO z^tCw%d^B7smX1qG>ECB`CzdkowLwGk4+he2byX{k=9oeH>J;eRP9|n(1+F~_xipn~ zEX`rBP1!$By-TYkY6yx~rc40ow+^p%K)}ST_ORSku_k8bFh=hEH}l9K{hQ^c-%vY$ zXOKQ-&_5NO8JRf@$(-B)HQ%83eV7abKcQAI8pL zg+UkyqIZ8L#U3(+;Lo&{3aK9ae`tGon?uO-rU!|OarZGvX8E6U$7^F8Gm?I@{y$Yws>-sMuSs4bARu7M%SovtAiUH?KzNae`V#ohgHF^0 z0s<9+yp)9I=bXcUfH5Pjw8yq}1Wrm@wYw1HU$waCyd|{tctmwb`qHI|V*)4UL@%Q= z?QqnQjcd7yF$xD1o#DFmHfB~r@gYT6Bq)=(ypmMB8ft~j@{;|LlfzV&$kLP3)80qN z3Cnp$?Om5byQ^33;wo8xRs-gY{SE`h+w&f(+>bh|omxP^h!9j+u(ILLe;}B$yr4k@ zuF=SmIKYL8gz6)3DX{s1`T_yr%eVi3^Z(&V7^o~2LNHC9B#G1a8q}}$TrtapLCJ)| z#m?W3)5jCzZl4c!)Q=x|`9X>h7+z8Jsn>a3*|eXLHM!r^&wTT00absY_Z+0La*e2# ztR>$Xm(U@f-<5D)sn^Dg&;z|5YdhVN)x{(yeGgA$dP|4&$6y|sHC`8ZhL|jvZKkpsV_SnP4+yYFB_16vAKLfZLgmtYaz3PZ*YdJWM)coP0Q!F=BhTV zLf_51F)i;@<#s6}bnQ%%--0n~WCp9c-s6}FBH)5UB&8O9p)q$$^CN4hOsXrL;7Y95 zrB9^BtFRW!ZEL3&{5YuE58p+^X(1DG?vH3@qg^H83qc)yafC~Nc0rNtyG7?FN&k6< zp27fL-S!o{DnT|G1pnoo-Fc=dyoUs~Q7T-i#` zwfusHjp&z~376haTfWn=7)rZ-f{IKF4OUVs#!s$9<}*}UC>oB{)-lrqY`-u*>buS^ zQSg;+tZ&KTenA2aXoA#%1=Jxq6vhd3C_LgJkFTuCy!{=a&)#?xCuli6OJxw)sL-VS z9p;+mrDJ~fi_IC#8WdTjH)+5=`l2?v)$$+2i(QR`9Yr;)zexLVYLU;t&LJ{!oP5QW zPa)F=pJ=8?n`^AQNN>hfzS3^wUlkg1zY{-R)VjQbHr>Cef@u52viY+wI((|gAHw=+ zt661Y^{i|YB|@%XRUY}tDfuz>FcxC$`VDobx{zAWC&g7r?C(K!LE(?olHGblQq_k^ z4b1gyFb%S+6r-R5j4!C@$n6gV9V;}>)8%3T#TIkx%tW%~NlJ%W@W$)3SV8TT8JP%l z=E2E|fS&{UKK!_XmVC_xa;Lc64m84fZAE3{D8%U}jmJ0{od~!DQ3HJ+v-B+9B+wbG zKvOdhCE=>;WQK|SQ1_{pBLpA^K^pa^79 ziSadVW#m-GX3go~*WyHkq1cvkhTJaTS_Tp~XuC@01vx+y}VtH@&oFhlp(aq9eC?G1-3B7M!q>_bI zSeEr{Yl7>^h-cY0Ak&iO9Hl{eC}JvQ~m$uHY>wxtqm`%e8iJFk(!<7&6VUMN<=AHqs#%0U^H{BHz@ zoOT103b4xT(5L^(;_E7s$n?1=e4SpE$V!LR$qUO?=y^p<#co&GL@>Q39b~vNJ5UX~ zuEy;RL3$;n%T+~#|CKV+T|wOw6geGA#%fa=&&0!-T`^*zti^v=;-*i0kirCGz zL#^L&r}x%CT!P5y5ISdvOCK7ep-V5)yh+f*W`B(R;@HbCsH5Q)Q2o6g`CGPhz2tbL ztyuNSp*br1vN$&nafjWmx5Q`A)bigdx^IXLODcAm4wn%yJ@W2eTVA zyKM9wF1G|d?3;9-jSIhbT=KZtNgs5ydR2No&-rCI;jae=Mam3D8PIPv=pY*|@ZlM9H> z!zN)j>e3k22V8L6xpwBQf5gl?zOzw7+yI&2X>E3+a%EW<<>E{78Gr8a$a4?m5nn0; zPK6fb{#Jq<{l=n$<%fLs;Z-3_1<|=q@Z07iRQ2w4aQ!bFhqbPUl62#?1L!E0@IlYu z#_CDDcMh;92F(txzMewlG`GKZ#ojxwc0f+XcqV{}6Zg4*>8!bpvgbb>Skv-{${g!N zF}z&TL&gQazDegi2J30+?C*tBnUvDWS4}+UskHK@r`~}K>1`Sx5S;C>$3G8 z$*-0jYHeN-h+JDFGah&kwzk6|6C#3`n;%}njTdIntaDrkSZh1f>#1-L7aMlxyB{y? zjn7ER=Erk|Wo2Z>1$W8j0;i-2ai`+Rg+urofPhc4VNH;aTWvvormWftQ*vkdQL!zB z98}3amR)kGNna@QZG4JG$FpE4uBIw}B3a3T%37i-F(*#0+5ERy-&awooC!tS&kJS| zC2ZHrYmb+Z%9^DX=QS-Iqn-1mCj0rne{GiPBl52O{$yJJ&l~$x-_I9!+Q{j1B|8;! zn`;yVo+RO6pi?EcmaL<@g+t!bA`X1}g|(g0Um1fdUBmG?hbZG;HLRtEZ4@p?0F(O3 zmHRIjFoY%h+5mV(nX%7K8mv<1>B8ix$-Kk+cr_^rcQNpweh_b}E8y;bUYR_3Jt6$7 z846x7Es$%gIJIr|C5{!xqbmYebW3Gli%H!4gpi`6KJPQn&K12l566$Pt&tmN^%9xe3!tD?a0u39QR+p(3Ew_g;`@4<5)UXUZNL_4z-uj>hF&9WS zS}P8mDXnIAKUM%%(7tG?%`QQ)p7dZfjWV)s^+;oq1@gi+BAO`(p|y*N0Q*Vy+WnvO z?)#l##{A#y&N^m`P)qkeV>cVvK{lRb#Kb-){e+fxAkI!HsX;P##YrnK1mK5OiHt_O zdGdtN+t0q;BAQoMh8MB~mToNIK(872Ou%vryw!ZEX#;X*+M*=P`gj*gQae0B4S3sA z$Sxr*klaP`wBP$ueFfW9zdk%x{`*^$@Vu7xCU;A~(u#SN!|VhNJvXBmj{rmV_rL%5 z16yS|Kj2c2MhGy2|5(n+n4v(-N8PZx>Jl@jXLAsEOhyf9k>78z;sH_G(J#=CtX@3URI?`sN@2f=iiz!h%7s`tQMw72`qYQgsHy=h)Qc``H3_HGx=xHClUhm}g2tT&L+AF9zp_t zaQ!Sy&Km*Nec5Y56#s!kAiMpIc*-XU<-_x!2sN%H0qcgdagkAayDFzL6d74r&d&2` z&VW6T$^9l_<$%cpTqo!zJ;(>x{{aW)l$9jU_uVH%TYTH?U@SCkf3oZYAJ6i2;#5R0 zX0!P0^{cgyZGHla7hNY;PHL_7pcw&)w`G#NrI(fkBXt|tri7$KM+ z8L9}v%{W)Ph>NBB^{45Q7#ff`ogc(+iEsjv8~HoXE5(-EPv#O;`a_VYEl;z5D`V`wbJ@h8I-+#nOFX_SUo%{KMIqJb)}+9hI7 zLB99$I=HqULsoOT7H=R)0!fttY!RVRQhW zRl7>JzR#PY-Zu6r``j-Ke)s{$toPshKIH-V?}gmjzi5W%U5|biAWt07o9L?z*RyST z%)xoJ{%9cOH*~1eLaE{0QbuA8-ymOG1K71#;@F8-&{8)^BVLTr0Exd$7Ie$7{LhRj zRQsXf^Jer<`F$)c)u7dLNiEt&GKI_JhVuAZwxQeP`UAVhP%^EuJ#3aF0*49)G^E3w z5d*WKdEANhzCOVF;Hg(#FL4~&s4*aA!1fjdWJhH{Zz0eLw~RlQO~!U<>(FTM31aqF zdh1XTTnk~(Ior?Bcie3`Av=?=6B=hyg<5O{Zz}UgmmV6Hw#C!z=`+L+M$|1K+Ck#5N)I0;HKkx zj-`S#WJ5W7$$=h(jC;Q@79i!OR_E0qem7+IwzZo+ZV??Orlr=TV6A=BiEU+LDc z#b3FcLzCBr3dgZ)Kd;Er^JR?_ABDR8wd(Z8=yS1K%S!FY7E|Vd&oh1*0FJR?k;)1N z5aYN9o)9xJm?nLKeu*;cXD!;1sB*rsMm4Xiuc>rgb9jo2bKffX;kI@kbQJyXsu&{1 zp&+TwVWsefKWetZ@tm6;X^7do9Ou1bkuQ3f{{8y$ zrg{ROd10>)AIn6tEG4HS>1u>4<>Y2?P90Tii!CM|(?9BsB#pGDh>(wfSufTR=k{t5 z%9Iy6s;bdaydP5^B)hPj5Cp$A-?7`D*cWA5mQCr*ypZg>R;!kOEDL`jtxH7nnpPA} zcmz+ToUs6-G}$m?G9}(s?Uf59+yDcG&=O}HSx6SMk7sesS-+f*Xo$sUTg**UTGZI1 zqEInvN=M$RQfa6QUPQ$)^NB3OuK-QAY=eawips+ve;EEmYw>9%Q}wze`>FfoPwV=6 zYSNw+w0-(9Tvr`+r#Spcb<5lLM)ijVBfdxSjuqoE2f|Pk*9~k)l@`IW3^4(Ua9mA3~iO(u!kxXgO3-wcyKv|DK0F`lxwk zW5gbe7J;);-)K&-!7Kz^r~w0i`$!pN_(6^W!lrQ@#bEH;Tuokn*E)#cdur^SKdq2@ z$&Zomv!dMm5!-AuI+?5Lfp(@+(e4DH(E{>yRJ2gGat79|^??{T7g=lF=P#%rY1I$2 zcs^_s`gZ}^VX4y6vOyLVAyPD6M5&#L!Gekvz73yKn+#&A?4;}^s^p40XN%NzZtR_i zb<3COg`?X7fD`s+|BXL zubJf_fX)}csXKmSh`P|T`|M!4tKNc1JYs9hn{G7rWHA2eb;6p`_bL}^mwc!4?~ zkntA9nMQnzTYgLQ{FO?=$6=bd2J$U|1++s%vEVY}R|Jb5KT(((P7p;0two1!5qJnx z!*(PT!0XK`!?+HthYppQShSAE6H+R^sV88e9F{(oRZGr=4l?PX0WCkl8nPB{w}3B<$#YtieXMr<@*VSb$SmmR~|PKq%1w6E42zI`t<^l&zPMm}ArnR|qls1#t35jQRMMwi$ws zbe;pt^YT^*vgJB$8j*zN;wICH$86B0mun7=X*TVuX2pipm$qS@DpsU&7M|J&e=phf zPVbeaxw6_5d z+m#%kFZ#*6m;=#qv0our??CeP)7c^`vD}u4+z99rwl->h7H>y0)I5Khsg6=a)}cK*8-Aqw-ny+l=GhL7)xSY>#Di3W{Zhh^Yyya ztr1G)uaMaYeD&>*NazF@IA)7OuWKFZIaXKf6tR=QcXYpsPa4ztQXZT z-oYCkm!nZY(zAak^d_mcJ)6V&j-ql+({cIOwK%7w^0;KT>Gz`kaHi<)Xc zQjPI#=6VK7xI(uHxAM}{&G`J}bZBYlFai^A1-y&G+Jgv99K1z?&7-%=I>%Q4$+xMGR_c?+Rk3=etGm4=SEUL~$9-RaQIE{cl{(!Y}B zXXo*HDR&onsn0-l9~8*#_R|EWF4(dPfq?j|)Y$}T5m#2E#?u`uI_R0>8FF;ufs$mg&Wa>HmLjG}z4q&WKRQYZX7Y3r5T8}y7A6YkP%OrDrM?1V@ESHNMn zthdCu;@ zlZC%?6u+&^!@-ajzVf!GMt2hrRs9#O&l0+RrVB`%Iq zFai2lNa09`l@@p9BUq?~H?epkQnKPwZn99{ftRVycbSC#Y1Gp9TcU3jbLLop!Ek?EpN!u`{RgLjtpjaR9*PqT7~#KI#~dm1C$O`O?TnwOB5 z4KE`nEx_;)Q@@a^H^jzuwGF6nd?GaDj5r{vh*+oe=MUDFt%jE@t&q&CRLwEj$tNOu zLy+mp_j_V&STu{NY4HiF&z5|s<>P;b==T5MrTC6-TDg1vi^gWSywNVT_d3GDWZ$FA zYL01-TJFa%5(W50=}Q8i>zDCT3egtwTK9sT3u z8vA$(Yof9&gR2%qo8+Al!8BO3Js_$lip9~D=49jNaI-Ks7s$y=|N0`z4S@y`LqIU( z!1~>ESNzLFWL(d0$z(-{@_tpEq#)YtBcgt3v*_ZOo8J4ma-yXm10_{U4~CFz*p+%- zq$X}|omQxR?@$9<0>okW&H)Ea732AYM<42-#gnZEZ9iZmR6pAI>fo9n=s{O>Fb)km zrMX-G8`h)$MvH;_)E!>3*l&SebL6>=B^meI)#)NRRc47GB9;|w6xQn->h5@Tm;?CW zH}O&$Z@vCo3(y(##V@R9JG4YFZNQ>^jB{~&NND7Uo34_x{=66;f%rwaTeNEw3q5v6 z#@m%1f<*R;CVRE-T%sdb!|ugkdDy?mj(Vm6b=N3jwvRv2o2RLAo7&7mEZFb>np%j5 z(T^8gbTd1w+5c9p z29N)K#VtR^3ZhdsQ#Ja~jHRc`H#T5b<-2dwUa$@lMd@Y0B0&5Q_JNWnlRmk@qUL0# zCdH1O!=tfkiB(-Ud%exZKJ_+mYEqv-D^L4fne5JE=-zRas=2jDSG8IvQe5Rfs4I8* z-7CELYJIsnL|1%OoE`uAcEz7= zY6A}KpScVgV~)%1UKv1PENKMi9XcGJ;e=^lV+`XoG zj-1g+-b%CcK(*TKGLg>S#9D;AZ`1}}RC;%8kqdhr=ze$G$$#9-f4mBMx)Qzm-2ezl z`?cMHD?(?q^}WW+EzXpbl---rtjd4@*C^~KJo5~rlf(m=GjiCy=n8fDlY6SZSPt{X z&G<-!uvp+W{gK^cCA;-76~E?O;(@ELLGhczib@K#EGZew@LrJsZ$@ z#Xo)fHSJEjmkOYwEznezey3l8M78UlMOnTJr2BTN7-xg+}EaQ+XyFB z7TigV${$I6A*IV=_pmtHXyX$jCn;|}n~wZZ*c8tMM^y#2aAqJXgBUd@cq-TOc>-u+?kgtxdcu4y_3j8rN?cE|p$oHl&T66|o zK6*zlZ3GtN`O+ql2``S{&5oqFxd1w=dQfuqodN9R-xlT5=N@B&7AK>Q&nFuZlwuu; zWwal{b_$8nwIglB;Jb7c>}>icO&GY0xbcFT#(6;?L;IobRTh6Z2dLd~IH{AsQR`N?SUU4F496G>5k=(7 z*EIEff1o&hqo#Lmj`lN*C;TQ>u~~IkH}OEfrtQg8-sJMz?+VwE!tvOglbIJ6eaQ?W8|8VEqvvDhVMiT*8Ljh%zvYZ!kD$8WF zl#uhhpNvd;sQPjRvfJxDdl17&l&%L}m`Q+T)xjAUKY=9s$9b`l+Z-RmckvixLjm)k zfXyjcO2?MvLCT@$SIE_25M_6kOJAFNCcYeE11RVRV-OaUhT|68IJpqGE z5WQS58x-SvPU1~DP_y(>X)AM+q%vWM+SRamrm9-1><#}k3|hg_FSjYJ+ae$&2v2ez z{a|HM9nn2%gX(DAT%_ZnUnjHwa0xki5`@M{FXmGj@iWZ?#Man^gf-83qo?Dihi(a9 zcKyb`z$`E~v}{G@I`vbX$7(*GEA@7^4&L{HDp=XP=k9_!E}Sl zy(_2-Kf|Y6>;y2(>ppbO-vG4p?mEjokDA=LZ2Q-T9%VBMW`ET$lnWeKv9UyNpGMpzX;%_fjI z&N)u@s14xixZ;m`No&)aBX1T)P_zM_F+pH660nRX0e~{299-O=O#p;xWjDut9AH6K zb32~3e&o2K59c#KqWwpny%rm->Mz4ZQ=J-aFb2bgsVfFLU$$gPigJw2`ZuN-$MFKY zmFZ0fJbSI)jbewe#W$(dS;$vR1WF?Wwx*bLv{z9k%1Vwo8{0Y?Yfler&mw<9eEh2S zTEIzdfU7UL=d4<#cJ=L$tQY`lTk4Dx#2*E4a|3VpB%}O=fRmAkh0jQY7R-TBW!D-I z)JIuJ8IhrjawDaoSoQ%flcXG4Jf~lItvGc#@$N^46piSayDI1Rm@HDF9WDkxM zNVcqak>Xl*kMf43WB&lM<}9kpl8j93GQ}*CpVXek5V1a8)B-evf8ksXfML5UipCE0gt#X zW88F1ftEkf;KHjc6!Ner5#m@B8ZP^BfaaM~yfK`@gx?*;qOMha5IY`D^m^i#E(aMYDSBW= z?Nu0P#aPM%AnO1qTywxPM3~v8*l0w3nep=H)dlWix|dle4Sj2)^F;z5M6wZ^K)Hk@ z=AxB=)WDD_$O+1OUb`GyqNEh9(FHV> zB>>%V86ZgO(jiwky{pSIZl(g?ddDk7XhXpw8_@NFHQFK;HAX-Ev7aO*9OpdHAGZ!~ z8HyUz#rRBn@7~mJMv*0hEet_)+NE<};rntyu3r|>pAXd2Fsko8^YO61b{KY!ERKpX zeu1KMr70W!*(7fqN$4Br$Rq2HXReaplG|AbV?gyrsFBNXAl!|HPa_E<{%$tti>wL+ z($&9G=o+jH1qz6{VgP4_)+>IDEbN`x&t?wAHvmV?6wRvC6kDD}eyT(o@DE>pT!a3- z4D7zbp@rb7g1sz*Q!&}oKVnAZl1H@p(+`eE(snK4EV9S{n1iXA(CSM$>B)dQ})LdsR_S)pHaTfI}kW0+^GjG|^~K;#_r2Xj!8n zdrdWe9gsn7i+_(w=WKLt#+~-!e7rIyLe33AJh++GT)I4_12A;2ksQ!?1!B3s$|iSR zVznX}*K_1}!3*TITmnH)Nrrl?`N*MB^A$9qb|I$UwhIU>ysM-wkQWEP#*SqO(Dpt! zyivVSD4a90+@3r7nQX%*=fgW>aey;Z5Ida%3AIysP|WNcXU~>jkbW_PLDhGfh_8q% zy<^eC>w0%n?pETZ6PM{e_pz99t~bavu@@W)6tdnE`sj$T*oMp5nn|YAcR0*}gUM*V zb;JIVF(w^qB9+lqhS+LzX9x&4LYR9)Qc!=>B9>zP*!(!Mg4JkP0psb8p%WL(nN@j1 zjZ#^+(<%j&wA#EP*uSXzb<;;$QBEj zQIHKYnVs0E3JB4$r**RI>xB^nm(bJcc9EGyWj`O#Q5i*V9vxfLbriQu&e9 z9QC!KAo-{w<}!1M6^NuKY-8uB_z9eHDT_hFMzO)Y6+FKf_g%y;t*%^rL&!(tq7+`- zxHXxd6h-Zqok-UJp;4h1kEyBRroE^w1aeqXPg$D9@}nB*v}5HQsJX>Vse0B{2RO*| z5~xuTDb_xV3%ynRHE&y^28()=_a8t z$k|l$h`n4Of>1Vj*uvzh?I6X9_>k0Mvf+x}JISH%?-IDO0WY#U5FU3ZM>0+z+DT_y3tWRWow zo0C(wy}L;=OK6%BGj1D|GvR}>bEO>S?~>hH2@D1FdVrWc-K$*UFq#biEoXrrHX=ujOkt~F?)Sc7aST!g65>%S;44QUBE3sNYq}V zS*j8-o}5YI4u)f057w%rzI-k>g(_Rfvb~>=58@M)vG`^pZ{CYT+aI+wb%h#x8)RQ6 z8~o-}+6jK3$)PB$uBcXWN%xt_@oEutQDKa)xYXS4&%x~f6|SPOLVa_-xEA1DCY|~K zrZVLRVmaO>QoaD;oF_Xtt<^snIYl-bfW4$DT#=yE8ee&IK)OSy#C z(PJdzZK;{8y|$!)Rv5C&=TuAyWMRnPMj6{fI)CC+E?B-FXCf+D zkm2NLeBIEmKuCdPL(fxfnu5q|De^=~HL?;JLZfr;t%yD{MLrI8Z+wld6?On^Y_oX6 z!NQ0z$!7v;!uuv;(R10m^9za8&8PpW#>L@=VkCDSH8Rw22-UmT6;8{L2>9eX1k(4G z;#bY69SYtbX=^5T=y~sds#{v58M@ZeiGP__)%mvW>WSgOjQG%?O9D8Qy&$|?ugjG* z$FC|2?I3b(FO5%T?p;7OSYG}g<^?Aqz0TK?npxKwnf(0n zr(3f!t$5{uH1K7bFw6duc8iDhm}&1R@YC^{TI(VrAE??LD&FeJ%D+lRUruoib!nZX zluT<z zX{kx6r0C|n##*$%oHiwLmd}cE2%VOZZ=7CWWU=@A8KQ%d=8nQZ&Z+V!`VkYzw5VrP zmui+!-j8ch)Q*POdb^!fjV17C<6b`KJHP&pwP%oaW0927bWJkqYEP_dNE5|VxmW#< ztW6<7At|dm*Xn{^6#-C#$fs%E_iH9*4L}n>icRJ$8Z0_IO1PJkW$5%zC3L-!O4At{ zQuGp^(^%&+@@!&kbu|h2ZlfC<#jA@5{Ky~5Aj52gR?ESQfOx-XqfMxAR?(K8zN6rl z^4Tuu*E+YA$-6PKa}R2@meH;WDFw6q61pg%o7|)t`YpCsd_+&hcZ{QiL2g;xbko;b zC0flqR4!(PKnn0Wvyeue^Q&TSplk%2rGxgkI;MXiSCPvW8=8s=RD-Au&C^Zd@<0#YN<*aFGK!B?ipyDC1?$LWeJ* z(8H=8YFmL)QGumbwA2G+bPFImVb}-quZXzlm8F7@PiFI2%7S|`F=C`)AXd#Uw;b10BO!Zyc z^m9#aF$TCjqu=q44nsBiSgm7n>rz8{PLI>Azy_#g6v$Y)coTi$1O~qp^q#~_^kH1$ zXqSw)QP;$M%u;;mue!abK%)@flutDw5ZV$6u%Y~xY1%NPemgw8GZCDW6-)+d`(+H@ zd)ruaJ$(qMum9QlT*EuoakH!3|K2}Bu>RTS`Qke84@pG9S2tdG+OWrKP%|M8oq4t%A z#x5IsoWALM+&ip#M&*ip2e!w`p3k$jG3w%=;TTzZ7B^0WZZ8tDj|y7o{SL(lXaG5_ zb2H(82m3`BPk^Rv$Zjt9Rh^m=7m_C+Y9aZN#A^Q=zUIf0M;80F_@9Bg0~Ibp$m&l? zt#8RW&RZ-^d!bWsFW1|c4-qoU79xm)M-M|qSd4nh{v){7MlUt?o%@E_{OmkhZQ>|= ze}O6neBDUpQ{Zu;Yw}+mzG@g}CaIU{FI{ZSa!gGrTYHmI=4a@3T+PQY`uubz>sI3b zh)aN-kEErGQPu{v`!r6y*HIKOrxa(QEzZV6wf#%_5e9f&JP)J_s>=APmF^VA{pIn= zxr$9sj(zMU5w&5gqJ^Wm|oNN1}1nzc6K?7^dk(Q2d9sH`O6hKbvdu6Pgk} zJV2_6{2BYuY~1(Wy}wk)PA$qeb%HF{tkNsEthYS4lySwL@BdC+lcJ-ZTtttaB4P!X zYG&o_D~nT>18I@&Lfu?C% zHW8h?x0j*_M-K|>4=8Za{re!sRg#dVZy__lD9mmiQ@+5&Om{re1#c?Mg0-DS{o8-D z^S@Bn?%2ISUh3%Ymf_#VGQp{~PP)*8^n~(w{%{V=h7z?js*)j%7&xTULc5ur*3o+I z9fefM++6R(%$S_nF-}y&wddoMs09f5;P#Ya55>&{}j-lDeW7lm#+Gc z8~g^*O1Kn>^i>MVzQn8Wp%m0{oN=*pvQ&*5Y z?EV~dG>|La_US~!$$vtOI^EcuZ4n+VFoWo`+ zL*3yYUAnSxoDMK(h8Iv=#90df1?1imk|%0EM6f_@fVr(9q@KVxH4jWU-s%9S|M~uvv2}THJ}? zEJJM*%-0@FKTN+TM@F`p&yw^z^I(Q`C8%?`4wNgumaVMI%wt#!|B3&1?QQBEPuZ!S zl3Do728#G~FCa=ML^`!@gqx-V-6aVL2_~-n_+@#%c1w9(okwl^bG0Vo*5f%qaWuPO ztIOTxAyDBvf8234u9VGh6nL}q13f7ESu#|{qS=&JvK*0sR3s5aDk59jzVFn_@S@A^ z54Lhq)@$a4yly&AEwNT*Uox04c4r7 zBZ%WnBW*1FfJr#j#iAwd{a*+O-#(2Jjc-9O-j@COJu2**fBi( z){H_v&f&1q=6SN&50sy`TGqMmjwdB0xsMA*G?@S$Hd2k|gYi*u&UnCtVk~yMN5H~M z&}rY_(|9ux&k9QpFLN~YeElKSEVP81Ut-3)mzXcrJ40X1BU@eB=^+)*G%tDVn-+Yn>-mk~ zDeE)uII)wTZvfD6+~Tz2yJTDDxKOuo0nn*Gzp??)pt9yVNDhF87BHLMM=8InBXVNm zqyRwd*QI&xU$Hmp5=#?;8bhlfqci`vzKz6l;aY47(*7k(HH zy)e><0|oaX6|ljK+IAtZ&qG{m>>}*ZdmbO|2sw@YchYofj62)r-GI9Eu4n7o2Pntm zRd>+-T(xMkeN$?h8fmuKnz4U8PKK1n(%HGmr|9jMWiRJK{ilQ71m*ZrNd3E`Oa3Sc z;*gJ|F(qP!%n6+|bQZ(pfH%`|ka8=3^Yl?w9!_et3Q2D{^L_`ax0(8u|9D0?D2B6( z$zz}PULMTs;XQd-5h7e+_tPZI{pvy||z3Gk)Bxg6zFY_n*jz4qgq z^ot69_zL_pe@if{9&91i1XeCK#Kt=G{Ml0P-M7|d#0Bg!HCgf|I~Zgl=<)1S^|*Zz zfMgytLVzvh`yC11kULC>-Lc{3dQ8i|q1>Z;Q8J}&2KyL#Wg2p5XU1aC50%k5zLI;f zF)J4pL{Sf7xAXQhj8xd0EFd6d{*ITE{grNHY0O%ENBdyW#Z&?l(6P@Kt@9tAX<2Eu zlkY{PNiId(Ve@jN&E9m0losPg;(u!a8ZCyCpDE_!-SKgNOI_b9Y>^LA=!6_(BFPUk z02*TI3z_;r$UjQuc!&aL^V`qE)But%)(4%=41-@j-c?ARL}6V<|89P?b%R32w#C>) zS0KUSpBQg&;``%m&Acu*r$L+mLUylg0mN;e%SCHWK-34?a^81>om%{s9a|ii8uzLi z#-AJCB5hz0Eh!J6N$~!DSG-o}xgiSpmTi-MXHml|)iBEfK;!HSyFUu}#_dlL zXcZ>0BV(1Y-&i8pQM)#7s(Iv1UdpF`@^*aZO71RgG@vYoqb?f@k2 zvzyxjbZ~g?&xxK6(LQ%@Jkt!XcG0g%*yO5VUu2YRak={p#HvJviI-h=of6FtetV6K zNWJUL+q8|N_}ul@^zWS+1HM}sO$F%4wCc2p{&m1F!tbjK4?~%?=+zVa<=v{E|5yJ% zC$G`1|I{CiFBz%$gLP($f;zJ9v+jEbf6&~~n>6}8xnf3novuvtS}QHtJG(e$ay+7X z%2mQ&i6)T)F)l}Il{-9eV@yD*bHleE-WQlbsG z-hAK)cf@dSvRI=`iG+3KRq)W%QM1hO%-5(AW)zrT@OVv3Z0;LkY;1%1Gz}OEAptT_ zZ0~Z-JY-DQ3@1?HkF1u!IxV5*8C`X4R6~<;G5cy9m&zm?0U@(sQNoX(8<)9A>=Q40 ztU))_CHhyVDF637=!?H`NhCIN|$`J#8H-#!`X^6?pz+cc-VvitNjDyw`d&WFL&*N3Bc^~xz) zqZ8O_= zGjw}fVdghl4I?tzqfX1X*{7be|5M$0M>X~I>mE^10V$$%P>>=JkX}VvfKa3d5x$t48QliXWg^TS$Ca(?_Zlml9kzec4p6fpXd2Z z3$pBPlZ3rIe95(U`xoxWR8+t!XyU0?Df}e4m-i}Flg6;kb`i=(w6buZ3!yaHGQj?g z0YfBpOZ{qCOHQ2>>a6;N%}1J}eC3=Nrc6qc1wn}Ka?*qK&UhecnNF`NdGc2Y*E>Y| zR`J9;CluGe>N!!@HH|VuYnGkARB$a+l+I+r&4=oZ)RyTXz%N{z!*vgtR;=`91`*8-CGQds-6eepM0o!ed}5!sx^?Dl8@>R2zE_ zcopTSXrdj1N`>y}Hjc$c)-lz!KGK-|Wm1|lG%-G>gQcY|K-J=S<{n?~dAlT-zc%!o zTtqWuOqAu++E2|eu>n`axvN2S4AjO&yBv7JhS^5KW4eEk3yi4P8j?4|h;`OE4g?bJ zrD@ye{**TWDISk_wbMv#kE^md97qT`7jLXlY>(sDAH!%odT^q|2nzn8A3R~hT8;Xn zl|U$4e^NzS^;!QxlOd>L*73IAP*0dtKsMpDSfU8#B+9K}7Kf`W;bT z@+WvRL7S(at&@B_6IS>!qYlFS6PI^W?iz|)w=%Stkzq*H8$TtZN2I=JyufL$8yIF2 z2xJVl_=wlH>83EZt_Meu;fEe!Un>WXS!W~_HRFsKPS)zom4ZT~@C~I)yNP*jCo9V{ zuRLEc4o%qQUP(Fg*C`i^e`0N5WxktD^KIzFc}FUlmS??6+}WZG%wl5BhY^{iQ}b4h z#hB+C%<9TUg*Gy(u8y&;w{DsYoqzi_!H`{=xcc#a{FT;H!p-I8y;yqn@eqzY=|&?_ zG0L#4n#iY9QHdjw*k;ujzfv^82Af@~p7SkpnoC+SG!dEy<%Oe9L`da@>tsn2bhFnn zB-MkDpY0mk>iXcd>arInLm%cK5>D7LZWCc@4KZse;-`f7C53KZ}O@dH(A>MRXxSnjoW8){iAAr7mM#`f&VmXEg_PeG||$ijMK%ao((-L6Y1JF$qQ{K z#*L)6NI;Ypa{p_Q^ayzm$h{kQENnm9%gcVEIk;lELJHs5kypQGbCei z;R(J0v{X+nNW-YMpiXTVHni~uLTa?GHc-c2MWd{Vw<$1%d8kvl-rc@0un-hxL!xMX zuX_GPkK)yYj@`XCM|k#X7RZPp^W(FhC-w?WAd2D1^d|rT^5$djn7o-dD_QDkv0W!@ zJE837jW1`Ra0O;@h1@WGK)1c+8d%~Yt54lCz4z0ZM{JqteFuPX;Z_((p=NVZ!a!NBX z3`yzFm7?rg;(w)f{~kv1y)Dqz8^evg-4TLG8;MjLxR7{N-bBSUSEHj2UZ@WuLt?-ob`D{O9zxZ*o2dZU1$_b z6iZzv>t5)j66t;2Ueepy&-Hqs&0%YA&Wx^cPjfG~^)g^gzEVa~jJoF8k(Ry&5A zk+Mrk$nss-bEVi?u@(>LK4TJK1dAy~h-klKzLAkX@!VtKbUMS!x=#~-{|RM$bKIL5 zeMl~ttK=U|$A-ypwf@>95Yzj!A~;!l>LU*lF(*@RcQWay@2yqE(0-33OA#NFwEG8P6mBfcTQq)D;lvMhSPObaZ-ARkT*ir zuFI}1f7Hr21IJm}W1p8hLPfeXpr-P=9=f;!+yOV9{LX zy`iKlmm!r-UG9T+mgbYeBK_+3`&-hFs_RJa-E?(Y9_WaUnbk$qh17-?R27ojYQs}o zc472_<+U*5i6hFxT)dJblKa`*^c&01?y7U}1oHV>r?0^_k{!+uwQa*m_CgFU|tVQNaSL*Z2NwIg|OPZv8ois}3 zesA7mtMt^SJlx1q(vahF%Gp_s&7Vi_YkjjrhrdC#gqu?ula{%}{8YKv4W?EUB;|7x z=ZwwDRT)V4l9+g~d8Xz(^H1>Z4-NmRWV83Es!zn_it}Ohd3kv4i&dsfQKx%HsaKHZ z*(pLt$I zDQ)h|63-1^swV~7h4!|S>EqB2WTOI_Mb|BUzEsLChKEDF)>7w*R6N;h8|Sh}{aoa` z!`0e(W+ewA4Y4P`7@5Urzj7TH?@8j2rKb;=XI8B2%ZTlF_0x_j*j%38EE=~2&r~&q zCABB>Iv(f_c+?ZJ5pp>3Xm|>xV^oO+e9z*Yf~dm}S;sOKHXTL{vvLw;1y7Bzc-1yS zzv(hbNGYPikCY4!2jZVW-CorqT&4OctJH<{W& z8COrC-$4BaA8X-N*7-z#;^aK7qu!f{Qm6itme5C-Y}RBeg^empV{5HVD%;)*`HQJb zvGm(8pvemD=;P2M$S#^pTbq1#`@RYq9aYQzsx(o*=63C|s71!I0)ZwZ9OaSfmK;`L zuJ3aFVxrWoounW}3PUFCTJEQ4)M0`x{1Ja}xfzuvkgKjZitDC2p->7dP8a;9_9gbpt!QS1ML zKffCsucsZSoF7A(saEyq8(}>&2+>nnvo&IL{qc6qpAt$ifk_#1Hqxpr>=_3{-VNP$Tg}2`eP#?)o!HI#jpm09TS=@hYYo!3zZcM9K$03+?lt7xmBh(x|AN>zS#< z7Vm1Z87Q$2t=5f?9q>GZAsR{!Ufr%_XMuB+3zka3V@vtT?T@JEKDbAhJkhtwB3^YA zwT5BbJm`yTP>Ky8VUII_T%fyH%|jy6uF=|3>#ZX_HOwSheMI@{_EO{$CN0<|TzY>h zPod7qyAo(K1G(J)2_iZ22-B=BnENsZQiWj6eU z`QiB(vw+Wq0P2Bdo-5N+s$nm(<;C`)J$S8#TumF>BTIzzl0;Woxapa1=SOOaf!q4F zh348^uTDwzfnf6yw~BrfgODS9MhIcO)%9k>{D&uPr;5b&uB-T5aYWbE`xGfbLz1Y$mhvpho zR92nRES?eIVjzq_6)@!yt}o^ zG+Qd|eF|_Ze<{hVh-KyTn_*r$ST39~O4Kh_8ero20Sg-*4#O~{f2`Ff59yV2RK^hQ zVb%Y-{!V;iES80jd7RX9n=Q2$zwik0>iZ8VYZD)Gi*hx=8#nKRJWKGKz2JLAtjgD8 zYah^`vHF&M8Ol!np2iCoEENjB@*pvDu_%V2O~hG0&-yXF0F@aH4Y~yyD`$Pl*qGy& z0lW$?GO6sPxel#(Q%{Q?D@NZyI7bGKQ4vmFPGEoTQMkr$SlMxF8Ad}F(o2~lvyGn6 zFmP10Nk?V4_f(jVsC8kUVBlh+lC4yi1spPavf zAQB(6aZ~A*nD5sK(j?>A7Lc*~Mb=lgr@z)H$2@-E$cKHf1j(;E#dzy42@KrM40`*& z&{j~XKiW2AfEdH$@TdCkX*Dq4dH_BNeCT9%0kFBM->#6@W_3IhICTd#*_VZ=Vgt5# zZVf){fDVM~HX>!X81|WORY{e2qHq6hSiB2new@Vg@d|{_BZ4WVt}jtIQ7;_&T+*76 zv@T-M6&4(EPdj4n&Wk?RoE}9AnFjx}Q(*x6>iE5vDeh!iy`P}M(!7?a{^;lpMf=&V zQ?6`4#|{>_fYH2$b$zw9weKlp{{VY`g;C@4B{it{qVs$1k}RQ~@e)S4S48j2a%|k7 z0&xhV9+LMi`3w@0PmUFXH?p3>Md`^Tu`FUb~M$9n~l1x@B|MY$5Uo z8FV-eL~ZF`x2WlI*1gQqnI)w`NvVjf2NxD< zF7KlLT*r{cQEgq$94r-B+U zC~ae0e0_a^PDDxrxd=7I0T7*x&q)^W-*12<%?;3Vi!L8-xEyf9y9I?v(Xy2N{0Xj`j4Y2oZ5O7&H|v-uPXrTG2h zn;D1@p$$!&K{~{AsCgsj0z~$s(#dc8qUKy_+;lSgylcGV^1ns<=LX;R(MduRT{ax> zmt{HwrX5f9w!*GV))b)7T7AWdSw!VMDuvKQbUnOat+C>vZdpruty($cE6$>kEKj$? zi8A>B$)6<|>FoRvl+yv1N~`00=z|)PjeMmj|I^7_q19i98=pZ|q1>?g6ByNIXJ-Qy zU+f2Yo7W{g=H*$l&H6s7Yh)?t|#nW936=L#TSdGfFb@0lR^6gv@EHgdKm@xs0u>5a8 zLyQk^bet0c9RN-^^o@&r85@OJ`HfPdf&QmAW12r28co3Gc^P$46)8;2^cd8=a_@mG z2`L1JhuKMy?Q~CNyTZJ>m{9|!BSnXZ^yaXl^@k+SJAW8*OroQs+dxjG?gIA5mTwg+ z+4l`Zsp38Z7-PVpc!1l{xL>aI%ky6w-@s@D1-*&6ya)QNW zM876-q!Ck&`&4a#35AH(Tw`!%Ex1vR;Vfby9p*ApCzKl3{Y!`;iF4%3d~KJFlq4ZF zex?3N=}WRDCgi z49b()*iH^Abn*XL+*On0L7~ z;}ZgCdY$Lnou+Ohq8H>oOm(0apa+6r%OnbGP-!&f&JRm?_4fy>@86PD!9yqbg^*tI_d9k;c?zvcRH&)s7$@@zvEx%C% z?6}Q+YXUryk24&qkZ+y8fCnMS$@~WFIwyeC1Bf}ZUxS9;*pJH>?N#Xd8iy}M>jlHR zaat*)A)j!|l^PrR8`huf=A&*xI*4SS|VNE z1q};Ed_ac;(a_I+TScj#4pM+$OD~s!kx}}fUy)k3>u;fm;mx)7tHp<9pSb+dgO;SW;srabMybd&>c7QgI{@M$whC(q__a!n1tu{JDT z#}{srBAiYd1Xx`(5suBOSPLTFbmdACQvu=ALC%$!cM*{C{47s&%pXGALhtk?af!=B zFIdi@b(d5;VaO+YcRLI!qVOswMd#|`{i$-7KMjM|zbbrN4Gc@te)rJS;+TBV;cyMKTzJ6}-5RR9;@ zybYo+V!Px6g!nOX`4v@}(&oOoRm0uxAXMlrS__O?ye|6KQs>t_wF&rc_U%I}bC$HE zpQ=ZaLhtgpX_eWU)QSxra1pBuQn(E(%teXQFmcRhfR^!I8Nhb zY+7c+vr7)i=~AWY!F^P7yK(EumnskWWe`DB`}KFW__uG+*q80h5{!7d3WEYf;3crC zr$9ANl;kd-%r%uI);ZBs;|6Y8;)5g$tz$JReljgDDxzN8W^jHv^C0MSl1w*L$^fr6 z|1)t$s>iYLZ$+UVX|r|isnKqNUd8iOh}A!lc^*Ve)&8A;43|1ce+zVRaBl*_&o;n! zTbXbOFPy%3kK?1!ptSLNxiPW(D{O$KpY@|JF$4tHF&BFTgh*gK;%N)Vjvm3qse`-N z^M4Og{iA76hQHG)mZurUry1Q7TD==AO(2SE$$w?($Ql}@I1x+W8oY1idCSgo5J?l) zkaXf6_izwrXYf&7c8fCE7@kK5FlMJ(o5y$c;FXIr(WFH!sQ7+s`KkO%C4z~Hyc-GW zy3siUuszK+1O1q65xu{$n&=9q3WSvRIPzq<=%1QGcf7ccFIt=4_<+Nv?3%1nPl{;i z>Y$30!^EaD;#j1y4co|&66=yx6NKTn|4clgvJ{2zohG9)LX+O4$5DMmQxkw2i?s7y zabyingJ|f%zP^nT9er{$iqnQJq1@i^SscY0?M+_BTs(x!RjWXgJ%2PCQxOXLu~X>l z1R+*;Kb^E*)%|k(l#4KBr7!(vRaT{r(Tv+WjCi8x#^Xc1eCmARlZ9B0W z3>a3G6)|aME7f}qxRq2nPs0tgl|dv($HS;?sZ140NmYSu9Dbb%U4Cdt3*3$&k7OuT7G}pMoGw@1#$oJw_86lM4!==`@SCq5*l2_DO!;oc_+dRXSguRQbj{v@zCEd{}z+j z)FpzX@RqGWOQnZWX@zVP?3>Q_b>MyEzQu7}w2Ch8QXZAVZHV#yy^%b0z8~S%5WB4` zMS1&$u4ZgBfiop2=zN@JnJEAGlScETL%;IiiT1!RZc*k2?@Z z$k(^{J*<^Bg#O&(OZN6-WtTxxnbzQ4LLCE=`!P88zRSfb$K#oQ^_> z(M)&eo7KD(zg8w*!<1i6;?YaL5G)}^5D!-9`u#rYip{zDsV4PhsJAAwj)0qvQ6eJ` zRx3)$i}=R3lA`F|+X8LK3rK(bROu2OOUv&PqN`t4sg?3;c?O?%g$%?N!S1BQ6sUxJ z>6MWVA1jh?+-+zJkm*6z)HSVC^pJy=4kLARS>dXkJ|%NK!)09C zbe^dB3r{-JQY>HS!p{zG3yaBdU$(YA|!-+pv- z*RH1`EH)y|qv>sD+Q9$WW@Yl#HJ7-5?YJ_z@;(~uxgr;|xhLz3QM?=c&xR}{SO4pV zEXypc;7tNbbh$K^jz(9&?kofZdPI~L|I`+ddj$@1<6xcxj^>eoD+7)M0_)(814pIH z&}-mu>jsEPf@ATu)yWm{_&5Kr9bT3#=)pV9Q6GEX3xPknmNz|HL1Aj_V#Ya=`J#tP zrR~cNr?-GT0u>h|WW@!h!M{6pvYCM0TMs@w^G<|S0e^9Z z!Zf^wRqXj;EZ*T*r`ejI@T&Hc`M&lHubhZ~u1O$$Gyns~0^coI%2k}@NAa`e1Hy{P z-qi4+#+8c;ZBA?j3IiAL7YgZUu0vD7Ltx0YUo21GNWXS*k-NzHKDGM*&bsyQ+7B%1 zP+&`T_`hBqRxU5{Wzc$7u>d|n4~os8QUC51Va6xBdd?`TCD7tAiGQ7?06>(O`tB>u zoda7Q)wtjXrpdR4!ehcz7rXC(#!_oN+y`ra#yfZHcK_3o7~>;)_>lUa9eL8a5n%ZM z?5E#4|N2j#cU`8S9Df%|%J>8I)l1ouM|Ok)d_UQ10J-=LJt`J&--_VMDP;)wHDuNS zy6q{}s1xi4;LUeYhV%z(TO9uO(L+G}26so=+}r&=#)zk*S&|oQ7uo#?tv~yB{^J* D6r&Lu literal 0 HcmV?d00001 diff --git a/demo/documented/subdomains/python/demo_subdomains.py b/demo/documented/subdomains/python/demo_subdomains.py new file mode 100644 index 0000000..8b3c2f8 --- /dev/null +++ b/demo/documented/subdomains/python/demo_subdomains.py @@ -0,0 +1,96 @@ +"""This demo program demonstrates how to mark sub domains of a mesh +and store the sub domain markers as a mesh function to a DOLFIN XML +file. + +The sub domain markers produced by this demo program are the ones used +for the Stokes demo programs. +""" + +# Copyright (C) 2007 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2008. +# +# First added: 2007-11-15 +# Last changed: 2011-01-25 +# Begin demo + +from dolfin import * + +set_log_level(1) + +# Sub domain for no-slip (mark whole boundary, inflow and outflow will overwrite) +class Noslip(SubDomain): + def inside(self, x, on_boundary): + return on_boundary + +# Sub domain for inflow (right) +class Inflow(SubDomain): + def inside(self, x, on_boundary): + return x[0] > 1.0 - DOLFIN_EPS and on_boundary + +# Sub domain for outflow (left) +class Outflow(SubDomain): + def inside(self, x, on_boundary): + return x[0] < DOLFIN_EPS and on_boundary + +# Read mesh +mesh = Mesh("../dolfin_fine.xml.gz") + +# Create mesh functions over the cell facets +sub_domains = MeshFunction("size_t", mesh, mesh.topology().dim() - 1) +sub_domains_bool = MeshFunction("bool", mesh, mesh.topology().dim() - 1) +sub_domains_double = MeshFunction("double", mesh, mesh.topology().dim() - 1) + +# Mark all facets as sub domain 3 +sub_domains.set_all(3) +sub_domains_bool.set_all(False) +sub_domains_double.set_all(0.3) + +# Mark no-slip facets as sub domain 0, 0.0 +noslip = Noslip() +noslip.mark(sub_domains, 0) +noslip.mark(sub_domains_double, 0.0) + +# Mark inflow as sub domain 1, 01 +inflow = Inflow() +inflow.mark(sub_domains, 1) +inflow.mark(sub_domains_double, 0.1) + +# Mark outflow as sub domain 2, 0.2, True +outflow = Outflow() +outflow.mark(sub_domains, 2) +outflow.mark(sub_domains_double, 0.2) +outflow.mark(sub_domains_bool, True) + +# Save sub domains to file +file = File("subdomains.xml") +file << sub_domains + +# FIXME: Not implemented +#file_bool = File("subdomains_bool.xml") +#file_bool << sub_domains_bool + +file_double = File("subdomains_double.xml") +file_double << sub_domains_double + +# Save sub domains to VTK files +file = File("subdomains.pvd") +file << sub_domains + +file = File("subdomains_double.pvd") +file << sub_domains_double diff --git a/demo/documented/subdomains/python/documentation.rst b/demo/documented/subdomains/python/documentation.rst new file mode 100644 index 0000000..5793d43 --- /dev/null +++ b/demo/documented/subdomains/python/documentation.rst @@ -0,0 +1,165 @@ +.. Documentation for subdomains demo from DOLFIN. + +.. _demo_pde_subdomains_python_documentation: + +Marking subdomains of a mesh +============================ + +This demo is implemented in a single Python file, +:download:`demo_subdomains.py`. + + +.. include:: ../common.txt + +Implementation +-------------- + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +It may be useful to get information about what is going on behind the +scenes when the program is running. In DOLFIN, we can control which +messages routed through the logging system will be printed. By +calling the function :py:class:`set_log_level() +` we specify the log level. An +optional integer argument may be given to specify the level, the +default level is 20. Only messages on a level higher than or equal to +the current log level will be printed. To get as much information as +possible we will set the log level to 1: + +.. code-block:: python + + set_log_level(1) + +Before we can mark the boundaries, we must specify the boundary +conditions. We do this by defining three classes, one for each +boundary condition. We start by defining the whole boundary as a +noslip boundary, and then overwrite the parts of the boundary that is +inflow and outflow. + +.. code-block:: python + + # Sub domain for no-slip (mark whole boundary, inflow and outflow will overwrite) + class Noslip(SubDomain): + def inside(self, x, on_boundary): + return on_boundary + + # Sub domain for inflow (right) + class Inflow(SubDomain): + def inside(self, x, on_boundary): + return x[0] > 1.0 - DOLFIN_EPS and on_boundary + + # Sub domain for outflow (left) + class Outflow(SubDomain): + def inside(self, x, on_boundary): + return x[0] < DOLFIN_EPS and on_boundary + +Then, we import the mesh: + +.. code-block:: python + + # Read mesh + mesh = Mesh("dolfin-2.xml.gz") + +We create a :py:class:`MeshFunction ` to +store the numbering of the subdomains. When creating a MeshFunction +an argument specifying the type of the MeshFunction must be given. +Allowed types are ‘int’, ‘size_t’, ‘double’ and ‘bool’. To illustrate +the difference of these we will use both ‘size_t’, ‘double’ and +‘bool’: + +.. code-block:: python + + # Create mesh functions over the cell facets + sub_domains = MeshFunction("size_t", mesh, mesh.topology().dim() - 1) + sub_domains_bool = MeshFunction("bool", mesh, mesh.topology().dim() - 1) + sub_domains_double = MeshFunction("double", mesh, mesh.topology().dim() - 1) + +The second and third arguments are optional. The second argument +specifies our mesh, while the third argument gives the topological +dimension of the :py:class:`MeshFunction `, +which is the topological dimension of our mesh minus 1. + +We are now ready to mark the mesh. We will create four subdomains of +the mesh; one subdomain for each boundary condition and a fourth +subdomain for the interior. First, we mark all facets in the mesh as +part of subdomain 3. Since we want to illustrate the possible types +of mesh functions, this is done in three different ways. The first +type, the :py:class:`MeshFunction `, +takes an integer argument and all facets will be given this index. +The second type, the :py:class:`MeshFunction +`, takes a boolean as argument and all +facets will be marked by this boolean. The third type , the +:py:class:`MeshFunction `, takes a +floating point number as argument and this number will be the index of +all the facets. + +.. code-block:: python + + # Mark all facets as sub domain 3 + sub_domains.set_all(3) + sub_domains_bool.set_all(False) + sub_domains_double.set_all(0.3) + +When all facets are marked, we mark only the boundary facets. We give +the noslip boundary the index 0. To mark the facets of the noslip +boundary, we first make an instance of the class ``Noslip``, and then +mark these facets with the correct value (either an integer, boolean +or double). + +.. code-block:: python + + # Mark no-slip facets as sub domain 0, 0.0 + noslip = Noslip() + noslip.mark(sub_domains, 0) + noslip.mark(sub_domains_double, 0.0) + +The same must be done for the inflow and outflow boundaries. The +inflow is marked as subdomain 1 and the outflow is marked as subdomain +2: + +.. code-block:: python + + # Mark inflow as sub domain 1, 01 + inflow = Inflow() + inflow.mark(sub_domains, 1) + inflow.mark(sub_domains_double, 0.1) + + # Mark outflow as sub domain 2, 0.2, True + outflow = Outflow() + outflow.mark(sub_domains, 2) + outflow.mark(sub_domains_double, 0.2) + outflow.mark(sub_domains_bool, True) + +Finally, to be able to use these subdomains together with the mesh in +other programs, we save the subdomains to file, both as XML and VTK +files: + +.. code-block:: python + + # Save sub domains to file + file = File("subdomains.xml") + file << sub_domains + + # FIXME: Not implemented + #file_bool = File("subdomains_bool.xml") + #file_bool << sub_domains_bool + + file_double = File("subdomains_double.xml") + file_double << sub_domains_double + + # Save sub domains to VTK files + file = File("subdomains.pvd") + file << sub_domains + + file = File("subdomains_double.pvd") + file << sub_domains_double + +Complete code +------------- + +.. literalinclude:: demo_subdomains.py + :start-after: # Begin demo diff --git a/demo/documented/tensor-weighted-poisson/common.txt b/demo/documented/tensor-weighted-poisson/common.txt new file mode 100644 index 0000000..7612685 --- /dev/null +++ b/demo/documented/tensor-weighted-poisson/common.txt @@ -0,0 +1,70 @@ + +This demo illustrates how to + +* Import data from file +* Use complex user-defined JIT-compiled expressions + +The solution :math:`u` will look like this + +.. image:: ../tensorweighted-poisson_u.png + :scale: 75 % + +Equation and problem definition +------------------------------- + +The Poisson equation is the canonical elliptic partial differential +equation. For a domain :math:`\Omega \subset \mathbb{R}^n` with +boundary :math:`\partial \Omega = \Gamma_{D} \cup \Gamma_{N}`, the +Poisson equation with variational conductivity :math:`C` and +particular boundary conditions reads: + +.. math:: + + - \nabla \cdot (C \nabla u) &= f \quad {\rm in} \ \Omega, \\ + u &= 0 \quad {\rm on} \ \Gamma_{D}, \\ + \frac{\partial u}{\partial n} &= 0 \quad {\rm on} \ \Gamma_{N}. \\ + +Here, :math:`f` is input data and :math:`n` denotes the outward +directed boundary normal. The variational form of the Poisson equation +reads: find :math:`u \in V` such that + +.. math:: + + a(u, v) = L(v) \quad \forall \ v \in V, + +where :math:`V` is a suitable function space and + +.. math:: + + a(u, v) &= \int_{\Omega} C \nabla u \cdot \nabla v \, {\rm d} x, \\ + L(v) &= \int_{\Omega} f v \, {\rm d} x. + +The expression :math:`a(u, v)` is the bilinear form and :math:`L(v)` +is the linear form. It is assumed that all functions in :math:`V` +satisfy the Dirichlet boundary conditions (:math:`u = 0 \ {\rm on} +\Gamma_{D}`). + +In this demo, we shall consider the following definitions of the domain, the boundaries and the input function: + +* :math:`\Omega = [0,1] \times [0,1]` (a unit square) +* :math:`\Gamma_{D} = \{(0, y) \cup (1, y) \subset \partial \Omega\}` (Dirichlet boundary) +* :math:`\Gamma_{N} = \{(x, 0) \cup (x, 1) \subset \partial \Omega\}` (Neumann boundary) +* :math:`f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)` (source term). + +The conductivity is a symmetric :math:`2 \times 2` matrix which varies throughout the domain. In the left part of the domain the conductivity is + +.. math:: + + C = \begin{bmatrix} + 1 & 0.3 \\ + 0.3 & 2 + \end{bmatrix} + +and in the right part it is + +.. math:: + + C = \begin{bmatrix} + 3 & 0.5 \\ + 0.5 & 4 + \end{bmatrix}. diff --git a/demo/documented/tensor-weighted-poisson/cpp/README b/demo/documented/tensor-weighted-poisson/cpp/README new file mode 100644 index 0000000..3a17715 --- /dev/null +++ b/demo/documented/tensor-weighted-poisson/cpp/README @@ -0,0 +1,2 @@ +There is as yet no C++ version of this demo. +Please consider contributing the missing code. diff --git a/demo/documented/tensor-weighted-poisson/cpp/documentation.rst b/demo/documented/tensor-weighted-poisson/cpp/documentation.rst new file mode 100644 index 0000000..afa10a5 --- /dev/null +++ b/demo/documented/tensor-weighted-poisson/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the tensor weighted Poisson demo from DOLFIN. + +.. _demo_pde_tensor-weighted-poisson_python_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/tensor-weighted-poisson/python/demo_tensorweighted-poisson.py b/demo/documented/tensor-weighted-poisson/python/demo_tensorweighted-poisson.py new file mode 100644 index 0000000..f7e39cd --- /dev/null +++ b/demo/documented/tensor-weighted-poisson/python/demo_tensorweighted-poisson.py @@ -0,0 +1,120 @@ +"""This demo program solves Poisson's equation + + - div C grad u(x, y) = f(x, y) + +on the unit square with source f given by + + f(x, y) = 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02) + +and boundary conditions given by + + u(x, y) = 0 for x = 0 or x = 1 +du/dn(x, y) = 0 for y = 0 or y = 1 + +The conductivity C is a symmetric 2 x 2 matrix which +varies throughout the domain. In the left part of the +domain, the conductivity is + + C = ((1, 0.3), (0.3, 2)) + +and in the right part it is + + C = ((3, 0.5), (0.5, 4)) + +The data files where these values are stored are generated +by the program generate_data.py + +This demo is dedicated to BF and Marius... ;-) +""" + +# Copyright (C) 2009-2011 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2009-12-16 +# Last changed: 2011-06-28 +# Begin demo + +from dolfin import * + +# Read mesh from file and create function space +mesh = Mesh("mesh.xml.gz") +V = FunctionSpace(mesh, "Lagrange", 1) + +# Define Dirichlet boundary (x = 0 or x = 1) +def boundary(x): + return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS + +# Define boundary condition +u0 = Constant(0.0) +bc = DirichletBC(V, u0, boundary) + +# Code for C++ evaluation of conductivity +conductivity_code = """ + +class Conductivity : public Expression +{ +public: + + // Create expression with 3 components + Conductivity() : Expression(3) {} + + // Function for evaluating expression on each cell + void eval(Array& values, const Array& x, const ufc::cell& cell) const + { + const uint D = cell.topological_dimension; + const uint cell_index = cell.index; + values[0] = (*c00)[cell_index]; + values[1] = (*c01)[cell_index]; + values[2] = (*c11)[cell_index]; + } + + // The data stored in mesh functions + std::shared_ptr > c00; + std::shared_ptr > c01; + std::shared_ptr > c11; + +}; +""" + +# Define conductivity expression and matrix +c00 = MeshFunction("double", mesh, "c00.xml.gz") +c01 = MeshFunction("double", mesh, "c01.xml.gz") +c11 = MeshFunction("double", mesh, "c11.xml.gz") + +c = Expression(cppcode=conductivity_code) +c.c00 = c00 +c.c01 = c01 +c.c11 = c11 +C = as_matrix(((c[0], c[1]), (c[1], c[2]))) + +# Define variational problem +u = TrialFunction(V) +v = TestFunction(V) +f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") +a = inner(C*grad(u), grad(v))*dx +L = f*v*dx + +# Compute solution +u = Function(V) +solve(a == L, u, bc) + +# Save solution in VTK format +file = File("poisson.pvd") +file << u + +# Plot solution +plot(u, interactive=True) diff --git a/demo/documented/tensor-weighted-poisson/python/documentation.rst b/demo/documented/tensor-weighted-poisson/python/documentation.rst new file mode 100644 index 0000000..80e0e59 --- /dev/null +++ b/demo/documented/tensor-weighted-poisson/python/documentation.rst @@ -0,0 +1,302 @@ +.. Documentation for the tensor weighted Poisson demo from DOLFIN. + +.. _demo_pde_tensor-weighted-poisson_python_documentation: + +Tensor-weighted Poisson +======================= + +This demo is implemented in two files; one file, +:download:`generate_data.py` , for generating data, and one file, +:download:`demo_tensorweighted-poisson.py` , which contains both the +vaiational form and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +Implementation of generate_data.py +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +Then, we define a mesh of the domain. We use the built-in mesh, +provided by the class :py:class:`UnitSquareMesh +`. In order to create a mesh +consisting of :math:`32 \times 32` squares with each square divided +into two triangles, we do as follows: + +.. code-block:: python + + # Create mesh + mesh = UnitSquareMesh(32, 32) + +Now, we create mesh functions to store the values of the conductivity +matrix as it varies over the domain. Since the matrix is symmetric, +we only create mesh functions for the upper triangular part of the +matrix. In :py:class:`MeshFunction ` +the first argument specifies the type of the mesh function, here we +use "double". Other types allowed are "int", "size_t" and "bool". +The two following arguments are optional; the first gives the mesh the +:py:class:`MeshFunction ` is defined on, +and the second the topological dimension of the mesh function. + +.. code-block:: python + + # Create mesh functions for c00, c01, c11 + c00 = MeshFunction("double", mesh, 2) + c01 = MeshFunction("double", mesh, 2) + c11 = MeshFunction("double", mesh, 2) + +To set the values of the mesh functions, we go through all the cells +in the mesh and check whether the midpoint value of the cell in the +:math:`x`-direction is less than 0.5 or not (in practice this means +that we are checking which half of the unit square the cell is +in). Then we set the correct values of the mesh functions, depending +on which half we are in. + +.. code-block:: python + + # Iterate over mesh and set values + for cell in cells(mesh): + if cell.midpoint().x() < 0.5: + c00[cell] = 1.0 + c01[cell] = 0.3 + c11[cell] = 2.0 + else: + c00[cell] = 3.0 + c01[cell] = 0.5 + c11[cell] = 4.0 + +Create files to store data and save to file: + +.. code-block:: python + + # Store to file + mesh_file = File("mesh.xml.gz") + c00_file = File("c00.xml.gz") + c01_file = File("c01.xml.gz") + c11_file = File("c11.xml.gz") + + mesh_file << mesh + c00_file << c00 + c01_file << c01 + c11_file << c11 + +Plot the mesh functions using the ``plot`` function: + +.. code-block:: python + + # Plot mesh functions + plot(c00, title="C00") + plot(c01, title="C01") + plot(c11, title="C11") + + interactive() + +Implementation of tensor-weighted-poisson.py +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +This description goes through the implementation (in +:download:`demo_tensorweighted-poisson.py` ) of a solver for the above +described Poisson equation step-by-step. + + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +We proceed by defining a mesh of the domain and a finite element +function space :math:`V` relative to this mesh. We read the mesh file +generated by :download:`generate_data.py` and create the function +space in the following way: + +.. code-block:: python + + # Read mesh from file and create function space + mesh = Mesh("mesh.xml.gz") + V = FunctionSpace(mesh, "Lagrange", 1) + +The second argument to :py:class:`FunctionSpace +` is the finite element family, +while the third argument specifies the polynomial degree. Thus, in +this case, our space ``V`` consists of first-order, continuous +Lagrange finite element functions (or in order words, continuous +piecewise linear polynomials). + +Next, we want to consider the Dirichlet boundary condition. A simple +Python function, returning a boolean, can be used to define the +subdomain for the Dirichlet boundary condition (:math:`\Gamma_D`). +The function should return True for those points inside the subdomain +and False for the points outside. In our case, we want to say that +the points :math:`(x, y)` such that :math:`x = 0` or :math:`x = 1` are +inside on the inside of :math:`\Gamma_D`. (Note that because of +rounding-off errors, it is often wise to instead specify :math:`x < +\epsilon` or :math:`x > 1 - \epsilon` where :math:`\epsilon` is a +small number (such as machine precision).) + +.. code-block:: python + + # Define Dirichlet boundary (x = 0 or x = 1) + def boundary(x): + return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS + +Now, the Dirichlet boundary condition can be created using the class +:py:class:`DirichletBC `. A +:py:class:`DirichletBC ` takes three +arguments: the function space the boundary condition applies to, the +value of the boundary condition, and the part of the boundary on which +the condition applies. In our example, the function space is +:math:`V`. The value of the boundary condition :math:`(0.0)` can be +represented using a :py:class:`Constant +` and the Dirichlet boundary is +defined immediately above. The definition of the Dirichlet boundary +condition then looks as follows: + +.. code-block:: python + + # Define boundary condition + u0 = Constant(0.0) + bc = DirichletBC(V, u0, boundary) + +Before we define the conductivity matrix, we create a string +containing C++ code for evaluation of the conductivity. Later we will +use this string when we create an :py:class:`Expression +` containing the entries of the +matrix. + +.. code-block:: python + + # Code for C++ evaluation of conductivity + conductivity_code = """ + + class Conductivity : public Expression + { + public: + + // Create expression with 3 components + Conductivity() : Expression(3) {} + + // Function for evaluating expression on each cell + void eval(Array& values, const Array& x, const ufc::cell& cell) const + { + const uint D = cell.topological_dimension; + const uint cell_index = cell.index; + values[0] = (*c00)[cell_index]; + values[1] = (*c01)[cell_index]; + values[2] = (*c11)[cell_index]; + } + + // The data stored in mesh functions + std::shared_ptr > c00; + std::shared_ptr > c01; + std::shared_ptr > c11; + + }; + """ + +We define the conductivity matrix by first creating mesh functions +from the files we stored in :download:`generate_data.py`. Here, the +third argument in :py:class:`MeshFunction +` is the path to the data files. Then, +we define an expression for the entries in the matrix where we give +the C++ code as an argument for optimalization. Finally, we use the +UFL function ``as_matrix`` to create the matrix consisting of the +expressions. + +.. code-block:: python + + # Define conductivity expression and matrix + c00 = MeshFunction("double", mesh, "c00.xml.gz") + c01 = MeshFunction("double", mesh, "c01.xml.gz") + c11 = MeshFunction("double", mesh, "c11.xml.gz") + + c = Expression(cppcode=conductivity_code) + c.c00 = c00 + c.c01 = c01 + c.c11 = c11 + C = as_matrix(((c[0], c[1]), (c[1], c[2]))) + +Next, we want to express the variational problem. First, we need to +specify the trial function :math:`u` and the test function :math:`v`, +both living in the function space :math:`V`. We do this by defining a +:py:func:`TrialFunction ` and +a :py:func:`TestFunction ` on +the previously defined :py:class:`FunctionSpace +` :math:`V`. + +Further, the source :math:`f` is involved in the variational form, and +hence it must be must specified. Since :math:`f` is given by a simple +mathematical formula, it can easily be declared using the +:py:class:`Expression ` class. Note +that the string defining :math:`f` uses C++ syntax since, for +efficiency, DOLFIN will generate and compile C++ code for these +expressions at run-time. + +With these ingredients, we can write down the bilinear form :math:`a` +and the linear form :math:`L` (using UFL operators). In summary, this +reads: + +.. code-block:: python + + # Define variational problem + u = TrialFunction(V) + v = TestFunction(V) + f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") + a = inner(C*grad(u), grad(v))*dx + L = f*v*dx + +Now, we have specified the bilinear and linear forms and can consider +the solution of the variational problem. First, we need to define a +:py:class:`Function ` ``u`` to +represent the solution. (Upon initialization, it is simply set to the +zero function.) A :py:class:`Function ` +represents a function living in a finite element function space. +Next, we can call the :py:meth:`solve +` function with +the arguments ``a == L``, ``u`` and ``bc`` as follows: + +.. code-block:: python + + # Compute solution + u = Function(V) + solve(a == L, u, bc) + +The function ``u`` will be modified during the call to solve. The +default settings for solving a variational problem have been used. +However, the solution process can be controlled in much more detail if +desired. + +A :py:class:`Function ` can be +manipulated in various ways, in particular, it can be plotted and +saved to file. Here, we output the solution to a VTK file (using the +suffix .pvd) for later visualization and also plot it using the +:py:meth:`plot ` command: + +.. code-block:: python + + # Save solution in VTK format + file = File("poisson.pvd") + file << u + + # Plot solution + plot(u, interactive=True) + +Complete code +------------- + +demo_tensorweighted-poisson.py: + +.. literalinclude:: demo_tensorweighted-poisson.py + :start-after: # Begin demo + +generate_data.py: + +.. literalinclude:: generate_data.py + :start-after: # Begin demo diff --git a/demo/documented/tensor-weighted-poisson/python/generate_data.py b/demo/documented/tensor-weighted-poisson/python/generate_data.py new file mode 100644 index 0000000..0aca54e --- /dev/null +++ b/demo/documented/tensor-weighted-poisson/python/generate_data.py @@ -0,0 +1,62 @@ +"""This program is used to generate the coefficients c00, c01 and c11 +used in the demo.""" + +# Copyright (C) 2007-2009 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2009-12-16 +# Last changed: 2009-12-16 +# Begin demo + +from dolfin import * + +# Create mesh +mesh = UnitSquareMesh(32, 32) + +# Create mesh functions for c00, c01, c11 +c00 = MeshFunction("double", mesh, 2) +c01 = MeshFunction("double", mesh, 2) +c11 = MeshFunction("double", mesh, 2) + +# Iterate over mesh and set values +for cell in cells(mesh): + if cell.midpoint().x() < 0.5: + c00[cell] = 1.0 + c01[cell] = 0.3 + c11[cell] = 2.0 + else: + c00[cell] = 3.0 + c01[cell] = 0.5 + c11[cell] = 4.0 + +# Store to file +mesh_file = File("mesh.xml.gz") +c00_file = File("c00.xml.gz") +c01_file = File("c01.xml.gz") +c11_file = File("c11.xml.gz") + +mesh_file << mesh +c00_file << c00 +c01_file << c01 +c11_file << c11 + +# Plot mesh functions +plot(c00, title="C00") +plot(c01, title="C01") +plot(c11, title="C11") + +interactive() diff --git a/demo/documented/tensor-weighted-poisson/tensorweighted-poisson_u.png b/demo/documented/tensor-weighted-poisson/tensorweighted-poisson_u.png new file mode 100644 index 0000000000000000000000000000000000000000..b5a8d889e6786fcd565424fd196f2b0013400ed2 GIT binary patch literal 59610 zcmeEtRa9I-*Jb1G?ykYz-QAKvaEIXTPU8;2-609?PGcdsTW}BVPEY6i|Cw2{=6#;# zq3^out}E5McI`Un)UId^HF-2-Vq^dSfTpM*qXhs!>jD5!Nr=#pD{r5prvLy-fTE0~ zj(6^9cR-zmmkXUYm(zk@ZRcJ4FulDeh!YkoqHh@sH3fzQbsROs0S$ATmoT)>3#`lD zDM7fltxJP|Uezx>HVhM?7YC3IpBP6sy5JawCjBun4UH6VYezL0iOJQ{ucfRIg+W!d zaIrAa7-Vs9@&5M?Cg6MLM<1Q5j=zgP{hZdB*R`{Ju1k|-iZmE;k-sC0&LI3d0fM4s zuuT75`$Q}o4wNd=(6zEIoo814u;s4|C|B??Ce2yK*<)3?>7u18E z=N?X1Zc4@M1N6JGom*xzQ^6?Y`+Uxb{NQ^h@I5+p+mwUY zQC@y7BQ*9z6;;^`1v8XCl&-gANTAn>N^GWqZnO|TZ`T7#IpBHWdt278~gs& z&Tj}qJa@~%aH(J*i9tjGN^R@FjdD*4?7~34>vNd5#15X06uZ67=zXo}JlE<@d|tYe z@h(`yO^$4vOGT?#-u^e-iniA_-|r2*);%T#4^MRiAxBbC-`kwc*8`gR33;;$2K+{x z0KmTy>Ydbf*0Ki34Y*$sP8UCSNrZ78A@h37i}cEQzcgJtrZ}fw@PWMwI!}RR{jYz6 zmp_|3bts%(`}1eBHARtwSeLM9edWB(|2gh;zBWN%RQuQ_cC%b>esXg1cK!1wD`0>_ z1bgjv?{J`5yGFE{7i8%5=|6&yTkWj(o4@BOo@~sp<7vxx?E(VAjoRHzcR-@_f24&e zx^YtI&2j4XS=v2srI(TOqmdCjT!ZF}|L?awh&xNADoe|o5O-E*z|Fu$|8`K}?O`*c)2 z@cM4aIB1kE!~aBov*T~|_x#&Zh9@Cv*SEVR@uyLBvG@JXFF)1~`7Wl^E*MVL$rrp; zj4emlS?X0FK;(iRizuFp1|l&oHhaNg6t7#5wm_Qy<4_#@%Pqnf`!x3Pzb&rl{PM^VlRcl)ct|U zPs7x1AQ1|`(=L7k3z=pNoZkf*E*Qkfhpcm3LqOmN z{l6FDgsBJZ3t@&E1nwS67z7RwC=`wE8$VO$)h{1SgtbTC7gAHkC%wZ*Ny^L@aA}rN zdGF@S1WEG$!u(aSPJzet!4p~`mc}+Q*DrCZ?7>5+71`A^})1#8=d)V*9r?Zwr z^9g}~w##DaDW7|s{FhS-LCuQ#%gpdRSQd9|QmLZLWzaX{PWZlW#&6@_!0xO}pI_&i zNulW1G!;UkDh0af4nx$e(u+uPI~bX1Wfewym85_N`q}BiXGpSflfb_Qi}=h*$<%0K zobs?5Q2_WOo&kOM{$g&L^fv^)f|pYQ(cg!Sm&@?h41xCAkS@PWa$Zo4gfh6BS~7Tp z{GO(koMBaeQHp5Ez%ug$>40p7pqsB%07SCvd35O&gjLe7$1s_tO0@v3+mMC&T!1gpKZ~S;va45B% zEdB4(ea?3iIe-n9qjet0_ahBQp+UfmVks-rpX*o>OnPoGLljZW3IY#`oiv!(@XRL8 z#Bro_P`)p<09-sc=?OEl>>{c{TyF7Vd~Im@;<%Ke!G5yOEaMhc7cx6}wCF~jH}5bx z1i9ci`IjyNq}DWonJ-X9*QlW*&_Y@L_5nA>Edf># zJ1e&|1Xh$@TS8P1nHkTllyIKAl$_<95ubirc1OoRo@R#~R;4hw=qHQ?IbLSeG|kZQ zuWnsNGhJqU@?}_;{tJ8pd~*1-W6vVzYqOhl>5JEKVI+I<6BPt1*kV?Ub zb|_dURZis40I__U-UkbI5Yl80s$$f@dta(8dA9T+sc0>;F0UY>FOm(3ZVwa!1~R(d z_JvV(b$=JDK8B~ls z-9D27Ne(X83hdG-C{nB}74;3YJjpp=BN;%!yDSJrSN_5xLEGGOA^mDBaEUCo& zsh6bTYnsF%6O0&@S_}<8_sMQN+e{ekou8)9GqjZTTHN)rf#wB+v}fxz=&DCEJRT1KGsJc{Ogl7fWQK-Kr0yx#`ptP?0R@9NHvTUS3of}2Y0ueor}zUpW`B@` zcCa@V8%%qZHl;xP-qCk!JoS=^#F`G+E+S|cjs_GOGR?9Z`${at)!6EyL%uRmEi7Uk z+Zu-=#6t2A<`lRpd^EhOY)J)ayqLWqi@~(;mO_plspvONB!WqW)E61Y3{3$8v78#K zJpA7`lP{MHV%HZjC@2+dkg=Dj_pc#-Vh`xOFfwA;>p;;}IH_uAN@nx8Tx(iBLvm*9 znLM0`k*E~aFzj4;L=&~jQY0?aSdog)@L?N_fO#9@eQEPOWw={8iI17l%#wt%aWTKX zMyyvxdl$_bTBZG57u#TmV^aL4lIy$KJ*K4S+wl?4iYfFP8=F1W)?h3-uC+fST`p7Z zEF^dmS*!~K2Y-6m)zWh6sOT0P>HpIJKv{T)nE~G#mKxdT_dx*W-=wI|De9#{=J5>6OIiTA}<)Ig^ z1?5)43xoTW!_YCW?^d6BpBsU_w+u2swFw|>9YIIm^gI$R0H+SL8g{FABPll4Md%o( z3?B6tmkMzW^x-2!oS-OPg;#f$x2F#se|V8mlEp7pywQ0*;xmt z23u^BDc}SfP^N^Y?SaJS1 zA#cU1t2~~mptm%f)*}9zTh1j&qlP!Qr3@9ImRjgDZIKZWqcC^p9;pN`+>Y6G*|&{7 ziA&D-Td!Qh`*Qj9`2aGiSG&%pd0QRe;mnjgTVhN;WQ1%fG}%;0mMg@oZe|T}Vl9KH z*H)HUCq_He+*|#l!QZDH-qif>{f{Fy@l+T`qC94f7vwVjvjh`u=NC zr2ws?{$xF>aHlUKl7HiI^**9f zRgA>YAW_n5%4{0TgbJr+Zm8DMmjk*Yr}g*TiZnl>YM2W+cB(|+%091J_#e;>WYQ<^ zEA0}7hY^9hSasq^&-0+O{Dt=l{8+Dfl_^tW2=8S1riPhFJl2Xx_88HIi&J~j6 z3a9}Srnnmwo5MJ2>HKrYaOvjf3Tzn=Mg?=A|5tcefxPjw;^h$dc6qSGA7FsR)n(h< zitFGlZp>`_t&2!pLAVUtrQf{F7 z5*>|~ScEcu5=1rxD)aVKQux=jEfe0%R*lDZ0r!(_=~nWd#||&$vH7RofT8M=zF%oA zvpM(GS!~F+zNU^1-?58NJZ(Pv$Y}_q;C~?u`YB-s>+iaOTlV~&6-F8(qw5bnz=Wo8 zS1O$tt=majXC6kyOG7(Ta-DD9%(YP2w)jVtyLz(?e;T0{BHap;0+L5yS%q|G;k5j_ zr{Vp!Ot$If`H&P?l8T9+bz5b79ugI8(+(}P8r(1}^;qAWM9OB0p7tdK58h?VVIWI8 z&0-m~*|-+dvA;tJKNDti!D4d70F(7#`>>1xq;K&KzBlwI35Y3v&;XQ5O57lIPWsfK zJ6uS2^io!GNT8kil8qNiRk!79i>ljk+>J8?lw%)thlqXq?COMApcUgi7wEnin^ct@ z9aB;uu{2iaGp)k#iS}>W+}iluvd0RH36eE(1u{g*8OUmS_OreG54s~AMOl9GvOiOI zWaGlpPP~FXRNI@WUvm zb?pZjOMxn56No9MHNhp($d#qhNIJWf{*7Nj_NP<14vV7emii>N2v1B%cNR=C8Pa{W ze5M&JXxiHRH1UqeJPRsb@a2i-Lbckg&2qeW=LkPm8IXbGpDCWk!5$NSwLSa9SFffh zu-Y-4dcnl9LSi}C70OTQBupv=)3y`mPQ5}A}=msQ8GO#`#(|c1v8Tw>ED(dJE4& z*28ZuWfF2STueck1oCfXfPYO6Y@_AN2zLfHMpda&X< z%&+gZf4q!U2;5clhK_&;jDj0{-e1R~R0>%oSA92$VViys42S+=jIsP!dsR@&(T9NP zyPPq}#n}k0{O6CQ@lDl65zx`%0KZHwk*slMIyHq@zJ#i=DEg6<&iC4ASsN ze&d(>?_ic?i6zMBZoNS~mQPf#GvXGq~%__D`$(FsM))yDgu5V%`%K{T~Pj(aEDm7Js zspOCu6er??)AQ+C&2!^-r=Cw~)Z~`V)_0R!SSu-6bI68lX&jCA$x-`y%QTpJlAk-9 z-hCxoMp+#&wTVBPo@1>x?{xxWUE77J?J|q&90j}CgP@|E2^7D1l(dwJk6LGRL)%jRT}9iwXoBi-6~o0 zh%xyRXGDu%);PRog7dOmrhgTb1+)dSAazOs&d1#k8{n1?;6HE_nOsp5SF5&^pc=I~ zB#W}?rIPkRPS?_QCA(ro>@uttd(KqwsTJ=)6hSu;$TeIV{Cjjpr@;zdz#3^72!;K2 zeVZIss&sn>Tv1-m)l7vmv?&3Y*RYLqFrtARhr0&Twg@HEF7a{c_!i&mZ)0~~)obBCS@$R^iFcP_8{(6Z>Md?C{DFDh8| zKG_F9CDwZPBFah+V1-atOhZo`3ex=acByr!zdXrBoYljrXG&hYC-`m~w>@!}YD_`^ z4{r8OKH{N1HG+W>lyRx=W-eu}FKJR78x9=RR2UEcI+<2zr_D%=q#VIXLdk)nZM86c zW=a`%6(SVRd8<%^h6F1ts-ByIFW|X%$l-*=^BhnxH~*;4Fm&AT^5p~m`C}5Cwy&^K zHv+r379;@}jfRl6B=SSgeS53XeUP!woV9F9tw2^XR2Jg5PkvuRQ(r$z@y1O4)tgT7 zNIr9~k77+xF;ES&;8i#LdPxybVcrVd-;(=7Lr+&+KVM9KY)~oM9WCz#uk=pvS^;Ad z*HmOV<9d4tSMmTA!!hQriGS;ElVED58^Dd~hI`N*K<~mrKl`+FOFc^#I?I;>(x*1t zs|BLj{&Ja3VYOaC7=UpU${zydf6jaTW6vON@EeH02W8~^&P@)=sMPR&gs{V#$9d?p zI5=JXE#pJ4CmD~Z)VAn85j!VOfpCCw`i+BRND5IG>O3*QvxQ`$6)kqDvJtnlx|-Un zyl3v(eOf2_&v+1Au|aq(Z%P%Unc55N=NOmmo%4iqGFqrb3DE~2$|EMLaGZRZuUtPG zkL$@rBv+9me~ArEuP7}ZyK>0x&f&ui8&9Rly%hBk;tf&_70;+r?cBSlU})tb&R#qn zf8{jG6}Lsrz3Qo@Bp?@fh2$CvkX(ZS?_Ye+BKD?k{D_h9KJ?A_CD%r`ZgBa*(Ej#oB-l%lNZ#?@HiqjVIB7yu+%~J^COj z@&%Vom0_vZ{ZTi*6v|uF1D(vlB2Gz)WWC(rw~?>KQcjiAr4rQLi?B%wEuc<%vpy|a z{_dq|yKtr$NKph*AAe?P9scATL}OrA{6u{XOQZMKdG@*Mc@o zBjLD^ZXy(BU!yqf%kCK9lU}`pzD5E!5PhFT+k1RxBIv;weAEl>RSS{$ZiSTP$$3z6 zVNlIw7((K&@H}7XDS}urioa$V!TmRslNMwWd-_Ado;w?CZ_Sl1x0bL7V@#KtfC-T1 zUp3;|wB}igN=W{mTRc22H`}08>ELVub?i%D z@D9=E@Lv_enrE9P{bXH7cT(SK+BF*3Y$TR~G45pto%bPGz>0fs?&RdnQn|k5-qybS zJ;m}5Gf0Rd35jz|hxd)!-zS1zHvh541~!!?bCwXAme*dUGuCAoXmpsWm=#KDGH@hV400mr7y>oh$uz%O43VWg3aOsb`2h$8wyCP*F+TA7_*$__OGoaBRswV^3M4Sl+;d=EAbOo;dNuqt*>xI+fK;qj% z1$aA_kVQ9Gs^$1tYMMRM-r>}q#?BlWT5@Jxs;`{;?2hZalgZ``KfjdcL}37!Et!s^ zJzFTXmYu6WXWq74#B#R!!uBVw91o=vUf#E%9)&=Al-n0M!=P=0uKZQdiBWM>iR$gw z(M)C%p;1ep-ac(nqqUHs!DqVqV@2QR0jZ*{IP7yUU7~HfFuab&Lx3}l$whV? zh3pUYvA85Rr;oNxP1{Df5F`{a-j-@)gi%h;(^gq=oPelv1re@q*NB zk%^O;@ZCqU=9AU#q{=LecXg^Q0(DXc8O3%F-#~N)k4GpJe_QJ`yb=Gg&fCCqAf6!L zu_R;DTly9jHVcumw9P7IF`kEkP)P{@ojBS=F@m{tI%>;0JbZw>ULJ~01fR)#%yn>f z`m2}{K(VoQx5SS@jAe%Z^U4wX>zXFZ{3l=g^$;9c7-W3_wBwWA&5_0Ie4X$CW~xF9 zU2wSWtrhG*3bgbG{AYIfiOd9IA5AXoPR$XwgwW7~n@m8VPrj!GtY)_2S~mvzxjl-I zSD50CVrn!>K)b5qQXLf@*Y%KOiY8L7PK*6VX_uD}1%;cfeSSzH=4|$F!b=jkz}Rqk zisvufm(ph;RKl<-@G;VCBs`F$nkXNR2zLK$u72tR_B-NELc8uy;$aag#$L(_-}M+Y z5o=#cE&GjIYoV~n7~SMxjR_C;dk~}jDh^q+;Z~$#sGqN2O%DV;tB z+_B78ZFQ>DQEi(!M}Y0YOwk~vU&yQkZ#E%gH5LlI-q0`lXdo8*feuKK>2KAnjeA!1 zIg= zSS{7*rBs=R$h%t1zsen~WqRN5On1;ZNEqt;uT&5RM*tB&=GnKos?0&(-IMt&Cu;34 zSK6zfJr48+g9oUZsrn}8Kcr0P*B$w@P!s-=^|EO9JG^xX2mCQ>D5SKY+wR2Q^-etv z`B1&$bcb^`hR)>>Z>7@1y=vRv0&$|upqA$ zv>@@7VA&GVuqP2#{w4*}uQZ9V9mD&AVL#r@2v?f&p;uDA2AWz5=zH;deusgM+eT{{ z3{63voq@|G0xLeG3IC#u+=Auw zECb>7e7ciH&uA^(sj8et2hZBWuH=jS0zJe0B|lOXIZ6(U67$YwN-W~;+R(t-pXKXG zp0;UpCFBGYsJWBdA=8dSI!dtSmJ;==&gHOllrm)hs~Kv$hXPlalf%kJI~}VjtvxfoRs3`n z`uIVwEFWDH4-;a@q(qSe49&2ES)6j zR@kU5{+-U?5rZ@8XVT9R&+ll(+kt54lySJ|QaD@)ay%t10@{l<9|AwI2>VQz&KSKc z%*4YaJKAf3({+9u`Y_X@ejKWQ!~h&C4Y=xQNSgAqHZLfESfh3&}GDS=!< zsxqHLr|4sX=VO7fQT;kmStM=<@*uE~SKJ_9g&2BQjA%=x}l);QWIC7 zd#(H+2lq4t;R&Ww9qufq_=v!F&xhQ>$GyXz=g_5IuxilN=(x;1qH55I{6zr@aTIwNsy}A*lp{*2-yxf`TGZ{) zU>a6BlF1<9C-a`b4;NJ*s1@0wWWTt{-D8Gn4f(M$(k3SB53}M7_@jksNx~tRcGgag z$T?<_@se}vX~c&)1FVI*m4M8o;mkVDfT6gxVb)#EUCsf{)MS{-J<1+9lJM&HFC=MU z%ao+^W<}5NstZo_8EsFXkYf7xAK6jITVtvSIApS@W<3d&y>FVd8Doe}nx$S<{j^aqu0qxpm!&8*xI-ph> z_-z<#k7|IvfPspMfHp7>Uv95+`lU>o&t#F@<%71>b(Ps@6kE6Fq=ZL_^%0|+e z2*=GP29{XW0%yZp{3BshY=3Lo`q-hUnktdlAfxjDHysRI zQn8y<%gKDsy>NW-coP0QH0;dV<8OoiToLE(hm%%~1l>on>VB(pj&0i!82(!@BqSuC z4P1tHDZq~i4=G^?7#qGPKi`xU{vj#)@W)O3bsOU)g`oFw$QXjP@k7Vb-S_S-ICg=T z(?*JE&A0VDKZ@Z-mx9Mu>pyOP*B)I^;iwmZzX_Gklkt#s#Quf65ou!z?A_Oj#qZ@hlsR zGiu+u7lk#UNoww+FSa#cWTwh;Ir|k#%3YR~WTS9f9t7A(-$={DE@2oX(p1RwQJ0=B z0`7i+|HQQ~yUV1R{b*d$n1}h5K6qGKo1HFOn;q*i?3(=fgr{1 z-H($0G;VF=e>H@$q|DZN+F&jIvO@88Bp>vC7_^b`Iu`WAZu|%$=y^MH3X1CdR}^=D z+_QFietR%}s+tNwi$6=Ra%95KmFmVvPZ)D4(x$24Ww^F;|8b>g9UuE@#N3UvE}FIZPK0A6MahL7#5L3dB)Z1${Apkn*b`I;G@2$ ziZSZMzTh0*$+Y334{JA~zJy-dNTVR^Qt2BoI{2jQOh;krXr&N)Z7c_pNl1u1SO@Om zPz21BT;_?FNnXcsPeOb-V$K^rhj(M*w?!D;uaL;{q^48HYq6JnP#N&L!~VVlv2=ie z?Ed`)-8YlM|J)-G>&@f0+CQ>KFTtKJT$rZOmdH4P;HjGTH}PI%;!j_;aZ~SE09qH@ zK7IBDM=0US;@^+9)5qkyfzM2g>Uj87nNRg@XR>bCH-#K}8mTrsFDPhD z=J5gLTtxz{69SHsu(5s&)H)$-5(D<+Rhr?A23;S-V|V$I^t7?VBxvbrpL|Sfl$@jy zktIB#BEBdjtqk4{qgy-SNs&|$6~fqGtKOdT{Y=A{R?v-5q~It!o|YJz##ToQ!PTH#0wA{* zfoR!(b%c8#BbC=Jmz4W6`lbeFV|jvC$Ib~3*Sl7@t4QpeYP~fNB|}QO@li2U1a4-- zdM7Na5c6uakWkcz^rwH+211zyzpOu3wVA2nmb<9QlXh~`p4`bAY^atW_v|ANCGOY} zW^mtZsT>mfT*R&lsx7wDje)DALqXT+qne@jjFsS|KZUoasaU~7cfup^>NK}bX zJtMV&ZP%50ZNRQytxIE*6=#KrmP1BRV$*5x?%3+raGjC5|GDGLXaXf?*;<|O!Hl=5w6P%(?NSqKZT zi(tm{OdG&`WJ__$RXWTQDze?}&ctPVL76cAYe7;&K zYa@t#f3E%Lxkfmgs6M!7Zp;_fVF?~1?h>9vNev<(c8(C41r;L49it(mrjY#wNTy~Q z*kJDvN#_Q-HDkb$Qz8rD>wHx9au8^is|c7(A90VNF=Sm8qdz>FY(qk-s6Ad80ry$Kn1bF<$&d`(IK%lM+{DlC1v1mUj2YcGP&_4<6~5xt zdJlatx{3)L?Fo2c>o_X@+;ja6BMs4x!wC|$&Q7dtJl34By^a6WbTxm!HTvz-;%{jM zTamIo7)wSq3>;JBLF37I;`(l6NZo{judjOQ_i8+Y9H^Hxrd2F{^264UCfpkfZDX5_ zmLPB@{%@gi86J^w0`34yLbj2Bwz@nuh}O~Vg>ZFy>Q8mfAif0ZjYZq}v^^@DeU(OE zcl)+Jui6EbYpLER8dzd+)i1Uh{(p@d#co8SpWW$B0zXdsOb1AqS}~vBFUGkRvmGlc zZQ9%vMq~9pxeXPsuGu6`WU6Lvo4n7DwsBlH5|7S~rmPW@ZFtq!g>!Eb)EEhRo-RK> z`}X?V*`f4tpkiFn1wCa1`TR4f9yq-pya{GPyr)^Me_Y4TS~uT=J?oou6z(*Kqs2o( zCDHs{Hz?ryptr%YNT)gn{MRO&FH7nI7jVaB>W!F}80nL-x%gEtfP z9=5vcHO-y8J5#wuG_wb%pf;!w*}(y*ns@m~cZ!3ea!>-b zFs{jAwR?{fJtDsSG|SW~m*{XW+m+IKxIc>Znh-&1z0?6^8NP)R6NVE8evE_@2fdWo z8bl;OV~vf1U_y!D3_vIf-2jNM_erv>%L?)$#b8|K`4XEIW%9E{c`t<`HF(LI0o%wn zH<@TU4&H~EOMdbGtx#RlikZ2m5dw8t~jdhf;TUiQ>AOY+Qc9`iwG94q$LLrSu zDT@H6T6!P}Dr8kB_neaD4}8|2)mit6&2lD{wCo-`X4IU}CN7QMumo^~yPyKw;5?yk zZnK87e#++T^+DTWl~#r=yHTJB0rhOf*%)*`kidcbbv_y4C8*CF$2!kramBhIUN@sXzV&KopK^F9;NYt^^-9&g8tbD{FyO5 z9Co%;3knt`zli=Jm3o`!GO7$2vW9OkqAo&G28g@y#|M)Im=XwHBd7=3gLGdc=>`Q5 z4+;~=2V5wv<4n}#e@xX`C!BS*wMFiV?sZQ)pwb)!ua8|3R{X+n8F6y!M@>rZC=}R^ zCynDa{b5BKr!*d%#Z9`ULoi&igE3>Ef}rA9IlGd}CwE(?zV0JY6}EO2S1n4=(YxNZ zcUPjlwOrg?Cy(f-#inU49~e+dc(tje(Y7bUEd0bCIL&fgn}YQ~QCaAWRQ;R+u`P$9 zunD+YJV!g<9?ir;G^>m~z*ZRqsY})NzTK};Oe+Jr_F0{Lc5n(Hq5XL-g6qG)&23V! z)@Q=*nbrSk%s6oU#OQ&f_lg9=hJXR-x84C~0{`m>$;M>@N#Xj%dD(|F-NmCuK8y-eR8jDiw7TL8)Hjy#RIrSowKf~)@Ltx?R zBt4rr!1yAkvGn(_rjER|hWK4A+@BMU<0c#XR7p_q(IWIE)e(~Zi?X_>QEf|c?QQgo zh~dOTAV;}ZG1-Bzw6FA5UvYn7vT@`0*zr)ow|+w+nRThVG$*l%(OhfXikq;rQaRB? zKNc&oQLopVDn-kQ?o5sxQ{iTcNB>>c1=SbqlV#)5el3MV( zcT(H?o}$e5wAk9?vGDP;=&_>uwTH~!^GR*cb!ve>*w}S9p8tJ0@okv`d_@6%t_43| z33p!&lN5ko4>uux{N8)J-uqGp(c>G)704`IAaXzou3R(;=3RaX@F z4o#bI;cdqauWkH!2q~qfsn+H32%#!Trs0?(c5`XLf|6ROg}%BU%;m%3Ln^bfqcx8W z5TPRELIOuJ`ASP>;gvt17k0a3p)))*7u}ewEu{Ey(R*B%@KURg%r+g0y$>t)p<)u` zgX6F#Zy|dwgzqml!An7JOY#Y%f+s&3^C4LFUd224LukGHX<0J-;gIehp*O(q51a0D zs+%8DeO}I5d!Htp-nS6Mz4v}4|LcvQQDviR{oXtMZp;HQukC-ecj~s=-%jU2FYy^h z0VA{@kD@gQ9arB5a~0RO)K;?YQtB)E_Mvdi4+qyZ*XwA6#xn*R4PW`)XG{supQURJ zW#Ps|FjY!sTy6~tB7+Hk7AS@T(V|d`GF@`A1?BKuV_~X-4@pK!$WY)z1_wegcXy29 z){>iWv@Dt8t!a8**5|P;ue~#&Vw%x@co`g3tAGn8M4JPeWSeq%mM%?%ErR?lL`E=O zV-!(Hfyj0;nc;^xLgmhN>mtT0I8;DF1w}Sg5-sx*(PoRmEzs6b5iq#>!bT{Kd@2Ds zM|N*1w~d5dYxd`h-)ho12w3YUCpam>=L|_(o7EvsNpNECbwukX;gxa}n|>JV8snvo z`R{ppEa;~uCh4Vd4qiTs`svo06}`jZx!{Rxmr5^f=T($`_wZ;|RebumFJ^L@GdR=F zD}Zdeut5b7?%9j~dQ{pMCanRBIB2u+4I~XXE;F${oLD7q1fcd7Wgj9ZL_7&0Yw%G% z7um8O$m$MN{14R}6Un!u8M`i=TrlR_ddR!B=zsf!!HY_FVCkFARpi zD{k<@hq$tC_Zou8@tr<}b3sdYw8`>8FA50|-uUecbP{=9NS3o(3PQYza=2Jxo^{}# z;LC{C0Jz!Z$rdjbb`-C?RqyU4SI>YEChX2Qxx9-N_hQ=TWyZ%RKH zg`2R?mVtyX-**2NK;dx|D_ZIF!+jK$N5*r$MK-QfYb(SYz{CNYXgFgMh=&>p^Zc0N zNFXH8WVhcoIpGrVqv*LYWRa^>H?!7S6(vOVd+3lAn4YYc!Yy%$qf)Ax@{o7HI+TJ! zs*JLfA4B9cmQ97r!-2xW;z=at)OFsb6$T;VT=8+i@UET;N=5Jui-`rHfU^rl1>h1j zs8D-IBWlLTgEfx$>~ry-orprbRz|##ku&AgyWP`HHiwMNdEds8Fw_&cBV!RMV3viD znz&`d6X6Vehg$D@?OqM=fJytZ7%ov4C0P@)rR&p`Wd zXX}|Zfnk)4*4><#&HJaMV#7+?+;e4|{Nb`>bG4*j&KwwU0GoL-mZJwa)9>);G5!3_ z!F`Q|gz&@eC~_%;G&#jKazAR#p;%h7^Xom*2UAAQ1`Oq0>^Wt<14j}@&HD1=If|?Z z7lR{+0JDFr)%2T4ofdhya0x}JmB%Pzm|4xFu!`#Qx{v1wKn!YkQ21ekxilpcMul65 zWVk#W@3V2|EUB*w7|8OQr9plmp}yg|y-(3{K{2(0Sv9JL_viG)9(JQ?uH)sG=YEDQ z@V{!6I>-jG$huyC-2`r@sQbHDl-E0d?T6SRFt8BB-_H2E_Wxm{@A9-M`uCc)YVYDa z9WFkTT_7P7U#`3n1y@r%&G!M$s?UB4b&GEi z0rmIU+2SP{6@0%6Cn7B2;#Iskt5?>L)b8TCu6EW$a9VT+261q^i7AIrkt)MztI1O= zC|L3sn#kCu5J~RA7+5(C8xfTbN93z`XoG2B6}~FL8^(mo!41wUb&!B7WR^1tf0iUU z3hBrJSqfCXOA^UhOWv4>#T)agF43|a05ba;N6tH}5l4v7Do6zk6YTafjcOH8T~q=kq8R-_c50stmUIqM4v-xw9bo6%$6*BvvuFQtV8E5WN^6 zf(d&F0}s_ox%Wq!X0{f50|k@xiCM!e0G_OV8Ke>heyso|ju=v0hP_-`RVt4Dc4 zXP~75uo1$+C=yACDL6Qb^q3nGP^A_0Sm-wy@fOq%ZIVa1yEc8DplmEtpMf4Z-lRj| zJH$KNkj;=qt6B254G*g?M<>^JXIjv)f3$#eG}rj00M}N?a%52sOA!7+)^MRAo{C8$ zp0xW#%+cCDnA_e#5>p$h`{y*qSMxrM^CA8o5*Ea8YOSb}&3%kl4CrW26s6ZYoJQV* zix|GWWM?x+hF{&{wuG)hL(mkpDd8))(rv*6hS6-$m{Q1w%51ViQ$&kXB!=CY6%o zvwhA~&)qh<&u>`mSx%y4GXBB<@ytaLvhPXf#b@q>=FpP7gQbX@Vb&jZKS*PJu~34_ zln5s_7Q8~7cui_F-(@c>6n!;{-_3bf<2krp{o;L z=L~kaycT}weX`34d|vY@15E!afrFhTSfd{Va%yQNfBBk{RV752p^}WcySmTlY8U_a zOJByEuf7yp3{cfAQ~j=5>mFf~%)4OM;jCtB|c7$>*c=$X?Lj^&t zmH~NH*f5C$!aqt8&fAsPVI~3R%^Z~=E_vhumAd+fc5hpBvt`1D1j%HgL`X?re^iP5-+z4BiloR2!)#oT!X&cdH5tAoJV&Q6P}o*(~ciorB8+l z=veY0s8B$eIN0>#`EvNV=3FDsJF1?Y6hp5;{EKqRs`NbY&m!r<`tZp#F-wh!n+j?@ z7M`m%4KwwPFls8&iTs$hP3pj=R_c+UvNioX1jvHE2re#GKD2=MQ{D^svRqmGjm%^m zu@;=?F9PSG!Q1ozOq$mQ6} z^y}9_KU}$%^(aglS;jE_*05MqgfPV_ZVT|U%uIDAMxFVuPg00S+gtt-cTh@k`dIXn zLx)GEqD&mGma{Z&<`Ete!7G>y+Ni&Hj#vElH(1FHVGrp7c8^2>ZC>gmPmd)LG)lA!Ee0F*S?T&7*;<@n$S-C`EjE#Y;vIn|g$%urU z_@D0tRsE6%UT1$bnrfnn>UhaG<;_TtQDF|aorM`Swznza`}0M2=s&cWxW#8-GpZwVBiCSuf)a2z*3s-(PF<3RlQcL;=WO^sfd#k+LBXS&`F9S}!+7 zu!fCm5#aFU7H%y=r=ytbgiAqj#?@ped&<*}tRyO$QZdrS5fb@kB$IC<#W^o9h0MHM z-Ryc~RrC?wi2ydtpa5354nBZEugNFW6^xyNQyI#Yq{mouTE7iYrCHsG<`$i zZutAt=nJbN7tifU=9HS#m&`V{QJu?FF)X37=9J4XEjd6Ouk7Wb}EqM^w^d?5PBGzC7aS^iyoXOg>g4>O5?N z0a;p?iWTbOnFIi>L8e@h~+-r%ESq3iF|D?g8>3q?^gKxFG|T)#WUe%sVz@`} zT#%1W_7Fzm)NsTf5Zt~)^02quM~Dmucpx9>=`IYBBEaCRQ4AXoYh8c3A(wIvh%2W9cy6o|Dfp{gCp&_ zw%xI9+qTV#ZD(TJwv&l%PMl1VNhY>!V`5In{Q7>sdaAnmXV=wh?`!RIFC2^0+Q@ow z&?Zu8Q$jzx=U-YKQfXRGqKz&iAtZR>Z>A)1nOO0Y60}=IO2*K2!ogbkROV3NF-N^q zxLuW3ls7N0dS0Mjyz)OC)NuMO-}`%{OT*mf2BIT{rg|OqDJ-k{!zquv-yy%HA>Sb0 z8ojX3)os)n5udigR&sZzl&B8pr{!2*Y_9xYmh-hadD(@G#WVC%T!lO3Q<6__#2MyFog-yhL`mhpIZB{{-X{QZzP z@Y_KJ`h74^x!(TMFL*-8^iR48DsDsoDFq{gXMrz@J)Esp$&7V1)Y%wfw-9DG+>CF? zDMm*_p-1=j6le{5jNO7!d&fxu3U^y+k(iGP<5Wx%&^UKBM3+oCrUwfc_qElwJ+7C# zD5NDVTe@mQqN-zaszlZZ{1LSdCT-M*I+Q15HR~wxVep*~%MUSZ1!nxfiD>w*sCP9{&6_fia;@KDId5l>knZug-52 z(Y8bN72O$eA~=XYb(vNo%1I;6NGP;TQ2W~ONNt5cLCMKPMU#=q^55@w^A&sLoaO@k z+}y`G&%^m93+6^5wu_Yy{nvZc$+z46PNpyB)m2|WeSnuD&bSc+9}?x#%0_}GR{n@t z7UUXmvVvPFa1I(vnP5wly*Hdw0?haxX@9{X8TpIo#8@gMZkgZT$pF|tb}U|Ai_9r{N2p~a(J z1Y#oqmK;?RIqd;{FK+Qe2MR75k#2mnz`qU@-hp2K z1TDTfHAQsY^!If4=(dqif!o)b+JPPQ3Fk+AmpjP&Mqm{*?#>LwF?XR#uMVmD| zHjFySsIa8Tar^@>UXs%xIfE!lm+$-3yJm?d{KqNN)GrzlM_dKga0MB18kQy-HE87) zb@Id~;l5{6YT{Rhp|STI`3w;bF8YD(aE>!-GHVG1*s%y0WKf1Etq+@I+uOeVyRK9? z4NJjWEl0r{hZP`v3QT#;lx`e1&bNfTl9ibm6%QRU2MilEosav6dHrss{`&G`MO57< zPeho!jEGe1hINAQ>Ape7sC}aP{ncNs&mJK_)`1Yt|$y2Aa-^HXAcmJIn}a*%p8nV+ zE%lGM?>6lLkA%Ocs#grF4a}St>#gIlAldJKNdR<-Fi#b}qcW>SQDCkn(noT+5G6P$ z%M``Fwn|7g70OM1ayS+P(MPcX)g%syxpTGJVA^@A)8&O+gJV|lDMKeJ)MMt0eD zbaJcbH762jL{atwSJEG}x!?^Dx_%Bo1(~lYGTTy~91x!0ZoGNuyAT(0TsZK zvEtZv^-krhUw3qWyNApk9uOpo#?Xda82AwTPh6b{U&NnChq}w$A*$26(m@)$YQ~rU zFeQ)b8-ZuqyZFUn*k#y3OH<4){_WW=tUl|Pgxx=_>01xEa!<;tu4K>B?hM4M!h5rQ zQX&>lG>R&>n9Q)YF^sY)ax)VH(O}cQ5n^5aL0+Z5axB=6wfn6BSr+rbXe8i${*fF{ z2UFd;2=P1|L_;Hl9K#^>g!=9^0)70unncinF6-`XbF<^^G*On?$2S8E$c{5(iQCLW z4lRx*K6A1tQ;+vg+F*?ei8CLjM0$;-unJ9x;?Xy|yr$UFgESp%F?;X)Z< z^Mg`}h47m4cMSeK%hX@P12bQEL2n-{1caxA8nlATjy+&g6N9^Wwo1blQNbwG(#ckPNY)b%;~tU6R8h=L8WdCG9j^6-O7+N*H|o4)()s| zQ^=D4kYvtDQ`4u`j3CgW#i>pfLmjS%SV#Stbs*u|kFx2xA5B<;abC=^kz$~_BJt#r%+foyzxoKYiaCRxM<-c zRcNZAb(>;En32B~o*i@D3M6rQVg*v!JLw?V(g*xYN(g?V9jh~!z~gpDvb~0;8bXlW z@_S~kC4WB2E_DDQI&S;802409Wy7Jay9`3{YYt9WAk#$`vDW8+Bj$P2?)%Jto5Is= z-5%(V-$~X^USUrX#>wHUI9t!ae1I$l?3~Y?7_tSFX22(acX*4_1j=4a85GXl+bOOC8uB;EiBtIPf!kEz$MpWn}BP&~v;Np80Sl)dOX7fV9L$j5BZ$o!EH8s&3T zDq~IjO&osTlQ_6fD2tiem9Gh5#~WCaz`oWghdk;oUIxwS&~(w^)?sF|B;?t4*<_vf z`$<#9=9L&SsSp(2@Fp#;a`$}yeKY{EO8CCS)D_ePPlJzeTI#d;fJ;v<2<6;=Be=g8 zcWvORe}>i@ukRcgO_aH}Uj&0s0cg~YV$Y=IQ<~_imt2L)0sSJmIZcX%1O7m?;lBu- zgC_ggEc7Bp>Wv*0B^3DX(IWpj$ix~O4~}ssz>zW>9TDO2 zJ9pHl!j1DTB(8BxU}U-?_k?SjDxYE+w=_dK3-yQAHFz+5mZHYc{f6Cc1@pm!KuR19 zYD;$L{#Kg+GDyE{MTQQ>mONiSd_AZEr5$5heoH?58q6I$5!CsHh;9 zS~z5i=pWt`QB7S6~9)(dC z;qZoL;v)cMre2-Zfv~|j9ZdhgF>=z#Z9+!F4V(lLih+tR}mX%us4aGA2F*veLpnf)bbdobq(Qv=mT1& z(+^qv`>uYP%0mL3>B5mAnW9$uXrLIm{k-pWf_Y11jdW_``=Qf07YTDoG!U*g5woYm zFalJ!OESlc+g>}Lhh+!-2f(ITn_MZMFUR=7Qphq^<1I zNiqnXv8?1-u$}hzSTPjl(c2_x^-JK-`O=5uI}lKR33hM~Sy{PuHCIu*s06e~A|i%$ z*@v^q9dXBd5UseYikzdxb**wRYxJ7;g1)Y5PEiuicUW;~^BQ=O-U z`O3}J&kQAE0I%Ucdi6O^atDeZy0oUbY=!92>}aNjRL-tY4&b8B=FMr5KegGWA=pav zJ#g1=Zu`>3AYt|}F}B8$0n{$^3&ihh@MTyNG;jT?4a z$n60gQSP^-+q8BK4HBeCcO05?it#46oq&!?cnA*vFZhN?o(U3KL4h)G{sSlnS!HC$ za+3~gbSQ8P%iy^8so3JcEA z(rq8zqky&;Lz(kMMRV?54FfT?h?MPG+3xOLU2c>_Z-DpXi##!Yw2$XMuQ|y%%Ia2g zvV_>lqL;8w9s}>Z^i3$jl^8G+SzZNbLOKZ;QE6w>GMc(*DkwULWp*KbIA0~zdvVSP z!Y!-NL@%hXR$s-$xb&g5&9M%{UXvGKO|pG(D9 z2Ni)7rv9Iy;BJTn_qPXEHQrkm#rOizWNaYq_aSli1t~-)HIccjdbzX5nwlo(Kl4Sx zpEF5>O}A^d0^s|Gi^P8S=jKiURf6mpiAffg%}E+62t>E}KC?bi+gM5h zBuEMZ3Ic7}4zo5W+3S{Vc!4BXwmh5d)J;%B$)Xrw_R5Xof(-}XQ z$i<;QLm&p*;5v9FPC{A~lDs^-^b(`hxT+F4#&fD=LheEKiB#TFyxPF{x;yR?xnPx& zVnRT{>{Th7!)-4073(yuh^vA_)hbf~lMBCU8Pe_xgQl&?CvxV&rtd?>igU-91Xy7q zVI51EDukDj{#aNOhSNi%O2!1!Hsq=y0}p2UdzA7Nph;&b=suQ+x?7%p0#zipUOg79 z1Lga)HwyY^W@o=+sx-Ukk4F|UV3!vFn8PZXY|7rwFuv(tqFKki{%SL0MNWJ=wEej z$72Z3_G8k`no-T8ztgUFd1eO@-v0K||KEGv_(GPl`NM76loOcZb%p%VVy#LHVIv)P zT`>XYk=7GME@24hI}g#mPT5xJ=ho=`NYhPa)CIWItFwc2q~GJhw=Lx)VT+C*RPDA{ zdeY}{422%Di0T@OOuQoO6XTj_1dx@8gBA46tFDsrygFPhtaCdpJfJCNz&EpIkDu&w znsyCCL%Hv+P*6lr0E+K!7ubyPrtO1)NsH=vd1mb=XIPhyS(eeFIohVJT^=!3bbulv z@Ab8m!ye?cCSbZZ`aTzYN9i~f*`oq`r3H9IyMxGZjC;qXvr2cIyR)6aln1kk!;F}c z_SF*0!c>efHlShmd6I%fklRj%^v`5YR}wN8(=WL+WJMTeHVK*jbX-c=!B0r`T)yN$-D6UW2Zu_$Hz8i6`1`l{ z5$(3K)+ZN{?$-TXWA$D8tK{n_eK-0^X?U6Z?badov!-}Xfl zAmzrzVC6VXrL{0ahuuxaqvx3Rkf?b8EEKe%n2x7Ksl8#=1F*}u4Y|9{@_ky&5N9%B z;_#!A8?4zwTq?X4MFH5ui7w97}zJYqne3 zBx473_6Y+&eUjI+*$NBxDDKeQLPJpahS(mIXR zx{44jRZxvxMUO}c)&oCj!)YYgH%DpL2*%JWJ+I2%w*qg|t<3I>q_D+@f>TVFVt1}_VSgV^hmEJ)ahN#@r6}3r`PUqztK5Mb0+fum)Vx2JP$xJ&d=pB4pIWSuTl}Z!AS}!?tl&?q z=4x~ye^u1qTb$p*N!4q?R8DP|5;ELdpXNt@HaEzTS&dB0-1`HeXA}xDZ5A}vAIUL( z(Kg#L<}0&Ztq-D<*_n|Y548(kqVfXJ0nb}?oSKPI)n%LtU3ZAUaoV-xgeQ$QG58BVQnF;nZ4D%qX@Lo7 zrZP1_>!HeFLNSMm&YRQcWDHhaU8w;gnV6AVBCZr&A!qW-I2f%#`S^(ReXbQ1q|c-pKa*p`zwG2pF^N_*}kN7BOLw|7$XrJZ7TQfS#WLGEX(UztT z7_2iZ7J+t;;Pd;f23SF_he_|$9Yn=C3^Des)m;#fmOvXNbjyN$||>bJFppAE~F9yZIoo^c-!mal0l z+jqYAXTJ;cmeRwikFCV`+j@I!85f}WY`o()vUr9n z1;vQ@Gqs|ho$ZjNIX9=o`}goG!1+rtSij0GJ+i)1srInS)rE2(Nybx_pLE8JRpQv|DqC?6oJnaw&Z zOG+?(Y<1ZPAqwG{(Q*usgcW`A6Kt<&y|iBtl2>;24JD0GP!Tk4Voc6=f(pgRDN?ki zSvu*4#u!slnS-<0gTF#9r-S8xK08LY-y%Ku;rd4aUIpJTsew{Ls13e*f5_H-8r)O^ zqQpJUD9X6I)oBO^Umz`c4*`MDpb=1~rIwWvKPB5Qu5tAb7z)#xMDi_~1aSK-5TsoA z665rIA<*XJND#4fZO{d@a<*rwhoVCqo!NNNQsX6ujS9vw=6lu7#n9>-L%?SsbPa=K z3dyvBPu*wjz$>@=CLK^{2&0=;(ZnF|LR{Uj4k^CKho#DErb#v!YOa+G2WCi zQv7D!+=smzJ7dc|5SE_3wX<8~PQ?Y=N?^=enAQN}BNGPRT@gB zQ&l12y+ae|`d=-;p1H*h-C#CU*ip8Ve1?wr8nCA9Om)57=>h8!lMw@Hz|L}0Qyr89 zGxzFIf-7w7{l*FAN}ih^Bj68iYTau4;7MEbl!CI=9E!!~ep+Imr8EbZrH+`T3gl+H zB6T}*Msq81IhD&!Lt=+O$}3`1C#YdQKR<;dYZY{WF2o!Q=LSwd{COp<$ez|z^b*m< zV%X9jwK#hgxI!-8)=4@mtTGHt7SHzY6y%znGbEOPElc=5(NyeNBCY@E9vYuR_89dPZdWbwF_p)_zEvIrDoh@dHaoooPh zf!s|qQOGT`<7$ETRmhCypAicP!Lb)IY#WIIh2tgSu{5P*jpb=#|NLV{R-{1u9xOg< zk`Zwk^($wxg+Djxr}%U>iEl@?>G+UltT6IhRbDAW^NPXqxg{G1Og}CkMJ0}}(%`ITkV$-_ z`B|-0_**a^_Zc}vT{ecphz7A}=RIRW38+Nb!KO0^ z3CVVIt5dI&L2Sw`s5YYwgm>?`VKpHuMB<2mpp=Xe9juE%0W$3|kTSfj7lP@BZ2 zz}E$2j*L1aojW5Zxi!c99Dy$alRHA;nVFld6so@ObVs=g)Ema-)93ep5N2mOuVC2J zdxi%Or2v9*GRHA*IDni7;+VcuAm_JZ37fKDbxaT2nYsl3xXR@Ug|zji1Pr=+Qus}) zNPX|XEAL1+*R>*|>fBCwob?^(cV@tjR0wDFKR~bR-?4=(3Yor#O5s3YQjfE~$bk79 zPrLc^P}7J0<}Vr}Kj3yDQaK0LtYp6id>nSp3>_!pPe=6M%<0ewMCc({q#7FO_}9Rm zzLz+tRVVRFu!tv*j1~c2@+>7D?kI5O0|l>ET~jg4Ypxbg&h{6v>f^xOFWU$8*E194Z5E-zI%VBteFUd!{N)byf5c5yUlm}YTMB-Rm>6>DL9?Z zorj~}AkB7sZo_n`Mp-3p=OnxzNnmioz26UjR=&-LVAvb(xlJ28p&O73>a!D#qg0Bm zL|vlVi#bf`TyQfS4;f8osD)T18pYc*Ib(uwEqU=_U5=ef7S#1-}8GbXWwsjYj@9@0`fh3 zh#}6Cu69>IH%5AuOP`S|*Vdm8sd^TzwuS07Z|oI65#+4c9t$tDfoaIsgKPS#il(ZM z77}xWoLH^k3V4l9Tdn#7ICHiL5B0IPa*#w$_Pq;$JuiXe?W^^Ty%WT{b3F7#9a%o^tR^On37J`BG-3&@*Hu zrIi7WR|v}~n!?*hHk(-&$Olv%FMhh3)W$w(WbXCZzprrx8!VIMnLFmCAaXAv)Wrlp z!+M{bo^6OXx0ez{y;s{Wl>c~gTsF|2CJfp^Z$^ML)o|qTa}kA(3Ud|&S~$uudDS@b zz8O>46%?)M;%MbAXx2hpTRJ+aei@}AEDy_EJ@pVD-6@=_1^~%{WnJ;H3|$U(V}?-D z5P|Eq1^*9yGTuhj8JYxb|M>DGa|S(>VdI=)upze+n-FSB>hD?9X_NFeOQ%aS*+1Ww z^B22PaRrw|rT?w07c-xK(uexo=+P2bgyN2IDW%*9)P27byz0rwmL{k9N9x7{mfIWP z#cp&P`X`(Jxp=!?>!;VfxY-fer)i7pZ2nu<m{E*raALRaIob(>Ks(+CE z=e*1Drwz!HTx@Rc;M?RvY`H76B)YaA(T->1H6(AFH4(W6Z+WU9efJJ@i!*89z%z|C zWns*dLJNry-}NDNgxdsAI4hf<3|do%QkObSx;xrd&{c=iiJ*=p(x2+Kk>1WyPP74^ zy?9_2zL8P8o6;~k=-^Bs8#cPKiqG`J4$6$^6t#>TqhF}rC`mAr_<+0`?-%KE>g*sTWzt2HS@YbPh7u4i>@msS|~l5e6X!uK3&hX#ykCS>8bj8kAcKH-lVdFh7BC3cZS(snB9murKQ4AfLq_0Sw{QMi3gQ2ui@ z|8?DT^Yz5?2;*zNTa?e@MH~rIz(&?+1|%X*qVh!_(!4}&6Q#<0ORuFzL1A1gNa_L) z%z_$=Oc71}Z4JqMbrN#Z$&$IJvTr1Ool+wETm)I6vWrsWSF{tkMq z>*>>T#(l0p02F_JOr8YY@L2QJXNfu_EcZ!7z7CY5B&GPRBu~f^wPh`MKD5OpUEYW` zMMT@+ftDO>L(fDh9A8MPm04I(m^=wvgwT?zR7aBISz`HTfO|UJBg)WTM`9hCi zPD~9IzuRJ+D5N~(*zO8Jh3x+EAvJ_lTrCL(H7Wr!`a}-#^(KKbmtSMA`IE(9$(Q1T zg88vVoe94(v)O4N^~}^nlF@;m;Eix;yaLLw_rRrK=j|r*}{YtKFe1k?~>-(%OXc)hmaFVh# zML8I_JKby;3>v9)%y#r+$hA0%>pWjg#7PewRbxDcFkNc_v}9eecgQS}-0V(Es(wB2 znQuoLnS;Gtk_a_uqhD$F`5l<5~~hG<*H_`(Z=m9fT-b zoM^F{j%k_|ez0s6meVx8f^(e*Y~{2H0wSdwMM-H9e>0UQ_{bXM4oY6j_ER10PZq3ie|T*h*%g#!d@70%RipIWgYMa;qu9xPbQV(tCNv2t(FFXJ4aCsu4uKaKP*g z8%lX5QE>`*^I&JkA}l=ZghJkCD&d%n3VyEH)%863Aa!F3kxsHe)4IZ8;T4&TK1JZb zE^P~r_?Ym~C@vaZcqz7a4BCC|&C4Are(1K!bd>&f2^L<4EICu0Ptx`n&goAI4`eeF z9qPk|6^F^4wEtoWeV|wZO6JFB;?;1wM>o*_a;C7qDWGM8`Y=cO0L$d!F?*UWUwcRX z4Rv5HD}N%y=sdiEG@IP^MNfvSX3MrFRl;oe6mwbnLXnJY7bm{ev5N~y{yX;NL!&R6 z(gAX%Z&93@rFQp1SnH_FH@$oDLub_TO63bl9C1cMR69jliX*}A3+bGR9mxBf*jR2w zN*cvVoOB*_7qG`EkzLT3%^2GC>}Pv>K0}>mSIB{;d0f0l(R75qEx=;Wff6HjtP8yr z-hwWDcm&9dr;#l=o?u6D>yAu&*^2(G$ZmG#G2;;jb~Q|SqYr{uhWDwnLwp`K=${ON zET|&KC^g!3VGo@b#P196cMo@i4+Nv}9J}wH3Y`J=yHjn`9hM2iq~3Gf6o>d#nH6Q< zLnK=1BVOEVYFa6B8G>V6apx7porH1kxKC8)|G7ZW|5)>0GRCaF&j=L zQ`xY6tsc1u3#jw&W($3|kQ)w^atkgqTx;mUY?00cR(McqiUDL(^8QQ%_67l(Dlqj< zee7wPZ`sL!LjQ9N;~N=odoL?cI!$Q#zmx{_Q7d56M2{PW?K?|VHD9mU4mP#9NP*%A zfBK#q_AE}lt`gipsE(3o|7|rMvf+AuYU?$y?~oz%nlEO+gv(zB0&V*{tfxf3ENAL^ zD_hdh#$Z4iRrF3jN>*c}2Wt~6oBiK0-WGW6&IDBTHH0uU<}J#KZ?IF@iv@ff969*d zM!!21sm`C0q~RAsPv13z5tmWmGwNl}o5EnA*=PqkI*3@8#gGrmZ^tRmMx(} zOe7aorrYH#Bf~8P*9psyF*!W6z-v7(^^G&BXO6OVghfE8J$oTme(4z=id2#VTb3w3 zd7oYGC%*M?)<9U=1#CH~mjRW;nT^~TeP&a4B(p*EaGt8wsYZa@sO`^Sjxx%Im}eyS zeRnf14B=JP z4O=TY&YGT-!UX9I;Pv2z{#-(mymvTvfZ2a`$N+fd?IO#5?XJS?m@9Gtg$%xqhV2OL zqQj{Z;iupKHCYEP=I*%r`o0qF-VuoaIYfZ}VTyJ;##!D6SZ>ANo<~Ij-~2kJTh8b+y3}w1`}$oW$mr6w}=5JY7QkT!OS(1l~R|5 z5wM7;O?H&0L-_u8$$Z9)p|S4HW4|nq-=dt!A>X0=S*C*7%}T$#?r35~>e7iuEBlS} zr)=hml$NQ2EY7`+v|YDqu6r>zo3T=oT$ZIgh~E;!4@X%e$!XH7-J;1YbwLlxAu4JX zl~~uf4KfyqcdC&QfnU-@9k_ev(aenyZ{M_MPOH>*3sw@E07z$MoEZ+u%O(nV^>1fq zO=w$9hc81t#Vv^my-RrIbAaz|r$@2Th;Y|kpyCd380|ii-VNhCA(*ckGoM$@_4G+y zcTIZ!V|n8_oHIj>a<50`jdHIu1o!lvYQqDGs|B2Md^gvUIOZkh(~|C&A^Hs{yP2e3 zTc88-$Iofw?UA46oTjW zakhOE_~aGzq&&xuh;w_cb8*Oit3jq@T@`j^LiHBFP@6H+A{Z5H)Xw! z5LWE**_L*VOpC`~>Y^yb3`RSe%%HM%Z=$V;PCu&Fn&G#o7Wd$!5}(yY-cs_c$qy)4 z3q8JSPKcR^g>nz$DEZu9TxP)7z_Fr>}QzIH153am}$b({9IUyq(hYa^JI;x zR`WiQRptfmQzdR;Rou_-y6y#}8M8mbYB<<_?E{sUzmXn%^7WIjas^>_JJq#A!Gif; z8ME34mc~ib6#7UzF;QIP-lmd!74Bcc18ReB_z`6$TQa^ zd>?_i%)h|ns?aQF`1SVQCjw0#>-p%0OM8A!TV?2OVO-tqpyG^m4;WjXXV|+1N99*z zzh$BBw7+vowwtykY6}G4*Gi!691ejhHra2aK2wz})ZK#^KHD<+RAB z?R+<9N%d4ODO3prf7SXZ#~K+SkY5UhR!`bamk>Pv%Y!0_jpM8+Ww`H;r5mxSxlDpu#ZkyGEi}>jHjANPRwevr#ANzCrRf_h6B{iqn3ydG?h{#y& zGxzr6Inm#=*J6OA5zNauJPATw|##R10G)Vs`g!> z>&hB8;hPIeS-`^2F>&KFDE2q0}R9Xk(BO zRebM8L|`B%HYq0PCGorGBKa5-FnZj5s;EAfKoPp%M+th)zwx)q|N0MMCGu!40%92k zC?3sydI;o#SaTdGBJZ~#Yxftvj~Du*!BF{tw!9o*pfur@*q$nJ;Ddz+Z*`=h+md`* z_Wc~~{DLDP!uMfm}rxljyveo6wizf?MBz6y;>9Ri}mP^@&y3 zqRJ~>6l31W4GWas`rC9&*-^*w*>lGRE80KAOmzt{MqJmh+k2l`V2ljJaS!YpV95X0 z#m7lw!1;Ol2tR;Dn~oJOhIaVFN%&(};F=ex{B^Hv{I;=5>~oY7_L3y{Zw!R!ctZKQ zMPYGF{g1Z;*m(vKc{;*+qFXv!u3*ETOyc70s=FLG>U|dFlUXV>;l3+z%}ZEM<#!w^ z9OsO)!a-V>YtKM~5AM71Zj*i}nbSzOt`R;$Bfd>c42_}xsJqKlNx97{^GU}4;`+r( zq~HogF_vH8Xi2qlUz(B=?0yLR4Ug@tX?7s@RPpTzPa(HYY*N@(r4t>YX~17S;I9#A z62g|dxF?0QIK_NhXtuSqM9Q?8E*h!Mw(3@kv?X5k@Of#gXg7pP@M=zPt&552VOd-|cdUQ@>-X)*l;!qpgC%-JG`pMdS)O450zNZAC$&n7Hf%IUQ`_>OM z25>;fOB2h^dT{K2^D6;Uj@p~;0h{e$9ZP(FJ-J_wXhh)lBuHN8K+KoU#l=OQ?lVPY z;g_TJ^>v5qePa);_JZABP_dcQA;^ znryGR@5gh|bgj1N`i8C4MNOh{%*d7uh!o%C_4S%Z>_53{hkh?CtlI(J00_| zoIgfruA4wtjHiIzr~jyiXCOY)jUR|)3;KxMVTjztDElA$1Yud#m4!Sim9MD&ixOIG zQsJ#ea+M(uXFn!4d&m#7o3K|Ew4XZ$i@^tIV|yhB!b3p`NQaxLipj&UWXD(3R70?o zYue&oghQ!TU0;~Kk8cxkiC;3MsmRlQP6>w=NW-+>Yzl^s$4;Tuhf{?6Zb1^`zVB80P` z9}^wiAGOp<%sedFSPB)${%4uCP?BVYyy3mw=Go<47ny+iclgL#B=R4gcH7H2CA)e* zX>tSMeQ26*wrCAOh5ou}%%9oz&v60}yJnVTip+PXurKAb1?Np8wN4 z0^V9Ih62>vJyx6MNu8^%-+9_B9o4S7odSS7bIwleq07};*_--Y+8n$Z+yGj(YJ-Ex&+8h zc5M?ad@G8p5A-6OO26b3uZ08~p3*d>G6!2uTxqQ7%Ce>;X(GLY#e>=Rh;DuRXtN_P zPJQ&C5JZlp>XVz+D2boi$Pjjz1yXU^NC4CUNcZ6}5w_PHa!OiRUM7hs6rxIV4=PZa zyai{z;|$~&s~im7^5FP34N@KGWRz7WjLHz3mONAXDNY6(o_MqCHw+Y1?KEdvD&2GS zK-r*{%i&fTJLMVe#STZL`kLy$&F`FMs-Li~75Ob@91t&ux7ugNi^l%%Fkh20K~F)$ zlbcf?|5obs-#$iOEgt`@Ftc6tL@U;I|EE#9df&QOf?g(fol&R*caF(sW^V)$K{W;4 zTlFG$Bony8m#h#Ekv)fMG#iaaVDpF2L|bK8(}e4P!yqEtxsYl$-xprovY-RzmDAV_w<6D7K?#U}UlMAv%(0qH;J~x7f`!EeDfioV!T{C*ozdIx zm?axkr4^c%-UfBXF$%PYvz1wMl$OU6tYk}6gG~RZ@EA~X!BPedqWXc10aH@_9Pd&N z-e|wSEf!N7A5r=^>;6*fW20On9%iiQ4q>9&FYC%QS%)t|XL0rZw;f@1lvDhi#A z)s_eocTQO`(6q>0w5xE%3RH0jjvlI2%ZJOS6fE!s`#3F4uv$ELzSx-w-K@7Jg<*aVcA)qn)e#=(1ZU8?{{zV^|gLhd-J?QXKbQD%H%CfcERv= zoK|G=6!t%s6Sn;y%viFAb7L-|d_YcYv#JVE_~_p;Nx&U zCbF#YnFCLg)$+eu07NrQPPMMoYvGU#>$tw#B4R-99-wv?AZnZw(6IeK# z4bo~`2?RWWM>2uo`=@U}kuRX}=f6xRw^W(`6dmXbL`&4xe!l4aym;#U`T!YR#82SA zySeY*R&&d2zdxWDFdA{lvB=H4gI_0Ji63$k070%y6>U1+t{_a2zoT*e9{%h|?O&qa zYgS^lpOWgNr0vTx<0K-E(zbe1o04u8-!kLP)RM*Zg4X1(V;`%b=4KyDE_pU{JS#m0 zZ}NdLtZMwr~$?Bg+((gH8{_9w}e1G)}2WfSeQk!UhdmGnJ&Vu6`^J8-kw zuqiZ_+FC2yyb-E(Bo;M5DygU4iZGf3XA3m(wuI%|5~la#PhMlD`%sGC_-p%kt4n3u zgs8zpf__FqS?p1;vB-~!e-ZT-YW{YZ8a5WF%fQAe#(CCT-BPmKVs8B#Yh*d)s?)2q zJ<`_41y);cocS!Rqy$4#;U$!(kN>gDmQmFHo-yyRpnAOe!+qL6>C7yQMlbbX1S^}+ zHwIYUIgHzl1!k^*qsfOY^mu9~{F;(EtMd#(1)fbi1p-0Z@BfhW`$$gD|BaXbkFxmn zob>fv8T4A&5cF~3K=h*!gbv@ijpW%nrVaw~1OXr0dq1+R3Vi-M=3iHPKNkx>?;Acg z8iZa?OG#eFWGZYr^M$r%banlXW_KT&w;2Fmt6%S%I99|Vw>wTzc&oNxza`|S_TAhmU8;n>oUo+oY|F2ROAD(I=~JTG3 zjFj!81&(x9)Uama&5GeeIn)UlYVUNG>)NrVM$`Y!J2dXWj*~`0a!1ABm9Lc8PX3lY z8R}6y06@pWTy?9ptI!Nn4z2+`l035GRe^Ra_%g0fyARv2p1qQWb-alJQlEsz<^ovwRvBeCsg1p4ph+-Qk1+PAdmi} zPZlARKu8(2E<5l`e5rH_gQ7fDPi2mdB7xNMTveWdo&lOjBi5XleX@;e&vE31{Gm$n zQMED*I$SkuKrIP$4|i|AUzz1tqi>#|T9WPwuIzFH$`3tiaYNa&p71GdSXyJa-E%_~7;JYY~(;sLTWrRG-?l!BL4F!k+>W!6CT21p>hacXxLfBtWp> zHn_X|xI=LF;I6?nxLX1QXD7R7?>L96uco`Ys``DOUgV%pppN~vgue#1eqrH?TSV5f z_dKlOst*T~pGV5vM#)LL%=_^!h~l4gRLt7bOGJM+>Ga8~p|SkHvI1fG9Wr!SZX<6X zXTpFHP9QWBQN*CLYv|Hq3fsId;2uIvJ%y2Y6WxPpNONJ?sm=y@EYL5^ylmpIAvu>? zB3csg?o4(Vz$Oy@1RM9ulLLmBrTp7e@qTVCz8;%z^W2_;`9T3m@{nNrD%>KD^};fn zF^{$ooq9v6S6}QIlktz#QX)beLjDa)bJ5ug`~$6J1Q+BWYR?}ohbzWz(6PDST#fL} z8eGufTiu1*3yXV(1T|AOz4P!P@q2=w#0X6LXjUm>PZ5esBzhh0=~o%BfML)aqg(jkzeX zVcw6l>5@>1U*jd66tVJYL>rWaY^i>eDvc(g^Althl6?Q!!QU@gwap0p`T9<&dp#f~ z9-C|2C+A86j|Pj)mXiynVKew^6@^>$OS;GS&6Q62gZIyvz8N~H)1Z(~8>Ysqb4cr$ zBCN_>Cmb5}jy|(&>PQ4>yv4|b{X|BGbueBp;cvepAlr41y7vc9hTfQ-B1tzZ#$op> zMLII!i3zQbU_}=HVS<=*g~frm)j-UPd26#8?!z}ypf<^A4xMW`)gEhu!^M+{CFo1OqeJ(j1+lWa#%zFc!N~fH8q4GR< ztqmmg>cKciqFoud`8iyZDp!)uoNYCN?`iP7iH%D9$|VFfbWD|0!THrxdg;zp+bAk% zR(*?6bI#*)fOhg9j4)*OXxAi6GR|Ji{Ky&-N$lLd4SJF~O*&2w85J_lEkbvMe9pZ~ z{=j2SJVRUyEFhR7`ZKjLPUNQU--193$8f1jp4IO%S9X~G8!$jv0O;$~o)!kvSQ<$^FBeel zbNXT5T}fx9$V~{V^>;I)Vg!-|b@1*a|tDiIk^-KUO0k!QTa$FQI(XD zzJx?XEe`WI=@JB^PLt8rObumSxZet7VM`Ed?KQ zm{P4~yov{DF$N}Dx#j2g@~uKvI&rRIFzk`yieal!Vpx3;Qy}|VErfQR8UyI7Usnt@ z=!dXD$&=(L#r2GZ+`l8%W&1FYx8y6nO>1d1-(b!kjoEDZK1Ij({=sr~s6B^XT0fUa z2?JoH?h%mONhy?6CoyZi@PH3pD6abXEckPYxz8}~u6(FIJJ$zjP7K=BoavY^XwQWm z#vS!IhYT2@sNuq0px+^3&GAo7Ml?%XNu%ZACAIqv<`+(r5_=>lP5oM`IY?{OKOO-p z5+ShuG=j5~UqQ&|O3}j5F`b)R+f*%b#+_-n<4myb5K5`;Od@TAZGmcn`t_idW%+?1 zXMf3Pc=@zq4yB{&Y(lM+6hnR&F%0#Q!XifwK!&8laQIgaA?*~LU0oHi8Dta%6d(t` zGCVGY*lh~@{E)vfTF~G$%kD*CXxpq%b1dNOvJsW70)5h_OvIhEcg~{I;@<>L4QgA| zF`G}|Zya+RZrY-A@G?&75|csDCI(=xrC$>pZ4Xn-bXhZ#&BNodgDfW19_IVsC&@)U zKy!}y21GdIh>b@IBgCP5F@8&Nn6=tm^6I>L!VOz;JItR=>cG+)LX_1scP)!wNU*(n z+9;-EYjO~jKSNrRL91D)eI*t~?O-l_Sp6UiJ=&Mvh4K1qo* zlMB<8`pJPlP5BKOarvuhR5f?pR{#Ca1p;V>r8BecHT%YQyFfnXG>{MSh-#-t;iBgp`mCww3tn;+9Cm2q(1jm!@}GkMg*&JBq%# zi^3gu6#1i0P3O0fOxu2+3pQrW|Cf2sWCD&vMekqJY2UkM)_=ndxtdISSVC71OX^vP zZEo`spyH=%HOzoJB9dvx97uwtgA&?3&cO>3eO-u&v+|G4CsM4p))3;vM!MixH`B$| z;Km4Ep&|B^oF+ET3YujN7Ad3ER|skfiPldnN)V$FuJFm6-(&Gkv(az!*jJpXy=eMf zcbnuQxtCt$s)zHP_kp4!?eKydcuvU>laJy+zl7M04Dh&}-Wss7PN9tYt(Cb~5aI|}7J}9%VAR+u#Nh4+-w7msIp?8PFN$s;SXd$q(evBk z=sdS*UNy|C*SKj*EiilrLxqC6Lg_;acX0xqF3)-R4RtVs#{XGqU;FkwMmg<_WmrUhK@@O! zgh^0LATLWSSHKvXo87eXa{k49U)pmJ=^{pc7Y0qultY}$+9?eC6FQ?n-p}uDBI3L= zCKL7Sef|HJE-ot?Ab%C1702shp{w6pN2BP#wJ+)m&&VIgydQ~vq{!H|2B}G1T8QM7 zM=YAX85m@R7{SMV!ARD-ax{r3`q=fId@cf`ww$Bl)KaO;ySI#N(ZuEv!QY~+FtD=N z?0JC;tMy>I^teAf>``~v1LY?)S=fvpJOj2|JmQ*!m}y*b;BolwhgXFjXrmtqt(nkQ z8_V8M@168ES{RRY_g&E7(clR;Ez96>ctzeO(E!xw0}dQ3nF0jbVv0Sww7V&kulDL< zlyA}xzhDDl)v9|~LAtQ;J4lZbL(>mjG1b)j2MJbjdGfy(;KIKh3g)}~A%v;feptXk zGYPt|rRlo*_iICS$1}jaJUw0*Y~9V`9i;xI($ETcxQmDnyoboSTxlPe3)4OgYK|*= zhRUrM=sn|_FT=*>SOc3-8(+%dj8YR7GvCrN-Pf8GGTP1~Fq4l3>pk(g(eN}@in4L5 zR_*U7mbhg1_pdF25)evO$skG5ASPA2rlekFB$ORas!vL=vNfAAjyLGGi4n7SHH?i?9UE( ziLuw5+-`YVo`)^xXw9{Qyg!}%viY@-iGn=J02R^lQ6*v_zN>z=Rpe+6yw6xg)GYTI zZ{rWCsk40w9ab(;QscxL0;z^n2v&lci>Xcf@iWr0Wl5Q^$f{Y#2bk2`~3<>d=Q*jZM z@}!dJqJ%E5$(4`ug7b{zs}4*%Jv_TC#kLinIB!J3I_g~LkNLlo!afQu5mzw$W{Yfe zWo_cpGcDeQj#~!e-=^PP2SN6J?SDAkQlzg&{uQp#?94FkG|6diay-G*u4U+bc<=+0 zLFW1Tw1n>5a}ND&LkYskkB*K}m2_kx-~&c^{kacL+yjC{H@JK`>ha zwm4+tHpG|@l_*-tCCaY}T$#0I{t(jl42N1>1UCHm>3T%EDBzeHXIPaaps4Hv*N1uZN z_|?)KO+UcsC`u+T%x9C-|5-9UR7FdgE+>NHc3kLoYdfu@ET+u_oj<|ut2Ba{XD<=| zgwR=nf@UjIr>d+14To(JxXeK@bnI1)(QQ zh?^1HUinTCiZ^p2Nb4fs1BDVU!cFV&04!MqDPJVSr;<*k!!`{uK(=SpE3&d){Ln2} zPi-j`YIX`|Z7X5&vhS=#BfMHnCANz%#eg(H;`=C&?E zI9XJJSWf*ME<_y!yc;>umbfu&sxSX9gPJw#&YVbPnh&>^ogA&zyz(_qPwVySjx-O> z`2v31?*VDUM(H`{$O4*PRI)oKVct5)mT-V0q5BYbCKx>54$_zJq^1{)v9|iHDjxau zx(HKc)P9!3g|UmXW-4M*gb@;ynzLF`3lDLtC{tZTq?I0G9n4S6yGWpnPj#L+(Ipc6 zoZ^;nYHo;~J~}X9>DtAPajDoZqvx-pd)63|ns+q@6=+R5LYfOYfik}gSj31%^XX@v z+~%+gC~fWy^wl`|)Ol4DK6E)pcy8*lIXYt-=cBL!Pf3j0F@xb}Lyn`_vtmI;$VB^N zM=Xs-LS0fX;0R9sfx3ynsY&kwc9Q)*rTHMU8~>~j%`U&nNZ-gfL?%0UL8)JfN@e)C zR*9QuWMxo+$e%VKSENBgN|@9^q>rI@V)vtVeLOMH)y z$&Ywh$l}87J}09OFGK(~RE+>nOJ(uWzs`(QqQlwHrj-fIEJD|K6E%i~&zUxQ^gm|J?^aIp@a}HU;x$(xK{(Y9 z!NVXaB+A3_a-A}|hPtQ{Uua#rJ|+4zfAQ`be^Fu!T^j-a3_=DeRiWMEX6))gG2CSS zTyc)dXwuVJ(E{oIT*x(C*{Hfk+v@v`yOfuZvYQfBiJj(a#zUf1g62l(*EUc0OD8b;#U9a=>*g zu-~~{Jd1X$BBK%7t}@ScIjQjnsvHqUGo4$#rl?%lwKPF5i$MThV)EXwZ*3BtIQ3}z zGp!;CC==%etcN#17`h_rc@1mTpLKRfE5Be?xDAxWXfX3xQUXMu#QN%0XwDZKGK6~f z0eh{9&JmT^SdtuGa+KsYFQx*5(_L`?kVM;u#m*6Wgfeed3r4XXoOVo|LkL6nvEr9- z?+T`k_~2q-=8@J&B^vpjHRNZ2 zsFI``o8rC9dXA31X`%+nV&9}ua}(Atkn|*Uy+zWI=Omf_d&uwFdY&?Sm+N|7h_)nzAlxh@Szg<5TR9i3vHg-SV)V)+8yRSXti7 z0KKa*sHY{a6{@%C`CoV7l;```&_!5zDXgkgJ@v`8L=y`&5}}QK@x~%?7i^8TIZZbH z7Il|QHS9uy)voCV|wHL+uKr zkw!RK`2XlnGb>@i0={9>k-k7;!}ti`t;4QaCo4A-8##y=YpzxP(8h*8mnqQEaSM<@ zpJ40}^y4}!vXxobqd#<) z#drYl8fR$PEAHz@lhIC+DbE)`?*S(-s{iHzq=Xh{yq7v7nRk!LLVf@lX|I4*bEf^F zJb^&<$T3A367{qxIdh$#m9VlhzHMas?WS&}5DxiOxoX3V{!(O6j3ziI*ASx}w6Cwg z#v2PstX{|aB29mZ{-1Lt;nPt^L!OPd6L`mi)NVnKX6dVKW`(+9h}>`Ku#dTU7J7B} z(bgbFHN|-LSiz&JK8WO%E}`Uph(eKd*Z%n$M?xZmU95v7rU^&@w%wn&KYXhpsG+#E zstU#=)sNPpz8$1$q@X8>9i}!tBwLZC-w?rJ<$NPB*fb4C=mK3Kc4*6UA3V~Fv(h%# zjosjPSy{mHBVj(+!0ci8_VfAbp{V zb>daOQcPAUzCsV=g#D18;}9E6#Nv=)-Z#XFaf(7lh7xYUPqjZUJ4Xsg%KpBxAB zwlS$-X^s{ex`k^B`euLBA*KWWx!(M5WH7V(ndW!2w6C}Rb1q@_M%9X}XwzRH)lRg8 zvC{^Bst%$Pd+t*7@T19ZHxxZ-g15%C1u9Wv_w8rJLo>?l$%G^Fg@G4}hdL7UN!sd` zU6>-X;zTH|+_n((3RqO4oxjp>c(fnaH3O1oMeD@}u@y9!?gk|h$-_}+mqb}rbm?X{ z)(LMQDEf*S2m$bqvO_V|_<0Mh3fi zGCyEZWBIZbgB0OE)*cTuOv57JX1UW!r$$cEd+VBk+2v+rk}koE|0 zPkcW{Ym)i2ZT#7Ml8N5_vE~pcF)Ch})xR!{>EyQ4u=_%=gimsp>V2Y@Y~oZwJE`8r ztbNd6Djcq1@U!Y9VHL~BlvVC;g0u`R_3X@N>6s6$bcdHle1qK=6JnB4d{HSu%3UZu z5qk`DI%b(vz&F!+7II`OLRhYjMi`0udO$)In2;`}m^ zc%%=WFs-8})%DIkgRt+U@8r+VP~Px5+N&n?^P!!|=Z}W`f9KF0C!kO3lEDoG2Adgx z%h?B|(i!R>1G_Pxp8?R9-MJ>5N(!|qb?E8m!ZPqu5G5Jd>nU9?vt?LuU6U&q?Z~gi z^#919!1sxKK^&obVcU#qz%&&3t>o7u+jj*?Nr6l0NwL8d>?2RYl|dJWfo*l+TbNiIC2lcbago4 z8Q`=2Z}frGnDeofAb&p^++3PD{6C9%j#V7S7oRhUAMb?Q4bKbn0bF}$eB-}hoNjfrxSbR2 z_%tO%Jfp;2qPTjA7Fi|CYPc#vQz;uwid?f$9iTvAYIXP&uld4|ay+FsRv85|Y8CaD zrE$!h75sVBL0_DS2FLqPC$p%+PwQLV69hYJb2@Yx?#%t3!?lJa7sW8MKTNff5;HcY zaYCbHv2uCGDQI)3n~Q3r)a2`C0qc-?890)^O!e5RbVq9R{pTJ7)z)g4<$VT*s*Bj? zlVfyq^${V)eh7(I(rBqqf(1Zo-8;k^PA9;^CCLc2B{i`Ejl~U6#tGkfbS*RK(b3{WdI``Oi8L^4Y0xO*kkcmV%P&@>VL5!Jtd!M;>RdK36iaN;_ z9ARz(4~1zV-ItY8Q~iuu8C>|AxX#fshUh&45vDqFpB5&AoU|3GGhC~jjp}pbL1AI+ zqzqZOeDxlzM|HM<15>Z*qr$Cjzj=dg^V9UNtgUXJbkJ-hNe$@%7;)Gr9VK<9X1;te zHv;|m-B^C=L}6b${$C3aLSrJ6UXhkl;~jiQ6;K8^UoK1{|MNXl2!CEo-8S6TkWhRXWXJeElzfFSLF06Z~&s zU$`5>f~R4OAd4O7A$#EPZ|9h5w2Q34^a5*&#Y|&19EmPQbsS_XJPJ>%)bZzb-NwHQ zn9PGI^Z~+xb-}BMf6Q!)RVOxsPvr%{+HNH^=V)&DCB@W&Zgbpap7)S5(9FELg1V*- zNn6=u0}=vrsx~VV=eg-Rf~>g~`;jg|Ot+OM3oa~fyPQB*1ZkG^eqJHVQ*aLv-gr3@ zq3j}C{&Dwg&*%YCNo8s`33=}!jkZmdaRJUv*a|Edlo^sf!d(*kP0%_#yL?ZZI9P3b zob*$DWftK(rcI`LV-KMCn*b#ZFxprj4zD%g2D&j}`g z@wxii)caaJ(rPJNdry2Fp<8va3*HRvkLf14X(L00b+}_dPtM4_7Y~BC@pjxFl6w=rT1JqxWPiD!)@u z@;O;R&B9t8Ry-%#R2qT!q3u26t+B2nx@!6x@k;Xj!EMYxOR^JoeygF&;#{SjM`XD? zW8YMmIn4FQc&IaqNCk#*qY@OhiW7YJ1JqG}_7`8iRc-o8o5@aVK^~p|v3p~|>=~xe z;f@EX^gex)Fey(=l=^r~a)k?1Mjqy?Gx2QodD}ltg(4Eeq$Vy^3upQ|6C)x6oRuL#D3o%6-@Rg!^f&Q;I z9~0pPz2*lkxclP#jC!q7C&exKzK_$bbeILbbh?#VIZiC##ezj2QeH;zMaV2tOg$b0 z%;^z{LD;+v0-rGua6WuIY*T%&wW@&9s7?l0g1Yo4VoB`^7%%S4Q z1_|71>u}gjlrGN~6Fd4-{I=dWL9N(&vw6F9Q~7Aw=cKlS*QIZ@{Ywu7=UnX#Pb4PqSMezK@+5D((h6?YZXi?q)2y zwD?Zx=ow_ZVsN3@=hmyLE%Q@k)FUEP#c1J9o9f6?wk3vI=-HFWcQ4|FRi1fP2fm!Q z#l9D{4z@STz*2Vrk+)(r!5B3_i`F?TN5P3gIv#D$rT$9!PpQ@W@xDo{qv5;WD(u&} zJqF#LpRV!uJ|p;@4-~bT_gt)qtYP<&wEdD;e=k2@Y;7mxg1Q0D&qpdAH_X4lIvfF% zgl={`DW@6o`h=#UDDg^|xQ+M|qg5H$I+WlNE^zmhp(;xZ9N&|^5IwQ_3?+3;n>My8 zG4-@2yH*WiiTnai%(!MHwvLWABfgy!dOD5^zMhWcPB2qGd zC3s>XMvT+tGizIToT^=d+uDc$(;O`1Xk~FT)M8(wnm+*`;qvUxFL%cdj#^3%?2FNN zoa~lu=2|BzEv<8704)0BtN5g$K+LpwSfymr%ojXY1&q%O zzf~lgw+^)YwQfnm^TGEa%#W>X)p6;fNPNb;aZc~Vwcy$;#{YHviVDAVimLdDnFy+0 zPw=CcF2BH3&-;3))3R5$8hL@|VOW1wWwI4l5&?y>LAD_1vGh+Fo9&f<`F+YY#6G&H zhPcMA|57V#pqQo+)A06F$>fZY^G2x7u3J{Zfy>ykT@hqt{uaX<2R4s{w6sK-Hie~m zo)>3xDjr~nc1v35RGgJJ>Su#Tv^H6XTTMgqXhU>`W?1h@s8&Yq!9tP~o{Ld8WR)09 z=q|jvO-mt8rbyCK>|Gy#saOy?1bI!Nv=&hO7c`uuX%XRLtu4m19|_u0Ml|D;80fMr zL!3pnYT`aIZ+klshU+gHngkY>cyl57g^SZobRpXxuNV&>&(n&w`OFxa31bk=$(qSS zdzs(7U}y(r+2(9Xa{42W{c>%u5G}L-3X~9@OxDkaveb&`W^_CkA67U%dUXHJDBC8V z2=S+&V(nfw5KyD%Q8VOG1QZTVQdi;_mmGI4sr&8ft=;L(+KvTS!bq`F$3l3>qRjQ% z4~ZP~q^o@skX-#=D(h zQl^8wN}Q`F#n>1ZUl&znS=*Vb0^IcG#zkm-<>wEMsn`PpIwLwk!V(9Ki#>a$fv(V?%uEXHNBVI8iOs$K-^O8O99{-Bjx?bARAlux|= z?yk{v)-e=ZbZnnrC}WwO^hy`2+EViUmLX9-GRJ!(Y0(fP3;n*hu;g{0Om*(RJa$uh z+l-W$F*=mB-w_wdb+aWabxhS@%zFM}&JRX1R_qnSa5KI= zFD3V7blXqeS2HLHk45sw(e@8wuea7L9D2W|>z!{qwIMwm&=^jpFwwjx*5?#U7w`2D z0uTHVm9AQ=;d$s&wV(Rs(~1e5YRU(>QtJ0xE>9U+s{fNG-NL7*i!DNVw)>Tx3|{6gxDY-6^m=zm$(F)B z8u8wm@m8D-HasEP-Xv=@pbmjaJh}HqL5i}OGvN<29Vb0P>h-J&K=9AlYgQ6tADIjv z2rN}CuN;Wi>|e(o`#jbkDS=7H(=#~ZGD#>%ey;*>z8hI}LwWQL9As_ngG&^y$_sQVwlhiM%7m0k3%H zJBUX2zggQ=l@%ToDHgA}@a}>KLGv3rcZGVIh?U3X_?&8^zs8M5iZ92+>Ph`>suJ-e z^f|_11f^4J;4zm$f#NiaHrgQtHuZS;qb`o!iME4yC-QlY^TpcpV3PF1n&pcT6S=G$>xDD*tD=rOX6zR?&Q5pfCVW%2beZriKheWtrGJZ~h}C_v zJ&eP4!|mf2HL6HXE=1_6+32x4s1bc-cy5))B}bnVggG`ULqhA;)$BLD_sU0njxU*A zK&b^wl@F^)z4tk7XH(NUGsLZ9FY|`A*9O6`i;)@6RY;KFsY>38BO8jbPgS~SsEtro zPq!vGwax2@3Fu@+6~R65zrBugUBaqsQ(% zv_1qK?faRkB!UMEX-M3ZZa*w={X{{Z?@7^ilc4t^9csbKjlFncJwB^g_$pXdSGxep zcHoD7>IW@E?(-;}i%VU}qe^0Fs*1z9&wfDtYox(+#7}uGR=$lp$XM>F=Vb?;h4cZc z12VcbNX&~%g=mCYET9Xec-5o>=Ewb%oIhF^bThfxmO7t``oK{Blp$j$Bv^;_*`r)( z+N0D3i{jPKj>bXkQ$L8~#0|&ECy?Y+4Q&~DW3$k5$>=-DBQC{oAQD2DzgEawE&58d zgGhKXew4FvEqKjR-x(6SSnVoHW`0EXf|=xK3>?|I-PO;Wb@BOVDEtaQ-Ng>Gmsj}I zE^(pAgrsj*&!4I(4SbVE*B2)ua?k2^C7c}SmzL1evtRFd*indsBaxtP3fd$R&4G_p+R=VRiSLY232 zX*2Hhn1$Gh<7H;Le2tDj*ZXc)h1e15{C=+AKX+I~4$aDBNM@{XC<52;2RW{8o-SBd zxG6mR&LctdXLD7Npc%prMud!5lBt8Cv4%A(r(&sM(*vReJhrYmg9)SZI!%bH!mSHk zK6he+KI~jXDm9E4PeAp5KvQ#Tpa9zV>Re_w7m9Vks-Shtbp;q<&T%qGZcQ(Z6#hrp zt?Rp>qAg-sBAnSbb_!iHSLs{53q`2p7vrHKE>pUm8DBnGKXuIphA<_Uz|oR`7w^RQ z>-!`lVD=M-w4CKJyA%1N%o!w9KaP8M%W#7zSeE zOF~ous?9+KKQ0z;*NlbRnBX1myj7}ea6D}C8KT9Gb=hzIF)M%?%0Z&&HE5Y?N8ZLf z;^eSH*0by3I4jYkQdB5f8@@R~aFhq#;sV=; z6=6qq)mQTuPZ+oDVR$$-9^{eKh!iZ4v^dr7?*>i2D4q4>Qv$S1))Jd(iYW)JR9YMb z@D=mA{jArAHOlfJgN2f~X1j}ZeiQYbJw3=`S0bVSNhkyk;(Lu;`NAs33{uh}@3tK+YpdjX|Dzk-^d!|g}1ug-&nO0$ojl$BFt9VI*AV8-`8P*VkV^7RAVs2@=2)Pe~X zR0YJUD4Vq-wUaCuG%Y(KKYjT=3!r0bpt8P+aCf?Mvp8;;ol$f;YpYOH#e1kvTSj@D z$0&0&2v}>${Mq7o+{sNBM+R+rjWHU9bS^r;Gn}94h>WqLBKSI2RzgbO0X&wTsv@=+PvOWleoCQ z9_U=nZK4ySX*rG!OQS?AoxtbMLu8Imqq(j-JDqWg`%(CUjU-_wm?SYdp?GZ4<5HM_ z#4=5TvT<4sPO)nBXt4A`lY2>8HYgV*_c?`b_x9o|5Sdo+fc9L5SYCp>^WG=8tv5A3*?;Qney}O$&Z3;;$J=G>1af>G`l67A#HIyV& z{CV+FeZQZQW|0_>gfP&Ov;7>4!`zNPjO=bUOd@(i_#jBmfC(UvC{bQd+KJ68LEOm- zPhTqQ83jY3C|;!c;eXC)oU54jZD)%2ORY?2TZ7XosGrZO*J&71qCC;)rmm2oyBYzJ#HVY04UA z9~1`y_&i8H(Oxt!x0Q$WuQ1Nq*r#mm@DzY)ghTWR>bYklv1yZSyk}-z!#g4gn5t9V zZ2jWJy-VoQ*0X6*IS17j&5K)_aL8a6k2{Q3xTpZ|g!1H$)t7CKPxDI)Ghd%PrD@X4 z2(zRp!JTwT&uRy^5eD@0!27)xO-wdXQCgt9f_Ytk-0t}2+ zTas7Jy=1H!L}mk<{mGkM=@x#qo-1koxs-m;n#alqsm=@3x`r>Lie}rW)M=4%;*sO;cV`wxJ{n075@hRFc@$E6 zLQ~WmMYQC?%nd#@qO61FQt2y_hzO2vS9+!!fBsy-@6AU~uUy^Gr4b~d;MK;`1A=Dh zY64otNa3rC`#AhIBnz$yEDD3A897~zdxNEg+l0ww*^v!O>neFQTG`mmn;dV|xky}= zU8*%%XNM7LL^kWJQuaAn@PgbOYUNl~Z`4#UA}^~1!};%%nxw&^q#$^7kkw@dC8C%k zhER?lB8gOinyE^{SgMHTV4Vzi_4)kYB??YF{Dn_WPHSW$>VZO~_*@7~M}+JE}K zgvoA>u#3b1xx(LPjv@J5V%H_&z(%!(mf?{B&yrQ$IxU|y_E5?EziP83M|r61y)WDE zykhA+eEQhE{0p)F|GuqE!Zt|%Th%y$uzMmW2V=E0? zNun?X$O*V~rgYlUqvm-B;{rS2gJU=A%+?1w_Eb%AnHpg%FfKlk15P-_Xeygi$Bx|? zzWPU210@z_C-@VFjy)w&-WTiWA=?|6N`DFRNp|z=%bTs(jZ{e<@l|bVUA;pdrw5He z!W$yZ>zP~LZ=HP)w|AmGCyzE)N27Ru{v{$ZE~2z}`?w=UnFeqCfg z5t@|l3R*04syueHwtFV(6*c4y*J_cMqOuuxm|~^0=_;7zt4>A2$KiBp9J!jHqwg}o zLb5C(soG218R&QzNC=uWU#pQ#z7T#cCNmPCNgwsmx+bcrezGxE7L{XHH9lc2C#4SK zJv1O|PWMNEaV}7p{zeFHe_s0w-?rc7i535`J|!;$Nj*P^1EKl)0Y|d zv4b_bXv6fFcV0okS%^b>$CA*o9jHm$J0?S@5~5b^U#J_3m)1oh9%cWlqySfF@jEV0 z;w_T4eK2Ea9E(EQoV2=FNQowGV|li@^=0L;`lm}GM#vY{;7r$4>nZ8gyH2~oEvAJZ z4(l1pwoz`M0wH1*qvAznXeB2_++w+^=e-#)vk`5|@ot6O@tM+U+lgrMk~0gax)~c= zCFF1t=V+C5hQ#Fr=OtSo8G0MXP^9h0zPVtBAUB?#Cu|{OA;{+(C%PT&7>;>0>D4A zR0`!Mci+u#bRXxeec_k^ID`x1__}7*q2=0=%q`$~4cYP^DDIPkiY1S7_pU)6^lOl= z!X53Geq}E&E6z@E4f{BJT zx%cC^=J_OE8p+@N8Qpd@bt~tI65CDg=YiaTAQGXRjfUmm{*0Ay8SD(_F`w!7Gk6LF z+p|wqe;W-VB?tOFx#{D8lb8RQ|JRrMCwaS6s`PVQyVzKs5-kd{=w~lgwB_K+BHDh} zUHyF(YjbwPNTE#EOS&SUHl?*m?=dYhc1By6n?-Y~l^L61K}`+0zBMJV93yzYAu);>R1Y=*RAaR6MZsvRQUSpR)~jM$)S*Ha_h zv95h+aZC{>enxA$(i;`I8kSf{M4?jk^nmzInmY+;1+(;lU>fXD19$=l92VbaG2y~p z5t6l;wNT$QgLV^=32q)nr~l4q?OKXFw*`8}bVMDva=%?wW)QYJUEbE|nz(oixp*76 z(pT+k-n_l_*Kzpt{JF;J2!Gk>+utmS-x#8}H_#wDuGE2KEhu>yjU^3o z4Pr{&VOEp5C$K{BLuDdQ!^du+*Hop`Byl0;icp~K$9I0yxD1bBNTGYm2Tm!&U6)hi z8-QYzjlPsOQDf_#<4u)`;f8<6DkYM{AN55Q&^aMJ2AK)nM$S@bX8xU6Ai^mPj2w?@ z5T#ylqgTPE^69mRce5}Rlf3s|VQ2O+>UsSBNA%mHyTP=`m8ySxyzYkgS@rhIAwPxR z?VLrtuy)!%c2v5F|6{3A_6OhVz7U_W+L!U#m($v}(|;TThmAHh?UhEGnc-McXt++H zND{HM|6GQNb&S6q9ErX^^0(u zQt#ZkHH?)IdPG8`5V?x(h%Fi{o(&A1d>5@iR4i((J{J2M$MMC64Iw3 zwR6bBvEp`!XfQ1p@JH{6B97x82Via7?s_nQCF(nbuQPaH^0G@<+xzwe-L`4mlL6hi z>EBIy-_9Fn{2zA0_W-@`&%N*MGk%v)3--rAVV`?4&kYwWk%wPX{M#=`f5BYXW&{(o znCSo8{G8@>anH>HgabcD_RBwJ`JysOw67Q-Vkpt0RV$VTqg51m_D1Hmt7?T{iyNj(gj!^+0<=99vPlnq%HL{=R9cp$e zl^t-VZ8pWJU49k+Zwkuf|7^6Ot`sG@X%lw9q%(32o_|-I zINtxZ2pW^=$w~CInaRnnm){c{UDy4Q47pzU9N*3iwx9NsRiN9Dg6zBVlAew5<9_n* z2chjp%s@W-Qkh~b+gh*7@@0|fff(qVET~}HaQj%L)=2-?N)_RvLbeFmO04U?C@LdK zcqShI_eN}O6OC%bVAwPqJk?&-Bt5KoNvfZx&DanYoRE^W#t3~p5T&*19V}3PMQ?SO zW2GdENboNskx)pxhrY}yyX!05tVbc4VGx&nUw9*B3gSV*7K^Q$rV4bFZxo#vh6^;H zKI&23G>QKl2y(BXzBakyA=ATq%||nyJ~u4Ex5_BCLsC;VkxT)=~ z(*vVbdSMhjFCQpA=G<((Qb@qTH?v>J_m8U=pdq6?7HSzw=L6*{Iz9>?xJx( z#?@t|`X|kL+W;2}`4)*2w-l#Z6+cyW`B0qaQLogH4o~mVkCc_GKgHg1=jG=JAs1;- z0seTF?~RJ_!x#3)Z-F0QEq`yHL3~%^1i_ln-JLMq%SnF7{;bGL^KPD!?HTd`nT)s2noMxazg@f?JYa3&Td`vC)_jE);sK^|b z0uSjBV|fb}Zistb4#CB8T)71`>AFsk8V4B6@T2B#vKf$^Jo!x5eO^vS1jx*?L<{1^ zYqMBXzdtP9>=Lt%(m{)j7^zfn|A@%1UaVgF7c^>*MisY3?rbo^?LFbiSYtIJF?pdd z=N~?hDwVC=dmUH({mkE*Vbzz+0;>BOVIPE}#j4A);No{EdaPHWO7A(>=pV(qarw)9@t@O|<7Apz9%r zP-$D%eC}6Cy0JGD$oc;AXXbr1?=>^Ji`1!YCydl7qUs;l)BjfxvQy9FAv}FQ*<`i= zh^va7C&ESTa1?FlogE;tFs+ACGpR`FjW|_zJ`^zPMx{gjKfPULSX5EBrX{4i1V$Q^ z9*~k4x;rI?8io=PDd`*m3F#iXyO9P_q+3!!LOMt3d-$H`-hbcUJAY=LIdjfF`^?&F zt-aoNzq{de$~j9Y?%=*^Q>bjq(-Q+j?pbv8rZ?D>%Dnocx)&y&teA@gJ=zA8jU7Q! z!#S5zo01%3IlH1%ALIsz6#6T5VbFn*CP75J$OY>#l?Jh|;8fpOGlzNatBZZm#B|ve z`i?YVxgO@%EST{Mt{r_MF?CV1qj^I4MeaDJ`ztOA<RJX1_q#4z(I@mn|Fr610|2&LyK#9;x#w{V# zhg^wYSbP!A0_~c}s}G{lp@>ko*7swPq2qzA$NjU0<4&s2e{PMKP4v^&F4!-H*fy4j zUsGCT|K+*M7ercssuzWrjZWbo%DiJM<{Q6Sqc*~HAy1w8PF~FiNFxx9mCBsSQ44Tu zPTg7@n`fjY$(*QSIyeq50gMTsxm+jOiT%xoH$SK0@U$xV{vjc}bQ6j!++`IzU73H! zo2&9&)YLWYQRxp|b(MT}c|;;#u9*{f=fh`13ix>fv|{i~_g(74$Nz}sjtGsvzo@X3 zIvWA!?II(eT-^X!0w55&op|PP11R_i1=)OjvBivnTh|?D2)lKp2`AaoWi%9*t~~rra9iMxT!?D@~l$Ev{olAx=OnTyD5)K)JT5T-o?pqPsr6q z6@yyjV4sAj{Ici|4yp4h_w0+jPd2hnCDV%S791VmWTPmiOp1mDTA68|Dn|a#62CPu zJV!h~`pIXY;z*niyyTU^bvF7cJ-+VFmOAYdH8HoHOz2^;6?1p1-B-ljf02AQ+qu`o z-$EiWhnNCy@Hn!L7i{7PQ(oTv+ZbZ>$`Wm08c+kg{SQWocen&Oo^vMdqasdo?;q4y zhK;%e7y6iPCz-N+w$g`yL{)Zw7N{`uyT`{T(%u%-QAFU$6ZqA8Jh@V*^)BMT;!v>m zG(2NdjBJX+%+L_p(aCVBrMag}BX=w`C@6yRaeaZ0*t~Wb;m{ZTEhj)!RccdhvsJEk z!e)Wh6qP6*yU=aFK4X64i+B;PUF zM-ojNI2(l!Pa3OKlBl!zlnN;jNm8YWW{Q1gJvF<)sC4mag4Do+A$fKHfm6$dOC?mw z$RhR;hgdhQn)|8ynBiZMw+389yQPddggDNE*5$d(zpGW=RM()0+b-YlZsjrXjuML( zVo(LTfRS&mb%$Pqi0uWY>U3eOT}}(HciWfd*IIwg*mn600))j5>;4G;Yt%zGDvW9Z z))5>JDpb^#?@#F0{(br3u(x0h@&&#%tg*QDwK#p4&h5=rT|WrST_1G^CSuog9Ezho zNNC!nzG?Wh%gi$pPHCRLD7u%7y4A?h;mUPXR z0D^XcGs!T2lh|oV?^+OMrO3@nVLr$1oxqNWzb&)xuhJ~c7RvhPDvCKpI$atvQ>8)J zIvZn#APN5-g)Cm8+=-zZ^^ILX#K#Q!Q58&j`3=}A79|1nJl4P=;s_sWMX! zcq|q<>bPdS@LX{bV!{SoetZAviYhNLFAiv=d~$%kPk2b==y;=5+ey{zfK!FA*y6q^ zWTryL^o@?gLEp6H+&y!Cp{Y)>S)8dStb4gp)v?qdovLw48-O@+(|AZ*zus6#fE1T_ zg1C*R_H592H9UXiOhu~0I!k6VF_PN=peE_3EpRetZMWAAgG1 zrNyv;g$F@gkB;r}crL6Vuhp5nVTbJvn^;D1aj24Gw-Yu7ZE-!^Dhv~!2WA$ykSpFQKN0kW{ z)Gy1a8`9Kf%aO;eCc8ajT&5p~K&~C+z@q80j~>ey2M&wdw{P~vjb({%x{4=wKUJPS z7|`uORq+V4deK9{t4ssShBFuFhHyuX_``DejQsyh1Alg>3SK2#r*J@ZxwW^BnV8wy{E6dhDHf`$=O0aAwc-MjRIpg4KKd66kpa_t-e~4 zX>M$bw|`3eD*$oUKRYOVJgI?SVnifwU?plRby6aK)_OAj-H^lx>>>NgYxuE{wC}HH zduu5-sbbDQ!`&Nj`}K=C@7~LW zKPzK3w>#%L%e)DP@h*^3{-~Hca2VhX9KI%t3;IYa4wD0=Pt6m1X?h%50}Eiel6=z4 z_v<GxwuIgiNAqsK16_)k;{BbMU6W?(Yyaes=6>eqrgo>s zOAeH)iO`!}(x+IQ2AQ56Q&+ZBWhhQZibt}*WSvx!TJy$5>%)sNNUP>&tN>uI&A4)6 zn{GG>4@6s3_z?)9hP~m;^fN=)yXH2X_auD6A#GmpExjc?URqfDh+bF@tbyDbWyAf; z83)_gHj9n;hZaFczj`M8mpe=(Xqv)`GGeCBHA_2$$P>H}~> z+;JyV?e(*cAzigxa>k#>bMVe_qCMc9D#o}4?J3$b!KwnYk=)N=>?9m>I=w~&LItI5 zbh3teB6zK!%3Vx;`|Qy|vN8E~K%3D)NQIOnE+J!h>;;+WpEbz11?=yFLi%FH7LZq{G!W0-J^we?fi&6^F{fRFINIdq6 zaZBjYv~g>6nYq!YKF;TS{`E!VTOcA_vE^8}@z^ikm~Q7n=XGUooKphz9la9DrjW%1 z#uL{5o%4<)wA6H!YykAb`$I7seY5FO$~uv({G$S`Je;b-~PRZO8v{| z;K6*IJnX;&E!PHwIPIG~T1b&nDau1<2VpR$wH^7KUK7Xoa_d!d zlS(iGD+ri-vp_P^jn^_hYjf}}EG(0kNTW*{+Bij5)f*7~ zST5qkH#vIl?Y#ZH9XR+0-DQd{Po4d)yz-#)Dko)50tm#t?x%Kc6176uUg*3 zAvt;1V`z2lSajiR{D$oKkdXb`n4WBD6bXpXSR0ftUP2O|uAz?hp;X>&T$FODF9oal zr|n6rtCL(L4%h@UH|K}VUWOZ6p$6lUL^|gT_K3|pEevkOP+U@-UA^2hzFJfvVRsru zn)3c5po%4rV8`c(wlnW+6t)hOM83f`ITm0gD6z%&H0+1Odt@+FPJncy{$=i0KC;cj z@`=Of&EPEToxmZ3d$5p~*5fK2v_3+IVotje2X9lDq?g5SYbxySs%Wb$P=}*=F&IyR zY1(o6T_O|`@t7;6eERvSHG$y^|82E8pxY0)zQ|~AIf~{fS}1V=c$_?X50Pg}zo7P< zFgeRN^nJ;_jDJxTwcLxQp^!v6iVCnIAJuR>rfNz~GnNr(OO=eENga8P^rM^D=$7-D zU3lgDM}9(2)U2^O$t(~Dj$OVuNF&nRrfd<~513G4E2>JU+k4E#NlP7Hoz;S#U~MYb z7}{!tgEAF!$3@*FtJJN&LEF7xAh0!67{OZlk=WP2IapHBz~>mZ@jW`pcUNyGmP6Q( zh;I_9fcz1<#F+I+w}-O z^V64szY^CpsDOq!-dsV}Cqh?Gz1^N*Pbli{9D&muhn?A>^v`?2{@>X3<71Fk|0WRN zOce+11?La0{6T#qzSVPE4K)t+ImrDS#S-^=!uhJVSZJkMwI5!w)JM<7Rh}1+c}#6-?RLBoIpJaQ>mm3dgA~x#dpSU z`cz=(3}K^45|n8?{Cy!>-Q{_p;`r#3n4rM_dIjIKRr8~dPIb*XiIFbl+MHQlheV^Wfek~;3S z>QMWU3d^(h1ce!2+E&H`Z5E-P*||tL=Z&CncOB|V!SC@bEG9fRVHfnE3FLf$oIRmjHf+XIzeBzB*0Bp7(!^19 zp9^$zMdbyxXo8sSLl~!GNZVMHp#a#+2i7oI9WycrO9cll&Pp&qJ?J+PMW*_KzrnIk zRoj!Jc<}kBwmwWqSXY(_82pot{~Q;aB;!65lye`AqdjDL&K1LHUXrNSXz#|49R*ua z*>kfvn=I@ZAj6yonCB_aQG2aaKJLu;T-9idYsc{X+M)OM+k#y9KiCQ`a8Z)Vn;N5b zqvU}z|Gqx%Z6i~p0`z=oVvTpRSaSyoeKa<_*=~j{u(=yu2}xAbH1li2o(6dW9oq2` z<-lf7VTWtxD)YWNXPj66X2Ky88h+ac!w&lvu0w&c1({u=i3vhUb0?Vbdz&Z|G!sHi zBTY-+^}+Xxa>}vG5OTB&SnH}kx!a`v;0e_0OS`=jVE0W&pJVByx`)u0+HMN$6A3|t zIBGh5Mo0IwEWBE!3n8F~Kw63W(J5^r+&bYyzH%^&?IJ6)nVAA7j{-$F4P5q|JkrAQ z!=j~TY4SIYMFK+e#| z+*ARNw1o~h8ziRz1J<*MiU;ZI29iou_QKi6V+sw1aa&~hOxVfw)qqDbnGA4W|$ zLD-N|^r*eecMUJqewkV~q&q_?J~!!HRR6w>kxhQ1)HUHqGQn-U@e(8GqQv~|_e;^y ztVD`5<0n7y{0e;@fYoE@b&8Fb|B7?#qf5D>K6|j#g_aG4KVJV9k?*m<7lpDAKolo5 zLT(|Ba!`hjb(miro*BM%RVkAs!47?H{iG(wq}~J!E@1tGhEh|vK}Mu zFp(%L*Jo*Q?Kbs3z(P6}0usP3!zGVoY!HmgC*JEh>o)UIBM;Z%13S{BU~2SeBzU>7 zD$s~q%T3HaksO5ig@8ObTKklY2T1m`sdtHjBowJ{buN@W4 z^;V#|T4jYavHcy<`S10{yf%bnRdLeXa;Lk)_AiUSN%G}74s4mmFNNg?EC@B~Hrn^X zde}c`xGd0wkC2Hi=}s~Rsg8( zYi~5OQtLw|Mua8* zLN!I5RpEJI*J@!!*=AGoNX7hPFZIEQjdncIp#WK0O{CIoZq1b!y_N=G&r}40!Wn7A zQJga`O;^WqkCfQ`SoE|Qbon4$ow(27bi)q3&*==9%e!sdz%|5^gu&C=V>Ysyibqww zroa2hh+Mu;?)plGES3iVw;p)s=61PZ+Y5pIhjp!$cJb|^lM27afmYj!k7Is^p90=I zOkG2IP;|?hkN^5RqwnyM?Gr~#GpO^F$gVy8tFrv7o7&a-{Qad}#waB}O(48h&^ zNB0Lq;PlCq%XNPuqP04# zEHphp?uAG*@0v;dFvMkl=W~3Y!2DWjf`i#;!QyX9@IcV{y#TU4T)qTHQ@)ea>?Z~P ziNl)-xeS;~R1ADDcmGO@I8y3$xmke(c;)z5q&tBZ$l<8_#YU~~(s7_do(~S>JY}c} zVZLh{g`{#^PTA8^u+GPaQkbn1MDy0Qk@ch057N+qIr6yPJhR(*Y!$xdw# z6BeieOoxAIbk2JICtxjKCsWKaCK`=uJ|?|q4X2K7hdZ}VK#_Ut2u0)PwGqeUbb9v%ro3Iq$%^V{0_Ss z5F7|lVEMcg#yY~uNHT1!?{9|&CY77}&7TMo4~a;5OvVB$%3*(oDS_I^HyC7n8)X$A zY9F@ow&OC!BhYau5}fOPD4E^+&~+fdq`9fPn@77(rVxdhG+^zCSpHBzN^cV7K68S3 z><;RgS(0zh5F6LVx=e9t@)LuLsa(TdWOt~$&-IwDerx&f9OpIzS84?wqA?l}8zH-w zQFtbU&@|y#jLm!K@>CeJQ@n_<8jR1%PNr=XT!@pGe_$$)Tqvb9E}UsT+F;l3AQN(t zI?K|!JAc%i4{`Cj zOKDDaL4C$bEyUM@KZDftnvgUE=`YR7BDqp(t+gO#X<5=D(xQ$zJ?GVZJ-BwaPkMHN zhK8%50+H1}c<@wzSmX;3*z!E-?)<(klr;LokmoZIC}YNglx1AP@Y^k4rlkrZ5jvuD zPPW;wyt_8f3llHPTOqSG57aM7TExH`1@H_Eu?&*yMvO!A=;2ns(-6A+j_R(PLt^uQe_D#5I`dv2rPz#}Ft4dPK|L11 zpUKdTgD<|RDPyT1a(PBt=ig^CDnVr9$XQT>9Sj;2GBe8c{M+rj#BBPIaeYN`~|be(3szk|v%>ZKd=_TKOaxz8ONr7>-cDdTwi9taZP9Eq#m3 z6~EzNPEh8Rd^kJiM|Q=#S4|}j)y2dyzpS+IJbJmbN9QV!o@i_n<`-!2eSy-7Y|Q1; zPq~=4Z^dX?Hf$t%jHgA~Xt9!&)^ra4QY5p62G{xT4Ih{p9$rmL$(|)IK;6FNR5cgP z!*GqsJKL=M?mLru;yY_83*f0Zgp5jmrswznZ4$fX=3)X@>B;{}YJUxZ{sK}DgQqWU zHR;aE`lFM-;5H_Q&>5h_IZb)6qr2%a!Kjua!Ns|5+fl7M%fErFKssR@0mNcsZvc** zG9Klzo+!p_=loq>r{_|1EUpXB7(Y<-WciCxsE)k*qS5F+eqk1P+1+7l5%&VtMT54(Lu{VQnlccBlqBWIa08C8x_7u6Y>J*fl-AoMFlR^liku>s*GYWwN!OctLCG~y!E?UQf zVe=;+9H($sb{OWG4`;gyyzd}3zgnH9`j%7PWcsK=d(!Tq3L&J%{{s>zD zb7HO0aXOS(+WR%%izt^T!hpdbBDy&D8%;ujK%-*U9bRr+{WtSYU13o~Z!_Jn zqJwdT02Kn>cxikz!J8Gqz`?3UGkAO`GGmLV)1gl=#D!oKnMC{drtiwOcObF%zmPm+ zKmTTK_9=W?p-3K$i)>rn)=_=|OAfEpL$3<7;8EiVRq3>SYk~FYU-Y6)u^ONFg^;L4 zqsze(_3jQCLjI#eu0K@|0H^UAKVT^s3!Q!~l45zOUvnQdj*5nqk-6j~eBiH(nt-rG z>Btqq)}RrgoabG*d5%hX&#-#_jc8Ec&9B}40Pc`1^mp?|@!itiQ{aIv=1NUG{8Mpn zADlF`y;n6x>fL!SzhJzLVaM>NUDe%e$~j0cT3U0J|5D&>Tx#G}arD+1CmCXZGz^%l zQBgO$87Sa3Xf*tDpcx;iaM?*5R7>wUPd6L8-d7s8Ona)rN~VOX3pBuZcso-b zfVtn3)KYr|yI$}WB2+jUS7N%N{uY8LBINq{fD7Y%|9i0X$V!-waX^g-nyDlX{Ik(S z4PGjKxmc1;o(73_vNh z#D0YVM(kXB13)t`4_h}rGu{PRydhbVoC2b(aSX658XryO=kVj#c$d!6NzFT@^*@_q zIi#<;%};+Uji>*;)nKKcx4$#I)jXfa^As;4K^Av$Dv@DZ*~#?6?gxAD|~ei0_{2h z5HMGO+PBu_KMz1_yR#L!-s=b@09qTQw!8s$=W|E>aQH3`IUgX`ssy&n@$CA2;q1W$ zRF>-L=d-kD##A^~a{X&<3Xu(9mcveJ!3ha)j3)JHGA^XD971feS(UTa=!{+3r$ zsW|~xe>UP?-qnA9-f@3-JuZ2sZfPwORbw>syYX`Obws`$KAD|o`!Da-z^nwoQPB{f zoVu>?+WeDBXSS5Q)yS&P+U$F9zOp*Q|BD z2)6<)|yG6V!_ z@)U^2z&ze~4yc5%0>)ntL>Ax&tSKT7ZU+LYs|1Wg88~7W3+N93M|hq7?^Fao@I$ii gbbt~5|6Ssq$+dBq!*ngq77ci*C}={e<*Y*f2YaHAVE_OC literal 0 HcmV?d00001 diff --git a/demo/documented/tensor-weighted-poisson/unitsquare_32_32.xml.gz b/demo/documented/tensor-weighted-poisson/unitsquare_32_32.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..6acf2ce6fd3b2b47c90e0899e6ddbace3db4a863 GIT binary patch literal 21613 zcmbSyc|4Tu_y3Gt#!~hzW8cY6sA0%1TSeKDEm_Czp$6H**pnq|Xt66IBx)=PNf8kv zvSmpL@w@I(&r_e*_pjey|84p&rcC(2F+oQ)sJyHc@VK%H}(&E^uNOyd`7b3H4`bG@ZcXyz{b zQ#CvMG4#aMS6k$z&SLsEhS;CFRjb5t6l92sDB4&)4o5hi3dBW9c2mTYzd<}CGYDsH zPraIT-dY<$edxKNe)3rjcG9TY^ulvb*~=&`4SYjd4vpzD49WKQ*(cU09h#PXzTg&H zynpYbq>Fsv$3z)fS|9RDVG5mt0`<%{$VUdAU%Xi9D3Khk^87Wja+<){DI>sn^B$XG zpS!W?%^$b>4Ypgazdlw{kt%_AyURzP&cc;8P z-E{^g61UwIv zN};`oSh`_hRD5Z>N$s`lLZ97BjGq69U2*rJadTf4yKL=qOY_qACz$6f#rDrB>dca?@Vjs^uq{N&ae8c7jE20u(?M6^J1s18Imjl8EdPz zGx@#kUAx4c!T9d`VdSxV^y?l85*!13k;b)n2Q5p&Pl0oeHCSeLcQb9~okQjLjU2-i zZMd1Ei5`e6c-Guby;7#uWAdsymR|Z?@LkXXR6Eo+QR#}Kw^oE(X|VgRwyrD zx<&orrelioozX!qn_Pd1eMc7|gSMGTOT~?oee5qWPh*a#>Rn`u4HpTyb9DIGPw7mf z>Y=l17e*Hu4Uf^ETl*-n-=W4h#?x&=Vsnd~_A!%zsNdy>-m#24qwCi`1-grOFNU~k z@o1DPTs+LGuHP9>9n;9B!P|Pf11WWuDK=7a_h|>~qw(Ow-@HwW)wtw8(y^+SKl?7! z_t8PiNBL$4r__i6XX}R!4vA0~gA;XC?xU>JR-?6T1J`A&zltCzg+f0%wD^DA5Ox3P zplzl6u7g=3)W+Zg>%~K?3h^BpjQQS!^hR4F#s*8@<>t|GPfB5k4iuA(d01!Te&Xh7 z(I&^CYxGoRQh7mRhdU}{JKX0DjaTNKXJb^FFKmVuk5RoYREj`|B^{Gf)S)U~psFiSjZn_e zxye127ODE|&B>c}T|beDhXf3hX^%LVM1gR;8aMO>`nDhH=6>@^RNJ8)%W+6g3CL2p z7awDmp2lL39%;0DBFlb%6)h4{(*?7O2C2Op;nGQRU7D5^I z^(XIjKL>l9l+ttx8vIzlp{G1Hh-n?+jeE%_?5-ypE50jEK!2U@EK)n(NS16E z8g;LAJTOvqmZwvxar!6H&rkL#myHCUj<9NcaU^;Egg3SB0*eg$au*#-=Fz>YZuNGFM=l_;Tf@FAR;wQb*9^5do|9m%vy`J~;HK{{{^}o4xGpyj=$x?W@#cMeYG4^)ko4%8pVwNc0Hkz8#VP5a9^0`}9*UGzl#*38du$(#qt2sFwIo)a8=2yW6CCQxOKY@LdWhNU9(Q@T@j?KjeQWoQ_O~d%lshEH zQsre&-D;KN??PTK$;KMx-uJz5a{t*l<)hcgl;cB=Se;bOZ@T7zS4&(4aPr&?sg5}G zP@l9m GRSU8L-!u}Ln>#iKyzA-1d!)w%E{hEy(efQ7Vz_&q(>$Z-hp>gx8+Cnc_ zW5w(oXF}s#ziRhaw5}AtqiphcBz<_Z6)(R_V!EE-{!04rnKpdI^4nmhJ-+up478T% zF}FY2A$zW+Ebj|CkfR7KO@RBW7>pn#+*F#djP-}*u z{j@J{6?l=1oFse-e8@U+k|PTINJdo>Eg+2xj;@lq@tPFmSBWtEG%7)<+aDU%EJvxEGnYqN zhKIB>mq*!$heS)5kPeb;VkH@R(T%{!S{@k$jI8BR*zk~mivQ`|InIM2x15zLEIuxCKY z0`=2>o-^>Eq5P`#a^<5}ePbNl4ul|QAUz5~bO}*}f<>$-L=dVI%kqkkBGmX_$eP2p zs(zT%7A7+V2OqheSg+F#_QU))vtq;Dux#bm!H1%Z3Hf2tH!v9!YVaZ9P(Z>*aTo4@ zOyzYbxMhT}(C9=dpb!?C;6q8q}C)Fik zN167(Qo9jI5f_*qid00O>@l!eB(Ns0DAp2Lo(&#b&UM?a07?WDClIfCsXqqU^(!Om(S*zDR`v2U)^Skl)5 z;~~p^CGz`%ChZ{uWD>&q?c4rj_l30DPav>JdzCf#NHVv*%v1PCB!|693VfuB)n4Hu zKuq>3GVpJd(~2bbTf(uzdj<>)CY&%5H%%1EgN3S`91d@QBMXGc$cCM@Y>IXem)L9`W=U||Z3RH!wUe{DZV;pg|mv63YLPqfL9)B-SV z8Mv+x6Skln>w)13Cod3@f_1}4tEFXOdIfNicv_U~M;MtlC6ZbVro9H=Ay~uVeF+Sx zBeAe}2Qr+YE=q{_d`4ExtD|e&!b0jFMur`!G@}3l__vOLMj%|X2RHs zP35B)MmV4}h&B_mPV6l`M1k^uw$M2EGI&sac^W#Pw0}hbF8}A#bJ}6bVJXQ221F#* z!wI<~ojEobuD^ed)3f|Gc*rjJGLrUgk9WfCD$P5v2`~z-bm=LFb&?NRQd4~1a7rhd zMz(tFoFL5>)s=PwlOTc4lMQsXRCgS!$@)*qc5bvhxVP^|Q5=%PK=!Tsr>F+%B?B1~a1|nh z3kp(|XGdV;kB|*tM;4Tj!4>u+VBd78!470FF^j<75~V5^(Lfndk?89)n8=aA$-x3@ z4Oq9;|Jv#fk({rJX#bWSa9f)SNsWeS^OEckRGHyqT>$F9v^7X{qXn>GU=ws4L7Co! zrB+ZQMU1Dm)o)DH&|W{rME>*+?E579k#6d}9^W4qRJ=dgw-_X?l6{NW{V-j5O`5P3 zPjZu06f0l|XNo$6%)SeYa3IHB7snRahlgS4tYAAu07_zuyx{`otSFNfSn4Xd3DYqw zK@wrVD?~B!4ISanEK?v93l{`6F}o8R4>k;$OhE}Kl#y&ECSb!LDRB3}FaO;e#9bsU zQxNvoo(eiT@2R;m5PwmG%E8_sDdqLGOVmGY)#IuL!Y^&?p?;Tmgp3IggWpKvcll@N zhD5>Gpa)+2z)7Ak2zv1sSyLPM%V-+i~Z9l z7GUY2fvIa#JQoAqqmD6=YE%m&qW8pocLz@xUF8(#Ow6fSrlGcsOrx?a6J}Vo;W@Hv z3(5mE5~T-+y9qI1r^S#cBN$x&5S57>7DoQ3t)K{$4mcSyn3bX66A#ruD-nwPAGHP+ zaT-J;p)xT;VQ*2Bm5clv)0YH({x%Bs+=*OLPung#1^enmX-|Cu2KMatS*62p#4MFPwLVPeGKpnt z0c>5CyqZiLTkHszU}SAKX>AX)(m+g!IKg_c6a!fbSiwd(mmr;e_B<>aLs?CxjxGKg zzEgV|3tPL)aQ|M(!vJ=&kPhSk(4zdy4D&!?PP37n??Dd8AtH9FZ_84B1rk$=AW?sf z3`#!98|X;}wLSGh$?bdMa()3PHR&W<+9DAVA??WWDDV*wSr8&iwE&MqWJCW2P`~_SI>5iqLJA}z=5RT3yx(g2gUddgNz9+18D~Mc!{JCLlTW* zP>-XB&{{k4pV0_0oc~{UB=q0op#wUgNVan9e?}>XDHlQ#En9RrGWvmI+3UT8(Ff}{ zaC^!fACnK-91&3m)JtQ8{gVKPsrkeA&pd~vq9{z#WwDO3q*OiZDDdROr&8b$Zm^wN zilpu^n?hOCQ6HRl>(t*xZo^Z`HxJ>dg*^qM)RclJv=Di)8Qy>&|qltnwZgr z-{L(iB9eeIas{mjzloeSXhn_`{J5@PP-0D@&}>++>B)G1CT}i})wo^6FT(C68qb{z z_5up=K=16M{UJ4~qLUXfr_TpXz6grQoo6HfoigTQ8un#3#WCK9P(z5~_0l6kZ;0aK zj5VYvmCrTpBMk-lSvBM; zgOd2Jsfb)HDg2B1h}^y9h`wuU5ibr=v-WYhKD|%Pa)0+kO$0lm*i98&gcYO6%^%^6 zeVNCe_Jtn_T~Ok8sgFQ1Xbsv?UuzHWw~5-lNky#@f?qAHdUe^k*k`r!^x@n(#Qni7 zOn@t=0Cr396zn1=A1X-xFp2Ja7`)Rz6jr3D2J>O$#@5r)p+Y%1vDLJ+sBtX{qz5S} zm6wta96weK>ol@}4JnGi);tVh9f|_L|1j{ULhYVBx=Jc7=riMSb9Tq$=A9q%$zKYk z)qV=@(}k+PSe!XQ`x(DUk|lSo@k>*}mjr($$w1mN#QCtgc$co4=`O1F@^p=6%-IU7 zwW8QT7{4n&mkGyNv9m*#huKWo>l0lvGBa*v$e*RTVa#6t#D!T{iRYc3ufML3eqq$f zFZcM=tX+1zCC>;;KUXvzmk)c2m2r zq>w*Yxb2CQ*36Fis_c|MS{TBKPcZq+t8QE>tlIgCVx5oaA4{)zb*~sU$gooVA^o3L zy2CW(^;9B(mR>ziiqL(uCED$Q5u4BLPO5f}p<0>KRqrd!+Ac9Ph5vT)j0sZ2vA}2P z7LA(TE;4)}DPk=gzxYHn@Kns!1j_b0Cgy8@x@sLdl$ZneAsZvC>UZLILRGIA|==-6l^*K~sEb-@%L$f{wR$6)myD|`hS=70>p{iZ#y0vu0F}^N$6erD6 zEuK2ye9ukm9xC4a{?XfAWao)-_$Ac& zD}6iD%8D63^BdY__$S*op55dgKgJY!3}#cYD}UQ@ze`NKM$8UD+QNB6akm+9Hsg}{ z=x7XW;0uA1=UuC3xD1?JQWVGY(h(jCmPtt-PA;Txliv1+){oiWJI>P6zu?)ZDyC9D zY0s^yn4Xt6>Ajm8) z&s{75pFdM>=%F2(lvG+9`^J|m<6OdF*|JL)tX5eqm5&;qb5qi^^uJNOeu42slL?fbTz@HG6g3uTv(9M59jvvR|JLsegqhc|yHPpaJLiMjN;Uo2iw z?!{)ck7a|9BI8yDZyTNE!w41QSm5kvWLzk2Xv)?9PagW&v-{4%Hcp+NHpA!T0vL?w zH#lxP>J8R}hau?_xV2`UoiZ}1t(kw}CRCZoB@gOraWzrQGF#%-*8!e;n3P!PC`|X6MRS_e^6L)u`-n z39l#!+FR_eOC_X~pXRKRzsXZXrpaX*SXpBtTt3p=J?ViGbZJiS(iZ-PF=2Ki6;qit zW68>UH(PLin8E^Mn^oJm+IfQRuI@{FQI!`Uin?iX3I$169#;}I{ zp&;ivqZ*T)NunF6tO}!)lMnpRhj{67vj+I)ohyy$XRe|GxGbu+$@i(0F7d~PGf+Hq zj12busr2peB0G5z_GLPiW13+p8JP6d}a1fcixZ-sFarW-6|ZcKrSwjq~_kv zl)VyrDk}nUpGFsBE9o@Clz5fd@sbTH^)*-}!x6^h=)5__tD<9&t)MeAeyFxyYD%C? z3OFJYRd}xq7nEHkFjaFhk#Xx))S94tfW!yt{66R&LbKZ+@2Dm zt&=lrzg;VT6oIG$8TAdaHx1G_Ws&a}f04-+QgTFndJA|~Wy&tzf)L9)fF6|gag=q_ zvf~bqM2_PYT}A6YT*ja&9Aj)yCsL(B#uG+R#u|{3ope*&X+#6Ub zKU%=mZ;b2-9y7aRX)38k=voeXLb8UtT;X{tk&^wuT#$h_^_O!~!w2ChX1xPQf@w8C z?4`RS``Toaw*r+_!_U(Bzj;}{hMeK$On){Ch`Qbf>#rSM#nCQ|RiV@z_3!1F&XkdY zc$FJ;S}OM>ogQyoVS9s8$<0Hh*S!bHZ6wtkBQYSB$XtD?Va=2Czml2uzs{8HBDwOB z7#iM*zVj@EP2uYCRUEyv@9x!6X?_=XQVoWV_FEsu_a(uON)bjLyU?yn#&YCg7p?28 z$tCq09Oo#H)@rEaPN2kNgcdIjH-go)Js+1S*5gW_o8GZ>KFHk+t|M&ZS-Fq@6ffuS z9CRNl>W`jEya(|z#VX2`OOoyK{6&;jOGO>P zkYA7-@cuaV7m?H}a&Fe#LHL*F3g+nQG4oA|#n0b_gYSpVMQNa?aN$qyR+RdTh`D<+ z3%HEW5HHb|-`>Xqkv$)^*2`-)e%&!r)BbE7tJ&MufR^cJKr3IzN}?6)gQ?poa>@=! zii`FJ_I^I&*DeK9yL@Fh*S`1Fsw6yNl$zjGK$Rh@8Y=k#CymDhz)tTUHpr0Or~Xks7n=E#yNFV)pWi2{XBeRYXFKuQj<`l4XzJ=EgH@if(o@0S3?W40xP$JNbT%`=a z9ED;%@MUsTS=7)Ho+~zUj;V^ZfLsGG5B0OTTlw^%IPbcD+y!C9r%ew`N&4)&C)*z& zdq=4qF|rmtORLNW8DQ(tEwX3+!(`v+pOr#E@n+CUSrsdY&Y=VHB-y#wp&Su_jYAu$ zs!B33V{*h+E6KTEWGpM7BufN$h-lZ{YpXBt*|{)8=dtQLiBD9vy(FZKQ1mL~2m&w3 z`E0A>20QT7-1i1nYN5-QRLgw=NPwo5N~r24_i7~8F_sewq)XFjrG{PrL|U#yn0bA3 zy~4`zG1oBI)B1GB&GoGU(iUickSc)ZZEtwpER(ymf&0K10*oxVkn#H_y@1L=k`S)( z@6rsfr5*#LTBwJ6GnNB<3j}N1p6QQQE=`a_O9ke>nX%B@?bLlaM1(Q%on_DMC|PV# zL`on_fV248Ou?NYcqjfsOjfO&cw$!MplZeejSKDLe%Tq-G$pw& zr}$LfmrBstHF#2rx^UtMTv@fsp>H_o%=#6P-N80J)2nB$9M@HOkImq+0V=U|_c18U zv+ktp+uxVXSYoQqS4F1RvESze>IsE8qeP%D$@OU0Pl`4e?SEB44@Ip`5iPs3A3-7GL9w58 zr)c7RMI_S&DmvyNTwKMs5lY|4OA4;aUeKkdbcs;Kwb%VaCP0eV9@$hp&{X|!ttNl# z{5;ADOF7@pwWYC3Z`Kd0vZ)fd>W~y@EkITiAkw0CG(uN}QzM1aaGq+IKmI+565tVsv(Z!#pN{#I)b@&V6Dair(2JSSqhv zs7)@%Nk>`7$XTNK@-K73BZm{OP#<0fE0~}4*%JF@f4~)8m18~=V;JpTZQXBNknwEQ z-`8yy*Nvmi>>Y&*pq;lKtN81z{&ZSG7$ajZvb`HxruItR<803Q)DAssTfB%&GEYd8 zfat9G%MdFh#ikV~auosTqAYe$?LDyrO0kz}&sRc>*}ZV0X1FvI8`f<7s(>(1A6un< z)or4@sVs|_Lp2Z*fjl4r(~HhT5m35z*N<|&Zt=2Cw!>P(fhdrjS7EYK`nMKSGSFxL zc84_MFY~L%q^8FIrrumqWteRtrW)Cw$q7sXQV6t;+iClgOF$V!6dQ#9Gd85d|6bLv zYu-F|aLtg=KH!S4iZOk*umyIOC5 zQ(~mO<3(sLgc^n5VE~g3p`F(nwkp1TE{H)KW9Sb+O2u@&oh}31 zCq;f3Fq0NOlRi3q<*W!B#3R^(2*jX;!72vOI%mlPKbLzVbzN`on=yR6PkH-kuPC$A zBfA$*n6#ANhg&yui}ienuR8g>e~Qcj867T}w|rmmb6d?$ZVQs`ppMs4e51^a-~x5D zJ8r zg1$7qD%NcEF#uekznd0!5XA#YP*u5Lkj-p&_<{xq`mVdF0gAFF0!*;Fv<;%8EE53~ zZbRd%_34uPvVp{9*|`Wwr?a8tUUE4PD06Ou20oY-7_C0uvK3j-@AhyqsL8G=<= zwIUEfz{nGsWA#BF#)3u~) zuQA)ux#ilR1m}RROp8ATDhMq7ub>ozZ-IW&loMJG76DU^#s}PDC~;W}FFg=mcy{gv zU?Y1SA{^_6H^_;-a^EberRJ%t5gKasSI~vx%t3?1A9BjSacH zr17A4$m9KIEB<%38qi0IyZA#r3&cFVj?r~?3FuB7lzg6&Qw z)n1naHkhO=0hqZ_vX0#6pmylIBVI{YMKzpt>RwLmtJTeyvm@W8a8h+yw5{Y)~BHHPp;~w`w<~G*{ypU1E@nmKgK)a^UinTAvs$hO0!-kGSqgKBRR@cj%*rLW{KDWN55hfCBi zDWOmSb4Oa8*@2W`B6mVb#She~CMkjwx{Jk-s99D4wV*sErs6N~(fq+yd?Vne3izEf z$o|;~Q5S;*2^^{r<%)I)Yylx*&)@Jsu84vJ!~vv)sjd0bgtnW+=;U6>zMx6(7oc-)AJUIh7Q0>}mxl045HdxQMqp#6&276lrO1 zuZiv)#ynR3 z5pkicmUfvq3YF&x(8s9cJYB)P4N-#{>&KuI05k9oW@Oz2D(-YYu=r6p0n-C5UXY|r zsUyYDwh)(o31CoB1uF0jatvvs<8zT~Y~l(Q0Rpj1%!yI4qX*mk?oZ`daFMOK+d+`c zKPD7KBs4r*2u2<47{r0~u{xB09tTgUV=qBhzJLr(6gLvm)%4{@e@I{YrI0-;&(cNd>~aw71EBmC<#OCHB2# zWhpyxc$c%l8VCv)BpQ@A8K1gfF+c^*(mi`SZJ}*Kn%+A~TaRG_p7~TGFenT(fpii1 zDvD&)(db6^frSbuxE=8nn|CKs>BSeJLTeQ5Zc??w8H?#Z<`nY=2C((?iHaP`gz!H;b^Rtu~Czr^SGoON>T@W;gi34p)Eakm~V z9eI86Kx_{5WAXD}im>VTmtKVYp<|1tZtC1b&9fm2mre!I`O{_?5UPI@ee%x_KR)NH z-eVS1b?LXNO)i>d9uMU{kkf*GmAAzb{#(cYh*doNS0<5$e7gU%_qhIpvICLhjP>Pe zO)~q7^M6aR&iFKtXxj(6;7?%?kBv*iHxi*2D2=I3Q8G3A4x*UT6NO0i_CQxyOGd40 z*SR;*H)J^3>KHA%gYTzni?`lYbZnmj%Aju?B6h*_NqT1Y^^Nf{4>CnNW(*+_g< z&kGF@@jd}hTr`WETY}Z{zIgmQBIGIHBKb!;WVh9$KZxQ8_y3|MJolpf$@nog@B+?O zlvgnMC#!hOt@0B$5vvvI%59EQ-_h4f4Ue`S?ZZj$-e-Mxp?6;Sk!43|Tp7U+6&$eDW0fVuzN>v>eKm<@amM>!x{!ixC{D z&*)Shec*F4O{tn!)j-0{AP!+Q7cEp}kEYACe3N;EU3Ml(=!-r2xPinKU>lvv6q3FO zg?S5X9g<7Smn++ZZi?G|UNk!IjBl!F+Ph`x@_EP9Il5NmRBy+L#$i4Ua4xLNIzAic2PM4mC3T8ek z)ryYxxdOqSP{EN$cA77z!0w3-7guPIP}z|lVZDqc$HP~27*%9aw4z7Mysqrm`na?T zP>k#Hq3;ckkF~j5-;(a8R!Zp`I2#CzZ|@1{jH6iOhTXho>;lyFG0%+z6irz#o#_@dVZd0Wcyh+9w6T!=utI~W4@P6dYMd==>q2k{2> z$_Ib`RNvtr{w4E6s&UL$_Pb6bR@!UOd1GnfVR|&9`m$>jsbV40Mt(1vscqy1_`Uda z&^tp~fh{=$r_iz+LKyjaFQPF_UI0xr4ib&JXxUAnBeWhwTb{hYB`>6CY2f9eD_?}_ zhj4vQ;sK zmd**_NIk5G8-DE%f?ON@`Wm;vsgzn=_*h}Eq0ODcP4~{ER#NoBpw`>H+Rx>@?AI7o zIPN}(tNiKo+6*nb54dCqJl_7%d#5Zq7p{y;$iFq&kT&15SNRh!==hS1OHbZUU@+sS z-A>9QoC3eMz)AQnyXvo(BNmTnXTi&n1eTVVqv@2&TJ#ZEJ(3@3f&UDOO1ZZQa6JC` za*p>hZB312WtdAXhbZe)et>EvE1$>)E16YB2&d-W%JcAfAlt+tnnkqLOIAKGY~>Jr zOGFKll@r-592Gj;sjl;G(#N|Rmb31kTBxDdlP~#J^t#7W)7ZmIDhdkI^}x>W{HPJW z!lB0pociNEp)yImhCtVTN6(q$IO<3 zgpBtSm-Q55wev|n7*T!wfj(ilva6dJZENgTI6>eNs$ocWygct+M6)b3CmRhSH&K)X=!`0{7b?Lm@Wn0Wo$_IKC z_kNNJDr*&Boz8TOKK5kL$(Oao+zzvxTq0W%Q2I9CP)hjiPKrhJL#4;U`%5)>g!AuH zdj=L0rE;3tUg#ZfbY`=R3Ytq=3HO*9`Wq${Et`7;Vzw8{Pi4Kd8TJ8wXyadWK6yi{WYHUQP>iX(?NqQXmHpN;P8-F*r>dKR z``2>~4t0TlSg9Jm>$4rQpYS9@xFE_O8!n-R;xR<$;ztHjRUZd8-RrNQ*CWD^@xhn9 zHvYz8x*XG}0OKcbF*-`pfp1hcc`wH@#zpsVPqd7mQ8yl95C+9L&~F2C?#uyrvNHc^ zwsOHgHCj2vb$%|%({|PS?oQ1;1=W-B}loP3@n4|w7L-d5S0m>ncaRXNY?1iCoYhTYjXqeY`@CvO|GDK}MP*@O1C_h;A-<31D|oG9g@@S3#7{o{FfJM5rpq!N=NJ7ggU7~eg+*OK zfMyLfWd23<532xL^~CYbPo9J3=n(L@$(C%*59c&%pY|}bjnzp-sILuHCvYntj2ne8H~~W37j=nk`KiQ0)u;CDq8*&{DxSh%JI$@UDp|_c_tDo1 zUbJRQs@uFZkIkn~o}bOp(bt3cH!D0=9=`5>t96@0R-jWnF53P758iJ1E7a|)dUp%I zYz{hku4JB2aMX=GXGS}_Juj;iXmF6IB6|C8*#C#KlG*LCPb)rSKW@zvSqcu~UQW!^ zZzv3wMI)%!^ot73-|A$!d~gqQ!{bIO1vqM(dUdjznl5Y)ywa|)z$*=o!9-OAl zE}Kl*9##zeagciZ^d6f+Bqvok8^yy;2PF76E8&R=fm9x9@*C^jF78#66@iX>CN~GQ z+s4m)8pdg$)lz?;A933J36p<8JxCMwV;tU(&u`CG;wut}s<7}b6S6a__@@AUX+p1f z`u)V5BMfUp-f&T+$5+8NU*Ln(CPMA^N{beOjTmFdc5l(g?7OP$dW;kiS%OC}88B)b z-0Zc9$}QnN+Pz!&KC#knMa&pHt2(mR=6#A6vzp_*Q=@|feiSw|L5?Zrta@m*6vA-L zpIo}>A51_i<8vQ_r!0jKlleP62&;G1mD|&Aa&{#qMXoWN_y*qqX)xbb^G~*JX1_a} zfA-@md+`WEA^wx8d4(@em1Q+wjqg^T#4jM8xch}PEjk$%0doB&wS%8$E3@R{03B6y zOro)L;1k6(pz^hH7DT@c$WPDFRh@_$&FzlRuAwMahMR6czNDb)675vI6IVc3&I1R~ zn)i;*f5j+y15tolgy^&H&$NAWmCYXik+K9a*q$2?ir1@eV7#1H=ve%^cjDNkBRP}6 z#;th#$vCaA5NJajUCQ4Oj8Hee~ckbhP3Z31_ zjv*r3Gg7I#*7g!gkF*wJ;jP8+e1c=SK4+d%pp5D!?;LLufCY*DIn6iowsE1cpmT3f zJnpqJZKc1?Yb+r5)vb8rlT`i#0iJ0vQ`FZF2K%!5i+9H;gKoVHT2^kBO78=j`UgaC z76QWPMxtMxInOWH04+O!NS89(puf!`9)2IjyOxGy2tXma8U7D8BnEmXI^!IpZ6Qzc zhpC~lq@#TUL#O6m+I)qmY008*L#&H_`8_0p3(%rm#AfNi<%MjX#y4@AB1n0w1+U@q z!C!kwKc=NBz~-5Hhg-1$c^bzz75e{E)Z1(G5fTfUxH8*h;m0lG%=thM8dH4Hiv7r-$b*`K0Id)2+Az(GY!whaVpL!Z z%b#Dr?HdIo=z#}ee4tfraCWwGbr@Io;{gQKe?j@q#9Yp?KN#SG7Ji2OmqkUXel|`@ zIuHuP>nWgA|2qy?NQizY_&ANo)fjE9=Q-~Zw?crDpz|-sa>kW8H#G-)>~*x8(+A(- ztrSrDYE`8A_BMEr0sg&A!`>iJFI4EKQYPz0HD3$)jZRW4SzHydE9V_)z>N*OQ2BG6vX*g4j9c1cKi%mGbOnb&x1<7sHiZvmMhLcN{F{;g|1biN)TO!9$YY4k0r89ulessG(QPWN=g5t7GF4skrb zRcvm%l1ZE*PM7$)Ne9lp{`B_O+%Uv({^g*kbYSoAF(SCBIdp9ImNK!`2eXmCqE6ZF z>^KHY0%K!ftgwYffvo0P(E7Vy6&_M)$ZGB_d#UsutnXhGii>U;w>ja_I@({s>%Sm$ znf6J}f62iJ{#P34sM~i3bh>5=rcuFSijJbJEy?jUE z03Bv@8N2rGNPlZ5O($WopioAU=P>>d`m&|#9G%ILXSd>@p{Lj>naw`t=6AIzp&`Q& zJ)W9fXi~h|?3WIFdeT3|J@!H>I|ur2X#O{R z1m%dhw!k;a5Gb%eEOS)hc-uJn{;>9m9sX?g2*}FkDR}!|I(!8nXC^q(f&8@H1xFbk zIXa6B&+lSbebNE96k$0(B61Pwj&2mpE)1?1{4p!FRVI~63$^RkE17>`-@AW7x#fjx z%gHHn_!=ac=6r^`#~}DSYoR)58FOp+^12tU%smrbToT)X+P)3pX)5Dv|Xgjvh10-BFE#8HKN)E?wpXFa-*H z84jfVH8p5scs=!;UDbb02?@j@V&M1C@C%;*+Zys~reOsm1#g*bJrQm|vjUhYhAr3%6Wm0A|H7VDw=XTR} zg1O>C53d~ftEy##OIR8ca>NwnNhZoYepR%8Fc_CAw~e3Zf!25l@n#tsP!?1-g+SvB zq?SrCo3lXA$tEMeDE6b?aJeT!l{2=|V$;klQ+7uMXxB7S%@@5?AGd<8 z4k*x?_9^uCWKyMcptdp4s?d}{T>ksPO{fI~Dkm+=F?8h*-=f0r0e)e>Mw>{1vdqk4 zU#JJ;kfmMID=M@~>W7RAIAe4uI18%d%G-guMc%yVErCH?)`9QwlGhBk9pyVQfsGHZ zF&;RB?oJ{w=E{x|ZyDWZ`A%VW+M03h%H_%Hx&N1U>L3uAk7Ij4RnXfqCqbqszcc;Z z+SQ^{QRtmeKK^}n1!o@P$1$Czg(fly1n$Qno?s%o#;$USGY&M)BaV|h^-FCv$01^C(@ESkBP*rkNzjN zS?hAu> zz5jP9?V9wDSLN*E$H2cYc$X?08-lad?a$pXQ(f+K?G-)!xMlFor^Lx|@UGx9*i(rn4&(Lz_&oRw#c+=9;I#2raeD%p1lT#Uen$)j3V}%cm{_S87K z_vmzzV_A|9@k$QJ33d-|j1o;NB4%;c1kf6!Z;65PNxukCLNWcHsc%m?wgw|KOmM zUwUwAHBt<9$&khXf~oB1(a?wx2~q%I5s<6D0|lb^kJ9A$&%7uV2^yd;1wsuH@d#=K zKQy2`4mJG5V$7ME`#7^XxfqNf#AByG$IGs{P;&)JEI6U!j*Ip_7fNis4^XD+|O9wLc;qp{4yJkQVwi*F@{==Sr%(8u$2COfBmBUfZ~y5Yc)Q^&$C* zEDkn*a7?ff z=`_qtiCGV^`zj+^%GAMjwZH}f~%4>n+&3OTYRo9hC2|P7Zx*7X|hGzUUs)}!R#k2SG(UXG6})P zTrCN|K4oTfhDC4U!qL#d%;N9Sdq>4n-S_ml%UZmm#)H?EGKANzY$tZHwhl`XLZ zT(osUn<21KHUt{`!9bekY6!by6|UvpR?B!)O|xS$ier+qf5|f^e0ouGspC`ztzHe; z$ga=Tb*9MBRE`VA?&nTWv1|fto}q2_orT#>{$wzR_eIvL zXRHJ^xh~4wCQmqG{VwW}SVD>4ovu(0iTKs-$IPSuFH{4o{HVhJ&uw`z-v=w&@D+Bi z!Uo*V$e6E$6`lABd#}PB*v{0LZ-o`j_zL@{3J+jEgJZrJR`la5?4t@l!2QgQ`EFRz zlCSWWQFA$gD2QQLOD~h(xc|oXHaVCLEK!wM!=EU4r$mnD^KNTLsE?4HhMMgKnX(~L1 zfkSg&B%{G_9udCJu=8n%fpJ8XZZ_fVrhJK9PxeY`?2m{cTI6lm{|Hd|1 zL12lYfR{P3u=rzV9N!jK!pymG&Od^2gK^{*SHkS$(m5}caS!7-TU-gV;NCg!m2ts1 z?h>ODmRvpO)iR)r16$k)JKR3!?K0quQ?|GhcDaDg3uYh~r*3g44BSEI9W!tkr)_a1 z%!O;{yk-W#IDLgpq!Q-JMReRWn}{;bZ;LBoZd^piWwVJmDO9rw*95{xsq zxDw_c7twL$Y$Ato-_u{X6Bb-V$E~x8fN|f{A6PqK$whQrJe#O8?z8#}cft-A(Q)@| zqRzN4>o431yIe%a^|Ofv<36sxa3>5@M1O>uF$%*#3mVp&+tE$JI*S(-5nzh1$Su)gpRwY-Mf$}kjr0ZSyTHy)yv*N`-ZVc9D< z64r%>sO2>z$}mKG1xLcV@({JWhGZ}d*IvPqu-c$>60V@iDC@v`aT&M&H0okmA7!+l< zMNsR5NRfaV2#Zp%DosRC%Br-45}`2$SrXo4fUt#X-+AY9?jb*ux&Qs{cfb43p#Pl` zU?8w}1z@=^Y>q}_Q8At2&cvs30Ps1&CKOBFJ+Xc+-$KA-xb=|&hMiA z_~zdGUW4i$e{AkgQHgO*ja%FA=Uic8-{~*d@<+;Wc-Hgx8TT|YbVrs&BslH*ax<6i zdb^jjsfni*^v%(cYopJ;!r<(V{4iMb?$*gaAGv7eBTaIbG%fab`{99!`&T7ap)VXN z^6JkG-dk|NM@>67tQh0#VEa|;%gWG0XK=ShliaFTRPR$x-CY_+ed1Lb7X3umr~HjZ z7XGX;+hX|zE4GE<1qZgpiVM5h7Dg8i`}=6({=#&o=`_`p8a-ZbT99zu={&gVo^W{e z*pJ+Ffn|vtO35GHtf4d#DPFpKMc0k%kxz~2zTCLHfMmU_$DB~htgNiPS#25n-=7?O zvHsBvYg|9qE*xIcw65Tw59j02G=0j^yXksveGN)@bR^Z!!OxaW3GmkPuZS$w-Y}FN zy1}~5DJjJLVR~1qR^h<6F}2{`yF2ubIUNV>)C{x!Hr>a4565SkJxu?-bzOhnnGLN? zr|6>4P`jT33}UH(V$@Y&& z^+(puj@8Gsp^u6MGtF-$@(SN?HL`@C_~n^_x4NZ#@w;y1t?axeTVIE=z@T@sx(H&p~{^s$Vkf+z2u~(;5BZSn_$OwPME^BVLWZK%MIj7?umikBVa?78+5M`o5*Y+e2t2{Y$JP~cX>Q>(XMu-yUc4A}p@qFW91@d!DrC_e9`{EAl-2uGvfHVtgE><-_>DoQyD zj;AXdJuB`-ZbH)}7(ZzDXc>AiBE$l_2|Bdky_@&o=3f@F>Tv$9REj|Vxm z;l>?`j`0xw2aG7!a}=P8Astu8|{b72WFR0Kg9wd*&MvxdjQkTNzWeP%n(!0bZ>4QOIH-%B=@@ z)L`WFB{CWFRK3RyjI-4*O2zRaRoN0t4JO!QFGVFUQl0y)HlYyHop=z4B%&qQK^V<6EQXk5ESoubDL zH09~Aj;9uEn5srmn3g6@@xj*S8&wg*!WG?#c3`p4ifQL4M^3ruIpZ15&y)K-E&B$% z-279u9uzkdCo&NVb1<3$QdE|s%pfz$IV~1c^!@D-xvh7V0aFyLGS741U4`j}jFs*xdHeg<)DC=u}1fynIsQqn1(qaa` z?xH^-DswDb4xUn+1>(Xl_v)%`lDletMtG5!}l<->{t=MECzS2gJATL zrYt7SqT*aSK#3vB!#i4LJ7#!83j%T!Gb^Sj`QNqc02UTiW4qo<{EI!>VIRQQ7rJZc z2(lPuVr&KMI}O%X5D-RRi##?s}S1_9L&G=tdsR{GL|0 z`=jwp8JneQGd@m9*M$Cp;U@bc)NJCfBYa*GR4R~wipHbY)G8C}0U_`9oiN6L>>AIf zj+06gMITd6|XKN9j1utygSm(0XuYS%K569^}oqB7fY04z!!oHCh+ zbX&|i23RLY7=WtAqBsOo3Mo^sQm*IaD$AkvD&JWuCi~;KBtp6vYBpJ#c{s!jfocT+ zRoLC{3(q5AA6WO+u|CDPhL&is7?Nx#X3|_{tI_m`{X8jnzp7A3FnXaPJ=lwM3KaJF z8fgNmf2JSIrj~IP!^|9qP5y^wTM9be-3l1n+-S;%4_!$xMg90oFUMB>PFjAmaQ zoNQK^<@k9u4GgA?gQr@J_30!8p*-s#?yZ@_y?HuiIzoRJa&TC}z3~asdyWz?H9;1M zRiw)EDF(|r5X`QbWPLr9EAQK1)CJCuEj2eSAGAw9ob3A=)v3OZ`;sxL= zRY&P1++=Z2g{e?4n+E4U)pt0eV^tsA*?n!1(5eRtA3x7t8=5tnYu-C>WL z*ykOCxfWzF%h*JH%vkcF+U-g(Kou6Kp={Vjx$E+)s|e`z=m`@e36?=@B27L0WOHt{ zk*@hFksX(y8jTFEOb{=?3^;Ub>2U90u=J@W)L`l(dd*zJz7o)!aIXX-M~0E07{I|K z@F?02K4vsoVM~OZ4ap2>2~1?i3yB*)Dn8e!}$ z2R9@LmcTGV8HN-MuUdmgae@QIH5w{Iavjee)h%gt@P0?HyMZecVARsr1+nRN)kbQX z`Pmkt8ZO2ecYHX3L&%8e63AW(8m`OBmN@-QPs%z8Rdyer>z=l~w`D1K(uyZqZDWeO zjE&d)1w7ZwFsOL5yp|R)g#E-VWdvR)%H?95a0iE-PB)X{AeX@D=Lk%|rx;23O)t{& zO(_1?UAO@0$w1M&H{P2a=ijr80ML>ofE|aB7D3ZBe?^4cMA~i1|3<6;0IX`wrVpd! z^cb5>f>USft7^D}4Dn1iFHkch@R_u*e#3UFx?!# zx3I^t20xDcqikq-*%NTRYO^Z|xx~vPkuftNFXxVrH=r7;>hbZ!(%8mv&8+1UrMvmt z(id?t=@F1)x7oe6vLj;-_8ZRT%3kL&+p>TqK%`DAHOF7vtcRyq0j-w1@-rX~Xy$|5 znsPE&2GxQs022!8H*B%06FL_$X)=qq*=Y+6(IIKZ6God4S3A zGIN=<;*d+isgleDq5XFOIM~Kd+CmR;#gPNWHHhXYEa_LMRj@L zFa+Cvl2|f2{*zHaMhOHXmZI^Dz{h?8U;RMDsMQwvM=Cj()Vi$NPNche_&$!8dH4`*@cuqadTLDMfhT?{H6IP!F2iGjPud|$42!027HMk$RYb|Y!L%sSyS5;<@_ z@%kLpq(o}X14T7j0|3CcTqRw;yVj>@(#KYIir);xt>Wo|nEi8*CZG%&uForkTyaPS zFH@?g2V!tVB6l3D8Mn=|{q897|B}XJKdh4o9b!EIpi$L9relxk_?v+EExRvlO?J73 zXkk9?^XAd?t0sb_~a~?lBFL)ZUX@R z?*hKNez8&mCBWtDlvREaBSp^Qq#M{*+~8(z6U<8V-SSfShRQtys8N-ys8qjIYuvnZ z>9)k=DubA9D$(iUNA3d}59O-+Go=@DFAEDPGptb{v3H(W?3h{v~g}(o#x> zzxtY4k>v8t)zQ}dMx5~Oh@@?26O=R;8W}ily&8{QNHnP03NHN1;Foyp@~ZQbzlcTL pTKeU1r{Juj!M*%n!!~u_>D{GIC!LxG%U}M0qO*{1?vqPV@i( literal 0 HcmV?d00001 diff --git a/demo/documented/tensor-weighted-poisson/unitsquare_32_32_c01.xml.gz b/demo/documented/tensor-weighted-poisson/unitsquare_32_32_c01.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..dd3654def5813a2391a736e8ac827ffc5f3f7fd2 GIT binary patch literal 6570 zcmbtY3pkW%8~(;HBx)>$WKCn6*!?$DOgnZNH4dwsQVv-$PSG$nW<-TSG>%0ju@Y$z zDP+nN(#Wa9swt--)zV_3ej(@iznR7=D zK(n735F<3aFgU*-OgqOJLSNj&J$1>%W(WZOS@Bf2<;Ds~zi#6|*a)-;Qnk&^>sYdp zx0mQyBa+v#vqnd~L{p58X(8h>E0@dEP&N6VW$~`HM!|ECYc5%Lp)w{^M z+iW8xVnNGaU_X@Okp)Qa`St`q!N#AE)6K&x0L};#bgxl2GT+_tz#*xE~L8 zKTck|+juxvFK^m1*eck1%5rL#Srd|wSX#H&?Z@KP_OS(q{I7|n3rrg`d9hZXF&UcO zW*`G-!bP;q(AcRR`P9I=*ly4Fm3B9?{S-~lW(Fw6oXtF}SiHK}=A-3zxm}qxA2)#o z)FTM00+SO>h`D3+&DH}VAN0Hec8UU0Ol;f^MYm|>>1xSsYq#9~^C@9RIi2sWODEF} z>h>qd{9@wz5@Q;w5E#TOv*QU|V92a#-8rE6Us1B!V0a=Z-xM!}(z4#BpToX>qq; zikOIqCd?55zWT;u>lTwhM;b3a<~NuD}H#?m`p4rH*2|#F1F|vT!OK z7lr79S)r*6gQwDK#+#$2OEW|J$r0;25~2Yh3_%TQ6A9$j^uV#Ajlo3^%tD-4ozCa_ zvK>?{;9=n=a=2{7CNY`ssk;rTC6Ts`I@@;MFuIN?7L(aXB^gvNM>@eF5he<_>I<&> z(htW6M0ld90TEG$eR7-m?m6-IU&~zA003OV<@{FebGvhSfapn!w};FsAqOMY`ND%D z>XdNL5reQqH1)PYmo)P8j~){n?LI^@Ji)3R%*@>=*BzNvVc8{(xmA_qSBnAw1iU&5 z(;li#aM(;Kf7kVGbFxBl&DRHk_rv15Sv^h{M=f`�+k?3RUCnu;&eIM}smO03xt( zrM~Z4LQ95vPl{i-cw}s#d5EyRQm3i!qLZqy3>x<;B!$E;Ot4Kls{_GzF|vl_EHw+c z;b=knL;bK5r*%;xfJ7ML^|Gc)y8OFUvJetUw~V7bwI(QHz3;UzmP%02EFzp7k*kCQ zL#ZF|ewg<9wpR{68GgCP8C9zN30?qzMZjXRrc3dZ$Ugubx&^xvjPqZZjBjHK=6pze zU<4IS6}SQ`=R}cwIXfDlD>g*1`TpAOuu@5W+xf1}S}rICX<^l+9y9+}2_4SA-U5N( ztRUf%O_T_ATX%B(CJNE<@~O%U7OD9kgP>yu&DX8v`sECD4dbVNH1vhe!%t(Ybnm zYWZs&UbkRsS7Yc;v}g&vP5%k-E_J=Hd5FpV(}YBdSl`V9go^?!D`sr_5!kaG;ujpy zoI!uHN~7n_UD5(4jIy&r1Fk+3XemNJBEB=>D}zE5zTmFP-gQHol;DZ)|8`1x?=g!&fTG9Xj+|{%l){tJdR+bWe=@0TCED3$`c37A6 zcfN=qXuXojbL{M+Y$AdT%~LYzz>cdYg~ViMAbWF6X8$YX2fz7h?ixse0f;C(B0ojH zWWQxO31E<8AAR7HH4&{46d`bP8aKz7Tx+?RRD_~&mgz$;rN31_v=a&dOid}9(alN` zc}b8rY}=oBWECo;{~`$P`GtC=wO|+#0Dx*)+Dz)^hu>u`>uKsQn*>E}b~AILEjYoz zV~pPnE08U6hW|j)jeLL4ZWmC;-k#fFZt&7sbg0=WrM$2g6ok0jRr4MHl>F$@vt~*r zWH&+{bv}QQ=vTW105qkTo{{>+GA-7McPfI#GYr2kb@ z=IE9>6Glr4>UD22`WK4%RcPZC2T}#UJu@7=t`rv#@tCLy>WhFSU}NUV+s7q(7-(re`1fGvv+~t^c>pe#0zY>pkhlA{!{4`Y~VsG4{e^JAVaas&hu&D2eSlp$67hs+*(Pmz z%fJh*Hl_ak%wL0%xVZ1P_iG0`2APAb!TW>mV?Jehu|iDA8ciDrH4g-3?FRs_5EZ^z ztR6n%6z7dS2%Q|j=#S~6$t26IV|F19({>dg`#a-WQDZFMl|b4 zWjLgbnv}RA0SX)zo~mZ@?&_QMM~g&y=vz^h{u~S&RYQ-q=P*hO9e6G_ShmO)`N`so z7cQg??Cdzl*i7Ev=be^vB%7@TzRCdLtISm1DB5P3@~bdNLhLYR0+kRf`}f|fx0*N} zbE3NkP9kM#o@R4d|GHajwFZl8IUO~wk_iuF9`lVsMu%wW{9jIb9ZvWA2 zHmJdX6jaMXeAw6Ln-MBydZnp1abBaB+NO{-7d{#>bL+%$(Fb`UL?Ljffd=QrleKZ7 z?i^?R^$2d1Wv4%fQBtV;(Sa#!Mr$qQK3lq0bYiee_HksBuqOurn+GxT7frT{YcKlj(5< zCN>xj{CuPGkxqKCS&lbL{p*_{h)j^338Qn6e>n0QV`a;2^T5L)6Dv*4AN5}?p;f*r*XNj53dofCSXQTP@)l*TX~#`xm5e#|OWV zvErXWWVwzNwHH2G8mUVajE$q4x$&KT`eAnU`tB8`066LN*cWMVlz?jOWRoWI;UYI6e-F-BJjmCdbqlC7Gk17v#HK>x>=^kb|_AIYj z8cUV`LV-n4%NQ@56lGPd#SoO=#@~*${1p6o9TXY^6i^?efG70c(>@q?em>2p4NDzFSv!t^*2-?rlmS5U7ZrtYAD+y; zEJa~XUHYrN;$IM6SW9?Bc+3MCc+~`gj9PX0y|ImCnIx9(tvA*A^T=K=-t9Q zFN$vQSeeJGmuOMepbz&fjeOye&`NCD4VcrVX zE5};E=<`0Wz*{C9c*`VJ?Oh(~?s-AxPEFH&i@!&{j+HaOqDL3>p4Lt;7U(&@Tud{; zG%TX!eWjS|Vkf#0`r`NU$s8+Vy8d|g*=`nZ%pG$bBaG3P*8k#8+(=qoh-|AbawfujsU3fXS~2^& zYC9^+{v|I1d|j0<<9rpuW>gDQNI@F&gMbJl@D5~I2td(Zj3pvep}Dk5VwMeQ|l4XFg1fqh**jBiiNb-QSjXT^tL1wR3o_|0?FIa{3Vl O47l%RobP|%@BQBYKbRdt0Oow} zl>oHhiO0@(2ff7hXg}No2!ISfwcKTamiL3E@_Ei`2I<*V$Ih|5qt`}tlGfyfm=xy( zPn*7cTKudWqrHnFE?5iyR=@rtaks<;wXo<3uaB7f{!&I;XA83D$B4#P-Cjv4tAa4E zD|QxzGHKjxy{8kRnXzA)$IahRYwk`YV zocVj40+04S$|c&*s@S_8{_*0z72*}=+tb@=3HR+os%qZahE&zQ)t%G2Thkw1XB3{D zcGo0)X8K*L@a*)v_Te+Bcby!s9LO7>?(#jnBP_(=^-0vz+vV2MtLJY!Wk{O&zELJD z00DEGwPisM%`JQp{hv+L+TGzUXq%YYvC=mh&Lo*&px!^XiZ>@$>2l z!7MM_?fd%VU8fXY;b6~uLRE2BTPtzNajkCD2Y@znfZp9?yLJlE44^ zJ2!3EzCBv0!TY6m*X@ElH3TDYOgxFFGn|^89*mBg;cVZ&ohR|k=%3-N;-bv?uGV2F zL?}9$!`~eyZty{;Y=eZ*Gx%jDrSRv-(rKj|e<3xoo8m6k1hviHWmK*eqJBj!m@NHw z`?%1e^oH6X3wuLtc@1fBe>T~c$J-!2x*cu>z#Me|rwr>)bGb8TYFp%2|DI4#Om}!^ zf9ZGaE5;$}vRGyuw##TFf_BN{cQ+tdT^<1i$oU*-kkCDIF?{d?dZWpki}A#LM_H0@ zJ`oF^J5B*Sbf6yIUR#o|SChIiQ<7}#c1V`Y9J!~8yDO@IzxTC$s4<$!)%O2f*Idzm90G8z$g{P-YD(iq?l*oV@zuapTdtG`(g zkPCgcU{@}*V?p`FAKM&W7`gM^|9~61m2^OsBj-oeJTgd~gUeekjlL21?O_)AFY^+QSA+JOp zjmm!lEi`rc1YCfxa?Aff4nmehA_aobNLh+(D%KEfmnN<5 zC~7gb!D!$UPy&y0Lw80`7p%Bp!gANCanM_D<6e z-=bTIH`OMoB_nKkZ%}u2oTpE~0nK@i9vJIU%VAUJeDlI+{4!k$pVRl;vjl3~^dxnp~DFTS<*|>oITHDxphYaY$9+Z@pBD*T;f&G zH?Hc+*8tG4xU8a0LpzqLWd;J+4X3uo>})R{%YeLe z0oze9bLY2M)y**yFzH~keAEB{>ev)GwBurY?=H0)`=X8z>5p+q)#>^-3tG`GHxJP_}WHJijd_4{?NvVKf9vZfFs#$1oJ{fmuN!1X4 z%dJ747N5xXx9*^FsF!C9(BsF8MT&&ikeq($+uFnWqqXNjQt-*6M^+cSI6Vabbm~hk z_DXh~ss9Aov^1@mq)k$67o%ci5D!<#;Z@% zw33;T?vK7SO0wX3u_xN{d_J0HBA6yKMX!bB&BJsHvV=9}@}R*&Yd>WR%BF z!Z?g0)`*On=K(5-0dqT1L&pmRR&S4l13(x`gLZK6I|3q_1MK~1m_vM7w{e_}{fB>* z)+P5}(1aCp(L@DZOA4Hw8A+103KXEjPwfvQ5WfX#ltcz^d3!UlT6K>n>)RLRuaZGG zlUX59@1V10;5%0JHH`qZv}U^c*E5$-hs%dTyg3eRiof-M0*KPIeXB&C6`Q^RVo?-w zR?NXci;sMSt~=fD5kq1u)>2_*C{G*Z` zGd#LFx82u8ifww$S_}zk-%j72U>yk4u%&O)R)H#k-vd^|x-JY6>=gopQhp zYnZ%H6s28@6c%6NEz{nXiV50NJt?CncHC%<*|#g7%CsljK>~t@W{lcFx`UO3eL=yh z4g}+SCfz~a{*?kGgrT&`68`L2DM|5w==}>am*x4oCs_MRTUF(*)(tHzZ2|!oIk%IW zNSZhD^Q^5#lw#52dFw}_C()beb<48K${06QMOf4=PY^xqM%v&bU}&&WCD!{H;4?tG z{-SH@A!TW5Ik(MqC<7+JudI43dTe{(jxQc`4x|qp-*0J*lYTY@F=MK;xt)r*WUh=( z%pKkBKr9(WIenvSC@rPV^4D&QMz5rty)Dx8Q$fACi7}_dGijMOc9l@EP9xmJFu;us zs_ti(!PG!k=OrlcaOpzzME8gfB_2HT0Ul7a)By*FMbgfCeOhpX2v;$A-E+NxpMLjI-GAmI54=;`@zrc$SOkHV5N}-7P%8^v{lY z#WyI*Q+a7K)8APnOKofannKd|t0Q%lEWKdz96V`x=&)=)aI4p?#T|g}7ql4;nwTxf zoq0d$3%68JxPXK4#fA&Ln31%4Yu5;A^2v_LDSBysDbK>ea0V70>8&> zujj5_1kA{*3exrnS2UV10pPZS4$P?Uo&XTCART`*7QU5f0Myd~rZTBgnY0(w!o2yS z%>>LdwpSTGotvYwdHvzS;S*de4z+yt(A6pR+kwx&1+6jtGII(XpuTvP+?;|+YN@g% z}ze>WBJ0R~JUwN7e8d%E0e)>*! znv(pq7_=riD)}ISwj$H+u#87uRVn2OCD%w@0etEL5uq-2Cpl}ao)X%6rLj>_=zjzv zpS#u$DQ~3^AQ^`$54t7U>VGir1+Zn=BL?2i4D>k~2lRPHp>*sgpZE!DSAh@|_fyU= zBJi<4KNIiX_quhu{G%-hJAQY{$W#;z@)n$kHrU_ zjs-{`OI+^@CA2GR7xu(7zd?{HFGL{k;J<2Wl;Heh_` z6c!jE1otGlr!${&q+kC)WgQA0FkoG+PK9*l&9)`!+ zBVPXxA4nf7b6+pXE|K9!s`sllZQ*R3S!-3U*%g=67Tj%k3-%)}t%sjzG}}7;eDR@R}9=w0p8;gYgGZbi(7h zH$3O>PITG!6YR`=e#lC8n2Iy6`yt@~!eFYk^uko!@`UMAw<`V+@cglq%bh!-`i@oh fr>DMqZL=-tq2n2pG4J}zr%pg1;Xpp=4Fvc%9osIQ literal 0 HcmV?d00001 diff --git a/demo/undocumented/adaptive-poisson/cpp/CMakeLists.txt b/demo/undocumented/adaptive-poisson/cpp/CMakeLists.txt new file mode 100644 index 0000000..7343503 --- /dev/null +++ b/demo/undocumented/adaptive-poisson/cpp/CMakeLists.txt @@ -0,0 +1,39 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +project(demo_adaptive-poisson) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Add special DOLFIN compiler flags +set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${DOLFIN_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable + + +# Target libraries +NOT_SET diff --git a/demo/undocumented/adaptive-poisson/cpp/README b/demo/undocumented/adaptive-poisson/cpp/README new file mode 100644 index 0000000..3a17715 --- /dev/null +++ b/demo/undocumented/adaptive-poisson/cpp/README @@ -0,0 +1,2 @@ +There is as yet no C++ version of this demo. +Please consider contributing the missing code. diff --git a/demo/undocumented/adaptive-poisson/python/demo_adaptive-poisson.py b/demo/undocumented/adaptive-poisson/python/demo_adaptive-poisson.py new file mode 100755 index 0000000..e2c7e7d --- /dev/null +++ b/demo/undocumented/adaptive-poisson/python/demo_adaptive-poisson.py @@ -0,0 +1,104 @@ +"""This demo program solves Poisson's equation + + - div grad u(x, y) = f(x, y) + +on the unit square with source f given by + + f(x, y) = exp(-100(x^2 + y^2)) + +and homogeneous Dirichlet boundary conditions. + +Note that we use a simplified error indicator, ignoring +edge (jump) terms and the size of the interpolation constant. +""" + +# Copyright (C) 2008 Rolv Erlend Bredesen +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg 2008-2011 +# +# First added: 2008-04-03 +# Last changed: 2013-01-23 + +from dolfin import * +from numpy import array, sqrt +from math import pow + +# This demo does not work without CGAL +if not has_cgal(): + print "DOLFIN must be compiled with CGAL to run this demo." + exit(0) + +TOL = 5e-4 # Error tolerance +REFINE_RATIO = 0.50 # Refine 50 % of the cells in each iteration +MAX_ITER = 20 # Maximal number of iterations + +# Create initial mesh +mesh = UnitSquareMesh(4, 4) +source_str = "exp(-100.0*(pow(x[0], 2) + pow(x[1], 2)))" +source = eval("lambda x: " + source_str) + +# Adaptive algorithm +for level in xrange(MAX_ITER): + + # Define variational problem + V = FunctionSpace(mesh, "CG", 1) + v = TestFunction(V) + u = TrialFunction(V) + f = Expression(source_str) + a = dot(grad(v), grad(u))*dx + L = v*f*dx + + # Define boundary condition + u0 = Constant(0.0) + bc = DirichletBC(V, u0, DomainBoundary()) + + # Compute solution + u = Function(V) + solve(a == L, u, bc) + + # Compute error indicators + h = array([c.diameter() for c in cells(mesh)]) + K = array([c.volume() for c in cells(mesh)]) + R = array([abs(source([c.midpoint().x(), c.midpoint().y()])) for c in cells(mesh)]) + gamma = h*R*sqrt(K) + + # Compute error estimate + E = sum([g*g for g in gamma]) + E = sqrt(MPI.sum(mesh.mpi_comm(), E)) + print "Level %d: E = %g (TOL = %g)" % (level, E, TOL) + + # Check convergence + if E < TOL: + info("Success, solution converged after %d iterations" % level) + break + + # Mark cells for refinement + cell_markers = MeshFunction("bool", mesh, mesh.topology().dim()) + gamma_0 = sorted(gamma, reverse=True)[int(len(gamma)*REFINE_RATIO)] + gamma_0 = MPI.max(mesh.mpi_comm(), gamma_0) + for c in cells(mesh): + cell_markers[c] = gamma[c.index()] > gamma_0 + + # Refine mesh + mesh = refine(mesh, cell_markers) + + # Plot mesh + plot(mesh) + +# Hold plot +interactive() diff --git a/demo/undocumented/advection-diffusion/cpp/AdvectionDiffusion.h b/demo/undocumented/advection-diffusion/cpp/AdvectionDiffusion.h new file mode 100644 index 0000000..34e97a7 --- /dev/null +++ b/demo/undocumented/advection-diffusion/cpp/AdvectionDiffusion.h @@ -0,0 +1,7538 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __ADVECTIONDIFFUSION_H +#define __ADVECTIONDIFFUSION_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class advectiondiffusion_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + advectiondiffusion_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~advectiondiffusion_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new advectiondiffusion_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class advectiondiffusion_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + advectiondiffusion_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~advectiondiffusion_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[3] = dof_values[7]; + vertex_values[5] = dof_values[8]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new advectiondiffusion_finite_element_0(); + break; + } + case 1: + { + return new advectiondiffusion_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new advectiondiffusion_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class advectiondiffusion_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + advectiondiffusion_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~advectiondiffusion_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new advectiondiffusion_finite_element_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class advectiondiffusion_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + advectiondiffusion_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~advectiondiffusion_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new advectiondiffusion_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class advectiondiffusion_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + advectiondiffusion_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~advectiondiffusion_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new advectiondiffusion_dofmap_0(); + break; + } + case 1: + { + return new advectiondiffusion_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new advectiondiffusion_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class advectiondiffusion_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + advectiondiffusion_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~advectiondiffusion_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new advectiondiffusion_dofmap_2(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class advectiondiffusion_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + advectiondiffusion_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~advectiondiffusion_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 44 + // Number of operations (multiply-add pairs) for tensor contraction: 164 + // Total number of operations (multiply-add pairs): 211 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + const double G1_ = det; + const double G2_0_0_0 = det*w[0][0]*K[0]*(1.0); + const double G2_0_0_1 = det*w[0][0]*K[2]*(1.0); + const double G2_1_0_0 = det*w[0][1]*K[0]*(1.0); + const double G2_1_0_1 = det*w[0][1]*K[2]*(1.0); + const double G2_2_0_0 = det*w[0][2]*K[0]*(1.0); + const double G2_2_0_1 = det*w[0][2]*K[2]*(1.0); + const double G2_3_0_0 = det*w[0][3]*K[0]*(1.0); + const double G2_3_0_1 = det*w[0][3]*K[2]*(1.0); + const double G2_4_0_0 = det*w[0][4]*K[0]*(1.0); + const double G2_4_0_1 = det*w[0][4]*K[2]*(1.0); + const double G2_5_0_0 = det*w[0][5]*K[0]*(1.0); + const double G2_5_0_1 = det*w[0][5]*K[2]*(1.0); + const double G2_6_1_0 = det*w[0][6]*K[1]*(1.0); + const double G2_6_1_1 = det*w[0][6]*K[3]*(1.0); + const double G2_7_1_0 = det*w[0][7]*K[1]*(1.0); + const double G2_7_1_1 = det*w[0][7]*K[3]*(1.0); + const double G2_8_1_0 = det*w[0][8]*K[1]*(1.0); + const double G2_8_1_1 = det*w[0][8]*K[3]*(1.0); + const double G2_9_1_0 = det*w[0][9]*K[1]*(1.0); + const double G2_9_1_1 = det*w[0][9]*K[3]*(1.0); + const double G2_10_1_0 = det*w[0][10]*K[1]*(1.0); + const double G2_10_1_1 = det*w[0][10]*K[3]*(1.0); + const double G2_11_1_0 = det*w[0][11]*K[1]*(1.0); + const double G2_11_1_1 = det*w[0][11]*K[3]*(1.0); + + // Compute element tensor + A[0] = 6.25e-05*G0_0_0 + 6.25e-05*G0_0_1 + 6.25e-05*G0_1_0 + 6.25e-05*G0_1_1 + 0.0833333333333333*G1_ - 0.000416666666666666*G2_0_0_0 - 0.000416666666666665*G2_0_0_1 + 0.000208333333333333*G2_1_0_0 + 0.000208333333333333*G2_1_0_1 + 0.000208333333333333*G2_2_0_0 + 0.000208333333333333*G2_2_0_1 - 0.000833333333333332*G2_3_0_0 - 0.000833333333333332*G2_3_0_1 - 0.00166666666666667*G2_4_0_0 - 0.00166666666666667*G2_4_0_1 - 0.00166666666666667*G2_5_0_0 - 0.00166666666666667*G2_5_0_1 - 0.000416666666666666*G2_6_1_0 - 0.000416666666666665*G2_6_1_1 + 0.000208333333333333*G2_7_1_0 + 0.000208333333333333*G2_7_1_1 + 0.000208333333333333*G2_8_1_0 + 0.000208333333333333*G2_8_1_1 - 0.000833333333333332*G2_9_1_0 - 0.000833333333333332*G2_9_1_1 - 0.00166666666666667*G2_10_1_0 - 0.00166666666666667*G2_10_1_1 - 0.00166666666666667*G2_11_1_0 - 0.00166666666666667*G2_11_1_1; + A[1] = -6.25e-05*G0_0_0 - 6.25e-05*G0_1_0 + 0.0416666666666667*G1_ + 0.000416666666666666*G2_0_0_0 - 0.000208333333333333*G2_1_0_0 - 0.000208333333333333*G2_2_0_0 + 0.000833333333333332*G2_3_0_0 + 0.00166666666666667*G2_4_0_0 + 0.00166666666666667*G2_5_0_0 + 0.000416666666666666*G2_6_1_0 - 0.000208333333333333*G2_7_1_0 - 0.000208333333333333*G2_8_1_0 + 0.000833333333333332*G2_9_1_0 + 0.00166666666666667*G2_10_1_0 + 0.00166666666666667*G2_11_1_0; + A[2] = -6.25e-05*G0_0_1 - 6.25e-05*G0_1_1 + 0.0416666666666667*G1_ + 0.000416666666666665*G2_0_0_1 - 0.000208333333333333*G2_1_0_1 - 0.000208333333333333*G2_2_0_1 + 0.000833333333333332*G2_3_0_1 + 0.00166666666666667*G2_4_0_1 + 0.00166666666666667*G2_5_0_1 + 0.000416666666666665*G2_6_1_1 - 0.000208333333333333*G2_7_1_1 - 0.000208333333333333*G2_8_1_1 + 0.000833333333333332*G2_9_1_1 + 0.00166666666666667*G2_10_1_1 + 0.00166666666666667*G2_11_1_1; + A[3] = -6.25e-05*G0_0_0 - 6.25e-05*G0_0_1 + 0.0416666666666667*G1_ + 0.000208333333333333*G2_0_0_0 + 0.000208333333333333*G2_0_0_1 - 0.000416666666666665*G2_1_0_0 - 0.000416666666666665*G2_1_0_1 + 0.000208333333333333*G2_2_0_0 + 0.000208333333333333*G2_2_0_1 - 0.00166666666666667*G2_3_0_0 - 0.00166666666666667*G2_3_0_1 - 0.000833333333333333*G2_4_0_0 - 0.000833333333333332*G2_4_0_1 - 0.00166666666666667*G2_5_0_0 - 0.00166666666666667*G2_5_0_1 + 0.000208333333333333*G2_6_1_0 + 0.000208333333333333*G2_6_1_1 - 0.000416666666666665*G2_7_1_0 - 0.000416666666666665*G2_7_1_1 + 0.000208333333333333*G2_8_1_0 + 0.000208333333333333*G2_8_1_1 - 0.00166666666666667*G2_9_1_0 - 0.00166666666666667*G2_9_1_1 - 0.000833333333333333*G2_10_1_0 - 0.000833333333333332*G2_10_1_1 - 0.00166666666666667*G2_11_1_0 - 0.00166666666666667*G2_11_1_1; + A[4] = 6.25e-05*G0_0_0 + 0.0833333333333333*G1_ - 0.000208333333333333*G2_0_0_0 + 0.000416666666666665*G2_1_0_0 - 0.000208333333333333*G2_2_0_0 + 0.00166666666666667*G2_3_0_0 + 0.000833333333333333*G2_4_0_0 + 0.00166666666666667*G2_5_0_0 - 0.000208333333333333*G2_6_1_0 + 0.000416666666666665*G2_7_1_0 - 0.000208333333333333*G2_8_1_0 + 0.00166666666666667*G2_9_1_0 + 0.000833333333333333*G2_10_1_0 + 0.00166666666666667*G2_11_1_0; + A[5] = 6.25e-05*G0_0_1 + 0.0416666666666667*G1_ - 0.000208333333333333*G2_0_0_1 + 0.000416666666666665*G2_1_0_1 - 0.000208333333333333*G2_2_0_1 + 0.00166666666666667*G2_3_0_1 + 0.000833333333333332*G2_4_0_1 + 0.00166666666666667*G2_5_0_1 - 0.000208333333333333*G2_6_1_1 + 0.000416666666666665*G2_7_1_1 - 0.000208333333333333*G2_8_1_1 + 0.00166666666666667*G2_9_1_1 + 0.000833333333333332*G2_10_1_1 + 0.00166666666666667*G2_11_1_1; + A[6] = -6.25e-05*G0_1_0 - 6.25e-05*G0_1_1 + 0.0416666666666667*G1_ + 0.000208333333333333*G2_0_0_0 + 0.000208333333333333*G2_0_0_1 + 0.000208333333333333*G2_1_0_0 + 0.000208333333333333*G2_1_0_1 - 0.000416666666666665*G2_2_0_0 - 0.000416666666666665*G2_2_0_1 - 0.00166666666666667*G2_3_0_0 - 0.00166666666666667*G2_3_0_1 - 0.00166666666666667*G2_4_0_0 - 0.00166666666666667*G2_4_0_1 - 0.000833333333333332*G2_5_0_0 - 0.000833333333333332*G2_5_0_1 + 0.000208333333333333*G2_6_1_0 + 0.000208333333333333*G2_6_1_1 + 0.000208333333333333*G2_7_1_0 + 0.000208333333333333*G2_7_1_1 - 0.000416666666666665*G2_8_1_0 - 0.000416666666666665*G2_8_1_1 - 0.00166666666666667*G2_9_1_0 - 0.00166666666666667*G2_9_1_1 - 0.00166666666666667*G2_10_1_0 - 0.00166666666666667*G2_10_1_1 - 0.000833333333333332*G2_11_1_0 - 0.000833333333333332*G2_11_1_1; + A[7] = 6.25e-05*G0_1_0 + 0.0416666666666667*G1_ - 0.000208333333333333*G2_0_0_0 - 0.000208333333333333*G2_1_0_0 + 0.000416666666666665*G2_2_0_0 + 0.00166666666666667*G2_3_0_0 + 0.00166666666666667*G2_4_0_0 + 0.000833333333333332*G2_5_0_0 - 0.000208333333333333*G2_6_1_0 - 0.000208333333333333*G2_7_1_0 + 0.000416666666666665*G2_8_1_0 + 0.00166666666666667*G2_9_1_0 + 0.00166666666666667*G2_10_1_0 + 0.000833333333333332*G2_11_1_0; + A[8] = 6.25e-05*G0_1_1 + 0.0833333333333333*G1_ - 0.000208333333333333*G2_0_0_1 - 0.000208333333333333*G2_1_0_1 + 0.000416666666666665*G2_2_0_1 + 0.00166666666666667*G2_3_0_1 + 0.00166666666666667*G2_4_0_1 + 0.000833333333333332*G2_5_0_1 - 0.000208333333333333*G2_6_1_1 - 0.000208333333333333*G2_7_1_1 + 0.000416666666666665*G2_8_1_1 + 0.00166666666666667*G2_9_1_1 + 0.00166666666666667*G2_10_1_1 + 0.000833333333333332*G2_11_1_1; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class advectiondiffusion_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + advectiondiffusion_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~advectiondiffusion_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 122 + // Number of operations (multiply-add pairs) for tensor contraction: 176 + // Total number of operations (multiply-add pairs): 301 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0_0 = det*(w[0][0]*((K[0]*K[0] + K[1]*K[1]))); + const double G0_0_0_1 = det*(w[0][0]*((K[0]*K[2] + K[1]*K[3]))); + const double G0_0_1_0 = det*(w[0][1]*((K[0]*K[0] + K[1]*K[1]))); + const double G0_0_2_1 = det*(w[0][2]*((K[0]*K[2] + K[1]*K[3]))); + const double G0_1_0_0 = det*(w[0][0]*((K[2]*K[0] + K[3]*K[1]))); + const double G0_1_0_1 = det*(w[0][0]*((K[2]*K[2] + K[3]*K[3]))); + const double G0_1_1_0 = det*(w[0][1]*((K[2]*K[0] + K[3]*K[1]))); + const double G0_1_2_1 = det*(w[0][2]*((K[2]*K[2] + K[3]*K[3]))); + const double G1_0_0_0_0 = det*w[1][0]*w[0][0]*K[0]*(1.0); + const double G1_0_0_0_1 = det*w[1][0]*w[0][0]*K[2]*(1.0); + const double G1_0_0_1_0 = det*w[1][0]*w[0][1]*K[0]*(1.0); + const double G1_0_0_2_1 = det*w[1][0]*w[0][2]*K[2]*(1.0); + const double G1_1_0_0_0 = det*w[1][1]*w[0][0]*K[0]*(1.0); + const double G1_1_0_0_1 = det*w[1][1]*w[0][0]*K[2]*(1.0); + const double G1_1_0_1_0 = det*w[1][1]*w[0][1]*K[0]*(1.0); + const double G1_1_0_2_1 = det*w[1][1]*w[0][2]*K[2]*(1.0); + const double G1_2_0_0_0 = det*w[1][2]*w[0][0]*K[0]*(1.0); + const double G1_2_0_0_1 = det*w[1][2]*w[0][0]*K[2]*(1.0); + const double G1_2_0_1_0 = det*w[1][2]*w[0][1]*K[0]*(1.0); + const double G1_2_0_2_1 = det*w[1][2]*w[0][2]*K[2]*(1.0); + const double G1_3_0_0_0 = det*w[1][3]*w[0][0]*K[0]*(1.0); + const double G1_3_0_0_1 = det*w[1][3]*w[0][0]*K[2]*(1.0); + const double G1_3_0_1_0 = det*w[1][3]*w[0][1]*K[0]*(1.0); + const double G1_3_0_2_1 = det*w[1][3]*w[0][2]*K[2]*(1.0); + const double G1_4_0_0_0 = det*w[1][4]*w[0][0]*K[0]*(1.0); + const double G1_4_0_0_1 = det*w[1][4]*w[0][0]*K[2]*(1.0); + const double G1_4_0_1_0 = det*w[1][4]*w[0][1]*K[0]*(1.0); + const double G1_4_0_2_1 = det*w[1][4]*w[0][2]*K[2]*(1.0); + const double G1_5_0_0_0 = det*w[1][5]*w[0][0]*K[0]*(1.0); + const double G1_5_0_0_1 = det*w[1][5]*w[0][0]*K[2]*(1.0); + const double G1_5_0_1_0 = det*w[1][5]*w[0][1]*K[0]*(1.0); + const double G1_5_0_2_1 = det*w[1][5]*w[0][2]*K[2]*(1.0); + const double G1_6_1_0_0 = det*w[1][6]*w[0][0]*K[1]*(1.0); + const double G1_6_1_0_1 = det*w[1][6]*w[0][0]*K[3]*(1.0); + const double G1_6_1_1_0 = det*w[1][6]*w[0][1]*K[1]*(1.0); + const double G1_6_1_2_1 = det*w[1][6]*w[0][2]*K[3]*(1.0); + const double G1_7_1_0_0 = det*w[1][7]*w[0][0]*K[1]*(1.0); + const double G1_7_1_0_1 = det*w[1][7]*w[0][0]*K[3]*(1.0); + const double G1_7_1_1_0 = det*w[1][7]*w[0][1]*K[1]*(1.0); + const double G1_7_1_2_1 = det*w[1][7]*w[0][2]*K[3]*(1.0); + const double G1_8_1_0_0 = det*w[1][8]*w[0][0]*K[1]*(1.0); + const double G1_8_1_0_1 = det*w[1][8]*w[0][0]*K[3]*(1.0); + const double G1_8_1_1_0 = det*w[1][8]*w[0][1]*K[1]*(1.0); + const double G1_8_1_2_1 = det*w[1][8]*w[0][2]*K[3]*(1.0); + const double G1_9_1_0_0 = det*w[1][9]*w[0][0]*K[1]*(1.0); + const double G1_9_1_0_1 = det*w[1][9]*w[0][0]*K[3]*(1.0); + const double G1_9_1_1_0 = det*w[1][9]*w[0][1]*K[1]*(1.0); + const double G1_9_1_2_1 = det*w[1][9]*w[0][2]*K[3]*(1.0); + const double G1_10_1_0_0 = det*w[1][10]*w[0][0]*K[1]*(1.0); + const double G1_10_1_0_1 = det*w[1][10]*w[0][0]*K[3]*(1.0); + const double G1_10_1_1_0 = det*w[1][10]*w[0][1]*K[1]*(1.0); + const double G1_10_1_2_1 = det*w[1][10]*w[0][2]*K[3]*(1.0); + const double G1_11_1_0_0 = det*w[1][11]*w[0][0]*K[1]*(1.0); + const double G1_11_1_0_1 = det*w[1][11]*w[0][0]*K[3]*(1.0); + const double G1_11_1_1_0 = det*w[1][11]*w[0][1]*K[1]*(1.0); + const double G1_11_1_2_1 = det*w[1][11]*w[0][2]*K[3]*(1.0); + const double G2_0 = det*w[0][0]*(1.0); + const double G2_1 = det*w[0][1]*(1.0); + const double G2_2 = det*w[0][2]*(1.0); + const double G3_0 = det*w[2][0]*(1.0); + const double G3_1 = det*w[2][1]*(1.0); + const double G3_2 = det*w[2][2]*(1.0); + + // Compute element tensor + A[0] = -6.25e-05*G0_0_0_0 - 6.25e-05*G0_0_0_1 + 6.25e-05*G0_0_1_0 + 6.25e-05*G0_0_2_1 - 6.25e-05*G0_1_0_0 - 6.25e-05*G0_1_0_1 + 6.25e-05*G0_1_1_0 + 6.25e-05*G0_1_2_1 + 0.000416666666666666*G1_0_0_0_0 + 0.000416666666666665*G1_0_0_0_1 - 0.000416666666666666*G1_0_0_1_0 - 0.000416666666666665*G1_0_0_2_1 - 0.000208333333333333*G1_1_0_0_0 - 0.000208333333333333*G1_1_0_0_1 + 0.000208333333333333*G1_1_0_1_0 + 0.000208333333333333*G1_1_0_2_1 - 0.000208333333333333*G1_2_0_0_0 - 0.000208333333333333*G1_2_0_0_1 + 0.000208333333333333*G1_2_0_1_0 + 0.000208333333333333*G1_2_0_2_1 + 0.000833333333333332*G1_3_0_0_0 + 0.000833333333333332*G1_3_0_0_1 - 0.000833333333333332*G1_3_0_1_0 - 0.000833333333333332*G1_3_0_2_1 + 0.00166666666666667*G1_4_0_0_0 + 0.00166666666666667*G1_4_0_0_1 - 0.00166666666666667*G1_4_0_1_0 - 0.00166666666666667*G1_4_0_2_1 + 0.00166666666666667*G1_5_0_0_0 + 0.00166666666666667*G1_5_0_0_1 - 0.00166666666666667*G1_5_0_1_0 - 0.00166666666666667*G1_5_0_2_1 + 0.000416666666666666*G1_6_1_0_0 + 0.000416666666666665*G1_6_1_0_1 - 0.000416666666666666*G1_6_1_1_0 - 0.000416666666666665*G1_6_1_2_1 - 0.000208333333333333*G1_7_1_0_0 - 0.000208333333333333*G1_7_1_0_1 + 0.000208333333333333*G1_7_1_1_0 + 0.000208333333333333*G1_7_1_2_1 - 0.000208333333333333*G1_8_1_0_0 - 0.000208333333333333*G1_8_1_0_1 + 0.000208333333333333*G1_8_1_1_0 + 0.000208333333333333*G1_8_1_2_1 + 0.000833333333333332*G1_9_1_0_0 + 0.000833333333333332*G1_9_1_0_1 - 0.000833333333333332*G1_9_1_1_0 - 0.000833333333333332*G1_9_1_2_1 + 0.00166666666666667*G1_10_1_0_0 + 0.00166666666666667*G1_10_1_0_1 - 0.00166666666666667*G1_10_1_1_0 - 0.00166666666666667*G1_10_1_2_1 + 0.00166666666666667*G1_11_1_0_0 + 0.00166666666666667*G1_11_1_0_1 - 0.00166666666666667*G1_11_1_1_0 - 0.00166666666666667*G1_11_1_2_1 + 0.0833333333333333*G2_0 + 0.0416666666666667*G2_1 + 0.0416666666666667*G2_2 + 0.00416666666666666*G3_0 + 0.00208333333333333*G3_1 + 0.00208333333333333*G3_2; + A[1] = 6.25e-05*G0_0_0_0 + 6.25e-05*G0_0_0_1 - 6.25e-05*G0_0_1_0 - 6.25e-05*G0_0_2_1 - 0.000208333333333333*G1_0_0_0_0 - 0.000208333333333333*G1_0_0_0_1 + 0.000208333333333333*G1_0_0_1_0 + 0.000208333333333333*G1_0_0_2_1 + 0.000416666666666665*G1_1_0_0_0 + 0.000416666666666665*G1_1_0_0_1 - 0.000416666666666665*G1_1_0_1_0 - 0.000416666666666665*G1_1_0_2_1 - 0.000208333333333333*G1_2_0_0_0 - 0.000208333333333333*G1_2_0_0_1 + 0.000208333333333333*G1_2_0_1_0 + 0.000208333333333333*G1_2_0_2_1 + 0.00166666666666667*G1_3_0_0_0 + 0.00166666666666667*G1_3_0_0_1 - 0.00166666666666667*G1_3_0_1_0 - 0.00166666666666667*G1_3_0_2_1 + 0.000833333333333333*G1_4_0_0_0 + 0.000833333333333332*G1_4_0_0_1 - 0.000833333333333333*G1_4_0_1_0 - 0.000833333333333332*G1_4_0_2_1 + 0.00166666666666667*G1_5_0_0_0 + 0.00166666666666667*G1_5_0_0_1 - 0.00166666666666667*G1_5_0_1_0 - 0.00166666666666667*G1_5_0_2_1 - 0.000208333333333333*G1_6_1_0_0 - 0.000208333333333333*G1_6_1_0_1 + 0.000208333333333333*G1_6_1_1_0 + 0.000208333333333333*G1_6_1_2_1 + 0.000416666666666665*G1_7_1_0_0 + 0.000416666666666665*G1_7_1_0_1 - 0.000416666666666665*G1_7_1_1_0 - 0.000416666666666665*G1_7_1_2_1 - 0.000208333333333333*G1_8_1_0_0 - 0.000208333333333333*G1_8_1_0_1 + 0.000208333333333333*G1_8_1_1_0 + 0.000208333333333333*G1_8_1_2_1 + 0.00166666666666667*G1_9_1_0_0 + 0.00166666666666667*G1_9_1_0_1 - 0.00166666666666667*G1_9_1_1_0 - 0.00166666666666667*G1_9_1_2_1 + 0.000833333333333333*G1_10_1_0_0 + 0.000833333333333332*G1_10_1_0_1 - 0.000833333333333333*G1_10_1_1_0 - 0.000833333333333332*G1_10_1_2_1 + 0.00166666666666667*G1_11_1_0_0 + 0.00166666666666667*G1_11_1_0_1 - 0.00166666666666667*G1_11_1_1_0 - 0.00166666666666667*G1_11_1_2_1 + 0.0416666666666667*G2_0 + 0.0833333333333333*G2_1 + 0.0416666666666667*G2_2 + 0.00208333333333333*G3_0 + 0.00416666666666666*G3_1 + 0.00208333333333333*G3_2; + A[2] = 6.25e-05*G0_1_0_0 + 6.25e-05*G0_1_0_1 - 6.25e-05*G0_1_1_0 - 6.25e-05*G0_1_2_1 - 0.000208333333333333*G1_0_0_0_0 - 0.000208333333333333*G1_0_0_0_1 + 0.000208333333333333*G1_0_0_1_0 + 0.000208333333333333*G1_0_0_2_1 - 0.000208333333333333*G1_1_0_0_0 - 0.000208333333333333*G1_1_0_0_1 + 0.000208333333333333*G1_1_0_1_0 + 0.000208333333333333*G1_1_0_2_1 + 0.000416666666666665*G1_2_0_0_0 + 0.000416666666666665*G1_2_0_0_1 - 0.000416666666666665*G1_2_0_1_0 - 0.000416666666666665*G1_2_0_2_1 + 0.00166666666666667*G1_3_0_0_0 + 0.00166666666666667*G1_3_0_0_1 - 0.00166666666666667*G1_3_0_1_0 - 0.00166666666666667*G1_3_0_2_1 + 0.00166666666666667*G1_4_0_0_0 + 0.00166666666666667*G1_4_0_0_1 - 0.00166666666666667*G1_4_0_1_0 - 0.00166666666666667*G1_4_0_2_1 + 0.000833333333333332*G1_5_0_0_0 + 0.000833333333333332*G1_5_0_0_1 - 0.000833333333333332*G1_5_0_1_0 - 0.000833333333333332*G1_5_0_2_1 - 0.000208333333333333*G1_6_1_0_0 - 0.000208333333333333*G1_6_1_0_1 + 0.000208333333333333*G1_6_1_1_0 + 0.000208333333333333*G1_6_1_2_1 - 0.000208333333333333*G1_7_1_0_0 - 0.000208333333333333*G1_7_1_0_1 + 0.000208333333333333*G1_7_1_1_0 + 0.000208333333333333*G1_7_1_2_1 + 0.000416666666666665*G1_8_1_0_0 + 0.000416666666666665*G1_8_1_0_1 - 0.000416666666666665*G1_8_1_1_0 - 0.000416666666666665*G1_8_1_2_1 + 0.00166666666666667*G1_9_1_0_0 + 0.00166666666666667*G1_9_1_0_1 - 0.00166666666666667*G1_9_1_1_0 - 0.00166666666666667*G1_9_1_2_1 + 0.00166666666666667*G1_10_1_0_0 + 0.00166666666666667*G1_10_1_0_1 - 0.00166666666666667*G1_10_1_1_0 - 0.00166666666666667*G1_10_1_2_1 + 0.000833333333333332*G1_11_1_0_0 + 0.000833333333333332*G1_11_1_0_1 - 0.000833333333333332*G1_11_1_1_0 - 0.000833333333333332*G1_11_1_2_1 + 0.0416666666666667*G2_0 + 0.0416666666666667*G2_1 + 0.0833333333333333*G2_2 + 0.00208333333333333*G3_0 + 0.00208333333333333*G3_1 + 0.00416666666666666*G3_2; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class advectiondiffusion_form_0: public ufc::form +{ +public: + + /// Constructor + advectiondiffusion_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~advectiondiffusion_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "846250aee5aebcb1fa657d35041deb65ebded9aa767a013a7db70abdfb5b32031146d63bd7bac8824e404f2da1df77164bc9f8459aa7b24b538684e85da5e06a"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new advectiondiffusion_finite_element_2(); + break; + } + case 1: + { + return new advectiondiffusion_finite_element_2(); + break; + } + case 2: + { + return new advectiondiffusion_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new advectiondiffusion_dofmap_2(); + break; + } + case 1: + { + return new advectiondiffusion_dofmap_2(); + break; + } + case 2: + { + return new advectiondiffusion_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new advectiondiffusion_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class advectiondiffusion_form_1: public ufc::form +{ +public: + + /// Constructor + advectiondiffusion_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~advectiondiffusion_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "c0f06173bc8a97c8f7934da13c7a573ba36d330878e42f669ded910c15403077c323b8761811828dbda766e11b2167b47a59e2034d388cbe6f579ffee5612d6f"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 3; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new advectiondiffusion_finite_element_2(); + break; + } + case 1: + { + return new advectiondiffusion_finite_element_2(); + break; + } + case 2: + { + return new advectiondiffusion_finite_element_1(); + break; + } + case 3: + { + return new advectiondiffusion_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new advectiondiffusion_dofmap_2(); + break; + } + case 1: + { + return new advectiondiffusion_dofmap_2(); + break; + } + case 2: + { + return new advectiondiffusion_dofmap_1(); + break; + } + case 3: + { + return new advectiondiffusion_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new advectiondiffusion_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace AdvectionDiffusion +{ + +class CoefficientSpace_b: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_b(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_b(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_b(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_b(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_b(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_b(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_b() + { + } + +}; + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class CoefficientSpace_u0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_u0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_u0() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_b Form_a_FunctionSpace_2; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 1), b(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& b): + dolfin::Form(2, 1), b(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->b = b; + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr b): + dolfin::Form(2, 1), b(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->b = *b; + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 1), b(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& b): + dolfin::Form(2, 1), b(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->b = b; + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr b): + dolfin::Form(2, 1), b(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->b = *b; + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "b") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "b"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + typedef Form_a_FunctionSpace_2 CoefficientSpace_b; + + // Coefficients + dolfin::CoefficientAssigner b; +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new advectiondiffusion_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new advectiondiffusion_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_u0 Form_L_FunctionSpace_1; + +typedef CoefficientSpace_b Form_L_FunctionSpace_2; + +typedef CoefficientSpace_f Form_L_FunctionSpace_3; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 3), u0(*this, 0), b(*this, 1), f(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& u0, const dolfin::GenericFunction& b, const dolfin::GenericFunction& f): + dolfin::Form(1, 3), u0(*this, 0), b(*this, 1), f(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->u0 = u0; + this->b = b; + this->f = f; + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr u0, std::shared_ptr b, std::shared_ptr f): + dolfin::Form(1, 3), u0(*this, 0), b(*this, 1), f(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->u0 = *u0; + this->b = *b; + this->f = *f; + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 3), u0(*this, 0), b(*this, 1), f(*this, 2) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& u0, const dolfin::GenericFunction& b, const dolfin::GenericFunction& f): + dolfin::Form(1, 3), u0(*this, 0), b(*this, 1), f(*this, 2) + { + _function_spaces[0] = V0; + + this->u0 = u0; + this->b = b; + this->f = f; + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr u0, std::shared_ptr b, std::shared_ptr f): + dolfin::Form(1, 3), u0(*this, 0), b(*this, 1), f(*this, 2) + { + _function_spaces[0] = V0; + + this->u0 = *u0; + this->b = *b; + this->f = *f; + + _ufc_form = std::shared_ptr(new advectiondiffusion_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "u0") + return 0; + else if (name == "b") + return 1; + else if (name == "f") + return 2; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "u0"; + case 1: + return "b"; + case 2: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_u0; + typedef Form_L_FunctionSpace_2 CoefficientSpace_b; + typedef Form_L_FunctionSpace_3 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner u0; + dolfin::CoefficientAssigner b; + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/undocumented/advection-diffusion/cpp/AdvectionDiffusion.ufl b/demo/undocumented/advection-diffusion/cpp/AdvectionDiffusion.ufl new file mode 100644 index 0000000..200fd59 --- /dev/null +++ b/demo/undocumented/advection-diffusion/cpp/AdvectionDiffusion.ufl @@ -0,0 +1,40 @@ +# Copyright (C) 2006-2007 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2006-02-09 +# Last changed: 2011-03-09 +# +# The bilinear form a(u, v) and linear form L(v) for +# convection-diffusion using cG(1)cG(1). +# +# Compile this form with FFC: ffc -l dolfin AdvectionDiffusion.ufl + +scalar = FiniteElement("Lagrange", triangle, 1) +vector = VectorElement("Lagrange", triangle, 2) + +u = TrialFunction(scalar) +v = TestFunction(scalar) +u0 = Coefficient(scalar) +b = Coefficient(vector) +f = Coefficient(scalar) + +c = 0.005 +k = 0.05 + +a = u*v*dx + 0.5*k*(dot(b, grad(u)*v)*dx + c*dot(grad(u), grad(v))*dx) +L = u0*v*dx - 0.5*k*(dot(b, grad(u0)*v)*dx + c*dot( grad(u0), grad(v))*dx) \ + + k*f*v*dx diff --git a/demo/undocumented/advection-diffusion/cpp/CMakeLists.txt b/demo/undocumented/advection-diffusion/cpp/CMakeLists.txt new file mode 100644 index 0000000..6fce944 --- /dev/null +++ b/demo/undocumented/advection-diffusion/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_advection-diffusion) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/undocumented/advection-diffusion/cpp/Velocity.h b/demo/undocumented/advection-diffusion/cpp/Velocity.h new file mode 100644 index 0000000..c899ed7 --- /dev/null +++ b/demo/undocumented/advection-diffusion/cpp/Velocity.h @@ -0,0 +1,5113 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __VELOCITY_H +#define __VELOCITY_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class velocity_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + velocity_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~velocity_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new velocity_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class velocity_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + velocity_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~velocity_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[3] = dof_values[7]; + vertex_values[5] = dof_values[8]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new velocity_finite_element_0(); + break; + } + case 1: + { + return new velocity_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new velocity_finite_element_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class velocity_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + velocity_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~velocity_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new velocity_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class velocity_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + velocity_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~velocity_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new velocity_dofmap_0(); + break; + } + case 1: + { + return new velocity_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new velocity_dofmap_1(); + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Velocity +{ + +class FunctionSpace: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + FunctionSpace(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocity_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocity_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + FunctionSpace(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocity_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocity_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + FunctionSpace(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocity_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocity_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + FunctionSpace(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocity_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocity_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + FunctionSpace(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocity_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocity_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + FunctionSpace(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new velocity_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new velocity_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~FunctionSpace() + { + } + +}; + +} + +#endif diff --git a/demo/undocumented/advection-diffusion/cpp/Velocity.ufl b/demo/undocumented/advection-diffusion/cpp/Velocity.ufl new file mode 100644 index 0000000..65e1625 --- /dev/null +++ b/demo/undocumented/advection-diffusion/cpp/Velocity.ufl @@ -0,0 +1,25 @@ +# Copyright (C) 2009 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2009-03-07 +# Last changed: 2009-05-15 +# +# A continuous P2 vector element +# +# Compile this form with FFC: ffc -l dolfin Velocity.form + +element = VectorElement("Lagrange", triangle, 2) diff --git a/demo/undocumented/advection-diffusion/cpp/compile.log b/demo/undocumented/advection-diffusion/cpp/compile.log new file mode 100644 index 0000000..b7a36c2 --- /dev/null +++ b/demo/undocumented/advection-diffusion/cpp/compile.log @@ -0,0 +1,741 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling element Velocity + +Compiler stage 1: Analyzing form(s) +----------------------------------- + +Compiler stage 1 finished in 0.000257015 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 2 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 2 dofmaps + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing representation of forms + +Compiler stage 2 finished in 0.013695 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + +Compiler stage 3 finished in 0.000164032 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 2 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 2 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.283608 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000443935 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Velocity.h. + +Compiler stage 5 finished in 0.00126791 seconds. + +FFC finished in 0.29988 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form AdvectionDiffusion + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 1 + Coefficients: '[w_1]' + Coefficient names: '[b]' + Unique elements: 'CG1(?), Vector<2 x CG2(?)>' + Unique sub elements: 'CG1(?), Vector<2 x CG2(?)>, CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 3 + Coefficients: '[w_0, w_1, w_2]' + Coefficient names: '[u0, b, f]' + Unique elements: 'CG1(?), Vector<2 x CG2(?)>' + Unique sub elements: 'CG1(?), Vector<2 x CG2(?)>, CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 3 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.040498 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 3 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 3 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.00105 seconds + Shape of reference tensor: (3, 3, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000932 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 432 entries computed in 0.00242 seconds + Shape of reference tensor: (3, 3, 12, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 3 dims = [12, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], [2, 0, 0], [2, 0, 1], [2, 1, 0], [2, 1, 1], [3, 0, 0], [3, 0, 1], [3, 1, 0], [3, 1, 1], [4, 0, 0], [4, 0, 1], [4, 1, 0], [4, 1, 1], [5, 0, 0], [5, 0, 1], [5, 1, 0], [5, 1, 1], [6, 0, 0], [6, 0, 1], [6, 1, 0], [6, 1, 1], [7, 0, 0], [7, 0, 1], [7, 1, 0], [7, 1, 1], [8, 0, 0], [8, 0, 1], [8, 1, 0], [8, 1, 1], [9, 0, 0], [9, 0, 1], [9, 1, 0], [9, 1, 1], [10, 0, 0], [10, 0, 1], [10, 1, 0], [10, 1, 1], [11, 0, 0], [11, 0, 1], [11, 1, 0], [11, 1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 3 dims = [12, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], [2, 0, 0], [2, 0, 1], [2, 1, 0], [2, 1, 1], [3, 0, 0], [3, 0, 1], [3, 1, 0], [3, 1, 1], [4, 0, 0], [4, 0, 1], [4, 1, 0], [4, 1, 1], [5, 0, 0], [5, 0, 1], [5, 1, 0], [5, 1, 1], [6, 0, 0], [6, 0, 1], [6, 1, 0], [6, 1, 1], [7, 0, 0], [7, 0, 1], [7, 1, 0], [7, 1, 1], [8, 0, 0], [8, 0, 1], [8, 1, 0], [8, 1, 1], [9, 0, 0], [9, 0, 1], [9, 1, 0], [9, 1, 1], [10, 0, 0], [10, 0, 1], [10, 1, 0], [10, 1, 1], [11, 0, 0], [11, 0, 1], [11, 1, 0], [11, 1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.001 seconds + Shape of reference tensor: (3, 2, 3, 2) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 3 dims = [2, 3, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [0, 2, 0], [0, 2, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], [1, 2, 0], [1, 2, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 3 dims = [2, 3, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [0, 2, 0], [0, 2, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], [1, 2, 0], [1, 2, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 432 entries computed in 0.00236 seconds + Shape of reference tensor: (3, 12, 2, 3, 2) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 4 dims = [12, 2, 3, 2] indices = [[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 0, 2, 0], [0, 0, 2, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [0, 1, 2, 0], [0, 1, 2, 1], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 0, 2, 0], [1, 0, 2, 1], [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 2, 0], [1, 1, 2, 1], [2, 0, 0, 0], [2, 0, 0, 1], [2, 0, 1, 0], [2, 0, 1, 1], [2, 0, 2, 0], [2, 0, 2, 1], [2, 1, 0, 0], [2, 1, 0, 1], [2, 1, 1, 0], [2, 1, 1, 1], [2, 1, 2, 0], [2, 1, 2, 1], [3, 0, 0, 0], [3, 0, 0, 1], [3, 0, 1, 0], [3, 0, 1, 1], [3, 0, 2, 0], [3, 0, 2, 1], [3, 1, 0, 0], [3, 1, 0, 1], [3, 1, 1, 0], [3, 1, 1, 1], [3, 1, 2, 0], [3, 1, 2, 1], [4, 0, 0, 0], [4, 0, 0, 1], [4, 0, 1, 0], [4, 0, 1, 1], [4, 0, 2, 0], [4, 0, 2, 1], [4, 1, 0, 0], [4, 1, 0, 1], [4, 1, 1, 0], [4, 1, 1, 1], [4, 1, 2, 0], [4, 1, 2, 1], [5, 0, 0, 0], [5, 0, 0, 1], [5, 0, 1, 0], [5, 0, 1, 1], [5, 0, 2, 0], [5, 0, 2, 1], [5, 1, 0, 0], [5, 1, 0, 1], [5, 1, 1, 0], [5, 1, 1, 1], [5, 1, 2, 0], [5, 1, 2, 1], [6, 0, 0, 0], [6, 0, 0, 1], [6, 0, 1, 0], [6, 0, 1, 1], [6, 0, 2, 0], [6, 0, 2, 1], [6, 1, 0, 0], [6, 1, 0, 1], [6, 1, 1, 0], [6, 1, 1, 1], [6, 1, 2, 0], [6, 1, 2, 1], [7, 0, 0, 0], [7, 0, 0, 1], [7, 0, 1, 0], [7, 0, 1, 1], [7, 0, 2, 0], [7, 0, 2, 1], [7, 1, 0, 0], [7, 1, 0, 1], [7, 1, 1, 0], [7, 1, 1, 1], [7, 1, 2, 0], [7, 1, 2, 1], [8, 0, 0, 0], [8, 0, 0, 1], [8, 0, 1, 0], [8, 0, 1, 1], [8, 0, 2, 0], [8, 0, 2, 1], [8, 1, 0, 0], [8, 1, 0, 1], [8, 1, 1, 0], [8, 1, 1, 1], [8, 1, 2, 0], [8, 1, 2, 1], [9, 0, 0, 0], [9, 0, 0, 1], [9, 0, 1, 0], [9, 0, 1, 1], [9, 0, 2, 0], [9, 0, 2, 1], [9, 1, 0, 0], [9, 1, 0, 1], [9, 1, 1, 0], [9, 1, 1, 1], [9, 1, 2, 0], [9, 1, 2, 1], [10, 0, 0, 0], [10, 0, 0, 1], [10, 0, 1, 0], [10, 0, 1, 1], [10, 0, 2, 0], [10, 0, 2, 1], [10, 1, 0, 0], [10, 1, 0, 1], [10, 1, 1, 0], [10, 1, 1, 1], [10, 1, 2, 0], [10, 1, 2, 1], [11, 0, 0, 0], [11, 0, 0, 1], [11, 0, 1, 0], [11, 0, 1, 1], [11, 0, 2, 0], [11, 0, 2, 1], [11, 1, 0, 0], [11, 1, 0, 1], [11, 1, 1, 0], [11, 1, 1, 1], [11, 1, 2, 0], [11, 1, 2, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 4 dims = [12, 2, 3, 2] indices = [[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 0, 2, 0], [0, 0, 2, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [0, 1, 2, 0], [0, 1, 2, 1], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 0, 2, 0], [1, 0, 2, 1], [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 2, 0], [1, 1, 2, 1], [2, 0, 0, 0], [2, 0, 0, 1], [2, 0, 1, 0], [2, 0, 1, 1], [2, 0, 2, 0], [2, 0, 2, 1], [2, 1, 0, 0], [2, 1, 0, 1], [2, 1, 1, 0], [2, 1, 1, 1], [2, 1, 2, 0], [2, 1, 2, 1], [3, 0, 0, 0], [3, 0, 0, 1], [3, 0, 1, 0], [3, 0, 1, 1], [3, 0, 2, 0], [3, 0, 2, 1], [3, 1, 0, 0], [3, 1, 0, 1], [3, 1, 1, 0], [3, 1, 1, 1], [3, 1, 2, 0], [3, 1, 2, 1], [4, 0, 0, 0], [4, 0, 0, 1], [4, 0, 1, 0], [4, 0, 1, 1], [4, 0, 2, 0], [4, 0, 2, 1], [4, 1, 0, 0], [4, 1, 0, 1], [4, 1, 1, 0], [4, 1, 1, 1], [4, 1, 2, 0], [4, 1, 2, 1], [5, 0, 0, 0], [5, 0, 0, 1], [5, 0, 1, 0], [5, 0, 1, 1], [5, 0, 2, 0], [5, 0, 2, 1], [5, 1, 0, 0], [5, 1, 0, 1], [5, 1, 1, 0], [5, 1, 1, 1], [5, 1, 2, 0], [5, 1, 2, 1], [6, 0, 0, 0], [6, 0, 0, 1], [6, 0, 1, 0], [6, 0, 1, 1], [6, 0, 2, 0], [6, 0, 2, 1], [6, 1, 0, 0], [6, 1, 0, 1], [6, 1, 1, 0], [6, 1, 1, 1], [6, 1, 2, 0], [6, 1, 2, 1], [7, 0, 0, 0], [7, 0, 0, 1], [7, 0, 1, 0], [7, 0, 1, 1], [7, 0, 2, 0], [7, 0, 2, 1], [7, 1, 0, 0], [7, 1, 0, 1], [7, 1, 1, 0], [7, 1, 1, 1], [7, 1, 2, 0], [7, 1, 2, 1], [8, 0, 0, 0], [8, 0, 0, 1], [8, 0, 1, 0], [8, 0, 1, 1], [8, 0, 2, 0], [8, 0, 2, 1], [8, 1, 0, 0], [8, 1, 0, 1], [8, 1, 1, 0], [8, 1, 1, 1], [8, 1, 2, 0], [8, 1, 2, 1], [9, 0, 0, 0], [9, 0, 0, 1], [9, 0, 1, 0], [9, 0, 1, 1], [9, 0, 2, 0], [9, 0, 2, 1], [9, 1, 0, 0], [9, 1, 0, 1], [9, 1, 1, 0], [9, 1, 1, 1], [9, 1, 2, 0], [9, 1, 2, 1], [10, 0, 0, 0], [10, 0, 0, 1], [10, 0, 1, 0], [10, 0, 1, 1], [10, 0, 2, 0], [10, 0, 2, 1], [10, 1, 0, 0], [10, 1, 0, 1], [10, 1, 1, 0], [10, 1, 1, 1], [10, 1, 2, 0], [10, 1, 2, 1], [11, 0, 0, 0], [11, 0, 0, 1], [11, 0, 1, 0], [11, 0, 1, 1], [11, 0, 2, 0], [11, 0, 2, 1], [11, 1, 0, 0], [11, 1, 0, 1], [11, 1, 1, 0], [11, 1, 1, 1], [11, 1, 2, 0], [11, 1, 2, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000781 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 9 entries computed in 0.000768 seconds + Shape of reference tensor: (3, 3) + Primary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0268822 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.00028801 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 3 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 3 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.301311 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.00113106 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./AdvectionDiffusion.h. + +Compiler stage 5 finished in 0.00124693 seconds. + +FFC finished in 0.3718 seconds. diff --git a/demo/undocumented/advection-diffusion/cpp/main.cpp b/demo/undocumented/advection-diffusion/cpp/main.cpp new file mode 100644 index 0000000..c8b53e5 --- /dev/null +++ b/demo/undocumented/advection-diffusion/cpp/main.cpp @@ -0,0 +1,113 @@ +// Copyright (C) 2006-2008 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2006-02-09 +// Last changed: 2013-03-21 +// +// This demo solves the time-dependent advection-diffusion equation +// by a least-squares stabilized cG(1)cG(1) method. The velocity field +// used in the simulation is the output from the Stokes (Taylor-Hood) +// demo. The sub domains for the different boundary conditions are +// computed by the demo program in src/demo/subdomains. + +#include +#include "AdvectionDiffusion.h" +#include "Velocity.h" +#include + +using namespace dolfin; + +int main(int argc, char *argv[]) +{ + // Read mesh + Mesh mesh("../dolfin_fine.xml.gz"); + + // Create velocity FunctionSpace + Velocity::FunctionSpace V_u(mesh); + + // Create velocity function + Function velocity(V_u); + XMLFile file_u(mesh.mpi_comm(), "../dolfin_fine_velocity.xml.gz"); + file_u >> velocity; + + // Read sub domain markers + MeshFunction sub_domains(mesh, + "../dolfin_fine_subdomains.xml.gz"); + + // Create function space + AdvectionDiffusion::FunctionSpace V(mesh); + + // Source term and initial condition + Constant f(0.0); + Function u(V); + + // Set up forms + AdvectionDiffusion::BilinearForm a(V, V); + a.b = velocity; + AdvectionDiffusion::LinearForm L(V); + L.u0 = u; L.b = velocity; L.f = f; + + // Set up boundary condition + Constant g(1.0); + DirichletBC bc(V, g, sub_domains, 1); + + // Solution + Function u1(V); + + // Linear system + std::shared_ptr A(new Matrix); + Vector b; + + // Assemble matrix + assemble(*A, a); + bc.apply(*A); + + // LU solver + LUSolver lu(A); + lu.parameters["reuse_factorization"] = true; + + // Parameters for time-stepping + const double T = 2.0; + const double k = 0.05; + double t = k; + + // Output file + File file("results/temperature.pvd"); + + // Time-stepping + Progress p("Time-stepping"); + while (t < T) + { + // Assemble vector and apply boundary conditions + assemble(b, L); + bc.apply(b); + + // Solve the linear system (re-use the already factorized matrix A) + lu.solve(*u.vector(), b); + + // Save solution in VTK format + file << std::pair(&u, t); + + // Move to next interval + p = t / T; + t += k; + } + + // Plot solution + plot(u); + interactive(); +} diff --git a/demo/undocumented/advection-diffusion/dolfin_fine.xml.gz b/demo/undocumented/advection-diffusion/dolfin_fine.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..6f071e4bdc5c7c4478a746fdd0baaafe3c08b3ef GIT binary patch literal 88283 zcmV)RK(oIeiwFQ7^h!|x1B{i;P8%^4h4(zg$onR~|JR7Xu20ZDK$Q%1q%c7wD$u8| zDY<47kJv=A#$V=KpW`z(cdw88;m`PdoDTCQ!78U=oVSPFG(T+8&mZ5vdAhs3y1LmN z_V?2~)ZO#(`eU(4zfY&9>-GBOED#5v633R2pmZ5;;|L>s&7KkrWCsg|grM(eZttn$nl>(u zeMUKks`xdCjAs4T~b#QC1nBP7QIXyhi6)|*Y_6X(ycW` zw|;S9Ylo7>hcAYpkn+$6WEzHyk0-17~DH|_z7q*6A!_S#Ag7%w;T19w% zwRNvpfo4>{4LnN$ndg1q*%KquiZLUO5JYgv@^ zkMVLzVi*Qt=#`B5-~VDI3zRNwCi^lb;vv*)iJeAk$}EEnxEHAj)3e8zhAF`y$|s}0 zNRxOtv+#$g2*7Y6i**N2;14y*-72X1TKDdRPSUBk56dL`gt&@{4n=Qv@G?EL$5V6w z4WiKmso9ph;|X983Y@dr`6<^3aNs0S49Ro27Xo{b%s=a|s^OF3xJrwss3v(@TD^}| zUu$^$4gjqws3};;(p$cbRhtD}bzTjZwpLpHy%yY8dqIp=vebE}S+D z8g*M+I0=zGbk{JH)bS>c+PxvLHVY*dq!Z`qCTXK!=Cn~{lmkE7DAbK)LWWWj9-?vM zU|AOO1}`n{?nRA5-Dbscu8T=~c&Tx4BAg`7$~kxAGDb}>hQz*yq-za>Z>2Z03d>z@ zYZ#m}4Ut;e94qjpqu+>3l+vMU5a zP>K&ljf0halYMK?8wac9X8YJ4WB-`WC=nLb|w5F-2Y-P*1QRB z%v5isv}1%M_@g)Co84g@0UkbA$rVABUyvuZHQ-@rvR{o6Pj`q;aMw+ec{&W(Hs(j~ot0|M6U*_SvR$uM)!X~PVsaN5nt28bH_vH_UHR3TJj zB+`%0`il1ED&4RO5b%^};?@q8zSxx@G?E;{P)15Nt7^H^*oV79qcQ|^BSst;*4af> z(ZZ{-z-+Cp{%cpzI*2?(mAgW|+CraBZ;3qYgSL3SC#WN#*J{CMs0K#G=|DuDGF8vX`N~YV0RWD49ajIY4_9O2rFW zQkVj5 zwZU-=GEE-jLKmvum^?0@|Jop?uGk=>$E&%w*DFX9uHSa{_~454K#JM0Q$~(eLAF4O zrrLQTM}{EpK&p!MK#Dt8gA4eG-r6zYLyFd5HaHX0Ux7yE_B8!ury(>c^vv;*g zQ1-51iO1emF`?MI(k2OeS8w94X}G}X8ZP5jEnD)hX(viu!|18Gm|trbxrY>T6Z=B~ z*75u7M}|xd@+FB4)_IAPn1C9JNEWqB9-CPmdCLrzyEc2<8EWl9zc{ zD1zUK!Ep7=YUfO4g-F4y)d{0C93}BKE%Md4sgiGpVyH!BT)-nVsP5-U(Ln1 zFle;JQPH-VtJt9h6rDT` zYr5T*ZyEHVQlCJr--l!Q2Vo?(dho&rIjHkH&nl3cTdiuB88-s@-fwpQKPXr_-9LPq zTapAJ2n4UhLs0L3vBlV!s{X3)38NjQfld;s$-GmY`Y$RbdJHtOSCklb1)$oq;ez|C zBf=t#lN3*c#e5Q`a!~-)-oUF!X4}R5GXT}1BhLZoa^?SksadD3^;sk?E5OvIA~>e? zFPKDi4CCbe@xfopo$Ptl5pJej#|~Gyr}|%qpVf)-7`Z#t4u7HXc+lZYv&zK5gQ@L` zOPOrCfl#&_jlNa)=hw zIJ7ePK-A{V-zX*h-WainD&HH_La1^vhYqTIY1ufvb4*?@<*izYSg*+*VuSf%@BvZt zIl_W*N0Pyxr11O3kxJG4j&JRwiyt9EL^3MuI7jUBgL>AY&b~J1uUF= z;E@AQ<>9$6b~+3GKpGUBsR!a2Ar@t#sEy2^y~k8RIVUttBXh*pZCI}{@?oi$GWdnX z{aG{(aY4?yrQwS395@V{XVTDo}mz(@8Hwp+AIzc?Hcu^kj>;6kn z3B;NpgyMMK=$(W$99zKecUDdAqSS*O?#J-A^4D{Q%QTL&yCWuRcD2{-ys!KJvHV@b zN401&myH5s+{z%w^X?y+C>W~%11LzyDcqI;zQ2gkJyaQfjodeO?~rKV!;aS_^Ck-G zpXv@L@qG6cvi^_42`VxI4iYP!_N-5BXkbo6!gVU#6*g(zGrzV5_Uo1!Agw9b4u4Y*|Yuo=Wp+jcXTyQzgUL4S9Wa2H6QFj(vhR_M~*1<_$uvhXMR zq>{pOpKKO!XTV~xBhPkna#!>dTRi@AChcnc{eDZrO^VPNc*O`$$I^&M-k6!E7l(=F1^jn2B&Ou~s1!q1KKLfUdBg=wmjqJ;MfrsF`CQ~t!CJH`ld z)ZuOCbBRA8aF=My`K+gY8a7%_YB!!!G|CgM{A3EzBg*})qmh|Ml8HTN52P}M@5T{< zZ`b;t2GF{h9K&vZ?mQBJ;)(uzy1!9Yv?DVR6&h9+$ru9v+#(i?t?+qG1k$Xb`dpo& z_9&$3e(B$~$g$CziYr{`aS?w)VkIxPPTSEi($Ai~Dxn*nx#nA;+Y*RJrWZ$jxd)^% zN!Xdv9m};(Nco9c#4n5k64$LF{amM8Lx%XqW)3@aUlwkx^{N!EnV zB>Q>Wqag$Qlhe&`tAsD={OTMhZA-DA=PCgK!A7|mviCj^X@h&%o?0`C-Q+h{jS%3UtQX0)3khHKW)x8KplNKq`(KrS^MG z@)@UTKesNWlbGyN&kRF#B{|TxV93zCP)cqyii)-VQ7SRc<2EBze*#uhDgi`eph=Pg zMbLawT7=^eSEi`0m%sw3*L7Nw9Owfy!jb_nz(#p;pwSc_?<6p#U6-CdKu!vE#+=tL zNrJ{|^CtoFy4USI8}MtsgyWH6B)cgE<9exEXJNKx4@rX}8eVeN?QIJ8EryM?iWjAA z_0xTeghp*WzA@_KtNuMoQsj@p^ozMx8YNAV20j07(QkhJSVDh~;@KEu@F|uS445uR zN)?Gn#jjSG%7(3@fn+Z62p0DI@o{BW62l;@ zCEMVu|HfA2?MnVx72ruG<`6<)PIdLGf)Q$rZQqbAXoZnfc2wc2MfYyf!CQL5dt%q5csMTI9#0xo13p?{DEh4E_o6oF@7x2@qk{eqC{ zq;P{dMIhQxB&VFR%=-T|4;o;&$?gtvo`oplLHF0?|J$09PJbVoeMX5Q#^7d}agJDG zyYB8%#`NR9Jb6(3_NQO{MF4kQ_rKUy+xcv`DGuAcp_b{iWU5>xsWFE%+cI62lG63WkSG% znr*Z@GdlebBGj*fK8-_92*003gSDGC2>T9U1l?*#Yf2=<9t#9{S$3KTwIGYPg7xYI zcxPmHD8U&DBD4rKfm)zsJkh~~#zm&a=c6E1&4s$RoKek=%um`>Xuh(sUF{N!J(fbG zJ%Y5ba-WkbEEMR-Vocm7EWWDUJEeTIw3~OFu@gGjzW@*_QxXYbYA$r!CvN?}!+kHS zigEKomkefCQy4*?IGlyIWN%W{9*vsmkoa^jF}NzI&=^bO?`!I$s;SU-UsvU9zKF!A z8x1AVZZmRH{uNTyd{@q(h>FP0KpKi7&T$!bgHL`Xhn*0{E+6Vim=dg}O@&4dMLJOY zVc}*?g+>KH^>Za|WvOFLg&tW*fQlTZ*j>|HXvMAqtoe3A@#w)`!SD)IBqlv!e;bw) zRA1NmpR)+I1DZVh0RX^<5`R}Usj+naUzf;n+El2o1cT^8?|f+JkB@6Tk}w2ey<7t) z2tN96>|k#u@z16J=5t+C2uZ$0;XUc8J-U+}E*FSf!}jK+!CRvyqV8iD^so|#{1&j# zvz&C=mcy&xMJ%+=Q&1#O7r96%V4+qypJc2mygLAe`s-7i|1H?}sNkm@{Zpm13y>@T zg}M)W1POVRY2IWR8Uq<`O)ye6g_|6xV{BZdrXv7_*85NLnO9%E)Sryh$jNSURmmt? z>i`s5{Wwvws!5f(ZBW>qZs%b$DR?p-M(DbSyRl^&28#_lysv9Jb=zK1t`?(aG@P)z|58PC30f~1&sS1 zWh@-PLg$ACiV9$cD%gO9u1Y)r-o040LSUi3k`$i0yp`Z5fQ4@F?w#5Kwei%PS2;x4 zqYZNvm9*y~a(#}RY6k5e>mkRC*KQ90MHEntVb?h{T(Xo;vb$PW`FPX_U^oDU)|q^U z8beu~2awQC1>8_|j9oa9#CnEn8(fH{pAF@v>SSpX##_7XphVQ9KV#D2(|WEcqR17F zLBITLj_uFyA75vb?LY{^&@GJ!i2L8zgZGj6(=5Q#+KwQXkoma^>MqLyk?#jNMBmj( zLcNlud?!Gmw|2Tg)_o%H;GNK2GBu5ZJd&v9Ujpm^Ftj^QWR!g;)VJx z5HmXMu;R6`{1U53yy_9+hs^#2pf|G?#nLr#r*I%&; z-IJVZ2v$>ZL?6V#LhU^FlNh!pLLp#icBr}RcDZWEJ78$X-Vog$V!5rCpva3D`xn$8~(#J+yxrZ0WA1>fTN3>FxLMlT0WxDnQuHf2X7=*248>^W87yHly;?S=Fcuks^ zfRMzGAS0oE(NcC@rEx<8p>CH}4&{j{C_Gq%$QPpuoK!yNl*IddGj*} zMbbtCq4nkG6=pvxKo_jho7jhVoIOEUMg47lmkP+(PK^FAeTSd`E!^XY~4q!=Ra-f|{w? zQzKpsD&p;OypvTx2(kbUA#$TkFmLLrmyj^%v6#yd)KnexncQV0(#44@*%@dw8F+7Q zK@n%`koLFFa9G$1W55}6HGlL<3AJ4b4TE|%CWk=nH!=PnwTGUDzAOkO9|vXeap=gj zKki3Gb(K*Xp9Y|#;5ZS*q~Se(`eX+y`ZO5H!g~j$6ZffAYDU-MEcN=&h^vldqoA1+ z4^7LmzIp1dxD0EbX2-=^=IR-@jPVAOT7HjQbk(?Hu7>8+)PQJS;U8bumLx$4!mcDX zLA?LP7WRW!wY53G)Y!JR5cBx+D+1(L_MnBz!VOM5qt3-CpiC597!35>HUysvJ`~c8 z!9W}IWW2{(ri!k?Ksz{VgnPAKOy;SO^Oux%RO_&=nsKPPSav%dPJ48 z+tqWiGg)S|RsPjO{Ga(k4AgmdT8D`M@G%f*)h3Jf8_KZ|l*GFc0PS8w9g(25Uv5fB z)+dKI0O&=qK<)vGH#`7ntqL1N-7-~x637LuEi&kReM#@9M)=BGxgQ%GSN}x|H>1XS zw@sfof$-#GvE=Gl5^*a5YT~2yqth<9QcNP=R3vudpHks~R8Z85CAnDV0R`0s*n{3x z$GcS}Nh)Z6-lq$S^$ENh1VHUl8dJk{0X~6}_?DiVeT%UP;ejr>grC z0rfnRse6$vh-aOB;TFsdKg$z(f!^&zKrQV3qHv~Unf5IcRt}Wz`_*#&ziQ#2;E&ib zxh)t;)AH|HPm0Q28Z_2oSi;>)#UPqNm!JGVw^X0t{e|m#%`YR@t<>j5JB_Kk1^gM( zgjobdZ?^crgg=ipT=k7#V$nb+ZjPcdbX2DMcunK&Ge85mE1JjOLAjyHtRM6rq2#U{)-|?jd^XxZ-@G||H0GTgbr#sg>)EFktR%H7hCUv6er_XM=@rrj8XQ24Ur2RNB4?6SmY#zIx-UVv zD~*M*$H^Gx*@3r|6KI#LrLFX+o_R(89h>8e?j1gBj7EJ{SFCyVFX!5FkHs}1`1wjd zuTh=QzeUeB7&&0!TR`w233LUTAn-EoigF7ifu2RoG%wfZ%1*U|Mi|?XrI)Az6w%Lf zvDlAe3}-_N0|#54711>w*2 z2)7_>0P)Pg8H!BICf|P2{Fc`5rH$NW?pC%^X!O&nED2idLD|w?wpowSfMJE|^n)DG z$>z?m7|NKIBc@T9?f z`2dyLD4Sg`AO*UXG1;cBQ0fgqGLs~C;uJ*{f)uF7oe9`S4Iyi9EP9=+cyh)!1Dfdg z8rw#tMgYx#?jm;@J(U?rykRq-iM^x!)t;a=RBtxDNcW>t`hz?f=!Q=~#~3Yn-cbRH zZT+t*cYEcN21fKaCq`Ags*dg^K-XQnFKcBsQKjf4Ko5PRmG>iZQULyc2Q#KCvD?&O zPylNF4S=k4$Y3LQbxVLdjojkdhZNsAY(#Wb>5OJT^C_wxtC3f2)|7x&lFc~BL!pyq zKoejGz0$>Iie*9#sLd?)oEi%4vKZX1kBC&?a^$HSze6l}U4<8b6zKU`d)wsy1aS%) z;@3~O@Q>nM#b<&dP`mbMzHwKh@z??S(3H!zt*BkFSp4(-$d2EmZia6N{n*{T^LvFv z2z12%l$kv@e9O^b$n+Yu)d&-^Y%~d4`OB9g(CP*ePmL_M6C)`h)Z8Emn&A45erT1v z0g6CNs>i3^5(Z{488pwUmUQKuRI*}_1^q?EkkFL8OYj;Ri|gxch4KFQI-?tbK^TUv z1O(!;|6&I{9gq8{2Z&l#G$c-JgMzk}D5TGD_NIx?xT5f=vvyN}|Yb)}7VsH5v6J;Ox}R>4T~>)!1q ziK<*zN{8IuhjWS&hU43qyCVMVQrG^cKzEQ73Dxn&hFo9>V}$s_c$;>{09{ zgANe-Y&d?>3bn_5!PB0^OPu{X@72B@YQiHvPL0BFonzB8 zY*Vuz!mc34ff$5+DU(1<{{OKBX@xnty+^HR6u<_%4;@xQwRa~1KirWn4 zfzYhT7pFn8Y7ulM4kt9S{dq(4XsKT~2-lz^9b(I9+~L_iwp8~0RNz6e?if~4uCh3{ z;oZg@(}SoA!DaZf9W(Wd;axeLCC4ry|%u=!r!Q(sF%J!7$zo z8*@VCFe~m8bwP2rllj}q_W?$<>zNOs1gKy%M7|E1_{-)=(Q2?+Wi+s!p*ZR-v|;j0 zzl}2IyDIQQLc=?A?XoNq-$fvF2-IZ5r8q{=TfJmhK6+oOywEUcK55*AtsEq}3=jq_ zrBVVRp)B9v!%&ToYu50tO0I@MJ^y4H?0&U4B~J0l@S(f+$=(EnK?7mqDU{Xtm;`kn z8&;*)B~I~X9A{q0dR{=}xU?-;M%HReF)TC=nu&pSJ2m7XHqCLFPKb492nD%|MnSz8 zaUQw~en#VigBux;WJZsK2oZ z`_>NiU;W>UKfccB$blGyp&i{2uNQFtjUD8}kDsUjCK=m{K^D^AMtrncs;Zs|rk(59 z<Cy_#*Wf=NclN zDmTFb^)@L6vfgqnZoa7G=In4a=xW_B1ey-q`dA30FhD>LepK~c37L}s|FreoIoL`T zCd7vV3TUf_-(>N~VaG_U)a)}{K+^>>7CGE+M!UMd)Xv{gaJs$>_}fG(L%+Zl>G)yU ztLRl13HWD@*7)%y*qi|ew8}Zk$QHm*e-M5~RdzQjTJl*$p%v=`PpfTI9Y2Dgb)HaS zYExAebxVu^NmTYwA|invsJUNYthw-l{SXIou)+4L%1}M{2P5#+hg_z`Yqr$FA58WR zxN{#T)%1@s`1fE`>Pul&us|&r`f_zh)CwkqQ>df9>`~P_a-emSTt;l&|0X)L98>Tw z(gWTu)*+&xXKXyfJzYIXrj6or1;c4=%_*WrzdDMv+69rS)5c};@Cvt=0zcD+mDaztH7*l}GEpZ(;8khkGO5<-v43~lTnwv*8`AmVFqf2mLxn} zMX{OOjjGy)8BkGNLrTr-%0`6fCn)xFrn`(&Q@M-Ni~hh2CL`y^x(H%Bv0n5-bSVdj zVn1y<#SssrL{mSIE_;ioFl{$fE}T*a^oWZl9VyTWKZzsP!I4|#;z6IB%T6zaP@gLF zxr`F$>puR8s6wB4ZQ_PXSIhmNFZ_%sB)QJLNpvod{~Xuc^&1sS;A4#O3M#Wec~eDW z5NHJDB~$%P+>Sy1GbJwvODF^s!XVH9b?n!4wI_-3EIU*4=@fY-B94du?1TSuTPlMr z832`0x6%>7;|&i^O!#TDVq_na6{B&A!DW?soZ&g?mvvONtvUXJgnkw6{}1BGPCSN) zCf^lM%%|PQJ?dYCcmzT*pLXh*QPO*>u}5$Q)SQwpek+EE3JyzcP+uZxaS>Go1f=P zzXqrQx_eL_GL?!%3XLR2Jg0r``0#ZmIS#`x5d4xhlkNY1Y(xX2QZ9WDkwB5ntrvH3 z!GDrPo-&3p*LI6 zJMUm6v!CYXvhXGU*=T-t3UaPX0{ht>%}aq{xuOZ|XDd%ac6<)tqxgaNCB5o$ud@Kg z6*Mw4!^{W-`@Nt97dUkqNfaUfS%gTUtn``yf9_AR@O)yKJ&6Jo*Z9zx|8`f7kuKQp z>vPjO@=#7FTgZR@MD6B(xziA$d=r50uw(+Av1bYh6?HT&~&z{aN+Qwe)bnVBv){TF>h=T%_Sewo(YR5vpE0 zmZr@7*9zSU-4vSjB-R`eXl76IXoho-=I_NGt-TKxElprhJcOb}GcSopv+#pQ_bdZ! z(Sy+@(7^|w(8;Hz(33BgLNC4r3I*R-fu`b{9&J1b720`dD|F`xqtMzKF}b%|7q)Qw9 z?xE`OOjRKll~VG4`^g8P15la9kuGg}e{-t3P+eu#M^za=|7nGSh7OS-Y~c8>N) z#fB1m%eW!kyD%@x9Q~1s4TataXtX2D$N)aac%=G=Vwx9SjnBB%?Yk&YEMR<6x!$ zS>oDE;lgA76G=rVSkW3J!;@k|!n9>U2zS$U${Os1zKnw4t00sKh}Q6=a-|7xY0%*{ zV344pL?lZj>zq&M+VwFWT$9T>p)8rEVuK7M6YGTYdVkFq&bODcTCnLj5biXINQHH)^ZEQ>*!gfjaxsgrD@*yJ{`fi* z+lXNp2)3lxB>QhHqJz^gKyC{lWazi{`>zVwLId93DGC-_{8LQgKxy{qik%*Yq{SCw zJf*>QkgStALk^rVw`yxZcV77Ig___YW4UIe1M0wHmlxu}jOe*Q5A*@k)+4kLfw0w~i$865?*!ZSXk6Z=*^ z%2Avpml3Uf4oo#%&81p%wj{VxCXAu{!S z*Tvp-As7em5J%w^MNY+Whcobr$n($uerlm7dJ|Z?lMAdDg7dtzKKu-cv zVFdckd4BlRgeO=h%?%Kl?PjW~crkRc$@dz9&=H8L&%M&YT;ACB?^V!1y2HLbi+ZUl zXdnUQWM-C}m>P(x$Fp`tPqyj}gbPt(P11)^eIZ%WeRF>ruZHnkRd1-ObL!DpSJJOv z|D}&;q_nj~h(d3zWT?zth|h|c&>OPq6h;Cxbmew(%I>S-nTt-eo^lfE?LHv>sq$O( zL)jJJNCY+TPSEAQ&^W)&_PigeU<6HwsSfuQkU0hnj>@?Wfgr zki=7Uif)5B@>%t{Tz&hXSi#~Jww_?fkyt1{+|H$PpU&e|ih_IaHpG(GN`^mzrnE<# z>S`cJ`}gjQ;}P=Cz>xmJ<`eA7kt$-j+MV^L4fWKhJh?3fPiJ$d$`Kmx*yggURa=}g zB(xHy4X&kJqH+UE+7scBku@nkQ>aDFninX}qZ)bK{(emfqbAfF*g?yLT;ODTv0fC8 zJ=b)>)+-oJzN$q-5t#J{ohq}cLj0rbjBX@`K_J=^IEIb;Z|q>D42Chx z{41>-#D3nYW=x%hXzfRWXzkeQX#%I=a3 zxPRHBRyL4n{oMrz=vNz4nN8Q3Wgx5*pI12z4T-s+q4yqySNkz80AvpsT%O=EAjCEB z@QWG1>3XKBZc#mX)F8=|^_mY+{FPZQjFf!~G`{9b$?Ld5Nm)_k5D;YdxEtVUUTPj; zsjZ;D_IGfQ=(#buG}Ql+Hm#`aHKZBCQVy|qe^t4WA*Kw=i!DZPtwc^?KL%R!9vLB% z8B0+7dYF!@%w#u3%s}$pKB+vLvFzr(n}E=hYHEuxm)(rJfwp0~+Wv#0?jSoZf88>L z92B*Y4Xn1hY;Xfb%}6LT_D2`kz^IYVJML7sS8m{_`#sM^Pn#(}KLd64+UFwpm+2W$ z>OBfxIfg9Ena?gi!D=bCF1LYFn^A}k+d4nukFPUEq8J2$=#|)r2=~9($HrxTv0WO* zF+qdiTcjCjh%;UYp#PyvrpC7)jng6TmZv;I+Q+cTGnu*Cd`M~c;#&0nTr#N60oIMI zc^s8CYcsYU9?WIjm8V>bIn_K>9PLx`)@?T0vgC^fqa$;I8#GK z&6SWRKz#dT`W^xp>c0USg*zX#1XA1v1PE~V`G4SWVUX{i1)3AQ`*1bE)Z9QxWc%J; zz6*+;ZL^^Xa_Ev*J6n$SjXD=g{sDC<0U*ZR>pXd{BUC#%fE>5kW;HV+QqGNA2~Lnv zT?*`KvtSz=Ceiw7Ejb#Cc+3ypzD56m(~q!oxq=`BfnZ94ikg37D|@imOK$+Y85QwI zHNRFH<`jY6JK96-{|%bkP61qxZTXMj-1aR1^juO2q?r|-dl>}ek*c(20Nq)A;f3Rl-c-Z_fqR1v95iJPOEMuBrbh(_NdKy)>?;k%PDV#AfW zM9Qq!#f@#+kRI7tZJc!@HHp+%Q|0IM7!dMbt5O1Q90~XCP8mJows1jo4ik z#JgsI2d$Oeh{clsNG|)@#$m5b8R&q$QzfIAc_?>;_r5}9LOOCR>5=57_T8X+|C$v# zWtSWTldqNbZdyN-T|tt=FbMln2r-8Le{7-cNYNXxU19a-}AQ|@v~ z(QK}8)sfj@;NtI~P(&vudH8^5ZMgJB6qxviC6KbHF@&48x}ZOO^9oW%+tp75&zf;n z@M)ugufkB$+xubTj`S!r1JBx9b5U$FQ^HR0tmZEfZ)gO#+*sgQ2XC>Z?v@G{W}F0f zBZX7rL9ad<@T`$vg(YU(liX)7^OpB6x}n>3jRFT+M zoKkK&3|awe2L@yY3QAIic0fpV}-3O%F$3?@a2EE9K;r?dTe<-`6TZus!wo-5@CHpUSNp-UMd49S9Tm(%^aDx38 zj3=6v7tLvMwEdfd$@?WX<2Y-|)51i?-#nXSow(C|Yf{Fn2XJ58t=(q_V>Ys49CDC& z{Afx?9;tb(e-~2u$WmI}RxU1(L6)_CL|Z~~+1?BeCYSUS@f>L8$H8!%mVba9MLijx zMPC`SbDOGah~jSFx}=IGMi}nm;s80;d~cV@12r9g43ez7a%qlL zL%|jGK$5j(frhL}SGv6(Bw4f8ZYrr3~%1He*(Ri@I>)^qcopwcNDfJvGRm1a;AjO(B7aq??mk#XA z*oKB3x4gW@upiBF-T#Cw1N#tm1x5~oFl?n*m;n1P_Bd@N{_bBLz()%K8zIRRCcS@O zB6E*v+qS%XK;PuqE{@UMUx=%$A;tfkdQzIzNX>=`A8A4DZe$Pl?giOs&c~(mbB;LY zu0T`o+Z?Pui{(0O7)AeO1}t&>wd~fG>i<_5zJ*El-*h04f_LqYT%r^AqmkWH)%+hu zpmpIWTX%w*!-kRbT!0$A6L&Ij5Hb!z>kMgR=5P}EfC#Nu>LKK6>HNY1BDCVxt*y!h zM-D@(1KGW}09RRQ+tCi~1o$}Ds-1(Kl0!QI-Zl!(w^>Sz*1c4OsIoSI%NuzxFf;y#9Fa0&f>xX&Q!L#Uvada94&hfKP8j@Eo7~oJBK?> z8v4O|meXcm0h@t^wvLd@xz$shiwZ%z7gzf(-j~~M1Y7q}j&{JG!-?4-uyx?(4S3%@ znvKdoquQ4!RU}WPq>9{bZ9=VUFFUDkQTK2lxpKp91sFDQ|l~t-Thr!A0^I<&6lewHnOeA*~dtg%wz968K~$xWMRjc=~sZ;hIp{*f7mu&($clFfFRY`Am1&Ca=;CAXq z1}B8UJ8)B< zNRNH<76x?VjLXW*ujD_LJ`(P7zG|@_mr_cO4K&Vb!Jra{ zP(O8}tT)?pog?{w7?%ckYmSVpC{#rU`m&!(EhF1s9)WIHd~1x3BGIuWB zxDHnYi4H^ ziNq|E9(=$ZX}50bW7RDg8`Syg8g>g;(lZ8?Zm&Rvl2yno@u?2N{rxFbBzFMHvmV#XP>)`cYRW{y+mdo_uBQrWV@+4frvC{@ZV5&;&DJ&rKtF z@A87vfd(8uWKg!{5(OG?41m=7{SaowLxbi$nEm!OmHiQRMoAKbAP~J0D41~ni>+pB^7z>4JpeUjl4%j) z_4g>C0Y~uL)P&13_Kin#P3kG9t5lxpKAXYU7b-0!4-4+C1FQA1k>a?Vzy2o2%jh(l=iA7#6`?LaL z!2C_~K9_(BGZp{?&fPCV#WvNh5e*nn&1E4|3UW|m-A75%nB}t07t~liP}VK~Lq8FK z0R=E%i?g|08^8cyk;kF>?=j9F%B~~_Vi<&dDFIr@|35aR(%76lng>K(g0dJd-%*r; zcX-K2##nL~Yh)#Zx1W=pEUjS};3OQjVS{3F1PuesE%|L3s-Y1y3|N~WTE`|{@@YoL zj2h<7DJ#-^XrG}Qa(`b#3>(fP*N_OSRGl3*Xo|xKy&0YIhv4qJixCvw)2S-U80}mm zAorOwbwLSZ-rpLrwRXv^K8#Y|S|g4#^jhbX`o8I`l&Gpd0-UuydLZmB=_voUsJ^~; zdEnPpFWp%ULym7ZU4h|T&sLx+3pi^Zkbyi`6UyaFGVd`rHs9>MMpZwZSx*OKklb!^ z)&R729yuP?*A-RAz**~V(+UufJ^3$FSy!mN2OuHxyE zBpty7Ne3t3sYa<$3c#%0P{So^-){nm7zQ2Z+9WpG4|#k5XKhbRx|gO#bptqS`@zA^ z*p^GtVgP5YvO}`1<&g_3aMrG@KZb!h^4!Qbvs6RY2w>J~{V^m;DNknrS*z|nn$jUV zw*io~Jelg-E>H>_34pA*le(I;a#@c|ioaG{ZGR}cqGX9d5OyWCQQ-a;d(z!U_{z*4 zfU(`JC?O>OJM>D66 zx5K$jA@LxGHA(5tu%+Nqki)uzOi%ZBQc#2yLou4|maj}kDvTu7hog4sM>yp}(!6LH z6>dX{o`NW={SvjQ9ZPb{z0Sx!EDB`ZX$VrCQ9KgT1@!`s(@G%gUe(b#x_g|P0_UTI-ch6p6Fo-yj6S@ZStWY`~JSAZlj2!p<)QLO&|V`uCx zcylw{1DJMOHzgSG4@}0ZGT6UH#!^}s-4bPLhd)Q492wC7l|X90vGp+r-*)62iK`-1 zST~W76En9+?Jbh7&MPV=hx2T2q7l}R3=rv^v$v?UfLW`i0#>+)nZB-3_=gHdI)EG( z1O?X8GwOo1e_D|2G@;zy-O5e}l6kYJy+$59YGIAAwj}rGjy)WV{miRteFfmzEebly z_e!ZsQ`m4Yx@p=Otff(IxLOQ~t1I4r&&R1)V%e+7yct@=y;L}L4^&rIfA^<9o5YTD zg4*hOLmI!UYS_gHimSh2@gGb?q%2Z{{S@7tA*ijcBkr;8Jk$R)%{b$V>Dixnx7mey zdGZu>z3D`CgPzd*Dvk>NrMQQE85r#}={P5$-Xz(vPSnejHz=;IesV+%j5P%5P1HdX z;W|7}Tur)5*1s`*T3FQ)CYrrGel+(2uAqQ<9Wq&}lMbMqfQ-NAB1!wdL$Qj)(VPXIV5yr&3x6@mW@GBe-In=G4yGsxfP+@Mw!l9|wKL_1uPZv1 zAOvA8sTk4z8+))bM|eLez`0x36%rsJFiGPFmGh&h)qwqNyz5Tcj0&T3-lQI7{9mc= zgCbYsolWk4d@_0&-QVwEIB4XXB>*xieK2Q_I}LQ z59OIu_d)Ti=}<=Pib!5f?j#L-F^SjCld{^_Ecb3Y_y+2A1w{cyn?*GJXS)&(le{^am2(MFN1 zD>JN`>Dzbx5q5345d$IYN|^x$a{r4Jny#HnmHW4=RkF%t9$*_IH!gsz!!cq9@=No} z0g!dC@w7!IRqK+^1|a?vTZnrsDR>B41>8nWWa)Cn$QKUJ@lUU#pod6Sa6bMEAMRFi z43V59X0PUZw=~xdpsag8j&wh~sJYDSfwJ}u*dcA0H+d)$WnF~E$DK%#hXIr|I@xpj zVrgD9Xv;cglZ$pvX>uU3k@R9_)$sdf&)tmzlMRPvug2{X=cF#91Ne0H#pxTe zMco0`+8>$QOz^2MGonpNwe$S&$7=iH>xzyj24T=jjaJnC7ki<1FXW2>Jge0h34)r{ zS@XydAUBg$PKHETF(&k+n^bz&3@X*{jmGvob|Q-rPw;Z6?iG%1h^M`*k^e)^XQ47%o(3B1ydQG^W zEwB~ul!0@GrDca!apbZ-T-=3Ykwt`v0qu#{&VBya-t>&~ZSs=zAFvZyYlOlMtBF~< zhzx#PWHAFW(Gnw`7YN&10cp7@ zRc0fw?p9>MtrP;1uO`>O>rG77J8vs~S&>3CCTqsh=EY{kogw3^%+ZEOP}kvMm`%E9 zRXpaI;Q)C^la=)l3H8k5ds}h?{)*}Uy=Hw(Fhw4jODx4@D?}))H3wNoMo=EYE#rb( zK|HcltM|M%W;G(~kk4!0YOKpN1htZ@DP>6u^g%>c+NAslyMhCUVGyft8htd%$`EoHX^NZPXkMn_>J=f<>K_};zxao38Ih(b z21iy3g_9c;t*^3dXCKY)Ci%#R^cBvIDEnLXZhO?ueL*k7{VVjmcBS$SRhtIwQd7!DUYOJ?zf@eno%+! z<}nFA>|C{!V!%Lttl8{+$?eQEk3@oZE#d90Zdnc1Q25{dW+TcvBh(Fu^UgM3rC`=| zAKFZ>7^bl*2@Xacy+$$Y8bvcY_?~b9yFzJg&f|azFCUUZS@YR!kwJoCVIP95J&2c1 zj1>wUm<8n8n`AF7T`W21d*!Ub*$ z!hXn~cYOG|k{bv@7}gTXfrtJZTY|K4UM?US2^b*8N6qfI&qbMXs4{x7W>WW4Ix)3I zNM-#jhnIv&krxJ))tv$9>nPSZ8eF|2;(h15?Y#Usjor)>u>Sk&tr`UoS}hgkp(bAc zn*>)4!|Q8p_4*3q88hto%J)T=@sL@(13txtEZZcz(azlNT+4+;Y_(3mLFD!&%Rbs~ zF-P3KkoqY!wrZ6x+(UAk6h&GP@0LsNro`X&!iM?RMSw>BDL#t_oUtWlStm*}l zXLoala?n-VV?(PEBgho;!4^T6&ErW2#gn>hAgff38=l{?DC<3>0@soV5fsvoV6?>T zrb&j^GaYPXoDh*0pH+S=XFyXk_(~NfM}%&@!AT951C5DA8;~s+3&_>0<%Ky57)d~p$)vPtH$zhvGyx=JH zB|mqm>QI!lx`39m+FNl@(2Di?ZV$Fz)*yyaeW!=ku(!#R80F2qo)>n&JIU{w6>Fdo z-fLUhR)AKl;8`bGP{rw>6YG8^u}Iz^a*f4!(^-%ZX3N(}*v!yeTIK{0dE~HCR@d7Z z;)gyR&ALih&89K5)LuvOAR4jSuTZlq87PfdBeIK>BVVMbub57(Su|j+)Ap1b!n(5v zujXH@Cu7;!xGdI>!|M{b}Z<%N7iD1y6Sdk z@84lE)F`V)l<*eKCPQ+v!3aG>#?l!TrK-;S_tfWjgIcQnINs)ZtlijpiOk?xYegN< zM~Rj=T{oL_xPJ5+DVxpii@gWr8tW(Glid_zT33QSN?7%Ki6LW0q}u{$5^%orP#+-+ z@?{dPeGzsBSrUUF5WSL$V0r(G4fMRGT+FN4^@e9UF-pqfLwNUQnR;1WcST3nKjtQv)?2S9N(fA;EQE|nrmtKqEh zGC#66`gx>PBgdm=r%aeAts;1)UtnN$UYKKd)*SMF_^5C*my9+ z9~YVkqhI9uqC4nFqAglrMeb2lSY3Bm!J-e|cjGdvJ)#op&=M=E4MWg~Dn$e=0`f>4 zsf|ZHwN_YtkO6{f-J|AlE3BD(6M2Co!kRnl%3~YD zW)T9cxv?~;l6|^^D?os?BF^ntCQYvR1R>U}VIGa18VGUWC&XH?DKV{VZ2bwH8kFd5 zDj(diw=W^qlC|MAdP?@oK5fh8Huy0E{mUt4*?DJRmFk+k4j=mJoaaeCw)lkTs{suP zWji}up9cxC-aWeJTe?-Rz>Bh8LjG~*vGHF5N3yw->TU~rYKXFy5GaYL)$}<64VDtg zQ2f`lrchYQBVES^C5z&YsQ9Z{`)GEgjdkrZ=8*_}(7;Eham&bG?HAHY?#-GcLj2YF z37`KPu-MaaoI#j1GxCvNZN8}E{eduRWHrr@w7V?shLEE3uWiKNvatOq2(#9$@s7?~ zIe&z7Hs|J#EcNbTpB55}(Z|$vSF`_{_^YGIvo?zbHzx||1oZEI;lqxPKQEirLIvSR z8a1n~v_LmIlvC}Bi=#l+hAF{?JU0&a1VPrK?@1M6HERlp$M7oT4qbdV2P)!myei8R z8GKmfG;9^ES3*fUTiRvc?HK{zQejz{lK=nPeh534B!)p4hF*zJ4D$UiR@_dJrVDkK zjTcD>5Me$2l--_@vqs%-yOdx%lS>Ed`*Z&40f3zn*unY?HmseEt~C#W9jv8&CVzj! zsSnuF>d}6E3}rWh#dOou?{Z~6tG$opntbyPl(crpqsv|==R=3A_;LgR&Jjw zyAlaF)XS0`93^Oa?@kFW5ejB!-A7V0A|2j&O06 z*1eN6P(e7IKnns{S0iAimLa=K0JEMU%$*s_{--tmjVpvE(P<1W)1iI-$wL$_+i2a&I4Q=w z(TLZ`EmR@oA*6^+J+9O+Jaz%JG^-QA(JvRmQ^uGU(SLc~GuusyRN zk+m>`oRTB_BOwPZhveD4n@LO=69l>>({(>0NeU=725Ca!#U?=oNGhz`{3I~}St>r^ zh8DP%6k5+E1VPc`aavh+!C*l5Pq4C${2LSnBv)+Om5BQWaBz=>pSKOs&)KSOH`Vb zW_4|jyhiKZXAZ7D-jh@fH=|uk#=W?5NKjd0{Q2d`3fYefd$n&Tv4W52Vm1nCU?X=M zvLsQxHfzWU==0TLi9kw1*3Z!C#~NJCH7taX^*$H!#=b1HODI{#8jM_NSx+u?ikh^s zhSEc5OyV70p5C@-lJFdixfIxw)(%t-fV zPvz#SlA4qRv))ivX(u)x%0HxmS@$gd6ky%TXNYBukyT@Zu_!&%dYq}U>xL@VX2i0- z+IIh^nS__7lQLm*@H9BAGOKyb^D=r%dsHs}&FZp3v5u(J=(R;ndJPvY>`bnzG3Z5H9A^auh3$x88M^H!_q7Cx2>W!=haP&2F6sX@ixv7wM=xlTA6~$RiR@|!89q!kc6WrWH#V=M2^9v3ksT1)0 z&fNY^J3FLV;YV%`PaYNal*mg411UG|-FofFl9@}du4gw8@+XO~AHL4@x}g|^!7E|> z-hZ(|lk)jbHGp$`iERW3@wW_}07u*;Nx~9-q7x8~V>~iFQh)9qdM9j@Niy7#Z!3h> zo-l!Y-Ij6rs52u?D;?M7|?Vl4%4e zt>J*je)2ad6zx&26sdst3m>AzkQL*5a5saOE4c{Lag%5D0bemTsZ#Ox zwx<@mp3B{2q4K}%HLdj`DOD(JD*Vd-U zIl43m!=6*Ep`86bF3k@&AX&uBMr%thD@09)}b8aXGM4Y@h$o0qwuBh1nhASGEApo$-M&#$*(IS%)tINUGVB2z~|b6)n1B%|OPR zji5VpF(<{QDj|i!Tedp+ZMJ9@L`DWnzP=Qs^M7box989nrp%I0WoXt;sGngw?eWik zq~g}s@(~cyT|;Gv)*S+j+)h9Izs_z$)+SEt^H_k_=i=sf(^iyNeDdrLNa))NVROq+N<6^-xL;*+YXh{VDl8E`pAVAU@XX-(9jw;)0plH2;Ak==Z{$b;p`^X)j{NS|PJXqc6hP+Jf`dJ%SVSCP9}ZBw0TcmFX>&O*e!C+Q|#F+rw)VCDEd(ovlVCzj<9gMP)bT$DHWlhB~**l$r}UJ|tx5Ptoe5zOkwYqLOEtopV|wrXb zIP!l}ytldf{Myq9c`B04T9*KHAL6Ra)Yk=PMTN!e<$3hCkut%%rS{3?aYKFpfEJ{X ztdwhn{DAg>7)Y5bWF+cPsjTzNto1v}_Vy0@k{=g2ur@hRO zI}oz+CFza47fb}|-O7r+6Zr(qTwWO%;Q@u9VTQkyAV8Z@t<~A`;-ChpS@TP-6<~xv zzOF3WVi1IFNt8jC_ICfodrJ7q0;pA6hXj&u+OoQwg~9qNTyd`6j2?Zqd|%j8CabH) zJZvNv%s5+tho-44Yi+?tph4YtIWV@1N+GRjb^sRfxYJbx3av>dO{jh9qOBEavv$kt z*x?LUlm*GF34}adBj^uMP-_-_fuc)KWjc}tl0-7A#eThvW)fBxn|st9jcaD6$}hkC zd&vPr@*aAPVOs*IHGX%hzt8+2*#8Eo^_34na8I4KhB~Yi`hhT-G9W>Kw%*MKJfd$g z+FE@j`YiA&Y%q>U6kkcKXrk{-rE*H4tyv9))B>kwZr<~#=%N4tffSYNL@wiq1Ofub0wU4(g&9X75D-Wq zo|^9TLt*pQ1O%eBW@FOr&5*X}r{%iL;C(AhUZ;ae_sJXyrx-B#0YBOd<9(~U&G9C@ zp$R^*FaWLxMRd;xorO7^Yc_IJL+4p+ND6Sh&xgoamND>9C+u947zRNge5HU<@ctL8rc*!qquT>8i3!7Fh27s~w7+qa zr{;#>)YC>$;6qsalASTo2sZazF&R zTFaDmLa^33kqB6&p3ZIuZr!g){4sgEVT`sWZEPPQ`_Y57j#Vl__uQLytTNc@z3l6G z-12GY3cR7Xj~cwm!WE*{2=eHvc3u86=F#3-l%K{@LVX6*np**)=k*FGr2H(lc*LWtr62pP*sZ; zZp^fnt9RcDTIzGa91uNQk<^&duMWx@ZdtnDKOYj5)uZgs*>i6p%sTrrK$vakG!+fz zsC4WN3Vx{A`20<9QC5+nY{x|ky=8c!HEP&J2+JYe@D%Zk$VlRu0>%y$3d|725 zrzw>SL+<&(Q#_f6M%_jVG~=JRcwO=*rd^TJ`W=kaX3NcnL0F6;T$>_bb|n{o$U>Nl z*Y>9sFrU9l$NynjESs>4v!=q#rp!tQQ5V)AV=`5k3^qr8(8XD^$SuIi?(XQNi?iks zx+rs-1%uUK8nH>vioE_Fk@Ed26#ZVCtsvFPEY?CLI-d60djyLg?5*VC+RqJEYdR0# zpJciL*{hLlvbj%K*oB1FI!DQfn$Gr2QY!}4w}snNmd?FxXswZgZ9fgF^Nl)WSI}B} zNp7)QYX*E>H1Te0dwtt*v$J9<}^L?spL zXPD>b{M4I$GNgRFiW&CVpKkv{YE7Z6t1xj&U01{lQfmru2<58nRs>G#M;e+bv&Z4O z>M#~do9$gbsE8{T?UI~XbF1G$;~UM86w|Re8z-y}_xQ&#eVfftIAKk(vDV3PVJ}8Y zZxVJAhRxZiv<@U-<{x2aVB=5-!_bxZh7j0)u_LsNQ>pR|fT$?&N#ZKGQk>Pxvb3vFkU{!nP9b7lJ?WQ z{-^{3sAvsDVlj-C$s$xmtD&F{<(GFB3!9z$F<`c;Faa821-6PkkB~A<&%r&hpgFal=v+onnOYT>JCvw)%4dPyxJ z3ZpSLDHp%_8ci$mpvtt&YCQ(-HO^>{ssIUiBZzj%tOW$0xLRfFU8Q|i# zpp@lPuuHs;6TDTa2qTevw@7~)j&sVpc!8{uHGs9&t-Qn($a+seGYeeXRKw8latT_VZq<(Mj<|4 z0P9^b<5-(4UmbPU(G@gD=3^Ds{GZ`SrWlKQABYC{WE>z_9zqW-)vfAbX%K4fOF5a z)N07%H2Jyu_Ja6o?5fO$$t)qclC%xwk(4$(5_^Nrq2buWi zvZ}{Uv>%&GVelw;75>s_GWl}q5Q%?O)+$RVS1u%}thnIk-vw4$A>VOK5!-nfiQB70 z+)(K1@i7Ml8j_<3<1BA6H#dVx)L8^%vaTyG`jC-mYPtN4?EEr>Z0aKn3SQmu0x_(} zZlPD_?ja#eQPSctRpE09%XoaVtv zzlra>%Q6mXsPvj}*(2n!rXG-JuH=7%G*%yP{jqpKmpbKwG*+C^+*l-_g+f@PSJ3RM zZK+Eo$YTBF&XWykYCmo)*1=$~=nz+AbCAWF%3_jVO=aE~7Nx#+Xjyex-KvaI-?7oW z2URTORpEUrxm#>{ylnEL;dIPvCg&#uV^sGOVSP4Zfz#0U<8u7)b#BQOgdh;z(g+H= z|BVH5lR17Qy#PwenNq-h{2gYH2+=6W_QY0y2{YDxHtqR{WpcF%k391dqn`4vM>QaF z@ZGALQcOojHlQs=AfV(?8U>DQKvVhnxn`tH^708EVi6eJ1A>`v%(L7UGS_dk=c~Ndzf7f9-=p78lG}ZDa9Odn#oF9nFBM=iUZvx61T?Nq+HlZZ{OeAPik8 z;SrMk7rW3aVZJ;-)T&JjIOgyz8~xz7)t|aFJ3rS49C(S_pv^daBoF=IUD@PzROYu; z$gFu+UD;QAFb%(uS+k7l^7n3`J$ee6b%l0=K%I-winL``t$^4`+B2a#4u}CY{u?e3 zqt;CwLhGK&*10qR1v4P;5fqEeG=jc0?2)A%qpJ0nnTZX|fa6|s zge7T)QCNj2Xx6}~-U7Bv(b*mNle|M6p9W}v|u~jiw zqvksbT?MUGUPr|6M{5)tTI(I-d4h7CYyeujqdZqwf{E>Hw-fP~aJT znfhj}v}&=UW0XG7_4=pt0>O`h1qaSFe%*7dt0;Q=r(Sp^}L0m z*$Xa0uLkspE6(dFQ^;Ur-IeYGVizo}Fwj}I`x*{F>Si+7Sj%6FK)>lhgUL9sS^xjz zkFayG5g3GF=t>j|RcM9ViA$9|a;$~pIC9RFsK1!+wvsL6f=L-Pr+ zbv5O%)~$oaKLsuy9@eHhd~LvpM;>mb29j!QKn-X?W0&-#eX@s-DKw%aTKgPUJ%VI_ zLyYl0`a$ytmx>)yBF$?e^;$uPueMgtvRx0wvXO)ti|b|ng} zAT2|i)sdLr*CI)sGF-6Yjv^Pcrb0Ok7c5^FIc|c3YF*=kwSNsg#ngmSqm2ueSH{)j z<*CA=d?dxG$!ir+MJeDtJ`Uqe9`q1dqdO#!;R@n2gaY;lLg(1?Os0Zhtl>Op@36nG zJU@J$QI-QC2n4UBV>`2Jk23$dw=%-RcfM~QB;VRtwnLN8$}oTegV*0zJ)j*m*}!g^sG zuEOecX3me0Sz9X#g1x`eW+YyNYp=Y~bE$RLMPJnF6*iG<_I%4g(>V(^E8pOO^-4@` zX8Yj&qj+GQ{uAcl$wszDp|Sohxc(XLS~9ngSjP;c!I3KiCJc!+DL7?L`mw4T5^JLF zSeS0UYG0A{lc!mjPP=IrM(aD*?eoql#@-evXnk+ZUgz!FGgHv`7FWFU$>g8oi*+9> zL+al0Mpt58X>bG@TS52sJ5H&rsl$c+ z{ziWIy0#<X~j8NkaHwlvn1}t(R2{0VQiY1SBR-T&4pF zh*|5aIUc6e1~3*(M=qqqUr&{?u(w94G=FO(J{Kbr1>>S`px0~epv8GSfOY4;o5F7% z{66%J zZPTZr$yak=rH3A@0aw=AUl+WbxYMV>nC4s}t0dO~O=^8r^1We5~A1o{_VgqW{CQk+GTx3O3IHU~1phl7$VX=IY>lY3Fl1 zl(l{#AVuZ#{sJIt&y&sJ_sekLfHCVbPyDqO0I{&4cpeOY^ET{geIRT5(2w2r-GoS3 zLUQ5?ho!F9S=h@pmA;2DlTqjJfH7+&YIt)r0mfd5K|4~1FbFn2ULgzM!a_9kFayWjUa?!=#^kd_}u?u1y(!HQdRc=(Xt~5#Bpr<-x#i06I+s9(z==< zUzl}2U)M`I?5Az)&NeV>5vtrd3t@kaC&}@XAuOEYW&*U9fxE)4jO_gz@ZxU;^r}^j zZo_E#Ub8qPo{J5m=i63e{|BEB6%JL z7t69wd3C`WMFtlw=QB}d-9^QO#%VWg5;yX01Tw_$=6AK}jL8m)6p0<|84*&(`X_9X+V2NLPX!orn;LRbJw-|Qb4#nR$0Ybp=2kuX7 zjk;+kHry6i7_eF2P{P}2)3!^;p*8--RL-7_f>E<3T}F3Xr`R~O2ecJOc%8>SjsAeU zNR#`x&Cd4aCA)wJYa~q=bk?^@INkT3--`*uyETLD?&X!P*c{+l7k6yx_vlpo5IXCC zu{0O3<|g|p62II82GJ-1yddm(rE%MslU|0kujAuj0U6lGtMjpXj6 zA0eB~Er7G04&r&2QJoq86gX>_+j?(xx(ZQ3XI)deA9{TaE=+Fg!AZ&MeSuT(teq>y zCE~dWNc7gy!LXe34B2eh2~4Eq46pxZ<9D-IlleZjW=HbdNy?aWjBvTW zzN|HEf@dx18fQ-LLXZfqLq32vhwk8zLT6oxF-DQ_h6@`&UB8rkSDk6QsQ)$c$Je!G zSqy@(Eumu6{cmixll5Fx`x*^N|gI7ixxgDzOrOJ>=S$_>b2>$r&&r#KGj zg)H0&R!sL}Do`16)_NP)Q+$fhRmqA@dd*>j?ptC-k)zg-`YBdEO9CH2JgYfpZ?_MY zxqx`q_8QPHUzyZC!l1zOKG`xOC{k+mDa?A`C6C@vNRTT+K&zjzC|nYboGNVcGTf6n zdOIU&ZwCTegLai+EucRtjJc)VmsmjLs5NBN zveVnvTmeszqt>-Xk=TywDD`emyT#+=cLXv-J}pbu`v5C0$r5M>&RUEA^Rljk=>I%O zFt}l^x*BlOddtSv3v)$gRvKX0^St_&|CLfAjIK4sCM4{iU9Kaojoc6S$eyY_!6aaD z@~ZRh{}Tn%A7AH|B{2vB(JdJtp!?t0grtYdPig_2v}rY1!maNxT*BjL7Bxl{FdI^9 z^zRhHxz4kYTJQIWZ+9R&)FMS{wZhIA;esf~md%{euyU2w(J9{~F5&lqH|PJF@@CZ* z(7bhWyBi?~%duq>R`f>ZAF#$y4NivCdVFN=e=j_jX?04iAvVxV>!vzv45>Ay1+Iiw zms1j{HMk4pTJg14Vch=q0=o5Sa*`mmcC1=F$VM`%7%l=+aEnS`6_zP$sC#6(OZu6Z z!9=^yTfG43lt62#w9bC$@$lzTMTH$&-dn-nNqNdrXq{mrT1vJg6UQ8ukt6*C3UA6V zSVp_&7jcHuvRc|0VEJqG`)l61j=G^XEUUN~5e29KzP6E;MU=cs8%^?&B(qdZa$Y z)6{4x=+&(L(RSIc^J1KUxi^Oh>9yyNW34@EkH%-oi#d)vYq}4Z!Ie5QzL5N$?xB7= z$&3datBrPzzW}Y;`U8&DCLSrZl}Xp6u;v90&r#4cRl7Ja4JaUkg0R+FQ4fJ>z;#n$ zwF@5}6$Y-^TxhG(Btz!LSJEhp%I$NR+Y<+@Gn(1JSx4qZ-!}(lCpqOf+OQ@LnD3|A z_g0XIdK7Eyy)a(RqkvvKinY)QGe54nMyb5wQLO94JQPe49>zc#kT_&rgrn9BinZRr z#8Q1qb|f$jC}`5Ev+W9a1+D@48RiRhOoj}j7RljFb>d6rb|8$L8@Si5PrgX5gxhK} z(_Pw61uW|wEACC3s@hip%UaM5W4Wq-mB=WdS#Lh%w%lacYMr64l`&H_l%mnBgJ#)1 zL`~*K)Avui_`}y39We~TFmxpX7{mUH)#R>y>W>ECoP=PEkfm?;T(c9<;XSY3Ig73_ z>_ftP7Ua3A+-_4VoYtAR(7dhoHX3?phojesY!0zVIIVNT&7Qs4JPxH*M_mZbEmC2$ z?#_kkctKY)OuE9kPpX-=GJ=T()@b53*Pd`k*hHYUqhdPRu#Q8CKI?^Lpn-I&tC#|_ zoX*2CKm3CvoHRHD^!$jvq|YbPO8D4$xV2t7ZC z%I?K8&9EWEpcv)*t<10qR|^aIQN>o+Xu=E-6}3u{?tGZwtoLvZp&)wNX!K#7C2bdH zFFTArtooqMnk}z6tn}Sf|tzvM(XuZ8GLRPmP7a2kfI1Se4wk_`&LJTPu6`ohzr(RIf{0GoormNrnnAWVGA1!T7a4shqWTe5dD#d z8;z&ipFbc4RAIM-C}(&2)kH@`_;n{7?4QW9Mxv@-&uCpx5_#6EkiBK9|Dt{PIs+Sr zLKueb(h1-PFxh{xl3yLRbdm>%uHxDt9OwC8SxERNookhK?5gCZAuqMelx|WF(pjV2 zq2ipfeRWA@>mzIO8QqpavWmJO0Oqv+wtLm=y#}F4%jHgBaiBNnMOM{zt5cl;I-VaU z9PReLr%V|w&w$K0VS$AJEzcm;?0iVO1&XV&MyZG_L$g;6`K(2^qBCF(+ac*@ZG#@< z4*#mBnYBqmH7exVef@M(F2(8dWtEdE&d0l{`+HI z4InvSCbw{R>(+Dvk^{!uyYJZ7+8#i1zzX_AkumJ?E5es8GHiShk_6wxlpUaSqk1Hb z0XwH~d#2OWk(AJaoabu)zD#mk2PDkU<|>19))A5FL31mo5ISqh@mFZ3Jrb@?Om6d> zGqn~Ykj{Eu$!e5)toTDZYpv7rr`@c*6r{7BUmF|Ac||#aVvU-ogu9)j-jr)sE1bEj#lX-Go8x--bm4L=sl|T^*o1GF8Tvfuc2HrtYx&YLSE$ z`^d0}2D8RVA_*&Q;@qCr?Mz7pXN`#i(q%=^>iut3nrpe`@8Bc-F5YIB4O3NzJt9Pi zBXvE~m7(U04h`hhZ37g;*6c?m2r+7z*+Ye95Mf{a>M`?I_qG5aALS^D zQwysLoVBk3JR2|f+?0W#^;MKS-F|DZS)*eO{pqgovK_YY}sTT3Zo8<^J!b$}q4h#MF5~~|9dT?12y{(ZL0dz$0bSt|E zmuP%M15JR&P`B=+tZlRsP{wenMCiE~VUm&)9nDOQOOPYk6OD2td{ZIl|2lB)T?(tOY8$1P(q0D65PX z2;zCtr~qYc-ag1^tvvzE8mxOn??%j2hR|$dm7FU5Xl7?Zh{hcPE#W9uGoS*BEIHDK z%#s0)IOsn-(ob!Wwe5W?o?j#FZYtOVD+eomS}Uu*BS2Zb;Zk*BShTGGWpy=XNZF-J zvqMDxENqUH1Pegc;w&(r&GFpCAMYx9KIUbAe$21e^0qwx=4nXUGUR;w@6Yq|`|C9y z?{D9BbVfE9{8#t_C8oa;kiMz~iGCeR<)**M7T?;_nWnq&AwR?RybzAn~648yj z?ij6Xs@u=tT@^P~PefB)2<{MGi>Tj)X%p6Cb&3b~)deEUUG~q|ndL?d!!YzNJwaqU zO?>~0wWde|9-&0P=8MqwtW3P+3uj+pZ@n3(z3ca-?{DG5Y|31uYQ8R)FQb!}dASFy zomakm3a5$?Dgt%qr`Sr#i3)z<=8(+A79n#@=2(PyFBe}Bmen8;A1;hRd}l8xLedh1 z?Ah_%)=}buTl$tRFr5ZZ&r_yFNnUWCDnVQGcL|zT5*h5=ff8GPSVTJj$xJV(oonGm zM{KZyf+*+uPlPDvu=OA}xaAm1Y#4^kak+xDO^(o+vD4$6ZDJ>s*mWt$e-hgS&-&k- zVeZa0k4ep@fL+oJiAW~MR~cl*o4o#cMnj0))ot+ zBtEo=RT{W@*^b)Y$^c9GF~eV!q~{jt_&PMxbG*Zp-cNekq_eryn@^4IO436knw>Q; zXOX>USewKLTT{}e#$~Ll$c>Wt=n01jAZFHe*G_z}KLTx1m5lRvWD(vH64-SJjY9j7 z>x8H8yy62;8DqF%+0}cPR!m^fRmVVoRY}oKr?R z?2IPeX3h?*(S8^?7aM^=7>2IIH-Y^ZI~~o7M0>JsfCvbV?NDgM$|efLj(~BbfAw~TduOn$$}lSnpD?a?c;EiprQnzymvX(1z4HtC~3-y z0_zCq7`*)asQHmtxg)bc9~4$VXPe^48OVWjJU#AxOX?GcIc^gMh`=owXC`o{g9kEVvYZdHymfHPTS%OP9Yayu|Qg}ORln?qgY zn2?SGa?;bMTBIRZ3nO_xmp$n*RUTF$Rz$LAWS4f(@H_Jz*veAqv5p@kJ?DP#<0QKr z62A;#wciJD;RhuOEbvns^kFq!i`q-GdzI((>OYGFJ&5vfDp}5R(MT}QYK~G0S zTB^@37eZQTC+!uyRrREUo*3y}C{UM8;^aD~M|?5`igc6SuK>(IGr!=Yl3>W7W&Azg z{@&7_b3+yf>@=`rNRMKsknRUN6B9ZU0Yk1s>|pEYUX?92#q^kDs@N`-I8W$u zWuo&0p=qu#V0&0x-3O)~xzjBnf?6|oEq@x4w@eo2edO&6qY@y@^UIoZv?dERx;sIb z8#$(7V5BH_0CRO9ZT?%1GxzBO%vfq%J}o~ZJLf&#^|`T~ETfK$nVo{H-CS&fGC#{r ze`k!rf-*M}^t$1>RG+t6FtfZ#`_S!KMu%%$Y<{R{MB61eGjXQd1GQYngEPz2*L&vq zXO?V4IE&{cq5Pjf3o9qeaQ=?kI~?4J2sr(>qVwa~`e~jd%r7QdftlUoIC!q5#2x|7 zGHJe8THZ4&>VY+PS5`~*Bd}(f{28Wxzryj}vff(y`sepAM$Q1aVGss_UqS*L^#6}FV|S0%>74rj z4+bCNv`2C?dP}vypYzb>kU?m&GhVX*=bUQa`u?1LP!%8~L^BoX#RqlnZ73mA&*+nD zuyfEbECn6uYY^Z$1Y?daQ~G0OO5L6etC&Xr3Fet`W0Gt-EyM5TM7RpPWphx z5U>Jk$JDZXV;ONfE*n7ap^092lVIzrz44S>b1Jcg22Nzd{HI!dl8%fB!4V=dBVH zq=3IEPVSZl2L$^3{qXhZ*i!I!Sr8HKt2RWmDQ&=@gF9EHCa_sn8ZVt>crQ+eNXzB| z44qTVQ}E&8u!lomTl}1;4tw9Kh(ohm-h&Rgf2)R<3K8~Sq3am_lh)0j##DU%U{F{4 z5HCgEU)qb!q7iSO{}V4T`e)R4h=2P*r6YWea7lW50*xM6#xF+B1UG^Z27+J04a4#O zk0n}d7tu!Q%+0=T!M(W+vU`Jt#`q?s=(ql2dizj#aJv zt`;~3K-(d%l(&+}bmux)3m}!#7IF>RsMyu`=qv2O%?@^!f(bb)z_h?8hlku~lzELG?xIid9HY{qy zE36Eur>zcA?3E+345>X`rR<*U1UAAEO%3a<&-|ipYA%3#O`u5{SeM22OIYNk03@^-cBeDf41?@C(4llV&uDv8Q{vcP+WA+WV=&4tbJJHc z+=Vq?wf^c*WPT3*#)oEFdlUm(d3*xvv>)qg93j!JFXQZ{+VnmM&Adx)>DSIJ^k7!r zCFIh?#58eR<)sd$iK`4cbH@oaZ3p#Y0D}fsB-6r0ZHLGGF&Gu^7auhp*0rsWu}3eU zw(-na$1WK$mJGG)`r_MMj4Om;AlOnQ`GfjzESY3(&4bBRU@*c$%bvPpF_5qJ@gJQ_ zqLNWyfMsX-6xFVUFw8(+;h)WZv0_@X|f)eLarLDrn0H^&Oe7JbWITy7=K^&%TVRNqWbbcfOwj=@sp-x8Bg=M6GQ3?eWfN9B0v15qw()VZ<%q`2I{3i+(e51~>?WFcAFGl>);5KW3uY=|yzo0|*yAxOO`2BGUGw5cYMt!ASQ$ zwH4VeSC^~Evzgrv1)e5;zfj3PUlwGFSpHSOyH?t@SN^vr=A*zrj??zP?39NnnUIE` z*Ki%TRK@;8-~fU?d@QyJv4yos5qtBS?oU&bQ)ct%EcLpQHHEs%w$dc(^{qDnGu`sY z6xGh)tHe9M!ap$b^<+{4GT7xGxI4?mFCD*Au4UO^qF)p1MwN-J(367OB^yuB zeF!oUc!A!KNx|(@BTqE$hGEMb$$XF7(lY#PcXrMAAlSH|iZ;*7XlKEq;OnwW^EbB* zn}=ldqrd;bne%=64Etyd`yl*m-H#)fXLwG02D_?3Di)9= zc$?aGcC2iF=7hIzjbSooVl=-LkpxCfsbt#BDTTMcRau6uEoS?|kqW=sTTOWTT|#>j zb}lvygD?=C3EO{vZ3#6gKK8FHO_pPt$>Yedw*pxU~_Gf^8q;UBoO*(iv@z51YCkA%QC2D)(n7&nV?%7zg6gKAr0j4k zxUa;ho`^d#rLB#p*rFWah|@NPV@L0$aoF4jj)^sO)4anKd>|miq)6lOA4{6#z8>rF zHGvQ=3nvlxFY#Cl<(`OpKMeC)b*5b+?!YY+7)zF{MRa`IRq4$zO?|i|E+p-B%@BCH zENFKaHyffO#=1`afpKs6c7ktp)7+X?Wm~Z3F2giWvR>+&PF2dSi4G4wIghM-dhvBG zI1+;}482lI5}^0L*lIq0ph4>cAlgnyg6()hAott8@>7`={q3^GDuIA|Qv@c*)h|5? z-L>h>?aArw$fd~~u8(1%+&h1a6v2vr0{;+k7wx*4@+$wpiYDmTDV6fu*wii6g$_0g z*NWT2VIiQqU(AT%KXRAfb^b3LYW}JM*ew;~>wi9Va(qS<+`WrL>B0R2FERIGkb_Q$rt7OHE@>4TdAzQbND%_kFO)DpYfewzlso^gA)C zD6qWw%i8=ga&A`)!ypV@$$;Y6`!CinL>p2i190NJ{E)=Gl;WC(oHWyPM_{D>eehtl zs?X%%3D5sNyWZpNn@BEw!-uDo(-PAY$6}UDuNj*;N=Aoh%ud-Xht$CD+*R3igwd@y zhD~LP5~PoOSvTe4xh#!Nq2a6qO|m3_ByI2NZI^t=K{L)8v_kIDK>7Q|_11sPuupQ9qrdceDv#w)Z3QvW_Px#@*Z(#=kw{!P&AI5{iHXe^3F!UdT>P3U_q z775zD+R#_clN`0USViTQe+_vgU*A5}6W0Tt&1Pki%w!M;*1X-bA_?+iO8MI|sYfP> zVd%;m=qwFdlclMC2TP-R?&O9CRKF|pLBY~wk2Bmm&y}vb>jB3vgJ-Yuzx8m@!Xja> zz{T*MGohmg=_A5tXF?Y)SO;Ct(J)hh{I)ONQLCD7#j4leM$4#D*H*5iQh!PSw2K8N>7*9rMcG4h|OpG6Ae zRgr=ceBWeR7xwJ3GOYmL+Y9rVe98~_rcqnluMhlFX*-$6Q)Sz{G_HrA)lzv#dMEm1 zOGKBlH<$AGq&J)lKAsGw!x2FkBHnHbtVq zK2E019KOO6?48iypveA!3-+#b(-+@eTcio}mYfc?m&K(L(0gf)Bq{rAT)#U4E~X&i z^Gzqq(VC;~NRNJCVgfpPz^eIqHQCV$0PssF=F4DQOvG=A8nY;U0(!%~oV=^oA|;mE z4_zED!!-)@UOz*Q$Dqe4>J}K`FOcBgz_LMt^xo`Qxc5qp5uBG@=YLl1W$DD}mX=OUFz~-RW+vQt7a@m_ zt3=-lj+WZs%yzHTLP8E}Cy_JvS{MR7{8DNrY~BDY$Mj390!PGpVeZhTKj81f3f`;9;q?alLJ^W2_i!C{H&Zdf9r?Id|zyMJ__E| zneQ8wjZK;hq)D^7Xn61+* zrN6JpgYHugJG8pu>dwm5B&xInp}u`zTo+yuDgfNOMa>wnb;1H{0`@IAeJ-1s)xa^m z&+x_W8fxwLrnZYN-`hUg@5{1Tk6gbh_r2i1%!2F0-2SPh{jPmEM%C3qR!=0f-X>8?m#uj! z5Lg23;Kqb$^+W<~LLB`DTprs``0rHqH1xoKCTOPQ#b*B;>%U=}aApuk91Z`j>$}Zk zP%!mv9*TX^Ziu7Pzv~SshY8!0pb~2uRM3;FjqHST9G#DiHMJi&F(zEotJ~x4eE%6c zqa+4F7>Hg;fsJ_oi}fonjJ8V;(4hmU$;)Pw0DJ`!6}{NANdUg;46rQrmkI4RyVNSb zw;_mn{1$BaDXW5jFM=(y$mzFfzQv@}Ol^y((0-%Mq|>u?D`FA^oO2D5vaq5cB>}&Z z@n&U)5xI(wUvfk!qhw+52i z1Tdmyjwk1+C&zEoe5oWCfu%p3yiL>u$6`@#S4I4tQoPct+scLlu`Uu}T;~se4KX+& zuTrmJeD-MY?@n+tiG|P2|4q$6Ah<=75k5P@!TY}7y@6IGsrcdtM?Z^21H#0cm`Sso z!yc=C7(25ZhCv{PUWp|G$^9?Z{`d_lk?8> z)eH7DfxxkE_x4|mci{X6z7)#QyETyn5IlX!8MI>=Rm{F~8)(ttS+C8b#)9KBkb zB~O;=(Em7s;DhP~{_}Pno|Tr8+4fALX?Wd_^P3@&yNzxQ@-d&?B%E7(JN$8ezto>i zOYMWWlb)8DjAF3gRS>+VK^{gmtwkaP!BcttA+{X}Eq|6Mhu)`k+UPzwchA%IgfZz!Kx|EvQApr#EG-l>8gEiL0 zgJ|M}0yx&aEX`DJ8oD;#uuXCZLGURF{#`+sC9G5%g<1k^#@ggG-)3b9g0EnKBWAll z8iL?e0x?^D)emE5fFmIc!@w_*22A&5sK_N_*3XJ*w|My6-_u9Uqku2|`tizNFBI^_#N9*fssi`kx*;H6H9rXd zcdt#;y{w-}?f*vF<WZC^T z-Bt2(Z%JOD;&;`eT(EL-+#g23|<-qnb28vH64}ahC@PozgsX?4u zNCtwyK(BrnABZe|Pf8CFur?$Jfb&Kb8Jjl7lkn_+6 zBK_VxoRd^t`0NmDrLb+p66>&tJxG90JnFF}BnJs_z3O~w`V{Y}e@~=B$|~s>JeIku z^UQ+gL!!DYbvU-}f~);EXr@mrpZd4pLt!MI@xizL{bB6fjvR(z7}!$IF+r;T#_r3Y zVmdo1Kw~9-NCKC@H!1@c$#y=O{zwdT$PjqWWW6}}x5j;GKD+ILx0k8!$wv%y=+eJ; zJJ$0jJ62^)^UW|Fhp&3BS?O{Y8e+RD$5@!?aB-Ov-c_S*ZsT6iPgs}!{pUvDUg?6j zm-VJ*GM=!5zq)hC41f`7uc~`vOZjQyXdYSr-k6!5Fupmq{eCd_4c_S0 zNZ9H8&A?t&UHbRlU+7~4D?ZD$IV&hmz2lG(tz%}#v=na|V8N5D`zf21DyJeqf)r*7{_AbNz<=rq%DJO6_CJ zF*#`j+_Z2s2Z)vQwEF!JFBN!K^JUWVn(*oh&YOo0E6d&?R`Af6rGI~gu{4n{O?v!9 zN8x|Q&L{~&5Qd>w5(ESHzu3-x^pz1e?g1DSw9qt7a%kWK(I-`@2iDUbRtf;TheT;D z5K_JIhXMfa1ht7i$Fy0F3XzFag>v|?Sg8U4f6_eky{ZBMr-0eXUZ<^AshF1DKKxMb z;M~zC=eQ@7eEe;MB?4K5q;Fl8Y8zK+|_G83p8e(2mq-`E_R zy$TFmZL_uN{%gYEGV+ZIBegb5q7oQ*<{QaTwnwDUK!JYPQ=`;oIRXQpnOh;!X!UgT zzyep!>R0&MdpJ2bUY3cBj<8nJxYT|UI9z70Uy3vqzf2o(cQx^{?}`Mt=3Y1T5iyYP z6C&V&TBs*I3M70XDMPM!d0=8w60$kzUS@4Sd9c;%J1UUywWbX}&Z7Q0X`O>b2x2;Y zFghXx_{)^qOd_k>hF+ju>ju4Dvo6z<&RW8JI`Dp?Pr;#UmKk^7vBH^QS zyt|G>RRs-vBYrWePvIcp8!hQN>H!i+`1XTIFvEWa)xI54>%l~A;=qYDPd&$fYi`Ye$!_`vC+cy-+$uF$|+I*LP$^Hp?$;BysQ z5{DRHMkEM6MJNaQKf4umiay;29Z zINbkYTdB(PsI1)m>kndv4hb=~(;I!|Wzwl81Io)e!zA$MY4=?DU!~<`2Q}P%M`j2K zClqjnWj}{VQI!vTElC)~EhwS|J-{41xmwV`a;t$$Z>54T0a;g!W9ZQETIXrPPv$){pBD1R=&VnP{0vziu=SY;1mYn zI{Jd^$_uO`D`V23D=%=J;(cZv`BghGZP@N4xollqje)PGE{-SOpZR8^8UvrV<^uNP z8F46*ULq-bZeDq4bL1YpE0VCx94IK@hBBHn@>jV+5<3lgc`Eh$Cn3iNVT(8O{)@AV&ENjr^y-i29v7o4i+Iqvom}p z20pmEcZ@^*tXGMFud)m3hV|)C9k(1n&@FEeti-@)TB^k$Gv3!oRVFHV{Oc*%sD5dF zn-I3(vmTyGD4bB9YNYLs1P}ZaqA@9(esgd_!76V8WlYPZQexnPRLPD5h37shG4O#0 zb7PFz?YK*cfj?gSn_o%{=1#l8@h|=jBTy;Vh_7h=pA-72V2&dH)cxL*ae=XyH6;eV z0a5KRq`Q@wC^7KPfMSkQOlkKuG4Mgp(2@FidYy>DTu>?o6faNh*H8G-xgYX!dxl|y zFNI_KuW*2YFRuyE$2QD@4PNO$Pe<6|mu9HymKi)4AXfi#_q)81?#Q3uUM|U1Q3ImB z#i#@qJZB8iXd->ug)l;aa7M<)i~3E8fUis0RZE5y2zXYUU`!l7d{A(~pX340u;qua zYfEAn1VUFz))&41#rg$gtR)9hwdbq=N*w&XwIU1NjU+6{kwrhXi9U?}+@j<^5e121KnH$bX-;p>c~7|E;=)qhpa_ z$u=kgemUqP>eeCt``C|=*JkaC)FE~Y`5q`66zS^RQdTW54v*im?1Jjj$kc%N??=(e z29xnw$$uZx4sS%cFvx)0W30PE9K8{++ODh{%R}S3k^z6D#W_v5=Vz5@Kz_Tr-`C4f z0#gZ?M4o3w2V{d{pFCk&_S*#+@F6WXL^L5^A=i&T6AUomL}5^LOBT|oJWmaXvcK<%%kX6y)msrykPa*jd>^VMeE6X_U4#*Q3I>5NC>tPn zJ^_Nkb^^V(Oi6pJ2WjA!cvAR}Ity|a8G>o=USMh9d)u$=vOQ5jhG0qq?-?`W%M=B@ zC3`>M%QQ;Dt^h*t8&}TrRgX+Z@cVnB+WXb2h5uF7IozN8w_GClwwOu<^m!x{2Bk|u zkucotSDi})-%YgfggT{I;J2Frc9mc&lvK9c)hXSHO@ zS!dfziiDDTGBtW^zQR1Ol#P5~d)&nv4qUBt_@Rp9ky|0ptgM7~Vl}XzqVNZ~=l_FG5$yJ~cuFAGSdB(zwIefscKlnxZhQ zfI!v#lMm81bE@O+ht`uc8wFo{jBV3fHb>|(X856+5HRgP*wFqt; zYF;|Rq0}Py)9Ga~R;O}*t^mR9e(O6YlIsElN438l{xKgGAoyPmig*6i+UX2iPREeI z4}5`sIsBvSqd`ff>s##TY5PV^A2}3^#fO- zD%Z+8-0gGnycq7Bn83?2xN#C5I117N1b0^rTDD>qE>FbVEvJ>w;knbh^g(Flcb&g= ziQ5mHLt@?=;E%W8l@FMf!QWkQuBDt zzAHYAor?{_APhuTB0y}s|6;8w`5Bew)Bz$0A$-o~=avafAKiX|K$O>pNEzHa2*gaG z=o4L1`=g+u`t3is1o-HN+mKfrScPa!MAf0 z-kGM~75DCaxU!qRao`2tmNkyj^41(Fg`0yIu554V1rM}viW+;_$n~-Y5@myjUVp(u z10)Io4#%uHmwwmW>982xUI7{Tzor)MAmW_@az6Ah*_pM2(TcHg(R;K!Q_0(PtU;<%;M(tSI(Z-O&JvLhQ<_RXv+h3%{|BwcA$XLuUpenRchh;{yM1YtsfoFH4-!qG0?(UhauwkdB(0@ zjGX}zgD?mLzXVJZ<^Lb6)0V~B&cz2XnuJ8W+#O$`<7(kQ6H%G|(ls9(!dj~vr4vQA zC3yViu&!X>gP;7Ld13vzqAzA&Z-cFw1_QAK@5O<{WxDonOK=K3ev!1nPQnMb9xG>) zMt;D;ySE6`G0lBX_}~!M5WQABtj?=~#s8Vx?u+#;TzrEe#obQqi#38Bjve~e;t1EdQOLMs1-7A6 zaMNp4(D+F95&voKi@74NDt2%UHXe)d&Z~}OYdc?gBlYQkYt``K{m%0i&-;j_gF%Z> z;uf*dt?==gPsYyeSb`7)qA3BQ-pN0)yFVN(rwS$jYe(c|FKzRBF`5gr$vMVFk7`2v zdgB{Bm2wbg{1b6TB_MK&Sl&an*KUPk=0nP%ub)l$21bsGhq>l-WAn)$kg9SZh$seYROx-kxx=KzqNX6 z*=$Rfw0f<*=|Y1uYSxaot_)+zR{JDqxsa~7&ZyU+A8`4KCt1z--KCAK(9g_?eoEPF z&S+mMFQ?qlZ1#(M5Br6KQ@;fMTl>6xgYxU6ww22zexhT2Q$JAwG>09&K>2HSxQc^J zQMy4ebk#A)^!QO0=EoMv@hki}<7n4s6u|jOo`^G=-8ZjGU{5y}s#;-B1?c?A|K`>w zLYYcn=ZpNDLO!#}&yHW^pt8X-tZg+RathC8(0Y6Q%>kdsY|?|JrqmfH(DS3=&q_9$ zwTwh@y5j$goq?^xFbG6fib-tf{)@H$t2`pN;yM6Q9AgaU;{dc5UwnNgNDkuJN1O!E zeK5=ljMg8*cI_`CXzGiXk(X^oD=5|__7UP1Obp$*xo5E6=%WUFa!%2xmO){QqDmBs ze*DxP{2qL`6;>2<;^ZfezSyGy^wVojj-!BdZeNPQDNa5}dQwfzknWfv);mA`Gex(F ztS+(iq~u063z&->2U(SBL&d9>$Te2%r2hh9Oq50mrZXAHZ;S1n3NZcFk5S9*udzha z@3wHzM0JyJ`eM+@DLVoyw^;;` zDFqq>rq1;lAUP%iyGNtZeD;Uv3&WhiZfAdZp_o7FoxQ%f-y>93;MBxfw!J?Ga$?}r zwMSR)lZmW<*JKypeC`$ggM%w)+ zKlEhm3Tzk#Vc1KU&_MrxY}2$j2sYCLtac@3#c^zjrGNckH<+`YuHS{=*Jo^+8tA$T zg1ysn!fA-04H{8yETaI`kw+uF*9FBsS%>q_w;mW3a_m#*+#d;o-q^Osh9_3n^L_2u z_7ofYRXVb!_`BA2EnUDxDI@f4$|MhZI*YZRaC6zI?~_aiqGSd<@jb=g!d z8jIc9$sbue0hzx^bz4iUX{@P6c-PpVu3Bp4xxSk51`Sv!mvmA{E_15CgO^KsZN_gM zu1obfMTG3$dp$g73SY46NXnr$gb9mjrX6J3Ig?<>OmDruv|*XBInQvoZe6m(Yr%Mw zB@P7BK1ZaH+OWetx7`gcYO)VqlVsW%3(IlC+U0P~H@o*VtttE< znx(U<(p!7@@JywB29t^8xiN6lwo+t~^~61YVh8uX>Sp||5~D?9#S!)gN=#}U+ET3p5L84NBx${< zmtWnO0HpZgU&;IK@3Ct|7Po}?>rxTm$g5s>baoV)V^kEITnMSNcj|FnLRSGXK}_?) z;B_w$*23Ui8m+6v?`PW72~If}*bkr9$D_2Xg+rr25!sv{`yNCUrnT5B?VwX#b^;#y zkz5FgEf?OJ-+s)0em{(zQ4+%-2t==>9g2GYi?u(zor#H?128re71syKHZKWMUm@Fb zY?RWTsk`d-s(S5jTgeso&555!nsL|jTN!Z{3VKrgKy1Jhq?y0G;fXDU2%l+UL&Ump zFQF#Jwv=|^z7XJH64AWjLfb1YwD(flGbpCl|7#M$QrZ)0Jv5Kp_l~VmQ|8NEAFX}r zUY`Sw*#~ny-&GHD2raRFfU{1;hVe6PT%c&Rr$iWA9)D5Kb}=94*eJ364kZech?dx{ zoS|`-5+)JlMNgq|UAE^#*~qJ{@{Rl&UyXh4vmcqgti<-w5hvm1XEVQf?Y(q4{F?Q- z#CEW{PggCG$)0CFAzSBs1B#vV4fSPVmS?nfT-BFoO*3q4Q?RK=+c~Tz%N1#z$kt)T z&F7~N!Ymt*?CRP&G_LU#@UeP1^1VjaL~Gw5vzTX3t@dN=jIu2RK`1(qu*p#iWmQ^Ugs=Jf`6;)-BqzL*D#D$sB;nF=R%z=-;`5!xumd_JL^Mnv)|u5;1h zlTCCmSEI0edl3i;nV@v6oaO!&QAPJ?NHAz2g<^8a4+x7qfWoLT_ z0_yPJJ!$fe*rutpFXbo~0I}z`eFvw)$tj-ud8EKBm%+TBw&@tjJm<=!P}+?(89(k^ zsnb;2m%SgEmq$KVrXBW*+T+ET&&{^ktGeaiE{Fd)ZJZ6yBhE5^)YV?{N<7D(WY;cx z1%_0-Z{OK+d&ib*D(x3_TPSTQ_u~8ROgnYNi`)XFuSKR3!Dn0_QLPSF6`eN3NLP=G!E6%>^A6-OjBr(PNumKmvY|-oisK8TJ$R4&qFA0x3Kf`@ifQq1gS5Zs zK(~;<<~Pv`%(iw-|s-$mz0m3HmN|`gFZn# z=jC+`q}?g6d(cyRv0s}jN8hc1c&7%^{z&FL2ohIpFKkC#aR#GH%DwPapQ|DIF?L2r z48tG{T`8tD;QbeCfAZkU6*2(l#<7VigrFKSJnyNo>scj5^eUZfR3-We7fZBE!+uLt zaQeHT4879Q_O1hnRVK?oG6VyBhFIh=NDz0d+usH3VNz@mGW~hJnRbKrviS3RhIeE& zc0VI?L^)UFt3)CV&wFYtd(}%W1*V<5A2MJa;H0e@OP(CyB(nD8bo6@UbhHFnJ0y~( zd87Tg!ZV#pSxBe)IR)R?-RyH;VVCNfp1x&gShvi;GQRshV1}D%&&CK4L2KBn)8xA0 zF8KBTH`}n!zUs^`e;Ql!6_Q#Tu$f~}9P5%}`<^m^YL6bPE2<&=JM#V8S-ru)HsHFO zYR@Kem<$Y<0jeF`{-&B~eU)6?o1U@(*Lmp}#NS@}QI$)OwR4Zc7{Lcjcvg*#KDa*D zA!|=Y5ZJ$b7(1inh(Q>JUa6oZX77Ko_Qz7DW@HY)5E8O0KP#evgkRKe_ddL4f1hb< z=bn@UYBw5*w)WS4Ubka;{0!mq(AkmxT_9{1d}fDzdzHl2yU+-;9A|ha z3fkI_h@x39_tmUe#rr0aus!H-;~5}xch|h@ynMb-bFV7CQj_lS^YU;}r3?(|cE2YX ztgdS&>I>hk24OqhCa?O)YeFP!f7M4!3J8xUL0kK)?#5l+4cgkJk+j}u)_eFLRKu%T zZI_E@$)8Zmt*9!RCj;<*zsQ@F;IAh*P>v6jI;_haQNmg zPPl#Dp?V~4R}HJ+LVq;b-`MiG#3K#tbsdHyd4a3kb~9R!fxEAcC~rbg?7~b37+s812mZxV7!S z7vL?{H?QY|X#3{3U#bn!cGaf42$bhVTNs+!{>ZQ2+OkCEIXa4ae)0>#_6U;ZVO#uF zes;R+cb)Da*uL3D)X0A>Vf%XTr-o;=oJ@kGeeDX<%%xGp3u1OsE8WX#`K;j881-l9 zsa*{{Z6IXdTV6bOEiXXGzPy^+>5n3;lCblFQ)s|fe&z%6^+}gY)XYK;k*%}F!z_vb zif3J$h@wQ_eKW_*AXaCZ)#1e~bP$>P*U^WuGeD9Mgn{6f9HJoq|JYS|JI&p?oA`hf zlqiNF>5-YKzwV*={@vSMHPti4H99vnhoMKW<($QiWIf%->R}R(#w_N0d>ga1DzyJ! z&?erYYDKN3cXHzxs{<>4kD#sla{;Au^^B*X_=?aMMDJFS-F~92w`UFN0U+j2?Eb7l zJx05m2px~?w-f-^DKXso!bTV48W7`u>zJ6@SHrpr)Tz^nR@(An%ouOXp?0hzL=+Pq z@9x|*L0$NlG?rRD0C;$u^}IefEThZU*r%3@dA{)jhjFfV;$Eb@Wh5-3FUtY4;>$WU zjWuflHVhxGic$r`W{x$<)g>xLILe6 z=Ia(yA}6a;JYjE9zFOhruL83hR?jW$2v;`kIjP$^GxbpdZCX{r0&u_4mwwh{5|xCu`|GR7zSbJl|sVSaQ}<# z>#KfLtp+;)YMV5HIL5w&3NFwH>lABE%ke@B=4rraP0#-lXg+bnGLeeR>r1Z{w9}-T z{`!p>?=aML-UyxQqGmw4Aamu}gF3poz;$$Bbh*EUc}ERvy5Mrn&8a6f&v`3D{rdo0 zT}Qjn@`>o&P(f^sWV#QO8?%uHY3tEESLse`2j11_zINZzvr#Q}`Ps1`CCM(Fl^bmX z2P;={4@}f+4-0cap5q4Q~WfG5OmVyU07SfE_2NmmXlJzKNr6mI4RoLrl6 z_P==(iTlwR`N}VCUiWw`^>YD4%}#L;a?K1!tkn!|e3O2#x(0EW=z8QUDJ}J90*zmO z29`~;GXae!3pU$k>UjYfzhG6$t+I3oeMmZzCpVZbGt`|YvTy2mFbzSl& zRDAGu7irfrQ4J=3Tw9S&c$#zqCQiMtEvK1HQb7FgDa~ugnEEpYho3Uv@$ANEg2PWy z3Wo>Ir-p#1z*2=-Gk;Y3 z9IJI|p_>mF3O?u+N?oa*tJzZ$>V1nphkmsVO)&5-4cNxb)^5gfq$JdvCdH^$H_iGK z2|t?G?OF3W#loqt)Gc_K@Un$nsIRuab%=n24=Lh_vo4|C{eJcyOx6-fuEfafzb*^2)3*ugrtZ zMl=kVmN%QL5ONsUU-BaBl-*8OTmd46YPnc}|%fooIRn?Ny4 zHzIW(8c*~T{T-0*f=YYt|0F9%1s+~Q-0L-xJ;qYRDf?-59p=A^01sGqTE)v?7Wi)s z6m88=#Jrd|lAWX2bhB{%xgl_j)x{(TtbWyA=7hxx2n+0k&uX5z{pqUsU^3m9DyG

4uJfCc@7Ns zqANjm)T9(830*AZ zD`}r#?4j$4T+i&M-Twcvc*(Ah;^5IZabcH zEMs~`B`qB%%G8xgrq@5Y5dxWb+Dqctl$1mGH(x=zP{;bCFEmzEO~-90t2dfuV}so< z`xA8s@o#7Bn=(An*Z|dp>!Qw;I{nJqH)H3P!ypU;!7DXR4CVe8tBSG{1l76+@DGU} z887z5mMgVA%C7KbS2BS``?2R(r1OA^j3)rzG9R&~d6Ji6;5hDFD0@0Nm*N2n+ z7i-muhpI+g2Z)@+KX@GQnO_2hruLYUkS`331+H6t;6qj2oD#>F%9nX(s+-f|a+b%} zBXUvQoZ`EyG9G&2onYh`HV4m2=2@IR_QJp+H%EG6@`ElPBEWRIaWi%|nO{uaWsIUt zhg$v>PUGq`lT@ul>)Fk?{TwAN&u|*{y~|}(vhoL;US7e{G(1SnveH^w~2I>A0ypQ|KFn%@>=?bj5|L(x$eg+6;8 z9OLHZBM{!h@1Uf4CK61c4^x-?#B!VOKTttpyC6gG~Mvq)^9%gY8fGYQ9(=X+RwcaR45OS1$OStDNeohV#N1$ zbSKx()rt+`Mr@ z*I%BqQn&MY;kHGmRP~d;;vrbBuTsDEUgOYbdr^U1An2ZH2$pfnCEkKN9-L6m7CgoF zJXy*3!Y!yW=DM#$N5%Qj_6aPgmgijXXo{PxWN4abSN6o*K0X zLFXfpmOMk5RUzp7L93oWK6M=9 zU)-Oq-a0nBry2{R9Pk0=ayMR3fjKC83kmxT6A8fQ@Gg2JtXuyg;B%Vk8XUoH>JY)_ z&tjfDViIm(v7ilS;frSOU<3F(FM?o{83V`&mX*F$%74!qTnfSGSRM2`ZJOhG7`GQhZd7_h0Oz zhaQ9WL(Bj|ocM@D(d4_*En_o1-x@P(a+>EteqU9v03!VM+(2Ls2zVI;q$JWRO6;;bRf2}wD)gv{{jGA=OpEE zHy}|0=#w@hGV9G)N`%x_AdSnY-rxx5{NblHF>_4pRas?YlW+H*MriLx@I{`F8`RGe_zibOU3c zzH*5r-!QNZ>MIw9+i`OriGr@!aj#v!P+u9;k0vPY9FPUFY78 z8a;EBl&;j^fpJ|&W z_8ei*a0SB{&rH0cbu`_htrZakj~1Nae$JiO*KnTJ>@Jk?Y zi~s-FB_^F3(Uu1oQH#j#c3h6NsxlRq^|K`-Mq+2LaJq+{)H3;WzPm^FU`BGa)_hEF zEKsqU5WLkFS9y9HP4bRJXt#NPvgDWKbC7uYEhmm^8MofcboTq@B0ML{Sm%=+6_-}Z zFxQQ57r0MMV{R#TJ0AmxzQ_X61hzjN*(A~ohGfi|&tg~-18o+Y;Z^@AkEe>^>d4G z0ja}dk4GI}4`nN^bQooWABO5+g#0>wm`11PMVHhN4$$XzNe!e=%ot`XVX`2k3wTUH;n8 zwfA-}I$9fC-&Ej|?nOt77;_j%3o~YJW)?B#9I;2hwt1qUfYxyj7;wbMmH67w`r!CR zMBmYKXNjDUG9Yf6>5H%sZD^hLwWw*ZV(lWx zYE${OYQd};drnY%1t;F>Qc>vB!=VwSDEa$Hm(j{lj|)u$IrR-i{xV zHI0^Zq_`Qf0fb3PyAw0ZqEPIDmjZQoRp>+1|*ogV$zXi|DDgms*82F35vFr=s7IhhPc z*unzE15)3!FA-K-Y6hVbx-Bc*0;6XXWjMsKvU|3=Ztmw+lRJJDqGafmsZU?p!)XhLo3levrqd?&9ov7 z&hhLs&d)yM#n>4jAq>Jm@Jmt%z5f4W&Nya+RTCb-)Yc4y&E@ic?YQ?2a+_;c-d-lh z>K0i$rN`@0Ja^t(;%37lHbt5eqMA=|x*@BAZchgcOyw{!K$#HQ_xUvTxs5Gekm z{CxrIOXf{H=N~!2tK4wx$qf}o=+Sy;n`ern^#R^H z2dPvqDvt{r=pUcv!pgmeHIO)eP}h#mWiPMP;C_6;0h zTz2p_3O?Q~Ch1xvRvwcVu~B$K3JE(m_Tvmgh~j-Mk!BV#31wee!-m-s{m65`P~<)gE^uLLsz2-&0f*UCE^Mx zcc14(s_pAJA}1VXuXIQDkN@md0)(9k!HJWh%-U4j*TGg`_m^3lwZTMSKhY#+qCbA$ zH)CgZ z=b{>eGn|+4y8M2D+xa%WMj|t>Q-l1<3VYUX%il8;cH)MO5%p-+ErmV)Umc$*&3<*m zH>O82V*V^s*ue@+;LGQr<_O~}8S4`icJ{m0KSy5#-i`*<0UJ>h>k4l_8v-rbb89sF zectm);$&_g32hkPa}hV@?)F>tATjp9tvOe-U+Tegt5a6S`ZV?XAFW}mAg>GF4$g3B z@m)EORpISdbz!HKj$ZlPmnrPlCnHyBVjUEAWT_YWb1U;81m12RD$6(K8dm18TLG2& zH`f|k_-PZ{$$=ZoIW0y68LQYH*J++J5)3$u(NDQ{vu@>A=ImE3IY-8Vv>$)>yp%^V z1>WuvBh(b7X5D$`S7X7P+ug!ybYVz^j_C)th}Z5P{glDzcqgEu!rQ+`Z83Ds=ir;M zGeBYxgn{6fEJ(ur|6}cRhK(aO=>s|(SkL&`Zf7s~D)iO)1gdxm_P0opH9 z#Umt<3;dAVPeO;~fk>KAZb%VzhPAz^hVd8-w8OdC#W!>`^QVQ)_>q&LYo|V)|lVz$GHC1dJ)+Z;9}%O!oA$9 zS}6V?Uqm;}U;PAHJ6@HpMD5~iG`04wz4JWl`=dBV%GWM*gT7nTE_f@)*IwYQBKn$m z5PP1HKxp$=*1$rfPLJN zE7o_OT07!vf4Wj`ZT|XEo4@z7fwkkt@AzAA)B77(`?HQt=R#oZYfTb&Gg&9M0<8T> zgV*$X8|?UC%R`H~Flfc@S`X2eq$(ZMVZjL9h0jz!DUE-|sWXuouE1Y$%*Q$fdFz~Mdo$}Q4 z4Xk|z5M<*9j+=ZJ0&8FSQ^;S}F$r!v_ZK!|HuO5PrKy9WorI;KPsj^plQ zyO=)f=#~41SuE1!zkEm9p9K^1D9^StW7l8I*!Q#j&QuZ5@_FWO3$vXGyHa`E$fFFi zJu1RjcAWXYKFoHBta1D$EZYTU`-R2C?XKd?=dMt|l)T7RSesI9n1v8_aldvqvNI%2 zO!I7|8_KY79$S{*FHn0!dLNYGC@Kb+?Np*hg=8&{70h;~s6*n8^7}=cJ@(jPx7sK^ z*U_t3q79}>&$|VO+MhbBRdjR?wd;gAsZ0io?$@z)^}Nwhsp`GxtPp3PA*ct7sihOe&%4d%Rap=s%J;rFN}hQ zAZBsqwRM9d%tAd@FUHOQhk+0Tf?pD}T>byY+B9V_)q_5OXihz0U3Twc`+fJpEGi8o zWH?83lxxm3(+0CWUg!C@n-=5R@A?MQdlo2?qwRw;XyI5`&G}FbhL~nCuJ0?Du@~8- z6}bv3GUK4;SL7<#oX)->_0J-kM4Wv=RJnhPI|UV)gQ#>aa-c1k?R)ou755-IG7IC2 zaf_T`;z$`fGIRhH=NBEB#UMfcGDy%C;_RCMMxoZI4YZv(+X$9Ry1s(bDd;2`P}*~( zKpbty**MgDM;^GThuR}3YBP`ZqEX)F#UUnwStQ@MbliUaN9O&a>>n1kh|f;iCL0r;`4dhd+{!MMyR#?;Ya}5ml8Bqw;0#2z(_;6 zitKpoUyPj#4#OY}L(i1($$I~bZJL?~8mhAcM5QeRVq$xXWecR7Ycz@#GZM4YoXww& z9!E31C0GLOGs_$ISm2ZXzX0v5z|{!YhJN1!+DEp>+}Yai+$&?zWry5_3H8)R4RelG z#4Z477P0-%&L_iaXLGj%+IK~1{*k^!wFKIOX8J&IC!!cLrQm?P=MWx>@BBK~5t+SM zzv!|DYk@I$T~=8F?E|0==SI`kjc(1J;h3o}6)l1GF_wllqAHi3&k3~8Bx!hG?_1=J z)}N0lR}}9%PQRV_%Wvmq=syrVw8^*|P3@ciH4X8_?t3=1j~9-(UOe~N|LtoqqhbNt zx7hy(0AFsw&k=SqCqtLqhKS4tZFC48#hBaqohe^+32FfC93>qh&1J=y0oo^JBp|(p zo~_R_Z{Ww`MQqM1AeBaG6uJbp1ll{o)Pb;36#HNT?So6UAWxd>+@4VTP7Xn@TwbKS z2|EKE2tgPKe#sUD{r|@%)5!_$BCe{nm24}Beme!cdod;8b$30ERDXAx=wU$&(CjW9UY*_yBK?I zz4E{!a}?hfbD}`rU_RGoTh9ksXVJC`m8XsygL6Bg6a)`doD9_7&J?A@yxQ8+4b(m| z@k`%1E5?4?$*-iqvyOC1!veLRdEUtLb1$BEd=cRUnOSkS8uQ;=*BUf++{MuAvmH5p z+^$=XyJZ_x-}Gp`>(`8j%*%_3zq2MA7Nq^2Q&rwVl zS~~)s5oweY84Ox`sQ$J`P7t!Q{k{0HPz=f(XCJsZbfcma1r%0$C?pZI%p!|mwWAhp zu<6Gvo_YKS>$-|(o?k1DaLB!~w}^F+0jXk(bKkt8$Z_^g_1yvM^2^>o(w8gN_xr<{ zHSfhYjr6t3*mj@9p2eu`riGzZIPyPI_{S`wPFk{RTt97whu=7X$whw>{xL9I_VDIR z`;66S|t26B`ace z=ceizH&tAL3iN!0ZF+uEEui*AchHEto>p$>nr?Ydog74w*C;rbW&7jqf6sRwvA1WcOy{D%1bLKi-ZIqw_F z_Zqo<`DoU+_A9!L&4=hC&lONR`-VGGDO0c-pSLF&kHO~7F!c7+A6s6tQbFy{vH#!w zW$avV7=&RMdZo=J{oMazli1=^3pgC0qM%ZO?YtH|{@=Md=bkgkG-3=wTUIbj(z8X6 zhTbnR zIc{=7^yJu?pEK{b*e5&r$F7+*3SS!31Gv`SLwlZ#Ug^#QP-{Q(33^N0A#kmo`tdJx z`n6$-u`Tg{*{`H|z`#iSV`G|L^N)dXVL96~%Nf+#FIeD9$9gcxsr6??J|BvdC|qkl z7PV)pNJWn`#=7Nup=s3&)Y_v44#r;b9dxaI_ZGt1FRqKU$3{A}s2OICUiILJ>viQ? zyM@9?mSL~%m+R_aw2o)36t$Ua?R#vCbJo@`<^`uV*5oC^G)YZW{IZ*F!YO+xy+mgz3u-v)11;C3=(z8GVzsCBaa0S30nnJ#d<9c#|z2vcp* zQ%rW-7JVUSfyI~_jI*Jlwz%JO=O~zjE7k^V`;={uJl~7jz8bFMY~nlvRfN3uu=8SZ zv!a*TwP~Z8S=Y3G)bktjRYN*CXaaCVc!Ky?D z&CPL&t$j-42VGh5i_g`={|E$}?-mqWyYKezz><%tcI35vm%BPDdCP0ZzH>(D&edvl zwtb$;KL4A_R@nAwl3f0qBv;bfJu>pOr$u+ljqMtTqk<+UQ+&QQFt)qNML1pY9o3T7 zI=X6+%8OAn@1W{zdp}4qHPA+`IIFYm?#a8*tcDg>?aMUF9nbRlRu#2lorD=06Tihj zbS?I_7iQ-v=Uk2+wyUVD49lMsT>FGW**6z&KKU_`x!kbD?wIb$*qPuk48lP0OVkD@ z{QqN>Dltw&y6yuka&Ru|@pr6kDFBS#A_c&g);`v`*ral>j+ZDn`*wY2apH{Vq9c|_t^LIv-5gn8t!Ve$ z>r&7+&Z2M3TdYALHrM7UhafZYs<2ZDt%*8XJFMB>vR@UkcGFZYS=kz`YYssMJ*J`a z6%0im)UY)CxLMa+_h+>BG^wECLhB{XT+&nCCNXpvd5{V5c9I;C+~5 z?N3_5OY9M}_8EL4`eEd`eFJOXN=xXml=Ev01(^rla}hoVTKh%39-M+E=1b3A{yDUh zb0(oV)(*YAeBzhIXV)POaD7~)1wi?xMSU945qhU69r(0g0PU<5 zy7sk;OAxVk>d`s@d(S~WqcLjK!mO9IFb2>bNz}!|TR6#uv!Xc@$?76bevsPh*%V3y zM-H?Pf5g^?Z8Q-`!fM~fMzgWpCVxQtm$5UzVHkvA;Fk)RGXDRuO_Oq|+R51i5G|x7 zF|mE&-?afC+KQOmh(0z7Ixa&z;b8>Oe&s512o^E9F&a$H;P^8^LOv$rYNSbF@xFJm zL>GMFSpd)byd^oGxXO8pXO6aZ3Rq?FTO{opr4Rl&jGevMqX4hCbb0|$6b-6Eterw5 z3(0~*CxG^7V9Xk&(1{j(?a)aly)|3e ziB%x&i$2kX^jMgVJ57daCI@Z$B98Ykh&V(@%gl{g=dH$Hu*&;;t)E z`eK#W6ZJyq<1C&yq6$O>7w0c6!H$in!tG?`+xqH8fwW)A;C%VR?=G&WbhhSNb>Ho! z{)nncSI+X)x;jocRQfyJYbb!h)dsE@y^HIfoHzz zz+;Zmo+NM1SO3&GO8edo{ltsq*ti8FReeFlFP!PUwWn8XnuD1RBORq3qPCBuaf^5E zyRRoO0~(toS{059-WIfUZJ!PRBMEhrmHiZuBfTfrvRl*V7ya>gLuW> zAG)iIhtfU?=rU_OG>zaW?Q4CrCcliG3$BDP3&ua*l|yZ1hol+bCRm2L_45o-fiS1T1~ zrW#W@3cyLBwBx&?)A4t0c<%b0L0sWBcq;7+H)lJw1H4g4?ZTOUp@f9@ynnA|2KTX$ z+C^6ivUT-t6OF0)&Alr?13;hIxPETGj|M9<6(bSW)oujolH=No+0?u$R5 z=nrFOlmsCN!_X@!64Co#Y=7XDK~47n9kF(>Bx!K5Orw%3`q;xO;_JQs2m1}_rK9OK zR?Bny)hnel05*2i73PgWOw{B|cfTkZAXAc_keg8_<7Jd)3F0=u_WGiLN=!kup+BYv zZn5Uu$D+KtcrJ=~PlgIzI}RlcjG}tXO#^KgE;1WxqUv!op=+Ns@em?=vSySF=Y!C! z-rYoD*B+*V#Ck$gxX8RIg8Z3X18tv;mv4-hlRTr4p|9f~T0LH;fws>RY2hlE#15Q+ z-t3yxHS)1zzam#c${^pX2(*3b`Kd|Yw+mf+r~#ukj%3Yx#`1lSBv7P%YV*~!mxdsqKkQ$jvFLT^VW z^jt`~d~53ME1k~T9ybCIdOK&r3lbvf@+}P8O>2|$QcMvGvi)&24cYx<&A~;+_cFAR z^jY>nLejuV5*m|{!7R_kG%cBe$n6)L8Z2Sbecxfl?95X>e zZugSI)}1sLm%(-)z4=5jPb9$hW%?2t$#G-K?Tw-qOujM(N`URYma(Pu7+#jfUVKpA z6(0z{c3;apjpB5-8aRU>fhko!vaw&r&M3#B5Qc$g+6upL|C9BLakNzNI{+$e0|aMc z+StEq`Es?YaFxVF#-RbLGAo;cYiIQ?K321`DXZ;F8Ru55FlGJcw%l71-s#p++q)s~ zerE_Q)b<9Ln_~*!ci$O9y8R}w+m*O=hc0IUwtH;ZBRBk3&&6#~iBZVRP}`fYujf3+M(ukn z@f@IKr>p1QlyPc)bg?z0H|zGQ<^r z?eLFy6MbsN#0A>UoIl(KD;)brZU5aMGRN~Ku25vChSuDEAk=n~Th8j{<`UVk-Q*TW zcgRFBZ2#q<8qy8W_Ew=s6`hq_9ksoCY|;=Dl-#4X_p$388K9%KQy_R8&NJwuFJotx z1R)3m(JKLB1NXn!{0uLau@VkIA-E7by)5LY+#*Y|ODfT&h)|R)cf4;AfxAr!7z?xA z#v1iGrsUo*+doMZ;a&*~nMXsjpP9^yU{sE>ZhIAjv4YxuF)!7m;)+n^@|Kg#8#l^T z9GRh>k{PtY_Ca|iD*hz(PaAAkXDl@FF_XO-9*pHP83QsZ()VrkUhf9b4M{ag z-W1gK5AZp=W-QxHx&VQ&L6vCb0S$fsu51wS-7|?9d$p> z#T*XeS7BrA1BHm_Nh+=;1=jxY)1CM!X=CkAhcEh0CAsF?3)=dbpiS-L7#wF#KLTs# z(>|y+lC%c3>HBPqt;xLm82mAIMmG$DFc4iS1UTsai}j0VB#@92G@4N(?H@V*}QH>2^1YSuciE)=RE?W% zS2>;3g6*if9)DMPX^#2@GSqL7L9q6#wahG+WAHhlicxh@+FmfE63%X`W&%}YLgRP* z=19@yU{f?~--acz&qmeJM27YDP?JX0E!G~d!gf0{(u~q}@?C$%&h3gp7>1!MmC)K| z|Hb;#TyY4s7$66mycAhcRG!biG#Ha?Pflf-I$4>RS+0m#`S#>wK(@1$VQxR_V`84; z>aAr%l6up>wMtdU*FeHRDhjMa9%mj)3dnX0;NEO0Y2f4}+jG-}auMczzPQLBPtQZA zqrQ(O*?w-z-0#V{z(wZd=aN8R6Y~vhXKeJP-@r#^s1~a4ntb#BT&S1Hx7I#lE89%W z#}#f!HtpcXB-_u10fH)h%ym<9-k;T+qc{#0^EV$t21(m#3w$mE>-0D(5(=1tGO(@~ zSIl1^Lk;t2x}+r>1VR{mCDHYDxc|j=WBiJ76L<$8gYzeJp#8HQzIVO3@=AYt(Ej>l zzK`#!qu;;%3b6e!rBawvf1qQM!S;s+CORHN<+A|WpW_}L_v~%&eMRzHCn0+5Nhnzjvp>)zYa-G#d*Ki&p+5m@5IDf#W@8r z{sgQ};X#)6R3CCGTnqE#tUkW04N?5>7pAjG<3@&5(kvpnNN1=;lK{O%$jjMf!+C zwhzi`RbPq=&r>f7d|QIruF!^|@A+UU2G=whKmQ!t?^xsKlUS75UQd0djGy0QsX+Ss z5g9*s5&xu48{t@osXh?Q)z!fiGKFV^=f_(hNbL%@Q)9ZdaBB*lEkc2P`+Mql4axz! z^w*tWQ?Tk7Ax(&*!E(I_?)|(z#y2s>vxgb=sP``1;)5Du&H40sWp?b@8yLut`9g+f zabT?;gOV}xX^i4zyfs6Xyp~YABy{u_sWM`IZ#drnlTH^Fr{yCSGmcP9fS1$KGH=Io z7%@e-J$y`Ls32pkjbg`NhH-Hp{a>UYrhB&vU@19Pcs09%(?U2Vw7i`m)(?B#|>}+%)$oL)MLAimu>Jefo>sa&l zZ~X|lUK_0Yx9&!euwR!U0S>Qf58iphg2g$&-@xe|ieC>gJ&ld)meUaX`#SM0wJUoa z>A9}&&AAoOgw0;4CA(vE4z$w?TKlr2PSrfyOYm?$-+FcqK0g^~czHynT!-Gmf_*03 z7EiVwN()AK?m;!=TNe{Y*VhxISUuISid7=*3#z~))rf3f~l;%et0 z18}6SlM@1@r&zx^m~28dd9}sh*WgOjM~puS^b=dUp18>xr$4JWqgu-XWWbFzj+m6a znn?Qpi678VuQdudAPMd+FgyviqK?#{Mm!3WtD?w#_ z31v*GzjdmmGSTFX+srNAIaopREn27^k_H*kAkU?2&>98nh^cU2dK&~bCm$qmFU=0NJ4XbZEdM8;>ZBJs1Ej=?23{wCo1g+ZveIO?9q z+L)K-cL!xZ#X{qE3C3l@2y@Ul(-cQX_2mI;qoZV(N%0C(h@u3?gUahu)l9>*?JeQ) zPOOMWG zYahTvp#fxBSfg2Ams+e@Iy&!B2l{lPQTw=oC3iDdzhvqAXEdhzQn-FaA?<67@0D+=Jvr_C7PS$Sc{@Ks)j%@Zo%LMWC$PO1-M=XM)03MxfuN+M#;^iDj6#5_Ll^r%lV%$lpBWWhpG9czw7y5e^*Tu z2PAS)3%8#)$$2@0P8ARCmoA-GGBK(Syk^mtr|7vnRG%JQD8cz6$#@r~HOq{pT_UG8 z4#uXpl{#|1`%|itoTobU5Uxkh;k3@JFbWh#{lC0$`oIwh0hfB!jX>u)ulUH18H%AO z*Ats8(3lttdVaXyLlk99GL`(ivZBEzXRgKtKcAJk=Gf5-xwNmHYEy*KFWlYa>1&#| zB~Q<{r7|H**`N}kXRuD9Y$}7bvD7Ad)h0E~UxE1dZa^RAqC{ZW52G*>Del zl4kiZW1H_pdB4OP6ac!#GEYh}R#!8fMxqD+G10SKWMX410zgu9g$M+Ge&K>0kGNny z{3d_8v?OU_KZ2ekYkNJDwK;rp8llj*$v$MxGPeKAYSdjZX?Yx%Ou$ki2b&0|03jTe zWD|oPizYO4&YEZH0i5@6!^p?SYN?|KZr-DaN>@u0v@Dh9VUL zHJ{Lylki+`3AYM{tG_mJbB2ZUTt6Sa-6G96?7|Mp12>ON;Yq=)w?u&E>nh3Vl0Z>@ zO%qn}U);Hy(ghB;F0qN7+FsgzfB|%|On#RN*dwXH*3wvox=|Xslo-t!YpXd5$Gvo4 z-dclh7sq{CRwIu(76t+>L$h*Qrq*ZdzLbAFBV;Q4b%$Skpk7?L_N;111vHl6|mY_lNyIH3=Y|YuuU2L9w!RbY1)x(Qn z386b83}x};L#JRu=);&hn1wm&6vQzU9jE|Y(ifnxgwRhb(}glHICbpp)BXzxugSrL z&Hq5>Q{*6HMjA7D#3tBjj7$_RJanl;b%mk8>IfY=1rtHv zyZWI1qltwwmA9b9SfF_mn-F>lPh7>T(OUz<(3$~8kyOh#gh4r9SUer}mkD)PV(5E^ z1g6*2r5(di^j93JmrwnA(O-e)|4E0=UeX? z*fMmPOcZ@kCMTUYZD|#Ti226X3iegAR(bEM%SEwNX7kK>46>h3@TprSEeE z$mmEnHsOJSvzqru-rwh%7p@3_QUE+UJ#N2tXjvmHY?=Q+MmmVVY zkv{5hBLMYlZODn*#W#l=jNTT8{D*B}>H<*jDNjKy%+xvuVg-}118#Sb;RL8Yolu1g zr|u&?+Gn|n^ zbFQW~viRU(`lCamS(`m&ur|z>vDL)=KoCXf2B(^_8Y_bXa zyh|@_lCaQSbqMVEydCV&;rcu8afb;Kj+(zwO6-=YS@77$UpjeCh5Z4&V!JubU|Z5z zXh9T=rqD=@{YV&_E%dfnT0>%BC}R^QbdY)I+iJ_UvOXFc-UbbLJdNJ{Rw=YQ#%aJW zdVIlWZAL-7SqrPglFb1(r1r;V-l5lKG3Y;t5F7IGryB(Gg7O3%-e}hP|9s!Igk%Hi z9qgBy$UK_Q<*xD@?L$|u2Eru>C-mTlgoe4L(0(D>Ru8_}+uvT`E@$Izww6|4_PEYk zDo>-O%6>9Bv)Ia-S>R^&(D{Eec5X)ugD?HVw+K}!&m~Lvv z!d^N{AZio&^$GbzT0d4W)mFp8Rg8+ZAyHo?w~uM0*Jn1fuYqKOp4GDB*x|Te((8U^ z1u$f1ynwt$sBzvU?c0-nsop_Aa!*jn*BYkFMDDW^xzA+BDyp-`^<=#LWdmsa_G&co z0)%hA73AZPgm6BMS2ZzTBfZ}Eqxv|LJ)2*yC8K_FbG#>;)$w_&u1&5K$8&^Fom>~S zg>@&JIzIKuObMMLmTd&%95oQkt>Oy|CTfIkzxVMRQ6toAq5^{I!!+?_?A($Z24Nt0 zr3l$3x&OsBKWb5nGvfnLm^W_Ch+k!|U2Xm$a%%dj<`q_tgA3W|#;E31s|a|Ke3+e` zROh&LvH!(e|HMTr)puonOj9;?W7>RVOv`|;qXdZA_3C*AUx!y^-;Fe%3$*HsYNEqM z=9^2s&?(Oc`=l$2dVzY;{2k`_Exx|4BaUwKH+8=M&&lXSZmzFBN^zmb2)X*LqDHS@ z_Nr)v*Y|kQ7@EyT@%4mPbr>?k)O+qOKH94pYQWbQ{{%{p z)N=#AzVOKTj7LWC_1mNqY1&)+6%T#BvRz2JpW*8_q0`IsbMf`I(~U=Vx^Ky$sJ>pk zXx0~VT0SzTW$2_YdUT7fXD7`&I>@X?cgj3xrmyDj=-4o~XXtw0a@xpeRzlJB^+aLE z*~RjIjGb*7gdhlnuM~qB-v45|e|+8T13CZ?nguxw!=LR$*Bb-`#;ID5e7|8=5j*y4 zd8C`@`VW`xSXm)IqwtKJQuuA>zgVNnTvP)s_-lvsL=~g;{Cx&qXB@H?|F6h`$iDov zlp{9Ki~U}s71_7+J5HKShImpL>44We69H)L*@|x;2KyXaYvO!Wyc^?2LN8wFx47MD zzbuKIV$Bn^YU~$$Vkkc&v|o5uooqC!XGJw|R;fIewqjvRe<_`~%qQAMvF11v0HsB? zD*TQ|+lo9W@bz25W8}7$Ng$2fR@WNH;_q&`Ew@26}c?G z?F%mZzStW3yPJk4#J<|-`>Qs37o$Rn&V$y9A`1#8yK~nkI_Hx{T}Z)Dr8=kz963%P zFm~1~xC;gAUohE`kVQM+!V6n}yf=USCQWo?Tsu4Fn!N4 zy`q&Uk3mvhwamD?B^K@|3Np`Wws(FW=LZ*+yb)c|M(vGi2`j=dX3q6-%4k6!k}MwMRp~ zJM#SnwRcb*kM3nIqW`G<$=DfPISj%;u%)mBu={T;$%jU~vrp>^La>bFWwiRmGdKXE zN`IL(pI4!Plv2Yu3aR}DqishmFA9`>F)*A#<*!opnP0nX%s7C*r_LXB_%~>~y zEAcUiQA+*ctdQCVLpAWrQ|(RBHAsV`U#6|NGG}1YA2Io6q>?Kc252a8g-~Fc3>8xQ zKrUy%Q9I0;6H^;so#on0ZIiM?QXNYzVQVcDh<#I_e>=E<|g!Ng`D?qfzC@mygh0$IRvNJ6E5f+wK zVEcc+Krd=58~@j2FZMwv+P`6ypL=e!+{J&=2w|XqrH0j_h5#W!-oACBeR{@?46l!5 z7IdnSjXfEGgp?@n_0@^?v8Y2k_Lp2%r;oN{BS-6*W63f0nvPM$qd@wqLM(F0Z(YUH z5|KuCLncA_wBxrU6Dp*c?+OadehF)$Lz%^OZ}QgHQQo>LkukR^c9LUl7nRFVoSZ6= zF(m#ehXa}u&l+O(z>ZUFYLI9-R`-d=c4n?ni1v#egnQ1N3L0Ye!1hz@+^sXdCSQ!5 z>k-2s41-q+mIGn`#rmVQoGXdU0KN<41>&o$1G~+ zd(!~)pBqWEbET4&sKt1#t+m+_GIgyfl3u?Hw2a~FJNH6%0rQp99($ZN>=b;s=7?Z@ z#o@Eob?rlXvhShvpzC_t&G6jFTQT0b){Z?M9yr#164D}?tN|@!ZnfC!ML`JdgJH1W zxMBMRmdV=qTv0%>?8$2SxeB3uB$rMOaA+YGA+-1SY#7hUtZ5fA&@zUSN^cYhiv3VYnGVM2)D&KRd z0-5#)3nbSY9HjX=&*#_=?Ou%cTxgNJW=)#FADq*YQqlL9?(3wVoN+;A?X^ZOke)y> zS97Jz_*`k808hE4oaZ3LK8&4F5`-`aL$97HVN%!jd*{c*x9}}u z7kCA0a+1%p$Vp60!!3d#n`=AKm`Ch&m>VOp#~=+sWk6RwD+bOXF&X+v#dTNTZZIFiSV|8FY=Q0hJ?ok?+s^6fXPh1bY-iBj z;hAYe12b6d^j951L3dqq(2PlU6<@jWW9$rU7zSY=xKc2N#``Z;sS@X?A@2-;5>Yq6 zbN>Gy3n0^R2H~<=3-z5a(~BcXhArvZfNCGfY~?%aH59S^(v@PbLdSY1%yb)Arspc~ zB7)*axGosA9_>;3vRTLsp}?!+To&+r%iqo>{guVu462>l2xP)2)Ha$FFqrYo*BSuLo69z?y+iDUvbV4_|@ZG)`dg+#%tG| za!8H73i=ANXDe#k|3o|=%o+l2=l%91FnYXQZ@l)n$~z3T?y?e#=N+dVHiW+Ftmdf~ zo_Bg-!E1l@)Ae%!Ui((t?!0)l@OJUpYJ$m3e}5J+r<-5nfK=fB^TOLV0u_7c3+y=HHuk=hfLzYi4%_Ecbg-(`f~qY?GaR`0q!;Lk0oCCkbPI|JB0Vhfv?5ql@Cc zLE33YFhM^@(a+?aZb_WXZja@v{}?;B;|hTohPJdU!iN4E%SWQaox8-Q01v~yElcvg z`peFD{<4DDPQGx`V&S}+|2_Wi3>!5WNf6tq(;eXaSFIQp9x~)9`+b*1Grx4vHC@}8 z^ER4DpH?2JnNT*fMmJ=%{nOzY2~RV-0R@@U8Ly8~S43pAoy!+i-j=l^rwq1-8LD%m z2)lQ`tCgLe@7#m+#B7guhUGHYo)oNujo*kfWw8A)$Ug_>-(zoL{b)aVs8A^1n@a%$ znU5sp0L-a3QI3^`NTN}LW=ahD{x-s3QPtW#8EQ|Suz^&u(JcsGyE*Z5z%d=s#G2QR zt!?JbBy3`jHRUGN@4m~b606E-bE8U8=9hMF?zEz4G!HV=E+Br!d5c;SDnsqzXW10p z5LMf?>d8Qcl)Gka38?+ie5T&LKEb7|MPRFv@i$lXXQ}55*)Ojo592@ zAJG0XzMvUQEMPZ4JH<7lE(TE?BC#juY#s$t?V#X);p0sB%*v}A5jf6Vu? zOV;@O6!tOeM45Csh%bLs4$UMu1><)FQLt#+e$sws}0RrO~;Q6E5E ziQ$ACw08cS5ZjGFwGwC_5M-+G z>ueKf*F_TmzF_2Hg@Vkgfq92lcYmG}XrJWXvwWe)MFi0P$9YB)^z?mYS|}4Cy3EUY z53^^)k7-;`6&B3zoCO@n%Ln4sF@6NGox=VEt1|^0CD6X{--X=d>ifI2uEw^1?du6> zM=ikoM+vlNo8*7bH>+|BCQblpqc3txAPjWv5?|%^%K)5u-wtE1zeF+2`7rtD=^sAWf9WK+YS+8s|4T)r$8Vr1r*s z(}EP6?->}iPqh$Rp-p-%2?+H-FcNITdD;=SH;(V*;gx5Cu3pE+Smj$Ido#6m-a+9#)VS{}uC?D{RO9~w z2{PN-QHx*|MMMNmYQE4!QKPU42{N6@z8+#853&li_LK7Sdv3U|U|ReB+)wSfaIKv> zJvF2e>uq?BVF~f`D%Q*K9F$tfs!?h|Q~RbL)6f(5tU#@u-?5Nl03IGh2Jz(g&iDPS zSiqi(g@Q3sRS zcc^EpK|MiM`=EcA98v zE4VH`YDE0@)ty@kraL@L+ut^@YG2%9+nrmiK-!N^v%z)q));0+NWM}hly-dM3R&`? zNw%<%LABQODt^F|kQqK_CXn{NDecej)k%T0gYb{Zd-)kFnbN*u%l!^p7GCYgk_G?WKxtn% zLdXpTV^P}E)|$A~V6EPLt>%3FJ;#*xH$z{LNqK`~0SlSM^OcNbFkdWWpi`?*Rf2Uk zrTsB`A%x8w08oNxU!aeAhY`xe_H}HzvoRH7``)MQ_sf4oCbkQguEJJVf}q{R_A?aV zN3rctF$fl$f=ARpU&hV=*I^Kbp;!9Q)zJH2Y?}1*f>ac9fN2F0LL58(|1AyYKN`;F z!4KH}PTjrNMYjTMA2cKdr(GuWwNXky$E^Vh1=zkN1=LLqL26$bR=mvWqFaFNp&IHf znmFC4vc&|M00}1@t6?7AfweCtu;8gzZ5pJ&+E>9Z%e~Ae!xNp<>uj?rZ~|*jP7lN1 zy397GDJr3#qI+{~j8<`5>ren|UwHV*VXF5TTU3T+Jy-s39Y%q*?+s+@Y?Q3_%%Jy~ z`K*TCBB_2RlG30UOe_{FNK>Q)*1n%YY`*!arV!Wr4A#DN9jVvLw05%o0QWK?M@>4; zOl*cvFwNBt*1i>1*RcTBF8Dy4D>KYc^M3QonVl@N-Z)qE$y>TSm})S2?fI(voT)d~Xx_K<&SC{blTok{ASGAbKT1 zVe$SKtJ5hjj5?eC^(SM2h+%n2e$Qp9k}v3#+E+Yv2T%1bIi>a$T_&L=`3j!*E1YX{ ztjMW;iICct{%DNX%k&+oo&5DP);F_#!TE5jB;coh%#xnPc>NWfrqr%NO;Dno?zbyZ zKW2oef?xU1k+$j(;?3LcPjs1Z!$*VyYY)tf=a!z#Rl7%K)PJf;EhQnfk4PUl$p}rx ztGg}bt*>9nc=0Rn8rGkxarTm?jC`iAi5;kS07wS$+JXanF8 z8KJd@Eh1rRi(k<~fKyrVrv*)|9ow(PMB)?M?(p(tp7k8>_zz82VC{ixvgi1_1);Ua zdqil~{0UZ+Yo`H7A&vD&-e0tK>U)VA)y1PZ0&54yrEX1?7m!6?RQ@w{#cE65{lMBI z9VU=VzebgQyPbZ!q+0l+mB8AUkg$CiJJ%zIVGsuI(g{k6tz`ej`iqa;rH49zFAv)o z$wF{0n0MAB#h>E_vi6IZL&_f?^Sv}#>Sj1JhnWdvecnUS@9ZC=BHK49f5L9$oK6a| zz2}JQ>NS&ff^0{~+ivaipK4KikL|BDW7ktWMaD35b^0Z0fBz?H7ozstSaz?;auBs6 z+6sgWIg7=FTRX1W+D&fEQKP8#-CPa;CuX6xaBD9Im}3Jp_GzA5s|u(00N{jKkwvwu zFG5Ke%;8&1d(z*f>;7WCl~6J5`{Gbw6Bz?VCCiEg36K&qNKxuJmZdRY{HmDtTfjMc z^O|?Aq@C$Kf+WXm{6+UlI`8#?VuBUsF#w!JZOEE+&w^^dHETd}&{7R>&exZ*E69N$1YuvA!5ymq|JWWj6tgOTL8medoQ3K;>bwUkFCRpOs^EopG!{{TNoO6W2s5_PYtL7!VfkWMJ)k zo`&{8U*9VxN2YtWfa^b@vpee&dd=AICH#yp0V>FF`aAgj7JNel*8V%0pDov1_(EXq zv-l#*T^dhC_O+*NI}>gMC!^*7ke;HCI;=~vcJd`y!!axN+t)!l?QD<^s35cDTIlob z*TMnFUhN{R3#@&%<$jCzIk0wPBAJ4MrfVALZS9Gt59+!Eh_$CsG(%u}iZws0E$?Iz zdI#1%_41Ci)%UrRFF{o!Y9n~@P7-UMIw*KIideLd*XgE}CIbR&2RUiZq|A$df7~iP z(mptpGLh~G0w<$R<@wb2(!RjH_D|LZZKDnLW$cV{CTd1h`hjrZ>q+gB+5xP#(%I-?$e`pJ5MALFj^eH07z9kG3Jnqeu3b2Ck` z{RFm8$Wy}CzB|6mVppD=AwwDvN#;zwgr7M) z9zDsN`L8;4*-+?6L1%4S<{>;{fA+2QU_5`_fT)+;vnI44D_| zTxoZ;7AnXL*m^iOT21CWouasEsbROC?7_l)kjDjNvmW2~1w&@xbs&0M@~sZ6k9x;$ z)D+umbF;ROo2+;2kCOaX@ts{p?fgsaJadlob^&W&V(m88A~Un)NA(iKd2&GrvY+sS%9V zakd9Z4WYMRsjvS0qPJ69=m`U2thgNYVuA`-TUvViu0NZ_+<#^mGFy5Gvx;vhQhN@~ z9Nu#PwpYU>g9(a%$?9uvf+MrlGDksA*s8~1^xreq_N}(%_>D5X{T65o=4hO3>^B#N z)6&}q`ef(3KSoeH&x7)syOc(7WMsr=;|ls~W9jXK^w6Mx4wx)LZ~xFUnC|WLDqqIV z1qWgf1fo~kwJPKNFSeg#A7*L51CZ8=6oz5^+FlvgJKrPp+MNqbyy`{H|HIpfvG2^+ zZHsrFvHfdj?O!?GPOR&$Nmx8radg33xOuKJS2o3ye=G2IdLjl!p<<8h8T$+4Oh-}H z;%Le`)2ozS!IoUK=h&ve+v!<%YMh?qlLBwwY~eoVmrKYM+kIkjoJ}kW9hr?BOATB6 z%YJzK&h_T(KMLQ#uka0GyA^Q*ynQ3OIQc4nXLMwi*C|et$^A+#^cJ0hQRL6y?RVoe zg>Qhj-)dbJ>m7e}Xyam;*7KgVG&619V!f7;WAk$)H2Uaw%QZHO^{!~kw<_{yE=Pp` zIi~kC^F0D@2P-fq<`sGDYLR5#&-AgiZt^Q|!lEv7a(g5M_Ep%9XlrL=LV>q$+>Z;} zJm2^{&8FmNTOjcK(1V(m}Qyp+le;0GZj2yr%lHA6IGb^S6n&%F%#3%`Al zeLws+DC)>eyb3&n*T4$&6+R&z)aB=-f^+9!?dE*npTi2ceU+@?fnMRaPcY%J2NNpN zfr!mmk?CA>quOo8igl1PdVu`q9s%LE1E?qUX4C5&h3?4#3b}8Z6ekBroJogLD@Oh&dgptgplRa_dS3gxzXz$^x?3!x(PEkO( zev^HMW?-MW9Yyl>Wi;wmO^G)zHlem(GXCLP%Y=~(v`UOMU(v@TYWp^uG2YtYG|Jgx z%~?n?!l}0J-3zF|zB(xA_Dj`j_$s@g+fnNO6K#KtozW46APfXsdZLn~|Hj@|7Dg~< z0Sp5~#m(iCw>q)j{0bhpx1!j#5NBkIan7{f`kjMo`zBi^h)kev-;f|-HxTxFSGx4t zDl?$%6W!<^=|w?$nx-h6HKi#8}U4%wLhCW^!ghpL_6u@?bi2WSR-RgP$c>f$(ouChl zWVWsybvXN3HKePqDI5Rl$T+fS>%mh?9Ujh1}grfB$h?5LLHJXStuSKenuzgOHQ)nrE%M!L5VkD=) z#80tT&!#x7apiY)MjI#^j1}wkwYZFD;S%#^Tp{}Mu~+ByXYAUNAO=C$l@L+!{uf(+ z8am5vh8rI$ zcd%$zyK@4S^L+)g9q&A&7}hWA-Tz~qcmADK*q~DWf3-1Lc6qLT%cB7b%;k{@%=R7h zIgEP#f7Munz{@+2jMY+eK@**sde0K|Hc?93d2CnDoIy*R!9+LV42{R<{)1nw62CI( zx$_l@Vf_*(VYWZX!0NdC<(%PQJGtx*UiV?_igGA~LD-cx#W%SB#oiKaF>x0E{2|*M zgIZZx+u9R9r>)*!lI=HJ|Af7#E$|hO;K-w|!xh=~CCn+7>rWWVajh74;a2Sv6tzaS z9dg8*^M99{4jb0rQ)p?sDafGL3$~pa7@J!{Z=HV0w(psa_^ys(&JciPT5v)_KXhof zMH=*vX^?FDGKCiV>+f*V3z);&_EpF!U=G;!puPh840kQbWDRWlK<#s)svn~5e&Ua6q8}IU_*@Uy2yOm!m;uqEjfzT zwPS&9A1L|?P*CB;_QI_wWqdCSC{_!%0y)XP7*XIOQtjXgZkBpX5bY6^p=fMH*|baj z*uIPLH5(pjCUzRbryzzH2scrD7=dRWPSs{M5g4HpFL?G~(%w>8p|V8+?DVLEUsXqe z7C^LLPI%t4+Kc;Lf5y%wM`92LqF15{(YiC07`8{F zL;~ThtuW8P_DQ8aWNe@6y|>@HEge7H^5tOIe%-{29W{yyKL^_G7$`N{=k-*4^gFlI zQEB@_@hrb07|pyr7^Mf9n5Wnn%-aJIO(BA-o=D zt~PNGWHg&Y)zk{oVB$VWE0_%J>?xenOP*mQ=wa< z@Hx!fgF;2ko48uBi<`N>%kO_Dj-B~b^p?$*J%8z9h>OFhp?jeEO~$i&;Q;{MDdCJf zVE0C1=dfo^+U$)(^nMJwqxdyQb2b+@YB$KYx`mB+>#^+ zK_GY~O5JX}|HXD)K}_D0!n2!l^SeeJGI>vufae?6zGd>BCZuN~UdpPK<}%#i z?;C;F_*$*_T3a4X_;VF#(ONb5yUJ3IcXBVjGnn+e@V`7`t#B+Yd7&Hf|sE3%nm@bc|lR<-K0?7|?|BGd-oN1gm#pKUFlGKLE&zPOQ6nH-zyl-Qs!YnNJ`OyfQuD33Bb9Lqy(?%oBKSA96RJT%x$(l?O z?*81LBUI8ntOrlJdotetHN@za;_mtEiC#@9jHU(NUv~HJ+wZI`xI4uO{TjnP=2&s} zZ#lj?q;Z(c;5`N24^HsuBHI~5r?~s!+-B%_n&P4ayGvT7%&JUAcgWb=Eex^+^Nl4e z=Hb%M;`(G_*|Pr9m3hkAvI3Lw_pmsfBCN|5V|urtb$AOwNvm87Jza{r6XW-|4h zj|m*WXd6I$MWgFu|I>xlk2PzjJO4)+eaBV}i?&_)ztrG7h-VKQ?HiyG?w2*6ex$7m z`FACnbq-_8K4b{%*3Z>;Wl2HVxgJZG~XxfMhycK9K(_CGGjc)dh~BjH|s!Y$+Va_(BL5wD)y>caK&Lj&pE$9TQst{5a3 z!@Ss&utmZ}ulY(41+ed?C~pr=V89+LuVrw8_2P>J1O@Cl?Tyu^y)t00eW4&@*D#hq zRh&aua}N|HL_sLX_ft*18yT<{l`4y!UK$qt$Hd76<8Z;~Jqf^$Qk}%A9AXuK{h=7) zV3?<;8QK(!f->FwCZY#Ug0FARz=RJBVbXm4tY2JznAfHSy^-&|(Lain+SD;z>6Ts; zYjCEGZQ;fWlHdNOFC+F45$|vc4mIl97#Fz;1+p;|$jXfU}Y^mj0e^}{$@w?coR%_5xO{)(>_${7NGZH#|W0)aL->IZKno} z7XuhMDc$RoZb9SkB$I@hC{QDH1IIrK=lrj}!_xxC|3=1shfu}+{iqp;VScxfNrpP1 z)hv$GXdr>jv2WMf+92`{{qr5cv;dXOP1%2m`?{VKxN(|Btm7k0Z6RbL#~` zL}I(+UD)JgLH1OWJwfEDB=9zTf6aRAA;~y3Ol-2(dLIGh7ffISV4JZ<<(1wD3dZ`} z)bC&*D#1&*gzIZUFQxpQt{V3{SR+Cg^7qLmb9t?4G&AD{3l0*xY_D6F3OH{@i)vB* ztgD$eASx*abEGxqNEx>1Ap4=w@LHlF19D~H;$*LNHE&1!Y2@J4Jci$DNUp^5J0S=) zYP0IZ^LH96Fm%*XVS(ot8OAYXc(ZCqR{}+vkXDl}amxGfl!KDnns+Mz{UPQ(J&N@{ zA%KTCKiqG1y(aj)CF(}fZL?W4y+ovj$DSzh}2wFdLG@p{dT=yTxUOh2%9%iIN zfb1pUBb78r9Z~I?~_89OX-eFOs}sO+gv1%rccm)kGigByGoC+@Q zBnE_G)(FD{mbZ~#0!Gl;JaFW~LmdybwYrTVsQmE{V`p|FK?noUl*ZT`oquBc#jDn6 z0k@p?hstB7Hy453JX}FkD`O?5lt6(MO8Qv&-5KM_guX6eWg;Li3;9 z&aV&kdSLUaz%3jC4))Tg%>TJg4nu`aAlq$rb|86bB8y#g^*BG#y;C6=#Z2gv_(b;} za(==T`}CM6(Y=4rKE$Nwo}K2TCYrf`muMJoue?xxe9*xT>6XmMx?KL@#P=-%GHve` zt2kG~;wO4H(aK4Fs1x!9Yc>&SvVUJc3KUFR)+{8JgNQUtM4CdU4?UB{_Y5+{=8vS3 zg;cViQA^`X`az^mCbwL2a}X|;n}g{YI6sJLBs^h~mZftaD%dt*%|v3sdF~qp$&Jwy z%mmH{`Zg}nj4~4vIKPlfr*1em=@M{WmTK?IBKqhAoX^r-^0#MWfRVs?mV)52wU{Oz zZ>5N&@+4}@Bx=C zMNQb~WstV3n$JH&xch)*B^XUH&;qM>-m@%vk!aKWtG&IN0nZ1d0=D%MLyiE?mnW;? zI%Gq=m{j$pnj<@>>rdhH<-q|Z;k{7Zvd+lGqPivWYk>6<3>D`9g@PUg=LSMAD9)L+ zA>NCUEvsD`mha}a45}GB9FkrdG+3+Q(g#HU7(Wp;(6_JPPN7`YUc)ZboBrB`=s)R+ zLlm@V3`IK5Gz(Bb*?D!?c@MH?{&v!*mP3+&(l5MeG$5gSTGY-DimFhmLp#2m5_GLU za?;_I&kuF}T#;?C9grSl8(}cF^nW2mR*GXal84f;eF-)U*)JI!1iEo#}Lcr3?r*ph^K2beeivSUmJLd>Ndk^ETs*K6O27)^0bzYglDO8?cxA^g z$NM^X9^T&Qx^V1NdF5_tjEHATULH72m;(D!~pcFb6_mwRWHDUxBhv5_A2 zS3U&({RKJ?!p;B(VHk#iUusvcg#UjGA+$?HE9U`dCC%1xcFb?e4C&72B1`#MZFTW(%6iAOrKsS0_0OyUX(-s0J>2fbx5!E`;;KRrDREOdP|*dFc`f# zpi#rqD3M?z9pXBR3*TGP3Ds&5IK*xiTO9vkzm0RX73b=M@l$JU zoQy>*j2?=AWoB0pepy5`C@KD{9c%~w*#*UK+)jgKkK!vQ#mBJOIiU(|T2TBEnShTE z*(X8?ir*QO6M12}ie=ADBwid3MZF$Ak*QrwLUoVcM5qloM|jQUfuZJmyY8Z>`_Dq~ zM~+cqGF9>F1i|n9B**)0dR?0jV3FgCRX?v?`~}6Dj_fN9zn>@HgYU~PzyC0HCP)mz zAQZh)h!ErbFV>E2A6gy02gtZZ0)K(e120J2;Z42fO?^c)fdOlYhudSlQQ{o-RviS; z)|+Rq@g%tGLdj4 zzO@`lOnq^h}({fIr7jQK`kB^<%e@N`y$@9-+Rwb0;rLY!6=;jzW>0xIrb6`gyx74tE5-kn z`$FS2v;BTKz(ecew?)XXq>yn@yW-z*CBJ!Y%L_nec|fM7Qslna!}!?-xgYRh$%`s| z`E5=4mi#V4nI^JShC1;{7rv=TVTq#~@2PcZ1}}hFn&lw^izY>a-3R$Ka4v||e6ucL z{M#hwHuC-uh=K068w_~AxNGkXIo=!wIlfvK);YW~yfQv&()crWZn+V|Fbup>tt>73 z{uk?4hYRdN>;VDa|lv(_L){6+6z0Z@e2 z1#OqNX`0~VJ>ld<#3%7y1vHW_jLj%1+W0mTig!o_|3v&+jNHcNxwOJ-I}Gy&yZ@sM z1&S|(X(7%iJxmz(d~-jZHx($p@!KNh4{m5`0~GK*2vU0n9M$Gn*;V)w_FV22DE^Bs z#Er?to>44;;$IdCW}8(ZYi}o#cF2IB2+1>Aer^A%&NS68V`q@tFbo61FUh1yN&o*? zgR~kNZNbeg7r_aj$gAOU`MsEALNIR-wilQ9&5#PJ#m~N+Ubj|I4s9lZo)Jm$F{{SS zos6PO^o5fE=I0TBM%mUx**4botFiuaa&Nsi*#uU6tE@gQMj>uhm6Y?)LNtx_SptC- zKWKb#V5^G_R#yCi4ak`ka;9iLCJF{MzwK=8Vst)5y@iQli7Q#re9nSr3QPZzgy!!m z_%Ia5#n*=BC%0$%m|ma6;xpOWj|#H{lBBo{9-421DbWx-Qv~nO{2v4A`^gx{QV0XA z_{LeVQJz~UPjLRE969Me6$2MzS36N}@esH^KRVo>?42tH+iJ&QFHc47|Ie2U=M;pRiJ=z%P8PSzi2k|24t(3@^d? zLD%dCJ#H6^D>0|0O)|E%4;{`?I}Eu!dAIjsC=brJd(^+`JXxrU9RK-P?X&cm1n1w6 z+*Mp=LmiFwACpwFTRbO-t zRee!W@O%-PN`J&K4H5;XH_-6?o}B5S8* zZDl1n}5z{x`=6 z<3+)IggH|&qPVxfX{@jdTZmzgm@&tbuu7umZ+BK7JYl_OQOjJ4O~aFZeb^8~e}&Nzm>G%?H`S1>mcY z^QS{Sl%DqvQzq_#R6*~it5*2s`@0G;gppT0)Iv9L4?euaJ!W_~AIy8Gnux7|c`xMr zI`f4D7_OSM8VcS-sSQ9rA?Md|V`%2wXFz37J__FCZ;pfQ$*-5dN54kOOfYU3R=AKB zk+JvNQ4=n^#}x=qe%bPK)~|!fbU&I)v%vN?Ct=DzZy2<2zx;rK5+!{f0uZvAU-iP8 z?7zDP>u_kFsFpKK*~I3dH@aLB%N`RagO*BG3kcpr3q<*WMJ-k-w{+1S8Z&nCFU{0s4qa~B`BR9oaU zw~Z=3xO@5j9-dLv8m#|NNzB(9jQ-{UU~$C!VnkHvmwtt9#aRhRqkn8r|HS6&MN%AU zhT;V5SD+2NfjhfElFz4eGdAm$gJ zK#zB*d5Fzd8V-N0L&`xQ=HDFJB(hMhVYWf15u~c6_B@Vy%v`-#ESn5q`DIe#sQ;gl^HUKSfI)%31akgR*;BF$`tyvO zze0&q6U;OG!{6yOgvgj4;S1#ayll?%>(4WCe&U6=+zZ$!kn@Ksi0~{ImcQsiTc3+x zuvqpu++5k5>4yY4e>D*qFKB}wPvQAY*!PIM_7f&NA7E$>y)b{O6pb$;4FgEg85ar9 ze=mh|{)Hjus|tizvQ~g}ft=qt7>h9RRoock0)`PkH@!w2;Q1d>Y{W@61Bw0!JEL5S zK@f;;>6I3c{cr4ky!4ET4J^Qobs<#YvtTW6*R9}kTrs{E}1kYcP1Qr?d>Ve*T@qD9s#PE->XIN*^^C_Q; zOscNov(Gkf2a@-pxB<_11dZyJYH}YW;fIIY-k#K#7~uKOx<1S+`z`t6`G!)3@nU3y zqEQ0q7rNZGIP-^^3_#yYOT~U3%4g~9&~4-Jd56ZROdTwsp2p~&8fKf~l>$38iM~+zq@ID(GkT|Iinb#{B6Vn(KnHE-UY~H3 z=F0PsdUs21|Fn_xMfKjH4`%Uwv{D37(jbKMku!`dlU5iOZ*I69nwzlLn})7L(%;4d zP{f+)6^Wz|8RQQMv(F5W^y8NGhV9vx&xNE9J!>v9z}4p@HGox!noR3SzqJcRKVEXu z5!?Huw@~zh^U$F5HXz>`+FO@@ub^K7MV0 z8F(WY48Z0@(BJ#|L3z@LB5Ay?c$R#3OSh3NQOEhP(H_V zZw|c&n|n&mCy`(0Aq*;nCW)~d*@;B zPYRVU769AdAP`g-wWh?$G2E#_w=>kz8}MmstWg~I6(X&4jtzp?wFoS@!HFMz_rA%vzMzk^ZX!tQ#KQTObz?F7!B7^ws#J|or1 za@*lfb?SWj9eKd{%*>rC%o&N>PEb5AA}5V|b8b9e#8&IZJkUJbWa0T7?StlVnC9{3 zkYr0v_=D4YVdUQ8+a+ifGPH^;dOlgdgPDh$d6N$-PB8b2xypO zpNGi^5Ysh(ss_&g2n8@{k6HM#aA9fz;}jh02Q~-MW?ha*3XC^#_w8<4#8XM9 zmmEBhs;F7RrGfM7r5DCX?*Dbs4`XMPgD?!k&?~XFu=xHL;{)lrFcj|qktl1Y&T*bU z#durkofPAS!Br~<-x^`RS#tY7>{ypL>0;in!gEH>UjSnZ+;;Ukhm6}XJZl>t32O$o zGhKY%n>`W!e9sKRa2|o-EC=6C_m0^ly;LFO{AGG79=_^Z-Wtbmrs+|Tw*q=q!|rK{ z;XH=9Dh)>~yO`%Z!|?Eo4ETkm5ZKqd!%~?Ku3FNgwrJ-a^pdQm}3G>{~{% zpzoLdmYmxkjO7RrP8H3)dNXzgxDCTF4E$2;K(+b*j|~{GlbRUf9#B+C9oM1AQ-4%f z3i?2-DtpzG&A;SIaO>xPL^~nq=SbEGF>!|Zsq`cxjg8Q29MFpEHCC)n1M0syupS~w z-Dr4sui*)Ue!y6(6Ohb@?^lQ;(ZFU*f)Mm|(Mq`RWb|z^MLg|BU!x8C=Q*-vq=VDF zU!Dm1`-nX>Wv3W64irCAHs`P`o9>=L0IKlwIjqB>n!Q#lfIFo@N7PaMOTP~M{JMwr z*NmXQak>kOsoMZC=qI4J;#2!a5<$NN4vUGUUnB_npA01wWURT{>*;{`ioKW{wx1sR zYS1^kCxZS!=zxth4c=uQFIV;?>dm@LmZ><5!SsVQ@O7r_&F_asjCzqs(Z`|EpbssY!ExMAjpJzDxg zy23n{=3H+>DEb(1U6YFDY)%Xm{TbtdxUA;vhN6GV_?lBP%2U$Kz*{L?54egl0CW?e zuM?L3xf*+P1JIv}TQ_F1dF%T$3Rjj;rWkH-N&gS=dE>w&H{J|pfpMkT4k%bXm<2|4 z&kUs3n$NrrPTojv>JIha!H_$YQn$wXsOLObVDbZi(2sI2a6{6c8{SX%@vOh|xK2QU z0?Ou-`@`6|;5ZDzK=ewE!BFmhu}a%|W<=j(8fCdxd~IPB7#&jtg*%yTT* zjJ|UY>w|G-tbExp`iq=gUmW`sSOB9>X7-mVH-9f+^p}qtM?0=ihXOl8< zDfH)EPfUK#F#6IDp6<^4o;Rca@BH}aL@^e;3e1PmSNq6mGSBgEGx|=mgwv+$y%iTT zg^~MUuwgcG3~Q3N@(%;OQEo&FYlI2tts4E2?RO6TB3%VY!YPIoQ-um~ z4=397sJba^Gx|>cpp)t3QGfxA{=frbh$F1{!V;h_iNa(gnZ@?($XjLC8AxDe{<$GQ z--vWSqx*B{h0*`xeBX?n0S*Eo3C`R;c2K>+(8 z!O?$cp6PFBAHIn&;G4Kikbt*dEbb6((fL=1BGu??bMbXlMj)hM&kFEz?ymE=A&!;BdXqmES~ z`Wa@-cooEUavz#u#!Q42%p_EE&=U&EW<|9~5O!mu{4ip(DN(CE9LVm`qz|oJq%PcTcCBKytg340wuyfE zn|bCYyP-y3kju&K^IUmJn&`8tif~g+xOs^F7(nI)Ov|;kB`kN2&zo%U$b+A*-pp5_ zd#PBwT{;Mo*e2p?JhH2Ci6Z@Z5Mi-Uz193`8i7D}aP=J7)w2ZAw~+S+KK^-4#lZwg zta5LBN$%)gU9yQjB9H}3%e@s#578gPVjl`CDyNddb4M040Bh zLw!KRCZ>+Jnql*16ryXgJbkJj;^>P52$Yu1#sJYzQuVoU!)Su%cnDVfX-+i860FFV z!e<{nZ$$q$*z4ZTlV+0`fauTAt%^L~<1?|ps5&idC7(&DB`!#B0?KD|JcHvAbNDt0bZvA3`HN3v(tg|`>USwxQ?a+nch{;8R*VE<;0tRp}&Tq z=-+B!2REn5xSJGxg%v4X-^`gEhQyNVjOsgVNDbRBrQ*%7A=7agz>xNN)khLVKX4fU zCiWUkJWS9Xd0R}6_PYNUhsOt-GqE(Q&2?XkB zF2J9n@9;7Gsa6rM_KadvtWde(Zrr>oV8UXA{v92;nBZ03x+5kP56kSFNRER1X6DjpgT)6 z`qXv4K9Wm$?>7Q#{hc>=7(l7uQTF&XKa8Ex5yK!1LstTu1ib%Z?N6WSk&`okuc0A9 zkz`pELss}a&7PX9?RfM9Bj4^<*N^1#Gb?B#sEc3bl;o`1qg?b3%elCgZsK?+@AYK# zJ+;B{&ac^5YDWFR?5Q8gbq)e?K%5sKZe^d5J)}tMHAnUtaoIFActH)p=rgqMuSrR- zIkF3c?FozL1&G6=AD~_bK6*g`!srJoh6CcfK!7m%4Lh*|AH6_;F#0!;d5_vH)|}1? z{xIOh_*hDX0mjJXu+IqH}F7=2^zp546kZ>_{y zOYaU+7YJ}@8qc8gNl3Q=0vsAXT1(BSJ%n5qmwg>#>frlXCuDw$IVFcbbng|nYMy>2 zKKpg+-?w;yJ%jXX*vDBE$1(6_AUNrfLYG15-y<^{*(6aEleztRMQ zbfW={5u=}W_ua9sZxxjOhp{tCk{ASm=#^$#(B%FX+xeN-PPqj+fR)lH0ydAA>96>n zjlxx=^oOyF_?|JE1w-LVTtz4K?)6#Z^v84!2|KJ?u}fb_C-*3HLEQ=eV(oZ-?Qdarp(dbAeZ+eDridM5IfPsy}@gyWIv2w1w|pUnX?Ox zJecj7^$vr(GjJ;=8P~c>^E3Fn!{+U~iV*nKd>I=?eE|3`)%dRz9R0WBXN>-8EXlAs zj0KzdOdY0yr*Ba2CM~OX7%Khu^x*s1o2JG%YlSwQY4hbc>IQeDXftPQn1#6z1!|aI z3YESaa_m^-X3py<+1^#X^{Lu&`s*KxfR|^n(Rk zT(LDsFcmruMliT0m8Y!IhoUeE2kVwEsqhYqL%diwfKP>EN$zJ*(2ep@;aC#k5B_%D z06rD#bSto7`HTGiW9*D>9EM>Sx>8G6cJ`m_zV1bl)fMznI5kSlDVwIz)5(9Jz;wiq`ytL;sKu71C)dG-GPE#JCB|( znbODKW&nI5AJshl{en$~f}z8VO)~Q!Fj~UXFOHi-Tf;o(p#-JBKBhgN-x?|erC;Cu z(v2|}%#^+lcc|VoQ@z^Xi)3z)R=6>?l|Bd!mR3^wc>0T#`)k5{o%gz8WO^?0Ty0bO zG|qHNf8Hc}U+L^cwJXR+JpJEO|*G2k<3n6>%9CTgbHy$!CZ7F!d*c6>a7=zB}~ly1-@i4~C|X zvy%nK!KjNMCQ4sG9Y>>Rjz&LCA0NTX)tBag>Ti~$zvM_d-T_Mnq@QZn2{WiyB#{1=7d}aE!zdU=`dd?*yfvCw zfTVBgRhWE!n{P&}7*DiQ^JK&dN;jK(a1APDNctOfht2~QP4Gn0Pee$9I?B22GSZje zO6pnr|1U?cNN=0L2^Jvu^IV ze5kD?kr&!2j%F|rHDM^&o}*TGd??WmsxS7+*>1Ty<6`2U+pU&i+ePV91Iev4>(@ro zpKw-t#=E#fR>^ruATlkKK1OFEMN)Y&_k)BRZ(U&hYphG7r}qAN8x zfV=-!>i(LGnkh~kjtvI)_-SNI2cAFDM0$0%pgfCvQH~w=qVdqiOaorx0nIa zUx4*RvENh{1Ejx*uuUqp`(l59^p^_Xq>pwm5k_}JRW|8k8>EkC>W|-`S@U_(+NhlZ z{gDLePu*2KyD@DB0n*=xOeqNxlU9KAr6X8NH)hRweMKjhc9@xUOR{0d{tv_jNMF(s z$;@eH2I)_7&rQ>1Z@4<+yuOyKz_mY;AbokVVf!+&Z>|lHzM8ZW5ZBv*%mC@DI9LXU z*)VQNn(?abY5yky>2HuhvfF9$ZIJ#fs(PP;@nYu2LC<3n6SqU5<{Z4D+%y%L{`rOddQSaQb8IKOL zsq9~8oH!oA3Lb`B8dwoB-f73^L^@2&>mSgxGkEh73(_w@T)~NJ=EMQgZ-Azup*gpO z^tCw%d^B7smX1qG>ECB`CzdkowLwGk4+he2byX{k=9oeH>J;eRP9|n(1+F~_xipn~ zEX`rBP1!$By-TYkY6yx~rc40ow+^p%K)}ST_ORSku_k8bFh=hEH}l9K{hQ^c-%vY$ zXOKQ-&_5NO8JRf@$(-B)HQ%83eV7abKcQAI8pL zg+UkyqIZ8L#U3(+;Lo&{3aK9ae`tGon?uO-rU!|OarZGvX8E6U$7^F8Gm?I@&)|<=RD^*_j8_?&~;sIVgKy!pP&85k(ZNZUrNhbJ^Hr%V(aeE$M&tgzsp_cf0ucG z=eI_@oK?L0`K6ZogGc=K=#sEE|33EFE?@p-cJkc6eQanAw_nJ${d~x7TdOypiLup| z>zmKj#@Mdc8?1Hqh5~y_PE0F&Zcd4@pU<^li)l65YmFI}WPR)982c`Rd9(fc+8Fy! z&Gzf%_Qo8$CCFgEthXLFSapV00C1?PwLYe`MrS`)Wj~|0n2h%8rped!_VspSjKyeg z*rm6WR@rUg`s?3@+FA`3SfeJ_){tUoZ8~JImFsQhTzk{e82hz?s@4mk_DgkkOR~WN z2<7G4uQV=dy>_|4-Wp^!AGKOyYElgLQrJwh-fD`m)#$C~lMNXF(bj0uw|rY=uPN8J zUeMX=4E6xKO@A%La2~#`8hWvIWNNFuOqW-7{DpG^8}sXXr=D$EQPK2P(eKOy8(zL$m4~eDVqm zG|`6(b4=Zv*@uhZ!w2v&I%Y|ZDS|y2mYy+9gr}HUTXY96n?FeVkF4&wx`RXRtE~Qc zS;nQkbval2L=8{(^vO0dCCae0{KrK#riqfL2>k4)x~btCul8M$acSGB3r7Gjz{jVC z?Y*`=bL73RVFnw==6e4W!`3Jtc_R1HRgSgIbim@+5`QwpA53{DeP}@L@vXXps^8jA z!#DGOKG0zP;1G~P`IH8Pn)h={T}@s2(kw>1;An%^)0({Phf}6hPkaclTEsW+oN6C) z{(|*%)O$zYC=VA;x}oO}B~N8ow50syMELomd>8r^W&t7Rs&kt7T6d5mw8l8=NbvBQ zdvgHCP(h3*oB3Qgg~mI?G0i(z&Ng8WxoZBv63Guwe2QDkU7be zFhC2Rt(&fz2>+VePRkG7k{CW(|Dk{rJhAy|2!J4lXnvLL-nbAbnCGCJ&H=tyfIPj@ zaRQdHirL6GmmLHPE{qE>;&};p_MaOq?At0kuuzrQ`=#1uA|W1s!IuuEFmf~;)9@7d zP&j+>wG&dtrQ({RMavgit*2*aY|TA5XKl*S@~rc?OW43*DPFe0hO8O)Yw0AbHkNGsy zWG*)jH&k!HkU%@0S6E)9$uAA8T>yZ&=k-}nFUwRzx{;I4mp{E679gHKO= z=g(j7e)sEHzgRY9#o)ZvgOiOt&W?NHX<(Cf;gd0p}o zwjb^VTP%<5e*}J8p9`o;k2QDdyAhxVN3;MYJ)a#~5@-)R5;*>kVP|W`mIjW0hyVT) z0$$ehAbj6^$CZBX&s-gK_0B~b=VV0~zW%iE`J{mUCwpD_$6&V9Xf+mW^ZcGp8&dWEW1%KRT-O>0u=yDH(Ss zr>1P(QHj{rjq7p%CYPr6yk|I!Z%DXn1pW?R)=>ZIM#F)A`o*_Khra%2TrV>Cjcxe* zO1}qZ17&Kyc<34Yt-DfvsOoaRD@cUL4<&4`C$Ps35!i0wgz_<*x+P$TiN1ckh)^y7 z6yHwkx~yepKtz|Xa^|eH0O~u#0n0U40OPIwt&3MR($xMoPS)1%U$gO#ZtV?wi0E?n zpXq?Q3}AG8_LpqyZ)eih?|+i8f9Od(`{$D?XV3fb2x1pF{vMoAx%suRFvPU3Z+i2m zft`MZbg=as`5bHxDBl~GD39H77yKToe`mVw!M|E3J-d8(w<28h?6}AOc6-|Q=4m5; zIA1>YqrVZ@(Fk_iy73YC`$Xp3S%k=HMC3}p33D0b9S;!lgEkTJlVI>nTeQX8_s*vL zC4dh+fJoTQ)pxHL0XWsAG<1uCv2~`1Rw)pADGO>b%{F$0@(D7 zfV`9IVby3u<_sDWIDYbgvlmX}tr(F!^Xxe3XUz})%rU~LKu%l*cE-l!#sm>a{&}6L zJeEL%q`;y_x9%9YgwO$zK{)05XpSHMASr<1qyP-m2ZWIA+3xZ)0pF$rrrq1VIkcpk z2107{kW4mCCI*Pfu_|^RAp;`D2rS#cqPiJTn+k@q&!TK;eZ9t!2*y;)TomxAO+y%r znn)SN)i)?6qZASw5wV-+?q!67GsFk6alQ(2uqyG>dedMNotYR_hlif_eV-L0q+BCE zq&7=v;Sbv8yY;EZLFXa&o$DcGE$xkR+Sf#_AU@O&Uy%trU%NFkDn0r8?TpK9k<0Nj z6qUkp$W3NzU?qK(5s=Jw2m&yQ092LSOC&Q^_aK2P7hlB$v001e{a8kjJ>bHrZa#RJL6{>ZXw`Do`Jg-g}?!d9qREU25SypHXyjw-pU`W+e z`5IHqrLU@DBKKsOv}0JY?Hl3-g}(QmpKrJW0K|D^8!VAZ>GbMYM2@ zV!VG4M*?n*jDEoA)^>6slLo@c2fU(0%mbcKSI0LjS{NHa)=H$Q z!Zs7rcV6fT^=N`g7HZ-4V59K6m`rsPEz}Jk_G#=2x;`i(AgyJro<*7v8)W$AA+@15 zI$)?v2CC?$c2E?JVS3wmxIGlT@zKJJk@0~J#vmBSm?=v4UUe(vMMC`(Dp7zs+bhIM z>Ig=Y!zy?A&=t3=l<7_nR1_1gTs7g+inIYB3pWtT$;ORH)X(&9Uu%{95 zw2M8BhNm;^DH@&v_Th{P@H7gZW=-$4_~Fh$6+O3@S3Murf6UVjJBJPF`rW40!3$ z>VO5uPFWA{%kKF;4I4ni=Dxs&?Rb(_SoAJi;m2=jg`Kp*;9s*9dVV};`N=iUOe)EI zj z{+)COic+o3NPC>>>dgM1YE#}duHqZRhi3SYj8 zG|NMpt=ft->lHyX`v(m>NyGLpBSZ>lg|BFZH?PtPDYU}rh|ZyBiXTrKSbd@5*6@n_ zZ1yAg1>^07^Go9r-!JOju(QXI)OVVmI=t?YJr`puB0L$eFZ*<5*X1WSHl3ge^nc*+ zKOvmY_q@M9r4w@a2MB)HkU{lZUqj(ws~(Sw18hKwrn0sCp!~G@zhH*^>>0pr=?M|l zvG-0Nfj=4tGd7Gb+s!DR6qbifd}_^xLdKA82N1^wRh+K;LWP6d!TkR^P(Ac-n28!{ zLg_7D^V|sbG>M?MgG^{Zg}U*Ba;H!8vqvfUegNnD&7AL(1>Zk`iWvA_dw_)R*#x=f zZpVQ#{<^tA11 zmNsX%s>Kxxm43GojCAJb`%_+Fe4w>_@PaWDRdwCKy)^ezwDckSb)ThFzC?z-W&rag zls>@Z1o8!huIP>089Zh2dnS1Ui#MVNk=eAn>BPC+!x-P16Qqv9sfjUUd3?R4e@2o##T|3|%h9rtGm%UQj-R zVAVsxEZ+tL_O#`Ow&*dYUg$}LHg;l*&8g~Z-6Px=f#>AJcWd^4vVlRCI z@|I$_l}%))&Nm!1>Ma^K)ciIJL$)v^z%wIkFmh&8#SPfkPoThI6z9xWdNIj}OmJ$- zwX(otZSI3if>CiKkrY{n3}UKSXv&;4PI?FqnX=(W5VF@v;zWeshFt(?vi=tGAER^9 zQ92yXY~z=5Z>25UHwA2GJD1_>Qs-&}SB$j^V)*fMGqYUB4@;pz*EDnbstVoCVYy7@ zGc6P~RLx{Lb|@rE3o|+vP(j2v-l#DJS?HXZEsW~K)U{Bq3Ov$}$_T&a@mpSBx(96$8 z*>g@MH9*Fd3%HO3t|7dMuv@0Z0fOjyk(6nJ0BI&D3L~*;vIc}})1FbVrUqKuV<5`)u^@dP#ghTeDO5F}hn(tfcS-7&lYK$vX z2ihl2S`D$$&X#Z#nVXaruTBh^-PX*(AWx8`BTm)A-i_!3lOwqn)kC@`zKs2tOok&a zgOud-#;2K8$kVF*H*l?4IvaoEF-2TB`#)rK!jlv_auU zcykyZbxW5x*Gx1Wb}o&1T5ia#z+d=T3(j<9A_#)K^fWty{FzCbjY6NMnE{kRFKO7l%SfA1>iYAz&V zUd++YZcE&s6vloSgyIk5fq1xZrY3S(&`6S`|%k>hAREQ)#5pp78yLTp#L?NdW6RhqzPbu^`GCrNPPZ+=0dmE{y zE`7pS-~qwrp1QfoJ-aZO}I&L?rQv2oVu|B0_X>J`o{0YoCaalsnXQx%!zYG`de1Yh^}Q zo?&~@(+x@WtAp!JLuNMYgpc&qK74}ea{X2)63;hck@#dKRRNoL6)=VBjDP`_p>8c)A`2M(=fZD?q^$;E%hvA_5DZ`@KX&zCy_U z9k7G#J?dG(Q-ZI280usksJT^pXuZxj2lj>t)&+R56Ex=I+tP}!jnsmQ?2aPSZCb;C z6WtR5sRdQ+la<&z;C3g-u&&P=sdWRgMS6nee$ek(F9l$U8B#--_o>=&kR?aJOyHLo z9<1Y5A)Gruh3W%zdoEf+Ut@)9QfbbzGbB}I85fUK-sp)`^>#W{3BEIv~|R9cE3n*n%MxE0lt(td>l4QBzT~s(w(OTh1GeR%9vC zR_?`Yz9@%@Vwal%PG6rUc*Lq&=@Sea{Gi;mkNL^YqEdC&LZ(YGO&O}x_wH)FaTy}W z6=HxO+SYs_r|zqIIh5Xg$o3sB5fWw5bdv&5(A0Y|$B2lC=o1q}`pOHtrS3nnOtbgN z2{i@AGR;hTdSw1p?KDS{6>B=oSn*|(LAlFXtK~&q=!${vM}F5JS1`Dvwy9r#m~{;C znlSh)#RlrbgI=S*f=2;eO&|bT#WomN#Hqm>fRyz(_bohXPRKg!G0LOUZ_^dTyMuye z0LMWm1-3qXM(j*|amrHQMp>6+;{MvVsPkOZL`A)pDyN>7rA3`p(at7-v0X`uzr3OW zf!H}c^~+(;mS#UmW8V8TOEjtRHYjl>*sNybj-|rERFAb19j$A87RoG9Fgdvwa}->t zfn+1e(6$2<(24#!QHqtfHaSTsNDbS*HjJ8>M6;LZ2NRtw>ZfsvAD#pxZ>p3pDaM_0 z1I}3%j?P$5Ra|Hl)sbur+{+)RcD(M9En%)|#&H?cv@PaJN@SjAG1oX2bUb{@OU_(9 zOPVr|e<#=tCwO z3KnHWAVxZni|}OLA(+5#D=B|#_BbIZ-jG>T(o8jReFa1P2SMENcElc!i>uS!h7D!4kyM z(|*Hft?i;|o&L#;?TsS_3U8&$CcE=@9-VDn6 zk(*fiy@SN+`*cApnKolOrK2hAmBoV>S~^38FX*M<^p+RxhwEmrYshhM4cV7ZGaH+_ z-}E)f8?{u8m0(trXZM-i7VkBS;n*PHj78MbqQLt4v&^rt>qwc zj+4T$TrA14Zebr_1nr`JOf#GVEY_;q&8v889@UrV-JF1s+tJVGh_1_3o%}U;6&~Bo!)H|J_!a)`0#Jh4uhtH61 zElc=+&qXim$j}l)uC=%b&0T)rFbYq-Ar|;%vbz>eN#Yj-HLSWT??h&I(UjiYpx9l< zyya?*y%-)OQy^6+A`wp_5U6aby7OATnR)>Sm4)|Qp{hT90xBsiS+4#?(HL*31*Cgf zS?1+xNpehH5w00ZrD+kZcp(`W7Ew7{#?I==LTyR7`9ZZaEKrb*Czas!3~I8Z%9A|4 zPymv2_})mMpsxt8@jCm8ye=n0i-o-2OraPOE=4N~=eZL1gVLfECQdK&bmUrgy&cO0 z-?uwbl*OXXd)~NA(~LnKJ5eV%`e+}=(Jxbpr9+5HhL9B2*q8BnnwG4Y#){=ZzNFs z0FH8)n~k_V?po=y4@OpY>m*j~c&D-gsrwqi?VOYTN6wTa}mx z@Zq&WKPcxLXSCSqCMG+0Mwk?;lf2+Gl==3c|M?XIvv|QNl`x@mPkR7S5;HHJ)I2@N z=l{z<)!Xy44b~a_Eg^b&k<{UTM|+{sXUX2jCJOW2C~v*F_L%CPQ<`}6WH1{W7+!z+W&%xLVc)0M%!hzyQbmr%4J`bDB*sB>kGGFKE1g~ z3$L>CRfV$HhZmXsi4mDnwq>$rGa8b^7BH5($i9Y_`J*Wxw;#a{7c zq8(cV%F<*I230=H1o$x2?r;o=?~+DQq%eV_hP7Yv6J10nT{%Mk@IEvGP^}VMgO7Jwaam)$i?#f3Twu`>P$ET_SE% z^%Zqv>LKe`2~wt~{Gc?O-Tk!k+Dh_!!!eTg>av^0_`+S`x(k<`>K^d655-r2PG4cUNiz9!7^*8pzVCS3w+vvo5@R;oZ9#;Oz9F3Ep4A zP{;yCFMd#N-yY+*ujZ$fJ6e^-6=S$xE_rjVj)$!L!sPTuQO=?pXGvjh29U+YP>3eT zEU<#1J&NT0pfqwLDiNrk?Cz>_NnusMy5A{N31&y++x2H#OLY zuTX}LNngG8I2~Tr;Hx)S`^n|O89Q%Lcbr`I1PhiNrJ0>}7HLJ5*O}P4kqUIq5X4{i z^(ecBIsBWn?n^aTnXli@B5iz`w6=%-`3+Q{b9Pnx>%Q)i9?rbnO}! zszHB;nbDK={bq{G<9$$fKh6CZN==c`m-C@$$D!+k+G=4weIH8wx-8dI9Ixvdbw2dX ze4WNO-z?EMz3B5nsiM1uX4ybhTQ9Ym`ww4gW_J86Zw>9(sXny+QEH>ry&i7<`PKMg zsD27$)89W^d-c~I|A){Hgir`e5Q`G5cnyal5)nZ*Lm{aMVTR+#BuIWl5l%udoJTGp zV8U_74H!bQrnsa#mS#AG*V35c=^I2*!p=TDE2OWJ;M{$&-y9OYZ?+WQCs@7<~E7Yv2i}F393G%R-y{C4Ti<@7)fnG`S#om;JGT zYglS|-b%}C;di7bHgH)pnlH#zEU_D-mQ9f5b+x<}4_j%0#a}o-v>x*oao3P)y%x6> zV?K_{tgj)@>*Sqx@w1zEUcR-Lzj$q2sj?LRq0uCTjU!lj+vT&hJjGbzY@7~%$x?IS z#Ufv(`=rbaP8f(`AlQ=R3&GoeV}ZOvV8o~aBl+g!)$V^O{wcZxvHoIN+s4m_u(AhLc13KLuY(;%?X6E?`}+ZWQs+SbPb#pb~x z-8jPzv^a)`tY4P92Cd*nWEWHWEUuSrFK-!tZ8mJl2NZRA%UrZHSzn&sDH8K7aVU1~ zB3TY(&Aw3l>e7{@DzUe{ZMK~IS_*&5Ixau1V!Zj7hBQ~YudmL zJ;0O@P?+aGnZyR8LNxJ$RuD-@1I{jEJmx>Z51E*d&4Nf=y^N0>#My|8=QoCATtJu! zCF6oh0(S9MiYXb7f=bNEte|2s$HY|!+{K4wr%EZ_2cDmAT<|WSHSH3%GT!HwR_ja&$olKxv+^34^x%fkS_g|2`Qvl zPOG3@AJ1jpk@~!-3gON;Tz-a2IBuka&mjpesE-Y=s&o+$N%tJWRtU;u!6b z7Gg`vm*-=|cN-pi*|{+&RMxh|-M^@`RiB+U*LL-I)!8*|Q!l&$;>t4_4a?3;u+8 zIV(f9Np!}KaQ`qAYRyC{sG8#bd&FldWYEO4gd!3Ub4VMQMpjhXr=q{Yw1gsFsb&J< ziwxG&@t(W;A5Tjt5{V!a=pKv*t}W|KLNj5JS*R1>{^IK&lJrNp86;N_ zfpgJTMc{5fWT3)DF*Pe`m`%**`?vnuFIESuUm??x^SFn@Ho zvf<7GDu;Ppuwm{$9R5M+dohp=cm|_`jKLI&^>FYZ`QHPi8uCn5QVj(mQlpMyQ&KvZQsL^}7`JoO^&hC#u&q5+pBVlYSShgcW?TXY15BLwMXdRlx#_QmsjT@8L{ zH8oT~j55~)B!1yGS3_S-*6I#*#`uGkJuWh~E-uj7A^z-~yPl_cy_3Hvx1t*hKoGVP zpn&YZ*p>HjFW}`O3lM{pwkZDwt^zYqQ411t8Kco%{bE3TQK08)Cx5l?oRNV?8untK zT0*OGB{>-v#>&Nd8(M3ym{XZADtfP!YiesS$c+!WoB347@W8c-VC@) zm94M{OubpG_y6V`9e231gFKUjNas|2eYG$hDWlAPWU@P??}Vm_(F?@VZ9` z@0(q8s=du~g7=}leIL^6)9)a1#hiR>m_ZprW@*QqyuW`4SDS|vgyj$+cd#$hblw%c zaK#)*4hCc&FmxW<`p(*5Gf}GW27o!G6$C}jRl207_rUdyX$9}kYmJAR_uHEsxK2|d zNqM95tZbT>MSq{M2{)mMex_hLm@?=!zaCfqetrF++zhT52tg>=lA?n4-&ls60_K1X zus-C=A6EZIj!u)-iSk$)X;@TruDAVAZ^>w~LEb@NrnYt;*=0TijxN(UJ4C0tJUErF zM*7f}`iYz{a8?s)9+)A$j$^I2Xpt7vOsNeZ?>iCOn$=hTHzv{}Gz~Bjl3Gg!o-o(k zY!8utruuB3*f9eY+g zk|@89+r(~S^Vzv6dB{=^o3v-dr6MRb**N4&dk=dTwFliPZOoHTboOh>-RvRu3H8>ttS?FX2T1cD=&ipiZ)w>SGpugIr#Sm^vQobsB=LTQ8fm6d(Yi2R>EMj9iRsgi{Y3_1ADhbiL*S zEu;VCCD)(e$_N7VV5W270llT%7tXyc31>=8TR z^hThgY1sYFS>BOIbI!6H6*wR5g7TL|Km+krvsMPvPZ%>5lUcX0?-}*fyvU=<8gc^K zVn-3-9*r93MP4`~1r!8ksy1>%cWU;0fK9L}_zxmnYPQfgxtN+p&zU|B5FZRXaIVOE zX>>(ip)(^}z%>jGyh8zt^FAOpu4Uw57y|m^`o9D?yYaB(-MlD+A&4v!v9jrI{6ClF z$>Zf1gAijzc8am~#uu;efPtphn4~jexEzBuVirqd7oW{325v>jD6-zA@wqu>nFr;a zpQDQZ>(6hc@cL{Tx-G75z9uRQa=V8^-hYWPEh|nJ=(i0`sC0WZ$+CBfz7AKwL_m1- zs%-VTMV7|HSJDEnhf;2!k1sDw`hNdA^Wh2zgCGo!hiAXHE7~YTK3f6y2Jbe>8!N1i zMwz)kO3om;f)E6vS5g$w`(G@NzY6kGk=?8;OQC6+9{*lgey0YQ2JPnR#08=oA_}XH zcyHV359Pxo`C`xe08*l3Ww1?vOnj=TJrk?K17i{`D_q<9^ro96xvx#%9cdB`D*&az zAZ)6qbOQJN{`85gXym0XoBOUH^nLc0RMU6ti53pLSe_T$^n6}W@pcPLZYi7$O6J`PFV#gs#b*;#V=o?aT1vWt=)a?$IiOgc zc0R8-`xci9BfQJDV#f}QN1ayzVp-38M~U0E0ygX+Lnm7&I`pPK|G>l#CD)QHK?uTb z^a=$u+mP@Yk9hL6b z3MyV$&lKd!z}<=tZMYMW%*;XY1w67zNGpf69}@Pbr+@S z4yy-Us7_~;i7kl#X&X=NAmjYWO141 z`_x30J3O{k*;YZpdQQn7?e|!SrX&mCDIjg=V?E z7O9W6z~#;?z$FBOBt*Uhj`s?r3~M@f30^lK_CBvQ8d-b*v(Ul}HmQJ%`4hj#jXo9{ zWA$PL0u$}A>NerN2acNNrhSES-bFH2^+5W2;ON=}?gRuk=0dbon~p{*65DfB0zn2) zfaM}?lti?#P|6!_8_)d5X_`mWZ3K>@rh$$v=aO*$`6z!2;x_USRZT#zg$f&v*KzL6 zrPg?L(Zk|^$5Q|e4aGh4(yD}|E(YwNP4Ivw6@!qm6*2X}RWE@-6gwTw)%~d(bX#|cBPSAER zK`8^U5oZOUF*l-h<&dQF!jEHadbMjde!95613f@jL!p5~N(OH4wj+(!mBY2q8oa?1 zmAw7&#(%P(WGK+0lDS0946?^&4Re5PrH zuiy>>vpi*BuIv5Cd7}&Ld{93P`OTHcpZ7Pfj}NbcFg6Q1UdJkmaIHLKaB?rqVq>1O zbq>4TS85+Gd~f-DWlaK)u%Gzs!Xz25!Xpr$Ye71sD^`ER*eu6O7wG+5WL|}H+*^k^ zBl0iifA7Le4_RRnta$*Y=P*(VEB7;zaTS=Or|S`a_Wv^0n{2rqHOHMJ8DIxxuCOWU zr|@USZBcm8B9kfzU}rz@fUi4BUf)MX z237FgB8qvK*$CkYh3C7la(TBqB%?RGDR$Q?zujL&F*2wED<91_r4{SNS~9;MID;xk z3rNlcjDiIgwMd15d)7aOs9Ojap1O(mT7?ZdgDQc*I)o?|0qL$SO!rCR1FDd354I)t zxkSWU;oY6}qvQ;ZC@5 zXk=9gTO$^)#+?@=e;Qjqjamx4ZD^j6L7aoqv}}K_qLEeEXl}1)g^OBA90S$0MpVVb zDW2q)m3x&B>_Os49xLmiTggXCjEaX`sSG~CBC2vYEynY1ijvKCkplMzj~ZbWp)tc^ z3PpugwL8|IerWVqS-uERif_str95umpv!$j;NfT%oy)Lxm2yw^8=N23pFAgxNDemN zwZ2SMBdu~dc{~q@xp44v zEuTOzp|xc?!d3PsC+PmPUn8(`E|?&6!9a>GmQJ5e= zuxt?|_G3A^tz5kz-U#Ybr1%i{VA)7Qli)&6=kyuD9n7QcK5?ZHSNTzPEmsbNFsvnG zgMt1VTWR)?jK~2ukVibmUrCH)zQ?EIG9nczSCFHMH(tdYbvxQmRK;yHI}q0QN#l)H zp%)kl+^8*s92Grrp&=Kgl@2d6{I>W0gXI{7r16HUAh+>S5Su#I4{b^-^EWz@#di=2GtaX=F`HsMj$H`kur9V=*^?$G3LIP{SQH{aA?kg-sYlPAA5v? z(``YFakIoen&<~I=F}Ybq51pK5aL#7W^`mdTGu8oz2FyuT3IvDBRI=9ILWycEcmjJ zVDax4&N{evw0Y=(&4MYm(rZy?CI@e*5&Ic6<~^OeoBdICZAT1%AZ#T?K;3__CVsSs z^g|Z#)Ki{GxMaDp#z7;;Uz1!ZAeil)T|llr-yhC#PWC9w|uJOAS`s<0V57?tCN(^mNRvQeQh|*mbk>ayf*23F(Xw4y7gQ#`rthl$`8%wn!6z$BfWwW!5FYf zZ}825>-7!fORxM;gZ~) z=j>_y$-d^jD`bI`$8luOnAGRcR9!odePbv>dh+sU#%+XzcSl1Ge^)8n&PhqF{%ibq zuFN0ghO5*llT^QS;nt|3-ncSxrb1&Ep3i=COz-ufD-Fh#!Bqi-m(tRml*(yjHS@p+ z8ls`%5ewufBni~W!xm=G51ZU%Nv_Sgyhs(Rmr!%V=L;oN2=p1;T^7!vKKQBLwepd@ zuUs0BSeEqkl;txL`Rmk~jOu+Wo9poi4p@j{o0$Mw|9IZFLL>K~d6&%< zjmEk9S||0C6(T>CeRw{tgH{L@S;mTwLYkGUHA-`EuJE#kO@9KUlhL@| zFV)Cd*|Zuz_c;r6JmS$gV^4jshq@lfL3nhgXf@Q22dylEP-VTf6lNI;+mP_yxq^Hq zbA7**UCR{&AqZS!%})rB1iIr=xD@}1y7W~%aphk8YeZJa&|6b6 zYIWgcw4EDGy7vRw>t0Q#0rdN2b;lSd zAL--SiNIp38+M>32)0=ao%_>?~hRby*Q=ZrZAs$dA z_a}H5>lY5=yF+7f4h3~c)b?3@{3?;Xg36AAc?up*bo6iZtO9q%P!urtBT%4nPG7D8 zfjoCb>E9<@;%l3RT~X3D8bc4yU0L{KdoC(>NF_{hV%BA^;>jzlZ{IdC90kq8;@Rk^ zc&inX69EzJJoVt8ywrFX*Sq4<*g&7%-t!la=&F8Q3yX(<*PnSN+Y_l7W{rdAi7OL; z1f@AwX?*}33C!1ZgA#Zvh(PwXejwmWUh!mgZ%(mbE;i_vucpbk=psVo-KxalB7IwW!yWI z-4AQ*=$hYA?G6Pm7OlDMVISX@9)mRdY0FnET!W}R|72`8V+Fd3kdcbbrQEhW!7WcW zvOkoSLvIs4|CWB4#L)fyk>3O)#r8Kal0Y9F$duZI`LuZxRyO_#s*q_X{7`l!Nf3h|@Jotf^#325Zs!DefYh9= zDMJLL7gXMX(Ul*3s0FNCPb2D<;D29p2ah1k$FT*ha4Lwpp0dXHbRt$PPrcHMN@KdUD!Mc- zAJ7T;Ew-qYE!48JmK&{k4{>l&Fh*c>6p+c8vUc}46YysK_J?aih$|Av1QynERX{XK|f__$;LUY#E;bbIF>*5dWMOTQSCxuQEZPe)rV{W{$?{30HY(QUZ z5fmVjmRJr;r-#C7j&6;(xr1*45}}E{#j{47 zBy6m3FbA?wu6*zbizd#WMx%iA=!ykQ1Rg;{T~hJSjf6g!1HrQ%|EVltc@eYwqi+gN z_IDmZT->f{Avr8BPS^Fl^YDsbc<0DkKM(C#gfy<{;1C4$TBvs%x=sfvY}Uh@S6un#g91s?Ou$UN^4`t_) zWI+f5!7C{(qW8bpkZ&^qY-HaH!}bGMRO+7jMb8@9X%w(rJS+T=rsK%xy4?S(k%sI9 zLEq{p8!aGyr+&r%;Qd)aql85;Mf=X0&^o@-q3|BXMgfa&Eu?v#Qu}E?rRdRCV@<^B zrVrS6pAXqQ_8zqy+nC{~V425bE8@ZpktqxF-Zyl#T^S@czxF}3QGDDQe=UI%{635>dZGo7jNy1fxt#>t}7FeBj4)df4|0hIEhQ~ZG8O(CYwx@Sjmi}dS|?9! z@~le11}^2L*WumVMw4=7t>qE-1OvZ# zO~?=P@9H^C;uW6*TJZe`&XesVZX@kD8C4=b7h4aC_P^VefBZ+;xnx-kf>3Zv2IFu4 z8*9pb6CeZF0G?yS02Y`3*P22gXvr1zG%lS1#oJDJ?$=~iy-vf+fIjS} zuoZq($(BxT0M#uLiu0rJ?Y!jCBWUsT^NObZK{Y3TQ&@CGgKabph1a$42)Ahgqmx7Kx28+PExZA(~|Tw(|R67 zrSjLjC0AxgzU)HM!nF~KyLr}sSajv32&91^jm$f~`L6;9V$qc@hzB(q=B{*CsMw@W z#5-?T2 z*wik%LW1CeW{}=`X&$$O$a~qTHE|WWS?dvnFs#=%W?4X{{h*)+3d{e2mI1wbVq1VV zd-pRL^81JrrM0m7rKxs?rFA3}5X47Fpk+~L-!J`B94qYMn2GRt+VO(_8 z(*SQhsdtD)R27r&!ow=h`5(-IYNuGHL3l5D4d)+7OIIv);7z;sihpRhq5vXkt&uB? zgTMjYG)yYcMF-W-K7r4{TI|I1Y`2CO$nsU0nf*TqtZ38;g8c2^P$G$`%(7=AmsJP7wWBPwMCcZB zRsW&vT#_URK_Gf1OAAWxf3e{?n+7&;0lR_@HNpJY6__Va^&)#F3;vzZ^f#GZV`PJ( z#uxiXJs8smzqmQyJ+iEzfx|tKWznyXjbrsmQeJd>^>w{iNN)13-6Mo_jP(9rH-S*k zV;OUzYPy{R25AW&HY(vMWE+!sF>eD(wpjAzy04}cLbnBghfD1=1bSN zT<~47z7+cS4Vlfss`jIe8hfy*|1(bO|IdmpKkI3LSWjRP+;TY`tbtUGPa$;Hpz)$I(J#KTC+Fggz(MKN1v^u8yZOXYmY{kI&@2Ld1%FhcJJXo!gB7AqYiVQW;VE zZ)`bkvK!z>8kl6zs9f$N_-hra>>ryKE4=1}*xDx5e*tsy{wqSn`gNG-XQp_9ch$HC z0~S(1K$@1F@RCTI1v60f1eS&x)Q(}co88>W4Rox+@is%7hl$d_dwrqv&Y0mWl;Z@W zIOZ+ZP50e%M1l2c?_17uSgZ#|c?_-aN?AqY}<3|NDA$Gm-DEnur%`E5AntuTmA&!oOjNYdKOFDSYZw# zO{{O~8dX#KeUzi>hU$Xf`UgW_E}Jfn;0lYk0#E3}F88}>8_5|%c44>qs}K0Y7Vmbb zD6_)RW#F&N_L~q1IjyRr$v&d6fP@1%^zbUSouD<=w=v7Z;5xinM$i-1Y3X;Ww z7QQ?}neBfkm-hO%4E)<}?=|*BmdUu6? z^?`yMyB}Uz;c?gt{g5Ri3x0Ka6xnc^BZLILXMSaowY;7Nf`I-zj>M%4p--4BANoT~ zIl~CO73}j~CMIq|6e7`Eu5I*eVjm~3a<(lXGPLACO|c*w@fltSCa1u~?@sCq9R(_v zbSOs_atGnEY_h%%6$xlYbW|?JC7JywcFN zl5TO3TmG13I3#vD^XpC_A^v0$qqUp&SRpan+SFJ)(P z1W^bA(UjZ}%|Ef>S#v@D0TY;V{K(pL!$of?{tEMuypL0lY_W&2I#kW}<}7dgfJWqp zIC=>Qp&19h#eyE`Ky*cU5Vd-2i}`#jB6acscO6>-yT=1oL_NG^?Xx8VeF)A!WcW3| z0b1O}b0DrF=lxM&=hJ1q7+M5( zPto3yhU_05org0!rgvz=3S!fpE@co;&0B>Bw*W2EP36E8d_^~x=Q~l4Zn0x_U_Jsl zbct+$BmcX;?_%b5U;*%1N1UtumAt?3;1;1O85RN$U)@I;JRffPB1dBR6!gV1lOB=V zBL6}>x}^^tilAqMmn6h&$#>24g14BRq1)UFONRj~vgP5#|F`#}?2K|42tgovr7EoG z{V!IYP1*?kz@*>X%|>K^VdlGz%Q%2m5oKipF!hqsdXT`ylSbP@P~L+&$KJSj=U`+h z_Hm}uf$v1Za&ViKN!fYouLo%EJA6pEe5 zl9ooF>*9Vpxh*KO`p;p8Bf32B>!VI%u#?=<=iCBc{w1D2Qrsw0m!B-bM^?5qJqx2S zCDUek{gqF43pytb5FH5YiGz)-$63FYPksxdc4~LD)LQJa_j=dN0=Wf4R_!}T_=mhD zS-HR{k*Vzko-#N?}CbA5?32MU3-WiE|Vy~ z^&zF53>SR#D5|G!zl@m;PFMZOfm;1)LYLiWx3`p7 zf+?bxelK`@8O7DlvIcG$cf1#PNPb%CU}(E|-LTbwU--lLlcqyv2G)c6q`9o^Wy$`* zoWG{*?@QEATNG+R$QY)pELNiOz^HyC^iA2BB|!{=K=evRBBq1C-seZCk5E?e&(?pSDp;~ac$7LpTnX(+@XCj9~7B<9Z6H*sMs z;29P6xNl(a^GEiJJ@^N8*{+;O$qD#p+*Eb2Mb?)ierOz>SXXsQyAUy& zW^mJqPFm36vz|8+({X5^jqKRo(Y^bt@cQ5PVO^T_la28DCzknuElwu7^~hwNOr}TM zgiNKU4--|0Wh#`a)HOyvEKx~ICc~*rw4P-uZ#uXkp^?c*CPQ_NnZ6KRe4#vciR&_w z#qN)iGd4m1hGF1JA&^+we=!OQ3V5HqfG#J$C0F@`eX4@!KK_1OPBO^uw+#c8XXA`= z8N^rlHr8p38B7W3JuA*_X6tP||K9_t%&=C1zj)Fbu-5mw*<^{(o#27=;HS6udMHRN9O; zt&4D9xVD%D;eC2vXyeqag$jpmp3r4-;4XC;#@DKJ8OHbKVwz@VY+>;?$jB;=0GH`| zawJ%PsM}+(_v$hTaMr>X2Keb$Z2JW8!Wsnl-i0&Buii1+x$(Z#!^)A~qX%bjaj@1^ zIDSjN%sYnepdU9KoWF~=AcoSbV;2Lx-(pSNdt3h^gVQ&2Av64M;Awu!%)kgh7=(c< zi4d>uznBAf&m{}=Z2CZg|6`b6|CRb$uH@_6wOq-sgXYv0jDkjf$5*!z-=O!lIN7`jU*C|pU>{THj?kM?ZY3q%MaC*;-Ts6i&ZX@nu!Yluv+ z&Oxsy7_x;C1UJ5?e%gewbsYp1!EA=c5XyGxbHE~)?eE{eP#7|IC|zeTX*2Q{gSM^@ z-wJa!osSj9Y*~8VVajH-&IGaf+~z{AziO=&Malx{bFMY+Z1ch2_O?Yml%3HH#2^eqS0cbsy#HcHKcgzfUcgEl11XQtqpVvkw;XRo zd#^tp58CXXbBOUX7RlUlj5AEnQ?wO$|2+1+_16d)maraiZa2QZ3w>6|&BnLv4c*A- zj^T_!pIePDBP51CC)J=ZjLoPT6oyeB5K?Gt-4IYXbyL@zFuGwh5E7uOppjE?LsucB z(1?YAmZhuI>xRw&KtSQ#x=QI?y*>t^gsbZ+gmD{*uC2R_M3b6F-V;EL2xA*6gtF*~ zCX7)3dPa>1qo|Spl%3I$1R)4SbGZlrMKu4!j-Ee6w=e<9!5IX1`}Hx(_0@gI%EmHc zZ!n?w;?K#D)6HK!@MaUFq66%O4qxYV*wpXCR}{2%xN^a$Ou=?eC?nQ~O^H?|1h5R7 zG=V8aI(K_}*r=!_hj7!gFu-EmRV-GIx`|oMM(5!H#9-2u+Q<6+{EBMU?lU)dqDn~h z-Z9lX^cA(NgA}kfUo!;o2{6F*ThJA?tlD5BMsPeAwV7;!>a+Qh%_YH~woh-!I3 z0;~p2a9(p4d#YHM^+tIrgf6OJ#)3$f6LH$^TVUQ8o=t{-qhosWZiSxX7B*s_JrkG} zysUJxgcy}(zbBAFe0QvH-VYgMLN~PmC(qo`#l*sBh9k1M0JY5l5Md@l^Ec?&O^{=qE_1eVydfU!{LPSG4kF|T)N8Vp9w}+|O2~gX>G&hhB^^0;%?B_23 zdp>>QehX5qbQ29%gx7G>cvt-AoB79cI>wi@hJeV}MT>wM0O$|1p(U#q`t5GkEEMs% zdVqXAY)hTqwA1>WMhSFQsi8Zxm7naL+_X^rPp1FEG(v2v$9p_%a-7~2dy&n-o>bK` zHEPuJft`m|R~o}k9*EMMst2#md}K#jK!YqaAQt?RjvHVZ`N)oP*(!%9jHrbu)DlIq z`Ep?C>IH?CGz;u_v`IVA=Kq_2Ka`z`Z3Qt1L@P>U@JT`GzlF@K^rbb#5pKZpq6Nm+ zo7c#4rTP!4ytCAc$QqS7M_cY*6SF&w>##ygp+*PYB9}@avGkf3V-BV+7`UP3uBUKY z;`Z%n#tv%2KCW0%P}NA-smLE2+SpUA(@nn5x*A;vTC5Kjp>R&gsE|qrBU(JyX_=aK z3dZ?mOFpg6NAx4FH>ZOI85c~-g*{@Z)0^`3{32v$q;uD3Or-XpL!rdfyx8uXE~)6> zIf-3>%FskRI8E5)6sjHt9NMw0+9Pu{Uj?Q^CKQ7GFmxe2v4=y`{G})R=cVn1(B66I zXjAwFxFJ_~Bo?iXR=!>BKy-X}L((e&32jQ)M$r5bsqH}YLU~;tqG83HBk}pqp-dH_Dx4kuKFn%6?yUV+qKChLcN0zm_`K`tUGp;u`BV%eCnF)-*@jsd1rRQZN%pgx-E5D?1&G# zct-#AZaC3aJii-miQ~l@oMT;)S@c4gS%;<6wD=$LYV6G+B86B1A_`e@JHBUpSL%;f z7KsX2P2BJY07fJ>@zN-^Umnla=U2xXmt$)D>&k$l5poo?SAuA4{!Cn$si~_VdoMv% zMWO^0SqqGO`f3w2g?*5MGX>!!NFBCHnen!?idE{o;(_{Ig|P==#Am}CR4Avq&@Pc& zFz-E|m}V1OouC;=X%>T3U$}hX$#|gLdli7A3bipEz?x&mh4snV@6bks$fQXw(FdNM``Sr9&d0sOgvc9(&?Y#pIXCbgZxmqU{nB}oF}+Y;M6kM) z)G`}-zjdBvuJx<;VjzEG@I%?PAWIB_uq*jNl>1+7lXm9K1GYQm0**z+fNApg{8ky- zN{ol6VS-?}C~^<#1fv#nmLPslnz^;X{wqjR^$a-(`FO``Qr?r4di(Vww-i3y^X1M4 znnewC9p9L0b|KYt@dscwLC)PaD6p3Ts)eKF*&MW2qpB=&uOxTTeku#)oAK=AAd$;W zcT9qddlX_E9>Qp1XKey;(Y`%xu1b{sOBj}HD{i2J`7TMc&t90ad1ed3fF)!rxn*X{ zDI}Rl=n%W@@z||Sjp|bfvgdQmLCg70s|%wl@JJ?-g(>@&Fp`FFIxa^Fl{|7`D|=1{ z01r_b3TRn6M#3iV`3@M_9lygJOzWXdf8cbp75;T30m*wthyn`<%Ccs$Uo|TE%*&J0 zSOrDy+NgJ0mc#$brFz^MUL+DpUG)epauybGyqNRj$iW?;U+~iSEHEt_msX--!FK>S zZ!Dv$_BtsUSpiRZ2FO&MY6K5Jn6fgptbnFwxao*lanobRVbY2E^kw7^W!IJjF$lu0 zq~fF8|6-eTe~P%B%>^813Iv)+e&2ahfzXM#6;wG4b2+z*0Dn;iGU&!sILaWg`$)7) z6&m6w1HshI-wTWEe0R^Z^DmCMqt^!u-CJ+ zMu8=J+lwMxaATm!<#V1zWToYI=$b%6=2Fe-m~rnx;;^K)Kez zF|;a?FgKm8quVp!4L~A$=q#biMsWwaUW{qeX;3>4UiCwmf#S+>-WS-*nDf(}M^TQB z?IbNd(R2WZftE8*142cJTgS<7&_Rb=^j8kLBAi<{|6APoHvJ*Jk)d7qfKdlBYNcT> zkc{4wiPmiYzfk&Gu0Io{(X)4O+qNG_UM1+F48$kf26uiv_bl0Qp%g!5ARo%E7|DSU zhJ6VZjN$(uJBccY>`m0A@-VEi1yU?TMpGX^A+aiPiLTh_LI2D(NCTnEfN@lu!m>tX za#Yd%$ZajcAJ!r~vorrX@U>yb+vjvU*fH3++q8b@6PFoFJ+{pHg%xu?U zjZ62a=jRUw?p*L}OEF_ODJ$X+#?5WoOhQiWd5w$^@yCO!6+-q&+t@FEwj2gD7xf3N zgeR&35F`C^v^x)@nvIi6L&%bJWUsV7yk6j*VxZBXtU%2 zJME89igR`4#+}erjIyyG0G>z{8m3(wb{YWgefmQ)AeAUY05E|9lgW&Np$FP|g%N?s zq`5S(TA}kywvs=n`d-(3l5sc=Y{aNUordW*gKadQ^8C>y&!8KJwnJtY1pyS5|-LJ)Q(K~cQ_#hSEV!a7|pz+kt$19|=QFnhzhxdz1p zSAD6z0FK_Y_AuDy){P+*fsG;ANzJ|~1+Beygzc)L1~L`n(3srDR5Jgi3c=V<3tJu0 zc#SV9&fK~a_PHW@1kw0jbC9(SK0EOnk5-rfowq9*Nu3aWNJr&nDQa4wqzx#MHI#W2 zTXEb!N^oDRM4$6~MPqIFMa@DyXL^Ypui(!-vbGtDWkJHKoqLG-LiAPZ)AG2|Gm&3< zr>mQ(|0{(b0aek!NA0Z!i11P5^d|ll%|px1rW)A!PuT`$qTV)`v2`0r6oW}$csgc4l4KGf<;Ue zdqH#{WJ8hStlI_ISnkH_`&(o3q3qg@EeJtaOQML-e`7bhLBbP@$0{$l%Nu7*@nuLjJDejD%x86eHW$jos^CjU*2wS!7yDX!PhR&&L+jR$^$v)-DOdF6_W@_bB*uC3E<2Bd5 zQ2JBwyVxO{Ln z7wgP6X}S;-`Dyw^tW_9r27Y$g8qYZ~ouhPb&3T14yqM6U37XWaMFs!+$mnM z16kMBZ~~lsjH0xa<;6J)joTUsXg|)O(G6TAH5K9E0+OP)=SXNhS>g7_ugnJzAU|ZI z2q8M7I^;$iN%QXEM`a<6hFb`7YvN!>wx&z?3qSz1KuW)Waq|Jq>OgO8P{PHpA}1l= zgo!^tN}sF-<3{`~832OEy*4LJf|-A|+{h9B$4NXzTwgcBo*Q6>m&D&Y@W?I0I=Fmz zdm&9CJEBhRu^&4Tojo0`smoh4GmB=}P6i$k?n?_t!O#22ilnjjz)}eHb`f(AEn#Au z%eqC&(%B>!?70kmZDODO0VEA)FXD zfz-_4(Z!Z)$vRgDQt8OqGF*<59M0BDX`xCdP-w=O&ZaCZ*hDE{o29U~$b2Qrbrj&bH6^G?^bH8-IKKS1UYr!VppU<09P zPVR75LUyBK|LgfK(**@QNeCQG0QH*6GpiN3E} zzO5YPM7AKKpb!k@v8BvRNvC`eStf>ut8C#=QuC#2-YFnNmWeNFEa-SBqb8%MGB%n| zGxALQ80i$SHYWcslI#sHX=yg#Y``3)!WmIz2 zUw)gxjGQ2nMTBub3#PxI zULl-FnK@x681JBOhz0tY4DLg)OY0z-=_Ll%TO*QHyF-;Pe!rqmD9TyZBr(4W(;Z_P z`;?C{p{{C~H=zf?KH(McTzhE}z62`5)?x5SQj&;`{!f0ulnimEO~$5ir34U;o?V<1 zS88-wk%W3Oi_Pw&uA`dLAvl5=KZ%87m@E?h_o%_QD>b7`p9E94hy-Eq@CGZRp_ru% zpG2E?$z`wutSU|lw;(g(N~>-LD-sAZ0O$LI|4$reu;K@(pF@?STWK-;e zW#%wP*dWy6_yI_NJB%`yLf@+Y2}Mzon^LJ0ytzes=QKDk z#@+?1RI-(*(tT+L4$`tn71+HIgJh6+3Ok8bkDkduS<14PgbQ9mdOEP z;b!(HvdtAgZ*LHPp&NdK?A!y?qm?TQe56%)s2+woy?M3{+TQ#C@1-3g! z9*PG_xQ1q(ZsU5)Y55swBHoVVipD=XGb5T--n4+BjefsF_%h9s}=H3QccXEhZ?=|aa z3_4m?_7ra+y!k`!?yySkG&Z{ESV0(q@N_8PXl_-;T03KoPjeux3Bv4RLMUa{b~;;V zw5*tKo0xF)HDFg|pi_<515VuZJs?yNjFPpT-5GN}0dXf%9MB_)r_|Xx(=IGR5!46q zyAEY!Ts?~W`sGN$@acQ(QFF*qoDZuZDALTD!}cnJdr*BwIZ!&)_}N!JlwI461ThF} zDS$B0D7Mqx}IqUxw1EP~(lB^9zY)eSOYqw1*e zSObY@1L2~fKPqWq#Pj2jgR-5-&i&)QBh2qp|!q8T-%vRyV$*r_m@mz zw_MpTc&%q6>=spCuj*$tV~$qYFGv}*B&EJx9OZg1+Ly%3inOqw2 z!$7#v|Gt03)s&PnlYHN1R~TsSh3s2_jBpx}|Kbs}JB(q8p;>7x3Y$I_$uAVG2>ZOS zsdM{w38WfZA4H&!0J9>|rJt8=Ay#kf^wMZoz8l95kbXRKuwjZKZSFQG@jVh<=%$W- zRf@eze`>cu2=7r?<+??Hu^f5sQ6xbXSw~CU7cvG$9B`m&+|^4n`Q zM=MwCMB7=WiH_Xb6;#MSSvclMesP4w)Zxle{Uy!cNr@1IBlV>pe`{^ym3!Du&tFzf zB2r&E0`7jahRKgrw}2@;lSq9T8xHY${U&>ceX8`hkozO`WiZ~leq9d&bXDO}Xe37J z3v3rm(PU z5OQ^I%d)w$s3?mOVx`IZtT3Nm{c;*QE+te#pk0zXQ2|t(V4X?CDK=9&^ocg{D;LYw9x zygNT3mopupyKu)!yz~VFCB?|%^#12_`8x-#ta}Ayg!q@ZUT#q&%r(9*t>T3*L^j($ z5{TSzs|la77EC0?3ttw|D+~t4F&Hb^<+1WKLIJd1?2eTr;64q=`}bkfmw4d|musxs zvy<7d;`xxWUD@*rp1ATj8mvoVEh)?f#H(IZwv|2w#XxxG(QRdA4T_9OBB)`n)AH-P z{-wizD7&^CiD3|SqfrQtB=^7A;C}2D=t$)PsA>Z>!Pt+XPZ~-2kuVad+IrQO;>yx^ zYD#m5ft!o5=xi~5(Lnr+OUX+Jo2~FT*`uNiZ4^1aGhgU~t5huE;tIo7J#n4Df%(b8 zYT%TDJy9J68gy~KGhaL~^iMz&m$7PDmeUCwSNj|^@`m*d7W*jg12z0jILWqneZ!E_ zplx-s{>g0IXmQeP*%8EYdny7AAI271H43oCjWW+{!G*$$E*qk1RgbCh zQ@s;k9BnyLz8uNOw6;6iU>9-Zy+Csa+M|0zX;5CsjQ@P#IB<8kr37(&>>p9JEgFr; z8F+%xJ#aU79t7eW2QHFc1j3_^XCZCBDuqiMVqeT5@dyxOVxilJis-^a*e_-0dc-gc z!r+zSfM5GBR=)f*BzM&Uy*3Rt5<>d?*!x@{Si}jzZh3nNCKTL(>=e8#ZjkO^;kZ;^ ztYejjd=%d`qG%v3(t95PKaT2-%gTOe#?YOq@C)PIZ+i)9~k%e3;q{66;D7fS_z`e`^2WVn7u9m zG@a@e1U~SFH^Ziv?n*GWvaD{2{$${%dp+E5@j_8P`Ai8Sai^2a9kP037thxbc^j7 zcL;PqD?u|`c+x2-h@dB^tiJop*=B-4tDX85!_Hn(WT?1yy8O7q$4mVok8^q_g1qz*48CZv&b07>1mROp-Z&hj6~onehIarb4y};OfEIrl zi}aq(HOHM8I{g^U;V<&Rl9-0}NEr=;KQ-H*qlx4IrjSN4NL(NU(!=~@r*(clkdj^p zCN7X6=XAo@pM~%&FGeGuUx^C@%Z1Ic9FajekYq_UL8C<6_W6&+O;}@Sr`SCt z0%JlnH$bUum(E-VC8*|7Y757M*@<}VLmDgIqP($Bqyo-)Tm3I7T;; zbc|MTtC1okyrllqA*~L;^$A62yLQkDB-Nz&7J@@fYg@sv16hd44sA^N3kmQfv#|sM zY}b|$#PILyhSalfi>1K6U?Tx7G?U0oOaKsHP>YVrL7pL8yr^8vU(R1~`d7iXa2q38 z=un**BERM5nSR*gsGMR%=D|T~bL3IoA7o!pNaU!-DB%L0Jf%EV?5RRPrg!O1H)f;I zEK~-MkamYMNoXdddQ`n#FYGM}w^Q+7qS7KI>eB|%iq{)@fV`z1URS%4S?p$hH8 zCR@9!=ve_vS&$l1{{+~f30&7lELjR+VL@n!?Qp1*2l*;Tdcg96-80-c1nrCO%WNN( zhlscuKA<1}U#+uQi2V@%aGn$TALtzcHk)=2blMdF- z+(imM)Hhoa3z$94AnQAhF*)OiP6Q|_TOMsaE&6IX6q21J#ttmQ;2)XF;XRj|ghG-O z^h*fA0C(NfIj!el;y2Q#@ShYr>g-MF)j>28nkI5$f_ZPkjElLgTY`ly-=x~^fc4t90 z!-Ce(mbwz0A)y@!*V8{%!E}_?>l{YLw&-twI0nx3@%xXmb4_9x1cC6C6j18@FILw6 z0@_aY0!+q4!{c-JTkPtsw`45{(5Zh(sV4K(KTQ}uGo8nAiVK5Z_}@XK?OpjqB5Y}@ zyiOc%vUco0FwK?EADhUbq-;L)4KymP+sM+kta6x-_|Hh;d8KL9OvvFu49V6Dpf!!_ zMf5o=E3-r~q*v-wBfNH94+8PC45}QpqYhu(p%db*6%sqddgS{FQE@}RK6b-4pIw5A zcwt$YWyfDhK4w!8mg$)~Q3GUF1*YGzzTmnK0IAxCAOJthtP12rA^ANFL+ExtUk3AS zWMvk3r9x2#)0;KBwhoaE7iE_CQAY^}AOb2iU1*j#$uhkH2N;JQUMz}h_vSss2->V( z5*ko^R+#ljzc95X5jkHH+Slq8CQFgLbf0x5Z7I?$7;G!Dtay(ijaVhb_AJ9IfR_|B zNTm60?TM9$o6!~UQLyQ~66Osd*h~qQ(G@V1j>Zq{On1LNCdB5>=*ohsZ{&xu1LK(P zrpV87JcFIF-rT1Z5J67wGfiDQWx`tke9f6BcPP9Io(Dok@f z%vOYQJ_^zqPNPDV41jGqNegRC??}oRHbi&U%y)b(OTqK(F^)Oa)>51(#LnTu`nr# zFbq1bu|>=KbK19xU^#EF6{(KoUZymL&ZM;(S!U3D22F>@!m(7ZcaCIgK9+@+f(zzz zd30R4G0un55G;>d=S);;&0lTY|wqTs|7;>_T) z#W9Sa%z=o+C!_;U!veailLa*jA__H?x$#p!!T9f@`=ad3ju?hPDA@Qx#avlntklAcUISDd2q)?&V0Z83%hib}(*&d#_psy4!U^$yYb(_~G zu_sI9QQ1$teucqDJA52k#B*e}(kz@ey?kXZ+pEy8z@P6~W?Lx-1WzK$7Jcn@ofath4onQb$i7O=cUMnCG(l|F9(v-GPE(mt_! z$Ys<~$!A}75t?Rn`>w(@MJ|{!h?lHPtg1lvz!}7q=nv%kOcgpkID?P30IW&H}2ZeG{<365;;c3eHiOh+c-!Wo0C=QGv|2JSUS@$;E)nGUG; z=P`NaeBr+Qza?qLvjCHf)h8!fm7Tn_iIKCX;lN9F{i_yeEju5H8M!!yt_?K&E*w2BWr>C`{dpg>S1Yx-7@Bx z%U#gloNxQ+F6!*fYl2>b25Y~Dv*+h!ehw0aN-{@xBo+t4yMzi!~BPdpZ zUb@nVTt-+WG|OI~gIwXh2y#zfCB)mysuxkPIsKL+h(KI_@e)5r&X>UzZBYM~;Z*Nk z9zSe;l$~o1!ypWUufzx;<^C62oc+Str1=7<0@~)`d={4G1|Vv5f#7R*;E>P%a|vgE zA_r`DkI3ui>n{`XpU-^1fP2DX3oZu>H3+T~gmQ$$NXqPW;lq(3n055GptkZ`@PhK( zfh87duBSB?g;N@U8 zX+4Aynm&GOTmXy=fLmev(8U;ExB2JFSP zk(aRY{Q??nngU}63tS_{0ts%RP6kDJYy&P{pE6*_?Yd0(N=?5`!Bx;A_ro?Be-FCmIR2j#MytHP+aW zBId4)?!2k&2Bm_Qn^7(_3oQhe^$A5lCl$;Cn+gX)xe^IJL1Bo8K3ePnKO3( z>p3%{yc1p}Gfgg44T-zVOboox=pAP7XS)K;;2|BEfp{m}rs zN#_EMv3`I&W=iEiD85>xU_1nxkLS zRi!$Gpdeu|4N?pio#Jr?AcTiYix>mTp19B15OZM}L;Gpx^>!5sl&T)(>~gyeLkTeIh(*TSQ~_ ziwWc-%+wEmDJA2MXpG0Wz4g($ujuU!oVFxa?pAE&o%N`lN~xWNFq_F_94xt8)I`Og@Ms?2E37iOg{r z`OAeD1&BJ9Li7z)Okvt96Xl-caX&#}VqFyz4ypG=GY0n0gva!Mr{*8Z&NVk;7zDyM zs%(ds?|-o}Xnz#wu9gc}Q4(V?A2Yr(W&gE}>t={5(K(g2xs&gg=Wn5Y;g1S}Ky|k( za@~Vdsz|wb)`C8xA>FrS72woK+LfsoLM7!X^K$@GYh#24<8_>=7!rYpIAL(ecVR1g z24o=@!y*Nf4a1x3Wp(%482F`dree_ACJY1sl(iP;Yz_8crea<;>K;7w0V-S1sezIu zXDY^^93)_|yt>pD^>rYX%9)C>nDio#(4G~Xb^*_m4EHAGYR}}r?{MfDv_o4bEtJ1d z%>IG>5me)$UR}5Lq!V!^uj=`XZ3*zZeLETm2XV$>`0=QT+98xo+SQJp$)9Y6-jtBD z^pJ#6!y1exF+bxle1a*2Mh( z+RiB&FvF5@n1kC-uY`_5`Kjhb1IYzh#iIQ#44#5H<(_Bg-~vW636lzUD>U~FbHhP7h|XY#+LDZ z0sEdZ4Omu0FvlF}V>)S^3${y!}nMDC$Pa%3h=5^*U2OBM2xljnM0FQX;LhS@-g zX)otSK31S5p(mr1J2vxR_U_NBo|`b0L&U*cHPS^90FsidCZZ#pJfe?>Uzu9zMo4y< zHwdd%L?Fzw{C&c8Y~UMJmR^F?FrrlvSHp+HYl<1av!?s=%HiGPMvy3n!Hr2(cN3U! z=+P|2|2N7mZ~L0QXH5VI2M3qF=> zKmk(RVk?gjg(4YA<%I?rMkp6ew~ND+0C7OHDQeXI@DEMd;$FUkkme)y#oJ!Ggdd{2 zYm2&+kVqRpkgDf7Xx%(93YJ+pIs&jC&pj}^24qiRPfcNdfe3wB6Qr9^vXNq=b%CaY zTLNHv`Rxy>XNqCt#{%@aB_*KD?WDp$R2&c zO1QF}E~*5f+e9;;(4#LEH*4JynN=n96C~b6^YMJ0Qi~n6?c0q=x%bS#?HHJp7n5-E zl82xP=ZSHo6md?Ne*-(2(a1U>y_-MlZS#Bd8>_~rq{8dKzS?Q48?NjGsjt|Pr3rv! zc<99z4Eqs8d$&TB;XJELW+wZ3XUA_42EFav@Ke_(pzh(J7h*@r6%vd?G?cYogL-f8 z*+VZhPlHgJDk9V&Y*2{`(eTg<3V>#iN;CY7cTpLk?4cJEE4_Eq7;Q_JXoQoPb#kaq zUFf0qJlhQ?pjL_9&qFT@)@p1J&%}Ae9TVl2;h~p>nMhf>HWysu`kB~TJ@is$Au-wx zW%61gN_Y+o54{vyeW%z5#G$KyiD$n)vG;<3_qVY-y;%C~iLWF38^3MKVJC;(Lv~bX zmnQxt9(frs4cMgv;1!9UEr}V|5Ac&BC!s6?+4g*iI={UOkGw2_?5j$nWjh^e_3a|~ zN7=dLSPa5I@Jiul;QkjIS2P>jiu8Jy6^cjz+myRM$BnCxuzViGT4;=Urf)-l5Ez}=UZ)sO2>X3ff`Jc44390NhT==8qgn!9=H_CShV1tQLtEE)Xd*zbB76hw_D>*yxMyUHNK<-(@~5>^a_@=|MbqE zBhQ3lcm$4tkG&$)mG&3%)rh=w>?}~+@#7E1uh>}%+gwCm{4lvR{=K%OwMTDDBgf;f z+e=RRWKVxC6D@d>TV`JP?R<`Rzx14zJnbmoFrI+NGjCk`=6tP(epxGDBPZqs$&Z8V zwI{8ktd%Rc%G*vB?Fa8^keb?Xvy|925-*KPxW}1BB$o?ZiVmYi-o*o2+ehu3$s2_0%gOJ`CwtY*zkppz_7^{aJkd;8T+YWb;Yas;awV;^UUx*GKudx?z zphdz)FDp0U>8%7pz?_JY61n@K9nzmDHv2@QTvx);-tYPnxvp^j%BZrQCZeW1pI z`Y|@eGtp?e-P^0_)je?FGu}WO>KCsK{F92 zs!~F4C-DRw-lbj>&Q4R911TORpozN2;a$q}1Sczi>;7@(L=bf>FvbpK9phS~B643?i`*Jva-Ol@a@nWpljA-hDO7Uohv{d}~%P5$5sQ~*_pqVOC5XPJw! z&HXwgk^}JhC^LqPM7p)Mu^(9{Rhq0SYyR@Xhq5!uk{ASm;FUs*LGORDrJUUlo5{X# z0mf%WRHVCptHFi*Ik$(uYx%9luf^pgI~;zUiHE>`2sI2yU1SVfy_xokpZyrx1lTb; z^%sV1rUpKR@}~>ZXy9pa&~1CemdKfT7D5Y03>`9SFGAnVQqibzgmK{-UD!{=y{E?o z!m?jk#U;WIk>28jLuKt=GFCktb+^K(_e~H(?Rmt_=W@>$&|jJGkArs6VDajXEM~dJ zYTH@idC|oIrjs=$0F!}1Le~RQs|NW{=BvAVGC<}Z+mGNaPaJWprFf1!wZ487eG|2*CNbEX41u1xM8~>k8oH( z20H0)pBce>w#tzI0j&7@&BFz7gkxC8Cc^1IXu6EOP?&Tf92wpi2q%#LcguZog~&sI zPe#Qvk^`EASCJp5RVdPU3k|TfaqK)jPelBRRq< z<&sAS^&YyvRSeLd;O|+nMS+)TuMHw1qPPbYftMzX61LU$A~=022N-&kH> zsFC@y2z=$pP_~>fmjOF*QRw*uO-#ClNj8g=i~lk(<2DEie~wkyOGw$GzzcN>+*?Sg zZtcej%@K?GF7&B^Xc&azCt5%WAq1no%X-=MiOW27iyVS?E6*>F)?$;4%F@gA=Lnq2 zY3%HR3!~ip5^3+KKz=y{V$ve);&JV_1OyeJp{pF=6=t|B86DwN={Y9b+r9GDLphMh zn$cpwLJ6()I;UfTJDxq+cg0gorrRI%g7fQfgmSe-+U4;JlgHq>NO+V^!%^0a-M;N_ zF^CRzvSGFN*@d%6z7G>XpnZgx3%h-!mE&~7TI1{it-ElW?SKE2UD2@wAqZ=EA=FgtT;;KtJhf`+8rl@UNLb6sS~8=?eC^sXN*uFOW~*S-PiN!&HBt9Sm;_kM1M z6>2f`x1QetgnHU|Cee&#vJ2jRRnaj)XT8A7DzuASJvK#RS9J;%XF6r z>VUG2iuE)|>OM1>uFzffYi$H~If1ll61~)#KY^z)>s!Tv8`2k1MV={V*TpC9u(X8R zz+GwdApy6f1%(Uq&ozr7My7O+e7vF)vGyG>H80a!=JpNspDlAlSoGw>{Bn*rVC2YY z5P2J?R%t>++%mZ(K6<>@gXlWU^oR9+o?g*23pjw`L)gOp&nA|pf%xQ#&(VeF`vm(0 zW2r4cFzrZYx7gF+jzTI=K(&Q2AslDL=O~Kv@Uvkh87Em$g%cLDmf0=9LCEfyv6{D; zcMCJzZ<*eLnUM(UJ=pL^5Nh456jp`; z4)`Lf2^!xILaCHh1Ic1Cjt({pYm4OjE5Gn9+AB2FTk!(3sQ9q4^##GMG^*bWicleL zdB8BHqu8MIxs$XIFqeh$qTAw*mV$1b$%$ZAGIa>{Q#xZ%!>mi3Mlg z9mLUshM`RX0i-mLER*Eijd=M2c7ee(4}qj)cK^FGW=+EWTji{9=95Cga#6I3Bm#MB zZeUk>ZsTakB)AhqGt)_s7`WcrI5`Bo#f*_ei0?aZR7i*=O>{xX;= z@WQ01pEiV)vDBXMsEqw7JJ;igK^O>ElpCPBW+PvVX9UAY zHt&i%Rd_o+K}{Mu_LreV!W`wO$$<&BZC`g(cXNizT}RVPZ+ZyV!&?q-C^FuiF;8UN zYft?YY|rG>EbM({$3X#PCNLK=Qs3bw@&6u6-S7_QHu4Bf?}FVF+#;R#ZcJFaTNy2O z;a$Xcv`M6nXI%dQ!jM8Kmt;a7;XBv_tz*E-v>+i;$aSQkWaOD?1z|!53jmo^;Sv@A zsNR$KW#gEa;&Gey54*1`-T{{bi3Q}2{Wz>(BU})g^F*{_vCbnx7fhDtQNQ05Ebr2n z7mfp}(eX#wxgA*ygD|wE_=QFPjV-!gYxJcCGMNlG7{t-0ZcpCXNblx2l=ML$jQwNm z$;k6_BBN0sPEsmDtQN69y;utvk4?8s{1+t^8G-9;Rc6SgF=pC)`3SWxGM7% z@@E_yuLdQ+M!=vw_?L>q41;ul*+kEmyIO1TTZE$cJ|pU01qyKl-0$b|)6~lcj1mE} zd46r$T(FR(@whl59Os=M)faCyoQFgR?$GGb;#H$mMicOt$wl^5mZ`xg#(ba;Ro)Hy zFV(+lEbVq0x&X`nr>XIv&@1i_(NVEDgyt}cQ^Yh+SZvMs@p42P^g`l5KlFqq2gr4ZacF>8Tc9!qjefwZOSXjwqNHL>))8;j!0~ zdA>r&$PN$%3e0eIqR34IrY$K%j(zYpTAKjG&{av$*+d2u+(rtv^r1RD@&SW}$6W0>>lJ zKaOo-G*`(Fw1JOg)UHx;MK0yR z(@K@!QQOh*%yWTTGyPI_W>*ZtFc54Bd|;{n#lU$h~0Nv3N?0L>?7DOK` zVku}8AM}_9_T>o;dt8mTcaB_2!=Veu36(!b5`n7p{5HuIr&$i0%ZO3Rj2_qG^~sy) zpYD7_MoxtmOJ}O&DCnBnin%8Px*akX z|F-l$UX{0v67LYN_beM$v-^GTh5Tjhf}4XuQk(|qVgF-7^7`Z${YaN@&(@2xouXes zlE@;xq94-H>xVXB>EqO1~p}8(U#HqU4Ixgu>8j!WbvG+I|Jr z4`tV~1ThH0ehD8a{Qr+_(mesYGv(A<$FVjB4M})&{Q0QmQGhZ7_lh>6;pAyi;6i^2 zMsFOFmnsrEoh>TLTbw_LF>T`VyvX%M6ztzI7tdQ-LDF^Qjso|ywKS6FEiVl=@3zI~ zt>3Q!o>APwK-|S-tH&~6SC`4gh8^WCK)m^!8r?6w&6oY!&^=g+7!n$V>J%jd)#@47 zn2xA;IhfsV&ypyM;tb9WO^SKSnH|{qm~VnYZRwB0sK$y;o-6cb00%%tMU7IS&DsFy z=(&RG!I&i@ck-~f^gJ}Wfh~Hj(ANNSeCT31>;Jtw7uueDkDN3BFh?)-as{|Mn3R%+ z?g2#{laKA0z^u;Fh^lDR4Z|n6Eq%Ugxbf+Hzmzis_++ouVCLD6sOR@s=P73hs4omh zTI?$<8>~y`&B^r$XhD;2ERAcmaFzE3l}qxS#w4Sv#F!7yiuFaL_TMol3hE%GsHx?! zHMTe)%5IE#r#*$2@A7mVomEpmJF}rFj}r7#X$4|d^>-m1@I%>|;7AOEK=4aGAP)ck z*is&8R+x=8d>|T;iOtbe{~L`sg!g-!X0W2mlgv~o@JlS}U~YeRqN1PcN-|Y<6`~RE z!O?E7rMA#n6A`jiVi7G*KA!Uv!k?x7sudO=yIt#6KRVW5>&%7kFCtfV?V#Hd zNKXZf6+Ex)a2kTeii<0jSuO7bkHUka>4MknuzfC?`Qw!d&f|ll2(7~%QPA5kS5lf$ z*w3_nK>q}hn7_Qiq&&~|dnFnNg+(VD(w^Y9$u#i%$Ms(L)rSZTF}NqU9H6tWtk^Bs zli0~&0bjBG)MP*meG%)&fE<;eVmicPME{+CesQ{mXha2!e~w*Q&CGZtlz?M|{tb#e9jpG9JLm9t_2|_RF#I4}lYEcFw z+tT5p!|H*N{HYW!lgMOYC<7=|hkDK-nc`fyS|gKXLSY+t%&;_;`q)w^w=FVRK=asE z&&|=6zS`)0d~)26gCG>WQZ!E7|6?CUJXNk_U1Xuvh)|fxpzXD&LRWkcd=-RbEJ9(hNyM|edD5+tkOOmELgdJg z_5Pl_I*jKLvp5MB6Qf-gv^LQ7_KkTMe>P?$1BT34Iy+CCqtvowz15$&M%VRAj1Pf!aF;!N!m-Y@o@uqk}{1*6b?G3WIrOxNw8_SJn3>^p_mpZme4 zR9JBBVD|y_xaY>%`ndY(t=~fTL-ZEyHF$XyE5ftG7YviFA9sHg_`VRBod1OCA7$s7 z!!QiO;43vR65sz~!`UxDmFf#j)wU8KpY1>8Aj~`O4lKe370H3co0BV-?_}7jWWG)5 zD~%p3V_*MLk|WsJWJ_?hL2_X6y6bKHYV7F8ET_F-g@s7FObQZCr>(%^-Afk#35*pY z?Xnn-%(w|^Y*3zg35p;@+GSFUWqwZ3BefcX4M9YQm1#47gBcaP=c#AC;Qs(iYZh;a z=T%r2oAf29Nf1dF8VPO2T9cTskw^j^jtIK=!SIi-7_7ks41fS`A%iZPJ{62k;rw65 zQXyLpmV`#$V0n$)-04{vm+&ah9Cw_YIvz$1@*Sye^uk>`BIvTuJWMWP5|@t$Wz8bo zn<0WOXW>QycOS>SN)=(hvVybZ_{T$vauTl_z5Jb_4380XF|NoOe?qP-N-;7)dW#6U z*y@cYcRr5YYxmq$Ji<*rBI!c2@!fBflkpfm9|F(bzK)&Lesl&mZY2*txzLls)+w?s z-cX#z)Eg#dJ>!$x>+3VemynKsM3-6kdlK{hC_9rI24WZnwzP-swfb)?8vi8b!v=z2 z;X|}WWG;^3{O8$X0cYN;WN)0nWHDDXwn{Z>Vc6&cwGLtuMLj-_5Ua#XYJl8^si#vo zF6H}UIKNyQ4cEw$lUd7!zlv-^!v`iR^Kzbi$+2L*ZEXqlaCS;#UU1f+KZz^IP#V~| zw;S{F3>u$1?Pkr$3;sL%`a z*37Fg5C8GJIu~n92}gxqHu4#x7$)uiy!;w-39;MAQSd>4Jr>~&(vmYi^Vf{^sGKSI zbH@mfAH!K1yFHXaoH0Leqs@AaVh>z){zo?=LS0+9Un zA7xjPBQXpDzl4dg;r}0NDlN4H%t&y{$wFD|g46;>gn|er)AdMrk-ZNvhVOC?{R>fU zO`MM`GG2VsaGWpxW`N|E@qS;>%M|%8atyEXB7Gw%bIH5U9brm*7vKy(TMuHdg(}DD z4r-2k7w^-IF1C9IGUWkk-v^K>@m<7TO&;{_P`c$KupgkpL`n5d$WTKc55_||0(DYz z8pXgP2qql3TGhyz2lqJ&j~r$&G-LY4_LTm$508B1IEvBN1z{^Z5sa#XzYJOhG-|;GHo;<>vVz2GBq4t+~A@?!2RAPgr zQv%9a*!8`Q7soJ#*!T49GC&T@ww>~|t3R5hw{`{};E(b0q3jHBBnDv^_$AsM{-?}4A^c%jJjD$cvgb;7(M!b{ z;Bi5&!5~j8>ld3-3nL9U$zTV-i8RA-j-%@rpqcH;tKL%T>pCN z^pDy?(pV_$ckTL3a=cU6M~N#zIiH35dZoG`f}jvFa#6=#E*TD1zDH>LxzIS>LQ+_~l#WxyO~)#=DSw>qwLsftUj2>;*i~gYh0`q7793?e~%TZQ-XquS^$IfY9;7 zeNJaORV#fKaMwz8;YM+{KJ>Mf?kuTY?hq(nl$}|M12GIluM{t`t@~eW^ztzv2?9m_ zO;C5+CApUWrC0Vd$G8-nfeg8FmA3E%Gu0*V7PbPsGWQz;QpY7%S=vgT7P3vE?FU1e zUTEP^DFH;$>)=`!J2V&EeYaEobb+BxdW6phdwxuBmh{5#AroN6!XIKWeebe|qYMak zX#y>Nb78v_JzHx6mF6dtUjh=qOPGYiyjtTY6e3e!usVlQGbeY^bq2G9j>^jCcZhKL zJP6lh$5hdg2{q1qnE5&QQ9=lVwbLaa!mC`^F!9wa(uaw0?e31Q3}Gzk-UAXm$f#%EHNaiR6~Rc;ukK$gg%&U#R~7Cp)l{5>j}GkX2NXT3S!Y~(`#25&9QK(o*eNUz2D{5D_~bAWBOAT&WaLq%aZ0QUZ>16?iD<)F<|yH!pkH|jNUktp{HuB-+hG!H+KM6I+EX&t(H_Uf$&H#f zfyVtUllr6VTyPkMK^S_aHvioJV&i4fHb9l;9Uy8e1~xc2oIIY5F@#fmjl-zD8H`eVHzR8UD3%@A!4eX~Hc%$b*Z37OpsUM}3Z8Mj|tgpKpbA(W!vOT--=zQ*pxyix;hDn%nW6OGmy zMkE#htGA?D7sh5@?XnE@4D{;Le%XS!Zy{C24KD*|NG!A9EYoSB9rB}gLC8M1Ah*io zx=SQ^Lx_qWsY@~?xrMlWHX>5GYhJ{HsMT=4J;xDl?DTxfdj{}m^`)ST0sW_q144oc zwnRo`=`|V`8m+U{{127(1X~u-olVa3>Foy_JXdWo^}3JKJrm@u_kU*^9Dk!C@E#p;r=6(feO)JeO<(xoQ)Eg|B|GlGnq`n$%JJ-Dt3BH>m5wz+zX$0v1(Tv9A_HMg$RTK+ z3f$)#@-USKb6cy-q00$xj6@kKbgdK|itHzlVeOP6ROf@qW~+S05ez)HTGuimb29R^ zvsPA)*L7e|!A}RUp!M+7tFX3u?xXECXx)N5502x$xbq`LlS_eZ0Aj96~F2Tr^3yXs@hC`~sA`1zlAwl6 zN8|Rs=U_pEsFnS-fy2Bq-(oAm%7F}?bZpHXm9g7}22k-89!k1J4MBg16c`y|1xHzg zXZ=&L*_9Y^0#P`kOZwi8k?)sCFSv#ih{BZ@`4~uDmHXc2%3q(c?yQrHX4Xk&nHoAv z2*&}3Qk*Yk3(Ekd6VB+DkV1greEQP!`Iji$1-SSUQo{Y6eo-*;=JSiWz37tZ1LY9KN&^Dy6VVHoITD z{$`CX-DOgbAd)>J?^40&!dbGz3y-{L|f zFI)-`hxguIE_17{4&W1}&5HyQr04`f`{&oL`^%dX{?to-JPtIL94G|E{ph1{h|{op zVbPd%W^OBbfild`g0e(^ni9QGBhx1uZsIkLVRhzz@i9>pA6bY611VPoo4|^ooA-R# z_4PmscX`4$N4z%RG`xY;%3K6LcW8#$;XQvzMC+M00bBYk6b|+KWVQjx3&&7@`5^>{HTJaz$9#JBPU>hGjt8Kk zqrOk9T!barh37JlMW>qK|S0O8oxVKxAidTIEdj^($T!|_ z`}c})2st}KODc8~OcrR}cRBXegoK!&B?IO7r@^znPs3*uny~vdz?7lKox%&XS%Vn= zsHA2%2FDhDd#ngCn8$Vm`H!pY!?vaTVF^Y8%^Xt*!`tMVhee2xaHA-SCk94@yb)9g znMkWFx$lJN@;(uoq~A5%#!U*lDA_ClPGH?bWAH-Ezi~U?)xN(ED+$tt^Bba&cJ+Fg z$A0fY{9%ax9jZT`nb0H_;M8rUBak{QLQblubg#(Ev%HvlH`0X%$3=i2mF*KutzSLG z|5C;4UBplvD7&rc!ALc|`(q5@#EBbT8v1SpVMus)c6jm+Wml9eF$lu0qyekm|6)tJ z`|*UgJIw_g>L5@E$y1xJ6h7Rz_T=QY*(hkPC7hfdAz{ko7KsdMZ<(iKdsMiL?*K35 z!+)Sko_9HLqDtD}vhX02AEQmp#CXn29B20=6NB*38D143ew2Bs3q~W8buWs6gz*u_ zR>>L7w_tQ8fL_!DWBYY%|EEJCAc2s?el8MqgM6{(%`;WfP;NSD{lu>nNu&448NKifH~(BPhRWvk6AeNI=S{`@+%O2)?gGRLc|-&#s7fPUS(K0e14r zoJ!~l;{=y1knfUkL<(?Ym+C|bm#4zdH7OWCPSow)%EX{cC!e%?H+uo4To^VAi>oR5 z_=KCRF(PSNJZlm?7J&5>NHcK4O`^JtdTLG*&6Q1W6Q+SUu_jT=M@`we=nz(yJ!Jn` zxxOenmm>&55QwIv;5YxomgfzaJ&*upIiohvbjQdyD1bf*df0geablgIS6V)zp|K{* zFtq`0B)ro$e=hoOWY6%j7s~z)io3S#q>ZN)M67|~bvJ#a{`5l<>KUi98(wwqG`um9 z+_A?b?Zzr(qM}}QNS>DjwB0>2^Pv?O$D+Y)SzzyujoQb~m))v-LGLoz$w(K<2n+dv zL}lKU&~D}%XAR^!83FrH-K$(1o?^nx_e4tt)5e`GfLkH3Z*C7ulGIX;E|6Gr*|spU zFOgwF!b^N|zm%!ZLK{y!#ROaE^V&jZ-8g7>D%ZXzm{7fEtcI38{u@!z=vE?o4}{Su zguIc_4~mc$8pSe#@}51c&#LzVoO5%#vgV+BxgMz(&Oh?b5cYY%zTcXUD@yVZ26C}YfFL{1YuXQB9GqxVoU57vdqW@7>A1G5t736 zvBvX2Pe>q7zxER7jXY?1Y&yiHyjaC+@AcV|Gq1HyD4GU9gy!LiH9V74k zCW?TTd$F36j80<2k#=1LsTLO4nesGvbsB|oC?61*I?=u&DACOeG4krn5oq%IZNn4i z*V(WolfPl33XV{dEiE(%%ex*eiA%$%ai`^|0teb|erOf+sOiGdrRB)`jHwWSl#K4C z-npYR9RpGEDw8}y?vq4yY})AUMC{309)#khgm|8j@urO_!;HuiUbuG?g#=d1lJ)_2 z?naD4FwhTA=kTU*Dg)mJB5g)Gl%0Wq02&LuUXZwgyX`_*sI(iQ zm77b07(Db|D~}sbl$PUM51OX330HaW+4b(U5+gDNe2M-l^G2|ac_mm}o;X6kJiH+N zs}oGvS*HF+*}3Ib48lNkO9V&^``=jSq*5#6AmQJBAZ``RV9z6=tE;xm`Dp2&{ptfl z;d=1j*skoUmDsMRTIl$d4-e3*%)}VL7NwmETqBQmzQzqlOK*4W4N)e-2!sI0ls+=l zXQF6${)%13p9Z$;MIS@xyeAAY>Jk8SjR9X+r=;IC1Z5>Kqo=P7c$Ru#;}4@RFg{xo zT7c^5E4s)9BAf6i>e&GEXQIw|=ai=BS^Z^3^#At7U)4xpTu)}f`x;+c^fKh@wS&Ck z?aKZP-hI5J3qk%5(nSW+E!jU*P(pt}`}QGTNLYebZ=Irb1&kUFJi1owD9n1hY41EM zC{Tv3DWN6;$!sOg)Wn`W45c(f9eZMuY|Hd^JhesNo83%!o=zt%^jEKvS=x6&1?O%| z^L4cdbj2*4L~qA)Tgp42MH6wOBf>Rz*>>V&@5wDS^V9qC67EA+UW5BOYb^4KgFM5; zk3=knL^P0s8BJy`w@_QKCqfViZh3|sEWF+GGVpsX)(xw?@`T><4`t_q<1h>Y(JOgE zW1Rb6th`3r6{eNK1&HO?n9nf7A#1pwjBKH}7e*r!iOjtQ7uEpl9~svY9vH0tXVy6a z#PZ^)f&I3OYl&di(S2Z4Eu!U;_%%qRZPWW%(iP9r3!w2?^5C^PYu@w@h~Vgy#3!tr zJ8S$x+h8phf}~Io)A1_YjKdq7k;^Y1*KmMhM(eH8J~k3;%fJ>Fy(6cR2(9Lq!?7Bs zbL(M13Png8uD%|Q(>lMbZ+HW!Bk38)*JyMYInH2{KI#`Cj01TX(PT2o19rVW+rN)vo(>kt>-jPkNcV&7|XE!#% zp9{J#22+OD(|q>;p6a&N4qn#rL1XYWuD|%H=rN8#e@ByZ zZ)>fxWdHuM?X0)$W(CWVJ42*WJY~eYzVPjl6Y1{T0O(3D!So!6C1WVfjv^)Te?9Bsg!; za9)gz*w6T~WO(%F0rd{jCvN##DZ*~7OslvVzyE( z0FG$>BWqY@w&%1OGjX+mkt8%BFij&_7JcZ1>qg~E`%(y_%kmP^!`9o$QAk41gRyM~ zui2o1Fvpx2(*u<++yQ)&J<^pKU?(8$gase(`r&W;x@Mu=T4QTe zcH)BKzKjr?@>0G8jn1bLr+{8Lqo0Tjo!*sS(^)l=^>7i6^>1wmxQFwXY$Du?hnt%~1wt|D6h&~sdhrRvNW#Ts2eNxnY_&3GI_v){J; zrTqPRa`N4}mzP_#uMNai`it8dpWOAXuPL2lEcw;*wwEIv8&VQSgF_;b_`<3x+xi1L z8m%jGoyQh=FUtm2mYz4pc$B*G(7lm4BJTwWcz?o=1%ym%kN>g{Ng(eLFdcsANs?*kqtQTj|$T4A1 zB|0*Pxl;-4L_EXuPo+JqsIo{p8}KQzUXtqwvK2sonwBii|jNhf7Kk`>?S%4w2C)-XiIRE+TS) zjw#)B5V>t^(^(|F>L>2ic=RLdh3d^%Ezvz* zb>r>sh_+bby^KvUYcQJTQ}Rhe65A5-MU~6NxrL$*1eLebcge&T$*z9fS zcbTVas3IA;&NV)^1V8JI6(^Z0wPoJ5XF07`-3!fCZRGQW)= z{wTY)BM3qe){+lI>A$f{`~$q1rGWDsS0zYDUL!l#Nm_9uR`tVIl7}4EDm-wRt3cfP zDl%0{US;(aDRA1Rxf0;KMpBKm0hwuM6wr~4xW=MLBt>=Y$JZ-B0&@jGmYf@jyA(Xg z*<|IS^HdnNuqtg8D8{NSmtqRX#8Y92Hk2LSl$C3_Ev;8*6y^+H8-5Gyg|%Q;;bWZ( z4}G2sa}3#Ur@r}hEXZKL@&!ZdyCG~(a!cqAr)tSYrx0T;b|2xg0K`R{6;ewd$NT%> z5{!lJ;})Sa{y}$o&M&wyO0X5;Qz9jh8$iJA0f=gQg^@>Wbz-mVKsY@;8^G>e8F~gK zdF1kPm8Oiv%j{PAon9)@SO}>gz!*kHF23lZpqq(37=S0BiCJclCt~S+x7DAltV$D4MQ6V z%UsN76QU_h+H1nllX4DP0nkZCGwxX5FDLPmFvKy34fhlW82*U=C_5M2h(Q>LUI~L2 z$o(%?zpT_}-g?!v+ulioirV#@6;w9Z0%p$fAd%p&OzO<6QTxE~(v zn-DJQR8%Pw}Mmy)NCS2Kh=EU?32REAID^AoC`o}>c z)OO*-1n!t{|F2j3c!>O$$nocvOYG3zvF(Lv)_VAfx2Ak_Sr8xV8gp1wL-Txt!k%;L z5bRdmS#YZXy58GY`hldqIImba|f2!a&qZ z>=5R>STGP*vv-|#2=`N7GKcOUrh70kKh^Mi?JT^$k$S-~iB=|p(t4#oz69B+k6d-P zi8|o0AK~!UXA{;1Gy< zX`v##&vn7q=iu@V)XZE%?97&wEwq4lM|Vj_J6`%ASSiHA;3sh6_0Asp!ihec(6)hW zV~-ffr~{=zjkP%Jq3O* z5QNZ#Vk+dESm}AtSSw&BfG`Z~_RnIEf3&gkrdrVRLr{UC&s?Xx?3Oght1gTKfj|Nz zGQG(wM7br3_9}q65D+jH$oAo&Py&fzu@2Wtedqx&bPp54-7P{|o{p}9GafwtW!jp% zUG`-Le`#l(g-i@KLp10l8Gi1Tc6MDVq)RXwvND6*p1~e)?q)2htl7^as6R0+xj|X( z1NpQt?uW<0fI>`Lr;+1bZGQHLM z8weuBH@OSrMrKR{j9L3s_gCfI3>P*qGGp)@;I>c}Zei^D;dlw!I~JKS(*YO}JgDBX zt7~HKLeH#4Y7COt=D^Q%5N@^Ua0q`&7O63aoqz^DjGT?q2`5OcS#l#XQq!>#EJwY` zI|vRhmfVP(mh+oB>2yU73#u*P$|IJ3OZ`g7=+>H~{eit{_AXb1MC z>|ja-krMM;mlp;|y*ydMTlj5HG?j9|ObUeT=b`u|bNBY5F)tj2NQde4r0VQ{-{ao> zKVz!TS*H#NswjJBX?b3y`AzV7wn&D-_8GOb{3aoG*9bH(VQ5QQf#=d~z~;yB<~d_R z)Qo%>x~d{40n8sPofHiwf#znJ5Q8N)*2@;ju;q_mIvX?1nW$(IH~XlD3|-K(vzfY( zI>p8vv6Lm>`uCvRxk!jP-5P*$g9)bBfrS*}p~L(rJGUH(K^O>L2?j&({V%qz?8h#4 zB28ZaA>zDjI|-c?(|;jz*{_H&rAj@OFT>+Di&VuIhPf#EQ8PEbu5`qjs; zRza!G1H;8A?u9SAD4%>_xGW{o!qtb}OnWsJDOqP3A1p}U{(h&p;MBBAt36V$5B94j z$esC4aiMAtS%@~N3e^NI^_GI;&$S2yad4Q7s3>=C<1DM8M9N^QkBULZ>%9sYk=0dvSoTzfm{28TES$}sZ zfBe8-wxA2(9mm}Z9$mJpV9;dBoU}mLzjZb(z(PJU0*@0H1Eb#;z*lbil7eE~b}5Wp zo}q?OF(@H`RZu#MWRS1>}`iVQqe&C6l0nbG+?p7!bY4 z(3ImU!z~Mcp%#EhLbb_r2dsj8`t@E39kehw72*vy{5ETu;asT$0usrucANB7+v+RM zi*FQ0z1uO(hI0*vlhAaSl7{x9?A&e`2w@=DODZ@Z2Gf6I@sKYJk+K~i?f^e#*Fw;+ z(=c&!v`7;>*h9$;B^N}JwzDvB$B}P50}tnR{v5)B6A3dLzK=ea8D=@NPvwVBC=7KI zZc~(_qnrbQicmt?Sr`W2#F}aCmzzHR5da=bER54T;Vi~8lfCC$$?kR#rZLhZ)(Z8G zkm`tU9^n-3Bn*zA5X}?o*h?otDIg>eX40U-p0F`}`qX_1O>RprF}}1LYhcv41UFSM zYBWn|D87{q1z#T*Q{P81A78>)@31@bL3Qa;_DD%u)IjdiU1 z={YKBAuLTrvPnZFBF913|5EK2E{&dqNDE@6E zErpH*tRMst5nh8Dwy#D9Z^uJLO8!KHtlSKkBN#l;46+yGVpH z4vi9X2z^j~k@=WUi<=zNAVuLDsL)brOB0NnjX*9pJqA(q0nh@w%SORfBtp|okZI6; z_vE?Z@;s_`Sz)FfN-_Xj6B-NV~T_uc=C<|0Ht8cAs#ma!;Dy?znrZ zlW3YW_vm85Txv;t`>y2u!8B<+7IA4|>LS5O-M|6|Q9Wqpw%d4*!AMJ6a%sK_G!gZH z83B$(LOi=gM>$vx`smk{13k$~ShZC3 z+L}4J;A~phkD%QvAi(WKwH@i}gB#52CwqAcfv$(5nOc^5P~a|zYN*H0Ak$=F1>F)# z?R>urPltN^4ER}H+nWkE(Ze*T|}W@SG{U{!%?07DQ(Gi~{x0iwUr$33^bdJ9Gp8 zQ+7r<5`-WWyppzxc>jwn<@_vSC(Q*&XLJTh zs@viW#eJB_x6qjl;(HW}E_-KE+*aYz{z&+yiPzLHG(Y-J2`n}CgPueOM7*X3jIbp& z_&M$e>G}fYdky^@Q$Qe&lmQZZI$f6W`#VFtsD_Ij(?0qu{Q_QV3EL6zq8dwUn7ey) zca`e}+MM~VeaDcSypcf;JFcU-WhSt{6R|)*;ZJR-NTf_A{x4oq!{oWZBEm@eG;L^! zUV?Z%4J2W^yc!i=?ydFVi(e!AE3snEgK;w8?WhsUluqR|j^Q9(vqRZhEn0;=i8_`X z-Z8S^yedyN%F}UoB=VYrp#)(I()1`lexa|=mrUS;p`=J2DJJ)>;|q!IHL!D#u}sWf z001N^;LR}Ho=6Y8gG`}NW4i(>d+fSp4h?T11Kh5%ZWM$a1bZ+te8QxnSx?J^(j5?Nfd5LF9V1I zYQc>f90$@eHuHbP=FIjz1m{q!H%}JDeVjnvm?m)OX~mw>3Mj`5(2@v0O&!zT&ubKzf!(%`@C`|B?>e$)|S+0AI<>B-Ymk*{blAj(xQgR-}%mq88N{YUTvZrU;-$ln(A zGM+KKobLjM!sCNcCXmO%J zrF*^!r%j7enP&P`BjJ_%7WwO=--fpIz5)&=ik`XxJYR<<>h1)NIad_j*Bp9|1>dv@ znt&y4%f_El2Ddq2*qc`eTR z=}i0bgtX+fDb^@8*(JpeqEKJ(NjRoSQKG zv*N3ycfJ|M9daJp8`FutN&#tB6ira40V~;~*%!0OnWOmzd=4Td`PdB%pVVp;kS0n+ zw3=@J!&fi-36(_4AdP$$IS$gpOZRNqUzsbccW_jokRW($Y+pXiMkyNF--*2)Wf)A) zA9M%Nq_zywED()wtB-7C)tOca#@aGO14Rc#x5hB?FuFY!5gfaSXs`GtCaHZdn;kSD z)E6x?G%()6gFmF@aEw>OkxjJoGDHK$U>+EoVzNY<_U?a&VSXq(w_FE85Dah0O9yoS z8#{cyG=Otb(syD~Wzhe2Dtmy!PGIBN%QiKNgcPn(=yje!gB2OZ#soy_%ps(e*H%xU zLD+h{*^oOt*+6p?#Ixf0Gd9^hM5pqbIrgUl1bOnzJZid)^yv9yqR1>beu$^e*bqu& z2ks|2M*?eRfypMGIKzG0y4)r(%m$fD-zdzZo;YI{Z>x$ij*`!vd}b=2?m(L%UQ0^vHb6sShdr5V^9fOnrW|^Pez}=BF_SvLBLK!{m<+7M#CF; zEwoudgY1G_r|%B$qSX(t2O?+J6{$Tejal=4FNNNDBW{=TIzym3=5TTCZfiXj_^4<3 z3>gr|FvZ4V^$ex_8QS%T4Lu*Xu=Rc1eSen7HhcWx1N_d^=I0GCwp>qOr=8ggIaGDF zP8h5GgxvAD=D9dkCwoH#w+ba~lSo@2^n731V3@+U#rk;%!3vyNo=0=x+o~e9+FOkN zOB?xGvol(%%FSu$h|JPjiUs!B`7Cu6GKKlj1UzM#&h&6lk%`mML~#pF&DWfza;70wk}}KAuy%1H4B_epPe`CWj^D-mYq-?;L)*o;=myQ^cKCZYAosJD2;PMnbs?8=VUjUw&@SU*e_ustok!fmjFXv8n63ws3IlSX=<7CK2SXlgiC zF=B@{s8{-jt>6@B|3oz{wU|_Z|P+TNWJ%?2i{mA4%}rk)QR!(U=d4l0skw8 zzZrPH@_cJ}U}A_{aPp0Z!;s3*->vsU*|{c341z%TN=Ag%`(JEncYmy4s=@`BOln4X zbbtKacuGcE6U@ocY)*^{hDd01`)>WOZGcz*68QC@!+po~a{CI*d9V3F!cn+re_D=R zxC+f;=bzXIWloo~gI=(D;grxcl|gEuE_yF}E+u3Xidj45q;nTn+!>`&bAZCE40ei1 z7u!gbZ<*y5SV6E0oMKWc6Neb{g)DF^EWpNp@eJ3wb~0=IrtCc7OGXt9XgddB7DuG!S39frZm9=x12N`}b&Gb&n^N+@oNI2Lk_a89LU^ z@h^xw$&kVy%C78)p%4VNgGL1t=z0?Rg&oYl+l` zQ$HNskc1e-^2A5GCajK>tSC6Nr9va&1Jy0id06yJL(|`>y2(e7U551iOE}~Vy`;&~ z5IQm*4)4I9r;goA>TIR3q83l6_(n=)m)I zWo}xq+VR2xxrTOZ3XJyzh%{bT9<+KT@Z4sBGu%7!Y?TKgJqh;Efz!(3X4XuI!tNDa z^%3eHC~FIw$((<9kF>;t|Bo+2tgp+k|HYf-&k0G z1;m-70p?<2c-+TsF0A+r90<0fTZLusqhEF1@j__v$P98Ij6v|8sd3V`6%4|~6Eh0s zCmjIM+xk50m7)3OTpJ?R$c7zJYqX|5b?gk?G__jz#gqBq?jdq!q2NMV^} z3V57t<@p8HO65xo7ER|AmV)TBGVGQ*s+@GROJhs1m@6&J2Q^vOScTyJCiY=1_Z&^E zPQRz{dA0it9VRprn>8@SR16;yg0d1@!?G7C-qg1N)r%OK3yr<}aWmH(`uiMSdUU4% zyD?EEfe%lbs=^ae)D&zAaWMPz`}WN(+>Qvzz~2GbDD@>Rv8Es`oJUB3)<)Q0oPt_T zrqEQN)g-t#S)bj{&q1(G@#UGHfqeqR!WamDIK@u7jkc(88as5DmP0I8!LNCZFR;S% zk$wIHtziE_YeHQ(vHK}q3~xryM>QN6m9@p=3kC5C>=79&%hzD*V4<$x64j(an<*ZW z>F_^U&TX=r-EE@(%A z@m$D`ttX}>bgz>`cgclw#Skz*6X{WYThfL-d$^EgXI3%mj_5(9yLk<2H& zNY$a52A^+sMO7~*KX!EDN}uu>EClWEV;Ff0UI|8#p7NRPZ;GcJ%Ck$lm#Gy`@eK7G z%sab!TH>T^B;+l6N@q&h>wnmV4hb2^Qxe^)Q#Vt{P-U*lD)Eh_m(Y2t12);Wf54mV zJZO2N3IBWW*{!Ki1r^)PjR1_Tj}K*Mm%}g&!r&{lB|pvmFE+ku(j*h4@U%BJ(<%XG z>`G`gY--FrZf=2h_dZu%4%wwJyeHXq>tT4cIiD?yy3`34$2*+T9!wha32q{{B=Sth zqnjW-3nKf2=0^i66nF@23dM8WqA=qv8wD-|iP<;O8FvA}bwN0XjzjtR`;8yU&M@0T5CpHsFad1z})*EWLu_ zL2QxFMOJnXs!0cjpD4&LzdjIe5{B2H%tvk5FKm?5KNnq^{Eh^fa!*E>F|kMAkT6}M z5FD02*ej%%?!h2Q#dup;0*7mC#-urw)IMtG@tt4^G+JERed{G;&MST0u^wRwKtdoW z$m{qP`oo64twEL~frq{FtKy%0+zq>s7qyT5f!lbPtc&IQ;h=@NE(Pfu4+NW@yu!u- zJ=><61jj|A8g)?G#3qk|lCZqSOqSX`2i5mXCIgESXlS?}q^SR57dp*tB7KuU<9+6s z835A={;J>SV~0`#jhKwoRu!I#BVKIho0n+B6Q?)Bl&14GDeou1=xd%w!tmh44)r&d zs(8@V>#R()Z+Uq&C?M^q=tq;f^Iu}3Q@0-}+Jl{PgL-xvoEtS&MG>`sFTFzK!A|-2 zzGpp4r)n!mt_~$AO&}7^+(F&RJqeV=iSEiry!c1iwdFt%g0L%%;EVfTY^lj+V_7qD z0X{ktEm+#EG7TNQ2`y@V3PBqdzhX6GUfDp>F)WKGs>I&Uf;v7mXsAl?lDb$)k*2*3msbkzwg5lo%F4x~$6 zR6as6xXbPxs)GmWFukdKgo1~RrbrgV#tozyVTSW0;5f&^CwL@98$p2zie~;7Sc}pV zNsvpjX7RHI5@^3KmUUowa!im*@?|NdVf%P3X(}(2NP=3DCySTuSj1LuzD9iXkp#6Q zOBN)yJldr$>0y}bOM+UGAxkl&gJMh$31T?kB|$BfJ(7x_?;x1SM3eWrM=U;+om&#b zAP5Anlz{lS|HYQ}FR)g^1*}~v=qSw)gr(AD53%jXsAqDXCsGK;QCdntS_Zy^T>$?B z-3~fgT1r7$2EgQ|)~xiLjemTJ6oh41;TD0ttxFl?FpdK~z4O5)oG= zI9Z!tYBkllq#!GwK#4FYaWVl8?0J0g`Z>lT@Xk#@6`T6qaE&j&_!x?ieReSo&$#7d zMUsxpg0QsXqlpwmq(u)-Dkczb7#R2Wbx(ghFe5H(T=M#s2n^aXC0r1Z0UBw_OGy{K zy6wL3_mz*a2qJQJYF-T=#}%sxQjm}qd~h*tV$K%NPAv$?;I-l(!x%WNEVlQRrUYw2RR*gS z@RO#rYJn>1kFqm5f*1sWXiHHdf&LpimOqzs60QK}!X)~TWij5}r9qXtxjc+`i}6Lm zOHfMEA`PZg@_2ZV01Uhu?`s~zu)8~~_+1OxmD}^a>M;U)E1f$=7sffC*;_TbZ>F;7Da* zjGc326|a#Jl0jC`n&9o%%oo){!~72iQ=U?d4d;9nF70_hRD2utm~fsv#TnR2I< zEA%1$;SV1}K^G)hx52mwcyN>oximPEG$S(`5#mz_5JBhPhn0_^SbX1L5HG?$eqF_! zOBx)>ni0wJ!i`o0H@B)0w<6P0%v6jWea!;w(qKta zl0Zut=dwC1)~clSdo*k}v`s-_&X>e^$v*;`23^{*(k%^^B;Ck(P#~ETzPqqZq2zl$}wM!!QU#ujB+_-EeuFjuhN&9^h$s51(>uEL;i=qVKgV| zp4YudfhKoF34J01R3&2Q%qln(U@~Y*=yvhG%^V@Tk(pmkK2>8Ln>G}%afat^M!e}1 z<(p|wR(=%7F~~~%*I@Yf1X>xjEx+XdXCFWOQT&JkF+QXuYh2p75=M;j>XwE8C=laA zOR_LuS5Dqs(wbXR_Cf&}A5xM(iIQ;U#7xDP#Z@RUV^ETKGt3l!I8HVvc7LS?2wJE`;7G>s&_s6`(@9dJjb13m_@V4vZy<(27`#%G zlGpx=9bfNP9ifH=xWiHcp~jZ$5-D8-xLIc6q}1=&Aspem&3YpFjl)lYWYmC8*M9ko z^WGj?B`~?MlF*jO2#CJIl-7r`LnP5gJt&y73n> zE?_?DZqL?sox>qqlFJ)a)HfdIkzS_SY_xI?hmuLIN6KnoJ$)26L?i4bTS+9Y-?EMB z=r^NX%pi5^vL^CwN;9)HAIU{V$KP?oy!D~hC+dZDJHo9dV30l%8wo5>=46Fzi+m?w z5dX<%LBX3Fbnn(ye%hS?LMD=Yb;pQppaR=ZB1dQ_k7Pi~Vfa+0SM)cz{zuul-arh4 zFnFb=2^`sfvE$31(>aP-7N8Z%!+>KGrhp{X;>QyseDZW}usu|l)Cx$l>s^xo z1C+BhXsv)Hg-Mbnu;u6S^npaXP28-2C51_{ICn_LWyytK(~HQ*bO=eAzDry7X0a-} z=g7xw2%7X<$)FXqN$*{C*a~Q}OJ8zu3PlU-(Yuc~p^y2H`wrJo3&$8Mwrb7_AW-=w z=$$T8Dc<+&-pN)#hALn(Z+w|i-C7d@eQj?AWGDm^T<;tc7L;1=jRR~2Y$ya13j7(J zy)v;yjOWP5bm-t4J=u=cR8Iu==AVz*(BS~&2jCmL=&e4o0yG@whi(NJC?X}ntLDXj ziI4f_ie?2EC=w;ipo5`&N6*uAUw8opibe@qx9}4XrE9j0MZ5q5g;N5@2vNujQOvP* zBfNkDMWEy&&$$?|EVHSXlNT_cvP{~Ae=H(LjN+c-o>Cz!6Izs*H04fn%Y^Ht=LKMB ze+`tD`(Q4m$?nKl{sMm~JEJ6rK^TT!DJHQ3_rKU$=}&E!$?5{0si%+!NY8u<^g}mZ=2+4a;1TY2z}`WKFShGuS~uLoY*PEx5vf zYY>Ir%WhkdSKj^jQaF(5wmGiW3V{o~zQ9En7W1C$Gms+H6`-&vOyUSSji>$N@yIrF ztU!gRp14>Q({2`?^`RO95~4oIJ$rHN66R*(Kk;bWUYzyOHyDMcPFfky?m!lp@JnlQ zyjR)&^t94Acy{p0mN;BrVIi;|w!w7}Zu^Rc`QA=ga7~75_@VKrsV_d4z)EvNbb!m zu=L}sDR7@=83k+y6?~^)FePeheUDtKe zv7L@>Yhv4;Xkr_aNhY>!OzdQ0+jcUsZQIG)_w(cXe(qDdu0CDWU3Jc0d#&Zp3nL6Z z-r7VmYL})PTts!Nl9=ar5G0J=3MOSYMRoK}2;D%F%acqLj-uUT?uhTfT>k2L%t5N> zt=bCHd$z`N{ka>PMP*8pY-wa)>obLiTrdMDR>KQ7dP3bZyZo4c7X@FWjSqVLTEs51 zJ=1Lv0bgw8t&1rw-SO1^9Qg^p=-xIT0tmt&MgNyagWJ^6el`gTe*lo0r6J!;%QOBC z7l3W2sFE`(p6?HP&HStBlu~3T^_Fh3ZqsY1Zuynq2e{WEOBT-PXBkzNon}wSWhapmwU>1cG4sL{XOV-!i-JsY zhuW~wiWihnE*~AGBc4m_@Mb~L3!;|U9Xo}5h!6_DG?9@+r_&fqGXn|zi>~8DZ-nrT zrQf&qr2bEH;p#2XLWh>;U2Pa}f==o#P~V*GSIb-Vj5oe5$G8rvXpx@%x}l?mqtRIg zOa9HQ)ahm!RPzm79EFI}QugHm5$^1uY{423_5}N*C^^b06nxGDxjmTF<7cjAWKv## z1ww&2qyIn(Ol^vmt06kp?ATP#pRd+2o=f|UT8V*raH%}Zj>^?PHWytriOb{x&S||` zxhT?tS4Ycy{Gy4{&BIRXXUyGIOL2n=7+W33AMBrEfeaj<0U=af&u_Wjs;*Q#$o(v+ z?+HkD`(Hww3R@#%N%*5BbHgbDZZUG;&v+eLo0+@6xBPsO)G0q}& zm3=1Vz&f$9fiNKwv-gsdz2(H$Z|{l>!mfLw(#}=6g9BpdU+WZOUO%ANxrX3h&nF0L z1F&u2AGav7++qDK`o?Cj=S$-M0(QykkNb&6G#&`dE&Hrr4xi?O@2 z2&(eh;S6kEP>dl z>G_%9HSkv2fE2WFyPf#<;$?#@STQb76SA*qD+&iL|ycA8dVxH>lAL&q# z&m;m4<7sqF-BF(d^{MgKUN#$AI%%etk-#Lf=P3SdhS6VYDf<$ejeRTQ`qKsp=8J?%^}3GU5oL$ zOh~x#jI&-h90T&_OA{FqP4J=DLm}WVq}Dm%d#)l$|9wjFRIzB_AI;TP8okZ_`f&=i z{xk{0`iqe!Qik{s@My(+QR4w{TYtBsA?$-a9_i7hP&(hppM?pv-Hag|B)CnX#f_R& zW$SFvAakq|{-N zY%y^H9Q*!RpR+~7BY%?Ivl733?>54KU=X`nnSnc$06MPNONvFX5IXa?mh2sF(HMS1 zc#2C}Az$&OffC5(j?C^dLM0V(wLFGWUvR6<7W1u{&H#BYIN=2OA1C+7gn_sPr&2}V zS+yd4-;AKI)1Z(zj(*5h+m=ziYM8;Pw}$kY->+QAcRM0L4qQh?c| z#4P^^%eB4?T%v3+`N3s7bf3|WF`eCv0r+N$43pfi@3s@>%|<}o@IKJ`@m-PRkB7G} zp{pJR+S-2817VUdZ8cR{(7@KyxE}w?q)|XoM`qzqb`hRe5D-j`jm}Wy#IG)sIdC!& zFJ2ku`1lg#z5Z_rG9DDO#dz4_`x-g7;+dsF7F$KaKSE>Gegv+3#Y=7uT-% z$_S^|163e0^;iDt8A!Z~oLF9aKi-NoO*I{11tuvVS}HiEvlH&*jB)-nmI1ed2`+HG zcS9?OgFmY`B);-a_>CVbFZU<~=r!*~yX4X0bn_{#UeK-II=% zLoPTBVX_}#``|C!+DLd@v9UoW*sqo z6pj*1-ws6+nw#JLthjU{_wThp9fnjc_@Xnf~Z5^6#TCJve+dgGn7XS{aL?KELBUWEDJB%-li)iR3J z99Z`_-KFf(j2LBi^Wyhz0Fk+|Y_l@?_cFCt4Nqul4lQg*zjS87xydc&qv(9S3J0WU z*QRPr6!HNq7w@Y1L(l<6J!6az=iR+TvCnO6FtXm|VG%C|1c2`6?)MSPuv9NQ?9Uq> z(Sl`rk{vr`JtBo8wXXMvDL6bFo<%>hTRburw7Bm@Cp@AMV%-+a&c@Io;oPrH_Gwg= zJqg~^{%A-+FtWaE9E52_s8O6u2U4ZeBr=eq|5k#v^O4r8nC|*QJ7OS3lM}8~ zS#cq7!CRvs_P#r_7N>apRme`jG%jm+I}5jfqZ6WzK9q$5S+1G*tfy?qv z#c?`ufD32!cn|q(U-i14qB4sq?encH_sIpk81g)XmP{G1nC!WEu90RUaQ}pqbh@BG zIFzfG2yi)pBH&@zqJxiPO$x!`s~b7$6EY%UVXXzIhC|>50`o5#-bVwlh{gYd`e%O#c zayz{5bv%uszZVp+yU!vJ^F1CFNASB{{L9KM_Bf=^ih}Unw5^3YLqjfov3P#Wf#!ZaV8n}jy*~4`CTW|sB(@n4;1cDvhPFr}+6u?@VpWPVpe7w+aPECH5NX4ZkEr^J> zg0WuhqGfKzMR8tvJ;m11OB;ezDGcbKRKC7y(SDz4JI~R-dtD&JRFrmkCgmV>zhIuJTiY=lm%8lrIV1DZ1b>h5ozocKX z?kaby;0kLOGSP#x{w|gt$Rj$*c@3ayT+WB=J4bno6iyUSsjqt0t;v<7o{W{CoY|kk zm<>5J6nT7nfc)UQblP3J{D&qaNm7qJjggEu1xwNDEWRr?Sieg^+#~pMDgsB6-XLKN zG=PX0Q`VmSGfC%9p4cKyJRZ8LLWx~g2n*UsE24w*ScKCKJ=bI9H{kd){7wiHtzelN zM$Ug@KvZT0Xk1dn!=j~1nL~r;>a*O1}ZsWD*Eqjc_~)Foz65MqiPGbj$sitEMZouO^Tq9>Ya* z@vgJ2tD>>rr>Wthm7|^*&`4o%zXgSZ+3kLZQo$oU9=YF#b7{E*!K(wMq=Ey`c${m{ zRtntK#7y3V@9EJ82dGnNhlAyh>e8@IZik^H>FZa;a53kMk(OpBYJF;dgXx~wp9p4e6=oJ9P(u?ET1<%=*0oDmn-;<;W965) zAqz)wFb<%4V(EVQakTv%vO?51nj{Cra)C;V$WAX1t)XjJKcWwi%Tt|doIv-J`T%l2 zH>8l(VB)cf)oA*Kus0M{ox`>T(sm_f&BphDY*K$jFrohg`P_L3g&s$9^l(#1QjB*g z?7Mw=w1N4^5R46{xN3rH_#fkmVic9Rr4G?P-(O-IVudx4R(mInxVhw3qUa6?92#3u z3v%d_T;&S6Uw2@IVTC22cDv7I4d0P;ZBM2MlLC#Jab36`6B1?DQs&8+QRz_+NT~R6 zZxa40+^n~Rc}+-i&sr{h_+?-Bd0Oe;d25H#z>*$^rB%mb?Ij{M>G*5;g9czTg(UI_ zWaNpsE5Ry+QJ&8fVYF@%y;ZvxYYO5bgnKT1z$vk_L{lbllt6Rtenmy$?^wpdpVN3X z?;PeBnB;o4I_)lIY;uopjDw4g)))hZ@fD;~G3^q8oOW(IJ+4njl}^IHb%5qGXk0P& zg7clQX5~{_sapAlQ71kxQy=Yh2H!~4740<%B~u~}Y849GDonI!oB+uh-$lva)qhZX zKjZYeSaJ?*(xVS>35YZddW4H^d(8V)G-5C=ii872-q*J^{*^lU94)==yE*v($3YN0e^?Z3M& zB?%w}khR1RtzQ;^im)h%(U|BBVEFfuES|6Puu5)*mW6Sdo!7D^--MjXT@^qHlf~>8 zS`s>9CF|wOZJho*Z=F8my38E25`{uO>)VzsKhCZ;uU{YjWNM_i$Ml1(WS64d{ev8k z{}m6{UmhYNAeqq|irt%(e5^F}vY& zctgt~#a^sj0Mb}@J;El#E8*9+iq4wt9{ zgwzQ>N0Cde3nIpl-6ph%)G%@U5z=w8Ly2f%Oj3RYz|IFt-bwlL#yn%T*Rsq#Mvj%( z4sKShKGu-;7q8%^OiJ1KW5+ zD@YSet2lT^F_`_kW{zROAqb^|gQxHlwk$*sC6uK5r8|LP?_y-f9i?99lF!g<*WH!? z@5hN1j&7Hr>&O^X@!)DppY@;2Rs%uj_!%GYhhns_5!YKRzWzbyeEsHhBHc5sc3-Iu z|Nc~x@9_83pTB{~j^W6lvY0Hq))|O%I`F|Svb7JWD8M2cqL9RvI^Gi;-c;pXt0>PD|2KkpEch0ez6sN!>o7vGrJR}U zm=u#vpS~EOUQoYkc5v?14t3v|9EpsD;2g|%;hPHelrOxxcSP^8A)%jSaK1={mla3` z8kD!VS!({*esDCc|0G7@ZCqsgc3mVsRr+AWvNjOmeD=)j=n3&xuOFx?Sng2_OkV~5 zsE-}y6^E}62y|7lCvxw2=Jh|YzT4=l)`wH{qf2WU9A7it1^nS0jzXg6Zg>c?3+DL? zyRGj~dOR;UgWYc0*V31n67~;WDl#sRCS!a8E)?#^3OUjmNuTr-;hQ8Fr4gGEz54*o zCyM1qoJGe9kV==Tg8M=$(S15+@OOWZ5{`n_i?S;v$e51hTuvAh;_FL`(tao}P^ptO zDghneW~GzZEaZMH5A3;xQISHy&>1@(M~^_({q}~di%5FAc2Hl=l{OEyonpgD2q;Gk zj*H)2JOf#pJuBq3vg>>(U2stK$gn|&v74v;aWaY zlu;4NHdM;p8K1cQOO|xp=a*QD|$w^ zknjP|2!1{F`CI);ufD#c1?gHxC%k2T>F2K* zKdJCXyA5Ss25(4{y?1((@Z{TmCG6OLe$Jo{*=$QPu6Rj~7g%k=%OXiKSqQrf_l%!Q z6i?og6QvbjyG%YwSu1EDG*JA%wYytgy0gGo z5TFAACl8KFQ!jj%Z1QVMB#SQGAp`0q18#p6-dT{pl+o@R+ z(l;Xp;SN8I^qGiKH2WoK<2yz-KRIwlwo%XC-!i_^4qnXOh%@B55>)?G?=Q$HT*w(6 z$_RR-gd^o?ShKD0M}D0)zlrVJWQWEuU`!F{a{Z-W3T;`^J(dfSP%N4_O(-}-M?0=+ z=z>fdSD}zwyf#7-^o#XdOub$-xyXwA=Dzue{*nT3r%YxLGWAe!A*bu50N+EN3q{Sw zQPkZ^r*e8id;1N4VO6ap_9efnM&wfFk@4iQL5*`scLwZMWk-~yw zfn|5+j>~=einSpw#PVN1nZ;!!Qc4eEZ!r!TvS??ozae&bwzD1o<%9zoc7k!c8(B_B zZV)31K&-Qp#YFHNTd5VwUvJerD76l>v;5QV&Tx+-oZmsT(a^8a8>|%J7L%Qros>rsGJR&kQwwut(gm&Mh*_lT&jBwegYe+CRian=je?Y zztKr(yYo4mb%gK}&8iWV{-S_y&bt08p>x1%2|4Q~d|73T;cxexJBu#?_)3_2f09Co z)VnpKLZ0V19;j%Rc=Nt&*L=df@H?}%eHjF9NFm~a4W?C2CB!~fCi0x#VFC%XY!=v- z;(T32lT3EO7X^nyFZN2ByQoafoa1*K;SG*Oo_?-H;8EecSM!;H&=GqsOi-=f&Pu|| z7PPgU`UGDR$0M=Egu%67>LaiqR$3+R@FBGaM_^Iv_5;)WC6UQLiug>H^J>a#1qF+P zDT|k7K42uATKk?9z#3AueYdte5Tg51&UPrVy=N`Xqlq0B2j6=usi2s~%|6)G3&iqjzo zQSm``?!@Rd_x_FK9$7pU5iY9X1pX2i4^z&uR_rB1YSv;{LGyZQrd~fB(~E7MT@}xs zulzyeb5dj5mz>ywXy5O!iGEHQ>-{jkSrgpYLlQok*bQSZy}eqJ8~339~Ek2P^xDKy}3mIn*7}Lju(tosJir8_95#ldia6mE_X|v7D7?Vqo`L zcnlpBAMyhQR-|QkZyhUHm}_eBokmY;c40oMk3Nnqib8w&$ne57qb6y;F+Ae`3olx$V1gE&RG*|S&`dq&%KNoJLB9@n$}oAy#h@*=FXa1-52+|3 zwrXbVh-R>iT~ZuNLJ|lanu|!@^N894BvI=_m7fTi*LO`ue`lP=(`Up6c_5|RIqP&MP8;&nK!k&LXf*Bq>ucV1WB? zj`m}-a1dE`G2s(vYC4Xa6|U*)FoPPb_j48c zIvNua(*=s62U)GI*Ol(x&gMU9#OHc<)SS1`S!|C&V^cKYMyQban%24HH=jUyW&?@6 zC|y7EnX!oROJ51xslgy>Q=L#(RQFV*jD_$aa=&S>zBTx42tKnz`1408&XRG6g^H~T zQO?^RAPrCQ*nqywu{JLCks%JGd9?3A8*+E&B$u4P6Ji|vUCFO1_TbW{>|d2}kuq7* z_scilm(1l$@aZF~;=e68zl={)X;(oXl@V!6B9G6bi1gf?0~RH>56B;Hz#_dRczY4` zbp2jg7eE1gqAjiow(@DtAgs%lgc46JV*nD;$Tklz$ZiF; ztT9iCV@q+u$m##_VWxHlcQGT29L$0g3gz?ZYa^D}tTL$b>)-K*9{Aq;=8Wl{5#9Px zX7O4flF+L0O_09Da-<|Q#6NY#uRP{yipWjJGt z8O@v~Ktp(587yk2-o6H_f-Py3ewlu|Og5IFXwC_A2_xn8!!ta$O$lt%6@Cn{RcyjPq?A~2L6~uFTSL- zB(CxTjX^OAD+2vfOJKk1dZ^wc>3)dzM1b?`a_u35M>UB(#xt%@g}R7_Klg+voprlT zu7#WVIRn!gSs}WhF|z=;fA)^{Xh0b2GHeNNZa4n~+&$tnpN8xANmwo_&Dj(n6DT3H zA=u7wfVauoU24HosmG!vb;y8P*=yIUXV3;;*U-8phiglR^Qf&4_PWfa2yEe6>{|2> zPD1{adCh|?1t)mn8j1;smLe~`r`S#*mA#gMQ17kIH zQ3>Jta~L?2c&~oP&us2KiKK)y%MsCq6%+I9JwoT9Z|`O;O;IgB;evbEHhRY7u5s zCo@G%rgXp#GfQPjv}YAjdW5Uk*g6JZ!osvF7Yp&3u5jdW60{hS7vJT*@4M6T@n}r` z`ao(%3J3WzkwP!S=O#FLYg(q+Nn^HvZ6PfV`Om1gYuG0GcKMUiq)l5r(O!U+4!>KW!W8B!D~cDpr4q{cd>%;i?F95n`HNEd-* zVZJJ=(RwzBi~+SJQ)wH6+LATVeP=*c9kI;iBD?hI3l%hC5_6(+ol=j3in@u^_qzR( z^~1IlGe^aPWYNr6=Z(hQEUda1RfHyLCbZHuPgXbhb1uYdEa0MCLd21i{O*lhvB)+Z zQj{J1Atl{2PlXvGlna8&P781przgw~%xHi<^pjgqaml>jK}-xXIndr%38%b4z+X(@ z1&Yt0{f3pzkfb75Re|@zsGfviasLwE1uSPzMF8>*%oCFlM!wk`aXo#zKO2uZj!hW=KRCWCC+0%stBbF*zdAU4?BEIu2;6lg;Pe8l;>2ZS(+X zMd;!QwnWA6i1(5~YA2Wpw_b{igiXekZleZB+wXW5kh6MbE}04dpWHCw*ZVRQ*b*yH zF5Rm9c8ToCaKE_STu26Jb8tBg-aKpIWO&i$U+!;%UU2=k`0rTpt+J#$c?vY1-Ejrlxl5wTN4^gzTw!yU>lMuw zZQ}(P#K?V}Z8PY0nz)&*N-UdDi9V1YIKoyBbV{CpLOjunz45}b(}pW_H}_4zzj@`i z5ewVgf4D+Un*K`RGg@yn{SR?t%M3OR(!IQpe<2`}GE{!<@-HX?a05;nvD`8;{7Vn7#GsXvVP=bG9r z@|7eXA;9FTi?aMy7QkQf7r~gdwcFtrCzN;{mf+9$)Ou;bckYJz@vUD{MdlHUUJa=$ z>=IHH%vZI`odC@3t}o;^Gnz@05wl}N$K$6?PHvvS55=Pjl*BfHn1_1YZ)|DgvgWB| z9}Q?JyWf}aCeS9$f$yu|9@C3QmZLK9{}ipQ#!%u>C7pLtB#$8KIPPbg$xWhR{ z%Ssnn=!v2!YGff@RAGcrTx@jr#9L(_Y-Cv$ZhyrkwLe>3VaK8RqsOFK06u($rMg{R zq{Np1_f@HCC;Oe8q$QZGSIri&1et#}^2o<8z< z_j2@0IRv^k*!R5egkiA`a!NOw@!jf`=d%x32nnbmeGaS+_!oT5&=)!JSo2B;lqzW;tT{Tpq($@#g@5joN^~Mc^#~%&%jU-!FF_#CT z7?^`E6;2o!ugY*t&UQ9EQ>n&HNt>9I0n#LpseQ9swcZw#$R|`krAeN#*{ErGd0M+R zirRjOj=*&m)t8xv9Me=Cz0UnxDoNq{4Xqe2GjP)np}`PO27oli#qh)#yEJC)Ac7;b zAQOb+pwN!ejups0qfiw$^mv##m5lsN)`M~&P1DLeHP~)bv1?H9g)?pxz=1{%Xulgn zKOth-N&YA;i9(b$UN8nZl*k$}EmEcTICE|_1lH4`U4sX=Ix06Tof@auITrd;k_nQq z01r_Z_ULyqLfop7VPE_Z+ufEfle6!K7v@Cl$o3)F&P6d9B81wWc>7=b`37>@WajJt?UwS;o!Y9?v!X!$}WgCKIvnw|| zAl|P*=Ixa?Q+GYF{cR=_LOAI{=+j4orjenTPjdfA3uPjuLXl2cV!p2oztDG;N)mOC zP}eY`G}v@_D=t@_&qs&HNh@y#eihs34}6JOw{UY*`Ao?H>?$@@n(a$7?4;VIDnbW3 z(!Ug#95i^(O*Gg1U?&QOn++Q0_+4tw}|j zUc=BuBy7eanXsd{B4k00V>j2h7T__$%p*~!y6dVcg616N;L$av`wF$1C(2~*hYRv$ znyC1-*aYZN*t$^OHFO_ikI3j&Rz?#DsJ^Z-AQT-28&XQX@4AGboPGX4WDQBG0U?2$ zs+U-0(g?$@$px9mKx=c?Nql_$wx7s%5~ZuALt?KZn40-JA7xRq)1%RT*N+qc-iN(* zi$1=*OuUD)vYu*>iPAT%879_n%r;Ft)7Oc;4KET?#?sU@$SpDONI2E|um`J&>Rbb3 z^vr1lm)q^2@|cS~&7t2lme+#SJkQadfwiII5%=`n%w!6IZ=`B0q#X`KmoW@O#ZWF7 zYSF})?ufV$xI!l{115w}TA$o`KAv^K`5_`|Ma<7HvQl?Y514b?p)des`(6XXV=uSs zdOz9gfxA_f2jc~dYU?VD&js_BqVtG&5O%+us;p4}>i;hOHU|s z!DP1;rcDX{ePM&(JABG_FrNKe%-1HecIYS(>QmUjqV*ZaLT<_mof>DefvNWE>!guW7+ z2wXSzJF9t8kaZvew1y3RQn1iL8KleOinZ#+kRfryv0Y z0#b9NK5U3OwJW-qDGNZ5k3EeF9qS8+-#k^{;=iB=1i>wQvpZbpsC)<%r|R)MpMa&6 zZw`TDT`GkN7>mr;NjUI=2$hbdv_zwGe`8iw#jo2=Bxgry#=B7vUUG?O6Y+9hp8!e z8AxZvBd{=H;ZssP*;dei9|@bxHLYq6G3&5|-i*X(k5z3H4;_zfPU+Ny+=u}rPjssP zjc871yXdfl+>Au8C`xvfUWFx5a{(B+``svpXG~1%%qDR27k?IEvREeh?Q}v<(T#9k z#jT00+c52-l1NNs!Q=^!1QT2A1B9b=)2#?xti?lUB*t55dis47DM^8fDQmk)iaO3v zkic{{^ZomT++m);l&2_wU!*v0KT2?9v|8rj9__8&WORSs;}X6o7P0|xqn@8bJWc;7 z!%ikP$uj}5L5<%gnG!U;o7UDM-*bP=fAv{{5ES3;jZKwR0keF+RWdR2CPvjUG|bZ` zfq_mzhgj8VZfeIrE>9SOY`Q(#@kC-M9JnERkT;&_XNv)>5mK&*-lHnyQ@9o?qkNL! zZW2EcW8fr}r{#F#=ku5TORz^&G~+Fc@#A&2LUD3v-`E04ONUA8M@Sqzk|9qVNt#KD0z#idIh4^iS>91m$7_O^s z#d|tZwLtfIVGRX;PO~khaO%-$kDJN1d1u+e%m7XN6htaoA+HW9rzTgQ!BQpVm|I|Rxb*HVO=mOdN1S#L|X(eYnyaq8Ynpoz1}Yo zqhyB=+vmXIG=!RQgg!_9H0M=?FbSQQRLRm8Gq-F9+cjhNDQTUbCxAr^nlQlM*2R9lA@129(|<;Zoor zrYN0V&JMR~J+TA3;P@q`#@dB{+qqj{ZX4&0J61ogOtIe?^4>|UU=gYy2Gk^r*X({q z3iJ`*b_9ZtxhE~=lD3L*UGFNS)>d!e8Mlbyb|t<;b?{whpL&O zUxnb^o%g8bAN&w1JSbyJJgtE&DiP&y1g8TmuD|`un{5@I0n3FkLOjKiRQWiG56f#( zAScoUATHOrJjbmGBJ+!ZugRq!yirb>Rx>P4Z|jRNxV$r|vq`TC-cShztm0nUCjEeS z6}OKEs)adXkCxK}1$i%0EN1iojyAVu7Sr7G)pqqxe11H3U^sze-MaNmL@YwQ!AkD9 zw;6a8ec`2`Kx@*OvELnrF49~PnVQD;iU^rag_Mq?=U2w~^?!X7ioVlZ% zn0C_Q+eDCV6?(tb00gk*MW=WtE?rRdKcBLhUE9Ejk1b{s8jvJxN#=)__G=iXq}mSj6I$;F@7_s4^s&w4}I^ z(O*uKQKSwd;L(C)jjdsUh?7j}iwdo-BIJXd59G%AqpeA!l^rkD?NZ@QWyC5Hx#18^ zB=&BPcLItHT|kl1X3}1x+v=`buY1YNSWV&7(1YKihxgC!y}(-d{xZ5tcuPcA@@`fA zYYB#+x}1=Af7KY+q7|V2b@0%8Z!`ccnQ11tJLNSNFYd!WTu@xr^|4^t0f`A zUoI>x^~V6zC}!jUF!dYx@YEfd%6Ra>Uih#EnFCm$mrm$G7G42~t#SM#*;q1Xbp6v~ zt+Eqlkb>a6xlojaN>sQcm%@gjg;Csl1(Cpt&ZA>u-fV+vKc{3WWIS!2vdxQ0Gu@pvTxIi zITb(7wBZ~T=H-lemk;{Ft_B>0VgamKzyYmCzcj{J=99u=eyuK#{;dF4(b;Oq_MKc0 z2JrmwMKk5Z$_&x7c%H;Y0nl-igYASmc?GgsXP+9chmh3%unXg~!epHTB4Q{U>b4Oh zlB7Ac4C`b%6jz6?YhxT$X8qbGd-_V-e@_%;b{u@T}@^H$E^KwQEOk;(pFZG`7S5OUL2jZPLlIJZ_c(yM| zTFC8YHsE979;{J}n_N3(WeJc1A4la}UYK;zaGUa=CisqvD6k`OAgjC-5d>^%OS!;u z=c}>N_Rm(fx8^8U?sSMuj0aVm>x^JtIIod}#|MOgh`J6)bQDCqAvAmYCw0GH`TFp4 z=@Vil)Vf(>-bX@b`yg%@NS3{iCWB&KaRS2_5rie+dyX&cdh7LF4DgehuQ#lx|H`6| z;XZ_f*Mnu1p8Kn%o2ZK8$q!eJaTkQ6C=jM?l~G1eei=BjX8TO&_;)iU;0E3Fs0JE? z<`;v_OzuF(A6G)+Cj4wPF#}n{Olb6wmKzi*edm z^T!mxFK+bF&X5Q5c@^j)Y`Tyy59`AI#;ZVScXgPR zuLc6dDV~Ry>HIhS)Y+mk%F;yx!XUqJ`hRhXo%=2k^}Af;UN;fUCQEf<1Lp>LG*I0Z3DWE2|V`k=gqst!E2{L{oX#LO4TtCFXbGrR}f^f<{7w5&l7e z%7$uNcFU7Amm6@>0;JVQY)K{fPSif855vBtlx4@(-x5i>NUXGO%OVCS|B}NJB7E$w9d=5PL7hxw z>funoz=~NPw|q9pX$rsKFCIDJCO}_?dqRD{nNSZU3=O)SgaPUD(&7*W7=2d`9qu%| zb8b_j{3~UM*V#$TQPM*%|S%v)5%n9e5z^V-NeVWrH{ec4&`cwQ=H3@veR= z-U|*=ju);LD$0aecC%zDo6%h!QQ*m*oHSOIrJa2^m95~s2}|xDbvXIGacW-FrJ%`B z55ytSC{|!4%sIRLqM<0I2O{*gfvJb1G(S8wgW$XvOVYLwRxB%DpM&&MP;aOQtogkW z{x2?4VU+x>;49D{a7#Z9%Ag!zGuaw-EP|^`=U_5Q$I2U;oZotMtb zH@uru2_Pn`GG#&a{X4w%Wg3*2g$2Y0S+>YNWDVGRjWb>p%a-W7O94fqiONj)>}Q_` z=z&cQ?=s$S6rjjo+$gso+B;I<_Xf&Fd}?fX`q`U|K&3Mi4nrG0mV^8?ezLgd zJ_nWOR+G^775eB!x6CNO#f&XXMg=2aj9>d7jg8pg)UAd4rY4Tj>Q`%8 zM6$=fxf&sGHJKf|qs74jBItg+<^0}5R^ARHu{Puvm@BOHjO`nL;)td-6i5BW(q;5| z{5qO_8#|wkNkbNfmv))1*qM_MitYZg;NedeP#Tao`w8}8I0A5RpAJ@aQt6e~VS;nw zUFqeb&&fyo&f;@U#7lK6P-vQZr9qNH^4Cx@1NYv-xQP}Xz5|_s4ktbKsq;C%d~3vs zDJcTmUL?4upGn-mDTUY%s6|=B?d|91qgU~0pv&kLH5f2T7#9vakiW3rF`-Gh3HnD)ZGIOlU+ueWftc6kSBK!SAUj3q8ZhXjzx=d zo-T8J34XaGS_WQFX$pX$3VZuwbVSUF#Z=X>=IxD^4!(zU;ao$`?iS?VPR!@3%G&v4 z==+_uCtl;%pu1e`z4u?$4;DxbBAwZGYT;&vh^!Kaj(C`yx4g6Sd!jvtNz{fB(e zJq0S0Bm2>w7$TRSI4j$-^vV?JxRrWTH4cjs5Z5Pw}Vmz@r1#H#4Ha zHgd%{8L)H_7OL}&=1`~F46jm33S?9RtW`qn*-XDgFe!a|1wUy&zffRy zI_qGVP+p@V_59lTZ=(>xf}09fvtMfB=(l#rK31n}DXF@B264KRFD-aG+j9pUi#xC> z(hTKrU~q@aKz+StS$l1ZwvXGb4w$&(I}7(0Raa;k^gt5K&V&N#`%fT#_6p=Ip7|_D zTt=b|>)>vS-u*;_7^?=JMM5m)4lF_Q^?gH`wHmE)EckPrh)b_qW(AUYY|Kw}Lf;_v ztBL>Hz8SGMR*ttoWre*uN67@aSfSeO-RzOK?%#oj*+C@vn_-qi;n5KEil%nCJK)l~-Ot z$he;)fOkLtiyY{4Sv{7PmKteSdP}jZ&tBV#VvHbuH_o}tiQ!b8zHEi^D5n->ksd12 z*`CVaP6o?%OsM~q6!Du7@-Z-7g$S+>r?Xm{8%oF*JA9(F7gkVF46eqwxskS{yf7|{M z{1f8Py5NbeZ?qP@)p3&fITx04XQQr-iHz8Jhbq=wZ%sk|RI`6dV78yEyE!lGsci$N zZ07q-gGnc~ht~1agM;$nwi9uSC`y~6oaoXw-wzDB1Hz{PtV-ra3dpoT5?0EAaqbxx z^WuH7`;&43$ncnsR=R56j<%`DnG&;Ks1#8;^4!LKf(lu36VjraJn-nT&xFJ>9`22! zAcRenAS2j^m99u_bkzA_VK~Z-bKJ56VNG`Nd%;IQO3*+eSp2Z#L7r5aO4u{COc?*o zuarj`4up^d$wDe?nGt>`SiSb)@ge?{?_>;Oa-v5(Y^u%Pid=~o67LebvQ$Bv>5=!i zhxdDgz;ITzc4w1@%6jh#ZP8^O26QRvdksQBCP@R6;Q1W}d86iIz z`rEuZy5;W(BX|bhvRHbbWrGuxylVV90!fn=)0ddDPUw2XWXP4QpE% zEPZg(bKHw-S=uW7m5fzQhCFh)iW}c9x%sd71ln@fBtxn=ehtc=D+PN{BRCRWg@XfF zIVXf84{Y?oJlKyl$>V#1&{08pOCfSE_@kA55Iu1 zYDyv1p^AUA5PrxIx;~GOpoBOWsEApI*@~8w+R+v#3+VN@||zQ+nm_8 zZR_3dz4d-ppYA%Rf1K6TReSHUqp%Dy;U#q5Oo}E}1M~7q9mf6^z$*|{L{ml_Ahw|Le1s=kYVe;`{OVna6XRPT0}QKL^C|G_w3_$9oTU_ z)FuZ;9(Y!}>UJmzh%wlO&( zz|h2S#4tscrEvcy;%lCy1&jbvEUY2eC(>@;wlxc=8xR{vDmFxXeeu>;dOZp~ZE2BZ zJjLwl28^}fwDScp21xR)VL=LTDOT`btwTe3GW)s=ql%g5ttNg6<20Bpz6S4P@!|N= z@GY5!i=ZJm$RIt`f>4)&S9uU8NcI8l5iC;tsHj|U{DSX4Auic&uK@Wh*CrKrrZkA_ z==+SVB!F@j+yS&CWCdZ|<~mLNH|RPVN6J>(}Q5ZNK?xS7UvySo$+&w>d5d zK*WErR{jas)3oxZC$zA@Smu$Q!WgP7(=)sQB#CgTyhlFY2}Mr)sIpMeJit~lLgE@D zdr;CajIN!d`CAl#tM^jl_^~P0i&%gN6cR|9`a-d>G;BguT ziy-KZcar>qVXU_fR={i>%>Kbf%t$Ss{fD$1j>rk>)MCO$f23&)9{Z@u1in)8Lbg3< z%YD1qn^BDl@guxbv|san4MlxcFA9qocC|L9+Z!XS8Qh5yzo_!rx>}y;E+%;H0SN38 z@24T}+d%pi)k1VPa>$s@^fhv$-jLs6a36A@C%(vuPrCJ&^8go4G%cQxz1o*_&L$Tw zx^U@*Bqd%{R{tGhht5EqET^4E;|d?AmgxDs91AQS;)n?2MILw4>pTL>d|Y~QfqP~x z6K`&f@*dfae^;1b8eZDMvBnq7R+kR>!grNHg2a+59zbd2O@Psj2NIjVp(!hB!BAZA zLrZqc$ILX5jkDag-s$EGFws|v6c8jfk2qP12JV2xwra7e>E{WO!iL`Wp@1b5P!#c* zjW90lu7&2*bhs_Ahdh8ED`ltJ`o2%Syv}xVPQy*o;Hx*v;1Uz+H=KfF=&V@)Cwp+wsk{NKfJH>O$ZWPBq6yRfSQg%DNX967E z=(GtL>66o8t$P|<;wxcRlh7F6VnhOxJP}98a^X}M$qNL_?t3phdMm!)_QtSfddk9L$cGFWHPHpso#nYc?^r#|4RIpQ zmSwAjJ+ZS@(TPGD{aGHysBP!oh!N?s7 zsr@hD`^#rBIIoFMQYF%Uw(wfE>%5&fem>g}b)=uKjFD&%US?SryKouR*EIYmaYw@T zl-^+?$Y1e@Fh2CZ0wce-7*FM=`Dp3*n`itEeO$G}Z-28v{u2p<-;*y$kET@qOzVUE zg;Hy+d~g>I7AgFi`0p{XSk<=M9RnW@Hoh#RtE4lM$b|zUrC0^)e&J;;U{nC>R;9zN z`~A4B-1}U-!#7_LiN2gkWL2F?64GJlx)?e1BKx3#?)B%q=q>vCrwWPSENFPFF2~gQj_=r)7uw zn5cX0g^V`;*%Z44VPE2M?vc)r)R*^PEy#%r zS5UKPM>QWu%M0`xn9S%`mgCYF`3qwQor$uFz{A3Talbh8Q|bN7)Lm0#_Mg)nS}q}KgR?WmHUF%rvu4XrVQkym5O)(oHPqM`?~ z@cDR8&q0Se*cNjxi14Y>ky;}_JdDQ_8S5W!pb3zU;W>RhdG(+ z*v?FQrFza31BF^)CK9ql1?h3w+R{(O15neUaL63&_jaG2MuHHGfAI^~ zu>QBs_!wYvBQY`6qaMnj*3r8|06j`VPN}>^YH3HoGiu}&pB9^2$qj9v?}yRW&(-VhJbx-*)Iq=2Jf&DQ>_MIMwZV8y?4vy{Ib+%3j6K_0sM9f7tf#1|0 z-P;FkgZQOH{~d6{EKG{u?(02S#@`ac(~=NIb_x}+R0o(kz#j}-&lfeq;IhN%X|;Ru z2JuS<37y{Xf18R)7@xTaI%#Nx8?EDWgw!F%Cq3zRnGGqVjlF!rCOExYhNFE0C}d%( ztaw~&Tg$!}@Cc^l$T<%Hk;JQ^4(A-dq9x)hLUvOcvu=Yj``C6#8|N(!=uSp;DfwV- z7VwqJtDy+Ia^xTb7e{0A6Qka;4aJz;j3y@{ZDLUhQOCOMLYG?ebBF6o92I}W2*?H$ zq_?qC_`@AI6|mHp$wRo)BVO1D*M$R zoWk$72ZiYsiMWxb3+{#lpC=UL4S`VY$-*m`G*5~j7rwKv5roh=Ub5m8*nga97sH*_ zKqnHae`w5=P}jl zT85d&vN)&fL9^ceNnfyfGoFGaFq2jbG!Qk!2!%-PIrW^^fcAj5lHuaE;b_Io;1a5M zd%W)0me5TD)6Qvk&}|lG61gPXX(qxpZ`|hl54^A)GxIhzzbk+502@dJmL?_PB8dobUR*J^LEU-xzHybzaA&2`H8vXQ;>0e<*{4 z*o@FyI*?8sz~SVaG6ZA>rk}NPzlcbYT%D}16zRGz!qVH<%N+VCSoODByQ?6uJX^;$ z<_Q2#Gm2n#K0%6tpZ=h1xFkp=BZy(}c>|;%@O%W3tyln#Rj`~;bFNFyRUK0L+iqLf zX51x605~@T@!*_QQU`;#)e7Y)oV{(9UzTc8%%W|3gLw{K8jC9Q9{|)H0g=G}MA{#kLu%aB;=y2Xnhml+RcgcE|Bg zgO!;5go3Lh)qNdK(DQ4FAd^gD>`0Vd1`&>g1BHAl&3NKyN$ zSxJ~K#VP}xhtY$B(P&xf_0Q0Y?v|w^w+GbH(#L63wWyY&Bp~WY=I3X~RnIdtxt_sy zjD7H0XTZ44z1=1AUSs~iUHWlr+TVbT?qD{5>qy+bw0zVNol9pLn;+iqi{JszjQqVs z3C)WV{Y`uM3SWH)y`N~$X_3wIp+^hFKXql?Nk|Iy>y^IG2X0)Tx7`!}B*FkfuE5M_ z)pE~E{zCsGNe+Y>5^j1q(R%UPz2Zf9y*-Jn{#^sBxP~l=H{8yf-8S6_`XBy38Hlb7 z(g8!B(jrY|TzQC+{mO{g?|&m5;7!=@hN*lBlRaEvBJ=-d#KKA+9^Npwm2vfBUy;_h z*Q~3H>19P8*C{tz96BseJROl7?<5eK6S45LGlIX1jHJ_-JAfLE)|-{c2n!bmLyyt5 zSx0C5L4Q5~m7^hmIpNs(23xAq-8M{*vCT5j5O@JL_%mY_i|T`_G)5f}4AP34h8XSn z-1w7i0%-=KTexs+uo>mWA>YEfP;cO)!+!_&n{d2t0t;=c&dw|)7^eps!;TTtZ!I|4*UQ{SEB1|0p>V=X<#vBedCT;| zXX1$`n~*bI0L|Mt)5phP!bSnXdY}VSmUvyuH(e-{=a!}%-PimXH(zz7_y=2ctg;e$ z?)!6F6k^K^Ki6%&0D?84x((bI;i^bcIXL@;n@7NYKlDAl8cAdcH-i+=n)%PmR-M+(>m^V)ct-SMYNx27a;TJ)aG{ZlIUw ztmu?;rZ&UG2kG@i7APq=1e=cciqXCh-qVcYdccU=P_S$J?;L|QQOW5vg?hShh|ih( zn^C1gKEge{J9wIAX=I$4Y`(vU0fjWQ*K3=hL)aLLxP0VPr8b0G{%P*=DpSV9G+r zGHS&0@SmvTs6+P_QV_h$G`IT1eVABRazgh&zo|hyLwFunaY9B0I01~nzoD%igp#V{ zwG`}I9PMQEj(?vGyKPVvR^!(%$8~>}4ci7%@3;?Rxd_O)8 z1TWilq*n0HB|lxEgU>m96bSrZ09`gSl1lmS^Du=*r1_Cvc%Mm-Ii^HkI)7VtfdARv ziciKqqZ}rn?Pg|KO<X(Ed~AOp;x{^sn7{AYrC(2A?e`O3_CA$-7tJ zyo&7ow9>`R)A73PJp2!u-9n2AK^pttiRY2r56zuz?Fdw~F|V0=-(hV+n9&%*{O;5_ z`(=3U5w9JR+|CY`Yx-i02(wPt7*$dvV|3bEC9boOF(H+Pn0)c(4^o4qL$Q+z?6mtr zBEjPzZkdgmSCD2DUdQnX>XIciv)!0Sd6s*hf>7@My$cgDFN1NqvT#J&m9qywsVv0G zN>sCXXg;J<3?PR*xZyHz<`upyC`-+T1Mgb^kk%nw*7aIQ#rPKj8|>1G|kc1h<20L=W`Nmjie-wI#OcAwiXqA&g*3hg^kO*J$%5cB9Xv~eX zU*IsXcTWNUXd7xc5+G1`fQS|87)DGw*2x>gLG%euc|fFxi6mx9%dG5ZtT1gisX9Pl zhS4g3jH>0gM|Q-#U8xH&MyvMM;=UNovn?fmqD2J4+`IxJ&~tRMGVUwr{Cn@56*@o7 z3~3#}?Fd4CCoYY8N|fn;^<5n{Rby_}Po=jy>CagqdINuQ;S0x7W!@K8Ckjc4bp&b; zYZ%4k6npCj7ct{+9wNaq7JEENN>?P086E!5(lN%e-$64KDP7CL3JCb76r2oC~#=Q%YNJuq4SVL~dztydgzx{EqIdl{+EK zH`{||7&yFMpc$kV{>%0CI^n_u9>@MMgz*Rc3#^ycKjgoKf(Qn^P<;Iz-KoLPce?`( zSE;Qr#0FM7M-yZe5kjGaJ&np6g)>0v08iy_M-u(rN6JZh!fIVg;oH!YimLkTtcQ~b zrm*4%hz?TAVct!#bac~|!tTO+wuhY~4!u#HUrG5F>OekVlo9v80dy{H)89D{|GD7% z?6CoOr6g0bO2&oa7^8oE>9J$)9>ZFYCz=$5YKo&HRhAo_6*-V_8A*~7CZ2&!PJ7GJ zyk+FZbXN4Z_4IO{O8#yLw7(PJ^VSM{041!a@GUZtH%Skoiy%(Gl_BaU=vOnv3ClO< zr$n=GIhc3(GA%rK6_8tH+CjDibDuHAn}YwzMD-%X8F=_nbR0_-7Ylzj80z9j{9smH z{R9Z0Y;>G<0&&zxT~qBX+8sb zMfPtYn1ED1sB~kH;A-|(u66B^P}U6;bpFPR>~Q;l^^ys%=+8nE;y5A7#1{W!JZLzW z|0DDgMKv|+Qf-PN6=VlhqC;U5)k2&uD{g^;*s^YBs=;S+sZgUBs5C@kRF#Bh_7V8H zW>{>cOG?mT*#$mACo#gyWq#tEi+Ie2PjIrl-!OVCd7GOHoeoP&gOtm<3)^houujO> z!ass(C}@6aPTX{|0>K*IV|CLt9b5l38>STfk^46X`4H=VH1k)f*>5h6p2ApXYh~c&Oxq{gQ&b z(MF zR}~5E_7v2YR(udW5k06c9}W6quOx*W&|_@cyWJ|u%N)E&;xJVN1|UZqqO0@$HLNOS z9Ed|tA>I#-M7Ep!_yyB70m*16k;8J`KBCO@)}#w9Xilcz`+UT-Q{%?jir^y~+DLPG zyZ|_fgdH6aumz{m?syTmg%xG<>kz_F7LH8(x_vMt5S6tf~=uta=Ow1 zt=YqKv_9WZgcN59Z{tsO-jL5vdoS$gjELp4ZJyH9(H)iywu=c1)F@EJ^mxb^4JL>| zq=sbL-{ffLEJmacSrb0UH1I*8;(UYA+H3Q3jN&`GHZGNYkO=AKMWG!${M$YjZ*Z`+ z95aonE&WsV45TW;ODBt>J|-H%i^We`RI{q9%dGd59KdVmTKBHwNtUp}h`GIp02+Jb zM7Yb9?^2?nLIhW{bvGz zY!z^f*j!6g$16N~6kXMVeaFegKf@H>?gW|9pt6{KzUqev?n3y#=GyB|9Gz}LZe%jx zY77E%U=G@q175FlQlYxKL!zT2cAv>HC>YdP&p#IT zh@%3+;nPBKe%33jri}v8$`7V(e5ABMVUwg3NJ1XV_5@0~`fDg|f&}BJ7@SJXSlqM2 z7oM<@fm_tYW|h=u|1BTlUteJpbiE_^#4L&b)%`ehN~qmx8VhWcM=nUV5Z zAJk@_Q=JZLStGcd&JC5|iH`E`6ou4ErfBY| zt0^}NB>IDd#JP~I&9HCylhs>y_npL+OF5o4Vxg32JFZ|YJ?gC_T^~$KbM4P}wJ^)< zLk}Jn05=ZKcij%S`-8*q_$I?dvja8IciWv&D$VzMTeTD)6dXWI_7%pC!M>k6u3dV|xxU z#u$g$tY`I0F#9U>G5pd7M?n|f48{=MP8 zc>~Ui@of5BtK3HRayEcr*|aBFYtfu?)K?Qf;L0ZJ9BEThZD|uURQq7gebB;7-|bM>xT4 zrr%W+Y5yxj!b|yjC*Y_t8>zjeFviTQPEDdW95Q!_j126GtO#34 zQ-b%ZIoWssxy5%uzZj`FH95%X2)k- zdEVO@?yt2A3~&7`;q`_=zY0ztdqn0esoCh&>3m!YUw9=LGVem$+Zcbv+XrMD^ch#p)|$AezRT~O^h_N=9f~O`BO1EBw*IKx#JGme?D09~CRtS0 z%8$#Id-cP8RFB$8N)2ex%E>Y=fs;^B5_DzH8-QU6rZd;Nc_kHjnO2=K9>X&scR@+o znj2ZN=GJnncE@PYvdFQF>^_7#5YwxQ9ygO~gB+qm|5gS6FZ@+E{o%$O{+p;^JBehM zx=AbGcVuV(VlKzq%zj?J&+)IbAU&(?9H?fELLFw1f3_7fj;dl=gONNN_K7R;qT@Qf zX+pK6yKc;th*Ad^wu!w5+lQlhexSB-Wcc2R36 z=Gu@m-+kNT(vZY~iBMhZ0TD$a28+;IHXt?rBZ4f&$FlTje{9~5T|YlU`o7)p!;@Pq zb2Bv_>KQ^poSo%|>uY;QC%x2_uo|tBxH#rUFB8HwyzQK=j0AK{#DEU~BW&Jnd=3E8 zv>%49Esvz!(8YlVO6C!N6kh(uoVnUf{%j0ozb(7eZw6vp@J9X8N71-EpA!@`0Vt6r zoimD`^kRsyxmy83<2xg&CLaX0Vh#Yw7k_9hr;q(es|wwq-z1{GBsNUQDM~qMO-ANn zvo}%%nnCChHL|3i3Kh+=>_`LCA=! zG$F=YTk<`>I)0RfKhorjQ<$|IE}o3B{Mnb?*Z8As7#UH*S97BsseC}0+hZ@AhmSGA zR9;x>AwaBhdk2F2%13IJwnEAnegzkQbk0HJ;ZHDSJHIS{fm)4>p@aa>)5V)Wf%PzP zZMcSGPNGg3?9gD{00!ol`z-pyfBK1$*T3gEZQ>*f#!k4y8MmiN9_8BMTznoi-BA!{ zBCFe85}hvz)P-}DCqm;$J3WoYhlx+#>H$g?YAz=gTzkwDW1bxqFT`$Se_EB8tD<=y zK}5KeL{@|@iU?~)!dY}p?zpvD0fZ_F%a?DJg6E`7+_c_|xuT5hPES_wYwy#{C)}=> zFB#Fx4;^>a(S}&&zH}{$qy)8BZZ`(dGE9CELI3HiWL4OJb&xqALQ|r!YSmh5sPj`Gqa(LE`NF!_!SgkrqbUuC1m9Zg$gH7|+^x$R??wtB0Tzh#9m zl4D_X$Ew1F0%5_I6P5z=tw^*Y($J!~Hkuefo(49@h4bxWp+b0fui z!X*7OkD2nx!H^7xGSM{`lu?~r&N1LN#91yuRiiA!(AO-ujy-bRuJRC!jS7p<_bj*$ zbm&{!tSe`hM+v|E9;P&CvM^w%mRDG&#&rMGLzcN3n876EyK(D_OVr`fI4GX^_tvDl^1jtwaO-IeTT zMkwnm5sK{koqRW`ig8;~nRGMsI*Sfa)ccV0Zacxd4L^Y(zC#O>$J+(l>pk2VN<7&x z@P_OEvralyx${`cd#BBq#{hhc+@O zev);&1OEYQ9U2<7rP{p`Sr0}xo7&It=Ucbth4tp{mE66T(+heUh$W8R` zb78HsI1QZJa>J4#kxN(yF2ji{m2|n!G!x`y3u2p%$5GTJMG*NS(GP3(zcHAPvdmX7 z(-_O`z(hjsR3LKzEZfpU9ytH**+?*UI^_Vbfrw!3 z>6(?w?->RSAee8~c#G~CzsUXt8%+r9rhKF5?`Gi6Z2kqi2nuHl{a|zs&U&#{P`_iH z{t2j8Qk!zEa4AcNC-F8E%zHoGAVu<_sO=fAqDsfV0mHGxsWU`EFnzqdYS~SWcMr5E z_#rT-MQdi_$9gm`vTjGE&Ptsnl7QAh*#6a#kHC&tx%w**BJTuS;rAWzoD=;_Vs{&@ zU&@q!G2ZW*6PqngU}(@X(tPsvyIP=G0k!Uy7^(^K{ivVkw*-2u1vXB`*Y~i(-lV$- z1RBK3(_evXEQdG!-Zx17pg6w(m={x0qKWS=w!*sXe5G(>K63|_EnpofmdT?r2c9k-@tN_1@j zT|qr8(IXdnbLF<7QKDFXbnL6h2NrD1!96r03eF<6oHYld;C=fvhC*t!A-j=p5@aJd z?~gC+t!6T&#q&f_mp@FZzuo8IbkZgogH}SM5Rf6JE!TYxKQSHV5zH}(W!M#^*ig7k zs5~FZnChK|SJT zdSJyWlR=p)uZPKG{&nlc>?^WIa#bNs-xL1!xTNqx;`pKL&N%uXhJPdJ0@n45z$Q+> zBQ(Ry2ogm)NEqemGv~bb;Nq;sV!K~f5A34i0OeucKb|b4UHW{(hbZ>AJ z#Kt;oQ72JeP*1rR8%zH0`DD$3{X(Z(0Q5DNVE3$LDE%-NzV7PI`DC_;Th3QO8lU#RlL)jsNCm{%wHh8u>)J+!Peze5nvs@-2KjZn z_SLni2g-Y@7?WtHwRoAtRI6_Ff5_K={O58x=D`v=5aaXvlN@#8f8Q`6FNc%0VzyE( z@l3IUTtJ*zn=atH56uJAU>Ih%uGxld~8I zEY>g(pUS< z5m%VpQ9**Pn5@fBbs4gCk%ZF$&W!w)m4NA6S@p7pouA>l47vXHcguzZqr#MKHQ1$K z1617ts93UJPT!xN*UkXdtwZYjW{hM6pVxV(8F(c1-xS|8Xhe#H!ypYT*tHyETc^&`?sP%Rxnba@ zFJfhcs0qmY%{1lPf<5m0Ybjm*(YeV@G zHEiN`aUsPZ3da#~ZL>|uZ>?dAI3EL7?GV!2%@klH zDEkc92gjQPNhv_U%=+~ro4f{PCXlD{pxBCvb_1t|mZSHsan4V6`PKyaUn)8H z3F|S!=_;maVApIF;qV$-6Z3^=rm~J7bC&F!k#04SkObQ?Q;s>1dItK&Fj;h;lDDMrJ`k+muJ@Npm!0Q7JEX|Tt;IJ5 zNlg+gjMBbBlyHzPE5r4CM2CQ=ee){6Z4R5>1$({V@q+nbRF|G>s^`TsG1CkF*A^?3 zp=}%|(2(lLk{Q9>C&gu^E!3=7Qg*_hq{C!|u|lk?nXwQECeM9)dCW7=>ED7ArHnr5 z>!P8=5u&n1nl(SBplm{uv=su0N3=g3D!T(T*lZZ)eFix+h!U37ZPCoOm<@3< zH1$u?0c#|ssaF=uR5W5nXc@8VgaRzq>28W-Amlx{ozSo-u@#Q2g&x`#fJKF z9(n!#)^nR0Mk}xt5=g*){Kpd-$M6N@PiWAnyXSL0qY3+kj(}k_aJt-a;CVOuZ*2|O zm`1~ZhbKGf)X(nrSNN_&&+d7px&cSJ8||6q_?wu%$wY5bXRLj2x}I&10XUsDL0`DqeI0=u|Cl=#| z-Pc74rIqQatOzR+nLx2W0?!MIAB3J?PSv7}WHaeSsHEeH^yY1AlKa(MacQ{UsqSt) zB!N|Qj@?m-locNynP!#)209H5TK%95?f(O2Q`JvCm>xYpv6V1oo{D>|VR0?g*8@aa zeR~tWYIRLrb*6Kdh%E~MUIDj-!BJ0FBKsSFC31vDvtV$Zv;vFO73hi`c$OBqz31WY zdM`9lhzK{UVtAI){eCMR*oARru!+rd$98(Sua?at@*h(FBt?Mw0;FM^&(2<cRg9DJPb8?3G9(Bm;O%cg%@S#lUx7oMl(ZBRpitVw~ zb~&U+_-TsPj9_z5NQ6s)nAI4~q{$SuSFeZe7TN<42{!{7Yu{cJH2yszaqfQrZ#jwl z2p$jo*;_FMF2}##3YC< z-_${v&c)=PAp57dvR9YEYQPl+ZFC~y_L!;(%u$^H>SCyjYyl9xx>sk^nQok%N`53> z7b{-_ID{Kw6$`Guw{gd%5ul%oYXY7B4xPthIp=y0px9l&G&#PkID?T*2davw?30)s zrGX9$h+aCaMMzgrFT~1f=<}3TFo{I&nEvVaKSN0A4^)@k&@?3_Q`NxE4u&vrs`4xs zZ__4JCj+`2y@Cs7W~|T<4+Z2BU`Ge-At7O{AGG>xh`e7_NkV-d9LjQ@#bC!+|Em}H zK@~V2TSesg3}?o$pHM?`&>zGRT*UPyWAq*h&CGZl$4mSGmi`7Z(vX#iyR(x=)(3->LDMvyUarW)z^~nX{aNQl1?;Qv_%e0!=APJfu5EJ>pZgV z!*jq6flm|o+_)e86>f8Wo%wReFr_(%p>!_Or%YgA)g}a60o0xW#-k|vQel2b5HyS` zrG1snjcTF`BMqrTV67=nL}RM#RMbWcl|iR@7~1JXn`t9QAiNOg#bELWJ-nOl$v z<%CuV8151_CuxGv;svAdi@*>=IkrPU;$-Mur~FEmqZ|{j3Ruivt{y||y{27cS4oR1 z36W|K)R^1N;n82gKj-KU-itLraGQEUI8ihN{oi`Mpzh{0Um+}shzW5Qw`dhVqkT$! zF$c8;xQdEPRphTTOo(f4-j=n?&g1%~39f(5&y?7#J&f&Ws zQUUV5&9O=w^gS7VfGN&p7ytA;u;AD*Q|TJ5T4irt+A^aa7AAaYh@6^p8s}#ll)CN$ z_I9_`mr`J86EWi;r3m&CXu>OV$u#%^&=bU>yIMGEP|zB@teI^;h#(XmnBkC`1De>`z9lhg&Hf& zLG@l=)WE->&A{?SG+aN-*CgOm2I5=Qq>9z(@_FF*kqXj>WGGc#JrX4PSTng9swQ?J z0Z@O5v;UZ=A$)BS@jqT2&fhyg*YHSoVa~ljkSJn3ci!CCZe``^(3vFEpWOlID8Zsk~5#>1}2%{87*-+?EW{!@U0eF&^n^hJ+^i8)S5pkawR7 zA@HUQ02-)6_g8Klo6uU8Hmew*KKr7Ao>S1_tM;x-&HdQl<65(EH2fQ_6J)s{#0@)= z-u4t8W(@Y0lT>0bAW)G<_4LX0n{3cmzq43(z^<&Nibx|*7dmq7eaBQN>nbvx7g?U_ zr{*O|#N5vqDKNypfrUU_qjlE>hCj^8DrGZWKg&5vKMWowCRke5t# zXQ?p3eKXKg0$5tl}=&iW1C>)}aCc{u87}*F0B!#GSf} z2o%?@5JG#Go@DKxj^7_VA zmbv-mp{9-kxQE%eJMsko2-u2U-4(FDh)T6W2DJRL=f@(#PjfMQG*i<5^w|JY?2EV5 zoJ?IwM^$3R-kJLXEMQoQNmh+_89oxMH@0RUoqm6qVNRs0XL1!suS2+Os!oa302n-=1HmX9be z2>)J$zW=GpMEqRrBbls(h3U?2d-59J;h}lSDRm4a-J6RJ^k*FSwD9# z?pQ;I$&_B!-ulOb58=Oq8^rVauVZlr)cBWBlhqSe;g7@J#6l&b0GW6kgMZdw%L07* zqPDz_snd}z{Odp&u`!t{p|<{7vAz*{wd;lawsuouCW(ZjT_wW^f6GTZLUvlk$-NN@ zSJ_ip>=Enhb%89s&oB{IYA`qKy%B4)4ZSITj2n#*s;J!I3gz~7H0N)4p8VOMJ+mfo zs=>4tG}SGHUI-0Fk?Pf`qi^tW5~yO626Bihf^OT@R}S`zi3HFHwCZ*SzX{ge zwk8 z`9ZEE+^T@Z5Ppt)*kW;oNFqkR1%h-#9j6g<-77tIA?#T5Q+{{5D1bWi-!2xxuEDI+&rz#!<0#0u0zIGm*A>aZ{;mm8oj- z0+XtJ0!oMU>H6_#+VuA#?G>3PvJTuxxH$%z<+HuGf&Z=2U7 zBBnXNJ^rhl0BbY`{$U%+37cGcsOzF`(cNEU)O-XF_p-&(ndj7D^KhJ>`*Z(TRMf8wn&(i7|wQ6m&y=;R{RV;gB= zwdX->>oSk6?+RgW^ZJMAN@I3YJ3fjt=M&*0(SNn(XW>>sBhfM|D5e3*O50Aq60@^|vS~n(#Enl0ue2(Q{@IUovtFTRZkCyS#D#xCLl1*-##b z-hAsW+N1kL%LKxF(2oXz6m2wS-48$_60+ioGc0l;(Ud9t(fqFgthYwc8GGhXyyDi@xARVabW zHlxDVR6Sc22{|=B51ofdWk_I85p;!w@rf+hxLG?3IRmvBWB|DpfD0TCKXut3Vr{V9LHQk~)=~kPGin)U?Z#*e8>C5cFzw#S3 zN%jsYdX~PRK6D1QSb)jr!@AbttuLwh{?R|0$9dei$dnT91&D9jrCr6;H(28XJ$%gv z?dh1Y7X{=9$lbypt&g&kM_-8GFwb&JKKyMTB)y%SdMma1zkpSD()+fsZ_SOwPQ)5Hs{2?7lkM&{4wVymC4~ghO}^F zH&p|vYiOwRgCarE=24xgj_q}o?6I|Y(dRW#^Kbe`c)w+X*i_!!JfK;BzR$iN<;{_~ zM*}}d1L8#!am@o`lEJIQQlg2ICeWuMbga-1?#}D+Z9hY3GwqIQHpGbce8o+c{3))y zMtX5#O`6VqIdb4c1OreA>;q5YN>aD|+Ykyx;V~!A@6j)k!TBi>@%vG z5f~ckd+jj>48CmmIf3Izeg_Dr`}qtVo??BYxtf5s%vg_ud18a*QKBLEX0ifpi2I9C zKDptuM&V>sxeEngXynYdit z?*Gs2X`>`j9}8T!8?6(HcExOgu+}bvLSm0^{%8@SD=u##85_UmpfTE(bfp79Dvev8 z=ju@ye#cy@uwS@TYh{FIXyY}7EP}r~=!grOpD(*rg>-bT(ZxJEmvJ+;u*Kpmc&DF!oP%0(Zc zjP8oRCFQb&_iu)CP%qSBErbE^D! zCNf5W+0!8fbzY`ryRcOVyhNbQqJ;FFbO86Hhc&I1a;cIeO=1=w#+AJbUoQaYKiN5l z9Z%k6Ve0+i(Bt-MQYE>|&WW+5z^x%tLr8&P()EonHc{BcU|(W;y>5#7K4Tj8yA)vD zb2J+J%M~@dJ7F`_7hHJOLpm0_C#}Am2d7Vj)8OHIIdI`l2JA(5B}?fH4L-#d-8Kl9 zCm|}Q$7H~e#Ov=Rt|g@9Ur*)SyrRi#Lmd?Cg(BViAwJhXW7(3~R<8*SL=%QAR|c!E z_p3w6edEf!(|izzTIXo0Wr)iUyU;2vjOLtT8r7}N!Q*g$ z`smzC{5jm_o>+|koI2r3KQ9g;3Z&Ks}2nos)IakVaOI{;%YAy|=M^Vj@IZ!!H`7M#!VG2Fx5m$7NFzTi@9UZPhmlItRM^ z9pRpX(0 zqfzv+WSWCQi=G=!e35Z{FJ?2GoDMn?9BZ&(v7}`$p6n&g*9E!Cj!SRIX>Qo?o#zWC z2kJRioe%qI@$2{i=*8P4%{2L~1E#klaQBxF4%-6l;A#tVHuKz)7GAfO=&JHwp}(P) zBF>E&&Ku~|6-WE7q*iM7ZL7|)78MPOKod7@mSi-?t;0zjJ{aRBh?sl%vWcvY8=<(0 zL|JSjjtJ_XX?qOB@bgVakAWW*~+RvQ?ZyWAetDF0n5D6x{@Kid5pj0XDcR_=MIM zoN;pW<1*s!K|~Yd*0xd6kdye`j8t`I4U^*ic9mm$$$3ME$pr7s75YIRb!ccl@JC)e zYAo2QgYEF~EL^Tk?x*)!e~Y9D@gbRkT;nm$e-nG-EgyUbT$iF5G=v7b#O&9RFZiN| zZ>`y9)F5h{;i7*fo>MKZxCV0-RjOO2)S7y1-(1=gJtQVXmrTh`rkx3dbFZ)*n*h`} zQ&eAdn`w2jY8p(%J8_19AQ?$XlmsELf_u>MCTaIYq z=~TUsV(RW#JH+gXjqMW*A6ldm?i-;aK)y5Ua{c8CBx2Lt)lU#4vNwI_$SoYyjA`k& zWN;rAr3$$rmev%8j(o)C_^YN|iroh9*&zEYk5C-%7r{{7QC!4%># zZKLp#kP~&h&`jl37)HT#EELteDMDw0A2=>&ModEH%px~Wi_4?R=gFQgVzyy7>NNP| znhZH`)l7XB4&DP%mrOmuU?$Ce*S~5uLS@zGS)DvcN6U^o5p7!_H%+zcEXz+q%Wj(v zwa47tz(s6wLx21gxqf6)yV@wPOMwJi&OPZp+UMX>qZNr-zFdI)x{7$Ih*99u)B=%G zYbIdB;5ghK;`UrCQK@Aq zoq4N>RF1sG09kurbNG*)M_qKJ7mA2ofQ$9U;G5mQ~-w z>jmT|UhTMtAB^ejn{)BAlUo4^@$py^8u^NQa3zlLQ2``BYZO+$YW((7VBh=h(!M~PDyK}|%&*`~T*^&To4ff6PDoZ10&>J*= zdE_AHBmhXQ&Q->Z3wvX9FDw^y{~FU@o)HESkSR+e4~$eH+*HL}nsu z6q@)s35HF3JR*w9rS>vWkC1+&!3mnkG`xabwGaANS05+7ZpzXQL$qLOXRrF;ljOTu z#KMu<)Cn;esA}eoRny=$_<0+8bhClu4KUZZ@s@6k4fa@JR!`;bTEY%xZ03X%n~T?4 z4?Vj%z+qE>X8-L{T|)_a5q0ytm4n5I{e6n;;&LWw0BX2-K_SzQ;b#V-)b|b2E0upD z$A1V3tTetMf34Tl)4Q!L^W2L5vhAJ0scTELZCiKn_ofSvH#Oas+``C-LWaTMwzJtn z$gFLOb1&kH`30NWv&U!Hqu%%y>nQUeuWP4I;^Ur z?<#)Nf&)zn82N!yPY(ZUhHOuYiU)%pb!{Fk1KGe^1}x2ri7tn&U;Y=QMXxdeK+C08 ztbmchkey)*%Z5P7gI|fjAvsAMS?9$(tRUxUxjhvadTm^_rKNRT9;C=!aj!}-S$N7> zJCGAt&H{z{z;2@i2B-CkPGW}uwvo-qHk1Bi+W*L&VYo<*3jXjMk?0x@{h1%!iJ~AO zq#Xam@)&KW{Yulc_NDj^jsZR33jg_6>_KbW>DT@ueF6dZcm^wj8BW`PbnW%P?ip?K z0Vs={$g0E&q)>iN*I0&t`5odk%N<)Y1~F@wE;hlbG*Q(=CH5m$mRnoNT+-O+5XP!# z^w+O3C;hToLisM=6~w>AEnV+7`JfKeW1ps@lUPowrF8og?3aQ)--LEWT{(yNcU5?k zartOYYSE*hf8@7+tg%v|AKX1pycG1UdKIkMgI*fXdCYMzCcF%f4pIK?ahv;60&+Xo zbqw(!zTb`kqQ~#AW}s~Qb-!5?e}vbv^ZnNmX(gvJW%U_LH2EsJ zi^S1wE{%et2Z}s%e@DpkqbD9sIWHVofDXI8!>Js`DykNNQW5>n#FG1Jj2+?m#hlMQ zPfWpxXZdcQ4Z4Bc-naVRIv;F`8KaMx%ZA}MPufBZrt1w}P}y%c{}||Kn_zbZ^n2nX zx$rWi;r=YCgyZw1jYoJQAv-KrM^&Ja8?D^Fw;9OeHRJ&Uym&Y?1l;7fT zIpZtx_fTFEFyx7iWI0P%BEBM}iuxRu4^P-sXOtk2JR&h}NAmd#I_{Pc7m8UQR|Ul1 zdh$JwGjLY`G3+m*mzQROR~d;L#ed_$JjNJLevMCxDI##x0lp&`fSWT;M@ExnTG_ny z?R8;Q6Bu+J^w=FOGO)%^r$E}$_`P-PbKTkPneA`}dgsOtcYt~!4>1eK_fvY$_M6Y+ zqi7D!7v0bwI#7v@hT)cda}&Z#rL=huxK%b_|6Hz^JX)g)DuhOI{0Q%VA*noN0@o`Z z48xnT!h2u_bIcDW@V?zjwIB4KAkF#BW;=ZthPoJ^Xq44OG)IKtoJ!0)&nP2fLMP9F zY~9Lu;NZ91d)&kafgIx6X<29>=sJ$)VV26AkeT7CunOB^i2AyOFW5SD_|GkNJ!>zV z83_lT%s)8-D>+_OIGSBiP;?Zm>iViN(PxXInDQZLhUIm(@UqujS-}E?i z4AmkE8e;T~zOt~%w*~Mrv(0(iK1=8b?_v@uOJ%tvaJBgqaO$Q<47-7e8q@c6~c+h4@zSOyv!k zCLede$zP}c{FS+RaZK*6Hc)28!COEYk0JrQx({D-mY4=Q6m&CCX;H9>$46IbYM4sO zRNk#d*%9!{dBFGtG!ePJ`o;!KGSA>bAm9mF?p1PDGJUxonLa8rYGLVl1-`nM8jnM$ zJl`W8?Uwejq;}HGWL(V-FkJoK(MZdJ#XMEd6(!P3k9w16KVqQg8np zNSRphf!M9o3#g5eoRaG55-K!+4>RQ_Sd3m~llU3D)P|?hg-$kFFu#}VW`63%boD0j zu1RUy*caK0aU(i$izwhfE&SfjU&?hdW*g)24a@1HVEfGWO%>Yt!%7JRH4T_DY)3h; zVd?aP49X8>Cn^KpbXr*j!PbTEfKVc?r1F~zA68Ya@ar(6?P`2g6mgbbcZygwDa6<385skkrBA&Pp=sF*?(5?xV2W$)kqR^vs>Q7Fmx!W>p zlPue)i7X7fnndYJ3j|#!QtdTz<&}LrkbDrh^J9KsTPS!XIPg2Jyv;2 ztOf-83CL9;{PMiU$DPVWeTfXUHkf>U5#YA!d4QvN2&`ET$V)u=3$X0;gpU~j8ngB& zD_0dQPxYqxVhT(OG=@Mz8;~IOkc>`HErYq61-hyP{;!)$g}xM|3&}EJza%iA?NNjn z4HxZJx41upfC;mOn%zy-yW+dhfd@LyO}JQ~X%H?}N?*4s)P$ zq8_Jri%f!`P#OGqcQp{UvSA+_j(O4pILxz%j}GXCXltC4vTL zAhWhu`q;H(`X;vWTdzCK#(cosX*(-K7;?ALPoSThkaAB_D zou^Iv;L~;LX&2%zHwm0^8*aCh-s9>_bzj_PxA%)+Y~xi^u>;CoU(3K+W+L}4{Xwxu zM8mQ6AmBu60V0ec-K7d~(V5>>0glztj7sq7VMn-q@Qo0$W;JPS0sMg|kw^W(pjVTR z7{k;QmICXZ=6lH!k7Tds3qH{Liy$lICY=Ffr@ub0u6kbDsXOTuOwjk=U*8ZC5A_lx zrB*36tGd9%`y36v#eZ1H07eW(gb>#IyVUAC#XHp)=5@aRT zD_6q^Qc-)h?}8xEy6S%W&-Xo21UGEMN`i*6`<r2fo*MBrjoy`i}bID%lJI{n4q z^Am|!Jt(2w)3)8FP)|E^BtZGw=T~)C);1M#4!K)ta``~*3abjDOkq%T%8dIQCfERoK~_Pi{Ov{W3+jsS4{ay! zdcHO{%wdNSVq6X`C>0aoChNz4=>Lt=AZ}g-&PaGk$TVMplnLuef~+F1Qd*b@-0H76 z@PY|Utet;vfr-SV~1z#kFmxW6@WZ~GV$#5&({A7Ts+SlaEI_^m zg8uP($={5L?VV=0Pyl8nZ zoy5NiAS{T1eW1Rg%szXt0gO6PyIeY}^EfMQcdH?TU44D?XP>@2w;r5*uX zN9C=>67S*s$r@3y9XZ{+I8}&c47_&uM=PJ%)dP*CDV!(OD8)R-W}69x#BDXOKk%TK zht=Q4sm2=1Z@lSm$Psy%zOOkfk<+&y)e?ve$b9h4)fVZ}WruCxOhhk`=7e-V564;I?LjE?xQrk-;21Hm`1eRH5>9rY!}wzeC99AE6f8~y3-pUkHT zpsjKjgDKO#H9&Qt#GkF;M7@0IrFIIZx_>3<5rKJcgH^uj*JAM`g0@NQ2~Jk8aivgu z5y36EU2g2}Ue@Gh-mo_Yn#@@Llqi?U2yft4_x(LngZ-cq;xg{BGGTj(uqz23vki?M z7{K}eB8ovf^%qCRwhuBs3LxR3Gd?S0e8oD@ubAxS?bfE^1hO7+Op4`oCYU;Iqywnu z7DEPK&w_nE#`t1g`F)mWrupEN5+eGg$n_X4jSNiOxncH)fak6^>D41U!z&n8(ZSYk;t;8knZ=^8Fjnpdm#0g){0>01|>(EBVhat z$ZthgP?FgQ-T%ogfKYsLa%F8-ipGBZH`i#tSI)@hCtB4k&7~ZR;rDM|eNA1HwJ?i1 zh7M=Soej`TIG4TK=gA~h8hbN`v9G*|wjS_Eb1Ev|4zw1Eso#5Vod5Y67nF8s1lOje zH*Fn=i*8}DCUIGb!?Bdbfa@$YREg+}q`3d;)AAUA6+BWJ#s1)gc?9?$q#}eV>Y{5& z&c{%=<0p_OUNZte>D1NgZd1IlK&eF;Pw~cItD8UsK8(>Caz{$>1)HZG&Q~_VvS&C& zvio9CvBu(3V#}1T9h+<68Diy!ZPS~}7pIs%-A-_@hqfng9ohyP!9c=YI@b41ptBv> zJS{R;MUZx-jT41#`TO1ccZyIZ2ufr>MzxS8pFMB0mTQfvI*rMIeAA^9A}saKB>Zm< zki?!J(aPpNaBc&{rtrQjqPd+0tYS8_e|Z864c*Y&BD`fo|8xmtITnd-6}0=xIzzhM zPklbj3vwdIj6!fH#;0GsPx8$5(*Xl!pH;3AJtk%il>?}C$fKv9s+Dws>3ZiqZ`j>O zWLS+9Q6OT7Zd zKJtUmpVMOZ^(RRv3miQg?poE9Yv;HBZ3eQz9pXC`_`cx)`#E=@F*XZBe)(`LX6*u) z5%yB8weM|p@5bQI-@s=m$}kZyxMhU40Q{cXe-5W)-v=lTY3sTAz6#zPI(Fu4c-7Sc zH(K2vN3?B#d*$M{a=HDZRj~W!EQcun8zWYQPzPu%G08Y$1=L|wuo&pP`)m5r3EVT(R<6NM}(Iw99gmt;WcrFdPoz^!ue z)3Kd6Jc}GhH5-;&J!OgMmx8@pMk=`@i0uOs3V+|8u@^9wB_8ba0Z|KhFUMpZ(mZQrlq$8lTN6u;_%MqAWQGN=X;h+dQ!JEvFT%*7d*NPIg`G60{ z>Hg+E_IVL>pu-LDRu;cM7AP4jtITUFab$AJr<`r zr9b_)Bhd%^_PE!-V`Jb3T*vyy5}me=Trv_WugKmASkYv@MTF2|nd#)iFQ0xM8qTdl zM_(#?2AO+7EU|E-1M4fmSPU4XU`!0233*L-hCF+!3`5YN>?64SZciF)aeXJNQ_%a) z!sTPZ)tw+cV{4)o74h^jpPhU#jOJpUXCEnscoa?rN6S*U`QTlx=S7hxe2*J_G+xqo z2onXfoDzhOpd^ZJ#J;II^ald_oBa(VQHk>wn@W6N3N8W^>Xf-b+WQ=f0+LeT| zm+OR-RMycS^sXnLjNTswTiL*b(h9ypw4p2*k0Rhh=pdlsB2P?3z_Kahs6@RXLofm1 zkS+iUXGkkpEu`}hQ%O7+18LG`SEcvk0&Ms)*&Y}`3Kwd)_Nf=*@f5#iHvS#!pweRc zUyR&e`8FY3&M+dU?1~KC_MaDq+eD#a&b>n(my=E{k@L<`AkxMXzNz{j4dznS{)Vhy zCx)m)6S(Y7rsgxgwc8y`6T^bhx$Wh_%w=R^K)ySR`zlS2!@&>be-*s0zkH8ZVyvf- z7K`>igOM1<0*LWbY`4OC_9df7O&Mc*MfwtZ^s0T*@HujTf3$qAYdleNW^(Kh#IQ~? zw*UC5>n{ZM^{pHrg_HR6Tf=AE-z3%CMJQlaoLV@>o^A_t?vI%Qql%wY@KI@EpBbNe ziNS3q?tefyW{0f9VhAxVDq`{^J9wwRIW%x}&(pLRsJ`SajwAaaSH9emU~M09yOk!N zC1#`OWHo?b+|8`qZ#`5HNpZq~iK|ninnp((gb0$L*h=ynd|xwX2sze+vVL)%^CKki zF_S6x;9sn8AC@p|H-$>en~J&>#wSD*x*(ZK7$J%Sp_a1GL6)=Cs|??W+O$nS|ozAAk8;KnElOYRkZ1? zlew}SkTtGH*i~HNpLD31R-F28JVA=SM=SVdrtAbTB4j&lJ|hc6y280D<(R9yO7I8G|OC2d5}ct^Z4Yi!(ku_FtE z%*D~CF%8oFQ8-$=HDU2N^jBnfcBS|r;hS%1V;eAxe&YM&OgX!G4xR!yT4g^8QCd8Luu^35@O!D&c5K$J9U?a6Z7cXi{-(HFsrYTiBR*$j zna2vu7QxiY^bH{t2AV{$T3Id$TucR4?V(PC#pA;nSgcrTc3##5VF=jqKA()?r!uu= zraKR{v_xm9eVxpqlVVJpf6P@F-}&%Nyb$vY;eVu!wLP&-H+BuP^Z-t^+6lu_FxPBW z^^lRYSHKmeD(N%XTBry^O`#vHKKL(g3)}&piKKlK0}T$o_%HUeo|H&sMuFxt7!eo@ z1HFJWtss_}<%HyO%iYlh8~<_P*I94{7aG2*W~?%1RAhO!X9G#J`tvoOqksU z;7+TZb#UU2G=nzePlnI zzZY<(ye$wnB;QDG%sBYf(N6H0omzDbLNqWSeyH8_NYu_Ljp{Efu%FPVZII8j8gQYB zQbu`yx)pd|B>~U=85WwPq&~z!e;{Vf^e_LI9j7<0BsM?y^cCg&?`7+lu@)SE0T;~N z?8OHbt4HgvGlXv4$dxp%n0n-BN`*ZOhAjswdQ&T>Sv2)B1 zp3FTRNOy*CAqMh59Z9JlJSg5#@&8~AijYj;%+&84RMh9#Rku-8# zA1lM!Ss%n6IrYA+-cbMgdN~(w91|Qc;xTs7OkIS{O#VI)z^_$6I@nZx8Je5>Ajv{C z*`mxG8I*=B;NIKz_*&tcd3(AdA%f%sBgC~m^>XA7j`c?VV{>YKRfg{T9MF{YkLpP8 z!EsUz4?^1EMQ!rl4w}W-rM6>EEiTfu`5uY0)WXBW_U1lZMI&E293s>B<*2243Rmlq z*>W*kg_>&9mTt?%IG?Q&;cOD)S*1hsmcAD8nP>h_$hw7Zi)%_o94?=X7800+!_Uv+HJ# zXdyz;ec7@x^aLT-ftB)wg~DG3kE7X|{y_i2MmrN!AO`+s)oIQwvw({kCNKJahIR@p z08gaz(?&hGuX<8Vnn2RVaG4nC0wU_R9DMbl{S*f1gqp&#LIyd$ks}`g{^I^&KM0)V z|GB059C>sO%wbiujEU>X0GYUI6BfqxzE(CT3v%#I{vq##e|tHfn1$Ol*^%@51?6bi z@2emNF{_j}=2DiM^bd~c}r$Nhxk@)PF( zc)u`j0ekXaNh&dNxq;0ahnj^3phrqR;S})06TUy8CIOXegy4QE;y7~UP2s-uBCdQ_ zCHl%TnzBB)isHo?xCg%gIyS45Y#UlIC+#|39$D#6M_ai++SgT`+lx=%kH4V zoX>On7l_`?e6$B%Noet+9rdK_GHkVWgohMJ$J7r3`PT9Q2m_-)bUS*COXfHFFRb}hokgOLFm}I)|_P}8*-@ugcl(QqkUXz4}WBIj#)Vc zlFvy8NQ()6Ay9rj^%84i8z)*|-JJi^C7bXP=)3G5Dq}X-9UtL#W%2#Qhi)DB2*oA_ zA<1crzI~ycQJ)+`;zs&alo)WtM$*RcjyNo2u9aX5Hd?6+p&$nvNQkWmCP{yElC`sZ zIsXECZf&)S*mj6vkJgtv1spsIWozz~{2Az;aD(WO5qr!jT|Ku|(f=;JA*xuntyK8l z#VNqrV=VRz&?k)*!8iTMRxZQV6F25e=QN1EK{i!J>X*qSS>BXZ=jvgOBtPyX;gD@R z%_pZ8$mOLEmU*K#8dsavS;U)O6Y(iXp=N0Ibbeniieye_u2#Lo64QlsTqE4b;aDg_ z{gU=Kb%@mHb+xG=C?4t#$REq!{BS~Ufb1Q*9pgrd!()av%u0_bKuX;sdXba}h(tob zlh(mnWvbup;a3IrF)MeFCI+(qXnH0{p?gYm>M*i&mUFW2oo!KpVNgxoH*r5Y3rE7o zD~Vv72ALT-tnXyU8{^;_qK&Xtbj%ZyAPzsDcnm43?dY1W5|{!-M?Q$$es4)J^#~SE z@?voTN_%&KJh2|oA7y4tFikT3QZh{1lF_Nd-3W!jT4l*6@rD7j5y37QMw=N#(wT=A zR{G%Q;3@`w4w_!1{{`2!m#72c*rbwzb}gz7`BjU|ol&xr9MC`}lEVld6jwSsDIcu$ zgG0y?o=&6_8AuL^M5J2uTaIWr>OKR&W+O$ZnQ#k?!jB%dqj~m;#WJHpL9XnWH2)j! z7k1sn)Zs;qp^KhI+EN|nuI0&^RXF_sE*0uNNra%UlumLwYqwL2Vlk!De@WdC)(|^c z;02Qa&5>X6&@5YdAd}q`vV726Ash?j2Wd@ur20G^7=ja31GrUagT19Tbu_q?@6zq0 zAveVHk!TE#%;*9)vTl9!5ER!<9SQ}G?Vr?6ROT@nwX08vUDO=?@vZ*&Gi`~ch$38B z{2bFRESk4utz6g?HB4P^6qP>QvW9)0?jXb8ApscquiY}{2^ZXpr@OET-Jf&nZ3remBWZBI*qFc+*g0CGYB z6&TYC)*W@&ZQ?pd6MzY`sYrAjw}3ux6B{jrfT1n#` z#6cGU?$xvem(XpslnY||cvPfKj!`WFRK-3G%TSgGnP7UNt!@OUPhSU9(t9JLAh{Jj z?~XG3Dsm@3{bdw?ybfYql7`We&~N#ASl-th`KU6jO6`mGY(?_s@7=_7=C$-^NEG=h zd(l2Q|NkmQ5&z3_l>VnzPO*HH`X$aR3|9olH||lq9)SB`-w5eRZs$_E?4O2ywKA+U z9Aa(O|EBmD4msh(20`Eok`}y+Fkedt3GKEX_7l`760zKE{Ah-Ns}378RX0NWnWFmj zDBH($>E6>kcl!CelndqfZ@W-F;WH-5kmFFs22s`A*~)ltuJe}m9lM;FWv~6Ox!ge= zKF~`Y=D-zJ1t(Gv1ofo1>C#xM9T(%&@ZZf&&(6DLl~ZBSp$1%9oG3NS=8W5AW2$m&}R#_V45jOb#?Z__GS$SB7eRr%lgrp^)Q zFB7(p6reu!Cyo%A6Q6v(J*m8^5lJXrk*~RW5&f-oK5t<|bvpVkJSl&+8Xm+jfF?iWo!a zn7*`xEu zVN+!GWg1u1cbsIIG?=%D9CH?lAD);`87QAjJ0!GsGic3~B77JL);|mIMt$1novWSX zsw3ft=eTWqi@xePvkO6*iHhq9URu;-T4ctA5$qr)NCBceSCAJbAJEAaHlVtacZYO8&H@g>wavg02dIus#!Jr7~&5+I_Q+6x*IWgOSvc-tVUsDH~N*#Y^kggFR znu%bRows!P1n$G|^YRR>JURq#9R4l3dRTLn0dcSE5k!I@nGv%gylej&lWI&X*I1MX zY0z}%SZ-W_RuCZiPd@4>aueP)mt#!MO0lRhoEebPq~VYM`vn|SXQQ=Ly1j)3wutXw z50xYe7-L+oB1&6UaLO-vEw_S@?*Z5zW7$J)mGj{kejye%xV^Ncd6%ll{X3`GfzcJ& zqS7!?EF*P&%1gA^GX>KCvO(%w`@Bu=!uuk~u!LRC7A2$bnXP)SSVU^hr_&&+3LpgoYlootTP*sm(`e4?pd zb$>TwAU>+@Zo}t~Y5)G%6F#yGbqIdzl@t=ILxx^U{xGzPSfr&D+orJ$A|L&B$4w@1@B3Jdf7 z_NkeBgl?Zol{POu%~Y~yln#2ifR)F{aKAo^-Op4xhxfFPtGASJq|bHO(N;Z?+vJ<5 zIO4!RZ@_FBFXZ-NF3=RyT3dc9y)L%?S+n*n*8EZ9FgePl@F?URSnDb|Bkgo1e zVy%s~bYxU7JZ@q*Kt_8v#n=X4o}!kB&W5KO($#vf>-3Z@5d`l8UzvyBjSo)+zFIA~ z-*T3zv;iZFNSbGPK#jZ3nJ6J)eD~^AL0)=!K#cqDK>}}@fVqwB#_`0-wO9V zp=r*_o+aO0OKDC0hyoGr0db{h{mX}9C{DJM2s#O+-+^_2j~tyaFU_}7qMiT<1Ch~>2-|!v`||D z50qQY)s5$Ta7(b#Hs@!TmlzOnif6hL-%&*ZAN2*(6;4ZF6k5;Ey>%uIZFvMTVXEZ@ z1(dmS8a)uoZ%)X#?L{R>HJ)h3dJ}8H?4t>6)TItir z)1<1qxjy?XHelVu*W*dNPME$;u{|eZ@47SPU^gKF$hs|8RC@ScSxnRO`2r%mRjsbi z%WW3Z!M(}eU*G3T8(dXM2O87 z4Q-IRHdLxw?-K$WJZWaUQbaKcf+~gS^NAZNX4ts5O6vQP{OaR(M7tY&4|_%uRQ~l@ zS!=mz0@xdHOI;E)8=PnlgG4MkIAY6ZXFx0KwMbd`a((+t>Sw&~Thd3v0c3?deV=R6 z$c#P@w#N;|7MJOAr99I}b#h@OD=ox6)s?-+c0BcIZqaA#Gt1u?cZrhw8h!<`9jtTJ8kw)Wbe$#T zFV`~=)aaPjX>P; zYVpN%I4Xb4>u^6&WVqVj2btrQ5c1EGyp4P(QwwDIug8=W9;{;uGW>ys_4!#-OdYL7N5G3rw~@a<-dNTP3ousaWEfkzgI?MJhsYzT@~K8Ry#g4t|#aqi!5&*v8S)K53nqoBZF+B5Yb&!aF}J)5G5XF zyQHi-dNu#$Rr4=(ctDkcb@M7-{C|7{+e=1-5wEYksn%BjXjU86mj)?s$RSV zb@0F1ygHC~t!4Y1{8*1EoXAt-*YULN4y#o=j*tB6wM_kw{IWzU-CQdMdPsM!CG46B)4z&Sx{-P zv=zRPCs87z!8=&&pPITJ{&gRMAb#9RW*^2+0@7X(`*i*S%yC_J;yO^26#0?&?`9+W z`6$jk6Zd?WM5l<~-salY{U!`g! zk$ak8mL}Zpj4S$^6`j#!y2=+UkAH6AOXDp6-=hY;qXiryJRC^DX{8ee6u>D`3f$4A zR1nF?AaZEKS3ZLPhsqB#eK7R*#6G835uU-c-iN1Tm(@n%Ae#&wDqkJbzk76 zfLKcvul_yK)&3>4C|?097MM0gyRi3s@Ugg~RnrSDAUdevJD=b9>t%l3dRM0zCzKLr*CmdCR8FkQ5bv>Cp$_ zJ>&lQYoE#Q(sBRn6b{$vnD7j!e`FI+fVd`zO~7h zI2iBFBqPVNzE$;iyeKy8)I70HrO-R|ReAX?k66tbq6C(}O&ujdtEfn0k-7!mij8b; z%zdjkugLreeS&4xT#+Kn0zwpr*=J$(3*Xc{A&UZ16po?@9yT3MCU`TJJF>xzuv0}M0rDWb9?1De1B!K_p`57S@1v>uaMr={!1bx-&V zCws+_U&AorW*X9{d+atrG4@2Xy)zi^*6ly7|?sI`SuHpVtFYB zQ=Io(U6{bxu*RBmi`C_mp&@!yczK!=s%7h9m?oyiw8jP&h1><_pTE2|!u*|OswSJ+ zeO)7>#TZH%M4hWDuMU-E(Gtp@Xn&CjTL8c9593Ah$*jT-dXyhvV%MB(cSmC&g_O~YN%HR)A!2q%@DR51^*nIAJ z4~ott2qgnkNY_C@IK#WxuXe1W(umg-o$?Qv)bt5MOb^S|MoB1c=XoMvgnZ9Y_U+2T)l zlRN!Z8xx((_BtqTGS7UpFy^(@`@q%w;cuPYvL$!_^iKPu==IgdXk@O!DvtVmJ>v~mZnjbN2#EsO z>l450v-HdhG$?xIHYTnmVFPmjTf}r^A0-P`_X;+F-Ajht-S6%W8s8dkWLHg>-Gj0g zg-1Qq2H8L#`V3FiZ3cr4sJbJ$%k^`d?jF%jlbi+_*&bMWK!rr ztt4zA@P<$|IxrTHF>KPm40K9cTAJt-G?FAbT?2W; z^=$$%4hFdTRv`?(Kd z5P2c=bFBG@zA=m&hb8FKZPN^V-tx;rky>*9#QwNRGdrRm+pupu_l z2lzThzo&UWSTU@wB}uF@ttv&_lW_-9gI=z&6zrde1C$^RRp-3Z4?6Xd( zV+&yvSX_C+9b%Fm+SG%qTC5(36*S}aI2YHH4;P9!T-7nHEi3D&>FJpT`pLr_)t=lO z!Pxw90uCWkO#gdBG38tR1&i>N-`QHG(xwPVi(ep3JWKjJDwnc}L5j2#$Wn~c)CwwTU7Y*wb+rvCq zkmE1Xd*P=@pIfy=H}9?-@Ie9)iU`Nmmv6r`eX;trifjd!@)ae?l9*JoJ&~>R>8X_D zxV4Mp&rH)vpwmC<*SR7_9guV4R?9;=5rTx9^RnNL@-kWRV5U#TZ6mnn;H*j74Q;4; zmnx`ic7rJcbBrZmiA;j$V;@#pt1?1FqDV=Q-wHFfMncatEp5aAbCP^g$p43=bBvCx z>$Y%gR*a5q+eybxcWm3XZL?$BPRF)wqhssV``w>spItSoYK+=vVXkLZixExK3{apk(oKCesRFdbb5;;x6|>5{?Adbr#iXD#ns^%U0C^nXUFX$#q|T)grhX_x zt+rLtyN`XuWP1AeifSoG;fxh0tadDuX(SL9GUies7PfhXrxE{MAZyapxqn zw>hlujSuavzO$nA$UF(6@tqj;`3`Eg6IA*90yjgs1m+R+69NCtLqwu3ZUe!*6W(Mm zTnUIb!ko%NO87beyz=l9WOTQYZ;@rY0ZKQqL^+(E(>V$HDxB)S;S{~bInE^@TvLh~ zYe+I|0TiS|!+|9vJ+_d2TCULLQ4}CYMdqSKoPv`yvx3XeifHL9H0$9zcrD&cx~bG@ zCkklsEO6`LT!%z0=+&d|7;vIQ4K)o#QNEG!8|U>H4}4$EPF33tak`@F(Q z9q>XjR8sL=Bgr`PPguH_KSLa+`z%W(>xq0LW~-3#&DjcP`j=DwWDJe^9K>uEHir)P z_Oi~d2*(t&97y+QT|U|%L-Nl^V##)9Z^seN0jOpo25kQL9~_%nav)uHo-vFCb&sWz z4@*-s|Cw|h5upSDGYCU?=W9P^4=Y3KG>W4U1=+gP03=pTe>c|7V=z6pFY-DsFUMoJ zQ+cxZ=H&R|+a*RmveDOf@-zjGf(-_cH^o+k=HO`q zr=wXW&pjA7D;4^M>9IUU=@7Fbw0)Hj_bmLGJ;72PN$iz(yM_qNQv5 z3vBRF{Qh;QgC4y8LjMbA(Hi*v*l=i!F7#)D<>hBt%2}AZD-#^HT|%wHYmE)}mO-FZ zmH#a!C>|9OR`8k{Nj{}&ue)I4R9J)4m;=!L<}{_hlo==j*q2~~Ul0#UTT>6`a)$g{ z^9GL@s-aB*1#mzjCBEk~0v}L6rowheH6LaNu*`^ZJb57fa7T8V?A(w$JE$;m64(%qRPm1Z{nJt7B?m^N{<#_3aWT^E6pbH;Sk;>#2{SMn;^@ zr^CwY3*(B5$e?anhX>ov)|%ggB0k|GCZsMcLgUe7s!2Ej?LCdOT6*^T?7;RV!#8&c z9k57kN7Ic=E+t7Gw;Zpi?>BHFD*gU$<1BSb7PpLYxn-h$k+Dm!BuHtTNNIJ`g#AS8 zee>}RksL{8oM>jX96TS32&T(4l$bSNia1BVqXkQ?`&5N1Hi;oMnh{fN;7t2Oe>Yzb zh22bMJHV&2K$GlG-%WpUr?wZIw>F;-f>OaC9#T~7q4L&d>Zi~c`VVDM`WbQqRXP(G zxW-=!0UryrYlXs2-%&n)vT_a5X*NwviY3v--X16BiSgd(>xth+T&Xg;Goi`lZo>K* z@aOWSYp$ZGEO&dq2!KH&&#Y9eA=L{iu@d6QHIkS{9L;GiZFHQ1#CJ` z>Hd!Cz^lkxuC>pbwV{;;%V=D=5{yyv!WAe9PXvb%*E$l zh?#LgiBMpo151|}XnIcB3^}*ARjCUN1e|9b2DQDfrPVaH%gy0h?sf7A4aF#FzOZ8p z`|iCP-=nJ;!WZ-0Z8%FT*?S`u4P%c|EEiXZ{*`;a&E(H~$w{)?MkDJwpS4Tc_r^08 z@eKBDmO+~5dDtj=u|ExANLsM6^8b_3f^@>Mbz=22L05?8?T*>y;@d)9X9-d{z!W;2 zV{vr;VXdOSq#Z41ExK(bpjA@2EtU|7H0~#KS{QSbq-B;fVFRbCgjHbWz4obS=}9rb zj@0j<5DMZo0)>6=oOPMzfD*5m?#YwE)kw$qbnKV&C9&3=u80uSn{sDS1#Cs%)A2De z=fMX9d&rM`-x4Rxa?ee;H~zXlL{R-C*?(35r2-s7*HW`R>~mDGZ{r@!4(ESGfmretiht8*>iOgN(-$h$ zG3aLszgH8E+T{s1D7*Feid{#kJI=C={HhDn*j|`|PdBx;+UV`JDO)x_joOv~U3O=g zB7LjS8!QzrYjrq2%@XF|LB!nh#y=T$&Mfq|@c^6V=FK67vjqrey}8%vcfZX`t&AJ79#p1+gP^=mXkaIQhg8~OEPqu~-#XFj}`b7$ceO+D;cE9VK9+X903r-)krJFuf z!}Wo2amZK#GBaz1YIcj-UJ;Bz39{JPdHzAL6G`?vHrA*B{7cT+O3cm5?usbeuEx#j z{Nvag|5uV1#UX;>YQWmWCb%mJSfi!zEWuTQ3+o|a$A ze$F{l=)~B~=NHScy9<}bN!wvf{?2NG_%U{dglhB6KxW@UQo?$B{n<+jJ&0oC^6^5_ z!m-qdtj3WoCPSMdLE^j$^G4xfYU+M z(j<@{N_!e@orzRhlcU?$SPy|jG+kAjpU>1CH9-|x+O`!e5c}#tfYrv5@N)7@acS|I z-4LpJ$GG{2sZR$Qe>Y1*Eh)L#{Q9hFSh~VxV;D$6iH;=#CJ^gD-KTjpkcD#a3Vj~U zR(F7%jL0zYXgc^5^(sGhFu|ERY)TJ{yYIqIv{HK~5H{1RnYolm#pwZ$$7a;Lp6FmR zw{907r{^FSiJ)8LmQp{|p-+h&%URzS6u8$O(;rY3M&2hJ7=h@MS-Uldz_e9X*hGdc zSy#^t)_+|l_OccJ976O43=jND1=aW?jqh$th|sMF+DTU1?Xtud+u5u2{2(+KYKZ!??%huj zhB2!tWtTwLz$o9$I+~kqcqgXE4#_Cc%RK^-JKNa&)=bLUD5#jckH2etSRS6o-M~j0VI;#6=u#!!h|SV%l(6$bN4p+u>>XF#B) zGsGBV=3=4tV{H|)f=rrA*G5zZj~%k=dVGDLB9VxT)V$9juP<6MGvxD}pdwM9>)`Vf zIIc(r?D~Z2O4T>#0F|uwn~cdd{qS6vSNgs2ZOthqL`WCGt$MpZY#+gnC$9vlH-8ZX zGeEI`3d=J1PnVc2%wgcaMIT-Ph7Q3_-IwJ8O!`MX2d0`#&vYp%30?FvnHy)G zZ9YN9-fiN2AVWI&^QBw-KxC-IiXoZl4#1jWrG8U;OD#4@{X!U}=v=*RlCZPi>N68! zxXC@)2BD&Mqn+>cIR@ShzpkDqvi-3!SE9+tMg01eWYePLGe!!>+Ek(fD7xZnW1H#j z>yB}tc<35_hw>mpW|*Sg*iCD-KF&~u4Q8jSW&7IcaEvSBSq(&R-oCF9Ad%mY(?1QO7_6BshSP5)kaIq3)-L7{Rleqk?R z1s+n01XIwuWZt0Y34^8{=+MA&ZBqmbh8jqk(IIThnpz2u!)D5Ft|xy3{|RJx`)Y_v zd3-k$j9BLFzMOZl{+_cLJ2}E1iM7LoZ(pbHYrmJ(bfeGNoYb=HabqBAku5*W@_EZ* zS>2k;^Kf_Ao83jbmY01zDoCevG$M?|QV_6*k;@UEBwUKxt(5n@y`78SPd}|=FL>rR zQ&PAj!Sxc6NMFt{1|-~Mc|$Y43s2?YU30!wa#H?fI&;aYkLXN1A+&h-(v~Rv8|A@Y zbhGK*<_RA7$zQ}1v6bS&6&(hE_9H~Gyr6A@cQeMAR!?{kUmx9XNZc!AE%6w-aV%AO z6Szo?uHGx8ZQ%N-B|}1Yt@6>xZP()>{SKKl?bT&d!&k}*dLtp2z|9_pP`LhLQQvYa zVcf5WHM>v8XD40yi2IE|sAm9WK{d@ACk6sLtqHySlaAvmn#79PGAUuES!YTIt8bOA zFG3+BJQL0%$xi;vvsmF9kgYdf0}>X166_--tnm3gvYbe_Mr?Wq+Tail8Tq-ci{1hS zQqo9jP6}IeqT7^#IgQX2NNjCeZgCdstMUmVN!@{dX z-k;w^4qs?{3=&A2JC8Xk6x`(b7UkE$&s_3EY)beE&{x=sE=;VGJ`-ACTxG2EwW(U!m}qNIY}EBtQ(g2Kvo zGkiT9@YFSRl5@5Y=Iopu`?n7+XVf~`XGW1NU=069n4McvjegZS>O&42=s5n5QU`q# zT~Gmw$Kks<(ra+;wxtN7^5nb&cl*X1f0Nkg0TVDxS04mpMryT|I06sCu@FOWEHa^K zaCOx{(u`gOd6|k`3T%Xlp|mPngk0Yy(tUMWE2V?v#A#eEUeJ7e)G%k+VD?>J$S@gu zYXJ7Rk^|S*HAv+Ro0{^qHKETw^p6*R3KMNPZrf)!u%Dlb4&#EnKzRU_j0pCB(AQyX zVDL(xQcK?F;TXV2DGwu}@_CQ55g7^bIKVEj@%`5Dbm7&xvb=(bb#$}32TJz(8PZi= zt>b4;u?*vC!)ld)(NIFweaq>p9MnZ*K>0_rL1Z4im^0`Q1Q8H9X+#Fy8PEFjcFNp* zuf`zu~{ z_aB|t3b0U}s3>$F9HKX<)#KNehYOWj{g?o7keAzpy2{_Zb+nfDnK?5Ej;CRDJzJ>^ z#??3Fv}o{*9IrPL3_Rb|OzHa)1n~u!-OhK!(~ zihM2JxbR;gQ{tG5ypRHvqU_ftZ5nRG3I7a}XpTULKPgq6i(4kSaJIE6{dSgS`dwZL z3XulsTxfno`X#Ylnc`a!0K9f7Tumz9w+CNh#s>*c%zn%Hf; zQ*`B7eirX-FLz_u#1Kd;i1L)nAKO>r+sTleixTLSL{WtXvBE20J@z8XKvjUM zgQdtH)y@B13XMV)4rCP8V|A)2oQixVvpnL;oO}H;??sD>PR0?RYbUE_G_AG0!Bw7> zI%?#q@l(&Fw7NLbXh-uXySL#lsl zfa8f_tz!9Ot>@EFX5_psN|51)hFur71@khfr*lIyiYuDO{NNO}GYnI;K~4+^9J6HI zsC@9hq5|b=GfoS3N-|U&$1UK01G}*uV}Q+YtP|I$emnJ{ode(eZ{bSKfR{nCWm$ej z6V$Tx@aLsg2C3MPuXM|G$<77YZ6Q0~j)CTrXyNaTsJ)HMPklr~{!OBpNcilQyZADA;O@oQ7zFLt61$%_BngX%~mdRL7IjxGXf5Ie!RHL#K!F+jyR- zUcku%)>|eNYdJo`Y9R%wat8owj5cWNt|Rwps+4M*6)>*x-?hF<>l_Z*0~SU^Xg@?f zp03Kk5S^;RjZ!`U(H7Q_v#Y2C6~x2|V&)Xp8Wl!V4{g6YGRdyTBp!PcTv1l0w|DO+ z`z1G=BnlY!USF;JgTd-QvzxSs^%WBGI>=}-ykl~9SL>wqMRKAbSM#ZkWw z<*ssP^rCURliu$2WEy$QOd<;h7LZe{U;_IuAvxN{SWe|cD6 zFQaHMPVUTzTj$y@Lyw`kPieg?#xKgF;R8q|<-jwEN&-j(FHlp)k@&Aiz4BfU9|Ob+ zV4LE~P*r$RG_t_q9s|nQxY!$dEfp|NeWfnJToHcZ%0lew%ZVAd`C%;v#<#oEAYLhb zWKjeO$eF%EHapzP;y!e(_P*q8vyI5@s?_i&nKJ#xMpWf*@W0Mfi-$bpb_FzC|p~NyS;#}cLghjw>;Q~v{{_R?8ZrTwpU2V znjHytxB0Tj$J2Ism%WOpw-q5o+oyb`L#*&QIqjIxV)I2Wnlyp(@YSph^|>vh1=LC!0{`||3GECX}_vQzrKxlbF#vJ?=^99nka^Gu|4C!KEB7;9z_DCGcGNg zK{#5s^uTGOc?~{}QZv8dU>vpbiNKSOS;>P^be@BG74_pc;3@$neTs)U2?knt>v0XyCVJ1#NsEIgvlF?r0Q8|z=G?rqmt&nzY^I?T-t z{8&VSoNxCSC7t7m!gPNNdNkR+h=yoIjIm#nNWSAc`J!g+ zsO5~oWe;A2y0Rw@ZVItcxbl`Jt%`VPmwxBB>+T*cSD}w1;irwL2Eu5tQ(MgUV(25lnH^Yi!5d{FK*9ZS{&Z=3-!Y6$HR(-z=DN<~F0 zu8aObZqxIimHsq&mh_M~?#1lvktg#!;%qya3bm#)ABQqs%Ql`%kT}EGFUvN8-Wf<<^4fvylb77E0QL* zP-DFqb9c7m=RB?Y)#p?;apRd^w?ad(D<_33yl|h~MCA@#iD58sWEAqX`{W$~yekQs zVF}Pb6@$neFt&mbH``+ejf>vc+Nu{~wd$r*IfjiDRL$s|iI_cyrWWC2e+L!U@a{sz zQQvSMFcZ4BqH(C7WRh{M@+!8q1^jZ)f3vBZW|y+x7kcKBcP|);s!9(yIZHClEq__w zm;z1ITFSqT`z*Yaw#J4rSe2Flz+L`Tx2cdO7fNvkfiE68;vR_|9Ndy>xW2VlX|tfb zA}^Y@Ioiovi$4>LC{<7pO`8MU+UI`pwi-cOEVBoD#SGC@f~rpocokL-3!AeM=h+U? zOHaAD>?+$VlJu^qKP;UDbW?eCTAa9Z-AiVBV6+NTlr5B6e0WE`!h7@HkN>rB9`93V zgDWqs1k{epYMU03lXvPANpP3dn2QK*slp*)w6$k%Ns_0g4cFD4xbh#wOCgEr(h|B& zBX*G?+154**;%!=rNNx?bTh0z=%d0$)9UZEY?5@S)mr@XHVt06hkDpOCb1;h zNs5Q9_AIymrxx{LbQ{I%axQ(43Q^w;xr!(br)-^5@q^dpIhM>>zISUiA?lXy-L+ZT zV9qR2sHHW$Q)#k~I#Zyn%Gxn8o(I$|DA$7;EG~5{rgVEy;HU^P7q8+G8m_u-pA()k z-%ZmT@A;y5Sg78usrp)94Fy4(hGhNFO7Hl#D|X5$0<8TOdjlZ z*kUyDMxB?SUrDY#KWh)}xc)$BXIhcZtp93;uk*qK`-i61MsT?-iH7qC?f+32~i zo}d7;=4uKvsEgtG&O}iLTXJ5oK3dJCCsd5YlgzwQ%zz+o;i z5WCgaD+P9UdCtx4oUbaazYv%G#D*Y*t1v2@Wq@6BhU3!Sgi1n2Q={qKLe>PRcEDdC(dYF59kSQaF6F|4B3j^t76g6* zD~2eKj$fVMd&;SD26|wL+Z|l;`8h}gOLmqW0>GEA&EVa$eHn}BXVEbR*h!swaDgSj zQL1fI@BX&Q2Vc#jpLAfuCTAs@qV5jqsea21OTt#3T6qEr%900xg0eZ<5Pv10%=>OW zH*!4z{?b`8242Gz&%x`y)k6;3Zli4AOiv;+lym!H-U+PRE41$)6e7~AMS2*&iGwP@ z?WL^G<3rg&c7Uvtt1Cyy&hIhZ;y^Ze)2KA|(c=NZ^BsMFE~TB|?Dugkkw*!ZOTYJq zFBuon-vEOL4HyBF7NW)A@0O6Fa`+3No(#&yUL4dW-yLk&eCN*L%*Gq1hRHVU)Z&Oiv_STw!EUSC2cZC(5)2n85!6=NoM z;p}4^c+#jWW?>AG>11EC7cQdR7e`>P-c|hx>r%Vkf8@rbZyX@LhWWrnc8eMPGv{LQ zr&HF=Sc_5|xL*|+a$+Xe**=>=qK$A2sjJ(WaajsAok2ur^-p-=yej&5aG!c-W>L!3 zDXL-AfTnZ2BcCa>?%+pPoDi;kdQ@f1_4dv`yQx3^xg*#a4Yj$H2&&izQ^>Z;DDF}< z(jWn&F~0AuuiH3epq%W22|;8o;*W9GY-T{mH(cC7E(L^|0Vw(w4|~7_F%(i#49hL3 zLQ598XtTv>HMYTLfduCFD}=QfOAr;Lb2Ah;QnQN!I-jduDSL~csNKwPv*r43fwE4R zPf|T!kx=cjes4fV$VhaAf)o_j|6gaYX(GR*`QA&Hv|@@yP;rrJTwm9_m$-H3nh|@t z?9QU?S}aNCC$jtufUi~qkG)+)k;j%?e4=}hkKg^9e^xA8M7WCw0FOnVo%Lkdt=g2z zi^sPrP771`w+V)?2@VlfVBseR&JEEf@M`3vS zurdd|Pdux3M(=J~OE_saDhPY)Bd-o$CXq!O6s1~?b9y|J=@C)2Lw$aa8l|8)th+47 z$lRCOnX1999X{OrNB#uWB`>sQv<%re*mxNoEw5d>Xn=5aUxFyJcUM@=oeJ28ByhuPPwIDajxZpI3Fc>Q zG6d@X96a#I#}F<%3~6vdU-`Z^A_;x_L`NlJxCALf5J*lPhJ&04T3`1-U$$6VTECDc zY$v}IU@B&eZh5Hf%h;(LhlPHPb7iSJbn_y5rDEP-3^Kq|$1CWh~ zWibr|TZi z2S`~*a2EK^7dY0>K`d4~c)c1vr5oI*C|{284n`0kB@|X#spF2XrPdLn%RzVR9*?Up zjASk z(-c&MW)=A;GIy5c;EN7w>BM3dua{KTP>?5rw)OK z%yeQ|way-qNZqD`1r3qip~oae>uC7Sfexq--H}gr$5jFS77ghX<;Rb#Hla zftskxEw3r6I`0kQR$y@*Ci#z6WZGhFGZ?jpu&Eod4wc?!!6@4D?*qrrE*QN{tf^jcaP_>QjHc-Ear3dvSD z#QoUa?Esdbr~r{c1!`2uxpA0(Q+W+83l$jcwO>eN4^vO>s{dD64G+uYbvCn@EBnPD z=f((q{h#HvKakc!O3Zlkz|znu4A6fjpPt&?;OcKZtM6980nj5+4HEHo56mBZtaCo5 zSRYQEKlafLR55fs3Kg^5;EF9fciJK6{j|k(kEuH#)9^nT&1FQsmr!g<6UgV*) zLE{x79f`|~U>M@F?oXlPL2I#oY%vyb{$|)0oD5p<>N5w|Udte@Chx!g2f=zz@j^R;ah=8rsIbAp z4KLp314;p15rlSQPwecjGmV(u%zo~5biK?8l8iz8FY24-P6w|tyJ)BBqeW>V!fXG6fF}bpXFDx%-MnOBm#b|gor9yPNqpFIKk zItku8wb)H&7lfnD#PZ4->s~Cuo;`Am0{H3ImG|wR} z5GG068@)Hh_dQD3c>nNmrBGZ@K#`QO%ruHR9U&POwUp~h`pcBD(OYn|dUZgX8;xhd z(g6ISD`ExxBzKjU+kf}+S)kuiLC3C}#sr+oW}@vjd~)b2{s!^zJ&n0N=r2F%@|*?f zM3nNcnqdPF{iBwW_x}_r_4XKqcWY574MeAuQ#@0B&MDbiu1JCa0wDv@CgJ@7Xvso( z@2M`(zy-&obwC$CfxNJ{1^@&W1;4qBPg{F%ulm)|&8d1bzQdXoBmS4>cQ= zOfnMDbJIPqwq?3Q&Sw#x&_7qBkB8rv3Mi8S=>8HUuhp1=JXDQ;BKHjW;=!>C2`TV# ztAz+^IYziaZdFoq^goPzcNb2bx3b%XEcHJK<*&ess?M(NeCVM8;KTK8MqppoyW$~I zzb-gogY8rc+hjx@Ym)_du{g7Es3QE9s0e|jW?&~6SZdbP!SMW!N->*vj#?en`y0Og z8yerVr_U?PXEPk`OzH5-((8wg&4NK;{^mlEA4>r5!_4pW*)_aacfAYCMTO%DMl0Gy%(*?J*a(PV4||20B(9CK??q*MyWi^l9~D>D;TvnMLq$l>&X(5n zv-TFSLp^)x6o+Sg*7;<9$lMWKIw*GY5h0=a0i{;1N%2c~v4(-Ui80Hu%DPj!Y1xC@ z43BnUn{DtUf=dA9AjUqqOrf8#&W4nt8Ov_c`D||@(@F_k(^9|jZLa4hoIiD*bwyef zzT)NkxqPrj++yyl#J*YBCdeseBp)J-a(>B-I-~Q>Il$ERUCJ0P+5$=3qJrQi!9sk6 zTk?%l3)2V6;ERchrDzg-^%oIQHAFXj7;N%} zc7i6*T=nX~0>8_Np1h_!0bnlsYg7+B%1?!5Aqhc$Aa-It2E;v7Ty3Qgf{B2Z#EPW< zJ{d9By^F+T#~`Vs(}qS?(J;q-8dYvf8PsQ+BO1jf+Wjz|x8#o$T4i?koY|QySAX9b z7{KRy$(fS~KNDozlz;w+`WzQZzHSr*)aNXij`CPX*n942;S-r8rXfD}yq-cqVI&wtzlhATKg*tF;M0XVY<^z;J-Y%*rV| z(-%(P%{!xE?bA^qieaj8IUx?qkJG4qd_GUY4|=$X&Pl@! z6__q`3Wkm|0}qIO`=M>p3}Gy%CK72sH(1S4`R0lC%r*a2yd@OLq8Co8jwc*K)={QX zppKXGPjPd}ak^(=y#KUxGsi5!yft(0yzZxO3O%UE!nqEIhc|p?iy;gnu-l;VO>-v- z1hyz4{MXsSfL--7N@Ew~G|#pMmnAqa=wEwhkszU{Ld54fnMx*OyZtK!IRaO<8|6*z zs2%cK_Y(k=y+#qJ@{(=~7H8>_fV&J>cC}9vE80+mRq_Rnn6c( z#ubSpf}OK;TY0l4!M-Zops^hc_YBkt+pQe0pq=OLQkKc&s(t$!SaI|O`@WOl_yrC+ zbqrMG8~A;aLHwKYv@Nxw;`*HvjK792g|^AYn_TT2Xk^OIi7pmvVg8z1a(m$^WIuU% z#siVYQpF))QzQWC`vVoZ9Gshmjqu4Fqm=MMffRxVT&akc?x%!kX)z-_L;y}>v}n0d zv%e56NRbVC=5BO`X?2j>>8U@0w(HfMdLWdk=O{aGenzI&=$tIfMHgJAesnwe2HCD& ziKDx;2ybGqS8byZ!|pBRd)Ihiu8n%~rb0#}77sH824 zhyUs_!13??S=wd{y#LzkZH=t7nx*X^gw?q5FE8R)=ryLEq81K;zRa`<@To&#sLqV{ zN=O&?D!gvpb;xVmVtyYig%L+>NCLLRSpTebPpT;;cm75d+gUvUEE`|SqeR4deTk=V z4NWjbF8*0ZO}!D zO;K0Cl&Dg}Di4WCzYJeUT}LET=ojL%96o{CpAyseMDefygd%M~Kw+5j!G+nAG(1Pq zgbfh_nh^19(5QZmlA-Va8{-bY>Q}lmsTYQH7$}iOlT;d=MYBJgIID`bBJ^N^#4@%H z;%5dug)p|ZcA4jrj!gwmjM7yj)Vngp!4ByTbyfX(5# zkO?CKtB~Vwq;eou4Osg48mLzFe7d?!ZGGB((m@~@JA=NONp5K49|>N@yvM48W-V;y zw&XYR$6=Wup!zJ|ZD6n_#PzRgROZa(=)fB?uD#h!4g`905&~fRgV4jx!zT*_JN)|x zwF>MYAZw^PRrf4t-c&LziRw#M1|K6wsvclAha*Rl_XrfL064404XvngKWh?x%3-O| zSrmI>^*pPr9!T;!l~f$cTLQ!$$TqAdjw`CZkOndC07{q`d}3Y<*KW@blv#4#3^@i8 zO4G8j2CwYfp64ODQm#JR2A{V|R9I#_nPE7c{J=jFX&vEWESqc72q=V2b+t61Fc8Tm zuCP#Geg6DUjM}(UJtPeW0XhW`pS`1%y+x}{>0={wq3mjG zoO!luhxUOJhlO=12MEw2st|1>o=qs`6biZkVH3DXdqn!bSsQ<#rXGN^7ykjDgqn)O zBfWsJO4T!lm;$c7tRYnV(UtE(P3shT@3^r6=+nU6hn`pG^}o%vi>em7d&NDNyQ%e! zxHC$ZRfMLW9`(i}wl*ddWySt1duwImfbIg_z&#*6O z*~vxf!B$TprRkliSt)LvzAAE5H$^JQ5B1hGZFdT@8TR^_O%Ot`(^;i(k2pogOkWV3 zHL$*b@q7}Q-b6({hS5auib~w-ZezJI00=o(EUX<4cd9U~+PfIE4BE_JrZkIFuCYc^ zfC++J7aGi8ST}boh7gmg&o7LWVH9`)AwiXIRG4C};w&lrx^?};+T0}sJt=<`e-G`cYfDD8L z1x^n(A2=JiabIgJfn^@uOuqEob(L#|DkZi@p=#ZBW>bpEkIm|-BdwS*=o&>AI%yh` zJRP`U!B}D!)lyA@hC3{$6Kh&W#h+b*2AZBN#^Q_@ETOc4A3O%}Pf9x%=DH#G4W~QV zepW7dmp|ep-M>dE(-aHn+l3TO+24t_FlQZKE(;@9aQ9*Q-a&c%ElQ)^hfdztWTel7 zdTVnX?%P$c+X&G6IPEClsIBg7k=Ot1$LSQ zI+L}y7(W}pfgn(!FGTHKWKQLlp0wCW888W{9_FAW?6@YftuykMy*E1|rAU!zZ*Ty> zl;fEe>WB_JzUE+y5}gIHwxNFaxLr8-!uVX@G5F z0{P%@mT}R-3mae=YeOON6JFKND2HymBD#^8l6kU`zi;j5qmf;q3xzsNS>`i3p|RE`2!xN@({a}&*vGWB#JvwldU#G3oZ041n?e%6J- z4lICuJ}eo9SmfB&5ew*4a2b5QS#KhFk_N{}0uoceWH1a9&R3-8tk#9+>&=MLY8p`U zgpf!F1r)`S8;Jk`$kwOUC5n^Cm6uc#W&Q%0&q`r(#~LsbtxgE`?VOkkkTck~f9$XQTYZ;F!o`dK3R4g>ziYY#sKuCxb~zkyZ`T<4Old8TK9iqhs&ZGD%RK&#$?` zwlX$f;au1_YbzD?P^40Db4N$1JPWLiN=%H}Zc3(8dP^|3Dh4s1FQYcFa<=m266Ndq zi@hx`5l+mXd3<{-)wIXJcu@#qHeW``JvF#M%1sQQICQ7JNpen2%BwtET%FHqs%~%w zF0egKac6E)^4sv$$nQsjrApcmDoY0diqP5zqggP%wY$=Pj49Bz@g}7)V*>i5a0Ju!J-yOEhejUfADA^seTHlwV?-SzTL7g0vP z2YO%!MNzAaM7a2w!CcTJreDP^e`n&2+be)>x?gT|Hs=lxIw|x;*f}W-@Ft?`NK_(@ zdog+en{vI)Cwmc6cP8(dHo(cmAc+h`b}FPO;1`6drvM^lHb>8ky~M*#3Djkrw^Pf7 zqh+_G2<)lDdP(MbzvUV7|p#x)B(SU z#UNo5_)mS5N6K0b_Q?alMU0bv!7ZHSifg~*$CAV1q7;+_Z;vnKYG#Zp91w$oizFw{ za_n+jk^S&Y78TMo3?CHv&g*<3dQXuL1y-=cg!)S*e9F_&__3T+(hY+9pavDHFBudalaJYK8T!DSpP4dD4S{0?D=>?#-UJcPk z6iO8Itcw$g=-4vCccZWLjtieq-6#iNz6{^E>iZ@rq82pJ`YO{(BEYc*SxZugCVRbUZtHzk zUrgWF&LIU!cyO~wTdb_H;c0K;yZ+)QqR&cfW4W;Qv=Qn4v~NxmC@P7oC19*){OfV} z+BDK|xY`Kv`!1coA2|2_DU?5zc&P|aN2WJQ`T~ucMPCoLwi@F^=q8+^w@a!jMCdVz z(FZW{x#Llk%Gg#51bZ7bstHGwhQ!plgEgr=m66L8?>>$^1+q$`7Ce~iG#Fq^jN@Sb z{I&)%4MWY7ww#4`4c|r~OMABgg1hO@s`M$i0v@`u1jPI?AnUPX>2HK?|2b;?zZ-;9 zp%_qLHZD_2ht5o9ez4I)C={uTI#ID(iBas1ZJC=9y|N__D;uRm zX@)w#q@1N*yXjYFw(zxUfm!nE=cKwry>c@50SJ!++eD%jT*3I|y_u(&LY|w|6*q;k zU<(nOm5i7~a&S*91A3Bp(%+481=ZC+FqZtoCkO;1F&crxPB z!aoKqwLEol0jPeE=eEQTPnG-w#{IAdHcMaay=6iGY5sE@3d8h34$r=r2c(`3N|C9* zNUM+`G3Uk%W=&|jTaNCY5t{9bv#GBgrCnNqu#bd~EMz=od??|+nwaJN-J846v5`b_7qr_qPFUojtIn@3;ORblctLV3%@a!SAIN5pv?=N=eQtX-yI%g zN6OEmK5+1)YW&iI`BZd;;sOBk|Bu9)yqoX1A6GVxoTHgn$g&jC;DI)egJQTm{e{+O zibONZJVdm%ejFRicqeZ}<5n%px3T{EZFuyRUq6&}3BQ=hq%^om-+Om)Ue48uCy8!& zdKkbl$(*Nm@{<)L zf}&FqbCRJB>e1=no5QQ{A9#jnn_X5XQ>f(eyni;GX7P3p!T*6ZRD1`FUXAgY6$C}t zVIodD(o)bv@Q*b5$Ojwxhr_(A(zp*v?>g~qoCx{xwHVATDq$N__02eRPHMua#!^OR+<4Tr_q@BAnN^v3yv2=*H-Sebd6ZBZgJm<_*g0Kc4f_#pN zl>$7*+<|$`FF~Wh;xJ|K%0G1Csefrnp5u|A^_5xv&0A8^(e#)#RC^!PN?=*ladb$k zDd3^YNV4WKC*! zMP}(Xg;7N$P?EI*7Z@J zu2&_gMZMV^6$T=IoR$A z7uUA%dAPTBQiWcJN`@x~zFiteL`B^!$#+eDHVeE%57VFX13>cunF3x5T*2} zpVKkIlsyw$3C5=?khM9=tQURkv@eFqL& zgYJ|ImP0z6nF0fb9PTOIT=P3T=Hl%SqQ1UB&U^#wngwLIQ-yHG?7#G~n46m4FUXe6F;dBffG&q>yskMIz8Z;nNM8im{8N{-wLm(jv z#P(VTyzv`zEX{5NQ6%0^!F(M7V$@_(|JNcj3!?)lc@O+$%T)(xkp=2`qp-5P!CaAh zyc$hQe^zA#2%}ORNihb<$&T+Bd|-UhKRUpO{Lp0ZC^Iq_sdG_XC%oh}qg%|cM~Bj4s$v0umDChtPiM$x&^ zMg>?u%3};YSRd0V^^S+|pKeDE?}Lpn(vZ{j2**G;TmB8If*wsl^oymq)$7O2$)&C< z?3fXU2KX-d^ze{Vw;TnT`D&UsSfResPt!&&cI96M5WQ`R@khJ6c@h4bjxJ--@XMHm zMtdg1mwX|atCib&%guZ%?-QhPY&J>iC!D>nY!6dvTB)wau;EH3IQpPd zZl6y|(7=1%;vE47)?^W}CR5j6fU7-QY`Eq?>W~SkkTm|m*`V<#=I@RE(Fn_T06t?N z<9xex1|gQgC5v}QSN=E}fa_&s3CUtB{6qNkA1L;R2|!lD?C4Nsx->XJ~+2C!|9-g%wVXr&gmw@D}gDiRG_sXOdI* ztq7q7c9nk_A5zD8Ve-WrLj3=^_$+3|+RNE#qYHvj=Slxu&;0^Xr! zkzv+u=aP-Fb9t%1Ijos=@>^Pp^}Q3QSV!BibI9?wzy1n67xnUKv1d_$Cg(T^w4Qu| zPCpXtFW(ZwrG^%Gg^+FIKR++N{kuS$#ZNU_f~JLWdTQwDbWi1VDZ;fTNBj7c_}wJJ zKmVdRYg&3=R2k3v|2FK?7KZ4=5+O5q8Tk%|rb9k3HTeL0f0*0#)?YUsZT~Vx;{+`k zUkf)@wejX0eNy2Q9C)beB}nL)&G<EP1LH+kN zcP_S}WYv-1e+}JKZ@>LXCP!J#4Y~Z}o09@M*J{)zK8MqiLtJWTwr{Y1L6e*5#U+IM z&~pJR9GCYYyeLl72i-L7B2p-tmJAT-mcB(RC)LW-8GP4ss%wa5?>l2GQEyZ$TMbU&3z@o{ zMB48%f+B#YlPR zAQngZl4m29I>cuoCMv(AW>W+{_D6>HdorTPatcc9J5XyUgI7lo_xH1$s>dO--u*`O z!8+_(V3lZLp?YHPXyLmV&>&tIOR6x}iqp8Ajvf(EbwV z<^ARkb-@%`KLZbAlrvOHH1g-5(zy^zba4bAnSW((^8H{Qr5p7`ElV&=pM=ndwcTde za{*IQf+=81+M|&J`vjZ_f@iFmC5!v7t7s>P;Jb@IO7Dt%=jl4V9XCN;1qm8w9KPtm z6K(r6)5ctDZt{GmY08rRtAIu0*&=7C&*^F!N(N2@FN=A4;QjO}(m@>OJlKLZEAOvF zuE3W7gFR4A266Opu|wWx+y_g)!M?F=Y0lS$)=U2ig^m82db!!4@=RA%dt=W~mwsRU z8?Ko2qorxbSh2rr&?L9)&=Ewq(B~H-OYt9K4S`gqV@u2Z z&$h1^i&d17m+BzXs%H+WNA>~X7lX9&x5n3t=>a;?KHLjC+~mm*CpsXZTJ-$DO~~D3nyma@=s{3@l1M6P;d}W2uo@qw6htOXO+xe@ych! zr98HCn3#`r^z;<^Q879La)MzG#h_^85gY-s`SYZ7Ho&*URqh(y-ZdjX)zC2kiJl?udh^@7fhyg9X?k>TOW=#) zWNWn-M~7tu$D6qd0HNie+12WJ@y~}xf{A5S{g)qPsK_a z{1I4#|2aM>vyr+-7n~%R4>}&IA0*`RoEK3A!ttasW_h-*6h0mm7x}d-Yq}^)`$NRW zn0P~}ruZvY_Hgmiyi1YwCA=qISOXZEq{LkKL`VN%gW>Gk@m7bEqyQo*X89$-9T3%m5~Ejuj|Krx;F-guL{}YPCA@#|Zn+!9<^3cgvj_S}_CbyLCl5Vb9yr z;y3fWUAn>_ccw=t-C;1Id=F|l@Cx`bLCibuPEtSn(m$lDDMeN(_~eaB3L`T17?Tke zuX0t+OA#vS(aaZMzx&wR;VLR&z^sbRNMtUBM9Bny$jA9A;a6jt?vs>xTq1R7>OdXePZ*<}91$HcCoQrI*~|lqRe)OOhG>_4j-@Tog#fa}?v|65SQ9^KU`b2Busg_B4FfIXFP2Szd&_w?3 z{cs<@702j@F6IJOc>CyTy+TmncVxC*3$FNLmL|W_|$35iUU29;Ugll;(M7mFask&)SjI5H3z{cBHeV$N-eNE6%}8 z5|<|%-mHDv**}g*-_c}4%w>WH&cxwmZy_BjbY|E%>aD+BNCrN(Y;WEU_%0py;y9em zSzZ5vJ*3qn>-EZ`e-cNXkr->3u^X(V?7b&hu@mMuu;;E%bkderPi5Fo8(ueRR}8#d zx!7-_K!sZ>(dZ3aJ*NUFB6D9DACy(7JCIBSL-RS3J8$gGd5Tix{U?sc!(A1?wxZAN zJOM~5G-XFK#}8KdK|G?D6f%TC>6hCXyd7U_piSt_Oy{2KnP}N=5{CM zp>B_okJg6W*YMIm@?3aF-`_~wLNgZ`_ymL6s2$Ipl*KcqS5hzdNq_!pL5+iKw_dq^ zhN4#dTl?L4g&!Ak8vf57)2QS&dMp@ z6G*8-2sbXrWOUwQ}b9XI(u8Z7n<5D>^l#1>{r}zM;KhH{>rNrJqAsCS* zYm<=MkEO;nr_0_@3`}0@m!ZJ`g&_gb?Y0gdKMn3IAsz&h-bQgq7hbZpI+Je_);jI} z0&UNhXQ#w_RSYd1nUb&95SSV>8#a7o$${Sf1@bY_yw4?50!UF4Y!t4j0GEBwcxNveT{vcRp7Ga9+R~WqHsR+8RM-_=xo^yvcCz>lW=lWnOy4Eyc?T$003BG?S1$O+q*^fGUWxl8 zX00Lr$0bxz=AHdS)yejuQfVUVRg44?UN|+HV7NVMLf7O*)?aSw&9`3m)aqO!@Q4+4 zyQ{_ZbP!rS5w@M3$|VKg))sdgV{<58Y5Fq%MMup)n*)`Q+lYkNmZxl! zyd3oj)QJ-QJ-;Sm8yM+|-@6SK`)-vLs`sItFNYhjTPh0zu|kgA&U#qBZ_6}|9Wj`mB$a8_U$b7_NXEG5}0%OI)kr7^P}Xyiur?2`cC zx+hR(`I*Ok=fS&v09k(i$R_Q1@82~~nN`WB_F^#SV7JMs`o`h__7HcT)8UYO0r>s3 z&M6!arTDLHY^yJyUK;|JhB9UcEe|>)$AsNOi=*^J|M(c=Aj_SdhdESk0}~uZbIo=7 z-vWJ~5{^Id|B$8Y^tzI!JQB1)|3n7P^9$L04zP>o$oz(m9+AX)*RGg~gjcQU^(GCN z3|#*H)!d$*j#-ze?Y~8V^I-K!)sbup&|Y#O*HL{0uxA68ZtJou%~R^}Y>u6@u7k)o9N~`%iaYH%20aYyYkYPbT5p?Ithr?f&-ffbYm*H@ zJFHAukl^k55W-;J@fN>czd^hZw$tTo)IeN_wZCrvtp9KV-hL$nP{7-7w|E-u57@Yx zeQF~o9Dx)zsSAd1yzE$GE{s|+tTE2iU#0}F$xX-1iE5c!5ug(*qYl4??9XH1A8FJ_Bu+}o z?ggi`KTZ`8bpQMb{EzjiDie|3-|NY&`by*rWAu0zxKEo(qf+quc*`he3EU!nXA}O+ zKH6tmZ<|j0f)zk_Lh8S#-BnER50-O8i#00uK=fRh-dwAuDNt6Gm$^b;GoU6Sat6aY zZ>!tR;pr9_dC4jA?;^7oQF~P+ZQ~K09=xG^wbOp6h-qP|Pt-Q9d;8CZi5?}gHqR%6 zb8!fd|Er}413O4!?ewdiV&=reWetF4g=}wG*SBzFAHhrGF`?YWv;V}|__vHLbD`p9 zl>;daG7TJ3>xZyjH<44%B5jNXmbaS}Np=3kpw9kPX2`t<5-A6aoD7PgJg*fT?=r-gbf!>^dC7ONZ^E{kQ zm5o0bydiOvhCMKBT$b9a9f~?zir)atIZrj5cNBFsqSoQ?lCowC6O!1xLoAPi>xVka z$TdGrozM&&llvHTRpQJO8b#N!C_gphTlLz68ul(Bq_Vy0uDeHIgHGiAm5g`X$K*f( zgH@?AOG%Z~FFjU|*@W$ZP}aGwg(wvrhoW;O+@UHAV}?G9 z8eY8gstjJ-gvZGkr4{;ZXNi7e=p}@9dr>tM57I(1hcO^^#Tmx$Im%sN=5GBeP z65=FiCy!F$il=vNcis14@Bkt~lS!QBR}<0>f#D(m#(h+u?}?4&aEOA(nE3{T)@Qdg(ztUhWdt3 z@b4g65Tp2gY_$f7%l?sdm!M((ROH-r<;+iV+sB`bN*SOMQtr|s+M`Ic^JGDXN;$Bt zp&}Un>m2^TDD-yvd5$!OA=HVzmu=O2&6F`HPLM2ABNT*MxqV#^`RUEUvpcz4+UwG_eJ^vT zDSjC(^?#u0(_PsU;`Nf1HiSw0d*!1II>jH7-?PnBOJaPi)rT%UnV-DY-w*@K`*WvI zZSbpdiuEa6gk)0+vM8RQkV7d{`N~OL-sJvV+&tu_|4V9Y&@yu)v7G*@y~fdO5m5h? zO^1$##xM-IX6?(9Td@qWoBT8=crJR>cuN4KhexoSE<@pzYCaE;i?Qy=gQG`>be+uN zN_s|le{QHT&438VTfONkl;-Pf1uq3{kGJ7IVXCWXk1;2F`)*&8AR>;o9^jnqokuf& z=#H~q^b-K=TBQJ~F8MmlU?gjRE?Mvil@B`inMg%oUv=)AKq+` zHA_D?6K>3^9VkTVe-)18MEeG)nQ?Z{rXUv#5lRnb=VQej!D(lBT)qO~nSICIt6yBQ z4h~Kj5X}^MKmOu^H%?*T%9H=KMuT#|I_#^u>k7NYAp+9lWRFbmwk*J%^r$Q@1qPW7 zG6_IS8>gBpn>em{{wmjOcpUca5Cg+--x4vAViSY+sdu#Y#!Sh5^J&?9Vq>@dtG?}~ zIrF+!C?Gg|++bUX`O;79JvC^i9MpcE6vCkil+MMD%oToC_--1S4S4twy_wCG<6VcV zd=q2!qRRg&6mjlJ^}9>(vz~@la)aAFUi?Yk*A=J5Zv$TxE2G@1b!?Ai5%lU_6d-j> zd|8+;NzkWaPtX`0+=on*tDD-kC|e0K4%m;q6LeU#y9Rm(2w*u90Spw~$R+0b0Aw)g z7uX?F&fa+Vg4c7a>%5wucK4o`u#<>+vKp|cTsFU@iDP5XprHKHA664fjtjWCWG?g6nprySM0ol;YO)u0G?Aw%epqW6I;Y zaA3COZZFFEl@0+-T~rj5&{!_^X`X}7*p}1M|4&0#4rW|B(Z$e&{qU|c=-G-z1H=Na z(6Y=t~Sc~4OHu}4M()tk)s3~;3 zsPrO`=%!4_e8xvQ;_VR#2hJ{eq?;vIh&AFS^3XC>&q}*9@YSvEmzs? z?-OF(S+E9%13*ahND|3k(MhH`fB&0GLWWx^xO z(`#J+3GGqQY`vKi1=b_H_&`Op5%bm)XS7riK(P(_N|i1@9wg~bmkJr*suQp+(rB#FKjROmRRnM*ZyT=B_cU|sOx;Y|H0jOin5-)M3f?obqsw3w*WyUyW; z`r|M5W@KD@{>k}V`KgrI7KRy8``lGQ@5`wXl z+$Ii-Fi@YEaMTlI?l=Vw^o;5)N0fk7E>Kr+x!dBQ0=qzYsW^i_6_8Mx|CK9Np(xl~ zMtj)`EoYY&2P^eQ2-cOYg!GE0@0-srN=_#BIn4Vn68Y~Fk7j+20r>+Ov7`X+hn_+Z z_Rk*^nYI+*v%;~>V?l0Fu)Olu-PlA7_o%a$k^bQx9VSWKLhI;KT&H1Q8LWYTf?jXS zfW#?x_rxr^UW=s~u^|nP>+{f7ceref7%|Cq%(jZYoMWiAJ{ZXt=HB7Mwq4s;HqGhG zL~9~XzHeuTA|P|ifRjmNdr(2T?}rZ4dh6~ z%F38~LQL4xMj@%=LQ|HZ9eU|tR|{f}0(fcW-{cv5j26%50cGdiN(JUI((F#fqkY>AA+V=WnT$$@PcdG8aV>i99T?lBi? z46@QoOHzDO;Iz+Q_Ws=Fko(&(_6-NO79c!qBEi_$N01xa)D};G;k&$y6!rsbFm1RB z3T9ZRDj>SauVohOy1#?g0ZfhNHUJij1i)e&TYsYXREDo%Hh%UC_&Jyu4 zeW8cOEe}@|{pm-!DPq%sJ{Wu~5pfY4nvNhe^Djv`#DXmod&ai1BVbx!u=s&R4MDs9 z32kxU;0PX@d}J0^qpAG$XK+K2jiVfJaZhe6*9v5oMiucz#CqlMJ&nIS=@SnR_sbI+2B&%fzC+D|Vr0ZG z<%Gc?(tu;A58GpWO(16<5>#qtAln{ts;sYKuK0k+Bj;NVq!PrY$Lh#PAMJ7xw(Zb+*h#9Pc)n? z`p)i|2^O?;Jz9)X(JAyHb|#ZOJ4n}L_aAC6r^{9p@A74~71C3`(Big?afRzvRMv|= z+cr&8=GDq?5V4SjE#7n-OXCqEZBfaih_j1wS43!xfe$y4kliW);Czux2wN%gubK4U z(BECz_TBsDZI)pDsYXmQ@CYU#_93kx2(oAk$q>E_KTkW4HcK7X#abW#wybME(R96_ zT?hc>waaX2iX(6>zBYkdUmmbQ&|oipePAUb&D>m7j>Z4|I!>d@awotsgbjsO*1!VJK(679a@D) z4OK%9)^Y;3tDYh|<^q?EKnZQMo>p{x4;UJ-ji=FqO7(a`!9_-S=u7XtN zMY>@o8iD!@BK^?7Na?h=GY}^HzsVk55PySG6WMd0oacIfdar)McW(6!(SVlB&MOM) zU(W;87=-%;4R~?6Lo6z->zoK~l`p^IrlqsyE_?A&`^`IsY!zbu)X$Pol|5ZJJ~Jq4 znJ-Qa{k`xD(1EZy#k&!-VR}~LZq7BSUSryhUQd|asOhFv#%^KLGs}j`ob>}?9I!P+ zj@Mu3WP>wXX+qeX7yl67$c)j&&y5;rlL0++EDPq3^d91BjI=H7?}_W7{FGa3BWD7* zuRF;^h5LQkRpR+*Cr$>!Gs>3h7roSJZ1b@fP6=%ngHFooe}g-;i5^eQbCWval4-5i zp~J2_u2tG$C9rXF1YhziDWeS@p|o*$&)r4iRzkhO4|@l}BGoe4eX>_&)$PPvbW(q= z-X#+_qn5$;1phlcG(oF1JJ^byEe$WY{B7FEM<>{uOmIXaqvcf~W6qZgZrLWf4gV6f z3?#9aI? zel(fErDZpLkzt05JNiV1T{WAl>S5?$Hxi{dxl;nFmTcRjarG-dF7Z)V))P{qk8?Ef zrhS`0O)xVyoaWP4OpFK;z}%}%a1G__AitUMFVv+~RKkbFEg`_N9YgPfnXN~)B`RSy z&#@u|!ecptGXMm5F7{0dQCO8_ZC(cpx(-J}P^{ zli3^U#vKOjB#}{-RSz?fB#;7KzFqNmi5ua7b?){{jmsbv$UAS04=QXZr>4sd+#r*W zq+u}a5O?n*h4oj|0Tvp z;apy-NL_ILV-twTCk`!0qk9?AfrZ%-r&oPs23AQ+$rDr6GLSq2zWrcqBTqWg)vO!R zaAzON@{tWql-vYEqF?1w4F-xZiZLyDX#*y1M31*JL_^?3KsH86Oh+$T5yYKKH}YPx zqfmv7Lwr2Msf~x&T1do-3|0l|&zDnRxu`keUzRHWee!2Ou}c8|MViL%qrwtB5u_2^ z^wsz2&QPm+xZ1A`MjH6sk7Kg>($=qt!}aJKnoy6YfiN-5F^WD4n!T+xd z6;w%pb;12RkChseC<-0YD05D-lNj2)gl>}!#S)$-6v={YJ913XK`A6smUsw;1Z*9V z?G92er7w5svf8eaNH{knC$S)(gkhay?N;Y>r6#(Rv$IrOUdldW(KG}NshF^})xPC{ zcBaCG<`fsu*zTqbe%K~acwJ8SyNwXS{#2pR+*z%)S3Zvua5tHg(hGXa#R4DdN9R6< zqM(17j)csZz07SvjZfG|^LU(7fNO-{Gkz<+>6o%$N`ND2gmGBnp2T*GB8?<&DHzK6 z@zck*uKppDj*2$5wLXmhRtGK* zIq9GPf6m4y5vi;$u2)Rs;Zg=V8k7@WO{nFs56kewf%G*G%xkBRCA0)!wj(80|An!1 zG+(BB8^#+fg@+k&D5-1IrZ4Iae=Yo>b6)WJbRBIL!XMNTJq3A_xHW;8`(~Q!HWcl8j%HapP z$16gs-;9cfZ1^Zy$72rEf(7@a<>KPUvm^sD-vlkWc80P|Ve@8u&_+&`W=(=ZLA{A1 zEZlH@;OfX8{u)C5y@?@jb9B)%14OS0g~rOg^kyx4qkX|Z+TUUDpF?!J$@LrdrU?+m z0j^1hBeB`xwQK_km5d?-8&iY3@deFSS+OvC*S%$V zSoEm{$B#LJFhmMX{HPqH$;#4Txe~9pYqJ0lbaF$UO;`K1x>`xB9=6& zXcSGu&47ElA)gasYnoVX?Z}+?HPBlzw3YCSGOjPgF8!SlwSYL{PYA#H;D93dZbrGy z!0W-&b(w;UmqU7a^M(aFtP(ysW6L5~Twcr)=%&9_U4J;aRxQ~LO2E>u)?srcPF&hzw?DW~NgAQ*3{Y7X(Gkn$`mbJ^3@usujIfD`rcI~&P`%YC_s|9;|Ww7$)QE~)I{ZgSEc z#Wgi%MAc$cnJ=9a&m{UV+>4WF)*V1o`oHN(@m5+54GGw4SGlWuqks@^k=Y6``mpxJQMEN1Q!g-cEqKZglIn*TUsn4qf#V$4BVU* zG8>0ti#jD{MWuWDNM`p9qZM*T*9fSlh2PZR{TDbz0G|EoyqquFWRUVi7SW z3n^ff3eo;N#UXCJ@%?TwBrl5TDJ6!(bKX(lYNMVds|<1wn;GHlct!&=+4$#yZh^Ag z?;VJCUF4+mANn`;|Clw3(j6dXJ>cL?l3rfxtB4^)Fwc4|{EpdI^S&B_{$-*-P6-Mc z0sDxwh4On_2YcMNVka>#AbE*$uBHTm&-)IRUky8XDJI{*XMg(u^Z5`4&#LKh;od_S z|Bl2eNNt)3zWud$8};|LD=h|MC|SHy7ZsX(NxETgE#$s=oK$aV8^q(LPNU3L4pBla zT+rHZVwp7>tEU5zvGzfm;ps#lG4(8M@kD_} z7SeKcP=L(a&odd5Qh=%zA&{MB{EtB5v70kaOjja*J$mW~DKyxx5?7OMs3cU`Usc=L z_8?>~Ra5}W@q<_Px-y&)BCOoNi9UNl2=5GoUEC0@)N4N}M@Bp zlp%K2zcl#D!Z*)EeHXh7*eSp>^0NG^u&FXY;r2H}TkU@OM@Ca*aT{BGM} zcK#{SG{3@RfvfK9bujlLYd9bMkw^ftg>rpCl! zCqnq=gsiMu$}Nfh<}m1 z+}R!ehCdJ3P4PYHfbr7(=Y7~W+pW;KyFlvZ?N3<^%L+L#%|vb`^aF;@DTJnhI8E(x z&c-N>`u;PncX{CYF@lcpY*4_vsro9)&CVpI^O!hPLYPP?U#ERoKySJ6}KY7?>?FE14j;jLKFL z{P@>FG%IPpv1HdeV*Bw9G1$3en^oQvm1|3^DXNEc%xVo626CEu^+MM-&qHC?-0y;ku)6%x^tXqrntZ7EIXlB7dM5+7z^@w+CK zdzl-!uUBL{OjCbL?7wOM1{S(|p}%X>GsURZg1S^_%m-8A3=wHY=Rj`U;$Y^2Ne9_l z;u$;TF}aH_qOc#J9`D@7aZgKfe3uTOmNV)WG?s~Z^#E?5rca!Do~`qZkVD)ohl=!J zUfD|r7S4YvY8oZru6`4R1jyTGXZe!KTJ@fd-5tWUj3C*7cz9Uof+wLC5I7Kt7bQxSakKnyfCNYzN!yC;%=f<|XVG;}7JskdpH!6FTDjVUl&Y%xY3U6s z?OX@NUAH6aP_q*<1|;$-JNZ3On@I51+3GfTbf_qdJI?cxH$5!Nx#X*z+nHa1+wdh$ zUw(q8AF7HUUt)_Sc#yw-g4bd zIH5Zg9#JXc*d+AaJgdI-Ql^>z9Hogqc79<)1X3&%# z1gVZ3r$;qMj>T|7KcqFOY;Rdo3H>LWu3Yd@AdooU+6+)4Zu9?8u=8iL1=cs}J4 zZp-r?pEgSzg7*Unc_*>9b|ekhRk_J%4gtayE^i)$6jXB3%rnJ#>j9H*T*=WAb9sun zwv2>29?wuKv}lLh!EthP=l%Y*mCNA1YsMvT43oi?=~M}*9Wdom5v-Y%2#=vMF#Rc)z=eule%j7H7!o1C5 zka#AdTNK9}RcBrpg}K9xlD&PoajdE&OM^9NImzB$R$I3&2<2qk8=KI*XlMx-XB@Ax zFh2GD*<(11{^fHdKfy>Ec8e(_Pm70a7=?fil2x_QxDkm|3d*)o5%REz^I{nr^{~ZZ zF3Du51Jc)7Ui65xvlaL7!1-Hu0xKh-JBT5|YR9@U2kx}yUrdjGXe*GI*Bx)8A($fBM*NhD zT=GM};rCDmi-d&D5dbRb{gf|Jdx(c2NQ7ehDYY_i$NFP@#&C2OQ~#F_1>h24FQX(R z^%I3}a6N+0Z(ayIOa&5b_A=u{0xdhpVOOv*JCqPf-w}tk(*V`%r(TtG*SY}B3UW34 zXvslx2Y)+V?i~x!XiGPY65xm7ZZ|0Mr(mp?Y*YF;FkYhHsZw4k%lM%~NvkG01q-e* z6u>TIFCX!Fn3u|C^Ohu$mPn2ACh4)#D}wX1gCm?_TrM7^BAu@=z*@sICILQORK6rc z^V1rJ>00_vzVv|4T3W@R9HTUogC}d0E@3oLu+xt{qgSE(E=JTP4cmSb)6%G0f2nb2 z$1CAV6eE?(9&C&s*$1LgAJ94`J`=mQ8t=CVCL6m-NNpbFG9ExWcQ)R0vn)+}d-LA& zGhZxn3iJR)LHBWrXhH9bJI>&pHgp|LPMekW>4K1M7}au@aQe8d?k{gMw2O4^gD|M$ zkvhA8J8D53JGIQ*1zlvAcG*M=SLG~Xmek&6up7md_NXHYo?w9UMuXZ3&kczNA8RA7kNwUP4=ekOMu2>x7@FPBJ7470>qhIH7HSXC*`Yd+Qo|A~`uljh!)#dPVp|*FMQDXKy=+A#lUNGJ0Y6~aah2IfmLWJyf zDAW>8B2x4eIxkPxlK_9q0ukMY$09IPV~-~Ag0Vs6LUmPm*J}jbNGW;fUt58V&FZ>Q zmo>fNx}A(xLV;u`xdThFZDKDc)qb_0wc&x598)KlGXKY~xjcfE#dq&I zQ_P$vZczQ-lv=T`Mh$2fH8{s$AVjme?-UzkxtVP%^U9jc_SADsJd%umv4>5@F=N9Edq$)zb?p$*i#dp(^!x~478lnwA879J#PtJ>i*?F*09zWM|6A{sN58uFz-9o-PnK2 z&++gMhNdyJbzV?2{D5M#=JIAq(b?Scj)&(6rdoD0&ylnJm8m$iBmpA<=TcPgBghxe62WySLxU~?oEO(GN2)_qt&V||#AJ-I z1fu7IyjPNW;(XlJdy$qb$WyzBB7;=^a6+w#J~_b2518O#3>MkjM#cYg-e1Y06pEBWG!w&_fCPuE1GS4C&b@+ZxOd27udJF?Pgp zq7cHF+h;KTGi3QqbxOJ5CBDf1EIID1!di*Kh zWVDrm*|-aWKW+d)&w;?mj{^W=e`LSI0gmPXAy2Xur?-ZAm}4(4m(Wu4+WeWjb`=jU zWF*9U=j0;RTf2trRb3E+0jR()C%Z3Z(_^7kucQBdm)0X(gqG8`w9?+CAdLwDJ9m$0 zcH#o61W5f&uBOp1`Wa3>n4!-PV-<|d=fyME6+zTR5)`HxDB4Nme+!XV%-yyyf{kpD zrQZXnOf{I!)#gbrFX!FRbg1pLsHpPmvsU|CU(dE)^S_}46rBsP#p-JJ0gh*Q;Ja#! zS)tklst?QhbV(Sa+k{(-!C`&MPq{cy=T}EWKVUsQTtmsLRyipMgUnNW5NMbg7;eVq zYM5-){I^1z+V^)089&(agLH^xN@-9;6SG&GI|Lc^&|BI`K};sm(mFVN#mBar(W1V0 zrRl~JzX8eTgKlq7(fV0#<$UGEj8l=m5Zn}B-lD+-~@}~T>$^ZTgx22LI`_J zF|#`VlCYOrvSRBc5i9N;u5e#$985McWAePl3fRALKD))3(r~6>!rz)GsGaN6J+C@E zBW&-yi&mV|m%sr?ZIR#eF&X6a2^ePM0qh-wR1!TL#Q?W-<$=Zp+U|UC+8SE~y1PS9 zs3<np8axsS3}z?sWB_)-9F66h5I}!mk1Io* zRk*n;mvoR>C_$FcBLm`iz3DvuMBQAVkja-KS%mZtL0Rm?_@XVqy@Q8=HUxrWXdWFH z`;4FjAEouV4h<)><~}!iPQJpM-X5s9G6pSKWb+6;NV7N_pcruBsJT=c{7+{9B_t(T z1O*hUwN3IU9e0XD8fbqe4@lOALRs71K`nPg_rt>~3ZE@Hz%?FWQcJ-he83_BJ#&cj z^iv%{R$E~WEd>0@5(;f}%tfHo6V6*N(emt+mrUbuH~o9es0-A>VvUuPG%7GnwyG#X z;1iT!;BP}zzR3T0`sV03n?K%UW2dogr?G7(jh(cy8rw-@+qO2gZQDs>+r9h#?mhR< zne)u-oU^;n%zQsePtvFLd!@W$j7^bEOxZg54qZ@uGUjs;uy=3S#*RB5#z4l-SXa@#wXTdO0#8dHnVjU$_y7PEBQ!@c#S4rr#N$1zhMRS7fP;YVSkhPbWPW3l>qQAq7}54d#G z%AXL_>A@inn#1Lb{DXV7z}R`6d)n1@9g?`VAO)Fr_oL_fv@Q4g<7Mpt#A-l{Au2q* znR8yRhHUK=z!{`z)mwk>J)5eqgU-0VgAnDXwlI6U*n{EneK`H;r!mcz9Pz`kb`DbI z7Y?r(D+2dmqBFD4jhokt;uI1k`1V5^;s*YbSHp?Ww~vWZOv!?2^^3;Sbx}DI(x*Tw za?VtCo4!W}p~?nGG!xv{MLlOsNI0&x_cK$`jA|C7p>r6np(k#EwJtL;skSqzHB3S| z)WEtFVP)XIVWQh}(yJ`?UhXS>FgTeL;d~E(Hq>k@6Yi0ILm!Q*C5f<5-QLzy@v-13 zs3WZZ0X1gsds6_p5w7^KmmYG1*gs;$s*=ftb+Y4bF@8qwk4)%a=#GR_4Rvh(MM4cmlHCy0;D2aHERYU^_Atm0%&-$i*+b#rJ zMz;hLGuzj6rLiwHBu0aOvdUMWd2i}wKUBY`b<@M*NQC3*1ArF)cn&Q0=HWZvdGIBO zqEp>siZ82K<^zbr$%6eBY zp5tM37(fbXk!{_4>uYks(q=kz>HW0b}Pvj;;hG*NZ9(b}Qg+g%0jtbtrMZiUGUc%=f*5ZCfnDk|5kUYc99Rj1$tiTc^ zjmx<5KWDjx{?qT`KCcZ_q6wOz^UKCL5O`w=y+m-zXUX|*SUiUuP4-rM%;r5hKY0ch zpB4FlGH(K*q#0qwintYmCyFvEv#U|wMSd;eo+gN9lvKaSvYd9h->0Y)@hcP{NHmOo zlnoXLCQ{w`^WsXdadvc|$7Fo#rBXNqxWHn5`RmUjRpyZkd7yFfn9Dz_`_bv@2Cu%K zQOr;Bs19uRuUfBG(QfIb-Ra|cV3i{NlF1`6@t=jo=yl_i{>f5`2=&=9)E$BoFuA*@ zgf25_DW*_lk)naNngG^fU9il3Y?UP8^HZ(b*{*O?aULD+E~}FDU!^=L!ffkFOQB)U zo6XjLo;6bcIThH_N|KiR8;&_%3Gk#wVu?}F=&!f_UAf+MX#N;z@q+?9ZXYZ`af>60 z(naM)4gjhVP%OxF6?(i6UB2VGxp9koZ>sV(2wu$1dA8^h=teec`O@}0H{g7yNf361 zd!C)XLv^WO-U>(@-H>=z=84_aVA@t6&q}2LKkY+;PyLaj@Ssh-Y#R^BWM$NhME*T( z`%d2KeWJG`@f(H}4ocP2;AvSBqZPQ!Zp!fr`&(r#C{r1~Dj}P~XyV>ld0R{+0fCzU zP&x}|G1qI0FJ?`nVUW5_9pE-H-C$kU-bsA)+x?*`MjxQb-!ojn#OJQXjop}E8oey; zi5$rBaLBS}$ICx+oV_d#jt*(fVkqvEROQU*+i6KA1T&SPi)ckp_+{7Oi{<%@+hv7R ze@!IT9AsL&E=^JWa3LoPi&w4cjOp@XU&7;D;Y4hySCzUH@pLH7zIPh$Q& zuMO?WF)meqoSEiR$Vd{{0UUG6;3{pfbR#`e;TSx`bvLCb{2FaAT%U+VY;!ZXPt(A$uP!yjx^Sen2PF25N{BJh4usf>rNmp9#nq1kQ zuVo^F-~TYDSHk|GBQ(gtYt{AZS`8#eYSx<>?v?K6w^kQ%~7%LNol}fT`kAL7`Tc5y6yj(_q&*m)c0~8j;_|zbU zunbv{-Nuyaa-VPwJs-TW3!5O4$njL&xe>`2mK7dW)YL?`89o_Ww4x*0RBPiFQt8!VtNecVrkA?CcDSfj747F((!WGJ){>t2S10K~*pvgayxp`7PBC~Z|W{qa7E1iO-4vBvW@#z&w>PW6UK zrnJ?(ux>WP_x1a**5GCA!WiaqmdQ-TK`EE&>@(hPR0%rl(AB{QzXhQ!HH2&FdDA|C zb~UnD2PEjXi_fd3FxC{utn~Rx)=!12-n4uT_|PV(VaA9c7O8C=ROGlzqRj1Qlyy&5M+_A^&+$ zjaad8+CtD_;h#QZ&Ov$-8z^hA*ngY&5=(`AeDLxJ)8C*Z3}J`l-}xRSUkdl}RKc;q z#FhowB(~zIJGS(EhuT48li61F{Su=zFz>g+YWR9@gYCL02ds5PUFvTrMX=V=^*RRQ zkuK7kxZ+y+Lb#;IpZJo^vSX}_|Kz~vGK962nt`$A?jdQiYw;20OOWGFt|u?MbDfrM z+fmvI!d2$$N!zoSMp)|C-Ca~SOOeZ3bX!#e1qTa3gGF%ej~N_LYs~Lm(ACy4yGp6T znlp{xQjkfmwMs%WT#2Os`T|R#U$>#Q+-WXQ_h1UU){MR#;uhn0dSgh?Zqr-9beZrD1N)boB6e99*ObMIiH2BYH?p#+p7;F|V=pkMEYzWp zTY||<;F~qFtN%|Jb)?lYE;+BXJUu^%dEZfRG6tt}K}#r|LWJLopWKzmaeH|cr>kU` zls=nQEJGKBPnP5pbk6A3TkPEQ>6Nkfo-j1OpQ=>M;?#9$-i;=Kw!Pr%I)@zckhLLR zBYaIMolqtREF|CHpwr|}j!cGS-!byChp z-9}4GP1C`Ps~XrpPXJw9u?8K0V2*R^x|>P5J;y5pd9SlQ6JpJ-2*uN)8fO$X@R>g3 zI$3=kR%hoA%Kn70mFGCfRwIqo*$^qWc6g@0vF{gr*l#%TZQ`8|q~^WEOn(30?~>N& z2grqf+`0#q4GG(bH;EylLypr*leX98a8>yz&D$+3A|srIE+pNIVr`WG@#cfrVbRVN zR^I|L-n4;a1p>e~DD2d#79w`zr2Mf&F-u`Wi}1mr@0$yIIYhWqe6acAtG&+J8o zFr|xDg{vOeTn=tpeXVX7o%0dI6Q+!W{eTxvb^JWJIot0NX_HfSJzVm#-Evwsgo4AO zk>ULKQdIW3Vrfb*0uTBpBYMx(!i}cwMkgDNk@2FD=_0r;;KT@Q$7V2u;j;Nd;t@z* zT{;aLh_%<=^s0=`fuleXt}6a!?iZjZpU+<%u=7zMtN3t(G1`=BFQONeWtVsi(i4=g z^6qw(do@KJQ`q7!U8E4v$uu959)Vs15gDfDYRe9)qh*6-w*}XiB`EP|#LVFdz&T7i zi|<6MW}H`~ZNtKn=5?!9J?BeY9DrLQCfcwS5;s5f@#U?hXch`GoB;nL#n#m#-j@i7 zSgs?C8rl3VhJ8&6YsgOhM(pcN)6q;3CIXTN!!3_|GB*#_LY>OD3744CnoJ!KueA9f zgxF#fNBRE7Qi=1LSnq?`-Xz=ccIUCf5bf8-f!cGgfT~s z|3IWnw}$Vxyxq(wKCpCF_^W;|4K2X9c1IB8}E_2{j3pz z1-lz{bD;k!MjZ6BSQ8wN6w*17l3t!oslG#H_Se9@RhqsDRKbJgrG5|CGuQ4Fj5OwY zt*uU#p0x_IY;N4$U^LF9-HNW-po6hSypx9os&=!aJFzl+B4Tb0pBX&jJ7FY`k?7x@JJnF&ooM@}$y2gtA}fdnpTyk=&#A?RErs?CLlobk8Vcu;rC{NF>c>2hoj|GtI71 z{quwQwQ}l!(}fNIp3y|7tsK$uB^|H+#o&dQKoR+Jfpl*+$67A8JIgsu2vKDrVJ zXG<3PDU~)zwq<2f>Z7^NB&zaan|!CYQd+zd(Rge{mDX8RY2w}Hs- zII2`9Dd0#UJ8Jv4F9WCuBk_71D&V^Z*H+E1#m3Tm)+_n6PivLGh=x=PV+~z1H_^OH zhEB(j^#b8uRq|t8MLSgF)&qTMM~&l2e3|S&KfpM#|NH>ym%d?w%1|?_J>OVqE3f3m zekdO!Y1pss?T^yIO=ETVA(i1L4#`SQXYP%zz;ZpmOuys88@bxJsjp zopT6S<|KH-vs}qU@|*GYrG%9>DczRfG>R(^A$9u(SKIwuu5p2fU#<6=sKLkC<8`wV zEBlhJ7*2p-&GEt-mWVE6+>th81^&w=kLCs7gqY6ZBl2Gs@Nt@DTV|w<8@kG|QUeIP&{2-j0eKg0YbHZx<4pQFP z;XoVHw98S0K|ntlRtY{7_M_4ofaO!@@f`^grMS+qdoQ}P{PXUc)`uZk0^0D(n9pj@ z^&ZQ`!;NYbx7py82$xgSk6!wzJQ?!%drv``YSo&HRMGcJvmwcz?v3pNM80=CD2SQ zk8>byikO<%P2+WeLx0;zd$ix+a`faE7k^qzS-4_uL%agkm41t;Jf*aw1`IrI)6ysV zi>tXNC@4(qgaLC5+EmG5x??YSzeQfzC0kEA}Xzk!k!N=~$zvb24(?U#MlucvGC z%LBSh+_^kE2yXrF)Y>PIbA)x1EC>@}T33Kj;IEr|(DQIjJkV6IOSyvu2X!y!+qT=M)RdTsfZ6=reJAkem&QzoD)`C5{Jxo zZMgKpP9}6j-lSM6XIHh%syJP}Qfc>%?4JTFR+k)HeDBh-$;8JZ@M5B$;Be(c)E)Da$BdFjjZ zU?Yx*pL23QVyOF|*tf1T5t;92p8Jv`60U}#%bBzxz9`3I%B#+{JNmB~?1ImK!Ad?N z=xcZmKvzQRhL(D}x=aaJCCfo7V}7E1I1dzW#P<}8AcZbD_Jq|h zTUHquzAD~az1ofg^4gf@mq{Ywqu6dYDiaa?=zXPp*a#HQLMj%6G8U(@6{XKAPt;r#u*<85 zop=g@D#5UDLQ~;%$P@|l{D#YiUnrcO2n#f>Sm*H{{m#GXnTlm$YvNJDy^f~+BP+By zRt#a2O=h2i@EWJ*mvie>J+*$>q91JLxm;E%B1gYvTwx&5kradw<>jh4*!>ly*u^(0TQ+?N$5Ev}mu1|p zW%Q93d?KHtEOz%xTPR8EF3>2S_8Y1nWD1AHC%c^x^J7zPi6(%FU=hr{Ka4m(tPy&DmriU!W(da!P0j>yH?jXL|lEcm9sCLy#-4Kb&;4!Z+XpQKls>WUAF ziY87*!{hHd;aExK9_f0d+TowqaW!|ztHHuf6Rv7cGu@TlKC($#3q$5{62+iaDmI>9 zbpF+cu&1`UU^Y4><(+XD{?3a$aIF3tKtZu7tso6C5y5LU5-s$0KcgLD;S-7n|mL@5~j;mRwsp})bT;5&3>&qr!q9)I1sJ82XCSf-&os7G1t?~gjt>6efY&B6ff?nl#=x^MVi6f3P1^ID zco6zBF+XleGz=yQB~D-j2_BAOtR|ho!ZK1}Eu?_*Hxacj4qE~7rYAd0^FV^Kuw2|< zSDcFqIlfjNlsMk?4ulDjX(Whe*ImXnkO4|_&z2E?mUt@m+FUSStv?Iy6NP@BAedSd zs7;N8~4%-<`6v7SXZ>u*Wp|8U0V=$s@ytg+|_>MSY-$6E%+b-Gs ziJ=!UU)=vXEQP+7A;t9o+otW~`Qhw`*1x;_A48V61}8YcNUj$b@skUy`W~H>ABbm^ z_G}}w+reY7w^s)wWM5SCuz^mE zm^iv$N;yJw;mzkx8Zo<208*RAr6DrC{Mu`g?UE2O4%a2gmCSU?&S@8)+bGBlqn2t2 zQzO}dJ5Oygdb^HWV9GV?&@+=#M{I?AkKeueFg*!WIcqE7W&&*W4trjzNP@?pvduzVQN*ND z^)u?%_S_6x(S6$3$<-W~;OTm&>aL`n6yJ>|DKqYtU1*=FFYAmh#w?34>&Ww?M07U5 zGGr;|SFXn0pL!?0K#<9eg&b?%+!wxX%sUVv1J}}@HRC4idCz1gA5m{r{rQx%3&@fR zS*jvwq4fB={jWl2eS;nDF^i6zJV_G6f0l!GhB#MC~?#*E3#P zIN3r^lIY7T1-Y$O3H@3h^rQT43yl)luU8Gf>3g zAq!$ZNFQv34|wj;^3eX#&yBY25)y~N3UU96B7ojtCpAeZ@VonVjCx!;jDHGBP{83k zy&I<0ADIA?#_pAGG+rxV3+P~|+5NXTa_s=?w*F(V68ySZ#`FiX$v00Q_M z6zLH-pNh*QJRdlVkPWsNFOfcUTO0GmDh^JB$_^(V_xcWw_zJ6iLyQ0y3eAAz0**9` z_zr!A`~y1Hg4zM8AD7~(NtfCXIfZpw;bvuhRp<(;u3QUEc`|<(ltD?IHe_l`Kha6x z@pCNnEKN5N-ygBB9x_TI{=Tw#GZF?|;z2s9* zbI|{(t3$PIYI(8(ahqKsP;Z0j$DJ;NhS1%#56&5+SnHyPM1o1Fq)*dMWMuk0+|VOD zWXZ3sjxjnxX6$qC#@yJ8-synWq1?tlTtX{XiZ2Pa;Pc%P1JP_K$YwPrz(NO>v1P!4 zEBYg4ghUgHo{eVDqVsk~>x01bvX+?y>rSxNFb0**$47-QD( zWj4;DS$mV#!v2Qy<|5Qry?YuGd#J+wNQ^NBOEh3ii+@tmOp~F$3I`0pk01PB$NaF} zTzEImKIBT@K0Xx8k2(4ZSwPYG#s_bDEIfwktt?009rU{Gr->nOnpb%j2b2w|dP1}d zyv3CdJpqhpb^e%Yv_zl%3J#tV4E600?EHZQxg|4VT}!k%{6+a-O@smsJv$rVX|un^ z4*&3LP76o9<@E-dE8B4LECeF_A2y7as{;Z$(gB-mKC(rx|IQ3X^HNYxVLZ>>e>Xdj zrwYybdOEvfH2a5cgMETZcDG$YH{wbMPH)@spuaG4y$~3C9M0bRoqdvLkctf2 z5*9OI&6CLbmA`qO_*t!ra2V0&9}9=JJGkFeb`Tx-L%wgAwrK^nTJuTN`xjG&KOCoB~Y@>n=(^MJjT zxr7&3XVBS$bRGpTiIMLOngJ->uVT!QirvR$%Y6~8UXUW~xV<9ViS@A-{?cS>U*SP1 zhu%vbO;x%p9{hTiTkq7D4B8z|QWpPcJof*lF=ekaVCriSg5ZqyEghEGD?< z989v|{THdzG&_(8ep+v|1A>JYx}L4cBT&ds2;m4+C`EEoPJJbD_)O{fOlh4rzb6K~V1!hs?crkpH7-NS)y*44y1tn21;YId}SQ{j&G=0vSeKJf^^i5(# z_ReJ>ijWhu{scvn1pCU4I=ZsoBjC>07(o`<%gmMz89Ssc05C>=dqLuJ}H?PPPSGeZBlWlp5-+8U{D@rF^%DxbJ5I!UVFgo;+#&+Ltjw1{^obE@4! z**){TI)hZuVt9e(W<+bymn*x~4CJTw1VncAm0PGLNAv2`@t}=73hgR*pda5tFmgap zm@h<#o!8>6n#crFY%(sE^a_<6f?0b=Xvzl8ZZK|^7>P%9VF+HV&u9G-3G~>AG(Ek) zDbS4`8Q(bD$L0}sly$LQm{&{+ zr{re>(yl5iSH-92s}E}<%TZi*>~8iOG6UYCAjvHQ`y!^0Dx6UhhO#4JSJ=+qb&)fP zF^*W2N55x5OmPG0jZbQ;1dfhKcebOt{Y@>9;OEh_C#bleAG$Fvp#vQo#izHwYrQ-t zvJmCxdpO*nVdsu)%tl3*w#5s)Jme8P+tb~+XBsoW1QaYj^FbXmh@4Ao@dqV$>PDE+ z6jajw&R-tc@U8KYXd8#Z;gE~-+`Hv0^3psLqi4K`;icB@H~AKL&*IHrB>W=TGN z*;Dc_n;kKDqmj$@6^CHN z@4?P>b+&AEgbU+HQO@Au8)4e(6kdaXU2FVFv-)0loMa^NtnJ`0S*hT)s@L7@g$(B& zi@Q4wghgZg%x}@D99hb@`*yEk*y|5eX5_G^Oxq@b9aixAM$hZ3cH-0A8qa}1JwYZY z&svGRseVRq^f(xtnZ2PR&_5I_fb(fLE2wcGL-6QmqFMN=3AQmnC5WV6NFeTTazw%_ z|Dm8@!dL-A@A%>@j$2~b zG_6?1oRi=OpEt{Jb5wu+_rM;Bqq#Ak;EG6sl0A2+-}p3?=6{MVT{<6wCeY68kl~RI z%L#fVm0*f@=KfoScf$9U{N{7_D>m9yhTcJ}n5Bi)z)t1wz%farv8}1lueS=TgJ`0R zv$UW8PBMC0L-rf3*5d+Ke|(TKTifpo{+fWV7ny_>Fb8kqck8KBP7fqbaw9;G@sFNx zRZ9l2{eTa*NaFvPgh?uKhQ|oYhbO_m7X$8nmgEa^RxCOnM1~bM_u;7}-}yeRbP8l-cU#>GU0`($|OX9C0bt%3~K!b!H+| zDL=AsChtjKe>OgQrnosVKg9MSjMqByUfi5VvS^IwBdB`@6EuR`E!;~L@TTEw`40<%H5j8AJOoLCdEcQ-lJ)#$ac?DN9G<2OA_E#B_%Knc zimppBk}}WwGN#W9w}$`zHK$7T7ll!H)Kh?2xN;7zAL@Agsezs17rXSptX9Uju?IZW zKDpF<7ZqG;u^e;U@IO)6)u);^YLK4H$01hGF4Z?4xD$^iM7&rwaU*MorMyB=Rkl4t z_r_}TU8Cx~*5z(wzp-Nhs03;6iPr??FpAW`Cn)$7e15%m2?#FgE&D>MqN-PzTiID) z=YcT*JpnVA6v=1lcoUeJuA={dbK8*Rv@~=}aXhX%LbtkvlkP#UZvE?g**zy zvAa*@`$Cc6dO;@z_ zZBeP)J-g5eW+GM9fzAh*i9}>$oGPw;-DmgWY}5VAP3^@6dRw#xy+P#|s!ue^v{y#cGx0M3}sg znLutqK#n+}rpENrkCrYvEG=Iv73j^G7Pp@btZ7PgngL9uSigElzSpoEp|54i1u&MH zsZ5AGLnY&Vx4>${UM9%r*v?|4=f6J^fm<%?HD7?xIrzu9<7Ho*%68m+B06l1vK?ZG z#GI!hKP?4#eHr0-R{^M-`TxgcMhjT)Fx#-E_Sri3b>thJhkQ zeQiT1!+zzEKhTTx$Q>x=iwlH@XWE#wSyoavggflW{5uYUVLvhu#Kg7B{uH>;S3z|p zTrzQf{q?7u{39r!#H=$*zlMeQS796T4wF`gaf6(|TFAxpaJ3iiQN(YmRnz*Fh|8&aTz_6LF$Wh5j%@k1)Yw;#^+% zd}twI>Qv8!nI)Y#5$(ejy@m~Oq&mfmgSsd98w^~|m(>@Z{D#(J(mE*wPs&KdOhqQ7 zB(*dQ%l@UnixCrzBtH&$F!dBxwF+H-%J^0%4#Z-r^)O@mGr`BaLBcs0o>7(kS$4-% zj9x`ihR|4tsBz?i1F7IQ-DgX}YdDpOBqh=UkB&nGF2=Ah8@VvDUn*-qd16n&yXN(D)9+9j&aPy{$wMAPtlYxFOzS#Uv z=19_BY#qFO0aC}0dFPkV{ikyj>Gjn!AbA_riHT~S6JQmxzOS1N*NqZLiKR zv5()0$@yFVfQu}->`w3lIUXT=+J@Ghv<>m-!Bxkcxk@r;$w2|`H_nTz*XK19a{Tv_ zqdB5>kWuMOeKqMF;8_Y+ec@Z^A&~j&@%P7>DA80|2GQ$V=$C08oRYP^v`4daPIC+^ z0gB5UkNr?1Hve;y2nXSwD7XQc)LP4|eJQW0)lrY3QlrEi?bn;ZGzP5P_#KD)%hu@H zdZAgfy=mX1l6F_&UeHu+lXU`vr^o~R}GvUmtZ6($Mcr2fP_f;>(28Asx8B6+iB zr=4K{rfj#ob?5;)j?W1P%DT0Ikti+59Ngn`2IlyBtzqe=4!fGb9j@Ve+q=M=e+;SyDNQ#Ma6lmk?Zr5l=U-gQUhARg{R_N zs4lhd5mC)Kd6;Vv)#=1}PPC}RUS77U())(_9<8)^ZbsBqHfYlOgg3hx(}P&Q1uu`y zu+ay}oOUz5-+Y+FX`Kzb6;g*unAM03O1%b>J`F&B>{HE`dmM|apIsEdcj5iU-Iy&s z|DJ`{0}p<-5WeTiJqy>Kz_WzMzdE6C$?~421jxnmfLi`>W)Nksd{hbI-}eQ7hpD!t z`Ec`H!;cim4Hm4q=j}1-%nK?#tVO2Tyn_5Tu3?1aSM_2hYRLLYohEx^#1RJtBW7k{ z>;tm@7e6!NAa<(caaKX3EWV?7xOL`cvmam&sjOyly$_`xl|9PisE|%a2cM#OF6=FB z00OM>{GgW_ek4(G^8OPLQ3rjx3R`8eq_buVrJXUENNq1(Fy4~$S@uv71EeBqvQ5a6 zkw(5aq^>fG3Bln5q{>*<4b2XYCEO48+5M z(s__nu$o(*+jz8PKMmfBiXw?~)JZ5;L%8Bp^pvK-W-ophn)Ew-F|A6GG6xi(7eg$RF+h$QBHQ&&$Bf8ax%%iMHWD zy5gZEW9Qrm->aT+vV3FNM@&PaYaKcO433YeW(ET1$6R&{RoR;E9ou1wY1pKG-Ww;- zMmm9aEd^;UPLR;MVXPmXZ%Bw7)WMu(;M>|fIH})L*qcEqYoRQ1z-E?poS=MP8_ROC z^1?suEqigOjBH2CK>QcTj3^w$}DAukuQ3-v@^vMb=}7uN1v| z*I7F9%O0~ce*?2+h{YdHl_4_zfm%@hN((vY$Q03BB52LHMguQXA^c%`GL;3eCBBHDop1ZSiEZM0s=>yF*Oi*({vE+JS_GG4$+R)euC zAq+KiM6Ls8JKkvS zna7xi;>`rK4l99ap;C0unLT|q0g4sC^~k-)x?H2K#QILgsAu2@*)DG~@G<=b`?TOY zU9BGBAz3fMG9SUh**|(^sF?L=Jjm}@UXr~)&7M}v{~_}*_btpZ89L>+H=7j#@>jGBQ+%TzwrN~p zAr39&h)F#t+<6^IGVu#DCu&^1WJ|=j(Za_9Y~mMTC}WER2EQ|IB+^`#DX6&aep#tpA;1Wzc%J{|#p(`l72Cj*+O1 z%l;5-%k>Mo7A!7VQ~0^{B<80_KcdU1T&SnkLo*w49r|MyV6A2(*;e8ke~9zE5QJVb zx>nI*=oswpq&c$Pt7=XuT?)0F9P5BTPGw~^kRgfPTLR!2muj6F`A1Mdvo?h_a^(GT zK1Ne<%gHMwH~5z1im*sS+{alPEyK@fRk4O(itFAYkRbEJyqoOzD3nxS8x6ffjkowZ zf7CBve*oHOtBCGgYX?sZC6yak>U*cT`Ilc$vnpxvrJF0--bZ*b@@s8d_+7q&jxZzi(FP(PU-;N*BoL+!Sgj z{Sp~@oN#R=fR(!nJ&`#xFa z_wT+1($v5Y`NCMF=0_HdqnG64G=wN@9~->O{X>smQ9(biV0|KaURE7?>#OufZWN7u z0=fyE5DM4hw%}IFPiJtZ{B{B9Z?5>BVBb*&9N87s5+U{T)SMC!-&&a8`jr2g{|RBb zDfiIFD21p~u^<7aKsW~6+k|@D5mdo-!veHwj04Rk+ zeBhkh#Lh-tl4lWl7Ao-Rlf(J1nQ5rXK8LD-gWBt-ifauQ;s6P%!5A~_wjc2BQR$a_ zaa}L1EUb~!W^u2v_Z&{U)0uq>PZAc^5ks0-{z&x=WZh>x!(F5QR?tq~U8;OC^TgK| zTrS{YEzxAEZixP(ktxAjj9z%AckT&soJER~O<=j-AQS2}V`__8Du2vV_->%{TITX_ z#r^%dxMM9N5atz0UrVq-xX$?E?y;eu8W-1<+2{|j+vrdG@dMeF?IGVqPwgSbuDQ-n z2)O-YshltH*nY8V5~u-T;t{avW;eaq=e9A=NOWZ}Rd4jY=S2+!FI%k1d`Lij0c=#D z6QB!z_8=>+;k5q^MSPz^2-9`&f?^exH+M9Ij`}lxP>NIlDgr6xCqgmQW`2p@AS)w- zqc%#!z;-BO8eh&!%|KQL+h1t$1P5EFAp1-vy*~SlV0^&=EY#=&3z=j;@aL|^ut4v+KLuj<2x?6m@Y4(A&m}2QyFjLMeZ1z!nq31vjZA{`>jLLGp`OoCB zP?bK4{8F!16d8{tedb&dS1Q3|(m3wS;f;2?3Q9kNdU5e`@i@2Z(mM6WTdZ<~&#?0+jXy&D=$0z;Mm6#%}1(;GJo4PhM z>|&@@MQASin9QE)IjhR2T(FI?-QfZnPSzginqxl@@A4?zbwOHG`1J2=-b`2ut;GWW ztsNfi-=FLWly)N(P@ie$^9sTkG?=B#|5zi{5pFW1xwMquBE*qN9xBKIomY*SlH+h* zafg+n9zswnC`ahx;%Ei*d3<#J5`GzH_Cjv~>Z7SYWN&;l1^N3@dQN>|?Rg_cw%x3x$2{ zHYuEs@HZuG4kM_NfocNuDYTO4WVrLaEQnXn-|>KQPW56b5n*2x!qF9?0JXfhr6_eq z^mdRI`u+x~s7ud^afCh6J;JL4H*y)thsmVtE?~#;gBFJCHyrBX;(&e0pVI75b<#Y&rz~uevT~SR7EJ{kLLngFOqo`C_uK5@ zqmM2OKOBw=aTm<0WyKd)Ro#lpT}|~-YHQ1R)%G%mA|Ur8AXH8%zLpwz$=&PuxPECu z5Ly8)ne7S0Pgif!kFB`3YfJ^LRm)cl3^mUagL_Eu4KeOibWCUITvxm`+IFauTN96;C7;|C270707R+6_8g}bwvs$ZjOSmU6GVPV4Cvt#!|GP|Jx4~6 zEHfFIh}gWLUfaT?h{xmRP7Aoy8bbZeAuS#lh}A=>lIt(?8^Y`|EV@w9`5r{be?!vF_@|92Wpg;;(Zufg33$>YHi>4hwYxEh z>_Z?Bqg5b!}xAs~nUh>q`#e=rc~u*eAx zlCXrZl5tO#YJg4;nJ3lxtmyn zSdIC8DFwHH%XfmPq(2cZf4iRiO`;)7N`=S>x`##q!4XU6PciA9 zS}Wmfk5Ydcv=l2vtK@t8YR{|e$%F(Ydhq3dTxpo+04ltHE`f_`rTu+bs;M-VuVNvi z;S1~54mhZTluyy+juib;fnEzoz%M`&RB!7h?4iO%sSV#ZLl8O<1KC>IfpJ`+C0%bj zthFiwo6X(mMmpVON8U!z-WtwF!S~xDvLV3Q-CLjLw%nUUh>Ap24UB9z^e}NxD zPi>A&t#8^WGNiZ?WsI=@lYn|%-q1}N5a0$j*z>E8Dmi#mG5b-0(qb;}Z<^xw&#I@V z&D?MXY8Tgo<5sR@f83hc&;j2IoBdGNNqmFt(O}DDq7%_RCOF1C&nu+=L)1A3SMt2! zKDO~`-w7C+Ut<$9`uAU%6U1$}@)X{qnIe%ybJK?w^bszRbFWso~ZzwPfPC-H2tb|zGX zB3`*2eOwftSskNI4dZUtKgVyQOlpJ4r3DWw5%Xm^shGdt2@bLQQpqEPN?5LcxAo=K z%Tg3jEkoCoW-o6LIt9O~v?me57VKZ*x{8ZrmFG%`5@2Vfaas0xmS?YH#)=t_2TQVx z2Il~}Up^J7F;mXl)Ax`)?H^uu5-{Gt=vS%v^o8)>oTdT+3i5}Zxtoh8gzn+# z44N(^BAvoYNvjx|)3sNiQ>?)X8lS#sY-K?#Xy7JiLPjER@|EYOEc+?KIIxusI2@S% z*o7xAJT`ylHfgWxGdRs~Pgbwq%>g<1f#y0|*%pN`_-rr%&+-^J`6vk^KQ*R(gum{; z-$tm$E2Iewm;G(&blBLFm~#MSPYz|sU=3>_h60=6LCo5xOFv(w$SN?g&UQaBMq2U7 zVoe~>v5V(#stzNw;$eVB%R>S$2)v)Rwe1t=AA+on6y?p>X(E@)l;`-Rogus=zoN-c zcTzOLhoyMek%XZf3jK;5XpKVTFP=cQMQ~yWJk4t zNGCxIzQHaPFBFO3@gQ~#WP*UBAquN|=FO-hKIu+&%1fd&=`uLVSl_)Op z*?ugqq0@^^6l_iAGyDOwRou-VeCqH#7Va>Av--Q5o%&M|d?ErSZ`e8JnH+z)EdEF@ z0C5P*Orqs#CE-%`>WN4qEQZ7zvY(~VA=b4IydjFnb&6~k|0xInsX|CxuP{i)(54KW zu9>Z$h}6Km-O38=ZCke%)5=54+P~5RJv$Xu^l7juth}IE3YV$+=RGU14jTyi6m+J$ z%xeMhTSxFTbLFlq-d+=%=~7Dx(V zs`{etDkO;fPw6Hu2CUo8{c~hWsA*T5 z1;-#+FTkA7;S+>lD|&A&$zEmOqaTqxWP*N)`;}F1-D)jcxI`UG0E!a=O~WxL(ZIC% zeF_rUm(R&v$yX;LQnSit(-;)%V8QnG3d)y3vaN5i(S9)52jHrkEg9JUMbP?dmA{+L zrmY^Pf*Tw$O-y=pf#I%R8$gJH1Hmw5DP+Iv$-RIYTe1e3iz*Yo(Ar@ea zL##qbYi6Uc8DaJS$SH3|@0e6#g-7l*j5N39qEh+Efs8$;*F7`?9Ny1Pmdaium;u`@ z)B%D1r6mys;oC({)d5lJ;4T=*OY6ldNR_!g!DuPA?%Bzj+q2|sM@%*87@HKY#zdb` zG_o`##4Q=CYa?@JqgS!QU@dw;Od zGP#%J_!5wj;xn`kxnJ`JR1;i_~)Qo-8dH(6N8fK<5d(!{O-M{ROxq|0ICL5L?6FCrTGckw8Ttz5aT` zkxF148821>M+tzKdR#}2l@Y2N$<4C_l{5d63Wkgn_KwzNlhW?zJ&bE6e~KknhVY#B z!({MZME4VehY|Zg9V#$&M5wRDaNus}f#))c-%nKzC`gf@SzbDJuO!luO}qGk8b@WWF_3OBJvt%^~xxo=+jZm(1( zc(en!-JTVjt1ad@J)wvw=M9<2mXjjbm`ho4H6+f*itRv8 zCN&e^ToVKawFSG6^EFem zu~S4;6WtMc=S$u{d?$;eFrUGIeC0znxscG0HpVP`BM1q{JlW*ibblAuuGQJ>{lG47 z^`~vC1wtk!&i9Yha;zO1npW&V^CX=u0%ibt{p^A?4ASSLR{?5w!CV!2zn!;3+w~67 z`1tC_<~e9rZBaq*wtGYsxzN&rv;i+d_v9Jqtc6->qJQy9KuFpz&|6<>XHJ(Ua+C>H zIU;ey+E9s9BI~FCIka$chG=7Agz+I`3%wfe4;yjzq?L8(aR?OE zCMSPZ_DStDNDHgb)3J}^n=ZVG&8B7+%RaRuC`OQQ=@EHN@M!K5Pc3-LQbM&_#O1o? z`CIwP1JKW3lMGNwZP2fu?peS7qa^(&LeTkf*RbwqyykK(8JO;fZxF4F{Q$DW5sdyN zoKlR=yA|iQ!F|$o@Bt(1f_V}Y z6W?23{3qe=D$pfvCj=3w&lKzPjKT6pabf_0Rn%rav7%^y2>>{pFe;^gPRYPGZ&~xO z_GV#>C2xDj&{?{+NZ}3y!@~hH;6mYnSmh9wy>d?+9p^65fw?}06e!D6-o>e-l}2P5 z^?yx)1=%{{zqh|*1pXmN^0hqGK|vTcBfkbZ_?>d08KW0YGal1Rc9~g+wYuqlk4nkp zu264q#MsgX<}sB&cS%fg8AO5MmtHMlA+aNXZZQ=GdZUjF9}hX2cB8fKl(xk4&9EV2sxm5D`Q}ZR;Ty?@a0uU#BBn+ztM5D0)z@OMU(c(G1!K@oUL2fYAZm18MP!-5bLP z-WK&S4q(UXmq{U;vDTkPM=_a(PZq+(02Igbg+T{2X$kjCx`Hho3wVf*KPAU(FjFQP zJf+6kD4EfNd{30F34kf`R^o^7F+48>Nd=zb2Vd(3{Vwui+hhdpSIP8s{)M)4gm_B| zV_9Q#lHT1$*R~*6zifJ!J}0Dg%{k$`{Fbi|Za~QV+Q46E2skK~RCs3=iEV-Ccj5i` zHmxxyXVd^6^BW%?8I#PEGVj=C$RC80PC%xdiE}zkpx-!^ixW)9zqwB%b%NP=y?dxq z%0k8*!oYRITGWfnt3t+>xnpi2^Dw}ZWN#_HCz(R~yS)WI-nqBJ7_R9J2qEU+*cD*l z-~tnC@~0e6;*J#Olf*6aRy=GI3L3hthxd&U7NNKZ-j~<&xx#L8op=sP4z5L(PB(49 z-j~jP297SY=Gi#d^{THgkYPa%CGuZZWxL~h#3(6F?AK&3$RB0}z2VZk1X#1tsk9P^ z5wpK&T&X6>;4+9V8bhjJMosm_18bSoV9`B==Rl z9)g^|pbJMJSP?Y#sX-^5JG7Ucm-0UE^phlpJ_lxoVoLXM=cJc61bKo%MjEmeIsNDH1idh z>XT(NDe~kg?9C@3kOf50zyXvGnD-a5R!jKpPytG@9BE!gG0a79Se4Xq2#cnym^3J2 z7FUcQm1Bxq8vLeUa!Xb^6D}G?%rYVvzFDxuXuEs32`9N*@pGnvI9XSLbEPq1{O}3$ zJBr(zN1y*IzAq7vD)}!&f2|0=x$(OR+zhlwab7AfrrH~h_+L^HAL7dyt4&eQLjU%Vc!A%U-8)w1JQP}|y z%+Ftk1t2H65eXn%l~}E(=?ib}#KfSpNw+YGjK$0!ID?e+k_`F`F*mKLfBUV}Tp!>a z*-Ne?ZAr9l<)#mx83mr}@iwqqA;X{B=FtEG3F4Fsufv-MtHgRP=|d3F#BqbrfW+u$ z30#Wp53A)&khBUNMJfhTyjlTr#hPubc!mV=LmY(!gw~Q$I5kjMbfLph%vYZefrNjq zl~#zWA(eZBmR`nDAJiAD4^Rd*m7gK7V>jz%Nrr>Uy!X!>(Yb>fALvLgH5D1KVON?z zzWb7OBM^syftE7>vdQ-dk|fnninv+$d^HN!g7xep0_2Ps37d0DGKu61d^bvLFncen zAR!4toQRUl&2Lz5Pw@#4F~~0Hw=uX*|K15YFuyAiW07W@D|ut)qny-)c=Y!-*~t)p z?JkrI6c;TH%z$i(KqY3|ptFCN%^@JRUAp98%}G_^i0co|^kG2{cH-0&LcDPyY8mhW zZ~{>PKdne83WF`i>JqUvCPn||@~hICrDg{GygVVl?_aS}%XpUSMJ<~wwm2DZDF>6j zGWFwLtDqMr4|VCy@)=8)QVQ@D^}XVD!Qwv?iztw ze3s_*KM;La%b&+WHIo5Yic?^uuk{?G-TY4;iUxrQi)>Qf9;=Zt@{aBetrI920+w9eUac6jvY^)+&u<0kGTOD7KVOwHfnPP>#vpcV;S z_5Fu4{HRKJ^g+F^^k|m?t;FMuojjpU)Bk4L^8K*>WAWD6c2F&xNYsOp$IOF`CaVJ< zh{KO268$qY?`Qz7a*{0TbqOUP6#0w#0j!zk0f)Og2+zbK=Kn`t(( zH@(*m=B8Uej7XAgThbe57#@#k**7>25)s*|Ym+w7>B&3jXXDuHAlNhLq1kl}I+@*H zSX?v1nS*2&Jqtkhp~8uwM=vehIRK-ASm+0vIm=<9>bNQjLV@j5Oi)K8^wQ9s_xM4n zdmmqg{o)sSH0snoP1{hHsW3}0DfV!Ydf{VloJb)d$1ogzV@R6lFn=({jFwimB77kc zMu`-PoX76d|D(~BP|+rS;d^C&6u47ipp1f&7EaaHq-9WakTEKGN^Q~RKC{3r!HVij zhhpIHlZ%L^Cm*ERct$x)vT6tX7Tp{jsf2^LSH4MwjTJqiMgHjkJQL>35Rj6VL$c!wtCg{C(PpK~@US?R5X zS*II?7yV5QK{kIg=0a_<2Sb10vC#|o)C}rSXNq8bCp=Jx2oSMwzPH}V)tH005$hfl z^Wvq#3y0FE7qOs3pGnC=8A0loq;&@XLwTs9$a$1Ay8>ES4aWxJxmo-yMn zOu4GJcgr028CW`;D|6iO0=o4F{7he`aH>>{udpBek$C|I&n~1@XKfWhKWV^pGE`i9 zSw2pYh|w6XE|Pq9s~6Vmy2TWZOle~7q!_|2$T!^`u3J{r! z%Nt8`9AaXe6a-Q{AX#7r=jkxjfVK4NC>lYFy=J`dd)-!usW1No70l8Mj)pCbs==zc z%26~iW?Yl0kK!YE5e?~#F_I)KtX+%zlc~d%?D7RL_|eFkS6Wq?Wq&ukbQsogeX|$T zWc*qzJc*2~9Xh$x_J*WzpvxSf07>AyK_d;(KDk6i>BgLa!emQ<&Qxj7;h(LirUL$A zfIQc)rb~|QNE2nS)pfDV zc4_O%MMn)+4GJ^1&+lsBamUC}Jyoh3x1eN*iAGOAB#SG=|BG!Gn87GB zKiTA+)47rH&CK@>c9d+4olAxjO*atNouZ#rN8)_IHT?fJN02%)!_ZHA>!zQgcM2B% zj%cXCM^5RfSJ*!!yBN6b*7i9m;fC~fjoc{PTh#g(y5bF1BK8mdF!=DvMu{KQrZKtJ zZ4GsiOm2f>t7r7Om+rzYOWz%)$^@KsqlRT zcO1LQ8x*%(T?--P?uRGKU#e8ZYv>{Uti%n-qB4rW?kdj^LzUEq;C~s{K_iGcTw&Z6 zzr-`F=;JICHd zo=DuxY=Z7$3izh}on_H7E`^0?l?S>?&j$RE-AotB_=Eq01AWdq%PN~Ad}PNii_gvJ zt^7+Q?Jqm|@%vdeUu+m$3GcaS^!E>*`+!n*VKh{x0Lvuv>PhOol`lMfxwR}yrT~^C zi=Q?J;nH)rHHj|(fzMllO{4|LFd70Y*fC<-iG!qg^U{pZvdTL*)9TWpKSbxeUkb#sb%Huhx+Q3X)Zl*4& zM6hquJIEVLsXq`tQw-ksIOoM`4-|7k&WCvTpW-JTG`4Xw+1B=nse*K#7~xzr*52lzb}H$3L)ivEnO7a?VC^Fbv|j zCmh+W?HOO09L(iB6`)}CZ)sDgOK#nfw+d;SLeXW3UoLfr&OH^oNhL zs!gBA^!u2#$q_!oqyjstOfwy(Kvp6mOyU>GrHJpXGSU`BFN*h=AD#{=gb(92rVN}k zBfzp#P{R??Ul2T6N=N@=EiI{KWB>PTk~ z=mFQHGtTHQ0|itfV5@I?gZwzNO&2N)=&wtpNg7S9$F2!WO>?x(Qk)wsd!}YM_=&#d zpuw1)L;lmGW8X=A^Ji?!!1Vpo+Ro9*v99xgZkH@a&^zj?r$uVF5qMsLhlSmaD^BPED& zO;$Dgz=Y6QJYS($e^-}?Rnmqms4=*f%zffu8^)8z1fPYgnNLR7&OO?GXDnbz*dtX= zfD~=T_l0`j#Yd3vkN|QkVBfPt0ijNyw*+99(Wx=M6Bk91MwX^=V1Zi4HDHPH(Y^QX zJ$!T=ephrEnMeU8yq*#nx&O)ZlsMasjNvv((|^>D?n_~<(b~sbbwnf`iEJtCQ68mioM=GjMm*1R-xV+DJbu{-pMRiuog=PV%)MOs#1DE7X^@96&}-n7W?Nf z*pBTA3qA0Q7PqAYGv@y)u9|*EOY0Z$3og!&7r`gope+?LOT~~ocU54h4m_5LOQf@s z5cIgWi6{Tt@J@SLv6sIE`x)JA8=wQQLI$2tDLm64zh?1ev5Sfn3VMaLsQ9Ty+)Ww zP?ATDGeo7y5vTj`q(0CnP|N_DD5^fiX9E&Yt69)^Xb)NFITDv9Q_U)Ti-9EX9LqQZ z<>lGPel3gNRV^V3%Z$Kw&aRj)Dmm<_D;dc=DSY5aXK@&%#D#OoC1*h#>|K|1)-y&I zLRVww<(X8nII`gxvA5AAHhvzS36HWqUohm6YJfC*XN<=Cg*DDwy5(N{CKb>|V&_QR zO-=m24t>m;TD4tfRG*m4p5XFmcbF;JtT2$GpHqv^a}>($e7=wdtQa65VQ84O!K2ac zACcmsBZyH(?f1f`VlKE#atEFh86e+-st{_=;i7MXxD1>(@O2WS|g9^YWg zVdST>&T8UDTw!TW2$p;{wRqNorI04mlI0`^>ztxTsfE|7lC-Z^U*10SSS*#rFT1#< z+E@1ZlZKD%UARpNm1zASa3Mz}2VXu8w-RozO3NoeGK(x9Nn!!($j_2A=b?ew*30r# z@5R(^E@EP^H3T2Fsuh9+1lI&$-szdJsr=}vSxpEqkYEz#+ z{u@idCkWnIaP$VP%t*^7*fFi+pFa_GvLe@WWQtiJH8=0DDKX6Vv()eo%z`@+N-Mz> zsZ0#(*(=g}%r)sH>t&gvfvZ`UFzk3GTId8Msm7q)3|}8XKCviqn@K9BbFKJB+3}73 z=W;dAj?@&_)-CJ$^SCp8pnapH5s==;iAOUZ;P4$~tHDNW45)emgF(d*w9x3=aLK3? z^3zD$>h+=T-93k(kyI`UY`R8FaDV~1XyZ;0bEZwI!YT@d9%i`X>q@nj5v%^8I!&O0 zFVOV`yV}ZqEjAqa1M^!2m4x+ac<4S8fgFSf*s)v+7`RiS=i#JE4A)RD4s61Dds|h$ zv0vPRh?Gb;b#gWTjc^oIP~swGPAe#*Y zZ^=<^5Oef!-j!u<1FQK)3Sftk!B{VpL%IzUc_-aU8GuCY}}It0w>Rve#r$HsQv=IeFtNwQS=YXD@^izx;Mq0 zL_iI7r4BR0)!&&h7m{v|4w-m$HL7H^(nCHIuZ^Z2tryEV<;z3+KTFPpKLKer_jeEo z;=m54#6yHII|&L7je{O2HRVgEz|PVtFZR6%dB&vu>Qn3kC-3ajzzrgU*IvaFAoM}n zX#{{ERu??V1cWJ;C(Wew(^&r@6yL}P<*e%)BRpQU_k|Cjkm~l0xnQz(i_gov3~6Nh zQUBFwldN;a-k(zbCird?AJaTh)D#D{A>|;;&j@cAA46LWiKNkPgbYr$K6IZ|K)j~O zZ&xr)%Dh~U*{C=3dgj8WCd)yQnB&6ugYBoeG)q2k<<>1mDP3SwPM!DUbULQxCeh+w z_=38>EjG8$G44#6^5=+JU0@v_JA9NVUU7M{6n!)dY)10g64kVZ|>OcgSO{!ifJ@D{Rq! zGG7{s8Y+xEBoKt0^FS2Oy_}_h*Xx?gO+Fv{YcLTRFOfE`0cG=|?xdSz82mg;-6NXB zg8sw%M4v6J2e>PUVaqXBZ@cAWFQ)0mNx1}l7OhH|CtbgQKtIOx{G!A$5M0i>PXc&q zQV;*ey!U7^M{XxRmqhv~xI{<->a~E#vNHVtD2f!9c?^eHCtwO=+Cq4}-ui#v;-#Zj zPZu%BhHC=5?E>Bdio@>=h~fB4=`r$W7~%!vFGIS+%W$#4PF`s?5y2Y4Bi06Y^{tb7 zPLMy*N3&Y&-#?d!-AmX#PoY1=nCKqn!H^*$4t@+t=PxWz9X)Up^g#k((1u3rugTTi z7f{*i|JhM03CCxLQ#TevN?9z!QH3)Y2;Y)-DYc_ztnzU!y?0VgWQF_X((n@! zRl=W)W2KXg?}`yf*p7N!OwgC-#*1&|D%(WHyCp>}9N*>7pk%;SjT?Y5L$0!N^$UJDyseM&b90K1 zce`>zY=MnIJdFnj)2k|n8E|7W*ajE}nrMqbAohSvNb+m_)#*>~SNS($y?7$|8urG? zYh@Y02KK(_qcsRg@roWmE)6B`_saGvoHk`g)*j?4voAZs1(C7impj5W>n7I@bw(%7nNii$0 zgovkZzie92Uyxr{dH@P0#fE~#>}nS#ywwm=qN}%C1zRLvDwAnTs0I{5c!%{2*fX2` z4a2*`xXbOV2^(qF;0zTmN+$rK6WpsCOWmj(0-(6#z6bL>G|^!jzvvF6&8TP2IiOUl_lcQfStzU_r4LrQe;NR5k5n zG6-+ssEk&%Q(`~7hi-;rfy<>+DFYyyok2XJ9Jv4DyOEvmng8arj`PWfsy7S$}1g#Md!wH0ywfXgF#Azd9GsfNTNEi^xyXNcdRUBCvBAydPW zmcxJ0HfPG4=#=X86sdkm)n|VbNjA?HUP7PC&X(y4QV?7&{Tm@uzqF;WH`p$bK!G(t z_z@W~G6RHw>Ov)6zxf!O?Sg+>bdwX7nBVJx0YPsA-CEj!oH08_Ul2Yld2%`oi&BPm z^aA^6t(>d)m+Ufb(dir=ZCE`y$QW!dUzGE0KbJWU=Q6zc5$BxSd9-1)li^DTf-XB0 z1t=G<8`O))LH(`bJ7P>*)7h5c^){|Wij8$svG1o*j=r2e_`T>x1|cj;pb%Thoe)A)s*@er?u5Z{_h}>QB&N>3L&{~ouPbJ6+!C?E7Oap_ykb_vNkCaRpwbm_8 z4H7qB>hokSy$PNb+0})rSL<~yYQLjm360vn#6)G+$*eAWhH7-;~JavUwcEz=NNx|hunQt`1rNM)u$oi`7D){^sm}^vy@;L6E zua_=xMTX6f!p<~gg<27l*cEGY-jRbgYSE7@=1)^GFT7o01U@p(D|2uBX|&RCgbCz4 zW)QGkbJgEfA=e2b{8MO1&mUtC$foAb;Qx6&rK&;feBpQDexuAtgAY^F?IXqYSwGc; z5Onw-iE@#{aG#XJ@`ZTj%~dBDLt6r@Dm zuAj;qbX5GUNpx)Wd6-j2m{Du_a^%{!XpCbNFIN6XDb2;dHi|vhAv!zCLXbp!IGhUmm;^uo zt};{m0q5?7IBHJI!|4hvR=6Eb<|E9Y7B;=<=Dz`B$6KhGUOwtoZ8r0HHQ zF>Fpt2)k4wTGHd_XeNk{Mp-QrHjZK)1*l_g96mcJOb|@PX-c-zw*|o0fG6*!=SA7o zl@lb88AT6vIPkhJ{rOcL4pujx1oPc%o95R=YV0btMU0jF3hLZGt^N0yNvOuFHlpUW1dF=U)^>u_a*y7gc+R z9oZLbbUCsUL++eDd_3||&Bw@pgAgR)9%@Ki&}I{V{ua@&^pV2|U*Zb%U8P>{1H zJe*n@NR&0K&=Ozd$>m9y;3tAs$;I|B@dVqIC(7968Ai5qW_k+(0XPHbmi~&1Ji8OP zZ+Wbb@!`Iy@UqzQE+v)Y@`zZ0EhkLwv7FaTND2VA5MlpwfM1L>0P#LVx}|@lJ{~h@4>%JPsq7*_#B=n%r81TNnQb!6@w7h%5sl%av4_hh!7Jbjx<;q4Uft2OUVz41^cgOgmJ(Fw)C*pe`xWI#!@Q2Uwa zRpa~Vn0FogmmNz}l&zAM#*<@82f~`D@v(ap%sN~GW;U>Dl-Ek}%ytr07;cyd?~W56 zA&%$P_dN4ujG92QT3N%qkWYehvS+v%qn9T!H4p)7a5wc#mQfk5)*P9L)_IF*tCK@I zM%&(?q}U!(wlwq^b*!W~awP!#LU?Nj-{#ei0XnyR*NdpL zw%@S^Sy2Nxnrgnt*|L6io$;MSn)uhrTIgJ7D~ZjT`MdLBg^3=HJgA@vEGFc+8slK7 zmf(!@?raY77C-`onIurPg<&&s+As4R6XN0<9ZXpWIx0%=n?LojC{4(|TyiD)uQO(r zg9y62ixgN-fhiBidd;A?q)b<5jWR%ZT&b?RKtk+MTRHuguve?>VMW;)X}D0Vfnas* z#c73`-{@<B7;-W;~e;L14oi)oio%S!&X z)UCjBlpP};Y<0S*Y(4!;Q?Gvn3`dS$=Rsk?Q8#KIq!=}Y=nrdRrSP!NjW=UpHF)sk$ zn2A58{J^Io#@7jy8+6~Iv20fL0$iqm$w2UJnjDlDMEzj`8< z(5BHIJ@Mn4Kp^q0UC^3s-=x|H6<>Lcyj%OBNiX`RByIPAo`A08%s?q=DjTiEcTCOL zPMo;21fIc<;c>FCsXWW6LQ(|IcnYHO3%9sl$OoliFwSMs$XQhd441D4@IdOusLlN= zdhfr~9==Sa_Oo_bp$;S1DU`fd{NKv~4?|#_AqwU>6uOYd+{wSu#!=}VRR4m~I3Uy1 z!2Y)9i6_9(8c>TCa=$6+m0W(LFM>7ww-I)m&pu zX7S-d!LfQE8vtx;9-Bcq8m>HL&PtV~;Q;T(sVK1b3NL_;8(ZHLg4}4Bl=Gk1^m|Z; zP-XN%SHgey>$J2=X(Z;`SbJT-N*I3J$dEPRk5}D5duc(-R9e^DIzFQ*qf=S)M=|qR z5^!qQKcgwel19U&cyHOvt3UAJIZu@|gZN|5?`A1#Clq zjMKN~@oKtu5Yja-O&Pts3!{OP<58|?H? z1jOQ2Mhzq#-c%;Ob=@nk8!Fi48-f7#?KWo-&0nq~-JCwg_usdFU81Mgc#V-!W5O2U zkVv_{{Y_%U=N3TxFW% zuQ+@;{+1Z{G$m9R>5%$DflI;iOl8(P#WH6MOptBQKMPRjrgNaoYQ3?2VMls;G_R0ANoLa@u*zTBF{%`*KaHrNOSd!gqlp+KF*1QZ&wqe8n*eEAmQ5>W)eE7-IY}0+*q9 z=u+!)C$HbrYEO2whxppI@aCk=1qzwhAV=GH-D0sZccbhmVG9N)V4Oi|6(Aj|M)k^~1>;U*$8*d#YH z+lWaPoWQl71irm@r>oZT_Yuoba(}=-q1Xb3RqPs586t%wz(Sj;hBV@A8({QH)O+7> zg`EQLz9Oe;eTqUB#7o-Pb z3;+ueqGWbyCB%)#QK{GCPf(b_c_fUqILF&b{$;6#+4+Elbbx_wa64#sow5Qg{U+@7 z^uZS|*JV_0@1lq=KF^(BR)J*~f20rwff$ZrA$eesqh%{DM<{;$S!#j0nVjaNgBL6; zA9LWs24J-mkNpqY%UeO@=Ep?}2QnKJE+?5(KTfbf-QKMX{?4K0rNp0xEz+8sr1CvI zOEPxcEJ-AsLhZ+& zY4qGMXT3C3QK;Uj@+eurGk!u@p}p(X4QxyAU-><0-;!3()g-NE2|~V$E7Bj{zPK3w zp0!#R_|&|;q`=E0&Y1~wWokS?84elpb?BiK4h&q|fbl9wE9tvYxMkrUPz_Am7&njG za!T?$b;0v&i+5>+vAgG6Q68Ghc=y{Ei^!qikS|H_`toUt`(-Mb+D})Y;O?MSfLPqY ziT~UfrWsfp%o7m7ZCOz158vHFxrO#YCfBQUISh#SvG;Gae$k_f0w7+V9`ya+WQ`IG zK#`YD9-0trDA~!wbheiA&lDM``pdpcFijMmMP39}?oZQ*>RLWM2{A=-iY~Pm+`IA) zbId6+NTPjLH)oe01eZ;EBqT@C4OWReeL*eBSPe~(Y~Rb2Q;5vKgvu|MG#J<~{QC3) z+YC>AFI$||q^pU_m0VK(w(mJ{R6&JpTF`dgh(E`!&JvVmzLxq=`Lx=bqBrMg+ia7u z@eaH(EjRCHDu4AXM#p?Ux2IV%=n}O7+r-QKC0va2+WL!u8xFbQO5?)}-7{0b1 zm%ENXjK(fRul$~_-cl+u<}s6Pxy9~1k?~%r5}2LiYo4n^P^dKRDH!iKdB70j_Id@v zR++P@IOJfQv;$oZh|nu4JkWYl@InbR)wrvF)Od(7k&o?&h+C1L_Oi?mgF|245`PNB zYdAT2XZ`ruxF5)9pA`5nufTB<0x~YWyeO<%qm}quDlY1JoZy~l z+_|^mqgk{TPX#RV5+va&@6V@lINLu(dU|Fjw&)eM7ws6k=6s9=`ws~c6G&K^c}Ro$ zZVbsq8uLQP#26@88Z9u$f!LbcwLMMW4~hd+s9=HI3$J5s%TQ@J0{lJ>Y&Huon%WAWA}id?nhyLtE3rIchYhb!N(jhx za~qJ|_@m~@E_-8ed9qc{8Jg!R6}-tNXRnZMYFfq!SsSirZXG=(>gI3Eypn0>B#^AT zh1w5*(W!vL+V*Rp{6xP~z}n}FjX?bA zIQ?cTx!nf#9cC+{@_`(I^>RR&x~(aY%kxX(d^gDuvqsS4-{0#i5v#}f{PU_DqyWrc z6UQy3LS=?T*5rY~cdVh-=MnO!U6sJ8sRJ0=eNSsRX*bVJ0a3m;g&I4 z7q|KuIbm0PcNfhCTd;VhFwKmA(b)8b&i944L4OT*y{Kj$iPH9Mw6pj)heOnukaE55 zg?lr;!zVliimtNLkO+W>e43VyjCC4u4R*aOa)UyZ1BWqwZ?OMJ2P!-U8 z^}COVsKE(ZZ_&C7-e=lV^E8qOkafa{>2j=lx&2)U>tGQvy;iT0LLtf_KL( zG9a;B_2b!81FK(N0UYgo$>UkUO^X=1SSvO~$p}r1IyTm8m5dn>ML@9p-fZ#SiN6;t zfE1n*^jD)&{r7RrM$Hf4=#&05q(5d^Mj%OlstZUgsmIxLI`R(!0*{(acuju;Qgu&o zt_4r~|_`r*koP>`p!AK}fnpNs9 zpy`-9%#7P)%hnP!cVEk!_0GP72Slk8<-LTqADz$I{_qzL%;<}&)AMJBls}bw>h3UO z9(YE?5+426scN}t<9+B8YLndj?B(_tLsq}(ZFN^fRPym#e;N4N_|+b@11?{c-J#h< zpER7(An-q*A2rKAnQtvej1gVB-_OesCknGBP~?VQjwFnfvQbDdOjc%wiOrdR5{@jk z{4NDv(LqN~{m3oaof!n>=?V&UAJz^&6x9le{b=o^W*wj!MhrmJUP4pBk&`eV&=l08{p?8hgOX2XAyg0aV@sF34~%0#LxZLp zRcKY*MUQzl6NK}2eB6)fP& zv+=i-3E1yx*P(VV&%bs@j=4;l?`k>_=5pQ3GVSsz2T0$>Whucb#SI=zVVV%%(Rd(> z-YASi40bGgQoa*jMK%ii`%2ZnK7tR@P&u~RuWIxo=^PFkVcXyCqoTJA%Wm>MA+Bq5X|U1S=BX9E(e(wYosp-hl%wEa?t5&$MuVLO@( zxKJuJE|x7h5WA+aBfM}fM};`y%YQP-$JfvAI946`r@O<7nxOtYK-6iOmR_ti%zLDi zzVXBLbkX`Go=DEG**(`Q+5*cAWHN(oE^ovZ(3IPGgv%24iLLWYO8~#Lf}$7)Cl%`Y zGzWn>(v28kj#Qi%FQk6wVQ>BA_AxpFgVTTn%lKCJ*J-DZq>u$ej)DTOa~m4Hp+|iT zKePvoHa|Z|AfX6VW7ycHCK2RUSdsFd1!7TPJ8Uz$R}&}j%<*xl9DQSmZezZxB}q!r z9CtdHZeRKsxz3oifAu!UqX-SRWG${>???DrgD}1mP1hW>m_fG{I-9%)A^sG}e5`He zrijDnd;~$^r}(-upw6Z@2u(-Y0Z=0E;P{H9J1(Fo{+N?!fNsSa-}ni7+iO_6UexL; zT@U-GfulwV7%mTinj;D0+cTWoL?|9DfBCgH{?>fzrh+CWZVRPSC9JllvF;KdK@TfX zaJ<4g>_I;h`wkkJvX6F-ZKC>hisVRrBG!AMbG%03oI>;UxKwLMmtEZ`P#h;F;PcBi zGVyQA7haY2H`=r9Fp-Y&J5CAjbU$zNXS;U<-&F%UBEJqq9^i5IjpFtqos(BQ%k_cc z^&}o>LUTIoVG~1`=!LjRl)1cgU?)9K`=^1Oxw`TsQ+BA(%kSxv!Xjam3I(^*L{DmDA)KU}Ahlri9)`oh_0 zij4mCG9iMEGwTBr}_c1;PQO*pK^x5&|A z%kICHcKTF($xN2*laM-Y=4Z=13ObY!4e!dfw7@{sVmmJv6YV3J^Juu(bP<&aA1_q4 z0{uX%AVGtnS5fAtgbD>ui-&+Tqj1okTLUsg9beJz{Nd@pMg`DI&Z8PPysWY*< z?DAcX=iPzS>@?*UbC>O-x0QK*QYVY#&mOX+(6nrW;16peZDTK2F-lf7`Ytn{@@mza@A+CH9PL@!#VeMv(?Jo4wyb zA7`yzxm1YmRpWj%Fnxd%3(Tu)NGu%6=6y)K2!06J9j@q@+LG#A4LqJ1~uX&?|wIGT?g&*XmSPp;#)? zV>{6qMJ;-Rdm6GA*We1)S{^#1Fwp29W#^K^Fbo3GDM0v5*xgmzNIpcb3(FvCh+s*!@ zp@g*=R*0HVP_?RzDd$j4Dzx1(R{5e@iBKYr-g z{^r;RrG`k=Qb3d;wmtB(P_~GByJ{rMTjbR+MxUgo;BtiV#Q1Xd>!nVMM4!Mg^tk}J z1-Na9Yb^ytVP1By%vi7^i;6V5Y$Dcx#t+af=%QH3HPoaQi8T|Nvw!>>M=Ex=YoO=_BiPsr{tD49Zf)>e>)n$$Ew#6L-v(NvB->7YEiD#(wrGfH9@ z1cB(4f|@G#zgT(pqa|WTEEt@J2kNlpows`>^tf^kekayRF& zmh$S!H3A1=l-_8PwqE!qJmvL4t+@zET2YCyl$~3$#2^SncXTUa6y5*EE+_Ldh^dhc zbft_u?S>7uuL%|TSK}$ps{8v4`}I#Q#2O^w1r05I?mI%)#F2dQYOWKY_itQ=e47&< zEQx{ac*S92Fk(V%uF zKdPEdY>qnTcy}>$*-PQ3kblRt+Sg#GnMsuFNpKDpR#fkTeCE z6GFY1HcKAFl{pe5SSF%7!sYP*UY*CUGU&RqY8oC?tp{_9wv`ZNRftU(STzNbU%1-* zPNW>M8Q_*c03T?ST;boU?PN_D?3VDFU*U{2Am}8?*l|?`3MI&zJ`OSsJ3M0=y*EEb z?ETsXuOkCS6)|;*6 zSCqCAvk=(R#G{hBsX&gGvC+dCq2?ja&5|rFrE(1kZcz==$a>PmbV`58_)IE*=J_@Z zW;LV5PN?A~8Lxm&P_r?^5ZlIUKjE9m=bTLcUGKn93YK}q*+NY!aOU-FIyM@zua*oUOQF-0HK3BbFnwouv3@JQ z0+pV3L;8MbEkgXe_ucMdA9LcVH<;34yN!YQc)kl=seo{>kwOa@%y40~t$eI_ZWR>v z^qX#+bHc0rugv*7^6^Oq`pqKynrY2VuRP8hxq_2{eFG*)Bkh7XQGF-HY3%cJd@J&g zva3y^7>0mXBJz3vi#_Z8Y0#OvfXTF2LUxTaRBKi(ywMdLiI+U7?e{O@L~FF<2E}tH zTm(|oDi^9?p9=GhJK{AaXl#-`zLKX13H*OfSMKDogG|JK4D&Vr+i^Tz5 zCq_q2JJL)FRlw!3abu{6cb2rlMG9iG#CQb*9y>Q?T+6_}{LLP6GMB4dO6~4Wt{#nU z4{kl~qd4&>u<;DR;9h+td1NSD z!Ghz_aT|Bv0O>=r&>~!cgX4Bm>SVv1{psm$iU{OpkIJxl4co1>6;!-H?E7AEFJI>*FY5`GXbSS~#J z#!ituO*-SbZ_fL&D&lbzD#&T(HK^@SZZ1-374bM9oSdjlY}2;zkM#SF`}2AAzTZ7` z*@&9Mx=~s872nnmixqp`+tNd*5UGd<1kP+kacm^}j&dp660NAa0}A$e%h=@Y9QdVI zg#Gbk_aAx4!=f~5p|YuNtQ0y3PSsi6|FQ`20A1*+)?@U5e!ru zY;uV5wa;N9mddOwIz-M64s)CwPJd;{xk|-O5aOm)+hC6dQ=v6ZN2lT^zM-dWb~-rK zae@zbR@aK5_?Dg>BkVVBHkHo$8UA;$P1@Q+sF&8S61JeV)_(R#0}6%7JPJpPE5J(H=AF%B~Z)CmJ_= zW_k3&yXm@V1-~=5hlh`7rVU#}i1(kRzwdfv?lVj&)a={oBP#H{xlN7bOc@Oo|I81C ztSO~truK{|1tX(@Cd03K97{kvP)?sWUYAJLGFGX{(v_r; zm2#rJY>e-sf{3WEvwCv{v@^x0FG>hp8`xCUx7l2Q?ac7Ojh8onFs|)=5BpXCFcW<6 zg_*ck;AlM#5$Ov4Wqwbjcf@iG1@PPIi6{V-={@oBP#;6*4L$IB16{$9joou$QE3!Z zbNy&2Yb)`-3+7x=m5fOEGrF8Z_vcDfZsZ=UFPXXWn`>Cu-37`SgK@XPC0GquE{Jqu=>uaIh$WL)kfnyDoo?Lq9n zqiep9T3P3l)J!e$XwQ1K7BSPU*p{D7Jk8XS;6X*yO@^cF9#!SC?@TobqB&Sl3EI0) znPVNJ&rLJcB&g;TP~)u;!zag?@tUb7p6$WL58A};4us0tzsrn!N%W!Go_mT0C=(;+ zzB3sgq;qH%3-BkGh*Kl0W#+O(LtdgpfNGPy8|vk}M<(Yz-D9DRkO>?M0%B**XJ)m; z^F8oil+oR(zO|?`16AVro=GQZEbiSEtKt4P z>{CG+q-Eqv@bsQ80Pz%#3r(>G_rZ`+EMXo*SdmOkw0cRI?*^NZEWy)z*k9SstESf8 zZ3fSsX;epWm3m2orubU#_L`CYz!QA*d0rS$w7Ax8rGaJCKkx*fRfd$!ie-Ifknms` zF%3MyhcJ-CFsG2Zwt4LH%i6EEnBHPX+B5D!){z@!1@IxG(}8FFbj~*%D+M5Ci^lkj zOb4Fvvt-W2og*8czJh&{k-NZiew2X6V+WoL6*6k6WP_zRo=cjebg zdXpVCS7{@}5h3a+SD3bCbTsfTJA72seN993Q-j@|(YoNsuObN287#AsQg35_%V=HT z`9884FcXDx=nM@indv5;?(?v%@`&v6oRL`Pekb1wd?-7&8;D^L2)1P4?8N;ycFg@@ zh%PjMqR21o-JMsp@1r)lTh1ijw-(BiyK^v!Vjno&bUD-8_-ki@dRhB%3`Vuj1)LMZ zk{{QQQ0DLMtb$SOGri|SFf)9T+$)bo)sP$P&1RX&xpjNFIC!LjQA9iQxN)Yl0 zi%YYzV|9^zfW|+#4G6~sr|_=!<0y$DA7ZtLy)~S9Gc(<-V|I~4<3j`@xFYe!cxAa} z$Lk_7duRCgPV)_mt9gAMacQY~q^8fCvurYvVvYLQp0iPnpe%7(1 zXw>)ctbl5t%iU1`U#w#r(UWZD8#A<}34~h=-Xj^Q9p@$ZNFK{k zhNu;4s*Wc`V>l0y(PV`ENGevmV01hwdLXa-q_&}Jk`H2)I<8~y&_mrbxTW{GuilXm zRhq9L{v%?5|h6tz=9o<*a zfoDV*7AZa&J-PWCKdR}q!LAwXsD6f9-e?^KFNNhj^o-=dBFD#En>4I<`8C@-ccx!O zhL1hACOmrMJ%59ITs@K9BUCs;y`X(6+@4?h zDE>M)-K?|y7W-K5$nJr3gEt^Yj#yHTH`vE_(56^c0%|MsAfx!ECYe5H)3v2aUASX` z?0j!(GBVE{Cs|aG1VJKl^Unr5(_v!{)^Jq?V@l*l`UbtiKL3|-U2<}#ua1iCyYS5| z_PHig)`xb*2#Nb+Yq!=UBlxh{zDHHTUAf#Kuc6VN5l+}--*X$8QW(0b(SGa=^s(O8 zq$bg_)X3Qer>1??`g%r^VUgvd9iZk-{lgF_>n2;)Gl~rR(|o>^UE6WMAPidxj0mv* zVwGq=YE16p1$-O<1dbkmoW5FQ+^@DNpH$%zel7mGR6NfIJJq3dMHnj0D-JvZJ?(HN zkics$V$YZZUn;+k+WQg^Em!Lb&@BBj9~s#393PoR^||ebYQvYp@9WQFC2^wa9mV3$ zCC3XH1&Miz&(hx#QQ#E1`x`KQ)Xw19LGkIbDAt31Y!`?)?hGz?ijT|$i3xnYRz-`% z+ge87VV>f%_!*(g>yDhYZ?#{)C7iLAZK9TpF}bv3lNTA~i2Y~yDDgr)JNc$OH)J znrqRl5E(&=b+;k+A07}GW{J88YZOzv9eQObC=vlZ9uQVLqkZ)0`nR*+ z|IFCmf!2ESF#8_^$TSUrA~N0YJvGjS9I?!&s)o$8Kzjv{G%FH}e~vYbQDA{Q|9yaFNNU{^>pvK;7D z9@Y1H*R`xXsL*D_B6&8p1ShCMMcj!#z^Kq>#3Fh2mA`JlDI(WrR5&xD?mjB>ChCKA zGETA~l_+9?Jg3$WXf1e#lOtnPtq@zpB6%JRg!PowOenhc023OcQc^o84|he89_jO( zpm+o;tQk>XMIu$r6r1K^Y>&K^Na9?x1_Cd8v@2E?cBI0Z5ewuY?9EB<<1JE z-tBFfE$1gH9SodJ<5+T37&)?CQ%5io?)$m3q4;QcD^KFxygw>%Zp?}`ajYK|wvRX< z4}(3qTv_A?lKrj(K?~%$Mf-#kw&3O@-(3lU7RqxqfKac5$efL8D{LRJP#z?V`n{2= zGLvpYh3z8_%EL?cBymi%pc7@QS0drJUe7-Z{k-57xr1WIWmJ|#>na_S-W593Z zqwq8{ z#yHH=Hi{~ub}90xM2=si`Rz-i4WwMAc87abf=6#x99p~zdh0!#vP){OaBma=J1Aaz zi{TCbb!^=IdWCzV2-v}m+)uS%BX5pl?z$E3jUr%2ozcdJ9Fz}tlSsvgNQ=i7w&8wN zx9&H{WJ}m9tR5{6Ti&w#Bp{9scP(dKA@*pM&nxe5DyBw?;2ey0 zPUNTP*>Z$f55vEe;MQ1;oZXr%Ep-0P0o2n{i}PNfi#qyV%!{^{0U9jM7Ub)HpiW zny>*Hc)>1ay_iTxoN9jd1A4V_%L>vJ3h=@{6g2&2?Dxft%4J9Y&+ZOZ2a-+^6JgeJ zr;RfFjDlp(ugewlhf%=kA9harW}w$uj^qzw;0VKv9W4;<3k)Nr(@4cR^<3X|NZo7S zpU>p3NW@X}g++BrZLgyI!06~S5^?-i)zRI^QMFV=97c|&k%)sr$y}%3we|l8{-Nv& zk{|{_*q2r)TK@mBO`N?TbhdneajZnBA^CTVuR{QR)8TN`?B=?QRd;|oa&dT*qoYP4 z$qHv=d6qKx^U4nabUL~5InaDdQTm(U&u9BSbcE?;0z^XpwU!jn(YazGA%}B1_crO0 zh3NTi>`dwDLC7K1O1R~G&MZp!&bXUebbzINiqUg&Y*D5Zx`Wgfvhw1w_TOLNydNF3 zv%>-Xb~Xn%CKtQ&V$~g#ib^|tpr-1#;#OQ_xTNIi%ynsG+y2V*@;V*$z#O{DpWaT&t-Lc;t*_~$97wh=y=nVZM(gpi5T{whs zrNABdJ1n%8(U^rs3cD}JAM!l{ekr?x9DqR(_N57;@c)mEdIL3)4-mo}6)ffB$jBkA zy~ev5cD#S>&GtPYaYh*+%%~#Qrs~adCAE$;)`7;rO4~r4UHM8XgJK*xIUg3xLSL1< zp3!gElksaz5-n$-j&=Mi8+ps&@Nn4I_SW(7u$EgBQXaYw27&J4*tQL z-&ep%Dm&0yBqC^B%|jPMD${cui8&qDc*X6Zbx`5y#r8cWBMEad*4IG9_3NiZRRNr+ zvm@*6b)tmA0-p`cq%z^gk)7lA2pe}Dcx-e%e9H=)MRtxslSQC}gZ}>BXpqW;8*BP8 z;j&wYdfYgy-IdB18b^B08nm(@K!$dx&!jSi#)+YWo0>sKNOAhK z{%8dA)}X<|ZmA&fpeye@QB+yt1Hq}$6i6RS3RtJ-?f87glVq0LYmD97z+V{S_(nH4^Bi&Ma zUWI<0JCa2j!N~*W4-ZTw^arHCggVbMu*>0NCT0`KXMF4XiixM|2oj}r>%GlDWfyoi z1|@mA4y*eXW{Sr!XW{L;w~4wrn2s;eMQR~p57Jqc(NbQUdqC22R5rR zbilGoBW*k5t`D(lkLZNedMesac%AC3k-bYiP zDV$5M@;c~0-;Yua&RpHPl>@fQ>)Bb-1A%49=HpHDb%ji!E#h}6 zAH4ROl)L?9?8lYsYsMKT-nc)0bOC-9`*}0_)2JldMm!9RcS&7%h_T}TRah?%8p~po@@ZpzhaXuB+B{o?duWF21(zkJNQ)Kel zlyzqn58va_7QM|lP&kjLLg>WYnOTzp5PtZ>t?h_$h0uu%;(07gfxW3FlNQCgl?yS$ zc322HS2&&6tg?Yc^pJG?z zjf?q5*}3I741-W~OR)_{MyAnzr&XlOMFR>mm6Hu_NK7t3Ok%ei3lEKWeotq&5ojYMeA@HB_epx ztayY&^;N&fcc_Pw%(8rvW^a8zo~*?f(%~LTQrNMl0#AzCGA;hWPTLkyJm6e$OXor7 z(f>Qn?qt|xmNh0m7X$4p)Kv99XaD{tku*8k_97KNrkw%bN!_-Sv?tng#?XG0gbtxm zcA{zBklzRwtNi7(LkyG%-Z2OSz;rK9vsaNwI>bOp;2liKChgRuIv4luB)|yX(Fu4F zJ2HhNa|UFGUndd0<2^lEe`CPewNva~JG3~7=p8mpo=H4&)9;)jbmiGU19B(VkB|Bi zI4QIn&wF>0YeetxmoOar#Nbuo6j;;_>rNti2QtX^ff)PSbrrK^hju3kz2hA>`vdRS z)|b%vJ-HF>n$SA~)f$g$0diDD48K7oaR- z5U>{tOzeZ&WX|7P_HrUeRlLuc7e%&b_L_in9pbS(6>#@C2Fl zTw)7J%IYBvS)m1Y2v20#9D6FUqX3qdPcVC4zWBOS+zKnsB6f%JZ=#OG;YM8GpV*&g zFk*Kw=`G0KdD+u1Rt~0c?kr+=Iy%Ar%K-I%?}mS3f3G|Km%OET53<(A`#k;gLt))n zJ+vXM(fHLDHlM%cP?&KRu{)kh{Ic(_vyF6-Ab{QJouDT zRuw00TvqC3x0Os4kvm=j?g1QsdWrnx*}zaZW_IZBpqpHfpYTL@aW5DO4a^So4wGoS z-0^dmhh*!IvTMs>AOwL|@&&s0zgQXj(eP-~*#nS`5d@vbjm=b(;jeif7z6^QGR~71 zn<*txd)PVDt-bpxjup_r1cI~{?;{0#c-C^nqdve2p+G%hTADQfE8^;N;0$| z8Nr1ISSG!$;{D{FTNwh5jBxb|4JA7(yM2X_k}@O0oB&bRLUSk+H6c^TAq*4-hy*`z)Tb7W;`72;7lXaMn^jaGB_OrBJR zSRo#@vs&Ahk}xn3=z#nc`)lvuF*^%yPMDw$CivV3ma)ICiAU`~X$x#5ILgfeyGfJjB6kSjy15Rckf{XR!+y%$MEkz$Ay;!!(I zLFR)^ZwE&qBmI?OKgf#aAJ&XO!u8-;y16 z$OfpBMqas(J@`^BnOPM%R7BGgG?P|H3bJ@);co4(pI2eEmUKN89)Uzn9-l%Ws~Vtu zZjar>KEEq*(et4Z#1yK*U`t|Gl6REk!A%^a803oj_q~aH{4W=DPeX3dvy`#?lDktM zpU8sl!B@$XE5MMyv)Mm#rRK;gs_er8I85Z4$4%t(nImzscNiwqBL01o38%t*ki{Tt z+NU886gG4NCXm5JxFQ#m~DPf$+gM3EBQ5odKxQZAnl_Wb_RA6`*105%g2Ro~6?yFEAB*J;TjtyKoC`8}H z-C8U31c`W_fgawJ{PkYV8$!K_eSRhp;5xhqV#;n0CRtnLN&<{v9-S581^>}VC2|w{ z{QgBQv;8PLmn4fp5Q=U|4G8XkW9>kr=3y_71_d&3&#+%2f1kD-zS+!{t2G@fF#RHAxY(o0*=*{>*Ma*01|(Y+NX{F>Bq0szL@)|0aXX3K>MB{0?s9 zJGKK8(C7BInH4UGM*NN_<|4ECcy)`D(~Z^ikFqm6Vi<&hXiLV11^RC+dd`$4Gps?6yN@eeg1AOrvOd`xO*yR*Z@c?`n-19ONi008dbPwStiL#2FM$ zBj}T77$EY9onotu2ak@MU$4Q~CX%%lxt#%a6VErKAg-Vq%g{^YAv+(+&MXIl5Co!E zns!0F|HX#qA4n(71&l#uv#KypijuHh6*{b{-xh!0d3c6x0{xkjJ0HzT4X_h;AtSqD63?7O%wH!T z_(aMi_ExAd@&wUHD+$)Zp`Llm$>NnD7UpI_NZ=CXV3?~X7O6xTueq~eAuSy!s!UBv#|kq> zyylL1E7@k|DZq4oW8WLExY+>Sp=+zKjuj2l#1&R}AmXt*&+%Wjd3X;aX)0Fe8WL1@ zrh=OQVncto-V`yF=3Tb{Yaqc*s;- zrNS|h?y+Ww{{eU2dW8^RZdk zA&o%$Yc@`~8t-sdT;^_Jq|c-{!OL_NWA0?A9kKILFu5Ix&ed?l?j)!ku`}`L1&Icy zQT&(4*Zq10QR7PIf2pX%ZH|+EifAJ1#QC z#_nXk9kWB5H{#U9(D8mK`sxmM#S>^}M)UiPEP|-a_!Pa^dOE9VNwWrxcG@Q6qxJ~h zNv#R86Xl=2;?~$=KGmdjns!a5%RJK=x3G`GMaw(P8{ZK-JVjwV0$O=WaVK=xF|NrV zB-Rqy(pOVm3&?qg9^(nJ1Fmo>Fid_7e~EmZZcA@FphVXg5oL-OOWDb=mVP~=nm6nR z(EKfaJyz$bVF&F*o4S)**O8l3qV z1zDp*yzykC1(}gb9IbY2*3WTw(yXQ0)tqlg5uAOC-t5MX`J?O#av%sn*q6jnkpF*d zDSJXRkz~%qFbX0qJ==~-1QT@j2`CdNs+(o0@K<;n#)F%sT8JTGJVU1=FBJj{Z^L*9 z1U_11WsW)IdozCB;1RfE8xYNk1?CX743v@zJBA~4htv|~vNGu#|JV6syAlU^Q$rsZ z!JudZ>*3WzD)LSop*tjiaCZ#ga$d!g?Q0;6&>dVb8$mz@M85pyDivN2N9fM@ETgF% zPX?j%WV;fqB6tT#_UNQrnJ)`2|uTJ8?wspo3wB)bKN8b(H3n zS0Z?X@1UWD_No<4Q)Qlx{i?WSY$}V6^6!XScK67;DSaPKKURM=D; z;X77a;wCZWTeFY;V)^cnm@iuw`vJ{EZT3cmq{R`s)70`jwAV2Y3g3J&eqXk3S}zS) zBNxy+sKrTz0p>45Kg!OkKQ4y*CR>=eXaH#qa<^udH9ZXQewXgs11=qu?}YFW#ZvGgD3L6?9_m1=NHR& zmv}z2ncOV5-H>2oY-jEq58i3gD{6v>@7DE_>lxabc<>I-A-Lf}na3QDLr8PqW6OZR1*MX*?)`4H5T->Ym`_Yf7kAT(a139-5 zWSBG~-6O|39z>3<0|fmwBwEf?R}bf5zeNWfr@#Bo+ZWq+hxn_~Lc>by7;uE<{9^g$ z4=o2n%l;SYMDDkh9^)@jxwRbomz!GuYG2ZsYrceE;%`CyDxPMy`bPh8GC%oC`5(&8 zC5d4W1jAQ~G>Wqc0)_wa3q2~w_I!}*gFF;w$@m>_k+l-}4vwk} z2C$D`ptANR_W44B=!bnqtRsPx*pqdiR!D1l1&phe8g^#`lZ}=n_N=6ze;o&&OQ>8= zN!slSX-&NpkKM;$I)E{OY}Vsip{%JF;$f+eS1^jYi#EB%E)*Q~upXIof4Es%kC2!; zrLm7W5@0KN9wc5BmQk1Ul_2f`#kW$XhXIkh*D&u8`{o-V9&;8fhNPJGO}0Oo1v z2}ozdg@WJyGFAwD>J@mbQ3cv$*MG~{Tuih=-_xMK11kos=fe2!do!(&?6gHwJG*Sb z=u|SuXd3(c7`>@ohbUy#ytgID{k(~New3b?g-Wr2hrSTTO75gm3_Owt94e-vmM!)_ zVJ5LFOoI)VLFrSE{tC^V0pUzw7}L@&DxF|&fVXCpW+kd%mU&^i|2Z9g;e#t?w+W&uSC~pFtG`BgCNyh-CwWQ)9ZPM2T zM|-61QH7nRO-Bodo6AG4!(3OzU0A}Sqbb8p<`HFFE#;VwrvzUr zzc#8FZd{EzdLC{gI4k~kr&G$nhV%XCPsyy4~r> z%Mj^2pyvtW@_Z%9gUmX6YasIosGy=J3~l|3ji)1BLm=~z?C>1G=fJ683ZWA}gh1vI zal|wZPwi1#UrN6o?wiabw%PU=Y)qt(=U7K_2Mx)ujy(R9T}iG5AqYH^+E94^i#^Jp zzYsK$Z7)a%2T*J91FDT_&^(ltV)F%&Wk2+S76)Cv(Ox3oQ@xi+`XmXhyKTs+L{jnzU|s34P6p#5D;zZG6;Z(}T?}DvUcwU{CVi z^3OjNmLpe+LXh8~4+i*B+37@=vt8laVTbW}F33LgSu$tK6<75>-$1 zVUwyb`4B)nN=AscuIv$DZ?W%_WUrFza(KDbg4@&~c%>>tQ!Tz&`@U++gfy$R9D`r~ ze8=(dgRa9Qvp(N`{5qODjHk8M=`l8aMDry~g(HaIr!~c>vP}C?!NG*|82p}*V0QdtPoLD+*Up#P1L6=B0wMy4hf;%-)1-4i-U2HeLF^D7Kf0?e3As*- z>J+(B6m|fQEcOj80Cfopqyk*w-XW;(_|8YG#l<=vPm%ALo&oPcpJcF6BMT{)gnxG2 zkFqPskr)PHUkXjSCjbA~+L@77fpk@lb3swc00G;)I(C5X@T@H7FHJnvFL`JD@#F!( zGX#elrarOFpLV$LO3DcU9xdTiYm`o646*r7!WzU5;z9FU;E!7ZZPx+d zSs@L=!@7_)*Vj^Q2E)9p3l-8JeB*63Xgex;5zjODx5*=K%S*0;`){*q-3&O`LECLs$?b} z5=4RcA^EZ^|HpvivHOF!76txKF5_R*F}D6vb}qRN!ypvhQXD&g_rI}n(m@60Nsmr4 zLze4+A@}nOoqI~)4G*J6xeGs7?GW%Z`)MiXT&5RLP=emk@ck)QY?|5ZLI&Gs~ij2*9PC9vHXZs#cAr2{)c;Zd*`A_af7jIFINBDT?7b+w|eBX=McW2!Z>Pk&m+;o_&74w)5{mvqeXL23! z#p8Ie&U;#i#b!y22Z=iIR$<|0bneH~iJX7~10#j&WozxC^Xt&eEMj=fyH#C#B4Hxq zJlWcbY)P#cm^GGM1FFJNBs(NCizpuSgVc}RPVna^cHYjHfyl zOg55k9UyCgY64>K$RyUGuvx_M;41BJouH*L%h;VvlC*iybf9-)KZ?kmcRgWwfJMr_ z%|4W!ZL)rv{AY=G$~1gc5sVqH)I5>+&2id-H@6w4g@*yl#4 zOtCBFzB%(OIJ*#lhrv{{6uVOJZR5Ej82U{#n$0o;L>0-C+NPnrxIFnB#V?BaE%tkQ zZ)N$oLOBRp)1A2v$JnopGO~FP46)Xi-eBocriz$Kk;~Jm(oV~{uEUWF-@X)yJjhJ$ zNkuNqxDRzxLBL4l5e9i|JZ+Eq_;BtD0>)KZj!aPIF@{>o0H}(NN|DBMKbHi|Bl@!l zCmp+@cT%MBw8j;cO$X3|Q-)LoN!t8)uxjh9=95GBIy{jIMs0pP9Tm~^Dav1H`xN;- z{h}L>gDJPu#ZHzrzC?bl#s3r@mZ=Vu%))-Aof4!1t7GesYvBK3-rapx%kWf@BWY|F zSxAxWnN)1$)T@AMB=F!DE*AZp89d#*Me?{8TIT$XTNOQ$HWm**#eFoj zp9AYbTdRs9Ns-6XP$PAJCKG#&JpXCa4gFDeEw~kgAn;0lSe?E9#mdk$FNjS$7a$uH zWOY7HA7C_uC0GGkph1W>H5kWoCI4~`Ag_$Gb4L{=J9M)CN71`3VRdvn~fJp?%v zWEju#IRQo)!Zs>r4GPf-8O8JPRUz?_Ztkkq_<^i(R0S)g`vl{W5@Oac&~-iNc!~ z#|J398yxmo?AkoOC^fa~9#OjAA;lBZq|uGfJ|x#qWTp4nc|3aOc=sM_ps-hmH7{azk-b3v1a}gIVk={6XUu=6#fb_d}l|YzeeJNU7R4HuuSmGbBDm& zGCbeyqSy|FvVn}>`L@Fit>O{tv?aDu>lwd8JQEGK!`*ZD`s1OHHgF(#f*3fb^?38V ztff+s8No9{E@SX!vH8$&iLKORM(|L%nBDJPF;QLetyJX?fai;{GsK0(v` zEE-Ce>r>n__6060`UH(2m_#^sAs+QbZB>0#y53`EkUB%9W2}e=6d5~s z9N`+aJqBmF5xI>0zUql^&Nz2p@Ys^RD0fPCJ` zTiL}+6=8xRVTS=j2ZYYUb?Wjg`-ieK%7GXJf#{XmwZ-B77h9fxh?^`IFow23@j27k zcOL72N}$-{vFTAG(n;GH*8$$1%UXBXb$CY_*U6;q81fU+Hc1De%N)VCS+bGnpI|K2yy#5 zLMY+x5dPA3HwzV30}&wNB_tgTUpukG^NZ>p32@Y!(1Gx^0Xv3{08^cb9F%J2?m+n3 zkR6L(rfWf>SXh3_F}petzBb(*!{;@=cJ2wHx1fI(|M^*FX6MG!sJKoVSKbI)WVw@L zM-Xu}rAfvZ>Z`MO+Sc*<3$z;>CWn9GXkBL89hBVyva@9)Rmx&&#D3G6)ejPDSu? zR-bn#!`|Eu10;S<{wO<}T!}##249H=0{H$HdogcOk)+aOH>+q=%1`KLdoWFAr?o4K z;7#t(n@&#*fzIBNDPIB3;oNtq5$c0+qz^+ZL+uK3j+@=-40Re**lm4A@&=*+IKXFV z+2C&b?_?q+dEOP|9L|7;A5IygMQ{8>l)fuiI2^vSDFtq1NrZyZ{!8u8<@*MBCRMeB z(s-5BX58c}$T@C+NA2i&l5p%e+Y^z=t^~fIyZhJYVDi*Hkd{v#cx4%MPCQMSRZRfN zI;oa$*1JNr!&&iAohr{<$~~#IWIQYDmAB$iYh10@ZZhX;XRhE{}Z}XT9Y{vy*?_` zJY2FCJ%$NRk?_>1@o1G+{~pcd=KZ1{**xkY(HISzR{wr7?t>+*c~20D{dn)f{wO=Q zT#G>vicZP5GXIHPR&R0=K@<7x4{0dkqszU2p(CBvcxw%v&-m4f^RtK?zG$Qy8mdR1 zQGi>ttK~Bi>4e>Af9TlcOlh`yN=T#)?nDp7UaE*9gEZ$uJ|cZ^Cwj6DNQyict@GL6 zVqYuJDDogmtLv1kb6V>2CGxfUjICB>v>=iXr%^qKBoQcIjIkD7s^J2m%eOVcep|3?^ZMEP> zGm?xWO=n_u41LY^Fc5)$L)70A#!$CtRaXc%*ypXip#C{qBw_!3R^l#J*R`HZD0ZE&B2-zx#o` zmdK3-+2Ni7+kBzJp!Mcm*&VKkE{Pt_nr35XQ42=aQ^n`UKJiL%# z!Oy&#R9Jdh%KuUiHdnHVx)rV>tuY|qMP;8d1}Opa{2Je!Vj&ruw39#qPfw!c(PS#3Ly(w zS%_DcXj7!%>c7E%)@=dwfv4&OeNR^_E`HJqs@M!1OCTf@TH-hTV%mC(pr`F7W{fz7LzTg)98SY`2_K8 zI3ip8+c~kJK~MQEk=VX_g*s<{boLH?v(Gz5 zzGvI>wgfdYpr1h0cmA;k7%m_s9U^3!9b1VOmZOJeCqQvQ(Z>xU4GW8g0!W)X$1Qe` z#P+-`K*6{yLU1034QYVnV!uucUeHG1#sier@e;UR1ADmv9OgNI9lq^WSWBcxd0-E( z**!C2rz&HIX=#lVDG%%+8QG@EQh^X`yQv?_&L~HM5Co!E8fl^B{uf)GUyC@&Z~?Woi#M0!VA3at7tDuDb&y<8Ww>9{7Xv=^k0S#O?seI6RseM8Qdgn%KR( z%6Y@G0blye&0K=K7ly(0+1a&&QIZ5e;&Y()h)&j9?{u{TBmY@FW49jBH%0fZ@9n)p zJ18RAb`n()4cOztq%uKVJ0OxdJ+VV#XS|AelxY3X9SAu*wW6fvdQoP?zs-`nc9LB( zCmk=6fn3Xi3R^z5b#h%2D}7A#Z4IgaaZzz`>!kW2#$zzEmS94#W*sGR>!i9I3|L4e zaaPT(I9ktj>!kWY=`nQtTw)W-=fbG>h7LdT=y{xofka2YkfDp;*8LSlGNorkvS1&L zf|A~9H0$6SCvZXJ-yOr9so%3;s;3!WF*H~(oa;*YX( z$&nxiVd$0eAq9Q^i;Z22kpi^TzCaeK#2E4l{@0Gwdg~BY`9zGdiyL-Dq7ugg8+_j3 zkPpk-O+nNZk-9k^vpwIc{ABy-=0dt6Qa8y1C(LQ-gJXyhD65ZhMWk+!2jLNi(&(YW zx)PTwm;DBLm@<*Y3LL^ujAp-;)aFKc;Dp&LmQxx|QzLOjNG!ElMmBcX1nEKc>(xfN zA|(mqfi+|M(FhJUs!WM1_dPK@*al=CtdJo7B7gE<7XQB6WrWY%Gh*S0@22@>yZG05 zlOY~+WKL`X%nV{Siz`xnw1%L~U))(9VpTBXri zPK<)%f#8f|TfIG@s8vFFASKT1`f%UNNeM-(Zjgs9Z}36i^o-nb{g|PMRbqJ{D4Wa* zJL8!*HZv5pN-WPLxw0O3SmRA9ODmF+SRN!!W_;v>(60I(9EzeOmWMr|_=w;Kd(tr) zq4<-V<=LE7z^*);27T&gD{6J4JWMA4C_A@fi9r~KwgiR*+<#-&ho4;xJ9E{5CxM{& zA*8xUsjod3WjvqCkx$NA?B7I)+8FVlS=Cg!#XFU!(kE_?UXgtiem;>EEZLbnv3K#T zhAIy|q;o}F!IC$1T_0w^7556i*mAmXxuBNhtVM-mjXRD;+x7Sry8=^h=A$!Xi%&3W zsf)v^y8={6p@$h3$@hcj7!!*lxB^s3qlY;~9cXJza_{pSbfxx7Dm@Us;ujyQ12^^3 zB5(x-lTJ_M+*poLm$=0%TsBn6+Ok#;(`8yGShSoBzFX*@Swz4l}P<#mdD>%3T5QB-VqTY2%W1ByRJJtYGX;=fUI`X;TC->*eOKyMnPhou`9V z+_j36Q@j5!_V1k>$&Un1YKv8|afo2JD;T?Td5|_}%V~Ap`n`PGt~_-*l?XFr z${%HCnCw6Z!r&`G#Z~WrvBziMAHkg|7hpQpjS)lgU%Y~{GlWqJ?sy#nAY-J;6%-6g zp6y6YuJ`!L_16X2hua1ZR(`-*Lo^mfvTY7!4Y`jN5!4KrF~~xvBk}Qs8(PlD0$2ed*6?XOT=ZD7XHKvfknZOEcw9cn0tl)cPnP;LzhUmT_`dSqo0Y<6?j3o3 zBo#BEn7BhhL{InbB$->g+?8N3xoqlp5&a)!*LH+348vCPBTdr%7sK)g5WCzV2JrRT z$d4dPPqE8r3AILzGPxqNUOlf8JbFw~b&!unYDZ_XKGMja$i_rIp=g-OqVu+$6}Wvy zf<=!)c97MezMS$}FyFp9Vh9pF;CQy(F*Uhl3AVmUIfNk5BY05_-55h8KqG6n4wK-} z<5yh6@2O*gx4ia4gJ}#LPd*P=F*lO-#ujLUjWKxC%0mYUdt-$I9_mF!e zTn11bPQS;JDL!aKwntQS6y#m9>gex^x# z!;CXn*RmXvlK(LK)^w3;u^Frvp&o~iZJZ65GOgQt`f~>CR(e)!t)hcUT_^c3_|MvF zRe1mkbO!&{y}Ezl5NA@!Db)iVrz;-aux&P4CUGW{6o;*8xM^IVo5YmR3%fI!q|kbx zxP%3t0c6Kfc{t!qHu>W9B(431sTBS<-eW>7uH`C*$E;Rn%51>nmB*P`U5;u9LuA%B zx#vaMx#ds@gFtjkLZQ|DZ|s7(A4(aM*}&0|q4Y5=f0gG`CYoOS6_vh;I^$#(Eo;g% zpMbDAJgw5#UK|*^vApd)G5e4!Pw716xX;!Yx3Rq4Jx6xZ^iZSaDc5YWld&7isC%$8 z8!lLGoNOK(I~Y%}lm~lah3bB{w^-S$c#jE_oo|1S#h4O#lS>fmL&9Wdb@;3!ZB$V$ zZFFUg@dQihxOJQOVrI2+TGhpb$;^kxr(8LS&o)^&A!vPogaMuK5)4DR;O{H~^YG+U zjC7R&g9L(9neaT^HU-q36=KXl7^UK42t!f)Lpu}*tC`WVeQ0@7pc6;A+nm85EN3Pw z9LiY-6K98N_HN%3bD)^D9mX&y<@}@U4sIBRVIT;$lt>hh?!U2o^UxaD1_*(iqXhWj zyTixC^q^<8!w!Qk)#v7UnKEI9DqjaZC#pZld5;-a^LoC0W8ylzop-4NEiSZ8;2S|7 zlZ!^r>-y_zE`*|w+K7#!OC1MAyK$lC{uO*bz~lKt2YJ3tdDZ6e{+K)$;v8-0DdagrT^M&~H7)9}KQuCfeZJMXkmtu# zdk@>7Nlyp2RU^Y@;|fz=%{;4knC3L5r6>2Sgt$A0+Ee-rnN~MnJa|lHH1C5;%+p+x zflecYNFNmsFNFK+#{mlsj^mUO;uj7jgG?J^mkWt56%F&8D$6xgsuDt;`#*&*WoB># zFbu-Lm5Qm_u>WHH^m|CRfR(_-aY&_>0By=#Nb@nNE`>N>MuqL!Rfqk#$LO#>n`uId zr*)(1gETvtC2dR@AvR}oEhkK~QK`iV%^6LW5w_7;tXW-NS$I};=JY(uHp21wRV{m$ z1*x4K&f(^yhV!$TKc|ss17b7LCeEi3X!H0=GtZZ4RwK@1+_{nF$1R7$vvF1a7ra%k z&hqs7g+9v8AO}DY27+IbLN)&XW5#%%mHEI1NGaVN6ZeF;IUDO{3n z@HAO?F&TV+&S8WWyIi%g6xNxFPIORh>XHqDu`foknPL(o6`el}`A6L+J$KZLS#e z!CFd(0iha#m=8{sOawmoJBmM)oyiS=Fbo7+!p`CJUm3>(!edvO23A3g96JNbFGmB7 zmZN4zg1l!buE98bR35dYtbjIl4fz=Q1N9DP&d)45JQ;85GHx=Mi3UtF&zitSsTJ$WFItwu%jHKR0uy>5H5m`_Jc7IJ{o7#M=diH z5`2sxB;qr*APls98ACXNj6B8=PL$L4-wejlu70Sf(zaP7i#(tZ1ez)F=XbBTO1+}_!?`G+5(OJw1B*IqGb zJh_Yf304mf-6KE~Y(06Hs@1AvlFuL|sn!Va9dLRj ze~p#FldA}!*V@OQJj|^@hk)vLmA@yEi#T{eJp!l-24b}QI`YYpT+V0O3vNXPz(K-{ zIx7Rn?n&%ob_#*j7sl=F9<|{7|7S!$lwCm*10e|eQAY(?{Qt+AcoH~q>5*YvC0I$4 zWBZ%;^mE5B7QVywqARdkwJ#BChi)_*XI+D|Q*~@+=aEbju@;3zDTVi4dmYQmy*iO+ zQr`h&0SjoXdiloXdAJjM1p=uL^&zG-UZSW{{*tFN?k$m5JLsZ3gvvWcYD@t#o2|^V zrPFrW(hJAB*_0J#ZRej%3B+0sRpH`x0S%|8sGMmlazx3o)ULk-A4m(dYikF-%_)_w z-GPOa)U}ec?pDt4nWVRlA?^8{DjI9v+S$(q?uTAsh`QNAwW@lZs|ApeNJ}SGp<>#) zZEvPUpH`dmzGMGrhl9m1rDRJntdT!6|~Y#o=V zkB|NdYm95ma!NaLJ^qxPOOga32t;qxq5QP&f3YEZF;l>7@&blop(K>PtZg=Csjcip z3sA!kIJ6cWpvkl))v8d%J;$t(QVMUIZYhUaj0!Hqlgv~JS$!gxciGOI(3Of0l7|`G zi=euv%kExOGOS>Had-2S3X!?|IbAi0Q=hOjYVs(>`44ld^-oAsHNpFL|3`CJ;LG4r z8Pg`pA12Q>CVoZ+ikM82&%XW)+0Hz))AyZ#57gs=6|;ggHfBvt`h7_t;{)iP?>VZV zJ&jz;H1YI(Zvgz=T;W{ME7Mht`RA%$r0Is$DEbND1BLYN3KMhQWT{IW5deVP#JeV? zMlQ8t7F-+C4VWhAu&<-8FsK*O3l#3ota3HembUsfs07~V_ZpcD;rg9o45nEfpiBiu zGadahT6b;{!Csu`4r=VW2?fe7B%g7zgYh);s#xuI#x8YzY=yAFY zXVY_1l%&a)Bda6 z=qNuK&wE${3Y1Q_YY<+HY*liBa_>3s@r}20tjQrnHaHdTx*jPUkwt+m2$ex+JKh=P z&Dfh#*+jd0oG2WRz|l$dT#BYCjf>4_c;CrGKv@15jf%OD*4_#28pnkb-7;{Z7W1jD zt&ez@xalA`hW8CCBx^0{rEj5#@*U}gutyp}mT+uIf@ZV(#(pyYKyJ?Y$vQ(y1s3tUbTAuhOaRY$e?%uVf*y%CGr^CI0QE97W zZD&BbAg92x4gAaDL+radEf0yl&+_&Zqb79PWbk)W3cV!WCX3snoF9IuAWmY^>-19j z)>+zqQYUZ(&wIXDI8SA>aTQ_v#h&2MMH~sXAGMO5B6Fxz`d@UR1=5KMoYtk3^R!(v zC_V_7ijs&6;=O~GBL6qf>{EHu!5;-r}u)9UAr87r#scY>t?xGm|5tBqZ z1)^+B#ZVUbS0n|B^y>3QkJCxvScf!tnBu{vyvt1A3pVO!OR}cwgRT4@<)mYd;mKXbQ2C?|l-6ddNyM#10P2 zZ}&X~aPmaEp%gFjAvZYtu|{}MSo@w?Hz-YE;=sMBUDzf&OEX6q?jMvhgx3+Vx9>KD z`3YA3fBMREqn8v1X%)9Q$T7)566ppBk%^0ds#mdtJER+@@^l!ANb)}hmt}Wa)|ReZ zfEzMxNC}+7xI(;9K!)^=k@>QytcmLd2bO(uB*neLx8ahW%ROEw`1YEeJ)lI8!nh$S zd2FI7xB>Gt-&Vjq&ui=nE^`V7N8zY6n(DDD0|>8-8#c~}BgCH2)AYHQDQ6cn_2cjq zs?khBwyo%sjxJ~_y2cGdO+OSFYf4%Qq0!3{`$gad)xx2sXmmfh(p#1kY1CfCuVlev zqhWC&`Cu7vEcA_GlrJR{soh(_;=FFKUwBMz_9r!~0t-s2DeLQ<%6W*WY$g#=8V~aq z6Tg&QOOgd42)ogg@=>|}#fG?QWEPVPbk*~L0TRi7zdfJugNKa5BEuA>64Ig zy@o)3ZOP0WO}j^ZT)S65>;tmqQds4vnZHmUg!B*?lV-)5KWLq%Wei5AU{!jP-TBV= zKx>N4`<*ThW{zXJDg!1XAQ8tyb}?@vIEKwMtw1S&NP)-sIcN~xLTXTHQ}j0jA*gE$ zkO4!vegjg65|8d$PM$X2IN9sXAdHI2z8f!4{w0VBT+;S6eR&&5=GHFq8@&cEp)LtR zuMkd{HI!E5H=alUYAw%qX*Y*kjF82?OERE9&#;J<3Eiq3Wgfy<72g;f9$+?-cSy|r z%G4M*|L)NEQ3xa#IMsy# z8`s7TG9Je^%|Fe! z470b@s%jO60W_~@h#X1i$nx%N^Ok-}rJtAd+XL>jF@Gt$avX+X81|#Wv31!0|5(XP zmDPo7fTV?D-DHTU;qwM-OAWtQ|BG-UItfg&n{}i_&I-ACsb?_sI(Us;;NFk)=%}qT zg?NG!im}Z*e?p0#UNRt>7K*J8ii>AcLzgm?S7HWf0>NjZ1?{D-N$tL$iiscVSit3p z%e^_3iY+SEhFZ(a_`J^7d7n9H6chz}N3L`!|v%zH**RDt#ROF9m!kUX{vc7Ou z+$8Sh{vco=;C;C|K|tAMTSeNST+CQ6L=ADR&+NCdh_VZ6gZ}Cu`=zs|7@cgSS-a#x zG|D*;N%v-=y%+G(>BuT@i@&@mkP4$`XIYwL>Z&}5cs~i#W)rtgpHfRx*{Hg_ygQ6D zH=j2=Iiwz|!fcTL$l2Sk(5Ri$`$DBMC^(x*oivmN=ws8at zd#N)OOo{z|Hs!OJx3^OSc{7ge8;qcwyR1Zg>V+fy8>P}Zq0kjFmsN}n+>AgNJ17}P zXJaVG?n~JjAX@3Cmk99AOUfim0!cnb?X-_q2QRW}jU?g~*-}q$4OrmD!iljdVH7W(;Gi z{C7W zXi1(HmL@|^#H94Xm=fXqqCD2t3!BXK5X%CFdz8i-hq-k0^!VtX^HJO^Lv)%P*G{){ zjWi4^rr{`)-QL;+Df3kelp(e}?!6y|wyq^7R$O z1{eH(ikSpH!`fv3$u%J}Hj2&TMpOpL{n`#|*Ga8QQtB`e}TcwaoU z$CEej^hf~pGEZaQq@%EG_#1YfjjbItW9T_oDx%&P zRV;iK%^eoNSj>HQv6Z@2G$R|*UzTImcny#cbT)!1a>D2|8(KagT)(3IA4W%8ns=eQ z5jWxC+6WYB*Csy7xaCpw&2Iid&hIR5_A-K!>&K`K3wHKw0r%SYwT-ULI?Dk`-f^0u zFiv-*C#~{sO4G5O5E6$kd-PYBf6;7hf=y2x4PXI)hrDIk%0gFu%^3WJ8b~i`yKsOJ zyw}{6OFo;8#z8;@NT6ys=DaGKDUDriH0EMcpT!TO?(|v|g*z6NW<#Se#E;jp>Re`K zk}+6RYa4!HPVU$s(`Gy!Be;T4qf%`6CQ>nhV2y0xss~9_{-_+AbvAp$xd0e3>z)qy zkWP2 zbfY7yFmb4_TEbEqsqy!7lh2p3bIEoXgkk8Gz#ky{-`JD#P6ybTXw+FwN)7mPrIKbs z`p;?rhhHbKT)MdmUc(tJf|`QG@iEU)7~iaL&3yl|6PF@muVStCD4oN zKa8NBBQ43PoD`nRCOBKbI9Tg+PU#J0p=%s>0D+*_GABNy$;!?tgbm4iLkeOjIDFTE zh7^H?ufe;zQx-&p*S79IqddB(hiULbeLtm(Pva(*Vk(yfuo;W=dJqNN)Ux-%zVhrS z@BN(3Nj5^|SJ`HxmxyVz4Hc+;=a(NLD*>Lmy`JC_hrHFM!L?8G6-M%6)O z$!ds(q8rQG-G=67*pkB$(q2z(r8AUa_iW0@FKwFn(om=hlcn0=;%jh%&xJfE7kTrZ zG5jVi9h*al<>o-UyESBDgJ!i{u@nLSutdZoFURMZpG#!0$2 zy6quRY}S)VlY&l_5%mQioh6atk8Zvd)B2s0a64+jg9klt?;*tNoiz1+Qg_^Z8bW-S;=YX@SfQ=+pKROpJUlP8$BTbjyPb zav-9OS`MWtOne)_F}o%o2p#n3IlIJC+V#8)Y3<8y%#2RCeVs%J+a=BoPQ3I;cix!2 zn6KYbd3nC?^Wi1xKwbdDJYF6C?RZMw^@IOC0X$7v5Jx<R9=`- z?_6>iX0ZrH)g`&n;8XZtfQBDQA2IiKAV9yvTu_bu<773X%|wHn$(`jFt;Z> zhS=t|o}d2r)^EzL;6`8=gsnuH0?q!5osD!l5$@v!qAE=S7~8a^TVjgp>LFXwN-%e0 zDatM%y9~^cekDQ*((2Kj`=rj_S)E!!>N987Qo}m9oQf#cyOj<7*i^Wj ze)h#M#B;J30m>0?RJ6+B=%b<#u=eM4^?9nXeRC-!82R|+{}iQeNc>K^cHhEjsq@$U zY=Yjk!OQvm*;@R5vtpd-ooVCLzT?$E>4_^dG$bLRrJZTB+1QB}`BF`c7{NuE_vMXg zL&v8AkjcZ^(_zpRR5SX}sExvcmi!im2Yb$!QQ~-5FAqyENY@e^k4dXmy0_7(HVi1X zi{kYlOPj1nWv`=CZRor}jS*4P0o1sXF~!BRS*XBEM;F6nc1gS3y%t|eKFJOz1UFrS zj3m;urN1 ziaFi7L5h22Kbbg5F|r7>zU!Z;fL<>iQjT!Tj>;t()Kg~ZJrQjThbJCZe~5Q~ z9D34GoryLyO*gg+5p^6-t+-VlguUq51kl3-Vc_j&qnV?bl@33uFw1_TjuM?MBN@8`>0<cu$1H>14`#(?fM|3jJQwMBrXisL~fm0up zF4mh$MH!u@8EAh)v`Ws|Or2AiNJDH61miKjuV6)WZJN0s-9W04F9Ydd;?tm2sn0KA z!!SdkJZ71thI_2ngIT!Y;LoF|`md^UWmybUuU;c;4mJ#pnX-v{WlJYh=iEPJ$df_D z0A9swU+xC8vJY#_1LLSnf@>IU;owZOI;`8AW`m%N^!Y(sj7+u!}54Jm$ek8VyWiW$j(F~;w zHl&#%K(j+*e?OuQy8R`+D7p)gS8b{Wi&LlEdpLq$?Gdk;sg<}xY2)XYvNOuE5C&oB zmb6mn+yBOf>zBaKWCK0gDh&`4VeKgL-N@+Qfdql=A>S=E_`Ps#oU}UeN5V43kA{(~ zg!T&6W@og9kH$@o=+EdpC|_Np+F-gyf6-8(ox}V~8oKvFwYe~uOw6|uVEVNtGwr7g zwt6AkaB=~7dV)-*SK^L@LA)f5nTuv#jd5c})=|?6WirkE`y;NmJ9FnXmiVSS#x3dk zDomRTuU-V8Hg>YJ3};Gb${W)rvr!yscLpVkm?rT@dhAwCg{@{lk&O4V*_y8+E#5|m z$zK*Gg<)N@>0|rxua(QsxRBezs5{&zt4WGXg>AzO%tjdtuxEn>PNz*-x~7W+Cj=Q@ zzqd1eq?Ajb=-Xgo{Os2x(;gpXGKFsM(Z+{=0G@?R`T?}}lK3U9Z7m%DI>DFnGZ~i| zWR)*3>ZBA-UGS#Jk;ZJYl9yM38-|T|>|j%dTG)|Ju>FVBKG+GwM*JDWkhjuc^h&ug z20h@GAVPe_JVa@uKM?hgvU542AOwM6O0FN&{1bb$H=y2O60odYQIw$vb2MI@E(hb9 z83ni%q=qHH4Pq%8UV3oS&XhO+>P=DMj1K?-)Q0jZwWZ3LU#QwCVi0@ zh}hQHBS`p+zv=)Z4V^0efS&Q-@c;SELSxulS|Z7D7!A%a$ULj?smGMI(}=f$+IJ6~ z<#$?M)+U|e5pF|*fUUzTS$*YExhoy<7Bn{IPGgnpcoeCZ1-#97;q}?WdI3%TihGC> zFF|qR*(0KWVNG>L@}h`)Rg#-fl$BE566R*Sr2UN-A9`<%zke?&K(cAghP4C4B>qmbT35ybc4ZaR zhne;(uI*qoYTc_qkSzH}%?7HhAsg-4dQLH+|Od9+0^Rhqe-OW$K=jXFwo zP^c5h_=f49N_Z3lsl|W`zhOK*_voN3<(L=D&Gg7tu_&)te<#2^!BtMoRrD8eRg4gH zh+VyLKGH@eZT^kL^>&zqaliDlsAQ)Cxj_QYFy6sm_i3t4l39plg&XYc=HE@QRSA#M zz*s@tjC0M1jtx<&BUh9n(h}YVcL;YTijk^UyKbLbTDiEJ#wI!v9T9xi5o&%(-=i=U z&&`v~LALtp*cAosWm(*2MsIYu6j98Loc*KhTyhwOK_Ggi*f=4%|HaDlq7@LSnjXLl z0ujo*X20|t4Lm+Tjoh4NCw>SSOgPcV4iZm#9BJq^Bfs{Df;w8K)#bR z#xbOj+*$wsn&w+-+n@fZJ*3ZA)WKtt!dVB8=gL)ylo3|dZrSA&3474&`qktJ*}Ek2^ZW0Qt}v+IUJSXBWbv zK`du$bN|fGzDqqNt1WL&r?EPX{Nvu(_CZp5Bp@nuKY(=xtgf3298)?vJt-m@6k~#I z3z3cqSIV$JZKBsjBCm}j{>f#2?=MOjT9KF9-k87`H{UG#Bjrv55Qr*8{g6r_R=f>+733YB=Oy=^sgz5` z+idSZzu2DwJZ}@(t*~soAZ{>NyI8wD1H$E~0#id03HOx+rf`x5wE~T-kxRy3LG}-2 zXLckp3$|R+ej_wBQKp>H)zM!#gW5TtMo@&x#pab{1s>q z9AZD(;X~T6Ei0xBg8@S*giC$z!726LoNWS(T{+eV+m0V*no3n>!VS)h@!S-SU7=|6 zyj0L?iIRF4P2qoWV+Z=zlz?Bcw^=wbkk5L#LY2RwtXqSJ38@OuM+=z9nL3eImM)o! zhI^1*4++@Zt=^U2Z)S&Lq*K==oGIXF)0kJ85bPW%WpVZz-m^5GM+*ddCH3r{wV}F> z<9s&bw0(QRom4hy*6(rYcrTnpZeGVRODf2eDisH0Aouk!A7Gx;BNCMNkyEASKMk7s z#@J2sAgx;*7zxx~cm@P08GR2qN+*9O)=k_9&egca?lJu1omU~f>a1ZzwP(0!`rIvT zQ#l_K?S?OC6N1!n9N%lFR$;U6%(}rkXQTaa-^@0uhEeMA71GU1Ca?!cBlfx3K}pY? zd>0Rt+!E_@uMcZ>Wkb>@=o%-d(KIo8;T?NpxdT5gFBsD-H7w zH@1u+olH*h4n<9i-`V2E;F=VYl)AY1nyXKFj1x%UeE zcLe{3vNO7}7zBZ6OA17>|HhVKzkv5M4R8_@6=9rPVpsjm&R$()eV|~BeTH&zz18z3 zRwj!TH9jxOsy;SIxzzgCG&qV@G>VHjP1`^+$7@l8QhiYq6^w1h(kpf}=&9CBQQ<@i z94Fj_#Qaye23DIIlUuL;#>|Q2T`hLA2`~SsYRfBo+%>epn5A+{{)JJx$s@RmTr5b2Wi9*2HH zjdqpc2;i;Y&Oq%m@23g%k5m~B;+_jEgM;Ae!={0X-9+M8_E0rb^wP&;b91Il#sh)z z&8p=3al3yrr!cQd9EsmLCwU^JeOks_J$0oSuF(~hkvTMtc7zSZi3IQ_Y{uf)^ zm1YHWKYW2IN+?fbcN<|i!=qwxc2=YyS4&ITt|JsMd>bK68eGtd%OX#PcB?L?+Y*)g z2B?z*ZA6Q-ZJ+i*nMaxZV|Pffd>($a&;E^Zsg?L<*@ob_#ILUO;874^+BmTrW%zT` z%K#Vu(sqCvkow>%vtYPv6LH&qf zlFm%hsH?Un!3)kTP+~~dG&3|VDl|4M4qAK`Cw<>aI|&_Q8Aj74Di{ae37EbE7-@Rv zyGMe}c)kk9!N?mDS&t@?>kIi3b?~TEn-LJGKM3vjjo69#EgJ>Sx$^i_kbfcedLP#_ zchVp^;8x309lgXe32+!2tn@bMh-dsI-|f;0?Pd)5TO%4SNi=qgi+3H`?)O#~R!Omrw8s7)4C0Ipid zw(oh{FZ*Yx^h4Q|Bry!aurGzhVE+HHTJE7EoF3E%Fd0gWt!VkP_+`Gap}{#B6`ojH zp|Wjh*YEtd13#??2*0&T9PAR+#mNe1rHv!pJkPdMJR1}<0q3x(_!lRJJbd$R6?u6S zR+tk#CoZxcCCU-L+G}5F3LVzT38`=;_?3|h0U?deE`{_1*qHAfR zNy#yhm=M451xN0U?$RAhaZ{kcMkPV~HukyHRYgeZWQEfkJnaDFOvJOlq?}8qg8^0$ z&7w~2I3cU1x|jm6`o+uX@KZ!~M~Wg^old1*o2_t~ub6k?ta}hfRgfa(vF+h>hKb6Q zu8Q`e_*aZQob#qeoaiW~<3V=cShY!03}u`-ImlOznK$|z(0J_y3Q!OX=HyJsF%c!R z5N1_YR(S7DHaKx~E&1c!Ec&UJhn6;*NUP|uVK$FMYw!F1P@}B7u1P(w0myO^Z!Q5W z(ngb#1BC;+Ok`T^YBDKx!sLU~PfRs&pX1Zx7zMf*(r9Y@CdLamx1p@I4`t_eB{2-b z(3avy4DP?N<<5Qq`B4Rvlfgk)LV8EL%aQIak{l=geN-F|xj!v3#ud4{pL`5woXdwL zU{t&hxD znLW1}Gb2xvZH6|FD(5`g;Sk9Sh>QU&@Y%<_p~$N|JL2FybRDpYnYMKvR>EajnzLZR zm^j{e*B{FCc|N})f0SJb4#O}A`%Kq}cR>(_X*E(D?pNLL;4C$&Q?J*R?pfzUc@4coYi%(b8Z<27Wx*wyUuX$ zsdtovor6b-dckx@Q?YnTY-)GgQB-&|5KX}tt+rQjt(KiCOf5YJVxk2J*Cl;=O=9W- zZ@D>Iec>Y_>Xo9`*6pgt%w>2VCaMF1cdftX(4gI%ZqiIit|6peo<)L@n zl>InPqsttUN;ptwKs|#p=-=uygTwc8zfwSSKg+xD{7`acM-asz3~MPs&i)&F4XoHv z1D=d63}5-LgE+^}FX~wcd7ei-=rs;qAry%8eMTl4gG^$9M6Yp-4g#G@W;TUrCO(>q zp2{FZT0IAWR_-9pxs^^wv%xUApoft`nxC1in6})qdOtL@6P*{xfR&!B^vs&)8K1$5M27(v{VJr1j z$ldL~*iYa{ULdN73$$#_N}%Drn=#xqq9X7j(2wdGm)&{HoUl3fn%0}&LZV5*Fw$oX ziD9Hub)qmss?ev)ATtM{o}+e#RI7l`y9jMeCyf_bUo5?w~+48ic28WaXv1?TXTqmXdkvw*DAb6wnkY2`{gzs2nA<6&n~k&*ng@4kH=GR>KWF$L zVhYD$&#}zIIK{S}8{tREx!nK=!!U5AG<|0O#Xv~>VT)V9g2W1uujNC>_&G_xO6SmQ z-z<|vZzNWCO$(X4 z<1`{9UA@tZ>9k{_$B~u>l<$_&L;7^0BOQHEb&R1&*P9vAq{RtwBIK~)&49Dm&6T@nwpM7BKZ|cB*JL3ythN>UHD<=5@GCW3y zfDFgzFcU+SR)H5@BSXN2*Ni>W!n$Vc1BqjqI$6$-ssn6AjXlfx^U{4OJC`I0LJ$gG zNmM@G|6;?d9iTJAvNuLmwF(jXGXEUsJ)K(}>-(^<^K~LH-+u$H%L@R%KtR9Td@HIN z+MRmF;cB%po1L?ePe52c-)7g&mcY?@xS^g~6QIfLBB5538-lrDQEg){c5pArDjKcb zYFiR7-^=tkpTpk3@Xhz{wKa5Pt-%=sLJK%`ejZe z88AqEbOo_CPY!8Kju_1afRsL4$N&(ru;Dv}*u; z6HcPeMjnEeh1>#>xTq9Xw%;DL2e^J zbl5+3wD)66CP=~*vwantEU9Rv+yDO_JaW_qZp5eMCrdz-A9ylX^L0eT3vq?)T zmbbHrC6d(OSMv1$JNB?s1FW|K_k3<02|NhfJJew{)h3Qum|I^qLxCRlpV3opNPeoC!Z%`NTl@TJ%5i#ocwd?;`nHC>bmkNH}_ zn>97>7loYn9JRkdbpuA2MLw+~pGl`!G`9e~J1*K-(Q?0ijaypzk2y)<&#JIBX2tWs zP#JTKULIe+xg7Uc6}Co80ieXhMV>EEwq6YKpZzfk-&yZCvYgTeIF6!W)c+6S`l`;!t4G5(J z24@!!_hy>v(r}cU&C4^Gf?%Myg$Apq*emyUbF&A-1dwv!9BG5zBS;jM*wwO+vp#4E zIb)x@T$;Obld#h$aQskqMY$4$AnZz_f_ndpy>>s|W?SoQlxnBijr} z?72ViAs{qs&&Z?LC@D1&c7U#Rc3QC8TA5T|;f}J25_Ed$50nQ%OYHUNlt^L3@QCIw z1Le||j7(0snEY_wKB_l`5U(kFa-XZ|iixg#<+@w*jH})cnjpAllgy{|E8dl*6T_#U zy_dm7lsQI{%s3$=?23z<%(R;0ANy7HuI zHZ$`Y{B@}0jRNYHd8A(#zi&&fZcH<%`Z&;$Ii9BS2gxi8?gITY=PX_wMAbr2@{J`` zL7S5tQj@n!<5X@>#q6Yk?GvZiS@6(j{6oz@%FYHiq7VeaCu*aB4?R%te}yupNmp1m znF|ot^~sMg-~TyTjP2y|piD9xxBE1$s?4&Oh2L8f-p&qR_g1oh^Q{&I4dZF`EI-tt zkQ815spaEASx`ViEc*7$!asE749bvEL+W=s=`jFvDWYKAAc1LB(}uZoB$X+V3adlt z#~}xux}+GxA37bFe7Z|=XQ1PnVAe?l7fd0MGqx8qZ+|tTEq{>1`i4|Raw1iLn0dSF z+OsTX3rirJ6k$0D7G z9}-Sj^bgLFwuG^Lya$BoHhm#no2Wn*UqkK3%ZK(rNq>lec5eVW^q;Rv0c64(^+YLI zOE*U(QttYRFzID~)r;3}5IF$zQB3ICnswomx!d%tnneC?0}YlD4#!_wI9tppvUEGa zV-dlFxdSeu`5XR3V@#hUhj3>NG;>24qE>zV7E1k6c5c}bgdh;zk|-d(|BVgh*8puY zY`|k2w0TtOzAhauB@#>z60|+1z=b^Ie|g+1}Xc&c)dza zI$~auRLL38ZGJ`6%dJKA4tGARL31*MAvZaVTmoq=H$S;`*a`6ml98uFn_=Q#ds44J zg8RP1XaF+Pqn05L=z_%Tbec(`qXZLJqTXlKu1 z`o@nRrFua>6xNAlagSBgXrvmWKE!0So6WT zZ>7{)$py)#L8c-0j~-=Bt&~|AjDp}Fq;N9wbAK)~{wexd=g4mmH7%@SA$eInyWcM* zAtp2m{+vlLJf{?198js2eQyP!GknFbF(JGF870wMBN&e8ej|iVQgz#o-s=hgyZOr( zdP<2WE&_z)(&r?uUbGJuAbBD4O$ErjIfB8sz@+eqmL*wjg_5-a#m-bna2!{ro)bLzE zKHO4Yb|ngY-y!&EjT|*M18$!?HMJ=ah87vmjC?j&v<~FTC>f%;5^f_8R_?(@D_Hix zsnVtwT`94g;+WN;OE?{BTd&y zd+*BZF*2l?=jJ*1aI%K(l-DM`#E%>PQg%hj6@(z{N{Fj2_rF*ZKRN~aI?V+f$8~`~ zOuoIS@N=V%UnfuibPp2cDb~p1?epeK6qmFd3U9|DUA?T`?&}JlZjy4?C#(LfQXe`C zw^KLU-?`)9Ncx_Yg!G4?!cl7WB++i0*5^jICYn}u(up+p{Hd^jSdZI9U3rTOt?RFG zl)Dh=uVW2}Fz*0JF{+P~Z|No^hiC+zL4&}#&$WT8TUKCsoSdK*H5$h~X=`1YrCr}j zLzzgkXCm$4L{{aMDGQf@oUNCpVJLZsVurQ;moooxvo;nU<_`hQqJLc*jGMA}DJsd+ zn&EV$xs=;Fx)222+$|d>@WoBgf&{UjW06|F$5u8z%i45dKIHk5#@QUAwzPH`G2lb8 zONxz8K(fYi_|*~q^P#NFK?II@P-ODS#M9VXLs>ZG!Hb~n;?Z|`i_VIMkh^7w7i@6S z6vR=4HCx7|yhQcSQWFYU*sTl_=(|lCBcc(d``aS`rC;Nfn6i*jH_<7vZg*(=f2H_E z*|{W141+NAN-_8oA8GD?fswqKiWo1n>E5|WQZ_O?fNRTGFOGMFvK53BZDBcUF6gYhG(RNV){V_60Ay5iV$jy4tc^uMEQq(b8GU?+~mvF=<6xYg9tS~Hp z6#2cD?Z#YY;#glx0dPmuMttsj#GY0jC)87`TR5_qYah~qq;NgKjoU#8wvyx>+T3%U zd~kVu=e{38t*{Lt#5Tu?Gl^Fr{czS+1{0RkTXH&0EdUsf$IP_)ZQf1%ZmfrJcVDE^ z$NuYG^z%#EwH-+egRqt`#wPB+v6Hg1A1f}mM*|sxL&QTe@4)ILOjEVt5pgT;HgcU8 z_xs!HKb!rDX~Es4I51R5gK87~B3g;gOp%uEytjZll^dfnB3nKY*(yqVKiV9ns$&U_vM5PTt2*9}_}oLW z&gPXjD=%}MBGc?#!|E;+6(fyup$yGEkzUoK?8v4)LfA&bE@Yc1vq%V9WskG9+#-PI z8!yAnympN;ZnT!!vY;}~;3{>vgYDVklFm@cBLxHEY@iFG{pI)XI<053|G0InW8ou5 zv(py!CD$lert}zsPMm<&m;fP_!f&eZG(nyB4(_ zzpg2aATzSwH``WGNaWF(Ub&D|5V_1M@I}lsz4YW)=XWeuqrhMe7!eV4c~)p`Ia}e+ zSj%xWv$3oxFw%0j1RCs({X^N6BuNayurCqt0{{QmNSRa1o$9zMXNrIq*;w{rns@D? zFs_A$U7R0;npLn+<-w=7{bJY8YYY557i*8100K6sWn;6GK!`&3VY81rS#`Fit2!Vq z1bf1qaZY*+gk%*TcDj1Z_*BQm0fhK)i41G1s&|woR3QPpV1yBkAY#vY)*U<=!fQ3= z?KW_}+p3e&uUM^(7etCH02)15+-u?3%+_T}nuYW`*gp6^2+J4inyu?hiBkA72UU-W z@UI4domPEQTB!`jIj4~oz%uoMWIE5*GlYeQOWcr@v)R?cUU1MJSC;w}0O>1ixWl8F z4v=3Rc=SBNqSM!W&J=DdDc}E;=W9g%-r)0}FC}PiCJW(j*R=hD!uGtfiInByh;A~% zfaR)UcZ|Ojv)l#8>^jCq#T4R+!iBIFXiDkw5D*Y}E5B*MW!pc4lRwI?D9ND^gxzRIL=o?Qu}$9W zM}@jA7hvogD*=-58v4FkV^==xeY3{f1=#mEQDTQOZ%kZQ!yR)^Q{GYW)9s$iJek`Z zn8Lir4o*d&-aQm~dro8L+nK0ZGPxV2G1Ez7Y4m`aw20VCJPW*R_a6OI2&<-`Y#ZxubpOG&^7`XX`;>>% z>xIXv`|ON8ADV%z8Jj^0=#TMr~9v(!S=(&+A=-5?bw zupZn}CIKs;A3iRdDM@u!I$|JcE^^Ipg*dIixOhVl9Dy@OzSLvbE4WFL z9R#dxG<3_ME04qWQ|7=-Nv|m<-64rSDo^n~Xq$K%0QDMBgt&bX_I6-xCufri1mFhL zrru{(A{1_&zHTM?>583`_bmXLX=z_8M7 zoPiE6y3$Hl;h2drQ4$=6@I*f*1opf6Q4@G|eM*XPMmgwrm!(`+{ywt9w9*Tn*2kRN z#Cx-x);Ikha(};H7zAQ=q4a8q%=2!5ScM@1=faf7h6u8S|70G3yOOE!*1!T>+G!b# zm(&UhPPIm#r4#?&Oj!BAg9TfIEJ4f=_6=rim7iExu(fHzCW^YN^)Hl46*vU~N`*mH zQ`<|pu<0$Ic~;IGjIHgo!ba~y?M&R7Tk$+6NaYdK${eoJFb%o%3dtePRV|P3hcA6) zXHo^vSnkTt63*o<&+xg#(oH{4QyWQgDIm2lbjRv-i1V6pd1m(6%ChK&bHU4_A+s^n zl7JLC6&vOi$syX=q&r)#sak4Y%C0J0-3VY6>;X@xEkT{LTjzY0ZX*)U3VZIX8C4>E z@^w@|N4U@`G{Uv}+-caE1is@RWoMYC2W2n8rR3aOP7!*jHNr;&rD!sLiCv+eIs&&aCxSC#Mij=M~O}gXxg2rgrND`OHos zAzQk9W$FwA=>RhzzvMHndqIBoh3UWzDA1iMk=p*-}uOhzKjpyH-CM^Gf_12E8M%PfIzz)5v&6=D#QLcIJ!tiF57{5r{bv7a$oQ3E`u0{KBW|HJi&F^p) z&uh<%Q%~;WcIqw5iy_)tILSCsg^gqTLd9TJq@=sG*Y9}rpX0oydYnYGh*cRqEdrNl zb`ep3!k5gBe5PJsbZ*=wAz4t1>7ItN*WWVlmqwtI`4W$180i%VmyKwt%zo(*VMS9X zh@%#J&0~?T;1pfMzf*!g%Ff`(f)E6vDUHI2=AYQ|oXZFHLIRd$p+eJihm|v_`iK{T z1LWG~8D)T@1By$KXknNN;h(h;3oU4j%}(ScQ=oOlCg{1(BeNFtjb5ZgQ=nl-XyU&g zqpHST=Qoe0K=kevkyQBzH!)!!oh|UzW;JT6M$b<*k}%>rDG@`mExv-0R# z2eXu*%raCj2)e-*N7?c0v^^y5HLQLHT8L-n&S0nU^M_NDnf=R#KYX z+H?F54cN+yEjgEyUdor&W13hls3rRC9GHIMjHTY6UAcVW%2#n}6G+Js zPJ4V%1b$yw9AYChmQ_M>72g3(rS<3`JV~tO5kSykuU9J8lr}=#Ar@P0o-yt}kFb|a zbm$vI5Q8UA#koVKd3)MkiNO@{LS3r4!#Py3GF90ub;Uy6p_8F%kn(+u%;)oz$`h&` zLy!}vb5J;xzNh&0%wX-+r&Ue}J{2rarAnIsV@SfXkH`htyGND?sZ@Rh7h}d5f3_^l9_t?t z?|ogJv7LtGo~->OY{=HAg0OJmcY$-IyT$*(VEiaMgB%G$5Q<(26w3Dg7aKl{=>Xl6 z`MX+?iV+2b|7-#*oeIxun+!l%7-&B0akW0p#DLFt>ydHLB|Wlx^fix*(7Ba9O-1Mk zL?lry^$&{AOoi>XybuC9aX`Of!6$!~GJIQp<67D@d%$;J=`qfh0EbhUukHBWAOH)hI`mp61`a)w9>edur=9{_ zC1<>(O1os|{IP72#LVG%Gc?9@yG65OBsAaC6=g?zAVLR@s*JPS+rj(Q;BtMj0 zTapAJ2)mLfDBk~KOWZGDrfPBl%CfO}g(S)L2?#wDi)!%7`p4idB+c%@mZ@@|eCqCE zx72GXLyAZ@_Ob99^z6E-&qrpD^knvI&7Uj)2ck(cfGjHiVZ zXYA%-VU(}BABHc_ zw6MTjEQZ1;27~`Xg_*gCNs2NH46qgeh-{CP**lpEvmT+D1V$bs*%j>6&5A=c23nvQ zGJ`a3J|%BE;Mr{mA|_~O(9FCFWy@SUl;xzE;$X@I-V<&34-5fJWL=&+M}p_45dzO_ zS-ua-?{2a@CS*0SgR$%C>HMjl`lIaJau|j|Ab2Im#;^Ndtc<08U{a}j0aT^ICa~;$ z;|8fr^|NS9uP;1No)>2v1<7rfP{t57ZYG&*XJ@6S^bcO7B6cOX_>QGYDqy-YHn3;| zQ;#R-LSSYLYMws~fq#d#*wIE#(Agy4AWRebUFnuv^ngJx4Ofev~XaYlL9&$OIx{SG%&b*+OVS8YkYg@Em?dEWraHi=y(F}q9z`Ai5=)ut2Gq}Z`GUCplm z1H{R7o@82G!6aFL85KUMytH9+-P11FuT`mpj5MPOgne)9bJpzy-W6nk^{D0ckK@%a z{oznvqx&dn34-VX zuI}2c+A_ey^ELDdeU7o>S4%A;`>bAGM{ydy<6hWZ&#y^|Nuxz2M(~uou8bwR(iPwc*#(pus^k4=Q8W)0#el8t1DN%`KS45f*pzi(%YjwTfimgDCq!Y2I4t zw@@49aw^o*E|y~vvptCg(@d}NY0Tuz53htH9RA?q8n9LF5`sk~pz0NqMYzh5@!(~q z3CEm4NNAPC2#~>!t5CSjSpyv`M%ScO7c<~Dn{#&B1Lh0rhpC6+^C5y^JZRjEhc%(( z4SfbWe;V9Ulv)v1^?sh&7Y6L8Wp~@X)P=x>I?B9&OJ<*0VVUj*e_$ftcG!6~_0!?K z^DNS)jUlMc(%uuh#hBQQzmluv*q-nFh%WKvf>*n=+%krIudoBoVb?!6 zA>XmfA@Go@T^vv^>3{(p)NER%jz0nV(_FAH?m8i(LYFh(kFs;gVHgI1=#^q)NPPc` zbzXM{MGBin-5@LBXEUBb9Mu+@EF2$2`H(IDJ_*zSt_L#oH2>&Jf6yFwwSDl(C>YV4 zbc+Wi&I-ouxOS31;+Dj|wQ^!csj#M#&dWaakF=2ow7#`79*jWpy{Jxm3QdW85z{7B z$_~JMn@%gw4v!!Nti&dWkzLQnp|z>dF+AlKKv){c$ef_@GA!TO=sPLUTZNY>%)sX; zsYOjDlAkI(vvrKOPIc}?rm>6=&8ijDDFFnaL{`Fqc8}a|9h~{SS}ne zZAJCIj_Es+dUnL$!>>BNZmoS3pIRrOU`ON4C>KO0-Bc*j3Z%!>2tfd=@*w_p3Le2C zA%VqZyqU%3QD^i&7JfIb%?S7`H|iNoDT)AbN3|_{>0c$pb+a8DREwIu_0GgrWp!j% zlrN(q)y#huezh$Or2}-dL)yibXI*zEuFH4~f1se&Nmg1c=ZkE6>ubtv>l*gG<4)}+%bHR-m27&06>=3}Y|HaC!P+>T3kWcYn+jD#cbvJv%Pu9%39%a% z_^&B`NJJUW?RBNZ6s5c@S?3-#-m>>pRS-XAw+!V4bX)9AayPy3ExtN#u>IJn8t2VZhzqOl>KEGQ|&={~8WPgRl zyCzMTos^oeF}DDgzn2k3Y#b=R%wSs+IR-)_5TR}a_0>U|U!Tnn%FZa)fe?hETWUoV z_P?>m@#huEB*O+sV+Xw`ocl6zNphBH$@7w_- zqa=!_LmY7|JgQLaxOS^0l;H|RfXAF;AyuCXT6LLyGrxnzO~!M4Rm%z)o%Bx7n88$l z;e$z=?0m7x&v73Mz^}ICpyi>6O#>($-ui*sT_js8^o6MKvC&d?lDX_aErFc7Uj`Yc zf{j9aWtBeGX+~4KM$&5IPvQ_j4YSXvvMv_LfL7Ap``_XOzSn zPo8pIca}PVVnWD4f5PWAB(aoAy92M%go;s_P$KE}o4mis3oifjZ%&MRv*Y^Yv@9-v zMbCeZ{Co64`7*U3jTuRY9<(jGS8{;;fE^9a);&n13Mo-^ZOPh2Y~^Z}jsZ zOu4}Rr!sQ(RXWFfJ1Ib|%2%OiOp$$+KpTOJJDt5Mg>AVqa^j`M&Bv}OHut=87AnL$ zBsB~LQ|=KKF%@2$EllYhLKegDb?fpC*eEzr*NGH!sXwrfD^>Sy^fs%l7Q*W-vbPfP z@N`XSJZPV{PesIu?5*UnEwDn{h*%$geDCW_^z3W4$(4w_6+o+%owb#bXLcWB6)yfj z3LEQ9d`aJ&)}J3{*k|2vUe&iq3FhRr6qgO>yZgD#>|O~YN-!s{C1ZJ=l)ej>sE~Xq zmb3VUU@5lvgT45z(%ZWf%=r)`mTuFhZ`+ST#8h%iWbMlUUAw>4h&`WjdIhzGtbMWA zI`^iNhw-veZv9GcC$jVKT?<}vth7NJTQv(^Pb%2ITe#QG8ZO#x2tPIA8~zw z^XF4ASj?olRxD^PMl82h$fzu8WlJ~0VLZ1I!=#(FG1_`w6& zz__Lti>y|@6=Hy1$$zkUd1bimqSlZrmeK*n|4(H2g|9&2uT`SERpvArAu{+>c=hJH z58f}Q?h5}xBRs}ei}=ITB~$BbN~s)SLdW=Spby;q5N8cw8-kASvE##(Tq2WJYft7N zqjdKta12cDo5r!>v#~s=`&p?kl6VX$iOJ1;5H`1v z6;o)d%;{C5uSECIgQ^kx}u`JH|`?50XuG8Xy~^3*zwRZQN=)h~bSekX@oTGZ%HEsN5L1q~ow; z-6)^?WqMFcaXBmnMBfl>8vwZ?%~Oaug&* z^RFq=(G^TpS_Cs_bbzG*M}_Eqc*Y23tO#awU;q(DR^gvME;yOjSu27Wz!IlS-FPc& zYr)_etf*!53<6*n6dn_OPK&|cSW(NsZBQ}hB*5m|t8adeTxf=C=dx#ohYOL-cClwD z3s%%Ju&Y*R4HWsx`_5omY(*_I1;tn9gTrXkS3d90kw;~r#{N|@e z&Uvm~A(Z$2>Kn|y+n2q>kW7dU;JU1CO=Aqs(5lH&mPnam!P3mTVKlzLV#H;(FMElA zSVXes7-#bPh7RgvV%v2k$|Qh}`aTauZTB%r{8G{6zaLJkHvF{lo8vLHN%qxG2e3!r zllreP`1@w&FI_=03YhZrOfd$h&Mt~$4r53SJ-(EkK@!6t2t}_HMT6e|V&&Nt&`iU0 z?>IIJDF6MrZ7l?v-`!u?mOc;d3PgHmNR%*wKFpSgt*hh++gpI%4ff~piN*1(zi^j( zp0(SJ6A`)aa-sGoX4qb-^4uQggwlB70J_(e{HH3P^mbIkInOgYeiKNJ;x&539`@c2 zwY}jDs)ZMk=I<&(&YDcu9kXF}2b5R@8ySxwQ zvFA29sSNGCu(z!=IvoN*l)JP-I8^Vpq_V)X4CqcvdZY;4l{#EKR|fJY{;+mRH_7eA zy^?&WYolqXf2=672@iR-8qedpP-qF!aj3y{W2{6r(yKIOw-EPVrdMyg zMCOl5T!fbSm~>Qd#OiIAxG%;CXkkX#b62pm%Fr$FFZIimrjc6`Ew@*qiU!}MVM(6t z68s~37K!U$E5;9HXLM^Z2*c2o8Uh&hU+l&GOVTSnFHoTh0)%5becDS7+`KV2UYFRq z1-PQxgcX-BK=q_YfHZ)-42;XPu7?o+ttfxC@dQiOG5x74oIMSXU@J>jx;%t z11}k)GA_e9tvy+|qH{;eTynzbPs|H!r@F6Zaw${_tTbtud`A5Tm6{(O+e(cdIsY>b zq00unv{vUYTmk4Y63#|fX{z$5Ew6oJn6g`?z$GIcG3}fcC8GM6<4EJp7sJa4j#nMz zdFb9T(I;zzEOwc$phXyf6Mu4_X z%6XJkm;su_1x|f>Yyh{P?_9CjL;+|v$^45K2zZ)1KNKHVWQ1lBoAFqShnLZh5Jus| z3r}qtD&UCXMd{~>y?hzUI}1FuX=Z#cN;K6yA6T~^Y0ODkxJT4dI&kr%bAL;IYlwI2q z!ypV>iGabd|6-N$XPe$d3*=H#ux#}B_TZIA={Px9S19EyM;grofW(f7?gDLG0D{uO zS-Qh#a2wO9I$ef7WHtYPa8Eo8CaVD8p$1fU(5WrQNbz5O@Y2}mzRDL={?itELpm9u zi5tWQc6MdMDmdCgZ@4+^wuVyZc;#YuHWZnYTTt3NFAnMEgkOV$IveYoGQac4rQtox zXsB5PWO<#HiA3bl;9x#<;{fPb%nvC$ML9Ymlg1dVFj)|(JiP?CDK$JYX|TxTWu9l! z`s|X$t{ffn2@1*AAaF6?kAOGtLPcKZvj_e6qSRuO+UI)~g{0yart@45!4f045&tU(V9n#OH{_Ipza!Q$n4WUS!3 zn7-6_*)*BT3(PQjq3*hpvgtEQorulR6#XbW7u*P95QbhU-*M*t7b~VxDoQB-6=QhNHfAaBL2rw3V|`MJa(NHECEAbqh)%%&hC7TmVmeuOKC9 z(?r9n<^GiSEM@Qn(Pd^G7aNiE;T_W=EqbNc;R(NSx^94$@S}FErquEXQW_%o2vniR z{5jPyL7{OVC}~L9oL0Y4(l+V<*p%wpprj$Xji$N7&XJvo3()>Sq~SeFH{e5~JC~i1 zRwCjE?O2|+dmgJRcF{8TEk%wvLMv1(^KjJREUzq3>@E;JXO`84?npr{dwEk{im)3& zM#J$vrbwW5*~OPZx?~f7X*!U-(+{nHouH^ufYc+ko7;y?*7;Xk{{>dQWW=fvJn$!d z`TBbS3M-OvAi;TUKU&;n`#NuuE2#MMBFC9~OxHIaf19mMQmLsFNlaXgP9lX>-WOjO zNGWvWFgaYP%jHxSh$7nXG&Yac^$L{D!7LXp+TNtnUTPZ%=ZuXQ)BxG@ zY@277R0&lg!DJ6f+(>=FJ%#6kF8%$+GO{QC^EjI9&u`81-+k}rN<~O1Z>o0U6?eKd1;Wm z71Dj?AC1h+Gb6&h!kXa1K4XRqV>3*-?JV4~OHFQJpCJ|4Ks@0iq@CkKv*2nCh0RRV zC>HDz&W#^36)L?_s3>e^kpFVRA+bcx{jX8chj8Ve!KwUo@T54|MxrwGh`r$P3Mdl zkb2y`vgG87pXrU;zMPyP3y*{}_R9X^ZmI-B$}N%;k@aD{dp;GCyRGs}4>ebfDGm4F z62yI0Zmh{DF_SO_f-ASRQy{Dzt?8&EAKmcKy;Bk*dAvWsRX>!S3l0Mz2t=<0e&PNX zD`S%;fZLV}7_+MgIKKHZbhxHCz%mM|h}RZ@y;J4s+X_n{x#;BHoHgaKDcCmf%84 z3Q1ZK&x;q%01kFYkh+w1n)a+fBqT~_0A1mYg}tLOkXF$Yo6%8f1_JET+<@ zUS8AD&|I>DLM|q{v*P_H!G)Uq+R2L%y;BJUvJVp7&o3QW!O*w(OhJLdsAU&w`2nX_+>;u@K(4A605$X!)i z&m%9Nq{EPwtZ=2ypQGhP*%>8C41z%PN>PZC`(JE$`Iuc`QWY*>StbHDboamduJr-q zJ)}Q;kM3CB9cMarFiV> zui|u!js%xUY~LGB?TbmgQD~#HBXwqy#DYC?&_MM9byTmepXc$sbZ8vjf}9@m@Wb`n zQ|1EB*;zU?4td$$GAYE%K*g0BZKYpQBKUcc-+`WLb~r7it6x6^{z>S|@x& zHJam=K=LR()a%nxc_E#Kq$TSnsKAKBBfs@GQ}wNzq_yqHIRt(5w}#$X#^1S_4be)w zVUlKghCvi?sscflYkqY?s)pVnb8IJ87@lHgIq1$E*TBKwi$Nv-q1T0Yaz<<3LMk81 zt}RDk5CmSSRzh@~l8%-r z#5X#HGdo9ADS$!;Jkal_^EN~J8zt#*b+dUb;#O16 zd!eTzO>*}<2a`a0x(g9XA^3B@)y<+VN>{)TdY zGjH_RAnF-$Gefw3a zH0ek+1ML_{lPUl$Ub9_D*Co-+XSMIV3hWKnYXkbX)Y;)!ri1Z={E!%*Jz?8oE6qifuXAF|#mo zwJvmGr^{NVOPA(eXq~>`0z<}6c4hmPUUZDfY?~Jcgnn-9w!>4q>wgcQQn!|{nA*#= zjVH)#^oIQFf1ricz+6lfj$u_oTb?&qC6sBzcw{n|&qPP0_61}^jfPZS^RG-MP&ZY1 za}XlbUdYlHgsB)%$lC$i49EmqC8-$BgQ=Kx7w{cdwKjnvsVe^{I~N>=K^TT!sZbcn z{Vz6~O52jG+I)csF<3sh&*q8igvx#mbS0F=czHr1%S>5yYWX(mYN1*}{u^0HEp;YQ z6hma}ur0=&90V6FkHWIEgq0y@bZj^@MG+;hnqre{9+KZdoc!+C+#c2APS_BSvKX46 z5FBN;L7sUuxits>hmPrw`1oKl z9z{oB(ryHeXeU@_Qp#TWI$w9$ZsX3xeRS+^C$4_=92wWpl_e)X>~UGUb{>){UqtXj z3BD49iBK*q8%OU=+q>t1W>3nl<%(ethOLws2x$MsYSBxPn}Zf;n?7Tk==WB=;TZhjemzaY$-2=qPVvxm*%!n>U4Ih-ah{N-6_!M;nZ zxn8M;RVz!HP0o#64>x_{ss6Cxfca<=rQ7G~i+bIMB60QPvX070RLNy|(w~eMOiJ_h zj^Y%G@KmnszO-_RFGKq{;2+A)?Z#pl1fne^<`L+>v1Qnw1vXM>09`rPHiqF$##v>m zO{Wr@k$?%jSg?bJ75BZ#%9~CFcuIhCVU56Wn(Ui%(?{`2d|{T%vJEDPlW}gV+=5%r zTo^|fDAO*zf|4_Y(MphUs)vw9O=q7o|$v2AFlp`4OK3ZMG3+1atCL;hH)OjTopGar^l;X(j7>gxaM0hS=af>h%kU)!UoO%sp!bo$b9*5bVZAf$ zrK31{qV-y^5KKu$E93@e-phz`6tXJJMEa1wDB` zVdk4$o+?EF$yl^Oa1$ke+ns*K6jXw#aVZ*Q9*z#;`*6vp>J=om8?y&T$1@-SSm_F^ ztxo0Hc{x$?oi>n87lZ1{R)s#3VokqS!shyubUl4`tVqEI|muuH-1vaQ}-< z!e$=wx=NP4vAQfj35MkF*hh~$i-8)kcFHD^Qv}y~CbOfbk1`}5jNGJ4<>@|X)|!)C zqM?)+n~=`c?14R>zNN(q{R|NVt)K}lHoC6ji#wO#dgyr*qeO zQkAWca$r)!JGaJhbWT0bs!p0vQDF~=`qVD^*)i|&l$XS(Z=h-0U;vZWu6mIY`abkd zr;|Ro$oY(d{ZtgiCandc>2!)y+S#9hYq6lb*6VkQO=6TY)*fIr*2n%_nI^vfb0UXK z%`=)I=wz<0T|_RtkDTe@23H0H7lwUQeBk$73q&*7(}NRXId21bp}6xrnm(g5axx*r zH#;(^+>>2zfd;!+BdJ>=+ld&@U8F3G`wGe$N!fxe2A&1z?_;m3<(rMSwKcM|MZ>0( zO~9t75u7x3_8KEsX5!FiyqKz#ILy`rXZOz;a0YlomRQZnYyI(a1UNrY#H4Jy){+|4 zK<2|HY;H7!C49yvsl9eXJ0p8GMv4dyp8KOf=pP*YQg#J448tJorG-Ee{(o$CHE9FX zsXTzHC7YYMHQkvkDM6u`?RgNDM3ShuYBw4t+#(1Gi^>2e{v{)hJ?BJ4ui_DH7g$sxMITUov)69^yDi6`g4i3q|TJ=v`!?8y(kU9@E__vRwvxv z`NN~$%Zuy(Nogz2+lCjc>z(_T1YcMOIl!amG)j0bgsWAqlHv=%5j#(0CZlOtarpDj zc_)Sp+HWeKq0pM|N^g|bJ;}aFd@xT5BPx(vx!j$Mnh7$?*yaPHYbgRYJ0(2vV_e81 z6{c!xz?T)OdFwoqBIx13^vpx^34P$Tb|3h+DDv?cO_KodKo7r=wy89ouZOM<@CcL{ z68sO45=EeqOnDd&T}YX#R76#Ct*j&qy@N$ZbkWaZtVwv^giy$PgR`i zCgTEPWoFe_fg`jek6w9Gb}l#!gdh;TlCD3z|HaDNZPEa-SuS7=U4_A62304Nxe6-Bh(OhQiOMy0wph|Umy$Hy8*ETa!(y6FYUyP=2VZ|s{U>*cc(!D4mQi~tkK8Y47Ok=9sgkNAJ(WhQ zQydj3*4ywG^)5ZJ>+W>W<{Y{rD1gU{pkkDYh!=esPxY(lXit3ZUYH*qL*lqJ3dE7< zfg7-p3Eps3pmj?Nfb-VTwmuPL>RwgFhNpvyg3?_ekpFBISq+;T7BYrIv9V6Q6 zp|iddGZwnGZJ#RASPJXr)@xhi6a7Rohtm2dp$jdy!9$0|A48JK=#Ei?g}ugEfhX};ac%ll8L zKa`zO4uvoX1g}JEDfRvrd!7CPnkN@f(`W$Mo&9?x0h!&ARGO}yBc-lYIuLKjg@cBK zVh#GJJb;y+*}{Ij36>NkwKji=tOx)GC;glO3Vy8(}nTJ1VZiTJ?nO6rS1kqOxx{KN71!x*_SNb_ou!> zY}_~uXW)`?IDd2&zhBsUbcNsQW300?nwcy4zJ}sTJ|AWJR3;YAW79K*0N-eOL*8nQpLpggFGt+$5l?KGiYj!OJxsP8G zX;AVY71%Zit$en@5HtMp#Jb<9j?c;(!^>-spzTpZ4({hklr5!ecOPyb1cRZV7|AlH zrG$-2lUD;6Y18yGS~SuB^cj`1#}nMJJDQP<(2kXN*$Ru(a!r0a3&K;q0&?b zP|Pu=>4gt}CSXVDx;}8;aFD?Q5!&e=WoM8BF$lxJFBMoI{QqO?skDbQs?aNmi;yw=lUm#L{)d{@5H2`E4>#& zV8}8=t6qvuz-8+sw&9yV3f%6Ji%+)>POBAzVK0i?3XPa$a&fv77nw-|?TVJwEuplE zII&asyz9YO?bZilW~fvUrb0Dd;IJSSg`M+VPgWzmnDwHr&E`RrlMo$H}-3pKpRIOy>CL7Dc|X3Ydoa0Q^1ZV$cnZH&dL7hcT#VAR1Ql`3q( zTo}zY7(hPGR)^1j_#eY$XsQ>vtj|c%;+?eORF{*tjaoVd#&8|B3_*8zO?Wn;N&|t- z6wIM9Y2Z_Jy$Nxhx+)o%G@%N%1?9PIR)=aAWAVK7#vG&QATss&frt6NZVri&Ni8(j z7Zfc^yVsb)pXwbF88Kw=J6TSw_?HOaSuTvFT&Hz(a6&?<8YA26nr+3 z(rufa@f?Yk6e%k>iXD@xP;e@dh1luV|NbdEm+XdN7zSQRUsJmO#mZ4PCD{#L_Ksd+ z(X==K{sOAQ9wt7#2^sZ~wUpZ<#w9g~e1s;3ZDHMlN=XWFNxoHJ*+2=K)u5Akr8R$P zV2Xohf6Xt0+1%y{MoY7&yd=9^o1D0YtUC8gXDWSOfM*Dh@{R^|f)S&h`KKoR);E}Z zA7c1WIh|AOSWVEHc#9k4zPMOoXmHPe!=Eb^rWtVVMfGoBrTbLAcJwJNI`Z7e3cmR= zlvR6c+QBL6dOaxm)fV7RQUMn_;%F%64IZ5rQ2%uKKRc#Gy zD>w8^0NZ_nEMURPprYtxH=|0yPqFq6E>nyWLcSa1-Jv^<> zZ*0`4Clg!Q-79H*kMBaVOvxQBn!S0HRYzuK8<`|tH0A>l%Uk|ZTBV50_@(_B%Pf-) z@2jOl>6IcegLGx=>tzF1u=2X1ywOHnhB#sWE~-DpDbHp;1-t8smcgwA7RNt>CNdxI zmn;8Jb}mU0gdh;Tl8X4b|HUS=rZzzL#N@I!9R{U*G9_NF=hJ^Ozp zp_wTfapWyd~Fbd?NyO}rf_-H zy(JO>QievU8EjLaaYJ!V9_6I$ePe4ur$B%GgM0qf8Xm=@9D~LOUfcAj#eXd2Bf6zl zz(a*2N(@e^Elnq`R2NYybBW5qnHlU;wp)fvx^hnw0W_QpO&Tgb<-Uaiubjk)pW*Et zxu2+(k=RsWnR0ay05sSat?>Z4{Z4_;YgT+|0MJY(=npKW?^c-|S8}EaL1SdaE-Y>i ztH|i4gqFadnTJ{9Jwzq%+9f(nu|}MuG#O?6A$BZQT03W@%9=x`FQ49s{&vF0a>25d z2p$+T9Qk|r2zy}a7waB#f5{lJ&v!NA9T8*uT2@D49mPRMnapV1c!=S4kbl&f^+P#? zQ6__*9VQtIA@M^u(%sU&i^@?p3K=2jPVrZ%X_e=N9%V8}rHPZai`4gxd_R<(OOnGd z2t=A3om=?}&r&W^*}v&KnTK)owz_JfriQc*&7J zNLmSvh>wA<5KZ}RZEO3Y>#CJjD8ggtH&H*b~KoE5KUJV9dS1{TNX6uMRjFK zEfFF!m={<=v6Nx~-Cj-b?xsiNtN!=~nAe<^m<|V?sFtW zv`&+=H*|E7eaHj)%KA{EmQq^;3T4P2=eis%{G&8VU+?#9TP zg}XEvTp9}+a~ZHJXV%9Mz0zQ0K*d#B!zM76; z8fb}}s?`25l+yXDRGQKJgK7RKyS5yOVGwqugggrOzu4OQu@cbHtS^A7v?Um9^XIt5 z?QRQ~_+?4c9$KnN6Pae6=lse{==W^5ABPkg7znGm|}^OF0w$@x56`D;I3Coxz6y^m!Lad}CCz zj&Lb(o)``;edWIcu)jy2Hc5vOr2yj!C>r5Xc-4q5iuTkpi3TZd(l>$Ws^Sq3sEn3N6`2(GXssR^;PLjN&g9 zc_^_@)q^@9CKn2hHx7UTU#%`vng`jKjs`ne;x^jzP-54{s1p`Xnh}wbQ!_?Lv5QSU z5LM8l2qoi<-4w~LpkvFd83Le1!+E?&l(?;eT-g`tws~$prq$;N%{q?0#M9{AKX=L)n>JF%W|= zv?UvFasQ2lpIicD4r+imkFhbEq-Z-#?Kh#>-z&O|l{RiEn+6sZXMitxSVo=PcBLFU zO7p~eg7m`FG!fkJ*Sm@?Zs~xWXStOwo#1B~PwCfZqQearA)8q6qm_R@73`}eW|%deK1)w7 z1x^qTRFQq_+*(qaL&2lifsD!6kQ=`V6mJ4@IuFu{z`+jprHI>cl`-l=-GX+7vfch8 zf@z+B%DS#@OEdC_bbq!t;A+B=DSdn#2+fS=j;;OlPP&{!+PGE03-lcvpJ@=Sj<}y= zN=u|tDNr0c3NG|TS0`yGtNIYU3_L98w4);&FW$aFaoQ>$X60B%z{dIja%sb@bj{4| zf8St5GiX)fvhNlk_z&9P_VWEoB(55lotEy+?;=li(+XF939r39cY|t-;aQxZl1I6o zY!wJYmoxJZcgi-9vrXDm$`h3cgR0W+&7XWS3N_KlQqIhk2xA!RxjkVN(OWc@f<_U# z0C^tZEmpoc%#U_SHX`9~+NL3ecaKtxL!7T%Z z5RSM^v)%E`-L3nOhgZo2lx_Hb<=IxR{=+)81U{OXteCEp5J*6b_CI!z;<;2yd%*+0 zk*Gqswuu!w&w5FHmu%#GKrv5<+vhmQyO2jUGth+Ol98P6@p?LS(jGDqVnkie8IP1# zuN<92E5wE9zu4&uR=>B09!Etr_dx_)Z*%v<5Tx0z@uvezvLTHPDP zx1g~b2=Mb>s-8TP*$As=p)xS6<*6`OpYrhMlx$lLRq-tYgvWJLpT&!QZCB!8UsEwI z1Nph6L9`yE^IL`Pz%o-oE(y#Gjv5S^)9{*>;kJR79Fe@dqD=m1wm6xhfLzcxK&GS4 ze9ybR@^nru5SIkN#z=(eLUae>Y%VX;N(YQr0P!jtpo!XS;g6^OQg%j35`-WOy^?6# z>isXaJii86t2!637)NP>A&D!ukWcq8pgGV68UK^@l(I2!Tq<&#h}%tiTPKT6Ds=cXdC09fa>S49y7jb&b zr88Pr68E|(_6PM4j&YR!c&XqZz|(4e5T44EYdx%%D&9gbW^MRt_7B^AUpY2CQ6_Bo zius1`~Dch2}zHqvrQ<<#0!FUMAPQ9rfcqbpX+sYhdblq9ay8_zYQ z1A*pSN;|S-J~(xg<(|om84#K#UoyB`qTFr3t<*%`m3ekXtUM7W1qzO`lR`#PFkf8q zLK+L~x@g5A?A41GlIUP=vtDl;L!+=0p91!qV}$?(O7)lBC=+fq4Kmk=@(2<uqLY`GHeu5Ss>0utDG3>!TSz4Lg7;(EPwC9lYmW1VcMx z0%Cf-Z2vLIkFs++k{AYoU`m$IGylYn_Rki`-rGq)Wy=VG8JgdgvBdO*dT5hAmFtk3 zSA`sFNsw|Qx=>g%ci|jKRLWAmn58LzICf~EmmNO`+Eje6#dwjL51aw;cEgSYsw#zY zvzVKqjdwHHD3tnf8%s{jV(G4Uj_PI#c;SO}|9Bl`I}$3QGa+JZi1F@S&_6Pb2d1NeJ(r zr2F-nTUnLOco&RGul_}!Qk8X5>w%vv&rug+Q+t+Jm8zhXEg@NGZyZRt?&R=nu2L?K zL}c;R(C^#2C8-Yzm8JxNEma3RZHG8LQ6#jdTAd;+vVMr7-J%);NZRh>3@4Nw?eM#Gqc(*v8 zUGcL{?xc$3Un)}5;0lTrbcqNP;`M&{&MJq~{ES5mQ75|pD6HGqWr>OlmCesU^ji^f zO_F=yR^>WE>X1xJFl3Abq85(qz#h@}&wYMhIeX_qMwm27B5J<0UKDc$OU5i1oA@7P z=aK_448qVWrTLQkUu<}hMk7iqjdxvDRg!`M$94#YExBjzyoHLKK#T50n?4ca;enz+ zLifrbutonOI3JyR*w~1rIBil22%HtnBjM7a2<>a0{m!K~2mc~M9cb4N$;?orDFf#g z87sbT4x|m0vXaFWnp9^8%F0!a$-r=c-G5%*-}5ZBBqLwN!zZ$|FfFavUu*IH#euIv zN-q@MWv+Z*bxMDCpsQfGfMXi+b#-Sua;39waokYw5Lq5M=FxLn$(Caj>9gN)Xi>y} z+Kr)7k-~#}>!@+$47HU@?#=G?;H0P;#!zIfe|%8iUwx|vx!jKRQm6krleC=FWe8F% zV|R2%4BJ^p=vgjHITJyNWk3(|!spypeCVB3#T%jpDHi6i;{<(wnh*RGQ{X_*VwuHr zZMBLIZ@&@{wJoi54?v@Odh+1ZkuJI(jB*up6y;bJ!t7ULz0=9-QX4UnRUB0?{kEE~wo9Vx6%c?MOCRzMB}s zT0n$(|K=cvox>b6mS+dL?$Vi-07(BiIrU9pGJj#{r*%!+R}lXA{$dx|5F_&VTcv;6 zqLY4VGKqvlT&^aAjL-gql>HX2_zw|g!J#807qJ!_zOI}gM9JDi5`;l*X)0(m zKbaPzB4lKOG;&J+6B^S&#BnYv`0T5;QcAU&naeJ!XVnj;@by4}u zxH874koKBtx7?c>jQc$6N>{qbDxvv9*|{YN41z%LNy5yl(HBh^9pAplee8Bv=II7`kAXQ_h~+gyHW$xs(N!>Pw2a^Odkg95tf^@q zaS>9ivcAny$q>w+mYKC4mU$Mwgl5Xh4gcicXG%Zf-Hit9FR^GaERx07rgwkv``A7< zLR^)Bl)UXS?}smPAKJgqFX~|pVjxBJu#lNbirlp^nPyV)+L&f{WZec>sM(@nb7ot2 z9|s5T<@1+m*dxR)^Nc568PhkgRIt~Xvxo4UJ#A#z>@y1JBfu#^zpK3;2F8yyDw7hGs-4$$k?}|ME85p*7XWw84 zCyv_|tkkx5xO6_LIXn9XOP@FW-;TPchQp%gme6^MHJxO2vR!2YxU?kd5#j|g1t?Q{ zAYq_#sxMNq%q?6_Sq#R3I_NgG(O=Z2nX;XDX-vT)0i(6;MjBzfn$hIT!E}KSK6s%m zw58ATL)n=nK?s9D^h!e{Cf@&I!{e_-tK(Wzv{^)xovj&&)D*BU7w%?aFWqzK? z=0h0afyXpDNMD~~sxnZT8n~CmBkp3*9iW7Z=F2!RhEDR4?Hc80r_bvGoEeyKMDB&E zb!@(5>1M5$AuUrZT9SW)Y+NBQ%+?1~!IycZ+XsX2`H0`|^Hz%fLO7aT)xWsSk8 zHY3omxA+~^G09q0mKqxYnuV(v36odM?=?EVa#4SY9MW>Iw*edY12w-BhN}JoJ%FC3 zL4^Ai%X4e#zqshX#KFVoI+DFj8D6T+&nd#6vNJk@7zBZ6OK23a|Hi`dw?St@1CGZ< z1zq08$lPh$;i4gi*L6LZz?aA}L%C@J&zw+|LU%q7+jJ!!R2iBdE-GOkJ_B3#=YPD< zn$b&e{uAKI75BZVkFk<^kcdWBz~p;)E?9m>Y$dGGVE#*s{y;Nd98+hChgG)IFa8BW z34vhFcC*8psbn8afDu$&OJJ;`DD{&WWCdtFm;r-3SESY+lx5$(m7_)NebTfTH+UB4 zN!&v;e|eR)$TFG-FiHdXW+nsbp`|F3h{m@%z>FXnlqXNPa!ElNn&w3pK4U++6xr$i zVS9KVnHWq8I5NoLp81~cOA7;&ga-1}Iag4rkgca=slve@jD7KRap3|%{S~YC z3%)F&n<7Q`58Z&v(a}-i)5tQ{l&UbOw#v+=#eF7ZQ)jlnVu^GbB~ppEp5 zzxf6*#CRh@C-8sd;}~+ z4Rs%pcS6Jqe0O(l%r+9S9$zpjp}*`|pzfVNKz5^Qs91@uw|H4TQfl&a<|VsPH47^x zBzVwkvLgRqSN$D2b1X1?*jeYlhhP>^usRCZ7mIBaa3u2pjkhjxPI9mT$EF$qvo8MTia0tv@;# zI>TIz>?lMNX)oIhTwCs&&8U**j?S4Q>XeMV>$8!O4pQCO8+|+5E=FRadSwZCnHF=}zXTcHh21m^x&Cb54lHXa&_g!gA z{3aoqvp-M}@vB2eW08(#tdo#BDMVpSH&?GETjQb*c6T=H1|CG@jpS!_q%HAW72qVX zI>eU#Z~y6+vU9Ov7=(f7N{xg0?7vw3qDql%qQ(oLs09P&?%v;_TS!2#9UbHRKy{O; zEtQc&@ES-sn<7d8X?sH!eIB_-il)_TTQM@O4As05R90e0qtVMfX_I@f%CnHJG^=Nb z9JbB2AF}Kah{a*PAfi5x9oT{PV~>SayI=VN=_pdMcWad1*aTt6J%N+mHRBHSsub)X zyg|cBK)l#Jl0I;1WK@{M8ihCbUK$drer(!Xv(hC|FT6QFs5|XM(mOBmiKnQQ`>EI6 zz~-~R5cWnND_gOT%FBi}jnG4!6QCyKlY{T1^w~~!W4A}eQ?jrWZfdJm%9PXH5I@1Y zJj9=+skBxgvFcPeGD(Qy#Mfj)tvW01DD|ov+hG>O$v*p!-yCQjl{Mp3H$qAfB&$ms zv+283L|N)oH^Ole=ifR&-EU@IoB6+M=E#SNKt_<|=LW7+)1rEl(@m?B@w&LxLo5C)=GN&xe@|HV3w zMJwY*ikI0$C;?-`^US=q;a2G-F2Ky%_P~v@FkDzM3IDkpfA#${3;V!r#^hUq0;#ofU`yOIbQQ6qHAPW3Of{Qwsa(_Ml@H(Uzmz>2X0d#+a{{Oz)e9KBIA5#-fd|r zT=Z*iQ(X@$q)Rc=lKjy^@~JCyq( z2Wz35aAo*=^S}+a=g6NC`}!SOo{Y?g9lVXvynbQBsY1YllzPqdliT6B)RoC_pTxBi z1*5$&#CRUK9p%wjcps>YhLH)c&IHzRRE%{sC3)H#Rc_4a1$(DT=;13ytU(m_>a5!w z;t%MWnuGI@>r_oMaKOX?Axh1Jzxko;T#pzAVHmtp06Uod7pufSW7?}0$mK!+Kjcq8 zpS=p3*J!woTskWK5P6-le6hGtf~Xir!PdDkv6!8DUHhZ3_5HQ&?5mT`k9?67qEc&Y)5f)etCxak%Mq)35SG_Qj>B4Vyw!e^T3O`A5xFLkiaVhbBq2=Y8*CDF9tP~ zeq8rGwjLboiSLNk7bh=4*`y*{Xl+F8S~|Sar3G8=XTr5g+_<_H9=9^5d>@he@PG_y~g4%())D#)DvKOCZ5j0o$3JcsP`#=yNGzB%YrR#7_a@;=nmdgbXemEPAv>v@x=Z^J z6~L(y$srEXx4-;x=oL<#^{a(irJ1!JsEXQ9)RJA)RI(!Lsu+4(4~ft53^_4-oV3gg z<8EVCVr!&s+9p_?!&#jl)_mWM|GoQBb|y&@gD?>MlCgz=|9`BNj=l)d6H_PO2nUNc zMCJE#l4uCN$MRXJJJY0z&e`C6Ek5N(-1csUlnuPK*T7Mx{d7<)JhaO%X_MtXRF7jg zkas|JY*mqtsr+`n!HB$s^7n(9%c|vXQ+|473pXOoM5HgA!Bc$IqonknL~XeG9m6KE zX?zb;t!%xdYQr+!bWfOB{|D6d_o(R*5+%{a?$2xT%iFo85E6Z-J@p>*K+O?_vYrwF(cfA2+Q8p9xn`pbv^4*m`T)i1UIxfDc060xMER{>eCOO_Aht z%lC(Haw6?pNJY;>6RSd}^rT*MHF&MW`>zOYRoIej#*TqPC$2}P7=ilLOC{!SCASY{ zXK=+Z48qV|IsvhRV)kFG$TvfB&;ovau0u>D^y|`3rNnTqeozaxP6o%E%8nGMsIm0l z;X%AqPdQSe(oir^JJ^z6Oh~J&&ITyz4gB-^DK(ab_B8SkfDs?Ly%zoUG8LjG3hs%c zIW*hm2CTSx=Gst_(NKs_40z()+4h0H#A=O@w&j#1NK2w>z;qz*NiFZc{QIvvd^9YK zar-1Mx`GtPRKAqsaMA1!*~W&6WYp$IG-=`E)tA?zb@5uB&oCX+Ep1af$m?_!&3voU zx04Uy3%*6_CQd6&-b87&b&`%(6U3Bo0l=!dNw|{lF+y}`pj7;EK9L(%vUY+L)_OU5 ziVzMI{XQm#y=l8;)6yBgN)!N4#-W(lMJ6f5gAP!TniUk8(6h5*P?g2-$2*L`q{WMX zpGT5x!DnNSdnGX?@D(V7!?_?0_PJSizR$a$>`IwJF@0xg$_`*|lI->L#Z9?57GsUm z|ITCwmhW-*ZBhKIKqX>O6WWj)rv1n7PuaEQKn#MwD=8}I{V%o*`_TY)vmBtLNwLZ} zkGSm=N=s&aGyZo?H=VP3R&Q2Tz61sT)D7M8rw=_OhF|g9@0BTLglwHFkfOG!&)dSU z05*YL)8YJ~W5$NP{e`_bTBQvGy+)sABm)kDAA7>tsNz4y;)g}SNBnZf^yr>Ztcnc} ziys%40qt`l+HvRX!BuKP3HLV;6534nNEm)bz`s|HuKY)23A{kg?1?Q)C6HIVzZ4@! zz+A6&!0mq#7hg;7;0112$bogM>`UfZ0D;ooeeIjV)(|MRs$j0APcY4(@6xZ zE80yCyc&?p#d5EiIYBqISN1Tf&ii8{3%s3qfx@ZQ*j~;*hVEccdg#~WT)Bd-cv21Q zKIcNd!k&~QZmq%uVo#~*@Xg1ii=Njw(c()JUog1YxW-wlLp`GB?i}3E-j?ErvNKA8 z7zAPHmBiYj_rKUC?iXNZnhP*pU0RU%atxkqGMtbw^iG{_kHxNYN(T%HdP4}(q&Dwv z+Xt>)dT^Jc0k>%ro@h) z#>?+*n~tQf^X98}C31p;FZ95O(Ej|sgWN%h{i?2!5X9aJZE7PvXUdPvUs{VXD}v!x(L#T<5jeL&57x>@Za{-Yi0O zKw8*gKrnAZA3;ntuB&E$-1tW+Mnu%n+~a=*gyK zOG{sUMH2A_+u~HbZ+S*t>2`U&5S&f37Nlddo?+zN+Exq;+)DhN)FO6HWEUiSkF%mQ zJv?gLV0A_+gq2NBT`dnZWGSoL?LJ`}Rl#|9A4d^8rGzYtP5(|dE0WaNsU|TVfQa=U%#0XXuB8AwelqtChpjE}#`(PfC@eW||2fHpQ{T11E=$Ijoizv#XMNH%oCn^}xuX zUik5{S{yMQZQ`4Rgk`gGv zt1VIIRU{S%nH`ET8s+!=C^lOkJ$wpV{5)&LPb8W$+-e<|&;O!0KY%4H%C*-puJSRt zGdf)_!8y>^kH9B+EwXQ{a?V>OTPYpb^BX<306&+TEuWWu$(a;zW1Kbo=bsA2Nh^4e zz>Ud9X}mF%0lB?$Y1?66osFgT#*kaYC9rmd!C&4wkIhc4fZ-6G)_{G)jZ^D!X*QOM z^N43z4C54$jQzq?@4WIuv2-|^1dl2TPBC(G(&we=Erj3?d|W)ON$Wk%Xq|_0R006I z(-=y%+^WiK;08`QH&Z4UV6@p!9q5;il$sNtGa*$0aVAaY%a5$p3DQL97^>fiYR^&_ zq%Pg5QHjyfL4b4w+T7UTZD4{2N_#qfDLbPa z06`drUI|bb-2Y;>_*KBfUVs<_V{F~)AxvKmC?y1Ub5l)3#|yksbE$u_gU{a~up6=x z2y7zmsHem3sMgYY4$}l<(aR=Q_m*y*6mgciu#;=2yd~piSLL>3$Nk5j?{i_5;o$fMISGS91gl{}b%^qz z5}b>oXjW*_G$cCsLOM}HML5_ScqFrXNsIXPqa7Jb#L~~8SqUzhK_iK=vj&_k9Sgd@ zv3=BN)`8@1r*k^TP{lW_sN%kw1vs*+x2aRB*0iu~a9-$H+h3YSI~*7%NmsTF#~))} z>;!xr3gp#!!>ItLAS#VXQ%kIYZYx{AL>vC(6CqGHWT$NxqKCud36qssnFf)k>^T&#jLV)WY^vYOXy1?-_qZ}TGsXs{tf}RI zN7DzABI3(SikV}|ngY5$r$_Laz#HNJq$Y2%hq9&?@W`XG*KP5lA+s?$RC+^8j2#14 z(=~31cr{KO^&z%46_>{WRMqeTjgY#YdFrOFN6i}?jGFl7kbN`r&@wO+DiHHfJote2^q0bc6I9%1X;4noOBSVGKmfUI_2fsK9wSl#M z{)`n{M@5etssQ;#y&1+yUj3CyS214dLkfycE$Zic&f9pgq&rcJmpaqtv>_>H(9b7~ zQ{lALE^V9%d4s81`HV^i_x>1=$UO zSXgAAuIIju7c2H73W^)5ep(d+gN1u1Mnw>(BewZcc5X=)gCG#yQZ%5r|BVgD`N&00 zRoDPU-3N`(bU%v>G2|JBLt;IC#w`>27Z!1Xf+dJS7Pz)?R5SPzO{FSoH(Ee)&RBL> z%&>~>US>Dggvs&zdXw)CEf9cMS=GQ1)bM^HV)PSw(= zeAA|VAzFBdvu{H{OsQ}D16*T;PR1YG1xx`nSH%N6l#H-&>`Qowl9$FXvVw1ai_GsXHudowAYDPiQ zRxuo}Pc+@0Jx=O}!Ds5H(w7r=TGff@Jf|Psv&S|qgJpquQ>N3oS97SRb#Ep!n*x*g zc+{&^@5|WQLB9O0+kcdu>yf}92!vbm5fJ-t>{#yp2xczZ0OJq|i1_WB>DNWeNrnSR zd4{~I>iPnKem8t@;oQ~1nSnNn7QqWf`p!;Wsj(L>bTP)=F2ka;6Bh+0`8A_QqK3Q( zc-eLC#;A2CF^!ISUw1YpC2s+5Oz|gD-gpj$mQcgBQvG!^P%)D;CZTt+e#J@!&goz1 zC+{myEDj75L)W{9O7W%Op?scL91t-8o@oOgRL?XICnxS!&|Wlo}q3g46jJl*39oQ$|i|stHL8Yb86zs$EKa zqW`dSuA*I$W|^%UC;nFfm7;_cb5oOco2N5~87A*Mw4cv`L~6=8@g#0s_A1~87!XCN z|7YsoqqooHHO0Qscki2vl01;rL0aym;VBj7lqtpUbBa%VHoVaeFH)s#;VB-R+!rI% zAaKE~{2nDo({}?L*n2R}TaU%El7)3%@9(kGp(C#frmo$+ntUqn=$(Ya9f-p)@U&(2 z*JIMaNnkvY8yO)7vw0W6E5O6{1zlHT-f7TeJxB=@b;boXPbM?C3zudcv=`zMTUK90mkc~^K_`jK1 zUnqiSvyFW;p5Er?Co)Mg1j^}gI1kBvD8#u!lNRTFW=-)x91OtHI)i3;;l?*U`g`ro zUW}L&{;t@`=_KLJz+3g%r|3iS9u!`H)n%6@5_FxZUiRJnFT9A;S*eHXmy#*IA;wp8 z#||O-?s0eTnbNZD?pC*Ary475FWme|OZ2_^_~>x_J>+e}UVpxluHL`fJwl2SMT?H6 zYLP?w^vslgZzlK<)~c zbk>HXeiU^NH%n3vK?vt(7~6@JP@P7HcTPK<*a%sU@$gKYvE{3i=(Mu>4Af90Cq}Vc z2DGS7p(9uYi4{Y5*5iex)XV^JxSSO!%o`%)-~+xog`H7{%OL@+6OLw0`XLV)++e1( z+bqG74&G&lEhUkpS2C17b+8=da%zhc@msAOm=L#r@t3kIIRY32fh{G79Q`*I)*p&9 zp#feZ*B)i$bc_U}_Hm9m7Y*{UTVQF0P6R8E*bN|wsE6{)=kXpml}NB^BWI#}m=lYf zqbce1Q%=tYosR$74NDQJ9!N(()U!m+Ac`LZ+j5-mtsu~J9v^MU0EKqHPFwyKr&@5Q ze|5@m@)$&7^h1yNF0uMQW$&bXhU*aME^xC4gk%;+CTSe@eC*suN2&^F(_HbEI+ZK~b_nuJ z(LGKw(t|QhoeijuOn!{_tV&BOaw%N=aY(zz-W=lq28sz@h0Vqvp~!pWxigmpD3uuc z>?uTBd$A>zc3fzI^D~wA%=OM6l>j@?zJqTb_{XG0Nzhj4R3o8b$ZPxla$&bJsFgB_ zglw;kkFs+~Vi*L$@RedD818?u^0kXr&`wx%*I}Fl4dDOqjtLi#m9_Aa*tQKVvmgg5 z=>Ue6`{c}bsl3BU7N>by@I&fd^Xy$p)tSuBjUDC0=AQyTNcwr?1gY#r3G5EIMQS=& z_kxmA>1QTo9O`#ZJwK`;E%j$Ow0-EA-GMZTAF1%qGFC!LgMeRcoYZ3!PR{_z8Slv% z*XRB{JT!5oD`JQ?J5;p`=E+sezl3l}#S`$7 z{`H>yOLW|>dbX`<1gZ#-37q_I_EpW*gZ7_5wrcS|;))`|q81z-*!YT??$yZdjT zzi^2CvV&z6PL19vj)A1*;tsR4O9CthQz_4QkaD2)7Z{OJ@G!vfiXVmW51uGJ@VnHF z22>8>C-^IRGXT~oS9(&)lpuLbsb>^vUb4%A99HpGv;fQLrYFv0>gP09A?Fh$)HZm8 zHWRyxU)r$N-1~%<}g)-1azP~em{7d{+}0RXOJX82m-+`X{)XL|6@yf6YQ9+ zh&g-cK@>@(HTIg)w6Q}Zr{K^BW3U0h5#QpZjd`f#;J*Pj9G5`ZU{1F+@?f>)0NvFS^fURipc1py{Ocyd#K^$U-z zJR=6%Dr3gab1c1YPqDdC)1=ToPfJweY5ihHR&ql^$t8iysf@vUj@^=S&*l1L(&9C! z&tPZYJ)QU^P`gm>U_yc+ca$^Xnc{h)t;lXBk+2Z+_MuY0$^Cp!HpN|akqU~-W1 z-Ie1o22Jfh^w#&EI_rrDMFj=Io~`&M%E7284q8BX(3VCcj9ycx z)s#3z;ic=3vNOA37zV-cO1=`q{)?5*eW@WOee&GhZwr5M1q2U&KBi z+)+OUEWO4mZNT)6mp(GZ&7*jbfkS%)T#S0P@OEn|wj+L6F`h6eFxj-h??Jgfm5dH6 zAnf`(%y8shLO;<_U|5E4>=nmepDQEPzG>Sp+zS0-5~Icva9LNXvgh?l$8d_lTO2~uLw z=GZRr!>l}e#P6m#{Gb2|u&_!zxnUl0dJ5uIxX45T_Ggel(-F67OW%>Gh53wL=^GAz0b)(vZ_3W-h+ztQ9i!;}C|XQCeB8ZM6+ ziyfBuPpkhc%v3#mvjyo(f23#jBMxh9rYh3?*oqv_J{D4_T)_qmRv8- z{Zdugv-c?kDYt)AGj+g(3+dIt=OHtHAMggsLAEdo1_bk9>>tygzBg&NH`+EARwj{` zO##bAIfG2334{|C$ZuH*iJJ5kSyo#JN|b@vg&;UurI2O!*^8|bRZ?KCw4V&UFNbfa z*f}~dDZZ^5r9{qyT1jJFt?u!0!#q+!q_G6vA8`ZK^hW3n~H$1h#(Y48qj)095QP z?6NmHRCTC!3SsIRO>D?*VtZ5{3zvg|x7E;oDQevND-!flkhY2EWq;izI;*q1ubs z>wIt`h=}cjydIepg^~{9OpF<9!@$83K4zTZ+}47doSjaOxs-nD9c?cnuX7O*=zfY> z3{dt9y|@EGIYLl7Jm&o4*2@O-Chj^FlFh+sTKZso#1*!*AZTL9K=H(jg=cz708~%K zMmmyojZ9)Y`I}ns)A%OzO-9m09xHGRCgRkvDGjiNK_g4X-w)6rB9uK4oKOgp3Gq%?2dN$WDe>AtL(BUUzJ_?{bKIM3 z#Cr!yF4h*I*7d1UFD>M$5qZK^3<5RY{x0dZU*Hbz)Y$hN6nfhe!6ef7Iqo_a8s~Ti zF%*ojQRj8jvRVkWaA%^yfED1cRY(*cCE2!cJ!m$Hs`-gyfRLc<44j+dL0rL^L5^lYjj;{AAXBPD_NSDfW{{&9uwiZD^H4(W>&3L6 z1LFBBf-{z#&PvXgwWg#3H9dQ!uai5?#h%X2uu?*rUWR7jDov}wVckfq!%GQh1{E6o zuKR75^gSs;rUG0AXll@gS_Zp$HEXg*Zoz0J@ToHr6L{{!D64BM#isVko~e8YH50jjwe+|G z+H`+Hu@0e#fg}B_6$SBmvF;lXQjSr<$pgBzdnkU7U}$g;gcLbV2MUuG1yi;XX>Xab zQw|R(t6GrwZ8)+?)Pd5Pg5n&8;GF9WjF)W#se`*QOUw{|;}Ov^;d=sSVUSi~wnCo0S^EPM&)=NZk=gGZ19yZ#)zOwhW%*&J zZC~?1^_QT`tckKy#M8yNpk1gukqE=b%v7EtjxE+!!Ay0cueIV<&Xk@aUW!e~Bv7W9 zp$cWbJ{e40+s8aQ&AT1<((Gt%|F8W4idSMokhwD-FSICEi@&21vS2gBaiZkeD3WnA zptvLmOH(VCeTZe;Ed7DW>qEPaRQR5-iLDk?g9)c4Y`B>Te|h3X-?AhI>=Vh~nkhlW z5n8Ml=~_{$l{viFqGk$EsZMIG?=JY)Qn2~|_FoJ?lwCm*#2^U!l9VX+{~ue@*^97l z`^A7w5!`(xYc zwWXW{|C50&VG|{ssX?t^oNwsJg)M;SS%M1E)b(9`(7wf?8|)gKMR2``-haHVElym6 z=36{==yP@yd!LZl;-q`EV=b=T$df@)!JC2GB5Z2OS3@m$5Bw)1VYAV`e@vl6yJ~9M zqXa=0e;B$LHatZnF!4SLZl8=rrhq}=ZC9S0S@nn#^jyqg{Lf>hr$YK^ljLQH67UQp z7e6m3c$%C%`c*M3u`9q6;nEx3E55r^+ovigq4ybqM3-|~hZ}c}YAPa70-gxEp=Ssc z`+Iz;%?vhFfaf~TiHeOzb%I^lD-0#jx#zh2i1VTBjB*$VK_GgiRRQ(>7b|0vCLOxX zPWo?BTi}T!^Y6=3gEKPf4Ccy#UPiHhGX*g3r@@#6lPqX~0U7Y*B;sD=8zvDZ30g*` z%k%TYlepU7nL?PxLnjtIt6{s9S-wA6`hHKGPI(REsq*NXweQD_JChi*C|WL%8m@G< z*Q&2TCP`WnBM=K~9N~V+5E5g4t6I=mX&B~<0nH`LONhymmIRA=&ItJ*?2O#50451q zt}OrUEup>u0lXhB5vH?_IujYjM+NRVF-)pISp9xeNZAq%jn08&Y|eUp1v+U8OfHMd zE$BHQm@Hc&A*bIWr%T95^IjUP+&f|qab3j2u0UsSowNMBr9EqxOy?4Gl9(lf5$z!B zo+llKH^=V--Y9?|CIK$aiAPZld0I4rdB-|tm zrjF~=y(a{4QJ*Hdf}G^Ql*jUo%g(h%o3)kvS^7oU8Kp4@!Z7$sh_vASFSZ1qmTrFL z0=l84eSo_C}*|4ZnW-v8`Gz-bG&4v*)`t~{4DPAwA8`?Ja3!Z+K zt|W^(XYsY~jicA;F0OL8u$WVPUK*YL2kpO+tk|z5`8youRE-NKwFGO<;OFscy}9_q znn*f4!36^;oP7>`mhv(jV4ND0sELzi++)n+#f2Y!wQ4+RB!L}}vf6r35EemxOJCRt zbppb$By*^ z_zZ}jE*I=Ika1VIw~xRa{%NQV{GzvV*3+312o-O^DU z2GW8>oy3&u+&=b5E>Ts*X#u3DU$(n9itd9aQBmH&bO2JsFL-z;I6st~+Y!Sc3=%|}z|@c%)YQ*X$+13*KVjwuPb)rI<3>v3%FR{1N9q#@RJ!zws(YQLizZ|AG@Tv0O*^pp<&R>hZp#JVryd zq(zH9jm#q+4>>hb@1i?}MvJTKcLoT+>qv7VZ#;XBxMW20Ls80I$G?=zGTd&O0;uqkT5i}<1S`5yQ@cvr(>+6iOO zX3BaYsmdR*j|th(NOY)GTmYA;G{q~!ab@zc*N`neKr!2i;%^o_5nSXCWmj}$K?uTH zS`m%*-`El7euUe5FAX>Y<4Ryd@*yF9yK>Pcih7BiZq&u-`jPUHwE-Jt)6P~I-4!#3 z3Qft#>)!=5Dg2~0zoU-H{^(@g>2oN}#rVCdg-a-L-mgp;SGPS1pQ!LIe3Q!QRo>^9lATo^tv^Y}FWI3O{y5)5wbSWKaz&WSWw0F#ts&YSENyqD+9$bojCLPFABKAUVgG=Gx zHE!|&p6q5H0>*NOhZ26)8ao^0RLZ2~v{!3kDJMJ8H!S+iPBzk_PeXp^6;yW9S$M+& zPEqpokE^E4?d+zraD5Ma-gdmgbw3Ld0=#uv4kRCbKD)TfrGO{^@aD3ND0e;TM?Bdi z!sY%R5+=NyI59xZJ<^Hx)~<0vG= z%d^<&{m*(hOs4n}9M6@kAppljGX*}kCWNIr@cAn5IkteC-ksq16aeINHc8^Oz{?Y1X#2h}H4 z`zj&9Kwp8{w2cmJQHp?n~0i>V^3S+8&hOQnKT!cEF{|B@o7q5-Xpqezn zts?~r{Oq5ZFcD5SJ%oimW8 zC8YL=^>zw6@5kB|sZLRvU1em?7hwaXK-vFaiqU$!(1eZey3t=1xVEYBo#C_|E`(JW znMkqW$G)+(-#GXt4SI0{UDO zPdXWcj*Cmwu&y3D!wfY)p=G0M4g6h_#VSK!B*m{0z)DTpc* z4UQh9&6eSw=3mT8FTGB^CQj=x%WEm_X*Fd3jKQW)u|H*mK~T$3#D9UxGtA9H`XL2= zqG0N4rNG-_Hg{_2da&om59eK{7OIDi#4=RT&X-_{Dq3*86}0`8Ny8)pVU<#3an+wN zN1Y`{|EO(ex}D*Qs{(}?P2h0Yw>XNt{r?vDSdq5o261S4aI8)1&;9QW_UDNG@d`F+ z^eeokwjz3*CwO9WsX@3JN8x42adZp9sx9_SQQ9i1?b8;S;RwZxQ@1Is=ciuZKyZG_ zi1^Qc*JzEg#lCs!?()z9PsJ{CJ%&7je&ZrC}FaFo*l9 z?lhfB&4?lk@6HStkiXT8kvVhR2b6xcp8 z+aip2)rQ$cXFn-LW)VIwb`dnold>~9LKuc&=tdl_nxxr(F{Hvru?bf#;45unKY-;`o}@D0I9w^sMlh|y9OCQxagK_L#$tbbDD?56pAw$?wXx1=%#Qm zEJ(I10;NC_Q0;B?vNS9b3$pJDKO5InmxLIF1>vw#fO2WB-Wq5@v}&vo7C;3^JB~?l za!bp}TBo!3qOU*Y$etk7KD}vb=ngOim%f$bK|v`l;S(nbZ;qS6*KZ|RuE=v#=herd*^3g|QBr#% zR_?6+b!8-odP7ko7TpAYz(N+v1gTYJd-5^m;LT+#z-(E%jv`w(tAs@_L9$)xtk~Md zzX^Gx@0H(c0Zfo>SJWD}u`E<7?z0q~4#Wh>cSUVtlSAHDUWP`iljyyW{A8h zj?u@gT!O*IgUFkV_>$8y!|V$g9ByN&!g;FZ4oKr&7y%~M*~5ETus zThT{i$F!u}O!szHw&C#H4w~ikUtrz_i(yw{@Fp*sXFa z$cmcFWRsWNX3*dwxWd^9BTNuWtJH(Yn}n=tn!4+Tx-b!bnn$<2$;bjUdx7SUsvYVg z64yiq3l0ei)(^gua><|vI}d_y^0Fzp6dv@17SwD__XEyJ9AhdOCzIwagqVL|)E?7y z%n9Tm^!M}2rs7ilxkXZ?m&tre)#|8B+=uUC230PSDsW&?w14!&UgP0>N!gdQMNtK- z6;Vu4b@kqHin62(Ozd?3_owWPawG;}7#HAtkzu025A4Afv#uq>+Ef5mp_o1Mg zH>n;xpw`sus#6k8KhHSIA!ChccEv;4OM;rf)B6NgEh2J=nv-WT>_h6o+K~!CvM`9*OfX0g}Q__K~lDW{&3XeG`Idx ze^$UINXnK@QJKY{Y@yZOe3#HBn0Vhkq&)Le$ATa1bfs-~3zh~SF1!lM1QjDRj1M>> zU~C7KGep9fU?!HHb7Pu31&yek^4m#B6C^bYH;xq*daqKVU8k-joJr5JE`E(Dmd-t@ zjldUU{}Yzva)fQCN5|XnS!)3j-vmj|61JHs7je$MqF#O%B?~?EEPZ`n-=@)o?ba0| zVNMY54F!p6g40{2jd9Vxn)!f{bC%J!3fBZl&T?(`4~;Qz>!TJ^CD;jKyhlLFI+K?Q zi(_QFt_9;GA5jX|1mW*9l#A zsSVI4ypY-h35g1cC<~K2NvHHB(}H2u2~b<#KLI#3Qdb&2f3t9c zfmo*o;6;c0<0X>CnS?PP(Zn`+ruP!Jtp@1Vbu#5XqLLMAL5INHJJiD~z@RKiG}28R z%02Lw1?XBfPC2$PNr{S>qhS~UstXWsEZ+p>N1_L&31vv4Q9K2#a@evMYD2lIWeiC) zX{X?rz>y&Y@GlJ5&3)__Wmk~HFbu+eG%dj--Tyx}++G$~s`}Jh)S@B`G4_Mczu}ok z_9IAIDb9*;bl&&Iqe3^uegsJ_r4Q?v9Dq~D%WG1Y6oEY~l3cqRc{adPqoiSCtZ zqoRl zxfiRBCYg+2l}Mp+z@ zN8Swb*;;fqEjpV~dj`dC1gk;{7Xd*6x{=aj{@~<&0I$AKKn-b zO%=GfFiILXt>4}_yYn$0oO|=-OLCo>1e|bFaeow`U1hB}oi|K=ew{pwatZZ2Ha56tZUJ0+vNIwt)TqA87x*y3ZhBk3@19liQex z&!9fcxuIO6YNe9Mrs(kmzkrfLeV8o-Ey(sdBN{J(X80MT@E>O0h=?9-9@2N{uraBU z!GBour`rInrW@tJA0-Oh6#m27KJAgBeVA({DY~0i&2viPK4bmKWN07e`bbLuz9p5y z#rZS}k`(O2To;KZs(pr&jdhruM?>$U;R$GTC5>tU{igp{DfDU=MTH9^v(xE|&@NJxpb3DStS zeEn$B`*9~~F^t(D4ERmwVOoDA5*Jiw=1n7`7tUHdO}|2FVTK>Vc*#BiB#J|)`k zlacrFSfB+}r>6Euxd&e}?vIS->usq(NJZcYQ>a254Ez$0eGg@d4PxEDf72lcn6xVf zIDW;omXUkj9ObH@CNQ6;#6R77_)vC6SrmdG5ZzKJ1@3=iG5#UhaW=r~nJC&YcN6*N z|Bt0@4=R#2RYuQA;O%%MC5fOr*91;32H|#@3`_xNk|W0&57VR==bCg>0hk<7B#wf2 zl)Sh^kFD?Mk$*;`FTUjX>KyOYdi+F*&A>u5i%LWQiIQ1kBCE$i=${eE2RR4qJSwiJ zfvUKcVuh%!r#M5xT=SccSE{NoxDd7do=2fU)D|?zbsMZ}W50j;#|00?2GOh_!4w;C zv5A=_)ml~BhAtGQ$EiQuSVn`pF#UNr4w!>Tp-)(CLJ;nOatOc3fz&K+x2i)}NvG+rg zwIHwzjquRUUXRxU_%{LMrRssZsa@JB*sjtt2kFbEUYjejD)r=x&Qz}{BSJ)wu#{n&)@jjRef8FxY!rnI8O z?pGNo3&~33A_J)R3ld8(L{DFRnM&|uUW5{ZtTZozfAEAGC|ZoG_q}8KT?Nt+_1~Ew+ z8@{#yqh{XTVM+^PX>cT-K3d~=2jtp~OG8OPOe|wDQQ~N9a#2T}-UKjC5R+YnvB30f zQ($!0ACW)Okvh3K2H**}RTv9IUl}M(h)HwJIb;Yn<0o3=!Q`XNk$`!N0TB1SyQ@%{0t1B@Yt zthnr+6Egqw7!OE;ZZs|@pPSf+jO-gJA*&E|A|@CEYK8dG6%g;6R1vQb^)5Xel~F<+ zJ;8ht`SASR(RecRZxm82q1P=DfrdJ3n%F-DYr{4Im-RX|Vnd>nq)Ec_#lC5)bJE^) z5qF=EJatp7LfaAFj%Fx|-Yoc#45x8v0HAexG=+}M%Jz=p|bxGSVxkc}+?SC1pPr z7qTPK>;xDL9MN5~;yi>Aee4MEoFz|C&LC)FG*HS#;QgW}CQ3H^@^-XI3uCm)nj@wm zD*xXfV>pWYEG|G-arZAw_MFO)Lx@UoYDxyNTH~(0`rR6_2T?~q$uI|P0~io0Fe-0i z9~NERz(PW|i@`xfa$req1jLCqs4FQAQSmG*ujSK)<44)q-2e=NKzJpUKiz+^a=syL zBMXp*XgLwT`~K|1VjTDdyq6q}({OmjgF{a22@E6*FVzO|P2lf!#&Og2ZSL-cb91?G zB7Y_$jHdW@17dM@{Ec-c%4@HLgk>eIDurW9;8GJ~CWb8q7 zp|>FIYrV1^ny2fBFmcK=L=Oy?ltYL*hKnd$#dp{>YM5$g3_{egTNo?WHU}ngqefy` z${|Giq7OFsbdh#mm_Y}8kn!+NYSEbI!kMwhvK+;=HB=6rt;=I4-1dsbA!U6;XPPB+DJ z;xi*!4H}u4atew$-IVgEH2@taJ;Ql%YMwILP$!!rqVj@{W=~+?PGk%=)JdiYv9D*)VzODroDhi$W!@4p{+hg30b17n4X^8tW$bIRoL~ z3HYLLVD%Nm>kr51704CnFAg}p<%XuiG;o~yMeILmi53U2XAsPWLznd?^f@WNw;p>D zZMz5oe@p(?6*TwY!?5?1-8Rp2!uIVZ@}GP>#v7nctI*MBM_eyOr~(r;sHfn0bQ0d8 zhr#`)r7c(hiW;1MHbvL_)}}NSKifs{V^%bH|2Q}jjFK!zxc!CRMI{RlZQ(|AWQ5P% zrm_WgV{EOYWt_{0mNF3TzOm(SyrUXArgA>v7Xa}?*|lX$41%yNDJbgxH+GYLUBJ#M z8(=!AMV`q&>tVo}!vp(phfNYZ}=v4lGAcj`%NV0}O7dmsma!Qc+%FAf1JdoiH`Hszu$thtHW@2!$0&_e&IkQuh zUn)u=7RXmtgKy^iD)K))8XGoJ5(=>}CW9a2<_EPF5GtgGjg-Vgth+350t=G8J^Usu zo9-1%+;Hf?eX^-wwT!w0=Y!>UMBI=}-xH2>u+WO*s9y}fq7mp=$nAl!V6jkj+1```d!(T-lM5B8iFXMku9!jQqf=mJE*y8m<|!NvT6Yr*q~dAQCyUUax;wMQ%Z%!DAYay(q0 z16iI!I?xkjJkU00Xdw&-30e8o4{N_zB)tkbkr`50SM4~I4 zMIpD3G$qKu7mKnh)pvVjc(Sx z8AHx2q9ZLF3KB|4Y3j3vf*ogf*~k_T1+i^r$mP{M2T|sk59!cQ5PN1gtsSn4=}UuXh9?=I3IzE~Do_>jh&s&-92CBdHp9+_g$|FAbGVM)~KW*XiO z%G2O|$sPk&`aYGY8nI2C-hUQ;|Hgeug}=1t8IQ=cB&!|;{+NyWBMvLJu`RKAs9Av&Ws zll2N#vM&Yxk`F^l01=(uulm9V3`^1_8o{!y!Vb~tPEj`i!m_b==qrhG`WX8Dq3jH< zAO=Aw*wTuM(tl&izSU3BM${txi?yd8*77KgUk+xbgS0R*K916;Rx$4GH-XO?u@!^q zpGQaZZ?(*u$met{%f;XLJt{802yG|ZNrpb6wy3(jN%NyVs`QFe)=lh>l=O4WO?8gJ zPo^P}7=!0^>OWkpU4P2XC`Vur1fo}hs>R;_V#{+sHfZh21*XZQBFMl1ok<*npvL3e z=r)w$9rF@6Qm=(UQPar5yy|=|hEQL^Mk*zZhD3$#p=wtr#n!3WD`Q4tQBhO+?P&sg z)|>rJV}Ai}`LHOb@!(8~PSe&PrJrEy7JHhgp!32oMNx)(jtU%$}?EYE^N|t7{88Wldr- zIjXQQo*DpE>3xE{r=w5Cu0%MYQW9GQ8X30|i=rC8rV0j0jRtOi4uJP`XuJshY~#l2 ze+EW*&k^>PkV$BB8DpK|$DJ?C$cg;aqRNJW6R-6BfY)DTa1Z&rgYst&de;iB+6^w zUTspIIHZkrW_<6J1x;(+g}ZrukJ0n&R0V~CwvcK6oi5XSA#d=M;+AkIXiE+C(he6~ z>1(!mW_;_F2uT`J>S1VCiq6oUew7Mq1#$RBjct{mrlxz|TnjJ3RuIQ;7;E^3zs1y( zZtc1XWhMR!R%nu*?uWsCXJtH4$eHEK+KKDd%OdWIlc3ATc$Qo{svysCISs$%7|uEbwK)TwE{pDX!Nk#nJ|6)zpA@z-Hx+~+vhen0u84|BkgN2T7wrjKLT4H5g z%7bNkof@<9#eu-|-$WuLDW2L7&8X5Bc-au^+KsU@JhgjCZgz_BzHpi}MmQp+Tv(*9*{68Qs=?FU^N zb?>pk;A9uEPSI378WWKinX>UA7y8BKy z%X)n3Rl0FpW~uDD+33C!=EZ&K*U-yexv@CBZ~B`moEKl0{F@KF=`XN`Tb_Ty%vAaUQly5EETEJa>LyD;ON0aN+{#| z6u-oPu~TMq<)H|gCBDU8?Pw?r7&~<~j09bI#ZGWhnUA%kS0ce!k=kr!8f%`|B9G?y zA<A1DX_r}m?w&|oZ1H1EQudo#aSc`H>*I2enw$@oWkeLFK^&i!iHKenW> zF0PFFdnnQaXYKZ(C<$bgQ~2Z)AitBf#a?|nNFu`6slXXbG*PVv!}EOTt4Tx{FRnH? zJ@9@3dv7i1DM%PEmNxjK(Ob$ta`*1y#czMz6F=1JTZAEyE?9~e&t6uKFdZCi>Uv0S`b+^md)jC<{A_7Boj1?J+_;U=$v2|sfW z>YBB3oWyhSYH>q7m8LY_g5&NA014>gqqH1j-N-GFkhWzD37`K{b_Q7%gCG#RQY0B| z?|-qO+=($?mf7&~I#B_Ey7trEQjiq|)%e!%&F zR`w1(V9_MQT~XOD!4zjjGxUkuqDxdJG^^Li8}7ea7-&;`>tyU76C|FOEMW$|BC|-= zEWW$h)BS_$$n=LIk^I!4rW)uZ(m`j|_o{>j4Yne1QWU(tT#{tSF0ufy7p*YEogt02 zoU*c%EOq`-Zn{u!XqyE2{lxZOln^G?G5$hi5X#Gye+C^RTj<)p5Jh{a`v`Vq`$Lof zM5NEUgF&v1#@2WaWFRlP;|*h#yW2Q7G~XXs-oJLJx^V~0#Ws)x1KCr482_j2+;SL( zK_GY~zcBdz7wc}MwhF|NQPp2$ktV?|%)DRBd)H0jOk~5$3y~>D3?)rQ@?wE`L%vW~ z!M7eoe#yyjcxS<)i4DNhutdO6%JO0XdeaF9)}m8;eYop0)mZlcV%m`>QSKK<;UxA; zR$PI~w{D$ABd-2c%dfHbNpX9}vZ|_J3q}xlYzNMmUhLkCgDn9yc(|ri_RQEGl5)M+ zaAj-P&Z$7G-gtD_PJ(ZhM(V{d>3m*#`R&yB4v9q$G_n# z6E!6XA#04I(EE%Gmu`Z4uK&Bs-v|E-ovHquGpZBsM|a)jn`mJ_ol?G-cSg}_vKn^l zcp%C=3%<{ZXQNIYb)lLd+VtU&A!B{9;o+!M>yUEa7fr?Cmy)u+*d2p|MOVeAHjZXX zwX^8k#JIj3PE{%AF6QN-3t7*IU(9vpuf!Z` zss)#c#cldg1gtJ7!!VvWPKehP8bI#a1n-<*}1+Rq`)mOP8i4M zLi|iaot&;J8*HI*!Z<$XfJhcfD7=5yv3HVKD$W^Dtd2lFwG{-YH^%>QjPq>y)ippG zHpBFd?Ymou_MJCscd}S&j57sCZD{Owt!iu0bHeq$1-BAb|9i(Xb8sKr?&x^R z1HYC#`KsTw{w*R-xKY96M(wEK28s#w2g^T{UD2@wAqZ<}5ftpdu_NBcJLIh+4KOaN zOvI2Jzdg=Sfp$ZWGUl@!I;IN86|WuB*ipr72=2Ll$By}8g=%d_Z(wKNaK(Pdf)377?jaD@FanT7p15SlWA@u+_00_%K_2G8=RZ5J zgi|d@aDYKNbeTQP%xK|?7mryW!}+Qmf!VU>-m5W}e0a^#4(t*- zY?{;$yYfZc!-6AIT&a0=as&ojan7Zw0_&o`RKxs(Ky;b9WyfVMIonvYmumV<`gVq( zla#k!3DiY*sU?vn&1)gtt42;q1=B?~j^8ajCp=+fVxwOKJ|raSGs+UMU!rJJZkBvV zM^tD0P~oLx-H`pU6Y$vYaHGX7s0{;aaY^E z)|<%B3vv!Q{MBhoo96FYsl-%_XmrAGVO?9*Ce2g$JkqZo)=e z$%sY~g~KhvsLgk@wG*Uj6(1T!mnjB4^MlV4RBn3__{VY_TH>7c&P?`N_9o@$#RzgZ z^rwAzBLYxlrH?jNaiLKV!|_+W-y(cLo#5kAIWPIrD9GX10D;Jx%a2VadRobqMnMn9 zJg8=)pGPGxRj`UFje;5uaz<@h1G0J}Y;7e|8U-~RY?TCe6cWU|S&v>xdWNK7d|^cG z)gT}6UP?I-jJ0fC!1laOE50#`Hd7nEE8Hp6Uv7>{ zr6*IgnVK6@ma&k0&HD9L@{LiD!GXE9p@MuM6U=-J@4CG&W!HjZK?uUGq~Ztef3a=d zPYhGhJIK^6-DLlI4)n)Mk zH;yJ8dXd{?Tx0BTo#JRsX+@)|<09@08qVm3qh0Rr0u`xuDZilM$`Bt0_dbc6y^QsX~0R@oc$*7GZ^AZg-@`QKb^;HXT}+)7?XbZ^>HU| zf*Q;bCg_r~iZO9D2sQ&QO;u#UWgE_XubPnhfzIK%F`FT#d99F@JOJ$)1RC1LkagD=6+VO7~`DInnzhWu@!=jrdj1Wg|teHZgUb}fMTQ-*K5;C1J zR=mM59fU`{+$fs$CGr^%*6|0A8J>I146abi{)jL~?zGXAAW()fT>jh5Z-Fmxu*DRr zdd0C4lug=8>xqrveWHDTqh@*`)N{GW#6|Qq;o2V@oh7xkLvBt%r7^s+ner!%9B0e<6 z)>7DS7$=ktvC*fDg>ul7B=>v zuBKU7#U#cS1r0YaOsu?p*se7I!Jd8eRTx-)%D=EZM|Z5Yfm~uX=&nz2yydbLiHkz%@b}zQ$XGcFrBTP%LPoHbgU=!Qs=t`Xz zbT%Ne*(URXto5UFU!oEI5^*eqQe-F;PtJV~#cFKiUl_%nLz~_L z$=~CW^K_}oi#AhSndwxh=t$aOEg8dDRM)^Dm`-fd-7qW@Td|GMfZW&(Xkd%tO2)SW1_3J%o zL;PXy5B*2k86{f`f-rPTwH7V=-`LA(zl6DcvH_SF*@pEu{xs zXOW*;DE{VNK*=b^J#_T1hjM`1dm~xMaF>$Fb;gDoRJSU09lKl4Ygf|Ab;gD+Go(MX z0(5Y;mi_=`RS?(dAGG5Yd{?9Z^^#eP2e})?Bbqd)(vbmYBHr5o073u01-}?O!k7)a zH>i$u3$%Mi-QQlZjCp_2F9u8Jm?(U8L6Wt&d&M)xj^H|lr=hA*Rnbh>L!3`BepPS@ zgbWkj{PEOoUY6Y$d&N3Ns|URe<&~Z1L02Lb$j+C40272#i9+ObX?vX+bgQ5ehHapR z+rt8E$5W|pEdGH?BurrkH?dV7cDJ1m{{Ur~5H}*xrooGBJ)QeefyCE|QN;I96Ca(- z*fy5_4an+1HF3E`DfOgRKT{@Hv5%pVww}#F$6T)to!%p7CtD6Of0UgKuEZb+gs)UZ z{JH_mFc_AE%RAG|mcI9nH(3^;K-w$9OVG2*wq?q*t z`#mIHjS9Ia&Qz#^Ys8(*B!J$2%IU1zN^+W!hBXTG7f{&p!%fm(B|oypuTEFg?Ky37*hGO_Z%;d zeh5j0s`>gw)<{%`-teSGn6IjEFgiaxYhyyP*!rKIAik=@LCvV0e$;|;94}734@c4A zd?T;5*g+?ZF#5B)PvWuav;%5~!%Kp)o-Pw0S(G?TXW(~&e>F&^5sWM{oG**XVFFl= zzB~9n5~`^}xm}rVr>Ax6Fld4!s|sg>V6dV(wq`458sW%w0jQRjBOk$l4)i;BjKWci zV$zFH1eyqMAKLf?pYF0}R$O4U|}=@eT# zH~jrsDsDc3sj8mEA%!LP#hV=E(u<=XLQ)2gEEPY8v1&_X%|{^hBE;Ea$K@swyE1zk z0PzV(tx6nPx%pds$fSrK=@F2u3vZ}3Xo^^q5Nb=1%qKuHpWYv3XLM^Z2*c2oD4_}L zzu2?$@uUQLMHWDa7IJ7EJ4~ArFwZ4_m>jb%hW_ys3@Mxz@NHSK`easD2JlUgE4jUC0qJ(t`b zZydII1tfzc=K&<3I8Gc>EI9k5OC%W;IgVtF=Kjt0s2kA|NJfVndNd3Lxw~0Iu8ms3 z$mDKAtrqhQ*`7OOOWhMKabz;LSv)`njbA7AMD1$u?rhV(iw+aE8r61J|+$W^sb@=>gCH{*d9brBVP7z#~T&3M_#{OQA zuqlOR<#d>!0O-Ho{84r#I1s`h@JlUih5r9zJL6`vQml~=5JR*baE?pu4F2;R9lRUF zQc?(srM@b?Z;5$c05jF`O=1|shac&sn!hQPHMKisJ(BB zcfl!mVxmiBP%XnBgqcQ-~Gj+PqmsT6MelnuqUsL$f^K_`2 z2h^dNZi}Q%O@YfLm`a&Ehl`TDZ%!cL{>^~PC78;DE;jttOLbUOS!oJhE=(QFH(VWc zdJIpCl;KSL%c#XEj?ZI68F*dB4GS_6|MJzOUX+8z4g8>v6}NtzLiPbLAIi?fMq&^K zqAdj+g6Y4p^CQyT8dwfDFtQv1{?071T`ozw{_dlfxxEw-e|ZZypBoscH^9i(u4&~U zp!@;@nj>$xYnO&k_shceFYd+@Zn4AeJBBa{@j_l)d@bY)_bb9rKuw3d0G*G~?0}#Q z9F4AGq;PU0XQW;GFCRc}Jfa?(Lq`;aFp!)ee|Ly4>ePbxQYU_D_xutBBxdYV_C=jX z7&S$)oMH3nKa5Ds7`89!(6TDo5j6pjpoN5MNs7KlNTu=i=v}Jf)UA?HW8b-ya{56q&fhFRNVe6RXZcWs; zYC6E(_+sdHTuk^VsvF~@6_ArLShsRaVMr~W5lGfga5wh45LIiITVPm3E@@^+ifGAD zSaE|K!q$Y{nH9l}1$H2cOl}+p@e$(oMz$vl_J)X-jA8qo<5JKpW@DAmea3zwX3IeQ zWx+@ny;3`PN6;Iy{kUrFW0RdU%2NN2ChQMo=aR%Q2*c1T@eTO?7posx8HY6PvI|c~ z6h;PFdMkcjO4~Fx?wt~94lY9d@i8Kp*tW6gCyU~ty-aBz3cny?+s3@?E7M96bg!i| z#PX~jhmmxpi9^Zuz#Yir5#f1Okwfkp>BZc^Ga37-_8F3Tj4!S;MC`T@sw?9Mmlc3A zACBe-wc8S?F8#0Zrbg4R%+XVh5WU+XsCpl_R<{!jTGFTDXH1MH4&@=yKWK(X2Hnp) zi4Z(vgp)2kGcZSjGNtZSG7=(qR)NzBuNovF$?U@`5G6$MtOSR2LWU=se&5|RvqT7< z)!$Tn`<3Nog}mHpxPME({Ai=V>Ey}dR)EE@e}0t+39|~EHT8twRa^GR} z=3<{@#WlcPQ#fy0I$R|Kos*esw0&dv(Hql|Q~C5@xRQwTML1hC2-4DUDuM^T6{O7o zz9SZxG=(7j@~Od@yS5Od7RME0=*z%7zkZ5amW~{zOm4Y}UP(bczkaGI>7SeDuYW1$ ztL^9OG%^5!93Poi!&UZgku?MLtTYb86Pf5F%}Er4(G<|L;y7GAEqk_7!+NEzDcon2 zaZc{9WSum;!AN`34DJ)F)rh!6p)M8@x?I?Oc7@T!;d9$^R2A8VxjOQ*H{7zRHh6`| zpmF>fXB9@tKt8u^iqd6=HH7HLVZnW2`^6`A@>qF;>{^nTq`d^=8E7Wcb<_|+C{2Pd ze$5@7k}AF#b)51m_Q7rj(gcYeo>5Z3Pr@=dPA8Gg%n^9;HQG@!*w2x15CA)Q|Kt<( zQ79ZI&$nK(^8eFkX+D@ zfmyz06`S^s%hB1De-XJt|AN!hLMCefg>75Qzq3RDz1ft_pe?3kt2bmz^bPzR5~m7a zk1|Dn2siV`&#W*&??7ead()CRV4(5>e2K`>g6bRS{Pn@M*mjItpw?2CNXm*#70S1Q zpEzobNpU5wo3%b*Um_3;#i2#L_GXE6$qV#3Ccc%*b_0;~w^=w4G7P|l(+;FnhqcH$uLTfYR8 zbL25tB7G8?|Dno511Zv|)yjjgLi>CL4%+!p^Gz^j;h#QXU!oFcrtQ;VT-+z6I#{L> z_w!{qgub;&0zs^)@u-%m!u=$giQ5n~mPR|_e?+@P(nMn~Ixc0VE!a_1fLn#2xdNQA z8}L}L08+NI=T@R;>ZKfQfEcJ{L?gqg{E%DeL{9&dT~U(7APBosr4;r47u&@5W!QG) z0%-?}1`Ek9Ts1kQ8mQHSV_+G(Li~2298h3mCshFZ&I176O1y8E%5n0thcYN*jTnp* z?Dvp7lI#35el|%-bJ1Ic^G!)c1mt4AthU{p>8(WhqydK}FQC_S7Z1B~MeVIb`J@Gh zbK^KE@eCYldBDJ1h4o1X4(0xB-3Cnlxj({w4U36b&dsi&hq3AWLztsdVSOfIITx!P z3f_0Op97+z7kHnkSPpiR5%?H6>N48_@<&iqDTh)`lLZ3rkj~!wBPwcLJeFS`4`Mt< zPlkd^3k3$%%^rnQkP1?W;y!@>2ug@Z=f%!j79ef*6p^UBbr;F5WeSBZkU?vbmu}|Ek%K+imY1@^1x8q4PJ43$+J-cVFY+x&mT#TOYQk6vAf zu#Tom{tb!u7*Pnp;p6D`mfX})RY~I%hq#X21r$A}Zns!NRwZq78!}U=1Y|BuYBR_> zx++VRtE~ZMn5A>fA@RoavrniGd2q@dJ-4~*(ycY5Rj{|gJx(y}&0Ms>Khyh2qTC?LiqkrUyeV{2%)q-83!Zrs^5krc!XVw9?bw&0}(L;6gD z`5nPkrxh1#2LMi?VvO81;SH^4u%Y-14nQVBn-u&o}^q3!+Lt^!iLYKyXrgf?)5Qaf_OM zUReI~*mSq_Ox3_9i7_*i*UM}pUA0yDm31+Lq=!tHp(`icvG2pSsI%blSfk&!))ZYiQUG)s>2OrsY*)%p z7?2G6oHjZ%ZKCoK`->8^J1QyiIlEceQozZY5sFRtpk!4^k&n9iM@pdzT3H*Ng(G@N9euTPhq)_d=Rosj@GSAlQ!?b^^*ctf4RPe8$~Xs7T!33a3ihB|hH&KncnRs-`u2#P^Np{!*G z^ZX<7$R|FzvO##%{13Vh3ZZ%(3UYqA${2NEy#BGUHLIJZ0~8|##Ad?2Us1BS7>#FziL{8uR{NLY&$Fu9S)ib zS}eJW{JM~d#Y4C)<={ty)ORkTbkN$)1Un7(?+WL+x`xuiYKg)_80ISOYC}(F-2{Hm zMfPDGrciE!MACSe7fT1LW%`c8680`(!j1}x)Or#6M?UgB5KK*GIMrZYdK39QA&GWQ zUSmK9gyX?1neO1U>~&?hBdZ(0m8qW9(wa~0#Bnu$-Mj?}-!8ri{GJQTboRB`U7p$kkCCjd1{6{zWCOivr*zu=QFca26oMcW-I79)?tf#C z)7K-ikqs~oks#tdYtu`AMA+4JG@9KWU#Jr1j&TLyAtOpZ-b(Xk$oY>Avmf3#mKQ4} zP=}2FKhCYkm~%^yscRuxW%3=5XM{PH3J(Qtcl>ihdkwJeaG_BA#qX%75w{( z#%NjOMOO;O8KeN*zwoQkwnc(gH!Od+BWM9Mh5$Tk-A&V)S&Uj;3qEkZiHa`vL` zN7)%AF${uG@JcEqn)_d@tY3X4>4Xb7sfmgdb|KVFLh12h=s)wJmJZ4R0N?Gza*hc~ zauI7v=K%WwZZPgxDeqA+i&)bvDlF8veN%HV^9E89i5x? zHl#t*CbeuW`#HQK6)_Q4b?PqS^N7F(Vt9Uml~~le+z2Byja!w0eP3g|8TfHFgpcFU z*Lnoev5$_M4w{Nl#DtIIn-f04ryVo1O1$I~F{#aQ(xoWyuEqxSZs_Ov5M|Zw-l9km zvsC)*j>>FE&!Z2Pwy!g;-oJ1MFX=u^_&9NtqJnlKt2xrgd{!R#d;R$?^1%ppPKx=~ zi;@4lzV8(XW`Mt-E{sz1dNc6jTnHZr@k9gHZzKk97GNQEG__Tc)rfPYH)I?+<|yen zOmtQBQ&H5oWoGN;eX65hYXi^s{DoAEGc?j}?Dn0O-q#rOo+p7{9$GeSPwXLlnI5Z+{E?Kb zGgL!g#u#n%5)Y@3mdlQcbA|?$oEt50z^CE}CI@j}(h;=cV5-r*L7dO#(IdZP&9Y^%`sNvaA@CXD~22z1acY_&o!sEy z5(Lagq}uXvQ^k%$BhdzCI}IjdG_D=QeNIQD*$BHW0MVc`+ezfdY-}_eFOqycbx^xF z8p*|D#fw8XmJM^Nj<)+mM(-X6kzW#Gn-hY3=1lw!#WTOfQk@s{al8;~$i@4$G!f=2 zW*i#$HF8ZENaQH~d3F%@B^v=7;=$5pI?4|-^hQIol%m-AP5AnWP)P6|HYQ}56QmDTp*RAL{Nw6Z{bMt8l1+~ z8px528+rR~S3@T{>n1Jrk6BnVb{*{3eb6!jbbYs}YP9>^s2hGkU^uc=o=gvsnl;|6lMK#O_;nu*Eairv@-~JJjtg2beJVn05GJK+%*N-b* zr2lK&*d^A6B{!UQZC+mF$!c>|@O+n88G@E+;70B^GWxsnyuhWWw1VN@mdjmhZm zOJJq8(KGxe&TcnEplA=vk4w+^zZ?G@gJc}~FIw<|oLm%F`atR&us9aO4D z^KT2sa-P9o#lhRws#7_l68SKE!bhDGTivk%T6WoL8*F$eN(LZfNw;@IFX6F1@uTA^2w5AClB{reu;|8HXz~kz=i% zX(Vk)sq)shVPqwD%;c)}hbnDZxvSEZu&0@Dc~kqpDi)JZmD%&rt&_aIR?c*j!A?_1 zJoW9>7cFzz^QQENATb-q@0*t`cG$}R(zvPpSCANwGYH7R+V(<;?3>#(!`#r|sVOdT zt)z$eV|sha*7v2*7#d79&vcn~Fut-m+cIPfjfR@~x|seqI-kp*i@G1{4ewB&0Z<40 zu(iW1ZH8WICK!udRsOH^l7$0}YT`Va9lZM~1cU~M zjf`nxB0)v?HoC1k(?SJ@4f%>Np2eTghuCIuNMRr}f~fpapSgC?idX6&NT$gdb?b$v z9o9Q|J6s@J=^tfhbObO6!qAmOW2O5qR>B|B_GAIBhgwC$%kO7Lvqo*sIHiW7W#dhh z+#p7j*mPTm%jL&5K~_FgR@@-Qrm-PA3iQ;5IA-S{^iN7OmIrL#?ru~=Q__AC`#UAk z07v;&Lga>(qdD1y!wn(>hy1T0PI}gsG~^|h2}A%6;kf=F#YdQzLqf@90&Tm$v8sU1 zJyc7{%P_7=LgIRyYMXyDKS) z@>4tfT9pL9n@keXigg1b_l6zREHoyZ$$Sv_JJS(*V~fRA-}FKg$#q@HxB(mUMwG2N zv$11`ZD=XDR5G%G8!0NdZ4}8%)3ew=Nx=@nZEU_}=cb*d^5iaALm=vHEZ??8UUK!$OViE+G&fn zsMI|O?*-v9LMxgAL#Q*|6zj^_*`_B+S}Qk|L^E6n^;{}zdYO_Vt6{}3qZAfG<@!G^ z&H~Jl2X`F`l8|QV({D^o?vC}L%@J+pDRzTiOezdydLqp202?nWe?CJWe8W91u7?RH zW5sEu47)*n@J-_rg_1?Z6kZhADR_hW;2WZPCU^yaJ1u@tNbwug=iamv8BigF?iTKm zGVliVnKuF}M9-||E@8Mdg>F!9ykV%w&T_#8GXIHo*(q5jzHPKNwA1i^o zU89l~imR?qd+|N3{9TY%{Wu%(Q9_7ajhGBg@gUUOZe+}3oMH%ch24=6Wj^J`ek_v4 z=JU8?A)ERtovfL ze-I)5C_4ir2SN}CehC#&|NpVf?4{}s$>x?1P#YqM3ez{X1DZ;vqZB}98qz6qa|WYT zfDjtcRN{g&UE}1V^Q+G#VkI7gY8*}Myo(b~V2!uH=l`~E|49v3sYpxiIE*r1OX^gx z3JXFt^uSR^Qi!0#I>{%0D}f+XBfyx1AY?4;U~8u_P%BX&H1^)0_T9?d#L4=UMXZ8> z(9nECO)@^qPd>!%o)<`|+>2-`r*OW^%OP!Le~gkpc0{hh!^ljCmzJN^tU`d$h^87B zxnfNtuxmcDeD4p7W5VR8@Hjx-|M|r5tv8~u&E^#x<&g<7&c`mR5Fyk;AaX}^B7E2t z_#s?MwO&xQX?tyALMJ=yBz7w^X27g#@90+io7%`SRlrI%?n2*;>vkgl=aerQPgwQ>zof zj5UndZg~w?s=L^C!zWd8f3b`S>D3(6r2_9ztr@KU*ZNUy_Cqi2McKLKKoEjJ@JgeC zkNaP2E%#$1tP{BaF^oE>P1h;-IV<~%;xZVdYoI!om`0!vQgaLkrMUcqYO7-MAU^IkdkX>h!=FZnBH|Xs3OjC`(7{pMh#yr6-ms0d(wYkGq z2*)6XLNzLlAV?)^cb1VZV+BB^9TdxM9KCCm2dj7J;}JfVL-nr|4@Na%)^Y{Hb|m^F3|Q!d$I!k zPP{FJWjOqW`<8iul#pL=w&~+cI4;t_-nk(q;HN>(;P?=35eTj>>A5S|PraVOQns$( zrqNU%mA+|77#6p!h@}CSv1Ym!xhla7GtAyFL95HYI+q>qgTglt?Z1)2SOrR}Xiw); zDUxBv3@SUJjPm2RBEPmApVAfFr-3gT0mEVuTT9#u6B#QdGRzP_MRgDZz7@6*k3OpY zy(@n727en;qjenw!SpT*=x>GL8*8_`g$=deNNc+k$*}zR4fZ97=0n~b@;s^Czt(np zQX09pmm%kAJ834X63MXq_zhrHvEDko%*>iffeg!!-+<8$j!>vEBmcWRq|_3(D?5%q zI?xK_m92_aCF^0e09|zwIM6ZBd5s5!ZyMr#Pa8dE`s<7hG5MkF+L9m!LD-cF8m#xf z*b?_k7F*X-Bdmz5-2!+gn7rHO7TXTVpM`7u=8*H;1Z6DxSQ9!-$p4p0)c-sy{0kr zq8o!N)6%4r907@{VrFHL&hk}J?v+Ock$tQ~0hoAsqdL5|49Q!mZ6Q((Y%SRV(F^{n z_7AxCnrC17RFz@$YD#PdaT|WA@{OD4FC7AbfE$(hwfn``_4j{1Z*LY=E*zQn?`9^D`x@7Y=A@1%uXU8SnSr z75IfGFPui3t$AmRcQ>Z;68yrG8_sm@#7qUVr)^izOY93z04l@pL~(=mrl)*YgkZu? zapR^ceJ*7mG<^wt;fX(G=!k#~88RVpH^JYt5(x|tA6%iasj|aeTm^pN2|(5Lk(nCW zj3Rjq&rA3VPXwwyy=&TpEXv_BL`#xTlYjqEDbM6S<5abO_7zdMdgDlpSEN6E{+CrR z0>5WuHOCR2VKDy_>>T9C71g$SXKa$mY^4I zD{p*M3Ve%f2SXRy&Rr3kmNt(SyHI#bF@9%u75ht0mX$}C6c|DVcX75?+FH_@*4Ca0 ztGjI^8xzjG`(FWSxb+lTWxOY#I{x+zE-wK!+}2hP9wIn`F-aabhkj3pr%n%}%@KW6 zf6Q*?)UIw{b!kz%S=7<*Ol0ORP-v4GV?R=j~W!Ts5Tm*<)>YWzc*xlCy)*e*l>V zl*8{2)nWg_mgQild^MzyB!#MF2Xg;i?Lw8Y){w$|q@~7S%XndQz3bmj5lmT(&5Kxk z6j_PUN#s2s@jBwmT}imo0+Rsk0n%3eclS{HC4(nvw*QtK@C z7LqpkYp_JfXa`?rThDfeT}Im}c}e3*eb|j)jQbpf{sT$KkzO;=d-UvEo~O5y$a_E( z<%hjOc+gWqm2*8J8D80$J0b<5=LveS9_s1y0LK%z_q#eZGBQi|u%XMdg21BN@uQ zJMkzqxM`?uuccK3B?pHT3TLaFI{%|i>V^U)$NPuja^3=J{?H07r5Y$XH=b zgfBb!fvcj-)k)ourC}>J%O5FiXGx<{D|ADaZ~$wYj0Tsi6@aQ%?uL?S=fva&FY>~c zR%>@;YEGjvsJP4ZP0cM<{rnxH zV`uQ>>oOJe(NS5VY9(YSS#|(YuCI4p#pTwC$WU_ZEMCJ6ZSBgb3J|rVWMbt|agzV* zM}oQD)qY%%4`pX?1wjbH(3TW5j{P^bgc~xmPqqLLaUBt3est{!26+g)Z|_!**@J9#2kNfJG%Lu0@Sc8^8LiaZrX!mE#`*^(iD z$%*h+BmWU3K7Cy5w-d#^^u<$HqI@6_spuVHXoT$1TMk5>70?F)lZp|m`{{(aQs_L1 zyQD{8;=pP?TkSmmOAgPRCC~@j;WGDT9AT!W$I89;3g`pSZV>(BJrufRfZaHt4kC$h(bs;)-uvjWPdM?yME@6vUACmAOxZ4mP+xV?tf#=F>iuc6`AyqR7e`Hct8Jz zHVTe)bJ|}+RK)P;%_qJ$V6(v?mtYi<_K;J?*^oe?y7}Ocbj9X)@yjB@NCkwbcfzsD zPhV)?P{0$`nW=yf^+q`4&|~B_8o%+-%jAP--7Mk^r`us&?JfkJd0dqKXo&8dbaaR$ z?bU-#K`I|aJ@2N#ARQ>eU_M05m5B&Z&%0SV3phhfAUej+)>KRU<9?agZ$dJ&8TfZo z`L!Xkaa7CVIkB03YG_9Wf=W0AZS>hm_^>98mx)wNhjy5 z8XNmUrsCDCCu>;+LZX<1GYJ5jlGf1}0N976UrJ(e(`bW7ko%8JZ0jWeiF%ZX<69s} z3txy|ZS#(-bg4Z`-q_}I?ezJ@nA|?B{ZbU&{1s#^_*Y~H*yLMcg%YBkA~}W~4BfqP zNALAv?Ux6?&Go&)=r1_qvlLxW zf`lkaZ2WM9CpLf%&6x*&B}j;LYgCDHU_0^)4`0AaI~n0r2N#$NyQ;q=ITHPG>6enk zY;hyz31arpy6nr!xgbBv&cKFY7zBbV;kppK|6=_|s#HT0nFUZp;(+bv{u@~fIzzCr ziw$W#;_XH>FCPJDz533mx8^T~tXzt5eOL-(HHNOdS!wCYPbRw|aPsi-Daag+;o^Eu&|v>ihgOUxW1Tt?78WUN2;mfmXF z5;I3Qix^7Ukp1V-osKObbHol?WvF6_n1foWJZy;3(p86hT8=7~h&ge$ zd(Fk_P{B$aLlsN79I{UrJ3`|H&q?Hmj3i!;zBu|wKuoaz>(Xf*D<)nJwop{6P5cE> zldY7Vj;V@y8bGFXG&;cx-4FZN>mc?+TG9maq6r;6ur##S<0SZfR({vzhq80Kkr)P{ zXiI)zWBPAwIr$n)W;HZ`BIIDe7Y_Yrh{>bxA$_H5t&$5~0-R2QG7sFs_9DP3VO4gZ zRdt!V*^i*ejFYP?>6*n3&%=luql2%_gB2z8$quM0hNuM62aNl)nX|+_*%oU`VjrW@ zexHdXXH-%(iv^`JyRx2HJ3sDe%I=ghHM>Tr`WCl(8V|ECp|6yy*}5Qz)1DJ|yy(r1 zm^l*}VGk0BM%uM+w!U?ek}p?*3rTn2iohWZtF= z$)C2*ztR0GofaK4aOvs41ZvTsx?vd>%Rd)0lNpP%N~jhMvKv^z8=M6yxR=IJh18-! zbu-;ABvCWZCQmLsN~jhMs+-B{oo6efwAds(KQtO^81TLc_a zD-3BKt3g_3T~>($qwQLM{8Srb0;O|@=imIr_#b6wltVEH0>LYZwPNpovA6U7keZYW zkOtcd=!Z|i-iF{Q4FD@R7>`CdsAK-Fj#^KZ!1VrEP7OIqHEk}PUNx60qJKZUc)7YNBsN73z81EZEu9;!5H!0ShG43zH&xwgAlX@); zqYqV5>Ob~ zR>Ybyo#|3T^tp^4aC&3%brb#Y=l7EltrJ^F{I+L_8Bd|gO%+ETOj~tHby^9KJ~oyNA`0Mqkb>W?&=m4stl zcsr3A$nxD=q@Qu^8DIZR=|nP1LoYHac(AeBu7I;!F6KSgcQLQ@pz*R{dhHVvn!q(8 z4E6v%aZs3*+p@lNipkZal#GknCWTQ~*jq(E#!YVK5g(0Z4&%66{+lJpW|}k~LhTa( z%S<~>R+6W2Q!R3IS1-C1H_f3GW-9_UE;3i_bQlLbgw7Js?35B{6ADj54wPNoHmgd{ zQKbaiMCgjPGDNH>hr?w@HeP{l!s3ZP$#i|3ady$3Tee@^B1{1fbUy~q4)&Frdo{iE zNh0x(FC!J-jZI|f_0=jOHLfI{sah63>C8g`HPVhC$eu+AKi+|FN-q8`C97J)?+1Fs;E~K9SrcJLr=9i$2LHo>YkLe3gMf}Bu$1^!?&zS&fLX0%GW+n9(|L5@>{O5uI zKX9LPQjK>G{_-v*JKLiARcGB??)l^u1Q(K>okV7C&+qNXqI6agY4If-JAS7JBByjx zxPsb>MvE^Y*m0)H*>F<#b8c9EIdoIb;ao9rbT*4AZz=$2^|UAjUA-Bn*s?CQm6TL` zNm6oYY+vZh8!y~F1VG9phe^jTqwbvc7Ah#e*vH$W#@w1Knw!WD|!7L-~VFeIZ|6gB83ZB zE5e2W*7L5jou2L12wLf}Ka;2LFAn|~5Z#_S$Fm)W#$gKUk3#o*bV8u$w$v%LE$l{F zcbOiaU!43g)GEGMYM4C1A=J`jys7g$^W4o%3Kw@_>8GrTs8Rl;h$~Yzl*A_CcWg_BgCYd)6#Txw%5d&C zYv>f2M2?EZAOb>cpRgFc_{nfdkl58h+LaY94Q*K)s1U@6c8ySiR!g8fsnB}9}unDe}WVgmO-fegC3i^~j{{zy5Un6N$76B6VCFf#nXNso-ti3!;Qo$ue64&VKYkV)B` zn2X<6X>TfK?RBF=Dz0r9)>x={|_OS#%M7 zLd2|SxH9z}(U6Q0iB)0J>7{!O38ghdZJlxt;)%8$kk5*|G#~z!Gln=e*wBRWCfpRF5?kmD#C+aHvltYjaPgI zQx+knB0TIcKqIhI8Apr$zaPr=_!(Sk33TIQ;7p#UT+c-B8;xN<%vKKKZWgTa0^}MK zPunHq68AZihqZ^Jj=#=~22PKjOXI}9<4xJQ9Xk-hFtjC}#`NFV<#0a|r&%>@s=}OwUMRjpjgDu1G@dQJaTd#u zyCp=!td0k5XC8ZHZK9%Z2R*{Wtca(wpEU^oNrW%?KXr(RSs717(O$Ep)$gkleS{J` z)Jk~RH5_a#r`n58DU(Qqhgt#8VqsHP^W*x`k*-R=0CM8D6CRVsNfnXd|Z;C$yV%8;_Vv?-7`(OLC)IZA3 zD92(DgrZxr+9KWm#)e}uAGfqGvH{YdRY17s-*hF46tvYqJfI=o#rc%m!%GYgHyK+- z7lTJ$q?1zjYzg4uCMn`cmCzt^MN*s3(+a=Cr`(DJVk6?4_)|vDr^i*Q6$;d90pfY) z@pH}OZ<+q|$5fim5@V(Vzguc1u7E*&Dq*gJ>V@TJph5GtD@CZnw1NeKNZ7#~H@1%* z+u#0>ERo5`!TKS)|FVje09CP8%@0z1U^iDgwk-c}$W(g5ebc(xc@*3<{p}CsTCF0U z!D{Oxi6vPD3*v&cicQzn?1wFhi4D8o-VmtONuLsW_QX=-ZwJ^jMQE{{v zKbK-ip;}RCb2?=s!FZX(w-U9(wH*i97)QaZU5s02+m#qnyK%;W=E2<)Ky|ac@hWlN6KVzLCN|9kOLOK8Qi}5)nmTcDk@CkS5b5aNXa877eOMf5 zx=(A!mR?y4)+%%j_dm+c=m=sE1fng)7!~?&?0DW6a^|D~CWA>}aoP3Pij0T7w8elWNbIYE9@YA@SudKj3w(q z;Fp|K|K(UgzoCNKvDUaHnQ_MuU4+bGeydeR!O1CRJJpxz0vdtngGJ1*0Kosq`*ZY= z5tCbO4elLUJL{K|amNr(!(mZ$s#zkS6crqM$}mGb4`-4#uuH{wA}nU4{4&Jp>)aO> z(N;6BT86|yYQ`=@FF!{GW-uaS;j10Q-6lhwxQ-{F5AEkFAAd102o1u zFCJjajggg}cZ==#WX7B2zPt9{D93zBXFt1pkSWD`Rb)G9DRv zEgBx>dJM%pI5V~%?_5viV;S7opF>9(I*D3mvG)n_lN%(Btx_THlH&S0-#m@o<(Z-!6 zU#2pViuz2{fs&^MR8%L>M+b@SaSe|*=NsND^M)EHM$S*O0;)7vF144eC!nf2hOG*` z275T$lMq?SdIE>6&NM3Y57L?6$1na*M=#}jB7U_`$~n7l0^Z8X|vTHoK|bg zEdkVuKLLbj)1MDz=Z<7C2m`?@@v|Sg|HXFN8wo)bN*xdYmIREZRgZN*gi0*a;zmxT zai_GYc--_!57@hn8L33>wKkK-eSG0frAPQjGFjY7Z3xT*uKec^7v+#CfPi@y9j-ho zVz&vlGKz>Z`~X`_bYA#vIFJ6Hob6)h^CAu}Jsn@`zD}RKJ3lugA17pZ(?=Ma1vSs8 zSZ;=dmEjVY$6hr&&iMMn9xE!FQd9!-+^f!vD1gqd8^P|zKF^6WVx`9kVXL+WQ0R64 zWtar!9CQE_KLu_$4eIe)B}F7KXP~3sWa#YN0KC>3Z}n0<0&@mBTE>dQq3UUx149VO z&;z*QV1t&W(^W1q?8!xZ$|Wo7Afq4z#h}41Jtw zr?^oDfO7s88ooBdgbXggoZ^OejHfD0^Q^IHtV`hn%qeafC{@+e7&^3OcSE1&!$0$@ z;8k(JWu&T7R2A#snc8FV&B3@=(GU-oNPBrxX8yJq=X`WwSmb~XMhPwy!F2zRvNKAu z7zBafl{6*+?tihR{d$D0ROSMfWt0qpJ+IS#J}_PjJIGxp9zA__N#9)lOwA7i-h>}Z z+kT3`d9>UZ_of)7I4M96Pm;o^(40jF0UXom``t&IwxUETF=tUGwz;iu05L(%zBYvV z!_Y6&KI+)MSjMFQ_fX}e*2oH_G}Z+o4Wj%^k zHOy`(3b5v@Ukgd({iu{29BRjDBTo!~|8`~+^nO%I&YD-|pa*7?;odPe5`8}^BnL&7 z2R*}7N;c~PO2Y3)MdZK}&b7`D$`h{+!BqJBQ3*M@79_gVk1~PoLRbRuM+M{nJzs`t z$cTCO=qEAwqvCP6B?qj4upid;pQ6qx8;8fsAm1>K_M`V4O8ot(bR4X@Qe@+ac;5f8 z_9Xm%R6Gu>6Z|mz*tN?Z{uF`sOUL=6?A($h2tgotC0`A4|BJ2Z{0y?wAr~+V+eR!Q ziJ%7R*Rf>;q(_J1xV6Ec- z`bOz?HRYF&cp!1swpg2PZ2nkKwla8pJ9s$bSx3yQ@)3*lV&s?g@Fh50XP!o7u^RHi zyczuWiX4>3HCf}m4k_`UKRuIFe!E*;jPrYr&dUljp%wj`phnhm1Psk^>g^!k6zrmD zl1IRReKRfwf0_0nqSm@O(@pezSkw$k-kh0L|w3{!rAq?Rj3ur`61f8b% z?B;4#Lv-gm`_MVY!C= z3s6yRPMkug9i1d+tayS2?O)^rA6`;Jds=qCGfR;>=x;t;iE$|HZ}y!`OqS!R z>_O|@HVW5<%ErfhC_-F+mg9@iI|IpHRm~EiBy{?tncm}u{h-E9k<}aG)!q_LWJseh zzj%Rth`j7x1`L@<d<^ZQM$DE22#;g__E*<=|$!-GX z2t6NEY|NU+=pCDMoK|)>%y>Jd!=5kyRQhpEEdSWRuu=zZn6Z^!_p$@ea-NmZj|kL! zCAHTRp@q;aPiml`B6@-FI=^`ZI}pt>eGHyt%D4Mc-R&@4S_sWDdn6JH!F53RQOD$6 zS`f{AyQIaYZOFOy;a8r!1JP{eJKE*{FmN@Q$IbcM0%?|7^5la}LMj8g$CrnGUXXF* z%D&ivudwBtqrHRBMrudYml*bvL?Kn;b6fg(L9+1;5ymG&JV6q!Aid*D?dK)Qamdjw zSV>}da_-%z9ekD~IItzV80roLDCHlwYYU$x4G!@;csx2uiAQa7ZQ--5!BIm4fo}!V zu6yA(aP~*p6&+Cwg0Pho1a$w!9^nsZ-<1V8j%zhwNJ`wa+YgV+tzbdWsV^EvEpV0@ zIJ{Sw0N|eCdZ5y5RU>a}_<1J^tu`nzmZUqFPsTN|An!-#nXn(M(-3MwzHDCwpC%47 zO+8|tBEOa+n^(?}-z9sq z9DzVFWlb8@8_=i)`6OGdV(UicjCE8g;?qVQT$WUC5PE?|z%vFIHEr#ros@4Jc_`TZ zc;V3LhLuiVgcwc1Af6gCG#S(kfco`(JG5^$%$qN%os; zsN#sjOddJ(UV?m)gEM|GWd<4~Gr1Z)M}AF6P`_y^93A%ugV2|uh*cn86u)uC*bys+ z{-4ufCCC@_Z&akQ2I;rw(6pVv@7V}UalglbL8}OHr;2J7$QPt<=-@cuM%S(*J(5}p z@CD@?ZI;R9h_MX@_u5YA_iV(seuQ}iL9mn`mi=MfDwuCErfP^6A@{4ze#~nl@<&D@ zPQ@-kwS)E7ANoU90cMLU)j*$Co0H!h`66Q_WVX0cxpwm4*@xTt^-JwwD?zisy}6qK zx7m;nNNXu46=W8eH`rq9#Jz3>x4c41u3+X2;T^Ubfh28 zE6ZHDl^SM|eKXqupmcaFuy)tWzg2))q~ECMot+6gIRn?(T}{n<%hRkh?)k=2~e>t2Hi!;a;YO<$&0_!FD z6zn+obaD*Bp+4cGX=2t(@+nwyc;jF=1$VU|8Ah&Mkxw2Dq|KFfE=?+*y!qK%l23j` zPooNxI_OR%0YTr?{@)Udgn6_CHz|^xG9SsbBA`4N0k}uS@E=Z8v!~XyB%lKRMqCFu zuUt848_}Q@2_=DlGwB2}!di~#A^g}=52!|RKFJMffvCVX-z?r{f z;op!Y#@rRIAm*q5tB~d|SqwStpmf*9H zI2t&FF!&4SWn-tAzM12|6v69(G zj!qVs@KU<5B!}D=EXARhoNd^Bc1I}4;VEN{#ECwv?-+jcMJ&dVnr1@E>czxX4jIHZ9`r&5}fV?I_3*mjw=m_2EXVA1KsXx$ydFN==b zkSELm-+KCy-Wpa?WS@1sI6Yqn7uY#kT69H`{bk>5*m+rE#4$FCJlk-I#+EmoRrJ@n zjI{x|H}BDRd4#50Nq=ZbuM$ejV;Ih5|WHGz&MNv5AWlT5`qATT9%;ze-QZP(EBR} zzB7pK$waI&e=n6zqXlBW0$f4sMRL*BN;j~BZQ9k0uiM+*kBmH5XsI9A(KcV$ZWI$A z4}HkbcdyhB?4mc`Eh3_hR3J2toa;(MAkj8l;JaNuaHH0iFLtHAN?4w<`3CZ^Y@t6h z?U=MwVRx%3wYeB}y-iy(5FxfzDy#%5F?*|qET|$!dlLHP*Z~1IE;v-48w5wsVn5%L z5fn$4rT2h{+HcNXDYF51b*MJgl2)apM-wS$37(rcxdJq=;pa6 zu}a?%z&C0f)-SjC5OWgvB_CmNqmU|=BXPf3W!aCiGdhA81fgI{i5i~v-`KIaFC>`> z4LCPm)D>YV5lPhF@NrD>>OfbahySrcBvF6k%YE?b>dS`4Q=f)@pOUD*p}4aTxqcqzGY9NDoSo2JBDo95|JRT370+0bp@qt z>#@=3ZeZm0G|R<3Rzj(meA8g7(a1^#O!EFzLa89YK~&aA5+9e2nK9lfBo!J@A#pyb zFkbkV+J|x9rz7;8@*5vj70b6MtzDxaD}`1Ri>UmY9(Qpu;-xH8lvUVIo2LA~Wr_A%p4tuG>l+kOFX)5=3fKYfR1N2e{KU zCHVH~SH90dXgJkD0|M#`DRfRSQH3Id>Bi}iN|-fBCr-u#l>jp2+H|LmA7$r~!!QT~ z(JO`T!2K^)zo;8b65&;M2$2GV8Qut+C$}$~GF3=Bu3=NH{(ZA7M|F!Elp^ABHQR93 zO7|PrUPPwhLDL`Ov7Qzy9#P@!pD3qx()Rn1tfU*vB$N{gm)oBQDWV=7>4uxcG4Q=n zY}uw#0(?eK5Z%B=c7I4G>dPtCtdw6HXd_9}8Dc zz3#9d3W)Qeo}h?+bU9Nt(c$%Q!8+~#Jr0`w7>{*3B)`N~R4_PwXZTAY{kY<9Y?hO3 zUh36)-artF$j9jpifXnB@l)=ose`6JI_<*W)bgwlHb+y>`)CJ*UiSE#)Y`2haRtw` z3!8}2%Z`6TwXBf{ooy4ob`nX1+urkPxPcN#sE{e^q74+S0JfdSp^IK1cPnu!YERQ9 zLT&GPG2Cz)10Ko7sgADCPX8!717wFm5Qtt$Q)|inFZTD@>HH$rkqhh?Vj?8)_8=av zJ-iH8xDD zooR0tK8+9SC1Jz4q_o9Xs|5O;#Ki|&)fSZz26)eMB>nqFPVQ2;j(2T8W74L4f5Exa-7MHOfRo5zK{i~Ep-Il#mRYlF z0Jq_l#s&c;92pWBq&&EOw`{WOM^(LFmFC5a*DMth=MRo&{Of{tqlEVp>p#lQC`n=v z1fo~cQKNnTi!INOokB9HZ~>AcqS9SMO3pwrj;SPL*nML7q(3iijQ4WVSQDK?Yzj%e({P5SKFQE zu*fJycV6bEU}`Qbiny0iV*^bYzH5i2hP}9PZ^=GJTJy~W*@Qj~Md-7tBIfRjcwT!^r$4CeT$8xEROK1lOi{kvv8 zMSl2@$1y6B9YQdCZX=yn!GGuEKvr2oxU52MtjNz(T4hM*7`xfxv4a-rXhD=VBhPM; zoxBE`wAe;o-B=r4r0^vlSm%$jGdi{y1c7KvsEI=VjXh5Okn0<1fN?N{1z|VYexv@I zpqId+3YlSD7(SnRpSuxVwApD(3i5_G#*Y^n=Wh64!!~LP-%ZOgSwTB*)PEaIp|$o{ zN3Jr*WC`trksBF~u0LgnA zTL^4j#!;z+RQTOIzm;dZ(;|h;X@o~*tK!) zFOlD~0qt5OM0b$tcRn=rpvB%dHJZ96`?Tr5eHxFa;~u-CQ=wa7k*5C24t(Dr8{`rC5^!FjMS7}uM+?7ia4k4Y zKf{#^Q|%2zi@$GLg)<`GYauVn-RtJt;qM!6t~YBMfq|iiS$*ywLcga(YjAR0dp@Sn zd!&q$v!z(ogDPZuZs=f5)ltgV&_Vl~LT{YA?uv;`Ai=5{twr`Xh2GGyE)Tq{eHvAx zwYdJKK2+q3?es#P>nitWcqIG(QFdlI5`-`ey%J!SaQ}<7%}0+yx<-{cKvc3IgeA|9 zk=^3B#O{z=c016XHjQbj-w71&T~F{6Z=ULIOq+NwdwsAXQbLTc9c6&ucBPI z)Gl7MSU?mTab#!8RTTeFoDq!)V42D`yovlQh^tk_x~0Tigl3QM5zANxz*BEzjm)eK z@o7hoBV?xJ7#DC!uQz0dv7?8srOXIW{2sE)4Abgqy{;jtu8bVsuvn)d+#*%=M$f>S zvy>SDiob#6;NaS|j=h>tFK=Q$3*u(uu>ckKdg1TF@f$c%u%ec$_rb9BX4h1f#95xH zSaH9>5wb$5Ra@;J10++j;=}MC+wbYh9Ce?l86v+FxR24qyBEE*3~XAz<7tmfSo++QO4#^<#Q zc>m~uiLLd!XD1{Hn98^W<-=cIRlT?1{=$iv%BsVcjSp_WdN$>j?2ArR3PK(n&0?mw}e>);t)<61~?wb9%XKHlv%{#oLs(tuFX({do%DyG!oQ*O}2xZ zKtWqw;vMl6aX7dr8wPVw>>ySn{i2=zD7yk2hCvYcB@w9j|BsDx$rhw-XRTrY;HULmtgtj}sR;XX^q+$H4=qm#EZk+aO)E+J z^QMVoAmp?raB08{zMlkt&Wdc>l9=t|*oI7P&%rCeZzJbm%h6kPnvl`&`L(Si^3NMR z=Yl;5uU#Lk{4_ZU{+yLSVD+xX+udpM9X;K^j zWp;+Ql63%Y)SM0pAJ`IJX8q>xUIBiQnbT<~+=~cJSQdY=l6?RNIh^)w56JH`2RXgv z0x1E%poc?Zvkz3pzs!DNE0|A5oY^iHsK zh9hjECxQ0}y`6ljmOx*0qH0qNmN%gE^3acT+O$SYh-{XC4d&_InCQWZ%175 zDZW=KT|sD(pM&ug-_L9!w7NII7sbEyWS*pERth1I$j50U$24vMNDM}P|Ei=A$kIsq zbWor$EX)XU&PP@W@CE-H2F@L(k>iBh=^k&2pS!Z3qHaWaqIjSuiHlW&2qe;RgalG) zK4wDJ`>WFDoBr|5uJnjnG(->Tgb)y=l%Z_aF zUVW9o-opq-Af8+oR&lDYDxVt?NdSW&3?(mWkDe-5fL@^DK&0=!H~Y{3&1cG{l|l~W zVS&@howncPj*rpY*V5;1gykrWM^`?sj70`@>PH3UJuPum;Sh}tk4>`-z)E2UV)2c` zXEmu3HY|H=R5 zBJ__f@lBgaXRp!L?6Hi9nle@a>XmRP&Nxw8bfj?;tGiN?r8NC@ZfUWMYRdwnlZ+E~ zC8O%EUJXYolK`DvJ4*8dQ|3v5n@tXf&uWDpskpC4G(WeLjX?7>91b&c@*PWFs{i2^ z&lm}`ZywG?oF9wyq?#B61Ys?S3(EH2*d=^!guR=k0ftf0fRKExTgP=z#`z%?RXuF$UB6t-T05Eo zkqsx}lM`mL%BnQLf}SKej6#lp`SyELEk$0~{_S>>p5nx~h#^bgb3Hu1*7*k1)Py4! zG9=dTsVnsG>)O#j(32o%z+GU!U`Jpbt00n=NP(s{9KePcYayuQgIUj^cRWw=i5pcm zi~Gt(3wdGs&vvHpqyo?lOtSGF;({qnX6CJB$>9mdFV=xcJN(e;(@|JZ$>ABZu*Sb0 zFOogp(pOMP`6IjHC{W8ha*Q0E9eo8oJ90w9!Zw9L1NPKUu$IDtCbk?RsR$NrI zx-K2pXEF`|2*ZQ(loUmnFO2_jJ<vJO+#0N6|x*6UvSn zf}X@VI6I^_CjTiBY&qjCEd-q@K5->-_7o7-oa`&bdIzv%VJf`HY*lic@~cWjcuTTC z5BeNK4opg@&=*;?ceNucpa*%51(S=%!~qUVT@YISPx1n%W8GIflunc)W>whMGFJt) zG4sW!e^z3s2UcZeG-_n`On=XGp#M-&PE^W715&!oV7wan&!j`O>30O%F6ubmJ<@cL z|4>#=u$Qp@dKbxCKMvuvCOxGdb@L&;COsG3sM~rtfy2-vxLco+&RUi3^n1pN8-$j_ zUhfeZizeu^tKKa#KLnREZkApuMZ=Q~oxB_>KcM!-Y$M{nR+`p9oXdjp0|!lY(BpM( zvGmiwyT@9Mp~~Q(yt`73i#4fZWQWNQ)#6lAmNaZx)FMaEZ7e1~REtBX53PEc?Pd2O zSr(HYhdWt*hbm*(Sr0tIXQK&6RaJvQ7HYYbvXJ^ zdny7%@Wj{5c=jh#3#AV=sH$6`;+mw(Fndhw{BazGjG~}3DdwO(CCHp9M~!Gs>l1fZ6l5ua zzBo^gFs@A0U}hqlDI%!p8wfWDUIiHkxu+m5h4wmK>_KjBIB( z4)w(FqNGsw(!EiYR}Y(@_9DTB62b02%FZnbVh{v^S5ib1?tihR{Uhp@T!5r}fjaj5 z`|Ho)Y7wT+3lK*5K)H$j=fA(#A2|J(X9elg23u~TpS$yk<|nOH-{#;=wb@E%xbzyd zIWmo}pwW`XR#-`jCa+J-khS6hBa`N}vSBhXc@4Up&gg~&XdJQJMLzdq5a#&E>*(l_ zJ(>@4xe0x2kLXs#=?c^j&opAIxG#f~*C@^5xdK*y)w88;emYZ)1Z@r#Fd4xIG^D|+ z$bVWoIB{TT1F58VG5l^8kyJJEMqpLPA`aJ+(Kjz!GQ4+<`kXmUP;Y@`YwL7LRU=WN zGuJ&Va-TtwR&PR|+ruJQ#d!bE{b}3q7BVb(wTP`Mkd)@TDjDm}E`@v70LT$iZpFO@ z`}HL^W@?d0$0^hAgqMO-db|$m3^`pR9fxzh=}zr?|1tC;@OgCD=i(7RFsmSPeF@(P z9aG$N4SXC>+kh>+BSG)1lQDx$SBpRnj1drWQBpo_5$B|+=^Dj3ULgD^JEI&6VGxRL zskESF{~H@mXFguR=Sbo=X)qd~mviyPkp-Gg3XclcTz6%Tvg8AwQ`ea2Mc{`c2LJ#? z`&fV+>-pllL^ikGr3x+LDU(N$r>D1AC=;v&^*G?9$@VT~Up{ta&SI_a1h1)>=yjQx zgQY&qM=2$HtvVp8AgHi%JxK?taLD=CeR6!y#Pm8v$rIZBN@#)=uMNj#sTA1XUToq^y5qKO8&|kI%+x6@F3z9p+W=?=LfWIbt++RhhzN$B{xGm7I8# z5MJLql>H72C2jGRkna{`I+M){y!u%0o9DaWUvm;3F*0Kz{ z+1V-q-)-aMC@qarH#F{;@-NUU`Pha!(%}m>XdP~Oo>)S%+s4VEEpV0%kaI|y>Uago zZsL37(d}T$MbhJ;KO_H8cCJYbgCG#TQiM?9{ue82f4QU?xq#!)8hNbW9&B2!9l;Bq zag_kZD|q2Xo@275t9e2I2#03#K@b})Y`SgcRlvb46nkC-UhUkY#Z9+ei*o}jJ)oJ% z54Ju;S~>xtxnmZL7$=Lv%&Kl%S`neSBfuwF>jDs4@jKCiryDVHvY5OxU2x2L=d5dY zvM562=yaH$!ZYIXv!!1`;-vSUibBuel69A%W^@4OCafjTvjXDhovEviy75k1#5O6; z!l2AC^BODiyXfG@jR-jb;VmQ)c;gWtzICI6@iyh|YTjCsKPTP>RP)nlfxL}8tb8u} z@ijvp`pmeW~sP1B9csU!vk{9qj06D|*7UXA~{|w(Zm$5Gbx2bWQ+hAHIW~ zykUpt;8l8lTcN#}upSr(OaG4vL33pMl+KcAd|aiM5$BBTFJ)(#D=`QH;VZQ&0{6ez zoAD)^0J}~3-Gnq$E9&qKW5>D4ULBfk6E>Q`DO;+sI|W2k=^Ud# z$|?7)6F=~h?ao4+L^{GjvJQOfo^Jv_jF5P~vv_7ir|p}JkvEZlW;!Z#kZ9xSB1QN(PFxs|>%+;vS(nnE5&=sG*Uw)}o}v5|*7r zb0m9nTQWYuZ@uw{6Uxj{n?I@Zvf>$=#0spQWA##WID?4de2g!g& za`Rn54_`z79wK|CBYCc3a|qRmpO^ll?2M8u1Ysa}B|#(P{ukRc?`uR^a)A^T1%?oM zR*}EcVfv)HVAw&af3TaMKXwLEY`09t(AreEaFcI+_5$$~rP$QbDrR|z`3AG&Cy94r zf2X9&g<*s{LTyv;pPd*y!zs4g)#s+1R(Tr{nYreKq>2Jf4wCriRPJn0I<__F?|d{V z?!=nnHtr)ac%4IMlt`1>PR#B?zdDXZbtmp($g(veuFn>06HC;~kv&5ZHto?dK3!;p z`2BwNApZtld_uj4jEJ$C()nF5Y~PCgose5W_>C9U__ae^ofDFgA<~{h(-Oz8h&+%^ zTcH;z5qM6aufEgWaryC5{i`X7qx2kVMRCjnf`_J@Bu)lUZ2frb=#cQ7bGx4tN7GY$ zV(UeRJ+?-}*}2bmdY%FlTUV47#!cLd9e($xf39Z`#nu(v!DPG}%~tIyJAoHNRyQl0 zbNjH2=54?vf-@*#Q!}edBP-5Dw7_3;eIW%CHf87#55OMoVP}2WWVVFaA7y8h12G5! z(JNULl>1+789p`v(nc;o8rmw#W9A=wN0+wg;;lzlkyp}=N-+mU=UHf4VF@`HTDpk) zkqnIdTsJ0PM|;z2J@@6*tqC zt}koy0f1?mZQ)j&Qd#(0vc8hA9NS_i^fSTUtxH|_J8Li-}{M?z9_!%?53 zwnJj%pp>Q^U0=yW&asaJHW9uy)!Vn0uCGKQ2edo7jRR^(aufLdHJ6nRNTM{jQtH-cEkWkd?FeV^ zl!|5flthjeLs&B~CuSqTY|CKfj#-zDcO+R^l2C$Z;dn&pAiik&N0R)l5#ikf>Z9*@ za@Fl0Nsb&jn4vh9j-aGcDPZ6og0LQ}99aAY>}YY>V6Qir7D8ALSdQWhBhn3#qR^?V{x$Ig+VEFo3a>fEiH{aNeQ_E2mNbZW8ey zo~`GSBJ=F1k-b&1!a)feASBpDyFXgwPezZyQ<&ulUj%h(bmG38kP~OjiaYrLKK8Nt z_S@q8YA#wOhI~&XKRF&juDbm_hB+x`!FFdtG-1~)MMb?s`_-M3^HO#OI2MB-5WP~Z zfO`LnEzeDU7Wvzh3m9Wt!8-HikK9bv-wUkdHu{&hy43syMh@2IwM#EVhg^Fryk859 z9C+KrI&w8-<9;#j!%7DZ0GA|O9?f+($%>W=O4uSHXYu^F5%taK(p3_>W-t&&P4`SMFjjgCYZIcC!aw7+p8J3sac^4BC(M!ZVDS%yC6 ztdP@ElM{3}2&p(SX@_K(%wem<61J$r@%MuerGW?Z(v;G)Dkx!-P#hZs!?r^o)b1DK zJ}gJftkT(Zwe2pLxpgW*giRuo+&3tGoCI7u3BLVTga>GzUxh!Nc8*s@)?$}zZMxe{AyW%OkuG}nscQK(HOA0okD13#>@oSQXfX-F44-0?h;e%w|+l$~1=Lm>!5x8#e6``=iJe?Z%j4LEnW=md<1 zr?2*%oOQv__V+FXMe`OfDFyGo;V>c&P9S7uj$Z(}HgM zU2XlH-2@fPFTDMRMq`!D+1S__!hK4ZUw8)&2VH6-LfEn#$l)&O5bwabb~U=4SbJzz z*cHStyak7lK}s^ZWq3)y9+v(S68JU|?>bm_ock8#ysZ5@Bs*eOXa|<-AhPm5?#c>3 z7zq8UejJwaBv2Q&-*?4J zauQspK3Z5KgzskAhdrrNcGLJLVXyi|uNr|LixcJKma*dgC75g)6hrW1aiW}D@MDE> z4&(mUANI^~zip97gviHYP8`SL z4ChS4xizhoFb%~{UYwKbU{@9HF1E)0Dn37yol$bcFbG4hWQeK4{V!JJ>5oFTvs}Q# zIK&XFJpHXb=$)YI96O`|rr)A}X%BlcF2Z_TJaQIQ%T{Krw=J1;W>AHWAHmXQ#icW9 zJFF*AWvDHwQ_rt8)+N3$<*B6to=DbZvE|!MqJwu58u0%e!?imO0DKj zKapU8aNvuDKL>3~Tadt2^_-4sA*abe5?aa%869;2jKWqM@*rQICb26# z+EctIK`T&>cFooE61?wCzBS?q!_hGl{kYD_ zhWu#ri#kQBL87Zje6j97`vJ|ot^rBwT4^~gcu{&W6wQMQq znNeg(J6Js*r(46j)^^DmdKmis5WP{(UN{-Jr-4<|-K&5EN5_FY^!(2$K}TzzGoxwaZuLZ!V6+)&VTZXD6#e^T4kjJ zM%CP>DF>lHKHHB{S$Tb^)N9;&82kMg?lW#>f@mK1cCR> zc!bz2Uco9|Oilnwh26d>x~ zR!5Rt0r4S-{ZNSQ*#6-X-{R1(vDy#~djUt^GrshSN95?4jx1Jw@n@$GGeU$GPsk~@ zEJ82o!SeBj;U5p}@yAGLsHfqS-|?y<)MoJmIxu)a_Z_x8IH!LhYO@S@oK)ddB1XnM z=#J&JLtODFj9WA8QSk2;x zbF?h&*;0qIbH>dP7|Hrp;0KCk1>`b_Gcg zgCOinAZvC1|FKP+y@1fs4`kX@CDj-_^awlq6T?LMx(%94_bUnL%{jdHNS~$9Th!+n zc1_7QRxxRvCac~PYs5_$^cW%3QE9g2As(cO9RSyacwY`sb+wOF_CG#()J_z6jK^JL!y zEK?&zztMl8l@%{qvaNxxsHV+9orAyd67G0VX)AkzFd}vn^96cMj5~vbrsOFk%^ddK z%CO2!p7j_$qC>Er$ltMUXV5h%uA!B3BeyX(L3uKEgj^Eh`dKLx2Qb;q3@hN=kZ-i5 z>t@APe%yc=42x{p0KC$c!Ir~xRenSKkv(U~H61=>Rn{K~)0Ad^TJjZd)MX6I!E4yc z=$uI-(;WMSlE=qDeI}+Qtzjs}n`ylOuUYYx66lRRX&E)rEP3)9l{v!>556O6L$}V< z!87a^R)S&fN7=RHP!NK!D=FXz_rKVq?m&H!^(4fgBjsa@P&OAk5g*Dt7wcEISWBD_ z!}E6q6X+sn_%`bm6l*bHf_oMsg#={=Ijp>dGc6I6kJTR=Aju*<9hVB!G)|`lT>rG* zC`f;?eBaMFtK&J2pw7c0ygQ@<1>>BKN1FzwVnvNqP7$qy1*5_h@Q!_kR+jRoc?SGq z{JxW+7lNN15^J7Z(xI^H#w%zr4D2{QA-^64(RkY7aF^hqr819$Dh&J0)nAZoyF&1- zabU-<*TrrNqR}BVUQAz?tt}CgL!E2l1uAvf84lcfuPmHW>B}MgdJ+i{=0ou5y|nb0 zT0%zg^H6VdV5IPE>DObZEyYc>50nxLqSTXLsN$DIPi_#-b7bZCe9nVgsN|LyH<56o zgaX5zpG@C<5`RsI_1HvP)l;gzUn&)Xa!tcK%!XmhhKF_ZX#3B?6Gu6;7D0c`4NP|X zW)?t@Msgj&*gY;Wl#hGc15b%bTqD1Z$kKd8Yh*&Nz(4*dJEJ6sK@f&ssji}U|BG$n zUn+Lw0*phYL`z>Tf*-S@gdGZ6C<(k`p)l(RR&JTB=t*K+S*K|M49C{RZ(*l(vpAmGWaWk%hqG6RTro$TSPHQKN* z+MNZvJ4J|ho$bNFyD-(HeAfN=kV3?}j`q-JhZo-qLDYgBm|?`b4)@>%J}4o6l*=u+ zHb{Zo{pEu77!hFw`e&Imm%Tq^VDA3%!9up(CfPF`DYu)@=cg&mod?nZqHuXF;s90K zh=czrJA*8SK@bXFDOEwd|HaC5huAz>bW3@}C=&i~9hTVqx)!pKX}%dO#6xMnsvzC1 z$3yeiUg7cfpI^RDtEHFX5>HJA6Pq&AQJ89RSTCj2u+IoqLCtI)8+w!uo>wx%ZV{{^ ze&19efGbm~&!%784z*ciy8>d6S<~y_b|rNi5uc3Te0qi3ePj3kgB+nUyVP?k;9c6} znOBzoMk8`}nwg?2Q2OW(6}Jl3-2!;0!M9jU5*3ODH-=xF-n1c~PK+^(3_EWom5ePm z`2c)|s}Ej4^trSB@*HF99TI)!WKhY|LpoSuyW804trIC_Ta>NR?X^O7x3QIFTbp!d zGEjKfjpdhsY;1x4Kyv`IqR56#rwKO6-@tKj!FreZW2yQMk-ST_B7G| zA-y~mY`RH2Dm`(Sbo7CwOx)wM>FD*BvU9tF7zCkUOX35y|HhWd*NP@b8el!FM!4Xx z*j7i8w;Pz=DwTGq3`F4RV{P`agpeGHz$djEyC3^+tZRmT*AQ%KmAf^6_+xEPr>_?k zP&6Ip+ER-RI7HL>1RD+ylMyX3P6rVpL}nklT$HfW0XnGEwk2p0c=}j6eZ+o-3MQwe z_bbC6D_-iCIxF*XEgc3rb7lGUPt^aTXqOjfQBc79&h3{JVW$uMKZ~trUQpItC~hAv zn-D#HsIImV1}w7DV&{C9)=DVaaSWb{Y^(^HXeWp0FM?(t4#HzOFt|Q)`DZ|4xiS9X zmg(9!h;;0mn$SG-%J!>U9E3+Iqq~^aM^3z%jzm)q!9zA#%&ty-D4_Gk_`6RWgU6Q4 zQ_8FegQ9X}{M{+V0e&pjW+(FK>J&Xh5bdKoXdNR!2s0tX$RUIcLE49F`B945lb4Uo zgp$KH52;|T=cm|h(P90}{>-7-tw&-u*YabhCtF;fnQ|j1X+4B$AOA$2A7y8B1ThFg z!Iq*CgZ(#lZ|@H^8EJrVh$4{ZLIXvSR%u&RY2tol`Q0fawjlcTR|@kB(yw(ZW z$AL2W+&6(d!#wvW{89R2Ale~h5zN=CGle~Ow<&0uobGUd89&(1*8bs|*pOxFbZ=B@ zs!iH@elqxT_i1(=m^p32Qdijb-tvc6VnY__Pc<#N-Nkm_Gu5e@q(22R<4q&47I*~f z(le>ym^B74A9#*?w_?wk@pr$BsVU2267C{~oRrdzjKBINKzc5N7QpdQ7TW7rQ}GOA z-6u+q&W}AnbpcoOGut0t2`3be=Z&n8@hOk5dX$z*5~Bb};Z^~d;hUWy|BYSN`z4x;G{9s~6wGpv z`HF=@$(iE0Bj|vL6y%e1Aq{f0y@*Qz-4TUAY;>6K_kKE-!w-TC(H%htq+*_8i67>E z9OKgXhhr@0x|mWt#N$G&T-kniOI;G7KM5%AvB|~|K#1QrU(&ktPKhSNzFH)d)ND$Df7jf3-ifY59_17g8jkUQD z>eGn;tcTkuLz0Jt5cS&AczO-~wL0WPdkR&Lb?g=csc?Ru z7r)w1fn*uK^eCC|Tvsdgi}Kvr{&34!#U7J%Y|`1Ke#jTArM$B0^}I6TG;5At8M=pm zBB4Wx1a(SY3up0CgMb^`?><=-K}wPu$ur$uKdwIe-6LfKHTypCV(3TN8RSq5f6#j>ILJ6ucmqxmJR-F}EF&m2(dU&}1;;<_#`t0AWr-}EW0d7w z*R{*;vTfV8tuEWPZQHi3uBtBEw$WwV`p*4)@6WT7k(`laWbe#1*EQQqgrOJUeZ_NB znTXp2?vo;lZss&Uv3;s>w07oFHf&qwyGa-K^pf5>#m@>R6wD}Q&q!pV+#rbgiocx!O$2M&>FGX?4 zNOFb<3_jQJc_Pox#@k?vRW+ir1+>LtV$sLD@ZZ2$FHv(|OIs0oM(!gBd75rY^V=ZH zmUdPXM{@{qjf&|5@GUxyyn4`>pp?pLql zQ$9aV&=bTHzPheJEeF|WegR*la@e-^D;jYw22kFwBOLk5bbc5T!S!;F)|H4H#Dy2E zEv)`&#umD}uvur*5?MztIYPEzE{tnzLfTP#Jptp5i~F8 zm~@#rKJ9b*VSMmXJeViruV?q+7As}E)c#k$!2tkY=28A^2u9omdi~HW#n-d7FVBDz zqjE9E5wP%TCx+qhh`vq|Mm?N0h=}P^zWsdg@Uix0`ecAYwT*}c=hvfPq%Z^d9EA6Q z7t0q7rI-HAmuNx;-NO+IL1|@5C(wzlx>S`_j>Hik;)ECX4OxonDfMlA1pp>TkoG58 z|Bc08A$3%}%A;krJBli?9;V;NV@~!L?UChLyfwMvF25=ba2?!v)afWWw*J!GaMJB^ z9BnGvP5%eSt0KA`Nr_LlQ83=)O|O&afJIEK{kL}V0g?DOoiq$RiztUCxj3e~Me&Y; zXT>4B2mDh9UI{bz=4ozmGbK8`RIv%}ql3OV7Mf0hlNc6t2PKo}?1b5#gh0IsI!-!i z6td{hUh>GI{_Cr!;|Ns~nW1P*Q_*W4KAmSTjGoE_)GZj&Q|Lh)R{e3-iCw7)m`4+Q z6bTEd-J|y7?|P7nRAvw#GkE-C9P3KYuyVuR8d|U7z1725pgpry3WRU-@$uow)m|p! zLqjzAyXQ-QOmqd{P=yrH8IlV92M*5s(kNO_guo0J73_}B#Y?U*!X7ooO~VQ-`>Fef zus1$W!_B*uiz#{sr=8N1BoyF{ZmCYoFw=PpupUQ6^inh^b|P^weX!c3q6;IEq4~c+ zA`)d8%QiS3hY2)tqNuriZs#Z4+yo?WUsih#)KmWJ6wu@R`zOpg!1hiffl#LD^?L{= z_cW(vkc6*E83D7@y)gtWD)TS^V%(XN@#Iat@^KdoEeOVMGoMQKUu%V5>GMUecM=(i zV6+ieeM<-02N@apeJ6uL)R-eIj4>};TVv2^Ph<-&c2bu(!2G>+E`QpVk|BAXkQhbj z6ZVplWiRHZAUPX{pu>OeyX{7o0t!>~K`uoWp#(+;4i`Q02kmvXXmO2O(f3DrSRC%* z!TfQeYVmD>1eYF7sk*3*;DJm|40D%MC|K}_LpI@`O5EG8uA(UWBnKgLR5g`oUufO> zX)LOUf7zt|48yAdBGYKog$#rxXmUQuhqtaycx8KtDZzI;O}i=!{D3G6CPjhy7*!s%Q_)$p@EfRYC zmYk3q7vpnhoz$3)=vel?Gjp<9n^w>KK|;ICcLQ&LNPdt1oW9oN7LGbuR|+YxfQH5D&I?J z^%aW8Y>L}+^Vc@L47>vYE&JCy2}_USJ~w4*Rb5e>gt>>_5Tc)!nBGe5%tyb$fT_H_ z19cz<96XA(D(|U-0v`X%v(N-g(=IXv$N)$rJFYoD{X7pEyI^TdJVchAPv1Y+?3ll~ zQP#~N4a|^~$l>z8)ErTla%GE^12xuRWB6xMIboiEF*FA+^{Sa{ z=^`VX#?x$EM+R=4b<%KBHU^x!{_6fG-Ie|k*bV(PYp&h;x4g=P6}N0-|5jB|+6YJp zIX;|d#=GP8$*ME{50*fSns4`}F(p28WT#-B4G?DhR_~;A<4-9gAu)gjT_n zdm!s|Ka8%B;Da|c*BR_?;S8)R`qNcN_Q4)*NJKwNNKD`|0p_`pRqsj!g92p!*$

Xy*8%ROFkyBIs+gq3{8_U7E>_6=;JrdEZgt!Wr}Td6nz0@P$QVczm2dn4X9k|te2`eh${(FUUy^fO>O6Jj-T?QOXt zc{pkyX6DiDN>#mcL0ZJ(GM7BN#D5s-!x$x`w$8-CgNWTewVIK=e=ks~Qd@3;JSe0k zVN3!XSD07Y4K=cu@?7)Vb7N@a{qC51Z57HE#JhK{tm@JN)uzmTGAO;(;?DkV1@D3a zQbze{DW8S?$}{vRq-n&|k)kQ??EY68o+Bop32AcS^7Br*aBO$pnF`Okv*V{DGYu-y zvmpzSN_kwck*lKr>+eeGpa8mw%-FJobLQM9;UBq47sYEGH*ppl4w3B%+3tBDqQjE8 z)~0&jG4SeAy@KkNZeK;{#CZC?Msf=lajld7z(H-95oI$C+HU!%zk8sj%O&qBmkZd3 zgftNa0Ri@#xh52?qZxK@g`>0ft}sCnhTWXIQG63|j2@QEYn&g}ZB+vn8WsWwN+J>j4R(~6bX2Y}k&w*2;}yoL zWpV+=<&rz?pL}$S6hcsYu@G=hfplroaTQSw=?`5_INloTpv!MP>_*mh9EF(QJT3_J z!(-sfBJOK`DBo~^Ol%!($9rKunse1f0x0CoB|de&tXt7?Z#?Tc+%jaH3Z}J0EJqt5 zRFRO*20fG>wJ4UR4LN{(vy>Vb>=R2Z3*JT4U|wmurhOqzOlNQZ zi&>BT*}Ib21ttW3c`w&~WnfaUa~eWikVVAyP(IZM3^v?3(#(~gkm|Jc-J0mo zk78=qR1WXCHYza4xPaoARGWlXvQmxfH59Xqj{rC5eNC_R`Oqw;SS7# zd`%WR>@7YSSl$;7fz8z^bji?PJ0zE{9SFDVfLu?I97HhTt>JX5rI5#qk+RYj9 zY|4r()736eW`?-ZjUf)SR5h37}&HE4^k+Yu{xu*4mAxh1y1(sDKHKTomV#l z>bWW+HfN9oQzE#&w<=~bB(}14U#Fb-@uMEZz$NQo*LNr`>?ikgdWCTI|6Ne8ioBbr z+vg}BFJ+wmvwjC&xmD5cA)Th_1CrS^ZvWszD2~{r1_)?6%4EYjIf)wxCKz07XrEFO zzPKc|agBb!pq|JmJGkEB_UU|6QGrGDaZ2!oIj-pKu^WfV!9DX#J%d9Xem;96I*7#v z2ocvwDM>kCwB0`VSz;(<+P&%D%M0-&UJYJF=RNnYrlbg zXFSyr`}e(e5kDoF%qPBXCyv&W46u`)9PpL&bpIIvV`1l|U^Bk5OlkYB`yuOh;CSO@|17Z~w^)g1wiD>?q);*nG zBu_>904?q^D7{XG+|lb0DK@$}F>9%8F;`XnH^3oQr-#sS0{b79S{eZSJA%i*ZjAAg?;2Q4}j z)%=!<)jukZ$3fNIj%5_O@D9r+AH&u3!FNW`iO1LWd~)R0Yx;;bI5__Hzb?1CPqG{T zd(wf-KE`yicMgK3?O1h6kfOn!f&(s|ISJ z4{;^}5HrK+A5n^iBQv+)d4%sKv%YO?BMcg}{cPunIeh={C*UU($Mu_Zu zRjM~u$Wf55yAJyaB5!z}60T+k7-`2&mG698AXxa=Tb;t$$_&lvc8;th}8|#p29{YPY+*^d}NRdwY7>mDV(~qe9g*Y^kVi#T#{_% z@I~u@XlCrv{lm&(eJks{-G-x+wO2|$OMk;0eCoc;KUZcb$s0NZR1{pEw1|`f@}C-s zm1h!27rpDad*N)WtnSUupe4Mjl7vw77O@Z$xmO8E)LgMx5lcvS zsu36V(T zE|yX$|D6ZYK_W6=ID8&j^9)~RiaMju58!HNzX@JP`cIJ9vYKCLz2E@JWOuFvrnpQ6 z@K0Zv{OwCvi=gX4x({+37(qvP zSRxcP{QBh4JzL)%m~Nuw2Bbgh&ut4*0vEZb*kU-55GnY;^J*}zRC0egLU!Qq5W+W~ZqVVO=whh}=> z;f+J%EF!8?VEA)JE60abg8KU=d1fuX{BRj+?TJXL-$3LMco^2XJ(Q>tke=jG(g9yL zR2)*l^9)YFgt$D>uMm?0Bz9FGkj8@adHc_%TFEMF8DP_Y_lI$&XE`vQx|N2P}s76#sH=>?xe7~ydQIKEk)e!Fkn-FUFFp+DqG2x7oDLo8d zNY8Cz!pLv7@iR)lEm-AK+;`toQ*b)dFJdvj(yd}vF|5BbcTPm3dcL+|Ifb)}?*L9o z#LHRDqxY>_*h)_bpCWwy#h+aLKe=xO;NnAjDW>saLHeJKnT`GMm;CP`d!brcT(Ut2 z)b6S%zx>#fN|Ie^LgGeYnT`Mp4Kzg#6V}}R`#ljBa{XiH37D3QHZMv}7ECCJkp+r* z-AYG$G!2_r(i!w=;VISf28B)sy2UOyr+&*q*Zmu~2m4b!VMco+g#Y3iBR!EjIXZb~ zE8Bi}C<$u5w?BYx&#pIF-EjvgDxcGIydTA^xoW#~gS6HvA1>qhpJGtck)pm2e(Xc= zZtNcZ<0d=HAyADZww6 z+xraEe|7VdI-H0!v&j#rSFQQhN&F14Smy+N__iq_LbnJ@aUs}og+@+)}vXT_11(&rRY*(Gok^!IW|1ZM#y}JbHLk3x=3Q|Dv?mJzRtY1^A-|H4c z*uJE&?Ca#tLPwiZe}8JJG|z-cLF8Myolwap>Z`G=vVElbRlySfk1)n~g^@frO{2-f zB`9?9Ojb5exF$F~%5>hM<)tD=7N4Wt?S=03%U{QnTmyO7$e2cA2|k&U-C-Nv!(!Hu z5Julfyv^ky>g@W8?ktx~L%Yb7pjL*Irb-@%+>%ssR9REXkcc?A^s>xUVhexHbinh))cN+T~0&0{3>nLPV|>DBR=g?f8F(0cdFuT(QW zV#+W4R5$>gqOtmmasFs(OtK_`i=}J2*5>dpmzJEVUm2dtpin&{1n72brY5JP9<=gm z7Q6iE4G9@HIfy>pr8!>o|Lm=jR&jVos2R$2@tO%s^KM&EOcr+#bB4giPTkKme6oKw)O+Y9s9SWd|01=v z4zA(_CeI7}o@NX;WR!{yGsxz`H$(r{|q9M7Ya}5 z4(Zw5J7U(TWhQ0QIOaK&A&SA*K(~4k8)KFs2%5(`WF5&7nE17xHm;&9nOe4CPyJ7H7 zc)qduS~&azH$qWnY=I9+Ozunlz^|!-M z@yN5n1bXgL#XuG>OWv$qTZ7L>&H?Nzgc;U{c9o;(jcZE4b=z)GxJLH}v*svXAG~s#zYs=f2xfspmS1{M)%K z#JT%;yY=#WS#-40RbUa)jhkr0g5!1b^2df$luQB+{%$Ih@JLicT@K}MvqL0{NuY^Q zXvCe8I~|hA4mD+RlUAi&m^-woPtk^=q?*A;n8_k; zsgts7-;Y^}w3$1v;}ScO+ym$IZc;i{LAMvYf2=Vp=hOGMj$Zo7#k3;xG)mHV1~0e_ zU0!FQW776{hw?|JRD$KtpTg(&&t`hw-6cfU2hN;T&PPs;WR!Ua#Hyd@7gKaG(`$e& z=Pvo_y_sKt)S=8qPMCBhObHlq*Ic8;?e17?9hjVk!_-_gqE36_k2p~p%dvuZoNpmA zGW6_N4+Lnq#_+2a4;3rG${%T#jUoL%=ILlN=jgUCPWT_f*xsHQx4VMU37FK|gf6Ax zv}|Yic9~rIdqygs&CikjZJV27mqg}PN;vA@8ldLWgUdATSy5NdY`yX>H+W0d@pBCP z8Gn#CijIs8j8k4gX))X z;^fx!*LMtlqq*Nou-OECG1n|T6xt4KM{9Cs^Ko;$6;{?D`^7T z1yQ=Qd4hFje*!iH#)hr@4q;9^XfuzbuxE0YSN5i=kyw#PQoX_+yKvs+l0WqTI&brL z_m@LYY(~YE(+}xL;Ie%`sY8_Y9P$IF=n-AJHa$PM&}##KhDHAM-P)!s3;buwQFYwq zn=RjbJ;z|*jNYW5Hxj)3KeD=2Aw_U&b>LA@$V;UE92{P+RXr&^J=R7R+C;mdX#Be$ zWz&HkBU}ym&06w6>p%mDvv^^9dS_p2_J%L>cx{xX^18VYoA-JbESo=%_re(doWUlv zSB_!OzK3%hKR>`6PZ1onM5~cfwFcTX#(4iy)hcbRr`UCH={)4^>&Wgr&mPG8W3*Gn ziz~uD04yGZ&s_C-~QOCa%el0ItbFi5`5u8I^aHW^$3|*1% z^2lh0s4hk$YR6bUDl2nUX>{~N-35rMdgXp=|Mpoek5m%RYg8wU3mSyx6C(}i?pGjDnY}h=c zo=HqqeN`b%>i|zu?L_3?)+$P$7~**h++$YVr5aDXr4P&)@|uIT{FyDTFdq=a^+EBcksjD;*58UA_~61jlX(5SA5m{7+sWm zE9Xt4$6fBXol~{%!N3?hXa~ zG#g2bqq+FK;L>`m=;tEyHI zN^D7OYR}lQV<%=1;koYb^9T6F>&kU~&hv8|?{~MmQH3i^lTw;0E?s5p*6s^aDmm6D zVJMOw>}{z8+-kYvM+w%OI8fwy!*2^Y z%~L)eYT^yz+5IPvC}N|VP>gX*DbSSMb9bX~A+Y58(GsqDdznvSiJmo1!F4G}YnEqF zvkgvcGGAYEW8tLgjI35ZQO~M)f5zB&^`*g+1wIS5K;1uh9!lznMr%S)%(4F8O5{ko zzizMcwRgK0d@s*evF-QI!x|*{Q=z#?(Iqq6(x0&H=-U2Uo%XQ3Zoh#boZ8$A*q$0&E|^* zA^jcqx^qwRFnmx&J|f^aoliE!vt-3>R?BWPExwb2<;E$Wywe-sT@m-Eu4-e(uZSo3rSs4(-K&WnFr!fj8>WglEvG&N^ z>p+@RhoO=Rok<9I`UhEl5=SZv$jal0q-59n0GkMhY3)CP08bmM05Jci#l=#rG3x@c z=y#=$7u8*WGGnn&i8p`U2p&*MobhW(Z!YEtTj~QlR|U0CWOp+%lg^*e>-9eKxeRS< zONhxYrlyP#>eY3k()Si^*I>J{L}JAj>&#!*!Cw0Rj#1xCej7;uVRx9~&htkp^AJnz z(qyE4c9{wS1vKf*v&-yY9ZLpP+)_-_q7`G$8@JZqAFtIo{Jtw_LB$j>+<-hTM$h|G zK30uVV7xhW4BCm!k4l{abIgNysp)~LD}cQ$D7Ehb_yUYnZSFl}a)Js*ZZ4x+EZZ>qVA!V$ut zLwJsRo~}&f5^Z9?z2;q}@VYi`)SJ!(f5$y5YCC)HqmfH*(oB|KvJ?anE256Z;PZYF z82pO8wQ!0f$9TYE4TR*BUU^DB^ZD*EyA_NOw`%|6Qr+90L9D)WuE*)0nW~?W9io z*iOdn#RU!I+@S>>aIMn>KKInilI~;r(d?8x@Hnb-?3m8@s-U-VxT6sg!wn)A&$8Yf zeXa+f(sWJMC^}O-9&9}|s_s84IRjrgO?D@uR|BP2^E*Sv)NgM6VuQ`$IeHSCtr(XE zhDzHv@G%EA2cTQ==Aj&tH1yQ#w@)qS+osf|0< zBXczXT8n&jfmi`W9H^8on~a}TE1jl#8Z&V0Q->#}t{p__OvR_{ zL)K;50qA2TG+%LX@x?fL`qH^3TJ{xIaSbe9ax}QYvoV_M;>VSw6GlYI?#d}IYAN8>8sE;BkP+V^YV024=()ZM>rd5H=b#TFUmE_4KkyUFql!%} z1S@<$($)&9FYSkkEAx~za~9l>+-p#SbLcKxR(NJPQZ`!_j>s-%YcRq=;A?0ku5y12 zwbF@`BttokCy4^2ja>!%){W9XrWk8=BHHu&NxoGhfpbe(AbGo)Bz2_2i-Hy@)1PsY&N?lQHU?9V}1<}tYEx1D=J(~ z21x-UwO3Iqm?ZyyLi?2M{O+F$q^$%pN~PXxHs z{P#Kv7}c)?IJ45?(?aPqqw21+dG`dBiCuE^K*x1rUDR&k|X@e`S?7=A(WUQ|CaIB>a`_!_y%jta`t z7~L%wJ>PfiD6v!<&SaUKura%7wdVoEIBkcgJD#gp*LW^1x$o%MoxVEr{K3+*ytGDSoBRJxQXy{VRDe-ppVGX`vg> z1ABq>3CoYtV_o+*&D&c{guO*>GBQp3m=%=HKOrIqf0%)~9x}XK3t^a1wTh|$Z8Pps6+r0&tG~8_N=EqMtVL}1(#_B_cnOC z2>YDDlK5y@4aQ<0JkMpq{u&IdsGd^Y zhfuSEpbR0c;_&E+MNPC#qBcShTLBRmn+~UmxSh``%N?A{h|B15eB2wSc4cGo6RUD# zhX$r2>rc)HPZdAYkyW=K%sq9-)Y~$;SyRsphoQF?|89Ga1?LF+8&CggMX)ry*!Q<2 zDr@z8t;TUK%z=6D8!$iIo4nLQNQBTZHB8d2TL7*J=3D_ zZu$k2!fpDuvcmU&a`G3e`xQU9weH)U2O{5yz>v_JQcA^yv9s+8zDOMU6-8Omxm+IK zRg@;%Yt(~Is=UZ2y6w2Nv}hD$-+H#QSWGu{PoUly%cV!4bZ`pOA)Gy=AEEp8c4e7k z%s$|o`i_v?bLFjP{rAZ+|Df4@=}UmkGeclvoS^K>)_QNX|z^2E9bi*5b(_;X=n zg4&)`faA{F^r23sX~u>LOIDGFO*@1xU^L4dmCJFRDl}SPW^01kK&g*IHM2mmTery% zc>N+`TMdUFWr3<%MU&N<)t#93+>bpnn}zbCaJ zV-^@aBIW*A*qB&D*wepXC#IG2W~x(HO5T-KEPa6P(lO%>Iygk2diV1{(VxpvV)|h3 z{MFK1RHb`w2Paw51w5zmZ4h^ZhnfYS%!IqtSMOHiK}%7vZ{X6@Q`%drNG;YhugdOSo9Gwf`Hgt} z4C!u6S$X=H+O^wo<#{}04UoH*K$ryqIA1&P?annxScD?ZBE3I23VfEiXj$9!{3Uk>^WYGFuoBdVTv7TVmow%+yk<=@!K7cb7vDx(IOuXb$nknq z58CWlUyi<$Whb5-D5#SCwp%Q9TY(6lI?VD~W&S8Wb>DH})EcKq{>wvVqTBi_??#y# zZ2!`QM!d3?v_JK3hM~`tog+w*CZC7!pYYdFm`G{L?%r+VkNA7iZUdqIMnEKL{};3h zd#|5y$~#b}Zw>oBG|Fcn0+5^!{gj5`AKB zV!VbG=^U;7X%nL{YB*dac2&w$f&(FTU-&ZQbebmH+p?|3HV)i2+RuOK1hCDRL_ehi ztiC4G^MeSstOEY>+aB>EqHyQ(Y+E}=)!HbDWF^^=s` zBWIh~J@lr%poa|Aa^sqJRQMZ+=~d|-W!+x9j|RT$3|Jp+;IsD0OnV zRPtou@Mf_m%2hcfj-ns`js4_nMo@XKvYzg3wGe->Sr$AppRM5k@5_`I4Tt7_?O)u^b6VR2^W7p*cIUT;XNR>5V>a4THpTtRQ;f| zMGv*t2qXG+z;E(P9Mx{CvURYHya);Qrh)KM#$A+W*-0l}FO}r&V9bd2`Z3Z?LW=p= zCE=}cba2J96bw4vWC^Ngv3^#z_BLqS1-L>K0R9MXVUIPZxbTv$5@9BwHCH%@=oe%9 zpnYOh-i(-P6DUbrE;@9gfp0?oYg+@>XdU!hE@mJN=DgM>$77MQhlak&wbSvj7RS*= zW7=kbI&1F&qKIW`hkX6=GvmDQX@`fFBnnJmA{K3Lu+yNOCt?)sHY@_NwNv zo+{ZRn>Mm7RRk+hLD|9e>9M#E`3L$r89jJa;jz!@0ob#e0E49QluW0r?7sTJ@;Ei7 zq*PKFKP}I;4ietQu%(DpAeq{ z@!L8fDH&>?TDnYki?*YwVvZ&rKp?x>XZ1pa$kA9(*^kGMIh6nTMO%72)@!Bvy@OLP zQe(9vf+7W(m7RQtWyhkLqTEk+ZQJOxw1WV|BZtln*ALy^X)*`v6nw0313~#S}pF1Z^T?s1~JzeEZc0Apr*7o1f7} zlW|Fp(dV!_j5HIoz^#4K{+gIX`^>A>rX!8OyaUwi@)gtS%-$7(!1X?S z+?TU2O|1ScXLPTeO|9GtQ41BPZp$AN~_Pw5~Z23qYMqtg7zlfHXaF> zcCj#DFL!h9vTRk>Ez@Kn-+!WS`OTn2`;01HWZL*m(8CgObp})}U*Zf`yQ^9?by53H zh>PPNH43imiPHmvjEbF;rS*H(To+3bTSuewMz`OLc3)=U3eZNgXG@j~6XjKZU&Qpo zwlDY)m}^FPv?K!^d0eA5mS%`rPo9(GP*m2m$yEiFLWNViA6VJ-JTOt<%^^t@0a8qB zEqu4Z**5_Ghua(OWiN|6Ac13veh5p#Ma(@~F_~^7M6^evmVpO#?9)XCAoECGph0E&Cl6y9V`!O#Oj^n(fL)aadIt1P~mZ6YUs(we9cOiXcJYUGZoRw z&8;{Z(}v0cM>Y6QQtCCd(YDbpw^Ru=DUqWNejO?jWfz;PnV2l(LXmc3}BS(j%F|l0ga33>^Yf$zRqsWqh>3 zTtfCQNgfMUSReeDrI{$St%KF}<=NHlapFf#FPaS$%mqPpY7{~YY(kLlIo=bqif%_T6a2J4e-uXnj`4z=hESlr8+ zrG*7WQ8Op$0RwHBQ&j%#HkI%+>4;3oSH^qPuV9<6yoUf=d zkP6fj1_`|I;1*U>Q0tb7cT@A(;f!^`L%_}Ya;_RZGUx308 ziatB<$IlQP(o~;*s3m5TABFV!E%?*0ltIejAu2>*{Tz&+U;=cHAeIbP07Rgz{7JK-1xh-b*e6(VBm67=bL&tXI7CB zQR^jx-=@4slqRU2Yflqxq>M6bx}Z!dZ?Z{vBiE~KgNuOhy6H@U1&*qOcPE%;S{nU8 zi^MyEY=$8_al5wlI=^N@Gb?sNSQZxF(+5bV)fZ=*hB@ox9l9o*h3B8}d1=Vb9Y991 zJe9IXN+4B=>TJJy-#0g32MCX0Vh|8|{!U@GeT{N_2UTso|y5b`re!^ALu zPW=>MH6VKL!;q zhk~EVvG?}(^Rw*5l@I9D6s7Q`XY59~w;c;*D&J=i&%rB18TD>^|4bYGcxH1S8X4P| z8}kFJMs=~vD0LAC1-dRB)u?c7a2S%io!tzh4mTjK3;nEDS z8q3Z3NaR1PFoXqO?F&1Rc1$OpLqT#e5$t+9?iw~I-ayU6=Kh9L)lFQiF!n`PdR){k zfh`=}fBdtHNXHwYO~9?tv*7YJ#m;GlqDxwi^JB<%l`W81Q#4w?G!wdB+W|{&13vjh zAJfTFt!{oVmF^Ov_<>k`yFK%E*#!#YNgV6(L~Sqn-rhG;i#<%>qWJ=?X>Ry?-W zbN&2E@sukAmR=i5wX7=N=!^`hW~f{BKo*xdQQ2U$o}NzsCB~c|BS=TuXSvMX>ukpp z%neOieM;@Nm$9Q*jnC?Qpc6qlO)iT-XYVb_PRY0K=G&kRA?Qq1Axlo>q`kO5WTm(R zTq#JnSde%a#E2aYcn1edZOrWd;e{Lu#kP#iX)RGAgLHS)3m>bj7D*k*WbA%7S+jPz zt`6+1d!KwEtz_rZAH^o@{!Js4cj4e6C;25}zzq=qo}p`$7P=S*5T@iXTQXxRjI=+@ z)>jhh%(p<^kQD3rsqI~jVKq2mS>RVAFD!LwQ@LsmMrCJ9s+qMaI(@8X>{=Vs>`7#U zMpD3Yy`0?uaX1S}ziDz8zQ{cXlT)CS-`j?m#0SMN0DNZ{)cJfr5?t8ZnJ#!lA5o_5&P~y zk6ez-j%SRsE+D4m`v~nKZNn|>ElXjV!kS|F?8+ZQ$8{y)zhDWd)WMyU+6ZtPpJA!F ziAD4M$#FJF;!WIvmY&^E0!MY}`juVua!Ru-;P6%zg7?(@jfO#>kQG0t(4j&!2ocTJnL>-eojt0!NjO<#`e(Wr`{MU$ZQW@7y?cHg&bA6q z7mngpZIf#tJoZkdiLbhb*d=;gvk%q#N$Qt5DU?j>$4mnQi4u+X?-me6dG ziyXm6s$jK?zwIxExe>C!V~_bgoXxE$>Gmkg4-+?&MT4uu8+Crf78D(7uDx7)q-z^9 zhR9=eZ$pHSB)2KZ#-u4~^^!Rgt1O{;1czwnO&GYd{YGl?oGy{pKEY>;znoD$<6t4~ z-;tYyi5S{ddppq7C&ZvQ?K+D3wlqmO{Jt-`c_r>PpnE?QxpKP$cnxBF?O8?4jK`=C zIU_F1rgh3OH6$NX?Itq*eO1w|mK`O2NV+Mky2i2o_nbWr%wW%-FTSf>=7Qh(v*U>9 zE?um8&4C%!C0LKs>4D$G7?JRYtj1;_`kXl_z-UpJbC?`VdgOoEg!ZLRd6wH4SN_9& zvsajAP?8?XQ;L+kiv)$A$>*G45F_NJyL#_9l>;PA4WqMp^%cGXC+}GRPQWP9rrMI8 zY%`v*CG*N6_c(KrZC|6ZH?B@N{eXhTqo3 z*T&!N=ZE4OkMO?)`WcHm2Vk)`Jzv(W<`xxntHr>3l37i9KdZeC_r26`u(Gmsc;|=O zz@ua=G{AZ6j$Z7xm2F;owW_ycA~9Wp7PpmcHNxtx+(Pa*j92o2MwbS=9rxf#(vP? z-x)Br?DbY{Uy<3K*p%Lj6C(^s*B%PW*86Nol$Hy4c8CSSyU+Z-!OmEkVWGkQ4DCf1 z_bp{S-J@|hCI(o`2LNLX^i5_z|F}D+LcNa~o)T8MBZYvbNK&_|o?xFlt2QmbvZ=y; zo5_FftQ3cL8%DCs*qlQb|IRl}7`9Xc8`|RLY($s-acqT#;A5(M7unVjW6AHAc!T1* zUg_-~p-z@f^#i*Fhyu$v3F{(K#~{+mf)Xc4h&O8_BDkq+ooL zR)nQ~{7ILs9u1>ZdCxah+R^?Koy;Ze0r6k-&jF6vGnIn@2f4;xdgMys4yOm`gtUJOMm@> zHkZa$3I`s=kZ&Db=LqNyfyB)Cz-(8Mona%_cnpPN^KBr`?;@n_y4NIGk4%14e_zv% z4Oe=3Tg~?Om!&*ntyq4xJr`Eju)7rhSvlL_6cJscaCrXu5%eNde1n8)%l!TOi;F9C>howr_ef1UD*KL9e((wad<9&+-VR(;Hx3Dt$l78G_E# z_>EqL*b-HDvK{3YCyZ9=%(>b#{RQ!A}%npAJwN;w{I@mTZTgJ?VKPelxgoEM^tTP?6>FebcS=-09=9S~AcNz9()cJ-p=uL8~9V58?OrFr&6jM#Bt58~R$d{ZPU)qbhsh zsh|I13uj2{*FCqO43VCK8`682IuL1MXpy@H?;)7JGSoI#6EmysQ(a1qOM@beDuUKh zpJBc16FO$-q&de=xb0gyvOAT(U=O}XR}DoTd>E3T;s*_3D`dm14&hXbfi>Wn^?$K8 zVA~dS12w%LIAR56;nE6sG1$T<(?Zu8lRHQ0#p0+7%7+vMlFaN(I8st>wz<2}1`t9$ zQNI4a=o@n!a4j~5+#pAV40P0ShJnBS5Q=eL{^w$jG*!)7|G`>tTM;LKv^!+&T#p^M z@dd0J7_@p_PBmgQr7zYJC}vv!}x`JEy;h zUC6on4`_GQ7c;WM(}(JO;-XZ9&L-~8Obr@c@o4&MbOLjAd?)wj&Ir6fiTf}7e&C)M z*v;gAee#JZ5Ua$ouYqVW`>Sg~a1UnjC5@<$Gx!zUy%nqT$Kd0}{(>K-s1qyelfEZ` z6lg;n1IM*-Pq)1ue@5S=UGVa|hj6gE^v2ylIk%}!>H!bO!HsIYi#T24$*acn&1W2Ax%NXjSx)iA>xy=$UEmpQv{KPjC{@p9NhzDQG`;;|5bNAT7E61h2tmIY~mo_EwujIK~i5|4hGKM?^UnxM*Db-G7NvZ^ZHrl z7*$mlpo7XdQ(23_ch8S5!ot1t=Du0JGR)Oz5I%sVLHCaJmN^e6#DlQ!WStdRm%%&#WwB&Y<07qr{etR>h|Z^T|L-_b+9mJ ze`nSmPmNKoan3bKKhM8+%1Iq6)F3KNUYMjWx~>1z$>t$J zF)Npc1EGd6Me9TU@)(=9FD(jHm3gEI!$@zWf*4`A5*p4OGYSC+V>u6|Qu}s0PJe$= z}{ zR5gr34({QS4BBkxBlC=cwpgN3s=7O#2biT7IhQ{7Gu1y!^?NbH zmf-~6l9V_x7Bh6A3=!rEmEJZ-P(W|Ge_0I>oZ#%90U-2RSX`|C`tUVIT+*81*ZGF^ ztVG-le*px>@OejfqGk+;ratr%L6$85S~mJa?pMPCULV=QFEC;W$&z%?uJLQ-pB^I( z4o)hT;`mJ=@z4JJh4&`EJP_nip+62i?obciP~c5c;Av1`F3JXl&hXH8NtfGUjl|he%GOJx9dkrb+kc zEJpR=zbxc{Rt7tw?@1qifi}`_W^qFGG?w4E{@aX)*ixrk{~oFHD0!+#sj8&9(Zl{y zt|1J19_cCF(5_15RsPtf#*pQ(YQmnC)QtbO@1Ij!ujBCO1|o(Nnvw3WlVTUGk;V0u z_PbobGKUWhH#D%k<5{x^bMA26D=C>+hOQi@e;U!O{*j9f9w7)>$>1oQj`m;wo1F*5 zg|2=A?!2;IL%1BX9-aZVgh!8mQ%fm$ySk{*69DVw$e&quL5Eafu1p=srf}|qD?DsV zN}S4aK9kBs5`~YE#cGasYd(yc;efpS6wdLZx7BUkxpc}R%aWO*~ zY(^Z)?8f=}7LgbPWW8TKV9o!^UaYb^=yT+884x(O?XSjR+bZPV^3SN|Lo&AWZH08L zh|TW|1&7|8y5BAT*#HqgJl72ceFK$r4(ZlVP0&os4I%Vrg~kgPMsYw%F>L9MC4t5J zU7w$OuVJ5p$fnvrEEB2WfH|A$hqMB>HI!8Wy3g0latnk4gX3giN8MNN{o#EhciF!^5dt2EUMN!aMt|uAA+o8Hj#-#r^`_kp~;Ff*I4ve3} zS9}-3Wclkzs9dc7wejwvvVF z@qXm3ML``3DS0g|YRIQB2~-QO&%*SAneH6QD;;NYaRi{^ZC=j7Q2sR`qXL@mP6nlh z`6awUiV%6RQU+#hjR}sMk^}@h>Kj3T`?^JMkL&v!5NA^@hq>n&1TQBpxuR zYg)yICw9kQbh*NDGp-_F>4Jw~Vfjfb&n3T(2=37jyZ=tH3%jb`UEIPxnnY);6Q3i%%SAyq6O-M4yn<#h zMuw`TwrqvI+GQ(5I|ooK?9&flIPS%TjY>dtIqb15!IJkG{87_00{q49g2LF$K&Wff zZXIGjI`loQy}iyDs17>_IMPa~HpSni*tSY{Oq8I#a1a{HdKmoJ+j2B;Kf~CDIm?N8{##eh)85Tn7nAZ8 zf*i6YE>OUuc_6hEk4KppeS~v?ASyso>9{2T{9~H8M%?gk@11A=i$Pw$A_UL|H%GU~ z69ci1QgP??KHpx&2V)fvq0w)Yb$xwpEP#`#MdyOJdoaXD82S`Cwf!SRno~uU4{M%_HtHRyLWHqe4m-g*(0nC^Pbs{p_K7U} z*sXUXm4pjxXES`HFLNU=S74uKq_GOh87Hz?>QWFeTh6b!NUu3(Uif#Y*&aJj{bo2I zjuwINAd9*=Hr&}Gk(*^}9%(Iqm3^`~X%p_lc|Y8G*m?y9viJ^r*9l6;#zos8e9hiv z68mx4PA|OP&(^!A1XQ-Hjt)6otSh@5n~xvrdl}&S`N(_^W;M#H_FQA3;`7tE&ehJP9`d(*nQZhC{Sy zhlZuXC3dlk06`gBaU>1R50XTvm3>C6>gR-mc>{`XnP3{b!r)G~%Q%~7p^-s***11q zrhv_mAfvuZXA|r&0qfP}DD~w(hsnuJ=lisf-rZbpZ8Wj!8+|0>C&)gP8<+*~!9BZP zKg|bknz8Lt;HKY#yMe86p8W};MMVVt8Q9^*+9xF2-f`3mgD;S-G3o8v72ecvlNF3v zk@bcJ4pvXemt<9+YZam<1ybDE{ ze>lEly^yXJ{I%MU3>llda9ptnRVATH{nkW+H1Jcb$A9jrzutQde$S7lRxi49&#+at zR!8a0WC%ze;gf&+yI!>EJ~V4IhJdUk=i8mqROkcfLSGeF3V%0ZIniE*sA=fV{Otgi zcjJdFk1-R=ImzG|+K@Szc8aZaV~0te3yJIrbk5fRcMspQYY5eMBFCi!{4*oK1lg9> zb^h8DxcLfI5SM%cGi{eLCWkrNdK4|VN*+@7TpSG_*+@{13fF9+onFN%Bkl$*kMPhi zEr-<8PoeeM?Qf!DeTSQ2XV?a#=yx?CgIbsia}cW+SB0bZC>f58lM z%#S9`b!)=V!V?QE>a{Y%4Pd3WmwDNq(D~jeQf==IOpVO6Kz+(m!X5pUrS3KoqcK6Y3rk0la8$UnC3T!Wb0}1%5JY9`|SebQlT%M1|;Lm$T zUn>jmXkyx&4f(p5G<`xZ8Fo%w8_{jnYtad@Z>3;mht!z$O`k(E#CcB}CEhE^zkY_R zj5zmPU8PQqH~QrAG-&`{NbOL@K>t%TOfA}@&7)v;MFDVgQCrT)2 zHp9K3vhP*bhki?EOU1-$85}9bK8C7#351rFFmfJPM&M>7lYfVh=432SoRm)zk;%3@ploMp=s%#1pIk6Vjn?OSL->Lw36(JXa>se( zX>b|Tj5b?-=YWAYKxTTnhw)>`+1uKi&S29+E;+>a`(8Of)}2%ZJy7N34F!T}CAZIR z*q^nQR4c|lc`xt5d2{%7(oaE5+k8oe&+)4G1NG9acuEI0$x~chCenRN9e#ok^SPfh z^n1DJyn6-}v(TOFXEo8JLh|+2#Xgt5`L)>%XAD}@ahXpQDvBglS16`gxbMUW&ohmq z`S^2-m zP{S+PVB=_`t(hZZqrM~JNi1k3e>_4ishHr0T!Qj~T3-ZQR&?}DxxKl?_vbmAabk>1 zrx}1#TCVL-{b{I18m%w=+awjpVlMSZ3DImS&#$)b48c z6%sT(Ypgf$c0FCRs1dO`4`)s5XJS`z_v*f~suMA-!{}lnCk;4q?NT;&jU0Vee{}t; zf7}iz>Qn*H>fv+IpR<7JzV|jVBOHPL&S`nV$uUNo1pYbf_@-Z9Dp5f}o<%_Oa3fE_ z=_piQO4te|m3jMQl39H;3hH1Bqo{h3k8+SK%A?6?HfOrcs5Qe$IqHh98D~RcL8Wze zcxQf)!_BNiM9@1XHR3m&DUP0vVU2Il^(O`aGwo}`Hp}lB`?yibl=A)Sg0c#%h39;? zyJK69zTqn8f@onvW*=E=`gq7Z$3q?5F~b4wTXPd$)~S~jZxE;kMPaP|apHsyaq|;& zcl8O~L6{fnu*KbO~1|~sTlX{;4ArDu#gudu8UWsm#=2I_&EW+{} z&38Hh5-x`tk-zRuxk&HuSIIhjjiAD&{nR-Pt8mpvL6Qw-f;K4i>-I^3&S9)+%9ke% z7S9*Op^YF~L||Wzl&wtGXfCgF%Xtc~R3bZzCyya?G6HB-!22Ma8OZz4nY=y$o>K6? z9RvR0ev1zs3(pI=5^!Y)B-O=)j%it+4pO{w2}oqtz@13tUH^!J&r5W z>Jq((#ZZf4rx=;Ug;2HrIVL?-an|*plmR2$UuRcqt7lNv&Af$PTa`Z4H@OycWn2prpcaki;5IR5GEOkWUE%kVT5CcSd_nl7NcS^O?Nm@VQ~? zgy3=9gVM@D)xw>>s@(nW%)V@u@q!l3___7+1ra|DAYtRxQrnn~!IrYWngz{Q}|9-UP^wma>()Tkunqy z_|f&O|0fZ>bu*UcT0|=)s=S`OpyYN@=OUf|)LD^A*^6D=ry|AH7xu<1Wp87Z1tzm= zD~wAH3PrO7StC!uWruC|VReM|`{L6io77hS*pNs0E$iHjk7ObPUW_!!W;8yDYNaBAy0vk}1dzO$XvaJ)d%|ne zrXSaVcM?pY=>bL+X=;5wf1oDngdF~};hJ45tN=JFTOpS(0oQ^+SJ zXcn!5CjA5Jic0vWVYh-F<`81orn~a0IaBG*{DoZku=@yJ;*dB^e{R_S-dx0Fz5m+$i zZ^7w`lJrsxg?r|KS?&oBquIQThf5yqHa|yIRP4OX*0xhXLH@h~c6YrYz3=2NqMb42 z{cFyAMF!)HRQsi1|Bl|Ny~^r{63FznTHdxT>ZDu{6T0?n1MnydF=sxM3rp|qKJ1_g zFgL|1?%!xj=|CHynPG?BVrn(BMJ-@pz*eJkJZ2N%V$4aAfK4X*V0S;sxgwikjOm=rkVmXxt0rcf z94I@VE;ePH3bJ+j`2;dV<6$p444!8)`3s>x@%S$8B4+B4%AMDn=8(^ouH-CW))!`A zX$wvCGSF8Ri#KV6saI$Q*fSW==^Bg!=EBEycHgAb3YRVzIi7y0 zl3FH^4y8WdR|(ww@dWr0{zYf?mgjIrmjtT(RksK!$&+I>H4O@{T7IZmHe|}FLf^{< z8#H?sIhSd&yB*#@MMnRex2b=P1 zDLb%jb6tP3EZH0m^3F+gJJ;w-@QW2NKAn^4$8K7Us4qLT*2St2>xqdm8u*^too0J9 zHB+B9-#xq(D%1M{Sn6#}_2pbehRsYjffuvfpdEbEI`vH|d=h~n4hBgSlybonj;(M7 zmq3+0$HQX2AYFTb-v^sb$GIC*E+Ut#xF)U(scD}@Pd5l={%aeYa8W|k+U~_h>X~Cb zpE2A@1V4f+i{Va|7(J9>U1-=$Yf8sM*u7F0fu0rr%KeC$++LCnXg$8wrVdg*{0HZ= zj?p=}BBu`f5aj$tE*I|;KWVSv30g6Z_GC~in6)4Lkn$o5E-0G)@EEJx_T+nt-Ddo+ zMRTdRUwe&f-L3?I>7f)3|F&&m8y$4!L*8o=C(3R$2AT!p*oh9x%tpL7gq-kLZPt1{ zt!^IM{->^ohOuv$T`aa+dn~Xsq5M(zq7ho5xwBITlAX~T7)ms4E!`_Ck>H?aZ^UXT zuDS_A8TY0*HRw-LdlC3iFFVF=&C3DBq>+fW2;JKW<@wqIJF^Bp!ydN&t)8@teS&@#W$3&b~rm+t`y#(ytX6K6k*&`Q)J% z7qa8E#3C$MMwx(r4H2-E!4hjYj)XQgx%4#A;yv1$^b6__g9&y~ch4pFZLf*{PF)ze zwEj?&;?Y=m*Vtm-LD2jDa@IeWf@#CF>%MvpgB4l#}*&Gy-8#%JcEbLecNx zpfW?xPyq!?&o4*dMZq9@M~5folYQ*|rEN7FWoY%jU3=ySGo?QtftqLXIKK%7q9TvO zxtO-q?Jg?x$}eZMelSdY&6!*#D7X__OY+Zq4gPtsRl#Lu41~r@(&IU2@G3hxh4r5u z)4Uls)B~~vCsNeCUROz^QR1wOb<*=Y6vm5m?Mbn50sx03?NkzuvuxA^$9Q+|1nlZ4 ztBG;HvisJ6PsWrR6(jo1&phzOF4{9 zvF!@c!MLQIbs6J8YsccOHkBPDiAJL3F7)18(fm;s%d!mP^dHOX`|9vv^eLU*DdzBG zR>!=x&)rF$Ho*z@rgyPle%p{DAnQK&t4d)t0|e4-U_E@%x3H$Pdztl2=m-xfGw>d1 ze2uF-snd{!PPSZI1y^CDfBZHrjEIS738RWm$?lYJEC*?-0B*ooAq%AygcOqa-?zE zwg&ZHcJAt?ieBTV#Tix%&c&4DU# z2XH|MF!IPrvID``_d$!nrc-HerQ@!(fG6Y!X7KiKz+83H{xwdqhO&l_DBtJO^EYTv zW)lfEQj(wz{RS1AR ze%u5b=rCVKZgN0^h4Nwh)cbbnO5duVP{_>mA`?}G2?|KtK2sHjs3`}C%i_m_y$^K$ zkEU}EXZrpBcqOTvDk0}|pcs;nb5Th`@-cIqvsjYzaYP|GRdPP%OdE5Wv&}K*Id9H$ zHgi4>Gk)*B*Y*3?AMCRC;lA(J^Z9rH`Km5y*TU~$1=&wCN{iZ(Uu!{>&pFMtSxc6Lw zyrn~ZjC}|)HRPNzMm%ccuDo%0>aJVK<%uROrz>vg`JUSusKO?Q+By2%Qn~X36&se+ zAeE-Fl33p2;uj5{q>RaLoV{kpvW>R3(B64ab`4Qj5zr8n{<$_PvSx=0E+Kp$-XD9D zWn8Yb3#+fp+mPHwyLfa9D3KG~#a9_$c0c(Zh}kCT_^PxrDILwr;aTD)@iyJGTu9$x zn2%6n_fUAc-63lntx_DPhOfpqGU=6GlYF=&sJ6r{cYJH*Ibdmdz!Y?5_Z6E83BV!U zEsVw`(c>BGZa$?yOjt(M&rcS9X!n7bfR1_nVonWhVps0?5tt7l?y)Op8Eb_p3bw0e zt&2L3w=)y{3Lz>knM-XBNv23#s?6d9`w;|s9QIwQ@yCL(4q_*V^I;Bnvnk9K-_1y7Mq%1#m8Kla3cyAs2j#Wk=WhH+o7E*fBI;~ z*mE)Y@hxf4=Jkeg|LEs@AKz8IpEr!W2HxCIc*M=1G}@eXCr3qaNG)xaEHT$qqkbAL z=P|d#eF>D}IxU@*kx_|~ldu?-E25jxGV#w+v9P0Ef`wJ*KRPg;;m0(yzJEqb@QqF& zc!UOUE3GDjUA_c}%?0IYy2Jai94Xu-Jla~bMPEVVIv`OC3oI)%yB>K-S#HB~zPLdT z@*tV+R5X4rwETZv$bTGzoB!-8Qeo>xTE;IWHZQone$ByAI(<86=PPel4#T)1!*1KQ zEaC$w%~1l;$RnB=;?lxCdirit_UbMnq+d<3Bf~pY^XTP1BH(K0iDzykr6(jmK}VWzU|f;1h)= z&<;k$0waQ9R#&2SV(yZ9`tA6oMYZaEcVQ(u*C%#jY;~gxNE&Kv?THbeP8|XTw!h@m z1>F1lM``7oZSaCOuHcg*jIZ<{Vl6F)ihl^=b8lyD_D-fOe}QDNcvH&sljv3GyK4%| zvhC{OZ6HQhVV(`e<{H_>`M~-&?gx2%4+|QBhtxMm;rw9=;r!5YGEpqDY2Z}cug zyD-*(zbcSIyRc%}P`TwRj6hEh&u)=IFYs{{ak&t!AubN3%%U^ABX#JO9FGJ8P+P%} z1!eKc{HK>o%A;3qAzOkK88FM2S=fkoipE&=0zd|RviYi|?q3X0K+8_|<@Z!GbL)GBm#0j1Ku2h6kyLKsEU-#A?~g}o zw0zB-RVCV3a<61}r=Dr$m;xsPRQfj4R|gx{{U7!4UWlTo08E+E%nWUPtn@l;G`%GfDr9j&l&=HOf= zXjhJbV&uJK9HF1Sa=C0X^`%bQI-cZ}eiLA+cR3jXQU*%gRxIo!E8N}0usQK!={!m+ zNl+KsGkCvErf0Cka_~5V+&%`{Cj9B8>=5F#Z4Er;A8{U|E!`jOBrVTcbvOlc$Si+g zMZoaid%FaP{}l3s$q-Y4e*R%7tWXb*i_w|cGlY9ax7Xou-b zA3=P#E0jX;avsTLlw>IBTFd#g54~A8Lf7iND1OnTIWSl6foM1$__+0aazB<7<8cIA zfPdJY%oM)OX)wQml29zTB|IiT=x0MZ+aCTGVD#-dHdc{GKNRUnxxR9%=moUlNEn6* zL&*Q#6Dkr}+3zMF0iQR_7IHukDf(+#{umnRs(oCkV$S9Kd~Nbhn*pDdN?F}9vr6l? z4cadOgtJae?%SrA&Mnm1OpK(h*Di}Uc>zL5T*y^?@{OJ9zb#`ofA)`+NiULhkx@l$ zDeAqCm5t6FKY^4JBS`W`N>2GTKm=?@3^a3e=j*|NWS6CKAbd*74$pv<^^t=AF9n&E zdXPL?>T!KQ$R2HfP#}N#s4i$P-drf+G zs94q_pzwjtU?`}Fl6B!l@9L+iLR(U!C}6?<79d9Ui}kV3J#3N_BBOs+L)keI@129M zP)r(IGX1s3X1Aks36k17cSkAyPjv#}T740~U`|>|eRYGLdo*7|$6Zv~Zye|or=lYH z<0ObU)%uENwm?s}T8SdBsIH!%XklF9Tlhf{Fy*$v#ea*|uTW%OA*AFbLiTv$lj&2R z%p~gjwmYm$aC(JT8`9zyl6(&c{+K!U2vOh|viinTK-*G&clzKRa1asEX{H+T--gbU%pOrv8E{lTVa5n)QN=T-`xrlQVY(i=j=E2{_FQx`gKQG^J zoj-K~OTknf3{BW3ThQG}%Yxy3c6->n2i7)hoW0H|Ssz>VyZwi1qwa-Q$M}LhC!(AA zU51ALD&_jzCU<8#NL4|oU)Up89>^87=?f#@nXDPQ7QND2&+{C<)MgrbM8GUoJ%^B? z#@kXwlIonIREz{?xI6S9IzmWe$@3+zk-NeUy4XM6i}UvhSUm0lR!c%f>TRY^dz4ve zDg~Wm(>&G(2xAhYT5cC*)`Rs`#$sj%zGIZ@?mz#}?kf@1%@a<< zV5hPAYIhS9J9YlbWeu4v2p0#@U_~L|grVgMLUHNj)_Y`7?>GO5o+8(BD_1CV5%Icc zZi{zLQFF^^p&j6*XgSx}BK>XXkvNcw3?++x-6TJ%UIS=LD6~&JT zuQf$$C@+SD+;xktfOKM`qxAO{%OE+Z40S(}`kvvRXbqE$;ionE%9?wURKHK()9Zvj zx6;y#8msO7#aTNk5i;d9&w&gikRt`(wCl1e)Pas^e3#H#dFKbD6g8C)`tI7%l3+4q z$75}1?`dej&Q?Z_+y3n>Bgm4(?&S$aC60};Y~{CQ$O9+B=8csueg_|fG0Mx1^}bo{ zTZOmvy=^#&S@gRjlpbuhTZ5!sF~_#nfpoNuLImUpwMj*Q?RCFreG37$txCp0quaHRvYJk8lN-{FgT8vjn>@zKbr(L3&`D8nc=X-|mCEFaN)lq#kmFv^kse^PyOL7pA6d3oC+u;2S3s0hC;e~1v!V`Yk%ph zIe@}^-_KtzXoGkq_h?odZUFP6#d^Zw$zD)wubtD9biRKa(lcl@d-2nL$!?l7uCF)q zWXf-#%;Rxgn~&{i>cz6JuIGDimF4rmwfGId8CbBL$w9M7)d;ZhL3j5JMsoRFa?*0& ztzkbQd~j7>yveIQ$89Mo5s6`|GbSd4QAo326GvloLb?{Rye*mE6AS1X_1hmCN>D zyIDE8Ba|FXg8Am0UUYi*+1KE?3jjMZa>5A}98f z`Pg-u*>SsF8>5axPci1_)m@nk7zRxjP7I;yNt+vG-j)yrGsW&r)s3n7MEP3~o7SUm zR9<}JlyALJoo&*AGt#xEE$od~)8n`!@VJ)2RCu}cRgiJ@4Ni!^YAti~2bFSGx%xWgoWTMiw^!eqKZ_T5(q9N38cQG9bV6oumsbyWwImdNC z65-B;rvQrS(z$Jbx<)F?*RUMNZb!JM+|L%QT4$PO`6S|E2;d?PyZT z>t#i^j5tZOyd$aGrJF$#cfLdhL%CrRN&U4D1MkwN1kU2W1Ae09%-%a*=My0$bkHfM z@-0a>vFXhV&=C*`OuEc|Iy^2tcXaxPBkncz#;}y7qrjFL%NSyf0#6Po!`0aAjybP& zG&t8pTblD(b7gpLp5*&KkO3zZ{iyEV4}oD{^i-1T$3(iD=g~EtyRX?QyOP$aq@T84 zvFsfF?c&w;0&Uc;rfmuL!qUe}-#LFLY4brsh*y9Y1un~e#Cj$GMU=`2yp(ux__v1L zt`TuZ;V16bk8wX`ZIHW`_d;dp-lW7Ybj{->;JgdFztG{pm&X^kNbnGwZXT@$^ktuc zC%=QnKYW!(W?j!nbPMCE`Gs3&<4i|XX6h_zWZKx{fZ3E!kFJP!kJ@0d&fJU`cBvY%-6V(pQ^^cpGMVtU4fK)2z~e^c zvq?gaibJOI$HrwY@vs{~P-+fFK63cPWhk$hL3am8ms=c|_*(fc&~?)2mhAoU zQDGLHktQ~e^p~WU)d%R|?WI zBixEI@Qd!+R!se%TM9LMA`&u9;3(UvHxd{NO{vEI`&(mhg|J|M$9_dNX}~CUgjS2( z5Xa9@+=oZA=BnSWd(wQXfeOjk}Os)AZE-* zsSH+FAN9SATN-tkxD5aF1S-C6fZt;^#Hh=@8tJ$m7lvg@O|r&#lzjfE}J7zwYnu@1GN{xJ=k1;J&(&s??*lpF!Rzsld<*Le)TNc~*+DIWY6Lj<`!YnTjo z8Zz}ab^Ev+X$59hCi!V@#clNGG2D&<3w68Wb>Bla$Uv{f$#)#)n}PZ{MhxNj z(Xz+@^?QlF1j;Fy^lgiM%4)rC^#VevafA+ZvJ5?kMnDFsp0li>yvS_Etq4y&T0|jwCUk^6SpWB9SR{e&EBTC7%(PJtM&lj z7z@r`D4#}Mj&dL7wpZI#}ohhpom14^{PnK}sh21w5-pa2? z;A-AIg*bFgh&07Fyt-#XNx$SS=rjVRUd2YJYVUU{LM>eq#S<)}Na*^O%1ATB)p+6J z&8rzYL(6+%)vQ0|D*ItunNznX{5J5jC;S*^t~sGIpI%f8qB&N1?qHs1d& z>eV#p@)`(XL`g+=fU-OVdZ8fdRRdO>2z$H=P{BR>kMm83b<+$4I#8?G#y84l|Es13 zUc8qP#wQ%3U$585jvTOl92RND^x+{zt(hQ%kMB0E{Wm}2n_uZAS6q2V0+F-Bnl zjlvHVL*eb_g)?h9pvg*ZAdy0w84`AZY*L?N^27<9zp&GkEuU5DRZ7T4WPP!AVb<{L z*Ab^mo}1j#3HWNOE3m(S+BM&ia4SlKh7kT>QnOBYsArp6`T4}^vL?-FvSK4U@Q3pZ(p6=%7D`J*><+*v33mkF8w*8OPWK8x5TF$X&aSe$IRf5SQ+jy z?ODX?R2!^zD#cWnrS;~;+H1*Q0XA5Dv<57#BdGR_b5tM<=51+e4088bZqr3lPq~%^ zsPT616TBB82KXiho_v%h)FESwM`Wn!40K#>F!*u9%+&1-XZ2L>k3GlSZxa&vHq|`T zOj}bU8Vrk~JExWo`4eL0?Lhrq=->7%qwuV0@3Mmz`p4!$6j-339_vSLQRnVB#q^3@ z?>A&~hmyC^1qGUAQLZ>H3GNO8PGz4_cf*>G6$r+!NFCMN4{H9qBNBR-cHb#>T{;j{ zPz>S_L$djT=0%nWEIu)oC;P)u_yuEupIe2j^ao>SE(~7L+oppSgEzq6S zndqMR#`Q54>=F6(lNI_E;8!i}XTt?@&PEs(Kog+j*Vv@b5-mvM;6AGt+vxBLz5Y;n z_&MLZ_-?8pEp|LSN@08@h7 zUF8gW3Uu|#tzLHCnqS5@Mar{*7H;dG-Xmz1_pQw_*Q7a=$wf2RK{083-65vCrcW)d z*U}2pmpvEPAx9D{6Q_ecq=hfy(Nl}qgr_3FJUD^JA&~GP*6C%*x6wBsuaM&%>2fcQ z@xHwdMXTzxVI{h;E(m{0I;o32FBGKmjZW%-3*kR=11VvpOO%3%t*hnyecgHv1$;rW ziwh)b?o|Bd*fdvMlb>KsGj;MudvGAZ!!?s$`L+8(N{iAL{?hewg59}OqrLCK_Bo&E zApiN}T?>(df>uc_)p~Xb^!+IU%N!sB1o)px#=$bhRAIe}s zfhQ2DmOp*8yp(MjNbm`z|D>U_^9H#ykq%4nF1IQEgcEn5qZ8i8v>YzOl~;&X7``&+!u{lEznF;TQAiXv&d%>e*;d2> z3}(-^KUk6-d$QT^*381IIJ%AA@O|DM-9cm%z`_?TfeNVFzO|`Kch4d8N-%XIwLYuA9b3hqC{u@dlhAkTk69egH5ka4&P z-X#}%ozpdB9?q(~gtT@C9d8sMhMJ_B98CRnI&_htbHS;VI>dx=?5Pg5oMTHI7y&Ta2%V9J$n(9I)NvUs56)5tKPhC&Bo zl!SJ`yNW}_e}_ebH%PmdL&dl{*+r(vfVFL@TmhGP8eYo4PRT%D6{U2Q`(h|G6flBY z$=4r`2J}v72yOsB*I$1~_PV*N78^iCDO05i+Wkj4WvbTdx{TA6Wd2J)(Sl<=LBqvI zHUd5VmRyXdDGASyW(}wVwXFPukmwMWvj4FEeQ_0|lB{e#AiI^oiwyYia;aL2n_n`_ zHF?d(H zkh8@_YGC(8uTE8Ha`{Hv=!pnA%t0DYf}&rx60mg`Pi@yOAvg5jqUo9ABX-8wo=vFU<$msEHc<{BPw z)#Qcyn4BnGIJ&g^-9mo`r}h)DD~c?g@hag%Sz&3RF2S`U>r z8kpd6t(^D&I;chU8p_z^5MYc)`Rb7M@d$&0vF0R_0X}=34ixj;#1PEoph|K@R$gC` zM$#MvRQ{JJzj@`naZ|(AE)jCAH8J*#LMYFTvlU+JqxE(<_9n3@84eb3WZi*qTIs57 zy@z2PENk)Ql&So!#joytP*Jc%C;cxmjvC#qO4MSzzXY=gCtxv#wAD4q8OtKb{yM4p zHDLRYu|=7G7pipro25ij;o32%M@7ASlG$WphRjGh5fD~7km%@i~ zDbp7Hp4W0RLjS(_q5SE#a(|!Rv?quNd=?Udmnn)qYxAGg^ADxpy>(CAwFyO6{U72DaO9q|D*{b^G*pU zERjP{vzYsGfzcN|`F4w#{@@%$S7=XFY*O7>R@l4WN38DsfYcE@jzdbZ#ktx>Rcz9` z=mQeV9@$ChwbLsTi~}qrIW4R7Dq7kJ4^^4}sl+C;q$3P(1p?kDvb7275}T~Ml- z+WDR6xv?W@7(G!PE#`dzS6~yEHz=1E>m@%nf6!FXFsP%V7sQnv=_96O+#KTi&-7R^rxH>er-S%Kek z#E@oHQ;W#g+N;?2Kx;c&Ta3DkBUZg6?;O}#_J*B|EfKE<6gqE=vo2k5(9jH8@{xm8 z&r*k9)bA&Io@ga_{qVT^0!RqHzx%o;hQ=wX^>kKsoNf7>ylR9%M9z+ii1TrSe3Cj{e zlhl%f;q(5lkA^en=Mzwc(=IvMe_Mdug~WLQmos)EUWdfm>;S88Dwf=EwN**`5RmMwlVg&UZ;}c`m97!`85ph=(rm5$wKf%iI%wCzYZ0VN* z310R{Cx=Q|%MyZpyE8-|y5@Z9Qk}MQ=?YJ?kl*xo*X%8}NX#C+w*Z}2GxJUorvB;l z&wzHxN{1aiNHDmk8r`(*KXUCGwe7Fw2I}7-dWpHGc&h&8oB|HAIdl!h(!ap zf_K)uqcsB3x3wg;Paonh?V<<0zn;!b#PCqg90&@`YHvOnS;cOu0Xm^0q(-?{8w}62$H%rqK!9a{W=r55=fLMvW0+9>_0j%7enbYi6t7I=uw8k76S$G} zuAXKEy;Wl%b-WC7o}*CpsQj9CEoQO~&-ymnC+;p6z-K~JbQ~;ZN*e2q#tn3>E;cLt z8l|pn8+a5?r?b70vJlD&SRZbDXqp6J{z&+ybvsiNlsF&uX#NtBi@p8~Ejd=md08l2 zdD^CFHWkc^+-@Kf1z8#8tq+DfOS=Bh!4$+-2(L;Mw50qRf~CBo4#&P8j=eeLV^jE? zKPNie*yI}R6n)kQnqh`({TVpinqv``!|IF{i}2_0d-h&vKX<+Ob$ZMyPx}1h^`G5o zCKpw#y}m)Q2%;33UuP>kSWfML?&A7b%T&j5Sl2dOaTm&Qgm$b!?)}KPI%AeS-Hu2> zrKXe=9MPOdPmLN)yQ)9w;c@rWOsJrFUyGh>l&qbd`Tw|Fu_Ak*b?nGpG3D33gik=! zZR8!ja+YWK*gdhc_|V7v-B}Idgay_TZqGC1#J;$WvEUE?Eq$1E;!}2&X&I0OyF`+{ zMmUWh#he!iF{FCfam@@wYZv}FM60a6DkD|81Y|H1A1z1_)Iy}!P$s+`1Z^tJomk8N zP`c(JJbGS$ZqG$Ez>&)?v{emv|NKu&zEeY6ih1#9&d-Hn@B0`jNme+UC(mmf z73+oFNQthayLXszqs#r-3mP0THSU*rj)37Jh`?hdzA>+M5xE2kjajtJ}am9QKqTw}-n>=(vS{<;dy zIhRd-pt?!tJ-jt0Rts)ME)yar8zWL@ zOTu;jJ8HkWdcLkAh~V&7N|R1_mNJbV_ATTgjvEKriB_nu%OzW0)b1)@WZM;FQ@h=@ zF|Nw`*166@UO=Hfb>L^jJZaWzEoaTqxCCy2!6$Sa$c9|rK^K^&M3ZH?q>JO0sIN|+ z2`wQPhMW8fhXHcyFF;YQ+9=AUivY&yD%=#CSHjO-1Np4`ZUlx#huvDsylQAwtCU56 z_?sQB`DU6)SZ0Mmiv4}&-Eyut z5BZ1qm1(^Mt5FKtv#d{6q}1SYooGiESLajI+OB$D6lgVc!e`s;DwNR!1U*ZRt!Ev@7MN=qu+E@|re~CA@j1>CEPj5F zAf{ihr5z@?C!LB!DMu7zJsN8qbo{}|kZJ`dv-JJh0eXZuu0FIiC1_IM7KLjgRg|&| zGazOSSHM9E6tB<%EAYgmGMIa3Z%esT8^b+y&vlruZ2MM`PkUxm80!mB9M66}XB*AP zei6$$VP#_*4j)jC8Z71_P{g5S#5l5{ z$a|4-($KMVyOaA%t1!?EOVL}o(b7~{^^Jd<4mMuof#A9P$Q!1s6Q=aFn5o#MV`Cb1~jSA!nnd=3+#8Y8hw>K`t zjruy2ex=aET^8=;mx+WncY5;4x*XK3{9Mwcw?P0tzqK<`GZqNGmvp&=oR19wEZ=<7q#^>)Ta%`ndiOo7_nJUi|w-eHg z)b|r694P_hXDZqM4^jPsJ_e@X(yyShRgyOK4cSlbcQOq!GM@T+B?wI{T{mnR7?AuJ6DCY9G= z@vH0{8?b=3*!beUrAJfw$pEVgS3W=|cNS{Qwvz9`a$h-566DsNSb1wP@WGoohbXcs^C@C=d-x~Ke+rIFx4iP%gk`#Nm9fzEn8-TL`L9YdXo zzT!rr#L*R}*{RCFYFUiO0XCIe_K4o?WKzu;$WVk+s~IV0sBcZS|1+qi4(FcXIN}|& zydJ1yoZ>r05IMoj!$(tMqUM41s(IwAeO7RytGjjn6${=j+Vue?@ueSX5XZkhl2F?H zqAU1NU?TuzG%cp%e`~!1>Q*vZ3lZNcat=SS-#Q=IA_LikWZ$J+HIJLe ziM^>&5!tEorAfD7jD(sKk3d}3`yW;BI|wtQeuvv0l$t`SXhX+?Js5MO;h~40a01F4&nW%5)sF?!6Is0$>MnSKM)uFQE_OS%6;E?%J9|GAC-d4j zIWO+sA{IVL&HA@9BA+lZVz#ah9nYnt{iz|L9h6@fT708~?2biiF$}lq7PGtaF;Y`TbMQP#L z8k=uH5kV}Eor{)b5I z$CkQ=mK|`Dz5Alqc7D(??nkqXOqB@znVJ*Cf0^d2!2l@Tckky_ne_7I97jt+`_z<& zR-!9Eywer-Ra@P3C0Am4Qqat6tXeGiP1h>Bv3Lokr{RSX>M1hY=+v86rsSHh$3sX< z5oU%|N!dqEmp9x@kUvmsUv_vo+iYmC4NM1mbXGl@?$9SP)~R;iGF~xs*&|f^MPmB`ddnoNMCTF}uhb?J^llu@ z!I|C#w1ZKt)x{)H+NIG&SYmuu#cQo@4aP;-iZ#*7nHKzmODCAWG{a+{|MPz$y=OSg zXHJaBbT=$T=lRj-GXNxVDC61toc7_r5R%>l(o~`Rwl|NPU*t+P>g@!4pneHLo{PE+ zCkA=uYkV3`#ZGO^eFOz_>^;&r^fxoilXlwgU$2F>#L>h@p<4gE2z`o)A{eIh?&}be;}o zf6uJCitRYm%lNrL@z|12{giRA_lj$_IJ206+r3Hx>{z+T6qKbb+!tSx^`{> zfUP;s+7k0kt+s$cbWVj^NOfB#if^Gte5HHS3Ni?{3f=iWc8z1lsAuuA5|MXy==_o3 zE}D+N8%rf|Z4OI!MScDyzcB@9lF!xG?xN?zT6lOaMOVE^`yL=x@@EG!eX|vBBhHCw zb0E0$xy*=wJ^jw~6w1`2?E`nd0wHVtnhfBa#JJ}rQkxRV&QBbhteAn0Cpy`YB@W-N zpC+h-CYRn&uTj3CZh$d(p}d5AO-L~JZ#ll_u?*UuYAv@>Iku`2V{Vmvz*}jjs*ciQ zQBS1ucd|(W?Z?n6-Qk`=+Xm`HA0gAwPk;^U?HEhRJ?=CpnWsMRrVDhp+4@d*m`3@| zaKzF|uta+F>U|G|XI&V9Vbqa60hEKaE7}l&0o=VXi!0|dJ(n*AYqnkuUlsiCDW>k0{`9>-fc5EEPMI>(lg8tf~! zD4A%LgTc4_)G{&SIHi<&?f19VtWd6^AGOw{n02%|u)+MImE%6Ry207FIgrg8;r{J( zj5W~xN-boSg>r9y&i~&$L!adCFhrwD^})j}XU70<$!wrd<*{^>1APkTsv7<{6#? zP&6$M_rLGPg7?o!+^fi7w>>EvXe5VuzXx)mVVY&pcNsKi2=kFJJSEW|NxHh6V(@_E z0iGaKoQWI_a=Jl&kqD`2lV1ObJ>7`6Yj1KOfGFH@P~)kht2<~>gtB$(?P#&@IpW|N zWws9-r%O+=e$a$k(UcSveYhQ(o{%{0CsuzozRC}V?9)$?j(H8{aCq^R8*-VWT;-h7 zYFT*jiSIk>w#)EbT)oo;FwwACbMvfdiH;zSn@#D1MrJs>CqBHYFO(^jA$ZaJw{lEa ztSA2F@%BCOI9}v=;v$avhz-H(8$E^lL9Y;glwjYRr67J3JC{lqokNOX+=H{qE}a0` z>FJw*EoS#sPWqRrQ_GvV%B&#`pBW*`+^=|qD?+7No!2NODUCrWv3Dr@Na4Ak{M(WS z_2m0c}TM2(J z9<1doa3?FzE@Ib^lEjbl-JgyommBE`azcc?BFu7fx=GUS7L{-PD1lP?l4I zfyQ^gut4MSZ6^#b3x|9lUwVW-!@DHTz2bZ#YBaRuzO<5WzOq*(3LsF0ELNgWK48hn zB-P)cAZ0C@&>y10gcB1WyxAF8^E-awlno5y013c(tQ*I>ty6(o&F_x%y`ZB&jkAt@ z6}4-Ich@QTgc_Xv54SBANl);^iXX3s)^&eqYa%1%90dn1r#Qij6^ogFSg$1T!a@Y9e&(4${Xu`E+ zYQ4UrUH;+{@B&?a;neO6C*z6%A&;DzyMUq}>)MyL93w6?S#{%M{tO#DlkC&p_q((2 zqR4uIdSQPq?b^_}3C*8Y!=rkvMqg`tHKaU0nW30LgS!#*NgEb2EfPEsP$I{Dm4r)E{kZGHz%7MsFl|1i4#f}AhY1!X&pM; zJmp^4HHqH{(>;~Ta@oGYL8Er)5~Z0p;N5?!Sp7mDp>hP27FR1Z=yoxT6m|ssug}0< zn7JfsZ*OTS$SH@PI3!L^H8Wa;A9f4pKTr1fPBPp(<2f}=`18UnU!V*!geH0LKZ-5S z;%V4^YgWR9N~D!LBYkkf)89slzi9u4nT4~aWk~le_;UB{yDp+hVHJ*rtBuxP*UefK zEPCtNpk$>BUczRZj=3t%(wG$QH9-suF^V@X-PYCd$NFVTz2O;HvRTe7Ylg-9u9se7 z3dcsv9?I7{^`jk6y`qBv-GOKMoEPh%Zb-ct^O4J_Of79Dyzzk3<|D~5TxIh z!swq#h8+5E;DbG*71f(E{nLe62kq*jv~{#N9oGLI8~HW#@*Ux&M{#C7d%A>QGCubl zx6!D8cMqULc1qk)`o^5J1SKM_2~XL7cJRVxdzfS|uCPRyhv@_i^_qMrFArXrRnTfM z+C}d+PK%X&Jm|zmVmzi3jXE}9-AoRhHSHTbo?_f}+)kbrCl#@CUA0+$i3UaHGi(=G z*&z1)AMS58$zBfV{%RoMEowHCXC6(|tr7?~Es2|o@t?f=kaB#v!Cm&-lrw1=jY?F;PveJ2n$elR9(B#*O6!2aJb@1k0xsr=KxPyd>3 z?2og)S9sJkbld?4(T?R-{Dh!dE*Ul+<#Pttv%wo~oDB zwe82UD}mNfrjVI5(;Dpl&xNw^D)0_s{;b=F##)ILVNERM&EU`B!BN^r*yR5TDKD${rw`}AM96L^5?X_HHiw>`m=Hqv)cW) z?od?nbZdyxqNEfa>Aj#u8((Y}j_?;7FiLWXtc79fvo`c!0`b)D%;_FJxHstn<9C?Q>4)=<%BJ~2e zcG&w$r!~nWFZN z(xRwQt-Y#Rqe29+C8$kpiP}4MVkHRjbb8>Q=_~!GuuJ`-(lH;&Fs@SA| zYXD7{OPYl$?KAG^pDee-n3uXQ1R%C&&cX)D|G8w#9u?X%oRUfn>(BY};l0vS=*!+Kw!7yP`|e}|06OF$SknFYcrXTHTj#zxGn=ACmg%@gmoiNoC#k5i-luqmRoITOkr>lH?q% zFf6xMC|%W}!1*LVa{LKiuyxY?2w~JG)EZ%Mp^BHc5?L9%MWDn7-XALDJA82gHV&aQ z>739dh#MP&8{nHtTsx?lsynRYhXb`I%TA{ql{Yry-VW@3y`Cy_c7??0rN$DC;j-NJ zhO_$4wfs~X;OHMo-1>Yz$yxfV5G`{A1w2x-^+-_K7naOGM$O5_p$4fg!TAQ^8CS#K z1n6K$EYM;KJE(a+bXWy>S!lZ%5*$Lzs*+Plrgcr7b$MmY>sPi#jOQ=o?kDpElc|9^U-U zcfH$7&Cf1SfMNXH1j@Ujq51kaWBcWKhb|#w>oH+Rao{%Ai0X}mP$~mNY?WakeQ58x{=dqI~+mSV94ID*t z2J6rs?wr>hUB{hlNoV+J+X;C-Lt`D=Km~J%(s~8WLMi;Mf!B%<=)th=b}E4KE*YYQtHW zV=_5Us(%4(4^%Wx%m+9mEGr+{rETT*ptrW8xc zR73xx6V&_ES90;pX9b)zD6iqh1NzXiy$wS@ahU*?F@S_BW3vtbu#OWuT{#G|Ea_8{ zN57;6>L~MB(wKzR_V2l077Ca0jFtLC@w39}uN_lXSx>)wmqHVVcG3DBuG~&v zdQe?#H-LMl0#KgG%bnBc@LwRWW z6zPyjiav<9FEPA4cD?u#o@VK=FPpOvWdh~4FSkH5e)DW7_1k_`(===%9SpA!Awzt2 zZqH&?h9GXhkKzUtc|nhG&vwxxdBDhlcj z=#`wculUu{%TapXzi6HLS>{Cu$8hjtJ0o!-o213jOblkCmXlgjfYXNjc(sU*@rd6P zUe&)2!c<<-u>GLCsg_sOwYNS!th>BomoP_uIOt+0x;SnHI`4Naf<;{`m0Ybe_r6Yx zd#dKf@U#&Bu(k$o&;%c9tDD#7dd!B^^@&AFhe>X4LBt_&J+m<<*Ia0q-t)vdU5IWx zX9FiyWVS`u!!%yrz0<_}uU$Sa$jmv)MN{s8h{F!SXvti|A)-K-6kMlM#9?d%2VRhS zVSJfAw?k}MnZMbO({QVDO8`M4(lDoe?MiCT8?W(we8N+6jh`X&jJwg;$Zd>}?RNn{ z7s0+1V3R>pwcDaNn(wHVtZj+~NGef;4Z-WeTon8pN-1BE8F5e(M7lQ+9PsKwsfnv0 zCp_7`b7e>*-dR;h~JM^*l8A2_f+{8!{b#v>7nIIiZ95e2(HtGdx6qx29kT z@oEl6a2O9RV>PJR{@m^f1bTeGOZVKUZ7Y#AXn)C<#hV8Gf!&WKvR8rH`8oxCuS3@;SJ9u{X3KryrRCmy>m3*Jo7oM z{sZGI3pFGCi|Oi%S6h@nxz5GouDcOCA9xL&d(C@=C5b3^5ArX8kgPByGbSg1iv@r0 zXfgukVg#p2!`{)3ax`g}tqE;S^+pdQ6z_hi4$$@DZk%$ za+j#4R?Ty;<9C1&I)Y{mHGVt>Wq2ecrYOW)bdCze_w6b9LPRDxh2l>e}c*eG7V%6!+hf199$IK{!QvQ6J!Gf z3t2CP?8xlj*s!%cg7&GZxC)cgyMLDao|9dRw(RB>8`!=FY;OR8wy~zN-5P08;-qX7 z5H{;=Z{;xxHwQnSHg%L-$=Iw@i4O%Q1pCP4&?))*+)sY>alBsckRD5OP(F@eXUJbm zd8N5>&OMcrbAoBJB+_}XKbJ)ZIOS7A`wFAu9@kn49J+09<=InOU*dP{^W7Px!t`D4 zYwMgx29;&|F26t71eEgHaoTfN`@eecw+$ArP|xN441E4c)DZim`-tllu3Vu`N6{*S>kB~8>6G8v^{-@TBuZ>mEL|rWWMqVp zdMk5v0)9`wNBlM&a6_U>uGUm<&YIQ?9$R;m>t!|x_Cr4PM-6Hgl!mjC8 z`Iunavgxi~!Y-#Hr|F-HGu++oC<;n7&b7wF<5!>b8bNOGeox2ATR$z8|A0hk{Cx9g z)Wn>afWTeBgq3K81hq(oAGI%d?Xoai-8DE8Rex-%k_PxcVGfV1HKmdn$Pu^B#D z(Aox_lM=Tpte)X>q{8e*rwZL8bAbFSmYp0a+aBMd+|PP7RYE|VyKl`jHxev9MgIFSF?eCG&akKWv z*RV-szn$C3-9rPA6b8^3>R_{YfH&&!r5NcXicx);A9OmWcVL=WRIH+~9D1b>0Tx)u z^WGlBn|HG0J&v29ACHjn4=KArd1~Jw87=l_Ud{?!1 zxj{+mvy{g?X4x4HIH zO#{zs(#~Mz524M)oM!9KudS0~chMRWI*_t*v;t9mqle~V1MbnX?0x?Os-)0ONYYkM z1q!+OuS?3#51}61=Yj>3YejGbL6AbMB zS%4w>fm<%`m2KWt{3Q_zPuRcIh~QiX{<>ME0Qpaz}(LS8($%`|6k$Hd-6o|p`@njq9FXl!nX zWB2YS1PQFh9KN0Lu@`(WyQ>dh`8fEp*1%c`@4R=pN7!$RqhB+s_P9-RtMuyWWGSzN zBLotEaO2)7%i;2_&ug}$aI?qZj~VhqE+P~0JI z4~nV9<)17H9;0gl=j%QvVVw1vvhWM0W3t9HroOw!! z8(tPIy1P$i{k~gALiD7W@bgObv8ii@M;y$SPT}-0=LIXJYK4Q0Za%L+Tf@6t*>fgG zn)CSA1Etr%iHCecYLCDjXD;gvLe-Re#>W_kY_HKTSJ!Mdz+6KgHFEK@JmK*ZwNa&E zh_^&pw&`H8+|Hf19$<&j_6}=^Mfgw0w9ye64a<3GNd}8_)we;Pqx(&EDbaF&*70{J zvest=jGdbZD2@ogp7WSmwdxLCEji#Bobw{g;=ZS?hG^Y4{_??tGpM_S96BYXw!r0a z#zl>FAbXfXJR%_3@@BShO6Z|>UpO0j7AiJw+wNNY0D;^F=3xQ_#O%wCps!0lL4*pG4u2Ax(EHtVQ2*$pcwFZ?EOyk1kR#aj7oWaXCUEG96Mit>&t> zw$^>-3vIL63$?s^S1BkExM){9+bLwMVf2NT+e-Mk>jF&5h* z-0CDAR68evgSsAkZXhX3E*8wx$Id+?^_lQf%5@|mvu)z~eOEsxfMrAbc|efG8iU%w z8>4he^;TKAocl3JRuc#ZR*?We75H!<5hO~L=tz_v(j@6_chlw4*=6c%B{S>yQCBq? z_swU0gw-1iDc{4%vo+qOg?AfU25nj2*N=;1(a%)4muY9zDC@iFi3{i4P)Gm3Sr_Mf zV%#tJ+qz^c4^~<4?nAMJ=Bb&=M-KSpTz$EER?F@5IC|MdF5 zp5?Cly|7*xqlMvAsz>?k_KsAX5b6YN;w@O4ho-m&gb$LWyp#eGcLD(bVC0eMJB|rg z;?u}8=tP824j09$&{oLoR+l1T{tL&u zE-3vfC24R!Qo1^kpza?x;0rUj(6r}FHH_PC`Q;pkH171rL?w*fI=Xa%f^Dx)Kw0MN zzaTy24rA7E<<2xAmB|`=mYpf}m7?q_fU}W>f=aj&rv!`e&x}ghP!ewwXw;b7*c%== zFJM+|dMPfmhC9)nMjsWprEex}MaZ~KC7-|aXx%hslq5kHO76amr4ZHcf#uIM_4@mD zr2eGHols_?tygCY1l?F@D4*Hngn#2_W7vfN6qIJp-Rj5lkh0zz>o`~&3#8b#EW>cj zd~u5QOgd|iMVtJd+t*JDJG4Rq)LzftSMebKrBp7PD%y2rL!?@xRf!Losm<%Ef0()U zm58i2C@4VHYu;3G=`)HS%166kP_aWR)aLN3{gva5e-q3m5CV3*mgSukqrJ!jC^IIg zvy0iu)Qds(;%{>nwVMZX6R?Pez8o~M2IrH%D%i72Uh>49T2WaXx7pW@=2fxVFqg97t(Psi*rJGO#+rBT_X z0#5=2b>CVkfO*8g{D-eC)6w~xtO#xHR)~We%y5iuM?9%+*p!aNrY}Z$YsKRRWQl8d z=NX$6iRkgv)6YtfpVnom|6rSu5G842CP*pkbc_goG)Co8NP+OcZbN%ywmiq4=9uQH zqAHZwHZ0QA zqfFFYS;$8EPr7luP7#azt-sp`cB67B*>UHO8ox_MJz@9z8FOov`kLbWoaD3lox7U@ z%J}?~juUzrYL=Bv)kMQ7`#jC6f4FIVz~aGh=J9uFYQ7;?>1b`-<<4w8-yqFNUCPLtj@TyZ@nSG3@Q zai+0%1!ybnftVhw5QNKhP4)-5*PcDbr>h`V5$Hw!18xBqz zrDM*PMC!fRDjUY1UCV}wt_c{pbbRMDB+uR;D?>xib*uqujP1XAMhVJXoi_qQmdyg6 zXV=ntN{*ij!k%^W=^kCU(uBMBNS<*k(WN#lWY#^2^nzKs?U?~a`4l-rBj6=ji}$Akog-kJ`WTNO{}A~nT_4@^kd5iHdOcM z^I#JVnaZty-x^$2UD*%wiX6Q60J_XSh$dd|W+o;Vi%&oR>hB`-uw`y8hcclyPFzY$ z5>*g2sQmB7wsLGYd83;nTjm$s8`kyV`hmqIvlBSxjUMy>2O2PElIU0yjr)Wx_8!QJ z{l7ZP%XGsM9sfKJqPd?&Q=<#EFR$f6RG!AzrCO=+Gdg`&`wgvW7rb^f8Ohw(_WJ{3 zQP;WLp$Oq%t#l5N^1o335@jC}+_XE*q^St&o>fapX}l$uw^7 z9B(|JFNv&OfWD75dwaw-9-)}}2qJOx5JGbPnjizmaYW2oX>6vN+Y{6)j&!iRsi%p0 zrU7b26$eNBn2X%GA}8h*e$dm`I)c!5@~~yoZCIqbn7o*^p&R}}<`K3H=SuwUd}1-C zbXRhNvb((X>AyV-?N%lAk>)p<`cpHI?pieu!C3!#_3PqgvQn00#%7rxC5Gh?YGi*O zD>3#s(d1c57{9PlS@Z8M-ud?+2C*Re&S;h0ZA=QE%tw*3L9?`VTsRXmSYIJDdh zu2v6Aw1mmANnom8tYa+UI|P8;cZH)%mHcxBw-Q{2pc=DDHwCxtg%e`VntOMGTXzD} z?hd^hxZ7SCBYO6U-*Fs29hMiw_Q4J*n@fP({l@(M?FzugkXg#?p94Ts7G25W6uM1o zHucSbNt{jTz5HX1P^s#`)F9>6IvuVxoa0#RI)(iXztsX-pk2v{e?h>!znJQz7&zX&%tGhC}0!f4q)HBzgGW|;gS`! zYqm8|%28PgdI>pVvWa!JEBU^u4Y_C)M39CvrZd_J@H3C@Oojr2{td}(Rx_7B?QUMY7?u66S+I1L$wu)^+r ze(+P?_gGxwFmNP>y3A`QWyR!^-`R4zeFSP1R2rnEHSXXx@f(9OMGL(a3y5;Ik3Y;!c~^24()bGxA< zVgDbAo6IXhq$c``jsIpU0%oyI7yC+HaIbffGE>b4HIZSMLf`|BfnuEBt&q+S8FZC& zea4TfrO-1LpTvuOBOf_s0$`<(hm~7~|0I&vPWhK>768OK zql=i}NKDOlo#g{%ugOu@a3ydOHF*pDLb!VQyqq*{iOjBIFY$E=C@9^?!#nJ5jW-un z=F>8cpJRoU2a)5 zsHtERK=?W>Pr6i^>ER;Ro{odDe`>6F?;wW}A=SBuhi!8tE{;jwj9mFbHs0JDHS$P4 zQqyI-A=CtOh9t~1=C+Q6ZLi5nWLoK?*)Hv9euPli)0#ecdCH%d6ghntYd6$e+4N1^ ztSr3)`C(~!mM?aYKuXE9u@3IoYd-NJjieWG1{!bP*odLr0lu#Gi1)6Kg83NsU#5q- zefukFNHUg-ZNK7Bw;?!lXQ|ODK@=`qdym!n-R7r6bNwwd#-Q%-+S2mjVcsK7TvoN* zV-4E+juu1yph2a|I#qAUazVcfO|)jFK9)}7j`McIf3iH}t7X^QHy~a&b#H5&5oos1 zZsx*l_sIF?otg?ro+j-t6-dy{^gm>uUFb~SvYq)H!~rqWi=9oa%BcPdpEG^|y%!^%QJ zH-_f&uBgL6TBdRSWY6L8hH9+BAA|#XJioa{dr|LjQVXtacIIbg@v);`p=|Z{)9Upo zp}knGX%(}hcU5d|qx&1esR!g`bd#nL*D=s3U7_jBTz7hR=152VnF_~$_Ttz9h6#R( z4CwCF!GGQ3o^u~*#BkVBe@Dr0qLcr;>~VBn-TgGZA_lRT$hj4%swT?4^oq*^={Upf z<%7z9FRKo@2*sYozn$~m)0A8#6J0pnf*x2u{NUg_Cy+XsoA+3usRh@|6J{?Oonj(r z_c@^AHL6D7zymI5pn{SFe(>)d~I>JPho)~{<=B_|msaKrIOm;TG zb6v|Gyhcb9WMaKGZOI0dp<)!(^LX;GB7<>guCVC)%+KNs#otO#K_mn>iI%`)rGK&) z%+%^zaIg*AD^3D&m{cl5(B7LH7e$8D7ZFmcLch+@K@NfL$gyqP)@aP~J978*2i4cY zdM~8JhtOR^^^=Lf8%~X%+D}o_E4lWpMf#?s6u|j5SNBTV0_ldUmTA^dVOXCx?K!8d z$W9YXTE&b!re!vE3ZnmfE`HF=nEUD@3(w+dimSR!kT{GQ<9{S~ttozml)o#Wfl>RZ|PEDr)KZnOs6 zh3|Ne*A2R;z(s%+Vu{)@k!11>psqISF4;GIfcGS{H}vq@RKlj^(#iXkJ#>qrtG{5; zIVu;$$4w#!cg0No_eCdj)-@NqpzX&uZyqSciAMVVcW-HH;t0^buH3O$ zq%Aw4kK=4g2xP2aAiH&t7gwfg-!Vs|TdRPds;exs1Jve8?mLOV*|}kk0`yE^( zDduwezAy-QbMZ6@viCDeGMQMJM3+1Imhi4C3Y%%p9dJeUV9hJ{%OaZQ$raqL3QPu* zSJf*A8CY%C9j%_jd)NY-C0-+k(wKHO)hw1heCg%Y7EEe0gKEa`ub8|ZritR8x#$Q= zw>9-a)RD6^Rq21`TusEkYL^bqxw8r*{(Q^4%pK7C5;WN!GiNrz@$qc<(p<>;s+GiY zC;_+n(cJB|zU`ynNR!)Ti2!+{zL449Dv?1-8yS`{o4IE3L}wp_0M{v${vZ-BiIv?? zhBOKN-2WaXwKKW9MFt<0cQnTQju!Q-txV=PKrl*B?gG4{LUE7#CJ9!0@mZaF84g2X zsEfX!V-B2jsWi2VcTpG+IA~RFz=ml0t$|7P{E3E?@A`sTC>!$B&h5Iz?=F6-rb|T0 z>l;exh)6082zM5+|7?=Zd*gagqI{6j>%Z{4N2CW24xm?YNUq;Qh!umnPqWXTjeP;g zOLS!m?@9c7lzYV-7U?S^Il!bgqnXhG+t#BFugTm)2F)_}A9!Q8a}I^KX#(AgPi`KG z60V0+!{GV^%NIzg3APu`u`z;MJ5Ja&iaXh);@$vzTFaCGtUG{hW=sGS>}0b1XJ+gX z0BuARt!hXp5x)iBEjI~xn29UABD0ZX$ZBg{+PzyX_j(qJ7(MtB8Tz7WMy4&r?aAHL zhK3rmMK7VugbZ8b(MIEWn9OaUdTe0?t-X$;@l^ZBubb=WsQxaVi8{O}b&5hS(-)swk^eP8`wKZmwvv+|2D7;61b z4U&>rg1X=z&Mn&h3Z|x7b&)wAy< z=ds9*KNQg{I1RLDt#!BKM784AGT1Brj2-c2%V=(MSEldK{J=FD{k&IYt~Youf>6~v zSuk7T$yEkCb4hI`d+f7&3lr>vw&YtP=6Xr)p2%Ff{faz8$bVG1$Z(zy5vH_&zCSgN zbMp0NXueo;%lxZ+?K~Qf@qjqb5x;}65UBE15}T~#)Fu;Oe5gJvWz=z-q163NbrnQ?)v}fU zv#Y#2h~wGXy*(7#u;IIUnb1K)j3g|9kmXHP*p(KqJbF<`rk8Kv2T%-Fsgg~2)m?kz z5QH7@ReO_8tLie7mG3!&*T{9K4J;v!)A6RrRS|o^N+*|O6I}4atRQ9vp>sO(0_yN$hr5A>XIb~lpTvHKjc+^Pu-)V_-4W9IYDl}E?u5gdj z>*VoMk*`sYYD}bmG9Jk8hJ^^mq21G2$N55@tzUSD!-fm|2!l-2D?a=Xssz}0m&jP_ zwR86we)3R>!|zsyMzc8K$CJ@(RrzmM`0_a>l$J!I3?aJtTv3q0!$1q$Jbqs3$$C&z zO}M72E)xR9V}V|KW&_uzm9m+cnnVJ{zeV@gHez~3;^n6Hq2Bd*M<`f97c=nniklXY z277>IQeZ1;r#x&8iFzOJ9wnNUu_Jn-&eSXX<+y$*&X-OSNwAtsEdC*#r+)-Yl|l3S*I@{L4)* z>q@UsC+Va%41f}L8PUlyO;CwbpE^wDCkI?cn+MyXO0c8{?S32`&dv}4x%PCJ_RN0H z;h*Iyd7xGy%dH9;YUPk;>^hxn3lyLKsej{c8FIzkOZKwA>@CVLU?bgYKE_M!#W$v< zWnn#)_NNAVHJKVkdCy#>t^{O}z@_d~jh(JmCERC^M3@xn@*%=DdBoMUEOVr-p6k@4 zqhH&!)6|Bo4CbczwnfEzo0+eaxf%p4ipY1e*FbIfhk;cL$R z^Db3rLTfKg(enUGm{ly4R~-DeyW0^c{!+$=m}KbjBgC-|I{+&i(oq?>e~J%y4Df`s z44dpFEfDBYItUdZ@8fZ9CsRL7+N2n?cu_}v_8ba4Y|(y+Dg=PvwQ+V0s7bGZBbCu3 z$HJNf1EJ6Ev;nyBv_G#QTl4tUQ3Uw-LR^p$E8vj4rUdQg=G|L1SsOI96F}{A#S2Q) z8t!zVZiy@E>%D*@8a?kqj_qqHc%^kb;!jkgf-uhLFJ5O}NN)*Bz;0%isp%XsWH#>d zUep7BqFnS~8Y`?iFJ%dy8qtT*h2pCqL$O~wan`z@H2oL%0#==ar+CQQg32l#AF!OO z%9yX|#T+1;MA4HqUGUV_{`^F#j|I{3P7mmX+Or(DX`mIxWId8ut+_@54bch}gw%M?umwf@9knA zC?V)Db3y)K^4f1)ks#|Cq~DLT>8vSFuO{6VUC^4>6G?II3fXp#_g>AY)DD^Zjl;Kv zUI_)Xeeh>KO_~~NalMI{t}vCC+@d@P_&ZKrj-*h&<*9_a2K^!-0~1bD_pf6g5i-8C zPI?o;gu(Ur8Wq8%QC|`bE+UDoA>u>FXSD5!>-wMnk&brq)ols7Xj0m_~MAZAiy9amL z%@}t$mT_DUNY+X-@ny?bNT|I@RO zbA@R~8A>3K`OeI3O$HtslOA6zh1q6QGMgLPqJ-wsJM3n-A4$xH=!e+O(Sf6wosapT zk`)`8@cN_9BJepzF;7YUJW?FSPkT4|Uf}tR4F?aM3KF6jh_3=x_psd%=y(h1Fpe9s z3ipZ=g@7H@|JoTmj959F?A;=2u@%7FE|yZWIsVwzhYhseZK7e3Z_`HaAFX@T1E_K1 zF_o{YU4*#E#}m@TV|_T!)WUQjh4__lI!N3W*%lIN6}3t~z- zdtv{Z;FBnGXlh7V<*xy*{qc8I%TPH-q{-OBVBEb`+^@7#;rF;I8?diG~pv7$&^aU>CWJ?3+riX zR#=$k+P28tFrk&U;7rstIPYltFPrfklRHP?$~nbA4CI48B@@V^q0xs$#=?;5k1 ztMe0Z(us&iyVB$WPpQ|OwxPiQuu*zeu3eoMp09SF?UdluOrmDp#63}62%@OA-$Iic zkS}+6PN7RP$_M4`0EHMXa)waGPsImzd@m{Z`M_%`Z}2P586iMVpFCILKP^<`mfDa z7Md#ICvUCIu+@}TDCrZG7ifhf=5N*#se9-?$y|25Gtkk)1GI^Uf_6ys-&K|DKmh~T zt^B2sR>j)UXx9#c++cgDkP!5X##Hi4cO_WS+>pNU<(WR zCR@eI*lI$f!m&zecmGzOVy8`zgtMnQSan<;Gjw2vHvLyOR0XmiDqg{o~9G zg9GoghDe=FmEQQJs{o=bAZFTF(5W!A_2#Tkh{n08y`a}Jt8dYu({`L&0L+|-LTL=P zA5S?QJUzR+R={^O=}oNoN_AB`fu@070Hvxl4(0#)^iL6A=b32%bLG)?tI~CbrWU>z z#_uI1{9$ZvN-U#wBK9zHNDOAm6jX`)`R9l6KOmTuPet}OZuSoXeDyve-nrB23XQtvBt;FS$8mkCUNtA;>T zKEf}(=(iw|O#V+>GynL1lAmY!Ewr0p51pK&kz5^jz+Fz%x(Dwnv@v(2b|Cs}*>5tf zaKfSQ2K~u&PB7p$$Q)b&4KQ$8p~$&c5t|iH)G(?dd*pKrVYAt43LZ#6icFoT6?mw& z9$Bv)x=ch{HmmkyuM49+igAUN8x>zi6TaQ4SbSgDCk;3bUdDhW{GG#{&vm(x{3oG? zN@~LA4>nHwCltM@uMhq0bwJTrff zzT>JdVn2H(I*ss=g!l1Awr8Fx2@>50)yQA#jV&jT!;a0QSoyIvA1(sW?!_t`Z1@G7 zt`hE7VM`LONWF_ZO_RUqv1O;m4E*{fMQVZzI!iHl^!Ot&zm1m4lvZGGqmA`S9;^49 z$K^a-_x8=M`^qR;tm|ywwF5pUTE@}HZq0seOdEXgZN5#703;1dSF=Df*kS^`E>Ms| ziKJHASKKEjb&AhmP|(x`g1Zx%bd$Qvo;clZ#NcXR)GWk%8;`N-en-0A${X6>sbV1b zLq#D`#ACM*TJqA z>Oo3?W&cO}GR4FI3H%+aL2xA^pDz&V963f^D}qgw<_AX&IgW_qEENLc@}yM!Vg`R^QVq;uVLZm6Ay& zgLvehE>3l&-P+%WlfM4dJA|ZxW=$ea5Lf5x>C&R-k`4iY_NQJ{)Ep241qg_X(Dj|R zfO;V7JKooU*GN?L$WG%l2IZ{JH8v_9~1(drRT8g<|~@%dmE<4mmg*yl9+ za*HbYQR%|3>{N2a&iE4|O!)9x7`axgWMesS5qjVI!)J4B-urP`9CPh`sMp$Ak{ z=F9#0vk~(%!)moION40YRR$;FfqP`nl^0gR?Y{&h8gXuqq??ONhD$PeHPv57a((N* z%Y)CM2^q_<(&e(C{ZOh`Vnj2Ghs{sSlGPXY1X8pAGF5U}cDUB~FI#;tVDtB16pzv6 zh>Db#7GKY}gPVipk*K0II;C};4>o)4x&qj%{>X%d2CSWG^rrdmk#N(H1tq5)&ahH( z^`_eh$p}jcfLi;#WvIlUzlx|#FfRm5BAKHFQWY!iL8kgoc!H)J{~}C^uC+ZQyI%$P zN_jEwC#6(;NST$pl$HWUm_I_HdI~*^LtHAimD7I+6TwmYv!)KOx?Yd)0Wci83<7o6?Kh zF!NHZoq4OgA7mlg`Q+2s1hEV-2RzgtdT%sM-?xv>ro|?{45!f?s(XpjaPN1VS!c8F zO$N!ICufRn9}sdIDt=w5vndP|D)o`oJ~#p)x0V7+0Gm4hvwcUrJkTw>^`H0lwF}jw z-ECf)_(~#vf-R(r2IwnW;|@JYk#l0n7O1rjzB*fv&@lZrX!wza3wW3liWMLS!8csJ zp^F#GawJtLJq$C*n@5)A;~0W+Q_>xC()F}c z`+cWeKUaZz(?a_zUGIzClJu0kk^T4QT~L-8w=KRt0MRVJZm^x^ohg-M_zhEY?@Vhr zt%sV<^{6%<=XcVsQG2UT1HJ$b`U>P)6;5;qr2YgK*Pmw9zX^nRuN3sKUEi4CEL7Y<%rCkd1>G8eh$KYp@WnXpvBCX9&C==lGNX za64%1NbLz0a;|f( zVus+E*`;gbgV|3_I`oA038#DB>P7E1LG<$f(BdwGjL`Y1P``Ra?L+Ue_@$SDejkjA=s&M&N<;!j7(aJIq&Mv7E0** zu>TYveHr-AY1CyZh*v`WfbA#ewyv$dQmz%@^cDctt%6PzYR+YeJK-NQxCRyP-@QHy zVfLO;fO9v+%~u^7w=`EyqUV(Jq)y}_MN?Y`d!;*5(!jR;FQxF8$fBEwibeXqQRe4% z@}XBko_|Z z^;YyK{lB)mYSCuNV|V9gZ|j7wh+A#@W50Tsl-SQA+F01&(iSi5v_gb_hnaV@>2gb+ z?5_OuT*w{`Q2}ny#-Ggl<)u>arCbw3`UikB)R>u4W8Gj0{7bb2k~UDam5ZdiM3M0; z{(j{aE_YqZ=JUIk)|4B1SZ~%ogB>;kn-Tb~&HABE;zV>;!+CJxg?p>|?WprRaQ;OE z`Mk|K@KN+#ZPd=7teD<+{&I zVYY|fl-)t)U;rm@odMl-d4^Xc=t9KVWW=LMN(frqEuP4I08OMWxxpz$YG-G@uNH|~q_c+F3H#A?&{3T>%*3{zAN15wU z2Pf54WRZUj$Gff4p{48jX!S;^CflbImo;y^TB#rs2R;b%tvV_%qQXfXrjca!!I$&(|CUeUWh$lx zKlj4wU3P9?^R9j*Xp^fmV0(A*1G>33AEH-|eM!%Enjj3XDOTUhlZirY=&7hB&yO%r zl3Zk5*?jiM`FLJ{lqJb5((B!Zk1BaT=AMCl({<7wR4ngtbE?xvexc*Gx$I>Tkf&4d zD!?1u5XZ7UWJPu&8~6J$$+aWdR{ zCR>`h`)f6La{O63XH$=LnPo8qIyM*8{9=g~A(9-pVaIg|95nW{%#t_og?FPm6Dcb@ z+bV{YX3(*SK`@XYTR*%ero+vD(}6fg9xvX;q5&aN=fXQBJ!3!N8s`_!CRq$7DaMk^ zsO8oB(L#%YTziv`6X;M6H?aQ-3*Cb7jr^ttY>qVBh9j(OBh70of|}UU3m$dRd32a5 z9&N}^Sa*-M;CM+tjk<0kL8VQER@{TtYF^()=eS*kVNqMOllfJGfTJDAR%fHYZLyHdv_22OM2yoJ3n0k-!9V2{` zUdctI_7E_|;^5sm(tE?F8|%-&F3MeN(`_UcENVhMeDdXLQzN@6fRZ#iy@Vy}OaV9d zVk6JU(gXN(@)jc|8Y@IjRw8}8BU?1Ke%9gr!|=K&;UCDRto@L3IV{*UmSd6o*nEy~ zh2&dpPNad@p4k1j=t;5shnCoaI^7fE8@*1u1^uh>Lai@)1zfO!N|BxNEfKapxf}4` z3Xn?aJleS*j|v2vLoA|KDWLe_lvi)!PqR7-*^X%)eI9RO@{Fk!JgQk|mNbHYSVIU^M?SzW%Jg zJS(I>YuZ34PEr44TKcb}BgdZ29oDeHEG4(?MjVH*w%ow*@aFm-ji$lwyvLzB9$cnC zzj&x+&Tw^ctsyo{>f7taIsc~G?JGBhK`e;nM}W=Y~M<>m@IBtHfyL|eKr;Djss%0Xu)`{?TYoJ zPFW~9%w3n2KU^7 zw;&cDCR0F<#FLTyP7=#dDTDrJa;H6d0OYbFR9i^BbQVmP`1d~Gc=E$Ep=S{o7>it^ zA0XH}!c->7p+Y)P(`v$T*fzbyr1UaWMsiHs5|mI8^Mm1*&j&|4qHP0|sOEI;)}Gw z4eU*ZtbEqD;PAA`SDZZa35<>YIs~@%p0wusG=wa==Kasufd50qI)y+kL>=pt&g5p8t;Blo^E-j0$nu9gnr~p& zdoO&PZe&~~p3HgAVE`rRzT(~<+>7WRXd>K8%v?;Gz ztO%`^qP9Bj(U=Rp?pwryHtlzNiB*JFExIm!zUZCBiwkS1U+Xt#X%`3ASqw+Hof^QW zy@zDn(P-D1>huk!0diXCf+>z%xbIR8Z>ZmJ39M24=mxk}*8s?A0dKnpR=Sf2POI1L zv)$qvikH}Z-h6aX29#qPjX1X}Ig!FJ7=?AbD*70^w1wD`$kkoP_P}^puo3PXR2yQYUTa~kPZeAs zK{Oyo&59g%}Ss{743SX53N3j~fO~klG?%&E|gq z9Y^ilT(f&~^TGo@FSd(HH9*D$4o|x;LXGbJqPDpk{x3{Ewh!m;JoL#^rN3XPp#k+r z6}bDF3Kp&F2Z5&QEBM+yRi64L$xB&S^S7^h-C2~Xfb}ark;HJcyal7j4&Itorw0;z z`C%&QCrn|kwak1d^Q>)`BjPA+S%jV6XGgT_O zS>=KYdU**tQMpIAk}h@t5;)H_jvIqRl*coM z?t#@9bb<6lzCzt^N;~9uH|9WXEJg&YB4yZK(I*C6tNIVdV*pGQL|EcS zOh0E+f?k+3U6Q-^z}`O zIwjTjp-5nnM_H3LGFABL;pAKpTWSR#pN}M6mLsdN(xm$Ny30!l5)!0r!UOmm4Rw1d zPCDj5RLMhoCv}yJWGg8zM8GR%`M^DNI74^KW|nJ}Hl=LNF4( z>EGHG1mWzyd&!pOF(c->i7u0-T65@r>a!h45CxEz_QiCk?Zp(WOx>+7_X^kc2l@FZ zm!y&?3hRNrRljTNXYmDq#;F-CBB!Ja1dhD2+->{T&G*u0wCC6%aW7q3sz4zY(ouAe~{J#kt6nSWO-N{fp4WlDp#Qh$*uT z6M-9*c#isQ-fLyqGN>CycP8(Bx_Ym^A9L5*H0#q;l;blXEv(Rij4ehG+U>_pmoTas zcKC1@j|xdS<(lG2JzDdeC;~;kw83$zHB0rnL_zA)@VHI!qWFCiST-#Eh@)Soz{yn( z6c|FvyEbtB6x=aaVQ>zLY$!djB`p*?4XZxUsxVt6F^=^8OqGB{v24tvjBPj+wh@k? zRF@bOdbeQBn_orQ0tO_LouRjsS{2=j#f{bMO;k(`U4fFHC7=SzR}RF#HQ5{m>VJ}X zhCGqCM>fPgV7}+>W4*-8(L?K8VT){E><_LaOK(sys5V$B9KHe7>ia%7r|AuDyKb)D z-Xd5N2XpTom!{hB_Nhdn-xxxjJlnK8%c}b2rhaU6a&RBhnSEyzfY7*}2fuB9=~6Pc z71(|cwIz(9h(N_>4TSD0c6W77}4@qb$2-X0Jn~cc4u7j3;5T<+`O)F&hWQ=y`!+4QMC$x`FXFxMtoDQ*eNI z`6w+zeZL?AvFojQOd^$ZGs2hKiNVq5z=M=y1*l>)d7mNx$QYvbY_%SKI5H6_#zSA? zPn}qG<(d^^LfcEjvN8SIa46%lq9NU}DOaqy2DvT`@6ufnPI%i2(iXb!Egh}GE0PcY zI{TPOG7aIL#z31;pEllyS%v&lK@6bLd?%R${_m9=fKx4Ouds z&YVu__)NWn&6->rs*|&43-b&0>WG8L)rw|WtFhFdEoFBn?|NjwY{GWx>N7XYEl&%Y zXPr5YTuHHr0LjISc~e7Kg z>;|%=|Fx##>D@X*!D=kOaiQOO@CG?st!KA7Cfj2^L%0b!*O3F}T2jd3pvWj|9@T#n zjtPe+5<_xhfoN|{#cx?dVqUic(R5cr5!-@<7bGBm-#2a1%D|c0*wgiw5(#z~2B>cl zIBoaaT4kW{z8)Hp21hS9r5r;@I~EIfR@c9W+?c`EbXT+nT|7QsB~i4MleLx0$R~q= zHkayhqbCTz+X~!zlDjaZqrHTOBc1Dqh&uK9CzIw*!^6eaH|$0})7H#;)F_vGkEOWcnQGy=i+5BXnT~eeM;C z(B3%DJM`8t@f>?;72ypdyU>VZF)<*osyhZ$x1-w+x_k$_q9ig95gXQ}cB+?Ul(+HLAgnI^$*JD9nThDpN@P-_ zw?%L0qEv0)_>Rn23I>SmzbPar`dqF9>Idt(SgR1>LM@!nd#!P3^Vi!=VAV_NUlf|> zu3zygGDi8AuE|2@FD!uTW{>k$J!#mqJG`|l4L;Vk`*7<97I1W^U%0Es`5oG3t{NQMzV~&#On>&`d#*04_zP< zyA+&R)M|@W0Z>Wo)N9rERair2TfQX>RqL@py<$(XVgAG3*ZX67Um;-Yp@r%jt)=^8 zVAift^GPR#=^3ps59VErLlSI~izCtH(t_0$F}$NU^t-+FYl3sWhYI^tFQC$`JEDbt zE7w?3Jl$mGOoKo6q!5P3iydERmCXoTgjZ+E=IIn0W_Z1NfL*CMxtCCkxJZJ2FqX{r z;O8ReYh@s3b596d4*rzw$9b6EL%W+@$w3EVWB7C@Q(c4iEDpK{y)NyWA3ZdmDlx;t zKe?jkt!9o;1MF0R49Bq&>)@`2?EXmu)lfMg0m>S;c9;QFyzE1vg@Vpwi9&8xox*fR@10FNaRht4hlw-yoi}0tp)3Awy(9Q(O;F*%wwv`aT7YaZ%?hPcaqs&TO01ci^T|4iQ?LY z;Op`_X{~+>4~LK61jT<@C6Ot44)|Pe;ziB-{7@($_Wfs=_G@}iB*U(+AF zvN*@!w1@Y)-;rxW`zt7x(uS+Zg{X$Jc4FmrSV~$WhEAK_=SoChUDGyw7w%G|cSl1( zf3HkLnSlYmM~HC!1&@c(M6;kxsbVf|VVUORg%c@G@RdH*6CPBO60ssqC1(6$<;%+-!(>B2*OAU&$Qujay`hA4+4;fW zOAI8R$Bj)$T_o=2sM3SLQdZ!r?h7dOUQk*1J;{780+Iv02bu2sYvbz&YlEUXi!CKW zSU4DhzY@6qFcN=U;M8dV({xBIDUb|%)F2Z@?>euQ#;72&_2JT7!6xEM9l$mME<+c; zId9!y*=A_1%IzN~4`CZgt{hb(RZ>%oX!eR(dGOD*qjWhSFNNJ>%!y<9cj=XjMtN+{ zUy;k`=3&e{CJ{V>ueY*MR1)9vy6n<`qJW)E-|UjPR;1ctNStW5c=OWvE-HJI646e* zaIGsYNBmvZHNlSErD#a-1o!S*JzCfP2Q2)MziXNLl>fc%gaFqxRn$AOt!o<6{$AYJ zc4{-%1TBYE+dxJIQ~0SgW0{@l5Bf5$7Vqx->LFH9X2);EHbZRM&&6$k!~TjWiaKe9 zNdwAnb*z5V`x$v7-g*Mi`zI(fE8EuN4rEP#&dLKrF`0Ucpfnpfxsc}`|qZ=Jvt?a9}f0P+{g9PDk-Ax?@t$!RrjC`B3Rek=sKKqz#@8@=k zAwzIM(A;@PqDI=Fi*{T~{5cNg9z9oaP)un%-dKE-LD3ylUi-Br+ku>7$?;QgFzt?B z<3wKEi)Bbz#C7W$#*!C(-}OLJC7P;9vxUK;&hu&aGni{b^2CJUbKhWxTiFax=Gy7(v~#v*!w5qM?LKoe zrl3&Sh%4cNTC$)rq2aG)J5@5o(gmpsnC$mP7*9;))yW>%Wz9zPq?WtV9BgHvmGt;ptm^!m36ht5hP+Afp{Ak zH~r>i#C01(|FJLY$lXkcPe;>{o|I>d_>GE!BgUMDZ%2BH#`0qqY*X90O73CEP>OSA z4bJFOReS5yz2*NT8QFq{;02s-j^ag7wy52`#ggRG@T zetbE0^}ywgM7Om6(u$^87SpBzV%=2(e+V!2f89}Bcgev;FSmwu*I@Fg1 zx};`0%7opbjmQ$v53ge3gk6<&u^{m2+ECG8r-bVYB5^tC<9ht~S}&R@=c7&!AC*w^ z^SxJ`sxPAU+{J%1k?RUK>_XldNl0N>ly)F>nTG|^`(`|L$Bp6@x_v&zE>n?GUPa5# zJr5DZ2b}cPYQ7zFO~I9ysdVncUX5MujMY608dO{&RxDE{~5sR#Bg;JJ};VpIW`?#YW5gme&`5 z0Lbgx)ZTCsfzW#Ek@qZil4oO1<6&fD2I5m7*hq+U8c7TRp7V*84(Q z@MPWlUg|<|8YNYiv_gCR@@jz|=iw9Qxu@N7 zZ83Ix`*ydM*$)>?3~_pO`J(WO8)iSIh^0$-Q??`KM+&>;7=0?ohh`OEW=?Z>ONdsK z57ThXH$Cs&V^YwCJx+^rCrv0F$Eb}mm7o1q8?w{;IrA*6`tuOfLtPRe{5)PxpwF5o zunIF)^_Qi;`Ylr0Q>n?foU_ChQ@BGE-g|eT_%W%1`2)fmIAxwT{w)3X@R!APCsv37 zo=*-X{q^p)i400m^Q)&w5nZu8XAbP0241@-2E~iuIvyO}Ol5t1n|L!#CFbrjICD0L zj`ILF5kq|7Ob1jH(q1cdid5-H|H?H}JNc3+uKHCTwy;)F>CVy;3TeFOd6z^S2`~bn z`uet;;P$@FRn8dxAp0mgIaC7IvLdYX0I6926gz~2#0>FVT~;C8*DGBg*}q))-cK>= z0F}=LU(UO;K0N2aeHB%RzCg87^uFfp_c-(Qi^tDb_Q$?YU`mA)mY7*FbDT3)PL3qt z_#Fh|R01d^06tSiuVEid)Pc~}$s@xe_RHf&U+ImT-*A!ie|b)IV*bth`8G7M3GTWg zC<80hfI2UI>?`$RiXA)51+S&3JkGe2Py{7^@Pf&SYWW%kc6dfG4LCOnvNso#JjQ%( z)jg@@Nw`?2txh)_^mg79% zZ;ui9*~@p+j=@qjxFnW3xC$B3t?N$R_Uk{UoR4kVG$>_iiQj(wzQ7n_q@N^ZI|UL& zb>CECVeGpJ#?f9{W^9cYhm}svGC?sj$|YR-F4LoZqRw&GI+WS{)-n{w^ODKoW7I3k zK>aT@(t!J}N{GFQ)3)`Hc;;+^TKap*WBF_>eBWiGK7}Ddu>mtPHK5w#~BX<&70g8N13^S(}&3_f@;Hs36Ian0+aR9BJG{z+l#@~Pr> z7Ab+Y*j`sxlW*UNZ1j1QD159NiHTR!QL(LacKQxv12}kPTsGD0<*8e4;&dw8GRID} zOgdYCa&-%g;NgwH-g)0A2WTS&BS_8i+eiNfAgdT&?*gxg&7O*%OO2M#k&Z|a`i&KGSD7MLp}(j8zG0xz~1)TIB#qJ2ECdp zI#WNUeD&9$Nt9n>(+$<$2|ll`s?8f&7^~fFxsV^_kGb~lsOgv}`%lUHd!D=KRTLNB zArLl?@tG%8y{iAV9N2a5;=ZBB*rp|+?N3f~ntkk^<=M(^HT{(XHt9b7SNd7N$e-wLFE$*Sv-p(zcS(j5Q7s}Llo9!LXNhr1l@J_^kGk#5dNa3$F|`Mv(B2%~ z=3a)q^*Xrv%<5y?SlcFQ;LIXJ1huM!q$A4>!$1^zq73YgMtMoE4isG|xm&xP+25-v z^N@?!gxGa&Z@MiFlp|fVjYswJ(l%S*2|SLRA}QW-LyocE;#utvx85|eBBef>Mx`&N zcYw#bwx^(#hN!5uS2Sz!#nzVR8%+vFTmfpZ^S8T*F?r{rzJ}DIZI6qzmBcnjmXdAn zeL3&4SOlD@04l?6+Dnx43`v>YsHN_V*Tayho`V#wR&uD$beoGPOoGim=e)_GZ(8<_ z^c%Xcj_b%l(>pvMTQ$ZC&d86^GCTky^;^BrB5>(^!Oy?Z(X#?^q7&9>&BlQml7-%?-iN@U#t^xo8mzG6m=Dw?amhG z<|;u(#?^uJJpDqMM%OWm+sQBnBeyQ+{g!hK-QL>ud%L#g(biGPzN)89hy37{dI2|^ zgA}$lo*rsQg#pxVb<8?z>JmRvz0$D5d4dBt-4Q+|5Lu`p#{~gae^U<9`nnzCgik^; z-Hu8LOs%7ir;2Zr>>!AblPO3P7n9@WtEPE(5KHrV+u7PJ@XEx4u@Ik-xcDf;BtvQ_ z^%}4(ZM+&9dq7NGm?9qjnl7P5*KhN*2gkPd)L zb52vY%>mgEkgYrMC?fjfH5W6qb>z#KFv){2FtT(|`rd?6N?Gp#g1qE%QvhRuF?T*jSX>D2+09v4?Jvb zpL@t=&UW;#qv?c|e&Cbgvys~En@a7Uw9!B5-KfSr+mzZvgwEn766>ZY00t}Nyq>WN z6Y;Jde^66!Rk63I0rF~U7uXB(dglm3yytm@fuR%VbG94BJTYfT?J9ldaO z5W5BxgPOehoTTbB%G1UFvOh@gq=y)mCl`_hw@qJNIWnggli>7)5sR*9l)?#$O8Va0 z+BP(dtwb{^`CNLdM0Fr#`81DHjj!b8kFd9^FoHdZGS}*2C{SmWPQ0h3^GQuDGl!tfe8LDnCl5Hg_;sM?J4uTYhi`HT6I+xPSf`HKSRA!He#EVuSoEr} zYP5dOO0p2?_Uu=}5pV3Wpr!)F=Dfz|V)uEr!u8r1`JTEOL#X0+bF1Bw;^9oqd=6;d zD!!y#9hxu3871=hW&DZi6iP$O(HdWA8L=^SJq;GcLvQeyc7$|Sav_66x;! ztJc$Whi8$NDuK4$kh?rX;CA3>OKl%Hju=dZVT%j!TC29@Js24LmeQxO3(;U|x^b~@ zAj{g0nHx@1INcI&`2g5{%Se0D!CpNP;T`iy`}C61B%@R@u`;mPI)4uqBqI0rB9P8e zk6iq#EiuDJpcY*F(9lmMtYt@f(QXMRpXvRneXlTjJMJQ+TUO@Mgy0WpeYo!w!bj;}F?{>8LIDF^DPW0Vvs&NgjZhiPEqtvI-s_o7LR-P?sf=($tL9TAV zDy={dAj%(fxA$l295eUQFZ2RMmeRMI93&T?f>e8pxq-w7!G`&kxBP*)!tuzet?BLc zi_mLfcN=3Ypcz8QUa5$11<}j1(sE1UFL&jZUAi@miPj&kk#N85opiMBo2m>D76HW} zv#wIP+N|>Xx7PWyajgTBILvJTsEMlSr>8S+lJ8dMyq+F4JyG+dZ8b<9wVT?*7h5M1 zHP+iC`T7_^rW;Da?Pt#@%ed)WF=%BGBjh-}`!d`uYEFl!HY{9_X-_XhXX5BmlkdR2 z28_rHlWhw=#me9y2nU&g*w(qcmD{F(U%RwNEz7Iu=t9hSsM5PYzOwvyR$<+uyLck2 zWDVj<+~tuL{Z<}g%I$h-TR6Fa)fmLOb~%`7VM{=_J!R?K%gVm)$NDq$GcdMvt2mA0e-f-d#5poFG3z778)Id?vXhcD5Aj$Scy>&6*XEQ_j>X$8C*8OZO)~F zZ0pPG9lU#mS34S$V!-X$44)5aI>I*VDjIOyNyK+q5ydkgpPUZgoD4S-)YhoG{)p!E zb5S~?sQqDzu9a7+OQE-LzEtglj}PPZsHeajt9KEO5{H$nB7|NY7V2HXU7Kzl>2>5{ z^kh;Nx>h0rsu{?bC0Lyq_l_}h0?q{#_|9@>f;Dq1%@UPyAlc+B&LUGrCxC-% zkb7qP(TiDVM&RHm-5nOk02gEHa5e|SKHX5D$hMpy!c^gNyToai__wiOUmE>y%uzTI zFn7|dSm)%v23d((OxO)$`gvyH@MiydZgAJL12L$#50FCX9!20yilagQ?2}W=#Bw*x zvp!iYKIJVm9Vl@cD86GmE6*UfzmR4VGFOFHejB93}%|yr% z>1-{7J#>N9i-%)vQ(=?V@fmcxid2xCuWKRRrtgNaxUrq5qXMoBX-?nG;w4sCZiwTu znYGW>#C9N#NyBdrDjBRyr<;v?-xD9H<*b-y8P|kzc3*w|@MOxkVC&=wFHQ%GNx3U2 zvZ4Kf?9{$pH`LcY7?yn>Y#4$YXQWydyUw@@J*=Psipw7y4DG(v;-JFhH8V6cH~Dbt zw_NY0UQW_p@KLw6>_Z4Wmc&-KwT^32E4f2W3~Cp@o`zOFlAWxG2-;%I2t3by`rUoO zdS2N;a7Ae>{wp78QwcBP-PYMzY%+S`NU>FX?Qo5ftL?hxY?>>tbS4#BZ@RGWF*C_w zFEH{9by@nWmKaO?xE4cr&x-0E`vKz0>28<=$D26O`C3rD;*`s-|8Y6jhW9oY|Bx@} zL@b14MaXH*Jj+p@fyq6COs{mhW+elJDIlOs;VjOxnfOpOc)Y5Kug#Khje1u^bh-Ye zpBA;YZi{fY^dr!4i@ecN&#;xV+t(!2QIijMHFj490OTsGnG*4Ozj_?6%)q+D4bD0W zHmKDU^Rmm`#m;z-+p0e2E8!)JgnF5dzS-oxy%z~(DG0K4u4-Qb7XOv9yM+==x-J^s zwUs+a-nX)B9vjM9g-*+2`IWeM_Kx23eA=|-D;6+~@7cPVGmp$arxyoxHO=9gz{cv( zFH=70+R+awEz8SnroFXYS#gIo^04be);B%*?lf4*{uv3Xt@Vi|R zGojmobNeRRZj>7VY@Vq7oQ;(e5%kYKGL>8m+V}3gGiM$*JXIDR<2_VIf14SN2<7as zZEu2o*Uoe~`0h%zz+b%;$lx{;39PQjk|%Sm_R1KCWCk5TN`1xSGw8p0wr%wcp2!Vd zae{}N4#4ho((RxG~b;oZ{xWQqgo-;R@^#GA3421tq0nNRSGbkE;)9vA$5jZweB|a z)>KQWhDsNa_-nyuyH0JEAC0DZznOisF=9Wz1%+aH;8oaB!N{Yxpf~PKUp6!XDuDO?~ zVd3!$cXzQf)gm1iDg$hX01t{Mnbmw9mxes}QiP@@lp)#2z4oCrOLZJ94GcPlT(|K1 zdYWg=032F1u?!n#OX7WgO{;fVma()ndNE?q+fa14FMH94+wI~aaIS5|MW#N)%(EjZ z*QhHcwnsCErrtJG>nS)*Yo zFuKrWn;FSDbFXiBjh8cd=SP}6(`c-^w(r#S{0n^vOOu||5mAmy&it)Xk1o{h4)$K1 zC>JsWikvh6OU1`}&x7e>isL>Wdan#bp@+FiGOV_x+)72ffRu7sG6%roT%}uUTj(L; zwTDn&%{%$>zL;jpM+KMwwtI3``#>@$v7ePb2lbwx*=)aw7T$4@JZ6IJWi0_rh1mixqzj{ zRv^A@5g&~;mc8(1TI`WtW(T+S5|tR7a5l>_ZKf;P6n?V|-vW`K-@?@6 z4ayCyJQP9O`V6a`EQ^|_?3MR>F*=JGi*?vEGI;c39m`?_GUkTaovq~6(_&=p0 zl!L^b4LyK}It_JO;PA(|vPf^zpis^s21fma^9rqLj2j!3*HPvd2K=z=pK)J&aPl=? zrQk#@b=dsWhxeyC{Bzm^7pQt&NL@mcWzgnfttVmza-m{SOdDItdnG|tsEWORi*pNc z_d~vEizrAh?Hbm@?lVtLZ@REgn41mVld$VB_agW~L_HP6QL%J|Ss{W;DP>{Q*g%fC zgs+lz$G*2}`?K+-LU!~lsdv~suX|DH`}UT)?uP2eCD9W>_e}elCCby2WXd~bYhkP~ z`z1on(U8)r2D-&0veOp-L%Dd5MmDNt#GZ~H+OFhYJ(cyP@v2R@ z$rHVpXvv;^h8z;;6)c12SV)-*{AZV0#Ko&!1XN%W?X^oehU3#T9MH`3)xA&Re&|_RvW4)Ls>loKTd3o* z;4d>Zk$$&{pyC4)c~I-OAnEPzFPI93zWg}lH@4d!BP!bK(x3Jz?m9K_r z8MTo(rOdNwGk^}amOzxyz!^zr2(c6QCSu;ZbnlIOuo!9JO`19l!n;69*|qjkRc#Rd zOMhx}JhZs1F#hO*;WV(Q0ekHLs{@FeRd7u zoeo)p@r6^bT(vbmP9}lWMWy*lotwT7QB+v>^p8Fr%}&fu!Yv_}C{IZe#p_wP1P*tS z#}768u35~~Dxz|hv*xZqHHnG}W#C@X!lX)A9S1D1+iU)a6?-yf$g5+7aW-(PVY2cA z-*)dA9b=|*A4a(7>SKd(&Nga;Fvm4>0aqr(U77K1KT>Ds@|=C@O|~VscCnSejp*Yv6TA%!WSg zr@%7D7d#sXPUu&IbQr^KqDXqZqVrL+D{2>^V+q%h0@ZHhWzJLa?Ttx%nc0eD$*SIb zJskY>$B0+_q`?EO?ewoI=Uk-73Vpej-V{+jSfT*;YTlL;kt3VCLo~p%$gD)fshpAN z0tJ7Gzux-Iv8`<^;$f@58}^XN#@h8vQJyX4yeMG+67w62sX1}+7=8^?yIM`Nj`m`> zDkO3jdXmN~UK|xo)RWS;A1=|tMs=F0idknjA%*&i9!T6PAz4m&c~LGE5BZD7H)Ia83C)Y;4b7rjQZ^P-XPz3F zPP)kq^wARb&dp2~m#E=@d?`ozj~2Q_oMO2qFyfqZ85W|V zGQ&=ceV*=TYI@`&bYg^-l_5Q}pq4HHV~c`H^X2<7^fcNgV6`LVlSm>KJ2YGp^@?&9 zL;8(5eZ{}^P+GFBc?L^3EMZ@imbPBnr@i`J%>VInlGaq#mqs%Pq2#O)_pCmTw`+W| z+v#zUPhfrMC#W;h=q7o_TTa73MbI81I;A@8}S%>xG<=Wxi*5EMD^gc`PjS$G)A) zxPLY@Q0pM}F$ri(q8c$w=}&)8IBU_0#q!`dSHu_Z7ZwV9d&{-Q><#@W5Xb`Ewa6#+ z&ZtHrHFY>kgTMcX%IRd0kN}eZimN^ZeX$rROXJt9-nt-TA>7PcR*}E5nD6q%kx=*E z;JEXYfMMf?Sg3$l~?AyKi^2A}5O8!`R{#)h#`}ZC0vhcbDmbY|a>F+MDi0d8mhf{1`oI%+-}5 zKK9M4DOJ1_I{AFsSsZzF;3c<;yLB-AMb3xiE)aB4%-YDJ%CFG?IeAqZEupa zHtl0L3@W9Wyx!_pBuDsoQ)MxBmOepP;@y+Bc$9;-t1SraFco1bAGVSrtk}#l?Thy8 z?H%3q&H1#!c9u?%z?5e1W9(NoU};5pIprCNT@vK$wfEUJaODz8F2x##8WCM`ee;fJ2U1=sIOTNTTDwh66yr~ zAXhOvc&GN@Q1*EUbL^*A@6L^VJ5(=e(CDiJ?@#)xz-hSs3mn zpF7YNjVMgj5$@U88e@(av~TVMo1>unCt4(}%a1GTdIsC?ry5nRs|6(-K^@98cvgF; z?-%DRi&9la>n)m>GaiJoQ7yQrmKC2c&VZ3?Vv)w@#@^!2$&2c?PsEuzcaWpw%2$km zs9h86Dyrc&;tJF{md`X`_&&Xzs?2039fE1`Sa)yIv%TGPVsXczaBOJU4CQgYsL-yk zUZ!|KQLg+*auKf1s-eo29pyF^q(Eifc)+jub6**`y+zyt%cH}g*L8D@nNy&`y5Q2?M>XcG zc(N4X0o>_?x3{O01S?7|9@*h%5~o7#OBHy7Jysde7He-1>|kZ|*}u@2idfjEXv8~j zDd{mSTNJLo7k1md3dVM`LBE^Na)2M81E3dml}ZyVxX%Q#{1mw6_P9Eb5-%I@{ke(# zwGJKa8n2#k-mGktQ;@YWTVqA1fWT%&MKZV0!62Y=V<_TdO-0L?o{dtGy}G^r(0D=# zl`}rG*bBiQSerq7QTxj_W@KdN;8xMEZawI@`dX+_3S9T;@wL}aA3VA~acfyMh2bh5 z9{vMTN;kGG$JNGL5AW;hz88tk#)Oh681bDCjHQX}FtH$D6{5*+3?pgE@j&de;$;|*d=4F=3)>Bame-buFASGJ$VLXehfe#PA zG5N{Sp`*6myC>D>xG2lw90zy#OXAM`+t&eP{iU4#AE|aXlkTE1Cmyqjp)`6>@^3rqSO3M*|G9_GI_Ix<2Bv|bE2fv!Snnsmqj_aI zqR!fL8WRSsQzrgFc+jvQB=3sV;z5f%?dDNLFSk^TCxdK7y{zU`X2D2-bnrL6qz>$F<$bmeKa z-`U91>b&!mrv<$Wlc&{vmn=`K_by+aR{veKJgvbH>wL65-h}`fqKfiQ-fx!b`Ilaq zTzXNF{E@%UsrCV~IWk++tC z{wMU_9vh9gtnJHcUYZxnYJ3H9eFKlaT^$mdl+(hIRTQQqQ zqOeDzyhoyxY>5t0>N>fj%Cd;z%_&Jchvmz`8OoFVZtX)s`6QauOg1=;^T2FVR~vep z>1XcNPo;3*!Nt3T|7WZ5XRTK8IxLS3Mdj0Lism{fPo^M+-K>{;hZuUt#*6C^VW8B| zfBE<-deP_8tJ7;x<+&o|x%T};WQdRiJ09LEQwsL*1B?i<1k0-!UR4K7va*Fp?C3)) z%Kv!LZD(dhDVUlx+S1K#CBk18maP2eTX44zlg#Jv`0$$f)Ugf6^fj*oiD>9a@_N?X z{!7z8#Z!~mCp`bX{orJ)KeRv6$oIak*Uro@_2q|2{wuHU1A2@X^s4KXpE>rG)x{4= zm959UJ?sLhOYmRsLgxK$SG+8&8@SzJ$MS~@>F)P>gv0;oW!7=xA12Qc?6}H+MGTRMC32c|5M;!yXRMrd5^TjI8e_KFYhLSw?4{qkecV4H@U%I8wkcv9sZ&L$IQD$R8DALbNi z>K?rI4?q9wjIf|IXH8AoH{Dkj1E!cq7jIWinw{Cgr+MrOn zCFKc8F2}CNli8w9Tcv43++LKTr`hXlJu0?%!TvXioX0pt{LJ9z8^WLA9q7Q4l^m7_ zhd$;jX(r|tKmCbxdjN=t-+*|A^l{Nx8D~vg64G)xAz%MDVHNo~jw}JFu(-B(rj?CW-a85lYU<;~a~q#rI<2*LST+N`mPFxb5x4On zdrh4`i>c?O^6{Hnna8iZS43-ktugeGe+a$5mJRyRCh9 zL`DCn*|k*m3#aLJW|J=efTx*?2%K>f?&dX_q}-jOY&W?21`m&h$SkQK!_P*JJcQ+a z`K{?Rqs0F>k^XgR{prpxrPa&MXyg9kJRZ>nKD*mlA&0yR1T0psP7b;pGv-|l|MX9P z0NsDrl#!z?z~lF@qvcT3n{r5oR6JlPD4^fdR(Fh(1+9Gow+!_C_M3d2pG85lp&F{uj3B2>=%C)szOr76F ze{7ad{ANCLd7l2X#(z-&B7k{i(DXRN=$S4+4;AI>YvLfORUbz4ui!CL;58=YK|q_T zq;p{|3=LK8TZz10l)St@RRhrYPu0Ln-Zk!gredBNCIR-|2G9j(D&{9JQ;{NW_RAH& zDVTp~o1Yl%17wVUzVhlOg?!^XuC$&bN*9g(%U>sv_cmq}eR-{Zs7#>g^}Num+UcnZ$q4fOUR1ri!pc zA&FaOHl2pO;G`~{F;X7j^;Rkv%m2Zm|9M9J-F%0n-Wyy^BEX}-Gf84^VmzX6K6mb} z$u#O@&i(%|w!n;ViskL>VHY25sqI+%vsLzjhbecSQTpcl6ytZ$o~HxZBKO5FznJuR zy&adT{1ZzLJt$LS=F5@Y?AbM8Juu*kaeuhlGhuxB%xEo*{QUOc%$oE+0K!MwlDB*E z+-<+H z^7j@Oc#jqKQU`#tK!0Jp!!8?48RL3p(Fx3MDiml$%aoeEqy;!OdUElM=lsq#{;EOH z$`+G$z2zAOB`=eMKYw}k-k>D2DKRwb~ue{bve(> zcd>T->-;RI=uZHh{jbL=nxV$6TzM|r-s~sZ$Jp7)ySkh;Dp3_-d$Epys3atxo9S=n zfB$LPk($bQ%N(E%emBcqLsFGtsX`KW&fg3+z1eX`8a<CW5)#p#EP2kate`b5KHDRrdwOaq|8dcOQqz3}~1FCYJ`UX1F)GKBy)geLeLjr+S- zEkM9)y{7}e+-8=y-hC3WQfw&dJ~`rMjwv#%be|mipP2R^kj_xEKH?Um>;sSzvY*Ud zt!Gbj{Pt6VH?Yj%`iXzTlK(o(wo_m3!zZ+@f9V|c3Z&hyXPFjpdR%5siI;^J?l1AZ z>!fg$)8{q)O+%#jJfKJZ;!jA7w(PK0uKYW2WXCB_$T-*Z{@o0QDNBABeLxJn2tL1h z4&j!g9i763ZIA7^`f4rfzq%~NkVz?#%Ku4q{PS5(?7ziYwLiprg-6kB0QmunOqQr1 zTAE;1b@*%Rml@puiF>PG{qo<*!!|rj3CTcl4tNEkIISbj)L`Qa?{BuViT)eUYxTGL z|3(?ve|5*CtV;pM_IFfg)bW>>RvHG0 zRZjEKJyBB;aoU6*RY-PzW>-ORR}M!NIoP?G7wT6aEzdq=0HtmVQvh7fYZt)Ic901_ z^DCr8%D9mE4-Nw&{J>lW z$am%Z7n?JRkseZAxB60g>2+iIw|4?RQ6U( zVW2xl+KfkfLtXZtv8?UG`GZ z*t)P)WeZ0ZZ_3fsj=$bIu0P`p?B@YPLPO9w6H|2URj@ccHd2;Fbepqle$;LBe-!Z7N%$8zfFXZWhR=*=a+ApH znfJ+atvwq&**Bb({}=D(mp9{1S(f@o2WNHb%qw^VIR6*;yS4i2%iz{>SJboB;>2egc^KqcU?A;Q511OKzNWJeh%=|JsvUTy6LV1^U0B>@WTDdsyaptcA7b zGBH32Z-$N{agKH$TyLMxz6sdz|Fi#R_SenKa?DuB0)7hLp=i0sEn#Et^d zFy6`jr<#esQOmzz{g2N1)Y(tHClyoD>CRD{KSvQ6 zHby9N+HyZlYWQ3vSk%}7!1T|s**_frv(VemAlYw@|8Jc9r>h+OJ7^f{!i=`rjf@iF zkn)b-=556C^?@Hx3fJFSameGn2ErIpv4LNwX&#M?QSsHE^ikQvZ%C%=P2EW3Z52H#z9GUdtgQsf?U74VQ^Cc`~ucSQZx(*kI z*ioL9)%g)WzreZ0$;blbT51m5d6 zzsDH<==A@L0epB)2?Y3V0}SyMO|H%M5jZuFKlIF<1+3HmGM)bXH+6R3e12#7zk*98 zVSpC=@^c-5HGWpLXb^wN3~#h_-xKc) z%EM|}zyEHKE~N-{g(BDNRz$ApWS+{DdH7Z`Wr}OMhB{?vaFMPlg^ZDFXh7t08dNT! z5*j4KjZidcJi~9j@7`yhvEg*~`Q!IIJ^OidI3lRQkBq{lVDfQ^n3$r*SCL2W zCjhpY**_6objHR8J{Xq4H_o1UI- zu(MqY3!FTdr9*$jE}}CX!hv}IA!`iG?}XOa<}Cl>o>uUmmW`42PDk5uvotcW5c29J~K2q$6lKY{cPbdG>MuZO_sL|@p+RchM zI#Nrms66N?EGQth#&CRD&!kD8`l$qJ9j$^i%N97Hgmde!%P&gCm+QFyMr8hTvLu)a z_~qTMHLv@i25d5CZ+>|SEP6i7tt54Vu+V>SiO)^lo6?2oqP?DCFqH{ofk+eBbtKbv z@izM=ciH&Rn-$SNzbo;^{dpA&1r&*}f(BVCv6-NqZ2L19BVR=9_&9wztjAt_CS|Bv z(MP*M30F6zUfxhX@AZ7?9giAfF>0_5P9#6R`+l- zk$z)?_Y}YEzIaVn(I4sE-*{&|c)zsrmlN<}6!u zeACjGN9Mg+wkQaCjqZ2L$#}JY-j*lPtTpd(eh@?h+E2SZp8X%s@Xv#4X|IXgMdLl# zcS5(@QVSR1@&mVgTS3G>6|H(hSnlq9T?hC6JlE;B&_9>bj6cpCtO&|Ky=F12J(B)M zXu~c0!Q{Y`25S0%)BpSLdq@6*Hrm#aMEaT@5A9$hAgM-R9#MubH7MgWkd7*0T>BDPi$OSR!P{m47~P5>c0<%ZGa*sn*Cpjr$7yqpu}4Tm`>S5z0KT@V zHhuG=+IYI*KvBLP**XSg>!uZ->7d;U{PThyEV>}vEOJMJH^-7-n=4iWrLQ*UzrBRLE3zHfmzuSf5~XCr+9m82kWrG02q z<(xq+gJ%&fI*fqi2p*GiyX5;qnosios%3FX4O!}o?wxyWSq;hw51V!U+yx0~7yfkq ztabX_(AYU>FOeTj(6N}D--P_wBXY*{2&xp^&0k_*y?zy@h0*7+thqJB{zUxjQPDde zf{TWk=`b7js;cGnq?^YKN*#+s{%{=fyD#9+Kor2zJ3^jo|DvdZ=%ugRZu#0}p-36g ze7>&<@Gxm+Xb{zGSd>@QP63skCj$dIBS@kGij%uxS5U>Dd+O+8lW<>cbSw|D90`nL zQc1*XoHgjQ#=rnL$F*PXuX+E=lU4@^?U97fk8V3t*v|9go?P(Yyl4zt@fXf2}o^Xz)u;R zz}6i{5ZNY0dM(4u;=0C-%J~KU6u)}M^^TiV+7td1UESl*HBQfVw;g>gYQ6cHSwgFo zFt+-{W%Vx(nSJ~Irp8;OJ@dfWxnt&D`tQ#$AL`m0Hpy$&Zgd^ld|vx+d z$7G<(H_X7PN8FU%IeuZ|v#|WkLMPIyvf6rcvmSmP;b#xtdzQAO@19O+7QG54I8Btg zTHg-5-R91Lgf%&7~TzsihX;-~svk5z_Rp&74!^NAdHZj6tL`w5y_@G>KK`}IR<K4>1s1mt@;V!Hxo%`09knb zJKma~3_YMUO@moWU!`{#Y12(@|Dyhv2F7_z(CFIAXPBwF=LF5JZG3D^M|mFLu`dn$ z-BVku>(4$bOd~wCn|JNx^M`4P=e3hhE)DFu^PzUvZa#-i7w_bseCxjwX+n_bWZeH4e`~ITtY^MqRD1X8x*|+H<=(9`RVJ{_>}}J#EN) z?$7Iq#9~s)Hc*$n%<56yK}@knhShO|PHB243&A7()_T0WNy6vaxcbJqm$LVGs2ja` z(~MQ}6l}v6_=Jl8zne$&+G48-!iJGL_G^uUSe8>Qv}3lsa&iA0cnb^WI@Qd%cvV_r zh&62m^E<|V(LOw0uA(inZF7-4FMrFf@sAM60rTm@jeV?Jopw1Ayy|%^u6(8*GG%VX z9w`OfY@>(=2M2mt^dI98nS5}QS6{0o7rIQ=rHB4%yQ}%4UlG)j_3?qW|Ke5RLD65NM8}%twOT_!)=2y5%zGp6 z3Ko0j-BC+Uo>KjIpc^Gc+;(-;BnRsMllWZnBmcWP(6!gL$?_DNVM*$b(QLrO%rWkm z_ALYCg_=7vro1Z;-hXsRXOC|~C%=9*P;5jqtzEO^{xZ(jKe&j78o$ZfZZ3_=gt~8@x*H(@Se_^E12j zyeTbL#S1;7rZ4#yuXK+J{|m1#_Wa~grjy~n*!sN4VO4eDtONZv*seXe=fKsC`$C6Opo`;EL&kR2C!@4zMk9Qg_$0FAWoL|1Pa)I9hXZ5uUK z;2YCzyYh9OQy#Ewd46rOEp;3 zyDa9Vb0Q{Yv{u`(W9!Oo^475QDxfv#wad!Ga&-@g^p9Ns{joFuB}(#27d#i=ZtD2; z>-npc_gavsBM*sl?f4H99WO5-s!FOt8Ja&UHo*J=`V|q#sgH_#%+@rY)gJ^UI~4u^ zY7^dvIaq^E5R&Cckg@28>*^L-&0D89uoe9b=nq5sMOMz+36Z0_;w2pYB{xH79~Wtp z-UR+n-jO5yujMT&$)9O&4cesF+BQanW5%T2MOy_4aYWnKF2t5^Wz!q+Dev3=_U#kz zyt{eNOX5qOmpm@XE=ejedDRc=pFllt6msi>-+Bh`)FV22 zN9oe4TRZx)lpLYdNR)enLpR1oyL2~u{mqmbZAa(FfeeiMal5jczI4ubYjnl;HCI-n zoUsWr8LMU1;depT0DLJ@ofym-A$SxP(^@SjI&Z+U5~r#gJLcW**ZARihQvj9)_6Ic z{gRvgE_Isb;Uh~GQYhB(8J8icJ1Dk6P-Zc`vSN12dw#^ATdNgL)=MTQsa3#6`bv;E zgIHo(uj=JNC;!-@HX-JHmfZ^LGda6A8z}kW4W99E`*_pjw)~rR@g3lhJuY87Me~pi ze9;+=3&_k-ylVgBdSRJkU-d_i`fre{%xd60>C|9y_i8-sBtV!|88t|Em1a@#(tjDr za8*P7#WIMs0sQTrd6K>AWDwVjXlrp>X%#3*bfw;f#dH7;R!5`Vp>dp>E_2PG&StbS z+YCKXy;v$p-Rsc1lyGvwf?T1HPHY$z&dVa1DF#l2qyEPhg0v8) zP-4V=J~Puj*lwQ{S%GBqUvK_}LI+5@d%RPG9;{2v{v8bsndTB8E4CUL@7=8q+e z7r3KG7ai=4$+h71%3JfEiqN!2ML*?)KecloO|A5vO}clu;&F0 z9d7ieM?}OwjBEk07u}-3FQL)J)`0)y#i;LQ9{c+V7`gq~Curw|RqEww8uIxK=XQ9+ z8Ev1P9T`$&LUJY;)wEF{Y-*+991?{6!wlFMCj?<$P5~FI4YzC_)K+cj(ke!V21fp< zDD2pGC_Z=r6?P0%_~?+#wozGa=tu}dgK?PVnQ5;$*~tZc)DL=mV(L&W6&L~Sze-(=b{Wc+;6>^6HUE7^&^@oQ+q+Dnza|?pdPu}(LwFs}@?HSSk}up<3;L_^ObJLpE22ZLLz3G8 zbbgsom4N{Ej9%=O=PWRT)kooZBL;XxBjkx^r3Q9Vm=#?-eo!b;ZUhy=Z-zZiDsis5 zspRY@HO|0J5?W4|i(J>VKZ*cNu#$JBfNi)haJL!|2!pn3883C4CQs8;^Ebv~Rm^dm zhN3rZ$AF%WZykPa|7)lRul%d2!%^4AetGlU`>`7x%P%p2Y92@=LY5Vw>p{)jPz`=C zBSAb=cHJVwcwkU=-#p8{G5+>kqT^bYGBZXDQ7%5884DjMoFG@YPrSmCF8C`Qpi=Se z1_R7KpvO))%Z?-;+nS-rK8q&{ir>SY=C0P>es~;Hd*gQmtYQ0tM4`c^8G=W@I++4G zjcDxlB{tMJc!=(SWc)BFS}*1cmiVoMt|=i;83B*c)|NDj*ZZ$`xkhaUqpHpk4D5<{ zpDaW~8$3DC4zr70SGUYcJr{oohSfKS%c){wvdN!(v8-hSwVYSpA`DQmrj*fA&hGo1!mrWKxO zVbgQ(nbW`g^{kw0tf7;#&m-IJ*rD9l>6wEp%Y%%vyC>fA4PUc(MbKR1H3&(sg8GOk zZW#9lH-dXhk|7qd#Uh><#EGLxmA<9^hq8&4_7t^z2x^%y2mEV@>~$?f_F5Yvetr8y zaleQRzkD;#Z?%vNe~he5>7LxN3^c5i|XtxTl*Vlp;S>Ii|Ij0~x zb5rEkWg^!Aia%?}X$=)@B*zBuE~MIe%eoP50N(w~)Lg$O7g%p+CJcK<0c&7;LOy?S zc>VA>uBE~|x?DI2VXH!`3tJ$70}*WM$p-ucDlFK*%+o)oo*w4Q$54Jkr%qr*0mbQz z+#D7a=1j;e^oO>kpJumULpb)PEC?N@l0myT{nOxL%sDi$20xo0-wO+X5@&FC-zLUA z^yF^;d(WHkz&#`~f{@Nep-D;Bu-T@+;M|HGk89Yl*N^02$mcogokM3qtSZb#4A{e7 zLuDfxjf*4}a#<7wV;qgVj$dZ4x!BwpRp6au3MEC7{H%wk>F(q2xeNaGa@7nA&r<+c zi(oV@j}^Vu36(HWOySHIoSV;gg`?t(WJaiKD9*?h(LOWZ@;kYynW zvQAL%D8Y&Z^CMe5!Yl*|Lz>#GqB6qqyg`^rd&3^K%k!{t01aTHucM4WEPj!OND_Z_ z_86Y^XfuP#P2ObVH#w1LoXbS`B-L9QiRQZ4kGxn16ECXmj<9jFM-K`d~%# zg_=S&nH0ec#MR=H{C|r~4c~rS%Q8{0?zEQQXUL#%GMFSlZ&A5rknZGWMa4g!HtNx( zKZGG`ATj_30!nQx<_#A-N+d~IrQnkI{=Ep3KM)9O$5_k(Rbh$^0;}$&;XC?0Q+Q%Z zj!(51tH1gMCxT@4-I+R}@Nyzkwvh=n*0Xi*p_J_arPnH+GOp+VNdeLw^bgaWZ3Ju` zz5dP9U*tVv0rAQK;uX@)jbB&!H+@ME2^op!d)UroMuOA$8;Z@Ev$-g6f^7!$kK0{N zcN4H?FLX(6zI#vAM@AsFzg==o#sjPghMY&dMULBZFII%(3eczx5)9oVWiBJ1B&?o+pT%vky-3+I^0jm0jRGq|rl+F0HoR(Ua0@zqw< z)WFkXxdG@kNOqufrr>=mKd-K*uk>Y%>Ip+2#ut)qrn|Ssac9R+48c3eg;ChI$3=|X8wWDP_FU@RTY=Fd ziD7KtIV|W`HUeQ7W<$3J z4MHalVc))ekvQRh%!KleKtiHi0Sx?^7VMRWv`+h}{rC72VWq7<+oOBcP{;kze@Efg1VF z%#8dJH1c3r0`b_LA>5%~`{cJ#TfJIlw~-kcYF5$Hqt+M5I2Px~B(%(*7y%o{kwU=; z1_n0bBb-eA^4nHvYe(Jvsj&NvpcLg^tXm7fT2>^jK-RPNb%!@{$l8)metr{w$>@x8 zRuK&4uC`%<83x5`WWbeo4w>D`d|;toVG47612-`w6ZIN-Yla}PyHoSdl@^;6Wc4E@ zTz^D0fp3I#p{C>9o)+I7_G$YxyL~tN5L4vCQ<5Bjb@Y2GC&O%EU!s*YGuv-9VwMAt zAbRI%!?rf22TNUb+NNCb_0?y~k6*j`w0-RGwen zs_iiN9bmS@M)OzEr}911{w3CyZay3o9UyrP0W(c&IRx-PIRx;4O(w2LEYp?P3F!Cy zUwzrjtf#&;R$F)RDMx6LBLcp%koRv1$SZ`ulq9+WgAGV^KCscT51CqNAkBwk_}v&y zv_DkUVu_CW;#FKmvZzR*goFGRE(40yaP67n6BVWn9U^*x0-5Z2$PR1P-xJB(1C%u>(VxZ&sp8V z_mSGBO?N)}<;9ou4L)lAI0}cSjXI$=u72M`7#jG-aiYl3VCfS^$R2UVWXuarRAeO1 zNHAtSgEezqVQ<%V3MsmNwf!~|fC4{nP|jb9!ol0nhe|QCw!n(VpTp127(XcY*)x@1 zPWb8h!cbT{CTzw(?16pNqlhhAYM6;t!ClrFO-T@m0xxU7hrNpAWkVP_u+Mr^*$Biy z%;GJeq;1KJ+#JB~eTsq5(d=UT;+@0%fjf}2jfJqOD7#TBHk8Ob$Og0Xm0jp; zm?cQ_+ERgZ?u;e*w~6W8=Tsh}bneVd$!(ZY9)yH4@wcK2IP;1pFYRpFH(7qn(U=i> zMIEguQQn?^(k^}m6d3Rn0H}4~j}bvew8_(ifArCsz4)g+08u|pSyg`+yu_el+@Ru5&Q)un!G%lJ(yBF8&QJf}Q2<3sZ9P-1{38#LUg81Z=Y09qPtZ7+Q-uf?F2_N-0K#po9*3!q9E zpSW$JNpkWA&yb?>M2MtPsIHkO3%TbW7gJ)s~l$}`&!2YabgSWon;(oao|5UCc2 zlnPYv9zQ#bf5getOg(zj;|2HoJ}X&MHP;<07#o)Tk!IejqfqrOnGLd^C3xBD>3HU| zK@@rYsB*M16q6q`55CCAlz$)7{S+#!GlB+hmqOc);`RC3Nqz4Bp!WnDO5~lYR-p>s zQ+e4Xjm*YJXFh=Lgy5wBsb-`Ji3~fhURhbqObXE#7m%T%K%efGHRm zh+!nj&mdg|$ zwX?c-=5MyMIhKo)xi@-~mfkoN*lykkndM!-UuB1nzkOPxmHl$%EvMn*$`K32o;z`k z!Ed+)5>{nzdeYr0C}s7i$e)yXv2#20cOz^}wRfKWW!ctmi5$yyHq+FH{Cx$Cn9IAb zbUiEjqpbVOk*@C_JHu`~-+dmqL(aY5H}|Lv_l%invLzF0cQA8EcS7I8iTK#;r&WKl zT?W7P1&a35t#7MyGNU6mE&uxTWrCdR#Y@@i$xG2y=r$s);ItNDs_hwYxf!?5(3Zz$ z5*)8*DI{E%(3R9s+;~G+Wa!aty2K zH6()x#eR8NhDYojvbw$-E;q)CIRRVxtUC~)5z zU0pG#1lm5pq`@0{?L$KeIvTRg48hTuv=c@$GaK(zVcHEo*GttEn>P+dMVQB#xjCc@ zFh@vs+C3a^A}qpeFlSO*?wK0C%{P&(m4tT#W(l&MKE+}m1ti6F?)zsk;RDDNa?Ho$ zIJYQ9pBYK9kQGNPq3sXu0^=Q4xc*f^{3W7VsWB1NC*Y1S-LWx4NDIMBs)khgXakXl z`M3%|1gxj%B_d!wROz6AWG2rp$MG0aL~Gk8R2`eGn~Nlzjj6JiGeF_H#KL$`ZEPmP zc*bTu*}f041S13ba3=?O4Fq5vq2LEwi-rlbIB-fC!<6)KT98+sd!_P1e?9&79~~OM zSxPRlaA)L10=1HantuD1H9ZFG`js%r?Y#A*&<`h`A`3sIBO)7nT79niyZ zSGBd5*01W-U(K&qh3%MszptRLpkFR@5NuQ$H2(!Me}IY_l*5|CGbXbUc}jkwH1x0% z3nLd*T2u0TX7=}JB+n05^MJmvF-N%L_wah`n*Z3?G-p%Qe`nV&D(gN4l^2F_Z*jx9 zH_D&d}KHyX@FT}q)xlgJhiy^=M?TPepFZy9tnM@)Bx z05N!ARS!(h>c1oJ2^KpvpOB=M9{$`~D27Jb4%sTkU*%LWUXxSBh?rB*_k>KYHZ;@d z8<3~sanH)vTg}8k2HR)^A>ggHzYTRWLsKJr;5zic6f={j5<0!)_psP%;5?& zFk)&Ds$z_>aYuFa)HGkew`xP5J)9OE)~?ZL`3p_As3EEoqtokM@&y|Qd|1#X=3vJd zN7X?r)hTkYW7s?eHR-rgd*Ac)HAK zA}TgiF!fo>?%x$rk-#h?u}^z2vvU}E3wc_*3rc%DwOaVPwD}Me6 zOJ!Q|1?ik{%22y8c@DYDuK?`W;S+^jc;P4WLA!@fGP~=qv)Mpn`vjv=0Tx3a?)AAQ&&`HM74* z{?TmPs*LJz?tFgVs7ASXkSuqqw_RUY{@~1_Zeja;C)-t1V_3T|SJEkSMPolxG0%*r zh!{8so?f1&i5tJ`S?~F!SG}?O(}l_v253_vE(Qj+q1RS5XEi*`D|3(80K}Yab)|W!UN8px8qn z_!uWst#<6FUIo=emxqsTDqBE<>u)$x%<}I;5WShn)czu5mXWcdsFaam2NgoisQuoG zXI`Vuwg*!H%v$ebz>DZ4T1}>!us7P+e&Jm$*)vq>_u8NFp z>%w7&<^}s^CI`=_Toth~Aw`ra7-@(Dj;CS~+2t>}S*q|9_tXazqhWcuVop%pHE0jq zodE+o$kp;tAq`c8dHEXu!u}E1NR*3^fRvm}B7|=6XdS=-89)JXQn|l^0IU`iI~+jsLj_wK@DNz%)M6uj?Y92aU zC%|gbu(Soive15nvD7CnAcfmo=)^5~mzzl%zjR?F(UFg3XW+;H#xKTSBLqt*;}vXZeq#vrIz1Pb5o?QB7qmb6|YnEQ2ZZKzeg*clR&#>di;mwXzeua#mRJnOYH8;`W0 z(H|uqokgIdgc`0mXtMIcvgo=_YZU2*>D9#Y9XS~e1t#T+4mw1dW;4^l~V(rl0&`uMX@LDtU4bi{$jqT;tJWniUnUieY9B&hL?fTZ#VUm$|ym84!%3Ae6P^?JK0NpE)n{)My_O09rQP7~$1AGtyTeTX(KXTPaJKxp)jQsf`et0!(3Z1L)!#>Ago;q%2 zV4TT3Sf$L(m~Z3pT!$HRD1qCD@!f?~1WaFP?ac~r-i65g=kw0(1sJL{bkCJK@adTq zE+FlnVOSDfvJChSTEr36d69b+ynQW4me`gaI?*1SA{d`B9f(m-KzP(c0GbI5Ql&?`5r@gB~{Fiv4$YxNZp31A3;;)bz@9+_m>pmqs~odu)O zP7{yecw;a)-lz)64t4;Rk6-iPCuoO5ZGSv<>saM(olT!R(*yhSUkjJZS95g8D~sJ= z52SG6sm)B|LUix|(GNh`{>E|?QK^+ZUf!-E14kwA1WJTG08(7(V`s{KD}IWWXcK|x zB3=Ny4~^IresL}bf)jG4*o-}tsG6M{dJdek>h($mTNKq(_{7ViB=P7(=CD^dFifS! zh0u<-)fK$dpRTr}ro%dBu-i*AK!K`&^JiVS{)|r+=#y&$eV^=_cbY4BGzCIgYtA&L zF%S`FF?m?2t8VLdF;Ummn3?F8PHr696St`O=&}yHb9;AHufFThlQ{?^w1VnAFv%oq zmxagbsCls{N`V;SodDJneQ=9{clxdRqOW^wa+Sis*e~H<=yF!QvV0&8Q(&XzHjk~GKiW_<$N0L+Z4{lX#e4>XT8h) z+yGxS6n54!DjWCHSllI-X)I2~of?+<=Voq-F6vQks$-hHX14M>BLwp)EEtw$pEL;% z8zO$p`e8p@5h-+a0pKCMa^sp^yac|JpFrWQ9IxD~RrK z9fpf$cH$9!eZguS8@e!#1?F((q4o?@)*D%577_xsU*1$% zGaay#VYmCdS3tTJlH+4(}>Aynibkb$GuVowV0!YL# z3TRPcUDGij#Qz{p3qp63#bmUX`koXVG(1x$@#Lvb;JLv@%m$`(!mD>UEm-u?F5?4< zmfztoIQ*16zp1zCTT6v*qRjdVrZel&CL&__)P7b3r3paUZ{=yF97x&;bwHacH*D8e zKlmi*S4FemlBc@}G}e44`F6C!9xYB%)!AUPG_7)gDq<823wtjrgF4~eYD?}uY0+pN zl7>Eba0)2R0VLNw=bwkq6qe`?-j&6i43qNPEG3!3C&TIal6GLihiA-kh2*gY_0vAn zFJErSUa1#HMC2@MJSRpcE-*Rvok|I6SlFh|j^XqlGscGF9t+v9f_Q|0*m%K8tnB)h zCiTOSWZXvB7=^5?JjUpua|0;r5JXuUdG$_944%tq-W$R2!^q`YKhnzR1ly%uYc*bu zdE1JY4od2;P{b?L8$g0%*!pCS)tH$??tLu`B4F4WukFJ37RjVSd!?x`?X%g6dt6tP zYeRW>0m$xX)sx~cqUa3d8OT7=n3EB@T8Mri#J}K{s={F@x8nNC85Vk{u7xOZhaY16WKQl+(4=lL<*lCLe`45~lb{?X*Cg`g6o znh*GK?oMoHfg>lJ9iGI~{pPxky{pFfb?z0v!$U5qp<;5c&si(EXJFv}Ti%QmE@Oa8 z%9Tg5V+AzK<+YP@>GDKZq1%ivr?s&$bZB?r$TYeT{LlM_V|lWOV}@6iVu)N?HzLh8 z-$Oc7HINnSoSW&o6#^be^n8vms>pYhzAAxUCs}C;J+!0(T3i(U11m>BvfRbi;9m8s z@~&OM>z_Kt+BQXaI$Ik+$T%_%UfiSJzDt>n3Lhu*!X2bSz( zMKTJPd186BNmUyly}^t?55vQ2&;3{GwaSLy{lr`S2*1(K@zR_*-js6W#33<79iowez5?+8HR+&Yskwp z;DUeiQr9b8yPhtXcTLe?lYUmo7b3oGePDW#w`!z7Af}tJ<{cVyT58=GHeBwLg8==` zd{hL%pqyp}#3p2T?-e?ki*!cBlG2ctIE;mWOCVqF(qLKO8xikuVYt0&VsLcSpD16V zN{v+WPJ&0X8>EpEQ5*F{7^yXM;>T>D9n;)066^rC3^V56#rz|T?=B=!*7Igid~n7t zeUH^|He!jC0(-91flmuxB=TW}&@);^Db9WA=Xq%--LEMteDz^~)!F%BDBybWqbHZ82K<0tiPoof*Y&HH7PjBt~W7jiG;N%w* zPnhRF<0pM5RmU>23Dh0gwn1r2mh-AmQ1ZEWPs!yF>FR~SsEsz@1>zK`kpKv zG}Rtuy5e(%K@2C{AXWWg^aQO6i3dfuy*S65RgIKA-s;Ds==& z`28{@4S*Kt)=n&_wzMv9Uh^l9(iqorq$A#;mcI)8fi)y(GYL355$7{a9Y%nJ1g+y# z#Q)Z_pzGk7Qp?F^t;*lntUJ#WKS}pH#K(B+{FV5CZ{ob-5}^t24AV+jU;8G@}6&O1+y- zvD$BGh4AnQGGC01<@Wg-@`K;0nk}Y)C*ty*E~j^7uMp$%g)}P77mAoM`mOrHj512# ziuCjTRSc8vAkC%x?2f21C$^{~Ke@9QXjY&EMKa|>k6IFcs3=+JGDAh68LiR@A9EQk zt(=ZDuDG;v-;9exxcbIW%b(nPn?2ZH*6J^yP?F4nJ zFN8V_WY3X%Z|bB@>Bz4_$86xu;rs_sw^b6kb2#n&fjmI4`v)JZqLDHhUoyNi@X)l0 z$TwuLp+%q(2-$dPBdPv5`UHsIc!3vaqOmTZu_f_uSor2xg|SCQg`p&xeIrtjgnMfW z5+Th~Q{Il^HQOuq;A>IOF9OoA`XQk^N?lh2(e6i*;UI^W5O~x9eVJl2@K zQdL2#{Q*^!f>}a9r4KIf`;UD>0hMWx^&(uVL6L=xIM`|WO2`%hE!NX+Z(=ZVW?-)7 zTO>jKaAO$LKwLx@It6y%XUHk2l&b`y2q4+bTJoJ}QiF>5-&oZp)+ZP^9;h;W>QnVtlBYDb;>w!Y{ux_e?bI1MzsVah1Kpz|~KaW$HN)`9gVFnhM zZQf49lS>mbE6q^V45|eClg9w`c}?$KJqsVHW>~OH>T)YX1eKMONzq|D2G95`LTN(B zfJ?f2!J5U#!=1O22i`!46>}0$#!n3n)#y-n8H-wSz_$x)6^8a#&A1r(cp6=7HR}LacsLQ6Ya_9R2Y_g0%i~4HCSEJk z;uscqiHuDm9}LBah`Azj5Wei{O*ol)?L7K$M$cl`E5KL_21Whj=*M3t==segK`?$j z{>nRdo1G4Yr2wxu${_hE$Y4Eixz++n)GX+H=;UUq$8CCD6Q2klG~WYat4l>8FSw)f%3sf zP|gP<2-EgG#T1VD`QEIk=Az<3 zz;_L;$(Dnt@mmsBKtHort0;`nnc026YGf~3i%rLcrj3EhwNk#jS3ydH+cS_*+Of)JS$YE@yfbc#C)x3^Ra~b zNFB|7;p<}dvz_0bX_joxx#sBCfJ&<+{BXTeKaL4@g*F5~4!v^oa^vl(*=H98s?@*8*iZRCCoS8^tjM!FRnfDU-?(@ z_(5QH7yJ}hZwa$$WI9b5PRm+N_Yt$2CQYZoa5|GB4JZ9L`e`aA4S)S}y`PMWotMB` z(iNJtiPo#d89I(X{X4G1141&+Diyk~nRivs$k<7lZ78Y2$c2tS;7bn4%)l1SOTPmF ze44`--djn(yKH!DsLO`zK;P6(Zy~ML^|S-Wky4K+d~b0q4dnD4s7(Tq9t3J1KmUx2 zo?={ceot@@XMwaxN&DtN(e8br*E7}7KS)$_IOH%Z3Kg1yTd~rWi5MOhY$N@+5&3h# zQ%L@}fejEUhhN-y@+XkoxWP));HIV^jnPt*TQu2b1HlRNcAS)N%Hi()xZy%C2}Vo7 zfXN?hms&ZR*|17vyBJdbHrI%8zh7jzZ?n(-$aa1TI0Ojm5z#rOWGUG95kjKS_C*_p zeP;m@(uG4?EmT-IG*MTsM2glY)ROe7Bg)Sam6)ct$79aCr7h@b{%*!_B^YvDB*XiF z=m*b`*{aPT*JueNaXG99O&izqLg*xp#9dhf_NXQX$3DVSnKtR9%1kva^`CECmr{Iv zH5iq%OIzX|08Zt{oKCRKkqu`%zVH;`?UY{S9T>MQ-A-J{l@{kv#B4 zJ_EchwD4`p^HVASw8*Og)hyTrGR<4Vj5(Q3=tIlvbLkr{yqkLEaV+uiSa7>WtD!r5 zG-0!VcqUaX-~EMv%WBO~z(hs*YP^zm$p24Lk&!8=Bq`?x0b958=|W)J>91kXDWePV zMxMr_8Mtl8syyb1d29$(9)N#INUJ$gTeBa}UA@wJbJzLAJi~wANN`YV zWtAR!ND4i;z@&l)oe6uW6JBaYUjH6*$Hg0ely;}wN|dXHM@5O0Lx@!*K2R2nV|bQs;BHbKqk=;s#s4*T?5uG?Zw-MWKvw~iL^gco{!cqXjEiQ;2Trot?w zjMW6IK zGp!g`r?}JG-=ssotCIfFWv`Ya5@!Gbp>`)l%vvC$nk|x`8P_{dl?Q!_=a1_JASZ0V zL0<xWVj=d$a#L&AcocR7+XQPy$|?RY+heEK!pZD zArs%J#H$9C$sO-{oMG2HByc5#b(2nhDH>lcCaeSISYZo85hla|$amWFNhkfl9_;yq z{DA}+473Y-MSC(GF7KxrnTG{f&rh0l5ezHDN(z)KSfYl-W%CqpCD636ZJT5dYKhir zInm9)y$!r4P}`73Hw;S^kwP2B_GegzL6JgG2C?x8$FgV|gKY$wTLDR?jl|HV7dVjy z-mHjymVJp$**|SBe)V&;Nt9lBg1Zy=a)hyAeAo)8p$D>>)X)H%n$*y8>LQ!e(DDnn zn$*y>1R70hXynN*b;ReJG^wGfP*jq0ZBj$anAediDO8!$q=u$-8Ddr7O=@Vd@RJ&s zCN;E_8-${2=!Lh~T(>Y2=<#hxsyS-(woCO!Atf8u`K~Fs$z6~TgK*UM+N%CBHw)1! zcNY5z+kNA&xGSJQlBgE7`4+vRo#nC*%>YFTVF6xDx<%KqpkZOSl7f*E(01s8f({D8 zs%GPY#Okqb`?e!zXfa=Cq=L&ROyfeU7IgrP^WBFCHM34-LpcmY^egG-`ZHS0uF7EzkYrqZSKZQdp%L`0ZksKt!dN`LrFQO)p=$i2M9;C`%ZUob0?hwG%F zphH!OJ0g~eU;dRFD$b$80oBlKso1)wa!NRV3S9{@E!BWPjj@=%Kn;`uP;gS+tR~hS z8e=Hc7wm~Usc=OO9`6{YW<@T@m!VjbdAqA=pc{*~NltTI$G46GkeO7AGaydqTvh;j|-^rny%XqDP zq>AbjXhnvLOvkEnSe_SwQdBF&Ja`s1`-WpovM;(AnxuEBI$sD|rDA`?8BC9hNIrJ$ zA@d?Es!NMg)~li(b&d)h!YedexZUy~Y|K9EvLDL|7NT5=JIQH2+q)X*#n;Ww$F zB_kf1S!q&3O8`yD-Gwp$Y*IsuCp#HeLxVSTWsNT{j&!kOgA%yO8@kCGT4GtIHhDwK zBudY)@lg*=CbT>Qdc5I8y&SC>7QXH`3qKx?-iri)rs;iN;TM%^TWQ7ewAAy(*!`wxUdZ%yW#q638rEwF5#k8J*u6M#Y)ek1O zd4}7i78S0F8BS)^lq~H<^@Ecj<7niwwL`~bPQ+d?OZsNWY~wMML=Ktsq}W^B*aQXy zb(xW46Cir4z7Y}%TtPqI_Bg{1BqBHQ*{U=M%1U_mtUz@+vB2&ssvtzBlzW#zORux) zmE{9*@uLFiJn5BBeb6_d@R@2GvgtB-Z8WZJ2o0&Q^|5G*i8Z92HncsKxZ{+VGXw2X z7tv|R=~+=l4DaY1Y*vMOHT9fz@>j_|-AbJobVlqq$cX7fMy%sho-z0XZT#9E zowZU0Vyo!7=j3+(a^c3!nA^9qNb7b;EJY?TeCw6CgPND8sn_&JIT!6J%~t)U?P0wp z@f5dkso=x+U2fqf&`1PXb3ii@Nvk^K#7w&}lb+1=eWWDX$fR1KcH(caYn%s+fYT)J zNlBy`dFH<1d~2?2Wo{8}N+6qGZP+{cJTuyoZoam(C7rHvmUM+;R(jh(Jp!hj%&JEq zQEH^+6!^$mkO++uD=V=x2%P4UZg&z0yOzC9;%BDQ1#@LLcx`PdmSY8_KNi#g)e4QyvdsxaLWWEer{L=eI^I zJ53c-N*zy<`qg?C)48vt9td@4Xs}DF6H;b99!nw_;IpX|EdzBcF zK&te7dlji(kngn1)JNFYNoX?$;7DN=h6wfGX(eh#?HPDjg`MKBsi;*d76W}*hoG{N z&8_S!%HvHkABN5%s#$8*X}Vde9(ZQQ@)w&lzFF#ua?-*Fsf{~M z18?*YmGv?14pbN*GM;8ytY>!9Of}0a$1ThA z^(y?{^QUv!ZSmLFti3hk*9bC>6`EYsgTP`x;-m$Rg2e(SNp&-L%;8Imr&}FVH8FHo zR{&hQolbdFMGXR*PKRsCLfdk{%dJ7V9A`00gWD$vI$@d5DM-bQ#F2#_-9j9^JA_w# z9v)H12buE0xPOEdjttDEn|$b8GZg8eo!DZE=t}&J1oW#L9_EO8omjTP)K5Y79Lfh{ zzLGu|TSYxu{AGHyyjQN{;1lf72giK8MZ&9hRba5JR`k&hcNLdzq=I*1NqVgAG08V6 z6j^v&1U7F4qaMgq_X+|ar#&>Ij$pLCM2;VJ>4R?e<3cx8Zct$%{L$hhRfQ2YOVd>2 z0f<{b^j=hk_3caUK55ZtjT^19BhUF9+Bny9{&^MRp92$ADHFfklD(4oQg~Y^h1amK zO`nZTBW*bD;N9;~5U(8d6A5mVU_SyZVaUo#hMV@$&L&>H(^O%DbC>{k|Di&|%SB*3!YHt)HvYVMnx-kF2~*m%Op2|v*6KVzhFkKrMfvRpw0Zq# zQiIeSvHS=8ICm#D^!i4A97#OgZ?5auyK0PI=U(wUJmiuZ0ocOpbJj}Ik8OFg?ILew z)aL|Uu>uMp(Ga1h5p511S^NUOoUf3&3fv*rcir;=QO9=%FhcZ((?N4d;0XC&J73ixEx!c=H_DfPc&z zPySr0B57raxTjBMx+A)%G1yE9PQn=tPAK;>Jlbh-bTK8feKAmH)VBLsH&pTDxKpAY ze?Oy1Y0`EPG1h};-T9;kevzixYi5f#zf}Ber_qwo?FAs=%zm+){)}o~plp!tqR_ll zbzKw!(~G?8ta*}Mfc3m1Q3>`AjrnPZ5q~S%K$0G1$roa6G3FOB+ZF@4E`kX^I)Xzd zbFta#lG2ctIE)1%ULeoFMS(`U!Y=U$%?`I$O$?5X`V-|#MBFbUOkqBx+Mwr-4OqI_ zHE-TY@Mt!anOZ}csWb3Qup3KO4oXJv7(>@LVMKku%?8>r-AILMFas8V|1QQo)R>dJ zpxuR%yxa_eMkW)GT zULW=rqHqv-pjIj)_0>mC<^&V`{U?3e+q@jx|F-0VqT41&IfEdd5RoT{@Krp2eFm#l zO_H0y?8#GKs4N9NXUPQaV+s*<0nCf%(B z3T%3^`r2DPp0t9j9W*su8m(S!X!bz;b&f7|Yc1t&y_V#yFa&y3xj~pezRGFLl#`yH zqJw8^mZ!?(ic?Zg757jT^*eZAS|uo#H1dx<>n(n&)lvf^``O99vzcyzrP0ogX=$z) znV)ukp=#2CAfEMFKR@0iyRIf!k`RPuGwOIjwFX08zXKT-{m!RjHh*ZX$-G*z`7Z=9 zQs;qHr;U!hK0{G^J?^OWD9u~D=(oWbS`0DwEly@wB@T%BG>`{go>QW4V2x(mwyY z`x!=YCrTnaT~6=FULi*1*CCZ^FoRgeCwrPgC}Hbg#W3eisx4tRcRr%Zl-Qzx~_ za$iHI2MQ&?e5}bGT3l!%a)(}R$*}Qs7MP}~gZYS$)8XGM))?>~&S<6n)-EW#2YWg6 zO{sBofLZw^~u5K{7l6YlFnjJWUUNBZ1J*xfbwXs3VEnKUH)&~}XqMZdqP z0{l?nyv4x(;g;wgtKV#lMYUR>M5wI;Rzp8zVPgz9htFB{>cC#fcz%is=brKYhQ*?A%1X)|sE{_(Jl%ci2R~Fa zFl7MKy;Ex z$X#F>8OF)*=EZkzB)JmEqcdW2k~sqyO>&?XDx?+dT$T1p1@=@}HGJ=fAp_!B3dbT7 z-6=yuR8upEihd>(K2(kF1*!E;44L^G|3T;7YP4F9N^>Yd2tm6Hx>x)}rbQS+LI_HR z+k9uda4@IUWn#CdQH%LqC!cx134iaT$<2OUvU7NKJn!6Xc3Xi-0{)6M(b=qRnf&4k zP}^~!VIeDn15FEAa>@Zy98z*mb4IcUcpo0p6KnuS8h!jJfV~RUnCI=4EI-7q(0ox_ zK=evVP=UXvbrfr-PU_TFjfgSTu^$-2iSUKu@86*}qEKx?w-7H9W5mbSQ=a&klq@4) zpSPe2LGXOTAC}+3!5O+0SV3DCxFTO@EQ=PPZ?F)(VF)N)th~=G7I8l@_uUf6UFlo` z8FV)ijGqg_HIIl?cIohwbXj6Q<&+~iNFk0bZ*=T;bi%NZaDB5Ibu5Q-TC#Rf4v$gK z;H18x>Adwo=Xo>B{fg`)217Gy5ORySUj^71`M*Lc4+7cEe89Uy;?9_f#UHR4I`jM-D|pedCx*0D}J&nFefsUxNteT=%Tox1U!VoWpeZ>g@ccBKG`qU zf`}iprWw{rm3=h?dLv;(fnK>`jW=4b^q?y6!U_qnAjk)r@Uj=fiJxp5%U*);gyGsD zGHXxhXjo3(6Gi>nSyyXH$biEtLsbsTRB-Q*9hOGOeQ7R>N{0dUVRmyO(*h4sX7*0kQf4JVs75XX zRHIHtUM>zG@ThB48l3B)H(WGZXpNU=h3Yh3SvOVCSiHwrLVcvZW|{U?afFV+3rnPoY@Kr5AxsZy4jehk^hKRs zO2ePCN8hTfH^!x5s_2bDG2&_G_pokJn&mguEm4%&(D9vi1}2hCTJ}~=kH`M^|?gcchhA^fdO1$7gYQW zaMn!kWA5CsV{9@b7h+|KQqcnrBShVTK3Ijm)2q|)r5<+|@ysrn=Qwwlj`97o;&4Ey zj6Db)_lQ3^D2+DUeCzOY*WMnk4jPRvy_E>{v6VQ*d>pI9b>I&_+8Nd(`)zP&b+3kI ze>sZ2C8#M4V`GO0@i(32VxYVwezTl z#$P{N_mx_xm%qwA-ypm!u`2QUI?hgZ0{+wJ@VQ2fxv0!hI(`c7K3?ZppccP#e5Rq`2#N<+$s@iIJn#v4-UMH4lD*b~v$R3ze)p z7pvT@v*~kZIuvKW7P5I?&5;9goRVCjs3p^>%}nD$vWEqB@wl;E1-uxQbeyu^3bae2 zygDH1cmePn3ZL-wnSU;aW>9U$9%96~)hCvs6J+&`kkIcJ*@-XVUr<3&C`zx-1px{3 zB&`qu8G5rKRfvEB+o~o(Lx8VDufM9cc=@z=oBhf|!GvBd0dqQt(1lPUv=w`ap2%tx z{)OUJW^|RDF!{4K$qM=;>%`j>&c$dSC&m2Sly8{2aX*d4U2>Vm;#AzJVX1#^=BDT( ztWFgcC@U4!3WsIcCr!e`26AHShy4KmxYj9G7XTj8gO+?sHB7xKDwChnjbUTD6;zo# z&>!s?zV)S(&_%`3NZZ3`T(3`4gG$D~T&GXCX6+kZ^)*6JTpo{7h1TUJ1ssrc2*SpL ze}(LIhLhruZ(e2yJklQiC^meXdxzg7hXzFX|5^@x5Ri|L)9DZ|kV6N1_c3odluMR3 zXT(FvDy>1JkzRve@DB+0kHlVCs&lnH@w+Y4XBkSYk!P9H%72F80#l*FLx_~=aS^ff z4F%8VL|v}Oxy-Oqoxt^C9$4Qrb0T;p^AecpyCEcK<1KWar`H3OX~ZMaama@A67Qt` zpaqxqEg6PBs7V8PPEJ7L5#|L!9S8&o56}M`7c3450q!+4!6BMSl9NlK9KN6G3JYfZ znFy8NMo>>an{jga+>IW2667*07KIDV=tMKl$cJasAE}MqqePs!zwbUf+@U~k`)iZN zi)t{r{E_Z;JR8ysV`WS*uEuySQy8Gpmye= z_6$?jLW4vI*nW9aWzBTJcCxJ+WZU%5x4n9DG}rgHjvZpS)fd~;Vh=qR?4j8vptsut zd~_l|mY=|nmtRn*TWwrsy#bnkcWttVhO^j|i0|8E4^1zjCVOc40I23W?K6L($sSrH zMl5KuhnC4#U~=p`l@e^Sho&M@s;6_4Jv6=7q8F)D9uFh8CVOa98z?<2P4>`qO0>xy zT7L6j347?~NebITf0eL@7C3?+y2&28$sSrxJ){&m{QoV7rZjFYP4>`$;e>fFV3nKf zp+)|nl=(=LJ+!!;*10BoXi1)p!n9(wU`_VWBHmIQ(K;}UZ znvO;xF4=1QBc9&c`Nytjm_TC)2{*ZC{G{)s>NvFlK6T&BE(pc#Uk?6PH2}563mG7J zN8D8fbyI0bCl%ycw>=mhRozs3l5>x7ic}E9TR3d$40Pt_gs&=cb%wPzg6zmg><5{r`^x&wUi=&SwA3< zD^4BCblVWR2pI$<0~k&ri5IesgF-e9kxl{x3)u6HI$G&s?uNfe{YFc3PoJI0v^+(u z9zO8!Dix~4SJh*ACvX3h-BHEf$*0BzH30WwuVOTX{FN@MnvrTH%JM4a%2JDn6HOMd zST^I!>l50DfGQIcZHI|>UAC6ybJ1#5MTmeAV-@|l;bqO>~q_VC+vUad5v z0UfsLos`9Dzcu+oi=ryAMSY{mA6l+Ys}MA!RXPC-qM0nMoQ^cExU_QLjEh6K{=>D^ z=+a8~XcWXhV){f(4`qlNs%YGF#%c`gk;p1%z$0iNZE|yRwv+vSP-Cv;*fxlJu*$Yl|-{|M9sy+y*06Icujdbs*y^2$X(WWX(Cu&s>~ko zk!pqotLHDbGDNLZM83RARcqr41bh~uF0zgRmvr}nHH(jjJ8vfsynzra<|GJ9YGkST zG8S!C)2{Tp4wD6}VhOR?gH*?RT$s3BRMy9=J0b!=2YRWXCYdT=pE0z*YQ_bbbY5&V z>i}4II1!m^BeAV3fM{jQ<3+|MUMth$g6A@N$cc +#include +#include +#include + +/// This class defines the interface for a finite element. + +class poisson_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + poisson_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::tetrahedron; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 4; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new poisson_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class poisson_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + poisson_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 3; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 3; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 4; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new poisson_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 27 + // Number of operations (multiply-add pairs) for tensor contraction: 28 + // Total number of operations (multiply-add pairs): 58 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + const double G0_0_1 = det*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + const double G0_0_2 = det*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + const double G0_1_0 = det*(K[3]*K[0] + K[4]*K[1] + K[5]*K[2]); + const double G0_1_1 = det*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + const double G0_1_2 = det*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + const double G0_2_0 = det*(K[6]*K[0] + K[7]*K[1] + K[8]*K[2]); + const double G0_2_1 = det*(K[6]*K[3] + K[7]*K[4] + K[8]*K[5]); + const double G0_2_2 = det*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + + // Compute element tensor + A[0] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_0_1 + 0.166666666666667*G0_0_2 + 0.166666666666667*G0_1_0 + 0.166666666666667*G0_1_1 + 0.166666666666667*G0_1_2 + 0.166666666666667*G0_2_0 + 0.166666666666667*G0_2_1 + 0.166666666666667*G0_2_2; + A[1] = -0.166666666666667*G0_0_0 - 0.166666666666667*G0_1_0 - 0.166666666666667*G0_2_0; + A[2] = -0.166666666666667*G0_0_1 - 0.166666666666667*G0_1_1 - 0.166666666666667*G0_2_1; + A[3] = -0.166666666666667*G0_0_2 - 0.166666666666667*G0_1_2 - 0.166666666666667*G0_2_2; + A[4] = -0.166666666666667*G0_0_0 - 0.166666666666667*G0_0_1 - 0.166666666666667*G0_0_2; + A[5] = 0.166666666666667*G0_0_0; + A[6] = 0.166666666666667*G0_0_1; + A[7] = 0.166666666666667*G0_0_2; + A[8] = -0.166666666666667*G0_1_0 - 0.166666666666667*G0_1_1 - 0.166666666666667*G0_1_2; + A[9] = 0.166666666666667*G0_1_0; + A[10] = 0.166666666666667*G0_1_1; + A[11] = 0.166666666666667*G0_1_2; + A[12] = -0.166666666666667*G0_2_0 - 0.166666666666667*G0_2_1 - 0.166666666666667*G0_2_2; + A[13] = 0.166666666666667*G0_2_0; + A[14] = 0.166666666666667*G0_2_1; + A[15] = 0.166666666666667*G0_2_2; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class poisson_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + poisson_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 4 + // Number of operations (multiply-add pairs) for tensor contraction: 14 + // Total number of operations (multiply-add pairs): 21 + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + + // Compute element tensor + A[0] = 0.0166666666666666*G0_0 + 0.0083333333333333*G0_1 + 0.0083333333333333*G0_2 + 0.0083333333333333*G0_3; + A[1] = 0.0083333333333333*G0_0 + 0.0166666666666667*G0_1 + 0.00833333333333337*G0_2 + 0.00833333333333337*G0_3; + A[2] = 0.0083333333333333*G0_0 + 0.00833333333333337*G0_1 + 0.0166666666666667*G0_2 + 0.00833333333333337*G0_3; + A[3] = 0.0083333333333333*G0_0 + 0.00833333333333337*G0_1 + 0.00833333333333337*G0_2 + 0.0166666666666667*G0_3; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_0: public ufc::form +{ +public: + + /// Constructor + poisson_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "485ee4abc20119b82968409dcd30845bbd75cf8eb2d37865cd36ae609240e0096d0047eeab6075652c6e4268052caed39792496313b48a8a3cb2824bcd9e32aa"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class poisson_form_1: public ufc::form +{ +public: + + /// Constructor + poisson_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~poisson_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "c082c1c25a4ba7a938c9ca1a7b631eccd027000fb5b9464fb5a3a47fc51677a6004507ea7b064954f22fae9f9055a367b38e0d5532a53056ac02b6014df53e23"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_finite_element_0(); + break; + } + case 1: + { + return new poisson_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new poisson_dofmap_0(); + break; + } + case 1: + { + return new poisson_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new poisson_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Poisson +{ + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new poisson_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new poisson_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new poisson_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new poisson_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/bcs/cpp/Poisson.ufl b/demo/documented/bcs/cpp/Poisson.ufl new file mode 100644 index 0000000..187f7f0 --- /dev/null +++ b/demo/documented/bcs/cpp/Poisson.ufl @@ -0,0 +1,33 @@ +# Copyright (C) 2008 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2008-05-23 +# Last changed: 2011-03-09 +# +# The bilinear form a(u, v) and linear form L(v) for +# Poisson's equation. +# +# Compile these forms with FFC: ffc -l dolfin Poisson.ufl + +element = FiniteElement("Lagrange", tetrahedron, 1) + +v = TestFunction(element) +u = TrialFunction(element) +f = Coefficient(element) + +a = dot(grad(u), grad(v))*dx +L = f*v*dx diff --git a/demo/documented/bcs/cpp/compile.log b/demo/documented/bcs/cpp/compile.log new file mode 100644 index 0000000..ed20cea --- /dev/null +++ b/demo/documented/bcs/cpp/compile.log @@ -0,0 +1,202 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Poisson + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 3 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0250609 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.000928 seconds + Shape of reference tensor: (4, 4, 3, 3) + Primary multi index: rank = 2 dims = [4, 4] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + External multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 16 entries computed in 0.00085 seconds + Shape of reference tensor: (4, 4) + Primary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + Secondary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [4] indices = [[0], [1], [2], [3]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.01057 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.000328064 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Generating code for forms + +Compiler stage 4 finished in 0.116695 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000918865 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Poisson.h. + +Compiler stage 5 finished in 0.00102401 seconds. + +FFC finished in 0.155079 seconds. diff --git a/demo/documented/bcs/cpp/documentation.rst b/demo/documented/bcs/cpp/documentation.rst new file mode 100644 index 0000000..0a1f40e --- /dev/null +++ b/demo/documented/bcs/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the bcs demo from DOLFIN. + +.. _demo_pde_bcs_cpp_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/bcs/cpp/main.cpp b/demo/documented/bcs/cpp/main.cpp new file mode 100644 index 0000000..4cbcbb0 --- /dev/null +++ b/demo/documented/bcs/cpp/main.cpp @@ -0,0 +1,75 @@ +// Copyright (C) 2008 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2008-05-23 +// Last changed: 2012-07-05 +// +// This demo illustrates how to set boundary conditions for meshes +// that include boundary indicators. The mesh used in this demo was +// generated with VMTK (http://www.vmtk.org/). + +#include +#include "Poisson.h" +#include + +using namespace dolfin; + +int main() +{ + // Create mesh and finite element + Mesh mesh("../aneurysm.xml.gz"); + + // Define variational problem + Constant f(0.0); + Poisson::FunctionSpace V(mesh); + Poisson::BilinearForm a(V, V); + Poisson::LinearForm L(V); + L.f = f; + + // Define boundary condition values + Constant u0(0.0); + Constant u1(1.0); + Constant u2(2.0); + Constant u3(3.0); + + // Define boundary conditions + DirichletBC bc0(V, u0, 0); + DirichletBC bc1(V, u1, 1); + DirichletBC bc2(V, u2, 2); + DirichletBC bc3(V, u3, 3); + std::vector bcs = boost::assign::list_of(&bc0)(&bc1)(&bc2)(&bc3); + + // Set PETSc MUMPS paramter (this is required to prevent a memory + // error in some cases when using MUMPS LU solver). + #ifdef HAS_PETSC + PETScOptions::set("mat_mumps_icntl_14", 40.0); + #endif + + // Compute solution + Function u(V); + solve(a == L, u, bcs); + + // Write solution to file + File file("u.pvd"); + file << u; + + // Plot solution + plot(u); + interactive(); + + return 0; +} diff --git a/demo/documented/bcs/demo_bcs.png b/demo/documented/bcs/demo_bcs.png new file mode 100644 index 0000000000000000000000000000000000000000..a38b45f81b84e893b9ab18b5a84a86cada9596c1 GIT binary patch literal 62820 zcmeFZ_dlEe8$TLiZ(5sLZPiwr+PhS#y+`e>8Wbh5wQ99BYwu0fs2QV0?OChVTM=7{ z6(r}5&-tG7ADo{~@HC6RNAbj9YFcA?h z@WFt;at;EqgPy7?8NSKdTMGQlViF>Geb`|%vo!V1wZXLhL2Wl|-Zwlxg5Fgf<~bnk z&>KVe#$!2#<;|}ix~x@vi>U~HMnX*(RZh~6ci-l;G}(z0Z0wme}zI@-6h zoBgga3odD^+*v+Ptk|gm-ezKxkg>N4&Iy)QMpjmyBNM~TPi=G)V6ZUt?Mr}|tm}W@HQW~l-MRg4;$s)++5f)O#{K_)`2VeV!du2A6@ewiymJG7)G=ayN{wM)OADo6j=bP$9 zm$o6*;#vA6J?S&F2Z4~?+MB2Sa*1AYY5~AcN1_GBu@?jpG+nD4ob4MM3t9xPelTG> zlo@&+kl-xSPhKh9%jrW-f!!_19Ig)VYXPTqqvnl(PO`4SyWjXCpZPs0ekE$+MEY~lNe%E~?4cT%s%1!Hq|1lQljZYb|Xj4Qiwh(*$k zD3E*lX(^w!Qp>;7;ypitArXcoT@$D%%ffqx+Y+* ztB;;39*zfYv!0{T>?@7c2U?^h(NR7xGtQN^eatY6cu9^&VAM4XQR>AW)|nBSBzVlQ^`sw zakBnJ(0gO2`%BiE0eAKH@2ruRO38;_I6yBiudnW5weF@?g-sa~%Ewc+vUfl~v|{-| z47+&=I3#-G6zuLF>!{4roj;T8Pk#6e?NE2&07T7c%4T|TGpRMN>1Ucn{y3I#AxyM<36r#%hR(OxvHZ`s|PCi=J$Z zi-a&WAbzFx(zyU3(3}CBdv)@Mo(%D8z`BL5PX;vp0I~jW?CwyWXwqPvp$`6>Fso~; za%vUwpVs2H6jsS$9#JcasRxxK2d3gF+bm;{_>{i>KI@DtA!Uz9Kp@f{VSqDCTF-wX zJi36Bfuz23+ss2ZcdvR%vuT6g{KM=hum-5dE%gPw6~jaT55*O%mX;gJ{7aD^T#}b! z5pAKhsL#wp`wVAab1G$W+KXBlY~EI5b=OJ8vqame;_qh`*9M+`!-R|jkteesKCorl zKM`XFyvdvbaNY@hvVc@!vk1+D^9cXq2F80;78= zw9^s{;>4H32lYfnTZCI^shB!xJ)NSBF8{;RWt8AfAC}1uC>=eoV zeS8w5+isfK%RJu*?KimcuOoVP(jY|V~JvU*5xy=m%OPkN^3PxC(0scS8+5BiTZY;RbL8i`DWl0{F~*z@)qHWjmo zPPx_u?VGxKc?w!SjlQO}Jz81q!{6H#OwoMY;dJXr<0I2K~Fp z1|$rNTx-KsqzjrBG(R(3c;?*mc+M}+qjD0zn#Ewg#Dv5;w0qzk{pKVEke>v?aIgVJ zhJ2#=KV&;eV*?Ok!$ua5RoZN`2v0tyi#kk>uNc#|AQCaO!qU~?Sn{rm@ofH~puNk1M$m2ZSsBOIX!B}$vP{*_9TtL3TCXI$NS+o$i zcJEj2rXFfAM|SH+!Trm8D{5mq$xK)+0y{qP1i9gp(Ygw(AH@^JWv|&XD|Hv;x~%pV?#rK;$0Q;5h#Q zRxXPk`J=po|Kdm2X7KA~Z}7({AtnihI5CKH;D3CD2iKV~W{3&IJ^c9NxfcODb)wQ4 zgLKtZYoA99n^?769yHJm{*F!&;a}vLk9M?}ug`c@-SmTD_+1{Lb0X{_FYD^I&sPtW zjA7+DxuI&@e=~$vh@>8K|7slf7jGdURxNZI9$%^ZYu9zunx~>>n<%K<<2QSkJGwE| zTw4Lfo8Ra&L;|w|?#^7|X_{bAU+l=7n!VkmZO;Vzoi0_C_c+wlCiJP$lo0g`Qad1W zy9JV3UoD;X%5H_1)L~V%2v1=PB0lB^39o?clxFd5zv9*twwf*#^0^x07T6(ABXNE9 z@~rHXVsPsOanVDrO9ok*u71ODo#V>x91WhPC3ctjvvJ+#Dda=<=1pYVgZ15^k&hcL z))S#;qHLHw2p0M1L;_Y))+q1>g?|)rbBy8NW7QM=MJWgWwn%ZLvuU_~*2x`;xegkIu_T0OApC-Hoef@F3PqK*9B-#}-sJ^QL?uk5e2tMs^m z*Zc%YG>7)OkLM6+m&x@GidiA>B*nXv)1Y5;1Lgevc0#Jpz4ck*}(Y z4YI`eT}_*)@b{nNs`WyO?4BAt(@99{%kv}Y(t*BNAIU{Oi@*S-$aDiXc9xVSe{Fx`UZq>F`pD;z6&9y^_zyqyb#hssugT z%?sC-rTz%-8#nd+iGDv(>EH%(DXNDJjO7PAB6<`}IG`OLE5?>h{lYGWB;V}MyK~Xf z4_FN{6GT`zSe)x2yCYD@;z+Is1Ru~TzU5+eY?%>Hhi!a+p_;7U0B>7)y;j3r!C>%nU&8XS27Cyqt=b?}hYO^DicsWD_O3Ow)n+;=Ntq?LVQ`SQB^3Y7;Ju0X z5{`lgc0Tm{+TUj} zn5^xzSeM6k_<-jbW%Rtch6O4mPTiShlSwRsQI%9rI&vHNPB}^%LEe)vnrI7w-32ON zQ%rm`)PWy+FgSys`)ToNV!#0tw0N_THVQOT-Vi|-R>^x(O+;0skDUj-5Kj@mRr8N}w)y2-skO@q^?SSmrHqkJ;}#U}-{cqsSmKZr+~H)_DOwid=tis%Y}1#edN#6} zSe(@)MN{ZT8I=iOjK_v?VL6fas(*Fl{HbQ!JH)Iy9_-Kk>#f(yP8Sj2 zYJ^UwKhn)^^H?rc2R3%^ZlL+SyymH(7uwWpD>OB}zjiuSLreN5^i ziXrK9D7fI8*H;^EWGTKJt)XM}xbP~XDd(Bx5dEpzY9!Jk&`%C`%M8&gPM8jO0NrEk z1E&@>`uO=bxC9if@%GO2y(zyy&G;{jYxQP0(j922fLUE3ML+UiNn1bHk=Y)kTG1r% zHxSB}GV~Qy<2LY}N)Q;&Yu?}(_-5CcKOr`R9v&mGo&ITi7U(BUF3@$R;7l#@isq9RwN%rkSz@=`sy9ea14l6n2lPl~alE%>QGOU}&9RRG zfYDf#pU;+NxK$))R98$76D2ak(?rNPJG!Vy;PT zN)<|U*DzyB9=9+?_fGHx47&2QY=8VD*qZV2i$79ib)e@aHxK{YKUTJ(Ls^n_a^V%d z06oKxe5zXz)?@2<6ZIUUN}{_s^yA$;DfvJ1W%p>qPRnf2r{P{wNaN}I4py+M|IRSz zfaif~stw<7H~BD`S0>}@$8W=i~bf7K>GBfeaN?&dQK&t^)?n=Y4a6T7EexU zw>L>x3dCqfS5`bpd{*|A#=}v1P+wC+r0xrEIdbCHM8T9XWa@#W6+}d>kx5_qF-S<7 zdF9{N>+w699nCKmMca{!j6vz)Iq!4ql<-8$h`B^!B@0Xg!jB2Tv!hK$;aB{~H=h4h zzsSHNg!NEbSKwv`m}YnauHem1-h&P`{@_7$<-Z~mKu(?Yh> z5{1rHD*cihIxgX+X1<_0-xh|^G-2YFTNp+uYiSF&GR&)5*nCBoYya`uIuFqMaV%YJZL6A>t#1L zfy7D*+X7I6x~mlOlUp*ko~J}1l5k0)9p_RThH4g5 zzV--=r$UOUlwCdx+kNpYeE}efk7Z?MSc+p?YN4p3q=9ky*I&JW`#?k} zeygeb`H~kEb0}Q==&O_`pP-lrpG-!x4*89Y&D^92y6~B!Pp9vOxlh)nB^Ba)X9}_R zE)*oLQDAdya;bfZb{au!JdUaWE4ZL0smGk53H^F$iw znWguPQwv&g+M!49;!ReF=E0!N;yS@7f0%yHHfR2I+;|WCbbEG@ZFI(ek8vilDnW@Y z_h7k$+mWN*CzR|w5ERm3f;`7O2C&?OelGxrrza<)eCO*^^RpU@_Kjc$lY%W3a@mg~ z-HG}?*KicW2-qVDg!QKx`96s(atVwtNXeM_hL3Lf&_j-9j31@?>7b0b!v$Vtu1IG; z2iOI^fGasFR&GU)-wlH zdDYdN^Sp~3P)yrRh|VO6#E~--!0cqo)PcoGLd4dbb`O5Vb%G#_byzf#Dsmf(r<>O} zq1polt#zgn{L(wLVFrNyS`eJ}j^t~Z`pOqKW1Nq0NfB$DBE~UvjJ5bd4Z?1fHJQiW zW{rFh6;mqMLUWRLI^Aej>Y>^_i?rx_>5V70@5CG=Vc+K~+Ff>V>GF17dS3hxL8`vQ zX8_&(L4tT{%X`V9$QpivH_dVQ!sf8pBN(We|GUM4+4z1$eU%!qPet8W(Me9f5p$+&I(}#T4iziaL)%opCQHHRT9O;j&DEQ!)I*T8Id;Z_aeQOuknqQ}H2fP~c^wdLFTQq7yqDt@*Z~BtDLq!9X3iFWr zy2elyf!H1SFhgO7Gq7| zWh(;PoK|%>oIv@l-zOIgnE&EB#cbSeaN5(j8`9S2< z*+nr}R9bTMt5*+bb?2KDDe~pIq(Y1t`Bkp_ly}Gv@xo6EUld#YQDRoJCzip(0LOl&T z%I^8K(iOzH&p}h7@C^<13vy#@^^lq{3bmNRkIxgSiqq>&lKV$rF8Fs>nclwg2Pm(< zAn}1JNh^xSOT=ivU?ug{WEO%uGKyJ(VZuF4JT9!4=IxVSwqM&?QDuK(s$#nn? z^eDkqRSgqwG13Mh8zE@IddbKJr{*40m{%NSGfEYq>NMGU)Yv<86g!>oTkoX4rXg+}6ojd{uz^P>}LVq`5iq#`(?Z*oNfmE`OMVT@N z&=M-HM3Z72zYOPAZj-C4y6h%O5cTLoqA`4x{pM67GdZ2%icBxph0MXZf}KWert zFJ2oauyS&>rS=8RF?&Bppq|QeT#53vIOhGTuJ=-5W}@K^Z%2^Gg+wJAm<)hb`H2Lz z>G;OjoK}Hv=QphlpXyWsa@pXme}5*hB*JOH=|(Ed;D_zTHN1)+Z|%gjls5d}V9WmS z28I8Z3`s<-q^$O@72IYBzs63P8@*Tdk3+sQUmMOusZ2rxoH{aK-y5R(< zVcJ<69f3yy{ZoxA3h|TP!T;s&NW+BhaGRXy;QEOw$CS4sE%G(&4u_XeIs1#vx=>L- zPk*tHMu5(m>^E2Z%XhOx``)_ru#OWy>Bl!acCk&XIMBR?_OK`Sa@8K#G!SmA5X8M8 zh0~im(0m!?b-#W;?yJ$b^#k8lj%17HGu!aeStlBe&RCWJe9?2yl#A2NtezXeL@v%7 zM;3`cu}>e10L;M4DTa>Ns?TJ67BD|UQ5Igck3WQdBcg{w3+&soQ} z0alvL)EivzRJM?(g6b#}X1y4YVuMm*zfHBsjdui2)-;kp z{(R&5TmX7hD_r>#J?Bj`aZhx}{Nf7^NVVvCHzuq$5@kPDqUq7P$fHnVBWRyvx#=?0Rb<5_!)(Ro?Co~E zrIXavd3fGZ+hxwSV22As#FBQEGloF)b3<=#*0%c2)`ClmZ`8pd(`>uDvPMtgAszIh zSn>VAmcR{~Qmn1_*Tpi@jQ+X zwyz4A)XPX^IBqzniC7g#3(oY>TEav&$pN3FS9Yv>X z`D%We?|QwL{^hJfX4pN7L3nqaUA2lztT^cV)v7#rf?_=_e90h$*&2Sc_Qd($8Nj(0 z-1_M!QyfF%6(hwz?W)TjrpaG}z5 zfkYUzUbO>R`3E_2cC6;AWo75ML7kY-k8jupRy!QXmxYLnI-OR-VL-hd`(<6XjL4h)#n08}{0!n^eiYlxDf~fq*bJ|FV%wZOSm}K{R!LOqBoV%0 z&lh*_;E*)Ls{zX5Q65!&9mj)8rXHY3I3uKda?QpW#Q%!X)a@m6?fj1SJFi0prP$MZ zj_e}iKhw!rbXC&Ao|g4MxKqOhEvNh#=XBvP3X1YOKG4paWN7BRC(u~=-+Gz6e2ut3 zmoG|osCImV0EPTNvjFN&l_c-GS{Y2xr}rh5XOCv-Mpb{4|L!GrHaKDWezS;9MMS^K zv1up2rfd~~DknYax+j3lyo^^)JyjBQPF`}7$G4KPRD&w*z6&X{)n>adEK|s3 z?!p`4m_AqQC_tVPxAGjb4Z)wgBZzDA?ypJ;lMqPp=4B=_&NgaJi+YX?ly$J%;Xoky zoYZ4AflW~`QJTG#3&-?#HHDQKQETUxG(>+X!G(b0T;Xb>*$dPngBw6OtyzQljYcbY zA)NpxbGpSAv}T|@?rXcQ6k6E&7T@v9r^G>G>4%aDG7=;1K{yO$bYT%lX140`Ut}I3 z{0c~Ahcpu$^*5ti4n26o+obTuvEyhwUEHG~_|pk`m<;X{%H&_CD?LE*ty+p5+jzlO z591dm&hrniTo6R)y?CDZFxtqEtkn)wQ)CnQzRQgPq*_vY{-4>hf&lCfYa;%gA{+o* z=oS<4?+n7nVWcjxj%eR;(F~^6!AL~74Bi!Y{3e-+hV3EDWy}-Bg^jc_YJZhi06KLf z=U&7Bt{FnbFUHMDl!iQU)Km)8%eNai2|`KKVOjvDCd4CCRP|wvk|LO5^}-&a#>7e9 zGMQ^reMUkIH$?E1f%P;v#$cv6UpY5f{P4~SsWLj3hp>PJF@4Lv&UZFKpV}-$O5|JHoxH9bSo+7H$M~5vuLk#ntpq>ja2g-7|Hp7fv@LJSuXwff zP*M&*q$k%!XA#71f(tUnRhsRPr|@GLwWlfv7HY`MoFo|T z_|W67kr5$GkScE=UM&m}T}R{8s@1>u$x4wPxIG>KQJ-tGMqKg#S%TsH*-yM){E(xj zstTdGy?KTuf!qOQ#oc9v?S~CutM^sjhJ4dRa&gDC_!IZ64rh;Wg~h+MPQYDl+iP%H z-db|%Q)MeMp%DDmD*j3-`DfhfHdZG3{<&dS{L@4bYM<9%;st{9hcA0Rm&_l`9&PC9V+1FX2;e_3F*i4oI#=p| zn>@$%n6Roih`uaQcaHrGR}}`?O|$yvTa|H*N2PZfQ==yG5`GH22Y(*}fj(%_i;0(} z|H{2#Z2u(lcPf8sN5qF*0TsJt578&1Ac3Q&Zfy#J?XbHk_27b9hM}h0;b+Al zMIiks&y2!^^VHe(<3p*+><~}8Vm~MB9u#@^GCKudK^6eD)AZop|1it_{57rX15K5x z2pN(e@r=fW#41rLj~R|W)iqT{*pLY-&{=x zVm8;<>1f;{126YTe`<{3Rg+}^E*L#n-i8nl!fBGIqA_w@#$eyfG4YAVkqE<(7WEsvDL^#KM*JW@tto!4z8J zryNJ1QNCt7R7S4d$Q83|QB}_K_uzsf_f|Ld23I zW$wUH|N47~%nZT71&^x5Fp=lPJ&&J`tM>~?gE&#yqTta_J~0y?b_^dOa zQhcs}4fk~SWmXSjE(zGdR(M)U^bn7)k_$xDq>Tb2tyCmxpdJ7gH1t&_5H=@Ax#Uh5 zPC^zo4&I1_zONsUd`FCMEqOfk0P!ksPnV!(hDEhY4U)gzY>3hDV=CZ^JGirbPtoOezh(T?hp zX);yG{IgnHuRkwwwq%7QIoySChoGQR5djVTN6Pg1+#qTIXW*%=0xgg_z!s`+&d$zqhQH(mO8WHcCI>km4Sa~4 zyC~?ua7|1OgO>*+Fp< zu@Z=Ns@-t83{4(W`uw4!?hD=8yDWl4yEL}_Y0w+elKdebo3a`OGH-R4SNexBn-*TH zqk5nOW7wz7z%#d>J1H&gIhsn@uqzhTCm%@jxH&cU*_7znWdM$%{wBF?%Qpm=p1H)* zcMY)!9z?ktwNy{Iri%Yh*5e!t7*n(g=wNr@eJ&Kl7Y@# zy72Xrwv-YT6NmphMdD4{A>O%pN?SVkpD88=-JDbb!h0cVi*pYb5ziR8a4LGegAE zmddI1RPJ6y&pbFFF|DIn!8ZU9o6`jaHh5vj>N|{ zsQLVP+@)vwv-equpv%<}(qlA}wf(s--kR-)3ZX^;@*L#*B{X+r3~0y7{?EhH!cJX= zV{K}QvQ%}IG&C+N?&P=BI(WWlHowA0x*!@>Tc*W)17tINRF$i8T#@8=hS59!guF%H=9E(q*@ZWc*%`G2lsjN`!jj zti+aSp*UUTqtUbmJ>>Gt)lcD%dzGfRU+s#G`8H!jhb3`O?c4EHDSv1U7>yU^i=aPj zQ$t0ZlcOz(<*;v~wyK7-P&EQg6$g}rrP$Uvz#l-~V~1cHKVFZ20_Bl*zZCTx2Y^T( z#h=X>3#sw`Fwr|ge@CKeT|+5E^SIsJ;S~?1%*G!mB2Q08Z*InA8Rt+8A5Lf}hwedD z@JKbrgb8*zkuIkZv=~ma*edvbbwqJO?-KY__OBcC)b(5uiXj*6#M=5)BzEYr`dLk+ zpmNN~JK_m~31SB(iK?J)c1Af2o|&{xzFXh=!%YeN5DtgAn@_R9V!3LlvHfzAmvyvY z5tEsEFHD~0=3zOPiE<4d3*wg#YGerocRDA)nj+~f<&%^{#@n^r`$FN3D#N({A2dvc zLh2RkH<%0wqIJHGS76-O&$wvLtZ*C2#PIzNPc4Nvc;fL|L8&=<=0R+p`_fR?Q`U*E zQ7iXH?|s)bNn`qLug8x8oaxhTBuXKpkO!g<2xhu=SS^4XOr|*V{DP%~^qt1d&-j8n z4=Fxnd;Q{OL_w20hhlmp5{ zM1wsx#uZ2M)ug;i2SFa2?^S0xfklvYzM(j<+$6OIqN;@GvAEx1)dM|sJHpOkUIZ;q z?vcvXR~m)9_!O%B?b4K2O*_~0Df<}!4wCG0RqtqDzt96 zM=ndQDJriVtrb9E9~!6kH8~_Mh~x$2E^)xiDP@K^l<9St&&f9pZXpQX;o?&zhJRN7 z#HU}(UAm!W96>&mieIm>t{IP=ATs8vAOAFi-g@sw{k>$_!eq0$#O5&Hik0cT7UuQH z&r-LkS{X87kWjnJrDXaF^OU&4?6^VKU0Y>`Yq)_GOc1=Ls~fpOdq|0@E~HRuxV`hp z2dqD({5?s;wf^c=e`e~(TZMX8UJySnjw6+oQzp&3`}MT^+(PomU4}^JAg@i1GY8+|RRK^)c@Lt`0t} zw7FS6?>yhBtbJarPwFS`#;fcucVh;KnMI;={mx}JA*d_piRzOE^6xW$I89U<`tfZ+ zlZpMUdh{?H5GT3j_uzaBUr* zNrf4WjWtg~9BWvSkaB{P@%g*n+f4SA=I#GLk}56&9b_;k=>$F?R`^cJs-L67Z@x1H zp|Y^Wj>LOp0Cj^220i?HoMEk;s5U7y?xOhpigQ)DrtC&PX7!p(5mS;lwjDw>QQ*6k z9bg@>M0@M zU*WL&Zea=`_GxQYq8LoYheKMx%6UgLJLO)S*Q~&oyV{98^W<`LCms0-T}xo879D`? z>VOzG>#D|$MNrDWnbMIAT$GcOvuO5WWnyBwcW=2Z;7|d*uF$zDUi**2bFpcE$Oe7< z3;t)hBUsYwkLlBV_uo}5YthWdm)F`t9b)3*r^iD=hjU-o0aeIe?S1RGLqJGa+p?LN zoSZ!6BkpF7ouG7k!09LbHzR46eHO>qv$S$R8L3$F>`fC`F6CmPRE8o%_MzVPtM3Yx zi{*M~I@MsWDef!D5Vy0#h|Ms>H3>}f5iK83<jSf zMF2&~b%XnJ!`cgwIsm>X@XwKZ*Q~4>7q;6#oq2=|~k;Zi-` zMeY1cKjC|gKZQ%I1Eoa`bDn*pOb*vnY5>#e0nhR8?}9gSk?UjV?%ZMr#`l1a6W3=Y zTXq+RvUck2DBJYNnzq=#SpoNFh^ ztFHD0{5N1Fr1@MpcMQ7DydqU>Qs~r&<<3NoBT~>?ibbR{rgWx>+*KDl`yYn7P^ufe zjWIjiax|>4Y~dNY?1wF5Gk%oDCVg5At(!k>t?;U%p&{MPF>UY{D8I8eucNoTu7ov! zL;=H~YB9$Wg5OuecWc@N&$1E{62?N$zAc~iQYy%9&DMKf0b!(~`6grR?dHuP6w{#F zf=2Cnw`|aPx543X!wPg>)=K4zPq(!j$3wk4uuo166<YlOHtNqsp*YFPIk>$H59HvQYNNA2$@6*FzHd1=S6!zh_(w*m`1mDq?mP|1GWwd zdJnK&vQGjIkP?Dzd-VhY-D#G-@0$Nj8|aQ)Hr{)C)Lp2N$eErL7(Lc{x%tJU#*%pT z;@>)@{KYCyE0ef1))iA9OCeRQjEQxkjLJd5hB^c_u7TtgZ$nRBn_5xNtt{cR$jT^w zR$GlqZd-@C1w5d*rZ|y5^{ISveSq*`AZYlM6e_1Ke$zAX3Qvj}2h{NU>ii1h)xKj? z>*llRZgXYs-8+=^T2x93;n}_=cj)S!yPbrU;tHyI<+zFM&1#qdMBL5y`Z@=gBP@!* z>B6ysY0i|`bg_}`rNw1y?)~FY{9SC5c+~rG1(Owyh*h<5rU!NH?RUHt^bUWn+yK<> zF`2o1d#yZqy;EOW9$8&3u)ZiveYeR9KGz#ywhqNlQLj_1Ai+;!AmGU(Va(r{4BAsMBvj|1B<`HNnxlaDt;@(Xp(8N`X3srx$mF zC$5H{mHIn@uqjx=7Pn#|sG2s2MN_3He|JgMDL9jm^&qND5yUJA~RMj|k=bvF~ zAO%hez&TEqSCc__ANABUYXvXK_7M?i(KZ;p{wGt*$WAV2xOyFS23Yae-o< z1>?VSc_m7=j&&pr-^-?KTHI|_%d+6Knj#KSSBzrdzA_R z4lzPjO<%MyL@S#cJ!~Xx<85QtBayVaEK#}L(--(lP zsv5{S&mZK?KmH-0XAA*<8cXj1% z5JL4AJ1nR21luW9pSiTXKvm~HG-uTz>pJ)rikc||@HGIk=P=JyMJ46s(c8LE6l%Bj z{9fmQUv1mjg8SCnM&EhNi@B*O(MoP7k&H~f;j5XlUth5kha$%+3Q>L!KnUL=Q8Pg> zOP8i*3sWmm7h5ai3k=xenL?Eb>*n}M6oBWIzqIWKY@yX-U0g4|z%Re_vq9TU`45)b0?rSXqQc=28{QODpJeAN zkx#Zp4UIDx7x$unaifPbWzx5`F$LqZ(HGm{1njB!G1`hZx(9g#WpU#a4$i&wM8zvb zBy}=-OC+%6Wo>8w6){Qz0yKZ~rMK-3FNg?i{(%0?16xH(l^j~KqkB>JD&_cOX^kTm zyzk%8@oDRx*Q0e+rvmrB_8+wF)?{WY$9jkCT9{Y|ZiN4#p|;2a`rj|~D~&v=YkR_& zC`v}(Q-GpDe?RQB<{t}L#Zf)L5vCWw@h9|Mb(g?sE&2va zIvMR50g#2s{poeZhYJ*}vu9PG9yWYljwyWxFE#TzkpKzvRw~X)D#r~Z`qduFJ%e09 zQ7VD`Ao?9uD%b;dj-Gg=XQ=I2=acDIP$L2MfJID3X|tMY+&ry`B>-~Xt@kIgDTKaV z=?qC}DLLpk2cX2c{81N}`x_0-&&l!!GU~3I-e0gt`}b$5rzt=iuDg{;j`nl1v+>1g zE}|=NVbK93pAC#*F@G~*$cH~+Jjrj$c@NJ*oVoY3{?(-sTwtH1GX6^s7UI5IR72Qz z`{(BZ@Y-org$*^{48Pg$?(PP(&nElkh|lIy%W)}>JLk=R5p36a`l6;&IZkSVGqv+T z%Lpj%g})_xkZux)jfK_e$=N*@GV(tYYfMmGSvrH?X zbUUo3OwaKw7DDAWIHA-ozC#EOCa(cFXH_~*uoQaObPC=87N@X^WFi)fLhC?<(*l%U ze{2h}=%EG|$bF5rS;4o;kLH^)Q*wYk`>(7_3w1g=8zuidR9*G;%*@Q`(qZWNNA2sU zcugMjFBknP>#4J~u&Y*cG+%moUuL+G{k}7S(`C18YfDYi!5B+sYp5L+ihh;1+gj2K zhMnF;O09xmLDXg2?ZpOyoft-d)c`ncOMGgJpYiTtza7hZ8&AsKk*N|U5od44-=UZZ z?I;0Rtva)*LPT0yThadsp?enP{rBcnDCHXJ&Q-L@v5`2AYJ&DdBykH(fdFcT8a1fg zFcZD}h5{n3Pf~+a*e!RXeL-oGuq6@Vac`M=H+1NI+;UzCLYK4<{AUu92ORjpM^G!DumeEE~8#hvTR&<}e>U zDd1WU&F9V|6%CT1o*=UXko|HW04M`QW-~kq{qn~VD_<`={ttB5GeDmPIN=1hKKuAN z>{B1*6CkDSxAYuBM-|VIUT=Dl=g&@tY(TE9mo;u$-OH-utz_a^*J;*c(M;tx50vP; zzOJZ>=~|y;&c0zLq+m(!omyPD{&`(eLQ~SF>+|0aV(-Gj!q!+6ww_^`#n!txm)#hg z)kK_{Bjp4^P%8YPkLrfa8zInGosPCLgO5$s(*Ehld$PY7AQYV#Xp0bP*{lmf>~>rr zSBA@t_o1oIV5ed3S+~3DR!Y_lDh(?1d2z5OZG+V^_f#FZOx;YoLvTP>x$nxBDMODU zfC}r)A|QfUvb3`hph(>JWRZcmPzWt7FCRqB0Lb*<;2=Zcu|z!(P3ahRzf9du3E%)z z0#_D6lVcq()lTaKf8ehQ*HW-#Zfng#0)H)t+q%EG8M8)p_>K%8UOW7a$zhy3X1mOH zzUf~pZvhP$C2fJq_;vQSEudZxh|g;jN{bEtb#1m)P!7-Hcq$(M7(G>eg1nC$o(&XK zNt~s9Pp>{eazcs@L^y*MH(Czoc&uDTN`9oH_LSZLfxi`q{(=Rs>CG!@K>S=U`TCTa65p`c06cOqXSpH`SGct`VeTR{;` zICeoPk0Cp&ff1MS^j8G_`JP=cpe5_#t>}G&GPRDU zA74-YncHEOhtpN__D2`mnX@7QsDq80a)EMqd3iZQwsP|FZ6Bla@S2)X`%w=Nbii{! z9T!c`?1cUy7ku`Hxi)0qU3UVTZq=WwPLrr|Q{Ct_`**G=_d14E>Vj2$oa&S(8x%;9 z!hbWU&`i?62!TRxTTTk_NX)e@Dh)RZz(=9P&0tCrpIx;Es@cvn7C1EJD?Ti#{18o& zvLc;zbxq27MaW#+>9=|Ym8X@2zW+-IMR*6|Fu;H*bK}pdivY29xkg81+`EH2`8YRm zx@d)$Ifx~QYginGk#Z!NCai6PneKv=#D8m@NLtBknha?oI%?E?1tdC zNV1!Bn^U^WRgq8pVdj=6h*6gxYP{6Q{*!v8wkc`xfcOe$P8%+hp6QrLwx>)V<`WkT z5fM#}cA@+z3{qtE{v3*fcw7f?Ld20&v(~}Y%@P)!wEt%o;6@jN)aByhiXS`w1B8a< zJ|hz=@fi9J)J|nbJP?W7Vkp^i*1nNM^_=Z5?%D)|)~f3yVEG@l*v|?FCc5ebpcoxd zJp)1;YoP`$DZaZfHOaqj>{k0K{!ocUW?f)n;@iJWAiLx&OtSYNsNfkQoBt7X`fn>`-w{1>t@V1O-x_crf1`pSiaU}Gbaz&gcL5y zJ_*AQA=7KjO-D?)q5RIlz|f@op9itApj9rm%h=`@kM4F}{1kc~j0PBj3q)Zeu8X%f z^t^2)8lg41Edeg!fc>G!bzD?uD`xse7xtwzIX z0P3UTu=9#3>w1u{_ANq%?YIegcph5YjeOyihfex@T=K>1xaknUYgi|mTK+ql{e+N! zpnV@pEv;F~-C}4gqQ^!3#(ac7kjc+ZM{kh;ykC^E_uh_13NTBg=H(Vk_Sa3}#+X}$ z29)=_2@`00qTtakleY2?S5>(8Q(CYA^EG0(@;Wk8hm6h>OO$lK6&=>LYnS;qv=BSJ z$SwnD^h@jAth+F32U|Is2D!1Squqa#-oxTLM52=$HT|G(&?yb)SFbqDUq(^^lt67W zEa^9D!M*kdH4C@S*pl{`t+B#F&F%<7oUD+udC8TxCs{T~EJpH1Z+ZtU=3e~Z_WHgS z{p;5SWo+Yb=w%x8G9jS7cW4sed@lcTD+FrQs*gPT5$X<*#0K+kMrKc*VbtG_IS?kz)Qe%-FzBHaTO7fNnL=c|Z7le!6mo&ge*)vRhxQ9aGrpso-Cq zCTNk^lm*6dguH^bj-;)UW5l;jG%(89&a3jIbFk<(wjDjMseYjI;bM-t%*9+T!fzI} zF4_95e1AP)yFqBwwjU3^9+h@>b8`c#0W5W56|l6i(PzkeI>41^8Mu)`F8C-CbNE)@ zmXVRM<>J3Mn>XEuR_1N~`-JjGVK$gk8->I66XR-gaaq}RCNmVk1B`1aL zFW~#Bj75Iq7FnSMZ2{deQ&!l?R15xU{NaUz-YG4Wm9S8>N8OpdKIrVtW7GSa%XO}z zbvKWYuRwbCpe6-~!Ai8Gm<$F&z3HA5B>7=*$KVx?sVNm}(iV<&&!O{>Ic7QE$#36v-6xg?lTICr& z0ShOMYx9GMt#HW@2p2wu8!hN)(fkPs{4zU+y`JjfhZ9>Xf)-rO2ZT!ijkmzDz+s|T z6Y>7cTbm2X#q(w0Hte5>5}e}mXf8rWNDCAkZw>|x?56# zN9kBPRbXiZ7Ic?|_Xqr6zN~(cyZ7EXbLPysqfbG#g=MnrCrqHHI(ZKP=yZR+Q9bC!d2n-c|es>^@lArM%FqrLju@u1byvuQ1nvC7jR5Lol(Ej*|b z=)MEL{94W%lSY9EV?;#88(Z@&Q=9MN?>EnlwG>M}VkB6-J)(dwg-^Rc+3 zpDal4n}z_xF384yZpEAfvmzSF>15=*#Bd0kS$ z_(nvZTvPrN)eu_lAC=v|(ebnuR1s+dkf*%dfB*LZxcfaTfanP*wP#amye8?*t}7jg zy}6#F;3Lx>Nbu(-iDc&`$Z;P&aILQq+tSznIBUOn9~syz{Z!$Bf26mWThK@7-S(;Xz#p;-q5q5l<1UenAdA zUnPG$BMSba{)gs>(_Pw@zG-^g4##xzY`PaQ7eFtX{qGpE9sujr=&i8qeUK8uTY)6U zH1qiAKRuv$!Pg;&P8qX@xsib4DyBP6>8dQrBS}Vq)R5ZoL;Ark0-3XVRw~l9qfzND zY;Eue%a|O;I`O?x55GLvs&KDr-NJHbk1D5fECGgZ)Ua%fK4hKGrtjfTYiM!xp>2LN z!>f5V_>`cWG>o>M}z6GJHlI3T(k4^un?_0_O3y`dr<@S^%j|6?&U+&q06-pg; zm6H@v+x$#Y20_y*EgRP@vAq}FzJKpG+?(2%y-XbDxz->cu#oxtHH+h007_)GiwcLT zyhD)qYdKQj5pCJnmZgkL9TO;w-iPhf@Pb}B@hd^I(I+zcne;5Oqk_E7;7nBTY}QJM zQ8ztZ7-yk*?^&?0^%nn-Hiis{WvnRbH%sM^cECl@>ayWIs z2iU>)x<|H=%UQHYSrxkzpf;d7;d zmdm7@9ylSUr8HaWJ$DqseZdOYEm`B!cNjFl2Lh_{E>X`xGn*<(_On!-=Tz%qcw}Xx ztqP-+7Mjh|5B_(1q20~Q_g|2X&u%TdC!9qh0UHn*t5M}UVfM@?G!|t1C_NevDtTNb4e_eye+%k zn;=iGYQISn1N*Xf?>pwrieMvSXwHOr3xz(?v#{NI4=H!EzanEN!Sq^U#H+RRPXhS@ z1VJF!_2n>6h)9KsJKM%TnOCyeI@*!Ek(z6So=%5_1qv?JFT;{z8?(I@Edo+_bB?Qa z`F2yng3SWz+-bWy30tg{_|;}CJQjLTn>js~v9mJ+!A4ikB}%!-(Sx;nBqJZZwWbKa zvzI^)YEqQ3CxcxpCLqycS9uf&PJ-~d*@<8XH?9mLu#=GnW6M_|!@t7^nVdKYwNodK z!BS+2ChjWzxM#9u(66&I$>&)%YoKdvFph&5VvmYay_ij>toK1eTCOE^zDrVil)TeY z&k&cjcog}XZAGE&E0Ezk>Z4M;hU_|?dV1FR=tb27YScNpVACmxG_(DX3ZufX7;-?w z0CmZd%(^_#MVQjyGOZ|k7vu=0qH~V&SqZ{fstCgqk*~h9KfU?$>z{wO&s?ZLt|S}x zNtleINtpbbXiaM6p-i(RzmQDV-2x+d&zf20LVnerRSyJfW!EYof^jY1_s z-rYl7HaY3nK5ljKR%M9XAU}3ma+J{xh}GVK7%}u!ORbjNlcm?K(vK>H^&KsP@25KU zO6XNX!m^y)WD%o z(NOdPA5J(q$*-P9jz*lAV^_vQO?>nz9rm6KLj2d7MQnc+gg_etv{Y*qkXvI! zgO%0mBaY{XhK8t)zbu8xocSj6WRIzgK}43?OyYK3g>Q>bY_}MZ^(o`3Hz_XCCyY=S z?&SYzqy$JGyKE%^FR13Z?DfFPc}3YzWTNcsns&AQ9)06^Z=6UW319?jPS^mH;8ZQkM&5im!^~uu>dWbo)y3@WmUGX8c&4V(ond~n(& zs?C}l|Ar25Pguf?e|}tl$}Q|oSdTWvWQ}(3T1G`>?H($lUQ5ih*bx!3RVo$J*L}f4 zIE@21m)#sLKl2PM2yWWv`h| z`iuVnqKvR{9Y)cn+yzLq>}|MK*!v#xjHs0H(cOnHh2m8tforPLDl6p4nyAykGv9ac zwqm8W1J2#x%`omUX)HvywQ_JsGVrUb3JyW-3a@`Xx8B^UC1GMSuL%44yQ2|xl)Z92 zx>5Ry&dcjMrCTRQV0VtE8XD#$0;_rZgM2gYMJH7?nxXii<@eV>fZ$jk+%Y1bR0Z0g zPGmli5+ta#xCLKn&<0~Q{$7m{?hu9SJTdq)j;cX>VPqF-TU%6ore%_K!7d~%;T-8E zEF{&K@sHYEDljID(b`kMm@#y7c-cmLpJU$dV8~E(!yS6C>broAn-|2abFOHV)mx6< z%UkMP%GxcdUXd2QRJ~mW_v2e)=2JqS`A?3ZDg5)vpY*~GY!)$z8|+NZm0<=YH0pAYYIH@)_V{bNc^tKm~#9mfJjFkX3&nVp7oj*^3- z!Nr4uqczd7;XKvRX{{lc6Iw+NTeN6K-d6hTOq(>_B0AF@q6exwv@xzThNbqwY!lYx zO6#TGndB~@ats{C$I!&!#>8gkLP-2$LG}pw)-8dRy^^2IYS>IGZNnd=NBnCasr-1| zUPcHOSj_~EU||6*KQ4IR5zD;_LZ#m*hiw$nZqMJt?so0V&ptKutTaL_Hp_A+`}W(r z+#Lc;ub4ZA{aLFzu=$@X=NN;@gUNdtYv=_eE=Xo*F7#63LuwpyVX7I;q$SWleH|h( zCu%a=$p-g3<>9!jys=L%P1am+nxwp2iqO44n&}^9F-PF0s;WfQnpO)xQ zt?^=EVjD0uY-IWvC4iNYh;V{ia-ii7{&z*~E&iX9!cyHfcqH7Q2RSh_qrdZhpQ0imj=7!fsp9}PL@bq3&RK_-ZbHsfi z;@I2l>{q#Lmjm_Kn|XJJ?(RRS5+6DQ&1& z7}zRK5<)ELYNI~KwrNj*kpOw^=#P~JLlPfev`oK96v9%`^)T^3i!}Z4gyfZ5yFW^uW?U;vk}moUJ!}U6lCl( zT~9@<*iPDT+!yJ_OyLUq1ItF^6p_dz*ALF6iYGiw1RmLF=1Bs2?e0 z3L|AlHhxq%j$OILq5&?);{3nGtUSwjQvrU!(desIZKW2uBVNCIwb*JN?o`MxPGYaA z8-mX-;m435GXx^iB`;=U=~o~x{qR*~%6SsejNOnOfNSVpQ*1!nLCy)w#kaT&{phzM zKBJw(KU`<#QQfQh!&?r)Rf;)&&@&{JW=Jw0Ck7_VOkH?-+?(}}*iKh$BqS60oWR+* zc_;nF6L+1x>T)AV;?_sEN6FxElXz#bJfIa72vkt#H~b{N;mnqd$EHtPWcHwJ_RPWG zE*jeU!{65GRDh8_d&cS11Gzt;oKbVgM4nVJckW37n$or z{2>LdH;%Q>|FDHhqIat;$drR6weP#(!yQu!l#S-=beGge)Z2e5W)F!~hsMT&NzCkP zv(-a11X4i0`3%re*i;7O(KNVN4m+niMT(84H{OIU_vMW~RqV=z_S%s# zh~0#0^y{sQ>*uEyE-mz;8rY-)J&X2_^tRjIN$ooSHXF7pi!pcy5xBZ^sG+%G<}A(x zcd%ps0npTskm82)4+P_0_c(hT(0^^n1r4(!Fj7BNkXEgvq3$J%_3X4R#F zGOccFzv^h0uD_RrR9SmHT31Y+%Y5?IA5rBi_aj)l9D>KV+yu*Nk!J*g*m$Y7r)+jL(OK;gQYq<7nissyrI1g%pBCDe4t!v5 zd|sUp^tG9;sv1;EYo%J@gD>gSDX}tLg*k#)0ET3)`%|qlcPb49b5>l-Q5qH5k)1>mzXXOcfNU7hQd~GJflQCuOI6(4HoW!=~2(S2XjnhjsN^pc%V() z0=92yQ#&>c&x4nJkuQOIpuWgx6h`mL!(xEaSKbl(69y=}f+{yg3df4nZY~oPHVkt! zTylW%BH=Ti9i&EmZmP}71n3|2kd#@;|B>1)mffhr33dYZ2J7DXB5?(-WZnn^l4%~Y zpcW%DtXCP`b>N2f_F6mK031nLYBMkE@wAIyw%~^SB3wRDErpJx#xf}0gmoDhS>PmW z8w6r46)!*2(0&5_UPZX}P3Y&i`xL78`4A1@b3@)@Y*Ym~^x9TaUzdwRu-0&5(^F2`PBBqUY1ahLs zb>JQRseb2sXGZlcH4Bqb%YwWhC7p?KQr^p_$8_T?`KQkB~jNkSQj`?By&|3B= zs2#gnjTm$F_NGDZZrZL2==klzMiHoPr-+tM5?aEx;zR|e5-N(_34A^@R8g7*Ah8lX z%A|Wktx=^X!sxU~H{2A{); z_V!7u7ySbQUt`vhXUKBQfF2KpKv^`Uq&UcDVft0`ZOp0M#hk?}JzC7n2=bxju`=p1 z0l0cx?N0hV{^3kqqxyyMkaAfPP`H@-(OOEEUMHuTOhnkEGuE-OFzwu$Wt1FDJCXXD zGA+9|%W)4{PyNGc6K(PWzM?pW@4H!eVeW-ifgi`unAe%S5HVRN)8gPTHH?4@h}Jk{;~)atg49KnH`Q%2N*OTImtM|+2G(LVo57)RIO{<6`5A-O~^q_f0A z7MqqT)aF+!%kfNagTdAM6PuZci)o;7redqiI0ya$LcUG?gde^+ttZF@j+SO+M@qU1|D? z5~lrcGa{c7Eh=QPW;ip-F@fmG@^eswb!sP>OCfIOKOBnKbg1O>as%$`Zd_we`T-H~C)pu+rYt&$_Sa$>)D`_ak@}L=GPFk zWR$OEG9wAVFI@C+vZCeDY^0CAogod1lLvd%bp7`Y`xW_wE|y*IgWeNaM=`aVMH z9#zCn0!W#~>2V(F9ZB>jP zmeqA+{x1;7^pOS{P5p;N4CJ>}Wo0&yM={}6fzZ-Dt)*(xNW41mG*Q0p_ig&GY<=U+ zUa2XX!I?Q-Br+~c+NTR6Uq$;KK+~c`s9Jv~5)B(_$_?q!H6Z-OBMoU4m$wDk6YORWDdqcrQARr&MzM}nX9WAWME&0P`ZbvvwWSS>31HG+6r7gOyf+xXvU0Gv&y zcn>FaZ$rwxV$%FhHfdV zzf(~6{->Zmr5wJ$tCscEj=pWt5D`3c2t?t4N>95-1dR~U8LStx!m;*s`s7f4%{_}) zU4s&wrQCbM5kGT@1#_kz>q?IBGjP^m>2ssVtsA>|8FE%QvkG}x|BR#4U&JnAec+Ta zM-Vg1YNF}+GMRDUN1bG49pJkX%knOke5VY1y9skYW^&B+!sgrHIwSQ0h+&M;@-LX1 z^z%kNHTQhl?=d&%4jsEzhv9+sq^M_^M^t{w?k;jIaan%hnBXXT(Ip|UQZz^Cc-ia`hXctgSn_OS16E^}k9VJ=5@ZxBG2mn0g=Eat8KMq z0J!n;Ue)^519hNl`lph9lfKP%aVje)Gd1nQU@SFb?xE{8-Bl)@#if^exuj_fxp-8P zGLPX4nnC3A;ut>3i2w$(hd6xf4mDS44lQ?wQ~5t-=u=1idqQV?MrI*JGs#L)khURl zSZY%Kz1d_$9{Yc@A?F}l?j@$hc5yy(q1dq8QsqZrMG)FdrvP>Qu`ChhDxD1@)-8k;N3LNR~5G?$MCrIMb6IRA`1vzV1_E>ap5QHGrH2t|3a;|9 zltwStM(Db!&0v_KlfA)-YbmE#ZYr33BHq;S;JIK*>OwgQ`T8p_9wPD61tnZ6QL&Sk zo{%e>*hAb2WmCOcXN@lKe?B+LRKK`9z2XgRz&-mlV?kQdLQv;e(n5phGZ91J>mPJK zQvMqmd#3Dpt=&eeI={5C35EQrg%DlfdLh5%meAcMgDl?_%R>9xx_@D zw*ZOrG{0g3_rAX4_IdkjF1?a{wTMA3xgi51W~@qx%}--^8sU1@p429{3s&=YgL>7M z*^gkuRS4))a&bVums=@{$V|<|B`CY-c2HCUgessokNn?4K;e+wW5x@qu`TZT6n=XO zB~`}$kxaQSO^e}Ra>;pcGcs31;sVwmYeOECqLJWnB4MKPL1BTdxE?#!+GH0mr)o3D z`QDSG64~(f?I_6@!;uR*x5X%qQLti98L9?lyA|wCQ@ZW?;+w)c^~aifTt}fsZd@dg zv7$%4jQw0CgZAfNy#C%D6jJ`Sod8R6iTFr3;nJ(C#P%!qxz!=GF%aJDHA1o%$wN8cM-$$sWo-SOJ-Asdax<#TAt6GgnFNU=z+40d~L!b@k zPT0r#kO=e83oaG~P}L*nt;T%!KgDA>WBAhB6K98ViL%dDl5e(!Bsy2q`3V@j3YcnfHt1WC7(&I=Fw3GlPx%T4x_hyA3 z(rYe_U*XStV>YIGZxb;@RX_6c}ZPN2WubD zsCU`0ib?!H>PxX-H|Un+S_O&7l016<*WspRM}Ax1;bpF#8gi~WbH5n}e3=dOZ5&PP z3>4MEMZ%jgXWfJbX_YK3A*s`+I-PdedbpXtGM}VPF8)*T{4=8Hvetw65Z&UHtfqqF z?uLtoU;q{U0mf_Vji~5+nC4UK|>H9Y%8Dk=6t)ty=?$kKbc@UDZplUa3{Y<07S|DB80e6 z-|*89H9SK*x&J8VYIlpl`K){T#Sk34zlmPu*e{~9ltHo%!>`-L3{pPqNqkkL%N6Z4 zXs+tup%9@yh~$LT{usAe%%nP}nbP8V396$<+&it<8c7EV^QcZuCM?sd z3R~*b0Ec<5!j|7LJ5Mr8z7s4R{#S-d`}Y5hLViBVbqRuhk-*{2;!Ovw63LJR^G##S zPO;M&i;>W!>zY~x#D<8e zC}rIN#NV}j@c((q=q@jT&iH2tz?9i^tY#?=l`mFIt7p||y_PGlt13zgsr`MTH4L$H zlJt7SR6(|nBWUsM&XvZ@Kv8*UEv`bXLRvoY)V7@U+U49{MlQP4zCtSM#R0CCQV#h- zJrpg0g~H#*7zSPfZFp9Jz;mVcZ~H=j#TrFcn)=3lX3n!JL+Y$JK>91XrqMX1<{DZ}h%p`nB5MRA2SE7b}I%m?@Fc3a^XD6T@XBC-;) z5-lql{`kz-JHKjZx2r0N6^v{G;Q`wXgQb3v&)Z7*kt|yZ=Vw2^MiDd;grQiOjN=)4 z2O;w|3hmz5YK*Ek-9l9vb`eystoFV5tKZ{+vN+d|nQ>mMSpx zAku*{H#}QL!uQM~aJ2~?> zV>W!m7NKV>Bd-TL?pY?7gj%_})*y3hwlUZrYcCv1m11`QRkemyYPFd`+Q*!iKSeE& zEcOBK?yWl0*O^qn*K*90WBIyvKdmhvE57^U7-7w1Ro6HEKICN)0M^c|2Ug)$;p-n0 znDIvB9{p`k4+iZ7N5EGe{v&~JChU#D(V7q4gTnD4wu9J`E;qU_-XTZe7+pk8ULR6 zMbl|$i{9wy7ui>kRZ6zGBM~S;!Qtz4RU+Apk%bmP_*3=8`!y-nTZ;@B4_N(mHVdsJ z0Ige`wb7E*Pdv;-NqUl3J$wG4uOEfv#9}a{rw_Py;dOm?NNWE^!+a{c!}grBMpW;N zpjm+XW0L~byHhpgTsfyQo7V`ZgVz~4_j>pDm(RQh9*1*7$)~?6kQXnmf5yp4+9q>K zkc}#QVO}QKoE_bNUpQ2_)W!UegSATSYrb0SlS-RS%ZjknY}i4AuQHy#(=O<<-cjed z&Fn|g7XNcMnr6v7={Zd?uRLGHEGOloJvjC`ad_6w^}HL9Xu|6b-yyG53GPU&P3F*a zPlq5|UD?8jwHAg%Ra;_Oom^tc;B?K4PzWXZxBITXSlR$) zR{XBGf=^cv=jEc-!blCWMxk6}q8fP9&|m}GsNB-&Q^vOWxEV?ZLoQr!IHRz|6g4+y z#20p;n%w#ANN#v7a&<23?9Cba#QK&=vJx517Q10T7Q1C}u|UWQERNV?IlvY}RmX@x zJE$%i^lw#~pV!^z0$5Y`S&Ij`thP|)dnp3L_x0aA^jM7+-ohy*S&2(AQWR>Mb`-2% zTNu=_|Gqc)aX+^;zA2vfpU4or^ma7U3 zhB@w2U+^7>3i*kucCE?cHD@V5jB4>pBmTsBM5=SdG1;Uupq$O)8Hj9+k8!9$DTuQr z$r(Mu*%|RTsJyIVKM6V+=pZhTKiZ?itWuhMeSJf)<(Ths4`3l-Rk*ObI!|Ku2ps>) zI9A}eSd&UFW8wYzyjJNs0SCx^@vE?dzc@*5Q>6x5LeQykk5GevXlV{y3d2o0d*003U`wjWDx z6L{oSM3&)b#iB~0RT*YJ@AWVat1V6)o7q6P0pCR(UtN|bozl8PlkkG0(X^{MeP1vS zjL0d8H~H4YuhVVf!Glt1jWZ(Qnd8XnA)4b3|zp3*8Ldx>>>Vea2um_Z=!<<87|eIH;I4|V>{#;pp;irPZ8I?&rd)p8ecTF?%&S;LIMjR(}}P6y~l&nB%K> z>~&rm=vU-RnVW40n${ZGN9T1r-0l_L-Cix0G^0NIRtgxl$4HUJL-A$`4GrJ^y+4N} z0OVEeCE1}4SKssWlUNP>+~YBc-g?=^uZ)#-AL4O~yKqbR*#SB63H(Xs=PFLqrwuAS ztoL1K&&)7=imhx1I*!igzeeE%b~2{4toB5Czw>;s>C(Vomd#}GjG%?2b>BF350Y09=ts4JZ7XGsR+#*7 zlb&%NDcxTE#S)N@iqme&Sr^fy)@yITUi8svy-mQdhG<6RdS!pvd2>@^?6is`j$JpO z;H;#uM8IcGdEuPzQ~`eie`3h2!S#84HX;?mS+^^~_TOPGy;e4~ifrtx97Nr{+}KI| zEIcoYo!Ab~bMV672bw{COqu;(uJG-qr}4_Yz8{&QNt#Ex=(#N4TlU3OlZM-SWum0Puy zMgOi>I7%5jH~3;`u+{`n-Jj6W<+iE-ax|^8tV`GzG=rWl{xGQ~jw!a8ek1*N@cPt< zF)rp7j(6n}Q<|b|MCBVMH`=eCXaTxs1CM~)z<b~PVwx)zj${d#fm1#b*u2*I~fTa$U?=35+Oe}1(^{^Zsl5OKFEjn^fGiAHv+ z()J>r0swdflVp_%rMGpkx>bd_ysbTD_o5eda~?eF1ycPW<<=jl&m4cn${=K&*8h^*LIKP3_um1HWTw=m%i*(ydRe$Va=K+&ql ztcq}s-N+C)eRnIU765#3nNJod_441U+Pd#!Y~LG+JdOeksiM^P0lDXLZh5|ZWqYZA zY|DS}tB@VN=tJDB)o%ftC;c};bPL^2}w{^vH2ug>`&-5Ph{jp;B`N6m6Poo zmkrG{x-`+zhK4V`#inkDf~l@=+up+-DSwrAZoW6;2ENv1QfC$?+0Vb9Ine!lg8F+e zV51;pDn`lt@A%H{X!@(qAOwB!QPCHH;Ypi+vi0|7wTgFJ`kW7`^J5`ck_FxRW~IjC zW5CZ!cHUUCgh0GwFWgg&XYt19>~CCF={iqLb{MEk ztJ>EJc|v#Om~h#+TC2Dh2xA-*Y!?r!8fsp8G=6TtUKp0zWJIivoZ+LNczgJq0w2ZsIZ0MHTgPhYGV>c zNu^P$-clz6OYhLdc2+%a*9L}WBkiE5C5CW3kc6M*@(Zg4{LyzhG}bc} z(BTJ#IVEOjEE2wnC<H5hcd4B7h; z8t|e%f_Kys=Z%gSSot?@cdukk@`iGSW8BeV6b}4}uO2S6*B%SCE28x9zo&b?uEk!d zBtc_POEOTm+uF5(Z?FGKn%P;iAM0F1Ys}8#p|WC_5f_z9N4{|)kt%OlOa}i@(e{A| z9SrQisbq=LBRv3?#)ohHbhTi(B@eK}cIgoZN{CV$)V|ey|1pC3FYzHFSBo5xX+b{onC6_BT}I zEFs^uLj~ipx*}9@-1iVm3b)q7{`YsAvD8$`<9Yyb1Y==8D0ZXTXA#8)CDCh{(y)e2 zSY_g)gdGWCZMMJmy5 z?$VL!`(iq1P5Dgnf=6>gGF%MH7}I&+*mp)0 zNe=i|paT11N+3Q-pouuW&rN3T`>&JeiMsugLgqiu)W&aiJ_7Sik2r|+HOII!drR|n z-kDaojq)F97~&1VK5=weh6H$AxiB?;bV|$pCJi_XY_>YI%J@e%Owxv1sA#1MQvPlW zkSuqV%v`0-+`JZ$HKzFAqN>Z|O*_XGAO3hZrEVsKQQ3o9$(#M9m`;^IFl&LaEEo5m~ZOO7f8p_(n>NDB#rNpfkc6c%pLl{}AfW0S& zDF}OtJU=tAWA45oUIf%H8J^zA)xBq{7o%6Gt~$vTyCm`z<-fqhH#p|m#X*ad758h< zh7X}8g#I3w(>m|i4oHtNJe`+a)w9V#Csp=p{AIM}3W-HZe729nG+Mu1CJcLL34^IH z!ZP0O(e;Lo1}gSj&eQT+npBb*6YTs~dTFUG?6CSox3scd*98@Ia}Q9bzk zOMWEHr`Gqqu&C1Td6!I2FNF9ke*3arwTB-v0VNR|0b5vBCFJ$-jUT07shIt0i{(yl z!hfZg(PR;V+;?G`+0tj-MG>|Xwb(_o?TQSJ*lcZJ$hhOJqlKL1q!kaait(X6q`|q! zs7A}YNadAwioRL(QFgC+4sj6H6F@7A7}YhzK()9mlRfW-3YzQj?}MdsETWK!wM&Xo zJP46TIA(r7Csy|5+LxR=#>zWu;~AiT=}JqJLJT!#Y!^e?f+V)Wcc*Xqv57D5lU9_qZG2G10lwN^J3Xk5S9>9rJuGa zd&VMq$2g#B5Zco(HbUqUuE%NEnIZ!}WP-BwX@=*OBXK)g)wPc3UQ^y&YjWK?YaKfP z2aa7=BMYVvAHRJh93x4#GMe4`pEx7O*?lB3RPAI~vEMPIt zIh%p;$jTMZq;S2S`(Tr(ZSwB>y^Q0UHPa+E|A{d26h4e~W1(tUK`oA~lHC*4xdmc@ zI}@fkAPK9EcofG>nFDT3g}S^g-g~+|WBOHSf@U@CxOE{3(}TC!(ppC$lm8kx*YC5> zGHYlhpN4r=r13nZabj?nj1iW9l3Js_G+nG?!oTe*U$) zW6%mG58U3XnF=3 zU3+C;WbmlqzCn_@`uf}BM$duI*y_dOU81%U?WtAB_l+SE3Ee}7i~$mfB8#sUK7Z>Q z-vM!|ua8s^+3v6TyTp56Z3Abiu62E0NO;52WS=Q}-Wo$00JG@me!J(^qBMIPr(Dpu zc+hnmBzG`JRnsX%pak-@5p!2B6ZhdJINC$A%j}(&=Jy9 zLH0M21M%h6wB-2A!J>qK8ms^?<%W}cO?_9p9`{fA44_wB#@24?|9b(>PhQhsGJXkN z?a@W)sM9vCfApHF61BfaGaTtblAV>@e_t=eKC zp6Q(k-Y~DK03gLNHG28!gs_60RIrN%a|krG)>^L9;S%{5#K44$gzjV{1B)xma?wAU z(8E0MD@-qP84b#OQ{ev#bikNU8x}1C%(<$D&fF%2CI{K)d=zo&4@((2{VNkm=T%uRr^*cRTN$jL&PvUM@kvdUFQvH8#o?RD1X*58 zw|%lp3+*C8KSip99uG|Pa*+oY9CL-MVAxCy{ZOM@(%v@S+nRB%{j{l70r_tD^+zos zERuk_ID3;s2?&E@6gd$m1RCVw{a5%CaUOwHS^ zN=ie)JA%c2dpQHhkSs`o4K>0s1s7!(Es0IG=Y0n~pZ`#$Q7QT@BpwgIZE(s;*mRb3 zA31E{>k9%YSV0NsucwSa*Zj3iD(dXSEDU|rHrg2UmOmP2?08B0zOpW+L{yS39NVKm z9u$~$PE<0P%OvUsiETtJ6uv1~BzIKCW9i^!4-T8%^LvM+#<2!XANYn`ZHHW?7BqF8 z0nb=@(Nny^SEmIb>tXom>FK15qQ_CZZ#RJXLVk@4I8C!RPphx~CSUtgTb$K&9_~uZ z81LO3NZ?k(@ETwUXKz+JDQdT$+^t+pp8BWX?W(7KL^@+1iew1rhlEWi=g4N z!}`tUGd(DMA6>$g@8T=5?&2A?OZ)wuH%iEhY;ZKkg!?^H53MJUG^Mi&Cs_^ zdZ9(zb$J4ehTP=EmOd4f76g9WNy_qk7ahy;&d+AA%~&2yVBZN!`B`}=q+Lc2m0Y&8 zvi59~Fp_8TV&9ib^%uQ<-_ueDs^ADc$4m9atr(pS)XrNPrNWqOcapHTBxY=(HqIq0 z8rqeHJ%0iR8)|ku`w%2*&ajy)M0wcBj9aEs^bk}2>ofilk0z@6$rUJJxZuKD$-eR{ z5PT(eQLYYVdO$NnGcu{}_L~v;Qu-G?d_~^7_Cl&3enUKwyPU{8;PvD27td?-MFB7t zw#$M{^!oDDt@EJe`}gk^eFwg%n*jj8--XwKC*yfJIYEJ&<@xdP^fsE3h?xj{GOUne z{E*{5U>uMm*Zx06oMV}%IIn<0SaLc$5H^zUhutKtcdUr1iy#JC>%ZX2+BQO~FVW4y z?jki`?-Rdh#)Un7ODI!EcRW*i0x_&GrCWFhms)jeV3sEDfI^-VM)DZ-w6Sd4K|j01 zJo<$m+!YB%-S69p+@83!>-QpP`OFKF^>kf=XDL>+xeK;rgiRjxe+ z4A#JlQ)Q`>5617Jt^L1}h@4Rr%QP-r-i(6#@PT4I-PE-mF>7ixu2|szGu9Z5MQh=2 zz4O4j`mR>Z18UV3pyVl3$5vh&O(q?;+xL5bV(RzODJgfX8sv+IidT?gZY;D^r2cTU znzBs)@xlUIk`GD_bWELXEW+hdTp~>{%$ACDznqy**J$^E2#ScCFUc%Z5_6%JzrqV_ zE;|3vWV=0Yrv+Ke|MGToSBk|GR*S%OKgu654Q@j$zCl)q7$yNmSz}xP9#6Bzzbyf1 zKLCs_`w>>Qzu3G73@S-zl?KN4*5t<{340%h&T-y}I%uy`jSyepMX?kRcPmSd;u@7? z4*P3^)IuTRA*J++E<=oXd_$Au>aRu@F2%&J6Ds-$kT@HWey_AADhD?^kpUuq+_WP( zD)pF>h3FRx)xRtJIuI^)=2;RJdK~y$uY7K)Z;ROwZ+nxg;TaTru7dzC8>`s z+^PBUH+Ah|wie!)H#ZMN>W|_Jln9b^(y#2|ZLw`8Q15_$0%0{vrS*cst!IvjDy9du(%7y04$ zY3|Z~g|APCu6x5jOVd>llAK}Et9X>M=t*&WcG3gm>s=7(iK&k}I_JT9rRb+42$1PB zs!Z$Nv`F%A!3oR5BTK~-eI_#&Zc9=N_G%QR8J5xDc`o==zmbQ4dn~eE@<4k9U07>4bi7~D8kp0;e z=cjl;x`aJr{IQ`Mu6KEm4+_!~VxzTW3Tlkn>J30R{RnmpCP!n0E@njw4P9t5O%F8b zMBxv4uy_kdeJ2uTx5l(-&~!WO;8>vxj)6<*11*jE8(ZHjIWT7s}#&0h9@VJ&KHAEcb4`l(l(_x+9A zt*np2&aZbXsuIdI>G!)nmPLG+OT5q{IW*a1x&zJ+vtm2zONe7?7rXv{tzGF+=ln$Cau6E#K_J_OTDpU9DD%ucIpl zpd*p4)huY*UcG=))1SeU_Y2bVDla7e$uMVhY+ZXw@#8{ktvJ(z zTlB#AEM`uFJyLKpi@Ejz#%mW8%xV&s3le1^ll*}GN*u)J#7FTlL=EZ#HmHX zm7r|y=i>qY6$WJAUfWL_h(LOhSA-J6=#6Gix!(7?#{HmIsq-JFntu?WqsTB_z4NQZ zFL!s%C*v928)I=bibZi4_q8!szj-O=I+O643Z9Mc!T9;+&Q)I#F8fF!ugpY49|!m( zL(cbiG+!qMh)zw4PE8Wi^zpaCn4eaH{o?$AKss_es<${eWMU`o{I3~pM7m^p1N@#%4+tXE67of5d+PuC7f_mRA16=f-;#2+nY=E&2mrp@|OGy&gh-3 z{F25&kj@HlQ2nI-0bJd#U}BIl5A!@&E`Gc6q7#8#)-OFWF{*qo@kaQn@}HaR73 z8B)(L!B1MSzgG#;uC`&ba=#7#7}Tq+F`UVci}j|z^L!$WXHh2ad}3s|^wyQ@Q%@J| za6T6te@mEv4%x^0zX8>e`JD_QU54;0So*S^k<)-2)HKYpVi6O@y!8#Vz=PVYN3knh zxpKv}@!)S+zjR%Hvh4Yzg{Q|0P+NIv(2YrV1vG?(0D!yT71F(G34&1n-o;c_!z;&& zw-k6^5k@au0GWglvBScH^n`OHns@Q7iC0^*=;$7ic&cSV#BfXSH^ywUX<+IpaX2vK zw7udI805npI*-e{?R z?;dF5&r}WCeo{=^li=_R&rox7q4eHt#t$tY5(3mykp%XuEAF1vM(Lc3J|TRaEoK#~8lf{e5-$vOnX+`e*gfqRzsn-R6NQF6x|w0+#s3olI6gg0}}F z3lhLzBd^Whzb}8OIL0hW@0E}89QmD~uA3msSY>|fSjds}ZBO-^-O$17ZyOi9`>AF- zzXto9oxf2bTKF)mE=y^gw-?+{O>tndc8~}aeh}5jz$=b>^(6brX~vc3N%RE7&r^gi zu2I1tYdussIC?#ZJ`7&{U^$%OXU^4Bh4yzN?P~4HxX`or<@fl?Wx{Y5>LdSo`Ik}k zaXrYq?;NFb>;^6x^=yEvEG8`A6yc3)Hg=(HYTVr1O&}Pp2fYdnSsA@SP<`DF8vo!i z!p)egSTq~lbv0_m>sfxY@5WL!et^gZughSN~_TAR`9Xr7fcY(yNc*8271#}BASKaEhm z{gl2FXg#;t0Z_o9{!bxE#t+av^qbmQMFcbm(k?n)jNY|QKm4Vz>XKFI$Se{uVd9E! zRCc;4VK#~F9_**?J8u$qhdZCy`kViA+DM~Yeu4v4n~L6-9q&2bbMZ?Lem4KRuQzX| zTu5E+ouK!15u-s}bT;_JsrIQ8Kls3FC!LiTYjhB+{UJOe!gr3w$Za<-l$?F!pIo%k zz*7+CIXY3z=_o*a`!l!92+Q!(B26UMzI|)$h$>f!icqRbGfBOncK+5|{*E8kZ(#y` zP-k03>hFe7UB4uI=GJ?1a%M9#8w~cg{{wB^@!(3{oonpaUlwn1501x^0mmZjQ!wk7 z1IGlZxzI9$sGb{_k}7FP^gYa{=5ve~Jfxzl4`^6piUFrv^eh;A;JXXj5VF%hf`(~8 zJ<6(0e|yv}Eo9hu_^xWp4O5xyo^&#h?TWNCwwGJWToB z0A@_v?OwABzbv13q)|@#EOQ$zCAjUQS7#*dJP8792avI7~O*_Oa z8XiuJ7WRb-3J4gu%>{1iupV?N6jp=27vc&L6Re3~riN4jr_3Qg<;6J(*nuCgb?+sI zw3^)i=E6NC*p7Yi>r!2%rHy-}MV-Tms)Y5L%055F-w&S4pBEBqRk1t&?&!|#f!0CZ zfy*JYCC}IyLf{n1r#AOR)NebUzyCKo`OWY-RnBWK&r7b}P>Gqn`^J>w{22-g^Ut`I z9q$dI+9Q!x6uVfZG?5(g$NVy8~qic(Sq7E-g`+M&`9F^u9 z%KW|2?qc4jmHYN%jGNFKJ$Ol+*35;8#`8~`~7k@D;}26EZL1eCga)aK8l$yBi|F*iaFpsnf{BR-fEdf-?vP)&)^+5 zV)UJdzafj)qc#&c=8Oq>#s8Qu^*0YMB$}t2$}N&HTO7FuqPGlM0&o4bIqFSsj9m-r}RL#XB=QpmXaE9GZU7 zdBf8>^|jby<6gtY!K9t%B>%Y!`~qi;VGot-q&?BQX&w!$WaFnR8f@>3d{2DeATU^d zk4F`qVYVggo{*2ZpmBpnsZmvPCFN7YC(gOrR=b`2J1~XxjqCaPh)g4NzTMz~yQq9F zGeNI2I%Ck=A)R;Q1&%CskHKYU+ODw5I z#$9j0CW^xhE607Lh+fEu;eFaA{d|(CAUsPgdi-{@tuX1E4tunPTmMIW#Fpt1UJ$vn zTV+ku*Kd5IdCnEB!I8IRsDVdMe*4XXtVY@6&&673-(vsVlIQV`(UkInGeZf5d1tF~dpv5X{sAc<`zO6L&_*5ef>IDzd zPI9Qbe^Wiz-9dg)-1BgAbF-{Zd}Tm^HFoFgIqxO>q@7ITo`L<0pewgG4Z2!VY9^$b zsu||zUNg5{Wzck(hXO0aq4r)T^y%&t@Dd+jgy&$o?1-!vIYS%>8%uIzTNXy8dy8JZhMkf6qjj_hT3K;bPHM%`^5ltdOaRqtKheZ32$64>pOlF+Gtf~7& z?qM=H!-U-x&~5t|7`F;bNfD84NU9EJNR1hwktB$!;6lFc^VdJ3Z^HUR%pzg1?b4On zbIP?odvMcph=9@nB~ohriF5c1^BABmU2T7Si2LfS9P}-XNT!)Zh>vVH43srqK`YNMT>X1TF zxVXzlD||9n@pPgln2G@7#EOM2kUXQ#0Xx+qhHfL$M}*4GJAY^pu6E8M-j z8?oN{Iq{?4iZXul&68E@T&Ui9v!I%_qQD-Ei(jHK9_GDFO(YVz9RfAoP2;HlAv}hF zBw;V5?LXPYLJ}G4^#xjz{`1n2(lX+{!ouGq;3drLwPhdppMariC;i3gh0b`E|?i zt$Gm)`_}|_8hpZ6V6eCV8Pc|lQIii5>WeKV#)AVpS)l2`Y~Z<8VYJ`M7^hB%HH{x5 z^2`1_MF)FeURPK*5zE?e?8q9K6e)Fm)w!)@OL5CIHM@`7tILsVsy;b8RJ* z7cNw>6MFE4<{oTzf6Bg1b#&u6Zg3K7L%Ww?e7xA5E{nPE&ckWOiOv9OS|w|ni?}uF zga{jwRqpOK%|s=)p0azKFiPJO_QN&P49P3QugXUxj6M8A=WZMG$#YR1R2L>mKa;ICiLUcX)(DbSnw7X*i<1wmFsH|48G&OxF9+%-LR z>GAX|CXC|(n7_vTeT-zcnCe@B6p9{Y7WBSc`ZTzvoIlfacOH=eHj6scKC&rBkQymSh4X%YHz#g-Emh2!Ze1U z4}+nez*2`U5|>ZGiuErO`WiQ;i&73pdKMbgr{l&5&E{p2Xe>5sfnq^Ez{|?$*>btP zb#W-iTq(xX`-k(ZDBaDNYsV1Er$ZiZOne_dh8TlIwf7L=^;$ ztw@>@kLq|Va>wi1SDH)u`b~CX)u*$6=WKZdu-nSps!WULG#ot9L18}dk{CY0HRWV? z8WNXiVA@x{1M`F^hQVmQ{MrjzDLSM9vKGgT@>au(jmsw3@(3XetB~1f&l1dqn&;z> z9bQGz>_nWTnzS15J0+eF&}>F)>v5R z#$HHJd+@82Jv1ZVC+hKNVNQO(E^QVsFVK8ldY}U*_Hh&l`O#4m+ z?P~wQ^-q+72p)H#I4L$)_3rLT4p((-14?6=!9lcC7sb)E?I_R1BAKnSYr&us)5@ZO z^}DRYi=bw_E*Pjx3G84}eZi)As*1S2uEmpB65Ae_&Fv@5C(;`Ty+YB1;<%P$+>)YD zF}0p~@ta zvy^aH*RoX@$?U0#^7k{Z9qC6U#a(u>!$;dIp;ot1)ZP-D4Ac^bF7>T5+TZ(WV9iMT zyvfKN0gn0fzg_=RsK+IwuZ}`T-|86=NGuP+fqhF9p5QfbBZ@gvLN~P0Je|XxIkUW8 zFsE=qk9$?ZCL+j+T-o(?q`?2U0KgGem43zBd55r4xW3{kQo{&?-IIe+z>+Tq zHi}S7^xs~0SNv#d3=S#lx5c1^LqO?clWu`wb2m{dU|1&ckt%BV4=Sz?ZdA{qv8l01 zG2ITajg5}Lc8KSs(ZFE*MgUzlqf1vDS#LM4-5L)NHV{tP4ek}s9N}@+)jpqkmaAKM z+_;uMny$NbS~)R)hmSmuNdu2SCD{r$Uj;kq4=E>i6q@)I6T^{d$TKu5%{Y3_s zRKugHyW?%(Pjj@o%iHObl7H$l0RdOz%H9zjZ!1+u)@1`0T@wZ_Gg+=IERMlRmSOTtXGZAJI0cK4reQ z6aEk>8CPDB!TiiZfFe8yArShI*n`=?s^?q+LxOhE^%YS|lm1oDaih0MhM84p&*#z4 zf5dt#H7JeC=U9xA2rAY2}zkb0q>H>7IPD8Wg*J~;`Er9-<4wqm5i>C)2x z)O$U?i1(BY9?$~vJzvt}-mv8n>mEAzn%CRI)VB?z3xmPl{`cJNqj&dMF25t%_G8nA z={r&ON?8p61=!{ve>6|8kMDLu92iGP{UKHP_Oo;2Ucg{}41Un6YX~lln$tmF;vF<_ zuT>Lk2NYl9mirXR$DD5OUUN@UcSoXB8Y`1!E%P$|5FxdI36#)Ygv~DSu6h+@5O|7? z!hcN@x(a!C^7j%8i*>Y*@3ROqn~5(M*@|O377BEh>L_5w2MKTUDw-|+PTE%-`@>+N zx4W84g{`cJaeNWOx=#+p>h6v&1|W-#j_C-J3WG(=g*Hj`D(C&c?g(7*t^LOeJ{Q~E zo!^&sK>B#1O17h~XV?!cMxv{9%nN`;eg`7ToC&sO4O^As(W*M6zaSyL6;b z?4Ym}@vRhm^?0)V0Q`pW_$}b`)M|@q%4K?o->muJ;s&FB)X7c<-Jz}O2~)~6wzhvU zE$`0EuC)^B(0-gYNOSG~^_4&9(G0V{K-1alis-QKM=O69&xkzIvv|ZijGxTTa3d7p zKZv@!3+a6KgrtfVNLBGw7w^9j0a3LBY{dv=6!UW|j&SK);7bH=yRf~%8oXQ2w{6i* z$4>%!fF63_Hb$0*uS}=AJ4_LUtVnn9tuC8rG?6uyIjxndzRW2wRD|xC)W!^b%b%qw(=L&F+pYzi=Rj^_cG}g<~Y+ zuNz@B2V`J7x4PG_UOA)t{4cQv3WwT}?)rvB90_VQcipEPqDv^SMtlthxqPI*X0@E? z1x~aY!rel?baxbfu>2PQ^f<`#*mUpwOQ8Xu9(e|S%PxGG!|K1|LN|THIKnBHO7fqTu_Tg;?wlWA>wW(P`-$b7F zg|YT)BWAO2NUwpZ2~hFOaF(|`_sZT7`L^FzU`*gN(9d^ZybvrjvcWk38?E>eQ0)Nu^FDYlKVlai1cjp7}_Z;lk6Bb|=f+vTAbCHgpxB z&`OONePMK5uq9HQcQ2%IfTE&m352Z@-5lC5zu~Nfr8x;oA6b~6+>4aMW!!{xkuq^&i2ht|F!O^{1V}PCM-3*X&(|^YzaD~L% zoJ=*y=ur7X8A{wJqp2~_TwZ7^2TaXID3e4d?8La?x!sL5YC`b-W{rWG3J#tjUy?|t zM<`G*a&~Ax5hjZkfhm*zwAa_j*ZOs^@@8o^4v9%o%rr*#OlOy2#$|=aPojmc_#S9%SK4*syG*twko=y&oH6?L;Nu__UF2rtM%pYLIEC2v;LsHPaVVBgvA*8U zEMKPvt}N=+SfG`#<~X>K0O>@@)l2BXH*8*ZNxkB(5v9Wy9i0@HWmyL@N>v(`y2rZ* zXfeK_0aLQMH;b>^qUmA9x<9q4lO1RKPr;i1l%C!iQAXh+rSf;I%s3FXN{Q61#ZouR z7~+IG-93{!qjAX-d}^%T$q<(Muq7~&2~i+tud zvLQk`ttz*fRE1fDSsdmaE&+Ut8&#@Az~W5Lp(n3f*O`-ztvo*%AEO4ijGGA3P#)z$jAS;6uZ?4j{@a~1Ar^a)mo~jCWE;v;jtqAb|!_y4u?V0_Q zI1PA;h9PS8R!vD9cWrtvCDrI3ThXN_Ho+VSoGuwi#pQeaw+MIlB#xXdH`CX8#m^56 zwrN+xgY;qvwAT%|(N0P_H6}a)nOLrm#3t=x2}&5OhY9j1OT32xw5t?tZ1!GwbIpFRyASCgJ78P_w)XmtKfRkn`d00N&9mk9t&tula)v1aRf#YV ziz(qL5DczF>9Cu<)Y=;=!bMu_x$f-AxFKc0@n{R4M7t?yrSW3M9bH5zWz59I8@&ML z3L+ea94-OdIAy}U_yB&{CxMxs3dlRBg}&18XfO~%OE~~-i^r%XjM#_1b{~&TZ#8nM zs;YG;&I^~x6xYv&Tv2VBmannk;nYyukAqb0A*5=RjVVR3XbJ{{A(mBV1+2VY>U?;& z>c~d<<0wWGinypx3y9&87I3z(o6zQjyu}ivunOi$6Pmq9?j-{VH%GE7};v{lf@B~X*_<=@I}5>R0nt*H0KwqudtpW=A$)-Y-5IJ4pOP>{mi!UAOvBmqS|^d^I>m?G1HN zDuzfe?^*H8E>TGObhSrUJx#zoQ(&d+!NpOe)Agc^H?%kCD0k$+7_XB1SfkrsOwwEF zSR=a>Yp)VcU?4u8>_yk8Xn^6b3x*Mx_aHb-+)M99_z((&NLLO?^G|Fq1EsjC;!h5& zI&%?&9bc2x2%CUblyIlRKurB^i_@>;h^iXw0~7Fbgp-%wSwqTC%kx}P31pDDKK@Vl zr_+4~8Fp5eXiWiFk_*Dg6?ljZpx8wxD?VbbGtYw|VWQ^gJHTObcm$HcP$mvYQvzR+ zo~`&`u-F3Eyx52kxkL?uhcnvZqW5VF#FnA{B!JeLdFr?A``$HC!C)a>-KMW3FatMf zJE@yg-I2OnlNqehEHOu0cGmd(V=0o(k|&XBN(cnGhV7LE!>eSCAmHWrVz(%oP}ucr zCK>ZQhYi3H?}BALW{TBqiASD;pB6ay#<{eLK;CJ;5`>?MK;$02R8iwqMj>S*mb%~l zdnQRiSpy%wLpydqq{SIG>RH0U)dIEzI&9Q}Gn#(5W4=1wLBUEvwN9lDW7-oN**au- zxBBfmUw0D_-zU&+d?|L+E5^zPY!wyho}mvHuc4~hBy3MPwQ;5_vc-a+Fn&AQ_j-E zlksrJh7y}hIXPg>-R4vLFU%jF2=RP}e^|GOQc)~NbQJnMQ+3%mkI#i_N!OiNnP5%l z`?F4Eb1gv5ZexX4VEykP2%)5w_1Lz)ai-KFngwb3IJArxHR@Guwd zXLZR-%<9~IJ65OULPgG+1TMP7ETf^u^Ly05wZKnAbNFs^N&PjZdUf}gg~~At9rJe| z4Dk~O!5G>9j&w@}1m|IjxG$u#{;<(U4mPjbQZ0GL0P3{eub_uD{~Y!#$o!GB4jHWRhZD|v>yxjkT@JSg&XnS&;roK%??4{Yg= z{9!Qk+e;NYD->pw*n()byV@vblvIZLYYt+c48hz~oU`tqD?RLuNm~#ds4l3U6I;A; zv<9XEe--JMbUa>j-IykVX^NG@1Aqs`Y*)Y8V|470qyBMS#(uW>-D%1jU>H205WbqK z1w}{KsbMXnHFxDgi2_IE^|-ie5S-4~r#Ud!W!;DxWglWU1L1H-hW@X~n!Ci>fuL;> zVJi+H?R&t|fwZkwlkRurH83W0veE`j0dzDV6o47@`|_%LOHG_5)yG z`+Xa}y`dv?qIjbx8dgKI3Q})ET-!9 zmNzssjOsh8mS}q|=VWtnbAwvS_#r3|fpLUV*q9eb6riF3ksSa1`{!RTafQy{3lPS; zRsmFnDw=&tu~*iTP0f%|sXu!g8^SdFCKG=ittReuo`&(~16E-XGK6SExa<5}T638C zpTzWLIJjHk(}xEy4U@>u&W47afgf-2b??1DigB9{tI=QM8wI0lt;b8TU_|^lAYp=O z;DC)Gq-zD37@oMy_-Qb=6L&Aia(vd87xwUx3V=B#?#yOe4lf)6=)$bM&e%ECX>eyL z5-KR$QY1HE#!<;W1Y9WIu&>6F+^sX5<#qDgj!lC_Wh261dISYaVB>bmMm;Ek*$kH! z6s&<6k`rKb9yZ=cFh`qz+UIZ$Vg-b6c$e%ifs%(}c-p&wwNFrD)CI|z>ee$CWOKGd zqt~(t^+}8W_%LKz0A?H_=Js!Pt}U3j1{krdGjd9qg9TO7%XYq7(P_z?M9l^gaf1Zd zjB9oq6BSk-9)$hrYoQU4H3-*Xc8@}#gXLyFsz;fp@&8uB>e9L>=w%sYx=)ief4s~B z^TLqr1JWk`MY&AFwq!ryceZqeNgD-J2y>nB-rH=re}&bc70CEqPylhd$qB!av(p!B zM2*j={1SxGEg{W-%(7Uc1UZafc9^UgQWikg*fhv!YMPmG8?Boj9vHaWUnVXg0i8~f zFL4D0sBo;%RL0J|b(%bVwce>W&L^6T4ev1WM2hCa`lF*HE#!sgdcK#_o|AxSC*(5B z&I^)wQQurw$KI-Nr@BtN`@noa#Vh=9icvH3C%fH=9)@hyz7k4lN_|fvuMFGucfkhT zw)$grRQu0p=zIWiHx2{@O84th6=BC~cD^fi$sWr&olbxF3^%EL=R>$tAFR7}vb|Ed z47>Tn zs`iz5NiCQCF10oR0&%E6qjq8Sw&Nx_zw=d4bm2M)E^hkj4AQrN!FuOGXR{1 zd{86v9#Vx9{{_qB>xC~t_g(hqf}23OJr(Rk6)13W#_PXSX@fCYn45RZEa7lsSJ%(49|X+^i1ci(^T`$P zHo*Kq325r3l369wmC1>Ta2$njf|w?2^TiWqoL)RXENd}JM_#9r*Uo)}DB$gVU6sq2 z0$)*dduNNje8~FX-60SwfdT4bJD_N;n75sPH`>wJndW@)gqGE!kSzZJXm6@_R? zK;BN4hlf+*GSdRHx$%&cR!P-e3V4Q*r#9-cn%7H^m?QD;q`3RTfs$jsJ`Sd5#gm>I z0ur7ssOr@^TMfklvvdI6xPdCnU_NDK##3Ly5X8ybARTWAO*aUBa|kgUcZAB0H=k$C zJ+~1SUK7Zzz;%oDHCK0KyE!!`8%& z#;avF;VX(#-gYpdy0KfTpxK~yRS0J=WFF*A7Wp_3JT(J^S0IP);xiSKuTHI{=%D(s z+0a_4|5&O?vJm)VegT{l0b(9Qege$NOart?$I5=J0~l+sMO=gC9QR9Z|3oy(@;`@g z+u*g(=9c4f6`zr-`cd6;=21b-DsyD-Ay@+Jy5+&v%(b^ z+v5(YJxug!%1s{V-K8L6Nie=Jn_Ek(&qsbZP*w6zkDDDnTy1Or_8cgDYd5&8V{mq> zlT}5V-yO?jbkxeF;!Z)Q$wVZQxHA2@qgV?2n+IU4A{IGpv58NN;1?hh+GA=Z6ma!= zj4zIy4wk3sT$m3W&DYI0IqKqBd0`O|{ZnU^p@eE=j7o;xwtY4C&t_Zx>9KBA(ADLG zU7paCi12~Ah+_7FO=PKRAHZzatVRoW;X%PxR((|!6$i}G(b1hw6)i2YzUgIUj0sj7yP*`YMYdK_;p#Qf2Rh?QN z2t4`y0nY=OvjfCJnE*{xRUvcxA7v{~!qd|;;<^|c4$Yk=2~65w-wMlQLqG>O>KD&R z&J5nTzE4gDyEyFdHN75Fjd7ABif(0m($BUBapwY%PTi3Bk!H@F6}2M>1^UVK@y zWCwZQ;gljTvtnM^p@b6i&3|p@4w*rzJ}(0IgyRDw)`@84V@d7jsUVvip%Q(*cmPyoVA_>WZG;0wbBs7C|SM!m2}=nTGZ*Qf$nV_<0q%_mCMH> z{j?qJNBf;J(pi($D}{AOVSwer^8XC4$m;T#aN5&x3!v!Vf$hjFS4mQdSBZ!@=V&MW zsWGheDh99$V4D7}z`o|F|4Mlc@W!@eo;JTUxaff@9bc7WG*F-NZ6RmeXNGP|cr5+; z>TYP`<#hz~cDpM5?KS1=Cn(tSOC?KQw}-HaklCT>>g6G>=vdy86x;7}gBCnPl0@V& zxt|#ui=||_`}SW*i;nR#B;pJSOl?lsww#}z2e&f-asX73fPuTscEFYq4Sxaek#_L& z^2_!c|&9=*TrS1v+cz|iA?q$BRIEm#ziBtkVv4E9d1|*)nM-SMY z)N3l$k&(%qShHIHf!6g890}@ch(*IMM>H@#c|eV@shaw0caD}8nr%INp~e}%G2;s? zx-aQ)X77ZyBjkI~vodjnPCG(N%p9os9s&~V(*03=k-K*Xb}aj9An935^KDG~2?SOK zUlNhB-`Vo*?lCo}eDO;Uz4cyo{>z`BhBn%-x@^O}VPN0d?(!iYqKd7NT z!47B3Dc;`OINWrm*#@@weBn zUGo693_iC10hc3YH1c`@mC_TxDz=he_LuZkty1K8%>Xg;Nce{M;UTDdLcwoGxzQ!& zoFr*bJW5!8-#?GM8q^Sj9V2kr!==Bz6XD`;x5N(~MmpNY^ruLv315J-S7D+Pw zaZs^lFEeGaB^&I<=~Cx1jUhQ;i(;S`d!_ zzG7b|tM3sAeLRm376HWZ@bs**o$?rvV{8Dh$_K4%=rFLw55(vu4Dm!(eM`D4BhbxKKyD1CV>_57Sm!4olo@K?CU_OllqZE4DwfJ(=mv|Tt~KJ|7VaxowvK^= ze{5&BQD^}8YZK0Y;=4_S?Vw9=$M~wW{mkOukUxyfXR5&krDzsjpLxM@RgwYSAhIc{ zR%$}neTf^T3)UNdxk*YMgUSuqkC2^IG3neupd=<%jm1#!RtS8tpcbNcgNGB!hdV`Q z>z(&26P7AHe7XY?&&^v;7~jAi{xM(3vSRsa)s5nIkFrS1JEBdd8>I`sSNs^Mo2xj- z!8p8Cgu4JzneC7t=WJ#HX@&9Qpq6Hbxrl4@2z;PDALqES%Nq#}xgk4qSz9KUUuK7n z$9~^Q@*-T~x^3@0+NE8c8YcI(5)8ALjPx&8eZ2j`cSe0#9|GM_skbfJ`gQP7ws2c~ zz2hwNDcD1QwoCWntW^AHr8U%Oq>n}uwHCHEz1gx`6{pNStM>o$4S;WfYt}=Ccv2^A?Wc=eoMz8jT5Q zQE?}1)3nq9tLOmoqj^vXHS+UIQUFrW@XUy$aPgmhAwCJVAs(}&UK*m4&144q&=YV# z8o_tL{w?fZ5>8TS8+;;C7EW2Hq|8*q<1QsY-QLidGq0 zcRjEJJtvh|Xa`D0vkKbZOeYklIR}xZVaepDNO$*L^TXB_~kK;-O!E% zTLJ62{9p88)s}0mqy&E?NqaPRbTUP`E}t37TlcHcF9I1E~9 zIJze&bE1~5IG3rqJNn4Mw)_x@KqZ^j@4xSV%GZI;k3!Dz4{hr|rvj_}5r=mDFD%e; zAAe^&mB~?P>lIQU;9pfA&)^Tcd`iGJe+1HyVL7q1SUVV7a>&upOK-OG@}>W%6pd ziY_Dea2`Xy>ZrI=hJwZX~0+ns{>M- zbI}y{aO_}wC5j_fn-;9$zXMh=SrkPGTVV@|)(RvqSebs?maMu>4j$ON@iie@<%nF&_sg7j3i#7dE3pIR7daz^qv@Au&)c|rt#0X0-R$+ySg&cemb z!~+C>;h+5*{8{?5D7M=H8+1^ZJ9>`}JA*(Vm253dY;OQ7@Xmo~86sCQ z9h6;US;qRCbNa4i%UvwWk?zV*jP&Nb=8|NTE&s38$enW$6xVWcMTkyf)e2z~nsKpfP zLKOq_Z9FL(6UmWKAESv)*xy_})5pWZ?%tc_6z+g3i1p2Lv_c>~M$qLjP#%H`s~o&t z%`C`@WGhRZ(HqpRS*-_oiPANHaPX|VL}3`Db|-E@{_Dn1#iiJL0v3hBcD%^*g_gr> zIw(fvrk1O-sElJNsM2FR3~>^`uBp4TVfuQ2wR}m3(GC^KyX!V`P;$*vn)0+?S%HWM z@B}5=6jUJj3g@zmHZ?`IxRz!apfINSVHUMFi=zikRL26}i6#c?2^=KFqOTmXjsae> zz!)VNFe~3xDiXCWk^xeK-;c|LX*T$+Xqr?70PV93rU|+{)uOc3xh2b1tsKd5!bsh2 zQ67>8;fb0Q`z(Bq3Q8-g*vOg#?!8# zprLuT_90lzCECs1jB@ot8Ow=Gl?(}|p`|1g?|`GZ-W{}RC2a>d7=|yWAh-E-qlsLP zi{0HJeOEw5-Y_1sb5ywK`rbCtCoCo|S*7aoj&IgkTCnMlp-u11z!uO{Iik4X7sXav zIm2@wd%bqIcHdlHcQcjXG&2q6;Mpw=taSy)x(Xd@2+tLg>#DQO9sBzPafHL;=X>nz!^G&i!mRIc2>};im|#oHhrNSCPTHt)-TIUYRC}6 zQnEsC?kBl}l4$;$6V=eHr(NMPn*evoR7~wcIYaezwtSD?Hu=zsnmh`BqA&5xx3KBz zMUW=@AP~Lrw^`^cEb=>->^;tC)C>O8b?E(EMTQ!r>G5mERa(Q|uJJKW0}fcWVOIAg zZjVW@-%_A9%?Rz~MJ#WLsb0#No(0p|40C5)I6Iu7V=9O;At?$Z#4SCSyPM1d>Qzsk zGG;m{b;MiVaKb*NTVvhwl+{|u%0L>VPh_R}VEeN*)=o)Xut<)T^kw1zn>2AE`*%|u z9+w6PkLyx|7ra*&AP0}I14yRTM+fBvEQWb)w%k7GGsg zIXVm&Z!2x;G1bxB>RdI}l-TaU^4}xRnBtNFn;{JDZs#EjD$pl2K=fM?VT+otgp|G{ zn|!;UpG-49nXW`sqq!J!=q)$i?6RZ!#Wj%`46^<|L2TT8vjy#u27RfevJz7^mm_$M?3n(f4;u z;!K63(8)xV6-J+)O_wOpWFaeHJ@OlNrW{zM%}dpgT=SoloHj?4s2Opw3zlVu8llb7 z(NPxh!X|T7I_mheH(@v}RF&8kn;y&Y3(U5!+Uz<6IU)VwC+j%ZMkgXO`hba)FwBMZ z=e2F<&QJGO$go~((Q^ORUJ9Aa_LD-DFyYWw0KwZMM-Y+Ve)WegB8p@c%C5s7geo{_+X zYP+whOXKvkm!TB$MRh88V$fJjj0N#~DIE@eNk;tA<;b;n#%V^Bm9nJ8Ki(v_Q=qT} zi(@@WMhcc*2r0F_H^_A(zyOp6bu61=CmywwC?7DnNl)d1Rf5)Wz#OF)JJxZayY(2Y ze_m0|yIXykmSAIg^j0cU(L@LQs%}z+u;6tv(~s>^og@&(HaoOk1xB>=+t(_#O#hZ< zTXl2Q$FJDo?CD*M)dNE|cb4F}BP21QGEJ_cL6d}XkPf-B49vct*$JYLvvC_|i?4O~ zRWh#HRUYig{^IrcEp&8)W?#y1*n*pyGu6nz9 zx7kJ8w%S9bkbg0I=`@7s3VmMAIHFs%C~o`6 z+@@NJ0nwzP>7tku|9hiQk{>axi2!U4!^WF{*XNhn91E})1a$#AMPbU-Ix{P_NplLu@x8Wo zP+2H;G#>`tIc7j9y&DEY{FC+DNmj4RfwH?p77~shuf|;(zKKh(XAN!dCt_ zJY}Eus8UX5UGvK}O)@h^*y;lZ9{spvt4K&-NMJ}KbmSryKt@ewNDkjdMKw!b(y9J# zabZk@yEC_|_vc%8u=Qc!M%REit9KDd++TMEa zxU39Z*Gd9`R)2+*9EU?$L~}@7TorK#q}dGs#x=#EvOfT(9DMVL)MRi+wW_8uED4oF z>tO9o*zJ9v?!`__Q`NIq+TL5El_yuo>jk_1x(_*Rsz{FscJGuNKxb~!1HPt^BH zAJ&7y@o#>j5(=ZDjgw-_Y^zC6r(=t@P5@Kng)MldW=Lg#p-*%04uIzmd}h&&fte?8 zH&Q0pQO@?Exm9r|OYG<+ix*LR$|!Hytn}SXUWaIhR{}Im6=WT2vdeK9czYX&HnIho zLG;^s*@P6q=IeRA)?Eo<;^rrK}?S+E5Woq`DC&5OBV0 z-ajB%u#<8t({v*9&grBI)IxZd>hCJiRE#1~4WXoLfmSpFyw*~EIl&tNM5f}G6-Edq zo)@d6s=xz4^)N=C)Yr_;DO>Px!_QA{g#VZfWQk2OH-=x*xr#u==Iis^2q-JrSqXpN zZYutm?EevF$QEA%7x!zkkstU;MGDbjN=?8EF1qugDVqzV^vM(SiLy;w;3zf!bCkCF zTceM=JK`1#oZpA{zW_e9E@uQ(AVBtf<&)Ib>V*&p&*z??qMTxp+A~qn=pHBKgPT-! z?5L0!-#j{njE@*~>zoXEF1{jz^1wf~JsR%PwE|KvNs+i589)Nge+FSl6yR0y zWMVtor2Ah~+<(WJK#y>U-pykZoBZR!lYl226k@ciV*slIrOp*QK}8Ku&adPvSeZgU+M&X=^*C) z0)mr=;fHb4+0{MY@QUknBE_tJufrOp%eZbI5stQsTB(cqdQ5Hik7oFPaRU>td=1iz zj7Kx9XY_2JaS24np%rL+atjsG+;yi28A>WtNLlM{&?FQ}q9_VkMwXDZ)fO5=ceY~e zYxXcGB}?{w##Xk*VC?(wey_Tp&*%AlKEL;Qp7;It^_StA>pHJ6tA%Z zO6IS`Pk6z z^q2ghmV|rf@mj|-d>B_+vvz8CDto;g$Zzlb{GIvqW6)r!2Xgw;z`y|Tar3Cz5X9;g zfDwnEM9s(o+uoH_eezfiXfq%I7Xs@&`UYoq&GLS)9V$6Bh0e6~1~qs!+lzNJhAQ&L zIcHADMwy7>VX_Xh{QYq}0LFMt$k93JTeg1AbTtZs0w=Z4B3HMYnwp~K8Q{(|tRueQ z^^pTC5J8c_%A;rpzMScXg_Fg=2|)U<5(Bpym)J@>pJ4Aks->khGP_*GtEDWeUC!&D9Fw@{&X<{3wtO2x0=%V5K-)-`vh_3T!5pP!~f;1C^wZ>-*72 z_S53F+NG!IifDKExbny~J6-hs8T|2P!f?{C8dgfPk}bU_&j^1=wIxgCts{zN0nZk+ z=uF(QIm56*Dzy@{gBbOHsOGSvYaAHt1Sa;8k@@GfKd%T5Mn#tV0XaLGXzt#P zYz;_M1`#C{n+yED&)3&>)tQ#z5BDdC9uD-O-m|@6dtu?6O~a`D$?2C$2UmMM7T07= zy;%m9E@*3)Pda6}%{8ktBcLqxfpUGX>W29Yp`s_DW&@1Z;_|QPyuDZiG1wN`;P|sy zFw+vyT}{g@9(%|k_`(r%D9X!2p_(OoQQ8 ze%+q+9W$}lYv;nE^p;)7-Xtjxnnru}Vl?pIWQGSJE!@V&My}Vf6`D@6e9ayY8SRkq zy-}^MZ12u+tJ-7!wS3wXTu_BJriIoQz9=ueOQdz4($7E`UGD~8Wde;NwQ2Uu-+hMQ zJEQ}1IODhLO2-e$@!hw!ji7Din7h)-2pf`3;aLTQR8wP?USA#tNmq-Rbim`Z6{SQv)9= zeRx)>sP$}_+%?Ja7r%lwH-vYyAE~Jc)Yy|k?$$nVBGAEMT0OFV`Te1*1X^+!ciNW_ zgIqfyHsneKc!5!Q0@tmpW)XVNaY5_$icPPJ;?;xpE(85OOxOT7z;4j4 zM4kxPhA2-WrAIu4(|(GBW!Cz^7NaV2tc-Vwz;GB*s_NR2eOZBhtLQTs#Z5h=QtQo9 zXR`N=Jo@wO`8Mil!&49U$?mk@f%$F!T~={TwkI0CA?#_`z+`0FPNyo2^doUGb*}aV z;mH=0+3Y}=NE)MZ8A7XHUB+F5zeGJ=9E~UDk3{7+^jU2gr1Sm@7_$)L)c%%y*#Wx5}2S7ao^GLf}I}lQcrnr zyebrO9U_wL@0|KycRU?cX-Ys zQF-^Bv(`EaGpUdFAUoSkEP!sU$spN*B?X9hdNI>5L1=AQayL_{tEl6t>uOwpq&zT@ z>hx1rSz_#$<;FbD5?->JpL5rdS8WxQ+Z2uvO6OWMTHUouR!~iwCv&CL17sS(%??LP zCh>^v8mEpOEN}CLF3rxb-@G|xmjEP}oggIh?0W_Ntt9qswhtASwz!=QzYSg6st@&-Qeo1xgFA8y3!Ss) zip5xpK1gkbXK~-0jvExg=B#xL2cGTQ6TdA=)jIfxkZ;j&w2Fb#n<<4_x$DP8LK@EH z5c}CoZn3vs)7S6pQgUwX>x+?l@Zdq>a?~@I@poUYWL$e$h)O8}n;q(3%Yu&0bu~FY zh?0G?5~biI4048k#0STmav1sgm-NN}&pPU&>H+S#AmmZ58kJdM`ygF`$UJjT>c{w3 z9NX?4iQSWq1n)7*6~HK9YcUCw%8JJ`TkRxi{w_9)+mH)YK>`XhRp|z~2V}GJ^PLK{ zyZFIef%4l9pS||gY`jKC)f(SwobGp@t>*zw*_MjQxR!snJ@s;3gp_f%$p>(&Dl@AI z5#4jM{xf^|KG;$=?as+y4Lq+W$K~dhy)BAcqr8NDUp@Z z;#i}6vC(a(4GpQJ6*<|!qOac^QL@o+zH?umDP<0WS4GwHJ*JKgIo1|zMQLgDw?2Xoz}XFT zn>u1tluagkO!mAF*d^n;!B$!K?#kCs4i5>dFc>PVW$^RUB^s zS&|o!kh2T$d`fSxlGpkg#;qYzjsXkW61b*@#;y&CVeWxa6{urZbwSsmyqMLtZVneC zh?UAbQ4Lr>itSyFfZ&*5%C=J7;}^FFRXOk2?VSq_k? z3XD=|0_cuDKUUxh91#J5q7*owq3Tp<4p^7EENF82k`W+^6%us#dJNOt-|q#c2-=;N zvn&7uA&)o$E6!Nym03|%Q`nEe;B`eciFvpd9V_*eh0r|Jf`t3j*^Aw7M8}Tb?21h& zcUVr7d)*l1$P?``4tv}dKt>aTo1e~?dLWl4E?=sjx(q8+(O!bbvk|aYUz)z z>KXS)HPR&y^Ug)*5&`)=3v}P}L>X@PZf=b_{OD$99P5hJ z`RxCP8{^;wDVE*dYC65UF~l$tH|H)lycs!O-^0h5korex?xOSZ3wIaKjoF3>!#^>* zO?b?@E$Vh@X>a)P_b`8CS8iJ!H&-c%2>Kn96!YM2-__hZ^;6FLqmPb;LD}M=Y~|cN z8&O%$US>@h2`trkP4M5270RpJcth0df9~rmnp2OdIY`}ind8=!FC+YJ zM=`o^`m!NyR%{-OOh)L!nS+stRmGCRF8$x%p2F1vWI$dID_iO#2LS z?_Bp>9&TN#sjQDWB~9RxEczqR`Ak=!2lSPl0lWgOOoG(7drx7pcncH8h+|{j$7N&t zS+K7phE=UnZFNbj>M($)!^37(o9l3_M`MD5f)r^s-~x7ZyVj?^YBy9Tf%ef-kKvd4 zu--mbFoU&KUBF4tb9EZzAoqcd*Iu&&oy1rET=Paj_jhHyqG{uw{TIuC2zf&^W5P6W znxFL#%7?7$Q3`=u?ZR z6We5836>NWC(_NzKzOU4*6w>Sq7Kx7UdM>Sfb={(JhIAG?&1`|uRnBa1pusiepnOs zxW8-QJ#^mx5`ygPM701UY=2;-L=z(8ubL#tk2loo4U-~f%8RN& zxB*j^XQjyf*y0t z^Yl(_yEd>yL5;jim1LB(x?!=jEoUy2dVniCcVd%Y5gZ=C&Kpn$rmtcrQ%g!#;VfYr zoQ#}YtV6@8$60dKY&T_4bda#OS;vr5-qO$aVYJ(9tW2C#4yN!7-z7f0m8cD?;lYVR zmc7I8Zqj&7X0%Rzd$N|;9}^RU%FZ9f+mh!y`uh5Oe~gXE1N=}Q*A+ZUez-+XvP z`Sux6iF{eU(1q&0z_F6b2lJ{OJGyOG4^I|cbvzXkbWR>i#bC}B>=Zor@vIP&%_Ox& z26Q=AvkTDvv#2F$k1*=w2L`Jz3V&kFPZ?ah7g=+Upi>OGV+6g5!dqP-RCT)Wh>de5 zxELH}t32JEL1p{XskO(UQ56TvKf0lN%a|l{e#}EBdQpS*rH-KLg0}FFl>Mwcy#s}W ztLzQjxPGFud^M}x@6ELX_fgtF)7LX zQ;b1)FKk;uIZHQEr3R*F-j_JHxmym74S$X`D}V-k%dtpzX|gulc>6vc*W$y-kO z_4KA+FIfQP%};N$wN5IboVf_cWjNDy7db!f4smZhj96^yJ-jiPmuu@!5(#0(uT4i2 zNV6iA!503GE7iTLHc=&eTbbmZR%1AiL{1W;NhT=3c?VVck8of*2sSnW#d;HP~w_knWvpDZHsgC>x3_-Q4W^&AJC@)D zYUo!>hpvdMpu0(!e{Esv?TInoSn2$!WBfE18M(lD93wHhb51$2Pd)gxiFV;>)~3@i z+?8)xNz`7s5llk6G0$_7$SpSHuWM0c31J`_OOUpeOjUS(Kf)dcU&%RE=l+>Tx&vw%q1x(>2+N**RL7Vc#+(A z&z;_pQ34^P;*t`mT=KoaDmWl=d3F?qK@mpwHRf;v06s%^{>+W-e+=B)f)=#3VM(aB zyjvp^%nYG~eWDJu?miu$1 z*Y(Xe1z{&qiDA<1C3!=nq70Ho-%Oh^R2OcDP7w3d=jW?WsDH|=GoHs4SY|I~KGwh_ zJhU_POK$sUH^;NQCQ*{qZ+#XgDp8Nu?XNZ7pqN%5+1kHDe?8K_G7_tX)4LJqdyXRV z*PiymXA+E2k{EPI%JiES0r;I zLf)T~+_C2cF4Y87NLx88>&vOqL`3Eq?&APnw`6~cET<}rC&+{Z`QF9l$ zg@+{C;NKIPr(muGAE{-gmAyw>lMLAX-`8 zcAv9Cfau7js1n6hUx9aUXepJj>?4M)?22}$IBKyY$_KlHE;$phqq{5+zJ|i}vF{{_ zz_CbHsXTNm@O+Fv{&}*R9+oaN-0N%MZ?-|9GiY? zn=%{nh9w0yPcAKYDLG_H=j+=HRe7n95enT^RPg<_y_lEPhcF4(#7`Q_AAXIc`C16N z;yR-8@b z(rg=2%X!;nZaGY3yrWkbh=&{rk-_>|cj+`@Foq)7kb=D2ko(q}3I$a`g`pibmed0J zh9hm>cALi z8YL`D18*oh@k85ujufqAxjI5xW}Yix%(&PU$ci@}tWOVHpc+vK4wM2(8#3IPTwYhADIQ1*i!TqGkH|fLYNgJgl>eQQ<=y%n z1fA4viTxzKniaR4^WrH(f4vX83`HU(EQXF~TGAItHijv=ViR23Rn=uoT z!*b7yuhbFq#Om9R^l3)+)y6JqQVXK($JMix7<0No^2H6Io4jdFc|Sfsi2c)JE<@4! zkrErketOH9qZ`bIjTKt0mzQMpbj`sDA!b6l4#3l#oEz&(RaoZdX4bV(+I=9xhxVUF#7;KhVE z{eH}))p*+!ar{Dn&Vvb8bDWM6?L{TssQ@{B7FEU}UA)Oi@ZsLHQD9IIZa{7b@@Bgt zOinPtB_Ehqeyk>jup-F#j+MwU5B9(Ym~sL6qjqb^X<^`1|MdshDj^6kY#!cU;z4ut zpM2%lox3=|F3TjgNeVU>Y(STGiJ9Tajc=OYgFYDX{u5c#c#k3v2wWKjY2tkAGG2U+@fvq+ZEdF>cii6ET6yB!AU@}-Dm3{*TeyUwZ80qo&1C^d z5Iua5UKC!KfD zN-dh>(A@w$)AOuAo}})p8^28zp-pcR4A}6_^!LvM@?{NSIG}|I2Lr^@}n1JtEB*K~HV*SQ}eIN^(@W~xOX`_mY8i{-X&D!y=&vZZ1WumIwnLZ6sWf`jg2 zLDs+437dowNSnP2kgd-FO;iRJ4$Y#uo6m;{;FY@Z?w0C%#h17J5*Ob%{q?bL9}=AQ z%@&pQD&y8i20wtsV$#{L(7}DALqpOqAW7{CbAPB|loyJ}sd3nnp_ChUmY3O->*^joM zF1#L3G_()q7^GeRrbi?HW@zniJ2mtIB6DI`xZV2gnvnfYiWb)svm-WF4BA6FA97Un zuzu!OevJspXcH(R;6AX2KT1%6DwPY=b!s>a&y7YDpkgO| zT_91L?uJ&O)L$;bdD*a>BHrQ;zCGogse=970of@CB-Qal!mW-6&$S5gi&AL6JF5Cm z;d3+xw|8R4m=oOP;R95d;4RMg)${uG>!EyIe@DK@&__Ic@NVnR65~UL0%7Y5)#=AG zPN!Sh+BQ%_14UbZUG(=IE(GiP{-GnU(Eo?XRE*?_jt;~pJ5_+^S`Seot!In3P5hGt0@Hf;ocBcFMVhC z?c<6dwEvqMKZk&S5Fq{1X^1Im-yNvrQHhcZI{DrA|G5IvchXCzffUFD3*1NXC{qp2 z=0g+Eq`753dm!p_fV_&^p>%LZ`;6G8-cMhq9s@q7|Iswb7(~U!h3Rnt^2WMlx)Cs6q`HCu&BXKvQvHw`#vm zhq{%7wC?>H;d{YZoMW$DMO7fbG33uqPEJCE*V!&%7*cA*V%=w8_sTyZ{bgH4t7jAW z*gx);0waqF)IGlu?_Fz%bzXybZ?}1@l3MIN)~P%pM@rIZ))_A7yxB=GMhkC!_D3y{ zy;-;IE*Wh}(13lDl0@^p2WTgsVgbm9Ac>mB#{IyiqEY$srSAb?s89vtzq_O3g!5z% zY_HJx4|-V184iKA0kjpCO#WVu4d48m#qrk?^KaMC|C^UR+29G*?DW1DzY2mY1i`Cn K;WGa;dGud31pizB literal 0 HcmV?d00001 diff --git a/demo/documented/bcs/python/demo_bcs.py b/demo/documented/bcs/python/demo_bcs.py new file mode 100644 index 0000000..c506034 --- /dev/null +++ b/demo/documented/bcs/python/demo_bcs.py @@ -0,0 +1,66 @@ +"""This demo illustrates how to set boundary conditions for meshes +that include boundary indicators. The mesh used in this demo was +generated with VMTK (http://www.vmtk.org/).""" + +# Copyright (C) 2008-2012 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Martin Alnaes 2012 +# +# First added: 2008-05-23 +# Last changed: 2012-10-16 +# Begin demo + +from dolfin import * + +# Create mesh and define function space +mesh = Mesh("../aneurysm.xml.gz") +V = FunctionSpace(mesh, "CG", 1) + +# Define variational problem +u = TrialFunction(V) +v = TestFunction(V) +f = Constant(0.0) +a = dot(grad(u), grad(v))*dx +L = f*v*dx + +# Define boundary condition values +u0 = Constant(0.0) +u1 = Constant(1.0) +u2 = Constant(2.0) +u3 = Constant(3.0) + +# Define boundary conditions +bc0 = DirichletBC(V, u0, 0) +bc1 = DirichletBC(V, u1, 1) +bc2 = DirichletBC(V, u2, 2) +bc3 = DirichletBC(V, u3, 3) + +# Set PETSc MUMPS paramter (this is required to prevent a memory error +# in some cases when using MUMPS LU solver). +if has_petsc(): + PETScOptions.set("mat_mumps_icntl_14", 40.0) + +# Compute solution +u = Function(V) +solve(a == L, u, [bc0, bc1, bc2, bc3]) + +# Write solution to file +File("u.pvd") << u + +# Plot solution +plot(u, interactive=True) diff --git a/demo/documented/bcs/python/documentation.rst b/demo/documented/bcs/python/documentation.rst new file mode 100644 index 0000000..ba0f612 --- /dev/null +++ b/demo/documented/bcs/python/documentation.rst @@ -0,0 +1,103 @@ +.. Documentation for the bcs demo from DOLFIN. + +.. _demo_pde_bcs_documentation: + + +Set boundary conditions for meshes that include boundary indicators +=================================================================== + +This demo is implemented in a single python file, :download:`demo_bcs.py`, +which contains both the variational form and the solver. + + +.. include:: ../common.txt + +Implementation +-------------- + +This description goes through the implementation (in +:download:`demo_bcs.py`) of a solver for the above described Poisson +equation and how to set boundary conditions for a mesh that includes +boundary indicators. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +Then, we import the mesh and create a finite element function space +:math:`V` relative to this mesh. In this case we create a +:py:class:`FunctionSpace` +``V`` consisting of continuous piecewise linear polynomials. + +.. code-block:: python + + # Create mesh and define function space + mesh = Mesh("../aneurysm.xml.gz") + V = FunctionSpace(mesh, "CG", 1) + +Now, we define the trial function u and the test function v, both living in the function space ``V``. We also define our variational problem, a and L. u and v are defined using the classes +:py:class:`TrialFunction ` and +:py:class:`TestFunction`, +respetively, on the :py:class:`FunctionSpace` ``V``. +The source :math:`f` may be defined as a :py:class:`Constant `. +The bilinear and linear forms, ``a`` and ``L`` respectively, are defined using UFL operators. +Thus, the definition of the variational problem reads: + +.. code-block:: python + + # Define variational problem + u = TrialFunction(V) + v = TestFunction(V) + f = Constant(0.0) + a = dot(grad(u), grad(v))*dx + L = f*v*dx + +Before we can solve the problem we must specify the boundary conditions. +We begin with specifying the values of the boundary conditions as :py:class:`Constant `s. +Then we use the class :py:class:`DirichletBC ` to define the Dirichlet boundary conditions: + +.. code-block:: python + + # Define boundary condition values + u0 = Constant(0.0) + u1 = Constant(1.0) + u2 = Constant(2.0) + u3 = Constant(3.0) + + # Define boundary conditions + bc0 = DirichletBC(V, u0, 0) + bc1 = DirichletBC(V, u1, 1) + bc2 = DirichletBC(V, u2, 2) + bc3 = DirichletBC(V, u3, 3) + +:py:class:`DirichletBC ` takes three arguments, the first one is our function space ``V``, +the next is the boundary condition value and the third is the subdomain indicator which is information stored in the mesh. + +At this point we are ready to create a :py:class:`Function ` ``u`` to store the solution and call the solve function with the arguments +``a == L``, ``u``, ``[bc0, bc1, bc2, bc3]``, as follows: + +.. code-block:: python + + # Compute solution + u = Function(V) + solve(a == L, u, [bc0, bc1, bc2, bc3]) + +When we have solved the problem, we save the solution to file and plot it. + +.. code-block:: python + + # Write solution to file + File("u.pvd") << u + + # Plot solution + plot(u, interactive=True) + + +Complete code +------------- + +.. literalinclude:: demo_bcs.py + :start-after: # Begin demo + diff --git a/demo/documented/biharmonic/biharmonic_u.png b/demo/documented/biharmonic/biharmonic_u.png new file mode 100644 index 0000000000000000000000000000000000000000..f2e7fdc45a3856d7c2de380ef0f6624601c6bebb GIT binary patch literal 35721 zcmXt92RzjO|Nq={&f)CM8QD8Z=2RQYh0+sec@F@n7|uQ*ApHd^`67k4u7Nhi z1PaEepisCOMg9*1=xV8(`b}&!SXShAC7<&(Y(EHk?!R3^ZHCP*Lkl26p_E%2w{u6@ zaQPG;9S3cPUS&GUe$=Nue?iLOLVicS{Dpb_Qu~V;_V33&RdKYN`?T$$GXmSwv@gWu zAw6}h=8Nn74>BIM_Is%r(uG8Iy%s;&8TPE5tK_4c4qyrXWAb48^~Ydw?yOdl1F`Eh z@56)hb9dW1B75&TU>@V>1ws(U4aYkyzgzluyVUODc05r#JAQu`4pcdAG{p5*<({;K zwt>N+nFnI@-LJwAxaS&levd2t{-QRo<1zOkc!4lG$2vQ=>+O7ck!QAYzGk*;hy0mE z(;-Hz0UUq}J>Z#ZaH~JS$)f7-C-5{yGzC(f{Wp&1r~RYvbI+%3&j~fP zCkDryF3l*R{1o7Re#&;cGY=ZT%`xu{$C%x}Oxa^GU^Ust->tJp7^e=j7^6Q*ggs^Fm=_M=+H8s?USXrJYWQ zaxm3Jni_?jyKT45Yd5o(Uv7VTp!p@_rwWwLNp;pL$+*eyS@VDgFJ}2LnzdH)x72j} z>5mViCt^E0ip^~c3o#xKFVsKeIq;Y#n@9)?h0U7=gvI*pm^WR)A}rz(*+7pN7V~|$ zxy?=aieJjkcXnC^?i&l=qWlhcr-Mu-&o;MDe(N3epQg1Dqa27)T{_$|{_^B|-Y@m^ z`3?-k66NiwE%?(cK5t7LUPN^VAF)G-8Why5J1(Ii2i)^4+p{-47FIkKf{)b5Hj+8w zDcQYH7(Wvv(RiY~Wi$UHJT8HS;>Cp*=A5Gsk8Jrr(BuDP`9d%*3PfKXC<NN<&z~+z|EKIP?K}@;8vlylxjx%TnHEI@y#53Itu%yKfpA?rB3cHZGp^ zqsa-dFxyWQPrx$37uTO2Q`0ZPc{QNwczppVT8r-*pi2pe9s1-)_Ux$~ovddGu1>g+Ac#A9JaPi%rX#aWxan^T~qlb{+wI~L?l_Qrtw$qG34>f4Hk10Z|4a%v93hPOE}jGp zw?PV^G3a}5h3re<%rIcIxoUPkS|?P8Qc88bN%5Z~XC$YOZ2VR&RRgJBLujnUz%?Ta zr;j^`c<)&hgblEo?w2LD5MLbMV$Ggny}}o51pDEy))e@r?<&AAK&R&%k~>8cYSQ{D ze3J6?$a>fII5`dcPp(b3lmjyk?#%fKj|W?iYt1?(JE_~~Dd7vW@aADrL;d2ELn&%E zNI%p7SkhZ0PL!vJSG^kt2*~2??=U1n&?3_NccWYLg+m{>5mu z->wf}qLtru9544{azqrU z`H5&c9R3|#^FMnPTlgdu-rv+6$3R2DO#=g-Rwb#)j2zlPwJtCtMy4$*uzv(Mk7fYu zCav&e?2RHL9cZkFi{9}^tOgLuC{P0rm3|w|1|ho5wF&67B#6}?AP%-Wd5+udn*V97 zeD}vs<(HnyI|Ts2l8%w89TtzE`uS8R4?6G;Yy1|(Tlh|`2MK}!F7hBy@(_V2fcv72 zl@zj&!SuF{3eS5!g_^hU?ixLIX#FJi;Lp#K4|{&|e7_T$7h+;he@*Usw|69WK^{@O z5u3LX3Q?jmz2p8K?*=|c!}9II!dzvd7pC{t5Q$1von@>@kU%$FxzXgP&jG)5r98}ly~wOEa9T) zxw0JQGcv~%oHc{kc)_V5` z{cDG0ko*2k3p8`}hDS816Fh7!M)jkrl0I8j?YMDq+mL$c=9LXjBY%wzWn-bxwV-HJ zazZY$JZLwXYJ_P$(q~~ex|iYM>EvgG{~3WO@Y}q%yM|<8QRXgp2D*)RTE{wDL^nTo zh=QKKOH}!iv91d#Sk26N*91i{(L)cvtw+%ETJhd96!8miH>`kB6&K)!H$!NZJQ>Qx z`=3u3pUPD&tK^S?sx!8SKPwXur?hTub0Z(WcID{))|?M9iUOFOv`tJ)tEtBWWp^#d z`@fh$Twc)faerOASN-R;f-=_r(%#Bvp2Ee%#!oj-I}y4Cwwl5&DO90^I}u!>Gp(`b zq*N#U6v*&h+OV2Oj2b0lU-J@^q?Eq`;d;5d%edOuE#d?)Ve;o$zFvl5A^fg7##K}y z5wRFbsyrTo1Z|@p-))l?G5-*@*mwU+F=+KY1{L~D0Qt0i$!a9LP5!FTRHKAcBWv() z&273LWPtw7*tPvYNi{Hyg~g&84AgNI5U_YgJQo-ruXZk4Un>cUn`Ff&liovC*<^yg z$PlG3&@-Winuc`Nc!af}A{UVw8WzuVvz-?RMG`^T%zP690uc}{cK0H zn7GXNP*}3yhyEaesGf`0q_k^!91$WgDNmzgb7S{YY3FubUICfeb-k9j^KEYFTs36W zV8k5sM&j@Z6>A6g=@-<4&d97aN?sqF1y~1F(6wimTE+x%Y@)&IsvX2XvT0mYNy!C_ zgh^!^7trAXwTuYL-q@w|-YQN*1=aQvrC)0B#6&S0+MVBi^PfsPdiC6+l<7KO9A_|T zS+Ev?r>v!i)uI~vKQFvz?yup8=U(C5qqr0Ydh?#E5GYcq3}&mlT$qZiFhs`{8d*GB zc~PNU_9j{^4K_*lnxS#-#$E0k6n+ni=J&a{6D??MXm1N*R&)$i(X~7&3Nt5J>qK)X z@rcQu=Wjrdbece5#XA?7dSaWZbjhD z5$U-$?}AOUEH`e8^hh(b@p*OJO>k=SZSG)d{N;S~WII6Qj3n>IJSq*kS$nEn4UvUE zLt-9DH$OZoy+C`O#WeA>)exCY*@`v%=3`o;>P{fJr%I`i-i>mlV0bSE8-s|rLnus5 z%L79YALoIfw8A5H72B|O;cxGd@4agj<<`p0bF2RMm3n`w5=1mdYpVq{Z@P$_I3OoK zCRz!jf1K)1C!9P?gX^uo%xMS`k%kExM{6NO{$xFQCLYM(i1*cW&42Tj+vNSN8O!T2 z71AEvmKW|&ypY`O9KFuDPflSLo^bR}ugtX%(p2)A1JaGyScE<6w-9$e$(zAGSHC!C z;;#@lDTYTsDOM_~;q_XU;3m{0%GU2oL{}E4dz@=|STO&yZejf@OwICL39pWT+5JYF zZ#%}#ZR=#AyVM{3@$+Yha&QW{%Rf+5aax1CoWjvQRyzJVbW$av1jJa)h(FB@Dr*d6 z=Prb4Avx8Co;S!n@eK@VyQw9=;_pr zhq2rI#y(h+)M5cF0{t_p-~zqK`&e0VdiqxRr*55QPpP9IrFUwQU!29YHR^e(;+%H6M#~LG72*av*1zirlr1%pA9BKJ zCPU~CG>ijT3J@^G3%B?`^h}p4%U4U^v7lA3+3B6xZF~N2i8nPFaYX*KK5z-bZIyyL zZVOr^21+>}{_9&4lKu@VL6qo@(UO6wE1kNXBlS}(hREE?zZ*J1GxRr#&Ltan7w2Ca&S`2_CgSQ)E`g6+^D zBkAcU&)Enh9b+y5%f;qE7qu?&n5wm^-A$ZhH0o|mvtDVf!p50n=*9%n`qebgbw3LV z84-nDJ4f*FQM%2Kzs~63^X=&|LklSmfQCVR0^_a3@{_T0^axX~W*a0{OAc79&k|)^ z8sc%aBpvC{AwuK?#zbIu!_ckr?-U*=%zA$eq@7PZ9nm|ZqlvGTGlS1PT;B665XWaC zB{{%PCnOjmhY0~XV^B!!JK7KfB=;IIR~Tas2;V#og~E_Oew7wM*yT-m)iE(hAlEtA zcki0$u}Ly%N<#+>zhy?l|GZhCfZt)xs#Siz^EaM`rRFrY*XIl$t_CX~($fmLcg>^N znVlsI3?L|_R?{cvD3HRmkbZlt;Q=q6>&WT;70mgQaM?t$(IFpfW0E~R6oif!NMZ<5 z4;7?=7|?g;X?6l%aOhMYEil9L+j$JF@@-Y^OkN8CDGTSgANc;6YzkNm*7&!g7pIh; zg3O(0u?$uMKo|-+Pappk2-AG=kTZd1Fw|259D1E+WS{clZPLZCM?Sy@igpamHD(-} zCN@{~v0fDRi+Iv-R0YI1B*aamt&JLP&TaUkkLoSb??KI6M}AinhwY!6>vQdU#2O|b znyR(v4Q67;bo$fe_9uUyoB0jKtI%&5N3LzQdrx`vU4_NJTnH=DE#J@I5H*sH`C4PS zE%vFAu16(j&g7+cMr8K{)@GHHnvPdCZ0T^ti?IgOdd@UDwLvrgGlBEdzmNAm2feix3{BDT#)MrtehPC1nvKws-gu=B zihYU41EU4$W%HrASDKNO0nbW+KrOV~%GbdlV_4M063CaITu;9nUQIRcLq}L{9m?$P>@Kbd&Z5yP zVl%y`9*}5}LG7%vx_$fcIDe=qS5l}3_&T#APd2vT+b<^zeN6Vlv1FQ_$(4vvpO-(X z!t)Ghes)Mns2wp#!Tzn4sqn4&aU79a20|FunMxq}eX*o}C*K=`TktlD1C`ktZ7mV3_u^?o&klGPk% zJY+BPe3OrWZ{a+ptgunt#DPW1q@J>foCo>S$pi)#Y_gSDC+m1Ui*JR^vGbN@su7fS zTh@DL>i%2Gw7tVXlH;Bd-lnCVm%zJ$e^%>a(z3A*a#shgqfG&fFK>2X%h2N0N%{&1 z0H<{E)z!EiC0_qonlH&)NkltIp4bVaEcU_+h8nwZY|4k+W=fS+uJ3uQ7xH2HQC zzFFop2f%JBT8B4R-y}(I=jiWBY5!>CvcRzK;*H0qp(&)|KN{F??Oug74&EgyTACEE4Pgy!fx^bJbPZ&mm|( zwT$yF7nV7&riJ%WbmSsA4!Q)^kjuOSl%n4R3?pS^cr&;$zQ*p4{N4R(q&`541Ya2I zL^S3ZM+zFnM&DwU*TynO<z%LdY~+4dIpW#%w`8>~M*L!BB7S3XBH*o-Yg-M}r{R7t zPxjcQw8W`|#q^dJUg^cQk>MxT1!x+5I2*ZKzEYiM{I)k&=Uc=6Q36HvG+{lY^uf)a zO>+O@Xid$}!5^(@3wLMVr6$jorL@de8#b^BcvE3+Q@n)D1yE1Yg_nz&-i{tJP&eo8 zcBH-eA)1for;R#35>lx!6@xLFFS{-|LKI4bM%6u$ElW}}6D`=xo{(#0gg%$=$+ff) z(26vh2SstHN-dw6{9?y>si?j7r6dY)citsUJX@O)b!g$M^1<+xq0*aRW2T2yG*iz` z+UvD4-*Bn30gji!pAaI6B(FH)CWC}-R>wuYa`uSjzB?=7CSRjIB;vi8*Ya7|lzYEfk8uhx-jgyi6Ftvc0)5U+`iDV&F!&$~@anLb}Bz%18Ike6@slggX zk-efb)EE7dkEpxatZ9ND0SdecBlD!^msx@Dqj{i85LODDTcewnJ7W@DMa!-jTB$q$ zhgtQztpRv}kar-1i6PdBA&WZ<$SN~$r>WT@ViyI|TXL2oz1wrYntaseve4Tm7CzBm zfq^kkC6)^%p>}qYlMQvkH$5BJ^0%Wt4ypD0-0m#f`LF?$`Pz1F4Ln?36f~M|W#$eR=ukd-mE{npVkJLZ+5i^*Qf&s@%QgxHpJa zuN=4S%^rvY4IwN_;rV=+!p5rwCTg1tb&P0vQGF$z=5cWsVK8*uzEv(PosTGg7-!+{ z|AGm(sgzSNjnD0bF)8BWOXOH#+MG`}xaqEOzO`XGYf&tGjHd9ovmVn+XXlg_%92t} ztk*4P)VDp8aBDlOM2P!WD`NpY->2V|5Yja@k!ZQ$=`eDe(_`Y^-pua)Y5#`hwmC-FOQ9H?b_3~mRs-4jXOB%v;j&10@srGg8}9ep5%7>&#Vj7GK9nrxs=`Hh|Ni}j5EdV>_|$alp!bH=rP$JjO%0=DE3{z;Rwu^7(#Ro#*aJLXxx^j}Qw zVqbT9o|MszkfpW@)caDNZiJBUU5@!sjdYpZjcj= zGOCfjGbZV`a&Nu={;m_+%%%OER7$=PR5CB zPRwWFtRHjA8di3ShGa5X2)spbNNrtuwSE?1WIBAqdXuv!+nhu!;y~A_xvy)Oy$*gB zOMLN*1NFq4%(#Vrhv7Q-c+8y5;<98ch6~T;XOi4-S235_vqUDy~lPE?@<71Wr(nuI|3b) zT&uQb@vv5M{=mfaUbI};YRlVBur>Ejmrszz-s4B_w-iUyb$ljWE`&T&#rx9T%mc*?}3r!F>%s;#FiVx`IFSJUOQIIX&-Fomo=SIMB>!7lujrIRy9 zB1)a3q=<#&%~g}N@;rr=FhuBuee^V%L820}+v~5aWK%futI_g#|5xV|r zz&$Jbv0yqx>*YuGM@LomtjOqxSzJ@Ux9AR{ot`W+=2$4?Z`Dd}JQCVG5~c z1YXNi=H0A}S@CI=^sw!IKPAvp#>f48YV?0jz%L0lsR$m7(k7aR zt=k1%L$QhiD3*<3z<28-S60nE-ps3)3G|a3*vx;=# z8o#@1xwAFUU*r(l?-UTc-2Mj%ZC6iztDN@!IxBq+ESy|Syl5M5N$JvneY5aJ+SxNm z!Q4yz(&$QCV{>)*@~M@cOYeG4GL{KSuKl6mz-L&C=h5i595`Gn4Z_z%Ltok8&~Y*6 zGiv3@i6jbhDy(Ql@lT3rj?@qiVukXm7nLOaWm}eT*yOtgQD^Oj*>&7q{M65NGAGr*c-B@T_g=TI(Y(KL zqcvn4Q}B0es55nhMoZ&ek+|QimeNPr_e{MT$}dB;wh);p8@z4f4g-|LS7A zUAyMdU47tW7=&a=S`K+($$lG7;Vmgl7t%gPk9=;WF=_YkDTo-vMi2!DG&FPV2OIuf zGYkkBtZ4f6WnRS&aAF5==nkrJXCY1I@>K9AJWd2^pNt=iCEB3H5pEWe?Wd|L7o!$CPMO$#H89)arFJypc*xvoo9Ri1K_E+IeM{s zK`-Rt&Zu7!N66Z4li)%47Qw1d0M6ms0h6x+ZXY{Jfkjyv<5p!a^$GKm>l@5lK?}bY zf)5^@rv8hN!d|EM4bu+NJP9twp5aDevLWjd6;-fo|Xxq-n_T3@po|c z!O?5)0hdftVkvleh}Mk0TT;qYm{hM)!+BZ^$C%TTF0^cQ(hKu>O2U58;z7i8rtU!J zP-(OgE8WGnX@(SMjgJQ|fbcj@q8tMG@Dd@?W;mll`InVu&c z7YOCAA=23`ocG9l`1ksMEM4_`&EfFZ;W)i9R_0{`!B^}yz7X_Rjc1RssX@VfZP@Pb zVW%`K?X`4>NjwY>(p;$0XHF+YhXfy7r`v# zMW)Fp4K7}nN6FPwCgLHAANm#LTA~rPk1t2ak$7Wy@TYghAE~H=^R7E`0!M!G7H{;zQ|>dL=M!H^!n*Er>47fw z!gSYRq4aRyA;Je!l7_YpxS`3N&;?Exf06c?CCE>Gs&)B4NT;xYPEq#CIPwV(eXH(Z zl8kFsX987&lLCf3w6QtftONc{4pD+G!kTYa8d1PTLCY(8U=Q&bh2BQA<|CS49Bccs za#I7s3=k_?JS>Erc^$wvfvO(LW{3|PW33X={5^|1J)Vfyhm%TYB>K)j=Xe&)!prHZ z=E56Fba`~j4}6V^&0S50Xj|&yHSE|8Wov zqe1b>Zm=-t zucHb5!Wv>EP0Jrwl4 z{GI6iUl)x|yX&NhfFz0|t@wLz^O>fb{FQ(16)%LH69Wk=@dv_4H|uhL|Gik3KSe9~ z$(Y#k+3jNi^-W#hw-8JP`-@$YIZ&0+xD+G-seCQs1kh_68 z>W}RxWHUe#9B*awz0j+W_+12)o4isUfOR`J|NF(={Za;qGldF9;xNp~{h4c3GjsKa zX@Rvfj?B?fa#8ZC)EgVN5n_bJ-F;eP<=)GD1rk2D4ie;O*N7e?A%)bo=~SZmmr_x; zing)G{fP%iU_qE@AO81A_Jf>*qa3H38m#Bo;#jjSvW_RyLDAknbWH15GCLrf0 zO2(kD+`< z0Eq@3wM>;ud(upzSag(l?~jsJ$4V z=eXw`ygdCVCcy#fYfiXIFMOQuD`S}#Rwq4hs5Lx#=>z4G`4`q2z8f{N|5_GTJ=c^2x-<7eG@O_1&>?nK8g>Eh`P7m=VB!Knnxg(Y6)@!KRc%_}NY4>8J>xdU z*$HP~tM7j)b@w%RKpPPBs*$HE%myv9h3=0Gt&*ns<<4uMP2~Er-W%hugoU&KBZ>fB zJc^^V(Q~0h?SR}bBOi8D3M^?q_QTzi^fXk{H<&-;QuvR%_=Mkq64`rbd2-N~o3*i$a>H`W#k2J?(=Ve9UItTizRPG(wc!oqUu)jn4 zsw$l>J@n9_?RmLaTRcGo=2-jde@i~fu&wiYP$rw9DXxWZH)%1WMTfd0-+pczpcoVU z;0u&7SbzKe`X~E6F1+d$hIrlBEe57G#?ACrJ9{GZo;pDu^$GS80ze>g@SHl;XGs_X zhK|jwLqF2*lFR75&M9*w>2utY(-XS*kc=0q_x3*9HZ28D{&V9_+fFkSMF}+J5vgvV zehBpa`pco!8yT95ICj8U#E%n|UmZPQ?{S`nUZya(NzD7=-YI)xzXRxA;CD9Gq(LE9 z!{dn0rCjPb`@nEgUA&ec+xURG?1L}qwdn#NW;3EqTfkS_?SD(%2sfE!*RTuG01+o> zQpAWCCKl zD`^R-00Tkl^4oEjLj#Vaq?`9cbk+wVDIi?Acu;_2pJax6Ne-%+z6RrdhiCE3VcptG zO1~*8UyC8JqPx*!RvMb+OKFBGtot*JAS>s*xzM}vn6?K%igMXC5SBVR`$~(l38>Fz zfJP~IHZ+jN>sdk=_bZC-?o$GZxY)Pny?F7$y#Sm=@TH-W_o*hYZYbF#Eb`Sx6iZD9 ztX~bD3!XbWX=0ooT^sw4I#zN=SHQ>CVwyvLzd>e#Kfr}T7LZN>U#ArAQ#IhiOORe8 z2?{5pe}KdA^Dp|JGqpZ@cl_ec=H7zSoShA6nBqE3H8q9fk^v%73(~mT&g5d02&>i!jhk zKDDC}xSMPFW-COv^gSIwc<%S*Qo7QOY--wg8gWX!E` z(Z;&R+5cU$ty;CYX!g_;s`AH)2@C;J8S+dZ*Gn!=zR$>&_QR=OM62@7~ln8RaP8hEoCyfrHnyFo5FpUecnCMrM_KfoogQ>w8W_ZfH;>}uz<`j6fAWhNE&9s-(kN# zDcV2rTQ$r%Q|brp=38@5V@UXYcohE6>A=wC$<*_UK?d7pSzUoo(|AAkuO za3zez(+q8q>L;H38D;&*TJxu`>`bzZX|^>!ekW)o09``sT!-R>hCbz35#k+50 z&Go%PElQ>BCe4Wwj%3{QoSg%a^R2FB>&-=_1eseM&d#hVhkEB3_5_X27{sL!rLJD7 z>BTFOMu{*}`VeFDCJsKFkoSo8`}N;D;Xc)%|4 z^AAQVT&t?mQ2)tLPDz0=0Sw8E3h`a=^L#S7Kw|Whm4Aq*Cp#DQlD>Y-mU1b zKfHDWc{V%;0FR_>!ZjD^#pqJvh$N-Zf%^}hSEzB^&Kb=r&Mh?!@v7bN-p^k>$2Bx- zg?u(oaM_g`8bFB3zLlB2bhPek41wn?g=8l7Dp54d2vKTV^fZ z!%}XC|COUrVK+Zdc$jiIl}m>3`CYnEsgIgW1$dBjz!&?_T{d05df>jp*_CTt*`Q;blcUD)u+H>%Z@;5o_#7Mw!-%k zF+m4WxH`G@c(;f337JYTx+MP!Zhf)Q#kUW-Nmp=^Oo#`hV<6-cWOiK*RG$q z`DMQpH0l7WT$YSvhJ5}LFWSdS*ZN4Qnf+sOh<-fCO`-Ac)Q6cvrC_GBIz@m(&{k+v zv_&+D5B{AGa{wv#K!#a4Tj*yxd5Dw76{wa!bKE|<)sP4Zf%g8mnvfmvwf=iTv+HSY zr8cxgF5BQ|n3lv!u>O-kmsbJY*U-5q-9rbKqVY%+xtC(?;^>hc?{Eol;#}Tt+z`qs$btQ9rD+@_CUFSa30FKOrn$nIx3S(DQ)Fpxgno;oz})z09=OrK7WjXd5{ z;)0gxUHB3oiE@xNctWju-urEc2wTPc_#Af<9bL-$Afz-a1WYVSx@eXS81lLi(Jqhyevm z=auwCWG3`bFm(yVjnT>e!^lMuxVMiV%SS&7UXh}k?*+?xr2F;^MM#pd1H7I3_Tp3l zF#K8_AQ*{JuW8@g+Kf{BQ`;nbCJ1f1M|66VY-~()jNxyhHUy4n=bFB)Zz6S$W`w>=?XxVK}fLNE=>z5;!=@}6y0m4c+CUf2PY>*9S6m|1^1J*OEg(oGTl zQ`AUuoYcI%-@k*2!9jjHOkAb_`3Kiy*Dg4fR}VUP+{vIXfUy^gVnGbg?(289^-9$r zgf;D^MUo9fNR38HwLjH8 z2w+4w`sF3k7Q8Zx5}mk_CXX~;p@?1>Vi=8hs@kY=h{|e4i>Ojs{@0RCD%Tk6bisNd zl-!S-`6mVj1DV7-!lt4`ugjplkH`W?_BQj;jl(w(0m2CM_nuerlh%R|q3&wG%k__4Q87X zZ8XVwG+**9aW7khjD=UtjjjxiJ~p%eIJ$6!?VGA8Ci_B=)n8oc`we+5mgh{tc|PEM zz7Qw_r5zBVhw2JzQarQZIj^IQsW2TVl zOf)p<(q2W=N9W1xs-|VDTTbft6j*;}sjy*(p7w$%UoK=n&ZSl#`qDCi>t-{>7f0&6 zLLlxslXFG+!-MI8H%LdItjL2mc_X&G&<%G9=EO?4ZWeaWdq4r+;=If#pa(Yclt6d| z?aa>2kh>XV#Zi(wUmT;|`p^zIgb{9BjwN^Yz}Sy; z#BrfM1L%}b510X0b8`-dzi6VVDGuxMQcmmYaUP;z2%m~{i318GUq0M<&F;e9&9}N; z%orMbX-K>&$+VqvDEj%_@uVTg#9SnoK!F;PKyYy9!qQ=4^mk&u-Iv?2n zcYLO9Xvs(M_DoQASo(H>IyjG$c$^^|lmk*1K#bH()gFAmd57yP>(!0-^g&Lxp5tqO z3ttI@eq|DM-~uXdC%bCve>~ZEnS9%b(%XP=E~IW-+qeHW7qhf3tOIQI3fFt$OavPE zapEkwS^28g5_FD%K9}og$b2hlKY~f=4`yj)MKXag39Mk^bol8%l^q#sJ1k1#4vE<}S^mj=(rZD*ew z`Ma8u(GeRJrz5Am|OfFZJ(F?Cs)^EDjbHl2F(6$pcRBw{JsJXNb8X1Z~ zydqeqS>NY5o)X$Z^E#VHqRf^5vXME2NH=x2BOfn!pUG1>?j zG6pKoU52v{J5aP=#z_aMr!GF{3@22D`={s!-L`)z@EOaKhxdVoVlLmf@n^k*OpY0@ zK{;v2&tT%1gAsP!hg!{;!F*7U3+th~r&pYt^OrZ~m&lTlB#rzUk0svSp+z#mWk{AV zFVDxSPre6sre!0fMQ%`2AW}vv-(GT->`u4YU;=&Pv6j0%WGQS^U~q{!PeU7#+J0>f)68BVu`xcclxeM zfrq}j(@C>w46!@oj>Wqczr2jrHc_#K{!+xYv)i*QzhrFc88?vU_zI)dS*d#3({{Rjc+z^NyIe*Pi_lxD`A{_4 zVHN5mph(reMQ>$&4+&H%k`^1c)Sqw|R*qSBg*|t@F2e{C^!h5j_g&X_M!(e@qJ1ez z@=sB%v>P>a`2567`_?V>ps|%c*z+LScOPutJOy8&zEkaWu0rS)kdaPuh*ZuO^Pa|= zXHtf-!Qs+dKj~!Nl?{DM`EzhpBPR`fX5P6oze*<8srqFlwNb*?vyH?+4d*I+pt@~g zh7`kd!0BOUfDx~{k1L^hHO+*t0*yem9z8IU0z1y!&`>083`1Wy+6@gt zdWut&E0VuFgWrO~N7`zueX4Jjw(bb9whG1c$*ZgNw)Ftg4sB&`lAC|UFgF$^QfG8H z$eO9}as7xk{@`?3ShDx{8uxLx9*E3JU#rc(w4O3|1cVFKWGk?);>7B6mFextSDkDwxy1TYqav^MSRV^5AOE$l1DM(kFG97BN7|UL2Oz4V`#^A{Lx~apyS3IXxO`&A8 z%bXv(;U_X(8&X63#9zP+@)5^e{pAXLPr#auZQP(6yn67)rm5`b+I4Q>(+xqd%ZI~U z>eXVE&JR`^{yp8UB~)9p1yp3XX|)KZ314M&`Hd`%~+JaYG(5%@3B#ir_vv>ZgN-JN)iGW$5Awk08LzHs^!-QwqWm_~u`_Xm^+6TzlH<~uV!NVIfC@z=JzxhSv*tL@m z#q8hkLT}0tj*5KLlJsZ3u(7&O?7W434<3Q@vMb``Be%Ft#RT-fc1TZa<(n}+HE^Z5 zx7X{;!Be63=KpBA>bR!9_kWj+Q5!js7#$+rIZ`APkOpZGQE3H{7~P13fFO*Jk_Hiw z1`#kwDUk+|5NVM5&CmDsd+q+W?cQ^r^M2wy=lwiKV5_b*Pbvnk5>3A0btL{QXz@R1 zH_Eu-O|>Zgj*)>IUeAFoYpNE6ha-Whu*_@Q-RmGll~}3ca^_YsH#!0{EbQZnS;QTctqQ7m@NRisF^wv!KB)*hT3 zAwOC-VdVOE(MiDGS#?d2d>`g&Oq!t`67Jv3_KV=gp04TCH~|%F?>B*Hit7VI0!1dw z`-Zq}2G$BrJU(elks}oA_DMW9aDTLY*EEF~58RFheUGii3OO;yKaUT^8AFYbd`5un zK}3;t_V;~Y|CLDDJEb}~6|{JT3Qd)V05oj z*9;?awMqI@53H24#g%j`r8|I`yk44{pK|2Js@t%lYqaJmog}qYmil`Uf+>aRUW+v{ zgEepUHJ;r_&vRw9-)qubDGQ!z!VD`sd_&`FR4}uWzJ!#`!Aw zo)ftw6RAWgjT%Fl*R3X#MRA#G(1&PtYB3;nSwl*cAk2b3R0N$=+*>Oz{j8g;#7h2c zru1W&Z)C$*MTKC)+2EwfnDWD1y(I4`n{;rPfWi^t3$6aGGYI+qp3+#*lhK(b6389q zn?<5VH+uA`roZ*bpZu6nk3k;1q2}Z%z}%GBh@O@0`Fq7piH-9iK0aZp$+2F0Q*}vN-us z(LMH8`+2g^=IG4(>w8G8Tk!MX-+2|0C`5PY3Tivx;_uzdXYIBB3{o=3yoYKjz@Z9# zfbKx_H(z7Vb7_1+Uw$p7+|{F!#5JF5p9$~(fDLLF?nV{mx<5XZ6O&$b(z>0%Uxdaa zsOB*iw(&Z11pC+|!NMxp2VtF6ks;>Nm^8ds`EOf~B1yh`7*w4zLAA@8rCOX*iWY=a z*6>ZWXQdUf8k$c&9mrTvu73fHH*`?8^=7v8eH`YXtv}hkCa3J4{r-C6` zIM3@t-+vA!tGK3kJk1`czfOxG)a|{#;RE2a*CfgNGS-YetA!~C;bR%Rq&{`}jHs(q z?P^`+NG+R+UIcQ9-o5?t`Cj{RY*epXj3L5%moRIb|nqAz{r+)=yPCDyoZo`pOFikr+EqbR>b2g+Di zDOQ^I)CjQlxEQuz+jM~(WMcM#Z?@Cp+#3Tp z2I(J8CF$UUbZ!LNZeg+RUtnc$Z>R#!7Y8v*5 z2aseO3J7s2Cn{t!R^`r5L(1bomKLS2@1!(-Fmb*0S@Z77ht9Qdv%Vaup-t+{kiwML z+{d6@-h5=Wfy~dCWcr_d+{CbBqECC8opj~M#{}|B;P&Q(ADuPBN+qw4Ls-@ey6&i% z&~z09jRaMXXbL0AML67c#y2L~kHv%2WZ`}aof;j#oL`Yy8tJ&u!a2Y-`nV@d_zM2M zSkRiQ#}A&!-VL0n>YY_5VX%J;zIoMDK1};{c`wreSkXowtn##@jH-DLkon9PGASpM3DHu8W`^r6H< z|M19{ge%(VY!kS28U8(e>XhzEJfh|Kn#LTtm_Wvx6{rfb3U;5l(c)ma2Qz z8DnGeC7n&(yb>7OIo8qpV2#&YY2(Fh*bjsH>0s{Dbg9&wwo;v_7o8+hchkYiHE0Ax zAtMxDgqUx%`23lI${rZo3Ere&DGzeA{gWV&R4)J=G-_`wA$Epl9S%vi-zL=lX2`h{ zChd(yluEJh5fcn{M5p50&Am0Eg9Ix|iEvWb9jl=Kq-dtFEApb5@l z8~n;?K7$=W>ul@zA*!Q;g3LC80ZQ|`S@xA@a<=;|V*)_U52ZV0d{h*)C{YQpUg~qj z)7#q-%NtRJ*%*c%3ae&JQk`-ZE%Qqi{TwnH_Lms! zhbUg*I5s})4GHhJhDTraL+}C4ydTOs--lN7g%FEmhxR~Y#vjZ`Y%k+)?Wt_mGQIk3 ztYWL#)7bqtJ0fH}P`Rx0id<@_0n$sbDBHqFFUztm&YV)Q#FYs*Hlke zQaJ2X6nfuGRL<=x8T^~jGQ?yh%Jc;X_D!cb72-8h(l}Y+gZzk<$($P7IUQ{NNN3~z);BIRU-Onz^q zY-#UjR%&t*^U5>2pF}SX)o3~QYB^y}uQ&p;gY{?s(p>Jb<9McJ}a{9z*OSijH1``fp8Ar_#$ATp^0xd53TZ zE?&PD3;?rRaqDmPq^GzeYNK3CDWF!w zLV_;%$k5A?3@Podk|C%hH@vc91-$yvl`Q|tD zn5kgHd2%W1;MIbTdo+di>v5@AXC)kq;(eVppBKEVEOtMm2`U2kd+-(6^l+OPkbc1P zKjbW9yKS%Wf0fyak*O_Jk_+S5)CUeFwdwj!A4`yH#`dpZhV~s2Bp-hZ8!)+lKeEyR zxmj(Wycr}$^*8vyzddAYX+hmz`vA>vXj*l#_qXh9rQ?Ji;r2)#T2nbWDbRTfJ-Ul~ zxWa#d8o4!He=W}iA#$o#$?qSd%5qdIPCoiXB#yhUca}0?HWx%*fb+>hD^VpDpxgXdV!IvcO0@quRmtSpSh-$$`125-|OlUtDGhKp z@oPwV=KgFo&QhSLl|#Z|tgbA6v6}mQqcr#YI9FBqSMf#t$jz6o0=Mke&txayWep@7 z4sC`o&B?X7QkBrZCzG^(dHAb~PBN`Iv!24T|HOFl&TsouOQYpXNSDPo+a+oXGlC%n zEx>o%%$!Qg$lr|-&LhcSB&y;+-O_kh1zTnPAZ zx~*6oyuH~=?X2H%lk#0!DhRdUCC_Z5w;eQSll)JH57E_DF5LJbCC?AnDib4NwOx4Y z%gF$`LLw`S20I<^P9ADuSy-FEnd;ykb#nQ!UMCg znTEc?q>(H3%{GWHp+@EH%*Oq1@c=_Onb6?z#xPNj3(o13_Ta)fD`rq#Z##2(=c`~< zd0R5$N)7QS;(nR7=9*?+gYWJ2kURdBxoJSwxrWP+k~&MY_HC5B6u$#u#DvSaw2&Vm z!+I(DWJxWJw-0v@S<vWfkf}wC_YT&H?r1;?Q2f_(;|{ zXvhr}n0H1%W^gQ-GJs}eH%IA76)ZtSGN>3PI#HwJGon8pszFtv-d^}(@$M~z*5Cz- zbWasiQ#1sLQoaeM%8Ig6t)mjdlW3!|iZAzc;{ zc7g*O^)Vm=uB1&pm4j%ZA6XTnDi8+fDA@4|4_RKp%tXD8_fRXS?^L_!MJAax zJy)~BP~m(z$)-TJ$uSGHB2OrS^Fj1#BJFMUx~F3FSJ}ts%rEYfcC7@N+2~RQuT}kv zU#PayeShj%LVGl!#@yIZmDa2Ezn|o-w+d&?UF{!*ch<}D9mqCrbZan+kUiD-RHq*o z@L`i`jY7FWcyvGVcc{u}{uDo_lmFnyH=Q%))Hquri#4_j3k*?`ZFtw3^O-yh(-axX z@od1ZQG1@=)%$(pw1-X<_X`9{7Pt=OraXG}{Bay!_9E^DiN(h^4OgZ`Q^$|;Cc%ff zCok-PPv_N2T2z69@x%}?$_!c_&+DOKCd&l9W=tCWh*d@!miA&u=_U6o+T@P5&#hTl zOr6UQwBwB0Yu?+8k#Bfx`$p}wktPl%7Tl|wM?*)*&8O;bgo{)yH|{Mk_AwsVRfZ+q)j4E^<(K`e|>cJ;os(92m{FG!;VmwLA98?T1n@88A*>EW(E!`i35H; z{+#yv#zV^cGewix9%GmcxjeFIDcemDzW;PUH($7nZGUF!#7#} z97In!N=pQF|K&|)%uA&SKHoxdg`#|&PPGvqQ)dq*%8Ak>)-i}MqY|4Ce6Awt+MsJ1 zAWcDW(1$Z|Oza&qhM;?LF3Z|H1yDr}tpA($pGP5LZr-#Rk2(u5gzMCi^|SR*3De<2 zlXY%;eVf!wl#~WgOrLvRgq?!n`_<}~LWICYaWR*}Z@`91r=}5v`H(VJ?AGxdliCL7 zLBSNco8s$FR2GL8VVcIkdY<{sOhqmueylk=0*i6~v~Zt2+tB}`&D(#*XsBxIaKfYU zJBXkQo8Z9Tw$VR`qbJpnO_O6OYF3Rpdv}{6T8b=rcGkfN6xh6dDE|U6!b9MEMJVN> zJoA>6+7jy?l5#yl_El03-Rj7G8SK)QahP};X8QrqsXc0AGB{nyV?O&itFLN!5QHj} z1HTZoNoCRtZ>g^6Qe%?-?BhJQDcu0>a9bJ*Sl_;tL`ru*{O=WQV7$G*bjpw;{!6`X)j$+FVDs~lOM>SUvHHNayFfVVDJ6kVHr z^3%c7=8Zzthy_cRgS%@aZ$2^?HHq(kup4M=rlT2odU?R(pUFq~g`R=|pAs_c1Qt%n z7*BGQP$(l+wkB+52HTBD%CbJs1{N(*Rk2%1{j$cm_oQ3iDw|X7XWE9>V2CGBR>piT z>?~DO)xz-6=z;JV-6j#Emdlsl=jIoLt^!8ayObi4#unz3Jt_lo3N1K2M0foj>a<|C^!Ck8tZvAkbLkRa4lmc(HN4Ok>!n zb~6rC?QM6MFC3_DgLLk+1>--%7!?qsQ#S8nbM#hTpr^g5S%OxaO<(@i?{#n&d5(#N z;L+g7tmIiuKl)GX<-$vU-3^-$Cu)fRb*GN!g%V5J1|z;1gN)SdD)!x=u>PsF|h(-AlC21vr+ZxdSDt<4^R zR%&91QJP~VoR&XzJ*KVbsU#oJf3AE_5OJ8zPAqr-gh)_MXIU<}sbBla_sfF}A=s|4 z49HRlhNVJRCe5l@bwIkps)Ja6@g~_6?GM?E5z*QH811o_iO_N??TlwsgiO17cUX{Y0T z+iQhZS>k6E;gLw8Y)Sv?RJ9OA+*pX*S-QC6l`K^;ie7C6|4i>Ew&F1AE;m~5FS@Ap z?}&%ZlVg0O5#PvYBh}p#I97Yv;~4{{ZA^!2@d&# zFzdLU#JS9*g56eO1(Sc@e%n5>e?jDcv=C{X3EhD`Iv>E_uIxYX;0Ne0O+YTEckD)PpZST3^6d7h^WU8r_)v1@$D5J1@kN z?=0S*3s5sw?LWgYVpZYKttzb5SVI`*)%w)_)CR2|kpV5I?SDW0AT}1I2Ne(QEPBtQ zUn69UkR`Ji_8Q)Ee}k8y^-Sc~VB7WKyECihQ<^?v2H#K*URRuNgoVQ}2q5-cjudYbK!`Lz z`hzZSrSLtzRutv_MZ4#{msW1bL*_qtjT2-~`+e7r#%qeJW# zYgZ{fD5_c9Ys+%!IybiZ8)zKsq6uF6${1qKEOi?T8QsN%Va-O?KIeb@h*o*sh>5{6 z+Cok%jph*p~?VIqJRp)G9Phg?GX6=RZ2YbTMX!O<4Img3m@Fv~r{rn0g^>$$5wVO^?#t z9Z5io1b>snE{9&z;qb`v;xtn0^^vy2;bZNP5H!;!y|?TfVFe$(tUd)Oz=&tg81MY(<&wFKwo3EQN2+;;d<%>iso`Oiz^g_ zhJ%=TcAH$Fb|r)m(fY)J^+Y*=u6=`f_!kgO34w3v3z0;6*GERy^ za;XHI!4U4-)285=r@y}_@D8@V!*#KKj*p$Fa{qDkXua+1)tS?(uqYK6ZpLGaCq&F^ zWB8sET;PXV_)ZZ`1TWuu)(a+4D7~{;E+a?N(Krc2EyBEpu#}lWu;dwR_dhiKzl)b&*DLU@LxliRzC&w z6{zR%RPf|ek92g;TQrQmRuDPbr z(je3aAR(PbJj6fP&OLzEBkoW_I_f(6BIWWkX!`xboSJSeFZGOD|4}eXq)U-hm{Fup zl-GdPEZMmcX0jZvp_i`{`dY9V&JuVjS?dH5++@&)!EYIRdw4 z#cG^?NjPvI>NAbRsN&_&w2G)>hm|WoXW23o^fQH=f700L86?p*QrhA796l&9no~A} zgJ9ILzeTo`_Acgwukb|0aTrOpkaN6@?z+}u8$0qO(O!v3LrsEzhF)tnSIxP`2Qoaz zdP1+_rnv82hh3vHp2g%8rElD)g-Vt+jO#37_51pC;gwwV#BtLezwEBsdUnwe^RU$pMvL0(-Z^SKPac2QPs4bve+Q(EN|>tT)(K}>=kK#Y zJ_s)ugumG{QJuanjJ%f8K>M1UBLrK~8EdGHilfq}g+(k=!!2-jjL8h5-wwB}&WepF zkhuavYKvTq8X;(c&&66)Rg`Q(EjvyVvZ61NfUrNY>%H6$!{cK#X*VhSULwL%QCG;Z z@(_fR8Mdh*e-z_-wLt&<1Fm?78cGH5r1P9lH&91QBSGngxWnLqvf>>fVF8$JXWL<^ z6g%Fv?AWaJ9#__rKyJpQK9cacfaL;i12jS)&*_OeYG=U)6BpwuM$K20Y_Ob;fLKR= zQTRhCVD1phvCFrB;xz3WcnB4Ub-^;k!8M^E9mxJvVA7RfoH_3R?`Ihk%)rJIzF2bX zh?7%s1iNY~P@=CZkg}k%#O}4=9z4UH)cu*LJyhVth(qQ^p?Q>TF*z992bCFTO!{HZ zN`Vqc=+uVdo4eDqEQUe>Q4X2c1=!VdqQPaAMZFH@ zltwO6b**M#I3H~!Y95=?+6B`jHHK2CYEi~JX5u}BYBZtz0q9>8_Dq=66fqqkviwyD z;w5?Evx4yUg0)v^0KU*ug%PcueHPN@!btO(>hG*jQUaLoIaZr2j2uP?MIf;X87uVK zu_i;2f`VQPCvDbE?SJ@Bi>|;kenoPA47n0zGEoeIr(p@7;de#w8on5`y&T*(3)j}hIZ|f$ zxKvBfhJ+vAR_`ew8dbcx9!jK^@jFS_hJ7cv6Tn^Z7>WWjqL%^3+h(%TGHmF03+fDl z9HV~!h#^aaju(V-r`Luu?pZXJk8ER)v!n-QMt%JWIs26>U=bj5^_oA+VuE~+!|&1n z85q)kM<^peSd{bG@nQR)3zX5(`*3|eu{4BZnzBk{hXarf0Y7xn&8UpVF8y;hL5ARWF z^2iMQ$W1wbo`0sOM!Ni_gm(=H-J|W3y3+*=JBrG(3JQ>4GX$5kaVKnZNUbLu3Gpp= zVL!lPy7Y$yd9uRUqanx&{TFlqBNP`<Fi%BwM5WPKDJ#0?!CT zwuD+`yw<0E_}?O{`DXoy5y^Zq0n+6e3G$LEKFOXieB9Q3qBg#;4;i=pnKrM9y^rXy z!>d$L%VF0;#V)RYCi@f>kv3&(blTO(*0YSOT(y)+P5D@G-4?cz?=9BytHWL3!vi}6 zZMXu4AP819&!dg8{aBTC%PQ5dK$VvyWm3z+UG>+I&NythE6DcR9RboEIk;XPwhTt>DXUviRtCNc)9~3RZL5upCo6Q{(!|PCeImY|HK?3*?(ai^N zX`~FX0}S(5BUO-CL}Lq=#4Q--QfNsD$)neRu$?StxzEvLN4tXnlS}>UD&__=D#68t z5{Zb2dyeJ`Oznlm{=1A_x;*mXAiVy2vx+l=GbQe?i1W5V8?`4~bH{t29T*E22#BS| z3SJ50zOK$4OGu4~hAXA+rQ8_M(KowP!y+4ES&@11cWyqX33%>D4FQO5!1ewmiHja6 z(ODfeuVq56J*oK>Os8kJ{3*oG#;mh7e~#LVcrE}{Y(}fwn`a@kB_>Zsv+1b2$of0e z`uXzytS;|$^YJ48P$(dzxh$WjcvH%Ft>p@7!${nvjf}odyaX%s{dm1M+VeM=QdQ$B zEe4=PJTLvTF$`SY7mQOsSsui0WC`&hN4xSWSwo~8k~9Ca7)~gWdLrHcae6)y0IYnK z#|?p6vPWjRB#8~9;-g9HI%irx7JS?AJ-c_NFS!J6h|0CR$(RR?g^qG)oGWsyr$A(S zVKm+<`-Z2 zV8Kx8Br$Jd3@JeZ&8^Q)h7Ws1kN!_3L4-Oqi3ubTp9L_(ncF92S9f&NvrbT6mgTg|O+cGa9@)z=n_syK@et`$| zReL4+y`TpZZ1IT;r-2;L>4ij!)@XP<#cV{aDSPfl?f4H-XBN=^;dq6strKFEpqdO` zr#Y0ACKu6RYG(8poi75ed(-nl0E8I<$5yWe*jm%An`3!sC>|^dsg`xIT!nhP+&r(z zv!t>knAfX>`o(e~M<8Fr4fP+25xSagXJ5VfC`v;Mr8~$k4-bXcFp~$Eq5LihhjXC) z25XP}p|4FuEs41(UvX6+n*cyX4AVMzkh7uf^_+eaSzNkfJt-1>O z1t7fs71of!Q^F91?-fj9Zo|}JX41JiPsSqK8aM?X*V8(YjP2^-#wTCD*a<7)jMbct zYN2$ef#^}*(q-YJB&;7A+`394P-=cvyg&X88@0aMU|mn!e5juU_B*)bZ1k!HI)ckc zv;&wldvZxh_Zs_z43(!UTAMI3+VdZZTmf5}29vNXury^-4X%w-@EK4WOL#mi_cf4u#-5B{EdT*xnwX`3!X z`)3Icg!q_3wN|aBnTlx5lq55ZxNFyPOKpnF>R50Qr1E)4P`Fy5$S4D# zI5bO-R`MsCQfCHZz|6bXI$3PU#^9fuL!UtPWdbuv`DnWA*l@HcEzOeNwA-9%L+cU%%;H?v zl>80bH$G*R{v%;-ov?5>b&$r}oRUY9rnInM+M|YibOTMIP8O5>eOMBp|D@*^$gvYd zDgr#d9u5{fx|$!3lL#d?68*-GILKGIg8PT&rT?KBz&*W2?#7i3NU!h{(0KOkb9oI) zAnzIn;IcxiQbaWX0^)4hRwCcKEj_bvIudKbev!QWx1KhAaP1`n>oX%_EpWZZ$!CKp zd5H~xrSSf%54eCLHFQbv0hH^*V<_fCoOaqRfG0a$ley&IkYi+7Ax zo1V-34?0Ys4mperwFmQz%sgTdVLNdPv8H9$D8(6UQO-ghDA5s(W&g4k1;rMNh~z|l zGa{{wAxq3;)*e3gmrTt5j&Y>a|C;_R2byIEgmYfg31z#2(=i7a#Z~yz4B}U*kISnq zFv!H(b0s4PV3>@~-;HK#;YsdLq9rT}kY=@?T_V&TBT!*Xw?iHx060LLt9t-O0SuSI zUm;;8+2lwBKL&}>_ff@m5-?-^_WJQ_SiU_Ftuy|{qX_@UQszUWspF=^pjcjd@%oR^X# zW8yA>Q+IZZsbjOoZg{Bn5J06B8kk8U^$*E9;Et<#Z|Ob2GZOQB_7m5EuqP<&-w=|d zXEDO&SkqZ{6zKvUhGc%b_zo@5Ge2hdm0F?trbr^SpuTquyRf}r!>wop%6s|jAXZg0rv)woA&%1 zcve}VFMYDN>tECh5CZuc!#cmH-iI}k;_ZAGVPhZ+^ubdumtO+}Rhra?Ck_~tr1H)x z%SLw4o(;?gDd|_;5Nv7-q|Jw?o=dwb-Z7Fbjis%TD`$2fESO7DC;fe1ut459sbSxI zrpwt(2;+Oe7&b72(_H$)3@lynRbGM~;S}g;C=L0b>Qb-crp%4ul=8WDVB4=xLYKsQl4w4zV9 zxju#Lh6=_QA{lyY!vgjHi-Y=3-xb-}a@LPS5>@WQJ-A2!X^Z9yFC2yp+yRmiw8Lsa zdirrUK(HXa3SYst*&004x6L0{RSIHFk~3%byERsUjmK*NUYXN~1dF83752~t`;ug% zN4f?Yzvc38gD0rCS)f>fP(E^mh&F(0d{3p|_ax~$92?FdBdcj~Err~T&!6(BCKt$m+L9zL zQbRCZsQsP@W#{oio_w#*;Y)%3H)dIg0-+l9r{WsBbkjznnHIb-a*SnzC3}4UX zBS0!pfP$e|y0lH2Le-P0$Y@$< zpKFwjcGXL(mGoiwHd`(3OhZYTP-dyKc(u%y*CPiXeTa>-ux0pxo#6+uju>PiQtjle zimXL+r=7|(3}AOz`fQqEPNai;=1(v&4R+IMpK>)(X%zJEbn6nI9_E(*{Zf#qQZJ6L zsezPLMc0XqZ}L#Gy?#lgJZ1!!`1r;1Dd(Z5kiva>E0#{JLgl7KA<@oBL51+RzF~Ai7^6Do*&ZWv%@XnU{cI0QxmO+eysO?ZsN7gjkXOfg zN!c{vtJ`T)kkw;lUr7#}FwtHi%>QZvB6BX5sYmvrk_o~Rp|mR{`9@Dz%2=^3v@(7%2;!@w}B+<|93+D(1>Wc57GGLl}s zb>s(4RLUZE;%&8izLKXK7Re-)xJcv`0*;(JaD1BJp= z73V%BCYdNc<6w_Rsz7U1CG`Ik)(=w1>l!RO#w1(IR&-RM)%m{`i_(SpgP+LyQ9IEi zPzBGE7xjL= zZl1VNNo7(M{nxF8L&RQ}?m1uG&nq5j2zzEqG8o_YUsnb78Ih7~Fjfup zgbb%n4<&lPR;XXKeR>oq;jo`2fq1%LI{NZmS8F7<=z{m2U)}<0v5sGh>Sms*GsCF8f=?@VmX zR_SqaD8s)2R`hTQB)IH3K0h(Su)>BlJ`~uodA`X_2Ozg^DF!Fr;>A&^J7<)sg22zI z`P4wfCQ0NXr(w9Ra}L@LCjZwX_w8DFjjyuYZzN3P@ntPfogU*za$>iXN%ArZRZot` z1lWz*!{C!RZSo#>ez&>Ux=t8*-vbY`%WiYR=FJxp&LSO*dC4cg>d=Sh>kmA(OO@+{ zmp*+L3;^^QFz!`l+q+6wm8C4*a?pazLHEm$xaSsqV~#`9ly!}xSy`R$Z^kN5g?$o6dXOWsox1^{FkykKkW|t#?AV9Yxu;yY~Lz=?dX+S z?U)iJ16DCl@GUwRG^^YXv!l4hZEeK)Sj2Ip#LG%g$ixVggtVc(?*Z{V=d5IA=m6TU zk+Ln{1LiZGiS^ERf@8t|LFuXNeCMnh)Jfu9)JciDw$!9EN&WkM-;%*%D4$U*-BH3L z^o`}RF;SU*T8(d93u|Z7Ou_L0mZ@GhL95vI^j02+cx*xd4*J0sR6A-NEJlJk-_@19D0Qh2z_O>+%~hcAz+Rzh88pFHfmcXs0nIa#7j zgeq6(07);ZIAITFomt=n#(n=KZuhRXDP3gt$D8b1VoKuTP>?TdP;Fns$)p# zshuwF7Xonf#@(biSXFjOe`kl!oQms&SU;sf|J7C&dc6a@h#+zOQGmV3TC*IZ01xGm zl)V=2LWJ0-XU9Uc_!$?cY^i|E%69e8)VW(&PzW95pOT)>{=t!32?$^OFK^^WMaufTe{mgj>RT@CyB~lO}@(&rLYT&UCSw?p3`W=ZavT08sdU2{d3!gIW zaw~7YR-FtHNW#9{`4p!TQh#FO<;3^vD2@{j{0lBgtfP}$bts=fFBF-SH7PJxOkAsq z3Efc|+UiBdJfNN;Gxf+k5II66mRr%Q=@7Ty;n5pBRKW74Yjj&yAKgY6cEWSxaDm@mt=5 z+kOE8cY>dYc<<|^0YeUW74Ga*oNDVy#p9KXfB311KqRyV*LAV={M`zcXuKK=@O9z2 z$Q`Yf9-r%of%^#gjcOca*!3?qE)y}CMASwggvFSmKeqAla`ntoE3;p!<=vg&CvZQp z=!C_zwv*tMYsk6UGlYo3B4{@xO)jZ5yjbcLc=mSL)Sap~_A z?EALyo9uk5AaU_H$Y(+IlA`$P&{-7|F749M5%G?aM9O61LAD5lH=u)t_4Mbq)!_cU zt24zP0+O2g(Tjm90rkIO*MfaS94|-v@hHHb38r3-DscyFP3{Yw{`@Mxt+3NW^Zv*0 z(_GmEo(b;((!xad zna1ar20<5lxe#>V(fhfF@4iR-t>r~MmSa)>_r5nQ*0Xt@N#3v3R=(JI_L0cd@!Xnz zJ0;7T8z82iOdthkfy=MvvtE@mGIxkD8i-50syt4Z6?F5U=iwpX}1_zE=bc{kzWI zTAm2Itw7vX&fR`rHZ|E0fBe{+_!pbzCY#2l+@`5JZjXzzek?c#FPfb7RUGG8dKO!H zMrBR?cD^8|$#@C?$f+CZDn?aVCplRciCJy^dUI<F%HX-!>#XBdkxNCnAFvKuCqSjdV7(ncr@ev zku6w(BgbdtMyvH;w&s>xaW-!Kcg?~6)xXBu zmq}UQw^mtwyxSjpUoNh)dUzkbZvuedkLr|t>sSGknJtqu84`S^{Ev7N{4a9gqVu0v z#DKpM~1bywn3WEaxn0F4V`ij|Sy7 z1l0ppuG*X|r`&ou>Qei)bVKUV*^Kv~M$eu1k9T-O-fy>EK|hoK-MD#qdbEALr=~_U z$ngImbu<@zxxBo*VSUuR+5SxVLPq)SV2&b@<1}0A^r@qxV`yk-aghW4<@0CkVq4&8 z^jghFR<)kz&(W64(>k8!aZQbl8BJxDZcQ-sGsVMFE^FnPuVn2*)&e&z9+U2pL#kI3kH6BiC-=|Ux@xEgSM?AV(R6`TG7Q< zy}&PecedYM1{XZJ9P|f{w@JF>?jHW>rt*FNqrbnO1ED{W8{OdcBQ{!GT%1bb4_-DQ zawEIh?c37c-d;gLK}t#r5gcc$U$T^sJE?xpwdY39+zQ&I0sOY^+ho;f9L+uz2ABi) zhqJx3UyUx;IP01GBHlgtZ0Do<`>lq}_S}=tcY%35cYhi{;e3CTsBK>FzPIj==sazm zEz-*p(;7syk+21z0Hu@uTi}it*DN1Ae1MX1Qz&Cd@5+>}{>0*%YbI%v;d@80-7 zHLXb%UUO3R7sEe4H8Q&JU=2pQplyjC7g85eTT;Jct`9yTY2Yw!^7_lk2XvI4Frw&c;=;itnzn_89@o!V0`JH|W<*=Q;hckj7q zw|G!Ip1TQ;53>6B0^w2UEe}N!XMM;qqX+)&X^-@TjFBJD(;GJ%(ZatD1O)}b@p|Jk zU~f~Cb=|`6zHP~ocZECGR#g!O9OpAN6VYCuewsGhZf(NqR-H08%TtQZ(@c53;YU&@ zNe{JZ31!4rM%o%c25!7`-NSpnDJosur761vZclb_o`d2phF|`^)7mNX!lo9E9?^me zX__Fcwen3CHemqo{&hd?9?BlirfuJ_AuYf`2r@qjJ6}Doob52{(@Z5u)C!O2-cTE5 zKv%o&ZDMcel%@YmO36>7@wkuq`_=0oeYx+5U8b75qQ*}A6xO>*U}v=Xa=lde;VB|B2UbfE~n^P?|al#B5-)$A3%JVkQ{N12}C zc=#}Ws(bz+MAt)s|De-9TH4tmed(P(^VHl{%`t!@r~b$HPSfTuK{n3BwN@%_=rHz* zyCieKnmVn_1Hie?tmUCKd{j$(!B{wexZAZ)(51^Nw;0c{MdP!Gi%r z?ZG!MUc9h+mCHuxx)9t<6j_==mZzw)eEjBKi$N(LlzIYC1gJ-fH`76V6aWHogE~LlFhXPl-YOjm$BENC) zv5mtm-lpRE%^k*Blrkh4rt#DVo}ixx$98~>xKZo4)M3l_%Tw`0rMW|Fra{?( zg*xZ{$+rLfd+($3S$yZl;lQA@*-pOI<mj(44UjAIq4LgF znt0khRyP`_t7jRoEW@IiENSFi6|AnhTL+H!oVy0)tLA*Yy$h*(-bH;|?9M#7`XKV) z`V!3xR(f%2xbKYxTv;|+**2z!c3~=(?lpzf=y?1w+x|z5%o3_Hj|el2v3w&0BxizU zOroj;f#T?T)wXBlHRD-6;Byp7QlPtfyU*3tHRQYoerdS&iiA@@#Z4y`Aws1x8IU#& zcNv%a&?Ec)D;%4KpU2CtlCKG?PB1Xow6ryjL1hTwV1eAG>LqxWTIpsS2`3A~GppL|c*-Igf{tX^g$#wC!GBO7@waDq*0Mk;*}i4mMO zhf(HF#$f4my0wiBcURK_4}z$za4kK#&lc7v0}_tsoZ|~`qBsQju-jEHzM($9XW4n@ zD^=(6fnd_IqvV2vl*6G9l#P8{P6-L*{kGjrNh4puTlJvX=1A z%aDV;{RrB)Q(0MwY0TMt6Pl1WbCt4U^2-k4gQ#Ilr17(%&u5j^j(>|Kyldbct&abp za>f+fT#TaHo0hqB3vVx8Nb;>kJ{hOzk6-e9=8(L%cD86^tBU?`x0Xmjqw9>XPqYVq zSW;8Y{NPQ(>^FlT$&(3h!@%X!3Kxy&45PXC8tSvDq`Jm{pa_aWE>Q9Y1z{q=sKPy! zpXHskv5;eJ;})UvZ=%c=X;JPr$1s!3!3NA^X$KkU-o&@K!z8Y|cleD0{xJb|CL&S7 zllwS!e?RYzg=t-VT->eVu-372m?K}uuIL3AH2(JlQU9)b@k%o)>EGoi*^QkK78?cy zv|#}wMEsXWd_Op@O<tvWj~)2_e}43?XpN?CGd-~tyt-)<`1&dY6U_SJ^3DGO-HPj? literal 0 HcmV?d00001 diff --git a/demo/documented/biharmonic/common.txt b/demo/documented/biharmonic/common.txt new file mode 100644 index 0000000..898b24c --- /dev/null +++ b/demo/documented/biharmonic/common.txt @@ -0,0 +1,83 @@ + +This demo illustrates how to: + +* Solve a linear partial differential equation +* Use a discontinuous Galerkin method +* Solve a fourth-order differential equation + +The solution for :math:`u` in this demo will look as follows: + +.. image:: ../biharmonic_u.png + :scale: 75 % + +Equation and problem definition +------------------------------- + +The biharmonic equation is a fourth-order elliptic equation. On the domain +:math:`\Omega \subset \mathbb{R}^{d}`, :math:`1 \le d \le 3`, it reads + +.. math:: + \nabla^{4} u = f \quad {\rm in} \ \Omega, + +where :math:`\nabla^{4} \equiv \nabla^{2} \nabla^{2}` is the biharmonic +operator and :math:`f` is a prescribed source term. To formulate a complete +boundary value problem, the biharmonic equation must be complemented by +suitable boundary conditions. + +Multiplying the biharmonic equation by a test function and integrating +by parts twice leads to a problem second-order derivatives, which +would requires :math:`H^{2}` conforming (roughly :math:`C^{0}` +continuous) basis functions. To solve the biharmonic equation using +Lagrange finite element basis functions, the biharmonic equation can +be split into two second-order equations (see the Mixed Poisson demo +for a mixed method for the Poisson equation), or a variational +formulation can be constructed that imposes weak continuity of normal +derivatives between finite element cells. The demo uses a +discontinuous Galerkin approach to impose continuity of the normal +derivative weakly. + +Consider a triangulation :math:`\mathcal{T}` of the domain :math:`\Omega`, +where the union of interior facets is denoted by :math:`\Gamma`. +Functions evaluated on opposite sides of a facet are indicated by the +subscripts ':math:`+`' and ':math:`-`'. +Using the standard continuous Lagrange finite element space + +.. math:: + V_ = \left\{v \in H^{1}_{0}(\Omega): \ v \in P_{k}(K) \ \forall \ K \in \mathcal{T} \right\} + +and considering the boundary conditions + +.. math:: + u &= 0 \quad {\rm on} \ \partial\Omega \\ + \nabla^{2} u &= 0 \quad {\rm on} \ \partial\Omega + +a weak formulation of the biharmonic reads: find :math:`u \in V` such that + +.. math:: + \sum_{K \in \mathcal{T}} \int_{K} \nabla^{2} u \nabla^{2} v \, dx \ + - \int_{\Gamma} \left<\nabla^{2} u \right> [\!\![ \nabla v ]\!\!] \, ds + - \int_{\Gamma}[\!\![ \nabla u ]\!\!] \left<\nabla^{2} v \right> \, ds + + \int_{\Gamma} \frac{\alpha}{h}[\!\![ \nabla u ]\!\!] [\!\![ \nabla v ]\!\!] \, ds + = \int_{\Omega} vf \, dx \quad \forall \ v \in V + +where :math:`\left< u \right> = (1/2) (u_{+} + u_{-})`, :math:`[\!\![ w +]\!\!] = w_{+} \cdot n_{+} + w_{-} \cdot n_{-}`, :math:`\alpha \ge 0` +is a penalty term and :math:`h` is a measure of the cell size. For the +implementation, it is useful to identify the bilinear form + +.. math:: + a(u, v) = \sum_{K \in \mathcal{T}} \int_{K} \nabla^{2} u \nabla^{2} v \, dx \ + - \int_{\Gamma} \left<\nabla^{2} u \right>[\!\![ \nabla v ]\!\!] \, ds + - \int_{\Gamma} [\!\![ \nabla u ]\!\!] \left<\nabla^{2} v \right> \, ds + + \int_{\Gamma} \frac{\alpha}{h} [\!\![ \nabla u ]\!\!] [\!\![ \nabla v ]\!\!] \, ds + +and the linear form + +.. math:: + L(v) = \int_{\Omega} vf \, dx + +The input parameters for this demos are defined as follows: + +* :math:`\Omega = [0,1] \times [0,1]` (a unit square) +* :math:`\alpha = 8.0` (penalty parameter) +* :math:`f = 4.0 \pi^4\sin(\pi x)\sin(\pi y)` (source term) diff --git a/demo/documented/biharmonic/cpp/Biharmonic.h b/demo/documented/biharmonic/cpp/Biharmonic.h new file mode 100644 index 0000000..afd6200 --- /dev/null +++ b/demo/documented/biharmonic/cpp/Biharmonic.h @@ -0,0 +1,6644 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __BIHARMONIC_H +#define __BIHARMONIC_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class biharmonic_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + biharmonic_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~biharmonic_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + + // Get coordinates and map to the reference (FIAT) element + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new biharmonic_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class biharmonic_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + biharmonic_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~biharmonic_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new biharmonic_finite_element_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class biharmonic_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + biharmonic_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~biharmonic_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 1; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 0; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new biharmonic_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class biharmonic_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + biharmonic_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~biharmonic_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new biharmonic_dofmap_1(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class biharmonic_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + biharmonic_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~biharmonic_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W1 = 0.5; + // Quadrature points on the UFC reference element: (0.333333333333333, 0.333333333333333) + + // Values of basis functions at quadrature points. + static const double FE0_D02[1][3] = \ + {{4, 4, -8}}; + + // Array of non-zero columns + static const unsigned int nzc1[3] = {0, 2, 4}; + + // Array of non-zero columns + static const unsigned int nzc4[3] = {0, 1, 5}; + + static const double FE0_D11[1][4] = \ + {{4.0, 4, -4, -4.0}}; + + // Array of non-zero columns + static const unsigned int nzc3[4] = {0, 3, 4, 5}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 36; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 81. + double G[6]; + G[0] = W1*det*(K[2]*K[2]*K[2]*K[2] + K[3]*K[3]*(2.0*K[2]*K[2] + K[3]*K[3])); + G[1] = W1*det*(K[2]*K[2]*(K[0]*K[0] + K[1]*K[1]) + K[3]*K[3]*(K[0]*K[0] + K[1]*K[1])); + G[2] = W1*det*(K[0]*K[0]*K[0]*K[0] + K[1]*K[1]*(2.0*K[0]*K[0] + K[1]*K[1])); + G[3] = 2.0*W1*det*(K[0]*K[2]*K[2]*K[2] + K[3]*(K[1]*K[2]*K[2] + K[3]*(K[0]*K[2] + K[1]*K[3]))); + G[4] = 2.0*W1*det*(K[0]*K[0]*K[0]*K[2] + K[1]*(K[0]*K[1]*K[2] + K[3]*(K[0]*K[0] + K[1]*K[1]))); + G[5] = W1*det*(4.0*K[0]*K[0]*K[2]*K[2] + K[1]*K[3]*(4.0*K[1]*K[3] + 8.0*K[0]*K[2])); + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 300 + for (unsigned int ip = 0; ip < 1; ip++) + { + + // Number of operations for primary indices: 108 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[nzc1[j]*6 + nzc1[k]] += FE0_D02[0][j]*FE0_D02[0][k]*G[0]; + // Number of operations to compute entry: 3 + A[nzc1[j]*6 + nzc4[k]] += FE0_D02[0][j]*FE0_D02[0][k]*G[1]; + // Number of operations to compute entry: 3 + A[nzc4[j]*6 + nzc1[k]] += FE0_D02[0][j]*FE0_D02[0][k]*G[1]; + // Number of operations to compute entry: 3 + A[nzc4[j]*6 + nzc4[k]] += FE0_D02[0][j]*FE0_D02[0][k]*G[2]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[nzc3[j]*6 + nzc1[k]] += FE0_D02[0][k]*FE0_D11[0][j]*G[3]; + // Number of operations to compute entry: 3 + A[nzc3[j]*6 + nzc4[k]] += FE0_D02[0][k]*FE0_D11[0][j]*G[4]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 48 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[nzc3[j]*6 + nzc3[k]] += FE0_D11[0][j]*FE0_D11[0][k]*G[5]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[nzc1[j]*6 + nzc3[k]] += FE0_D02[0][j]*FE0_D11[0][k]*G[3]; + // Number of operations to compute entry: 3 + A[nzc4[j]*6 + nzc3[k]] += FE0_D02[0][j]*FE0_D11[0][k]*G[4]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the +/// interior facet tensor corresponding to the local contribution to +/// a form from the integral over an interior facet. + +class biharmonic_interior_facet_integral_0_otherwise: public ufc::interior_facet_integral +{ +public: + + /// Constructor + biharmonic_interior_facet_integral_0_otherwise() : ufc::interior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~biharmonic_interior_facet_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local interior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates_0, + const double* vertex_coordinates_1, + std::size_t facet_0, + std::size_t facet_1, + int cell_orientation_0, + int cell_orientation_1) const + { + // Compute Jacobian + double J_0[4]; + compute_jacobian_triangle_2d(J_0, vertex_coordinates_0); + + // Compute Jacobian inverse and determinant + double K_0[4]; + double detJ_0; + compute_jacobian_inverse_triangle_2d(K_0, detJ_0, J_0); + + // Compute Jacobian + double J_1[4]; + compute_jacobian_triangle_2d(J_1, vertex_coordinates_1); + + // Compute Jacobian inverse and determinant + double K_1[4]; + double detJ_1; + compute_jacobian_inverse_triangle_2d(K_1, detJ_1, J_1); + + + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet_0][0]; + const unsigned int v1 = edge_vertices[facet_0][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates_0[2*v1 + 0] - vertex_coordinates_0[2*v0 + 0]; + const double dx1 = vertex_coordinates_0[2*v1 + 1] - vertex_coordinates_0[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + const bool direction = dx1*(vertex_coordinates_0[2*facet_0] - vertex_coordinates_0[2*v0]) - dx0*(vertex_coordinates_0[2*facet_0 + 1] - vertex_coordinates_0[2*v0 + 1]) < 0; + // Compute facet normals from the facet scale factor constants + const double n_00 = direction ? dx1 / det : -dx1 / det; + const double n_01 = direction ? -dx0 / det : dx0 / det;// Compute facet normals from the facet scale factor constants + const double n_10 = !direction ? dx1 / det : -dx1 / det; + const double n_11 = !direction ? -dx0 / det : dx0 / det; + + // Facet area + + // Compute cell volume + const double volume_0 = std::abs(detJ_0)/2.0; + // Compute cell volume + const double volume_1 = std::abs(detJ_1)/2.0; + + + // Compute circumradius of triangle in 2D + const double v1v2_0 = std::sqrt((vertex_coordinates_0[4] - vertex_coordinates_0[2])*(vertex_coordinates_0[4] - vertex_coordinates_0[2]) + (vertex_coordinates_0[5] - vertex_coordinates_0[3])*(vertex_coordinates_0[5] - vertex_coordinates_0[3]) ); + const double v0v2_0 = std::sqrt(J_0[3]*J_0[3] + J_0[1]*J_0[1]); + const double v0v1_0 = std::sqrt(J_0[0]*J_0[0] + J_0[2]*J_0[2]); + const double circumradius_0 = 0.25*(v1v2_0*v0v2_0*v0v1_0)/(volume_0); + // Compute circumradius of triangle in 2D + const double v1v2_1 = std::sqrt((vertex_coordinates_1[4] - vertex_coordinates_1[2])*(vertex_coordinates_1[4] - vertex_coordinates_1[2]) + (vertex_coordinates_1[5] - vertex_coordinates_1[3])*(vertex_coordinates_1[5] - vertex_coordinates_1[3]) ); + const double v0v2_1 = std::sqrt(J_1[3]*J_1[3] + J_1[1]*J_1[1]); + const double v0v1_1 = std::sqrt(J_1[0]*J_1[0] + J_1[2]*J_1[2]); + const double circumradius_1 = 0.25*(v1v2_1*v0v2_1*v0v1_1)/(volume_1); + + + // Array of quadrature weights. + static const double W2[2] = {0.5, 0.5}; + // Quadrature points on the UFC reference element: (0.211324865405187), (0.788675134594813) + + // Values of basis functions at quadrature points. + static const double FE0_f0_D01[2][5] = \ + {{1.0, -0.154700538379251, 3.15470053837925, -0.845299461620749, -3.15470053837925}, + {1.0, 2.15470053837925, 0.845299461620748, -3.15470053837925, -0.845299461620748}}; + + // Array of non-zero columns + static const unsigned int nzc1[5] = {0, 2, 3, 4, 5}; + + static const double FE0_f0_D02[2][3] = \ + {{4, 3.99999999999999, -7.99999999999999}, + {4, 4, -7.99999999999999}}; + + // Array of non-zero columns + static const unsigned int nzc2[3] = {0, 2, 4}; + + // Array of non-zero columns + static const unsigned int nzc5[3] = {0, 1, 5}; + + // Array of non-zero columns + static const unsigned int nzc9[3] = {0, 1, 5}; + + static const double FE0_f0_D10[2][5] = \ + {{1.0, 2.15470053837925, 0.845299461620748, -0.845299461620748, -3.15470053837925}, + {1.0, -0.154700538379252, 3.15470053837925, -3.15470053837925, -0.84529946162075}}; + + // Array of non-zero columns + static const unsigned int nzc3[5] = {0, 1, 3, 4, 5}; + + static const double FE0_f0_D11[2][4] = \ + {{4, 4, -4, -4}, + {4.0, 3.99999999999999, -3.99999999999999, -4.0}}; + + // Array of non-zero columns + static const unsigned int nzc4[4] = {0, 3, 4, 5}; + + static const double FE0_f1_D01[2][3] = \ + {{-2.15470053837925, -0.154700538379252, 2.3094010767585}, + {0.154700538379252, 2.15470053837925, -2.3094010767585}}; + + // Array of non-zero columns + static const unsigned int nzc12[3] = {0, 1, 5}; + + // Array of non-zero columns + static const unsigned int nzc7[3] = {0, 2, 4}; + + static const double FE0_f1_D10[2][5] = \ + {{-2.15470053837925, -1.0, 0.845299461620748, -0.845299461620748, 3.15470053837925}, + {0.154700538379252, -1.0, 3.15470053837925, -3.15470053837925, 0.845299461620748}}; + + // Array of non-zero columns + static const unsigned int nzc8[5] = {0, 1, 3, 4, 5}; + + static const double FE0_f2_D01[2][5] = \ + {{-2.15470053837925, -1.0, 0.845299461620748, 3.15470053837925, -0.845299461620749}, + {0.154700538379252, -1.0, 3.15470053837925, 0.845299461620749, -3.15470053837925}}; + + // Array of non-zero columns + static const unsigned int nzc11[5] = {0, 2, 3, 4, 5}; + + static const double FE0_f2_D11[2][4] = \ + {{4, 4.00000000000001, -4.00000000000001, -3.99999999999999}, + {4, 4, -4, -3.99999999999999}}; + + // Array of non-zero columns + static const unsigned int nzc13[4] = {0, 3, 4, 5}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 144; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 460. + double G[34]; + G[0] = -0.5*det*(K_1[2]*K_1[2]*K_1[2]*n_10 + K_1[3]*(K_1[2]*K_1[3]*n_10 + n_11*(K_1[2]*K_1[2] + K_1[3]*K_1[3]))); + G[1] = -0.5*det*(K_1[2]*K_1[2]*(K_1[0]*n_10 + K_1[1]*n_11) + K_1[3]*K_1[3]*(K_1[0]*n_10 + K_1[1]*n_11)); + G[2] = -0.5*det*(K_1[2]*K_1[2]*(K_0[2]*n_00 + K_0[3]*n_01) + K_1[3]*K_1[3]*(K_0[2]*n_00 + K_0[3]*n_01)); + G[3] = -0.5*det*(K_1[2]*K_1[2]*(K_0[0]*n_00 + K_0[1]*n_01) + K_1[3]*K_1[3]*(K_0[0]*n_00 + K_0[1]*n_01)); + G[4] = -0.5*det*(K_1[2]*n_10*(K_1[0]*K_1[0] + K_1[1]*K_1[1]) + K_1[3]*n_11*(K_1[0]*K_1[0] + K_1[1]*K_1[1])); + G[5] = -0.5*det*(K_1[0]*K_1[0]*K_1[0]*n_10 + K_1[1]*(K_1[0]*K_1[1]*n_10 + n_11*(K_1[0]*K_1[0] + K_1[1]*K_1[1]))); + G[6] = -0.5*det*(K_1[0]*K_1[0]*(K_0[2]*n_00 + K_0[3]*n_01) + K_1[1]*K_1[1]*(K_0[2]*n_00 + K_0[3]*n_01)); + G[7] = -0.5*det*(K_1[0]*K_1[0]*(K_0[0]*n_00 + K_0[1]*n_01) + K_1[1]*K_1[1]*(K_0[0]*n_00 + K_0[1]*n_01)); + G[8] = -0.5*det*(K_1[2]*n_10*(K_0[2]*K_0[2] + K_0[3]*K_0[3]) + K_1[3]*n_11*(K_0[2]*K_0[2] + K_0[3]*K_0[3])); + G[9] = -0.5*det*(K_1[0]*n_10*(K_0[2]*K_0[2] + K_0[3]*K_0[3]) + K_1[1]*n_11*(K_0[2]*K_0[2] + K_0[3]*K_0[3])); + G[10] = -0.5*det*(K_0[2]*K_0[2]*K_0[2]*n_00 + K_0[3]*(K_0[2]*K_0[3]*n_00 + n_01*(K_0[2]*K_0[2] + K_0[3]*K_0[3]))); + G[11] = -0.5*det*(K_0[2]*K_0[2]*(K_0[0]*n_00 + K_0[1]*n_01) + K_0[3]*K_0[3]*(K_0[0]*n_00 + K_0[1]*n_01)); + G[12] = -0.5*det*(K_1[2]*n_10*(K_0[0]*K_0[0] + K_0[1]*K_0[1]) + K_1[3]*n_11*(K_0[0]*K_0[0] + K_0[1]*K_0[1])); + G[13] = -0.5*det*(K_1[0]*n_10*(K_0[0]*K_0[0] + K_0[1]*K_0[1]) + K_1[1]*n_11*(K_0[0]*K_0[0] + K_0[1]*K_0[1])); + G[14] = -0.5*det*(K_0[2]*n_00*(K_0[0]*K_0[0] + K_0[1]*K_0[1]) + K_0[3]*n_01*(K_0[0]*K_0[0] + K_0[1]*K_0[1])); + G[15] = -0.5*det*(K_0[0]*K_0[0]*K_0[0]*n_00 + K_0[1]*(K_0[0]*K_0[1]*n_00 + n_01*(K_0[0]*K_0[0] + K_0[1]*K_0[1]))); + G[16] = - det*(K_1[0]*K_1[2]*K_1[2]*n_10 + K_1[3]*(K_1[1]*K_1[2]*n_10 + n_11*(K_1[0]*K_1[2] + K_1[1]*K_1[3]))); + G[17] = - det*(K_1[0]*K_1[0]*K_1[2]*n_10 + K_1[1]*(K_1[0]*K_1[3]*n_10 + n_11*(K_1[0]*K_1[2] + K_1[1]*K_1[3]))); + G[18] = - det*(K_1[0]*K_1[2]*(K_0[2]*n_00 + K_0[3]*n_01) + K_1[1]*K_1[3]*(K_0[2]*n_00 + K_0[3]*n_01)); + G[19] = - det*(K_1[0]*K_1[2]*(K_0[0]*n_00 + K_0[1]*n_01) + K_1[1]*K_1[3]*(K_0[0]*n_00 + K_0[1]*n_01)); + G[20] = - det*(K_1[2]*n_10*(K_0[0]*K_0[2] + K_0[1]*K_0[3]) + K_1[3]*n_11*(K_0[0]*K_0[2] + K_0[1]*K_0[3])); + G[21] = - det*(K_1[0]*n_10*(K_0[0]*K_0[2] + K_0[1]*K_0[3]) + K_1[1]*n_11*(K_0[0]*K_0[2] + K_0[1]*K_0[3])); + G[22] = - det*(K_0[0]*K_0[2]*K_0[2]*n_00 + K_0[3]*(K_0[1]*K_0[2]*n_00 + n_01*(K_0[0]*K_0[2] + K_0[1]*K_0[3]))); + G[23] = - det*(K_0[0]*K_0[0]*K_0[2]*n_00 + K_0[1]*(K_0[0]*K_0[3]*n_00 + n_01*(K_0[0]*K_0[2] + K_0[1]*K_0[3]))); + G[24] = det*w[0][0]*(K_1[2]*K_1[2]*n_10*n_10 + K_1[3]*n_11*(2.0*K_1[2]*n_10 + K_1[3]*n_11))/(circumradius_0 + circumradius_1); + G[25] = det*w[0][0]*(K_1[0]*K_1[2]*n_10*n_10 + n_11*(K_1[1]*K_1[3]*n_11 + n_10*(K_1[0]*K_1[3] + K_1[1]*K_1[2])))/(circumradius_0 + circumradius_1); + G[26] = det*w[0][0]*(K_1[2]*n_10*(K_0[2]*n_00 + K_0[3]*n_01) + K_1[3]*n_11*(K_0[2]*n_00 + K_0[3]*n_01))/(circumradius_0 + circumradius_1); + G[27] = det*w[0][0]*(K_1[2]*n_10*(K_0[0]*n_00 + K_0[1]*n_01) + K_1[3]*n_11*(K_0[0]*n_00 + K_0[1]*n_01))/(circumradius_0 + circumradius_1); + G[28] = det*w[0][0]*(K_1[0]*K_1[0]*n_10*n_10 + K_1[1]*n_11*(2.0*K_1[0]*n_10 + K_1[1]*n_11))/(circumradius_0 + circumradius_1); + G[29] = det*w[0][0]*(K_1[0]*n_10*(K_0[2]*n_00 + K_0[3]*n_01) + K_1[1]*n_11*(K_0[2]*n_00 + K_0[3]*n_01))/(circumradius_0 + circumradius_1); + G[30] = det*w[0][0]*(K_1[0]*n_10*(K_0[0]*n_00 + K_0[1]*n_01) + K_1[1]*n_11*(K_0[0]*n_00 + K_0[1]*n_01))/(circumradius_0 + circumradius_1); + G[31] = det*w[0][0]*(K_0[2]*K_0[2]*n_00*n_00 + K_0[3]*n_01*(2.0*K_0[2]*n_00 + K_0[3]*n_01))/(circumradius_0 + circumradius_1); + G[32] = det*w[0][0]*(K_0[0]*K_0[2]*n_00*n_00 + n_01*(K_0[1]*K_0[3]*n_01 + n_00*(K_0[0]*K_0[3] + K_0[1]*K_0[2])))/(circumradius_0 + circumradius_1); + G[33] = det*w[0][0]*(K_0[0]*K_0[0]*n_00*n_00 + K_0[1]*n_01*(2.0*K_0[0]*n_00 + K_0[1]*n_01))/(circumradius_0 + circumradius_1); + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + switch (facet_0) + { + case 0: + { + switch (facet_1) + { + case 0: + { + // Total number of operations to compute element tensor (from this point): 7268 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 7268 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Number of operations to compute ip constants: 34 + double I[34]; + // Number of operations: 1 + I[0] = G[0]*W2[ip]; + + // Number of operations: 1 + I[1] = G[1]*W2[ip]; + + // Number of operations: 1 + I[2] = G[2]*W2[ip]; + + // Number of operations: 1 + I[3] = G[3]*W2[ip]; + + // Number of operations: 1 + I[4] = G[4]*W2[ip]; + + // Number of operations: 1 + I[5] = G[5]*W2[ip]; + + // Number of operations: 1 + I[6] = G[6]*W2[ip]; + + // Number of operations: 1 + I[7] = G[7]*W2[ip]; + + // Number of operations: 1 + I[8] = G[8]*W2[ip]; + + // Number of operations: 1 + I[9] = G[9]*W2[ip]; + + // Number of operations: 1 + I[10] = G[10]*W2[ip]; + + // Number of operations: 1 + I[11] = G[11]*W2[ip]; + + // Number of operations: 1 + I[12] = G[12]*W2[ip]; + + // Number of operations: 1 + I[13] = G[13]*W2[ip]; + + // Number of operations: 1 + I[14] = G[14]*W2[ip]; + + // Number of operations: 1 + I[15] = G[15]*W2[ip]; + + // Number of operations: 1 + I[16] = G[16]*W2[ip]; + + // Number of operations: 1 + I[17] = G[17]*W2[ip]; + + // Number of operations: 1 + I[18] = G[18]*W2[ip]; + + // Number of operations: 1 + I[19] = G[19]*W2[ip]; + + // Number of operations: 1 + I[20] = G[20]*W2[ip]; + + // Number of operations: 1 + I[21] = G[21]*W2[ip]; + + // Number of operations: 1 + I[22] = G[22]*W2[ip]; + + // Number of operations: 1 + I[23] = G[23]*W2[ip]; + + // Number of operations: 1 + I[24] = G[24]*W2[ip]; + + // Number of operations: 1 + I[25] = G[25]*W2[ip]; + + // Number of operations: 1 + I[26] = G[26]*W2[ip]; + + // Number of operations: 1 + I[27] = G[27]*W2[ip]; + + // Number of operations: 1 + I[28] = G[28]*W2[ip]; + + // Number of operations: 1 + I[29] = G[29]*W2[ip]; + + // Number of operations: 1 + I[30] = G[30]*W2[ip]; + + // Number of operations: 1 + I[31] = G[31]*W2[ip]; + + // Number of operations: 1 + I[32] = G[32]*W2[ip]; + + // Number of operations: 1 + I[33] = G[33]*W2[ip]; + + + // Number of operations for primary indices: 480 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D11[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc4[k]] += FE0_f0_D01[ip][j]*FE0_f0_D11[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f0_D11[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc4[k]] += FE0_f0_D10[ip][j]*FE0_f0_D11[ip][k]*I[21]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc4[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D11[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc4[k]] += FE0_f0_D01[ip][j]*FE0_f0_D11[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc4[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f0_D11[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc4[k]] += FE0_f0_D10[ip][j]*FE0_f0_D11[ip][k]*I[23]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 720 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc2[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc5[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[5]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[9]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[13]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc2[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc5[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc2[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc5[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[14]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[3]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[7]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[11]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[15]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 480 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D11[ip][j]*I[16]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][k]*FE0_f0_D11[ip][j]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D11[ip][j]*I[18]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc3[k]] += FE0_f0_D10[ip][k]*FE0_f0_D11[ip][j]*I[19]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D11[ip][j]*I[20]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][k]*FE0_f0_D11[ip][j]*I[21]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D11[ip][j]*I[22]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc3[k]] += FE0_f0_D10[ip][k]*FE0_f0_D11[ip][j]*I[23]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 1200 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D01[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D10[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][j]*FE0_f0_D01[ip][k]*I[26]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc3[k]] += FE0_f0_D01[ip][j]*FE0_f0_D10[ip][k]*I[27]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D10[ip][j]*I[25]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f0_D10[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D10[ip][j]*I[29]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc3[k]] += FE0_f0_D10[ip][j]*FE0_f0_D10[ip][k]*I[30]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D01[ip][k]*I[26]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc3[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D10[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc1[k]] += FE0_f0_D01[ip][j]*FE0_f0_D01[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc3[k]] += FE0_f0_D01[ip][j]*FE0_f0_D10[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D10[ip][j]*I[27]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f0_D10[ip][k]*I[30]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D10[ip][j]*I[32]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc3[k]] += FE0_f0_D10[ip][j]*FE0_f0_D10[ip][k]*I[33]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 720 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[2]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[4]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[6]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[8]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[10]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[12]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[14]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[15]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + break; + } + case 1: + { + // Total number of operations to compute element tensor (from this point): 6332 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 6332 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Number of operations to compute ip constants: 34 + double I[34]; + // Number of operations: 1 + I[0] = G[0]*W2[ip]; + + // Number of operations: 1 + I[1] = G[24]*W2[ip]; + + // Number of operations: 1 + I[2] = G[4]*W2[ip]; + + // Number of operations: 1 + I[3] = G[8]*W2[ip]; + + // Number of operations: 1 + I[4] = G[12]*W2[ip]; + + // Number of operations: 1 + I[5] = G[16]*W2[ip]; + + // Number of operations: 1 + I[6] = G[20]*W2[ip]; + + // Number of operations: 1 + I[7] = G[1]*W2[ip]; + + // Number of operations: 1 + I[8] = G[2]*W2[ip]; + + // Number of operations: 1 + I[9] = G[3]*W2[ip]; + + // Number of operations: 1 + I[10] = G[25]*W2[ip]; + + // Number of operations: 1 + I[11] = G[26]*W2[ip]; + + // Number of operations: 1 + I[12] = G[27]*W2[ip]; + + // Number of operations: 1 + I[13] = G[5]*W2[ip]; + + // Number of operations: 1 + I[14] = G[6]*W2[ip]; + + // Number of operations: 1 + I[15] = G[7]*W2[ip]; + + // Number of operations: 1 + I[16] = G[9]*W2[ip]; + + // Number of operations: 1 + I[17] = G[10]*W2[ip]; + + // Number of operations: 1 + I[18] = G[11]*W2[ip]; + + // Number of operations: 1 + I[19] = G[13]*W2[ip]; + + // Number of operations: 1 + I[20] = G[14]*W2[ip]; + + // Number of operations: 1 + I[21] = G[15]*W2[ip]; + + // Number of operations: 1 + I[22] = G[17]*W2[ip]; + + // Number of operations: 1 + I[23] = G[18]*W2[ip]; + + // Number of operations: 1 + I[24] = G[19]*W2[ip]; + + // Number of operations: 1 + I[25] = G[21]*W2[ip]; + + // Number of operations: 1 + I[26] = G[22]*W2[ip]; + + // Number of operations: 1 + I[27] = G[23]*W2[ip]; + + // Number of operations: 1 + I[28] = G[28]*W2[ip]; + + // Number of operations: 1 + I[29] = G[29]*W2[ip]; + + // Number of operations: 1 + I[30] = G[30]*W2[ip]; + + // Number of operations: 1 + I[31] = G[31]*W2[ip]; + + // Number of operations: 1 + I[32] = G[32]*W2[ip]; + + // Number of operations: 1 + I[33] = G[33]*W2[ip]; + + + // Number of operations for primary indices: 243 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[2]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[3]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[4]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[4]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 360 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D10[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D11[ip][j]*I[23]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc3[k]] += FE0_f0_D10[ip][k]*FE0_f0_D11[ip][j]*I[24]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc8[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D10[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D11[ip][j]*I[26]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc3[k]] += FE0_f0_D10[ip][k]*FE0_f0_D11[ip][j]*I[27]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[8]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D10[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f1_D01[ip][j]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc3[k]] += FE0_f0_D10[ip][k]*FE0_f1_D01[ip][j]*I[12]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[14]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[17]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[20]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[21]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 360 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D10[ip][j]*I[22]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D10[ip][j]*I[25]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc4[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D11[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc4[k]] += FE0_f0_D01[ip][j]*FE0_f0_D11[ip][k]*I[26]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc4[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f0_D11[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc4[k]] += FE0_f0_D10[ip][j]*FE0_f0_D11[ip][k]*I[27]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[5]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[6]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[7]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f1_D10[ip][j]*I[10]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[13]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[16]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[19]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc2[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc7[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f1_D01[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc9[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[14]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc2[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc5[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[9]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc7[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f1_D01[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[15]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[18]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[21]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f1_D10[ip][j]*FE0_f1_D10[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f1_D10[ip][j]*I[29]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc3[k]] += FE0_f0_D10[ip][k]*FE0_f1_D10[ip][j]*I[30]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc8[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f1_D10[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc1[k]] += FE0_f0_D01[ip][j]*FE0_f0_D01[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc3[k]] += FE0_f0_D01[ip][j]*FE0_f0_D10[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc8[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f1_D10[ip][k]*I[30]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D10[ip][j]*I[32]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc3[k]] += FE0_f0_D10[ip][j]*FE0_f0_D10[ip][k]*I[33]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc7[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[6]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + break; + } + case 2: + { + // Total number of operations to compute element tensor (from this point): 6332 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 6332 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Number of operations to compute ip constants: 34 + double I[34]; + // Number of operations: 1 + I[0] = G[28]*W2[ip]; + + // Number of operations: 1 + I[1] = G[1]*W2[ip]; + + // Number of operations: 1 + I[2] = G[5]*W2[ip]; + + // Number of operations: 1 + I[3] = G[9]*W2[ip]; + + // Number of operations: 1 + I[4] = G[13]*W2[ip]; + + // Number of operations: 1 + I[5] = G[17]*W2[ip]; + + // Number of operations: 1 + I[6] = G[21]*W2[ip]; + + // Number of operations: 1 + I[7] = G[25]*W2[ip]; + + // Number of operations: 1 + I[8] = G[29]*W2[ip]; + + // Number of operations: 1 + I[9] = G[30]*W2[ip]; + + // Number of operations: 1 + I[10] = G[0]*W2[ip]; + + // Number of operations: 1 + I[11] = G[2]*W2[ip]; + + // Number of operations: 1 + I[12] = G[3]*W2[ip]; + + // Number of operations: 1 + I[13] = G[4]*W2[ip]; + + // Number of operations: 1 + I[14] = G[6]*W2[ip]; + + // Number of operations: 1 + I[15] = G[7]*W2[ip]; + + // Number of operations: 1 + I[16] = G[8]*W2[ip]; + + // Number of operations: 1 + I[17] = G[10]*W2[ip]; + + // Number of operations: 1 + I[18] = G[11]*W2[ip]; + + // Number of operations: 1 + I[19] = G[12]*W2[ip]; + + // Number of operations: 1 + I[20] = G[14]*W2[ip]; + + // Number of operations: 1 + I[21] = G[15]*W2[ip]; + + // Number of operations: 1 + I[22] = G[16]*W2[ip]; + + // Number of operations: 1 + I[23] = G[18]*W2[ip]; + + // Number of operations: 1 + I[24] = G[19]*W2[ip]; + + // Number of operations: 1 + I[25] = G[20]*W2[ip]; + + // Number of operations: 1 + I[26] = G[22]*W2[ip]; + + // Number of operations: 1 + I[27] = G[23]*W2[ip]; + + // Number of operations: 1 + I[28] = G[24]*W2[ip]; + + // Number of operations: 1 + I[29] = G[26]*W2[ip]; + + // Number of operations: 1 + I[30] = G[27]*W2[ip]; + + // Number of operations: 1 + I[31] = G[31]*W2[ip]; + + // Number of operations: 1 + I[32] = G[32]*W2[ip]; + + // Number of operations: 1 + I[33] = G[33]*W2[ip]; + + + // Number of operations for primary indices: 243 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[2]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[3]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[4]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[4]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 360 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f2_D01[ip][k]*FE0_f2_D11[ip][j]*I[22]; + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f2_D11[ip][j]*I[23]; + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + nzc3[k]] += FE0_f0_D10[ip][k]*FE0_f2_D11[ip][j]*I[24]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc11[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f2_D01[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D11[ip][j]*I[26]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc3[k]] += FE0_f0_D10[ip][k]*FE0_f0_D11[ip][j]*I[27]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f2_D01[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f1_D01[ip][j]*I[8]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc3[k]] += FE0_f0_D10[ip][k]*FE0_f1_D01[ip][j]*I[9]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[14]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[17]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[20]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc3[k]] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[21]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 360 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc13[k] + 6)] += FE0_f2_D01[ip][j]*FE0_f2_D11[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f2_D01[ip][j]*I[25]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc13[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f2_D11[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc4[k]] += FE0_f0_D01[ip][j]*FE0_f0_D11[ip][k]*I[26]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc13[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f2_D11[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc4[k]] += FE0_f0_D10[ip][j]*FE0_f0_D11[ip][k]*I[27]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc13[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f2_D11[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[6]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f2_D01[ip][j]*I[7]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[10]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[13]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[16]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[19]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc12[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f1_D01[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc2[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc5[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[14]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc2[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc5[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc12[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f1_D01[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[12]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[15]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[18]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[21]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f2_D01[ip][j]*FE0_f2_D01[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f2_D01[ip][j]*I[29]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc3[k]] += FE0_f0_D10[ip][k]*FE0_f2_D01[ip][j]*I[30]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + (nzc11[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f2_D01[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc1[k]] += FE0_f0_D01[ip][j]*FE0_f0_D01[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[nzc1[j]*12 + nzc3[k]] += FE0_f0_D01[ip][j]*FE0_f0_D10[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + (nzc11[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f2_D01[ip][k]*I[30]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc1[k]] += FE0_f0_D01[ip][k]*FE0_f0_D10[ip][j]*I[32]; + // Number of operations to compute entry: 3 + A[nzc3[j]*12 + nzc3[k]] += FE0_f0_D10[ip][j]*FE0_f0_D10[ip][k]*I[33]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f2_D11[ip][j]*I[5]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc12[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[6]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + break; + } + } + + break; + } + case 1: + { + switch (facet_1) + { + case 0: + { + // Total number of operations to compute element tensor (from this point): 6332 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 6332 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Number of operations to compute ip constants: 34 + double I[34]; + // Number of operations: 1 + I[0] = G[2]*W2[ip]; + + // Number of operations: 1 + I[1] = G[6]*W2[ip]; + + // Number of operations: 1 + I[2] = G[10]*W2[ip]; + + // Number of operations: 1 + I[3] = G[31]*W2[ip]; + + // Number of operations: 1 + I[4] = G[14]*W2[ip]; + + // Number of operations: 1 + I[5] = G[18]*W2[ip]; + + // Number of operations: 1 + I[6] = G[22]*W2[ip]; + + // Number of operations: 1 + I[7] = G[0]*W2[ip]; + + // Number of operations: 1 + I[8] = G[1]*W2[ip]; + + // Number of operations: 1 + I[9] = G[3]*W2[ip]; + + // Number of operations: 1 + I[10] = G[4]*W2[ip]; + + // Number of operations: 1 + I[11] = G[5]*W2[ip]; + + // Number of operations: 1 + I[12] = G[7]*W2[ip]; + + // Number of operations: 1 + I[13] = G[8]*W2[ip]; + + // Number of operations: 1 + I[14] = G[9]*W2[ip]; + + // Number of operations: 1 + I[15] = G[11]*W2[ip]; + + // Number of operations: 1 + I[16] = G[26]*W2[ip]; + + // Number of operations: 1 + I[17] = G[29]*W2[ip]; + + // Number of operations: 1 + I[18] = G[32]*W2[ip]; + + // Number of operations: 1 + I[19] = G[12]*W2[ip]; + + // Number of operations: 1 + I[20] = G[13]*W2[ip]; + + // Number of operations: 1 + I[21] = G[15]*W2[ip]; + + // Number of operations: 1 + I[22] = G[16]*W2[ip]; + + // Number of operations: 1 + I[23] = G[17]*W2[ip]; + + // Number of operations: 1 + I[24] = G[19]*W2[ip]; + + // Number of operations: 1 + I[25] = G[20]*W2[ip]; + + // Number of operations: 1 + I[26] = G[21]*W2[ip]; + + // Number of operations: 1 + I[27] = G[23]*W2[ip]; + + // Number of operations: 1 + I[28] = G[24]*W2[ip]; + + // Number of operations: 1 + I[29] = G[25]*W2[ip]; + + // Number of operations: 1 + I[30] = G[27]*W2[ip]; + + // Number of operations: 1 + I[31] = G[28]*W2[ip]; + + // Number of operations: 1 + I[32] = G[30]*W2[ip]; + + // Number of operations: 1 + I[33] = G[33]*W2[ip]; + + + // Number of operations for primary indices: 243 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[0]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[1]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[2]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc7[k]] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[4]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[4]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 360 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D11[ip][j]*I[22]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][k]*FE0_f0_D11[ip][j]*I[23]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc8[k]] += FE0_f0_D11[ip][j]*FE0_f1_D10[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D11[ip][j]*I[25]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][k]*FE0_f0_D11[ip][j]*I[26]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc8[k]] += FE0_f0_D11[ip][j]*FE0_f1_D10[ip][k]*I[27]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[7]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[10]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[13]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[14]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f1_D01[ip][j]*I[16]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][k]*FE0_f1_D01[ip][j]*I[17]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc8[k]] += FE0_f1_D01[ip][j]*FE0_f1_D10[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[19]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[21]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 360 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D11[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc4[k]] += FE0_f0_D01[ip][j]*FE0_f0_D11[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f0_D11[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc4[k]] += FE0_f0_D10[ip][j]*FE0_f0_D11[ip][k]*I[26]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D10[ip][j]*I[24]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D10[ip][j]*I[27]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[5]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[6]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc2[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc7[k]] += FE0_f0_D01[ip][j]*FE0_f1_D01[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc9[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[8]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[14]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc7[k]] += FE0_f0_D10[ip][j]*FE0_f1_D01[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[20]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[9]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[12]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[15]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc7[k]] += FE0_f1_D01[ip][k]*FE0_f1_D10[ip][j]*I[18]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[21]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D01[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D10[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc8[k]] += FE0_f0_D01[ip][j]*FE0_f1_D10[ip][k]*I[30]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D10[ip][j]*I[29]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f0_D10[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc8[k]] += FE0_f0_D10[ip][j]*FE0_f1_D10[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f1_D10[ip][j]*I[30]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][k]*FE0_f1_D10[ip][j]*I[32]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc8[k]] += FE0_f1_D10[ip][j]*FE0_f1_D10[ip][k]*I[33]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc7[k]] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc7[k]] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[6]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + break; + } + case 1: + { + // Total number of operations to compute element tensor (from this point): 5444 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 5444 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Number of operations to compute ip constants: 34 + double I[34]; + // Number of operations: 1 + I[0] = G[0]*W2[ip]; + + // Number of operations: 1 + I[1] = G[2]*W2[ip]; + + // Number of operations: 1 + I[2] = G[24]*W2[ip]; + + // Number of operations: 1 + I[3] = G[4]*W2[ip]; + + // Number of operations: 1 + I[4] = G[8]*W2[ip]; + + // Number of operations: 1 + I[5] = G[26]*W2[ip]; + + // Number of operations: 1 + I[6] = G[12]*W2[ip]; + + // Number of operations: 1 + I[7] = G[6]*W2[ip]; + + // Number of operations: 1 + I[8] = G[10]*W2[ip]; + + // Number of operations: 1 + I[9] = G[31]*W2[ip]; + + // Number of operations: 1 + I[10] = G[14]*W2[ip]; + + // Number of operations: 1 + I[11] = G[16]*W2[ip]; + + // Number of operations: 1 + I[12] = G[20]*W2[ip]; + + // Number of operations: 1 + I[13] = G[18]*W2[ip]; + + // Number of operations: 1 + I[14] = G[22]*W2[ip]; + + // Number of operations: 1 + I[15] = G[1]*W2[ip]; + + // Number of operations: 1 + I[16] = G[3]*W2[ip]; + + // Number of operations: 1 + I[17] = G[25]*W2[ip]; + + // Number of operations: 1 + I[18] = G[27]*W2[ip]; + + // Number of operations: 1 + I[19] = G[5]*W2[ip]; + + // Number of operations: 1 + I[20] = G[7]*W2[ip]; + + // Number of operations: 1 + I[21] = G[9]*W2[ip]; + + // Number of operations: 1 + I[22] = G[11]*W2[ip]; + + // Number of operations: 1 + I[23] = G[29]*W2[ip]; + + // Number of operations: 1 + I[24] = G[32]*W2[ip]; + + // Number of operations: 1 + I[25] = G[13]*W2[ip]; + + // Number of operations: 1 + I[26] = G[15]*W2[ip]; + + // Number of operations: 1 + I[27] = G[17]*W2[ip]; + + // Number of operations: 1 + I[28] = G[19]*W2[ip]; + + // Number of operations: 1 + I[29] = G[21]*W2[ip]; + + // Number of operations: 1 + I[30] = G[23]*W2[ip]; + + // Number of operations: 1 + I[31] = G[28]*W2[ip]; + + // Number of operations: 1 + I[32] = G[30]*W2[ip]; + + // Number of operations: 1 + I[33] = G[33]*W2[ip]; + + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[3]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[4]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc7[k]] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[6]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[1]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[7]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[8]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc7[k]] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[10]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[10]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 240 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D10[ip][k]*I[27]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc8[k]] += FE0_f0_D11[ip][j]*FE0_f1_D10[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc8[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D10[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc8[k]] += FE0_f0_D11[ip][j]*FE0_f1_D10[ip][k]*I[30]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D10[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc8[k]] += FE0_f1_D01[ip][j]*FE0_f1_D10[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[21]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc8[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D10[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc8[k]] += FE0_f1_D01[ip][j]*FE0_f1_D10[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[26]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 240 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D10[ip][j]*I[27]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D10[ip][j]*I[29]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D10[ip][j]*I[28]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D10[ip][j]*I[30]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[12]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[13]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[14]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[15]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f1_D10[ip][j]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[19]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[21]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc7[k]] += FE0_f1_D01[ip][k]*FE0_f1_D10[ip][j]*I[23]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[25]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[16]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f1_D10[ip][j]*I[18]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[20]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[22]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc7[k]] += FE0_f1_D01[ip][k]*FE0_f1_D10[ip][j]*I[24]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[26]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 300 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f1_D10[ip][j]*FE0_f1_D10[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc8[k]] += FE0_f1_D10[ip][j]*FE0_f1_D10[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc8[k] + 6)] += FE0_f1_D10[ip][j]*FE0_f1_D10[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc8[k]] += FE0_f1_D10[ip][j]*FE0_f1_D10[ip][k]*I[33]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc7[k]] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc7[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc7[k]] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[14]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + break; + } + case 2: + { + // Total number of operations to compute element tensor (from this point): 5444 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 5444 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Number of operations to compute ip constants: 34 + double I[34]; + // Number of operations: 1 + I[0] = G[28]*W2[ip]; + + // Number of operations: 1 + I[1] = G[1]*W2[ip]; + + // Number of operations: 1 + I[2] = G[5]*W2[ip]; + + // Number of operations: 1 + I[3] = G[9]*W2[ip]; + + // Number of operations: 1 + I[4] = G[29]*W2[ip]; + + // Number of operations: 1 + I[5] = G[13]*W2[ip]; + + // Number of operations: 1 + I[6] = G[2]*W2[ip]; + + // Number of operations: 1 + I[7] = G[6]*W2[ip]; + + // Number of operations: 1 + I[8] = G[10]*W2[ip]; + + // Number of operations: 1 + I[9] = G[31]*W2[ip]; + + // Number of operations: 1 + I[10] = G[14]*W2[ip]; + + // Number of operations: 1 + I[11] = G[17]*W2[ip]; + + // Number of operations: 1 + I[12] = G[21]*W2[ip]; + + // Number of operations: 1 + I[13] = G[18]*W2[ip]; + + // Number of operations: 1 + I[14] = G[22]*W2[ip]; + + // Number of operations: 1 + I[15] = G[25]*W2[ip]; + + // Number of operations: 1 + I[16] = G[30]*W2[ip]; + + // Number of operations: 1 + I[17] = G[0]*W2[ip]; + + // Number of operations: 1 + I[18] = G[3]*W2[ip]; + + // Number of operations: 1 + I[19] = G[4]*W2[ip]; + + // Number of operations: 1 + I[20] = G[7]*W2[ip]; + + // Number of operations: 1 + I[21] = G[8]*W2[ip]; + + // Number of operations: 1 + I[22] = G[11]*W2[ip]; + + // Number of operations: 1 + I[23] = G[26]*W2[ip]; + + // Number of operations: 1 + I[24] = G[32]*W2[ip]; + + // Number of operations: 1 + I[25] = G[12]*W2[ip]; + + // Number of operations: 1 + I[26] = G[15]*W2[ip]; + + // Number of operations: 1 + I[27] = G[16]*W2[ip]; + + // Number of operations: 1 + I[28] = G[19]*W2[ip]; + + // Number of operations: 1 + I[29] = G[20]*W2[ip]; + + // Number of operations: 1 + I[30] = G[23]*W2[ip]; + + // Number of operations: 1 + I[31] = G[24]*W2[ip]; + + // Number of operations: 1 + I[32] = G[27]*W2[ip]; + + // Number of operations: 1 + I[33] = G[33]*W2[ip]; + + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[2]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[3]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc7[k]] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[5]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[6]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[7]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[8]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc7[k]] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[10]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc7[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[10]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 240 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f2_D01[ip][k]*FE0_f2_D11[ip][j]*I[27]; + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + nzc8[k]] += FE0_f1_D10[ip][k]*FE0_f2_D11[ip][j]*I[28]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc11[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f2_D01[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc8[k]] += FE0_f0_D11[ip][j]*FE0_f1_D10[ip][k]*I[30]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f2_D01[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc8[k]] += FE0_f1_D01[ip][j]*FE0_f1_D10[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[21]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc11[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f2_D01[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc8[k]] += FE0_f1_D01[ip][j]*FE0_f1_D10[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[nzc9[j]*12 + nzc8[k]] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[26]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 240 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc13[k] + 6)] += FE0_f2_D01[ip][j]*FE0_f2_D11[ip][k]*I[27]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f2_D01[ip][j]*I[29]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc13[k] + 6)] += FE0_f1_D10[ip][j]*FE0_f2_D11[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D10[ip][j]*I[30]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc13[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f2_D11[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[12]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + (nzc13[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f2_D11[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[nzc7[j]*12 + nzc4[k]] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[14]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f2_D01[ip][j]*I[15]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[19]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[21]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc7[k]] += FE0_f1_D01[ip][k]*FE0_f2_D01[ip][j]*I[23]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[25]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f1_D10[ip][j]*I[16]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[18]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[20]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[22]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc7[k]] += FE0_f1_D01[ip][k]*FE0_f1_D10[ip][j]*I[24]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc9[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[26]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 300 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f2_D01[ip][j]*FE0_f2_D01[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc8[k]] += FE0_f1_D10[ip][k]*FE0_f2_D01[ip][j]*I[32]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + (nzc11[k] + 6)] += FE0_f1_D10[ip][j]*FE0_f2_D01[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc8[j]*12 + nzc8[k]] += FE0_f1_D10[ip][j]*FE0_f1_D10[ip][k]*I[33]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f2_D11[ip][j]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + nzc7[k]] += FE0_f1_D01[ip][k]*FE0_f2_D11[ip][j]*I[13]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + (nzc12[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc4[j]*12 + nzc7[k]] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[14]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + break; + } + } + + break; + } + case 2: + { + switch (facet_1) + { + case 0: + { + // Total number of operations to compute element tensor (from this point): 6332 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 6332 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Number of operations to compute ip constants: 34 + double I[34]; + // Number of operations: 1 + I[0] = G[3]*W2[ip]; + + // Number of operations: 1 + I[1] = G[7]*W2[ip]; + + // Number of operations: 1 + I[2] = G[33]*W2[ip]; + + // Number of operations: 1 + I[3] = G[11]*W2[ip]; + + // Number of operations: 1 + I[4] = G[15]*W2[ip]; + + // Number of operations: 1 + I[5] = G[19]*W2[ip]; + + // Number of operations: 1 + I[6] = G[23]*W2[ip]; + + // Number of operations: 1 + I[7] = G[0]*W2[ip]; + + // Number of operations: 1 + I[8] = G[1]*W2[ip]; + + // Number of operations: 1 + I[9] = G[2]*W2[ip]; + + // Number of operations: 1 + I[10] = G[4]*W2[ip]; + + // Number of operations: 1 + I[11] = G[5]*W2[ip]; + + // Number of operations: 1 + I[12] = G[6]*W2[ip]; + + // Number of operations: 1 + I[13] = G[27]*W2[ip]; + + // Number of operations: 1 + I[14] = G[30]*W2[ip]; + + // Number of operations: 1 + I[15] = G[32]*W2[ip]; + + // Number of operations: 1 + I[16] = G[8]*W2[ip]; + + // Number of operations: 1 + I[17] = G[9]*W2[ip]; + + // Number of operations: 1 + I[18] = G[10]*W2[ip]; + + // Number of operations: 1 + I[19] = G[12]*W2[ip]; + + // Number of operations: 1 + I[20] = G[13]*W2[ip]; + + // Number of operations: 1 + I[21] = G[14]*W2[ip]; + + // Number of operations: 1 + I[22] = G[16]*W2[ip]; + + // Number of operations: 1 + I[23] = G[17]*W2[ip]; + + // Number of operations: 1 + I[24] = G[18]*W2[ip]; + + // Number of operations: 1 + I[25] = G[20]*W2[ip]; + + // Number of operations: 1 + I[26] = G[21]*W2[ip]; + + // Number of operations: 1 + I[27] = G[22]*W2[ip]; + + // Number of operations: 1 + I[28] = G[24]*W2[ip]; + + // Number of operations: 1 + I[29] = G[25]*W2[ip]; + + // Number of operations: 1 + I[30] = G[26]*W2[ip]; + + // Number of operations: 1 + I[31] = G[28]*W2[ip]; + + // Number of operations: 1 + I[32] = G[29]*W2[ip]; + + // Number of operations: 1 + I[33] = G[31]*W2[ip]; + + + // Number of operations for primary indices: 243 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[0]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[1]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc12[k]] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[3]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[4]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[4]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 360 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D11[ip][j]*I[22]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][k]*FE0_f0_D11[ip][j]*I[23]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc11[k]] += FE0_f0_D11[ip][j]*FE0_f2_D01[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f2_D11[ip][j]*I[25]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][k]*FE0_f2_D11[ip][j]*I[26]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc11[k]] += FE0_f2_D01[ip][k]*FE0_f2_D11[ip][j]*I[27]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[7]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[10]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f1_D01[ip][j]*I[13]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][k]*FE0_f1_D01[ip][j]*I[14]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc11[k]] += FE0_f1_D01[ip][j]*FE0_f2_D01[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[16]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D02[ip][j]*I[19]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc3[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f0_D10[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[21]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 360 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D11[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc13[k]] += FE0_f0_D01[ip][j]*FE0_f2_D11[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f0_D11[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc13[k]] += FE0_f0_D10[ip][j]*FE0_f2_D11[ip][k]*I[26]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f2_D01[ip][j]*I[24]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc13[k]] += FE0_f2_D01[ip][j]*FE0_f2_D11[ip][k]*I[27]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[5]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc13[k]] += FE0_f1_D01[ip][j]*FE0_f2_D11[ip][k]*I[6]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc12[k]] += FE0_f0_D01[ip][j]*FE0_f1_D01[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc2[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc5[k]] += FE0_f0_D01[ip][j]*FE0_f0_D02[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[8]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc12[k]] += FE0_f0_D10[ip][j]*FE0_f1_D01[ip][k]*I[14]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f0_D10[ip][j]*I[20]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[9]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[12]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc12[k]] += FE0_f1_D01[ip][k]*FE0_f2_D01[ip][j]*I[15]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[18]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[21]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 675 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D01[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D01[ip][j]*FE0_f0_D10[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[(nzc1[j] + 6)*12 + nzc11[k]] += FE0_f0_D01[ip][j]*FE0_f2_D01[ip][k]*I[30]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f0_D10[ip][j]*I[29]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][j]*FE0_f0_D10[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[(nzc3[j] + 6)*12 + nzc11[k]] += FE0_f0_D10[ip][j]*FE0_f2_D01[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc1[k] + 6)] += FE0_f0_D01[ip][k]*FE0_f2_D01[ip][j]*I[30]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc3[k] + 6)] += FE0_f0_D10[ip][k]*FE0_f2_D01[ip][j]*I[32]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc11[k]] += FE0_f2_D01[ip][j]*FE0_f2_D01[ip][k]*I[33]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 72 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc12[k]] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc12[k]] += FE0_f1_D01[ip][k]*FE0_f2_D11[ip][j]*I[6]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + break; + } + case 1: + { + // Total number of operations to compute element tensor (from this point): 5444 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 5444 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Number of operations to compute ip constants: 34 + double I[34]; + // Number of operations: 1 + I[0] = G[0]*W2[ip]; + + // Number of operations: 1 + I[1] = G[3]*W2[ip]; + + // Number of operations: 1 + I[2] = G[24]*W2[ip]; + + // Number of operations: 1 + I[3] = G[4]*W2[ip]; + + // Number of operations: 1 + I[4] = G[27]*W2[ip]; + + // Number of operations: 1 + I[5] = G[8]*W2[ip]; + + // Number of operations: 1 + I[6] = G[12]*W2[ip]; + + // Number of operations: 1 + I[7] = G[7]*W2[ip]; + + // Number of operations: 1 + I[8] = G[33]*W2[ip]; + + // Number of operations: 1 + I[9] = G[11]*W2[ip]; + + // Number of operations: 1 + I[10] = G[15]*W2[ip]; + + // Number of operations: 1 + I[11] = G[16]*W2[ip]; + + // Number of operations: 1 + I[12] = G[20]*W2[ip]; + + // Number of operations: 1 + I[13] = G[19]*W2[ip]; + + // Number of operations: 1 + I[14] = G[23]*W2[ip]; + + // Number of operations: 1 + I[15] = G[1]*W2[ip]; + + // Number of operations: 1 + I[16] = G[2]*W2[ip]; + + // Number of operations: 1 + I[17] = G[25]*W2[ip]; + + // Number of operations: 1 + I[18] = G[26]*W2[ip]; + + // Number of operations: 1 + I[19] = G[5]*W2[ip]; + + // Number of operations: 1 + I[20] = G[6]*W2[ip]; + + // Number of operations: 1 + I[21] = G[30]*W2[ip]; + + // Number of operations: 1 + I[22] = G[32]*W2[ip]; + + // Number of operations: 1 + I[23] = G[9]*W2[ip]; + + // Number of operations: 1 + I[24] = G[10]*W2[ip]; + + // Number of operations: 1 + I[25] = G[13]*W2[ip]; + + // Number of operations: 1 + I[26] = G[14]*W2[ip]; + + // Number of operations: 1 + I[27] = G[17]*W2[ip]; + + // Number of operations: 1 + I[28] = G[18]*W2[ip]; + + // Number of operations: 1 + I[29] = G[21]*W2[ip]; + + // Number of operations: 1 + I[30] = G[22]*W2[ip]; + + // Number of operations: 1 + I[31] = G[28]*W2[ip]; + + // Number of operations: 1 + I[32] = G[29]*W2[ip]; + + // Number of operations: 1 + I[33] = G[31]*W2[ip]; + + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[3]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc12[k]] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[5]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[6]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[1]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[7]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc12[k]] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[9]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[10]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc7[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[10]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 240 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D10[ip][j]*I[27]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc13[k]] += FE0_f1_D10[ip][j]*FE0_f2_D11[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f2_D01[ip][j]*I[28]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc13[k]] += FE0_f2_D01[ip][j]*FE0_f2_D11[ip][k]*I[30]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 240 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D10[ip][k]*I[27]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc11[k]] += FE0_f0_D11[ip][j]*FE0_f2_D01[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + (nzc8[k] + 6)] += FE0_f1_D10[ip][k]*FE0_f2_D11[ip][j]*I[29]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc11[k]] += FE0_f2_D01[ip][k]*FE0_f2_D11[ip][j]*I[30]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D10[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc11[k]] += FE0_f1_D01[ip][j]*FE0_f2_D01[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[(nzc9[j] + 6)*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc8[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D10[ip][k]*I[21]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc11[k]] += FE0_f1_D01[ip][j]*FE0_f2_D01[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc8[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D10[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[26]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc4[j] + 6)*12 + nzc12[k]] += FE0_f0_D11[ip][j]*FE0_f1_D01[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f2_D11[ip][j]*I[12]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc12[k]] += FE0_f1_D01[ip][k]*FE0_f2_D11[ip][j]*I[14]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[15]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f1_D10[ip][j]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[19]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc12[k]] += FE0_f1_D01[ip][k]*FE0_f1_D10[ip][j]*I[21]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[23]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f1_D10[ip][j]*I[25]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[16]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc7[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f2_D01[ip][j]*I[18]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc9[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[20]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc12[k]] += FE0_f1_D01[ip][k]*FE0_f2_D01[ip][j]*I[22]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[24]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[26]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 300 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + (nzc8[k] + 6)] += FE0_f1_D10[ip][j]*FE0_f1_D10[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[(nzc8[j] + 6)*12 + nzc11[k]] += FE0_f1_D10[ip][j]*FE0_f2_D01[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc8[k] + 6)] += FE0_f1_D10[ip][k]*FE0_f2_D01[ip][j]*I[32]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc11[k]] += FE0_f2_D01[ip][j]*FE0_f2_D01[ip][k]*I[33]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc7[j] + 6)*12 + nzc13[k]] += FE0_f1_D01[ip][j]*FE0_f2_D11[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc4[k] + 6)] += FE0_f0_D11[ip][k]*FE0_f1_D01[ip][j]*I[13]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc13[k]] += FE0_f1_D01[ip][j]*FE0_f2_D11[ip][k]*I[14]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + break; + } + case 2: + { + // Total number of operations to compute element tensor (from this point): 5444 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 5444 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Number of operations to compute ip constants: 34 + double I[34]; + // Number of operations: 1 + I[0] = G[28]*W2[ip]; + + // Number of operations: 1 + I[1] = G[1]*W2[ip]; + + // Number of operations: 1 + I[2] = G[5]*W2[ip]; + + // Number of operations: 1 + I[3] = G[30]*W2[ip]; + + // Number of operations: 1 + I[4] = G[9]*W2[ip]; + + // Number of operations: 1 + I[5] = G[13]*W2[ip]; + + // Number of operations: 1 + I[6] = G[3]*W2[ip]; + + // Number of operations: 1 + I[7] = G[7]*W2[ip]; + + // Number of operations: 1 + I[8] = G[33]*W2[ip]; + + // Number of operations: 1 + I[9] = G[11]*W2[ip]; + + // Number of operations: 1 + I[10] = G[15]*W2[ip]; + + // Number of operations: 1 + I[11] = G[17]*W2[ip]; + + // Number of operations: 1 + I[12] = G[21]*W2[ip]; + + // Number of operations: 1 + I[13] = G[19]*W2[ip]; + + // Number of operations: 1 + I[14] = G[23]*W2[ip]; + + // Number of operations: 1 + I[15] = G[25]*W2[ip]; + + // Number of operations: 1 + I[16] = G[29]*W2[ip]; + + // Number of operations: 1 + I[17] = G[0]*W2[ip]; + + // Number of operations: 1 + I[18] = G[2]*W2[ip]; + + // Number of operations: 1 + I[19] = G[4]*W2[ip]; + + // Number of operations: 1 + I[20] = G[6]*W2[ip]; + + // Number of operations: 1 + I[21] = G[27]*W2[ip]; + + // Number of operations: 1 + I[22] = G[32]*W2[ip]; + + // Number of operations: 1 + I[23] = G[8]*W2[ip]; + + // Number of operations: 1 + I[24] = G[10]*W2[ip]; + + // Number of operations: 1 + I[25] = G[12]*W2[ip]; + + // Number of operations: 1 + I[26] = G[14]*W2[ip]; + + // Number of operations: 1 + I[27] = G[16]*W2[ip]; + + // Number of operations: 1 + I[28] = G[18]*W2[ip]; + + // Number of operations: 1 + I[29] = G[20]*W2[ip]; + + // Number of operations: 1 + I[30] = G[22]*W2[ip]; + + // Number of operations: 1 + I[31] = G[24]*W2[ip]; + + // Number of operations: 1 + I[32] = G[26]*W2[ip]; + + // Number of operations: 1 + I[33] = G[31]*W2[ip]; + + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[2]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc12[k]] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[4]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[5]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[6]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[7]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc12[k]] += FE0_f1_D01[ip][j]*FE0_f1_D01[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[9]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f1_D01[ip][j]*I[10]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc12[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc12[k]] += FE0_f0_D02[ip][j]*FE0_f1_D01[ip][k]*I[10]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 240 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f2_D01[ip][k]*FE0_f2_D11[ip][j]*I[27]; + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + nzc11[k]] += FE0_f2_D01[ip][k]*FE0_f2_D11[ip][j]*I[28]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + (nzc11[k] + 6)] += FE0_f2_D01[ip][k]*FE0_f2_D11[ip][j]*I[29]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc11[k]] += FE0_f2_D01[ip][k]*FE0_f2_D11[ip][j]*I[30]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f2_D01[ip][k]*I[15]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc11[k]] += FE0_f1_D01[ip][j]*FE0_f2_D01[ip][k]*I[16]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc2[j] + 6)*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[18]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[19]; + // Number of operations to compute entry: 3 + A[(nzc5[j] + 6)*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[20]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc11[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f2_D01[ip][k]*I[21]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc11[k]] += FE0_f1_D01[ip][j]*FE0_f2_D01[ip][k]*I[22]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[23]; + // Number of operations to compute entry: 3 + A[nzc2[j]*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[24]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + (nzc11[k] + 6)] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[25]; + // Number of operations to compute entry: 3 + A[nzc5[j]*12 + nzc11[k]] += FE0_f0_D02[ip][j]*FE0_f2_D01[ip][k]*I[26]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 240 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc13[k] + 6)] += FE0_f2_D01[ip][j]*FE0_f2_D11[ip][k]*I[27]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc13[k]] += FE0_f2_D01[ip][j]*FE0_f2_D11[ip][k]*I[29]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc13[k] + 6)] += FE0_f2_D01[ip][j]*FE0_f2_D11[ip][k]*I[28]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc13[k]] += FE0_f2_D01[ip][j]*FE0_f2_D11[ip][k]*I[30]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + (nzc13[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f2_D11[ip][k]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc12[j] + 6)*12 + nzc13[k]] += FE0_f1_D01[ip][j]*FE0_f2_D11[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + (nzc13[k] + 6)] += FE0_f1_D01[ip][j]*FE0_f2_D11[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[nzc12[j]*12 + nzc13[k]] += FE0_f1_D01[ip][j]*FE0_f2_D11[ip][k]*I[14]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 540 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f2_D01[ip][j]*I[15]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[17]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[19]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc12[k]] += FE0_f1_D01[ip][k]*FE0_f2_D01[ip][j]*I[21]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[23]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[25]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f2_D01[ip][j]*I[16]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc2[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[18]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc5[k] + 6)] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[20]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc12[k]] += FE0_f1_D01[ip][k]*FE0_f2_D01[ip][j]*I[22]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc2[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[24]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc5[k]] += FE0_f0_D02[ip][k]*FE0_f2_D01[ip][j]*I[26]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 300 + for (unsigned int j = 0; j < 5; j++) + { + for (unsigned int k = 0; k < 5; k++) + { + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + (nzc11[k] + 6)] += FE0_f2_D01[ip][j]*FE0_f2_D01[ip][k]*I[31]; + // Number of operations to compute entry: 3 + A[(nzc11[j] + 6)*12 + nzc11[k]] += FE0_f2_D01[ip][j]*FE0_f2_D01[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + (nzc11[k] + 6)] += FE0_f2_D01[ip][j]*FE0_f2_D01[ip][k]*I[32]; + // Number of operations to compute entry: 3 + A[nzc11[j]*12 + nzc11[k]] += FE0_f2_D01[ip][j]*FE0_f2_D01[ip][k]*I[33]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f2_D11[ip][j]*I[11]; + // Number of operations to compute entry: 3 + A[(nzc13[j] + 6)*12 + nzc12[k]] += FE0_f1_D01[ip][k]*FE0_f2_D11[ip][j]*I[13]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + (nzc12[k] + 6)] += FE0_f1_D01[ip][k]*FE0_f2_D11[ip][j]*I[12]; + // Number of operations to compute entry: 3 + A[nzc13[j]*12 + nzc12[k]] += FE0_f1_D01[ip][k]*FE0_f2_D11[ip][j]*I[14]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' + break; + } + } + + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class biharmonic_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + biharmonic_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~biharmonic_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 6 + // Number of operations (multiply-add pairs) for tensor contraction: 21 + // Total number of operations (multiply-add pairs): 30 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + + // Compute element tensor + A[0] = 0.0166666666666666*G0_0 - 0.00277777777777778*G0_1 - 0.00277777777777778*G0_2 - 0.0111111111111111*G0_3; + A[1] = -0.00277777777777778*G0_0 + 0.0166666666666667*G0_1 - 0.00277777777777781*G0_2 - 0.0111111111111111*G0_4; + A[2] = -0.00277777777777778*G0_0 - 0.0027777777777778*G0_1 + 0.0166666666666667*G0_2 - 0.0111111111111111*G0_5; + A[3] = -0.0111111111111111*G0_0 + 0.0888888888888888*G0_3 + 0.0444444444444443*G0_4 + 0.0444444444444443*G0_5; + A[4] = -0.0111111111111111*G0_1 + 0.0444444444444443*G0_3 + 0.0888888888888887*G0_4 + 0.0444444444444443*G0_5; + A[5] = -0.0111111111111111*G0_2 + 0.0444444444444443*G0_3 + 0.0444444444444443*G0_4 + 0.0888888888888887*G0_5; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class biharmonic_form_0: public ufc::form +{ +public: + + /// Constructor + biharmonic_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~biharmonic_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "bd8ad34e16f34b87c83da3c3cfa16afe27e38ee4b99e9479a6600907f4c60c54fd55269fa45142164ce9e66e4afe72796590fd88525f0610851900c13e4692df"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new biharmonic_finite_element_1(); + break; + } + case 1: + { + return new biharmonic_finite_element_1(); + break; + } + case 2: + { + return new biharmonic_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new biharmonic_dofmap_1(); + break; + } + case 1: + { + return new biharmonic_dofmap_1(); + break; + } + case 2: + { + return new biharmonic_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new biharmonic_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return new biharmonic_interior_facet_integral_0_otherwise(); + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class biharmonic_form_1: public ufc::form +{ +public: + + /// Constructor + biharmonic_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~biharmonic_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "9a0e5d6d194de632408849439b4e348035f5f938271c8f88b18541fec23a6ad6203835eeaaecea00101dc60215cfed9f0ad01e069f415d8073294be2ed9eabe9"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new biharmonic_finite_element_1(); + break; + } + case 1: + { + return new biharmonic_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new biharmonic_dofmap_1(); + break; + } + case 1: + { + return new biharmonic_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new biharmonic_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Biharmonic +{ + +class CoefficientSpace_alpha: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_alpha(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_alpha(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_alpha(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_alpha(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_alpha(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_alpha(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_alpha() + { + } + +}; + +class CoefficientSpace_f: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_f(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_f(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_f(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_f() + { + } + +}; + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_alpha Form_a_FunctionSpace_2; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 1), alpha(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new biharmonic_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& alpha): + dolfin::Form(2, 1), alpha(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->alpha = alpha; + + _ufc_form = std::shared_ptr(new biharmonic_form_0()); + } + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr alpha): + dolfin::Form(2, 1), alpha(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->alpha = *alpha; + + _ufc_form = std::shared_ptr(new biharmonic_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 1), alpha(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new biharmonic_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& alpha): + dolfin::Form(2, 1), alpha(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->alpha = alpha; + + _ufc_form = std::shared_ptr(new biharmonic_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr alpha): + dolfin::Form(2, 1), alpha(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->alpha = *alpha; + + _ufc_form = std::shared_ptr(new biharmonic_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "alpha") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "alpha"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + typedef Form_a_FunctionSpace_2 CoefficientSpace_alpha; + + // Coefficients + dolfin::CoefficientAssigner alpha; +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new biharmonic_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new biharmonic_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_f Form_L_FunctionSpace_1; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new biharmonic_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = f; + + _ufc_form = std::shared_ptr(new biharmonic_form_1()); + } + + // Constructor + Form_L(const dolfin::FunctionSpace& V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->f = *f; + + _ufc_form = std::shared_ptr(new biharmonic_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new biharmonic_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, const dolfin::GenericFunction& f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = f; + + _ufc_form = std::shared_ptr(new biharmonic_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0, std::shared_ptr f): + dolfin::Form(1, 1), f(*this, 0) + { + _function_spaces[0] = V0; + + this->f = *f; + + _ufc_form = std::shared_ptr(new biharmonic_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "f") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "f"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + typedef Form_L_FunctionSpace_1 CoefficientSpace_f; + + // Coefficients + dolfin::CoefficientAssigner f; +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/biharmonic/cpp/Biharmonic.ufl b/demo/documented/biharmonic/cpp/Biharmonic.ufl new file mode 100644 index 0000000..60b8634 --- /dev/null +++ b/demo/documented/biharmonic/cpp/Biharmonic.ufl @@ -0,0 +1,50 @@ +# Copyright (C) 2009 Kristian B. Oelgaard, Garth N. Wells and Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2009-06-26 +# Last changed: 2011-05-11 +# +# The bilinear form a(u, v) and linear form L(v) for +# Biharmonic equation in a discontinuous Galerkin (DG) +# formulation. +# +# Compile this form with FFC: ffc -l dolfin Biharmonic.ufl + +# Elements +element = FiniteElement("Lagrange", triangle, 2) + +# Trial and test functions +u = TrialFunction(element) +v = TestFunction(element) +f = Coefficient(element) + +# Normal component, mesh size and right-hand side +n = FacetNormal(triangle) +h = 2.0*Circumradius(triangle) +h_avg = (h('+') + h('-'))/2 + +# Parameters +alpha = Constant(triangle) + +# Bilinear form +a = inner(div(grad(u)), div(grad(v)))*dx \ + - inner(avg(div(grad(u))), jump(grad(v), n))*dS \ + - inner(jump(grad(u), n), avg(div(grad(v))))*dS \ + + alpha('+')/h_avg*inner(jump(grad(u), n), jump(grad(v),n))*dS + +# Linear form +L = f*v*dx diff --git a/demo/documented/biharmonic/cpp/CMakeLists.txt b/demo/documented/biharmonic/cpp/CMakeLists.txt new file mode 100644 index 0000000..8a494dd --- /dev/null +++ b/demo/documented/biharmonic/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_biharmonic) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/biharmonic/cpp/compile.log b/demo/documented/biharmonic/cpp/compile.log new file mode 100644 index 0000000..ba94b9a --- /dev/null +++ b/demo/documented/biharmonic/cpp/compile.log @@ -0,0 +1,1262 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Biharmonic + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 1 + Coefficients: '[c_1]' + Coefficient names: '[alpha]' + Unique elements: 'CG2(?), R0(?)' + Unique sub elements: 'CG2(?), R0(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 4 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal FacetNormal. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[f]' + Unique elements: 'CG2(?)' + Unique sub elements: 'CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.045367 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 2 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 2 dofmaps + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {1: {VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1.], + [ 0.]], + + [[ 0.], + [ 0.]], + + [[ 1.], + [ 0.]], + + [[ 0.], + [-1.]], + + [[ 0.], + [ 0.]], + + [[ 0.], + [ 1.]]]), (1, 0): array([[[-1.], + [ 0.]], + + [[ 1.], + [ 0.]], + + [[ 0.], + [ 0.]], + + [[ 0.], + [-1.]], + + [[ 0.], + [ 1.]], + + [[ 0.], + [ 0.]]]), (0, 0): array([[[ 0.33333333], + [ 0. ]], + + [[ 0.33333333], + [ 0. ]], + + [[ 0.33333333], + [ 0. ]], + + [[ 0. ], + [ 0.33333333]], + + [[ 0. ], + [ 0.33333333]], + + [[ 0. ], + [ 0.33333333]]])}}}, FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None): {None: {None: {(0, 1): array([[-0.33333333333333304], + [8.3266726846886741e-17], + [0.33333333333333348], + [1.3333333333333326], + [-1.6653345369377348e-16], + [-1.3333333333333328]], dtype=object), (0, 0): array([[-0.11111111111111108], + [-0.11111111111111115], + [-0.11111111111111106], + [0.44444444444444436], + [0.44444444444444436], + [0.44444444444444448]], dtype=object), (0, 2): array([[3.9999999999999982], + [2.2204460492503131e-16], + [3.9999999999999969], + [-4.4408920985006262e-16], + [-7.9999999999999964], + [8.8817841970012523e-16]], dtype=object), (2, 0): array([[3.9999999999999991], + [3.9999999999999991], + [0.0], + [-9.0719159405384027e-32], + [9.0719159405384027e-32], + [-7.9999999999999982]], dtype=object), (1, 0): array([[-0.33333333333333309], + [0.33333333333333315], + [0.0], + [1.3333333333333328], + [-1.3333333333333328], + [-2.1533148803874999e-16]], dtype=object), (1, 1): array([[3.9999999999999991], + [-4.4408920985006262e-16], + [0.0], + [3.9999999999999982], + [-3.9999999999999982], + [-3.9999999999999991]], dtype=object)}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_D10': array([[-0.33333333333333309, 0.33333333333333315, 0.0, 1.3333333333333328, + -1.3333333333333328, -2.1533148803874999e-16]], dtype=object), 'FE0_D02': array([[3.9999999999999982, 2.2204460492503131e-16, 3.9999999999999969, + -4.4408920985006262e-16, -7.9999999999999964, + 8.8817841970012523e-16]], dtype=object), 'FE0_D01': array([[-0.33333333333333304, 8.3266726846886741e-17, 0.33333333333333348, + 1.3333333333333326, -1.6653345369377348e-16, -1.3333333333333328]], dtype=object), 'FE0_D11': array([[3.9999999999999991, -4.4408920985006262e-16, 0.0, + 3.9999999999999982, -3.9999999999999982, -3.9999999999999991]], dtype=object), 'FE1_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333]]), 'FE0_D20': array([[3.9999999999999991, 3.9999999999999991, 0.0, + -9.0719159405384027e-32, 9.0719159405384027e-32, + -7.9999999999999982]], dtype=object), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.]]), 'FE0': array([[-0.11111111111111108, -0.11111111111111115, -0.11111111111111106, + 0.44444444444444436, 0.44444444444444436, 0.44444444444444448]], dtype=object), 'FE1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0_D01': array([[-1., 0., 1., 0., 0., 0.]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.]])} + + tables: {'FE0_D10': array([[-0.33333333333333309, 0.33333333333333315, 0.0, 1.3333333333333328, + -1.3333333333333328, -2.1533148803874999e-16]], dtype=object), 'FE0_D02': array([[3.9999999999999982, 2.2204460492503131e-16, 3.9999999999999969, + -4.4408920985006262e-16, -7.9999999999999964, + 8.8817841970012523e-16]], dtype=object), 'FE0_D01': array([[-0.33333333333333304, 8.3266726846886741e-17, 0.33333333333333348, + 1.3333333333333326, -1.6653345369377348e-16, -1.3333333333333328]], dtype=object), 'FE0_D11': array([[3.9999999999999991, -4.4408920985006262e-16, 0.0, + 3.9999999999999982, -3.9999999999999982, -3.9999999999999991]], dtype=object), 'FE1_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333]]), 'FE0_D20': array([[3.9999999999999991, 3.9999999999999991, 0.0, + -9.0719159405384027e-32, 9.0719159405384027e-32, + -7.9999999999999982]], dtype=object), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.]]), 'FE0': array([[-0.11111111111111108, -0.11111111111111115, -0.11111111111111106, + 0.44444444444444436, 0.44444444444444436, 0.44444444444444448]], dtype=object), 'FE1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0_D01': array([[-1., 0., 1., 0., 0., 0.]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.]])} + + name_map: {} + + inv_name_map: {'FE0_D10': 'FE0_D10', 'FE0_D02': 'FE0_D02', 'FE0_D01': 'FE0_D01', 'FE0_D11': 'FE0_D11', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE0_D20': 'FE0_D20', 'FE1_C1_D10': 'FE1_C1_D10', 'FE0': 'FE0', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE0_D02': array([[3.9999999999999982, 3.9999999999999969, -7.9999999999999964]], dtype=object), 'FE0_D01': array([[-0.33333333333333304, 0.33333333333333348, 1.3333333333333326, + -1.3333333333333328]], dtype=object), 'FE0_D11': array([[3.9999999999999991, 3.9999999999999982, -3.9999999999999982, + -3.9999999999999991]], dtype=object), 'FE1_C0': array([[ 0.33333333, 0.33333333, 0.33333333]]), 'FE0': array([[-0.11111111111111108, -0.11111111111111115, -0.11111111111111106, + 0.44444444444444436, 0.44444444444444436, 0.44444444444444448]], dtype=object), 'FE1_C0_D01': array([[-1., 1.]])} + + QG-utils, psi_tables, name_map: + {'FE0_D10': ('FE0_D01', (2, [0, 1, 3, 4]), False, False), 'FE0_D02': ('FE0_D02', (1, [0, 2, 4]), False, False), 'FE0_D01': ('FE0_D01', (0, [0, 2, 3, 5]), False, False), 'FE0_D11': ('FE0_D11', (3, [0, 3, 4, 5]), False, False), 'FE1_C0': ('FE1_C0', (5, [0, 1, 2]), False, False), 'FE1_C1': ('FE1_C0', (8, [3, 4, 5]), False, False), 'FE0_D20': ('FE0_D02', (4, [0, 1, 5]), False, False), 'FE1_C1_D10': ('FE1_C0_D01', (10, [3, 4]), False, False), 'FE0': ('FE0', (), False, False), 'FE1_C1_D01': ('FE1_C0_D01', (9, [3, 5]), False, False), 'FE1_C0_D01': ('FE1_C0_D01', (6, [0, 2]), False, False), 'FE1_C0_D10': ('FE1_C0_D01', (7, [0, 1]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {2: {FiniteElement('Real', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {0: {(0, 0): array([[1.0, 1.0]], dtype=object)}, 1: {(0, 0): array([[1.0, 1.0]], dtype=object)}, 2: {(0, 0): array([[1.0, 1.0]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {0: {(0, 1): array([[[-1., -1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [ 1., 1.]]]), (1, 0): array([[[-1., -1.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 1., 1.]], + + [[ 0., 0.], + [ 0., 0.]]]), (0, 0): array([[[ -2.08166817e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 7.88675135e-01, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 2.11324865e-01, 7.88675135e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -2.08166817e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 7.88675135e-01, 2.11324865e-01]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 7.88675135e-01]]])}, 1: {(0, 1): array([[[-1., -1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [ 1., 1.]]]), (1, 0): array([[[-1., -1.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 1., 1.]], + + [[ 0., 0.], + [ 0., 0.]]]), (0, 0): array([[[ 7.88675135e-01, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ -2.08166817e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 2.11324865e-01, 7.88675135e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 7.88675135e-01, 2.11324865e-01]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -2.08166817e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 7.88675135e-01]]])}, 2: {(0, 1): array([[[-1., -1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [ 1., 1.]]]), (1, 0): array([[[-1., -1.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 1., 1.]], + + [[ 0., 0.], + [ 0., 0.]]]), (0, 0): array([[[ 0.78867513, 0.21132487], + [ 0. , 0. ]], + + [[ 0.21132487, 0.78867513], + [ 0. , 0. ]], + + [[ 0. , 0. ], + [ 0. , 0. ]], + + [[ 0. , 0. ], + [ 0.78867513, 0.21132487]], + + [[ 0. , 0. ], + [ 0.21132487, 0.78867513]], + + [[ 0. , 0. ], + [ 0. , 0. ]]])}}}, FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None): {None: {0: {(0, 1): array([[1.0000000000000009, 1.0000000000000007], + [-5.5511151231257827e-17, -3.3306690738754696e-16], + [-0.15470053837925146, 2.1547005383792515], + [3.1547005383792501, 0.84529946162074787], + [-0.84529946162074876, -3.1547005383792515], + [-3.154700538379251, -0.84529946162074832]], dtype=object), (0, 0): array([[2.7755575615628914e-17, 4.163336342344337e-17], + [0.4553418012614795, -0.12200846792814624], + [-0.12200846792814618, 0.45534180126147961], + [0.66666666666666674, 0.66666666666666652], + [-1.3877787807814457e-17, -5.5511151231257827e-17], + [-1.7347234759768071e-17, -4.163336342344337e-17]], dtype=object), (0, 2): array([[3.9999999999999978, 3.9999999999999982], + [1.1102230246251565e-15, -1.3322676295501878e-15], + [3.9999999999999933, 3.9999999999999969], + [-8.8817841970012523e-16, -1.7763568394002505e-15], + [-7.9999999999999938, -7.9999999999999911], + [2.2204460492503131e-15, -4.4408920985006262e-16]], dtype=object), (2, 0): array([[3.9999999999999964, 3.9999999999999969], + [3.9999999999999947, 3.999999999999996], + [0.0, 0.0], + [-1.3290753880174574e-15, -3.5612467689935939e-16], + [1.3290753880174574e-15, 3.5612467689935939e-16], + [-7.9999999999999911, -7.9999999999999929]], dtype=object), (1, 0): array([[1.0000000000000002, 1.0000000000000009], + [2.1547005383792506, -0.15470053837925168], + [0.0, 0.0], + [0.84529946162074754, 3.1547005383792492], + [-0.84529946162074754, -3.1547005383792492], + [-3.1547005383792515, -0.84529946162074987]], dtype=object), (1, 1): array([[3.9999999999999973, 4.0], + [-6.6613381477509392e-16, 2.2204460492503131e-16], + [0.0, 0.0], + [3.9999999999999978, 3.9999999999999898], + [-3.9999999999999978, -3.9999999999999898], + [-3.9999999999999973, -4.0000000000000009]], dtype=object)}, 1: {(0, 1): array([[-2.154700538379251, 0.15470053837925168], + [0.0, -3.3306690738754696e-16], + [-0.15470053837925157, 2.1547005383792515], + [-7.7715611723760958e-16, -6.6613381477509392e-16], + [2.3094010767585025, -2.3094010767585025], + [1.2212453270876722e-15, 8.8817841970012523e-16]], dtype=object), (0, 0): array([[0.45534180126147966, -0.12200846792814617], + [2.0816681711721685e-17, 9.0205620750793969e-17], + [-0.12200846792814618, 0.45534180126147961], + [-1.3877787807814457e-17, -2.7755575615628914e-17], + [0.66666666666666674, 0.66666666666666652], + [-1.7347234759768071e-17, -4.163336342344337e-17]], dtype=object), (0, 2): array([[3.9999999999999951, 3.9999999999999973], + [8.8817841970012523e-16, -1.7763568394002505e-15], + [3.9999999999999973, 3.9999999999999973], + [-1.3322676295501878e-15, -1.3322676295501878e-15], + [-7.9999999999999929, -7.9999999999999911], + [1.1102230246251565e-15, -8.8817841970012523e-16]], dtype=object), (2, 0): array([[4.0, 3.9999999999999978], + [4.0000000000000018, 3.9999999999999987], + [0.0, 0.0], + [1.3290753880174578e-15, 3.5612467689935875e-16], + [-1.3290753880174578e-15, -3.5612467689935875e-16], + [-8.0000000000000018, -7.9999999999999964]], dtype=object), (1, 0): array([[-2.1547005383792515, 0.15470053837925191], + [-1.0000000000000009, -1.0000000000000009], + [0.0, 0.0], + [0.84529946162074754, 3.1547005383792492], + [-0.84529946162074754, -3.1547005383792492], + [3.1547005383792524, 0.84529946162074832]], dtype=object), (1, 1): array([[3.9999999999999964, 4.0], + [2.2204460492503131e-16, 4.4408920985006262e-16], + [0.0, 0.0], + [3.9999999999999991, 3.9999999999999902], + [-3.9999999999999991, -3.9999999999999902], + [-3.9999999999999973, -4.0000000000000009]], dtype=object)}, 2: {(0, 1): array([[-2.1547005383792506, 0.15470053837925235], + [-3.3306690738754696e-16, 0.0], + [-0.99999999999999956, -0.99999999999999933], + [0.84529946162074832, 3.1547005383792497], + [3.1547005383792506, 0.84529946162074876], + [-0.84529946162074854, -3.1547005383792515]], dtype=object), (0, 0): array([[0.45534180126147955, -0.12200846792814618], + [-0.12200846792814621, 0.4553418012614795], + [0.0, 0.0], + [0.0, 2.7755575615628914e-17], + [0.0, -5.5511151231257827e-17], + [0.66666666666666663, 0.66666666666666663]], dtype=object), (0, 2): array([[3.9999999999999951, 3.9999999999999973], + [1.5543122344752192e-15, 1.5543122344752192e-15], + [3.9999999999999991, 3.9999999999999964], + [-3.1086244689504383e-15, -2.2204460492503131e-15], + [-7.9999999999999982, -7.9999999999999982], + [4.8849813083506888e-15, 5.3290705182007514e-15]], dtype=object), (2, 0): array([[3.9999999999999964, 3.9999999999999947], + [3.9999999999999982, 3.9999999999999929], + [0.0, 0.0], + [9.7295071111809815e-16, -9.7295071111809894e-16], + [-9.7295071111809815e-16, 9.7295071111809894e-16], + [-7.9999999999999947, -7.9999999999999876]], dtype=object), (1, 0): array([[-2.1547005383792506, 0.15470053837925191], + [-0.15470053837925096, 2.1547005383792515], + [0.0, 0.0], + [-1.5543122344752192e-15, -1.5543122344752192e-15], + [1.5543122344752192e-15, 1.5543122344752192e-15], + [2.3094010767585016, -2.3094010767585034]], dtype=object), (1, 1): array([[3.9999999999999964, 3.9999999999999973], + [-3.1086244689504383e-15, -3.7747582837255322e-15], + [0.0, 0.0], + [4.0000000000000053, 4.0000000000000044], + [-4.0000000000000053, -4.0000000000000044], + [-3.9999999999999938, -3.9999999999999938]], dtype=object)}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_f0': array([[2.7755575615628914e-17, 0.4553418012614795, -0.12200846792814618, + 0.66666666666666674, -1.3877787807814457e-17, + -1.7347234759768071e-17], + [4.163336342344337e-17, -0.12200846792814624, 0.45534180126147961, + 0.66666666666666652, -5.5511151231257827e-17, + -4.163336342344337e-17]], dtype=object), 'FE0_f1': array([[0.45534180126147966, 2.0816681711721685e-17, -0.12200846792814618, + -1.3877787807814457e-17, 0.66666666666666674, + -1.7347234759768071e-17], + [-0.12200846792814617, 9.0205620750793969e-17, 0.45534180126147961, + -2.7755575615628914e-17, 0.66666666666666652, + -4.163336342344337e-17]], dtype=object), 'FE0_f2': array([[0.45534180126147955, -0.12200846792814621, 0.0, 0.0, 0.0, + 0.66666666666666663], + [-0.12200846792814618, 0.4553418012614795, 0.0, + 2.7755575615628914e-17, -5.5511151231257827e-17, + 0.66666666666666663]], dtype=object), 'FE2_f2': array([[1.0], + [1.0]], dtype=object), 'FE1_f0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_f2_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_f1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0_f1_D11': array([[3.9999999999999964, 2.2204460492503131e-16, 0.0, + 3.9999999999999991, -3.9999999999999991, -3.9999999999999973], + [4.0, 4.4408920985006262e-16, 0.0, 3.9999999999999902, + -3.9999999999999902, -4.0000000000000009]], dtype=object), 'FE0_f1_D10': array([[-2.1547005383792515, -1.0000000000000009, 0.0, 0.84529946162074754, + -0.84529946162074754, 3.1547005383792524], + [0.15470053837925191, -1.0000000000000009, 0.0, 3.1547005383792492, + -3.1547005383792492, 0.84529946162074832]], dtype=object), 'FE0_f2_D10': array([[-2.1547005383792506, -0.15470053837925096, 0.0, + -1.5543122344752192e-15, 1.5543122344752192e-15, 2.3094010767585016], + [0.15470053837925191, 2.1547005383792515, 0.0, + -1.5543122344752192e-15, 1.5543122344752192e-15, + -2.3094010767585034]], dtype=object), 'FE0_f2_D11': array([[3.9999999999999964, -3.1086244689504383e-15, 0.0, + 4.0000000000000053, -4.0000000000000053, -3.9999999999999938], + [3.9999999999999973, -3.7747582837255322e-15, 0.0, + 4.0000000000000044, -4.0000000000000044, -3.9999999999999938]], dtype=object), 'FE1_f2_C0': array([[ 0.78867513, 0.21132487, 0. , 0. , 0. , + 0. ], + [ 0.21132487, 0.78867513, 0. , 0. , 0. , + 0. ]]), 'FE1_f2_C1': array([[ 0. , 0. , 0. , 0.78867513, 0.21132487, + 0. ], + [ 0. , 0. , 0. , 0.21132487, 0.78867513, + 0. ]]), 'FE2_f1': array([[1.0], + [1.0]], dtype=object), 'FE1_f2_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_f0_D10': array([[1.0000000000000002, 2.1547005383792506, 0.0, 0.84529946162074754, + -0.84529946162074754, -3.1547005383792515], + [1.0000000000000009, -0.15470053837925168, 0.0, 3.1547005383792492, + -3.1547005383792492, -0.84529946162074987]], dtype=object), 'FE0_f0_D11': array([[3.9999999999999973, -6.6613381477509392e-16, 0.0, + 3.9999999999999978, -3.9999999999999978, -3.9999999999999973], + [4.0, 2.2204460492503131e-16, 0.0, 3.9999999999999898, + -3.9999999999999898, -4.0000000000000009]], dtype=object), 'FE1_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.08166817e-17, 7.88675135e-01, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 2.11324865e-01, 7.88675135e-01]]), 'FE1_f0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_f1_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f0_C0': array([[ -2.08166817e-17, 7.88675135e-01, 2.11324865e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, 2.11324865e-01, 7.88675135e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_f2_D02': array([[3.9999999999999951, 1.5543122344752192e-15, 3.9999999999999991, + -3.1086244689504383e-15, -7.9999999999999982, + 4.8849813083506888e-15], + [3.9999999999999973, 1.5543122344752192e-15, 3.9999999999999964, + -2.2204460492503131e-15, -7.9999999999999982, + 5.3290705182007514e-15]], dtype=object), 'FE0_f2_D01': array([[-2.1547005383792506, -3.3306690738754696e-16, -0.99999999999999956, + 0.84529946162074832, 3.1547005383792506, -0.84529946162074854], + [0.15470053837925235, 0.0, -0.99999999999999933, 3.1547005383792497, + 0.84529946162074876, -3.1547005383792515]], dtype=object), 'FE1_f2_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0_f2_D20': array([[3.9999999999999964, 3.9999999999999982, 0.0, + 9.7295071111809815e-16, -9.7295071111809815e-16, + -7.9999999999999947], + [3.9999999999999947, 3.9999999999999929, 0.0, + -9.7295071111809894e-16, 9.7295071111809894e-16, + -7.9999999999999876]], dtype=object), 'FE1_f0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_f1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_f2_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_f1_D20': array([[4.0, 4.0000000000000018, 0.0, 1.3290753880174578e-15, + -1.3290753880174578e-15, -8.0000000000000018], + [3.9999999999999978, 3.9999999999999987, 0.0, + 3.5612467689935875e-16, -3.5612467689935875e-16, + -7.9999999999999964]], dtype=object), 'FE0_f1_D01': array([[-2.154700538379251, 0.0, -0.15470053837925157, + -7.7715611723760958e-16, 2.3094010767585025, 1.2212453270876722e-15], + [0.15470053837925168, -3.3306690738754696e-16, 2.1547005383792515, + -6.6613381477509392e-16, -2.3094010767585025, + 8.8817841970012523e-16]], dtype=object), 'FE0_f1_D02': array([[3.9999999999999951, 8.8817841970012523e-16, 3.9999999999999973, + -1.3322676295501878e-15, -7.9999999999999929, + 1.1102230246251565e-15], + [3.9999999999999973, -1.7763568394002505e-15, 3.9999999999999973, + -1.3322676295501878e-15, -7.9999999999999911, + -8.8817841970012523e-16]], dtype=object), 'FE0_f0_D20': array([[3.9999999999999964, 3.9999999999999947, 0.0, + -1.3290753880174574e-15, 1.3290753880174574e-15, + -7.9999999999999911], + [3.9999999999999969, 3.999999999999996, 0.0, + -3.5612467689935939e-16, 3.5612467689935939e-16, + -7.9999999999999929]], dtype=object), 'FE0_f0_D01': array([[1.0000000000000009, -5.5511151231257827e-17, -0.15470053837925146, + 3.1547005383792501, -0.84529946162074876, -3.154700538379251], + [1.0000000000000007, -3.3306690738754696e-16, 2.1547005383792515, + 0.84529946162074787, -3.1547005383792515, -0.84529946162074832]], dtype=object), 'FE2_f0': array([[1.0], + [1.0]], dtype=object), 'FE0_f0_D02': array([[3.9999999999999978, 1.1102230246251565e-15, 3.9999999999999933, + -8.8817841970012523e-16, -7.9999999999999938, + 2.2204460492503131e-15], + [3.9999999999999982, -1.3322676295501878e-15, 3.9999999999999969, + -1.7763568394002505e-15, -7.9999999999999911, + -4.4408920985006262e-16]], dtype=object), 'FE1_f0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.88675135e-01, -2.08166817e-17, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.11324865e-01, 5.55111512e-17, 7.88675135e-01]]), 'FE1_f1_C0': array([[ 7.88675135e-01, -2.08166817e-17, 2.11324865e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 5.55111512e-17, 7.88675135e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + tables: {'FE0_f0': array([[2.7755575615628914e-17, 0.4553418012614795, -0.12200846792814618, + 0.66666666666666674, -1.3877787807814457e-17, + -1.7347234759768071e-17], + [4.163336342344337e-17, -0.12200846792814624, 0.45534180126147961, + 0.66666666666666652, -5.5511151231257827e-17, + -4.163336342344337e-17]], dtype=object), 'FE0_f1': array([[0.45534180126147966, 2.0816681711721685e-17, -0.12200846792814618, + -1.3877787807814457e-17, 0.66666666666666674, + -1.7347234759768071e-17], + [-0.12200846792814617, 9.0205620750793969e-17, 0.45534180126147961, + -2.7755575615628914e-17, 0.66666666666666652, + -4.163336342344337e-17]], dtype=object), 'FE0_f2': array([[0.45534180126147955, -0.12200846792814621, 0.0, 0.0, 0.0, + 0.66666666666666663], + [-0.12200846792814618, 0.4553418012614795, 0.0, + 2.7755575615628914e-17, -5.5511151231257827e-17, + 0.66666666666666663]], dtype=object), 'FE1_f0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE0_f1_D10': array([[-2.1547005383792515, -1.0000000000000009, 0.0, 0.84529946162074754, + -0.84529946162074754, 3.1547005383792524], + [0.15470053837925191, -1.0000000000000009, 0.0, 3.1547005383792492, + -3.1547005383792492, 0.84529946162074832]], dtype=object), 'FE0_f2_D10': array([[-2.1547005383792506, -0.15470053837925096, 0.0, + -1.5543122344752192e-15, 1.5543122344752192e-15, 2.3094010767585016], + [0.15470053837925191, 2.1547005383792515, 0.0, + -1.5543122344752192e-15, 1.5543122344752192e-15, + -2.3094010767585034]], dtype=object), 'FE0_f2_D11': array([[3.9999999999999964, -3.1086244689504383e-15, 0.0, + 4.0000000000000053, -4.0000000000000053, -3.9999999999999938], + [3.9999999999999973, -3.7747582837255322e-15, 0.0, + 4.0000000000000044, -4.0000000000000044, -3.9999999999999938]], dtype=object), 'FE1_f2_C0': array([[ 0.78867513, 0.21132487, 0. , 0. , 0. , + 0. ], + [ 0.21132487, 0.78867513, 0. , 0. , 0. , + 0. ]]), 'FE1_f2_C1': array([[ 0. , 0. , 0. , 0.78867513, 0.21132487, + 0. ], + [ 0. , 0. , 0. , 0.21132487, 0.78867513, + 0. ]]), 'FE0_f0_D10': array([[1.0000000000000002, 2.1547005383792506, 0.0, 0.84529946162074754, + -0.84529946162074754, -3.1547005383792515], + [1.0000000000000009, -0.15470053837925168, 0.0, 3.1547005383792492, + -3.1547005383792492, -0.84529946162074987]], dtype=object), 'FE0_f0_D11': array([[3.9999999999999973, -6.6613381477509392e-16, 0.0, + 3.9999999999999978, -3.9999999999999978, -3.9999999999999973], + [4.0, 2.2204460492503131e-16, 0.0, 3.9999999999999898, + -3.9999999999999898, -4.0000000000000009]], dtype=object), 'FE1_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.08166817e-17, 7.88675135e-01, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 2.11324865e-01, 7.88675135e-01]]), 'FE1_f0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_f0_C0': array([[ -2.08166817e-17, 7.88675135e-01, 2.11324865e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, 2.11324865e-01, 7.88675135e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_f2_D01': array([[-2.1547005383792506, -3.3306690738754696e-16, -0.99999999999999956, + 0.84529946162074832, 3.1547005383792506, -0.84529946162074854], + [0.15470053837925235, 0.0, -0.99999999999999933, 3.1547005383792497, + 0.84529946162074876, -3.1547005383792515]], dtype=object), 'FE1_f0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0_f1_D20': array([[4.0, 4.0000000000000018, 0.0, 1.3290753880174578e-15, + -1.3290753880174578e-15, -8.0000000000000018], + [3.9999999999999978, 3.9999999999999987, 0.0, + 3.5612467689935875e-16, -3.5612467689935875e-16, + -7.9999999999999964]], dtype=object), 'FE0_f1_D01': array([[-2.154700538379251, 0.0, -0.15470053837925157, + -7.7715611723760958e-16, 2.3094010767585025, 1.2212453270876722e-15], + [0.15470053837925168, -3.3306690738754696e-16, 2.1547005383792515, + -6.6613381477509392e-16, -2.3094010767585025, + 8.8817841970012523e-16]], dtype=object), 'FE0_f0_D20': array([[3.9999999999999964, 3.9999999999999947, 0.0, + -1.3290753880174574e-15, 1.3290753880174574e-15, + -7.9999999999999911], + [3.9999999999999969, 3.999999999999996, 0.0, + -3.5612467689935939e-16, 3.5612467689935939e-16, + -7.9999999999999929]], dtype=object), 'FE0_f0_D01': array([[1.0000000000000009, -5.5511151231257827e-17, -0.15470053837925146, + 3.1547005383792501, -0.84529946162074876, -3.154700538379251], + [1.0000000000000007, -3.3306690738754696e-16, 2.1547005383792515, + 0.84529946162074787, -3.1547005383792515, -0.84529946162074832]], dtype=object), 'FE2_f0': array([[1.0], + [1.0]], dtype=object), 'FE0_f0_D02': array([[3.9999999999999978, 1.1102230246251565e-15, 3.9999999999999933, + -8.8817841970012523e-16, -7.9999999999999938, + 2.2204460492503131e-15], + [3.9999999999999982, -1.3322676295501878e-15, 3.9999999999999969, + -1.7763568394002505e-15, -7.9999999999999911, + -4.4408920985006262e-16]], dtype=object), 'FE1_f0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.88675135e-01, -2.08166817e-17, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.11324865e-01, 5.55111512e-17, 7.88675135e-01]]), 'FE1_f1_C0': array([[ 7.88675135e-01, -2.08166817e-17, 2.11324865e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 5.55111512e-17, 7.88675135e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + name_map: {'FE0_f0_D20': ['FE0_f2_D20'], 'FE1_f0_C1_D01': ['FE1_f1_C1_D01', 'FE1_f2_C1_D01'], 'FE2_f0': ['FE2_f1', 'FE2_f2'], 'FE0_f0_D11': ['FE0_f1_D11'], 'FE1_f0_C1_D10': ['FE1_f1_C1_D10', 'FE1_f2_C1_D10'], 'FE0_f0_D02': ['FE0_f1_D02', 'FE0_f2_D02'], 'FE1_f0_C0_D01': ['FE1_f1_C0_D01', 'FE1_f2_C0_D01'], 'FE1_f0_C0_D10': ['FE1_f1_C0_D10', 'FE1_f2_C0_D10']} + + inv_name_map: {'FE0_f0': 'FE0_f0', 'FE1_f1_C0_D10': 'FE1_f0_C0_D10', 'FE0_f2': 'FE0_f2', 'FE0_f0_D01': 'FE0_f0_D01', 'FE1_f0_C1_D01': 'FE1_f0_C1_D01', 'FE1_f2_C1_D01': 'FE1_f0_C1_D01', 'FE1_f1_C1_D10': 'FE1_f0_C1_D10', 'FE0_f1_D11': 'FE0_f0_D11', 'FE0_f1_D10': 'FE0_f1_D10', 'FE0_f2_D10': 'FE0_f2_D10', 'FE0_f2_D11': 'FE0_f2_D11', 'FE1_f2_C0': 'FE1_f2_C0', 'FE1_f2_C1': 'FE1_f2_C1', 'FE0_f0_D02': 'FE0_f0_D02', 'FE1_f2_C0_D01': 'FE1_f0_C0_D01', 'FE0_f1': 'FE0_f1', 'FE0_f0_D10': 'FE0_f0_D10', 'FE0_f0_D11': 'FE0_f0_D11', 'FE1_f0_C1': 'FE1_f0_C1', 'FE1_f0_C0_D10': 'FE1_f0_C0_D10', 'FE1_f1_C0_D01': 'FE1_f0_C0_D01', 'FE1_f0_C0': 'FE1_f0_C0', 'FE0_f2_D02': 'FE0_f0_D02', 'FE0_f2_D01': 'FE0_f2_D01', 'FE1_f2_C1_D10': 'FE1_f0_C1_D10', 'FE0_f2_D20': 'FE0_f0_D20', 'FE1_f0_C1_D10': 'FE1_f0_C1_D10', 'FE1_f1_C1_D01': 'FE1_f0_C1_D01', 'FE1_f2_C0_D10': 'FE1_f0_C0_D10', 'FE0_f1_D20': 'FE0_f1_D20', 'FE0_f1_D01': 'FE0_f1_D01', 'FE0_f1_D02': 'FE0_f0_D02', 'FE0_f0_D20': 'FE0_f0_D20', 'FE2_f2': 'FE2_f0', 'FE2_f0': 'FE2_f0', 'FE2_f1': 'FE2_f0', 'FE1_f0_C0_D01': 'FE1_f0_C0_D01', 'FE1_f1_C1': 'FE1_f1_C1', 'FE1_f1_C0': 'FE1_f1_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_f0': array([[0.4553418012614795, -0.12200846792814618, 0.66666666666666674], + [-0.12200846792814624, 0.45534180126147961, 0.66666666666666652]], dtype=object), 'FE0_f1_D10': array([[-2.1547005383792515, -1.0000000000000009, 0.84529946162074754, + -0.84529946162074754, 3.1547005383792524], + [0.15470053837925191, -1.0000000000000009, 3.1547005383792492, + -3.1547005383792492, 0.84529946162074832]], dtype=object), 'FE0_f2_D11': array([[3.9999999999999964, 4.0000000000000053, -4.0000000000000053, + -3.9999999999999938], + [3.9999999999999973, 4.0000000000000044, -4.0000000000000044, + -3.9999999999999938]], dtype=object), 'FE0_f0_D10': array([[1.0000000000000002, 2.1547005383792506, 0.84529946162074754, + -0.84529946162074754, -3.1547005383792515], + [1.0000000000000009, -0.15470053837925168, 3.1547005383792492, + -3.1547005383792492, -0.84529946162074987]], dtype=object), 'FE0_f0_D11': array([[3.9999999999999973, 3.9999999999999978, -3.9999999999999978, + -3.9999999999999973], + [4.0, 3.9999999999999898, -3.9999999999999898, -4.0000000000000009]], dtype=object), 'FE1_f0_C0': array([[ 0.78867513, 0.21132487], + [ 0.21132487, 0.78867513]]), 'FE0_f2_D01': array([[-2.1547005383792506, -0.99999999999999956, 0.84529946162074832, + 3.1547005383792506, -0.84529946162074854], + [0.15470053837925235, -0.99999999999999933, 3.1547005383792497, + 0.84529946162074876, -3.1547005383792515]], dtype=object), 'FE0_f1_D01': array([[-2.154700538379251, -0.15470053837925157, 2.3094010767585025], + [0.15470053837925168, 2.1547005383792515, -2.3094010767585025]], dtype=object), 'FE0_f0_D01': array([[1.0000000000000009, -0.15470053837925146, 3.1547005383792501, + -0.84529946162074876, -3.154700538379251], + [1.0000000000000007, 2.1547005383792515, 0.84529946162074787, + -3.1547005383792515, -0.84529946162074832]], dtype=object), 'FE2_f0': array([[1.0], + [1.0]], dtype=object), 'FE0_f0_D02': array([[3.9999999999999978, 3.9999999999999933, -7.9999999999999938], + [3.9999999999999982, 3.9999999999999969, -7.9999999999999911]], dtype=object), 'FE1_f0_C0_D01': array([[-1., 1.], + [-1., 1.]])} + + QG-utils, psi_tables, name_map: + {'FE0_f0': ('FE0_f0', (0, [1, 2, 3]), False, False), 'FE1_f1_C0_D10': ('FE1_f0_C0_D01', (16, [0, 1]), False, False), 'FE0_f2': ('FE0_f0', (10, [0, 1, 5]), False, False), 'FE0_f0_D01': ('FE0_f0_D01', (1, [0, 2, 3, 4, 5]), False, False), 'FE1_f0_C1_D01': ('FE1_f0_C0_D01', (18, [3, 5]), False, False), 'FE1_f2_C1_D01': ('FE1_f0_C0_D01', (18, [3, 5]), False, False), 'FE1_f1_C1_D10': ('FE1_f0_C0_D01', (19, [3, 4]), False, False), 'FE0_f1_D11': ('FE0_f0_D11', (4, [0, 3, 4, 5]), False, False), 'FE0_f1_D10': ('FE0_f1_D10', (8, [0, 1, 3, 4, 5]), False, False), 'FE0_f2_D10': ('FE0_f1_D01', (12, [0, 1, 5]), False, False), 'FE0_f2_D11': ('FE0_f2_D11', (13, [0, 3, 4, 5]), False, False), 'FE1_f2_C0': ('FE1_f0_C0', (22, [0, 1]), False, False), 'FE1_f2_C1': ('FE1_f0_C0', (23, [3, 4]), False, False), 'FE0_f0_D02': ('FE0_f0_D02', (2, [0, 2, 4]), False, False), 'FE1_f2_C0_D01': ('FE1_f0_C0_D01', (15, [0, 2]), False, False), 'FE0_f1': ('FE0_f0', (6, [0, 2, 4]), False, False), 'FE0_f0_D10': ('FE0_f0_D10', (3, [0, 1, 3, 4, 5]), False, False), 'FE0_f0_D11': ('FE0_f0_D11', (4, [0, 3, 4, 5]), False, False), 'FE1_f0_C1': ('FE1_f0_C0', (17, [4, 5]), False, False), 'FE1_f0_C0_D10': ('FE1_f0_C0_D01', (16, [0, 1]), False, False), 'FE1_f1_C0_D01': ('FE1_f0_C0_D01', (15, [0, 2]), False, False), 'FE1_f0_C0': ('FE1_f0_C0', (14, [1, 2]), False, False), 'FE0_f2_D02': ('FE0_f0_D02', (2, [0, 2, 4]), False, False), 'FE0_f2_D01': ('FE0_f2_D01', (11, [0, 2, 3, 4, 5]), False, False), 'FE1_f2_C1_D10': ('FE1_f0_C0_D01', (19, [3, 4]), False, False), 'FE0_f2_D20': ('FE0_f0_D02', (5, [0, 1, 5]), False, False), 'FE1_f0_C1_D10': ('FE1_f0_C0_D01', (19, [3, 4]), False, False), 'FE1_f1_C1_D01': ('FE1_f0_C0_D01', (18, [3, 5]), False, False), 'FE1_f2_C0_D10': ('FE1_f0_C0_D01', (16, [0, 1]), False, False), 'FE0_f1_D20': ('FE0_f0_D02', (9, [0, 1, 5]), False, False), 'FE0_f1_D01': ('FE0_f1_D01', (7, [0, 2, 4]), False, False), 'FE0_f1_D02': ('FE0_f0_D02', (2, [0, 2, 4]), False, False), 'FE0_f0_D20': ('FE0_f0_D02', (5, [0, 1, 5]), False, False), 'FE2_f2': ('FE2_f0', (), False, True), 'FE2_f0': ('FE2_f0', (), False, True), 'FE2_f1': ('FE2_f0', (), False, True), 'FE1_f0_C0_D01': ('FE1_f0_C0_D01', (15, [0, 2]), False, False), 'FE1_f1_C1': ('FE1_f0_C0', (21, [3, 5]), False, False), 'FE1_f1_C0': ('FE1_f0_C0', (20, [0, 2]), False, False)} + Transforming interior facet integral (0, 0) + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming interior facet integral (0, 1) + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming interior facet integral (0, 2) + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming interior facet integral (1, 0) + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming interior facet integral (1, 1) + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming interior facet integral (1, 2) + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming interior facet integral (2, 0) + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming interior facet integral (2, 1) + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming interior facet integral (2, 2) + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.00129 seconds + Shape of reference tensor: (6, 6) + Primary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.586824 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Optimising expressions for cell integral + Optimising expressions for facet integral (0, 0) + Optimising expressions for facet integral (0, 1) + Optimising expressions for facet integral (0, 2) + Optimising expressions for facet integral (1, 0) + Optimising expressions for facet integral (1, 1) + Optimising expressions for facet integral (1, 2) + Optimising expressions for facet integral (2, 0) + Optimising expressions for facet integral (2, 1) + Optimising expressions for facet integral (2, 2) + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.279453 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 2 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 2 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: facet_area + Generating code for forms + +Compiler stage 4 finished in 0.164129 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.00078392 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Biharmonic.h. + +Compiler stage 5 finished in 0.00114989 seconds. + +FFC finished in 1.07811 seconds. diff --git a/demo/documented/biharmonic/cpp/documentation.rst b/demo/documented/biharmonic/cpp/documentation.rst new file mode 100644 index 0000000..9ff2386 --- /dev/null +++ b/demo/documented/biharmonic/cpp/documentation.rst @@ -0,0 +1,211 @@ +.. Documentation for the biharmonic demo from DOLFIN. + +.. _demo_pde_biharmonic_cpp_documentation: + + +Biharmonic equation +=================== + +.. include:: ../common.txt + + +Implementation +-------------- + +The implementation is split in two files, a form file containing the definition +of the variational forms expressed in UFL and the solver which is implemented +in a C++ file. + +Running this demo requires the files: :download:`main.cpp`, +:download:`Biharmonic.ufl` and :download:`CMakeLists.txt`. + +UFL form file +^^^^^^^^^^^^^ + +First we define the variational problem in UFL in the file called +:download:`Biharmonic.ufl`. + +In the UFL file, the finite element space is defined: + +.. code-block:: python + + # Elements + element = FiniteElement("Lagrange", triangle, 2) + +On the space ``element``, trial and test functions, and the source term +are defined: + +.. code-block:: python + + # Trial and test functions + u = TrialFunction(element) + v = TestFunction(element) + f = Coefficient(element) + +Next, the outward unit normal to cell boundaries and a measure of the +cell size are defined. The average size of cells sharing a facet will +be used (``h_avg``). The UFL syntax ``('+')`` and ``('-')`` restricts +a function to the ``('+')`` and ``('-')`` sides of a facet, +respectively. The penalty parameter ``alpha`` is made a +:cpp:class:`Constant` so that it can be changed in the program without +regenerating the code. + +.. code-block:: python + + # Normal component, mesh size and right-hand side + n = FacetNormal(triangle) + h = 2.0*Circumradius(triangle) + h_avg = (h('+') + h('-'))/2 + + # Parameters + alpha = Constant(triangle) + +Finally the bilinear and linear forms are defined. Integrals over +internal facets are indicated by ``*dS``. + +.. code-block:: python + + # Bilinear form + a = inner(div(grad(u)), div(grad(v)))*dx \ + - inner(avg(div(grad(u))), jump(grad(v), n))*dS \ + - inner(jump(grad(u), n), avg(div(grad(v))))*dS \ + + alpha('+')/h_avg*inner(jump(grad(u), n), jump(grad(v),n))*dS + + # Linear form + L = f*v*dx + + +C++ program +^^^^^^^^^^^ + +The DOLFIN interface and the code generated from the UFL input is included, +and the DOLFIN namespace is used: + +.. code-block:: c++ + + #include + #include "Biharmonic.h" + + using namespace dolfin; + +A class ``Source`` is defined for the function :math:`f`, with the +function ``Expression::eval`` overloaded: + +.. code-block:: c++ + + // Source term + class Source : public Expression + { + public: + + void eval(Array& values, const Array& x) const + { + values[0] = 4.0*std::pow(DOLFIN_PI, 4)* + std::sin(DOLFIN_PI*x[0])*std::sin(DOLFIN_PI*x[1]); + } + + }; + +A boundary subdomain is defined, which in this case is the entire boundary: + +.. code-block:: c++ + + // Sub domain for Dirichlet boundary condition + class DirichletBoundary : public SubDomain + { + bool inside(const Array& x, bool on_boundary) const + { + return on_boundary; + } + }; + +The main part of the program is begun, and a mesh is created with 32 vertices +in each direction: + +.. code-block:: c++ + + int main() + { + // Create mesh + UnitSquareMesh mesh(32, 32); + + +The source function, a function for the cell size and the penalty term +are declared: + +.. code-block:: c++ + + // Create functions + Source f; + Constant alpha(8.0); + +A function space object, which is defined in the generated code, is created: + +.. code-block:: c++ + + // Create function space + Biharmonic::FunctionSpace V(mesh); + +The Dirichlet boundary condition on :math:`u` is constructed by +defining a :cpp:class:`Constant` which is equal to zero, defining the boundary +(``DirichletBoundary``), and using these, together with ``V``, to create +``bc``: + +.. code-block:: c++ + + // Define boundary condition + Constant u0(0.0); + DirichletBoundary boundary; + DirichletBC bc(V, u0, boundary); + +Using the function space ``V``, the bilinear and linear forms +are created, and function are attached: + +.. code-block:: c++ + + // Define variational problem + Biharmonic::BilinearForm a(V, V); + Biharmonic::LinearForm L(V); + a.alpha = alpha; L.f = f; + +A :cpp:class:`Function` is created to hold the solution and the +problem is solved: + +.. code-block:: c++ + + // Compute solution + Function u(V); + solve(a == L, u, bc); + +The solution is then written to a file in VTK format and plotted to +the screen: + +.. code-block:: c++ + + // Save solution in VTK format + File file("biharmonic.pvd"); + file << u; + + // Plot solution + plot(u); + interactive(); + + return 0; + } + +Complete code +------------- + +Complete UFL file +^^^^^^^^^^^^^^^^^ + +.. literalinclude:: Biharmonic.ufl + :start-after: # Compile + :language: python + +Complete main file +^^^^^^^^^^^^^^^^^^ + +.. literalinclude:: main.cpp + :start-after: // using + :language: c++ diff --git a/demo/documented/biharmonic/cpp/main.cpp b/demo/documented/biharmonic/cpp/main.cpp new file mode 100644 index 0000000..a4aa7f1 --- /dev/null +++ b/demo/documented/biharmonic/cpp/main.cpp @@ -0,0 +1,100 @@ +// Copyright (C) 2009 Kristian B. Oelgaard +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Anders Logg, 2011 +// +// First added: 2009-06-26 +// Last changed: 2012-11-12 +// +// This demo program solves the Biharmonic equation, +// +// - nabla^4 u(x, y) = f(x, y) +// +// on the unit square with source f given by +// +// f(x, y) = 4 pi^4 sin(pi*x)*sin(pi*y) +// +// and boundary conditions given by +// +// u(x, y) = 0 +// nabla^2 u(x, y) = 0 +// +// using a discontinuous Galerkin formulation (interior penalty method). + +#include +#include "Biharmonic.h" + +using namespace dolfin; + +// Source term +class Source : public Expression +{ +public: + + void eval(Array& values, const Array& x) const + { + values[0] = 4.0*std::pow(DOLFIN_PI, 4)* + std::sin(DOLFIN_PI*x[0])*std::sin(DOLFIN_PI*x[1]); + } + +}; + +// Sub domain for Dirichlet boundary condition +class DirichletBoundary : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return on_boundary; + } +}; + +int main() +{ + // Create mesh + UnitSquareMesh mesh(32, 32); + + // Create functions + Source f; + Constant alpha(8.0); + + // Create function space + Biharmonic::FunctionSpace V(mesh); + + // Define boundary condition + Constant u0(0.0); + DirichletBoundary boundary; + DirichletBC bc(V, u0, boundary); + + // Define variational problem + Biharmonic::BilinearForm a(V, V); + Biharmonic::LinearForm L(V); + a.alpha = alpha; L.f = f; + + // Compute solution + Function u(V); + solve(a == L, u, bc); + + // Save solution in VTK format + File file("biharmonic.pvd"); + file << u; + + // Plot solution + plot(u); + interactive(); + + return 0; +} diff --git a/demo/documented/biharmonic/python/demo_biharmonic.py b/demo/documented/biharmonic/python/demo_biharmonic.py new file mode 100644 index 0000000..4011833 --- /dev/null +++ b/demo/documented/biharmonic/python/demo_biharmonic.py @@ -0,0 +1,95 @@ +"""This demo program solves the Biharmonic equation, + + nabla^4 u(x, y) = f(x, y) + +on the unit square with source f given by + + f(x, y) = 4 pi^4 sin(pi*x)*sin(pi*y) + +and boundary conditions given by + + u(x, y) = 0 + nabla^2 u(x, y) = 0 + +using a discontinuous Galerkin formulation (interior penalty method). +""" + +# Copyright (C) 2009 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2011 +# +# First added: 2009-06-26 +# Last changed: 2012-11-12 + +# Begin demo + +from dolfin import * + +# Optimization options for the form compiler +parameters["form_compiler"]["cpp_optimize"] = True +parameters["form_compiler"]["optimize"] = True + +# Create mesh and define function space +mesh = UnitSquareMesh(32, 32) +V = FunctionSpace(mesh, "CG", 2) + +# Define Dirichlet boundary +class DirichletBoundary(SubDomain): + def inside(self, x, on_boundary): + return on_boundary + +class Source(Expression): + def eval(self, values, x): + values[0] = 4.0*pi**4*sin(pi*x[0])*sin(pi*x[1]) + +# Define boundary condition +u0 = Constant(0.0) +bc = DirichletBC(V, u0, DirichletBoundary()) + +# Define trial and test functions +u = TrialFunction(V) +v = TestFunction(V) + +# Define normal component, mesh size and right-hand side +h = CellSize(mesh) +h_avg = (h('+') + h('-'))/2.0 +n = FacetNormal(mesh) +f = Source() + +# Penalty parameter +alpha = Constant(8.0) + +# Define bilinear form +a = inner(div(grad(u)), div(grad(v)))*dx \ + - inner(avg(div(grad(u))), jump(grad(v), n))*dS \ + - inner(jump(grad(u), n), avg(div(grad(v))))*dS \ + + alpha('+')/h_avg*inner(jump(grad(u),n), jump(grad(v),n))*dS + +# Define linear form +L = f*v*dx + +# Solve variational problem +u = Function(V) +solve(a == L, u, bc) + +# Save solution to file +file = File("biharmonic.pvd") +file << u + +# Plot solution +plot(u, interactive=True) diff --git a/demo/documented/biharmonic/python/documentation.rst b/demo/documented/biharmonic/python/documentation.rst new file mode 100644 index 0000000..20621eb --- /dev/null +++ b/demo/documented/biharmonic/python/documentation.rst @@ -0,0 +1,138 @@ +.. Documentation for the biharmonic demo from DOLFIN. + +.. _demo_pde_biharmonic_python_documentation: + +Biharmonic equation +=================== + +This demo is implemented in a single Python file, +:download:`demo_biharmonic.py`, which contains both the variational +forms and the solver. + +.. include:: ../common.txt + + +Implementation +-------------- + +This demo is implemented in the :download:`demo_biharmonic.py` file. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +Next, some parameters for the form compiler are set: + +.. code-block:: python + + # Optimization options for the form compiler + parameters["form_compiler"]["cpp_optimize"] = True + parameters["form_compiler"]["optimize"] = True + +A mesh is created, and a quadratic finite element function space: + +.. code-block:: python + + # Create mesh and define function space + mesh = UnitSquareMesh(32, 32) + V = FunctionSpace(mesh, "CG", 2) + +A subclass of :py:class:`SubDomain `, +``DirichletBoundary`` is created for later defining the boundary of +the domian: + +.. code-block:: python + + # Define Dirichlet boundary + class DirichletBoundary(SubDomain): + def inside(self, x, on_boundary): + return on_boundary + +A subclass of :py:class:`Expression +`, ``Source`` is created for +the source term :math:`f`: + +.. code-block:: python + + class Source(Expression): + def eval(self, values, x): + values[0] = 4.0*pi**4*sin(pi*x[0])*sin(pi*x[1]) + +The Dirichlet boundary condition is created: + +.. code-block:: python + + # Define boundary condition + u0 = Constant(0.0) + bc = DirichletBC(V, u0, DirichletBoundary()) + +On the finite element space ``V``, trial and test functions are created: + +.. code-block:: python + + # Define trial and test functions + u = TrialFunction(V) + v = TestFunction(V) + +A function for the cell size :math:`h` is created, as is a function +for the average size of cells that share a facet (``h_avg``). The UFL +syntax ``('+')`` and ``('-')`` restricts a function to the ``('+')`` +and ``('-')`` sides of a facet, respectively. The unit outward normal +to cell boundaries (``n``) is created, as is the source term ``f`` and +the penalty parameter ``alpha``. The penalty parameters is made a +:py:class:`Constant ` so that it +can be changed without needing to regenerate code. + +.. code-block:: python + + # Define normal component, mesh size and right-hand side + h = CellSize(mesh) + h_avg = (h('+') + h('-'))/2.0 + n = FacetNormal(mesh) + f = Source() + + # Penalty parameter + alpha = Constant(8.0) + +The bilinear and linear forms are defined: + +.. code-block:: python + + # Define bilinear form + a = inner(div(grad(u)), div(grad(v)))*dx \ + - inner(avg(div(grad(u))), jump(grad(v), n))*dS \ + - inner(jump(grad(u), n), avg(div(grad(v))))*dS \ + + alpha('+')/h_avg*inner(jump(grad(u),n), jump(grad(v),n))*dS + + # Define linear form + L = f*v*dx + +A :py:class:`Function ` is created +to store the solution and the variational problem is solved: + +.. code-block:: python + + # Solve variational problem + u = Function(V) + solve(a == L, u, bc) + +The computed solution is written to a file in VTK format and plotted to +the screen. + +.. code-block:: python + + # Save solution to file + file = File("biharmonic.pvd") + file << u + + # Plot solution + plot(u, interactive=True) + + +Complete code +------------- + +.. literalinclude:: demo_biharmonic.py + :start-after: # Begin demo diff --git a/demo/documented/built-in_meshes/common.txt b/demo/documented/built-in_meshes/common.txt new file mode 100644 index 0000000..3acc9a6 --- /dev/null +++ b/demo/documented/built-in_meshes/common.txt @@ -0,0 +1,16 @@ +This demo illustrates: + +* How to define some of the different built-in meshes in DOLFIN + +Problem definition +------------------ + +The demo focuses on the built-in meshes. We will look at the following +meshes: + +* :py:class:`UnitIntervalMesh ` +* :py:class:`UnitSquareMesh ` +* :py:class:`RectangleMesh ` +* :py:class:`UnitCircleMesh ` +* :py:class:`UnitCubeMesh ` +* :py:class:`BoxMesh ` diff --git a/demo/documented/built-in_meshes/cpp/CMakeLists.txt b/demo/documented/built-in_meshes/cpp/CMakeLists.txt new file mode 100644 index 0000000..eefd75d --- /dev/null +++ b/demo/documented/built-in_meshes/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_built-in_meshes) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/built-in_meshes/cpp/documentation.rst b/demo/documented/built-in_meshes/cpp/documentation.rst new file mode 100644 index 0000000..baea088 --- /dev/null +++ b/demo/documented/built-in_meshes/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the built-in_meshes demo from DOLFIN. + +.. _demo_pde_built-in_meshes_python_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/built-in_meshes/cpp/main.cpp b/demo/documented/built-in_meshes/cpp/main.cpp new file mode 100644 index 0000000..295fc82 --- /dev/null +++ b/demo/documented/built-in_meshes/cpp/main.cpp @@ -0,0 +1,94 @@ +// Copyright (C) 2009 Kristian B. Oelgaard +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2009-09-29 +// Last changed: 2012-12-12 +// +// This demo illustrates the built-in mesh types. + +#include + +using namespace dolfin; + +int main() +{ + if (dolfin::MPI::size(MPI_COMM_WORLD) == 1) + { + UnitIntervalMesh interval(10); + info("Plotting a UnitIntervalMesh"); + plot(interval, "Unit interval"); + } + + UnitSquareMesh square_default(10, 10); + info("Plotting a UnitSquareMesh"); + plot(square_default, "Unit square"); + + UnitSquareMesh square_left(10, 10, "left"); + info("Plotting a UnitSquareMesh"); + plot(square_left, "Unit square (left)"); + + UnitSquareMesh square_crossed(10, 10, "crossed"); + info("Plotting a UnitSquareMesh"); + plot(square_crossed, "Unit square (crossed)"); + + UnitSquareMesh square_right_left(10, 10, "right/left"); + info("Plotting a UnitSquareMesh"); + plot(square_right_left, "Unit square (right/left)"); + + RectangleMesh rectangle_default(0.0, 0.0, 10.0, 4.0, 10, 10); + info("Plotting a RectangleMesh"); + plot(rectangle_default, "Rectangle"); + + RectangleMesh rectangle_right_left(-3.0, 2.0, 7.0, 6.0, 10, 10, "right/left"); + info("Plotting a RectangleMesh"); + plot(rectangle_right_left, "Rectangle (right/left)"); + + #ifdef HAS_CGAL + CircleMesh circle_mesh(Point(0.0, 0.0), 1.0, 0.2); + info("Plotting a CircleMesh"); + plot(circle_mesh, "Circle (unstructured)"); + + std::vector ellipse_dims(2); + ellipse_dims[0] = 3.0; ellipse_dims[1] = 1.0; + EllipseMesh ellipse_mesh(Point(0.0, 0.0), ellipse_dims, 0.2); + info("Plotting an EllipseMesh"); + plot(ellipse_mesh, "Ellipse mesh (unstructured)"); + + SphereMesh sphere_mesh(Point(0.0, 0.0, 0.0), 1.0, 0.2); + info("Plotting a SphereMesh"); + plot(sphere_mesh, "Sphere mesh (unstructured)"); + + std::vector ellipsoid_dims(3); + ellipsoid_dims[0] = 3.0; ellipsoid_dims[1] = 1.0; ellipsoid_dims[2] = 2.0; + EllipsoidMesh ellipsoid_mesh(Point(0.0, 0.0, 0.0), ellipsoid_dims, 0.2); + info("Plotting an EllipsoidMesh"); + plot(ellipsoid_mesh, "Ellipsoid mesh (unstructured)"); + #endif + + + UnitCubeMesh cube(10, 10, 10); + info("Plotting a UnitCubeMesh"); + plot(cube, "Unit cube"); + + BoxMesh box(0.0, 0.0, 0.0, 10.0, 4.0, 2.0, 10, 10, 10); + info("Plotting a BoxMesh"); + plot(box, "Box"); + + interactive(); + + return 0; +} diff --git a/demo/documented/built-in_meshes/python/boxmesh.png b/demo/documented/built-in_meshes/python/boxmesh.png new file mode 100644 index 0000000000000000000000000000000000000000..335a51a1218057200241a4873c21465b5c849b55 GIT binary patch literal 7418 zcmeI1`#;nF|Nm`S(QVEp+c@?+Y!Yb)AY<18ji(UI|E-so;j39b|`vg}R?`5t#B5_=A|K$N)yCn#I z@=}Uh>Y^UcCC~p}@c-&MY)%Xc&|I{Sr&maVS-0~kGlK$?%DioY`^;D?9inEp@d9U5 zONvn2ayrMKpGlG8anUZIRGV&v>1(;|N*LiOXH;Jop{V3r`_{5jxF>n+rxmXc7v-T| zkRvT4bV^CnixE2Ab#cOR9~$aolg;`(I?tAlA?PKc&|fjJ9x*I%Cf}5M0Y|np549^B zg+;%SUAiUc@Z0{Rn;IKotWGbnzEX=mA{ZwVNiIyai{OftYlth6N zgLgk7-SyVDJKia*xs_oCbqiW{mR3GF&>h4gS)D5s$u6 z4j&&NbjtImg(s%5f8W8*a;}v3tdq%yb?n_cuPj{CL#PaIh0Nw7uVf@wTo%(4EuJ+% zDye*%BSb|QOV|`6@tDkvyx@Yfs*d$6*1#AzKROP%`yOxPj91dUvnI>Dn7v>>L%vmt zYfn5g#nX0U>t*V%j{z;(rSk|cEAFgA@sS)kd8bSUtoqgunBwKhgd9lIK0P(70myx6 zTOuJaNIfo9eL4O2OdT3QuS45i5$xDFDiyi2Rm~qXf7|}q z=%?z%^S5FYe^BBTF|X9_!B{KDIgPbw8Rq?*ucLOW7RdwWDj@G=OCfLL(oN!Wf**1b z)SRyN3K_mgk7+hkY2I;Jq(I*X)IWn`3OZt}+2y`Lf-GCoxE98`m$?+VezUNKLDYliWh|wJ%6Vai|g$;{edN8;|UimBSyi#Rh$U? z3jGR6bA(eV=Xjlcd};kiL<>L9kJcMJZJQyh5~-XVYvPiuduMmLE>>VEp%y(;A&yb> zUGnzNVjZnT=ZdWazC!!I))WNvjKBPTRB;e7SAxf&Z{ISP>C{cGHwpk0`rC^OhmbP#N8yD(Q_Lrh5W5eOuHcK-DD zGG1Gv@Vt&vj+FRxBV-nqrV<@Nh)Sv5VwSLUMjos$Ef0Am4o5Y)%Y*t z-ghz9#8_bj{(Im&LntAEhccYE{^jJ3E4J-A_EjZwd=790Q%-XH`<-gsY;r(lT^ zD;ZvB$?^-6Fc9ppnH{1B7rc8Z=P71}=fIs1__SJdI6cNNUz!m-ENAyV;3wS4v@jIk zE8IV1c*VDGOK{Pi@f&(Ambc9c8(g3W6(wBzR3oVfRZA~UL#UAD|Lr=-Pm6YkRW}Vy zmkwDSdy)+!8C#$y!CTru??|NV$KR@X3z;&Im$E5>_X|JW5#=XOwI2CQm6S$f3 zc(Y^fo!DDeLs?$$zM0OixX-wu(>h;$f3k$4ixjwbN-Wq5(LGDwc~vxJq`>Ot5-Bsw zAzG!;l4XCkc;(7@+Js=?s~q*VsfLMNA&m`HHzOobi=Ojz<{Y~bNe;x+IIz*YwPh2@ zcka+Rhv2wc2L1H=V`+!;PV+3Z!)c6@K37NU*=U9|1zU^WvpsQbXO-0MmiyS-k^M8Y zn^&MAA~CEmjNIoQNxKAlt~;BilsdG#VS&-k`_+eoS--%gO|c;|P%h=4eFkXChkHcgZYLo>J@^w* zz1r)zlpRjy&xgD(g3MlnhLn8%C#Ymf<)%OPq-jeqonL4@$jD_;$NOW)z4A~2RdLt< zSYtP0#}w)@<)^48>g6w1LUK7a22N11%1zFY^xEHL<_W6kyblsHf)9y*2t+BploF>6 z!)XgI>XWv^iN7Xt&Jxb0v*xAsUylD$lMVk+8sF;kd$PTcR@V zds8%2wBgHmO*qAI0_KMVE>A%9zq{Q#th+k~r`2hw@qAH=Xt&|PIfGCBwbqW%n+wLj zRFIzrdchXA$laKik8>bes#fMU^B*>50{|(vPa~rmesr!>)>zNqFwI;^{zg!?Z8<|F z1KUpMJRBUg%dp6EI3NUMCSUOTX5-&X9C9dV$;u+Uj^GJn@gIp<1-<4(U!D7#xIV6%rFT&;bEHDmU-dkN0p3#6CV1R?S?B7(qp4fK>Ab4Y~WR6 zF8g!qgin8AsHj3q{;==^f_ydoaIkb~D1Q4vmxI!Kmu~?gtxJ z#NKAB`#VENl3~@BnZ2p9>SpQ_35WBe9uso~<5U;7TOTv_S9pGZF7GtwTvQJ^L=ZFw z64Cc&<_#O-FLq(~#Icno0U*EElV%p=-j;4a+kTW_du}cadwPL#?}Hk%b5V7G?l-am z)*h?H_`Rz%F*0BH;l6=iDmLr^dxD^3Kt1JSr4aZ`Z0w#3*lI4fz^aEhX9>?#vtiZc zd9dojBp8c{Iq3DZ-6O^?XTh3Swj(!VV*I;Zz6L+LxIfSvw3b%*AK6FTfqonx#iFC1 z{zr(@w?Fh3AVIOPGW+^)=*Q4gsUAH;@pWjv_yjB(v)k+nUC%dYijzuN3c1;j8C4uS zr+F*-EduNyN9A^M?H@lamVAQqCISMQR(&SmP%X(FxpzkMc1HV19Nnsy@%C{(C zBE^?R)Ocp253Egj280R64TsNdASAu5>^}N8%`Ohu037w{F<%<_uk$!+SXgH>R~}?$ z=jtZ*i6O87S=l*J$Qx@Yl7bNiRa?qbm!RJLJwXrD(G$HT*zrfLdDqenG+Mu2ZcQXB zaHpyf?EyU)wBK+84U6Q>kO!O2kjc!OB8DPyN8V8@pWE?-F*WSP%TEPX*|raB^22IcW=kmVbvIOd8akuexOjFANF$i2j|=X(F>8r z`GA1f%4OM3B+6O$R8IQ;`C#jmpe%8OA~++ zR>?5GF1XXznrH$fVmtT&bbTEk-+LO1?i0g?-dzrM2i+JFd9ZQv2+42lvEaN8=zn!` zUJODdY<`}?@tu~zy1$o+{@(OVAQy6|yrxPG1<>S#KO!x9gkUs*av3*ellKoDc)0SR zZKbFWSeR#^ROQ&?q<&Pgt{jJ~Og|{u^%X^}c)u5qF=;xvlmD2@Ja_{Dx34;(<_fUdFK$t~ zm?o~{uH2Jz7xF&jtAod@|7KW?(ejH0P_jM5&Y-4)t1v*$YU(o05HC z<3x_OlfVL^%K5v4NeNOs^M}ou5gb(0N zp-)4z1>;=cHbm+g=|C5_IgJ)s;hhCkkfrsOqOX>dzxi%JEjqgnt$^}B6kNcgv;pFKbS1N1y{NNc3@ythYjk*jvCB>(nG7$AJNsnfHd!xFe3)>3{Hr6yESl8zUEa1c zh0>d(VZZ1RxRb$S0;=C)BM5W805WS^_49Hs`*6j%Hcz=>EdWC2x8P3K@%`+K1qICX zDF7Ih`NOFR)vGuO@)gH!wHCMY^C?q+`m}!y%oIzP!=u8Zm^zHhz4cc=@-$(19^h|Y z&~!RmwTUbR3ksTgPD*Z$=~cey5e6WlHZT-I3{aH z?LM~xLh=`kMH6VqVCvM@I|SI_fE#5zK-1+96f8#pD{2aWu1{mTFu~bweuwlz%n+p4 z4z)UFtcQUC-N0_ks@?}tvd>umrL^QOxXq<=fRtwVYtjDM?>s=1jGR05=xN{yYFE3+ z+h$W|!3&oJ$4P7&mlESiDa5;~2m*)SuE~E+_jG)uEbsIwS;y9bdpurB{0~e2@~ETl zYl!z5;6F^ve>?czgIYDO)2xZpt~cg&^u&Smbh6y>1mQ@Ab?9!upZdVCEZ|XqeNcWB z>kbMh1o?jY=c-_bMiXEEYIa(}@g;}BDI4PNQvGjWm5iK(I&^rtZV^OFEyz&~DvJB^ z)s;N&V&vZJb>VYQc15J_AZ22rRok}53l!>|5`R46>>CAY+8b$cmp*XR0y(+1$-(k~ zcuM7~vZZ=E(|~&Gs_@J!_!Z7tfiGxAE>E{0(w5l0vMg(<1`VmPn>*=4kJ?$9sQcpZ zsq~1rzF>k)4>)SBzhaA7i^&$Z(rhkW1zc&o-e0Vy>O7_Gmo@QY>!0bxuaB&WxHqq( zU18Nh3!aU~ez})9B6r(QTt1lQ>~SGZA?3jTfjZ@>mL2!G>t7j8eT(Z|FVqv-`q~`& zMM?V3)CzC@xz$QxRjWu-SNjUG4r{fzKp;mo`kU_pE_YMk2R~iP43UYakL%botk+^*$q?lfU(wb-3s5) z`q85`E_;}9Hb>Pl*D-sTw-un3xOsWnR3bH<5l+4HKvwWUGwPPyhlt0xaBgjlHz#ti8VA z_(0A+X4sx^h0TUw)s+T=HL3*=?}{ZGQUm0ta16_#4jozH0fGW%dm8Zk){uJ`uUE}g zF;Am`AWqb1G7p>Hd=A(w0)TwP{yKD@S(ppsY-2%CM#S4BB_ML9>^T!7Uzh=Lg&&km zl1(~Wu0u!4jIvQKCCmFSl*O88@_*bk5Z4QNIGlJ7h*%{RVJf(1m!l-~4l;YE_y(Sm z3lUdY+G4whwL;gEu!5Sw1y*_emB>#&v1l!oj?2`@DPawuxss=ODL9U$l!YFdhzN%_ z6c0xSAGI2lTaz8=YZ_x1u3$M2+OgwT0hF=dj>iV;&9Eju z4~PRCIN<*}tlm{o_uxO_CZj$%<^Oi|)IE-`MW5E}TQT&>V%D6?_emZg%h5*rn(f_qaR z@c6%&!`cy#q5#Be``XNUZJVTcez$~{DtjLkTfQu>%IJ-*DUciM#-cZyhp+!P{yAg1Q{GG;GttUN>5p}p{AbBYu(DVu0X`%A87k`r!Q0QLiliRN*XU5H4qgZk` zY<|XaPu|ihEr{y{47v|&fjIgdJan9*3$WOlvh<(%HegmU8yV!c_@V8)jI-nJ%${^? zh_NQeH^0rPX|!2w>Wfdv(-u_qT{55Hu97BS5m3xzo`$CTN9g>9dYV~cik25@AbAQq zLCE{QAl2+Yh$=sT3h+O0*KP4Dy}y*Ci~G1IL&ySO6Xxlp=aP{XDS42H!!LJ%UWn9l z;DU6*G{3{sv;c1z%qGX0SWaO609<<_KRP$#rp>PRa3A%wsJ>tt>loPHz$x#kW$Vor zz#8sU7Y@FYSGv`hzDvQP3m%;KH31A`-qoyU`4DKLF@9*dJ@f#u@_wnp6$MuwM%NIIn~ z{FWe0@KQW|D(EdoLwX`**M``B`h7%Nlp@fV*bvVFZRlnbkUwSRr~)PEy2iy> zTi4sh&=5(TtD<)oynUJTBI$#NzwzZ~lJoOYP3IS~Dk|UEdE>WT+8CY^)%w49-eer| zjhN%OV4fV;5-ZF@bxLH)NrEL<5X5~TCP+BvV>>$H7Pr;u85L)O#S=>o0k0zDu=xRI z3Vfwm&7&oxmLMf=2z>|KdRQnb7P!gg5V<*$C&Zf*Zovhj5yv%vQ-o;T*z(of zQ}pIeU>+(McRQ~W6sc|pj4HU^t^(%}TwGPB{(JKD|LX}Hc6XnKBFLeb>QMxoX>wh^ MVr)=#*(v6K0L*;69RL6T literal 0 HcmV?d00001 diff --git a/demo/documented/built-in_meshes/python/demo_built-in.py b/demo/documented/built-in_meshes/python/demo_built-in.py new file mode 100644 index 0000000..fc6dca7 --- /dev/null +++ b/demo/documented/built-in_meshes/python/demo_built-in.py @@ -0,0 +1,82 @@ +"""This demo illustrates the built-in mesh types.""" + +# Copyright (C) 2008 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2008. +# Modified by Benjamin Kehlet 2012 +# +# First added: 2008-07-11 +# Last changed: 2012-11-12 +# Begin demo + +from dolfin import * + +mesh = UnitIntervalMesh(10) +print "Plotting a UnitIntervalMesh" +plot(mesh, title="Unit interval") + +mesh = UnitSquareMesh(10, 10) +print "Plotting a UnitSquareMesh" +plot(mesh, title="Unit square") + +mesh = UnitSquareMesh(10, 10, "left") +print "Plotting a UnitSquareMesh" +plot(mesh, title="Unit square (left)") + +mesh = UnitSquareMesh(10, 10, "crossed") +print "Plotting a UnitSquareMesh" +plot(mesh, title="Unit square (crossed)") + +mesh = UnitSquareMesh(10, 10, "right/left") +print "Plotting a UnitSquareMesh" +plot(mesh, title="Unit square (right/left)") + +mesh = RectangleMesh(0.0, 0.0, 10.0, 4.0, 10, 10) +print "Plotting a RectangleMesh" +plot(mesh, title="Rectangle") + +mesh = RectangleMesh(-3.0, 2.0, 7.0, 6.0, 10, 10, "right/left") +print "Plotting a RectangleMesh" +plot(mesh, title="Rectangle (right/left)") + +if has_cgal(): + mesh = CircleMesh(Point(0.0, 0.0), 1.0, 0.2) + print "Plotting a CircleMesh" + plot(mesh, title="Circle (unstructured)") + + mesh = EllipseMesh(Point(0.0, 0.0), [3.0, 1.0], 0.2) + print "Plotting an EllipseMesh" + plot(mesh, title="Ellipse mesh (unstructured)") + + mesh = SphereMesh(Point(0.0, 0.0, 0.0), 1.0, 0.2) + print "Plotting a SphereMesh" + plot(mesh, title="Sphere mesh (unstructured)") + + mesh = EllipsoidMesh(Point(0.0, 0.0, 0.0), [3.0, 1.0, 2.0], 0.2) + print "Plotting an EllipsoidMesh" + plot(mesh, title="Ellipsoid mesh (unstructured)") + +mesh = UnitCubeMesh(10, 10, 10) +print "Plotting a UnitCubeMesh" +plot(mesh, title="Unit cube") + +mesh = BoxMesh(0.0, 0.0, 0.0, 10.0, 4.0, 2.0, 10, 10, 10) +print "Plotting a BoxMesh" +plot(mesh, title="Box") + +interactive() diff --git a/demo/documented/built-in_meshes/python/documentation.rst b/demo/documented/built-in_meshes/python/documentation.rst new file mode 100644 index 0000000..64194de --- /dev/null +++ b/demo/documented/built-in_meshes/python/documentation.rst @@ -0,0 +1,201 @@ +.. Documentation for the built-in_meshes demo from DOLFIN. + +.. _demo_pde_built-in_meshes_python_documentation: + +Built-in meshes +==================== + +This demo is implemented in a single Python file, +:download:`demo_built-in.py`, and demonstrates use of the built-in +meshes in DOLFIN. + +.. include:: ../common.txt + +Implementation +-------------- + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +The first mesh we make is a mesh over the unit interval +:math:`(0,1)`. :py:class:`UnitIntervalMesh +` takes the number of intervals +:math:`(n_x)` as input argument, and the total number of vertices is +therefore :math:`(n_x+1)`. + +.. code-block:: python + + mesh = UnitIntervalMesh(10) + print "Plotting a UnitIntervalMesh" + plot(mesh, title="Unit interval") + +This produces a mesh looking as follows: + +.. image:: unitintervalmesh.png + :scale: 75 % + +We then make our first version of a mesh on the unit square +:math:`[0,1] \times [0,1]`. We must give the number of cells in the +horizontal and vertical directions as the first two arguments to +:py:class:`UnitSquareMesh +`. There is a third optional +argument that indicates the direction of the diagonals. This can be +set to "left", "right", "right/left", "left/right", or "crossed". We +can also omit this argument and thereby use the default direction +"right". + +.. code-block:: python + + mesh = UnitSquareMesh(10, 10) + print "Plotting a UnitSquareMesh" + plot(mesh, title="Unit square") + +.. image:: unitsquaremesh.png + :scale: 75 % + +Our second version of a mesh on the unit square has diagonals to the +left, the third version has crossed diagonals and our final version +has diagonals to both left and right: + +.. code-block:: python + + mesh = UnitSquareMesh(10, 10, "left") + print "Plotting a UnitSquareMesh" + plot(mesh, title="Unit square (left)") + + mesh = UnitSquareMesh(10, 10, "crossed") + print "Plotting a UnitSquareMesh" + plot(mesh, title="Unit square (crossed)") + + mesh = UnitSquareMesh(10, 10, "right/left") + print "Plotting a UnitSquareMesh" + plot(mesh, title="Unit square (right/left)") + +.. image:: unitsquaremesh_left.png + :scale: 65 % + +.. image:: unitsquaremesh_crossed.png + :scale: 65 % + +.. image:: unitsquaremesh_left_right.png + :scale: 65 % + +The class :py:class:`RectangleMesh +` +(:math:`x_0,y_0,x_1,y_1,n_x,n_y`, direction) creates a mesh on a +rectangle with one corner in :math:`(x_0,y_0)` and the opposite corner +in :math:`(x_1,y_1)`. :math:`n_x` and :math:`n_y` specify the number +of cells in the :math:`x`- and :math:`y`-directions, and as above the +direction of the diagonals is given as a final optional argument +("left", "right", "left/right", or "crossed"). In the first mesh we +use the default direction ("right") of the diagonal, and in the second +mesh we use diagonals to both left and right. + +.. code-block:: python + + mesh = RectangleMesh(0.0, 0.0, 10.0, 4.0, 10, 10) + print "Plotting a RectangleMesh" + plot(mesh, title="Rectangle") + + mesh = RectangleMesh(-3.0, 2.0, 7.0, 6.0, 10, 10, "right/left") + print "Plotting a RectangleMesh" + plot(mesh, title="Rectangle (right/left)") + +.. image:: rectanglemesh.png + :scale: 75 % + +.. image:: rectanglemesh_left_right.png + :scale: 75 % + +Unstructured ellipsoid and ellipse meshes can be created if DOLFIN is +configured with CGAL. Using :py:class:`CircleMesh +` For a circle centered at (0, 0) +with radius 1 and cell size 0.2: + +.. code-block:: python + + mesh = CircleMesh(Point(0.0, 0.0), 1.0, 0.2) + print "Plotting a CircleMesh" + plot(mesh, title="Circle (unstructured)") + +Using :py:class:`EllipseMesh ` for +an ellipse centered at (0, 0) with 'radii' of 3 and 1 in the +:math:`x`- and :math:`y` directions, respectively, and cell size 0.2: + +.. code-block:: python + + mesh = EllipseMesh(Point(0.0, 0.0), [3.0, 1.0], 0.2) + print "Plotting an EllipseMesh" + plot(mesh, title="Ellipse mesh (unstructured)") + +Using :py:class:`SphereMesh ` for a +sphere centered at (0, 0, 0) with radius 1 and cell size 0.2: + +.. code-block:: python + + mesh = SphereMesh(Point(0.0, 0.0, 0.0), 1.0, 0.2) + print "Plotting a SphereMesh" + plot(mesh, title="Sphere mesh (unstructured)") + +Using :py:class:`EllipsoidMesh ` +For an ellipsoid centered at (0, 0, 0.0), with 'radii' of 3, 1 and 2 +in the :math:`x`-, :math:`y` and :math`z`-directions, respectively, +and cell size 0.2: + +.. code-block:: python + + mesh = EllipsoidMesh(Point(0.0, 0.0, 0.0), [3.0, 1.0, 2.0], 0.2) + print "Plotting an EllipsoidMesh" + plot(mesh, title="Ellipsoid mesh (unstructured)") + +To make a mesh of the 3D unit cube :math:`[0,1] \times [0,1] \times +[0,1]`, we use :py:class:`UnitCubeMesh +`. :py:class:`UnitCubeMesh +` takes the number of cells in the +:math:`x`-, :math:`y`- and :math:`z`-direction as the only three +arguments. + +.. code-block:: python + + mesh = UnitCubeMesh(10, 10, 10) + print "Plotting a UnitCubeMesh" + plot(mesh, title="Unit cube") + +.. image:: unitcubemesh.png + :scale: 75 % + +Finally we will demonstrate a mesh on a rectangular prism in +3D. :py:class:`BoxMesh ` +(:math:`x_0,y_0,z_0,x_1,y_1,z_1,x_n,y_n,z_n`) takes the coordinates of +the first corner(:math:`x_0,y_0,z_0`) as the three first arguments, +the coordinates of the opposite corner (:math:`x_1,y_1,z_1`) as the +next three arguments, while the last three arguments specify the +number of points in the :math:`x`-, :math:`y`- and +:math:`z`-direction. + +.. code-block:: python + + mesh = BoxMesh(0.0, 0.0, 0.0, 10.0, 4.0, 2.0, 10, 10, 10) + print "Plotting a BoxMesh" + plot(mesh, title="Box") + +.. image:: boxmesh.png + :scale: 75 % + +By calling :py:meth:`interactive +` we are allowed to resize, move +and rotate the plots. + +.. code-block:: python + + interactive() + + +Complete code +------------- + +.. literalinclude:: demo_built-in.py + :start-after: # Begin demo diff --git a/demo/documented/built-in_meshes/python/rectanglemesh.png b/demo/documented/built-in_meshes/python/rectanglemesh.png new file mode 100644 index 0000000000000000000000000000000000000000..79a439facb10c5572f98634759903bec768a0ec8 GIT binary patch literal 3535 zcmeH~{Z|v|6~_Z^b%LUU9Fb)$I00c#X#h(pSP^x6iC_h#9&|g}hzDWiC1If~;U&S! zfFiAtvakvm^c0qjZoq{l!|Sq+QX;a%qY;coU}%sdLEaPvl0cu4a0q)&|ABUYyqS5P z=id8#Klhu-IT*~bwsNpyFc{W>`*w#i7?wvF42w&UCHTd7Bu5E;FAUth^RS@g)$irrUZ*~>!Ud_x!|%uL?xF2FS0E*c zy5d>4@3>s2($dq|T=98LL)xba?s^*!^~r45aa2EjQ9UDC9ecHU-CHP=n971B?SZwm z>EMkQapP{Nz|rk-mn#-7_7ddApn_E(nve~1E)%V5n3P4yVXQbdYa7|ec4XoDgwQy4 zZ@UOj!TdQ;vbOB$(+Kxro8|m*D@1cXKRRYQ?5%Uhvwk)nzcToS?0}qf3?H-OyWs9y zr1C=ksqJJFdt@UX<0qB>PHmNj-^Mf?h_m=?dAewtn}C;=uJmtDkx;f&Nn`JucU_&a z)&{THDVg~0xp3X2%(F#!@)GPiHP9IS&S(rYjyxh|nE3gVJGUk)udgY!JOY!M(?@n- z>vzdJpFV8K!pHW3WO8MNn~r4?2YzhyH79 z9t&T&TT-u*spthY^11@J^Ikxr6iab?+zqdY+kB@g+@XJP&{CWriJIE&H`wKCG~QGx zLog*@Xf$TdMaf4Ti!|*b`~C9E2;P=!sC)`COMaaGk=ky%3trJ4AkD{8qC9AEcgE7v zl_kCp}RD*=6F}rSj%w8SEOK>0U*uw*AyTTUjgVw+)FI{p&x(vld@SYEP3tRC0QZ??i%?%pG!sJ{l}Rz%<0G!ya9el665 z^#uN16C}h9CGbe+bik+XlVy?otZk@dBbZ-i%PW}F=Ov?=^3afIS{d3Tw9aNwUkBvw zP+u?ur2x4r&6f8BLr2V)7eka~=ewPl)XgUi%)kU+WWzwZ6H$;H>P&<>A>Iauugq_m zCw$b~5@a-dH)-hV?%h6>5vd!wt^%!_QrdarV}iWimqnT&W96SrDqW8XZYb zh_A7^R{m%8jDum1wbLi1C#s$PWdQYi-S+H#*)ZuDs_i0Otqm(mG*)T$x3P3Ld_}Hd z-?zYIxPY^2r@cLPKn0u&{$LPDqdL1`x!^1;anY9r15&qecRlGpjS7~V7yy1&YD>x% z?FA^H7&utmyb%hD;E~ovBmDiMy6u}<8zJf>7}o=sTI|KoC2SX^-AB*4M<%Sod+d^J z$t`){#Kvq_f}CBpod4g(+}4b&2cAyc*yg$<-GjEi_iiDzT(lPdO{xcC5=>))6-0MIG`};T+XdHw)|kA^Z7o?~wz1b4*aM6TlMVg?CJ&i8=;gMh zw;I*ALYuK_7G1VrSP%XIY>XObwdlWSC@{*NtAKtKElf&UO&in#o;k3@Z2}lnxkN<^ zOfk0!Z&L(pqs8L`^lLM*3l*F(Hze^|Qg~|Kkmd=!2#w#7=e3&cUPh(&i)5$&ng}O literal 0 HcmV?d00001 diff --git a/demo/documented/built-in_meshes/python/rectanglemesh_left_right.png b/demo/documented/built-in_meshes/python/rectanglemesh_left_right.png new file mode 100644 index 0000000000000000000000000000000000000000..2d439c755f8ca53d689624ecd74d5fca4926e70d GIT binary patch literal 4891 zcmeI0`CF3N-^Xbi(WFc(Q!67=n=BU$wcMK2HnYq!(s02{O)VG39kqpFqD4(33PnfK zTtmt%NyXGLcg@0Z8F!M#4b*TKzUOAH=enNf`!786D>vsppY6Qf@B5G)&m2c6s4Ku= zFvQ6dwoWkE>Ps-#swDVo@XHE@+y;Xw51q9AU78yl~A4#gAP;poukKGjl#H@B3GE59ZoPYd5M7MAta)4qoo+D503|&zNa(LSdMsifH-c?N}FmWTg>tp&X-KmHK^RUmjgAu!gfz z;D*A8?CY)7st=}*Cipr0xDfHUdCN;&Mg{S?AJdGQl%j}RZQSS;qvEjdemC31WIW5G zEt&n+<0unF40(C&cd^5p7duXkxc0O33gWwd2*&-QKAN^dcvRay?4Me97wc`bMB%E12m zno4U>MDulp+&go$y%N20Z|0o3Nt5<=JAAFRuN)~jaexvX{F?l^A}c_!D0qc;t3G!S zY_w@xb@pfH(W)Sa$17+oiWl^=KNdW}%x*rpvLG6(AZBE&$7ZMVMC4$4VxnD!p^wy1 zGWD%xo_C8nR-wz37h@{y=P?!7-|g!!kb?8Z`&Z_t`0F^2E}8QZf0=fN-qn|)>IpZk z?_~KV&|Z;GjU2{v%b{#2L%Ggs)$}3LaSdPlcH0uX+u_U0_Gb4+?h)SJP#lai(wLRt zyiCqDVCOcfEGQ>1*tfTnaBv&)Csv}hxtcP>l6?jco2dh}~T>;pG zwo+O_4enDZ;FOj&D19t>fm1b|f31^G4{*uWPhCi66V^6YD;+Z}!p(8)={#F){KQLc z7gf|%6y@Hbs)~V{?BD4qbkYoDbhCF8)e~C@4cJV5q(H6Od-7ml?&zV?FJP4&leQ zq)&B`5XoaxItritO7L6Ch&6J5=7R430%{dkbF5VyuJYSUmMoJ^;z)#A^>wd{Z4np^ z6Fa6UZLghg2b9VNO{E$`qDEG3`W<6LswwZj&M8+XZF~oZs3jN-FeHw77p4n0Ak0tk z7hjPT-h4*#cv9>xD5JQ>T6M{`7k1bi1N+3~q_e~^0-Hk}#@Bvd=SJ}YbJ-X( z>NsrAv|cZr-#`^j6iInJ+h!j)wNYZQCeA#36lg24`7@BfxRPI{Ye0 zQ^V60!z99frZ=;j8cekIy-o_wnRocnS9MzuT^4=YG;ji2t3L=QutDzy&~cowK6xAb6zuwG@Ycb5-(hDYl|C zJ1;3SqqYi-Alxv-LMK&zx0B_1^|!LXW>p2hkPL6BIcy$u8!gB7*jUCT%gUO=QD46e zns>$oC0cZXd9!2YM9tUMEeE)J=Z1#%*gS2EaoEgq+BnHq*y)e8_LYs>LS=@ZBJQFf zb#G+$&a`FiIX|6TLA=wf{Mi+S zxn*B}3we6{bftG7!*~VY`yOb^BoZFy)*%Z@mQ%@5qb9Q zkp}FHx=A&($->QTDaZ%ATQxq)rS9c6al)C$6E+JVt`UwrXi&PbH6PUY;5j}ossS6J zZX%HdW`)xu1*ftAyz|J)6|4Zk;i!TA5Iw)G@lqlMm)L@qy(dp|lI=&Lds$tOu;>XF zivNo#*Q;9GMK$wv@2*kDCh9uYqxtVwHeW;$$GG#8b%V^qvZ- zNod7E|0t<=er%24IwP6wu4%Reg`<5q*a(EP9})96kxa`CXQt>jhe9=q=Oks$|B0BQH)u5WznD2dHML?eo zV7Xe`!=xrjt&AnCrf5P4SW@zblWH5Fuhr@oo^YGgURGIOcIyogRk-sgXvMHzA4APkDhqy8EAREHeVTPISJupDL0pz3wlmjDM|pci@9x06}TIlqWD443hRg&F7TPKLRNJ z#M1H=Z(r`T6^F*Iv_*j_*9XNf_@K@Ipjq?g?*9_btCenl3pWmX%=Tox<-3Yvy0`Kd z712)!k+dEDgeK@EcgBuDs*Z%^BVQFNIh7j$ZG?+TsLfKKNYwMv|juh3%~q*(}&Ml=zhHlc`9KO5%th7`-+1IYd; zg)2jTB-^Y(NyqT{TCIcQ`}EhJeEcuu&mKlnuCCrukJB%K(1-<~xHl zZ@8AL^jN4v&156Gg#4C^l_B8CaeOjTaZj~*of@Ldl9#2^-52mb1pfed)&q1fkM!`_ zn2*Z3{jdKaxX_ahB%k5j79m6jim*YZ=R_m_AOj6`>xy@um2S&3B;6~mejF~%+_Uk=0Eh>lXC!^(v)m6bEg3ipL|_AKuJhPMRj8} zN|UO^2 z^0<8B*TTkxhU3!k?$|Y-9SfTU$$vxLL-s zsH~RI&+3#$M1d-`QPf3Grenv9Cj@U@8N4lQo;K5U6rA(q=J3BE(0!ITS?4<9@9lyH zKXq?l_D*agB{y0h4dCq}gSWdOkzH|v0l*ThgZb<@JU1g7!#L@fw>MnR>|pze%XxAo z_#H3k56l>D8P1e?`rKc>522}B)MslFm+MZ^-<}?=N^a z2C;6d1$7{*lXafsatsF`Je;s6Kq{u_*|9l(0Ot~=0^16<(|;0j5_V{ZI$ zo$iixz#{^Qn%Wp;&o$JpWVlo%NAXQY-G2&8If z-AQ2B-LiKAvaECe016%FeRcMqokFz!@3eu5robLXe! zhXZnvyt0jMQSvS|O8S(QGR?{z=1X(R_9KfEooI+udcCiJGm7E+ccutV^8ox-X42TQ z2Tg|pjEUy8L7j6OwpIf6MGHM$WDf?a)KNsFZ9wPoGs-Nozu4wXAf+79mFWyyGnaH7X)^_kbBbD1I3%QuXiRHKFm=Mj}dRT=z#2Z z0oT`HkX|Gz1V;J{3VgHiSna?#P5`H`=aU<9WyF3&Ax?fl*XC)*0to@Z1(EQ)lD!!0{lRLD3ZE?FUOn7r6viN|5mv_zrgzD1us#wJb`li?4C$G&ox1sTv!GN-Wz_qRf%~7=aM5S%*hhOsUUu~Y6 zhpbczSF=r4bCZy~E4Vz_z6spHmmUitA%O=%u9G~qgTP5hz|?Rs2}vdle2s)%49r17 zf+gc1C3)A+jwK<1F#Yev|1YBP+t26vo;YiCXH7oIYmREii{smKGVEB`IO_Fs^JR9F z6Mt@;v?bi~krJ{di2i{Mb_vM}KMpY3-L~rM)oK-Das2g)(i0~f z*LX{|$%cM6dbX#m>69<2``2R>cGN1Qn$7YUK<0|tVx;$R}B82W3Rwfjc zxSfXMk>863hTTdu5~Zin8_>wUBq_NME8{pAGo*DbcEkD$HdWvLE8a*ChmQ*jbMd+I z^PU``s@L$Fmdl4_Fb`Wt~t_;1e_~i}*W`3Zp z=evkR>JDi)uRoJO?YEc5?_W7T=1I(sIvc*%O7+t7kxzVCd>e_gh_0$B z7L@|(3^J`^_?EXCEaGR0p%%M-Ki(P423 zFC>VY>1(NASigE#(uML^Tvk_qCe_Gx0N2VbfdfCQp(nsEB+bTtbV=QkFsLT3yIDIt z39QgG**v}TX3ooJ?_!RwHHIkjim8B*v9sr9X@tQ$X;-k7$QZgz+EZ7DtbCVp*DWe# zwn!!IF{}IP?d&j!`ou+Bv#iIfXtv5(ii#hwbWE`RsiN)31EI!3NGBo*X1ZnD%}M4j z9Hu|6r~E{!bmhGt7@l$MX7l5S(RBNXNzKO>3TE5bLi^>a^u$CTqdH<|){T@7Fzgrz z=I4XgN$09o)r(*5{m|?p_Lj#qr)px-bXlx?NmO}bMsGSzKFZjRw(i>qTb3A!wk~tP zA+_sx5^B+$TQ`}2XC7Pu>(Skl@t3f%bn5>(cF;v6i~t`F#4a$lw)Y2}5?M6l-0({1 z!NNbeWrO{48^bOV>jEPa1%xX4ayc=F$fa_eoa5uS_agIa0t}`m{Ul!;c^h@C@Cka= zwn-24s$1g%PBIg$Z{yxHvkPJ%!FgtfpB#usezf)Tz5`>iPF&S&VZhsQgm_m%#jD=Jn&Zd}A$<3-^`0cH8q zOi$UckThnwX73O>ymm<-#Id+HYzKdc8;>w7X`)WrT=yX&`o21ARB(C5SB75uY2?tR zXZwK98(T>fi`K3r>a?VAjW#H-L*RDfT`8&zQX9lP2aoAo=)Q!{qwzPlt(ersbv3gW zosFiLmU&_{D*JnLTm;dES~7Qf%nJ*ZxV8@?B;Qh1dJDB1X#_WB2%2mgX-tWLZ6I)| z3_ zS0t=*UhzDCYWVZe_-?@Xyl5MndRR_IP|;wGPNuo8Q;BqM+0Z^js+_! zUFNXl2u=E@K0-PF1%!AX{hjWyh7Fo>Lb%Yb4I8xhkMZIHN5LIwyBTA7M~O?0JV85C zgVmbyl#Vad^C9KNYgi>eI-SMk+f((-CoZGSzqsCYn^OL zdRkPv#N2(CGY}HoaZ6*+GNEs(cYk~eO_x`ExNojfDN0eXqECNPM@z5ch!~zRS$_+@ z)$8tz!`s-jR^mqS_W8Z94`%7t%!H^LB!y_#O)Eq|56!P}M5x&cq(As9$)puo@Y|8) zpXU)RBgW_}?%qUF)Epf0Zd0>8rY#Hct7W_o0h!ZL=Uk zyVmBH3-wlJsG85hgWhKI@xBA^%1o>H@2)omt5ozWA=silH1f>y_4d2-3}k=p3qMMu z49WWhzt69fuXJ4(4(70``{{guX|uVG{`U9ULc@QS zKo;a25g*pBGqvV~Y_9d@*8D~_NIE(yxXiwkp_j|?&0owYD==QbCKHZtj*>gb587xO zO;P(P*8KD=Pg3KhL8tSbw7jgh-v2XLp`vT$d-;-6FCqK_bPWxG zL!^e!yvnkVUMe6V3@OzsA70$4d5M%vBx!_!EuP}pgo2etN-_3IHrg!~m0G75g)Z*% z^Pg9k{u>bu_v5o9hFtEa-`d@M=nNaSpIpd84 zijI9yBr(E(ET9n6X8UBx=GgwOV{0S~Jg>rSZW&j{_qIcZ-YFYnpTo&$(8A#LNa8}x zOuG>ukidwz%pm0;rE~kTCeN+AqzRRh-PtUj6Z(Y_p#P9}5x8bs|pu$8x{!e>(vAvB(hh-G4gS;d({Q0HMG_+*2Cf|9<$M@(jc8rwfEb<6WZ<7jeu_2 zvV!5XYPx#g#oD=Gq`=kI*ax>aDF)uZvjvnPU>s# z|K%cu(M*y}Twzv&KgXIlmo^;t6%vlgmOy<>!&3ujt_hKkUPAU?72YX>MH&fnud^$3 z>)C095FnPn(J006&WNWw|0~sGO67lB7VfDhCxY`4Po223(?5d-4u>)|kRw|dcex)o zj1>hn6|;N6#$aGr#s%N@VO{8&Q8EuyY70mO7KZ1;xVNZ9O88Cq-7hO~hasO6HBI-X zHrIyyU>;^ZfgcJo1}3r$O%*^x^%N`bIvsw<6*(JhwP^)HFsjA~t1upoWu|}!oJqZW zwr;MBYN)@<>n%c~w+uDgG7WpU#y`py0KfdSF4JQz+M}ndDwU{W4D(CO}IS(2ZDE)J@j#=KlY%~ibMa4yVv({HBNGVvqXYkKF0TkmUmKsv>G6JHw3=P$gb1`_>b4-|PBOF^>@jxw+2 zDV^69uk*MLfq#6kqkLR4&xjI@6kC^ouHETQ*N16ze5b_FVIc^zft-b#EFl7$wzj#* zd1Jy{?3-D>k=H;~NIwR(x9gWG6*^W&uaX05q^e+2arSJ}EPrwhdAo;v1@s} z!l%}j`o#{^Y$6v+4HqYc6F3rn%K>4KmRDWNjVE+RIw1Up3?o9%PgPC(W!L6ZY5HiT z*|7urVfqFZ*9+m`u1yV@TO!Y}`m zs&bodtylDFg?5O2AsvIp*<~ERL)7?$%uC|Lda7~4%k@eA zL8CPvL(k>ULtm_$yoVmVo1Tr}79nZE6)fc+m?IAnZL(GpuZhNw=-d_(n~LRxwvc^U;W zHWL+TK5lyx8giJT8xG>&#zLf#G?ro3s~cMn*ibDwp?9F3#EezVHsaR2+M-+Q{SP{R zwe&#ggQja;2r>+RXR>Xq|6L`rwmDYeZp5J8HRY6#DKvSWeL_c|v?$s#XRSfPc3Nlw zK2QH@^4OC=^6#I!gU!*Qc|ofPGks9I*<6Y5wq>U?s&i>nkIHQF!v+jMcKRijZzs=o zoR>i?&&@zq2n6p+{E_oUP!P#Y4lGB|9E6$isNMzOCCBZIhv(nBTGro$fU@Xh~tm^t2FHcc1ay!$xL zV{eGy_re;t7p##EJu5zmTp~}FoVlupp*Y+zRF8A{ZS|Z%u@z0jae&zYk`qMI4 z(9;6Y0ml4&KcC$z0S{HA6tdqU5~#3&X)@FvmF?eVN->^3q5yiocPY#ML5T)lZze`U z`)N4_0`Gn-6KW{2gtaRw? z+maF^{3Pc$Q=T*#^sg18s=vb?HEcfQzfg2Jit4x9u0d*FT$N>D&KF|EHR?cuS<8D~JL_dv!{NyCABu0{{jnwYPoXr@1Yru~t5Vo_1( zM;^0U9rt8o%UgM0;M(;C#VCUU#U*J}i(@B}=Er_}&(NIj`FCbzVZia8{ zOQyP%#VWya!yV(p6K3`KcG$a&XSG{kkC3mQ?caXdf*>|dN&PX=(?mjmQ0v9s`?8q! zh=hSz0tn33bT`VtBxRldDc#@vg=c@{myDX{`CL=^uq!7>_m3gSL%XFu14zt&8S^ctgO{ z?_VWcZdz7dNj{aW$@SF$X3#L6Q2#jhbW5P zgKRGtTQdWl$;~%vPnNSVpBS-#@4J<98B9@R#km9;MeQM{C%#j{DdAwAw=6%6h}tmZ zYdayY0DU!62zwx;HRfQYc|+-G*^?j1G|*5AbV;tXSwoJ6HBLkNj@LE7iL7X{6V*lx z+X+Qc@a*2KLnErJsC7uOkn^n(ZynAoC4Uo8%o)U2;kh!%%-M*8lR^#x*Ir*j<``U~ zIy^Xsp6WQ3(^^zjKa8X&zlx`j(7G66mPwJj3(yp$j8HzWmdYfPPDbB*-x#qEz#L#Z zfRyKtRl`6!un+hb^{Cn3g8%r!%3EWs=X%uI()yfaxy3^%vM_fX*0~6C`j7O9uPqGHxT9BT0QhrxE)P@%sgW%T z=;=CF6B6P2XYg@yoen#|O4Z-2xc!P&Likpv(X6bk1e{aT1<)3$H&nK$5I=eJ8PFXg)~KA85_1Z<`-{3RA1 zx-IiXo4$d3a1b0UbR^7?Mf)Gm4sKXvwH1^t;xGwMEqp#czgBQG2vxMTwce7l?)S)XcW}DU zo9_E+6QImfPgV&O;}^|PGkTn|x3l4-Q_uE4x!EV8s9TQ@{l$P@h5*d~y3+Nw2A;(r zs%o1cHAzfra+a~1^zbY%v#t}#@7(wDckA=r7MGI`rOwnDqbtq6_(C)~KA5ShnXPtw zK-ehV<>i!qRn1CwQsNYmumOhPuY!$q$tW zgN{xckehF@nO=^P#(1MGw&VJQw_2YBW2tqe2}hISi8E#q0Hf6gYLDwRhT(Xo2!5az_60W!sUNVLoNBYvc*rt=TVDirKff{BKM{m=U$JDGd_ZX zZ*q`IUPy4>SsbtCK<=f$6bj9qo|o1KWsr*B`Uv2qX=tdwJCi`qP7#L9lT%ib5v~fh zc(E1T7hfNht(7`T?~eq<6en2wX{&Y0*Xp(Q;8A-IhH?C(q6V{4=dD*y0YRJn2~dFD zY^NB`6TOz>XU@!Ya@@g2#Lz5nZ49LKT{hqE7l`4`c9ba6wBK)=yUzR6UmGYz^a?q{ zx9LXMMS!h7fPC%llqzLQL|SG7U&4fKDg%X<9Jrsb9ou(yta)Zl;L`2{t<2vl`n#S& zlRE$QH<~-folN3c87*8yxL%VPdYRWs>V!yq8DHEo-W57Y#?hD74Y7G@)fQ@r0i zoLuhDwrHllFC^RPF!AnN;Zdgmb9`^q4c?%6_>-ToQ&#p{O6S(&SN5*0Pvi>5_Gx`v z+_ke|4I+j{F0@Go;U4|_xF=VQbBi$Z+ekosg{-C;>v=G*7-Uvo^v1FqB~5224NHCl zfWzPbbC!OlGoh#Usgd3ADR{nT-^<=!BLDM|)|Ah8%CwPJCcq19F2E!<*1vkoSIl0a z4d_2uMx~c{km#k7PVa~Ck-f3|m;F!&Zmx}XJ9JET4m&vgwaUs0GKibIsD53+w&b{f$$>gkv}sp3 zv0NBnZC>Osxc2<_X9^z0`#brV3FnLU&;rX$s^0EC`PS_~8lZZPOS0=+3K~7VsrPvW z;I+fSaSsjDD%BJbA;jN?AOVMU)avE=2W{){|0x#C`wbhd-pCa>*K*C!biMvmoWt5usR;y5lPG7>LSB1eEn!q zK+^Hr7aGp2yUb2J)LlDGem-|dzF@9I`IdlG{@q6qjO1rQ?7N(CH0N0ELM1$-ZI3^? z`(CReu0FG&UB4?3?*|)5>Km}f33(gHkn#QyEAT9D(;L25Rkact%4%TV)IlWO23qvZ ze`f)flE|9GpC<|Bg;0iD{Is9`f#ue z0@R0nCKBLIn$)9c833ZZrNY1HGT-3W5u{J7POv^joxS^0f@w4U8u3H9BC(;QNkjEa zTGPmdZQb&SuxlQvTp?wALd!8ur<#gaZc{6};q$C+8+Y3ESn|{j0)K7p>;BU;Q}UIB zPRipKhHGQ#!Q4^2^{(;b^?X@Cd-fKB4x;{#|6eMF#>Lpch@w){CQ_&cK*=OP+!N zx)8axiWFr@r^%iyO#6Zr0Y3yZQiNBFCZbA6Sjdzz7Fib=> z1lzLp$z42Ss$~OnH0p%+;vI+4bdRds=@_bZFJQ>MB!c;ed6vTv3Xxb^=wEYd_bvgq zv;eh>m7Ilq(QV1Zv+1@(+?in)0V@Ef*{Apio;1(eZL&f=Y0dga2L?|CpoZ3k#rgJ& z7cCHA(cd=hJk)P89KsO8uz99i*Fb=Q;41CaLflpW*#bIMNoKVkXy$M4N6Zg$oBb{5 zVcWGWauW>+VWH?GKSdDUlnz;5AgIAFH@bZuV>frqj@91prR*gJsqT_9djDyn$m?s? z%VJqDCS)9+uo<){_x_=FKnMgn`aFLMl%08v8Q3wewD1n2YWzMWA!9PBA@;BX;1j=1 zLHQrQZ2S8Kd;E0=W%+CVx%dT_aTaLAh}`AnJh%0NdCXQX@9v!2o2Y}nL zw8`#%HX4im4_X}=8o!G0DY3`KFLE-00Up!Gf)ET>>0IjC`Zd-ipM_Cy0G?gXz%wk} zMK9bg1E_JDMBH1hdpmT9zf?Q@7f8rxyZQy$W9+y48-X#!KeZx5S%qs({_IKw=yw*{ zQzhFIeJgvK?lc$#JYWqPAb37u5iBKF**GpB%x3Hs*1hJfO%&t1Ft#ViQND9%0m!y& z>v!fEqQ0DR9u+ex{iLI_OxIhfiRQ$oF1@Ge(Io1p{Jrd`jwzIbBlkM~E*(Q#rC*?4 zC9b3{TFhgs4>xOoHsQ|=v3S#!uGh4+%0uRXVFs9HR(9LJ_Qougx9lSS@2)Py5D1;k z%!=j5?d)R`)p+CR2~dR}ZKD0fZLORbP;}-Gbfd$W=&f$9>4k5WmS75XKF#X3@c+5AfhOq0S3vq8e{Np;+cBzR zGdlk8d-1Y43-iNQA!w3d6B%0IM>AbUqjir3?KJV7A)iDB%yIashNb-tv#lM_+Bgrc zt)SppubZbKq%l@qJ;=oLlXGBcb{prKxUw>l<+nbVAz@q>_o40%r2kR&hhF3`P<}0e z;&;7>lni7yBZLFU+zIbQ*D2UJ)UL!x8DyJpkwOJ6Fe`A(6&Vvg(D4A10!+S-S32!0 ztYocgwm3to;1j!tYR-~DOODp5tC^^{7PeEIlzK*+mYlWB2V{UOA9IyZppJZ{upwo! zJ*Hlo&xpIXKqmKZ*uw3;ExiV<*TS}aI-Nsl8I_KiguNn&nx?7-tG{knVG$8KB>vey7ffT z{yEC3iy%O5>^HJ@&SlWaJZj;WFF5~~qs*(!%xTuYOmksM%ELI>6N^L;0nd;yW3#vo z*wRd(qtYMUi_`(^%e&3w>Ms6(Y_VTlK!uJ6<0LmXlO0_1LR8Q=V zH5S_4uJj!V9fUKN$&7-0M&=}o+0h!jnn9ZMhh`sUNtO#@tGVn8p(Q@n5}flBljZmM zmz6XZs$8syXTLxV`Nfs0l0r7@5^~EH?_bjbokWa@-e|Wf;_%AxQA+&@YO%WB`pdls zm!}_7600xxY&<>rQTVfo#YkN>SWSfL&_EE2(5E4vmIBV{$4e5H z`$_-W?1OH`0JiAeRLz~9pvnl&lOK~#?$J~ruD9@ll(@B5{0fs^T77SRc5-P{=4+m)?VBTf$#)jA!Mr$j4EgP*sFCq3v1UNNF{#5H7*8-wTr`r zyT+z(F)=J+<9B-cG5Extg?{2`k@bq-D2|Q3G+3CnI!sgxYiPDz^QEUPZc3ouDNd;h za(Wi{`Gk(-JK*P$MvDq}P8QDw-56Q*ZF+8MXTaaYY%k;RlCe7eT&I)LP%Tr_r1Ez9 zW~E8JirFeZcjb+nfM$qL<7F0O5PZpHvJ-0enbV~5P87W-QQNa&l-{mbF|S@yfzqsJ zG?gHtEWJK+R&bDc`GSM*Dh*@Tc_)owM?hnU5=EWJwA=8m0bu#JEaTr4=^`s7rcB%6 zLyHD|-zFCy<^J?^_o`3 z_cks<5>&~d@qIYPz*)dKW9XV_UcV~9-A?@~0ritLbTNWZ3A>Kw)l@|{Q%J?^hG=id z^ZJ90L4{0oZVVX|+$Byno9%P)>{!vf#{O(nRm+y6e4SQa8z`(ZyyxWZv?Kds%FX8vl74t>2L_A!XBY z@i8&Im>?VlYcq=LZK`8wc<3D$h^hEUML+A-8_p)uOb$V>?@f4hkc1f{Bz`WZs7z5u z#pi~)$k8OafTusa>NxP_ov0A)o&`vDTKK2<_dAE0Y)n3F(*W(yYrwtAf*Vz5evQ0M z$6_2KNVO_q4HK=kftBk^m+j1%@>4wt?7X28m5%p;PRv?n^iNli?TSoE}!lUMkbCuD+Fnzm-j|0-m3Gx_#38eHoad8%vQ-f zlq?R%_RNv7t9nGC(Y~Z_X6~nz8`(JoJsJSREih2di5=Cpq<>wJFqOM$PL_#r!+>nkA!?GUw9$d0=| z{mnpQNUyi(Sc558DYrR+7`D&6K>0TjnJP?`9409OxiwLP9in=RC@Nf7GJY+R!edy(6o5f$5>sM?9Ba)Mf@dFTjKM5hxPOo^ly8|g!IbiM>Wa2{G38c zj3&1Pe%eVmCaxUK6b#kP^Gt_ud1G0^aD(v+>VljmKVf#Nec*}Bc(~kuSm{0a%gMUfDko^PYU9$Pu5nGj zTJheB4E4;UomGCyKnnhNQq#-PD&Lzv)I9&L4ql=$7x5T7k6X5#J1%=)Z^3miL0{eCX z`bgElwuLX_(&~Py9aX4pqw}q*wA{Xymq8j;OW)sx6T4*7$J!G}r;VK+^_d51&(V?P z2AI6kWRJ7EdEZBRV;6TuWjc<|XUyL@VqxWAZsEe-V9B?D(w=M(!ij(KFclf zp&gd~G?`44f!U%1qaQN3ZT%D);q^^!(iFPfB_36*2&(C+^hu!y<0A_-b@q|BT<5xJ zaGyl5zyQSz(%{>b=i)O)TJcSRyeJoAY7+@ZMY<$W>o94}L?{lI+(p!U5Jw&U;AbYw z@^P4SaG^)Q7G19_^*YmnqodtRDO>RMVh+9@YOkRaH2;&3PIUfZhi=_a>c}Lzd8)$> z+VtY-TUee(m|uQZtS-*$C~?>De$uVJ%YwVg<-|I93&WF~#IL|1)j@_Eq@)~Fs$AF~ zaZjQAl@AH7!?T9QlAhKMVS19b*EvXmmd4@J6p_)Rx6L%Oy{66#VWr!*9qJ4O&YT=7 zYaYEMh7XU{iyPhb9c|Fv-*&wvmOQZ`IV+7@ZeX9NtK*fJq;w(!(5<)U24!NSo_bTZ z?vl{){#U_C|eg`{?7XV@{6hwUzluazMy@&Qm zlpR8={$9WOh;L_u`@U8`(A*sbW~));&6I#|oc8q^8L`{ZpG=~y{J$ahq`$*Rz=*sv j=6{Fc|9?;Y_xyQ5Sugi^m8u5#Zvu&mq9&pgZjSjsCI2gv literal 0 HcmV?d00001 diff --git a/demo/documented/built-in_meshes/python/unitintervalmesh.png b/demo/documented/built-in_meshes/python/unitintervalmesh.png new file mode 100644 index 0000000000000000000000000000000000000000..447ebac1b6e668a032c1a8da160c9a34ee5b80b3 GIT binary patch literal 1606 zcmeAS@N?(olHy`uVBq!ia0y~yV2WU1V4T3g1Qhuj-g%yZfsNPG#WAE}&f6OYIgdE- zupGR7_~&vR_J{2eyR@1rIiyO`p0P88{(sBJu)&jq(L>mY;Zlo0gNY)Gg6}AIG&F`; zVyNE69`kjwr;S3j3^P6=FhM~$3aiz7*THA+h-~v`lK|ex^8|^LgBT+&^G{JagXX^L~9k@AH1X zUuROj4hk4z=V-^_aE1iV^Z$m!v0lRASSc`T@Jnw<$}J9O*jIu6ev7s!JMU}0(J%Sb ze_>Rb+5AXpv!w2J;Bjigyxk+)-6G;UqY5S}bKW*~7F%6iWd3K@08aA(F2Tv=i#T(= zC{9`gX2rXSTTjg*2CkS!VprGD__mrqZ$Lw1zSC8w`)@!jf~dsfUj*Scq{7p1Ig zeWLfR4XK!Zs`)RpVpyo)a8E$@(|gBqSV}d=6RCQjpw(A^FsVom{*t{9qPv=cApo{Fz$X+e|G*PZ3Gs76yE!l zFM7U?Sx1q`6FpzUy7Z#9-enXyH}OO&)?KqFwRJ5F{x_F!f_n9?v?6+4+((59TQ2bx zBhYY&P@aY&e)ObrFF=K#(6ZAb0$j~|R5OaBY<#r1Lp{_`!7oi=W%-O02EkKNuErwa zsVF2Z=l!>f%hN2Ww4>&l{hnZs)dy zx_;QEVc*%xp{P(>*DP6SpF%RKgo zUn+)=S(CyY%)YrRFN#w0 z4p!fKdO_3JS(!L4Y|MkTs&2#4Le)u~K<-@`WmJ!QEzzz5XOc5s$0geJPDLXQdh{Lo z2yaWZ2(#kCrL?{yJM&ZEY*M?>m|Re{y8rCw%nzMP3HByxL&M7Zin!z#OW`&kA&wr@ ztUXA`NK)&9gfw_iJzpS+0%*m1!%%T*)uFzUr)EuCjg`0{Are~g0tq=Eff+wXLO@j) zAc;n-z>EsE7U>YsU(aN$4M_R4Vi0?a!K<(nRld^6?%{oJrrX*g9w`hp5$j_4{m@ys zuZve&f=F@G;SL9oJfP$`J>;EM&%XB*oVL9e)rOq5IGa$8W6ReWxGm0;9mFQ)w8!6z zF*V;f^P*60wXto6!>iw)+P>WE-m|oKcK+Q#F&9%4a|*Xew^;h8U`@9s_A|BPqw|^S zaaDbdGJL*z)!}kHj@9S`_@W?4BH4IQU5LN*)tFBnLl+HrJ8nU`2$h6B1=0nSxE8`C zo6vs`@5M)AC56m7ex{XJNiOU1CT>^;(X%xiGqRX#s=^IF!{Fxtl~AwZ2v1aeO2+_t z%v9jwNE`w113o4Rpa0k}T z)#sXeG?^=#B)!&8$~OsGJL`uwzX*GGu{$AniaFNQ5FwZ48$)Uy=TEWoq$IoI8g4Z0 z9iGtj$WJnwHx?YJVA4md>A@6hX3#a6CrXcFsNl{ek|8%;Xhl22h&<3+!x(hcrW5*4 z7|?WRaf1tU6;+AH9bstl2DH~ThFzgxU_ov^IYrY=)a!M=-6JxvI#*2d@K@+grpn{ zdWG4y=XLpO+ekVgvCIDGsJpQ{E{6DSQx7xMy?wt(a_`ElOPk&Wq!p@)bprtcW5VPv zh6SC$uj>!mCUh;H|9C2;%ZVQ-NNaN}NCMU8RHxP_665+wd zl~}wx5(28`iiEsbg~g9WLT1tmr$=lag964$5bzx55}Oe%9iU;BAt7MSNzjmL+%SQi zNM{X-h-fL$;6>4+9a#8vyN1^`vnGM=uiTc6C|be1Loqpq6ow#Dzz{r!=BdPk_9K`C z^+r#7ofmZukuUy{5ag8+RqBsJNjLEQO(!M)_ul#`+rAB}Abwrm%Q02|keJ^T+11e8 z`Q57pZ-(#Yen6nFFunDIC+VMQIUOMdbv#iu^gA+VQaczne6<)j-P7iU0^1DY$nV-h06%-a?#eeL*4NvRXB0IhLP{0X1aZP2`Javz}c> zD~3Y7hGC?(*xQFOssm`n7{&$0-@t=dPILjkv<52FW1wIV#R4go%)($Bx5Xc3iQ7pC zPB5q9SM5oiV+owXEA?ZoyBYWr;UD{wN50h(VC25_HcxEW+BL_Iewn{8DBHNSD5p?0 z>q-8ABnoga+~%Wc+X~D)1BW~tFt3=Nul<40126W$BSu}v4N6Ei&|9SpIDp%j)yklC zG+!jwGgtG0M})3T1*!r;yABu*n0zLw9mymw;*eTbCb>9?&?hm;LF*JnyNApAt!&Y! zJs12D&Kp&_7Z{z%Aj@YRL1e^do-$VC!?0zOB;Q@fwg zrz0W2`K!>7EJB}(gn%J88_^=(M(9aIi?_vYTx0vb)jW}-fMuA)DTETiylxe@WetK! z@LAAaiMYwJzjN9!0buYL)9{*1P+f>1VFsaBKn%J9)IrKL%fP6EGyo-@2O+bbR@lOO`on}?1=leq zgF><{za+Jrp(4XBP(#+;DWvuUyet8O5bE`lufpyZkB1z*ir2P%{ENVOH@~!lC1L`w z_fVl=CDzWuU=p|GYp5YkNhp6}PQ@?CgKA@8Pz+aDd!QQ~n5^D;Gd_7Q2EJ~=&FMzht4i9kS&}iG-h%#Kg|O=szS6y{W?C9=Fba9$SjTP3o3OOW=zC`}2R#!RHSp zGAAvjLube2a3OEP=f>oE>`JAN+kd|IqOEAlOnAh>6qym}>xwcK`KF;4UGkRB=|6u^ zepu)E;6>A6??EZG#@U>_5#x>9+-2YYe8OQiO?Emb?-Kr~{u^deLEqVLlC6177pP?> zgnmmKvIYMyXmuL)8xl(Ms;EI*Fw05_rG+ z+bBeCp|Xa|w)BsJ_}kXTg*iucsoBNHVV3F6QK2TJ0j`vwz3s-6p2}iG|oHGIyPXeJK_HPht_Vf3rJ{h z4?lLI-D)dIJPk_|);*%n?86;<+|nSp!_%N0sccP7ht_a`Ry6jc!6CD%A36Er$9&c5ITK;_}0(>PDAN zm4Py8lXRB66qz3Ow#K)f`IN@kyh2?+AjtRGeNDg7SNSu>1R|w5$WcAR`)6P3q~{xj z3JTm>P;$lwVU+agoblGyltt8vVSau8fMXHn(t8?Fa)7BbpvHkjl z(&|2{o*uzGDeDHD!4sW94xQm$sq|E^!_MYdW(&DJRZ1ou{w9O*qPOjv)7G&E^}Jl18!Q;KT&3t%-UJgJ+;ME26r_%SATJk_Tm_ZInj;Vui;s3(ypCI!c)>9m7*9= zY4Z0p{rvmS)c|fig$RciTgkzd|5l0Iaw6PewIPs!pmMT&ayKe?IQEh029QF7#r3s@ z_WuA%xIw1>VoD+|fO$~L!q6T#A+t)kEX;^hz!HLd5E6JL5h~$=a@i*{l8z|;grU89 zLg~3NGW{KZS9Hu()uq{Wj?+wLXp!=iimSpw(MjnuT1;o{TAk47RT!{jFdeIm=vH+fsY$nmiQ#M%Nh?L~Tu@ddBBd+w6HT)&m;Y>p;e7%M5#H2ZK zHDCFLJDh2bWs8D1(o#8)`kx#!GG+0i)M%w&iLvH&P35PtWU(KL(?Jb7NO>j7mz!Vi zdIgQ&2JFna76NvL*XG9w+0Thg_g%cByrKQlY=ig!z;sjWjT0Xg@Mzma~L(%T~uQ&nIZ`nbRCe9uvYPhh=?r0jZDnmiu=#-t+^ zDg~IpxCJ3cCZY7^Ij^U7w0L$*R~(10X?HE*oPE#g#@+QtAeL5!}Ajlp#T|tpb9(tE;)yWnz~DQ6Yt$7}jH7oo zUk!Z9pV7m}DL^6fpDFYZ%2&*7b0nqL9kUD2vwYq;syK0H zydy>+0rk};S@Lq2Wv-C_q{YtdRIADPefDAd5?B1Tk1>!xzLltVm+gHtmVdTEeDkxr zUWvUOh9oCU=;f0eG;lcvi1s3NRpz_*Mhe^q0tzU$fcf^zJ;cb=8tv`c2`_ym#06P0 zVO>CW4l7Gu%*9-ZLV!BbFP9?j2H;jM8$NbBT_%c4^{59_*;c|HCT9PpGHI4dw(Qkp z%=&InsBI>MJyMwUXyA@ZEZM7F7-@g*9Cgd}lI&GHX8(X$mSUt&pq$Kz*P4Ko?Mj`J zyQVeN*zbB@#-vI?k^hGxTRuY%U6VCm-BMfpZ%dC9#iZg%bq_+3kwy6(?-kv&ztX4O zXNm_b8Jkz;#0W352TD zI?Y$!3mDcW{ks{0NKgt47Plc zzXx`Ts%J)6OKEm>R5wK$ANVH%uo5sIck=Lq>b#-v9o0MiQ7}3Rwh7s_O!@Q5Q=V^K z1L~QpDhAtd3F}JQs2Ulv9mDnp13-O8eE+D^jB0oM{lbEvzczPjZYTIg&ghKJ&=o8_S-3{9#7~i$rhnSae!G`VsmUO zq_A~y-I#~`HQ)MyW-M6xOZZuymC*W)cIBrr7InbXd(rxR$gdQ|uk5e_;-g%L_yAtf zF?C+mMyT68lv&$5C9}aeVT8wtod1NIF?k-@I(FzEA}P|T34Rr2k!Ywn8*{5sZTFGC z^Y-`!PIc~6?{6z2esY&J%vCWfdCl1&G6#|REfNW(7spb1Kb-mMAi>vn#)pvUe~QwW z69>3aYox{ZDeEoRZL-BoSzIloB{Nf=K<;%CX|cN;pc2&~c$HF75GOeRvCD=_@?Kt? zy2UTYjw1r*gF{S7;FK*zL5|7^h!4P8E&4!;EFhHFgCA4urkWQzmv0W|t_BLLv4z%x zC%R%Z?b+QJMjy~#6qycgOp&qK2YyG2?QwTxYkk#zV%n9>r+iUTP|8i@(3Ob4m z<8x2MrQJCjQ+n(0H?IRYQQ@Anj%|G%Lf5g4@2UvCu0O!;Lhe?VuY*9z9YeAOT3q(h zwMW3i<{(^-3~pv5LIc&MW^uttk7RB>7*bA>i9qlR%tcUASMcy9G#6y2%QI!Fli@XN z6w%HAaR3L3F>pfrbjflhKP;M`6;|C)x~^L zFvNe*1$LkeovjOk&|DiZuhYXTD2syB~W#8on5-rhJ}LDiU@YRL-J zQ$6o;wR50tXC2WwYX79BA}Y#d2kt%l;Z?wjO>mT368~*&^{8DlhDf zC+mQiB%ppn(1?g@tLXw4iZ^L+@T5T^myKx~0bm6Pykv1*5mp`(vn;H<%ZJ2USYhQ6 zG0XADJmsfli8tiJ$}3r3X?}EC2J&ZVBWyV@wo^4OVK)ETtirAEcesKHy|Tw>JMLe; z$l}er>CfFMnKS=#7O;{p;MK(Q7}-*Bj&erMOFUyx_AksWjm$8u@e0&S4L#7pNGsf` z+;I9%p)GBtn3dpD-cOWkl9;X;44`oG(DYK(hNh9m=$^&g6C)g*UP#dJO- zFWTh?W-U=y)#asGEyXDy!Y{IA{cYCope~axkC>hNl&ruLqMiaz-o7==jrFCK1Rwyx zbtwl0y`5#$GZj(a*y)cNN|?B`bmkkU$v({++K)A?0)wZg7nTIJ*b1QpkBm0l`n`cU zNz#i`*g}Rj)Xo5zX?`0DZQ0Fp)F2ZGhG03+Y#79z}nnh54BQ$cSt{Og%`bcPIX zq|-6hu@x!wFpBD#EUaxuuIuU95S!);1*Vl92-#c|?E8gzOK;t96?D~#jK*RK1r4|2 zl5}_FFTU!z z+Gm&}eJNk51>f>P3X2w1B(O9NT(w$ertDQ17htt$yrD6+wVJBewJ6b{kF9_}+^)kk z=QTB`OcbXg4u~(&6)Yuy_ltIv7ya2Z>pWhS(}y<Yl0P>Jdg##8R1 zAcaH#F&eqRbm}XcGZE?l>0*k4j1UFHSGkoCENY5%4beR1(X>`}Z}viaAeeL@qgSMi zv1T$|_ks3c&horLMyGS%Gx&Ytl81{RM73{wAel{{*ZQLTGEHh*ZrsY)D{_V4_wHCy ziQHrhpZy~Hc(waA$2CK~I$+!tTx~TnsBU~$3ud6AnXuC?o++g|2*PcNaQPHjVQ>%N z`@RjJJA{Wfy!LZcpXI~P3TdGkn)_wZEDT7J_+UJ|hKV9(`5+F6v*xw;@SE8!JS>_E z9R)pW9e}w7;ja$i4?K_>t%2XON`V{y6DcbbJpj)%zO$MCpc*??J6B}>FNe3^yr|MDhr6d~MsK;6d73GTCrwcFgy4S1gc9YM- zh;Wkh`F9OQ@tWMFF9?2C?*{7(?}#;L3udnlBck9s1zadT{}h@%CZ=x{nms&b4lJxZ zNzAga@@yM1y(k!LsJxw+78OQef>uN9+``H`uqyDxa6kS$d|UoxoQXIpW&2i4&n}#? z?83YeO;~Uz+fauwcguS=^1$a4U(SpLO-2Z9BSy9iN~Oz?^AdL>`~lx7Mi^$IyI#Q~ zq^|j#-A-|76%6;8USli1A5Eov!YS9xG3#iEHT>#~vl=!&Okuqk zlxx8liG~r``=1X|u0>$>r+x@^n=NG1O!Ko1YG^Ax0yq5YVa(BG?Flh>2X$yIzbdj- ubJV4GbzTsb;r_U<`QM-aR}S9KvqGM%c(>`ze)tC+j%sadb$z@0ss9BsVJY(f literal 0 HcmV?d00001 diff --git a/demo/documented/built-in_meshes/python/unitsquaremesh_left.png b/demo/documented/built-in_meshes/python/unitsquaremesh_left.png new file mode 100644 index 0000000000000000000000000000000000000000..fc19db15a24be22fed9d5686dc467974a62602d3 GIT binary patch literal 4985 zcmeHL`Bzg%6b>lIsKKO*m{=sfLyy=~LRl;Z7mx%B91DoHMG%n6CNxwQ6-#9iLKLwi z3Kj*58jCg zlaGh#f~5-x1cIrTr`u)%!FVfyU?dowYxqh{;_}QP03B!Gt-TnSJ zqtitsZ*ad*TIPA$*sG+r=I(%LQqbfTRn^$-zmgviLVwfMX^aRje0Y@fE)qgGM`IDb zaNrV-L=ugt9Ta2RLS$~}DmJlU=YKcg+3*AMfV)jWQa#~DO~}Ky#vxLQJYk4F6&ui5 z_n~n0wz;C-PTh|?5?}RLnVf9!J(t<<eBkME3S${vowOneF{F26O_npP^xjlIX( zYtKD*mAPKcpX|Bpy-jApi@RYaw9*}wtf`J(_(L0|dw5dm((T{k7>n>}tm=!c=t>J) z?tWaBhg6oN3fm}{C)gEOT%z@O^Q5ngp{yq%F1R#go?tD`yNf5#;7l@GCc>G`6qP4d z9ET?mV$PcsRS@QDqOtZyqlL%Wvt=Pz;kgk+r_*TR(vu{l1;fh}Aj(RtaA8f5s5hzp zfd7kwrXDr9?ESSGquM*!X?@os)=zH^vKgIs?WxG-P0POT9bC3{O+L>}d>y@8U{=4} zRQrJQNR-8p6e6TSYxQWwt(121H>+M{x_kc|MQmwxiDFEIrRu4)juAVunSL`)-^J5k zWiIZ}hWh1Y(WGZoodG$T6SGX`6jroRMlT(5-7x*#!7|oms+xAme8@>v*WHiiZ8Kr30sy3g)Ft>K0OA7ECkF# zA%V7Ba{)f&<5P(81cYUfgdBv5_KGB`m-LRS8}(=RxV$sQzGdWzZqVWN>L6y@9`hmn zl%Ds|Hc5h7Q0(gir2i?D-k)rwuwX7Q`syx)%9Yw5Z zLLmn_aQjD5Bq@M93>RS1BAy;rq;5PMnJUO7A--sFo@;r6(f*dc$l1Qu(`SQX?mmQs ze})1ZlTs4W(d1R3M5ksnxr)YGlt}mGlvqsm9B`EeUlQts$2?~$2UqsSAL1vuq!+At zN!C1N)Wkts5RC57{~tJZktY!|%KyVP#wL#i|YlL#f9DvigPE5X!Z zl3~7sco3&zZ%Knem}H3a5c7+uWU!`exeAI;}R)t1}eg?ZBeE4?_A%1Z6Q%+)-B2Uc9T19u(H33$PL=5mS{ zcW30$SW{Txan@{^5mvZ7oaj`BB9a~eqk|RB>=;R|lW0t9Gh8_EpfJX33WgG#T&_o? z?dfu9PSkfxSz1zY6S%^vUYkS@JdbopV{l&fkiI2GLFyu22W~J(fUeS{*^m~3Iavg0 zN%+^ixJ%H8Zv?{wjd%bbDYnrSU%k$s?c2&2_8_0goI4PA#D^@IfQ>17&7Qsx^od_HWX4vWtH59L>Ek0 z0TdEUWlgm~AsL7=9STu{%TI~FH0DPUoviUidx^nwEoJ(neI{vrarxuSn=QZ78^((@ z{wdq;Dgdv~?uaH-{P?0bJzow8yIcdc8ToY1%i$6c4~&pO7xkiV&_(?d(x8h?5`!+H zuTz6A8s3YB_o6`;-L+nG`bUI*|GS?*&_6ESJQK%OCvj+20QjXw@N)NYyTl63_#5X} BwCVr= literal 0 HcmV?d00001 diff --git a/demo/documented/built-in_meshes/python/unitsquaremesh_left_right.png b/demo/documented/built-in_meshes/python/unitsquaremesh_left_right.png new file mode 100644 index 0000000000000000000000000000000000000000..30f21543a79176d326f11eadb7a63e699cbf685e GIT binary patch literal 5900 zcmd^D`CF6Mwx;@2X@N+wm4Z=D1o82diiI+ha7z&Is8DNFC?X;Vr9r4ff=r167_njk z6cmKy_Syp?QzU9m3K)z7L537l0g*`w1WEu+m;w>*+8;x`!+&so{MNJA+H0?G?RUNJ zPW#%&%iu%P4|Q~O40d{Ze50eY!cRx%J+|%&u)IB(Ce_hdC)?@q)wieeN4kQ)Szm9I z+9FS#5*_Padb1VtD@@nLBqUwTpYU+(! zWC{1NvsI>L(hom(kq#*D_U5Y0-OSEuCGFxoi_B0QVKzxqlQb|c_oC06@1=(x3EpG0 z(~-&EK-XS6&;jP|*@s8yq2D4iiODY8sIBp71~X}H_?A|}MnSeZrbMcS4?0-v_NB{n ztc~hf)zv)9w9s`pg6PGx9lgy5?332njjZw3(uV}Oan-%2Z*LCOvpQ$jtWufR*fsp9 z8!t~|jK$8Oz*EuzWTgD4D;yqTOkla)Q?csQVAT6jSM&U*p4q;9a8G(0a6|5uKnYVA zs?HI5-WwhSBYqV7-Sq}9?1FN#we&tgUePyD^>`2D{!6MIIg~31GrOK{Om|G>NZREc{cJtT-?Uma z5|o3g7GbUjWpq;qUQBcMR19>(LeEdYS$)s0fvTIBW?FD<40bm01Lx-H)|0)4 z_C}7*4&0(GZZ>z}bos+&5wAvw>VuoEYiiHel!mNjl;e88UFpVS&eP^-H<|NSL*}!h zRSZ)&;nwavT+$D>GvvP0Nu_@Dmmj;Ozs&d~Xi$2#%rT`Vv|Os_s<*bvu)aE4HdIT9 z+;Tkm-k1+PI4$YPuhC5^y!diVtD<{UZk!`2D5O(b2Mq1Ac_dcc77@=Q>TYcSe>;;` zL1_zbz?K-~#8VFR8{VZon~Cfx(29*TzaPb_G};`*t*Oci^4m1#rz-PjktM~$>Q2lj zdL35qZ(>_#sw-VIshd?<{XKcv@JnOIXR7ZZOXbauYSd#I#lI#@?qC*K0Dl#eJ@0rl z`SB=97jGeA+c~Br+0l|Ox1*h%yy*ngZ1-#;%X{M3guFec&8LsRp(5;5N#8~*1B8v8>)V)8K%x**?y(c%grE5#_m=~_b&%= z#u2VX`g18*RdAU>l0$g+y9w2#50+PK!Vz3L1GxEEtW+8f%^W4XIgqVv0%jYkuf?SCD^V{ZluEXsQxg{$drM0X- zSv{v&Z_kNq%|<542J`2{ujjj;%te%jY+_B15nq)>h>JX*kEk!!%yqF@Z1@dub_*_9 zLh4~ybMKNCk6PGkSoxqv`h9)0U0Ky$6}3I(GN#Q^T4~?KUY07Xe(b@BZOZS zHQP2FcxO3IA1YbU5Pfb2HO^wq%%yJ=D{R}A0{x12A5G{FB69glZUazhew%2ju4Nc? z%Hr>F`*dOh?{WZl@t^V$EGPjMjwUbuRI6Ho-0ksbb5r{S>SU;HCA0kyq&cJMom9mxj=D^9*e^=Ek*}$FS{JSQLeYcF+^q{d7XN%7q#iHHn?J zI;36@M#KeE6l2XzlbG9@&nH{0>Iur>n_a@^mDown9qZ29@07A9u*$`Og&lY4qFhhu z5()*_qN3uSygN=QBXVVP(-aoTH+Q_upF?in)iK(cbQm31b9M+WFJA0v6Q>vmft-q_ zBlKCN)9wOZwqU9~=#qZ_%Jq|#m-lF4lI%0k)^412nR&so*RDx@U>)hBGi2h}DconiOay4QL;`?z~i|l;l81;tQ`WZmN#=rL03k zW&YXZ_KwXmejG%r`0lk_1!0?U1jYtu;&o5hU=TJ?s#~od5air*h2hFUxz|QPuO_3bI}cDm zTlad%=_qW<@`Ft|(M>Dx?)OX`iFIhxcI2vUMNqJsT&Ng?UGaCowL7oaDMhP%G~^Tx zobZUXcQAdOIFLWY+)S>*4g}u=I)1p7FtJQ z#B~@y(NGZh6PeyBrxd07Sb`1OclNBpYt=gNPoe5Q9|=jwL`F3jA0wkhV&aru5%Xow zO4FS14cDfru{sKq>Ai1H9H`s&sJ*Af>?0?w6ff|0ORtze?ck+l@?E*6#{{fT)=!Jx z|1>H`a?v{fRnZr2?~se##<_4K{jZQEI5)cIXU7vP(;MNgSv^7NGb*xdiTk_;jB~sX z$PFv&D}uV%+lhJ}$dCh2P?a9k7dJ9)wHAx<6Io(SOaABVei`2{6ksNlfFrP6-;C8X zb2*#M)q1-uO8z1aR(Q+@z)^Zw+ij-UEmdUzSY>M9R~?bW)jB661JGL^u zbNu$jM(fhajNMHD3+EXQa`VEXVA#m+awrW)nAbNexOPh>v$qlPzVobvpDDt@yxl94 zxq>Bc2ZD~9`{vrZD|}g!ykB@79+mn`wk?e5?4ge|1QE~Fqtb}UtCE352$mi6;LkVI zAH|DXeKry-A2Q$?;s!JTk%6im1I7o&yq#Ycw|Hi{@!SqrxmH%XMGq96 z_*rg$o~pY(t$-sHT`|_&){67CX9CpITtq+g*Oad(C&w7d|ZDMSkbn8&d7Ch)fuh$yKR|p=gR_Zh>2ca zau(F0#k&;|EY-NHgYza49O|Fu{+Gy-c$xYM#DM8!u*pA-?EP%3Og%Grq15EVl06n^ z`Vap;WMb#s1U*vXZ$UwH;6H~{%~m)Q5v#UV;XAoPln5$r%~7bMT#x zSh(^LMyRcF^HE#nbEux-8VTTSy%vom?6#+3jkpV=wL?yflQ|I5Dx*}qbkY5-pj$jD z4Vmnoq$IFp5UjnJq%KVr+ zo~HPwSH7sbXrS#`p?}3pqxn?6hzbA|iiWX%+ad%YW@#$(m3jaxVt|#`ec`vC7J|8Z z%c{T7CUT;8EH(z2-vqJxz0Q9O(6akJAv7yU^cx`<=&~Rw!<#PePqo`=!H42^J+63D zMMHK*aVY&)46sG*6WOB&5e4sNY-gLnNH|ZHnEPrIE7T|rA;bO(GM*z#0)6L86j*NA z3|9^^o?gE6;6B{rz8TQh)`iJ7)7Rkqybuk)5p9tJD|7S6l7lNnYvd<@H9Jkdh#2sq z(J@hB_CT~=^%1gGBUPYjMO=YvK2YU}+`mGqKp+S+K!e4h#|{aNHJ`(To5k2>v2#CT zPdEs+A(e=_!2QX2;}N;MC%S)7l5+))Rd)7O)-I4_CFiIn#`@POnL*e6fAOrkA`glbQXjF8rdbchN%yi_&4gdHJ)YC z6U&qxhJ{;Va`NTwB{czpR5+YH;S|0Uq_Ke@&rq}~8nJBSZBt3GYr9 zBqx`5ECrFB(0v}-FmtGCNnQ-RGOT>oH?ebBw5){{FS}>t%ZdazxKf>*{1htzqTnCn z-D$Jcq}-)cEqXu`ID#e^c=VShXlMQT;@F0{5S;csfJX|zjix4K3(4+@Es3^;W<@Hr z2Prun0nJ%-ijoN+FsTu!b7!x$~d!Llfug+ce80-xCplsWn{bp(VGh7*y)$`4i2{0s^Rq z^zgi;pI60_?m%?y$RC2Ut_yU1QQno@>M_(@SXKfs;O9RDA|A4=J51pP!RcsRlxG zi*E#Rim+MCZLy)@+K+aEJcN!G-nWTvg7H{b-c@j|4l95|KyR7|ku#Ypd9aAQd509hmQFsCzYJplG zn!uh4Fk%2GECkj}!8BR1^Ra}(C^af@^2!GRd?42%TmfeP!6c^dRMM|xwlt&z z0zd~uMK_^;A2L0T{{lAkLb5_C2zw7l2r|g$^ueYvN^o5q9p?x#>Np(hGUyf%0)N0o zo_sZ)kBEAO^(i#o03hOsL}K`5IOu1fWEMu2x$kbN2GY=ULaYQzYcELQKpFKJgc=RR zLfIfpIFV4k0rDSN@Jl00EJZ%PVptUA52=Et%JdF<3CM76s2+)|I#_4&jbE0B&HLzO zFQ0Q8WJEPmJn$!WT4?a@lNuXhF4{L41jF)VpZtPYkBsqPgja-2@64K-*;Lts*JJM) vH1HRcW7af#)pUk$`oHZ%?EiR&o?rcSjELNRi4g{`+&VjV_;{4NA36Kq6vox5 literal 0 HcmV?d00001 diff --git a/demo/documented/cahn-hilliard/cahn-hilliard_c.png b/demo/documented/cahn-hilliard/cahn-hilliard_c.png new file mode 100644 index 0000000000000000000000000000000000000000..d81f3ee0b5b29ac9394a4c8869b59371d830e01b GIT binary patch literal 93097 zcmd42V|OG>)Gj=eiETR*+jcs(ZQI67(y?t%Y&)6Qw(U%8zI{K>d(Lk-yTA16wYpZ- zR_%T5tHKrKB@ke7VZVL*h9D&=ru^+2nC7={-{YXcK)-xwgin9_M*K}mOjy-3>mu7D z%SSSUX_}vA}Vu)!3n;A+>3>;z< zEWyQ|1%aUAEZApywMTG@`)SiUD>tHXZb2*eiMqU_;%w8yz-d{}r>3j9lm_O1WFF&) z$nV?#e*cpENh&J|lC&jBv9vglFjd8eF_D18NSh4BNCYH(jpC$z!2iT5S`7HVOW=k> zqoIPNm>m^`;wMOCZT??cNS4v}@nu!;6&bWeLLJb_n4+%-vCQSaW})Ka;;ykpK?gbw zO#Nr_t-|+!TM8X?1o*fxCL`^gN)OXFJ8D?@y0NzySzVAukmJ4zk%&o*KK6zkMxqS! z9GrIYYF7g8mB@eofK*U9=!xCF^MXZn(s|GI5MZ}zxr%3UiMbcoEF1;146}kj=ptnrzettO{l*2_ z|LiH2Rx7;w9x&|GC_R zAfT}A{lYd3;bCDD`Lja2dcOoTWF$`aTBuTXQmK~(Q68l$_mbw6xn9YSJ9#G=DSq-D z{bw7|z+e&TUKm8DKDlwN#qU&fI+JGO+-xqm+^`0`5;CD~NenY3YUp&oS(a)2@0KQ( zt@y9Xm3d&tPaPCMhP+-80T~?u2J>cZDx7O~j#qQ@FsVWnftL=po*VW6_j*&j*<_x6kD?ydN)I|mIijJkiLg+G*=~@c@ z=_avB_M?u86W>bb=+jRcd;{HsZorOByZD?y(Ml%L&MLPOXV?p??#L1*E4pGLqts8b zUKnCvFr3(&%vb1o4@=W9!Q<@c*9h~p*7ttRzB<9t5NdVI29FQ~olY{1ZO>vM7J};v zyXC5R28s>v5oJ%+)Zib4zh=?0HOJggHJk5o;pK^^l>vxRaC#T&sh zr2!Xrjw?Pf%n8F!XqOO6PD{=}my*@I&AjCKF&w;v{9^YAiH9~&0{MglWsU##%91A( z>|!rAh$YE==e_XjI+1gno71`_&R)1?p)bU=$#AFgv`+#qHz3FBPPl$w1ar!Gi;9e1 zd_Afe$DVb~*gP{Hvmr#2D^Vxq9D-A&Qlmy5qzZ!|Pz>Us`sytV<$F>R8!Gk>%d4~V zxmax7k#*hW6C?9NYzDTg3^nA@Qho-nbY7+Mp!ctLJE2C?dn$X z{av~)8^fcXJWqwoGgDEG*Mh-%i&TBI&l_DFa9_EwTde_T78LdoeP60Wx z(Er9mWfGntz;~=9$$a9-o_MUwKfC0d#LM=llJSFZ= zZ03NX+uhEg@GlIGP7Fj;Tqqz8q#@-R$#dm8;T8Dg^O_1c?W|)Hi~n!$H2>|rRJt(7 z*?k3!vLFQSQW!ylVgKS>4KURaex>_|<~H6UJThh0+PBZjE^rSeepWv-)1gOt%PFl? zkt&hgPhxqFI-M?!E}iZ)$yM5$<1^8$-qbBNr^w~St3hOtVA6rkl;TL&PVDg9V z6ut6w+V?Ya`NupcKnUZ}jru~shw~&(_B8V|W>{2>jsdS-k&PO2jOiyq*TGm)O2&F& z31#MIe$n?e%0NMH6Za$DdOgfLV00R{?DAYg6c*_7lul(@A2+JpNp+$98q+$FInQr2K9P8&4%Tt`Rbl0;qdC)J}D>p9QnV|87;yzffB(b9PK$C1#5bn zPgdlL9V8j{>U-R~hhDMg%H*97M2YMHA0{-D=jB;4GvbnngWrXeCB24%oSIJtG|6dxB;P z-hs9(nei0Se6^cmxj99y_w>OCSu}?5L)(TtEF>=Zgm~jc`D&-JCKX<>@@}q!%XjMH zWgG9`{!u`}%4`cH?8YU=PPyyDD`I+*|C1Bq4fvU^i$>TY8S&pWp^#E`T+x;XaoF5} zvHP5g8@w?ykv?m_MRjMvWC6tbM=nZG)qLAdqki-?E@t5G^*CPGpvP&}0Wm?CzxZ>! z)dRuCyYiG-3EXN0DKemm7`j`TI$sfF4!BUgp(e%dg7g0GQ@lqGT{s`RybU&2dwV)< zC+glYIfXiN4fpuL`|q(|7=m91Efxj>Iw;(yNUpHboFm(9w;!t*SJMmu0U3U>p7^BH z|J_Cm&5%tg9seky34D)RIz6eYqWDC?$%yyRf5^YgjSu$f$XDrz17?5ZE^r-RxCQBV z->lhQLU-7XZJ?MVu`a+TTrMxqO;~YI5zt_Z8r4bLgPA;k;VP;*VF!s^YM_D{xhkRD zBx0y@eHFf-Z9h>)(U)}5uDhFnce`~r8N`~3?^AxBl?>HP zstq`+aRwuJ8neA?`=#rYdRZIx!uoP{<+XbmBp0!T;5yr5_U6l1)(;%U0F{8YlC?k* zZ_0ulu`W_E$Fb=cj>#x-1`0B?D4Ye6J57m?SC{Xfrw7s~V?2wq23@o^hjgo9vzQIq z@a$Hcqb^zf)|TI;zl)^ATO|1hD)zG07erWk8arW=<%mH=OAWf@{~{9Q`&!}Sy!hA> z3Z?8O(P2t_`cw>foObSwwq>E%OvuNvWfO%R?%}7+6pVC_#3CZ5G$@~hyfc^HRh5OF za-vy!!Gh{@5X>QZbqE*|el1HiD>0C7=siagPWEd_s>!MXi-teG?$prC>Zc~+ne#n4 zKu^iIeir_pEXg4r6%tD-|2#CEWxnA|Th(vLF~Sn{9VTM(E(lM!jF;# z?fqz*<=E1UB_QP>@b_%7d5C$8+dcg+6$-cvZYpCTW(HTNMX&GW=>?w>G&I;FKcO4G z!%63fkcAmyB-vap3{oBxWVx3yVE-^19=si1=k}%iWuO=B)*1z8KcC)T-~I!KGP~v< z1tx4s5ov@==^)R;#T!<}Z-Lu{%H*4+{x%nGY}J>sE4Qb~6*uN3CGAQDcw#Pxaj`&{ zSjInu|D`EGf&3;I*x)V?46SiaeM6OT9!MTYjB6Um3|)E-K4A^^bNb-{=qY`3V@f~&smOZr z39Ax4uy4Y^1VB=Dv79Hl!ts!&((V6|`Bc6eq>QyI9mKqUQ^rL1+KaYw|R?$E~hL1yE9n+hwgud zpw$8wV?Lx9^u?tXnz`XkwC$ZZK>$V`T98L48g%#B#K+ba0hLg?O}C$$#$9ehUzz2cbz1_thCjygXB{xzxepHWg!~>ic*_YYJ)6 zN8B<@{l-Vn#kd>@AY3@>qNUb-#)LQE)vM{roX#n@dT%awoUJM!`C-#)L$0wsx;XCo z0IdEuLr?AI$ft(TtemB$*I2*y>1+M_K2pNsQzz^@|6jPLREI7#kbP0OKjHP*dovKx zAhJ;W$q{6Pfs(DI`3Gc9B9h!hfvzexqI(M(4E{(9a}qT)~0d?o)#DEMPg+g>4a z6e-9@WTDNqKpGNaptBpOGW4=8brlv)D*FxPtMfDYwY+e^RmCCYMx`iG?VDoO1(*r_$gv+ozYXzBp2dwj?_q2BAL+v!_%1&8&XnC!ha+ zUGi0^K{vxVxSG0~D0s$QM+9)L?l|T4LBoPFr{Z|yxkulaprACU%eHM_-FaC$E3p2> zSJerT5A-_4^hUJaqZEU?l7j!J(=}3oPNQ&Wnw3| zu;D9He}b|5+c>vYNV*6qSoyCV66oNs3=4dI;A>*J_EIf>Om5WV zh~7>k3$j_%#k%r~3q)n6109DJy>E*uPnp*GXaJ2x_w+@3d5+4~r2*=AK_&z&NkVr2 zO#T^^yw8f$UZ{;L#wRkWV^nwXDz0J4FL!914HeE&r>z>#(qT>?5WLM^mR*HB+Bt4i z?xQ!I^YPAhs;J4SmA6x|j4(*F+63#nU_DifCvVJ*2#I>kQ?J_%WFkT@WX4@{2`K|% z0+4jCn{7*ft5kOh)`qDtVFzK?TRtRtHhm1~)QeBabhlPx?R$|muS=-HI(RJ9zAWi* zFFn@9VPY0Ev3A2e!hbi)8A-2}4%r$+(n?B-|h@{DV4c3-`>4q4q$0W>MMYfo7 z7o>5Sg69GAIVyPWv)$?aBAIC* znGYoU;{e_x@CDdEV&?LBMj-wrd4K3#bdr~s?zS3~GaCsA%Pa&$?zuEC8p%>!_kBqN zWj@#}I+C2JOHa*9DFEjFnim0iP;3y6=K340KH zuTJjt%I%r1Q4s0#mH;(yl^*bi@a)+3z;6>fvUNrwHKoB~Z!!(h_7nP2yZ0LkM;|9= zjWg7uzueeG^ic^BDcuW_bedv)G86WOVBHL{BS8K`rKQ(W}l3 zF5;G)*w%9+mIoy7DmYou+DfVy3;T5{f;hE#;bm2`X!n;`&|?glwWfruYw#_Whd&;& za6nNQC1)}J?`|k)9^&Wj&98f(tXhAkC#ZV$Aorl{P1NJb>{rr1M0z#Ybx~x$a?C3W zSg>tRc*R4s*l~u3$X=4;7b}hH9ffPu`Jatm{IgO|cwxcDQ*iw~nVT5a8Z;4JifC;4 zKt+RNgZv{E{)aQHjz+RLr<;;-6&4q<;5ifxWB_YkQ3Ujd@!-Dyi7M9}soz+0{WvM8 zsIr?IYYWISqt$ATfTB3@#tfxIEGs-iiKtrf$d>=Ja9)7wfgTwI=b()77mcZACA28g z^ai_ME(3?6K2M0^AS5I|nK|k1qUiRHvm^|JB@u#>Pp$v#i0FtG&WYT|5NT-XkNlq} z39=*TqNOowX^8VJ*75k4ItWf2e?8uGbsyq-Bc#k@0?Eg%*tHgWMS8^GwJKX9z9gTy zaqsH0@fHC5qNVXc?#e)NxNjl28?H4BT0gBVJ?T&4B)^mN*liN#i;b5`s$nHx_X>7Y zkWYoxyW+Lk;n48CeN*a(b2m9971xPs)?7c%NBk%a@`D#Q>TeB;@Fcyj5~i&q*TOq4 zJusmfD%VuIa++lAel>CH3k(r(;7spOJc?r4_&IHvcKz>xIcfvgeh>XE*W3TGM)1{# z6MncSgLcC6BNqluLGoE94%C2q4@AV8gYc{8Sqy<8fJ|tWX)azX^9M_zG|F0r{khhw zy5H$^h0q&Q=%3V()Xid#8sjP1qlu)O9F43wTJnK>wHFI`(;~A7(#9~sUug34|2X$) zOKuut+qU)dGp7>ebL~+Ow*cHHccaBrA_a2^p`-O~aLFtuD1m6zJ$n6Y`C~Jp_QS#T z(?=78Fm5IWZU1bLX9TGJ61^<>9h;6tMx00594(fe7Gs7%#aZCjx6ox*)vQRkYfYrw zr3sEjafl)~i>mYc{*ssP=#`Ar5}m*`whbfm*jq#T)N|VvUN;kfabMJ!uk!6H{B>`W zR7+^|9-SgaSfH+?>PB;>C@jO2mbM6^gd(maiP=nUh0c$AX!roFEY<4AZJ}T7VliuP zl;2pIJc0Ga=B=)Z{(wk;XK^;JU3T|Z4}5l=aHiyvIO(Db$H#%8r;WOvn6!M$d!O^$ z5_-O*Ui1svHRU8rw|;~-hqoaHf9J_PCE?poXZ`n@?M z2}ISh+!L&T%T7oHZmy>G>aYWxnsxP6@oul~%jPmR7GQ0f06uNL+=+t?3kfS*z3^zG zMcZdurAqz!tAT0HKE*mV_&I^(M8srCkx zV+)&&b!KB!I-ddfygUT%$oyvY>$g!cCl3BrS#f$UqIo?afkk2uFs`x3!=dQPCYD($ zfWvfg5+LWpE*j<@D{T|Ime!Umwsfg^yXU>PD&w67#3_3la`hb zunKBMk|1I*A@N|mEJ3`U{rHLId-7WlFtCdBWogRBl7TasWsa%-z*7{@I%iz4Q*KgU zM5G(5+iKX{c7|3=b^5e_QRdu_b!WHzsNuMa^`*eE2K_Nb@+IZ_8!y^8xl15hT(lTV z*^14mi$p(iybLqVad)ZLK;3(my6CP?sWZQDF8D`ml>E*3!gywjz%N{X_wI}=c7h=v zSGZ_uR%N@;ux+YdJ*g_s6HZbX8a_K8uUkaAbVj)0KdaC@=Rho((inAJLRqT4I3B!3 zqO&3kdb0(@Zsrqi6GzexoPX$*XZ6KcbC5hvkJ~yv<*$xvQB~FrV}|Vk1SL_i+)boL zqAHc=?JHyhBi%ZqiizfAkT=ljUsOiL-J6D`y^4wIL40sGo?CqxW~DO|R_v`8qUUw8 z-iMUYur@wXPbW!1S->7-%1#R2#}}NL2ChSxyP&6G$t>nz+13MtgddjPB%pfByZ21N zeCzMa;T;q@SFM&fDU6>m)))5IBAi5I(k}D!o8Svo@*D|s`h=;gcV*5Wl^J>yswhN4 zb*M&FBKm7D+P5oGB!>BZchg zIx0huW^^M0r>^al-eC08Ii484P5u5XE)&wwLq33ee!=i&@;xBd( zv#!sDH%Y=(7ysKocJHSMq2K;!e~5my?ZE{Uw?4F`ni+VTxzB%myOUV;V|CXYxUsP5 z_#KaoRr`X!Cbx#r9iSyWnXWHcGz)wP#CDOw;Ux8naS{NKr!3G|B?yY$GMVdVo{9Q> zT@;_+i%Lk@Q{j^a(RYxE8q@pO7N_c?rQtyq)OxGZ^Av2?dn=9)RtJp7x7okKpJLq8 zZzjm&p!JhqjFoaKeoTt7$6nE#RmC$DbPI=-J`d!qJsVaQM?{$8IB>}-`d^#hm8m@V zO(XBHmYfR`;p>apkFeg-VOzu*x+-IBsiRjYYgU%$%1yAgJ-B$~)U6t*)V+Td-u?4! z@B(wC9~wTfoCpnqXZRB7K41U3pC@=KpRkIn&72m+0PY8r)U4=8k4L~@#>T@$^O=s2 z<7U}|VEpS7lR?Uca#8i6isVIV3~sE$>_{gweJ<|;7L|wGh3CRExK{@yBGA)LOp3o+=)|D5u zaW$(-(bxZY#R@D+s_(>%p_KNpgNX}%L;FR=M4&ZybiwbR*7t|7 zwI!0q7QL?$V?6g$apxjq4Rf4My#+XY-06Cb53_tNeZG$o3%#Y>2qZ$76uvHz!S_8e z%uI47SjY9}8NX*Er^EDMr}~m?-x=vX=hjTahQ>N<2G}SHc-LQcxAD0_rBi7#Pr2i% zXh$T-D(+@tQTOQ}O?Ka}FHmPO{Es600R=C6SBl>WWNW>GhJL}Z+ZvWu&uVSXI2+RN;qvrD3*{Bb@N!B7~@!(@blYCu*FxOnFH3(33S^ zp1B~_Y{o1*Fv{bw&=EaNWn>5zv6R6=Gp?hO`F?%AKJzh{mk;`~hdVRbnmSvoN1HSG zq}7qEv0~dZ7fw!&i+bzYI|8Lma3m;Xu$Ig`Nf*)zkD&SGF{;k$hR}>$$DXIr0Y5`3 zUaY*G;wPo2{o;ECX?futz@mx-yud7ZKc)i9B7^IfN%6t8|HB3F?ePE}zh3s3?kAGaY(neU<5PX{OF)l71r%TT zM@--p*P@fJI~?%K{>aZ|^82r~o|OOqi>zxc#m5UQ%KnDc@tnC-$W?_~7B_!8FH$1w zb++1RH&`ukpasq1yvIYp!`s@=HTvhNq4pTjjwa)(4-rD8_RTrxj_kG<+@5xSe!xE4rA`D$#G*0{%)Z~t;- z2l|Jr97WA+C4mqhP!ARj-;?cR7fT1%4>L4Fd#deQojKk7n2GME?B!NhJ)!_uumlX{ zc9-nMqv{PpzV9?6w0f~`$VafRJ; z!rXnuaMZO~uiKKw2wnZRchX>j^3C=2{`DS~KEkmu5iWJ3H|6eSlpNm=Td)HkSckGE zC$6n)=+;U5k3%_uQ%NMb_0@0W?plWgw@ilXPQ|N-DB+jLb=;t~xVGW*io!ie;f@zd zfzEy0ub2I%1z7gFdjy#)1HgHhf{e3Wm{^L-53!>f>fE=g5NY*$Hfu{ct6i#W)n#gC zQ|{gwc!VKVd(D_M&&4I7 zKZsEzpz7O_4V%EYblkM1(Oi$Iug#)n^+d{JKg(%}mQNAVyKUSqCl9=8)1U3Lax+F648d-(ESYx% zrHiEfED&wd=``!8#&r(bOu4m0Kg^MoP>6P`k|50TyQEHKl^-9naxoRQMME-enGG&I zg*b5vA*kRaT0Pi(91!!acRXFYQ2G8AkvRZQMHo%xJOdV~g9oX-hW5BgMQWgZ`BqCb zW*8f{OByw0tgN7yx1v!nCyf)CfBi`Pbt{PFxFi>0^a!8Mnix-F9y4Pd-CK~KfWeK!Ry*ysXgu(Nt9J`<<-35Bp5l&bu{dKp>$gXcP|GuW*W;* zkkkF+@AA}gccFz@!H$hZ(cFovFbI~2Wzp?ysJB-nam6iHRw*yUCG;PdqQ!8Cu8Skt z@>L3%v&7KE40C*D;WSChhpfs{ClnpuN$7x_UHNPlz$Qjm%4d*_(3eU{)cR7i_!$cC z?PNt?*P}k9UHv2#vP`*WVAW5IGn`%AVK2^VG6ikGqZb=c*7?DtWY#(wrCvLsn&?Gg zp7XtkMQH}?My3qE%>eE&&US|MLH4Le&U)Q18@R^Oce3g3T+w;CgfdGrFW0}CQZCMK zBF6N70_GO;rg27TKmkkiS?0f!?z|p!QK#kUq3-bmr5va?hNw-^N!w=F2Q+o0Z=+JX zG8k9rnRDF`XgD$W@gCn<9$9 z1Fhfo^h2YK=V~{8bC>MBsJXWvq-!=c3f8d&T@nlQ#5wPDVB>n2urcwQQ%!=+)e@Qk z?Y^GhBHCdu3}HrId*PL zfg1)Q$ucR0$?#+!eE&Ei_->#MMi6ccH=uzgRCe!g2;_M9ai4ve{=MsXuYBn!i=x{@ z`3FYN61whkeo$Fwp$gPliTq_ptH)mG*QUhZ5#C&^W`V9}A?~ALo&Z&bR>1ZH`pv;I zHTD$<%bZIz7&R3hp1Y~wQ++EB4gp^fDM4-sXb|DD_O&WP+zN~yb_BZb`{a;YdyX5` ze=Y4@k?40bGOnn!LlnV1ffp@pr^d-BeyAs*&fQ8UcPI8q?~XWM>O?bVxi)Wo3bpbo z?XF`vURi@iMWGa~4}V?}C@FRG)C;NJhd*PJuAcxPEKUMp*_Y`&`CdBaEBkdZC`dvT z=!S7(TvW#ruWo`-Z9FNAEX(f0;IL`1#(gJ_ZO5`EVpKn!L8!5zGw5Y=I$qv%?$Cqj zs1n|{CK~aaY$g}6ii@%Mb<*?KRM$CE-R0i;dG53q5ExIEA`QY~gQ)Hom9R{}U&*&W zf*$v%yeVl!@T7`dSGXQ8m-2<;-9nx|$hV}znA~>YozCZl2($-DVeiZ#AYUh9Rrl@R zN-jx{w=17&%nOD+V>1a2>!(dseP3YW$=8NYLjl-B{BO7Bu1^etAV$}U3${iILwCZ{q_%4$Lddj3n?xg-mvAlutn2BvwkUu3VK?`jG6pPd zQH(t*7mC}m|KoS;guBSRLbxUimN`aLh<@>%30WOL0z;kn27D;BSSe15U4>}=hmdix zo?|p&bMDjG^}FZ*_3~!bCPUcP4RNktx9h8>gi$&jm`1!3`g1t6=!#x4+?nDJ_zRl+ zaGUGIq;6qeXo+mxRPUGUixvdR55nL59%un)Q=N#0C4h@oO?^LQ)yA9De320+z##lq zD$CYAI!C8L0!au6O;&TYCfnay(XP#V1wgJ$;kH_*y(e4Gn)8tt*1mb z{He^J4@p@5v;Oc;WRnhXv9}8w4C~csC(T(YhG;PO;~{`_7J;=19~W%vXN*+@oa@Q? zT%h9^M0sDp=fq2{%h=!nI;0JJ8H0Z*^)>#7noE4|@wI7g9yZNgB;d&Dtu(Sa zn4>*Oy_b1)H%uv81~e7dK^iC)_Mco~gPRC=;c?_nQkXP4M+yJ5rOu%Hk*!&@80PYd zD}E?V5a*=!h_5QPna7~*WE2fn0yL|c_ixx$19y%9DCs-@BF6WLAgu2q&T7p@>_{3!HsF?Ug}R=>eue6e`+p` zXHP5-nf_8{?gUMRcQ^1bb_oPkcZ${vNC%T3jXsXYcfz6FloZI7Y`Kt;AkAZ-V?TFk?f%E$x$6m49l4xX6@O8~H zH3RL!{SJm`RRSnDCw*nQtua&=?@RW~p}`GltbK}T%(5xHt+RE)HQ>c%w0#-V#>AZL z*jR89r)^AJG9V&_k7f`POPnl*4vD%>a6|RcUgnREX(CaC(2Efi8SW?Z$E_@Xsa*vn z;S$4RIc$6B4r(+dhh#*V>v2`a9&EbSxN=4=!(Pqg2VG72HN8-{LM`zE74f5~+gT<) zGXtl-aU?8^ZvXbr?S3=$O!B)l-o6c`Blx?18Mgw7-Dx|!kNm1E-kY4_vvsv%Lf*lB zZJVRfzc7{J@;o{Qu5qP~?=}ZxysJJi4qQqGoh@E(NUataI+GT6+#62Wc#Y8&sjR^l zHl%9Qg{(`d;@J^Hi)mAJ)>;3sYE5(KG5{UI{f_5B6NJ4qew!4Y9dj&$s+ zNw1dcJKBX~OOMXO`adeQ#(`bUJ4bJ$tV10?CV3=HA3BvQpsb_atl=0$q|_lS&H@+_ zZ&c7Qv!t`u(4iD~2U=Iu?*;$al$^cA#%=z`OQOq}yfDIyt@DI0iF$gEdNKSQSmL%C zYaB{)!6?d9eVtY@bc=PK|3QpjYofSFvOjcv`-AI4o8OnZ$1}1t0Z+gAYA0*`?BEw` zGXG+aa-DR(@~d-Tp5qwz>)oANu*D@A4SLEl;ot8vnk<6Q+xZl%q1bkHhq{$;a)-HD z*=)OPA}r%S-{n?(T!!8%FKf&D%jKDH7}6QTw(69XVK5;Zl?-tO8&joAbr1?1Z!k#04s6H z)JsP;Wuz80JyPx5wZFUgL9Jr`wwDuH&Ql(ed1*R4$mX*3{uAdaA9v`?&-K_baxrlN zXI93+A``%Zj+Z_(+^8EI^2mABYCw#`K&NDK(#G2hav+$^VVBL7QDlCu~nYG)=T`y_F2Auhyd2s6lKHRtIqGtNE5v00PBbpc?w5b(66mk#WU4crUDY zA1S5Id~o%n1X(%7&+9VBLl#x8;}FLK(CnIVO)lzsm{)Oyf7u2FPJCbq)4P?%hXcK< zs66r&J-9?bNjy~X@F22rb7z&eVb~l*R&og)ZHU_v@PYn)rC)hx4kv{uFZdIXc0J;B zMOoh$Z!uxnFiVvgQ+ESz-sqUpMpnP73tQnYzdCJhm8?UrarLO6vtHO2J3X)PHR8q7c|!4V)!-(V8cvwV-wpu?cRL7)hpeDj4G70Bz>NABFK@(? zV?e5z5&vxonR~8UR7w*>;$5cS0krZK4rXOsupp$f_WWq>ypdvYNvkswU-yqi^$JnL z#YyCUb%Jdus4FMto5^!>bev(yQbx?S{x!Fg^s;rO3RoC%5_F@%e-i~fe?s5~gvdWy zvRkpA4i*Fs4fd&Q1-e<+HhoOfQi=#wz#6>A_-w}4--)pFCwQ?0Bx#98vEkUyO@Mew zK0x|o1bNTC#{Wp(5;1Q}EDL`&^EM4z2RD@5wFmesTsup|y&T!e`u7SypfGx9ymcTE zM4ql8jVgOKUBq81vrX@~;W^Ve14pqL)2Py^PFKo86tHM>)iSNEo!I#RE8V=rnaWVC z!DdyT>S~YW-Fey4fQRuqX{wjN&TC|)cmht7L0qrVt$Oo>QNrNpbv)^aguZ%5Ov;=R zUI+0OA`>}XId1-qxIXkLA1(-MzhZrx2OR`6(Exw>k7+4@Dwn5$(k=kcDu;E!^buN1 zK-0~JMS9rf3AyB68dhRkoc+Bd%xg0dO@8?=8S7vGIA)4Hy^q5%jz&4G#6LzF{H7YJ z&KGK9pv*SoKZ<`8ADYRVo<$WooJoO`I}-~-tberA)P@Y2DX+*&KJ+b+T*jS`qJWNf zeErm-++=dq9Uj-biNT4|pfHQ7u$HC~}`7a`bVKZN6W zt-5TyX|Y?7?Yw!;+Z3xtX=|8b6!ANlYYPi5jdKG8jNQXl!WGRHz-L*|Pu=eEn>`JZ z@D-`TCR=OORSBNf%r|Ec5Ow=O5(}|HOEP6dCRgc6=n0`XXrj;n*x#>(EV5c?9VBOq@3efxz!h-b)2>*5hHs(@s=0x7Q`=)*UG)HA+HBRYbhqH# zYZ7fx`zM?rjqPLj3yZuKTV&r&R#BFR$6-?0Bl+Ml#BpK+1X`-Rs+~wxv#ytyog?Ya z70Wx#&P+&?6EE;DXOGR*dy?uMuvT+$dqTKs08wCzAkn*Ir-k zGgB7l4Q<#5o)KgVK~BPAK!@6ZV?T>sSn00Jwub}PT&ZaAE@YPgr!SqO^735RZ})5# z@IPf?tjJd)LgD1Va^Y5Y)W6h|S^M3)%?2ZQNH;$oZ;Q6uIR&KDWdk9V(zt(tz}JxZ zE6^arD)hexHTdd6K_sMfl!3D(xHzfwg|3~>26bZ^j0KGc0__lGw`QthHd{(%FJ|sK zHb^VN9O;0Z-@w^0dz`mGh(y51Ou0CjYTu5qsaDyW(tct@bVil^5c2>+qq5#ind)y! z02UU3>g6OAEnrs9Bd+#rGp{e&;}pK6f+B4-Aq4z5av4V;agcgxmi9E2E!YpsagnRd z_yY&o$tWDCTB*zITEx|)eX=XHmWN0g_IfDe|09@le8=#V91U;M@Y6TOKR4>h>PQ(S zZ73CoLz3zv!G5$`XFPqGd8@>36lTMLq{2!#T!LLw7@wOR@^lcaEG$@gF_8Hzy~g>& z_qO9wZ#pq~AG-2#)>@LaM5i1)6mc^!Wv6f8r?I2J)X*D{odLNT7XFv>K(F(mZOqzt zx2$KMO>>jSZJv!y-viZ;+|==M|pQBzr6VtP%c^DUGtnxD*leZ)ru3GnvwsG&731AsQuDcG46j z!fmnDwTy(Qex?^&XctW3c}h`@8X*zFO*N8J<5m4Xyd?}Yr@9TH<_Me6OPwV zIM^n3`vK5oht3X+fMwN{Wahs-JgQ&E03Z;31p8k#-FBSs<1k_O@A8f;rv3zQ{rjJ| zM`n<3OI9Q$S1x}Bby{n(z1NSFF8BE?6t92zz4sA#YKM?*0+hP!G*+;t-4wR;Qy7d# zeTPC$b(Zcm=Rp)PY*XL*aL(rE3P(n52B@Z`4BEv(t5BvMZ0Q;!4l;lJOwm{kuMT^% zT1?uz5+3(O&0w@wkM>QDAP zsp-EDD*S*dDJ>%MO43P@ndUJff%YSeW!cWdqwp`UwkS5_B3F{N4iy%{jw+JuYUuC$ z{1qe_#JAGB-@M6-mf#EAhQ}7}3Y)lWHCV^NkChq=u+f&(^gZ`?1ooFxD|!IWHL2rW z6>S~}CHiIRq7^Lozc|5h(oxSsax>zXq=~fq&a&P=X}X^44fj4?wO)sLRf83>%fmq2 z$F>I&j@)5R2Gx>0Q<0pTB|VWz!T-O}hTe8jCMQD&1U)(zKo-IuOBSQ~h2Z)gH#u*1 z(HV??*xZM_rJdZ(w8}rOS`$J?nvbq9xrCY(;(*u_tuQmxX;dfZvuu{>bW|AOe#B?y zDeX+!5|o2KSnI^KUnJfkcq;VjD}=ksC9rXw>voGR8?8z!_=80Wwa3r!Hn%dzvjB6} zOdHS@P)3Sy4^_Ry?BrnpW_V5!;|)9{WHE&+aA^+xT^R8{3Bn76!ujorxSJ35Ivd0w7ZXbum7ZF%rYL@7LU3-yrAn8f&@`LvRioESzj-V4-rqQZkt%{71GVtJZA-xD{y zslds19+Q1^R9Ce+oKW+|1X^5Bd`^93IU^lNTY>Fmpz+t@{036feR0 z@0J&7&8u5*i7IRNi%?m^(V8lciQ-tq{%no1?_Fb<0@eRfaX6#kC~MsRAX&91ELj`m zSShC!1C`UML^c|73GSP*7-55@DG@LWLqj!?W_eBkC6OAZ($q^tDSvr_&OJ9E1Xo^m z5V-avph*c}<+1h6IjxyJB+_|B`eXZj{FMclvGZcAp+qQ5L&U{tOVSf@l9=1`8-;LL_XQPqZeBaaAP-S)A6TfVfN%Jk9V_TYynIMD4$dt5$N5d~46CElKK<^WQdQXl_`U9kZ1E7j) z?4;+AverC_1F>1_GEDGT`4T}1#ojt~@>^LYccKiGG^+*%MZ5RjmFG}(L0^f&Qi~u0 zJQPDbQf{Tfrf^7RUS-ArbXzZOPIpioQ}%zOI26(&IjGdZJlwK-*h{Ud3JMX4+Vt58 zEw03L`sNI%u|p3da5l+;4WJMjqgVu3$vs^nM4}%)$>r*CsT6($aSFo6u=TPsUpY1V zoNy=-on)55eGV3y)(ir}UQQRdQrY14!l>c=x-D->a-s#i9rYySq%Cp{CWSbDThR!W z^sDDGwftzXIH6`w{Jix{6!YFt98P@{r}^bVMXQgJI*vtDY33fTT7V=YiVn|Mv{TIa zB^+Q`j}rz$6Ut@@2)1wfdo*Zt-r>q7h}q~|CB+DSKtBIr{n!op6P33xsL$36hndrD32^qt4UlLZ^7#k$j5 zReQRAOjPc0)cy|-AsbMMr4D%by)j6ely44Mc4iKq`w`r7>f)YwW$@?AzctH|5Xvq( zJYgij_Ry5#!ViIjah8m1QT;oD$17=4UAv}K0ks%cGFXMNX;DRI7J;lHd=x7xgj}*R zW;5$V&&uoX2EM}d*)glh{PfV!ueS*Uquw?q#*?6ON*^`^dOTJ0MSONtb)h7EHmjXK z6S?@HeUCa+H~r<$#QBSWIu9mz@n%RZ&CP4eRgPZ!7vl*?q^zy(p*3$(uTUbUtEtMH zP#A%Ez}*J4`JIb2%cZ~9FoIGxQllS;C?<*FhG|Yo9F;A$Y?+pKoubrp+}i_W3>YV9 zZ{c&z?)GF%=kKe>xRWkveJ0(Z93$)GUM>yy&S9hLkG4T-l{p(UZPT$+7rygyRc_6%E!Yhu%92K>* za(Uo`rK|qrs4JH-AgIwWz{{AK=*(K%p?<5oIh^3$M&!h{nj0H+xsCGG&$CkidWo}^ zEas`5L!g===SiPx&gY*1jmy4PCPrkD^*yS^@rUA2`gEg)GJo8}m+)EnaG!ho?bh-v z(sS%JJmG!O5v?smIIoG?@?oN?+4{o$amR*UrxV+K*J*Vjw|2xF9c9t(uGS+{CwKMz z&=nNfRvzf9mamFg+Q?MS>_JBXh$J_j?X<5^b*W{+_Nk4#_VAlo$+WEG)RBZ_ZrmVm zg29Vh@eB+$R~r@*X%=!*CDj0opXxZI9R|5K%}2_ZW)J@skwUWjK2mz$qZEwEAR=Q3 z+^cMwrd+gB>rCale%b~j^y{zYeq7qx#aa;Ny6*1dgFq-kZe4nG@jVGf4;sLUAe2&k zw8g3Voz+3!fe6FB%o;uNr51ti8^26h-3rD}{r|%SkkFiKIEb_8B~DCtglUdn4GczA zb+vX=r3qZnTwib#+vUOe6Zp6DZXCdhlOxxG(oE>Rb$gSU4i0lNx~>7?BH9nsl*uip zF(gO_Ju#Rd>OF>mu1w2I4i(u}dzx$5-OJ&=h2LkwiO!N8A!oxKto?E)c@Rgq(%t!$ zPXF-Z;m+Kc|MXMvaf@%NzMSXlv)XT}OKnk)A8c}AazhpjVTCk^n3#)%1~F{blI@et zI^=2b=MV`EZlcD1Txs~wz;`Hg08>~2%UIsT$WKz%$(b3p89hC|IC9DO3#w#5kxftlz*=EVFM zY~n-uLk5uiDmQ3h6JBj&1fO-yEvzmfKeqCsYz(Kg6Zug<9kz7w$P z-Nz1T4DJzX_YUiPbU2e|OkX|!DjpZ5oxP-|&2!a4T=UsfpNts4YTMUK81P38Dlz{H zBHkYcx&ebubs`pyuGGq!XDlZS4oYt{-@XoP4_e+w0{km$Gh(foH5_qC?>* z9ff0_;sdh-x&;#*zWRs7qqF*_r;dyjPtG;+5subxz8XheyZn`o|83jZ3lEYNTc%WK zCr9ony^4Q0U&R4je_u0SFs8;#51M{qt<2W;L9IijxuL&0u^v(eMQ4(VxU}_1*PQ0I z3)g+E+H-4Jv6yWavc-HBPB0#8o?<%Ky7g!%4tVTR`<{MizCeXKScdf=Wugu|J5Hx^lBcT z2KbBT${i2uBUAW1Xg;L`#Dhgu({d2TpJHQvYn7l{hu9!w(;AO3-8U(eh}`#x1`$L~ zIzkX$a3H7tlm{NykG@>SO6GN$*JW~yh2!?;q6xNH#P&E zZv7&-f`JFyIXQYppy zL$=bB%C-;%35KoK)pN!aiQ{%ZHyWu`XMAIk88roKYSJMmO;NcD2{fKr;F1&@e9xZo2rgyK?70AK`co=x;D1y{z zj&f_{Hc5NguetLs-DVpZrh`@vZT&Urj8u$ws|=lxk`nd4E9+2KHNNboP&4B==t_NH1LGYgx-6d0SV70NUO{le#2CPaS$Y*-dDruJ?yBMk*N-ZtPpUOy zgroJFui+EDPs3&Rkr zv-`iHZ)q$lyyX~C$Bs*7<18C`Y4D-u!A~~luOalU*qXg}lee7c@|_H(+Z1isVQcV3 zL$$>ZOGaxY1bOHRf8^e5yM%$~(HYLW1$F$}B?eb#{fy`DE0s?(mBP@s#W5J9_mw8n zsVz<%@LnP#3`*rSAc%bL@(}6ZyI<{2I!fksIPPgO(c%8b=nYsf&eBO1PtYlexkxG$ zjZuMY(^;fV?*8B zlR;%P&IyONA*PTcii(** z#emRD1j6n(p|TtzyKf?2I6ItlbezkmE&kl%_V@VvrJqm0Qa0TT#X2HX8FojC0H5 zf2S*^QzJ7z8W~G0d#V*Pqt3-1t$gq_IXwoHCq@_;XoIpq%3?&XCDzd{Z)$?bn z7ghDksC`R56Tjz*JL_ZXx)B+PIb;w%f1y5g7yIUyzEl3-i+c4vymj|inks^KhUeC=Or3gdoh>X%dD4K zZ?9vla`!y5wa7>-^JH8jMmSo(`HK6joy-&O$puDjXc>zZ$e^z{)QO7XSiK8JtVCgY zz*#@ji7t;$%c6OVje*$EA{AVWk|`twc8aRSXVap30S#)k#9x7hny6FDO8BNRztwye zjHN^vM+ipFqJ=Snai03*3d+(rQ^%#Tf`SiP3ZnSPID;`lpQ@VCGZ&X?V}3Vlc>=sz zaagK&Od;??BN9bZAvCXC&h<$;6bYQ90&KMU#ryE=Rj6b4tvTr+E?d(|BTM0D04^3h z%>ogu{)ty@D$GOP330-TUk=1kDR|WJl45W=9Z`t|)#bNUWN9m8biCpY1Pb(WzE85A2j-%d^KJ*c!`W~c8wqFun8mtEdh}-(#)UIZ7<7HAV&19ybEQC*vA1!qNK8*X!R? zHDV2EJu;7p8+1Sj#??p7s*z=gnzV}lt?f=s(8c>6N;~0bP#sOO<-k(+99(C#~&tz z@K-MskXzQW=CLGks*Mr$qTDG^g{A-yN&g2g;Pi_|N|`6&8Uf*G{Z^|Tsoba*^Ul?- zunBjsLxnrn>NfLr-);HkRh)V`2kjyY#+j`U(MPA59awdAkQ5UEsY43}5|PsOX5G?} zW{H2Ui?;PL5eq;4a_QIR6wJIW1j`kR9IH`>R=Hx<_yUvQv%$iw*sK|KrsGD(zQRoI{*cSpk$zFm_f5s7P)0#8}!DuUvmOE0^0#^G|;$ z*WJT=zNK&cqTc!-e|wJp>^^2IHuYK1Vd;9!@1H;_1=EyXeQXfcE=or05M0U5I}y~} z{k!ihLHP2SK}AmcQBYy5!)p$c7d=(t@Wo!uOij=0tk+%|$Cy>V{a`QXAdKkXlXi_t zqoeg(tsoF>@kz=dLw<(lEN{p8h-2}aTo2^EXf!g9Y15$&(TR>Bv%P&yV*ST0)OT3KsKP&y?)yF-^Q5OLJO zw2K`_sPS=(Q7{RpQ(V9cA{0q(;~`B%k71ZN1jUI)sG|*pE%QSmDH{bTTJ%m5mS>r0 zE|N;y-X5#INhuSu(9}WTBd-@#zWk@6%4A0fdi-_*T+)|3OsYLoDc>|F1V_G&CP5Mn z!nLRL_c~TYs5FJ`#rc%6aH-sI2fMAHs`1IWACCpQ?|_f-a&YZEAe{S7cj+&5aR-2! zuA?aFd#akTd&0&ZWBV2X4b3}1L4vCB=~_b2;AQ%rYW{>NoGYsVQP_l#po-#<5K`3b2ne5~Ys3gg>$h5&sSL%MvTZ4 zKfj9&vpi)x)=%@7&y^e3=p$2#NF9t6Rz4-JsbrjJnWWFJ|)F%!gNDG8vz%qm7J6e5;2V zTF-9i`~2$qr{s}FZC==XkbYuRzC2}TD@Ut{IL~lRuoN2nJk%6 z;amUaFFDQcKJ9mT(C>Cnee5H3!a{k~u_6v!qP#6ZP-Mfq@7T(|v9_qD&Zwy4AHQn{ zmrHK7cIIa<(vG9+m?&8^#&!$YafxiZQ2fn466M(Nvs54zpNgX1i}!TL;#oujHimb% z-3XZPu&OxaO)^t4U1>jPKWNWue2IIWzPA^mhAOB<0%3Zn*e4#XC*>M3!qNJzmTxII zOp%hJmb0)hvWGTe-MOB_c4qw)z!viXp1LDHxJkPmT*17GQYbriuD8vnWuA*<&@}p1 z7ZpV-B8{%c&30?WPf5!f@WSoWLjCIT~7gJzNY7YwEx=y|F$h3M9dpc=iUz*V# z^*K19X#W-^xH4*(=%A!n)LJD(S4k>7s%V?cMIXAfklxIiNx^~Gb4ezOSg~xFcb-}m z;D$T&DLbSVspGm|>Z%>N^d_FWA7@|5E1%BZ+p}So*BwUx20vBPs~C8EpkFaLM#srm z$&tHD=@=`RDCsx~c=mmR|L0uw6YO__L)dR6_dL{CNHqoPM2^_VWLo+l4?nzCUvelf zdb%LI_f&oFOXbp=^{#ci?MOixc$UtyL&g^9PF|JcRnShDHn2pWJOHo^{)%la$`IAHzhY^>I9Kx!eKW1N9zJ$f& zjFl8=kY43YB1moDVNjz&@T{L^VhmT{JT4H`p)QdIpu{4fHPs%Ej6I|fB)af$}J zwz|!6P4uKOR8B?2sS3Y;lpy?KEv49Kzz_XU-*AY;knWJ2E%U}$zC@<_JpSFO$7Xb@ zhYwtR5Bt7#a>I9~D$j}~Y&priiiP8{aGd@mFP^9Kh3%dx-?~Cyeu!wItsDC|XW!X5 zTwwz>qkPnqq7Y4ou|@s08~N&)_3!EzYqWl+YXpR&^;<3f1QbksX>+Aa5Cnd5NjP*D z*K^-A%1{|iE#?03g8e;2nsF{;?S}+cp`Db zOT+>jo#>L!!6h-yW+-Sd7QY4xtSCyhtJ4fQ%1cr}wu;71r-*p8Zda0pFMKz=;+Zif zjpy!9J&=F7AZ(hYTOb8O;&9{mKg$bmrh}Ty>=75nnxeCe}39ewJ4bwPkxw`brJG#uRKLx)AfcVrT4|?}CLjb+$49>&-gKPQebzjr z(|z83oH)Tj>5O+q6pV(s+T%T5(Lm|wL@abTsFXu@Vd0(}u$KvQB;7_A&qY=!phkxn zVJeWu|NorTvfY-v|4aJUuaM}xJoz~J&=2&a1Lg2t0e*6q0ih;4L^nQVHPh$9^saEw zDd?7T3c3Z(asB;6w#8VcCWov-p>`RqhvZ22NQe~(W?CHq;gficfN)N)2R=|Z;cLGy zwdd#WD*oV9t(9x<`Tv24Ax;}et4Tg(pj+Rec zsC6_i2kKxkUc0Q$<0WpLQF=P?HiFz0R&$HbpmZF& z7au;C6IaU@exkKXr$f;(*$#n1qj4UGI3bD{gJcj)H$-d-qtPVSj4zJBoQ)8T4Gl8@BnZ4iQO>kl;SfoM9 z{n`q%HkcyK2B}+K##k54aw_WwTeH&y$*2YUNij^uN9#$nMnE{HSEr;5c%>4Gz*k-^ zwdeYG6z@D+gYtu)|L2GpB1LJFLfZSX1knes46Ao!$qur`d?q@Ef|lwT7}RtN#y#^o zEa-Cb^W+m3=)`y$X^ZJ)T7H2{2qQRZ({j_?21AAN=k?cLZ(kZitK*11gI){{Guez_ z{Ep}F;U59a447Zo*H;0QL7;SamBI>`W@XFvhLGVpRXejDmDKQ~Wd|JUXsUr|iw=q@ zWyIQ75fx1=6IbHj*+L$oBnOSv*O)b0s|JxvZ#HG-pl0iZESNBUY)mv5Bdi=nMIqFl z!cz!^P>S^kRpyVXSCg)Zhw9{)&D7O2AooKPyIr*aHx-g%6ypXQWT7gK#U_I0Yq-~H%UgW|j1 z(f`ng$Iu3+G;KQ9ey=)g7nU!PXC2JKak^1+=qSXt7*z|AsXWsIru+B+${P=p=>Zo! zYM5`BQ(+4j(v;O4=#XZf`mg}bImXw8&gOHF!uzj;%v2=b@bzHTa zpWV-()-f+t0z#)z@=pzADvi1{r6F$U@xt8ZKq!eS8$wv!G68lhAjczxl}6LV;0)MN zDMNDj(Za%zSY|}llrm}qr<_w2Iq}&pmX5!DkxF2PrF`@iZoHF*52GOvJU%cGh(%*H zfl?v3NCzF`9UBw){<9R}>YEtUbh;)TQYd2E)!B7gSyDEyj*1|Tul^{!_y{@gYF#?c z!f_UigYf!84BQS_P8}!;I?0<~r>i2PR9Z11s1Te(gtKmJe!3I}doGEpVvjJEM&n6H z1t*euA?clvIj9u!xzAO<>95*o{ZC&bAe_6aCb!o@&Beq~eFWhrKZYNh~6Gaw|CdnvmQU%{XrM~ff(s{2$HG~uHeS}Vd zhaxnZ3!)uEa6t>lY|Xld>DL^v!n8lHIaE&hsm@eX-hi-3jK`-&pi6tYPjJOBJ508X zc-7hfp`;P;u{(Ho*l`idCMg2bo0uN(!15;QOj=mj0HJNzn%o?=?~_LKWu?r)`^%S3 z4=+2$rf|IYFuCw5{ioNuu@3Xbm_KIn79Xe`)D#L{vys0jDB^IwWVDaDtWjq>J3tC* zj1I=jD8z6s2CM223Q9mPx|)OcmG$dEqCuVqH?U#}Cp}%>eTF_V#Y+#6zd1)g{vyeT zAaO{b3`52YO>iiY5vIrmph}KF6&vgvZ&-Gu)R>moi$)a8MOT+*^IC;}q?DNhYXpRI zcRjcfrz~4wdyNL15(MX%9B1Ab1J7(SmMxpaZ!P_r=>doC%-3F5#C{vXt|?OFFOHRk z;{qctQv<9ObBlE&}UA9|{Dwo_ogeVgoSu(-&CSALchc@ckjZ}ey zUr^)&JMf(^)LSp)Q?FoROvXFB>#w8=xPtrFr{bAVduqfvf~vEstSC645Ghn+%C^E) z_n@JvM$YspI#wO^Dx&Jl17L`lNB8AxmZU!nF6N-*B4#XYDk3&J(4ivV{&)ZOBW2kn zTTL>r%ls~1x=P1>=@r6(g}3i183+>L@Y2yHBEe)@pU9YUE!D=FgAf;wMVe)^vR&r78~zx5U}hn@&l$q*F4#Yf=T94*0;wf9yrr=9sd<+PK-Hq+!UAyc3wfGS4_P z$*AMVr;Cbw^2`49FO^TdRz%owOEgZph;ZfOYk-N)__XXwDD|yw^ zkmzlXL$buMP_k5*777B`Q03SNES!YB0_ z0pZ+TQHK({P;o9nA(W}&mN$1VI7hcgD!bH%$&dI~5*dmo^tBr)Z+J0`z=SW{m4Khsg)d(tFl1Io})wRREQcrr#Aw+Zmfo z?M|MgqG$~HYy%-l4x^4w|BHX;F|zFxn?R8?Op@WtZ zpt&HKCRAvWrI;8b8||O_3|U!n^xhJp6+}!1k}ZQi(65=P$v_x^U*gwzio)y%kzF~* zz#9sBaF*FE`HkVpx!6stjEB{$+}a0K96>n$ry+R8yPSIyN9@Jle_ua-k`PegD^~(^ zN?bsMI!?d{He{GoAhkQ2Z(kgJ?5!#rKN&078LHKZPyf)Rw{HF|h@h%jg(RZFXFomo z-~IbHTK|LA2ngrs`q}$SQ32AMAQG z@sFmdmLw;tMhYV%EF1wUZ{{#M^(_ymv)>aXX{jGS^Xzn!tuRBN{nc>kH*8jM^V?B32s#ASl_|~q9(sW5B z$s;A%&n2M0xSxZU+Md4W0!}^2*wCw#9EbJkwyvxyDdY(DSv&Y8h>)J z<|$58TDh+wy*;9WrrjO%%4JvU>U~5U-}+&A!O^a+RbXD1eO92tYmWfoh%W9=eiYlBjLdm!&CYwsHVnV^(YR!t$(Rz}u z5fIMN6+l(J8lprLboM{Y+hFXZRd>pU?slKX*HnRlM?q31rwbM?6G66+D3g((416@p zYn(rxGe@qv*D9r`C75&z#!L3xnp+>DESk%xlea7uSM6$(N+mbOA_cTyw&V#Dmqa?L zmZ(OnvH%634vabe=4JAxFNN;7)WLivA#ql-Po&al!w8*y4{L8Z3z#t}q-fMGK7O@- z=5Dg}0_Js@NK7v>p4i3A8ku=rmcm4bE$6etVh-6^yt3i4Dvn2pgB#awWbG8s+Edo< zQG|3=0dY>h`pxjn)$ULC)_PCrd)wUekMkh`p~nY$afni&_T2XH%r<0EbB3NufXxZ{2#>5(Fj#vYH5JaE#3{e==bR3?{*YVsFlW*OyeG@~$G-|kM5Yj@*(Ry;P5fIMN zRVTE2bc&4+69P`@6pWXw+zMdDV%Ba*8j!3@OegVp;?BIM4(3v~P8JlYj~E%DX-tAm zx(Q0HQmbl9QXjWY5=sfi`4INlhI4La|K&#PW|V$Sze3aY8ZkI-)=?-ZsVJIuWAe`khK zX<$S0y-lbrc$I)Y^#ECOZk${loYs{+-)YfL?RnL%%Z>I{BfikC;AzmA?3^@Wu5K$2{SVgoAgs~RK z_2Fqdvc-Is%r|F37JzE&=0}xE#^!8Y@GaX(Jeovf-XIsrPZ|WHO@H((cgiJtzzSJE4RG>VnokdsW@TiJN$L@5gC)Zb zLN9o=^t%^5*IjUN2!XK<7v0QJtN8sRQO5^Q*H67#6u$I2xqThW7PgwK$vz(gvSYa- zot?lj-oZI*C&$B(MjL)&f!bz-&c;qPXC*r*SXNSQ5RMq(lYWh~P;+$E#Q3WOLUv~7 zCwD52Z(j?-1-BW8P^bd^II+EAdcdXuQv+rydNs2(vlZ3we7-ocyi)q!#(ejKfmWRd z^|c4@Wj%#h;ZdC2^Z*Fw+)SrnV~@vYnCdYzpkL!0>o#e;hIlzjph6v}yg4A75x%Vp4*%IB)#7AuP5smzS+0SUkV5sm{0gPal~-v9h~w;Y zg9;ibpi}ac9V2QA!YdC$9UnZ)qGG>tg=Xug6N|ZtuE9=WaebYFv68V4Wx@7K80*+^ zA-<97&~lo({6T9vV@e|mj^L7mGZ!jEzW9&5|E}ND(fZx25hI+V>+tv27reI&X&*-* zn9}m}>o{~5uDF{|UZiKfQ6AigkDF|5c~|{lk_yDCkwKA|>!B(^q8%a*aE~p$B4&9w zQyAueD~%V>s1l5~6|vbCGfg_FRavm#wp@EJB7FBo?UV#z{pBD>8Q*{Sv$Ukj_sIf?hrc5GdlP3Nj5fPqwxKrp2 zaE?yFOpkRN^h@XK(n;2B;NU;u1qYzQH?HIz&k@aDk>qyQ;d>KTZ1;+A#htq2)<(xs z>f~CH1be|*CPPGSdw--)=6A)YK{$8Th!M`+6)91KpIjGx-7{p{#ik=a^N$4KqF+Ls zJW%k!2Brs0516jlG+?G?rn1rAgXA%IBFPveI#}y)m8`W(=B`_!gWPbxR?1KAQWZ|W zMsfVhC5q#~oj71en-RZ$TBrKV)<$AxD|&UJJ}UVF>VyYTmE$FkjNhEk`4l^H+giQh zUcKfn-Fa*F*p@*}Z4E-P{Ih5euz^zzjTq*F_WAoRtnWRq{=bfuMe|rZ-|n{c(pm|q zb(>PRy09ckNUUwfXoAQT3&&YEQF#j?iyze5OQDHD((Ly?JE((Tag*k9wrIgZ?eBX*_o&C$y0qPaBcQnFq8 zWM+i<9oW1T;fnjqkz{l(tPvxeyDRqyLpliG`XF8vF`Wp)*RSFkyV>;iPRZIS=8sbr z20Sj{3d`^;F#okv4MB`@<*hte$IIm@JaNZK+7oT%AggfyhEzEO9PfC(Q~214+;AT# zr(CW@VQTotW*8r%6Q|@TzNRR^qmHsjj4(~pO?i@L84NT^)VMb5S%%d8I{C%&kqZdg zkizn|5S~(G=NyfFLXEOG8&3Q1MfIOQ2PZNJO@^l`kIk}amde}chHgQ(Wbp((5VD^m z^#W~)l?Nl|hFH1P7o3Vi* zA3RM@I$ZW%4x;D&rThNR^zSkj1aK<&9@KkVo_HV`Rk^ z?6!=bKZwG2Z$uoMD&~*dM&A*%rXTZ1KqFI8T#}?_(^uA~D2>y(QL(ogZ$4`J)6Vtm zRW`}!a~FnJ9%Kd0DkS-z2ZvUuqewFlfJm`{58H3S zc1utJC(qj#bsV!2VDD`?`FrM@bIM?rPDz|xkra}2;s+sV2wOlH)ufh&mCR(ABu_W1 zOy-lgF%0__?7x#~`R-azLlUjSfy7vZxa&oN;u^d`VztQ*l9pwMg3qPlAmc3TRPSxLOXk3$4Ow zEY(K95arF!5mnyxbv^Ih^2g7W_kUZ95-E%kdI(O`nSDZlI5JUSv$*X*2%>PM6Y9AW^4xPnkh5_L~zUlx&=EE`7#OkRak({Ld=Dqq6ASSfd`{++B5+Yev;WqG++F zV$C7po7eEoYY5P<>3e!Ly_(tB8myacR!m?SSdUPxN0=tkg;rbciJiG8s4E*rsE%)4 z!IgJwb4iXP_mnD7)kz^48(`jgQF$zFm2|2@Ex=YUFt-e!*eQ(0xF}^j|9aGM?QN>U zzB|aJx2Ov5_=bjLpzM2MY@xnSdHve6a^1% zV7!w~5;XPUI1VW$?0_NqDOYOjT>4~3iT2P+n)&YMyEfwby_Q-?uiomm!uP%*z-m6zTUVOZqicjS740fC|q&P!J|M zeD*x8J#~5S5z*&20RcRvUx9prpU!Xpv-F!X`xMTcafu6Y~8 zx5QOzI->^R99bhEoV&{>Ow!HJ$Z^9O+x~8Sh*it^<--J}@+L*;*Cwgx`y}xQwhQ-t zg2rStObsLnB6XS-{zO$pTVRqqI!(_hsovjxhKU$A^(@XNszO3)Zf)ku$Xm0QAw&#M z`0Hj!`NZnzX_pun$3K7kZda!{c>_RH!27!$|$`1EE z&Zf%1{xg?qNS47&eWKSs3ne22`XFgOM)OF~+Y&MmM)?dw&om!a>^ehwfntR<2EPgF zxZ`2H^CA7g^{jbBbLvp-pQsOt=0XV~Suz?g(gz7aaDa=7EYpY?7^aN)PbVH zQ+5I2&CeAPKL2{xuNim?`yRBUSP=qyUIszpDP*SR!Hq0i$mMr(`JEb4bgep}?VWJZ zIMLYZGa}{&LA>(7$U!)V)(8ma?rKDvEjp+z?78l4)N$$Ulm)#CReA$@1A4Xj>atk0 zEeB18LakdK!OTwTmO>{JuXHeP(n%~0OHjuFyTocOIC<%6*=L0yyzr?q-Pb7QtW!15 zC}7lfCbBz(ZT#o3w>bo+yYaf`iVBz9qAFZkk}fG>XODsXfL`(r3}GKP}V)BBK+hUG*Ad*6QXQ> ztG{uPe)QjUb`W);+9~OK83Y*wsnlR^HlkqU;$Eg}rjv5``2FQY2be1~7$c03X0w`F zCPGPcP+Dif#sq2B#?hJsYXpRIchzD*rL6*K5V0e3)Q*b0d^JUZIHm^FfnG(OwtKIM z*$iW0+)&!J#|C&>^;knhM+^U2DCi9TLW>bbLblIxIrC~Z_UPA^*&TQAfj9R>yFeGn z5G%hz;*YdRQfT8u`WWHzn~hB1IAo=$Gs;yIO!evcR2R*}#k>$&tJcHjgh9|uUTbaY zw^8W-uNP}1G4Y$g5DHqHck1c|#jDZ5=pPRW0&8tfIh)m-ed`e<9V5~sYD$fZr`!Je zV+7%noB7D^$xHTcypKn}wA9u+C*DtcwCyp84hFPeQ;4b(l`??Bsb{MSpE*NSK=FYM zGjuz2O4)j`^gQt~TQgfrde95ZdS*Q{wG4vPO04&;ol1_(=AE-S3yihUY$Xg%()*-& z+o;jxgxyj2<~04kIyhYNS3uU z6e;tt+B|kc9_n0y%!zLGuW8E#Lqr21ZSxF_ll|--E7;;#vt9>vLjmj1?B+g2iu`I| z%ln;3o13=#TNz3t47}#J%nwlEsyobKQj`=W>!+Em>D5i`E_UOppfS$Iyz1$>*H~Mt zsoyGIIscaU?BwcuboI`n!bi@v+&67$Y9br^=CuZRm2dGsZRs;*h!#Jgdf9rJB$YP4jYZeu&AWKi5UQcvT+=Xs9Vf>srgwB70QW zeJ4@j$W`*CALzy&n|l2C-3}1PY;BoAGZiy6Gm#F~cIN2Ca=pC+rB-HZRCxdMC9s)U zLWUqP_6waIxf&wd>LQQm;M`dwAe_4^Z^WAFkP&#|E`R;Ka^BD7HBZ-*{#8%NGNN2nF5doH#yB zpa04*I>L*OlIJ|#N{dh5(>j-*J|`?+%$vTbz;Qcht{)EF*z{=Xv_X85jD|`8Uo(Fm zfDgoYYZWfMNlV9|qE|7f*JV7f&Ld)|b& z)@^Mi2lYI&wa(U7(S7xPtz=Pwp>WZba5Q!b)#aNrY7oxBHS!V8-Sx(k>wkW4nYowk z3jrL@U+p$-jQR+fnpTBw$yA@Io{o(PHLk=3oF^tU;;5BEE#A|U2NEUYx6N%g5v0r8 z6Qm|n+(|X-MO**ZvMnPgyXcyXKOEK3)bf zJi2vH+M)>+f+(U&+CXjUp~)$MSc~&B%pb=&RVTq&bY)CJacRs&osv{H7q6yZIdvSp zpIz0}_vq1k3&Q6w(>EL@U}J`2gK%<;TA5U4YBp^o*rfVq$ObXhB{vA0HeR|F$uOsz zm9mYn>c!XU-aFF~QQ%hm6~8dV z$s{EH@oR|S&{#W7J*Uk@@WLC8mC7@yj1>B|V1!nWF!8WoWtP~yh4#eGWzLcgmdGmF za(AdCMQE_W7nuuIElO(BHnjN>J~OabLR2pKMbczOdxj8EaP^K7=Q!H%VP(3{l6fo| zXMUGUeyKy#Foqdn^ZC>mYd_P5noCP=n*Ir?9~rOe(wp>`Yf$0euhnl{!Qs2f+9~$m zp65S>WA~7wSIVYS`$5PR(I}7!0k4LFKA>o*x#1V8fught$qIOWe12H9SYPurKKcrI z*9+vb+X>*D^pi{`c2(;%KO_o{DsA|*PdB+r73nuWJDx`p{~HPyjfIdDF^U9jHwcXp z{&)Unj@IvXjeu}YuT&kfog(g)hwf(_<*i?1&13xHLEisez3DzZYHykDGu6{Nn%P4t zPR0@ENZr~0Y8jP zjmHjvyVe;5e(2kZaN`fd`xZr21@UfT60~@&gVaJH3PvP3lW|E4NRx6F6Yw6G(Vzo-! zD5cHG9n_Hx&Px``v3tn3E~PBAL1ImVe-#fd{)tGe2O`aI_Vxys>!LZt`3Yd0F+;@$ z<9+fC>Jbq;3dAQ{Yct-}LZ1b4sA)=n4k<=19}D7ONMcPGQO7F}M;(W*6jeU{a*0;L zZb?~C2(?l=7K}08AwaLDBZ!MfT2V9(Y-(=Z@Hv2#SS?MSoFs*UO)3+WjK3HKqPQ%#L=k3SH#`8DzD%MSL`Ca_-VJ63z z9Amu0c8l0&3EhHc?#EvoBj31Mm(G*L6E;)uwsmYdDPw)T`5~4qW}ahuKv8Jf6^RvT zXDM`~gmjl2jTV?k66h+mvi&j?{_Mc;>0cDuqS~gENf9&RBnYDE?U99Jj2PkES|cEw z)2rF;TO+)K5R^lK{&G++^<*a#}4KqwmuwXug$K|0!idV}Kjdo+P`Wk=XokaF;Ckr+Ao7U|G!|)nD$=5oT?8?XGWQ5+T}-?X zL@jVM1EJ|2H48>kQ51DC%bFlgq2DtaTIcB&iBI@6v^J8ekZO#wStT|zLS@yi)(LC6 zal)4_(GMOk1uU9R=_rJtOpehhIqOOt?=V}_uPDl9+=QegnpVTF&4A-&C~@m&hzlk@ zt(RS+d+a1dN@0D;5fb2xOZEAyqz-!h8r4AQC>=^lLxlxnY`cg}eW^S%6;IoVUPZ6s zMXPvlBM)w1s>kvB5(2g7g#Bf_v={E@YndE3k9<(=)mjBvw~57*jMWrn19*-UFQAt5 zo@WsHNW>E<)D%&Riz%#v%g%ax!y5|5c_GeZx~V}ZBStu<)(8ma^in55BMNHH*T9MQ zl#VSHG1a46(kb}B@$#>iDWHL=S)G`WK~2#yQYaA!BPt-GDrwk*tyF5WNanU8PY59^ z54BCm;s>JqTFHd+W@8v@b+^A zRmm@vqaz)@%6eAsZ4P3?-;N zLA{a!KGOEx-j&2PjPQbMxc5=+U9VrbOo2Z=q-hhHgD?w5+U9`-PObJ>>wh)rGnt20y6R-MksFRDoN}bV$TD9l94&jjGeq?T=)&N%c6?o-Qu|Fpp zXY^wyN&x5B&_{)du5n!8g#G1&RkEo^uhzypkv`D$#FNrzxJ{VvK-=ojYN-;7z;N8r zrWbWW;ShLyn#vwfx?zSr=p1>P*_}<*af6bGfziK4a3$osHkXa5jDW9q5<(Y*V`=M&yJE9@O{)C zy!d@#yDiO0nVV8Y>-jp1bV<1|=?BRW>T5PW?z>WaZ57cVoP3(D-jT;=ELpA7q1!+pXDBp+32z`7FdI!H_CnnK zus*sGfq`eD00}|%zJmybSlhBw*u32QO80~HgF6NHKW=bXWVWhQp4wY1gZJi?@00`( zheu*WLx8@g2!_G&IXahKJ*CKREu|uMsijtS+CCP$b#ffw17Fkc{B;G~|Ddt~?gxHGJL&>y>}9I~_QvmM<6 zfu$3=bRrKRObl3uo^PUkPe>9liYz`gVwr36ib?}Z=?w3PtY z5_WlMhK=Mnp~xL^{L9&T_$vG2GvDXban6+*3#4TM!iT@d^gwzQXQ#k~pe{B_b+~~& zT61BI7~x!B4G(jA?f3m394b35VTYx33L9qY(x$L*oR6JPt@?)t^Tn%~n$e;orAGpt zAcay|xD~!d3XP~VqD>+82_<%Nl+@GOOeT}JLd6&%!t%weT*kZ(6CLJtr~~nPhd{@1 z?4-^NnAs5S9xpjDCv**SL3KEkO=5WGrnKbui5VquD_4c(J7eMWyMkyd=Nyx zb8}0rs?>l7T0tjK+k|I4AZM$4CgGqK{AWPp^@(q*FF1SO~7L zpHbH!eBg!htWRj=>6A$+qavs#`-Dm=kUF~w)*wtWqA-;7CPDS8t99irE*kt)WV}>O zbHy`?re)#2XP;2GwjD?73 zRwm1j|7QJv)$iN?%ifzu+jdpe-oG)|+Iyes*17lQrmjf{2_dAe5r_r^0zp9{pn^)J zf<6=kA1Fj5@cDeA2m%@fLah`*kh(}gLTX8UlaK^ReRHc*?7i2VM zr|o&oo}P9+oFsRzwe~)<&)!ELeN5JW$u(hwkM-ppa)FP3p!wzFWzW?dwu!kZW(WS~ zphvG_P&26c!=K}So+SvsdK~jhj2lKxrh_R@Kj;*k9@Ve??@gIlRyfS~*JfO0{|*Um zyd)jEyKG#++<+AW`Zd!%=K4(cnCY`}inY^hT*0Ol^5h-qu=~@#cco4lOv;?OWpprK z?FDaZeti^wbr|cKy5f+Hj3S5b&Vd`)dyV@Nt!?pzPnKSMbbT~F>c-2Qjc QU9}3 zpOfVQC<`Mb5GqpUJxdMuY^AD6Flrb@_xgYB_rjP|3>{m2Lg9MHD zq$Br~ebzA7XR4-O=Oi;>#v(?uWkxKED=>;Yt%^0&iSs_IcRa)$5Axtn-t-rJ;DpU% zGqQgC3Vqi(^6EE=z@TPv#B85&%DzfPm6<-OY+3Ni*89(usJ!Dc#z}g(Bx@sWMWir7 zYd?^VPt|TMZ{kj6lE|?~s%l#njc%i*F^Z`^{qeh-A=B=D%|+Lxd$-H5p_g)pL8eNX z5tacF)+&Hd`sTcm{Lu%OBr%Dg2OJO*oO!xjdzIe%2pdfAIPecL^e%-bQue=r$a_7IbFQ<&TgW^k9P)g2g zXGw|sck28|mPTCi6Nb-Rg(Oi)ZX2HHqL0Nj0m8@nN+P3+$FF&|Wr0!$DkUjPk(j7# z*G?>sSv}+Zg2s)$`#)ryc+SUs{)2rLEz1H*qHjvRq(#Jxfq?bSr+-Hs&Eg*GA5I7E zEt^&`H(*dRsHg%qY1O32zEDq52UH26HRhOEA9(XKWM)7J)D?9a_bTegQCHmc5P$q^ z86{UWmqr93DJcP{$z@5+_p)LdQL4aOFH&Idnun4km8jZAi)C+)w9XXAeC_hHqDE%k z_TkUQ=RPIecBfu*v+lLdD^-RiV;Cofsr2c4X6fGRt{9>OV=A@X#?h)9p^HtKL-KfGj9)HzKpkjB)#&P^1*-Aeb%u!;=Jd} zBMUT*PrF2r7_?GFE#&V%=wHj%}K zN49u3^j@nOMQj}4$Id~O*L>I5m{@mt)ZCY)CFfcc38KzPtaUGMI9<&19zO49(C>V{ zIp;~TaigrAW%UfbK(C?>Uc5A0zx`PU>IxgwAbBIUSs5aPz%WvEd?gR;U=*$FM--`) zaa6nI8sA$L8xwCg;3cr6y!F}Auc?GLe?HC6gqQ``=&sQ$c!I%TscY$S?X=@?5$iHE z#GRWa1+NP>iY6BuQ_j~GeAbc%`NnH`&fjUs{76gWiY$xUPPxRE|6j)@Zv-7YRtJXE~r`~ ze76xI-;^;zKNYpnpopC*)K59ieYI_vF~1VZHJds8Nxbtz>E+J~D!lSpg0k0IVq)t& zTNfFRJzqW*n(Q^gQcs?&$IzMp;bV6_^uMZa{;pWiWhLCT#oNL{&aN!>|8Zoo@q>I+ z?$`o~DxbVk>q@G?34OgrL$XSt^$)1IH*NdtAYLeq6Oy|MFs$+YI_DrO==II7og|x9 zv2u#39=+fJD?ywN8va$4Cv_PRQnuRYvl5+_2{me4|ISg4ATfn7p`b=tAgR;h?nAIE z4xngdc>(aUljVp#^;H+QKGh&ZAqc71Qabx;rf3?=RAk%`d&coWg-yG2%`MDLqgFOk z$Gl+<@(zL~D!B1J&OJ#G-tb9%=}~;-CR0tN)CF5!=z%yQLJ&#b9bj>K62-+yS9cQ$ z{mwVjnLiuudr&XCR8QQ8C+*FX_LjvlBJ?VD4zn^Datplrn<9Y_2$erZixWy6uBJ*7 zr-O8wDVt0&kz5g^^N|S4ftK8LQy8s}0}~6nIqk`L3P(q+T^KPOv15^~^91-283;9q ziel)!Y=@L*4P9vxG*7hy+&x?W_%Ac8sJN zGd7qi_55R`5-MR(@sYodRmIUiR~1E6z-xp##7tXtw3SKe7PNwDA|ciH$9t}neGZh_ zfrFeC1*@!u8p$){GmcmVk}_^G>q<0=0x4~e zAc9!Wz?~225qkl=_f)-fGoKrYm9+wG%8axoRiW*#$SH0ajZ`!%in3;oxoKi9S&67+muQjr6mR=wTH{M4G?(PW{Dl`d&U|6N(^jUvgs?HikJVHp6u?3>$rigZQiP|G} zoxD2?*{i3tbkIJB=7jP-3VY6iHHN<6Oi|$-7o=A_M?U)5U39^S#+0HzF0 zMUq)=<;L6l(knv#WIcw~1PC7!>#fhO4&KOg4?$N>i($!*C6f9EZ>6=SkqF|4WTSwR za&!C02;AiL~^C{+2fZGu67N?jne(qIiqs8V}t znwgoX6VR&ShY!2W=Wo9a$`O08 z*{g#HNeSwRZf29H{ODm2zWi@`+F@uwln;DeFMX4MKI^lcK~Y`rrNNN1mQ1!KW!T$tj?}w{01ZppJ8nUXq!&ND#Ld zl~4kEEQX)%AI|BZrNC)dZbfGGQna?Zr~>@pPCex)dDr{nubmx|^6ZnvIzV z7>+q~cltHGz-}vK(<)9onCZS{Vu>-QQSyVlVT{KPLlfKbTY(4F4s9y_#B2hrh1(xu zzxDjnRUEf3OARldiCY)A?_s@f8~=1Ir@yLSF57(?k{Oc%oOb)D4)g+3`+A!5pvR!{ zea)6Jw&ITfLM{i|<~U5A{5ei-?J9ba(!i4n>fGrVEhaSh?L@GFM@gv@G5D)XM;#TI zA9D8=-L~L6{jK-0X%+jg19;`>a`1XkUU6Xzfy2(JB}=kaBUB`by1Ao8K{aXAl3YId zrF7imL~*gv0T}m{;9EZ{W*Fx%8Y4iLz9}Fa^VW3oL2}P@m1}H1GCrfSasfs6`=y5SEEW*W8nsB_9Xx(g~os-5tR@Ge0+!I z`4}NGeX5;BvHBw_mOi8oiE6gX^NkR?m65gXl$X0=41Gll9nJ6Cm6r*Z1F29kC~0xzRVu`6Z@m4%=N;Pcz%sxq+-0 zcr>L2LW($BA~Dun?MrU%H;NV#ViUl184yZGIx9G2ySXS$< ztf19h#X3g^HFZUkAM#=Y5i`P=EyX?w7I!8k_Do!CXx+h*?VTMuvDjRW22bGin#AzlLFZsp~KZJ97fE8uXL z49hJdRi!1AaNN=I?!Qh`)4cE*@;}ZLcBb>rmVMSzS8lNS%tQ8>mn0B_9rbR#b&5%W z@UglkK)6e;l>Zc{1p@OU<_27RJ4ftEuc8;6^eEiBovLzM9qt)%IFx{ZWG*P3*{30c zL?}LW+n$P2np}QN!WBQ%ryeSwxI*7}mi+B^^xe;w%WmiKn{pg8p1_i{ZE}c-nE|6n z73kIUdZgqPzDiJK)X+r62^E5N+MKmWs@bNfY+E3y$5%!rR7h}AQbVYWNvK%AV16>8 zbZ3`d>>L|rJh>~18Z3=-103q)=6iSOK^wyb-%U?DOb*z~)6 zA8N7GuydX#ypY8)v;8!CB-4EvWJhsQ=7;FRer*YnC`nLNRgnn}K33NR2zSX9C0iT? zg50-VH_UPMT|8+YR9P6Yb{0`$;>x?JD(Z?*IaR7_Cl&@01h;_%by8?5mZ@GLP?7Pk zU}1^r%Dvcba6nY#-M_$Pw}Y~F#&_YAwMyGnhmq6}0+mo9m9aE&hl`Ov!`g9lQB)J6 zm_xP6&Q-H)guvySnVn*Kz%VjwsA|&K>t`X**jXWO%8qau1&iovh%Uwc0~Kw~sy!k) z>CZs4K1-3mzgQ37E01y&5dQ36^z0|eTQAc6*UN?P7`@<)eE<<_&0o$4-KJYts4_Rr z(@v0#zy3#Qsw>#(daUwiFAi7Ss_*!m{=+Ne{Vx@icYaAP_!X%u`aNQD?mIU{75Ln1 zq^|hkL;klPy&rYR2b#z@f>Kxh)`OFN5qHueZp0-JdJr9`YGJGd^$`qnI9$l<7cK`3LEVd!x!?!{V4KFx~U6 zn+JDL1vH4D_nxquL^Op|sj3CwOpx#~x+XxlOD?m?CEGoPL65t)Fgrz60c@J}Vp5gd z<5#}wiaI%4GHp$g+v+RHhx%Nc6UnZJoR(s2rj19*6AY~P>y6Kn4}3Gd=r|eF9KRpn z1AE0f6QZ{?j1#H^kt$gvn@Cd0Tr+=(ZQ=YSemcg9&C5qZMMYDbsItVCZi1ti`1lQezz~OtNntKd`yz`6c z?4tyD%d_NGsFo`)A$GiPI@Bt~LV1HvW}hr~!s zpzOZV^@CC5x*xG&j;P%I2zAZa+E5b7nkJE^xQe`DxGW}HvJC5YB|iKs1!5$LB-C=+ z4E*p`dTE_9{x*2;$6x*N`0!00v2EH0&=&?h*3L1E^lDblFx7aCGbSXkX$`-1MUdbn z(hx&LRF#Qk^s&7rK)6dTGuiNjOydx&k!gOsB1=vDpFNhZ?r>n zhDMvTPOc1v_OEmqP&-HaGT126+83X+pQz+6H$c3+G>VMPm#<)$at=MM(C zMkpBtTR&$?QdNplRh$JI%803 z*g2MzykKb}XG}Cnnxx~1rdCZA<;UAvY`f+jML1}KTy_V0tYeh?bfVDDy?}HWVaOke zt~AMy70UQ^+F@#Myjj;Da&3)6S6jMYS_Zkpxp%CWj{R$qXSt;3-FW zzx zuweyjX8igW4DW6HMUtf`!ziP~Fv*h7#1JdQl5+sufRjQ>AwlvE3i*Hk#ha}Erfb3o zcgf}87kp@gWpG^ZZT48DzxQ;xe;Wtv#=rg8W5(<(Y%_g|5J#d?-w})yR=IZ@012Wd z3~FbJLM{_Z(lQE1tqJ-Qm-4hHcuOKSUQW5=LFa`=+xKnvvF~pD%#nVNfA%^3>t7L7Zh1%e?T;!+*RPbL_mz9MDZ+*4Exq6k z(;lOm8DT^d5`u|yRP{1OnBR)!_~HH<_jahr`JYIyd8WMM)A~Qpk?Y^29jwe64I3i;P>9v!e7E2mj#uq#Q3x0(bh zrGiGNqeZ`p2$is7iR}x#=f@#8BWj94l6c@d6BK+*uL%(Dk}GELE2)eG&i^I3qN1uPTcwIqNrQa(dbN+uxbY}+D>nBe zBX{T zs-h?KlyO6?H0me_%#WFGa^o!Aebo9e3Q2=%LPa&mq?P_Lye87T@}KHh?-3a@$! zNAD|5qzdG0Pw9M-tR||WULce_Sy#$c#m+ZH8a?p{f5qpYB34lw^i1Srv2nq3SXAiP zz8ysjFOq3decPv9J`ag;;?q~^Fmk{~5Ps=I88z(yrd9|QzxY-T4drtp36hDNj~cOC z`Uq1ijcR}(8pN~Kmd|sZ8!+fG-!MPUx@f~Bqbu6 zL{)D3%bWji|5{Jh|Ftz?guCRjZ80C2eUj~iJK1dohvy@7}AjPzlb19@P_;q`iPL#EwkVOiCR_NvbI^Y`mopEsgB}l2ihf^A9l( zXLLu5k1;BeX<>xsT(#T~l*jLd!u*h4-~WCpD!VB&ng)VO{?}XAMv=h^BQ!P>vNY;) zZssn2VrRdF+K~#jO;_0aY&2-RS z$-4D5n`X`0Ivg>-#QY+4c5k`AMelyTB=Qo8`7Bjwe{ zFv`dI)~G^uZRBgXJ45`diF80bBS^E(XYk`Bl(+rcU`~9zf1nwpD*)txG$z* z86)ieJ1YF+SGD*XPdQj$_fdWMX@YR)1H9}c`L&Z|+dMdSwu-1tF??uyM*VCVEu2Xo zbz#}vbMH0-Lh04cZ@ztv2H|UO3avLPyI@91jd|Puw5QQ}k+hTc*=4{GabB2;TR5P? zYcEU-BWHv~uyrSGXrnG^{7d5;&v`pjdPNVOJ^PVapw}_#M}&x`b}A_QT>jkm~;xq zwThs3P`ekyCC!u{fxo_ridw*FDlLFs!juFW1nlr3Ke$IvJxHGOWPRVaSz6L_kC#9B zq5`KK%ykcN(Yxl)`n}oA2y^d5_JwMvccROjI*hOrt`E(b0 z$=`(hKa=-twvW9$QgVSXmI)Xt(K<$58WlQ+Jp15mKGG=#Ns=lgnPqfRAbd=(2@vk8tM$uByG5FP=Bqd8FP|X4 z_enkRAhs?tJz#Z(0u@ARNRfbJhVKmB4sHx!@{iPPCMsFxBEMoGD;h*q75VW)x_%`i zB_&45O`Aap84*pID$!`6ND_rxXbTM8n>99O_Rg>VKv&H$HN~|*1mT3oarx#vCp|Gv z)S(T6vHm&Ah#zV5VoDZ_bacE_Jf->HvAGZ_`$dzu9G$XFi4I}<)=daJv|V3%f^1*n z)n|wmXt`dmx{r2JAlOjcoFpL4qCWd2F4mP*&K%v^WC%3n6#?M~ckA2~TNf1=Cq|7w z$zf{y*(JCWiu`y}qO#9VC(nWujDAJd5k%h|`u&0DCGdsqx@3xyRy zLPkNiDLv|u3c*qW)WiVy>>xpM!PSglK}4izt^4lA^niZNQf#9hO8lP5p(GRy!DHB( zJVeZ-dvnU%ao`@+&|2vUNmS+bzrFVV%P-+%{dZXtAly|~acXEllS@NJ$ewx#x8BRU zUm#z&Ru@KWUC=>arUp(5HBVUzN|j2#1Z6Ukw5+gA^(2p}aE4TR>fx3j>BiNPM9w;a z@lZ7zI-1l5d52^|rdJ9jwBuXLi^W`S49owKk6h?5!a>jVx+m_BC~y4?>sB(3)JjmA zu>zspTM%_1%v1?-3Cg88&EJ^q#jCStJV`Xj|Ndn9jk5&d z_Ir6`Cp(9}znhKoX@|(Q4|-X)?Y%R4r`&Xx&ef<$w?yl&o<~oZQzrKvI?V;S=;D-= zHM4A8^#3HLmeSeXh03#L90=9Zul@1jHPMnJkV?}eh;Zp``l_D`ulxJ-f)nMS4G2^> za$BBLUnF9iGH6a_A7ShRBg%2huMpEkQ(=VOU6WBza?rL1v|9CV(5F|?>oJVLyU!}Z zD^KTJH|n#FmR`lSMYb>MC^Bl?TG`~Nvu1fAZQ0kqS3ir7s;g1t+15H})k-VXSnVg4 ztvpxzI_>$TAF=Io_qJ}9l?jaz{%8w>L9SW_5I%bq!$vJ*+HR+m2@N)yybs3Z_R%B~ zdDK0Mm*PVElb__6go?l$&XI*Ni;X*GN7*1++SN-Ef|m(%bE#cvTcDuAFmWv)Ity{^{ixYJ7X!ml?t5v^cEo~ zf~Yl4M0DRhWpUAWTRX@%aOo{t2T0z&RuY+WSQ*+iYDB#!iuzXP_r&-;~?zs{N8PJ} z6h!^R(_UNfY4TYb&EI74nc^DNpHkQHSzWGPhSoS*xOfnDUrn!~-(!?W(Hj<%crCdY zfa@Z37mIIJu(L>urjTOLDuonOLwVej^_X1~Aly|~3p~Ls9uca*UH8hyIS^iStXz1d z0>g&1!1O??o){1k2;w7Ni#jT~fJdjzyaR+%sxWAg3S9*2GC~bB5GuwI4Q^f0(j;!0 znUqRoexa<3l0n5SJRRF->QE48p8~=uhs*Up^vr1U%Zw9Mpi+{ESigbQ2+1|VQWPx1 z@xN5# z^PeX>Zrky-{bwCk&Djz3g})L~?$c;x;T8ogn@uICb>)BWR^4NkuV1G-9)Xit9DCMv z@LI5Uo8&u{0)AEnEIC1?U85LtOp6{Xjf%omx9j8g&2LHo<*Lmbe*nkB{g3FiA}Rm< zU9*gxExLy)e`nPa5K5A`L}-#m4;r;(HN!$l?qd=}`+fR7e(4PEeFPM>0w<~}r?gu+t!0F^T3<;y*lR9Lb$S3?2h##h4TQk3 z@y#{S4(Jik7HfRSgB6pKH=AX4l>xzLu4eeL`L9NT|L7mmv4;raaRDaz1}_#7^Xo=` zH7^m;=^B*0Z;HsH=FxS4un2tx1>G+b0>>UHrT< zWv%f2AM(f|hhH<_ByA#>?KYDXjgmkt-K0Z^HH*^450zA+ibAheg%tyR-MKQqNZqII zgP8wFB19K8t^Db4po%2*)<%n{)_mM4Ql_Wn*$|HQa=e93I<6*L;1kfF^O;L44FdywNqu_%7g(-x>PTz zlzO45Wa^}t#n@;)A#W!^(`oc5h z$bI>z%NaI08p}9Rt5k~Q+Gom)$ke}>$*7wdJMvw}CFB>RW|tN10AZ(X4t$hgM-+YU z7dT>1Hmzd1&s2@6qgC)}e^KcLo^_-T;`rZRr%4=k_d-&dDXzSLC;w`%rQHC0>MxqP z0eh@w-7HBNH4GzL=1IyyYvmm;7MmyeS6|e{5&eNwm9?bXLzD85$!8S9Irp$EyIq@% zk)1L*Rh7V@`^pu!=&6Ux-+eW`<0avm%^bETqI~YPg7S?U^o7R=%Bfr9aLl#))fO&l zhno`O>Lgo>FrJgukf=0CWA4*vQ`W>uA);&N7>#-DFLTXi)~?Ejn|x}scK*;!H?`Zu zhdq5}p&xRWjwaC<6zn%gb>fqltO*eA%F8?y>a`h-uyH{b8#c~)lJYpo`WaPGl%`?Z zBE3Fy0V+bzttFx~ok*8}6#P?ADTD!>Bz0|778bw@rIR6p zUx7w%6ST@)K$CV`_d2i0zh1@T_h~IN^NXyUVI1j2YPVFn9Z{SVO8&;^pmUYHZ;FU^ z?Xno^OQ{hSo2c7I?S6xI0g47yk^R=`g}*M-J*H~=mVoNjJMz1L@WSH+<+nbjuRK+v zvhR(}{D`e5)=63x-f19|EC9GJYWt*yFN{#UcS41!0q4CeplZGtdxt`4RSa#M z4FR!c9zpU@ky1ebcgm<}NMSN`VzO*afN&RHvD-l*a^Nrx8xGyzj?i&r6glHy`PODV zVL!R#P92Wev8cU)P*F#3yfbyw+~k09_o()D&;|h`#kDCWNv$Ce)}B^64RW zhGe!awCy55cAVOqo3c%*prF^G@kln{>djb!%oR83$p`U`ALt989De)4^q0RV+ZNfn zz&MhWbV;*gs9Tp<`OJYxr+p&Br(_h2NKESaYC%LqtG0dO>u=ln_&vC9I}$kaXh6Pq ztGb4tKMbY@m%$f!l%0RN+}Ir2F@zdT7qt$GYT}fcEG9s>ORp9o0xRx`LzNV%#Jw;E zTqvg>DDz_wx$G`o9I|tfP&;5W)>E(278|w?=?M!%q~dKC>dcHI-zb3v#tNB}wGXxk ziIU$5?c8m#j9S)q+t89f3~ztATzw1w>z~pGe4qBFpA9f8AtjR zs|Jjs%#Yai?a|JWE{>TyyYB_U0HPwfz)bs5w8n|A{q6AReR#s2tQhd(<7pC)+sNHp zKzP+(>W1BDRBXC(*P$A`JlWCnJH}BBe%`ue_5c~1y9|=3hM#=uTmMppuN5UX&?lQeZq-oV-$l)v0~)yRey+Ps z7nWEtmL^hJ)e}<3FXL>}tQMI9wg}O}gLHH}LtN`skR;|+%pOiLFQNc%Jw>B(&<0{+ zDf(-L+@z3HqR%-JRbtXqCLbkc`pooAG;}~3NABBBzj97LZhWBNbdSIJuKvQ4?qp`H{7CkrM(xJ$1Lgfh6XQRJlk{pYIGfqu;(GCy)+)Fc@;Jau2a~*FnT=mRSzB7U*RIX+@!sQ3(9*=_1P4Z_>?;)Y0#y6c;;{G78>>PE}I8MwkUt zg-$`M^af-etSM&>sB-&Nar9I<=|CAqO-c?nq4Z+dFa*}S;Qic@5%VfPi>@c?`6rd2IXNiEMh@VFy!$Cd?pv90S5QYVF_CW_{P zQ?YINmw&rkPdE&UNDxrr8#mb7DIffnKH(QcU~$Y|o2UYnJ6GKwWQ^7xbxa&`*Ko%Y zJBB1>P%~_J>TgOA#z}+7R83uxk}C)H+{TGDGlJ;mMYNN~kQ@d5gF&Yg#$GN73HjXC zse0DWUCE{VNh|$iEn5>H+=bWgzhV5R=k@#7HWK9I{o0?K92B6g7}QMlnC>yC=~p_a zI92q)dA206A>&OarP|#FMF@3V=%Avp2s>+E(FA43{zTF;}X3I_!g;T>ju85!gtuRhD*3t7VJ7_QFlXRIb z<-{*VRct7{DuUV!tZ3;!P0QMwh9;vzO2o*;oAsa#EH=y!>G#`NyQyQ4X;dm)fh?Ny zPj!rVHPl?HS%~fw2=kXAjo_sJ@;u(;LtoMIHTN>F+gP%z_{pvW(#X2%nm>w|LXW-hs1UwDFi<@51po?hMb zgS38)j3QN5M_u<**W*fWU#DbcnB-WfW&cX8L8j{(ML6zA8_=UFvUNdEJ4m+dWV+8x zpPxIFQPNL69Fj^zWA2(0Y0G3~9=$jmmKveoCEXgK*>*HbqxnkSdAKed92OcM|1?fn zI#yzytzoRI3O?j7lS0=;Qv#(ne`93aaOZ>cYxZC34{gs?09V|_DAEgP%}M*qrFZG- zSsqy|t(@(j<_t0wQp9=_TiQ)VLCMuY&DU6(2pbn#-GHMY0S!FucuB&0K9PRynFg?0 z3-A4^zT<3}A0f(gpE_V#W6CN(T`?U9(&qW~DmG5BM_|;jIA$g~K$fA5s#sv&uwhuU zG-j!Be5Fy9(D^(FAxF#v5jQ;-)?a+HqV}N)s!d2pNFjOG(S#9B7EFL}S6{2HjVhdS zK>HKTbkI)v-hQC;YF11$Y?vQ0KVrj5Idl_S7W9z^(j$9Sp^!p#gNgZOR571H`vM{_ z3FCQXP}3+V#~#Ru2g|$u6%yb0T3j*fw5AscNka1NsTJVL-_$AHsd(Z{3xu>NsHI~v z*S&xgc;AKT$c>z|zwEQdQLqZW9CEg*u_7T_o60gS=(3?r!pa6FP%*LB&?u_p zC?D@EJo@qS;eSp~Ken7?xcN>!a1ZK=r7??RYN1y#)$6ti0zT|wY{wu0p$=3PjWQfN z@m({MA041XdrE;SP*wD6dKJCKx#o%c%cXbeXr|3Qr(-1UgxX{ZZWk;hl>j#n4@;N> zSRS}?E>zWnU-cf0huq=xVKM7Dx0O2AL5G$WMt- zP71O4z)Uc4Oo$j}SLpR8Q>#-!4nZBo1DhwOyKre9Oj<_)5roF3{ z1mch=g1UYvdGLb)q9S$ySsKlFywBzl$|0M${0>2M(`t{vP8kF2Ad>7dln|W%rTp&L zxkR)4=-JkGQwbHmajWjXUOse*zU7(nzVCwaxGl%`=3>S<|{CTWzJ6`G^hN^gSfXFk51f4@ z+BxLdM2m4Qj)p9jCTJoGO=Q%N5W@0W7FqaNSko93D zDx=1`4u%bj4Qn2bOAW(@&4=~Kw^k+v6-HP9gUm_|2v50Z)UQ;7r1cIz{T}^V78*pd z9fqF*La3~UmsFE;yHvuU&6!dFqkTm?5$I)ia^#+z{}p}lv4S!`WMRbDZqbN5^$_{c z6Wug(eU{M_S3h2ebfLoE25&s~0ZbxUV%37Fx82Jzt2q5QS-nz{>e{tv;@5v( zKKx}}ihS@T(hIrS5rz@7gBmK6ov1;mRD*XVio&=dCAFv2ByPIj`EgPXUf+IV+X|=x zKFT8{4&I@6&DgZwJd)FN(avqA>~%7EKPf4h2wSGoPk?Z;d`*CG7hZLsS7D6mr1z-8 zWxpk56Zh>d;|hg^XqNKuJjRrbixT9_aia}sCuclC-npgrnv2TQ9~|368&&Sx?h_5O z%Y0Fz|n9kh?sRr@53{3azONt8xF4UklWh;-WZ3LT6^3dX77 z2fwRF?d{&vkN&Elyy+tS^%G_1kUdt3DXuR&UcPX<>!K~PiuYQiA{COURgV5CK&VcB z%k^k{EaX~dvm5DC!*(r%EcASF84gjcT-=6dAvp89T$ zP?B)Pm(%G7ari#6=W13>G2LgTN3Zr^&#ELZE*wQ4D&0>sfUEqDcEQ=%hSB`oW zho32fnkJ#Da|4;1Vo>`9B)D%oRitjHYi~jrLtlu{lTsUVQ#X-HjQ{{307*naRBTdG z@*(NA%i9US2uP+%K3>XnQKMxDm*2q?_jPE}-~*4|`~`jE(*8J@U1pS*^#v9?7` zE2Xfv^5w8+HBT$hwN9B#~Q^!dd;n> z%7 z@@{{0uR2|J{y6O%vi*snV+ay4S-aG0Ma-jg%ls2k6|MjD{wr35Ds1`c7yhGvBPVND zT@xVOg;&4Ix?~C2ZGCg86MMy0WhL)e^hKekm`TrGZbeU_kI~`tc z|5|hQ6WO?e-B+<;j;S6N%UM_MuqfK5;7!?u8phnf5EH9sSQvp4gmKJPjts?yZ6-Ee zeg{=em8h*Vvi4_gm|>$f>=8)@LeGuMT@!{(Ro>;vh&5IkZH+3S^Im-PGX32%<@|rq z{nqlchxxnvJD<@DUL?PGG~eA!qimb!=hy1@$BwvJ8qHcj#)kZ+c6%r6g+#HAdiTZT z8et2rA#mcc!QO~7PY$LuBxM|V@d?ca;sBpCsH!F~U35|) zoUG280O78>2EDLyCRcqx0+L+yN?C#Yi#0POdBv7_(+Rf^3As_sK(SJ)>>;=0Vz1`~ zF1|&BPe%2ZXw;%QTm^MuNdcOMCVGhu;X|+BHUG$H%&4K4Y|MqkZkbTq6l@1AaSx~W zxOIfMVpO^AGvmYewv&w2t635K zw|h8b4<9&eH*n6;vToM*^xyfkUU06w?_x#SW2HppH%^o$vF+A0{e<9s9hni9%g9w# zqf1#DZRwzQI@+-NtcYqtqTN%j{}l)3WjAZ3RKk^a`GbmC@1@hQX-6L)JR($i{BPY= zM>Urxi`z(DsILVHBEpqFRN(X10UQATKmfnIfnkH<@SEld?jvM)cw!t*=^dR z{^D(G>e*zG1)3z8g~oxf`Vaa=oUH#2YXXG3>Z+=if|xX_x%{JfH@Bnn->jbd&8<5F zJhYS9sg@2RR8ZHxWe2E(>v%TYwN#I6b8F!Kt!mV*l|}{3@sXGxG92--i$R!QU}?x; ztb-&!T_%*`m$Bo&NH&g&bw78T2sLoS$47^6k{28!E2fwmFx_($+-;7+Z)}x9V+fwi zQedf4>WY5tfY(Ita5sQVoesa8d`*HcT&EHws3*7eK|Cgov0#y1AB}kH zcbl=33uBEH~6 z(X*rfV*sOk5?VR2zuc0Ezn&^FO=EO2OScwAMRX?40;ZPRYg#0oD>GJu0cZPlq$=B&}S(+2=G~aD z5~!3)Ndbvev>T~LB94Dno@{kF^O%?xswKM(iZt4xak13u3@`)FJ4V*eqRMAqC6{jY zFu7NMQa|+)dC$d)vU*yg>L@ZAqqnB?#42K$GHv68g{vi3o+VGJm+X|$95L!x*zL`? z3ZEva>-2#ObY_+-uhN|hy!NU5+fP`(lKBzC*vg@G=D}tXPF}5ZbgV0X4k^>bqKK9h zIy;UGYBoQ}aI6M$_NYJbE&cOf5R`X*MPG5M>{wz@BTxmVdn`39HLRLqs~fjafgq|O zp#e!LDCUSYMmTZGOjf%lK)B1U7Df=NbwX;n1SigdP&pFn}+SNPt(V(4? zgMuQJx`Jobv5vLJeJ#O=i*etWp-Y`3T3PW^SL!ICNkfp3s1+)tp&!tMgyp%c`P(ul z52IYcNlD1MC>?1ux_p|OLx8}A-`3dh++%DaJeS^q3V-rN{rqprOOBDBZ0DRKOb(>Ot^3RMBil7FBWqH(BLMy%X7EZ{SUJV&X?iuiiYmCBH5T2HtOMI+q?T5K384~_R>3Jz zXyGak@j-3dEy*US1A$Ery=)?*BvnOKk%X!=2M8fhysxcsKPS=H^V5!Zqx)1-j<+t2 z3JF!=>bp4YaRARfUJOFs{#kwfS%UKUSIQN4@b<6hKfkQN3J)*n#yJ_(tecUYBMxYE z>9U4XYbpFM+hlT$&^@}eDQhGz5VjB)vt?AHlmg+YXn%itmE6CB@jP`+UHOC%=kdwT zG+u0O3xu6=vK=){xK6n-qs?(uubVb`fQCK84}6P1f1#ZJB|YgtvDnf-_$PhyS<)Ah zP%BNO5<+cWAyxR7Yc|xg(OxsDkb*gb@|51mnyhwBfN)n{o&M-h%3}ebm*3cw0)j+q zot8UJTd~i#{||d_9xmHeRf~_Yc2%9`_UZeOgoHqPAV3;OLkNU`2pW(FiUw>D)Q4b; zKHpD8!RJFjh(AH%aK*BoNZ~3Awqs?K#!#HOKp7&b9Zhdv6dse(zpt zef6DG&OJ@lt~zV3G3FR!ZmETSA535soNCVKF?PYKi2X_f4`r}|C;#r64T5op;w__g(GmTLQ3dY==VYk>Q(2iP3ZT~ z?-grUxeh3f_y+n^LL#de!qal6snvEe1hfV>v^9hAyb6BuI?N9^k?Ih=2T!^k?y&;y%9hLs5x(p;+cGR4vP6X80C|~gSXv%)!R)Dzl=LzAzU#c^Y z0DyU(=57)lxb)nC-V zaV~CI&lU67Hp0Rj<`a6rfYChmM{YT~fT>WUaDKI+ixF_p?IJB4?4ZMm1yFXz{(@5i z&42a=o$^rp(Fb(#FA~5XoKI7GNfYtbZ=$M#1eU)jq=`wA(TQycniay?+F{KK;V!(K z%?o@Md?r&8fVz&adGGJt|EyQ-Nl=zh$&AAqeSkfTGUz*3lXq;8&@Th)o8RJaqV1|o zBSNZ>qKTgAZ@{Oo#$o5+>Ki1s6Atg+hBXT@G?*yUgAqfc`aUb8cp(xo&KT7g=Lm$$ zLa&M$3oP?^%f|-yL~)%MQbJ|nZ)=<(qcOG)u`~pMBlm5qU~UZfITE5Dc_?1{Q9be@ ztc3@bAYx*eWGF!yeY*BFXun3J0|qKmfhKJsM48Tr5(LAx>iEo{R7u2HC(uLY;M$Ia zKe|+}d}>HvUUrFIb$E;J;#VrsxthJ(#y;k7v%f@$X!tERJlfOS#Ds+=1 z=dWAyz^249ZX#U21%u4@Tr~OJ^Y{nn^Y{bNtI+S^b2kAKSi%5Mg^KZ9vUg`Klro_j zt(p^)`$G#HEM-sKDoAFiC}~jtsY;(#$ z0y9v7R=fu;KWT;t3h-eOY=5lEM|v|%0%2tCGzi1XmC6u#Ld3eh)(!aQm+Pfx(x(nZ zdPs_h91m`u@5St%QI5jnRd8%j8I_k2UWG=J;=64ks;Zr1z>;!VA!gMQ7-kG>)IuVz zyEimY#jl_%g*I%FUP%`wbyFyvkv`?ai~h-;`9m{%$-ZFa=F@*N>gvB z#-SLYDlLYlzBAcp zCI08rI9K7Yy&@yjfN>30Pz@tkp`W4<_IyB+p>kf7t)B#LXz0K}B6v~7jAgpdB!flL z>{X0PIQa;?;|l%iQ{rv+Tkq8~Pm06T?_8?iK9>NpA@y+71p_kzh*VJ|KhjBw1_4{H zoI{m{U%KeO<_~hVcGWd2guD1E>J=cYgeifEYP^JiygTA^XBd-CQ`zvCQB_ek+UnV% zMjhgyG?q~AGd6mm1wb`MaliJR!^J-KTg?O3VC~-YNtO$J^iz0UF26=|10*9dSfMho zSaGa8DnF2^{S2G)iqJM|owHR*bW=$fa5#v>&tESBU-&K-2l$nzQo^5Hs+T_n&wM0a z`96L2H~Bl4=#}R&8%7hnyDw={#6=Z2jO@!K_95z+3wkR!=jLJtOmWF6@ z>q3#{TM;YzrdS&)6ypTta8P0*`b9Is#P8gpg`Qv3uvI+cM1J>PTyc|9;?h{78ht~R z(Gx34LM8NsND-K#Mx#|3)9Tq_0tt{Afu6HF|IkkQJ?SX!xl*6IPUoIPuP%T0G5hUj zrN8?Oe&^}9@U$>jDB({(tY12XhwTLj3j-_+@U6S>v`65Jx5q`!h81%#VVvpi0>7l& z#yI&9)R!!e4auh^8|HdkIfsWlf`QBXSmG-`R(*O@6(SR&x6*&-;wD?%4BLs zN;)-akXcG#IQ3_RaJF`~W`%GUUj-2ot$Z{RzsmZ+AKZKXAMFbeIjNUnq&P983|ENK z!s_mgv{ngO7(d^Y)a+>G3)K9lWPzH`0YE^6i$1RBokQPzK7XT5I0&N}EMtV5Dmd2* zW3^AX9n~0RjOvh9jyrJB5ln4G9E5QAHIK?et_eEz>IjdWuODV)LC_$P30Hhqd#u2B z?$)4>L-z!P+t#BtjB8x~J%Bjv2!8HneCKW~k1;R(w*PC$JH`MPV8JI!C0FY1_ z4D7kMhC+%&m(`%30l)Wdz2*Wu z{RI5(B|7gIUiNiBNEMW5N}?fRl3E1ajzEvbIT_bYrW(0uj+gU31YQli0otjj}gM%2? zfG}5uE~cO0Lwvlt)PgBWpnvpl3|_Qbh8cNXsTAU>c`%X{eQWq26;V5`CG_AluPa}; zK??)yw+A4+`U85)3;32#>%3zKpw2jIUyN#uYJB2q9kdsg##m|SWlSy^^9SRBG{$44`p;-wv(8OBbNJwhSwe9||d;2OO6WRO6 z#$-qtwa^2`8A#2f3!=$&^VcR7nX$kWK;7Gc{>pWQqq*>+BEE8?j(rF=Y${`f6Q6fR zLBr+U`L*BUWnTw?FB_{K%wo2eUj@ZXFG>{*0=9j=a#ilX^Y3l8cHcF7Pwd*O9Xrl& z+NBbw(p_dWP)1oY!jSGhZ(Zz$)~1ivZOE2)51Bz@`ABBM;NE#!DSo-Bf}PtT2eNS! zid>`)S%YmO+_h0|kmwaZ0~ymWMm4rgux(s!lj!G-EkL37)oQdd#TwIhN_t#;G2>q| zQ46DtVUB?hTSmBjLwML7!@c?E(wjex(~e-BF`7WYaEzRB?Ol55*;pE3d5m%0)@(N$ z_;o9n3%0XM(X>w6kBAHC|EmHGtAy)sEA7?PnK?y({JArM1QEY-4wZ26SA~T4Uo9nk z^X?)SN^ujgTw`Q7VlN!IH`Xp-%>q_0V9f&dS%rhv;^4J7cr6ZGgZ)-xuNBy15$hJQ zZUxpYV)Z;02O%S>O7HePU(uvwmp89P2F89hN_AH`4|Sh=$6dqj|F-WRphlU+0f;!} zFdE1NCcg9;=}+HdUjKgo-P*VWCA{)|x^X>@I}qQxOH~i4hpHFtMiWIy$;2D)JsDOh zCuJWfl}1;;?T7wnI$Qs*uUR47#aH2=nA&pK@LkQ4B_mBVqp=LJ^8{+2M`1CQB6J+Z z=+@rajVwxFCZpJttu2?i;SC}*ZwMub*fz$k8+5`!>{mgzI#$>^!qOO9$Jjc?(gedA z%XPUk!SW?krZfag)T(s6N$QBDu6Qrpsv33a;{j(|2 zh&wm<2JUoUlW0#UckzEEY4x=BKBU1y;otM zmDqPx)W0?JSUr!`^H?<(nXYrakn)DT#ORYu6d5txi3y~XaKDpV?l+3x)ET9mt6E-^ z_~uPA;NDF@#Y?X=5zjj-{q?^{i2~mIB7(T!WPo_@*90K-kSeS?Ytb+7hp*UAiSm3K zt6-HZ$(=njI5=B7TeG*tF1|WSMV9y#Cg<+jb@?CN;k8gX$&!f%TCtGl4kB#)3EkbQ zV8jlm*WJ{n-SkTM`gKr>l6lkZ67j~5;+{=9^)NOA2i(B^y)D?VjEzHV@j^JpFk_f8 z%9sda!%`i{CL}W*IN02}xUdE$O?f6VQMdSGs&Z$tz+EzfDT^Qjy9|k z9(6GHUx}YMiKB50wDLZdm4KMcsd8&g7tk?ui;&p8P}}7Xgqywu)1YlAhWye9B)s9n zA^7;!bHdsAt-G;YW4XpZU5)o&i;rB7uib@Vjgdta99mq`r5b~N+~)e2A7F6+pS(EN z!@>ZI1FRTelR0-Sx3pQ82`}xfFG|-$&n$e5~Jp6Dv zcgh5kul`5(L;%DK&Z3BK+^T0kI)!5Q@RTZ~9?U`t4OAc^P}C}wTLA6Znynqy>}|1Y zFZXM=aIh(dX-cGk!j76H3wD%upR>1j3LOzj2JbL4V#A8G{mN5Y#w51jBOJvjboI2@NdGXVMpC(2G(My96E*D zv2}C%O4%*gT`VHvk}u#j{}dRj4=oOG+1CI7L`BT^uyTMq9{_;;S7K=#m&+&p#xVB= z*fqbJ1t3mU1vVFCJ8HCqd?Hl}GXrt<$w|aN{EK-xeD%eChtE2>1%)5@CJxyX!|Z;8 zNaaoySYhM16haGJI2I;`yEfyFO_=K=RROXy(C>v()N5qFhq*o$2Us@ph?5Rt zFJW9`G{Gcy4o3by;S{cIc-^)NZby@LsL^=sfGkd$Fc(68A?o*^P<5~OG%))6|um4tNH!( zj*Wy+RruL;X2k6epebM`q!jHv14bF12-<#uK^E935ye1(qPjp6HIqW14*&u|F{axG zQ1hL4<1!LO;QW(g# z2d5W4xkDP4V#dPz!3qsqVD$E+X!)}CcK=cgBW!{QRMe;Myj&tK{;WWVRKokdC?p)T z7g!D)XjGaNSQXLG^ljXTMTzxGEz};DhT_H{HVx6MB2BGVAtn6yNqG8k_|$iG!J{~u z$V#Eg5y=2`D|*9%c0QIjL+2tCc~Q%6$Bah*QM`XEnDD_X^t97y#9Q8PH{2}|FMbLE z%=dBM7H!yubthF0l+_TeN+3;1;w^Wa?n)VdU(QA^&DMjhSs~oD*B!U!woO=S;ZB94 zaLEj4IhAe-?|#C57QASDv|vZssf8i;Xtwpd{l3OdZ_IaU1|nqm95R(7F$BgKjC$2V z8dRt%09dZEJc%eZmt{^2W9wEp7&++_>>ZnhZH?KE9o??AS!!4~JxZtWOE=@!pTsQm z66T#AoWtTA=6e|QV8Zek4=mvs2jD4t$j=aMAuLs)Rl%?jr>(-aNJhcV{n8+;V4%Qn z-Hr%0NI3S$WF!kDy5Y{^MFGBc8$=$kt_%Z~8d!Mzu8R%6|ol9LP;`XiLZ>>E2GBx(WT&|>w z^};$G)4#mTCAE6eF<8F^n}@|ONQ{qPok0UXdgZ=Kkq-f@U=@l|X2y%o)`P9tJ7bq$ zM7vuxJ6EFHwx*W3v)EEpMDI?isAftntc!4T`!dsP>)no5vzt$Ce^g=v6g*F)Hk#;F z2W4OS!pbzLaNWHc)uH(C`sanPX%jY`OJl1Vt*6C@b+f%PWN$5KQffq&=e)m9Hrf zVMcJgXFoQ$)90OAGT(`Jeg^k#!R8URjlxeN(v%!fN=Z{nnIuanN||b(Z~ZX;HfL*B zS+hd8>o0as?krs*Vuyr%v*MsInx%kxYKQz~A&Vx~Wkjm$%5j!8%+2Xwr zW}}mGYVx=VC46~J+C0SOAto8ilcEk)aG|wLNizw-mDqCy)~$#txMCiw7O;8&gC3aho&S#)o`M%X7B^m* zn<`lDG}egiZabV6+Q-vu{SmoYB|Y|${L=L@G9t?Xk-zd23B+Ikk*6LVu*rW8JB85U zV6A|I+tJ8%f$2ef;wE%G3fhDS@)ZkpCJzZ>Vsl$tQ}c=?qwgOP8&B!oiA-!sDIA%aW&O?(L&beNnVC8sgrRj=cezX$`jZucLA8{!=5ueC=~M$ygp^ua#Iek3kQ;DhSf~!IW>$1S3BF-}%N9 zEC}R|cC_4Q+c4{vL$8-znG8cJ={2UR+LSdfb;leJfk&&A&aV%s2W z6rs5(hirM#y1>E4ojDP^_iJ#1wiX)kigO8IH0fYLL{rlq3>3CkfXo@d+Ka4~AoG9d`Pusa#btR9{L`k~at~L6p(zR|2y_ zI9oeevqHG*uf{$f;hP}o-fASI>26_k2Q8T;skE;g`8CbLVym}qEu8XBpxMYexX>{Q zTSS;(O?J#E)lfEO(Ys2h(A2_x&!{#JwQbx6Z8s!dH|(aX$jIF)((Jix5^!kUve!P^ z(xWO{`Nf|yxBS29qmp2TCme}h730_YJ&+}80I?%C7smywfBEqI7f0kNwMa`E?|5$L zUa=0nSuUo?s)E3(hj(9Q=+wL?oJg;fmwirXa2Thk(Nsm9s|)z6r_V8ds_@JK2ZGHP zPp0Z3YB@S&2KqfH;T7jHm)O#H>ATcupg@-QK&LMl7`-6oa81w?eQ*$5zuPM$yE zF?`bLG~&sRqmggC*jzodG{Vw2c+rAK<6!ZzEBBGxC&W8%KHIy4vI@~7?B{zA`~TrD zbhiGVU$a8E%dhQVU(w6#L^ujS&W>iUgF#(ftgV1T!#KC<2}2X;RZ2@MNa@6tHEpMzaF21Ps~TOd zqXL0GJ(zELJ_i;0Rjb;E4}@~GWSA&MB-SNuoJGg+?l0j9>+25GYszr<;_OJ7vVpeN zpewY95WvG9)V1WrG}ZjEfuPu;gu)W0Sj&428tu96Fz1$^X-5OLOt@kSqxF&yLc3kD^8 zfXhd(G0=>NL1Q$eVx>>*L*&dYHd{MivvK z4!-wM$i;Q00(!f$pb!V49nObx2xvQ|<R%MIA{kW~%k0VTiLgk)W&2wAgZ9x7jp!yA z2wLGGHZLPlr$3H1hKRSlCqL)>B;kr{_2uv4z&&u^CJZO-d(0>kK_5Mzl!`~kDu2jJ zpSzeVpGc1zn625`*_ypGc8k>-q`V+R;^=lkYXH9b=ili>%n-SXle=$2##$aRL*JWR z%a=n8$%fIIhGIMNU@dXy#p#~KeYb6;|9rEM0=kL9Z~LFqGlgWPF-WxduYlAYIMSUW zt%5v?r?3+j9^kT6BLFbr?Joj=(~rdZB@8o`GlrSNn#*+-AzMjU%|Dw0u_qeHp2X^Iy` zDprKnG{US7VkV4JLYUm)QRBw=n1Qk3ru+4!TP2{^!xh)ZT#u$lsP=^}F|*SceJWcH zZCtyFCCP|Z?lhhjCYt#9Yhc7#k4qxn{4RUJ`831b8!?(-IDw}jh){~Yql`k5yi-Ui zDJQ7n;+arV^(XnBy?-cwjkC4utyv-59afvz(LkaEB<|>-fVTcrJBlObP5?*P+@mwRx}9P?qE04v#TzdZV+x~ z6WpGcYj@#J*RyQs4so9Fuyoo{%;0j(C&h}eopx;n`1;bs#^*HjzdP3!GsQ;tavBBbtf+SRB=|2tU_Q30!d2Shmtp)!ot(W zubXr{g|)cTfP%WXDVodm%jfVn&SMK|%fsl@!orSvw>V9EY#41tD>ctbR9>N!<@NQ7 zt4xMoC3$!eaq97W_ea!Am`pILao&Y}>fd&G=Iw2eA>H2a?2&%&rK9m*~!EFOcMV5!1$<|(BNyZ@R?;^kC~IBDch zKZ~zBUtWE`eRs^eSk9#cTB&~)pYd9_RI{}+mWtw=?dw0T7oR~8zp{1I#f2?e>H;Pr zgg*#Gc>DcoDoycDP~>AzOdliO2#4%Ta`qcj-i$vVnjU2vgCB1me^5GAtIb7|lXi#FG+`8OJsI z2|Y3Ua91cLh|B;TOsK7bgny(8^V`5(0A&WQP?9ZCzQ%V+mPQ@uJ-%oPI%n8)xkQX} zT1Xhx7#j%mfC{K8B*m<#$bcry;BBsvO%)6Px80BPPvGl68sPjJz}x_lvPJ<|oFmXQ2pJ}FdX!J|N=00!S1*E~nwj+~ zeN{Dm;PMWtOC+0$y~Gn-U;6ht?hxF9g8LivPo$DHT6)#d31)eJs=OX;Hcgy$;vltk zh(uTh1S3v+48MA{{^lZETm%fa+zSEcUN}&S*1AG%sOZa_Gi8*?@ewVAp^rYCKe6rc7V~ac>HT&n6X^9D9}H7=SF~d z!^d>^-Z*-H-gG}M{zZP^m-&Gg^Hs~E$j@xYbabe~!VoriI#uw4#dofe1WS$x$rmp8_AXiH@2<`wY+qvh1~dC z)V_7ybdUvWFwIri|lqHwU+;;TQCgvOjX_yP!kDcHTM=(2TEDcUS{_k_? zL!dSfqW}+U4Qn-H5r@Sx(fSIe3q~!7s0|110TCB}MIzqti4d5+;u4*I&2Xxd+9|{F z2wmSHHm(W5b(Jig!l-tGJ{kw1HwZgky5?5=lwJ2{=Mu%)C9%eXbO%c$+t}RI$1mK7 z7eARV`8z%56#UfV_}s_vcTem@%uIirs)EgI-cB4{vDJ6=qTZ;62s4;a^>oqOGZe{c zW>_)6{%i24L!7QFajwC~P&N0D!EBbJ?!j8H8&mWEG?e7nj;^@JHxnZ#pxY5U^>f zqsI|4RA4}HiUb7BG+`jHe3LSq95>6e{T7X+!} zEh+Dhj#r`(p`ja!D@#J2>Ek{^=fgjDoqp=H7!d{FCtqi;dp<8&s+to|B8?&mB9Yc) z{vj%PXkW$XFE+B|QWS%&6=CdEddy>Z)i<^Oo%-%ANWvZqc*Op==ePla7xg!c450YM zPwcC?+|Z3x>&qfwYTuei@xqpf53ZB%1Y!pD8Q`?zZ`==cq~ zX*JyxZ?CLM{L7E&g{SenV|m`OJoW$_yFb2s6OP|^O8C>FRl!O&rZI3~svuEGM;()p z1jd9yM?xxvu!VyOJDAzGr-j8palv`s=soi2Xy{`}z;X!Q^$%Cx~aR z%!&vz$7h|eh16kUOCCbNaYuxW2rJOPmL?Da5kC49LLBr(V6LY#9*VOb#xss0t5#<0 zAKgkH0|?a)eZo^mgd$5E-N}A!k}H?K*^Z zH0aPmY87_0%Zsv;vIY;Av5ucw%NTA(Jz_RyAeRSFJd1_U>*k&AtO`z5k!~?=**`Wq z$xcOVDrNhPTSnSCj@wf0xi)knw9!wtGaUR*lV8)R%Kr5NKKKoRIP>8V2m0EN3B=p3 z!iA>-#2;>4e#}+Nxp~Z9J5@Ba4pof;s$PWGNI=5z$91N5Fh*IiDsZqQT&u&8cF!m~ zkk~uv6c$pHxf$DJ$byK69>81%CBF5SlM;UNFKoZH+;25s`7Zsh!*l5oc3+E~7$-`0 zOv`)6StlrW3Q$fmUVS5sfbireCjvkF82s3YJo9M0eKN1)qgBFlx%uEdO^t&vNy(IA z`jV>QSAX+|_4hYhyY`w(O2HN@OToN>VaXp{8-6 z#GdCYJn-oug}Na{HFaKVC8A#J(TM4T2@LB0V`9Ql>k8r&;DQbYfp{K^V#1^0>1Lj$%%(BJ$Wt_p4O>zI8*A}wCDJkPYNt3 z&{MX{aYuy7AXYtH_YDn%`@U??I~EV$pKBMeW&zj$w2=Zaj2Gti!Ah!}f{-f4yLGl^ z>jzphM7aB`Mpe-WW_(mVxxH`{K;&*)ax~_LXeq_^l&1r@-R4z*OVK!NXNjX1wL+1_ z?VRWLJ?w3apUrC8ger_HEhw@AF+mel;NUbU?1Xtb8rvQkZkG(+B}ltMO&Yjz5!*)C zHp14C+Xv+iiV%o)gF2hZu?^AJ;a!6lRXGr(@H70y<@(y~IN@MCmLBf%b2+zo%-|9tU?qG?vvu=d?^5pQ_EknpSL^KnN}2|xE1yYW8U^gSJS5MFvVetLPd^+Tg+ zy{L~~YOX&T2Vv>RHd)&t>vWQ!R{_ESV>|T-Jmzp5uoefd!@jE{Qw?1<7?e_^jQTJ_ zbsU7VHCsQ}njym7ak*5a%&cd{k}uh=+y3gy2mRWk5@<@Xi2_CocGQqEr`&`>mLzu* zGU87f3mQv@(pfSTy$t1Z#sR>nu{Mk*i+lI$9(u+s(pVL}4CQ8k*d?2|QBFNC_osFA zGp%GMz#$458v>pJUo)k$DT}Boyy}DcwR0(8FbCDJgsMVq>=iKTz{wPX5yzTpLTXAC zboV-e(~fREk7qxeBL4A<`lZuZ8*)Z@u=pS6aadz?{qWrnnGb3d5U_a}1EVUW#4I2Q zNJjY)XRhDY+Ek48evz9JIHi<%~e)ih9 zG#9?n)^7oTw|q)3K9gI9s55@*Q5fGm9A|v`5eqDMJ>Z~UzG^Fsi{inG8bJ z)2jRJ_nymfjcnLs5xu1IE?+sfXWa>u2}DTaH~!@S%_T>~Td)0bum_bl=xoi_53pv3 zrrl?iJuU!5TOM{6v<8ou$;m{sgj~txGoEmkcbLl5DBa7xpRs+LFj8F*&@cis6QdZL zxHT-Ntz*ALfBGS9 z8)KX?wlWrYhaAqlUG~Zj{yZP@_sOf}6yj??sBheczxud9WW&-JOCv0gF`8gpV>pTX zqY2LX*6`8SZYvL1RpmqKDWidC(!mgu>x($n;b8Ib#W>tH_N*(1*%>a};WM3Q8Y3x6 z_s%a}u@VLj1M!?w`JvxPZ~LqWER8X#QP-H%kf9>ZxMum(uMQt|)v&QlOgRWqQbtkO zQ3!<9lo8iY_TOX|{UX<`z`B*#Z*81TP=SsJo6%IsiH!h)0SDEC5-g3s{gNNv-`;HP z;%kNocb|3pHKT)%oo`EFtCx9@HepVQK%%Lr5{a7*Iq~p&zR|FwRbW9-%<=>e#?T5y zd#~g~w{|ykuR>8YM61$NPipS<(0X)hUg2#*(wGd8{5wShi?zQ5+yGOD`#>5Ev}rnp zh-d9i61Gs#ks%Fg%#PjG={TcT0~HKV9i6mFfjAT1LQ2t(lu?MR zHJ1bXlWIG!6$<922a2TzBqgNM_#{2Cr%B&?uoYNPC1B6k;$5%qe|<4FFGIwizRP~~ ze2RF-6LH{OL583eeFAT>S;~HOn>sXWM*o}VkH=*9+kR&klC88e|60Y;cm62$e^Yo zKA3PcCnZockw&Q!VazgQAz8$&p-gCs%IC5VF}dX%p^@?0|lHoW{&@s8zwh1Dnb;x%z^xN!4zT0n}CP9;<& z^g$)O&1+$6B19nt*r|ovy*JeU2S7U)sTlhT7RQ%w!Z|0Aw3qxiC7ypWM7;SUdi=w% zWf?C$o7qs&ThZtzR0%5YMR#IM3{SdxTQ+>@7JThCU4IYGdiiP-1iXB4`TivtVLh1e zXV2wCNFH!1m{-9JGoXT)lng0qyMakG^I`NUjwtzUSa2M&n9y_>ae5!*&sF@S`S{R4AV-0_V* z3)%4Mr?WOpGA4QXh40cy=MF-lT8M7ZPYH5!p1?8-KA>S@1dSH86oW=>WwgzTyCsA{ zCEYu8K;0a>45S1lJn7_6sT{sPAUyIg-2DKuVbc<-gjI7`Ifp?HgQ{qN0e{{7ia9Pk z`{8)fv0RwrLf+aN1bmGb*lrxM1G$(VXkBeIYLK~6LNLqK9BbNGe3zp z8+~pi?}!HBRMuK+C2UjHQYbj+a(w&A{!#;J~cHO4%O61C-0z{Y9bGzisL_?xy< z8C}#W64^{SXKrUjF*gqhG$&FUYLqZ=Vi?!qrY{*|?a=n-=|og%BTwzdpL%~T;dPf9 zh__s>jZ0WLhkg%pJrGd{)hLWqj0y)2%r*PbCHR7(?9FZ4cNGZrykGSAHXDI zt`9Ph?x4c_0E+`G4lvilpoc*Zi*s0<XGe1ejYQKXL=prhI4c(;Zsl3YQCe7pj?uw_7h?BFZ{x7WIA?+xs*E`?DY}F- z0$Gf*M%Wg@rbx zgjB+1yisii38?&{bd)lrDJ3IRNzEjx-t2HcTmOzVD}=k%y6c+d1CCulBPC(%xU6>m z^?s)IU6RFjr73n4mfeyNmIjomODfei8Lhw+|8-WFRNqg14u*a2)!gg1C!;Oc@8R|E zrd~#_lr2#-Bc+hWD8Y@=Av_J)1BE17JTHV6#tBj{@kOWK6qw?!@QcAlte+ZhL_At% zVU$so4yYr)3W5C4se(@QInkP@5n(w0NF|JGtaw;;PsaKL8a{EQ9d|U}aR>Vei}Tv> z027d;7aipX3uHqgs)RZtF@z_B9%_%fGhARf_p>b_Z^btcs$^)SG@5o$6f%`1jFSXH zbcA>oe%<6n&6~ciQGyB_jEK8y@5C98#I@hS`#-N2KAkeW@dJ`@z*-)@H}+nIeO6=t zHJI;5A@rYJC4WI6U}6|&WT`ghGJH5yFrYRV;o%ANrmRpgp0ZP;GD!Y!sT{4S#PxgZ z&51XnDh>+iY!X8Io@xVBvA|Uh& z?O7Epm^(TYg-d}MDpfF|VZ77!H~(x0tw9YW!lgZrK8d4IbQWFYD8aysZk8*4a@Gru zEZR$JdxvcTOUy}z36Ec&rR-hFm%L9ed*#52BBlYDtx^VU74KX;g;oZHHwe8RgGO}? z@7^E;FzDgW-exa-CO`R2?70Gm?ukS9#DQyZz#6Pu5mm5XJpK|!4(5Q`Fv=KbWK%Os zq}K-%YqbXw&kst1sZ579Z=>o(pIEtKB>*20S*T!3$!HNgnn0hvXB*E88`RWlMjWi1uuqAZzfPuO&@ znkjlAmH_}WU}AONvN12N>*tk|EGEfK6aiZmLWgj&3nsW&w8M-RkQRur82p<;Sfnr= zqPVqBbgN)NpLBM#pTL6iDk3)oW2X>Wsf8^ZENXr4iB4+lcj7?IN}kFV!2+IcbNLlI z`8Y^`VJTy-LP~)6wi}S73h3nJ`VjyCAOJ~3K~z^*zZJjmh^Z2&^0Aq(=fCkE{u_1k z#GlBoU#4wiY#rkdUp*koT->50id*5YrS=M_M2QyfpbT(cG*Mr>26M#op3cu+iNC&7 zlZ;c2;2B5bVf%5v)oQTdAO#k8OMa>`uCa9-GMQl=LYP_r(F1yY)k0OpaY{l(R0#h@ z-4uQU>5h;}DJvCFXf&l8-*X@bNvddRc++#i3QYB_&-nNL^~~0f=$aM6-EGB5zo;l( zIO^bFN8u;{<>WJT1eke85fHoVXsVe9@a9--TiwJ_FNDb)3nFwJfe2f%41l~DBt{yJ z>Rby#7Ak~QKWexoFuUs1!bZ^4;I<1og$U6m-5_uw!qQO?p;t-I8uiDc4kCml^OR99 zy@)zj0l8CJ!_ued2u>A30>CYILBzcqgSRxwd!rJOWTJpm9?g2<=0qfa5~+w&y~rgj z&f~4$0favQ1b;hJZqN5vxkytJlhgwe(f?2SOPZ}8 zp*1UnyWJ{gKD6#PhGuaZF8aFv-5=ibg7cL;3OPAZ2C-#FO)1B8C9g&)#wI2J$N9RsNy>AUl>!ke+M2Kg%A66E8|X^qQwa0J576mZ zhFd$jgry)y0YlX5PLD7g7Y4ILq%3#>TUErOl?SJFdC~CZ!{sDl1`oAr$b~-mX?w== z`Zjb!qfDfO&IGg2^()2ma0N=Z0~NFSL@mw(L^k-||MnY-zX7=LVNsb->RIGbLM_UU=x#aZ-gSimGRK0f4qchtok>6wq zBPD=@6eOsWTz=)$s8mr&O0)#@s0y<}I9vbrH7kU>+q&nPrTvaw0iZyqVnwTV)+7Yb zvZF9DDFG17ifYu|gsCR_O`Fhlo=lAaKuKm+8dGR9FloebKeqPE7jI&ZdFjKcx2G)) zdTUnKBM!z@o|73ZAsZ`$(HoFN3UFX5Mt(2})+IZmx{9FpETb+)o6yUk2gMMCms*$N zv++JkvSi?QPu}myuihg=1=K>Xu%q@MJ;LInC=;N-4}ZqaJeiX^^fFd@gd`*~DO)IQ zk)*;0s%h*wA{3NRRhS3HH7X)o(S8U3F1jf|;e`)tlrHgc(8F4wcFRGHQ61vUN#=%S z+!cX;m(bC?r#lLE?&pS(J@Yx24Sw5pwE0u`$&7Q;zhqi@7@h6EDW%1RE(af zh&q!K&!TY5!I1Fj>(R@2U^&J*mX{c&xUc}}Ko-AFRC_a31r8R1S}(bL#o|Ij3MZzJ zByAWRB+Dj3l~BPdg_XWHD}=N4?^v@!xErn}d89Of$ixQ=T0>z+-FqO{%Ye70Cmw2_ z2zImrYnq8A_RMvB;i(6c(Q>lN8dlcYNa)aPutxw^-w$Bn=tob6Nuw&Snz&LXq&IMe zj_7Idl(plJZL*>rZGLr8#0DZ%_$x|Zv9N%_mj=uP;14OpGEK*{AVNyaW$J~Ofr{Ko zk5KNNU`r&H2vZP7)OFGKgGMIDf9C%iB1yz&9E7Q2U_`HQ9>+63hg1PV)jZ|$?EGP0 zbTcH#aN$wSQ-_3p!a~2uHEWDB#u@7tap)e{IOLWgmL}T#f$_F6?%IS~H{iPO;T3;0 zC&C)-PZ|1=60+%uBRV` z*L+B;RzO4zR6W#1a#aBd%!ubz#W0Gv)Q-zhB~*Zi{Wx1EwK<-r|04~0=$(aCw-o(MMWWG&SF`HnJhEaFezJ*q5)8fz1b`&m-x}`5MgAzb$;bYOQXpo=iaEw z^Qy#bOrB<)KuaO9AKpOur;|Q-YET>xmW-lF=q)kj>717DO0B9+Whw zd`w5DAzGTFEKy`Wk^#bd?~2lR!NDy+tSa;>0GJq>L67SeQ7gdW9xHLo0i5e&&__z> z_0a3F*USIyH`AyNmwnH%8gbVqj5CZFWhfzg6-EZytRJHp@R>@kPK#J{$7tLK0*c3iPUE^sj|`| zjDisZ38!7o_0s*^=j3s|x*GTLys{Dzu{9PF&m>v2^n|F007d_YNQY4a?V`{zG^9nP z?1Y>Q2}S{0KtislGFM7osR?G80+VoF|UsRS7TF~Jn9X@q2! z8Z1JJ7?;YUaU3=lYrJ3AUgco3AVQby2#p8C@vSurK3t90hTAE;Nov5Amlz_93CsWL2 z^b0$&_NZZH6k@G5#MMt+2K@SaSAvOEJTITfvB3_rNES^%f>lrg7JyXWbNqkBAJlB^ z_G?xMch9A^tp)^>$nR4KH+|&Y%1OCWPG*!m!ZUWZ^HU* z*fNTF#S_C=7+X}qTBYC-wJ^*YWi00qd3LW@CdLLNJo{8m43mty40fKBLfB03XrsUh zkL=0*mSut}kVs_!uO(T!<822)l`MROz)I*rf&^!4w*Iv>qeger#gJVTYLrM~!2vs6 z&W<+a!4t!LR8X*^nXJiL7$~*jG0k>PGs$En;I#PfliatLrba=j&ZCWE+h+wQ%snMA zN0mS_z`|;$BDF7VLcrNkBdZXIBHD)prt)RnYah1uh8-VuB}4KnlS_4vfqXux zqOnhuuAWiTt~Mlv0;)i%Hed(z{HR$)QVf^cMLTk zVIt)q-OIs3MMo3ASwYAH5cXWtFxRadH?^ZJih~e9id9TM!>hnKq(lCre>Jo9qq=5@aQ9rT)wZ znlZA$IxDzV17rG9nNHWRqaNz! z2_x+nI4>&Z1`Ec|X{JQQj*pJb-wHJvKME0dY1<*fcCOR3Sf-%?4NJokz@5UA?jHF7 zd2;1y)3AgUqlFM7)`RD4p=5jBumTg!DOSG|aInZu%Bc20geedtdq_R7hfCMz6qlbE5aI5*?!S7= z9>=aO8j?n2nSKzxOrR{$#q1Wg17#EH#2T!TDk9Nx^3fF$y`81X{RkQD7Ee(RJ!ijb zKX^~~*VP+uo_oj>C%NvA=FBX6plC<=>3CKph}p#CR%>@qOt}f^xVMy)paBCo7_DOI zgfTj%3@91aNl=j-P+W9E_GY3(v4D_-!i?C~Ldby6eOgP)#UVkp&s~m4=`t9(!qZhR zF)|{4j%zOiCMJLQ3L@9lJVjl}4&)PC5sk_;D>Pt{@%sB`QUVit;)ge5kB#c}(CbC@ z>M_P-dG?L7pp}JHu?)KiJxeE@4u(eM(>hW>n4z`^?Dok}jZfd@pkDlHph_T1BNOhj zr-0vl>-=EPk}^udlEm;%Fh(7h*60=><$DhL&-@dbtskW|D}=lGY9l2X$sfo&se%Bu ze)jKIoc2Pbs6>z?LMFkC&W@(i((w|QNF?UMj=FFZQN>jHlz>tffwhmV&ZD6g#udi2 z9CqsNgd`(`g^UP6F*1q-1|b0k zD_|4^MU{zNfijQSU?r8L@~BFYO2w3^O5wzIL~I@@BijP=4A=&zRA3ww^L_~o7E&Yx zdJP)QjHch+_niG(U;bEY{q{aR{kSuIyFJx+FLhnrxqZ(*uiadCjb*wLualDTaGLoS~nmzlq&5+EGad*lUL$J zLBK}35f0M91WN^xEi>gQI%y__p(l`zck#o5pFMqGLmin^($FO;VY5q2$Ng8ez zOqk_VZ|J6OL6(8H%!KRg4)65Id@@gr)V$kF*K|`ajI_{5!Qf2md!oey+6=)TMX(!NS=wtqXS^B{W)yC?ctG7J3X18X?)9vPJZ~#Xd3tLsiiHjHwn) zbpKCT%eL_c40N=Co7}9)aN+s9vcu(V#w3O4ejuEauyyT(tz+vrjK5{!qRb_tlY=Kb zNVc(h+&X9w@PGZXMC_)S@he6ztj8ZLq{TrxNH$pPPMZvoI~Z@)AOGMdAryq(`h~v= zZJ}$&|4(SG6I1I%c>h*GSUDL4525k8v20oD^OdHjarEFyeS!VX1i$=(VVWn#7N}I8W?X^L#DIKB4;xMK|2ZY!B#b>*^ zIkm|(7@e}j24ipyED=r%Ug!)kvPN;_&j}A`&=B1;u3N{m#z2S*=atGdN9nQ>uS`hq zX-h>S09@JX)G0>Fup#^mKvrH-;G)9h0MS}rQ>B4il93QYsK$dwE)FN**Z)A(m_sU*TZ((e@Vf{C2KfJx2V$e!pZMY)OzqF65ha2U+_q(;~; zyyw&>|Annj)*H9h6OZ9HGNDP4ydwvYIfVxIkeB6y&Jiy~_GMCPa`>iamn zwM(g+42)2X@Y@u-6jUG!@KXhkDy0!h+GNp3g{v3jpox-+kyK0%K5aS`R1c0#Xow|p z6-pP_f+;(4=Mjk+`{rWnp}u zFlix#(VlZCoH?H{cfwOmSi=1JnyNt#$|$cBVKGV- zIawmq3gl&f^i_B3U(s48qt=P=zOESnWa+g8+RccgKp2A=NG1A3xxy`_b-2SjY%)x8 z(r9iBN3mhO9Yd2SArM0#+@}MfyYBAVv-$<;Ow*Q>V#?&C$iD1_!ImZ7{Nwt>Po`t6 zHdPD4#a(0wFxYC%855x>*@fMoa`s1m;>ExfsiZJBzpz_tts~ZY4&BeCv3Nmg28P@J z&8nN6V!mrUy#- zw#Ju4( zvHTqj)jGa0?=kFb$?%ksg^Ox~F@b?F|6ABNp#Nv7jm@*y3+$`sw6uxK)W=3v9KAs|uCJhzE$N(_6!03p@U+v`{=O~5#;ER@H zz~Zj!Qy%36b{#ZY-|scWqK(YzdrSAV0fA=g$|#SN*bh&&fpaeZAcgry2y*09ebVC7KAx zBy%_PbaAacr}dA%{P_RbtaZX_ZG`uG6=xI(arkYBqd!zdh_H5+)e&QQ&gCDogQk_tXo_H{ z`?U~MgtTK%6fs1E%e`8`i8(Khm0=1ea@rf)K@XdooCRmO1sY{|&MVu_u}hP2Ue^V4 z3?0K?h$V)#y5&}{dSNLmN;~h$SvG*`&wrW5%2Sr@`LiFMUh%={`@Vfwsh14xgp5$G zI&(+ZDPOv*a{UBb>sV?%jqc~V@O$SL|3v__u#dUb`>sGoJ$(K11Ne{M^>uP+Vt09m zCaNQ6!Ne!oQ&V3gm+YV>nADs%X~2A7ns$C@*cm3viBPO@Fx&7RUuF?Wp(5AJ(C8jb zCZN%5&p8o_7{Q6ygGS}{p69%3bio`7#{o<3)`z?ga7O3L9pP*^XK61djb&wN3JH%r zWlnqZL_0Vvd+eCx#mp+h>jpvR@;{04S4+>fF~ydX*g|S;*<4O^3;HN}<=wb>$RUzDY9X}uK3JEfsrT%o z3f5>^hBn#t&N6v#m;SBJLEENn^G;38Rk*9uo$=Wh!o9iq&EBM?-=87M#g5PmKAn9~ zQI=#_LZiyejaX`;4`{UVC>C_eO0*bS`@vQvVmy_{<}ZIDx19V`+rbhwsty=tqyjZQ z>c?o9^7Cb1jK($?q&EOaqYIY9>OKwCa+?^fv1^Y7dIMVQK4o-t#2a-%P7AV37exHM zAJ*5tp3gdy&+F@7?tk}hP9T2rmjK{RZ_%qim2IV$+GohyV?X$# zy71jngHuBP=*#ZLKbo~pTCI)nzAx_gA4?I%&1?JK?<_?^aTA;hHJ%C`oj7pOV5}&G z69bBD#d8TmkmduJ-7mlLyO$q-o$uh2urp1S1J!Fs*xTV}e7etT!ZPL#fOJSWuna65 zQ)4VIvsGv2Vrl2EC(Cs6Tz1yRalw@7s+HK1BZF#tjtHhtiJ^1;UKU8H7nLT(@+uFS z)Tie}TmCYmbKLtDf&-h?R= z=;+H{ns%c;##Z8|eqR6LZ`x1%BHr?IdfV^dl`rA;G}>mK2x%?zd{q-6GAz^Gapn!_ z;Mcz4*#EVxbuw#hg!g%sNZ|TS;caf_fJ=@b&cvs05LGbIUB#D)eWA@>YqONFaM7}~ z4i}Q^H1&0NZQFBAh{ z;+JMSyiP}0j2_JD!~Er1(V^wv_7ZH=5_A@x>`_Lm?ac!sYO~12b};RD*g+Y-`v>*s zUt{qg|NFn=(S74&{FX1}2Oq~{7u7cS+`n=<#z7ZhA);?U8!?0##tZnBe_o^X#XJ4y zvDR7u)<$^$*MLS-EpWT2`Y7+!3xg~}$R2s;UtT0JVJIkSB4i(^U%cR>Upz9 z*r#m}N7b9A<~=x^i%p>xj-&BSEY%iZY{?$xAg5F^ByyX*5K0~4Qc%BK6NZ#95z$3Y zE#fGAq~3?QOx{cF2$6o$qv6R*;eeP33$FBPdofwY3y2x&^fAK?)kNwIsL>S1Ah@?F z#9kLHvP=pv3~GDK&tUq*6x;Xv-#$P(G$aEZU5M`YL+4$P@z1@+gmf1Dx&PCC>gV;H zKcJuZMTz*pKu0{qZk2)_*E%o!nX*;eB40 z-u0M97X(w)KBUn%soe+uma40$m$WT9L>X{vGVf3gg*n5CUR;}MEiKVe7 z6!6K<#g#+sI@%^C!n~xw!DdW^LY_hwuf80`#TMm*vy^bZ3of<)9CP6U@LVh%v2c4? zcES1gOD|aMb3vocW#L{_eP}(?eGh--Yv%j>;(>$!CTYN?F>L>d`{O4&v(+Xhlv$Y=f}`l4(+uqDb`UZWJ} zuBkMaY47IiR3gHefQndxE+)e4d7~xUaGx1_L2-D9FRX2{@z8@w#B3PD6Hc1Z&d^uP zNaoxQXLPhM(mL$IVSElvthHZFnHYZ+>r$`L(1+M@ad$H z;XnO3iTK@j3Zy#@Cv@Rp1KXPj4Mtje0hEYvZ$Y@$TE||i>Gu6!m*4xy*_XaRV%j-J z8c-vq+ugEnftHpjIk_Z}1U)o`0AYl8W2GKBj7S4bF+}Dr7zDA0gz?6f--lc8XKiaZ zFisMhGBC;HCPp_+Tr@mOJi57;HMLV6nc!!p_*9iq<{pVsjC)?D7R%{9bJRhoL)G58 z7`sgiXKR4TvKes@;q>P2wHJ(0&yzK(u;B*fhVT`Sc*XcR0jJ96I)2jyh_tvvkTf82 z7{h%#yy4s;){w?{67fdFz!>Z(&Tls=d5VI?5$0aF+(#Bnnk-Y!j@y;O6nRP1h`quH zX5u^x_E3oczy5FaWnYB9@g4m?{|1xruYOY-(~F*qE7x%50etc6E#B!)28oHJ%!m!p z5DHY7yzRYdYpr#xwN8X5qr!uu=0X}r7SSzgdhE^Wu@7|k1n=;kV!lrG*scxh?VQ8X zEIau!3zs!D@mBZgyY3y@Hg#%hBMoY{s!6^~LZd3RUnwY9gqMYJXyUZX&83x^zD!4# z7Hc!6ip3xHQr3G3&##*Z-~X`k>5m=Z;Kj)DK}OdMDoxF8;X4y?7PEpP+HJL{9QBrX zW(W<9MPs6@z}uy_&H}g0@sR^`t*LI_4s!ARlh=enC|%&9HAIGvzB6srdT1v+7_ew2 zk$>rHl0*A-Z!kGNb_tsePHpnYXTIP82fFybzv(>e42-}gm@;D`JpZ;gAKO2Nwbt6N zwGp0>;=Cyw{xY}T5k~cGb%Pyz3*W+%FN29bQJo$gvCqh4F;iMLm}32TLb5k*hF9MG zejS=R)S=0gWYjjGOLzte-C#{P_rj&+_prR#-&uy5zS5dfda=M`QB8M93Fii*O0gJN zqUg>m4{xKx5Je0r$bd%4#6?H@eYY_VbgGG zgD?CGEy=XyV-5gzRxL$@u^qg8`4#HxC)HYavDVY;>aP2`7)uVC{4u}4d<=ck}spCh`+eGigD^Y@8Mo6&I#P-SbDwlb-mNS8jX3&OST zX046zM3lw~XrD538{#O?FMJ=iAHwt~w1sx?U9d^rfr;n=mj-2K__M^H#4|IeKBDT? zz#F)%&2??-UD(a$GPA{uw@WX0mB+raY;MBryQU~E2ruJSMV6V{Wb~?q*J#Eo?rG{n z8aP9vDDI3?ITY697u4C#o*HmN^l1^^YEY;8R|N z%rK{dIBHbC{cZc@AGI@I0#3jg_<2A4mFKJt4qcg2_-M zQYsVe%e2(U6rdXj!U0mWvdJTz%3$Br5-NUW4+$qh#qY!9ATkX~*-bG*qfo(z8VxxA z7lfP4kuT0I5b5-q&BwD5hT^m}g_-zQy^+81OEO_{eDPOr#yAU(Wi27XNH$<2gybf* z6PJJCJD%Q|zt&nuskITFl$u$i04W%CTTOkHU;DYeLpfxy4u!uY>4bFy^8*=X$(KO` z2zj#pypiC|PdeZBFj~WDU}~T_j7A5{nqZZcHqc3!hnWu|r>V63Zq80n zP}tXjaL^JO%|98-WCGyP4hL(L2%0F|>gvWAZ|>Zsm@L!0PytM|JcmjCWF ztsy9*nZCqz99-*e*LsGXsA67svt;#8s~-R5_adOtiHen8Vx*Nsk(;@JMz+w@7c_d) z`#t=?`+Sn8tUitw=x8hdvk^d1yGaknnUe1HBCIa?GDVijon<-8+<-M&-@otCuk=C8 zN!Cp8VhU~@CZ)2FRQhmML+T}lpkjEUIxCx=3;BGm5{FBwrTkHKN7si@&?DNgo?3-$ zJV`+~L!+}8fBv=&BEpZ_%}1R{>Z zDK1fnTy|2gIvb=UAY6|Oh_l6{cJ<;b*9GBPce~b!@WfPI#m_s!JGl&Uc%Y*_KhZ2D zaTIAV52m9`f(6tFN}IF){wps0+BU|zlE2M@9nX6#fNXvPO+1rv5i%#p{<4eW-7 z5Z$RGF;9@PL?%VS=q6Xa6p7G!kXgGyF`EIBD0g@_`aBVuhiAERwu`vn=*^RY$ir^F zaR*GZ^|obSj7OzV89Hc!JJ}6{lN4Pv>`#O)nAc<(LO?)t)c{`B0AnIVz0+7=nq#no zB8X~qwS`UtgTomQHhmW~kAsn1RWG5l$U%!7V@HPwy!Qio!Al_F)B%3w?fU)q$Q`fw znvIMx(Xt4uau!xW8AC)E+6j1D=oQym>#o$=2v1H?wHZ@xosQr*dXth%giSy;LLzzz zkk|4sIxTW@;BZI{E)_}V#+rJ-cN4p8B4}uc*`cCz6}>01JkL*lH->57?{Puk=#H2OyVD^fTElPus-F^19f$%ZJoG@)Q)kB<#L~9l zRy&;{!qQI2?RI+Cwbr`RTA|UCQrAB8f!TU{prf|AEphaQ^~A5f3n8M2UYKe^$}7}< zFV(1(0e5KXZ}q|EyQ%V+Fj$~S+_GJK=(Q^1XlVI^$XL$ToZ-zUL8Eh`6R>C%Od4uD z?D@7W`ky+7d}83Mvp6KEp@Limji#GgjDuwko)ckkZgL`Ir7~5Dua{$-d$C3b`kG#G z#mKGwS^Rt!5iVtp3+#q7=&rUb}E1HjFAfcB3=A}zy25i*jbEm&`mP9UHgr1dm5+cT5BD>)`{>WRq$m} zIbft6oiB5PgSpV5Fchf`7JEejv4njHcQwdc%!Pr~-R!X2554=$%U`Q0;tUK3E=dh= zQY88)MnFpuMWBW0(&E7=G31^JYLKkr6%oMTNS{DgaV(9d0_-$AYv}CAM&V&iKuJNC z@eosf{Ga|*N$MpZ3`UFr-9*pfMkacuA$sDy7TidNFeKK5W|GH57;=3N)~Lpn41!;Z zR9z?@lM{s_&c8|`-k+EYOGV@2p1v&8J3|yIc4X16491O!s&)2 zosl1lSXSRZV6!j};&Cc>dFW8_psFAQ4a zJj!_k5X8}2H$rWX5F$#iz>utkq9X)%wO@qGNO0J5FPvrI zs!w`j4zLDODDkaRjxI9#E)0T0NMfgZLZcB8MU%w>RWeC(ll8O}b@Pn_GfW!jYaovy zkVsyS=#`no5Ft7NEnc^59*S;eDW8x$o?A_X!o1{5dT2-%%Iq|tQDlcMqnTpLFt09h zL0DHCbvotBc45KOogEIKHE0J3r#67l59K~v#O2Z!$Wgn7*U(M`tqC-EgVs*C)?Kf) z5uTt*MR=^p0-}OF?T?xBzx8_$z3P>mpswT;_7K0D!pJn4jWm^%P!2T^x6srB@Ljjw z<)u?JL-n&<5E_aslajjNIMxtj>LlYaSbkW?BOH?BlbYN}6O6T@xBjKRIIr zYlN84l{-8|%M?AwM0C@}(@@kys-H3ml-R>%idk_uYFiq9dd_WDgd8L@Ho?#`2lDKS z4mJ-gsy5ttm7I7GfGb)=*nAsVWLV9KPFekcg7xweqg z;1CYC`1~(B?a|ANGD^(k9RN)2L^5R}S!(;v|MKacp=+&m)LO|hC#bd``NO>WRw*d% zWFiEz8KlJ)6*gQ8>+0ESG`J5ic_V4Jya4N0FJRhf+q?s*O-#NFyj^Txg4t+0ZB8*v zw?{zk2%{K$nPS1zj9M~-=(vN4+Vh4Vc<0x-B4LArsG`d6UHF>PV>arMERim2k)9)29?g!tRy%s>kG+EkRC9DnQFoP`r~!qza}weC@^jqqeu@G^v0%ospeyM?On zHb--S!bF+Stz_(VEzfL(5FL&%P}Zh>+UHKc^9#2=G7k^^z}cbbXBn3M2OsFV^GQ4*Bk4RE8Il?EIr5k>T$cv)zP2g1aRT8yL#cXJqF6dekQKpLM0lGx1+ z?rc5zr4-QxGeM4QijtSmBDzsZ>Qs@t0~&QX-AK{REOwds=#*Y|DdvML90oLuMper_ zgou!qx{+Ztn&FWVS)4k_5>dq25Kt(|T%pd#OzDYgO_);p1yiPXv|!3im=1ODP!qv) z3t;RZ0rjyU1Zby$4X}yx$1i=s3R$gnZ)$CXC#~W$Z}`jLPKcwI{>?ice8uM^G#a1e zITU8DduZJ(?#_V_6sq0!1I~Ay(=}}#P}ob0pru0GGlUkNnt`+?2^Y|KUOgv5nAPwH zWf)U{!x%r$Y+2++O)0W$q~@^04lA+@0nrc^qi!yD!6kL#Af<#z2UHqN!I>?P(P!hB zuu03DKxd!HG9JD&hT^1pjAbU)7SKGIPgGnNglSDm{xv#QP(K5erAkddIIi%L;H&Ir z;*qipzw?S>oII#@tCZ5mK~hAR)FZjPiJC-VyT!rB2k*v|8c4`+_0u21wA4=%ir*!i-qk&|G|>eum@LUh9K@WW$wW?XPdjXBX_}J(6mX#v3ph%1(4;}RT9fZ6@ee;F@6v=9fAeS9LC%_WJy7f$@MpgD!}+eaPXsoA<;8*4%k;JG zQLU%i2`mCJh~OA{VQlPr?BPD9j zzv2OVTXaE^as*!{O+teNlu8G~;KhWl(G5jZ$@#{yR8WNS9Ae;~gD>Mw4%s_0k2iws zue|HB4$ek1c2XFj6Cnz;KuXQSL58Uv>~zajqB$bAB5vXWWgd+J45E&CqP7&kpbt?w z-=*(rLZc&tDV|bfLq-~~lutj{tuA*mVP=LWkH=y$&`}f^i*fO!V0;5?x@V zs-X~L7Ie#DP9|^C2HF$~dCP~noiH5+V^e+Pqgzo4r1@=Bbxd3-G-RK$K;pa0Fy90QOljBCPLN^>laWD7-bO<1L&N@ zR1@J+q>=K8(Zd!Kq3??>$`(A@o5sWTh0&;+JA1rbwIE!KhC_OhYRGzE=-@ccY%~f5 zKq^o>_8`q}5eveP{P4TjO1YEHGHG+#HJ=6ofK7~pe&zKmWpu53R%;_XfyEpL)3f7_ z&jAmhvh?p63TPqzgWDJc3naX~xeNfm@*Z?YpQ;z8BR0~Dd5|_Kp}Js+?LvJx1DFw%Z2Xt?w%o11TLb zgawf5>K4A^6h^FDJaIuU`sP2~uaO&qEd!X035~k>q7g!ZHYGFMOz;2NJ3TYkTI*=F zHo_BE)46w-nlRA8+pOzuUlLsE3ja@a%QfMwXK&Du)wj&4Z?|iN*B({xaF6X{beFNc zODSI5V{Yjzty@a}zR=fac*VRpM2Rs1uTnias=6S&?;WB37Gpu^ zeOA+ZxvcF)PgIxfaoha`p^F{ETulUgXA=JSQSB!0hj52AKL7coS<+-ck(ZzUylBkv zc3W!+jmG=9;-YKa!&)2RiLCI&8ZM4^*as7ab9IfO5I&I17JqU(s0MB9lfUq`jSv93 zV>(3Ng`;V7io)B-QZxX7l*+;!&0gWk{^=62FByha7!Oa{#Rc<}Mag$S4E^y2C4 z`Ml&r2syS-JmL;H^20sd)G}5{IT03kyEg^Gmn@hCStcjKdG5?HaY3K4{kAlQLJVM2 zd*k5Tz1*#PejSc$8Y5u2&-8(d&aqATtm`;wuGS$Jd`I6=LKFI==}_*pP0(a4Gnf>V zQFG@ne(U@5y|z=3M(#u!FRZoJJ*l-3p2*7Hr3_-Yvt8lgdwy9CxQaWPBb0g$VTj%n zUC<+W{Pt2p0DkG+n6~m=a8u!^E@)TJzp>VY19HqEY>baSK-wBi=kJSJA^-*v?jvEv*z45!~U&Ti|w@_ELKsiIFZ}Iz(r#y%mrcnq|yg7g9-AT^+@E{62fyo z$-L7Jg1pmYkSyK3eI5q^@az{s4h#pjbs}8r-qqR&PiCbS`WV_^lq+&+W1oi^V62?p zXo0?wHt+^*j$(7_*FLC7y6ZcHY`>tn=)|A)E7fXKv1Z9&cF9?buy# zYKtpZ)W7J@sGA+o37SQymgYU>bqhjI4b1kd)<(G2y{z?YJCPM1I#8jbciao36U4H~ zNq`o80D94qMH^h1miV&!fz*ibn2q%O&j485$AxO+e zizR{fj70XU!0CvWh-W2vBAnsP=0?luGe|lGjWQmpI>)Y`r9@;Pduit_+|y*p zmh3}%FExdrf^H(irv(le+&TN+czWw(H(Fue zFy!tZ`H$}Klw51Aqt`kSp3L$w#2w4ww(om8a(=2cVTmYGJCU2h7zdkNen!51Yc-yUY7LHg;HK)L72GcAj{-U zus;#Tqzfyu402*y;G*-bg!#Te_hgE8p$i@Ii9s2~gx#cmD0RbRb`YLCkTIaq%MZRN zp7r9LmQ>dYSQmtA-P2kd;fbtt$11)Ij{_J8caaKuiZS+gkjl!rkn!(JzpbP9@% zn>SjKLW2|JAZ3KPXA%+(bebt((|}A}j9d#!Vkje{ognfZ!do>6DYX{05Ie%j9?m%D zGx`hw03ZNKL_t*Yo+=Ix%r)I`;?XX`4pC;Zp4Si*qV)$;20QZ|LP4lQO^4dO_VctA zCg%akrqWJ0at^-keTF>Wmt(myTWhT&*LuR8)QSsm9S<}L0CG8kT@gV8wX18nrOU=M zCc>kB-U$!FMeKkMZ7MXvwjceXm5E0nf@GQE4;Wje)zuSS>KdtauqUB#&?)W&6&E3H0h!2AAY=6D7Bl6S&EZv6PIA zhDeo{Ai}lS5i&!f>JmVp>Kh>An#>zS#aAEu4y;#YjOJFQcl zY;>3vzcdHCxSr@jH#xxC3kG#a5!)1<4`l5!ne^0Til$COu$!|_v$utkduCRLJD z%$gc%kn%C3Iw5m6iUR27l*?R>PFA*5z@(W{IYXncpmfS8lPwxy956=D&<+AU_&$?- zXI-u>r>Rf5AVh1l16HV1EhEJzJE%n>2C(9yYu)Qw8{tW;_6ctt6XDZ~Gff^ z4KWObVri?L`A*t#lKU3Bolje6BD&dz?G$M(DWig_LqGZak;L}$Bc2s&t#w?rl4VX@ zwdeduT*L$J{nBwBS`J4=wI-QmW~_wcs5bHq(t7)-r=MSZE4t)6c#ltC`3^qSgoj$% zaTu*({%UYrSiVIjVs*izbi!iFq%wWqYZN^jVZZo6^=&wh54%wmBNRS#gryf8G}m%U zE2r`j+YRx)W+v*Oj}~`^*Rw`5xGMg%p%+YAP59%4xUjQ3eV6iyN`NZEHm}U7(hDvX zg!w%}-YHGyJL_GNe9M05&wk^VVlqv}g9=GzPK1{pc#(_0`#=8Xlg=MN-XHn+r*h7% zwbn7z+6YfxrF5{!j>lKK5C4l0p(k$W!=Yrs8ucQM`jMrC0Dyk+AHjt_g{lF42cNbd z{_KSkWc0#C@7c4JY3MDZ&qpNe5gK7KV!91Y{p@8LV!p9z?b~GzMzLpYs4097pa@uX zND^mHxCr>2?MAh<7#;M{qIZ@CfAB@+O}(i%UpncO)PC-59 z9iffHiCZiPZ*afWUxO?|TJl9Dcay_=eSC+!TqY<}5`*93fzv8SSf@w{bPFt09twJ( zTkHdqV#->3f=0n8#DXxQ2n}#JBE&GSIgsScghmO6;O6G;1k7C_Zt2}M@wxUmbl^$4 zv4ln)fVm7ZtzA`En@zCB3GVJvthl=d3KT0)+$mn%io1IY#idZ7I23m;THM{8kV0_D z3IFq)yK{Mxi{#>ync3Odnb~({(<5hi>@*Mv$EiI&5bT3ex*7(Z4xcqn20mr2VJq^H z%{oy;pYN)goR)ehz}(M&uLER&T&DpJ)WznCvYGJllEMG!dv+pC@A83a-Kb===7|MP z?D1m{@e&;5E%XdBCYj!w4$n)b*UD5$We!9c%5q^`Al}_&>2wj)5bz2;IEI|#*ZI?} z_y0&>B~c0@>)lddLq>3Ng#t=!Q8Y+10!!8KGX*2S>F{fS$&C!#%J%V{6FC{FYn6S^ zU~ccY5%*#6_9Y1MOujiJ4jp1P1n4E%r(ai+(D9Fi>2@mhZ)5j-|HZbk<|S20$B>b^ z;u!HX{UJUpZ6O2P1H-2<_2X1Mhbqfg$GX6N@=;ghd!0}B7a@?v!?5~ile_$bEL`j{ zZk>W&OhBU^>uJ8uS%m3*sUMUImy3YBYS@(1GyDn|J>waEuwAAap7{@0T0Glq^)z_* zms6NE41*gfh=@>$d|d7tb+W@}W*_(XH=scM!oKeco!(i+)a$-h1|S*NuSq%5NAYoz zhgnwCUPkXm2;NRps~QDflqWpQ1OMQ6LFG-Y%hl9p7Ht-hXAnNgb&N5{@S!Pa4FkuY zSM@S646)C^7*~VahZf19>RRQMnP2FS9MYwro!kKp+i8rbW7{8I!!fvlDu*V%mh{m@ z{0K}o2ke~WKju#U#T!z^2#O-GER8t*7OY$kl@x^@+~7Hxz)OWIfr72XzJ-*N4n9?o zVjV00oDF*+KPa>dbevu>=5E7KkOlOH(+ZEpT62*s0`;8I3M?3Snq6a%BU7Kc}7vGE^{c%r9X^GMwnY| z@4h-8x&qZSF1Wtxo5uA}7sO=kFW8w6heJmAi%bIidrpCCZ=5grI2`Q?<h)`7E{Vmy7=^Vtt~lPbmDgr?e;xvFkbdkt4z5p8z7 zs!N@Z=M7kuKbZQmKPbR51Dobm1ltBfMzcjyGkLdI!CUy^!-*pwl^ET$#QH4R;1#hD zGx?4%V-u;ipYqK)34|n1vbcw2gdimuiEdUc&96VD)`JJN>1NodJPlZDgdD?>6^hX*~dA^Ik6B!~P_5%a)=~uq-zkbv=9G^rA7( z9G2H;1j$AuPKirB%$^skH64Z02Qxf4ZGu3WT5zS9BRO*|n^p{;xp&WmeYLx~a*lvM z^)gu3>MY0COE*tOp+kK6_@C6+vgqju;w6R)6_QHKf$yx*0;cjghL=Js>%VGoefv6*? z(MORYz*P{HEcBpI6+kMlJ^m&iePu!69E?k zSx4JF0pbKi@>~X@n6C79dWxSjC&qj1C>BKioqfM^MEHs3EU500S{yo5nG5KB>5)e* zIQiQjUy`1>!H`>LZV$_YRklCQ!5ona>Xu*X(TXN|VU5#P+viDLr%=hf+W=UBL)mML z`%f3TB&8;6eIpwt*n_epjoL%Dh52)L)O0;?3#v-4=%P1Mw=bG5px|CEKo?v(h4GDv z{BMcSN4AdoTd&~v_hw(puVd9JRe$hS*^w#P78xhx4C+0~ zLtNRfA_uc@gc`T&XS03f!Z9xj)^FNkTtF?nsD2!P(+x6=KH*TWgEz&uO0#t#99U#If@WPqqE(qf83J`Z+JQpbqc#b#tZ11S9E zF@N|?e9+0Xf86-J5Eksp#u@ygSg2K z7x8VCxO5*v`X?a$8#*D%i4X|7w8ECP9)V^T;6p3zPo}G?hu!pR=9(yl?UI6Z1NuyK z2CB#hdMt%$u@XJptacb!@Y<&H2-1|@HW#4;pAbvLyQXX8QDtLM1*;@!*RlY#yMtq0 zajVo?<%WBAA64S3iLvO!*JtF04xB#~$}rVW(NzkNomOj0-L9V#yhH_f_A&k8h3g?w98#gID(Ip_ugj>g z;H=E?)&BD^?HxXiyo??){zSL&iJpIn^$zGFA4yk=#bOYoE)bEn0TLH7xERO&zNCXAyWtGEL*U~#0C-Sp1Gv<`pE?{p z_ID@5!fh*Mc`44zYkbMTq_vSQ`r2G@GbN6_ogB=m22hCiR(12tXHs2!C_&7PHEC)8 z(-e}qL(6@A1D1N2w)7c-8EjIAPEo^Cr;k#%RB<{sQ)NF#wlG~>IyC!^8Kl}ZfG&*F zazt@@Vc3Kz;qwxCqZ%z+RpESa^UnB`ke>AS6lKL1wz&HL%-n3WdsVVB3r9$(_%k0+ z;+(C`U+#V|-xqf+AI3c>np2`hlsIMmLd$6Cf#bj+$^G_~ce-rgQIHXul_iE-(M!cM z;&$`gy}as1h*J=Drb#-+GIglht$fY%RqLpj*#x7)zOy~>Qz3{2Kc4-D zXz3}_@ZFQ$PvoVGejJsOFKMplll#lA7EwzL^LCDq8_AM8s~v7Y_cpJuHf<(fh%?Zz z&P8TgF}dBskb_tI!&32#265NrklG?Wh1r=U(RnrEU3G~;@Wr%71x4jC+y)&Kth)B^ z_hkMY9~eTItIhHNa>}MLy$x!XHZF!aBChYiGqA#+`w4C(L)%rH{Abl8i9a%sx8h4v zf^6plM34N2uc|WqpQ_Y75I|KQ!-L=`wHd_If>y5PgQAD_>re`gcwI&m=Kw9k4D4YP zh=RxoJ4deCWo6EP%o0LRQu~`1o%|7n?&KTzc+wI-Qp?mvV0qv9%!KGo(5X7lNQz}h zE>DLb1juXP31?uhV#ow=0vuF-fyMte+5*)fXatWsv#q!Ds*28d3d3M!0YtlvpCu}_ zTqPyHj`?>QZH6U3Iu`;NAQ{u!$tX2;MEH z$_p8ubrwG$TyTSihBjyZoa$375{R5VE^{L*zI_WT(u-Y7pZc|ZfLLYv^w{UF)z{*O zl%gOe@m;Jh5F0Iu+G49XV8T!N-qKX@?2%ejG!C$v0>OVQEsz{c1Z-PwG?`ocI_5dQ z^eH=QBA~(&o068f%8*Q+*PvJ9KqkH9yafeRtbgR{Cm(7!RewS-{3hU%{9%<1rXQL5 z|5*;$szUK2PO*A0BmdV`(7Eu1^%+27OL7c(JGpKs5f`;brtwedOe_p+up-w)v++en z*va+Z#Vv+&Nc2tSa?EO}d? zn@HX2bdSvSsYhM^hQXZW>L=TjuAUPZO1{o`w_*@w6p0H|N3M*We?j zXf}hSj()?_yNn%uPR8wm>+2Sm#8ti~GD zDHK^XQw`$BU>g9EC;O_RbVK6BT6h?lrC#e7L5BmY?y}u=UNxw(3)6BghU`IExDh?rV30%*{rygocJt*dpd3 zM18h|0Xo&5ceKR(4Kf4)mw#4eipDPAL*arYz`k4J6aK`s5au3|9v06Bc-vu0G-8oI zniRIFiinCI7~e(<9~UzOvtn9lFt{?lple!Vi20rYnxFgHgB#$i8YBdgyc8L-3026h zT$o&>>7;?G;g_6hAVU@1TpX)H0YQtX2UIuWuEZ)d6 z)xl#27l;4D^ng>HLZV9J%_{EILyJ0PcqOqyYF9TXjR&tuUEN+qDxWVuQr#Pd_@ml* zn^$<)0mF4gh}LrGhEZGY>`aoPPCLT3w5>!Dcyc5gVm9c#Efh%|9zJjDtgQ3&wm(ix zcHHqBoycz5KmHIFUX`ge|2VO(em-d6Q04dW6xgy5praC&3BI!~C@KvmMHlLU7tBZB zl$q6H7=yFRKmQI_qxIsEQSk_S`W@Q7Y zr?aL^Cyy0T|42?1Dl0inm3uVjCPTUs(O5y^~Z?Ak-6a;Y>y|x`UulY?XV4zCWMw6l{&-^ra_=KjJi+2p-SmJOw$P==` zO_v;bC(`K@T|aWaj1p}B3cN2RsTP`x2%>sG=V0#3LVn*Q!*Rz89&8}#$k>Y(q!C)n zrlKhM84pqq*G7A0U-u1N4!ZG`BCPX-d-E#z1UQN7!Y;LTXJiobTz8-zB%og32KJ1tM3-MQf49EQ6HL4owQRKbOJ2hSdQNEzR zN(7$$^(Nf_4N8}z@pLjrXF3{6980i1iuB6&uS3ZG%AOW0_xl+4;q<~?Onu7KPLC@w zuAfjiV{=>EnFfI^?I%ZukoQOF4{1>5d}`MEX+Rw;F)0z|5TUTx24$lxqnPSJ?Wu>6 zpbrDp6K&ByB^4aAeo&~Fm5~|KXa0H*DtNfRXiRz}o}o=QR3MdAh7dI<=hxCs;$+(Y9EwmmbGyPkm znQnwgf*eeU$K>Fl68>*KASvuy>kamWqLIhRlBXnOagOW0m}b+@;+&m5QC~s)HC<8l ziXrHR`7hm}Ho>!RDC4EK6kK6MM|{@nq+TfLb3gdq zmROK-9ZMU!TC{~h$KH8z!mDysd^HXZWu>9_P#twFEI>mPXXsV ze1u}Ur(lG?98FExjMs_@MN0vcv!yjO_iQbqyw{SV~tJo?*gDLt%# z#5)hl8VV%H;llX*pXqC<^rb^0K_%@cIh!x8<*_A?8zpVWAp2jN%ug~@6P?YVB(3WT zzY8B>VN~Yj^o7_)7qTV(�eKICtA?dPM7nu}^ASN8WQh;=4*Sh0PMsg}dv9W0D+; zy2!dYaObuidEla+)`-pSyu*#mMRpyKqHQ>SE7tThYlfs;7E-7iej;vz^E@aGIuA0dKe(T{$A!~R zKI6Dy=;gG5;ogbYVt_1}4k)c)28>61M02E7dqSsPh`Hd(I%oZsGNE!LvZpXB#|1l$ zr!+>ROwuiR1V1zb z_6`pra?_}pjy~AS9>cWheqKkkRei*S@cJ5r17=Ks76rSja}zUwd&&(b%Y^ehVX=G&?1v7!ww zqD73A&bd2`2<|3BzXOuGhydU$fGS>p9QTNG!B-XcsNpWlnZ5PvE|elsm;-r0E*wC} z)3{@9P@oI#q-mK)Oxw}| z9GPH6Jeko#iHw#XVCElDlRIh8i`9F(p!~9X1&%yF>e3kuoQ&(L%lFrU{NnUV*Op*PwJxvS!$OnC`q8C#&t| zA|J7qA+7yK^@(v+D{_#&oi_4<-CkX>Z848GWjat>;UEY^R?hdK912s3kA1(jD)+0A zmxD1y5T&0A;?A-(km!U%8WrU#cl9b^T|cAop8TUHWXtM{V55M~ggF#wAV81EvlU$% z0=GjuT$7|o--;S;rEQfYq^T`%?I2AGhB zJy&WumCcx*ed1HPxf|x8^EckhitC3w-U(~J(Ivq;PWK&+i}prl$&lH{!jqgIy5Y)c z+(XL|h$*=ish4~)hkm1XL|D1ejkO#$U0f&4#H!)2t6pjS9)NTtHoQm7K-j}&$%1(o zLV&%{mly1aN74n+Bq1~vZn-cj3wf2;%$vYWMqV?-J-)(Vy)9a@AQ6^{K7BBtF42+! zW4T@eA{6#~kVeju1xRBvFC{(@phevKjzc*5@>bEv%UVE#tn#l1B|FGa$G+!PVZ(C+ z9kk7)RlskbmA#(Lp~2klxS7@|p`bW6PbV_sP6esQv-(!|Lni!~^73*D=Z=3pAr`sQ z$#8J!XG%aBZN!MhdrHkIgnzT--R-T3%;lEjT(mj;kJ05biF zSHy1SXOh&*ms)klI~K-a^WG=OtU3h+#n|X*iCXT%2y_14X;fNzrEF-2}`TWv)@Cnu+_^QP6WBcH6S_WufPKFz92UDtFB|6JM#fkXfL%zP=KWfLV?5 z_bhw0Y$zr1IEP`=fCZ1GikuuGp0UTYJggUi&j=giun&dcXYN0^(+)MA2k-j~4hov| zwA|Cn9{s9=zEYTMMe6#DlT%+YnS#aKdkv_sXspNCX2D!JzTxkT21l}4zF&^<5$V#o zZZz1Z+D1by4tw?NiD}+&bvuoQ!!bdkv-$BZgq~3^M=?($L!3^jAwuC<&3sjawnCT z7b89z^!(|1(e$ye_PfY0j_=>R-Or`KM>Z`lZ>mlIVmY+Jdav9`2z9{zwrmqoKl3kg z?w04fUkb+R;B5VPELC^C(Wy340yb|3`gQ%ZfeoFvmRZh4>mfD0@7;Ek{HMp8^Lws@ zuJ0tfgz8#*z!t|Q4mV^I&3d6fL$JOa+yaa`c z3iSZr+2aQ1XPN*A9^T&^5qB4L=PxkDv%x$N+Vrpgyv$3VB>?NJkJUf=UX@PfCM!F8 zD3NM)X^AujI668ybKDT#Jl^Y6m-A#;{rpa?YHzy6<(a|=ss@_8Xnpalh6+{tg=(pT zhbdYPIC&XRZjPQczT|X1Ki)Fq$DEv;JnfsAJxMr@`yl^mEh&kN#-@>ErNjINsxzRxv zR_oLzWX;LN04)Y%iRx`8^LQ*381ZGkj8Q^}vo8cEWQY&+KRm1&khdlm!oe9Vt_U_hYU&LUu(#8OhVDoem8ne z7s~(r`#$ShQ7lJTR!gZ4f)?UvN6*1$-)CYc%rw#qrGX;WItz#1XBYw zuFH6844a+S+dOrRT;;X22>Ny}>?}d$$-)$t*5euQ1$A|G)zwb>qiJy8IgM8qFMo*F zXvq28+f`lTD0b2W-kC2{>H`}*PjyVUyB#yBz_KH*s8DEro@BLB(8pwFN=@ z@mQ-WXerh`0OEypX7_&^De%GXwkT@GpRXl&!y+A3^WGq z?P(cZiGSqWN%1BaM7f!I)-tpFzIL(YchR}njTr~kQkN)BXf5sAWv8E%f{Np*<_P~g znl7@@G6Bki*mt9ZK5umB12_CGB&_qe&1IW6EzCUy9amD7i!JJw+$SYSTCP6vj*M4T zRlO9`P=NnXI7bh!G&;l_m1H}Sugy|WqocW*ap!;8L8H%-@bePQRV$tKUUQ9tTBE(C zIU%4>n;_k52erk8o~^a=RsJ_fDPt|Z$jqkOS)N9>%xaGNbNM3I0*j6ZDcw6C-olv7 zG@$mm?V)boM7JBK{|z%-mMQ@O0WTGT>@Sk0_LiWM9^ts*oAcG(e_zC@H@gBJms3e} zQwX-7?yq84$P?6Zgr_&}ms?zmqSt&5a~m5QY5c)5db#WE-j6(-L_|dQ@N!p&lam)d zuzP|0R->u@N?KaqoF8CIMcmMCT3TAW_XYKX7PYSprkfsj_w$XRX`XVizjw`h&epx* z6bAGCLCI+gwx4efsU-a~qB%RjvQS9 zr!-N}-;b)Fz9I&$y|6M)WU3roj&U&;E}8~OxG)><)+C5%gq*h)7h7HKjm+&bxtor~ zRS(C2!Q1_D#2n?7mF!$x`7rsupbVz6YOx5taMezn%vbomv>0}LaSfb2U97pd!Fbpk z`Gz9_nabd?w5ZdAnU^K2m;1wb8PJ;y*ai8L0lxg?R4@w=h9mjqY>B7a@pZw4@!`19 zkr`dx4if!eK2j##E|ZKN$rc0p%PxE%bk&dF9i(#RNxCGHs9to$BBCvVG*P;3Eqk)MBV<4-2v9=QLe0KyHDm6wqQUY8W;)mqk zk@+ohr66hC)l1E~%@WNpTfK3C@>DirzXmjrum*f8;=VK`x2-8wIs6;i-4;*E-Xen}-aI^3)Jphcri{(V+env9IZNW>!S z23H%PVYY7zF0hRK6v~D=xvws>Pl!=QiIH)^P|Mxm_Vmfjiqiq-ml3h1h%Gavj>xYy zOyGXcrJ}wI|AV#&IZkwt*?vzJT%im!>|b*Kpanb@Yb~y{_%F{v*({4SByCQ<1!RAM zmX;B2PpEC0E10gpy?=B!w>Qm_3Vy$C zY7{;q 0) + { + return ; + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void cahnhilliard2d_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); +} + +/// Evaluate linear functional for dof i on the function f +double cahnhilliard2d_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void cahnhilliard2d_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; +} + +/// Interpolate vertex values from dof values +void cahnhilliard2d_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void cahnhilliard2d_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void cahnhilliard2d_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t cahnhilliard2d_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* cahnhilliard2d_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* cahnhilliard2d_finite_element_0::create() const +{ + return new cahnhilliard2d_finite_element_0(); +} + + +/// Constructor +cahnhilliard2d_finite_element_1::cahnhilliard2d_finite_element_1() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +cahnhilliard2d_finite_element_1::~cahnhilliard2d_finite_element_1() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* cahnhilliard2d_finite_element_1::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; +} + +/// Return the cell shape +ufc::shape cahnhilliard2d_finite_element_1::cell_shape() const +{ + return ufc::triangle; +} + +/// Return the topological dimension of the cell shape +std::size_t cahnhilliard2d_finite_element_1::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the cell shape +std::size_t cahnhilliard2d_finite_element_1::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the finite element function space +std::size_t cahnhilliard2d_finite_element_1::space_dimension() const +{ + return 3; +} + +/// Return the rank of the value space +std::size_t cahnhilliard2d_finite_element_1::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t cahnhilliard2d_finite_element_1::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void cahnhilliard2d_finite_element_1::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void cahnhilliard2d_finite_element_1::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void cahnhilliard2d_finite_element_1::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void cahnhilliard2d_finite_element_1::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double cahnhilliard2d_finite_element_1::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void cahnhilliard2d_finite_element_1::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; +} + +/// Interpolate vertex values from dof values +void cahnhilliard2d_finite_element_1::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void cahnhilliard2d_finite_element_1::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void cahnhilliard2d_finite_element_1::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t cahnhilliard2d_finite_element_1::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* cahnhilliard2d_finite_element_1::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* cahnhilliard2d_finite_element_1::create() const +{ + return new cahnhilliard2d_finite_element_1(); +} + + +/// Constructor +cahnhilliard2d_finite_element_2::cahnhilliard2d_finite_element_2() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +cahnhilliard2d_finite_element_2::~cahnhilliard2d_finite_element_2() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* cahnhilliard2d_finite_element_2::signature() const +{ + return "MixedElement(FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (2,) })"; +} + +/// Return the cell shape +ufc::shape cahnhilliard2d_finite_element_2::cell_shape() const +{ + return ufc::triangle; +} + +/// Return the topological dimension of the cell shape +std::size_t cahnhilliard2d_finite_element_2::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the cell shape +std::size_t cahnhilliard2d_finite_element_2::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the finite element function space +std::size_t cahnhilliard2d_finite_element_2::space_dimension() const +{ + return 6; +} + +/// Return the rank of the value space +std::size_t cahnhilliard2d_finite_element_2::value_rank() const +{ + return 1; +} + +/// Return the dimension of the value space for axis i +std::size_t cahnhilliard2d_finite_element_2::value_dimension(std::size_t i) const +{ + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; +} + +/// Evaluate basis function i at given point x in cell +void cahnhilliard2d_finite_element_2::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void cahnhilliard2d_finite_element_2::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void cahnhilliard2d_finite_element_2::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void cahnhilliard2d_finite_element_2::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double cahnhilliard2d_finite_element_2::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 4: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 5: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void cahnhilliard2d_finite_element_2::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[3] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[4] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[1]; +} + +/// Interpolate vertex values from dof values +void cahnhilliard2d_finite_element_2::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[3]; + vertex_values[3] = dof_values[4]; + vertex_values[5] = dof_values[5]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void cahnhilliard2d_finite_element_2::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void cahnhilliard2d_finite_element_2::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t cahnhilliard2d_finite_element_2::num_sub_elements() const +{ + return 2; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* cahnhilliard2d_finite_element_2::create_sub_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard2d_finite_element_1(); + break; + } + case 1: + { + return new cahnhilliard2d_finite_element_1(); + break; + } + } + + return 0; +} + +/// Create a new class instance +ufc::finite_element* cahnhilliard2d_finite_element_2::create() const +{ + return new cahnhilliard2d_finite_element_2(); +} + +/// Constructor +cahnhilliard2d_dofmap_0::cahnhilliard2d_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +cahnhilliard2d_dofmap_0::~cahnhilliard2d_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* cahnhilliard2d_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool cahnhilliard2d_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t cahnhilliard2d_dofmap_0::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t cahnhilliard2d_dofmap_0::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the global finite element function space +std::size_t cahnhilliard2d_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return 1; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t cahnhilliard2d_dofmap_0::local_dimension() const +{ + return 1; +} + +/// Return the number of dofs on each cell facet +std::size_t cahnhilliard2d_dofmap_0::num_facet_dofs() const +{ + return 0; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t cahnhilliard2d_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void cahnhilliard2d_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + dofs[0] = 0; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void cahnhilliard2d_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void cahnhilliard2d_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void cahnhilliard2d_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t cahnhilliard2d_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* cahnhilliard2d_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* cahnhilliard2d_dofmap_0::create() const +{ + return new cahnhilliard2d_dofmap_0(); +} + +/// Constructor +cahnhilliard2d_dofmap_1::cahnhilliard2d_dofmap_1() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +cahnhilliard2d_dofmap_1::~cahnhilliard2d_dofmap_1() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* cahnhilliard2d_dofmap_1::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool cahnhilliard2d_dofmap_1::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t cahnhilliard2d_dofmap_1::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t cahnhilliard2d_dofmap_1::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the global finite element function space +std::size_t cahnhilliard2d_dofmap_1::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t cahnhilliard2d_dofmap_1::local_dimension() const +{ + return 3; +} + +/// Return the number of dofs on each cell facet +std::size_t cahnhilliard2d_dofmap_1::num_facet_dofs() const +{ + return 2; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t cahnhilliard2d_dofmap_1::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void cahnhilliard2d_dofmap_1::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void cahnhilliard2d_dofmap_1::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void cahnhilliard2d_dofmap_1::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void cahnhilliard2d_dofmap_1::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t cahnhilliard2d_dofmap_1::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* cahnhilliard2d_dofmap_1::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* cahnhilliard2d_dofmap_1::create() const +{ + return new cahnhilliard2d_dofmap_1(); +} + +/// Constructor +cahnhilliard2d_dofmap_2::cahnhilliard2d_dofmap_2() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +cahnhilliard2d_dofmap_2::~cahnhilliard2d_dofmap_2() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* cahnhilliard2d_dofmap_2::signature() const +{ + return "FFC dofmap for MixedElement(FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (2,) })"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool cahnhilliard2d_dofmap_2::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t cahnhilliard2d_dofmap_2::topological_dimension() const +{ + return 2; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t cahnhilliard2d_dofmap_2::geometric_dimension() const +{ + return 2; +} + +/// Return the dimension of the global finite element function space +std::size_t cahnhilliard2d_dofmap_2::global_dimension(const std::vector& + num_global_entities) const +{ + return 2*num_global_entities[0]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t cahnhilliard2d_dofmap_2::local_dimension() const +{ + return 6; +} + +/// Return the number of dofs on each cell facet +std::size_t cahnhilliard2d_dofmap_2::num_facet_dofs() const +{ + return 4; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t cahnhilliard2d_dofmap_2::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void cahnhilliard2d_dofmap_2::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[0][0]; + dofs[4] = offset + c.entity_indices[0][1]; + dofs[5] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void cahnhilliard2d_dofmap_2::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 5; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 5; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 4; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void cahnhilliard2d_dofmap_2::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 3; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 4; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 5; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void cahnhilliard2d_dofmap_2::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = vertex_coordinates[0]; + dof_coordinates[3][1] = vertex_coordinates[1]; + dof_coordinates[4][0] = vertex_coordinates[2]; + dof_coordinates[4][1] = vertex_coordinates[3]; + dof_coordinates[5][0] = vertex_coordinates[4]; + dof_coordinates[5][1] = vertex_coordinates[5]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t cahnhilliard2d_dofmap_2::num_sub_dofmaps() const +{ + return 2; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* cahnhilliard2d_dofmap_2::create_sub_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard2d_dofmap_1(); + break; + } + case 1: + { + return new cahnhilliard2d_dofmap_1(); + break; + } + } + + return 0; +} + +/// Create a new class instance +ufc::dofmap* cahnhilliard2d_dofmap_2::create() const +{ + return new cahnhilliard2d_dofmap_2(); +} + +/// Constructor +cahnhilliard2d_cell_integral_0_otherwise::cahnhilliard2d_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +cahnhilliard2d_cell_integral_0_otherwise::~cahnhilliard2d_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & cahnhilliard2d_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true, true, true, true, true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void cahnhilliard2d_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W6[6] = {0.054975871827661, 0.054975871827661, 0.054975871827661, 0.111690794839005, 0.111690794839005, 0.111690794839005}; + // Quadrature points on the UFC reference element: (0.816847572980459, 0.091576213509771), (0.091576213509771, 0.816847572980459), (0.091576213509771, 0.091576213509771), (0.10810301816807, 0.445948490915965), (0.445948490915965, 0.10810301816807), (0.445948490915965, 0.445948490915965) + + // Values of basis functions at quadrature points. + static const double FE0_C0[6][3] = \ + {{0.09157621350977, 0.816847572980459, 0.091576213509771}, + {0.0915762135097701, 0.0915762135097711, 0.816847572980459}, + {0.816847572980458, 0.091576213509771, 0.091576213509771}, + {0.445948490915965, 0.10810301816807, 0.445948490915965}, + {0.445948490915965, 0.445948490915965, 0.10810301816807}, + {0.10810301816807, 0.445948490915965, 0.445948490915965}}; + + // Array of non-zero columns + static const unsigned int nzc0[3] = {0, 1, 2}; + + // Array of non-zero columns + static const unsigned int nzc3[3] = {3, 4, 5}; + + static const double FE0_C0_D01[6][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc4[2] = {3, 5}; + + // Array of non-zero columns + static const unsigned int nzc5[2] = {3, 4}; + + // Array of non-zero columns + static const unsigned int nzc2[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 2}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 6; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 63. + double G[12]; + G[0] = det*w[3][0]*w[4][0]*(K[0]*K[2] + K[1]*K[3]); + G[1] = det*w[3][0]*w[4][0]*(K[2]*K[2] + K[3]*K[3]); + G[2] = det*w[3][0]*(K[0]*K[2]*(1.0 - w[4][0]) + K[1]*K[3]*(1.0 - w[4][0])); + G[3] = det*w[3][0]*(K[2]*K[2]*(1.0 - w[4][0]) + K[3]*K[3]*(1.0 - w[4][0])); + G[4] = det*w[3][0]*w[4][0]*(K[0]*K[0] + K[1]*K[1]); + G[5] = det*w[3][0]*(K[0]*K[0]*(1.0 - w[4][0]) + K[1]*K[1]*(1.0 - w[4][0])); + G[6] = - det*w[2][0]*(K[0]*K[2] + K[1]*K[3]); + G[7] = - det*w[2][0]*(K[2]*K[2] + K[3]*K[3]); + G[8] = - det*w[2][0]*(K[0]*K[0] + K[1]*K[1]); + G[9] = -400.0*det; + G[10] = 600.0*det; + G[11] = -200.0*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 630 + for (unsigned int ip = 0; ip < 6; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + double F6 = 0.0; + double F7 = 0.0; + double F8 = 0.0; + + // Total number of operations to compute function values = 24 + for (unsigned int r = 0; r < 2; r++) + { + F2 += FE0_C0_D01[ip][r]*w[0][nzc2[r]]; + F3 += FE0_C0_D01[ip][r]*w[0][nzc1[r]]; + F5 += FE0_C0_D01[ip][r]*w[0][nzc5[r]]; + F6 += FE0_C0_D01[ip][r]*w[0][nzc4[r]]; + F7 += FE0_C0_D01[ip][r]*w[1][nzc5[r]]; + F8 += FE0_C0_D01[ip][r]*w[1][nzc4[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 18 + for (unsigned int r = 0; r < 3; r++) + { + F0 += FE0_C0[ip][r]*w[0][nzc0[r]]; + F1 += FE0_C0[ip][r]*w[1][nzc0[r]]; + F4 += FE0_C0[ip][r]*w[0][nzc3[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 35 + double I[6]; + // Number of operations: 8 + I[0] = W6[ip]*(F5*G[0] + F6*G[1] + F7*G[2] + F8*G[3]); + + // Number of operations: 8 + I[1] = W6[ip]*(F5*G[4] + F6*G[0] + F7*G[5] + F8*G[2]); + + // Number of operations: 4 + I[2] = W6[ip]*(F2*G[6] + F3*G[7]); + + // Number of operations: 4 + I[3] = W6[ip]*(F2*G[8] + F3*G[6]); + + // Number of operations: 3 + I[4] = W6[ip]*det*(F0 - F1); + + // Number of operations: 8 + I[5] = W6[ip]*(F0*(G[11] + F0*(G[10] + F0*G[9])) + F4*det); + + + // Number of operations for primary indices: 12 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc0[j]] += FE0_C0[ip][j]*I[4]; + // Number of operations to compute entry: 2 + A[nzc3[j]] += FE0_C0[ip][j]*I[5]; + } // end loop over 'j' + + // Number of operations for primary indices: 16 + for (unsigned int j = 0; j < 2; j++) + { + // Number of operations to compute entry: 2 + A[nzc1[j]] += FE0_C0_D01[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc2[j]] += FE0_C0_D01[ip][j]*I[1]; + // Number of operations to compute entry: 2 + A[nzc4[j]] += FE0_C0_D01[ip][j]*I[2]; + // Number of operations to compute entry: 2 + A[nzc5[j]] += FE0_C0_D01[ip][j]*I[3]; + } // end loop over 'j' + } // end loop over 'ip' +} + +/// Constructor +cahnhilliard2d_cell_integral_1_otherwise::cahnhilliard2d_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +cahnhilliard2d_cell_integral_1_otherwise::~cahnhilliard2d_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & cahnhilliard2d_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true, true, true, true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void cahnhilliard2d_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W6[6] = {0.054975871827661, 0.054975871827661, 0.054975871827661, 0.111690794839005, 0.111690794839005, 0.111690794839005}; + // Quadrature points on the UFC reference element: (0.816847572980459, 0.091576213509771), (0.091576213509771, 0.816847572980459), (0.091576213509771, 0.091576213509771), (0.10810301816807, 0.445948490915965), (0.445948490915965, 0.10810301816807), (0.445948490915965, 0.445948490915965) + + // Values of basis functions at quadrature points. + static const double FE0_C0[6][3] = \ + {{0.09157621350977, 0.816847572980459, 0.091576213509771}, + {0.0915762135097701, 0.0915762135097711, 0.816847572980459}, + {0.816847572980458, 0.091576213509771, 0.091576213509771}, + {0.445948490915965, 0.10810301816807, 0.445948490915965}, + {0.445948490915965, 0.445948490915965, 0.10810301816807}, + {0.10810301816807, 0.445948490915965, 0.445948490915965}}; + + // Array of non-zero columns + static const unsigned int nzc0[3] = {0, 1, 2}; + + // Array of non-zero columns + static const unsigned int nzc3[3] = {3, 4, 5}; + + static const double FE0_C0_D01[6][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc4[2] = {3, 5}; + + // Array of non-zero columns + static const unsigned int nzc5[2] = {3, 4}; + + // Array of non-zero columns + static const unsigned int nzc2[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 2}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 36; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 36. + double G[9]; + G[0] = det*w[2][0]*w[3][0]*(K[2]*K[2] + K[3]*K[3]); + G[1] = det*w[2][0]*w[3][0]*(K[0]*K[2] + K[1]*K[3]); + G[2] = det*w[2][0]*w[3][0]*(K[0]*K[0] + K[1]*K[1]); + G[3] = - det*w[1][0]*(K[2]*K[2] + K[3]*K[3]); + G[4] = - det*w[1][0]*(K[0]*K[2] + K[1]*K[3]); + G[5] = - det*w[1][0]*(K[0]*K[0] + K[1]*K[1]); + G[6] = -200.0*det; + G[7] = -1200.0*det; + G[8] = 1200.0*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 1170 + for (unsigned int ip = 0; ip < 6; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 3; r++) + { + F0 += FE0_C0[ip][r]*w[0][nzc0[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 12 + double I[8]; + // Number of operations: 1 + I[0] = G[0]*W6[ip]; + + // Number of operations: 1 + I[1] = G[1]*W6[ip]; + + // Number of operations: 1 + I[2] = G[2]*W6[ip]; + + // Number of operations: 1 + I[3] = G[3]*W6[ip]; + + // Number of operations: 1 + I[4] = G[4]*W6[ip]; + + // Number of operations: 1 + I[5] = G[5]*W6[ip]; + + // Number of operations: 1 + I[6] = W6[ip]*det; + + // Number of operations: 5 + I[7] = W6[ip]*(G[6] + F0*(G[8] + F0*G[7])); + + + // Number of operations for primary indices: 81 + for (unsigned int j = 0; j < 3; j++) + { + for (unsigned int k = 0; k < 3; k++) + { + // Number of operations to compute entry: 3 + A[nzc0[j]*6 + nzc0[k]] += FE0_C0[ip][j]*FE0_C0[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[nzc3[j]*6 + nzc0[k]] += FE0_C0[ip][j]*FE0_C0[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc3[j]*6 + nzc3[k]] += FE0_C0[ip][j]*FE0_C0[ip][k]*I[6]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 96 + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc1[j]*6 + nzc4[k]] += FE0_C0_D01[ip][j]*FE0_C0_D01[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[nzc1[j]*6 + nzc5[k]] += FE0_C0_D01[ip][j]*FE0_C0_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc2[j]*6 + nzc4[k]] += FE0_C0_D01[ip][j]*FE0_C0_D01[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc2[j]*6 + nzc5[k]] += FE0_C0_D01[ip][j]*FE0_C0_D01[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc4[j]*6 + nzc1[k]] += FE0_C0_D01[ip][j]*FE0_C0_D01[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc4[j]*6 + nzc2[k]] += FE0_C0_D01[ip][j]*FE0_C0_D01[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc5[j]*6 + nzc1[k]] += FE0_C0_D01[ip][j]*FE0_C0_D01[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc5[j]*6 + nzc2[k]] += FE0_C0_D01[ip][j]*FE0_C0_D01[ip][k]*I[5]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' +} + +/// Constructor +cahnhilliard2d_form_0::cahnhilliard2d_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +cahnhilliard2d_form_0::~cahnhilliard2d_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* cahnhilliard2d_form_0::signature() const +{ + return "c74b554236827dccfd2825aa887e17b01515e34428bdff3307381fce835c17d14cf4f8ee3b4150a5a38c0ab55204ed828532d603e46019fbe24a6ef0f51b9924"; +} + +/// Return the rank of the global tensor (r) +std::size_t cahnhilliard2d_form_0::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t cahnhilliard2d_form_0::num_coefficients() const +{ + return 5; +} + +/// Return the number of cell domains +std::size_t cahnhilliard2d_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t cahnhilliard2d_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t cahnhilliard2d_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t cahnhilliard2d_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t cahnhilliard2d_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool cahnhilliard2d_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool cahnhilliard2d_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool cahnhilliard2d_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool cahnhilliard2d_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool cahnhilliard2d_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* cahnhilliard2d_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard2d_finite_element_2(); + break; + } + case 1: + { + return new cahnhilliard2d_finite_element_2(); + break; + } + case 2: + { + return new cahnhilliard2d_finite_element_2(); + break; + } + case 3: + { + return new cahnhilliard2d_finite_element_0(); + break; + } + case 4: + { + return new cahnhilliard2d_finite_element_0(); + break; + } + case 5: + { + return new cahnhilliard2d_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* cahnhilliard2d_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard2d_dofmap_2(); + break; + } + case 1: + { + return new cahnhilliard2d_dofmap_2(); + break; + } + case 2: + { + return new cahnhilliard2d_dofmap_2(); + break; + } + case 3: + { + return new cahnhilliard2d_dofmap_0(); + break; + } + case 4: + { + return new cahnhilliard2d_dofmap_0(); + break; + } + case 5: + { + return new cahnhilliard2d_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* cahnhilliard2d_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* cahnhilliard2d_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* cahnhilliard2d_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* cahnhilliard2d_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* cahnhilliard2d_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* cahnhilliard2d_form_0::create_default_cell_integral() const +{ + return new cahnhilliard2d_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* cahnhilliard2d_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* cahnhilliard2d_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* cahnhilliard2d_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* cahnhilliard2d_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +cahnhilliard2d_form_1::cahnhilliard2d_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +cahnhilliard2d_form_1::~cahnhilliard2d_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* cahnhilliard2d_form_1::signature() const +{ + return "4c74bcfa5e3b9a51f25018de399e3a7993f07f9007028d72eb8d754dfad68a3aee31c76c343017ba49b2bd9aef525ccab3f3c0eb05bfd0c870a1f2344e00028d"; +} + +/// Return the rank of the global tensor (r) +std::size_t cahnhilliard2d_form_1::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t cahnhilliard2d_form_1::num_coefficients() const +{ + return 4; +} + +/// Return the number of cell domains +std::size_t cahnhilliard2d_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t cahnhilliard2d_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t cahnhilliard2d_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t cahnhilliard2d_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t cahnhilliard2d_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool cahnhilliard2d_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool cahnhilliard2d_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool cahnhilliard2d_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool cahnhilliard2d_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool cahnhilliard2d_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* cahnhilliard2d_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard2d_finite_element_2(); + break; + } + case 1: + { + return new cahnhilliard2d_finite_element_2(); + break; + } + case 2: + { + return new cahnhilliard2d_finite_element_2(); + break; + } + case 3: + { + return new cahnhilliard2d_finite_element_0(); + break; + } + case 4: + { + return new cahnhilliard2d_finite_element_0(); + break; + } + case 5: + { + return new cahnhilliard2d_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* cahnhilliard2d_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard2d_dofmap_2(); + break; + } + case 1: + { + return new cahnhilliard2d_dofmap_2(); + break; + } + case 2: + { + return new cahnhilliard2d_dofmap_2(); + break; + } + case 3: + { + return new cahnhilliard2d_dofmap_0(); + break; + } + case 4: + { + return new cahnhilliard2d_dofmap_0(); + break; + } + case 5: + { + return new cahnhilliard2d_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* cahnhilliard2d_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* cahnhilliard2d_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* cahnhilliard2d_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* cahnhilliard2d_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* cahnhilliard2d_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* cahnhilliard2d_form_1::create_default_cell_integral() const +{ + return new cahnhilliard2d_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* cahnhilliard2d_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* cahnhilliard2d_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* cahnhilliard2d_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* cahnhilliard2d_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/demo/documented/cahn-hilliard/cpp/CahnHilliard2D.h b/demo/documented/cahn-hilliard/cpp/CahnHilliard2D.h new file mode 100644 index 0000000..5e60721 --- /dev/null +++ b/demo/documented/cahn-hilliard/cpp/CahnHilliard2D.h @@ -0,0 +1,1842 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __CAHNHILLIARD2D_H +#define __CAHNHILLIARD2D_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class cahnhilliard2d_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + cahnhilliard2d_finite_element_0(); + + /// Destructor + virtual ~cahnhilliard2d_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a finite element. + +class cahnhilliard2d_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + cahnhilliard2d_finite_element_1(); + + /// Destructor + virtual ~cahnhilliard2d_finite_element_1(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a finite element. + +class cahnhilliard2d_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + cahnhilliard2d_finite_element_2(); + + /// Destructor + virtual ~cahnhilliard2d_finite_element_2(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class cahnhilliard2d_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + cahnhilliard2d_dofmap_0(); + + /// Destructor + virtual ~cahnhilliard2d_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class cahnhilliard2d_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + cahnhilliard2d_dofmap_1(); + + /// Destructor + virtual ~cahnhilliard2d_dofmap_1(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class cahnhilliard2d_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + cahnhilliard2d_dofmap_2(); + + /// Destructor + virtual ~cahnhilliard2d_dofmap_2(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class cahnhilliard2d_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + cahnhilliard2d_cell_integral_0_otherwise(); + + /// Destructor + virtual ~cahnhilliard2d_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class cahnhilliard2d_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + cahnhilliard2d_cell_integral_1_otherwise(); + + /// Destructor + virtual ~cahnhilliard2d_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class cahnhilliard2d_form_0: public ufc::form +{ +public: + + /// Constructor + cahnhilliard2d_form_0(); + + /// Destructor + virtual ~cahnhilliard2d_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class cahnhilliard2d_form_1: public ufc::form +{ +public: + + /// Constructor + cahnhilliard2d_form_1(); + + /// Destructor + virtual ~cahnhilliard2d_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace CahnHilliard2D +{ + +class CoefficientSpace_dt: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_dt(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_dt(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_dt(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_dt(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_dt(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_dt(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_dt() + { + } + +}; + +class CoefficientSpace_lmbda: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_lmbda(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_lmbda(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_lmbda(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_lmbda(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_lmbda(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_lmbda(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_lmbda() + { + } + +}; + +class CoefficientSpace_theta: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_theta(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_theta(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_theta(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_theta(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_theta(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_theta(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_theta() + { + } + +}; + +class CoefficientSpace_u: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_u(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_u() + { + } + +}; + +class CoefficientSpace_u0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_u0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_u0() + { + } + +}; + +class Form_F_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_F_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_u Form_F_FunctionSpace_1; + +typedef CoefficientSpace_u0 Form_F_FunctionSpace_2; + +typedef CoefficientSpace_lmbda Form_F_FunctionSpace_3; + +typedef CoefficientSpace_dt Form_F_FunctionSpace_4; + +typedef CoefficientSpace_theta Form_F_FunctionSpace_5; + +class Form_F: public dolfin::Form +{ +public: + + // Constructor + Form_F(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_0()); + } + + // Constructor + Form_F(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& u0, const dolfin::GenericFunction& lmbda, const dolfin::GenericFunction& dt, const dolfin::GenericFunction& theta): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->u = u; + this->u0 = u0; + this->lmbda = lmbda; + this->dt = dt; + this->theta = theta; + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_0()); + } + + // Constructor + Form_F(const dolfin::FunctionSpace& V0, std::shared_ptr u, std::shared_ptr u0, std::shared_ptr lmbda, std::shared_ptr dt, std::shared_ptr theta): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->u = *u; + this->u0 = *u0; + this->lmbda = *lmbda; + this->dt = *dt; + this->theta = *theta; + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& u0, const dolfin::GenericFunction& lmbda, const dolfin::GenericFunction& dt, const dolfin::GenericFunction& theta): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = V0; + + this->u = u; + this->u0 = u0; + this->lmbda = lmbda; + this->dt = dt; + this->theta = theta; + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0, std::shared_ptr u, std::shared_ptr u0, std::shared_ptr lmbda, std::shared_ptr dt, std::shared_ptr theta): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = V0; + + this->u = *u; + this->u0 = *u0; + this->lmbda = *lmbda; + this->dt = *dt; + this->theta = *theta; + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_0()); + } + + // Destructor + ~Form_F() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "u") + return 0; + else if (name == "u0") + return 1; + else if (name == "lmbda") + return 2; + else if (name == "dt") + return 3; + else if (name == "theta") + return 4; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "u"; + case 1: + return "u0"; + case 2: + return "lmbda"; + case 3: + return "dt"; + case 4: + return "theta"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_F_FunctionSpace_0 TestSpace; + typedef Form_F_FunctionSpace_1 CoefficientSpace_u; + typedef Form_F_FunctionSpace_2 CoefficientSpace_u0; + typedef Form_F_FunctionSpace_3 CoefficientSpace_lmbda; + typedef Form_F_FunctionSpace_4 CoefficientSpace_dt; + typedef Form_F_FunctionSpace_5 CoefficientSpace_theta; + + // Coefficients + dolfin::CoefficientAssigner u; + dolfin::CoefficientAssigner u0; + dolfin::CoefficientAssigner lmbda; + dolfin::CoefficientAssigner dt; + dolfin::CoefficientAssigner theta; +}; + +class Form_J_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_J_FunctionSpace_0() + { + } + +}; + +class Form_J_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard2d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard2d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_J_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_u Form_J_FunctionSpace_2; + +typedef CoefficientSpace_lmbda Form_J_FunctionSpace_3; + +typedef CoefficientSpace_dt Form_J_FunctionSpace_4; + +typedef CoefficientSpace_theta Form_J_FunctionSpace_5; + +class Form_J: public dolfin::Form +{ +public: + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_1()); + } + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& lmbda, const dolfin::GenericFunction& dt, const dolfin::GenericFunction& theta): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->u = u; + this->lmbda = lmbda; + this->dt = dt; + this->theta = theta; + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_1()); + } + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr u, std::shared_ptr lmbda, std::shared_ptr dt, std::shared_ptr theta): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->u = *u; + this->lmbda = *lmbda; + this->dt = *dt; + this->theta = *theta; + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& lmbda, const dolfin::GenericFunction& dt, const dolfin::GenericFunction& theta): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->u = u; + this->lmbda = lmbda; + this->dt = dt; + this->theta = theta; + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr u, std::shared_ptr lmbda, std::shared_ptr dt, std::shared_ptr theta): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->u = *u; + this->lmbda = *lmbda; + this->dt = *dt; + this->theta = *theta; + + _ufc_form = std::shared_ptr(new cahnhilliard2d_form_1()); + } + + // Destructor + ~Form_J() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "u") + return 0; + else if (name == "lmbda") + return 1; + else if (name == "dt") + return 2; + else if (name == "theta") + return 3; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "u"; + case 1: + return "lmbda"; + case 2: + return "dt"; + case 3: + return "theta"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_J_FunctionSpace_0 TestSpace; + typedef Form_J_FunctionSpace_1 TrialSpace; + typedef Form_J_FunctionSpace_2 CoefficientSpace_u; + typedef Form_J_FunctionSpace_3 CoefficientSpace_lmbda; + typedef Form_J_FunctionSpace_4 CoefficientSpace_dt; + typedef Form_J_FunctionSpace_5 CoefficientSpace_theta; + + // Coefficients + dolfin::CoefficientAssigner u; + dolfin::CoefficientAssigner lmbda; + dolfin::CoefficientAssigner dt; + dolfin::CoefficientAssigner theta; +}; + +// Class typedefs +typedef Form_J BilinearForm; +typedef Form_J JacobianForm; +typedef Form_F LinearForm; +typedef Form_F ResidualForm; +typedef Form_F::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/cahn-hilliard/cpp/CahnHilliard2D.ufl b/demo/documented/cahn-hilliard/cpp/CahnHilliard2D.ufl new file mode 100644 index 0000000..939a7af --- /dev/null +++ b/demo/documented/cahn-hilliard/cpp/CahnHilliard2D.ufl @@ -0,0 +1,58 @@ +# Copyright (C) 2006-2010 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg 2011 +# +# First added: 2006 +# Last changed: 2010-09-01 +# +# The linearised bilinear form a(du, v) and linear form L(v) for +# the Cahn-Hilliard equation. +# +# Compile this form with FFC: ffc -l dolfin -O -f split CahnHilliard2D.ufl + +P1 = FiniteElement("Lagrange", triangle, 1) +ME = P1*P1 + +du = TrialFunction(ME) +q, v = TestFunctions(ME) + +u = Coefficient(ME) # current solution +u0 = Coefficient(ME) # solution from previous converged step + +# Split mixed functions +dc, dmu = split(du) +c, mu = split(u) +c0, mu0 = split(u0) + +lmbda = Constant(triangle) # surface energy parameter +dt = Constant(triangle) # time step +theta = Constant(triangle) # time stepping parameter + +# mu_(n+theta) +mu_mid = (1-theta)*mu0 + theta*mu + +# Compute the chemical potential df/dc +c = variable(c) +f = 100*c**2*(1-c)**2 +dfdc = diff(f, c) + +F0 = c*q*dx - c0*q*dx + dt*dot(grad(mu_mid), grad(q))*dx +F1 = mu*v*dx - dfdc*v*dx - lmbda*dot(grad(c), grad(v))*dx +F = F0 + F1 + +J = derivative(F, u, du) diff --git a/demo/documented/cahn-hilliard/cpp/CahnHilliard3D.cpp b/demo/documented/cahn-hilliard/cpp/CahnHilliard3D.cpp new file mode 100644 index 0000000..3cf5634 --- /dev/null +++ b/demo/documented/cahn-hilliard/cpp/CahnHilliard3D.cpp @@ -0,0 +1,5195 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#include "CahnHilliard3D.h" + +/// Constructor +cahnhilliard3d_finite_element_0::cahnhilliard3d_finite_element_0() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +cahnhilliard3d_finite_element_0::~cahnhilliard3d_finite_element_0() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* cahnhilliard3d_finite_element_0::signature() const +{ + return "FiniteElement('Real', Domain(Cell('tetrahedron', 3)), 0, None)"; +} + +/// Return the cell shape +ufc::shape cahnhilliard3d_finite_element_0::cell_shape() const +{ + return ufc::tetrahedron; +} + +/// Return the topological dimension of the cell shape +std::size_t cahnhilliard3d_finite_element_0::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the cell shape +std::size_t cahnhilliard3d_finite_element_0::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the finite element function space +std::size_t cahnhilliard3d_finite_element_0::space_dimension() const +{ + return 1; +} + +/// Return the rank of the value space +std::size_t cahnhilliard3d_finite_element_0::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t cahnhilliard3d_finite_element_0::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void cahnhilliard3d_finite_element_0::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + + // Compute subdeterminants + + // Get coordinates and map to the reference (FIAT) element + + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' +} + +/// Evaluate all basis functions at given point x in cell +void cahnhilliard3d_finite_element_0::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void cahnhilliard3d_finite_element_0::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void cahnhilliard3d_finite_element_0::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); +} + +/// Evaluate linear functional for dof i on the function f +double cahnhilliard3d_finite_element_0::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void cahnhilliard3d_finite_element_0::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + y[1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + y[2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[0] = vals[0]; +} + +/// Interpolate vertex values from dof values +void cahnhilliard3d_finite_element_0::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + vertex_values[3] = dof_values[0]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void cahnhilliard3d_finite_element_0::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void cahnhilliard3d_finite_element_0::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t cahnhilliard3d_finite_element_0::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* cahnhilliard3d_finite_element_0::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* cahnhilliard3d_finite_element_0::create() const +{ + return new cahnhilliard3d_finite_element_0(); +} + + +/// Constructor +cahnhilliard3d_finite_element_1::cahnhilliard3d_finite_element_1() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +cahnhilliard3d_finite_element_1::~cahnhilliard3d_finite_element_1() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* cahnhilliard3d_finite_element_1::signature() const +{ + return "FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; +} + +/// Return the cell shape +ufc::shape cahnhilliard3d_finite_element_1::cell_shape() const +{ + return ufc::tetrahedron; +} + +/// Return the topological dimension of the cell shape +std::size_t cahnhilliard3d_finite_element_1::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the cell shape +std::size_t cahnhilliard3d_finite_element_1::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the finite element function space +std::size_t cahnhilliard3d_finite_element_1::space_dimension() const +{ + return 4; +} + +/// Return the rank of the value space +std::size_t cahnhilliard3d_finite_element_1::value_rank() const +{ + return 0; +} + +/// Return the dimension of the value space for axis i +std::size_t cahnhilliard3d_finite_element_1::value_dimension(std::size_t i) const +{ + return 1; +} + +/// Evaluate basis function i at given point x in cell +void cahnhilliard3d_finite_element_1::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void cahnhilliard3d_finite_element_1::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void cahnhilliard3d_finite_element_1::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void cahnhilliard3d_finite_element_1::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 4; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[3]; + for (unsigned int r = 0; r < 3; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 4; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double cahnhilliard3d_finite_element_1::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void cahnhilliard3d_finite_element_1::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; +} + +/// Interpolate vertex values from dof values +void cahnhilliard3d_finite_element_1::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + vertex_values[3] = dof_values[3]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void cahnhilliard3d_finite_element_1::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void cahnhilliard3d_finite_element_1::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t cahnhilliard3d_finite_element_1::num_sub_elements() const +{ + return 0; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* cahnhilliard3d_finite_element_1::create_sub_element(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::finite_element* cahnhilliard3d_finite_element_1::create() const +{ + return new cahnhilliard3d_finite_element_1(); +} + + +/// Constructor +cahnhilliard3d_finite_element_2::cahnhilliard3d_finite_element_2() : ufc::finite_element() +{ + // Do nothing +} + +/// Destructor +cahnhilliard3d_finite_element_2::~cahnhilliard3d_finite_element_2() +{ + // Do nothing +} + +/// Return a string identifying the finite element +const char* cahnhilliard3d_finite_element_2::signature() const +{ + return "MixedElement(FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None), FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None), **{'value_shape': (2,) })"; +} + +/// Return the cell shape +ufc::shape cahnhilliard3d_finite_element_2::cell_shape() const +{ + return ufc::tetrahedron; +} + +/// Return the topological dimension of the cell shape +std::size_t cahnhilliard3d_finite_element_2::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the cell shape +std::size_t cahnhilliard3d_finite_element_2::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the finite element function space +std::size_t cahnhilliard3d_finite_element_2::space_dimension() const +{ + return 8; +} + +/// Return the rank of the value space +std::size_t cahnhilliard3d_finite_element_2::value_rank() const +{ + return 1; +} + +/// Return the dimension of the value space for axis i +std::size_t cahnhilliard3d_finite_element_2::value_dimension(std::size_t i) const +{ + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; +} + +/// Evaluate basis function i at given point x in cell +void cahnhilliard3d_finite_element_2::_evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Compute value(s) + for (unsigned int r = 0; r < 4; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate all basis functions at given point x in cell +void cahnhilliard3d_finite_element_2::_evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 8; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate order n derivatives of basis function i at given point x in cell +void cahnhilliard3d_finite_element_2::_evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[9] + vertex_coordinates[6] + vertex_coordinates[3] - vertex_coordinates[0]; + const double C1 = vertex_coordinates[10] + vertex_coordinates[7] + vertex_coordinates[4] - vertex_coordinates[1]; + const double C2 = vertex_coordinates[11] + vertex_coordinates[8] + vertex_coordinates[5] - vertex_coordinates[2]; + + // Compute subdeterminants + const double d_00 = J[4]*J[8] - J[5]*J[7]; + const double d_01 = J[5]*J[6] - J[3]*J[8]; + const double d_02 = J[3]*J[7] - J[4]*J[6]; + const double d_10 = J[2]*J[7] - J[1]*J[8]; + const double d_11 = J[0]*J[8] - J[2]*J[6]; + const double d_12 = J[1]*J[6] - J[0]*J[7]; + const double d_20 = J[1]*J[5] - J[2]*J[4]; + const double d_21 = J[2]*J[3] - J[0]*J[5]; + const double d_22 = J[0]*J[4] - J[1]*J[3]; + + // Get coordinates and map to the reference (FIAT) element + double X = (d_00*(2.0*x[0] - C0) + d_10*(2.0*x[1] - C1) + d_20*(2.0*x[2] - C2)) / detJ; + double Y = (d_01*(2.0*x[0] - C0) + d_11*(2.0*x[1] - C1) + d_21*(2.0*x[2] - C2)) / detJ; + double Z = (d_02*(2.0*x[0] - C0) + d_12*(2.0*x[1] - C1) + d_22*(2.0*x[2] - C2)) / detJ; + + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[3][1]; + for (unsigned int row = 0; row < 3; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 2) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[3][3] = {{K[0], K[1], K[2]}, {K[3], K[4], K[5]}, {K[6], K[7], K[8]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[3][3]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.210818510677892, -0.074535599249993}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[4] = {0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = 0.5*(2.0 + Y + Z + 2.0*X); + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = 0.5*(2.0 + 3.0*Y + Z)*basisvalues[0]; + basisvalues[3] = (2.0*Z + 1.0)*basisvalues[0]; + basisvalues[0] *= std::sqrt(0.75); + basisvalues[3] *= std::sqrt(1.25); + basisvalues[2] *= std::sqrt(2.5); + basisvalues[1] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[4] = \ + {0.288675134594813, 0.0, 0.0, 0.223606797749979}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {6.32455532033676, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {5.47722557505166, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0}}; + + static const double dmats2[4][4] = \ + {{0.0, 0.0, 0.0, 0.0}, + {3.16227766016838, 0.0, 0.0, 0.0}, + {1.82574185835055, 0.0, 0.0, 0.0}, + {5.16397779494322, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[3]; + for (unsigned int r = 0; r < 3; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[4][4] = \ + {{1.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 2) + { + for (unsigned int t = 0; t < 4; t++) + { + for (unsigned int u = 0; u < 4; u++) + { + for (unsigned int tu = 0; tu < 4; tu++) + { + dmats[t][u] += dmats2[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 4; s++) + { + for (unsigned int t = 0; t < 4; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + +} + +/// Evaluate order n derivatives of all basis functions at given point x in cell +void cahnhilliard3d_finite_element_2::_evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) +{ + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 3; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 8; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[6]; + for (unsigned int r = 0; r < 6; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 8; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' +} + +/// Evaluate linear functional for dof i on the function f +double cahnhilliard3d_finite_element_2::evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[3]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 5: + { + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 6: + { + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; +} + +/// Evaluate linear functionals for all dofs on the function f +void cahnhilliard3d_finite_element_2::evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[3]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + y[2] = vertex_coordinates[2]; + f.evaluate(vals, y, c); + values[4] = vals[1]; + y[0] = vertex_coordinates[3]; + y[1] = vertex_coordinates[4]; + y[2] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[1]; + y[0] = vertex_coordinates[6]; + y[1] = vertex_coordinates[7]; + y[2] = vertex_coordinates[8]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[9]; + y[1] = vertex_coordinates[10]; + y[2] = vertex_coordinates[11]; + f.evaluate(vals, y, c); + values[7] = vals[1]; +} + +/// Interpolate vertex values from dof values +void cahnhilliard3d_finite_element_2::interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const +{ + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + vertex_values[6] = dof_values[3]; + // Evaluate function and change variables + vertex_values[1] = dof_values[4]; + vertex_values[3] = dof_values[5]; + vertex_values[5] = dof_values[6]; + vertex_values[7] = dof_values[7]; +} + +/// Map coordinate xhat from reference cell to coordinate x in cell +void cahnhilliard3d_finite_element_2::map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const +{ + throw std::runtime_error("map_from_reference_cell not yet implemented."); +} + +/// Map from coordinate x in cell to coordinate xhat in reference cell +void cahnhilliard3d_finite_element_2::map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const +{ + throw std::runtime_error("map_to_reference_cell not yet implemented."); +} + +/// Return the number of sub elements (for a mixed element) +std::size_t cahnhilliard3d_finite_element_2::num_sub_elements() const +{ + return 2; +} + +/// Create a new finite element for sub element i (for a mixed element) +ufc::finite_element* cahnhilliard3d_finite_element_2::create_sub_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard3d_finite_element_1(); + break; + } + case 1: + { + return new cahnhilliard3d_finite_element_1(); + break; + } + } + + return 0; +} + +/// Create a new class instance +ufc::finite_element* cahnhilliard3d_finite_element_2::create() const +{ + return new cahnhilliard3d_finite_element_2(); +} + +/// Constructor +cahnhilliard3d_dofmap_0::cahnhilliard3d_dofmap_0() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +cahnhilliard3d_dofmap_0::~cahnhilliard3d_dofmap_0() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* cahnhilliard3d_dofmap_0::signature() const +{ + return "FFC dofmap for FiniteElement('Real', Domain(Cell('tetrahedron', 3)), 0, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool cahnhilliard3d_dofmap_0::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t cahnhilliard3d_dofmap_0::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t cahnhilliard3d_dofmap_0::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the global finite element function space +std::size_t cahnhilliard3d_dofmap_0::global_dimension(const std::vector& + num_global_entities) const +{ + return 1; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t cahnhilliard3d_dofmap_0::local_dimension() const +{ + return 1; +} + +/// Return the number of dofs on each cell facet +std::size_t cahnhilliard3d_dofmap_0::num_facet_dofs() const +{ + return 0; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t cahnhilliard3d_dofmap_0::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 1; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void cahnhilliard3d_dofmap_0::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + dofs[0] = 0; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void cahnhilliard3d_dofmap_0::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void cahnhilliard3d_dofmap_0::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void cahnhilliard3d_dofmap_0::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = 0.25*vertex_coordinates[0] + 0.25*vertex_coordinates[3] + 0.25*vertex_coordinates[6] + 0.25*vertex_coordinates[9]; + dof_coordinates[0][1] = 0.25*vertex_coordinates[1] + 0.25*vertex_coordinates[4] + 0.25*vertex_coordinates[7] + 0.25*vertex_coordinates[10]; + dof_coordinates[0][2] = 0.25*vertex_coordinates[2] + 0.25*vertex_coordinates[5] + 0.25*vertex_coordinates[8] + 0.25*vertex_coordinates[11]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t cahnhilliard3d_dofmap_0::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* cahnhilliard3d_dofmap_0::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* cahnhilliard3d_dofmap_0::create() const +{ + return new cahnhilliard3d_dofmap_0(); +} + +/// Constructor +cahnhilliard3d_dofmap_1::cahnhilliard3d_dofmap_1() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +cahnhilliard3d_dofmap_1::~cahnhilliard3d_dofmap_1() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* cahnhilliard3d_dofmap_1::signature() const +{ + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None)"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool cahnhilliard3d_dofmap_1::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t cahnhilliard3d_dofmap_1::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t cahnhilliard3d_dofmap_1::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the global finite element function space +std::size_t cahnhilliard3d_dofmap_1::global_dimension(const std::vector& + num_global_entities) const +{ + return num_global_entities[0]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t cahnhilliard3d_dofmap_1::local_dimension() const +{ + return 4; +} + +/// Return the number of dofs on each cell facet +std::size_t cahnhilliard3d_dofmap_1::num_facet_dofs() const +{ + return 3; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t cahnhilliard3d_dofmap_1::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void cahnhilliard3d_dofmap_1::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + dofs[3] = c.entity_indices[0][3]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void cahnhilliard3d_dofmap_1::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void cahnhilliard3d_dofmap_1::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + case 3: + { + dofs[0] = 3; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void cahnhilliard3d_dofmap_1::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t cahnhilliard3d_dofmap_1::num_sub_dofmaps() const +{ + return 0; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* cahnhilliard3d_dofmap_1::create_sub_dofmap(std::size_t i) const +{ + return 0; +} + +/// Create a new class instance +ufc::dofmap* cahnhilliard3d_dofmap_1::create() const +{ + return new cahnhilliard3d_dofmap_1(); +} + +/// Constructor +cahnhilliard3d_dofmap_2::cahnhilliard3d_dofmap_2() : ufc::dofmap() +{ + // Do nothing +} + +/// Destructor +cahnhilliard3d_dofmap_2::~cahnhilliard3d_dofmap_2() +{ + // Do nothing +} + +/// Return a string identifying the dofmap +const char* cahnhilliard3d_dofmap_2::signature() const +{ + return "FFC dofmap for MixedElement(FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None), FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3)), 1, None), **{'value_shape': (2,) })"; +} + +/// Return true iff mesh entities of topological dimension d are needed +bool cahnhilliard3d_dofmap_2::needs_mesh_entities(std::size_t d) const +{ + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + case 3: + { + return false; + break; + } + } + + return false; +} + +/// Return the topological dimension of the associated cell shape +std::size_t cahnhilliard3d_dofmap_2::topological_dimension() const +{ + return 3; +} + +/// Return the geometric dimension of the associated cell shape +std::size_t cahnhilliard3d_dofmap_2::geometric_dimension() const +{ + return 3; +} + +/// Return the dimension of the global finite element function space +std::size_t cahnhilliard3d_dofmap_2::global_dimension(const std::vector& + num_global_entities) const +{ + return 2*num_global_entities[0]; +} + +/// Return the dimension of the local finite element function space for a cell +std::size_t cahnhilliard3d_dofmap_2::local_dimension() const +{ + return 8; +} + +/// Return the number of dofs on each cell facet +std::size_t cahnhilliard3d_dofmap_2::num_facet_dofs() const +{ + return 6; +} + +/// Return the number of dofs associated with each cell entity of dimension d +std::size_t cahnhilliard3d_dofmap_2::num_entity_dofs(std::size_t d) const +{ + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + case 3: + { + return 0; + break; + } + } + + return 0; +} + +/// Tabulate the local-to-global mapping of dofs on a cell +void cahnhilliard3d_dofmap_2::tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const +{ + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + dofs[3] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; + dofs[4] = offset + c.entity_indices[0][0]; + dofs[5] = offset + c.entity_indices[0][1]; + dofs[6] = offset + c.entity_indices[0][2]; + dofs[7] = offset + c.entity_indices[0][3]; + offset += num_global_entities[0]; +} + +/// Tabulate the local-to-local mapping from facet dofs to cell dofs +void cahnhilliard3d_dofmap_2::tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const +{ + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 5; + dofs[4] = 6; + dofs[5] = 7; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 6; + dofs[5] = 7; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 7; + break; + } + case 3: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 4; + dofs[4] = 5; + dofs[5] = 6; + break; + } + } + +} + +/// Tabulate the local-to-local mapping of dofs on entity (d, i) +void cahnhilliard3d_dofmap_2::tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const +{ + if (d > 3) + { + throw std::runtime_error("d is larger than dimension (3)"); + } + + switch (d) + { + case 0: + { + if (i > 3) + { + throw std::runtime_error("i is larger than number of entities (3)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 4; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 5; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 6; + break; + } + case 3: + { + dofs[0] = 3; + dofs[1] = 7; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + case 3: + { + + break; + } + } + +} + +/// Tabulate the coordinates of all dofs on a cell +void cahnhilliard3d_dofmap_2::tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const +{ + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[0][2] = vertex_coordinates[2]; + dof_coordinates[1][0] = vertex_coordinates[3]; + dof_coordinates[1][1] = vertex_coordinates[4]; + dof_coordinates[1][2] = vertex_coordinates[5]; + dof_coordinates[2][0] = vertex_coordinates[6]; + dof_coordinates[2][1] = vertex_coordinates[7]; + dof_coordinates[2][2] = vertex_coordinates[8]; + dof_coordinates[3][0] = vertex_coordinates[9]; + dof_coordinates[3][1] = vertex_coordinates[10]; + dof_coordinates[3][2] = vertex_coordinates[11]; + dof_coordinates[4][0] = vertex_coordinates[0]; + dof_coordinates[4][1] = vertex_coordinates[1]; + dof_coordinates[4][2] = vertex_coordinates[2]; + dof_coordinates[5][0] = vertex_coordinates[3]; + dof_coordinates[5][1] = vertex_coordinates[4]; + dof_coordinates[5][2] = vertex_coordinates[5]; + dof_coordinates[6][0] = vertex_coordinates[6]; + dof_coordinates[6][1] = vertex_coordinates[7]; + dof_coordinates[6][2] = vertex_coordinates[8]; + dof_coordinates[7][0] = vertex_coordinates[9]; + dof_coordinates[7][1] = vertex_coordinates[10]; + dof_coordinates[7][2] = vertex_coordinates[11]; +} + +/// Return the number of sub dofmaps (for a mixed element) +std::size_t cahnhilliard3d_dofmap_2::num_sub_dofmaps() const +{ + return 2; +} + +/// Create a new dofmap for sub dofmap i (for a mixed element) +ufc::dofmap* cahnhilliard3d_dofmap_2::create_sub_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard3d_dofmap_1(); + break; + } + case 1: + { + return new cahnhilliard3d_dofmap_1(); + break; + } + } + + return 0; +} + +/// Create a new class instance +ufc::dofmap* cahnhilliard3d_dofmap_2::create() const +{ + return new cahnhilliard3d_dofmap_2(); +} + +/// Constructor +cahnhilliard3d_cell_integral_0_otherwise::cahnhilliard3d_cell_integral_0_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +cahnhilliard3d_cell_integral_0_otherwise::~cahnhilliard3d_cell_integral_0_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & cahnhilliard3d_cell_integral_0_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true, true, true, true, true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void cahnhilliard3d_cell_integral_0_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius + + + // Array of quadrature weights. + static const double W14[14] = {0.00317460317460317, 0.00317460317460317, 0.00317460317460317, 0.00317460317460317, 0.00317460317460317, 0.00317460317460317, 0.0147649707904968, 0.0147649707904968, 0.0147649707904968, 0.0147649707904968, 0.0221397911142651, 0.0221397911142651, 0.0221397911142651, 0.0221397911142651}; + // Quadrature points on the UFC reference element: (0.0, 0.5, 0.5), (0.5, 0.0, 0.5), (0.5, 0.5, 0.0), (0.5, 0.0, 0.0), (0.0, 0.5, 0.0), (0.0, 0.0, 0.5), (0.698419704324387, 0.100526765225204, 0.100526765225204), (0.100526765225204, 0.100526765225204, 0.100526765225204), (0.100526765225204, 0.100526765225204, 0.698419704324387), (0.100526765225204, 0.698419704324387, 0.100526765225204), (0.0568813795204234, 0.314372873493192, 0.314372873493192), (0.314372873493192, 0.314372873493192, 0.314372873493192), (0.314372873493192, 0.314372873493192, 0.0568813795204234), (0.314372873493192, 0.0568813795204234, 0.314372873493192) + + // Values of basis functions at quadrature points. + static const double FE0_C0[14][4] = \ + {{0.0, 0.0, 0.5, 0.5}, + {0.0, 0.5, 0.0, 0.5}, + {0.0, 0.5, 0.5, 0.0}, + {0.5, 0.5, 0.0, 0.0}, + {0.5, 0.0, 0.5, 0.0}, + {0.5, 0.0, 0.0, 0.5}, + {0.100526765225205, 0.698419704324386, 0.100526765225205, 0.100526765225205}, + {0.698419704324387, 0.100526765225204, 0.100526765225205, 0.100526765225205}, + {0.100526765225205, 0.100526765225204, 0.100526765225205, 0.698419704324386}, + {0.100526765225205, 0.100526765225204, 0.698419704324386, 0.100526765225205}, + {0.314372873493192, 0.0568813795204234, 0.314372873493192, 0.314372873493192}, + {0.0568813795204235, 0.314372873493192, 0.314372873493192, 0.314372873493192}, + {0.314372873493192, 0.314372873493192, 0.314372873493192, 0.0568813795204234}, + {0.314372873493192, 0.314372873493192, 0.0568813795204235, 0.314372873493192}}; + + // Array of non-zero columns + static const unsigned int nzc12[4] = {0, 1, 2, 3}; + + // Array of non-zero columns + static const unsigned int nzc16[4] = {4, 5, 6, 7}; + + static const double FE0_C0_D001[14][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc15[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc14[2] = {0, 2}; + + // Array of non-zero columns + static const unsigned int nzc13[2] = {0, 3}; + + // Array of non-zero columns + static const unsigned int nzc19[2] = {4, 5}; + + // Array of non-zero columns + static const unsigned int nzc18[2] = {4, 6}; + + // Array of non-zero columns + static const unsigned int nzc17[2] = {4, 7}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 8; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 177. + double G[21]; + G[0] = det*w[3][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8] - w[4][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8])); + G[1] = det*w[3][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8] - w[4][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8])); + G[2] = det*w[3][0]*w[4][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + G[3] = det*w[3][0]*w[4][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + G[4] = det*w[3][0]*w[4][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + G[5] = det*w[3][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8] - w[4][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8])); + G[6] = det*w[3][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5] - w[4][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5])); + G[7] = det*w[3][0]*w[4][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + G[8] = det*w[3][0]*w[4][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + G[9] = det*w[3][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5] - w[4][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5])); + G[10] = det*w[3][0]*w[4][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + G[11] = det*w[3][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2] - w[4][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2])); + G[12] = - det*w[2][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + G[13] = - det*w[2][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + G[14] = - det*w[2][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + G[15] = - det*w[2][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + G[16] = - det*w[2][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + G[17] = - det*w[2][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + G[18] = -400.0*det; + G[19] = 600.0*det; + G[20] = -200.0*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 2310 + for (unsigned int ip = 0; ip < 14; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + double F6 = 0.0; + double F7 = 0.0; + double F8 = 0.0; + double F9 = 0.0; + double F10 = 0.0; + double F11 = 0.0; + + // Total number of operations to compute function values = 36 + for (unsigned int r = 0; r < 2; r++) + { + F2 += FE0_C0_D001[ip][r]*w[0][nzc15[r]]; + F3 += FE0_C0_D001[ip][r]*w[0][nzc14[r]]; + F4 += FE0_C0_D001[ip][r]*w[0][nzc13[r]]; + F6 += FE0_C0_D001[ip][r]*w[0][nzc19[r]]; + F7 += FE0_C0_D001[ip][r]*w[0][nzc18[r]]; + F8 += FE0_C0_D001[ip][r]*w[0][nzc17[r]]; + F9 += FE0_C0_D001[ip][r]*w[1][nzc19[r]]; + F10 += FE0_C0_D001[ip][r]*w[1][nzc18[r]]; + F11 += FE0_C0_D001[ip][r]*w[1][nzc17[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 24 + for (unsigned int r = 0; r < 4; r++) + { + F0 += FE0_C0[ip][r]*w[0][nzc12[r]]; + F1 += FE0_C0[ip][r]*w[1][nzc12[r]]; + F5 += FE0_C0[ip][r]*w[0][nzc16[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 65 + double I[8]; + // Number of operations: 12 + I[0] = W14[ip]*(F10*G[0] + F11*G[1] + F6*G[2] + F7*G[3] + F8*G[4] + F9*G[5]); + + // Number of operations: 12 + I[1] = W14[ip]*(F10*G[6] + F11*G[0] + F6*G[7] + F7*G[8] + F8*G[3] + F9*G[9]); + + // Number of operations: 12 + I[2] = W14[ip]*(F10*G[9] + F11*G[5] + F6*G[10] + F7*G[7] + F8*G[2] + F9*G[11]); + + // Number of operations: 6 + I[3] = W14[ip]*(F2*G[12] + F3*G[13] + F4*G[14]); + + // Number of operations: 6 + I[4] = W14[ip]*(F2*G[15] + F3*G[16] + F4*G[13]); + + // Number of operations: 6 + I[5] = W14[ip]*(F2*G[17] + F3*G[15] + F4*G[12]); + + // Number of operations: 3 + I[6] = W14[ip]*det*(F0 - F1); + + // Number of operations: 8 + I[7] = W14[ip]*(F0*(G[20] + F0*(G[19] + F0*G[18])) + F5*det); + + + // Number of operations for primary indices: 24 + for (unsigned int j = 0; j < 2; j++) + { + // Number of operations to compute entry: 2 + A[nzc13[j]] += FE0_C0_D001[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc14[j]] += FE0_C0_D001[ip][j]*I[1]; + // Number of operations to compute entry: 2 + A[nzc15[j]] += FE0_C0_D001[ip][j]*I[2]; + // Number of operations to compute entry: 2 + A[nzc17[j]] += FE0_C0_D001[ip][j]*I[3]; + // Number of operations to compute entry: 2 + A[nzc18[j]] += FE0_C0_D001[ip][j]*I[4]; + // Number of operations to compute entry: 2 + A[nzc19[j]] += FE0_C0_D001[ip][j]*I[5]; + } // end loop over 'j' + + // Number of operations for primary indices: 16 + for (unsigned int j = 0; j < 4; j++) + { + // Number of operations to compute entry: 2 + A[nzc12[j]] += FE0_C0[ip][j]*I[6]; + // Number of operations to compute entry: 2 + A[nzc16[j]] += FE0_C0[ip][j]*I[7]; + } // end loop over 'j' + } // end loop over 'ip' +} + +/// Constructor +cahnhilliard3d_cell_integral_1_otherwise::cahnhilliard3d_cell_integral_1_otherwise() : ufc::cell_integral() +{ + // Do nothing +} + +/// Destructor +cahnhilliard3d_cell_integral_1_otherwise::~cahnhilliard3d_cell_integral_1_otherwise() +{ + // Do nothing +} + +/// Tabulate which form coefficients are used by this integral +const std::vector & cahnhilliard3d_cell_integral_1_otherwise::enabled_coefficients() const +{ + static const std::vector enabled({true, true, true, true}); + return enabled; +} + +/// Tabulate the tensor for the contribution from a local cell +void cahnhilliard3d_cell_integral_1_otherwise::tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const +{ + // Compute Jacobian + double J[9]; + compute_jacobian_tetrahedron_3d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[9]; + double detJ; + compute_jacobian_inverse_tetrahedron_3d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius + + + // Array of quadrature weights. + static const double W14[14] = {0.00317460317460317, 0.00317460317460317, 0.00317460317460317, 0.00317460317460317, 0.00317460317460317, 0.00317460317460317, 0.0147649707904968, 0.0147649707904968, 0.0147649707904968, 0.0147649707904968, 0.0221397911142651, 0.0221397911142651, 0.0221397911142651, 0.0221397911142651}; + // Quadrature points on the UFC reference element: (0.0, 0.5, 0.5), (0.5, 0.0, 0.5), (0.5, 0.5, 0.0), (0.5, 0.0, 0.0), (0.0, 0.5, 0.0), (0.0, 0.0, 0.5), (0.698419704324387, 0.100526765225204, 0.100526765225204), (0.100526765225204, 0.100526765225204, 0.100526765225204), (0.100526765225204, 0.100526765225204, 0.698419704324387), (0.100526765225204, 0.698419704324387, 0.100526765225204), (0.0568813795204234, 0.314372873493192, 0.314372873493192), (0.314372873493192, 0.314372873493192, 0.314372873493192), (0.314372873493192, 0.314372873493192, 0.0568813795204234), (0.314372873493192, 0.0568813795204234, 0.314372873493192) + + // Values of basis functions at quadrature points. + static const double FE0_C0[14][4] = \ + {{0.0, 0.0, 0.5, 0.5}, + {0.0, 0.5, 0.0, 0.5}, + {0.0, 0.5, 0.5, 0.0}, + {0.5, 0.5, 0.0, 0.0}, + {0.5, 0.0, 0.5, 0.0}, + {0.5, 0.0, 0.0, 0.5}, + {0.100526765225205, 0.698419704324386, 0.100526765225205, 0.100526765225205}, + {0.698419704324387, 0.100526765225204, 0.100526765225205, 0.100526765225205}, + {0.100526765225205, 0.100526765225204, 0.100526765225205, 0.698419704324386}, + {0.100526765225205, 0.100526765225204, 0.698419704324386, 0.100526765225205}, + {0.314372873493192, 0.0568813795204234, 0.314372873493192, 0.314372873493192}, + {0.0568813795204235, 0.314372873493192, 0.314372873493192, 0.314372873493192}, + {0.314372873493192, 0.314372873493192, 0.314372873493192, 0.0568813795204234}, + {0.314372873493192, 0.314372873493192, 0.0568813795204235, 0.314372873493192}}; + + // Array of non-zero columns + static const unsigned int nzc12[4] = {0, 1, 2, 3}; + + // Array of non-zero columns + static const unsigned int nzc16[4] = {4, 5, 6, 7}; + + static const double FE0_C0_D001[14][2] = \ + {{-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}, + {-1.0, 1.0}}; + + // Array of non-zero columns + static const unsigned int nzc15[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc14[2] = {0, 2}; + + // Array of non-zero columns + static const unsigned int nzc13[2] = {0, 3}; + + // Array of non-zero columns + static const unsigned int nzc19[2] = {4, 5}; + + // Array of non-zero columns + static const unsigned int nzc18[2] = {4, 6}; + + // Array of non-zero columns + static const unsigned int nzc17[2] = {4, 7}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 64; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 93. + double G[15]; + G[0] = det*w[2][0]*w[3][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + G[1] = det*w[2][0]*w[3][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + G[2] = det*w[2][0]*w[3][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + G[3] = det*w[2][0]*w[3][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + G[4] = det*w[2][0]*w[3][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + G[5] = det*w[2][0]*w[3][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + G[6] = - det*w[1][0]*(K[6]*K[6] + K[7]*K[7] + K[8]*K[8]); + G[7] = - det*w[1][0]*(K[3]*K[6] + K[4]*K[7] + K[5]*K[8]); + G[8] = - det*w[1][0]*(K[0]*K[6] + K[1]*K[7] + K[2]*K[8]); + G[9] = - det*w[1][0]*(K[3]*K[3] + K[4]*K[4] + K[5]*K[5]); + G[10] = - det*w[1][0]*(K[0]*K[3] + K[1]*K[4] + K[2]*K[5]); + G[11] = - det*w[1][0]*(K[0]*K[0] + K[1]*K[1] + K[2]*K[2]); + G[12] = -200.0*det; + G[13] = -1200.0*det; + G[14] = 1200.0*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 5404 + for (unsigned int ip = 0; ip < 14; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + + // Total number of operations to compute function values = 8 + for (unsigned int r = 0; r < 4; r++) + { + F0 += FE0_C0[ip][r]*w[0][nzc12[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 18 + double I[14]; + // Number of operations: 1 + I[0] = G[0]*W14[ip]; + + // Number of operations: 1 + I[1] = G[1]*W14[ip]; + + // Number of operations: 1 + I[2] = G[2]*W14[ip]; + + // Number of operations: 1 + I[3] = G[3]*W14[ip]; + + // Number of operations: 1 + I[4] = G[4]*W14[ip]; + + // Number of operations: 1 + I[5] = G[5]*W14[ip]; + + // Number of operations: 1 + I[6] = G[6]*W14[ip]; + + // Number of operations: 1 + I[7] = G[7]*W14[ip]; + + // Number of operations: 1 + I[8] = G[8]*W14[ip]; + + // Number of operations: 1 + I[9] = G[9]*W14[ip]; + + // Number of operations: 1 + I[10] = G[10]*W14[ip]; + + // Number of operations: 1 + I[11] = G[11]*W14[ip]; + + // Number of operations: 1 + I[12] = W14[ip]*det; + + // Number of operations: 5 + I[13] = W14[ip]*(G[12] + F0*(G[14] + F0*G[13])); + + + // Number of operations for primary indices: 216 + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int k = 0; k < 2; k++) + { + // Number of operations to compute entry: 3 + A[nzc13[j]*8 + nzc17[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[0]; + // Number of operations to compute entry: 3 + A[nzc13[j]*8 + nzc18[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc13[j]*8 + nzc19[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc14[j]*8 + nzc17[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[1]; + // Number of operations to compute entry: 3 + A[nzc14[j]*8 + nzc18[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[3]; + // Number of operations to compute entry: 3 + A[nzc14[j]*8 + nzc19[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc15[j]*8 + nzc17[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[2]; + // Number of operations to compute entry: 3 + A[nzc15[j]*8 + nzc18[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[4]; + // Number of operations to compute entry: 3 + A[nzc15[j]*8 + nzc19[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[5]; + // Number of operations to compute entry: 3 + A[nzc17[j]*8 + nzc13[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[6]; + // Number of operations to compute entry: 3 + A[nzc17[j]*8 + nzc14[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc17[j]*8 + nzc15[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc18[j]*8 + nzc13[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[7]; + // Number of operations to compute entry: 3 + A[nzc18[j]*8 + nzc14[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[9]; + // Number of operations to compute entry: 3 + A[nzc18[j]*8 + nzc15[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[nzc19[j]*8 + nzc13[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[8]; + // Number of operations to compute entry: 3 + A[nzc19[j]*8 + nzc14[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[10]; + // Number of operations to compute entry: 3 + A[nzc19[j]*8 + nzc15[k]] += FE0_C0_D001[ip][j]*FE0_C0_D001[ip][k]*I[11]; + } // end loop over 'k' + } // end loop over 'j' + + // Number of operations for primary indices: 144 + for (unsigned int j = 0; j < 4; j++) + { + for (unsigned int k = 0; k < 4; k++) + { + // Number of operations to compute entry: 3 + A[nzc12[j]*8 + nzc12[k]] += FE0_C0[ip][j]*FE0_C0[ip][k]*I[12]; + // Number of operations to compute entry: 3 + A[nzc16[j]*8 + nzc12[k]] += FE0_C0[ip][j]*FE0_C0[ip][k]*I[13]; + // Number of operations to compute entry: 3 + A[nzc16[j]*8 + nzc16[k]] += FE0_C0[ip][j]*FE0_C0[ip][k]*I[12]; + } // end loop over 'k' + } // end loop over 'j' + } // end loop over 'ip' +} + +/// Constructor +cahnhilliard3d_form_0::cahnhilliard3d_form_0() : ufc::form() +{ + // Do nothing +} + +/// Destructor +cahnhilliard3d_form_0::~cahnhilliard3d_form_0() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* cahnhilliard3d_form_0::signature() const +{ + return "09969a10e5ab5023704c6055d6b9141e2a66b6f7f04617d36bc21430c948b1cbf6992735ebcb0b30ffadbf6261038f4557fc13bb134287250d079f5b023c8c37"; +} + +/// Return the rank of the global tensor (r) +std::size_t cahnhilliard3d_form_0::rank() const +{ + return 1; +} + +/// Return the number of coefficients (n) +std::size_t cahnhilliard3d_form_0::num_coefficients() const +{ + return 5; +} + +/// Return the number of cell domains +std::size_t cahnhilliard3d_form_0::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t cahnhilliard3d_form_0::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t cahnhilliard3d_form_0::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t cahnhilliard3d_form_0::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t cahnhilliard3d_form_0::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool cahnhilliard3d_form_0::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool cahnhilliard3d_form_0::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool cahnhilliard3d_form_0::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool cahnhilliard3d_form_0::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool cahnhilliard3d_form_0::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* cahnhilliard3d_form_0::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard3d_finite_element_2(); + break; + } + case 1: + { + return new cahnhilliard3d_finite_element_2(); + break; + } + case 2: + { + return new cahnhilliard3d_finite_element_2(); + break; + } + case 3: + { + return new cahnhilliard3d_finite_element_0(); + break; + } + case 4: + { + return new cahnhilliard3d_finite_element_0(); + break; + } + case 5: + { + return new cahnhilliard3d_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* cahnhilliard3d_form_0::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard3d_dofmap_2(); + break; + } + case 1: + { + return new cahnhilliard3d_dofmap_2(); + break; + } + case 2: + { + return new cahnhilliard3d_dofmap_2(); + break; + } + case 3: + { + return new cahnhilliard3d_dofmap_0(); + break; + } + case 4: + { + return new cahnhilliard3d_dofmap_0(); + break; + } + case 5: + { + return new cahnhilliard3d_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* cahnhilliard3d_form_0::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* cahnhilliard3d_form_0::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* cahnhilliard3d_form_0::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* cahnhilliard3d_form_0::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* cahnhilliard3d_form_0::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* cahnhilliard3d_form_0::create_default_cell_integral() const +{ + return new cahnhilliard3d_cell_integral_0_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* cahnhilliard3d_form_0::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* cahnhilliard3d_form_0::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* cahnhilliard3d_form_0::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* cahnhilliard3d_form_0::create_default_custom_integral() const +{ + return 0; +} + + +/// Constructor +cahnhilliard3d_form_1::cahnhilliard3d_form_1() : ufc::form() +{ + // Do nothing +} + +/// Destructor +cahnhilliard3d_form_1::~cahnhilliard3d_form_1() +{ + // Do nothing +} + +/// Return a string identifying the form +const char* cahnhilliard3d_form_1::signature() const +{ + return "1b2fe8ef4c61f84a0ae5a77ea338525685d1328160e6e8784da97b9140359cd51150a65a836aed00e0d95a9b135e7f28c5a5102ddddd319cb451985ba5594205"; +} + +/// Return the rank of the global tensor (r) +std::size_t cahnhilliard3d_form_1::rank() const +{ + return 2; +} + +/// Return the number of coefficients (n) +std::size_t cahnhilliard3d_form_1::num_coefficients() const +{ + return 4; +} + +/// Return the number of cell domains +std::size_t cahnhilliard3d_form_1::num_cell_domains() const +{ + return 0; +} + +/// Return the number of exterior facet domains +std::size_t cahnhilliard3d_form_1::num_exterior_facet_domains() const +{ + return 0; +} + +/// Return the number of interior facet domains +std::size_t cahnhilliard3d_form_1::num_interior_facet_domains() const +{ + return 0; +} + +/// Return the number of point domains +std::size_t cahnhilliard3d_form_1::num_point_domains() const +{ + return 0; +} + +/// Return the number of custom domains +std::size_t cahnhilliard3d_form_1::num_custom_domains() const +{ + return 0; +} + +/// Return whether the form has any cell integrals +bool cahnhilliard3d_form_1::has_cell_integrals() const +{ + return true; +} + +/// Return whether the form has any exterior facet integrals +bool cahnhilliard3d_form_1::has_exterior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any interior facet integrals +bool cahnhilliard3d_form_1::has_interior_facet_integrals() const +{ + return false; +} + +/// Return whether the form has any point integrals +bool cahnhilliard3d_form_1::has_point_integrals() const +{ + return false; +} + +/// Return whether the form has any custom integrals +bool cahnhilliard3d_form_1::has_custom_integrals() const +{ + return false; +} + +/// Create a new finite element for argument function i +ufc::finite_element* cahnhilliard3d_form_1::create_finite_element(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard3d_finite_element_2(); + break; + } + case 1: + { + return new cahnhilliard3d_finite_element_2(); + break; + } + case 2: + { + return new cahnhilliard3d_finite_element_2(); + break; + } + case 3: + { + return new cahnhilliard3d_finite_element_0(); + break; + } + case 4: + { + return new cahnhilliard3d_finite_element_0(); + break; + } + case 5: + { + return new cahnhilliard3d_finite_element_0(); + break; + } + } + + return 0; +} + +/// Create a new dofmap for argument function i +ufc::dofmap* cahnhilliard3d_form_1::create_dofmap(std::size_t i) const +{ + switch (i) + { + case 0: + { + return new cahnhilliard3d_dofmap_2(); + break; + } + case 1: + { + return new cahnhilliard3d_dofmap_2(); + break; + } + case 2: + { + return new cahnhilliard3d_dofmap_2(); + break; + } + case 3: + { + return new cahnhilliard3d_dofmap_0(); + break; + } + case 4: + { + return new cahnhilliard3d_dofmap_0(); + break; + } + case 5: + { + return new cahnhilliard3d_dofmap_0(); + break; + } + } + + return 0; +} + +/// Create a new cell integral on sub domain i +ufc::cell_integral* cahnhilliard3d_form_1::create_cell_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new exterior facet integral on sub domain i +ufc::exterior_facet_integral* cahnhilliard3d_form_1::create_exterior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new interior facet integral on sub domain i +ufc::interior_facet_integral* cahnhilliard3d_form_1::create_interior_facet_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new point integral on sub domain i +ufc::point_integral* cahnhilliard3d_form_1::create_point_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new custom integral on sub domain i +ufc::custom_integral* cahnhilliard3d_form_1::create_custom_integral(std::size_t i) const +{ + return 0; +} + +/// Create a new cell integral on everywhere else +ufc::cell_integral* cahnhilliard3d_form_1::create_default_cell_integral() const +{ + return new cahnhilliard3d_cell_integral_1_otherwise(); +} + +/// Create a new exterior facet integral on everywhere else +ufc::exterior_facet_integral* cahnhilliard3d_form_1::create_default_exterior_facet_integral() const +{ + return 0; +} + +/// Create a new interior facet integral on everywhere else +ufc::interior_facet_integral* cahnhilliard3d_form_1::create_default_interior_facet_integral() const +{ + return 0; +} + +/// Create a new point integral on everywhere else +ufc::point_integral* cahnhilliard3d_form_1::create_default_point_integral() const +{ + return 0; +} + +/// Create a new custom integral on everywhere else +ufc::custom_integral* cahnhilliard3d_form_1::create_default_custom_integral() const +{ + return 0; +} + + diff --git a/demo/documented/cahn-hilliard/cpp/CahnHilliard3D.h b/demo/documented/cahn-hilliard/cpp/CahnHilliard3D.h new file mode 100644 index 0000000..32e4145 --- /dev/null +++ b/demo/documented/cahn-hilliard/cpp/CahnHilliard3D.h @@ -0,0 +1,1842 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: True + +#ifndef __CAHNHILLIARD3D_H +#define __CAHNHILLIARD3D_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class cahnhilliard3d_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + cahnhilliard3d_finite_element_0(); + + /// Destructor + virtual ~cahnhilliard3d_finite_element_0(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a finite element. + +class cahnhilliard3d_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + cahnhilliard3d_finite_element_1(); + + /// Destructor + virtual ~cahnhilliard3d_finite_element_1(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a finite element. + +class cahnhilliard3d_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + cahnhilliard3d_finite_element_2(); + + /// Destructor + virtual ~cahnhilliard3d_finite_element_2(); + + /// Return a string identifying the finite element + virtual const char* signature() const; + + /// Return the cell shape + virtual ufc::shape cell_shape() const; + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const; + + /// Return the rank of the value space + virtual std::size_t value_rank() const; + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const; + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation); + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const; + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const; + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const; + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const; + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const; + + /// Create a new class instance + virtual ufc::finite_element* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class cahnhilliard3d_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + cahnhilliard3d_dofmap_0(); + + /// Destructor + virtual ~cahnhilliard3d_dofmap_0(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class cahnhilliard3d_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + cahnhilliard3d_dofmap_1(); + + /// Destructor + virtual ~cahnhilliard3d_dofmap_1(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class cahnhilliard3d_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + cahnhilliard3d_dofmap_2(); + + /// Destructor + virtual ~cahnhilliard3d_dofmap_2(); + + /// Return a string identifying the dofmap + virtual const char* signature() const; + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const; + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const; + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const; + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const; + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const; + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const; + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const; + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const; + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const; + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const; + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** coordinates, + const double* vertex_coordinates) const; + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const; + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const; + + /// Create a new class instance + virtual ufc::dofmap* create() const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class cahnhilliard3d_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + cahnhilliard3d_cell_integral_0_otherwise(); + + /// Destructor + virtual ~cahnhilliard3d_cell_integral_0_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class cahnhilliard3d_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + cahnhilliard3d_cell_integral_1_otherwise(); + + /// Destructor + virtual ~cahnhilliard3d_cell_integral_1_otherwise(); + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const; + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const; + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class cahnhilliard3d_form_0: public ufc::form +{ +public: + + /// Constructor + cahnhilliard3d_form_0(); + + /// Destructor + virtual ~cahnhilliard3d_form_0(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class cahnhilliard3d_form_1: public ufc::form +{ +public: + + /// Constructor + cahnhilliard3d_form_1(); + + /// Destructor + virtual ~cahnhilliard3d_form_1(); + + /// Return a string identifying the form + virtual const char* signature() const; + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const; + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const; + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const; + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const; + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const; + + /// Return the number of point domains + virtual std::size_t num_point_domains() const; + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const; + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const; + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const; + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const; + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const; + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const; + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const; + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const; + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const; + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const; + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const; + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const; + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const; + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const; + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const; + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const; + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const; + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const; +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace CahnHilliard3D +{ + +class CoefficientSpace_dt: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_dt(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_dt(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_dt(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_dt(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_dt(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_dt(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_dt() + { + } + +}; + +class CoefficientSpace_lmbda: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_lmbda(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_lmbda(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_lmbda(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_lmbda(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_lmbda(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_lmbda(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_lmbda() + { + } + +}; + +class CoefficientSpace_theta: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_theta(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_theta(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_theta(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_theta(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_theta(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_theta(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_theta() + { + } + +}; + +class CoefficientSpace_u: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_u(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_u(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_u() + { + } + +}; + +class CoefficientSpace_u0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_u0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_u0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_u0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_u0() + { + } + +}; + +class Form_F_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_F_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_F_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_F_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_u Form_F_FunctionSpace_1; + +typedef CoefficientSpace_u0 Form_F_FunctionSpace_2; + +typedef CoefficientSpace_lmbda Form_F_FunctionSpace_3; + +typedef CoefficientSpace_dt Form_F_FunctionSpace_4; + +typedef CoefficientSpace_theta Form_F_FunctionSpace_5; + +class Form_F: public dolfin::Form +{ +public: + + // Constructor + Form_F(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_0()); + } + + // Constructor + Form_F(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& u0, const dolfin::GenericFunction& lmbda, const dolfin::GenericFunction& dt, const dolfin::GenericFunction& theta): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->u = u; + this->u0 = u0; + this->lmbda = lmbda; + this->dt = dt; + this->theta = theta; + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_0()); + } + + // Constructor + Form_F(const dolfin::FunctionSpace& V0, std::shared_ptr u, std::shared_ptr u0, std::shared_ptr lmbda, std::shared_ptr dt, std::shared_ptr theta): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->u = *u; + this->u0 = *u0; + this->lmbda = *lmbda; + this->dt = *dt; + this->theta = *theta; + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& u0, const dolfin::GenericFunction& lmbda, const dolfin::GenericFunction& dt, const dolfin::GenericFunction& theta): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = V0; + + this->u = u; + this->u0 = u0; + this->lmbda = lmbda; + this->dt = dt; + this->theta = theta; + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_0()); + } + + // Constructor + Form_F(std::shared_ptr V0, std::shared_ptr u, std::shared_ptr u0, std::shared_ptr lmbda, std::shared_ptr dt, std::shared_ptr theta): + dolfin::Form(1, 5), u(*this, 0), u0(*this, 1), lmbda(*this, 2), dt(*this, 3), theta(*this, 4) + { + _function_spaces[0] = V0; + + this->u = *u; + this->u0 = *u0; + this->lmbda = *lmbda; + this->dt = *dt; + this->theta = *theta; + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_0()); + } + + // Destructor + ~Form_F() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "u") + return 0; + else if (name == "u0") + return 1; + else if (name == "lmbda") + return 2; + else if (name == "dt") + return 3; + else if (name == "theta") + return 4; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "u"; + case 1: + return "u0"; + case 2: + return "lmbda"; + case 3: + return "dt"; + case 4: + return "theta"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_F_FunctionSpace_0 TestSpace; + typedef Form_F_FunctionSpace_1 CoefficientSpace_u; + typedef Form_F_FunctionSpace_2 CoefficientSpace_u0; + typedef Form_F_FunctionSpace_3 CoefficientSpace_lmbda; + typedef Form_F_FunctionSpace_4 CoefficientSpace_dt; + typedef Form_F_FunctionSpace_5 CoefficientSpace_theta; + + // Coefficients + dolfin::CoefficientAssigner u; + dolfin::CoefficientAssigner u0; + dolfin::CoefficientAssigner lmbda; + dolfin::CoefficientAssigner dt; + dolfin::CoefficientAssigner theta; +}; + +class Form_J_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_J_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_J_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_J_FunctionSpace_0() + { + } + +}; + +class Form_J_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_J_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_J_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new cahnhilliard3d_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new cahnhilliard3d_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_J_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_u Form_J_FunctionSpace_2; + +typedef CoefficientSpace_lmbda Form_J_FunctionSpace_3; + +typedef CoefficientSpace_dt Form_J_FunctionSpace_4; + +typedef CoefficientSpace_theta Form_J_FunctionSpace_5; + +class Form_J: public dolfin::Form +{ +public: + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_1()); + } + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& lmbda, const dolfin::GenericFunction& dt, const dolfin::GenericFunction& theta): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->u = u; + this->lmbda = lmbda; + this->dt = dt; + this->theta = theta; + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_1()); + } + + // Constructor + Form_J(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr u, std::shared_ptr lmbda, std::shared_ptr dt, std::shared_ptr theta): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->u = *u; + this->lmbda = *lmbda; + this->dt = *dt; + this->theta = *theta; + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& u, const dolfin::GenericFunction& lmbda, const dolfin::GenericFunction& dt, const dolfin::GenericFunction& theta): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->u = u; + this->lmbda = lmbda; + this->dt = dt; + this->theta = theta; + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_1()); + } + + // Constructor + Form_J(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr u, std::shared_ptr lmbda, std::shared_ptr dt, std::shared_ptr theta): + dolfin::Form(2, 4), u(*this, 0), lmbda(*this, 1), dt(*this, 2), theta(*this, 3) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->u = *u; + this->lmbda = *lmbda; + this->dt = *dt; + this->theta = *theta; + + _ufc_form = std::shared_ptr(new cahnhilliard3d_form_1()); + } + + // Destructor + ~Form_J() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "u") + return 0; + else if (name == "lmbda") + return 1; + else if (name == "dt") + return 2; + else if (name == "theta") + return 3; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "u"; + case 1: + return "lmbda"; + case 2: + return "dt"; + case 3: + return "theta"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_J_FunctionSpace_0 TestSpace; + typedef Form_J_FunctionSpace_1 TrialSpace; + typedef Form_J_FunctionSpace_2 CoefficientSpace_u; + typedef Form_J_FunctionSpace_3 CoefficientSpace_lmbda; + typedef Form_J_FunctionSpace_4 CoefficientSpace_dt; + typedef Form_J_FunctionSpace_5 CoefficientSpace_theta; + + // Coefficients + dolfin::CoefficientAssigner u; + dolfin::CoefficientAssigner lmbda; + dolfin::CoefficientAssigner dt; + dolfin::CoefficientAssigner theta; +}; + +// Class typedefs +typedef Form_J BilinearForm; +typedef Form_J JacobianForm; +typedef Form_F LinearForm; +typedef Form_F ResidualForm; +typedef Form_F::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/documented/cahn-hilliard/cpp/CahnHilliard3D.ufl b/demo/documented/cahn-hilliard/cpp/CahnHilliard3D.ufl new file mode 100644 index 0000000..89e20ca --- /dev/null +++ b/demo/documented/cahn-hilliard/cpp/CahnHilliard3D.ufl @@ -0,0 +1,56 @@ +# Copyright (C) 2006-2010 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2006 +# Last changed: 2011-06-30 +# +# The linearised bilinear form a(du, v) and linear form L(v) for +# the Cahn-Hilliard equation. +# +# Compile this form with FFC: ffc -l dolfin -O -f split CahnHilliard3D.ufl + +P1 = FiniteElement("Lagrange", tetrahedron, 1) +ME = P1*P1 + +du = TrialFunction(ME) +q, v = TestFunctions(ME) + +u = Coefficient(ME) # current solution +u0 = Coefficient(ME) # solution from previous converged step + +# Split mixed functions +dc, dmu = split(du) +c, mu = split(u) +c0, mu0 = split(u0) + +lmbda = Constant(tetrahedron) # surface energy parameter +dt = Constant(tetrahedron) # time step +theta = Constant(tetrahedron) # time stepping parameter + +# mu_(n+theta) +mu_mid = (1-theta)*mu0 + theta*mu + +# Compute the chemical potential df/dc +c = variable(c) +f = 100*c**2*(1-c)**2 +dfdc = diff(f, c) + +F0 = c*q*dx - c0*q*dx + dt*dot(grad(mu_mid), grad(q))*dx +F1 = mu*v*dx - dfdc*v*dx - lmbda*dot(grad(c), grad(v))*dx +F = F0 + F1 + +J = derivative(F, u, du) diff --git a/demo/documented/cahn-hilliard/cpp/compile.log b/demo/documented/cahn-hilliard/cpp/compile.log new file mode 100644 index 0000000..35cb8f8 --- /dev/null +++ b/demo/documented/cahn-hilliard/cpp/compile.log @@ -0,0 +1,7060 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form CahnHilliard3D + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'F' + Geometric dimension: 3 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 5 + Coefficients: '[w_0, w_1, c_2, c_3, c_4]' + Coefficient names: '[u, u0, lmbda, dt, theta]' + Unique elements: 'Mixed, R0(?)' + Unique sub elements: 'Mixed, R0(?), CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 5 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + + Name: 'J' + Geometric dimension: 3 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, du]' + Number of coefficients: 4 + Coefficients: '[w_0, c_2, c_3, c_4]' + Coefficient names: '[u, lmbda, dt, theta]' + Unique elements: 'Mixed, R0(?)' + Unique sub elements: 'Mixed, R0(?), CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 4 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0881329 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 3 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 3 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {14: {FiniteElement('Real', Domain(Cell('tetrahedron', 3), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0, 0): array([[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.]])}}}, VectorElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, dim=3, quad_scheme=None): {None: {None: {(1, 0, 0): array([[[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]]]), (0, 1, 0): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.66533454e-16, 1.66533454e-16, -1.66533454e-16, + -1.66533454e-16, -1.66533454e-16, 1.66533454e-16, + -1.11022302e-16, -1.11022302e-16, 3.88578059e-16, + -1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + -1.11022302e-16, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.66533454e-16, 1.66533454e-16, -1.66533454e-16, + -1.66533454e-16, -1.66533454e-16, 1.66533454e-16, + -1.11022302e-16, -1.11022302e-16, 3.88578059e-16, + -1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + -1.11022302e-16, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.66533454e-16, 1.66533454e-16, -1.66533454e-16, + -1.66533454e-16, -1.66533454e-16, 1.66533454e-16, + -1.11022302e-16, -1.11022302e-16, 3.88578059e-16, + -1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + -1.11022302e-16, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]]), (0, 0, 0): array([[[ 4.16333634e-17, 9.71445147e-17, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + 5.00000000e-01, -1.38777878e-17, 1.38777878e-17, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 5.00000000e-01, -2.77555756e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, -2.77555756e-17, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 9.71445147e-17, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + 5.00000000e-01, -1.38777878e-17, 1.38777878e-17, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -2.77555756e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, -2.77555756e-17, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 9.71445147e-17, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + 5.00000000e-01, -1.38777878e-17, 1.38777878e-17, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -2.77555756e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, -2.77555756e-17, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01]]]), (0, 0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 3.33066907e-16, 3.33066907e-16, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 3.33066907e-16, + -5.55111512e-17, -5.55111512e-17, 4.44089210e-16, + -5.55111512e-17, 5.55111512e-17, 5.55111512e-17, + -5.55111512e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.33066907e-16, 3.33066907e-16, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 3.33066907e-16, + -5.55111512e-17, -5.55111512e-17, 4.44089210e-16, + -5.55111512e-17, 5.55111512e-17, 5.55111512e-17, + -5.55111512e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.33066907e-16, 3.33066907e-16, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 3.33066907e-16, + -5.55111512e-17, -5.55111512e-17, 4.44089210e-16, + -5.55111512e-17, 5.55111512e-17, 5.55111512e-17, + -5.55111512e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00]]])}}}, MixedElement(*[FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (2,) }): {None: {None: {(1, 0, 0): array([[[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]]]), (0, 1, 0): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.66533454e-16, 1.66533454e-16, -1.66533454e-16, + -1.66533454e-16, -1.66533454e-16, 1.66533454e-16, + -1.11022302e-16, -1.11022302e-16, 3.88578059e-16, + -1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + -1.11022302e-16, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.66533454e-16, 1.66533454e-16, -1.66533454e-16, + -1.66533454e-16, -1.66533454e-16, 1.66533454e-16, + -1.11022302e-16, -1.11022302e-16, 3.88578059e-16, + -1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + -1.11022302e-16, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]]), (0, 0, 0): array([[[ 4.16333634e-17, 9.71445147e-17, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + 5.00000000e-01, -1.38777878e-17, 1.38777878e-17, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 5.00000000e-01, -2.77555756e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, -2.77555756e-17, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 9.71445147e-17, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + 5.00000000e-01, -1.38777878e-17, 1.38777878e-17, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -2.77555756e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, -2.77555756e-17, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01]]]), (0, 0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 3.33066907e-16, 3.33066907e-16, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 3.33066907e-16, + -5.55111512e-17, -5.55111512e-17, 4.44089210e-16, + -5.55111512e-17, 5.55111512e-17, 5.55111512e-17, + -5.55111512e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.33066907e-16, 3.33066907e-16, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 3.33066907e-16, + -5.55111512e-17, -5.55111512e-17, 4.44089210e-16, + -5.55111512e-17, 5.55111512e-17, 5.55111512e-17, + -5.55111512e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 4.44089210e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00]]), 'FE0_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.44089210e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C2_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.88578059e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]), 'FE1_C0': array([[ 4.16333634e-17, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 9.71445147e-17, 5.00000000e-01, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.93889390e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -1.38777878e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 1.38777878e-17, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.68813795e-02, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE1_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE1_C0_D010': array([[ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D010': array([[ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D001': array([[ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.44089210e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D001': array([[ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.44089210e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.16333634e-17, 0.00000000e+00, + 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.71445147e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.93889390e-17, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + -2.77555756e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, -1.38777878e-17, + 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 1.38777878e-17, + -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE2': array([[ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE1_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.44089210e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00]]), 'FE0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 4.16333634e-17, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 9.71445147e-17, + 5.00000000e-01, -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, -2.77555756e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + -1.38777878e-17, 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.38777878e-17, -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02, 3.14372873e-01]]), 'FE0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.16333634e-17, 0.00000000e+00, + 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.71445147e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.93889390e-17, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + -2.77555756e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, -1.38777878e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 1.38777878e-17, + -2.77555756e-17, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0': array([[ 4.16333634e-17, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.71445147e-17, 5.00000000e-01, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.93889390e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -1.38777878e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 1.38777878e-17, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.68813795e-02, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + tables: {'FE0_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 4.44089210e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00]]), 'FE0_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.44089210e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C2_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.88578059e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]), 'FE1_C0': array([[ 4.16333634e-17, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 9.71445147e-17, 5.00000000e-01, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.93889390e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -1.38777878e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 1.38777878e-17, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.68813795e-02, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE1_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE1_C0_D010': array([[ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D010': array([[ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D001': array([[ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.44089210e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D001': array([[ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.44089210e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.16333634e-17, 0.00000000e+00, + 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.71445147e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.93889390e-17, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + -2.77555756e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, -1.38777878e-17, + 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 1.38777878e-17, + -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE2': array([[ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE1_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.44089210e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00]]), 'FE0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 4.16333634e-17, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 9.71445147e-17, + 5.00000000e-01, -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, -2.77555756e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + -1.38777878e-17, 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.38777878e-17, -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02, 3.14372873e-01]]), 'FE0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.16333634e-17, 0.00000000e+00, + 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.71445147e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.93889390e-17, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + -2.77555756e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, -1.38777878e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 1.38777878e-17, + -2.77555756e-17, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0': array([[ 4.16333634e-17, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.71445147e-17, 5.00000000e-01, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.93889390e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -1.38777878e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 1.38777878e-17, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.68813795e-02, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + name_map: {} + + inv_name_map: {'FE0_C2_D001': 'FE0_C2_D001', 'FE0_C1_D001': 'FE0_C1_D001', 'FE0_C1_D010': 'FE0_C1_D010', 'FE0_C2_D010': 'FE0_C2_D010', 'FE1_C0': 'FE1_C0', 'FE0_C1_D100': 'FE0_C1_D100', 'FE0_C0_D100': 'FE0_C0_D100', 'FE1_C0_D100': 'FE1_C0_D100', 'FE1_C0_D010': 'FE1_C0_D010', 'FE0_C0_D010': 'FE0_C0_D010', 'FE0_C0_D001': 'FE0_C0_D001', 'FE1_C0_D001': 'FE1_C0_D001', 'FE1_C1_D100': 'FE1_C1_D100', 'FE1_C1': 'FE1_C1', 'FE0_C2_D100': 'FE0_C2_D100', 'FE2': 'FE2', 'FE1_C1_D010': 'FE1_C1_D010', 'FE1_C1_D001': 'FE1_C1_D001', 'FE0_C2': 'FE0_C2', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_C0_D001': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE2': array([[ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE0_C0': array([[ 0. , 0. , 0.5 , 0.5 ], + [ 0. , 0.5 , 0. , 0.5 ], + [ 0. , 0.5 , 0.5 , 0. ], + [ 0.5 , 0.5 , 0. , 0. ], + [ 0.5 , 0. , 0.5 , 0. ], + [ 0.5 , 0. , 0. , 0.5 ], + [ 0.10052677, 0.6984197 , 0.10052677, 0.10052677], + [ 0.6984197 , 0.10052677, 0.10052677, 0.10052677], + [ 0.10052677, 0.10052677, 0.10052677, 0.6984197 ], + [ 0.10052677, 0.10052677, 0.6984197 , 0.10052677], + [ 0.31437287, 0.05688138, 0.31437287, 0.31437287], + [ 0.05688138, 0.31437287, 0.31437287, 0.31437287], + [ 0.31437287, 0.31437287, 0.31437287, 0.05688138], + [ 0.31437287, 0.31437287, 0.05688138, 0.31437287]])} + + QG-utils, psi_tables, name_map: + {'FE0_C2_D001': ('FE0_C0_D001', (9, [8, 11]), False, False), 'FE0_C1_D001': ('FE0_C0_D001', (5, [4, 7]), False, False), 'FE0_C1_D010': ('FE0_C0_D001', (6, [4, 6]), False, False), 'FE0_C2_D010': ('FE0_C0_D001', (10, [8, 10]), False, False), 'FE1_C0': ('FE0_C0', (12, [0, 1, 2, 3]), False, False), 'FE0_C1_D100': ('FE0_C0_D001', (7, [4, 5]), False, False), 'FE0_C0_D100': ('FE0_C0_D001', (3, [0, 1]), False, False), 'FE1_C0_D100': ('FE0_C0_D001', (15, [0, 1]), False, False), 'FE1_C0_D010': ('FE0_C0_D001', (14, [0, 2]), False, False), 'FE0_C0_D010': ('FE0_C0_D001', (2, [0, 2]), False, False), 'FE0_C0_D001': ('FE0_C0_D001', (1, [0, 3]), False, False), 'FE1_C0_D001': ('FE0_C0_D001', (13, [0, 3]), False, False), 'FE1_C1_D100': ('FE0_C0_D001', (19, [4, 5]), False, False), 'FE1_C1': ('FE0_C0', (16, [4, 5, 6, 7]), False, False), 'FE0_C2_D100': ('FE0_C0_D001', (11, [8, 9]), False, False), 'FE2': ('FE2', (), False, True), 'FE1_C1_D010': ('FE0_C0_D001', (18, [4, 6]), False, False), 'FE1_C1_D001': ('FE0_C0_D001', (17, [4, 7]), False, False), 'FE0_C2': ('FE0_C0', (8, [8, 9, 10, 11]), False, False), 'FE0_C1': ('FE0_C0', (4, [4, 5, 6, 7]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2, 3]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {14: {FiniteElement('Real', Domain(Cell('tetrahedron', 3), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0, 0): array([[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.]])}}}, VectorElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, dim=3, quad_scheme=None): {None: {None: {(1, 0, 0): array([[[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]]]), (0, 1, 0): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.66533454e-16, 1.66533454e-16, -1.66533454e-16, + -1.66533454e-16, -1.66533454e-16, 1.66533454e-16, + -1.11022302e-16, -1.11022302e-16, 3.88578059e-16, + -1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + -1.11022302e-16, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.66533454e-16, 1.66533454e-16, -1.66533454e-16, + -1.66533454e-16, -1.66533454e-16, 1.66533454e-16, + -1.11022302e-16, -1.11022302e-16, 3.88578059e-16, + -1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + -1.11022302e-16, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.66533454e-16, 1.66533454e-16, -1.66533454e-16, + -1.66533454e-16, -1.66533454e-16, 1.66533454e-16, + -1.11022302e-16, -1.11022302e-16, 3.88578059e-16, + -1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + -1.11022302e-16, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]]), (0, 0, 0): array([[[ 4.16333634e-17, 9.71445147e-17, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + 5.00000000e-01, -1.38777878e-17, 1.38777878e-17, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 5.00000000e-01, -2.77555756e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, -2.77555756e-17, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 9.71445147e-17, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + 5.00000000e-01, -1.38777878e-17, 1.38777878e-17, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -2.77555756e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, -2.77555756e-17, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 9.71445147e-17, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + 5.00000000e-01, -1.38777878e-17, 1.38777878e-17, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -2.77555756e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, -2.77555756e-17, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01]]]), (0, 0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 3.33066907e-16, 3.33066907e-16, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 3.33066907e-16, + -5.55111512e-17, -5.55111512e-17, 4.44089210e-16, + -5.55111512e-17, 5.55111512e-17, 5.55111512e-17, + -5.55111512e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.33066907e-16, 3.33066907e-16, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 3.33066907e-16, + -5.55111512e-17, -5.55111512e-17, 4.44089210e-16, + -5.55111512e-17, 5.55111512e-17, 5.55111512e-17, + -5.55111512e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.33066907e-16, 3.33066907e-16, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 3.33066907e-16, + -5.55111512e-17, -5.55111512e-17, 4.44089210e-16, + -5.55111512e-17, 5.55111512e-17, 5.55111512e-17, + -5.55111512e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00]]])}}}, MixedElement(*[FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('tetrahedron', 3), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (2,) }): {None: {None: {(1, 0, 0): array([[[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0.]]]), (0, 1, 0): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.66533454e-16, 1.66533454e-16, -1.66533454e-16, + -1.66533454e-16, -1.66533454e-16, 1.66533454e-16, + -1.11022302e-16, -1.11022302e-16, 3.88578059e-16, + -1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + -1.11022302e-16, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.66533454e-16, 1.66533454e-16, -1.66533454e-16, + -1.66533454e-16, -1.66533454e-16, 1.66533454e-16, + -1.11022302e-16, -1.11022302e-16, 3.88578059e-16, + -1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + -1.11022302e-16, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]]), (0, 0, 0): array([[[ 4.16333634e-17, 9.71445147e-17, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + 5.00000000e-01, -1.38777878e-17, 1.38777878e-17, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 5.00000000e-01, -2.77555756e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, -2.77555756e-17, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 9.71445147e-17, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + 5.00000000e-01, -1.38777878e-17, 1.38777878e-17, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -2.77555756e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, -2.77555756e-17, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01]]]), (0, 0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 3.33066907e-16, 3.33066907e-16, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 3.33066907e-16, + -5.55111512e-17, -5.55111512e-17, 4.44089210e-16, + -5.55111512e-17, 5.55111512e-17, 5.55111512e-17, + -5.55111512e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.33066907e-16, 3.33066907e-16, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 3.33066907e-16, + -5.55111512e-17, -5.55111512e-17, 4.44089210e-16, + -5.55111512e-17, 5.55111512e-17, 5.55111512e-17, + -5.55111512e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 0.00000000e+00, + -5.55111512e-17, -5.55111512e-17, -5.55111512e-17, + -5.55111512e-17, -5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 4.44089210e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00]]), 'FE0_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.44089210e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C2_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.88578059e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]), 'FE1_C0': array([[ 4.16333634e-17, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 9.71445147e-17, 5.00000000e-01, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.93889390e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -1.38777878e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 1.38777878e-17, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.68813795e-02, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE1_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE1_C0_D010': array([[ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D010': array([[ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D001': array([[ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.44089210e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D001': array([[ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.44089210e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.16333634e-17, 0.00000000e+00, + 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.71445147e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.93889390e-17, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + -2.77555756e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, -1.38777878e-17, + 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 1.38777878e-17, + -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE2': array([[ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE1_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.44089210e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00]]), 'FE0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 4.16333634e-17, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 9.71445147e-17, + 5.00000000e-01, -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, -2.77555756e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + -1.38777878e-17, 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.38777878e-17, -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02, 3.14372873e-01]]), 'FE0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.16333634e-17, 0.00000000e+00, + 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.71445147e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.93889390e-17, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + -2.77555756e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, -1.38777878e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 1.38777878e-17, + -2.77555756e-17, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0': array([[ 4.16333634e-17, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.71445147e-17, 5.00000000e-01, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.93889390e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -1.38777878e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 1.38777878e-17, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.68813795e-02, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + tables: {'FE0_C2_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.33066907e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 4.44089210e-16, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -5.55111512e-17, -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 5.55111512e-17, -5.55111512e-17, 1.00000000e+00]]), 'FE0_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.44089210e-16, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C2_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 1.66533454e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 3.88578059e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + -1.11022302e-16, 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00]]), 'FE1_C0': array([[ 4.16333634e-17, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 9.71445147e-17, 5.00000000e-01, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.93889390e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -1.38777878e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 1.38777878e-17, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 5.68813795e-02, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE0_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), 'FE1_C0_D100': array([[-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0., 0., 0.]]), 'FE1_C0_D010': array([[ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D010': array([[ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.66533454e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.88578059e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D001': array([[ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.44089210e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D001': array([[ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 3.33066907e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 4.44089210e-16, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 5.55111512e-17, -5.55111512e-17, + 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D100': array([[ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.16333634e-17, 0.00000000e+00, + 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.71445147e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.93889390e-17, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + -2.77555756e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, -1.38777878e-17, + 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 1.38777878e-17, + -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01]]), 'FE0_C2_D100': array([[ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., -1., 1., 0., 0.]]), 'FE2': array([[ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE1_C1_D010': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 1.66533454e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.88578059e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -1.11022302e-16, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D001': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 3.33066907e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 4.44089210e-16, + 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, -5.55111512e-17, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -1.00000000e+00, 5.55111512e-17, + -5.55111512e-17, 1.00000000e+00]]), 'FE0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 4.16333634e-17, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 9.71445147e-17, + 5.00000000e-01, -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.93889390e-17, + 5.00000000e-01, 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, -2.77555756e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + -1.38777878e-17, 5.00000000e-01, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.00000000e-01, + 1.38777878e-17, -2.77555756e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01, 6.98419704e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01, 1.00526765e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01, 3.14372873e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01, 5.68813795e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02, 3.14372873e-01]]), 'FE0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.16333634e-17, 0.00000000e+00, + 5.00000000e-01, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.71445147e-17, 5.00000000e-01, + -2.77555756e-17, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.93889390e-17, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 5.00000000e-01, + -2.77555756e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, -1.38777878e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.00000000e-01, 1.38777878e-17, + -2.77555756e-17, 5.00000000e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 6.98419704e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 1.00526765e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 5.68813795e-02, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 3.14372873e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0': array([[ 4.16333634e-17, 0.00000000e+00, 5.00000000e-01, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.71445147e-17, 5.00000000e-01, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.93889390e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 5.00000000e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, -1.38777878e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 1.38777878e-17, -2.77555756e-17, + 5.00000000e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 6.98419704e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.98419704e-01, 1.00526765e-01, 1.00526765e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 1.00526765e-01, + 6.98419704e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00526765e-01, 1.00526765e-01, 6.98419704e-01, + 1.00526765e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 5.68813795e-02, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.68813795e-02, 3.14372873e-01, 3.14372873e-01, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 3.14372873e-01, + 5.68813795e-02, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.14372873e-01, 3.14372873e-01, 5.68813795e-02, + 3.14372873e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + name_map: {} + + inv_name_map: {'FE0_C2_D001': 'FE0_C2_D001', 'FE0_C1_D001': 'FE0_C1_D001', 'FE0_C1_D010': 'FE0_C1_D010', 'FE0_C2_D010': 'FE0_C2_D010', 'FE1_C0': 'FE1_C0', 'FE0_C1_D100': 'FE0_C1_D100', 'FE0_C0_D100': 'FE0_C0_D100', 'FE1_C0_D100': 'FE1_C0_D100', 'FE1_C0_D010': 'FE1_C0_D010', 'FE0_C0_D010': 'FE0_C0_D010', 'FE0_C0_D001': 'FE0_C0_D001', 'FE1_C0_D001': 'FE1_C0_D001', 'FE1_C1_D100': 'FE1_C1_D100', 'FE1_C1': 'FE1_C1', 'FE0_C2_D100': 'FE0_C2_D100', 'FE2': 'FE2', 'FE1_C1_D010': 'FE1_C1_D010', 'FE1_C1_D001': 'FE1_C1_D001', 'FE0_C2': 'FE0_C2', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_C0_D001': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE2': array([[ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.], + [ 1.]]), 'FE0_C0': array([[ 0. , 0. , 0.5 , 0.5 ], + [ 0. , 0.5 , 0. , 0.5 ], + [ 0. , 0.5 , 0.5 , 0. ], + [ 0.5 , 0.5 , 0. , 0. ], + [ 0.5 , 0. , 0.5 , 0. ], + [ 0.5 , 0. , 0. , 0.5 ], + [ 0.10052677, 0.6984197 , 0.10052677, 0.10052677], + [ 0.6984197 , 0.10052677, 0.10052677, 0.10052677], + [ 0.10052677, 0.10052677, 0.10052677, 0.6984197 ], + [ 0.10052677, 0.10052677, 0.6984197 , 0.10052677], + [ 0.31437287, 0.05688138, 0.31437287, 0.31437287], + [ 0.05688138, 0.31437287, 0.31437287, 0.31437287], + [ 0.31437287, 0.31437287, 0.31437287, 0.05688138], + [ 0.31437287, 0.31437287, 0.05688138, 0.31437287]])} + + QG-utils, psi_tables, name_map: + {'FE0_C2_D001': ('FE0_C0_D001', (9, [8, 11]), False, False), 'FE0_C1_D001': ('FE0_C0_D001', (5, [4, 7]), False, False), 'FE0_C1_D010': ('FE0_C0_D001', (6, [4, 6]), False, False), 'FE0_C2_D010': ('FE0_C0_D001', (10, [8, 10]), False, False), 'FE1_C0': ('FE0_C0', (12, [0, 1, 2, 3]), False, False), 'FE0_C1_D100': ('FE0_C0_D001', (7, [4, 5]), False, False), 'FE0_C0_D100': ('FE0_C0_D001', (3, [0, 1]), False, False), 'FE1_C0_D100': ('FE0_C0_D001', (15, [0, 1]), False, False), 'FE1_C0_D010': ('FE0_C0_D001', (14, [0, 2]), False, False), 'FE0_C0_D010': ('FE0_C0_D001', (2, [0, 2]), False, False), 'FE0_C0_D001': ('FE0_C0_D001', (1, [0, 3]), False, False), 'FE1_C0_D001': ('FE0_C0_D001', (13, [0, 3]), False, False), 'FE1_C1_D100': ('FE0_C0_D001', (19, [4, 5]), False, False), 'FE1_C1': ('FE0_C0', (16, [4, 5, 6, 7]), False, False), 'FE0_C2_D100': ('FE0_C0_D001', (11, [8, 9]), False, False), 'FE2': ('FE2', (), False, True), 'FE1_C1_D010': ('FE0_C0_D001', (18, [4, 6]), False, False), 'FE1_C1_D001': ('FE0_C0_D001', (17, [4, 7]), False, False), 'FE0_C2': ('FE0_C0', (8, [8, 9, 10, 11]), False, False), 'FE0_C1': ('FE0_C0', (4, [4, 5, 6, 7]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2, 3]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 2.66944 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Optimising expressions for cell integral + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.029104 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 3 element(s) + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Z + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: d_22 + Removing unused variable: d_21 + Removing unused variable: d_20 + Removing unused variable: d_12 + Removing unused variable: d_11 + Removing unused variable: d_10 + Removing unused variable: d_02 + Removing unused variable: d_01 + Removing unused variable: d_00 + Removing unused variable: C2 + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp4 + Removing unused variable: tmp3 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 3 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: area + Removing unused variable: s + Removing unused variable: lc + Removing unused variable: lb + Removing unused variable: la + Removing unused variable: v2v3 + Removing unused variable: v1v3 + Removing unused variable: v0v3 + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: circumradius + Removing unused variable: area + Removing unused variable: s + Removing unused variable: lc + Removing unused variable: lb + Removing unused variable: la + Removing unused variable: v2v3 + Removing unused variable: v1v3 + Removing unused variable: v0v3 + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.241875 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.00130987 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./CahnHilliard3D.h. + Output written to ./CahnHilliard3D.cpp. + +Compiler stage 5 finished in 0.00139999 seconds. + +FFC finished in 3.0317 seconds. +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form CahnHilliard2D + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'F' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 5 + Coefficients: '[w_0, w_1, c_2, c_3, c_4]' + Coefficient names: '[u, u0, lmbda, dt, theta]' + Unique elements: 'Mixed, R0(?)' + Unique sub elements: 'Mixed, R0(?), CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 5 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + + Name: 'J' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, du]' + Number of coefficients: 4 + Coefficients: '[w_0, c_2, c_3, c_4]' + Coefficient names: '[u, lmbda, dt, theta]' + Unique elements: 'Mixed, R0(?)' + Unique sub elements: 'Mixed, R0(?), CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 4 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.072963 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 3 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 3 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {6: {FiniteElement('Real', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0): array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object)}}}, MixedElement(*[FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (2,) }): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849]]])}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE0_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]])} + + tables: {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE0_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE0_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]])} + + name_map: {'FE0_C1_D01': ['FE1_C1_D01'], 'FE0_C1_D10': ['FE1_C1_D10'], 'FE0_C0_D10': ['FE1_C0_D10'], 'FE0_C0_D01': ['FE1_C0_D01'], 'FE0_C1': ['FE1_C1'], 'FE0_C0': ['FE1_C0']} + + inv_name_map: {'FE0_C1_D01': 'FE0_C1_D01', 'FE1_C0': 'FE0_C0', 'FE1_C1_D01': 'FE0_C1_D01', 'FE0_C1_D10': 'FE0_C1_D10', 'FE1_C1_D10': 'FE0_C1_D10', 'FE0_C0_D10': 'FE0_C0_D10', 'FE0_C0_D01': 'FE0_C0_D01', 'FE2': 'FE2', 'FE1_C1': 'FE0_C1', 'FE1_C0_D01': 'FE0_C0_D01', 'FE1_C0_D10': 'FE0_C0_D10', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE0_C0': array([[ 0.09157621, 0.81684757, 0.09157621], + [ 0.09157621, 0.09157621, 0.81684757], + [ 0.81684757, 0.09157621, 0.09157621], + [ 0.44594849, 0.10810302, 0.44594849], + [ 0.44594849, 0.44594849, 0.10810302], + [ 0.10810302, 0.44594849, 0.44594849]])} + + QG-utils, psi_tables, name_map: + {'FE0_C1_D01': ('FE0_C0_D01', (4, [3, 5]), False, False), 'FE1_C0': ('FE0_C0', (0, [0, 1, 2]), False, False), 'FE1_C1_D01': ('FE0_C0_D01', (4, [3, 5]), False, False), 'FE0_C1_D10': ('FE0_C0_D01', (5, [3, 4]), False, False), 'FE1_C1_D10': ('FE0_C0_D01', (5, [3, 4]), False, False), 'FE0_C0_D10': ('FE0_C0_D01', (2, [0, 1]), False, False), 'FE0_C0_D01': ('FE0_C0_D01', (1, [0, 2]), False, False), 'FE2': ('FE2', (), False, True), 'FE1_C1': ('FE0_C0', (3, [3, 4, 5]), False, False), 'FE1_C0_D01': ('FE0_C0_D01', (1, [0, 2]), False, False), 'FE1_C0_D10': ('FE0_C0_D01', (2, [0, 1]), False, False), 'FE0_C1': ('FE0_C0', (3, [3, 4, 5]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {6: {FiniteElement('Real', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0): array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object)}}}, MixedElement(*[FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (2,) }): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849]]])}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE0_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]])} + + tables: {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE0_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE0_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]])} + + name_map: {'FE0_C1_D01': ['FE1_C1_D01'], 'FE0_C1_D10': ['FE1_C1_D10'], 'FE0_C0_D10': ['FE1_C0_D10'], 'FE0_C0_D01': ['FE1_C0_D01'], 'FE0_C1': ['FE1_C1'], 'FE0_C0': ['FE1_C0']} + + inv_name_map: {'FE0_C1_D01': 'FE0_C1_D01', 'FE1_C0': 'FE0_C0', 'FE1_C1_D01': 'FE0_C1_D01', 'FE0_C1_D10': 'FE0_C1_D10', 'FE1_C1_D10': 'FE0_C1_D10', 'FE0_C0_D10': 'FE0_C0_D10', 'FE0_C0_D01': 'FE0_C0_D01', 'FE2': 'FE2', 'FE1_C1': 'FE0_C1', 'FE1_C0_D01': 'FE0_C0_D01', 'FE1_C0_D10': 'FE0_C0_D10', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE0_C0': array([[ 0.09157621, 0.81684757, 0.09157621], + [ 0.09157621, 0.09157621, 0.81684757], + [ 0.81684757, 0.09157621, 0.09157621], + [ 0.44594849, 0.10810302, 0.44594849], + [ 0.44594849, 0.44594849, 0.10810302], + [ 0.10810302, 0.44594849, 0.44594849]])} + + QG-utils, psi_tables, name_map: + {'FE0_C1_D01': ('FE0_C0_D01', (4, [3, 5]), False, False), 'FE1_C0': ('FE0_C0', (0, [0, 1, 2]), False, False), 'FE1_C1_D01': ('FE0_C0_D01', (4, [3, 5]), False, False), 'FE0_C1_D10': ('FE0_C0_D01', (5, [3, 4]), False, False), 'FE1_C1_D10': ('FE0_C0_D01', (5, [3, 4]), False, False), 'FE0_C0_D10': ('FE0_C0_D01', (2, [0, 1]), False, False), 'FE0_C0_D01': ('FE0_C0_D01', (1, [0, 2]), False, False), 'FE2': ('FE2', (), False, True), 'FE1_C1': ('FE0_C0', (3, [3, 4, 5]), False, False), 'FE1_C0_D01': ('FE0_C0_D01', (1, [0, 2]), False, False), 'FE1_C0_D10': ('FE0_C0_D01', (2, [0, 1]), False, False), 'FE0_C1': ('FE0_C0', (3, [3, 4, 5]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.413997 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + Optimising expressions for cell integral + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.0159562 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 3 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 3 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.123621 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.00110006 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./CahnHilliard2D.h. + Output written to ./CahnHilliard2D.cpp. + +Compiler stage 5 finished in 0.0012939 seconds. + +FFC finished in 0.629438 seconds. diff --git a/demo/documented/cahn-hilliard/cpp/documentation.rst b/demo/documented/cahn-hilliard/cpp/documentation.rst new file mode 100644 index 0000000..ed3f1ec --- /dev/null +++ b/demo/documented/cahn-hilliard/cpp/documentation.rst @@ -0,0 +1,411 @@ +.. Documentation for the Cahn-Hilliard demo from DOLFIN. + +.. _demo_pde_cahn_hilliard_cpp_documentation: + +Cahn-Hilliard equation +====================== + +.. include:: ../common.txt + +Implementation +-------------- + +The implementation is split in three files: two form files containing the +definition of the variational forms expressed in UFL and a C++ file +containing the actual solver. + +Running this demo requires the files: :download:`main.cpp`, +:download:`CahnHilliard2D.ufl`, :download:`CahnHilliard3D.ufl` and +:download:`CMakeLists.txt`. + +UFL form files +^^^^^^^^^^^^^^ + +The UFL code for this problem in two and three dimensions are in +:download:`CahnHilliard2D.ufl` and :download:`CahnHilliard3D.ufl` respectively. +However, only the two dimensional case is explained in detail in the following. + +First, a mixed function spaces of linear Lagrange functions on triangles +is created: + +.. code-block:: python + + P1 = FiniteElement("Lagrange", triangle, 1) + ME = P1*P1 + +On the mixed space, trial and test functions are defined: + +.. code-block:: python + + du = TrialFunction(ME) + q, v = TestFunctions(ME) + +The test functions have been split into components. + +Coefficient functions are now defined for the current solution (the +most recent guess) and the solution from the beginning of the time +step. Further, these functions (and the trial function) are split into +their components: + +.. code-block:: python + + u = Coefficient(ME) # current solution + u0 = Coefficient(ME) # solution from previous converged step + + # Split mixed functions + dc, dmu = split(du) + c, mu = split(u) + c0, mu0 = split(u0) + +Various model parameters can be specified using the class +:py:class:`Constant`. This means that their value can be changed +without recompiling the UFL file. Lastly, the value of +:math:`\mu_{n+\theta}` is computed. + +.. code-block:: python + + lmbda = Constant(triangle) # surface energy parameter + dt = Constant(triangle) # time step + theta = Constant(triangle) # time stepping parameter + + # mu_(n+theta) + mu_mid = (1-theta)*mu0 + theta*mu + +.. index:: automatic differentiation + +The chemical potential :math:`df/dc` will be computed using automated +differentiation: + +.. code-block:: python + + # Compute the chemical potential df/dc + c = variable(c) + f = 100*c**2*(1-c)**2 + dfdc = diff(f, c) + +Here, the first line declares that ``c`` is a variable that some +function can be differentiated with respect to. The next line is the +function :math:`f` defined in the problem statement, and the third +line performs the differentiation of ``f`` with respect to the +variable ``c``. + +The linear forms for the two equations can be summed into one form +``L``. We wish to drive the residual of this form to zero during the +solution process. The directional derivative of ``L`` can be computed +automatically, by calling ``derivative``, to form the bilinear form +``a`` representing the Jacobian matrix: + +.. code-block:: python + + F0 = c*q*dx - c0*q*dx + dt*dot(grad(mu_mid), grad(q))*dx + F1 = mu*v*dx - dfdc*v*dx - lmbda*dot(grad(c), grad(v))*dx + F = F0 + F1 + + J = derivative(F, u, du) + +C++ program +^^^^^^^^^^^ + +The first lines of this solver include the ``DOLFIN`` header files +and the two files generated by the form compiler, and the ``DOLFIN`` +namespace is used: + +.. code-block:: c++ + + #include + #include "CahnHilliard2D.h" + #include "CahnHilliard3D.h" + + using namespace dolfin; + + +The class ``InitialConditions`` defines the initial conditions for the +solver. In the constructor, the random number generator is seeded +using the rank (process number) so that different processes will +generate different sequences when running in parallel. The ``eval`` +function evaluates the initial condition. The first value (``[0]``) +corresponds to :math:`c` and the second value (``[1]``) corresponds to +:math:`\mu`: + +.. code-block:: c++ + + // Initial conditions + class InitialConditions : public Expression + { + public: + + InitialConditions() : Expression(2) + { + dolfin::seed(2 + dolfin::MPI::rank(MPI_COMM_WORLD)); + } + + void eval(Array& values, const Array& x) const + { + values[0]= 0.63 + 0.02*(0.5 - dolfin::rand()); + values[1]= 0.0; + } + }; + + +The next class is a subclass of :cpp:class:`NonlinearProblem`. A +:cpp:class:`NonlinearProblem` object can be passed to a +:cpp:class:`NewtonSolver` to be solved. The requirements of a +:cpp:class:`NonlinearProblem` subclass are that it provides the +function ``void F(GenericVector& b, const GenericVector& x)`` for +computing the residual vector and the function ``void J(GenericMatrix& +A, const GenericVector& x)`` for computing the Jacobian matrix. The +below class is designed to work for two different generated forms (2D +and 3D), with the appropriate form chosen based on the geometric +dimension of the mesh. The makes the class more complicated than would +be the case if it supported a single form type. The class is first +declared as a subclass of cpp:class:`NonlinearProblem`: + +.. code-block:: c++ + + // User defined nonlinear problem + class CahnHilliardEquation : public NonlinearProblem + { + public: + +Its constructor takes the various arguments which are required +to create the forms, and it calls a the templated private member +function ``init``: + +.. code-block:: c++ + + // Constructor + CahnHilliardEquation(const Mesh& mesh, const Constant& dt, + const Constant& theta, const Constant& lambda) + { + // Initialize class (depending on geometric dimension of the mesh). + // Unfortunately C++ does not allow namespaces as template arguments + if (mesh.geometry().dim() == 2) + { + init(mesh, dt, theta, lambda); + } + else if (mesh.geometry().dim() == 3) + { + init(mesh, dt, theta, lambda); + } + else + error("Cahn-Hilliard model is programmed for 2D and 3D only."); + } + +The function ``F`` computes the residual vector, which corresponds to +assembly of the form ``L``: + +.. code-block:: c++ + + // User defined residual vector + void F(GenericVector& b, const GenericVector& x) + { + // Assemble RHS (Neumann boundary conditions) + Assembler assembler; + assembler.assemble(b, *L); + } + +The function ``J`` computes the Jacobian matrix, which corresponds to +the assembly of the form ``a``. + +.. code-block:: c++ + + // User defined assemble of Jacobian + void J(GenericMatrix& A, const GenericVector& x) + { + // Assemble system + Assembler assembler; + assembler.assemble(A, *a); + } + +The following two functions are helper functions which allow access to +the solution vectors: + +.. code-block:: c++ + + // Return solution function + Function& u() + { return *_u; } + + // Return solution function + Function& u0() + { return *_u0; } + +The private ``init`` function is responsible for creating the forms +and functions associated with the problem. It is a templated function +so that the 2D and 3D cases can be handled with the same code. +Firstly, a shared pointer to a :cpp:class:`FunctionSpace` (``X``) is +created. Then two shared pointers ``_u`` and ``_u0`` are set to point +to :cpp:class:`Function` s from the space ``V``. A shared pointer is +used so that the function space is not destroyed when the constructor +exits. (The function space will not be destroyed until there are no +more Functions or Forms that point to it.) Using the function space +``V``, bilinear and linear forms are created using ``new``, and the +coefficient functions are attached. These forms are then wrapped in a +shared pointer (using the ``reset`` function) which will take care of +eventually destroying the forms. Finally, ``_u`` is set equal to the +initial condition (by interpolation). + +.. code-block:: c++ + + private: + + template + void init(const Mesh& mesh, const Constant& dt, const Constant& theta, + const Constant& lambda) + { + // Create function space and functions + std::shared_ptr V(new X(mesh)); + _u.reset(new Function(V)); + _u0.reset(new Function(V)); + + // Create forms and attach functions + Y* _a = new Y(V, V); + Z* _L = new Z(V); + _a->u = *_u; _a->lmbda = lambda; _a->dt = dt; _a->theta = theta; + _L->u = *_u; _L->u0 = *_u0; + _L->lmbda = lambda; _L->dt = dt; _L->theta = theta; + + // Wrap pointers in a smart pointer + a.reset(_a); + L.reset(_L); + + // Set solution to intitial condition + InitialConditions u_initial; + *_u = u_initial; + } + +The ``CahnHilliardEquation`` class stores the data required for +computing the residual vector and the Jacobian matrix as private data: + +.. code-block:: c++ + + // Function space, forms and functions + boost::scoped_ptr a; + boost::scoped_ptr L; + boost::scoped_ptr _u; + boost::scoped_ptr _u0; + }; + +The main program is started, and declared such that it can accept +command line arguments. Such are parsed to ``init``: + +.. code-block:: c++ + + int main(int argc, char* argv[]) + { + init(argc, argv); + + +A mesh is then created with 97 (96 + 1) vertices in each direction: + +.. code-block:: c++ + + // Mesh + UnitSquareMesh mesh(96, 96); + +A set of constants (required for the assembling of the forms) and two +scalars (to be used in the time stepping) are then declared: + +.. code-block:: c++ + + // Time stepping and model parameters + Constant dt(5.0e-6); + Constant theta(0.5); + Constant lambda(1.0e-2); + + double t = 0.0; + double T = 50*dt; + +A ``CahnHilliardEquation`` object is created, which will be used in conjunction +with a Newton solver, and references to solution functions are +declared: + +.. code-block:: c++ + + // Create user-defined nonlinear problem + CahnHilliardEquation cahn_hilliard(mesh, dt, theta, lambda); + + // Solution functions + Function& u = cahn_hilliard.u(); + Function& u0 = cahn_hilliard.u0(); + + +A Newton solver is created which will use a LU linear solver, and various +solver parameters are set: + +.. code-block:: c++ + + // Create nonlinear solver and set parameters + NewtonSolver newton_solver; + newton_solver.parameters["linear_solver"] = "lu"; + newton_solver.parameters["convergence_criterion"] = "incremental"; + newton_solver.parameters["maximum_iterations"] = 10; + newton_solver.parameters["relative_tolerance"] = 1e-6; + newton_solver.parameters["absolute_tolerance"] = 1e-15; + +A file is created for saving the solution at each time step in VTK +format. The data will be compressed to reduce the file size. + +.. code-block:: c++ + + // Save initial condition to file + File file("cahn_hilliard.pvd", "compressed"); + file << u[0]; + +The solution process is based on stepping forward in time. At the +beginning of each time step, time is incremented and :math:`u_{n} +\leftarrow u_{n+1}`. The Newton solver is then used to solve the +nonlinear equation and the first component of the solution (``u[0]``) +is saved to a file, along with the time ``t``. + +.. code-block:: c++ + + // Solve + while (t < T) + { + // Update for next time step + t += dt; + *u0.vector() = *u.vector(); + + // Solve + newton_solver.solve(cahn_hilliard, *u.vector()); + + // Save function to file + file << std::pair(&(u[0]), t); + } + +The final result is plotted to the screen and the program is finished. + +.. code-block:: c++ + + // Plot solution + plot(u[0]); + interactive(); + + return 0; + } + + +Complete code +------------- + +Complete UFL files +^^^^^^^^^^^^^^^^^^ + +.. literalinclude:: CahnHilliard2D.ufl + :start-after: # Compile + :language: python + +.. literalinclude:: CahnHilliard3D.ufl + :start-after: # Compile + :language: python + + +Complete main file +^^^^^^^^^^^^^^^^^^ + +.. literalinclude:: main.cpp + :start-after: // Begin demo + :language: c++ diff --git a/demo/documented/cahn-hilliard/cpp/main.cpp b/demo/documented/cahn-hilliard/cpp/main.cpp new file mode 100644 index 0000000..96c96c0 --- /dev/null +++ b/demo/documented/cahn-hilliard/cpp/main.cpp @@ -0,0 +1,193 @@ +// Copyright (C) 2005-2007 Garth N. Wells +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Anders Logg 2011 +// +// First added: 2006-03-02 +// Last changed: 2013-11-20 +// +// This program illustrates the use of the DOLFIN nonlinear solver for solving +// the Cahn-Hilliard equation. +// +// The Cahn-Hilliard equation is very sensitive to the chosen parameters and +// time step. It also requires fines meshes, and is often not well-suited to +// iterative linear solvers. + +// Begin demo + +#include +#include "CahnHilliard2D.h" +#include "CahnHilliard3D.h" + +using namespace dolfin; + +// Initial conditions +class InitialConditions : public Expression +{ +public: + + InitialConditions() : Expression(2) + { + dolfin::seed(2 + dolfin::MPI::rank(MPI_COMM_WORLD)); + } + + void eval(Array& values, const Array& x) const + { + values[0]= 0.63 + 0.02*(0.5 - dolfin::rand()); + values[1]= 0.0; + } + +}; + +// User defined nonlinear problem +class CahnHilliardEquation : public NonlinearProblem +{ + public: + + // Constructor + CahnHilliardEquation(const Mesh& mesh, const Constant& dt, + const Constant& theta, const Constant& lambda) + { + // Initialize class (depending on geometric dimension of the mesh). + // Unfortunately C++ does not allow namespaces as template arguments + if (mesh.geometry().dim() == 2) + { + init(mesh, dt, theta, lambda); + } + else if (mesh.geometry().dim() == 3) + { + init(mesh, dt, theta, lambda); + } + else + error("Cahn-Hilliard model is programmed for 2D and 3D only."); + } + + // User defined residual vector + void F(GenericVector& b, const GenericVector& x) + { + // Assemble RHS (Neumann boundary conditions) + Assembler assembler; + assembler.assemble(b, *L); + } + + // User defined assemble of Jacobian + void J(GenericMatrix& A, const GenericVector& x) + { + // Assemble system + Assembler assembler; + assembler.assemble(A, *a); + } + + // Return solution function + Function& u() + { return *_u; } + + // Return solution function + Function& u0() + { return *_u0; } + + private: + + template + void init(const Mesh& mesh, const Constant& dt, const Constant& theta, + const Constant& lambda) + { + // Create function space and functions + std::shared_ptr V(new X(mesh)); + _u.reset(new Function(V)); + _u0.reset(new Function(V)); + + // Create forms and attach functions + Y* _a = new Y(V, V); + Z* _L = new Z(V); + _a->u = *_u; _a->lmbda = lambda; _a->dt = dt; _a->theta = theta; + _L->u = *_u; _L->u0 = *_u0; + _L->lmbda = lambda; _L->dt = dt; _L->theta = theta; + + // Wrap pointers in a smart pointer + a.reset(_a); + L.reset(_L); + + // Set solution to intitial condition + InitialConditions u_initial; + *_u = u_initial; + } + + // Function space, forms and functions + boost::scoped_ptr a; + boost::scoped_ptr L; + boost::scoped_ptr _u; + boost::scoped_ptr _u0; +}; + + +int main(int argc, char* argv[]) +{ + init(argc, argv); + + // Mesh + UnitSquareMesh mesh(96, 96); + + // Time stepping and model parameters + Constant dt(5.0e-6); + Constant theta(0.5); + Constant lambda(1.0e-2); + + double t = 0.0; + double T = 50*dt; + + // Create user-defined nonlinear problem + CahnHilliardEquation cahn_hilliard(mesh, dt, theta, lambda); + + // Solution functions + Function& u = cahn_hilliard.u(); + Function& u0 = cahn_hilliard.u0(); + + // Create nonlinear solver and set parameters + NewtonSolver newton_solver; + newton_solver.parameters["linear_solver"] = "lu"; + newton_solver.parameters["convergence_criterion"] = "incremental"; + newton_solver.parameters["maximum_iterations"] = 10; + newton_solver.parameters["relative_tolerance"] = 1e-6; + newton_solver.parameters["absolute_tolerance"] = 1e-15; + + // Save initial condition to file + File file("cahn_hilliard.pvd", "compressed"); + file << u[0]; + + // Solve + while (t < T) + { + // Update for next time step + t += dt; + *u0.vector() = *u.vector(); + + // Solve + newton_solver.solve(cahn_hilliard, *u.vector()); + + // Save function to file + file << std::pair(&(u[0]), t); + } + + // Plot solution + plot(u[0]); + interactive(); + + return 0; +} diff --git a/demo/documented/cahn-hilliard/python/demo_cahn-hilliard.py b/demo/documented/cahn-hilliard/python/demo_cahn-hilliard.py new file mode 100644 index 0000000..afa3b1b --- /dev/null +++ b/demo/documented/cahn-hilliard/python/demo_cahn-hilliard.py @@ -0,0 +1,119 @@ +"""This demo illustrates how to use of DOLFIN for solving the Cahn-Hilliard +equation, which is a time-dependent nonlinear PDE """ + +# Copyright (C) 2009 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2009-06-20 +# Last changed: 2013-11-20 + +# Begin demo + +import random +from dolfin import * + +# Class representing the intial conditions +class InitialConditions(Expression): + def __init__(self): + random.seed(2 + MPI.rank(mpi_comm_world())) + def eval(self, values, x): + values[0] = 0.63 + 0.02*(0.5 - random.random()) + values[1] = 0.0 + def value_shape(self): + return (2,) + +# Class for interfacing with the Newton solver +class CahnHilliardEquation(NonlinearProblem): + def __init__(self, a, L): + NonlinearProblem.__init__(self) + self.L = L + self.a = a + def F(self, b, x): + assemble(self.L, tensor=b) + def J(self, A, x): + assemble(self.a, tensor=A) + +# Model parameters +lmbda = 1.0e-02 # surface parameter +dt = 5.0e-06 # time step +theta = 0.5 # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicolson + +# Form compiler options +parameters["form_compiler"]["optimize"] = True +parameters["form_compiler"]["cpp_optimize"] = True +parameters["form_compiler"]["representation"] = "quadrature" + +# Create mesh and define function spaces +mesh = UnitSquareMesh(96, 96) +V = FunctionSpace(mesh, "Lagrange", 1) +ME = V*V + +# Define trial and test functions +du = TrialFunction(ME) +q, v = TestFunctions(ME) + +# Define functions +u = Function(ME) # current solution +u0 = Function(ME) # solution from previous converged step + +# Split mixed functions +dc, dmu = split(du) +c, mu = split(u) +c0, mu0 = split(u0) + +# Create intial conditions and interpolate +u_init = InitialConditions() +u.interpolate(u_init) +u0.interpolate(u_init) + +# Compute the chemical potential df/dc +c = variable(c) +f = 100*c**2*(1-c)**2 +dfdc = diff(f, c) + +# mu_(n+theta) +mu_mid = (1.0-theta)*mu0 + theta*mu + +# Weak statement of the equations +L0 = c*q*dx - c0*q*dx + dt*dot(grad(mu_mid), grad(q))*dx +L1 = mu*v*dx - dfdc*v*dx - lmbda*dot(grad(c), grad(v))*dx +L = L0 + L1 + +# Compute directional derivative about u in the direction of du (Jacobian) +a = derivative(L, u, du) + +# Create nonlinear problem and Newton solver +problem = CahnHilliardEquation(a, L) +solver = NewtonSolver() +solver.parameters["linear_solver"] = "lu" +solver.parameters["convergence_criterion"] = "incremental" +solver.parameters["relative_tolerance"] = 1e-6 + +# Output file +file = File("output.pvd", "compressed") + +# Step in time +t = 0.0 +T = 50*dt +while (t < T): + t += dt + u0.vector()[:] = u.vector() + solver.solve(problem, u.vector()) + file << (u.split()[0], t) + +plot(u.split()[0]) +interactive() diff --git a/demo/documented/cahn-hilliard/python/documentation.rst b/demo/documented/cahn-hilliard/python/documentation.rst new file mode 100644 index 0000000..d5f6538 --- /dev/null +++ b/demo/documented/cahn-hilliard/python/documentation.rst @@ -0,0 +1,301 @@ +.. Documentation for the Cahn-Hilliard demo from DOLFIN. + +.. _demo_pde_cahn_hilliard_python_documentation: + +Cahn-Hilliard equation +====================== + +This demo is implemented in a single Python file, +:download:`demo_cahn-hilliard.py`, which contains both the variational +forms and the solver. + +.. include:: ../common.txt + +Implementation +-------------- + +This demo is implemented in the :download:`demo_cahn-hilliard.py` file. + +First, the Python module :py:mod:`random` and the :py:mod:`dolfin` +module are imported: + +.. code-block:: python + + import random + from dolfin import * + +.. index:: Expression + +A class which will be used to represent the initial conditions is then +created: + +.. code-block:: python + + # Class representing the intial conditions + class InitialConditions(Expression): + def __init__(self): + random.seed(2 + MPI.rank(mpi_comm_world())) + def eval(self, values, x): + values[0] = 0.63 + 0.02*(0.5 - random.random()) + values[1] = 0.0 + def value_shape(self): + return (2,) + +It is a subclass of :py:class:`Expression +`. In the constructor +(``__init__``), the random number generator is seeded. If the program +is run in parallel, the random number generator is seeded using the +rank (process number) to ensure a different sequence of numbers on +each process. The function ``eval`` returns values for a function of +dimension two. For the first component of the function, a randomized +value is returned. The method ``value_shape`` declares that the +:py:class:`Expression ` is +vector valued with dimension two. + +.. index:: + single: NonlinearProblem; (in Cahn-Hilliard demo) + +A class which will represent the Cahn-Hilliard in an abstract from for +use in the Newton solver is now defined. It is a subclass of +:py:class:`NonlinearProblem `. + +.. code-block:: python + + # Class for interfacing with the Newton solver + class CahnHilliardEquation(NonlinearProblem): + def __init__(self, a, L): + NonlinearProblem.__init__(self) + self.L = L + self.a = a + def F(self, b, x): + assemble(self.L, tensor=b) + def J(self, A, x): + assemble(self.a, tensor=A) + +The constructor (``__init__``) stores references to the bilinear +(``a``) and linear (``L``) forms. These will used to compute the +Jacobian matrix and the residual vector, respectively, for use in a +Newton solver. The function ``F`` and ``J`` are virtual member +functions of :py:class:`NonlinearProblem +`. The function ``F`` computes the +residual vector ``b``, and the function ``J`` computes the Jacobian +matrix ``A``. + +Next, various model parameters are defined: + +.. code-block:: python + + # Model parameters + lmbda = 1.0e-02 # surface parameter + dt = 5.0e-06 # time step + theta = 0.5 # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicolson + + +.. index:: + singe: form compiler options; (in Cahn-Hilliard demo) + +It is possible to pass arguments that control aspects of the generated +code to the form compiler. The lines + +.. code-block:: python + + # Form compiler options + parameters["form_compiler"]["optimize"] = True + parameters["form_compiler"]["cpp_optimize"] = True + +tell the form to apply optimization strategies in the code generation phase +and the use compiler optimization flags when compiling the generated C++ +code. Using the option ``["optimize"] = True`` will generally result in +faster code (sometimes orders of magnitude faster for certain operations, +depending on the equation), but it may take considerably longer to generate +the code and the generation phase may use considerably more memory). + +A unit square mesh with 97 (= 96 + 1) vertices in each direction is +created, and on this mesh a :py:class:`FunctionSpace +` :math:`V` and a +:py:class:`MixedFunctionSpace +` space :math:`ME = +V \times V` are defined: + +.. code-block:: python + + # Create mesh and define function spaces + mesh = UnitSquareMesh(96, 96) + V = FunctionSpace(mesh, "Lagrange", 1) + ME = V*V + +The space ``V`` involves first-order continuous Lagrange basis functions. +The mixed space is created using the ``*`` operator. + +Trial and test functions of the space ``ME`` are now defined: + +.. code-block:: python + + # Define trial and test functions + du = TrialFunction(ME) + q, v = TestFunctions(ME) + +.. index:: split functions + +For the test functions, :py:func:`TestFunctions +` (note the 's' at the end) +is used to define the scalar test functions ``q`` and ``v``. The +:py:class:`TrialFunction ` +``du`` has dimension two. Some mixed objects of the +:py:class:`Function ` class on +``ME`` are defined to represent :math:`u = (c_{n+1}, \mu_{n+1})` and +:math:`u0 = (c_{n}, \mu_{n})`, and these are then split into +sub-functions: + +.. code-block:: python + + # Define functions + u = Function(ME) # current solution + u0 = Function(ME) # solution from previous converged step + + # Split mixed functions + dc, dmu = split(du) + c, mu = split(u) + c0, mu0 = split(u0) + +The line ``c, mu = split(u)`` permits direct access to the components +of a mixed function. Note that ``c`` and ``mu`` are references for +components of ``u``, and not copies. + +.. index:: + single: interpolating functions; (in Cahn-Hilliard demo) + +Initial conditions are created by using the class defined at the +beginning of the demo and then interpolating the initial conditions +into a finite element space: + +.. code-block:: python + + # Create intial conditions and interpolate + u_init = InitialConditions() + u.interpolate(u_init) + u0.interpolate(u_init) + +The first line creates an object of type ``InitialConditions``. +The following two lines make ``u`` and ``u0`` interpolants of ``u_init`` +(since ``u`` and ``u0`` are finite element functions, they may not be able +to represent a given function exactly, but the function can be approximated +by interpolating it in a finite element space). + +.. index:: automatic differentiation + +The chemical potential :math:`df/dc` is computed using automated +differentiation: + +.. code-block:: python + + # Compute the chemical potential df/dc + c = variable(c) + f = 100*c**2*(1-c)**2 + dfdc = diff(f, c) + +The first line declares that ``c`` is a variable that some function +can be differentiated with respect to. The next line is the function +:math:`f` defined in the problem statement, and the third line +performs the differentiation of ``f`` with respect to the variable +``c``. + +It is convenient to introduce an expression for :math:`\mu_{n+\theta}` + +.. code-block:: python + + # mu_(n+theta) + mu_mid = (1.0-theta)*mu0 + theta*mu + +which is then used in the definition of the variational forms: + +.. code-block:: python + + # Weak statement of the equations + L0 = c*q*dx - c0*q*dx + dt*dot(grad(mu_mid), grad(q))*dx + L1 = mu*v*dx - dfdc*v*dx - lmbda*dot(grad(c), grad(v))*dx + L = L0 + L1 + +This is a statement of the time-discrete equations presented as part +of the problem statement, using UFL syntax. The linear forms for the +two equations can be summed into one form ``L``, and then the +directional derivative of ``L`` can be computed to form the bilinear +form which represents the Jacobian matrix: + +.. code-block:: python + + # Compute directional derivative about u in the direction of du (Jacobian) + a = derivative(L, u, du) + +.. index:: + single: Newton solver; (in Cahn-Hilliard demo) + +The DOLFIN Newton solver requires a :py:class:`NonlinearProblem +` object to solve a system of nonlinear +equations. Here, we are using the class ``CahnHilliardEquation``, +which was declared at the beginning of the file, and which is a +sub-class of :py:class:`NonlinearProblem +`. We need to instantiate objects of both +``CahnHilliardEquation`` and :py:class:`NewtonSolver +`: + +.. code-block:: python + + # Create nonlinear problem and Newton solver + problem = CahnHilliardEquation(a, L) + solver = NewtonSolver() + solver.parameters["linear_solver"] = "lu" + solver.parameters["convergence_criterion"] = "incremental" + solver.parameters["relative_tolerance"] = 1e-6 + +The string ``"lu"`` passed to the Newton solver indicated that an LU +solver should be used. The setting of +``parameters["convergence_criterion"] = "incremental"`` specifies that +the Newton solver should compute a norm of the solution increment to +check for convergence (the other possibility is to use ``"residual"``, +or to provide a user-defined check). The tolerance for convergence is +specified by ``parameters["relative_tolerance"] = 1e-6``. + +To run the solver and save the output to a VTK file for later visualization, +the solver is advanced in time from :math:`t_{n}` to :math:`t_{n+1}` until +a terminal time :math:`T` is reached: + +.. code-block:: python + + # Output file + file = File("output.pvd", "compressed") + + # Step in time + t = 0.0 + T = 50*dt + while (t < T): + t += dt + u0.vector()[:] = u.vector() + solver.solve(problem, u.vector()) + file << (u.split()[0], t) + +The string ``"compressed"`` indicates that the output data should be +compressed to reduce the file size. Within the time stepping loop, the +solution vector associated with ``u`` is copied to ``u0`` at the +beginning of each time step, and the nonlinear problem is solved by +calling :py:func:`solver.solve(problem, u.vector()) +`, with the new solution vector +returned in :py:func:`u.vector() `. The +``c`` component of the solution (the first component of ``u``) is then +written to file at every time step. + +Finally, the last computed solution for :math:`c` is plotted to the screen: + +.. code-block:: python + + plot(u.split()[0]) + interactive() + +The line ``interactive()`` holds the plot (waiting for a keyboard action). + + +Complete code +------------- + +.. literalinclude:: demo_cahn-hilliard.py + :start-after: # Begin demo diff --git a/demo/documented/csg-2D/common.txt b/demo/documented/csg-2D/common.txt new file mode 100644 index 0000000..81d818c --- /dev/null +++ b/demo/documented/csg-2D/common.txt @@ -0,0 +1,21 @@ + +This demo illustrates how to: + +* Define CSG geometries +* Generate meshes from geometries + +The domain looks as follows: + +.. image:: ../csg_boundary.png + :scale: 75 % + +and the mesh: + +.. image:: ../csg_mesh.png + :scale: 75 % + +Problem definition +------------------------ + +We do not have any equation in this demo. The demo focuses purely on the geometry and how to generate a mesh from it. + diff --git a/demo/documented/csg-2D/cpp/CMakeLists.txt b/demo/documented/csg-2D/cpp/CMakeLists.txt new file mode 100644 index 0000000..374f8ee --- /dev/null +++ b/demo/documented/csg-2D/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_csg-2D) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/csg-2D/cpp/documentation.rst b/demo/documented/csg-2D/cpp/documentation.rst new file mode 100644 index 0000000..d5fa92e --- /dev/null +++ b/demo/documented/csg-2D/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the csg 2D demo from DOLFIN. + +.. _demo_pde_csg-2D_cpp_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/csg-2D/cpp/main.cpp b/demo/documented/csg-2D/cpp/main.cpp new file mode 100644 index 0000000..6788752 --- /dev/null +++ b/demo/documented/csg-2D/cpp/main.cpp @@ -0,0 +1,76 @@ +// Copyright (C) 2012 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Benjamin Kehlet, 2012 +// Modified by Johannes Ring, 2012 +// Modified by Joachim B Haga, 2012 +// +// First added: 2012-04-13 +// Last changed: 2013-09-12 + +#include + +using namespace dolfin; + +int main() +{ +#ifndef HAS_CGAL + info("DOLFIN must be compiled with CGAL to run this demo."); + return 0; +#endif + + // Define 2D geometry + // Rectangle r(0.5, 0.5, 1.5, 1.5); + // Circle c(1, 1, 1); + // std::shared_ptr g2d = c - r; + + // Define 2D geometry + Rectangle r1(0., 0., 5., 5.); + Rectangle r2 (2., 1.25, 3., 1.75); + Circle c1(1, 4, .25); + Circle c2(4, 4, .25); + std::shared_ptr domain = r1 - r2 - c1 - c2; + + Rectangle s1(1., 1., 4., 3.); + domain->set_subdomain(1, s1); + + Rectangle s2(2., 2., 3., 4.); + domain->set_subdomain(2, s2); + + + // Test printing + info("\nCompact output of 2D geometry:"); + info(*domain); + info(""); + info("\nVerbose output of 2D geometry:"); + info(*domain, true); + + // Plot geometry + plot(domain, "2D Geometry (boundary)"); + + // Generate and plot mesh + std::shared_ptr mesh2d(new Mesh(domain, 45)); + plot(mesh2d, "2D mesh"); + + // Convert mesh domains to mesh function for plotting + MeshFunction mf(mesh2d, 2, mesh2d->domains()); + plot(mf, "Subdomains"); + + + interactive(); + return 0; +} diff --git a/demo/documented/csg-2D/csg_boundary.png b/demo/documented/csg-2D/csg_boundary.png new file mode 100644 index 0000000000000000000000000000000000000000..ee7cefba72f4d606177cc1e5bf7f5b1910e83fc7 GIT binary patch literal 3944 zcmd^C`#)4$A0DLkFfn7Q2~%up4skTD4N0|)>ls2)ii*aiTtZFpR#I)oH54Prj8He%Id_A&6PW=_?YrO}E_L)RGLU*fv)0wK~S>D{~ZNj%6FX5&jNd`Z>5^oFmY-p9#N zqADyn=B^e^qjx*MpBqHVO1u-yKb(f&D1TEw2b}9WtOz3k*Xk;R!TWurnG#Pm+Jl#m zO7x%UE3bKB3a$AVQDLoY$kxe9TEP~^;Y+BpN&qWllS_gjk-v}D%0KaYK}%*Hj3`E! zMeH0z8VS(7;o$esGf=sIZrSXnz1zE2Rh^U#AG~{wgE*&`xo!3Ly16}Aj->|O+nr(i zdwh}8SNCv>%y*Y@dy37ReVdJAp67*>b)S>@JKlxy9#^DpQ_=i+7Ih;RCrBxDKjv ze1;x#h88JdW5L{k8f)9{U2lyc+t3t0Z7%LB6&xgnru1z@*E?m{^D=DP7I<4!bNzIf zkT2=ZZob4uG?x_Bzj(4FJ?$tD;Qbvq(6QG3eM&L5|(Asoc1OHNWz zlb@B!L8iZo{ZF=dQrCe@<|YySjYU;UlX}xgC)N12)N-g*oA^;{%^S8jkpU+QdUTcA zjvi1hNEXvY!Og5^wf9T~(&eSU@CZCWo$YYxEaPi!fDzLW5&@owYAGj;fCVQvX)=EX z#WXibwa@v+Xq{n>32EXY+~;Z3v!cLAVk*P*)RwMsD%aA6fLet`~D29cTR zXs=-!`)SV^rhKnw0yLsmaYSb@VVj9CD-U5a;2x?m0(&Fd)>htC=lqWs7kxUyb15s3(rns!R5tD;`e9pOmiZ0ggliQ!m6`{SQswmncu zC8+rZZLw50Pce&L5%9(GqA zS|)Bd0zp7=K$&hlN=vkR~O2E-oMc(UPFaXo2 z2>F}8z!-vx`-b5;y1j~P-RYt%r|0ynRF?Z3#~?6D4T@8~pKs}{;qtUfZ=qo{*p*W6 z!_STz5vEc$z?Btl%X3aNGElrzjjK(uSU;n1FNF$S7*jxjE4vI8A{+p@+Ai~K1TT+d z<0<~Ws}iWI0)NhPXfCQ#H}LX35tR%J2-tB9%1R6gI1H2v1OB_fM(*c=RH`PpOxqk3 z*H`J`g7g@6fSjWXP#W<&uFe($A|yj50szDauwdP`%;yChpK@zq4R_2}t;&ivdi6`yb-mAd*z zUPgl(@B`c*M%gJpPuCx%zP4U=?DY>QemX{(a&xYLTzG{SnniKj13YBCF z)~y4V&H4M9{e-$~u75udhN+}-p3@l$B->_&)pkD-&XUfse65r;pw>9!e7yN)ru~CKtxZ zd`DMcCMr>0o17~WuQqj~(XQ}0RP(*!IF>t1HNT&a$*|vDYNga+XG{nTVx@`s+1fDv zem-*;Qb+lY@L2Bk^hATexIq~2*!&o)1fndz8r5nMkM|$Yb9!y!48rta@asNOVNjyk~gZhPf)LDb`yD^5IJ}g&o+8nFj!XVkgyjEZVvALV8wnd$W)T9$RS8g zRFwr84wn`#aFEQHeU3LyRnyj^tT9A>E06K!DW3b_mM*>SVdy!vf&wj~o^h|gReKT- zE#5u*As8&(z4N<=+;Axn7u6{2K~8s>H&>6h9kK6?t&z}0)&Ehu0_M{-`BZ|5yz0?8 z>q)C7e;wvBit|Kvb;km&hUQU3$s)Qa3$>Vbl@+Dh zx~2pZO8En0{V#Wo6^WqkiFpko>M$Gt96%kgRiNEQfGB=MecdRo#x*n(wsP^Zd$g{x zJ`p5Zt^XB~7Cm{~YjArb%(#2hzdGeblZO8JR#x%rhEpNe_1dD&UOZ~Q$`M90Y(`{R~Bg^rUY>ttn$jG?K=B__jsYcKujY z*Tk)`JqQ=gv}>&Dxt+Joc!gK*+OUuiTrLF`Kd}RS3=SNzUd3F4))Z`qgwJTTaS#%P zesf4*28Q5DOU;_a&5MZxt=IBSE_@Kc3bSG{XP(c`yt6*TUT~54MG&p$xCch|ciCKn z*%#aG0YTz~>DX|MHCk|udf05-qM6_KhPHWE*|9vATN9%T>zBAZ`(5@1O-!k#>s^9>6sYqOQ3Xbpixf||%5 z0Fyv=`WP|V=74g56O6=Pd7?DC)qexBQ4Lz-q+;ObfHQbc29rA3f3KMSC0#*EXc3i0 zLn4jfzF(ZQ4F)=?#mi+M=U-6%Ib+GcysX4IhfuP9J=wLnbw`IY;H_y%zL9@Hcpa^E zqiC0lPM9IHM5trjiXD)-{n2RE^SngqI!NAoTebbOTVwqvFUxFn{2y^AIySvaiPdHJ zZNI|*HlG$J=c1R&&U$QMlzC%U;4<7jBZq>c+-y>@;fBrm^jfZL@ zfqKUb06;+{!2@BTd1j9nIXPkG z>hVo)`;6%W3F;Ld5!g*~StvIk^M3uFmF?d0%B}PGC_z^^do zz#nAOOsbhTEi5kUR4%kAl z1S4Hs2w+Qlrd+Qg88Pr(IX^qRoo3IfPgGHKVIm2TI%L4?kq1E0d9^SkmXY%qVr@H1 z4eow^8f$_tCMihmY^us9%HWoRW<&%sM%uoYitwzMx>!jxI4e)-wp*&nEv3yXw@!bx zq|OV0I>qR9RQdX0JUgM-6CIsyig=~dQHIcsz?Kw>)%fM@gp5O+0hduLfd7 z{uxk%TzKOopHQT|?R;$A6568KF?|Pa?qg0?;1YElAAESYy~0S`xTWgO&OWl2IAUN- zsuaEB^AfCQ{%a{no=(1W2ZDqd|YsS1v>mBvC!q!cNOd*t_N=TA5 zr7h|%9L$`2vBR=VSIVR^0jJ!3LAWf1oo|oskWrK{aghFrU@K4%ahp>SX{~8BjrrfA zwr-{oerTO3ks~P5!lo)uqVcAeT85U;|{tR#fKod{_@AM+!{m{NfXi1Hb!>a_DN zNvT!4^JHRZeLl|-zO>N-tRmZ*TQkGM)DWdvxooOO0i}x?0MJFi03uC~74%B^p`|1w zdaXDri8Sm$=hc}VDf3E*$1_m3=Yt=M+9mD_q1#bmN4ptvFmjnN9DC(CqFFgPiirB? z+M*3P&m-;`r&E$!9Jz#n?3KM=_eHJuNqo&9X3rwBf-{BV_g~@JP zd3rC3gWZ+Ea|tI3TsMw5rMYMHJuv;`F2|gF=Dw!1qO>w`@P0M8>)LYrnJ?Q8FTrZ$ z1C%^^=ISW^6#l9(8Mk}Kf-d~AdNjzNExeoErsJ}7-@njYtcTZq<0pzJA8Ku~Y(M3Z zO0D@rmhE>@YYXJWl!zGF&{c}Gl5x7?AO(`V6|BdkN<>(V)*0^tbboiL8Tx*yKmsi& zJ>AgXZ*4{PU!N$w+wH9}7_yb!(TSxjy(on`C2pNIGgq=g8>NG}OpPt9fPO+4yZ&j!K>Z_oRHpmd{Xi^Py0e;q zp!l`_iL1;F^}OCzBluEcjVb?Odyz zcuh&fBRnM8eFvpNm-4(9?vcShvUm6T%Hd{R^#=6n$8yYr`h3{mQ^G7h;7|guOt=Td zvlR7{d8tCW#Y#hGuzJy% zd(7D+%+0h0tg()`<`aJES_qOl&yO&W|0vD1;^pbV(TP@CiF)x;RKM#|@vNJXgf9YgIDiy!y|eDbt{kbaWLHIb-Nk9*3v6O@ za~K8|cKr-Wn$jS;GFX!!A2;!>=BWI!dv(=@KUsREX_f3HROIh>ffFwCMOtU#nrq>; zf=dO6QD_s&iy=1q!~r%|Pd}MTHzc(FWH5(9|8;$q#SNP&MEQ(57HAYNaQ|4QzWjup z+M+!!E@KYl$Mzv-XVOr5SNKCX;1Fq;6gIaKU12z_&<6&pnV^q=+ITi6+nEIMrQ&)hCQ4>xXs&m+L$l zG2dUEyRRwwqZuz|3VGvB*CgnCPm!11R6Fz=JAcRj+x&G4^#OV5-!V5Chj7(!C^z#Q z$JlHLV%O)Y$MP0SNpq+qDLAdb^l{rmp3THE(%_Mv7d@kbb&;naj263}6l~|)b_UUa z_Xt}#t)>pj%%=>08)K=|Y;q)QK?e%;4_dz`(K+I5ml;ojSb{08zU~y+R#MBa5aXo{s zo_^H?V*qk~ID^$wFXMB{2MQ3ZuM|v3h#+QC1Rp!g`!qv&{6O5!##HaAtaa7m46Cl` zQTTh@QnzrSmtRgsL!{NuIunaZP?YbQ?qkx?ShBU|Z6>L`2z`zyg!mDa8}hVpef&UF z#x}>@EYfIy0J9zkOCw$2(vC{UJQh2dPM3{EW@X3p$u(=J{~pCw>2VP9u6~5P?PtxZ zlMgGHg=SKL_izVy-5P7!f?doVTd}Aqpy`TdE7>NV_yO2hdyXxloei|R4jgHc^rdPZ zA9AR15gw0&kOi}ZeD!pzp^|QWI~-MJ^8?eiGJp%eo^b`TI8X{owTARcW?G$L1Amv6 zb+W}J%1kJDbPB8pCmO#f&56{P zm1gfpQHK+1kdX;IBZl2d(T5~-zrVI~?uWD^$e;>SF6Y6uwIN{^M#01VacO*TBUJ0| zf&vEUiKyM*v}_Cy(P#-b=E?^d5k4dRtbCWczcsFqEDu}}*w)Qba_P2&FQC^8O1%F= zilC)dD1qyYEdU<=Bc19d@1!sg7L;YvxZnQ>({RE*2? zdTD%IjqNWj#H$i#mCS_=A7a@8l{`7Ctq$c?jhgr(74lm6g0_*-*xon+0B@9|`(#42 z*+$NvObokLW)L{d$e_!v3lp8t`2z)={Fg}AZ=<2+;rma@Sdqb$eVR~x# z5}?E>p~r8KbA~e)R3F}^+TRBxbi}lKFCJ}n_PKNLGbxMPb@NY)>8k^+WCba|pd>CY zDAKKOe9GwI=CW;`Phj!BuUp|iiIP+IMdh9Adm9cYm{->UcV$gBb2hKQ>6RepR!nDS ze??L`5o|3#35^0}$=!X*fOg}nKN)I#F!;&RB6qjIRL^3L8%~#`vrN|Xs^&p868emh zf%OI)wxb&F+n_DH@F<+~(W{*VJyJoT-YkYjTv{e9Ppu!*G_@C#(ltugMg0P6%35VD zD`TfFuCq~L+4%3=nb&Ep;^I!=?Id6zDtTLWl`6Zi#)^@}9v5B9(1bxZp39+eJ)!}G z{?Js$P4x%?Tg{L4r1npki-9J%JbW!AF-t8;M4RPPovr|kzWNVQ2f zc`M4t`K0TUD6R%Sv7!kfJ`}V{pv|*m)gfo|jU$#Kt1*}6cUU%;s=7CTEqEe$1|vJ6 zjdeZ+uQ;m=&OYb9ReEk@x-?vHWysMrEo^0J&&4+T*r>IpZga~;{`^Z_&52!rjXEPOOMtZ4N>J9 za{QYe)(3`QpQ9+|+at7Yd-k}Go+|Bc)+>zBSEfuJGf}1}d*d@AZiI1;_p-zzg(d(^ zKF$7-(p;#Irbc+ttB6dOrTd(j*hP%KDS+*%>C*Y_rTkQSik|g;XMU0h@9z8xHnw;D z(JCH0D=Q?M{&19@#MU(^DK|wG6c6sx*qe;GnDE9$Gmh-f;*N~8PKf!oHCImC9lu)77$c!VXr#(>MqdPTJXJED8se9?>nBj7JQ4& z5EwM#%|6hYfEVU(xORCZQY&LBFY`xA3XDgwgd0)!rJKBn z>b>m*pY)AENnGo*JvwO`aKEPbE+UNmzivjSrH_qh|1dRntZtowwMcH+H*^^+mbVo{ zZs$JPOeP~${FVoe%zTQ9le#}AqtL*JSmXh$-R9>%L$kiOE}>OU=erbAG@GNjSFzrj zO9unBnB14An}1(}+?=hmx}*Xwe$LK3!+UJZ>kGcWoamFd6H?YF2+iAIj8^!mOTEoC ztJMYguQd}U=!v09B?(zURU%4$;8y009Cu`#pZ%)7PML07!V<4%q>O9wM6M)K9i(=s zjBRz(+1Q+2)#A;h$0!>)FxwBlzeuyr_d0_H#e9cWG>)ZLm#=hBeG^fq)rsD79u`Uu zf!JoBkKn;Y0#8Y<8ecP#j&C*R^-lDOt4`vLQ(5VBpdWbmh`I7E0(82t z<*j{lOe2iB1lM{V=jI549WM$v%q`*8p6?rUD}U{7nZY{j?nz7oJSxM#Zt2XLhosg_ zYzRkZcjNnc7PC0PWoWqj)rt6|nJpYP9%HvhTH{I?OVBgn{fe9G)me2m&Cy)Hk`=WM zPVcMA@^rFyhRlZfvkzQD+fLUOSX+NmM76=>13>y1LI?+$D_^B3VWxiOXIp7j3BKkp z!!TsWt+@ia97YtjN(8Wo+iIT6t^XQg3*iL-_*=n^G)0>{9bu0rutyZop9c;OnuR@X z-%L5)^6&aoXvre!awh+?(Ub_a1ZN@eFgh&wemRdzTjok)-4D7y_$W; zsXQ-mxx8LWgOr|?nuMpC3%*>fng($IfPU#wMn}!l?qECS<>YD#bsaThLDh8JiAO;ATV_qNGW0q830E$OXJT z1$I#Ftk;%Q3qET#^|MONg~4$kR^(hb#rznfua16-nXR+=1CxFlc4htlP&3ix2L}ho zZS+wFWECb$Tt%=S)mWY)A{xzyP9kKg+_{ zMK4wPGmh7sN#$^t+(7wYJH#ZFW>gB7cjux33L%?eN~kc~zQ`f%p)kDYEXS6$=XupD zt-)p9i8%#tnTD;#j~oiT=~RGrUc;w6XW=;kbVl!-sURdJHoIBx=XNe;d5U$L2A8(@ zQ{r|A6apT-Lr)*ldvItIm+( zXs!uE_=sxrSfXrFvdmM+kV~Sfr-^f(`wtH0f6UQhILuZe)+l$&*{jVB%-8?EDpHW@ zV$RTP6?xXd(Vh(5J?o&$(q|tXQ@AXOEZsWy;D$&Fln)m;m-jR|g%Xb_1PJ7g1uqY; zH%ght7U(LN!$W-fhyiUmsZwcQxmu+tye`4m3u=UZ_^4dL@j0wHbdyo)naEn?D7 z8IU|rl$>;n^p|Dk&=yKLFiZ79PR+>EXSbn zw3rBwRCo{CuNb9&;9-RR@S0>LB~`8nHyxS}2|phXV9CUjjf?st2xeX1iqH#}yQ&cq zA{YLi|ADAp3{JG{!c98cslX+Te&cvL;Uq!F_mht}C6JdXP{VvPx5FAx6ns|vA%vJq z$k|*^YSd^^)~}$E;UfF0zZwL5TnoV^MR#)&kTcJ-zE;21dZs}~%I_*_y-m%bs#d0XqynCev zV!$Mmm^(DuK`?;N2D9!o5K5)JQQ~7uozljL|KX_QvKvw8YPPk&|9MxXD`iVrM0q}y zEJAwK@k?feGL}v~llAH_MIQ##&iY4ekxFS%ATS?kr%+t0L=3b2vP=Xd&{p_}O;c&e zA%=Z%xI-Q=1;l*8QxOzb7ER<7OCSxX4(oa#_T;Hg*x`+(6FmK|$qC!-@fmEa8rH!B zs+b1=6wEU0{CQ&tu26g= zFqL^(O{#{;w@{}1^9CM|=QlPc>nG9qIpy(qi=1i&wr_PYyNW!<>Gme(V{NqSO|49O zky+iV=JHHe77fS5vhh6ESxHDimCyY`}aw{bxaWz7|1P0F_?gJCdlaaIdU zw8o9ozjka_P@)}phfkHqIY=aX!=#6^739!WvScvw^5V8>e`POq^UFq+3}ayIr)rf{ zna{7;Q@=koq*!+z(ZAa3dAOvwvNMmSJEm`wp!qp90!F9r!pj~@Ns`9?jvXa5orw!m zeG?N=gn8P-RaH!Qu*Fbm!%xf$pZi949U@K59rnl%;%^%&Q8u9SF3< zR(f7piH+g6LFlq+PQfns+sUZ-r&Ic%v{^bpMrCElAX(miu`k3pHp`wslKW-MP!@gv zMs54sm(bxq&a;k z=cV6BNiK9NzV2j7fh9z(JZw7raBOXjlU_7dsGj?C( zgk^nm8p2i%imx1_pS7vBeJdO&y3NesQqas#Q0#&00cm6C7;?BWdj(D=;?%xrhXWB3 zB8!`8EQxvpTpn9h&V=+zz-sFgSu>hBY>FekfU3Zvj@57YM6y*#pXp5V21pcAS<3k_ zcszefG2OQ1sH6)GenVK+N^|+Wa!L-Rogc0wtE)zb$&=tqn4ROs(doX;=w-v4Tzkwk zQ)SHYbu(*&Nkt_~2(4?r8>EdlnBw8n)sh8*=G3_`=Un@{8QsI{X)wp0ZOC*Kyb;-8 z7O%oBb+piqgh$J*kHIXGTC?9}6)w6|nK;j+%KyfjUFn+=R4vG_te}Vx1YzeG5^RL18+skuOzj(~8=6z?AZ%we4+iLb zQhYDg2UmUSVVkPnF^HaHMDg(CyryEV!kEKd<5DXb6peSfmB;ycm=_xxT3i*FTZB8@ z$URDm-EYi9!XY)7L(4rN8S$U5Ne5BSLM$w{2S7_50dxtDzJfM-!^uB@X%#~n5 z)o@752qT0@$H|sVLW%#a(3y8V3AN2trkLMs>DG+$l5^;v*dAI%1%(k7D{;_T`oa&& zXnRh`qA&GgXpos!$O*r#)6J~6+Wk~!_`T=dfx5qTNS)iHTjmGm4vUC+Y9fT>RKCWZ zI}m^?$Afx5Yuah%L@o%Pt3mxf5X!P9;M+xzX$-TvsNhx>b?r3S84luLguw;A>gUxf zv1KXQ98g<@y@&eZJgzjb9cI!U;4PlRPduWb)Kl!^#6Y%9BcL4M{CF7dy61OPUKOmp z_Wt!vJC}_mX*@{Il%N;cQ#I&#h<069+FLZl_Fm4?gIwZN6FC6j$YEKe4Og{DHj><# zXKmcVLu@;ts+scY7vl$?rdxgFX}bPX_7$+BW|F60U8sh05fY)PM_YkfHLZ#tnKSzw zX;@|P(R7Pr%S;vFf-!Bvu%kUs$&QB5c%*$PHP#3q;4LTQ-j#Rv%+>D!1yEb&@iY>j z^?*$C6;ag$MMdO`qXdyAg%l=7MnrUqOH9m1;PPu}nd`A3*_Oz&H75F!OsiKM;Emyc za+Wg2G^^q_Skm|-=b0SkIi-nI%Yul7(E$J~3dC@45lh(3#TAUg`_+tB9Mz62;^Tt+ zg_ENt;wp{y9G_K(b-U_*avq};{u%qv_Y}MYo2a*LtsKisWkpaj-99SNDfuz542!fz zJ&5CGzO!So9%BjO1=x#n!2V71twfjo9u;R%^+p=gXJ*W-2^tq$&@i4^Atv?Ao!YM% zXfD`JjRiPGVoTH(bXe*?PeB*QyXBuB;SxMSatIbiIvyOZYH)F_jW2kVR@mpEt%PYA zmvfML@=>Kfd`XZNZnFZ>Gb%dUdG7I&}3%hdGyww{L29m!`L?Kb7fSlg{hIZ3lTD z-&Oa(v-2$*Cj3Xu7`=r1v-zpy=pbj>k!oby5pGYbv;qS^+YafX5-L_lHyfo~@#^}p zU~^uo^$Fw(9Eu?}tvm=+8wqfVW%Qd%o{@mG=EIz!LzlUWpS%;mux>ccz&-!06=((v z)K1PJPD&lX3KUSPSVN`W;vGsTZ=%T zfds471|?e%C{zw8&0LBT)=B)Ak%#M`3n#tW9q!Ok)CWu$CX7zANOTInz{vCaK?>Y6 z=PT&jHvJ%p{;Id25azJpwOA!}{gC;WiXV^bN5iXXd9PkUi>(!|XzN(Bihb4PSAIG~ z;N0+@LW9D1k7fANDN8HVa#7Hc)sbRb%z{4yx#W2zz0mwnf<$spCN$fUANhYSptcU6 z4_*O@H?U&07^}tG4s(P$B>#Z`Subzz^sLLc1{jgH_O9aD($ty7#4lYfRX(j0tCzq2 zBXx8}^h&)T33JrSqf~ccAEtumk`Eb@WRFon!Y}_CzIz}wk!v6(X@-2G`_n5bz4fiEFm{057^3m(yco`of9H*21iCGi_VHw<%P(H z1^g9(OyP>rB>3RSJD6^bEfD`7#3s3N_q^4LOdihyOOZb|`3HV@S~j?XMdU!7+7O_{ z!&>0C%+ZGniA=YJ8p1{sxT|kw3&}@``>V=vKV1=|qDMMReXW6~tPlLZT*G06^(@ z;8ArEE_6TK8jgpLIhGCVN|!*fOy_BAT(*Sig+8%1l-0(Kv$1hqZ9vNC4HQ>9PvtJa}>e33hs`Z+1ps@q&naV6wJ3VH7`0g87 z4bhV%N#c4_lvcPrHLHCof?ZvoCUvOTNt?ChbYg{DxSvXMAYp)#D^m5&fyz_4Qb9sf zq)DSJgbBwJ-mkfp7t3l>ZPZ_Lv^thLl@UodzyS2(v`Aw}6gJYswLMzChBF5~3hCjm zMoRA#fF?UES6$9p&OMeUB4ykOLI`!DCMPd?b06{uUkQ$O${oDo^nSlr`i8_C4;C+x z+FPuKlJ(YZ_+1#3ns=mP-q`a1dKdo+c08{gmz%?vjD&WR=ZHf4kg8 z)PJP27n9tL1;uH$g%F4FBj8}`!b8?vz$UF~oxxU6$6+2hczmS!dA^K?_Sp<8V_#oq z!f)8@vVDkX=E)PK{+Ew@cJ^DqoLW#@{1~BwgmJUNPtvj-`08%>@GrMxlLrt5Le!wm zYSX9*Uv~3Q{~e9v8}9r`cXmEj_fw@; z#WOKWG85HBDsMa&cj>F*^6+rpA9C1H#zFJI$qKo|e!L}A6S}8INb=ob8JRq-hRO`i z4Lb8u$XyI9nA_S1Nw(Xhd#=rwq)OP>^3i8zTxE*7)4hX3xAk_rn#_h^kFw$j!k@iK zYF9IOXcxy$C(yz#73mH_UkmQqN5u6S_gZIJ_!taR{=Q+=z#wji!EXAT<^g<6l&UQP zLg>TI8jqFygL}Wr>cKSM=U2Cmw9O80l(=}hNf3EYtNs_W2ws%jvB1e=OvWYYoMVRK zC!p4g)GglB6bn^Qt4CxNI#HlBVd9m@korhGiZ1@gAin$NxXn#Og(`zsuJf@JI;u4S zK8N(TKmL{r6ZmHRC^H339&GX(tb@h+ozmSvBHNdDdDY>oPYb`O?u>tB8Ysf`Q;@(m zvshxlWQJVx^XFJPN{hgQ8@I%ugulq*5vJPRqmai#LS%kqtkU+P+mR$T>pEC?oebwz zM5nrWp4F>G(ygi8ce9V{pKRO9$5DNhfP&4l!O(8{=+XYC_SAT2hg%{${nwDdDLE;7c9Svn{ExAGGT}#AX&N0Oi_G$wgpmFYQ8yvqEbo%s z`gso&vd|yq8LY;B^+q;h(?c8H8_im{KZKxQ2mzYCj+bM7Vr!nv>&+U974C24Y#}9J zCNf{gHn?6T3G!a}C^c8L)qqV!TA8=HJqmxqA1gv6jnKme^cI$?onIJ!vdIt?N#c)f zbwrSuh+DL`EN1eXfTdecZY---I@kCJ!tFhNb+I6NG^(QmWMF_DD*3;cpIdolG}V8#fYz%f-_4_##ySHHhkizr=UHgLtH)7ni!&9%t!j zjm{L$1ZmZ~e|S>O0j&4;hUB)VgzZGh)mH($s$0Wpz5!O)|Jw79%EJclp3jzuWxZ*g z2vpIrbbji=IY_&ji8dYuR4ZLk(@gYWC;S$fqtyV_I<<0^z;F@Tnq4SGo}@EN!F&$1 z#vIg(XkfGX`Z|)Oq{c|do8qo0p%IW{ntFl9M4@-0~#WA^cRCwKR3wpO~u;AK1)b<22UNyKpOMk#rf0-6ME<&!wd zjKb&<5xj2t9cmn=iit=@TCwAyem=b8#8inGC0=XpAz)$O_NsKLjy2e7dHb@@$0Qlk zM_Qh;NxKXzPz|!XnxpXg!J*k%&Kyfqg}eRY@%&n$-SbqONyLPacvAl^*b9Oc^hkA` zANmy!d6=d?Y01=SqiJb<$H-T>$XY>0^NHe5o3%(*q-CR12ei;1C_Q1l1R1;3Vk^41 zZ{Y-S^UFkPuwb9axU@C;{{7N)J*#@k`+M^ zqG|j4;$db{Qbp2l{ z+{F)^4L!3Ybk*w~b^Cbx{dn1I{PQ={o**CRQpR^2SJTdpz&Kh~1mMAcxjl^rS4}WG zRb8ObsQsvqiFk3lqGostFaA9u8J5rF60T~qIQ+vsn0@M<|4;5v9RdL){O~U$vV2AZ zZ`^X$-8xFH-skI%ZC~n`XyuEUhy&aX8DgJ?ah}Zf1l8AZOmg$8L_>HGsrE30fu<7{sg=q~#5_v| z2&80{1`O;XYzz=};(%|7lAYZqyQR4)3@k*{b1Z?hJ0#tFdNw@sPa>!5>+Fi| z2p6G?^(n@8a&M+(m3B%OhS{*Kqkpv$`D2n0J_77J-h#)7jtiWd{)c(B`#?K;q@uS{ zfbtt3y25ZW1Q&&=c<{x8H`5#66SomjI(|CU!sJcsH+=h+FF=SyGYA}>0J1w-b=A7~ z*P!s6@i~`zRum+XmD5**6NGk(`&|IZ2Oq0=5z!J>F z&%Jn3X=B_h>{XLs{=6I~^m;ijR5V|rh+Ovjvq!+z_Cc?ZHK+SGEflOQ0|_2iITJr-wvX`yQCP2{>@ zh_5K3*NEFOFxjH4qeXmUmh<#`YK?Fk7J+8I&FQ$p z|9JqCy6MESQKy69S+rAn(YBnF_C%1K!);G738Fub;1 zn|D2Pj-C3P?VI`wet%|s>jB3))pYdBVU`9jQla*NxuI`--$rZfhs)X3j};BzRrpBZ z9G(pkm*yOtjZamggm_=6z5_rg1eA;A%KrB}xUoU7k=097NkZv0=ABM$43?&ZvxQGa zhl!u`rm|<(p)+X0nJb-4clG&kf@B{_ZI&y8*Eq`4)GQLB@Ci;1Tt%!qD?X%bm>ja@ zPzu9^M5_SNW0KXXGOmr>In)<7BG@mvKIoN0FA_GxNNx7#72kN)E9ooz;@!7AKdDNu zd_C1GQg{IT|VQqn!G_5ore%NC?)d%HsmL5n$@#m9si|0qIEctTNvZPCI(yI0T zdrZC2o+s$wBl>u-RCnZK>z&lVIKTW?;Cbk>W)Df@>8GX%LNu3Q_nFhD3}6x^*r!K!g^s5fvD^qgq>ZRYYwyfEn2$VF6u?4g{&p#1m0?S#=;xrvJP&P zuK0p(h29np4@KikPGb1kK;cB_R@BAEK&0f>A(V3ravkFOfM@;2BE_N2% z&Lizv=gEviDeM<}L+%@`IfbZx^Ph;p^xO}Oel{{tQna=3@u;bcZWiCBIcq3OTxbJk zl&VI1Fihcw_h=ku3tkU#!zRO4H>;79TZO)kxVw zE`N&6r#G+6ZsF81nZyOee5hef)@x02jw|F^YGzj+G~PJKlOavPgacf+7hN$%7#|}- zES6eB@clr4<9HTF%25o@dYhZ0hOOEdmWGz}UvjVO3u5K4?-yJzud1*u=LfntejZGP z?Fn;vJ;R-hPu9bR{HQ@a9T2mYW5-aSH%MiJvdTFnizY*(qz<_soazaG9olp$u353j zb9@${hR6@A(c>hdYElDW5fbreJGmhxJZGGm@kg#)Dhp0@S zqE=0ttV9a!T4dM6VKAOSm9zA#C9f(=vg|MH$717;2sgeu34wq*tr(|vr--u#{ovw{ z1R;K@<9Ppu0fbUROFx9*NwpJH}(Qgg8k%E)W3E}1pI|AUS9T2m2LmvKh+=v0L~>{ z9M<%BmC)$Kfg^1)&I_vkj3;kIj0wEzM#?JolOx~3H?u!MSATE*S{ zE2-s4Q8zc(jrI{F#|o)L9deE7Gv4QQL}>aD2$hv^m9)MViisADZ4zdj+`QMMy)cTU z8bkRyV^NXP83*T<*TZ=4N~phRm)S>Sx#c*0ev}7^+6bxgoMIi}0)P3O#=*=Vu z+frw{svjxfRLHR6b!1ReTv%u{fl11*+vgYI2e;r7kE5!h0h@b|`u?NzkEx@;IQWK3cn;lT>s3E(!ySbsklg ziI_e2_LrUy9hp>V1mb*ud8o$B`mZ&n{F*|I>*eONVA_$z8N#d$7@UAje}0Gxvq3|$ zsiPn~O*R6B`juy1_Dz;i5k{x3I9+vaezytKwbl8b5;TZOul zmS&xmC=OjrOi8v;<-&X~4J!WCr2)O2EzLt83sX#(p+06{x?3eZ^(%JgQluOsJK<>U zuqd_CGj_U|(mVZi=*XJLQ$9vZT5m}z(XTM4hst{#69IzAOGag;yKJZ~gc}rZ3>|qI z$Kym>`1EZ1qST-HeTd9EuI?ryKlh?yRXfXmP7JVL&DxP)U)}kibnjW6nkuMt)moq_ zxvmon0IKA$lk84bEG3z zodrq+qST`hLDoj*(ag(OeTngJA01m_ky(knp9q7>FlsztJJSoz1kyZ%K}m92Bl={a zj+7SJd7t_r9!d5k^J9y0ltwvnKq`j?-aEOFr)u#cXOPkCN_~1k8iO*VS(INuaR1W& zPin!-CkLkW1~lInKR|ESZq$J0tzTL+M(hu&yuh9vd&{6OEO~)l76U$*l_Kef)`|f< z7c19IX}I}6B5>P!kUjz?4cyY|k#m%UI^hTOTgFR<7Q@zakQ%3o!WX49snmSOs1|LP zTDZd7Xo^<{tf#LL5NLo1e6=bHuTL;qhm^mUadQ{r&~g7p;d$xHzQbE>~6^+6Jw!8i$lI$(5xed2;{j z=2WjWTNAy>S{T?Re^*j~LX-GrWi!QE2e9?uY_n_4_$pDAGq^Z{^W5jy7;KWuFj|U5 z%2+8e%f@^7qW&CNq7fLcVT z9;r>w?}qcZuhbpWZf+%+S+AN@ zEAPdV>`>^}QiZY_sH=|>FnJ?HJbewLh!US38k zyNl|B)>_y&0l{#Px)AIy>DJ0{;+M{vc1(2($HyCsx_Xvc;?_BjOxU#_d$__(r~bIP z#6_FALn)loAPVQGhU1c|IT@0H-XxzoI>czm3(ijq^5!bU*emSZv${M-158@NMdEiI8Bt@&Y_6{$a z^l;*^){sfA@xQ;8F0mLUA);7fC8_3cgsrd6aoN_!&}U3sI_l5Rv8HMDpMfU$&GE1Kc&{ReSlERK@Et2uN*+2%SUvGAOA z{<1(dn9z{l#qhv@VsZ7SKY9#y`UX4E#-#4ulzmEE)@ z*&$INRwRXz7K$WVfI6hgK|P-;_zEVSV1g@mGve#IBnrv57qomJsFFSC7qTQeX)v2=Ov|lBvH5A5T+c6!S26*TLEeT=P!;56)S5j%(~PdvNC+BEVEHHvIVWMw?zr?pTUc!Q~CyoB8KOa#KPKmt3>wAT~4>0 zHRtGXC*SBt_AXrZKhB=Ztso=g1Pt_mU>|=sxh0zq-_}30YUp_6ePPeM`QYJoB+zxm zXnUd&5P5=v)P(+spK&PDS$}|40_R%3c}2}0nKtP%e|=LvFcbQKBHSW`Ggso3n@xWC zqH)>kvaIqb;kM#;ec�MA(y<*zsQ6p9Sf&<%pc|3O?lJd{h$mTyRbv+j9D_Z8)> z;%Co>&PN;$ImtLG^nW7GE%XrbP^rQ!nIe|LhVHpVd. +# +# First added: 2012-11-12 +# Last changed: 2013-03-15 +# Begin demo + +from dolfin import * + +if not has_cgal(): + print "DOLFIN must be compiled with CGAL to run this demo." + exit(0) + + +# Define 2D geometry +domain = Rectangle(0., 0., 5., 5.) - Rectangle(2., 1.25, 3., 1.75) - Circle(1, 4, .25) - Circle(4, 4, .25) +domain.set_subdomain(1, Rectangle(1., 1., 4., 3.)) +domain.set_subdomain(2, Rectangle(2., 2., 3., 4.)) + + +# Test printing +info("\nCompact output of 2D geometry:") +info(domain) +info("") +info("\nVerbose output of 2D geometry:") +info(domain, True) + +# Plot geometry +plot(domain, "2D Geometry (boundary)") + +# Generate and plot mesh +mesh2d = Mesh(domain, 45) +plot(mesh2d, "2D mesh") + +# Convert subdomains to mesh function for plotting +mf = MeshFunction("size_t", mesh2d, 2, mesh2d.domains()) +plot(mf, "Subdomains") + + +interactive() diff --git a/demo/documented/csg-2D/python/documentation.rst b/demo/documented/csg-2D/python/documentation.rst new file mode 100644 index 0000000..4fe5626 --- /dev/null +++ b/demo/documented/csg-2D/python/documentation.rst @@ -0,0 +1,104 @@ +.. Documentation for the csg 2D demo from DOLFIN. + +.. _demo_pde_csg-2D_python_documentation: + + +Create CSG 2D-geometry +====================== + +This demo is implemented in a single Python file, +:download:`demo_csg_2D.py`, and demonstrates use of 2D geometries in +DOLFIN. + +.. include:: ../common.txt + + +Implementation +-------------- + +This description goes through the implementation in +:download:`demo_csg_2D.py` that shows how to make geometries and +meshes in DOLFIN. + +First, the :py:mod:`dolfin` module is imported: + +.. code-block:: python + + from dolfin import * + +Then we check if CGAL is installed, as it is needed to run this demo: + +.. code-block:: python + + if not has_cgal(): + print "DOLFIN must be compiled with CGAL to run this demo." + exit(0) + +Now, we define 2D geometries. We create a :py:class:`Rectangle +` defined by two opposite corners: + +.. code-block:: python + + r = Rectangle(0.5, 0.5, 1.5, 1.5) + +where the first two arguments represent the first corner, and the last +two arguments represent the opposite corner. + +A :py:class:`Circle ` may be defined by: + +.. code-block:: python + + c = Circle (1, 1, 1) + +where the center of the circle is given by the first two arguments, +and the third argument gives the radius. We may use these geometries +to define a new geometry by subtracting one from the other: + +.. code-block:: python + + g2d = c - r + +To get information about our new geometry we use the function +:py:func:`info `. This function takes a +string or a DOLFIN object as argument, and optionally we can give a +second argument to indicate whether verbose object data should be +printed. If the second argument is False (which is default), a +one-line summary is printed. If True, verbose and sometimes very +exhaustive object data are printed. + +.. code-block:: python + + # Test printing + info("\nCompact output of 2D geometry:") + info(g2d) + info("") + info("\nVerbose output of 2D geometry:") + info(g2d, True) + +To visualize our geometry we :py:func:`plot ` it: + +.. code-block:: python + + # Plot geometry + plot(g2d, "2D Geometry (boundary)") + +The second argument is optional, it specifies the title of the plot. + +Finally, we generate a mesh using :py:class:`Mesh ` and plot it. + +.. code-block:: python + + # Generate and plot mesh + mesh2d = Mesh(g2d, 10) + plot(mesh2d, title="2D mesh") + +Note that when we create a mesh from a CSG geometry, the resolution must be specified. +It is given by an integer as a second argument in Mesh. + +Complete code +------------- + +.. literalinclude:: demo_csg_2D.py + :start-after: # Begin demo + + diff --git a/demo/documented/csg-3D/common.txt b/demo/documented/csg-3D/common.txt new file mode 100644 index 0000000..845ef6b --- /dev/null +++ b/demo/documented/csg-3D/common.txt @@ -0,0 +1,21 @@ +This demo illustrates how to: + +* Define Constructive Solid Geometry (CSG) +* Generate meshes from geometries + +The domain looks as follows: + +.. image:: ../csg3D_boundary.png + :scale: 75 % + +and the mesh: + +.. image:: ../csg3D_mesh.png + :scale: 75 % + + +Problem definition +------------------ + +We do not have any equation in this demo. The demo focuses purely on +the geometry and how to generate a mesh from it. diff --git a/demo/documented/csg-3D/cpp/CMakeLists.txt b/demo/documented/csg-3D/cpp/CMakeLists.txt new file mode 100644 index 0000000..30efefd --- /dev/null +++ b/demo/documented/csg-3D/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_csg-3D) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/documented/csg-3D/cpp/documentation.rst b/demo/documented/csg-3D/cpp/documentation.rst new file mode 100644 index 0000000..11a6f7f --- /dev/null +++ b/demo/documented/csg-3D/cpp/documentation.rst @@ -0,0 +1,6 @@ +.. Documentation for the csg 3D demo from DOLFIN. + +.. _demo_pde_csg_3D_cpp_documentation: + +There is as yet no documentation for the C++ version of this demo. +Please consider contributing the missing documentation. diff --git a/demo/documented/csg-3D/cpp/main.cpp b/demo/documented/csg-3D/cpp/main.cpp new file mode 100644 index 0000000..83b604b --- /dev/null +++ b/demo/documented/csg-3D/cpp/main.cpp @@ -0,0 +1,61 @@ +// Copyright (C) 2012 Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Benjamin Kehlet, 2012 +// Modified by Johannes Ring, 2012 +// Modified by Joachim B Haga, 2012 +// +// First added: 2012-04-13 +// Last changed: 2013-09-12 + +#include + +using namespace dolfin; + +int main(int argc, char** argv) +{ +#ifndef HAS_CGAL + info("DOLFIN must be compiled with CGAL to run this demo."); + return 0; +#endif + + // Define 3D geometry + Box box(0, 0, 0, 1, 1, 1); + Sphere sphere(Point(0, 0, 0), 0.3); + Cone cone(Point(0, 0, -1), Point(0, 0, 1), .5, .5); + + const std::shared_ptr g3d = box + cone - sphere; + + // Test printing + info("\nCompact output of 3D geometry:"); + info(*g3d); + info("\nVerbose output of 3D geometry:"); + info(*g3d, true); + + // Plot geometry + plot(g3d, "3D geometry (surface)"); + + // Generate and plot mesh + Mesh mesh3d(g3d, 24); + cout << "Done generating mesh" << endl; + info(mesh3d); + plot(mesh3d, "3D mesh"); + + interactive(); + + return 0; +} diff --git a/demo/documented/csg-3D/csg3D_boundary.png b/demo/documented/csg-3D/csg3D_boundary.png new file mode 100644 index 0000000000000000000000000000000000000000..440138cd8db510e16855f3daa8a6756b7813495c GIT binary patch literal 20438 zcmd>mpm)>}HE@{P+#xg}$74c5W<8&=Lmcn3maN!&D8{Xv3WPQ4kw0KK8UD5a|JUvlv z%SV|FOX=>nYbOs*hQ6AE}u#+3!Lvf2)xp%O>QT5}EZ`#cyOm~mCEt7E z^d-D;4=hq)V+feL$-&F5HI(VA*UA3n&*+@L-s7#B5N?4 zA(MN)?G6?0Nz~Qhyptro z+Z*cPjil#&+U@6saEB|r3^>cO#2=y#A!C8r=mL*Xm?&I6(P*i;U)s|nMP}9dnmB}U zI==dsQLf>{(N)FxgSo#27;SL54aL8QXr|0LJ*D_}Jf3 zR=HNGhbAR8-Zbf8|A!M#cHd2CaklA~<=*EjzLCG_RL_av8vg ztFPbuw(R}671+>XTgKy5Qzz)t-+cJn^+ZyJBO-d}bSCi1 zl1!6i>u&{!L#j@M20wdw&6I$xE)zs!K9pOz;$Dh~^3<#^LsyGRG?N&B%pIrey2{NY zimhif|D`cY6=H|-rYWaFd$=Kt1qs4+2*ngb^7Bx4HqbV*7Bw9p1}7p3HL%022imit?Mjc z%RK>oXP(F~uf*kKr=KZ|W10EXi&|#|rBEl|#rbp3hXMIBY<*7aBK}K9ycgSl_h2?y zU6P3(x*8+q*CCRsHk4$W4xe|Owdy`j$1j#NGz9e2zF*Z~tg|!~=Lc5CE6U@13scGb zGyGg!H^Tgf3w#WwvcdUDVWzG1{L*qEtukL;!Onn4JcQkds-Z8{hJZib^_M3VZX-MC zorP#JH=k^ycKki-E@Y&3tsCOwS)g!5-n+JjbsqoD2ke%FFq;!#IlPN%1dpHV*o*EK zx(+1UzU+P3MtmUaG8Vn@y?!d!^Ba+!f=V_WS$iGuEZ%|uflq1ecdL_VY)%ztB?O@= zm_y3;%(Bpb1MsNRt}u?@5+}$NH-jb_R&gQf+(8ift}eW;OM9U0{Snme?OKFWQpt3D zv4;t}Lf9adtH6O;%B&;xU+%cl=BW`F2BJrI_fpB^2UJ*dNNf8mgP73r190!wF0Ua& z)6oR`x@=Q%lK(+`-m8ov(h*xZ*77%S=QEl!Q+w0lw7R-7antrZVP4ST+o>-r)WQA1 zc4KgXkj`8VyNaWCF+}P6{xpaI1UZQ|eo^ihuX3eULgP)~J0rFte@w@mq|r;PIN>^{_G7X^yiG z@*bsI^RmnPX`l{PXinaDq0rx@PH;w_T_X4grJYTe_H0YyCNixemiOuF1al4BO4pl; zB-19d8hvL^($5hF!WFuE2zi^Td;j^YXU@aFF0Hwsln>O*BzW&@mfCsIrtJLkv(D$%me`=SYyV&8nc-hb5 z^|INBoY!FMSvOx*I+d~M=sLs{aL*3lo}Y^aRCaSP5z98o%uUzecl#+hc%wgIMz|GN zBKWLli9uYPU4R!O>&wJ$2D47c;gQczsVC=D&e{xykVV;Yn^xd|c+s8lY+BXovy@lg zmNHN(XELr@3&0iS#f@bo{%cAz;p#YFiVkem@evnjq9k|-B<^ccn2jnBkjv7WOahqm zOhzj)-iEuCIoqn4>>97Zuhz`X2DkY}lo3*`t6;Oo*meP^^b$vBM z8!zn{K&}x$5HyY~{nw^N=>6WLM9sB(J>ucm`q#Ln_u19Bg%8s^jlqrzHu9TUQGb#A zKW}ky(8mf>K^u8M{(JRHSY@~6;ysqFkIjuY%#i;ir*n7esoP@f7&6nR>i+b&%QHKF zsNYcbiETs@xjORp{>AE_LLu|Tm-dZut`3!e%W1mIoGXH{8+*f@ZiWMrIp&ati-y!s zMZx;>6P6n(!rvThnJu9$Jv6Sx0Gb8V^2gLKX>CehhlM>NwEtcIs6XxZT6)EcWvGEd zNMJ^Hk@(j|FAX^Lh*p64sHuJ(8CiSF8=B;M=DKBAM>+jnYf{_`g?i^mW#tza zTV-v^_JbcI9*STEIShlNZS0L~RCux~^5kC7`)gq;t_?Oq8cTy!9+@Tuy;>oecr3hv z_wX_^nJX(Zi{z6)`SWnbU*x@ho@8W&jN}IRr%V`C#f~X^?;_sBgQAH>(0%uXe%??= zVP2nz1a%*@6yLZ;d6FrGN%qJf_9%H4R%g4U6vbPY6hKJ zpPHK;-%L|zEF#^tE3d2I@~Zw2c5wE)j+@{1_|Q5o@71~lq$lv|Z)aZV&8b_qAm54< zuv~iouLqfJ@2t&-yfoKZVj(KYAAhaCZ5416WXY{%2U%_XUKlznr%RpR3Jq&Ofcu(QisB zH7nn~DBwW%#M&&;PDc58&JTa=vi&QokxHW#UqSuLnze*!({KMQw=Q1%x&k@mZR1JJq!X$fuEKFYKAZpLcQnm-IlFL`&@z0h<3!e?7Q-J&gvm zVD|GTk(0S^|4Lj7*yRM%V&SoNY6-b0+&+m+!`_?Cz1V3`$~vFi^4#?h76AP(?-f9f z!a;O4Y$Tb&uKq5!cFsdj&(rwM;xuYJT?RUgDJfO-kpZp+Gnl3G+a+Lvh1Eo$=&Q8|@>j+bF8MR6hc&tl$$|wDQ}u~`e{r3^K2Ri+yQFTJa#a|#3{au z5Ddu{N%Qz_o~*z?#c0{pw%A{}z6VJkQcfEcPi6y(p}u|HMw$tlZt^~}q*uQG-^23?zIy;?YF@08PLxF+AR zcdS7;aV!x8dOJREs(-2d&u?sWh&OZsnB)cmD_JK_alE9W_)mr}yji;y$3|m~IXy*V zrYOFTv*-6+M2gL;Fj`hBw66)*Ub32FWm1 zTQhf356aAbkjmAdIhec`DLGUqcr$D(4JAXVM;%FPa+VAAjEha@% zB&}I8+ms$M&zUZkq({;Czw~dzaWj z1$4IQrS;`M_AT$dsw|J)6#yWlNsK=}#l&>fJV-MOtl!wpK;$|7!79god1>Umu|-kviUrNAgU z=Xx?bm(2F#qenTa-BnlLb1-O7q{TyBNJZCLd?#E{-1h%HUD2|{7XD5;hvY8gltH~n zY}|6nq!X*SX7#1$72Rk5K_Uqqg7BNeqTw8HC=Z-IlHT8V3YqOJvWo+w-dW?yl~fHI z72KT}E`)?2v@G7c8`}5|N{qkM(CE#}bHG}pvev;4L1i4fT`-`$Jk+v}G zv&;DPWt?~KE;wK|E`U2z*QwSVPIc?8yS%;Am0p{8h*K5?qu$j?Bnlrm`ChMvIY>`& z9M8M?wr$NvDte}AcZcNDx(@R3JeJo`&ddI^qx_;<(MeGE+aQ#W!EWNHV8cLGGQRrh z>q7U(UkhHo7`PSKetujq0<7kJj%EFIiY{tt@Km#0L*(MKRjFPHLTE9Vm zk7t5E>itwCyJ$j1tefR|B}26qVV^YdP@~thcZVz_&%uISCcM;N3%Kx7GHB-%Q5Br@0#T?~y1KMM_OqvARdvaaaBGHOBmjmq_*ohh? zX_p4fKy$%1+fv{7rdP(pMO&rw`O3`x`bJ^5!d}UnhTCPek$C2&a8ug9hC-Y?>eQBE;dgrPx&(@ltCaOxVcxs>S#%i< z)yR2ENNFSA{UuqKMXEu4c7}h*wCm5NdNkD2Y4f2Y^H@@X(YT}-*4=?9V$0vgyU0J5 z8<@E1zsE?`(etwb|S$*QZZ ze0659*y?r{#*yii-1g~+@uIj*P1va+N^T=Tj0MEV)L;6gYuj#awaB7e3w!5w>?zw& zOhXK&O_%l6*%N|DJqI8Ifs?P}LjFlX{s$)pa?1}_=;OP=}k?Gp5`Er6y z!429JXsR2i<%iiIWx4nHF|RsDFzn}8T#ys)2j zr0v3ZU9iQmPr^e+TZ$5<{iSM2CFHSRpMIdkc!TlC*Hef*kK=u#22zIS7}N?CglGJE zz6}XPs&=ixhZc{mW@sH4G`QCm0#)kEXk0mfRDEhLAzzq8GAkKxfn<~`6FI~9p>$>= zS&Us=E&95Gv6*ZsA z?Q;MSHs%eD>d0;jY5cu%?~#Snzq9rYv~XQ4+I)cJVgO0SEhpT>LI0_nxk|zfR;-jhTib8E zVx4@y5m}|O(bqAwhp#vrK=clpQU6oWPrOKX^502I%^zPmvb{I_RrB1KNTeC;VjU+h zcMw%q24KAb+Cx0?2MY+m_j5VbEi;u|eWHNpPYW7IzteKyp?f^#1luRy(4@h@6bm#U zDvyjzCeS%r0iFy-@o&c>a1XXqEtuWw9cBU6Zo`Z~ZY#%$>s=D6(fdf|9Cx9*APyW)Z^H9NM z=Pg2heC9<0z`Jd8`TV`h{wq%3P~+GX1nj?Zn_I!#hbGHvv9$_(Kixc8HL7EhgX5>8 z1y|Vwhi_|Ho`6#gy{CAcxyHXfKP`XLt4mr)ICYO$PFLzy~zU#%};G_qO0Q}#IsZggP9g#$A?Ce+9~nScb%Pu zF1~D4L2jpuDo`p0(0L_P#|3)?HyT(yRhsqO*&CAcbN|?q_9LS@-V9F)y7P@Q9Oi%$ zFayc)@~|tUxMa*NB=+kVDh{X=aDjq@bcmepKl?-uXeBg*3*(3p;fPC#nc` zhk6ugW_tf*@*+4gAI`_do61{RR1tYL-`NhhL~LId!y#9`pO#dFkNCCXEQxcTDLJng zZnX`$7oIwXh_h9p2gIJ#SesT!{z#=`7TTh9gi>FdoxB)F0PB%1hy5Y)R4^C+@Ts6) zL3dTdbgeKF>>>oPLA=TJ{dxIPSs|@+4v^T}K0h&jnmo}MBeX|Fl!5urq2^w*T4H)W zu!b<1hQdUFwC-6P!fU4s=t@=BL_FQ_0ke&4a6gX(quLD7?=6Eh<<8s+M1{>s#T)Rk zgt7IvqiP5IC`R-Evdf{C;mLnMpXkw0^Fdy>R&b7@P+<`|bq{h8LP_avS@u?>rIbES zp2HV$R8d2gj36vF!+WAV({Zasx}`Y6L{kYYA}4=>`!!#!{2s)dJj{KzlK^(_HwoFH z-~nGu{XbvUEPQEAs#r7;sqLutwsk4{Je*08iGmr=!7BlxSHEn_%uGu|Sih5{%4it` zWY`q{HpN1M-Zuu2)%HB%c*bm8FXZ3&PI+C-@;m&nSM3WC-ZAPoW{Y|hb$#ZK70c?bTAF&CtHQtMM?|T%$qjXnv7z>$F5!a}vXI*K##u+- z;0FvLpgDGa14UcGt?kFT3%=?#37;`24ZOwdxttgJSKo(}=7$d?g~^DuIDzi}p~XP{ z2ScDc=^or~Hg=;bX@JEMz>Ek;Q!|N<;#Uz|qlE3jt`_WJAY)uQGm2IVBuJStad7fz zd}iR&kYQdrmJ5>lGN4T+fWNIF3XGREF|mLjNJ55t;Y&uQ1#mg?3uD}bTRVzP;0;dD z3TxGk7a3O1nU>poMNGYu|{-lncFChIzxe8 zid|XQ$6p6mdGV;D%H{zy@uE`CKe9?qvaXV2r$k`cwMo?gYkF*P1K@ zA%^6I`^`<2u_zKWu~y|*M)CE_f zFBOULYL7xi}&w3cjN14qSANf@I-eY1aChf(pvyvW4r{I^i5v$?(|5eQ3Lw5h4 z79hYc%}-KVWvwFWVPBbk7VTevp<-KX5P`_*#*qOa-TcXx4Lm0x46x=9*ljUB6O4u? z`XPpQRUn_%25IlwFy{k;)wxg9~?{sfm#BNp3wuR{JCFaFj-*@X#kIc9%vL z562`8`P0tVq-Cd=ZWMa&>m~n9T3?p&{vBIEXlKY98xV((((^3T9ga>p@~D@ayjOPRF0V=-#7?*@;DU9haae9$$iJi6hemaonU3e zY^XeJIu4Xfl|K3mAp&y%o9@??qis$SM&0J5fPJbF~ zw;dpPQ}(UL(dJ{Wo|=i^pY$p(-gsBJgyR1DYCZok`6uob zJUWdxTINP()4wMWq5O@+p6YR(6$Qm19{NN*gfPf=ymmt%Y*xok9-`>(a8>CYafA@B z%sNX*KgEB?Zxe`oZ!-C!guHOiTZ}!GJo%GhGPydLAKuKD<6A$}I+Wu&GF3mItBnio z=X>9+8~;|2^wR4$b!6p!?3`XAz=`(*6OF#{350fB=U;>f(LuDW93{2%e#szY6Xkm8 za%sTLs2G1MrG!|Al9Z6v;-Rfa0}#8V*hb{j3+oYgRB3($#aw&<3e-y|nG&+LA1UH| zE_1;p%&U8GlJL-f#sYGZ;6CZ=Gfa1Q;l7Oc7-eYq7gcKzz03fnV*-77hj*3Tci`+& zAu0?4azMw6k(^J=H-m~3q}W&KY3k9Mdl?i;u1Y9H)f|xN(n>J%EGP=L z?!NVq_s0QLgZ;U_Y6q$G0A=^6B7766#ginDwIES*n~QJ8Ji73%G%R6x_^BClYDvB= z6^H%yMk>n+cM_CmzSpT#;BYe3>}jp>t?Z$>!aP1{`H%mOU0vuvR6ZFHRg>FHR3^bU zokYrf*-r^6sCF8XfKPZ~>syft4#Mn;O$ zhvN*%tZZ|^;?TK>R~Thgf)O!S%~0MVaw)km>TvvP&g;@>tlxNI(L!9aXFkmbTal(` zyf(|j4eIOsiE-XQF{5b>025o+GAKY+7wb0LNeo-$?2r&nHHaI5qiEjIM-ov@f=rPQ z{YOtcm3eB~+0z`fmH2NK9x%Ox=SR%lgopB)wYrZAD$gIuwcUF#5;E2tjb#iCGL$6j z9?czNhAX{~ladL0_RSitAEfk`H$-qfu*6vM$Iq**=Q^->)8A$D+(E;`02A27PTHr|}&pR1x@zZ@$nyMd#TX!rt?@`J{!0s<{6GCaB>N`izLanad zwr~N-fK6T$fpOyZ!U&=gYT#rAMeCruY` znx;oyAddl*Wx~ZLf}w^*lOK)zwlt$Pc}8-{W+aqAIlbhj9jKupeAT8+v9Q8M$pR{1 zAeH@|@IVTpu5=I6hzY-lqT+(3ke4prWGW-&FW|UqyPUzVLviLz_Rsb&v6lozkYFyK z1U{T1k6@)E>OX&QREf{|ss9S%%qfvesND(S4BeYYV3DwcD9KK7`Wp5A4NcQ4>+#{f zuUn~JRSl%`Y(P-XN&_R*V~CZs@K(|J5|PF#^Tq0W14n9;!U)loc`1>Mb+z)(Uv7Nh ziMSVXv*&%Kv{v-nCa+0LO~$u#jT88wva0xV6!{8TsCaB6Y7gVv#!!O)9dR~$D}`em zol+V8EMd4bm3x4ezfFX!C~KdBIsYpG?0}gN_5=`&yrgTMH*lBNJ%pgQqB~Jb&S2Dj z%owJkOa?&Z9)!9Q7XEZ(8!8k2pXL#o)>uTpz!+PhVvUVVTwvL8z9SwR zvLY|B0~dOS3RU!xVFvBus8X6BaxKJ`Z!7^c6!eM9nmLCV%cE=Ypm?gj=fXaPN2aVT zl#++@YvsQ5s;nyWHimlDrVnsRlBeVAi^H5mYCCDLo$?Rk$6x2#qwI0k@Km;(7!P-4!hBA5 zj4%W~)UzHlB}o>=IGfJ&?9uq`%(QDy&y`h`er_dPs<6?8438bPBL8BpJu;pp)H;i) z5;Bcu!59Gqend*)D*Xtr@aQx6N0lD@vO=_i1~A1D(6d6UC-&&=Yz6{OHYmtu7YGr2 z(4qC$(d#F8Q2BFf{1Qs{-r

rDm6aAcSQ%Tbw-EB53&Bd+iyiNMMd`;?KW%uOa%PU;KdN zE?{Pk8uH{KL}H%_Q{Q`v_Uwk8tEre3Z$GB0B}d+4AR!s=4BPa?PCI86{$UXKh;u3; zxfM%xpHP##)xPpOodo%x$_!(~y?oX*Hd(z}H8B$R5xBrFS*1MjKl}Aq!IBYj%RgTg zn3@==Cdpjh5g3kNkvJi5mA+U8U=8 zX=Iw}k|8CYp$PAsJe#p#NmM5|hrWVc9Te-R%It4GulJLB2xwJVEPqRG8EZuox9c~V zgnx1xB%Dv0aL+nSVHw^^LQeBhp4T*Raz9O;`AXBtkck7PyR$7DDK)EGro_gBa0~sX zx8rU#-uEDhn=PHT1V4oQsQ{e{;f9D%dgBGB`vA{{W%;u)@g*|`AvLWwiXb1db{G_~ z9xg9yQGo|(BMq@!ZJ)egen#Z;;Cpua3xbkwpM`DihzAN-l6s_OxlAO9Uts+ne9LR#p-l}XZYan!`oghJJCD$i!p=z2h!VLXZmVjXcm*Zr*r*TM zC;$FJBks@jR4!9_uC1k>lHvsDKtwmkSi>X62)#ykNf9cPXskC#nPu~S+aJ?m8fA${ zLDVz!DXW@+)tweuV*y&7oe59@6#MJTVf8?Jg3^V6Q|q=@hBrLN9Z2CR8m*I2h!_Ya z_U(Cy(YFXnUibDy~yP z&kIKCqyzMMi_+Kg+3N7_ndgQEBu#Kf$DgF?+>3KI7g4>sCzR_#7eRhr&gE(j3*6X(y|u=_-+h-B4yB>K-XcxI`b1(eDzR>!PlTz z&R%1X!rGsP>(wdwuXJ48SmQ##XSspu;QKh=%-)Y#TwVy2 zq?Fs-vd*6AUn*hl^oQv_Feb!XrBzygZi-F+Z{XO_LsL5zRJDsvUIoO19yQGe6`6nr zrS;l8&a=WVng7N}fPk0K-zEba&59N1 z%l!$Q?DbH%9~@4ZoEIcQ>*rY?lVGBbEIbG?L|3YG0&q9@&f$-+q|D^t4$6%z>k}CU zpYaWr-rnJq0;*PkRmV@0t+&Da!F>AhOcQBI174whoocgp;_(nrg%tt(c0FPJrY5E3 zt4mZPi(s@w9K}@B39D>`PmbX@6E{KSa$ZRp2y@T0S?2IsUoJd2EvHGDTN!}Za%SoP zT}n#96Yxa!zB}Ym6u)nptK8zwZqjPNY&Ms6^7aT(HM7CQr*Q=LZ2@EJS){*6c$m3-jK%*2-qB*pq}xc+Z-z$FD|G<|4G1 zys4cSD3S;01oCUW^<=W?&kIeOhVxIhE#QFeC)A&M&L5%HW z1oO*)jNqOx3MUQ;(3!XiWJc1+X5I_=HRfcazxKjsMNlTI_l6}`B;K5ejs)90uSh)mwf>@(|mDD$y?b|NAz5UTZXBCL6yC5 z3)}$H77^_P*3_Wza+)>DdI`tOEaR;d@Y24*W-x7DeJvQHh?-UJD>zn{JcH~a6aWPY z&K77S6(l_F#`sJlb_f4gf}?`TZ@~T}pIuE>4raf+Tm4d-CjG~%_k5Fwq`@53l%6{ z2RR3|z>Ptq=k^3uZXZxTg;-&G@hj$NFYf?!!m*pw#P+XW^0OC4uKW-Rx?$ zM4vGamY*MQqW%A?EC5>A0LTT_p}TJk?Yxg=6lO9ELUd}&0$cd*A`v#oI|zP}t)=k1 zCQop`^L9pvRn{RXZrhr}1aD}+stpC7Xz_bt@Qztmi_c{Wm60uM9jl!raSuzW*a4bT z=d79a121u{G5)p8GxvPi!XqLvFA3#M@vX&@usyU_D%t|U+|}1UAH5WcS=k?r)<;e% zkQ+p)YH}&kt{{X|$fbF%F9IwF?bb_VUQ~R=^2L5A^TXgYybV8rfQ7@uX&99w#MAbC z$10Ftp^!@?!%_WlcyVDEyF)$+LMZ)HuZy!H@7ZfH1 zu3Rq*pX%HG_s7zqa3WTJMQ<$p8NDQx=mdie{na9s4V!c%n8ekn8yGqO9`!0(gw<)W zentZl{_T0?hsG_<)ZDsVh)rZRncoZAd`H?PfAjnzE7)ST`AnG8EARL(EE4C zizsG&5f)zioiFu~-Q`m!^&dzosYpR{kfP1C-{~8P-(D@ibbKTWIiO?cJE*#AwQ6&g z6^|*B&g6vm0ja=hUW9 zBG}`@zOs9~JCY}|f&f=!8FWbmoNN-0gmNQ|Hl-0j_)A)t0 z&89x$LPYCzCITp4NgQ7NQZ}t}$(D+^ypNMqZDLgr|?T_S_l3VNlr?4dz)IR_B z+zYS+ugm=fveXhNW9|ujqNF}a#waNmxvUq$h0)&h0$Ppb82;h)Z~)=UW?lw#XSgXf z^)Zi*Vs~)|*Knc;M!9~tgsBG{sBPb5VF(+=z`of0!=>pPA-WlwBFiok48!5w<0$=s z8^W4$p+sY6FUnCMQX-7izCsfo9-B=PYEK|HXGU9UM|%YN+BPdiTYE72#Km49Oq z*Po!2=6r%Dz-9m_tWDEinGCumT~k?o2e{>cwse!(+5T|!O`aNN?8Be2`R0-ROosI@ zkxHO{vdunEW&-kGmR~A#f8lv)m?_u%JHAZWPyNbl%$=?|WvBrIHmS-%Zw)gWKZ72> zKTjwh;R#hJ5ZtqE8*M{2{M4%fF?j#y3I4q#3`pBKdNSsq1Xv*vMbIE~W_*Ix4d#S_ zoI(Vy<;HTU08=}y&j_~N81flo@4e|R6tf(rLxt9TnnA_4!AQ7RRvlA5Ga zW~jp=G7yZK{=gXiUALbhOg5md=I@0&>Lq4q5=Ev{WV=h9bVMz5AR$PRkh*Y#Psc2{;)%Zp*8TE1ZLa~?dHsKS#h^hZ}>Yu z5s7X{UV?YAc=Pe0`9`qXptaz}8A^vY4+z|2cX!xNQkr#7BF$xqfVqFUBc%`t%`%KppO?`qb>#wHj^%~JtAX@{HzSc0)3 z8LnU72^nJ7qw(+v3sFyJvUc7yzk-fI%)8?X=b7Mnn!oqU6TbmT<#w21LO|`xKmsrN zH9GG~N<4|0Kw?AeHwU5&SF?jRL!+pdCa$Rx6QEJu0#0bsI5z(r7uVxN1*}O?@4v4k*cBbH*ij>6j z#667ICCT^#BA;8ZiMj{UP`6ddkIdhV9InE0_^z>K%ogspiKdDnte9Sn?Cd%tr~$gh z&GGqysypl8_SwsZNkk3SmrsrTf3pYPK^kMzbA%f%2=2<84qVjSv~5@@sUSMVPvZy5 z446=RJk~{3u%J4{&k?$D{n%ht7xm5~4>59wkQgH{hD)&*Y1~NPHA(ihl6ZmrWInp> zg0A5L0cS(N1f+i-ym2+6^fSCe)q+1RWR$g zUjdj3bdZ6FVMW?mRI>oD*K>jett!jc{U|FKiB7@G)>;0KZ7K1Gt5V18FN#oCjMei& z+o|E|3%PS`lkYLbZPRx|%YXS${mJV`qLrly*Ua7K9dY1M`EGEu#Sr8@a4x#MZzoN; zt1iKogY&m9d^F$Yr^D)yec8-GuX$PQ)t zR`6DTnQMJQCzrw?MnqmC-%%;6y5HRrbj+lL=;$z+AH^6v91?746b#$?*OT1KSWBx+ z(?LFfTyUIfHTl}QQsO_cbV&2{KEjTdZ-Z40;@c_A$tIS*5M1TSM2%_OL2c*gAk^sY8>Fwo60x z*r6xn6JKliR}#e_Io@VhdsF2&MA1UhSyc?*ipyIj?4mAt1|xt}IE=sl8^j|K&Rdrv zv%Y*A)E83#x=6~^o{s#oLZ$SD~O;b@ha2d~U&&9;ApkDNI%$F7%N_-p2oxY%YM?9pAO# zq5RL|)cX#D^EK@)chrr|_Q@BSxWovJbHqDtOSv_&eA0U69YUMN+R&5Im&F)P_4`x`fIZ# zF(34R`jv~}+tYdDWyP>qx^ya-VfImr`LiXS6^jHy3YgAFVTVu4(+}VPPWqpg%^H+7^~KQ2`%+DknFOn- z0!M9e@+5UgK&7e7bL;K$Q7?SiCi7a`|7Rscp8HyfIb3;R7R#*$r>S2Z);rhR3WVQq->Lu zYVkmiZ*WPC`EvW4@*7j4P(Qh-qX2$ty#i@ejBwneR6tcz@n`6*PlXh%$5ORMG~0a{ zOsom#{()?`BdJ=7hAo^L`n;Lt3_)ITvpfZ6V&^yFQaXO`zJeE7n}eDa+;2ow3HX4g zH4Zb`u<TP}sSJ0IiXZ|E_8zGHue zjE9Nb6~hFZwiHGV7w4EI{&}T%s%-w1JxRTlzI>v2`x0}iVh%?Jh-u(%yx2*`i@pNH z)J`T+0%X&)rTf1>vA>30m_awh{oa!?yEk~F20!A~G?HV}N{HzuSl~0u5TgmUSGbR= ztDn^OmK$y)hp1Sc`;c+Gk48AkOcRuMnv;lh_`_0(##zexza~+SH_VmHRKhf&-_zW?%=OJGG5|aL@o5$` zfElIOAHFx;Ud+UQB*g~yWm#==)sI`$Q$iWRYXvB@ zQT%ieCQAB83TD4C=_p+uX7K4CO>{5B37z#K@Kr7Ftr_p(AWu1T8n}o?-uP*n?wN)d zL(t4EU@e_M+iSy{D$v;-h1P#(%uN@hGhgWkLt#9Pv6!CPX;X_^&KnkbknK8$kT>No zu(-eeP!l86la`8LQ;b~rW&AF)arnDZO5zyzHi+N=V2Ou~8zzJjYcm1<1DK@`9Fs6A zTN8gFid-NtoZy=u-(6--I&4v^X(#DEj#*l#!RCT_5gdzPgB8FE1i}U*Xl^QyitepG z&jHGtBZ!19U*}y^Qle0w=j(!~#P6aY3i9hJ3c~&+raMgQp-6^CNN(w|Nu(fS>L-X{ zs#Yxli^Cm`&uNGR`ne(+`~6y>VdmYm_C2PjE=LW5f7eehYK_5lc#_CKcGXA0g+GE; zKr^v7gK|Q?CC9rool@uqIt>bGd%gpZxO=#070c%42N%C9aOCSkZeNev1=pJ%QxVGi z1-@(08zOUvW-DZb+YW=?4dh1rS{^9c(P0dbjo-%_2nyb z>=uX;g=QZTWl%W;kK_O?LDWcHU0i&KzM^2PH8PMDT8o`bS>4&~-UWM(9%)Xj*uv zgUMfaD(_Omevws%vfg$RKzN-yeWIu%c=CRy^X!esl9ZFp?Pv_naMRAeo)haI|B`aNb7|<9^sD=%#~9-P;McH`M}dn zvW@L^Q%o=D{&;?)$*L;1%`#f|l;{oUet3p60CKT;?s`IYsr|D{crSdsRcra#XnBR7 zOC!c8GPOaOwg1ztTF_$wG>`793D6yo) z{bFNLzfyMH_BE>$27B6;(^E_WiIPmx)0E(crkk|?WQ@ZIAxtPeOPLrOK*)udTo0Jj zN(az|(JwELrH8BK%|kv%fnv9JAs8=qZSFN!+Z=+fpd0JJpY3RL$LP+wnybhvBb-B`%r9iuTI*k z@pSJUP3@3W#h#x*W<#06CM*5**2&MJ@J;u>HO>yO%}0B|4b<5`jFS9lEw@1O;?%7L zZYFjt@nj*n6g9BZByLKB4b;uP_dL7iyq|^iwZOvElF|wVls?3D3`l*&UDbRxtsK`< zzj`>cGG>9Mt7r#ngN@XmKa7CX{9i6JLJOPzXk0Fobw~em!ahOiTALiscR$K_DayQt z>hIzf&b6Tv@%J!jAjSvexkf$5wJrQ1y(&zN{ZlSB*TTYaJ-2q0_5~Z#JvUT#N!?V1 z&Y+ujDIF8rP7RNWQU%bhRj7cr!P;_^el{C| zeG=t9&RVLnzaA>H6V-oS?hen{&TnJ99(wXxc@adNjBpp4HwdbmOie(jgMPsqk$U+l zpWDj3Dw}m*K9a*4qdrQDcfWtZa|IGmC$WPkx7gx|8<_>(#biyAv9+9lAo}q! z_WWBmSXQz73r0^|hKF!E& zaYVk^$PUzf-S0Sn8S*3zU_k;z16KYLWyOu?|h>181*NO z&hYevS4F+f#^I{Oj~;hU_<1|kb9ZW^2E0*UiK*jl=zN)Ur0V;*)ph1KPzSo?Oz}o} zDmI<6Q!{CCLH>tba&iYre@sw=f4hCbAz^mP8sX>B*4JR-2Gr?d3?jzrlC#bJs%~&( z$)Ke`$kV{rmM`xy$yw z*sFrrrH`PMRjl9ZK&0z?Sd#11LZF7U6>fu|1-kuukjSNrQz#yd+-0`NH`O*<6zrN_ zevSm=91M2Dk!(4+kAUDxpC%cEe;}XYCXR&2s*96LVPy9Yl>2h)!R4`0iK?>`{w8JV zp<&9?T+TP-w`7ETSs-`&l3Mq3ai9Hq1amO& z*)nxX%fc2&@7g+=R3xU2d7b8r%t>~5xsi*kB;pQziPuI?r>u87zUE@t5#r2FX!0Pm z!9O%Y@lUHOo7~+N9i?Y`xw+~ikD{wRwgpyBCpc03m@%Ag>-kgsnA~3csFQ%lv;pKLg0&|Q9Y!p6190G`EyP_nYd%wUvG9Ga$ zOM>RzafM>t`tMg`tDq)GBYx(zelnZQxkDnDxL^2RDu!fug=ZM8g5@*zG`OhJAecnWbNp=)T%rTmS;C$#m+ zpiP z_!MyXu(hqk`FTi_(BekpNb%DX6?IffYw8s z`5J<+^M2*E1_jTvnnmW)Gt2OPzF8YFsBcge6QD44;jVGY65<+91)ieT9F z4o`=hb;k$X0-IeolPO@$rG_FQ%qb=GjTCKrU%Wq5j20%>pASs7BhMj6x2}uWs5QKx z1qoE&oJ6YacJ26~zYc~;gjUW`(IuzCd*0DHi<($LOx&~2C+|C!_9^d9k8Iu=iS4Sh zsSR*Gzd7IzzbV4#i$O}#n~%bC<_75Z`c6zKQo_FPHUcFW8&=#7 z$itg;`)TgaFJCRy^c~fVzJniv^Gv!(8(5J=FfEY1qh#7iPskEWFK*-j8if$te;NfE z+GTH}@q@bs^8%1D?tFQm?@uy)3nM!H=Z7057VTHY{^6nK0C@^l^%E-{RVG`oZ)9eE z#@F5c@{xYSiJv&E<(R@Xmz;z0lZ;L$^cTO=HeqT;l3P|buaY(o93M&8H;q3dW)=PD zTP78K`y=`D=o%R>(Y;KA2y1w?iF&{OYEc;JaOA*^8gq>Nb~lX{^XW$+k=)0iNwG|q zntpY-s5EpD&@)vZK23@>ki)1keQ5-1&$hfD3Z*;7&NzJWtVNOF3zbKJYgN*hU}=xt zw&+hrc0%<+1DC|ia@6eG^4{(VIgnq);7w1p`{!6K?gCYDC&)i@+K$I3%d-cWgN5w9 z8x|BqfkAh@SCicMg~cpcDhAkft1dh`4Dq_s(Jef4GSD@G#5+)vI@K*#oqgNf)+FM~ zcty03#qB1`x^iD9cs|^uAixOv(4Q;IkiKFag?W~L^vr%bOKeOB_xY76 zeQ;1rli<^V`cxRWpZ}RrFBzeP=jq76m7aSWM;&)0lop|J446yMgVLRQgFcvZ2k}a> zNu&jCX-bFs?eox}TlAfCbEa>;sUHt6WCsX&k^ZiaPL09mfK>|KW}iHvs0r@(z16uU zAOrP!x&@8iZl%^MS>6x}n3L4z?Rg=ECn1^getn1k4%}_4f$OLx`pO96;K|Keu%WRI zZWsmNvg3c&to%b2cYTPk8bs&zZG9+cazwmupZ6#a;Y+QagEfq{)*w6kk7bY zbs_j+yx%p_75WhmM{%SN`Y(OllGDWIkS)!I5@g83#`_I^tXIny#x~Qa%W8PsHIL+? zoJ~AYzsA>?VA-ayTBwQOB)<->pOv;)?5F^xPqEew&aMl`ODo@>vcto7_eeB$!ISmV zBsM>E4#s9!xTE=^y-C!0?^J=*MmNxBQM0qH?xD4Jnu0RM6cyo(;wK$#UbU)8JGg77 z2p7ZvkWs#;YuzxV1Nv=ZR7=OGqUFiA-{dm4uG%ibHPo@3oG<^ihuHjwbV-9F)wu%P zg*yaNdtp#GV>sF-T9apD7&p`fy1NhvJ{kpH>z5bU(b6N2%Zk@+AgJ>dneWrr4+YOs zO~$-eUbI;{P0x&#namO?MuZc$KrmB*I={xR_)Q_}A(SINw~zFwh6Z2vPk3dLJj-YF zSZzx8nW?!2#x_A@r@n*I3*)K^4z#^LBrJA;M2B3j951p^#PTOmmkW=bn}PVGv}z{$ zX-qN1VkPG;Bed5a@3!|yR_~8b(Xw0fjBV}LGIK^8Zg)(JZBY+)L=o**lhxTr5hs2I zgsFEW;6$Y32h;nR`JoM>n-A7*h@yx<$Qpt0{t%s9;;xX|uSC*7OwId8iy^bkJ%I9b z5~&psEd-D3@<|st-YX)OFb1e^bS{ge6WWuCgy|Ns0F=ByJ^rMzhnUS=+E}}o7vd*2 zDb6+&bu2+_Z=QP@WMqY>QzMzhVQ#Olgz*-$K!hQqUTs$rw%0SvpHgPKNFveolhnbS zS-(}8pIN|~)a^f8{Ct|M;?g&ccH9SC|$6FqrY_%qI-)`|%Yiv0>dm zLLb?*OM}Ea#n!V_66rl^`2KQNgKlIrf6(xC2!Ru_*>5N{ru@cOWV1AxQ_1|KTrLnZ zqrbpbYES}KBml^*QXRzOBtSk!D6bnL{SbBE8UX*>oLEBWLfH%=F3%F*;*FSV6 z^t5uvB*euAlYa$ceR{#hQ`%g>AxRHDl>C6sDr$tP) zrd^t^CNVb5KJ8DN@o5W7Z)!~#87dZ{{Y$bP?bK%yn5ZKhH$)8Uw&3A3NaU^f`5BPT zi6Y8;-3TrR9ZC~Qvm4m8xAr(Qq3^7s&so}t8tn|3B@F08Px6Y_IZ;><#GvTk5%t%| zzFjyYPq5Q%Rjmfd9+qAth+)zXj)?(w?6gG~uStnd;*UT7#D!HPuyb#9z2}wNXahM^ z!5rCI!wm%+JPl`{!a*BznAZuEqiu(JU_Cp^mb&jIaR(%*2WpCVV<2L${eIZ*SOksT zKxmX1O%=?QgDRupeB`Knj9WpHAv@q?bVE=eow4;od-XGKYps%=Yfcn7jXQhDv*2a~ z4@q%tE5eyN+5p9cqIgY$U9#pGJLkT~GxvJ&4%Y@kNAWVXn##%D&(%!sL6g-wc|DJEVtedNA@Jn%48nPY3QrsAa=g1?z8Z-8mrD>= z$J=!dGHlf^nfEG2nH0{Ebp#TRaV!vjz|*)qIGi*neJvpkS~K10TgPo|D7Fq>_Z# zH^LB3qhtsk4l}|eTwM)+9-UnkF(lMOTK$4+n^y()|;$);s@T)^%!qy%rFJ5eJBnN8D# zel$A0FCaHwen*1|i@IjG81=S7-`AX^{qbaS@l;fiD`SF*D})#7T(#VjfLdgh@zaCL zMJSfq8*KL|%n_{2BZPD!%^!GG3kTG0Ww#>@%R zg`%SSLcb%%l98)MNB3S3gv06Nf0W^bQ~==m$^Prtzm);T82AxjZz)HLHB~=KKw%3u zRLZ{gW>|x}1opxnfKvSM*@Tea$cP)xQ(1PNfF={!D{O*V$^#kCh-GnEdamDeH9o!d zXCcI6tKbSNVY&x&IBtUTMdpc@EU%HbFjcgzp^t#7?yViucO~z6OBR1`0KDW=}buh~(id`uoa?t-s|Sn&RiPTLH1Sg|7;rwSKT`(`OQ?EQkYdvslGx@_jrTlVa! ztV;tfVYlcN$g$q#{@g~swyeg#5L;bCVQ|6*(U!)t6vqi=iN_=a5}sZg^d>P{9X>Y} zB2UywDZy5~I+{Ov@(RfN2BbiWng^~dOoI;4+5F-4anzO6XDgg}7#usL6IoKZZ?Tpc z%>3=Egl5;iWc+lf;PsZucvx+)#RNdGpS{lh0CEvLK$jM6I|RiA#K6-pe(UtJn}U`w zp@E09xIe-LW7zIS?7`-m!lfBN){o>F-4Yg~!vac5q* zp3=4USCoSkg~U7zL;p33-pb!@4S$Bp^WjV| zq$SK{%J2BIi24RR9jDo{Y^@8UHR_RMHdGKbM2}+U@ar|+$e-^Tg;EUv2!Db-G`X0h z#}z)7iXrXWvN z8V{R#d#`r3nWkO8%P}?5)9!Ua?6~}%k;U5W@(Wx)yEh>0da;#{fjj@*TY8b`Q;8_~ zb!c(Hn-$b;<+7CE9H*I+1HyjoM)va(j!ef^CzB<@)F9gF$syvid|E-29my%R=4!IO z6+s|P;&>1TtX+fjZ;nI1Q)Nv(HV(V19HG8tx7=t+Unbe|aF;hv>%@G}9Yne2x&`KHPlw=8=tW#*g+48)$BK2Sz32YAT-|F)@^ojV)|q)OiPmR58kmhiDclCr)=Y(}2LjyFX;CL~)b9x9I-h+^5{`z3?l zj_Vt_@|m7e@?VU9q9bJScFMgM%jnqGZC>mJ8v$3DQUY+5i`1>OZ6E*V(!%M_sDx!q zjw=I-9`(QdYHbvY7J_NF!-CdFTdGxg@t7VuKq^eMfuE15Kw!Y{yiIn-Edq0}Jsbg&iP9aqkS!GdoLr!TldsNKGVk6=loHPqbPD_Z2O$90o9g*YdBP?CIJ{<-S zEUh&kVqkB{fck3%YoF=nZ)>7t3i=eCYo-*FI`87FhP+K#iLkN1rTJ}cKmX6=gXxE8 zR9%JQZ7VArF`iA1wc`hTxqQ`JaAzs)I|U22F}{Wu^65g+pQDE;U!%F28qDdL%(4V} z+q6^ldjb!F0~s81(Px zs7LBnq{2>8N!5kV2MeOp+9}L2UCtV+sA4%^Ss#9gYa0}1*ocK1n`#ktxCaxT#b1Nn zZXn50gdboIm3?ovo)Bz$N#E+I3q3VM+-SG;frcE+YZB8cXis1yMbesJ6Yh?(W`H1S z=j5`$E`sk+{ih$bctU7u5rwlvFCK`MfLP@+4bHA&AN}o@ONP6825%@X^Kqpfb-6qg z#6?2mobRb$3|LdKmqb;JMN{(iIHXE)FU{281@NcL(ok_<+-VupABXr#@hbn8qP>eI z2Yi_dA+M)B$2zug3=qWO$2c`=scFIs!ipk@|D`tnQF#oscg-XPYx#zsEk?GblN~+{ z6ElwI?Vb`VBl8l8R$;O+v{K<|VLxDesX+VRz%PMKKA{VYt{zP`vLKO8;(@uzmrYPF zYdny!OGRn0a5u5R$MXpS-jWQ6*}mCoK+q)_z}Hhc&Usw zj%h}qhjIMxRoXotM{AXXz{HVT@uADaA>(0#c9fzern#AnXxK12Gm_@$;}c)1)Bq<_ zcKQ}<-vA*(E0&)$nIY>;yL1rWSiDf$q}d}ACGm)#I%hD%E_4Tj%%?RwGV}`o&ccLY#{X7+WJ;HScL>d{9PCC{!)cn9KCy7P zz-*iP`k1lSAN?4hoXMMd1BBEe#vG2-41SMSBVOn)|8*&tL4C5*a;mp4n2sJ#wA;cY zREW5>3)En}(K?kK8ZaR;GB}5IP)TyOl?Braw6XjqxZ|tMr35!!KZhE7>B#$XsDk}h zlS6km4i3RWz5Y+Cd-DQTHi!%Onv0L*F^A8fh<$0s1DD&_lKIBF?MI*e&%q67Ntxbp#ECrqLRU8>?p)3B+IG^uJsRQJ2tYslnhh;HzGPtxE7AA*Ly(k zZwoS+MnCxYhTv~Z+FXT}49E-x(BIv?+w9%~!?6#4*Hte)8*o|*SLdlOmSKbA9zrod zB@r4<(QbZr*jW;#W31Lq$rKsloDuaPR~ilPi{zzS=J9ZStUr2LJH&f@-113b=PEgH zE$;+dH9us_riL;=vQ$zG13IB%*q+H=J?l1|*MBN#9)}{ZWXP;^0+FW9$-S9kc-khh z68^3Km9nb_uEwu;dbevK69&HGoiqwit)aYtv(-@NYGUN&nXSSsXq_jeDr3NwvgOaI z`bDel1_{rumahiYD*z!7KXJIRjISwZfCtc9jNvF}ZMED3|KPzqQgN9V>yNQqG&ro&y1|1UihkQiqrSnx9v z_e4Q~4S=LD51IU48znHs2_*|H5R_WEG&|&x52t2aKrRMZ0*2M~$HXGfKKH><`4gZC zE}jwhyqCQf-ZjOu0J0eo*S0Qw!p4LZxjYz_qHKh1Ce-grzq0m&X=B`S?(~t+UsAcT zFQjshg<~w93f~stM@&qWotid3yM`HD3!~T(vf;T)iBf7}zu))zUUlfHCQD;!9mmpP zJ|D~4gCdJjAxF>?`PCgof(e0&D6qTHeo*O#_Q^wsyYC+_A(kts=l_JmLlU}DECxG$ z4`yNb^s{grS~fH%j0f_K9(uMhcl)P=ESO#;`XD0mZVoCi3S>u>g&EV7itD4q(x?Qo<<1*|GyP zhEhx|3ym_Pw+xe|7$c81dyNcK%MR2SO7XL-Ov2}nXeikVc#Z2V&lNiBN7=d9Fbso0 zbfYT9pXT;otemS>Ef5qIK$c?%+uS|Ak(cSL#iG@2zc$u$+zEZT=WrxRuY~1-Rm14- zQunTI;*$^V-j+NnR4yDz&MQ&5&<<}%>x*Q^b^3}%g~)}LT4ELe?8pY*U&J;Eb) z@Jd@@W+4H;j1tufR?Px-j-`7|M;lzfCn}>f!p|W~bYD?Y+k(|pNi{Iw7aq@bx%0J# zs>FK(PiDnb8JcD>W(lUV!-E7yg>!|LR2fPrD*OvsHZrXd{Jcni3shPa7!?xCOBm?- zTN%s?y+o&MKgOK!JyYW7my_U7FS7ffQ_$1B`lCY4f^=8kq{|<4y*l?^7&@7hVG3E; z)l-(Hd%&F<6(Sd8I^zaa3wpBF^Gv%FIvKdxdDP$Ngz#$n43z$(0?fj%lBGX{4FPn$ zklaSXUZj7kps0|^Sym}o3OqMV-tXP#{1_x(l$}8m!ypU;zZ7Ca(EmSHi(YCVOm*m$ z$)q91k-Yj@Tq%`y+Ido`T-+*6Z-@lmP^r z7guOiu=Ih_qBO=9Lp0f5%Epc$(W+p`7jC_?apIuWPA^t?Rmj;%cf4MPVq%nr|6Ke1 z!gG9*4dXXsoax5f98Dgn+<7)?QY__n%TC|-h79crYzwn@g#y*!w2^ve8`F&h+=9=a zO`?|4k;G8Ox+Imm0>wghuUv5iiXTX!DIlj)J{J%a1uibiQ-adcIaQbTVDs_B&HOmTqMS3Q0R|8$~V?4 z1uBK?UWv2L^=;)Ug}|4!Ka`zW62u?~M6YCAQ0{-R>CT@FvFr<^Qj{zryuPF_6Oe_9|CS!yfBCCq|rV#}Vp6zY{n zAPco*5g-eDf5no4H;H=XLE;E^eH4T+4qyhR=&@hRBq0)53zck?dr?lCYb>Yh}iII2%(4{iDYh9NK<}bvvdjk zQh^BP8ZkQgA@CaGA2bJ486UC7I-qpidqYi8^(f2Nkg>A((6-T!5f{ zl$}c!#UKbnw^Xga?0;jAIC(`ar`Z4lPHh0=PUi2s&DD>#qNi*xd zyt-@PBLQAhk=S&|fFkC>>Y*Z$nlP?~r@)Q6!$hnTh1t5i+M zY2^JfNdZ2=Ls{nPY${>3s<9sqfdXm52u352dSDM>srD1#(~44PR^OptMIu1KGg$1$ zLI83h)ULEcov-kp5Sd6Ib-Ug~LXELTmv`2gr=fic{+@zmb?sdnX=q#vZ2y)+f)yo4 zFo2YpQSc5D8g(;={v%IyOrL_k=3w!U(AHkrm)$IA4h5G2lEUI2$<|2si)4K|Uk+D5 zkmMY`DdWy$a#J&(LmX~I6iyZ3dosSEvlDmIh;7xv^(lCe^tN~st$FCzY^6Ay-SeU- zJfg!V>Fvr}Ap(r?>7H*mkRud&6@slo&p&wkkFPozw``dc(mlStlDXi|s)3z=!V0sCKU2U|Vei!-Kb#`V{%x%1usA$43RtQz zOP3$34Q6)i(npZ{)Xp=792I6e*~od7GuvFO)+)+f07r#gASy>g7nxglxL83-3}?gf zEcX*GV4`6Aby4|9DkIma!|mGS1R;-6(Pu7DqF{SnR5nFrMx(Gb1P&2D0OpQWV;3}D z%0rHZE*kSKKHPb4?1&2_Ne6JS3%n*6?-!YZn_?mR_IKhqatQnzUTbzZK0{iCcTYu< z9%&hD++(I+ZM(7tGc!Jhvpb7W*xBnQn2P0X7#O-E962KpiD3wmk%eol{^55 zGvsD84k&d_sIA*eaVnW`!g7n?n=+yPd57a-wZ%3xi7im_SdoG@t9`q{VI}62cHpFN70{aMm)=Ym_*r8?^zd zC){2w2*WtLFiwnFy4JF-9=!S1?l*>c#$hTcep>sy27ZU;OA9tPyNnQqofmOP2*pn8 zaPtQOel!Z7cBqwv0%z~>Q&+8tqlJ6|=Tv(RFyyqBV5sqy5)SA4BL76bOi4>Gt-H1q zizp(89F_!wI=N^>ozu4LNIEjWBt&d&xX z#GfgfOm3xob&6Bc3Ino4M1SIPRy95uJ{9Pr!`2T9k#eAi<-LZL#C&CuRi#s;H4Pm~ z&Hg6pP_K|hzMhUf#b@a7UbZ(ewe8i|Go&WpaS7hpyX zfPst?L{uO^pxSs39a7Dj5k5|NtV2aO)2s+T(P66x$%vu#-1T(xJc5_P#~?aKjO~x8 z9{hfRFF)EU3}y(*k%@R`v3(t4z4)0NzR*?Gl4H)Z0HhWnCN~qTw$7o-e2=Y0+>Q<* z`a_DP3 ze*ApjNCLTlsW=<+s5d9K;0|m%nIDiq*^z)`HX6c;b+>?fg;^XhYAg7%CfLuC?GAFk z@R$s4A*pX8Aw)GR^v%am>K8lEK~mpDLY5wjf`)%W3i&tNFAMiXCV0<+puAxT(azzL zJ4m|X#M`Z)`&P>ZxM&j{+`+%lSb}!L!4MQO|HwB@+^Q+P;E&bWa)j%lh^)nZKX3E8Hu(RXcro;{OkcJbD*&7mi{CX?o zDqV9p5qki`;9h5)0nVgkD%W({%v=|Mh*e<4+Km((aXc?P@R(s>(Oc36YL+1 ztT*+YRsh>{3@l@U^ma-8EE}Ssa?4uvUVse^@|&oJBAZTHd7H@UVU;$}I1>0D777;| zXP3qf)%GA--$eeO6M49i$dHA;{@~6J9tFCWK3dRd+Y?+NKxDt6>0+R-|B}_M_$su> zhq5b6vLFOuH=26N(t7`k4e{#O;L*ea<&v(S5tUm5@-jo%Dx-Gedy0b`YdajuRg zI)z!^gE2n>LRI8Iij|wXZeq>=mRQ#827^A5FGy(?(+tXp=f&iBIXg5o0@7#mGIuH! zy0}%wjz~2%a&+{_VCR>zGrF}P1c7KvtEg!IjlDT}U#NGpG(e1s12_!Pat6PGuu83q zG44~zGKuFG!!Ju-kvUa?UO3Wr5k9%w{&`1&s!DtQ$0ut?S~=QZ`^Z3UP*nM+8?kDy$4IFUpNFK)^Na15ZHZy4Qba}7#>je|>sZH$ zdIpNy)+DQYVik3tHf^-awxj^Ft!-GDqD|^6I!(J2ZajmRkyZ0JJvMH{vvh}DR-UP+ zmcXp3%(duz1M?DIfZj838F)2xP}2IX7qOLfNyR*si$+?F@d5Mbt}uS=Rw?rg7H@Nd zrm`=J3c878sE6qcWcH1^-B+RcS+H5oI&emvN2ViW!rMj01MO1b(8V`1c--T^K29&^ z*TXc%r5NHF$m|g^JBo)kaL+UN_7r3WiVb9Qel9y<_BIbv8m;PK(JiCh*x)5<9ozv@9AyLgsXG&8o>3>J#P)qIRt*=JMfTj{a8 zhFcoR3$}Z@Iq4YFk|Ikia)6aImjF)AXG0HK5#-o#L$W$2hQ(uvyZoE&gICtJ<8=OgC@~b(bYN($)X9naz4dXmwLV;mRwp z!cU|};)9ab#_d6k`5&v7Truo9jy+#rMQh{spl;lMHO)`myk^o}iPFvYfOA&1zJ@nv_l%Q`_3SOkvFu{hC2DeMQv{t1|%}Dp|ixrAB zj7<-oJ`AZ+re>sjd*L(Iocss!I3!;3HjG<%1Q8|Q zQ!0*Qdulher4Di0emS*b`WX+98hQ?k$U@V-obqalC>&~;Ct)!wUdBNxnR*8Uni>i6 z#qx{W8sG4^`p7pM?&-=9bWGMf>axTsc}mund(pqBVjfH=nCHl*ijPfsEnm_aL?Cctfob1uPB3Tm`0IrUa@ zJ5;cg8J*k#Cmf?E$*DqW0z`f_Ro=}(Jf9@^=+yR$;{g`Hr)2WSC`U!f)vWNP0D(Y* z`!&-J$|p+SyKOBos30J9!0220oif;A?Qv51(Oj@Pf6C77IA9P4f-Mor63~BRVaZPb z*@GI;Fc@<@j=lM4h#U5T$2!p76i`KWIt{cBcI=8BFB*aw3Hwi{86wlgK^vI+(3zm& z8If6VH9EH0ZA@0gO~ZlLo6_$ea<%F3(u8CK79;0Z%&3>j9!So_jd96LZz_K@d0Vy8 zYWx?iTdNZEbw%8y_=ntGZM2V9*qIP4F{*AJW#Nk((gU8`Ey|7AYumCF?hM*86Jpi{v0jfnS}e@ z>4$1J#ox!t=Fj=zH~=EeVNQVwq@D!pFuqmxk!k&NHh}*d>m<*H0tK;1w0rOPpGeEeTsiY*2?}D7LQ+TEfk=tBPX@2Mo+DQjJV9+g>E5Rb@bG&Z9cc8Eh zg#FLbFHa?mKhp41_AK&=k(_o^xFmANT-EnNBYyfmaE{n&1sozT>KrYhJj9}JAhkf_ z(BxtUJ9!3`&D%o2-0BO43^?7iQ#Y<9#)m}7&NYFYY=4RInalhvUI`5rJ*xeeyYN77 z$Y4(#Q@Z;1Z_lDtE<_ID1oEEiOt31b53zIn*lQ2)V*XBNlGs;}84`#%4Y9sK=N{Mz zC+c9WkS!!IaWD~g&%j)PT*!K!$VTKaPy3mH4IX+>#guK`6STj`C9Xzp--jRg`9A z0}NqQ48pm&^_ReGdh%+%IQ&S#u#25A4y(X8XculG_>LMK^cDEd_)FMh>kia^n_wDu zL32XSZBt=%(65>kfBbjQ@K7TjUcb-wY*%V2%LQDHf_=BRJ+R5+q^$rtIG}Pw2tjeD z$uN6VZ0J#kdgjp@JZkXziK{CI6B((%fcp;Y{iJ>}037ouU4&j)vv zlG~x5j-XUykQVgdBpbiN)ZjqLA>fYIzy$jFBvB%4@YbtigMf_mFX8mPutM12tyKq) zOH-XcH;jD%0_;9 zNYuxy!rS0YLTd1M0J#`+K+NUF_)A!}Imp4Hw)$v84{W4WkQ*Gjci25uXlp9k=aY?@ zgDbw2ozaoQAPhuXBCI3M{Wo@c$xn8WJyr_P#274umbX`-O(AeX!oVgRT7S`UirE^F z-(%UVcZ8)@?jk6u_UYZBR>+t-nn32*+S6Pa&q80X9AoN;*O#j%3lh#viXrLrvSdgd z1oMFv>xouse~+D1W}=-57HQ#5%!ySYP-)>dWTKrcD^E-&1dwLiV|G{@GQAGYDz}eS%3&A=Vd#~Tn3CrH7aQ)r zJd&ws`$iL83zQc-MXppAp>-&};uZs5^kYC8N-NqCP`fFfQ>58Mj7ojXG|p7i9iXUA zC!uaJ*tx;;yZBj}Hx$%)7D4t%@LKnGp^tw$rF7`?$DV9FJ!(ED>lIN7{AlQ4UeO_t z$fHR3=Ke0#0D*MAWAx}2ty4bDVAnG8G9!tS0l?(tBnh>Q)w^?u zg1jaB=JR4T!oW~3;K?&_4IY)4`nwfo5lDr4`3^(;i%!7m<6^&E7wuI$#sqHf>sJTZaHg_I-QZ?J!=71Na=r9t()tUQv1y)k1cp4Q+fpt_N=3pH5N1u2;nvI?@!scv5#gLEaJ*Azo?!^Y=ju1eS><8nivo= zWoYr-^AW6vI@nIKg@2)+g6%JtZ5g@T7tL>y7FA z9X_40!+>;mfD~8OQLcbJgm62k{>Eh@d+3?2ccvfQrs|GP#P$wCZMV#JCGL<|CxQW( z!$^(eQ@9;M60dMEgkU=Z^v(sr9x}m`3Y?n0-`ynM86c2Ax!mK_v{T>i72t-DbSG{S zh&#gdIF;?J!=$F~UnDDcTz!ven{jk-pXgz{5*S#vGcl&X;v?HZl3mG~ltKf`cI?`1 z75vQ^o6wS%SqTj++Cg)(D`-AF5>CJDjqL}=DT~#(S_QnrjcYuU2(R!qg!DRS7RKIl zflA80BCY>z-#V^L+rbYl&>uv~Y1t%9ukbdMSvzt;onoRmKI1HJq_!U%?>v42+!y4x zs@J(stl~8ld*GIv58%MX-WYyxnI$`M3u3|!PX1WQa(KmQZhyp=2*l<MVTur9HAge|k zUJh<5Mc$B~b49idgkA{Ob?~nl@`ilV4uO4Kh$oo!6ic0%p<~E5?O2E$4e3CyG&j6i z`S*Y6TXrl61H?gW4f;PUePuS?{mPdWW@4~0^GKsnrtlc5E`9BVNxdW`TEIlxtHpnx zi7PBcJ4Sz=+MzBU?zb|h;u2Wdk1HfftI=k#$_#izu44!By4eh9{*#+ZVK?M4JN5bO z&sYnHiShPjVvWb_*bTYOY{VCA99v<<}~p(j?ZjwXM+Tl~+~wK}%PEX+ ziH4a8YR!M}p|cP*tdOYd;J#Bq%>#FA$qI9gE{(C`?4TK793RTg=m=sEgn})pK#cu2 zc5MDo&yg#Db4&t=uHGn z;}e{8=gq$K8_S1fM@<3G8ia{Ez}2heOsI^&ohA_V=XK zkwJ&3M24#s%5|tCqK+kZ#t#p3p3Q1VW+(~OQ#R>Ih8?0hsntQb7>#DCvg_dPDV~VN zo*o?#$x#hL-MDUyXCiX!>On$@n1JNvYnQeU3!enC7+|r&oF?i=s{_waKy>2obdU8N zr$WoxqZ?0{Is|IyCP1wky=PiwY!fmw2oQ~(J%;7h5U79k%JBbpJhb*yK);pYFT}{# zz0L&Uh~D|Cf}WX}|G^H|*E8S?)e&vij_fn{=BQW6jqU$CV&TK|Lyo*d!QQ#ode-Wl zBtr3zvU5w4AOwNnmDEMi`(JEHzXqi{nhOv;J_gV-%YyrTImZ@UR46wk=;t%c4(SJ3 z86?2AX(B1#3or%k5U1|})&Wa?TbWL~%wYXvWl!_Y5N>4=e5({o_Q zX6%7sT^##)K)knWw{*#UEoi-K<75~k(!IB&2t_lnQ1@`*A%@(yu4=?5Ev;p=HP@ zau{P(lrolb@H7owR6Vk(hy(Qtn)4hHAeSdl;q5a5w z%9lVdlXoH_=^?>IP#R0HG%`u-K=SB*v1{{YJ*!RM`V{N+273U({dczD!!u$N z`4RV&Pm!L7z^m)*m)rknLzA_7Fn9aA|0z4SB#S{1h;Au~sMq~(Z2F|;V?fHeY=E*% zgvQ6|Z>PY&$r`9swZBSCSsgDSP%OfC>;XzIwK_2a+gEjkfnx3|PwSG@cYD3JUhd)+ zx>8-7Ggf1Bu6H!w(-X(ESpk$-1n=AnXwbk_Na7}2h?OKg1K-@RrsD-O!*9tsb_q{n zk;fxV#_=Ba^Jj9_T!NEW#PJv$9(wrpF33H(R_G)aX*`|laEo!XYqzsM)98npY2Kim zT>;6cYrRHoTkJ~payNQlOQ_Ne%;v`@=^`sc5&O6%lANu+ee^%OF2}fs=?Gw~=l(rx z=IZ43AuA*i3kV)sNS@(n6)CMG6H+3Hn0L>*ZdiVEVzI0~IO!xSAQ21r9myxjN(0jd zlsplC72Jn;{?3C3_qrrZCP^lVUCFiHKuf_#*FUHVyx7}Kf>*NbI+V#?($*_ru~y?j ztu!?H_fBpfRWKa3EPg(Yf>qO07I@4tzKMPqyyx%ml3;X%<%L0cGROZEh9An#D2IU% z1fo~M)d9W##mclzQ;{~yPe19#tnPsDW)B{?SgetX6mxS$Utz&YHTz#)e9`k z9a^Nq$bbahdb#YQh28Ze!Y9vNDHK5h*Odc({s(k;SV_~URX7=txD)#lR*4#6pqkuL zRG<@(s9qb3m9%D8Og+~HmDpi#(%)PaG+ps5#}e^c!Z;w#A?dh$+ML3~iOrf$Qq|83+6N@Z>$Q^|lho0Rg_ldIQzv;3TglI(9>IckNFY@Na!&Y)d+1NLven9M#YqwIEPwA z-$4Vhhn022Bvqjg*_)&P|IQ;YR`w&IqaR<#NzH053`c$gG#uI?blK{o$9G{Ec#kS_d$1ZkGB?c zs@FwBMqwmPS4sOpCD<2uxx!Nrouodpn3v!}VwMh{sU|)?bY#it6}SklT2M2m|7{)Z z-kz0!yA+tv>k7Rbix|9(-0yz+Ltw&#$#PT0L+NH+^eiwH`3jXiONTTeDiEAMiHCue z^ea>XkPcolmMItxt7l+J5*E5E_dwt9i5!FMdB&uIqJK=EFJ)(!oG}PO(H(V+LcslR ztRDK%5^d&V13Wk}{CGL{N4zodwVAZw2Lzv$2o{=*w!*4)B???~`aVA>@hkLUv(;jY zcvb#5@IoItoOUJq|JC_iUxQK(C=iv4ANajifkCKjrgw2!e z_RFE9MK9Kl*rmI;pv1OdQORldOhGQt%7dQEcjU! z?dmUA4dEyPJ`4TweI&xxfB@r2hAnK0x7d~Rkn}!d#B9~0nrMfqZ3(WR8Rj!PUTSxg z`*J$%O5(XQqkz|A{Bb<-&c|aAC{i4wjh^?chEKr(kYvt_{iB9ZfS~ba^yE!{h-Jh88GA$_NF>dSpVY zdAmJkkXTD{WU2w?kUoI@&w-i)Q~&s2l#vOLbtglRDo>B2f`XgfG!<0u69)dV4(ntl&`POt~Cr?w!H zDG08~J7*%c!}bj9^6BSuilq?AWivt5VS6lhmoYKQ(2-T^spq^S9(pR=UB) z_bjCNlmS`w!^U@m^#4F*m|twW(_xnA!`TstNRFL#8vMtqtWCQE4^!Xiprv?>)o`uSMOR^-Teik{OjtcfN zW;Z{5p4nY#XA$uM{0FqfX#t-5dK3G{lGuhsOzduPqxPR9f1OH4Tf1NE^zuC#8j&V% zB0ny-28*qJ<5a3hk!RKrR*@pmjrUp0>o#xkR^wc6LO(9Iw(aD|0PgU9?0Kl?Xt`B{ z2()eU&U~5kUFN)GBo261Q3}wA{B(gRy#}|Smi3*IP=H40r!z^(;0%87m=?|edG1E8G6cOsZ z981Tfcvr>*=ppy%(BQj06uV?z--7>nDt?#MVp@^muYjaCY1%5I0`x#_t($p3mVy&r zaZHtprC+_=XR!Y}6@S27vB*};@!G}9j~laot+j&DnFz^u#lNoofZz3YTi?UH>2Pwp zEADbVbv~BT_6J7!4nkvx!=W_#`-d5%K0-Ihk?sH%7Q42RdtDEykJS_=C84mIBU|!R z?Ca`iTg_Hza7wTR*y4C5X;`VW-H+5_W9>03GIDk&_g$&9Zg@{)Z+LA6y>Qs4Un0N1 zPDk4!v#lBqTX8Q?xACK|)ItZ_B1bF%CmB9Oz6Abr(_SLWp$c&Ic3p|KK9BvHfa1L) z!`2KJI4=Y<@ikVw>*|18gZC&40E1P*xU;=W?sAn=IIsY{HJ}_!vJDTVVlP)Y0C-c7 z4LxHrk~Me51Fnv_H6F<=P|EB~f0rEK>X2KEZhSECG=&M3a#wuXdJ?xf#NToEyU(Oy zdqV#xyOJCTLJ;^RK}7oh9~;VK4v5{6%N&Vul%=iZ`j3p59s-%#=k4a9$EmZg@U%68 zdX^xxt>4)O9}ahAYS3M?$6y`6OYG2(Jb`FS=4^B7}$GckZ{vCt{h0 zV_m5Q5x&C=moQk^Pv`_3PF|@TM6n)bNP7}yC_jUA75eoyMyVcZctV|>X;^xAvIaW6e8~^WD$Hk@2QL@9r-T0}JGM2{!Qn_rF;ErIlKPw_0l-_RWe=f*CwN z)P8L<+fEJ_nUW9%KdSxDs)S?fiwnlvo4c?;Jond%SX&!oXLRx+z7?lRt{p0JYFP}$ zGn%Bgg&U%7wkDOH6F56qzY2a0C~(f?MXBhX6`gt<8fZ;qnvLIyflIPy1>z2l0eqJJ zaznpv=Y4lY^(>1_SH{>5-TjEwSF+v}$+Hy6t|GY!36otJDznOPL0byf=*=OY*&JP2 z?MiouIb4n{&0p(lT$AbRN2T9?l`)445eEi;a7B}Z`Mmb~CE4PeJF^gnePp#IwJV)R zf#eE#b`g|#>B+}C*QC-L6q71fTTeh^U#FYctca?mm{i#uSzpA^kRO&jb7^-Cc0HJJ zIlAOB!z_`X&5~MMn_Ula3k!zq4RJn$?iIDRMhwT(!{DSiEcc|(TZQ7J&9SHTpR_gy zgY(z;`p-VKNqOWIk(xEPr4lg?z_+>>j z>ds%eh2ShHXOn(eka(8GH$+-*g%Q_QH>zbi=5H5`K_DjYuCu|Y31pF zuBeshXh&oJU-3xr@jCfzufUXO;#>-SrfXg!z^6kx_QK|uihIrcwp7c!MtTo6KEFu~ zj1N#3)@PZi#uf!jz*M(ivxJuRjR#Cq<=C$2((OlN|8V-(>a$KfQ!`^67s&KRxEM&m zdNlIOv?oo(KTD|!>|K3JS!;c!(O)NrkB~HAf>+g6ZndSF{B<(;5Tf15m_&iDYq*+a z+Wd9m_jq|2K63XXmTt9eO;zQRgKm;`Udpe?g@f*FM)13|d|5b?w zAND`5nuh(e$mRvVQ%e$=li*5WKLfwA&D|jbC(uaq5%WFeNtJz=OlM=iOgw&?zz~IB zgJ@D488<@@&}i{#s8DzBqxg-=ezlPgW#^K_KnMcSE2$%(_rF-Wt!zLh6*k!sdh)mTOvomV*X6{F-5G7_w-RYMPd2d-*tm+%#hPFmAn1rB#N#gJqT;H)70_psfTV zut4)63=t1N6|CXfNqApD5tx_dLfnlAWm26GNB&;OU9lW{C}*PpyNn5UpPZXYKfDE+ z4|7&V^<=$uP12H5KfHx1AJ&*4HrWUO@S=a&eqT-TqT||6s?VzFk!+PpN4#|}`K)j@ z47PAEC9B^rwZxl8`QSN)oB`=;la0Di+T;hN@-i2&s4ZOtnVt`Uuk5Q~aYE>vBGdf86cD*`?6)`CQv#wowi?E4&1! zqPF(~<%7U-&nRucVvT3ShL2f+ts+B=X2Me)5xaeSoQmWF+v1)veG;nr@?`xRCJ1b80y;qeQA zA6S#G`&X!BHakp!8eX{l0ZHIR$)jlD-3}8VSgr{5?6Lb>OKNz}lRhsUaHh7v0~Fpx zQ<1~F9VKRK!+b;$`y*ZXyz(DmXD>@a^-ZqtW8Fb3Strl>u;UChu;YAfX2E}c^BzY(b{`P_5d29 z3yw^*JUIVtZHO2D9RA_ZXVg$%hts!46f_kR1e|$ zwfQ0DRF(M-PWOg>j^O&$Z~VY&P`K`b>`N2EB=jKu0uW%J3ZdrAsV>Q&g@R<09cV;< ztxgkR)_BN{M9FRK2Vg*Z7))3RvQNTa6!(M73K4}QO2B&Q4@T$?)DiWRrZeeYlhc`Q zUIvXJx&w7IJ%y#%vF<)Ycl%B4|4$+g*#%^AIv6OuN0p16L_)A+zks|Zj|uv+eDhP0 zAS|vKOYcsT0L!(!|LzvyI#9Rllj+yltYv4gAT72pqFPn#V8Xfyl&MtvP_zqP1wgd_X95YOlgZt+y`M+h0FDs|Np8pFYsotwy)Q-eS*%o8D zB;D5ZQq?ZsGSn87oh1ZzYmV^BXy=_T+W z(*Pr}Y&*%tZdF}OFPVGT_C@xK+78i0)ii3EP7v>%ew3Zj5rrTO1X~gWkM!TzV|`zN z=$Hl=CL)25+Y6RSCgZqfAE0V;Z>4_&G-lmy!j_^n$hZ5Y(ogKN-Y&Q;l=Zsh^m?LAXk2G<}5?6YTR#L9j~( zR3`7$HTMyk5$UpOf$64YU<&eHT_F9gG4mK#s2WT=bv4tfvOKYk>i@jZcg2KdcnXp) z!h(SpPZuY;u`eS(FK%h69e0$cz^RVYzD@fjD$Co*1)rVXZye&bp)>hxvFZ{vDTC86 zkKX}H-BLgWElyo%JdhJpM79yFl~lSMi>hmG-wlL)vl?`@SccXh-|B+`f7}qWURC$M zCzH{9qfeolL9(Pkb=a4YUjnieU%_o-tv3+5?PF(hj_>k0zy>1UoR`g$6U6yA_>ZzP zN|G1^f#{V6Cjq(t#g>=-m_kV^T!6AnqygLRcmIjzsw#4<3~Z#`irn1+w9N83xD=N2 z-?mn(Y|;X>O!J{ljWZdoCBUHX7XI)tQ(H+dJh73Iab2Wsu{&s)IX?JxEAxlxQoIlF zj#h(Zi!Nvcc)MUitfy_XD({FXm@mZG=ookp^wEJz<~}#^j+}xmu3dt$Q6O7%#y{7_ z$H@1eav}N9R2p*9fe=lsIgx}76K`+d6EsVq3EHF8i;ug1#eZL`T0xOW#qoNvDKVP)O9RZ8E7QiKV?Qi>flP%POS_GpKZ!y7QFca25JWH#y%LEb?tiiE_9wAQE|5_S3EJxz z+|{y^oa0(PJ_fg!$d?{*LLZ73KEjPYWQjPIDbR#f?>ajbdlP;Xd(3+H$up!0bKYH) zs z)VI8p9fv9|1D-JF-qn=)SmCiA#qn>!FCF8&f#@bzP*N<=Q9CRznLOwGyC~}|G^doR zC*s0P!7Xf;{fMsDx}~E+?B!6&W$+fZtA1!XFp&5Ol;l3&USeMw?u4=(9ga*SoJQYU z!~ZXh8{Y@ptGY0~1wC^*$I6g7Om>7pC#Xr6AFUqFIyIF*H@Xk4y&HbyMPpuo%@913 zLN~k*Pu%8MDH{b5-+8~pzV!EQJ3_!K`lDm+@cCz4%`<=w+ZjI<)$=+O=QF1;Gam>V zKg!Mk$6^o!qE~8_+VTDuTb`RumP(Uy0rT@KC@{YHr>~1hXZ#+xed9a5oo*F^hI*J} zPNus9?-*L9`@vZuXs8FCvv2AK)(``-LwiV;7#iwfY;tf?F0(P-Y4j~>Dg+JnFf{>U zee=GFEpADgsxU4TH9tt!FZ@eI04Z6!lDwnpryGM;-z6x+diE(xxjU+UV7>XxN=vFe zzApa$F&`>f=q;=2&pX-Y71V{IQaVFO{URW|{*8aI6r(#EC6@23i(VW5cQ2ndAYR12_&c_Y8ALL!TyJk15Xq~9 z&Fkgcrsg?1Ev#P*08fmP(o zHj!kto^i=Xfjn#vtY>3`I6~Zm|9o#n7^<)swudGJ?k4hkoPQ2}SJoB3>!FF3-GD56 zw00F;vT?aEG8`23ajq6cW~Ph&^I z#c5^pivJ27Ld}p5I8~j@S6*_(w*(dtYvdEr%f}JtQ4}d$DpCX*5DCNtV8HXPlN7Cv zGQz(j2?!aHQGbghmf=O^Mj7JYe_cX9l$~3S#2^d=uLOjLegBKCi=WjrM2auKM5Dxj z-PQd+PbKfD5Pmbu0c&{%gf|fhRa{^P_TA)Od|LXwDz4wJvy(-ORN}4@Wh>TzOuQ*Q zGhDohClCVIsNmSK^yTx@+V5YG>Gp|-V_(mlan-%}-FYhG-ozFN`vfmUmGK>+#5oE; zhUzz$@n>xLbt@kl{BRV4`DOX{$9EZkHVlH|sEaAxx=n90^u396XuBn?I)D|UdYx}g zhLAT^4sCpqd|BAMqX=Xec5^xB;tIyZwi41+PM+FRq3$N)p%U8#y3)qLuRoU!DFw;z z(eEE+=a%F!2m`?@0p{Vk|HW3#{zOJeSr<^b2ti0_raia^3pu+evSNDh|*4kxXu(j?|kPbOyoH^3YdkyXjw36I~lKf6Z*$zdo&+U6ce`Pm;u>I z8STA_L-QfQ6&Qln?$LttWTk$`&o#}|NfFrtsCQ(LsuQJ{2K28C);+%%P2BDP+ z?c|&EZ3n(mWz-h!5v5k-_FUBq>(77A;%SJgjH+Lb|J5f9SG!@M?CL>IRwk*bI{D_p zU3oxVZ;1bn)y}B;<;;QFUH5c)8JC@a^Ihogt6jZ*vu$t0UM>9`zE{eq`sLVPb?%{N zcoikoNMv;P@?%1vFk~0;+Bfy?m4E*#0_KN01sMgpA5u&KGEpsag#&wt;JK zo6V@T<)~lq#4I7tZ8ubccc6@(T7E!i6W*yeyB$vt+rmG}&LxRq7=)o$@;~AJ7c0+Q zVMtn5*)bm5Q6LEE8#@D0mL3GNn>-B*(Gs{}hq0gENJ|f5K7t8I**IfEnZ@J|?8xL)|Nz^E4&I`g(SD{`O(ebt;2 zx=|bd1b#V1V=9dcORen5ZW#JSXK=)jf-0pp1Ql8lceEcF7%`ln))#)KxISRi5`@m6 zh+zaZ&9JrJo@DZK{1y25TX4{UFw+4=%9?!ympX$_h7i=5xL^iKD;x1*`*G;!8)7&? z2E)te{ytS0bIwou#W2t#=&29#d?3CKY(sWg-7N#JTu-amJx(+$68DCRn1tX z`#bn!0QW=Lxg}W)fE8A|5xF0eDG8M}K#3-?A zAGzmro+2DJg^cY(hHs(xiavl=uR)!YfoqDD{;Ffb+EJliDB^EOCPcMUh;MBHZ0(!6 z*EfxA-y^Hl{nDiSZYl;i1ZR*XGl)v*hlF&0K@w;i$wT8e+xH82$bPAp+6MWd1~UEa z&cHRLpCq%i2U_jCFwI6^o(WRj&RjRNq65F3u+s!zp4mhbtNg_%8)0{3xMm6BNd~Yf zmJ6tCGDtW_G-i2y*4Xxs^Bh*CaH3-ZMbdhLOP;}Nidg`n?;lljLxUxtd^7#S-xjgS zi(*5yqm|*}U1Q2=LV90V#9e~gVJ41 z0v2T{pxkANH{SjrSz>qCm9itzTBv!V(l<@5o?Xe(hiec5;*4O!hajKa{Z54eY7!|X zIz4|Ij0)PpB zkTXrAt^4a>U`UE-_E@cuCoSjz;pW-;LfLpHSeAV0FWVhPAc)0y)Sk|*wWM{ZFego8 zjr5ca!*+ohOwM+NH)$Gcq?a0RM&8NfJ#WgF{<0(Ci>EO`0Kejog*AU%`(q|KRe&Jy zA{n!%%yXKG!C+xa4rI?pTn-O3{B5!tJWAE(fcAKANi(Hg(Jhnb4!u%wBDe<{Qk#!r z8rD~KEh~i~qI*1fa~q9fxq4D`MyW7Fe2=#~eAO9M{%(vbtVY}aZ>3*Gd8x*@Sk8F| z{n8HqD7&^K2|^HdC4511|BEeQKXy^O3oel9Qjsu*kcQ>}ZAG?E(lAckFHu<<46aYm zuEP?*%?u`C?BN+Zm99pOsvaL3kI|djrLEhVRPOF5>A`$mB2PC~qVahEE1iuR^*l>E zbVAaEK{a#O?{`%c^DI2DG^6r!;s;XDuX`DlJjUbITLr+?_=K+Hg(%~Ji7zBncu$ql zGRPkv9RiYJ>u#$74hKI@Ll1=zj!{}*bus=33yoSJHz>0W+NMoKyq>>h* z`%g16f;MtvuJgtLOO2iy^g9@wx?lqd!SuP(m3$DiJ8+j2H~V6^pk2PXAevO#ynoQY zY^2qAN&hwQ->~zkMu~Q75k}W1BF74+=ZqPxVE-eo8KAdKQ=(0bKAwfw$Y!Skj((RL zNlWWHw=NxlkTckLZce2j*YPpvGWvwI?h?*nf2>P%;Id-@YZ6TH<4XZq=oD27 zf*lkykkF!-W?32FkJbK*z#q!4APHg+gnbDWr2PM5OSn<&jvV&NIM_8PAqo9u-$~kd zDMGjDkdfJ0b*2XxW{G`!c|jQXF824rv&fHM@w~)lSki`+MM3k%l&Ddb_*rN%O~2rY zy-C2Jt4m_CZ;(AcZ$;Pau(cqW5{er{MCRnW; zlD#{jCHq3i(CLTWgf!?);6Is8*GH2FKbT7KI-o$u65S{bH9$pxTf&sk) zPsn-|)Rhi0CdLk9MjTHJ7=oHyPpRF(n?%`R2S{|Y6l#G}?m~Zmfr+yN*$_`PfusvI zT}{dE;7wxfcnt&YoS4^6jLx;*#Qw9H>7{iKUC?zNuy0_ihskc?SyuD$z10yTt}Lu_ zirxXVmzqx~#e11;W7$J`6Z%h9vRtKSg`oz+TI;^u0?NeQfjlx?At?A)xyb%ec1A}K zgCG!XDFTA_-`KJKf#fDMz}%U@5`CE@?!e}e;j+d0%r9ZzSArwcIu{zWgtSL99+lw=x< zZ)-Em?|C`7^WA3WS4aOI7z3^25)aF?f|asPg^m6_m_K@8V8~~b=Wf-kQ(+^!BQP^^ zX&FEqi0?x6XN31h*|i-(5Q4Cle6G-cV@LS8iLyJ=0Jr0u31Uow+RT@8HYbJVk9tmK zSQ#)O_a4M&E*$tU{)z6IBm*Yo-BaC#0Ovkv+M}4+*=H9-I2c{Fo9Z9ChqvbAucVFD*5UF14MF0&NxB1( zKkk+%9`9?kBpDEVI4lT^0ARNGFZiaJp-9c)wQ*5uXX;zGg!rLJ;U>SYQZB(azJrt&43ppuElsW}zb*%f zcM9V0hTraqJD8kUk|Bo0WH~UuM2bN1AL%!>-Kj5NK#VAJ6#kEV#NZTrHFPicO>tq*HAZf@mZ~0xWB}H z*&-1p?WjZ40)lxJg;850XGy0LR%{HV5=?PZXc`?*h}<2*2nXF)OR`+FsA#k%07;0) zb~eGQ7@XyGS{zLp9bC|7zCao1Wtl6oIIZ3g>^bFY6^rbkfQGT8U7MCGkb?cf-$K7E zI~+l$4&#NBA~6+zu7d)Js{`jubfMwT!e0WvEPAIG`2$4_krxdIoKtud{iE#Mk}L*6 zAiAXxACdiUY&h2Zpu`(C&_xl9icR;=sNEH^F_d-TPBXoOx9wc6%=V({+m>}$p#WU& z-P%tJ2)*ockc$ z)Nj~_toQ-u3V{v{{La95uy~$K;NH~${wc<-$W=*Hh9iUB7HqnJ=*&XU3*sKBr1ZmI zZ=~vCk-fT6zJ{Vmqjmpun#sV@%V|h?=3Q@S;_=mbN6uxK%uB z$9{K6c6ZKBciU&vBr(OU;#oVwGZ6NqwU!<7*7kfvBZeDf%}zM9%y>VjRu+_A@U(5j<_?XC4wD6?AEb6fZUQ8J~wE0akLGr zA}!j-wC5RLpbugDSuBA+a{arkeGB{WDaTUY1?DMQV>+Vpu9=+p$z{7pTUlGg4>!mF zJF)%BB=7uDc5XQqgdh;z(iNrA{cmhIeht2&Nq-YUt2`{L{sG548Tj5Qf@<|@>%1hf zh}}v3x=?60xRP9~?x!RcmADdOA`In!A7s6Ej_?0wRN{i0P^=?hC><8YUoxb`?h#ee z3}!&V8s1nw#6(B8{QyMyu(ky6<< zJVNKFT2MUTZF^O_bNUdFHc)4yuO!L_k~XjHmn@%06-(`e{G@x!i|4LO>wC}hfN}l# z;q6PrxU`xFe@R}l{J^`@yc)LbTi&B%^PGQad;dE}5D(3y6%N7A(v|6bOa=^(`^#4m zwyL$YY4^xWeUb+*bi|38bz)w|#O=oTAuQoy(sz48>KH&mp4umQsUUL5myl(DA7e|H zlon1ul@K{RUj6_s6;y4Y6KGd%AAV*mV+)#7-uG$cMfzMs$V+_^0X%Rn8VjVrq&Cx^ zEN$7-7fv;@mdXng`9JFRA=~)jZ0qu{faJPwAOTpK)XA@&HgCwN5t z{V^zSmwed(I^df=bd{WK>B1o9xKi2SjJ?d4W1V(9`UwS?X^96!6G636*AR1Fp0_f1 znIgCp!9;@invQ$@`oSv&mnnfu;fLzGPk&@Jd{q8^Ajwpq?UR}zxCb7EJ}3i}*>@*C zaX7d@@(P_or6$Ut+3;N3Wu5$Z^{ul4yi#zMleYvCNk0?!R;#5Mz)7|{K^-?&-Q+aSYsi!aNiA zBHd1JK*H4=DCm{NSv(V&0$j&9IY*VRG&%T++%``Ys{yT}v;u;T-E5URu4qg1OlS&l z9VD34GjR`sfVQtas;7$89&ebH7FE6bO=IKr(D?hSOvhR57Vt?1J)41=XM$=#>?kxT zV8e0LVRH2o%O7tNlH=tM(?o;DY`dED)D~`1)Vldoo-wz|sJfYSdnO+&oI3z#satQ5 z^J~%SnVc}8b~^gM!+w>5xZh{S-``~fFrB)9t8i%2nx1FVl4aNmYy|H#nuAVaFUC6i z$o9vF2lrH%WntS9>tf5ddQc{*jo_VBt`{_yLx16}Do(K@SU~Q`xIHUjHk5U2#`Gy} z1e-LqMlPk$NsVj*C1Hx56hyS`AR0!NUUv>-GdSu>60f1MKH3c*0UrQ%4k$qPTK zA1;o2DOK=9J*NkjhhgLihn_nrp%KKh(U}VWSe^K@O}0}+1&kn`gJ!?DB>_bnNz~y6 zvzMa%V$ho4UiTCV>_#5lRz;R>U}p@A0^T8qj3WqUe{iES=40DEB4>slW!b z+Y+W~b^jZ?iTycLdPg=uosJ@49tWYn7hSx!I%~_iz;#S1HRuB~ z)Ot7rErA^_es=E+d@;bA>2blMbQXv%IVI_fR8 z@ak!CrYv=fg}9>!GGYL5pq@2!y=+tsz(xen%J_yexa%%ut0Vq+t4nKnuX-{{18}e& zwIFTWD(vspqQ~-#7yyc&zMABpu_UMMDkqWuIXAD~66#HdlwvEB>;9COA?yQg=p(6K zK|DLNUkl(G8NxoCgBFviI&Qh^6!A`uLVs@)C&=>@Q>($@2X@t*k`V)dhxF9h&k49&D<;7rQp(%nneM-Ur9@eA8Cuml$Vq@>B4ke>v z0FUcw#?#IeWs=e5O?edi`;T8Q1xc1t_rjNmk~{+_-;a*LA7y8d>@W<%&@06RkZC>2TJlr>Bz`GNp&{dtBXOgXsP^V#PEWq^#?7O4Apbs-GXQU%Q z0%Pf-)~_A)1$~%lF>06w>>dAbJpeKt^YI9k^Cffa0e~K-XjNZajgA6?EDuT8(b94; z-YK;0hdKKZi(J>s4;Q2&G`-F)ZE)q+%IO%9n=!4M1 zb|0csJC4t+n{pk)@ra$8N~|_mMiJnbeAmLeBXprNC(6s$l7bc8|HdAtA1^~?CS?P}m{ve9=gOy`=S`p=YYhJ% z11D<&Wa26=Qzwh>Z$X!7_Hg5xA*!SehtAe+XAn3WBOg#Ax zJSA-G^8~3dC?sfllwOjm!3zdZHb*k3ASfi5XpPSOj&BO7Y-S%|De(pb&oyw2?{lc< z8cXICDsT%42p%u8SEJCx=_Ik|>Ls*=1WgaB1o0noa#5E(eC|@}jTj!?5Jwd!RYA*n zl&lqShC~bx`YHJ0xAj-zx0}ZPvG5>x?YCU1q-%||B?PEJJ)0l zA{dBniD1Zj?*8|1bNu>*QIidHDaOR(=)P)S#tH9^OJJsDtO+xk@GM3qy(u~dkNmufF_WC0ce-8O2d%g%= z+UXXn&m`gO*Ej7z56z4evX$e>+4PAqSFPi4?S9mLAHNmk$=HeDML|a9C*k)lS=X=N z6E+7Y=8$&8P9o+X;us#Xg{(qm0%RW2^JG(xRA2}3q{#;f%oD$pbeN8jLOGoC0B$o@ z62$r>b6A(Zs9(lYoqQX%VpCvMGJ`+LzmDo^#*-+KY=YaUPs{tSBvLJ%6;H+N%t~e9 zoTrV$m_|z48l(m905;j7HMH%fO-J$fPFEM_W4p;BSUY25d=QTmHHY-@CR=zA@$hcA zoMuv_tU0E~zQ$_Z-Z4qh{_MfN67sf_y*c@<= z`$hZG^x+72R`?BXq?`{i=ktdB@1L@3%YhgKfmf;w*zWx=wv5SsOmG{y05Oz`$~=x& zF327#0cSDN^V2B>RAV>V1uk`k%_hMkch}n7$coTSu+} z3hVJ8Dkz%;?pdbs))K3LV0wZaKLpnFwy=7wqb31S=pjlYuiS$g#w6|3R7WSYSWhB< z(`73CEafvl3H_1}@t(Z+^|EQ+c{lbrTlPzZsL2+m@VR^EQE+VFG1k$*fI@m`kxRb4 zn=c~XN$8i92x(+q8IZS;n_YPmyU}7q9 z9c9}{dd%bfRorE)BMyL}qRYWYf*=>(sg_zwq(idDxK&w=Ct>1@Npzkkkza~W6ke(S zLyw@`rp6}Ioo#h|)X>s6cQ=}vZ}8F9;iyBvJjBmaO6;K@vDeD$Y)(HY&zG_@%5fNk zf#{V|j|s{BFSdSJ^~0D}wbXA^5ikbLym?0j9~2K_ntW_-BON2Tl9C5QX;f+h0O_W> z$*omDa<C5Y{&jG zEvZ{Ypc`vXXy^Uf)a;I#Tq#-$hm(y#e4*_^nXF^@Rtnb|sMJo65_QGJvWiEoW6D-i z@xZpe#kGmVPu~pPsZmM7WT z5yy3FbG!aJPu)sf9@6OUF$GwF2#d1iJ9csVR@h|3tsyL zm15Jbb`0fGIw1eONw9Y9NeuaA=+7&}S7O$|WtGiNeq8zA9Z$KEg6Dv|z^A?E^g3>* z_GKOqP0oCwkaVt0bwWCxZ~4-$J`faQcsUvB$bXcbOR@tY2t~KliXYtn#vaEvNFgTG z%rdgNh@vR>+{~=@G#-p0>0nf=@qihJIg-5j_6kcFi zdyDwx+EN8-KOi8G3qXgB{-JArhR!5F*TZ8Q0TSVYDJ*o;a8k>No5gkTbh<7}NZn;HTd_CAEsI` zD|@Th0)eKEMMzJjZx83ek8ap3>=u}7STf1m<9TfT|Lc6})1L8e=pRAxyQQKZoRl~m ztYWKB{jLxGqwGv_7zSY|dZmOPFuDK5>c`IDO7Xf<8oBiV{zLZgu{8!nhv6^#A6?n2 zmqz1Fr^j2QPgBFkKrgc+IaF5o$J&H?Fk|w=YWLJsv*XxTp&x5RoZYej>z;+e|2+vx zrGQ(+*|9`~Q*hyekW}zqx+1XMFyzLY-CH~)s3Rs7^06%DCPF%c&Cn9%N)Aya^092& zQ34SJ^m#8y5S?4fl9jrmT#tNEHiT;1G*+O;4_aY2E8=?Kf4=itK-2b~LME-kK~}`| zFsiM)6INqya=%uhAuHl~9`rohTzJ@PwB*GrO(?>8JpKcDT#zwpC*rP^sL0w-J-W@$ z+z>*&o@aQL3Kv-s)I(zSrKBU4sOKeHg)yw?v4!(2YHOZAYsxyKQmN#d!xnBF2GO2R zo^Q|oAMv^Q#2R-T-mbw-C#U)fuUFA#%WEwBSVP@~(IUlwpa|Wm;YqAVwfn>`!r3IxV!-Nfdp)c5+-$3^ zAh|KBD86>54&JdaJPs_CH0Hlit6S_&9n83%Q|BD&1^@H&T>FXKse&2O!(Iv`(t#y+ zp-??KEK|>b9yIeX4OVI^d*(Nh|2{TJrpKNccDf(_#;$DJhz^C-7o8p;Jd?$hX-p}Q zARV4**n&^TRa8-tp{gE8u1=wf1n7aCeJR0>NxTpo86661Bs>q^Edvyb@y<|OVmlPm zNPr#?#ip);fB3$_o1J&A$of13^-y)+xZ|8&)Tj=9HEhAAyN)}SysnY6_>V2?@UYh+ zcds^s-H*Xp-{;H@fiLPffyhirm(vjp|uSxcYvNJo97=(dnN?2+P&Ofo$^Lz=InpFZ6g)yi_AFn~- z|Hl6QHFF3T9FsXaVScg4o9%7FiXK!sgo{jDG{aK?)ckX8{2u)KnrC)T+zEKB1=z>W zR(|+DM`h~i_q@p`h@CPBM`*j^-YU9HWqJ?EAN>=9sph!sJVgICwX zn{GvHsm$;Rv~Uwhq}QGF@L*CAEGkEF5rP~b3I^CbmV*^tp_V8vLgt)+=%~SUct$Ge z3YB<1POf}Yf3bC165z>1_$iRbe&j2}AHff@Ez+vBCx@a&di zjT4E=ZEWUWR?#YIG3<$15AX^$80K@1 z-R6c^E0RB1HkzERcL;2gMBT&AyGxT!lmeVJ0$K)ICo*uaAS#MKSth^+wwV{%&APUP zZ!4v6Yl+~35QkN(1M%)X(b_74KP^^00V<a^fmQ~mM%SilukQ8OE zx)~qa?}Di<5^gKwXaLV#+TTMyH$X3|bXHpw!?WQ*)bWUrfStLaz1fyx@WowZR2x^{k$d9VPlnD44VRK9I!LFrEcQ`R!%l*>|t-QPe9IO0B^KK zq#++$?JiY`p7KZR=N;LMwg&y>(a{m3Y(4BrCckV}TecHIFLbGVi5?D0rlnXnt1ZkN zrp0#S^R>y{(qA^lYi3zkTA@&9V?OBwp2=W-z^AmObwh&ee~QHaW4|oif4d6yeXwS@ znqnYkGMFFkQPei*Ea1OdCDhoGq2N_N+ry9yJmg_DHb!9)JCkKLeV!#jI^f*nr8~p_ zxnu}(Rk!@ekOB&S*l7R62GkM!ImUH+N;am(i@nE`{@*3~W2mSj} zk!jsnDDaZ;#q1jHtPJ_?m$GY1Vi*L0S4sqw-2Y`JuWYIC@utD)O?7y5Qj7NCz#oB}#}>&Pto<(E|GgSr5H_~1V9-J?&l%#B(q z1VUYKK75TFUz4okvVFdm5`|FzaXzmi-S2RK^{b#E;?2|QH%siDkV2zjW8ZNY1HDhv*@~T&OVe~*^$LC z2x}=Z7?b`RTPgd+k)5Rh#*@eWB=Ku}QUxN6M|lj609fj$c*T6Rw!eci!gvra8^g`3 z4*q_ZVti6z5{idul|Sae9FMN2^sN&*rN)z6ynBxEnsi?3;MUP>!l%?I)kF3&6$JSw zh&6CbnUEeeD)k`H_uiBjluAwVJk*Gy1U<^pZFTJ+qXst0^Y9WDUcE>v$G30ZJxPNR#DlhV z`$e%1xTjTySZn*cs67ezDz6UT-Vc&(vx1$lDmCGFE-KuZ61hPRT6M!oj!n8eiyKFB zsNWkaU2sm4?2~Y>js$Du5)%E|`FJw^L)jS}IShkPuqCjJCHLRhvA!=r@t6h}jY1-L z;jyn*Zj#{Yhv4T&KK6{aVItELVG?*@Pnzz^fz$v^R{Sy4; zRz?yB$inO4`K?W|bnKg!h+ETJ5k0(WTWqtdN#5~TTG-KZpsCZKdYT{ggFHKN;{w

jVycrT_FTcHC1a?^3%(rZq`h?YvEcu8t-+&Rs{+F;`mH&m-zV6>JOt z#jRcbbu?+y^k}kk${_u)=AhJ?9do6nNuE>SBQQSYg_Ufo`xcni;wTS(Ja7x3u`aFW zUY&EtujB)$^Nt%eaBTFtmUYwO7!Q*fURX`QhR0bG{O%k(?&$FgT4;3-s;LhDkB+_4 zG_gdyOz=06uH>3u0>9kHOd=zu99Y`a51VJcW8O4P7A`g-0R{Kx7?pH<3I1~Q^jt!l zS^p}^ee1{QKl3}Hw*aXzpLziwEa~0xhFYBA@sfU^(=)tM6R?G(wLi+vEy;lpgrZv# z5!>GX#)jj3Atn{RQ?V%22K7E7hzALiwpf>HD~DVuHa%YVD7P|x-0}AN`Dx%US&k@l z|2yu}L$)kw-s=@EtM#Y>3!8s>p11AW`eo!VVaE#};5FME)%)6Zc?+p$dy9Y507=!=zT*jEL$%0TdmMFtslGb-7P(DTli+=cS@`9eC!1BAex{sX4HRs ze;WJaWNN(c5rL>V6d1Z6d2&`NwJaKLnIUe~(7~9S1(3$B6r6zLX%iV@j`D(n|-fuR7lb~tZ+f? z@ZA!hP+X?`>oMEy!gQ7jnyy3P6azk37f9({vQnu!0pHWQp%Dc2vGYKD3A|DsBEV-X zh-@;w)kFz5cRm%mrbUR4KL0dUWVU5p3PgpjX%XSW>pK7f*b9DYxWrvLlSJ#Swqy}8 zE-~InWP2j5kU=e4Z*dNJ+B^OzyS5{UK@ixIf}r-_*sTjq&{F3_{_ahg@OrJ8wM2rudhOKbIx!jMFZ(_e6X9W2Wyo7pFi0vo%y9$q0BEknW zQq>)a=3EwpBo0WH9a(_}%1DTOrAc9EH=K$&hMYU@Hz}FvgzG`zd;7%kDi5Oqc`jHSd0*up&veY~9mZ!=AJc{1%JNp3;UKi9heo z{>JMmF7@{&Rw;64^J7G^0?;O{%@LJb(R!5h&UTphEU5Kyx58N{N8K(x*be_5Cawsw z@l}Q>Qq;4GqS`!{vmb%lh#(>66dJ{H@jtfasAnGpc{Z2hWBuHddMR?)Jcr5R(PYHZ z_-1Kee^rr#n`bST)VM=AJ`ek%AK#kD9PwzF?oCt2UpR`8eW`GMXCQ z=6@Fc<5&L1OQL|0CpHYadeQKhQnxU(e%8VjI|`M6O?=p{v#+SZEwO%#2xI>sTp&3s zmR3MBk$zye(7#_hQ@haCNOEn<&OLGH;|t`B%P`(+1&LLWYg@MNiT5kogZ*w`!d5J< zz)!aBp%)S0ur)_pGjv~93IZJ&U4sb0cu+aEF;9W`Qh==;8C@MGf1JDG+G_1S^a=ze z?$7fY)5`!(I+3lotCFJnhq7x+Vju)zS6T!??tih8?MDZt?Q#KT$5kVbB!6S4r!2_&QDvBlL9*%74Rz<`yS*IBqx0u><^X0nmND074 zM{p2RvD}^edmH?@-R%aPCIN8kS@0k0vgMhsB0Az|8dM3+;2m`EoM+DXG@20m1%viH z_ANsA++Df!O@0e(MERyjV>_hq>6VM)@T?{@1Yz;!=Qi)$<5|VWmckYst@=3%2P$rn z!e^H883tiQ*1K?J#gsvZ7p_^x$6^o4g4G5Y6|PI%A#ZE87hN>%3q(w8-IlZO}<*?K0-)Vr@<_GwzVXHP8NBLTFVjGzl3tw*Dme zk58Z5s3jWIqUgFwH6ziXo@>_gK?*eB!hsnKSw)`W-uk7sX#g9;lz>4>@S={|^0L({ z!zZW|x3aLS7V9D%-n?#eK-Y*15lZMhKd|$O+`vzzY&4775~E`fxG!;-#*^T&CNIj) zHrHYh1fpBAh}iCbV~=CJJHd{jO>{+~k#<{dId=$8-PQb|PnLeN~T1Y!4vT1CDX ze-AC&LeS{8h%Xxqeuq=34B|{SX%cUi86OTsF(dWNT0xIn*a-3}6lDnTRNm@0(`34m zh9pWu!|B6c1cnWAhx?21_XC$W6nZ?M*t1~ip6=w}E0r`9>3y0P76R$=q5I14=n-HZIkh$RpB|=%YRgfa-FCZ?6?JrACL-{->Rn~cm8>@U5Vuq zlPB8Wey8q&ex12z)(QyQqKX$dg~p3|V=8ob$kz&(*?P>MHV{Bz^KGz7dpMN}m7m4^ zAUZ6xPbMm^Q!-_=R-n=r7lazbflIYn=IXcR7vuj?>yNT?OJW!Vq3D)sBsb~)H&%{c zMQA5%fN>l_(EBK&$NLk34m-6#2#~S!(mTccTkGdZpg+spbPIqp_yk1e6vQFxkfpVu zfnLk8&u0g;WQXOKYwJ*&wF83uxOxAE=`mAyaq>D9aBgIiA%M9Pn6(N)FYEAwH8-nv z@7C65$9?&!8JVAH9Tu-FW~5!qkbEHLfF)|W)H+07MNAOI1WqiL7HEm(uR`mPd9~^O zyliQ|(fk+&fyLT8&mW4oAiwB6s!tI<|D45KXdODQY(vxXz>L1DPi}?XxwYuLim0Fi z9WjpF8*{AcFm|e7gamnSb*~RMI3mNIMEsq;F+oToqr!@mi>{(`>(G!DAwdSdc$vz<57Cpzzi-Q6=>-UIg2nJw!n~-T zDR!sWMoTY-9#YdU2}ln)bf?q?K+ris6_b@TImJNLVmK=xf)1QP4`^n5qh!jrbqLN1 zfS~!I?2K|G2tg=#CGAGg`(JD+_hW-No8bb+m~KJf)oXY{i}(|n+xoku|JiozY=Wg& z4~#E5*Xc+q+G&lZUc+E8Fo!`{N()yaLmUK}9^l11;ZY`W?Q$TMxG*ATopFO@lb6Fy z%W_@&^IvnYejZFFx_=_u#XhfH2?_`4#~(Tq9HVSO*d@CvDW~;7{rK|QaG`B*=H5$U zU(rsh9#aPsZ*u5rp1!U;(jX;6S`9-%12ahls)&Lu7nh|Xp4KoE1cG6r@0^_!?y~L5 z-5uyZ)E_#0B`jXsew#_majk4I67{?e15A{FJd z2L6xlcXfo*_{xn;?2wAGSp)xvgBY*!X6F~mQMjUP)`0&JHf!`C!FkFz3xEDA<1mm? z(cDlZK|_?kzly3^qm`H9c(S&{f`-!NL@HfPjr5-_mtj!U_YSNveSj6ov_}4qCznQ* zN&x}cdM-P!+_DD(2qcB)#}k((yHri3RDrO=ydD0H{Mw+m{+Go5PB4 z&HXR7Jm+JE;BIYSz)GbQM7kfJ)s+~Vq(IKgO#G6I7CYelva}KflNJb9J(JBSqR_k5 zuU4X9k^+s<;7Ufih@9+)@=~%k`(un(d#fTlbhU$|#uRh2=P_Q^-|D%G*TDm#(G&-= zugA$;QC&tli#uB@)>2da$G#rJ59q-3ZP)OE&N9U!>>2+P8-qDMn{hqL22pIbp4mU> z{2*xieSv$e=|=IxdSd@XBI{_MH@Ua1R?p0ku7XJcgns?9&6AB2bLfyLj#y6uAmS=R zsv2mkgPO}EOROgi&};GFL&q3(UR_y&qs&>S7K37l^@RP2aK}_Ft_)CK zYd%oyu%1SD*~=m}MZG#9t&GE0OYtdFe_E8+JvO0}5oW0s6uYWt;ZNU%3B!MRiK$yp ziA}fXm4Rr`pPye{p+8st{lH|&&juKP;RjfGh#^wxo)kaK4(~8h=Zs@sHCCp0U_I%5 zB1q3oc8w&4vZd_3f4NkDC_9rJhG7tjUdea}@%=AWKiUm8je^uQvXE0S{NWc`9o$FQ z;!s+|^znjI*Gy4|DjibMsr)EL}K{oEpp`Dn>ssQjBZd+~DccCAS?e#=TL;nQ$ zc(|>-GSD~`Zv|Ze%dH<5MWP!rGdXePv76QL`X3ocG6&DF3?)^?uRvx2yrSSVwFJ$G zmQ+$al|-<~fLzl$rtN3&OtslCJrh&kff_kZxh=>_rrvCjp4rfSR6rnh#mAfA|I<>- zF13QgUA2e%89GyN>gG&>7x~q?n)}*$#WnLn(CXbS&5s-f*$-vcc5E>S0(-d?7*sI* zH+FYD9}Y?~p#jG60iyfpQ?luZohdltDVRbxPJ#rfFK`~76e-o5)(_EvLX~9Px!0q@ zikzu8PUwfwCemg3r@V;ruYq5N?2UqykVEXTa$QHbdWVnmA8FdlA zLxUrwo?PGp)-nV@tFoC+mPwK7^OhOB5N9ZWw&8b3J|7r)$1U@gla|&p96;M7e$b(6 zrw%n`WwF!kOYr9;~u-rbf}>pjKwMdR8|%JZi^|OHqtV{}lOU*xqo~C?U{d5#E%4<<^KDp?AnqT20`GJstsc9f3fb;FNAcu7hoI` zQE(r^!gF64jSf}d_Gq^KEu}jPJAXwjHlO@Sl_&*E;V=3D8h+HnO(6n$M)FMRF_Ib)epuH(k)P9j0C{G(X%ZyuYc@bQg$3wY-3NU- zZr+?VpXxqFophX;cH^$xJWwi(G0*BgNHYN@<{SN# z*ExhKtSdjd>(#C;2?h4*(V?Xc9B<;f|LP`%BA8pGV z-4wo+CuJW}6T(kw@Go3Vrloc`iTki0iGLeC>z*~TQb`hw=e?*);^DIODvaDV@Q)>5 z*(Nt=khpiV*>2LI6sbejhoFC>UOa#9CbUwc5`bf7$VouN3UJv#K2rRne2zZeD%>PQ6(1q21qBqlNAqxh68lefdo+0) zOO}O`{k$(bI^sO|?;MO1rBnu0wAGIEZ1GfhPw=*}`<7XQmZq-XlUFa@68VOCWu~!b zkcCno35vohyeIhXJlpO|u521cK9}=b@JgZG^n3&du_?46`(sD4@+*~g)AP|8!4f-Y zlWB_NvsB9Arsu=mojY4+vW(>;jwiwY{L#5t32;l3UX|oy@p>5jXR1d*AFd)Te^%Su zB+PasV})o1_ig%aI++jD?#Ka# zbO?etwfs?8rW+3tMO6-$*bIlu7C$f2w#cr+q+`wRZ85{)vgqgazz|8P9*+g)-WD?q zE{n206~9I?4jMztfz6>Q{+2~mA1pbYu#HL+^-V=dGwdykupXsb3o(5pYf~`(Cicf? z#}^+gme_R$k@RYN4Q4ud)bl~*DYd)`-;&FetJv@L9lg9B%~)>Xgj-mdUbCVM@J8fcFjCEdc^h^)d!US z%%hRpA@PcX@)3OmGYI z;h)iV$dSiM?+H9Jfep$B;|4qg3W*%?C(@~~0V-{Z&PDDcF97vG3coJF{|0kg+pbPB@4Ze%7G@#Gi(Qn1SEN4<>{s$a zwFJL|b~$cnN?9o=@MNW#0IhMJAE4T2ake;Q4g)(-R*IdP%<(|9#?ez}Ouq zPJ#_w_@qB8vN@9z$YT004LS}x!M`u1Urt<3myPM;Hd{6Pkdw!*e0~nY9+Yuy3vY3d zT3-skJao8>U2s`;DtxoFF)QCT2?mtvuedgt*ZsxmAN7aDA35 zqCY!{K9Igeo*iB6X!&NVYf1KJdSzga)z&sc)@&(QQT~|*lUTH&h7%=A>6^u`74e^G zFbOeoD!b#+p^W#J!L3%5bQTyt80axX$UwxB7>a8tPSVamFZTcQL6`x%XC@`s1SFzqdW#@LoFbqP`mEt%7y#He5_zy#*vH*%&o0sn+1&>C1Uf&QE zrgzpie|9I8N5Id7L9D#F%(WjLQtVE)jes8n(infP!A7F!Z9B{~i1hSVs`70 z$V}#;ih;5qVu1e9`IK~0ibR^%<<-t_jn7z1Q{WB{%jEDrz{^m!q`l5!Guxp`+2Q6j z9xl#+_EDM1y&a~M$)R)SN!!CuPT^I&c4p&cjQmzVN+&}_=#K|n zwDu?}lv`@G*1s7RK*$~7UW}B756Hz6V}~+j5&HvJ_($2bB}oi|z$+yx*xvtQLtFDP zAe#*rpe#cHl74JcWUgQBk$g^U70MI>_J^RQL2LWguC0M{Mz7RC@8flCl{Ihyb zg#q|u#Y6}5WJ}(qN3X!p5THNQ8dLhmD!~AW2%wZ`Q$WP7(`E+CiXx59j@Xq_j_6Bk z2{^5Bu3IRnzTO0XICv0n?i2}{_au%+&)Ah>julPrscoWENF16Va#30VuehkS93hvC z^w;!SD!sx(e=eI*IM{0+n3-L#l=xl)uwoN^uNETll4)mIWGR0u^x?+ zsU{UN8JwY))!4yI?3Cp|RPYqwQ_@hPMVrjsAO>1A0Y;S+htlu4@qvMvR7UX z|I?WrcG(Jh$J!g{L)o<*F${ySm4Y9*?7vtg|FjsIh6Oku2`^hh(IthlX_pt;Q&|f7i@`$ru@(sEI8>^J|4mXX23sXrIV=ld*KHCx&mF;R#-RLmrcw zi1A)mD?~bTC?DSc3&lzszU=kT^v$8wuN&jd5BK0t?i+e$`)7oEkk5l8zugND(~v?)gKYa0{N<;|fvcZ6rhx+w zkIR#B%ft#h&m>6SF~L1gVCt6i?h1d-WJaH*zAV)+<7!tDy3(m6h&5wVVapK?vh{v- zs<62EK~_3!gz}syuTNcE22JDy_2&>;(@dT1AhYRvgEs=!kx2-;t_VKf_)fHMM)beapx?ecmQ~GyqLY*TLQ__ z3U$sRjE5aIaQ$(~U>lU=U!`s9Z8zyDZ4?a*(UE{2w8Cz)2csztf~#g^Co z64_+u0*$eVEzBGKUiaGX1(yBxvQD2Tljt^2Y98ucSP%gyud4K=;BCI^dA@U)8P*(fW8@#E+*d**1;jA{6f@;&Aa(WyQWI>2@E<)!qRFH|}xc^!zmi zr1O0qSEE7e=-~`cl48RZkiqAUj*#yl86t_>(P}Y;r1P24k%$p?`l_mp5=ZANk(LzF zDZt*#`*E=;5S_17g2jIab=kch|L4KKH#+(FFvFCQaFN2}rY<@n3Zdso%`@=De;6!_ z-1CfUC4H}aB0CcO#t(6yqgc0;!gnoCznP?H5!sC~zGsqE5Ix_8JRR(08cG{FmBne7 z5_ppG-~mrBjfQ@kRe&oAJS%w`({$pv;|KAaf*4aUI?q}jlmcxrI;jk~4~-YH|E_&BHigX$gnkMHVeu@#-LzN)fNde5W(z6Yz>Oz*VVZh38g&}M7+ zv;^Rq0e7rB3k5PeN|>!hS@V4h7T~Uwi8g4Vio5gz59peKc02X84@srU);fiwGsejM zD=qN8J$gQ5L&#b@66kow@bwek^>+ z4fLI8fOrP78QN>$U?cbKV?b|3O`#Gibfeo!4_>qGyT^duUTWXcaBZ^9S+vOw@b`Sw zoqA^x#Zr_;p`!%_bs3puvQvKS;$zF4Tw?V%oY)_S#UEwodILcS0^yc?74aq$Lu#+huM{>JwJS;+P}4p+C-Jt2mdSSJE@r*D5=Q9RY{DNmSCY&b4XQbC#RP zA2-`>TrRo!jNf}l=Iyx({(dHw_(Ri1KPS-S=udavs0gN&ZRL_VZb9X2P1y2H?Dtc# z+@B6Xg3j|)&}j}EN+Nh^sXx8JC1A3i;ES9^R>16y;B~i{rsJO2GITTrhD6Y~Y-X2< zem=&Lr8=s;ZtRc5H}a3@HAEAXzW&Lo91_7w%l<)V7`_3^ziZrk6Z_+;Sh4{QGg`z| z!PCO|w2}x`ZgyUcO@rB3*qEV40EP8I=Y0o}Jf9B4BA$e)Ky^27Ye|E$uVu2%H&-pPH7D{G|Ik$8c_T1knEM zpC4uCk_0gb0?{i)@k8!^vEex@!KA{>o=Qb+0yf?MQ*$wjy4b=@ct$MABpt{8DRvg; zEZE-}9vTc4^o7S%35Lf#^9OE;M9E(=q|HOSu}$~Z%;GmEv^}a(;#z34An?@ zZq4AUckwb#k=p(4tnBTcJ%-Je~6v| z^6p2XFWVDX;6abl7(0XG&dZBbuPRc1l$~3W!!QU0uY{cl#QiU}wDu#5M7GQYR4LgR zFpnNkYF9Ni<}D!~TZNV}QM&Kbumdi_zPFToY$aN_L5y3D<%v+dG~SW&;row=EvMMA zYEc>YR=S*rgD45HvVn5}4o*jX$vcrkw`R&scl|{ZXw}AwhuTV-HP6wm1%(NWaQyZS z4ju4LI7$Xz%i(@Zy6K2z4w*KRNiH zyVf0Zic18@BTU_kC)v^S%=r;MeXyNURu8?H$oGz(>&6rzERVO?xS(Pl-4m0J;AWpM zfnS9+V|)q`@tz$0{hw*MbrM+xxMYj$lLEzYMn=@@O>8N=| z{?M3V2qr!ZN&Zi@HED_YHXI~SnIVf{W5Jk~`vRTfh`XU?TEd3JFC& z@A402SC(xt2*S1`4h8nVu}6IOLvc8=fwYI#CYBhk@Rus9$F~Jzr6JqcqF1#jp*{Yw z_HNWy>Y3x31->cd^{?;|h8WX+UVtw5>HG#rsD+uIxKct3X?=_lzL7GobCXTnr(Bo+ zL@@^);e^2vlwN=?HE^;u^^tOdtWJB8H+^DG5q=pAK`9gnas0Yk(n|6O1_zjK`cJWYM_mmP$c!#PqyW+ z?X4YbB+oGp!$5-lGrpDy!QB5H4vMeyXU(|ib*NY>ED;EyS}8|3NqsH#lkLA@k+S!i zj#FMqQ&CaRS+XKgABa3kPL!0JQB`Ceoh->z55{@4rI3u50r&`ZFs-Ej?-$lLMW)b@ zsK3>Dp)TZhfLxkBNGc{hZnd!w@j~2Ry1$QeOI(3WP&ORwG&#IWv(h-WKb|yd#`*&X zQBy&PnYSi9Tpl*hJ-wtgTEO^soL#Vg5r%1Laa8`75< z8N;pILYYC%xNAe@Js#C8IgEB`%#p&*xNPH3-y5;DTT+^gi{n4a&h3hU5CozvMZm}Q z-&h!b5|KkP4Y<1`cmZJ?lvPeQdqGtZ=UGVgMlwz}g&}jeSId7*NOpN}Jlf~J-E!%| zER~l{$_9aNZdgnb`;OCB(r`V6i6123&D#FB*j#O%yB2x3SZNroy6 z_O)_73d1UKQel@j1#_jEMQF-!_`9j*pM{F|{KlCrPd-sJ9ypXv%09|qSP!*F&;B88 z13wtoDd1F!!Fs67J;*o2L+YIs-2VV&FsX;yBOZkbUL0iLx}1NOE^NI{(G@gtK%Cp% z&hEEn@T&#al)`W5l-UA!9{gg61d|x|=BNyRL#IrG^wz$^RFIBeOEc88Si|&mVtM3b z-FdXKxKA0}S>sHh-mC6e( zHmQk!`Wh2Mg)Je(uYvYAWmk{{F$luGR0Yxg|6`kYTERMU*el~wOQ1mFth*EvIXW_3 z_~Es>xxg8KP)|NCf?SHL{(ZFF!%NkLPUngOS{&n%HovLFyhl=ye0kpx*Gt!~L z>oK}%29l!ERp%(M4r-QiDf-6x!8NX%#}*9hpasB&2BxikLlk?!?GfZlyJ)dxkZ0|aO$JFqZ-Mye#F(mfU2&gRmi(_z#AhQyRK z=1FQnhHo6u81(r#2m~)v@`FTa;S4s4wQXZkWa#kcu3&7|yTLtVl&1)!2&jU}v33Oo z6QiY*W*!FQ#^$almHHFPheJF&XD9|id z&@NF~kfYKiq-~_#crJVpr;!&0U`cnbaZw=VjpyPLn#4+0X#+*_pkN{=+UuCqatUIdRF_5% z@r&Z~c1^EKEBNxHximg);c6O#t?@&H(xu8d%i3_{Jg8@Z>T{g%MM1Cq(*AU*)=UaE z^ep7NG>Vhf>d8|SH`{r|_7$sTqEV`WacQ5J;}lbNPY zd_;n3H*$vC=45C7p*;9bp zdUaI{XNSr<7uZD|RCE0V+Cabpk!g5xb_-|Dsa4{lfIZ+3s#k^PH!?-QFbVyrfMtCv z{XO#=4H3hsu*j#mn)kTPvp#M(*nAWGuyk7;Rt1Lgq4L#V=HM5z^3abKQxtM9V{Qa} z46MTBv=NyXy-5pG%q#kf21+sH^68$*uqjN!Ww3(0);i|&Y=ADEqEndkpa(Ggsf5D} z&zI4k^D=^d#@`&UK>39T*6bX8GI^O{pJN1}_ZMwmS@**LB6QS zu za;nhef*y#IFk_nb(Vr9Z+j}3%&gce$5CozvtthhBe`Ck+bs#Y}4VVpCWR&p{t3SHl z*xwMCZuQ9o#>yZ74~AD)!Bv5rk4KH7Pe?JjV5%3;uRAzG=et*92o!QNxlp_bk*AEG z_8P5tRUFj4^DCLEcXPQIRpBJvxuCJ2p!mS#+F903sSwNpkMp88;NbJ!xQPH$J>^p3 zY*P^^d4|!$n4RpRZLOvWV4Dg-$}^3HhlEq4(>@HsLoz=`u?0_sao96?pC$=2Dl93> zeA5Ij-{tI@Z^Ifgqhv)jx%iGV(KgbU8GNkGh>BU%Ca8P^SA`4ZxrsQXDsCPZ3S%NO zC*HticVJf0@oQqh2#7p03b$liU2uOe{`wegXAHzdGB)N}Xe44%t$titHCA{AV z-FVlq{hZoFnyJvgo|i9WXLOuF2m;}Xk~tAX3rhbjg!Sd3@;liEoEuLCl>K&k2(|)w zCn&jR17@efv#xPZBOU56)PYjsIFlGEimZlF1x_Z8bTjhJMCtCGs#5imb9O55Yu&|g zQQ62;{44N`$LLJt*Y(xU)vzFRZp2Jy$8c6;Yk+y6KKDor&8PiTGR0J+{mY0c-#Sb6 z3U1DTqN?mBY;DYh%uVc!L_0-O#bk-sqn6|wD^5B7=AG;pZU1s*opKA2_~vGs}*KICH> z)*(D4#{|P?5xbqDv)9~$Q}%DkkA8C2P8o5f74unmfR9J8Es2QU~JvCB52 zkS?+sJ#`o+flATd-o_qCEOXft#ZvskH3lE_Z-1`#Scc*a_S zLYE4-hUC)DS*c|1R!x05HlT3A!abh&w8FokUAMBRNnro*0y)1#KCjwcwbG^QnsxK@ zDlj~D7Xvea^Gh2Y#5a<>;`R-C--gPYCn0Un`_3hYb zd_q?$rvzX&j(yg=jLe?AZEK0xL&2p<;o&SlPYYxPkHL?>rM4gvg((l313wr_PcmL9 z*Fnb8z>etyVvsfN@)G-;mPlv8ObWX6HW@=@Z=Zfi%x*b~+e2L8U>^5FpwJ2(h%RuJ zG|(jlbC*;o@CV*^@f>TE{!iH% zA6Mj!(2V*IVxv~FzbH}P=V1$^s2|ZR=owtxqs>TyO8!(z(D!w)QwsVK#6r~s&9diB zx8&IlS5QJN3NHSZDSziHr+Rk zJFd`$+B$iflmvvf6(#{k?@Ymsm9qc^F4O{vg=`W@t~(jvc{d+mg)P*gxRUXwSoj++ z_fJ{ftgeK;6(@?gA37aJGdDW8Lb_=|Sc#!E-a#rw%$YY_xPL8lt)Rtakoy*#^_da+ zE)i?2yl0*+!D*~y{usc^VT|DH+NNE>(^#>Cp+hn>ObRu_FPN;L7S=bX>{9HEZe<&mf(gYDh-T zXrr&g11?56YHp*M6b=k#!V0pny$0a$#?4HTuFzYM4!KO?sUYxFh6g`Rl%pD<*Dk?T z;i(|igPA6o*~w42orw)aRQcSlF59sF5ae?Pmz1wklE`KAR>_c5<-3d6g? z^8o%o=eor207BOf2|k$!{N^dDT&+EC@Jrd5Bry!aK=4b3!GQn&v8cHu2trv`A5<uO=d>J9-!Bb9ZTuj^mnXl;tc^P?%v>fxb;| zA|HnHd~W&lhnsL7DHUzbpcUG3I4ue!AvJZBF1uP1ftsis7Mmfci5z_e1)r@2@3AV* zy8#v{OHPdfnxWcPjCsCvn`7w1j~D+u0zX1%aF9#azKc}6S&Nbyw&}=}*fZX5BL5$9 zvsY2(N~u=lEh8zVSHb_ciSv_h@TGaHgPLs@JyKsCoTb6AcnXHkjeFMmCitOU=Ba2) zQcEgDP*KY!heik|a$ZG4Nt5v%@2eiXhv+7n(JWcR2G=^3Rl#QVMCc}(!7TVNr)0f& zLhW_~C;gCvMS5D0!Lh#>y| zW6R{Uh^FL_t7Q?xXoQ}_;2!~(70wHYmcK|;`Q@u)tAIUNJ_NCs1W`f<5JF2YY68EH zX|paWf+(><41S$h&WOUWyv^+;NtC4*46*@V9I?JxCiUnk^bJ{fnH}Vl_gqfTE-x%d&mTM8nHG8xwcldI9sFEbQQs{qvN zIZD8l-^8S%lEIG1kDX}RgsCnr!taLu2+9o8h8ycpV2wC$gnQ|58@-4~afR<|aKd;! zH$_;5eZqm-;*my88BD9%?CoaYb37um1)ihiTR+kPJFlyu&jE?&#m0b7coLbf&uh}K z3a^F7$A3~O9hpb?01dr=(}iFRKREX%DM1DO!XvgV_(rllhUZDVM=POV_^-(2`B8Q* zNf3h|5WUe zV}-u$+lZ}Xn!=`Fvl#++RdSbBhsEIrv85!3L$b`3vZ6-sxHN)cHG^b;#_$f_w~(b;12At%^Ug2qu==pcGkq3?O8b7q{FjHFRVi(m_fEpkOg zAW~_HE(6^KYPTJh2sdKlzGt{yYe|tAwQ!ET=ffq%1zkgIfRIr5ScPu z6*y#zGJOeI0fkr4?ako#>tuRI+iSJx+KEvMdDvl>$zWUH-G~OMc0Bx>sAm32-i&^~ zSRUMnG)0AhtAQy@9;zu|7Q@P+fHFgc!A@=|3*N?$*lL9RA4h(e0pH0-M_*H5l~nIn zZ~ZVQbN8vDN4QL3i*bppN<9H*zLZ@{vI8LqyirOVRObE{OSf6PhcKzI$d(Y^cp6SgHV{+WkAJ0ld`u^Lh3-abmDo2`sAkk-W5{faAM;b2*{jZ+rDJ=| zhR+y>$(&e;rdeWLm7{+F$CRjSw3*uq;tD<$*OVM%!Ln73=+=$ciQd#Q=}4X}xq+1# zT)z;uSc$Pl|6^lbU2usp$df&6CBapwtLmUK(zn1UdOM?>YmBW5U5$#@hu$g>g8SGYSi5%T1E;c3$Zg01dg-NBD$g#|BeFz&EOv&r|&GvJo zcp4XO!IA`Xm#{G{w!0M`7d?P9gd1E+jw5M_^q-ZeU9=x6VU#Q$Q>*7q1iK$NB{@&K%)xpb;}iCVEwUSk}3LCaBMpQ+~In;9!i54-;P@U-vbhp^?ChGg^d2X@Ty- z%B$}yd}KPCs7~a@px!1okq{ia=}dsI=od(^&U3djI53gi%dL?L4_0NP2k#n9rAP1; z2;7~iz~JaFMU%w4g8iste~g$xw4i>Ji79Xjs@a4BP-~KgXxH-!dRZB63Y^HM6=91W zxiP~2jTAWrUS$J4Pb%sla6cXzfA@+BlI<1}e(K6u;DKPTWCF02*+`1;bX^2r>yZjh zY`=TOQD0c-H`%^}#zcms0=U`HtPi`S6vC60z#*yFYgIRuC&%R4VNt}|KR8e`lonXk z4Q&^!By+B*zDKsrkN;72u1O4oAP~M$CmKL<|BH3k{wYc_;Q~y@l*cN3MB^blqK4ol zkf`x?FS(KQl2rWPf%IY5yf?_uadvLw*+Ww$t4p}PQN<5uzbU^&LjCdzv_&Egh7?Y! z99W)B`{Rx6hXap(3E9ZLDn-z4Eh!niB>FVuN0fl5D`i$|mZ+QxZAO-bNCcR{?N8o@ zj17I|6+nzE+mJeOt;T}*obO5Pjq&>fUm9;n+2{tLg8*=~L_SscFrv#_Kg@HS4qBTR zio5?*$SV?%F+?aEcYisDAd;tu3Nl3kFb1_5DYgogb{$z-D?w9a*@JWq_FvA0BpeV; ztXEQx#+mxLbb@r+PAb-Bxso437Y@f+&DgVnKsYv+uP{O+LS#;u#d*Ma?2zk?;d^(F zOOYrG{5S4?B)i_d0t^vbne>h*=*lG_JsYF1;6h~Wz7dvGjZ+zzsM#wWKQ^ z^xxPL{{(bi8ekk1ISfhZ@rOehiV_)jH8Q10Lu7bycT8Fi^SusMnP8iFnjMo2#(BXb zv&IH&Bs)NrT@NOi+|qRmrt`E4U5y_=6zwPRA}B*aBC|b~NmW_X%a2)^f=&c_ozj!- zWWv!y^GGRz4mlt+&B`dN0?l_YeO{79GNI?d(BOByqtT;vmPBS-Db5Z#P&DSOYQY~` zlR882QHroboZ1nzChO=r(S#Uy5u$x2YOeA)IjY0xX<@8ZwH(Tdk+E^5i6byUIPk*Y zZ%`Z1<5I``V*7r2>*ZxsL|=Ypek(74gb{#?*ep_p5JbG3k;SrJ8>nmTrX>=MN>PG{ z1J9s2w*b}!Nki5T&CTEU=EQgR3Ru3qkXBzO2gu|j>lM$aoMCxyYqAGgEqU*oZZ|HJ zNgDL!ZC}x+f6C4+$$=1rqC1+BR($M#W5em>BZ!>}8=%xuLA{>)inRGT@E(AtaO258 zB;E|Vq;1+5zWLjM1qId3y{f+if1YGJ8fM)zzr~-;UJtv3r0S7RHq0NdR&oOytg!B} z-I;1+L&flRGN=?_!5&~>D??mq>-i7GG0>O(yEO*N$5Q+ST*c0`;bw1T;4RJD8Nr-s zycu_p#*x=?jQyqIPN$8RIa?=xcj`EdZX)lim&J6R`-dIWDAXZ-?3d8LrwZG#HJj8J2q&1skW7C2B#b z?TfoZ&tXiXv&C^j$!S?CUp+%JW8glBNPsnLzmu4jn!fDqP}LM&m1KggSFz$WUI||j zJj02|)&vLCKqyGcASLjOM(~VKm0;>z;vmvLnSS+2iy10OuZp`0j=*7wthHCDGrCb{ zj3d6tLW~Rdv)}peR6@-rgM@RN3u=R9@C1#W8o#)_Z(>_4_Y%Cq7x_t)Y@_6L4aI8w zI|%O7s>!6byaLS8wvFKuM-ig678ljZjf7$3^u9*!tBIYvMh z#OV^LT);FEX}UUV6xiZUYTB8)R+u~*Ws=r=2&O)Z1#wC_dkNE{@u^HF+iOhxI0(eE ze>DE?72OCHP0iS4>@!g{^gE{KPuUqHQ4E4G^h#Pq+xuVa=ea}uj;y+494ZDBlG(No z%h3WkH2s?8@5b`MC*8x^t5VOPn&TYbEIR_nzIg`ZVg53WnWuhZ`QYu(Z}1_so(Fk% z-`p@n_~s z5J&8)@$#|$y$JZ$dT?+EXzRp?NE2hz8ig+k$Q8yzBtTaE7zNa=4M}RFQs3N?MM!|m zb;nfbYgKp98Dn`DcM+_0%`wRL2nUrmHQpuG1R=zwW1f%(GVDV0C>p3j^wlL1u=RvA zr7H#IEtkP~dpBSks_~}gnA8gdgE>(`KF=nDk8tUjOd z5w(s4n6`MkvV3sKtTln4ZG!nNKPxTL-uT~*;>DDdLL!o)Ll3>fzGm+cq8{^FN-Fk| z%2T1E&q6W1wR~8%SBuwQ>={O3E*e&MN6^so)8vFv&x)Vlw_Y4q7TXlUBW`B*lU?lb+bf$teaVHo;ZAUys@(w;_s_L|5RZ4;N*nnXM z<~o*P>S$XCZoD`qD%wTsN#vh-;w9dID-0PNwi!WNdiT_r_*?m-MHYYn=O_B$fy_3=u_q9^ukaj*uM2iF=Vv6 zYKaeNM|k|;Wqcon{`{66Pcumzg{yvDQS9$q%M3(D|HL#Yh>Ut8CVo<)OC1Zb_JC7q z8HkK}A10aJ*%cRFU_zjeM%RTr0zRQKzn%7RCi1Qqfr^`bq4c z8RsE2kQ9(Emx3%T81GcO*li;~UUcVmEXO@`rt&%)CipKEunxbCt?hZ~lr8g8c6LVq zf-nqT3B>ZV|6=CTrviF*0gkI+(>5f}(i5FqShyjAkWup7v=ky5E!K~ZixSFLliw0P zWrEczXTS=Z!yL(1o@*m?*Q(%>L5nH&XXW?vHd!!X!>Rn8Yt#R^{95`wBGps;QSt_( z3Vv)7ctniF9KlAAqX{`4CEqmYO{_zu-R#JeQC_8E$ed$Wlt#2(%+qcPLl0eSS~e)| zEjJ}1^0`BR9T9yKbN)=XY&xh3!`-y` zm=T>28xEj0^x5#=ImbF-tD!&XtW1NA3Bz>N(gi=hb=#4@>99$-0-vycn}boBuBaxY zLSn-=bkI!^vPqfCdFFq6{|Jre0$>_cGEa8<8uLgV7@i7%)BIpofSSc-&mpFW*Q$Yx zEZB=yhKiZT;c8kvkYj4{rK9T7o^=Ed#oMg3KWo26yQawy8}OS`<82&0hRv;Sk*$BE z$B@QJO=WiZ<;^c9a&Y06O!Fv+T$G*b4Fe$zgID5p3GBaEZGKcDq}90tAVh&Ahx7UE zEJrvlxKlgNVX@Y2-eNF`bYj83>0t>xq5FxtLDTTuIO{OQEY+?a{5s zDFtXo9C{MZ6vT?v(460le!Gs+1_@Ondh{+W`Ux7QNdv3Bff!J(!>Qm~te$SZtj^0u z=6GxM&B%WyeM-dfqsi8wJi?P)O(Mfs^oOdbOWCSlc5iSZrBTo@R)4cjmxOAuXa?1h zPLj&%oB5iZMkVeBSq?_tFOLJEv1DJ%6jqA`S@@S&4Q|v3h`A~KSNfv`35WSKHM7;mShPGyt zmi&^+o=QvvB=jSBelLX)BGX`=<8pn_W89LdOsfJ*F=Ep+jQX}I4}QM`|E@RIzdZyE zeS+|LC>pw3Y-GQ?_wSW?cijMp(Hz*d-A&~yxCh>!&P90(UXkoTqR(L5u^q{tp$N*d^26`%J%mQC3sXM z9pR454AWga*^w2OFC+m50A}EAj!0LNa8;p(n9L(PKdWb307tuQHfJ0b3!??ToA8SK8eYC_zq#k{vE>7c>NUEH#ZY8v~ zKgzD?3Stn1t<4j`0#Ucsg*RM(zDOh#EnB{mw@n}SEkzSQiVUC-cXkg_3S zV1qxbWg&l91jmd3iiROlRQ7Gih1u^x!Q(~ZkdZ-AiOt8IvePIP+Uktcp28yu7hd)#RHIMn~+Vp;7ggH{w1uXKv3&p`A8`Jw0ks#*beGoO(>Ykay{~D-zv?dyj zBZ;ksW6sC7sd!!6Ho$|HmkDvKIha!L) z1XePsS<*jpd%q;ZBq>CVQX4!sr^4I9?;mAnb_78P0@0L45s&;6Tb_S-Y)Jx?#UPDN z+Z{nOXCx)Iy>VZwvum}t(D#%$u1-PK+CUhTm$u!aUt-@=;`XKR>!w3Ut(E$PlcQKzlWIKZF%|E}= zER*nn$=k7+M6kDcy*GhC!3(>5`l)KMBk434B`ekFsmckuU^dSMmWO z_rKUucYbVFoyY}fJAg~FgD>Tt+@NsLv^Hp z9+7wyLn~Iy4tb%+XWy&ZS;+$!3@8B#7JGeUni!FHur@?Wnsi)ozJ>mh5Hdftu8x7b z_hzj>MZTwld~TrE6PT=Enxb_#q=Tm2I}Yfxrn0+$2Eccnp5e$s~$y zjApn=cGbD#_Ka|f5r3zOl-U#rHQ=5c9-U~rMg*P!kAi#7wT>F68p!}XBmNHb2IIfg zCLHU08_Y7&CPr3Nk>$P?3o)2QN0+@DWE4V-yr_!fe9QwPK%ckE{-L31DkJo1XU1GM z%KBL60m_Oz1;3VG{r8iEm@LSs0m~Mw`JwELav%mlAbO=1u-N-wYS{XVBfc=~P_rV67FWtRi)<#| zT6h)-k5UymS`dMwy1P4>QnElQ7<^u}BVbhiG5kABk``4oGI52tKHu9~3G`3Kvc_Ov}h5WVb7nfMZ=NjslW`<5&Q9E=9Sv-&S3{Y7& zTgH3CHtS#8esM~wTri@!6uj+;dAjhlq2 zTbOi6O+1hJQ1C>cKrVlMF~qNye=l0|-=xs!!7mLt{B|TelqS9o_(b$kwmzIDv&d)K z%EHTp54kMro!C!3%Qw*$XNo5oDq--~AYU8jwa>YR?M{|gOG=iC{J_Cq#XPFuww6=U zgDa{u01w@d=ge=mI|YQMmz{^3VAw!9dlxCJO}}_MzqpDGritc_?C18OwepgDC_9%N z2tp8uUTIMAbN`DC&sm{Nr`h&`7&ToWMb-1Fy-2Hp*x;2!81Ie_GK0ZhS4Z*6>$^^v zeMY;T!eH-7Wi@4;1z@1=>o>sHOes7(v!@!a%a-A^RfoWkL3q#XX%z<8X0Fh+2x4b| z*b{pi>;&zoLTp{m@+S7fjvqtJc8BpVE5b9uz3`0W$?&Wm3+P6;6Y{{F*|2ISrv$*Z3s{CpK!V31(nPnF*fm#X;&~6!u zPJI*k{|(gYUEC}A!&0dFB`BjZ$|S>EQYlFfG&>4{=aYSr6)ni*Jg+B;V5h%&MONiaOi3^q9S zjv!it1>M~9072+?(D0?~+>#&$K_GagJXFm6FSa!MH7nVY3s9CZ3e?c^4K3Oo*yFTF zu}8;WdHI$Vc!&vir{7`yHBiRzd$yg>?_W~1JigHs4fCA0=b1f;UAehM%hO|=%5QCE zgY8`3%3kU>ik1fmqMb~sdZ9KGtwRYWV&eyf6?yldk@R?ivZR9*n24#CXM)2vfSg{s ztwi=b_Mc7BIZB#S^NEo>hyd4C@b_I&6UPP$2J1h6)_PA4c;!JG>ft#0?bW z$*z>@G}A;jjG(%oL+Cqmy}v6!5wj(aZH>yIwM4B};fa{KSox|OZqHz)*4wq0dZqSb zt?DTn`bCp0^@z_GQhYpy(IBICiqHaH#k_k27%q5o`$w0h`~`gx`a zaU4mtP@=7vFnAc|@L%SRUeA@(eihh?34sUgTNsL9@ctahuU;zsOr0AKK$6Ujc@5w8 zmi@jZg5dGkfyD)*k=?A7r+tcK03a~MFhZ^5SXV|xY)bdl^BV)-VpIxo5q&5-lPn2B z5QttWoe=MTvF5u&$?9ZNON&SPB$y)pJ^9@k%}1I^t_RVIFo1NMoxvmOmnv(wyaxJY z#GQh#n4xf)Iu2H_j`$`q*l=J_d5{z&aU(pe81>437$||L>2i67AZF^p7}@EMcSFb0 zYQH@$Dd6BadHSr7?~bjgzJlsNhJI#xMjmv22<{79QiB;_NdbrD+3Bc9qjKCzBp^ZQ zEn&D9#zL`bAms~fi3SY@NyYYcu$!wTAog-AwPOuDo{8;V7^@GE2wWiaxjvozeo?$C zmLVt>W|i5BC+Ngy_-Ce@=PC5N7%VolX1{^AQ^>*3^Ax+_G`O}>!t>4SA1*m&UJLK8 zU2m}E6&NzaHglbd0|vV{qedHdQ$$kOVXdRVz$3-faot>2_fwUK@cJC9m4+%6Rc2(i zNBMH}tGD$z#m7Lw9lOW9&O_|=jV6~9-tmbaBtre766n|zROroc4n^*vUdF=WIR58W;(0y9_| z_4=NU@|x#iVbDk**P0`>a343}s?*C$qc-rHedU?Bx!`&jWK!XAS(-9NaA7|)wXv>K zv&4Z_|`5Kacl$}eG#UKbp zw-kaOvj2@WCp|&{96{s0c`2D@Kv|@ekJm$LJ8aD%9dPCK@JM1Ny7~%u$fC*z3<=_Q zL0k1)dw0-EK{*P2T8EXyj4z}oiT197BC@FT0h=&Q-g$*`&BQ5{8v%=AAI~(EJJAlt zaj@_PVRPM(zCqu>3+@NbVqi4VwbPp*Vu zteFD7!Zfld@$saG32uILd&KOAwm%lW%EGAp1 zJzZ#l`vK`()&)mpaL#2~>L-U<_q6I5- zD+?AMG<>|i?!0R_t~2G80w3%>9AJsg4Ef+Uhn^fNr2-$^JuK@Sqt}Vevojl&@;iOM zCE*tm%?U@U`(tbsR+Pn=S}Zc+JgEp-`ZR2&jcZZr9j-Dh0|5A2tNf3h| z5WG?}W`X-(Z0YPrO3Xi}3LVMDh28P1@Y{cX()zGvAb+3MxO&Vx&306(n*>t&1$H_!Rr(&-&`46d(kTiI0p zcNShkd{GM~_kJ#w-rfb@kGBQvD~LQA7YtmUWd>TSu!YoOiS(hyyzoX5_+ezciN0Tk z7HTAZ2+|<$1N8hXW_AB$`K9dKk{t$N7`i1MxdrWiW7nto=tR&o-hd|K7z{?1cJNjs z>%j{V^bn1Y?bruAvtP?~U*qcD;GVGK*6{@UCN5_51G_>8rk7l%HetyW1exw@6kkO; z!Vg}7Gu1#Q`Kp0v(tN$+-JU?-M8x#d<9c&6x<~zdSA2y2Em347AEqPXMOh&EXq<7vf|wJT6FT0Oc_dJ2wJJr1lW zdg7DQpMc-Q#n=NAac7z(LuH|Y)Qnt@%yKL4zER$zJVa1XP+0OVBYdM`jw4atW6`{# zCbT-&nDh*^twkn5Cn}2l6dN<>BLgizP`*co@f>VX6xN!M5vWnM<7$+Hxb0zJ+G)CO zQYEvq>Pqdwb&FwB1S?K46~lgIzT8&lJeaQRo%fK@H>ol*;AXi6Zb8j})BLh+XS7&k z#2)NX#>57ooTU5T(BD_4@p>w)(a1l{BX%Ujn$cs?mDcl5*|{A_5Q0!NmyN&&isYZz zdiO4xaM_jzCi^yE4z9nlZmk zUZKuuN2n&|h&^yIu>vv3-Is#*b?E06DVsAT#eiIC?8Teylndnu*~B(MPr?~WFl2-{ zq?a;MEuqQ#mym@?N8Q+z_x(#mj1W$&c;Q{*S~8=!P{>ThE-N32w;tb*^FH_59(0H^VSy{HGH!!M!mXF~ zaP97c?t8lE(zmf+Chohtmi?&CGoQwq^Ph}BH_S79WNFkp__bf!^E&YJ_IAP^ywECm zpk~X$=qzPMfE(tuJ?JM%nES}>7Rn_Q%AK|cB;~xK>HNic3gt_tAA)(9)Ay|NVcoi= z%+KdCcI1$7@}5dx_1q((luFy*KV@f>#4rc~(JK`NmHS_;tY6(qGI9aNAuxc!w-<(A zJmS1r7Q=AEPG07zU3K#6ssWspO63?^rYRBDd$ z1}vJY@!8vOr;<=^`q|g|n~$I%;wcTD8)&z)B2*wDPJ2CL)B0OvI?!>+4;L*>4z$=4 zHlc67|EQ#w=jnvf_yf5SjZ`9J9_U5GsRhdE6&>i%Zw=80WLSTUwlH-W%vWNVB(&mB@e}N}1;Cc7kAI*Jl=l@Ix{9rdykKx|QI6vK_FM(g4I+A)O=GqWA z=ge*07Ei)7S{MkHmx^8Zv9c<9bZ`s#oT1qlV@MJ{X@NKY+hLF?Gh zOCrHiPMC!7D!?;gzYJ2{+W}Qrblp0J7kHj5FtsF7EqCX{zA1Qc4)U^BlrHJ47QAz^ zM%%65R;Zm|N$~{GT-dar4|Y@WEIIi61h9vi?AxP1zt2eR0mK5YjA3sr&esn2!6LQ? zal7vodqM!DJiA>BXHosc&l81N6T@YRE?KEiv44s_+1xwVKfDP0GMna zGb2LapXOUn0)1cKNaT5`D`S9%mc5nTGtDxB1|DfV48F~Ob2BZ$p%~0mp@}4(O0#Rk z9~?;?mN!!kJl=i4tQjOc;l3s?wr%N*UV?k%xT*kDJwpi%JhB0ujG%!Bk)DEIM#sNO zNPG72B=V2-zDY4RC3`L?VMMpxqg>%L`P$KKs|M>WD>&alXR7n9 zxbP1AJf&I*##=_CwAz|{%6{73o(UcNL?G1(Q?51oIGw{MCdjP>g&t-}yW*>@Y`cER zG4QusV&%r=;S6-CBcs*R?moP>WnMc_ULB7gJw;CY;JamsDQqhx`W8$>kpjv4aUz|^ z(0`O&(Xj*}2x|$rRiyvMUUK(^@OFj*)^S{oAR&1_HY$>GNX{5x2rc04Y4-J?4_hVk zc&I9(Uohd_-mUgC89QsEJ0eMTsTzaICSxD8G^@y^G7!jr4Ofm+@}WL73|g91GLMH| z9Hf=7>bpuXnczq!@F-a}3s*rP zvMj1r8WR}F{2gVl`!SYNc4d>q2u5yI9;`L(N`uMur*_Z{Q$xM1Zy*H>rVYOiubG$Ae6X*^?9JYLH#18M!Nm9e{#)7968Nspt7 z<>2+hoy{L=BDJO*69BZ!M+DGEXFwJ@8}FcY?3cfpt()27#4;pqgcZ$lPvF(^TPw>5 ziy{MvrmBfZJM_!6{qk0!shYEybjxYxJpu1O%FZB*VGsnOR|3?i_rF+Y>C$!LSO?9gktpw|%S5w*c2 zqYXZG%NQ>~7=nK7r2iMb*N6|@GWzuB=w!H0dw0=4isbQFZQ@~U5Xv0N&m^O0&aH#r zZMpW0v0HL@h$VGHJRF@SBRUL;evO^PB%_tiuVaL$8I#RQsdc_t_N(rrV~9{4j)C zLDAHDc$_$0eJH!4B!@x}cBKUo_5K%I;vYym%>{gp#Q-)W#M*_Xvq0;Ic^CB7n**mn zFVl2@+}9oh^AydzkP3r(nW%&GZe|fCk!YS5BNYnvGEFDiUBPT>RI055vI^B5%-l!f zzmy&I^#QSeclU<@)gr`$3CVS5Y{&LSkwckDO!+HHJh54U;c9$BtSRIB)juCh9chm0 z4DP4{W}ViAB9jy{V+S3^wSa+^UsFU0lM=kp%$kN(Z#>g?pqdJQ zGxQ@Hb;WvCXMlW_%qfQPuN~cR?6TQ;!NPyat{{hj5Cnc{1+DV`k9CG7O+>m~EU^qkMH0tys0qXF(_9v!q zKIYb<}5OP`k5uP@fnoKOuqV%67MlR^Twucv$Bkmlzb2L~3z@ik33w zAjI?P6h?-1Lw1<7{6s5YyY1a#d)x`S_+@^ZxTRH2zFOGiz~uzOyPv$rXa#9^bsiFU z1}jwK;A--Yq@{P075D?)WxsrNizHC1rH7N9$TOVmKiGr+2#_AeD={Jvc@WyVE1iyy z%=>@KH$DmKl1RfD(rk#o$e!n}goqU`=QO!ElHGjdGx@8OlKmjlV^oUwDW8sf<(!HW zt;C2GdnCA=lYE}b~Z?iv|8jTHB(fc7XLbW6P&+;9=v=!1l=a*DG(zt^`S9 z5CncH%@NK2Ken_}Tf0Oi6+YlNC;_#PZE(*Xb6CaAsZ?RU-%eO)GE4eu#MX#h!*TjAzi!k|ogcflq91SYc!8|hBRrsBuE&8tYqrOc zzb+;+$_In;(Zqj6TW<5+v>#%U3n%x;Qh!F{79W*jEzj1}Z!TP}l%2!HCTNaVV}IS?NG~WCCrgJp z+M5S0bqvJ&LjaXxWd286}Y2@tPpT~?d4r~O>Te%=r-(X$L9I_>8hReFxl83^|B zJbW9)DM9goY%)*XqA>Q$UVEAkA2rDAYaF!?if_x{q}W!M$WQKq7PUdc+A@eEzJ#Ut z0;(Qlz!rA$ECULj=A(u3YFM?herPw5U$%Q}4xR=$pdXygW6n=312~@IBXt?jmu|?g z!)_u!AMH(*htwomG~uqJwOoaM+z-$2sQ}+XL)`{Yh@QPIgJhoJL#I$SeQ-ge?N)$f zmO`@X+ddp~CZmslbLjGjWx%GYk4#sAK3k>SZg7pao?5nTG_yGXIef7L+yoomQ(x1| z4zNU<)LZXj(ZVw@>4-kc-o|8qt%>M)x-%f@MR~~V!SN89x(E7UVd$6r*qoh>T5BAv zY}C^CS?WvK6(BJTg0L@Drr`enu_bP|4Y8hlfb*&~AW2|!&7fJmmu@Ws-7nMgdO8xP zGMtIJ#BxS6$mMN#DEj1>OG0_jlZvKlM`ywVQ%JTd@t@OES#%rp+n^-=D15|LG_B#BR7tu3t`|rbZ5@@r`*;PQ;Gz55? zL~zv%Yc?es=VNMh#EtEZ? z83>%&JWQcE0Din8ovMcC){H^`GNUHl4 ztBv^9ns*r1uO9n(jZA(!TuN|#M}|>5m)1ZtU|n6#r0s=Yo}pqQ9=z=gTFR0NUto4(X)6)wKvSn<-gBoPoW|{igyRLI zG=tYJK?|eSLv4y9TYC#Sy^J(k9AyU@6Z+zfT$VE+OJu~+;u5rQR@g}>Jgn;r;$=5Y zVYeskK-=k@LfIsDzODZFJsodH8zO5%t1-5e^(r|d?H0$|`9?LMz#h9q09Y9Xw&>ic zDr8ZdGVlYW>sg9tP~1^>sy6r%c#B(SFK-E!%3LRoH^L^PcAxD*sv5 z-U0Fo8;9I>Y7Lq~9&fC?18iOv-Ov+(--w^NC!{xhmfp#11O6h+C5E58HHn+vf>f2W zP;Gf|VTiG+!d_vfw;;(6-y-Vp1lpEB{$=U+hy-bVz+2ZGFC$SfI6@jkgp>SYHhn!) z0W2j}6%ZvQ#6vW4%?07oOo{!pJ+zQg0>O0pz`I!{I>H}N<1@ZnQ3X)8-GcW|4}WHReL7B(>H?eYY9dvnNeDux}seTy``6K$8wU7B}3AO zmEi%sKn9c6BkLS=rqX=M@W}U{YS1nT?J4;AIzZ-O3BuNqY zVJ);oXMA=Zs}`81o>#%InFUTtQpWZ^1|d6`2*PIy1C}?61@p|-n{9G=r{xz(wn}km79|M@+uuM+RLijgyAZ+F zCQWoOi!*PQMHSRh#T#UoZZ@qPuWcUX#9HX1BV9LP@bDrBK5!(m?<+{J9QyM&cS&uI z!9)nM+t<3Th$|pVWe6nIAK<8r{V)+R=ZTaC@@EVn<$XE~n^2j(e7JdBh#^ z8Sl^1L6#Vr>B@kx0X7b2A?Zg)1#TgUu|JfZTdu?)2!^-Rf#tvVf4(d#XWS)ts z4j26|_p6)y-m3UC|1J9GEv?8Of(GUml85GrEhlzJ;9`q9Gla^VVLO)+5aa{dvY9SY@RR- z=04qah}2SmKsGfCeIV4AwR0YJvekSRERX^toB)ABz*+7)*{Kl4c`Ls?0E3{FxDRTu z+95hiaoz&r77lZPXS_qh++hog7fd=1%kX)PG`q`HXot@$UVZSg*Bp*?%H@09PTr2f z*_s1{&Xw(b$l>`;JLFQS5FlRe5VgDWAe^MOwZs3EiU5*4)94rhxEKdzMD0*Or5JA+ z=ptbg)n6ZjHS`~4XOsjn2*S`SX;6yyzt|G@3vqYK1)PpkDcHQE0%;-yZ&3zCIhU8$ zX)Om>NdShvq(Y8kupP{`ufjSa3V+7e)j%2BtTx}Q{JVx6xm)IM_Qoi=_@!i5 zI7&P*mr}Qp0pmonP*y5HB7)?HEFSk6yt0*73;*7ZsQ1~vmh|nWPXsbEC>0(N7WD-_ zLv7Yn{ltvR(v>P=F_V&En#Ak9^^?nKtN?=uaa-L78?SgwT`-z3qykmp1z{ta5O+Ga z(jju(x||BthamN#IK<3+)SjRxcz#DJH6)0A2Bi!1ke12Znak3Z8WJ6P_>*zYzJGi* zN$0$Rfg!r{_;;3_Fns{%$(KKk6%q`GIgigd&zQay%0QaS{auCDLiFb09d+}4X@n?| z=P@lE_H|sydjCt~#zw{FC16x43>VfBD&kW%{rjowyJU4r1+~Hvy~TeKy2~Gfir=mM zXIBo41dzp}qrK-ljS38fH6tIagIy^fem$3)Sbe3Q`A~L-xe|mR48D?zqvQQA_W1nq zHYl5HFF=f8fUzz84<05~|K5iWBopZFZjp*Sss+jqi`^G{%C>=I0&@@PM=wx*z|9|; zq~A+Pd=X4hUbVQDr&Z7+yy=Qpt1L%^5@@BI#zzl~^KBjT{ucY|omiy&piK9f*hi^3 zs3=!kP$W_oDL<$O@oA@D)|thAmDtBeiPQ8zn2nWblHE&*9T`7Rr(te^0*vIs71fbN z!cSuL6P3dpdMlQ$)JTsZK6 z7U2o-7S_7lH*QMo73FkvA`~_oRKG(D#mZ`Q#6!i(#uX2qA!&*@$Z9Y!f<%B7w1byt>Y<(+0PI|9#h3 zMFC@n5tnzg`A6B=gTpk>r4@&mZ+7Mu1X70KkD57wOlllstjF~f8Zv9qjWTK`Y*_dCto^OOPa zq~Jfb3y5G7X7q-t4~pzPaF)gJ#&EWtfRz!~$P<5rE`hQJ7v(EDn;E?Fv>(GLq;>Sb zwt3*0l?-6j<+|t)|Lm!9L-e3;mr=q<#f7#lvO#4be*Gu#`#y0VJy^|IIefDNOEAAq zDH)8sM^DGHZB;7)Eip6bqGxn4a#Of$$yV>sr?zC59&|WTLKr~?z+f#tm3aelYiRxhI`Nl;#&(=m$e!vXJ@5w$>C$U0NaDk z-T)vMCE}H(%^Ub20t~*1I$XG&-CbE40^>s#lF$$eJX6@La_?hA%7>Qi$8xtU`s7`r zayes=d!0qvCc|tNm3*IDG*r2sG04H}4JM?Z*gz+p!j&pZ!IGKa@Ylz(8@frOD}~VW zJvc-KfCqP#iPV8ZyHcw{LKkpNm^kWS+exxZs(qh10q)_c9}9Le2k%3>QU?RrBl^um z(t_D%oX8WE;sZx;^`SP|U=6SpbVygqAiF~nxHRg+cy&S=T|1;JwIta3^aTzaJKyKd zI#n(s3=Vs-^815^Q6HYlez#b!Tv2>c=kx!U9{7hIk6UPja7iy!qt^G3NPeLrDFIIYbj@zn3 z@8FJ5d-#CZyQ3!zY%8GC5oVYWd&qC{7%tDy$q}|MwO`iB11&EsW#Y7b4$^RI@eb;! z#}DD5Du;Uw_+OXZh8QYd%pa*X=#bfuj2+v#XXOjtgKKpah`@gi9M z#E#0tgye(bB`^m`?P*1tvMv03HiY7X`}IYzrQd{lZf2u(JFR{`2*=k=P9DLE^&syZ zX^N?x4;+^`I>jy+h*?p%qf0Th^TF>aX?#9>Z0<_EBTLB(=f8i-&M3=a5QL&zN(yS& z|HjIt^D!trr)+=^Vo;Iy?tiutj4-EPs zR`VLAXLn6of)q)%K7h9aw>dm5MdVK1%QHSPcL+FQ;^ig9%I;LYJmTY5f4maMi(Zrs8H<)Q6yXXtPn&2XtcY!n01sQl01FnbBLN30+gaTr7c>Z z*v_qdKpzNrMLZ#nPuWqSh;8N}3#n!Jf%>|)A}g&HY{qZ-vGV5S&o{9TDs=r6{cC;A z04_$H2jx}QSX$KAjub^~bExFj=EpbsUqx?CThKtU418v2aPTzB*mSX48WmQPw-4Yp z{O?|DE{A)(ws3)ZZL@dSz=YxtYrW%K+)=n_9`eBnVS2WWY0A4=gR>J`GFLJr;+)mE zDf|}u>xa~hy#=ZXj$+6cPL;K`Xn~r?eBcWVW>;-#McO(o}}wBJaD^rwVPg>Uxww+Ds`sJUKxh9wSg> z+Z><;Uopd;kwf>?xfR2XSi=W%|JySJ8aaGVnQZL~^MMg&)(nA0-gN7n&3R<4Cm42% zoXM-FzbBFJvg#KS6llc#63*~vboK=uEKGiYX^j$8k{JSxJi2Ep1za$<$_MTB37knG z&T|XEBYGz{LNgoaSQ+k&ysFPY725JD)Z6Bo&tNi(~Z7y^$OOV$s-G}$KLT= zKKBV+Isn;*!5?rIoKHcjo$(7m-lO~%`eE7bifrdQI#h`o zJa;nWA1#=k3z>QPUATAGy`;>rf8?cnS{K-|qv^uYeeZLBqyM}pJEI(lK^TT!X=qJ> z`(JEr`ZEa`Y5iRZAw)w0_DeZ-1o`l{>95H^UuH3HCj>@}&-J=u*OtT;%w{+SAf(n? z8}_26<%{X%DsGS*4-md}J^vZ#_dlMHJ<`6b{UWzrmx|}y&rVQH#2zuY1qKt<@x-rF8VW8~$P?NzjDSTqed{*WjtdHj)x$W=ESqJ=6!lK9!E;rduo^mWT|?J%owWhf8vYpA z34D>&vt<+ab}VvLKE*b10$)V+@SG9-Pv{k?8PEOgxPE{{Pw!G-v+_EOBiY$6_8;P1*^13DI*sdOKW8i!$zNwVhCvAUzD!Q#RqD zY@}#5537d}l8UE2YQ*@A_s-}X+%f$isd%JX&gGm1~_%FM8r4z7wBH}G)!524|~Bz zy#EhSwtQlyDn%_GmAS$3f!4C!zB0rii9$R~J)sGLPw~CDm(r9QlB`NRUh4+x$*>d; zM$nSsCCR46Qvkr|gRV`Hcfr4`WZZ`x2=qK1Cd~Dam`q8H(49i3_wWGz@G!fp!XAU) zv%a8rJmvluTlY4#njY|UErUdrpvUury;Z@ysM>B_A{n}tSY(Fy#h^|{!p=E1-h}>= zl86oP7H1-swa9U#lVO92MQlJ}mTjP!c>Fok)RxM&F4le?7nrN}f%_06!v&KCwxh_U zb0NUdr5+BN3>!>r;ZY9yD1|nvfh4oZ{tMK_T7qmc z4{ncg2w5ubTUm*H+fTgD;~CeX7wizSRP46~gA#lqt_8oT$F_6apNgGBmTfX<;}N_L z2hu7gpI4Gx`}(2m+>$5;K^VFvMdM@t8@rzVq25l}K!%}KC{4mZ+s#qA*nlb`^{N|5 zCqtxR`?95Zl$%{ zjRdaUNDXJhjDR$^GjK(q+rA8R;`C*#WNdkU0)NShE0n9*Da}@{)o$Be715~4v2;ue z+GMaWU@O`e=$Ejk$3`>p{8U*t)^WeyvH#T_gFyM)DfcA7xjTWHAT=ucS!3-2Y-jJ0GuzmnNH@scle)=gb99D%kQ7+4>{9oocB(lB0~yqW@kk}^9Zr;yYCUUWn)6O zD(kiZ&8?_0Ss2Kf&^+TWTb#-?&L~&4Qa_X_SGPa04c#9JYz>EV{jJpQC2_ek!dlW zt)ui=7HzQCy|nrT`MyCsUx)7XVk3@yNlFWHL1XZ1LG%$wK#F-`m??PqcCP$W7yF~^ zN^&HILEx9XP+tE3v7tQb1BOIF>PugcSU>^drtIK6g_hfiy4QIh)_=faRwUx zgl8^Gn1RToI9Op5c2);h2?IZ$6N}fO|2ZXK_8AI9tIk}+R(6N@1JJLRs`DbjX0O!3 zyJh-oxkrQ-al|bs5;DwDT!vcfxKWl#*Ira_1&R!J6qlpc8b|a}j#5GMDjZ?(=M#P* zdGxlUW4pDxbpTbuFww6Q-cY3AhIC+10obfY$c_5Uo=&sgW`!lekrbFg?MP$TkCpE zGI$~O``!a9`D6j`&``F9askMgV$n)E@nq%`oBJ4`@nJglVv8sTJ|lWCn529iOkb~~ zh^?H-jOd9B)$Tqf8hzs|<~@>cmt{mxT#~bS2e#q$nUn?`o)0B$$&4==Ta8zMedS6r znOPC*q-H)bkZZ?T9ZG4wF&DYI*w!PCJz|L%Wo$WCAx+vM!1JMfJu|jK4&5Z$q|L=+ z-Ei89%8j&i6{bF>@FwjW-1AGImv!bFG7<_SS1|7J33n+rQ&^Jrt-JF}AeQ+@*|{A- z41!R!C47LU|HhV+Kat%X8elR;0r5V*L^|qWNA?AJ9w4llq@xNcQV;ZwH>ZH49yEEuc_xK#q5h#pk;(Y0T# zXT3;;>}dz0$G=ptc=9~!Yn?5}zm)Q!>|CxO20a=0Wqsn2t)3GaZ_zOS(4| zs{lq`3umzPCGvZ!OWukgNX`;|$JxG$^4j5edKTWnC{nOk9g#Is48A(#OwZCgtSZz8 zCiTUzu0ziBWU4jsbc+jqVx_)|2BpKEbV=EW0>?H0(zh|y8M;$JB;)HQkJGrv$Bf{` z2eH->N$EHcF^h`IepOH6zjgSBo)A2SD2GPoU_CNUg9B^v4?Q7xOabWJbY0qaJilC1N6n%PJW4BqU0((6QV232=3CYhaTq%(4*_- z)aty{ew3X7Zp0uA1iy3vv%vp9Rwk9MGA3300qb-L*pS^>?isH)rJomN^(0roV+QYh zJ=25cA!EFg%hIX^s1z-7LLZ3RYsPt}YMwRS2eYbvNrtg>W-Hm0Jf*BLhu$#90l?ET z203{x&+6-~a_++l77J$KSzSj<%2TGToOlf-FYgGP;qv5dn^ zo07*0ciXE^8V1<-5Hlt-ZBm|s=pX(mDS+3z+RqKaOL?qdl35e+2dBm1`Z;4_lb7;T zBzxGpeDAnrEHVH7+1^Mml?_oY|+$9VI7Wzle+n zH&ur>JhM-kPn<+)BapkA2N?9R^z&QjlsqJaGi2U~;sda`W!!gau1x~>Ww`8pT2uz6 ztaoaDa=pKdqjqiU?+zoNGR8YO5YM$50h&F-A{=z$3I?_x%FgYEp%8|lD{*-k*nhFc z`6G!cc>#oIflFfh{2e%uKqy1FEM$<{SWH?uUPBg-J;^?&@Xe0Y2Y}*VLy+(Auh)6C zZ_*}Lz80XE%<$@WSii8Nk7eCkP$Zz3%n)OEY{WCW-IbH#{9@k9DH39MY(!g^&FtCL ziQ7(tD+ftP;n@xwu`fNER!{C5Lh(J}WoUh8&3#zw;zgMkT-ohG#KSf%+vCfAP{wnn zTLFr92zWWLL{T|v@|K-iDBd9;=w3bLgBe+O7tAFn4jjBOJd?O{2g**b7&k~yqK7u+w*nOB2@rBzM_=|y;!M86dI!aNf`HGm>3Y}N z9)qJW*h4Xh;KgSxC*FWun%g#t^;Wj!8^kl|&cBQUr2?)M^Hw(I8^kl)bg2}WsPVO8 zy%nDYcF?1fx7ZKA;MoRA6IZMjc-dKNP$_mgPg>hM`Nr&0$vD8XI#GG{6!{Lr4pKR$ z9z3nekFs;IVHgI1=t>E3u)Y6c<+W1P3r-alKoxS&;N0h1T>hCnjWQp{?Bmu}U8$f| zSI#RIAh^KoJqG1`3M*O;m;5YnkS^NH&s5_6v%E!mxMnr+F`dvY9HRpjANt&t!5blX| z?Ip>AkA9(~#sGoHw*Ne${V#prk)ii+YdE6>KutSV5Lmf$E)1U$yES(tbJeyjkfij5 zQaySm@dW*y8@KUBn!8fD(8Qz1pqa1_6M54UZda5LE-6|@N)(?&V*U0-_LoR3ms>% z!~sLl6!LEE&NR8*;aKQ_=J9BLu+1AxaP+C8>JTh+obInYf7)Y4`pja@o!1LJu{`*! znSZZ2@oy~ly3=>-q0Zy^xE|j8Zk&AcsvBiNuV8Bj$XR%_MnNwpPKOqv0nCFh{XM8; z{}7{pk);zk6iWFx!1_RGm6UE7`{g@^fzsPQzqlVk+$!s#*TKJk$kVcC`04O=$D3Li z#owiuw`|a|)h9C)fQvtC9Y%|uqC7)*h4+RED&;Kv z4t9%mqBH)4RUe0;Q3~o=d5HR@hWt==wOI^=m&wL*h{EAmL_N5tBwPspIXSs_8d z1$l<%ynuMMrOj))dMgwN+>Ep?W+Fy0*?TA%$;{wcAwa+pJ&dZ6QtFSwzGmF(tWY3u-u)&INk)XgL!#AhBR~I|U&_wy z2x1U~qAjUG(f%7-j{8LiEJgzpYCKa>VOB; z`g{HzgJ)v4gYRH8w53e#B2y{r%gE2ucIcgAv19A2+jY}nt&LBEKmJIM-?7>epLnX8 z>pFD}M}{1u4#3l<)ptThKfo;qK`(RDH~>$>gKsTVc(5V-HuTGiIAH->4yhC~%eF`f zfJYg6jCMz6UWgVTO+JQYEqW?3YsvIm{*42MN;Zd$lNDh4lhC}$1Q z22FKGJdCFyY>hQKG9uBVdxj*V9>vrDqRUp8v)-qs{m8In)Pr~+O&9u5wqGpYI~$@I znv6On9!dp7WRZzRbv{^=OoSbtG>MK4IN)vXb{w7zB}5Mdk1dFOHwQ+L(x4w0T7eR~q3|v|80l&lCdWxUsJ=t?6H;@WtLq}|~3NsEM z4F879k8!^*^=P2Q^K~tin2azvN|sI<)OY+Wc0;U33}7Crv7^E=(ICC^LIu=htwtU5 zm%!iCp&OnKr%*%Aa82@0jiynduxQZUK@DEftrlMLN(N08o{8$lnDi5re@H~iO%fbn zg=nG?w$ms6x}GYbduG4Ie)vl^KW5OV6GMgRKVhi~{m3WAP40p}qY-an{S za9FxY@L)BAXrOtaOp0)YEu&F@rvVRSh5+M4>|}wZ!5>~c!UeoW%H0v#^ShKK!7Ceh zgz$9QjIZfe9-36iVX#7%(TL#b5Kiuoqr#oF151P%jSwDsyA6SgWipdY6Rejq9--(c z?KNQZ6a3Vflzgv!Q+8#!7K0#kOOAm1-`L}Le;z}dlJuK2s3>}dhtO6^5(V+{c!d&0 z(=_x;PX2G2P{dl}=RQPPk5*y%uoLMSXj{3%oNn#l07DfP4m*XOTd#(0ZCX#0HcIkKzI(U1ZBXMh>3KNGNjAy_W18-S8qg(`4$TDm}JQF$=@U6t{L665{u5en| z3-g?TBcYZsJ*~93YjTCx!cLe6HbbHX=>P_o*uiqi^@)#JmV-KQhT6I9s4mVG$_yW| z))?sIm$sLn_q7ZHgGQ0+5L*kI(%qCxgzvRWeiqKWrBmmJzvgWz+ z?*J&2MT<~BxB@WOcTD9nTRno5kbQ9|&iFZT^yp;mds@*rcS zcg^I{`ba4DY4C@lY^4;~|(9E=pd*5Ac`NZdBx)rKt*UnMtUAEUlPIP-|-X>BY6MwFuuO?r5R zapn=uLl6?xEifXeivBM4|B^&B4}OggEG*hwXU9x}SB8(op~)f>HZG18<1BZjg9kJZ zQF|;2Z-yzxnq*yRvJw~B&Wjfks3&bL&W*4_W^-wqg#%gT!Cp`ZaKaXgvLS}P`|4K|7nt_rSkg*4?LJ9K?;&Uw}xP_7C zKHHP%m1ZToz9cmR>3P{PPW?OpvXaY>N8hbmRoTK-jL@|t^-9CqoVV_!|AWm48(i`@ zON+Qh`qt>Yg#J)=CN>g-FcfWx2}ex-jqQJtRwIKm!VOr27;NAlAcH&iKcA!EuZifD zdI~mBTq~=y>OqocIBn*YdM0`gnvL?9)&;{(ZL?0Q=Q0eH)T40MX6-2Q`-BY7OvGnr zAh!9{+xte&?A}hPNBzUiTSilF)@rnFQfG(iIH3KCuI zw*eGB8uWV-dZ>>|Jcha*+s-R66}~epKkMEnR!g$t+BtC+-j`*D=4TG+(_7~uK&RJ= zBS#QAvv+szAA-N0R*g~{=BAy5e*cpW>7$ldNBHMZ*=y94{Kx*I?AneX20>s;iYTQ2 z#*X#AQ0^w%fN|6y!aiQ^WG?$aIZz;H5>EzjQSO;DH^V&5)d5q2AW$T+v#9klJU^c& z7B->@S}+YX>S|q>0DdU;=-8z;jp*CpKQZ16{%1p;p^TINYNvdTNE*q%oX1Kkz;gH6nZ1 zovGG~7bZhL^Q_nt+0O!AL~u&_GmF8Qh?N09YCF-4967eKV9^-EK=bUoHQV1TX{wJ3!};oBbY{308Jg zWCy&UkhMY4xJdAos-a}>tqxu(YF0o#-qlBj+~&!73m4C`Hp?1k`Ieb$S~s z0Cq}fLNal?(glhwH*zAnL0DrYz5k8%%|Q46OAtbr2v$|k;1e~!l7$By97 zUqatUZuVdOYpVc)LsZS)p3zUntu_|1}I*@{@tBJZceQ=H80#bM%#T**9< z^`l~$3E)FJp?cw@5HAV!EYg0^NGU~d%JJ!QX6TjtV4DRcGa#M#F-}=YqgfHunXMiD z+f`p+fcnj>1yl5gH)C-`8Ju`KJ1)F(lh`XcB0BhdTrY-E4C5RHlI-La#hz{SAG~Zw z`?f9~1DdyZ z?hEIa212!5e}#O%Ry?LotsQlndbnjvx`>Ke&wRhlmknJRSt`MX@b4 zZ z=1bIWWr%#J=hI~4gR+)vrbg`Am0|Lso^f+$o)+=P28Yi#rXMcl2%F|o*lV&%$f8gU z=nt{=`q#Rfp@{T`&0w7z9Rxp%WbS3S6j2Fu7h~O zHQ8jg2m~!EH9B_2*|z%mQg&@g4ul}^O2z@P?|-qS{h1(StGED38SS9-<7;HF&h6ft zPRFg4ojI(dK}7WR*(yr^B+gQH_K2{K1QEg3hh#CDpg5HK;V*j5jtCJUsOv<@=p)Ls zxKXeeIwC~OODt`ZV5q)LP(3bpBz?G&x+d+-H~&kO57@;Q@0`gismps!>P(a$vXXmb zS^77|-ZUUko#_igzW*|0c6dkChZzI(I9mUlbf=RllS+3Ee4qd+CFI^GA1Y*#j8>NZ zy(obKL>>0S;S4Qvo}!cONcs>cKz?!MrJM7O_2w?Ug*!+R=s$$*k9Q6*?c z1&C?b>RazTpK3OOFH8Tk`*t)KT@w^G8y$Fx{=1{&!^HstgtZ+^jJ(H$B^@0fWZaL| z!<4{1IMOWkNe2Tj4$$#W+w|m`d*z?9gHaO529W1$5Mk0{w&$>pWDOF?21eLs!m-02 z-uII~%FgY`VHkv>E!mR5(0^mg@s9_iWJ3c?h6oJOeLSH%ePq3;Ur6c=Zcm+C_8Pm> zO0rc~jNF)1$6sk~UQ4pmNU}}Wgi5g-q8-mN^%LAOc=Bx1rN}N0#U4bERC*Vsb=Yve zUNwouFH%f#zBgut)*-`rmimE>AkhJ@TZ;86kvr9%;XmN*Ee?sYLCtCkWF5kqXQ7|i zft^=7fm2okcPc&0{9Guh4*}vPrkhN6NIwV9`int2MniJc zH+pOFraYQ`X~&PTKYk-62~^@`xe!diA9roC-Dy$Ds0#?xfkw70Zl}vY zvJL$uB`*oQ8Ea}xf2d47z>Oz%r~AD?KgWVYF>s0-H~qCn?{vU~`a$n9W*&837|%^o zI-D%epr2SE=fo&IPIfV?unuF&6XfSyasrc$Q;8z<<~MgbR08~r$b?=xG=)~yiGJgsD`S2yM&%iTJl$jF8zuHF5f9`hvC_8r~iD3|kUTG}J7To`0 z%TtD6gU%*WP1zU_^yfM|SI7xuGx9jPj?ISK6uOju8Mkg`Q6J-q5MkIoY$dZMtj~it zA^Iwiqnj<1DU2phP#=`O$63r1C-q<@KP8yYgPmpO=MxOP3z9R{7*qE$vY6B&CXL-i>M3&fbaYo^Xxqpp5 zh0Ej_<+G`Z*o31^;`OH2p8fw9nFW48udexm7>-}%T`D9g->^-g3em`uF&A?Op7Xnq67FI|nsg;&F3RFW z8EYXETmQ6@`;sXak_|h0F#Kw<6st!oxzF;T6?$Rxe87<3w|R+5_PZ2)j&=(MJ;)$8 zorprK@ynA7A9_5}e?IC!(G=o~U$~xmY^N4hH$+M;z6$TfFIdlkHOGbeV$;xc4AaB2s1IcK6$-`CO=JKg8AJ8(tmzZA9>4tP zce~Su8N-+Gtmq?(>+ExF!5f+Prvzj85?-9SqWSFyInhP(W7sNW_{G z#~40?XK${T;DA9E`4?;E|6>0&(14gKmH`5b13j^Md&f^2L6%sO&AH$_yd8*Ai@)8{ zn_x;Tk>UarhsYS1H`d_Y^{|X!N-W7>9)WSHqK&^?{}%Z$k#~_&(SxZ5dzv)}G#SAO zh~NbY3uN$z(bx?tU<4uHGfn*catHx&bZ$76Y5!B-Bsh3+ zB$U4oDVJ4@%l({jEADFc=sd3F&w`}iMm&gZ4c@g{}(oC<{O*~y0i66YZpd#t!mQl-&1WQR`z@pxb7SHgIImu=G`)g{CXGZKcqxHcrjf`3W>a9^ru?%Y#Dr4xGb%tglyvz-u+>u z$-D*%mR#maQb_Ebj;4t|ZuI@7Q-1wyB`F*(J|kB5J-m%QL*2dFAM+vAG3##H8$DCvIl3d21EhBle#l_7ucz@9F(KsS!(iyYvGqy548E(l0Tdw^n=qVtM(zh}wFtoy zl}8IvdpR>Qh}3WZH7sH~(|Zj8GjJT^qKG?HV%vAS&Dwo>8hJqstl+NOw4+ zVR8r4lF=%k(FHK6Y&(p+(ct&kn$aq6;d!EJE93)tXs(~e{%7y(;}Ea#)dwql23G)@ z(ZP%3gMp$F5;=NM)3jzj{N(rmi?y1=g|I}kk`cp$OyHnh_Q6to>r}uk!~N?)jD9UN#_I2=N74zQP*)isDw$^|0p|yBnv_ihF+=r(<qe~J60;_pXUYCX4G;At)Tb!{KEUD%_#=s&X z&xz09NA`ts-{;sin}D|-98EL>#kiylsjuWIYi>?g5f7+L&z!yQ7wzbffLz=*H>LwEO-Nrr+^n`h6$26e7U z8+|qeFcg%kdY%MoJdcxVJ7&DI$w39Cs&S8HA^9$w}XPgx!i#Ho=eB?aGm6ZOQfYp`*Gk1g#^z$;$RX>}pY zVfPd=`6i4B#|ilU-&D^Id-JF4%+Ma2x^wjXzPQ)QM>mr*_Bte)4za7^XLY`+-izmQ zc4ovQZc4=w>i@y)R9405w5K6m0&v9%y1pKE>A|!)VapO&NV4s!_(9j#BM4tPk~9!I z^wAUWiX(J=Jrk)PX_olNCCG{U3HaU!9a|5XfcTU!MXViSZ%xptb&(^1>S}OR!_wnZ zapA7B2Nw=j$GLin$F&pakA=HZtm51tVFf&e4w7xD+z;kB2gnphrXKRS!gRvzW3A%H zon#l|Sa!jhQtMab4E@7g#4nz;(nT73O2LN$N)Er@`1NLxnTRDATrG-DizTbCTtwy{ zOW-7DA25!Ge=(lZR(j}FkuV-zJ_25p~SK+ceC6$DazFnp|4FCNg2(buSN%CY8i&5km=n z#{ZerKuDp!3;uZ@Y<9q%gj1nTz`U2{2J4l)mjkEu;8gr@27+t-xUq;68nj5!r%rp9ujX$<<0W;XN=@U!vaE{q$x6z3)!aQ2KulprmN*Z zUPnXA|FY*iV}JfF<*|xMO|b0!?1ZfQ02PSZ#<6@gMR`*{nQW*^C zhr|wSlS#WVK8egX;NRa)Y4)^4Jg+U0rG>jwY`zoP+4CdtVt*Jz5y#MUqpO zzHO9W9Br>=Ihg2_Bt9TlurT~P{wsH7XpG@HB*}YVY6~jUZE{G4 zzmP2NK{HJFHYwV6&pK-+gj9bn4cRodp*BY&14&30_jqEnBZpjbM;WG!%|wwiGH5kC zj`-|7oQ$S_f-#hYWO)xBEs;}tB63mZE(sJvNyy2^7m0pxs;XP>hFzv$`IJ+vO`-k9}0em&nIBtR)p zEAP?|{zuul;6@C>K=ev=2w>m;V)dhyRt`kkxquZB7%H$$h}ia6RuTfHNRqF=D5Sx=rvX6yVyIL+HwD-r{HhH`NmhZ5x{ zKl}E>m?$tcD=|HoB9I&JIEaQrkr-HY>xoIv3#E+{#CN6N7fmtjxv&_@bvO`$`{7Wc zs29wuo!y0+1G&Xm0m@rx1x1Qu4-DpP*0X&7GqHFSR#tlP>oF)AV_wr%2+CphNf$a^ z{p@HR*Cw36dYT~$Tf?4NT)|lc-Vooulj1^=Mp*Ui;o1x(e4cgaB)7^6NO{pZW4*NK zlN|@6eYh1FfRzj`9O3?@IsSRUwVIY_i2$o0wiFtbch0tAD z31AAtN`f8@5>{31`a8?*K)f>=fO-NwT7!Yo9`ypsu6sc;A1DX(V6C{uoJc~o#qR@| zkpNT&^r$v~n}8L9!JhZ2%!mN$cCFFBT2`JVMhV^}GN^vtE>3clp@5@uxUOElTFZpY3`S+sTR*$OdgxgUW2Bu81AV zqf|=8Lf20y4%b^Vw=+V6>Oh_bafcJn28#`@H8NTQa~@nx>69{BjO5L3&^9GCuoL7d z@cLTsfyZ{h2WON9c5*!B)pa!G5A-inQg~0?GJ_v=rM31de`xi!0w2|#kp$QY@&FAf znoWCILHlj&e-`{X)!^D^omQEA76VEsqX{qv@@SV(vSIiBj2-R5o|?I1dD^Rb-rT^B z^4rY+OeO4W+*4`t(s8YXE)9ZmM$KT(feV(uVL8+bF7-eT`5bg$^Xx z#uX2eg&af3)l%$At!;rT(5Nucmfx;Q8rrK=Rs(=&`)u3^H+B5ouhU(YN*03gvqK+B zHFr{v(NAZu6fK0_)*BYi@a&?Wop7jQy@JfhK-TPl`9kWS;*kri?AFY7G@OVvEqDqg|Aeedxmmxj*O@)2e!1lDi zmM&~?8+!Q~mFKJmwrB4;cwi^RMpo4Ou>EP@e+9cUrC>^%_NdKwp{qWy)%{)CV-F zAoUtWe3Sx>v!HDJ*!hGtsUYnsPil3~h%_pxy(`!I`;MHu;6ApcauwTQK_z}P!)XhP@V8iDvnpQ}9wbK)w zl_u=+lkDRaj9x8vENy*;3HiG#9LaLU5B;e4ps>G58Svkf0V<5U`cd#<9&9vG15@p&;`ado$&5XR!+mDK5zSUTJl z2wkIoPiKAaqcQ0edI#?6qRm`F>Sz@*qy}$f5CJw5R z3-HhtI^g5yZF}>>IsmXJeJ`oD1`_>a`}@ngS;YnR9Q{zFegkwD{h>rci9viIqz9q> z5xZr@n~nq%qu!&x3xYBj2HQOIlv9MhCIk4ub&5tSb<3eE4cn1;!ksCY!XqIdrB874 zydxonO+Kml0r vfb#)_ms+v*7sq?pUmwf)KCjE^GTo=+?y$eCx9hwdch3O;rS(y9*@YeeFK0EH literal 0 HcmV?d00001 diff --git a/demo/undocumented/advection-diffusion/python/demo_advection-diffusion.py b/demo/undocumented/advection-diffusion/python/demo_advection-diffusion.py new file mode 100644 index 0000000..e818afc --- /dev/null +++ b/demo/undocumented/advection-diffusion/python/demo_advection-diffusion.py @@ -0,0 +1,127 @@ +# Copyright (C) 2007 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2008 +# Modified by Johan Hake, 2008 +# Modified by Garth N. Wells, 2009 +# +# First added: 2007-11-14 +# Last changed: 2009-10-06 +# +# This demo solves the time-dependent convection-diffusion equation by +# a SUPG stabilized method. The velocity field used +# in the simulation is the output from the Stokes (Taylor-Hood) demo. +# The sub domains for the different boundary conditions are computed +# by the demo program in src/demo/subdomains. +# +# FIXME: Add shock capturing term and then revert back to the Stokes +# velocity + +from dolfin import * + +def boundary_value(n): + if n < 10: + return float(n)/10.0 + else: + return 1.0 + +# Load mesh and subdomains +mesh = Mesh("../dolfin_fine.xml.gz") +sub_domains = MeshFunction("size_t", mesh, "../dolfin_fine_subdomains.xml.gz"); +h = CellSize(mesh) + +# Create FunctionSpaces +Q = FunctionSpace(mesh, "CG", 1) +V = VectorFunctionSpace(mesh, "CG", 2) + +# Create velocity Function from file +velocity = Function(V); +File("../dolfin_fine_velocity.xml.gz") >> velocity + +# Initialise source function and previous solution function +f = Constant(0.0) +u0 = Function(Q) + +# Parameters +T = 5.0 +dt = 0.1 +t = dt +c = 0.00005 + +# Test and trial functions +u, v = TrialFunction(Q), TestFunction(Q) + +# Mid-point solution +u_mid = 0.5*(u0 + u) + +# Residual +r = u-u0 + dt*(dot(velocity, grad(u_mid)) - c*div(grad(u_mid)) - f) + +# Galerkin variational problem +F = v*(u-u0)*dx + dt*(v*dot(velocity, grad(u_mid))*dx + c*dot(grad(v), grad(u_mid))*dx) + +# Add SUPG stabilisation terms +vnorm = sqrt(dot(velocity, velocity)) +F += h/(2.0*vnorm)*dot(velocity, grad(v))*r*dx + +# Create bilinear and linear forms +a = lhs(F) +L = rhs(F) + +# Set up boundary condition +g = Constant( boundary_value(0) ) +bc = DirichletBC(Q, g, sub_domains, 1) + +# Assemble matrix +A = assemble(a) +bc.apply(A) + +# Create linear solver and factorize matrix +solver = LUSolver(A) +solver.parameters["reuse_factorization"] = True + +# Output file +out_file = File("results/temperature.pvd") + +# Set intial condition +u = u0 + +# Time-stepping +while t < T: + + # Assemble vector and apply boundary conditions + b = assemble(L) + bc.apply(b) + + # Solve the linear system (re-use the already factorized matrix A) + solver.solve(u.vector(), b) + + # Copy solution from previous interval + u0 = u + + # Plot solution + plot(u) + + # Save the solution to file + out_file << (u, t) + + # Move to next interval and adjust boundary condition + t += dt + g.assign( boundary_value( int(t/dt) ) ) + +# Hold plot +#interactive() diff --git a/demo/undocumented/ale/cpp/CMakeLists.txt b/demo/undocumented/ale/cpp/CMakeLists.txt new file mode 100644 index 0000000..6313b93 --- /dev/null +++ b/demo/undocumented/ale/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_ale) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/undocumented/ale/cpp/main.cpp b/demo/undocumented/ale/cpp/main.cpp new file mode 100644 index 0000000..fc8c2f8 --- /dev/null +++ b/demo/undocumented/ale/cpp/main.cpp @@ -0,0 +1,60 @@ +// Copyright (C) 2008-2009 Solveig Bruvoll and Anders Logg +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2008-05-02 +// Last changed: 2012-07-05 +// +// This demo demonstrates how to move the vertex coordinates +// of a boundary mesh and then updating the interior vertex +// coordinates of the original mesh by suitably interpolating +// the vertex coordinates (useful for implementation of ALE +// methods). + +#include + +using namespace dolfin; + +int main() +{ + // Create mesh + UnitSquareMesh mesh(20, 20); + + // Create boundary mesh + BoundaryMesh boundary(mesh, "exterior"); + + // Move vertices in boundary + MeshGeometry& geometry = boundary.geometry(); + for (VertexIterator v(boundary); !v.end(); ++v) + { + double* x = geometry.x(v->index()); + x[0] *= 3.0; + x[1] += 0.1*sin(5.0*x[0]); + } + + // Move mesh + mesh.move(boundary); + + // Plot mesh + plot(mesh); + interactive(); + + // Write mesh to file + File file("mesh_deformed.pvd"); + file << mesh; + + return 0; +} diff --git a/demo/undocumented/ale/python/demo_ale.py b/demo/undocumented/ale/python/demo_ale.py new file mode 100644 index 0000000..4464d30 --- /dev/null +++ b/demo/undocumented/ale/python/demo_ale.py @@ -0,0 +1,46 @@ +"""This demo demonstrates how to move the vertex coordinates of a +boundary mesh and then updating the interior vertex coordinates of the +original mesh by suitably interpolating the vertex coordinates (useful +for implementation of ALE methods).""" + +# Copyright (C) 2008 Solveig Bruvoll and Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2008-05-02 +# Last changed: 2008-12-12 + +from dolfin import * + +# Create mesh +mesh = UnitSquareMesh(20, 20) + +# Create boundary mesh +boundary = BoundaryMesh(mesh, "exterior") + +# Move vertices in boundary +for x in boundary.coordinates(): + x[0] *= 3.0 + x[1] += 0.1*sin(5.0*x[0]) + +# Move mesh +mesh.move(boundary) + +# Plot mesh +plot(mesh, interactive=True) + +# Write mesh to file +File("deformed_mesh.pvd") << mesh diff --git a/demo/undocumented/auto-adaptive-navier-stokes/channel_with_flap.xml.gz b/demo/undocumented/auto-adaptive-navier-stokes/channel_with_flap.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..43f7f3b4070ea64e6e075ae9803ee1be618dcfd5 GIT binary patch literal 10417 zcmaJ_cOaGj_s`zf&gSA~MOMj8gquCGC1h_`T%l~TLR=$TAzKJt*?U~F%E+GA9toML z-*feu-{0^1`|F;0VPfg_6e68nLw_9eWKL^YRZB2-~V(9mVSEdSj|`N~a_ zNj$xINK(Y}OD}T^giDF|tI&O2#3#cyxzELCIlg|;^sToz@GHzyoy~R4UN`0#K>hgf zWG-p%$++_&d@j?Mij1wx^heRMO`1#n^~_Z$w01sSbUoai`H}9^apH>Rx^G;}Up$7F zRve)eKd)v;@hWVVqegxW1q-pMH@UrGJRb};N^hr_uC3qA_BeWQjiPJ+n^(RtAAQkX z(TuL?JwJuC)jE8;*22_YrWIlRdTs-x&q8#&qsL!r4KglAo$&ehkQ4G35F{FNWCETmfe5l( zGIE^(8ZDR5$Dwi?p+UamPj4crq&gI>kOD5QZltE-iz_qMjJX+3iqj40xX%*BZ96pL zi(ZLt*u7QUDibWX5f3 z(FOOOSYsaQWCW7{p!+#xFe74t)&6czKFZ)W zBdj9@{>v(H1Y0p+<_XZ#6ARecVQ%RGsti-@$mS0#$Hss)`_!*%fh7uo2?NwY*XqRa z>(&FQ?1xOjL%FrWLpk)qL&7iIgZ5VZl_;HE2tbo)+|28K1avm2PnW{7GT0L z>z>%t@~zL@!9Bd)@c{<|S_FP#SLNpVRELC}s1L01g9ki5xVGBPetKwRRp~S!I+^($ z;$uhOBV#00`N$x8E7^m~r}CEd>Z`y8F+Th912fOO%}S}pq{d;330}XKe#06Q!qSP- z>ls^uj2Oo@i7n?8Yi^#Y$Q}u+%Iy?q7|&FEkAzJnoN4QoXo7RUb-MV(p?bAk0{oM8 z`t=D3jcVc;1*O#c{x2FFcXWOy){J2t= zI|AoYgvE_zy!GaaH%5aQHMN1iQ2H9%#bJA;j*ca1lg0Vf#YO)X4N)v#YKo=p4R5^E z*MRHm8jp?`+yI>Z6yJ9j=U4ux(*>2MKJ4kgO#k79Dq-#|`P=KTWHMG;s@j5)Fc>@@ zbrp%9kaPN|FAmQ|#8c*YtD@(;vNX-PglDR_r`oa7XB0eFIvFxk!ZUH9{{zB`gi?pa zDuCIa$NnY2Kw_9m>b*$$>U9hzcu^slN{;+KE~vx?9kq$F0&DTtIc!CFTk1kKUq^I2 z^O7p>IgnppCJsBwxXX5d;pEo(Lq8>w(2=3cb*VHU(-K^-e}JRmLN~M}htvO% zZb&e!)e(>2dOBa$ggj2?KoD+PCLoTI+9Tcs+ES9*C#mUGrQ{S-&<#1~1lp1j(A5)? z+Is?`VLbytBhvZGKsMnAu6WcP5mXTF&xvF=DWxFBh-|QT-b482PX=*3D>*|gzJNG- zx|E-H&awh+@d)UoSV--w0e&KYik;wkEs)qWdur#g^7aedG(SKK!i_YgAhJbOt7v=YeAWHhbwt--bePUq!(lw(Di{+~&| z3FKh_>igZsYHW#!$VNu@VmMGq3~m}5@Wb@Gb{2x`J^+qQ#Cx|_m3dzd^^f8K9z(jJ zq{XxK*R{0Y#f?76B%Dlg(iE`q80!sM$F8KZYTr%}_qIbwqr^YF@!+|aIAE=?s=mS- z(un8#Niso*)NW5Y^q2{n%t~kh4r4Ep{G}|-u=;3Sohn9;_iD%iJK1e>iD({fR5}-} zM>^O3n+ZC@!Y_12MWb{Rg~N0cMW67QC^y6v_PTHs_S$e16dlDBcs4{8R+OUn%e2Dz zD|MdnS850FSL*r{!5N7>lDSR-JQeo7Zbe3qJcv{uF^cSq?W(IiauWQsx9_w$cE3=+ z*{tPgxr?T(TeWom9iG4Npt#AswaxNNG{Gd=#I5)#NOiP)1SAB7R9EJqqb;TqBY7%B zM;l4fA95{3Ro;}WKV${UYI{k3J@IA7-Z2||u=aQn7kws0;bx1Fn%9Jzc&THDeU z)n70CwtJ!EM0atT%o7%_e{D7o&}#6@kFdY#O>eIOjwHqqD%|D0sR#aBHUZ!J>s&Kv z06&LV6d{W6xaTpA+xVq!9}-FRwR|`Cu;(E`B*|TBOH5lrU7Q-h-i6(Q$_#oLHxqkK zlF;ApLgLYc+`-R@xa%Ue=e#_NTZ)rN7bj?;bGLd9qmPZLjNwtR=Dn#8zL(`C4!+6H zB~`nA;s4x3H$m$@gR9Qf%GCZIl9}3L#*jOwvH2@mCW#KW{6ZKrwP}spwGfhG zziiiR#VoR$^L&Wl5n?`*LTdZ=ezH=WU}l_9vKzRjHTM}NX>%227jiC}Gh90i9l$T5 zE;KDr%*qU2l~2j4Gulwxz2fVU>q5<3v_VyWEAUYC6f|xs5U1$RG0ZgfE41Ij^ZSBW z+fj!ewKMhpI$EMlTGUbQl->4=HoLelPyXS`9<*g#ls7lJSmMxA}Pnc@mU9x^St()3Cc*D@*gmvIBl{iL+SK?0ev;}FK z7CGMh)zZz`SGB)7b4yOB5kWC)Sr# zisbHCJ(E5e5iZf8N95kWmAatk*?(*N)(QE^{G*bc^1+-+pRo#ki+o81!R^i`Mg;nd z{Gg;-6jOVdorz%4E;IiC^^l8+aG_NZd5Y-ep&@@0;c6>2BeTJliqQNdOdWA|b)`&w z(2``ud;Tx{P(mBO@?UI*eNIlMWh{>c6TfFuvf7c_+m$VO2)^`?CudD}uy-pf@p9(h zv}ckW8y-0{aa$NS7)!nGY9f?mu-41eo%ObTt9hxRw)$|5l&@Rfs9?UutvN7hT~(r6 z$EbU?rJ^!SV&nLG)lhnzc%2+0q2-$Dv3%O5>{c^wBpnfXygT0Q?|3)YtFAoUV~Chz zlsQXST`ScNaXfKFmw?T47{6Y}GQ#eKm0sP0 z(}oqcF*?`*b9bRh@dk18Tdz(kLjdvj_4C)4bmj|Vyb+_V^3rpB`|{Sk=bV)t74rSY z{eJ!(lH`#=NoVbiOgBETgaO|vWx0klKEFC6-)BE4xm1b+I?2Y}&%Lwryf+cmG#ASe zb`t6L>OKXCS>p>~`Qw7pp(63pl*1Zcf#ETl^2aP??~27A>AdZh)=pjf#%Nd&Ks2sz zzA?LKexG;a#!9%$JbjXfo&nQS&2BaeA(t{xKi_bR z=;eDkd-7=jWx4UDn^U05^E7Lp6epc^3mv9LbXCXLZx@fd)LfY|B#OSYQ)X=_KUPDe zw2v?(fxcws)$A>M?+N^NZ?JRYlhPwOB?kXPvV5}1z;}l{)CUUTuOB9*n9xUm!kg=P zD(XlG1%--`H|mH&0=$1kdDsklL)vj(jZ4PuiEx}kk2mRCKRnZcGwJO={-6v+R}AB# z?h%Y_f~*k-e)(0+mJXUidO>?WM93cP01t-y?wOUWg402#oEiQ}`#t7=QW|zHEFoWAcNG-zlwh8ZLMgUjV;)X1g&(HhP zOV+ZOY`K^cyx3>oy@ZQjn6nzo`n`sf4rBqaqb;wHR^`s_qkbP)|d6* zt1Ca%ly1s!YZn_DV_wIwCW+Q-VoAIz6Q~YKDhV3U-|23B=#>?(>q2x3wC5|uCzsip zhj~vHJkHq84Dy@{QXN=|$yx%JuV=kI#xddO>R%?zp$ZEUl5XQ23b692jBAL8;c#E$ z34e~~TEg?r6ve39ikg$(Ul!=B47Q`JUed-d+nN zZ33SM;BY~u^_a%}AGQ#hi7Zic^sOh-9ittTh(dM=Y9I5-LJD+QcYC{IK#~h%PyO4~ zIHYh^e)>?)37j+aXzwU74Et0`v`)`%EVd}Da@ z4SGyi-le#VZ$+~2I?;h#P4hozWg+486r}i5apdoYk89dsw2{W_ zL_Zm!R@}g|7EzjeTS#Fxpn^`O4SM+=MWFk>gDl@52jQLh4*;=&V}JlUy8y>%pbXdI z?C6oUoQpIC8nFWeaVnC&imoldafiC=1)0M%KJDNlzB#m*fJ!NGTdR|E76>qFORXQ4 z^np@aMyB?7&@)(Ld_`jXDGSnYa`ZY@-7m&%mB?u0#6z4r$R>%G$i6!-a770m-NrK- z03d@bEQF{upGT?`Q4v=YP_T-D4GRdZp?qZi=tCi15EHUp7jFe|8JF|5@|3`JSG18O z|0B6dKf8J4obZa8i?Jgi2-?~#>@AX9rH3CJ7GUPfpaoL`gHl}t34)!=nItjzHx|kJ zmfw~T<5T=%y+vB+mKh{ycR2`b3B3;++t}LIj3lj}SvK-KleB(tj|{(a z3|o6AdVqH~InKSd6nGPwtNG^!2=JYMK*Cx?E9J(FTUr=Y!$mvG&2;DP%xmKZPu3N< zp>aB02FR2V16))i5;8AfAifp9hqCeR^g&tG2M(+V*^2Rf-1v-oV*DbGS4ISM?efwQ zu>4ad06xXS%XUL7DVU+3Ced;zLn06~tD#@^;go-*td{Ym8=$A(ybs0k5?F6#Q4?<@ zC%U4eP6YZ}AmPmRKy>CpAi7PgEbHE6l&n_sLI@E2t2h$F3j7;q`xSFItCox{xCe^G z*h2yAHGr7_7(5G$H368Mkt=el1P`kz&G!eh;&OHumu8>ZDqLF?z4Poq%s20jSzm>t zT6PS~zhyN_Iz^#YLmzzLZtRAptZ^b-$@{e;KsBjTxP;_zJ-Rc06Zi~o7a?zNd6^R# zvwhC6sixj?={=z&gi<1wRt;y9;}-+)MC;fm!Te>j2wZsV3T5Br4NYf*6)CL|F2G|) zmnKEuF@u+yQH0x?B=1g1AnNmb3+UJ*c!R+PfLS%Ldq_2Q6sX=>A&FXhB5L%&$D!BD z6scGZDc@r5Vi~nurGn=p*zfl|e@%*iXUza~g4112gfI>14Q9!FH?QYv4OrqE-rNj# zzM94t{sZ?D?z5iSJNMrE1hqECovw^Htl*156CwD?1pE8NRYZ&XcY{5PM8bkS(x5@= z19~c!^_dYx=9#vd*yQ5Jb@(i=-k%x3L+62M*Tv7 ze)HH46AgzDS~8A*o>=srJHP1}XN$8a>xYv-O&S*BADGF?PR^;a$fxH!NRUg;+@cBM z@Q;Js`$<>F_FFA~frPlx6?>wIa>;wmr7-DpZOZYycO)8F0bDk|$|Sx+yRi7TvR?yv z{zhvQffTd9q%z>CLZg&jybZP)x)h&rCmGA)4UqO`DGzMMLt^CfKFalG;cQ_>y056P zh8DB!;qX5re3zh`tQIdxsxO7X(;=iV=PhsnJT-pDXO?X$dI_Mgmk)`KP8r5QC)a8r z&&BmnFd6XoVIazKJY+x%)hoAAfCGWXs>Nr{NeUAcy(UCroB@`wVia4hKaljZB%J61 zt45H{og2qCTjcSq_?C>vdH5Le{a>-m7@oY+mrrFG7+SOQ#C~Oz>|lshKAQzf!hn?C z9F-8+XqhAc$qv%uEJaO&P6*4x!2!gQ7j2MP#un>|cwC3=0}9skyFle@*amMSA0fr~ zo<(62vGt95ODQv54}`2PVOxRHBm!zjVgxU`qz?ir2lv#P#Bce^`$I46?CP_$sdxZ590M`CR_zhQV=Yf~P?*?lA3sk*GM$)?FoVIS3$tCTZ#@`i%u>p&Il-e5F{1?O_Cmg;z`WxH(c%zIZ0><-qct8A;-5*tuKS(!# z#HpGd#24=8y*A1^CH97X#bU?UfE(Osgsloq=PowS(VJA^>eEgtIgCvppu!)Fxp%DW zoZDro+TW$l1}D^?GpJEV5S#F^2OcZd1kbkz$R_Qx13CD@f&8S^kjojIDs=5%x;R-z zs_=~l*#3k@X$}y|aLVK#i^D-M8P@%&AW7>sLx!rz1*awCOnLF8C9*)6j4rmbFJKbK z`<>+8(2(*ZpkIzlK);f*l3~Y=DmlG|U9)(4LO@fPv4vxUj)FQkX|bj4X}`A%EWUz9 z3?Tn<1AnZA{lUp6^jE*IZVn{a0LiedZv-uzEQy}Lr@-%K!dds0?R$ZAiOqzt69P&} z{4;z?wgk|W_xMJdl-Mf)DDy`|8I)FDuDHO4)_R-=e8N@zvXt(@VF@98a`Uwem#Dd^ zW-Nr$uCOpnopGVn5nZ4Zj}+I_gYiU*SeOn(KoHH5j_43-p0^*F;vnA{kZU3u=&wOz z0B{_6s#|8B_U`9Z_PDzsvv03J!_S=26^f9!cEfj^W+^7!>(j`VPqK-)IQK1RKbSB2eeUKN?$B13L9K$>rRTk+PCK?7t;`i(F1bdC@14f2Q}RELwuqhaHLixjH8sq|wkYkJ-yRK@P@{?t%Q5GWj)TE`}?Nsc$+8IR& zXSo7)CfXDyZP?N0U^`wI=4+AiPB@(FIct;UYm)X5KPVk`C{jG+w1>-D*imnJwe8NY zf6TrZ&|ru~TN7&}_HtD5VCUux$f8k>Xa?+@B@}3&D1{psvf&U9Xgb&PjL974z0h^w z);Z}y;&hGmU`-+#_mivmyfh2<@%Zb=o<7*B@9-PME#rTi^=wH=rrV6)IQ z?hv;~yT~(Rl4~ra90&&bBiNlEqMn5OG%X_JXF3yZrl-GR`)#oSK}1nEKuo)!)&~Rr5EXU!3m9Po47q&! zZw~~!3XQJu5)$Vtl{GXL^1P_j4ISu3xQO&hhD82Wh$}O$snB7K$VQlhQLJ9T(>ci; zZjv=d^>(=i*ug+R3@$3nTqt~`n%VRZRdK!**c=9;B`K5atcdR=4+3N6=iEOLydw5z zK6V#XdTjKpXNMp`mP99FU&i)DQYuwhZ*U?pY{ zNzHlY&*@Iy$O?yKvzyVwJkhK$VI>xo!fwM(B%4_G(8o`TG#lUaMXkg8L=O<}<3hZB z^~onV-N~%blgjeaO#)$CNNAYRz~5GV2#I*D*z!nDDeD-Eq^iF>$g475Kt`5IEYYA; zV@BB6pB@cXYs9hr(S!nxLT8LzdoBpQa*(QK~eN@bO^B~ z`s1e}A#ResqEdSp&s|sfhng>yXi{{IKZU7B%me#LAQmE0P@O}OO4Um86spgzVy+2S zU=iaCrgVgr?J48BJ6@ecl2B)83G@EL@;l=Hfh6KOGA1J>tmW}JM#4w$y}&QalZHZBuH~fQS}Uw}myxOD+T<@32j;wPj3_vh0yo zgx;&?@tn!}iYU|V=RGPY7%!O8JNSNu{o|LNQxmUFrG~uYT3@}Xj%<@o=WA|Hq#C3B z5+bpB|juvK?6ErXY>I-qedS|4xc1UUjHV1KPG#ptLFCP`C0EH`EADM z@{IU_YpH=$-+wZkjSlKq+n%wJa@a35N9%?qKJBeF`tn{GzHzIF0v?u>dzNb;Lv9-1 zl&j;P2#@99*T_z5hR+$lyUun$7G>{ntLCB8x6h9Q{l>WR`K{p$3CPgu6x1w(ZMKj- z+$$j~w7L+LshM+mvTe*$n#9;%YI@7xv1UShk4d8hDv`q-b=5kbjO#QH1;!=kQIiA-E zeQ?L#&nQ2B&#j3}0*L)WzR4q_ABx1|g?#u-m&D^u&-bNM<6#eHVyZn@ zriMzUK2^KCiEXT7gKtVyXNMc+R=ZYFNY^-!-JBX~(J-!=2qVOjNnCdwzU)$+9h6?} z5e2v3#Tlx0si4SnsW{V^v1C!5$q7iW>vR$Gh?+6lxLlt(&tQH;Rg>zrOCj=M1l|wd zthTN2FczP!EB$$WvwEf4W9sNUWIUT1Pn51>D9K>eT5PAeqJ@_B=3e|Sx<_*}F6UqU zyy{U?=RKM?y6EwfoJ^$sb!H@{d%k>bkvVw~V|?~&&EtWeSZnoMZ#cfk zJfENTgSs(~k+wW1XQTjWkJ`H)sUiE15S~bWh?w?0PH03V>GRuk`pR|LZ{>r@U(&}L z)s#XITBe*up=YY{MD&+m4ZvLlYx4xiR4As6Xs8O`BL!PZuf+Q48KY_0kCJZpxw-YY zv)o|Vi%=X59hTNJUTKZ$C3|{#@i4xdzgXB>d9@~e`Bp&J);OUo_>$$gdeXebuO9nh zHt}3{E|L6#sMZv%You0WPguLcww0qf9%d$`XO~xJcr1$YFh`+N=mdGJaLWs$d#V@3 zc)B9{QaS`AmRDlarOe8!%SrA+fZ zw6c61@j~T^rNqE2%mG@fG2M0ddK^naSBH!GE={8-liH824*q+Toq`KOzSjk zCw2_?nIDy{Cb@9{uXaCmIQ5YzN@2SD$91~jLL#dh$Cm-rq)VUBl1zTTy_Yy#ak~3G z6Z}zrb;Map{G0Rs_e^da!?y2RC*;hgy9W*?7k)&1tz6dJkP#Y~7Td9!j6RecwgtG; zKk?X2M%TnTh)*u7r@I|BPJfv|sK(U9R_XRSL$4@dX$#<^CNeu#*i(M!qD($Uat3jY z<46>XVpGvYbokwtitbOs3hF&TwpY4`4R)%QKcd+tWyuLdso?8kJa>S<{dI-{m1&#$ zwt8m2IN7Ae1C1A420Cm6f+mO%0OPWqzN)R6z(1o#&D}GPX%T zpZz3v?)(;jhVK9r^(D)_Vlx26Uk-JYSUcpIAaFYPTL_=>8|%~Ase1gn$M0}6yCrWk zgB0zTv?Go+;5jm?8^p+{9i>j&t;-|;es+l0d1vZabJHDOyClSGzZ5^dkL>xShJr1d?EbPp6Mt%;q5jN;sk5z3_}{noUL_v z{@WrBAnV>HcBxjsBDTZ*5?vFk$F(G*^E~=Y`3m9#NsmzX1@osk%x~nDJ?qh@B0z~@ z?)H0JEV;uy(_It$m}AN&?~L&XV4HgTm}5!i;n4|ktrsmJE;u4vDD#u+>z^#*lJN_& zC$SfWiNtQ$u3!g&vp7%_mr=0(V!h3*k5Ce{}+Gf}PUpX+fF08g`^lruA2V zvHdZ`p8spoul);lr}lt5`UXrMqD{5a*rzI%hmi~hV}54h&}NQDZ|^<&URR!Sewy}W z@;@(F*>djh0(jlA7YwMn9*Vtx$J{a5LQ+pTkFsHx5gfPf0m2(v>}^b8E$$Us{=H;g zM)dR)PwVW!uorbjGt>T$R{np*g==Q@mmxhO6^--%d*`r^gV|B-3*C@=a?Rg_PW{pX emLh&OHVY+h+xX3LOf`SGw9mSsYN3R4>3;zF?2?55 literal 0 HcmV?d00001 diff --git a/demo/undocumented/auto-adaptive-navier-stokes/cpp/AdaptiveNavierStokes.h b/demo/undocumented/auto-adaptive-navier-stokes/cpp/AdaptiveNavierStokes.h new file mode 100644 index 0000000..54306c4 --- /dev/null +++ b/demo/undocumented/auto-adaptive-navier-stokes/cpp/AdaptiveNavierStokes.h @@ -0,0 +1,55496 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: True +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __ADAPTIVENAVIERSTOKES_H +#define __ADAPTIVENAVIERSTOKES_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + + // Get coordinates and map to the reference (FIAT) element + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_0(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_1: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_1() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_1() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Bubble', Domain(Cell('triangle', 2)), 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[8][3]; + for (unsigned int row = 0; row < 8; row++) + { + for (unsigned int col = 0; col < 3; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[8][8]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = 0; + vertex_values[1] = 0; + vertex_values[2] = 0; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_1(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_2: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_2() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_2() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_2(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_3: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_3() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_3() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None), **{'value_shape': (2,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[3] = dof_values[7]; + vertex_values[5] = dof_values[8]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_2(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_3(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_4: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_4() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_4() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_4(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_5: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_5() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_5() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(MixedElement(FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None), **{'value_shape': (2,) }), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (3,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 15; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 15; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 15; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[12]; + for (unsigned int r = 0; r < 12; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 15; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 12: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 13: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 14: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[12] = vals[2]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[13] = vals[2]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[14] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[4] = dof_values[7]; + vertex_values[7] = dof_values[8]; + // Evaluate function and change variables + vertex_values[2] = dof_values[12]; + vertex_values[5] = dof_values[13]; + vertex_values[8] = dof_values[14]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_3(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_4(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_5(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_6: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_6() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_6() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 10; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[8][3]; + for (unsigned int row = 0; row < 8; row++) + { + for (unsigned int col = 0; col < 3; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[8][8]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 10; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 10; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_6(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_7: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_7() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_7() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None), **{'value_shape': (2,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 20; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 20; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[8][3]; + for (unsigned int row = 0; row < 8; row++) + { + for (unsigned int col = 0; col < 3; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[8][8]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 20; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[16]; + for (unsigned int r = 0; r < 16; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 20; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 10: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 12: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 13: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 14: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 15: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 16: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 17: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 18: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 19: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[12] = vals[1]; + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[13] = vals[1]; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[14] = vals[1]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[15] = vals[1]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[16] = vals[1]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[17] = vals[1]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[18] = vals[1]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[19] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[10]; + vertex_values[3] = dof_values[11]; + vertex_values[5] = dof_values[12]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_6(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_6(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_7(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_8: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_8() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_8() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_8(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_9: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_9() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_9() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(MixedElement(FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None), **{'value_shape': (2,) }), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None), **{'value_shape': (3,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 26; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Compute value(s) + for (unsigned int r = 0; r < 10; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 20: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 21: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 22: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 23: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 24: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 25: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 26; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[8][3]; + for (unsigned int row = 0; row < 8; row++) + { + for (unsigned int col = 0; col < 3; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[8][8]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, -0.0288675134594813, -0.0166666666666666, 0.0782460796435952, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791032, 0.0288675134594813, -0.0166666666666666, 0.0782460796435952, -0.0606091526731327, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.0471404520791031, 0.0, 0.0333333333333333, 0.0, 0.0, 0.104978131833565, 0.0, 0.0, 0.0, 0.0909137290096989}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, -0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, 0.151522881682832, 0.0262445329583912, 0.0, 0.0, 0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 15: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0.0, 0.101644639076841, 0.131222664791956, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 16: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.0, 0.3, 0.0, -0.151522881682832, 0.0262445329583912, 0.0, 0.0, -0.131222664791956, -0.136370593514548}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 17: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 18: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807678, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524248}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 19: + { + + // Array of basisvalues + double basisvalues[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[6] = basisvalues[3]*1.66666666666667*tmp0 - basisvalues[1]*0.666666666666667*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[7] = basisvalues[3]*(2.5 + 3.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[9] = basisvalues[5]*(0.05 + Y*1.75) - basisvalues[2]*0.7; + basisvalues[8] = basisvalues[4]*(0.54 + Y*2.1) - basisvalues[1]*0.56; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[9] *= std::sqrt(2.0); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[8] *= std::sqrt(6.0); + basisvalues[3] *= std::sqrt(7.5); + basisvalues[7] *= std::sqrt(10.0); + basisvalues[6] *= std::sqrt(14.0); + + // Table(s) of coefficients + static const double coefficients0[10] = \ + {0.636396103067893, 0.0, 0.0, -0.234738238930785, 0.0, -0.262445329583912, 0.0, -0.203289278153682, 0.0, 0.090913729009699}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {5.29150262212918, 0.0, -2.99332590941915, 13.6626010212795, 0.0, 0.611010092660778, 0.0, 0.0, 0.0, 0.0}, + {0.0, 4.38178046004133, 0.0, 0.0, 12.5219806739988, 0.0, 0.0, 0.0, 0.0, 0.0}, + {3.46410161513775, 0.0, 7.83836717690617, 0.0, 0.0, 8.4, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[10][10] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175277, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2, 6.12372435695794, 3.53553390593274, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.64575131106459, 5.18459255872628, -1.49666295470957, 6.83130051063973, -1.05830052442584, 0.305505046330389, 0.0, 0.0, 0.0, 0.0}, + {2.23606797749979, 2.19089023002067, 2.52982212813471, 8.08290376865476, 6.26099033699941, -1.80739222823013, 0.0, 0.0, 0.0, 0.0}, + {1.73205080756887, -5.09116882454314, 3.91918358845309, 0.0, 9.69948452238571, 4.2, 0.0, 0.0, 0.0, 0.0}, + {5, 0.0, -2.82842712474619, 0.0, 0.0, 12.1243556529821, 0.0, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[10][10] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 10; t++) + { + for (unsigned int u = 0; u < 10; u++) + { + for (unsigned int tu = 0; tu < 10; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 10; s++) + { + for (unsigned int t = 0; t < 10; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 20: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 21: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 22: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 23: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 24: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 25: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[8]; + for (unsigned int r = 0; r < 8; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 26; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 3) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[24]; + for (unsigned int r = 0; r < 24; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 26; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 7: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 8: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 9: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 10: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 12: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 13: + { + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 14: + { + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 15: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 16: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 17: + { + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 18: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 19: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 20: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 21: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 22: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 23: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 24: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 25: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[6] = vals[0]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[8] = vals[0]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[12] = vals[1]; + y[0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[13] = vals[1]; + y[0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[14] = vals[1]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[15] = vals[1]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[16] = vals[1]; + y[0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + y[1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[17] = vals[1]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[18] = vals[1]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[19] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[20] = vals[2]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[21] = vals[2]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[22] = vals[2]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[23] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[24] = vals[2]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[25] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[10]; + vertex_values[4] = dof_values[11]; + vertex_values[7] = dof_values[12]; + // Evaluate function and change variables + vertex_values[2] = dof_values[20]; + vertex_values[5] = dof_values[21]; + vertex_values[8] = dof_values[22]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_7(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_8(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_9(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_10: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_10() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_10() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 1; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + + // Get coordinates and map to the reference (FIAT) element + + // Reset values + *values = 0.0; + + // Array of basisvalues + double basisvalues[1] = {0.0}; + + // Declare helper variables + + // Compute basisvalues + basisvalues[0] = 1.0; + + // Table(s) of coefficients + static const double coefficients0[1] = \ + {1.0}; + + // Compute value(s) + for (unsigned int r = 0; r < 1; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis. + _evaluate_basis(0, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 0) + { + return ; + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Element is constant, calling evaluate_basis_derivatives. + _evaluate_basis_derivatives(0, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + y[1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[0]; + vertex_values[2] = dof_values[0]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_10(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_11: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_11() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_11() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 12; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 2; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[2] = {0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2; s++) + { + values[r*2 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 2*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 12; r++) + { + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[8]; + for (unsigned int r = 0; r < 8; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 12; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 2*num_derivatives; s++) + { + values[r*2*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[2]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[2] = dof_values[1]; + vertex_values[4] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[3] = dof_values[7]; + vertex_values[5] = dof_values[8]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_8(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_8(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_11(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_12: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_12() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_12() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_12(); + } + +}; + +/// This class defines the interface for a finite element. + +class adaptivenavierstokes_finite_element_13: public ufc::finite_element +{ +public: + + /// Constructor + adaptivenavierstokes_finite_element_13() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_finite_element_13() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "MixedElement(VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (3,) })"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 15; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 1; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + switch (i) + { + case 0: + { + return 3; + break; + } + } + + return 0; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + values[0] = 0.0; + values[1] = 0.0; + values[2] = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[0] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + values[1] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + values[2] += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values[3] = {0.0, 0.0, 0.0}; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 15; r++) + { + _evaluate_basis(r, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3; s++) + { + values[r*3 + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < 3*num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 6: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 7: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 8: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 9: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 10: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 11: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 12: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 13: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 14: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[2*num_derivatives + r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 15; r++) + { + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[12]; + for (unsigned int r = 0; r < 12; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 15; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < 3*num_derivatives; s++) + { + values[r*3*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 6: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 7: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 8: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 9: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 10: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 11: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[1]; + break; + } + case 12: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 13: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + case 14: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[2]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[3]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[6] = vals[1]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[7] = vals[1]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[8] = vals[1]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[9] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[10] = vals[1]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[11] = vals[1]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[12] = vals[2]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[13] = vals[2]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[14] = vals[2]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[3] = dof_values[1]; + vertex_values[6] = dof_values[2]; + // Evaluate function and change variables + vertex_values[1] = dof_values[6]; + vertex_values[4] = dof_values[7]; + vertex_values[7] = dof_values[8]; + // Evaluate function and change variables + vertex_values[2] = dof_values[12]; + vertex_values[5] = dof_values[13]; + vertex_values[8] = dof_values[14]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 2; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_11(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_12(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new adaptivenavierstokes_finite_element_13(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[2][0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_1: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_1() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_1() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Bubble', Domain(Cell('triangle', 2)), 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[2][0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_1(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_2: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_2() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_2() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 6*num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 6; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 6*c.entity_indices[2][0]; + dofs[1] = 6*c.entity_indices[2][0] + 1; + dofs[2] = 6*c.entity_indices[2][0] + 2; + dofs[3] = 6*c.entity_indices[2][0] + 3; + dofs[4] = 6*c.entity_indices[2][0] + 4; + dofs[5] = 6*c.entity_indices[2][0] + 5; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 3; + dofs[4] = 4; + dofs[5] = 5; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_2(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_3: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_3() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_3() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None), **{'value_shape': (2,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 12*num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 12; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + 6*c.entity_indices[2][0]; + dofs[1] = offset + 6*c.entity_indices[2][0] + 1; + dofs[2] = offset + 6*c.entity_indices[2][0] + 2; + dofs[3] = offset + 6*c.entity_indices[2][0] + 3; + dofs[4] = offset + 6*c.entity_indices[2][0] + 4; + dofs[5] = offset + 6*c.entity_indices[2][0] + 5; + offset += 6*num_global_entities[2]; + dofs[6] = offset + 6*c.entity_indices[2][0]; + dofs[7] = offset + 6*c.entity_indices[2][0] + 1; + dofs[8] = offset + 6*c.entity_indices[2][0] + 2; + dofs[9] = offset + 6*c.entity_indices[2][0] + 3; + dofs[10] = offset + 6*c.entity_indices[2][0] + 4; + dofs[11] = offset + 6*c.entity_indices[2][0] + 5; + offset += 6*num_global_entities[2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 3; + dofs[4] = 4; + dofs[5] = 5; + dofs[6] = 6; + dofs[7] = 7; + dofs[8] = 8; + dofs[9] = 9; + dofs[10] = 10; + dofs[11] = 11; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_2(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_3(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_4: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_4() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_4() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 3; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 3*c.entity_indices[2][0]; + dofs[1] = 3*c.entity_indices[2][0] + 1; + dofs[2] = 3*c.entity_indices[2][0] + 2; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_4(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_5: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_5() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_5() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(MixedElement(FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 2, None), **{'value_shape': (2,) }), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (3,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 15*num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 15; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 15; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + 6*c.entity_indices[2][0]; + dofs[1] = offset + 6*c.entity_indices[2][0] + 1; + dofs[2] = offset + 6*c.entity_indices[2][0] + 2; + dofs[3] = offset + 6*c.entity_indices[2][0] + 3; + dofs[4] = offset + 6*c.entity_indices[2][0] + 4; + dofs[5] = offset + 6*c.entity_indices[2][0] + 5; + offset += 6*num_global_entities[2]; + dofs[6] = offset + 6*c.entity_indices[2][0]; + dofs[7] = offset + 6*c.entity_indices[2][0] + 1; + dofs[8] = offset + 6*c.entity_indices[2][0] + 2; + dofs[9] = offset + 6*c.entity_indices[2][0] + 3; + dofs[10] = offset + 6*c.entity_indices[2][0] + 4; + dofs[11] = offset + 6*c.entity_indices[2][0] + 5; + offset += 6*num_global_entities[2]; + dofs[12] = offset + 3*c.entity_indices[2][0]; + dofs[13] = offset + 3*c.entity_indices[2][0] + 1; + dofs[14] = offset + 3*c.entity_indices[2][0] + 2; + offset += 3*num_global_entities[2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 2; + dofs[3] = 3; + dofs[4] = 4; + dofs[5] = 5; + dofs[6] = 6; + dofs[7] = 7; + dofs[8] = 8; + dofs[9] = 9; + dofs[10] = 10; + dofs[11] = 11; + dofs[12] = 12; + dofs[13] = 13; + dofs[14] = 14; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[12][0] = vertex_coordinates[0]; + dof_coordinates[12][1] = vertex_coordinates[1]; + dof_coordinates[13][0] = vertex_coordinates[2]; + dof_coordinates[13][1] = vertex_coordinates[3]; + dof_coordinates[14][0] = vertex_coordinates[4]; + dof_coordinates[14][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_3(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_4(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_5(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_6: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_6() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_6() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + 2*num_global_entities[1] + num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 10; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 4; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + 2*c.entity_indices[1][0]; + dofs[4] = offset + 2*c.entity_indices[1][0] + 1; + dofs[5] = offset + 2*c.entity_indices[1][1]; + dofs[6] = offset + 2*c.entity_indices[1][1] + 1; + dofs[7] = offset + 2*c.entity_indices[1][2]; + dofs[8] = offset + 2*c.entity_indices[1][2] + 1; + offset += 2*num_global_entities[1]; + dofs[9] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 5; + dofs[3] = 6; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 7; + dofs[3] = 8; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 4; + break; + } + case 1: + { + dofs[0] = 5; + dofs[1] = 6; + break; + } + case 2: + { + dofs[0] = 7; + dofs[1] = 8; + break; + } + } + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 9; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[5][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[6][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[7][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[7][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[8][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[8][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[9][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_6(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_7: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_7() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_7() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None), **{'value_shape': (2,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0] + 4*num_global_entities[1] + 2*num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 20; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 8; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 4; + break; + } + case 2: + { + return 2; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + 2*c.entity_indices[1][0]; + dofs[4] = offset + 2*c.entity_indices[1][0] + 1; + dofs[5] = offset + 2*c.entity_indices[1][1]; + dofs[6] = offset + 2*c.entity_indices[1][1] + 1; + dofs[7] = offset + 2*c.entity_indices[1][2]; + dofs[8] = offset + 2*c.entity_indices[1][2] + 1; + offset += 2*num_global_entities[1]; + dofs[9] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; + dofs[10] = offset + c.entity_indices[0][0]; + dofs[11] = offset + c.entity_indices[0][1]; + dofs[12] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[13] = offset + 2*c.entity_indices[1][0]; + dofs[14] = offset + 2*c.entity_indices[1][0] + 1; + dofs[15] = offset + 2*c.entity_indices[1][1]; + dofs[16] = offset + 2*c.entity_indices[1][1] + 1; + dofs[17] = offset + 2*c.entity_indices[1][2]; + dofs[18] = offset + 2*c.entity_indices[1][2] + 1; + offset += 2*num_global_entities[1]; + dofs[19] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 11; + dofs[5] = 12; + dofs[6] = 13; + dofs[7] = 14; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 10; + dofs[5] = 12; + dofs[6] = 15; + dofs[7] = 16; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 7; + dofs[3] = 8; + dofs[4] = 10; + dofs[5] = 11; + dofs[6] = 17; + dofs[7] = 18; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 10; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 11; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 12; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 4; + dofs[2] = 13; + dofs[3] = 14; + break; + } + case 1: + { + dofs[0] = 5; + dofs[1] = 6; + dofs[2] = 15; + dofs[3] = 16; + break; + } + case 2: + { + dofs[0] = 7; + dofs[1] = 8; + dofs[2] = 17; + dofs[3] = 18; + break; + } + } + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 9; + dofs[1] = 19; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[5][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[6][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[7][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[7][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[8][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[8][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[9][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[10][0] = vertex_coordinates[0]; + dof_coordinates[10][1] = vertex_coordinates[1]; + dof_coordinates[11][0] = vertex_coordinates[2]; + dof_coordinates[11][1] = vertex_coordinates[3]; + dof_coordinates[12][0] = vertex_coordinates[4]; + dof_coordinates[12][1] = vertex_coordinates[5]; + dof_coordinates[13][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[13][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[14][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[14][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[15][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[15][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[16][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[16][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[17][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[17][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[18][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[18][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[19][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[19][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_6(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_6(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_7(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_8: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_8() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_8() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_8(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_9: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_9() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_9() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(MixedElement(FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 3, None), **{'value_shape': (2,) }), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None), **{'value_shape': (3,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return true; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0] + 5*num_global_entities[1] + 2*num_global_entities[2]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 26; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 11; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 5; + break; + } + case 2: + { + return 2; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + 2*c.entity_indices[1][0]; + dofs[4] = offset + 2*c.entity_indices[1][0] + 1; + dofs[5] = offset + 2*c.entity_indices[1][1]; + dofs[6] = offset + 2*c.entity_indices[1][1] + 1; + dofs[7] = offset + 2*c.entity_indices[1][2]; + dofs[8] = offset + 2*c.entity_indices[1][2] + 1; + offset += 2*num_global_entities[1]; + dofs[9] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; + dofs[10] = offset + c.entity_indices[0][0]; + dofs[11] = offset + c.entity_indices[0][1]; + dofs[12] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[13] = offset + 2*c.entity_indices[1][0]; + dofs[14] = offset + 2*c.entity_indices[1][0] + 1; + dofs[15] = offset + 2*c.entity_indices[1][1]; + dofs[16] = offset + 2*c.entity_indices[1][1] + 1; + dofs[17] = offset + 2*c.entity_indices[1][2]; + dofs[18] = offset + 2*c.entity_indices[1][2] + 1; + offset += 2*num_global_entities[1]; + dofs[19] = offset + c.entity_indices[2][0]; + offset += num_global_entities[2]; + dofs[20] = offset + c.entity_indices[0][0]; + dofs[21] = offset + c.entity_indices[0][1]; + dofs[22] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[23] = offset + c.entity_indices[1][0]; + dofs[24] = offset + c.entity_indices[1][1]; + dofs[25] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 4; + dofs[4] = 11; + dofs[5] = 12; + dofs[6] = 13; + dofs[7] = 14; + dofs[8] = 21; + dofs[9] = 22; + dofs[10] = 23; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 10; + dofs[5] = 12; + dofs[6] = 15; + dofs[7] = 16; + dofs[8] = 20; + dofs[9] = 22; + dofs[10] = 24; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 7; + dofs[3] = 8; + dofs[4] = 10; + dofs[5] = 11; + dofs[6] = 17; + dofs[7] = 18; + dofs[8] = 20; + dofs[9] = 21; + dofs[10] = 25; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 10; + dofs[2] = 20; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 11; + dofs[2] = 21; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 12; + dofs[2] = 22; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 4; + dofs[2] = 13; + dofs[3] = 14; + dofs[4] = 23; + break; + } + case 1: + { + dofs[0] = 5; + dofs[1] = 6; + dofs[2] = 15; + dofs[3] = 16; + dofs[4] = 24; + break; + } + case 2: + { + dofs[0] = 7; + dofs[1] = 8; + dofs[2] = 17; + dofs[3] = 18; + dofs[4] = 25; + break; + } + } + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 9; + dofs[1] = 19; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[5][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[6][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[6][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[7][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[7][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[8][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[8][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[9][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[10][0] = vertex_coordinates[0]; + dof_coordinates[10][1] = vertex_coordinates[1]; + dof_coordinates[11][0] = vertex_coordinates[2]; + dof_coordinates[11][1] = vertex_coordinates[3]; + dof_coordinates[12][0] = vertex_coordinates[4]; + dof_coordinates[12][1] = vertex_coordinates[5]; + dof_coordinates[13][0] = 0.666666666666667*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[13][1] = 0.666666666666667*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[14][0] = 0.333333333333333*vertex_coordinates[2] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[14][1] = 0.333333333333333*vertex_coordinates[3] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[15][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[15][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[16][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[4]; + dof_coordinates[16][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[5]; + dof_coordinates[17][0] = 0.666666666666667*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2]; + dof_coordinates[17][1] = 0.666666666666667*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3]; + dof_coordinates[18][0] = 0.333333333333333*vertex_coordinates[0] + 0.666666666666667*vertex_coordinates[2]; + dof_coordinates[18][1] = 0.333333333333333*vertex_coordinates[1] + 0.666666666666667*vertex_coordinates[3]; + dof_coordinates[19][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[19][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + dof_coordinates[20][0] = vertex_coordinates[0]; + dof_coordinates[20][1] = vertex_coordinates[1]; + dof_coordinates[21][0] = vertex_coordinates[2]; + dof_coordinates[21][1] = vertex_coordinates[3]; + dof_coordinates[22][0] = vertex_coordinates[4]; + dof_coordinates[22][1] = vertex_coordinates[5]; + dof_coordinates[23][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[23][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[24][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[24][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[25][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[25][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_7(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_8(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_9(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_10: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_10() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_10() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Real', Domain(Cell('triangle', 2)), 0, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return false; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 1; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 1; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 0; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 0; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 1; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = 0; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + + break; + } + case 1: + { + + break; + } + case 2: + { + if (i > 0) + { + throw std::runtime_error("i is larger than number of entities (0)"); + } + + dofs[0] = 0; + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = 0.333333333333333*vertex_coordinates[0] + 0.333333333333333*vertex_coordinates[2] + 0.333333333333333*vertex_coordinates[4]; + dof_coordinates[0][1] = 0.333333333333333*vertex_coordinates[1] + 0.333333333333333*vertex_coordinates[3] + 0.333333333333333*vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_10(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_11: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_11() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_11() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 2*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 12; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 6; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 2; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_8(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_8(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_11(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_12: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_12() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_12() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_12(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class adaptivenavierstokes_dofmap_13: public ufc::dofmap +{ +public: + + /// Constructor + adaptivenavierstokes_dofmap_13() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_dofmap_13() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for MixedElement(VectorElement('Lagrange', Domain(Cell('triangle', 2)), 2, 2, None), FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None), **{'value_shape': (3,) })"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return 3*num_global_entities[0] + 2*num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 15; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 8; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 3; + break; + } + case 1: + { + return 2; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[6] = offset + c.entity_indices[0][0]; + dofs[7] = offset + c.entity_indices[0][1]; + dofs[8] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[9] = offset + c.entity_indices[1][0]; + dofs[10] = offset + c.entity_indices[1][1]; + dofs[11] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + dofs[12] = offset + c.entity_indices[0][0]; + dofs[13] = offset + c.entity_indices[0][1]; + dofs[14] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + dofs[3] = 7; + dofs[4] = 8; + dofs[5] = 9; + dofs[6] = 13; + dofs[7] = 14; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + dofs[3] = 6; + dofs[4] = 8; + dofs[5] = 10; + dofs[6] = 12; + dofs[7] = 14; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + dofs[3] = 6; + dofs[4] = 7; + dofs[5] = 11; + dofs[6] = 12; + dofs[7] = 13; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + dofs[1] = 6; + dofs[2] = 12; + break; + } + case 1: + { + dofs[0] = 1; + dofs[1] = 7; + dofs[2] = 13; + break; + } + case 2: + { + dofs[0] = 2; + dofs[1] = 8; + dofs[2] = 14; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + dofs[1] = 9; + break; + } + case 1: + { + dofs[0] = 4; + dofs[1] = 10; + break; + } + case 2: + { + dofs[0] = 5; + dofs[1] = 11; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[6][0] = vertex_coordinates[0]; + dof_coordinates[6][1] = vertex_coordinates[1]; + dof_coordinates[7][0] = vertex_coordinates[2]; + dof_coordinates[7][1] = vertex_coordinates[3]; + dof_coordinates[8][0] = vertex_coordinates[4]; + dof_coordinates[8][1] = vertex_coordinates[5]; + dof_coordinates[9][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[9][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[10][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[10][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[11][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[11][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + dof_coordinates[12][0] = vertex_coordinates[0]; + dof_coordinates[12][1] = vertex_coordinates[1]; + dof_coordinates[13][0] = vertex_coordinates[2]; + dof_coordinates[13][1] = vertex_coordinates[3]; + dof_coordinates[14][0] = vertex_coordinates[4]; + dof_coordinates[14][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 2; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_11(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_12(); + break; + } + } + + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new adaptivenavierstokes_dofmap_13(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivenavierstokes_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivenavierstokes_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 172 + // Number of operations (multiply-add pairs) for tensor contraction: 2992 + // Total number of operations (multiply-add pairs): 3167 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*w[0][0]*K[0]*(1.0); + const double G0_0_1 = det*w[0][0]*K[2]*(1.0); + const double G0_1_0 = det*w[0][1]*K[0]*(1.0); + const double G0_2_1 = det*w[0][2]*K[2]*(1.0); + const double G0_3_0 = det*w[0][3]*K[0]*(1.0); + const double G0_3_1 = det*w[0][3]*K[2]*(1.0); + const double G0_4_0 = det*w[0][4]*K[0]*(1.0); + const double G0_4_1 = det*w[0][4]*K[2]*(1.0); + const double G0_5_0 = det*w[0][5]*K[0]*(1.0); + const double G0_5_1 = det*w[0][5]*K[2]*(1.0); + const double G1_0_0 = det*w[0][0]*K[0]*(1.0); + const double G1_0_1 = det*w[0][0]*K[2]*(1.0); + const double G1_1_0 = det*w[0][1]*K[0]*(1.0); + const double G1_1_1 = det*w[0][1]*K[2]*(1.0); + const double G1_2_0 = det*w[0][2]*K[0]*(1.0); + const double G1_2_1 = det*w[0][2]*K[2]*(1.0); + const double G1_3_0 = det*w[0][3]*K[0]*(1.0); + const double G1_3_1 = det*w[0][3]*K[2]*(1.0); + const double G1_4_0 = det*w[0][4]*K[0]*(1.0); + const double G1_4_1 = det*w[0][4]*K[2]*(1.0); + const double G1_5_0 = det*w[0][5]*K[0]*(1.0); + const double G1_5_1 = det*w[0][5]*K[2]*(1.0); + const double G2_0_0 = det*w[0][0]*K[1]*(1.0); + const double G2_0_1 = det*w[0][0]*K[3]*(1.0); + const double G2_1_0 = det*w[0][1]*K[1]*(1.0); + const double G2_2_1 = det*w[0][2]*K[3]*(1.0); + const double G2_3_0 = det*w[0][3]*K[1]*(1.0); + const double G2_3_1 = det*w[0][3]*K[3]*(1.0); + const double G2_4_0 = det*w[0][4]*K[1]*(1.0); + const double G2_4_1 = det*w[0][4]*K[3]*(1.0); + const double G2_5_0 = det*w[0][5]*K[1]*(1.0); + const double G2_5_1 = det*w[0][5]*K[3]*(1.0); + const double G3_6_0 = det*w[0][6]*K[1]*(1.0); + const double G3_6_1 = det*w[0][6]*K[3]*(1.0); + const double G3_7_0 = det*w[0][7]*K[1]*(1.0); + const double G3_7_1 = det*w[0][7]*K[3]*(1.0); + const double G3_8_0 = det*w[0][8]*K[1]*(1.0); + const double G3_8_1 = det*w[0][8]*K[3]*(1.0); + const double G3_9_0 = det*w[0][9]*K[1]*(1.0); + const double G3_9_1 = det*w[0][9]*K[3]*(1.0); + const double G3_10_0 = det*w[0][10]*K[1]*(1.0); + const double G3_10_1 = det*w[0][10]*K[3]*(1.0); + const double G3_11_0 = det*w[0][11]*K[1]*(1.0); + const double G3_11_1 = det*w[0][11]*K[3]*(1.0); + const double G4_6_0 = det*w[0][6]*K[0]*(1.0); + const double G4_6_1 = det*w[0][6]*K[2]*(1.0); + const double G4_7_0 = det*w[0][7]*K[0]*(1.0); + const double G4_8_1 = det*w[0][8]*K[2]*(1.0); + const double G4_9_0 = det*w[0][9]*K[0]*(1.0); + const double G4_9_1 = det*w[0][9]*K[2]*(1.0); + const double G4_10_0 = det*w[0][10]*K[0]*(1.0); + const double G4_10_1 = det*w[0][10]*K[2]*(1.0); + const double G4_11_0 = det*w[0][11]*K[0]*(1.0); + const double G4_11_1 = det*w[0][11]*K[2]*(1.0); + const double G5_0_0 = det*w[0][0]*K[0]*(1.0); + const double G5_0_1 = det*w[0][0]*K[2]*(1.0); + const double G5_1_0 = det*w[0][1]*K[0]*(1.0); + const double G5_1_1 = det*w[0][1]*K[2]*(1.0); + const double G5_2_0 = det*w[0][2]*K[0]*(1.0); + const double G5_2_1 = det*w[0][2]*K[2]*(1.0); + const double G5_3_0 = det*w[0][3]*K[0]*(1.0); + const double G5_3_1 = det*w[0][3]*K[2]*(1.0); + const double G5_4_0 = det*w[0][4]*K[0]*(1.0); + const double G5_4_1 = det*w[0][4]*K[2]*(1.0); + const double G5_5_0 = det*w[0][5]*K[0]*(1.0); + const double G5_5_1 = det*w[0][5]*K[2]*(1.0); + const double G6_6_0 = det*w[0][6]*K[1]*(1.0); + const double G6_6_1 = det*w[0][6]*K[3]*(1.0); + const double G6_7_0 = det*w[0][7]*K[1]*(1.0); + const double G6_8_1 = det*w[0][8]*K[3]*(1.0); + const double G6_9_0 = det*w[0][9]*K[1]*(1.0); + const double G6_9_1 = det*w[0][9]*K[3]*(1.0); + const double G6_10_0 = det*w[0][10]*K[1]*(1.0); + const double G6_10_1 = det*w[0][10]*K[3]*(1.0); + const double G6_11_0 = det*w[0][11]*K[1]*(1.0); + const double G6_11_1 = det*w[0][11]*K[3]*(1.0); + const double G7_6_0 = det*w[0][6]*K[1]*(1.0); + const double G7_6_1 = det*w[0][6]*K[3]*(1.0); + const double G7_7_0 = det*w[0][7]*K[1]*(1.0); + const double G7_7_1 = det*w[0][7]*K[3]*(1.0); + const double G7_8_0 = det*w[0][8]*K[1]*(1.0); + const double G7_8_1 = det*w[0][8]*K[3]*(1.0); + const double G7_9_0 = det*w[0][9]*K[1]*(1.0); + const double G7_9_1 = det*w[0][9]*K[3]*(1.0); + const double G7_10_0 = det*w[0][10]*K[1]*(1.0); + const double G7_10_1 = det*w[0][10]*K[3]*(1.0); + const double G7_11_0 = det*w[0][11]*K[1]*(1.0); + const double G7_11_1 = det*w[0][11]*K[3]*(1.0); + const double G8_0 = det*K[0]*(1.0); + const double G8_1 = det*K[2]*(1.0); + const double G9_0 = det*K[1]*(1.0); + const double G9_1 = det*K[3]*(1.0); + const double G10_0_0_0 = det*w[1][0]*K[0]*K[0]*(1.0); + const double G10_0_0_1 = det*w[1][0]*K[0]*K[2]*(1.0); + const double G10_0_1_0 = det*w[1][0]*K[2]*K[0]*(1.0); + const double G10_0_1_1 = det*w[1][0]*K[2]*K[2]*(1.0); + const double G11_0_0_0 = det*w[1][0]*K[0]*K[0]*(1.0); + const double G11_0_0_1 = det*w[1][0]*K[0]*K[2]*(1.0); + const double G11_0_1_0 = det*w[1][0]*K[2]*K[0]*(1.0); + const double G11_0_1_1 = det*w[1][0]*K[2]*K[2]*(1.0); + const double G12_0_0_0 = det*w[1][0]*K[1]*K[1]*(1.0); + const double G12_0_0_1 = det*w[1][0]*K[1]*K[3]*(1.0); + const double G12_0_1_0 = det*w[1][0]*K[3]*K[1]*(1.0); + const double G12_0_1_1 = det*w[1][0]*K[3]*K[3]*(1.0); + const double G13_0_0_0 = det*w[1][0]*K[1]*K[1]*(1.0); + const double G13_0_0_1 = det*w[1][0]*K[1]*K[3]*(1.0); + const double G13_0_1_0 = det*w[1][0]*K[3]*K[1]*(1.0); + const double G13_0_1_1 = det*w[1][0]*K[3]*K[3]*(1.0); + const double G14_0 = det*K[0]*(1.0); + const double G14_1 = det*K[2]*(1.0); + const double G15_0 = det*K[1]*(1.0); + const double G15_1 = det*K[3]*(1.0); + + // Compute element tensor + A[0] = -0.030952380952381*G0_0_0 - 0.030952380952381*G0_0_1 - 0.00714285714285715*G0_1_0 - 0.00714285714285715*G0_2_1 + 0.00952380952380951*G0_3_0 + 0.00952380952380951*G0_3_1 - 0.00952380952380951*G0_4_0 + 0.0380952380952381*G0_4_1 + 0.0380952380952381*G0_5_0 - 0.00952380952380952*G0_5_1 - 0.030952380952381*G1_0_0 - 0.030952380952381*G1_0_1 + 0.00357142857142857*G1_1_0 + 0.00357142857142857*G1_1_1 + 0.00357142857142857*G1_2_0 + 0.00357142857142857*G1_2_1 - 0.00476190476190477*G1_3_0 - 0.00476190476190477*G1_3_1 - 0.0190476190476191*G1_4_0 - 0.0190476190476191*G1_4_1 - 0.0190476190476191*G1_5_0 - 0.0190476190476191*G1_5_1 - 0.030952380952381*G3_6_0 - 0.030952380952381*G3_6_1 + 0.00357142857142857*G3_7_0 + 0.00357142857142857*G3_7_1 + 0.00357142857142857*G3_8_0 + 0.00357142857142857*G3_8_1 - 0.00476190476190477*G3_9_0 - 0.00476190476190477*G3_9_1 - 0.0190476190476191*G3_10_0 - 0.0190476190476191*G3_10_1 - 0.0190476190476191*G3_11_0 - 0.0190476190476191*G3_11_1 + 0.5*G10_0_0_0 + 0.5*G10_0_0_1 + 0.5*G10_0_1_0 + 0.5*G10_0_1_1 + 0.5*G12_0_0_0 + 0.5*G12_0_0_1 + 0.5*G12_0_1_0 + 0.5*G12_0_1_1; + A[1] = 0.00357142857142857*G0_0_0 + 0.00357142857142857*G0_0_1 - 0.00357142857142857*G0_1_0 + 0.00436507936507936*G0_2_1 + 0.00158730158730159*G0_3_0 - 0.00634920634920634*G0_3_1 - 0.00158730158730159*G0_4_0 - 0.00793650793650793*G0_4_1 + 0.00634920634920635*G0_5_1 + 0.00357142857142857*G1_0_0 + 0.00357142857142857*G1_0_1 + 0.00714285714285713*G1_1_0 + 0.00714285714285714*G1_1_1 - 0.00436507936507936*G1_2_0 - 0.00436507936507936*G1_2_1 + 0.00634920634920634*G1_3_0 + 0.00634920634920634*G1_3_1 + 0.00793650793650793*G1_4_0 + 0.00793650793650793*G1_4_1 + 0.0126984126984127*G1_5_0 + 0.0126984126984127*G1_5_1 + 0.00357142857142857*G3_6_0 + 0.00357142857142857*G3_6_1 + 0.00714285714285713*G3_7_0 + 0.00714285714285714*G3_7_1 - 0.00436507936507936*G3_8_0 - 0.00436507936507936*G3_8_1 + 0.00634920634920634*G3_9_0 + 0.00634920634920634*G3_9_1 + 0.00793650793650793*G3_10_0 + 0.00793650793650793*G3_10_1 + 0.0126984126984127*G3_11_0 + 0.0126984126984127*G3_11_1 + 0.166666666666667*G10_0_0_0 + 0.166666666666667*G10_0_1_0 + 0.166666666666667*G12_0_0_0 + 0.166666666666667*G12_0_1_0; + A[2] = 0.00357142857142857*G0_0_0 + 0.00357142857142857*G0_0_1 + 0.00436507936507936*G0_1_0 - 0.00357142857142857*G0_2_1 - 0.00634920634920634*G0_3_0 + 0.00158730158730159*G0_3_1 + 0.00634920634920634*G0_4_0 - 0.00793650793650793*G0_5_0 - 0.00158730158730159*G0_5_1 + 0.00357142857142857*G1_0_0 + 0.00357142857142857*G1_0_1 - 0.00436507936507936*G1_1_0 - 0.00436507936507936*G1_1_1 + 0.00714285714285714*G1_2_0 + 0.00714285714285713*G1_2_1 + 0.00634920634920635*G1_3_0 + 0.00634920634920634*G1_3_1 + 0.0126984126984127*G1_4_0 + 0.0126984126984127*G1_4_1 + 0.00793650793650793*G1_5_0 + 0.00793650793650793*G1_5_1 + 0.00357142857142857*G3_6_0 + 0.00357142857142857*G3_6_1 - 0.00436507936507936*G3_7_0 - 0.00436507936507936*G3_7_1 + 0.00714285714285714*G3_8_0 + 0.00714285714285713*G3_8_1 + 0.00634920634920635*G3_9_0 + 0.00634920634920634*G3_9_1 + 0.0126984126984127*G3_10_0 + 0.0126984126984127*G3_10_1 + 0.00793650793650793*G3_11_0 + 0.00793650793650793*G3_11_1 + 0.166666666666667*G10_0_0_1 + 0.166666666666667*G10_0_1_1 + 0.166666666666667*G12_0_0_1 + 0.166666666666667*G12_0_1_1; + A[3] = -0.00476190476190476*G0_0_0 - 0.00476190476190477*G0_0_1 - 0.00793650793650793*G0_1_0 - 0.00793650793650793*G0_2_1 - 0.019047619047619*G0_3_0 - 0.019047619047619*G0_3_1 + 0.019047619047619*G0_4_0 + 0.0126984126984127*G0_4_1 + 0.0126984126984127*G0_5_0 + 0.019047619047619*G0_5_1 - 0.00476190476190476*G1_0_0 - 0.00476190476190477*G1_0_1 + 0.00634920634920634*G1_1_0 + 0.00634920634920634*G1_1_1 + 0.00634920634920635*G1_2_0 + 0.00634920634920634*G1_2_1 + 0.0380952380952381*G1_3_0 + 0.0380952380952381*G1_3_1 - 0.00634920634920633*G1_4_0 - 0.00634920634920632*G1_4_1 - 0.00634920634920633*G1_5_0 - 0.00634920634920632*G1_5_1 - 0.00476190476190476*G3_6_0 - 0.00476190476190477*G3_6_1 + 0.00634920634920634*G3_7_0 + 0.00634920634920634*G3_7_1 + 0.00634920634920635*G3_8_0 + 0.00634920634920634*G3_8_1 + 0.0380952380952381*G3_9_0 + 0.0380952380952381*G3_9_1 - 0.00634920634920633*G3_10_0 - 0.00634920634920632*G3_10_1 - 0.00634920634920633*G3_11_0 - 0.00634920634920632*G3_11_1; + A[4] = -0.0190476190476191*G0_0_0 - 0.0190476190476191*G0_0_1 - 0.00634920634920636*G0_1_0 - 0.0126984126984127*G0_2_1 - 0.0126984126984127*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.0126984126984127*G0_4_0 + 0.0317460317460318*G0_4_1 + 0.0253968253968254*G0_5_0 + 0.00634920634920634*G0_5_1 - 0.0190476190476191*G1_0_0 - 0.0190476190476191*G1_0_1 + 0.00793650793650793*G1_1_0 + 0.00793650793650793*G1_1_1 + 0.0126984126984127*G1_2_0 + 0.0126984126984127*G1_2_1 - 0.00634920634920633*G1_3_0 - 0.00634920634920632*G1_3_1 - 0.0634920634920635*G1_4_0 - 0.0634920634920635*G1_4_1 - 0.0317460317460317*G1_5_0 - 0.0317460317460317*G1_5_1 - 0.0190476190476191*G3_6_0 - 0.0190476190476191*G3_6_1 + 0.00793650793650793*G3_7_0 + 0.00793650793650793*G3_7_1 + 0.0126984126984127*G3_8_0 + 0.0126984126984127*G3_8_1 - 0.00634920634920633*G3_9_0 - 0.00634920634920632*G3_9_1 - 0.0634920634920635*G3_10_0 - 0.0634920634920635*G3_10_1 - 0.0317460317460317*G3_11_0 - 0.0317460317460317*G3_11_1 - 0.666666666666667*G10_0_0_1 - 0.666666666666666*G10_0_1_1 - 0.666666666666667*G12_0_0_1 - 0.666666666666666*G12_0_1_1; + A[5] = -0.0190476190476191*G0_0_0 - 0.0190476190476191*G0_0_1 - 0.0126984126984127*G0_1_0 - 0.00634920634920635*G0_2_1 - 0.00634920634920635*G0_3_0 - 0.0126984126984127*G0_3_1 + 0.00634920634920635*G0_4_0 + 0.0253968253968254*G0_4_1 + 0.0317460317460318*G0_5_0 + 0.0126984126984127*G0_5_1 - 0.0190476190476191*G1_0_0 - 0.0190476190476191*G1_0_1 + 0.0126984126984127*G1_1_0 + 0.0126984126984127*G1_1_1 + 0.00793650793650793*G1_2_0 + 0.00793650793650793*G1_2_1 - 0.00634920634920633*G1_3_0 - 0.00634920634920632*G1_3_1 - 0.0317460317460317*G1_4_0 - 0.0317460317460317*G1_4_1 - 0.0634920634920635*G1_5_0 - 0.0634920634920635*G1_5_1 - 0.0190476190476191*G3_6_0 - 0.0190476190476191*G3_6_1 + 0.0126984126984127*G3_7_0 + 0.0126984126984127*G3_7_1 + 0.00793650793650793*G3_8_0 + 0.00793650793650793*G3_8_1 - 0.00634920634920633*G3_9_0 - 0.00634920634920632*G3_9_1 - 0.0317460317460317*G3_10_0 - 0.0317460317460317*G3_10_1 - 0.0634920634920635*G3_11_0 - 0.0634920634920635*G3_11_1 - 0.666666666666667*G10_0_0_0 - 0.666666666666667*G10_0_1_0 - 0.666666666666667*G12_0_0_0 - 0.666666666666667*G12_0_1_0; + A[6] = -0.030952380952381*G4_6_0 - 0.030952380952381*G4_6_1 - 0.00714285714285715*G4_7_0 - 0.00714285714285715*G4_8_1 + 0.00952380952380951*G4_9_0 + 0.00952380952380951*G4_9_1 - 0.00952380952380951*G4_10_0 + 0.0380952380952381*G4_10_1 + 0.0380952380952381*G4_11_0 - 0.00952380952380952*G4_11_1; + A[7] = 0.00357142857142857*G4_6_0 + 0.00357142857142857*G4_6_1 - 0.00357142857142857*G4_7_0 + 0.00436507936507936*G4_8_1 + 0.00158730158730159*G4_9_0 - 0.00634920634920634*G4_9_1 - 0.00158730158730159*G4_10_0 - 0.00793650793650793*G4_10_1 + 0.00634920634920635*G4_11_1; + A[8] = 0.00357142857142857*G4_6_0 + 0.00357142857142857*G4_6_1 + 0.00436507936507936*G4_7_0 - 0.00357142857142857*G4_8_1 - 0.00634920634920634*G4_9_0 + 0.00158730158730159*G4_9_1 + 0.00634920634920634*G4_10_0 - 0.00793650793650793*G4_11_0 - 0.00158730158730159*G4_11_1; + A[9] = -0.00476190476190476*G4_6_0 - 0.00476190476190477*G4_6_1 - 0.00793650793650793*G4_7_0 - 0.00793650793650793*G4_8_1 - 0.019047619047619*G4_9_0 - 0.019047619047619*G4_9_1 + 0.019047619047619*G4_10_0 + 0.0126984126984127*G4_10_1 + 0.0126984126984127*G4_11_0 + 0.019047619047619*G4_11_1; + A[10] = -0.0190476190476191*G4_6_0 - 0.0190476190476191*G4_6_1 - 0.00634920634920636*G4_7_0 - 0.0126984126984127*G4_8_1 - 0.0126984126984127*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.0126984126984127*G4_10_0 + 0.0317460317460318*G4_10_1 + 0.0253968253968254*G4_11_0 + 0.00634920634920634*G4_11_1; + A[11] = -0.0190476190476191*G4_6_0 - 0.0190476190476191*G4_6_1 - 0.0126984126984127*G4_7_0 - 0.00634920634920635*G4_8_1 - 0.00634920634920635*G4_9_0 - 0.0126984126984127*G4_9_1 + 0.00634920634920635*G4_10_0 + 0.0253968253968254*G4_10_1 + 0.0317460317460318*G4_11_0 + 0.0126984126984127*G4_11_1; + A[12] = -0.166666666666667*G8_0 - 0.166666666666667*G8_1; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.00357142857142857*G0_0_0 + 0.00357142857142857*G0_0_1 - 0.00357142857142857*G0_1_0 + 0.00436507936507936*G0_2_1 + 0.00158730158730159*G0_3_0 - 0.00634920634920634*G0_3_1 - 0.00158730158730159*G0_4_0 - 0.00793650793650793*G0_4_1 + 0.00634920634920635*G0_5_1 - 0.00714285714285715*G1_0_0 - 0.00357142857142857*G1_1_0 + 0.00436507936507936*G1_2_0 - 0.00793650793650793*G1_3_0 - 0.00634920634920636*G1_4_0 - 0.0126984126984127*G1_5_0 - 0.00714285714285715*G3_6_0 - 0.00357142857142857*G3_7_0 + 0.00436507936507936*G3_8_0 - 0.00793650793650793*G3_9_0 - 0.00634920634920636*G3_10_0 - 0.0126984126984127*G3_11_0 + 0.166666666666667*G10_0_0_0 + 0.166666666666667*G10_0_0_1 + 0.166666666666667*G12_0_0_0 + 0.166666666666667*G12_0_0_1; + A[16] = 0.00714285714285713*G0_0_0 + 0.00714285714285714*G0_0_1 + 0.0309523809523809*G0_1_0 - 0.00714285714285713*G0_2_1 + 0.0095238095238095*G0_3_0 + 0.0476190476190476*G0_3_1 - 0.0095238095238095*G0_4_0 - 0.0380952380952381*G0_5_0 - 0.0476190476190476*G0_5_1 - 0.00357142857142857*G1_0_0 + 0.0309523809523809*G1_1_0 - 0.00357142857142856*G1_2_0 + 0.019047619047619*G1_3_0 + 0.00476190476190476*G1_4_0 + 0.019047619047619*G1_5_0 - 0.00357142857142857*G3_6_0 + 0.0309523809523809*G3_7_0 - 0.00357142857142856*G3_8_0 + 0.019047619047619*G3_9_0 + 0.00476190476190476*G3_10_0 + 0.019047619047619*G3_11_0 + 0.5*G10_0_0_0 + 0.5*G12_0_0_0; + A[17] = -0.00436507936507936*G0_0_0 - 0.00436507936507936*G0_0_1 - 0.00357142857142857*G0_1_0 - 0.00357142857142857*G0_2_1 - 0.00634920634920634*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.00634920634920634*G0_4_0 + 0.00793650793650792*G0_4_1 + 0.00793650793650793*G0_5_0 + 0.00634920634920634*G0_5_1 + 0.00436507936507936*G1_0_0 - 0.00357142857142857*G1_1_0 - 0.00714285714285714*G1_2_0 - 0.0126984126984127*G1_3_0 - 0.00634920634920635*G1_4_0 - 0.00793650793650793*G1_5_0 + 0.00436507936507936*G3_6_0 - 0.00357142857142857*G3_7_0 - 0.00714285714285714*G3_8_0 - 0.0126984126984127*G3_9_0 - 0.00634920634920635*G3_10_0 - 0.00793650793650793*G3_11_0 - 0.166666666666667*G10_0_0_1 - 0.166666666666667*G12_0_0_1; + A[18] = 0.00634920634920634*G0_0_0 + 0.00634920634920634*G0_0_1 + 0.019047619047619*G0_1_0 - 0.0126984126984127*G0_2_1 - 0.0126984126984127*G0_3_0 + 0.019047619047619*G0_3_1 + 0.0126984126984127*G0_4_0 + 0.00634920634920636*G0_4_1 - 0.0253968253968254*G0_5_0 - 0.019047619047619*G0_5_1 - 0.00793650793650793*G1_0_0 + 0.019047619047619*G1_1_0 - 0.0126984126984127*G1_2_0 + 0.0634920634920634*G1_3_0 + 0.00634920634920634*G1_4_0 + 0.0317460317460317*G1_5_0 - 0.00793650793650793*G3_6_0 + 0.019047619047619*G3_7_0 - 0.0126984126984127*G3_8_0 + 0.0634920634920634*G3_9_0 + 0.00634920634920634*G3_10_0 + 0.0317460317460317*G3_11_0 + 0.666666666666666*G10_0_0_1 + 0.666666666666666*G12_0_0_1; + A[19] = 0.00793650793650793*G0_0_0 + 0.00793650793650793*G0_0_1 + 0.00476190476190476*G0_1_0 - 0.00793650793650794*G0_2_1 - 0.019047619047619*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.019047619047619*G0_4_0 - 0.0126984126984127*G0_5_0 + 0.00634920634920634*G0_5_1 - 0.00634920634920636*G1_0_0 + 0.00476190476190476*G1_1_0 - 0.00634920634920635*G1_2_0 + 0.00634920634920634*G1_3_0 - 0.0380952380952381*G1_4_0 + 0.00634920634920634*G1_5_0 - 0.00634920634920636*G3_6_0 + 0.00476190476190476*G3_7_0 - 0.00634920634920635*G3_8_0 + 0.00634920634920634*G3_9_0 - 0.0380952380952381*G3_10_0 + 0.00634920634920634*G3_11_0; + A[20] = 0.0126984126984127*G0_0_0 + 0.0126984126984127*G0_0_1 + 0.019047619047619*G0_1_0 - 0.00634920634920636*G0_2_1 - 0.00634920634920635*G0_3_0 + 0.019047619047619*G0_3_1 + 0.00634920634920635*G0_4_0 - 0.00634920634920633*G0_4_1 - 0.0317460317460317*G0_5_0 - 0.0190476190476191*G0_5_1 - 0.0126984126984127*G1_0_0 + 0.019047619047619*G1_1_0 - 0.00793650793650793*G1_2_0 + 0.0317460317460317*G1_3_0 + 0.00634920634920634*G1_4_0 + 0.0634920634920635*G1_5_0 - 0.0126984126984127*G3_6_0 + 0.019047619047619*G3_7_0 - 0.00793650793650793*G3_8_0 + 0.0317460317460317*G3_9_0 + 0.00634920634920634*G3_10_0 + 0.0634920634920635*G3_11_0 - 0.666666666666667*G10_0_0_0 - 0.666666666666666*G10_0_0_1 - 0.666666666666667*G12_0_0_0 - 0.666666666666666*G12_0_0_1; + A[21] = 0.00357142857142857*G4_6_0 + 0.00357142857142857*G4_6_1 - 0.00357142857142857*G4_7_0 + 0.00436507936507936*G4_8_1 + 0.00158730158730159*G4_9_0 - 0.00634920634920634*G4_9_1 - 0.00158730158730159*G4_10_0 - 0.00793650793650793*G4_10_1 + 0.00634920634920635*G4_11_1; + A[22] = 0.00714285714285713*G4_6_0 + 0.00714285714285714*G4_6_1 + 0.0309523809523809*G4_7_0 - 0.00714285714285713*G4_8_1 + 0.0095238095238095*G4_9_0 + 0.0476190476190476*G4_9_1 - 0.0095238095238095*G4_10_0 - 0.0380952380952381*G4_11_0 - 0.0476190476190476*G4_11_1; + A[23] = -0.00436507936507936*G4_6_0 - 0.00436507936507936*G4_6_1 - 0.00357142857142857*G4_7_0 - 0.00357142857142857*G4_8_1 - 0.00634920634920634*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.00634920634920634*G4_10_0 + 0.00793650793650792*G4_10_1 + 0.00793650793650793*G4_11_0 + 0.00634920634920634*G4_11_1; + A[24] = 0.00634920634920634*G4_6_0 + 0.00634920634920634*G4_6_1 + 0.019047619047619*G4_7_0 - 0.0126984126984127*G4_8_1 - 0.0126984126984127*G4_9_0 + 0.019047619047619*G4_9_1 + 0.0126984126984127*G4_10_0 + 0.00634920634920636*G4_10_1 - 0.0253968253968254*G4_11_0 - 0.019047619047619*G4_11_1; + A[25] = 0.00793650793650793*G4_6_0 + 0.00793650793650793*G4_6_1 + 0.00476190476190476*G4_7_0 - 0.00793650793650794*G4_8_1 - 0.019047619047619*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.019047619047619*G4_10_0 - 0.0126984126984127*G4_11_0 + 0.00634920634920634*G4_11_1; + A[26] = 0.0126984126984127*G4_6_0 + 0.0126984126984127*G4_6_1 + 0.019047619047619*G4_7_0 - 0.00634920634920636*G4_8_1 - 0.00634920634920635*G4_9_0 + 0.019047619047619*G4_9_1 + 0.00634920634920635*G4_10_0 - 0.00634920634920633*G4_10_1 - 0.0317460317460317*G4_11_0 - 0.0190476190476191*G4_11_1; + A[27] = 0.0; + A[28] = 0.166666666666667*G8_0; + A[29] = 0.0; + A[30] = 0.00357142857142857*G0_0_0 + 0.00357142857142857*G0_0_1 + 0.00436507936507936*G0_1_0 - 0.00357142857142857*G0_2_1 - 0.00634920634920634*G0_3_0 + 0.00158730158730159*G0_3_1 + 0.00634920634920634*G0_4_0 - 0.00793650793650793*G0_5_0 - 0.00158730158730159*G0_5_1 - 0.00714285714285715*G1_0_1 + 0.00436507936507936*G1_1_1 - 0.00357142857142857*G1_2_1 - 0.00793650793650793*G1_3_1 - 0.0126984126984127*G1_4_1 - 0.00634920634920635*G1_5_1 - 0.00714285714285715*G3_6_1 + 0.00436507936507936*G3_7_1 - 0.00357142857142857*G3_8_1 - 0.00793650793650793*G3_9_1 - 0.0126984126984127*G3_10_1 - 0.00634920634920635*G3_11_1 + 0.166666666666667*G10_0_1_0 + 0.166666666666667*G10_0_1_1 + 0.166666666666667*G12_0_1_0 + 0.166666666666667*G12_0_1_1; + A[31] = -0.00436507936507936*G0_0_0 - 0.00436507936507936*G0_0_1 - 0.00357142857142856*G0_1_0 - 0.00357142857142857*G0_2_1 - 0.00634920634920633*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.00634920634920633*G0_4_0 + 0.00793650793650792*G0_4_1 + 0.00793650793650793*G0_5_0 + 0.00634920634920634*G0_5_1 + 0.00436507936507936*G1_0_1 - 0.00714285714285713*G1_1_1 - 0.00357142857142857*G1_2_1 - 0.0126984126984127*G1_3_1 - 0.00793650793650794*G1_4_1 - 0.00634920634920636*G1_5_1 + 0.00436507936507936*G3_6_1 - 0.00714285714285713*G3_7_1 - 0.00357142857142857*G3_8_1 - 0.0126984126984127*G3_9_1 - 0.00793650793650794*G3_10_1 - 0.00634920634920636*G3_11_1 - 0.166666666666667*G10_0_1_0 - 0.166666666666667*G12_0_1_0; + A[32] = 0.00714285714285714*G0_0_0 + 0.00714285714285713*G0_0_1 - 0.00714285714285714*G0_1_0 + 0.0309523809523809*G0_2_1 + 0.0476190476190475*G0_3_0 + 0.0095238095238095*G0_3_1 - 0.0476190476190475*G0_4_0 - 0.038095238095238*G0_4_1 - 0.00952380952380951*G0_5_1 - 0.00357142857142857*G1_0_1 - 0.00357142857142857*G1_1_1 + 0.0309523809523809*G1_2_1 + 0.019047619047619*G1_3_1 + 0.019047619047619*G1_4_1 + 0.00476190476190476*G1_5_1 - 0.00357142857142857*G3_6_1 - 0.00357142857142857*G3_7_1 + 0.0309523809523809*G3_8_1 + 0.019047619047619*G3_9_1 + 0.019047619047619*G3_10_1 + 0.00476190476190476*G3_11_1 + 0.5*G10_0_1_1 + 0.5*G12_0_1_1; + A[33] = 0.00634920634920635*G0_0_0 + 0.00634920634920634*G0_0_1 - 0.0126984126984127*G0_1_0 + 0.019047619047619*G0_2_1 + 0.019047619047619*G0_3_0 - 0.0126984126984127*G0_3_1 - 0.019047619047619*G0_4_0 - 0.0253968253968254*G0_4_1 + 0.00634920634920634*G0_5_0 + 0.0126984126984127*G0_5_1 - 0.00793650793650793*G1_0_1 - 0.0126984126984127*G1_1_1 + 0.019047619047619*G1_2_1 + 0.0634920634920634*G1_3_1 + 0.0317460317460317*G1_4_1 + 0.00634920634920636*G1_5_1 - 0.00793650793650793*G3_6_1 - 0.0126984126984127*G3_7_1 + 0.019047619047619*G3_8_1 + 0.0634920634920634*G3_9_1 + 0.0317460317460317*G3_10_1 + 0.00634920634920636*G3_11_1 + 0.666666666666666*G10_0_1_0 + 0.666666666666666*G12_0_1_0; + A[34] = 0.0126984126984127*G0_0_0 + 0.0126984126984127*G0_0_1 - 0.00634920634920635*G0_1_0 + 0.019047619047619*G0_2_1 + 0.019047619047619*G0_3_0 - 0.00634920634920634*G0_3_1 - 0.019047619047619*G0_4_0 - 0.0317460317460317*G0_4_1 - 0.00634920634920635*G0_5_0 + 0.00634920634920634*G0_5_1 - 0.0126984126984127*G1_0_1 - 0.00793650793650794*G1_1_1 + 0.019047619047619*G1_2_1 + 0.0317460317460317*G1_3_1 + 0.0634920634920635*G1_4_1 + 0.00634920634920636*G1_5_1 - 0.0126984126984127*G3_6_1 - 0.00793650793650794*G3_7_1 + 0.019047619047619*G3_8_1 + 0.0317460317460317*G3_9_1 + 0.0634920634920635*G3_10_1 + 0.00634920634920636*G3_11_1 - 0.666666666666666*G10_0_1_0 - 0.666666666666666*G10_0_1_1 - 0.666666666666666*G12_0_1_0 - 0.666666666666666*G12_0_1_1; + A[35] = 0.00793650793650793*G0_0_0 + 0.00793650793650793*G0_0_1 - 0.00793650793650793*G0_1_0 + 0.00476190476190476*G0_2_1 - 0.00634920634920633*G0_3_0 - 0.019047619047619*G0_3_1 + 0.00634920634920633*G0_4_0 - 0.0126984126984127*G0_4_1 + 0.019047619047619*G0_5_1 - 0.00634920634920635*G1_0_1 - 0.00634920634920636*G1_1_1 + 0.00476190476190476*G1_2_1 + 0.00634920634920636*G1_3_1 + 0.00634920634920636*G1_4_1 - 0.0380952380952381*G1_5_1 - 0.00634920634920635*G3_6_1 - 0.00634920634920636*G3_7_1 + 0.00476190476190476*G3_8_1 + 0.00634920634920636*G3_9_1 + 0.00634920634920636*G3_10_1 - 0.0380952380952381*G3_11_1; + A[36] = 0.00357142857142857*G4_6_0 + 0.00357142857142857*G4_6_1 + 0.00436507936507936*G4_7_0 - 0.00357142857142857*G4_8_1 - 0.00634920634920634*G4_9_0 + 0.00158730158730159*G4_9_1 + 0.00634920634920634*G4_10_0 - 0.00793650793650793*G4_11_0 - 0.00158730158730159*G4_11_1; + A[37] = -0.00436507936507936*G4_6_0 - 0.00436507936507936*G4_6_1 - 0.00357142857142856*G4_7_0 - 0.00357142857142857*G4_8_1 - 0.00634920634920633*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.00634920634920633*G4_10_0 + 0.00793650793650792*G4_10_1 + 0.00793650793650793*G4_11_0 + 0.00634920634920634*G4_11_1; + A[38] = 0.00714285714285714*G4_6_0 + 0.00714285714285713*G4_6_1 - 0.00714285714285714*G4_7_0 + 0.0309523809523809*G4_8_1 + 0.0476190476190475*G4_9_0 + 0.0095238095238095*G4_9_1 - 0.0476190476190475*G4_10_0 - 0.038095238095238*G4_10_1 - 0.00952380952380951*G4_11_1; + A[39] = 0.00634920634920635*G4_6_0 + 0.00634920634920634*G4_6_1 - 0.0126984126984127*G4_7_0 + 0.019047619047619*G4_8_1 + 0.019047619047619*G4_9_0 - 0.0126984126984127*G4_9_1 - 0.019047619047619*G4_10_0 - 0.0253968253968254*G4_10_1 + 0.00634920634920634*G4_11_0 + 0.0126984126984127*G4_11_1; + A[40] = 0.0126984126984127*G4_6_0 + 0.0126984126984127*G4_6_1 - 0.00634920634920635*G4_7_0 + 0.019047619047619*G4_8_1 + 0.019047619047619*G4_9_0 - 0.00634920634920634*G4_9_1 - 0.019047619047619*G4_10_0 - 0.0317460317460317*G4_10_1 - 0.00634920634920635*G4_11_0 + 0.00634920634920634*G4_11_1; + A[41] = 0.00793650793650793*G4_6_0 + 0.00793650793650793*G4_6_1 - 0.00793650793650793*G4_7_0 + 0.00476190476190476*G4_8_1 - 0.00634920634920633*G4_9_0 - 0.019047619047619*G4_9_1 + 0.00634920634920633*G4_10_0 - 0.0126984126984127*G4_10_1 + 0.019047619047619*G4_11_1; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.166666666666667*G8_1; + A[45] = -0.00476190476190477*G0_0_0 - 0.00476190476190477*G0_0_1 - 0.00793650793650793*G0_1_0 - 0.00793650793650793*G0_2_1 - 0.019047619047619*G0_3_0 - 0.019047619047619*G0_3_1 + 0.019047619047619*G0_4_0 + 0.0126984126984127*G0_4_1 + 0.0126984126984127*G0_5_0 + 0.019047619047619*G0_5_1 + 0.00952380952380951*G1_0_0 + 0.00952380952380951*G1_0_1 + 0.00158730158730159*G1_1_0 - 0.00634920634920634*G1_1_1 - 0.00634920634920634*G1_2_0 + 0.00158730158730159*G1_2_1 - 0.019047619047619*G1_3_0 - 0.019047619047619*G1_3_1 - 0.0126984126984127*G1_4_0 - 0.00634920634920634*G1_4_1 - 0.00634920634920635*G1_5_0 - 0.0126984126984127*G1_5_1 + 0.00952380952380951*G3_6_0 + 0.00952380952380951*G3_6_1 + 0.00158730158730159*G3_7_0 - 0.00634920634920634*G3_7_1 - 0.00634920634920634*G3_8_0 + 0.00158730158730159*G3_8_1 - 0.019047619047619*G3_9_0 - 0.019047619047619*G3_9_1 - 0.0126984126984127*G3_10_0 - 0.00634920634920634*G3_10_1 - 0.00634920634920635*G3_11_0 - 0.0126984126984127*G3_11_1; + A[46] = 0.00634920634920634*G0_0_0 + 0.00634920634920634*G0_0_1 + 0.019047619047619*G0_1_0 - 0.0126984126984127*G0_2_1 - 0.0126984126984127*G0_3_0 + 0.019047619047619*G0_3_1 + 0.0126984126984127*G0_4_0 + 0.00634920634920636*G0_4_1 - 0.0253968253968254*G0_5_0 - 0.019047619047619*G0_5_1 + 0.00158730158730159*G1_0_0 - 0.00634920634920634*G1_0_1 + 0.0095238095238095*G1_1_0 + 0.0476190476190476*G1_1_1 - 0.00634920634920633*G1_2_0 - 0.00634920634920634*G1_2_1 - 0.0126984126984127*G1_3_0 + 0.019047619047619*G1_3_1 - 0.019047619047619*G1_4_0 - 0.00634920634920634*G1_4_1 - 0.00634920634920635*G1_5_0 + 0.019047619047619*G1_5_1 + 0.00158730158730159*G3_6_0 - 0.00634920634920634*G3_6_1 + 0.0095238095238095*G3_7_0 + 0.0476190476190476*G3_7_1 - 0.00634920634920633*G3_8_0 - 0.00634920634920634*G3_8_1 - 0.0126984126984127*G3_9_0 + 0.019047619047619*G3_9_1 - 0.019047619047619*G3_10_0 - 0.00634920634920634*G3_10_1 - 0.00634920634920635*G3_11_0 + 0.019047619047619*G3_11_1 + 0.666666666666666*G10_0_1_0 + 0.666666666666666*G12_0_1_0; + A[47] = 0.00634920634920635*G0_0_0 + 0.00634920634920634*G0_0_1 - 0.0126984126984127*G0_1_0 + 0.019047619047619*G0_2_1 + 0.019047619047619*G0_3_0 - 0.0126984126984127*G0_3_1 - 0.019047619047619*G0_4_0 - 0.0253968253968254*G0_4_1 + 0.00634920634920634*G0_5_0 + 0.0126984126984127*G0_5_1 - 0.00634920634920634*G1_0_0 + 0.00158730158730159*G1_0_1 - 0.00634920634920634*G1_1_0 - 0.00634920634920634*G1_1_1 + 0.0476190476190475*G1_2_0 + 0.0095238095238095*G1_2_1 + 0.019047619047619*G1_3_0 - 0.0126984126984127*G1_3_1 + 0.019047619047619*G1_4_0 - 0.00634920634920634*G1_4_1 - 0.00634920634920633*G1_5_0 - 0.019047619047619*G1_5_1 - 0.00634920634920634*G3_6_0 + 0.00158730158730159*G3_6_1 - 0.00634920634920634*G3_7_0 - 0.00634920634920634*G3_7_1 + 0.0476190476190475*G3_8_0 + 0.0095238095238095*G3_8_1 + 0.019047619047619*G3_9_0 - 0.0126984126984127*G3_9_1 + 0.019047619047619*G3_10_0 - 0.00634920634920634*G3_10_1 - 0.00634920634920633*G3_11_0 - 0.019047619047619*G3_11_1 + 0.666666666666666*G10_0_0_1 + 0.666666666666666*G12_0_0_1; + A[48] = 0.0380952380952381*G0_0_0 + 0.0380952380952381*G0_0_1 + 0.0634920634920634*G0_1_0 + 0.0634920634920634*G0_2_1 + 0.152380952380952*G0_3_0 + 0.152380952380952*G0_3_1 - 0.152380952380952*G0_4_0 - 0.101587301587301*G0_4_1 - 0.101587301587302*G0_5_0 - 0.152380952380952*G0_5_1 - 0.019047619047619*G1_0_0 - 0.019047619047619*G1_0_1 - 0.0126984126984127*G1_1_0 + 0.019047619047619*G1_1_1 + 0.019047619047619*G1_2_0 - 0.0126984126984127*G1_2_1 + 0.152380952380952*G1_3_0 + 0.152380952380952*G1_3_1 + 0.0761904761904761*G1_4_0 + 0.0507936507936507*G1_4_1 + 0.0507936507936508*G1_5_0 + 0.0761904761904761*G1_5_1 - 0.019047619047619*G3_6_0 - 0.019047619047619*G3_6_1 - 0.0126984126984127*G3_7_0 + 0.019047619047619*G3_7_1 + 0.019047619047619*G3_8_0 - 0.0126984126984127*G3_8_1 + 0.152380952380952*G3_9_0 + 0.152380952380952*G3_9_1 + 0.0761904761904761*G3_10_0 + 0.0507936507936507*G3_10_1 + 0.0507936507936508*G3_11_0 + 0.0761904761904761*G3_11_1 + 1.33333333333333*G10_0_0_0 + 0.666666666666665*G10_0_0_1 + 0.666666666666665*G10_0_1_0 + 1.33333333333333*G10_0_1_1 + 1.33333333333333*G12_0_0_0 + 0.666666666666665*G12_0_0_1 + 0.666666666666665*G12_0_1_0 + 1.33333333333333*G12_0_1_1; + A[49] = -0.00634920634920633*G0_0_0 - 0.00634920634920632*G0_0_1 + 0.00634920634920634*G0_1_0 + 0.0317460317460317*G0_2_1 + 0.0761904761904761*G0_3_0 + 0.0507936507936507*G0_3_1 - 0.0761904761904761*G0_4_0 - 0.0253968253968254*G0_4_1 - 0.0507936507936508*G0_5_1 - 0.0126984126984127*G1_0_0 - 0.00634920634920634*G1_0_1 - 0.019047619047619*G1_1_0 - 0.00634920634920634*G1_1_1 + 0.019047619047619*G1_2_0 - 0.00634920634920634*G1_2_1 + 0.0761904761904761*G1_3_0 + 0.0507936507936507*G1_3_1 + 0.152380952380952*G1_4_0 + 0.0507936507936507*G1_4_1 + 0.0507936507936508*G1_5_0 + 0.0507936507936507*G1_5_1 - 0.0126984126984127*G3_6_0 - 0.00634920634920634*G3_6_1 - 0.019047619047619*G3_7_0 - 0.00634920634920634*G3_7_1 + 0.019047619047619*G3_8_0 - 0.00634920634920634*G3_8_1 + 0.0761904761904761*G3_9_0 + 0.0507936507936507*G3_9_1 + 0.152380952380952*G3_10_0 + 0.0507936507936507*G3_10_1 + 0.0507936507936508*G3_11_0 + 0.0507936507936507*G3_11_1 - 1.33333333333333*G10_0_0_0 - 0.666666666666666*G10_0_0_1 - 0.666666666666665*G10_0_1_0 - 1.33333333333333*G12_0_0_0 - 0.666666666666666*G12_0_0_1 - 0.666666666666665*G12_0_1_0; + A[50] = -0.00634920634920633*G0_0_0 - 0.00634920634920632*G0_0_1 + 0.0317460317460317*G0_1_0 + 0.00634920634920636*G0_2_1 + 0.0507936507936508*G0_3_0 + 0.0761904761904761*G0_3_1 - 0.0507936507936508*G0_4_0 - 0.0253968253968254*G0_5_0 - 0.0761904761904762*G0_5_1 - 0.00634920634920635*G1_0_0 - 0.0126984126984127*G1_0_1 - 0.00634920634920635*G1_1_0 + 0.019047619047619*G1_1_1 - 0.00634920634920633*G1_2_0 - 0.019047619047619*G1_2_1 + 0.0507936507936508*G1_3_0 + 0.0761904761904761*G1_3_1 + 0.0507936507936507*G1_4_0 + 0.0507936507936507*G1_4_1 + 0.0507936507936507*G1_5_0 + 0.152380952380952*G1_5_1 - 0.00634920634920635*G3_6_0 - 0.0126984126984127*G3_6_1 - 0.00634920634920635*G3_7_0 + 0.019047619047619*G3_7_1 - 0.00634920634920633*G3_8_0 - 0.019047619047619*G3_8_1 + 0.0507936507936508*G3_9_0 + 0.0761904761904761*G3_9_1 + 0.0507936507936507*G3_10_0 + 0.0507936507936507*G3_10_1 + 0.0507936507936507*G3_11_0 + 0.152380952380952*G3_11_1 - 0.666666666666665*G10_0_0_1 - 0.666666666666667*G10_0_1_0 - 1.33333333333333*G10_0_1_1 - 0.666666666666665*G12_0_0_1 - 0.666666666666667*G12_0_1_0 - 1.33333333333333*G12_0_1_1; + A[51] = -0.00476190476190477*G4_6_0 - 0.00476190476190477*G4_6_1 - 0.00793650793650793*G4_7_0 - 0.00793650793650793*G4_8_1 - 0.019047619047619*G4_9_0 - 0.019047619047619*G4_9_1 + 0.019047619047619*G4_10_0 + 0.0126984126984127*G4_10_1 + 0.0126984126984127*G4_11_0 + 0.019047619047619*G4_11_1; + A[52] = 0.00634920634920634*G4_6_0 + 0.00634920634920634*G4_6_1 + 0.019047619047619*G4_7_0 - 0.0126984126984127*G4_8_1 - 0.0126984126984127*G4_9_0 + 0.019047619047619*G4_9_1 + 0.0126984126984127*G4_10_0 + 0.00634920634920636*G4_10_1 - 0.0253968253968254*G4_11_0 - 0.019047619047619*G4_11_1; + A[53] = 0.00634920634920635*G4_6_0 + 0.00634920634920634*G4_6_1 - 0.0126984126984127*G4_7_0 + 0.019047619047619*G4_8_1 + 0.019047619047619*G4_9_0 - 0.0126984126984127*G4_9_1 - 0.019047619047619*G4_10_0 - 0.0253968253968254*G4_10_1 + 0.00634920634920634*G4_11_0 + 0.0126984126984127*G4_11_1; + A[54] = 0.0380952380952381*G4_6_0 + 0.0380952380952381*G4_6_1 + 0.0634920634920634*G4_7_0 + 0.0634920634920634*G4_8_1 + 0.152380952380952*G4_9_0 + 0.152380952380952*G4_9_1 - 0.152380952380952*G4_10_0 - 0.101587301587301*G4_10_1 - 0.101587301587302*G4_11_0 - 0.152380952380952*G4_11_1; + A[55] = -0.00634920634920633*G4_6_0 - 0.00634920634920632*G4_6_1 + 0.00634920634920634*G4_7_0 + 0.0317460317460317*G4_8_1 + 0.0761904761904761*G4_9_0 + 0.0507936507936507*G4_9_1 - 0.0761904761904761*G4_10_0 - 0.0253968253968254*G4_10_1 - 0.0507936507936508*G4_11_1; + A[56] = -0.00634920634920633*G4_6_0 - 0.00634920634920632*G4_6_1 + 0.0317460317460317*G4_7_0 + 0.00634920634920636*G4_8_1 + 0.0507936507936508*G4_9_0 + 0.0761904761904761*G4_9_1 - 0.0507936507936508*G4_10_0 - 0.0253968253968254*G4_11_0 - 0.0761904761904762*G4_11_1; + A[57] = 0.166666666666667*G8_0 + 0.166666666666667*G8_1; + A[58] = 0.166666666666667*G8_0 + 0.333333333333333*G8_1; + A[59] = 0.333333333333333*G8_0 + 0.166666666666666*G8_1; + A[60] = -0.0190476190476191*G0_0_0 - 0.0190476190476191*G0_0_1 - 0.00634920634920636*G0_1_0 - 0.0126984126984127*G0_2_1 - 0.0126984126984127*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.0126984126984127*G0_4_0 + 0.0317460317460318*G0_4_1 + 0.0253968253968254*G0_5_0 + 0.00634920634920634*G0_5_1 - 0.00952380952380951*G1_0_0 + 0.0380952380952381*G1_0_1 - 0.00158730158730159*G1_1_0 - 0.00793650793650793*G1_1_1 + 0.00634920634920634*G1_2_0 + 0.019047619047619*G1_3_0 + 0.0126984126984127*G1_3_1 + 0.0126984126984127*G1_4_0 + 0.0317460317460318*G1_4_1 + 0.00634920634920635*G1_5_0 + 0.0253968253968254*G1_5_1 - 0.00952380952380951*G3_6_0 + 0.0380952380952381*G3_6_1 - 0.00158730158730159*G3_7_0 - 0.00793650793650793*G3_7_1 + 0.00634920634920634*G3_8_0 + 0.019047619047619*G3_9_0 + 0.0126984126984127*G3_9_1 + 0.0126984126984127*G3_10_0 + 0.0317460317460318*G3_10_1 + 0.00634920634920635*G3_11_0 + 0.0253968253968254*G3_11_1 - 0.666666666666667*G10_0_1_0 - 0.666666666666666*G10_0_1_1 - 0.666666666666667*G12_0_1_0 - 0.666666666666666*G12_0_1_1; + A[61] = 0.00793650793650793*G0_0_0 + 0.00793650793650793*G0_0_1 + 0.00476190476190476*G0_1_0 - 0.00793650793650794*G0_2_1 - 0.019047619047619*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.019047619047619*G0_4_0 - 0.0126984126984127*G0_5_0 + 0.00634920634920634*G0_5_1 - 0.00158730158730159*G1_0_0 - 0.00793650793650793*G1_0_1 - 0.0095238095238095*G1_1_0 + 0.00634920634920633*G1_2_0 + 0.00793650793650792*G1_2_1 + 0.0126984126984127*G1_3_0 + 0.00634920634920636*G1_3_1 + 0.019047619047619*G1_4_0 + 0.00634920634920635*G1_5_0 - 0.00634920634920633*G1_5_1 - 0.00158730158730159*G3_6_0 - 0.00793650793650793*G3_6_1 - 0.0095238095238095*G3_7_0 + 0.00634920634920633*G3_8_0 + 0.00793650793650792*G3_8_1 + 0.0126984126984127*G3_9_0 + 0.00634920634920636*G3_9_1 + 0.019047619047619*G3_10_0 + 0.00634920634920635*G3_11_0 - 0.00634920634920633*G3_11_1; + A[62] = 0.0126984126984127*G0_0_0 + 0.0126984126984127*G0_0_1 - 0.00634920634920635*G0_1_0 + 0.019047619047619*G0_2_1 + 0.019047619047619*G0_3_0 - 0.00634920634920634*G0_3_1 - 0.019047619047619*G0_4_0 - 0.0317460317460317*G0_4_1 - 0.00634920634920635*G0_5_0 + 0.00634920634920634*G0_5_1 + 0.00634920634920634*G1_0_0 + 0.00634920634920634*G1_1_0 + 0.00793650793650792*G1_1_1 - 0.0476190476190475*G1_2_0 - 0.038095238095238*G1_2_1 - 0.019047619047619*G1_3_0 - 0.0253968253968254*G1_3_1 - 0.019047619047619*G1_4_0 - 0.0317460317460317*G1_4_1 + 0.00634920634920633*G1_5_0 - 0.0126984126984127*G1_5_1 + 0.00634920634920634*G3_6_0 + 0.00634920634920634*G3_7_0 + 0.00793650793650792*G3_7_1 - 0.0476190476190475*G3_8_0 - 0.038095238095238*G3_8_1 - 0.019047619047619*G3_9_0 - 0.0253968253968254*G3_9_1 - 0.019047619047619*G3_10_0 - 0.0317460317460317*G3_10_1 + 0.00634920634920633*G3_11_0 - 0.0126984126984127*G3_11_1 - 0.666666666666666*G10_0_0_1 - 0.666666666666666*G10_0_1_1 - 0.666666666666666*G12_0_0_1 - 0.666666666666666*G12_0_1_1; + A[63] = -0.00634920634920633*G0_0_0 - 0.00634920634920632*G0_0_1 + 0.00634920634920634*G0_1_0 + 0.0317460317460317*G0_2_1 + 0.0761904761904761*G0_3_0 + 0.0507936507936507*G0_3_1 - 0.0761904761904761*G0_4_0 - 0.0253968253968254*G0_4_1 - 0.0507936507936508*G0_5_1 + 0.019047619047619*G1_0_0 + 0.0126984126984127*G1_0_1 + 0.0126984126984127*G1_1_0 + 0.00634920634920636*G1_1_1 - 0.019047619047619*G1_2_0 - 0.0253968253968254*G1_2_1 - 0.152380952380952*G1_3_0 - 0.101587301587301*G1_3_1 - 0.0761904761904761*G1_4_0 - 0.0253968253968254*G1_4_1 - 0.0507936507936508*G1_5_0 + 0.019047619047619*G3_6_0 + 0.0126984126984127*G3_6_1 + 0.0126984126984127*G3_7_0 + 0.00634920634920636*G3_7_1 - 0.019047619047619*G3_8_0 - 0.0253968253968254*G3_8_1 - 0.152380952380952*G3_9_0 - 0.101587301587301*G3_9_1 - 0.0761904761904761*G3_10_0 - 0.0253968253968254*G3_10_1 - 0.0507936507936508*G3_11_0 - 1.33333333333333*G10_0_0_0 - 0.666666666666665*G10_0_0_1 - 0.666666666666666*G10_0_1_0 - 1.33333333333333*G12_0_0_0 - 0.666666666666665*G12_0_0_1 - 0.666666666666666*G12_0_1_0; + A[64] = -0.0634920634920635*G0_0_0 - 0.0634920634920635*G0_0_1 - 0.0380952380952381*G0_1_0 + 0.0634920634920635*G0_2_1 + 0.152380952380952*G0_3_0 + 0.0507936507936507*G0_3_1 - 0.152380952380952*G0_4_0 + 0.101587301587302*G0_5_0 - 0.0507936507936507*G0_5_1 + 0.0126984126984127*G1_0_0 + 0.0317460317460318*G1_0_1 + 0.019047619047619*G1_1_0 - 0.019047619047619*G1_2_0 - 0.0317460317460317*G1_2_1 - 0.0761904761904761*G1_3_0 - 0.0253968253968254*G1_3_1 - 0.152380952380952*G1_4_0 - 0.0507936507936508*G1_5_0 + 0.0253968253968254*G1_5_1 + 0.0126984126984127*G3_6_0 + 0.0317460317460318*G3_6_1 + 0.019047619047619*G3_7_0 - 0.019047619047619*G3_8_0 - 0.0317460317460317*G3_8_1 - 0.0761904761904761*G3_9_0 - 0.0253968253968254*G3_9_1 - 0.152380952380952*G3_10_0 - 0.0507936507936508*G3_11_0 + 0.0253968253968254*G3_11_1 + 1.33333333333333*G10_0_0_0 + 0.666666666666666*G10_0_0_1 + 0.666666666666666*G10_0_1_0 + 1.33333333333333*G10_0_1_1 + 1.33333333333333*G12_0_0_0 + 0.666666666666666*G12_0_0_1 + 0.666666666666666*G12_0_1_0 + 1.33333333333333*G12_0_1_1; + A[65] = -0.0317460317460317*G0_0_0 - 0.0317460317460317*G0_0_1 + 0.00634920634920634*G0_1_0 + 0.00634920634920636*G0_2_1 + 0.0507936507936507*G0_3_0 + 0.0507936507936507*G0_3_1 - 0.0507936507936507*G0_4_0 + 0.0253968253968254*G0_4_1 + 0.0253968253968254*G0_5_0 - 0.0507936507936508*G0_5_1 + 0.00634920634920635*G1_0_0 + 0.0253968253968254*G1_0_1 + 0.00634920634920635*G1_1_0 - 0.00634920634920633*G1_1_1 + 0.00634920634920633*G1_2_0 - 0.0126984126984127*G1_2_1 - 0.0507936507936508*G1_3_0 - 0.0507936507936507*G1_4_0 + 0.0253968253968254*G1_4_1 - 0.0507936507936507*G1_5_0 + 0.101587301587302*G1_5_1 + 0.00634920634920635*G3_6_0 + 0.0253968253968254*G3_6_1 + 0.00634920634920635*G3_7_0 - 0.00634920634920633*G3_7_1 + 0.00634920634920633*G3_8_0 - 0.0126984126984127*G3_8_1 - 0.0507936507936508*G3_9_0 - 0.0507936507936507*G3_10_0 + 0.0253968253968254*G3_10_1 - 0.0507936507936507*G3_11_0 + 0.101587301587302*G3_11_1 + 0.666666666666665*G10_0_0_1 + 0.666666666666667*G10_0_1_0 + 0.666666666666665*G12_0_0_1 + 0.666666666666667*G12_0_1_0; + A[66] = -0.0190476190476191*G4_6_0 - 0.0190476190476191*G4_6_1 - 0.00634920634920636*G4_7_0 - 0.0126984126984127*G4_8_1 - 0.0126984126984127*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.0126984126984127*G4_10_0 + 0.0317460317460318*G4_10_1 + 0.0253968253968254*G4_11_0 + 0.00634920634920634*G4_11_1; + A[67] = 0.00793650793650793*G4_6_0 + 0.00793650793650793*G4_6_1 + 0.00476190476190476*G4_7_0 - 0.00793650793650794*G4_8_1 - 0.019047619047619*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.019047619047619*G4_10_0 - 0.0126984126984127*G4_11_0 + 0.00634920634920634*G4_11_1; + A[68] = 0.0126984126984127*G4_6_0 + 0.0126984126984127*G4_6_1 - 0.00634920634920635*G4_7_0 + 0.019047619047619*G4_8_1 + 0.019047619047619*G4_9_0 - 0.00634920634920634*G4_9_1 - 0.019047619047619*G4_10_0 - 0.0317460317460317*G4_10_1 - 0.00634920634920635*G4_11_0 + 0.00634920634920634*G4_11_1; + A[69] = -0.00634920634920633*G4_6_0 - 0.00634920634920632*G4_6_1 + 0.00634920634920634*G4_7_0 + 0.0317460317460317*G4_8_1 + 0.0761904761904761*G4_9_0 + 0.0507936507936507*G4_9_1 - 0.0761904761904761*G4_10_0 - 0.0253968253968254*G4_10_1 - 0.0507936507936508*G4_11_1; + A[70] = -0.0634920634920635*G4_6_0 - 0.0634920634920635*G4_6_1 - 0.0380952380952381*G4_7_0 + 0.0634920634920635*G4_8_1 + 0.152380952380952*G4_9_0 + 0.0507936507936507*G4_9_1 - 0.152380952380952*G4_10_0 + 0.101587301587302*G4_11_0 - 0.0507936507936507*G4_11_1; + A[71] = -0.0317460317460317*G4_6_0 - 0.0317460317460317*G4_6_1 + 0.00634920634920634*G4_7_0 + 0.00634920634920636*G4_8_1 + 0.0507936507936507*G4_9_0 + 0.0507936507936507*G4_9_1 - 0.0507936507936507*G4_10_0 + 0.0253968253968254*G4_10_1 + 0.0253968253968254*G4_11_0 - 0.0507936507936508*G4_11_1; + A[72] = -0.166666666666667*G8_0 + 0.166666666666667*G8_1; + A[73] = -0.166666666666667*G8_0; + A[74] = -0.333333333333333*G8_0 - 0.166666666666667*G8_1; + A[75] = -0.0190476190476191*G0_0_0 - 0.0190476190476191*G0_0_1 - 0.0126984126984127*G0_1_0 - 0.00634920634920635*G0_2_1 - 0.00634920634920635*G0_3_0 - 0.0126984126984127*G0_3_1 + 0.00634920634920635*G0_4_0 + 0.0253968253968254*G0_4_1 + 0.0317460317460318*G0_5_0 + 0.0126984126984127*G0_5_1 + 0.0380952380952381*G1_0_0 - 0.00952380952380952*G1_0_1 + 0.00634920634920635*G1_1_1 - 0.00793650793650793*G1_2_0 - 0.00158730158730159*G1_2_1 + 0.0126984126984127*G1_3_0 + 0.019047619047619*G1_3_1 + 0.0253968253968254*G1_4_0 + 0.00634920634920634*G1_4_1 + 0.0317460317460318*G1_5_0 + 0.0126984126984127*G1_5_1 + 0.0380952380952381*G3_6_0 - 0.00952380952380952*G3_6_1 + 0.00634920634920635*G3_7_1 - 0.00793650793650793*G3_8_0 - 0.00158730158730159*G3_8_1 + 0.0126984126984127*G3_9_0 + 0.019047619047619*G3_9_1 + 0.0253968253968254*G3_10_0 + 0.00634920634920634*G3_10_1 + 0.0317460317460318*G3_11_0 + 0.0126984126984127*G3_11_1 - 0.666666666666667*G10_0_0_0 - 0.666666666666667*G10_0_0_1 - 0.666666666666667*G12_0_0_0 - 0.666666666666667*G12_0_0_1; + A[76] = 0.0126984126984127*G0_0_0 + 0.0126984126984127*G0_0_1 + 0.019047619047619*G0_1_0 - 0.00634920634920636*G0_2_1 - 0.00634920634920635*G0_3_0 + 0.019047619047619*G0_3_1 + 0.00634920634920635*G0_4_0 - 0.00634920634920633*G0_4_1 - 0.0317460317460317*G0_5_0 - 0.0190476190476191*G0_5_1 + 0.00634920634920635*G1_0_1 - 0.0380952380952381*G1_1_0 - 0.0476190476190476*G1_1_1 + 0.00793650793650793*G1_2_0 + 0.00634920634920634*G1_2_1 - 0.0253968253968254*G1_3_0 - 0.019047619047619*G1_3_1 - 0.0126984126984127*G1_4_0 + 0.00634920634920634*G1_4_1 - 0.0317460317460317*G1_5_0 - 0.0190476190476191*G1_5_1 + 0.00634920634920635*G3_6_1 - 0.0380952380952381*G3_7_0 - 0.0476190476190476*G3_7_1 + 0.00793650793650793*G3_8_0 + 0.00634920634920634*G3_8_1 - 0.0253968253968254*G3_9_0 - 0.019047619047619*G3_9_1 - 0.0126984126984127*G3_10_0 + 0.00634920634920634*G3_10_1 - 0.0317460317460317*G3_11_0 - 0.0190476190476191*G3_11_1 - 0.666666666666667*G10_0_0_0 - 0.666666666666667*G10_0_1_0 - 0.666666666666667*G12_0_0_0 - 0.666666666666667*G12_0_1_0; + A[77] = 0.00793650793650793*G0_0_0 + 0.00793650793650793*G0_0_1 - 0.00793650793650793*G0_1_0 + 0.00476190476190476*G0_2_1 - 0.00634920634920633*G0_3_0 - 0.019047619047619*G0_3_1 + 0.00634920634920633*G0_4_0 - 0.0126984126984127*G0_4_1 + 0.019047619047619*G0_5_1 - 0.00793650793650793*G1_0_0 - 0.00158730158730159*G1_0_1 + 0.00793650793650793*G1_1_0 + 0.00634920634920634*G1_1_1 - 0.00952380952380951*G1_2_1 + 0.00634920634920634*G1_3_0 + 0.0126984126984127*G1_3_1 - 0.00634920634920635*G1_4_0 + 0.00634920634920634*G1_4_1 + 0.019047619047619*G1_5_1 - 0.00793650793650793*G3_6_0 - 0.00158730158730159*G3_6_1 + 0.00793650793650793*G3_7_0 + 0.00634920634920634*G3_7_1 - 0.00952380952380951*G3_8_1 + 0.00634920634920634*G3_9_0 + 0.0126984126984127*G3_9_1 - 0.00634920634920635*G3_10_0 + 0.00634920634920634*G3_10_1 + 0.019047619047619*G3_11_1; + A[78] = -0.00634920634920633*G0_0_0 - 0.00634920634920632*G0_0_1 + 0.0317460317460317*G0_1_0 + 0.00634920634920636*G0_2_1 + 0.0507936507936508*G0_3_0 + 0.0761904761904761*G0_3_1 - 0.0507936507936508*G0_4_0 - 0.0253968253968254*G0_5_0 - 0.0761904761904762*G0_5_1 + 0.0126984126984127*G1_0_0 + 0.019047619047619*G1_0_1 - 0.0253968253968254*G1_1_0 - 0.019047619047619*G1_1_1 + 0.00634920634920634*G1_2_0 + 0.0126984126984127*G1_2_1 - 0.101587301587302*G1_3_0 - 0.152380952380952*G1_3_1 - 0.0507936507936508*G1_4_1 - 0.0253968253968254*G1_5_0 - 0.0761904761904762*G1_5_1 + 0.0126984126984127*G3_6_0 + 0.019047619047619*G3_6_1 - 0.0253968253968254*G3_7_0 - 0.019047619047619*G3_7_1 + 0.00634920634920634*G3_8_0 + 0.0126984126984127*G3_8_1 - 0.101587301587302*G3_9_0 - 0.152380952380952*G3_9_1 - 0.0507936507936508*G3_10_1 - 0.0253968253968254*G3_11_0 - 0.0761904761904762*G3_11_1 - 0.666666666666667*G10_0_0_1 - 0.666666666666666*G10_0_1_0 - 1.33333333333333*G10_0_1_1 - 0.666666666666667*G12_0_0_1 - 0.666666666666666*G12_0_1_0 - 1.33333333333333*G12_0_1_1; + A[79] = -0.0317460317460317*G0_0_0 - 0.0317460317460317*G0_0_1 + 0.00634920634920634*G0_1_0 + 0.00634920634920636*G0_2_1 + 0.0507936507936508*G0_3_0 + 0.0507936507936507*G0_3_1 - 0.0507936507936508*G0_4_0 + 0.0253968253968254*G0_4_1 + 0.0253968253968254*G0_5_0 - 0.0507936507936508*G0_5_1 + 0.0253968253968254*G1_0_0 + 0.00634920634920634*G1_0_1 - 0.0126984126984127*G1_1_0 + 0.00634920634920634*G1_1_1 - 0.00634920634920635*G1_2_0 + 0.00634920634920634*G1_2_1 - 0.0507936507936508*G1_3_1 + 0.101587301587302*G1_4_0 - 0.0507936507936507*G1_4_1 + 0.0253968253968254*G1_5_0 - 0.0507936507936508*G1_5_1 + 0.0253968253968254*G3_6_0 + 0.00634920634920634*G3_6_1 - 0.0126984126984127*G3_7_0 + 0.00634920634920634*G3_7_1 - 0.00634920634920635*G3_8_0 + 0.00634920634920634*G3_8_1 - 0.0507936507936508*G3_9_1 + 0.101587301587302*G3_10_0 - 0.0507936507936507*G3_10_1 + 0.0253968253968254*G3_11_0 - 0.0507936507936508*G3_11_1 + 0.666666666666667*G10_0_0_1 + 0.666666666666666*G10_0_1_0 + 0.666666666666667*G12_0_0_1 + 0.666666666666666*G12_0_1_0; + A[80] = -0.0634920634920635*G0_0_0 - 0.0634920634920635*G0_0_1 + 0.0634920634920635*G0_1_0 - 0.0380952380952381*G0_2_1 + 0.0507936507936507*G0_3_0 + 0.152380952380952*G0_3_1 - 0.0507936507936507*G0_4_0 + 0.101587301587302*G0_4_1 - 0.152380952380952*G0_5_1 + 0.0317460317460318*G1_0_0 + 0.0126984126984127*G1_0_1 - 0.0317460317460317*G1_1_0 - 0.0190476190476191*G1_1_1 + 0.019047619047619*G1_2_1 - 0.0253968253968254*G1_3_0 - 0.0761904761904762*G1_3_1 + 0.0253968253968254*G1_4_0 - 0.0507936507936508*G1_4_1 - 0.152380952380952*G1_5_1 + 0.0317460317460318*G3_6_0 + 0.0126984126984127*G3_6_1 - 0.0317460317460317*G3_7_0 - 0.0190476190476191*G3_7_1 + 0.019047619047619*G3_8_1 - 0.0253968253968254*G3_9_0 - 0.0761904761904762*G3_9_1 + 0.0253968253968254*G3_10_0 - 0.0507936507936508*G3_10_1 - 0.152380952380952*G3_11_1 + 1.33333333333333*G10_0_0_0 + 0.666666666666667*G10_0_0_1 + 0.666666666666667*G10_0_1_0 + 1.33333333333333*G10_0_1_1 + 1.33333333333333*G12_0_0_0 + 0.666666666666667*G12_0_0_1 + 0.666666666666667*G12_0_1_0 + 1.33333333333333*G12_0_1_1; + A[81] = -0.0190476190476191*G4_6_0 - 0.0190476190476191*G4_6_1 - 0.0126984126984127*G4_7_0 - 0.00634920634920635*G4_8_1 - 0.00634920634920635*G4_9_0 - 0.0126984126984127*G4_9_1 + 0.00634920634920635*G4_10_0 + 0.0253968253968254*G4_10_1 + 0.0317460317460318*G4_11_0 + 0.0126984126984127*G4_11_1; + A[82] = 0.0126984126984127*G4_6_0 + 0.0126984126984127*G4_6_1 + 0.019047619047619*G4_7_0 - 0.00634920634920636*G4_8_1 - 0.00634920634920635*G4_9_0 + 0.019047619047619*G4_9_1 + 0.00634920634920635*G4_10_0 - 0.00634920634920633*G4_10_1 - 0.0317460317460317*G4_11_0 - 0.0190476190476191*G4_11_1; + A[83] = 0.00793650793650793*G4_6_0 + 0.00793650793650793*G4_6_1 - 0.00793650793650793*G4_7_0 + 0.00476190476190476*G4_8_1 - 0.00634920634920633*G4_9_0 - 0.019047619047619*G4_9_1 + 0.00634920634920633*G4_10_0 - 0.0126984126984127*G4_10_1 + 0.019047619047619*G4_11_1; + A[84] = -0.00634920634920633*G4_6_0 - 0.00634920634920632*G4_6_1 + 0.0317460317460317*G4_7_0 + 0.00634920634920636*G4_8_1 + 0.0507936507936508*G4_9_0 + 0.0761904761904761*G4_9_1 - 0.0507936507936508*G4_10_0 - 0.0253968253968254*G4_11_0 - 0.0761904761904762*G4_11_1; + A[85] = -0.0317460317460317*G4_6_0 - 0.0317460317460317*G4_6_1 + 0.00634920634920634*G4_7_0 + 0.00634920634920636*G4_8_1 + 0.0507936507936508*G4_9_0 + 0.0507936507936507*G4_9_1 - 0.0507936507936508*G4_10_0 + 0.0253968253968254*G4_10_1 + 0.0253968253968254*G4_11_0 - 0.0507936507936508*G4_11_1; + A[86] = -0.0634920634920635*G4_6_0 - 0.0634920634920635*G4_6_1 + 0.0634920634920635*G4_7_0 - 0.0380952380952381*G4_8_1 + 0.0507936507936507*G4_9_0 + 0.152380952380952*G4_9_1 - 0.0507936507936507*G4_10_0 + 0.101587301587302*G4_10_1 - 0.152380952380952*G4_11_1; + A[87] = 0.166666666666667*G8_0 - 0.166666666666667*G8_1; + A[88] = -0.166666666666667*G8_0 - 0.333333333333333*G8_1; + A[89] = -0.166666666666667*G8_1; + A[90] = -0.030952380952381*G2_0_0 - 0.030952380952381*G2_0_1 - 0.00714285714285715*G2_1_0 - 0.00714285714285715*G2_2_1 + 0.00952380952380951*G2_3_0 + 0.00952380952380951*G2_3_1 - 0.00952380952380951*G2_4_0 + 0.0380952380952381*G2_4_1 + 0.0380952380952381*G2_5_0 - 0.00952380952380952*G2_5_1; + A[91] = 0.00357142857142857*G2_0_0 + 0.00357142857142857*G2_0_1 - 0.00357142857142857*G2_1_0 + 0.00436507936507936*G2_2_1 + 0.00158730158730159*G2_3_0 - 0.00634920634920634*G2_3_1 - 0.00158730158730159*G2_4_0 - 0.00793650793650793*G2_4_1 + 0.00634920634920635*G2_5_1; + A[92] = 0.00357142857142857*G2_0_0 + 0.00357142857142857*G2_0_1 + 0.00436507936507936*G2_1_0 - 0.00357142857142857*G2_2_1 - 0.00634920634920634*G2_3_0 + 0.00158730158730159*G2_3_1 + 0.00634920634920634*G2_4_0 - 0.00793650793650793*G2_5_0 - 0.00158730158730159*G2_5_1; + A[93] = -0.00476190476190476*G2_0_0 - 0.00476190476190477*G2_0_1 - 0.00793650793650793*G2_1_0 - 0.00793650793650793*G2_2_1 - 0.019047619047619*G2_3_0 - 0.019047619047619*G2_3_1 + 0.019047619047619*G2_4_0 + 0.0126984126984127*G2_4_1 + 0.0126984126984127*G2_5_0 + 0.019047619047619*G2_5_1; + A[94] = -0.0190476190476191*G2_0_0 - 0.0190476190476191*G2_0_1 - 0.00634920634920636*G2_1_0 - 0.0126984126984127*G2_2_1 - 0.0126984126984127*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.0126984126984127*G2_4_0 + 0.0317460317460318*G2_4_1 + 0.0253968253968254*G2_5_0 + 0.00634920634920634*G2_5_1; + A[95] = -0.0190476190476191*G2_0_0 - 0.0190476190476191*G2_0_1 - 0.0126984126984127*G2_1_0 - 0.00634920634920635*G2_2_1 - 0.00634920634920635*G2_3_0 - 0.0126984126984127*G2_3_1 + 0.00634920634920635*G2_4_0 + 0.0253968253968254*G2_4_1 + 0.0317460317460318*G2_5_0 + 0.0126984126984127*G2_5_1; + A[96] = -0.030952380952381*G5_0_0 - 0.030952380952381*G5_0_1 + 0.00357142857142857*G5_1_0 + 0.00357142857142857*G5_1_1 + 0.00357142857142857*G5_2_0 + 0.00357142857142857*G5_2_1 - 0.00476190476190477*G5_3_0 - 0.00476190476190477*G5_3_1 - 0.0190476190476191*G5_4_0 - 0.0190476190476191*G5_4_1 - 0.0190476190476191*G5_5_0 - 0.0190476190476191*G5_5_1 - 0.030952380952381*G6_6_0 - 0.030952380952381*G6_6_1 - 0.00714285714285715*G6_7_0 - 0.00714285714285715*G6_8_1 + 0.00952380952380951*G6_9_0 + 0.00952380952380951*G6_9_1 - 0.00952380952380951*G6_10_0 + 0.0380952380952381*G6_10_1 + 0.0380952380952381*G6_11_0 - 0.00952380952380952*G6_11_1 - 0.030952380952381*G7_6_0 - 0.030952380952381*G7_6_1 + 0.00357142857142857*G7_7_0 + 0.00357142857142857*G7_7_1 + 0.00357142857142857*G7_8_0 + 0.00357142857142857*G7_8_1 - 0.00476190476190477*G7_9_0 - 0.00476190476190477*G7_9_1 - 0.0190476190476191*G7_10_0 - 0.0190476190476191*G7_10_1 - 0.0190476190476191*G7_11_0 - 0.0190476190476191*G7_11_1 + 0.5*G11_0_0_0 + 0.5*G11_0_0_1 + 0.5*G11_0_1_0 + 0.5*G11_0_1_1 + 0.5*G13_0_0_0 + 0.5*G13_0_0_1 + 0.5*G13_0_1_0 + 0.5*G13_0_1_1; + A[97] = 0.00357142857142857*G5_0_0 + 0.00357142857142857*G5_0_1 + 0.00714285714285713*G5_1_0 + 0.00714285714285714*G5_1_1 - 0.00436507936507936*G5_2_0 - 0.00436507936507936*G5_2_1 + 0.00634920634920634*G5_3_0 + 0.00634920634920634*G5_3_1 + 0.00793650793650793*G5_4_0 + 0.00793650793650793*G5_4_1 + 0.0126984126984127*G5_5_0 + 0.0126984126984127*G5_5_1 + 0.00357142857142857*G6_6_0 + 0.00357142857142857*G6_6_1 - 0.00357142857142857*G6_7_0 + 0.00436507936507936*G6_8_1 + 0.00158730158730159*G6_9_0 - 0.00634920634920634*G6_9_1 - 0.00158730158730159*G6_10_0 - 0.00793650793650793*G6_10_1 + 0.00634920634920635*G6_11_1 + 0.00357142857142857*G7_6_0 + 0.00357142857142857*G7_6_1 + 0.00714285714285713*G7_7_0 + 0.00714285714285714*G7_7_1 - 0.00436507936507936*G7_8_0 - 0.00436507936507936*G7_8_1 + 0.00634920634920634*G7_9_0 + 0.00634920634920634*G7_9_1 + 0.00793650793650793*G7_10_0 + 0.00793650793650793*G7_10_1 + 0.0126984126984127*G7_11_0 + 0.0126984126984127*G7_11_1 + 0.166666666666667*G11_0_0_0 + 0.166666666666667*G11_0_1_0 + 0.166666666666667*G13_0_0_0 + 0.166666666666667*G13_0_1_0; + A[98] = 0.00357142857142857*G5_0_0 + 0.00357142857142857*G5_0_1 - 0.00436507936507936*G5_1_0 - 0.00436507936507936*G5_1_1 + 0.00714285714285714*G5_2_0 + 0.00714285714285713*G5_2_1 + 0.00634920634920635*G5_3_0 + 0.00634920634920634*G5_3_1 + 0.0126984126984127*G5_4_0 + 0.0126984126984127*G5_4_1 + 0.00793650793650793*G5_5_0 + 0.00793650793650793*G5_5_1 + 0.00357142857142857*G6_6_0 + 0.00357142857142857*G6_6_1 + 0.00436507936507936*G6_7_0 - 0.00357142857142857*G6_8_1 - 0.00634920634920634*G6_9_0 + 0.00158730158730159*G6_9_1 + 0.00634920634920634*G6_10_0 - 0.00793650793650793*G6_11_0 - 0.00158730158730159*G6_11_1 + 0.00357142857142857*G7_6_0 + 0.00357142857142857*G7_6_1 - 0.00436507936507936*G7_7_0 - 0.00436507936507936*G7_7_1 + 0.00714285714285714*G7_8_0 + 0.00714285714285713*G7_8_1 + 0.00634920634920635*G7_9_0 + 0.00634920634920634*G7_9_1 + 0.0126984126984127*G7_10_0 + 0.0126984126984127*G7_10_1 + 0.00793650793650793*G7_11_0 + 0.00793650793650793*G7_11_1 + 0.166666666666667*G11_0_0_1 + 0.166666666666667*G11_0_1_1 + 0.166666666666667*G13_0_0_1 + 0.166666666666667*G13_0_1_1; + A[99] = -0.00476190476190476*G5_0_0 - 0.00476190476190477*G5_0_1 + 0.00634920634920634*G5_1_0 + 0.00634920634920634*G5_1_1 + 0.00634920634920635*G5_2_0 + 0.00634920634920634*G5_2_1 + 0.0380952380952381*G5_3_0 + 0.0380952380952381*G5_3_1 - 0.00634920634920633*G5_4_0 - 0.00634920634920632*G5_4_1 - 0.00634920634920633*G5_5_0 - 0.00634920634920632*G5_5_1 - 0.00476190476190476*G6_6_0 - 0.00476190476190477*G6_6_1 - 0.00793650793650793*G6_7_0 - 0.00793650793650793*G6_8_1 - 0.019047619047619*G6_9_0 - 0.019047619047619*G6_9_1 + 0.019047619047619*G6_10_0 + 0.0126984126984127*G6_10_1 + 0.0126984126984127*G6_11_0 + 0.019047619047619*G6_11_1 - 0.00476190476190476*G7_6_0 - 0.00476190476190477*G7_6_1 + 0.00634920634920634*G7_7_0 + 0.00634920634920634*G7_7_1 + 0.00634920634920635*G7_8_0 + 0.00634920634920634*G7_8_1 + 0.0380952380952381*G7_9_0 + 0.0380952380952381*G7_9_1 - 0.00634920634920633*G7_10_0 - 0.00634920634920632*G7_10_1 - 0.00634920634920633*G7_11_0 - 0.00634920634920632*G7_11_1; + A[100] = -0.0190476190476191*G5_0_0 - 0.0190476190476191*G5_0_1 + 0.00793650793650793*G5_1_0 + 0.00793650793650793*G5_1_1 + 0.0126984126984127*G5_2_0 + 0.0126984126984127*G5_2_1 - 0.00634920634920633*G5_3_0 - 0.00634920634920632*G5_3_1 - 0.0634920634920635*G5_4_0 - 0.0634920634920635*G5_4_1 - 0.0317460317460317*G5_5_0 - 0.0317460317460317*G5_5_1 - 0.0190476190476191*G6_6_0 - 0.0190476190476191*G6_6_1 - 0.00634920634920636*G6_7_0 - 0.0126984126984127*G6_8_1 - 0.0126984126984127*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.0126984126984127*G6_10_0 + 0.0317460317460318*G6_10_1 + 0.0253968253968254*G6_11_0 + 0.00634920634920634*G6_11_1 - 0.0190476190476191*G7_6_0 - 0.0190476190476191*G7_6_1 + 0.00793650793650793*G7_7_0 + 0.00793650793650793*G7_7_1 + 0.0126984126984127*G7_8_0 + 0.0126984126984127*G7_8_1 - 0.00634920634920633*G7_9_0 - 0.00634920634920632*G7_9_1 - 0.0634920634920635*G7_10_0 - 0.0634920634920635*G7_10_1 - 0.0317460317460317*G7_11_0 - 0.0317460317460317*G7_11_1 - 0.666666666666667*G11_0_0_1 - 0.666666666666666*G11_0_1_1 - 0.666666666666667*G13_0_0_1 - 0.666666666666666*G13_0_1_1; + A[101] = -0.0190476190476191*G5_0_0 - 0.0190476190476191*G5_0_1 + 0.0126984126984127*G5_1_0 + 0.0126984126984127*G5_1_1 + 0.00793650793650793*G5_2_0 + 0.00793650793650793*G5_2_1 - 0.00634920634920633*G5_3_0 - 0.00634920634920632*G5_3_1 - 0.0317460317460317*G5_4_0 - 0.0317460317460317*G5_4_1 - 0.0634920634920635*G5_5_0 - 0.0634920634920635*G5_5_1 - 0.0190476190476191*G6_6_0 - 0.0190476190476191*G6_6_1 - 0.0126984126984127*G6_7_0 - 0.00634920634920635*G6_8_1 - 0.00634920634920635*G6_9_0 - 0.0126984126984127*G6_9_1 + 0.00634920634920635*G6_10_0 + 0.0253968253968254*G6_10_1 + 0.0317460317460318*G6_11_0 + 0.0126984126984127*G6_11_1 - 0.0190476190476191*G7_6_0 - 0.0190476190476191*G7_6_1 + 0.0126984126984127*G7_7_0 + 0.0126984126984127*G7_7_1 + 0.00793650793650793*G7_8_0 + 0.00793650793650793*G7_8_1 - 0.00634920634920633*G7_9_0 - 0.00634920634920632*G7_9_1 - 0.0317460317460317*G7_10_0 - 0.0317460317460317*G7_10_1 - 0.0634920634920635*G7_11_0 - 0.0634920634920635*G7_11_1 - 0.666666666666667*G11_0_0_0 - 0.666666666666667*G11_0_1_0 - 0.666666666666667*G13_0_0_0 - 0.666666666666667*G13_0_1_0; + A[102] = -0.166666666666667*G9_0 - 0.166666666666667*G9_1; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.00357142857142857*G2_0_0 + 0.00357142857142857*G2_0_1 - 0.00357142857142857*G2_1_0 + 0.00436507936507936*G2_2_1 + 0.00158730158730159*G2_3_0 - 0.00634920634920634*G2_3_1 - 0.00158730158730159*G2_4_0 - 0.00793650793650793*G2_4_1 + 0.00634920634920635*G2_5_1; + A[106] = 0.00714285714285713*G2_0_0 + 0.00714285714285714*G2_0_1 + 0.0309523809523809*G2_1_0 - 0.00714285714285713*G2_2_1 + 0.0095238095238095*G2_3_0 + 0.0476190476190476*G2_3_1 - 0.0095238095238095*G2_4_0 - 0.0380952380952381*G2_5_0 - 0.0476190476190476*G2_5_1; + A[107] = -0.00436507936507936*G2_0_0 - 0.00436507936507936*G2_0_1 - 0.00357142857142857*G2_1_0 - 0.00357142857142857*G2_2_1 - 0.00634920634920634*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.00634920634920634*G2_4_0 + 0.00793650793650792*G2_4_1 + 0.00793650793650793*G2_5_0 + 0.00634920634920634*G2_5_1; + A[108] = 0.00634920634920634*G2_0_0 + 0.00634920634920634*G2_0_1 + 0.019047619047619*G2_1_0 - 0.0126984126984127*G2_2_1 - 0.0126984126984127*G2_3_0 + 0.019047619047619*G2_3_1 + 0.0126984126984127*G2_4_0 + 0.00634920634920636*G2_4_1 - 0.0253968253968254*G2_5_0 - 0.019047619047619*G2_5_1; + A[109] = 0.00793650793650793*G2_0_0 + 0.00793650793650793*G2_0_1 + 0.00476190476190476*G2_1_0 - 0.00793650793650794*G2_2_1 - 0.019047619047619*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.019047619047619*G2_4_0 - 0.0126984126984127*G2_5_0 + 0.00634920634920634*G2_5_1; + A[110] = 0.0126984126984127*G2_0_0 + 0.0126984126984127*G2_0_1 + 0.019047619047619*G2_1_0 - 0.00634920634920636*G2_2_1 - 0.00634920634920635*G2_3_0 + 0.019047619047619*G2_3_1 + 0.00634920634920635*G2_4_0 - 0.00634920634920633*G2_4_1 - 0.0317460317460317*G2_5_0 - 0.0190476190476191*G2_5_1; + A[111] = -0.00714285714285715*G5_0_0 - 0.00357142857142857*G5_1_0 + 0.00436507936507936*G5_2_0 - 0.00793650793650793*G5_3_0 - 0.00634920634920636*G5_4_0 - 0.0126984126984127*G5_5_0 + 0.00357142857142857*G6_6_0 + 0.00357142857142857*G6_6_1 - 0.00357142857142857*G6_7_0 + 0.00436507936507936*G6_8_1 + 0.00158730158730159*G6_9_0 - 0.00634920634920634*G6_9_1 - 0.00158730158730159*G6_10_0 - 0.00793650793650793*G6_10_1 + 0.00634920634920635*G6_11_1 - 0.00714285714285715*G7_6_0 - 0.00357142857142857*G7_7_0 + 0.00436507936507936*G7_8_0 - 0.00793650793650793*G7_9_0 - 0.00634920634920636*G7_10_0 - 0.0126984126984127*G7_11_0 + 0.166666666666667*G11_0_0_0 + 0.166666666666667*G11_0_0_1 + 0.166666666666667*G13_0_0_0 + 0.166666666666667*G13_0_0_1; + A[112] = -0.00357142857142857*G5_0_0 + 0.0309523809523809*G5_1_0 - 0.00357142857142856*G5_2_0 + 0.019047619047619*G5_3_0 + 0.00476190476190476*G5_4_0 + 0.019047619047619*G5_5_0 + 0.00714285714285713*G6_6_0 + 0.00714285714285714*G6_6_1 + 0.0309523809523809*G6_7_0 - 0.00714285714285713*G6_8_1 + 0.0095238095238095*G6_9_0 + 0.0476190476190476*G6_9_1 - 0.0095238095238095*G6_10_0 - 0.0380952380952381*G6_11_0 - 0.0476190476190476*G6_11_1 - 0.00357142857142857*G7_6_0 + 0.0309523809523809*G7_7_0 - 0.00357142857142856*G7_8_0 + 0.019047619047619*G7_9_0 + 0.00476190476190476*G7_10_0 + 0.019047619047619*G7_11_0 + 0.5*G11_0_0_0 + 0.5*G13_0_0_0; + A[113] = 0.00436507936507936*G5_0_0 - 0.00357142857142857*G5_1_0 - 0.00714285714285714*G5_2_0 - 0.0126984126984127*G5_3_0 - 0.00634920634920635*G5_4_0 - 0.00793650793650793*G5_5_0 - 0.00436507936507936*G6_6_0 - 0.00436507936507936*G6_6_1 - 0.00357142857142857*G6_7_0 - 0.00357142857142857*G6_8_1 - 0.00634920634920634*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.00634920634920634*G6_10_0 + 0.00793650793650792*G6_10_1 + 0.00793650793650793*G6_11_0 + 0.00634920634920634*G6_11_1 + 0.00436507936507936*G7_6_0 - 0.00357142857142857*G7_7_0 - 0.00714285714285714*G7_8_0 - 0.0126984126984127*G7_9_0 - 0.00634920634920635*G7_10_0 - 0.00793650793650793*G7_11_0 - 0.166666666666667*G11_0_0_1 - 0.166666666666667*G13_0_0_1; + A[114] = -0.00793650793650793*G5_0_0 + 0.019047619047619*G5_1_0 - 0.0126984126984127*G5_2_0 + 0.0634920634920634*G5_3_0 + 0.00634920634920634*G5_4_0 + 0.0317460317460317*G5_5_0 + 0.00634920634920634*G6_6_0 + 0.00634920634920634*G6_6_1 + 0.019047619047619*G6_7_0 - 0.0126984126984127*G6_8_1 - 0.0126984126984127*G6_9_0 + 0.019047619047619*G6_9_1 + 0.0126984126984127*G6_10_0 + 0.00634920634920636*G6_10_1 - 0.0253968253968254*G6_11_0 - 0.019047619047619*G6_11_1 - 0.00793650793650793*G7_6_0 + 0.019047619047619*G7_7_0 - 0.0126984126984127*G7_8_0 + 0.0634920634920634*G7_9_0 + 0.00634920634920634*G7_10_0 + 0.0317460317460317*G7_11_0 + 0.666666666666666*G11_0_0_1 + 0.666666666666666*G13_0_0_1; + A[115] = -0.00634920634920636*G5_0_0 + 0.00476190476190476*G5_1_0 - 0.00634920634920635*G5_2_0 + 0.00634920634920634*G5_3_0 - 0.0380952380952381*G5_4_0 + 0.00634920634920634*G5_5_0 + 0.00793650793650793*G6_6_0 + 0.00793650793650793*G6_6_1 + 0.00476190476190476*G6_7_0 - 0.00793650793650794*G6_8_1 - 0.019047619047619*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.019047619047619*G6_10_0 - 0.0126984126984127*G6_11_0 + 0.00634920634920634*G6_11_1 - 0.00634920634920636*G7_6_0 + 0.00476190476190476*G7_7_0 - 0.00634920634920635*G7_8_0 + 0.00634920634920634*G7_9_0 - 0.0380952380952381*G7_10_0 + 0.00634920634920634*G7_11_0; + A[116] = -0.0126984126984127*G5_0_0 + 0.019047619047619*G5_1_0 - 0.00793650793650793*G5_2_0 + 0.0317460317460317*G5_3_0 + 0.00634920634920634*G5_4_0 + 0.0634920634920635*G5_5_0 + 0.0126984126984127*G6_6_0 + 0.0126984126984127*G6_6_1 + 0.019047619047619*G6_7_0 - 0.00634920634920636*G6_8_1 - 0.00634920634920635*G6_9_0 + 0.019047619047619*G6_9_1 + 0.00634920634920635*G6_10_0 - 0.00634920634920633*G6_10_1 - 0.0317460317460317*G6_11_0 - 0.0190476190476191*G6_11_1 - 0.0126984126984127*G7_6_0 + 0.019047619047619*G7_7_0 - 0.00793650793650793*G7_8_0 + 0.0317460317460317*G7_9_0 + 0.00634920634920634*G7_10_0 + 0.0634920634920635*G7_11_0 - 0.666666666666667*G11_0_0_0 - 0.666666666666666*G11_0_0_1 - 0.666666666666667*G13_0_0_0 - 0.666666666666666*G13_0_0_1; + A[117] = 0.0; + A[118] = 0.166666666666667*G9_0; + A[119] = 0.0; + A[120] = 0.00357142857142857*G2_0_0 + 0.00357142857142857*G2_0_1 + 0.00436507936507936*G2_1_0 - 0.00357142857142857*G2_2_1 - 0.00634920634920634*G2_3_0 + 0.00158730158730159*G2_3_1 + 0.00634920634920634*G2_4_0 - 0.00793650793650793*G2_5_0 - 0.00158730158730159*G2_5_1; + A[121] = -0.00436507936507936*G2_0_0 - 0.00436507936507936*G2_0_1 - 0.00357142857142856*G2_1_0 - 0.00357142857142857*G2_2_1 - 0.00634920634920633*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.00634920634920633*G2_4_0 + 0.00793650793650792*G2_4_1 + 0.00793650793650793*G2_5_0 + 0.00634920634920634*G2_5_1; + A[122] = 0.00714285714285714*G2_0_0 + 0.00714285714285713*G2_0_1 - 0.00714285714285714*G2_1_0 + 0.0309523809523809*G2_2_1 + 0.0476190476190475*G2_3_0 + 0.0095238095238095*G2_3_1 - 0.0476190476190475*G2_4_0 - 0.038095238095238*G2_4_1 - 0.00952380952380951*G2_5_1; + A[123] = 0.00634920634920635*G2_0_0 + 0.00634920634920634*G2_0_1 - 0.0126984126984127*G2_1_0 + 0.019047619047619*G2_2_1 + 0.019047619047619*G2_3_0 - 0.0126984126984127*G2_3_1 - 0.019047619047619*G2_4_0 - 0.0253968253968254*G2_4_1 + 0.00634920634920634*G2_5_0 + 0.0126984126984127*G2_5_1; + A[124] = 0.0126984126984127*G2_0_0 + 0.0126984126984127*G2_0_1 - 0.00634920634920635*G2_1_0 + 0.019047619047619*G2_2_1 + 0.019047619047619*G2_3_0 - 0.00634920634920634*G2_3_1 - 0.019047619047619*G2_4_0 - 0.0317460317460317*G2_4_1 - 0.00634920634920635*G2_5_0 + 0.00634920634920634*G2_5_1; + A[125] = 0.00793650793650793*G2_0_0 + 0.00793650793650793*G2_0_1 - 0.00793650793650793*G2_1_0 + 0.00476190476190476*G2_2_1 - 0.00634920634920633*G2_3_0 - 0.019047619047619*G2_3_1 + 0.00634920634920633*G2_4_0 - 0.0126984126984127*G2_4_1 + 0.019047619047619*G2_5_1; + A[126] = -0.00714285714285715*G5_0_1 + 0.00436507936507936*G5_1_1 - 0.00357142857142857*G5_2_1 - 0.00793650793650793*G5_3_1 - 0.0126984126984127*G5_4_1 - 0.00634920634920635*G5_5_1 + 0.00357142857142857*G6_6_0 + 0.00357142857142857*G6_6_1 + 0.00436507936507936*G6_7_0 - 0.00357142857142857*G6_8_1 - 0.00634920634920634*G6_9_0 + 0.00158730158730159*G6_9_1 + 0.00634920634920634*G6_10_0 - 0.00793650793650793*G6_11_0 - 0.00158730158730159*G6_11_1 - 0.00714285714285715*G7_6_1 + 0.00436507936507936*G7_7_1 - 0.00357142857142857*G7_8_1 - 0.00793650793650793*G7_9_1 - 0.0126984126984127*G7_10_1 - 0.00634920634920635*G7_11_1 + 0.166666666666667*G11_0_1_0 + 0.166666666666667*G11_0_1_1 + 0.166666666666667*G13_0_1_0 + 0.166666666666667*G13_0_1_1; + A[127] = 0.00436507936507936*G5_0_1 - 0.00714285714285713*G5_1_1 - 0.00357142857142857*G5_2_1 - 0.0126984126984127*G5_3_1 - 0.00793650793650794*G5_4_1 - 0.00634920634920636*G5_5_1 - 0.00436507936507936*G6_6_0 - 0.00436507936507936*G6_6_1 - 0.00357142857142856*G6_7_0 - 0.00357142857142857*G6_8_1 - 0.00634920634920633*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.00634920634920633*G6_10_0 + 0.00793650793650792*G6_10_1 + 0.00793650793650793*G6_11_0 + 0.00634920634920634*G6_11_1 + 0.00436507936507936*G7_6_1 - 0.00714285714285713*G7_7_1 - 0.00357142857142857*G7_8_1 - 0.0126984126984127*G7_9_1 - 0.00793650793650794*G7_10_1 - 0.00634920634920636*G7_11_1 - 0.166666666666667*G11_0_1_0 - 0.166666666666667*G13_0_1_0; + A[128] = -0.00357142857142857*G5_0_1 - 0.00357142857142857*G5_1_1 + 0.0309523809523809*G5_2_1 + 0.019047619047619*G5_3_1 + 0.019047619047619*G5_4_1 + 0.00476190476190476*G5_5_1 + 0.00714285714285714*G6_6_0 + 0.00714285714285713*G6_6_1 - 0.00714285714285714*G6_7_0 + 0.0309523809523809*G6_8_1 + 0.0476190476190475*G6_9_0 + 0.0095238095238095*G6_9_1 - 0.0476190476190475*G6_10_0 - 0.038095238095238*G6_10_1 - 0.00952380952380951*G6_11_1 - 0.00357142857142857*G7_6_1 - 0.00357142857142857*G7_7_1 + 0.0309523809523809*G7_8_1 + 0.019047619047619*G7_9_1 + 0.019047619047619*G7_10_1 + 0.00476190476190476*G7_11_1 + 0.5*G11_0_1_1 + 0.5*G13_0_1_1; + A[129] = -0.00793650793650793*G5_0_1 - 0.0126984126984127*G5_1_1 + 0.019047619047619*G5_2_1 + 0.0634920634920634*G5_3_1 + 0.0317460317460317*G5_4_1 + 0.00634920634920636*G5_5_1 + 0.00634920634920635*G6_6_0 + 0.00634920634920634*G6_6_1 - 0.0126984126984127*G6_7_0 + 0.019047619047619*G6_8_1 + 0.019047619047619*G6_9_0 - 0.0126984126984127*G6_9_1 - 0.019047619047619*G6_10_0 - 0.0253968253968254*G6_10_1 + 0.00634920634920634*G6_11_0 + 0.0126984126984127*G6_11_1 - 0.00793650793650793*G7_6_1 - 0.0126984126984127*G7_7_1 + 0.019047619047619*G7_8_1 + 0.0634920634920634*G7_9_1 + 0.0317460317460317*G7_10_1 + 0.00634920634920636*G7_11_1 + 0.666666666666666*G11_0_1_0 + 0.666666666666666*G13_0_1_0; + A[130] = -0.0126984126984127*G5_0_1 - 0.00793650793650794*G5_1_1 + 0.019047619047619*G5_2_1 + 0.0317460317460317*G5_3_1 + 0.0634920634920635*G5_4_1 + 0.00634920634920636*G5_5_1 + 0.0126984126984127*G6_6_0 + 0.0126984126984127*G6_6_1 - 0.00634920634920635*G6_7_0 + 0.019047619047619*G6_8_1 + 0.019047619047619*G6_9_0 - 0.00634920634920634*G6_9_1 - 0.019047619047619*G6_10_0 - 0.0317460317460317*G6_10_1 - 0.00634920634920635*G6_11_0 + 0.00634920634920634*G6_11_1 - 0.0126984126984127*G7_6_1 - 0.00793650793650794*G7_7_1 + 0.019047619047619*G7_8_1 + 0.0317460317460317*G7_9_1 + 0.0634920634920635*G7_10_1 + 0.00634920634920636*G7_11_1 - 0.666666666666666*G11_0_1_0 - 0.666666666666666*G11_0_1_1 - 0.666666666666666*G13_0_1_0 - 0.666666666666666*G13_0_1_1; + A[131] = -0.00634920634920635*G5_0_1 - 0.00634920634920636*G5_1_1 + 0.00476190476190476*G5_2_1 + 0.00634920634920636*G5_3_1 + 0.00634920634920636*G5_4_1 - 0.0380952380952381*G5_5_1 + 0.00793650793650793*G6_6_0 + 0.00793650793650793*G6_6_1 - 0.00793650793650793*G6_7_0 + 0.00476190476190476*G6_8_1 - 0.00634920634920633*G6_9_0 - 0.019047619047619*G6_9_1 + 0.00634920634920633*G6_10_0 - 0.0126984126984127*G6_10_1 + 0.019047619047619*G6_11_1 - 0.00634920634920635*G7_6_1 - 0.00634920634920636*G7_7_1 + 0.00476190476190476*G7_8_1 + 0.00634920634920636*G7_9_1 + 0.00634920634920636*G7_10_1 - 0.0380952380952381*G7_11_1; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.166666666666667*G9_1; + A[135] = -0.00476190476190477*G2_0_0 - 0.00476190476190477*G2_0_1 - 0.00793650793650793*G2_1_0 - 0.00793650793650793*G2_2_1 - 0.019047619047619*G2_3_0 - 0.019047619047619*G2_3_1 + 0.019047619047619*G2_4_0 + 0.0126984126984127*G2_4_1 + 0.0126984126984127*G2_5_0 + 0.019047619047619*G2_5_1; + A[136] = 0.00634920634920634*G2_0_0 + 0.00634920634920634*G2_0_1 + 0.019047619047619*G2_1_0 - 0.0126984126984127*G2_2_1 - 0.0126984126984127*G2_3_0 + 0.019047619047619*G2_3_1 + 0.0126984126984127*G2_4_0 + 0.00634920634920636*G2_4_1 - 0.0253968253968254*G2_5_0 - 0.019047619047619*G2_5_1; + A[137] = 0.00634920634920635*G2_0_0 + 0.00634920634920634*G2_0_1 - 0.0126984126984127*G2_1_0 + 0.019047619047619*G2_2_1 + 0.019047619047619*G2_3_0 - 0.0126984126984127*G2_3_1 - 0.019047619047619*G2_4_0 - 0.0253968253968254*G2_4_1 + 0.00634920634920634*G2_5_0 + 0.0126984126984127*G2_5_1; + A[138] = 0.0380952380952381*G2_0_0 + 0.0380952380952381*G2_0_1 + 0.0634920634920634*G2_1_0 + 0.0634920634920634*G2_2_1 + 0.152380952380952*G2_3_0 + 0.152380952380952*G2_3_1 - 0.152380952380952*G2_4_0 - 0.101587301587301*G2_4_1 - 0.101587301587302*G2_5_0 - 0.152380952380952*G2_5_1; + A[139] = -0.00634920634920633*G2_0_0 - 0.00634920634920632*G2_0_1 + 0.00634920634920634*G2_1_0 + 0.0317460317460317*G2_2_1 + 0.0761904761904761*G2_3_0 + 0.0507936507936507*G2_3_1 - 0.0761904761904761*G2_4_0 - 0.0253968253968254*G2_4_1 - 0.0507936507936508*G2_5_1; + A[140] = -0.00634920634920633*G2_0_0 - 0.00634920634920632*G2_0_1 + 0.0317460317460317*G2_1_0 + 0.00634920634920636*G2_2_1 + 0.0507936507936508*G2_3_0 + 0.0761904761904761*G2_3_1 - 0.0507936507936508*G2_4_0 - 0.0253968253968254*G2_5_0 - 0.0761904761904762*G2_5_1; + A[141] = 0.00952380952380951*G5_0_0 + 0.00952380952380951*G5_0_1 + 0.00158730158730159*G5_1_0 - 0.00634920634920634*G5_1_1 - 0.00634920634920634*G5_2_0 + 0.00158730158730159*G5_2_1 - 0.019047619047619*G5_3_0 - 0.019047619047619*G5_3_1 - 0.0126984126984127*G5_4_0 - 0.00634920634920634*G5_4_1 - 0.00634920634920635*G5_5_0 - 0.0126984126984127*G5_5_1 - 0.00476190476190477*G6_6_0 - 0.00476190476190477*G6_6_1 - 0.00793650793650793*G6_7_0 - 0.00793650793650793*G6_8_1 - 0.019047619047619*G6_9_0 - 0.019047619047619*G6_9_1 + 0.019047619047619*G6_10_0 + 0.0126984126984127*G6_10_1 + 0.0126984126984127*G6_11_0 + 0.019047619047619*G6_11_1 + 0.00952380952380951*G7_6_0 + 0.00952380952380951*G7_6_1 + 0.00158730158730159*G7_7_0 - 0.00634920634920634*G7_7_1 - 0.00634920634920634*G7_8_0 + 0.00158730158730159*G7_8_1 - 0.019047619047619*G7_9_0 - 0.019047619047619*G7_9_1 - 0.0126984126984127*G7_10_0 - 0.00634920634920634*G7_10_1 - 0.00634920634920635*G7_11_0 - 0.0126984126984127*G7_11_1; + A[142] = 0.00158730158730159*G5_0_0 - 0.00634920634920634*G5_0_1 + 0.0095238095238095*G5_1_0 + 0.0476190476190476*G5_1_1 - 0.00634920634920633*G5_2_0 - 0.00634920634920634*G5_2_1 - 0.0126984126984127*G5_3_0 + 0.019047619047619*G5_3_1 - 0.019047619047619*G5_4_0 - 0.00634920634920634*G5_4_1 - 0.00634920634920635*G5_5_0 + 0.019047619047619*G5_5_1 + 0.00634920634920634*G6_6_0 + 0.00634920634920634*G6_6_1 + 0.019047619047619*G6_7_0 - 0.0126984126984127*G6_8_1 - 0.0126984126984127*G6_9_0 + 0.019047619047619*G6_9_1 + 0.0126984126984127*G6_10_0 + 0.00634920634920636*G6_10_1 - 0.0253968253968254*G6_11_0 - 0.019047619047619*G6_11_1 + 0.00158730158730159*G7_6_0 - 0.00634920634920634*G7_6_1 + 0.0095238095238095*G7_7_0 + 0.0476190476190476*G7_7_1 - 0.00634920634920633*G7_8_0 - 0.00634920634920634*G7_8_1 - 0.0126984126984127*G7_9_0 + 0.019047619047619*G7_9_1 - 0.019047619047619*G7_10_0 - 0.00634920634920634*G7_10_1 - 0.00634920634920635*G7_11_0 + 0.019047619047619*G7_11_1 + 0.666666666666666*G11_0_1_0 + 0.666666666666666*G13_0_1_0; + A[143] = -0.00634920634920634*G5_0_0 + 0.00158730158730159*G5_0_1 - 0.00634920634920634*G5_1_0 - 0.00634920634920634*G5_1_1 + 0.0476190476190475*G5_2_0 + 0.0095238095238095*G5_2_1 + 0.019047619047619*G5_3_0 - 0.0126984126984127*G5_3_1 + 0.019047619047619*G5_4_0 - 0.00634920634920634*G5_4_1 - 0.00634920634920633*G5_5_0 - 0.019047619047619*G5_5_1 + 0.00634920634920635*G6_6_0 + 0.00634920634920634*G6_6_1 - 0.0126984126984127*G6_7_0 + 0.019047619047619*G6_8_1 + 0.019047619047619*G6_9_0 - 0.0126984126984127*G6_9_1 - 0.019047619047619*G6_10_0 - 0.0253968253968254*G6_10_1 + 0.00634920634920634*G6_11_0 + 0.0126984126984127*G6_11_1 - 0.00634920634920634*G7_6_0 + 0.00158730158730159*G7_6_1 - 0.00634920634920634*G7_7_0 - 0.00634920634920634*G7_7_1 + 0.0476190476190475*G7_8_0 + 0.0095238095238095*G7_8_1 + 0.019047619047619*G7_9_0 - 0.0126984126984127*G7_9_1 + 0.019047619047619*G7_10_0 - 0.00634920634920634*G7_10_1 - 0.00634920634920633*G7_11_0 - 0.019047619047619*G7_11_1 + 0.666666666666666*G11_0_0_1 + 0.666666666666666*G13_0_0_1; + A[144] = -0.019047619047619*G5_0_0 - 0.019047619047619*G5_0_1 - 0.0126984126984127*G5_1_0 + 0.019047619047619*G5_1_1 + 0.019047619047619*G5_2_0 - 0.0126984126984127*G5_2_1 + 0.152380952380952*G5_3_0 + 0.152380952380952*G5_3_1 + 0.0761904761904761*G5_4_0 + 0.0507936507936507*G5_4_1 + 0.0507936507936508*G5_5_0 + 0.0761904761904761*G5_5_1 + 0.0380952380952381*G6_6_0 + 0.0380952380952381*G6_6_1 + 0.0634920634920634*G6_7_0 + 0.0634920634920634*G6_8_1 + 0.152380952380952*G6_9_0 + 0.152380952380952*G6_9_1 - 0.152380952380952*G6_10_0 - 0.101587301587301*G6_10_1 - 0.101587301587302*G6_11_0 - 0.152380952380952*G6_11_1 - 0.019047619047619*G7_6_0 - 0.019047619047619*G7_6_1 - 0.0126984126984127*G7_7_0 + 0.019047619047619*G7_7_1 + 0.019047619047619*G7_8_0 - 0.0126984126984127*G7_8_1 + 0.152380952380952*G7_9_0 + 0.152380952380952*G7_9_1 + 0.0761904761904761*G7_10_0 + 0.0507936507936507*G7_10_1 + 0.0507936507936508*G7_11_0 + 0.0761904761904761*G7_11_1 + 1.33333333333333*G11_0_0_0 + 0.666666666666665*G11_0_0_1 + 0.666666666666665*G11_0_1_0 + 1.33333333333333*G11_0_1_1 + 1.33333333333333*G13_0_0_0 + 0.666666666666665*G13_0_0_1 + 0.666666666666665*G13_0_1_0 + 1.33333333333333*G13_0_1_1; + A[145] = -0.0126984126984127*G5_0_0 - 0.00634920634920634*G5_0_1 - 0.019047619047619*G5_1_0 - 0.00634920634920634*G5_1_1 + 0.019047619047619*G5_2_0 - 0.00634920634920634*G5_2_1 + 0.0761904761904761*G5_3_0 + 0.0507936507936507*G5_3_1 + 0.152380952380952*G5_4_0 + 0.0507936507936507*G5_4_1 + 0.0507936507936508*G5_5_0 + 0.0507936507936507*G5_5_1 - 0.00634920634920633*G6_6_0 - 0.00634920634920632*G6_6_1 + 0.00634920634920634*G6_7_0 + 0.0317460317460317*G6_8_1 + 0.0761904761904761*G6_9_0 + 0.0507936507936507*G6_9_1 - 0.0761904761904761*G6_10_0 - 0.0253968253968254*G6_10_1 - 0.0507936507936508*G6_11_1 - 0.0126984126984127*G7_6_0 - 0.00634920634920634*G7_6_1 - 0.019047619047619*G7_7_0 - 0.00634920634920634*G7_7_1 + 0.019047619047619*G7_8_0 - 0.00634920634920634*G7_8_1 + 0.0761904761904761*G7_9_0 + 0.0507936507936507*G7_9_1 + 0.152380952380952*G7_10_0 + 0.0507936507936507*G7_10_1 + 0.0507936507936508*G7_11_0 + 0.0507936507936507*G7_11_1 - 1.33333333333333*G11_0_0_0 - 0.666666666666666*G11_0_0_1 - 0.666666666666665*G11_0_1_0 - 1.33333333333333*G13_0_0_0 - 0.666666666666666*G13_0_0_1 - 0.666666666666665*G13_0_1_0; + A[146] = -0.00634920634920635*G5_0_0 - 0.0126984126984127*G5_0_1 - 0.00634920634920635*G5_1_0 + 0.019047619047619*G5_1_1 - 0.00634920634920633*G5_2_0 - 0.019047619047619*G5_2_1 + 0.0507936507936508*G5_3_0 + 0.0761904761904761*G5_3_1 + 0.0507936507936507*G5_4_0 + 0.0507936507936507*G5_4_1 + 0.0507936507936507*G5_5_0 + 0.152380952380952*G5_5_1 - 0.00634920634920633*G6_6_0 - 0.00634920634920632*G6_6_1 + 0.0317460317460317*G6_7_0 + 0.00634920634920636*G6_8_1 + 0.0507936507936508*G6_9_0 + 0.0761904761904761*G6_9_1 - 0.0507936507936508*G6_10_0 - 0.0253968253968254*G6_11_0 - 0.0761904761904762*G6_11_1 - 0.00634920634920635*G7_6_0 - 0.0126984126984127*G7_6_1 - 0.00634920634920635*G7_7_0 + 0.019047619047619*G7_7_1 - 0.00634920634920633*G7_8_0 - 0.019047619047619*G7_8_1 + 0.0507936507936508*G7_9_0 + 0.0761904761904761*G7_9_1 + 0.0507936507936507*G7_10_0 + 0.0507936507936507*G7_10_1 + 0.0507936507936507*G7_11_0 + 0.152380952380952*G7_11_1 - 0.666666666666665*G11_0_0_1 - 0.666666666666667*G11_0_1_0 - 1.33333333333333*G11_0_1_1 - 0.666666666666665*G13_0_0_1 - 0.666666666666667*G13_0_1_0 - 1.33333333333333*G13_0_1_1; + A[147] = 0.166666666666667*G9_0 + 0.166666666666667*G9_1; + A[148] = 0.166666666666667*G9_0 + 0.333333333333333*G9_1; + A[149] = 0.333333333333333*G9_0 + 0.166666666666666*G9_1; + A[150] = -0.0190476190476191*G2_0_0 - 0.0190476190476191*G2_0_1 - 0.00634920634920636*G2_1_0 - 0.0126984126984127*G2_2_1 - 0.0126984126984127*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.0126984126984127*G2_4_0 + 0.0317460317460318*G2_4_1 + 0.0253968253968254*G2_5_0 + 0.00634920634920634*G2_5_1; + A[151] = 0.00793650793650793*G2_0_0 + 0.00793650793650793*G2_0_1 + 0.00476190476190476*G2_1_0 - 0.00793650793650794*G2_2_1 - 0.019047619047619*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.019047619047619*G2_4_0 - 0.0126984126984127*G2_5_0 + 0.00634920634920634*G2_5_1; + A[152] = 0.0126984126984127*G2_0_0 + 0.0126984126984127*G2_0_1 - 0.00634920634920635*G2_1_0 + 0.019047619047619*G2_2_1 + 0.019047619047619*G2_3_0 - 0.00634920634920634*G2_3_1 - 0.019047619047619*G2_4_0 - 0.0317460317460317*G2_4_1 - 0.00634920634920635*G2_5_0 + 0.00634920634920634*G2_5_1; + A[153] = -0.00634920634920633*G2_0_0 - 0.00634920634920632*G2_0_1 + 0.00634920634920634*G2_1_0 + 0.0317460317460317*G2_2_1 + 0.0761904761904761*G2_3_0 + 0.0507936507936507*G2_3_1 - 0.0761904761904761*G2_4_0 - 0.0253968253968254*G2_4_1 - 0.0507936507936508*G2_5_1; + A[154] = -0.0634920634920635*G2_0_0 - 0.0634920634920635*G2_0_1 - 0.0380952380952381*G2_1_0 + 0.0634920634920635*G2_2_1 + 0.152380952380952*G2_3_0 + 0.0507936507936507*G2_3_1 - 0.152380952380952*G2_4_0 + 0.101587301587302*G2_5_0 - 0.0507936507936507*G2_5_1; + A[155] = -0.0317460317460317*G2_0_0 - 0.0317460317460317*G2_0_1 + 0.00634920634920634*G2_1_0 + 0.00634920634920636*G2_2_1 + 0.0507936507936507*G2_3_0 + 0.0507936507936507*G2_3_1 - 0.0507936507936507*G2_4_0 + 0.0253968253968254*G2_4_1 + 0.0253968253968254*G2_5_0 - 0.0507936507936508*G2_5_1; + A[156] = -0.00952380952380951*G5_0_0 + 0.0380952380952381*G5_0_1 - 0.00158730158730159*G5_1_0 - 0.00793650793650793*G5_1_1 + 0.00634920634920634*G5_2_0 + 0.019047619047619*G5_3_0 + 0.0126984126984127*G5_3_1 + 0.0126984126984127*G5_4_0 + 0.0317460317460318*G5_4_1 + 0.00634920634920635*G5_5_0 + 0.0253968253968254*G5_5_1 - 0.0190476190476191*G6_6_0 - 0.0190476190476191*G6_6_1 - 0.00634920634920636*G6_7_0 - 0.0126984126984127*G6_8_1 - 0.0126984126984127*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.0126984126984127*G6_10_0 + 0.0317460317460318*G6_10_1 + 0.0253968253968254*G6_11_0 + 0.00634920634920634*G6_11_1 - 0.00952380952380951*G7_6_0 + 0.0380952380952381*G7_6_1 - 0.00158730158730159*G7_7_0 - 0.00793650793650793*G7_7_1 + 0.00634920634920634*G7_8_0 + 0.019047619047619*G7_9_0 + 0.0126984126984127*G7_9_1 + 0.0126984126984127*G7_10_0 + 0.0317460317460318*G7_10_1 + 0.00634920634920635*G7_11_0 + 0.0253968253968254*G7_11_1 - 0.666666666666667*G11_0_1_0 - 0.666666666666666*G11_0_1_1 - 0.666666666666667*G13_0_1_0 - 0.666666666666666*G13_0_1_1; + A[157] = -0.00158730158730159*G5_0_0 - 0.00793650793650793*G5_0_1 - 0.0095238095238095*G5_1_0 + 0.00634920634920633*G5_2_0 + 0.00793650793650792*G5_2_1 + 0.0126984126984127*G5_3_0 + 0.00634920634920636*G5_3_1 + 0.019047619047619*G5_4_0 + 0.00634920634920635*G5_5_0 - 0.00634920634920633*G5_5_1 + 0.00793650793650793*G6_6_0 + 0.00793650793650793*G6_6_1 + 0.00476190476190476*G6_7_0 - 0.00793650793650794*G6_8_1 - 0.019047619047619*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.019047619047619*G6_10_0 - 0.0126984126984127*G6_11_0 + 0.00634920634920634*G6_11_1 - 0.00158730158730159*G7_6_0 - 0.00793650793650793*G7_6_1 - 0.0095238095238095*G7_7_0 + 0.00634920634920633*G7_8_0 + 0.00793650793650792*G7_8_1 + 0.0126984126984127*G7_9_0 + 0.00634920634920636*G7_9_1 + 0.019047619047619*G7_10_0 + 0.00634920634920635*G7_11_0 - 0.00634920634920633*G7_11_1; + A[158] = 0.00634920634920634*G5_0_0 + 0.00634920634920634*G5_1_0 + 0.00793650793650792*G5_1_1 - 0.0476190476190475*G5_2_0 - 0.038095238095238*G5_2_1 - 0.019047619047619*G5_3_0 - 0.0253968253968254*G5_3_1 - 0.019047619047619*G5_4_0 - 0.0317460317460317*G5_4_1 + 0.00634920634920633*G5_5_0 - 0.0126984126984127*G5_5_1 + 0.0126984126984127*G6_6_0 + 0.0126984126984127*G6_6_1 - 0.00634920634920635*G6_7_0 + 0.019047619047619*G6_8_1 + 0.019047619047619*G6_9_0 - 0.00634920634920634*G6_9_1 - 0.019047619047619*G6_10_0 - 0.0317460317460317*G6_10_1 - 0.00634920634920635*G6_11_0 + 0.00634920634920634*G6_11_1 + 0.00634920634920634*G7_6_0 + 0.00634920634920634*G7_7_0 + 0.00793650793650792*G7_7_1 - 0.0476190476190475*G7_8_0 - 0.038095238095238*G7_8_1 - 0.019047619047619*G7_9_0 - 0.0253968253968254*G7_9_1 - 0.019047619047619*G7_10_0 - 0.0317460317460317*G7_10_1 + 0.00634920634920633*G7_11_0 - 0.0126984126984127*G7_11_1 - 0.666666666666666*G11_0_0_1 - 0.666666666666666*G11_0_1_1 - 0.666666666666666*G13_0_0_1 - 0.666666666666666*G13_0_1_1; + A[159] = 0.019047619047619*G5_0_0 + 0.0126984126984127*G5_0_1 + 0.0126984126984127*G5_1_0 + 0.00634920634920636*G5_1_1 - 0.019047619047619*G5_2_0 - 0.0253968253968254*G5_2_1 - 0.152380952380952*G5_3_0 - 0.101587301587301*G5_3_1 - 0.0761904761904761*G5_4_0 - 0.0253968253968254*G5_4_1 - 0.0507936507936508*G5_5_0 - 0.00634920634920633*G6_6_0 - 0.00634920634920632*G6_6_1 + 0.00634920634920634*G6_7_0 + 0.0317460317460317*G6_8_1 + 0.0761904761904761*G6_9_0 + 0.0507936507936507*G6_9_1 - 0.0761904761904761*G6_10_0 - 0.0253968253968254*G6_10_1 - 0.0507936507936508*G6_11_1 + 0.019047619047619*G7_6_0 + 0.0126984126984127*G7_6_1 + 0.0126984126984127*G7_7_0 + 0.00634920634920636*G7_7_1 - 0.019047619047619*G7_8_0 - 0.0253968253968254*G7_8_1 - 0.152380952380952*G7_9_0 - 0.101587301587301*G7_9_1 - 0.0761904761904761*G7_10_0 - 0.0253968253968254*G7_10_1 - 0.0507936507936508*G7_11_0 - 1.33333333333333*G11_0_0_0 - 0.666666666666665*G11_0_0_1 - 0.666666666666666*G11_0_1_0 - 1.33333333333333*G13_0_0_0 - 0.666666666666665*G13_0_0_1 - 0.666666666666666*G13_0_1_0; + A[160] = 0.0126984126984127*G5_0_0 + 0.0317460317460318*G5_0_1 + 0.019047619047619*G5_1_0 - 0.019047619047619*G5_2_0 - 0.0317460317460317*G5_2_1 - 0.0761904761904761*G5_3_0 - 0.0253968253968254*G5_3_1 - 0.152380952380952*G5_4_0 - 0.0507936507936508*G5_5_0 + 0.0253968253968254*G5_5_1 - 0.0634920634920635*G6_6_0 - 0.0634920634920635*G6_6_1 - 0.0380952380952381*G6_7_0 + 0.0634920634920635*G6_8_1 + 0.152380952380952*G6_9_0 + 0.0507936507936507*G6_9_1 - 0.152380952380952*G6_10_0 + 0.101587301587302*G6_11_0 - 0.0507936507936507*G6_11_1 + 0.0126984126984127*G7_6_0 + 0.0317460317460318*G7_6_1 + 0.019047619047619*G7_7_0 - 0.019047619047619*G7_8_0 - 0.0317460317460317*G7_8_1 - 0.0761904761904761*G7_9_0 - 0.0253968253968254*G7_9_1 - 0.152380952380952*G7_10_0 - 0.0507936507936508*G7_11_0 + 0.0253968253968254*G7_11_1 + 1.33333333333333*G11_0_0_0 + 0.666666666666666*G11_0_0_1 + 0.666666666666666*G11_0_1_0 + 1.33333333333333*G11_0_1_1 + 1.33333333333333*G13_0_0_0 + 0.666666666666666*G13_0_0_1 + 0.666666666666666*G13_0_1_0 + 1.33333333333333*G13_0_1_1; + A[161] = 0.00634920634920635*G5_0_0 + 0.0253968253968254*G5_0_1 + 0.00634920634920635*G5_1_0 - 0.00634920634920633*G5_1_1 + 0.00634920634920633*G5_2_0 - 0.0126984126984127*G5_2_1 - 0.0507936507936508*G5_3_0 - 0.0507936507936507*G5_4_0 + 0.0253968253968254*G5_4_1 - 0.0507936507936507*G5_5_0 + 0.101587301587302*G5_5_1 - 0.0317460317460317*G6_6_0 - 0.0317460317460317*G6_6_1 + 0.00634920634920634*G6_7_0 + 0.00634920634920636*G6_8_1 + 0.0507936507936507*G6_9_0 + 0.0507936507936507*G6_9_1 - 0.0507936507936507*G6_10_0 + 0.0253968253968254*G6_10_1 + 0.0253968253968254*G6_11_0 - 0.0507936507936508*G6_11_1 + 0.00634920634920635*G7_6_0 + 0.0253968253968254*G7_6_1 + 0.00634920634920635*G7_7_0 - 0.00634920634920633*G7_7_1 + 0.00634920634920633*G7_8_0 - 0.0126984126984127*G7_8_1 - 0.0507936507936508*G7_9_0 - 0.0507936507936507*G7_10_0 + 0.0253968253968254*G7_10_1 - 0.0507936507936507*G7_11_0 + 0.101587301587302*G7_11_1 + 0.666666666666665*G11_0_0_1 + 0.666666666666667*G11_0_1_0 + 0.666666666666665*G13_0_0_1 + 0.666666666666667*G13_0_1_0; + A[162] = -0.166666666666667*G9_0 + 0.166666666666667*G9_1; + A[163] = -0.166666666666667*G9_0; + A[164] = -0.333333333333333*G9_0 - 0.166666666666667*G9_1; + A[165] = -0.0190476190476191*G2_0_0 - 0.0190476190476191*G2_0_1 - 0.0126984126984127*G2_1_0 - 0.00634920634920635*G2_2_1 - 0.00634920634920635*G2_3_0 - 0.0126984126984127*G2_3_1 + 0.00634920634920635*G2_4_0 + 0.0253968253968254*G2_4_1 + 0.0317460317460318*G2_5_0 + 0.0126984126984127*G2_5_1; + A[166] = 0.0126984126984127*G2_0_0 + 0.0126984126984127*G2_0_1 + 0.019047619047619*G2_1_0 - 0.00634920634920636*G2_2_1 - 0.00634920634920635*G2_3_0 + 0.019047619047619*G2_3_1 + 0.00634920634920635*G2_4_0 - 0.00634920634920633*G2_4_1 - 0.0317460317460317*G2_5_0 - 0.0190476190476191*G2_5_1; + A[167] = 0.00793650793650793*G2_0_0 + 0.00793650793650793*G2_0_1 - 0.00793650793650793*G2_1_0 + 0.00476190476190476*G2_2_1 - 0.00634920634920633*G2_3_0 - 0.019047619047619*G2_3_1 + 0.00634920634920633*G2_4_0 - 0.0126984126984127*G2_4_1 + 0.019047619047619*G2_5_1; + A[168] = -0.00634920634920633*G2_0_0 - 0.00634920634920632*G2_0_1 + 0.0317460317460317*G2_1_0 + 0.00634920634920636*G2_2_1 + 0.0507936507936508*G2_3_0 + 0.0761904761904761*G2_3_1 - 0.0507936507936508*G2_4_0 - 0.0253968253968254*G2_5_0 - 0.0761904761904762*G2_5_1; + A[169] = -0.0317460317460317*G2_0_0 - 0.0317460317460317*G2_0_1 + 0.00634920634920634*G2_1_0 + 0.00634920634920636*G2_2_1 + 0.0507936507936508*G2_3_0 + 0.0507936507936507*G2_3_1 - 0.0507936507936508*G2_4_0 + 0.0253968253968254*G2_4_1 + 0.0253968253968254*G2_5_0 - 0.0507936507936508*G2_5_1; + A[170] = -0.0634920634920635*G2_0_0 - 0.0634920634920635*G2_0_1 + 0.0634920634920635*G2_1_0 - 0.0380952380952381*G2_2_1 + 0.0507936507936507*G2_3_0 + 0.152380952380952*G2_3_1 - 0.0507936507936507*G2_4_0 + 0.101587301587302*G2_4_1 - 0.152380952380952*G2_5_1; + A[171] = 0.0380952380952381*G5_0_0 - 0.00952380952380952*G5_0_1 + 0.00634920634920635*G5_1_1 - 0.00793650793650793*G5_2_0 - 0.00158730158730159*G5_2_1 + 0.0126984126984127*G5_3_0 + 0.019047619047619*G5_3_1 + 0.0253968253968254*G5_4_0 + 0.00634920634920634*G5_4_1 + 0.0317460317460318*G5_5_0 + 0.0126984126984127*G5_5_1 - 0.0190476190476191*G6_6_0 - 0.0190476190476191*G6_6_1 - 0.0126984126984127*G6_7_0 - 0.00634920634920635*G6_8_1 - 0.00634920634920635*G6_9_0 - 0.0126984126984127*G6_9_1 + 0.00634920634920635*G6_10_0 + 0.0253968253968254*G6_10_1 + 0.0317460317460318*G6_11_0 + 0.0126984126984127*G6_11_1 + 0.0380952380952381*G7_6_0 - 0.00952380952380952*G7_6_1 + 0.00634920634920635*G7_7_1 - 0.00793650793650793*G7_8_0 - 0.00158730158730159*G7_8_1 + 0.0126984126984127*G7_9_0 + 0.019047619047619*G7_9_1 + 0.0253968253968254*G7_10_0 + 0.00634920634920634*G7_10_1 + 0.0317460317460318*G7_11_0 + 0.0126984126984127*G7_11_1 - 0.666666666666667*G11_0_0_0 - 0.666666666666667*G11_0_0_1 - 0.666666666666667*G13_0_0_0 - 0.666666666666667*G13_0_0_1; + A[172] = 0.00634920634920635*G5_0_1 - 0.0380952380952381*G5_1_0 - 0.0476190476190476*G5_1_1 + 0.00793650793650793*G5_2_0 + 0.00634920634920634*G5_2_1 - 0.0253968253968254*G5_3_0 - 0.019047619047619*G5_3_1 - 0.0126984126984127*G5_4_0 + 0.00634920634920634*G5_4_1 - 0.0317460317460317*G5_5_0 - 0.0190476190476191*G5_5_1 + 0.0126984126984127*G6_6_0 + 0.0126984126984127*G6_6_1 + 0.019047619047619*G6_7_0 - 0.00634920634920636*G6_8_1 - 0.00634920634920635*G6_9_0 + 0.019047619047619*G6_9_1 + 0.00634920634920635*G6_10_0 - 0.00634920634920633*G6_10_1 - 0.0317460317460317*G6_11_0 - 0.0190476190476191*G6_11_1 + 0.00634920634920635*G7_6_1 - 0.0380952380952381*G7_7_0 - 0.0476190476190476*G7_7_1 + 0.00793650793650793*G7_8_0 + 0.00634920634920634*G7_8_1 - 0.0253968253968254*G7_9_0 - 0.019047619047619*G7_9_1 - 0.0126984126984127*G7_10_0 + 0.00634920634920634*G7_10_1 - 0.0317460317460317*G7_11_0 - 0.0190476190476191*G7_11_1 - 0.666666666666667*G11_0_0_0 - 0.666666666666667*G11_0_1_0 - 0.666666666666667*G13_0_0_0 - 0.666666666666667*G13_0_1_0; + A[173] = -0.00793650793650793*G5_0_0 - 0.00158730158730159*G5_0_1 + 0.00793650793650793*G5_1_0 + 0.00634920634920634*G5_1_1 - 0.00952380952380951*G5_2_1 + 0.00634920634920634*G5_3_0 + 0.0126984126984127*G5_3_1 - 0.00634920634920635*G5_4_0 + 0.00634920634920634*G5_4_1 + 0.019047619047619*G5_5_1 + 0.00793650793650793*G6_6_0 + 0.00793650793650793*G6_6_1 - 0.00793650793650793*G6_7_0 + 0.00476190476190476*G6_8_1 - 0.00634920634920633*G6_9_0 - 0.019047619047619*G6_9_1 + 0.00634920634920633*G6_10_0 - 0.0126984126984127*G6_10_1 + 0.019047619047619*G6_11_1 - 0.00793650793650793*G7_6_0 - 0.00158730158730159*G7_6_1 + 0.00793650793650793*G7_7_0 + 0.00634920634920634*G7_7_1 - 0.00952380952380951*G7_8_1 + 0.00634920634920634*G7_9_0 + 0.0126984126984127*G7_9_1 - 0.00634920634920635*G7_10_0 + 0.00634920634920634*G7_10_1 + 0.019047619047619*G7_11_1; + A[174] = 0.0126984126984127*G5_0_0 + 0.019047619047619*G5_0_1 - 0.0253968253968254*G5_1_0 - 0.019047619047619*G5_1_1 + 0.00634920634920634*G5_2_0 + 0.0126984126984127*G5_2_1 - 0.101587301587302*G5_3_0 - 0.152380952380952*G5_3_1 - 0.0507936507936508*G5_4_1 - 0.0253968253968254*G5_5_0 - 0.0761904761904762*G5_5_1 - 0.00634920634920633*G6_6_0 - 0.00634920634920632*G6_6_1 + 0.0317460317460317*G6_7_0 + 0.00634920634920636*G6_8_1 + 0.0507936507936508*G6_9_0 + 0.0761904761904761*G6_9_1 - 0.0507936507936508*G6_10_0 - 0.0253968253968254*G6_11_0 - 0.0761904761904762*G6_11_1 + 0.0126984126984127*G7_6_0 + 0.019047619047619*G7_6_1 - 0.0253968253968254*G7_7_0 - 0.019047619047619*G7_7_1 + 0.00634920634920634*G7_8_0 + 0.0126984126984127*G7_8_1 - 0.101587301587302*G7_9_0 - 0.152380952380952*G7_9_1 - 0.0507936507936508*G7_10_1 - 0.0253968253968254*G7_11_0 - 0.0761904761904762*G7_11_1 - 0.666666666666667*G11_0_0_1 - 0.666666666666666*G11_0_1_0 - 1.33333333333333*G11_0_1_1 - 0.666666666666667*G13_0_0_1 - 0.666666666666666*G13_0_1_0 - 1.33333333333333*G13_0_1_1; + A[175] = 0.0253968253968254*G5_0_0 + 0.00634920634920634*G5_0_1 - 0.0126984126984127*G5_1_0 + 0.00634920634920634*G5_1_1 - 0.00634920634920635*G5_2_0 + 0.00634920634920634*G5_2_1 - 0.0507936507936508*G5_3_1 + 0.101587301587302*G5_4_0 - 0.0507936507936507*G5_4_1 + 0.0253968253968254*G5_5_0 - 0.0507936507936508*G5_5_1 - 0.0317460317460317*G6_6_0 - 0.0317460317460317*G6_6_1 + 0.00634920634920634*G6_7_0 + 0.00634920634920636*G6_8_1 + 0.0507936507936508*G6_9_0 + 0.0507936507936507*G6_9_1 - 0.0507936507936508*G6_10_0 + 0.0253968253968254*G6_10_1 + 0.0253968253968254*G6_11_0 - 0.0507936507936508*G6_11_1 + 0.0253968253968254*G7_6_0 + 0.00634920634920634*G7_6_1 - 0.0126984126984127*G7_7_0 + 0.00634920634920634*G7_7_1 - 0.00634920634920635*G7_8_0 + 0.00634920634920634*G7_8_1 - 0.0507936507936508*G7_9_1 + 0.101587301587302*G7_10_0 - 0.0507936507936507*G7_10_1 + 0.0253968253968254*G7_11_0 - 0.0507936507936508*G7_11_1 + 0.666666666666667*G11_0_0_1 + 0.666666666666666*G11_0_1_0 + 0.666666666666667*G13_0_0_1 + 0.666666666666666*G13_0_1_0; + A[176] = 0.0317460317460318*G5_0_0 + 0.0126984126984127*G5_0_1 - 0.0317460317460317*G5_1_0 - 0.0190476190476191*G5_1_1 + 0.019047619047619*G5_2_1 - 0.0253968253968254*G5_3_0 - 0.0761904761904762*G5_3_1 + 0.0253968253968254*G5_4_0 - 0.0507936507936508*G5_4_1 - 0.152380952380952*G5_5_1 - 0.0634920634920635*G6_6_0 - 0.0634920634920635*G6_6_1 + 0.0634920634920635*G6_7_0 - 0.0380952380952381*G6_8_1 + 0.0507936507936507*G6_9_0 + 0.152380952380952*G6_9_1 - 0.0507936507936507*G6_10_0 + 0.101587301587302*G6_10_1 - 0.152380952380952*G6_11_1 + 0.0317460317460318*G7_6_0 + 0.0126984126984127*G7_6_1 - 0.0317460317460317*G7_7_0 - 0.0190476190476191*G7_7_1 + 0.019047619047619*G7_8_1 - 0.0253968253968254*G7_9_0 - 0.0761904761904762*G7_9_1 + 0.0253968253968254*G7_10_0 - 0.0507936507936508*G7_10_1 - 0.152380952380952*G7_11_1 + 1.33333333333333*G11_0_0_0 + 0.666666666666667*G11_0_0_1 + 0.666666666666667*G11_0_1_0 + 1.33333333333333*G11_0_1_1 + 1.33333333333333*G13_0_0_0 + 0.666666666666667*G13_0_0_1 + 0.666666666666667*G13_0_1_0 + 1.33333333333333*G13_0_1_1; + A[177] = 0.166666666666667*G9_0 - 0.166666666666667*G9_1; + A[178] = -0.166666666666667*G9_0 - 0.333333333333333*G9_1; + A[179] = -0.166666666666667*G9_1; + A[180] = 0.166666666666667*G14_0 + 0.166666666666667*G14_1; + A[181] = 0.0; + A[182] = 0.0; + A[183] = -0.166666666666667*G14_0 - 0.166666666666667*G14_1; + A[184] = 0.166666666666667*G14_0 - 0.166666666666667*G14_1; + A[185] = -0.166666666666667*G14_0 + 0.166666666666667*G14_1; + A[186] = 0.166666666666667*G15_0 + 0.166666666666667*G15_1; + A[187] = 0.0; + A[188] = 0.0; + A[189] = -0.166666666666667*G15_0 - 0.166666666666667*G15_1; + A[190] = 0.166666666666667*G15_0 - 0.166666666666667*G15_1; + A[191] = -0.166666666666667*G15_0 + 0.166666666666667*G15_1; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = -0.166666666666667*G14_0; + A[197] = 0.0; + A[198] = -0.166666666666667*G14_0 - 0.333333333333333*G14_1; + A[199] = 0.166666666666667*G14_0; + A[200] = 0.166666666666667*G14_0 + 0.333333333333333*G14_1; + A[201] = 0.0; + A[202] = -0.166666666666667*G15_0; + A[203] = 0.0; + A[204] = -0.166666666666667*G15_0 - 0.333333333333333*G15_1; + A[205] = 0.166666666666667*G15_0; + A[206] = 0.166666666666667*G15_0 + 0.333333333333333*G15_1; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = -0.166666666666667*G14_1; + A[213] = -0.333333333333333*G14_0 - 0.166666666666666*G14_1; + A[214] = 0.333333333333333*G14_0 + 0.166666666666667*G14_1; + A[215] = 0.166666666666667*G14_1; + A[216] = 0.0; + A[217] = 0.0; + A[218] = -0.166666666666667*G15_1; + A[219] = -0.333333333333333*G15_0 - 0.166666666666666*G15_1; + A[220] = 0.333333333333333*G15_0 + 0.166666666666667*G15_1; + A[221] = 0.166666666666667*G15_1; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivenavierstokes_exterior_facet_integral_1_0: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivenavierstokes_exterior_facet_integral_1_0() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_exterior_facet_integral_1_0() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 0 + // Number of operations (multiply-add pairs) for tensor contraction: 4 + // Total number of operations (multiply-add pairs): 14 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_ = det; + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.166666666666666*G0_; + A[2] = 0.166666666666667*G0_; + A[3] = 0.666666666666666*G0_; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + break; + } + case 1: + { + A[0] = 0.166666666666667*G0_; + A[1] = 0.0; + A[2] = 0.166666666666667*G0_; + A[3] = 0.0; + A[4] = 0.666666666666666*G0_; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + break; + } + case 2: + { + A[0] = 0.166666666666667*G0_; + A[1] = 0.166666666666667*G0_; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.666666666666666*G0_; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivenavierstokes_cell_integral_2_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivenavierstokes_cell_integral_2_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_cell_integral_2_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W12[12] = {0.0254224531851035, 0.0254224531851035, 0.0254224531851035, 0.0583931378631895, 0.0583931378631895, 0.0583931378631895, 0.041425537809187, 0.041425537809187, 0.041425537809187, 0.041425537809187, 0.041425537809187, 0.041425537809187}; + // Quadrature points on the UFC reference element: (0.873821971016996, 0.063089014491502), (0.063089014491502, 0.873821971016996), (0.063089014491502, 0.063089014491502), (0.501426509658179, 0.24928674517091), (0.24928674517091, 0.501426509658179), (0.24928674517091, 0.24928674517091), (0.636502499121399, 0.310352451033785), (0.636502499121399, 0.053145049844816), (0.310352451033785, 0.636502499121399), (0.310352451033785, 0.053145049844816), (0.053145049844816, 0.636502499121399), (0.053145049844816, 0.310352451033785) + + // Values of basis functions at quadrature points. + static const double FE0_C0[12][3] = \ + {{0.0630890144915021, 0.873821971016996, 0.063089014491502}, + {0.0630890144915021, 0.0630890144915021, 0.873821971016996}, + {0.873821971016996, 0.0630890144915021, 0.063089014491502}, + {0.249286745170911, 0.501426509658179, 0.24928674517091}, + {0.249286745170911, 0.24928674517091, 0.501426509658179}, + {0.50142650965818, 0.24928674517091, 0.24928674517091}, + {0.053145049844816, 0.636502499121399, 0.310352451033785}, + {0.310352451033785, 0.636502499121399, 0.053145049844816}, + {0.0531450498448161, 0.310352451033785, 0.636502499121399}, + {0.636502499121399, 0.310352451033785, 0.053145049844816}, + {0.310352451033785, 0.0531450498448161, 0.636502499121399}, + {0.636502499121399, 0.053145049844816, 0.310352451033785}}; + + // Array of non-zero columns + static const unsigned int nzc12[3] = {12, 13, 14}; + + static const double FE1_C0[12][6] = \ + {{-0.0551285669924841, 0.653307703047059, -0.0551285669924841, 0.220514267969936, 0.0159208949980358, 0.220514267969936}, + {-0.055128566992484, -0.055128566992484, 0.65330770304706, 0.220514267969936, 0.220514267969936, 0.0159208949980358}, + {0.65330770304706, -0.0551285669924841, -0.0551285669924841, 0.0159208949980358, 0.220514267969936, 0.220514267969936}, + {-0.124998982535098, 0.00143057951778876, -0.124998982535098, 0.499995930140389, 0.248575525271626, 0.499995930140391}, + {-0.124998982535098, -0.124998982535098, 0.00143057951778887, 0.499995930140389, 0.499995930140391, 0.248575525271626}, + {0.00143057951778986, -0.124998982535098, -0.124998982535098, 0.248575525271625, 0.49999593014039, 0.49999593014039}, + {-0.0474962571988001, 0.173768363654174, -0.117715163308429, 0.790160442765823, 0.0659747859186054, 0.135307828168627}, + {-0.117715163308429, 0.173768363654174, -0.0474962571988, 0.135307828168627, 0.0659747859186052, 0.790160442765823}, + {-0.0474962571988, -0.117715163308429, 0.173768363654174, 0.790160442765823, 0.135307828168627, 0.0659747859186053}, + {0.173768363654174, -0.117715163308429, -0.0474962571988, 0.0659747859186052, 0.135307828168627, 0.790160442765823}, + {-0.117715163308429, -0.0474962571988, 0.173768363654174, 0.135307828168627, 0.790160442765823, 0.0659747859186053}, + {0.173768363654174, -0.0474962571988001, -0.117715163308429, 0.0659747859186054, 0.790160442765823, 0.135307828168627}}; + + // Array of non-zero columns + static const unsigned int nzc21[6] = {20, 21, 22, 23, 24, 25}; + + // Array of non-zero columns + static const unsigned int nzc6[6] = {0, 1, 2, 3, 4, 5}; + + // Array of non-zero columns + static const unsigned int nzc9[6] = {6, 7, 8, 9, 10, 11}; + + static const double FE1_C0_D01[12][5] = \ + {{0.747643942033993, -0.747643942033992, 3.49528788406798, 0.0, -3.49528788406798}, + {0.747643942033992, 2.49528788406798, 0.252356057966007, -3.24293182610197, -0.252356057966008}, + {-2.49528788406798, -0.747643942033992, 0.252356057966008, 3.24293182610197, -0.252356057966008}, + {0.00285301931635651, -0.00285301931635973, 2.00570603863272, 0.0, -2.00570603863272}, + {0.00285301931635637, 1.00570603863272, 0.997146980683639, -1.00855905794907, -0.997146980683639}, + {-1.00570603863272, -0.00285301931635984, 0.997146980683639, 1.00855905794908, -0.997146980683639}, + {0.787419800620737, 0.24140980413514, 2.54600999648559, -1.02882960475588, -2.5460099964856}, + {-0.241409804135139, -0.787419800620735, 2.5460099964856, 1.02882960475588, -2.5460099964856}, + {0.787419800620736, 1.5460099964856, 1.24140980413514, -2.33342979710633, -1.24140980413514}, + {-1.5460099964856, -0.787419800620735, 1.24140980413514, 2.33342979710633, -1.24140980413514}, + {-0.24140980413514, 1.5460099964856, 0.212580199379263, -1.30460019235046, -0.212580199379263}, + {-1.5460099964856, 0.24140980413514, 0.212580199379263, 1.30460019235046, -0.212580199379263}}; + + // Array of non-zero columns + static const unsigned int nzc7[5] = {0, 2, 3, 4, 5}; + + // Array of non-zero columns + static const unsigned int nzc10[5] = {6, 8, 9, 10, 11}; + + static const double FE1_C0_D10[12][5] = \ + {{0.747643942033992, 2.49528788406798, 0.252356057966007, -0.252356057966007, -3.24293182610198}, + {0.747643942033993, -0.747643942033992, 3.49528788406798, -3.49528788406798, 0.0}, + {-2.49528788406798, -0.747643942033992, 0.252356057966007, -0.252356057966007, 3.24293182610198}, + {0.00285301931635634, 1.00570603863272, 0.997146980683639, -0.997146980683639, -1.00855905794907}, + {0.00285301931635651, -0.00285301931636039, 2.00570603863272, -2.00570603863272, 0.0}, + {-1.00570603863272, -0.00285301931636026, 0.997146980683639, -0.997146980683639, 1.00855905794908}, + {0.787419800620737, 1.5460099964856, 1.24140980413514, -1.24140980413514, -2.33342979710633}, + {-0.24140980413514, 1.5460099964856, 0.212580199379263, -0.212580199379263, -1.30460019235046}, + {0.787419800620737, 0.24140980413514, 2.54600999648559, -2.54600999648559, -1.02882960475588}, + {-1.5460099964856, 0.24140980413514, 0.212580199379263, -0.212580199379263, 1.30460019235046}, + {-0.24140980413514, -0.787419800620737, 2.54600999648559, -2.54600999648559, 1.02882960475588}, + {-1.5460099964856, -0.787419800620737, 1.24140980413514, -1.24140980413514, 2.33342979710633}}; + + // Array of non-zero columns + static const unsigned int nzc11[5] = {6, 7, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc8[5] = {0, 1, 3, 4, 5}; + + static const double FE2_C0[12][10] = \ + {{0.0463079953908665, 0.440268993398561, 0.0463079953908666, 0.402250914961474, -0.201125457480737, -0.0145210435563255, -0.0145210435563258, -0.201125457480737, 0.402250914961474, 0.0939061879708835}, + {0.0463079953908666, 0.0463079953908666, 0.440268993398561, -0.201125457480737, 0.402250914961474, -0.201125457480737, 0.402250914961474, -0.0145210435563257, -0.0145210435563255, 0.0939061879708831}, + {0.440268993398561, 0.0463079953908666, 0.0463079953908666, -0.0145210435563257, -0.0145210435563258, 0.402250914961474, -0.201125457480737, 0.402250914961474, -0.201125457480737, 0.0939061879708837}, + {0.0393516858174583, -0.0626737220523998, 0.0393516858174587, 0.283654926157929, -0.141827463078965, -0.0705102461991971, -0.0705102461991981, -0.141827463078964, 0.28365492615793, 0.841335916657949}, + {0.0393516858174583, 0.0393516858174588, -0.0626737220523998, -0.141827463078965, 0.283654926157929, -0.141827463078964, 0.28365492615793, -0.0705102461991973, -0.070510246199198, 0.841335916657949}, + {-0.0626737220524, 0.0393516858174588, 0.0393516858174587, -0.0705102461991977, -0.0705102461991979, 0.283654926157931, -0.141827463078965, 0.283654926157931, -0.141827463078965, 0.841335916657947}, + {0.041110728466435, -0.0261932265993555, 0.0114358260653798, 0.808488952668146, -0.0612852214487413, -0.0623880968176902, -0.00511703591602521, -0.127951879895303, 0.138446419692862, 0.283453533784293}, + {0.0114358260653798, -0.0261932265993554, 0.041110728466435, 0.138446419692862, -0.127951879895303, -0.00511703591602502, -0.0623880968176904, -0.0612852214487413, 0.808488952668146, 0.283453533784293}, + {0.041110728466435, 0.0114358260653799, -0.0261932265993555, -0.0612852214487411, 0.808488952668146, -0.127951879895303, 0.138446419692862, -0.0623880968176904, -0.00511703591602494, 0.283453533784293}, + {-0.0261932265993555, 0.0114358260653798, 0.041110728466435, -0.00511703591602513, -0.0623880968176903, 0.138446419692862, -0.127951879895303, 0.808488952668146, -0.0612852214487411, 0.283453533784293}, + {0.0114358260653798, 0.0411107284664351, -0.0261932265993555, -0.127951879895303, 0.138446419692862, -0.0612852214487413, 0.808488952668146, -0.00511703591602512, -0.0623880968176902, 0.283453533784293}, + {-0.0261932265993556, 0.0411107284664352, 0.0114358260653798, -0.0623880968176903, -0.00511703591602509, 0.808488952668146, -0.0612852214487412, 0.138446419692862, -0.127951879895303, 0.283453533784293}}; + + // Array of non-zero columns + static const unsigned int nzc18[10] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19}; + + // Array of non-zero columns + static const unsigned int nzc15[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; + + static const double FE2_C0_D01[12][9] = \ + {{-0.485931890194852, 0.485931890194852, 6.37592643035589, -2.44372756077941, -0.0537330206183706, 0.0537330206183702, 2.44372756077941, -6.37592643035589, 0.0}, + {-0.485931890194854, 3.44372756077941, -0.230167544593387, 1.20457074358531, 2.21356001618603, -5.17135568677059, 0.176434523975019, 0.230167544593388, -1.38100526756033}, + {-3.44372756077941, 0.485931890194852, -0.230167544593386, -0.176434523975019, 5.17135568677058, -2.21356001618602, -1.20457074358531, 0.230167544593385, 1.38100526756033}, + {0.404638308746458, -0.404638308746456, 1.13786605847598, 1.11855323498582, -0.838942397791738, 0.838942397791737, -1.11855323498583, -1.13786605847598, 1.14908083048704e-14}, + {0.404638308746458, -0.118553234985829, -0.282847955477361, 2.25318217517853, -1.40140119046319, 1.11531611670257, -0.55609444231438, 0.282847955477361, -1.69708773286415}, + {0.118553234985824, -0.404638308746456, -0.282847955477361, 0.556094442314373, -1.11531611670255, 1.40140119046319, -2.25318217517854, 0.282847955477361, 1.69708773286417}, + {-0.559823901757263, -0.492870367157913, 2.60506707768882, 2.46932174262301, 0.750232850760382, 0.302461418154794, 1.95093340590807, -2.60506707768882, -4.42025514853108}, + {0.492870367157913, 0.559823901757264, 2.60506707768882, -1.95093340590807, -0.302461418154794, -0.750232850760383, -2.46932174262301, -2.60506707768882, 4.42025514853108}, + {-0.559823901757263, 0.740805831642527, -0.0962843375058833, 3.93699695901727, 1.749910031967, -1.93089196185226, 0.951256224701446, 0.0962843375058839, -4.88825318371872}, + {-0.740805831642527, 0.559823901757263, -0.0962843375058788, -0.95125622470145, 1.93089196185226, -1.749910031967, -3.93699695901727, 0.0962843375058796, 4.88825318371872}, + {0.492870367157913, 0.740805831642527, -0.201023373941063, 0.674175115836557, -2.56560608012889, 1.33192988132845, -0.206177080648913, 0.201023373941064, -0.467998035187646}, + {-0.740805831642527, -0.492870367157913, -0.201023373941065, 0.206177080648914, -1.33192988132845, 2.56560608012889, -0.674175115836559, 0.201023373941066, 0.467998035187645}}; + + // Array of non-zero columns + static const unsigned int nzc19[9] = {10, 12, 13, 14, 15, 16, 17, 18, 19}; + + // Array of non-zero columns + static const unsigned int nzc16[9] = {0, 2, 3, 4, 5, 6, 7, 8, 9}; + + static const double FE2_C0_D10[12][9] = \ + {{-0.485931890194853, 3.44372756077941, 1.20457074358531, -0.23016754459339, 0.176434523975015, 0.230167544593389, 2.21356001618602, -5.17135568677058, -1.38100526756033}, + {-0.485931890194854, 0.485931890194854, -2.44372756077941, 6.3759264303559, 2.44372756077941, -6.3759264303559, -0.0537330206183693, 0.0537330206183686, 0.0}, + {-3.44372756077941, 0.485931890194853, -0.176434523975017, -0.23016754459339, -1.20457074358531, 0.23016754459339, 5.17135568677058, -2.21356001618602, 1.38100526756033}, + {0.404638308746458, -0.118553234985829, 2.25318217517853, -0.282847955477361, -0.556094442314378, 0.282847955477361, -1.40140119046319, 1.11531611670256, -1.69708773286415}, + {0.404638308746458, -0.404638308746456, 1.11855323498582, 1.13786605847598, -1.11855323498584, -1.13786605847598, -0.838942397791738, 0.838942397791735, 1.51461450489301e-14}, + {0.118553234985824, -0.404638308746456, 0.556094442314373, -0.282847955477361, -2.25318217517854, 0.282847955477361, -1.11531611670255, 1.40140119046318, 1.69708773286417}, + {-0.559823901757263, 0.740805831642527, 3.93699695901727, -0.0962843375058792, 0.951256224701449, 0.0962843375058786, 1.749910031967, -1.93089196185226, -4.88825318371872}, + {0.492870367157913, 0.740805831642526, 0.674175115836557, -0.201023373941065, -0.206177080648913, 0.201023373941065, -2.56560608012889, 1.33192988132845, -0.467998035187644}, + {-0.559823901757263, -0.492870367157914, 2.46932174262301, 2.60506707768882, 1.95093340590806, -2.60506707768882, 0.750232850760383, 0.302461418154794, -4.42025514853107}, + {-0.740805831642527, -0.492870367157914, 0.206177080648913, -0.201023373941065, -0.674175115836558, 0.201023373941065, -1.33192988132845, 2.56560608012889, 0.467998035187645}, + {0.492870367157913, 0.559823901757263, -1.95093340590806, 2.60506707768882, -2.46932174262301, -2.60506707768882, -0.302461418154794, -0.750232850760383, 4.42025514853107}, + {-0.740805831642527, 0.559823901757263, -0.951256224701447, -0.0962843375058807, -3.93699695901727, 0.0962843375058803, 1.93089196185226, -1.749910031967, 4.88825318371872}}; + + // Array of non-zero columns + static const unsigned int nzc20[9] = {10, 11, 13, 14, 15, 16, 17, 18, 19}; + + // Array of non-zero columns + static const unsigned int nzc17[9] = {0, 1, 3, 4, 5, 6, 7, 8, 9}; + + // Reset values in the element tensor. + A[0] = 0.0; + // Number of operations to compute geometry constants: 23. + double G[11]; + G[0] = - det*w[2][0]*(K[0]*K[2] + K[1]*K[3]); + G[1] = - K[0]*det; + G[2] = - K[1]*det; + G[3] = - det*w[2][0]*(K[0]*K[0] + K[1]*K[1]); + G[4] = - det*w[2][0]*(K[2]*K[2] + K[3]*K[3]); + G[5] = - K[2]*det; + G[6] = - K[3]*det; + G[7] = K[2]*det; + G[8] = K[1]*det; + G[9] = K[3]*det; + G[10] = K[0]*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 3024 + for (unsigned int ip = 0; ip < 12; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + double F6 = 0.0; + double F7 = 0.0; + double F8 = 0.0; + double F9 = 0.0; + double F10 = 0.0; + double F11 = 0.0; + double F12 = 0.0; + double F13 = 0.0; + + // Total number of operations to compute function values = 72 + for (unsigned int r = 0; r < 9; r++) + { + F9 += FE2_C0_D10[ip][r]*w[3][nzc17[r]]; + F10 += FE2_C0_D01[ip][r]*w[3][nzc16[r]]; + F11 += FE2_C0_D10[ip][r]*w[3][nzc20[r]]; + F12 += FE2_C0_D01[ip][r]*w[3][nzc19[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 40 + for (unsigned int r = 0; r < 10; r++) + { + F4 += FE2_C0[ip][r]*w[3][nzc15[r]]; + F7 += FE2_C0[ip][r]*w[3][nzc18[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 3; r++) + { + F13 += FE0_C0[ip][r]*w[0][nzc12[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 40 + for (unsigned int r = 0; r < 5; r++) + { + F0 += FE1_C0_D10[ip][r]*w[0][nzc8[r]]; + F1 += FE1_C0_D01[ip][r]*w[0][nzc7[r]]; + F5 += FE1_C0_D10[ip][r]*w[0][nzc11[r]]; + F6 += FE1_C0_D01[ip][r]*w[0][nzc10[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 36 + for (unsigned int r = 0; r < 6; r++) + { + F2 += FE1_C0[ip][r]*w[0][nzc6[r]]; + F3 += FE1_C0[ip][r]*w[0][nzc9[r]]; + F8 += FE1_C0[ip][r]*w[3][nzc21[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 57 + double I[1]; + // Number of operations: 57 + I[0] = W12[ip]*(F0*(F10*G[0] + F3*F4*G[2] + F9*G[3] + G[1]*(F8 + F2*F4)) + F1*(F10*G[4] + F3*F4*G[6] + F9*G[0] + G[5]*(F8 + F2*F4)) + F13*(F10*G[7] + F11*G[8] + F12*G[9] + F9*G[10]) + F5*(F11*G[3] + F12*G[0] + F2*F7*G[1] + G[2]*(F8 + F3*F7)) + F6*(F11*G[0] + F12*G[4] + F2*F7*G[5] + G[6]*(F8 + F3*F7))); + + + // Number of operations for primary indices: 1 + // Number of operations to compute entry: 1 + A[0] += I[0]; + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivenavierstokes_exterior_facet_integral_2_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivenavierstokes_exterior_facet_integral_2_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_exterior_facet_integral_2_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true, false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + const bool direction = dx1*(vertex_coordinates[2*facet] - vertex_coordinates[2*v0]) - dx0*(vertex_coordinates[2*facet + 1] - vertex_coordinates[2*v0 + 1]) < 0; + // Compute facet normals from the facet scale factor constants + const double n0 = direction ? dx1 / det : -dx1 / det; + const double n1 = direction ? -dx0 / det : dx0 / det; + + // Facet area + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W3[3] = {0.277777777777778, 0.444444444444444, 0.277777777777778}; + // Quadrature points on the UFC reference element: (0.112701665379258), (0.5), (0.887298334620742) + + // Values of basis functions at quadrature points. + static const double FE0_f0[3][2] = \ + {{0.887298334620742, 0.112701665379258}, + {0.5, 0.5}, + {0.112701665379258, 0.887298334620742}}; + + // Array of non-zero columns + static const unsigned int nzc0[2] = {1, 2}; + + // Array of non-zero columns + static const unsigned int nzc2[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 2}; + + static const double FE2_f0_C0[3][4] = \ + {{0.488014084041408, 0.061985915958592, 0.747852751738001, -0.297852751738001}, + {-0.0625, -0.0625, 0.5625, 0.5625}, + {0.0619859159585921, 0.488014084041408, -0.297852751738001, 0.747852751738001}}; + + // Array of non-zero columns + static const unsigned int nzc14[4] = {11, 12, 13, 14}; + + // Array of non-zero columns + static const unsigned int nzc13[4] = {1, 2, 3, 4}; + + // Array of non-zero columns + static const unsigned int nzc20[4] = {10, 11, 17, 18}; + + // Array of non-zero columns + static const unsigned int nzc19[4] = {0, 1, 7, 8}; + + // Array of non-zero columns + static const unsigned int nzc16[4] = {0, 2, 5, 6}; + + // Array of non-zero columns + static const unsigned int nzc17[4] = {10, 12, 15, 16}; + + // Reset values in the element tensor. + A[0] = 0.0; + // Number of operations to compute geometry constants: 2. + double G[2]; + G[0] = - det*n0; + G[1] = - det*n1; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + switch (facet) + { + case 0: + { + // Total number of operations to compute element tensor (from this point): 78 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 78 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE0_f0[ip][r]*w[1][nzc0[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 16 + for (unsigned int r = 0; r < 4; r++) + { + F1 += FE2_f0_C0[ip][r]*w[3][nzc13[r]]; + F2 += FE2_f0_C0[ip][r]*w[3][nzc14[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 5 + double I[1]; + // Number of operations: 5 + I[0] = F0*W3[ip]*(F1*G[0] + F2*G[1]); + + + // Number of operations for primary indices: 1 + // Number of operations to compute entry: 1 + A[0] += I[0]; + } // end loop over 'ip' + break; + } + case 1: + { + // Total number of operations to compute element tensor (from this point): 78 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 78 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE0_f0[ip][r]*w[1][nzc1[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 16 + for (unsigned int r = 0; r < 4; r++) + { + F1 += FE2_f0_C0[ip][r]*w[3][nzc16[r]]; + F2 += FE2_f0_C0[ip][r]*w[3][nzc17[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 5 + double I[1]; + // Number of operations: 5 + I[0] = F0*W3[ip]*(F1*G[0] + F2*G[1]); + + + // Number of operations for primary indices: 1 + // Number of operations to compute entry: 1 + A[0] += I[0]; + } // end loop over 'ip' + break; + } + case 2: + { + // Total number of operations to compute element tensor (from this point): 78 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 78 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE0_f0[ip][r]*w[1][nzc2[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 16 + for (unsigned int r = 0; r < 4; r++) + { + F1 += FE2_f0_C0[ip][r]*w[3][nzc19[r]]; + F2 += FE2_f0_C0[ip][r]*w[3][nzc20[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 5 + double I[1]; + // Number of operations: 5 + I[0] = F0*W3[ip]*(F1*G[0] + F2*G[1]); + + + // Number of operations for primary indices: 1 + // Number of operations to compute entry: 1 + A[0] += I[0]; + } // end loop over 'ip' + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivenavierstokes_cell_integral_3_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivenavierstokes_cell_integral_3_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_cell_integral_3_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 1 + // Number of operations (multiply-add pairs) for tensor contraction: 34 + // Total number of operations (multiply-add pairs): 38 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + + // Compute element tensor + A[0] = 0.00357142857142857*G0_0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = -0.00714285714285713*G0_0; + A[4] = -0.00357142857142856*G0_0; + A[5] = -0.00357142857142856*G0_0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.00357142857142857*G0_0; + A[17] = 0.0; + A[18] = -0.00357142857142857*G0_0; + A[19] = -0.00714285714285713*G0_0; + A[20] = -0.00357142857142857*G0_0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.00357142857142856*G0_0; + A[33] = -0.00357142857142857*G0_0; + A[34] = -0.00357142857142857*G0_0; + A[35] = -0.00714285714285714*G0_0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = -0.00714285714285713*G0_0; + A[46] = -0.00357142857142857*G0_0; + A[47] = -0.00357142857142857*G0_0; + A[48] = 0.0428571428571428*G0_0; + A[49] = 0.0285714285714285*G0_0; + A[50] = 0.0285714285714285*G0_0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = -0.00357142857142856*G0_0; + A[61] = -0.00714285714285713*G0_0; + A[62] = -0.00357142857142856*G0_0; + A[63] = 0.0285714285714285*G0_0; + A[64] = 0.0428571428571428*G0_0; + A[65] = 0.0285714285714285*G0_0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = -0.00357142857142856*G0_0; + A[76] = -0.00357142857142857*G0_0; + A[77] = -0.00714285714285713*G0_0; + A[78] = 0.0285714285714285*G0_0; + A[79] = 0.0285714285714285*G0_0; + A[80] = 0.0428571428571428*G0_0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.00357142857142857*G0_0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = -0.00714285714285713*G0_0; + A[100] = -0.00357142857142856*G0_0; + A[101] = -0.00357142857142856*G0_0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.00357142857142857*G0_0; + A[113] = 0.0; + A[114] = -0.00357142857142857*G0_0; + A[115] = -0.00714285714285713*G0_0; + A[116] = -0.00357142857142857*G0_0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.00357142857142856*G0_0; + A[129] = -0.00357142857142857*G0_0; + A[130] = -0.00357142857142857*G0_0; + A[131] = -0.00714285714285714*G0_0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = -0.00714285714285713*G0_0; + A[142] = -0.00357142857142857*G0_0; + A[143] = -0.00357142857142857*G0_0; + A[144] = 0.0428571428571428*G0_0; + A[145] = 0.0285714285714285*G0_0; + A[146] = 0.0285714285714285*G0_0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = -0.00357142857142856*G0_0; + A[157] = -0.00714285714285713*G0_0; + A[158] = -0.00357142857142856*G0_0; + A[159] = 0.0285714285714285*G0_0; + A[160] = 0.0428571428571428*G0_0; + A[161] = 0.0285714285714285*G0_0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = -0.00357142857142856*G0_0; + A[172] = -0.00357142857142857*G0_0; + A[173] = -0.00714285714285713*G0_0; + A[174] = 0.0285714285714285*G0_0; + A[175] = 0.0285714285714285*G0_0; + A[176] = 0.0428571428571428*G0_0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0; + A[192] = 0.0321428571428571*G0_0; + A[193] = 0.0214285714285714*G0_0; + A[194] = 0.0214285714285714*G0_0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0214285714285714*G0_0; + A[208] = 0.0321428571428571*G0_0; + A[209] = 0.0214285714285714*G0_0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0214285714285714*G0_0; + A[223] = 0.0214285714285714*G0_0; + A[224] = 0.0321428571428571*G0_0; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivenavierstokes_cell_integral_4_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivenavierstokes_cell_integral_4_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_cell_integral_4_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W25[25] = {0.0114650803515925, 0.0198040831320473, 0.0173415064313656, 0.0087554991821638, 0.00186555216687783, 0.0231612219294983, 0.0400072873861603, 0.0350325045033716, 0.0176874521104834, 0.0037687016953276, 0.0275289856644697, 0.0475518970579538, 0.0416389652151948, 0.021022967487322, 0.00447940679728133, 0.0231612219294983, 0.0400072873861603, 0.0350325045033716, 0.0176874521104834, 0.0037687016953276, 0.0114650803515925, 0.0198040831320473, 0.0173415064313656, 0.0087554991821638, 0.00186555216687783}; + // Quadrature points on the UFC reference element: (0.0450425935698037, 0.0398098570514687), (0.0376212523451112, 0.198013417873608), (0.0263646449444709, 0.437974810247386), (0.0142857943955714, 0.695464273353636), (0.00462228846504642, 0.901464914201174), (0.221578609552379, 0.0398098570514687), (0.185070710267389, 0.198013417873608), (0.129695936782254, 0.437974810247386), (0.0702762920082817, 0.695464273353636), (0.022738483063764, 0.901464914201174), (0.480095071474266, 0.0398098570514687), (0.400993291063196, 0.198013417873608), (0.281012594876307, 0.437974810247386), (0.152267863323182, 0.695464273353636), (0.0492675428994132, 0.901464914201174), (0.738611533396152, 0.0398098570514687), (0.616915871859002, 0.198013417873608), (0.43232925297036, 0.437974810247386), (0.234259434638082, 0.695464273353636), (0.0757966027350624, 0.901464914201174), (0.915147549378728, 0.0398098570514687), (0.764365329781281, 0.198013417873608), (0.535660544808143, 0.437974810247386), (0.290249932250792, 0.695464273353636), (0.09391279733378, 0.901464914201174) + + // Values of basis functions at quadrature points. + static const double FE0[25][1] = \ + {{0.0443066477812843}, + {0.153742030524499}, + {0.167003080840912}, + {0.0778601276421668}, + {0.0105656060730507}, + {0.175913147778989}, + {0.610410534080673}, + {0.663061619658879}, + {0.309132394931335}, + {0.0419492133929458}, + {0.247747270005307}, + {0.859671635180817}, + {0.933822788062264}, + {0.435366587895191}, + {0.0590791718992464}, + {0.175913147778989}, + {0.610410534080673}, + {0.663061619658879}, + {0.309132394931336}, + {0.0419492133929458}, + {0.0443066477812842}, + {0.153742030524499}, + {0.167003080840912}, + {0.0778601276421677}, + {0.0105656060730508}}; + + static const double FE0_D01[25][1] = \ + {{1.06454195761932}, + {0.575285441238399}, + {0.0695371421115221}, + {-0.156297836604569}, + {-0.100783948537443}, + {4.18066660252782}, + {2.09321751667939}, + {-0.0197695576719489}, + {-0.875117679872582}, + {-0.506910012747091}, + {5.70722656015913}, + {2.19762631898684}, + {-1.19092570485194}, + {-2.23320663144433}, + {-1.13361310483317}, + {3.62492541922149}, + {-0.215583167171879}, + {-3.59850532693656}, + {-3.95431694241714}, + {-1.79832091177048}, + {0.129295602035074}, + {-3.31015168346013}, + {-5.95304978565769}, + {-5.33822419894345}, + {-2.27407499327841}}; + + static const double FE0_D10[25][1] = \ + {{0.93524635558425}, + {3.88543712469853}, + {6.02258692776922}, + {5.18192636233889}, + {2.17329104474096}, + {0.555741183306335}, + {2.30880068385127}, + {3.57873576926462}, + {3.07919926254456}, + {1.29141089902339}, + {0.0}, + {0.0}, + {0.0}, + {0.0}, + {0.0}, + {-0.555741183306332}, + {-2.30880068385127}, + {-3.57873576926461}, + {-3.07919926254455}, + {-1.29141089902339}, + {-0.935246355584244}, + {-3.88543712469853}, + {-6.02258692776921}, + {-5.18192636233888}, + {-2.17329104474096}}; + + static const double FE1_C0[25][3] = \ + {{0.915147549378728, 0.0450425935698037, 0.0398098570514687}, + {0.764365329781281, 0.0376212523451112, 0.198013417873608}, + {0.535660544808143, 0.026364644944471, 0.437974810247386}, + {0.290249932250793, 0.0142857943955714, 0.695464273353636}, + {0.0939127973337801, 0.00462228846504648, 0.901464914201173}, + {0.738611533396152, 0.221578609552379, 0.0398098570514687}, + {0.616915871859002, 0.185070710267389, 0.198013417873608}, + {0.43232925297036, 0.129695936782254, 0.437974810247386}, + {0.234259434638082, 0.0702762920082818, 0.695464273353636}, + {0.0757966027350624, 0.0227384830637641, 0.901464914201173}, + {0.480095071474266, 0.480095071474266, 0.0398098570514687}, + {0.400993291063196, 0.400993291063196, 0.198013417873608}, + {0.281012594876307, 0.281012594876307, 0.437974810247386}, + {0.152267863323182, 0.152267863323182, 0.695464273353636}, + {0.0492675428994133, 0.0492675428994133, 0.901464914201173}, + {0.221578609552379, 0.738611533396152, 0.0398098570514687}, + {0.185070710267389, 0.616915871859002, 0.198013417873608}, + {0.129695936782254, 0.43232925297036, 0.437974810247386}, + {0.0702762920082818, 0.234259434638082, 0.695464273353636}, + {0.0227384830637641, 0.0757966027350624, 0.901464914201173}, + {0.0450425935698037, 0.915147549378728, 0.0398098570514687}, + {0.0376212523451112, 0.764365329781281, 0.198013417873608}, + {0.026364644944471, 0.535660544808143, 0.437974810247386}, + {0.0142857943955715, 0.290249932250793, 0.695464273353636}, + {0.00462228846504648, 0.0939127973337801, 0.901464914201173}}; + + // Array of non-zero columns + static const unsigned int nzc12[3] = {12, 13, 14}; + + static const double FE2_C0[25][6] = \ + {{0.759842524889054, -0.0409849230988147, -0.036640207614552, 0.00717255684496523, 0.145727572487076, 0.164882476492272}, + {0.404143384962011, -0.0347905350890822, -0.119594790557632, 0.0297980510461639, 0.605418365816316, 0.115025523822223}, + {0.0382038937201701, -0.0249744559383748, -0.0543309414249183, 0.0461882014671775, 0.938423301877431, 0.0564900002985142}, + {-0.121759885907613, -0.0138776265525463, 0.271876837668966, 0.0397410384743819, 0.807433832894958, 0.0165858034218534}, + {-0.0762735703276687, -0.00457955736373819, 0.723813068870285, 0.0166673234982246, 0.338636367163553, 0.00173636815934466}, + {0.352482461135478, -0.123384449130048, -0.036640207614552, 0.0352840510877737, 0.117616078244268, 0.65464206627708}, + {0.144254514044104, -0.116568374669637, -0.119594790557632, 0.146585935553368, 0.488630481309112, 0.456692234320685}, + {-0.0585120870225411, -0.0960538647466012, -0.0543309414249183, 0.227214213208259, 0.75739729013635, 0.224285389849452}, + {-0.124504469204174, -0.0603987775714151, 0.271876837668966, 0.19549860142211, 0.65167626994723, 0.0658515377372834}, + {-0.0643063527627087, -0.0217044058396818, 0.723813068870285, 0.0819917787365634, 0.273311911925214, 0.00689399907032823}, + {-0.0191125161665052, -0.0191125161665052, -0.036640207614552, 0.0764500646660207, 0.0764500646660207, 0.921965110615521}, + {-0.07940205210781, -0.07940205210781, -0.119594790557632, 0.31760820843124, 0.31760820843124, 0.643182477910772}, + {-0.123076437918076, -0.123076437918076, -0.0543309414249183, 0.492305751672304, 0.492305751672304, 0.315872313916462}, + {-0.105896858921167, -0.105896858921168, 0.271876837668966, 0.42358743568467, 0.42358743568467, 0.0927420088040289}, + {-0.0444129613327222, -0.0444129613327222, 0.723813068870285, 0.177651845330889, 0.177651845330889, 0.00970916313338205}, + {-0.123384449130048, 0.352482461135478, -0.036640207614552, 0.117616078244268, 0.0352840510877737, 0.65464206627708}, + {-0.116568374669637, 0.144254514044104, -0.119594790557632, 0.488630481309112, 0.146585935553368, 0.456692234320686}, + {-0.0960538647466012, -0.0585120870225412, -0.0543309414249183, 0.75739729013635, 0.227214213208259, 0.224285389849452}, + {-0.0603987775714152, -0.124504469204174, 0.271876837668966, 0.651676269947229, 0.19549860142211, 0.0658515377372834}, + {-0.0217044058396818, -0.0643063527627086, 0.723813068870285, 0.273311911925214, 0.0819917787365634, 0.00689399907032823}, + {-0.0409849230988147, 0.759842524889054, -0.036640207614552, 0.145727572487076, 0.00717255684496515, 0.164882476492272}, + {-0.0347905350890822, 0.404143384962011, -0.119594790557632, 0.605418365816316, 0.0297980510461639, 0.115025523822223}, + {-0.0249744559383749, 0.0382038937201699, -0.0543309414249183, 0.938423301877431, 0.0461882014671776, 0.0564900002985143}, + {-0.0138776265525464, -0.121759885907613, 0.271876837668966, 0.807433832894958, 0.0397410384743823, 0.0165858034218535}, + {-0.00457955736373816, -0.0762735703276687, 0.723813068870285, 0.338636367163553, 0.0166673234982245, 0.00173636815934466}}; + + // Array of non-zero columns + static const unsigned int nzc9[6] = {6, 7, 8, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc6[6] = {0, 1, 2, 3, 4, 5}; + + static const double FE2_C0_D01[25][5] = \ + {{-2.66059019751491, -0.840760571794125, 0.180170374279214, 3.50135076930903, -0.180170374279214}, + {-2.05746131912512, -0.207946328505567, 0.150485009380444, 2.26540764763069, -0.150485009380444}, + {-1.14264217923257, 0.751899240989544, 0.105458579777883, 0.390742938243027, -0.105458579777883}, + {-0.16099972900317, 1.78185709341454, 0.0571431775822844, -1.62085736441137, -0.0571431775822845}, + {0.62434881066488, 2.60585965680469, 0.0184891538601843, -3.23020846746957, -0.0184891538601851}, + {-1.95444613358461, -0.840760571794125, 0.886314438209516, 2.79520670537873, -0.886314438209517}, + {-1.46766348743601, -0.207946328505567, 0.740282841069557, 1.67560981594158, -0.740282841069557}, + {-0.729317011881439, 0.751899240989545, 0.518783747129015, -0.0225822291081059, -0.518783747129016}, + {0.0629622614476711, 1.78185709341454, 0.281105168033126, -1.84481935486221, -0.281105168033126}, + {0.696813589059751, 2.60585965680469, 0.0909539322550552, -3.30267324586444, -0.0909539322550557}, + {-0.920380285897062, -0.840760571794124, 1.92038028589706, 1.76114085769119, -1.92038028589706}, + {-0.603973164252783, -0.207946328505567, 1.60397316425278, 0.81191949275835, -1.60397316425278}, + {-0.124050379505227, 0.751899240989545, 1.12405037950523, -0.627848861484317, -1.12405037950523}, + {0.390928546707272, 1.78185709341454, 0.609071453292727, -2.17278564012182, -0.609071453292727}, + {0.802929828402347, 2.60585965680469, 0.197070171597652, -3.40878948520704, -0.197070171597652}, + {0.113685561790484, -0.840760571794124, 2.95444613358461, 0.727075010003642, -2.95444613358461}, + {0.259717158930443, -0.207946328505567, 2.46766348743601, -0.051770830424875, -2.46766348743601}, + {0.481216252870984, 0.751899240989545, 1.72931701188144, -1.23311549386053, -1.72931701188144}, + {0.718894831966873, 1.78185709341454, 0.937037738552328, -2.50075192538142, -0.937037738552328}, + {0.909046067744944, 2.60585965680469, 0.303186410940248, -3.51490572454964, -0.303186410940249}, + {0.819829625720786, -0.840760571794125, 3.66059019751491, 0.0209309460733402, -3.66059019751491}, + {0.849514990619556, -0.207946328505567, 3.05746131912512, -0.641568662113988, -3.05746131912512}, + {0.894541420222117, 0.751899240989544, 2.14264217923257, -1.64644066121166, -2.14264217923257}, + {0.942856822417715, 1.78185709341454, 1.16099972900317, -2.72471391583226, -1.16099972900317}, + {0.981510846139814, 2.60585965680469, 0.375651189335119, -3.58737050294451, -0.37565118933512}}; + + // Array of non-zero columns + static const unsigned int nzc10[5] = {6, 8, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc7[5] = {0, 2, 3, 4, 5}; + + static const double FE2_C0_D10[25][5] = \ + {{-2.66059019751491, -0.819829625720786, 0.159239428205873, -0.159239428205873, 3.4804198232357}, + {-2.05746131912512, -0.849514990619556, 0.792053671494432, -0.792053671494432, 2.90697630974468}, + {-1.14264217923257, -0.894541420222117, 1.75189924098954, -1.75189924098954, 2.03718359945469}, + {-0.16099972900317, -0.942856822417715, 2.78185709341454, -2.78185709341454, 1.10385655142088}, + {0.624348810664881, -0.981510846139815, 3.60585965680469, -3.60585965680469, 0.357162035474933}, + {-1.95444613358461, -0.113685561790483, 0.159239428205874, -0.159239428205874, 2.06813169537509}, + {-1.46766348743601, -0.259717158930443, 0.792053671494432, -0.792053671494432, 1.72738064636645}, + {-0.729317011881439, -0.481216252870984, 1.75189924098954, -1.75189924098954, 1.21053326475242}, + {0.0629622614476715, -0.718894831966874, 2.78185709341454, -2.78185709341454, 0.655932570519202}, + {0.696813589059751, -0.909046067744945, 3.60585965680469, -3.60585965680469, 0.212232478685192}, + {-0.920380285897062, 0.920380285897063, 0.159239428205874, -0.159239428205874, 0.0}, + {-0.603973164252783, 0.603973164252784, 0.792053671494432, -0.792053671494432, 0.0}, + {-0.124050379505227, 0.124050379505227, 1.75189924098954, -1.75189924098954, 0.0}, + {0.390928546707273, -0.390928546707273, 2.78185709341454, -2.78185709341454, 0.0}, + {0.802929828402348, -0.802929828402348, 3.60585965680469, -3.60585965680469, 0.0}, + {0.113685561790483, 1.95444613358461, 0.159239428205874, -0.159239428205874, -2.06813169537509}, + {0.259717158930443, 1.46766348743601, 0.792053671494432, -0.792053671494432, -1.72738064636645}, + {0.481216252870984, 0.729317011881438, 1.75189924098954, -1.75189924098954, -1.21053326475242}, + {0.718894831966874, -0.0629622614476716, 2.78185709341454, -2.78185709341454, -0.655932570519203}, + {0.909046067744945, -0.696813589059751, 3.60585965680469, -3.60585965680469, -0.212232478685195}, + {0.819829625720785, 2.66059019751491, 0.159239428205873, -0.159239428205873, -3.48041982323569}, + {0.849514990619556, 2.05746131912512, 0.792053671494432, -0.792053671494432, -2.90697630974468}, + {0.894541420222117, 1.14264217923257, 1.75189924098954, -1.75189924098954, -2.03718359945469}, + {0.942856822417715, 0.16099972900317, 2.78185709341454, -2.78185709341454, -1.10385655142089}, + {0.981510846139816, -0.62434881066488, 3.60585965680469, -3.60585965680469, -0.357162035474936}}; + + // Array of non-zero columns + static const unsigned int nzc11[5] = {6, 7, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc8[5] = {0, 1, 3, 4, 5}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 15; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 23. + double G[11]; + G[0] = - K[0]*det; + G[1] = - K[2]*det; + G[2] = - K[1]*det; + G[3] = - K[3]*det; + G[4] = - det*w[2][0]*(K[0]*K[2] + K[1]*K[3]); + G[5] = - det*w[2][0]*(K[2]*K[2] + K[3]*K[3]); + G[6] = K[3]*det; + G[7] = - det*w[2][0]*(K[0]*K[0] + K[1]*K[1]); + G[8] = K[1]*det; + G[9] = K[2]*det; + G[10] = K[0]*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 5825 + for (unsigned int ip = 0; ip < 25; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + double F6 = 0.0; + double F7 = 0.0; + double F8 = 0.0; + double F9 = 0.0; + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 1; r++) + { + F4 += FE0[ip][0]*w[3][0]; + F7 += FE0_D10[ip][0]*w[3][0]; + F8 += FE0_D01[ip][0]*w[3][0]; + } // end loop over 'r' + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 3; r++) + { + F9 += FE1_C0[ip][r]*w[0][nzc12[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 40 + for (unsigned int r = 0; r < 5; r++) + { + F0 += FE2_C0_D10[ip][r]*w[0][nzc8[r]]; + F1 += FE2_C0_D01[ip][r]*w[0][nzc7[r]]; + F5 += FE2_C0_D10[ip][r]*w[0][nzc11[r]]; + F6 += FE2_C0_D01[ip][r]*w[0][nzc10[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 24 + for (unsigned int r = 0; r < 6; r++) + { + F2 += FE2_C0[ip][r]*w[0][nzc6[r]]; + F3 += FE2_C0[ip][r]*w[0][nzc9[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 87 + double I[7]; + // Number of operations: 9 + I[0] = F4*W25[ip]*(F0*G[0] + F1*G[1] + F5*G[2] + F6*G[3]); + + // Number of operations: 7 + I[1] = F4*W25[ip]*(F5*G[4] + F6*G[5] + F9*G[6]); + + // Number of operations: 7 + I[2] = F4*W25[ip]*(F5*G[7] + F6*G[4] + F9*G[8]); + + // Number of operations: 7 + I[3] = F4*W25[ip]*(F0*G[4] + F1*G[5] + F9*G[9]); + + // Number of operations: 7 + I[4] = F4*W25[ip]*(F0*G[7] + F1*G[4] + F9*G[10]); + + // Number of operations: 25 + I[5] = W25[ip]*(F4*(F2*(F0*G[0] + F1*G[1]) + F3*(F0*G[2] + F1*G[3])) + F7*(F0*G[7] + F1*G[4] + F9*G[10]) + F8*(F0*G[4] + F1*G[5] + F9*G[9])); + + // Number of operations: 25 + I[6] = W25[ip]*(F5*(F4*(F2*G[0] + F3*G[2]) + F7*G[7] + F8*G[4]) + F6*(F4*(F2*G[1] + F3*G[3]) + F7*G[4] + F8*G[5]) + F9*(F7*G[8] + F8*G[6])); + + + // Number of operations for primary indices: 6 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc12[j]] += FE1_C0[ip][j]*I[0]; + } // end loop over 'j' + + // Number of operations for primary indices: 40 + for (unsigned int j = 0; j < 5; j++) + { + // Number of operations to compute entry: 2 + A[nzc10[j]] += FE2_C0_D01[ip][j]*I[1]; + // Number of operations to compute entry: 2 + A[nzc11[j]] += FE2_C0_D10[ip][j]*I[2]; + // Number of operations to compute entry: 2 + A[nzc7[j]] += FE2_C0_D01[ip][j]*I[3]; + // Number of operations to compute entry: 2 + A[nzc8[j]] += FE2_C0_D10[ip][j]*I[4]; + } // end loop over 'j' + + // Number of operations for primary indices: 24 + for (unsigned int j = 0; j < 6; j++) + { + // Number of operations to compute entry: 2 + A[nzc6[j]] += FE2_C0[ip][j]*I[5]; + // Number of operations to compute entry: 2 + A[nzc9[j]] += FE2_C0[ip][j]*I[6]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivenavierstokes_exterior_facet_integral_4_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivenavierstokes_exterior_facet_integral_4_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_exterior_facet_integral_4_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true, false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Get vertices on edge + + // Compute scale factor (length of edge scaled by length of reference interval) + + + // Compute facet normals from the facet scale factor constants + + // Facet area + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + // Values of basis functions at quadrature points. + static const double FE1_f0[4][2] = \ + {{0.930568155797026, 0.0694318442029737}, + {0.669990521792428, 0.330009478207572}, + {0.330009478207572, 0.669990521792428}, + {0.0694318442029738, 0.930568155797026}}; + + // Array of non-zero columns + static const unsigned int nzc2[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 2}; + + // Array of non-zero columns + static const unsigned int nzc0[2] = {1, 2}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 15; r++) + { + A[r] = 0.0; + } // end loop over 'r' + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + switch (facet) + { + case 0: + { + // Total number of operations to compute element tensor (from this point): 16 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 16 + for (unsigned int ip = 0; ip < 4; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE1_f0[ip][r]*w[1][nzc0[r]]; + } // end loop over 'r' + } // end loop over 'ip' + break; + } + case 1: + { + // Total number of operations to compute element tensor (from this point): 16 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 16 + for (unsigned int ip = 0; ip < 4; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE1_f0[ip][r]*w[1][nzc1[r]]; + } // end loop over 'r' + } // end loop over 'ip' + break; + } + case 2: + { + // Total number of operations to compute element tensor (from this point): 16 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 16 + for (unsigned int ip = 0; ip < 4; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE1_f0[ip][r]*w[1][nzc2[r]]; + } // end loop over 'r' + } // end loop over 'ip' + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivenavierstokes_exterior_facet_integral_5_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivenavierstokes_exterior_facet_integral_5_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_exterior_facet_integral_5_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 6 + // Number of operations (multiply-add pairs) for tensor contraction: 165 + // Total number of operations (multiply-add pairs): 181 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0928571428571428*G0_1 - 0.00714285714285713*G0_2 + 0.0476190476190476*G0_3; + A[17] = -0.00714285714285713*G0_1 - 0.00714285714285714*G0_2 - 0.019047619047619*G0_3; + A[18] = 0.0476190476190476*G0_1 - 0.019047619047619*G0_2 + 0.038095238095238*G0_3; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = -0.00714285714285713*G0_1 - 0.00714285714285714*G0_2 - 0.019047619047619*G0_3; + A[32] = -0.00714285714285714*G0_1 + 0.0928571428571428*G0_2 + 0.0476190476190476*G0_3; + A[33] = -0.019047619047619*G0_1 + 0.0476190476190476*G0_2 + 0.0380952380952381*G0_3; + A[34] = 0.0; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0476190476190476*G0_1 - 0.019047619047619*G0_2 + 0.038095238095238*G0_3; + A[47] = -0.019047619047619*G0_1 + 0.0476190476190476*G0_2 + 0.0380952380952381*G0_3; + A[48] = 0.038095238095238*G0_1 + 0.0380952380952381*G0_2 + 0.457142857142857*G0_3; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = 0.0; + A[62] = 0.0; + A[63] = 0.0; + A[64] = 0.0; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0928571428571428*G0_1 - 0.00714285714285713*G0_2 + 0.0476190476190476*G0_3; + A[113] = -0.00714285714285713*G0_1 - 0.00714285714285714*G0_2 - 0.019047619047619*G0_3; + A[114] = 0.0476190476190476*G0_1 - 0.019047619047619*G0_2 + 0.038095238095238*G0_3; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = -0.00714285714285713*G0_1 - 0.00714285714285714*G0_2 - 0.019047619047619*G0_3; + A[128] = -0.00714285714285714*G0_1 + 0.0928571428571428*G0_2 + 0.0476190476190476*G0_3; + A[129] = -0.019047619047619*G0_1 + 0.0476190476190476*G0_2 + 0.0380952380952381*G0_3; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0476190476190476*G0_1 - 0.019047619047619*G0_2 + 0.038095238095238*G0_3; + A[143] = -0.019047619047619*G0_1 + 0.0476190476190476*G0_2 + 0.0380952380952381*G0_3; + A[144] = 0.038095238095238*G0_1 + 0.0380952380952381*G0_2 + 0.457142857142857*G0_3; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.15*G0_1 - 0.0166666666666666*G0_2 + 0.2*G0_3; + A[209] = 0.0166666666666666*G0_1 + 0.0166666666666667*G0_2 + 0.133333333333333*G0_3; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0; + A[223] = 0.0166666666666666*G0_1 + 0.0166666666666667*G0_2 + 0.133333333333333*G0_3; + A[224] = -0.0166666666666666*G0_1 + 0.15*G0_2 + 0.2*G0_3; + break; + } + case 1: + { + A[0] = 0.0928571428571428*G0_0 - 0.00714285714285714*G0_2 + 0.0476190476190476*G0_4; + A[1] = 0.0; + A[2] = -0.00714285714285714*G0_0 - 0.00714285714285713*G0_2 - 0.019047619047619*G0_4; + A[3] = 0.0; + A[4] = 0.0476190476190476*G0_0 - 0.019047619047619*G0_2 + 0.0380952380952381*G0_4; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = -0.00714285714285714*G0_0 - 0.00714285714285713*G0_2 - 0.019047619047619*G0_4; + A[31] = 0.0; + A[32] = -0.00714285714285713*G0_0 + 0.0928571428571428*G0_2 + 0.0476190476190476*G0_4; + A[33] = 0.0; + A[34] = -0.019047619047619*G0_0 + 0.0476190476190476*G0_2 + 0.0380952380952381*G0_4; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0476190476190476*G0_0 - 0.019047619047619*G0_2 + 0.0380952380952381*G0_4; + A[61] = 0.0; + A[62] = -0.019047619047619*G0_0 + 0.0476190476190476*G0_2 + 0.0380952380952381*G0_4; + A[63] = 0.0; + A[64] = 0.0380952380952381*G0_0 + 0.0380952380952381*G0_2 + 0.457142857142857*G0_4; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0928571428571428*G0_0 - 0.00714285714285714*G0_2 + 0.0476190476190476*G0_4; + A[97] = 0.0; + A[98] = -0.00714285714285714*G0_0 - 0.00714285714285713*G0_2 - 0.019047619047619*G0_4; + A[99] = 0.0; + A[100] = 0.0476190476190476*G0_0 - 0.019047619047619*G0_2 + 0.0380952380952381*G0_4; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = -0.00714285714285714*G0_0 - 0.00714285714285713*G0_2 - 0.019047619047619*G0_4; + A[127] = 0.0; + A[128] = -0.00714285714285713*G0_0 + 0.0928571428571428*G0_2 + 0.0476190476190476*G0_4; + A[129] = 0.0; + A[130] = -0.019047619047619*G0_0 + 0.0476190476190476*G0_2 + 0.0380952380952381*G0_4; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0476190476190476*G0_0 - 0.019047619047619*G0_2 + 0.0380952380952381*G0_4; + A[157] = 0.0; + A[158] = -0.019047619047619*G0_0 + 0.0476190476190476*G0_2 + 0.0380952380952381*G0_4; + A[159] = 0.0; + A[160] = 0.0380952380952381*G0_0 + 0.0380952380952381*G0_2 + 0.457142857142857*G0_4; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0; + A[192] = 0.15*G0_0 - 0.0166666666666666*G0_2 + 0.2*G0_4; + A[193] = 0.0; + A[194] = 0.0166666666666667*G0_0 + 0.0166666666666667*G0_2 + 0.133333333333333*G0_4; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0166666666666667*G0_0 + 0.0166666666666667*G0_2 + 0.133333333333333*G0_4; + A[223] = 0.0; + A[224] = -0.0166666666666666*G0_0 + 0.15*G0_2 + 0.2*G0_4; + break; + } + case 2: + { + A[0] = 0.0928571428571428*G0_0 - 0.00714285714285714*G0_1 + 0.0476190476190476*G0_5; + A[1] = -0.00714285714285714*G0_0 - 0.00714285714285714*G0_1 - 0.019047619047619*G0_5; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0476190476190476*G0_0 - 0.019047619047619*G0_1 + 0.0380952380952381*G0_5; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = -0.00714285714285714*G0_0 - 0.00714285714285714*G0_1 - 0.019047619047619*G0_5; + A[16] = -0.00714285714285714*G0_0 + 0.0928571428571428*G0_1 + 0.0476190476190476*G0_5; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = -0.019047619047619*G0_0 + 0.0476190476190476*G0_1 + 0.0380952380952381*G0_5; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = 0.0; + A[62] = 0.0; + A[63] = 0.0; + A[64] = 0.0; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0476190476190476*G0_0 - 0.019047619047619*G0_1 + 0.0380952380952381*G0_5; + A[76] = -0.019047619047619*G0_0 + 0.0476190476190476*G0_1 + 0.0380952380952381*G0_5; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0380952380952381*G0_0 + 0.0380952380952381*G0_1 + 0.457142857142857*G0_5; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0928571428571428*G0_0 - 0.00714285714285714*G0_1 + 0.0476190476190476*G0_5; + A[97] = -0.00714285714285714*G0_0 - 0.00714285714285714*G0_1 - 0.019047619047619*G0_5; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0476190476190476*G0_0 - 0.019047619047619*G0_1 + 0.0380952380952381*G0_5; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = -0.00714285714285714*G0_0 - 0.00714285714285714*G0_1 - 0.019047619047619*G0_5; + A[112] = -0.00714285714285714*G0_0 + 0.0928571428571428*G0_1 + 0.0476190476190476*G0_5; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = -0.019047619047619*G0_0 + 0.0476190476190476*G0_1 + 0.0380952380952381*G0_5; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0476190476190476*G0_0 - 0.019047619047619*G0_1 + 0.0380952380952381*G0_5; + A[172] = -0.019047619047619*G0_0 + 0.0476190476190476*G0_1 + 0.0380952380952381*G0_5; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0380952380952381*G0_0 + 0.0380952380952381*G0_1 + 0.457142857142857*G0_5; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0; + A[192] = 0.15*G0_0 - 0.0166666666666667*G0_1 + 0.2*G0_5; + A[193] = 0.0166666666666667*G0_0 + 0.0166666666666667*G0_1 + 0.133333333333333*G0_5; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0166666666666666*G0_0 + 0.0166666666666667*G0_1 + 0.133333333333333*G0_5; + A[208] = -0.0166666666666667*G0_0 + 0.15*G0_1 + 0.2*G0_5; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the +/// interior facet tensor corresponding to the local contribution to +/// a form from the integral over an interior facet. + +class adaptivenavierstokes_interior_facet_integral_5_otherwise: public ufc::interior_facet_integral +{ +public: + + /// Constructor + adaptivenavierstokes_interior_facet_integral_5_otherwise() : ufc::interior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_interior_facet_integral_5_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local interior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates_0, + const double* vertex_coordinates_1, + std::size_t facet_0, + std::size_t facet_1, + int cell_orientation_0, + int cell_orientation_1) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 12 + // Number of operations (multiply-add pairs) for geometry tensor: 12 + // Number of operations (multiply-add pairs) for tensor contraction: 990 + // Total number of operations (multiply-add pairs): 1014 + + // Compute Jacobian + double J_0[4]; + compute_jacobian_triangle_2d(J_0, vertex_coordinates_0); + + // Compute Jacobian inverse and determinant + double K_0[4]; + double detJ_0; + compute_jacobian_inverse_triangle_2d(K_0, detJ_0, J_0); + + // Compute Jacobian + double J_1[4]; + compute_jacobian_triangle_2d(J_1, vertex_coordinates_1); + + // Compute Jacobian inverse and determinant + double K_1[4]; + double detJ_1; + compute_jacobian_inverse_triangle_2d(K_1, detJ_1, J_1); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet_0][0]; + const unsigned int v1 = edge_vertices[facet_0][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates_0[2*v1 + 0] - vertex_coordinates_0[2*v0 + 0]; + const double dx1 = vertex_coordinates_0[2*v1 + 1] - vertex_coordinates_0[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + + // Compute geometry tensor + const double G0_6 = det*w[0][6]*(1.0); + const double G0_7 = det*w[0][7]*(1.0); + const double G0_8 = det*w[0][8]*(1.0); + const double G0_9 = det*w[0][9]*(1.0); + const double G0_10 = det*w[0][10]*(1.0); + const double G0_11 = det*w[0][11]*(1.0); + const double G1_0 = det*w[0][0]*(1.0); + const double G1_1 = det*w[0][1]*(1.0); + const double G1_2 = det*w[0][2]*(1.0); + const double G1_3 = det*w[0][3]*(1.0); + const double G1_4 = det*w[0][4]*(1.0); + const double G1_5 = det*w[0][5]*(1.0); + + // Compute element tensor + switch (facet_0) + { + case 0: + { + switch (facet_1) + { + case 0: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0928571428571428*G1_1 - 0.00714285714285713*G1_2 + 0.0476190476190476*G1_3; + A[32] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[33] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[34] = 0.0; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[62] = -0.00714285714285714*G1_1 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_3; + A[63] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[64] = 0.0; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[92] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[93] = 0.038095238095238*G1_1 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_3; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0928571428571428*G1_1 - 0.00714285714285713*G1_2 + 0.0476190476190476*G1_3; + A[218] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[219] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0; + A[235] = 0.0; + A[236] = 0.0; + A[237] = 0.0; + A[238] = 0.0; + A[239] = 0.0; + A[240] = 0.0; + A[241] = 0.0; + A[242] = 0.0; + A[243] = 0.0; + A[244] = 0.0; + A[245] = 0.0; + A[246] = 0.0; + A[247] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[248] = -0.00714285714285714*G1_1 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_3; + A[249] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[250] = 0.0; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0; + A[271] = 0.0; + A[272] = 0.0; + A[273] = 0.0; + A[274] = 0.0; + A[275] = 0.0; + A[276] = 0.0; + A[277] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[278] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[279] = 0.038095238095238*G1_1 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_3; + A[280] = 0.0; + A[281] = 0.0; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = 0.0; + A[307] = 0.0; + A[308] = 0.0; + A[309] = 0.0; + A[310] = 0.0; + A[311] = 0.0; + A[312] = 0.0; + A[313] = 0.0; + A[314] = 0.0; + A[315] = 0.0; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0; + A[337] = 0.0; + A[338] = 0.0; + A[339] = 0.0; + A[340] = 0.0; + A[341] = 0.0; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.0; + A[351] = 0.0; + A[352] = 0.0; + A[353] = 0.0; + A[354] = 0.0; + A[355] = 0.0; + A[356] = 0.0; + A[357] = 0.0; + A[358] = 0.0; + A[359] = 0.0; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = 0.0; + A[371] = 0.0; + A[372] = 0.0; + A[373] = 0.0; + A[374] = 0.0; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0; + A[385] = 0.0; + A[386] = 0.0; + A[387] = 0.0; + A[388] = 0.0; + A[389] = 0.0; + A[390] = 0.0; + A[391] = 0.0; + A[392] = 0.0; + A[393] = 0.0; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0; + A[403] = 0.15*G1_1 - 0.0166666666666666*G1_2 + 0.2*G1_3; + A[404] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[405] = 0.0; + A[406] = 0.0; + A[407] = 0.0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0; + A[419] = 0.0; + A[420] = 0.0; + A[421] = 0.0; + A[422] = 0.0; + A[423] = 0.0; + A[424] = 0.0; + A[425] = 0.0; + A[426] = 0.0; + A[427] = 0.0; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0; + A[433] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[434] = -0.0166666666666666*G1_1 + 0.15*G1_2 + 0.2*G1_3; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = 0.0; + A[439] = 0.0; + A[440] = 0.0; + A[441] = 0.0; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0; + A[453] = 0.0; + A[454] = 0.0; + A[455] = 0.0; + A[456] = 0.0; + A[457] = 0.0; + A[458] = 0.0; + A[459] = 0.0; + A[460] = 0.0; + A[461] = 0.0; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0; + A[466] = 0.0; + A[467] = 0.0; + A[468] = 0.0; + A[469] = 0.0; + A[470] = 0.0; + A[471] = 0.0; + A[472] = 0.0; + A[473] = 0.0; + A[474] = 0.0; + A[475] = 0.0; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0; + A[487] = 0.0; + A[488] = 0.0; + A[489] = 0.0; + A[490] = 0.0; + A[491] = 0.0; + A[492] = 0.0; + A[493] = 0.0; + A[494] = 0.0; + A[495] = 0.0; + A[496] = 0.0928571428571428*G0_7 - 0.00714285714285713*G0_8 + 0.0476190476190476*G0_9; + A[497] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[498] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[499] = 0.0; + A[500] = 0.0; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0; + A[507] = 0.0; + A[508] = 0.0; + A[509] = 0.0; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0; + A[521] = 0.0; + A[522] = 0.0; + A[523] = 0.0; + A[524] = 0.0; + A[525] = 0.0; + A[526] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[527] = -0.00714285714285714*G0_7 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_9; + A[528] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[529] = 0.0; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0; + A[541] = 0.0; + A[542] = 0.0; + A[543] = 0.0; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0; + A[555] = 0.0; + A[556] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[557] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[558] = 0.038095238095238*G0_7 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_9; + A[559] = 0.0; + A[560] = 0.0; + A[561] = 0.0; + A[562] = 0.0; + A[563] = 0.0; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0; + A[575] = 0.0; + A[576] = 0.0; + A[577] = 0.0; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0; + A[586] = 0.0; + A[587] = 0.0; + A[588] = 0.0; + A[589] = 0.0; + A[590] = 0.0; + A[591] = 0.0; + A[592] = 0.0; + A[593] = 0.0; + A[594] = 0.0; + A[595] = 0.0; + A[596] = 0.0; + A[597] = 0.0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = 0.0; + A[609] = 0.0; + A[610] = 0.0; + A[611] = 0.0; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0; + A[616] = 0.0; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0; + A[621] = 0.0; + A[622] = 0.0; + A[623] = 0.0; + A[624] = 0.0; + A[625] = 0.0; + A[626] = 0.0; + A[627] = 0.0; + A[628] = 0.0; + A[629] = 0.0; + A[630] = 0.0; + A[631] = 0.0; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = 0.0; + A[643] = 0.0; + A[644] = 0.0; + A[645] = 0.0; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0; + A[652] = 0.0; + A[653] = 0.0; + A[654] = 0.0; + A[655] = 0.0; + A[656] = 0.0; + A[657] = 0.0; + A[658] = 0.0; + A[659] = 0.0; + A[660] = 0.0; + A[661] = 0.0; + A[662] = 0.0; + A[663] = 0.0; + A[664] = 0.0; + A[665] = 0.0; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0; + A[677] = 0.0; + A[678] = 0.0; + A[679] = 0.0; + A[680] = 0.0; + A[681] = 0.0; + A[682] = 0.0928571428571428*G0_7 - 0.00714285714285713*G0_8 + 0.0476190476190476*G0_9; + A[683] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[684] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[685] = 0.0; + A[686] = 0.0; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.0; + A[701] = 0.0; + A[702] = 0.0; + A[703] = 0.0; + A[704] = 0.0; + A[705] = 0.0; + A[706] = 0.0; + A[707] = 0.0; + A[708] = 0.0; + A[709] = 0.0; + A[710] = 0.0; + A[711] = 0.0; + A[712] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[713] = -0.00714285714285714*G0_7 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_9; + A[714] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[715] = 0.0; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0; + A[735] = 0.0; + A[736] = 0.0; + A[737] = 0.0; + A[738] = 0.0; + A[739] = 0.0; + A[740] = 0.0; + A[741] = 0.0; + A[742] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[743] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[744] = 0.038095238095238*G0_7 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_9; + A[745] = 0.0; + A[746] = 0.0; + A[747] = 0.0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0; + A[769] = 0.0; + A[770] = 0.0; + A[771] = 0.0; + A[772] = 0.0; + A[773] = 0.0; + A[774] = 0.0; + A[775] = 0.0; + A[776] = 0.0; + A[777] = 0.0; + A[778] = 0.0; + A[779] = 0.0; + A[780] = 0.0; + A[781] = 0.0; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0; + A[802] = 0.0; + A[803] = 0.0; + A[804] = 0.0; + A[805] = 0.0; + A[806] = 0.0; + A[807] = 0.0; + A[808] = 0.0; + A[809] = 0.0; + A[810] = 0.0; + A[811] = 0.0; + A[812] = 0.0; + A[813] = 0.0; + A[814] = 0.0; + A[815] = 0.0; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0; + A[837] = 0.0; + A[838] = 0.0; + A[839] = 0.0; + A[840] = 0.0; + A[841] = 0.0; + A[842] = 0.0; + A[843] = 0.0; + A[844] = 0.0; + A[845] = 0.0; + A[846] = 0.0; + A[847] = 0.0; + A[848] = 0.0; + A[849] = 0.0; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0; + A[868] = 0.15*G0_7 - 0.0166666666666666*G0_8 + 0.2*G0_9; + A[869] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[870] = 0.0; + A[871] = 0.0; + A[872] = 0.0; + A[873] = 0.0; + A[874] = 0.0; + A[875] = 0.0; + A[876] = 0.0; + A[877] = 0.0; + A[878] = 0.0; + A[879] = 0.0; + A[880] = 0.0; + A[881] = 0.0; + A[882] = 0.0; + A[883] = 0.0; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0; + A[898] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[899] = -0.0166666666666666*G0_7 + 0.15*G0_8 + 0.2*G0_9; + break; + } + case 1: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0928571428571428*G1_1 - 0.00714285714285713*G1_2 + 0.0476190476190476*G1_3; + A[32] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[33] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[34] = 0.0; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[62] = -0.00714285714285714*G1_1 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_3; + A[63] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[64] = 0.0; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[92] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[93] = 0.038095238095238*G1_1 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_3; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0928571428571428*G1_1 - 0.00714285714285713*G1_2 + 0.0476190476190476*G1_3; + A[218] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[219] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0; + A[235] = 0.0; + A[236] = 0.0; + A[237] = 0.0; + A[238] = 0.0; + A[239] = 0.0; + A[240] = 0.0; + A[241] = 0.0; + A[242] = 0.0; + A[243] = 0.0; + A[244] = 0.0; + A[245] = 0.0; + A[246] = 0.0; + A[247] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[248] = -0.00714285714285714*G1_1 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_3; + A[249] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[250] = 0.0; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0; + A[271] = 0.0; + A[272] = 0.0; + A[273] = 0.0; + A[274] = 0.0; + A[275] = 0.0; + A[276] = 0.0; + A[277] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[278] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[279] = 0.038095238095238*G1_1 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_3; + A[280] = 0.0; + A[281] = 0.0; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = 0.0; + A[307] = 0.0; + A[308] = 0.0; + A[309] = 0.0; + A[310] = 0.0; + A[311] = 0.0; + A[312] = 0.0; + A[313] = 0.0; + A[314] = 0.0; + A[315] = 0.0; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0; + A[337] = 0.0; + A[338] = 0.0; + A[339] = 0.0; + A[340] = 0.0; + A[341] = 0.0; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.0; + A[351] = 0.0; + A[352] = 0.0; + A[353] = 0.0; + A[354] = 0.0; + A[355] = 0.0; + A[356] = 0.0; + A[357] = 0.0; + A[358] = 0.0; + A[359] = 0.0; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = 0.0; + A[371] = 0.0; + A[372] = 0.0; + A[373] = 0.0; + A[374] = 0.0; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0; + A[385] = 0.0; + A[386] = 0.0; + A[387] = 0.0; + A[388] = 0.0; + A[389] = 0.0; + A[390] = 0.0; + A[391] = 0.0; + A[392] = 0.0; + A[393] = 0.0; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0; + A[403] = 0.15*G1_1 - 0.0166666666666666*G1_2 + 0.2*G1_3; + A[404] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[405] = 0.0; + A[406] = 0.0; + A[407] = 0.0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0; + A[419] = 0.0; + A[420] = 0.0; + A[421] = 0.0; + A[422] = 0.0; + A[423] = 0.0; + A[424] = 0.0; + A[425] = 0.0; + A[426] = 0.0; + A[427] = 0.0; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0; + A[433] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[434] = -0.0166666666666666*G1_1 + 0.15*G1_2 + 0.2*G1_3; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = 0.0; + A[439] = 0.0; + A[440] = 0.0; + A[441] = 0.0; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0; + A[453] = 0.0; + A[454] = 0.0; + A[455] = 0.0; + A[456] = 0.0; + A[457] = 0.0; + A[458] = 0.0; + A[459] = 0.0; + A[460] = 0.0; + A[461] = 0.0; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_8 + 0.0476190476190476*G0_10; + A[466] = 0.0; + A[467] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[468] = 0.0; + A[469] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[470] = 0.0; + A[471] = 0.0; + A[472] = 0.0; + A[473] = 0.0; + A[474] = 0.0; + A[475] = 0.0; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0; + A[487] = 0.0; + A[488] = 0.0; + A[489] = 0.0; + A[490] = 0.0; + A[491] = 0.0; + A[492] = 0.0; + A[493] = 0.0; + A[494] = 0.0; + A[495] = 0.0; + A[496] = 0.0; + A[497] = 0.0; + A[498] = 0.0; + A[499] = 0.0; + A[500] = 0.0; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0; + A[507] = 0.0; + A[508] = 0.0; + A[509] = 0.0; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0; + A[521] = 0.0; + A[522] = 0.0; + A[523] = 0.0; + A[524] = 0.0; + A[525] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[526] = 0.0; + A[527] = -0.00714285714285713*G0_6 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_10; + A[528] = 0.0; + A[529] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0; + A[541] = 0.0; + A[542] = 0.0; + A[543] = 0.0; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0; + A[555] = 0.0; + A[556] = 0.0; + A[557] = 0.0; + A[558] = 0.0; + A[559] = 0.0; + A[560] = 0.0; + A[561] = 0.0; + A[562] = 0.0; + A[563] = 0.0; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0; + A[575] = 0.0; + A[576] = 0.0; + A[577] = 0.0; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[586] = 0.0; + A[587] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[588] = 0.0; + A[589] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_10; + A[590] = 0.0; + A[591] = 0.0; + A[592] = 0.0; + A[593] = 0.0; + A[594] = 0.0; + A[595] = 0.0; + A[596] = 0.0; + A[597] = 0.0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = 0.0; + A[609] = 0.0; + A[610] = 0.0; + A[611] = 0.0; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0; + A[616] = 0.0; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0; + A[621] = 0.0; + A[622] = 0.0; + A[623] = 0.0; + A[624] = 0.0; + A[625] = 0.0; + A[626] = 0.0; + A[627] = 0.0; + A[628] = 0.0; + A[629] = 0.0; + A[630] = 0.0; + A[631] = 0.0; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = 0.0; + A[643] = 0.0; + A[644] = 0.0; + A[645] = 0.0; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_8 + 0.0476190476190476*G0_10; + A[652] = 0.0; + A[653] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[654] = 0.0; + A[655] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[656] = 0.0; + A[657] = 0.0; + A[658] = 0.0; + A[659] = 0.0; + A[660] = 0.0; + A[661] = 0.0; + A[662] = 0.0; + A[663] = 0.0; + A[664] = 0.0; + A[665] = 0.0; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0; + A[677] = 0.0; + A[678] = 0.0; + A[679] = 0.0; + A[680] = 0.0; + A[681] = 0.0; + A[682] = 0.0; + A[683] = 0.0; + A[684] = 0.0; + A[685] = 0.0; + A[686] = 0.0; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.0; + A[701] = 0.0; + A[702] = 0.0; + A[703] = 0.0; + A[704] = 0.0; + A[705] = 0.0; + A[706] = 0.0; + A[707] = 0.0; + A[708] = 0.0; + A[709] = 0.0; + A[710] = 0.0; + A[711] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[712] = 0.0; + A[713] = -0.00714285714285713*G0_6 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_10; + A[714] = 0.0; + A[715] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0; + A[735] = 0.0; + A[736] = 0.0; + A[737] = 0.0; + A[738] = 0.0; + A[739] = 0.0; + A[740] = 0.0; + A[741] = 0.0; + A[742] = 0.0; + A[743] = 0.0; + A[744] = 0.0; + A[745] = 0.0; + A[746] = 0.0; + A[747] = 0.0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0; + A[769] = 0.0; + A[770] = 0.0; + A[771] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[772] = 0.0; + A[773] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[774] = 0.0; + A[775] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_10; + A[776] = 0.0; + A[777] = 0.0; + A[778] = 0.0; + A[779] = 0.0; + A[780] = 0.0; + A[781] = 0.0; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0; + A[802] = 0.0; + A[803] = 0.0; + A[804] = 0.0; + A[805] = 0.0; + A[806] = 0.0; + A[807] = 0.0; + A[808] = 0.0; + A[809] = 0.0; + A[810] = 0.0; + A[811] = 0.0; + A[812] = 0.0; + A[813] = 0.0; + A[814] = 0.0; + A[815] = 0.0; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0; + A[837] = 0.15*G0_6 - 0.0166666666666666*G0_8 + 0.2*G0_10; + A[838] = 0.0; + A[839] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[840] = 0.0; + A[841] = 0.0; + A[842] = 0.0; + A[843] = 0.0; + A[844] = 0.0; + A[845] = 0.0; + A[846] = 0.0; + A[847] = 0.0; + A[848] = 0.0; + A[849] = 0.0; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0; + A[868] = 0.0; + A[869] = 0.0; + A[870] = 0.0; + A[871] = 0.0; + A[872] = 0.0; + A[873] = 0.0; + A[874] = 0.0; + A[875] = 0.0; + A[876] = 0.0; + A[877] = 0.0; + A[878] = 0.0; + A[879] = 0.0; + A[880] = 0.0; + A[881] = 0.0; + A[882] = 0.0; + A[883] = 0.0; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[898] = 0.0; + A[899] = -0.0166666666666666*G0_6 + 0.15*G0_8 + 0.2*G0_10; + break; + } + case 2: + { + A[0] = 0.0; + A[1] = 0.0; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0928571428571428*G1_1 - 0.00714285714285713*G1_2 + 0.0476190476190476*G1_3; + A[32] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[33] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[34] = 0.0; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[62] = -0.00714285714285714*G1_1 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_3; + A[63] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[64] = 0.0; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[92] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[93] = 0.038095238095238*G1_1 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_3; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0928571428571428*G1_1 - 0.00714285714285713*G1_2 + 0.0476190476190476*G1_3; + A[218] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[219] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0; + A[235] = 0.0; + A[236] = 0.0; + A[237] = 0.0; + A[238] = 0.0; + A[239] = 0.0; + A[240] = 0.0; + A[241] = 0.0; + A[242] = 0.0; + A[243] = 0.0; + A[244] = 0.0; + A[245] = 0.0; + A[246] = 0.0; + A[247] = -0.00714285714285713*G1_1 - 0.00714285714285714*G1_2 - 0.019047619047619*G1_3; + A[248] = -0.00714285714285714*G1_1 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_3; + A[249] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[250] = 0.0; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0; + A[271] = 0.0; + A[272] = 0.0; + A[273] = 0.0; + A[274] = 0.0; + A[275] = 0.0; + A[276] = 0.0; + A[277] = 0.0476190476190476*G1_1 - 0.019047619047619*G1_2 + 0.038095238095238*G1_3; + A[278] = -0.019047619047619*G1_1 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_3; + A[279] = 0.038095238095238*G1_1 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_3; + A[280] = 0.0; + A[281] = 0.0; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = 0.0; + A[307] = 0.0; + A[308] = 0.0; + A[309] = 0.0; + A[310] = 0.0; + A[311] = 0.0; + A[312] = 0.0; + A[313] = 0.0; + A[314] = 0.0; + A[315] = 0.0; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0; + A[337] = 0.0; + A[338] = 0.0; + A[339] = 0.0; + A[340] = 0.0; + A[341] = 0.0; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.0; + A[351] = 0.0; + A[352] = 0.0; + A[353] = 0.0; + A[354] = 0.0; + A[355] = 0.0; + A[356] = 0.0; + A[357] = 0.0; + A[358] = 0.0; + A[359] = 0.0; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = 0.0; + A[371] = 0.0; + A[372] = 0.0; + A[373] = 0.0; + A[374] = 0.0; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0; + A[385] = 0.0; + A[386] = 0.0; + A[387] = 0.0; + A[388] = 0.0; + A[389] = 0.0; + A[390] = 0.0; + A[391] = 0.0; + A[392] = 0.0; + A[393] = 0.0; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0; + A[403] = 0.15*G1_1 - 0.0166666666666666*G1_2 + 0.2*G1_3; + A[404] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[405] = 0.0; + A[406] = 0.0; + A[407] = 0.0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0; + A[419] = 0.0; + A[420] = 0.0; + A[421] = 0.0; + A[422] = 0.0; + A[423] = 0.0; + A[424] = 0.0; + A[425] = 0.0; + A[426] = 0.0; + A[427] = 0.0; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0; + A[433] = 0.0166666666666666*G1_1 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_3; + A[434] = -0.0166666666666666*G1_1 + 0.15*G1_2 + 0.2*G1_3; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = 0.0; + A[439] = 0.0; + A[440] = 0.0; + A[441] = 0.0; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0; + A[453] = 0.0; + A[454] = 0.0; + A[455] = 0.0; + A[456] = 0.0; + A[457] = 0.0; + A[458] = 0.0; + A[459] = 0.0; + A[460] = 0.0; + A[461] = 0.0; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_7 + 0.0476190476190476*G0_11; + A[466] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[467] = 0.0; + A[468] = 0.0; + A[469] = 0.0; + A[470] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[471] = 0.0; + A[472] = 0.0; + A[473] = 0.0; + A[474] = 0.0; + A[475] = 0.0; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0; + A[487] = 0.0; + A[488] = 0.0; + A[489] = 0.0; + A[490] = 0.0; + A[491] = 0.0; + A[492] = 0.0; + A[493] = 0.0; + A[494] = 0.0; + A[495] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[496] = -0.00714285714285714*G0_6 + 0.0928571428571428*G0_7 + 0.0476190476190476*G0_11; + A[497] = 0.0; + A[498] = 0.0; + A[499] = 0.0; + A[500] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0; + A[507] = 0.0; + A[508] = 0.0; + A[509] = 0.0; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0; + A[521] = 0.0; + A[522] = 0.0; + A[523] = 0.0; + A[524] = 0.0; + A[525] = 0.0; + A[526] = 0.0; + A[527] = 0.0; + A[528] = 0.0; + A[529] = 0.0; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0; + A[541] = 0.0; + A[542] = 0.0; + A[543] = 0.0; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0; + A[555] = 0.0; + A[556] = 0.0; + A[557] = 0.0; + A[558] = 0.0; + A[559] = 0.0; + A[560] = 0.0; + A[561] = 0.0; + A[562] = 0.0; + A[563] = 0.0; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0; + A[575] = 0.0; + A[576] = 0.0; + A[577] = 0.0; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0; + A[586] = 0.0; + A[587] = 0.0; + A[588] = 0.0; + A[589] = 0.0; + A[590] = 0.0; + A[591] = 0.0; + A[592] = 0.0; + A[593] = 0.0; + A[594] = 0.0; + A[595] = 0.0; + A[596] = 0.0; + A[597] = 0.0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = 0.0; + A[609] = 0.0; + A[610] = 0.0; + A[611] = 0.0; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[616] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_7 + 0.457142857142857*G0_11; + A[621] = 0.0; + A[622] = 0.0; + A[623] = 0.0; + A[624] = 0.0; + A[625] = 0.0; + A[626] = 0.0; + A[627] = 0.0; + A[628] = 0.0; + A[629] = 0.0; + A[630] = 0.0; + A[631] = 0.0; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = 0.0; + A[643] = 0.0; + A[644] = 0.0; + A[645] = 0.0; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_7 + 0.0476190476190476*G0_11; + A[652] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[653] = 0.0; + A[654] = 0.0; + A[655] = 0.0; + A[656] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[657] = 0.0; + A[658] = 0.0; + A[659] = 0.0; + A[660] = 0.0; + A[661] = 0.0; + A[662] = 0.0; + A[663] = 0.0; + A[664] = 0.0; + A[665] = 0.0; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0; + A[677] = 0.0; + A[678] = 0.0; + A[679] = 0.0; + A[680] = 0.0; + A[681] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[682] = -0.00714285714285714*G0_6 + 0.0928571428571428*G0_7 + 0.0476190476190476*G0_11; + A[683] = 0.0; + A[684] = 0.0; + A[685] = 0.0; + A[686] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.0; + A[701] = 0.0; + A[702] = 0.0; + A[703] = 0.0; + A[704] = 0.0; + A[705] = 0.0; + A[706] = 0.0; + A[707] = 0.0; + A[708] = 0.0; + A[709] = 0.0; + A[710] = 0.0; + A[711] = 0.0; + A[712] = 0.0; + A[713] = 0.0; + A[714] = 0.0; + A[715] = 0.0; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0; + A[735] = 0.0; + A[736] = 0.0; + A[737] = 0.0; + A[738] = 0.0; + A[739] = 0.0; + A[740] = 0.0; + A[741] = 0.0; + A[742] = 0.0; + A[743] = 0.0; + A[744] = 0.0; + A[745] = 0.0; + A[746] = 0.0; + A[747] = 0.0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0; + A[769] = 0.0; + A[770] = 0.0; + A[771] = 0.0; + A[772] = 0.0; + A[773] = 0.0; + A[774] = 0.0; + A[775] = 0.0; + A[776] = 0.0; + A[777] = 0.0; + A[778] = 0.0; + A[779] = 0.0; + A[780] = 0.0; + A[781] = 0.0; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[802] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[803] = 0.0; + A[804] = 0.0; + A[805] = 0.0; + A[806] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_7 + 0.457142857142857*G0_11; + A[807] = 0.0; + A[808] = 0.0; + A[809] = 0.0; + A[810] = 0.0; + A[811] = 0.0; + A[812] = 0.0; + A[813] = 0.0; + A[814] = 0.0; + A[815] = 0.0; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0; + A[837] = 0.15*G0_6 - 0.0166666666666667*G0_7 + 0.2*G0_11; + A[838] = 0.0166666666666666*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[839] = 0.0; + A[840] = 0.0; + A[841] = 0.0; + A[842] = 0.0; + A[843] = 0.0; + A[844] = 0.0; + A[845] = 0.0; + A[846] = 0.0; + A[847] = 0.0; + A[848] = 0.0; + A[849] = 0.0; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[868] = -0.0166666666666667*G0_6 + 0.15*G0_7 + 0.2*G0_11; + A[869] = 0.0; + A[870] = 0.0; + A[871] = 0.0; + A[872] = 0.0; + A[873] = 0.0; + A[874] = 0.0; + A[875] = 0.0; + A[876] = 0.0; + A[877] = 0.0; + A[878] = 0.0; + A[879] = 0.0; + A[880] = 0.0; + A[881] = 0.0; + A[882] = 0.0; + A[883] = 0.0; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0; + A[898] = 0.0; + A[899] = 0.0; + break; + } + } + + break; + } + case 1: + { + switch (facet_1) + { + case 0: + { + A[0] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_2 + 0.0476190476190476*G1_4; + A[1] = 0.0; + A[2] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[3] = 0.0; + A[4] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[61] = 0.0; + A[62] = -0.00714285714285713*G1_0 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_4; + A[63] = 0.0; + A[64] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[121] = 0.0; + A[122] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[123] = 0.0; + A[124] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_4; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_2 + 0.0476190476190476*G1_4; + A[187] = 0.0; + A[188] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[189] = 0.0; + A[190] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[191] = 0.0; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0; + A[235] = 0.0; + A[236] = 0.0; + A[237] = 0.0; + A[238] = 0.0; + A[239] = 0.0; + A[240] = 0.0; + A[241] = 0.0; + A[242] = 0.0; + A[243] = 0.0; + A[244] = 0.0; + A[245] = 0.0; + A[246] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[247] = 0.0; + A[248] = -0.00714285714285713*G1_0 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_4; + A[249] = 0.0; + A[250] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0; + A[271] = 0.0; + A[272] = 0.0; + A[273] = 0.0; + A[274] = 0.0; + A[275] = 0.0; + A[276] = 0.0; + A[277] = 0.0; + A[278] = 0.0; + A[279] = 0.0; + A[280] = 0.0; + A[281] = 0.0; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[307] = 0.0; + A[308] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[309] = 0.0; + A[310] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_4; + A[311] = 0.0; + A[312] = 0.0; + A[313] = 0.0; + A[314] = 0.0; + A[315] = 0.0; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0; + A[337] = 0.0; + A[338] = 0.0; + A[339] = 0.0; + A[340] = 0.0; + A[341] = 0.0; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.0; + A[351] = 0.0; + A[352] = 0.0; + A[353] = 0.0; + A[354] = 0.0; + A[355] = 0.0; + A[356] = 0.0; + A[357] = 0.0; + A[358] = 0.0; + A[359] = 0.0; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = 0.0; + A[371] = 0.0; + A[372] = 0.15*G1_0 - 0.0166666666666666*G1_2 + 0.2*G1_4; + A[373] = 0.0; + A[374] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0; + A[385] = 0.0; + A[386] = 0.0; + A[387] = 0.0; + A[388] = 0.0; + A[389] = 0.0; + A[390] = 0.0; + A[391] = 0.0; + A[392] = 0.0; + A[393] = 0.0; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0; + A[403] = 0.0; + A[404] = 0.0; + A[405] = 0.0; + A[406] = 0.0; + A[407] = 0.0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0; + A[419] = 0.0; + A[420] = 0.0; + A[421] = 0.0; + A[422] = 0.0; + A[423] = 0.0; + A[424] = 0.0; + A[425] = 0.0; + A[426] = 0.0; + A[427] = 0.0; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[433] = 0.0; + A[434] = -0.0166666666666666*G1_0 + 0.15*G1_2 + 0.2*G1_4; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = 0.0; + A[439] = 0.0; + A[440] = 0.0; + A[441] = 0.0; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0; + A[453] = 0.0; + A[454] = 0.0; + A[455] = 0.0; + A[456] = 0.0; + A[457] = 0.0; + A[458] = 0.0; + A[459] = 0.0; + A[460] = 0.0; + A[461] = 0.0; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0; + A[466] = 0.0; + A[467] = 0.0; + A[468] = 0.0; + A[469] = 0.0; + A[470] = 0.0; + A[471] = 0.0; + A[472] = 0.0; + A[473] = 0.0; + A[474] = 0.0; + A[475] = 0.0; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0; + A[487] = 0.0; + A[488] = 0.0; + A[489] = 0.0; + A[490] = 0.0; + A[491] = 0.0; + A[492] = 0.0; + A[493] = 0.0; + A[494] = 0.0; + A[495] = 0.0; + A[496] = 0.0928571428571428*G0_7 - 0.00714285714285713*G0_8 + 0.0476190476190476*G0_9; + A[497] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[498] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[499] = 0.0; + A[500] = 0.0; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0; + A[507] = 0.0; + A[508] = 0.0; + A[509] = 0.0; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0; + A[521] = 0.0; + A[522] = 0.0; + A[523] = 0.0; + A[524] = 0.0; + A[525] = 0.0; + A[526] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[527] = -0.00714285714285714*G0_7 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_9; + A[528] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[529] = 0.0; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0; + A[541] = 0.0; + A[542] = 0.0; + A[543] = 0.0; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0; + A[555] = 0.0; + A[556] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[557] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[558] = 0.038095238095238*G0_7 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_9; + A[559] = 0.0; + A[560] = 0.0; + A[561] = 0.0; + A[562] = 0.0; + A[563] = 0.0; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0; + A[575] = 0.0; + A[576] = 0.0; + A[577] = 0.0; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0; + A[586] = 0.0; + A[587] = 0.0; + A[588] = 0.0; + A[589] = 0.0; + A[590] = 0.0; + A[591] = 0.0; + A[592] = 0.0; + A[593] = 0.0; + A[594] = 0.0; + A[595] = 0.0; + A[596] = 0.0; + A[597] = 0.0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = 0.0; + A[609] = 0.0; + A[610] = 0.0; + A[611] = 0.0; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0; + A[616] = 0.0; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0; + A[621] = 0.0; + A[622] = 0.0; + A[623] = 0.0; + A[624] = 0.0; + A[625] = 0.0; + A[626] = 0.0; + A[627] = 0.0; + A[628] = 0.0; + A[629] = 0.0; + A[630] = 0.0; + A[631] = 0.0; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = 0.0; + A[643] = 0.0; + A[644] = 0.0; + A[645] = 0.0; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0; + A[652] = 0.0; + A[653] = 0.0; + A[654] = 0.0; + A[655] = 0.0; + A[656] = 0.0; + A[657] = 0.0; + A[658] = 0.0; + A[659] = 0.0; + A[660] = 0.0; + A[661] = 0.0; + A[662] = 0.0; + A[663] = 0.0; + A[664] = 0.0; + A[665] = 0.0; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0; + A[677] = 0.0; + A[678] = 0.0; + A[679] = 0.0; + A[680] = 0.0; + A[681] = 0.0; + A[682] = 0.0928571428571428*G0_7 - 0.00714285714285713*G0_8 + 0.0476190476190476*G0_9; + A[683] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[684] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[685] = 0.0; + A[686] = 0.0; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.0; + A[701] = 0.0; + A[702] = 0.0; + A[703] = 0.0; + A[704] = 0.0; + A[705] = 0.0; + A[706] = 0.0; + A[707] = 0.0; + A[708] = 0.0; + A[709] = 0.0; + A[710] = 0.0; + A[711] = 0.0; + A[712] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[713] = -0.00714285714285714*G0_7 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_9; + A[714] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[715] = 0.0; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0; + A[735] = 0.0; + A[736] = 0.0; + A[737] = 0.0; + A[738] = 0.0; + A[739] = 0.0; + A[740] = 0.0; + A[741] = 0.0; + A[742] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[743] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[744] = 0.038095238095238*G0_7 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_9; + A[745] = 0.0; + A[746] = 0.0; + A[747] = 0.0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0; + A[769] = 0.0; + A[770] = 0.0; + A[771] = 0.0; + A[772] = 0.0; + A[773] = 0.0; + A[774] = 0.0; + A[775] = 0.0; + A[776] = 0.0; + A[777] = 0.0; + A[778] = 0.0; + A[779] = 0.0; + A[780] = 0.0; + A[781] = 0.0; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0; + A[802] = 0.0; + A[803] = 0.0; + A[804] = 0.0; + A[805] = 0.0; + A[806] = 0.0; + A[807] = 0.0; + A[808] = 0.0; + A[809] = 0.0; + A[810] = 0.0; + A[811] = 0.0; + A[812] = 0.0; + A[813] = 0.0; + A[814] = 0.0; + A[815] = 0.0; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0; + A[837] = 0.0; + A[838] = 0.0; + A[839] = 0.0; + A[840] = 0.0; + A[841] = 0.0; + A[842] = 0.0; + A[843] = 0.0; + A[844] = 0.0; + A[845] = 0.0; + A[846] = 0.0; + A[847] = 0.0; + A[848] = 0.0; + A[849] = 0.0; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0; + A[868] = 0.15*G0_7 - 0.0166666666666666*G0_8 + 0.2*G0_9; + A[869] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[870] = 0.0; + A[871] = 0.0; + A[872] = 0.0; + A[873] = 0.0; + A[874] = 0.0; + A[875] = 0.0; + A[876] = 0.0; + A[877] = 0.0; + A[878] = 0.0; + A[879] = 0.0; + A[880] = 0.0; + A[881] = 0.0; + A[882] = 0.0; + A[883] = 0.0; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0; + A[898] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[899] = -0.0166666666666666*G0_7 + 0.15*G0_8 + 0.2*G0_9; + break; + } + case 1: + { + A[0] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_2 + 0.0476190476190476*G1_4; + A[1] = 0.0; + A[2] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[3] = 0.0; + A[4] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[61] = 0.0; + A[62] = -0.00714285714285713*G1_0 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_4; + A[63] = 0.0; + A[64] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[121] = 0.0; + A[122] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[123] = 0.0; + A[124] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_4; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_2 + 0.0476190476190476*G1_4; + A[187] = 0.0; + A[188] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[189] = 0.0; + A[190] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[191] = 0.0; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0; + A[235] = 0.0; + A[236] = 0.0; + A[237] = 0.0; + A[238] = 0.0; + A[239] = 0.0; + A[240] = 0.0; + A[241] = 0.0; + A[242] = 0.0; + A[243] = 0.0; + A[244] = 0.0; + A[245] = 0.0; + A[246] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[247] = 0.0; + A[248] = -0.00714285714285713*G1_0 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_4; + A[249] = 0.0; + A[250] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0; + A[271] = 0.0; + A[272] = 0.0; + A[273] = 0.0; + A[274] = 0.0; + A[275] = 0.0; + A[276] = 0.0; + A[277] = 0.0; + A[278] = 0.0; + A[279] = 0.0; + A[280] = 0.0; + A[281] = 0.0; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[307] = 0.0; + A[308] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[309] = 0.0; + A[310] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_4; + A[311] = 0.0; + A[312] = 0.0; + A[313] = 0.0; + A[314] = 0.0; + A[315] = 0.0; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0; + A[337] = 0.0; + A[338] = 0.0; + A[339] = 0.0; + A[340] = 0.0; + A[341] = 0.0; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.0; + A[351] = 0.0; + A[352] = 0.0; + A[353] = 0.0; + A[354] = 0.0; + A[355] = 0.0; + A[356] = 0.0; + A[357] = 0.0; + A[358] = 0.0; + A[359] = 0.0; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = 0.0; + A[371] = 0.0; + A[372] = 0.15*G1_0 - 0.0166666666666666*G1_2 + 0.2*G1_4; + A[373] = 0.0; + A[374] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0; + A[385] = 0.0; + A[386] = 0.0; + A[387] = 0.0; + A[388] = 0.0; + A[389] = 0.0; + A[390] = 0.0; + A[391] = 0.0; + A[392] = 0.0; + A[393] = 0.0; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0; + A[403] = 0.0; + A[404] = 0.0; + A[405] = 0.0; + A[406] = 0.0; + A[407] = 0.0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0; + A[419] = 0.0; + A[420] = 0.0; + A[421] = 0.0; + A[422] = 0.0; + A[423] = 0.0; + A[424] = 0.0; + A[425] = 0.0; + A[426] = 0.0; + A[427] = 0.0; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[433] = 0.0; + A[434] = -0.0166666666666666*G1_0 + 0.15*G1_2 + 0.2*G1_4; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = 0.0; + A[439] = 0.0; + A[440] = 0.0; + A[441] = 0.0; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0; + A[453] = 0.0; + A[454] = 0.0; + A[455] = 0.0; + A[456] = 0.0; + A[457] = 0.0; + A[458] = 0.0; + A[459] = 0.0; + A[460] = 0.0; + A[461] = 0.0; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_8 + 0.0476190476190476*G0_10; + A[466] = 0.0; + A[467] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[468] = 0.0; + A[469] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[470] = 0.0; + A[471] = 0.0; + A[472] = 0.0; + A[473] = 0.0; + A[474] = 0.0; + A[475] = 0.0; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0; + A[487] = 0.0; + A[488] = 0.0; + A[489] = 0.0; + A[490] = 0.0; + A[491] = 0.0; + A[492] = 0.0; + A[493] = 0.0; + A[494] = 0.0; + A[495] = 0.0; + A[496] = 0.0; + A[497] = 0.0; + A[498] = 0.0; + A[499] = 0.0; + A[500] = 0.0; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0; + A[507] = 0.0; + A[508] = 0.0; + A[509] = 0.0; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0; + A[521] = 0.0; + A[522] = 0.0; + A[523] = 0.0; + A[524] = 0.0; + A[525] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[526] = 0.0; + A[527] = -0.00714285714285713*G0_6 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_10; + A[528] = 0.0; + A[529] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0; + A[541] = 0.0; + A[542] = 0.0; + A[543] = 0.0; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0; + A[555] = 0.0; + A[556] = 0.0; + A[557] = 0.0; + A[558] = 0.0; + A[559] = 0.0; + A[560] = 0.0; + A[561] = 0.0; + A[562] = 0.0; + A[563] = 0.0; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0; + A[575] = 0.0; + A[576] = 0.0; + A[577] = 0.0; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[586] = 0.0; + A[587] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[588] = 0.0; + A[589] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_10; + A[590] = 0.0; + A[591] = 0.0; + A[592] = 0.0; + A[593] = 0.0; + A[594] = 0.0; + A[595] = 0.0; + A[596] = 0.0; + A[597] = 0.0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = 0.0; + A[609] = 0.0; + A[610] = 0.0; + A[611] = 0.0; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0; + A[616] = 0.0; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0; + A[621] = 0.0; + A[622] = 0.0; + A[623] = 0.0; + A[624] = 0.0; + A[625] = 0.0; + A[626] = 0.0; + A[627] = 0.0; + A[628] = 0.0; + A[629] = 0.0; + A[630] = 0.0; + A[631] = 0.0; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = 0.0; + A[643] = 0.0; + A[644] = 0.0; + A[645] = 0.0; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_8 + 0.0476190476190476*G0_10; + A[652] = 0.0; + A[653] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[654] = 0.0; + A[655] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[656] = 0.0; + A[657] = 0.0; + A[658] = 0.0; + A[659] = 0.0; + A[660] = 0.0; + A[661] = 0.0; + A[662] = 0.0; + A[663] = 0.0; + A[664] = 0.0; + A[665] = 0.0; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0; + A[677] = 0.0; + A[678] = 0.0; + A[679] = 0.0; + A[680] = 0.0; + A[681] = 0.0; + A[682] = 0.0; + A[683] = 0.0; + A[684] = 0.0; + A[685] = 0.0; + A[686] = 0.0; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.0; + A[701] = 0.0; + A[702] = 0.0; + A[703] = 0.0; + A[704] = 0.0; + A[705] = 0.0; + A[706] = 0.0; + A[707] = 0.0; + A[708] = 0.0; + A[709] = 0.0; + A[710] = 0.0; + A[711] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[712] = 0.0; + A[713] = -0.00714285714285713*G0_6 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_10; + A[714] = 0.0; + A[715] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0; + A[735] = 0.0; + A[736] = 0.0; + A[737] = 0.0; + A[738] = 0.0; + A[739] = 0.0; + A[740] = 0.0; + A[741] = 0.0; + A[742] = 0.0; + A[743] = 0.0; + A[744] = 0.0; + A[745] = 0.0; + A[746] = 0.0; + A[747] = 0.0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0; + A[769] = 0.0; + A[770] = 0.0; + A[771] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[772] = 0.0; + A[773] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[774] = 0.0; + A[775] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_10; + A[776] = 0.0; + A[777] = 0.0; + A[778] = 0.0; + A[779] = 0.0; + A[780] = 0.0; + A[781] = 0.0; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0; + A[802] = 0.0; + A[803] = 0.0; + A[804] = 0.0; + A[805] = 0.0; + A[806] = 0.0; + A[807] = 0.0; + A[808] = 0.0; + A[809] = 0.0; + A[810] = 0.0; + A[811] = 0.0; + A[812] = 0.0; + A[813] = 0.0; + A[814] = 0.0; + A[815] = 0.0; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0; + A[837] = 0.15*G0_6 - 0.0166666666666666*G0_8 + 0.2*G0_10; + A[838] = 0.0; + A[839] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[840] = 0.0; + A[841] = 0.0; + A[842] = 0.0; + A[843] = 0.0; + A[844] = 0.0; + A[845] = 0.0; + A[846] = 0.0; + A[847] = 0.0; + A[848] = 0.0; + A[849] = 0.0; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0; + A[868] = 0.0; + A[869] = 0.0; + A[870] = 0.0; + A[871] = 0.0; + A[872] = 0.0; + A[873] = 0.0; + A[874] = 0.0; + A[875] = 0.0; + A[876] = 0.0; + A[877] = 0.0; + A[878] = 0.0; + A[879] = 0.0; + A[880] = 0.0; + A[881] = 0.0; + A[882] = 0.0; + A[883] = 0.0; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[898] = 0.0; + A[899] = -0.0166666666666666*G0_6 + 0.15*G0_8 + 0.2*G0_10; + break; + } + case 2: + { + A[0] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_2 + 0.0476190476190476*G1_4; + A[1] = 0.0; + A[2] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[3] = 0.0; + A[4] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[5] = 0.0; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = 0.0; + A[31] = 0.0; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = 0.0; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[61] = 0.0; + A[62] = -0.00714285714285713*G1_0 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_4; + A[63] = 0.0; + A[64] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[121] = 0.0; + A[122] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[123] = 0.0; + A[124] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_4; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0; + A[151] = 0.0; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_2 + 0.0476190476190476*G1_4; + A[187] = 0.0; + A[188] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[189] = 0.0; + A[190] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[191] = 0.0; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = 0.0; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0; + A[235] = 0.0; + A[236] = 0.0; + A[237] = 0.0; + A[238] = 0.0; + A[239] = 0.0; + A[240] = 0.0; + A[241] = 0.0; + A[242] = 0.0; + A[243] = 0.0; + A[244] = 0.0; + A[245] = 0.0; + A[246] = -0.00714285714285714*G1_0 - 0.00714285714285713*G1_2 - 0.019047619047619*G1_4; + A[247] = 0.0; + A[248] = -0.00714285714285713*G1_0 + 0.0928571428571428*G1_2 + 0.0476190476190476*G1_4; + A[249] = 0.0; + A[250] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0; + A[271] = 0.0; + A[272] = 0.0; + A[273] = 0.0; + A[274] = 0.0; + A[275] = 0.0; + A[276] = 0.0; + A[277] = 0.0; + A[278] = 0.0; + A[279] = 0.0; + A[280] = 0.0; + A[281] = 0.0; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_2 + 0.0380952380952381*G1_4; + A[307] = 0.0; + A[308] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_2 + 0.0380952380952381*G1_4; + A[309] = 0.0; + A[310] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_2 + 0.457142857142857*G1_4; + A[311] = 0.0; + A[312] = 0.0; + A[313] = 0.0; + A[314] = 0.0; + A[315] = 0.0; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0; + A[337] = 0.0; + A[338] = 0.0; + A[339] = 0.0; + A[340] = 0.0; + A[341] = 0.0; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.0; + A[351] = 0.0; + A[352] = 0.0; + A[353] = 0.0; + A[354] = 0.0; + A[355] = 0.0; + A[356] = 0.0; + A[357] = 0.0; + A[358] = 0.0; + A[359] = 0.0; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = 0.0; + A[371] = 0.0; + A[372] = 0.15*G1_0 - 0.0166666666666666*G1_2 + 0.2*G1_4; + A[373] = 0.0; + A[374] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0; + A[385] = 0.0; + A[386] = 0.0; + A[387] = 0.0; + A[388] = 0.0; + A[389] = 0.0; + A[390] = 0.0; + A[391] = 0.0; + A[392] = 0.0; + A[393] = 0.0; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0; + A[403] = 0.0; + A[404] = 0.0; + A[405] = 0.0; + A[406] = 0.0; + A[407] = 0.0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0; + A[419] = 0.0; + A[420] = 0.0; + A[421] = 0.0; + A[422] = 0.0; + A[423] = 0.0; + A[424] = 0.0; + A[425] = 0.0; + A[426] = 0.0; + A[427] = 0.0; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_2 + 0.133333333333333*G1_4; + A[433] = 0.0; + A[434] = -0.0166666666666666*G1_0 + 0.15*G1_2 + 0.2*G1_4; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = 0.0; + A[439] = 0.0; + A[440] = 0.0; + A[441] = 0.0; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0; + A[453] = 0.0; + A[454] = 0.0; + A[455] = 0.0; + A[456] = 0.0; + A[457] = 0.0; + A[458] = 0.0; + A[459] = 0.0; + A[460] = 0.0; + A[461] = 0.0; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_7 + 0.0476190476190476*G0_11; + A[466] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[467] = 0.0; + A[468] = 0.0; + A[469] = 0.0; + A[470] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[471] = 0.0; + A[472] = 0.0; + A[473] = 0.0; + A[474] = 0.0; + A[475] = 0.0; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0; + A[487] = 0.0; + A[488] = 0.0; + A[489] = 0.0; + A[490] = 0.0; + A[491] = 0.0; + A[492] = 0.0; + A[493] = 0.0; + A[494] = 0.0; + A[495] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[496] = -0.00714285714285714*G0_6 + 0.0928571428571428*G0_7 + 0.0476190476190476*G0_11; + A[497] = 0.0; + A[498] = 0.0; + A[499] = 0.0; + A[500] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0; + A[507] = 0.0; + A[508] = 0.0; + A[509] = 0.0; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0; + A[521] = 0.0; + A[522] = 0.0; + A[523] = 0.0; + A[524] = 0.0; + A[525] = 0.0; + A[526] = 0.0; + A[527] = 0.0; + A[528] = 0.0; + A[529] = 0.0; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0; + A[541] = 0.0; + A[542] = 0.0; + A[543] = 0.0; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0; + A[555] = 0.0; + A[556] = 0.0; + A[557] = 0.0; + A[558] = 0.0; + A[559] = 0.0; + A[560] = 0.0; + A[561] = 0.0; + A[562] = 0.0; + A[563] = 0.0; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0; + A[575] = 0.0; + A[576] = 0.0; + A[577] = 0.0; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0; + A[586] = 0.0; + A[587] = 0.0; + A[588] = 0.0; + A[589] = 0.0; + A[590] = 0.0; + A[591] = 0.0; + A[592] = 0.0; + A[593] = 0.0; + A[594] = 0.0; + A[595] = 0.0; + A[596] = 0.0; + A[597] = 0.0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = 0.0; + A[609] = 0.0; + A[610] = 0.0; + A[611] = 0.0; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[616] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_7 + 0.457142857142857*G0_11; + A[621] = 0.0; + A[622] = 0.0; + A[623] = 0.0; + A[624] = 0.0; + A[625] = 0.0; + A[626] = 0.0; + A[627] = 0.0; + A[628] = 0.0; + A[629] = 0.0; + A[630] = 0.0; + A[631] = 0.0; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = 0.0; + A[643] = 0.0; + A[644] = 0.0; + A[645] = 0.0; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_7 + 0.0476190476190476*G0_11; + A[652] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[653] = 0.0; + A[654] = 0.0; + A[655] = 0.0; + A[656] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[657] = 0.0; + A[658] = 0.0; + A[659] = 0.0; + A[660] = 0.0; + A[661] = 0.0; + A[662] = 0.0; + A[663] = 0.0; + A[664] = 0.0; + A[665] = 0.0; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0; + A[677] = 0.0; + A[678] = 0.0; + A[679] = 0.0; + A[680] = 0.0; + A[681] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[682] = -0.00714285714285714*G0_6 + 0.0928571428571428*G0_7 + 0.0476190476190476*G0_11; + A[683] = 0.0; + A[684] = 0.0; + A[685] = 0.0; + A[686] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.0; + A[701] = 0.0; + A[702] = 0.0; + A[703] = 0.0; + A[704] = 0.0; + A[705] = 0.0; + A[706] = 0.0; + A[707] = 0.0; + A[708] = 0.0; + A[709] = 0.0; + A[710] = 0.0; + A[711] = 0.0; + A[712] = 0.0; + A[713] = 0.0; + A[714] = 0.0; + A[715] = 0.0; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0; + A[735] = 0.0; + A[736] = 0.0; + A[737] = 0.0; + A[738] = 0.0; + A[739] = 0.0; + A[740] = 0.0; + A[741] = 0.0; + A[742] = 0.0; + A[743] = 0.0; + A[744] = 0.0; + A[745] = 0.0; + A[746] = 0.0; + A[747] = 0.0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0; + A[769] = 0.0; + A[770] = 0.0; + A[771] = 0.0; + A[772] = 0.0; + A[773] = 0.0; + A[774] = 0.0; + A[775] = 0.0; + A[776] = 0.0; + A[777] = 0.0; + A[778] = 0.0; + A[779] = 0.0; + A[780] = 0.0; + A[781] = 0.0; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[802] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[803] = 0.0; + A[804] = 0.0; + A[805] = 0.0; + A[806] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_7 + 0.457142857142857*G0_11; + A[807] = 0.0; + A[808] = 0.0; + A[809] = 0.0; + A[810] = 0.0; + A[811] = 0.0; + A[812] = 0.0; + A[813] = 0.0; + A[814] = 0.0; + A[815] = 0.0; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0; + A[837] = 0.15*G0_6 - 0.0166666666666667*G0_7 + 0.2*G0_11; + A[838] = 0.0166666666666666*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[839] = 0.0; + A[840] = 0.0; + A[841] = 0.0; + A[842] = 0.0; + A[843] = 0.0; + A[844] = 0.0; + A[845] = 0.0; + A[846] = 0.0; + A[847] = 0.0; + A[848] = 0.0; + A[849] = 0.0; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[868] = -0.0166666666666667*G0_6 + 0.15*G0_7 + 0.2*G0_11; + A[869] = 0.0; + A[870] = 0.0; + A[871] = 0.0; + A[872] = 0.0; + A[873] = 0.0; + A[874] = 0.0; + A[875] = 0.0; + A[876] = 0.0; + A[877] = 0.0; + A[878] = 0.0; + A[879] = 0.0; + A[880] = 0.0; + A[881] = 0.0; + A[882] = 0.0; + A[883] = 0.0; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0; + A[898] = 0.0; + A[899] = 0.0; + break; + } + } + + break; + } + case 2: + { + switch (facet_1) + { + case 0: + { + A[0] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_1 + 0.0476190476190476*G1_5; + A[1] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[31] = -0.00714285714285714*G1_0 + 0.0928571428571428*G1_1 + 0.0476190476190476*G1_5; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = 0.0; + A[62] = 0.0; + A[63] = 0.0; + A[64] = 0.0; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[151] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_1 + 0.457142857142857*G1_5; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_1 + 0.0476190476190476*G1_5; + A[187] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[217] = -0.00714285714285714*G1_0 + 0.0928571428571428*G1_1 + 0.0476190476190476*G1_5; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0; + A[235] = 0.0; + A[236] = 0.0; + A[237] = 0.0; + A[238] = 0.0; + A[239] = 0.0; + A[240] = 0.0; + A[241] = 0.0; + A[242] = 0.0; + A[243] = 0.0; + A[244] = 0.0; + A[245] = 0.0; + A[246] = 0.0; + A[247] = 0.0; + A[248] = 0.0; + A[249] = 0.0; + A[250] = 0.0; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0; + A[271] = 0.0; + A[272] = 0.0; + A[273] = 0.0; + A[274] = 0.0; + A[275] = 0.0; + A[276] = 0.0; + A[277] = 0.0; + A[278] = 0.0; + A[279] = 0.0; + A[280] = 0.0; + A[281] = 0.0; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = 0.0; + A[307] = 0.0; + A[308] = 0.0; + A[309] = 0.0; + A[310] = 0.0; + A[311] = 0.0; + A[312] = 0.0; + A[313] = 0.0; + A[314] = 0.0; + A[315] = 0.0; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[337] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[338] = 0.0; + A[339] = 0.0; + A[340] = 0.0; + A[341] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_1 + 0.457142857142857*G1_5; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.0; + A[351] = 0.0; + A[352] = 0.0; + A[353] = 0.0; + A[354] = 0.0; + A[355] = 0.0; + A[356] = 0.0; + A[357] = 0.0; + A[358] = 0.0; + A[359] = 0.0; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = 0.0; + A[371] = 0.0; + A[372] = 0.15*G1_0 - 0.0166666666666667*G1_1 + 0.2*G1_5; + A[373] = 0.0166666666666666*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[374] = 0.0; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0; + A[385] = 0.0; + A[386] = 0.0; + A[387] = 0.0; + A[388] = 0.0; + A[389] = 0.0; + A[390] = 0.0; + A[391] = 0.0; + A[392] = 0.0; + A[393] = 0.0; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[403] = -0.0166666666666667*G1_0 + 0.15*G1_1 + 0.2*G1_5; + A[404] = 0.0; + A[405] = 0.0; + A[406] = 0.0; + A[407] = 0.0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0; + A[419] = 0.0; + A[420] = 0.0; + A[421] = 0.0; + A[422] = 0.0; + A[423] = 0.0; + A[424] = 0.0; + A[425] = 0.0; + A[426] = 0.0; + A[427] = 0.0; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0; + A[433] = 0.0; + A[434] = 0.0; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = 0.0; + A[439] = 0.0; + A[440] = 0.0; + A[441] = 0.0; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0; + A[453] = 0.0; + A[454] = 0.0; + A[455] = 0.0; + A[456] = 0.0; + A[457] = 0.0; + A[458] = 0.0; + A[459] = 0.0; + A[460] = 0.0; + A[461] = 0.0; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0; + A[466] = 0.0; + A[467] = 0.0; + A[468] = 0.0; + A[469] = 0.0; + A[470] = 0.0; + A[471] = 0.0; + A[472] = 0.0; + A[473] = 0.0; + A[474] = 0.0; + A[475] = 0.0; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0; + A[487] = 0.0; + A[488] = 0.0; + A[489] = 0.0; + A[490] = 0.0; + A[491] = 0.0; + A[492] = 0.0; + A[493] = 0.0; + A[494] = 0.0; + A[495] = 0.0; + A[496] = 0.0928571428571428*G0_7 - 0.00714285714285713*G0_8 + 0.0476190476190476*G0_9; + A[497] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[498] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[499] = 0.0; + A[500] = 0.0; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0; + A[507] = 0.0; + A[508] = 0.0; + A[509] = 0.0; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0; + A[521] = 0.0; + A[522] = 0.0; + A[523] = 0.0; + A[524] = 0.0; + A[525] = 0.0; + A[526] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[527] = -0.00714285714285714*G0_7 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_9; + A[528] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[529] = 0.0; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0; + A[541] = 0.0; + A[542] = 0.0; + A[543] = 0.0; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0; + A[555] = 0.0; + A[556] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[557] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[558] = 0.038095238095238*G0_7 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_9; + A[559] = 0.0; + A[560] = 0.0; + A[561] = 0.0; + A[562] = 0.0; + A[563] = 0.0; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0; + A[575] = 0.0; + A[576] = 0.0; + A[577] = 0.0; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0; + A[586] = 0.0; + A[587] = 0.0; + A[588] = 0.0; + A[589] = 0.0; + A[590] = 0.0; + A[591] = 0.0; + A[592] = 0.0; + A[593] = 0.0; + A[594] = 0.0; + A[595] = 0.0; + A[596] = 0.0; + A[597] = 0.0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = 0.0; + A[609] = 0.0; + A[610] = 0.0; + A[611] = 0.0; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0; + A[616] = 0.0; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0; + A[621] = 0.0; + A[622] = 0.0; + A[623] = 0.0; + A[624] = 0.0; + A[625] = 0.0; + A[626] = 0.0; + A[627] = 0.0; + A[628] = 0.0; + A[629] = 0.0; + A[630] = 0.0; + A[631] = 0.0; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = 0.0; + A[643] = 0.0; + A[644] = 0.0; + A[645] = 0.0; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0; + A[652] = 0.0; + A[653] = 0.0; + A[654] = 0.0; + A[655] = 0.0; + A[656] = 0.0; + A[657] = 0.0; + A[658] = 0.0; + A[659] = 0.0; + A[660] = 0.0; + A[661] = 0.0; + A[662] = 0.0; + A[663] = 0.0; + A[664] = 0.0; + A[665] = 0.0; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0; + A[677] = 0.0; + A[678] = 0.0; + A[679] = 0.0; + A[680] = 0.0; + A[681] = 0.0; + A[682] = 0.0928571428571428*G0_7 - 0.00714285714285713*G0_8 + 0.0476190476190476*G0_9; + A[683] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[684] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[685] = 0.0; + A[686] = 0.0; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.0; + A[701] = 0.0; + A[702] = 0.0; + A[703] = 0.0; + A[704] = 0.0; + A[705] = 0.0; + A[706] = 0.0; + A[707] = 0.0; + A[708] = 0.0; + A[709] = 0.0; + A[710] = 0.0; + A[711] = 0.0; + A[712] = -0.00714285714285713*G0_7 - 0.00714285714285714*G0_8 - 0.019047619047619*G0_9; + A[713] = -0.00714285714285714*G0_7 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_9; + A[714] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[715] = 0.0; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0; + A[735] = 0.0; + A[736] = 0.0; + A[737] = 0.0; + A[738] = 0.0; + A[739] = 0.0; + A[740] = 0.0; + A[741] = 0.0; + A[742] = 0.0476190476190476*G0_7 - 0.019047619047619*G0_8 + 0.038095238095238*G0_9; + A[743] = -0.019047619047619*G0_7 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_9; + A[744] = 0.038095238095238*G0_7 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_9; + A[745] = 0.0; + A[746] = 0.0; + A[747] = 0.0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0; + A[769] = 0.0; + A[770] = 0.0; + A[771] = 0.0; + A[772] = 0.0; + A[773] = 0.0; + A[774] = 0.0; + A[775] = 0.0; + A[776] = 0.0; + A[777] = 0.0; + A[778] = 0.0; + A[779] = 0.0; + A[780] = 0.0; + A[781] = 0.0; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0; + A[802] = 0.0; + A[803] = 0.0; + A[804] = 0.0; + A[805] = 0.0; + A[806] = 0.0; + A[807] = 0.0; + A[808] = 0.0; + A[809] = 0.0; + A[810] = 0.0; + A[811] = 0.0; + A[812] = 0.0; + A[813] = 0.0; + A[814] = 0.0; + A[815] = 0.0; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0; + A[837] = 0.0; + A[838] = 0.0; + A[839] = 0.0; + A[840] = 0.0; + A[841] = 0.0; + A[842] = 0.0; + A[843] = 0.0; + A[844] = 0.0; + A[845] = 0.0; + A[846] = 0.0; + A[847] = 0.0; + A[848] = 0.0; + A[849] = 0.0; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0; + A[868] = 0.15*G0_7 - 0.0166666666666666*G0_8 + 0.2*G0_9; + A[869] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[870] = 0.0; + A[871] = 0.0; + A[872] = 0.0; + A[873] = 0.0; + A[874] = 0.0; + A[875] = 0.0; + A[876] = 0.0; + A[877] = 0.0; + A[878] = 0.0; + A[879] = 0.0; + A[880] = 0.0; + A[881] = 0.0; + A[882] = 0.0; + A[883] = 0.0; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0; + A[898] = 0.0166666666666666*G0_7 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_9; + A[899] = -0.0166666666666666*G0_7 + 0.15*G0_8 + 0.2*G0_9; + break; + } + case 1: + { + A[0] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_1 + 0.0476190476190476*G1_5; + A[1] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[31] = -0.00714285714285714*G1_0 + 0.0928571428571428*G1_1 + 0.0476190476190476*G1_5; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = 0.0; + A[62] = 0.0; + A[63] = 0.0; + A[64] = 0.0; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[151] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_1 + 0.457142857142857*G1_5; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_1 + 0.0476190476190476*G1_5; + A[187] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[217] = -0.00714285714285714*G1_0 + 0.0928571428571428*G1_1 + 0.0476190476190476*G1_5; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0; + A[235] = 0.0; + A[236] = 0.0; + A[237] = 0.0; + A[238] = 0.0; + A[239] = 0.0; + A[240] = 0.0; + A[241] = 0.0; + A[242] = 0.0; + A[243] = 0.0; + A[244] = 0.0; + A[245] = 0.0; + A[246] = 0.0; + A[247] = 0.0; + A[248] = 0.0; + A[249] = 0.0; + A[250] = 0.0; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0; + A[271] = 0.0; + A[272] = 0.0; + A[273] = 0.0; + A[274] = 0.0; + A[275] = 0.0; + A[276] = 0.0; + A[277] = 0.0; + A[278] = 0.0; + A[279] = 0.0; + A[280] = 0.0; + A[281] = 0.0; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = 0.0; + A[307] = 0.0; + A[308] = 0.0; + A[309] = 0.0; + A[310] = 0.0; + A[311] = 0.0; + A[312] = 0.0; + A[313] = 0.0; + A[314] = 0.0; + A[315] = 0.0; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[337] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[338] = 0.0; + A[339] = 0.0; + A[340] = 0.0; + A[341] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_1 + 0.457142857142857*G1_5; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.0; + A[351] = 0.0; + A[352] = 0.0; + A[353] = 0.0; + A[354] = 0.0; + A[355] = 0.0; + A[356] = 0.0; + A[357] = 0.0; + A[358] = 0.0; + A[359] = 0.0; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = 0.0; + A[371] = 0.0; + A[372] = 0.15*G1_0 - 0.0166666666666667*G1_1 + 0.2*G1_5; + A[373] = 0.0166666666666666*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[374] = 0.0; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0; + A[385] = 0.0; + A[386] = 0.0; + A[387] = 0.0; + A[388] = 0.0; + A[389] = 0.0; + A[390] = 0.0; + A[391] = 0.0; + A[392] = 0.0; + A[393] = 0.0; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[403] = -0.0166666666666667*G1_0 + 0.15*G1_1 + 0.2*G1_5; + A[404] = 0.0; + A[405] = 0.0; + A[406] = 0.0; + A[407] = 0.0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0; + A[419] = 0.0; + A[420] = 0.0; + A[421] = 0.0; + A[422] = 0.0; + A[423] = 0.0; + A[424] = 0.0; + A[425] = 0.0; + A[426] = 0.0; + A[427] = 0.0; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0; + A[433] = 0.0; + A[434] = 0.0; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = 0.0; + A[439] = 0.0; + A[440] = 0.0; + A[441] = 0.0; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0; + A[453] = 0.0; + A[454] = 0.0; + A[455] = 0.0; + A[456] = 0.0; + A[457] = 0.0; + A[458] = 0.0; + A[459] = 0.0; + A[460] = 0.0; + A[461] = 0.0; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_8 + 0.0476190476190476*G0_10; + A[466] = 0.0; + A[467] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[468] = 0.0; + A[469] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[470] = 0.0; + A[471] = 0.0; + A[472] = 0.0; + A[473] = 0.0; + A[474] = 0.0; + A[475] = 0.0; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0; + A[487] = 0.0; + A[488] = 0.0; + A[489] = 0.0; + A[490] = 0.0; + A[491] = 0.0; + A[492] = 0.0; + A[493] = 0.0; + A[494] = 0.0; + A[495] = 0.0; + A[496] = 0.0; + A[497] = 0.0; + A[498] = 0.0; + A[499] = 0.0; + A[500] = 0.0; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0; + A[507] = 0.0; + A[508] = 0.0; + A[509] = 0.0; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0; + A[521] = 0.0; + A[522] = 0.0; + A[523] = 0.0; + A[524] = 0.0; + A[525] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[526] = 0.0; + A[527] = -0.00714285714285713*G0_6 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_10; + A[528] = 0.0; + A[529] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0; + A[541] = 0.0; + A[542] = 0.0; + A[543] = 0.0; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0; + A[555] = 0.0; + A[556] = 0.0; + A[557] = 0.0; + A[558] = 0.0; + A[559] = 0.0; + A[560] = 0.0; + A[561] = 0.0; + A[562] = 0.0; + A[563] = 0.0; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0; + A[575] = 0.0; + A[576] = 0.0; + A[577] = 0.0; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[586] = 0.0; + A[587] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[588] = 0.0; + A[589] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_10; + A[590] = 0.0; + A[591] = 0.0; + A[592] = 0.0; + A[593] = 0.0; + A[594] = 0.0; + A[595] = 0.0; + A[596] = 0.0; + A[597] = 0.0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = 0.0; + A[609] = 0.0; + A[610] = 0.0; + A[611] = 0.0; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0; + A[616] = 0.0; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0; + A[621] = 0.0; + A[622] = 0.0; + A[623] = 0.0; + A[624] = 0.0; + A[625] = 0.0; + A[626] = 0.0; + A[627] = 0.0; + A[628] = 0.0; + A[629] = 0.0; + A[630] = 0.0; + A[631] = 0.0; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = 0.0; + A[643] = 0.0; + A[644] = 0.0; + A[645] = 0.0; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_8 + 0.0476190476190476*G0_10; + A[652] = 0.0; + A[653] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[654] = 0.0; + A[655] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[656] = 0.0; + A[657] = 0.0; + A[658] = 0.0; + A[659] = 0.0; + A[660] = 0.0; + A[661] = 0.0; + A[662] = 0.0; + A[663] = 0.0; + A[664] = 0.0; + A[665] = 0.0; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0; + A[677] = 0.0; + A[678] = 0.0; + A[679] = 0.0; + A[680] = 0.0; + A[681] = 0.0; + A[682] = 0.0; + A[683] = 0.0; + A[684] = 0.0; + A[685] = 0.0; + A[686] = 0.0; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.0; + A[701] = 0.0; + A[702] = 0.0; + A[703] = 0.0; + A[704] = 0.0; + A[705] = 0.0; + A[706] = 0.0; + A[707] = 0.0; + A[708] = 0.0; + A[709] = 0.0; + A[710] = 0.0; + A[711] = -0.00714285714285714*G0_6 - 0.00714285714285713*G0_8 - 0.019047619047619*G0_10; + A[712] = 0.0; + A[713] = -0.00714285714285713*G0_6 + 0.0928571428571428*G0_8 + 0.0476190476190476*G0_10; + A[714] = 0.0; + A[715] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0; + A[735] = 0.0; + A[736] = 0.0; + A[737] = 0.0; + A[738] = 0.0; + A[739] = 0.0; + A[740] = 0.0; + A[741] = 0.0; + A[742] = 0.0; + A[743] = 0.0; + A[744] = 0.0; + A[745] = 0.0; + A[746] = 0.0; + A[747] = 0.0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0; + A[769] = 0.0; + A[770] = 0.0; + A[771] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_8 + 0.0380952380952381*G0_10; + A[772] = 0.0; + A[773] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_8 + 0.0380952380952381*G0_10; + A[774] = 0.0; + A[775] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_8 + 0.457142857142857*G0_10; + A[776] = 0.0; + A[777] = 0.0; + A[778] = 0.0; + A[779] = 0.0; + A[780] = 0.0; + A[781] = 0.0; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0; + A[802] = 0.0; + A[803] = 0.0; + A[804] = 0.0; + A[805] = 0.0; + A[806] = 0.0; + A[807] = 0.0; + A[808] = 0.0; + A[809] = 0.0; + A[810] = 0.0; + A[811] = 0.0; + A[812] = 0.0; + A[813] = 0.0; + A[814] = 0.0; + A[815] = 0.0; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0; + A[837] = 0.15*G0_6 - 0.0166666666666666*G0_8 + 0.2*G0_10; + A[838] = 0.0; + A[839] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[840] = 0.0; + A[841] = 0.0; + A[842] = 0.0; + A[843] = 0.0; + A[844] = 0.0; + A[845] = 0.0; + A[846] = 0.0; + A[847] = 0.0; + A[848] = 0.0; + A[849] = 0.0; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0; + A[868] = 0.0; + A[869] = 0.0; + A[870] = 0.0; + A[871] = 0.0; + A[872] = 0.0; + A[873] = 0.0; + A[874] = 0.0; + A[875] = 0.0; + A[876] = 0.0; + A[877] = 0.0; + A[878] = 0.0; + A[879] = 0.0; + A[880] = 0.0; + A[881] = 0.0; + A[882] = 0.0; + A[883] = 0.0; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_8 + 0.133333333333333*G0_10; + A[898] = 0.0; + A[899] = -0.0166666666666666*G0_6 + 0.15*G0_8 + 0.2*G0_10; + break; + } + case 2: + { + A[0] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_1 + 0.0476190476190476*G1_5; + A[1] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[2] = 0.0; + A[3] = 0.0; + A[4] = 0.0; + A[5] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[6] = 0.0; + A[7] = 0.0; + A[8] = 0.0; + A[9] = 0.0; + A[10] = 0.0; + A[11] = 0.0; + A[12] = 0.0; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.0; + A[16] = 0.0; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.0; + A[20] = 0.0; + A[21] = 0.0; + A[22] = 0.0; + A[23] = 0.0; + A[24] = 0.0; + A[25] = 0.0; + A[26] = 0.0; + A[27] = 0.0; + A[28] = 0.0; + A[29] = 0.0; + A[30] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[31] = -0.00714285714285714*G1_0 + 0.0928571428571428*G1_1 + 0.0476190476190476*G1_5; + A[32] = 0.0; + A[33] = 0.0; + A[34] = 0.0; + A[35] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[36] = 0.0; + A[37] = 0.0; + A[38] = 0.0; + A[39] = 0.0; + A[40] = 0.0; + A[41] = 0.0; + A[42] = 0.0; + A[43] = 0.0; + A[44] = 0.0; + A[45] = 0.0; + A[46] = 0.0; + A[47] = 0.0; + A[48] = 0.0; + A[49] = 0.0; + A[50] = 0.0; + A[51] = 0.0; + A[52] = 0.0; + A[53] = 0.0; + A[54] = 0.0; + A[55] = 0.0; + A[56] = 0.0; + A[57] = 0.0; + A[58] = 0.0; + A[59] = 0.0; + A[60] = 0.0; + A[61] = 0.0; + A[62] = 0.0; + A[63] = 0.0; + A[64] = 0.0; + A[65] = 0.0; + A[66] = 0.0; + A[67] = 0.0; + A[68] = 0.0; + A[69] = 0.0; + A[70] = 0.0; + A[71] = 0.0; + A[72] = 0.0; + A[73] = 0.0; + A[74] = 0.0; + A[75] = 0.0; + A[76] = 0.0; + A[77] = 0.0; + A[78] = 0.0; + A[79] = 0.0; + A[80] = 0.0; + A[81] = 0.0; + A[82] = 0.0; + A[83] = 0.0; + A[84] = 0.0; + A[85] = 0.0; + A[86] = 0.0; + A[87] = 0.0; + A[88] = 0.0; + A[89] = 0.0; + A[90] = 0.0; + A[91] = 0.0; + A[92] = 0.0; + A[93] = 0.0; + A[94] = 0.0; + A[95] = 0.0; + A[96] = 0.0; + A[97] = 0.0; + A[98] = 0.0; + A[99] = 0.0; + A[100] = 0.0; + A[101] = 0.0; + A[102] = 0.0; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.0; + A[106] = 0.0; + A[107] = 0.0; + A[108] = 0.0; + A[109] = 0.0; + A[110] = 0.0; + A[111] = 0.0; + A[112] = 0.0; + A[113] = 0.0; + A[114] = 0.0; + A[115] = 0.0; + A[116] = 0.0; + A[117] = 0.0; + A[118] = 0.0; + A[119] = 0.0; + A[120] = 0.0; + A[121] = 0.0; + A[122] = 0.0; + A[123] = 0.0; + A[124] = 0.0; + A[125] = 0.0; + A[126] = 0.0; + A[127] = 0.0; + A[128] = 0.0; + A[129] = 0.0; + A[130] = 0.0; + A[131] = 0.0; + A[132] = 0.0; + A[133] = 0.0; + A[134] = 0.0; + A[135] = 0.0; + A[136] = 0.0; + A[137] = 0.0; + A[138] = 0.0; + A[139] = 0.0; + A[140] = 0.0; + A[141] = 0.0; + A[142] = 0.0; + A[143] = 0.0; + A[144] = 0.0; + A[145] = 0.0; + A[146] = 0.0; + A[147] = 0.0; + A[148] = 0.0; + A[149] = 0.0; + A[150] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[151] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[152] = 0.0; + A[153] = 0.0; + A[154] = 0.0; + A[155] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_1 + 0.457142857142857*G1_5; + A[156] = 0.0; + A[157] = 0.0; + A[158] = 0.0; + A[159] = 0.0; + A[160] = 0.0; + A[161] = 0.0; + A[162] = 0.0; + A[163] = 0.0; + A[164] = 0.0; + A[165] = 0.0; + A[166] = 0.0; + A[167] = 0.0; + A[168] = 0.0; + A[169] = 0.0; + A[170] = 0.0; + A[171] = 0.0; + A[172] = 0.0; + A[173] = 0.0; + A[174] = 0.0; + A[175] = 0.0; + A[176] = 0.0; + A[177] = 0.0; + A[178] = 0.0; + A[179] = 0.0; + A[180] = 0.0; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.0; + A[184] = 0.0; + A[185] = 0.0; + A[186] = 0.0928571428571428*G1_0 - 0.00714285714285714*G1_1 + 0.0476190476190476*G1_5; + A[187] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[188] = 0.0; + A[189] = 0.0; + A[190] = 0.0; + A[191] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.0; + A[197] = 0.0; + A[198] = 0.0; + A[199] = 0.0; + A[200] = 0.0; + A[201] = 0.0; + A[202] = 0.0; + A[203] = 0.0; + A[204] = 0.0; + A[205] = 0.0; + A[206] = 0.0; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.0; + A[213] = 0.0; + A[214] = 0.0; + A[215] = 0.0; + A[216] = -0.00714285714285714*G1_0 - 0.00714285714285714*G1_1 - 0.019047619047619*G1_5; + A[217] = -0.00714285714285714*G1_0 + 0.0928571428571428*G1_1 + 0.0476190476190476*G1_5; + A[218] = 0.0; + A[219] = 0.0; + A[220] = 0.0; + A[221] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + A[225] = 0.0; + A[226] = 0.0; + A[227] = 0.0; + A[228] = 0.0; + A[229] = 0.0; + A[230] = 0.0; + A[231] = 0.0; + A[232] = 0.0; + A[233] = 0.0; + A[234] = 0.0; + A[235] = 0.0; + A[236] = 0.0; + A[237] = 0.0; + A[238] = 0.0; + A[239] = 0.0; + A[240] = 0.0; + A[241] = 0.0; + A[242] = 0.0; + A[243] = 0.0; + A[244] = 0.0; + A[245] = 0.0; + A[246] = 0.0; + A[247] = 0.0; + A[248] = 0.0; + A[249] = 0.0; + A[250] = 0.0; + A[251] = 0.0; + A[252] = 0.0; + A[253] = 0.0; + A[254] = 0.0; + A[255] = 0.0; + A[256] = 0.0; + A[257] = 0.0; + A[258] = 0.0; + A[259] = 0.0; + A[260] = 0.0; + A[261] = 0.0; + A[262] = 0.0; + A[263] = 0.0; + A[264] = 0.0; + A[265] = 0.0; + A[266] = 0.0; + A[267] = 0.0; + A[268] = 0.0; + A[269] = 0.0; + A[270] = 0.0; + A[271] = 0.0; + A[272] = 0.0; + A[273] = 0.0; + A[274] = 0.0; + A[275] = 0.0; + A[276] = 0.0; + A[277] = 0.0; + A[278] = 0.0; + A[279] = 0.0; + A[280] = 0.0; + A[281] = 0.0; + A[282] = 0.0; + A[283] = 0.0; + A[284] = 0.0; + A[285] = 0.0; + A[286] = 0.0; + A[287] = 0.0; + A[288] = 0.0; + A[289] = 0.0; + A[290] = 0.0; + A[291] = 0.0; + A[292] = 0.0; + A[293] = 0.0; + A[294] = 0.0; + A[295] = 0.0; + A[296] = 0.0; + A[297] = 0.0; + A[298] = 0.0; + A[299] = 0.0; + A[300] = 0.0; + A[301] = 0.0; + A[302] = 0.0; + A[303] = 0.0; + A[304] = 0.0; + A[305] = 0.0; + A[306] = 0.0; + A[307] = 0.0; + A[308] = 0.0; + A[309] = 0.0; + A[310] = 0.0; + A[311] = 0.0; + A[312] = 0.0; + A[313] = 0.0; + A[314] = 0.0; + A[315] = 0.0; + A[316] = 0.0; + A[317] = 0.0; + A[318] = 0.0; + A[319] = 0.0; + A[320] = 0.0; + A[321] = 0.0; + A[322] = 0.0; + A[323] = 0.0; + A[324] = 0.0; + A[325] = 0.0; + A[326] = 0.0; + A[327] = 0.0; + A[328] = 0.0; + A[329] = 0.0; + A[330] = 0.0; + A[331] = 0.0; + A[332] = 0.0; + A[333] = 0.0; + A[334] = 0.0; + A[335] = 0.0; + A[336] = 0.0476190476190476*G1_0 - 0.019047619047619*G1_1 + 0.0380952380952381*G1_5; + A[337] = -0.019047619047619*G1_0 + 0.0476190476190476*G1_1 + 0.0380952380952381*G1_5; + A[338] = 0.0; + A[339] = 0.0; + A[340] = 0.0; + A[341] = 0.0380952380952381*G1_0 + 0.0380952380952381*G1_1 + 0.457142857142857*G1_5; + A[342] = 0.0; + A[343] = 0.0; + A[344] = 0.0; + A[345] = 0.0; + A[346] = 0.0; + A[347] = 0.0; + A[348] = 0.0; + A[349] = 0.0; + A[350] = 0.0; + A[351] = 0.0; + A[352] = 0.0; + A[353] = 0.0; + A[354] = 0.0; + A[355] = 0.0; + A[356] = 0.0; + A[357] = 0.0; + A[358] = 0.0; + A[359] = 0.0; + A[360] = 0.0; + A[361] = 0.0; + A[362] = 0.0; + A[363] = 0.0; + A[364] = 0.0; + A[365] = 0.0; + A[366] = 0.0; + A[367] = 0.0; + A[368] = 0.0; + A[369] = 0.0; + A[370] = 0.0; + A[371] = 0.0; + A[372] = 0.15*G1_0 - 0.0166666666666667*G1_1 + 0.2*G1_5; + A[373] = 0.0166666666666666*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[374] = 0.0; + A[375] = 0.0; + A[376] = 0.0; + A[377] = 0.0; + A[378] = 0.0; + A[379] = 0.0; + A[380] = 0.0; + A[381] = 0.0; + A[382] = 0.0; + A[383] = 0.0; + A[384] = 0.0; + A[385] = 0.0; + A[386] = 0.0; + A[387] = 0.0; + A[388] = 0.0; + A[389] = 0.0; + A[390] = 0.0; + A[391] = 0.0; + A[392] = 0.0; + A[393] = 0.0; + A[394] = 0.0; + A[395] = 0.0; + A[396] = 0.0; + A[397] = 0.0; + A[398] = 0.0; + A[399] = 0.0; + A[400] = 0.0; + A[401] = 0.0; + A[402] = 0.0166666666666667*G1_0 + 0.0166666666666667*G1_1 + 0.133333333333333*G1_5; + A[403] = -0.0166666666666667*G1_0 + 0.15*G1_1 + 0.2*G1_5; + A[404] = 0.0; + A[405] = 0.0; + A[406] = 0.0; + A[407] = 0.0; + A[408] = 0.0; + A[409] = 0.0; + A[410] = 0.0; + A[411] = 0.0; + A[412] = 0.0; + A[413] = 0.0; + A[414] = 0.0; + A[415] = 0.0; + A[416] = 0.0; + A[417] = 0.0; + A[418] = 0.0; + A[419] = 0.0; + A[420] = 0.0; + A[421] = 0.0; + A[422] = 0.0; + A[423] = 0.0; + A[424] = 0.0; + A[425] = 0.0; + A[426] = 0.0; + A[427] = 0.0; + A[428] = 0.0; + A[429] = 0.0; + A[430] = 0.0; + A[431] = 0.0; + A[432] = 0.0; + A[433] = 0.0; + A[434] = 0.0; + A[435] = 0.0; + A[436] = 0.0; + A[437] = 0.0; + A[438] = 0.0; + A[439] = 0.0; + A[440] = 0.0; + A[441] = 0.0; + A[442] = 0.0; + A[443] = 0.0; + A[444] = 0.0; + A[445] = 0.0; + A[446] = 0.0; + A[447] = 0.0; + A[448] = 0.0; + A[449] = 0.0; + A[450] = 0.0; + A[451] = 0.0; + A[452] = 0.0; + A[453] = 0.0; + A[454] = 0.0; + A[455] = 0.0; + A[456] = 0.0; + A[457] = 0.0; + A[458] = 0.0; + A[459] = 0.0; + A[460] = 0.0; + A[461] = 0.0; + A[462] = 0.0; + A[463] = 0.0; + A[464] = 0.0; + A[465] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_7 + 0.0476190476190476*G0_11; + A[466] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[467] = 0.0; + A[468] = 0.0; + A[469] = 0.0; + A[470] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[471] = 0.0; + A[472] = 0.0; + A[473] = 0.0; + A[474] = 0.0; + A[475] = 0.0; + A[476] = 0.0; + A[477] = 0.0; + A[478] = 0.0; + A[479] = 0.0; + A[480] = 0.0; + A[481] = 0.0; + A[482] = 0.0; + A[483] = 0.0; + A[484] = 0.0; + A[485] = 0.0; + A[486] = 0.0; + A[487] = 0.0; + A[488] = 0.0; + A[489] = 0.0; + A[490] = 0.0; + A[491] = 0.0; + A[492] = 0.0; + A[493] = 0.0; + A[494] = 0.0; + A[495] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[496] = -0.00714285714285714*G0_6 + 0.0928571428571428*G0_7 + 0.0476190476190476*G0_11; + A[497] = 0.0; + A[498] = 0.0; + A[499] = 0.0; + A[500] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[501] = 0.0; + A[502] = 0.0; + A[503] = 0.0; + A[504] = 0.0; + A[505] = 0.0; + A[506] = 0.0; + A[507] = 0.0; + A[508] = 0.0; + A[509] = 0.0; + A[510] = 0.0; + A[511] = 0.0; + A[512] = 0.0; + A[513] = 0.0; + A[514] = 0.0; + A[515] = 0.0; + A[516] = 0.0; + A[517] = 0.0; + A[518] = 0.0; + A[519] = 0.0; + A[520] = 0.0; + A[521] = 0.0; + A[522] = 0.0; + A[523] = 0.0; + A[524] = 0.0; + A[525] = 0.0; + A[526] = 0.0; + A[527] = 0.0; + A[528] = 0.0; + A[529] = 0.0; + A[530] = 0.0; + A[531] = 0.0; + A[532] = 0.0; + A[533] = 0.0; + A[534] = 0.0; + A[535] = 0.0; + A[536] = 0.0; + A[537] = 0.0; + A[538] = 0.0; + A[539] = 0.0; + A[540] = 0.0; + A[541] = 0.0; + A[542] = 0.0; + A[543] = 0.0; + A[544] = 0.0; + A[545] = 0.0; + A[546] = 0.0; + A[547] = 0.0; + A[548] = 0.0; + A[549] = 0.0; + A[550] = 0.0; + A[551] = 0.0; + A[552] = 0.0; + A[553] = 0.0; + A[554] = 0.0; + A[555] = 0.0; + A[556] = 0.0; + A[557] = 0.0; + A[558] = 0.0; + A[559] = 0.0; + A[560] = 0.0; + A[561] = 0.0; + A[562] = 0.0; + A[563] = 0.0; + A[564] = 0.0; + A[565] = 0.0; + A[566] = 0.0; + A[567] = 0.0; + A[568] = 0.0; + A[569] = 0.0; + A[570] = 0.0; + A[571] = 0.0; + A[572] = 0.0; + A[573] = 0.0; + A[574] = 0.0; + A[575] = 0.0; + A[576] = 0.0; + A[577] = 0.0; + A[578] = 0.0; + A[579] = 0.0; + A[580] = 0.0; + A[581] = 0.0; + A[582] = 0.0; + A[583] = 0.0; + A[584] = 0.0; + A[585] = 0.0; + A[586] = 0.0; + A[587] = 0.0; + A[588] = 0.0; + A[589] = 0.0; + A[590] = 0.0; + A[591] = 0.0; + A[592] = 0.0; + A[593] = 0.0; + A[594] = 0.0; + A[595] = 0.0; + A[596] = 0.0; + A[597] = 0.0; + A[598] = 0.0; + A[599] = 0.0; + A[600] = 0.0; + A[601] = 0.0; + A[602] = 0.0; + A[603] = 0.0; + A[604] = 0.0; + A[605] = 0.0; + A[606] = 0.0; + A[607] = 0.0; + A[608] = 0.0; + A[609] = 0.0; + A[610] = 0.0; + A[611] = 0.0; + A[612] = 0.0; + A[613] = 0.0; + A[614] = 0.0; + A[615] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[616] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[617] = 0.0; + A[618] = 0.0; + A[619] = 0.0; + A[620] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_7 + 0.457142857142857*G0_11; + A[621] = 0.0; + A[622] = 0.0; + A[623] = 0.0; + A[624] = 0.0; + A[625] = 0.0; + A[626] = 0.0; + A[627] = 0.0; + A[628] = 0.0; + A[629] = 0.0; + A[630] = 0.0; + A[631] = 0.0; + A[632] = 0.0; + A[633] = 0.0; + A[634] = 0.0; + A[635] = 0.0; + A[636] = 0.0; + A[637] = 0.0; + A[638] = 0.0; + A[639] = 0.0; + A[640] = 0.0; + A[641] = 0.0; + A[642] = 0.0; + A[643] = 0.0; + A[644] = 0.0; + A[645] = 0.0; + A[646] = 0.0; + A[647] = 0.0; + A[648] = 0.0; + A[649] = 0.0; + A[650] = 0.0; + A[651] = 0.0928571428571428*G0_6 - 0.00714285714285714*G0_7 + 0.0476190476190476*G0_11; + A[652] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[653] = 0.0; + A[654] = 0.0; + A[655] = 0.0; + A[656] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[657] = 0.0; + A[658] = 0.0; + A[659] = 0.0; + A[660] = 0.0; + A[661] = 0.0; + A[662] = 0.0; + A[663] = 0.0; + A[664] = 0.0; + A[665] = 0.0; + A[666] = 0.0; + A[667] = 0.0; + A[668] = 0.0; + A[669] = 0.0; + A[670] = 0.0; + A[671] = 0.0; + A[672] = 0.0; + A[673] = 0.0; + A[674] = 0.0; + A[675] = 0.0; + A[676] = 0.0; + A[677] = 0.0; + A[678] = 0.0; + A[679] = 0.0; + A[680] = 0.0; + A[681] = -0.00714285714285714*G0_6 - 0.00714285714285714*G0_7 - 0.019047619047619*G0_11; + A[682] = -0.00714285714285714*G0_6 + 0.0928571428571428*G0_7 + 0.0476190476190476*G0_11; + A[683] = 0.0; + A[684] = 0.0; + A[685] = 0.0; + A[686] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[687] = 0.0; + A[688] = 0.0; + A[689] = 0.0; + A[690] = 0.0; + A[691] = 0.0; + A[692] = 0.0; + A[693] = 0.0; + A[694] = 0.0; + A[695] = 0.0; + A[696] = 0.0; + A[697] = 0.0; + A[698] = 0.0; + A[699] = 0.0; + A[700] = 0.0; + A[701] = 0.0; + A[702] = 0.0; + A[703] = 0.0; + A[704] = 0.0; + A[705] = 0.0; + A[706] = 0.0; + A[707] = 0.0; + A[708] = 0.0; + A[709] = 0.0; + A[710] = 0.0; + A[711] = 0.0; + A[712] = 0.0; + A[713] = 0.0; + A[714] = 0.0; + A[715] = 0.0; + A[716] = 0.0; + A[717] = 0.0; + A[718] = 0.0; + A[719] = 0.0; + A[720] = 0.0; + A[721] = 0.0; + A[722] = 0.0; + A[723] = 0.0; + A[724] = 0.0; + A[725] = 0.0; + A[726] = 0.0; + A[727] = 0.0; + A[728] = 0.0; + A[729] = 0.0; + A[730] = 0.0; + A[731] = 0.0; + A[732] = 0.0; + A[733] = 0.0; + A[734] = 0.0; + A[735] = 0.0; + A[736] = 0.0; + A[737] = 0.0; + A[738] = 0.0; + A[739] = 0.0; + A[740] = 0.0; + A[741] = 0.0; + A[742] = 0.0; + A[743] = 0.0; + A[744] = 0.0; + A[745] = 0.0; + A[746] = 0.0; + A[747] = 0.0; + A[748] = 0.0; + A[749] = 0.0; + A[750] = 0.0; + A[751] = 0.0; + A[752] = 0.0; + A[753] = 0.0; + A[754] = 0.0; + A[755] = 0.0; + A[756] = 0.0; + A[757] = 0.0; + A[758] = 0.0; + A[759] = 0.0; + A[760] = 0.0; + A[761] = 0.0; + A[762] = 0.0; + A[763] = 0.0; + A[764] = 0.0; + A[765] = 0.0; + A[766] = 0.0; + A[767] = 0.0; + A[768] = 0.0; + A[769] = 0.0; + A[770] = 0.0; + A[771] = 0.0; + A[772] = 0.0; + A[773] = 0.0; + A[774] = 0.0; + A[775] = 0.0; + A[776] = 0.0; + A[777] = 0.0; + A[778] = 0.0; + A[779] = 0.0; + A[780] = 0.0; + A[781] = 0.0; + A[782] = 0.0; + A[783] = 0.0; + A[784] = 0.0; + A[785] = 0.0; + A[786] = 0.0; + A[787] = 0.0; + A[788] = 0.0; + A[789] = 0.0; + A[790] = 0.0; + A[791] = 0.0; + A[792] = 0.0; + A[793] = 0.0; + A[794] = 0.0; + A[795] = 0.0; + A[796] = 0.0; + A[797] = 0.0; + A[798] = 0.0; + A[799] = 0.0; + A[800] = 0.0; + A[801] = 0.0476190476190476*G0_6 - 0.019047619047619*G0_7 + 0.0380952380952381*G0_11; + A[802] = -0.019047619047619*G0_6 + 0.0476190476190476*G0_7 + 0.0380952380952381*G0_11; + A[803] = 0.0; + A[804] = 0.0; + A[805] = 0.0; + A[806] = 0.0380952380952381*G0_6 + 0.0380952380952381*G0_7 + 0.457142857142857*G0_11; + A[807] = 0.0; + A[808] = 0.0; + A[809] = 0.0; + A[810] = 0.0; + A[811] = 0.0; + A[812] = 0.0; + A[813] = 0.0; + A[814] = 0.0; + A[815] = 0.0; + A[816] = 0.0; + A[817] = 0.0; + A[818] = 0.0; + A[819] = 0.0; + A[820] = 0.0; + A[821] = 0.0; + A[822] = 0.0; + A[823] = 0.0; + A[824] = 0.0; + A[825] = 0.0; + A[826] = 0.0; + A[827] = 0.0; + A[828] = 0.0; + A[829] = 0.0; + A[830] = 0.0; + A[831] = 0.0; + A[832] = 0.0; + A[833] = 0.0; + A[834] = 0.0; + A[835] = 0.0; + A[836] = 0.0; + A[837] = 0.15*G0_6 - 0.0166666666666667*G0_7 + 0.2*G0_11; + A[838] = 0.0166666666666666*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[839] = 0.0; + A[840] = 0.0; + A[841] = 0.0; + A[842] = 0.0; + A[843] = 0.0; + A[844] = 0.0; + A[845] = 0.0; + A[846] = 0.0; + A[847] = 0.0; + A[848] = 0.0; + A[849] = 0.0; + A[850] = 0.0; + A[851] = 0.0; + A[852] = 0.0; + A[853] = 0.0; + A[854] = 0.0; + A[855] = 0.0; + A[856] = 0.0; + A[857] = 0.0; + A[858] = 0.0; + A[859] = 0.0; + A[860] = 0.0; + A[861] = 0.0; + A[862] = 0.0; + A[863] = 0.0; + A[864] = 0.0; + A[865] = 0.0; + A[866] = 0.0; + A[867] = 0.0166666666666667*G0_6 + 0.0166666666666667*G0_7 + 0.133333333333333*G0_11; + A[868] = -0.0166666666666667*G0_6 + 0.15*G0_7 + 0.2*G0_11; + A[869] = 0.0; + A[870] = 0.0; + A[871] = 0.0; + A[872] = 0.0; + A[873] = 0.0; + A[874] = 0.0; + A[875] = 0.0; + A[876] = 0.0; + A[877] = 0.0; + A[878] = 0.0; + A[879] = 0.0; + A[880] = 0.0; + A[881] = 0.0; + A[882] = 0.0; + A[883] = 0.0; + A[884] = 0.0; + A[885] = 0.0; + A[886] = 0.0; + A[887] = 0.0; + A[888] = 0.0; + A[889] = 0.0; + A[890] = 0.0; + A[891] = 0.0; + A[892] = 0.0; + A[893] = 0.0; + A[894] = 0.0; + A[895] = 0.0; + A[896] = 0.0; + A[897] = 0.0; + A[898] = 0.0; + A[899] = 0.0; + break; + } + } + + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivenavierstokes_cell_integral_6_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivenavierstokes_cell_integral_6_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_cell_integral_6_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W16[16] = {0.0235683681933823, 0.0353880678980859, 0.0225840492823699, 0.00542322591052525, 0.0441850885223617, 0.0663442161070497, 0.0423397245217463, 0.0101672595644788, 0.0441850885223617, 0.0663442161070497, 0.0423397245217463, 0.0101672595644788, 0.0235683681933823, 0.0353880678980859, 0.0225840492823699, 0.00542322591052525}; + // Quadrature points on the UFC reference element: (0.0654669945550145, 0.0571041961145177), (0.0502101232113698, 0.276843013638124), (0.028912084224389, 0.583590432368917), (0.00970378512694614, 0.860240135656219), (0.311164552244357, 0.0571041961145177), (0.238648659731443, 0.276843013638124), (0.137419104134574, 0.583590432368917), (0.0461220799064521, 0.860240135656219), (0.631731251641125, 0.0571041961145177), (0.484508326630433, 0.276843013638124), (0.278990463496509, 0.583590432368917), (0.0936377844373285, 0.860240135656219), (0.877428809330468, 0.0571041961145177), (0.672946863150506, 0.276843013638124), (0.387497483406694, 0.583590432368917), (0.130056079216834, 0.860240135656219) + + // Values of basis functions at quadrature points. + static const double FE0[16][6] = \ + {{0.662333821555697, -0.0568951398028818, -0.0505824176867471, 0.0149537603843903, 0.200419467218139, 0.229770508331402}, + {0.232768098097707, -0.0451680102655678, -0.123558905237647, 0.0556012872999084, 0.745202550451633, 0.135154979653967}, + {-0.0871888841136516, -0.0272402669959926, 0.0975651531361618, 0.0674912629327908, 0.904559295532719, 0.0448134395079725}, + {-0.0962269117343233, -0.0095154582353662, 0.619786046331442, 0.0333903417359317, 0.447517836913622, 0.00504814498869295}, + {0.166437496959, -0.117517795097495, -0.0505824176867471, 0.0710752064609913, 0.144298021141538, 0.786289488222712}, + {-0.0150116894819879, -0.124742294148215, -0.123558905237647, 0.264272856643007, 0.536530981108534, 0.462509051116308}, + {-0.123319106052515, -0.0996510837722764, 0.0975651531361618, 0.320785897590582, 0.651264660874928, 0.15335447822312}, + {-0.0761017150886652, -0.0418675873966577, 0.619786046331442, 0.158704257101893, 0.322203921547661, 0.0172750775043263}, + {-0.117517795097495, 0.166437496959, -0.0505824176867471, 0.144298021141538, 0.0710752064609913, 0.786289488222712}, + {-0.124742294148215, -0.0150116894819881, -0.123558905237647, 0.536530981108534, 0.264272856643007, 0.462509051116308}, + {-0.0996510837722763, -0.123319106052515, 0.0975651531361618, 0.651264660874928, 0.320785897590582, 0.15335447822312}, + {-0.0418675873966577, -0.0761017150886653, 0.619786046331442, 0.322203921547661, 0.158704257101893, 0.0172750775043263}, + {-0.0568951398028819, 0.662333821555697, -0.0505824176867471, 0.200419467218139, 0.0149537603843903, 0.229770508331402}, + {-0.0451680102655678, 0.232768098097706, -0.123558905237647, 0.745202550451633, 0.0556012872999085, 0.135154979653967}, + {-0.0272402669959926, -0.0871888841136518, 0.0975651531361618, 0.904559295532719, 0.0674912629327909, 0.0448134395079725}, + {-0.00951545823536613, -0.0962269117343234, 0.619786046331442, 0.447517836913623, 0.0333903417359314, 0.0050481449886929}}; + + // Array of non-zero columns + static const unsigned int nzc11[6] = {6, 7, 8, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc8[6] = {0, 1, 2, 3, 4, 5}; + + static const double FE0_D01[16][5] = \ + {{-2.50971523732187, -0.771583215541929, 0.261867978220058, 3.2812984528638, -0.261867978220057}, + {-1.69178745260203, 0.107372054552495, 0.200840492845478, 1.58441539804953, -0.200840492845478}, + {-0.549989933626777, 1.33436172947567, 0.115648336897555, -0.78437179584889, -0.115648336897555}, + {0.479775683132663, 2.44096054262488, 0.0388151405077832, -2.92073622575754, -0.038815140507784}, + {-1.5269250065645, -0.771583215541929, 1.24465820897743, 2.29850822210643, -1.24465820897743}, + {-0.938033306521733, 0.107372054552495, 0.954594638925771, 0.830661251969238, -0.954594638925771}, + {-0.115961853986035, 1.33436172947567, 0.549676416538296, -1.21839987548963, -0.549676416538296}, + {0.625448862250686, 2.44096054262488, 0.184488319625807, -3.06640940487556, -0.184488319625808}, + {-0.244658208977428, -0.771583215541929, 2.5269250065645, 1.01624142451936, -2.5269250065645}, + {0.0454053610742289, 0.107372054552495, 1.93803330652173, -0.152777415626724, -1.93803330652173}, + {0.450323583461703, 1.33436172947567, 1.11596185398603, -1.78468531293737, -1.11596185398603}, + {0.815511680374192, 2.44096054262488, 0.374551137749312, -3.25647222299907, -0.374551137749314}, + {0.738132021779943, -0.771583215541929, 3.50971523732187, 0.0334511937619875, -3.50971523732187}, + {0.799159507154522, 0.107372054552495, 2.69178745260202, -0.906531561707016, -2.69178745260202}, + {0.884351663102444, 1.33436172947567, 1.54998993362678, -2.21871339257811, -1.54998993362678}, + {0.961184859492216, 2.44096054262488, 0.520224316867337, -3.40214540211709, -0.520224316867338}}; + + // Array of non-zero columns + static const unsigned int nzc12[5] = {6, 8, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc0[5] = {0, 2, 3, 4, 5}; + + // Array of non-zero columns + static const unsigned int nzc9[5] = {0, 2, 3, 4, 5}; + + static const double FE0_D10[16][5] = \ + {{-2.50971523732187, -0.738132021779943, 0.228416784458069, -0.228416784458069, 3.24784725910181}, + {-1.69178745260203, -0.799159507154522, 1.10737205455249, -1.10737205455249, 2.49094695975655}, + {-0.549989933626777, -0.884351663102445, 2.33436172947567, -2.33436172947567, 1.43434159672922}, + {0.479775683132663, -0.961184859492216, 3.44096054262487, -3.44096054262487, 0.481409176359552}, + {-1.5269250065645, 0.244658208977429, 0.228416784458069, -0.228416784458069, 1.28226679758707}, + {-0.938033306521733, -0.0454053610742286, 1.10737205455249, -1.10737205455249, 0.983438667595961}, + {-0.115961853986035, -0.450323583461703, 2.33436172947567, -2.33436172947567, 0.566285437447738}, + {0.625448862250687, -0.815511680374192, 3.44096054262487, -3.44096054262487, 0.190062818123505}, + {-0.244658208977428, 1.5269250065645, 0.228416784458069, -0.228416784458069, -1.28226679758707}, + {0.0454053610742286, 0.938033306521733, 1.10737205455249, -1.10737205455249, -0.983438667595962}, + {0.450323583461703, 0.115961853986035, 2.33436172947567, -2.33436172947567, -0.566285437447738}, + {0.815511680374193, -0.625448862250686, 3.44096054262487, -3.44096054262487, -0.190062818123507}, + {0.738132021779942, 2.50971523732187, 0.228416784458069, -0.228416784458069, -3.24784725910181}, + {0.799159507154521, 1.69178745260203, 1.10737205455249, -1.10737205455249, -2.49094695975655}, + {0.884351663102445, 0.549989933626777, 2.33436172947567, -2.33436172947567, -1.43434159672922}, + {0.961184859492217, -0.479775683132662, 3.44096054262487, -3.44096054262487, -0.481409176359555}}; + + // Array of non-zero columns + static const unsigned int nzc1[5] = {0, 1, 3, 4, 5}; + + // Array of non-zero columns + static const unsigned int nzc13[5] = {6, 7, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc10[5] = {0, 1, 3, 4, 5}; + + static const double FE1_C0[16][3] = \ + {{0.877428809330468, 0.0654669945550145, 0.0571041961145176}, + {0.672946863150506, 0.0502101232113698, 0.276843013638124}, + {0.387497483406694, 0.028912084224389, 0.583590432368917}, + {0.130056079216834, 0.0097037851269462, 0.860240135656219}, + {0.631731251641125, 0.311164552244357, 0.0571041961145176}, + {0.484508326630433, 0.238648659731443, 0.276843013638124}, + {0.278990463496509, 0.137419104134574, 0.583590432368917}, + {0.0936377844373285, 0.0461220799064521, 0.860240135656219}, + {0.311164552244357, 0.631731251641125, 0.0571041961145176}, + {0.238648659731443, 0.484508326630433, 0.276843013638124}, + {0.137419104134574, 0.278990463496509, 0.583590432368917}, + {0.0461220799064521, 0.0936377844373286, 0.860240135656219}, + {0.0654669945550145, 0.877428809330468, 0.0571041961145176}, + {0.0502101232113698, 0.672946863150506, 0.276843013638124}, + {0.028912084224389, 0.387497483406694, 0.583590432368917}, + {0.00970378512694609, 0.130056079216835, 0.860240135656219}}; + + // Array of non-zero columns + static const unsigned int nzc14[3] = {12, 13, 14}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 15; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 23. + double G[11]; + G[0] = - K[0]*det; + G[1] = - K[2]*det; + G[2] = - K[1]*det; + G[3] = - K[3]*det; + G[4] = K[0]*det; + G[5] = - det*w[2][0]*(K[0]*K[0] + K[1]*K[1]); + G[6] = - det*w[2][0]*(K[0]*K[2] + K[1]*K[3]); + G[7] = K[3]*det; + G[8] = - det*w[2][0]*(K[2]*K[2] + K[3]*K[3]); + G[9] = K[1]*det; + G[10] = K[2]*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 4720 + for (unsigned int ip = 0; ip < 16; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + double F6 = 0.0; + double F7 = 0.0; + double F8 = 0.0; + double F9 = 0.0; + double F10 = 0.0; + double F11 = 0.0; + double F12 = 0.0; + + // Total number of operations to compute function values = 12 + for (unsigned int r = 0; r < 3; r++) + { + F3 += FE1_C0[ip][r]*w[3][nzc14[r]]; + F12 += FE1_C0[ip][r]*w[0][nzc14[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 60 + for (unsigned int r = 0; r < 5; r++) + { + F4 += FE0_D10[ip][r]*w[0][nzc10[r]]; + F5 += FE0_D01[ip][r]*w[0][nzc9[r]]; + F8 += FE0_D10[ip][r]*w[0][nzc13[r]]; + F9 += FE0_D01[ip][r]*w[0][nzc12[r]]; + F10 += FE0_D10[ip][r]*w[4][nzc1[r]]; + F11 += FE0_D01[ip][r]*w[4][nzc0[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 60 + for (unsigned int r = 0; r < 6; r++) + { + F0 += FE0[ip][r]*w[3][nzc8[r]]; + F1 += FE0[ip][r]*w[4][r]; + F2 += FE0[ip][r]*w[3][nzc11[r]]; + F6 += FE0[ip][r]*w[0][nzc8[r]]; + F7 += FE0[ip][r]*w[0][nzc11[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 93 + double I[7]; + // Number of operations: 11 + I[0] = F1*W16[ip]*(F4*G[0] + F5*G[1] + F8*G[2] + F9*G[3] - F3*det); + + // Number of operations: 7 + I[1] = F1*W16[ip]*(F12*G[4] + F4*G[5] + F5*G[6]); + + // Number of operations: 7 + I[2] = F1*W16[ip]*(F12*G[7] + F8*G[6] + F9*G[8]); + + // Number of operations: 7 + I[3] = F1*W16[ip]*(F12*G[9] + F8*G[5] + F9*G[6]); + + // Number of operations: 7 + I[4] = F1*W16[ip]*(F12*G[10] + F4*G[6] + F5*G[8]); + + // Number of operations: 27 + I[5] = W16[ip]*(F1*(F8*(F6*G[0] + F7*G[2]) + F9*(F6*G[1] + F7*G[3]) - F2*det) + F10*(F12*G[9] + F8*G[5] + F9*G[6]) + F11*(F12*G[7] + F8*G[6] + F9*G[8])); + + // Number of operations: 27 + I[6] = W16[ip]*(F1*(F6*(F4*G[0] + F5*G[1]) + F7*(F4*G[2] + F5*G[3]) - F0*det) + F10*(F12*G[4] + F4*G[5] + F5*G[6]) + F11*(F12*G[10] + F4*G[6] + F5*G[8])); + + + // Number of operations for primary indices: 6 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc14[j]] += FE1_C0[ip][j]*I[0]; + } // end loop over 'j' + + // Number of operations for primary indices: 40 + for (unsigned int j = 0; j < 5; j++) + { + // Number of operations to compute entry: 2 + A[nzc10[j]] += FE0_D10[ip][j]*I[1]; + // Number of operations to compute entry: 2 + A[nzc12[j]] += FE0_D01[ip][j]*I[2]; + // Number of operations to compute entry: 2 + A[nzc13[j]] += FE0_D10[ip][j]*I[3]; + // Number of operations to compute entry: 2 + A[nzc9[j]] += FE0_D01[ip][j]*I[4]; + } // end loop over 'j' + + // Number of operations for primary indices: 24 + for (unsigned int j = 0; j < 6; j++) + { + // Number of operations to compute entry: 2 + A[nzc11[j]] += FE0[ip][j]*I[5]; + // Number of operations to compute entry: 2 + A[nzc8[j]] += FE0[ip][j]*I[6]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivenavierstokes_exterior_facet_integral_6_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivenavierstokes_exterior_facet_integral_6_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_exterior_facet_integral_6_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true, false, false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + const bool direction = dx1*(vertex_coordinates[2*facet] - vertex_coordinates[2*v0]) - dx0*(vertex_coordinates[2*facet + 1] - vertex_coordinates[2*v0 + 1]) < 0; + // Compute facet normals from the facet scale factor constants + const double n0 = direction ? dx1 / det : -dx1 / det; + const double n1 = direction ? -dx0 / det : dx0 / det; + + // Facet area + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W3[3] = {0.277777777777778, 0.444444444444444, 0.277777777777778}; + // Quadrature points on the UFC reference element: (0.112701665379258), (0.5), (0.887298334620742) + + // Values of basis functions at quadrature points. + static const double FE0_f0[3][2] = \ + {{0.887298334620742, 0.112701665379258}, + {0.5, 0.5}, + {0.112701665379258, 0.887298334620742}}; + + // Array of non-zero columns + static const unsigned int nzc0[2] = {1, 2}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 2}; + + // Array of non-zero columns + static const unsigned int nzc2[2] = {0, 1}; + + static const double FE1_f0[3][3] = \ + {{0.687298334620742, -0.0872983346207417, 0.4}, + {0.0, 0.0, 1.0}, + {-0.0872983346207416, 0.687298334620742, 0.4}}; + + // Array of non-zero columns + static const unsigned int nzc20[3] = {6, 8, 10}; + + // Array of non-zero columns + static const unsigned int nzc19[3] = {0, 2, 4}; + + // Array of non-zero columns + static const unsigned int nzc5[3] = {0, 1, 5}; + + // Array of non-zero columns + static const unsigned int nzc4[3] = {0, 2, 4}; + + // Array of non-zero columns + static const unsigned int nzc3[3] = {1, 2, 3}; + + // Array of non-zero columns + static const unsigned int nzc22[3] = {0, 1, 5}; + + // Array of non-zero columns + static const unsigned int nzc23[3] = {6, 7, 11}; + + // Array of non-zero columns + static const unsigned int nzc16[3] = {1, 2, 3}; + + // Array of non-zero columns + static const unsigned int nzc17[3] = {7, 8, 9}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 15; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 2. + double G[2]; + G[0] = - det*n0; + G[1] = - det*n1; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + switch (facet) + { + case 0: + { + // Total number of operations to compute element tensor (from this point): 84 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 84 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE0_f0[ip][r]*w[1][nzc0[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 3; r++) + { + F1 += FE1_f0[ip][r]*w[4][nzc3[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 6 + double I[2]; + // Number of operations: 3 + I[0] = F0*F1*G[0]*W3[ip]; + + // Number of operations: 3 + I[1] = F0*F1*G[1]*W3[ip]; + + + // Number of operations for primary indices: 12 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc16[j]] += FE1_f0[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc17[j]] += FE1_f0[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + break; + } + case 1: + { + // Total number of operations to compute element tensor (from this point): 84 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 84 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE0_f0[ip][r]*w[1][nzc1[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 3; r++) + { + F1 += FE1_f0[ip][r]*w[4][nzc4[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 6 + double I[2]; + // Number of operations: 3 + I[0] = F0*F1*G[0]*W3[ip]; + + // Number of operations: 3 + I[1] = F0*F1*G[1]*W3[ip]; + + + // Number of operations for primary indices: 12 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc19[j]] += FE1_f0[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc20[j]] += FE1_f0[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + break; + } + case 2: + { + // Total number of operations to compute element tensor (from this point): 84 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 84 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE0_f0[ip][r]*w[1][nzc2[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 3; r++) + { + F1 += FE1_f0[ip][r]*w[4][nzc5[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 6 + double I[2]; + // Number of operations: 3 + I[0] = F0*F1*G[0]*W3[ip]; + + // Number of operations: 3 + I[1] = F0*F1*G[1]*W3[ip]; + + + // Number of operations for primary indices: 12 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc22[j]] += FE1_f0[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc23[j]] += FE1_f0[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivenavierstokes_cell_integral_7_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivenavierstokes_cell_integral_7_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_cell_integral_7_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true, false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 292 + // Number of operations (multiply-add pairs) for tensor contraction: 194 + // Total number of operations (multiply-add pairs): 489 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*w[1][0]*w[0][0]*(1.0); + const double G0_0_1 = det*w[1][0]*w[0][1]*(1.0); + const double G0_0_2 = det*w[1][0]*w[0][2]*(1.0); + const double G0_0_3 = det*w[1][0]*w[0][3]*(1.0); + const double G0_0_4 = det*w[1][0]*w[0][4]*(1.0); + const double G0_0_5 = det*w[1][0]*w[0][5]*(1.0); + const double G0_0_6 = det*w[1][0]*w[0][6]*(1.0); + const double G0_0_7 = det*w[1][0]*w[0][7]*(1.0); + const double G0_0_8 = det*w[1][0]*w[0][8]*(1.0); + const double G0_0_9 = det*w[1][0]*w[0][9]*(1.0); + const double G0_1_0 = det*w[1][1]*w[0][0]*(1.0); + const double G0_1_1 = det*w[1][1]*w[0][1]*(1.0); + const double G0_1_2 = det*w[1][1]*w[0][2]*(1.0); + const double G0_1_3 = det*w[1][1]*w[0][3]*(1.0); + const double G0_1_4 = det*w[1][1]*w[0][4]*(1.0); + const double G0_1_5 = det*w[1][1]*w[0][5]*(1.0); + const double G0_1_6 = det*w[1][1]*w[0][6]*(1.0); + const double G0_1_7 = det*w[1][1]*w[0][7]*(1.0); + const double G0_1_8 = det*w[1][1]*w[0][8]*(1.0); + const double G0_1_9 = det*w[1][1]*w[0][9]*(1.0); + const double G0_2_0 = det*w[1][2]*w[0][0]*(1.0); + const double G0_2_1 = det*w[1][2]*w[0][1]*(1.0); + const double G0_2_2 = det*w[1][2]*w[0][2]*(1.0); + const double G0_2_3 = det*w[1][2]*w[0][3]*(1.0); + const double G0_2_4 = det*w[1][2]*w[0][4]*(1.0); + const double G0_2_5 = det*w[1][2]*w[0][5]*(1.0); + const double G0_2_6 = det*w[1][2]*w[0][6]*(1.0); + const double G0_2_7 = det*w[1][2]*w[0][7]*(1.0); + const double G0_2_8 = det*w[1][2]*w[0][8]*(1.0); + const double G0_2_9 = det*w[1][2]*w[0][9]*(1.0); + const double G0_3_0 = det*w[1][3]*w[0][0]*(1.0); + const double G0_3_1 = det*w[1][3]*w[0][1]*(1.0); + const double G0_3_2 = det*w[1][3]*w[0][2]*(1.0); + const double G0_3_3 = det*w[1][3]*w[0][3]*(1.0); + const double G0_3_4 = det*w[1][3]*w[0][4]*(1.0); + const double G0_3_5 = det*w[1][3]*w[0][5]*(1.0); + const double G0_3_6 = det*w[1][3]*w[0][6]*(1.0); + const double G0_3_7 = det*w[1][3]*w[0][7]*(1.0); + const double G0_3_8 = det*w[1][3]*w[0][8]*(1.0); + const double G0_3_9 = det*w[1][3]*w[0][9]*(1.0); + const double G0_4_0 = det*w[1][4]*w[0][0]*(1.0); + const double G0_4_1 = det*w[1][4]*w[0][1]*(1.0); + const double G0_4_2 = det*w[1][4]*w[0][2]*(1.0); + const double G0_4_3 = det*w[1][4]*w[0][3]*(1.0); + const double G0_4_4 = det*w[1][4]*w[0][4]*(1.0); + const double G0_4_5 = det*w[1][4]*w[0][5]*(1.0); + const double G0_4_6 = det*w[1][4]*w[0][6]*(1.0); + const double G0_4_7 = det*w[1][4]*w[0][7]*(1.0); + const double G0_4_8 = det*w[1][4]*w[0][8]*(1.0); + const double G0_4_9 = det*w[1][4]*w[0][9]*(1.0); + const double G0_5_0 = det*w[1][5]*w[0][0]*(1.0); + const double G0_5_1 = det*w[1][5]*w[0][1]*(1.0); + const double G0_5_2 = det*w[1][5]*w[0][2]*(1.0); + const double G0_5_3 = det*w[1][5]*w[0][3]*(1.0); + const double G0_5_4 = det*w[1][5]*w[0][4]*(1.0); + const double G0_5_5 = det*w[1][5]*w[0][5]*(1.0); + const double G0_5_6 = det*w[1][5]*w[0][6]*(1.0); + const double G0_5_7 = det*w[1][5]*w[0][7]*(1.0); + const double G0_5_8 = det*w[1][5]*w[0][8]*(1.0); + const double G0_5_9 = det*w[1][5]*w[0][9]*(1.0); + const double G0_6_10 = det*w[1][6]*w[0][10]*(1.0); + const double G0_6_11 = det*w[1][6]*w[0][11]*(1.0); + const double G0_6_12 = det*w[1][6]*w[0][12]*(1.0); + const double G0_6_13 = det*w[1][6]*w[0][13]*(1.0); + const double G0_6_14 = det*w[1][6]*w[0][14]*(1.0); + const double G0_6_15 = det*w[1][6]*w[0][15]*(1.0); + const double G0_6_16 = det*w[1][6]*w[0][16]*(1.0); + const double G0_6_17 = det*w[1][6]*w[0][17]*(1.0); + const double G0_6_18 = det*w[1][6]*w[0][18]*(1.0); + const double G0_6_19 = det*w[1][6]*w[0][19]*(1.0); + const double G0_7_10 = det*w[1][7]*w[0][10]*(1.0); + const double G0_7_11 = det*w[1][7]*w[0][11]*(1.0); + const double G0_7_12 = det*w[1][7]*w[0][12]*(1.0); + const double G0_7_13 = det*w[1][7]*w[0][13]*(1.0); + const double G0_7_14 = det*w[1][7]*w[0][14]*(1.0); + const double G0_7_15 = det*w[1][7]*w[0][15]*(1.0); + const double G0_7_16 = det*w[1][7]*w[0][16]*(1.0); + const double G0_7_17 = det*w[1][7]*w[0][17]*(1.0); + const double G0_7_18 = det*w[1][7]*w[0][18]*(1.0); + const double G0_7_19 = det*w[1][7]*w[0][19]*(1.0); + const double G0_8_10 = det*w[1][8]*w[0][10]*(1.0); + const double G0_8_11 = det*w[1][8]*w[0][11]*(1.0); + const double G0_8_12 = det*w[1][8]*w[0][12]*(1.0); + const double G0_8_13 = det*w[1][8]*w[0][13]*(1.0); + const double G0_8_14 = det*w[1][8]*w[0][14]*(1.0); + const double G0_8_15 = det*w[1][8]*w[0][15]*(1.0); + const double G0_8_16 = det*w[1][8]*w[0][16]*(1.0); + const double G0_8_17 = det*w[1][8]*w[0][17]*(1.0); + const double G0_8_18 = det*w[1][8]*w[0][18]*(1.0); + const double G0_8_19 = det*w[1][8]*w[0][19]*(1.0); + const double G0_9_10 = det*w[1][9]*w[0][10]*(1.0); + const double G0_9_11 = det*w[1][9]*w[0][11]*(1.0); + const double G0_9_12 = det*w[1][9]*w[0][12]*(1.0); + const double G0_9_13 = det*w[1][9]*w[0][13]*(1.0); + const double G0_9_14 = det*w[1][9]*w[0][14]*(1.0); + const double G0_9_15 = det*w[1][9]*w[0][15]*(1.0); + const double G0_9_16 = det*w[1][9]*w[0][16]*(1.0); + const double G0_9_17 = det*w[1][9]*w[0][17]*(1.0); + const double G0_9_18 = det*w[1][9]*w[0][18]*(1.0); + const double G0_9_19 = det*w[1][9]*w[0][19]*(1.0); + const double G0_10_10 = det*w[1][10]*w[0][10]*(1.0); + const double G0_10_11 = det*w[1][10]*w[0][11]*(1.0); + const double G0_10_12 = det*w[1][10]*w[0][12]*(1.0); + const double G0_10_13 = det*w[1][10]*w[0][13]*(1.0); + const double G0_10_14 = det*w[1][10]*w[0][14]*(1.0); + const double G0_10_15 = det*w[1][10]*w[0][15]*(1.0); + const double G0_10_16 = det*w[1][10]*w[0][16]*(1.0); + const double G0_10_17 = det*w[1][10]*w[0][17]*(1.0); + const double G0_10_18 = det*w[1][10]*w[0][18]*(1.0); + const double G0_10_19 = det*w[1][10]*w[0][19]*(1.0); + const double G0_11_10 = det*w[1][11]*w[0][10]*(1.0); + const double G0_11_11 = det*w[1][11]*w[0][11]*(1.0); + const double G0_11_12 = det*w[1][11]*w[0][12]*(1.0); + const double G0_11_13 = det*w[1][11]*w[0][13]*(1.0); + const double G0_11_14 = det*w[1][11]*w[0][14]*(1.0); + const double G0_11_15 = det*w[1][11]*w[0][15]*(1.0); + const double G0_11_16 = det*w[1][11]*w[0][16]*(1.0); + const double G0_11_17 = det*w[1][11]*w[0][17]*(1.0); + const double G0_11_18 = det*w[1][11]*w[0][18]*(1.0); + const double G0_11_19 = det*w[1][11]*w[0][19]*(1.0); + const double G0_12_20 = det*w[1][12]*w[0][20]*(1.0); + const double G0_12_21 = det*w[1][12]*w[0][21]*(1.0); + const double G0_12_22 = det*w[1][12]*w[0][22]*(1.0); + const double G0_12_23 = det*w[1][12]*w[0][23]*(1.0); + const double G0_12_24 = det*w[1][12]*w[0][24]*(1.0); + const double G0_12_25 = det*w[1][12]*w[0][25]*(1.0); + const double G0_13_20 = det*w[1][13]*w[0][20]*(1.0); + const double G0_13_21 = det*w[1][13]*w[0][21]*(1.0); + const double G0_13_22 = det*w[1][13]*w[0][22]*(1.0); + const double G0_13_23 = det*w[1][13]*w[0][23]*(1.0); + const double G0_13_24 = det*w[1][13]*w[0][24]*(1.0); + const double G0_13_25 = det*w[1][13]*w[0][25]*(1.0); + const double G0_14_20 = det*w[1][14]*w[0][20]*(1.0); + const double G0_14_21 = det*w[1][14]*w[0][21]*(1.0); + const double G0_14_22 = det*w[1][14]*w[0][22]*(1.0); + const double G0_14_23 = det*w[1][14]*w[0][23]*(1.0); + const double G0_14_24 = det*w[1][14]*w[0][24]*(1.0); + const double G0_14_25 = det*w[1][14]*w[0][25]*(1.0); + const double G1_0_0 = det*w[1][0]*w[3][0]*(1.0); + const double G1_0_1 = det*w[1][0]*w[3][1]*(1.0); + const double G1_0_2 = det*w[1][0]*w[3][2]*(1.0); + const double G1_0_3 = det*w[1][0]*w[3][3]*(1.0); + const double G1_1_0 = det*w[1][1]*w[3][0]*(1.0); + const double G1_1_1 = det*w[1][1]*w[3][1]*(1.0); + const double G1_1_2 = det*w[1][1]*w[3][2]*(1.0); + const double G1_1_4 = det*w[1][1]*w[3][4]*(1.0); + const double G1_2_0 = det*w[1][2]*w[3][0]*(1.0); + const double G1_2_1 = det*w[1][2]*w[3][1]*(1.0); + const double G1_2_2 = det*w[1][2]*w[3][2]*(1.0); + const double G1_2_5 = det*w[1][2]*w[3][5]*(1.0); + const double G1_3_0 = det*w[1][3]*w[3][0]*(1.0); + const double G1_3_3 = det*w[1][3]*w[3][3]*(1.0); + const double G1_3_4 = det*w[1][3]*w[3][4]*(1.0); + const double G1_3_5 = det*w[1][3]*w[3][5]*(1.0); + const double G1_4_1 = det*w[1][4]*w[3][1]*(1.0); + const double G1_4_3 = det*w[1][4]*w[3][3]*(1.0); + const double G1_4_4 = det*w[1][4]*w[3][4]*(1.0); + const double G1_4_5 = det*w[1][4]*w[3][5]*(1.0); + const double G1_5_2 = det*w[1][5]*w[3][2]*(1.0); + const double G1_5_3 = det*w[1][5]*w[3][3]*(1.0); + const double G1_5_4 = det*w[1][5]*w[3][4]*(1.0); + const double G1_5_5 = det*w[1][5]*w[3][5]*(1.0); + const double G1_6_6 = det*w[1][6]*w[3][6]*(1.0); + const double G1_6_7 = det*w[1][6]*w[3][7]*(1.0); + const double G1_6_8 = det*w[1][6]*w[3][8]*(1.0); + const double G1_6_9 = det*w[1][6]*w[3][9]*(1.0); + const double G1_7_6 = det*w[1][7]*w[3][6]*(1.0); + const double G1_7_7 = det*w[1][7]*w[3][7]*(1.0); + const double G1_7_8 = det*w[1][7]*w[3][8]*(1.0); + const double G1_7_10 = det*w[1][7]*w[3][10]*(1.0); + const double G1_8_6 = det*w[1][8]*w[3][6]*(1.0); + const double G1_8_7 = det*w[1][8]*w[3][7]*(1.0); + const double G1_8_8 = det*w[1][8]*w[3][8]*(1.0); + const double G1_8_11 = det*w[1][8]*w[3][11]*(1.0); + const double G1_9_6 = det*w[1][9]*w[3][6]*(1.0); + const double G1_9_9 = det*w[1][9]*w[3][9]*(1.0); + const double G1_9_10 = det*w[1][9]*w[3][10]*(1.0); + const double G1_9_11 = det*w[1][9]*w[3][11]*(1.0); + const double G1_10_7 = det*w[1][10]*w[3][7]*(1.0); + const double G1_10_9 = det*w[1][10]*w[3][9]*(1.0); + const double G1_10_10 = det*w[1][10]*w[3][10]*(1.0); + const double G1_10_11 = det*w[1][10]*w[3][11]*(1.0); + const double G1_11_8 = det*w[1][11]*w[3][8]*(1.0); + const double G1_11_9 = det*w[1][11]*w[3][9]*(1.0); + const double G1_11_10 = det*w[1][11]*w[3][10]*(1.0); + const double G1_11_11 = det*w[1][11]*w[3][11]*(1.0); + const double G1_12_12 = det*w[1][12]*w[3][12]*(1.0); + const double G1_12_13 = det*w[1][12]*w[3][13]*(1.0); + const double G1_12_14 = det*w[1][12]*w[3][14]*(1.0); + const double G1_13_12 = det*w[1][13]*w[3][12]*(1.0); + const double G1_13_13 = det*w[1][13]*w[3][13]*(1.0); + const double G1_13_14 = det*w[1][13]*w[3][14]*(1.0); + const double G1_14_12 = det*w[1][14]*w[3][12]*(1.0); + const double G1_14_13 = det*w[1][14]*w[3][13]*(1.0); + const double G1_14_14 = det*w[1][14]*w[3][14]*(1.0); + + // Compute element tensor + A[0] = 0.00595238095238095*G0_0_0 + 0.000595238095238095*G0_0_1 + 0.000595238095238098*G0_0_2 - 0.00357142857142857*G0_0_3 - 0.00357142857142857*G0_0_4 + 0.0160714285714286*G0_0_5 - 0.0107142857142857*G0_0_6 + 0.0160714285714286*G0_0_7 - 0.0107142857142857*G0_0_8 - 0.0107142857142857*G0_0_9 + 0.000595238095238095*G0_1_0 + 0.00595238095238094*G0_1_1 + 0.000595238095238096*G0_1_2 + 0.0160714285714286*G0_1_3 - 0.0107142857142857*G0_1_4 - 0.00357142857142856*G0_1_5 - 0.00357142857142858*G0_1_6 - 0.0107142857142857*G0_1_7 + 0.0160714285714286*G0_1_8 - 0.0107142857142857*G0_1_9 + 0.000595238095238098*G0_2_0 + 0.000595238095238097*G0_2_1 + 0.00595238095238094*G0_2_2 - 0.0107142857142857*G0_2_3 + 0.0160714285714286*G0_2_4 - 0.0107142857142857*G0_2_5 + 0.0160714285714286*G0_2_6 - 0.00357142857142857*G0_2_7 - 0.00357142857142857*G0_2_8 - 0.0107142857142857*G0_2_9 + 0.00476190476190475*G0_3_0 + 0.00238095238095238*G0_3_1 + 0.00238095238095237*G0_3_2 + 0.0285714285714286*G0_3_3 + 0.0285714285714285*G0_3_4 - 0.00714285714285712*G0_3_5 + 0.0142857142857143*G0_3_6 - 0.00714285714285714*G0_3_7 + 0.0142857142857143*G0_3_8 + 0.0857142857142857*G0_3_9 + 0.00238095238095237*G0_4_0 + 0.00476190476190477*G0_4_1 + 0.00238095238095237*G0_4_2 - 0.00714285714285712*G0_4_3 + 0.0142857142857143*G0_4_4 + 0.0285714285714286*G0_4_5 + 0.0285714285714286*G0_4_6 + 0.0142857142857143*G0_4_7 - 0.00714285714285712*G0_4_8 + 0.0857142857142857*G0_4_9 + 0.00238095238095237*G0_5_0 + 0.00238095238095238*G0_5_1 + 0.00476190476190475*G0_5_2 + 0.0142857142857143*G0_5_3 - 0.00714285714285714*G0_5_4 + 0.0142857142857143*G0_5_5 - 0.00714285714285714*G0_5_6 + 0.0285714285714286*G0_5_7 + 0.0285714285714286*G0_5_8 + 0.0857142857142857*G0_5_9 + 0.00595238095238095*G0_6_10 + 0.000595238095238095*G0_6_11 + 0.000595238095238098*G0_6_12 - 0.00357142857142857*G0_6_13 - 0.00357142857142857*G0_6_14 + 0.0160714285714286*G0_6_15 - 0.0107142857142857*G0_6_16 + 0.0160714285714286*G0_6_17 - 0.0107142857142857*G0_6_18 - 0.0107142857142857*G0_6_19 + 0.000595238095238095*G0_7_10 + 0.00595238095238094*G0_7_11 + 0.000595238095238096*G0_7_12 + 0.0160714285714286*G0_7_13 - 0.0107142857142857*G0_7_14 - 0.00357142857142856*G0_7_15 - 0.00357142857142858*G0_7_16 - 0.0107142857142857*G0_7_17 + 0.0160714285714286*G0_7_18 - 0.0107142857142857*G0_7_19 + 0.000595238095238098*G0_8_10 + 0.000595238095238097*G0_8_11 + 0.00595238095238094*G0_8_12 - 0.0107142857142857*G0_8_13 + 0.0160714285714286*G0_8_14 - 0.0107142857142857*G0_8_15 + 0.0160714285714286*G0_8_16 - 0.00357142857142857*G0_8_17 - 0.00357142857142857*G0_8_18 - 0.0107142857142857*G0_8_19 + 0.00476190476190475*G0_9_10 + 0.00238095238095238*G0_9_11 + 0.00238095238095237*G0_9_12 + 0.0285714285714286*G0_9_13 + 0.0285714285714285*G0_9_14 - 0.00714285714285712*G0_9_15 + 0.0142857142857143*G0_9_16 - 0.00714285714285714*G0_9_17 + 0.0142857142857143*G0_9_18 + 0.0857142857142857*G0_9_19 + 0.00238095238095237*G0_10_10 + 0.00476190476190477*G0_10_11 + 0.00238095238095237*G0_10_12 - 0.00714285714285712*G0_10_13 + 0.0142857142857143*G0_10_14 + 0.0285714285714286*G0_10_15 + 0.0285714285714286*G0_10_16 + 0.0142857142857143*G0_10_17 - 0.00714285714285712*G0_10_18 + 0.0857142857142857*G0_10_19 + 0.00238095238095237*G0_11_10 + 0.00238095238095238*G0_11_11 + 0.00476190476190475*G0_11_12 + 0.0142857142857143*G0_11_13 - 0.00714285714285714*G0_11_14 + 0.0142857142857143*G0_11_15 - 0.00714285714285714*G0_11_16 + 0.0285714285714286*G0_11_17 + 0.0285714285714286*G0_11_18 + 0.0857142857142857*G0_11_19 + 0.0166666666666667*G0_12_20 - 0.00833333333333333*G0_12_21 - 0.00833333333333332*G0_12_22 + 0.0333333333333333*G0_12_23 + 0.0666666666666667*G0_12_24 + 0.0666666666666667*G0_12_25 - 0.00833333333333333*G0_13_20 + 0.0166666666666666*G0_13_21 - 0.00833333333333333*G0_13_22 + 0.0666666666666666*G0_13_23 + 0.0333333333333333*G0_13_24 + 0.0666666666666667*G0_13_25 - 0.00833333333333332*G0_14_20 - 0.00833333333333333*G0_14_21 + 0.0166666666666667*G0_14_22 + 0.0666666666666666*G0_14_23 + 0.0666666666666667*G0_14_24 + 0.0333333333333333*G0_14_25 - 0.0166666666666667*G1_0_0 + 0.00277777777777778*G1_0_1 + 0.00277777777777778*G1_0_2 + 0.0111111111111111*G1_0_3 + 0.00277777777777778*G1_1_0 - 0.0166666666666666*G1_1_1 + 0.00277777777777777*G1_1_2 + 0.0111111111111111*G1_1_4 + 0.00277777777777778*G1_2_0 + 0.00277777777777778*G1_2_1 - 0.0166666666666666*G1_2_2 + 0.0111111111111111*G1_2_5 + 0.0111111111111111*G1_3_0 - 0.0888888888888888*G1_3_3 - 0.0444444444444444*G1_3_4 - 0.0444444444444444*G1_3_5 + 0.0111111111111111*G1_4_1 - 0.0444444444444444*G1_4_3 - 0.0888888888888889*G1_4_4 - 0.0444444444444444*G1_4_5 + 0.0111111111111111*G1_5_2 - 0.0444444444444444*G1_5_3 - 0.0444444444444444*G1_5_4 - 0.0888888888888889*G1_5_5 - 0.0166666666666667*G1_6_6 + 0.00277777777777778*G1_6_7 + 0.00277777777777778*G1_6_8 + 0.0111111111111111*G1_6_9 + 0.00277777777777778*G1_7_6 - 0.0166666666666666*G1_7_7 + 0.00277777777777777*G1_7_8 + 0.0111111111111111*G1_7_10 + 0.00277777777777778*G1_8_6 + 0.00277777777777778*G1_8_7 - 0.0166666666666666*G1_8_8 + 0.0111111111111111*G1_8_11 + 0.0111111111111111*G1_9_6 - 0.0888888888888888*G1_9_9 - 0.0444444444444444*G1_9_10 - 0.0444444444444444*G1_9_11 + 0.0111111111111111*G1_10_7 - 0.0444444444444444*G1_10_9 - 0.0888888888888889*G1_10_10 - 0.0444444444444444*G1_10_11 + 0.0111111111111111*G1_11_8 - 0.0444444444444444*G1_11_9 - 0.0444444444444444*G1_11_10 - 0.0888888888888889*G1_11_11 - 0.0833333333333334*G1_12_12 - 0.0416666666666667*G1_12_13 - 0.0416666666666667*G1_12_14 - 0.0416666666666667*G1_13_12 - 0.0833333333333333*G1_13_13 - 0.0416666666666667*G1_13_14 - 0.0416666666666667*G1_14_12 - 0.0416666666666667*G1_14_13 - 0.0833333333333333*G1_14_14; + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivenavierstokes_exterior_facet_integral_7_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivenavierstokes_exterior_facet_integral_7_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_exterior_facet_integral_7_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 180 + // Number of operations (multiply-add pairs) for tensor contraction: 136 + // Total number of operations (multiply-add pairs): 326 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0_0 = det*w[2][0]*w[0][0]*(1.0); + const double G0_0_5 = det*w[2][0]*w[0][5]*(1.0); + const double G0_0_6 = det*w[2][0]*w[0][6]*(1.0); + const double G0_0_7 = det*w[2][0]*w[0][7]*(1.0); + const double G0_0_8 = det*w[2][0]*w[0][8]*(1.0); + const double G0_1_1 = det*w[2][1]*w[0][1]*(1.0); + const double G0_1_3 = det*w[2][1]*w[0][3]*(1.0); + const double G0_1_4 = det*w[2][1]*w[0][4]*(1.0); + const double G0_1_7 = det*w[2][1]*w[0][7]*(1.0); + const double G0_1_8 = det*w[2][1]*w[0][8]*(1.0); + const double G0_2_2 = det*w[2][2]*w[0][2]*(1.0); + const double G0_2_3 = det*w[2][2]*w[0][3]*(1.0); + const double G0_2_4 = det*w[2][2]*w[0][4]*(1.0); + const double G0_2_5 = det*w[2][2]*w[0][5]*(1.0); + const double G0_2_6 = det*w[2][2]*w[0][6]*(1.0); + const double G0_3_1 = det*w[2][3]*w[0][1]*(1.0); + const double G0_3_2 = det*w[2][3]*w[0][2]*(1.0); + const double G0_3_3 = det*w[2][3]*w[0][3]*(1.0); + const double G0_3_4 = det*w[2][3]*w[0][4]*(1.0); + const double G0_4_0 = det*w[2][4]*w[0][0]*(1.0); + const double G0_4_2 = det*w[2][4]*w[0][2]*(1.0); + const double G0_4_5 = det*w[2][4]*w[0][5]*(1.0); + const double G0_4_6 = det*w[2][4]*w[0][6]*(1.0); + const double G0_5_0 = det*w[2][5]*w[0][0]*(1.0); + const double G0_5_1 = det*w[2][5]*w[0][1]*(1.0); + const double G0_5_7 = det*w[2][5]*w[0][7]*(1.0); + const double G0_5_8 = det*w[2][5]*w[0][8]*(1.0); + const double G0_6_10 = det*w[2][6]*w[0][10]*(1.0); + const double G0_6_15 = det*w[2][6]*w[0][15]*(1.0); + const double G0_6_16 = det*w[2][6]*w[0][16]*(1.0); + const double G0_6_17 = det*w[2][6]*w[0][17]*(1.0); + const double G0_6_18 = det*w[2][6]*w[0][18]*(1.0); + const double G0_7_11 = det*w[2][7]*w[0][11]*(1.0); + const double G0_7_13 = det*w[2][7]*w[0][13]*(1.0); + const double G0_7_14 = det*w[2][7]*w[0][14]*(1.0); + const double G0_7_17 = det*w[2][7]*w[0][17]*(1.0); + const double G0_7_18 = det*w[2][7]*w[0][18]*(1.0); + const double G0_8_12 = det*w[2][8]*w[0][12]*(1.0); + const double G0_8_13 = det*w[2][8]*w[0][13]*(1.0); + const double G0_8_14 = det*w[2][8]*w[0][14]*(1.0); + const double G0_8_15 = det*w[2][8]*w[0][15]*(1.0); + const double G0_8_16 = det*w[2][8]*w[0][16]*(1.0); + const double G0_9_11 = det*w[2][9]*w[0][11]*(1.0); + const double G0_9_12 = det*w[2][9]*w[0][12]*(1.0); + const double G0_9_13 = det*w[2][9]*w[0][13]*(1.0); + const double G0_9_14 = det*w[2][9]*w[0][14]*(1.0); + const double G0_10_10 = det*w[2][10]*w[0][10]*(1.0); + const double G0_10_12 = det*w[2][10]*w[0][12]*(1.0); + const double G0_10_15 = det*w[2][10]*w[0][15]*(1.0); + const double G0_10_16 = det*w[2][10]*w[0][16]*(1.0); + const double G0_11_10 = det*w[2][11]*w[0][10]*(1.0); + const double G0_11_11 = det*w[2][11]*w[0][11]*(1.0); + const double G0_11_17 = det*w[2][11]*w[0][17]*(1.0); + const double G0_11_18 = det*w[2][11]*w[0][18]*(1.0); + const double G0_12_20 = det*w[2][12]*w[0][20]*(1.0); + const double G0_12_24 = det*w[2][12]*w[0][24]*(1.0); + const double G0_12_25 = det*w[2][12]*w[0][25]*(1.0); + const double G0_13_21 = det*w[2][13]*w[0][21]*(1.0); + const double G0_13_23 = det*w[2][13]*w[0][23]*(1.0); + const double G0_13_25 = det*w[2][13]*w[0][25]*(1.0); + const double G0_14_22 = det*w[2][14]*w[0][22]*(1.0); + const double G0_14_23 = det*w[2][14]*w[0][23]*(1.0); + const double G0_14_24 = det*w[2][14]*w[0][24]*(1.0); + const double G1_0_0 = det*w[2][0]*w[3][0]*(1.0); + const double G1_0_1 = det*w[2][0]*w[3][1]*(1.0); + const double G1_0_2 = det*w[2][0]*w[3][2]*(1.0); + const double G1_0_4 = det*w[2][0]*w[3][4]*(1.0); + const double G1_0_5 = det*w[2][0]*w[3][5]*(1.0); + const double G1_1_0 = det*w[2][1]*w[3][0]*(1.0); + const double G1_1_1 = det*w[2][1]*w[3][1]*(1.0); + const double G1_1_2 = det*w[2][1]*w[3][2]*(1.0); + const double G1_1_3 = det*w[2][1]*w[3][3]*(1.0); + const double G1_1_5 = det*w[2][1]*w[3][5]*(1.0); + const double G1_2_0 = det*w[2][2]*w[3][0]*(1.0); + const double G1_2_1 = det*w[2][2]*w[3][1]*(1.0); + const double G1_2_2 = det*w[2][2]*w[3][2]*(1.0); + const double G1_2_3 = det*w[2][2]*w[3][3]*(1.0); + const double G1_2_4 = det*w[2][2]*w[3][4]*(1.0); + const double G1_3_1 = det*w[2][3]*w[3][1]*(1.0); + const double G1_3_2 = det*w[2][3]*w[3][2]*(1.0); + const double G1_3_3 = det*w[2][3]*w[3][3]*(1.0); + const double G1_4_0 = det*w[2][4]*w[3][0]*(1.0); + const double G1_4_2 = det*w[2][4]*w[3][2]*(1.0); + const double G1_4_4 = det*w[2][4]*w[3][4]*(1.0); + const double G1_5_0 = det*w[2][5]*w[3][0]*(1.0); + const double G1_5_1 = det*w[2][5]*w[3][1]*(1.0); + const double G1_5_5 = det*w[2][5]*w[3][5]*(1.0); + const double G1_6_6 = det*w[2][6]*w[3][6]*(1.0); + const double G1_6_7 = det*w[2][6]*w[3][7]*(1.0); + const double G1_6_8 = det*w[2][6]*w[3][8]*(1.0); + const double G1_6_10 = det*w[2][6]*w[3][10]*(1.0); + const double G1_6_11 = det*w[2][6]*w[3][11]*(1.0); + const double G1_7_6 = det*w[2][7]*w[3][6]*(1.0); + const double G1_7_7 = det*w[2][7]*w[3][7]*(1.0); + const double G1_7_8 = det*w[2][7]*w[3][8]*(1.0); + const double G1_7_9 = det*w[2][7]*w[3][9]*(1.0); + const double G1_7_11 = det*w[2][7]*w[3][11]*(1.0); + const double G1_8_6 = det*w[2][8]*w[3][6]*(1.0); + const double G1_8_7 = det*w[2][8]*w[3][7]*(1.0); + const double G1_8_8 = det*w[2][8]*w[3][8]*(1.0); + const double G1_8_9 = det*w[2][8]*w[3][9]*(1.0); + const double G1_8_10 = det*w[2][8]*w[3][10]*(1.0); + const double G1_9_7 = det*w[2][9]*w[3][7]*(1.0); + const double G1_9_8 = det*w[2][9]*w[3][8]*(1.0); + const double G1_9_9 = det*w[2][9]*w[3][9]*(1.0); + const double G1_10_6 = det*w[2][10]*w[3][6]*(1.0); + const double G1_10_8 = det*w[2][10]*w[3][8]*(1.0); + const double G1_10_10 = det*w[2][10]*w[3][10]*(1.0); + const double G1_11_6 = det*w[2][11]*w[3][6]*(1.0); + const double G1_11_7 = det*w[2][11]*w[3][7]*(1.0); + const double G1_11_11 = det*w[2][11]*w[3][11]*(1.0); + const double G1_12_12 = det*w[2][12]*w[3][12]*(1.0); + const double G1_12_13 = det*w[2][12]*w[3][13]*(1.0); + const double G1_12_14 = det*w[2][12]*w[3][14]*(1.0); + const double G1_13_12 = det*w[2][13]*w[3][12]*(1.0); + const double G1_13_13 = det*w[2][13]*w[3][13]*(1.0); + const double G1_13_14 = det*w[2][13]*w[3][14]*(1.0); + const double G1_14_12 = det*w[2][14]*w[3][12]*(1.0); + const double G1_14_13 = det*w[2][14]*w[3][13]*(1.0); + const double G1_14_14 = det*w[2][14]*w[3][14]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.0916666666666666*G0_1_1 + 0.15*G0_1_3 - 0.075*G0_1_4 + 0.0916666666666666*G0_2_2 - 0.0749999999999999*G0_2_3 + 0.15*G0_2_4 + 0.0333333333333333*G0_3_1 + 0.0333333333333333*G0_3_2 + 0.3*G0_3_3 + 0.3*G0_3_4 + 0.0916666666666666*G0_7_11 + 0.15*G0_7_13 - 0.075*G0_7_14 + 0.0916666666666666*G0_8_12 - 0.0749999999999999*G0_8_13 + 0.15*G0_8_14 + 0.0333333333333333*G0_9_11 + 0.0333333333333333*G0_9_12 + 0.3*G0_9_13 + 0.3*G0_9_14 + 0.166666666666667*G0_13_21 + 0.333333333333333*G0_13_23 + 0.166666666666667*G0_14_22 + 0.333333333333333*G0_14_23 - 0.133333333333333*G1_1_1 + 0.0333333333333333*G1_1_2 - 0.0666666666666666*G1_1_3 + 0.0333333333333333*G1_2_1 - 0.133333333333333*G1_2_2 - 0.0666666666666666*G1_2_3 - 0.0666666666666666*G1_3_1 - 0.0666666666666666*G1_3_2 - 0.533333333333333*G1_3_3 - 0.133333333333333*G1_7_7 + 0.0333333333333333*G1_7_8 - 0.0666666666666666*G1_7_9 + 0.0333333333333333*G1_8_7 - 0.133333333333333*G1_8_8 - 0.0666666666666666*G1_8_9 - 0.0666666666666666*G1_9_7 - 0.0666666666666666*G1_9_8 - 0.533333333333333*G1_9_9 - 0.333333333333333*G1_13_13 - 0.166666666666667*G1_13_14 - 0.166666666666667*G1_14_13 - 0.333333333333333*G1_14_14; + break; + } + case 1: + { + A[0] = 0.0916666666666666*G0_0_0 + 0.15*G0_0_5 - 0.0749999999999999*G0_0_6 + 0.0916666666666666*G0_2_2 - 0.0749999999999999*G0_2_5 + 0.15*G0_2_6 + 0.0333333333333333*G0_4_0 + 0.0333333333333333*G0_4_2 + 0.3*G0_4_5 + 0.3*G0_4_6 + 0.0916666666666666*G0_6_10 + 0.15*G0_6_15 - 0.0749999999999999*G0_6_16 + 0.0916666666666666*G0_8_12 - 0.0749999999999999*G0_8_15 + 0.15*G0_8_16 + 0.0333333333333333*G0_10_10 + 0.0333333333333333*G0_10_12 + 0.3*G0_10_15 + 0.3*G0_10_16 + 0.166666666666667*G0_12_20 + 0.333333333333333*G0_12_24 + 0.166666666666667*G0_14_22 + 0.333333333333333*G0_14_24 - 0.133333333333333*G1_0_0 + 0.0333333333333333*G1_0_2 - 0.0666666666666666*G1_0_4 + 0.0333333333333333*G1_2_0 - 0.133333333333333*G1_2_2 - 0.0666666666666666*G1_2_4 - 0.0666666666666666*G1_4_0 - 0.0666666666666666*G1_4_2 - 0.533333333333333*G1_4_4 - 0.133333333333333*G1_6_6 + 0.0333333333333333*G1_6_8 - 0.0666666666666666*G1_6_10 + 0.0333333333333333*G1_8_6 - 0.133333333333333*G1_8_8 - 0.0666666666666666*G1_8_10 - 0.0666666666666666*G1_10_6 - 0.0666666666666666*G1_10_8 - 0.533333333333333*G1_10_10 - 0.333333333333333*G1_12_12 - 0.166666666666667*G1_12_14 - 0.166666666666667*G1_14_12 - 0.333333333333333*G1_14_14; + break; + } + case 2: + { + A[0] = 0.0916666666666666*G0_0_0 + 0.15*G0_0_7 - 0.0749999999999999*G0_0_8 + 0.0916666666666666*G0_1_1 - 0.075*G0_1_7 + 0.15*G0_1_8 + 0.0333333333333332*G0_5_0 + 0.0333333333333333*G0_5_1 + 0.3*G0_5_7 + 0.3*G0_5_8 + 0.0916666666666666*G0_6_10 + 0.15*G0_6_17 - 0.0749999999999999*G0_6_18 + 0.0916666666666666*G0_7_11 - 0.075*G0_7_17 + 0.15*G0_7_18 + 0.0333333333333332*G0_11_10 + 0.0333333333333333*G0_11_11 + 0.3*G0_11_17 + 0.3*G0_11_18 + 0.166666666666667*G0_12_20 + 0.333333333333333*G0_12_25 + 0.166666666666667*G0_13_21 + 0.333333333333333*G0_13_25 - 0.133333333333333*G1_0_0 + 0.0333333333333333*G1_0_1 - 0.0666666666666666*G1_0_5 + 0.0333333333333333*G1_1_0 - 0.133333333333333*G1_1_1 - 0.0666666666666666*G1_1_5 - 0.0666666666666666*G1_5_0 - 0.0666666666666666*G1_5_1 - 0.533333333333333*G1_5_5 - 0.133333333333333*G1_6_6 + 0.0333333333333333*G1_6_7 - 0.0666666666666666*G1_6_11 + 0.0333333333333333*G1_7_6 - 0.133333333333333*G1_7_7 - 0.0666666666666666*G1_7_11 - 0.0666666666666666*G1_11_6 - 0.0666666666666666*G1_11_7 - 0.533333333333333*G1_11_11 - 0.333333333333333*G1_12_12 - 0.166666666666667*G1_12_13 - 0.166666666666667*G1_13_12 - 0.333333333333333*G1_13_13; + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the +/// interior facet tensor corresponding to the local contribution to +/// a form from the integral over an interior facet. + +class adaptivenavierstokes_interior_facet_integral_7_otherwise: public ufc::interior_facet_integral +{ +public: + + /// Constructor + adaptivenavierstokes_interior_facet_integral_7_otherwise() : ufc::interior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_interior_facet_integral_7_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local interior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates_0, + const double* vertex_coordinates_1, + std::size_t facet_0, + std::size_t facet_1, + int cell_orientation_0, + int cell_orientation_1) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 12 + // Number of operations (multiply-add pairs) for geometry tensor: 720 + // Number of operations (multiply-add pairs) for tensor contraction: 1647 + // Total number of operations (multiply-add pairs): 2379 + + // Compute Jacobian + double J_0[4]; + compute_jacobian_triangle_2d(J_0, vertex_coordinates_0); + + // Compute Jacobian inverse and determinant + double K_0[4]; + double detJ_0; + compute_jacobian_inverse_triangle_2d(K_0, detJ_0, J_0); + + // Compute Jacobian + double J_1[4]; + compute_jacobian_triangle_2d(J_1, vertex_coordinates_1); + + // Compute Jacobian inverse and determinant + double K_1[4]; + double detJ_1; + compute_jacobian_inverse_triangle_2d(K_1, detJ_1, J_1); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet_0][0]; + const unsigned int v1 = edge_vertices[facet_0][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates_0[2*v1 + 0] - vertex_coordinates_0[2*v0 + 0]; + const double dx1 = vertex_coordinates_0[2*v1 + 1] - vertex_coordinates_0[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + + // Compute geometry tensor + const double G0_15_15 = det*w[2][15]*w[3][15]*(1.0); + const double G0_15_16 = det*w[2][15]*w[3][16]*(1.0); + const double G0_15_17 = det*w[2][15]*w[3][17]*(1.0); + const double G0_15_19 = det*w[2][15]*w[3][19]*(1.0); + const double G0_15_20 = det*w[2][15]*w[3][20]*(1.0); + const double G0_16_15 = det*w[2][16]*w[3][15]*(1.0); + const double G0_16_16 = det*w[2][16]*w[3][16]*(1.0); + const double G0_16_17 = det*w[2][16]*w[3][17]*(1.0); + const double G0_16_18 = det*w[2][16]*w[3][18]*(1.0); + const double G0_16_20 = det*w[2][16]*w[3][20]*(1.0); + const double G0_17_15 = det*w[2][17]*w[3][15]*(1.0); + const double G0_17_16 = det*w[2][17]*w[3][16]*(1.0); + const double G0_17_17 = det*w[2][17]*w[3][17]*(1.0); + const double G0_17_18 = det*w[2][17]*w[3][18]*(1.0); + const double G0_17_19 = det*w[2][17]*w[3][19]*(1.0); + const double G0_18_16 = det*w[2][18]*w[3][16]*(1.0); + const double G0_18_17 = det*w[2][18]*w[3][17]*(1.0); + const double G0_18_18 = det*w[2][18]*w[3][18]*(1.0); + const double G0_19_15 = det*w[2][19]*w[3][15]*(1.0); + const double G0_19_17 = det*w[2][19]*w[3][17]*(1.0); + const double G0_19_19 = det*w[2][19]*w[3][19]*(1.0); + const double G0_20_15 = det*w[2][20]*w[3][15]*(1.0); + const double G0_20_16 = det*w[2][20]*w[3][16]*(1.0); + const double G0_20_20 = det*w[2][20]*w[3][20]*(1.0); + const double G0_21_21 = det*w[2][21]*w[3][21]*(1.0); + const double G0_21_22 = det*w[2][21]*w[3][22]*(1.0); + const double G0_21_23 = det*w[2][21]*w[3][23]*(1.0); + const double G0_21_25 = det*w[2][21]*w[3][25]*(1.0); + const double G0_21_26 = det*w[2][21]*w[3][26]*(1.0); + const double G0_22_21 = det*w[2][22]*w[3][21]*(1.0); + const double G0_22_22 = det*w[2][22]*w[3][22]*(1.0); + const double G0_22_23 = det*w[2][22]*w[3][23]*(1.0); + const double G0_22_24 = det*w[2][22]*w[3][24]*(1.0); + const double G0_22_26 = det*w[2][22]*w[3][26]*(1.0); + const double G0_23_21 = det*w[2][23]*w[3][21]*(1.0); + const double G0_23_22 = det*w[2][23]*w[3][22]*(1.0); + const double G0_23_23 = det*w[2][23]*w[3][23]*(1.0); + const double G0_23_24 = det*w[2][23]*w[3][24]*(1.0); + const double G0_23_25 = det*w[2][23]*w[3][25]*(1.0); + const double G0_24_22 = det*w[2][24]*w[3][22]*(1.0); + const double G0_24_23 = det*w[2][24]*w[3][23]*(1.0); + const double G0_24_24 = det*w[2][24]*w[3][24]*(1.0); + const double G0_25_21 = det*w[2][25]*w[3][21]*(1.0); + const double G0_25_23 = det*w[2][25]*w[3][23]*(1.0); + const double G0_25_25 = det*w[2][25]*w[3][25]*(1.0); + const double G0_26_21 = det*w[2][26]*w[3][21]*(1.0); + const double G0_26_22 = det*w[2][26]*w[3][22]*(1.0); + const double G0_26_26 = det*w[2][26]*w[3][26]*(1.0); + const double G0_27_27 = det*w[2][27]*w[3][27]*(1.0); + const double G0_27_28 = det*w[2][27]*w[3][28]*(1.0); + const double G0_27_29 = det*w[2][27]*w[3][29]*(1.0); + const double G0_28_27 = det*w[2][28]*w[3][27]*(1.0); + const double G0_28_28 = det*w[2][28]*w[3][28]*(1.0); + const double G0_28_29 = det*w[2][28]*w[3][29]*(1.0); + const double G0_29_27 = det*w[2][29]*w[3][27]*(1.0); + const double G0_29_28 = det*w[2][29]*w[3][28]*(1.0); + const double G0_29_29 = det*w[2][29]*w[3][29]*(1.0); + const double G1_15_26 = det*w[2][15]*w[0][26]*(1.0); + const double G1_15_31 = det*w[2][15]*w[0][31]*(1.0); + const double G1_15_32 = det*w[2][15]*w[0][32]*(1.0); + const double G1_15_33 = det*w[2][15]*w[0][33]*(1.0); + const double G1_15_34 = det*w[2][15]*w[0][34]*(1.0); + const double G1_16_27 = det*w[2][16]*w[0][27]*(1.0); + const double G1_16_29 = det*w[2][16]*w[0][29]*(1.0); + const double G1_16_30 = det*w[2][16]*w[0][30]*(1.0); + const double G1_16_33 = det*w[2][16]*w[0][33]*(1.0); + const double G1_16_34 = det*w[2][16]*w[0][34]*(1.0); + const double G1_17_28 = det*w[2][17]*w[0][28]*(1.0); + const double G1_17_29 = det*w[2][17]*w[0][29]*(1.0); + const double G1_17_30 = det*w[2][17]*w[0][30]*(1.0); + const double G1_17_31 = det*w[2][17]*w[0][31]*(1.0); + const double G1_17_32 = det*w[2][17]*w[0][32]*(1.0); + const double G1_18_27 = det*w[2][18]*w[0][27]*(1.0); + const double G1_18_28 = det*w[2][18]*w[0][28]*(1.0); + const double G1_18_29 = det*w[2][18]*w[0][29]*(1.0); + const double G1_18_30 = det*w[2][18]*w[0][30]*(1.0); + const double G1_19_26 = det*w[2][19]*w[0][26]*(1.0); + const double G1_19_28 = det*w[2][19]*w[0][28]*(1.0); + const double G1_19_31 = det*w[2][19]*w[0][31]*(1.0); + const double G1_19_32 = det*w[2][19]*w[0][32]*(1.0); + const double G1_20_26 = det*w[2][20]*w[0][26]*(1.0); + const double G1_20_27 = det*w[2][20]*w[0][27]*(1.0); + const double G1_20_33 = det*w[2][20]*w[0][33]*(1.0); + const double G1_20_34 = det*w[2][20]*w[0][34]*(1.0); + const double G1_21_36 = det*w[2][21]*w[0][36]*(1.0); + const double G1_21_41 = det*w[2][21]*w[0][41]*(1.0); + const double G1_21_42 = det*w[2][21]*w[0][42]*(1.0); + const double G1_21_43 = det*w[2][21]*w[0][43]*(1.0); + const double G1_21_44 = det*w[2][21]*w[0][44]*(1.0); + const double G1_22_37 = det*w[2][22]*w[0][37]*(1.0); + const double G1_22_39 = det*w[2][22]*w[0][39]*(1.0); + const double G1_22_40 = det*w[2][22]*w[0][40]*(1.0); + const double G1_22_43 = det*w[2][22]*w[0][43]*(1.0); + const double G1_22_44 = det*w[2][22]*w[0][44]*(1.0); + const double G1_23_38 = det*w[2][23]*w[0][38]*(1.0); + const double G1_23_39 = det*w[2][23]*w[0][39]*(1.0); + const double G1_23_40 = det*w[2][23]*w[0][40]*(1.0); + const double G1_23_41 = det*w[2][23]*w[0][41]*(1.0); + const double G1_23_42 = det*w[2][23]*w[0][42]*(1.0); + const double G1_24_37 = det*w[2][24]*w[0][37]*(1.0); + const double G1_24_38 = det*w[2][24]*w[0][38]*(1.0); + const double G1_24_39 = det*w[2][24]*w[0][39]*(1.0); + const double G1_24_40 = det*w[2][24]*w[0][40]*(1.0); + const double G1_25_36 = det*w[2][25]*w[0][36]*(1.0); + const double G1_25_38 = det*w[2][25]*w[0][38]*(1.0); + const double G1_25_41 = det*w[2][25]*w[0][41]*(1.0); + const double G1_25_42 = det*w[2][25]*w[0][42]*(1.0); + const double G1_26_36 = det*w[2][26]*w[0][36]*(1.0); + const double G1_26_37 = det*w[2][26]*w[0][37]*(1.0); + const double G1_26_43 = det*w[2][26]*w[0][43]*(1.0); + const double G1_26_44 = det*w[2][26]*w[0][44]*(1.0); + const double G1_27_46 = det*w[2][27]*w[0][46]*(1.0); + const double G1_27_50 = det*w[2][27]*w[0][50]*(1.0); + const double G1_27_51 = det*w[2][27]*w[0][51]*(1.0); + const double G1_28_47 = det*w[2][28]*w[0][47]*(1.0); + const double G1_28_49 = det*w[2][28]*w[0][49]*(1.0); + const double G1_28_51 = det*w[2][28]*w[0][51]*(1.0); + const double G1_29_48 = det*w[2][29]*w[0][48]*(1.0); + const double G1_29_49 = det*w[2][29]*w[0][49]*(1.0); + const double G1_29_50 = det*w[2][29]*w[0][50]*(1.0); + const double G2_0_0 = det*w[2][0]*w[3][0]*(1.0); + const double G2_0_1 = det*w[2][0]*w[3][1]*(1.0); + const double G2_0_2 = det*w[2][0]*w[3][2]*(1.0); + const double G2_0_4 = det*w[2][0]*w[3][4]*(1.0); + const double G2_0_5 = det*w[2][0]*w[3][5]*(1.0); + const double G2_1_0 = det*w[2][1]*w[3][0]*(1.0); + const double G2_1_1 = det*w[2][1]*w[3][1]*(1.0); + const double G2_1_2 = det*w[2][1]*w[3][2]*(1.0); + const double G2_1_3 = det*w[2][1]*w[3][3]*(1.0); + const double G2_1_5 = det*w[2][1]*w[3][5]*(1.0); + const double G2_2_0 = det*w[2][2]*w[3][0]*(1.0); + const double G2_2_1 = det*w[2][2]*w[3][1]*(1.0); + const double G2_2_2 = det*w[2][2]*w[3][2]*(1.0); + const double G2_2_3 = det*w[2][2]*w[3][3]*(1.0); + const double G2_2_4 = det*w[2][2]*w[3][4]*(1.0); + const double G2_3_1 = det*w[2][3]*w[3][1]*(1.0); + const double G2_3_2 = det*w[2][3]*w[3][2]*(1.0); + const double G2_3_3 = det*w[2][3]*w[3][3]*(1.0); + const double G2_4_0 = det*w[2][4]*w[3][0]*(1.0); + const double G2_4_2 = det*w[2][4]*w[3][2]*(1.0); + const double G2_4_4 = det*w[2][4]*w[3][4]*(1.0); + const double G2_5_0 = det*w[2][5]*w[3][0]*(1.0); + const double G2_5_1 = det*w[2][5]*w[3][1]*(1.0); + const double G2_5_5 = det*w[2][5]*w[3][5]*(1.0); + const double G2_6_6 = det*w[2][6]*w[3][6]*(1.0); + const double G2_6_7 = det*w[2][6]*w[3][7]*(1.0); + const double G2_6_8 = det*w[2][6]*w[3][8]*(1.0); + const double G2_6_10 = det*w[2][6]*w[3][10]*(1.0); + const double G2_6_11 = det*w[2][6]*w[3][11]*(1.0); + const double G2_7_6 = det*w[2][7]*w[3][6]*(1.0); + const double G2_7_7 = det*w[2][7]*w[3][7]*(1.0); + const double G2_7_8 = det*w[2][7]*w[3][8]*(1.0); + const double G2_7_9 = det*w[2][7]*w[3][9]*(1.0); + const double G2_7_11 = det*w[2][7]*w[3][11]*(1.0); + const double G2_8_6 = det*w[2][8]*w[3][6]*(1.0); + const double G2_8_7 = det*w[2][8]*w[3][7]*(1.0); + const double G2_8_8 = det*w[2][8]*w[3][8]*(1.0); + const double G2_8_9 = det*w[2][8]*w[3][9]*(1.0); + const double G2_8_10 = det*w[2][8]*w[3][10]*(1.0); + const double G2_9_7 = det*w[2][9]*w[3][7]*(1.0); + const double G2_9_8 = det*w[2][9]*w[3][8]*(1.0); + const double G2_9_9 = det*w[2][9]*w[3][9]*(1.0); + const double G2_10_6 = det*w[2][10]*w[3][6]*(1.0); + const double G2_10_8 = det*w[2][10]*w[3][8]*(1.0); + const double G2_10_10 = det*w[2][10]*w[3][10]*(1.0); + const double G2_11_6 = det*w[2][11]*w[3][6]*(1.0); + const double G2_11_7 = det*w[2][11]*w[3][7]*(1.0); + const double G2_11_11 = det*w[2][11]*w[3][11]*(1.0); + const double G2_12_12 = det*w[2][12]*w[3][12]*(1.0); + const double G2_12_13 = det*w[2][12]*w[3][13]*(1.0); + const double G2_12_14 = det*w[2][12]*w[3][14]*(1.0); + const double G2_13_12 = det*w[2][13]*w[3][12]*(1.0); + const double G2_13_13 = det*w[2][13]*w[3][13]*(1.0); + const double G2_13_14 = det*w[2][13]*w[3][14]*(1.0); + const double G2_14_12 = det*w[2][14]*w[3][12]*(1.0); + const double G2_14_13 = det*w[2][14]*w[3][13]*(1.0); + const double G2_14_14 = det*w[2][14]*w[3][14]*(1.0); + const double G3_0_0 = det*w[2][0]*w[0][0]*(1.0); + const double G3_0_5 = det*w[2][0]*w[0][5]*(1.0); + const double G3_0_6 = det*w[2][0]*w[0][6]*(1.0); + const double G3_0_7 = det*w[2][0]*w[0][7]*(1.0); + const double G3_0_8 = det*w[2][0]*w[0][8]*(1.0); + const double G3_1_1 = det*w[2][1]*w[0][1]*(1.0); + const double G3_1_3 = det*w[2][1]*w[0][3]*(1.0); + const double G3_1_4 = det*w[2][1]*w[0][4]*(1.0); + const double G3_1_7 = det*w[2][1]*w[0][7]*(1.0); + const double G3_1_8 = det*w[2][1]*w[0][8]*(1.0); + const double G3_2_2 = det*w[2][2]*w[0][2]*(1.0); + const double G3_2_3 = det*w[2][2]*w[0][3]*(1.0); + const double G3_2_4 = det*w[2][2]*w[0][4]*(1.0); + const double G3_2_5 = det*w[2][2]*w[0][5]*(1.0); + const double G3_2_6 = det*w[2][2]*w[0][6]*(1.0); + const double G3_3_1 = det*w[2][3]*w[0][1]*(1.0); + const double G3_3_2 = det*w[2][3]*w[0][2]*(1.0); + const double G3_3_3 = det*w[2][3]*w[0][3]*(1.0); + const double G3_3_4 = det*w[2][3]*w[0][4]*(1.0); + const double G3_4_0 = det*w[2][4]*w[0][0]*(1.0); + const double G3_4_2 = det*w[2][4]*w[0][2]*(1.0); + const double G3_4_5 = det*w[2][4]*w[0][5]*(1.0); + const double G3_4_6 = det*w[2][4]*w[0][6]*(1.0); + const double G3_5_0 = det*w[2][5]*w[0][0]*(1.0); + const double G3_5_1 = det*w[2][5]*w[0][1]*(1.0); + const double G3_5_7 = det*w[2][5]*w[0][7]*(1.0); + const double G3_5_8 = det*w[2][5]*w[0][8]*(1.0); + const double G3_6_10 = det*w[2][6]*w[0][10]*(1.0); + const double G3_6_15 = det*w[2][6]*w[0][15]*(1.0); + const double G3_6_16 = det*w[2][6]*w[0][16]*(1.0); + const double G3_6_17 = det*w[2][6]*w[0][17]*(1.0); + const double G3_6_18 = det*w[2][6]*w[0][18]*(1.0); + const double G3_7_11 = det*w[2][7]*w[0][11]*(1.0); + const double G3_7_13 = det*w[2][7]*w[0][13]*(1.0); + const double G3_7_14 = det*w[2][7]*w[0][14]*(1.0); + const double G3_7_17 = det*w[2][7]*w[0][17]*(1.0); + const double G3_7_18 = det*w[2][7]*w[0][18]*(1.0); + const double G3_8_12 = det*w[2][8]*w[0][12]*(1.0); + const double G3_8_13 = det*w[2][8]*w[0][13]*(1.0); + const double G3_8_14 = det*w[2][8]*w[0][14]*(1.0); + const double G3_8_15 = det*w[2][8]*w[0][15]*(1.0); + const double G3_8_16 = det*w[2][8]*w[0][16]*(1.0); + const double G3_9_11 = det*w[2][9]*w[0][11]*(1.0); + const double G3_9_12 = det*w[2][9]*w[0][12]*(1.0); + const double G3_9_13 = det*w[2][9]*w[0][13]*(1.0); + const double G3_9_14 = det*w[2][9]*w[0][14]*(1.0); + const double G3_10_10 = det*w[2][10]*w[0][10]*(1.0); + const double G3_10_12 = det*w[2][10]*w[0][12]*(1.0); + const double G3_10_15 = det*w[2][10]*w[0][15]*(1.0); + const double G3_10_16 = det*w[2][10]*w[0][16]*(1.0); + const double G3_11_10 = det*w[2][11]*w[0][10]*(1.0); + const double G3_11_11 = det*w[2][11]*w[0][11]*(1.0); + const double G3_11_17 = det*w[2][11]*w[0][17]*(1.0); + const double G3_11_18 = det*w[2][11]*w[0][18]*(1.0); + const double G3_12_20 = det*w[2][12]*w[0][20]*(1.0); + const double G3_12_24 = det*w[2][12]*w[0][24]*(1.0); + const double G3_12_25 = det*w[2][12]*w[0][25]*(1.0); + const double G3_13_21 = det*w[2][13]*w[0][21]*(1.0); + const double G3_13_23 = det*w[2][13]*w[0][23]*(1.0); + const double G3_13_25 = det*w[2][13]*w[0][25]*(1.0); + const double G3_14_22 = det*w[2][14]*w[0][22]*(1.0); + const double G3_14_23 = det*w[2][14]*w[0][23]*(1.0); + const double G3_14_24 = det*w[2][14]*w[0][24]*(1.0); + const double G4_15_15 = det*w[2][15]*w[3][15]*(1.0); + const double G4_15_16 = det*w[2][15]*w[3][16]*(1.0); + const double G4_15_17 = det*w[2][15]*w[3][17]*(1.0); + const double G4_15_19 = det*w[2][15]*w[3][19]*(1.0); + const double G4_15_20 = det*w[2][15]*w[3][20]*(1.0); + const double G4_16_15 = det*w[2][16]*w[3][15]*(1.0); + const double G4_16_16 = det*w[2][16]*w[3][16]*(1.0); + const double G4_16_17 = det*w[2][16]*w[3][17]*(1.0); + const double G4_16_18 = det*w[2][16]*w[3][18]*(1.0); + const double G4_16_20 = det*w[2][16]*w[3][20]*(1.0); + const double G4_17_15 = det*w[2][17]*w[3][15]*(1.0); + const double G4_17_16 = det*w[2][17]*w[3][16]*(1.0); + const double G4_17_17 = det*w[2][17]*w[3][17]*(1.0); + const double G4_17_18 = det*w[2][17]*w[3][18]*(1.0); + const double G4_17_19 = det*w[2][17]*w[3][19]*(1.0); + const double G4_18_16 = det*w[2][18]*w[3][16]*(1.0); + const double G4_18_17 = det*w[2][18]*w[3][17]*(1.0); + const double G4_18_18 = det*w[2][18]*w[3][18]*(1.0); + const double G4_19_15 = det*w[2][19]*w[3][15]*(1.0); + const double G4_19_17 = det*w[2][19]*w[3][17]*(1.0); + const double G4_19_19 = det*w[2][19]*w[3][19]*(1.0); + const double G4_20_15 = det*w[2][20]*w[3][15]*(1.0); + const double G4_20_16 = det*w[2][20]*w[3][16]*(1.0); + const double G4_20_20 = det*w[2][20]*w[3][20]*(1.0); + const double G4_21_21 = det*w[2][21]*w[3][21]*(1.0); + const double G4_21_22 = det*w[2][21]*w[3][22]*(1.0); + const double G4_21_23 = det*w[2][21]*w[3][23]*(1.0); + const double G4_21_25 = det*w[2][21]*w[3][25]*(1.0); + const double G4_21_26 = det*w[2][21]*w[3][26]*(1.0); + const double G4_22_21 = det*w[2][22]*w[3][21]*(1.0); + const double G4_22_22 = det*w[2][22]*w[3][22]*(1.0); + const double G4_22_23 = det*w[2][22]*w[3][23]*(1.0); + const double G4_22_24 = det*w[2][22]*w[3][24]*(1.0); + const double G4_22_26 = det*w[2][22]*w[3][26]*(1.0); + const double G4_23_21 = det*w[2][23]*w[3][21]*(1.0); + const double G4_23_22 = det*w[2][23]*w[3][22]*(1.0); + const double G4_23_23 = det*w[2][23]*w[3][23]*(1.0); + const double G4_23_24 = det*w[2][23]*w[3][24]*(1.0); + const double G4_23_25 = det*w[2][23]*w[3][25]*(1.0); + const double G4_24_22 = det*w[2][24]*w[3][22]*(1.0); + const double G4_24_23 = det*w[2][24]*w[3][23]*(1.0); + const double G4_24_24 = det*w[2][24]*w[3][24]*(1.0); + const double G4_25_21 = det*w[2][25]*w[3][21]*(1.0); + const double G4_25_23 = det*w[2][25]*w[3][23]*(1.0); + const double G4_25_25 = det*w[2][25]*w[3][25]*(1.0); + const double G4_26_21 = det*w[2][26]*w[3][21]*(1.0); + const double G4_26_22 = det*w[2][26]*w[3][22]*(1.0); + const double G4_26_26 = det*w[2][26]*w[3][26]*(1.0); + const double G4_27_27 = det*w[2][27]*w[3][27]*(1.0); + const double G4_27_28 = det*w[2][27]*w[3][28]*(1.0); + const double G4_27_29 = det*w[2][27]*w[3][29]*(1.0); + const double G4_28_27 = det*w[2][28]*w[3][27]*(1.0); + const double G4_28_28 = det*w[2][28]*w[3][28]*(1.0); + const double G4_28_29 = det*w[2][28]*w[3][29]*(1.0); + const double G4_29_27 = det*w[2][29]*w[3][27]*(1.0); + const double G4_29_28 = det*w[2][29]*w[3][28]*(1.0); + const double G4_29_29 = det*w[2][29]*w[3][29]*(1.0); + const double G5_15_26 = det*w[2][15]*w[0][26]*(1.0); + const double G5_15_31 = det*w[2][15]*w[0][31]*(1.0); + const double G5_15_32 = det*w[2][15]*w[0][32]*(1.0); + const double G5_15_33 = det*w[2][15]*w[0][33]*(1.0); + const double G5_15_34 = det*w[2][15]*w[0][34]*(1.0); + const double G5_16_27 = det*w[2][16]*w[0][27]*(1.0); + const double G5_16_29 = det*w[2][16]*w[0][29]*(1.0); + const double G5_16_30 = det*w[2][16]*w[0][30]*(1.0); + const double G5_16_33 = det*w[2][16]*w[0][33]*(1.0); + const double G5_16_34 = det*w[2][16]*w[0][34]*(1.0); + const double G5_17_28 = det*w[2][17]*w[0][28]*(1.0); + const double G5_17_29 = det*w[2][17]*w[0][29]*(1.0); + const double G5_17_30 = det*w[2][17]*w[0][30]*(1.0); + const double G5_17_31 = det*w[2][17]*w[0][31]*(1.0); + const double G5_17_32 = det*w[2][17]*w[0][32]*(1.0); + const double G5_18_27 = det*w[2][18]*w[0][27]*(1.0); + const double G5_18_28 = det*w[2][18]*w[0][28]*(1.0); + const double G5_18_29 = det*w[2][18]*w[0][29]*(1.0); + const double G5_18_30 = det*w[2][18]*w[0][30]*(1.0); + const double G5_19_26 = det*w[2][19]*w[0][26]*(1.0); + const double G5_19_28 = det*w[2][19]*w[0][28]*(1.0); + const double G5_19_31 = det*w[2][19]*w[0][31]*(1.0); + const double G5_19_32 = det*w[2][19]*w[0][32]*(1.0); + const double G5_20_26 = det*w[2][20]*w[0][26]*(1.0); + const double G5_20_27 = det*w[2][20]*w[0][27]*(1.0); + const double G5_20_33 = det*w[2][20]*w[0][33]*(1.0); + const double G5_20_34 = det*w[2][20]*w[0][34]*(1.0); + const double G5_21_36 = det*w[2][21]*w[0][36]*(1.0); + const double G5_21_41 = det*w[2][21]*w[0][41]*(1.0); + const double G5_21_42 = det*w[2][21]*w[0][42]*(1.0); + const double G5_21_43 = det*w[2][21]*w[0][43]*(1.0); + const double G5_21_44 = det*w[2][21]*w[0][44]*(1.0); + const double G5_22_37 = det*w[2][22]*w[0][37]*(1.0); + const double G5_22_39 = det*w[2][22]*w[0][39]*(1.0); + const double G5_22_40 = det*w[2][22]*w[0][40]*(1.0); + const double G5_22_43 = det*w[2][22]*w[0][43]*(1.0); + const double G5_22_44 = det*w[2][22]*w[0][44]*(1.0); + const double G5_23_38 = det*w[2][23]*w[0][38]*(1.0); + const double G5_23_39 = det*w[2][23]*w[0][39]*(1.0); + const double G5_23_40 = det*w[2][23]*w[0][40]*(1.0); + const double G5_23_41 = det*w[2][23]*w[0][41]*(1.0); + const double G5_23_42 = det*w[2][23]*w[0][42]*(1.0); + const double G5_24_37 = det*w[2][24]*w[0][37]*(1.0); + const double G5_24_38 = det*w[2][24]*w[0][38]*(1.0); + const double G5_24_39 = det*w[2][24]*w[0][39]*(1.0); + const double G5_24_40 = det*w[2][24]*w[0][40]*(1.0); + const double G5_25_36 = det*w[2][25]*w[0][36]*(1.0); + const double G5_25_38 = det*w[2][25]*w[0][38]*(1.0); + const double G5_25_41 = det*w[2][25]*w[0][41]*(1.0); + const double G5_25_42 = det*w[2][25]*w[0][42]*(1.0); + const double G5_26_36 = det*w[2][26]*w[0][36]*(1.0); + const double G5_26_37 = det*w[2][26]*w[0][37]*(1.0); + const double G5_26_43 = det*w[2][26]*w[0][43]*(1.0); + const double G5_26_44 = det*w[2][26]*w[0][44]*(1.0); + const double G5_27_46 = det*w[2][27]*w[0][46]*(1.0); + const double G5_27_50 = det*w[2][27]*w[0][50]*(1.0); + const double G5_27_51 = det*w[2][27]*w[0][51]*(1.0); + const double G5_28_47 = det*w[2][28]*w[0][47]*(1.0); + const double G5_28_49 = det*w[2][28]*w[0][49]*(1.0); + const double G5_28_51 = det*w[2][28]*w[0][51]*(1.0); + const double G5_29_48 = det*w[2][29]*w[0][48]*(1.0); + const double G5_29_49 = det*w[2][29]*w[0][49]*(1.0); + const double G5_29_50 = det*w[2][29]*w[0][50]*(1.0); + const double G6_0_0 = det*w[2][0]*w[3][0]*(1.0); + const double G6_0_1 = det*w[2][0]*w[3][1]*(1.0); + const double G6_0_2 = det*w[2][0]*w[3][2]*(1.0); + const double G6_0_4 = det*w[2][0]*w[3][4]*(1.0); + const double G6_0_5 = det*w[2][0]*w[3][5]*(1.0); + const double G6_1_0 = det*w[2][1]*w[3][0]*(1.0); + const double G6_1_1 = det*w[2][1]*w[3][1]*(1.0); + const double G6_1_2 = det*w[2][1]*w[3][2]*(1.0); + const double G6_1_3 = det*w[2][1]*w[3][3]*(1.0); + const double G6_1_5 = det*w[2][1]*w[3][5]*(1.0); + const double G6_2_0 = det*w[2][2]*w[3][0]*(1.0); + const double G6_2_1 = det*w[2][2]*w[3][1]*(1.0); + const double G6_2_2 = det*w[2][2]*w[3][2]*(1.0); + const double G6_2_3 = det*w[2][2]*w[3][3]*(1.0); + const double G6_2_4 = det*w[2][2]*w[3][4]*(1.0); + const double G6_3_1 = det*w[2][3]*w[3][1]*(1.0); + const double G6_3_2 = det*w[2][3]*w[3][2]*(1.0); + const double G6_3_3 = det*w[2][3]*w[3][3]*(1.0); + const double G6_4_0 = det*w[2][4]*w[3][0]*(1.0); + const double G6_4_2 = det*w[2][4]*w[3][2]*(1.0); + const double G6_4_4 = det*w[2][4]*w[3][4]*(1.0); + const double G6_5_0 = det*w[2][5]*w[3][0]*(1.0); + const double G6_5_1 = det*w[2][5]*w[3][1]*(1.0); + const double G6_5_5 = det*w[2][5]*w[3][5]*(1.0); + const double G6_6_6 = det*w[2][6]*w[3][6]*(1.0); + const double G6_6_7 = det*w[2][6]*w[3][7]*(1.0); + const double G6_6_8 = det*w[2][6]*w[3][8]*(1.0); + const double G6_6_10 = det*w[2][6]*w[3][10]*(1.0); + const double G6_6_11 = det*w[2][6]*w[3][11]*(1.0); + const double G6_7_6 = det*w[2][7]*w[3][6]*(1.0); + const double G6_7_7 = det*w[2][7]*w[3][7]*(1.0); + const double G6_7_8 = det*w[2][7]*w[3][8]*(1.0); + const double G6_7_9 = det*w[2][7]*w[3][9]*(1.0); + const double G6_7_11 = det*w[2][7]*w[3][11]*(1.0); + const double G6_8_6 = det*w[2][8]*w[3][6]*(1.0); + const double G6_8_7 = det*w[2][8]*w[3][7]*(1.0); + const double G6_8_8 = det*w[2][8]*w[3][8]*(1.0); + const double G6_8_9 = det*w[2][8]*w[3][9]*(1.0); + const double G6_8_10 = det*w[2][8]*w[3][10]*(1.0); + const double G6_9_7 = det*w[2][9]*w[3][7]*(1.0); + const double G6_9_8 = det*w[2][9]*w[3][8]*(1.0); + const double G6_9_9 = det*w[2][9]*w[3][9]*(1.0); + const double G6_10_6 = det*w[2][10]*w[3][6]*(1.0); + const double G6_10_8 = det*w[2][10]*w[3][8]*(1.0); + const double G6_10_10 = det*w[2][10]*w[3][10]*(1.0); + const double G6_11_6 = det*w[2][11]*w[3][6]*(1.0); + const double G6_11_7 = det*w[2][11]*w[3][7]*(1.0); + const double G6_11_11 = det*w[2][11]*w[3][11]*(1.0); + const double G6_12_12 = det*w[2][12]*w[3][12]*(1.0); + const double G6_12_13 = det*w[2][12]*w[3][13]*(1.0); + const double G6_12_14 = det*w[2][12]*w[3][14]*(1.0); + const double G6_13_12 = det*w[2][13]*w[3][12]*(1.0); + const double G6_13_13 = det*w[2][13]*w[3][13]*(1.0); + const double G6_13_14 = det*w[2][13]*w[3][14]*(1.0); + const double G6_14_12 = det*w[2][14]*w[3][12]*(1.0); + const double G6_14_13 = det*w[2][14]*w[3][13]*(1.0); + const double G6_14_14 = det*w[2][14]*w[3][14]*(1.0); + const double G7_0_0 = det*w[2][0]*w[0][0]*(1.0); + const double G7_0_5 = det*w[2][0]*w[0][5]*(1.0); + const double G7_0_6 = det*w[2][0]*w[0][6]*(1.0); + const double G7_0_7 = det*w[2][0]*w[0][7]*(1.0); + const double G7_0_8 = det*w[2][0]*w[0][8]*(1.0); + const double G7_1_1 = det*w[2][1]*w[0][1]*(1.0); + const double G7_1_3 = det*w[2][1]*w[0][3]*(1.0); + const double G7_1_4 = det*w[2][1]*w[0][4]*(1.0); + const double G7_1_7 = det*w[2][1]*w[0][7]*(1.0); + const double G7_1_8 = det*w[2][1]*w[0][8]*(1.0); + const double G7_2_2 = det*w[2][2]*w[0][2]*(1.0); + const double G7_2_3 = det*w[2][2]*w[0][3]*(1.0); + const double G7_2_4 = det*w[2][2]*w[0][4]*(1.0); + const double G7_2_5 = det*w[2][2]*w[0][5]*(1.0); + const double G7_2_6 = det*w[2][2]*w[0][6]*(1.0); + const double G7_3_1 = det*w[2][3]*w[0][1]*(1.0); + const double G7_3_2 = det*w[2][3]*w[0][2]*(1.0); + const double G7_3_3 = det*w[2][3]*w[0][3]*(1.0); + const double G7_3_4 = det*w[2][3]*w[0][4]*(1.0); + const double G7_4_0 = det*w[2][4]*w[0][0]*(1.0); + const double G7_4_2 = det*w[2][4]*w[0][2]*(1.0); + const double G7_4_5 = det*w[2][4]*w[0][5]*(1.0); + const double G7_4_6 = det*w[2][4]*w[0][6]*(1.0); + const double G7_5_0 = det*w[2][5]*w[0][0]*(1.0); + const double G7_5_1 = det*w[2][5]*w[0][1]*(1.0); + const double G7_5_7 = det*w[2][5]*w[0][7]*(1.0); + const double G7_5_8 = det*w[2][5]*w[0][8]*(1.0); + const double G7_6_10 = det*w[2][6]*w[0][10]*(1.0); + const double G7_6_15 = det*w[2][6]*w[0][15]*(1.0); + const double G7_6_16 = det*w[2][6]*w[0][16]*(1.0); + const double G7_6_17 = det*w[2][6]*w[0][17]*(1.0); + const double G7_6_18 = det*w[2][6]*w[0][18]*(1.0); + const double G7_7_11 = det*w[2][7]*w[0][11]*(1.0); + const double G7_7_13 = det*w[2][7]*w[0][13]*(1.0); + const double G7_7_14 = det*w[2][7]*w[0][14]*(1.0); + const double G7_7_17 = det*w[2][7]*w[0][17]*(1.0); + const double G7_7_18 = det*w[2][7]*w[0][18]*(1.0); + const double G7_8_12 = det*w[2][8]*w[0][12]*(1.0); + const double G7_8_13 = det*w[2][8]*w[0][13]*(1.0); + const double G7_8_14 = det*w[2][8]*w[0][14]*(1.0); + const double G7_8_15 = det*w[2][8]*w[0][15]*(1.0); + const double G7_8_16 = det*w[2][8]*w[0][16]*(1.0); + const double G7_9_11 = det*w[2][9]*w[0][11]*(1.0); + const double G7_9_12 = det*w[2][9]*w[0][12]*(1.0); + const double G7_9_13 = det*w[2][9]*w[0][13]*(1.0); + const double G7_9_14 = det*w[2][9]*w[0][14]*(1.0); + const double G7_10_10 = det*w[2][10]*w[0][10]*(1.0); + const double G7_10_12 = det*w[2][10]*w[0][12]*(1.0); + const double G7_10_15 = det*w[2][10]*w[0][15]*(1.0); + const double G7_10_16 = det*w[2][10]*w[0][16]*(1.0); + const double G7_11_10 = det*w[2][11]*w[0][10]*(1.0); + const double G7_11_11 = det*w[2][11]*w[0][11]*(1.0); + const double G7_11_17 = det*w[2][11]*w[0][17]*(1.0); + const double G7_11_18 = det*w[2][11]*w[0][18]*(1.0); + const double G7_12_20 = det*w[2][12]*w[0][20]*(1.0); + const double G7_12_24 = det*w[2][12]*w[0][24]*(1.0); + const double G7_12_25 = det*w[2][12]*w[0][25]*(1.0); + const double G7_13_21 = det*w[2][13]*w[0][21]*(1.0); + const double G7_13_23 = det*w[2][13]*w[0][23]*(1.0); + const double G7_13_25 = det*w[2][13]*w[0][25]*(1.0); + const double G7_14_22 = det*w[2][14]*w[0][22]*(1.0); + const double G7_14_23 = det*w[2][14]*w[0][23]*(1.0); + const double G7_14_24 = det*w[2][14]*w[0][24]*(1.0); + + // Compute element tensor + switch (facet_0) + { + case 0: + { + switch (facet_1) + { + case 0: + { + A[0] = -0.0666666666666667*G4_16_16 + 0.0166666666666666*G4_16_17 - 0.0333333333333333*G4_16_18 + 0.0166666666666666*G4_17_16 - 0.0666666666666667*G4_17_17 - 0.0333333333333333*G4_17_18 - 0.0333333333333333*G4_18_16 - 0.0333333333333333*G4_18_17 - 0.266666666666666*G4_18_18 - 0.0666666666666667*G4_22_22 + 0.0166666666666666*G4_22_23 - 0.0333333333333333*G4_22_24 + 0.0166666666666666*G4_23_22 - 0.0666666666666667*G4_23_23 - 0.0333333333333333*G4_23_24 - 0.0333333333333333*G4_24_22 - 0.0333333333333333*G4_24_23 - 0.266666666666666*G4_24_24 - 0.166666666666667*G4_28_28 - 0.0833333333333333*G4_28_29 - 0.0833333333333333*G4_29_28 - 0.166666666666667*G4_29_29 + 0.0458333333333333*G5_16_27 + 0.075*G5_16_29 - 0.0375*G5_16_30 + 0.0458333333333333*G5_17_28 - 0.0375*G5_17_29 + 0.075*G5_17_30 + 0.0166666666666666*G5_18_27 + 0.0166666666666666*G5_18_28 + 0.15*G5_18_29 + 0.15*G5_18_30 + 0.0458333333333333*G5_22_37 + 0.075*G5_22_39 - 0.0375*G5_22_40 + 0.0458333333333333*G5_23_38 - 0.0375*G5_23_39 + 0.075*G5_23_40 + 0.0166666666666666*G5_24_37 + 0.0166666666666666*G5_24_38 + 0.15*G5_24_39 + 0.15*G5_24_40 + 0.0833333333333333*G5_28_47 + 0.166666666666667*G5_28_49 + 0.0833333333333333*G5_29_48 + 0.166666666666667*G5_29_49 - 0.0666666666666667*G6_1_1 + 0.0166666666666666*G6_1_2 - 0.0333333333333333*G6_1_3 + 0.0166666666666666*G6_2_1 - 0.0666666666666667*G6_2_2 - 0.0333333333333333*G6_2_3 - 0.0333333333333333*G6_3_1 - 0.0333333333333333*G6_3_2 - 0.266666666666666*G6_3_3 - 0.0666666666666667*G6_7_7 + 0.0166666666666666*G6_7_8 - 0.0333333333333333*G6_7_9 + 0.0166666666666666*G6_8_7 - 0.0666666666666667*G6_8_8 - 0.0333333333333333*G6_8_9 - 0.0333333333333333*G6_9_7 - 0.0333333333333333*G6_9_8 - 0.266666666666666*G6_9_9 - 0.166666666666667*G6_13_13 - 0.0833333333333333*G6_13_14 - 0.0833333333333333*G6_14_13 - 0.166666666666667*G6_14_14 + 0.0458333333333333*G7_1_1 + 0.075*G7_1_3 - 0.0375*G7_1_4 + 0.0458333333333333*G7_2_2 - 0.0375*G7_2_3 + 0.075*G7_2_4 + 0.0166666666666666*G7_3_1 + 0.0166666666666666*G7_3_2 + 0.15*G7_3_3 + 0.15*G7_3_4 + 0.0458333333333333*G7_7_11 + 0.075*G7_7_13 - 0.0375*G7_7_14 + 0.0458333333333333*G7_8_12 - 0.0375*G7_8_13 + 0.075*G7_8_14 + 0.0166666666666666*G7_9_11 + 0.0166666666666666*G7_9_12 + 0.15*G7_9_13 + 0.15*G7_9_14 + 0.0833333333333333*G7_13_21 + 0.166666666666667*G7_13_23 + 0.0833333333333333*G7_14_22 + 0.166666666666667*G7_14_23; + A[1] = -0.0666666666666667*G0_16_16 + 0.0166666666666666*G0_16_17 - 0.0333333333333333*G0_16_18 + 0.0166666666666666*G0_17_16 - 0.0666666666666667*G0_17_17 - 0.0333333333333333*G0_17_18 - 0.0333333333333333*G0_18_16 - 0.0333333333333333*G0_18_17 - 0.266666666666666*G0_18_18 - 0.0666666666666667*G0_22_22 + 0.0166666666666666*G0_22_23 - 0.0333333333333333*G0_22_24 + 0.0166666666666666*G0_23_22 - 0.0666666666666667*G0_23_23 - 0.0333333333333333*G0_23_24 - 0.0333333333333333*G0_24_22 - 0.0333333333333333*G0_24_23 - 0.266666666666666*G0_24_24 - 0.166666666666667*G0_28_28 - 0.0833333333333333*G0_28_29 - 0.0833333333333333*G0_29_28 - 0.166666666666667*G0_29_29 + 0.0458333333333333*G1_16_27 + 0.075*G1_16_29 - 0.0375*G1_16_30 + 0.0458333333333333*G1_17_28 - 0.0375*G1_17_29 + 0.075*G1_17_30 + 0.0166666666666666*G1_18_27 + 0.0166666666666666*G1_18_28 + 0.15*G1_18_29 + 0.15*G1_18_30 + 0.0458333333333333*G1_22_37 + 0.075*G1_22_39 - 0.0375*G1_22_40 + 0.0458333333333333*G1_23_38 - 0.0375*G1_23_39 + 0.075*G1_23_40 + 0.0166666666666666*G1_24_37 + 0.0166666666666666*G1_24_38 + 0.15*G1_24_39 + 0.15*G1_24_40 + 0.0833333333333333*G1_28_47 + 0.166666666666667*G1_28_49 + 0.0833333333333333*G1_29_48 + 0.166666666666667*G1_29_49 - 0.0666666666666667*G2_1_1 + 0.0166666666666666*G2_1_2 - 0.0333333333333333*G2_1_3 + 0.0166666666666666*G2_2_1 - 0.0666666666666667*G2_2_2 - 0.0333333333333333*G2_2_3 - 0.0333333333333333*G2_3_1 - 0.0333333333333333*G2_3_2 - 0.266666666666666*G2_3_3 - 0.0666666666666667*G2_7_7 + 0.0166666666666666*G2_7_8 - 0.0333333333333333*G2_7_9 + 0.0166666666666666*G2_8_7 - 0.0666666666666667*G2_8_8 - 0.0333333333333333*G2_8_9 - 0.0333333333333333*G2_9_7 - 0.0333333333333333*G2_9_8 - 0.266666666666666*G2_9_9 - 0.166666666666667*G2_13_13 - 0.0833333333333333*G2_13_14 - 0.0833333333333333*G2_14_13 - 0.166666666666667*G2_14_14 + 0.0458333333333333*G3_1_1 + 0.075*G3_1_3 - 0.0375*G3_1_4 + 0.0458333333333333*G3_2_2 - 0.0375*G3_2_3 + 0.075*G3_2_4 + 0.0166666666666666*G3_3_1 + 0.0166666666666666*G3_3_2 + 0.15*G3_3_3 + 0.15*G3_3_4 + 0.0458333333333333*G3_7_11 + 0.075*G3_7_13 - 0.0375*G3_7_14 + 0.0458333333333333*G3_8_12 - 0.0375*G3_8_13 + 0.075*G3_8_14 + 0.0166666666666666*G3_9_11 + 0.0166666666666666*G3_9_12 + 0.15*G3_9_13 + 0.15*G3_9_14 + 0.0833333333333333*G3_13_21 + 0.166666666666667*G3_13_23 + 0.0833333333333333*G3_14_22 + 0.166666666666667*G3_14_23; + break; + } + case 1: + { + A[0] = -0.0666666666666666*G4_15_15 + 0.0166666666666666*G4_15_17 - 0.0333333333333333*G4_15_19 + 0.0166666666666666*G4_17_15 - 0.0666666666666667*G4_17_17 - 0.0333333333333333*G4_17_19 - 0.0333333333333333*G4_19_15 - 0.0333333333333333*G4_19_17 - 0.266666666666666*G4_19_19 - 0.0666666666666666*G4_21_21 + 0.0166666666666666*G4_21_23 - 0.0333333333333333*G4_21_25 + 0.0166666666666666*G4_23_21 - 0.0666666666666667*G4_23_23 - 0.0333333333333333*G4_23_25 - 0.0333333333333333*G4_25_21 - 0.0333333333333333*G4_25_23 - 0.266666666666666*G4_25_25 - 0.166666666666667*G4_27_27 - 0.0833333333333333*G4_27_29 - 0.0833333333333333*G4_29_27 - 0.166666666666667*G4_29_29 + 0.0458333333333333*G5_15_26 + 0.075*G5_15_31 - 0.0375*G5_15_32 + 0.0458333333333333*G5_17_28 - 0.0375*G5_17_31 + 0.075*G5_17_32 + 0.0166666666666666*G5_19_26 + 0.0166666666666666*G5_19_28 + 0.15*G5_19_31 + 0.15*G5_19_32 + 0.0458333333333333*G5_21_36 + 0.075*G5_21_41 - 0.0375*G5_21_42 + 0.0458333333333333*G5_23_38 - 0.0375*G5_23_41 + 0.075*G5_23_42 + 0.0166666666666666*G5_25_36 + 0.0166666666666666*G5_25_38 + 0.15*G5_25_41 + 0.15*G5_25_42 + 0.0833333333333333*G5_27_46 + 0.166666666666667*G5_27_50 + 0.0833333333333333*G5_29_48 + 0.166666666666667*G5_29_50 - 0.0666666666666667*G6_1_1 + 0.0166666666666666*G6_1_2 - 0.0333333333333333*G6_1_3 + 0.0166666666666666*G6_2_1 - 0.0666666666666667*G6_2_2 - 0.0333333333333333*G6_2_3 - 0.0333333333333333*G6_3_1 - 0.0333333333333333*G6_3_2 - 0.266666666666666*G6_3_3 - 0.0666666666666667*G6_7_7 + 0.0166666666666666*G6_7_8 - 0.0333333333333333*G6_7_9 + 0.0166666666666666*G6_8_7 - 0.0666666666666667*G6_8_8 - 0.0333333333333333*G6_8_9 - 0.0333333333333333*G6_9_7 - 0.0333333333333333*G6_9_8 - 0.266666666666666*G6_9_9 - 0.166666666666667*G6_13_13 - 0.0833333333333333*G6_13_14 - 0.0833333333333333*G6_14_13 - 0.166666666666667*G6_14_14 + 0.0458333333333333*G7_1_1 + 0.075*G7_1_3 - 0.0375*G7_1_4 + 0.0458333333333333*G7_2_2 - 0.0375*G7_2_3 + 0.075*G7_2_4 + 0.0166666666666666*G7_3_1 + 0.0166666666666666*G7_3_2 + 0.15*G7_3_3 + 0.15*G7_3_4 + 0.0458333333333333*G7_7_11 + 0.075*G7_7_13 - 0.0375*G7_7_14 + 0.0458333333333333*G7_8_12 - 0.0375*G7_8_13 + 0.075*G7_8_14 + 0.0166666666666666*G7_9_11 + 0.0166666666666666*G7_9_12 + 0.15*G7_9_13 + 0.15*G7_9_14 + 0.0833333333333333*G7_13_21 + 0.166666666666667*G7_13_23 + 0.0833333333333333*G7_14_22 + 0.166666666666667*G7_14_23; + A[1] = -0.0666666666666666*G0_15_15 + 0.0166666666666666*G0_15_17 - 0.0333333333333333*G0_15_19 + 0.0166666666666666*G0_17_15 - 0.0666666666666667*G0_17_17 - 0.0333333333333333*G0_17_19 - 0.0333333333333333*G0_19_15 - 0.0333333333333333*G0_19_17 - 0.266666666666666*G0_19_19 - 0.0666666666666666*G0_21_21 + 0.0166666666666666*G0_21_23 - 0.0333333333333333*G0_21_25 + 0.0166666666666666*G0_23_21 - 0.0666666666666667*G0_23_23 - 0.0333333333333333*G0_23_25 - 0.0333333333333333*G0_25_21 - 0.0333333333333333*G0_25_23 - 0.266666666666666*G0_25_25 - 0.166666666666667*G0_27_27 - 0.0833333333333333*G0_27_29 - 0.0833333333333333*G0_29_27 - 0.166666666666667*G0_29_29 + 0.0458333333333333*G1_15_26 + 0.075*G1_15_31 - 0.0375*G1_15_32 + 0.0458333333333333*G1_17_28 - 0.0375*G1_17_31 + 0.075*G1_17_32 + 0.0166666666666666*G1_19_26 + 0.0166666666666666*G1_19_28 + 0.15*G1_19_31 + 0.15*G1_19_32 + 0.0458333333333333*G1_21_36 + 0.075*G1_21_41 - 0.0375*G1_21_42 + 0.0458333333333333*G1_23_38 - 0.0375*G1_23_41 + 0.075*G1_23_42 + 0.0166666666666666*G1_25_36 + 0.0166666666666666*G1_25_38 + 0.15*G1_25_41 + 0.15*G1_25_42 + 0.0833333333333333*G1_27_46 + 0.166666666666667*G1_27_50 + 0.0833333333333333*G1_29_48 + 0.166666666666667*G1_29_50 - 0.0666666666666667*G2_1_1 + 0.0166666666666666*G2_1_2 - 0.0333333333333333*G2_1_3 + 0.0166666666666666*G2_2_1 - 0.0666666666666667*G2_2_2 - 0.0333333333333333*G2_2_3 - 0.0333333333333333*G2_3_1 - 0.0333333333333333*G2_3_2 - 0.266666666666666*G2_3_3 - 0.0666666666666667*G2_7_7 + 0.0166666666666666*G2_7_8 - 0.0333333333333333*G2_7_9 + 0.0166666666666666*G2_8_7 - 0.0666666666666667*G2_8_8 - 0.0333333333333333*G2_8_9 - 0.0333333333333333*G2_9_7 - 0.0333333333333333*G2_9_8 - 0.266666666666666*G2_9_9 - 0.166666666666667*G2_13_13 - 0.0833333333333333*G2_13_14 - 0.0833333333333333*G2_14_13 - 0.166666666666667*G2_14_14 + 0.0458333333333333*G3_1_1 + 0.075*G3_1_3 - 0.0375*G3_1_4 + 0.0458333333333333*G3_2_2 - 0.0375*G3_2_3 + 0.075*G3_2_4 + 0.0166666666666666*G3_3_1 + 0.0166666666666666*G3_3_2 + 0.15*G3_3_3 + 0.15*G3_3_4 + 0.0458333333333333*G3_7_11 + 0.075*G3_7_13 - 0.0375*G3_7_14 + 0.0458333333333333*G3_8_12 - 0.0375*G3_8_13 + 0.075*G3_8_14 + 0.0166666666666666*G3_9_11 + 0.0166666666666666*G3_9_12 + 0.15*G3_9_13 + 0.15*G3_9_14 + 0.0833333333333333*G3_13_21 + 0.166666666666667*G3_13_23 + 0.0833333333333333*G3_14_22 + 0.166666666666667*G3_14_23; + break; + } + case 2: + { + A[0] = -0.0666666666666666*G4_15_15 + 0.0166666666666666*G4_15_16 - 0.0333333333333333*G4_15_20 + 0.0166666666666666*G4_16_15 - 0.0666666666666666*G4_16_16 - 0.0333333333333333*G4_16_20 - 0.0333333333333333*G4_20_15 - 0.0333333333333333*G4_20_16 - 0.266666666666667*G4_20_20 - 0.0666666666666666*G4_21_21 + 0.0166666666666666*G4_21_22 - 0.0333333333333333*G4_21_26 + 0.0166666666666666*G4_22_21 - 0.0666666666666666*G4_22_22 - 0.0333333333333333*G4_22_26 - 0.0333333333333333*G4_26_21 - 0.0333333333333333*G4_26_22 - 0.266666666666667*G4_26_26 - 0.166666666666667*G4_27_27 - 0.0833333333333333*G4_27_28 - 0.0833333333333333*G4_28_27 - 0.166666666666667*G4_28_28 + 0.0458333333333333*G5_15_26 + 0.0749999999999999*G5_15_33 - 0.0375*G5_15_34 + 0.0458333333333333*G5_16_27 - 0.0375*G5_16_33 + 0.075*G5_16_34 + 0.0166666666666666*G5_20_26 + 0.0166666666666666*G5_20_27 + 0.15*G5_20_33 + 0.15*G5_20_34 + 0.0458333333333333*G5_21_36 + 0.0749999999999999*G5_21_43 - 0.0375*G5_21_44 + 0.0458333333333333*G5_22_37 - 0.0375*G5_22_43 + 0.075*G5_22_44 + 0.0166666666666666*G5_26_36 + 0.0166666666666666*G5_26_37 + 0.15*G5_26_43 + 0.15*G5_26_44 + 0.0833333333333333*G5_27_46 + 0.166666666666667*G5_27_51 + 0.0833333333333333*G5_28_47 + 0.166666666666667*G5_28_51 - 0.0666666666666667*G6_1_1 + 0.0166666666666666*G6_1_2 - 0.0333333333333333*G6_1_3 + 0.0166666666666666*G6_2_1 - 0.0666666666666667*G6_2_2 - 0.0333333333333333*G6_2_3 - 0.0333333333333333*G6_3_1 - 0.0333333333333333*G6_3_2 - 0.266666666666666*G6_3_3 - 0.0666666666666667*G6_7_7 + 0.0166666666666666*G6_7_8 - 0.0333333333333333*G6_7_9 + 0.0166666666666666*G6_8_7 - 0.0666666666666667*G6_8_8 - 0.0333333333333333*G6_8_9 - 0.0333333333333333*G6_9_7 - 0.0333333333333333*G6_9_8 - 0.266666666666666*G6_9_9 - 0.166666666666667*G6_13_13 - 0.0833333333333333*G6_13_14 - 0.0833333333333333*G6_14_13 - 0.166666666666667*G6_14_14 + 0.0458333333333333*G7_1_1 + 0.075*G7_1_3 - 0.0375*G7_1_4 + 0.0458333333333333*G7_2_2 - 0.0375*G7_2_3 + 0.075*G7_2_4 + 0.0166666666666666*G7_3_1 + 0.0166666666666666*G7_3_2 + 0.15*G7_3_3 + 0.15*G7_3_4 + 0.0458333333333333*G7_7_11 + 0.075*G7_7_13 - 0.0375*G7_7_14 + 0.0458333333333333*G7_8_12 - 0.0375*G7_8_13 + 0.075*G7_8_14 + 0.0166666666666666*G7_9_11 + 0.0166666666666666*G7_9_12 + 0.15*G7_9_13 + 0.15*G7_9_14 + 0.0833333333333333*G7_13_21 + 0.166666666666667*G7_13_23 + 0.0833333333333333*G7_14_22 + 0.166666666666667*G7_14_23; + A[1] = -0.0666666666666666*G0_15_15 + 0.0166666666666666*G0_15_16 - 0.0333333333333333*G0_15_20 + 0.0166666666666666*G0_16_15 - 0.0666666666666666*G0_16_16 - 0.0333333333333333*G0_16_20 - 0.0333333333333333*G0_20_15 - 0.0333333333333333*G0_20_16 - 0.266666666666667*G0_20_20 - 0.0666666666666666*G0_21_21 + 0.0166666666666666*G0_21_22 - 0.0333333333333333*G0_21_26 + 0.0166666666666666*G0_22_21 - 0.0666666666666666*G0_22_22 - 0.0333333333333333*G0_22_26 - 0.0333333333333333*G0_26_21 - 0.0333333333333333*G0_26_22 - 0.266666666666667*G0_26_26 - 0.166666666666667*G0_27_27 - 0.0833333333333333*G0_27_28 - 0.0833333333333333*G0_28_27 - 0.166666666666667*G0_28_28 + 0.0458333333333333*G1_15_26 + 0.0749999999999999*G1_15_33 - 0.0375*G1_15_34 + 0.0458333333333333*G1_16_27 - 0.0375*G1_16_33 + 0.075*G1_16_34 + 0.0166666666666666*G1_20_26 + 0.0166666666666666*G1_20_27 + 0.15*G1_20_33 + 0.15*G1_20_34 + 0.0458333333333333*G1_21_36 + 0.0749999999999999*G1_21_43 - 0.0375*G1_21_44 + 0.0458333333333333*G1_22_37 - 0.0375*G1_22_43 + 0.075*G1_22_44 + 0.0166666666666666*G1_26_36 + 0.0166666666666666*G1_26_37 + 0.15*G1_26_43 + 0.15*G1_26_44 + 0.0833333333333333*G1_27_46 + 0.166666666666667*G1_27_51 + 0.0833333333333333*G1_28_47 + 0.166666666666667*G1_28_51 - 0.0666666666666667*G2_1_1 + 0.0166666666666666*G2_1_2 - 0.0333333333333333*G2_1_3 + 0.0166666666666666*G2_2_1 - 0.0666666666666667*G2_2_2 - 0.0333333333333333*G2_2_3 - 0.0333333333333333*G2_3_1 - 0.0333333333333333*G2_3_2 - 0.266666666666666*G2_3_3 - 0.0666666666666667*G2_7_7 + 0.0166666666666666*G2_7_8 - 0.0333333333333333*G2_7_9 + 0.0166666666666666*G2_8_7 - 0.0666666666666667*G2_8_8 - 0.0333333333333333*G2_8_9 - 0.0333333333333333*G2_9_7 - 0.0333333333333333*G2_9_8 - 0.266666666666666*G2_9_9 - 0.166666666666667*G2_13_13 - 0.0833333333333333*G2_13_14 - 0.0833333333333333*G2_14_13 - 0.166666666666667*G2_14_14 + 0.0458333333333333*G3_1_1 + 0.075*G3_1_3 - 0.0375*G3_1_4 + 0.0458333333333333*G3_2_2 - 0.0375*G3_2_3 + 0.075*G3_2_4 + 0.0166666666666666*G3_3_1 + 0.0166666666666666*G3_3_2 + 0.15*G3_3_3 + 0.15*G3_3_4 + 0.0458333333333333*G3_7_11 + 0.075*G3_7_13 - 0.0375*G3_7_14 + 0.0458333333333333*G3_8_12 - 0.0375*G3_8_13 + 0.075*G3_8_14 + 0.0166666666666666*G3_9_11 + 0.0166666666666666*G3_9_12 + 0.15*G3_9_13 + 0.15*G3_9_14 + 0.0833333333333333*G3_13_21 + 0.166666666666667*G3_13_23 + 0.0833333333333333*G3_14_22 + 0.166666666666667*G3_14_23; + break; + } + } + + break; + } + case 1: + { + switch (facet_1) + { + case 0: + { + A[0] = -0.0666666666666667*G4_16_16 + 0.0166666666666666*G4_16_17 - 0.0333333333333333*G4_16_18 + 0.0166666666666666*G4_17_16 - 0.0666666666666667*G4_17_17 - 0.0333333333333333*G4_17_18 - 0.0333333333333333*G4_18_16 - 0.0333333333333333*G4_18_17 - 0.266666666666666*G4_18_18 - 0.0666666666666667*G4_22_22 + 0.0166666666666666*G4_22_23 - 0.0333333333333333*G4_22_24 + 0.0166666666666666*G4_23_22 - 0.0666666666666667*G4_23_23 - 0.0333333333333333*G4_23_24 - 0.0333333333333333*G4_24_22 - 0.0333333333333333*G4_24_23 - 0.266666666666666*G4_24_24 - 0.166666666666667*G4_28_28 - 0.0833333333333333*G4_28_29 - 0.0833333333333333*G4_29_28 - 0.166666666666667*G4_29_29 + 0.0458333333333333*G5_16_27 + 0.075*G5_16_29 - 0.0375*G5_16_30 + 0.0458333333333333*G5_17_28 - 0.0375*G5_17_29 + 0.075*G5_17_30 + 0.0166666666666666*G5_18_27 + 0.0166666666666666*G5_18_28 + 0.15*G5_18_29 + 0.15*G5_18_30 + 0.0458333333333333*G5_22_37 + 0.075*G5_22_39 - 0.0375*G5_22_40 + 0.0458333333333333*G5_23_38 - 0.0375*G5_23_39 + 0.075*G5_23_40 + 0.0166666666666666*G5_24_37 + 0.0166666666666666*G5_24_38 + 0.15*G5_24_39 + 0.15*G5_24_40 + 0.0833333333333333*G5_28_47 + 0.166666666666667*G5_28_49 + 0.0833333333333333*G5_29_48 + 0.166666666666667*G5_29_49 - 0.0666666666666666*G6_0_0 + 0.0166666666666666*G6_0_2 - 0.0333333333333333*G6_0_4 + 0.0166666666666666*G6_2_0 - 0.0666666666666667*G6_2_2 - 0.0333333333333333*G6_2_4 - 0.0333333333333333*G6_4_0 - 0.0333333333333333*G6_4_2 - 0.266666666666666*G6_4_4 - 0.0666666666666666*G6_6_6 + 0.0166666666666666*G6_6_8 - 0.0333333333333333*G6_6_10 + 0.0166666666666666*G6_8_6 - 0.0666666666666667*G6_8_8 - 0.0333333333333333*G6_8_10 - 0.0333333333333333*G6_10_6 - 0.0333333333333333*G6_10_8 - 0.266666666666666*G6_10_10 - 0.166666666666667*G6_12_12 - 0.0833333333333333*G6_12_14 - 0.0833333333333333*G6_14_12 - 0.166666666666667*G6_14_14 + 0.0458333333333333*G7_0_0 + 0.075*G7_0_5 - 0.0375*G7_0_6 + 0.0458333333333333*G7_2_2 - 0.0375*G7_2_5 + 0.075*G7_2_6 + 0.0166666666666666*G7_4_0 + 0.0166666666666666*G7_4_2 + 0.15*G7_4_5 + 0.15*G7_4_6 + 0.0458333333333333*G7_6_10 + 0.075*G7_6_15 - 0.0375*G7_6_16 + 0.0458333333333333*G7_8_12 - 0.0375*G7_8_15 + 0.075*G7_8_16 + 0.0166666666666666*G7_10_10 + 0.0166666666666666*G7_10_12 + 0.15*G7_10_15 + 0.15*G7_10_16 + 0.0833333333333333*G7_12_20 + 0.166666666666667*G7_12_24 + 0.0833333333333333*G7_14_22 + 0.166666666666667*G7_14_24; + A[1] = -0.0666666666666667*G0_16_16 + 0.0166666666666666*G0_16_17 - 0.0333333333333333*G0_16_18 + 0.0166666666666666*G0_17_16 - 0.0666666666666667*G0_17_17 - 0.0333333333333333*G0_17_18 - 0.0333333333333333*G0_18_16 - 0.0333333333333333*G0_18_17 - 0.266666666666666*G0_18_18 - 0.0666666666666667*G0_22_22 + 0.0166666666666666*G0_22_23 - 0.0333333333333333*G0_22_24 + 0.0166666666666666*G0_23_22 - 0.0666666666666667*G0_23_23 - 0.0333333333333333*G0_23_24 - 0.0333333333333333*G0_24_22 - 0.0333333333333333*G0_24_23 - 0.266666666666666*G0_24_24 - 0.166666666666667*G0_28_28 - 0.0833333333333333*G0_28_29 - 0.0833333333333333*G0_29_28 - 0.166666666666667*G0_29_29 + 0.0458333333333333*G1_16_27 + 0.075*G1_16_29 - 0.0375*G1_16_30 + 0.0458333333333333*G1_17_28 - 0.0375*G1_17_29 + 0.075*G1_17_30 + 0.0166666666666666*G1_18_27 + 0.0166666666666666*G1_18_28 + 0.15*G1_18_29 + 0.15*G1_18_30 + 0.0458333333333333*G1_22_37 + 0.075*G1_22_39 - 0.0375*G1_22_40 + 0.0458333333333333*G1_23_38 - 0.0375*G1_23_39 + 0.075*G1_23_40 + 0.0166666666666666*G1_24_37 + 0.0166666666666666*G1_24_38 + 0.15*G1_24_39 + 0.15*G1_24_40 + 0.0833333333333333*G1_28_47 + 0.166666666666667*G1_28_49 + 0.0833333333333333*G1_29_48 + 0.166666666666667*G1_29_49 - 0.0666666666666666*G2_0_0 + 0.0166666666666666*G2_0_2 - 0.0333333333333333*G2_0_4 + 0.0166666666666666*G2_2_0 - 0.0666666666666667*G2_2_2 - 0.0333333333333333*G2_2_4 - 0.0333333333333333*G2_4_0 - 0.0333333333333333*G2_4_2 - 0.266666666666666*G2_4_4 - 0.0666666666666666*G2_6_6 + 0.0166666666666666*G2_6_8 - 0.0333333333333333*G2_6_10 + 0.0166666666666666*G2_8_6 - 0.0666666666666667*G2_8_8 - 0.0333333333333333*G2_8_10 - 0.0333333333333333*G2_10_6 - 0.0333333333333333*G2_10_8 - 0.266666666666666*G2_10_10 - 0.166666666666667*G2_12_12 - 0.0833333333333333*G2_12_14 - 0.0833333333333333*G2_14_12 - 0.166666666666667*G2_14_14 + 0.0458333333333333*G3_0_0 + 0.075*G3_0_5 - 0.0375*G3_0_6 + 0.0458333333333333*G3_2_2 - 0.0375*G3_2_5 + 0.075*G3_2_6 + 0.0166666666666666*G3_4_0 + 0.0166666666666666*G3_4_2 + 0.15*G3_4_5 + 0.15*G3_4_6 + 0.0458333333333333*G3_6_10 + 0.075*G3_6_15 - 0.0375*G3_6_16 + 0.0458333333333333*G3_8_12 - 0.0375*G3_8_15 + 0.075*G3_8_16 + 0.0166666666666666*G3_10_10 + 0.0166666666666666*G3_10_12 + 0.15*G3_10_15 + 0.15*G3_10_16 + 0.0833333333333333*G3_12_20 + 0.166666666666667*G3_12_24 + 0.0833333333333333*G3_14_22 + 0.166666666666667*G3_14_24; + break; + } + case 1: + { + A[0] = -0.0666666666666666*G4_15_15 + 0.0166666666666666*G4_15_17 - 0.0333333333333333*G4_15_19 + 0.0166666666666666*G4_17_15 - 0.0666666666666667*G4_17_17 - 0.0333333333333333*G4_17_19 - 0.0333333333333333*G4_19_15 - 0.0333333333333333*G4_19_17 - 0.266666666666666*G4_19_19 - 0.0666666666666666*G4_21_21 + 0.0166666666666666*G4_21_23 - 0.0333333333333333*G4_21_25 + 0.0166666666666666*G4_23_21 - 0.0666666666666667*G4_23_23 - 0.0333333333333333*G4_23_25 - 0.0333333333333333*G4_25_21 - 0.0333333333333333*G4_25_23 - 0.266666666666666*G4_25_25 - 0.166666666666667*G4_27_27 - 0.0833333333333333*G4_27_29 - 0.0833333333333333*G4_29_27 - 0.166666666666667*G4_29_29 + 0.0458333333333333*G5_15_26 + 0.075*G5_15_31 - 0.0375*G5_15_32 + 0.0458333333333333*G5_17_28 - 0.0375*G5_17_31 + 0.075*G5_17_32 + 0.0166666666666666*G5_19_26 + 0.0166666666666666*G5_19_28 + 0.15*G5_19_31 + 0.15*G5_19_32 + 0.0458333333333333*G5_21_36 + 0.075*G5_21_41 - 0.0375*G5_21_42 + 0.0458333333333333*G5_23_38 - 0.0375*G5_23_41 + 0.075*G5_23_42 + 0.0166666666666666*G5_25_36 + 0.0166666666666666*G5_25_38 + 0.15*G5_25_41 + 0.15*G5_25_42 + 0.0833333333333333*G5_27_46 + 0.166666666666667*G5_27_50 + 0.0833333333333333*G5_29_48 + 0.166666666666667*G5_29_50 - 0.0666666666666666*G6_0_0 + 0.0166666666666666*G6_0_2 - 0.0333333333333333*G6_0_4 + 0.0166666666666666*G6_2_0 - 0.0666666666666667*G6_2_2 - 0.0333333333333333*G6_2_4 - 0.0333333333333333*G6_4_0 - 0.0333333333333333*G6_4_2 - 0.266666666666666*G6_4_4 - 0.0666666666666666*G6_6_6 + 0.0166666666666666*G6_6_8 - 0.0333333333333333*G6_6_10 + 0.0166666666666666*G6_8_6 - 0.0666666666666667*G6_8_8 - 0.0333333333333333*G6_8_10 - 0.0333333333333333*G6_10_6 - 0.0333333333333333*G6_10_8 - 0.266666666666666*G6_10_10 - 0.166666666666667*G6_12_12 - 0.0833333333333333*G6_12_14 - 0.0833333333333333*G6_14_12 - 0.166666666666667*G6_14_14 + 0.0458333333333333*G7_0_0 + 0.075*G7_0_5 - 0.0375*G7_0_6 + 0.0458333333333333*G7_2_2 - 0.0375*G7_2_5 + 0.075*G7_2_6 + 0.0166666666666666*G7_4_0 + 0.0166666666666666*G7_4_2 + 0.15*G7_4_5 + 0.15*G7_4_6 + 0.0458333333333333*G7_6_10 + 0.075*G7_6_15 - 0.0375*G7_6_16 + 0.0458333333333333*G7_8_12 - 0.0375*G7_8_15 + 0.075*G7_8_16 + 0.0166666666666666*G7_10_10 + 0.0166666666666666*G7_10_12 + 0.15*G7_10_15 + 0.15*G7_10_16 + 0.0833333333333333*G7_12_20 + 0.166666666666667*G7_12_24 + 0.0833333333333333*G7_14_22 + 0.166666666666667*G7_14_24; + A[1] = -0.0666666666666666*G0_15_15 + 0.0166666666666666*G0_15_17 - 0.0333333333333333*G0_15_19 + 0.0166666666666666*G0_17_15 - 0.0666666666666667*G0_17_17 - 0.0333333333333333*G0_17_19 - 0.0333333333333333*G0_19_15 - 0.0333333333333333*G0_19_17 - 0.266666666666666*G0_19_19 - 0.0666666666666666*G0_21_21 + 0.0166666666666666*G0_21_23 - 0.0333333333333333*G0_21_25 + 0.0166666666666666*G0_23_21 - 0.0666666666666667*G0_23_23 - 0.0333333333333333*G0_23_25 - 0.0333333333333333*G0_25_21 - 0.0333333333333333*G0_25_23 - 0.266666666666666*G0_25_25 - 0.166666666666667*G0_27_27 - 0.0833333333333333*G0_27_29 - 0.0833333333333333*G0_29_27 - 0.166666666666667*G0_29_29 + 0.0458333333333333*G1_15_26 + 0.075*G1_15_31 - 0.0375*G1_15_32 + 0.0458333333333333*G1_17_28 - 0.0375*G1_17_31 + 0.075*G1_17_32 + 0.0166666666666666*G1_19_26 + 0.0166666666666666*G1_19_28 + 0.15*G1_19_31 + 0.15*G1_19_32 + 0.0458333333333333*G1_21_36 + 0.075*G1_21_41 - 0.0375*G1_21_42 + 0.0458333333333333*G1_23_38 - 0.0375*G1_23_41 + 0.075*G1_23_42 + 0.0166666666666666*G1_25_36 + 0.0166666666666666*G1_25_38 + 0.15*G1_25_41 + 0.15*G1_25_42 + 0.0833333333333333*G1_27_46 + 0.166666666666667*G1_27_50 + 0.0833333333333333*G1_29_48 + 0.166666666666667*G1_29_50 - 0.0666666666666666*G2_0_0 + 0.0166666666666666*G2_0_2 - 0.0333333333333333*G2_0_4 + 0.0166666666666666*G2_2_0 - 0.0666666666666667*G2_2_2 - 0.0333333333333333*G2_2_4 - 0.0333333333333333*G2_4_0 - 0.0333333333333333*G2_4_2 - 0.266666666666666*G2_4_4 - 0.0666666666666666*G2_6_6 + 0.0166666666666666*G2_6_8 - 0.0333333333333333*G2_6_10 + 0.0166666666666666*G2_8_6 - 0.0666666666666667*G2_8_8 - 0.0333333333333333*G2_8_10 - 0.0333333333333333*G2_10_6 - 0.0333333333333333*G2_10_8 - 0.266666666666666*G2_10_10 - 0.166666666666667*G2_12_12 - 0.0833333333333333*G2_12_14 - 0.0833333333333333*G2_14_12 - 0.166666666666667*G2_14_14 + 0.0458333333333333*G3_0_0 + 0.075*G3_0_5 - 0.0375*G3_0_6 + 0.0458333333333333*G3_2_2 - 0.0375*G3_2_5 + 0.075*G3_2_6 + 0.0166666666666666*G3_4_0 + 0.0166666666666666*G3_4_2 + 0.15*G3_4_5 + 0.15*G3_4_6 + 0.0458333333333333*G3_6_10 + 0.075*G3_6_15 - 0.0375*G3_6_16 + 0.0458333333333333*G3_8_12 - 0.0375*G3_8_15 + 0.075*G3_8_16 + 0.0166666666666666*G3_10_10 + 0.0166666666666666*G3_10_12 + 0.15*G3_10_15 + 0.15*G3_10_16 + 0.0833333333333333*G3_12_20 + 0.166666666666667*G3_12_24 + 0.0833333333333333*G3_14_22 + 0.166666666666667*G3_14_24; + break; + } + case 2: + { + A[0] = -0.0666666666666666*G4_15_15 + 0.0166666666666666*G4_15_16 - 0.0333333333333333*G4_15_20 + 0.0166666666666666*G4_16_15 - 0.0666666666666666*G4_16_16 - 0.0333333333333333*G4_16_20 - 0.0333333333333333*G4_20_15 - 0.0333333333333333*G4_20_16 - 0.266666666666667*G4_20_20 - 0.0666666666666666*G4_21_21 + 0.0166666666666666*G4_21_22 - 0.0333333333333333*G4_21_26 + 0.0166666666666666*G4_22_21 - 0.0666666666666666*G4_22_22 - 0.0333333333333333*G4_22_26 - 0.0333333333333333*G4_26_21 - 0.0333333333333333*G4_26_22 - 0.266666666666667*G4_26_26 - 0.166666666666667*G4_27_27 - 0.0833333333333333*G4_27_28 - 0.0833333333333333*G4_28_27 - 0.166666666666667*G4_28_28 + 0.0458333333333333*G5_15_26 + 0.0749999999999999*G5_15_33 - 0.0375*G5_15_34 + 0.0458333333333333*G5_16_27 - 0.0375*G5_16_33 + 0.075*G5_16_34 + 0.0166666666666666*G5_20_26 + 0.0166666666666666*G5_20_27 + 0.15*G5_20_33 + 0.15*G5_20_34 + 0.0458333333333333*G5_21_36 + 0.0749999999999999*G5_21_43 - 0.0375*G5_21_44 + 0.0458333333333333*G5_22_37 - 0.0375*G5_22_43 + 0.075*G5_22_44 + 0.0166666666666666*G5_26_36 + 0.0166666666666666*G5_26_37 + 0.15*G5_26_43 + 0.15*G5_26_44 + 0.0833333333333333*G5_27_46 + 0.166666666666667*G5_27_51 + 0.0833333333333333*G5_28_47 + 0.166666666666667*G5_28_51 - 0.0666666666666666*G6_0_0 + 0.0166666666666666*G6_0_2 - 0.0333333333333333*G6_0_4 + 0.0166666666666666*G6_2_0 - 0.0666666666666667*G6_2_2 - 0.0333333333333333*G6_2_4 - 0.0333333333333333*G6_4_0 - 0.0333333333333333*G6_4_2 - 0.266666666666666*G6_4_4 - 0.0666666666666666*G6_6_6 + 0.0166666666666666*G6_6_8 - 0.0333333333333333*G6_6_10 + 0.0166666666666666*G6_8_6 - 0.0666666666666667*G6_8_8 - 0.0333333333333333*G6_8_10 - 0.0333333333333333*G6_10_6 - 0.0333333333333333*G6_10_8 - 0.266666666666666*G6_10_10 - 0.166666666666667*G6_12_12 - 0.0833333333333333*G6_12_14 - 0.0833333333333333*G6_14_12 - 0.166666666666667*G6_14_14 + 0.0458333333333333*G7_0_0 + 0.075*G7_0_5 - 0.0375*G7_0_6 + 0.0458333333333333*G7_2_2 - 0.0375*G7_2_5 + 0.075*G7_2_6 + 0.0166666666666666*G7_4_0 + 0.0166666666666666*G7_4_2 + 0.15*G7_4_5 + 0.15*G7_4_6 + 0.0458333333333333*G7_6_10 + 0.075*G7_6_15 - 0.0375*G7_6_16 + 0.0458333333333333*G7_8_12 - 0.0375*G7_8_15 + 0.075*G7_8_16 + 0.0166666666666666*G7_10_10 + 0.0166666666666666*G7_10_12 + 0.15*G7_10_15 + 0.15*G7_10_16 + 0.0833333333333333*G7_12_20 + 0.166666666666667*G7_12_24 + 0.0833333333333333*G7_14_22 + 0.166666666666667*G7_14_24; + A[1] = -0.0666666666666666*G0_15_15 + 0.0166666666666666*G0_15_16 - 0.0333333333333333*G0_15_20 + 0.0166666666666666*G0_16_15 - 0.0666666666666666*G0_16_16 - 0.0333333333333333*G0_16_20 - 0.0333333333333333*G0_20_15 - 0.0333333333333333*G0_20_16 - 0.266666666666667*G0_20_20 - 0.0666666666666666*G0_21_21 + 0.0166666666666666*G0_21_22 - 0.0333333333333333*G0_21_26 + 0.0166666666666666*G0_22_21 - 0.0666666666666666*G0_22_22 - 0.0333333333333333*G0_22_26 - 0.0333333333333333*G0_26_21 - 0.0333333333333333*G0_26_22 - 0.266666666666667*G0_26_26 - 0.166666666666667*G0_27_27 - 0.0833333333333333*G0_27_28 - 0.0833333333333333*G0_28_27 - 0.166666666666667*G0_28_28 + 0.0458333333333333*G1_15_26 + 0.0749999999999999*G1_15_33 - 0.0375*G1_15_34 + 0.0458333333333333*G1_16_27 - 0.0375*G1_16_33 + 0.075*G1_16_34 + 0.0166666666666666*G1_20_26 + 0.0166666666666666*G1_20_27 + 0.15*G1_20_33 + 0.15*G1_20_34 + 0.0458333333333333*G1_21_36 + 0.0749999999999999*G1_21_43 - 0.0375*G1_21_44 + 0.0458333333333333*G1_22_37 - 0.0375*G1_22_43 + 0.075*G1_22_44 + 0.0166666666666666*G1_26_36 + 0.0166666666666666*G1_26_37 + 0.15*G1_26_43 + 0.15*G1_26_44 + 0.0833333333333333*G1_27_46 + 0.166666666666667*G1_27_51 + 0.0833333333333333*G1_28_47 + 0.166666666666667*G1_28_51 - 0.0666666666666666*G2_0_0 + 0.0166666666666666*G2_0_2 - 0.0333333333333333*G2_0_4 + 0.0166666666666666*G2_2_0 - 0.0666666666666667*G2_2_2 - 0.0333333333333333*G2_2_4 - 0.0333333333333333*G2_4_0 - 0.0333333333333333*G2_4_2 - 0.266666666666666*G2_4_4 - 0.0666666666666666*G2_6_6 + 0.0166666666666666*G2_6_8 - 0.0333333333333333*G2_6_10 + 0.0166666666666666*G2_8_6 - 0.0666666666666667*G2_8_8 - 0.0333333333333333*G2_8_10 - 0.0333333333333333*G2_10_6 - 0.0333333333333333*G2_10_8 - 0.266666666666666*G2_10_10 - 0.166666666666667*G2_12_12 - 0.0833333333333333*G2_12_14 - 0.0833333333333333*G2_14_12 - 0.166666666666667*G2_14_14 + 0.0458333333333333*G3_0_0 + 0.075*G3_0_5 - 0.0375*G3_0_6 + 0.0458333333333333*G3_2_2 - 0.0375*G3_2_5 + 0.075*G3_2_6 + 0.0166666666666666*G3_4_0 + 0.0166666666666666*G3_4_2 + 0.15*G3_4_5 + 0.15*G3_4_6 + 0.0458333333333333*G3_6_10 + 0.075*G3_6_15 - 0.0375*G3_6_16 + 0.0458333333333333*G3_8_12 - 0.0375*G3_8_15 + 0.075*G3_8_16 + 0.0166666666666666*G3_10_10 + 0.0166666666666666*G3_10_12 + 0.15*G3_10_15 + 0.15*G3_10_16 + 0.0833333333333333*G3_12_20 + 0.166666666666667*G3_12_24 + 0.0833333333333333*G3_14_22 + 0.166666666666667*G3_14_24; + break; + } + } + + break; + } + case 2: + { + switch (facet_1) + { + case 0: + { + A[0] = -0.0666666666666667*G4_16_16 + 0.0166666666666666*G4_16_17 - 0.0333333333333333*G4_16_18 + 0.0166666666666666*G4_17_16 - 0.0666666666666667*G4_17_17 - 0.0333333333333333*G4_17_18 - 0.0333333333333333*G4_18_16 - 0.0333333333333333*G4_18_17 - 0.266666666666666*G4_18_18 - 0.0666666666666667*G4_22_22 + 0.0166666666666666*G4_22_23 - 0.0333333333333333*G4_22_24 + 0.0166666666666666*G4_23_22 - 0.0666666666666667*G4_23_23 - 0.0333333333333333*G4_23_24 - 0.0333333333333333*G4_24_22 - 0.0333333333333333*G4_24_23 - 0.266666666666666*G4_24_24 - 0.166666666666667*G4_28_28 - 0.0833333333333333*G4_28_29 - 0.0833333333333333*G4_29_28 - 0.166666666666667*G4_29_29 + 0.0458333333333333*G5_16_27 + 0.075*G5_16_29 - 0.0375*G5_16_30 + 0.0458333333333333*G5_17_28 - 0.0375*G5_17_29 + 0.075*G5_17_30 + 0.0166666666666666*G5_18_27 + 0.0166666666666666*G5_18_28 + 0.15*G5_18_29 + 0.15*G5_18_30 + 0.0458333333333333*G5_22_37 + 0.075*G5_22_39 - 0.0375*G5_22_40 + 0.0458333333333333*G5_23_38 - 0.0375*G5_23_39 + 0.075*G5_23_40 + 0.0166666666666666*G5_24_37 + 0.0166666666666666*G5_24_38 + 0.15*G5_24_39 + 0.15*G5_24_40 + 0.0833333333333333*G5_28_47 + 0.166666666666667*G5_28_49 + 0.0833333333333333*G5_29_48 + 0.166666666666667*G5_29_49 - 0.0666666666666666*G6_0_0 + 0.0166666666666666*G6_0_1 - 0.0333333333333333*G6_0_5 + 0.0166666666666666*G6_1_0 - 0.0666666666666666*G6_1_1 - 0.0333333333333333*G6_1_5 - 0.0333333333333333*G6_5_0 - 0.0333333333333333*G6_5_1 - 0.266666666666667*G6_5_5 - 0.0666666666666666*G6_6_6 + 0.0166666666666666*G6_6_7 - 0.0333333333333333*G6_6_11 + 0.0166666666666666*G6_7_6 - 0.0666666666666666*G6_7_7 - 0.0333333333333333*G6_7_11 - 0.0333333333333333*G6_11_6 - 0.0333333333333333*G6_11_7 - 0.266666666666667*G6_11_11 - 0.166666666666667*G6_12_12 - 0.0833333333333333*G6_12_13 - 0.0833333333333333*G6_13_12 - 0.166666666666667*G6_13_13 + 0.0458333333333333*G7_0_0 + 0.0749999999999999*G7_0_7 - 0.0375*G7_0_8 + 0.0458333333333333*G7_1_1 - 0.0375*G7_1_7 + 0.075*G7_1_8 + 0.0166666666666666*G7_5_0 + 0.0166666666666666*G7_5_1 + 0.15*G7_5_7 + 0.15*G7_5_8 + 0.0458333333333333*G7_6_10 + 0.0749999999999999*G7_6_17 - 0.0375*G7_6_18 + 0.0458333333333333*G7_7_11 - 0.0375*G7_7_17 + 0.075*G7_7_18 + 0.0166666666666666*G7_11_10 + 0.0166666666666666*G7_11_11 + 0.15*G7_11_17 + 0.15*G7_11_18 + 0.0833333333333333*G7_12_20 + 0.166666666666667*G7_12_25 + 0.0833333333333333*G7_13_21 + 0.166666666666667*G7_13_25; + A[1] = -0.0666666666666667*G0_16_16 + 0.0166666666666666*G0_16_17 - 0.0333333333333333*G0_16_18 + 0.0166666666666666*G0_17_16 - 0.0666666666666667*G0_17_17 - 0.0333333333333333*G0_17_18 - 0.0333333333333333*G0_18_16 - 0.0333333333333333*G0_18_17 - 0.266666666666666*G0_18_18 - 0.0666666666666667*G0_22_22 + 0.0166666666666666*G0_22_23 - 0.0333333333333333*G0_22_24 + 0.0166666666666666*G0_23_22 - 0.0666666666666667*G0_23_23 - 0.0333333333333333*G0_23_24 - 0.0333333333333333*G0_24_22 - 0.0333333333333333*G0_24_23 - 0.266666666666666*G0_24_24 - 0.166666666666667*G0_28_28 - 0.0833333333333333*G0_28_29 - 0.0833333333333333*G0_29_28 - 0.166666666666667*G0_29_29 + 0.0458333333333333*G1_16_27 + 0.075*G1_16_29 - 0.0375*G1_16_30 + 0.0458333333333333*G1_17_28 - 0.0375*G1_17_29 + 0.075*G1_17_30 + 0.0166666666666666*G1_18_27 + 0.0166666666666666*G1_18_28 + 0.15*G1_18_29 + 0.15*G1_18_30 + 0.0458333333333333*G1_22_37 + 0.075*G1_22_39 - 0.0375*G1_22_40 + 0.0458333333333333*G1_23_38 - 0.0375*G1_23_39 + 0.075*G1_23_40 + 0.0166666666666666*G1_24_37 + 0.0166666666666666*G1_24_38 + 0.15*G1_24_39 + 0.15*G1_24_40 + 0.0833333333333333*G1_28_47 + 0.166666666666667*G1_28_49 + 0.0833333333333333*G1_29_48 + 0.166666666666667*G1_29_49 - 0.0666666666666666*G2_0_0 + 0.0166666666666666*G2_0_1 - 0.0333333333333333*G2_0_5 + 0.0166666666666666*G2_1_0 - 0.0666666666666666*G2_1_1 - 0.0333333333333333*G2_1_5 - 0.0333333333333333*G2_5_0 - 0.0333333333333333*G2_5_1 - 0.266666666666667*G2_5_5 - 0.0666666666666666*G2_6_6 + 0.0166666666666666*G2_6_7 - 0.0333333333333333*G2_6_11 + 0.0166666666666666*G2_7_6 - 0.0666666666666666*G2_7_7 - 0.0333333333333333*G2_7_11 - 0.0333333333333333*G2_11_6 - 0.0333333333333333*G2_11_7 - 0.266666666666667*G2_11_11 - 0.166666666666667*G2_12_12 - 0.0833333333333333*G2_12_13 - 0.0833333333333333*G2_13_12 - 0.166666666666667*G2_13_13 + 0.0458333333333333*G3_0_0 + 0.0749999999999999*G3_0_7 - 0.0375*G3_0_8 + 0.0458333333333333*G3_1_1 - 0.0375*G3_1_7 + 0.075*G3_1_8 + 0.0166666666666666*G3_5_0 + 0.0166666666666666*G3_5_1 + 0.15*G3_5_7 + 0.15*G3_5_8 + 0.0458333333333333*G3_6_10 + 0.0749999999999999*G3_6_17 - 0.0375*G3_6_18 + 0.0458333333333333*G3_7_11 - 0.0375*G3_7_17 + 0.075*G3_7_18 + 0.0166666666666666*G3_11_10 + 0.0166666666666666*G3_11_11 + 0.15*G3_11_17 + 0.15*G3_11_18 + 0.0833333333333333*G3_12_20 + 0.166666666666667*G3_12_25 + 0.0833333333333333*G3_13_21 + 0.166666666666667*G3_13_25; + break; + } + case 1: + { + A[0] = -0.0666666666666666*G4_15_15 + 0.0166666666666666*G4_15_17 - 0.0333333333333333*G4_15_19 + 0.0166666666666666*G4_17_15 - 0.0666666666666667*G4_17_17 - 0.0333333333333333*G4_17_19 - 0.0333333333333333*G4_19_15 - 0.0333333333333333*G4_19_17 - 0.266666666666666*G4_19_19 - 0.0666666666666666*G4_21_21 + 0.0166666666666666*G4_21_23 - 0.0333333333333333*G4_21_25 + 0.0166666666666666*G4_23_21 - 0.0666666666666667*G4_23_23 - 0.0333333333333333*G4_23_25 - 0.0333333333333333*G4_25_21 - 0.0333333333333333*G4_25_23 - 0.266666666666666*G4_25_25 - 0.166666666666667*G4_27_27 - 0.0833333333333333*G4_27_29 - 0.0833333333333333*G4_29_27 - 0.166666666666667*G4_29_29 + 0.0458333333333333*G5_15_26 + 0.075*G5_15_31 - 0.0375*G5_15_32 + 0.0458333333333333*G5_17_28 - 0.0375*G5_17_31 + 0.075*G5_17_32 + 0.0166666666666666*G5_19_26 + 0.0166666666666666*G5_19_28 + 0.15*G5_19_31 + 0.15*G5_19_32 + 0.0458333333333333*G5_21_36 + 0.075*G5_21_41 - 0.0375*G5_21_42 + 0.0458333333333333*G5_23_38 - 0.0375*G5_23_41 + 0.075*G5_23_42 + 0.0166666666666666*G5_25_36 + 0.0166666666666666*G5_25_38 + 0.15*G5_25_41 + 0.15*G5_25_42 + 0.0833333333333333*G5_27_46 + 0.166666666666667*G5_27_50 + 0.0833333333333333*G5_29_48 + 0.166666666666667*G5_29_50 - 0.0666666666666666*G6_0_0 + 0.0166666666666666*G6_0_1 - 0.0333333333333333*G6_0_5 + 0.0166666666666666*G6_1_0 - 0.0666666666666666*G6_1_1 - 0.0333333333333333*G6_1_5 - 0.0333333333333333*G6_5_0 - 0.0333333333333333*G6_5_1 - 0.266666666666667*G6_5_5 - 0.0666666666666666*G6_6_6 + 0.0166666666666666*G6_6_7 - 0.0333333333333333*G6_6_11 + 0.0166666666666666*G6_7_6 - 0.0666666666666666*G6_7_7 - 0.0333333333333333*G6_7_11 - 0.0333333333333333*G6_11_6 - 0.0333333333333333*G6_11_7 - 0.266666666666667*G6_11_11 - 0.166666666666667*G6_12_12 - 0.0833333333333333*G6_12_13 - 0.0833333333333333*G6_13_12 - 0.166666666666667*G6_13_13 + 0.0458333333333333*G7_0_0 + 0.0749999999999999*G7_0_7 - 0.0375*G7_0_8 + 0.0458333333333333*G7_1_1 - 0.0375*G7_1_7 + 0.075*G7_1_8 + 0.0166666666666666*G7_5_0 + 0.0166666666666666*G7_5_1 + 0.15*G7_5_7 + 0.15*G7_5_8 + 0.0458333333333333*G7_6_10 + 0.0749999999999999*G7_6_17 - 0.0375*G7_6_18 + 0.0458333333333333*G7_7_11 - 0.0375*G7_7_17 + 0.075*G7_7_18 + 0.0166666666666666*G7_11_10 + 0.0166666666666666*G7_11_11 + 0.15*G7_11_17 + 0.15*G7_11_18 + 0.0833333333333333*G7_12_20 + 0.166666666666667*G7_12_25 + 0.0833333333333333*G7_13_21 + 0.166666666666667*G7_13_25; + A[1] = -0.0666666666666666*G0_15_15 + 0.0166666666666666*G0_15_17 - 0.0333333333333333*G0_15_19 + 0.0166666666666666*G0_17_15 - 0.0666666666666667*G0_17_17 - 0.0333333333333333*G0_17_19 - 0.0333333333333333*G0_19_15 - 0.0333333333333333*G0_19_17 - 0.266666666666666*G0_19_19 - 0.0666666666666666*G0_21_21 + 0.0166666666666666*G0_21_23 - 0.0333333333333333*G0_21_25 + 0.0166666666666666*G0_23_21 - 0.0666666666666667*G0_23_23 - 0.0333333333333333*G0_23_25 - 0.0333333333333333*G0_25_21 - 0.0333333333333333*G0_25_23 - 0.266666666666666*G0_25_25 - 0.166666666666667*G0_27_27 - 0.0833333333333333*G0_27_29 - 0.0833333333333333*G0_29_27 - 0.166666666666667*G0_29_29 + 0.0458333333333333*G1_15_26 + 0.075*G1_15_31 - 0.0375*G1_15_32 + 0.0458333333333333*G1_17_28 - 0.0375*G1_17_31 + 0.075*G1_17_32 + 0.0166666666666666*G1_19_26 + 0.0166666666666666*G1_19_28 + 0.15*G1_19_31 + 0.15*G1_19_32 + 0.0458333333333333*G1_21_36 + 0.075*G1_21_41 - 0.0375*G1_21_42 + 0.0458333333333333*G1_23_38 - 0.0375*G1_23_41 + 0.075*G1_23_42 + 0.0166666666666666*G1_25_36 + 0.0166666666666666*G1_25_38 + 0.15*G1_25_41 + 0.15*G1_25_42 + 0.0833333333333333*G1_27_46 + 0.166666666666667*G1_27_50 + 0.0833333333333333*G1_29_48 + 0.166666666666667*G1_29_50 - 0.0666666666666666*G2_0_0 + 0.0166666666666666*G2_0_1 - 0.0333333333333333*G2_0_5 + 0.0166666666666666*G2_1_0 - 0.0666666666666666*G2_1_1 - 0.0333333333333333*G2_1_5 - 0.0333333333333333*G2_5_0 - 0.0333333333333333*G2_5_1 - 0.266666666666667*G2_5_5 - 0.0666666666666666*G2_6_6 + 0.0166666666666666*G2_6_7 - 0.0333333333333333*G2_6_11 + 0.0166666666666666*G2_7_6 - 0.0666666666666666*G2_7_7 - 0.0333333333333333*G2_7_11 - 0.0333333333333333*G2_11_6 - 0.0333333333333333*G2_11_7 - 0.266666666666667*G2_11_11 - 0.166666666666667*G2_12_12 - 0.0833333333333333*G2_12_13 - 0.0833333333333333*G2_13_12 - 0.166666666666667*G2_13_13 + 0.0458333333333333*G3_0_0 + 0.0749999999999999*G3_0_7 - 0.0375*G3_0_8 + 0.0458333333333333*G3_1_1 - 0.0375*G3_1_7 + 0.075*G3_1_8 + 0.0166666666666666*G3_5_0 + 0.0166666666666666*G3_5_1 + 0.15*G3_5_7 + 0.15*G3_5_8 + 0.0458333333333333*G3_6_10 + 0.0749999999999999*G3_6_17 - 0.0375*G3_6_18 + 0.0458333333333333*G3_7_11 - 0.0375*G3_7_17 + 0.075*G3_7_18 + 0.0166666666666666*G3_11_10 + 0.0166666666666666*G3_11_11 + 0.15*G3_11_17 + 0.15*G3_11_18 + 0.0833333333333333*G3_12_20 + 0.166666666666667*G3_12_25 + 0.0833333333333333*G3_13_21 + 0.166666666666667*G3_13_25; + break; + } + case 2: + { + A[0] = -0.0666666666666666*G4_15_15 + 0.0166666666666666*G4_15_16 - 0.0333333333333333*G4_15_20 + 0.0166666666666666*G4_16_15 - 0.0666666666666666*G4_16_16 - 0.0333333333333333*G4_16_20 - 0.0333333333333333*G4_20_15 - 0.0333333333333333*G4_20_16 - 0.266666666666667*G4_20_20 - 0.0666666666666666*G4_21_21 + 0.0166666666666666*G4_21_22 - 0.0333333333333333*G4_21_26 + 0.0166666666666666*G4_22_21 - 0.0666666666666666*G4_22_22 - 0.0333333333333333*G4_22_26 - 0.0333333333333333*G4_26_21 - 0.0333333333333333*G4_26_22 - 0.266666666666667*G4_26_26 - 0.166666666666667*G4_27_27 - 0.0833333333333333*G4_27_28 - 0.0833333333333333*G4_28_27 - 0.166666666666667*G4_28_28 + 0.0458333333333333*G5_15_26 + 0.0749999999999999*G5_15_33 - 0.0375*G5_15_34 + 0.0458333333333333*G5_16_27 - 0.0375*G5_16_33 + 0.075*G5_16_34 + 0.0166666666666666*G5_20_26 + 0.0166666666666666*G5_20_27 + 0.15*G5_20_33 + 0.15*G5_20_34 + 0.0458333333333333*G5_21_36 + 0.0749999999999999*G5_21_43 - 0.0375*G5_21_44 + 0.0458333333333333*G5_22_37 - 0.0375*G5_22_43 + 0.075*G5_22_44 + 0.0166666666666666*G5_26_36 + 0.0166666666666666*G5_26_37 + 0.15*G5_26_43 + 0.15*G5_26_44 + 0.0833333333333333*G5_27_46 + 0.166666666666667*G5_27_51 + 0.0833333333333333*G5_28_47 + 0.166666666666667*G5_28_51 - 0.0666666666666666*G6_0_0 + 0.0166666666666666*G6_0_1 - 0.0333333333333333*G6_0_5 + 0.0166666666666666*G6_1_0 - 0.0666666666666666*G6_1_1 - 0.0333333333333333*G6_1_5 - 0.0333333333333333*G6_5_0 - 0.0333333333333333*G6_5_1 - 0.266666666666667*G6_5_5 - 0.0666666666666666*G6_6_6 + 0.0166666666666666*G6_6_7 - 0.0333333333333333*G6_6_11 + 0.0166666666666666*G6_7_6 - 0.0666666666666666*G6_7_7 - 0.0333333333333333*G6_7_11 - 0.0333333333333333*G6_11_6 - 0.0333333333333333*G6_11_7 - 0.266666666666667*G6_11_11 - 0.166666666666667*G6_12_12 - 0.0833333333333333*G6_12_13 - 0.0833333333333333*G6_13_12 - 0.166666666666667*G6_13_13 + 0.0458333333333333*G7_0_0 + 0.0749999999999999*G7_0_7 - 0.0375*G7_0_8 + 0.0458333333333333*G7_1_1 - 0.0375*G7_1_7 + 0.075*G7_1_8 + 0.0166666666666666*G7_5_0 + 0.0166666666666666*G7_5_1 + 0.15*G7_5_7 + 0.15*G7_5_8 + 0.0458333333333333*G7_6_10 + 0.0749999999999999*G7_6_17 - 0.0375*G7_6_18 + 0.0458333333333333*G7_7_11 - 0.0375*G7_7_17 + 0.075*G7_7_18 + 0.0166666666666666*G7_11_10 + 0.0166666666666666*G7_11_11 + 0.15*G7_11_17 + 0.15*G7_11_18 + 0.0833333333333333*G7_12_20 + 0.166666666666667*G7_12_25 + 0.0833333333333333*G7_13_21 + 0.166666666666667*G7_13_25; + A[1] = -0.0666666666666666*G0_15_15 + 0.0166666666666666*G0_15_16 - 0.0333333333333333*G0_15_20 + 0.0166666666666666*G0_16_15 - 0.0666666666666666*G0_16_16 - 0.0333333333333333*G0_16_20 - 0.0333333333333333*G0_20_15 - 0.0333333333333333*G0_20_16 - 0.266666666666667*G0_20_20 - 0.0666666666666666*G0_21_21 + 0.0166666666666666*G0_21_22 - 0.0333333333333333*G0_21_26 + 0.0166666666666666*G0_22_21 - 0.0666666666666666*G0_22_22 - 0.0333333333333333*G0_22_26 - 0.0333333333333333*G0_26_21 - 0.0333333333333333*G0_26_22 - 0.266666666666667*G0_26_26 - 0.166666666666667*G0_27_27 - 0.0833333333333333*G0_27_28 - 0.0833333333333333*G0_28_27 - 0.166666666666667*G0_28_28 + 0.0458333333333333*G1_15_26 + 0.0749999999999999*G1_15_33 - 0.0375*G1_15_34 + 0.0458333333333333*G1_16_27 - 0.0375*G1_16_33 + 0.075*G1_16_34 + 0.0166666666666666*G1_20_26 + 0.0166666666666666*G1_20_27 + 0.15*G1_20_33 + 0.15*G1_20_34 + 0.0458333333333333*G1_21_36 + 0.0749999999999999*G1_21_43 - 0.0375*G1_21_44 + 0.0458333333333333*G1_22_37 - 0.0375*G1_22_43 + 0.075*G1_22_44 + 0.0166666666666666*G1_26_36 + 0.0166666666666666*G1_26_37 + 0.15*G1_26_43 + 0.15*G1_26_44 + 0.0833333333333333*G1_27_46 + 0.166666666666667*G1_27_51 + 0.0833333333333333*G1_28_47 + 0.166666666666667*G1_28_51 - 0.0666666666666666*G2_0_0 + 0.0166666666666666*G2_0_1 - 0.0333333333333333*G2_0_5 + 0.0166666666666666*G2_1_0 - 0.0666666666666666*G2_1_1 - 0.0333333333333333*G2_1_5 - 0.0333333333333333*G2_5_0 - 0.0333333333333333*G2_5_1 - 0.266666666666667*G2_5_5 - 0.0666666666666666*G2_6_6 + 0.0166666666666666*G2_6_7 - 0.0333333333333333*G2_6_11 + 0.0166666666666666*G2_7_6 - 0.0666666666666666*G2_7_7 - 0.0333333333333333*G2_7_11 - 0.0333333333333333*G2_11_6 - 0.0333333333333333*G2_11_7 - 0.266666666666667*G2_11_11 - 0.166666666666667*G2_12_12 - 0.0833333333333333*G2_12_13 - 0.0833333333333333*G2_13_12 - 0.166666666666667*G2_13_13 + 0.0458333333333333*G3_0_0 + 0.0749999999999999*G3_0_7 - 0.0375*G3_0_8 + 0.0458333333333333*G3_1_1 - 0.0375*G3_1_7 + 0.075*G3_1_8 + 0.0166666666666666*G3_5_0 + 0.0166666666666666*G3_5_1 + 0.15*G3_5_7 + 0.15*G3_5_8 + 0.0458333333333333*G3_6_10 + 0.0749999999999999*G3_6_17 - 0.0375*G3_6_18 + 0.0458333333333333*G3_7_11 - 0.0375*G3_7_17 + 0.075*G3_7_18 + 0.0166666666666666*G3_11_10 + 0.0166666666666666*G3_11_11 + 0.15*G3_11_17 + 0.15*G3_11_18 + 0.0833333333333333*G3_12_20 + 0.166666666666667*G3_12_25 + 0.0833333333333333*G3_13_21 + 0.166666666666667*G3_13_25; + break; + } + } + + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivenavierstokes_cell_integral_8_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivenavierstokes_cell_integral_8_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_cell_integral_8_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 172 + // Number of operations (multiply-add pairs) for tensor contraction: 2992 + // Total number of operations (multiply-add pairs): 3167 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*w[0][0]*K[0]*(1.0); + const double G0_0_1 = det*w[0][0]*K[2]*(1.0); + const double G0_1_0 = det*w[0][1]*K[0]*(1.0); + const double G0_2_1 = det*w[0][2]*K[2]*(1.0); + const double G0_3_0 = det*w[0][3]*K[0]*(1.0); + const double G0_3_1 = det*w[0][3]*K[2]*(1.0); + const double G0_4_0 = det*w[0][4]*K[0]*(1.0); + const double G0_4_1 = det*w[0][4]*K[2]*(1.0); + const double G0_5_0 = det*w[0][5]*K[0]*(1.0); + const double G0_5_1 = det*w[0][5]*K[2]*(1.0); + const double G1_0_0 = det*w[0][0]*K[0]*(1.0); + const double G1_0_1 = det*w[0][0]*K[2]*(1.0); + const double G1_1_0 = det*w[0][1]*K[0]*(1.0); + const double G1_1_1 = det*w[0][1]*K[2]*(1.0); + const double G1_2_0 = det*w[0][2]*K[0]*(1.0); + const double G1_2_1 = det*w[0][2]*K[2]*(1.0); + const double G1_3_0 = det*w[0][3]*K[0]*(1.0); + const double G1_3_1 = det*w[0][3]*K[2]*(1.0); + const double G1_4_0 = det*w[0][4]*K[0]*(1.0); + const double G1_4_1 = det*w[0][4]*K[2]*(1.0); + const double G1_5_0 = det*w[0][5]*K[0]*(1.0); + const double G1_5_1 = det*w[0][5]*K[2]*(1.0); + const double G2_0_0 = det*w[0][0]*K[1]*(1.0); + const double G2_0_1 = det*w[0][0]*K[3]*(1.0); + const double G2_1_0 = det*w[0][1]*K[1]*(1.0); + const double G2_2_1 = det*w[0][2]*K[3]*(1.0); + const double G2_3_0 = det*w[0][3]*K[1]*(1.0); + const double G2_3_1 = det*w[0][3]*K[3]*(1.0); + const double G2_4_0 = det*w[0][4]*K[1]*(1.0); + const double G2_4_1 = det*w[0][4]*K[3]*(1.0); + const double G2_5_0 = det*w[0][5]*K[1]*(1.0); + const double G2_5_1 = det*w[0][5]*K[3]*(1.0); + const double G3_6_0 = det*w[0][6]*K[1]*(1.0); + const double G3_6_1 = det*w[0][6]*K[3]*(1.0); + const double G3_7_0 = det*w[0][7]*K[1]*(1.0); + const double G3_7_1 = det*w[0][7]*K[3]*(1.0); + const double G3_8_0 = det*w[0][8]*K[1]*(1.0); + const double G3_8_1 = det*w[0][8]*K[3]*(1.0); + const double G3_9_0 = det*w[0][9]*K[1]*(1.0); + const double G3_9_1 = det*w[0][9]*K[3]*(1.0); + const double G3_10_0 = det*w[0][10]*K[1]*(1.0); + const double G3_10_1 = det*w[0][10]*K[3]*(1.0); + const double G3_11_0 = det*w[0][11]*K[1]*(1.0); + const double G3_11_1 = det*w[0][11]*K[3]*(1.0); + const double G4_6_0 = det*w[0][6]*K[0]*(1.0); + const double G4_6_1 = det*w[0][6]*K[2]*(1.0); + const double G4_7_0 = det*w[0][7]*K[0]*(1.0); + const double G4_8_1 = det*w[0][8]*K[2]*(1.0); + const double G4_9_0 = det*w[0][9]*K[0]*(1.0); + const double G4_9_1 = det*w[0][9]*K[2]*(1.0); + const double G4_10_0 = det*w[0][10]*K[0]*(1.0); + const double G4_10_1 = det*w[0][10]*K[2]*(1.0); + const double G4_11_0 = det*w[0][11]*K[0]*(1.0); + const double G4_11_1 = det*w[0][11]*K[2]*(1.0); + const double G5_0_0 = det*w[0][0]*K[0]*(1.0); + const double G5_0_1 = det*w[0][0]*K[2]*(1.0); + const double G5_1_0 = det*w[0][1]*K[0]*(1.0); + const double G5_1_1 = det*w[0][1]*K[2]*(1.0); + const double G5_2_0 = det*w[0][2]*K[0]*(1.0); + const double G5_2_1 = det*w[0][2]*K[2]*(1.0); + const double G5_3_0 = det*w[0][3]*K[0]*(1.0); + const double G5_3_1 = det*w[0][3]*K[2]*(1.0); + const double G5_4_0 = det*w[0][4]*K[0]*(1.0); + const double G5_4_1 = det*w[0][4]*K[2]*(1.0); + const double G5_5_0 = det*w[0][5]*K[0]*(1.0); + const double G5_5_1 = det*w[0][5]*K[2]*(1.0); + const double G6_6_0 = det*w[0][6]*K[1]*(1.0); + const double G6_6_1 = det*w[0][6]*K[3]*(1.0); + const double G6_7_0 = det*w[0][7]*K[1]*(1.0); + const double G6_8_1 = det*w[0][8]*K[3]*(1.0); + const double G6_9_0 = det*w[0][9]*K[1]*(1.0); + const double G6_9_1 = det*w[0][9]*K[3]*(1.0); + const double G6_10_0 = det*w[0][10]*K[1]*(1.0); + const double G6_10_1 = det*w[0][10]*K[3]*(1.0); + const double G6_11_0 = det*w[0][11]*K[1]*(1.0); + const double G6_11_1 = det*w[0][11]*K[3]*(1.0); + const double G7_6_0 = det*w[0][6]*K[1]*(1.0); + const double G7_6_1 = det*w[0][6]*K[3]*(1.0); + const double G7_7_0 = det*w[0][7]*K[1]*(1.0); + const double G7_7_1 = det*w[0][7]*K[3]*(1.0); + const double G7_8_0 = det*w[0][8]*K[1]*(1.0); + const double G7_8_1 = det*w[0][8]*K[3]*(1.0); + const double G7_9_0 = det*w[0][9]*K[1]*(1.0); + const double G7_9_1 = det*w[0][9]*K[3]*(1.0); + const double G7_10_0 = det*w[0][10]*K[1]*(1.0); + const double G7_10_1 = det*w[0][10]*K[3]*(1.0); + const double G7_11_0 = det*w[0][11]*K[1]*(1.0); + const double G7_11_1 = det*w[0][11]*K[3]*(1.0); + const double G8_0 = det*K[0]*(1.0); + const double G8_1 = det*K[2]*(1.0); + const double G9_0 = det*K[1]*(1.0); + const double G9_1 = det*K[3]*(1.0); + const double G10_0_0_0 = det*w[1][0]*K[0]*K[0]*(1.0); + const double G10_0_0_1 = det*w[1][0]*K[0]*K[2]*(1.0); + const double G10_0_1_0 = det*w[1][0]*K[2]*K[0]*(1.0); + const double G10_0_1_1 = det*w[1][0]*K[2]*K[2]*(1.0); + const double G11_0_0_0 = det*w[1][0]*K[0]*K[0]*(1.0); + const double G11_0_0_1 = det*w[1][0]*K[0]*K[2]*(1.0); + const double G11_0_1_0 = det*w[1][0]*K[2]*K[0]*(1.0); + const double G11_0_1_1 = det*w[1][0]*K[2]*K[2]*(1.0); + const double G12_0_0_0 = det*w[1][0]*K[1]*K[1]*(1.0); + const double G12_0_0_1 = det*w[1][0]*K[1]*K[3]*(1.0); + const double G12_0_1_0 = det*w[1][0]*K[3]*K[1]*(1.0); + const double G12_0_1_1 = det*w[1][0]*K[3]*K[3]*(1.0); + const double G13_0_0_0 = det*w[1][0]*K[1]*K[1]*(1.0); + const double G13_0_0_1 = det*w[1][0]*K[1]*K[3]*(1.0); + const double G13_0_1_0 = det*w[1][0]*K[3]*K[1]*(1.0); + const double G13_0_1_1 = det*w[1][0]*K[3]*K[3]*(1.0); + const double G14_0 = det*K[0]*(1.0); + const double G14_1 = det*K[2]*(1.0); + const double G15_0 = det*K[1]*(1.0); + const double G15_1 = det*K[3]*(1.0); + + // Compute element tensor + A[0] = -0.030952380952381*G0_0_0 - 0.030952380952381*G0_0_1 - 0.00714285714285715*G0_1_0 - 0.00714285714285715*G0_2_1 + 0.00952380952380951*G0_3_0 + 0.00952380952380951*G0_3_1 - 0.00952380952380951*G0_4_0 + 0.0380952380952381*G0_4_1 + 0.0380952380952381*G0_5_0 - 0.00952380952380952*G0_5_1 - 0.030952380952381*G1_0_0 - 0.030952380952381*G1_0_1 + 0.00357142857142857*G1_1_0 + 0.00357142857142857*G1_1_1 + 0.00357142857142857*G1_2_0 + 0.00357142857142857*G1_2_1 - 0.00476190476190477*G1_3_0 - 0.00476190476190477*G1_3_1 - 0.0190476190476191*G1_4_0 - 0.0190476190476191*G1_4_1 - 0.0190476190476191*G1_5_0 - 0.0190476190476191*G1_5_1 - 0.030952380952381*G3_6_0 - 0.030952380952381*G3_6_1 + 0.00357142857142857*G3_7_0 + 0.00357142857142857*G3_7_1 + 0.00357142857142857*G3_8_0 + 0.00357142857142857*G3_8_1 - 0.00476190476190477*G3_9_0 - 0.00476190476190477*G3_9_1 - 0.0190476190476191*G3_10_0 - 0.0190476190476191*G3_10_1 - 0.0190476190476191*G3_11_0 - 0.0190476190476191*G3_11_1 + 0.5*G10_0_0_0 + 0.5*G10_0_0_1 + 0.5*G10_0_1_0 + 0.5*G10_0_1_1 + 0.5*G12_0_0_0 + 0.5*G12_0_0_1 + 0.5*G12_0_1_0 + 0.5*G12_0_1_1; + A[1] = 0.00357142857142857*G0_0_0 + 0.00357142857142857*G0_0_1 - 0.00357142857142857*G0_1_0 + 0.00436507936507936*G0_2_1 + 0.00158730158730159*G0_3_0 - 0.00634920634920634*G0_3_1 - 0.00158730158730159*G0_4_0 - 0.00793650793650793*G0_4_1 + 0.00634920634920635*G0_5_1 - 0.00714285714285715*G1_0_0 - 0.00357142857142857*G1_1_0 + 0.00436507936507936*G1_2_0 - 0.00793650793650793*G1_3_0 - 0.00634920634920636*G1_4_0 - 0.0126984126984127*G1_5_0 - 0.00714285714285715*G3_6_0 - 0.00357142857142857*G3_7_0 + 0.00436507936507936*G3_8_0 - 0.00793650793650793*G3_9_0 - 0.00634920634920636*G3_10_0 - 0.0126984126984127*G3_11_0 + 0.166666666666667*G10_0_0_0 + 0.166666666666667*G10_0_1_0 + 0.166666666666667*G12_0_0_0 + 0.166666666666667*G12_0_1_0; + A[2] = 0.00357142857142857*G0_0_0 + 0.00357142857142857*G0_0_1 + 0.00436507936507936*G0_1_0 - 0.00357142857142857*G0_2_1 - 0.00634920634920634*G0_3_0 + 0.00158730158730159*G0_3_1 + 0.00634920634920634*G0_4_0 - 0.00793650793650793*G0_5_0 - 0.00158730158730159*G0_5_1 - 0.00714285714285715*G1_0_1 + 0.00436507936507936*G1_1_1 - 0.00357142857142857*G1_2_1 - 0.00793650793650793*G1_3_1 - 0.0126984126984127*G1_4_1 - 0.00634920634920635*G1_5_1 - 0.00714285714285715*G3_6_1 + 0.00436507936507936*G3_7_1 - 0.00357142857142857*G3_8_1 - 0.00793650793650793*G3_9_1 - 0.0126984126984127*G3_10_1 - 0.00634920634920635*G3_11_1 + 0.166666666666667*G10_0_0_1 + 0.166666666666667*G10_0_1_1 + 0.166666666666667*G12_0_0_1 + 0.166666666666667*G12_0_1_1; + A[3] = -0.00476190476190477*G0_0_0 - 0.00476190476190477*G0_0_1 - 0.00793650793650793*G0_1_0 - 0.00793650793650793*G0_2_1 - 0.019047619047619*G0_3_0 - 0.019047619047619*G0_3_1 + 0.019047619047619*G0_4_0 + 0.0126984126984127*G0_4_1 + 0.0126984126984127*G0_5_0 + 0.019047619047619*G0_5_1 + 0.00952380952380951*G1_0_0 + 0.00952380952380951*G1_0_1 + 0.00158730158730159*G1_1_0 - 0.00634920634920634*G1_1_1 - 0.00634920634920634*G1_2_0 + 0.00158730158730159*G1_2_1 - 0.019047619047619*G1_3_0 - 0.019047619047619*G1_3_1 - 0.0126984126984127*G1_4_0 - 0.00634920634920634*G1_4_1 - 0.00634920634920635*G1_5_0 - 0.0126984126984127*G1_5_1 + 0.00952380952380951*G3_6_0 + 0.00952380952380951*G3_6_1 + 0.00158730158730159*G3_7_0 - 0.00634920634920634*G3_7_1 - 0.00634920634920634*G3_8_0 + 0.00158730158730159*G3_8_1 - 0.019047619047619*G3_9_0 - 0.019047619047619*G3_9_1 - 0.0126984126984127*G3_10_0 - 0.00634920634920634*G3_10_1 - 0.00634920634920635*G3_11_0 - 0.0126984126984127*G3_11_1; + A[4] = -0.0190476190476191*G0_0_0 - 0.0190476190476191*G0_0_1 - 0.00634920634920636*G0_1_0 - 0.0126984126984127*G0_2_1 - 0.0126984126984127*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.0126984126984127*G0_4_0 + 0.0317460317460318*G0_4_1 + 0.0253968253968254*G0_5_0 + 0.00634920634920634*G0_5_1 - 0.00952380952380951*G1_0_0 + 0.0380952380952381*G1_0_1 - 0.00158730158730159*G1_1_0 - 0.00793650793650793*G1_1_1 + 0.00634920634920634*G1_2_0 + 0.019047619047619*G1_3_0 + 0.0126984126984127*G1_3_1 + 0.0126984126984127*G1_4_0 + 0.0317460317460318*G1_4_1 + 0.00634920634920635*G1_5_0 + 0.0253968253968254*G1_5_1 - 0.00952380952380951*G3_6_0 + 0.0380952380952381*G3_6_1 - 0.00158730158730159*G3_7_0 - 0.00793650793650793*G3_7_1 + 0.00634920634920634*G3_8_0 + 0.019047619047619*G3_9_0 + 0.0126984126984127*G3_9_1 + 0.0126984126984127*G3_10_0 + 0.0317460317460318*G3_10_1 + 0.00634920634920635*G3_11_0 + 0.0253968253968254*G3_11_1 - 0.666666666666667*G10_0_0_1 - 0.666666666666666*G10_0_1_1 - 0.666666666666667*G12_0_0_1 - 0.666666666666666*G12_0_1_1; + A[5] = -0.0190476190476191*G0_0_0 - 0.0190476190476191*G0_0_1 - 0.0126984126984127*G0_1_0 - 0.00634920634920635*G0_2_1 - 0.00634920634920635*G0_3_0 - 0.0126984126984127*G0_3_1 + 0.00634920634920635*G0_4_0 + 0.0253968253968254*G0_4_1 + 0.0317460317460318*G0_5_0 + 0.0126984126984127*G0_5_1 + 0.0380952380952381*G1_0_0 - 0.00952380952380952*G1_0_1 + 0.00634920634920635*G1_1_1 - 0.00793650793650793*G1_2_0 - 0.00158730158730159*G1_2_1 + 0.0126984126984127*G1_3_0 + 0.019047619047619*G1_3_1 + 0.0253968253968254*G1_4_0 + 0.00634920634920634*G1_4_1 + 0.0317460317460318*G1_5_0 + 0.0126984126984127*G1_5_1 + 0.0380952380952381*G3_6_0 - 0.00952380952380952*G3_6_1 + 0.00634920634920635*G3_7_1 - 0.00793650793650793*G3_8_0 - 0.00158730158730159*G3_8_1 + 0.0126984126984127*G3_9_0 + 0.019047619047619*G3_9_1 + 0.0253968253968254*G3_10_0 + 0.00634920634920634*G3_10_1 + 0.0317460317460318*G3_11_0 + 0.0126984126984127*G3_11_1 - 0.666666666666667*G10_0_0_0 - 0.666666666666667*G10_0_1_0 - 0.666666666666667*G12_0_0_0 - 0.666666666666667*G12_0_1_0; + A[6] = -0.030952380952381*G2_0_0 - 0.030952380952381*G2_0_1 - 0.00714285714285715*G2_1_0 - 0.00714285714285715*G2_2_1 + 0.00952380952380951*G2_3_0 + 0.00952380952380951*G2_3_1 - 0.00952380952380951*G2_4_0 + 0.0380952380952381*G2_4_1 + 0.0380952380952381*G2_5_0 - 0.00952380952380952*G2_5_1; + A[7] = 0.00357142857142857*G2_0_0 + 0.00357142857142857*G2_0_1 - 0.00357142857142857*G2_1_0 + 0.00436507936507936*G2_2_1 + 0.00158730158730159*G2_3_0 - 0.00634920634920634*G2_3_1 - 0.00158730158730159*G2_4_0 - 0.00793650793650793*G2_4_1 + 0.00634920634920635*G2_5_1; + A[8] = 0.00357142857142857*G2_0_0 + 0.00357142857142857*G2_0_1 + 0.00436507936507936*G2_1_0 - 0.00357142857142857*G2_2_1 - 0.00634920634920634*G2_3_0 + 0.00158730158730159*G2_3_1 + 0.00634920634920634*G2_4_0 - 0.00793650793650793*G2_5_0 - 0.00158730158730159*G2_5_1; + A[9] = -0.00476190476190477*G2_0_0 - 0.00476190476190477*G2_0_1 - 0.00793650793650793*G2_1_0 - 0.00793650793650793*G2_2_1 - 0.019047619047619*G2_3_0 - 0.019047619047619*G2_3_1 + 0.019047619047619*G2_4_0 + 0.0126984126984127*G2_4_1 + 0.0126984126984127*G2_5_0 + 0.019047619047619*G2_5_1; + A[10] = -0.0190476190476191*G2_0_0 - 0.0190476190476191*G2_0_1 - 0.00634920634920636*G2_1_0 - 0.0126984126984127*G2_2_1 - 0.0126984126984127*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.0126984126984127*G2_4_0 + 0.0317460317460318*G2_4_1 + 0.0253968253968254*G2_5_0 + 0.00634920634920634*G2_5_1; + A[11] = -0.0190476190476191*G2_0_0 - 0.0190476190476191*G2_0_1 - 0.0126984126984127*G2_1_0 - 0.00634920634920635*G2_2_1 - 0.00634920634920635*G2_3_0 - 0.0126984126984127*G2_3_1 + 0.00634920634920635*G2_4_0 + 0.0253968253968254*G2_4_1 + 0.0317460317460318*G2_5_0 + 0.0126984126984127*G2_5_1; + A[12] = 0.166666666666667*G14_0 + 0.166666666666667*G14_1; + A[13] = 0.0; + A[14] = 0.0; + A[15] = 0.00357142857142857*G0_0_0 + 0.00357142857142857*G0_0_1 - 0.00357142857142857*G0_1_0 + 0.00436507936507936*G0_2_1 + 0.00158730158730159*G0_3_0 - 0.00634920634920634*G0_3_1 - 0.00158730158730159*G0_4_0 - 0.00793650793650793*G0_4_1 + 0.00634920634920635*G0_5_1 + 0.00357142857142857*G1_0_0 + 0.00357142857142857*G1_0_1 + 0.00714285714285713*G1_1_0 + 0.00714285714285714*G1_1_1 - 0.00436507936507936*G1_2_0 - 0.00436507936507936*G1_2_1 + 0.00634920634920634*G1_3_0 + 0.00634920634920634*G1_3_1 + 0.00793650793650793*G1_4_0 + 0.00793650793650793*G1_4_1 + 0.0126984126984127*G1_5_0 + 0.0126984126984127*G1_5_1 + 0.00357142857142857*G3_6_0 + 0.00357142857142857*G3_6_1 + 0.00714285714285713*G3_7_0 + 0.00714285714285714*G3_7_1 - 0.00436507936507936*G3_8_0 - 0.00436507936507936*G3_8_1 + 0.00634920634920634*G3_9_0 + 0.00634920634920634*G3_9_1 + 0.00793650793650793*G3_10_0 + 0.00793650793650793*G3_10_1 + 0.0126984126984127*G3_11_0 + 0.0126984126984127*G3_11_1 + 0.166666666666667*G10_0_0_0 + 0.166666666666667*G10_0_0_1 + 0.166666666666667*G12_0_0_0 + 0.166666666666667*G12_0_0_1; + A[16] = 0.00714285714285713*G0_0_0 + 0.00714285714285714*G0_0_1 + 0.0309523809523809*G0_1_0 - 0.00714285714285713*G0_2_1 + 0.0095238095238095*G0_3_0 + 0.0476190476190476*G0_3_1 - 0.0095238095238095*G0_4_0 - 0.0380952380952381*G0_5_0 - 0.0476190476190476*G0_5_1 - 0.00357142857142857*G1_0_0 + 0.0309523809523809*G1_1_0 - 0.00357142857142856*G1_2_0 + 0.019047619047619*G1_3_0 + 0.00476190476190476*G1_4_0 + 0.019047619047619*G1_5_0 - 0.00357142857142857*G3_6_0 + 0.0309523809523809*G3_7_0 - 0.00357142857142856*G3_8_0 + 0.019047619047619*G3_9_0 + 0.00476190476190476*G3_10_0 + 0.019047619047619*G3_11_0 + 0.5*G10_0_0_0 + 0.5*G12_0_0_0; + A[17] = -0.00436507936507936*G0_0_0 - 0.00436507936507936*G0_0_1 - 0.00357142857142856*G0_1_0 - 0.00357142857142857*G0_2_1 - 0.00634920634920633*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.00634920634920633*G0_4_0 + 0.00793650793650792*G0_4_1 + 0.00793650793650793*G0_5_0 + 0.00634920634920634*G0_5_1 + 0.00436507936507936*G1_0_1 - 0.00714285714285713*G1_1_1 - 0.00357142857142857*G1_2_1 - 0.0126984126984127*G1_3_1 - 0.00793650793650794*G1_4_1 - 0.00634920634920636*G1_5_1 + 0.00436507936507936*G3_6_1 - 0.00714285714285713*G3_7_1 - 0.00357142857142857*G3_8_1 - 0.0126984126984127*G3_9_1 - 0.00793650793650794*G3_10_1 - 0.00634920634920636*G3_11_1 - 0.166666666666667*G10_0_0_1 - 0.166666666666667*G12_0_0_1; + A[18] = 0.00634920634920634*G0_0_0 + 0.00634920634920634*G0_0_1 + 0.019047619047619*G0_1_0 - 0.0126984126984127*G0_2_1 - 0.0126984126984127*G0_3_0 + 0.019047619047619*G0_3_1 + 0.0126984126984127*G0_4_0 + 0.00634920634920636*G0_4_1 - 0.0253968253968254*G0_5_0 - 0.019047619047619*G0_5_1 + 0.00158730158730159*G1_0_0 - 0.00634920634920634*G1_0_1 + 0.0095238095238095*G1_1_0 + 0.0476190476190476*G1_1_1 - 0.00634920634920633*G1_2_0 - 0.00634920634920634*G1_2_1 - 0.0126984126984127*G1_3_0 + 0.019047619047619*G1_3_1 - 0.019047619047619*G1_4_0 - 0.00634920634920634*G1_4_1 - 0.00634920634920635*G1_5_0 + 0.019047619047619*G1_5_1 + 0.00158730158730159*G3_6_0 - 0.00634920634920634*G3_6_1 + 0.0095238095238095*G3_7_0 + 0.0476190476190476*G3_7_1 - 0.00634920634920633*G3_8_0 - 0.00634920634920634*G3_8_1 - 0.0126984126984127*G3_9_0 + 0.019047619047619*G3_9_1 - 0.019047619047619*G3_10_0 - 0.00634920634920634*G3_10_1 - 0.00634920634920635*G3_11_0 + 0.019047619047619*G3_11_1 + 0.666666666666666*G10_0_0_1 + 0.666666666666666*G12_0_0_1; + A[19] = 0.00793650793650793*G0_0_0 + 0.00793650793650793*G0_0_1 + 0.00476190476190476*G0_1_0 - 0.00793650793650794*G0_2_1 - 0.019047619047619*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.019047619047619*G0_4_0 - 0.0126984126984127*G0_5_0 + 0.00634920634920634*G0_5_1 - 0.00158730158730159*G1_0_0 - 0.00793650793650793*G1_0_1 - 0.0095238095238095*G1_1_0 + 0.00634920634920633*G1_2_0 + 0.00793650793650792*G1_2_1 + 0.0126984126984127*G1_3_0 + 0.00634920634920636*G1_3_1 + 0.019047619047619*G1_4_0 + 0.00634920634920635*G1_5_0 - 0.00634920634920633*G1_5_1 - 0.00158730158730159*G3_6_0 - 0.00793650793650793*G3_6_1 - 0.0095238095238095*G3_7_0 + 0.00634920634920633*G3_8_0 + 0.00793650793650792*G3_8_1 + 0.0126984126984127*G3_9_0 + 0.00634920634920636*G3_9_1 + 0.019047619047619*G3_10_0 + 0.00634920634920635*G3_11_0 - 0.00634920634920633*G3_11_1; + A[20] = 0.0126984126984127*G0_0_0 + 0.0126984126984127*G0_0_1 + 0.019047619047619*G0_1_0 - 0.00634920634920636*G0_2_1 - 0.00634920634920635*G0_3_0 + 0.019047619047619*G0_3_1 + 0.00634920634920635*G0_4_0 - 0.00634920634920633*G0_4_1 - 0.0317460317460317*G0_5_0 - 0.0190476190476191*G0_5_1 + 0.00634920634920635*G1_0_1 - 0.0380952380952381*G1_1_0 - 0.0476190476190476*G1_1_1 + 0.00793650793650793*G1_2_0 + 0.00634920634920634*G1_2_1 - 0.0253968253968254*G1_3_0 - 0.019047619047619*G1_3_1 - 0.0126984126984127*G1_4_0 + 0.00634920634920634*G1_4_1 - 0.0317460317460317*G1_5_0 - 0.0190476190476191*G1_5_1 + 0.00634920634920635*G3_6_1 - 0.0380952380952381*G3_7_0 - 0.0476190476190476*G3_7_1 + 0.00793650793650793*G3_8_0 + 0.00634920634920634*G3_8_1 - 0.0253968253968254*G3_9_0 - 0.019047619047619*G3_9_1 - 0.0126984126984127*G3_10_0 + 0.00634920634920634*G3_10_1 - 0.0317460317460317*G3_11_0 - 0.0190476190476191*G3_11_1 - 0.666666666666667*G10_0_0_0 - 0.666666666666666*G10_0_0_1 - 0.666666666666667*G12_0_0_0 - 0.666666666666666*G12_0_0_1; + A[21] = 0.00357142857142857*G2_0_0 + 0.00357142857142857*G2_0_1 - 0.00357142857142857*G2_1_0 + 0.00436507936507936*G2_2_1 + 0.00158730158730159*G2_3_0 - 0.00634920634920634*G2_3_1 - 0.00158730158730159*G2_4_0 - 0.00793650793650793*G2_4_1 + 0.00634920634920635*G2_5_1; + A[22] = 0.00714285714285713*G2_0_0 + 0.00714285714285714*G2_0_1 + 0.0309523809523809*G2_1_0 - 0.00714285714285713*G2_2_1 + 0.0095238095238095*G2_3_0 + 0.0476190476190476*G2_3_1 - 0.0095238095238095*G2_4_0 - 0.0380952380952381*G2_5_0 - 0.0476190476190476*G2_5_1; + A[23] = -0.00436507936507936*G2_0_0 - 0.00436507936507936*G2_0_1 - 0.00357142857142856*G2_1_0 - 0.00357142857142857*G2_2_1 - 0.00634920634920633*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.00634920634920633*G2_4_0 + 0.00793650793650792*G2_4_1 + 0.00793650793650793*G2_5_0 + 0.00634920634920634*G2_5_1; + A[24] = 0.00634920634920634*G2_0_0 + 0.00634920634920634*G2_0_1 + 0.019047619047619*G2_1_0 - 0.0126984126984127*G2_2_1 - 0.0126984126984127*G2_3_0 + 0.019047619047619*G2_3_1 + 0.0126984126984127*G2_4_0 + 0.00634920634920636*G2_4_1 - 0.0253968253968254*G2_5_0 - 0.019047619047619*G2_5_1; + A[25] = 0.00793650793650793*G2_0_0 + 0.00793650793650793*G2_0_1 + 0.00476190476190476*G2_1_0 - 0.00793650793650794*G2_2_1 - 0.019047619047619*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.019047619047619*G2_4_0 - 0.0126984126984127*G2_5_0 + 0.00634920634920634*G2_5_1; + A[26] = 0.0126984126984127*G2_0_0 + 0.0126984126984127*G2_0_1 + 0.019047619047619*G2_1_0 - 0.00634920634920636*G2_2_1 - 0.00634920634920635*G2_3_0 + 0.019047619047619*G2_3_1 + 0.00634920634920635*G2_4_0 - 0.00634920634920633*G2_4_1 - 0.0317460317460317*G2_5_0 - 0.0190476190476191*G2_5_1; + A[27] = 0.0; + A[28] = -0.166666666666667*G14_0; + A[29] = 0.0; + A[30] = 0.00357142857142857*G0_0_0 + 0.00357142857142857*G0_0_1 + 0.00436507936507936*G0_1_0 - 0.00357142857142857*G0_2_1 - 0.00634920634920634*G0_3_0 + 0.00158730158730159*G0_3_1 + 0.00634920634920634*G0_4_0 - 0.00793650793650793*G0_5_0 - 0.00158730158730159*G0_5_1 + 0.00357142857142857*G1_0_0 + 0.00357142857142857*G1_0_1 - 0.00436507936507936*G1_1_0 - 0.00436507936507936*G1_1_1 + 0.00714285714285714*G1_2_0 + 0.00714285714285713*G1_2_1 + 0.00634920634920635*G1_3_0 + 0.00634920634920634*G1_3_1 + 0.0126984126984127*G1_4_0 + 0.0126984126984127*G1_4_1 + 0.00793650793650793*G1_5_0 + 0.00793650793650793*G1_5_1 + 0.00357142857142857*G3_6_0 + 0.00357142857142857*G3_6_1 - 0.00436507936507936*G3_7_0 - 0.00436507936507936*G3_7_1 + 0.00714285714285714*G3_8_0 + 0.00714285714285713*G3_8_1 + 0.00634920634920635*G3_9_0 + 0.00634920634920634*G3_9_1 + 0.0126984126984127*G3_10_0 + 0.0126984126984127*G3_10_1 + 0.00793650793650793*G3_11_0 + 0.00793650793650793*G3_11_1 + 0.166666666666667*G10_0_1_0 + 0.166666666666667*G10_0_1_1 + 0.166666666666667*G12_0_1_0 + 0.166666666666667*G12_0_1_1; + A[31] = -0.00436507936507936*G0_0_0 - 0.00436507936507936*G0_0_1 - 0.00357142857142857*G0_1_0 - 0.00357142857142857*G0_2_1 - 0.00634920634920634*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.00634920634920634*G0_4_0 + 0.00793650793650792*G0_4_1 + 0.00793650793650793*G0_5_0 + 0.00634920634920634*G0_5_1 + 0.00436507936507936*G1_0_0 - 0.00357142857142857*G1_1_0 - 0.00714285714285714*G1_2_0 - 0.0126984126984127*G1_3_0 - 0.00634920634920635*G1_4_0 - 0.00793650793650793*G1_5_0 + 0.00436507936507936*G3_6_0 - 0.00357142857142857*G3_7_0 - 0.00714285714285714*G3_8_0 - 0.0126984126984127*G3_9_0 - 0.00634920634920635*G3_10_0 - 0.00793650793650793*G3_11_0 - 0.166666666666667*G10_0_1_0 - 0.166666666666667*G12_0_1_0; + A[32] = 0.00714285714285714*G0_0_0 + 0.00714285714285713*G0_0_1 - 0.00714285714285714*G0_1_0 + 0.0309523809523809*G0_2_1 + 0.0476190476190475*G0_3_0 + 0.0095238095238095*G0_3_1 - 0.0476190476190475*G0_4_0 - 0.038095238095238*G0_4_1 - 0.00952380952380951*G0_5_1 - 0.00357142857142857*G1_0_1 - 0.00357142857142857*G1_1_1 + 0.0309523809523809*G1_2_1 + 0.019047619047619*G1_3_1 + 0.019047619047619*G1_4_1 + 0.00476190476190476*G1_5_1 - 0.00357142857142857*G3_6_1 - 0.00357142857142857*G3_7_1 + 0.0309523809523809*G3_8_1 + 0.019047619047619*G3_9_1 + 0.019047619047619*G3_10_1 + 0.00476190476190476*G3_11_1 + 0.5*G10_0_1_1 + 0.5*G12_0_1_1; + A[33] = 0.00634920634920635*G0_0_0 + 0.00634920634920634*G0_0_1 - 0.0126984126984127*G0_1_0 + 0.019047619047619*G0_2_1 + 0.019047619047619*G0_3_0 - 0.0126984126984127*G0_3_1 - 0.019047619047619*G0_4_0 - 0.0253968253968254*G0_4_1 + 0.00634920634920634*G0_5_0 + 0.0126984126984127*G0_5_1 - 0.00634920634920634*G1_0_0 + 0.00158730158730159*G1_0_1 - 0.00634920634920634*G1_1_0 - 0.00634920634920634*G1_1_1 + 0.0476190476190475*G1_2_0 + 0.0095238095238095*G1_2_1 + 0.019047619047619*G1_3_0 - 0.0126984126984127*G1_3_1 + 0.019047619047619*G1_4_0 - 0.00634920634920634*G1_4_1 - 0.00634920634920633*G1_5_0 - 0.019047619047619*G1_5_1 - 0.00634920634920634*G3_6_0 + 0.00158730158730159*G3_6_1 - 0.00634920634920634*G3_7_0 - 0.00634920634920634*G3_7_1 + 0.0476190476190475*G3_8_0 + 0.0095238095238095*G3_8_1 + 0.019047619047619*G3_9_0 - 0.0126984126984127*G3_9_1 + 0.019047619047619*G3_10_0 - 0.00634920634920634*G3_10_1 - 0.00634920634920633*G3_11_0 - 0.019047619047619*G3_11_1 + 0.666666666666666*G10_0_1_0 + 0.666666666666666*G12_0_1_0; + A[34] = 0.0126984126984127*G0_0_0 + 0.0126984126984127*G0_0_1 - 0.00634920634920635*G0_1_0 + 0.019047619047619*G0_2_1 + 0.019047619047619*G0_3_0 - 0.00634920634920634*G0_3_1 - 0.019047619047619*G0_4_0 - 0.0317460317460317*G0_4_1 - 0.00634920634920635*G0_5_0 + 0.00634920634920634*G0_5_1 + 0.00634920634920634*G1_0_0 + 0.00634920634920634*G1_1_0 + 0.00793650793650792*G1_1_1 - 0.0476190476190475*G1_2_0 - 0.038095238095238*G1_2_1 - 0.019047619047619*G1_3_0 - 0.0253968253968254*G1_3_1 - 0.019047619047619*G1_4_0 - 0.0317460317460317*G1_4_1 + 0.00634920634920633*G1_5_0 - 0.0126984126984127*G1_5_1 + 0.00634920634920634*G3_6_0 + 0.00634920634920634*G3_7_0 + 0.00793650793650792*G3_7_1 - 0.0476190476190475*G3_8_0 - 0.038095238095238*G3_8_1 - 0.019047619047619*G3_9_0 - 0.0253968253968254*G3_9_1 - 0.019047619047619*G3_10_0 - 0.0317460317460317*G3_10_1 + 0.00634920634920633*G3_11_0 - 0.0126984126984127*G3_11_1 - 0.666666666666666*G10_0_1_0 - 0.666666666666666*G10_0_1_1 - 0.666666666666666*G12_0_1_0 - 0.666666666666666*G12_0_1_1; + A[35] = 0.00793650793650793*G0_0_0 + 0.00793650793650793*G0_0_1 - 0.00793650793650793*G0_1_0 + 0.00476190476190476*G0_2_1 - 0.00634920634920633*G0_3_0 - 0.019047619047619*G0_3_1 + 0.00634920634920633*G0_4_0 - 0.0126984126984127*G0_4_1 + 0.019047619047619*G0_5_1 - 0.00793650793650793*G1_0_0 - 0.00158730158730159*G1_0_1 + 0.00793650793650793*G1_1_0 + 0.00634920634920634*G1_1_1 - 0.00952380952380951*G1_2_1 + 0.00634920634920634*G1_3_0 + 0.0126984126984127*G1_3_1 - 0.00634920634920635*G1_4_0 + 0.00634920634920634*G1_4_1 + 0.019047619047619*G1_5_1 - 0.00793650793650793*G3_6_0 - 0.00158730158730159*G3_6_1 + 0.00793650793650793*G3_7_0 + 0.00634920634920634*G3_7_1 - 0.00952380952380951*G3_8_1 + 0.00634920634920634*G3_9_0 + 0.0126984126984127*G3_9_1 - 0.00634920634920635*G3_10_0 + 0.00634920634920634*G3_10_1 + 0.019047619047619*G3_11_1; + A[36] = 0.00357142857142857*G2_0_0 + 0.00357142857142857*G2_0_1 + 0.00436507936507936*G2_1_0 - 0.00357142857142857*G2_2_1 - 0.00634920634920634*G2_3_0 + 0.00158730158730159*G2_3_1 + 0.00634920634920634*G2_4_0 - 0.00793650793650793*G2_5_0 - 0.00158730158730159*G2_5_1; + A[37] = -0.00436507936507936*G2_0_0 - 0.00436507936507936*G2_0_1 - 0.00357142857142857*G2_1_0 - 0.00357142857142857*G2_2_1 - 0.00634920634920634*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.00634920634920634*G2_4_0 + 0.00793650793650792*G2_4_1 + 0.00793650793650793*G2_5_0 + 0.00634920634920634*G2_5_1; + A[38] = 0.00714285714285714*G2_0_0 + 0.00714285714285713*G2_0_1 - 0.00714285714285714*G2_1_0 + 0.0309523809523809*G2_2_1 + 0.0476190476190475*G2_3_0 + 0.0095238095238095*G2_3_1 - 0.0476190476190475*G2_4_0 - 0.038095238095238*G2_4_1 - 0.00952380952380951*G2_5_1; + A[39] = 0.00634920634920635*G2_0_0 + 0.00634920634920634*G2_0_1 - 0.0126984126984127*G2_1_0 + 0.019047619047619*G2_2_1 + 0.019047619047619*G2_3_0 - 0.0126984126984127*G2_3_1 - 0.019047619047619*G2_4_0 - 0.0253968253968254*G2_4_1 + 0.00634920634920634*G2_5_0 + 0.0126984126984127*G2_5_1; + A[40] = 0.0126984126984127*G2_0_0 + 0.0126984126984127*G2_0_1 - 0.00634920634920635*G2_1_0 + 0.019047619047619*G2_2_1 + 0.019047619047619*G2_3_0 - 0.00634920634920634*G2_3_1 - 0.019047619047619*G2_4_0 - 0.0317460317460317*G2_4_1 - 0.00634920634920635*G2_5_0 + 0.00634920634920634*G2_5_1; + A[41] = 0.00793650793650793*G2_0_0 + 0.00793650793650793*G2_0_1 - 0.00793650793650793*G2_1_0 + 0.00476190476190476*G2_2_1 - 0.00634920634920633*G2_3_0 - 0.019047619047619*G2_3_1 + 0.00634920634920633*G2_4_0 - 0.0126984126984127*G2_4_1 + 0.019047619047619*G2_5_1; + A[42] = 0.0; + A[43] = 0.0; + A[44] = -0.166666666666667*G14_1; + A[45] = -0.00476190476190476*G0_0_0 - 0.00476190476190477*G0_0_1 - 0.00793650793650793*G0_1_0 - 0.00793650793650793*G0_2_1 - 0.019047619047619*G0_3_0 - 0.019047619047619*G0_3_1 + 0.019047619047619*G0_4_0 + 0.0126984126984127*G0_4_1 + 0.0126984126984127*G0_5_0 + 0.019047619047619*G0_5_1 - 0.00476190476190476*G1_0_0 - 0.00476190476190477*G1_0_1 + 0.00634920634920634*G1_1_0 + 0.00634920634920634*G1_1_1 + 0.00634920634920635*G1_2_0 + 0.00634920634920634*G1_2_1 + 0.0380952380952381*G1_3_0 + 0.0380952380952381*G1_3_1 - 0.00634920634920633*G1_4_0 - 0.00634920634920632*G1_4_1 - 0.00634920634920633*G1_5_0 - 0.00634920634920632*G1_5_1 - 0.00476190476190476*G3_6_0 - 0.00476190476190477*G3_6_1 + 0.00634920634920634*G3_7_0 + 0.00634920634920634*G3_7_1 + 0.00634920634920635*G3_8_0 + 0.00634920634920634*G3_8_1 + 0.0380952380952381*G3_9_0 + 0.0380952380952381*G3_9_1 - 0.00634920634920633*G3_10_0 - 0.00634920634920632*G3_10_1 - 0.00634920634920633*G3_11_0 - 0.00634920634920632*G3_11_1; + A[46] = 0.00634920634920634*G0_0_0 + 0.00634920634920634*G0_0_1 + 0.019047619047619*G0_1_0 - 0.0126984126984127*G0_2_1 - 0.0126984126984127*G0_3_0 + 0.019047619047619*G0_3_1 + 0.0126984126984127*G0_4_0 + 0.00634920634920636*G0_4_1 - 0.0253968253968254*G0_5_0 - 0.019047619047619*G0_5_1 - 0.00793650793650793*G1_0_0 + 0.019047619047619*G1_1_0 - 0.0126984126984127*G1_2_0 + 0.0634920634920634*G1_3_0 + 0.00634920634920634*G1_4_0 + 0.0317460317460317*G1_5_0 - 0.00793650793650793*G3_6_0 + 0.019047619047619*G3_7_0 - 0.0126984126984127*G3_8_0 + 0.0634920634920634*G3_9_0 + 0.00634920634920634*G3_10_0 + 0.0317460317460317*G3_11_0 + 0.666666666666666*G10_0_1_0 + 0.666666666666666*G12_0_1_0; + A[47] = 0.00634920634920635*G0_0_0 + 0.00634920634920634*G0_0_1 - 0.0126984126984127*G0_1_0 + 0.019047619047619*G0_2_1 + 0.019047619047619*G0_3_0 - 0.0126984126984127*G0_3_1 - 0.019047619047619*G0_4_0 - 0.0253968253968254*G0_4_1 + 0.00634920634920634*G0_5_0 + 0.0126984126984127*G0_5_1 - 0.00793650793650793*G1_0_1 - 0.0126984126984127*G1_1_1 + 0.019047619047619*G1_2_1 + 0.0634920634920634*G1_3_1 + 0.0317460317460317*G1_4_1 + 0.00634920634920636*G1_5_1 - 0.00793650793650793*G3_6_1 - 0.0126984126984127*G3_7_1 + 0.019047619047619*G3_8_1 + 0.0634920634920634*G3_9_1 + 0.0317460317460317*G3_10_1 + 0.00634920634920636*G3_11_1 + 0.666666666666666*G10_0_0_1 + 0.666666666666666*G12_0_0_1; + A[48] = 0.0380952380952381*G0_0_0 + 0.0380952380952381*G0_0_1 + 0.0634920634920634*G0_1_0 + 0.0634920634920634*G0_2_1 + 0.152380952380952*G0_3_0 + 0.152380952380952*G0_3_1 - 0.152380952380952*G0_4_0 - 0.101587301587301*G0_4_1 - 0.101587301587302*G0_5_0 - 0.152380952380952*G0_5_1 - 0.019047619047619*G1_0_0 - 0.019047619047619*G1_0_1 - 0.0126984126984127*G1_1_0 + 0.019047619047619*G1_1_1 + 0.019047619047619*G1_2_0 - 0.0126984126984127*G1_2_1 + 0.152380952380952*G1_3_0 + 0.152380952380952*G1_3_1 + 0.0761904761904761*G1_4_0 + 0.0507936507936507*G1_4_1 + 0.0507936507936508*G1_5_0 + 0.0761904761904761*G1_5_1 - 0.019047619047619*G3_6_0 - 0.019047619047619*G3_6_1 - 0.0126984126984127*G3_7_0 + 0.019047619047619*G3_7_1 + 0.019047619047619*G3_8_0 - 0.0126984126984127*G3_8_1 + 0.152380952380952*G3_9_0 + 0.152380952380952*G3_9_1 + 0.0761904761904761*G3_10_0 + 0.0507936507936507*G3_10_1 + 0.0507936507936508*G3_11_0 + 0.0761904761904761*G3_11_1 + 1.33333333333333*G10_0_0_0 + 0.666666666666665*G10_0_0_1 + 0.666666666666665*G10_0_1_0 + 1.33333333333333*G10_0_1_1 + 1.33333333333333*G12_0_0_0 + 0.666666666666665*G12_0_0_1 + 0.666666666666665*G12_0_1_0 + 1.33333333333333*G12_0_1_1; + A[49] = -0.00634920634920633*G0_0_0 - 0.00634920634920632*G0_0_1 + 0.00634920634920634*G0_1_0 + 0.0317460317460317*G0_2_1 + 0.0761904761904761*G0_3_0 + 0.0507936507936507*G0_3_1 - 0.0761904761904761*G0_4_0 - 0.0253968253968254*G0_4_1 - 0.0507936507936508*G0_5_1 + 0.019047619047619*G1_0_0 + 0.0126984126984127*G1_0_1 + 0.0126984126984127*G1_1_0 + 0.00634920634920636*G1_1_1 - 0.019047619047619*G1_2_0 - 0.0253968253968254*G1_2_1 - 0.152380952380952*G1_3_0 - 0.101587301587301*G1_3_1 - 0.0761904761904761*G1_4_0 - 0.0253968253968254*G1_4_1 - 0.0507936507936508*G1_5_0 + 0.019047619047619*G3_6_0 + 0.0126984126984127*G3_6_1 + 0.0126984126984127*G3_7_0 + 0.00634920634920636*G3_7_1 - 0.019047619047619*G3_8_0 - 0.0253968253968254*G3_8_1 - 0.152380952380952*G3_9_0 - 0.101587301587301*G3_9_1 - 0.0761904761904761*G3_10_0 - 0.0253968253968254*G3_10_1 - 0.0507936507936508*G3_11_0 - 1.33333333333333*G10_0_0_0 - 0.666666666666666*G10_0_0_1 - 0.666666666666665*G10_0_1_0 - 1.33333333333333*G12_0_0_0 - 0.666666666666666*G12_0_0_1 - 0.666666666666665*G12_0_1_0; + A[50] = -0.00634920634920633*G0_0_0 - 0.00634920634920632*G0_0_1 + 0.0317460317460317*G0_1_0 + 0.00634920634920636*G0_2_1 + 0.0507936507936508*G0_3_0 + 0.0761904761904761*G0_3_1 - 0.0507936507936508*G0_4_0 - 0.0253968253968254*G0_5_0 - 0.0761904761904762*G0_5_1 + 0.0126984126984127*G1_0_0 + 0.019047619047619*G1_0_1 - 0.0253968253968254*G1_1_0 - 0.019047619047619*G1_1_1 + 0.00634920634920634*G1_2_0 + 0.0126984126984127*G1_2_1 - 0.101587301587302*G1_3_0 - 0.152380952380952*G1_3_1 - 0.0507936507936508*G1_4_1 - 0.0253968253968254*G1_5_0 - 0.0761904761904762*G1_5_1 + 0.0126984126984127*G3_6_0 + 0.019047619047619*G3_6_1 - 0.0253968253968254*G3_7_0 - 0.019047619047619*G3_7_1 + 0.00634920634920634*G3_8_0 + 0.0126984126984127*G3_8_1 - 0.101587301587302*G3_9_0 - 0.152380952380952*G3_9_1 - 0.0507936507936508*G3_10_1 - 0.0253968253968254*G3_11_0 - 0.0761904761904762*G3_11_1 - 0.666666666666665*G10_0_0_1 - 0.666666666666667*G10_0_1_0 - 1.33333333333333*G10_0_1_1 - 0.666666666666665*G12_0_0_1 - 0.666666666666667*G12_0_1_0 - 1.33333333333333*G12_0_1_1; + A[51] = -0.00476190476190476*G2_0_0 - 0.00476190476190477*G2_0_1 - 0.00793650793650793*G2_1_0 - 0.00793650793650793*G2_2_1 - 0.019047619047619*G2_3_0 - 0.019047619047619*G2_3_1 + 0.019047619047619*G2_4_0 + 0.0126984126984127*G2_4_1 + 0.0126984126984127*G2_5_0 + 0.019047619047619*G2_5_1; + A[52] = 0.00634920634920634*G2_0_0 + 0.00634920634920634*G2_0_1 + 0.019047619047619*G2_1_0 - 0.0126984126984127*G2_2_1 - 0.0126984126984127*G2_3_0 + 0.019047619047619*G2_3_1 + 0.0126984126984127*G2_4_0 + 0.00634920634920636*G2_4_1 - 0.0253968253968254*G2_5_0 - 0.019047619047619*G2_5_1; + A[53] = 0.00634920634920635*G2_0_0 + 0.00634920634920634*G2_0_1 - 0.0126984126984127*G2_1_0 + 0.019047619047619*G2_2_1 + 0.019047619047619*G2_3_0 - 0.0126984126984127*G2_3_1 - 0.019047619047619*G2_4_0 - 0.0253968253968254*G2_4_1 + 0.00634920634920634*G2_5_0 + 0.0126984126984127*G2_5_1; + A[54] = 0.0380952380952381*G2_0_0 + 0.0380952380952381*G2_0_1 + 0.0634920634920634*G2_1_0 + 0.0634920634920634*G2_2_1 + 0.152380952380952*G2_3_0 + 0.152380952380952*G2_3_1 - 0.152380952380952*G2_4_0 - 0.101587301587301*G2_4_1 - 0.101587301587302*G2_5_0 - 0.152380952380952*G2_5_1; + A[55] = -0.00634920634920633*G2_0_0 - 0.00634920634920632*G2_0_1 + 0.00634920634920634*G2_1_0 + 0.0317460317460317*G2_2_1 + 0.0761904761904761*G2_3_0 + 0.0507936507936507*G2_3_1 - 0.0761904761904761*G2_4_0 - 0.0253968253968254*G2_4_1 - 0.0507936507936508*G2_5_1; + A[56] = -0.00634920634920633*G2_0_0 - 0.00634920634920632*G2_0_1 + 0.0317460317460317*G2_1_0 + 0.00634920634920636*G2_2_1 + 0.0507936507936508*G2_3_0 + 0.0761904761904761*G2_3_1 - 0.0507936507936508*G2_4_0 - 0.0253968253968254*G2_5_0 - 0.0761904761904762*G2_5_1; + A[57] = -0.166666666666667*G14_0 - 0.166666666666667*G14_1; + A[58] = -0.166666666666667*G14_0 - 0.333333333333333*G14_1; + A[59] = -0.333333333333333*G14_0 - 0.166666666666666*G14_1; + A[60] = -0.0190476190476191*G0_0_0 - 0.0190476190476191*G0_0_1 - 0.00634920634920636*G0_1_0 - 0.0126984126984127*G0_2_1 - 0.0126984126984127*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.0126984126984127*G0_4_0 + 0.0317460317460318*G0_4_1 + 0.0253968253968254*G0_5_0 + 0.00634920634920634*G0_5_1 - 0.0190476190476191*G1_0_0 - 0.0190476190476191*G1_0_1 + 0.00793650793650793*G1_1_0 + 0.00793650793650793*G1_1_1 + 0.0126984126984127*G1_2_0 + 0.0126984126984127*G1_2_1 - 0.00634920634920633*G1_3_0 - 0.00634920634920632*G1_3_1 - 0.0634920634920635*G1_4_0 - 0.0634920634920635*G1_4_1 - 0.0317460317460317*G1_5_0 - 0.0317460317460317*G1_5_1 - 0.0190476190476191*G3_6_0 - 0.0190476190476191*G3_6_1 + 0.00793650793650793*G3_7_0 + 0.00793650793650793*G3_7_1 + 0.0126984126984127*G3_8_0 + 0.0126984126984127*G3_8_1 - 0.00634920634920633*G3_9_0 - 0.00634920634920632*G3_9_1 - 0.0634920634920635*G3_10_0 - 0.0634920634920635*G3_10_1 - 0.0317460317460317*G3_11_0 - 0.0317460317460317*G3_11_1 - 0.666666666666667*G10_0_1_0 - 0.666666666666666*G10_0_1_1 - 0.666666666666667*G12_0_1_0 - 0.666666666666666*G12_0_1_1; + A[61] = 0.00793650793650793*G0_0_0 + 0.00793650793650793*G0_0_1 + 0.00476190476190476*G0_1_0 - 0.00793650793650794*G0_2_1 - 0.019047619047619*G0_3_0 - 0.00634920634920634*G0_3_1 + 0.019047619047619*G0_4_0 - 0.0126984126984127*G0_5_0 + 0.00634920634920634*G0_5_1 - 0.00634920634920636*G1_0_0 + 0.00476190476190476*G1_1_0 - 0.00634920634920635*G1_2_0 + 0.00634920634920634*G1_3_0 - 0.0380952380952381*G1_4_0 + 0.00634920634920634*G1_5_0 - 0.00634920634920636*G3_6_0 + 0.00476190476190476*G3_7_0 - 0.00634920634920635*G3_8_0 + 0.00634920634920634*G3_9_0 - 0.0380952380952381*G3_10_0 + 0.00634920634920634*G3_11_0; + A[62] = 0.0126984126984127*G0_0_0 + 0.0126984126984127*G0_0_1 - 0.00634920634920635*G0_1_0 + 0.019047619047619*G0_2_1 + 0.019047619047619*G0_3_0 - 0.00634920634920634*G0_3_1 - 0.019047619047619*G0_4_0 - 0.0317460317460317*G0_4_1 - 0.00634920634920635*G0_5_0 + 0.00634920634920634*G0_5_1 - 0.0126984126984127*G1_0_1 - 0.00793650793650794*G1_1_1 + 0.019047619047619*G1_2_1 + 0.0317460317460317*G1_3_1 + 0.0634920634920635*G1_4_1 + 0.00634920634920636*G1_5_1 - 0.0126984126984127*G3_6_1 - 0.00793650793650794*G3_7_1 + 0.019047619047619*G3_8_1 + 0.0317460317460317*G3_9_1 + 0.0634920634920635*G3_10_1 + 0.00634920634920636*G3_11_1 - 0.666666666666666*G10_0_0_1 - 0.666666666666666*G10_0_1_1 - 0.666666666666666*G12_0_0_1 - 0.666666666666666*G12_0_1_1; + A[63] = -0.00634920634920633*G0_0_0 - 0.00634920634920632*G0_0_1 + 0.00634920634920634*G0_1_0 + 0.0317460317460317*G0_2_1 + 0.0761904761904761*G0_3_0 + 0.0507936507936507*G0_3_1 - 0.0761904761904761*G0_4_0 - 0.0253968253968254*G0_4_1 - 0.0507936507936508*G0_5_1 - 0.0126984126984127*G1_0_0 - 0.00634920634920634*G1_0_1 - 0.019047619047619*G1_1_0 - 0.00634920634920634*G1_1_1 + 0.019047619047619*G1_2_0 - 0.00634920634920634*G1_2_1 + 0.0761904761904761*G1_3_0 + 0.0507936507936507*G1_3_1 + 0.152380952380952*G1_4_0 + 0.0507936507936507*G1_4_1 + 0.0507936507936508*G1_5_0 + 0.0507936507936507*G1_5_1 - 0.0126984126984127*G3_6_0 - 0.00634920634920634*G3_6_1 - 0.019047619047619*G3_7_0 - 0.00634920634920634*G3_7_1 + 0.019047619047619*G3_8_0 - 0.00634920634920634*G3_8_1 + 0.0761904761904761*G3_9_0 + 0.0507936507936507*G3_9_1 + 0.152380952380952*G3_10_0 + 0.0507936507936507*G3_10_1 + 0.0507936507936508*G3_11_0 + 0.0507936507936507*G3_11_1 - 1.33333333333333*G10_0_0_0 - 0.666666666666665*G10_0_0_1 - 0.666666666666666*G10_0_1_0 - 1.33333333333333*G12_0_0_0 - 0.666666666666665*G12_0_0_1 - 0.666666666666666*G12_0_1_0; + A[64] = -0.0634920634920635*G0_0_0 - 0.0634920634920635*G0_0_1 - 0.0380952380952381*G0_1_0 + 0.0634920634920635*G0_2_1 + 0.152380952380952*G0_3_0 + 0.0507936507936507*G0_3_1 - 0.152380952380952*G0_4_0 + 0.101587301587302*G0_5_0 - 0.0507936507936507*G0_5_1 + 0.0126984126984127*G1_0_0 + 0.0317460317460318*G1_0_1 + 0.019047619047619*G1_1_0 - 0.019047619047619*G1_2_0 - 0.0317460317460317*G1_2_1 - 0.0761904761904761*G1_3_0 - 0.0253968253968254*G1_3_1 - 0.152380952380952*G1_4_0 - 0.0507936507936508*G1_5_0 + 0.0253968253968254*G1_5_1 + 0.0126984126984127*G3_6_0 + 0.0317460317460318*G3_6_1 + 0.019047619047619*G3_7_0 - 0.019047619047619*G3_8_0 - 0.0317460317460317*G3_8_1 - 0.0761904761904761*G3_9_0 - 0.0253968253968254*G3_9_1 - 0.152380952380952*G3_10_0 - 0.0507936507936508*G3_11_0 + 0.0253968253968254*G3_11_1 + 1.33333333333333*G10_0_0_0 + 0.666666666666666*G10_0_0_1 + 0.666666666666666*G10_0_1_0 + 1.33333333333333*G10_0_1_1 + 1.33333333333333*G12_0_0_0 + 0.666666666666666*G12_0_0_1 + 0.666666666666666*G12_0_1_0 + 1.33333333333333*G12_0_1_1; + A[65] = -0.0317460317460317*G0_0_0 - 0.0317460317460317*G0_0_1 + 0.00634920634920634*G0_1_0 + 0.00634920634920636*G0_2_1 + 0.0507936507936508*G0_3_0 + 0.0507936507936507*G0_3_1 - 0.0507936507936508*G0_4_0 + 0.0253968253968254*G0_4_1 + 0.0253968253968254*G0_5_0 - 0.0507936507936508*G0_5_1 + 0.0253968253968254*G1_0_0 + 0.00634920634920634*G1_0_1 - 0.0126984126984127*G1_1_0 + 0.00634920634920634*G1_1_1 - 0.00634920634920635*G1_2_0 + 0.00634920634920634*G1_2_1 - 0.0507936507936508*G1_3_1 + 0.101587301587302*G1_4_0 - 0.0507936507936507*G1_4_1 + 0.0253968253968254*G1_5_0 - 0.0507936507936508*G1_5_1 + 0.0253968253968254*G3_6_0 + 0.00634920634920634*G3_6_1 - 0.0126984126984127*G3_7_0 + 0.00634920634920634*G3_7_1 - 0.00634920634920635*G3_8_0 + 0.00634920634920634*G3_8_1 - 0.0507936507936508*G3_9_1 + 0.101587301587302*G3_10_0 - 0.0507936507936507*G3_10_1 + 0.0253968253968254*G3_11_0 - 0.0507936507936508*G3_11_1 + 0.666666666666665*G10_0_0_1 + 0.666666666666667*G10_0_1_0 + 0.666666666666665*G12_0_0_1 + 0.666666666666667*G12_0_1_0; + A[66] = -0.0190476190476191*G2_0_0 - 0.0190476190476191*G2_0_1 - 0.00634920634920636*G2_1_0 - 0.0126984126984127*G2_2_1 - 0.0126984126984127*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.0126984126984127*G2_4_0 + 0.0317460317460318*G2_4_1 + 0.0253968253968254*G2_5_0 + 0.00634920634920634*G2_5_1; + A[67] = 0.00793650793650793*G2_0_0 + 0.00793650793650793*G2_0_1 + 0.00476190476190476*G2_1_0 - 0.00793650793650794*G2_2_1 - 0.019047619047619*G2_3_0 - 0.00634920634920634*G2_3_1 + 0.019047619047619*G2_4_0 - 0.0126984126984127*G2_5_0 + 0.00634920634920634*G2_5_1; + A[68] = 0.0126984126984127*G2_0_0 + 0.0126984126984127*G2_0_1 - 0.00634920634920635*G2_1_0 + 0.019047619047619*G2_2_1 + 0.019047619047619*G2_3_0 - 0.00634920634920634*G2_3_1 - 0.019047619047619*G2_4_0 - 0.0317460317460317*G2_4_1 - 0.00634920634920635*G2_5_0 + 0.00634920634920634*G2_5_1; + A[69] = -0.00634920634920633*G2_0_0 - 0.00634920634920632*G2_0_1 + 0.00634920634920634*G2_1_0 + 0.0317460317460317*G2_2_1 + 0.0761904761904761*G2_3_0 + 0.0507936507936507*G2_3_1 - 0.0761904761904761*G2_4_0 - 0.0253968253968254*G2_4_1 - 0.0507936507936508*G2_5_1; + A[70] = -0.0634920634920635*G2_0_0 - 0.0634920634920635*G2_0_1 - 0.0380952380952381*G2_1_0 + 0.0634920634920635*G2_2_1 + 0.152380952380952*G2_3_0 + 0.0507936507936507*G2_3_1 - 0.152380952380952*G2_4_0 + 0.101587301587302*G2_5_0 - 0.0507936507936507*G2_5_1; + A[71] = -0.0317460317460317*G2_0_0 - 0.0317460317460317*G2_0_1 + 0.00634920634920634*G2_1_0 + 0.00634920634920636*G2_2_1 + 0.0507936507936508*G2_3_0 + 0.0507936507936507*G2_3_1 - 0.0507936507936508*G2_4_0 + 0.0253968253968254*G2_4_1 + 0.0253968253968254*G2_5_0 - 0.0507936507936508*G2_5_1; + A[72] = 0.166666666666667*G14_0 - 0.166666666666667*G14_1; + A[73] = 0.166666666666667*G14_0; + A[74] = 0.333333333333333*G14_0 + 0.166666666666667*G14_1; + A[75] = -0.0190476190476191*G0_0_0 - 0.0190476190476191*G0_0_1 - 0.0126984126984127*G0_1_0 - 0.00634920634920635*G0_2_1 - 0.00634920634920635*G0_3_0 - 0.0126984126984127*G0_3_1 + 0.00634920634920635*G0_4_0 + 0.0253968253968254*G0_4_1 + 0.0317460317460318*G0_5_0 + 0.0126984126984127*G0_5_1 - 0.0190476190476191*G1_0_0 - 0.0190476190476191*G1_0_1 + 0.0126984126984127*G1_1_0 + 0.0126984126984127*G1_1_1 + 0.00793650793650793*G1_2_0 + 0.00793650793650793*G1_2_1 - 0.00634920634920633*G1_3_0 - 0.00634920634920632*G1_3_1 - 0.0317460317460317*G1_4_0 - 0.0317460317460317*G1_4_1 - 0.0634920634920635*G1_5_0 - 0.0634920634920635*G1_5_1 - 0.0190476190476191*G3_6_0 - 0.0190476190476191*G3_6_1 + 0.0126984126984127*G3_7_0 + 0.0126984126984127*G3_7_1 + 0.00793650793650793*G3_8_0 + 0.00793650793650793*G3_8_1 - 0.00634920634920633*G3_9_0 - 0.00634920634920632*G3_9_1 - 0.0317460317460317*G3_10_0 - 0.0317460317460317*G3_10_1 - 0.0634920634920635*G3_11_0 - 0.0634920634920635*G3_11_1 - 0.666666666666667*G10_0_0_0 - 0.666666666666667*G10_0_0_1 - 0.666666666666667*G12_0_0_0 - 0.666666666666667*G12_0_0_1; + A[76] = 0.0126984126984127*G0_0_0 + 0.0126984126984127*G0_0_1 + 0.019047619047619*G0_1_0 - 0.00634920634920636*G0_2_1 - 0.00634920634920635*G0_3_0 + 0.019047619047619*G0_3_1 + 0.00634920634920635*G0_4_0 - 0.00634920634920633*G0_4_1 - 0.0317460317460317*G0_5_0 - 0.0190476190476191*G0_5_1 - 0.0126984126984127*G1_0_0 + 0.019047619047619*G1_1_0 - 0.00793650793650793*G1_2_0 + 0.0317460317460317*G1_3_0 + 0.00634920634920634*G1_4_0 + 0.0634920634920635*G1_5_0 - 0.0126984126984127*G3_6_0 + 0.019047619047619*G3_7_0 - 0.00793650793650793*G3_8_0 + 0.0317460317460317*G3_9_0 + 0.00634920634920634*G3_10_0 + 0.0634920634920635*G3_11_0 - 0.666666666666667*G10_0_0_0 - 0.666666666666667*G10_0_1_0 - 0.666666666666667*G12_0_0_0 - 0.666666666666667*G12_0_1_0; + A[77] = 0.00793650793650793*G0_0_0 + 0.00793650793650793*G0_0_1 - 0.00793650793650793*G0_1_0 + 0.00476190476190476*G0_2_1 - 0.00634920634920633*G0_3_0 - 0.019047619047619*G0_3_1 + 0.00634920634920633*G0_4_0 - 0.0126984126984127*G0_4_1 + 0.019047619047619*G0_5_1 - 0.00634920634920635*G1_0_1 - 0.00634920634920636*G1_1_1 + 0.00476190476190476*G1_2_1 + 0.00634920634920636*G1_3_1 + 0.00634920634920636*G1_4_1 - 0.0380952380952381*G1_5_1 - 0.00634920634920635*G3_6_1 - 0.00634920634920636*G3_7_1 + 0.00476190476190476*G3_8_1 + 0.00634920634920636*G3_9_1 + 0.00634920634920636*G3_10_1 - 0.0380952380952381*G3_11_1; + A[78] = -0.00634920634920633*G0_0_0 - 0.00634920634920632*G0_0_1 + 0.0317460317460317*G0_1_0 + 0.00634920634920636*G0_2_1 + 0.0507936507936508*G0_3_0 + 0.0761904761904761*G0_3_1 - 0.0507936507936508*G0_4_0 - 0.0253968253968254*G0_5_0 - 0.0761904761904762*G0_5_1 - 0.00634920634920635*G1_0_0 - 0.0126984126984127*G1_0_1 - 0.00634920634920635*G1_1_0 + 0.019047619047619*G1_1_1 - 0.00634920634920633*G1_2_0 - 0.019047619047619*G1_2_1 + 0.0507936507936508*G1_3_0 + 0.0761904761904761*G1_3_1 + 0.0507936507936507*G1_4_0 + 0.0507936507936507*G1_4_1 + 0.0507936507936507*G1_5_0 + 0.152380952380952*G1_5_1 - 0.00634920634920635*G3_6_0 - 0.0126984126984127*G3_6_1 - 0.00634920634920635*G3_7_0 + 0.019047619047619*G3_7_1 - 0.00634920634920633*G3_8_0 - 0.019047619047619*G3_8_1 + 0.0507936507936508*G3_9_0 + 0.0761904761904761*G3_9_1 + 0.0507936507936507*G3_10_0 + 0.0507936507936507*G3_10_1 + 0.0507936507936507*G3_11_0 + 0.152380952380952*G3_11_1 - 0.666666666666667*G10_0_0_1 - 0.666666666666666*G10_0_1_0 - 1.33333333333333*G10_0_1_1 - 0.666666666666667*G12_0_0_1 - 0.666666666666666*G12_0_1_0 - 1.33333333333333*G12_0_1_1; + A[79] = -0.0317460317460317*G0_0_0 - 0.0317460317460317*G0_0_1 + 0.00634920634920634*G0_1_0 + 0.00634920634920636*G0_2_1 + 0.0507936507936507*G0_3_0 + 0.0507936507936507*G0_3_1 - 0.0507936507936507*G0_4_0 + 0.0253968253968254*G0_4_1 + 0.0253968253968254*G0_5_0 - 0.0507936507936508*G0_5_1 + 0.00634920634920635*G1_0_0 + 0.0253968253968254*G1_0_1 + 0.00634920634920635*G1_1_0 - 0.00634920634920633*G1_1_1 + 0.00634920634920633*G1_2_0 - 0.0126984126984127*G1_2_1 - 0.0507936507936508*G1_3_0 - 0.0507936507936507*G1_4_0 + 0.0253968253968254*G1_4_1 - 0.0507936507936507*G1_5_0 + 0.101587301587302*G1_5_1 + 0.00634920634920635*G3_6_0 + 0.0253968253968254*G3_6_1 + 0.00634920634920635*G3_7_0 - 0.00634920634920633*G3_7_1 + 0.00634920634920633*G3_8_0 - 0.0126984126984127*G3_8_1 - 0.0507936507936508*G3_9_0 - 0.0507936507936507*G3_10_0 + 0.0253968253968254*G3_10_1 - 0.0507936507936507*G3_11_0 + 0.101587301587302*G3_11_1 + 0.666666666666667*G10_0_0_1 + 0.666666666666666*G10_0_1_0 + 0.666666666666667*G12_0_0_1 + 0.666666666666666*G12_0_1_0; + A[80] = -0.0634920634920635*G0_0_0 - 0.0634920634920635*G0_0_1 + 0.0634920634920635*G0_1_0 - 0.0380952380952381*G0_2_1 + 0.0507936507936507*G0_3_0 + 0.152380952380952*G0_3_1 - 0.0507936507936507*G0_4_0 + 0.101587301587302*G0_4_1 - 0.152380952380952*G0_5_1 + 0.0317460317460318*G1_0_0 + 0.0126984126984127*G1_0_1 - 0.0317460317460317*G1_1_0 - 0.0190476190476191*G1_1_1 + 0.019047619047619*G1_2_1 - 0.0253968253968254*G1_3_0 - 0.0761904761904762*G1_3_1 + 0.0253968253968254*G1_4_0 - 0.0507936507936508*G1_4_1 - 0.152380952380952*G1_5_1 + 0.0317460317460318*G3_6_0 + 0.0126984126984127*G3_6_1 - 0.0317460317460317*G3_7_0 - 0.0190476190476191*G3_7_1 + 0.019047619047619*G3_8_1 - 0.0253968253968254*G3_9_0 - 0.0761904761904762*G3_9_1 + 0.0253968253968254*G3_10_0 - 0.0507936507936508*G3_10_1 - 0.152380952380952*G3_11_1 + 1.33333333333333*G10_0_0_0 + 0.666666666666667*G10_0_0_1 + 0.666666666666667*G10_0_1_0 + 1.33333333333333*G10_0_1_1 + 1.33333333333333*G12_0_0_0 + 0.666666666666667*G12_0_0_1 + 0.666666666666667*G12_0_1_0 + 1.33333333333333*G12_0_1_1; + A[81] = -0.0190476190476191*G2_0_0 - 0.0190476190476191*G2_0_1 - 0.0126984126984127*G2_1_0 - 0.00634920634920635*G2_2_1 - 0.00634920634920635*G2_3_0 - 0.0126984126984127*G2_3_1 + 0.00634920634920635*G2_4_0 + 0.0253968253968254*G2_4_1 + 0.0317460317460318*G2_5_0 + 0.0126984126984127*G2_5_1; + A[82] = 0.0126984126984127*G2_0_0 + 0.0126984126984127*G2_0_1 + 0.019047619047619*G2_1_0 - 0.00634920634920636*G2_2_1 - 0.00634920634920635*G2_3_0 + 0.019047619047619*G2_3_1 + 0.00634920634920635*G2_4_0 - 0.00634920634920633*G2_4_1 - 0.0317460317460317*G2_5_0 - 0.0190476190476191*G2_5_1; + A[83] = 0.00793650793650793*G2_0_0 + 0.00793650793650793*G2_0_1 - 0.00793650793650793*G2_1_0 + 0.00476190476190476*G2_2_1 - 0.00634920634920633*G2_3_0 - 0.019047619047619*G2_3_1 + 0.00634920634920633*G2_4_0 - 0.0126984126984127*G2_4_1 + 0.019047619047619*G2_5_1; + A[84] = -0.00634920634920633*G2_0_0 - 0.00634920634920632*G2_0_1 + 0.0317460317460317*G2_1_0 + 0.00634920634920636*G2_2_1 + 0.0507936507936508*G2_3_0 + 0.0761904761904761*G2_3_1 - 0.0507936507936508*G2_4_0 - 0.0253968253968254*G2_5_0 - 0.0761904761904762*G2_5_1; + A[85] = -0.0317460317460317*G2_0_0 - 0.0317460317460317*G2_0_1 + 0.00634920634920634*G2_1_0 + 0.00634920634920636*G2_2_1 + 0.0507936507936507*G2_3_0 + 0.0507936507936507*G2_3_1 - 0.0507936507936507*G2_4_0 + 0.0253968253968254*G2_4_1 + 0.0253968253968254*G2_5_0 - 0.0507936507936508*G2_5_1; + A[86] = -0.0634920634920635*G2_0_0 - 0.0634920634920635*G2_0_1 + 0.0634920634920635*G2_1_0 - 0.0380952380952381*G2_2_1 + 0.0507936507936507*G2_3_0 + 0.152380952380952*G2_3_1 - 0.0507936507936507*G2_4_0 + 0.101587301587302*G2_4_1 - 0.152380952380952*G2_5_1; + A[87] = -0.166666666666667*G14_0 + 0.166666666666667*G14_1; + A[88] = 0.166666666666667*G14_0 + 0.333333333333333*G14_1; + A[89] = 0.166666666666667*G14_1; + A[90] = -0.030952380952381*G4_6_0 - 0.030952380952381*G4_6_1 - 0.00714285714285715*G4_7_0 - 0.00714285714285715*G4_8_1 + 0.00952380952380951*G4_9_0 + 0.00952380952380951*G4_9_1 - 0.00952380952380951*G4_10_0 + 0.0380952380952381*G4_10_1 + 0.0380952380952381*G4_11_0 - 0.00952380952380952*G4_11_1; + A[91] = 0.00357142857142857*G4_6_0 + 0.00357142857142857*G4_6_1 - 0.00357142857142857*G4_7_0 + 0.00436507936507936*G4_8_1 + 0.00158730158730159*G4_9_0 - 0.00634920634920634*G4_9_1 - 0.00158730158730159*G4_10_0 - 0.00793650793650793*G4_10_1 + 0.00634920634920635*G4_11_1; + A[92] = 0.00357142857142857*G4_6_0 + 0.00357142857142857*G4_6_1 + 0.00436507936507936*G4_7_0 - 0.00357142857142857*G4_8_1 - 0.00634920634920634*G4_9_0 + 0.00158730158730159*G4_9_1 + 0.00634920634920634*G4_10_0 - 0.00793650793650793*G4_11_0 - 0.00158730158730159*G4_11_1; + A[93] = -0.00476190476190477*G4_6_0 - 0.00476190476190477*G4_6_1 - 0.00793650793650793*G4_7_0 - 0.00793650793650793*G4_8_1 - 0.019047619047619*G4_9_0 - 0.019047619047619*G4_9_1 + 0.019047619047619*G4_10_0 + 0.0126984126984127*G4_10_1 + 0.0126984126984127*G4_11_0 + 0.019047619047619*G4_11_1; + A[94] = -0.0190476190476191*G4_6_0 - 0.0190476190476191*G4_6_1 - 0.00634920634920636*G4_7_0 - 0.0126984126984127*G4_8_1 - 0.0126984126984127*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.0126984126984127*G4_10_0 + 0.0317460317460318*G4_10_1 + 0.0253968253968254*G4_11_0 + 0.00634920634920634*G4_11_1; + A[95] = -0.0190476190476191*G4_6_0 - 0.0190476190476191*G4_6_1 - 0.0126984126984127*G4_7_0 - 0.00634920634920635*G4_8_1 - 0.00634920634920635*G4_9_0 - 0.0126984126984127*G4_9_1 + 0.00634920634920635*G4_10_0 + 0.0253968253968254*G4_10_1 + 0.0317460317460318*G4_11_0 + 0.0126984126984127*G4_11_1; + A[96] = -0.030952380952381*G5_0_0 - 0.030952380952381*G5_0_1 + 0.00357142857142857*G5_1_0 + 0.00357142857142857*G5_1_1 + 0.00357142857142857*G5_2_0 + 0.00357142857142857*G5_2_1 - 0.00476190476190477*G5_3_0 - 0.00476190476190477*G5_3_1 - 0.0190476190476191*G5_4_0 - 0.0190476190476191*G5_4_1 - 0.0190476190476191*G5_5_0 - 0.0190476190476191*G5_5_1 - 0.030952380952381*G6_6_0 - 0.030952380952381*G6_6_1 - 0.00714285714285715*G6_7_0 - 0.00714285714285715*G6_8_1 + 0.00952380952380951*G6_9_0 + 0.00952380952380951*G6_9_1 - 0.00952380952380951*G6_10_0 + 0.0380952380952381*G6_10_1 + 0.0380952380952381*G6_11_0 - 0.00952380952380952*G6_11_1 - 0.030952380952381*G7_6_0 - 0.030952380952381*G7_6_1 + 0.00357142857142857*G7_7_0 + 0.00357142857142857*G7_7_1 + 0.00357142857142857*G7_8_0 + 0.00357142857142857*G7_8_1 - 0.00476190476190477*G7_9_0 - 0.00476190476190477*G7_9_1 - 0.0190476190476191*G7_10_0 - 0.0190476190476191*G7_10_1 - 0.0190476190476191*G7_11_0 - 0.0190476190476191*G7_11_1 + 0.5*G11_0_0_0 + 0.5*G11_0_0_1 + 0.5*G11_0_1_0 + 0.5*G11_0_1_1 + 0.5*G13_0_0_0 + 0.5*G13_0_0_1 + 0.5*G13_0_1_0 + 0.5*G13_0_1_1; + A[97] = -0.00714285714285715*G5_0_0 - 0.00357142857142857*G5_1_0 + 0.00436507936507936*G5_2_0 - 0.00793650793650793*G5_3_0 - 0.00634920634920636*G5_4_0 - 0.0126984126984127*G5_5_0 + 0.00357142857142857*G6_6_0 + 0.00357142857142857*G6_6_1 - 0.00357142857142857*G6_7_0 + 0.00436507936507936*G6_8_1 + 0.00158730158730159*G6_9_0 - 0.00634920634920634*G6_9_1 - 0.00158730158730159*G6_10_0 - 0.00793650793650793*G6_10_1 + 0.00634920634920635*G6_11_1 - 0.00714285714285715*G7_6_0 - 0.00357142857142857*G7_7_0 + 0.00436507936507936*G7_8_0 - 0.00793650793650793*G7_9_0 - 0.00634920634920636*G7_10_0 - 0.0126984126984127*G7_11_0 + 0.166666666666667*G11_0_0_0 + 0.166666666666667*G11_0_1_0 + 0.166666666666667*G13_0_0_0 + 0.166666666666667*G13_0_1_0; + A[98] = -0.00714285714285715*G5_0_1 + 0.00436507936507936*G5_1_1 - 0.00357142857142857*G5_2_1 - 0.00793650793650793*G5_3_1 - 0.0126984126984127*G5_4_1 - 0.00634920634920635*G5_5_1 + 0.00357142857142857*G6_6_0 + 0.00357142857142857*G6_6_1 + 0.00436507936507936*G6_7_0 - 0.00357142857142857*G6_8_1 - 0.00634920634920634*G6_9_0 + 0.00158730158730159*G6_9_1 + 0.00634920634920634*G6_10_0 - 0.00793650793650793*G6_11_0 - 0.00158730158730159*G6_11_1 - 0.00714285714285715*G7_6_1 + 0.00436507936507936*G7_7_1 - 0.00357142857142857*G7_8_1 - 0.00793650793650793*G7_9_1 - 0.0126984126984127*G7_10_1 - 0.00634920634920635*G7_11_1 + 0.166666666666667*G11_0_0_1 + 0.166666666666667*G11_0_1_1 + 0.166666666666667*G13_0_0_1 + 0.166666666666667*G13_0_1_1; + A[99] = 0.00952380952380951*G5_0_0 + 0.00952380952380951*G5_0_1 + 0.00158730158730159*G5_1_0 - 0.00634920634920634*G5_1_1 - 0.00634920634920634*G5_2_0 + 0.00158730158730159*G5_2_1 - 0.019047619047619*G5_3_0 - 0.019047619047619*G5_3_1 - 0.0126984126984127*G5_4_0 - 0.00634920634920634*G5_4_1 - 0.00634920634920635*G5_5_0 - 0.0126984126984127*G5_5_1 - 0.00476190476190477*G6_6_0 - 0.00476190476190477*G6_6_1 - 0.00793650793650793*G6_7_0 - 0.00793650793650793*G6_8_1 - 0.019047619047619*G6_9_0 - 0.019047619047619*G6_9_1 + 0.019047619047619*G6_10_0 + 0.0126984126984127*G6_10_1 + 0.0126984126984127*G6_11_0 + 0.019047619047619*G6_11_1 + 0.00952380952380951*G7_6_0 + 0.00952380952380951*G7_6_1 + 0.00158730158730159*G7_7_0 - 0.00634920634920634*G7_7_1 - 0.00634920634920634*G7_8_0 + 0.00158730158730159*G7_8_1 - 0.019047619047619*G7_9_0 - 0.019047619047619*G7_9_1 - 0.0126984126984127*G7_10_0 - 0.00634920634920634*G7_10_1 - 0.00634920634920635*G7_11_0 - 0.0126984126984127*G7_11_1; + A[100] = -0.00952380952380951*G5_0_0 + 0.0380952380952381*G5_0_1 - 0.00158730158730159*G5_1_0 - 0.00793650793650793*G5_1_1 + 0.00634920634920634*G5_2_0 + 0.019047619047619*G5_3_0 + 0.0126984126984127*G5_3_1 + 0.0126984126984127*G5_4_0 + 0.0317460317460318*G5_4_1 + 0.00634920634920635*G5_5_0 + 0.0253968253968254*G5_5_1 - 0.0190476190476191*G6_6_0 - 0.0190476190476191*G6_6_1 - 0.00634920634920636*G6_7_0 - 0.0126984126984127*G6_8_1 - 0.0126984126984127*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.0126984126984127*G6_10_0 + 0.0317460317460318*G6_10_1 + 0.0253968253968254*G6_11_0 + 0.00634920634920634*G6_11_1 - 0.00952380952380951*G7_6_0 + 0.0380952380952381*G7_6_1 - 0.00158730158730159*G7_7_0 - 0.00793650793650793*G7_7_1 + 0.00634920634920634*G7_8_0 + 0.019047619047619*G7_9_0 + 0.0126984126984127*G7_9_1 + 0.0126984126984127*G7_10_0 + 0.0317460317460318*G7_10_1 + 0.00634920634920635*G7_11_0 + 0.0253968253968254*G7_11_1 - 0.666666666666667*G11_0_0_1 - 0.666666666666666*G11_0_1_1 - 0.666666666666667*G13_0_0_1 - 0.666666666666666*G13_0_1_1; + A[101] = 0.0380952380952381*G5_0_0 - 0.00952380952380952*G5_0_1 + 0.00634920634920635*G5_1_1 - 0.00793650793650793*G5_2_0 - 0.00158730158730159*G5_2_1 + 0.0126984126984127*G5_3_0 + 0.019047619047619*G5_3_1 + 0.0253968253968254*G5_4_0 + 0.00634920634920634*G5_4_1 + 0.0317460317460318*G5_5_0 + 0.0126984126984127*G5_5_1 - 0.0190476190476191*G6_6_0 - 0.0190476190476191*G6_6_1 - 0.0126984126984127*G6_7_0 - 0.00634920634920635*G6_8_1 - 0.00634920634920635*G6_9_0 - 0.0126984126984127*G6_9_1 + 0.00634920634920635*G6_10_0 + 0.0253968253968254*G6_10_1 + 0.0317460317460318*G6_11_0 + 0.0126984126984127*G6_11_1 + 0.0380952380952381*G7_6_0 - 0.00952380952380952*G7_6_1 + 0.00634920634920635*G7_7_1 - 0.00793650793650793*G7_8_0 - 0.00158730158730159*G7_8_1 + 0.0126984126984127*G7_9_0 + 0.019047619047619*G7_9_1 + 0.0253968253968254*G7_10_0 + 0.00634920634920634*G7_10_1 + 0.0317460317460318*G7_11_0 + 0.0126984126984127*G7_11_1 - 0.666666666666667*G11_0_0_0 - 0.666666666666667*G11_0_1_0 - 0.666666666666667*G13_0_0_0 - 0.666666666666667*G13_0_1_0; + A[102] = 0.166666666666667*G15_0 + 0.166666666666667*G15_1; + A[103] = 0.0; + A[104] = 0.0; + A[105] = 0.00357142857142857*G4_6_0 + 0.00357142857142857*G4_6_1 - 0.00357142857142857*G4_7_0 + 0.00436507936507936*G4_8_1 + 0.00158730158730159*G4_9_0 - 0.00634920634920634*G4_9_1 - 0.00158730158730159*G4_10_0 - 0.00793650793650793*G4_10_1 + 0.00634920634920635*G4_11_1; + A[106] = 0.00714285714285713*G4_6_0 + 0.00714285714285714*G4_6_1 + 0.0309523809523809*G4_7_0 - 0.00714285714285713*G4_8_1 + 0.0095238095238095*G4_9_0 + 0.0476190476190476*G4_9_1 - 0.0095238095238095*G4_10_0 - 0.0380952380952381*G4_11_0 - 0.0476190476190476*G4_11_1; + A[107] = -0.00436507936507936*G4_6_0 - 0.00436507936507936*G4_6_1 - 0.00357142857142856*G4_7_0 - 0.00357142857142857*G4_8_1 - 0.00634920634920633*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.00634920634920633*G4_10_0 + 0.00793650793650792*G4_10_1 + 0.00793650793650793*G4_11_0 + 0.00634920634920634*G4_11_1; + A[108] = 0.00634920634920634*G4_6_0 + 0.00634920634920634*G4_6_1 + 0.019047619047619*G4_7_0 - 0.0126984126984127*G4_8_1 - 0.0126984126984127*G4_9_0 + 0.019047619047619*G4_9_1 + 0.0126984126984127*G4_10_0 + 0.00634920634920636*G4_10_1 - 0.0253968253968254*G4_11_0 - 0.019047619047619*G4_11_1; + A[109] = 0.00793650793650793*G4_6_0 + 0.00793650793650793*G4_6_1 + 0.00476190476190476*G4_7_0 - 0.00793650793650794*G4_8_1 - 0.019047619047619*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.019047619047619*G4_10_0 - 0.0126984126984127*G4_11_0 + 0.00634920634920634*G4_11_1; + A[110] = 0.0126984126984127*G4_6_0 + 0.0126984126984127*G4_6_1 + 0.019047619047619*G4_7_0 - 0.00634920634920636*G4_8_1 - 0.00634920634920635*G4_9_0 + 0.019047619047619*G4_9_1 + 0.00634920634920635*G4_10_0 - 0.00634920634920633*G4_10_1 - 0.0317460317460317*G4_11_0 - 0.0190476190476191*G4_11_1; + A[111] = 0.00357142857142857*G5_0_0 + 0.00357142857142857*G5_0_1 + 0.00714285714285713*G5_1_0 + 0.00714285714285714*G5_1_1 - 0.00436507936507936*G5_2_0 - 0.00436507936507936*G5_2_1 + 0.00634920634920634*G5_3_0 + 0.00634920634920634*G5_3_1 + 0.00793650793650793*G5_4_0 + 0.00793650793650793*G5_4_1 + 0.0126984126984127*G5_5_0 + 0.0126984126984127*G5_5_1 + 0.00357142857142857*G6_6_0 + 0.00357142857142857*G6_6_1 - 0.00357142857142857*G6_7_0 + 0.00436507936507936*G6_8_1 + 0.00158730158730159*G6_9_0 - 0.00634920634920634*G6_9_1 - 0.00158730158730159*G6_10_0 - 0.00793650793650793*G6_10_1 + 0.00634920634920635*G6_11_1 + 0.00357142857142857*G7_6_0 + 0.00357142857142857*G7_6_1 + 0.00714285714285713*G7_7_0 + 0.00714285714285714*G7_7_1 - 0.00436507936507936*G7_8_0 - 0.00436507936507936*G7_8_1 + 0.00634920634920634*G7_9_0 + 0.00634920634920634*G7_9_1 + 0.00793650793650793*G7_10_0 + 0.00793650793650793*G7_10_1 + 0.0126984126984127*G7_11_0 + 0.0126984126984127*G7_11_1 + 0.166666666666667*G11_0_0_0 + 0.166666666666667*G11_0_0_1 + 0.166666666666667*G13_0_0_0 + 0.166666666666667*G13_0_0_1; + A[112] = -0.00357142857142857*G5_0_0 + 0.0309523809523809*G5_1_0 - 0.00357142857142856*G5_2_0 + 0.019047619047619*G5_3_0 + 0.00476190476190476*G5_4_0 + 0.019047619047619*G5_5_0 + 0.00714285714285713*G6_6_0 + 0.00714285714285714*G6_6_1 + 0.0309523809523809*G6_7_0 - 0.00714285714285713*G6_8_1 + 0.0095238095238095*G6_9_0 + 0.0476190476190476*G6_9_1 - 0.0095238095238095*G6_10_0 - 0.0380952380952381*G6_11_0 - 0.0476190476190476*G6_11_1 - 0.00357142857142857*G7_6_0 + 0.0309523809523809*G7_7_0 - 0.00357142857142856*G7_8_0 + 0.019047619047619*G7_9_0 + 0.00476190476190476*G7_10_0 + 0.019047619047619*G7_11_0 + 0.5*G11_0_0_0 + 0.5*G13_0_0_0; + A[113] = 0.00436507936507936*G5_0_1 - 0.00714285714285713*G5_1_1 - 0.00357142857142857*G5_2_1 - 0.0126984126984127*G5_3_1 - 0.00793650793650794*G5_4_1 - 0.00634920634920636*G5_5_1 - 0.00436507936507936*G6_6_0 - 0.00436507936507936*G6_6_1 - 0.00357142857142856*G6_7_0 - 0.00357142857142857*G6_8_1 - 0.00634920634920633*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.00634920634920633*G6_10_0 + 0.00793650793650792*G6_10_1 + 0.00793650793650793*G6_11_0 + 0.00634920634920634*G6_11_1 + 0.00436507936507936*G7_6_1 - 0.00714285714285713*G7_7_1 - 0.00357142857142857*G7_8_1 - 0.0126984126984127*G7_9_1 - 0.00793650793650794*G7_10_1 - 0.00634920634920636*G7_11_1 - 0.166666666666667*G11_0_0_1 - 0.166666666666667*G13_0_0_1; + A[114] = 0.00158730158730159*G5_0_0 - 0.00634920634920634*G5_0_1 + 0.0095238095238095*G5_1_0 + 0.0476190476190476*G5_1_1 - 0.00634920634920633*G5_2_0 - 0.00634920634920634*G5_2_1 - 0.0126984126984127*G5_3_0 + 0.019047619047619*G5_3_1 - 0.019047619047619*G5_4_0 - 0.00634920634920634*G5_4_1 - 0.00634920634920635*G5_5_0 + 0.019047619047619*G5_5_1 + 0.00634920634920634*G6_6_0 + 0.00634920634920634*G6_6_1 + 0.019047619047619*G6_7_0 - 0.0126984126984127*G6_8_1 - 0.0126984126984127*G6_9_0 + 0.019047619047619*G6_9_1 + 0.0126984126984127*G6_10_0 + 0.00634920634920636*G6_10_1 - 0.0253968253968254*G6_11_0 - 0.019047619047619*G6_11_1 + 0.00158730158730159*G7_6_0 - 0.00634920634920634*G7_6_1 + 0.0095238095238095*G7_7_0 + 0.0476190476190476*G7_7_1 - 0.00634920634920633*G7_8_0 - 0.00634920634920634*G7_8_1 - 0.0126984126984127*G7_9_0 + 0.019047619047619*G7_9_1 - 0.019047619047619*G7_10_0 - 0.00634920634920634*G7_10_1 - 0.00634920634920635*G7_11_0 + 0.019047619047619*G7_11_1 + 0.666666666666666*G11_0_0_1 + 0.666666666666666*G13_0_0_1; + A[115] = -0.00158730158730159*G5_0_0 - 0.00793650793650793*G5_0_1 - 0.0095238095238095*G5_1_0 + 0.00634920634920633*G5_2_0 + 0.00793650793650792*G5_2_1 + 0.0126984126984127*G5_3_0 + 0.00634920634920636*G5_3_1 + 0.019047619047619*G5_4_0 + 0.00634920634920635*G5_5_0 - 0.00634920634920633*G5_5_1 + 0.00793650793650793*G6_6_0 + 0.00793650793650793*G6_6_1 + 0.00476190476190476*G6_7_0 - 0.00793650793650794*G6_8_1 - 0.019047619047619*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.019047619047619*G6_10_0 - 0.0126984126984127*G6_11_0 + 0.00634920634920634*G6_11_1 - 0.00158730158730159*G7_6_0 - 0.00793650793650793*G7_6_1 - 0.0095238095238095*G7_7_0 + 0.00634920634920633*G7_8_0 + 0.00793650793650792*G7_8_1 + 0.0126984126984127*G7_9_0 + 0.00634920634920636*G7_9_1 + 0.019047619047619*G7_10_0 + 0.00634920634920635*G7_11_0 - 0.00634920634920633*G7_11_1; + A[116] = 0.00634920634920635*G5_0_1 - 0.0380952380952381*G5_1_0 - 0.0476190476190476*G5_1_1 + 0.00793650793650793*G5_2_0 + 0.00634920634920634*G5_2_1 - 0.0253968253968254*G5_3_0 - 0.019047619047619*G5_3_1 - 0.0126984126984127*G5_4_0 + 0.00634920634920634*G5_4_1 - 0.0317460317460317*G5_5_0 - 0.0190476190476191*G5_5_1 + 0.0126984126984127*G6_6_0 + 0.0126984126984127*G6_6_1 + 0.019047619047619*G6_7_0 - 0.00634920634920636*G6_8_1 - 0.00634920634920635*G6_9_0 + 0.019047619047619*G6_9_1 + 0.00634920634920635*G6_10_0 - 0.00634920634920633*G6_10_1 - 0.0317460317460317*G6_11_0 - 0.0190476190476191*G6_11_1 + 0.00634920634920635*G7_6_1 - 0.0380952380952381*G7_7_0 - 0.0476190476190476*G7_7_1 + 0.00793650793650793*G7_8_0 + 0.00634920634920634*G7_8_1 - 0.0253968253968254*G7_9_0 - 0.019047619047619*G7_9_1 - 0.0126984126984127*G7_10_0 + 0.00634920634920634*G7_10_1 - 0.0317460317460317*G7_11_0 - 0.0190476190476191*G7_11_1 - 0.666666666666667*G11_0_0_0 - 0.666666666666666*G11_0_0_1 - 0.666666666666667*G13_0_0_0 - 0.666666666666666*G13_0_0_1; + A[117] = 0.0; + A[118] = -0.166666666666667*G15_0; + A[119] = 0.0; + A[120] = 0.00357142857142857*G4_6_0 + 0.00357142857142857*G4_6_1 + 0.00436507936507936*G4_7_0 - 0.00357142857142857*G4_8_1 - 0.00634920634920634*G4_9_0 + 0.00158730158730159*G4_9_1 + 0.00634920634920634*G4_10_0 - 0.00793650793650793*G4_11_0 - 0.00158730158730159*G4_11_1; + A[121] = -0.00436507936507936*G4_6_0 - 0.00436507936507936*G4_6_1 - 0.00357142857142857*G4_7_0 - 0.00357142857142857*G4_8_1 - 0.00634920634920634*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.00634920634920634*G4_10_0 + 0.00793650793650792*G4_10_1 + 0.00793650793650793*G4_11_0 + 0.00634920634920634*G4_11_1; + A[122] = 0.00714285714285714*G4_6_0 + 0.00714285714285713*G4_6_1 - 0.00714285714285714*G4_7_0 + 0.0309523809523809*G4_8_1 + 0.0476190476190475*G4_9_0 + 0.0095238095238095*G4_9_1 - 0.0476190476190475*G4_10_0 - 0.038095238095238*G4_10_1 - 0.00952380952380951*G4_11_1; + A[123] = 0.00634920634920635*G4_6_0 + 0.00634920634920634*G4_6_1 - 0.0126984126984127*G4_7_0 + 0.019047619047619*G4_8_1 + 0.019047619047619*G4_9_0 - 0.0126984126984127*G4_9_1 - 0.019047619047619*G4_10_0 - 0.0253968253968254*G4_10_1 + 0.00634920634920634*G4_11_0 + 0.0126984126984127*G4_11_1; + A[124] = 0.0126984126984127*G4_6_0 + 0.0126984126984127*G4_6_1 - 0.00634920634920635*G4_7_0 + 0.019047619047619*G4_8_1 + 0.019047619047619*G4_9_0 - 0.00634920634920634*G4_9_1 - 0.019047619047619*G4_10_0 - 0.0317460317460317*G4_10_1 - 0.00634920634920635*G4_11_0 + 0.00634920634920634*G4_11_1; + A[125] = 0.00793650793650793*G4_6_0 + 0.00793650793650793*G4_6_1 - 0.00793650793650793*G4_7_0 + 0.00476190476190476*G4_8_1 - 0.00634920634920633*G4_9_0 - 0.019047619047619*G4_9_1 + 0.00634920634920633*G4_10_0 - 0.0126984126984127*G4_10_1 + 0.019047619047619*G4_11_1; + A[126] = 0.00357142857142857*G5_0_0 + 0.00357142857142857*G5_0_1 - 0.00436507936507936*G5_1_0 - 0.00436507936507936*G5_1_1 + 0.00714285714285714*G5_2_0 + 0.00714285714285713*G5_2_1 + 0.00634920634920635*G5_3_0 + 0.00634920634920634*G5_3_1 + 0.0126984126984127*G5_4_0 + 0.0126984126984127*G5_4_1 + 0.00793650793650793*G5_5_0 + 0.00793650793650793*G5_5_1 + 0.00357142857142857*G6_6_0 + 0.00357142857142857*G6_6_1 + 0.00436507936507936*G6_7_0 - 0.00357142857142857*G6_8_1 - 0.00634920634920634*G6_9_0 + 0.00158730158730159*G6_9_1 + 0.00634920634920634*G6_10_0 - 0.00793650793650793*G6_11_0 - 0.00158730158730159*G6_11_1 + 0.00357142857142857*G7_6_0 + 0.00357142857142857*G7_6_1 - 0.00436507936507936*G7_7_0 - 0.00436507936507936*G7_7_1 + 0.00714285714285714*G7_8_0 + 0.00714285714285713*G7_8_1 + 0.00634920634920635*G7_9_0 + 0.00634920634920634*G7_9_1 + 0.0126984126984127*G7_10_0 + 0.0126984126984127*G7_10_1 + 0.00793650793650793*G7_11_0 + 0.00793650793650793*G7_11_1 + 0.166666666666667*G11_0_1_0 + 0.166666666666667*G11_0_1_1 + 0.166666666666667*G13_0_1_0 + 0.166666666666667*G13_0_1_1; + A[127] = 0.00436507936507936*G5_0_0 - 0.00357142857142857*G5_1_0 - 0.00714285714285714*G5_2_0 - 0.0126984126984127*G5_3_0 - 0.00634920634920635*G5_4_0 - 0.00793650793650793*G5_5_0 - 0.00436507936507936*G6_6_0 - 0.00436507936507936*G6_6_1 - 0.00357142857142857*G6_7_0 - 0.00357142857142857*G6_8_1 - 0.00634920634920634*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.00634920634920634*G6_10_0 + 0.00793650793650792*G6_10_1 + 0.00793650793650793*G6_11_0 + 0.00634920634920634*G6_11_1 + 0.00436507936507936*G7_6_0 - 0.00357142857142857*G7_7_0 - 0.00714285714285714*G7_8_0 - 0.0126984126984127*G7_9_0 - 0.00634920634920635*G7_10_0 - 0.00793650793650793*G7_11_0 - 0.166666666666667*G11_0_1_0 - 0.166666666666667*G13_0_1_0; + A[128] = -0.00357142857142857*G5_0_1 - 0.00357142857142857*G5_1_1 + 0.0309523809523809*G5_2_1 + 0.019047619047619*G5_3_1 + 0.019047619047619*G5_4_1 + 0.00476190476190476*G5_5_1 + 0.00714285714285714*G6_6_0 + 0.00714285714285713*G6_6_1 - 0.00714285714285714*G6_7_0 + 0.0309523809523809*G6_8_1 + 0.0476190476190475*G6_9_0 + 0.0095238095238095*G6_9_1 - 0.0476190476190475*G6_10_0 - 0.038095238095238*G6_10_1 - 0.00952380952380951*G6_11_1 - 0.00357142857142857*G7_6_1 - 0.00357142857142857*G7_7_1 + 0.0309523809523809*G7_8_1 + 0.019047619047619*G7_9_1 + 0.019047619047619*G7_10_1 + 0.00476190476190476*G7_11_1 + 0.5*G11_0_1_1 + 0.5*G13_0_1_1; + A[129] = -0.00634920634920634*G5_0_0 + 0.00158730158730159*G5_0_1 - 0.00634920634920634*G5_1_0 - 0.00634920634920634*G5_1_1 + 0.0476190476190475*G5_2_0 + 0.0095238095238095*G5_2_1 + 0.019047619047619*G5_3_0 - 0.0126984126984127*G5_3_1 + 0.019047619047619*G5_4_0 - 0.00634920634920634*G5_4_1 - 0.00634920634920633*G5_5_0 - 0.019047619047619*G5_5_1 + 0.00634920634920635*G6_6_0 + 0.00634920634920634*G6_6_1 - 0.0126984126984127*G6_7_0 + 0.019047619047619*G6_8_1 + 0.019047619047619*G6_9_0 - 0.0126984126984127*G6_9_1 - 0.019047619047619*G6_10_0 - 0.0253968253968254*G6_10_1 + 0.00634920634920634*G6_11_0 + 0.0126984126984127*G6_11_1 - 0.00634920634920634*G7_6_0 + 0.00158730158730159*G7_6_1 - 0.00634920634920634*G7_7_0 - 0.00634920634920634*G7_7_1 + 0.0476190476190475*G7_8_0 + 0.0095238095238095*G7_8_1 + 0.019047619047619*G7_9_0 - 0.0126984126984127*G7_9_1 + 0.019047619047619*G7_10_0 - 0.00634920634920634*G7_10_1 - 0.00634920634920633*G7_11_0 - 0.019047619047619*G7_11_1 + 0.666666666666666*G11_0_1_0 + 0.666666666666666*G13_0_1_0; + A[130] = 0.00634920634920634*G5_0_0 + 0.00634920634920634*G5_1_0 + 0.00793650793650792*G5_1_1 - 0.0476190476190475*G5_2_0 - 0.038095238095238*G5_2_1 - 0.019047619047619*G5_3_0 - 0.0253968253968254*G5_3_1 - 0.019047619047619*G5_4_0 - 0.0317460317460317*G5_4_1 + 0.00634920634920633*G5_5_0 - 0.0126984126984127*G5_5_1 + 0.0126984126984127*G6_6_0 + 0.0126984126984127*G6_6_1 - 0.00634920634920635*G6_7_0 + 0.019047619047619*G6_8_1 + 0.019047619047619*G6_9_0 - 0.00634920634920634*G6_9_1 - 0.019047619047619*G6_10_0 - 0.0317460317460317*G6_10_1 - 0.00634920634920635*G6_11_0 + 0.00634920634920634*G6_11_1 + 0.00634920634920634*G7_6_0 + 0.00634920634920634*G7_7_0 + 0.00793650793650792*G7_7_1 - 0.0476190476190475*G7_8_0 - 0.038095238095238*G7_8_1 - 0.019047619047619*G7_9_0 - 0.0253968253968254*G7_9_1 - 0.019047619047619*G7_10_0 - 0.0317460317460317*G7_10_1 + 0.00634920634920633*G7_11_0 - 0.0126984126984127*G7_11_1 - 0.666666666666666*G11_0_1_0 - 0.666666666666666*G11_0_1_1 - 0.666666666666666*G13_0_1_0 - 0.666666666666666*G13_0_1_1; + A[131] = -0.00793650793650793*G5_0_0 - 0.00158730158730159*G5_0_1 + 0.00793650793650793*G5_1_0 + 0.00634920634920634*G5_1_1 - 0.00952380952380951*G5_2_1 + 0.00634920634920634*G5_3_0 + 0.0126984126984127*G5_3_1 - 0.00634920634920635*G5_4_0 + 0.00634920634920634*G5_4_1 + 0.019047619047619*G5_5_1 + 0.00793650793650793*G6_6_0 + 0.00793650793650793*G6_6_1 - 0.00793650793650793*G6_7_0 + 0.00476190476190476*G6_8_1 - 0.00634920634920633*G6_9_0 - 0.019047619047619*G6_9_1 + 0.00634920634920633*G6_10_0 - 0.0126984126984127*G6_10_1 + 0.019047619047619*G6_11_1 - 0.00793650793650793*G7_6_0 - 0.00158730158730159*G7_6_1 + 0.00793650793650793*G7_7_0 + 0.00634920634920634*G7_7_1 - 0.00952380952380951*G7_8_1 + 0.00634920634920634*G7_9_0 + 0.0126984126984127*G7_9_1 - 0.00634920634920635*G7_10_0 + 0.00634920634920634*G7_10_1 + 0.019047619047619*G7_11_1; + A[132] = 0.0; + A[133] = 0.0; + A[134] = -0.166666666666667*G15_1; + A[135] = -0.00476190476190476*G4_6_0 - 0.00476190476190477*G4_6_1 - 0.00793650793650793*G4_7_0 - 0.00793650793650793*G4_8_1 - 0.019047619047619*G4_9_0 - 0.019047619047619*G4_9_1 + 0.019047619047619*G4_10_0 + 0.0126984126984127*G4_10_1 + 0.0126984126984127*G4_11_0 + 0.019047619047619*G4_11_1; + A[136] = 0.00634920634920634*G4_6_0 + 0.00634920634920634*G4_6_1 + 0.019047619047619*G4_7_0 - 0.0126984126984127*G4_8_1 - 0.0126984126984127*G4_9_0 + 0.019047619047619*G4_9_1 + 0.0126984126984127*G4_10_0 + 0.00634920634920636*G4_10_1 - 0.0253968253968254*G4_11_0 - 0.019047619047619*G4_11_1; + A[137] = 0.00634920634920635*G4_6_0 + 0.00634920634920634*G4_6_1 - 0.0126984126984127*G4_7_0 + 0.019047619047619*G4_8_1 + 0.019047619047619*G4_9_0 - 0.0126984126984127*G4_9_1 - 0.019047619047619*G4_10_0 - 0.0253968253968254*G4_10_1 + 0.00634920634920634*G4_11_0 + 0.0126984126984127*G4_11_1; + A[138] = 0.0380952380952381*G4_6_0 + 0.0380952380952381*G4_6_1 + 0.0634920634920634*G4_7_0 + 0.0634920634920634*G4_8_1 + 0.152380952380952*G4_9_0 + 0.152380952380952*G4_9_1 - 0.152380952380952*G4_10_0 - 0.101587301587301*G4_10_1 - 0.101587301587302*G4_11_0 - 0.152380952380952*G4_11_1; + A[139] = -0.00634920634920633*G4_6_0 - 0.00634920634920632*G4_6_1 + 0.00634920634920634*G4_7_0 + 0.0317460317460317*G4_8_1 + 0.0761904761904761*G4_9_0 + 0.0507936507936507*G4_9_1 - 0.0761904761904761*G4_10_0 - 0.0253968253968254*G4_10_1 - 0.0507936507936508*G4_11_1; + A[140] = -0.00634920634920633*G4_6_0 - 0.00634920634920632*G4_6_1 + 0.0317460317460317*G4_7_0 + 0.00634920634920636*G4_8_1 + 0.0507936507936508*G4_9_0 + 0.0761904761904761*G4_9_1 - 0.0507936507936508*G4_10_0 - 0.0253968253968254*G4_11_0 - 0.0761904761904762*G4_11_1; + A[141] = -0.00476190476190476*G5_0_0 - 0.00476190476190477*G5_0_1 + 0.00634920634920634*G5_1_0 + 0.00634920634920634*G5_1_1 + 0.00634920634920635*G5_2_0 + 0.00634920634920634*G5_2_1 + 0.0380952380952381*G5_3_0 + 0.0380952380952381*G5_3_1 - 0.00634920634920633*G5_4_0 - 0.00634920634920632*G5_4_1 - 0.00634920634920633*G5_5_0 - 0.00634920634920632*G5_5_1 - 0.00476190476190476*G6_6_0 - 0.00476190476190477*G6_6_1 - 0.00793650793650793*G6_7_0 - 0.00793650793650793*G6_8_1 - 0.019047619047619*G6_9_0 - 0.019047619047619*G6_9_1 + 0.019047619047619*G6_10_0 + 0.0126984126984127*G6_10_1 + 0.0126984126984127*G6_11_0 + 0.019047619047619*G6_11_1 - 0.00476190476190476*G7_6_0 - 0.00476190476190477*G7_6_1 + 0.00634920634920634*G7_7_0 + 0.00634920634920634*G7_7_1 + 0.00634920634920635*G7_8_0 + 0.00634920634920634*G7_8_1 + 0.0380952380952381*G7_9_0 + 0.0380952380952381*G7_9_1 - 0.00634920634920633*G7_10_0 - 0.00634920634920632*G7_10_1 - 0.00634920634920633*G7_11_0 - 0.00634920634920632*G7_11_1; + A[142] = -0.00793650793650793*G5_0_0 + 0.019047619047619*G5_1_0 - 0.0126984126984127*G5_2_0 + 0.0634920634920634*G5_3_0 + 0.00634920634920634*G5_4_0 + 0.0317460317460317*G5_5_0 + 0.00634920634920634*G6_6_0 + 0.00634920634920634*G6_6_1 + 0.019047619047619*G6_7_0 - 0.0126984126984127*G6_8_1 - 0.0126984126984127*G6_9_0 + 0.019047619047619*G6_9_1 + 0.0126984126984127*G6_10_0 + 0.00634920634920636*G6_10_1 - 0.0253968253968254*G6_11_0 - 0.019047619047619*G6_11_1 - 0.00793650793650793*G7_6_0 + 0.019047619047619*G7_7_0 - 0.0126984126984127*G7_8_0 + 0.0634920634920634*G7_9_0 + 0.00634920634920634*G7_10_0 + 0.0317460317460317*G7_11_0 + 0.666666666666666*G11_0_1_0 + 0.666666666666666*G13_0_1_0; + A[143] = -0.00793650793650793*G5_0_1 - 0.0126984126984127*G5_1_1 + 0.019047619047619*G5_2_1 + 0.0634920634920634*G5_3_1 + 0.0317460317460317*G5_4_1 + 0.00634920634920636*G5_5_1 + 0.00634920634920635*G6_6_0 + 0.00634920634920634*G6_6_1 - 0.0126984126984127*G6_7_0 + 0.019047619047619*G6_8_1 + 0.019047619047619*G6_9_0 - 0.0126984126984127*G6_9_1 - 0.019047619047619*G6_10_0 - 0.0253968253968254*G6_10_1 + 0.00634920634920634*G6_11_0 + 0.0126984126984127*G6_11_1 - 0.00793650793650793*G7_6_1 - 0.0126984126984127*G7_7_1 + 0.019047619047619*G7_8_1 + 0.0634920634920634*G7_9_1 + 0.0317460317460317*G7_10_1 + 0.00634920634920636*G7_11_1 + 0.666666666666666*G11_0_0_1 + 0.666666666666666*G13_0_0_1; + A[144] = -0.019047619047619*G5_0_0 - 0.019047619047619*G5_0_1 - 0.0126984126984127*G5_1_0 + 0.019047619047619*G5_1_1 + 0.019047619047619*G5_2_0 - 0.0126984126984127*G5_2_1 + 0.152380952380952*G5_3_0 + 0.152380952380952*G5_3_1 + 0.0761904761904761*G5_4_0 + 0.0507936507936507*G5_4_1 + 0.0507936507936508*G5_5_0 + 0.0761904761904761*G5_5_1 + 0.0380952380952381*G6_6_0 + 0.0380952380952381*G6_6_1 + 0.0634920634920634*G6_7_0 + 0.0634920634920634*G6_8_1 + 0.152380952380952*G6_9_0 + 0.152380952380952*G6_9_1 - 0.152380952380952*G6_10_0 - 0.101587301587301*G6_10_1 - 0.101587301587302*G6_11_0 - 0.152380952380952*G6_11_1 - 0.019047619047619*G7_6_0 - 0.019047619047619*G7_6_1 - 0.0126984126984127*G7_7_0 + 0.019047619047619*G7_7_1 + 0.019047619047619*G7_8_0 - 0.0126984126984127*G7_8_1 + 0.152380952380952*G7_9_0 + 0.152380952380952*G7_9_1 + 0.0761904761904761*G7_10_0 + 0.0507936507936507*G7_10_1 + 0.0507936507936508*G7_11_0 + 0.0761904761904761*G7_11_1 + 1.33333333333333*G11_0_0_0 + 0.666666666666665*G11_0_0_1 + 0.666666666666665*G11_0_1_0 + 1.33333333333333*G11_0_1_1 + 1.33333333333333*G13_0_0_0 + 0.666666666666665*G13_0_0_1 + 0.666666666666665*G13_0_1_0 + 1.33333333333333*G13_0_1_1; + A[145] = 0.019047619047619*G5_0_0 + 0.0126984126984127*G5_0_1 + 0.0126984126984127*G5_1_0 + 0.00634920634920636*G5_1_1 - 0.019047619047619*G5_2_0 - 0.0253968253968254*G5_2_1 - 0.152380952380952*G5_3_0 - 0.101587301587301*G5_3_1 - 0.0761904761904761*G5_4_0 - 0.0253968253968254*G5_4_1 - 0.0507936507936508*G5_5_0 - 0.00634920634920633*G6_6_0 - 0.00634920634920632*G6_6_1 + 0.00634920634920634*G6_7_0 + 0.0317460317460317*G6_8_1 + 0.0761904761904761*G6_9_0 + 0.0507936507936507*G6_9_1 - 0.0761904761904761*G6_10_0 - 0.0253968253968254*G6_10_1 - 0.0507936507936508*G6_11_1 + 0.019047619047619*G7_6_0 + 0.0126984126984127*G7_6_1 + 0.0126984126984127*G7_7_0 + 0.00634920634920636*G7_7_1 - 0.019047619047619*G7_8_0 - 0.0253968253968254*G7_8_1 - 0.152380952380952*G7_9_0 - 0.101587301587301*G7_9_1 - 0.0761904761904761*G7_10_0 - 0.0253968253968254*G7_10_1 - 0.0507936507936508*G7_11_0 - 1.33333333333333*G11_0_0_0 - 0.666666666666666*G11_0_0_1 - 0.666666666666665*G11_0_1_0 - 1.33333333333333*G13_0_0_0 - 0.666666666666666*G13_0_0_1 - 0.666666666666665*G13_0_1_0; + A[146] = 0.0126984126984127*G5_0_0 + 0.019047619047619*G5_0_1 - 0.0253968253968254*G5_1_0 - 0.019047619047619*G5_1_1 + 0.00634920634920634*G5_2_0 + 0.0126984126984127*G5_2_1 - 0.101587301587302*G5_3_0 - 0.152380952380952*G5_3_1 - 0.0507936507936508*G5_4_1 - 0.0253968253968254*G5_5_0 - 0.0761904761904762*G5_5_1 - 0.00634920634920633*G6_6_0 - 0.00634920634920632*G6_6_1 + 0.0317460317460317*G6_7_0 + 0.00634920634920636*G6_8_1 + 0.0507936507936508*G6_9_0 + 0.0761904761904761*G6_9_1 - 0.0507936507936508*G6_10_0 - 0.0253968253968254*G6_11_0 - 0.0761904761904762*G6_11_1 + 0.0126984126984127*G7_6_0 + 0.019047619047619*G7_6_1 - 0.0253968253968254*G7_7_0 - 0.019047619047619*G7_7_1 + 0.00634920634920634*G7_8_0 + 0.0126984126984127*G7_8_1 - 0.101587301587302*G7_9_0 - 0.152380952380952*G7_9_1 - 0.0507936507936508*G7_10_1 - 0.0253968253968254*G7_11_0 - 0.0761904761904762*G7_11_1 - 0.666666666666665*G11_0_0_1 - 0.666666666666667*G11_0_1_0 - 1.33333333333333*G11_0_1_1 - 0.666666666666665*G13_0_0_1 - 0.666666666666667*G13_0_1_0 - 1.33333333333333*G13_0_1_1; + A[147] = -0.166666666666667*G15_0 - 0.166666666666667*G15_1; + A[148] = -0.166666666666667*G15_0 - 0.333333333333333*G15_1; + A[149] = -0.333333333333333*G15_0 - 0.166666666666666*G15_1; + A[150] = -0.0190476190476191*G4_6_0 - 0.0190476190476191*G4_6_1 - 0.00634920634920636*G4_7_0 - 0.0126984126984127*G4_8_1 - 0.0126984126984127*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.0126984126984127*G4_10_0 + 0.0317460317460318*G4_10_1 + 0.0253968253968254*G4_11_0 + 0.00634920634920634*G4_11_1; + A[151] = 0.00793650793650793*G4_6_0 + 0.00793650793650793*G4_6_1 + 0.00476190476190476*G4_7_0 - 0.00793650793650794*G4_8_1 - 0.019047619047619*G4_9_0 - 0.00634920634920634*G4_9_1 + 0.019047619047619*G4_10_0 - 0.0126984126984127*G4_11_0 + 0.00634920634920634*G4_11_1; + A[152] = 0.0126984126984127*G4_6_0 + 0.0126984126984127*G4_6_1 - 0.00634920634920635*G4_7_0 + 0.019047619047619*G4_8_1 + 0.019047619047619*G4_9_0 - 0.00634920634920634*G4_9_1 - 0.019047619047619*G4_10_0 - 0.0317460317460317*G4_10_1 - 0.00634920634920635*G4_11_0 + 0.00634920634920634*G4_11_1; + A[153] = -0.00634920634920633*G4_6_0 - 0.00634920634920632*G4_6_1 + 0.00634920634920634*G4_7_0 + 0.0317460317460317*G4_8_1 + 0.0761904761904761*G4_9_0 + 0.0507936507936507*G4_9_1 - 0.0761904761904761*G4_10_0 - 0.0253968253968254*G4_10_1 - 0.0507936507936508*G4_11_1; + A[154] = -0.0634920634920635*G4_6_0 - 0.0634920634920635*G4_6_1 - 0.0380952380952381*G4_7_0 + 0.0634920634920635*G4_8_1 + 0.152380952380952*G4_9_0 + 0.0507936507936507*G4_9_1 - 0.152380952380952*G4_10_0 + 0.101587301587302*G4_11_0 - 0.0507936507936507*G4_11_1; + A[155] = -0.0317460317460317*G4_6_0 - 0.0317460317460317*G4_6_1 + 0.00634920634920634*G4_7_0 + 0.00634920634920636*G4_8_1 + 0.0507936507936508*G4_9_0 + 0.0507936507936507*G4_9_1 - 0.0507936507936508*G4_10_0 + 0.0253968253968254*G4_10_1 + 0.0253968253968254*G4_11_0 - 0.0507936507936508*G4_11_1; + A[156] = -0.0190476190476191*G5_0_0 - 0.0190476190476191*G5_0_1 + 0.00793650793650793*G5_1_0 + 0.00793650793650793*G5_1_1 + 0.0126984126984127*G5_2_0 + 0.0126984126984127*G5_2_1 - 0.00634920634920633*G5_3_0 - 0.00634920634920632*G5_3_1 - 0.0634920634920635*G5_4_0 - 0.0634920634920635*G5_4_1 - 0.0317460317460317*G5_5_0 - 0.0317460317460317*G5_5_1 - 0.0190476190476191*G6_6_0 - 0.0190476190476191*G6_6_1 - 0.00634920634920636*G6_7_0 - 0.0126984126984127*G6_8_1 - 0.0126984126984127*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.0126984126984127*G6_10_0 + 0.0317460317460318*G6_10_1 + 0.0253968253968254*G6_11_0 + 0.00634920634920634*G6_11_1 - 0.0190476190476191*G7_6_0 - 0.0190476190476191*G7_6_1 + 0.00793650793650793*G7_7_0 + 0.00793650793650793*G7_7_1 + 0.0126984126984127*G7_8_0 + 0.0126984126984127*G7_8_1 - 0.00634920634920633*G7_9_0 - 0.00634920634920632*G7_9_1 - 0.0634920634920635*G7_10_0 - 0.0634920634920635*G7_10_1 - 0.0317460317460317*G7_11_0 - 0.0317460317460317*G7_11_1 - 0.666666666666667*G11_0_1_0 - 0.666666666666666*G11_0_1_1 - 0.666666666666667*G13_0_1_0 - 0.666666666666666*G13_0_1_1; + A[157] = -0.00634920634920636*G5_0_0 + 0.00476190476190476*G5_1_0 - 0.00634920634920635*G5_2_0 + 0.00634920634920634*G5_3_0 - 0.0380952380952381*G5_4_0 + 0.00634920634920634*G5_5_0 + 0.00793650793650793*G6_6_0 + 0.00793650793650793*G6_6_1 + 0.00476190476190476*G6_7_0 - 0.00793650793650794*G6_8_1 - 0.019047619047619*G6_9_0 - 0.00634920634920634*G6_9_1 + 0.019047619047619*G6_10_0 - 0.0126984126984127*G6_11_0 + 0.00634920634920634*G6_11_1 - 0.00634920634920636*G7_6_0 + 0.00476190476190476*G7_7_0 - 0.00634920634920635*G7_8_0 + 0.00634920634920634*G7_9_0 - 0.0380952380952381*G7_10_0 + 0.00634920634920634*G7_11_0; + A[158] = -0.0126984126984127*G5_0_1 - 0.00793650793650794*G5_1_1 + 0.019047619047619*G5_2_1 + 0.0317460317460317*G5_3_1 + 0.0634920634920635*G5_4_1 + 0.00634920634920636*G5_5_1 + 0.0126984126984127*G6_6_0 + 0.0126984126984127*G6_6_1 - 0.00634920634920635*G6_7_0 + 0.019047619047619*G6_8_1 + 0.019047619047619*G6_9_0 - 0.00634920634920634*G6_9_1 - 0.019047619047619*G6_10_0 - 0.0317460317460317*G6_10_1 - 0.00634920634920635*G6_11_0 + 0.00634920634920634*G6_11_1 - 0.0126984126984127*G7_6_1 - 0.00793650793650794*G7_7_1 + 0.019047619047619*G7_8_1 + 0.0317460317460317*G7_9_1 + 0.0634920634920635*G7_10_1 + 0.00634920634920636*G7_11_1 - 0.666666666666666*G11_0_0_1 - 0.666666666666666*G11_0_1_1 - 0.666666666666666*G13_0_0_1 - 0.666666666666666*G13_0_1_1; + A[159] = -0.0126984126984127*G5_0_0 - 0.00634920634920634*G5_0_1 - 0.019047619047619*G5_1_0 - 0.00634920634920634*G5_1_1 + 0.019047619047619*G5_2_0 - 0.00634920634920634*G5_2_1 + 0.0761904761904761*G5_3_0 + 0.0507936507936507*G5_3_1 + 0.152380952380952*G5_4_0 + 0.0507936507936507*G5_4_1 + 0.0507936507936508*G5_5_0 + 0.0507936507936507*G5_5_1 - 0.00634920634920633*G6_6_0 - 0.00634920634920632*G6_6_1 + 0.00634920634920634*G6_7_0 + 0.0317460317460317*G6_8_1 + 0.0761904761904761*G6_9_0 + 0.0507936507936507*G6_9_1 - 0.0761904761904761*G6_10_0 - 0.0253968253968254*G6_10_1 - 0.0507936507936508*G6_11_1 - 0.0126984126984127*G7_6_0 - 0.00634920634920634*G7_6_1 - 0.019047619047619*G7_7_0 - 0.00634920634920634*G7_7_1 + 0.019047619047619*G7_8_0 - 0.00634920634920634*G7_8_1 + 0.0761904761904761*G7_9_0 + 0.0507936507936507*G7_9_1 + 0.152380952380952*G7_10_0 + 0.0507936507936507*G7_10_1 + 0.0507936507936508*G7_11_0 + 0.0507936507936507*G7_11_1 - 1.33333333333333*G11_0_0_0 - 0.666666666666665*G11_0_0_1 - 0.666666666666666*G11_0_1_0 - 1.33333333333333*G13_0_0_0 - 0.666666666666665*G13_0_0_1 - 0.666666666666666*G13_0_1_0; + A[160] = 0.0126984126984127*G5_0_0 + 0.0317460317460318*G5_0_1 + 0.019047619047619*G5_1_0 - 0.019047619047619*G5_2_0 - 0.0317460317460317*G5_2_1 - 0.0761904761904761*G5_3_0 - 0.0253968253968254*G5_3_1 - 0.152380952380952*G5_4_0 - 0.0507936507936508*G5_5_0 + 0.0253968253968254*G5_5_1 - 0.0634920634920635*G6_6_0 - 0.0634920634920635*G6_6_1 - 0.0380952380952381*G6_7_0 + 0.0634920634920635*G6_8_1 + 0.152380952380952*G6_9_0 + 0.0507936507936507*G6_9_1 - 0.152380952380952*G6_10_0 + 0.101587301587302*G6_11_0 - 0.0507936507936507*G6_11_1 + 0.0126984126984127*G7_6_0 + 0.0317460317460318*G7_6_1 + 0.019047619047619*G7_7_0 - 0.019047619047619*G7_8_0 - 0.0317460317460317*G7_8_1 - 0.0761904761904761*G7_9_0 - 0.0253968253968254*G7_9_1 - 0.152380952380952*G7_10_0 - 0.0507936507936508*G7_11_0 + 0.0253968253968254*G7_11_1 + 1.33333333333333*G11_0_0_0 + 0.666666666666666*G11_0_0_1 + 0.666666666666666*G11_0_1_0 + 1.33333333333333*G11_0_1_1 + 1.33333333333333*G13_0_0_0 + 0.666666666666666*G13_0_0_1 + 0.666666666666666*G13_0_1_0 + 1.33333333333333*G13_0_1_1; + A[161] = 0.0253968253968254*G5_0_0 + 0.00634920634920634*G5_0_1 - 0.0126984126984127*G5_1_0 + 0.00634920634920634*G5_1_1 - 0.00634920634920635*G5_2_0 + 0.00634920634920634*G5_2_1 - 0.0507936507936508*G5_3_1 + 0.101587301587302*G5_4_0 - 0.0507936507936507*G5_4_1 + 0.0253968253968254*G5_5_0 - 0.0507936507936508*G5_5_1 - 0.0317460317460317*G6_6_0 - 0.0317460317460317*G6_6_1 + 0.00634920634920634*G6_7_0 + 0.00634920634920636*G6_8_1 + 0.0507936507936508*G6_9_0 + 0.0507936507936507*G6_9_1 - 0.0507936507936508*G6_10_0 + 0.0253968253968254*G6_10_1 + 0.0253968253968254*G6_11_0 - 0.0507936507936508*G6_11_1 + 0.0253968253968254*G7_6_0 + 0.00634920634920634*G7_6_1 - 0.0126984126984127*G7_7_0 + 0.00634920634920634*G7_7_1 - 0.00634920634920635*G7_8_0 + 0.00634920634920634*G7_8_1 - 0.0507936507936508*G7_9_1 + 0.101587301587302*G7_10_0 - 0.0507936507936507*G7_10_1 + 0.0253968253968254*G7_11_0 - 0.0507936507936508*G7_11_1 + 0.666666666666665*G11_0_0_1 + 0.666666666666667*G11_0_1_0 + 0.666666666666665*G13_0_0_1 + 0.666666666666667*G13_0_1_0; + A[162] = 0.166666666666667*G15_0 - 0.166666666666667*G15_1; + A[163] = 0.166666666666667*G15_0; + A[164] = 0.333333333333333*G15_0 + 0.166666666666667*G15_1; + A[165] = -0.0190476190476191*G4_6_0 - 0.0190476190476191*G4_6_1 - 0.0126984126984127*G4_7_0 - 0.00634920634920635*G4_8_1 - 0.00634920634920635*G4_9_0 - 0.0126984126984127*G4_9_1 + 0.00634920634920635*G4_10_0 + 0.0253968253968254*G4_10_1 + 0.0317460317460318*G4_11_0 + 0.0126984126984127*G4_11_1; + A[166] = 0.0126984126984127*G4_6_0 + 0.0126984126984127*G4_6_1 + 0.019047619047619*G4_7_0 - 0.00634920634920636*G4_8_1 - 0.00634920634920635*G4_9_0 + 0.019047619047619*G4_9_1 + 0.00634920634920635*G4_10_0 - 0.00634920634920633*G4_10_1 - 0.0317460317460317*G4_11_0 - 0.0190476190476191*G4_11_1; + A[167] = 0.00793650793650793*G4_6_0 + 0.00793650793650793*G4_6_1 - 0.00793650793650793*G4_7_0 + 0.00476190476190476*G4_8_1 - 0.00634920634920633*G4_9_0 - 0.019047619047619*G4_9_1 + 0.00634920634920633*G4_10_0 - 0.0126984126984127*G4_10_1 + 0.019047619047619*G4_11_1; + A[168] = -0.00634920634920633*G4_6_0 - 0.00634920634920632*G4_6_1 + 0.0317460317460317*G4_7_0 + 0.00634920634920636*G4_8_1 + 0.0507936507936508*G4_9_0 + 0.0761904761904761*G4_9_1 - 0.0507936507936508*G4_10_0 - 0.0253968253968254*G4_11_0 - 0.0761904761904762*G4_11_1; + A[169] = -0.0317460317460317*G4_6_0 - 0.0317460317460317*G4_6_1 + 0.00634920634920634*G4_7_0 + 0.00634920634920636*G4_8_1 + 0.0507936507936507*G4_9_0 + 0.0507936507936507*G4_9_1 - 0.0507936507936507*G4_10_0 + 0.0253968253968254*G4_10_1 + 0.0253968253968254*G4_11_0 - 0.0507936507936508*G4_11_1; + A[170] = -0.0634920634920635*G4_6_0 - 0.0634920634920635*G4_6_1 + 0.0634920634920635*G4_7_0 - 0.0380952380952381*G4_8_1 + 0.0507936507936507*G4_9_0 + 0.152380952380952*G4_9_1 - 0.0507936507936507*G4_10_0 + 0.101587301587302*G4_10_1 - 0.152380952380952*G4_11_1; + A[171] = -0.0190476190476191*G5_0_0 - 0.0190476190476191*G5_0_1 + 0.0126984126984127*G5_1_0 + 0.0126984126984127*G5_1_1 + 0.00793650793650793*G5_2_0 + 0.00793650793650793*G5_2_1 - 0.00634920634920633*G5_3_0 - 0.00634920634920632*G5_3_1 - 0.0317460317460317*G5_4_0 - 0.0317460317460317*G5_4_1 - 0.0634920634920635*G5_5_0 - 0.0634920634920635*G5_5_1 - 0.0190476190476191*G6_6_0 - 0.0190476190476191*G6_6_1 - 0.0126984126984127*G6_7_0 - 0.00634920634920635*G6_8_1 - 0.00634920634920635*G6_9_0 - 0.0126984126984127*G6_9_1 + 0.00634920634920635*G6_10_0 + 0.0253968253968254*G6_10_1 + 0.0317460317460318*G6_11_0 + 0.0126984126984127*G6_11_1 - 0.0190476190476191*G7_6_0 - 0.0190476190476191*G7_6_1 + 0.0126984126984127*G7_7_0 + 0.0126984126984127*G7_7_1 + 0.00793650793650793*G7_8_0 + 0.00793650793650793*G7_8_1 - 0.00634920634920633*G7_9_0 - 0.00634920634920632*G7_9_1 - 0.0317460317460317*G7_10_0 - 0.0317460317460317*G7_10_1 - 0.0634920634920635*G7_11_0 - 0.0634920634920635*G7_11_1 - 0.666666666666667*G11_0_0_0 - 0.666666666666667*G11_0_0_1 - 0.666666666666667*G13_0_0_0 - 0.666666666666667*G13_0_0_1; + A[172] = -0.0126984126984127*G5_0_0 + 0.019047619047619*G5_1_0 - 0.00793650793650793*G5_2_0 + 0.0317460317460317*G5_3_0 + 0.00634920634920634*G5_4_0 + 0.0634920634920635*G5_5_0 + 0.0126984126984127*G6_6_0 + 0.0126984126984127*G6_6_1 + 0.019047619047619*G6_7_0 - 0.00634920634920636*G6_8_1 - 0.00634920634920635*G6_9_0 + 0.019047619047619*G6_9_1 + 0.00634920634920635*G6_10_0 - 0.00634920634920633*G6_10_1 - 0.0317460317460317*G6_11_0 - 0.0190476190476191*G6_11_1 - 0.0126984126984127*G7_6_0 + 0.019047619047619*G7_7_0 - 0.00793650793650793*G7_8_0 + 0.0317460317460317*G7_9_0 + 0.00634920634920634*G7_10_0 + 0.0634920634920635*G7_11_0 - 0.666666666666667*G11_0_0_0 - 0.666666666666667*G11_0_1_0 - 0.666666666666667*G13_0_0_0 - 0.666666666666667*G13_0_1_0; + A[173] = -0.00634920634920635*G5_0_1 - 0.00634920634920636*G5_1_1 + 0.00476190476190476*G5_2_1 + 0.00634920634920636*G5_3_1 + 0.00634920634920636*G5_4_1 - 0.0380952380952381*G5_5_1 + 0.00793650793650793*G6_6_0 + 0.00793650793650793*G6_6_1 - 0.00793650793650793*G6_7_0 + 0.00476190476190476*G6_8_1 - 0.00634920634920633*G6_9_0 - 0.019047619047619*G6_9_1 + 0.00634920634920633*G6_10_0 - 0.0126984126984127*G6_10_1 + 0.019047619047619*G6_11_1 - 0.00634920634920635*G7_6_1 - 0.00634920634920636*G7_7_1 + 0.00476190476190476*G7_8_1 + 0.00634920634920636*G7_9_1 + 0.00634920634920636*G7_10_1 - 0.0380952380952381*G7_11_1; + A[174] = -0.00634920634920635*G5_0_0 - 0.0126984126984127*G5_0_1 - 0.00634920634920635*G5_1_0 + 0.019047619047619*G5_1_1 - 0.00634920634920633*G5_2_0 - 0.019047619047619*G5_2_1 + 0.0507936507936508*G5_3_0 + 0.0761904761904761*G5_3_1 + 0.0507936507936507*G5_4_0 + 0.0507936507936507*G5_4_1 + 0.0507936507936507*G5_5_0 + 0.152380952380952*G5_5_1 - 0.00634920634920633*G6_6_0 - 0.00634920634920632*G6_6_1 + 0.0317460317460317*G6_7_0 + 0.00634920634920636*G6_8_1 + 0.0507936507936508*G6_9_0 + 0.0761904761904761*G6_9_1 - 0.0507936507936508*G6_10_0 - 0.0253968253968254*G6_11_0 - 0.0761904761904762*G6_11_1 - 0.00634920634920635*G7_6_0 - 0.0126984126984127*G7_6_1 - 0.00634920634920635*G7_7_0 + 0.019047619047619*G7_7_1 - 0.00634920634920633*G7_8_0 - 0.019047619047619*G7_8_1 + 0.0507936507936508*G7_9_0 + 0.0761904761904761*G7_9_1 + 0.0507936507936507*G7_10_0 + 0.0507936507936507*G7_10_1 + 0.0507936507936507*G7_11_0 + 0.152380952380952*G7_11_1 - 0.666666666666667*G11_0_0_1 - 0.666666666666666*G11_0_1_0 - 1.33333333333333*G11_0_1_1 - 0.666666666666667*G13_0_0_1 - 0.666666666666666*G13_0_1_0 - 1.33333333333333*G13_0_1_1; + A[175] = 0.00634920634920635*G5_0_0 + 0.0253968253968254*G5_0_1 + 0.00634920634920635*G5_1_0 - 0.00634920634920633*G5_1_1 + 0.00634920634920633*G5_2_0 - 0.0126984126984127*G5_2_1 - 0.0507936507936508*G5_3_0 - 0.0507936507936507*G5_4_0 + 0.0253968253968254*G5_4_1 - 0.0507936507936507*G5_5_0 + 0.101587301587302*G5_5_1 - 0.0317460317460317*G6_6_0 - 0.0317460317460317*G6_6_1 + 0.00634920634920634*G6_7_0 + 0.00634920634920636*G6_8_1 + 0.0507936507936507*G6_9_0 + 0.0507936507936507*G6_9_1 - 0.0507936507936507*G6_10_0 + 0.0253968253968254*G6_10_1 + 0.0253968253968254*G6_11_0 - 0.0507936507936508*G6_11_1 + 0.00634920634920635*G7_6_0 + 0.0253968253968254*G7_6_1 + 0.00634920634920635*G7_7_0 - 0.00634920634920633*G7_7_1 + 0.00634920634920633*G7_8_0 - 0.0126984126984127*G7_8_1 - 0.0507936507936508*G7_9_0 - 0.0507936507936507*G7_10_0 + 0.0253968253968254*G7_10_1 - 0.0507936507936507*G7_11_0 + 0.101587301587302*G7_11_1 + 0.666666666666667*G11_0_0_1 + 0.666666666666666*G11_0_1_0 + 0.666666666666667*G13_0_0_1 + 0.666666666666666*G13_0_1_0; + A[176] = 0.0317460317460318*G5_0_0 + 0.0126984126984127*G5_0_1 - 0.0317460317460317*G5_1_0 - 0.0190476190476191*G5_1_1 + 0.019047619047619*G5_2_1 - 0.0253968253968254*G5_3_0 - 0.0761904761904762*G5_3_1 + 0.0253968253968254*G5_4_0 - 0.0507936507936508*G5_4_1 - 0.152380952380952*G5_5_1 - 0.0634920634920635*G6_6_0 - 0.0634920634920635*G6_6_1 + 0.0634920634920635*G6_7_0 - 0.0380952380952381*G6_8_1 + 0.0507936507936507*G6_9_0 + 0.152380952380952*G6_9_1 - 0.0507936507936507*G6_10_0 + 0.101587301587302*G6_10_1 - 0.152380952380952*G6_11_1 + 0.0317460317460318*G7_6_0 + 0.0126984126984127*G7_6_1 - 0.0317460317460317*G7_7_0 - 0.0190476190476191*G7_7_1 + 0.019047619047619*G7_8_1 - 0.0253968253968254*G7_9_0 - 0.0761904761904762*G7_9_1 + 0.0253968253968254*G7_10_0 - 0.0507936507936508*G7_10_1 - 0.152380952380952*G7_11_1 + 1.33333333333333*G11_0_0_0 + 0.666666666666667*G11_0_0_1 + 0.666666666666667*G11_0_1_0 + 1.33333333333333*G11_0_1_1 + 1.33333333333333*G13_0_0_0 + 0.666666666666667*G13_0_0_1 + 0.666666666666667*G13_0_1_0 + 1.33333333333333*G13_0_1_1; + A[177] = -0.166666666666667*G15_0 + 0.166666666666667*G15_1; + A[178] = 0.166666666666667*G15_0 + 0.333333333333333*G15_1; + A[179] = 0.166666666666667*G15_1; + A[180] = -0.166666666666667*G8_0 - 0.166666666666667*G8_1; + A[181] = 0.0; + A[182] = 0.0; + A[183] = 0.166666666666667*G8_0 + 0.166666666666667*G8_1; + A[184] = -0.166666666666667*G8_0 + 0.166666666666667*G8_1; + A[185] = 0.166666666666667*G8_0 - 0.166666666666667*G8_1; + A[186] = -0.166666666666667*G9_0 - 0.166666666666667*G9_1; + A[187] = 0.0; + A[188] = 0.0; + A[189] = 0.166666666666667*G9_0 + 0.166666666666667*G9_1; + A[190] = -0.166666666666667*G9_0 + 0.166666666666667*G9_1; + A[191] = 0.166666666666667*G9_0 - 0.166666666666667*G9_1; + A[192] = 0.0; + A[193] = 0.0; + A[194] = 0.0; + A[195] = 0.0; + A[196] = 0.166666666666667*G8_0; + A[197] = 0.0; + A[198] = 0.166666666666667*G8_0 + 0.333333333333333*G8_1; + A[199] = -0.166666666666667*G8_0; + A[200] = -0.166666666666667*G8_0 - 0.333333333333333*G8_1; + A[201] = 0.0; + A[202] = 0.166666666666667*G9_0; + A[203] = 0.0; + A[204] = 0.166666666666667*G9_0 + 0.333333333333333*G9_1; + A[205] = -0.166666666666667*G9_0; + A[206] = -0.166666666666667*G9_0 - 0.333333333333333*G9_1; + A[207] = 0.0; + A[208] = 0.0; + A[209] = 0.0; + A[210] = 0.0; + A[211] = 0.0; + A[212] = 0.166666666666667*G8_1; + A[213] = 0.333333333333333*G8_0 + 0.166666666666666*G8_1; + A[214] = -0.333333333333333*G8_0 - 0.166666666666667*G8_1; + A[215] = -0.166666666666667*G8_1; + A[216] = 0.0; + A[217] = 0.0; + A[218] = 0.166666666666667*G9_1; + A[219] = 0.333333333333333*G9_0 + 0.166666666666666*G9_1; + A[220] = -0.333333333333333*G9_0 - 0.166666666666667*G9_1; + A[221] = -0.166666666666667*G9_1; + A[222] = 0.0; + A[223] = 0.0; + A[224] = 0.0; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class adaptivenavierstokes_cell_integral_9_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + adaptivenavierstokes_cell_integral_9_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_cell_integral_9_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true, false, true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W7[7] = {0.1125, 0.0629695902724136, 0.0629695902724136, 0.0629695902724136, 0.0661970763942531, 0.0661970763942531, 0.0661970763942531}; + // Quadrature points on the UFC reference element: (0.333333333333333, 0.333333333333333), (0.797426985353087, 0.101286507323456), (0.101286507323456, 0.797426985353087), (0.101286507323456, 0.101286507323456), (0.0597158717897698, 0.470142064105115), (0.470142064105115, 0.0597158717897698), (0.470142064105115, 0.470142064105115) + + // Values of basis functions at quadrature points. + static const double FE0_C0[7][3] = \ + {{0.333333333333333, 0.333333333333333, 0.333333333333333}, + {0.101286507323456, 0.797426985353087, 0.101286507323456}, + {0.101286507323457, 0.101286507323456, 0.797426985353087}, + {0.797426985353087, 0.101286507323456, 0.101286507323456}, + {0.470142064105115, 0.0597158717897698, 0.470142064105115}, + {0.470142064105115, 0.470142064105115, 0.0597158717897697}, + {0.0597158717897699, 0.470142064105115, 0.470142064105115}}; + + // Array of non-zero columns + static const unsigned int nzc12[3] = {12, 13, 14}; + + static const double FE1_C0[7][6] = \ + {{-0.111111111111111, -0.111111111111111, -0.111111111111111, 0.444444444444444, 0.444444444444444, 0.444444444444444}, + {-0.0807685941918872, 0.474352608585538, -0.0807685941918871, 0.323074376767549, 0.0410358262631383, 0.323074376767549}, + {-0.0807685941918872, -0.0807685941918872, 0.474352608585538, 0.323074376767549, 0.323074376767549, 0.0410358262631383}, + {0.474352608585539, -0.0807685941918871, -0.0807685941918871, 0.0410358262631383, 0.323074376767549, 0.323074376767549}, + {-0.0280749432230786, -0.0525839011025453, -0.0280749432230788, 0.112299772892315, 0.884134241764073, 0.112299772892315}, + {-0.0280749432230787, -0.0280749432230788, -0.0525839011025453, 0.112299772892315, 0.112299772892315, 0.884134241764073}, + {-0.0525839011025454, -0.0280749432230789, -0.0280749432230788, 0.884134241764072, 0.112299772892315, 0.112299772892315}}; + + // Array of non-zero columns + static const unsigned int nzc6[6] = {0, 1, 2, 3, 4, 5}; + + // Array of non-zero columns + static const unsigned int nzc9[6] = {6, 7, 8, 9, 10, 11}; + + static const double FE1_C0_D01[7][5] = \ + {{-0.333333333333333, 0.333333333333333, 1.33333333333333, 0.0, -1.33333333333333}, + {0.594853970706175, -0.594853970706175, 3.18970794141235, 0.0, -3.18970794141235}, + {0.594853970706174, 2.18970794141235, 0.405146029293824, -2.78456191211852, -0.405146029293825}, + {-2.18970794141235, -0.594853970706175, 0.405146029293824, 2.78456191211852, -0.405146029293825}, + {-0.880568256420461, 0.88056825642046, 0.238863487159078, 0.0, -0.238863487159078}, + {-0.88056825642046, -0.76113651284092, 1.88056825642046, 1.64170476926138, -1.88056825642046}, + {0.761136512840921, 0.88056825642046, 1.88056825642046, -1.64170476926138, -1.88056825642046}}; + + // Array of non-zero columns + static const unsigned int nzc10[5] = {6, 8, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc7[5] = {0, 2, 3, 4, 5}; + + static const double FE1_C0_D10[7][5] = \ + {{-0.333333333333333, 0.333333333333333, 1.33333333333333, -1.33333333333333, 0.0}, + {0.594853970706174, 2.18970794141235, 0.405146029293824, -0.405146029293824, -2.78456191211852}, + {0.594853970706175, -0.594853970706175, 3.18970794141235, -3.18970794141235, 0.0}, + {-2.18970794141235, -0.594853970706175, 0.405146029293824, -0.405146029293824, 2.78456191211852}, + {-0.880568256420461, -0.761136512840922, 1.88056825642046, -1.88056825642046, 1.64170476926138}, + {-0.88056825642046, 0.880568256420461, 0.238863487159078, -0.238863487159078, 0.0}, + {0.761136512840921, 0.88056825642046, 1.88056825642046, -1.88056825642046, -1.64170476926138}}; + + // Array of non-zero columns + static const unsigned int nzc11[5] = {6, 7, 9, 10, 11}; + + // Array of non-zero columns + static const unsigned int nzc8[5] = {0, 1, 3, 4, 5}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 15; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 23. + double G[11]; + G[0] = K[0]*det; + G[1] = K[2]*det; + G[2] = K[1]*det; + G[3] = K[3]*det; + G[4] = det*w[2][0]*(K[0]*K[2] + K[1]*K[3]); + G[5] = det*w[2][0]*(K[2]*K[2] + K[3]*K[3]); + G[6] = - K[3]*det; + G[7] = det*w[2][0]*(K[0]*K[0] + K[1]*K[1]); + G[8] = - K[1]*det; + G[9] = - K[2]*det; + G[10] = - K[0]*det; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 1344 + for (unsigned int ip = 0; ip < 7; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + double F1 = 0.0; + double F2 = 0.0; + double F3 = 0.0; + double F4 = 0.0; + double F5 = 0.0; + double F6 = 0.0; + + // Total number of operations to compute function values = 6 + for (unsigned int r = 0; r < 3; r++) + { + F6 += FE0_C0[ip][r]*w[0][nzc12[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 40 + for (unsigned int r = 0; r < 5; r++) + { + F0 += FE1_C0_D10[ip][r]*w[0][nzc8[r]]; + F1 += FE1_C0_D01[ip][r]*w[0][nzc7[r]]; + F4 += FE1_C0_D10[ip][r]*w[0][nzc11[r]]; + F5 += FE1_C0_D01[ip][r]*w[0][nzc10[r]]; + } // end loop over 'r' + + // Total number of operations to compute function values = 24 + for (unsigned int r = 0; r < 6; r++) + { + F2 += FE1_C0[ip][r]*w[0][nzc6[r]]; + F3 += FE1_C0[ip][r]*w[0][nzc9[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 52 + double I[7]; + // Number of operations: 8 + I[0] = W7[ip]*(F0*G[0] + F1*G[1] + F4*G[2] + F5*G[3]); + + // Number of operations: 6 + I[1] = W7[ip]*(F4*G[4] + F5*G[5] + F6*G[6]); + + // Number of operations: 6 + I[2] = W7[ip]*(F4*G[7] + F5*G[4] + F6*G[8]); + + // Number of operations: 6 + I[3] = W7[ip]*(F0*G[4] + F1*G[5] + F6*G[9]); + + // Number of operations: 6 + I[4] = W7[ip]*(F0*G[7] + F1*G[4] + F6*G[10]); + + // Number of operations: 10 + I[5] = W7[ip]*(F2*(F0*G[0] + F1*G[1]) + F3*(F0*G[2] + F1*G[3])); + + // Number of operations: 10 + I[6] = W7[ip]*(F4*(F2*G[0] + F3*G[2]) + F5*(F2*G[1] + F3*G[3])); + + + // Number of operations for primary indices: 6 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc12[j]] += FE0_C0[ip][j]*I[0]; + } // end loop over 'j' + + // Number of operations for primary indices: 40 + for (unsigned int j = 0; j < 5; j++) + { + // Number of operations to compute entry: 2 + A[nzc10[j]] += FE1_C0_D01[ip][j]*I[1]; + // Number of operations to compute entry: 2 + A[nzc11[j]] += FE1_C0_D10[ip][j]*I[2]; + // Number of operations to compute entry: 2 + A[nzc7[j]] += FE1_C0_D01[ip][j]*I[3]; + // Number of operations to compute entry: 2 + A[nzc8[j]] += FE1_C0_D10[ip][j]*I[4]; + } // end loop over 'j' + + // Number of operations for primary indices: 24 + for (unsigned int j = 0; j < 6; j++) + { + // Number of operations to compute entry: 2 + A[nzc6[j]] += FE1_C0[ip][j]*I[5]; + // Number of operations to compute entry: 2 + A[nzc9[j]] += FE1_C0[ip][j]*I[6]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivenavierstokes_exterior_facet_integral_9_otherwise: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivenavierstokes_exterior_facet_integral_9_otherwise() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_exterior_facet_integral_9_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({false, true, false}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + const bool direction = dx1*(vertex_coordinates[2*facet] - vertex_coordinates[2*v0]) - dx0*(vertex_coordinates[2*facet + 1] - vertex_coordinates[2*v0 + 1]) < 0; + // Compute facet normals from the facet scale factor constants + const double n0 = direction ? dx1 / det : -dx1 / det; + const double n1 = direction ? -dx0 / det : dx0 / det; + + // Facet area + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W2[2] = {0.5, 0.5}; + // Quadrature points on the UFC reference element: (0.211324865405187), (0.788675134594813) + + // Values of basis functions at quadrature points. + static const double FE0_f0[2][2] = \ + {{0.788675134594813, 0.211324865405187}, + {0.211324865405187, 0.788675134594813}}; + + // Array of non-zero columns + static const unsigned int nzc0[2] = {1, 2}; + + // Array of non-zero columns + static const unsigned int nzc2[2] = {0, 1}; + + // Array of non-zero columns + static const unsigned int nzc1[2] = {0, 2}; + + static const double FE2_f0_C0[2][3] = \ + {{0.455341801261479, -0.122008467928146, 0.666666666666667}, + {-0.122008467928146, 0.45534180126148, 0.666666666666667}}; + + // Array of non-zero columns + static const unsigned int nzc14[3] = {7, 8, 9}; + + // Array of non-zero columns + static const unsigned int nzc13[3] = {1, 2, 3}; + + // Array of non-zero columns + static const unsigned int nzc20[3] = {6, 7, 11}; + + // Array of non-zero columns + static const unsigned int nzc19[3] = {0, 1, 5}; + + // Array of non-zero columns + static const unsigned int nzc16[3] = {0, 2, 4}; + + // Array of non-zero columns + static const unsigned int nzc17[3] = {6, 8, 10}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 15; r++) + { + A[r] = 0.0; + } // end loop over 'r' + // Number of operations to compute geometry constants: 2. + double G[2]; + G[0] = det*n0; + G[1] = det*n1; + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + switch (facet) + { + case 0: + { + // Total number of operations to compute element tensor (from this point): 40 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 40 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE0_f0[ip][r]*w[1][nzc0[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 4 + double I[2]; + // Number of operations: 2 + I[0] = F0*G[0]*W2[ip]; + + // Number of operations: 2 + I[1] = F0*G[1]*W2[ip]; + + + // Number of operations for primary indices: 12 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc13[j]] += FE2_f0_C0[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc14[j]] += FE2_f0_C0[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + break; + } + case 1: + { + // Total number of operations to compute element tensor (from this point): 40 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 40 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE0_f0[ip][r]*w[1][nzc1[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 4 + double I[2]; + // Number of operations: 2 + I[0] = F0*G[0]*W2[ip]; + + // Number of operations: 2 + I[1] = F0*G[1]*W2[ip]; + + + // Number of operations for primary indices: 12 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc16[j]] += FE2_f0_C0[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc17[j]] += FE2_f0_C0[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + break; + } + case 2: + { + // Total number of operations to compute element tensor (from this point): 40 + + // Loop quadrature points for integral. + // Number of operations to compute element tensor for following IP loop = 40 + for (unsigned int ip = 0; ip < 2; ip++) + { + + // Coefficient declarations. + double F0 = 0.0; + + // Total number of operations to compute function values = 4 + for (unsigned int r = 0; r < 2; r++) + { + F0 += FE0_f0[ip][r]*w[1][nzc2[r]]; + } // end loop over 'r' + + // Number of operations to compute ip constants: 4 + double I[2]; + // Number of operations: 2 + I[0] = F0*G[0]*W2[ip]; + + // Number of operations: 2 + I[1] = F0*G[1]*W2[ip]; + + + // Number of operations for primary indices: 12 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[nzc19[j]] += FE2_f0_C0[ip][j]*I[0]; + // Number of operations to compute entry: 2 + A[nzc20[j]] += FE2_f0_C0[ip][j]*I[1]; + } // end loop over 'j' + } // end loop over 'ip' + break; + } + } + + } + +}; + +/// This class defines the interface for the tabulation of the +/// exterior facet tensor corresponding to the local contribution to +/// a form from the integral over an exterior facet. + +class adaptivenavierstokes_exterior_facet_integral_10_0: public ufc::exterior_facet_integral +{ +public: + + /// Constructor + adaptivenavierstokes_exterior_facet_integral_10_0() : ufc::exterior_facet_integral() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_exterior_facet_integral_10_0() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({true}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local exterior facet + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + std::size_t facet, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 10 + // Number of operations (multiply-add pairs) for geometry tensor: 6 + // Number of operations (multiply-add pairs) for tensor contraction: 7 + // Total number of operations (multiply-add pairs): 23 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Get vertices on edge + static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; + const unsigned int v0 = edge_vertices[facet][0]; + const unsigned int v1 = edge_vertices[facet][1]; + + // Compute scale factor (length of edge scaled by length of reference interval) + const double dx0 = vertex_coordinates[2*v1 + 0] - vertex_coordinates[2*v0 + 0]; + const double dx1 = vertex_coordinates[2*v1 + 1] - vertex_coordinates[2*v0 + 1]; + const double det = std::sqrt(dx0*dx0 + dx1*dx1); + + + // Compute geometry tensor + const double G0_0 = det*w[0][0]*(1.0); + const double G0_1 = det*w[0][1]*(1.0); + const double G0_2 = det*w[0][2]*(1.0); + const double G0_3 = det*w[0][3]*(1.0); + const double G0_4 = det*w[0][4]*(1.0); + const double G0_5 = det*w[0][5]*(1.0); + + // Compute element tensor + switch (facet) + { + case 0: + { + A[0] = 0.166666666666666*G0_1 + 0.166666666666667*G0_2 + 0.666666666666666*G0_3; + break; + } + case 1: + { + A[0] = 0.166666666666667*G0_0 + 0.166666666666667*G0_2 + 0.666666666666666*G0_4; + break; + } + case 2: + { + A[0] = 0.166666666666667*G0_0 + 0.166666666666667*G0_1 + 0.666666666666666*G0_5; + break; + } + } + + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_0: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "9f5ea297aed9baffd42b79c1d8849fe669858c13bb7688bb64ab5d6276df3d376d21a30e549f6e3ff1dcee3e057a8a9f4a400e31b3b2349de314701d8bd487a2"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 2; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 2: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 3: + { + return new adaptivenavierstokes_finite_element_10(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 2: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 3: + { + return new adaptivenavierstokes_dofmap_10(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivenavierstokes_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_1: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "1431fcd6d97da8fa48e6d1b82b62bffd65cb3efb7c993210e1961321fdbaec3f19d6505e6aa532ef963cb1f61cb7f9c7af8be5ed0b38250407f04d21b637b244"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 1; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return false; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_exterior_facet_integral_1_0(); + break; + } + } + + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return 0; + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_2: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_2() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_2() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "b85c0cd3595332dedb933bc3a10d8c51f24c9a502be803da9b661b53ce182b4ed337835a855cdd96a4c198bb1871343c720d6f8762f9835e26419ccbb66040f0"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 0; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 4; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_12(); + break; + } + case 2: + { + return new adaptivenavierstokes_finite_element_10(); + break; + } + case 3: + { + return new adaptivenavierstokes_finite_element_9(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_12(); + break; + } + case 2: + { + return new adaptivenavierstokes_dofmap_10(); + break; + } + case 3: + { + return new adaptivenavierstokes_dofmap_9(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivenavierstokes_cell_integral_2_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivenavierstokes_exterior_facet_integral_2_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_3: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_3() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_3() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "aac28481fc513a486483e1edec2768df3b10e571489785af2eb4374b51fc4dd911c25295b817561847127611069424e841d8eaaa499c7cd70bac4e4df7f9af61"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_5(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_5(); + break; + } + case 2: + { + return new adaptivenavierstokes_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_5(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_5(); + break; + } + case 2: + { + return new adaptivenavierstokes_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivenavierstokes_cell_integral_3_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_4: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_4() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_4() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "09b5760361d6e81604b048c19450be4febce6f205189587e6c46d0d41a48d12a76843dcd24bdd24515046fb2ae0f14c19ce79b774a20fac561c46c387ff1097c"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 4; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_5(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 2: + { + return new adaptivenavierstokes_finite_element_12(); + break; + } + case 3: + { + return new adaptivenavierstokes_finite_element_10(); + break; + } + case 4: + { + return new adaptivenavierstokes_finite_element_1(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_5(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 2: + { + return new adaptivenavierstokes_dofmap_12(); + break; + } + case 3: + { + return new adaptivenavierstokes_dofmap_10(); + break; + } + case 4: + { + return new adaptivenavierstokes_dofmap_1(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivenavierstokes_cell_integral_4_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivenavierstokes_exterior_facet_integral_4_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_5: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_5() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_5() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "0b649f0c08ed5629a1c24b96fd215ca1af83c2d38e52ae56808fc93671084c436235faa70e9f043f6e8bdff81d1227434c5508d6b8d8ab2f9553bdd946d4e1e9"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return false; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_5(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_5(); + break; + } + case 2: + { + return new adaptivenavierstokes_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_5(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_5(); + break; + } + case 2: + { + return new adaptivenavierstokes_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return 0; + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivenavierstokes_exterior_facet_integral_5_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return new adaptivenavierstokes_interior_facet_integral_5_otherwise(); + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_6: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_6() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_6() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "6ab8db5005c4db9d874fc1203ac685516beab14929e0f5712afea0bcb8077e4f8d897bb973d3171bca0f367e9da6c7c42f272efe952184a8b3172867e858dc7e"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 5; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_5(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 2: + { + return new adaptivenavierstokes_finite_element_12(); + break; + } + case 3: + { + return new adaptivenavierstokes_finite_element_10(); + break; + } + case 4: + { + return new adaptivenavierstokes_finite_element_5(); + break; + } + case 5: + { + return new adaptivenavierstokes_finite_element_2(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_5(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 2: + { + return new adaptivenavierstokes_dofmap_12(); + break; + } + case 3: + { + return new adaptivenavierstokes_dofmap_10(); + break; + } + case 4: + { + return new adaptivenavierstokes_dofmap_5(); + break; + } + case 5: + { + return new adaptivenavierstokes_dofmap_2(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivenavierstokes_cell_integral_6_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivenavierstokes_exterior_facet_integral_6_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_7: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_7() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_7() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "a974673ba1ca23c88472c67f03256f0d7477aa2f57e702b5712aa38763c91a1be9515bda1a7b5e16c7d67ffdbc9c9b097965a8038b1702965e1600dca61101e7"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 4; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_0(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_9(); + break; + } + case 2: + { + return new adaptivenavierstokes_finite_element_5(); + break; + } + case 3: + { + return new adaptivenavierstokes_finite_element_5(); + break; + } + case 4: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_0(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_9(); + break; + } + case 2: + { + return new adaptivenavierstokes_dofmap_5(); + break; + } + case 3: + { + return new adaptivenavierstokes_dofmap_5(); + break; + } + case 4: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivenavierstokes_cell_integral_7_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivenavierstokes_exterior_facet_integral_7_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return new adaptivenavierstokes_interior_facet_integral_7_otherwise(); + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_8: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_8() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_8() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "0c555154fd68b8d2e96486b0f764aa1fcaa806229d0c798f5e08c4e4ea228bec7df9ce43a1791cbb91bed4d2a35111efb5f41aaabaadfe13dad7d3235e84c6ae"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 2; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 2: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 3: + { + return new adaptivenavierstokes_finite_element_10(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 2: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 3: + { + return new adaptivenavierstokes_dofmap_10(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivenavierstokes_cell_integral_8_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_9: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_9() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_9() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "9690b1279fec0dfc8ec9a692f1510d4d88e76f1720371bf85f5d40068a0e5abd114b963a02c853170f51c468677b8452c8849a7a9bb4ac431a9f99a95d92d23d"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 3; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 1: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + case 2: + { + return new adaptivenavierstokes_finite_element_12(); + break; + } + case 3: + { + return new adaptivenavierstokes_finite_element_10(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 1: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + case 2: + { + return new adaptivenavierstokes_dofmap_12(); + break; + } + case 3: + { + return new adaptivenavierstokes_dofmap_10(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new adaptivenavierstokes_cell_integral_9_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return new adaptivenavierstokes_exterior_facet_integral_9_otherwise(); + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class adaptivenavierstokes_form_10: public ufc::form +{ +public: + + /// Constructor + adaptivenavierstokes_form_10() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~adaptivenavierstokes_form_10() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "ebf3d448ab8d2ad0c6b1c385a6ff187b82e7c45945fc89e730de8d133f937712c1a67202099b516a4903be27b033cd8bfa7a33704352979527f378d5840d96eb"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 0; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 1; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 1; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return false; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return true; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_finite_element_13(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_dofmap_13(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + switch (i) + { + case 0: + { + return new adaptivenavierstokes_exterior_facet_integral_10_0(); + break; + } + } + + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return 0; + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace AdaptiveNavierStokes +{ + +class CoefficientSpace___cell_bubble: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_bubble(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_1()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_bubble(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_1()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_bubble(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_1()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_bubble(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_1()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___cell_bubble(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_1()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___cell_bubble(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_1()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_1()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___cell_bubble() + { + } + +}; + +class CoefficientSpace___cell_cone: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_cone(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_2()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_cone(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_2()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_cone(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_2()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_cone(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_2()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___cell_cone(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_2()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___cell_cone(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_2()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_2()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___cell_cone() + { + } + +}; + +class CoefficientSpace___cell_residual: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_residual(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_residual(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___cell_residual(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___cell_residual(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___cell_residual(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___cell_residual(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___cell_residual() + { + } + +}; + +class CoefficientSpace___discrete_dual_solution: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___discrete_dual_solution(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___discrete_dual_solution(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___discrete_dual_solution(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___discrete_dual_solution(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___discrete_dual_solution(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___discrete_dual_solution(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___discrete_dual_solution() + { + } + +}; + +class CoefficientSpace___facet_residual: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___facet_residual(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___facet_residual(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___facet_residual(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___facet_residual(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___facet_residual(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___facet_residual(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___facet_residual() + { + } + +}; + +class CoefficientSpace___improved_dual: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___improved_dual(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_9()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_9()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___improved_dual(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_9()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_9()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace___improved_dual(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_9()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_9()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace___improved_dual(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_9()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_9()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace___improved_dual(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_9()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_9()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace___improved_dual(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_9()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_9()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace___improved_dual() + { + } + +}; + +class CoefficientSpace_nu: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_nu(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_10()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_10()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_nu(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_10()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_10()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_nu(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_10()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_10()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_nu(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_10()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_10()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_nu(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_10()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_10()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_nu(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_10()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_10()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_nu() + { + } + +}; + +class CoefficientSpace_p0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_p0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_12()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_12()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_p0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_12()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_12()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_p0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_12()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_12()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_p0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_12()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_12()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_p0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_12()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_12()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_p0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_12()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_12()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_p0() + { + } + +}; + +class CoefficientSpace_w: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_w(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_w(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + CoefficientSpace_w(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + CoefficientSpace_w(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + CoefficientSpace_w(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + CoefficientSpace_w(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~CoefficientSpace_w() + { + } + +}; + +class Form_0_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_0_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_0_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_0_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_0_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_0_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_0_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_0_FunctionSpace_0() + { + } + +}; + +class Form_0_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_0_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_0_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_0_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_0_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_0_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_0_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_0_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_w Form_0_FunctionSpace_2; + +typedef CoefficientSpace_nu Form_0_FunctionSpace_3; + +class Form_0: public dolfin::Form +{ +public: + + // Constructor + Form_0(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_0()); + } + + // Constructor + Form_0(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& nu): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->w = w; + this->nu = nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_0()); + } + + // Constructor + Form_0(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr w, std::shared_ptr nu): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->w = *w; + this->nu = *nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_0()); + } + + // Constructor + Form_0(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_0()); + } + + // Constructor + Form_0(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& nu): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->w = w; + this->nu = nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_0()); + } + + // Constructor + Form_0(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr w, std::shared_ptr nu): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->w = *w; + this->nu = *nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_0()); + } + + // Destructor + ~Form_0() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "w") + return 0; + else if (name == "nu") + return 1; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "w"; + case 1: + return "nu"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_0_FunctionSpace_0 TestSpace; + typedef Form_0_FunctionSpace_1 TrialSpace; + typedef Form_0_FunctionSpace_2 CoefficientSpace_w; + typedef Form_0_FunctionSpace_3 CoefficientSpace_nu; + + // Coefficients + dolfin::CoefficientAssigner w; + dolfin::CoefficientAssigner nu; +}; + +class Form_1_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_1_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_1_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_1_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_1_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_1_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_1_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_1_FunctionSpace_0() + { + } + +}; + +class Form_1: public dolfin::Form +{ +public: + + // Constructor + Form_1(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_1()); + } + + // Constructor + Form_1(std::shared_ptr V0): + dolfin::Form(1, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_1()); + } + + // Destructor + ~Form_1() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_1_FunctionSpace_0 TestSpace; + + // Coefficients +}; + +typedef CoefficientSpace_w Form_2_FunctionSpace_0; + +typedef CoefficientSpace_p0 Form_2_FunctionSpace_1; + +typedef CoefficientSpace_nu Form_2_FunctionSpace_2; + +typedef CoefficientSpace___improved_dual Form_2_FunctionSpace_3; + +class Form_2: public dolfin::Form +{ +public: + + // Constructor + Form_2(const dolfin::Mesh& mesh): + dolfin::Form(0, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __improved_dual(*this, 3) + { + _mesh = reference_to_no_delete_pointer(mesh); + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_2()); + } + + // Constructor + Form_2(const dolfin::Mesh& mesh, const dolfin::GenericFunction& w, const dolfin::GenericFunction& p0, const dolfin::GenericFunction& nu, const dolfin::GenericFunction& __improved_dual): + dolfin::Form(0, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __improved_dual(*this, 3) + { + _mesh = reference_to_no_delete_pointer(mesh); + this->w = w; + this->p0 = p0; + this->nu = nu; + this->__improved_dual = __improved_dual; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_2()); + } + + // Constructor + Form_2(const dolfin::Mesh& mesh, std::shared_ptr w, std::shared_ptr p0, std::shared_ptr nu, std::shared_ptr __improved_dual): + dolfin::Form(0, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __improved_dual(*this, 3) + { + _mesh = reference_to_no_delete_pointer(mesh); + this->w = *w; + this->p0 = *p0; + this->nu = *nu; + this->__improved_dual = *__improved_dual; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_2()); + } + + // Constructor + Form_2(std::shared_ptr mesh): + dolfin::Form(0, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __improved_dual(*this, 3) + { + _mesh = mesh; + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_2()); + } + + // Constructor + Form_2(std::shared_ptr mesh, const dolfin::GenericFunction& w, const dolfin::GenericFunction& p0, const dolfin::GenericFunction& nu, const dolfin::GenericFunction& __improved_dual): + dolfin::Form(0, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __improved_dual(*this, 3) + { + _mesh = mesh; + this->w = w; + this->p0 = p0; + this->nu = nu; + this->__improved_dual = __improved_dual; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_2()); + } + + // Constructor + Form_2(std::shared_ptr mesh, std::shared_ptr w, std::shared_ptr p0, std::shared_ptr nu, std::shared_ptr __improved_dual): + dolfin::Form(0, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __improved_dual(*this, 3) + { + _mesh = mesh; + this->w = *w; + this->p0 = *p0; + this->nu = *nu; + this->__improved_dual = *__improved_dual; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_2()); + } + + // Destructor + ~Form_2() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "w") + return 0; + else if (name == "p0") + return 1; + else if (name == "nu") + return 2; + else if (name == "__improved_dual") + return 3; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "w"; + case 1: + return "p0"; + case 2: + return "nu"; + case 3: + return "__improved_dual"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_2_FunctionSpace_0 CoefficientSpace_w; + typedef Form_2_FunctionSpace_1 CoefficientSpace_p0; + typedef Form_2_FunctionSpace_2 CoefficientSpace_nu; + typedef Form_2_FunctionSpace_3 CoefficientSpace___improved_dual; + + // Coefficients + dolfin::CoefficientAssigner w; + dolfin::CoefficientAssigner p0; + dolfin::CoefficientAssigner nu; + dolfin::CoefficientAssigner __improved_dual; +}; + +class Form_3_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_3_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_3_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_3_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_3_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_3_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_3_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_3_FunctionSpace_0() + { + } + +}; + +class Form_3_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_3_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_3_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_3_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_3_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_3_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_3_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_3_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace___cell_bubble Form_3_FunctionSpace_2; + +class Form_3: public dolfin::Form +{ +public: + + // Constructor + Form_3(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_3()); + } + + // Constructor + Form_3(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& __cell_bubble): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->__cell_bubble = __cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_3()); + } + + // Constructor + Form_3(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr __cell_bubble): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->__cell_bubble = *__cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_3()); + } + + // Constructor + Form_3(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_3()); + } + + // Constructor + Form_3(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& __cell_bubble): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->__cell_bubble = __cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_3()); + } + + // Constructor + Form_3(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr __cell_bubble): + dolfin::Form(2, 1), __cell_bubble(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->__cell_bubble = *__cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_3()); + } + + // Destructor + ~Form_3() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "__cell_bubble") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "__cell_bubble"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_3_FunctionSpace_0 TestSpace; + typedef Form_3_FunctionSpace_1 TrialSpace; + typedef Form_3_FunctionSpace_2 CoefficientSpace___cell_bubble; + + // Coefficients + dolfin::CoefficientAssigner __cell_bubble; +}; + +class Form_4_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_4_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_4_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_4_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_4_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_4_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_4_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_4_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_w Form_4_FunctionSpace_1; + +typedef CoefficientSpace_p0 Form_4_FunctionSpace_2; + +typedef CoefficientSpace_nu Form_4_FunctionSpace_3; + +typedef CoefficientSpace___cell_bubble Form_4_FunctionSpace_4; + +class Form_4: public dolfin::Form +{ +public: + + // Constructor + Form_4(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_4()); + } + + // Constructor + Form_4(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& p0, const dolfin::GenericFunction& nu, const dolfin::GenericFunction& __cell_bubble): + dolfin::Form(1, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->w = w; + this->p0 = p0; + this->nu = nu; + this->__cell_bubble = __cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_4()); + } + + // Constructor + Form_4(const dolfin::FunctionSpace& V0, std::shared_ptr w, std::shared_ptr p0, std::shared_ptr nu, std::shared_ptr __cell_bubble): + dolfin::Form(1, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->w = *w; + this->p0 = *p0; + this->nu = *nu; + this->__cell_bubble = *__cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_4()); + } + + // Constructor + Form_4(std::shared_ptr V0): + dolfin::Form(1, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_4()); + } + + // Constructor + Form_4(std::shared_ptr V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& p0, const dolfin::GenericFunction& nu, const dolfin::GenericFunction& __cell_bubble): + dolfin::Form(1, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = V0; + + this->w = w; + this->p0 = p0; + this->nu = nu; + this->__cell_bubble = __cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_4()); + } + + // Constructor + Form_4(std::shared_ptr V0, std::shared_ptr w, std::shared_ptr p0, std::shared_ptr nu, std::shared_ptr __cell_bubble): + dolfin::Form(1, 4), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_bubble(*this, 3) + { + _function_spaces[0] = V0; + + this->w = *w; + this->p0 = *p0; + this->nu = *nu; + this->__cell_bubble = *__cell_bubble; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_4()); + } + + // Destructor + ~Form_4() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "w") + return 0; + else if (name == "p0") + return 1; + else if (name == "nu") + return 2; + else if (name == "__cell_bubble") + return 3; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "w"; + case 1: + return "p0"; + case 2: + return "nu"; + case 3: + return "__cell_bubble"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_4_FunctionSpace_0 TestSpace; + typedef Form_4_FunctionSpace_1 CoefficientSpace_w; + typedef Form_4_FunctionSpace_2 CoefficientSpace_p0; + typedef Form_4_FunctionSpace_3 CoefficientSpace_nu; + typedef Form_4_FunctionSpace_4 CoefficientSpace___cell_bubble; + + // Coefficients + dolfin::CoefficientAssigner w; + dolfin::CoefficientAssigner p0; + dolfin::CoefficientAssigner nu; + dolfin::CoefficientAssigner __cell_bubble; +}; + +class Form_5_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_5_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_5_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_5_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_5_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_5_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_5_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_5_FunctionSpace_0() + { + } + +}; + +class Form_5_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_5_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_5_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_5_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_5_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_5_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_5_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_5_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace___cell_cone Form_5_FunctionSpace_2; + +class Form_5: public dolfin::Form +{ +public: + + // Constructor + Form_5(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_5()); + } + + // Constructor + Form_5(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& __cell_cone): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->__cell_cone = __cell_cone; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_5()); + } + + // Constructor + Form_5(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr __cell_cone): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->__cell_cone = *__cell_cone; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_5()); + } + + // Constructor + Form_5(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_5()); + } + + // Constructor + Form_5(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& __cell_cone): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->__cell_cone = __cell_cone; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_5()); + } + + // Constructor + Form_5(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr __cell_cone): + dolfin::Form(2, 1), __cell_cone(*this, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->__cell_cone = *__cell_cone; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_5()); + } + + // Destructor + ~Form_5() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "__cell_cone") + return 0; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "__cell_cone"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_5_FunctionSpace_0 TestSpace; + typedef Form_5_FunctionSpace_1 TrialSpace; + typedef Form_5_FunctionSpace_2 CoefficientSpace___cell_cone; + + // Coefficients + dolfin::CoefficientAssigner __cell_cone; +}; + +class Form_6_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_6_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_6_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_6_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_6_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_6_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_6_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_5()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_5()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_6_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_w Form_6_FunctionSpace_1; + +typedef CoefficientSpace_p0 Form_6_FunctionSpace_2; + +typedef CoefficientSpace_nu Form_6_FunctionSpace_3; + +typedef CoefficientSpace___cell_residual Form_6_FunctionSpace_4; + +typedef CoefficientSpace___cell_cone Form_6_FunctionSpace_5; + +class Form_6: public dolfin::Form +{ +public: + + // Constructor + Form_6(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 5), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_6()); + } + + // Constructor + Form_6(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& p0, const dolfin::GenericFunction& nu, const dolfin::GenericFunction& __cell_residual, const dolfin::GenericFunction& __cell_cone): + dolfin::Form(1, 5), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->w = w; + this->p0 = p0; + this->nu = nu; + this->__cell_residual = __cell_residual; + this->__cell_cone = __cell_cone; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_6()); + } + + // Constructor + Form_6(const dolfin::FunctionSpace& V0, std::shared_ptr w, std::shared_ptr p0, std::shared_ptr nu, std::shared_ptr __cell_residual, std::shared_ptr __cell_cone): + dolfin::Form(1, 5), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->w = *w; + this->p0 = *p0; + this->nu = *nu; + this->__cell_residual = *__cell_residual; + this->__cell_cone = *__cell_cone; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_6()); + } + + // Constructor + Form_6(std::shared_ptr V0): + dolfin::Form(1, 5), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_6()); + } + + // Constructor + Form_6(std::shared_ptr V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& p0, const dolfin::GenericFunction& nu, const dolfin::GenericFunction& __cell_residual, const dolfin::GenericFunction& __cell_cone): + dolfin::Form(1, 5), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = V0; + + this->w = w; + this->p0 = p0; + this->nu = nu; + this->__cell_residual = __cell_residual; + this->__cell_cone = __cell_cone; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_6()); + } + + // Constructor + Form_6(std::shared_ptr V0, std::shared_ptr w, std::shared_ptr p0, std::shared_ptr nu, std::shared_ptr __cell_residual, std::shared_ptr __cell_cone): + dolfin::Form(1, 5), w(*this, 0), p0(*this, 1), nu(*this, 2), __cell_residual(*this, 3), __cell_cone(*this, 4) + { + _function_spaces[0] = V0; + + this->w = *w; + this->p0 = *p0; + this->nu = *nu; + this->__cell_residual = *__cell_residual; + this->__cell_cone = *__cell_cone; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_6()); + } + + // Destructor + ~Form_6() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "w") + return 0; + else if (name == "p0") + return 1; + else if (name == "nu") + return 2; + else if (name == "__cell_residual") + return 3; + else if (name == "__cell_cone") + return 4; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "w"; + case 1: + return "p0"; + case 2: + return "nu"; + case 3: + return "__cell_residual"; + case 4: + return "__cell_cone"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_6_FunctionSpace_0 TestSpace; + typedef Form_6_FunctionSpace_1 CoefficientSpace_w; + typedef Form_6_FunctionSpace_2 CoefficientSpace_p0; + typedef Form_6_FunctionSpace_3 CoefficientSpace_nu; + typedef Form_6_FunctionSpace_4 CoefficientSpace___cell_residual; + typedef Form_6_FunctionSpace_5 CoefficientSpace___cell_cone; + + // Coefficients + dolfin::CoefficientAssigner w; + dolfin::CoefficientAssigner p0; + dolfin::CoefficientAssigner nu; + dolfin::CoefficientAssigner __cell_residual; + dolfin::CoefficientAssigner __cell_cone; +}; + +class Form_7_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_7_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_7_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_7_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_7_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_7_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_7_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_7_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace___improved_dual Form_7_FunctionSpace_1; + +typedef CoefficientSpace___cell_residual Form_7_FunctionSpace_2; + +typedef CoefficientSpace___facet_residual Form_7_FunctionSpace_3; + +typedef CoefficientSpace___discrete_dual_solution Form_7_FunctionSpace_4; + +class Form_7: public dolfin::Form +{ +public: + + // Constructor + Form_7(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_7()); + } + + // Constructor + Form_7(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& __improved_dual, const dolfin::GenericFunction& __cell_residual, const dolfin::GenericFunction& __facet_residual, const dolfin::GenericFunction& __discrete_dual_solution): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->__improved_dual = __improved_dual; + this->__cell_residual = __cell_residual; + this->__facet_residual = __facet_residual; + this->__discrete_dual_solution = __discrete_dual_solution; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_7()); + } + + // Constructor + Form_7(const dolfin::FunctionSpace& V0, std::shared_ptr __improved_dual, std::shared_ptr __cell_residual, std::shared_ptr __facet_residual, std::shared_ptr __discrete_dual_solution): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->__improved_dual = *__improved_dual; + this->__cell_residual = *__cell_residual; + this->__facet_residual = *__facet_residual; + this->__discrete_dual_solution = *__discrete_dual_solution; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_7()); + } + + // Constructor + Form_7(std::shared_ptr V0): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_7()); + } + + // Constructor + Form_7(std::shared_ptr V0, const dolfin::GenericFunction& __improved_dual, const dolfin::GenericFunction& __cell_residual, const dolfin::GenericFunction& __facet_residual, const dolfin::GenericFunction& __discrete_dual_solution): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = V0; + + this->__improved_dual = __improved_dual; + this->__cell_residual = __cell_residual; + this->__facet_residual = __facet_residual; + this->__discrete_dual_solution = __discrete_dual_solution; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_7()); + } + + // Constructor + Form_7(std::shared_ptr V0, std::shared_ptr __improved_dual, std::shared_ptr __cell_residual, std::shared_ptr __facet_residual, std::shared_ptr __discrete_dual_solution): + dolfin::Form(1, 4), __improved_dual(*this, 0), __cell_residual(*this, 1), __facet_residual(*this, 2), __discrete_dual_solution(*this, 3) + { + _function_spaces[0] = V0; + + this->__improved_dual = *__improved_dual; + this->__cell_residual = *__cell_residual; + this->__facet_residual = *__facet_residual; + this->__discrete_dual_solution = *__discrete_dual_solution; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_7()); + } + + // Destructor + ~Form_7() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "__improved_dual") + return 0; + else if (name == "__cell_residual") + return 1; + else if (name == "__facet_residual") + return 2; + else if (name == "__discrete_dual_solution") + return 3; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "__improved_dual"; + case 1: + return "__cell_residual"; + case 2: + return "__facet_residual"; + case 3: + return "__discrete_dual_solution"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_7_FunctionSpace_0 TestSpace; + typedef Form_7_FunctionSpace_1 CoefficientSpace___improved_dual; + typedef Form_7_FunctionSpace_2 CoefficientSpace___cell_residual; + typedef Form_7_FunctionSpace_3 CoefficientSpace___facet_residual; + typedef Form_7_FunctionSpace_4 CoefficientSpace___discrete_dual_solution; + + // Coefficients + dolfin::CoefficientAssigner __improved_dual; + dolfin::CoefficientAssigner __cell_residual; + dolfin::CoefficientAssigner __facet_residual; + dolfin::CoefficientAssigner __discrete_dual_solution; +}; + +class Form_lhs_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_lhs_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_lhs_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_lhs_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_lhs_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_lhs_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_lhs_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_lhs_FunctionSpace_0() + { + } + +}; + +class Form_lhs_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_lhs_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_lhs_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_lhs_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_lhs_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_lhs_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_lhs_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_lhs_FunctionSpace_1() + { + } + +}; + +typedef CoefficientSpace_w Form_lhs_FunctionSpace_2; + +typedef CoefficientSpace_nu Form_lhs_FunctionSpace_3; + +class Form_lhs: public dolfin::Form +{ +public: + + // Constructor + Form_lhs(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_8()); + } + + // Constructor + Form_lhs(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& nu): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->w = w; + this->nu = nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_8()); + } + + // Constructor + Form_lhs(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0, std::shared_ptr w, std::shared_ptr nu): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + this->w = *w; + this->nu = *nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_8()); + } + + // Constructor + Form_lhs(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_8()); + } + + // Constructor + Form_lhs(std::shared_ptr V1, std::shared_ptr V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& nu): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->w = w; + this->nu = nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_8()); + } + + // Constructor + Form_lhs(std::shared_ptr V1, std::shared_ptr V0, std::shared_ptr w, std::shared_ptr nu): + dolfin::Form(2, 2), w(*this, 0), nu(*this, 1) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + this->w = *w; + this->nu = *nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_8()); + } + + // Destructor + ~Form_lhs() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "w") + return 0; + else if (name == "nu") + return 1; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "w"; + case 1: + return "nu"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_lhs_FunctionSpace_0 TestSpace; + typedef Form_lhs_FunctionSpace_1 TrialSpace; + typedef Form_lhs_FunctionSpace_2 CoefficientSpace_w; + typedef Form_lhs_FunctionSpace_3 CoefficientSpace_nu; + + // Coefficients + dolfin::CoefficientAssigner w; + dolfin::CoefficientAssigner nu; +}; + +class Form_rhs_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_rhs_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_rhs_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_rhs_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_rhs_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_rhs_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_rhs_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new adaptivenavierstokes_finite_element_13()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new adaptivenavierstokes_dofmap_13()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_rhs_FunctionSpace_0() + { + } + +}; + +typedef CoefficientSpace_w Form_rhs_FunctionSpace_1; + +typedef CoefficientSpace_p0 Form_rhs_FunctionSpace_2; + +typedef CoefficientSpace_nu Form_rhs_FunctionSpace_3; + +class Form_rhs: public dolfin::Form +{ +public: + + // Constructor + Form_rhs(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 3), w(*this, 0), p0(*this, 1), nu(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_9()); + } + + // Constructor + Form_rhs(const dolfin::FunctionSpace& V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& p0, const dolfin::GenericFunction& nu): + dolfin::Form(1, 3), w(*this, 0), p0(*this, 1), nu(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->w = w; + this->p0 = p0; + this->nu = nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_9()); + } + + // Constructor + Form_rhs(const dolfin::FunctionSpace& V0, std::shared_ptr w, std::shared_ptr p0, std::shared_ptr nu): + dolfin::Form(1, 3), w(*this, 0), p0(*this, 1), nu(*this, 2) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + this->w = *w; + this->p0 = *p0; + this->nu = *nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_9()); + } + + // Constructor + Form_rhs(std::shared_ptr V0): + dolfin::Form(1, 3), w(*this, 0), p0(*this, 1), nu(*this, 2) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_9()); + } + + // Constructor + Form_rhs(std::shared_ptr V0, const dolfin::GenericFunction& w, const dolfin::GenericFunction& p0, const dolfin::GenericFunction& nu): + dolfin::Form(1, 3), w(*this, 0), p0(*this, 1), nu(*this, 2) + { + _function_spaces[0] = V0; + + this->w = w; + this->p0 = p0; + this->nu = nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_9()); + } + + // Constructor + Form_rhs(std::shared_ptr V0, std::shared_ptr w, std::shared_ptr p0, std::shared_ptr nu): + dolfin::Form(1, 3), w(*this, 0), p0(*this, 1), nu(*this, 2) + { + _function_spaces[0] = V0; + + this->w = *w; + this->p0 = *p0; + this->nu = *nu; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_9()); + } + + // Destructor + ~Form_rhs() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "w") + return 0; + else if (name == "p0") + return 1; + else if (name == "nu") + return 2; + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "w"; + case 1: + return "p0"; + case 2: + return "nu"; + } + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_rhs_FunctionSpace_0 TestSpace; + typedef Form_rhs_FunctionSpace_1 CoefficientSpace_w; + typedef Form_rhs_FunctionSpace_2 CoefficientSpace_p0; + typedef Form_rhs_FunctionSpace_3 CoefficientSpace_nu; + + // Coefficients + dolfin::CoefficientAssigner w; + dolfin::CoefficientAssigner p0; + dolfin::CoefficientAssigner nu; +}; + +typedef CoefficientSpace_w Form_goal_FunctionSpace_0; + +class Form_goal: public dolfin::GoalFunctional +{ +public: + + // Constructor + Form_goal(const dolfin::Mesh& mesh): + dolfin::GoalFunctional(0, 1), w(*this, 0) + { + _mesh = reference_to_no_delete_pointer(mesh); + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_10()); + } + + // Constructor + Form_goal(const dolfin::Mesh& mesh, const dolfin::GenericFunction& w): + dolfin::GoalFunctional(0, 1), w(*this, 0) + { + _mesh = reference_to_no_delete_pointer(mesh); + this->w = w; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_10()); + } + + // Constructor + Form_goal(const dolfin::Mesh& mesh, std::shared_ptr w): + dolfin::GoalFunctional(0, 1), w(*this, 0) + { + _mesh = reference_to_no_delete_pointer(mesh); + this->w = *w; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_10()); + } + + // Constructor + Form_goal(std::shared_ptr mesh): + dolfin::GoalFunctional(0, 1), w(*this, 0) + { + _mesh = mesh; + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_10()); + } + + // Constructor + Form_goal(std::shared_ptr mesh, const dolfin::GenericFunction& w): + dolfin::GoalFunctional(0, 1), w(*this, 0) + { + _mesh = mesh; + this->w = w; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_10()); + } + + // Constructor + Form_goal(std::shared_ptr mesh, std::shared_ptr w): + dolfin::GoalFunctional(0, 1), w(*this, 0) + { + _mesh = mesh; + this->w = *w; + + _ufc_form = std::shared_ptr(new adaptivenavierstokes_form_10()); + } + + // Destructor + ~Form_goal() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + if (name == "w") + return 0; + + dolfin::dolfin_error("generated code for class GoalFunctional", + "access coefficient data", + "Invalid coefficient"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + switch (i) + { + case 0: + return "w"; + } + + dolfin::dolfin_error("generated code for class GoalFunctional", + "access coefficient data", + "Invalid coefficient"); + return "unnamed"; + } + + // Typedefs + typedef Form_goal_FunctionSpace_0 CoefficientSpace_w; + + // Coefficients + dolfin::CoefficientAssigner w; + + /// Initialize all error control forms, attach coefficients and + /// (re-)set error control + virtual void update_ec(const dolfin::Form& a, const dolfin::Form& L) + { + // This stuff is created here and shipped elsewhere + std::shared_ptr a_star; // Dual lhs + std::shared_ptr L_star; // Dual rhs + std::shared_ptr V_Ez_h; // Extrapolation space + std::shared_ptr Ez_h; // Extrapolated dual + std::shared_ptr residual; // Residual (as functional) + std::shared_ptr V_R_T; // Trial space for cell residual + std::shared_ptr a_R_T; // Cell residual lhs + std::shared_ptr L_R_T; // Cell residual rhs + std::shared_ptr V_b_T; // Function space for cell bubble + std::shared_ptr b_T; // Cell bubble + std::shared_ptr V_R_dT; // Trial space for facet residual + std::shared_ptr a_R_dT; // Facet residual lhs + std::shared_ptr L_R_dT; // Facet residual rhs + std::shared_ptr V_b_e; // Function space for cell cone + std::shared_ptr b_e; // Cell cone + std::shared_ptr V_eta_T; // Function space for indicators + std::shared_ptr eta_T; // Indicator form + + // Some handy views + const dolfin::FunctionSpace& Vhat(*(a.function_space(0))); // Primal test + const dolfin::FunctionSpace& V(*(a.function_space(1))); // Primal trial + assert(V.mesh()); + const dolfin::Mesh& mesh(*V.mesh()); + std::string name; + + // Initialize dual forms + a_star.reset(new Form_0(V, Vhat)); + L_star.reset(new Form_1(V)); + + + // Attach coefficients from a to a_star + for (std::size_t i = 0; i < a.num_coefficients(); i++) + { + name = a.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether a_star has coefficient named 'name' + try { + a_star->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to a_star"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + a_star->set_coefficient(name, a.coefficient(i)); + } + + // Attach subdomains from a to a_star + a_star->dx = a.cell_domains(); + a_star->ds = a.exterior_facet_domains(); + a_star->dS = a.interior_facet_domains(); + + + // Attach coefficients from (*this) to L_star + for (std::size_t i = 0; i < (*this).num_coefficients(); i++) + { + name = (*this).coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether L_star has coefficient named 'name' + try { + L_star->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to L_star"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + L_star->set_coefficient(name, (*this).coefficient(i)); + } + + // Attach subdomains from (*this) to L_star + L_star->dx = (*this).cell_domains(); + L_star->ds = (*this).exterior_facet_domains(); + L_star->dS = (*this).interior_facet_domains(); + + + // Initialize residual + residual.reset(new Form_2(mesh)); + + // Attach coefficients from a to residual + for (std::size_t i = 0; i < a.num_coefficients(); i++) + { + name = a.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether residual has coefficient named 'name' + try { + residual->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to residual"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + residual->set_coefficient(name, a.coefficient(i)); + } + + + // Attach coefficients from L to residual + for (std::size_t i = 0; i < L.num_coefficients(); i++) + { + name = L.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether residual has coefficient named 'name' + try { + residual->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to residual"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + residual->set_coefficient(name, L.coefficient(i)); + } + + // Attach subdomains from L to residual + residual->dx = L.cell_domains(); + residual->ds = L.exterior_facet_domains(); + residual->dS = L.interior_facet_domains(); + + + // Initialize extrapolation space and (fake) extrapolation + V_Ez_h.reset(new CoefficientSpace___improved_dual(mesh)); + Ez_h.reset(new dolfin::Function(V_Ez_h)); + residual->set_coefficient("__improved_dual", Ez_h); + + // Create bilinear and linear form for computing cell residual R_T + V_R_T.reset(new Form_4::TestSpace(mesh)); + a_R_T.reset(new Form_3(V_R_T, V_R_T)); + L_R_T.reset(new Form_4(V_R_T)); + + // Initialize bubble and attach to a_R_T and L_R_T + V_b_T.reset(new CoefficientSpace___cell_bubble(mesh)); + b_T.reset(new dolfin::Function(V_b_T)); + *b_T->vector() = 1.0; + + // Attach coefficients from a to L_R_T + for (std::size_t i = 0; i < a.num_coefficients(); i++) + { + name = a.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether L_R_T has coefficient named 'name' + try { + L_R_T->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to L_R_T"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + L_R_T->set_coefficient(name, a.coefficient(i)); + } + + + // Attach coefficients from L to L_R_T + for (std::size_t i = 0; i < L.num_coefficients(); i++) + { + name = L.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether L_R_T has coefficient named 'name' + try { + L_R_T->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to L_R_T"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + L_R_T->set_coefficient(name, L.coefficient(i)); + } + + // Attach subdomains from L to L_R_T + L_R_T->dx = L.cell_domains(); + L_R_T->ds = L.exterior_facet_domains(); + L_R_T->dS = L.interior_facet_domains(); + + + // Attach bubble function to _a_R_T and _L_R_T + a_R_T->set_coefficient("__cell_bubble", b_T); + L_R_T->set_coefficient("__cell_bubble", b_T); + + // Create bilinear and linear form for computing facet residual R_dT + V_R_dT.reset(new Form_6::TestSpace(mesh)); + a_R_dT.reset(new Form_5(V_R_dT, V_R_dT)); + L_R_dT.reset(new Form_6(V_R_dT)); + + // Attach coefficients from a to L_R_dT + for (std::size_t i = 0; i < a.num_coefficients(); i++) + { + name = a.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether L_R_dT has coefficient named 'name' + try { + L_R_dT->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to L_R_dT"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + L_R_dT->set_coefficient(name, a.coefficient(i)); + } + + + // Attach coefficients from L to L_R_dT + for (std::size_t i = 0; i < L.num_coefficients(); i++) + { + name = L.coefficient_name(i); + // Don't attach discrete primal solution here (not computed). + if (name == "__discrete_primal_solution") + continue; + + // Test whether L_R_dT has coefficient named 'name' + try { + L_R_dT->coefficient_number(name); + } catch (...) { + std::cout << "Attaching coefficient named: " << name << " to L_R_dT"; + std::cout << " failed! But this might be expected." << std::endl; + continue; + } + L_R_dT->set_coefficient(name, L.coefficient(i)); + } + + // Attach subdomains from L to L_R_dT + L_R_dT->dx = L.cell_domains(); + L_R_dT->ds = L.exterior_facet_domains(); + L_R_dT->dS = L.interior_facet_domains(); + + + // Initialize (fake) cone and attach to a_R_dT and L_R_dT + V_b_e.reset(new CoefficientSpace___cell_cone(mesh)); + b_e.reset(new dolfin::Function(V_b_e)); + a_R_dT->set_coefficient("__cell_cone", b_e); + L_R_dT->set_coefficient("__cell_cone", b_e); + + // Create error indicator form + V_eta_T.reset(new Form_7::TestSpace(mesh)); + eta_T.reset(new Form_7(V_eta_T)); + + // Update error control + _ec.reset(new dolfin::ErrorControl(a_star, L_star, residual, + a_R_T, L_R_T, a_R_dT, L_R_dT, eta_T, + false)); + + } + +}; + +// Class typedefs +typedef Form_lhs BilinearForm; +typedef Form_rhs LinearForm; +typedef Form_goal GoalFunctional; + +} + +#endif diff --git a/demo/undocumented/auto-adaptive-navier-stokes/cpp/AdaptiveNavierStokes.ufl b/demo/undocumented/auto-adaptive-navier-stokes/cpp/AdaptiveNavierStokes.ufl new file mode 100644 index 0000000..b201503 --- /dev/null +++ b/demo/undocumented/auto-adaptive-navier-stokes/cpp/AdaptiveNavierStokes.ufl @@ -0,0 +1,51 @@ +# Copyright (C) 2010 Marie E. Rognes +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2010-11-01 +# Last changed: 2011-06-29 +# +# Compile with ffc -e -l dolfin AdaptiveNavierStokes.ufl + +cell = triangle +V = VectorElement("CG", cell, 2) +Q = FiniteElement("CG", cell, 1) +W = V * Q + +w = Coefficient(W) +(u, p) = (as_vector((w[0], w[1])), w[2]) +(v, q) = TestFunctions(W) + +# Prescribed pressure +T = FiniteElement("CG", cell, 1) +p0 = Coefficient(T) + +# Prescribed viscosity +nu = Constant(cell) + +# Define FacetNormal +n = FacetNormal(cell) + +# Define variational form +L = (nu*inner(grad(u), grad(v)) - p*div(v) + div(u)*q + + inner(v, grad(u)*u))*dx() \ + + p0*dot(v, n)*ds() + +# Define goal functional +M = w[0]*ds(0) + +# NB: Label the unknown +unknown = w diff --git a/demo/undocumented/auto-adaptive-navier-stokes/cpp/CMakeLists.txt b/demo/undocumented/auto-adaptive-navier-stokes/cpp/CMakeLists.txt new file mode 100644 index 0000000..7c8e1df --- /dev/null +++ b/demo/undocumented/auto-adaptive-navier-stokes/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_auto-adaptive-navier-stokes) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/undocumented/auto-adaptive-navier-stokes/cpp/compile.log b/demo/undocumented/auto-adaptive-navier-stokes/cpp/compile.log new file mode 100644 index 0000000..cdd300c --- /dev/null +++ b/demo/undocumented/auto-adaptive-navier-stokes/cpp/compile.log @@ -0,0 +1,21902 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form AdaptiveNavierStokes + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: '' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 2 + Coefficients: '[w_0, c_2]' + Coefficient names: '[w, nu]' + Unique elements: 'Mixed, CG1(?)>, R0(?)' + Unique sub elements: 'Mixed, CG1(?)>, R0(?), Vector<2 x CG2( + ?)>, CG1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 3 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Number of exterior_facet subdomains: 1 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'Mixed, CG1(?)>' + Unique sub elements: 'Mixed, CG1(?)>, Vector<2 + x CG2(?)>, CG1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 0 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 0 + Arguments: '[]' + Argument names: '[]' + Number of coefficients: 4 + Coefficients: '[w_0, w_1, c_2, w_3]' + Coefficient names: '[w, p0, nu, __improved_dual]' + Unique elements: 'Mixed, CG1(?)>, CG1(?), R0(?), Mixed, CG2(?)>' + Unique sub elements: 'Mixed, CG1(?)>, CG1(?), R0(?), Mixed, CG2(?)>, Vector<2 x CG2(?)>, Mixed, CG2(?), CG3(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 5 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 6 + quadrature_degree: auto --> 6 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal FacetNormal. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 1 + Coefficients: '[w_4]' + Coefficient names: '[__cell_bubble]' + Unique elements: 'Mixed, DG1(?)>, B3(?)' + Unique sub elements: 'Mixed, DG1(?)>, B3(?), Mixed, DG1(?), DG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 7 + quadrature_degree: auto --> 7 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 4 + Coefficients: '[w_0, w_1, c_2, w_4]' + Coefficient names: '[w, p0, nu, __cell_bubble]' + Unique elements: 'Mixed, DG1(?)>, Mixed, CG1(?)>, CG1(?), R0(?), B3(?)' + Unique sub elements: 'Mixed, DG1(?)>, Mixed, CG1(?)>, CG1(?), R0(?), B3(?), Mixed, DG1(?), Vector<2 x CG2(?)>, DG2(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 5 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 8 + quadrature_degree: auto --> 8 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal FacetNormal. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 6 + quadrature_degree: auto --> 6 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 1 + Coefficients: '[w_6]' + Coefficient names: '[__cell_cone]' + Unique elements: 'Mixed, DG1(?)>, DG2(?)' + Unique sub elements: 'Mixed, DG1(?)>, DG2(?), Mixed, DG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 6 + quadrature_degree: auto --> 6 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 6 + quadrature_degree: auto --> 6 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 5 + Coefficients: '[w_0, w_1, c_2, w_5, w_6]' + Coefficient names: '[w, p0, nu, __cell_residual, __cell_cone]' + Unique elements: 'Mixed, DG1(?)>, Mixed, CG1(?)>, CG1(?), R0(?), DG2(?)' + Unique sub elements: 'Mixed, DG1(?)>, Mixed, CG1(?)>, CG1(?), R0(?), DG2(?), Mixed, DG1(?), Vector<2 x CG2(?)>, CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 5 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 7 + quadrature_degree: auto --> 7 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal FacetNormal. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + + Name: '' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 4 + Coefficients: '[w_3, w_5, w_7, w_8]' + Coefficient names: '[__improved_dual, __cell_residual, __facet_residual, __di + screte_dual_solution]' + Unique elements: 'DG0(?), Mixed, CG2(?)>, Mixed, DG1(?)>, Mixed, CG1(? + )>' + Unique sub elements: 'DG0(?), Mixed, CG2(?)>, Mixed, DG1(?)>, Mixed, CG1(? + )>, Mixed, CG2(?), Mixed, + DG1(?), Vector<2 x CG2(?)>, CG1(?), CG3(?), DG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + + Name: 'lhs' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v0, v1]' + Number of coefficients: 2 + Coefficients: '[w_0, c_2]' + Coefficient names: '[w, nu]' + Unique elements: 'Mixed, CG1(?)>, R0(?)' + Unique sub elements: 'Mixed, CG1(?)>, R0(?), Vector<2 x CG2( + ?)>, CG1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 3 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + + Name: 'rhs' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v0]' + Number of coefficients: 3 + Coefficients: '[w_0, w_1, c_2]' + Coefficient names: '[w, p0, nu]' + Unique elements: 'Mixed, CG1(?)>, CG1(?), R0(?)' + Unique sub elements: 'Mixed, CG1(?)>, CG1(?), R0(?), Vector< + 2 x CG2(?)>, CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 4 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 5 + quadrature_degree: auto --> 5 + quadrature_rule: auto --> default + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal FacetNormal. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 3 + quadrature_degree: auto --> 3 + quadrature_rule: auto --> default + + Name: 'goal' + Geometric dimension: 2 + Number of exterior_facet subdomains: 1 + Rank: 0 + Arguments: '[]' + Argument names: '[]' + Number of coefficients: 1 + Coefficients: '[w_0]' + Coefficient names: '[w]' + Unique elements: 'Mixed, CG1(?)>' + Unique sub elements: 'Mixed, CG1(?)>, Vector<2 + x CG2(?)>, CG1(?), CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Estimated cost of tensor representation: 1 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.271112 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 14 elements + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of 14 dofmaps + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00409 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00406 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00356 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00341 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00351 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00357 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00343 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00341 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00298 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00395 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 900 entries computed in 0.00481 seconds + Shape of reference tensor: (15, 15, 1, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 900 entries computed in 0.00337 seconds + Shape of reference tensor: (15, 15, 1, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 900 entries computed in 0.00328 seconds + Shape of reference tensor: (15, 15, 1, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 900 entries computed in 0.00327 seconds + Shape of reference tensor: (15, 15, 1, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00308 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00296 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 15 entries computed in 0.00143 seconds + Shape of reference tensor: (15,) + Primary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 15 entries computed in 0.0013 seconds + Shape of reference tensor: (15,) + Primary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 15 entries computed in 0.0013 seconds + Shape of reference tensor: (15,) + Primary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 0 dims = [] indices = [[]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {12: {FiniteElement('Real', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0): array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object)}}}, MixedElement(*[MixedElement(*[FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 3, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 3, quad_scheme=None)], **{'value_shape': (2,) }), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None)], **{'value_shape': (3,) }): {None: {None: {(0, 1): array([[[ -4.85931890e-01, -4.85931890e-01, -3.44372756e+00, + 4.04638309e-01, 4.04638309e-01, 1.18553235e-01, + -5.59823902e-01, 4.92870367e-01, -5.59823902e-01, + -7.40805832e-01, 4.92870367e-01, -7.40805832e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 8.88178420e-16, -5.55111512e-16, 3.33066907e-16, + 2.18575158e-16, -1.38777878e-17, 9.71445147e-17, + 3.33066907e-16, -1.66533454e-16, -2.13370988e-16, + -2.77555756e-16, -3.98986399e-17, 2.63677968e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 4.85931890e-01, 3.44372756e+00, 4.85931890e-01, + -4.04638309e-01, -1.18553235e-01, -4.04638309e-01, + -4.92870367e-01, 5.59823902e-01, 7.40805832e-01, + 5.59823902e-01, 7.40805832e-01, -4.92870367e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 6.37592643e+00, -2.30167545e-01, -2.30167545e-01, + 1.13786606e+00, -2.82847955e-01, -2.82847955e-01, + 2.60506708e+00, 2.60506708e+00, -9.62843375e-02, + -9.62843375e-02, -2.01023374e-01, -2.01023374e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -2.44372756e+00, 1.20457074e+00, -1.76434524e-01, + 1.11855323e+00, 2.25318218e+00, 5.56094442e-01, + 2.46932174e+00, -1.95093341e+00, 3.93699696e+00, + -9.51256225e-01, 6.74175116e-01, 2.06177081e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -5.37330206e-02, 2.21356002e+00, 5.17135569e+00, + -8.38942398e-01, -1.40140119e+00, -1.11531612e+00, + 7.50232851e-01, -3.02461418e-01, 1.74991003e+00, + 1.93089196e+00, -2.56560608e+00, -1.33192988e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 5.37330206e-02, -5.17135569e+00, -2.21356002e+00, + 8.38942398e-01, 1.11531612e+00, 1.40140119e+00, + 3.02461418e-01, -7.50232851e-01, -1.93089196e+00, + -1.74991003e+00, 1.33192988e+00, 2.56560608e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.44372756e+00, 1.76434524e-01, -1.20457074e+00, + -1.11855323e+00, -5.56094442e-01, -2.25318218e+00, + 1.95093341e+00, -2.46932174e+00, 9.51256225e-01, + -3.93699696e+00, -2.06177081e-01, -6.74175116e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -6.37592643e+00, 2.30167545e-01, 2.30167545e-01, + -1.13786606e+00, 2.82847955e-01, 2.82847955e-01, + -2.60506708e+00, -2.60506708e+00, 9.62843375e-02, + 9.62843375e-02, 2.01023374e-01, 2.01023374e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.66453526e-15, -1.38100527e+00, 1.38100527e+00, + 1.14908083e-14, -1.69708773e+00, 1.69708773e+00, + -4.42025515e+00, 4.42025515e+00, -4.88825318e+00, + 4.88825318e+00, -4.67998035e-01, 4.67998035e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -4.85931890e-01, -4.85931890e-01, -3.44372756e+00, + 4.04638309e-01, 4.04638309e-01, 1.18553235e-01, + -5.59823902e-01, 4.92870367e-01, -5.59823902e-01, + -7.40805832e-01, 4.92870367e-01, -7.40805832e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.88178420e-16, -5.55111512e-16, 3.33066907e-16, + 2.18575158e-16, -1.38777878e-17, 9.71445147e-17, + 3.33066907e-16, -1.66533454e-16, -2.13370988e-16, + -2.77555756e-16, -3.98986399e-17, 2.63677968e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.85931890e-01, 3.44372756e+00, 4.85931890e-01, + -4.04638309e-01, -1.18553235e-01, -4.04638309e-01, + -4.92870367e-01, 5.59823902e-01, 7.40805832e-01, + 5.59823902e-01, 7.40805832e-01, -4.92870367e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.37592643e+00, -2.30167545e-01, -2.30167545e-01, + 1.13786606e+00, -2.82847955e-01, -2.82847955e-01, + 2.60506708e+00, 2.60506708e+00, -9.62843375e-02, + -9.62843375e-02, -2.01023374e-01, -2.01023374e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.44372756e+00, 1.20457074e+00, -1.76434524e-01, + 1.11855323e+00, 2.25318218e+00, 5.56094442e-01, + 2.46932174e+00, -1.95093341e+00, 3.93699696e+00, + -9.51256225e-01, 6.74175116e-01, 2.06177081e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -5.37330206e-02, 2.21356002e+00, 5.17135569e+00, + -8.38942398e-01, -1.40140119e+00, -1.11531612e+00, + 7.50232851e-01, -3.02461418e-01, 1.74991003e+00, + 1.93089196e+00, -2.56560608e+00, -1.33192988e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.37330206e-02, -5.17135569e+00, -2.21356002e+00, + 8.38942398e-01, 1.11531612e+00, 1.40140119e+00, + 3.02461418e-01, -7.50232851e-01, -1.93089196e+00, + -1.74991003e+00, 1.33192988e+00, 2.56560608e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.44372756e+00, 1.76434524e-01, -1.20457074e+00, + -1.11855323e+00, -5.56094442e-01, -2.25318218e+00, + 1.95093341e+00, -2.46932174e+00, 9.51256225e-01, + -3.93699696e+00, -2.06177081e-01, -6.74175116e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.37592643e+00, 2.30167545e-01, 2.30167545e-01, + -1.13786606e+00, 2.82847955e-01, 2.82847955e-01, + -2.60506708e+00, -2.60506708e+00, 9.62843375e-02, + 9.62843375e-02, 2.01023374e-01, 2.01023374e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.66453526e-15, -1.38100527e+00, 1.38100527e+00, + 1.14908083e-14, -1.69708773e+00, 1.69708773e+00, + -4.42025515e+00, 4.42025515e+00, -4.88825318e+00, + 4.88825318e+00, -4.67998035e-01, 4.67998035e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47643942e-01, 7.47643942e-01, -2.49528788e+00, + 2.85301932e-03, 2.85301932e-03, -1.00570604e+00, + 7.87419801e-01, -2.41409804e-01, 7.87419801e-01, + -1.54601000e+00, -2.41409804e-01, -1.54601000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.44089210e-16, -4.44089210e-16, -1.66533454e-16, + -1.11022302e-16, -5.55111512e-17, -1.66533454e-16, + 1.24900090e-16, -1.11022302e-16, 0.00000000e+00, + -1.11022302e-16, 5.55111512e-17, 6.93889390e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.47643942e-01, 2.49528788e+00, -7.47643942e-01, + -2.85301932e-03, 1.00570604e+00, -2.85301932e-03, + 2.41409804e-01, -7.87419801e-01, 1.54601000e+00, + -7.87419801e-01, 1.54601000e+00, 2.41409804e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.49528788e+00, 2.52356058e-01, 2.52356058e-01, + 2.00570604e+00, 9.97146981e-01, 9.97146981e-01, + 2.54601000e+00, 2.54601000e+00, 1.24140980e+00, + 1.24140980e+00, 2.12580199e-01, 2.12580199e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.22044605e-16, -3.24293183e+00, 3.24293183e+00, + 3.77475828e-15, -1.00855906e+00, 1.00855906e+00, + -1.02882960e+00, 1.02882960e+00, -2.33342980e+00, + 2.33342980e+00, -1.30460019e+00, 1.30460019e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -3.49528788e+00, -2.52356058e-01, -2.52356058e-01, + -2.00570604e+00, -9.97146981e-01, -9.97146981e-01, + -2.54601000e+00, -2.54601000e+00, -1.24140980e+00, + -1.24140980e+00, -2.12580199e-01, -2.12580199e-01]]]), (1, 0): array([[[ -4.85931890e-01, -4.85931890e-01, -3.44372756e+00, + 4.04638309e-01, 4.04638309e-01, 1.18553235e-01, + -5.59823902e-01, 4.92870367e-01, -5.59823902e-01, + -7.40805832e-01, 4.92870367e-01, -7.40805832e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 3.44372756e+00, 4.85931890e-01, 4.85931890e-01, + -1.18553235e-01, -4.04638309e-01, -4.04638309e-01, + 7.40805832e-01, 7.40805832e-01, -4.92870367e-01, + -4.92870367e-01, 5.59823902e-01, 5.59823902e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -1.38645914e-17, 3.35148811e-16, -9.23566062e-17, + -3.90397186e-17, -3.69822127e-17, -1.47889501e-16, + 5.25620294e-17, -1.38022087e-17, 2.00322990e-16, + -3.95456510e-17, -8.98417888e-17, -2.63346192e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.20457074e+00, -2.44372756e+00, -1.76434524e-01, + 2.25318218e+00, 1.11855323e+00, 5.56094442e-01, + 3.93699696e+00, 6.74175116e-01, 2.46932174e+00, + 2.06177081e-01, -1.95093341e+00, -9.51256225e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -2.30167545e-01, 6.37592643e+00, -2.30167545e-01, + -2.82847955e-01, 1.13786606e+00, -2.82847955e-01, + -9.62843375e-02, -2.01023374e-01, 2.60506708e+00, + -2.01023374e-01, 2.60506708e+00, -9.62843375e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.76434524e-01, 2.44372756e+00, -1.20457074e+00, + -5.56094442e-01, -1.11855323e+00, -2.25318218e+00, + 9.51256225e-01, -2.06177081e-01, 1.95093341e+00, + -6.74175116e-01, -2.46932174e+00, -3.93699696e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.30167545e-01, -6.37592643e+00, 2.30167545e-01, + 2.82847955e-01, -1.13786606e+00, 2.82847955e-01, + 9.62843375e-02, 2.01023374e-01, -2.60506708e+00, + 2.01023374e-01, -2.60506708e+00, 9.62843375e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.21356002e+00, -5.37330206e-02, 5.17135569e+00, + -1.40140119e+00, -8.38942398e-01, -1.11531612e+00, + 1.74991003e+00, -2.56560608e+00, 7.50232851e-01, + -1.33192988e+00, -3.02461418e-01, 1.93089196e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -5.17135569e+00, 5.37330206e-02, -2.21356002e+00, + 1.11531612e+00, 8.38942398e-01, 1.40140119e+00, + -1.93089196e+00, 1.33192988e+00, 3.02461418e-01, + 2.56560608e+00, -7.50232851e-01, -1.74991003e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -1.38100527e+00, -6.43415175e-17, 1.38100527e+00, + -1.69708773e+00, 1.51461450e-14, 1.69708773e+00, + -4.88825318e+00, -4.67998035e-01, -4.42025515e+00, + 4.67998035e-01, 4.42025515e+00, 4.88825318e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -4.85931890e-01, -4.85931890e-01, -3.44372756e+00, + 4.04638309e-01, 4.04638309e-01, 1.18553235e-01, + -5.59823902e-01, 4.92870367e-01, -5.59823902e-01, + -7.40805832e-01, 4.92870367e-01, -7.40805832e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.44372756e+00, 4.85931890e-01, 4.85931890e-01, + -1.18553235e-01, -4.04638309e-01, -4.04638309e-01, + 7.40805832e-01, 7.40805832e-01, -4.92870367e-01, + -4.92870367e-01, 5.59823902e-01, 5.59823902e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.38645914e-17, 3.35148811e-16, -9.23566062e-17, + -3.90397186e-17, -3.69822127e-17, -1.47889501e-16, + 5.25620294e-17, -1.38022087e-17, 2.00322990e-16, + -3.95456510e-17, -8.98417888e-17, -2.63346192e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.20457074e+00, -2.44372756e+00, -1.76434524e-01, + 2.25318218e+00, 1.11855323e+00, 5.56094442e-01, + 3.93699696e+00, 6.74175116e-01, 2.46932174e+00, + 2.06177081e-01, -1.95093341e+00, -9.51256225e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.30167545e-01, 6.37592643e+00, -2.30167545e-01, + -2.82847955e-01, 1.13786606e+00, -2.82847955e-01, + -9.62843375e-02, -2.01023374e-01, 2.60506708e+00, + -2.01023374e-01, 2.60506708e+00, -9.62843375e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.76434524e-01, 2.44372756e+00, -1.20457074e+00, + -5.56094442e-01, -1.11855323e+00, -2.25318218e+00, + 9.51256225e-01, -2.06177081e-01, 1.95093341e+00, + -6.74175116e-01, -2.46932174e+00, -3.93699696e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.30167545e-01, -6.37592643e+00, 2.30167545e-01, + 2.82847955e-01, -1.13786606e+00, 2.82847955e-01, + 9.62843375e-02, 2.01023374e-01, -2.60506708e+00, + 2.01023374e-01, -2.60506708e+00, 9.62843375e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.21356002e+00, -5.37330206e-02, 5.17135569e+00, + -1.40140119e+00, -8.38942398e-01, -1.11531612e+00, + 1.74991003e+00, -2.56560608e+00, 7.50232851e-01, + -1.33192988e+00, -3.02461418e-01, 1.93089196e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -5.17135569e+00, 5.37330206e-02, -2.21356002e+00, + 1.11531612e+00, 8.38942398e-01, 1.40140119e+00, + -1.93089196e+00, 1.33192988e+00, 3.02461418e-01, + 2.56560608e+00, -7.50232851e-01, -1.74991003e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.38100527e+00, -6.43415175e-17, 1.38100527e+00, + -1.69708773e+00, 1.51461450e-14, 1.69708773e+00, + -4.88825318e+00, -4.67998035e-01, -4.42025515e+00, + 4.67998035e-01, 4.42025515e+00, 4.88825318e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47643942e-01, 7.47643942e-01, -2.49528788e+00, + 2.85301932e-03, 2.85301932e-03, -1.00570604e+00, + 7.87419801e-01, -2.41409804e-01, 7.87419801e-01, + -1.54601000e+00, -2.41409804e-01, -1.54601000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.49528788e+00, -7.47643942e-01, -7.47643942e-01, + 1.00570604e+00, -2.85301932e-03, -2.85301932e-03, + 1.54601000e+00, 1.54601000e+00, 2.41409804e-01, + 2.41409804e-01, -7.87419801e-01, -7.87419801e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.52356058e-01, 3.49528788e+00, 2.52356058e-01, + 9.97146981e-01, 2.00570604e+00, 9.97146981e-01, + 1.24140980e+00, 2.12580199e-01, 2.54601000e+00, + 2.12580199e-01, 2.54601000e+00, 1.24140980e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.52356058e-01, -3.49528788e+00, -2.52356058e-01, + -9.97146981e-01, -2.00570604e+00, -9.97146981e-01, + -1.24140980e+00, -2.12580199e-01, -2.54601000e+00, + -2.12580199e-01, -2.54601000e+00, -1.24140980e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -3.24293183e+00, -1.09888393e-15, 3.24293183e+00, + -1.00855906e+00, 3.57248574e-15, 1.00855906e+00, + -2.33342980e+00, -1.30460019e+00, -1.02882960e+00, + 1.30460019e+00, 1.02882960e+00, 2.33342980e+00]]]), (0, 0): array([[[ 0.046308 , 0.046308 , 0.44026899, 0.03935169, 0.03935169, + -0.06267372, 0.04111073, 0.01143583, 0.04111073, -0.02619323, + 0.01143583, -0.02619323], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.44026899, 0.046308 , 0.046308 , -0.06267372, 0.03935169, + 0.03935169, -0.02619323, -0.02619323, 0.01143583, 0.01143583, + 0.04111073, 0.04111073], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.046308 , 0.44026899, 0.046308 , 0.03935169, -0.06267372, + 0.03935169, 0.01143583, 0.04111073, -0.02619323, 0.04111073, + -0.02619323, 0.01143583], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.40225091, -0.20112546, -0.01452104, 0.28365493, -0.14182746, + -0.07051025, 0.80848895, 0.13844642, -0.06128522, -0.00511704, + -0.12795188, -0.0623881 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[-0.20112546, 0.40225091, -0.01452104, -0.14182746, 0.28365493, + -0.07051025, -0.06128522, -0.12795188, 0.80848895, -0.0623881 , + 0.13844642, -0.00511704], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[-0.01452104, -0.20112546, 0.40225091, -0.07051025, -0.14182746, + 0.28365493, -0.0623881 , -0.00511704, -0.12795188, 0.13844642, + -0.06128522, 0.80848895], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[-0.01452104, 0.40225091, -0.20112546, -0.07051025, 0.28365493, + -0.14182746, -0.00511704, -0.0623881 , 0.13844642, -0.12795188, + 0.80848895, -0.06128522], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[-0.20112546, -0.01452104, 0.40225091, -0.14182746, -0.07051025, + 0.28365493, -0.12795188, -0.06128522, -0.0623881 , 0.80848895, + -0.00511704, 0.13844642], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.40225091, -0.01452104, -0.20112546, 0.28365493, -0.07051025, + -0.14182746, 0.13844642, 0.80848895, -0.00511704, -0.06128522, + -0.0623881 , -0.12795188], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.09390619, 0.09390619, 0.09390619, 0.84133592, 0.84133592, + 0.84133592, 0.28345353, 0.28345353, 0.28345353, 0.28345353, + 0.28345353, 0.28345353], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.046308 , 0.046308 , 0.44026899, 0.03935169, 0.03935169, + -0.06267372, 0.04111073, 0.01143583, 0.04111073, -0.02619323, + 0.01143583, -0.02619323], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.44026899, 0.046308 , 0.046308 , -0.06267372, 0.03935169, + 0.03935169, -0.02619323, -0.02619323, 0.01143583, 0.01143583, + 0.04111073, 0.04111073], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.046308 , 0.44026899, 0.046308 , 0.03935169, -0.06267372, + 0.03935169, 0.01143583, 0.04111073, -0.02619323, 0.04111073, + -0.02619323, 0.01143583], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.40225091, -0.20112546, -0.01452104, 0.28365493, -0.14182746, + -0.07051025, 0.80848895, 0.13844642, -0.06128522, -0.00511704, + -0.12795188, -0.0623881 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.20112546, 0.40225091, -0.01452104, -0.14182746, 0.28365493, + -0.07051025, -0.06128522, -0.12795188, 0.80848895, -0.0623881 , + 0.13844642, -0.00511704], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.01452104, -0.20112546, 0.40225091, -0.07051025, -0.14182746, + 0.28365493, -0.0623881 , -0.00511704, -0.12795188, 0.13844642, + -0.06128522, 0.80848895], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.01452104, 0.40225091, -0.20112546, -0.07051025, 0.28365493, + -0.14182746, -0.00511704, -0.0623881 , 0.13844642, -0.12795188, + 0.80848895, -0.06128522], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.20112546, -0.01452104, 0.40225091, -0.14182746, -0.07051025, + 0.28365493, -0.12795188, -0.06128522, -0.0623881 , 0.80848895, + -0.00511704, 0.13844642], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.40225091, -0.01452104, -0.20112546, 0.28365493, -0.07051025, + -0.14182746, 0.13844642, 0.80848895, -0.00511704, -0.06128522, + -0.0623881 , -0.12795188], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.09390619, 0.09390619, 0.09390619, 0.84133592, 0.84133592, + 0.84133592, 0.28345353, 0.28345353, 0.28345353, 0.28345353, + 0.28345353, 0.28345353], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.05512857, -0.05512857, 0.6533077 , -0.12499898, -0.12499898, + 0.00143058, -0.04749626, -0.11771516, -0.04749626, 0.17376836, + -0.11771516, 0.17376836]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.6533077 , -0.05512857, -0.05512857, 0.00143058, -0.12499898, + -0.12499898, 0.17376836, 0.17376836, -0.11771516, -0.11771516, + -0.04749626, -0.04749626]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.05512857, 0.6533077 , -0.05512857, -0.12499898, 0.00143058, + -0.12499898, -0.11771516, -0.04749626, 0.17376836, -0.04749626, + 0.17376836, -0.11771516]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.22051427, 0.22051427, 0.01592089, 0.49999593, 0.49999593, + 0.24857553, 0.79016044, 0.13530783, 0.79016044, 0.06597479, + 0.13530783, 0.06597479]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.01592089, 0.22051427, 0.22051427, 0.24857553, 0.49999593, + 0.49999593, 0.06597479, 0.06597479, 0.13530783, 0.13530783, + 0.79016044, 0.79016044]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.22051427, 0.01592089, 0.22051427, 0.49999593, 0.24857553, + 0.49999593, 0.13530783, 0.79016044, 0.06597479, 0.79016044, + 0.06597479, 0.13530783]]])}}}, MixedElement(*[VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, dim=2, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {None: {(0, 1): array([[[ 7.47643942e-01, 7.47643942e-01, -2.49528788e+00, + 2.85301932e-03, 2.85301932e-03, -1.00570604e+00, + 7.87419801e-01, -2.41409804e-01, 7.87419801e-01, + -1.54601000e+00, -2.41409804e-01, -1.54601000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 4.44089210e-16, -4.44089210e-16, -1.66533454e-16, + -1.11022302e-16, -5.55111512e-17, -1.66533454e-16, + 1.24900090e-16, -1.11022302e-16, 0.00000000e+00, + -1.11022302e-16, 5.55111512e-17, 6.93889390e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -7.47643942e-01, 2.49528788e+00, -7.47643942e-01, + -2.85301932e-03, 1.00570604e+00, -2.85301932e-03, + 2.41409804e-01, -7.87419801e-01, 1.54601000e+00, + -7.87419801e-01, 1.54601000e+00, 2.41409804e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 3.49528788e+00, 2.52356058e-01, 2.52356058e-01, + 2.00570604e+00, 9.97146981e-01, 9.97146981e-01, + 2.54601000e+00, 2.54601000e+00, 1.24140980e+00, + 1.24140980e+00, 2.12580199e-01, 2.12580199e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.22044605e-16, -3.24293183e+00, 3.24293183e+00, + 3.77475828e-15, -1.00855906e+00, 1.00855906e+00, + -1.02882960e+00, 1.02882960e+00, -2.33342980e+00, + 2.33342980e+00, -1.30460019e+00, 1.30460019e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -3.49528788e+00, -2.52356058e-01, -2.52356058e-01, + -2.00570604e+00, -9.97146981e-01, -9.97146981e-01, + -2.54601000e+00, -2.54601000e+00, -1.24140980e+00, + -1.24140980e+00, -2.12580199e-01, -2.12580199e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47643942e-01, 7.47643942e-01, -2.49528788e+00, + 2.85301932e-03, 2.85301932e-03, -1.00570604e+00, + 7.87419801e-01, -2.41409804e-01, 7.87419801e-01, + -1.54601000e+00, -2.41409804e-01, -1.54601000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.44089210e-16, -4.44089210e-16, -1.66533454e-16, + -1.11022302e-16, -5.55111512e-17, -1.66533454e-16, + 1.24900090e-16, -1.11022302e-16, 0.00000000e+00, + -1.11022302e-16, 5.55111512e-17, 6.93889390e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.47643942e-01, 2.49528788e+00, -7.47643942e-01, + -2.85301932e-03, 1.00570604e+00, -2.85301932e-03, + 2.41409804e-01, -7.87419801e-01, 1.54601000e+00, + -7.87419801e-01, 1.54601000e+00, 2.41409804e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.49528788e+00, 2.52356058e-01, 2.52356058e-01, + 2.00570604e+00, 9.97146981e-01, 9.97146981e-01, + 2.54601000e+00, 2.54601000e+00, 1.24140980e+00, + 1.24140980e+00, 2.12580199e-01, 2.12580199e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.22044605e-16, -3.24293183e+00, 3.24293183e+00, + 3.77475828e-15, -1.00855906e+00, 1.00855906e+00, + -1.02882960e+00, 1.02882960e+00, -2.33342980e+00, + 2.33342980e+00, -1.30460019e+00, 1.30460019e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -3.49528788e+00, -2.52356058e-01, -2.52356058e-01, + -2.00570604e+00, -9.97146981e-01, -9.97146981e-01, + -2.54601000e+00, -2.54601000e+00, -1.24140980e+00, + -1.24140980e+00, -2.12580199e-01, -2.12580199e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]]), (1, 0): array([[[ 7.47643942e-01, 7.47643942e-01, -2.49528788e+00, + 2.85301932e-03, 2.85301932e-03, -1.00570604e+00, + 7.87419801e-01, -2.41409804e-01, 7.87419801e-01, + -1.54601000e+00, -2.41409804e-01, -1.54601000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.49528788e+00, -7.47643942e-01, -7.47643942e-01, + 1.00570604e+00, -2.85301932e-03, -2.85301932e-03, + 1.54601000e+00, 1.54601000e+00, 2.41409804e-01, + 2.41409804e-01, -7.87419801e-01, -7.87419801e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.52356058e-01, 3.49528788e+00, 2.52356058e-01, + 9.97146981e-01, 2.00570604e+00, 9.97146981e-01, + 1.24140980e+00, 2.12580199e-01, 2.54601000e+00, + 2.12580199e-01, 2.54601000e+00, 1.24140980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -2.52356058e-01, -3.49528788e+00, -2.52356058e-01, + -9.97146981e-01, -2.00570604e+00, -9.97146981e-01, + -1.24140980e+00, -2.12580199e-01, -2.54601000e+00, + -2.12580199e-01, -2.54601000e+00, -1.24140980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -3.24293183e+00, -1.09888393e-15, 3.24293183e+00, + -1.00855906e+00, 3.57248574e-15, 1.00855906e+00, + -2.33342980e+00, -1.30460019e+00, -1.02882960e+00, + 1.30460019e+00, 1.02882960e+00, 2.33342980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47643942e-01, 7.47643942e-01, -2.49528788e+00, + 2.85301932e-03, 2.85301932e-03, -1.00570604e+00, + 7.87419801e-01, -2.41409804e-01, 7.87419801e-01, + -1.54601000e+00, -2.41409804e-01, -1.54601000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.49528788e+00, -7.47643942e-01, -7.47643942e-01, + 1.00570604e+00, -2.85301932e-03, -2.85301932e-03, + 1.54601000e+00, 1.54601000e+00, 2.41409804e-01, + 2.41409804e-01, -7.87419801e-01, -7.87419801e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.52356058e-01, 3.49528788e+00, 2.52356058e-01, + 9.97146981e-01, 2.00570604e+00, 9.97146981e-01, + 1.24140980e+00, 2.12580199e-01, 2.54601000e+00, + 2.12580199e-01, 2.54601000e+00, 1.24140980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.52356058e-01, -3.49528788e+00, -2.52356058e-01, + -9.97146981e-01, -2.00570604e+00, -9.97146981e-01, + -1.24140980e+00, -2.12580199e-01, -2.54601000e+00, + -2.12580199e-01, -2.54601000e+00, -1.24140980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -3.24293183e+00, -1.09888393e-15, 3.24293183e+00, + -1.00855906e+00, 3.57248574e-15, 1.00855906e+00, + -2.33342980e+00, -1.30460019e+00, -1.02882960e+00, + 1.30460019e+00, 1.02882960e+00, 2.33342980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]]), (0, 0): array([[[-0.05512857, -0.05512857, 0.6533077 , -0.12499898, -0.12499898, + 0.00143058, -0.04749626, -0.11771516, -0.04749626, 0.17376836, + -0.11771516, 0.17376836], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.6533077 , -0.05512857, -0.05512857, 0.00143058, -0.12499898, + -0.12499898, 0.17376836, 0.17376836, -0.11771516, -0.11771516, + -0.04749626, -0.04749626], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[-0.05512857, 0.6533077 , -0.05512857, -0.12499898, 0.00143058, + -0.12499898, -0.11771516, -0.04749626, 0.17376836, -0.04749626, + 0.17376836, -0.11771516], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.22051427, 0.22051427, 0.01592089, 0.49999593, 0.49999593, + 0.24857553, 0.79016044, 0.13530783, 0.79016044, 0.06597479, + 0.13530783, 0.06597479], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.01592089, 0.22051427, 0.22051427, 0.24857553, 0.49999593, + 0.49999593, 0.06597479, 0.06597479, 0.13530783, 0.13530783, + 0.79016044, 0.79016044], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.22051427, 0.01592089, 0.22051427, 0.49999593, 0.24857553, + 0.49999593, 0.13530783, 0.79016044, 0.06597479, 0.79016044, + 0.06597479, 0.13530783], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.05512857, -0.05512857, 0.6533077 , -0.12499898, -0.12499898, + 0.00143058, -0.04749626, -0.11771516, -0.04749626, 0.17376836, + -0.11771516, 0.17376836], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.6533077 , -0.05512857, -0.05512857, 0.00143058, -0.12499898, + -0.12499898, 0.17376836, 0.17376836, -0.11771516, -0.11771516, + -0.04749626, -0.04749626], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.05512857, 0.6533077 , -0.05512857, -0.12499898, 0.00143058, + -0.12499898, -0.11771516, -0.04749626, 0.17376836, -0.04749626, + 0.17376836, -0.11771516], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.22051427, 0.22051427, 0.01592089, 0.49999593, 0.49999593, + 0.24857553, 0.79016044, 0.13530783, 0.79016044, 0.06597479, + 0.13530783, 0.06597479], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.01592089, 0.22051427, 0.22051427, 0.24857553, 0.49999593, + 0.49999593, 0.06597479, 0.06597479, 0.13530783, 0.13530783, + 0.79016044, 0.79016044], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.22051427, 0.01592089, 0.22051427, 0.49999593, 0.24857553, + 0.49999593, 0.13530783, 0.79016044, 0.06597479, 0.79016044, + 0.06597479, 0.13530783], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.06308901, 0.06308901, 0.87382197, 0.24928675, 0.24928675, + 0.50142651, 0.05314505, 0.31035245, 0.05314505, 0.6365025 , + 0.31035245, 0.6365025 ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.87382197, 0.06308901, 0.06308901, 0.50142651, 0.24928675, + 0.24928675, 0.6365025 , 0.6365025 , 0.31035245, 0.31035245, + 0.05314505, 0.05314505]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.06308901, 0.87382197, 0.06308901, 0.24928675, 0.50142651, + 0.24928675, 0.31035245, 0.05314505, 0.6365025 , 0.05314505, + 0.6365025 , 0.31035245]]])}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.06308901, 0.06308901, 0.87382197, 0.24928675, 0.24928675, + 0.50142651, 0.05314505, 0.31035245, 0.05314505, 0.6365025 , + 0.31035245, 0.6365025 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.87382197, 0.06308901, 0.06308901, 0.50142651, 0.24928675, + 0.24928675, 0.6365025 , 0.6365025 , 0.31035245, 0.31035245, + 0.05314505, 0.05314505], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.06308901, 0.87382197, 0.06308901, 0.24928675, 0.50142651, + 0.24928675, 0.31035245, 0.05314505, 0.6365025 , 0.05314505, + 0.6365025 , 0.31035245], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.06308901, 0.06308901, 0.87382197, 0.24928675, 0.24928675, + 0.50142651, 0.05314505, 0.31035245, 0.05314505, 0.6365025 , + 0.31035245, 0.6365025 ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.87382197, 0.06308901, 0.06308901, 0.50142651, 0.24928675, + 0.24928675, 0.6365025 , 0.6365025 , 0.31035245, 0.31035245, + 0.05314505, 0.05314505]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.06308901, 0.87382197, 0.06308901, 0.24928675, 0.50142651, + 0.24928675, 0.31035245, 0.05314505, 0.6365025 , 0.05314505, + 0.6365025 , 0.31035245]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -4.85931890e-01, 8.88178420e-16, + 4.85931890e-01, 6.37592643e+00, -2.44372756e+00, + -5.37330206e-02, 5.37330206e-02, 2.44372756e+00, + -6.37592643e+00, 2.66453526e-15, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -4.85931890e-01, -5.55111512e-16, + 3.44372756e+00, -2.30167545e-01, 1.20457074e+00, + 2.21356002e+00, -5.17135569e+00, 1.76434524e-01, + 2.30167545e-01, -1.38100527e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -3.44372756e+00, 3.33066907e-16, + 4.85931890e-01, -2.30167545e-01, -1.76434524e-01, + 5.17135569e+00, -2.21356002e+00, -1.20457074e+00, + 2.30167545e-01, 1.38100527e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.04638309e-01, 2.18575158e-16, + -4.04638309e-01, 1.13786606e+00, 1.11855323e+00, + -8.38942398e-01, 8.38942398e-01, -1.11855323e+00, + -1.13786606e+00, 1.14908083e-14, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.04638309e-01, -1.38777878e-17, + -1.18553235e-01, -2.82847955e-01, 2.25318218e+00, + -1.40140119e+00, 1.11531612e+00, -5.56094442e-01, + 2.82847955e-01, -1.69708773e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.18553235e-01, 9.71445147e-17, + -4.04638309e-01, -2.82847955e-01, 5.56094442e-01, + -1.11531612e+00, 1.40140119e+00, -2.25318218e+00, + 2.82847955e-01, 1.69708773e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -5.59823902e-01, 3.33066907e-16, + -4.92870367e-01, 2.60506708e+00, 2.46932174e+00, + 7.50232851e-01, 3.02461418e-01, 1.95093341e+00, + -2.60506708e+00, -4.42025515e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.92870367e-01, -1.66533454e-16, + 5.59823902e-01, 2.60506708e+00, -1.95093341e+00, + -3.02461418e-01, -7.50232851e-01, -2.46932174e+00, + -2.60506708e+00, 4.42025515e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -5.59823902e-01, -2.13370988e-16, + 7.40805832e-01, -9.62843375e-02, 3.93699696e+00, + 1.74991003e+00, -1.93089196e+00, 9.51256225e-01, + 9.62843375e-02, -4.88825318e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -7.40805832e-01, -2.77555756e-16, + 5.59823902e-01, -9.62843375e-02, -9.51256225e-01, + 1.93089196e+00, -1.74991003e+00, -3.93699696e+00, + 9.62843375e-02, 4.88825318e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.92870367e-01, -3.98986399e-17, + 7.40805832e-01, -2.01023374e-01, 6.74175116e-01, + -2.56560608e+00, 1.33192988e+00, -2.06177081e-01, + 2.01023374e-01, -4.67998035e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -7.40805832e-01, 2.63677968e-16, + -4.92870367e-01, -2.01023374e-01, 2.06177081e-01, + -1.33192988e+00, 2.56560608e+00, -6.74175116e-01, + 2.01023374e-01, 4.67998035e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE2_C2_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.47643942e-01, + 2.49528788e+00, 0.00000000e+00, 2.52356058e-01, + -2.52356058e-01, -3.24293183e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.47643942e-01, + -7.47643942e-01, 0.00000000e+00, 3.49528788e+00, + -3.49528788e+00, -1.09888393e-15], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.49528788e+00, + -7.47643942e-01, 0.00000000e+00, 2.52356058e-01, + -2.52356058e-01, 3.24293183e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 2.85301932e-03, + 1.00570604e+00, 0.00000000e+00, 9.97146981e-01, + -9.97146981e-01, -1.00855906e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 2.85301932e-03, + -2.85301932e-03, 0.00000000e+00, 2.00570604e+00, + -2.00570604e+00, 3.57248574e-15], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00570604e+00, + -2.85301932e-03, 0.00000000e+00, 9.97146981e-01, + -9.97146981e-01, 1.00855906e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.87419801e-01, + 1.54601000e+00, 0.00000000e+00, 1.24140980e+00, + -1.24140980e+00, -2.33342980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.41409804e-01, + 1.54601000e+00, 0.00000000e+00, 2.12580199e-01, + -2.12580199e-01, -1.30460019e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.87419801e-01, + 2.41409804e-01, 0.00000000e+00, 2.54601000e+00, + -2.54601000e+00, -1.02882960e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.54601000e+00, + 2.41409804e-01, 0.00000000e+00, 2.12580199e-01, + -2.12580199e-01, 1.30460019e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.41409804e-01, + -7.87419801e-01, 0.00000000e+00, 2.54601000e+00, + -2.54601000e+00, 1.02882960e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.54601000e+00, + -7.87419801e-01, 0.00000000e+00, 1.24140980e+00, + -1.24140980e+00, 2.33342980e+00]]), 'FE1_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.47643942e-01, 2.49528788e+00, 0.00000000e+00, + 2.52356058e-01, -2.52356058e-01, -3.24293183e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.47643942e-01, -7.47643942e-01, 0.00000000e+00, + 3.49528788e+00, -3.49528788e+00, -1.09888393e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.49528788e+00, -7.47643942e-01, 0.00000000e+00, + 2.52356058e-01, -2.52356058e-01, 3.24293183e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.85301932e-03, 1.00570604e+00, 0.00000000e+00, + 9.97146981e-01, -9.97146981e-01, -1.00855906e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.85301932e-03, -2.85301932e-03, 0.00000000e+00, + 2.00570604e+00, -2.00570604e+00, 3.57248574e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00570604e+00, -2.85301932e-03, 0.00000000e+00, + 9.97146981e-01, -9.97146981e-01, 1.00855906e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.87419801e-01, 1.54601000e+00, 0.00000000e+00, + 1.24140980e+00, -1.24140980e+00, -2.33342980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.41409804e-01, 1.54601000e+00, 0.00000000e+00, + 2.12580199e-01, -2.12580199e-01, -1.30460019e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.87419801e-01, 2.41409804e-01, 0.00000000e+00, + 2.54601000e+00, -2.54601000e+00, -1.02882960e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.54601000e+00, 2.41409804e-01, 0.00000000e+00, + 2.12580199e-01, -2.12580199e-01, 1.30460019e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.41409804e-01, -7.87419801e-01, 0.00000000e+00, + 2.54601000e+00, -2.54601000e+00, 1.02882960e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.54601000e+00, -7.87419801e-01, 0.00000000e+00, + 1.24140980e+00, -1.24140980e+00, 2.33342980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.]]), 'FE2_C0_D01': array([[ -4.85931890e-01, 8.88178420e-16, 4.85931890e-01, + 6.37592643e+00, -2.44372756e+00, -5.37330206e-02, + 5.37330206e-02, 2.44372756e+00, -6.37592643e+00, + 2.66453526e-15, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -4.85931890e-01, -5.55111512e-16, 3.44372756e+00, + -2.30167545e-01, 1.20457074e+00, 2.21356002e+00, + -5.17135569e+00, 1.76434524e-01, 2.30167545e-01, + -1.38100527e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -3.44372756e+00, 3.33066907e-16, 4.85931890e-01, + -2.30167545e-01, -1.76434524e-01, 5.17135569e+00, + -2.21356002e+00, -1.20457074e+00, 2.30167545e-01, + 1.38100527e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.04638309e-01, 2.18575158e-16, -4.04638309e-01, + 1.13786606e+00, 1.11855323e+00, -8.38942398e-01, + 8.38942398e-01, -1.11855323e+00, -1.13786606e+00, + 1.14908083e-14, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.04638309e-01, -1.38777878e-17, -1.18553235e-01, + -2.82847955e-01, 2.25318218e+00, -1.40140119e+00, + 1.11531612e+00, -5.56094442e-01, 2.82847955e-01, + -1.69708773e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.18553235e-01, 9.71445147e-17, -4.04638309e-01, + -2.82847955e-01, 5.56094442e-01, -1.11531612e+00, + 1.40140119e+00, -2.25318218e+00, 2.82847955e-01, + 1.69708773e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -5.59823902e-01, 3.33066907e-16, -4.92870367e-01, + 2.60506708e+00, 2.46932174e+00, 7.50232851e-01, + 3.02461418e-01, 1.95093341e+00, -2.60506708e+00, + -4.42025515e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.92870367e-01, -1.66533454e-16, 5.59823902e-01, + 2.60506708e+00, -1.95093341e+00, -3.02461418e-01, + -7.50232851e-01, -2.46932174e+00, -2.60506708e+00, + 4.42025515e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -5.59823902e-01, -2.13370988e-16, 7.40805832e-01, + -9.62843375e-02, 3.93699696e+00, 1.74991003e+00, + -1.93089196e+00, 9.51256225e-01, 9.62843375e-02, + -4.88825318e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -7.40805832e-01, -2.77555756e-16, 5.59823902e-01, + -9.62843375e-02, -9.51256225e-01, 1.93089196e+00, + -1.74991003e+00, -3.93699696e+00, 9.62843375e-02, + 4.88825318e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.92870367e-01, -3.98986399e-17, 7.40805832e-01, + -2.01023374e-01, 6.74175116e-01, -2.56560608e+00, + 1.33192988e+00, -2.06177081e-01, 2.01023374e-01, + -4.67998035e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -7.40805832e-01, 2.63677968e-16, -4.92870367e-01, + -2.01023374e-01, 2.06177081e-01, -1.33192988e+00, + 2.56560608e+00, -6.74175116e-01, 2.01023374e-01, + 4.67998035e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.046308 , 0.44026899, 0.046308 , 0.40225091, -0.20112546, + -0.01452104, -0.01452104, -0.20112546, 0.40225091, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.046308 , 0.046308 , 0.44026899, -0.20112546, 0.40225091, + -0.20112546, 0.40225091, -0.01452104, -0.01452104, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.44026899, 0.046308 , 0.046308 , -0.01452104, -0.01452104, + 0.40225091, -0.20112546, 0.40225091, -0.20112546, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.03935169, -0.06267372, 0.03935169, 0.28365493, -0.14182746, + -0.07051025, -0.07051025, -0.14182746, 0.28365493, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.03935169, 0.03935169, -0.06267372, -0.14182746, 0.28365493, + -0.14182746, 0.28365493, -0.07051025, -0.07051025, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.06267372, 0.03935169, 0.03935169, -0.07051025, -0.07051025, + 0.28365493, -0.14182746, 0.28365493, -0.14182746, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.04111073, -0.02619323, 0.01143583, 0.80848895, -0.06128522, + -0.0623881 , -0.00511704, -0.12795188, 0.13844642, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.01143583, -0.02619323, 0.04111073, 0.13844642, -0.12795188, + -0.00511704, -0.0623881 , -0.06128522, 0.80848895, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.04111073, 0.01143583, -0.02619323, -0.06128522, 0.80848895, + -0.12795188, 0.13844642, -0.0623881 , -0.00511704, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.02619323, 0.01143583, 0.04111073, -0.00511704, -0.0623881 , + 0.13844642, -0.12795188, 0.80848895, -0.06128522, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.01143583, 0.04111073, -0.02619323, -0.12795188, 0.13844642, + -0.06128522, 0.80848895, -0.00511704, -0.0623881 , 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.02619323, 0.04111073, 0.01143583, -0.0623881 , -0.00511704, + 0.80848895, -0.06128522, 0.13844642, -0.12795188, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ]]), 'FE2_C0': array([[ 0.046308 , 0.44026899, 0.046308 , 0.40225091, -0.20112546, + -0.01452104, -0.01452104, -0.20112546, 0.40225091, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.046308 , 0.046308 , 0.44026899, -0.20112546, 0.40225091, + -0.20112546, 0.40225091, -0.01452104, -0.01452104, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.44026899, 0.046308 , 0.046308 , -0.01452104, -0.01452104, + 0.40225091, -0.20112546, 0.40225091, -0.20112546, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.03935169, -0.06267372, 0.03935169, 0.28365493, -0.14182746, + -0.07051025, -0.07051025, -0.14182746, 0.28365493, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.03935169, 0.03935169, -0.06267372, -0.14182746, 0.28365493, + -0.14182746, 0.28365493, -0.07051025, -0.07051025, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.06267372, 0.03935169, 0.03935169, -0.07051025, -0.07051025, + 0.28365493, -0.14182746, 0.28365493, -0.14182746, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.04111073, -0.02619323, 0.01143583, 0.80848895, -0.06128522, + -0.0623881 , -0.00511704, -0.12795188, 0.13844642, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.01143583, -0.02619323, 0.04111073, 0.13844642, -0.12795188, + -0.00511704, -0.0623881 , -0.06128522, 0.80848895, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.04111073, 0.01143583, -0.02619323, -0.06128522, 0.80848895, + -0.12795188, 0.13844642, -0.0623881 , -0.00511704, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.02619323, 0.01143583, 0.04111073, -0.00511704, -0.0623881 , + 0.13844642, -0.12795188, 0.80848895, -0.06128522, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.01143583, 0.04111073, -0.02619323, -0.12795188, 0.13844642, + -0.06128522, 0.80848895, -0.00511704, -0.0623881 , 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.02619323, 0.04111073, 0.01143583, -0.0623881 , -0.00511704, + 0.80848895, -0.06128522, 0.13844642, -0.12795188, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]]), 'FE2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.05512857, 0.6533077 , -0.05512857, 0.22051427, 0.01592089, + 0.22051427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.05512857, -0.05512857, 0.6533077 , 0.22051427, 0.22051427, + 0.01592089], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.6533077 , -0.05512857, -0.05512857, 0.01592089, 0.22051427, + 0.22051427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.12499898, 0.00143058, -0.12499898, 0.49999593, 0.24857553, + 0.49999593], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.12499898, -0.12499898, 0.00143058, 0.49999593, 0.49999593, + 0.24857553], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.00143058, -0.12499898, -0.12499898, 0.24857553, 0.49999593, + 0.49999593], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.04749626, 0.17376836, -0.11771516, 0.79016044, 0.06597479, + 0.13530783], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.11771516, 0.17376836, -0.04749626, 0.13530783, 0.06597479, + 0.79016044], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.04749626, -0.11771516, 0.17376836, 0.79016044, 0.13530783, + 0.06597479], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.17376836, -0.11771516, -0.04749626, 0.06597479, 0.13530783, + 0.79016044], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.11771516, -0.04749626, 0.17376836, 0.13530783, 0.79016044, + 0.06597479], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.17376836, -0.04749626, -0.11771516, 0.06597479, 0.79016044, + 0.13530783]]), 'FE3': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C0_D01': array([[ 7.47643942e-01, 4.44089210e-16, -7.47643942e-01, + 3.49528788e+00, 2.22044605e-16, -3.49528788e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47643942e-01, -4.44089210e-16, 2.49528788e+00, + 2.52356058e-01, -3.24293183e+00, -2.52356058e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.49528788e+00, -1.66533454e-16, -7.47643942e-01, + 2.52356058e-01, 3.24293183e+00, -2.52356058e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.85301932e-03, -1.11022302e-16, -2.85301932e-03, + 2.00570604e+00, 3.77475828e-15, -2.00570604e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.85301932e-03, -5.55111512e-17, 1.00570604e+00, + 9.97146981e-01, -1.00855906e+00, -9.97146981e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00570604e+00, -1.66533454e-16, -2.85301932e-03, + 9.97146981e-01, 1.00855906e+00, -9.97146981e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.87419801e-01, 1.24900090e-16, 2.41409804e-01, + 2.54601000e+00, -1.02882960e+00, -2.54601000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.41409804e-01, -1.11022302e-16, -7.87419801e-01, + 2.54601000e+00, 1.02882960e+00, -2.54601000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.87419801e-01, 0.00000000e+00, 1.54601000e+00, + 1.24140980e+00, -2.33342980e+00, -1.24140980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.54601000e+00, -1.11022302e-16, -7.87419801e-01, + 1.24140980e+00, 2.33342980e+00, -1.24140980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.41409804e-01, 5.55111512e-17, 1.54601000e+00, + 2.12580199e-01, -1.30460019e+00, -2.12580199e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.54601000e+00, 6.93889390e-17, 2.41409804e-01, + 2.12580199e-01, 1.30460019e+00, -2.12580199e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.06308901, 0.87382197, + 0.06308901], + [ 0. , 0. , 0. , 0.06308901, 0.06308901, + 0.87382197], + [ 0. , 0. , 0. , 0.87382197, 0.06308901, + 0.06308901], + [ 0. , 0. , 0. , 0.24928675, 0.50142651, + 0.24928675], + [ 0. , 0. , 0. , 0.24928675, 0.24928675, + 0.50142651], + [ 0. , 0. , 0. , 0.50142651, 0.24928675, + 0.24928675], + [ 0. , 0. , 0. , 0.05314505, 0.6365025 , + 0.31035245], + [ 0. , 0. , 0. , 0.31035245, 0.6365025 , + 0.05314505], + [ 0. , 0. , 0. , 0.05314505, 0.31035245, + 0.6365025 ], + [ 0. , 0. , 0. , 0.6365025 , 0.31035245, + 0.05314505], + [ 0. , 0. , 0. , 0.31035245, 0.05314505, + 0.6365025 ], + [ 0. , 0. , 0. , 0.6365025 , 0.05314505, + 0.31035245]]), 'FE0_C0': array([[ 0.06308901, 0.87382197, 0.06308901, 0. , 0. , + 0. ], + [ 0.06308901, 0.06308901, 0.87382197, 0. , 0. , + 0. ], + [ 0.87382197, 0.06308901, 0.06308901, 0. , 0. , + 0. ], + [ 0.24928675, 0.50142651, 0.24928675, 0. , 0. , + 0. ], + [ 0.24928675, 0.24928675, 0.50142651, 0. , 0. , + 0. ], + [ 0.50142651, 0.24928675, 0.24928675, 0. , 0. , + 0. ], + [ 0.05314505, 0.6365025 , 0.31035245, 0. , 0. , + 0. ], + [ 0.31035245, 0.6365025 , 0.05314505, 0. , 0. , + 0. ], + [ 0.05314505, 0.31035245, 0.6365025 , 0. , 0. , + 0. ], + [ 0.6365025 , 0.31035245, 0.05314505, 0. , 0. , + 0. ], + [ 0.31035245, 0.05314505, 0.6365025 , 0. , 0. , + 0. ], + [ 0.6365025 , 0.05314505, 0.31035245, 0. , 0. , + 0. ]]), 'FE2_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -4.85931890e-01, 3.44372756e+00, + -1.38645914e-17, 1.20457074e+00, -2.30167545e-01, + 1.76434524e-01, 2.30167545e-01, 2.21356002e+00, + -5.17135569e+00, -1.38100527e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -4.85931890e-01, 4.85931890e-01, + 3.35148811e-16, -2.44372756e+00, 6.37592643e+00, + 2.44372756e+00, -6.37592643e+00, -5.37330206e-02, + 5.37330206e-02, -6.43415175e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -3.44372756e+00, 4.85931890e-01, + -9.23566062e-17, -1.76434524e-01, -2.30167545e-01, + -1.20457074e+00, 2.30167545e-01, 5.17135569e+00, + -2.21356002e+00, 1.38100527e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.04638309e-01, -1.18553235e-01, + -3.90397186e-17, 2.25318218e+00, -2.82847955e-01, + -5.56094442e-01, 2.82847955e-01, -1.40140119e+00, + 1.11531612e+00, -1.69708773e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.04638309e-01, -4.04638309e-01, + -3.69822127e-17, 1.11855323e+00, 1.13786606e+00, + -1.11855323e+00, -1.13786606e+00, -8.38942398e-01, + 8.38942398e-01, 1.51461450e-14, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.18553235e-01, -4.04638309e-01, + -1.47889501e-16, 5.56094442e-01, -2.82847955e-01, + -2.25318218e+00, 2.82847955e-01, -1.11531612e+00, + 1.40140119e+00, 1.69708773e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -5.59823902e-01, 7.40805832e-01, + 5.25620294e-17, 3.93699696e+00, -9.62843375e-02, + 9.51256225e-01, 9.62843375e-02, 1.74991003e+00, + -1.93089196e+00, -4.88825318e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.92870367e-01, 7.40805832e-01, + -1.38022087e-17, 6.74175116e-01, -2.01023374e-01, + -2.06177081e-01, 2.01023374e-01, -2.56560608e+00, + 1.33192988e+00, -4.67998035e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -5.59823902e-01, -4.92870367e-01, + 2.00322990e-16, 2.46932174e+00, 2.60506708e+00, + 1.95093341e+00, -2.60506708e+00, 7.50232851e-01, + 3.02461418e-01, -4.42025515e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -7.40805832e-01, -4.92870367e-01, + -3.95456510e-17, 2.06177081e-01, -2.01023374e-01, + -6.74175116e-01, 2.01023374e-01, -1.33192988e+00, + 2.56560608e+00, 4.67998035e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.92870367e-01, 5.59823902e-01, + -8.98417888e-17, -1.95093341e+00, 2.60506708e+00, + -2.46932174e+00, -2.60506708e+00, -3.02461418e-01, + -7.50232851e-01, 4.42025515e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -7.40805832e-01, 5.59823902e-01, + -2.63346192e-16, -9.51256225e-01, -9.62843375e-02, + -3.93699696e+00, 9.62843375e-02, 1.93089196e+00, + -1.74991003e+00, 4.88825318e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.47643942e-01, 4.44089210e-16, -7.47643942e-01, + 3.49528788e+00, 2.22044605e-16, -3.49528788e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.47643942e-01, -4.44089210e-16, 2.49528788e+00, + 2.52356058e-01, -3.24293183e+00, -2.52356058e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.49528788e+00, -1.66533454e-16, -7.47643942e-01, + 2.52356058e-01, 3.24293183e+00, -2.52356058e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.85301932e-03, -1.11022302e-16, -2.85301932e-03, + 2.00570604e+00, 3.77475828e-15, -2.00570604e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.85301932e-03, -5.55111512e-17, 1.00570604e+00, + 9.97146981e-01, -1.00855906e+00, -9.97146981e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00570604e+00, -1.66533454e-16, -2.85301932e-03, + 9.97146981e-01, 1.00855906e+00, -9.97146981e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.87419801e-01, 1.24900090e-16, 2.41409804e-01, + 2.54601000e+00, -1.02882960e+00, -2.54601000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.41409804e-01, -1.11022302e-16, -7.87419801e-01, + 2.54601000e+00, 1.02882960e+00, -2.54601000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.87419801e-01, 0.00000000e+00, 1.54601000e+00, + 1.24140980e+00, -2.33342980e+00, -1.24140980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.54601000e+00, -1.11022302e-16, -7.87419801e-01, + 1.24140980e+00, 2.33342980e+00, -1.24140980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.41409804e-01, 5.55111512e-17, 1.54601000e+00, + 2.12580199e-01, -1.30460019e+00, -2.12580199e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.54601000e+00, 6.93889390e-17, 2.41409804e-01, + 2.12580199e-01, 1.30460019e+00, -2.12580199e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_C2_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.47643942e-01, + 4.44089210e-16, -7.47643942e-01, 3.49528788e+00, + 2.22044605e-16, -3.49528788e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.47643942e-01, + -4.44089210e-16, 2.49528788e+00, 2.52356058e-01, + -3.24293183e+00, -2.52356058e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.49528788e+00, + -1.66533454e-16, -7.47643942e-01, 2.52356058e-01, + 3.24293183e+00, -2.52356058e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 2.85301932e-03, + -1.11022302e-16, -2.85301932e-03, 2.00570604e+00, + 3.77475828e-15, -2.00570604e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 2.85301932e-03, + -5.55111512e-17, 1.00570604e+00, 9.97146981e-01, + -1.00855906e+00, -9.97146981e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00570604e+00, + -1.66533454e-16, -2.85301932e-03, 9.97146981e-01, + 1.00855906e+00, -9.97146981e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.87419801e-01, + 1.24900090e-16, 2.41409804e-01, 2.54601000e+00, + -1.02882960e+00, -2.54601000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.41409804e-01, + -1.11022302e-16, -7.87419801e-01, 2.54601000e+00, + 1.02882960e+00, -2.54601000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.87419801e-01, + 0.00000000e+00, 1.54601000e+00, 1.24140980e+00, + -2.33342980e+00, -1.24140980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.54601000e+00, + -1.11022302e-16, -7.87419801e-01, 1.24140980e+00, + 2.33342980e+00, -1.24140980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.41409804e-01, + 5.55111512e-17, 1.54601000e+00, 2.12580199e-01, + -1.30460019e+00, -2.12580199e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.54601000e+00, + 6.93889390e-17, 2.41409804e-01, 2.12580199e-01, + 1.30460019e+00, -2.12580199e-01]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_C2_D01': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.]]), 'FE2_C0_D10': array([[ -4.85931890e-01, 3.44372756e+00, -1.38645914e-17, + 1.20457074e+00, -2.30167545e-01, 1.76434524e-01, + 2.30167545e-01, 2.21356002e+00, -5.17135569e+00, + -1.38100527e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -4.85931890e-01, 4.85931890e-01, 3.35148811e-16, + -2.44372756e+00, 6.37592643e+00, 2.44372756e+00, + -6.37592643e+00, -5.37330206e-02, 5.37330206e-02, + -6.43415175e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -3.44372756e+00, 4.85931890e-01, -9.23566062e-17, + -1.76434524e-01, -2.30167545e-01, -1.20457074e+00, + 2.30167545e-01, 5.17135569e+00, -2.21356002e+00, + 1.38100527e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.04638309e-01, -1.18553235e-01, -3.90397186e-17, + 2.25318218e+00, -2.82847955e-01, -5.56094442e-01, + 2.82847955e-01, -1.40140119e+00, 1.11531612e+00, + -1.69708773e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.04638309e-01, -4.04638309e-01, -3.69822127e-17, + 1.11855323e+00, 1.13786606e+00, -1.11855323e+00, + -1.13786606e+00, -8.38942398e-01, 8.38942398e-01, + 1.51461450e-14, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.18553235e-01, -4.04638309e-01, -1.47889501e-16, + 5.56094442e-01, -2.82847955e-01, -2.25318218e+00, + 2.82847955e-01, -1.11531612e+00, 1.40140119e+00, + 1.69708773e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -5.59823902e-01, 7.40805832e-01, 5.25620294e-17, + 3.93699696e+00, -9.62843375e-02, 9.51256225e-01, + 9.62843375e-02, 1.74991003e+00, -1.93089196e+00, + -4.88825318e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.92870367e-01, 7.40805832e-01, -1.38022087e-17, + 6.74175116e-01, -2.01023374e-01, -2.06177081e-01, + 2.01023374e-01, -2.56560608e+00, 1.33192988e+00, + -4.67998035e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -5.59823902e-01, -4.92870367e-01, 2.00322990e-16, + 2.46932174e+00, 2.60506708e+00, 1.95093341e+00, + -2.60506708e+00, 7.50232851e-01, 3.02461418e-01, + -4.42025515e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -7.40805832e-01, -4.92870367e-01, -3.95456510e-17, + 2.06177081e-01, -2.01023374e-01, -6.74175116e-01, + 2.01023374e-01, -1.33192988e+00, 2.56560608e+00, + 4.67998035e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.92870367e-01, 5.59823902e-01, -8.98417888e-17, + -1.95093341e+00, 2.60506708e+00, -2.46932174e+00, + -2.60506708e+00, -3.02461418e-01, -7.50232851e-01, + 4.42025515e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -7.40805832e-01, 5.59823902e-01, -2.63346192e-16, + -9.51256225e-01, -9.62843375e-02, -3.93699696e+00, + 9.62843375e-02, 1.93089196e+00, -1.74991003e+00, + 4.88825318e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0': array([[-0.05512857, 0.6533077 , -0.05512857, 0.22051427, 0.01592089, + 0.22051427, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.05512857, -0.05512857, 0.6533077 , 0.22051427, 0.22051427, + 0.01592089, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.6533077 , -0.05512857, -0.05512857, 0.01592089, 0.22051427, + 0.22051427, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12499898, 0.00143058, -0.12499898, 0.49999593, 0.24857553, + 0.49999593, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12499898, -0.12499898, 0.00143058, 0.49999593, 0.49999593, + 0.24857553, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.00143058, -0.12499898, -0.12499898, 0.24857553, 0.49999593, + 0.49999593, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04749626, 0.17376836, -0.11771516, 0.79016044, 0.06597479, + 0.13530783, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.11771516, 0.17376836, -0.04749626, 0.13530783, 0.06597479, + 0.79016044, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04749626, -0.11771516, 0.17376836, 0.79016044, 0.13530783, + 0.06597479, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.17376836, -0.11771516, -0.04749626, 0.06597479, 0.13530783, + 0.79016044, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.11771516, -0.04749626, 0.17376836, 0.13530783, 0.79016044, + 0.06597479, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.17376836, -0.04749626, -0.11771516, 0.06597479, 0.79016044, + 0.13530783, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -0.05512857, 0.6533077 , -0.05512857, 0.22051427, + 0.01592089, 0.22051427, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.05512857, -0.05512857, 0.6533077 , 0.22051427, + 0.22051427, 0.01592089, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.6533077 , -0.05512857, -0.05512857, 0.01592089, + 0.22051427, 0.22051427, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12499898, 0.00143058, -0.12499898, 0.49999593, + 0.24857553, 0.49999593, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12499898, -0.12499898, 0.00143058, 0.49999593, + 0.49999593, 0.24857553, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.00143058, -0.12499898, -0.12499898, 0.24857553, + 0.49999593, 0.49999593, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04749626, 0.17376836, -0.11771516, 0.79016044, + 0.06597479, 0.13530783, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11771516, 0.17376836, -0.04749626, 0.13530783, + 0.06597479, 0.79016044, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04749626, -0.11771516, 0.17376836, 0.79016044, + 0.13530783, 0.06597479, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.17376836, -0.11771516, -0.04749626, 0.06597479, + 0.13530783, 0.79016044, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11771516, -0.04749626, 0.17376836, 0.13530783, + 0.79016044, 0.06597479, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.17376836, -0.04749626, -0.11771516, 0.06597479, + 0.79016044, 0.13530783, 0. , 0. , 0. ]]), 'FE1_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.06308901, 0.87382197, 0.06308901], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.06308901, 0.06308901, 0.87382197], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.87382197, 0.06308901, 0.06308901], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.24928675, 0.50142651, 0.24928675], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.24928675, 0.24928675, 0.50142651], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.50142651, 0.24928675, 0.24928675], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.05314505, 0.6365025 , 0.31035245], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.31035245, 0.6365025 , 0.05314505], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.05314505, 0.31035245, 0.6365025 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.6365025 , 0.31035245, 0.05314505], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.31035245, 0.05314505, 0.6365025 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.6365025 , 0.05314505, 0.31035245]]), 'FE1_C0_D10': array([[ 7.47643942e-01, 2.49528788e+00, 0.00000000e+00, + 2.52356058e-01, -2.52356058e-01, -3.24293183e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47643942e-01, -7.47643942e-01, 0.00000000e+00, + 3.49528788e+00, -3.49528788e+00, -1.09888393e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.49528788e+00, -7.47643942e-01, 0.00000000e+00, + 2.52356058e-01, -2.52356058e-01, 3.24293183e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.85301932e-03, 1.00570604e+00, 0.00000000e+00, + 9.97146981e-01, -9.97146981e-01, -1.00855906e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.85301932e-03, -2.85301932e-03, 0.00000000e+00, + 2.00570604e+00, -2.00570604e+00, 3.57248574e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00570604e+00, -2.85301932e-03, 0.00000000e+00, + 9.97146981e-01, -9.97146981e-01, 1.00855906e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.87419801e-01, 1.54601000e+00, 0.00000000e+00, + 1.24140980e+00, -1.24140980e+00, -2.33342980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.41409804e-01, 1.54601000e+00, 0.00000000e+00, + 2.12580199e-01, -2.12580199e-01, -1.30460019e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.87419801e-01, 2.41409804e-01, 0.00000000e+00, + 2.54601000e+00, -2.54601000e+00, -1.02882960e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.54601000e+00, 2.41409804e-01, 0.00000000e+00, + 2.12580199e-01, -2.12580199e-01, 1.30460019e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.41409804e-01, -7.87419801e-01, 0.00000000e+00, + 2.54601000e+00, -2.54601000e+00, 1.02882960e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.54601000e+00, -7.87419801e-01, 0.00000000e+00, + 1.24140980e+00, -1.24140980e+00, 2.33342980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + tables: {'FE2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -4.85931890e-01, 8.88178420e-16, + 4.85931890e-01, 6.37592643e+00, -2.44372756e+00, + -5.37330206e-02, 5.37330206e-02, 2.44372756e+00, + -6.37592643e+00, 2.66453526e-15, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -4.85931890e-01, -5.55111512e-16, + 3.44372756e+00, -2.30167545e-01, 1.20457074e+00, + 2.21356002e+00, -5.17135569e+00, 1.76434524e-01, + 2.30167545e-01, -1.38100527e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -3.44372756e+00, 3.33066907e-16, + 4.85931890e-01, -2.30167545e-01, -1.76434524e-01, + 5.17135569e+00, -2.21356002e+00, -1.20457074e+00, + 2.30167545e-01, 1.38100527e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.04638309e-01, 2.18575158e-16, + -4.04638309e-01, 1.13786606e+00, 1.11855323e+00, + -8.38942398e-01, 8.38942398e-01, -1.11855323e+00, + -1.13786606e+00, 1.14908083e-14, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.04638309e-01, -1.38777878e-17, + -1.18553235e-01, -2.82847955e-01, 2.25318218e+00, + -1.40140119e+00, 1.11531612e+00, -5.56094442e-01, + 2.82847955e-01, -1.69708773e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.18553235e-01, 9.71445147e-17, + -4.04638309e-01, -2.82847955e-01, 5.56094442e-01, + -1.11531612e+00, 1.40140119e+00, -2.25318218e+00, + 2.82847955e-01, 1.69708773e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -5.59823902e-01, 3.33066907e-16, + -4.92870367e-01, 2.60506708e+00, 2.46932174e+00, + 7.50232851e-01, 3.02461418e-01, 1.95093341e+00, + -2.60506708e+00, -4.42025515e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.92870367e-01, -1.66533454e-16, + 5.59823902e-01, 2.60506708e+00, -1.95093341e+00, + -3.02461418e-01, -7.50232851e-01, -2.46932174e+00, + -2.60506708e+00, 4.42025515e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -5.59823902e-01, -2.13370988e-16, + 7.40805832e-01, -9.62843375e-02, 3.93699696e+00, + 1.74991003e+00, -1.93089196e+00, 9.51256225e-01, + 9.62843375e-02, -4.88825318e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -7.40805832e-01, -2.77555756e-16, + 5.59823902e-01, -9.62843375e-02, -9.51256225e-01, + 1.93089196e+00, -1.74991003e+00, -3.93699696e+00, + 9.62843375e-02, 4.88825318e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.92870367e-01, -3.98986399e-17, + 7.40805832e-01, -2.01023374e-01, 6.74175116e-01, + -2.56560608e+00, 1.33192988e+00, -2.06177081e-01, + 2.01023374e-01, -4.67998035e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -7.40805832e-01, 2.63677968e-16, + -4.92870367e-01, -2.01023374e-01, 2.06177081e-01, + -1.33192988e+00, 2.56560608e+00, -6.74175116e-01, + 2.01023374e-01, 4.67998035e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE2_C2_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.47643942e-01, + 2.49528788e+00, 0.00000000e+00, 2.52356058e-01, + -2.52356058e-01, -3.24293183e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.47643942e-01, + -7.47643942e-01, 0.00000000e+00, 3.49528788e+00, + -3.49528788e+00, -1.09888393e-15], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.49528788e+00, + -7.47643942e-01, 0.00000000e+00, 2.52356058e-01, + -2.52356058e-01, 3.24293183e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 2.85301932e-03, + 1.00570604e+00, 0.00000000e+00, 9.97146981e-01, + -9.97146981e-01, -1.00855906e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 2.85301932e-03, + -2.85301932e-03, 0.00000000e+00, 2.00570604e+00, + -2.00570604e+00, 3.57248574e-15], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00570604e+00, + -2.85301932e-03, 0.00000000e+00, 9.97146981e-01, + -9.97146981e-01, 1.00855906e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.87419801e-01, + 1.54601000e+00, 0.00000000e+00, 1.24140980e+00, + -1.24140980e+00, -2.33342980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.41409804e-01, + 1.54601000e+00, 0.00000000e+00, 2.12580199e-01, + -2.12580199e-01, -1.30460019e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.87419801e-01, + 2.41409804e-01, 0.00000000e+00, 2.54601000e+00, + -2.54601000e+00, -1.02882960e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.54601000e+00, + 2.41409804e-01, 0.00000000e+00, 2.12580199e-01, + -2.12580199e-01, 1.30460019e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.41409804e-01, + -7.87419801e-01, 0.00000000e+00, 2.54601000e+00, + -2.54601000e+00, 1.02882960e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.54601000e+00, + -7.87419801e-01, 0.00000000e+00, 1.24140980e+00, + -1.24140980e+00, 2.33342980e+00]]), 'FE1_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.47643942e-01, 2.49528788e+00, 0.00000000e+00, + 2.52356058e-01, -2.52356058e-01, -3.24293183e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.47643942e-01, -7.47643942e-01, 0.00000000e+00, + 3.49528788e+00, -3.49528788e+00, -1.09888393e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.49528788e+00, -7.47643942e-01, 0.00000000e+00, + 2.52356058e-01, -2.52356058e-01, 3.24293183e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.85301932e-03, 1.00570604e+00, 0.00000000e+00, + 9.97146981e-01, -9.97146981e-01, -1.00855906e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.85301932e-03, -2.85301932e-03, 0.00000000e+00, + 2.00570604e+00, -2.00570604e+00, 3.57248574e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00570604e+00, -2.85301932e-03, 0.00000000e+00, + 9.97146981e-01, -9.97146981e-01, 1.00855906e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.87419801e-01, 1.54601000e+00, 0.00000000e+00, + 1.24140980e+00, -1.24140980e+00, -2.33342980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.41409804e-01, 1.54601000e+00, 0.00000000e+00, + 2.12580199e-01, -2.12580199e-01, -1.30460019e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.87419801e-01, 2.41409804e-01, 0.00000000e+00, + 2.54601000e+00, -2.54601000e+00, -1.02882960e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.54601000e+00, 2.41409804e-01, 0.00000000e+00, + 2.12580199e-01, -2.12580199e-01, 1.30460019e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.41409804e-01, -7.87419801e-01, 0.00000000e+00, + 2.54601000e+00, -2.54601000e+00, 1.02882960e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.54601000e+00, -7.87419801e-01, 0.00000000e+00, + 1.24140980e+00, -1.24140980e+00, 2.33342980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.]]), 'FE2_C0_D01': array([[ -4.85931890e-01, 8.88178420e-16, 4.85931890e-01, + 6.37592643e+00, -2.44372756e+00, -5.37330206e-02, + 5.37330206e-02, 2.44372756e+00, -6.37592643e+00, + 2.66453526e-15, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -4.85931890e-01, -5.55111512e-16, 3.44372756e+00, + -2.30167545e-01, 1.20457074e+00, 2.21356002e+00, + -5.17135569e+00, 1.76434524e-01, 2.30167545e-01, + -1.38100527e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -3.44372756e+00, 3.33066907e-16, 4.85931890e-01, + -2.30167545e-01, -1.76434524e-01, 5.17135569e+00, + -2.21356002e+00, -1.20457074e+00, 2.30167545e-01, + 1.38100527e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.04638309e-01, 2.18575158e-16, -4.04638309e-01, + 1.13786606e+00, 1.11855323e+00, -8.38942398e-01, + 8.38942398e-01, -1.11855323e+00, -1.13786606e+00, + 1.14908083e-14, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.04638309e-01, -1.38777878e-17, -1.18553235e-01, + -2.82847955e-01, 2.25318218e+00, -1.40140119e+00, + 1.11531612e+00, -5.56094442e-01, 2.82847955e-01, + -1.69708773e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.18553235e-01, 9.71445147e-17, -4.04638309e-01, + -2.82847955e-01, 5.56094442e-01, -1.11531612e+00, + 1.40140119e+00, -2.25318218e+00, 2.82847955e-01, + 1.69708773e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -5.59823902e-01, 3.33066907e-16, -4.92870367e-01, + 2.60506708e+00, 2.46932174e+00, 7.50232851e-01, + 3.02461418e-01, 1.95093341e+00, -2.60506708e+00, + -4.42025515e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.92870367e-01, -1.66533454e-16, 5.59823902e-01, + 2.60506708e+00, -1.95093341e+00, -3.02461418e-01, + -7.50232851e-01, -2.46932174e+00, -2.60506708e+00, + 4.42025515e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -5.59823902e-01, -2.13370988e-16, 7.40805832e-01, + -9.62843375e-02, 3.93699696e+00, 1.74991003e+00, + -1.93089196e+00, 9.51256225e-01, 9.62843375e-02, + -4.88825318e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -7.40805832e-01, -2.77555756e-16, 5.59823902e-01, + -9.62843375e-02, -9.51256225e-01, 1.93089196e+00, + -1.74991003e+00, -3.93699696e+00, 9.62843375e-02, + 4.88825318e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.92870367e-01, -3.98986399e-17, 7.40805832e-01, + -2.01023374e-01, 6.74175116e-01, -2.56560608e+00, + 1.33192988e+00, -2.06177081e-01, 2.01023374e-01, + -4.67998035e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -7.40805832e-01, 2.63677968e-16, -4.92870367e-01, + -2.01023374e-01, 2.06177081e-01, -1.33192988e+00, + 2.56560608e+00, -6.74175116e-01, 2.01023374e-01, + 4.67998035e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.046308 , 0.44026899, 0.046308 , 0.40225091, -0.20112546, + -0.01452104, -0.01452104, -0.20112546, 0.40225091, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.046308 , 0.046308 , 0.44026899, -0.20112546, 0.40225091, + -0.20112546, 0.40225091, -0.01452104, -0.01452104, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.44026899, 0.046308 , 0.046308 , -0.01452104, -0.01452104, + 0.40225091, -0.20112546, 0.40225091, -0.20112546, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.03935169, -0.06267372, 0.03935169, 0.28365493, -0.14182746, + -0.07051025, -0.07051025, -0.14182746, 0.28365493, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.03935169, 0.03935169, -0.06267372, -0.14182746, 0.28365493, + -0.14182746, 0.28365493, -0.07051025, -0.07051025, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.06267372, 0.03935169, 0.03935169, -0.07051025, -0.07051025, + 0.28365493, -0.14182746, 0.28365493, -0.14182746, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.04111073, -0.02619323, 0.01143583, 0.80848895, -0.06128522, + -0.0623881 , -0.00511704, -0.12795188, 0.13844642, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.01143583, -0.02619323, 0.04111073, 0.13844642, -0.12795188, + -0.00511704, -0.0623881 , -0.06128522, 0.80848895, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.04111073, 0.01143583, -0.02619323, -0.06128522, 0.80848895, + -0.12795188, 0.13844642, -0.0623881 , -0.00511704, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.02619323, 0.01143583, 0.04111073, -0.00511704, -0.0623881 , + 0.13844642, -0.12795188, 0.80848895, -0.06128522, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.01143583, 0.04111073, -0.02619323, -0.12795188, 0.13844642, + -0.06128522, 0.80848895, -0.00511704, -0.0623881 , 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.02619323, 0.04111073, 0.01143583, -0.0623881 , -0.00511704, + 0.80848895, -0.06128522, 0.13844642, -0.12795188, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. ]]), 'FE2_C0': array([[ 0.046308 , 0.44026899, 0.046308 , 0.40225091, -0.20112546, + -0.01452104, -0.01452104, -0.20112546, 0.40225091, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.046308 , 0.046308 , 0.44026899, -0.20112546, 0.40225091, + -0.20112546, 0.40225091, -0.01452104, -0.01452104, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.44026899, 0.046308 , 0.046308 , -0.01452104, -0.01452104, + 0.40225091, -0.20112546, 0.40225091, -0.20112546, 0.09390619, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.03935169, -0.06267372, 0.03935169, 0.28365493, -0.14182746, + -0.07051025, -0.07051025, -0.14182746, 0.28365493, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.03935169, 0.03935169, -0.06267372, -0.14182746, 0.28365493, + -0.14182746, 0.28365493, -0.07051025, -0.07051025, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.06267372, 0.03935169, 0.03935169, -0.07051025, -0.07051025, + 0.28365493, -0.14182746, 0.28365493, -0.14182746, 0.84133592, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.04111073, -0.02619323, 0.01143583, 0.80848895, -0.06128522, + -0.0623881 , -0.00511704, -0.12795188, 0.13844642, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.01143583, -0.02619323, 0.04111073, 0.13844642, -0.12795188, + -0.00511704, -0.0623881 , -0.06128522, 0.80848895, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.04111073, 0.01143583, -0.02619323, -0.06128522, 0.80848895, + -0.12795188, 0.13844642, -0.0623881 , -0.00511704, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.02619323, 0.01143583, 0.04111073, -0.00511704, -0.0623881 , + 0.13844642, -0.12795188, 0.80848895, -0.06128522, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.01143583, 0.04111073, -0.02619323, -0.12795188, 0.13844642, + -0.06128522, 0.80848895, -0.00511704, -0.0623881 , 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.02619323, 0.04111073, 0.01143583, -0.0623881 , -0.00511704, + 0.80848895, -0.06128522, 0.13844642, -0.12795188, 0.28345353, + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]]), 'FE2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.05512857, 0.6533077 , -0.05512857, 0.22051427, 0.01592089, + 0.22051427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.05512857, -0.05512857, 0.6533077 , 0.22051427, 0.22051427, + 0.01592089], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.6533077 , -0.05512857, -0.05512857, 0.01592089, 0.22051427, + 0.22051427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.12499898, 0.00143058, -0.12499898, 0.49999593, 0.24857553, + 0.49999593], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.12499898, -0.12499898, 0.00143058, 0.49999593, 0.49999593, + 0.24857553], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.00143058, -0.12499898, -0.12499898, 0.24857553, 0.49999593, + 0.49999593], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.04749626, 0.17376836, -0.11771516, 0.79016044, 0.06597479, + 0.13530783], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.11771516, 0.17376836, -0.04749626, 0.13530783, 0.06597479, + 0.79016044], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.04749626, -0.11771516, 0.17376836, 0.79016044, 0.13530783, + 0.06597479], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.17376836, -0.11771516, -0.04749626, 0.06597479, 0.13530783, + 0.79016044], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + -0.11771516, -0.04749626, 0.17376836, 0.13530783, 0.79016044, + 0.06597479], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0.17376836, -0.04749626, -0.11771516, 0.06597479, 0.79016044, + 0.13530783]]), 'FE3': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C0_D01': array([[ 7.47643942e-01, 4.44089210e-16, -7.47643942e-01, + 3.49528788e+00, 2.22044605e-16, -3.49528788e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47643942e-01, -4.44089210e-16, 2.49528788e+00, + 2.52356058e-01, -3.24293183e+00, -2.52356058e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.49528788e+00, -1.66533454e-16, -7.47643942e-01, + 2.52356058e-01, 3.24293183e+00, -2.52356058e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.85301932e-03, -1.11022302e-16, -2.85301932e-03, + 2.00570604e+00, 3.77475828e-15, -2.00570604e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.85301932e-03, -5.55111512e-17, 1.00570604e+00, + 9.97146981e-01, -1.00855906e+00, -9.97146981e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00570604e+00, -1.66533454e-16, -2.85301932e-03, + 9.97146981e-01, 1.00855906e+00, -9.97146981e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.87419801e-01, 1.24900090e-16, 2.41409804e-01, + 2.54601000e+00, -1.02882960e+00, -2.54601000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.41409804e-01, -1.11022302e-16, -7.87419801e-01, + 2.54601000e+00, 1.02882960e+00, -2.54601000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.87419801e-01, 0.00000000e+00, 1.54601000e+00, + 1.24140980e+00, -2.33342980e+00, -1.24140980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.54601000e+00, -1.11022302e-16, -7.87419801e-01, + 1.24140980e+00, 2.33342980e+00, -1.24140980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.41409804e-01, 5.55111512e-17, 1.54601000e+00, + 2.12580199e-01, -1.30460019e+00, -2.12580199e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.54601000e+00, 6.93889390e-17, 2.41409804e-01, + 2.12580199e-01, 1.30460019e+00, -2.12580199e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.06308901, 0.87382197, + 0.06308901], + [ 0. , 0. , 0. , 0.06308901, 0.06308901, + 0.87382197], + [ 0. , 0. , 0. , 0.87382197, 0.06308901, + 0.06308901], + [ 0. , 0. , 0. , 0.24928675, 0.50142651, + 0.24928675], + [ 0. , 0. , 0. , 0.24928675, 0.24928675, + 0.50142651], + [ 0. , 0. , 0. , 0.50142651, 0.24928675, + 0.24928675], + [ 0. , 0. , 0. , 0.05314505, 0.6365025 , + 0.31035245], + [ 0. , 0. , 0. , 0.31035245, 0.6365025 , + 0.05314505], + [ 0. , 0. , 0. , 0.05314505, 0.31035245, + 0.6365025 ], + [ 0. , 0. , 0. , 0.6365025 , 0.31035245, + 0.05314505], + [ 0. , 0. , 0. , 0.31035245, 0.05314505, + 0.6365025 ], + [ 0. , 0. , 0. , 0.6365025 , 0.05314505, + 0.31035245]]), 'FE0_C0': array([[ 0.06308901, 0.87382197, 0.06308901, 0. , 0. , + 0. ], + [ 0.06308901, 0.06308901, 0.87382197, 0. , 0. , + 0. ], + [ 0.87382197, 0.06308901, 0.06308901, 0. , 0. , + 0. ], + [ 0.24928675, 0.50142651, 0.24928675, 0. , 0. , + 0. ], + [ 0.24928675, 0.24928675, 0.50142651, 0. , 0. , + 0. ], + [ 0.50142651, 0.24928675, 0.24928675, 0. , 0. , + 0. ], + [ 0.05314505, 0.6365025 , 0.31035245, 0. , 0. , + 0. ], + [ 0.31035245, 0.6365025 , 0.05314505, 0. , 0. , + 0. ], + [ 0.05314505, 0.31035245, 0.6365025 , 0. , 0. , + 0. ], + [ 0.6365025 , 0.31035245, 0.05314505, 0. , 0. , + 0. ], + [ 0.31035245, 0.05314505, 0.6365025 , 0. , 0. , + 0. ], + [ 0.6365025 , 0.05314505, 0.31035245, 0. , 0. , + 0. ]]), 'FE2_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -4.85931890e-01, 3.44372756e+00, + -1.38645914e-17, 1.20457074e+00, -2.30167545e-01, + 1.76434524e-01, 2.30167545e-01, 2.21356002e+00, + -5.17135569e+00, -1.38100527e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -4.85931890e-01, 4.85931890e-01, + 3.35148811e-16, -2.44372756e+00, 6.37592643e+00, + 2.44372756e+00, -6.37592643e+00, -5.37330206e-02, + 5.37330206e-02, -6.43415175e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -3.44372756e+00, 4.85931890e-01, + -9.23566062e-17, -1.76434524e-01, -2.30167545e-01, + -1.20457074e+00, 2.30167545e-01, 5.17135569e+00, + -2.21356002e+00, 1.38100527e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.04638309e-01, -1.18553235e-01, + -3.90397186e-17, 2.25318218e+00, -2.82847955e-01, + -5.56094442e-01, 2.82847955e-01, -1.40140119e+00, + 1.11531612e+00, -1.69708773e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.04638309e-01, -4.04638309e-01, + -3.69822127e-17, 1.11855323e+00, 1.13786606e+00, + -1.11855323e+00, -1.13786606e+00, -8.38942398e-01, + 8.38942398e-01, 1.51461450e-14, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.18553235e-01, -4.04638309e-01, + -1.47889501e-16, 5.56094442e-01, -2.82847955e-01, + -2.25318218e+00, 2.82847955e-01, -1.11531612e+00, + 1.40140119e+00, 1.69708773e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -5.59823902e-01, 7.40805832e-01, + 5.25620294e-17, 3.93699696e+00, -9.62843375e-02, + 9.51256225e-01, 9.62843375e-02, 1.74991003e+00, + -1.93089196e+00, -4.88825318e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.92870367e-01, 7.40805832e-01, + -1.38022087e-17, 6.74175116e-01, -2.01023374e-01, + -2.06177081e-01, 2.01023374e-01, -2.56560608e+00, + 1.33192988e+00, -4.67998035e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -5.59823902e-01, -4.92870367e-01, + 2.00322990e-16, 2.46932174e+00, 2.60506708e+00, + 1.95093341e+00, -2.60506708e+00, 7.50232851e-01, + 3.02461418e-01, -4.42025515e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -7.40805832e-01, -4.92870367e-01, + -3.95456510e-17, 2.06177081e-01, -2.01023374e-01, + -6.74175116e-01, 2.01023374e-01, -1.33192988e+00, + 2.56560608e+00, 4.67998035e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.92870367e-01, 5.59823902e-01, + -8.98417888e-17, -1.95093341e+00, 2.60506708e+00, + -2.46932174e+00, -2.60506708e+00, -3.02461418e-01, + -7.50232851e-01, 4.42025515e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -7.40805832e-01, 5.59823902e-01, + -2.63346192e-16, -9.51256225e-01, -9.62843375e-02, + -3.93699696e+00, 9.62843375e-02, 1.93089196e+00, + -1.74991003e+00, 4.88825318e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.47643942e-01, 4.44089210e-16, -7.47643942e-01, + 3.49528788e+00, 2.22044605e-16, -3.49528788e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.47643942e-01, -4.44089210e-16, 2.49528788e+00, + 2.52356058e-01, -3.24293183e+00, -2.52356058e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.49528788e+00, -1.66533454e-16, -7.47643942e-01, + 2.52356058e-01, 3.24293183e+00, -2.52356058e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.85301932e-03, -1.11022302e-16, -2.85301932e-03, + 2.00570604e+00, 3.77475828e-15, -2.00570604e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.85301932e-03, -5.55111512e-17, 1.00570604e+00, + 9.97146981e-01, -1.00855906e+00, -9.97146981e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00570604e+00, -1.66533454e-16, -2.85301932e-03, + 9.97146981e-01, 1.00855906e+00, -9.97146981e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.87419801e-01, 1.24900090e-16, 2.41409804e-01, + 2.54601000e+00, -1.02882960e+00, -2.54601000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.41409804e-01, -1.11022302e-16, -7.87419801e-01, + 2.54601000e+00, 1.02882960e+00, -2.54601000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.87419801e-01, 0.00000000e+00, 1.54601000e+00, + 1.24140980e+00, -2.33342980e+00, -1.24140980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.54601000e+00, -1.11022302e-16, -7.87419801e-01, + 1.24140980e+00, 2.33342980e+00, -1.24140980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.41409804e-01, 5.55111512e-17, 1.54601000e+00, + 2.12580199e-01, -1.30460019e+00, -2.12580199e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.54601000e+00, 6.93889390e-17, 2.41409804e-01, + 2.12580199e-01, 1.30460019e+00, -2.12580199e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_C2_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.47643942e-01, + 4.44089210e-16, -7.47643942e-01, 3.49528788e+00, + 2.22044605e-16, -3.49528788e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.47643942e-01, + -4.44089210e-16, 2.49528788e+00, 2.52356058e-01, + -3.24293183e+00, -2.52356058e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.49528788e+00, + -1.66533454e-16, -7.47643942e-01, 2.52356058e-01, + 3.24293183e+00, -2.52356058e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 2.85301932e-03, + -1.11022302e-16, -2.85301932e-03, 2.00570604e+00, + 3.77475828e-15, -2.00570604e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 2.85301932e-03, + -5.55111512e-17, 1.00570604e+00, 9.97146981e-01, + -1.00855906e+00, -9.97146981e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.00570604e+00, + -1.66533454e-16, -2.85301932e-03, 9.97146981e-01, + 1.00855906e+00, -9.97146981e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.87419801e-01, + 1.24900090e-16, 2.41409804e-01, 2.54601000e+00, + -1.02882960e+00, -2.54601000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.41409804e-01, + -1.11022302e-16, -7.87419801e-01, 2.54601000e+00, + 1.02882960e+00, -2.54601000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 7.87419801e-01, + 0.00000000e+00, 1.54601000e+00, 1.24140980e+00, + -2.33342980e+00, -1.24140980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.54601000e+00, + -1.11022302e-16, -7.87419801e-01, 1.24140980e+00, + 2.33342980e+00, -1.24140980e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -2.41409804e-01, + 5.55111512e-17, 1.54601000e+00, 2.12580199e-01, + -1.30460019e+00, -2.12580199e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -1.54601000e+00, + 6.93889390e-17, 2.41409804e-01, 2.12580199e-01, + 1.30460019e+00, -2.12580199e-01]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_C2_D01': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.]]), 'FE2_C0_D10': array([[ -4.85931890e-01, 3.44372756e+00, -1.38645914e-17, + 1.20457074e+00, -2.30167545e-01, 1.76434524e-01, + 2.30167545e-01, 2.21356002e+00, -5.17135569e+00, + -1.38100527e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -4.85931890e-01, 4.85931890e-01, 3.35148811e-16, + -2.44372756e+00, 6.37592643e+00, 2.44372756e+00, + -6.37592643e+00, -5.37330206e-02, 5.37330206e-02, + -6.43415175e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -3.44372756e+00, 4.85931890e-01, -9.23566062e-17, + -1.76434524e-01, -2.30167545e-01, -1.20457074e+00, + 2.30167545e-01, 5.17135569e+00, -2.21356002e+00, + 1.38100527e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.04638309e-01, -1.18553235e-01, -3.90397186e-17, + 2.25318218e+00, -2.82847955e-01, -5.56094442e-01, + 2.82847955e-01, -1.40140119e+00, 1.11531612e+00, + -1.69708773e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.04638309e-01, -4.04638309e-01, -3.69822127e-17, + 1.11855323e+00, 1.13786606e+00, -1.11855323e+00, + -1.13786606e+00, -8.38942398e-01, 8.38942398e-01, + 1.51461450e-14, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 1.18553235e-01, -4.04638309e-01, -1.47889501e-16, + 5.56094442e-01, -2.82847955e-01, -2.25318218e+00, + 2.82847955e-01, -1.11531612e+00, 1.40140119e+00, + 1.69708773e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -5.59823902e-01, 7.40805832e-01, 5.25620294e-17, + 3.93699696e+00, -9.62843375e-02, 9.51256225e-01, + 9.62843375e-02, 1.74991003e+00, -1.93089196e+00, + -4.88825318e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.92870367e-01, 7.40805832e-01, -1.38022087e-17, + 6.74175116e-01, -2.01023374e-01, -2.06177081e-01, + 2.01023374e-01, -2.56560608e+00, 1.33192988e+00, + -4.67998035e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -5.59823902e-01, -4.92870367e-01, 2.00322990e-16, + 2.46932174e+00, 2.60506708e+00, 1.95093341e+00, + -2.60506708e+00, 7.50232851e-01, 3.02461418e-01, + -4.42025515e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -7.40805832e-01, -4.92870367e-01, -3.95456510e-17, + 2.06177081e-01, -2.01023374e-01, -6.74175116e-01, + 2.01023374e-01, -1.33192988e+00, 2.56560608e+00, + 4.67998035e-01, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 4.92870367e-01, 5.59823902e-01, -8.98417888e-17, + -1.95093341e+00, 2.60506708e+00, -2.46932174e+00, + -2.60506708e+00, -3.02461418e-01, -7.50232851e-01, + 4.42025515e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -7.40805832e-01, 5.59823902e-01, -2.63346192e-16, + -9.51256225e-01, -9.62843375e-02, -3.93699696e+00, + 9.62843375e-02, 1.93089196e+00, -1.74991003e+00, + 4.88825318e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0': array([[-0.05512857, 0.6533077 , -0.05512857, 0.22051427, 0.01592089, + 0.22051427, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.05512857, -0.05512857, 0.6533077 , 0.22051427, 0.22051427, + 0.01592089, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.6533077 , -0.05512857, -0.05512857, 0.01592089, 0.22051427, + 0.22051427, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12499898, 0.00143058, -0.12499898, 0.49999593, 0.24857553, + 0.49999593, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12499898, -0.12499898, 0.00143058, 0.49999593, 0.49999593, + 0.24857553, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.00143058, -0.12499898, -0.12499898, 0.24857553, 0.49999593, + 0.49999593, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04749626, 0.17376836, -0.11771516, 0.79016044, 0.06597479, + 0.13530783, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.11771516, 0.17376836, -0.04749626, 0.13530783, 0.06597479, + 0.79016044, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04749626, -0.11771516, 0.17376836, 0.79016044, 0.13530783, + 0.06597479, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.17376836, -0.11771516, -0.04749626, 0.06597479, 0.13530783, + 0.79016044, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.11771516, -0.04749626, 0.17376836, 0.13530783, 0.79016044, + 0.06597479, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.17376836, -0.04749626, -0.11771516, 0.06597479, 0.79016044, + 0.13530783, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -0.05512857, 0.6533077 , -0.05512857, 0.22051427, + 0.01592089, 0.22051427, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.05512857, -0.05512857, 0.6533077 , 0.22051427, + 0.22051427, 0.01592089, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.6533077 , -0.05512857, -0.05512857, 0.01592089, + 0.22051427, 0.22051427, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12499898, 0.00143058, -0.12499898, 0.49999593, + 0.24857553, 0.49999593, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12499898, -0.12499898, 0.00143058, 0.49999593, + 0.49999593, 0.24857553, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.00143058, -0.12499898, -0.12499898, 0.24857553, + 0.49999593, 0.49999593, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04749626, 0.17376836, -0.11771516, 0.79016044, + 0.06597479, 0.13530783, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11771516, 0.17376836, -0.04749626, 0.13530783, + 0.06597479, 0.79016044, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04749626, -0.11771516, 0.17376836, 0.79016044, + 0.13530783, 0.06597479, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.17376836, -0.11771516, -0.04749626, 0.06597479, + 0.13530783, 0.79016044, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11771516, -0.04749626, 0.17376836, 0.13530783, + 0.79016044, 0.06597479, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.17376836, -0.04749626, -0.11771516, 0.06597479, + 0.79016044, 0.13530783, 0. , 0. , 0. ]]), 'FE1_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.06308901, 0.87382197, 0.06308901], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.06308901, 0.06308901, 0.87382197], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.87382197, 0.06308901, 0.06308901], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.24928675, 0.50142651, 0.24928675], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.24928675, 0.24928675, 0.50142651], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.50142651, 0.24928675, 0.24928675], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.05314505, 0.6365025 , 0.31035245], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.31035245, 0.6365025 , 0.05314505], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.05314505, 0.31035245, 0.6365025 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.6365025 , 0.31035245, 0.05314505], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.31035245, 0.05314505, 0.6365025 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.6365025 , 0.05314505, 0.31035245]]), 'FE1_C0_D10': array([[ 7.47643942e-01, 2.49528788e+00, 0.00000000e+00, + 2.52356058e-01, -2.52356058e-01, -3.24293183e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47643942e-01, -7.47643942e-01, 0.00000000e+00, + 3.49528788e+00, -3.49528788e+00, -1.09888393e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.49528788e+00, -7.47643942e-01, 0.00000000e+00, + 2.52356058e-01, -2.52356058e-01, 3.24293183e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.85301932e-03, 1.00570604e+00, 0.00000000e+00, + 9.97146981e-01, -9.97146981e-01, -1.00855906e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.85301932e-03, -2.85301932e-03, 0.00000000e+00, + 2.00570604e+00, -2.00570604e+00, 3.57248574e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00570604e+00, -2.85301932e-03, 0.00000000e+00, + 9.97146981e-01, -9.97146981e-01, 1.00855906e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.87419801e-01, 1.54601000e+00, 0.00000000e+00, + 1.24140980e+00, -1.24140980e+00, -2.33342980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.41409804e-01, 1.54601000e+00, 0.00000000e+00, + 2.12580199e-01, -2.12580199e-01, -1.30460019e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.87419801e-01, 2.41409804e-01, 0.00000000e+00, + 2.54601000e+00, -2.54601000e+00, -1.02882960e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.54601000e+00, 2.41409804e-01, 0.00000000e+00, + 2.12580199e-01, -2.12580199e-01, 1.30460019e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.41409804e-01, -7.87419801e-01, 0.00000000e+00, + 2.54601000e+00, -2.54601000e+00, 1.02882960e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.54601000e+00, -7.87419801e-01, 0.00000000e+00, + 1.24140980e+00, -1.24140980e+00, 2.33342980e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + name_map: {} + + inv_name_map: {'FE2_C1_D01': 'FE2_C1_D01', 'FE0_C1_D01': 'FE0_C1_D01', 'FE2_C2_D10': 'FE2_C2_D10', 'FE1_C1_D10': 'FE1_C1_D10', 'FE1_C2_D10': 'FE1_C2_D10', 'FE2_C0_D01': 'FE2_C0_D01', 'FE0_C0_D01': 'FE0_C0_D01', 'FE2_C1': 'FE2_C1', 'FE2_C0': 'FE2_C0', 'FE2_C2': 'FE2_C2', 'FE3': 'FE3', 'FE1_C0_D01': 'FE1_C0_D01', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0', 'FE2_C1_D10': 'FE2_C1_D10', 'FE1_C1_D01': 'FE1_C1_D01', 'FE0_C1_D10': 'FE0_C1_D10', 'FE2_C2_D01': 'FE2_C2_D01', 'FE0_C0_D10': 'FE0_C0_D10', 'FE1_C2_D01': 'FE1_C2_D01', 'FE2_C0_D10': 'FE2_C0_D10', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C2': 'FE1_C2', 'FE1_C0_D10': 'FE1_C0_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE2_C0_D01': array([[ -4.85931890e-01, 4.85931890e-01, 6.37592643e+00, + -2.44372756e+00, -5.37330206e-02, 5.37330206e-02, + 2.44372756e+00, -6.37592643e+00, 0.00000000e+00], + [ -4.85931890e-01, 3.44372756e+00, -2.30167545e-01, + 1.20457074e+00, 2.21356002e+00, -5.17135569e+00, + 1.76434524e-01, 2.30167545e-01, -1.38100527e+00], + [ -3.44372756e+00, 4.85931890e-01, -2.30167545e-01, + -1.76434524e-01, 5.17135569e+00, -2.21356002e+00, + -1.20457074e+00, 2.30167545e-01, 1.38100527e+00], + [ 4.04638309e-01, -4.04638309e-01, 1.13786606e+00, + 1.11855323e+00, -8.38942398e-01, 8.38942398e-01, + -1.11855323e+00, -1.13786606e+00, 1.14908083e-14], + [ 4.04638309e-01, -1.18553235e-01, -2.82847955e-01, + 2.25318218e+00, -1.40140119e+00, 1.11531612e+00, + -5.56094442e-01, 2.82847955e-01, -1.69708773e+00], + [ 1.18553235e-01, -4.04638309e-01, -2.82847955e-01, + 5.56094442e-01, -1.11531612e+00, 1.40140119e+00, + -2.25318218e+00, 2.82847955e-01, 1.69708773e+00], + [ -5.59823902e-01, -4.92870367e-01, 2.60506708e+00, + 2.46932174e+00, 7.50232851e-01, 3.02461418e-01, + 1.95093341e+00, -2.60506708e+00, -4.42025515e+00], + [ 4.92870367e-01, 5.59823902e-01, 2.60506708e+00, + -1.95093341e+00, -3.02461418e-01, -7.50232851e-01, + -2.46932174e+00, -2.60506708e+00, 4.42025515e+00], + [ -5.59823902e-01, 7.40805832e-01, -9.62843375e-02, + 3.93699696e+00, 1.74991003e+00, -1.93089196e+00, + 9.51256225e-01, 9.62843375e-02, -4.88825318e+00], + [ -7.40805832e-01, 5.59823902e-01, -9.62843375e-02, + -9.51256225e-01, 1.93089196e+00, -1.74991003e+00, + -3.93699696e+00, 9.62843375e-02, 4.88825318e+00], + [ 4.92870367e-01, 7.40805832e-01, -2.01023374e-01, + 6.74175116e-01, -2.56560608e+00, 1.33192988e+00, + -2.06177081e-01, 2.01023374e-01, -4.67998035e-01], + [ -7.40805832e-01, -4.92870367e-01, -2.01023374e-01, + 2.06177081e-01, -1.33192988e+00, 2.56560608e+00, + -6.74175116e-01, 2.01023374e-01, 4.67998035e-01]]), 'FE0_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE2_C0': array([[ 0.046308 , 0.44026899, 0.046308 , 0.40225091, -0.20112546, + -0.01452104, -0.01452104, -0.20112546, 0.40225091, 0.09390619], + [ 0.046308 , 0.046308 , 0.44026899, -0.20112546, 0.40225091, + -0.20112546, 0.40225091, -0.01452104, -0.01452104, 0.09390619], + [ 0.44026899, 0.046308 , 0.046308 , -0.01452104, -0.01452104, + 0.40225091, -0.20112546, 0.40225091, -0.20112546, 0.09390619], + [ 0.03935169, -0.06267372, 0.03935169, 0.28365493, -0.14182746, + -0.07051025, -0.07051025, -0.14182746, 0.28365493, 0.84133592], + [ 0.03935169, 0.03935169, -0.06267372, -0.14182746, 0.28365493, + -0.14182746, 0.28365493, -0.07051025, -0.07051025, 0.84133592], + [-0.06267372, 0.03935169, 0.03935169, -0.07051025, -0.07051025, + 0.28365493, -0.14182746, 0.28365493, -0.14182746, 0.84133592], + [ 0.04111073, -0.02619323, 0.01143583, 0.80848895, -0.06128522, + -0.0623881 , -0.00511704, -0.12795188, 0.13844642, 0.28345353], + [ 0.01143583, -0.02619323, 0.04111073, 0.13844642, -0.12795188, + -0.00511704, -0.0623881 , -0.06128522, 0.80848895, 0.28345353], + [ 0.04111073, 0.01143583, -0.02619323, -0.06128522, 0.80848895, + -0.12795188, 0.13844642, -0.0623881 , -0.00511704, 0.28345353], + [-0.02619323, 0.01143583, 0.04111073, -0.00511704, -0.0623881 , + 0.13844642, -0.12795188, 0.80848895, -0.06128522, 0.28345353], + [ 0.01143583, 0.04111073, -0.02619323, -0.12795188, 0.13844642, + -0.06128522, 0.80848895, -0.00511704, -0.0623881 , 0.28345353], + [-0.02619323, 0.04111073, 0.01143583, -0.0623881 , -0.00511704, + 0.80848895, -0.06128522, 0.13844642, -0.12795188, 0.28345353]]), 'FE3': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C0_D01': array([[ 7.47643942e-01, -7.47643942e-01, 3.49528788e+00, + 0.00000000e+00, -3.49528788e+00], + [ 7.47643942e-01, 2.49528788e+00, 2.52356058e-01, + -3.24293183e+00, -2.52356058e-01], + [ -2.49528788e+00, -7.47643942e-01, 2.52356058e-01, + 3.24293183e+00, -2.52356058e-01], + [ 2.85301932e-03, -2.85301932e-03, 2.00570604e+00, + 0.00000000e+00, -2.00570604e+00], + [ 2.85301932e-03, 1.00570604e+00, 9.97146981e-01, + -1.00855906e+00, -9.97146981e-01], + [ -1.00570604e+00, -2.85301932e-03, 9.97146981e-01, + 1.00855906e+00, -9.97146981e-01], + [ 7.87419801e-01, 2.41409804e-01, 2.54601000e+00, + -1.02882960e+00, -2.54601000e+00], + [ -2.41409804e-01, -7.87419801e-01, 2.54601000e+00, + 1.02882960e+00, -2.54601000e+00], + [ 7.87419801e-01, 1.54601000e+00, 1.24140980e+00, + -2.33342980e+00, -1.24140980e+00], + [ -1.54601000e+00, -7.87419801e-01, 1.24140980e+00, + 2.33342980e+00, -1.24140980e+00], + [ -2.41409804e-01, 1.54601000e+00, 2.12580199e-01, + -1.30460019e+00, -2.12580199e-01], + [ -1.54601000e+00, 2.41409804e-01, 2.12580199e-01, + 1.30460019e+00, -2.12580199e-01]]), 'FE0_C0': array([[ 0.06308901, 0.87382197, 0.06308901], + [ 0.06308901, 0.06308901, 0.87382197], + [ 0.87382197, 0.06308901, 0.06308901], + [ 0.24928675, 0.50142651, 0.24928675], + [ 0.24928675, 0.24928675, 0.50142651], + [ 0.50142651, 0.24928675, 0.24928675], + [ 0.05314505, 0.6365025 , 0.31035245], + [ 0.31035245, 0.6365025 , 0.05314505], + [ 0.05314505, 0.31035245, 0.6365025 ], + [ 0.6365025 , 0.31035245, 0.05314505], + [ 0.31035245, 0.05314505, 0.6365025 ], + [ 0.6365025 , 0.05314505, 0.31035245]]), 'FE2_C0_D10': array([[ -4.85931890e-01, 3.44372756e+00, 1.20457074e+00, + -2.30167545e-01, 1.76434524e-01, 2.30167545e-01, + 2.21356002e+00, -5.17135569e+00, -1.38100527e+00], + [ -4.85931890e-01, 4.85931890e-01, -2.44372756e+00, + 6.37592643e+00, 2.44372756e+00, -6.37592643e+00, + -5.37330206e-02, 5.37330206e-02, 0.00000000e+00], + [ -3.44372756e+00, 4.85931890e-01, -1.76434524e-01, + -2.30167545e-01, -1.20457074e+00, 2.30167545e-01, + 5.17135569e+00, -2.21356002e+00, 1.38100527e+00], + [ 4.04638309e-01, -1.18553235e-01, 2.25318218e+00, + -2.82847955e-01, -5.56094442e-01, 2.82847955e-01, + -1.40140119e+00, 1.11531612e+00, -1.69708773e+00], + [ 4.04638309e-01, -4.04638309e-01, 1.11855323e+00, + 1.13786606e+00, -1.11855323e+00, -1.13786606e+00, + -8.38942398e-01, 8.38942398e-01, 1.51461450e-14], + [ 1.18553235e-01, -4.04638309e-01, 5.56094442e-01, + -2.82847955e-01, -2.25318218e+00, 2.82847955e-01, + -1.11531612e+00, 1.40140119e+00, 1.69708773e+00], + [ -5.59823902e-01, 7.40805832e-01, 3.93699696e+00, + -9.62843375e-02, 9.51256225e-01, 9.62843375e-02, + 1.74991003e+00, -1.93089196e+00, -4.88825318e+00], + [ 4.92870367e-01, 7.40805832e-01, 6.74175116e-01, + -2.01023374e-01, -2.06177081e-01, 2.01023374e-01, + -2.56560608e+00, 1.33192988e+00, -4.67998035e-01], + [ -5.59823902e-01, -4.92870367e-01, 2.46932174e+00, + 2.60506708e+00, 1.95093341e+00, -2.60506708e+00, + 7.50232851e-01, 3.02461418e-01, -4.42025515e+00], + [ -7.40805832e-01, -4.92870367e-01, 2.06177081e-01, + -2.01023374e-01, -6.74175116e-01, 2.01023374e-01, + -1.33192988e+00, 2.56560608e+00, 4.67998035e-01], + [ 4.92870367e-01, 5.59823902e-01, -1.95093341e+00, + 2.60506708e+00, -2.46932174e+00, -2.60506708e+00, + -3.02461418e-01, -7.50232851e-01, 4.42025515e+00], + [ -7.40805832e-01, 5.59823902e-01, -9.51256225e-01, + -9.62843375e-02, -3.93699696e+00, 9.62843375e-02, + 1.93089196e+00, -1.74991003e+00, 4.88825318e+00]]), 'FE1_C0': array([[-0.05512857, 0.6533077 , -0.05512857, 0.22051427, 0.01592089, + 0.22051427], + [-0.05512857, -0.05512857, 0.6533077 , 0.22051427, 0.22051427, + 0.01592089], + [ 0.6533077 , -0.05512857, -0.05512857, 0.01592089, 0.22051427, + 0.22051427], + [-0.12499898, 0.00143058, -0.12499898, 0.49999593, 0.24857553, + 0.49999593], + [-0.12499898, -0.12499898, 0.00143058, 0.49999593, 0.49999593, + 0.24857553], + [ 0.00143058, -0.12499898, -0.12499898, 0.24857553, 0.49999593, + 0.49999593], + [-0.04749626, 0.17376836, -0.11771516, 0.79016044, 0.06597479, + 0.13530783], + [-0.11771516, 0.17376836, -0.04749626, 0.13530783, 0.06597479, + 0.79016044], + [-0.04749626, -0.11771516, 0.17376836, 0.79016044, 0.13530783, + 0.06597479], + [ 0.17376836, -0.11771516, -0.04749626, 0.06597479, 0.13530783, + 0.79016044], + [-0.11771516, -0.04749626, 0.17376836, 0.13530783, 0.79016044, + 0.06597479], + [ 0.17376836, -0.04749626, -0.11771516, 0.06597479, 0.79016044, + 0.13530783]]), 'FE1_C0_D10': array([[ 7.47643942e-01, 2.49528788e+00, 2.52356058e-01, + -2.52356058e-01, -3.24293183e+00], + [ 7.47643942e-01, -7.47643942e-01, 3.49528788e+00, + -3.49528788e+00, 0.00000000e+00], + [ -2.49528788e+00, -7.47643942e-01, 2.52356058e-01, + -2.52356058e-01, 3.24293183e+00], + [ 2.85301932e-03, 1.00570604e+00, 9.97146981e-01, + -9.97146981e-01, -1.00855906e+00], + [ 2.85301932e-03, -2.85301932e-03, 2.00570604e+00, + -2.00570604e+00, 0.00000000e+00], + [ -1.00570604e+00, -2.85301932e-03, 9.97146981e-01, + -9.97146981e-01, 1.00855906e+00], + [ 7.87419801e-01, 1.54601000e+00, 1.24140980e+00, + -1.24140980e+00, -2.33342980e+00], + [ -2.41409804e-01, 1.54601000e+00, 2.12580199e-01, + -2.12580199e-01, -1.30460019e+00], + [ 7.87419801e-01, 2.41409804e-01, 2.54601000e+00, + -2.54601000e+00, -1.02882960e+00], + [ -1.54601000e+00, 2.41409804e-01, 2.12580199e-01, + -2.12580199e-01, 1.30460019e+00], + [ -2.41409804e-01, -7.87419801e-01, 2.54601000e+00, + -2.54601000e+00, 1.02882960e+00], + [ -1.54601000e+00, -7.87419801e-01, 1.24140980e+00, + -1.24140980e+00, 2.33342980e+00]])} + + QG-utils, psi_tables, name_map: + {'FE2_C1_D01': ('FE2_C0_D01', (19, [10, 12, 13, 14, 15, 16, 17, 18, 19]), False, False), 'FE0_C1_D01': ('FE0_C0_D01', (4, [3, 5]), False, False), 'FE2_C2_D10': ('FE1_C0_D10', (23, [20, 21, 23, 24, 25]), False, False), 'FE1_C1_D10': ('FE1_C0_D10', (11, [6, 7, 9, 10, 11]), False, False), 'FE1_C2_D10': ('FE0_C0_D01', (14, [12, 13]), False, False), 'FE2_C0_D01': ('FE2_C0_D01', (16, [0, 2, 3, 4, 5, 6, 7, 8, 9]), False, False), 'FE0_C0_D01': ('FE0_C0_D01', (1, [0, 2]), False, False), 'FE2_C1': ('FE2_C0', (18, [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), False, False), 'FE2_C0': ('FE2_C0', (15, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), False, False), 'FE2_C2': ('FE1_C0', (21, [20, 21, 22, 23, 24, 25]), False, False), 'FE3': ('FE3', (), False, True), 'FE1_C0_D01': ('FE1_C0_D01', (7, [0, 2, 3, 4, 5]), False, False), 'FE0_C1': ('FE0_C0', (3, [3, 4, 5]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2]), False, False), 'FE2_C1_D10': ('FE2_C0_D10', (20, [10, 11, 13, 14, 15, 16, 17, 18, 19]), False, False), 'FE1_C1_D01': ('FE1_C0_D01', (10, [6, 8, 9, 10, 11]), False, False), 'FE0_C1_D10': ('FE0_C0_D01', (5, [3, 4]), False, False), 'FE2_C2_D01': ('FE1_C0_D01', (22, [20, 22, 23, 24, 25]), False, False), 'FE0_C0_D10': ('FE0_C0_D01', (2, [0, 1]), False, False), 'FE1_C2_D01': ('FE0_C0_D01', (13, [12, 14]), False, False), 'FE2_C0_D10': ('FE2_C0_D10', (17, [0, 1, 3, 4, 5, 6, 7, 8, 9]), False, False), 'FE1_C0': ('FE1_C0', (6, [0, 1, 2, 3, 4, 5]), False, False), 'FE1_C1': ('FE1_C0', (9, [6, 7, 8, 9, 10, 11]), False, False), 'FE1_C2': ('FE0_C0', (12, [12, 13, 14]), False, False), 'FE1_C0_D10': ('FE1_C0_D10', (8, [0, 1, 3, 4, 5]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {3: {FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {0: {(0, 0): array([[2.7755575615628914e-17, 4.163336342344337e-17, + 5.5511151231257827e-17], + [0.8872983346207417, 0.5, 0.11270166537925835], + [0.1127016653792583, 0.5, 0.8872983346207417]], dtype=object)}, 1: {(0, 0): array([[0.8872983346207417, 0.5, 0.11270166537925835], + [2.7755575615628914e-17, 4.163336342344337e-17, + 5.5511151231257827e-17], + [0.1127016653792583, 0.5, 0.8872983346207417]], dtype=object)}, 2: {(0, 0): array([[0.88729833462074181, 0.5, 0.11270166537925827], + [0.11270166537925827, 0.5, 0.88729833462074181], + [0.0, 0.0, 0.0]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {0: {(0, 1): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 2.77555756e-17, 4.16333634e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.77555756e-17, 4.16333634e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01]]])}, 1: {(0, 1): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.77555756e-17, 4.16333634e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.77555756e-17, 4.16333634e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01]]])}, 2: {(0, 1): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 0.88729833, 0.5 , 0.11270167], + [ 0. , 0. , 0. ]], + + [[ 0.11270167, 0.5 , 0.88729833], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.88729833, 0.5 , 0.11270167]], + + [[ 0. , 0. , 0. ], + [ 0.11270167, 0.5 , 0.88729833]], + + [[ 0. , 0. , 0. ], + [ 0. , 0. , 0. ]]])}}}, MixedElement(*[MixedElement(*[FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 3, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 3, quad_scheme=None)], **{'value_shape': (2,) }), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None)], **{'value_shape': (3,) }): {None: {0: {(0, 0): array([[[ -6.93889390e-17, -6.24500451e-17, -4.16333634e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 4.88014084e-01, -6.25000000e-02, 6.19859160e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 6.19859160e-02, -6.25000000e-02, 4.88014084e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 7.47852752e-01, 5.62500000e-01, -2.97852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -2.97852752e-01, 5.62500000e-01, 7.47852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.81025203e-16, 2.35922393e-16, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -1.24900090e-16, -9.71445147e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 8.58688121e-17, 3.98986399e-17, -1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -1.99493200e-17, 1.35308431e-16, 2.35922393e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 6.24500451e-17, 6.93889390e-18, -2.77555756e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.93889390e-17, -6.24500451e-17, -4.16333634e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.88014084e-01, -6.25000000e-02, 6.19859160e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.19859160e-02, -6.25000000e-02, 4.88014084e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47852752e-01, 5.62500000e-01, -2.97852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.97852752e-01, 5.62500000e-01, 7.47852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.81025203e-16, 2.35922393e-16, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.24900090e-16, -9.71445147e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.58688121e-17, 3.98986399e-17, -1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.99493200e-17, 1.35308431e-16, 2.35922393e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.24500451e-17, 6.93889390e-18, -2.77555756e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12757026e-16, 4.16333634e-17, 4.16333634e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.87298335e-01, -9.71445147e-17, -8.72983346e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.72983346e-02, 8.32667268e-17, 6.87298335e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.00000000e-01, 1.00000000e+00, 4.00000000e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -4.85722573e-17, 1.38777878e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.23165367e-16, 0.00000000e+00, -6.93889390e-17]]])}, 1: {(0, 0): array([[[ 4.88014084e-01, -6.25000000e-02, 6.19859160e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.82145965e-17, 7.45931095e-17, 7.63278329e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 6.19859160e-02, -6.25000000e-02, 4.88014084e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.73472348e-16, 1.31838984e-16, 1.94289029e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -4.16333634e-17, 5.55111512e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 7.47852752e-01, 5.62500000e-01, -2.97852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -2.97852752e-01, 5.62500000e-01, 7.47852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -2.29850861e-16, -8.50014503e-17, -2.08166817e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.81278603e-16, 1.70002901e-16, 1.94289029e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 6.93889390e-17, -6.93889390e-18, -2.49800181e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.88014084e-01, -6.25000000e-02, 6.19859160e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.82145965e-17, 7.45931095e-17, 7.63278329e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.19859160e-02, -6.25000000e-02, 4.88014084e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.73472348e-16, 1.31838984e-16, 1.94289029e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -4.16333634e-17, 5.55111512e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47852752e-01, 5.62500000e-01, -2.97852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.97852752e-01, 5.62500000e-01, 7.47852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.29850861e-16, -8.50014503e-17, -2.08166817e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.81278603e-16, 1.70002901e-16, 1.94289029e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.93889390e-17, -6.93889390e-18, -2.49800181e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.87298335e-01, 8.32667268e-17, -8.72983346e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.36750677e-17, 8.32667268e-17, 9.71445147e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.72983346e-02, 8.32667268e-17, 6.87298335e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.77555756e-17, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.00000000e-01, 1.00000000e+00, 4.00000000e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.23165367e-16, 0.00000000e+00, -6.93889390e-17]]])}, 2: {(0, 0): array([[[ 4.88014084e-01, -6.25000000e-02, 6.19859160e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 6.19859160e-02, -6.25000000e-02, 4.88014084e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, -2.77555756e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 2.77555756e-17, 1.38777878e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -8.32667268e-17, 8.32667268e-17, 8.32667268e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 5.55111512e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 7.47852752e-01, 5.62500000e-01, -2.97852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -2.97852752e-01, 5.62500000e-01, 7.47852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.11022302e-16, 2.77555756e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.88014084e-01, -6.25000000e-02, 6.19859160e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.19859160e-02, -6.25000000e-02, 4.88014084e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, -2.77555756e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 2.77555756e-17, 1.38777878e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.32667268e-17, 8.32667268e-17, 8.32667268e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 5.55111512e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.47852752e-01, 5.62500000e-01, -2.97852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.97852752e-01, 5.62500000e-01, 7.47852752e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.11022302e-16, 2.77555756e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.87298335e-01, 4.16333634e-17, -8.72983346e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.72983346e-02, 1.38777878e-17, 6.87298335e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.77555756e-17, -5.55111512e-17, -5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.00000000e-01, 1.00000000e+00, 4.00000000e-01]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_f0': array([[2.7755575615628914e-17, 0.8872983346207417, 0.1127016653792583], + [4.163336342344337e-17, 0.5, 0.5], + [5.5511151231257827e-17, 0.11270166537925835, 0.8872983346207417]], dtype=object), 'FE0_f1': array([[0.8872983346207417, 2.7755575615628914e-17, 0.1127016653792583], + [0.5, 4.163336342344337e-17, 0.5], + [0.11270166537925835, 5.5511151231257827e-17, 0.8872983346207417]], dtype=object), 'FE0_f2': array([[0.88729833462074181, 0.11270166537925827, 0.0], + [0.5, 0.5, 0.0], + [0.11270166537925827, 0.88729833462074181, 0.0]], dtype=object), 'FE1_f0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_f2_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_f1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_f2_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.88014084e-01, 6.19859160e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.32667268e-17, 0.00000000e+00, 7.47852752e-01, + -2.97852752e-01, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -6.25000000e-02, -6.25000000e-02, + -2.77555756e-17, 2.77555756e-17, 0.00000000e+00, + 8.32667268e-17, 5.55111512e-17, 5.62500000e-01, + 5.62500000e-01, 2.77555756e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.19859160e-02, 4.88014084e-01, + 0.00000000e+00, 1.38777878e-16, 0.00000000e+00, + 8.32667268e-17, 5.55111512e-17, -2.97852752e-01, + 7.47852752e-01, -5.55111512e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_f2_C0': array([[ 0.88729833, 0.11270167, 0. , 0. , 0. , + 0. ], + [ 0.5 , 0.5 , 0. , 0. , 0. , + 0. ], + [ 0.11270167, 0.88729833, 0. , 0. , 0. , + 0. ]]), 'FE1_f2_C1': array([[ 0. , 0. , 0. , 0.88729833, 0.11270167, + 0. ], + [ 0. , 0. , 0. , 0.5 , 0.5 , + 0. ], + [ 0. , 0. , 0. , 0.11270167, 0.88729833, + 0. ]]), 'FE2_f0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.12757026e-16, + 6.87298335e-01, -8.72983346e-02, 4.00000000e-01, + -4.85722573e-17, -1.23165367e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 4.16333634e-17, + -9.71445147e-17, 8.32667268e-17, 1.00000000e+00, + 1.38777878e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 4.16333634e-17, + -8.72983346e-02, 6.87298335e-01, 4.00000000e-01, + 5.55111512e-17, -6.93889390e-17]]), 'FE2_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -6.93889390e-17, 4.88014084e-01, + 6.19859160e-02, 7.47852752e-01, -2.97852752e-01, + 2.81025203e-16, -1.24900090e-16, 8.58688121e-17, + -1.99493200e-17, 6.24500451e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -6.24500451e-17, -6.25000000e-02, + -6.25000000e-02, 5.62500000e-01, 5.62500000e-01, + 2.35922393e-16, -9.71445147e-17, 3.98986399e-17, + 1.35308431e-16, 6.93889390e-18, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -4.16333634e-17, 6.19859160e-02, + 4.88014084e-01, -2.97852752e-01, 7.47852752e-01, + 5.55111512e-17, -5.55111512e-17, -1.11022302e-16, + 2.35922393e-16, -2.77555756e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE2_f0_C0': array([[ -6.93889390e-17, 4.88014084e-01, 6.19859160e-02, + 7.47852752e-01, -2.97852752e-01, 2.81025203e-16, + -1.24900090e-16, 8.58688121e-17, -1.99493200e-17, + 6.24500451e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -6.24500451e-17, -6.25000000e-02, -6.25000000e-02, + 5.62500000e-01, 5.62500000e-01, 2.35922393e-16, + -9.71445147e-17, 3.98986399e-17, 1.35308431e-16, + 6.93889390e-18, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -4.16333634e-17, 6.19859160e-02, 4.88014084e-01, + -2.97852752e-01, 7.47852752e-01, 5.55111512e-17, + -5.55111512e-17, -1.11022302e-16, 2.35922393e-16, + -2.77555756e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_f2_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_f0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_f1_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f0_C0': array([[ 2.77555756e-17, 8.87298335e-01, 1.12701665e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, 1.12701665e-01, 8.87298335e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 8.87298335e-01, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 1.12701665e-01, 8.87298335e-01]]), 'FE1_f2_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_f0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_f1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_f2_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE2_f2_C0': array([[ 4.88014084e-01, 6.19859160e-02, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -8.32667268e-17, + 0.00000000e+00, 7.47852752e-01, -2.97852752e-01, + 1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -6.25000000e-02, -6.25000000e-02, -2.77555756e-17, + 2.77555756e-17, 0.00000000e+00, 8.32667268e-17, + 5.55111512e-17, 5.62500000e-01, 5.62500000e-01, + 2.77555756e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.19859160e-02, 4.88014084e-01, 0.00000000e+00, + 1.38777878e-16, 0.00000000e+00, 8.32667268e-17, + 5.55111512e-17, -2.97852752e-01, 7.47852752e-01, + -5.55111512e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE2_f2_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.87298335e-01, + -8.72983346e-02, 0.00000000e+00, 0.00000000e+00, + -2.77555756e-17, 4.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 4.16333634e-17, + 1.38777878e-17, 0.00000000e+00, 0.00000000e+00, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -8.72983346e-02, + 6.87298335e-01, 0.00000000e+00, 0.00000000e+00, + -5.55111512e-17, 4.00000000e-01]]), 'FE2_f1_C0': array([[ 4.88014084e-01, 1.82145965e-17, 6.19859160e-02, + 1.73472348e-16, -4.16333634e-17, 7.47852752e-01, + -2.97852752e-01, -2.29850861e-16, 1.81278603e-16, + 6.93889390e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -6.25000000e-02, 7.45931095e-17, -6.25000000e-02, + 1.31838984e-16, 5.55111512e-17, 5.62500000e-01, + 5.62500000e-01, -8.50014503e-17, 1.70002901e-16, + -6.93889390e-18, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.19859160e-02, 7.63278329e-17, 4.88014084e-01, + 1.94289029e-16, 0.00000000e+00, -2.97852752e-01, + 7.47852752e-01, -2.08166817e-17, 1.94289029e-16, + -2.49800181e-16, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.88014084e-01, 1.82145965e-17, + 6.19859160e-02, 1.73472348e-16, -4.16333634e-17, + 7.47852752e-01, -2.97852752e-01, -2.29850861e-16, + 1.81278603e-16, 6.93889390e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -6.25000000e-02, 7.45931095e-17, + -6.25000000e-02, 1.31838984e-16, 5.55111512e-17, + 5.62500000e-01, 5.62500000e-01, -8.50014503e-17, + 1.70002901e-16, -6.93889390e-18, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.19859160e-02, 7.63278329e-17, + 4.88014084e-01, 1.94289029e-16, 0.00000000e+00, + -2.97852752e-01, 7.47852752e-01, -2.08166817e-17, + 1.94289029e-16, -2.49800181e-16, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.87298335e-01, + 9.36750677e-17, -8.72983346e-02, -2.77555756e-17, + 4.00000000e-01, -1.23165367e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 8.32667268e-17, + 8.32667268e-17, 8.32667268e-17, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -8.72983346e-02, + 9.71445147e-17, 6.87298335e-01, 0.00000000e+00, + 4.00000000e-01, -6.93889390e-17]]), 'FE1_f0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.87298335e-01, 2.77555756e-17, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.00000000e-01, 4.16333634e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.12701665e-01, 5.55111512e-17, 8.87298335e-01]]), 'FE1_f1_C0': array([[ 8.87298335e-01, 2.77555756e-17, 1.12701665e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 4.16333634e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.55111512e-17, 8.87298335e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + tables: {'FE0_f0': array([[2.7755575615628914e-17, 0.8872983346207417, 0.1127016653792583], + [4.163336342344337e-17, 0.5, 0.5], + [5.5511151231257827e-17, 0.11270166537925835, 0.8872983346207417]], dtype=object), 'FE0_f1': array([[0.8872983346207417, 2.7755575615628914e-17, 0.1127016653792583], + [0.5, 4.163336342344337e-17, 0.5], + [0.11270166537925835, 5.5511151231257827e-17, 0.8872983346207417]], dtype=object), 'FE0_f2': array([[0.88729833462074181, 0.11270166537925827, 0.0], + [0.5, 0.5, 0.0], + [0.11270166537925827, 0.88729833462074181, 0.0]], dtype=object), 'FE1_f0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE2_f2_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.88014084e-01, 6.19859160e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.32667268e-17, 0.00000000e+00, 7.47852752e-01, + -2.97852752e-01, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -6.25000000e-02, -6.25000000e-02, + -2.77555756e-17, 2.77555756e-17, 0.00000000e+00, + 8.32667268e-17, 5.55111512e-17, 5.62500000e-01, + 5.62500000e-01, 2.77555756e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.19859160e-02, 4.88014084e-01, + 0.00000000e+00, 1.38777878e-16, 0.00000000e+00, + 8.32667268e-17, 5.55111512e-17, -2.97852752e-01, + 7.47852752e-01, -5.55111512e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_f2_C0': array([[ 0.88729833, 0.11270167, 0. , 0. , 0. , + 0. ], + [ 0.5 , 0.5 , 0. , 0. , 0. , + 0. ], + [ 0.11270167, 0.88729833, 0. , 0. , 0. , + 0. ]]), 'FE1_f2_C1': array([[ 0. , 0. , 0. , 0.88729833, 0.11270167, + 0. ], + [ 0. , 0. , 0. , 0.5 , 0.5 , + 0. ], + [ 0. , 0. , 0. , 0.11270167, 0.88729833, + 0. ]]), 'FE2_f0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 1.12757026e-16, + 6.87298335e-01, -8.72983346e-02, 4.00000000e-01, + -4.85722573e-17, -1.23165367e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 4.16333634e-17, + -9.71445147e-17, 8.32667268e-17, 1.00000000e+00, + 1.38777878e-17, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 4.16333634e-17, + -8.72983346e-02, 6.87298335e-01, 4.00000000e-01, + 5.55111512e-17, -6.93889390e-17]]), 'FE2_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -6.93889390e-17, 4.88014084e-01, + 6.19859160e-02, 7.47852752e-01, -2.97852752e-01, + 2.81025203e-16, -1.24900090e-16, 8.58688121e-17, + -1.99493200e-17, 6.24500451e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -6.24500451e-17, -6.25000000e-02, + -6.25000000e-02, 5.62500000e-01, 5.62500000e-01, + 2.35922393e-16, -9.71445147e-17, 3.98986399e-17, + 1.35308431e-16, 6.93889390e-18, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -4.16333634e-17, 6.19859160e-02, + 4.88014084e-01, -2.97852752e-01, 7.47852752e-01, + 5.55111512e-17, -5.55111512e-17, -1.11022302e-16, + 2.35922393e-16, -2.77555756e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE2_f0_C0': array([[ -6.93889390e-17, 4.88014084e-01, 6.19859160e-02, + 7.47852752e-01, -2.97852752e-01, 2.81025203e-16, + -1.24900090e-16, 8.58688121e-17, -1.99493200e-17, + 6.24500451e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -6.24500451e-17, -6.25000000e-02, -6.25000000e-02, + 5.62500000e-01, 5.62500000e-01, 2.35922393e-16, + -9.71445147e-17, 3.98986399e-17, 1.35308431e-16, + 6.93889390e-18, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -4.16333634e-17, 6.19859160e-02, 4.88014084e-01, + -2.97852752e-01, 7.47852752e-01, 5.55111512e-17, + -5.55111512e-17, -1.11022302e-16, 2.35922393e-16, + -2.77555756e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE1_f0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_f0_C0': array([[ 2.77555756e-17, 8.87298335e-01, 1.12701665e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, 1.12701665e-01, 8.87298335e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 8.87298335e-01, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 1.12701665e-01, 8.87298335e-01]]), 'FE1_f0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_f2_C0': array([[ 4.88014084e-01, 6.19859160e-02, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -8.32667268e-17, + 0.00000000e+00, 7.47852752e-01, -2.97852752e-01, + 1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -6.25000000e-02, -6.25000000e-02, -2.77555756e-17, + 2.77555756e-17, 0.00000000e+00, 8.32667268e-17, + 5.55111512e-17, 5.62500000e-01, 5.62500000e-01, + 2.77555756e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.19859160e-02, 4.88014084e-01, 0.00000000e+00, + 1.38777878e-16, 0.00000000e+00, 8.32667268e-17, + 5.55111512e-17, -2.97852752e-01, 7.47852752e-01, + -5.55111512e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE2_f2_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.87298335e-01, + -8.72983346e-02, 0.00000000e+00, 0.00000000e+00, + -2.77555756e-17, 4.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 4.16333634e-17, + 1.38777878e-17, 0.00000000e+00, 0.00000000e+00, + -5.55111512e-17, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -8.72983346e-02, + 6.87298335e-01, 0.00000000e+00, 0.00000000e+00, + -5.55111512e-17, 4.00000000e-01]]), 'FE2_f1_C0': array([[ 4.88014084e-01, 1.82145965e-17, 6.19859160e-02, + 1.73472348e-16, -4.16333634e-17, 7.47852752e-01, + -2.97852752e-01, -2.29850861e-16, 1.81278603e-16, + 6.93889390e-17, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ -6.25000000e-02, 7.45931095e-17, -6.25000000e-02, + 1.31838984e-16, 5.55111512e-17, 5.62500000e-01, + 5.62500000e-01, -8.50014503e-17, 1.70002901e-16, + -6.93889390e-18, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 6.19859160e-02, 7.63278329e-17, 4.88014084e-01, + 1.94289029e-16, 0.00000000e+00, -2.97852752e-01, + 7.47852752e-01, -2.08166817e-17, 1.94289029e-16, + -2.49800181e-16, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 4.88014084e-01, 1.82145965e-17, + 6.19859160e-02, 1.73472348e-16, -4.16333634e-17, + 7.47852752e-01, -2.97852752e-01, -2.29850861e-16, + 1.81278603e-16, 6.93889390e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, -6.25000000e-02, 7.45931095e-17, + -6.25000000e-02, 1.31838984e-16, 5.55111512e-17, + 5.62500000e-01, 5.62500000e-01, -8.50014503e-17, + 1.70002901e-16, -6.93889390e-18, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 6.19859160e-02, 7.63278329e-17, + 4.88014084e-01, 1.94289029e-16, 0.00000000e+00, + -2.97852752e-01, 7.47852752e-01, -2.08166817e-17, + 1.94289029e-16, -2.49800181e-16, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.87298335e-01, + 9.36750677e-17, -8.72983346e-02, -2.77555756e-17, + 4.00000000e-01, -1.23165367e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 8.32667268e-17, + 8.32667268e-17, 8.32667268e-17, 0.00000000e+00, + 1.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, -8.72983346e-02, + 9.71445147e-17, 6.87298335e-01, 0.00000000e+00, + 4.00000000e-01, -6.93889390e-17]]), 'FE1_f0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.87298335e-01, 2.77555756e-17, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.00000000e-01, 4.16333634e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.12701665e-01, 5.55111512e-17, 8.87298335e-01]]), 'FE1_f1_C0': array([[ 8.87298335e-01, 2.77555756e-17, 1.12701665e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 4.16333634e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.55111512e-17, 8.87298335e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + name_map: {'FE1_f0_C1_D10': ['FE1_f1_C1_D10', 'FE1_f2_C1_D10'], 'FE1_f0_C0_D01': ['FE1_f1_C0_D01', 'FE1_f2_C0_D01'], 'FE1_f0_C1_D01': ['FE1_f1_C1_D01', 'FE1_f2_C1_D01'], 'FE1_f0_C0_D10': ['FE1_f1_C0_D10', 'FE1_f2_C0_D10']} + + inv_name_map: {'FE0_f0': 'FE0_f0', 'FE1_f1_C0_D10': 'FE1_f0_C0_D10', 'FE0_f2': 'FE0_f2', 'FE1_f0_C1_D01': 'FE1_f0_C1_D01', 'FE1_f2_C1_D01': 'FE1_f0_C1_D01', 'FE1_f1_C1_D10': 'FE1_f0_C1_D10', 'FE1_f2_C0_D10': 'FE1_f0_C0_D10', 'FE1_f2_C0': 'FE1_f2_C0', 'FE1_f2_C1': 'FE1_f2_C1', 'FE2_f0_C2': 'FE2_f0_C2', 'FE2_f0_C1': 'FE2_f0_C1', 'FE2_f0_C0': 'FE2_f0_C0', 'FE1_f2_C0_D01': 'FE1_f0_C0_D01', 'FE0_f1': 'FE0_f1', 'FE1_f0_C0_D10': 'FE1_f0_C0_D10', 'FE1_f1_C0_D01': 'FE1_f0_C0_D01', 'FE1_f0_C0': 'FE1_f0_C0', 'FE1_f0_C1': 'FE1_f0_C1', 'FE1_f2_C1_D10': 'FE1_f0_C1_D10', 'FE1_f0_C1_D10': 'FE1_f0_C1_D10', 'FE1_f1_C1_D01': 'FE1_f0_C1_D01', 'FE2_f2_C1': 'FE2_f2_C1', 'FE2_f2_C0': 'FE2_f2_C0', 'FE2_f2_C2': 'FE2_f2_C2', 'FE2_f1_C0': 'FE2_f1_C0', 'FE2_f1_C1': 'FE2_f1_C1', 'FE2_f1_C2': 'FE2_f1_C2', 'FE1_f0_C0_D01': 'FE1_f0_C0_D01', 'FE1_f1_C1': 'FE1_f1_C1', 'FE1_f1_C0': 'FE1_f1_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_f0': array([[0.8872983346207417, 0.1127016653792583], + [0.5, 0.5], + [0.11270166537925835, 0.8872983346207417]], dtype=object), 'FE2_f0_C2': array([[ 0.68729833, -0.08729833, 0.4 ], + [ 0. , 0. , 1. ], + [-0.08729833, 0.68729833, 0.4 ]]), 'FE2_f0_C0': array([[ 0.48801408, 0.06198592, 0.74785275, -0.29785275], + [-0.0625 , -0.0625 , 0.5625 , 0.5625 ], + [ 0.06198592, 0.48801408, -0.29785275, 0.74785275]]), 'FE1_f0_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.]])} + + QG-utils, psi_tables, name_map: + {'FE0_f0': ('FE0_f0', (0, [1, 2]), False, False), 'FE1_f1_C0_D10': ('FE1_f0_C0_D01', (5, [0, 1]), False, False), 'FE0_f2': ('FE0_f0', (2, [0, 1]), False, False), 'FE1_f0_C1_D01': ('FE1_f0_C0_D01', (7, [3, 5]), False, False), 'FE1_f2_C1_D01': ('FE1_f0_C0_D01', (7, [3, 5]), False, False), 'FE1_f1_C1_D10': ('FE1_f0_C0_D01', (8, [3, 4]), False, False), 'FE1_f2_C0_D10': ('FE1_f0_C0_D01', (5, [0, 1]), False, False), 'FE1_f2_C0': ('FE0_f0', (11, [0, 1]), False, False), 'FE1_f2_C1': ('FE0_f0', (12, [3, 4]), False, False), 'FE2_f0_C2': ('FE2_f0_C2', (15, [21, 22, 23]), False, False), 'FE2_f0_C1': ('FE2_f0_C0', (14, [11, 12, 13, 14]), False, False), 'FE2_f0_C0': ('FE2_f0_C0', (13, [1, 2, 3, 4]), False, False), 'FE1_f2_C0_D01': ('FE1_f0_C0_D01', (4, [0, 2]), False, False), 'FE0_f1': ('FE0_f0', (1, [0, 2]), False, False), 'FE1_f0_C0_D10': ('FE1_f0_C0_D01', (5, [0, 1]), False, False), 'FE1_f1_C0_D01': ('FE1_f0_C0_D01', (4, [0, 2]), False, False), 'FE1_f0_C0': ('FE0_f0', (3, [1, 2]), False, False), 'FE1_f0_C1': ('FE0_f0', (6, [4, 5]), False, False), 'FE1_f2_C1_D10': ('FE1_f0_C0_D01', (8, [3, 4]), False, False), 'FE1_f0_C1_D10': ('FE1_f0_C0_D01', (8, [3, 4]), False, False), 'FE1_f1_C1_D01': ('FE1_f0_C0_D01', (7, [3, 5]), False, False), 'FE2_f2_C1': ('FE2_f0_C0', (20, [10, 11, 17, 18]), False, False), 'FE2_f2_C0': ('FE2_f0_C0', (19, [0, 1, 7, 8]), False, False), 'FE2_f2_C2': ('FE2_f0_C2', (21, [20, 21, 25]), False, False), 'FE2_f1_C0': ('FE2_f0_C0', (16, [0, 2, 5, 6]), False, False), 'FE2_f1_C1': ('FE2_f0_C0', (17, [10, 12, 15, 16]), False, False), 'FE2_f1_C2': ('FE2_f0_C2', (18, [20, 22, 24]), False, False), 'FE1_f0_C0_D01': ('FE1_f0_C0_D01', (4, [0, 2]), False, False), 'FE1_f1_C1': ('FE0_f0', (10, [3, 5]), False, False), 'FE1_f1_C0': ('FE0_f0', (9, [0, 2]), False, False)} + Transforming exterior facet integral 0 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming exterior facet integral 1 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming exterior facet integral 2 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00715 seconds + Shape of reference tensor: (15, 15, 1) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [1] indices = [[0]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [1] indices = [[0]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {25: {FiniteElement('Real', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0): array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, + 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.99999999999999989, 1.0, 1.0, 1.0, + 1.0, 0.99999999999999989]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.91514755, 0.76436533, 0.53566054, 0.29024993, 0.0939128 , + 0.73861153, 0.61691587, 0.43232925, 0.23425943, 0.0757966 , + 0.48009507, 0.40099329, 0.28101259, 0.15226786, 0.04926754, + 0.22157861, 0.18507071, 0.12969594, 0.07027629, 0.02273848, + 0.04504259, 0.03762125, 0.02636464, 0.01428579, 0.00462229], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]], + + [[ 0.04504259, 0.03762125, 0.02636464, 0.01428579, 0.00462229, + 0.22157861, 0.18507071, 0.12969594, 0.07027629, 0.02273848, + 0.48009507, 0.40099329, 0.28101259, 0.15226786, 0.04926754, + 0.73861153, 0.61691587, 0.43232925, 0.23425943, 0.0757966 , + 0.91514755, 0.76436533, 0.53566054, 0.29024993, 0.0939128 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]], + + [[ 0.03980986, 0.19801342, 0.43797481, 0.69546427, 0.90146491, + 0.03980986, 0.19801342, 0.43797481, 0.69546427, 0.90146491, + 0.03980986, 0.19801342, 0.43797481, 0.69546427, 0.90146491, + 0.03980986, 0.19801342, 0.43797481, 0.69546427, 0.90146491, + 0.03980986, 0.19801342, 0.43797481, 0.69546427, 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.91514755, 0.76436533, 0.53566054, 0.29024993, 0.0939128 , + 0.73861153, 0.61691587, 0.43232925, 0.23425943, 0.0757966 , + 0.48009507, 0.40099329, 0.28101259, 0.15226786, 0.04926754, + 0.22157861, 0.18507071, 0.12969594, 0.07027629, 0.02273848, + 0.04504259, 0.03762125, 0.02636464, 0.01428579, 0.00462229]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.04504259, 0.03762125, 0.02636464, 0.01428579, 0.00462229, + 0.22157861, 0.18507071, 0.12969594, 0.07027629, 0.02273848, + 0.48009507, 0.40099329, 0.28101259, 0.15226786, 0.04926754, + 0.73861153, 0.61691587, 0.43232925, 0.23425943, 0.0757966 , + 0.91514755, 0.76436533, 0.53566054, 0.29024993, 0.0939128 ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.03980986, 0.19801342, 0.43797481, 0.69546427, 0.90146491, + 0.03980986, 0.19801342, 0.43797481, 0.69546427, 0.90146491, + 0.03980986, 0.19801342, 0.43797481, 0.69546427, 0.90146491, + 0.03980986, 0.19801342, 0.43797481, 0.69546427, 0.90146491, + 0.03980986, 0.19801342, 0.43797481, 0.69546427, 0.90146491]]])}}}, MixedElement(*[VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, dim=2, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {None: {(0, 1): array([[[ -2.66059020e+00, -2.05746132e+00, -1.14264218e+00, ..., + 8.94541420e-01, 9.42856822e-01, 9.81510846e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -3.88578059e-16, 5.55111512e-17, 1.59594560e-16, ..., + 3.67761377e-16, -2.77555756e-16, -4.44089210e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -8.40760572e-01, -2.07946329e-01, 7.51899241e-01, ..., + 7.51899241e-01, 1.78185709e+00, 2.60585966e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + ..., + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, ..., + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, ..., + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]]), (1, 0): array([[[-2.6605902 , -2.05746132, -1.14264218, ..., 0.89454142, + 0.94285682, 0.98151085], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + [[-0.81982963, -0.84951499, -0.89454142, ..., 1.14264218, + 0.16099973, -0.62434881], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + ..., + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [-1. , -1. , -1. , ..., -1. , + -1. , -1. ]], + + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 1. , 1. , 1. , ..., 1. , + 1. , 1. ]], + + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]]]), (0, 0): array([[[ 0.75984252, 0.40414338, 0.03820389, ..., -0.02497446, + -0.01387763, -0.00457956], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + [[-0.04098492, -0.03479054, -0.02497446, ..., 0.03820389, + -0.12175989, -0.07627357], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + [[-0.03664021, -0.11959479, -0.05433094, ..., -0.05433094, + 0.27187684, 0.72381307], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + ..., + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0.91514755, 0.76436533, 0.53566054, ..., 0.02636464, + 0.01428579, 0.00462229]], + + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0.04504259, 0.03762125, 0.02636464, ..., 0.53566054, + 0.29024993, 0.0939128 ]], + + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0.03980986, 0.19801342, 0.43797481, ..., 0.43797481, + 0.69546427, 0.90146491]]])}}}, MixedElement(*[MixedElement(*[FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None)], **{'value_shape': (2,) }), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {None: {(0, 1): array([[[ -2.66059020e+00, -2.05746132e+00, -1.14264218e+00, ..., + 8.94541420e-01, 9.42856822e-01, 9.81510846e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -3.88578059e-16, 5.55111512e-17, 1.59594560e-16, ..., + 3.67761377e-16, -2.77555756e-16, -4.44089210e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -8.40760572e-01, -2.07946329e-01, 7.51899241e-01, ..., + 7.51899241e-01, 1.78185709e+00, 2.60585966e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + ..., + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, ..., + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, ..., + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]]), (1, 0): array([[[-2.6605902 , -2.05746132, -1.14264218, ..., 0.89454142, + 0.94285682, 0.98151085], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + [[-0.81982963, -0.84951499, -0.89454142, ..., 1.14264218, + 0.16099973, -0.62434881], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + ..., + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [-1. , -1. , -1. , ..., -1. , + -1. , -1. ]], + + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 1. , 1. , 1. , ..., 1. , + 1. , 1. ]], + + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]]]), (0, 0): array([[[ 0.75984252, 0.40414338, 0.03820389, ..., -0.02497446, + -0.01387763, -0.00457956], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + [[-0.04098492, -0.03479054, -0.02497446, ..., 0.03820389, + -0.12175989, -0.07627357], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + [[-0.03664021, -0.11959479, -0.05433094, ..., -0.05433094, + 0.27187684, 0.72381307], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ]], + + ..., + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0.91514755, 0.76436533, 0.53566054, ..., 0.02636464, + 0.01428579, 0.00462229]], + + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0.04504259, 0.03762125, 0.02636464, ..., 0.53566054, + 0.29024993, 0.0939128 ]], + + [[ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0. , 0. , 0. , ..., 0. , + 0. , 0. ], + [ 0.03980986, 0.19801342, 0.43797481, ..., 0.43797481, + 0.69546427, 0.90146491]]])}}}, FiniteElement('Bubble', Domain(Cell('triangle', 2), label=None, data=None), 3, quad_scheme=None): {None: {None: {(0, 1): array([[1.0645419576193222, 0.57528544123839909, 0.069537142111522066, + -0.15629783660456859, -0.1007839485374431, 4.1806666025278236, + 2.0932175166793923, -0.019769557671948879, -0.87511767987258171, + -0.50691001274709091, 5.7072265601591292, 2.1976263189868388, + -1.1909257048519397, -2.2332066314443275, -1.1336131048331728, + 3.624925419221487, -0.21558316717187903, -3.5985053269365639, + -3.9543169424171358, -1.7983209117704795, 0.12929560203507395, + -3.3101516834601297, -5.9530497856576918, -5.3382241989434531, + -2.2740749932784055]], dtype=object), (1, 0): array([[0.9352463555842504, 3.8854371246985302, 6.0225869277692157, + 5.1819263623388867, 2.173291044740961, 0.55574118330633471, + 2.30880068385127, 3.578735769264616, 3.0791992625445563, + 1.2914108990233868, 7.1564590174502415e-17, + -1.2669846426651272e-15, 9.5039679816781888e-16, + 2.5014148937354126e-15, -8.9597872259107286e-16, + -0.55574118330633249, -2.30880068385127, -3.5787357692646129, + -3.0791992625445492, -1.2914108990233886, -0.9352463555842444, + -3.8854371246985275, -6.0225869277692112, -5.1819263623388778, + -2.1732910447409628]], dtype=object), (0, 0): array([[0.044306647781284285, 0.15374203052449872, 0.16700308084091173, + 0.077860127642166807, 0.010565606073050682, 0.17591314777898884, + 0.61041053408067281, 0.66306161965887866, 0.30913239493133543, + 0.041949213392945828, 0.24774727000530669, 0.85967163518081724, + 0.93382278806226415, 0.43536658789519056, 0.059079171899246358, + 0.17591314777898864, 0.6104105340806727, 0.663061619658879, + 0.30913239493133565, 0.041949213392945828, 0.044306647781284229, + 0.15374203052449861, 0.16700308084091206, 0.077860127642167667, + 0.010565606073050793]], dtype=object)}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_D10': array([[0.9352463555842504], + [3.8854371246985302], + [6.0225869277692157], + [5.1819263623388867], + [2.173291044740961], + [0.55574118330633471], + [2.30880068385127], + [3.578735769264616], + [3.0791992625445563], + [1.2914108990233868], + [7.1564590174502415e-17], + [-1.2669846426651272e-15], + [9.5039679816781888e-16], + [2.5014148937354126e-15], + [-8.9597872259107286e-16], + [-0.55574118330633249], + [-2.30880068385127], + [-3.5787357692646129], + [-3.0791992625445492], + [-1.2914108990233886], + [-0.9352463555842444], + [-3.8854371246985275], + [-6.0225869277692112], + [-5.1819263623388778], + [-2.1732910447409628]], dtype=object), 'FE2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.66059020e+00, -3.88578059e-16, -8.40760572e-01, + 1.80170374e-01, 3.50135077e+00, -1.80170374e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.05746132e+00, 5.55111512e-17, -2.07946329e-01, + 1.50485009e-01, 2.26540765e+00, -1.50485009e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.14264218e+00, 1.59594560e-16, 7.51899241e-01, + 1.05458580e-01, 3.90742938e-01, -1.05458580e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.60999729e-01, -1.11022302e-16, 1.78185709e+00, + 5.71431776e-02, -1.62085736e+00, -5.71431776e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.24348811e-01, -4.44089210e-16, 2.60585966e+00, + 1.84891539e-02, -3.23020847e+00, -1.84891539e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.95444613e+00, -3.88578059e-16, -8.40760572e-01, + 8.86314438e-01, 2.79520671e+00, -8.86314438e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.46766349e+00, -5.55111512e-17, -2.07946329e-01, + 7.40282841e-01, 1.67560982e+00, -7.40282841e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.29317012e-01, 7.63278329e-17, 7.51899241e-01, + 5.18783747e-01, -2.25822291e-02, -5.18783747e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.29622614e-02, -1.66533454e-16, 1.78185709e+00, + 2.81105168e-01, -1.84481935e+00, -2.81105168e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.96813589e-01, -5.55111512e-16, 2.60585966e+00, + 9.09539323e-02, -3.30267325e+00, -9.09539323e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -9.20380286e-01, -2.77555756e-16, -8.40760572e-01, + 1.92038029e+00, 1.76114086e+00, -1.92038029e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -6.03973164e-01, -1.11022302e-16, -2.07946329e-01, + 1.60397316e+00, 8.11919493e-01, -1.60397316e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.24050380e-01, -1.38777878e-17, 7.51899241e-01, + 1.12405038e+00, -6.27848861e-01, -1.12405038e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.90928547e-01, -1.66533454e-16, 1.78185709e+00, + 6.09071453e-01, -2.17278564e+00, -6.09071453e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.02929828e-01, -5.55111512e-16, 2.60585966e+00, + 1.97070172e-01, -3.40878949e+00, -1.97070172e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.13685562e-01, 0.00000000e+00, -8.40760572e-01, + 2.95444613e+00, 7.27075010e-01, -2.95444613e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.59717159e-01, 5.55111512e-17, -2.07946329e-01, + 2.46766349e+00, -5.17708304e-02, -2.46766349e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.81216253e-01, 3.46944695e-17, 7.51899241e-01, + 1.72931701e+00, -1.23311549e+00, -1.72931701e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.18894832e-01, -2.77555756e-16, 1.78185709e+00, + 9.37037739e-01, -2.50075193e+00, -9.37037739e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.09046068e-01, -5.55111512e-16, 2.60585966e+00, + 3.03186411e-01, -3.51490572e+00, -3.03186411e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.19829626e-01, 1.66533454e-16, -8.40760572e-01, + 3.66059020e+00, 2.09309461e-02, -3.66059020e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.49514991e-01, 2.22044605e-16, -2.07946329e-01, + 3.05746132e+00, -6.41568662e-01, -3.05746132e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.94541420e-01, 3.67761377e-16, 7.51899241e-01, + 2.14264218e+00, -1.64644066e+00, -2.14264218e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.42856822e-01, -2.77555756e-16, 1.78185709e+00, + 1.16099973e+00, -2.72471392e+00, -1.16099973e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.81510846e-01, -4.44089210e-16, 2.60585966e+00, + 3.75651189e-01, -3.58737050e+00, -3.75651189e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.66059020e+00, -8.19829626e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.05746132e+00, -8.49514991e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.14264218e+00, -8.94541420e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.60999729e-01, -9.42856822e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.24348811e-01, -9.81510846e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.95444613e+00, -1.13685562e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.46766349e+00, -2.59717159e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.29317012e-01, -4.81216253e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.29622614e-02, -7.18894832e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.96813589e-01, -9.09046068e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -9.20380286e-01, 9.20380286e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -1.15580710e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -6.03973164e-01, 6.03973164e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -8.13438773e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.24050380e-01, 1.24050380e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -4.06039638e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.90928547e-01, -3.90928547e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.54839928e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.02929828e-01, -8.02929828e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -1.18760780e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.13685562e-01, 1.95444613e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.59717159e-01, 1.46766349e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.81216253e-01, 7.29317012e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.18894832e-01, -6.29622614e-02, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.09046068e-01, -6.96813589e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.19829626e-01, 2.66059020e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.49514991e-01, 2.05746132e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.94541420e-01, 1.14264218e+00, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.42856822e-01, 1.60999729e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.81510846e-01, -6.24348811e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.66059020e+00, -8.19829626e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.05746132e+00, -8.49514991e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.14264218e+00, -8.94541420e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.60999729e-01, -9.42856822e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.24348811e-01, -9.81510846e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.95444613e+00, -1.13685562e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.46766349e+00, -2.59717159e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.29317012e-01, -4.81216253e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.29622614e-02, -7.18894832e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.96813589e-01, -9.09046068e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -9.20380286e-01, 9.20380286e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -1.15580710e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -6.03973164e-01, 6.03973164e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -8.13438773e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.24050380e-01, 1.24050380e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -4.06039638e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.90928547e-01, -3.90928547e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.54839928e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.02929828e-01, -8.02929828e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -1.18760780e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.13685562e-01, 1.95444613e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.59717159e-01, 1.46766349e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.81216253e-01, 7.29317012e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.18894832e-01, -6.29622614e-02, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.09046068e-01, -6.96813589e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.19829626e-01, 2.66059020e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.49514991e-01, 2.05746132e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.94541420e-01, 1.14264218e+00, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.42856822e-01, 1.60999729e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.81510846e-01, -6.24348811e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE3_C0_D10': array([[ -2.66059020e+00, -8.19829626e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.05746132e+00, -8.49514991e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.14264218e+00, -8.94541420e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.60999729e-01, -9.42856822e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.24348811e-01, -9.81510846e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.95444613e+00, -1.13685562e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.46766349e+00, -2.59717159e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.29317012e-01, -4.81216253e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.29622614e-02, -7.18894832e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.96813589e-01, -9.09046068e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -9.20380286e-01, 9.20380286e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -1.15580710e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.03973164e-01, 6.03973164e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -8.13438773e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.24050380e-01, 1.24050380e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -4.06039638e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.90928547e-01, -3.90928547e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.54839928e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.02929828e-01, -8.02929828e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -1.18760780e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.13685562e-01, 1.95444613e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.59717159e-01, 1.46766349e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.81216253e-01, 7.29317012e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.18894832e-01, -6.29622614e-02, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.09046068e-01, -6.96813589e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.19829626e-01, 2.66059020e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.49514991e-01, 2.05746132e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.94541420e-01, 1.14264218e+00, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.42856822e-01, 1.60999729e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.81510846e-01, -6.24348811e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C0_D01': array([[ -2.66059020e+00, -3.88578059e-16, -8.40760572e-01, + 1.80170374e-01, 3.50135077e+00, -1.80170374e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.05746132e+00, 5.55111512e-17, -2.07946329e-01, + 1.50485009e-01, 2.26540765e+00, -1.50485009e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.14264218e+00, 1.59594560e-16, 7.51899241e-01, + 1.05458580e-01, 3.90742938e-01, -1.05458580e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.60999729e-01, -1.11022302e-16, 1.78185709e+00, + 5.71431776e-02, -1.62085736e+00, -5.71431776e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.24348811e-01, -4.44089210e-16, 2.60585966e+00, + 1.84891539e-02, -3.23020847e+00, -1.84891539e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.95444613e+00, -3.88578059e-16, -8.40760572e-01, + 8.86314438e-01, 2.79520671e+00, -8.86314438e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.46766349e+00, -5.55111512e-17, -2.07946329e-01, + 7.40282841e-01, 1.67560982e+00, -7.40282841e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.29317012e-01, 7.63278329e-17, 7.51899241e-01, + 5.18783747e-01, -2.25822291e-02, -5.18783747e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.29622614e-02, -1.66533454e-16, 1.78185709e+00, + 2.81105168e-01, -1.84481935e+00, -2.81105168e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.96813589e-01, -5.55111512e-16, 2.60585966e+00, + 9.09539323e-02, -3.30267325e+00, -9.09539323e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -9.20380286e-01, -2.77555756e-16, -8.40760572e-01, + 1.92038029e+00, 1.76114086e+00, -1.92038029e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.03973164e-01, -1.11022302e-16, -2.07946329e-01, + 1.60397316e+00, 8.11919493e-01, -1.60397316e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.24050380e-01, -1.38777878e-17, 7.51899241e-01, + 1.12405038e+00, -6.27848861e-01, -1.12405038e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.90928547e-01, -1.66533454e-16, 1.78185709e+00, + 6.09071453e-01, -2.17278564e+00, -6.09071453e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.02929828e-01, -5.55111512e-16, 2.60585966e+00, + 1.97070172e-01, -3.40878949e+00, -1.97070172e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.13685562e-01, 0.00000000e+00, -8.40760572e-01, + 2.95444613e+00, 7.27075010e-01, -2.95444613e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.59717159e-01, 5.55111512e-17, -2.07946329e-01, + 2.46766349e+00, -5.17708304e-02, -2.46766349e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.81216253e-01, 3.46944695e-17, 7.51899241e-01, + 1.72931701e+00, -1.23311549e+00, -1.72931701e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.18894832e-01, -2.77555756e-16, 1.78185709e+00, + 9.37037739e-01, -2.50075193e+00, -9.37037739e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.09046068e-01, -5.55111512e-16, 2.60585966e+00, + 3.03186411e-01, -3.51490572e+00, -3.03186411e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.19829626e-01, 1.66533454e-16, -8.40760572e-01, + 3.66059020e+00, 2.09309461e-02, -3.66059020e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.49514991e-01, 2.22044605e-16, -2.07946329e-01, + 3.05746132e+00, -6.41568662e-01, -3.05746132e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.94541420e-01, 3.67761377e-16, 7.51899241e-01, + 2.14264218e+00, -1.64644066e+00, -2.14264218e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.42856822e-01, -2.77555756e-16, 1.78185709e+00, + 1.16099973e+00, -2.72471392e+00, -1.16099973e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.81510846e-01, -4.44089210e-16, 2.60585966e+00, + 3.75651189e-01, -3.58737050e+00, -3.75651189e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.75984252, -0.04098492, -0.03664021, 0.00717256, + 0.14572757, 0.16488248, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.40414338, -0.03479054, -0.11959479, 0.02979805, + 0.60541837, 0.11502552, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.03820389, -0.02497446, -0.05433094, 0.0461882 , + 0.9384233 , 0.05649 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12175989, -0.01387763, 0.27187684, 0.03974104, + 0.80743383, 0.0165858 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07627357, -0.00457956, 0.72381307, 0.01666732, + 0.33863637, 0.00173637, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.35248246, -0.12338445, -0.03664021, 0.03528405, + 0.11761608, 0.65464207, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.14425451, -0.11656837, -0.11959479, 0.14658594, + 0.48863048, 0.45669223, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.05851209, -0.09605386, -0.05433094, 0.22721421, + 0.75739729, 0.22428539, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12450447, -0.06039878, 0.27187684, 0.1954986 , + 0.65167627, 0.06585154, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.06430635, -0.02170441, 0.72381307, 0.08199178, + 0.27331191, 0.006894 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.01911252, -0.01911252, -0.03664021, 0.07645006, + 0.07645006, 0.92196511, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07940205, -0.07940205, -0.11959479, 0.31760821, + 0.31760821, 0.64318248, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12307644, -0.12307644, -0.05433094, 0.49230575, + 0.49230575, 0.31587231, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.10589686, -0.10589686, 0.27187684, 0.42358744, + 0.42358744, 0.09274201, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04441296, -0.04441296, 0.72381307, 0.17765185, + 0.17765185, 0.00970916, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12338445, 0.35248246, -0.03664021, 0.11761608, + 0.03528405, 0.65464207, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11656837, 0.14425451, -0.11959479, 0.48863048, + 0.14658594, 0.45669223, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.09605386, -0.05851209, -0.05433094, 0.75739729, + 0.22721421, 0.22428539, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.06039878, -0.12450447, 0.27187684, 0.65167627, + 0.1954986 , 0.06585154, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02170441, -0.06430635, 0.72381307, 0.27331191, + 0.08199178, 0.006894 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04098492, 0.75984252, -0.03664021, 0.14572757, + 0.00717256, 0.16488248, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.03479054, 0.40414338, -0.11959479, 0.60541837, + 0.02979805, 0.11502552, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02497446, 0.03820389, -0.05433094, 0.9384233 , + 0.0461882 , 0.05649 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.01387763, -0.12175989, 0.27187684, 0.80743383, + 0.03974104, 0.0165858 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.00457956, -0.07627357, 0.72381307, 0.33863637, + 0.01666732, 0.00173637, 0. , 0. , 0. ]]), 'FE2_C0': array([[ 0.75984252, -0.04098492, -0.03664021, 0.00717256, 0.14572757, + 0.16488248, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.40414338, -0.03479054, -0.11959479, 0.02979805, 0.60541837, + 0.11502552, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.03820389, -0.02497446, -0.05433094, 0.0461882 , 0.9384233 , + 0.05649 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12175989, -0.01387763, 0.27187684, 0.03974104, 0.80743383, + 0.0165858 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.07627357, -0.00457956, 0.72381307, 0.01666732, 0.33863637, + 0.00173637, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.35248246, -0.12338445, -0.03664021, 0.03528405, 0.11761608, + 0.65464207, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.14425451, -0.11656837, -0.11959479, 0.14658594, 0.48863048, + 0.45669223, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.05851209, -0.09605386, -0.05433094, 0.22721421, 0.75739729, + 0.22428539, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12450447, -0.06039878, 0.27187684, 0.1954986 , 0.65167627, + 0.06585154, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.06430635, -0.02170441, 0.72381307, 0.08199178, 0.27331191, + 0.006894 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.01911252, -0.01911252, -0.03664021, 0.07645006, 0.07645006, + 0.92196511, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.07940205, -0.07940205, -0.11959479, 0.31760821, 0.31760821, + 0.64318248, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12307644, -0.12307644, -0.05433094, 0.49230575, 0.49230575, + 0.31587231, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.10589686, -0.10589686, 0.27187684, 0.42358744, 0.42358744, + 0.09274201, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04441296, -0.04441296, 0.72381307, 0.17765185, 0.17765185, + 0.00970916, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12338445, 0.35248246, -0.03664021, 0.11761608, 0.03528405, + 0.65464207, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.11656837, 0.14425451, -0.11959479, 0.48863048, 0.14658594, + 0.45669223, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.09605386, -0.05851209, -0.05433094, 0.75739729, 0.22721421, + 0.22428539, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.06039878, -0.12450447, 0.27187684, 0.65167627, 0.1954986 , + 0.06585154, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02170441, -0.06430635, 0.72381307, 0.27331191, 0.08199178, + 0.006894 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04098492, 0.75984252, -0.03664021, 0.14572757, 0.00717256, + 0.16488248, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.03479054, 0.40414338, -0.11959479, 0.60541837, 0.02979805, + 0.11502552, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02497446, 0.03820389, -0.05433094, 0.9384233 , 0.0461882 , + 0.05649 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.01387763, -0.12175989, 0.27187684, 0.80743383, 0.03974104, + 0.0165858 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.00457956, -0.07627357, 0.72381307, 0.33863637, 0.01666732, + 0.00173637, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE4': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [0.99999999999999989], + [1.0], + [1.0], + [1.0], + [1.0], + [0.99999999999999989]], dtype=object), 'FE2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.91514755, 0.04504259, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.76436533, 0.03762125, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.53566054, 0.02636464, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.29024993, 0.01428579, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.0939128 , 0.00462229, 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.73861153, 0.22157861, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.61691587, 0.18507071, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.43232925, 0.12969594, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.23425943, 0.07027629, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.0757966 , 0.02273848, 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.48009507, 0.48009507, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.40099329, 0.40099329, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.28101259, 0.28101259, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.15226786, 0.15226786, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.04926754, 0.04926754, 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.22157861, 0.73861153, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.18507071, 0.61691587, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.12969594, 0.43232925, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.07027629, 0.23425943, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.02273848, 0.0757966 , 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.04504259, 0.91514755, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.03762125, 0.76436533, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.02636464, 0.53566054, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.01428579, 0.29024993, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.00462229, 0.0939128 , 0.90146491]]), 'FE0': array([[0.044306647781284285], + [0.15374203052449872], + [0.16700308084091173], + [0.077860127642166807], + [0.010565606073050682], + [0.17591314777898884], + [0.61041053408067281], + [0.66306161965887866], + [0.30913239493133543], + [0.041949213392945828], + [0.24774727000530669], + [0.85967163518081724], + [0.93382278806226415], + [0.43536658789519056], + [0.059079171899246358], + [0.17591314777898864], + [0.6104105340806727], + [0.663061619658879], + [0.30913239493133565], + [0.041949213392945828], + [0.044306647781284229], + [0.15374203052449861], + [0.16700308084091206], + [0.077860127642167667], + [0.010565606073050793]], dtype=object), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_D01': array([[1.0645419576193222], + [0.57528544123839909], + [0.069537142111522066], + [-0.15629783660456859], + [-0.1007839485374431], + [4.1806666025278236], + [2.0932175166793923], + [-0.019769557671948879], + [-0.87511767987258171], + [-0.50691001274709091], + [5.7072265601591292], + [2.1976263189868388], + [-1.1909257048519397], + [-2.2332066314443275], + [-1.1336131048331728], + [3.624925419221487], + [-0.21558316717187903], + [-3.5985053269365639], + [-3.9543169424171358], + [-1.7983209117704795], + [0.12929560203507395], + [-3.3101516834601297], + [-5.9530497856576918], + [-5.3382241989434531], + [-2.2740749932784055]], dtype=object), 'FE3_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.66059020e+00, -3.88578059e-16, -8.40760572e-01, + 1.80170374e-01, 3.50135077e+00, -1.80170374e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.05746132e+00, 5.55111512e-17, -2.07946329e-01, + 1.50485009e-01, 2.26540765e+00, -1.50485009e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.14264218e+00, 1.59594560e-16, 7.51899241e-01, + 1.05458580e-01, 3.90742938e-01, -1.05458580e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.60999729e-01, -1.11022302e-16, 1.78185709e+00, + 5.71431776e-02, -1.62085736e+00, -5.71431776e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.24348811e-01, -4.44089210e-16, 2.60585966e+00, + 1.84891539e-02, -3.23020847e+00, -1.84891539e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.95444613e+00, -3.88578059e-16, -8.40760572e-01, + 8.86314438e-01, 2.79520671e+00, -8.86314438e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.46766349e+00, -5.55111512e-17, -2.07946329e-01, + 7.40282841e-01, 1.67560982e+00, -7.40282841e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.29317012e-01, 7.63278329e-17, 7.51899241e-01, + 5.18783747e-01, -2.25822291e-02, -5.18783747e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.29622614e-02, -1.66533454e-16, 1.78185709e+00, + 2.81105168e-01, -1.84481935e+00, -2.81105168e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.96813589e-01, -5.55111512e-16, 2.60585966e+00, + 9.09539323e-02, -3.30267325e+00, -9.09539323e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -9.20380286e-01, -2.77555756e-16, -8.40760572e-01, + 1.92038029e+00, 1.76114086e+00, -1.92038029e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -6.03973164e-01, -1.11022302e-16, -2.07946329e-01, + 1.60397316e+00, 8.11919493e-01, -1.60397316e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.24050380e-01, -1.38777878e-17, 7.51899241e-01, + 1.12405038e+00, -6.27848861e-01, -1.12405038e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.90928547e-01, -1.66533454e-16, 1.78185709e+00, + 6.09071453e-01, -2.17278564e+00, -6.09071453e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.02929828e-01, -5.55111512e-16, 2.60585966e+00, + 1.97070172e-01, -3.40878949e+00, -1.97070172e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.13685562e-01, 0.00000000e+00, -8.40760572e-01, + 2.95444613e+00, 7.27075010e-01, -2.95444613e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.59717159e-01, 5.55111512e-17, -2.07946329e-01, + 2.46766349e+00, -5.17708304e-02, -2.46766349e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.81216253e-01, 3.46944695e-17, 7.51899241e-01, + 1.72931701e+00, -1.23311549e+00, -1.72931701e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.18894832e-01, -2.77555756e-16, 1.78185709e+00, + 9.37037739e-01, -2.50075193e+00, -9.37037739e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.09046068e-01, -5.55111512e-16, 2.60585966e+00, + 3.03186411e-01, -3.51490572e+00, -3.03186411e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.19829626e-01, 1.66533454e-16, -8.40760572e-01, + 3.66059020e+00, 2.09309461e-02, -3.66059020e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.49514991e-01, 2.22044605e-16, -2.07946329e-01, + 3.05746132e+00, -6.41568662e-01, -3.05746132e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.94541420e-01, 3.67761377e-16, 7.51899241e-01, + 2.14264218e+00, -1.64644066e+00, -2.14264218e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.42856822e-01, -2.77555756e-16, 1.78185709e+00, + 1.16099973e+00, -2.72471392e+00, -1.16099973e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.81510846e-01, -4.44089210e-16, 2.60585966e+00, + 3.75651189e-01, -3.58737050e+00, -3.75651189e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE2_C2_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE3_C2_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE3_C0_D01': array([[ -2.66059020e+00, -3.88578059e-16, -8.40760572e-01, + 1.80170374e-01, 3.50135077e+00, -1.80170374e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.05746132e+00, 5.55111512e-17, -2.07946329e-01, + 1.50485009e-01, 2.26540765e+00, -1.50485009e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.14264218e+00, 1.59594560e-16, 7.51899241e-01, + 1.05458580e-01, 3.90742938e-01, -1.05458580e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.60999729e-01, -1.11022302e-16, 1.78185709e+00, + 5.71431776e-02, -1.62085736e+00, -5.71431776e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.24348811e-01, -4.44089210e-16, 2.60585966e+00, + 1.84891539e-02, -3.23020847e+00, -1.84891539e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.95444613e+00, -3.88578059e-16, -8.40760572e-01, + 8.86314438e-01, 2.79520671e+00, -8.86314438e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.46766349e+00, -5.55111512e-17, -2.07946329e-01, + 7.40282841e-01, 1.67560982e+00, -7.40282841e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.29317012e-01, 7.63278329e-17, 7.51899241e-01, + 5.18783747e-01, -2.25822291e-02, -5.18783747e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.29622614e-02, -1.66533454e-16, 1.78185709e+00, + 2.81105168e-01, -1.84481935e+00, -2.81105168e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.96813589e-01, -5.55111512e-16, 2.60585966e+00, + 9.09539323e-02, -3.30267325e+00, -9.09539323e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -9.20380286e-01, -2.77555756e-16, -8.40760572e-01, + 1.92038029e+00, 1.76114086e+00, -1.92038029e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.03973164e-01, -1.11022302e-16, -2.07946329e-01, + 1.60397316e+00, 8.11919493e-01, -1.60397316e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.24050380e-01, -1.38777878e-17, 7.51899241e-01, + 1.12405038e+00, -6.27848861e-01, -1.12405038e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.90928547e-01, -1.66533454e-16, 1.78185709e+00, + 6.09071453e-01, -2.17278564e+00, -6.09071453e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.02929828e-01, -5.55111512e-16, 2.60585966e+00, + 1.97070172e-01, -3.40878949e+00, -1.97070172e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.13685562e-01, 0.00000000e+00, -8.40760572e-01, + 2.95444613e+00, 7.27075010e-01, -2.95444613e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.59717159e-01, 5.55111512e-17, -2.07946329e-01, + 2.46766349e+00, -5.17708304e-02, -2.46766349e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.81216253e-01, 3.46944695e-17, 7.51899241e-01, + 1.72931701e+00, -1.23311549e+00, -1.72931701e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.18894832e-01, -2.77555756e-16, 1.78185709e+00, + 9.37037739e-01, -2.50075193e+00, -9.37037739e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.09046068e-01, -5.55111512e-16, 2.60585966e+00, + 3.03186411e-01, -3.51490572e+00, -3.03186411e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.19829626e-01, 1.66533454e-16, -8.40760572e-01, + 3.66059020e+00, 2.09309461e-02, -3.66059020e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.49514991e-01, 2.22044605e-16, -2.07946329e-01, + 3.05746132e+00, -6.41568662e-01, -3.05746132e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.94541420e-01, 3.67761377e-16, 7.51899241e-01, + 2.14264218e+00, -1.64644066e+00, -2.14264218e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.42856822e-01, -2.77555756e-16, 1.78185709e+00, + 1.16099973e+00, -2.72471392e+00, -1.16099973e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.81510846e-01, -4.44089210e-16, 2.60585966e+00, + 3.75651189e-01, -3.58737050e+00, -3.75651189e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C0_D10': array([[ -2.66059020e+00, -8.19829626e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.05746132e+00, -8.49514991e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.14264218e+00, -8.94541420e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.60999729e-01, -9.42856822e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.24348811e-01, -9.81510846e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.95444613e+00, -1.13685562e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.46766349e+00, -2.59717159e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.29317012e-01, -4.81216253e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.29622614e-02, -7.18894832e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.96813589e-01, -9.09046068e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -9.20380286e-01, 9.20380286e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -1.15580710e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.03973164e-01, 6.03973164e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -8.13438773e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.24050380e-01, 1.24050380e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -4.06039638e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.90928547e-01, -3.90928547e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.54839928e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.02929828e-01, -8.02929828e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -1.18760780e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.13685562e-01, 1.95444613e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.59717159e-01, 1.46766349e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.81216253e-01, 7.29317012e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.18894832e-01, -6.29622614e-02, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.09046068e-01, -6.96813589e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.19829626e-01, 2.66059020e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.49514991e-01, 2.05746132e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.94541420e-01, 1.14264218e+00, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.42856822e-01, 1.60999729e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.81510846e-01, -6.24348811e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.]]), 'FE3_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.]]), 'FE1_C0': array([[ 0.91514755, 0.04504259, 0.03980986, 0. , 0. , + 0. ], + [ 0.76436533, 0.03762125, 0.19801342, 0. , 0. , + 0. ], + [ 0.53566054, 0.02636464, 0.43797481, 0. , 0. , + 0. ], + [ 0.29024993, 0.01428579, 0.69546427, 0. , 0. , + 0. ], + [ 0.0939128 , 0.00462229, 0.90146491, 0. , 0. , + 0. ], + [ 0.73861153, 0.22157861, 0.03980986, 0. , 0. , + 0. ], + [ 0.61691587, 0.18507071, 0.19801342, 0. , 0. , + 0. ], + [ 0.43232925, 0.12969594, 0.43797481, 0. , 0. , + 0. ], + [ 0.23425943, 0.07027629, 0.69546427, 0. , 0. , + 0. ], + [ 0.0757966 , 0.02273848, 0.90146491, 0. , 0. , + 0. ], + [ 0.48009507, 0.48009507, 0.03980986, 0. , 0. , + 0. ], + [ 0.40099329, 0.40099329, 0.19801342, 0. , 0. , + 0. ], + [ 0.28101259, 0.28101259, 0.43797481, 0. , 0. , + 0. ], + [ 0.15226786, 0.15226786, 0.69546427, 0. , 0. , + 0. ], + [ 0.04926754, 0.04926754, 0.90146491, 0. , 0. , + 0. ], + [ 0.22157861, 0.73861153, 0.03980986, 0. , 0. , + 0. ], + [ 0.18507071, 0.61691587, 0.19801342, 0. , 0. , + 0. ], + [ 0.12969594, 0.43232925, 0.43797481, 0. , 0. , + 0. ], + [ 0.07027629, 0.23425943, 0.69546427, 0. , 0. , + 0. ], + [ 0.02273848, 0.0757966 , 0.90146491, 0. , 0. , + 0. ], + [ 0.04504259, 0.91514755, 0.03980986, 0. , 0. , + 0. ], + [ 0.03762125, 0.76436533, 0.19801342, 0. , 0. , + 0. ], + [ 0.02636464, 0.53566054, 0.43797481, 0. , 0. , + 0. ], + [ 0.01428579, 0.29024993, 0.69546427, 0. , 0. , + 0. ], + [ 0.00462229, 0.0939128 , 0.90146491, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.91514755, 0.04504259, + 0.03980986], + [ 0. , 0. , 0. , 0.76436533, 0.03762125, + 0.19801342], + [ 0. , 0. , 0. , 0.53566054, 0.02636464, + 0.43797481], + [ 0. , 0. , 0. , 0.29024993, 0.01428579, + 0.69546427], + [ 0. , 0. , 0. , 0.0939128 , 0.00462229, + 0.90146491], + [ 0. , 0. , 0. , 0.73861153, 0.22157861, + 0.03980986], + [ 0. , 0. , 0. , 0.61691587, 0.18507071, + 0.19801342], + [ 0. , 0. , 0. , 0.43232925, 0.12969594, + 0.43797481], + [ 0. , 0. , 0. , 0.23425943, 0.07027629, + 0.69546427], + [ 0. , 0. , 0. , 0.0757966 , 0.02273848, + 0.90146491], + [ 0. , 0. , 0. , 0.48009507, 0.48009507, + 0.03980986], + [ 0. , 0. , 0. , 0.40099329, 0.40099329, + 0.19801342], + [ 0. , 0. , 0. , 0.28101259, 0.28101259, + 0.43797481], + [ 0. , 0. , 0. , 0.15226786, 0.15226786, + 0.69546427], + [ 0. , 0. , 0. , 0.04926754, 0.04926754, + 0.90146491], + [ 0. , 0. , 0. , 0.22157861, 0.73861153, + 0.03980986], + [ 0. , 0. , 0. , 0.18507071, 0.61691587, + 0.19801342], + [ 0. , 0. , 0. , 0.12969594, 0.43232925, + 0.43797481], + [ 0. , 0. , 0. , 0.07027629, 0.23425943, + 0.69546427], + [ 0. , 0. , 0. , 0.02273848, 0.0757966 , + 0.90146491], + [ 0. , 0. , 0. , 0.04504259, 0.91514755, + 0.03980986], + [ 0. , 0. , 0. , 0.03762125, 0.76436533, + 0.19801342], + [ 0. , 0. , 0. , 0.02636464, 0.53566054, + 0.43797481], + [ 0. , 0. , 0. , 0.01428579, 0.29024993, + 0.69546427], + [ 0. , 0. , 0. , 0.00462229, 0.0939128 , + 0.90146491]]), 'FE3_C0': array([[ 0.75984252, -0.04098492, -0.03664021, 0.00717256, 0.14572757, + 0.16488248, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.40414338, -0.03479054, -0.11959479, 0.02979805, 0.60541837, + 0.11502552, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.03820389, -0.02497446, -0.05433094, 0.0461882 , 0.9384233 , + 0.05649 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12175989, -0.01387763, 0.27187684, 0.03974104, 0.80743383, + 0.0165858 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.07627357, -0.00457956, 0.72381307, 0.01666732, 0.33863637, + 0.00173637, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.35248246, -0.12338445, -0.03664021, 0.03528405, 0.11761608, + 0.65464207, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.14425451, -0.11656837, -0.11959479, 0.14658594, 0.48863048, + 0.45669223, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.05851209, -0.09605386, -0.05433094, 0.22721421, 0.75739729, + 0.22428539, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12450447, -0.06039878, 0.27187684, 0.1954986 , 0.65167627, + 0.06585154, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.06430635, -0.02170441, 0.72381307, 0.08199178, 0.27331191, + 0.006894 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.01911252, -0.01911252, -0.03664021, 0.07645006, 0.07645006, + 0.92196511, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.07940205, -0.07940205, -0.11959479, 0.31760821, 0.31760821, + 0.64318248, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12307644, -0.12307644, -0.05433094, 0.49230575, 0.49230575, + 0.31587231, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.10589686, -0.10589686, 0.27187684, 0.42358744, 0.42358744, + 0.09274201, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04441296, -0.04441296, 0.72381307, 0.17765185, 0.17765185, + 0.00970916, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12338445, 0.35248246, -0.03664021, 0.11761608, 0.03528405, + 0.65464207, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.11656837, 0.14425451, -0.11959479, 0.48863048, 0.14658594, + 0.45669223, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.09605386, -0.05851209, -0.05433094, 0.75739729, 0.22721421, + 0.22428539, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.06039878, -0.12450447, 0.27187684, 0.65167627, 0.1954986 , + 0.06585154, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02170441, -0.06430635, 0.72381307, 0.27331191, 0.08199178, + 0.006894 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04098492, 0.75984252, -0.03664021, 0.14572757, 0.00717256, + 0.16488248, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.03479054, 0.40414338, -0.11959479, 0.60541837, 0.02979805, + 0.11502552, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02497446, 0.03820389, -0.05433094, 0.9384233 , 0.0461882 , + 0.05649 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.01387763, -0.12175989, 0.27187684, 0.80743383, 0.03974104, + 0.0165858 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.00457956, -0.07627357, 0.72381307, 0.33863637, 0.01666732, + 0.00173637, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE3_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.75984252, -0.04098492, -0.03664021, 0.00717256, + 0.14572757, 0.16488248, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.40414338, -0.03479054, -0.11959479, 0.02979805, + 0.60541837, 0.11502552, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.03820389, -0.02497446, -0.05433094, 0.0461882 , + 0.9384233 , 0.05649 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12175989, -0.01387763, 0.27187684, 0.03974104, + 0.80743383, 0.0165858 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07627357, -0.00457956, 0.72381307, 0.01666732, + 0.33863637, 0.00173637, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.35248246, -0.12338445, -0.03664021, 0.03528405, + 0.11761608, 0.65464207, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.14425451, -0.11656837, -0.11959479, 0.14658594, + 0.48863048, 0.45669223, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.05851209, -0.09605386, -0.05433094, 0.22721421, + 0.75739729, 0.22428539, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12450447, -0.06039878, 0.27187684, 0.1954986 , + 0.65167627, 0.06585154, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.06430635, -0.02170441, 0.72381307, 0.08199178, + 0.27331191, 0.006894 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.01911252, -0.01911252, -0.03664021, 0.07645006, + 0.07645006, 0.92196511, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07940205, -0.07940205, -0.11959479, 0.31760821, + 0.31760821, 0.64318248, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12307644, -0.12307644, -0.05433094, 0.49230575, + 0.49230575, 0.31587231, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.10589686, -0.10589686, 0.27187684, 0.42358744, + 0.42358744, 0.09274201, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04441296, -0.04441296, 0.72381307, 0.17765185, + 0.17765185, 0.00970916, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12338445, 0.35248246, -0.03664021, 0.11761608, + 0.03528405, 0.65464207, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11656837, 0.14425451, -0.11959479, 0.48863048, + 0.14658594, 0.45669223, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.09605386, -0.05851209, -0.05433094, 0.75739729, + 0.22721421, 0.22428539, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.06039878, -0.12450447, 0.27187684, 0.65167627, + 0.1954986 , 0.06585154, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02170441, -0.06430635, 0.72381307, 0.27331191, + 0.08199178, 0.006894 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04098492, 0.75984252, -0.03664021, 0.14572757, + 0.00717256, 0.16488248, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.03479054, 0.40414338, -0.11959479, 0.60541837, + 0.02979805, 0.11502552, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02497446, 0.03820389, -0.05433094, 0.9384233 , + 0.0461882 , 0.05649 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.01387763, -0.12175989, 0.27187684, 0.80743383, + 0.03974104, 0.0165858 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.00457956, -0.07627357, 0.72381307, 0.33863637, + 0.01666732, 0.00173637, 0. , 0. , 0. ]]), 'FE3_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.91514755, 0.04504259, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.76436533, 0.03762125, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.53566054, 0.02636464, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.29024993, 0.01428579, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.0939128 , 0.00462229, 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.73861153, 0.22157861, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.61691587, 0.18507071, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.43232925, 0.12969594, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.23425943, 0.07027629, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.0757966 , 0.02273848, 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.48009507, 0.48009507, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.40099329, 0.40099329, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.28101259, 0.28101259, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.15226786, 0.15226786, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.04926754, 0.04926754, 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.22157861, 0.73861153, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.18507071, 0.61691587, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.12969594, 0.43232925, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.07027629, 0.23425943, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.02273848, 0.0757966 , 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.04504259, 0.91514755, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.03762125, 0.76436533, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.02636464, 0.53566054, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.01428579, 0.29024993, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.00462229, 0.0939128 , 0.90146491]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + tables: {'FE0_D10': array([[0.9352463555842504], + [3.8854371246985302], + [6.0225869277692157], + [5.1819263623388867], + [2.173291044740961], + [0.55574118330633471], + [2.30880068385127], + [3.578735769264616], + [3.0791992625445563], + [1.2914108990233868], + [7.1564590174502415e-17], + [-1.2669846426651272e-15], + [9.5039679816781888e-16], + [2.5014148937354126e-15], + [-8.9597872259107286e-16], + [-0.55574118330633249], + [-2.30880068385127], + [-3.5787357692646129], + [-3.0791992625445492], + [-1.2914108990233886], + [-0.9352463555842444], + [-3.8854371246985275], + [-6.0225869277692112], + [-5.1819263623388778], + [-2.1732910447409628]], dtype=object), 'FE2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.66059020e+00, -3.88578059e-16, -8.40760572e-01, + 1.80170374e-01, 3.50135077e+00, -1.80170374e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.05746132e+00, 5.55111512e-17, -2.07946329e-01, + 1.50485009e-01, 2.26540765e+00, -1.50485009e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.14264218e+00, 1.59594560e-16, 7.51899241e-01, + 1.05458580e-01, 3.90742938e-01, -1.05458580e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.60999729e-01, -1.11022302e-16, 1.78185709e+00, + 5.71431776e-02, -1.62085736e+00, -5.71431776e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.24348811e-01, -4.44089210e-16, 2.60585966e+00, + 1.84891539e-02, -3.23020847e+00, -1.84891539e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.95444613e+00, -3.88578059e-16, -8.40760572e-01, + 8.86314438e-01, 2.79520671e+00, -8.86314438e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.46766349e+00, -5.55111512e-17, -2.07946329e-01, + 7.40282841e-01, 1.67560982e+00, -7.40282841e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.29317012e-01, 7.63278329e-17, 7.51899241e-01, + 5.18783747e-01, -2.25822291e-02, -5.18783747e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.29622614e-02, -1.66533454e-16, 1.78185709e+00, + 2.81105168e-01, -1.84481935e+00, -2.81105168e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.96813589e-01, -5.55111512e-16, 2.60585966e+00, + 9.09539323e-02, -3.30267325e+00, -9.09539323e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -9.20380286e-01, -2.77555756e-16, -8.40760572e-01, + 1.92038029e+00, 1.76114086e+00, -1.92038029e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -6.03973164e-01, -1.11022302e-16, -2.07946329e-01, + 1.60397316e+00, 8.11919493e-01, -1.60397316e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.24050380e-01, -1.38777878e-17, 7.51899241e-01, + 1.12405038e+00, -6.27848861e-01, -1.12405038e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.90928547e-01, -1.66533454e-16, 1.78185709e+00, + 6.09071453e-01, -2.17278564e+00, -6.09071453e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.02929828e-01, -5.55111512e-16, 2.60585966e+00, + 1.97070172e-01, -3.40878949e+00, -1.97070172e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.13685562e-01, 0.00000000e+00, -8.40760572e-01, + 2.95444613e+00, 7.27075010e-01, -2.95444613e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.59717159e-01, 5.55111512e-17, -2.07946329e-01, + 2.46766349e+00, -5.17708304e-02, -2.46766349e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.81216253e-01, 3.46944695e-17, 7.51899241e-01, + 1.72931701e+00, -1.23311549e+00, -1.72931701e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.18894832e-01, -2.77555756e-16, 1.78185709e+00, + 9.37037739e-01, -2.50075193e+00, -9.37037739e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.09046068e-01, -5.55111512e-16, 2.60585966e+00, + 3.03186411e-01, -3.51490572e+00, -3.03186411e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.19829626e-01, 1.66533454e-16, -8.40760572e-01, + 3.66059020e+00, 2.09309461e-02, -3.66059020e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.49514991e-01, 2.22044605e-16, -2.07946329e-01, + 3.05746132e+00, -6.41568662e-01, -3.05746132e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.94541420e-01, 3.67761377e-16, 7.51899241e-01, + 2.14264218e+00, -1.64644066e+00, -2.14264218e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.42856822e-01, -2.77555756e-16, 1.78185709e+00, + 1.16099973e+00, -2.72471392e+00, -1.16099973e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.81510846e-01, -4.44089210e-16, 2.60585966e+00, + 3.75651189e-01, -3.58737050e+00, -3.75651189e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.66059020e+00, -8.19829626e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.05746132e+00, -8.49514991e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.14264218e+00, -8.94541420e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.60999729e-01, -9.42856822e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.24348811e-01, -9.81510846e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.95444613e+00, -1.13685562e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.46766349e+00, -2.59717159e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -7.29317012e-01, -4.81216253e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.29622614e-02, -7.18894832e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.96813589e-01, -9.09046068e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -9.20380286e-01, 9.20380286e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -1.15580710e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -6.03973164e-01, 6.03973164e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -8.13438773e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.24050380e-01, 1.24050380e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -4.06039638e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.90928547e-01, -3.90928547e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.54839928e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.02929828e-01, -8.02929828e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -1.18760780e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.13685562e-01, 1.95444613e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.59717159e-01, 1.46766349e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.81216253e-01, 7.29317012e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.18894832e-01, -6.29622614e-02, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.09046068e-01, -6.96813589e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.19829626e-01, 2.66059020e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.49514991e-01, 2.05746132e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.94541420e-01, 1.14264218e+00, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.42856822e-01, 1.60999729e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.81510846e-01, -6.24348811e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_C0_D01': array([[ -2.66059020e+00, -3.88578059e-16, -8.40760572e-01, + 1.80170374e-01, 3.50135077e+00, -1.80170374e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.05746132e+00, 5.55111512e-17, -2.07946329e-01, + 1.50485009e-01, 2.26540765e+00, -1.50485009e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.14264218e+00, 1.59594560e-16, 7.51899241e-01, + 1.05458580e-01, 3.90742938e-01, -1.05458580e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.60999729e-01, -1.11022302e-16, 1.78185709e+00, + 5.71431776e-02, -1.62085736e+00, -5.71431776e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.24348811e-01, -4.44089210e-16, 2.60585966e+00, + 1.84891539e-02, -3.23020847e+00, -1.84891539e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.95444613e+00, -3.88578059e-16, -8.40760572e-01, + 8.86314438e-01, 2.79520671e+00, -8.86314438e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.46766349e+00, -5.55111512e-17, -2.07946329e-01, + 7.40282841e-01, 1.67560982e+00, -7.40282841e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.29317012e-01, 7.63278329e-17, 7.51899241e-01, + 5.18783747e-01, -2.25822291e-02, -5.18783747e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.29622614e-02, -1.66533454e-16, 1.78185709e+00, + 2.81105168e-01, -1.84481935e+00, -2.81105168e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.96813589e-01, -5.55111512e-16, 2.60585966e+00, + 9.09539323e-02, -3.30267325e+00, -9.09539323e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -9.20380286e-01, -2.77555756e-16, -8.40760572e-01, + 1.92038029e+00, 1.76114086e+00, -1.92038029e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.03973164e-01, -1.11022302e-16, -2.07946329e-01, + 1.60397316e+00, 8.11919493e-01, -1.60397316e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.24050380e-01, -1.38777878e-17, 7.51899241e-01, + 1.12405038e+00, -6.27848861e-01, -1.12405038e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.90928547e-01, -1.66533454e-16, 1.78185709e+00, + 6.09071453e-01, -2.17278564e+00, -6.09071453e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.02929828e-01, -5.55111512e-16, 2.60585966e+00, + 1.97070172e-01, -3.40878949e+00, -1.97070172e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.13685562e-01, 0.00000000e+00, -8.40760572e-01, + 2.95444613e+00, 7.27075010e-01, -2.95444613e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.59717159e-01, 5.55111512e-17, -2.07946329e-01, + 2.46766349e+00, -5.17708304e-02, -2.46766349e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.81216253e-01, 3.46944695e-17, 7.51899241e-01, + 1.72931701e+00, -1.23311549e+00, -1.72931701e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.18894832e-01, -2.77555756e-16, 1.78185709e+00, + 9.37037739e-01, -2.50075193e+00, -9.37037739e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.09046068e-01, -5.55111512e-16, 2.60585966e+00, + 3.03186411e-01, -3.51490572e+00, -3.03186411e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.19829626e-01, 1.66533454e-16, -8.40760572e-01, + 3.66059020e+00, 2.09309461e-02, -3.66059020e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.49514991e-01, 2.22044605e-16, -2.07946329e-01, + 3.05746132e+00, -6.41568662e-01, -3.05746132e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.94541420e-01, 3.67761377e-16, 7.51899241e-01, + 2.14264218e+00, -1.64644066e+00, -2.14264218e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.42856822e-01, -2.77555756e-16, 1.78185709e+00, + 1.16099973e+00, -2.72471392e+00, -1.16099973e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.81510846e-01, -4.44089210e-16, 2.60585966e+00, + 3.75651189e-01, -3.58737050e+00, -3.75651189e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.75984252, -0.04098492, -0.03664021, 0.00717256, + 0.14572757, 0.16488248, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.40414338, -0.03479054, -0.11959479, 0.02979805, + 0.60541837, 0.11502552, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.03820389, -0.02497446, -0.05433094, 0.0461882 , + 0.9384233 , 0.05649 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12175989, -0.01387763, 0.27187684, 0.03974104, + 0.80743383, 0.0165858 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07627357, -0.00457956, 0.72381307, 0.01666732, + 0.33863637, 0.00173637, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.35248246, -0.12338445, -0.03664021, 0.03528405, + 0.11761608, 0.65464207, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.14425451, -0.11656837, -0.11959479, 0.14658594, + 0.48863048, 0.45669223, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.05851209, -0.09605386, -0.05433094, 0.22721421, + 0.75739729, 0.22428539, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12450447, -0.06039878, 0.27187684, 0.1954986 , + 0.65167627, 0.06585154, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.06430635, -0.02170441, 0.72381307, 0.08199178, + 0.27331191, 0.006894 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.01911252, -0.01911252, -0.03664021, 0.07645006, + 0.07645006, 0.92196511, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07940205, -0.07940205, -0.11959479, 0.31760821, + 0.31760821, 0.64318248, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12307644, -0.12307644, -0.05433094, 0.49230575, + 0.49230575, 0.31587231, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.10589686, -0.10589686, 0.27187684, 0.42358744, + 0.42358744, 0.09274201, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04441296, -0.04441296, 0.72381307, 0.17765185, + 0.17765185, 0.00970916, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12338445, 0.35248246, -0.03664021, 0.11761608, + 0.03528405, 0.65464207, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11656837, 0.14425451, -0.11959479, 0.48863048, + 0.14658594, 0.45669223, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.09605386, -0.05851209, -0.05433094, 0.75739729, + 0.22721421, 0.22428539, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.06039878, -0.12450447, 0.27187684, 0.65167627, + 0.1954986 , 0.06585154, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02170441, -0.06430635, 0.72381307, 0.27331191, + 0.08199178, 0.006894 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04098492, 0.75984252, -0.03664021, 0.14572757, + 0.00717256, 0.16488248, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.03479054, 0.40414338, -0.11959479, 0.60541837, + 0.02979805, 0.11502552, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02497446, 0.03820389, -0.05433094, 0.9384233 , + 0.0461882 , 0.05649 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.01387763, -0.12175989, 0.27187684, 0.80743383, + 0.03974104, 0.0165858 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.00457956, -0.07627357, 0.72381307, 0.33863637, + 0.01666732, 0.00173637, 0. , 0. , 0. ]]), 'FE2_C0': array([[ 0.75984252, -0.04098492, -0.03664021, 0.00717256, 0.14572757, + 0.16488248, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.40414338, -0.03479054, -0.11959479, 0.02979805, 0.60541837, + 0.11502552, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.03820389, -0.02497446, -0.05433094, 0.0461882 , 0.9384233 , + 0.05649 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12175989, -0.01387763, 0.27187684, 0.03974104, 0.80743383, + 0.0165858 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.07627357, -0.00457956, 0.72381307, 0.01666732, 0.33863637, + 0.00173637, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.35248246, -0.12338445, -0.03664021, 0.03528405, 0.11761608, + 0.65464207, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.14425451, -0.11656837, -0.11959479, 0.14658594, 0.48863048, + 0.45669223, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.05851209, -0.09605386, -0.05433094, 0.22721421, 0.75739729, + 0.22428539, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12450447, -0.06039878, 0.27187684, 0.1954986 , 0.65167627, + 0.06585154, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.06430635, -0.02170441, 0.72381307, 0.08199178, 0.27331191, + 0.006894 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.01911252, -0.01911252, -0.03664021, 0.07645006, 0.07645006, + 0.92196511, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.07940205, -0.07940205, -0.11959479, 0.31760821, 0.31760821, + 0.64318248, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12307644, -0.12307644, -0.05433094, 0.49230575, 0.49230575, + 0.31587231, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.10589686, -0.10589686, 0.27187684, 0.42358744, 0.42358744, + 0.09274201, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04441296, -0.04441296, 0.72381307, 0.17765185, 0.17765185, + 0.00970916, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12338445, 0.35248246, -0.03664021, 0.11761608, 0.03528405, + 0.65464207, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.11656837, 0.14425451, -0.11959479, 0.48863048, 0.14658594, + 0.45669223, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.09605386, -0.05851209, -0.05433094, 0.75739729, 0.22721421, + 0.22428539, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.06039878, -0.12450447, 0.27187684, 0.65167627, 0.1954986 , + 0.06585154, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02170441, -0.06430635, 0.72381307, 0.27331191, 0.08199178, + 0.006894 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04098492, 0.75984252, -0.03664021, 0.14572757, 0.00717256, + 0.16488248, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.03479054, 0.40414338, -0.11959479, 0.60541837, 0.02979805, + 0.11502552, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02497446, 0.03820389, -0.05433094, 0.9384233 , 0.0461882 , + 0.05649 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.01387763, -0.12175989, 0.27187684, 0.80743383, 0.03974104, + 0.0165858 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.00457956, -0.07627357, 0.72381307, 0.33863637, 0.01666732, + 0.00173637, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE4': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [0.99999999999999989], + [1.0], + [1.0], + [1.0], + [1.0], + [0.99999999999999989]], dtype=object), 'FE2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.91514755, 0.04504259, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.76436533, 0.03762125, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.53566054, 0.02636464, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.29024993, 0.01428579, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.0939128 , 0.00462229, 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.73861153, 0.22157861, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.61691587, 0.18507071, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.43232925, 0.12969594, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.23425943, 0.07027629, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.0757966 , 0.02273848, 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.48009507, 0.48009507, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.40099329, 0.40099329, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.28101259, 0.28101259, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.15226786, 0.15226786, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.04926754, 0.04926754, 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.22157861, 0.73861153, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.18507071, 0.61691587, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.12969594, 0.43232925, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.07027629, 0.23425943, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.02273848, 0.0757966 , 0.90146491], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.04504259, 0.91514755, 0.03980986], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.03762125, 0.76436533, 0.19801342], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.02636464, 0.53566054, 0.43797481], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.01428579, 0.29024993, 0.69546427], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.00462229, 0.0939128 , 0.90146491]]), 'FE0': array([[0.044306647781284285], + [0.15374203052449872], + [0.16700308084091173], + [0.077860127642166807], + [0.010565606073050682], + [0.17591314777898884], + [0.61041053408067281], + [0.66306161965887866], + [0.30913239493133543], + [0.041949213392945828], + [0.24774727000530669], + [0.85967163518081724], + [0.93382278806226415], + [0.43536658789519056], + [0.059079171899246358], + [0.17591314777898864], + [0.6104105340806727], + [0.663061619658879], + [0.30913239493133565], + [0.041949213392945828], + [0.044306647781284229], + [0.15374203052449861], + [0.16700308084091206], + [0.077860127642167667], + [0.010565606073050793]], dtype=object), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_D01': array([[1.0645419576193222], + [0.57528544123839909], + [0.069537142111522066], + [-0.15629783660456859], + [-0.1007839485374431], + [4.1806666025278236], + [2.0932175166793923], + [-0.019769557671948879], + [-0.87511767987258171], + [-0.50691001274709091], + [5.7072265601591292], + [2.1976263189868388], + [-1.1909257048519397], + [-2.2332066314443275], + [-1.1336131048331728], + [3.624925419221487], + [-0.21558316717187903], + [-3.5985053269365639], + [-3.9543169424171358], + [-1.7983209117704795], + [0.12929560203507395], + [-3.3101516834601297], + [-5.9530497856576918], + [-5.3382241989434531], + [-2.2740749932784055]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE2_C2_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE2_C0_D10': array([[ -2.66059020e+00, -8.19829626e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.05746132e+00, -8.49514991e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.14264218e+00, -8.94541420e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.60999729e-01, -9.42856822e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.24348811e-01, -9.81510846e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.95444613e+00, -1.13685562e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, 2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.46766349e+00, -2.59717159e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, 1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -7.29317012e-01, -4.81216253e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, 1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.29622614e-02, -7.18894832e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, 6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.96813589e-01, -9.09046068e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, 2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -9.20380286e-01, 9.20380286e-01, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -1.15580710e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.03973164e-01, 6.03973164e-01, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -8.13438773e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.24050380e-01, 1.24050380e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -4.06039638e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.90928547e-01, -3.90928547e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.54839928e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.02929828e-01, -8.02929828e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -1.18760780e-15, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.13685562e-01, 1.95444613e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -2.06813170e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.59717159e-01, 1.46766349e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -1.72738065e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.81216253e-01, 7.29317012e-01, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -1.21053326e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.18894832e-01, -6.29622614e-02, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -6.55932571e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.09046068e-01, -6.96813589e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -2.12232479e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.19829626e-01, 2.66059020e+00, 0.00000000e+00, + 1.59239428e-01, -1.59239428e-01, -3.48041982e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.49514991e-01, 2.05746132e+00, 0.00000000e+00, + 7.92053671e-01, -7.92053671e-01, -2.90697631e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.94541420e-01, 1.14264218e+00, 0.00000000e+00, + 1.75189924e+00, -1.75189924e+00, -2.03718360e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.42856822e-01, 1.60999729e-01, 0.00000000e+00, + 2.78185709e+00, -2.78185709e+00, -1.10385655e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.81510846e-01, -6.24348811e-01, 0.00000000e+00, + 3.60585966e+00, -3.60585966e+00, -3.57162035e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.]]), 'FE1_C0': array([[ 0.91514755, 0.04504259, 0.03980986, 0. , 0. , + 0. ], + [ 0.76436533, 0.03762125, 0.19801342, 0. , 0. , + 0. ], + [ 0.53566054, 0.02636464, 0.43797481, 0. , 0. , + 0. ], + [ 0.29024993, 0.01428579, 0.69546427, 0. , 0. , + 0. ], + [ 0.0939128 , 0.00462229, 0.90146491, 0. , 0. , + 0. ], + [ 0.73861153, 0.22157861, 0.03980986, 0. , 0. , + 0. ], + [ 0.61691587, 0.18507071, 0.19801342, 0. , 0. , + 0. ], + [ 0.43232925, 0.12969594, 0.43797481, 0. , 0. , + 0. ], + [ 0.23425943, 0.07027629, 0.69546427, 0. , 0. , + 0. ], + [ 0.0757966 , 0.02273848, 0.90146491, 0. , 0. , + 0. ], + [ 0.48009507, 0.48009507, 0.03980986, 0. , 0. , + 0. ], + [ 0.40099329, 0.40099329, 0.19801342, 0. , 0. , + 0. ], + [ 0.28101259, 0.28101259, 0.43797481, 0. , 0. , + 0. ], + [ 0.15226786, 0.15226786, 0.69546427, 0. , 0. , + 0. ], + [ 0.04926754, 0.04926754, 0.90146491, 0. , 0. , + 0. ], + [ 0.22157861, 0.73861153, 0.03980986, 0. , 0. , + 0. ], + [ 0.18507071, 0.61691587, 0.19801342, 0. , 0. , + 0. ], + [ 0.12969594, 0.43232925, 0.43797481, 0. , 0. , + 0. ], + [ 0.07027629, 0.23425943, 0.69546427, 0. , 0. , + 0. ], + [ 0.02273848, 0.0757966 , 0.90146491, 0. , 0. , + 0. ], + [ 0.04504259, 0.91514755, 0.03980986, 0. , 0. , + 0. ], + [ 0.03762125, 0.76436533, 0.19801342, 0. , 0. , + 0. ], + [ 0.02636464, 0.53566054, 0.43797481, 0. , 0. , + 0. ], + [ 0.01428579, 0.29024993, 0.69546427, 0. , 0. , + 0. ], + [ 0.00462229, 0.0939128 , 0.90146491, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.91514755, 0.04504259, + 0.03980986], + [ 0. , 0. , 0. , 0.76436533, 0.03762125, + 0.19801342], + [ 0. , 0. , 0. , 0.53566054, 0.02636464, + 0.43797481], + [ 0. , 0. , 0. , 0.29024993, 0.01428579, + 0.69546427], + [ 0. , 0. , 0. , 0.0939128 , 0.00462229, + 0.90146491], + [ 0. , 0. , 0. , 0.73861153, 0.22157861, + 0.03980986], + [ 0. , 0. , 0. , 0.61691587, 0.18507071, + 0.19801342], + [ 0. , 0. , 0. , 0.43232925, 0.12969594, + 0.43797481], + [ 0. , 0. , 0. , 0.23425943, 0.07027629, + 0.69546427], + [ 0. , 0. , 0. , 0.0757966 , 0.02273848, + 0.90146491], + [ 0. , 0. , 0. , 0.48009507, 0.48009507, + 0.03980986], + [ 0. , 0. , 0. , 0.40099329, 0.40099329, + 0.19801342], + [ 0. , 0. , 0. , 0.28101259, 0.28101259, + 0.43797481], + [ 0. , 0. , 0. , 0.15226786, 0.15226786, + 0.69546427], + [ 0. , 0. , 0. , 0.04926754, 0.04926754, + 0.90146491], + [ 0. , 0. , 0. , 0.22157861, 0.73861153, + 0.03980986], + [ 0. , 0. , 0. , 0.18507071, 0.61691587, + 0.19801342], + [ 0. , 0. , 0. , 0.12969594, 0.43232925, + 0.43797481], + [ 0. , 0. , 0. , 0.07027629, 0.23425943, + 0.69546427], + [ 0. , 0. , 0. , 0.02273848, 0.0757966 , + 0.90146491], + [ 0. , 0. , 0. , 0.04504259, 0.91514755, + 0.03980986], + [ 0. , 0. , 0. , 0.03762125, 0.76436533, + 0.19801342], + [ 0. , 0. , 0. , 0.02636464, 0.53566054, + 0.43797481], + [ 0. , 0. , 0. , 0.01428579, 0.29024993, + 0.69546427], + [ 0. , 0. , 0. , 0.00462229, 0.0939128 , + 0.90146491]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + name_map: {'FE2_C1_D01': ['FE3_C1_D01'], 'FE2_C1_D10': ['FE3_C1_D10'], 'FE2_C0_D01': ['FE3_C0_D01'], 'FE2_C2_D10': ['FE3_C2_D10'], 'FE2_C2_D01': ['FE3_C2_D01'], 'FE2_C1': ['FE3_C1'], 'FE2_C0': ['FE3_C0'], 'FE2_C2': ['FE3_C2'], 'FE2_C0_D10': ['FE3_C0_D10']} + + inv_name_map: {'FE0_D10': 'FE0_D10', 'FE2_C1_D01': 'FE2_C1_D01', 'FE3_C1_D10': 'FE2_C1_D10', 'FE0_D01': 'FE0_D01', 'FE1_C1_D10': 'FE1_C1_D10', 'FE3_C0_D10': 'FE2_C0_D10', 'FE2_C0_D01': 'FE2_C0_D01', 'FE2_C1': 'FE2_C1', 'FE2_C0': 'FE2_C0', 'FE4': 'FE4', 'FE2_C2': 'FE2_C2', 'FE0': 'FE0', 'FE1_C0_D01': 'FE1_C0_D01', 'FE2_C1_D10': 'FE2_C1_D10', 'FE3_C1_D01': 'FE2_C1_D01', 'FE1_C1_D01': 'FE1_C1_D01', 'FE2_C2_D01': 'FE2_C2_D01', 'FE3_C2_D01': 'FE2_C2_D01', 'FE3_C0_D01': 'FE2_C0_D01', 'FE2_C0_D10': 'FE2_C0_D10', 'FE2_C2_D10': 'FE2_C2_D10', 'FE1_C0_D10': 'FE1_C0_D10', 'FE3_C2': 'FE2_C2', 'FE1_C1': 'FE1_C1', 'FE3_C0': 'FE2_C0', 'FE3_C1': 'FE2_C1', 'FE1_C0': 'FE1_C0', 'FE3_C2_D10': 'FE2_C2_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE0_D10': array([[0.9352463555842504], + [3.8854371246985302], + [6.0225869277692157], + [5.1819263623388867], + [2.173291044740961], + [0.55574118330633471], + [2.30880068385127], + [3.578735769264616], + [3.0791992625445563], + [1.2914108990233868], + [0], + [0], + [0], + [0], + [0], + [-0.55574118330633249], + [-2.30880068385127], + [-3.5787357692646129], + [-3.0791992625445492], + [-1.2914108990233886], + [-0.9352463555842444], + [-3.8854371246985275], + [-6.0225869277692112], + [-5.1819263623388778], + [-2.1732910447409628]], dtype=object), 'FE2_C0_D01': array([[-2.6605902 , -0.84076057, 0.18017037, 3.50135077, -0.18017037], + [-2.05746132, -0.20794633, 0.15048501, 2.26540765, -0.15048501], + [-1.14264218, 0.75189924, 0.10545858, 0.39074294, -0.10545858], + [-0.16099973, 1.78185709, 0.05714318, -1.62085736, -0.05714318], + [ 0.62434881, 2.60585966, 0.01848915, -3.23020847, -0.01848915], + [-1.95444613, -0.84076057, 0.88631444, 2.79520671, -0.88631444], + [-1.46766349, -0.20794633, 0.74028284, 1.67560982, -0.74028284], + [-0.72931701, 0.75189924, 0.51878375, -0.02258223, -0.51878375], + [ 0.06296226, 1.78185709, 0.28110517, -1.84481935, -0.28110517], + [ 0.69681359, 2.60585966, 0.09095393, -3.30267325, -0.09095393], + [-0.92038029, -0.84076057, 1.92038029, 1.76114086, -1.92038029], + [-0.60397316, -0.20794633, 1.60397316, 0.81191949, -1.60397316], + [-0.12405038, 0.75189924, 1.12405038, -0.62784886, -1.12405038], + [ 0.39092855, 1.78185709, 0.60907145, -2.17278564, -0.60907145], + [ 0.80292983, 2.60585966, 0.19707017, -3.40878949, -0.19707017], + [ 0.11368556, -0.84076057, 2.95444613, 0.72707501, -2.95444613], + [ 0.25971716, -0.20794633, 2.46766349, -0.05177083, -2.46766349], + [ 0.48121625, 0.75189924, 1.72931701, -1.23311549, -1.72931701], + [ 0.71889483, 1.78185709, 0.93703774, -2.50075193, -0.93703774], + [ 0.90904607, 2.60585966, 0.30318641, -3.51490572, -0.30318641], + [ 0.81982963, -0.84076057, 3.6605902 , 0.02093095, -3.6605902 ], + [ 0.84951499, -0.20794633, 3.05746132, -0.64156866, -3.05746132], + [ 0.89454142, 0.75189924, 2.14264218, -1.64644066, -2.14264218], + [ 0.94285682, 1.78185709, 1.16099973, -2.72471392, -1.16099973], + [ 0.98151085, 2.60585966, 0.37565119, -3.5873705 , -0.37565119]]), 'FE2_C0': array([[ 0.75984252, -0.04098492, -0.03664021, 0.00717256, 0.14572757, + 0.16488248], + [ 0.40414338, -0.03479054, -0.11959479, 0.02979805, 0.60541837, + 0.11502552], + [ 0.03820389, -0.02497446, -0.05433094, 0.0461882 , 0.9384233 , + 0.05649 ], + [-0.12175989, -0.01387763, 0.27187684, 0.03974104, 0.80743383, + 0.0165858 ], + [-0.07627357, -0.00457956, 0.72381307, 0.01666732, 0.33863637, + 0.00173637], + [ 0.35248246, -0.12338445, -0.03664021, 0.03528405, 0.11761608, + 0.65464207], + [ 0.14425451, -0.11656837, -0.11959479, 0.14658594, 0.48863048, + 0.45669223], + [-0.05851209, -0.09605386, -0.05433094, 0.22721421, 0.75739729, + 0.22428539], + [-0.12450447, -0.06039878, 0.27187684, 0.1954986 , 0.65167627, + 0.06585154], + [-0.06430635, -0.02170441, 0.72381307, 0.08199178, 0.27331191, + 0.006894 ], + [-0.01911252, -0.01911252, -0.03664021, 0.07645006, 0.07645006, + 0.92196511], + [-0.07940205, -0.07940205, -0.11959479, 0.31760821, 0.31760821, + 0.64318248], + [-0.12307644, -0.12307644, -0.05433094, 0.49230575, 0.49230575, + 0.31587231], + [-0.10589686, -0.10589686, 0.27187684, 0.42358744, 0.42358744, + 0.09274201], + [-0.04441296, -0.04441296, 0.72381307, 0.17765185, 0.17765185, + 0.00970916], + [-0.12338445, 0.35248246, -0.03664021, 0.11761608, 0.03528405, + 0.65464207], + [-0.11656837, 0.14425451, -0.11959479, 0.48863048, 0.14658594, + 0.45669223], + [-0.09605386, -0.05851209, -0.05433094, 0.75739729, 0.22721421, + 0.22428539], + [-0.06039878, -0.12450447, 0.27187684, 0.65167627, 0.1954986 , + 0.06585154], + [-0.02170441, -0.06430635, 0.72381307, 0.27331191, 0.08199178, + 0.006894 ], + [-0.04098492, 0.75984252, -0.03664021, 0.14572757, 0.00717256, + 0.16488248], + [-0.03479054, 0.40414338, -0.11959479, 0.60541837, 0.02979805, + 0.11502552], + [-0.02497446, 0.03820389, -0.05433094, 0.9384233 , 0.0461882 , + 0.05649 ], + [-0.01387763, -0.12175989, 0.27187684, 0.80743383, 0.03974104, + 0.0165858 ], + [-0.00457956, -0.07627357, 0.72381307, 0.33863637, 0.01666732, + 0.00173637]]), 'FE4': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [0.99999999999999989], + [1.0], + [1.0], + [1.0], + [1.0], + [0.99999999999999989]], dtype=object), 'FE0': array([[0.044306647781284285], + [0.15374203052449872], + [0.16700308084091173], + [0.077860127642166807], + [0.010565606073050682], + [0.17591314777898884], + [0.61041053408067281], + [0.66306161965887866], + [0.30913239493133543], + [0.041949213392945828], + [0.24774727000530669], + [0.85967163518081724], + [0.93382278806226415], + [0.43536658789519056], + [0.059079171899246358], + [0.17591314777898864], + [0.6104105340806727], + [0.663061619658879], + [0.30913239493133565], + [0.041949213392945828], + [0.044306647781284229], + [0.15374203052449861], + [0.16700308084091206], + [0.077860127642167667], + [0.010565606073050793]], dtype=object), 'FE1_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE0_D01': array([[1.0645419576193222], + [0.57528544123839909], + [0.069537142111522066], + [-0.15629783660456859], + [-0.1007839485374431], + [4.1806666025278236], + [2.0932175166793923], + [-0.019769557671948879], + [-0.87511767987258171], + [-0.50691001274709091], + [5.7072265601591292], + [2.1976263189868388], + [-1.1909257048519397], + [-2.2332066314443275], + [-1.1336131048331728], + [3.624925419221487], + [-0.21558316717187903], + [-3.5985053269365639], + [-3.9543169424171358], + [-1.7983209117704795], + [0.12929560203507395], + [-3.3101516834601297], + [-5.9530497856576918], + [-5.3382241989434531], + [-2.2740749932784055]], dtype=object), 'FE2_C0_D10': array([[-2.6605902 , -0.81982963, 0.15923943, -0.15923943, 3.48041982], + [-2.05746132, -0.84951499, 0.79205367, -0.79205367, 2.90697631], + [-1.14264218, -0.89454142, 1.75189924, -1.75189924, 2.0371836 ], + [-0.16099973, -0.94285682, 2.78185709, -2.78185709, 1.10385655], + [ 0.62434881, -0.98151085, 3.60585966, -3.60585966, 0.35716204], + [-1.95444613, -0.11368556, 0.15923943, -0.15923943, 2.0681317 ], + [-1.46766349, -0.25971716, 0.79205367, -0.79205367, 1.72738065], + [-0.72931701, -0.48121625, 1.75189924, -1.75189924, 1.21053326], + [ 0.06296226, -0.71889483, 2.78185709, -2.78185709, 0.65593257], + [ 0.69681359, -0.90904607, 3.60585966, -3.60585966, 0.21223248], + [-0.92038029, 0.92038029, 0.15923943, -0.15923943, 0. ], + [-0.60397316, 0.60397316, 0.79205367, -0.79205367, 0. ], + [-0.12405038, 0.12405038, 1.75189924, -1.75189924, 0. ], + [ 0.39092855, -0.39092855, 2.78185709, -2.78185709, 0. ], + [ 0.80292983, -0.80292983, 3.60585966, -3.60585966, 0. ], + [ 0.11368556, 1.95444613, 0.15923943, -0.15923943, -2.0681317 ], + [ 0.25971716, 1.46766349, 0.79205367, -0.79205367, -1.72738065], + [ 0.48121625, 0.72931701, 1.75189924, -1.75189924, -1.21053326], + [ 0.71889483, -0.06296226, 2.78185709, -2.78185709, -0.65593257], + [ 0.90904607, -0.69681359, 3.60585966, -3.60585966, -0.21223248], + [ 0.81982963, 2.6605902 , 0.15923943, -0.15923943, -3.48041982], + [ 0.84951499, 2.05746132, 0.79205367, -0.79205367, -2.90697631], + [ 0.89454142, 1.14264218, 1.75189924, -1.75189924, -2.0371836 ], + [ 0.94285682, 0.16099973, 2.78185709, -2.78185709, -1.10385655], + [ 0.98151085, -0.62434881, 3.60585966, -3.60585966, -0.35716204]]), 'FE1_C0': array([[ 0.91514755, 0.04504259, 0.03980986], + [ 0.76436533, 0.03762125, 0.19801342], + [ 0.53566054, 0.02636464, 0.43797481], + [ 0.29024993, 0.01428579, 0.69546427], + [ 0.0939128 , 0.00462229, 0.90146491], + [ 0.73861153, 0.22157861, 0.03980986], + [ 0.61691587, 0.18507071, 0.19801342], + [ 0.43232925, 0.12969594, 0.43797481], + [ 0.23425943, 0.07027629, 0.69546427], + [ 0.0757966 , 0.02273848, 0.90146491], + [ 0.48009507, 0.48009507, 0.03980986], + [ 0.40099329, 0.40099329, 0.19801342], + [ 0.28101259, 0.28101259, 0.43797481], + [ 0.15226786, 0.15226786, 0.69546427], + [ 0.04926754, 0.04926754, 0.90146491], + [ 0.22157861, 0.73861153, 0.03980986], + [ 0.18507071, 0.61691587, 0.19801342], + [ 0.12969594, 0.43232925, 0.43797481], + [ 0.07027629, 0.23425943, 0.69546427], + [ 0.02273848, 0.0757966 , 0.90146491], + [ 0.04504259, 0.91514755, 0.03980986], + [ 0.03762125, 0.76436533, 0.19801342], + [ 0.02636464, 0.53566054, 0.43797481], + [ 0.01428579, 0.29024993, 0.69546427], + [ 0.00462229, 0.0939128 , 0.90146491]])} + + QG-utils, psi_tables, name_map: + {'FE0_D10': ('FE0_D10', (), False, False), 'FE2_C1_D01': ('FE2_C0_D01', (10, [6, 8, 9, 10, 11]), False, False), 'FE3_C1_D10': ('FE2_C0_D10', (11, [6, 7, 9, 10, 11]), False, False), 'FE0_D01': ('FE0_D01', (), False, False), 'FE1_C1_D10': ('FE1_C0_D01', (5, [3, 4]), False, False), 'FE3_C0_D10': ('FE2_C0_D10', (8, [0, 1, 3, 4, 5]), False, False), 'FE2_C0_D01': ('FE2_C0_D01', (7, [0, 2, 3, 4, 5]), False, False), 'FE2_C1': ('FE2_C0', (9, [6, 7, 8, 9, 10, 11]), False, False), 'FE2_C0': ('FE2_C0', (6, [0, 1, 2, 3, 4, 5]), False, False), 'FE4': ('FE4', (), False, True), 'FE2_C2': ('FE1_C0', (12, [12, 13, 14]), False, False), 'FE0': ('FE0', (), False, False), 'FE1_C0_D01': ('FE1_C0_D01', (1, [0, 2]), False, False), 'FE2_C1_D10': ('FE2_C0_D10', (11, [6, 7, 9, 10, 11]), False, False), 'FE3_C1_D01': ('FE2_C0_D01', (10, [6, 8, 9, 10, 11]), False, False), 'FE1_C1_D01': ('FE1_C0_D01', (4, [3, 5]), False, False), 'FE2_C2_D01': ('FE1_C0_D01', (13, [12, 14]), False, False), 'FE3_C2_D01': ('FE1_C0_D01', (13, [12, 14]), False, False), 'FE3_C0_D01': ('FE2_C0_D01', (7, [0, 2, 3, 4, 5]), False, False), 'FE2_C0_D10': ('FE2_C0_D10', (8, [0, 1, 3, 4, 5]), False, False), 'FE2_C2_D10': ('FE1_C0_D01', (14, [12, 13]), False, False), 'FE1_C0_D10': ('FE1_C0_D01', (2, [0, 1]), False, False), 'FE3_C2': ('FE1_C0', (12, [12, 13, 14]), False, False), 'FE1_C1': ('FE1_C0', (3, [3, 4, 5]), False, False), 'FE3_C0': ('FE2_C0', (6, [0, 1, 2, 3, 4, 5]), False, False), 'FE3_C1': ('FE2_C0', (9, [6, 7, 8, 9, 10, 11]), False, False), 'FE1_C0': ('FE1_C0', (0, [0, 1, 2]), False, False), 'FE3_C2_D10': ('FE1_C0_D01', (14, [12, 13]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {4: {FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {0: {(0, 0): array([[0.0, -1.8865117801247777e-17, 2.7755575615628914e-17, + 5.5511151231257827e-17], + [0.93056815579702623, 0.66999052179242813, 0.33000947820757193, + 0.069431844202973825], + [0.069431844202973714, 0.33000947820757182, 0.66999052179242791, + 0.93056815579702623]], dtype=object)}, 1: {(0, 0): array([[0.93056815579702623, 0.66999052179242813, 0.33000947820757198, + 0.069431844202973825], + [0.0, -1.8865117801247777e-17, 2.7755575615628914e-17, + 5.5511151231257827e-17], + [0.069431844202973714, 0.33000947820757182, 0.66999052179242802, + 0.93056815579702623]], dtype=object)}, 2: {(0, 0): array([[0.93056815579702634, 0.66999052179242813, 0.33000947820757187, + 0.069431844202973741], + [0.069431844202973686, 0.33000947820757176, 0.66999052179242813, + 0.93056815579702634], + [0.0, 0.0, 0.0, 0.0]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {0: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1., -1.], + [ 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [-1., -1., -1., -1.]], + + [[ 0., 0., 0., 0.], + [ 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.00000000e+00, -1.88651178e-17, 2.77555756e-17, + 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 9.30568156e-01, 6.69990522e-01, 3.30009478e-01, + 6.94318442e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 6.94318442e-02, 3.30009478e-01, 6.69990522e-01, + 9.30568156e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, -1.88651178e-17, 2.77555756e-17, + 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 9.30568156e-01, 6.69990522e-01, 3.30009478e-01, + 6.94318442e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 6.94318442e-02, 3.30009478e-01, 6.69990522e-01, + 9.30568156e-01]]])}, 1: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1., -1.], + [ 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [-1., -1., -1., -1.]], + + [[ 0., 0., 0., 0.], + [ 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]]]), (0, 0): array([[[ 9.30568156e-01, 6.69990522e-01, 3.30009478e-01, + 6.94318442e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, -1.88651178e-17, 2.77555756e-17, + 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 6.94318442e-02, 3.30009478e-01, 6.69990522e-01, + 9.30568156e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 9.30568156e-01, 6.69990522e-01, 3.30009478e-01, + 6.94318442e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, -1.88651178e-17, 2.77555756e-17, + 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 6.94318442e-02, 3.30009478e-01, 6.69990522e-01, + 9.30568156e-01]]])}, 2: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1., -1.], + [ 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0.], + [-1., -1., -1., -1.]], + + [[ 0., 0., 0., 0.], + [ 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0.], + [ 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.93056816, 0.66999052, 0.33000948, 0.06943184], + [ 0. , 0. , 0. , 0. ]], + + [[ 0.06943184, 0.33000948, 0.66999052, 0.93056816], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.93056816, 0.66999052, 0.33000948, 0.06943184]], + + [[ 0. , 0. , 0. , 0. ], + [ 0.06943184, 0.33000948, 0.66999052, 0.93056816]], + + [[ 0. , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. ]]])}}}, MixedElement(*[MixedElement(*[FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None)], **{'value_shape': (2,) }), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {0: {(0, 0): array([[[ 5.55111512e-17, -6.93889390e-18, 7.45931095e-17, + 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 8.01346029e-01, 2.27784077e-01, -1.12196967e-01, + -5.97902822e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -5.97902822e-02, -1.12196967e-01, 2.27784077e-01, + 8.01346029e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 2.58444253e-01, 8.84412890e-01, 8.84412890e-01, + 2.58444253e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -9.71445147e-17, -2.77555756e-17, -6.59194921e-17, + -1.66533454e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -2.77555756e-17, 3.46944695e-17, 1.90819582e-17, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 5.55111512e-17, -6.93889390e-18, 7.45931095e-17, + 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 8.01346029e-01, 2.27784077e-01, -1.12196967e-01, + -5.97902822e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -5.97902822e-02, -1.12196967e-01, 2.27784077e-01, + 8.01346029e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 2.58444253e-01, 8.84412890e-01, 8.84412890e-01, + 2.58444253e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -9.71445147e-17, -2.77555756e-17, -6.59194921e-17, + -1.66533454e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -2.77555756e-17, 3.46944695e-17, 1.90819582e-17, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, -1.88651178e-17, 2.77555756e-17, + 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 9.30568156e-01, 6.69990522e-01, 3.30009478e-01, + 6.94318442e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 6.94318442e-02, 3.30009478e-01, 6.69990522e-01, + 9.30568156e-01]]])}, 1: {(0, 0): array([[[ 8.01346029e-01, 2.27784077e-01, -1.12196967e-01, + -5.97902822e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.04083409e-16, 6.93889390e-18, 8.67361738e-17, + 8.32667268e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -5.97902822e-02, -1.12196967e-01, 2.27784077e-01, + 8.01346029e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -1.38777878e-17, -4.16333634e-17, -2.77555756e-17, + -1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 2.58444253e-01, 8.84412890e-01, 8.84412890e-01, + 2.58444253e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -2.77555756e-17, 3.46944695e-17, -1.56125113e-17, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 8.01346029e-01, 2.27784077e-01, -1.12196967e-01, + -5.97902822e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.04083409e-16, 6.93889390e-18, 8.67361738e-17, + 8.32667268e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -5.97902822e-02, -1.12196967e-01, 2.27784077e-01, + 8.01346029e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.38777878e-17, -4.16333634e-17, -2.77555756e-17, + -1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 2.58444253e-01, 8.84412890e-01, 8.84412890e-01, + 2.58444253e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -2.77555756e-17, 3.46944695e-17, -1.56125113e-17, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 9.30568156e-01, 6.69990522e-01, 3.30009478e-01, + 6.94318442e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, -1.88651178e-17, 2.77555756e-17, + 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 6.94318442e-02, 3.30009478e-01, 6.69990522e-01, + 9.30568156e-01]]])}, 2: {(0, 0): array([[[ 8.01346029e-01, 2.27784077e-01, -1.12196967e-01, + -5.97902822e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -5.97902822e-02, -1.12196967e-01, 2.27784077e-01, + 8.01346029e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -5.55111512e-17, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -2.77555756e-17, -5.55111512e-17, -5.55111512e-17, + -1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 2.58444253e-01, 8.84412890e-01, 8.84412890e-01, + 2.58444253e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 8.01346029e-01, 2.27784077e-01, -1.12196967e-01, + -5.97902822e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -5.97902822e-02, -1.12196967e-01, 2.27784077e-01, + 8.01346029e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -5.55111512e-17, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -2.77555756e-17, -5.55111512e-17, -5.55111512e-17, + -1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 2.58444253e-01, 8.84412890e-01, 8.84412890e-01, + 2.58444253e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 9.30568156e-01, 6.69990522e-01, 3.30009478e-01, + 6.94318442e-02]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 6.94318442e-02, 3.30009478e-01, 6.69990522e-01, + 9.30568156e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]]])}}}, FiniteElement('Bubble', Domain(Cell('triangle', 2), label=None, data=None), 3, quad_scheme=None): {None: {0: {(0, 0): array([[-9.3675067702747583e-17, 1.5959455978986625e-16, + -1.6653345369377348e-16, -5.5511151231257827e-17]], dtype=object)}, 1: {(0, 0): array([[-1.214306433183765e-16, 1.0408340855860843e-16, + -3.6082248300317588e-16, -1.6653345369377348e-16]], dtype=object)}, 2: {(0, 0): array([[8.3266726846886741e-17, 8.3266726846886741e-17, + 5.5511151231257827e-17, -2.7755575615628914e-17]], dtype=object)}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE2_f1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00]]), 'FE2_f2_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_f0': array([[-9.3675067702747583e-17], + [1.5959455978986625e-16], + [-1.6653345369377348e-16], + [-5.5511151231257827e-17]], dtype=object), 'FE0_f1': array([[-1.214306433183765e-16], + [1.0408340855860843e-16], + [-3.6082248300317588e-16], + [-1.6653345369377348e-16]], dtype=object), 'FE0_f2': array([[8.3266726846886741e-17], + [8.3266726846886741e-17], + [5.5511151231257827e-17], + [-2.7755575615628914e-17]], dtype=object), 'FE2_f0_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00]]), 'FE2_f0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE2_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.30568156e-01, 6.94318442e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.88651178e-17, 6.69990522e-01, 3.30009478e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 3.30009478e-01, 6.69990522e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 6.94318442e-02, 9.30568156e-01]]), 'FE2_f0_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.01346029e-01, 1.04083409e-16, -5.97902822e-02, + -1.38777878e-17, 2.58444253e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.27784077e-01, 6.93889390e-18, -1.12196967e-01, + -4.16333634e-17, 8.84412890e-01, 3.46944695e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.12196967e-01, 8.67361738e-17, 2.27784077e-01, + -2.77555756e-17, 8.84412890e-01, -1.56125113e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -5.97902822e-02, 8.32667268e-17, 8.01346029e-01, + -1.11022302e-16, 2.58444253e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f1_C0': array([[ 8.01346029e-01, 1.04083409e-16, -5.97902822e-02, + -1.38777878e-17, 2.58444253e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.27784077e-01, 6.93889390e-18, -1.12196967e-01, + -4.16333634e-17, 8.84412890e-01, 3.46944695e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.12196967e-01, 8.67361738e-17, 2.27784077e-01, + -2.77555756e-17, 8.84412890e-01, -1.56125113e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -5.97902822e-02, 8.32667268e-17, 8.01346029e-01, + -1.11022302e-16, 2.58444253e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f0_C0': array([[ 0.00000000e+00, 9.30568156e-01, 6.94318442e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.88651178e-17, 6.69990522e-01, 3.30009478e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.77555756e-17, 3.30009478e-01, 6.69990522e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, 6.94318442e-02, 9.30568156e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00]]), 'FE2_f1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_f2': array([[0.93056815579702634, 0.069431844202973686, 0.0], + [0.66999052179242813, 0.33000947820757176, 0.0], + [0.33000947820757187, 0.66999052179242813, 0.0], + [0.069431844202973741, 0.93056815579702634, 0.0]], dtype=object), 'FE1_f1': array([[0.93056815579702623, 0.0, 0.069431844202973714], + [0.66999052179242813, -1.8865117801247777e-17, 0.33000947820757182], + [0.33000947820757198, 2.7755575615628914e-17, 0.66999052179242802], + [0.069431844202973825, 5.5511151231257827e-17, 0.93056815579702623]], dtype=object), 'FE1_f0': array([[0.0, 0.93056815579702623, 0.069431844202973714], + [-1.8865117801247777e-17, 0.66999052179242813, 0.33000947820757182], + [2.7755575615628914e-17, 0.33000947820757193, 0.66999052179242791], + [5.5511151231257827e-17, 0.069431844202973825, 0.93056815579702623]], dtype=object), 'FE3_f2_C0': array([[ 8.01346029e-01, -5.97902822e-02, 0.00000000e+00, + -5.55111512e-17, -2.77555756e-17, 2.58444253e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.27784077e-01, -1.12196967e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 8.84412890e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.12196967e-01, 2.27784077e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 8.84412890e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -5.97902822e-02, 8.01346029e-01, 0.00000000e+00, + 5.55111512e-17, -1.11022302e-16, 2.58444253e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f2_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.93056816, 0.06943184, 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.66999052, 0.33000948, 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.33000948, 0.66999052, 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.06943184, 0.93056816, 0. ]]), 'FE2_f0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_f1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE3_f1_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.30568156e-01, 0.00000000e+00, 6.94318442e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.69990522e-01, -1.88651178e-17, 3.30009478e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.30009478e-01, 2.77555756e-17, 6.69990522e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.94318442e-02, 5.55111512e-17, 9.30568156e-01]]), 'FE2_f2_C1': array([[ 0. , 0. , 0. , 0.93056816, 0.06943184, + 0. ], + [ 0. , 0. , 0. , 0.66999052, 0.33000948, + 0. ], + [ 0. , 0. , 0. , 0.33000948, 0.66999052, + 0. ], + [ 0. , 0. , 0. , 0.06943184, 0.93056816, + 0. ]]), 'FE2_f2_C0': array([[ 0.93056816, 0.06943184, 0. , 0. , 0. , + 0. ], + [ 0.66999052, 0.33000948, 0. , 0. , 0. , + 0. ], + [ 0.33000948, 0.66999052, 0. , 0. , 0. , + 0. ], + [ 0.06943184, 0.93056816, 0. , 0. , 0. , + 0. ]]), 'FE2_f2_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE3_f2_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.01346029e-01, -5.97902822e-02, 0.00000000e+00, + -5.55111512e-17, -2.77555756e-17, 2.58444253e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.27784077e-01, -1.12196967e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 8.84412890e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.12196967e-01, 2.27784077e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 8.84412890e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -5.97902822e-02, 8.01346029e-01, 0.00000000e+00, + 5.55111512e-17, -1.11022302e-16, 2.58444253e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C0': array([[ 9.30568156e-01, 0.00000000e+00, 6.94318442e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.69990522e-01, -1.88651178e-17, 3.30009478e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.30009478e-01, 2.77555756e-17, 6.69990522e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.94318442e-02, 5.55111512e-17, 9.30568156e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.30568156e-01, 0.00000000e+00, 6.94318442e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.69990522e-01, -1.88651178e-17, 3.30009478e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.30009478e-01, 2.77555756e-17, 6.69990522e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.94318442e-02, 5.55111512e-17, 9.30568156e-01]]), 'FE3_f0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.30568156e-01, 6.94318442e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.88651178e-17, 6.69990522e-01, 3.30009478e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 3.30009478e-01, 6.69990522e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 6.94318442e-02, 9.30568156e-01]]), 'FE3_f0_C0': array([[ 5.55111512e-17, 8.01346029e-01, -5.97902822e-02, + 2.58444253e-01, -9.71445147e-17, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.93889390e-18, 2.27784077e-01, -1.12196967e-01, + 8.84412890e-01, -2.77555756e-17, 3.46944695e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.45931095e-17, -1.12196967e-01, 2.27784077e-01, + 8.84412890e-01, -6.59194921e-17, 1.90819582e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, -5.97902822e-02, 8.01346029e-01, + 2.58444253e-01, -1.66533454e-16, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 8.01346029e-01, -5.97902822e-02, + 2.58444253e-01, -9.71445147e-17, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -6.93889390e-18, 2.27784077e-01, -1.12196967e-01, + 8.84412890e-01, -2.77555756e-17, 3.46944695e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.45931095e-17, -1.12196967e-01, 2.27784077e-01, + 8.84412890e-01, -6.59194921e-17, 1.90819582e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, -5.97902822e-02, 8.01346029e-01, + 2.58444253e-01, -1.66533454e-16, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + tables: {'FE0_f0': array([[-9.3675067702747583e-17], + [1.5959455978986625e-16], + [-1.6653345369377348e-16], + [-5.5511151231257827e-17]], dtype=object), 'FE2_f0_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00]]), 'FE2_f0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE2_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.30568156e-01, 6.94318442e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.88651178e-17, 6.69990522e-01, 3.30009478e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 3.30009478e-01, 6.69990522e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 6.94318442e-02, 9.30568156e-01]]), 'FE2_f0_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.01346029e-01, 1.04083409e-16, -5.97902822e-02, + -1.38777878e-17, 2.58444253e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.27784077e-01, 6.93889390e-18, -1.12196967e-01, + -4.16333634e-17, 8.84412890e-01, 3.46944695e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.12196967e-01, 8.67361738e-17, 2.27784077e-01, + -2.77555756e-17, 8.84412890e-01, -1.56125113e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -5.97902822e-02, 8.32667268e-17, 8.01346029e-01, + -1.11022302e-16, 2.58444253e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f1_C0': array([[ 8.01346029e-01, 1.04083409e-16, -5.97902822e-02, + -1.38777878e-17, 2.58444253e-01, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.27784077e-01, 6.93889390e-18, -1.12196967e-01, + -4.16333634e-17, 8.84412890e-01, 3.46944695e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.12196967e-01, 8.67361738e-17, 2.27784077e-01, + -2.77555756e-17, 8.84412890e-01, -1.56125113e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -5.97902822e-02, 8.32667268e-17, 8.01346029e-01, + -1.11022302e-16, 2.58444253e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f0_C0': array([[ 0.00000000e+00, 9.30568156e-01, 6.94318442e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.88651178e-17, 6.69990522e-01, 3.30009478e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.77555756e-17, 3.30009478e-01, 6.69990522e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, 6.94318442e-02, 9.30568156e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_f2': array([[0.93056815579702634, 0.069431844202973686, 0.0], + [0.66999052179242813, 0.33000947820757176, 0.0], + [0.33000947820757187, 0.66999052179242813, 0.0], + [0.069431844202973741, 0.93056815579702634, 0.0]], dtype=object), 'FE1_f1': array([[0.93056815579702623, 0.0, 0.069431844202973714], + [0.66999052179242813, -1.8865117801247777e-17, 0.33000947820757182], + [0.33000947820757198, 2.7755575615628914e-17, 0.66999052179242802], + [0.069431844202973825, 5.5511151231257827e-17, 0.93056815579702623]], dtype=object), 'FE1_f0': array([[0.0, 0.93056815579702623, 0.069431844202973714], + [-1.8865117801247777e-17, 0.66999052179242813, 0.33000947820757182], + [2.7755575615628914e-17, 0.33000947820757193, 0.66999052179242791], + [5.5511151231257827e-17, 0.069431844202973825, 0.93056815579702623]], dtype=object), 'FE3_f2_C0': array([[ 8.01346029e-01, -5.97902822e-02, 0.00000000e+00, + -5.55111512e-17, -2.77555756e-17, 2.58444253e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.27784077e-01, -1.12196967e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 8.84412890e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.12196967e-01, 2.27784077e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 8.84412890e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -5.97902822e-02, 8.01346029e-01, 0.00000000e+00, + 5.55111512e-17, -1.11022302e-16, 2.58444253e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.93056816, 0.06943184, 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.66999052, 0.33000948, 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.33000948, 0.66999052, 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.06943184, 0.93056816, 0. ]]), 'FE2_f0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE3_f1_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.30568156e-01, 0.00000000e+00, 6.94318442e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.69990522e-01, -1.88651178e-17, 3.30009478e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.30009478e-01, 2.77555756e-17, 6.69990522e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.94318442e-02, 5.55111512e-17, 9.30568156e-01]]), 'FE2_f2_C1': array([[ 0. , 0. , 0. , 0.93056816, 0.06943184, + 0. ], + [ 0. , 0. , 0. , 0.66999052, 0.33000948, + 0. ], + [ 0. , 0. , 0. , 0.33000948, 0.66999052, + 0. ], + [ 0. , 0. , 0. , 0.06943184, 0.93056816, + 0. ]]), 'FE2_f2_C0': array([[ 0.93056816, 0.06943184, 0. , 0. , 0. , + 0. ], + [ 0.66999052, 0.33000948, 0. , 0. , 0. , + 0. ], + [ 0.33000948, 0.66999052, 0. , 0. , 0. , + 0. ], + [ 0.06943184, 0.93056816, 0. , 0. , 0. , + 0. ]]), 'FE3_f2_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.01346029e-01, -5.97902822e-02, 0.00000000e+00, + -5.55111512e-17, -2.77555756e-17, 2.58444253e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.27784077e-01, -1.12196967e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 8.84412890e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.12196967e-01, 2.27784077e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 8.84412890e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -5.97902822e-02, 8.01346029e-01, 0.00000000e+00, + 5.55111512e-17, -1.11022302e-16, 2.58444253e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C0': array([[ 9.30568156e-01, 0.00000000e+00, 6.94318442e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.69990522e-01, -1.88651178e-17, 3.30009478e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 3.30009478e-01, 2.77555756e-17, 6.69990522e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.94318442e-02, 5.55111512e-17, 9.30568156e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.30568156e-01, 0.00000000e+00, 6.94318442e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.69990522e-01, -1.88651178e-17, 3.30009478e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 3.30009478e-01, 2.77555756e-17, 6.69990522e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.94318442e-02, 5.55111512e-17, 9.30568156e-01]]), 'FE3_f0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.30568156e-01, 6.94318442e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.88651178e-17, 6.69990522e-01, 3.30009478e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 3.30009478e-01, 6.69990522e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 6.94318442e-02, 9.30568156e-01]]), 'FE3_f0_C0': array([[ 5.55111512e-17, 8.01346029e-01, -5.97902822e-02, + 2.58444253e-01, -9.71445147e-17, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -6.93889390e-18, 2.27784077e-01, -1.12196967e-01, + 8.84412890e-01, -2.77555756e-17, 3.46944695e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.45931095e-17, -1.12196967e-01, 2.27784077e-01, + 8.84412890e-01, -6.59194921e-17, 1.90819582e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, -5.97902822e-02, 8.01346029e-01, + 2.58444253e-01, -1.66533454e-16, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 8.01346029e-01, -5.97902822e-02, + 2.58444253e-01, -9.71445147e-17, -2.77555756e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -6.93889390e-18, 2.27784077e-01, -1.12196967e-01, + 8.84412890e-01, -2.77555756e-17, 3.46944695e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.45931095e-17, -1.12196967e-01, 2.27784077e-01, + 8.84412890e-01, -6.59194921e-17, 1.90819582e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, -5.97902822e-02, 8.01346029e-01, + 2.58444253e-01, -1.66533454e-16, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + name_map: {'FE2_f0_C0_D10': ['FE2_f1_C0_D10', 'FE2_f2_C0_D10'], 'FE2_f0_C1_D01': ['FE2_f1_C1_D01', 'FE2_f2_C1_D01'], 'FE2_f0_C0_D01': ['FE2_f1_C0_D01', 'FE2_f2_C0_D01'], 'FE0_f0': ['FE0_f1', 'FE0_f2'], 'FE2_f0_C1_D10': ['FE2_f1_C1_D10', 'FE2_f2_C1_D10']} + + inv_name_map: {'FE2_f1_C1_D01': 'FE2_f0_C1_D01', 'FE2_f2_C0_D10': 'FE2_f0_C0_D10', 'FE0_f0': 'FE0_f0', 'FE0_f1': 'FE0_f0', 'FE0_f2': 'FE0_f0', 'FE2_f0_C1_D01': 'FE2_f0_C1_D01', 'FE2_f2_C0': 'FE2_f2_C0', 'FE2_f0_C1': 'FE2_f0_C1', 'FE2_f0_C0_D01': 'FE2_f0_C0_D01', 'FE3_f1_C1': 'FE3_f1_C1', 'FE3_f1_C0': 'FE3_f1_C0', 'FE2_f0_C0': 'FE2_f0_C0', 'FE2_f2_C1_D01': 'FE2_f0_C1_D01', 'FE2_f1_C0_D10': 'FE2_f0_C0_D10', 'FE1_f2': 'FE1_f2', 'FE1_f1': 'FE1_f1', 'FE1_f0': 'FE1_f0', 'FE3_f2_C0': 'FE3_f2_C0', 'FE2_f2_C0_D01': 'FE2_f0_C0_D01', 'FE3_f2_C2': 'FE3_f2_C2', 'FE2_f0_C1_D10': 'FE2_f0_C1_D10', 'FE2_f1_C1_D10': 'FE2_f0_C1_D10', 'FE3_f1_C2': 'FE3_f1_C2', 'FE2_f2_C1': 'FE2_f2_C1', 'FE2_f0_C0_D10': 'FE2_f0_C0_D10', 'FE2_f2_C1_D10': 'FE2_f0_C1_D10', 'FE3_f2_C1': 'FE3_f2_C1', 'FE2_f1_C0_D01': 'FE2_f0_C0_D01', 'FE2_f1_C0': 'FE2_f1_C0', 'FE2_f1_C1': 'FE2_f1_C1', 'FE3_f0_C2': 'FE3_f0_C2', 'FE3_f0_C0': 'FE3_f0_C0', 'FE3_f0_C1': 'FE3_f0_C1'} + + QG-utils, psi_tables, unique_tables: + {'FE0_f0': array([[0], + [0], + [0], + [0]], dtype=object), 'FE2_f0_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE1_f0': array([[0.93056815579702623, 0.069431844202973714], + [0.66999052179242813, 0.33000947820757182], + [0.33000947820757193, 0.66999052179242791], + [0.069431844202973825, 0.93056815579702623]], dtype=object), 'FE3_f0_C0': array([[ 0.80134603, -0.05979028, 0.25844425], + [ 0.22778408, -0.11219697, 0.88441289], + [-0.11219697, 0.22778408, 0.88441289], + [-0.05979028, 0.80134603, 0.25844425]])} + + QG-utils, psi_tables, name_map: + {'FE2_f1_C1_D01': ('FE2_f0_C0_D01', (7, [3, 5]), False, False), 'FE2_f2_C0_D10': ('FE2_f0_C0_D01', (5, [0, 1]), False, False), 'FE0_f0': ('FE0_f0', (), True, False), 'FE0_f1': ('FE0_f0', (), True, False), 'FE0_f2': ('FE0_f0', (), True, False), 'FE2_f0_C1_D01': ('FE2_f0_C0_D01', (7, [3, 5]), False, False), 'FE2_f2_C0': ('FE1_f0', (11, [0, 1]), False, False), 'FE2_f0_C1': ('FE1_f0', (6, [4, 5]), False, False), 'FE2_f0_C0_D01': ('FE2_f0_C0_D01', (4, [0, 2]), False, False), 'FE3_f1_C1': ('FE3_f0_C0', (17, [6, 8, 10]), False, False), 'FE3_f1_C0': ('FE3_f0_C0', (16, [0, 2, 4]), False, False), 'FE2_f0_C0': ('FE1_f0', (3, [1, 2]), False, False), 'FE2_f2_C1_D01': ('FE2_f0_C0_D01', (7, [3, 5]), False, False), 'FE2_f1_C0_D10': ('FE2_f0_C0_D01', (5, [0, 1]), False, False), 'FE1_f2': ('FE1_f0', (2, [0, 1]), False, False), 'FE1_f1': ('FE1_f0', (1, [0, 2]), False, False), 'FE1_f0': ('FE1_f0', (0, [1, 2]), False, False), 'FE3_f2_C0': ('FE3_f0_C0', (19, [0, 1, 5]), False, False), 'FE2_f2_C0_D01': ('FE2_f0_C0_D01', (4, [0, 2]), False, False), 'FE3_f2_C2': ('FE1_f0', (21, [12, 13]), False, False), 'FE2_f0_C1_D10': ('FE2_f0_C0_D01', (8, [3, 4]), False, False), 'FE2_f1_C1_D10': ('FE2_f0_C0_D01', (8, [3, 4]), False, False), 'FE3_f1_C2': ('FE1_f0', (18, [12, 14]), False, False), 'FE2_f2_C1': ('FE1_f0', (12, [3, 4]), False, False), 'FE2_f0_C0_D10': ('FE2_f0_C0_D01', (5, [0, 1]), False, False), 'FE2_f2_C1_D10': ('FE2_f0_C0_D01', (8, [3, 4]), False, False), 'FE3_f2_C1': ('FE3_f0_C0', (20, [6, 7, 11]), False, False), 'FE2_f1_C0_D01': ('FE2_f0_C0_D01', (4, [0, 2]), False, False), 'FE2_f1_C0': ('FE1_f0', (9, [0, 2]), False, False), 'FE2_f1_C1': ('FE1_f0', (10, [3, 5]), False, False), 'FE3_f0_C2': ('FE1_f0', (15, [13, 14]), False, False), 'FE3_f0_C0': ('FE3_f0_C0', (13, [1, 2, 3]), False, False), 'FE3_f0_C1': ('FE3_f0_C0', (14, [7, 8, 9]), False, False)} + Transforming exterior facet integral 0 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming exterior facet integral 1 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming exterior facet integral 2 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00325 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00315 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.0031 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00465 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.0048 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00527 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.0045 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.0044 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.0047 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00459 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00455 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00455 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00847 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00678 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.0048 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00486 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00475 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00475 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00811 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00484 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 1350 entries computed in 0.00478 seconds + Shape of reference tensor: (15, 15, 6) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 1 dims = [6] indices = [[0], [1], [2], [3], [4], [5]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {16: {FiniteElement('Real', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0): array([[1.0, 1.0, 0.99999999999999989, 1.0, 1.0, 0.99999999999999989, + 0.99999999999999989, 1.0, 1.0, 1.0, 0.99999999999999989, 1.0, 1.0, + 0.99999999999999989, 0.99999999999999989, 1.0]], dtype=object)}}}, FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None): {None: {None: {(0, 1): array([[-2.5097152373218705, -1.6917874526020253, -0.54998993362677662, + 0.4797756831326625, -1.5269250065645008, -0.93803330652173278, + -0.11596185398603498, 0.6254488622506863, -0.2446582089774276, + 0.04540536107422885, 0.45032358346170304, 0.81551168037419208, + 0.7381320217799433, 0.79915950715452166, 0.8843516631024444, + 0.9611848594922161], + [-1.6653345369377348e-16, 1.1102230246251565e-16, + 2.7755575615628914e-17, -4.4408920985006262e-16, + -1.6653345369377348e-16, 0.0, -2.7755575615628914e-17, + -4.4408920985006262e-16, -2.2204460492503131e-16, + 1.6653345369377348e-16, -8.3266726846886741e-17, + -4.4408920985006262e-16, 1.6653345369377348e-16, + 1.9428902930940239e-16, 2.7755575615628914e-17, + -4.4408920985006262e-16], + [-0.77158321554192932, 0.10737205455249504, 1.3343617294756669, + 2.4409605426248775, -0.77158321554192888, 0.10737205455249532, + 1.3343617294756669, 2.4409605426248775, -0.77158321554192888, + 0.10737205455249538, 1.3343617294756669, 2.4409605426248775, + -0.7715832155419291, 0.1073720545524951, 1.3343617294756669, + 2.4409605426248775], + [0.2618679782200577, 0.20084049284547795, 0.11564833689755472, + 0.03881514050778323, 1.2446582089774276, 0.95459463892577068, + 0.54967641653829635, 0.18448831962580736, 2.5269250065645004, + 1.9380333065217321, 1.1159618539860343, 0.37455113774931248, + 3.5097152373218696, 2.6917874526020245, 1.5499899336267755, + 0.52022431686733683], + [3.2812984528638003, 1.5844153980495301, -0.78437179584889039, + -2.9207362257575396, 2.2985082221064306, 0.83066125196923757, + -1.2183998754896317, -3.0664094048755635, 1.0162414245193578, + -0.15277741562672359, -1.7846853129373699, -3.2564722229990686, + 0.033451193761987463, -0.90653156170701621, -2.2187133925781106, + -3.4021454021170929], + [-0.26186797822005725, -0.20084049284547775, -0.1156483368975546, + -0.038815140507784007, -1.2446582089774285, -0.95459463892577068, + -0.54967641653829646, -0.18448831962580781, -2.5269250065645021, + -1.9380333065217328, -1.1159618539860348, -0.37455113774931359, + -3.5097152373218719, -2.6917874526020249, -1.5499899336267764, + -0.52022431686733772]], dtype=object), (1, 0): array([[-2.5097152373218714, -1.6917874526020258, -0.54998993362677651, + 0.47977568313266317, -1.5269250065645006, -0.93803330652173278, + -0.11596185398603487, 0.62544886225068697, -0.24465820897742774, + 0.045405361074228601, 0.45032358346170309, 0.81551168037419286, + 0.7381320217799423, 0.799159507154521, 0.88435166310244473, + 0.96118485949221688], + [-0.73813202177994264, -0.79915950715452166, -0.88435166310244473, + -0.9611848594922161, 0.24465820897742863, -0.045405361074228628, + -0.45032358346170315, -0.8155116803741923, 1.5269250065645017, + 0.93803330652173311, 0.11596185398603487, -0.62544886225068641, + 2.5097152373218714, 1.6917874526020251, 0.54998993362677651, + -0.47977568313266239], + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 0.0, 0.0], + [0.22841678445806923, 1.1073720545524943, 2.334361729475666, + 3.4409605426248748, 0.22841678445806934, 1.1073720545524943, + 2.334361729475666, 3.4409605426248748, 0.22841678445806934, + 1.1073720545524945, 2.334361729475666, 3.4409605426248748, + 0.22841678445806923, 1.1073720545524943, 2.334361729475666, + 3.4409605426248748], + [-0.22841678445806923, -1.1073720545524943, -2.334361729475666, + -3.4409605426248748, -0.22841678445806934, -1.1073720545524943, + -2.334361729475666, -3.4409605426248748, -0.22841678445806934, + -1.1073720545524945, -2.334361729475666, -3.4409605426248748, + -0.22841678445806923, -1.1073720545524943, -2.334361729475666, + -3.4409605426248748], + [3.2478472591018139, 2.4909469597565472, 1.4343415967292208, + 0.48140917635955227, 1.2822667975870721, 0.98343866759596121, + 0.56628543744773763, 0.19006281812350467, -1.2822667975870738, + -0.98343866759596188, -0.5662854374477384, -0.1900628181235072, + -3.2478472591018139, -2.4909469597565463, -1.4343415967292217, + -0.48140917635955516]], dtype=object), (0, 0): array([[0.6623338215556972, 0.23276809809770654, -0.08718888411365161, + -0.096226911734323323, 0.16643749695900031, -0.015011689481987923, + -0.12331910605251509, -0.076101715088665228, -0.11751779509749458, + -0.12474229414821481, -0.0996510837722763, -0.041867587396657691, + -0.056895139802881876, -0.045168010265567847, + -0.027240266995992635, -0.0095154582353661338], + [-0.056895139802881842, -0.04516801026556784, -0.027240266995992645, + -0.0095154582353662032, -0.11751779509749462, -0.12474229414821482, + -0.099651083772276355, -0.041867587396657691, 0.16643749695900029, + -0.015011689481988087, -0.12331910605251518, -0.076101715088665284, + 0.6623338215556972, 0.23276809809770624, -0.087188884113651763, + -0.096226911734323434], + [-0.05058241768674708, -0.12355890523764695, 0.09756515313616182, + 0.61978604633144241, -0.05058241768674708, -0.12355890523764693, + 0.09756515313616182, 0.61978604633144241, -0.05058241768674708, + -0.12355890523764695, 0.09756515313616182, 0.61978604633144241, + -0.05058241768674708, -0.12355890523764693, 0.09756515313616182, + 0.61978604633144241], + [0.014953760384390308, 0.055601287299908417, 0.067491262932790785, + 0.033390341735931695, 0.07107520646099133, 0.26427285664300715, + 0.32078589759058163, 0.15870425710189318, 0.14429802114153809, + 0.53653098110853426, 0.65126466087492807, 0.32220392154766114, + 0.20041946721813905, 0.74520255045163286, 0.90455929553271897, + 0.44751783691362274], + [0.20041946721813891, 0.74520255045163297, 0.90455929553271897, + 0.44751783691362235, 0.14429802114153806, 0.53653098110853414, + 0.65126466087492807, 0.32220392154766098, 0.071075206460991261, + 0.26427285664300726, 0.32078589759058174, 0.15870425710189295, + 0.014953760384390294, 0.0556012872999085, 0.067491262932790869, + 0.033390341735931361], + [0.22977050833140236, 0.13515497965396686, 0.044813439507972466, + 0.0050481449886929514, 0.78628948822271205, 0.46250905111630813, + 0.15335447822311959, 0.017275077504326344, 0.78628948822271205, + 0.46250905111630836, 0.15335447822311959, 0.017275077504326344, + 0.22977050833140236, 0.13515497965396692, 0.044813439507972466, + 0.0050481449886928959]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 0.00000000e+00, 1.11022302e-16, + 1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00, 1.11022302e-16, 1.11022302e-16, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 0.00000000e+00, 1.11022302e-16, + 1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00, 1.11022302e-16, 1.11022302e-16, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0.], + [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., + -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., + 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., + 0., 0., 0.]]]), (0, 0): array([[[ 0.87742881, 0.67294686, 0.38749748, 0.13005608, 0.63173125, + 0.48450833, 0.27899046, 0.09363778, 0.31116455, 0.23864866, + 0.1374191 , 0.04612208, 0.06546699, 0.05021012, 0.02891208, + 0.00970379], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.06546699, 0.05021012, 0.02891208, 0.00970379, 0.31116455, + 0.23864866, 0.1374191 , 0.04612208, 0.63173125, 0.48450833, + 0.27899046, 0.09363778, 0.87742881, 0.67294686, 0.38749748, + 0.13005608], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.0571042 , 0.27684301, 0.58359043, 0.86024014, 0.0571042 , + 0.27684301, 0.58359043, 0.86024014, 0.0571042 , 0.27684301, + 0.58359043, 0.86024014, 0.0571042 , 0.27684301, 0.58359043, + 0.86024014], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.87742881, 0.67294686, 0.38749748, 0.13005608, 0.63173125, + 0.48450833, 0.27899046, 0.09363778, 0.31116455, 0.23864866, + 0.1374191 , 0.04612208, 0.06546699, 0.05021012, 0.02891208, + 0.00970379]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.06546699, 0.05021012, 0.02891208, 0.00970379, 0.31116455, + 0.23864866, 0.1374191 , 0.04612208, 0.63173125, 0.48450833, + 0.27899046, 0.09363778, 0.87742881, 0.67294686, 0.38749748, + 0.13005608]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.0571042 , 0.27684301, 0.58359043, 0.86024014, 0.0571042 , + 0.27684301, 0.58359043, 0.86024014, 0.0571042 , 0.27684301, + 0.58359043, 0.86024014, 0.0571042 , 0.27684301, 0.58359043, + 0.86024014]]])}}}, MixedElement(*[VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, dim=2, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {None: {(0, 1): array([[[ -2.50971524e+00, -1.69178745e+00, -5.49989934e-01, + 4.79775683e-01, -1.52692501e+00, -9.38033307e-01, + -1.15961854e-01, 6.25448862e-01, -2.44658209e-01, + 4.54053611e-02, 4.50323583e-01, 8.15511680e-01, + 7.38132022e-01, 7.99159507e-01, 8.84351663e-01, + 9.61184859e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -1.66533454e-16, 1.11022302e-16, 2.77555756e-17, + -4.44089210e-16, -1.66533454e-16, 0.00000000e+00, + -2.77555756e-17, -4.44089210e-16, -2.22044605e-16, + 1.66533454e-16, -8.32667268e-17, -4.44089210e-16, + 1.66533454e-16, 1.94289029e-16, 2.77555756e-17, + -4.44089210e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -7.71583216e-01, 1.07372055e-01, 1.33436173e+00, + 2.44096054e+00, -7.71583216e-01, 1.07372055e-01, + 1.33436173e+00, 2.44096054e+00, -7.71583216e-01, + 1.07372055e-01, 1.33436173e+00, 2.44096054e+00, + -7.71583216e-01, 1.07372055e-01, 1.33436173e+00, + 2.44096054e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 2.61867978e-01, 2.00840493e-01, 1.15648337e-01, + 3.88151405e-02, 1.24465821e+00, 9.54594639e-01, + 5.49676417e-01, 1.84488320e-01, 2.52692501e+00, + 1.93803331e+00, 1.11596185e+00, 3.74551138e-01, + 3.50971524e+00, 2.69178745e+00, 1.54998993e+00, + 5.20224317e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 3.28129845e+00, 1.58441540e+00, -7.84371796e-01, + -2.92073623e+00, 2.29850822e+00, 8.30661252e-01, + -1.21839988e+00, -3.06640940e+00, 1.01624142e+00, + -1.52777416e-01, -1.78468531e+00, -3.25647222e+00, + 3.34511938e-02, -9.06531562e-01, -2.21871339e+00, + -3.40214540e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -2.61867978e-01, -2.00840493e-01, -1.15648337e-01, + -3.88151405e-02, -1.24465821e+00, -9.54594639e-01, + -5.49676417e-01, -1.84488320e-01, -2.52692501e+00, + -1.93803331e+00, -1.11596185e+00, -3.74551138e-01, + -3.50971524e+00, -2.69178745e+00, -1.54998993e+00, + -5.20224317e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -2.50971524e+00, -1.69178745e+00, -5.49989934e-01, + 4.79775683e-01, -1.52692501e+00, -9.38033307e-01, + -1.15961854e-01, 6.25448862e-01, -2.44658209e-01, + 4.54053611e-02, 4.50323583e-01, 8.15511680e-01, + 7.38132022e-01, 7.99159507e-01, 8.84351663e-01, + 9.61184859e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.66533454e-16, 1.11022302e-16, 2.77555756e-17, + -4.44089210e-16, -1.66533454e-16, 0.00000000e+00, + -2.77555756e-17, -4.44089210e-16, -2.22044605e-16, + 1.66533454e-16, -8.32667268e-17, -4.44089210e-16, + 1.66533454e-16, 1.94289029e-16, 2.77555756e-17, + -4.44089210e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -7.71583216e-01, 1.07372055e-01, 1.33436173e+00, + 2.44096054e+00, -7.71583216e-01, 1.07372055e-01, + 1.33436173e+00, 2.44096054e+00, -7.71583216e-01, + 1.07372055e-01, 1.33436173e+00, 2.44096054e+00, + -7.71583216e-01, 1.07372055e-01, 1.33436173e+00, + 2.44096054e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 2.61867978e-01, 2.00840493e-01, 1.15648337e-01, + 3.88151405e-02, 1.24465821e+00, 9.54594639e-01, + 5.49676417e-01, 1.84488320e-01, 2.52692501e+00, + 1.93803331e+00, 1.11596185e+00, 3.74551138e-01, + 3.50971524e+00, 2.69178745e+00, 1.54998993e+00, + 5.20224317e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 3.28129845e+00, 1.58441540e+00, -7.84371796e-01, + -2.92073623e+00, 2.29850822e+00, 8.30661252e-01, + -1.21839988e+00, -3.06640940e+00, 1.01624142e+00, + -1.52777416e-01, -1.78468531e+00, -3.25647222e+00, + 3.34511938e-02, -9.06531562e-01, -2.21871339e+00, + -3.40214540e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -2.61867978e-01, -2.00840493e-01, -1.15648337e-01, + -3.88151405e-02, -1.24465821e+00, -9.54594639e-01, + -5.49676417e-01, -1.84488320e-01, -2.52692501e+00, + -1.93803331e+00, -1.11596185e+00, -3.74551138e-01, + -3.50971524e+00, -2.69178745e+00, -1.54998993e+00, + -5.20224317e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 0.00000000e+00, 1.11022302e-16, + 1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00, 1.11022302e-16, 1.11022302e-16, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]]), (1, 0): array([[[-2.50971524, -1.69178745, -0.54998993, 0.47977568, -1.52692501, + -0.93803331, -0.11596185, 0.62544886, -0.24465821, 0.04540536, + 0.45032358, 0.81551168, 0.73813202, 0.79915951, 0.88435166, + 0.96118486], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[-0.73813202, -0.79915951, -0.88435166, -0.96118486, 0.24465821, + -0.04540536, -0.45032358, -0.81551168, 1.52692501, 0.93803331, + 0.11596185, -0.62544886, 2.50971524, 1.69178745, 0.54998993, + -0.47977568], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.22841678, 1.10737205, 2.33436173, 3.44096054, 0.22841678, + 1.10737205, 2.33436173, 3.44096054, 0.22841678, 1.10737205, + 2.33436173, 3.44096054, 0.22841678, 1.10737205, 2.33436173, + 3.44096054], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[-0.22841678, -1.10737205, -2.33436173, -3.44096054, -0.22841678, + -1.10737205, -2.33436173, -3.44096054, -0.22841678, -1.10737205, + -2.33436173, -3.44096054, -0.22841678, -1.10737205, -2.33436173, + -3.44096054], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 3.24784726, 2.49094696, 1.4343416 , 0.48140918, 1.2822668 , + 0.98343867, 0.56628544, 0.19006282, -1.2822668 , -0.98343867, + -0.56628544, -0.19006282, -3.24784726, -2.49094696, -1.4343416 , + -0.48140918], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-2.50971524, -1.69178745, -0.54998993, 0.47977568, -1.52692501, + -0.93803331, -0.11596185, 0.62544886, -0.24465821, 0.04540536, + 0.45032358, 0.81551168, 0.73813202, 0.79915951, 0.88435166, + 0.96118486], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.73813202, -0.79915951, -0.88435166, -0.96118486, 0.24465821, + -0.04540536, -0.45032358, -0.81551168, 1.52692501, 0.93803331, + 0.11596185, -0.62544886, 2.50971524, 1.69178745, 0.54998993, + -0.47977568], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.22841678, 1.10737205, 2.33436173, 3.44096054, 0.22841678, + 1.10737205, 2.33436173, 3.44096054, 0.22841678, 1.10737205, + 2.33436173, 3.44096054, 0.22841678, 1.10737205, 2.33436173, + 3.44096054], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.22841678, -1.10737205, -2.33436173, -3.44096054, -0.22841678, + -1.10737205, -2.33436173, -3.44096054, -0.22841678, -1.10737205, + -2.33436173, -3.44096054, -0.22841678, -1.10737205, -2.33436173, + -3.44096054], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 3.24784726, 2.49094696, 1.4343416 , 0.48140918, 1.2822668 , + 0.98343867, 0.56628544, 0.19006282, -1.2822668 , -0.98343867, + -0.56628544, -0.19006282, -3.24784726, -2.49094696, -1.4343416 , + -0.48140918], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-1. , -1. , -1. , -1. , -1. , + -1. , -1. , -1. , -1. , -1. , + -1. , -1. , -1. , -1. , -1. , + -1. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 1. , 1. , 1. , 1. , 1. , + 1. , 1. , 1. , 1. , 1. , + 1. , 1. , 1. , 1. , 1. , + 1. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]]]), (0, 0): array([[[ 0.66233382, 0.2327681 , -0.08718888, -0.09622691, 0.1664375 , + -0.01501169, -0.12331911, -0.07610172, -0.1175178 , -0.12474229, + -0.09965108, -0.04186759, -0.05689514, -0.04516801, -0.02724027, + -0.00951546], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[-0.05689514, -0.04516801, -0.02724027, -0.00951546, -0.1175178 , + -0.12474229, -0.09965108, -0.04186759, 0.1664375 , -0.01501169, + -0.12331911, -0.07610172, 0.66233382, 0.2327681 , -0.08718888, + -0.09622691], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[-0.05058242, -0.12355891, 0.09756515, 0.61978605, -0.05058242, + -0.12355891, 0.09756515, 0.61978605, -0.05058242, -0.12355891, + 0.09756515, 0.61978605, -0.05058242, -0.12355891, 0.09756515, + 0.61978605], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.01495376, 0.05560129, 0.06749126, 0.03339034, 0.07107521, + 0.26427286, 0.3207859 , 0.15870426, 0.14429802, 0.53653098, + 0.65126466, 0.32220392, 0.20041947, 0.74520255, 0.9045593 , + 0.44751784], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.20041947, 0.74520255, 0.9045593 , 0.44751784, 0.14429802, + 0.53653098, 0.65126466, 0.32220392, 0.07107521, 0.26427286, + 0.3207859 , 0.15870426, 0.01495376, 0.05560129, 0.06749126, + 0.03339034], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.22977051, 0.13515498, 0.04481344, 0.00504814, 0.78628949, + 0.46250905, 0.15335448, 0.01727508, 0.78628949, 0.46250905, + 0.15335448, 0.01727508, 0.22977051, 0.13515498, 0.04481344, + 0.00504814], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.66233382, 0.2327681 , -0.08718888, -0.09622691, 0.1664375 , + -0.01501169, -0.12331911, -0.07610172, -0.1175178 , -0.12474229, + -0.09965108, -0.04186759, -0.05689514, -0.04516801, -0.02724027, + -0.00951546], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.05689514, -0.04516801, -0.02724027, -0.00951546, -0.1175178 , + -0.12474229, -0.09965108, -0.04186759, 0.1664375 , -0.01501169, + -0.12331911, -0.07610172, 0.66233382, 0.2327681 , -0.08718888, + -0.09622691], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.05058242, -0.12355891, 0.09756515, 0.61978605, -0.05058242, + -0.12355891, 0.09756515, 0.61978605, -0.05058242, -0.12355891, + 0.09756515, 0.61978605, -0.05058242, -0.12355891, 0.09756515, + 0.61978605], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.01495376, 0.05560129, 0.06749126, 0.03339034, 0.07107521, + 0.26427286, 0.3207859 , 0.15870426, 0.14429802, 0.53653098, + 0.65126466, 0.32220392, 0.20041947, 0.74520255, 0.9045593 , + 0.44751784], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.20041947, 0.74520255, 0.9045593 , 0.44751784, 0.14429802, + 0.53653098, 0.65126466, 0.32220392, 0.07107521, 0.26427286, + 0.3207859 , 0.15870426, 0.01495376, 0.05560129, 0.06749126, + 0.03339034], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.22977051, 0.13515498, 0.04481344, 0.00504814, 0.78628949, + 0.46250905, 0.15335448, 0.01727508, 0.78628949, 0.46250905, + 0.15335448, 0.01727508, 0.22977051, 0.13515498, 0.04481344, + 0.00504814], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.87742881, 0.67294686, 0.38749748, 0.13005608, 0.63173125, + 0.48450833, 0.27899046, 0.09363778, 0.31116455, 0.23864866, + 0.1374191 , 0.04612208, 0.06546699, 0.05021012, 0.02891208, + 0.00970379]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.06546699, 0.05021012, 0.02891208, 0.00970379, 0.31116455, + 0.23864866, 0.1374191 , 0.04612208, 0.63173125, 0.48450833, + 0.27899046, 0.09363778, 0.87742881, 0.67294686, 0.38749748, + 0.13005608]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.0571042 , 0.27684301, 0.58359043, 0.86024014, 0.0571042 , + 0.27684301, 0.58359043, 0.86024014, 0.0571042 , 0.27684301, + 0.58359043, 0.86024014, 0.0571042 , 0.27684301, 0.58359043, + 0.86024014]]])}}}, MixedElement(*[MixedElement(*[FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None)], **{'value_shape': (2,) }), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {None: {(0, 1): array([[[ -2.50971524e+00, -1.69178745e+00, -5.49989934e-01, + 4.79775683e-01, -1.52692501e+00, -9.38033307e-01, + -1.15961854e-01, 6.25448862e-01, -2.44658209e-01, + 4.54053611e-02, 4.50323583e-01, 8.15511680e-01, + 7.38132022e-01, 7.99159507e-01, 8.84351663e-01, + 9.61184859e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -1.66533454e-16, 1.11022302e-16, 2.77555756e-17, + -4.44089210e-16, -1.66533454e-16, 0.00000000e+00, + -2.77555756e-17, -4.44089210e-16, -2.22044605e-16, + 1.66533454e-16, -8.32667268e-17, -4.44089210e-16, + 1.66533454e-16, 1.94289029e-16, 2.77555756e-17, + -4.44089210e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -7.71583216e-01, 1.07372055e-01, 1.33436173e+00, + 2.44096054e+00, -7.71583216e-01, 1.07372055e-01, + 1.33436173e+00, 2.44096054e+00, -7.71583216e-01, + 1.07372055e-01, 1.33436173e+00, 2.44096054e+00, + -7.71583216e-01, 1.07372055e-01, 1.33436173e+00, + 2.44096054e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 2.61867978e-01, 2.00840493e-01, 1.15648337e-01, + 3.88151405e-02, 1.24465821e+00, 9.54594639e-01, + 5.49676417e-01, 1.84488320e-01, 2.52692501e+00, + 1.93803331e+00, 1.11596185e+00, 3.74551138e-01, + 3.50971524e+00, 2.69178745e+00, 1.54998993e+00, + 5.20224317e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 3.28129845e+00, 1.58441540e+00, -7.84371796e-01, + -2.92073623e+00, 2.29850822e+00, 8.30661252e-01, + -1.21839988e+00, -3.06640940e+00, 1.01624142e+00, + -1.52777416e-01, -1.78468531e+00, -3.25647222e+00, + 3.34511938e-02, -9.06531562e-01, -2.21871339e+00, + -3.40214540e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -2.61867978e-01, -2.00840493e-01, -1.15648337e-01, + -3.88151405e-02, -1.24465821e+00, -9.54594639e-01, + -5.49676417e-01, -1.84488320e-01, -2.52692501e+00, + -1.93803331e+00, -1.11596185e+00, -3.74551138e-01, + -3.50971524e+00, -2.69178745e+00, -1.54998993e+00, + -5.20224317e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -2.50971524e+00, -1.69178745e+00, -5.49989934e-01, + 4.79775683e-01, -1.52692501e+00, -9.38033307e-01, + -1.15961854e-01, 6.25448862e-01, -2.44658209e-01, + 4.54053611e-02, 4.50323583e-01, 8.15511680e-01, + 7.38132022e-01, 7.99159507e-01, 8.84351663e-01, + 9.61184859e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.66533454e-16, 1.11022302e-16, 2.77555756e-17, + -4.44089210e-16, -1.66533454e-16, 0.00000000e+00, + -2.77555756e-17, -4.44089210e-16, -2.22044605e-16, + 1.66533454e-16, -8.32667268e-17, -4.44089210e-16, + 1.66533454e-16, 1.94289029e-16, 2.77555756e-17, + -4.44089210e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -7.71583216e-01, 1.07372055e-01, 1.33436173e+00, + 2.44096054e+00, -7.71583216e-01, 1.07372055e-01, + 1.33436173e+00, 2.44096054e+00, -7.71583216e-01, + 1.07372055e-01, 1.33436173e+00, 2.44096054e+00, + -7.71583216e-01, 1.07372055e-01, 1.33436173e+00, + 2.44096054e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 2.61867978e-01, 2.00840493e-01, 1.15648337e-01, + 3.88151405e-02, 1.24465821e+00, 9.54594639e-01, + 5.49676417e-01, 1.84488320e-01, 2.52692501e+00, + 1.93803331e+00, 1.11596185e+00, 3.74551138e-01, + 3.50971524e+00, 2.69178745e+00, 1.54998993e+00, + 5.20224317e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 3.28129845e+00, 1.58441540e+00, -7.84371796e-01, + -2.92073623e+00, 2.29850822e+00, 8.30661252e-01, + -1.21839988e+00, -3.06640940e+00, 1.01624142e+00, + -1.52777416e-01, -1.78468531e+00, -3.25647222e+00, + 3.34511938e-02, -9.06531562e-01, -2.21871339e+00, + -3.40214540e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -2.61867978e-01, -2.00840493e-01, -1.15648337e-01, + -3.88151405e-02, -1.24465821e+00, -9.54594639e-01, + -5.49676417e-01, -1.84488320e-01, -2.52692501e+00, + -1.93803331e+00, -1.11596185e+00, -3.74551138e-01, + -3.50971524e+00, -2.69178745e+00, -1.54998993e+00, + -5.20224317e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 1.11022302e-16, + 0.00000000e+00, 0.00000000e+00, 1.11022302e-16, + 1.11022302e-16, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 1.11022302e-16, 0.00000000e+00, + 0.00000000e+00, 1.11022302e-16, 1.11022302e-16, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]]), (1, 0): array([[[-2.50971524, -1.69178745, -0.54998993, 0.47977568, -1.52692501, + -0.93803331, -0.11596185, 0.62544886, -0.24465821, 0.04540536, + 0.45032358, 0.81551168, 0.73813202, 0.79915951, 0.88435166, + 0.96118486], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[-0.73813202, -0.79915951, -0.88435166, -0.96118486, 0.24465821, + -0.04540536, -0.45032358, -0.81551168, 1.52692501, 0.93803331, + 0.11596185, -0.62544886, 2.50971524, 1.69178745, 0.54998993, + -0.47977568], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.22841678, 1.10737205, 2.33436173, 3.44096054, 0.22841678, + 1.10737205, 2.33436173, 3.44096054, 0.22841678, 1.10737205, + 2.33436173, 3.44096054, 0.22841678, 1.10737205, 2.33436173, + 3.44096054], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[-0.22841678, -1.10737205, -2.33436173, -3.44096054, -0.22841678, + -1.10737205, -2.33436173, -3.44096054, -0.22841678, -1.10737205, + -2.33436173, -3.44096054, -0.22841678, -1.10737205, -2.33436173, + -3.44096054], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 3.24784726, 2.49094696, 1.4343416 , 0.48140918, 1.2822668 , + 0.98343867, 0.56628544, 0.19006282, -1.2822668 , -0.98343867, + -0.56628544, -0.19006282, -3.24784726, -2.49094696, -1.4343416 , + -0.48140918], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-2.50971524, -1.69178745, -0.54998993, 0.47977568, -1.52692501, + -0.93803331, -0.11596185, 0.62544886, -0.24465821, 0.04540536, + 0.45032358, 0.81551168, 0.73813202, 0.79915951, 0.88435166, + 0.96118486], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.73813202, -0.79915951, -0.88435166, -0.96118486, 0.24465821, + -0.04540536, -0.45032358, -0.81551168, 1.52692501, 0.93803331, + 0.11596185, -0.62544886, 2.50971524, 1.69178745, 0.54998993, + -0.47977568], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.22841678, 1.10737205, 2.33436173, 3.44096054, 0.22841678, + 1.10737205, 2.33436173, 3.44096054, 0.22841678, 1.10737205, + 2.33436173, 3.44096054, 0.22841678, 1.10737205, 2.33436173, + 3.44096054], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.22841678, -1.10737205, -2.33436173, -3.44096054, -0.22841678, + -1.10737205, -2.33436173, -3.44096054, -0.22841678, -1.10737205, + -2.33436173, -3.44096054, -0.22841678, -1.10737205, -2.33436173, + -3.44096054], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 3.24784726, 2.49094696, 1.4343416 , 0.48140918, 1.2822668 , + 0.98343867, 0.56628544, 0.19006282, -1.2822668 , -0.98343867, + -0.56628544, -0.19006282, -3.24784726, -2.49094696, -1.4343416 , + -0.48140918], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-1. , -1. , -1. , -1. , -1. , + -1. , -1. , -1. , -1. , -1. , + -1. , -1. , -1. , -1. , -1. , + -1. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 1. , 1. , 1. , 1. , 1. , + 1. , 1. , 1. , 1. , 1. , + 1. , 1. , 1. , 1. , 1. , + 1. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]]]), (0, 0): array([[[ 0.66233382, 0.2327681 , -0.08718888, -0.09622691, 0.1664375 , + -0.01501169, -0.12331911, -0.07610172, -0.1175178 , -0.12474229, + -0.09965108, -0.04186759, -0.05689514, -0.04516801, -0.02724027, + -0.00951546], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[-0.05689514, -0.04516801, -0.02724027, -0.00951546, -0.1175178 , + -0.12474229, -0.09965108, -0.04186759, 0.1664375 , -0.01501169, + -0.12331911, -0.07610172, 0.66233382, 0.2327681 , -0.08718888, + -0.09622691], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[-0.05058242, -0.12355891, 0.09756515, 0.61978605, -0.05058242, + -0.12355891, 0.09756515, 0.61978605, -0.05058242, -0.12355891, + 0.09756515, 0.61978605, -0.05058242, -0.12355891, 0.09756515, + 0.61978605], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.01495376, 0.05560129, 0.06749126, 0.03339034, 0.07107521, + 0.26427286, 0.3207859 , 0.15870426, 0.14429802, 0.53653098, + 0.65126466, 0.32220392, 0.20041947, 0.74520255, 0.9045593 , + 0.44751784], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.20041947, 0.74520255, 0.9045593 , 0.44751784, 0.14429802, + 0.53653098, 0.65126466, 0.32220392, 0.07107521, 0.26427286, + 0.3207859 , 0.15870426, 0.01495376, 0.05560129, 0.06749126, + 0.03339034], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.22977051, 0.13515498, 0.04481344, 0.00504814, 0.78628949, + 0.46250905, 0.15335448, 0.01727508, 0.78628949, 0.46250905, + 0.15335448, 0.01727508, 0.22977051, 0.13515498, 0.04481344, + 0.00504814], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.66233382, 0.2327681 , -0.08718888, -0.09622691, 0.1664375 , + -0.01501169, -0.12331911, -0.07610172, -0.1175178 , -0.12474229, + -0.09965108, -0.04186759, -0.05689514, -0.04516801, -0.02724027, + -0.00951546], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.05689514, -0.04516801, -0.02724027, -0.00951546, -0.1175178 , + -0.12474229, -0.09965108, -0.04186759, 0.1664375 , -0.01501169, + -0.12331911, -0.07610172, 0.66233382, 0.2327681 , -0.08718888, + -0.09622691], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [-0.05058242, -0.12355891, 0.09756515, 0.61978605, -0.05058242, + -0.12355891, 0.09756515, 0.61978605, -0.05058242, -0.12355891, + 0.09756515, 0.61978605, -0.05058242, -0.12355891, 0.09756515, + 0.61978605], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.01495376, 0.05560129, 0.06749126, 0.03339034, 0.07107521, + 0.26427286, 0.3207859 , 0.15870426, 0.14429802, 0.53653098, + 0.65126466, 0.32220392, 0.20041947, 0.74520255, 0.9045593 , + 0.44751784], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.20041947, 0.74520255, 0.9045593 , 0.44751784, 0.14429802, + 0.53653098, 0.65126466, 0.32220392, 0.07107521, 0.26427286, + 0.3207859 , 0.15870426, 0.01495376, 0.05560129, 0.06749126, + 0.03339034], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.22977051, 0.13515498, 0.04481344, 0.00504814, 0.78628949, + 0.46250905, 0.15335448, 0.01727508, 0.78628949, 0.46250905, + 0.15335448, 0.01727508, 0.22977051, 0.13515498, 0.04481344, + 0.00504814], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.87742881, 0.67294686, 0.38749748, 0.13005608, 0.63173125, + 0.48450833, 0.27899046, 0.09363778, 0.31116455, 0.23864866, + 0.1374191 , 0.04612208, 0.06546699, 0.05021012, 0.02891208, + 0.00970379]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.06546699, 0.05021012, 0.02891208, 0.00970379, 0.31116455, + 0.23864866, 0.1374191 , 0.04612208, 0.63173125, 0.48450833, + 0.27899046, 0.09363778, 0.87742881, 0.67294686, 0.38749748, + 0.13005608]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.0571042 , 0.27684301, 0.58359043, 0.86024014, 0.0571042 , + 0.27684301, 0.58359043, 0.86024014, 0.0571042 , 0.27684301, + 0.58359043, 0.86024014, 0.0571042 , 0.27684301, 0.58359043, + 0.86024014]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_D10': array([[-2.5097152373218714, -0.73813202177994264, 0.0, + 0.22841678445806923, -0.22841678445806923, 3.2478472591018139], + [-1.6917874526020258, -0.79915950715452166, 0.0, 1.1073720545524943, + -1.1073720545524943, 2.4909469597565472], + [-0.54998993362677651, -0.88435166310244473, 0.0, 2.334361729475666, + -2.334361729475666, 1.4343415967292208], + [0.47977568313266317, -0.9611848594922161, 0.0, 3.4409605426248748, + -3.4409605426248748, 0.48140917635955227], + [-1.5269250065645006, 0.24465820897742863, 0.0, 0.22841678445806934, + -0.22841678445806934, 1.2822667975870721], + [-0.93803330652173278, -0.045405361074228628, 0.0, + 1.1073720545524943, -1.1073720545524943, 0.98343866759596121], + [-0.11596185398603487, -0.45032358346170315, 0.0, 2.334361729475666, + -2.334361729475666, 0.56628543744773763], + [0.62544886225068697, -0.8155116803741923, 0.0, 3.4409605426248748, + -3.4409605426248748, 0.19006281812350467], + [-0.24465820897742774, 1.5269250065645017, 0.0, 0.22841678445806934, + -0.22841678445806934, -1.2822667975870738], + [0.045405361074228601, 0.93803330652173311, 0.0, 1.1073720545524945, + -1.1073720545524945, -0.98343866759596188], + [0.45032358346170309, 0.11596185398603487, 0.0, 2.334361729475666, + -2.334361729475666, -0.5662854374477384], + [0.81551168037419286, -0.62544886225068641, 0.0, 3.4409605426248748, + -3.4409605426248748, -0.1900628181235072], + [0.7381320217799423, 2.5097152373218714, 0.0, 0.22841678445806923, + -0.22841678445806923, -3.2478472591018139], + [0.799159507154521, 1.6917874526020251, 0.0, 1.1073720545524943, + -1.1073720545524943, -2.4909469597565463], + [0.88435166310244473, 0.54998993362677651, 0.0, 2.334361729475666, + -2.334361729475666, -1.4343415967292217], + [0.96118485949221688, -0.47977568313266239, 0.0, 3.4409605426248748, + -3.4409605426248748, -0.48140917635955516]], dtype=object), 'FE2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.50971524e+00, -1.66533454e-16, -7.71583216e-01, + 2.61867978e-01, 3.28129845e+00, -2.61867978e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.69178745e+00, 1.11022302e-16, 1.07372055e-01, + 2.00840493e-01, 1.58441540e+00, -2.00840493e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -5.49989934e-01, 2.77555756e-17, 1.33436173e+00, + 1.15648337e-01, -7.84371796e-01, -1.15648337e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.79775683e-01, -4.44089210e-16, 2.44096054e+00, + 3.88151405e-02, -2.92073623e+00, -3.88151405e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.52692501e+00, -1.66533454e-16, -7.71583216e-01, + 1.24465821e+00, 2.29850822e+00, -1.24465821e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -9.38033307e-01, 0.00000000e+00, 1.07372055e-01, + 9.54594639e-01, 8.30661252e-01, -9.54594639e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.15961854e-01, -2.77555756e-17, 1.33436173e+00, + 5.49676417e-01, -1.21839988e+00, -5.49676417e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.25448862e-01, -4.44089210e-16, 2.44096054e+00, + 1.84488320e-01, -3.06640940e+00, -1.84488320e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.44658209e-01, -2.22044605e-16, -7.71583216e-01, + 2.52692501e+00, 1.01624142e+00, -2.52692501e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.54053611e-02, 1.66533454e-16, 1.07372055e-01, + 1.93803331e+00, -1.52777416e-01, -1.93803331e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.50323583e-01, -8.32667268e-17, 1.33436173e+00, + 1.11596185e+00, -1.78468531e+00, -1.11596185e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.15511680e-01, -4.44089210e-16, 2.44096054e+00, + 3.74551138e-01, -3.25647222e+00, -3.74551138e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.38132022e-01, 1.66533454e-16, -7.71583216e-01, + 3.50971524e+00, 3.34511938e-02, -3.50971524e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.99159507e-01, 1.94289029e-16, 1.07372055e-01, + 2.69178745e+00, -9.06531562e-01, -2.69178745e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.84351663e-01, 2.77555756e-17, 1.33436173e+00, + 1.54998993e+00, -2.21871339e+00, -1.54998993e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.61184859e-01, -4.44089210e-16, 2.44096054e+00, + 5.20224317e-01, -3.40214540e+00, -5.20224317e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_C1_D10': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -2.50971524, -0.73813202, 0. , 0.22841678, + -0.22841678, 3.24784726, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -1.69178745, -0.79915951, 0. , 1.10737205, + -1.10737205, 2.49094696, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.54998993, -0.88435166, 0. , 2.33436173, + -2.33436173, 1.4343416 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.47977568, -0.96118486, 0. , 3.44096054, + -3.44096054, 0.48140918, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -1.52692501, 0.24465821, 0. , 0.22841678, + -0.22841678, 1.2822668 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.93803331, -0.04540536, 0. , 1.10737205, + -1.10737205, 0.98343867, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11596185, -0.45032358, 0. , 2.33436173, + -2.33436173, 0.56628544, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.62544886, -0.81551168, 0. , 3.44096054, + -3.44096054, 0.19006282, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.24465821, 1.52692501, 0. , 0.22841678, + -0.22841678, -1.2822668 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.04540536, 0.93803331, 0. , 1.10737205, + -1.10737205, -0.98343867, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.45032358, 0.11596185, 0. , 2.33436173, + -2.33436173, -0.56628544, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.81551168, -0.62544886, 0. , 3.44096054, + -3.44096054, -0.19006282, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.73813202, 2.50971524, 0. , 0.22841678, + -0.22841678, -3.24784726, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.79915951, 1.69178745, 0. , 1.10737205, + -1.10737205, -2.49094696, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.88435166, 0.54998993, 0. , 2.33436173, + -2.33436173, -1.4343416 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.96118486, -0.47977568, 0. , 3.44096054, + -3.44096054, -0.48140918, 0. , 0. , 0. ]]), 'FE2_C1_D10': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -2.50971524, -0.73813202, 0. , 0.22841678, + -0.22841678, 3.24784726, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -1.69178745, -0.79915951, 0. , 1.10737205, + -1.10737205, 2.49094696, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.54998993, -0.88435166, 0. , 2.33436173, + -2.33436173, 1.4343416 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.47977568, -0.96118486, 0. , 3.44096054, + -3.44096054, 0.48140918, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -1.52692501, 0.24465821, 0. , 0.22841678, + -0.22841678, 1.2822668 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.93803331, -0.04540536, 0. , 1.10737205, + -1.10737205, 0.98343867, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11596185, -0.45032358, 0. , 2.33436173, + -2.33436173, 0.56628544, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.62544886, -0.81551168, 0. , 3.44096054, + -3.44096054, 0.19006282, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.24465821, 1.52692501, 0. , 0.22841678, + -0.22841678, -1.2822668 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.04540536, 0.93803331, 0. , 1.10737205, + -1.10737205, -0.98343867, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.45032358, 0.11596185, 0. , 2.33436173, + -2.33436173, -0.56628544, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.81551168, -0.62544886, 0. , 3.44096054, + -3.44096054, -0.19006282, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.73813202, 2.50971524, 0. , 0.22841678, + -0.22841678, -3.24784726, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.79915951, 1.69178745, 0. , 1.10737205, + -1.10737205, -2.49094696, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.88435166, 0.54998993, 0. , 2.33436173, + -2.33436173, -1.4343416 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.96118486, -0.47977568, 0. , 3.44096054, + -3.44096054, -0.48140918, 0. , 0. , 0. ]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE3_C0_D10': array([[-2.50971524, -0.73813202, 0. , 0.22841678, -0.22841678, + 3.24784726, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-1.69178745, -0.79915951, 0. , 1.10737205, -1.10737205, + 2.49094696, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.54998993, -0.88435166, 0. , 2.33436173, -2.33436173, + 1.4343416 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.47977568, -0.96118486, 0. , 3.44096054, -3.44096054, + 0.48140918, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-1.52692501, 0.24465821, 0. , 0.22841678, -0.22841678, + 1.2822668 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.93803331, -0.04540536, 0. , 1.10737205, -1.10737205, + 0.98343867, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.11596185, -0.45032358, 0. , 2.33436173, -2.33436173, + 0.56628544, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.62544886, -0.81551168, 0. , 3.44096054, -3.44096054, + 0.19006282, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.24465821, 1.52692501, 0. , 0.22841678, -0.22841678, + -1.2822668 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.04540536, 0.93803331, 0. , 1.10737205, -1.10737205, + -0.98343867, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.45032358, 0.11596185, 0. , 2.33436173, -2.33436173, + -0.56628544, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.81551168, -0.62544886, 0. , 3.44096054, -3.44096054, + -0.19006282, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.73813202, 2.50971524, 0. , 0.22841678, -0.22841678, + -3.24784726, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.79915951, 1.69178745, 0. , 1.10737205, -1.10737205, + -2.49094696, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.88435166, 0.54998993, 0. , 2.33436173, -2.33436173, + -1.4343416 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.96118486, -0.47977568, 0. , 3.44096054, -3.44096054, + -0.48140918, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE2_C0_D01': array([[ -2.50971524e+00, -1.66533454e-16, -7.71583216e-01, + 2.61867978e-01, 3.28129845e+00, -2.61867978e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.69178745e+00, 1.11022302e-16, 1.07372055e-01, + 2.00840493e-01, 1.58441540e+00, -2.00840493e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -5.49989934e-01, 2.77555756e-17, 1.33436173e+00, + 1.15648337e-01, -7.84371796e-01, -1.15648337e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.79775683e-01, -4.44089210e-16, 2.44096054e+00, + 3.88151405e-02, -2.92073623e+00, -3.88151405e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.52692501e+00, -1.66533454e-16, -7.71583216e-01, + 1.24465821e+00, 2.29850822e+00, -1.24465821e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -9.38033307e-01, 0.00000000e+00, 1.07372055e-01, + 9.54594639e-01, 8.30661252e-01, -9.54594639e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.15961854e-01, -2.77555756e-17, 1.33436173e+00, + 5.49676417e-01, -1.21839988e+00, -5.49676417e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.25448862e-01, -4.44089210e-16, 2.44096054e+00, + 1.84488320e-01, -3.06640940e+00, -1.84488320e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.44658209e-01, -2.22044605e-16, -7.71583216e-01, + 2.52692501e+00, 1.01624142e+00, -2.52692501e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.54053611e-02, 1.66533454e-16, 1.07372055e-01, + 1.93803331e+00, -1.52777416e-01, -1.93803331e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.50323583e-01, -8.32667268e-17, 1.33436173e+00, + 1.11596185e+00, -1.78468531e+00, -1.11596185e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.15511680e-01, -4.44089210e-16, 2.44096054e+00, + 3.74551138e-01, -3.25647222e+00, -3.74551138e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.38132022e-01, 1.66533454e-16, -7.71583216e-01, + 3.50971524e+00, 3.34511938e-02, -3.50971524e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.99159507e-01, 1.94289029e-16, 1.07372055e-01, + 2.69178745e+00, -9.06531562e-01, -2.69178745e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.84351663e-01, 2.77555756e-17, 1.33436173e+00, + 1.54998993e+00, -2.21871339e+00, -1.54998993e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.61184859e-01, -4.44089210e-16, 2.44096054e+00, + 5.20224317e-01, -3.40214540e+00, -5.20224317e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.66233382, -0.05689514, -0.05058242, 0.01495376, + 0.20041947, 0.22977051, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.2327681 , -0.04516801, -0.12355891, 0.05560129, + 0.74520255, 0.13515498, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08718888, -0.02724027, 0.09756515, 0.06749126, + 0.9045593 , 0.04481344, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.09622691, -0.00951546, 0.61978605, 0.03339034, + 0.44751784, 0.00504814, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.1664375 , -0.1175178 , -0.05058242, 0.07107521, + 0.14429802, 0.78628949, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.01501169, -0.12474229, -0.12355891, 0.26427286, + 0.53653098, 0.46250905, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12331911, -0.09965108, 0.09756515, 0.3207859 , + 0.65126466, 0.15335448, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07610172, -0.04186759, 0.61978605, 0.15870426, + 0.32220392, 0.01727508, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.1175178 , 0.1664375 , -0.05058242, 0.14429802, + 0.07107521, 0.78628949, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12474229, -0.01501169, -0.12355891, 0.53653098, + 0.26427286, 0.46250905, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.09965108, -0.12331911, 0.09756515, 0.65126466, + 0.3207859 , 0.15335448, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04186759, -0.07610172, 0.61978605, 0.32220392, + 0.15870426, 0.01727508, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.05689514, 0.66233382, -0.05058242, 0.20041947, + 0.01495376, 0.22977051, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04516801, 0.2327681 , -0.12355891, 0.74520255, + 0.05560129, 0.13515498, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02724027, -0.08718888, 0.09756515, 0.9045593 , + 0.06749126, 0.04481344, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.00951546, -0.09622691, 0.61978605, 0.44751784, + 0.03339034, 0.00504814, 0. , 0. , 0. ]]), 'FE2_C0': array([[ 0.66233382, -0.05689514, -0.05058242, 0.01495376, 0.20041947, + 0.22977051, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.2327681 , -0.04516801, -0.12355891, 0.05560129, 0.74520255, + 0.13515498, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.08718888, -0.02724027, 0.09756515, 0.06749126, 0.9045593 , + 0.04481344, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.09622691, -0.00951546, 0.61978605, 0.03339034, 0.44751784, + 0.00504814, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.1664375 , -0.1175178 , -0.05058242, 0.07107521, 0.14429802, + 0.78628949, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.01501169, -0.12474229, -0.12355891, 0.26427286, 0.53653098, + 0.46250905, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12331911, -0.09965108, 0.09756515, 0.3207859 , 0.65126466, + 0.15335448, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.07610172, -0.04186759, 0.61978605, 0.15870426, 0.32220392, + 0.01727508, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.1175178 , 0.1664375 , -0.05058242, 0.14429802, 0.07107521, + 0.78628949, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12474229, -0.01501169, -0.12355891, 0.53653098, 0.26427286, + 0.46250905, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.09965108, -0.12331911, 0.09756515, 0.65126466, 0.3207859 , + 0.15335448, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04186759, -0.07610172, 0.61978605, 0.32220392, 0.15870426, + 0.01727508, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.05689514, 0.66233382, -0.05058242, 0.20041947, 0.01495376, + 0.22977051, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04516801, 0.2327681 , -0.12355891, 0.74520255, 0.05560129, + 0.13515498, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02724027, -0.08718888, 0.09756515, 0.9045593 , 0.06749126, + 0.04481344, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.00951546, -0.09622691, 0.61978605, 0.44751784, 0.03339034, + 0.00504814, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE4': array([[1.0], + [1.0], + [0.99999999999999989], + [1.0], + [1.0], + [0.99999999999999989], + [0.99999999999999989], + [1.0], + [1.0], + [1.0], + [0.99999999999999989], + [1.0], + [1.0], + [0.99999999999999989], + [0.99999999999999989], + [1.0]], dtype=object), 'FE2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.87742881, 0.06546699, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.67294686, 0.05021012, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.38749748, 0.02891208, 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.13005608, 0.00970379, 0.86024014], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.63173125, 0.31116455, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.48450833, 0.23864866, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.27899046, 0.1374191 , 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.09363778, 0.04612208, 0.86024014], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.31116455, 0.63173125, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.23864866, 0.48450833, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.1374191 , 0.27899046, 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.04612208, 0.09363778, 0.86024014], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.06546699, 0.87742881, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.05021012, 0.67294686, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.02891208, 0.38749748, 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.00970379, 0.13005608, 0.86024014]]), 'FE0': array([[0.6623338215556972, -0.056895139802881842, -0.05058241768674708, + 0.014953760384390308, 0.20041946721813891, 0.22977050833140236], + [0.23276809809770654, -0.04516801026556784, -0.12355890523764695, + 0.055601287299908417, 0.74520255045163297, 0.13515497965396686], + [-0.08718888411365161, -0.027240266995992645, 0.09756515313616182, + 0.067491262932790785, 0.90455929553271897, 0.044813439507972466], + [-0.096226911734323323, -0.0095154582353662032, 0.61978604633144241, + 0.033390341735931695, 0.44751783691362235, 0.0050481449886929514], + [0.16643749695900031, -0.11751779509749462, -0.05058241768674708, + 0.07107520646099133, 0.14429802114153806, 0.78628948822271205], + [-0.015011689481987923, -0.12474229414821482, -0.12355890523764693, + 0.26427285664300715, 0.53653098110853414, 0.46250905111630813], + [-0.12331910605251509, -0.099651083772276355, 0.09756515313616182, + 0.32078589759058163, 0.65126466087492807, 0.15335447822311959], + [-0.076101715088665228, -0.041867587396657691, 0.61978604633144241, + 0.15870425710189318, 0.32220392154766098, 0.017275077504326344], + [-0.11751779509749458, 0.16643749695900029, -0.05058241768674708, + 0.14429802114153809, 0.071075206460991261, 0.78628948822271205], + [-0.12474229414821481, -0.015011689481988087, -0.12355890523764695, + 0.53653098110853426, 0.26427285664300726, 0.46250905111630836], + [-0.0996510837722763, -0.12331910605251518, 0.09756515313616182, + 0.65126466087492807, 0.32078589759058174, 0.15335447822311959], + [-0.041867587396657691, -0.076101715088665284, 0.61978604633144241, + 0.32220392154766114, 0.15870425710189295, 0.017275077504326344], + [-0.056895139802881876, 0.6623338215556972, -0.05058241768674708, + 0.20041946721813905, 0.014953760384390294, 0.22977050833140236], + [-0.045168010265567847, 0.23276809809770624, -0.12355890523764693, + 0.74520255045163286, 0.0556012872999085, 0.13515497965396692], + [-0.027240266995992635, -0.087188884113651763, 0.09756515313616182, + 0.90455929553271897, 0.067491262932790869, 0.044813439507972466], + [-0.0095154582353661338, -0.096226911734323434, 0.61978604633144241, + 0.44751783691362274, 0.033390341735931361, 0.0050481449886928959]], dtype=object), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_D01': array([[-2.5097152373218705, -1.6653345369377348e-16, -0.77158321554192932, + 0.2618679782200577, 3.2812984528638003, -0.26186797822005725], + [-1.6917874526020253, 1.1102230246251565e-16, 0.10737205455249504, + 0.20084049284547795, 1.5844153980495301, -0.20084049284547775], + [-0.54998993362677662, 2.7755575615628914e-17, 1.3343617294756669, + 0.11564833689755472, -0.78437179584889039, -0.1156483368975546], + [0.4797756831326625, -4.4408920985006262e-16, 2.4409605426248775, + 0.03881514050778323, -2.9207362257575396, -0.038815140507784007], + [-1.5269250065645008, -1.6653345369377348e-16, -0.77158321554192888, + 1.2446582089774276, 2.2985082221064306, -1.2446582089774285], + [-0.93803330652173278, 0.0, 0.10737205455249532, + 0.95459463892577068, 0.83066125196923757, -0.95459463892577068], + [-0.11596185398603498, -2.7755575615628914e-17, 1.3343617294756669, + 0.54967641653829635, -1.2183998754896317, -0.54967641653829646], + [0.6254488622506863, -4.4408920985006262e-16, 2.4409605426248775, + 0.18448831962580736, -3.0664094048755635, -0.18448831962580781], + [-0.2446582089774276, -2.2204460492503131e-16, -0.77158321554192888, + 2.5269250065645004, 1.0162414245193578, -2.5269250065645021], + [0.04540536107422885, 1.6653345369377348e-16, 0.10737205455249538, + 1.9380333065217321, -0.15277741562672359, -1.9380333065217328], + [0.45032358346170304, -8.3266726846886741e-17, 1.3343617294756669, + 1.1159618539860343, -1.7846853129373699, -1.1159618539860348], + [0.81551168037419208, -4.4408920985006262e-16, 2.4409605426248775, + 0.37455113774931248, -3.2564722229990686, -0.37455113774931359], + [0.7381320217799433, 1.6653345369377348e-16, -0.7715832155419291, + 3.5097152373218696, 0.033451193761987463, -3.5097152373218719], + [0.79915950715452166, 1.9428902930940239e-16, 0.1073720545524951, + 2.6917874526020245, -0.90653156170701621, -2.6917874526020249], + [0.8843516631024444, 2.7755575615628914e-17, 1.3343617294756669, + 1.5499899336267755, -2.2187133925781106, -1.5499899336267764], + [0.9611848594922161, -4.4408920985006262e-16, 2.4409605426248775, + 0.52022431686733683, -3.4021454021170929, -0.52022431686733772]], dtype=object), 'FE3_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.50971524e+00, -1.66533454e-16, -7.71583216e-01, + 2.61867978e-01, 3.28129845e+00, -2.61867978e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.69178745e+00, 1.11022302e-16, 1.07372055e-01, + 2.00840493e-01, 1.58441540e+00, -2.00840493e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -5.49989934e-01, 2.77555756e-17, 1.33436173e+00, + 1.15648337e-01, -7.84371796e-01, -1.15648337e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.79775683e-01, -4.44089210e-16, 2.44096054e+00, + 3.88151405e-02, -2.92073623e+00, -3.88151405e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.52692501e+00, -1.66533454e-16, -7.71583216e-01, + 1.24465821e+00, 2.29850822e+00, -1.24465821e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -9.38033307e-01, 0.00000000e+00, 1.07372055e-01, + 9.54594639e-01, 8.30661252e-01, -9.54594639e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.15961854e-01, -2.77555756e-17, 1.33436173e+00, + 5.49676417e-01, -1.21839988e+00, -5.49676417e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.25448862e-01, -4.44089210e-16, 2.44096054e+00, + 1.84488320e-01, -3.06640940e+00, -1.84488320e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.44658209e-01, -2.22044605e-16, -7.71583216e-01, + 2.52692501e+00, 1.01624142e+00, -2.52692501e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.54053611e-02, 1.66533454e-16, 1.07372055e-01, + 1.93803331e+00, -1.52777416e-01, -1.93803331e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.50323583e-01, -8.32667268e-17, 1.33436173e+00, + 1.11596185e+00, -1.78468531e+00, -1.11596185e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.15511680e-01, -4.44089210e-16, 2.44096054e+00, + 3.74551138e-01, -3.25647222e+00, -3.74551138e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.38132022e-01, 1.66533454e-16, -7.71583216e-01, + 3.50971524e+00, 3.34511938e-02, -3.50971524e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.99159507e-01, 1.94289029e-16, 1.07372055e-01, + 2.69178745e+00, -9.06531562e-01, -2.69178745e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.84351663e-01, 2.77555756e-17, 1.33436173e+00, + 1.54998993e+00, -2.21871339e+00, -1.54998993e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.61184859e-01, -4.44089210e-16, 2.44096054e+00, + 5.20224317e-01, -3.40214540e+00, -5.20224317e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00]]), 'FE2_C2_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00]]), 'FE3_C2_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00]]), 'FE3_C0_D01': array([[ -2.50971524e+00, -1.66533454e-16, -7.71583216e-01, + 2.61867978e-01, 3.28129845e+00, -2.61867978e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.69178745e+00, 1.11022302e-16, 1.07372055e-01, + 2.00840493e-01, 1.58441540e+00, -2.00840493e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -5.49989934e-01, 2.77555756e-17, 1.33436173e+00, + 1.15648337e-01, -7.84371796e-01, -1.15648337e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.79775683e-01, -4.44089210e-16, 2.44096054e+00, + 3.88151405e-02, -2.92073623e+00, -3.88151405e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.52692501e+00, -1.66533454e-16, -7.71583216e-01, + 1.24465821e+00, 2.29850822e+00, -1.24465821e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -9.38033307e-01, 0.00000000e+00, 1.07372055e-01, + 9.54594639e-01, 8.30661252e-01, -9.54594639e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.15961854e-01, -2.77555756e-17, 1.33436173e+00, + 5.49676417e-01, -1.21839988e+00, -5.49676417e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.25448862e-01, -4.44089210e-16, 2.44096054e+00, + 1.84488320e-01, -3.06640940e+00, -1.84488320e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.44658209e-01, -2.22044605e-16, -7.71583216e-01, + 2.52692501e+00, 1.01624142e+00, -2.52692501e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.54053611e-02, 1.66533454e-16, 1.07372055e-01, + 1.93803331e+00, -1.52777416e-01, -1.93803331e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.50323583e-01, -8.32667268e-17, 1.33436173e+00, + 1.11596185e+00, -1.78468531e+00, -1.11596185e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.15511680e-01, -4.44089210e-16, 2.44096054e+00, + 3.74551138e-01, -3.25647222e+00, -3.74551138e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.38132022e-01, 1.66533454e-16, -7.71583216e-01, + 3.50971524e+00, 3.34511938e-02, -3.50971524e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.99159507e-01, 1.94289029e-16, 1.07372055e-01, + 2.69178745e+00, -9.06531562e-01, -2.69178745e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.84351663e-01, 2.77555756e-17, 1.33436173e+00, + 1.54998993e+00, -2.21871339e+00, -1.54998993e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.61184859e-01, -4.44089210e-16, 2.44096054e+00, + 5.20224317e-01, -3.40214540e+00, -5.20224317e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C0_D10': array([[-2.50971524, -0.73813202, 0. , 0.22841678, -0.22841678, + 3.24784726, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-1.69178745, -0.79915951, 0. , 1.10737205, -1.10737205, + 2.49094696, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.54998993, -0.88435166, 0. , 2.33436173, -2.33436173, + 1.4343416 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.47977568, -0.96118486, 0. , 3.44096054, -3.44096054, + 0.48140918, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-1.52692501, 0.24465821, 0. , 0.22841678, -0.22841678, + 1.2822668 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.93803331, -0.04540536, 0. , 1.10737205, -1.10737205, + 0.98343867, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.11596185, -0.45032358, 0. , 2.33436173, -2.33436173, + 0.56628544, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.62544886, -0.81551168, 0. , 3.44096054, -3.44096054, + 0.19006282, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.24465821, 1.52692501, 0. , 0.22841678, -0.22841678, + -1.2822668 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.04540536, 0.93803331, 0. , 1.10737205, -1.10737205, + -0.98343867, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.45032358, 0.11596185, 0. , 2.33436173, -2.33436173, + -0.56628544, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.81551168, -0.62544886, 0. , 3.44096054, -3.44096054, + -0.19006282, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.73813202, 2.50971524, 0. , 0.22841678, -0.22841678, + -3.24784726, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.79915951, 1.69178745, 0. , 1.10737205, -1.10737205, + -2.49094696, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.88435166, 0.54998993, 0. , 2.33436173, -2.33436173, + -1.4343416 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.96118486, -0.47977568, 0. , 3.44096054, -3.44096054, + -0.48140918, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE2_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.]]), 'FE3_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.]]), 'FE1_C0': array([[ 0.87742881, 0.06546699, 0.0571042 , 0. , 0. , + 0. ], + [ 0.67294686, 0.05021012, 0.27684301, 0. , 0. , + 0. ], + [ 0.38749748, 0.02891208, 0.58359043, 0. , 0. , + 0. ], + [ 0.13005608, 0.00970379, 0.86024014, 0. , 0. , + 0. ], + [ 0.63173125, 0.31116455, 0.0571042 , 0. , 0. , + 0. ], + [ 0.48450833, 0.23864866, 0.27684301, 0. , 0. , + 0. ], + [ 0.27899046, 0.1374191 , 0.58359043, 0. , 0. , + 0. ], + [ 0.09363778, 0.04612208, 0.86024014, 0. , 0. , + 0. ], + [ 0.31116455, 0.63173125, 0.0571042 , 0. , 0. , + 0. ], + [ 0.23864866, 0.48450833, 0.27684301, 0. , 0. , + 0. ], + [ 0.1374191 , 0.27899046, 0.58359043, 0. , 0. , + 0. ], + [ 0.04612208, 0.09363778, 0.86024014, 0. , 0. , + 0. ], + [ 0.06546699, 0.87742881, 0.0571042 , 0. , 0. , + 0. ], + [ 0.05021012, 0.67294686, 0.27684301, 0. , 0. , + 0. ], + [ 0.02891208, 0.38749748, 0.58359043, 0. , 0. , + 0. ], + [ 0.00970379, 0.13005608, 0.86024014, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.87742881, 0.06546699, + 0.0571042 ], + [ 0. , 0. , 0. , 0.67294686, 0.05021012, + 0.27684301], + [ 0. , 0. , 0. , 0.38749748, 0.02891208, + 0.58359043], + [ 0. , 0. , 0. , 0.13005608, 0.00970379, + 0.86024014], + [ 0. , 0. , 0. , 0.63173125, 0.31116455, + 0.0571042 ], + [ 0. , 0. , 0. , 0.48450833, 0.23864866, + 0.27684301], + [ 0. , 0. , 0. , 0.27899046, 0.1374191 , + 0.58359043], + [ 0. , 0. , 0. , 0.09363778, 0.04612208, + 0.86024014], + [ 0. , 0. , 0. , 0.31116455, 0.63173125, + 0.0571042 ], + [ 0. , 0. , 0. , 0.23864866, 0.48450833, + 0.27684301], + [ 0. , 0. , 0. , 0.1374191 , 0.27899046, + 0.58359043], + [ 0. , 0. , 0. , 0.04612208, 0.09363778, + 0.86024014], + [ 0. , 0. , 0. , 0.06546699, 0.87742881, + 0.0571042 ], + [ 0. , 0. , 0. , 0.05021012, 0.67294686, + 0.27684301], + [ 0. , 0. , 0. , 0.02891208, 0.38749748, + 0.58359043], + [ 0. , 0. , 0. , 0.00970379, 0.13005608, + 0.86024014]]), 'FE3_C0': array([[ 0.66233382, -0.05689514, -0.05058242, 0.01495376, 0.20041947, + 0.22977051, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.2327681 , -0.04516801, -0.12355891, 0.05560129, 0.74520255, + 0.13515498, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.08718888, -0.02724027, 0.09756515, 0.06749126, 0.9045593 , + 0.04481344, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.09622691, -0.00951546, 0.61978605, 0.03339034, 0.44751784, + 0.00504814, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.1664375 , -0.1175178 , -0.05058242, 0.07107521, 0.14429802, + 0.78628949, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.01501169, -0.12474229, -0.12355891, 0.26427286, 0.53653098, + 0.46250905, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12331911, -0.09965108, 0.09756515, 0.3207859 , 0.65126466, + 0.15335448, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.07610172, -0.04186759, 0.61978605, 0.15870426, 0.32220392, + 0.01727508, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.1175178 , 0.1664375 , -0.05058242, 0.14429802, 0.07107521, + 0.78628949, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12474229, -0.01501169, -0.12355891, 0.53653098, 0.26427286, + 0.46250905, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.09965108, -0.12331911, 0.09756515, 0.65126466, 0.3207859 , + 0.15335448, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04186759, -0.07610172, 0.61978605, 0.32220392, 0.15870426, + 0.01727508, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.05689514, 0.66233382, -0.05058242, 0.20041947, 0.01495376, + 0.22977051, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04516801, 0.2327681 , -0.12355891, 0.74520255, 0.05560129, + 0.13515498, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02724027, -0.08718888, 0.09756515, 0.9045593 , 0.06749126, + 0.04481344, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.00951546, -0.09622691, 0.61978605, 0.44751784, 0.03339034, + 0.00504814, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE3_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.66233382, -0.05689514, -0.05058242, 0.01495376, + 0.20041947, 0.22977051, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.2327681 , -0.04516801, -0.12355891, 0.05560129, + 0.74520255, 0.13515498, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08718888, -0.02724027, 0.09756515, 0.06749126, + 0.9045593 , 0.04481344, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.09622691, -0.00951546, 0.61978605, 0.03339034, + 0.44751784, 0.00504814, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.1664375 , -0.1175178 , -0.05058242, 0.07107521, + 0.14429802, 0.78628949, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.01501169, -0.12474229, -0.12355891, 0.26427286, + 0.53653098, 0.46250905, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12331911, -0.09965108, 0.09756515, 0.3207859 , + 0.65126466, 0.15335448, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07610172, -0.04186759, 0.61978605, 0.15870426, + 0.32220392, 0.01727508, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.1175178 , 0.1664375 , -0.05058242, 0.14429802, + 0.07107521, 0.78628949, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12474229, -0.01501169, -0.12355891, 0.53653098, + 0.26427286, 0.46250905, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.09965108, -0.12331911, 0.09756515, 0.65126466, + 0.3207859 , 0.15335448, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04186759, -0.07610172, 0.61978605, 0.32220392, + 0.15870426, 0.01727508, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.05689514, 0.66233382, -0.05058242, 0.20041947, + 0.01495376, 0.22977051, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04516801, 0.2327681 , -0.12355891, 0.74520255, + 0.05560129, 0.13515498, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02724027, -0.08718888, 0.09756515, 0.9045593 , + 0.06749126, 0.04481344, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.00951546, -0.09622691, 0.61978605, 0.44751784, + 0.03339034, 0.00504814, 0. , 0. , 0. ]]), 'FE3_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.87742881, 0.06546699, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.67294686, 0.05021012, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.38749748, 0.02891208, 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.13005608, 0.00970379, 0.86024014], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.63173125, 0.31116455, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.48450833, 0.23864866, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.27899046, 0.1374191 , 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.09363778, 0.04612208, 0.86024014], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.31116455, 0.63173125, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.23864866, 0.48450833, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.1374191 , 0.27899046, 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.04612208, 0.09363778, 0.86024014], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.06546699, 0.87742881, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.05021012, 0.67294686, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.02891208, 0.38749748, 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.00970379, 0.13005608, 0.86024014]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + tables: {'FE0_D10': array([[-2.5097152373218714, -0.73813202177994264, 0.0, + 0.22841678445806923, -0.22841678445806923, 3.2478472591018139], + [-1.6917874526020258, -0.79915950715452166, 0.0, 1.1073720545524943, + -1.1073720545524943, 2.4909469597565472], + [-0.54998993362677651, -0.88435166310244473, 0.0, 2.334361729475666, + -2.334361729475666, 1.4343415967292208], + [0.47977568313266317, -0.9611848594922161, 0.0, 3.4409605426248748, + -3.4409605426248748, 0.48140917635955227], + [-1.5269250065645006, 0.24465820897742863, 0.0, 0.22841678445806934, + -0.22841678445806934, 1.2822667975870721], + [-0.93803330652173278, -0.045405361074228628, 0.0, + 1.1073720545524943, -1.1073720545524943, 0.98343866759596121], + [-0.11596185398603487, -0.45032358346170315, 0.0, 2.334361729475666, + -2.334361729475666, 0.56628543744773763], + [0.62544886225068697, -0.8155116803741923, 0.0, 3.4409605426248748, + -3.4409605426248748, 0.19006281812350467], + [-0.24465820897742774, 1.5269250065645017, 0.0, 0.22841678445806934, + -0.22841678445806934, -1.2822667975870738], + [0.045405361074228601, 0.93803330652173311, 0.0, 1.1073720545524945, + -1.1073720545524945, -0.98343866759596188], + [0.45032358346170309, 0.11596185398603487, 0.0, 2.334361729475666, + -2.334361729475666, -0.5662854374477384], + [0.81551168037419286, -0.62544886225068641, 0.0, 3.4409605426248748, + -3.4409605426248748, -0.1900628181235072], + [0.7381320217799423, 2.5097152373218714, 0.0, 0.22841678445806923, + -0.22841678445806923, -3.2478472591018139], + [0.799159507154521, 1.6917874526020251, 0.0, 1.1073720545524943, + -1.1073720545524943, -2.4909469597565463], + [0.88435166310244473, 0.54998993362677651, 0.0, 2.334361729475666, + -2.334361729475666, -1.4343415967292217], + [0.96118485949221688, -0.47977568313266239, 0.0, 3.4409605426248748, + -3.4409605426248748, -0.48140917635955516]], dtype=object), 'FE2_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.50971524e+00, -1.66533454e-16, -7.71583216e-01, + 2.61867978e-01, 3.28129845e+00, -2.61867978e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.69178745e+00, 1.11022302e-16, 1.07372055e-01, + 2.00840493e-01, 1.58441540e+00, -2.00840493e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -5.49989934e-01, 2.77555756e-17, 1.33436173e+00, + 1.15648337e-01, -7.84371796e-01, -1.15648337e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.79775683e-01, -4.44089210e-16, 2.44096054e+00, + 3.88151405e-02, -2.92073623e+00, -3.88151405e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.52692501e+00, -1.66533454e-16, -7.71583216e-01, + 1.24465821e+00, 2.29850822e+00, -1.24465821e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -9.38033307e-01, 0.00000000e+00, 1.07372055e-01, + 9.54594639e-01, 8.30661252e-01, -9.54594639e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.15961854e-01, -2.77555756e-17, 1.33436173e+00, + 5.49676417e-01, -1.21839988e+00, -5.49676417e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.25448862e-01, -4.44089210e-16, 2.44096054e+00, + 1.84488320e-01, -3.06640940e+00, -1.84488320e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.44658209e-01, -2.22044605e-16, -7.71583216e-01, + 2.52692501e+00, 1.01624142e+00, -2.52692501e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.54053611e-02, 1.66533454e-16, 1.07372055e-01, + 1.93803331e+00, -1.52777416e-01, -1.93803331e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.50323583e-01, -8.32667268e-17, 1.33436173e+00, + 1.11596185e+00, -1.78468531e+00, -1.11596185e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.15511680e-01, -4.44089210e-16, 2.44096054e+00, + 3.74551138e-01, -3.25647222e+00, -3.74551138e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.38132022e-01, 1.66533454e-16, -7.71583216e-01, + 3.50971524e+00, 3.34511938e-02, -3.50971524e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.99159507e-01, 1.94289029e-16, 1.07372055e-01, + 2.69178745e+00, -9.06531562e-01, -2.69178745e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.84351663e-01, 2.77555756e-17, 1.33436173e+00, + 1.54998993e+00, -2.21871339e+00, -1.54998993e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 9.61184859e-01, -4.44089210e-16, 2.44096054e+00, + 5.20224317e-01, -3.40214540e+00, -5.20224317e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C1_D10': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -2.50971524, -0.73813202, 0. , 0.22841678, + -0.22841678, 3.24784726, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -1.69178745, -0.79915951, 0. , 1.10737205, + -1.10737205, 2.49094696, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.54998993, -0.88435166, 0. , 2.33436173, + -2.33436173, 1.4343416 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.47977568, -0.96118486, 0. , 3.44096054, + -3.44096054, 0.48140918, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -1.52692501, 0.24465821, 0. , 0.22841678, + -0.22841678, 1.2822668 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.93803331, -0.04540536, 0. , 1.10737205, + -1.10737205, 0.98343867, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11596185, -0.45032358, 0. , 2.33436173, + -2.33436173, 0.56628544, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.62544886, -0.81551168, 0. , 3.44096054, + -3.44096054, 0.19006282, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.24465821, 1.52692501, 0. , 0.22841678, + -0.22841678, -1.2822668 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.04540536, 0.93803331, 0. , 1.10737205, + -1.10737205, -0.98343867, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.45032358, 0.11596185, 0. , 2.33436173, + -2.33436173, -0.56628544, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.81551168, -0.62544886, 0. , 3.44096054, + -3.44096054, -0.19006282, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.73813202, 2.50971524, 0. , 0.22841678, + -0.22841678, -3.24784726, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.79915951, 1.69178745, 0. , 1.10737205, + -1.10737205, -2.49094696, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.88435166, 0.54998993, 0. , 2.33436173, + -2.33436173, -1.4343416 , 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.96118486, -0.47977568, 0. , 3.44096054, + -3.44096054, -0.48140918, 0. , 0. , 0. ]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_C0_D01': array([[ -2.50971524e+00, -1.66533454e-16, -7.71583216e-01, + 2.61867978e-01, 3.28129845e+00, -2.61867978e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.69178745e+00, 1.11022302e-16, 1.07372055e-01, + 2.00840493e-01, 1.58441540e+00, -2.00840493e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -5.49989934e-01, 2.77555756e-17, 1.33436173e+00, + 1.15648337e-01, -7.84371796e-01, -1.15648337e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.79775683e-01, -4.44089210e-16, 2.44096054e+00, + 3.88151405e-02, -2.92073623e+00, -3.88151405e-02, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.52692501e+00, -1.66533454e-16, -7.71583216e-01, + 1.24465821e+00, 2.29850822e+00, -1.24465821e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -9.38033307e-01, 0.00000000e+00, 1.07372055e-01, + 9.54594639e-01, 8.30661252e-01, -9.54594639e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.15961854e-01, -2.77555756e-17, 1.33436173e+00, + 5.49676417e-01, -1.21839988e+00, -5.49676417e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.25448862e-01, -4.44089210e-16, 2.44096054e+00, + 1.84488320e-01, -3.06640940e+00, -1.84488320e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.44658209e-01, -2.22044605e-16, -7.71583216e-01, + 2.52692501e+00, 1.01624142e+00, -2.52692501e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.54053611e-02, 1.66533454e-16, 1.07372055e-01, + 1.93803331e+00, -1.52777416e-01, -1.93803331e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.50323583e-01, -8.32667268e-17, 1.33436173e+00, + 1.11596185e+00, -1.78468531e+00, -1.11596185e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.15511680e-01, -4.44089210e-16, 2.44096054e+00, + 3.74551138e-01, -3.25647222e+00, -3.74551138e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.38132022e-01, 1.66533454e-16, -7.71583216e-01, + 3.50971524e+00, 3.34511938e-02, -3.50971524e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.99159507e-01, 1.94289029e-16, 1.07372055e-01, + 2.69178745e+00, -9.06531562e-01, -2.69178745e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.84351663e-01, 2.77555756e-17, 1.33436173e+00, + 1.54998993e+00, -2.21871339e+00, -1.54998993e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.61184859e-01, -4.44089210e-16, 2.44096054e+00, + 5.20224317e-01, -3.40214540e+00, -5.20224317e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0.66233382, -0.05689514, -0.05058242, 0.01495376, + 0.20041947, 0.22977051, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.2327681 , -0.04516801, -0.12355891, 0.05560129, + 0.74520255, 0.13515498, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08718888, -0.02724027, 0.09756515, 0.06749126, + 0.9045593 , 0.04481344, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.09622691, -0.00951546, 0.61978605, 0.03339034, + 0.44751784, 0.00504814, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.1664375 , -0.1175178 , -0.05058242, 0.07107521, + 0.14429802, 0.78628949, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.01501169, -0.12474229, -0.12355891, 0.26427286, + 0.53653098, 0.46250905, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12331911, -0.09965108, 0.09756515, 0.3207859 , + 0.65126466, 0.15335448, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.07610172, -0.04186759, 0.61978605, 0.15870426, + 0.32220392, 0.01727508, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.1175178 , 0.1664375 , -0.05058242, 0.14429802, + 0.07107521, 0.78628949, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.12474229, -0.01501169, -0.12355891, 0.53653098, + 0.26427286, 0.46250905, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.09965108, -0.12331911, 0.09756515, 0.65126466, + 0.3207859 , 0.15335448, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04186759, -0.07610172, 0.61978605, 0.32220392, + 0.15870426, 0.01727508, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.05689514, 0.66233382, -0.05058242, 0.20041947, + 0.01495376, 0.22977051, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.04516801, 0.2327681 , -0.12355891, 0.74520255, + 0.05560129, 0.13515498, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02724027, -0.08718888, 0.09756515, 0.9045593 , + 0.06749126, 0.04481344, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.00951546, -0.09622691, 0.61978605, 0.44751784, + 0.03339034, 0.00504814, 0. , 0. , 0. ]]), 'FE2_C0': array([[ 0.66233382, -0.05689514, -0.05058242, 0.01495376, 0.20041947, + 0.22977051, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.2327681 , -0.04516801, -0.12355891, 0.05560129, 0.74520255, + 0.13515498, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.08718888, -0.02724027, 0.09756515, 0.06749126, 0.9045593 , + 0.04481344, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.09622691, -0.00951546, 0.61978605, 0.03339034, 0.44751784, + 0.00504814, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.1664375 , -0.1175178 , -0.05058242, 0.07107521, 0.14429802, + 0.78628949, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.01501169, -0.12474229, -0.12355891, 0.26427286, 0.53653098, + 0.46250905, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12331911, -0.09965108, 0.09756515, 0.3207859 , 0.65126466, + 0.15335448, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.07610172, -0.04186759, 0.61978605, 0.15870426, 0.32220392, + 0.01727508, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.1175178 , 0.1664375 , -0.05058242, 0.14429802, 0.07107521, + 0.78628949, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.12474229, -0.01501169, -0.12355891, 0.53653098, 0.26427286, + 0.46250905, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.09965108, -0.12331911, 0.09756515, 0.65126466, 0.3207859 , + 0.15335448, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04186759, -0.07610172, 0.61978605, 0.32220392, 0.15870426, + 0.01727508, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.05689514, 0.66233382, -0.05058242, 0.20041947, 0.01495376, + 0.22977051, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.04516801, 0.2327681 , -0.12355891, 0.74520255, 0.05560129, + 0.13515498, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02724027, -0.08718888, 0.09756515, 0.9045593 , 0.06749126, + 0.04481344, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.00951546, -0.09622691, 0.61978605, 0.44751784, 0.03339034, + 0.00504814, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE4': array([[1.0], + [1.0], + [0.99999999999999989], + [1.0], + [1.0], + [0.99999999999999989], + [0.99999999999999989], + [1.0], + [1.0], + [1.0], + [0.99999999999999989], + [1.0], + [1.0], + [0.99999999999999989], + [0.99999999999999989], + [1.0]], dtype=object), 'FE2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.87742881, 0.06546699, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.67294686, 0.05021012, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.38749748, 0.02891208, 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.13005608, 0.00970379, 0.86024014], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.63173125, 0.31116455, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.48450833, 0.23864866, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.27899046, 0.1374191 , 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.09363778, 0.04612208, 0.86024014], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.31116455, 0.63173125, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.23864866, 0.48450833, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.1374191 , 0.27899046, 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.04612208, 0.09363778, 0.86024014], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.06546699, 0.87742881, 0.0571042 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.05021012, 0.67294686, 0.27684301], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.02891208, 0.38749748, 0.58359043], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.00970379, 0.13005608, 0.86024014]]), 'FE0': array([[0.6623338215556972, -0.056895139802881842, -0.05058241768674708, + 0.014953760384390308, 0.20041946721813891, 0.22977050833140236], + [0.23276809809770654, -0.04516801026556784, -0.12355890523764695, + 0.055601287299908417, 0.74520255045163297, 0.13515497965396686], + [-0.08718888411365161, -0.027240266995992645, 0.09756515313616182, + 0.067491262932790785, 0.90455929553271897, 0.044813439507972466], + [-0.096226911734323323, -0.0095154582353662032, 0.61978604633144241, + 0.033390341735931695, 0.44751783691362235, 0.0050481449886929514], + [0.16643749695900031, -0.11751779509749462, -0.05058241768674708, + 0.07107520646099133, 0.14429802114153806, 0.78628948822271205], + [-0.015011689481987923, -0.12474229414821482, -0.12355890523764693, + 0.26427285664300715, 0.53653098110853414, 0.46250905111630813], + [-0.12331910605251509, -0.099651083772276355, 0.09756515313616182, + 0.32078589759058163, 0.65126466087492807, 0.15335447822311959], + [-0.076101715088665228, -0.041867587396657691, 0.61978604633144241, + 0.15870425710189318, 0.32220392154766098, 0.017275077504326344], + [-0.11751779509749458, 0.16643749695900029, -0.05058241768674708, + 0.14429802114153809, 0.071075206460991261, 0.78628948822271205], + [-0.12474229414821481, -0.015011689481988087, -0.12355890523764695, + 0.53653098110853426, 0.26427285664300726, 0.46250905111630836], + [-0.0996510837722763, -0.12331910605251518, 0.09756515313616182, + 0.65126466087492807, 0.32078589759058174, 0.15335447822311959], + [-0.041867587396657691, -0.076101715088665284, 0.61978604633144241, + 0.32220392154766114, 0.15870425710189295, 0.017275077504326344], + [-0.056895139802881876, 0.6623338215556972, -0.05058241768674708, + 0.20041946721813905, 0.014953760384390294, 0.22977050833140236], + [-0.045168010265567847, 0.23276809809770624, -0.12355890523764693, + 0.74520255045163286, 0.0556012872999085, 0.13515497965396692], + [-0.027240266995992635, -0.087188884113651763, 0.09756515313616182, + 0.90455929553271897, 0.067491262932790869, 0.044813439507972466], + [-0.0095154582353661338, -0.096226911734323434, 0.61978604633144241, + 0.44751783691362274, 0.033390341735931361, 0.0050481449886928959]], dtype=object), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_D01': array([[-2.5097152373218705, -1.6653345369377348e-16, -0.77158321554192932, + 0.2618679782200577, 3.2812984528638003, -0.26186797822005725], + [-1.6917874526020253, 1.1102230246251565e-16, 0.10737205455249504, + 0.20084049284547795, 1.5844153980495301, -0.20084049284547775], + [-0.54998993362677662, 2.7755575615628914e-17, 1.3343617294756669, + 0.11564833689755472, -0.78437179584889039, -0.1156483368975546], + [0.4797756831326625, -4.4408920985006262e-16, 2.4409605426248775, + 0.03881514050778323, -2.9207362257575396, -0.038815140507784007], + [-1.5269250065645008, -1.6653345369377348e-16, -0.77158321554192888, + 1.2446582089774276, 2.2985082221064306, -1.2446582089774285], + [-0.93803330652173278, 0.0, 0.10737205455249532, + 0.95459463892577068, 0.83066125196923757, -0.95459463892577068], + [-0.11596185398603498, -2.7755575615628914e-17, 1.3343617294756669, + 0.54967641653829635, -1.2183998754896317, -0.54967641653829646], + [0.6254488622506863, -4.4408920985006262e-16, 2.4409605426248775, + 0.18448831962580736, -3.0664094048755635, -0.18448831962580781], + [-0.2446582089774276, -2.2204460492503131e-16, -0.77158321554192888, + 2.5269250065645004, 1.0162414245193578, -2.5269250065645021], + [0.04540536107422885, 1.6653345369377348e-16, 0.10737205455249538, + 1.9380333065217321, -0.15277741562672359, -1.9380333065217328], + [0.45032358346170304, -8.3266726846886741e-17, 1.3343617294756669, + 1.1159618539860343, -1.7846853129373699, -1.1159618539860348], + [0.81551168037419208, -4.4408920985006262e-16, 2.4409605426248775, + 0.37455113774931248, -3.2564722229990686, -0.37455113774931359], + [0.7381320217799433, 1.6653345369377348e-16, -0.7715832155419291, + 3.5097152373218696, 0.033451193761987463, -3.5097152373218719], + [0.79915950715452166, 1.9428902930940239e-16, 0.1073720545524951, + 2.6917874526020245, -0.90653156170701621, -2.6917874526020249], + [0.8843516631024444, 2.7755575615628914e-17, 1.3343617294756669, + 1.5499899336267755, -2.2187133925781106, -1.5499899336267764], + [0.9611848594922161, -4.4408920985006262e-16, 2.4409605426248775, + 0.52022431686733683, -3.4021454021170929, -0.52022431686733772]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00]]), 'FE2_C2_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00]]), 'FE2_C0_D10': array([[-2.50971524, -0.73813202, 0. , 0.22841678, -0.22841678, + 3.24784726, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-1.69178745, -0.79915951, 0. , 1.10737205, -1.10737205, + 2.49094696, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.54998993, -0.88435166, 0. , 2.33436173, -2.33436173, + 1.4343416 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.47977568, -0.96118486, 0. , 3.44096054, -3.44096054, + 0.48140918, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-1.52692501, 0.24465821, 0. , 0.22841678, -0.22841678, + 1.2822668 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.93803331, -0.04540536, 0. , 1.10737205, -1.10737205, + 0.98343867, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.11596185, -0.45032358, 0. , 2.33436173, -2.33436173, + 0.56628544, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.62544886, -0.81551168, 0. , 3.44096054, -3.44096054, + 0.19006282, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.24465821, 1.52692501, 0. , 0.22841678, -0.22841678, + -1.2822668 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.04540536, 0.93803331, 0. , 1.10737205, -1.10737205, + -0.98343867, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.45032358, 0.11596185, 0. , 2.33436173, -2.33436173, + -0.56628544, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.81551168, -0.62544886, 0. , 3.44096054, -3.44096054, + -0.19006282, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.73813202, 2.50971524, 0. , 0.22841678, -0.22841678, + -3.24784726, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.79915951, 1.69178745, 0. , 1.10737205, -1.10737205, + -2.49094696, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.88435166, 0.54998993, 0. , 2.33436173, -2.33436173, + -1.4343416 , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.96118486, -0.47977568, 0. , 3.44096054, -3.44096054, + -0.48140918, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE2_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.]]), 'FE1_C0': array([[ 0.87742881, 0.06546699, 0.0571042 , 0. , 0. , + 0. ], + [ 0.67294686, 0.05021012, 0.27684301, 0. , 0. , + 0. ], + [ 0.38749748, 0.02891208, 0.58359043, 0. , 0. , + 0. ], + [ 0.13005608, 0.00970379, 0.86024014, 0. , 0. , + 0. ], + [ 0.63173125, 0.31116455, 0.0571042 , 0. , 0. , + 0. ], + [ 0.48450833, 0.23864866, 0.27684301, 0. , 0. , + 0. ], + [ 0.27899046, 0.1374191 , 0.58359043, 0. , 0. , + 0. ], + [ 0.09363778, 0.04612208, 0.86024014, 0. , 0. , + 0. ], + [ 0.31116455, 0.63173125, 0.0571042 , 0. , 0. , + 0. ], + [ 0.23864866, 0.48450833, 0.27684301, 0. , 0. , + 0. ], + [ 0.1374191 , 0.27899046, 0.58359043, 0. , 0. , + 0. ], + [ 0.04612208, 0.09363778, 0.86024014, 0. , 0. , + 0. ], + [ 0.06546699, 0.87742881, 0.0571042 , 0. , 0. , + 0. ], + [ 0.05021012, 0.67294686, 0.27684301, 0. , 0. , + 0. ], + [ 0.02891208, 0.38749748, 0.58359043, 0. , 0. , + 0. ], + [ 0.00970379, 0.13005608, 0.86024014, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.87742881, 0.06546699, + 0.0571042 ], + [ 0. , 0. , 0. , 0.67294686, 0.05021012, + 0.27684301], + [ 0. , 0. , 0. , 0.38749748, 0.02891208, + 0.58359043], + [ 0. , 0. , 0. , 0.13005608, 0.00970379, + 0.86024014], + [ 0. , 0. , 0. , 0.63173125, 0.31116455, + 0.0571042 ], + [ 0. , 0. , 0. , 0.48450833, 0.23864866, + 0.27684301], + [ 0. , 0. , 0. , 0.27899046, 0.1374191 , + 0.58359043], + [ 0. , 0. , 0. , 0.09363778, 0.04612208, + 0.86024014], + [ 0. , 0. , 0. , 0.31116455, 0.63173125, + 0.0571042 ], + [ 0. , 0. , 0. , 0.23864866, 0.48450833, + 0.27684301], + [ 0. , 0. , 0. , 0.1374191 , 0.27899046, + 0.58359043], + [ 0. , 0. , 0. , 0.04612208, 0.09363778, + 0.86024014], + [ 0. , 0. , 0. , 0.06546699, 0.87742881, + 0.0571042 ], + [ 0. , 0. , 0. , 0.05021012, 0.67294686, + 0.27684301], + [ 0. , 0. , 0. , 0.02891208, 0.38749748, + 0.58359043], + [ 0. , 0. , 0. , 0.00970379, 0.13005608, + 0.86024014]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + name_map: {'FE2_C1_D01': ['FE3_C1_D01'], 'FE2_C1_D10': ['FE3_C1_D10'], 'FE2_C0_D01': ['FE3_C0_D01'], 'FE2_C2_D10': ['FE3_C2_D10'], 'FE2_C2_D01': ['FE3_C2_D01'], 'FE2_C1': ['FE3_C1'], 'FE2_C0': ['FE3_C0'], 'FE2_C2': ['FE3_C2'], 'FE2_C0_D10': ['FE3_C0_D10']} + + inv_name_map: {'FE0_D10': 'FE0_D10', 'FE2_C1_D01': 'FE2_C1_D01', 'FE3_C1_D10': 'FE2_C1_D10', 'FE0_D01': 'FE0_D01', 'FE1_C1_D10': 'FE1_C1_D10', 'FE3_C0_D10': 'FE2_C0_D10', 'FE2_C0_D01': 'FE2_C0_D01', 'FE2_C1': 'FE2_C1', 'FE2_C0': 'FE2_C0', 'FE4': 'FE4', 'FE2_C2': 'FE2_C2', 'FE0': 'FE0', 'FE1_C0_D01': 'FE1_C0_D01', 'FE2_C1_D10': 'FE2_C1_D10', 'FE3_C1_D01': 'FE2_C1_D01', 'FE1_C1_D01': 'FE1_C1_D01', 'FE2_C2_D01': 'FE2_C2_D01', 'FE3_C2_D01': 'FE2_C2_D01', 'FE3_C0_D01': 'FE2_C0_D01', 'FE2_C0_D10': 'FE2_C0_D10', 'FE2_C2_D10': 'FE2_C2_D10', 'FE1_C0_D10': 'FE1_C0_D10', 'FE3_C2': 'FE2_C2', 'FE1_C1': 'FE1_C1', 'FE3_C0': 'FE2_C0', 'FE3_C1': 'FE2_C1', 'FE1_C0': 'FE1_C0', 'FE3_C2_D10': 'FE2_C2_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE0_D10': array([[-2.5097152373218714, -0.73813202177994264, 0.22841678445806923, + -0.22841678445806923, 3.2478472591018139], + [-1.6917874526020258, -0.79915950715452166, 1.1073720545524943, + -1.1073720545524943, 2.4909469597565472], + [-0.54998993362677651, -0.88435166310244473, 2.334361729475666, + -2.334361729475666, 1.4343415967292208], + [0.47977568313266317, -0.9611848594922161, 3.4409605426248748, + -3.4409605426248748, 0.48140917635955227], + [-1.5269250065645006, 0.24465820897742863, 0.22841678445806934, + -0.22841678445806934, 1.2822667975870721], + [-0.93803330652173278, -0.045405361074228628, 1.1073720545524943, + -1.1073720545524943, 0.98343866759596121], + [-0.11596185398603487, -0.45032358346170315, 2.334361729475666, + -2.334361729475666, 0.56628543744773763], + [0.62544886225068697, -0.8155116803741923, 3.4409605426248748, + -3.4409605426248748, 0.19006281812350467], + [-0.24465820897742774, 1.5269250065645017, 0.22841678445806934, + -0.22841678445806934, -1.2822667975870738], + [0.045405361074228601, 0.93803330652173311, 1.1073720545524945, + -1.1073720545524945, -0.98343866759596188], + [0.45032358346170309, 0.11596185398603487, 2.334361729475666, + -2.334361729475666, -0.5662854374477384], + [0.81551168037419286, -0.62544886225068641, 3.4409605426248748, + -3.4409605426248748, -0.1900628181235072], + [0.7381320217799423, 2.5097152373218714, 0.22841678445806923, + -0.22841678445806923, -3.2478472591018139], + [0.799159507154521, 1.6917874526020251, 1.1073720545524943, + -1.1073720545524943, -2.4909469597565463], + [0.88435166310244473, 0.54998993362677651, 2.334361729475666, + -2.334361729475666, -1.4343415967292217], + [0.96118485949221688, -0.47977568313266239, 3.4409605426248748, + -3.4409605426248748, -0.48140917635955516]], dtype=object), 'FE4': array([[1.0], + [1.0], + [0.99999999999999989], + [1.0], + [1.0], + [0.99999999999999989], + [0.99999999999999989], + [1.0], + [1.0], + [1.0], + [0.99999999999999989], + [1.0], + [1.0], + [0.99999999999999989], + [0.99999999999999989], + [1.0]], dtype=object), 'FE0': array([[0.6623338215556972, -0.056895139802881842, -0.05058241768674708, + 0.014953760384390308, 0.20041946721813891, 0.22977050833140236], + [0.23276809809770654, -0.04516801026556784, -0.12355890523764695, + 0.055601287299908417, 0.74520255045163297, 0.13515497965396686], + [-0.08718888411365161, -0.027240266995992645, 0.09756515313616182, + 0.067491262932790785, 0.90455929553271897, 0.044813439507972466], + [-0.096226911734323323, -0.0095154582353662032, 0.61978604633144241, + 0.033390341735931695, 0.44751783691362235, 0.0050481449886929514], + [0.16643749695900031, -0.11751779509749462, -0.05058241768674708, + 0.07107520646099133, 0.14429802114153806, 0.78628948822271205], + [-0.015011689481987923, -0.12474229414821482, -0.12355890523764693, + 0.26427285664300715, 0.53653098110853414, 0.46250905111630813], + [-0.12331910605251509, -0.099651083772276355, 0.09756515313616182, + 0.32078589759058163, 0.65126466087492807, 0.15335447822311959], + [-0.076101715088665228, -0.041867587396657691, 0.61978604633144241, + 0.15870425710189318, 0.32220392154766098, 0.017275077504326344], + [-0.11751779509749458, 0.16643749695900029, -0.05058241768674708, + 0.14429802114153809, 0.071075206460991261, 0.78628948822271205], + [-0.12474229414821481, -0.015011689481988087, -0.12355890523764695, + 0.53653098110853426, 0.26427285664300726, 0.46250905111630836], + [-0.0996510837722763, -0.12331910605251518, 0.09756515313616182, + 0.65126466087492807, 0.32078589759058174, 0.15335447822311959], + [-0.041867587396657691, -0.076101715088665284, 0.61978604633144241, + 0.32220392154766114, 0.15870425710189295, 0.017275077504326344], + [-0.056895139802881876, 0.6623338215556972, -0.05058241768674708, + 0.20041946721813905, 0.014953760384390294, 0.22977050833140236], + [-0.045168010265567847, 0.23276809809770624, -0.12355890523764693, + 0.74520255045163286, 0.0556012872999085, 0.13515497965396692], + [-0.027240266995992635, -0.087188884113651763, 0.09756515313616182, + 0.90455929553271897, 0.067491262932790869, 0.044813439507972466], + [-0.0095154582353661338, -0.096226911734323434, 0.61978604633144241, + 0.44751783691362274, 0.033390341735931361, 0.0050481449886928959]], dtype=object), 'FE1_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE0_D01': array([[-2.5097152373218705, -0.77158321554192932, 0.2618679782200577, + 3.2812984528638003, -0.26186797822005725], + [-1.6917874526020253, 0.10737205455249504, 0.20084049284547795, + 1.5844153980495301, -0.20084049284547775], + [-0.54998993362677662, 1.3343617294756669, 0.11564833689755472, + -0.78437179584889039, -0.1156483368975546], + [0.4797756831326625, 2.4409605426248775, 0.03881514050778323, + -2.9207362257575396, -0.038815140507784007], + [-1.5269250065645008, -0.77158321554192888, 1.2446582089774276, + 2.2985082221064306, -1.2446582089774285], + [-0.93803330652173278, 0.10737205455249532, 0.95459463892577068, + 0.83066125196923757, -0.95459463892577068], + [-0.11596185398603498, 1.3343617294756669, 0.54967641653829635, + -1.2183998754896317, -0.54967641653829646], + [0.6254488622506863, 2.4409605426248775, 0.18448831962580736, + -3.0664094048755635, -0.18448831962580781], + [-0.2446582089774276, -0.77158321554192888, 2.5269250065645004, + 1.0162414245193578, -2.5269250065645021], + [0.04540536107422885, 0.10737205455249538, 1.9380333065217321, + -0.15277741562672359, -1.9380333065217328], + [0.45032358346170304, 1.3343617294756669, 1.1159618539860343, + -1.7846853129373699, -1.1159618539860348], + [0.81551168037419208, 2.4409605426248775, 0.37455113774931248, + -3.2564722229990686, -0.37455113774931359], + [0.7381320217799433, -0.7715832155419291, 3.5097152373218696, + 0.033451193761987463, -3.5097152373218719], + [0.79915950715452166, 0.1073720545524951, 2.6917874526020245, + -0.90653156170701621, -2.6917874526020249], + [0.8843516631024444, 1.3343617294756669, 1.5499899336267755, + -2.2187133925781106, -1.5499899336267764], + [0.9611848594922161, 2.4409605426248775, 0.52022431686733683, + -3.4021454021170929, -0.52022431686733772]], dtype=object), 'FE1_C0': array([[ 0.87742881, 0.06546699, 0.0571042 ], + [ 0.67294686, 0.05021012, 0.27684301], + [ 0.38749748, 0.02891208, 0.58359043], + [ 0.13005608, 0.00970379, 0.86024014], + [ 0.63173125, 0.31116455, 0.0571042 ], + [ 0.48450833, 0.23864866, 0.27684301], + [ 0.27899046, 0.1374191 , 0.58359043], + [ 0.09363778, 0.04612208, 0.86024014], + [ 0.31116455, 0.63173125, 0.0571042 ], + [ 0.23864866, 0.48450833, 0.27684301], + [ 0.1374191 , 0.27899046, 0.58359043], + [ 0.04612208, 0.09363778, 0.86024014], + [ 0.06546699, 0.87742881, 0.0571042 ], + [ 0.05021012, 0.67294686, 0.27684301], + [ 0.02891208, 0.38749748, 0.58359043], + [ 0.00970379, 0.13005608, 0.86024014]])} + + QG-utils, psi_tables, name_map: + {'FE0_D10': ('FE0_D10', (1, [0, 1, 3, 4, 5]), False, False), 'FE2_C1_D01': ('FE0_D01', (12, [6, 8, 9, 10, 11]), False, False), 'FE3_C1_D10': ('FE0_D10', (13, [6, 7, 9, 10, 11]), False, False), 'FE0_D01': ('FE0_D01', (0, [0, 2, 3, 4, 5]), False, False), 'FE1_C1_D10': ('FE1_C0_D01', (7, [3, 4]), False, False), 'FE3_C0_D10': ('FE0_D10', (10, [0, 1, 3, 4, 5]), False, False), 'FE2_C0_D01': ('FE0_D01', (9, [0, 2, 3, 4, 5]), False, False), 'FE2_C1': ('FE0', (11, [6, 7, 8, 9, 10, 11]), False, False), 'FE2_C0': ('FE0', (8, [0, 1, 2, 3, 4, 5]), False, False), 'FE4': ('FE4', (), False, True), 'FE2_C2': ('FE1_C0', (14, [12, 13, 14]), False, False), 'FE0': ('FE0', (), False, False), 'FE1_C0_D01': ('FE1_C0_D01', (3, [0, 2]), False, False), 'FE2_C1_D10': ('FE0_D10', (13, [6, 7, 9, 10, 11]), False, False), 'FE3_C1_D01': ('FE0_D01', (12, [6, 8, 9, 10, 11]), False, False), 'FE1_C1_D01': ('FE1_C0_D01', (6, [3, 5]), False, False), 'FE2_C2_D01': ('FE1_C0_D01', (15, [12, 14]), False, False), 'FE3_C2_D01': ('FE1_C0_D01', (15, [12, 14]), False, False), 'FE3_C0_D01': ('FE0_D01', (9, [0, 2, 3, 4, 5]), False, False), 'FE2_C0_D10': ('FE0_D10', (10, [0, 1, 3, 4, 5]), False, False), 'FE2_C2_D10': ('FE1_C0_D01', (16, [12, 13]), False, False), 'FE1_C0_D10': ('FE1_C0_D01', (4, [0, 1]), False, False), 'FE3_C2': ('FE1_C0', (14, [12, 13, 14]), False, False), 'FE1_C1': ('FE1_C0', (5, [3, 4, 5]), False, False), 'FE3_C0': ('FE0', (8, [0, 1, 2, 3, 4, 5]), False, False), 'FE3_C1': ('FE0', (11, [6, 7, 8, 9, 10, 11]), False, False), 'FE1_C0': ('FE1_C0', (2, [0, 1, 2]), False, False), 'FE3_C2_D10': ('FE1_C0_D01', (16, [12, 13]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {3: {FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None): {None: {0: {(0, 0): array([[1.1275702593849246e-16, 4.163336342344337e-17, + 4.163336342344337e-17], + [0.68729833462074186, -9.7144514654701197e-17, -0.08729833462074163], + [-0.087298334620741658, 8.3266726846886741e-17, 0.68729833462074186], + [0.39999999999999991, 0.99999999999999978, 0.3999999999999998], + [-4.8572257327350599e-17, 1.3877787807814457e-17, + 5.5511151231257827e-17], + [-1.231653667943533e-16, 0.0, -6.9388939039072284e-17]], dtype=object)}, 1: {(0, 0): array([[0.68729833462074175, 8.3266726846886741e-17, -0.087298334620741616], + [9.3675067702747583e-17, 8.3266726846886741e-17, + 9.7144514654701197e-17], + [-0.087298334620741658, 8.3266726846886741e-17, 0.68729833462074186], + [-2.7755575615628914e-17, 0.0, 0.0], + [0.39999999999999974, 0.99999999999999978, 0.39999999999999974], + [-1.231653667943533e-16, 0.0, -6.9388939039072284e-17]], dtype=object)}, 2: {(0, 0): array([[0.68729833462074175, 4.163336342344337e-17, -0.087298334620741685], + [-0.08729833462074163, 1.3877787807814457e-17, 0.68729833462074175], + [0.0, 0.0, 0.0], + [0.0, 0.0, 0.0], + [-2.7755575615628914e-17, -5.5511151231257827e-17, + -5.5511151231257827e-17], + [0.39999999999999991, 1.0, 0.39999999999999991]], dtype=object)}}}, FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {0: {(0, 0): array([[2.7755575615628914e-17, 4.163336342344337e-17, + 5.5511151231257827e-17], + [0.8872983346207417, 0.5, 0.11270166537925835], + [0.1127016653792583, 0.5, 0.8872983346207417]], dtype=object)}, 1: {(0, 0): array([[0.8872983346207417, 0.5, 0.11270166537925835], + [2.7755575615628914e-17, 4.163336342344337e-17, + 5.5511151231257827e-17], + [0.1127016653792583, 0.5, 0.8872983346207417]], dtype=object)}, 2: {(0, 0): array([[0.88729833462074181, 0.5, 0.11270166537925827], + [0.11270166537925827, 0.5, 0.88729833462074181], + [0.0, 0.0, 0.0]], dtype=object)}}}, MixedElement(*[MixedElement(*[FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None)], **{'value_shape': (2,) }), FiniteElement('Discontinuous Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {0: {(0, 0): array([[[ 1.12757026e-16, 4.16333634e-17, 4.16333634e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 6.87298335e-01, -9.71445147e-17, -8.72983346e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -8.72983346e-02, 8.32667268e-17, 6.87298335e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 4.00000000e-01, 1.00000000e+00, 4.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -4.85722573e-17, 1.38777878e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -1.23165367e-16, 0.00000000e+00, -6.93889390e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12757026e-16, 4.16333634e-17, 4.16333634e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.87298335e-01, -9.71445147e-17, -8.72983346e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.72983346e-02, 8.32667268e-17, 6.87298335e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.00000000e-01, 1.00000000e+00, 4.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -4.85722573e-17, 1.38777878e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.23165367e-16, 0.00000000e+00, -6.93889390e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.77555756e-17, 4.16333634e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01]]])}, 1: {(0, 0): array([[[ 6.87298335e-01, 8.32667268e-17, -8.72983346e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 9.36750677e-17, 8.32667268e-17, 9.71445147e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -8.72983346e-02, 8.32667268e-17, 6.87298335e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -2.77555756e-17, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 4.00000000e-01, 1.00000000e+00, 4.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -1.23165367e-16, 0.00000000e+00, -6.93889390e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.87298335e-01, 8.32667268e-17, -8.72983346e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 9.36750677e-17, 8.32667268e-17, 9.71445147e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.72983346e-02, 8.32667268e-17, 6.87298335e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.77555756e-17, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.00000000e-01, 1.00000000e+00, 4.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.23165367e-16, 0.00000000e+00, -6.93889390e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.77555756e-17, 4.16333634e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01]]])}, 2: {(0, 0): array([[[ 6.87298335e-01, 4.16333634e-17, -8.72983346e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -8.72983346e-02, 1.38777878e-17, 6.87298335e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ -2.77555756e-17, -5.55111512e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 4.00000000e-01, 1.00000000e+00, 4.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 6.87298335e-01, 4.16333634e-17, -8.72983346e-02], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.72983346e-02, 1.38777878e-17, 6.87298335e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.77555756e-17, -5.55111512e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.00000000e-01, 1.00000000e+00, 4.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]])}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {0: {(0, 1): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 2.77555756e-17, 4.16333634e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.77555756e-17, 4.16333634e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01]]])}, 1: {(0, 1): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 2.77555756e-17, 4.16333634e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.87298335e-01, 5.00000000e-01, 1.12701665e-01]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.77555756e-17, 4.16333634e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.00000000e-01, 8.87298335e-01]]])}, 2: {(0, 1): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 0.88729833, 0.5 , 0.11270167], + [ 0. , 0. , 0. ]], + + [[ 0.11270167, 0.5 , 0.88729833], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.88729833, 0.5 , 0.11270167]], + + [[ 0. , 0. , 0. ], + [ 0.11270167, 0.5 , 0.88729833]], + + [[ 0. , 0. , 0. ], + [ 0. , 0. , 0. ]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE2_f1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE2_f2_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_f0': array([[2.7755575615628914e-17, 0.8872983346207417, 0.1127016653792583], + [4.163336342344337e-17, 0.5, 0.5], + [5.5511151231257827e-17, 0.11270166537925835, 0.8872983346207417]], dtype=object), 'FE0_f1': array([[0.8872983346207417, 2.7755575615628914e-17, 0.1127016653792583], + [0.5, 4.163336342344337e-17, 0.5], + [0.11270166537925835, 5.5511151231257827e-17, 0.8872983346207417]], dtype=object), 'FE0_f2': array([[0.88729833462074181, 0.11270166537925827, 0.0], + [0.5, 0.5, 0.0], + [0.11270166537925827, 0.88729833462074181, 0.0]], dtype=object), 'FE2_f0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE2_f0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE2_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 8.87298335e-01, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 1.12701665e-01, 8.87298335e-01]]), 'FE2_f0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE3_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.87298335e-01, 9.36750677e-17, -8.72983346e-02, + -2.77555756e-17, 4.00000000e-01, -1.23165367e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.32667268e-17, 8.32667268e-17, 8.32667268e-17, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.72983346e-02, 9.71445147e-17, 6.87298335e-01, + 0.00000000e+00, 4.00000000e-01, -6.93889390e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f1_C0': array([[ 6.87298335e-01, 9.36750677e-17, -8.72983346e-02, + -2.77555756e-17, 4.00000000e-01, -1.23165367e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.32667268e-17, 8.32667268e-17, 8.32667268e-17, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.72983346e-02, 9.71445147e-17, 6.87298335e-01, + 0.00000000e+00, 4.00000000e-01, -6.93889390e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f0_C0': array([[ 2.77555756e-17, 8.87298335e-01, 1.12701665e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, 1.12701665e-01, 8.87298335e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f2_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE2_f1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_f2': array([[0.68729833462074175, -0.08729833462074163, 0.0, 0.0, + -2.7755575615628914e-17, 0.39999999999999991], + [4.163336342344337e-17, 1.3877787807814457e-17, 0.0, 0.0, + -5.5511151231257827e-17, 1.0], + [-0.087298334620741685, 0.68729833462074175, 0.0, 0.0, + -5.5511151231257827e-17, 0.39999999999999991]], dtype=object), 'FE1_f1': array([[0.68729833462074175, 9.3675067702747583e-17, -0.087298334620741658, + -2.7755575615628914e-17, 0.39999999999999974, + -1.231653667943533e-16], + [8.3266726846886741e-17, 8.3266726846886741e-17, + 8.3266726846886741e-17, 0.0, 0.99999999999999978, 0.0], + [-0.087298334620741616, 9.7144514654701197e-17, 0.68729833462074186, + 0.0, 0.39999999999999974, -6.9388939039072284e-17]], dtype=object), 'FE1_f0': array([[1.1275702593849246e-16, 0.68729833462074186, -0.087298334620741658, + 0.39999999999999991, -4.8572257327350599e-17, + -1.231653667943533e-16], + [4.163336342344337e-17, -9.7144514654701197e-17, + 8.3266726846886741e-17, 0.99999999999999978, + 1.3877787807814457e-17, 0.0], + [4.163336342344337e-17, -0.08729833462074163, 0.68729833462074186, + 0.3999999999999998, 5.5511151231257827e-17, -6.9388939039072284e-17]], dtype=object), 'FE3_f2_C0': array([[ 6.87298335e-01, -8.72983346e-02, 0.00000000e+00, + 0.00000000e+00, -2.77555756e-17, 4.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 1.38777878e-17, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.72983346e-02, 6.87298335e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 4.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f2_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE3_f2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.88729833, 0.11270167, 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.5 , 0.5 , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.11270167, 0.88729833, 0. ]]), 'FE2_f0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_f1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE3_f1_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.87298335e-01, 2.77555756e-17, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.00000000e-01, 4.16333634e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.12701665e-01, 5.55111512e-17, 8.87298335e-01]]), 'FE2_f2_C1': array([[ 0. , 0. , 0. , 0.88729833, 0.11270167, + 0. ], + [ 0. , 0. , 0. , 0.5 , 0.5 , + 0. ], + [ 0. , 0. , 0. , 0.11270167, 0.88729833, + 0. ]]), 'FE2_f2_C0': array([[ 0.88729833, 0.11270167, 0. , 0. , 0. , + 0. ], + [ 0.5 , 0.5 , 0. , 0. , 0. , + 0. ], + [ 0.11270167, 0.88729833, 0. , 0. , 0. , + 0. ]]), 'FE2_f2_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE3_f2_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.87298335e-01, -8.72983346e-02, 0.00000000e+00, + 0.00000000e+00, -2.77555756e-17, 4.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, 1.38777878e-17, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.72983346e-02, 6.87298335e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 4.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2_f1_C0': array([[ 8.87298335e-01, 2.77555756e-17, 1.12701665e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 4.16333634e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.55111512e-17, 8.87298335e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.87298335e-01, 2.77555756e-17, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.00000000e-01, 4.16333634e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.12701665e-01, 5.55111512e-17, 8.87298335e-01]]), 'FE3_f0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 8.87298335e-01, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 1.12701665e-01, 8.87298335e-01]]), 'FE3_f0_C0': array([[ 1.12757026e-16, 6.87298335e-01, -8.72983346e-02, + 4.00000000e-01, -4.85722573e-17, -1.23165367e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, -9.71445147e-17, 8.32667268e-17, + 1.00000000e+00, 1.38777878e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, -8.72983346e-02, 6.87298335e-01, + 4.00000000e-01, 5.55111512e-17, -6.93889390e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.12757026e-16, 6.87298335e-01, -8.72983346e-02, + 4.00000000e-01, -4.85722573e-17, -1.23165367e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, -9.71445147e-17, 8.32667268e-17, + 1.00000000e+00, 1.38777878e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, -8.72983346e-02, 6.87298335e-01, + 4.00000000e-01, 5.55111512e-17, -6.93889390e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + tables: {'FE0_f0': array([[2.7755575615628914e-17, 0.8872983346207417, 0.1127016653792583], + [4.163336342344337e-17, 0.5, 0.5], + [5.5511151231257827e-17, 0.11270166537925835, 0.8872983346207417]], dtype=object), 'FE0_f1': array([[0.8872983346207417, 2.7755575615628914e-17, 0.1127016653792583], + [0.5, 4.163336342344337e-17, 0.5], + [0.11270166537925835, 5.5511151231257827e-17, 0.8872983346207417]], dtype=object), 'FE0_f2': array([[0.88729833462074181, 0.11270166537925827, 0.0], + [0.5, 0.5, 0.0], + [0.11270166537925827, 0.88729833462074181, 0.0]], dtype=object), 'FE2_f0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE2_f0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE2_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 8.87298335e-01, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 1.12701665e-01, 8.87298335e-01]]), 'FE2_f0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE3_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.87298335e-01, 9.36750677e-17, -8.72983346e-02, + -2.77555756e-17, 4.00000000e-01, -1.23165367e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.32667268e-17, 8.32667268e-17, 8.32667268e-17, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.72983346e-02, 9.71445147e-17, 6.87298335e-01, + 0.00000000e+00, 4.00000000e-01, -6.93889390e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f1_C0': array([[ 6.87298335e-01, 9.36750677e-17, -8.72983346e-02, + -2.77555756e-17, 4.00000000e-01, -1.23165367e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 8.32667268e-17, 8.32667268e-17, 8.32667268e-17, + 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.72983346e-02, 9.71445147e-17, 6.87298335e-01, + 0.00000000e+00, 4.00000000e-01, -6.93889390e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f0_C0': array([[ 2.77555756e-17, 8.87298335e-01, 1.12701665e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 5.00000000e-01, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, 1.12701665e-01, 8.87298335e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_f2': array([[0.68729833462074175, -0.08729833462074163, 0.0, 0.0, + -2.7755575615628914e-17, 0.39999999999999991], + [4.163336342344337e-17, 1.3877787807814457e-17, 0.0, 0.0, + -5.5511151231257827e-17, 1.0], + [-0.087298334620741685, 0.68729833462074175, 0.0, 0.0, + -5.5511151231257827e-17, 0.39999999999999991]], dtype=object), 'FE1_f1': array([[0.68729833462074175, 9.3675067702747583e-17, -0.087298334620741658, + -2.7755575615628914e-17, 0.39999999999999974, + -1.231653667943533e-16], + [8.3266726846886741e-17, 8.3266726846886741e-17, + 8.3266726846886741e-17, 0.0, 0.99999999999999978, 0.0], + [-0.087298334620741616, 9.7144514654701197e-17, 0.68729833462074186, + 0.0, 0.39999999999999974, -6.9388939039072284e-17]], dtype=object), 'FE1_f0': array([[1.1275702593849246e-16, 0.68729833462074186, -0.087298334620741658, + 0.39999999999999991, -4.8572257327350599e-17, + -1.231653667943533e-16], + [4.163336342344337e-17, -9.7144514654701197e-17, + 8.3266726846886741e-17, 0.99999999999999978, + 1.3877787807814457e-17, 0.0], + [4.163336342344337e-17, -0.08729833462074163, 0.68729833462074186, + 0.3999999999999998, 5.5511151231257827e-17, -6.9388939039072284e-17]], dtype=object), 'FE3_f2_C0': array([[ 6.87298335e-01, -8.72983346e-02, 0.00000000e+00, + 0.00000000e+00, -2.77555756e-17, 4.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, 1.38777878e-17, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.72983346e-02, 6.87298335e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 4.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.88729833, 0.11270167, 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.5 , 0.5 , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.11270167, 0.88729833, 0. ]]), 'FE2_f0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE3_f1_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.87298335e-01, 2.77555756e-17, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.00000000e-01, 4.16333634e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.12701665e-01, 5.55111512e-17, 8.87298335e-01]]), 'FE2_f2_C1': array([[ 0. , 0. , 0. , 0.88729833, 0.11270167, + 0. ], + [ 0. , 0. , 0. , 0.5 , 0.5 , + 0. ], + [ 0. , 0. , 0. , 0.11270167, 0.88729833, + 0. ]]), 'FE2_f2_C0': array([[ 0.88729833, 0.11270167, 0. , 0. , 0. , + 0. ], + [ 0.5 , 0.5 , 0. , 0. , 0. , + 0. ], + [ 0.11270167, 0.88729833, 0. , 0. , 0. , + 0. ]]), 'FE3_f2_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 6.87298335e-01, -8.72983346e-02, 0.00000000e+00, + 0.00000000e+00, -2.77555756e-17, 4.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, 1.38777878e-17, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.72983346e-02, 6.87298335e-01, 0.00000000e+00, + 0.00000000e+00, -5.55111512e-17, 4.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C0': array([[ 8.87298335e-01, 2.77555756e-17, 1.12701665e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 4.16333634e-17, 5.00000000e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.12701665e-01, 5.55111512e-17, 8.87298335e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 8.87298335e-01, 2.77555756e-17, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.00000000e-01, 4.16333634e-17, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.12701665e-01, 5.55111512e-17, 8.87298335e-01]]), 'FE3_f0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 8.87298335e-01, 1.12701665e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, 5.00000000e-01, 5.00000000e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 1.12701665e-01, 8.87298335e-01]]), 'FE3_f0_C0': array([[ 1.12757026e-16, 6.87298335e-01, -8.72983346e-02, + 4.00000000e-01, -4.85722573e-17, -1.23165367e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, -9.71445147e-17, 8.32667268e-17, + 1.00000000e+00, 1.38777878e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, -8.72983346e-02, 6.87298335e-01, + 4.00000000e-01, 5.55111512e-17, -6.93889390e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE3_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 1.12757026e-16, 6.87298335e-01, -8.72983346e-02, + 4.00000000e-01, -4.85722573e-17, -1.23165367e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, -9.71445147e-17, 8.32667268e-17, + 1.00000000e+00, 1.38777878e-17, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, -8.72983346e-02, 6.87298335e-01, + 4.00000000e-01, 5.55111512e-17, -6.93889390e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + name_map: {'FE2_f0_C0_D10': ['FE2_f1_C0_D10', 'FE2_f2_C0_D10'], 'FE2_f0_C1_D01': ['FE2_f1_C1_D01', 'FE2_f2_C1_D01'], 'FE2_f0_C0_D01': ['FE2_f1_C0_D01', 'FE2_f2_C0_D01'], 'FE2_f0_C1_D10': ['FE2_f1_C1_D10', 'FE2_f2_C1_D10']} + + inv_name_map: {'FE2_f1_C1_D01': 'FE2_f0_C1_D01', 'FE2_f2_C0_D10': 'FE2_f0_C0_D10', 'FE0_f0': 'FE0_f0', 'FE0_f1': 'FE0_f1', 'FE0_f2': 'FE0_f2', 'FE2_f0_C1_D01': 'FE2_f0_C1_D01', 'FE2_f2_C0': 'FE2_f2_C0', 'FE2_f0_C1': 'FE2_f0_C1', 'FE2_f0_C0_D01': 'FE2_f0_C0_D01', 'FE3_f1_C1': 'FE3_f1_C1', 'FE3_f1_C0': 'FE3_f1_C0', 'FE2_f0_C0': 'FE2_f0_C0', 'FE2_f2_C1_D01': 'FE2_f0_C1_D01', 'FE2_f1_C0_D10': 'FE2_f0_C0_D10', 'FE1_f2': 'FE1_f2', 'FE1_f1': 'FE1_f1', 'FE1_f0': 'FE1_f0', 'FE3_f2_C0': 'FE3_f2_C0', 'FE2_f2_C0_D01': 'FE2_f0_C0_D01', 'FE3_f2_C2': 'FE3_f2_C2', 'FE2_f0_C1_D10': 'FE2_f0_C1_D10', 'FE2_f1_C1_D10': 'FE2_f0_C1_D10', 'FE3_f1_C2': 'FE3_f1_C2', 'FE2_f2_C1': 'FE2_f2_C1', 'FE2_f0_C0_D10': 'FE2_f0_C0_D10', 'FE2_f2_C1_D10': 'FE2_f0_C1_D10', 'FE3_f2_C1': 'FE3_f2_C1', 'FE2_f1_C0_D01': 'FE2_f0_C0_D01', 'FE2_f1_C0': 'FE2_f1_C0', 'FE2_f1_C1': 'FE2_f1_C1', 'FE3_f0_C2': 'FE3_f0_C2', 'FE3_f0_C0': 'FE3_f0_C0', 'FE3_f0_C1': 'FE3_f0_C1'} + + QG-utils, psi_tables, unique_tables: + {'FE0_f0': array([[0.8872983346207417, 0.1127016653792583], + [0.5, 0.5], + [0.11270166537925835, 0.8872983346207417]], dtype=object), 'FE2_f0_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE1_f0': array([[0.68729833462074186, -0.087298334620741658, 0.39999999999999991], + [0, 0, 0.99999999999999978], + [-0.08729833462074163, 0.68729833462074186, 0.3999999999999998]], dtype=object)} + + QG-utils, psi_tables, name_map: + {'FE2_f1_C1_D01': ('FE2_f0_C0_D01', (10, [3, 5]), False, False), 'FE2_f2_C0_D10': ('FE2_f0_C0_D01', (8, [0, 1]), False, False), 'FE0_f0': ('FE0_f0', (0, [1, 2]), False, False), 'FE0_f1': ('FE0_f0', (1, [0, 2]), False, False), 'FE0_f2': ('FE0_f0', (2, [0, 1]), False, False), 'FE2_f0_C1_D01': ('FE2_f0_C0_D01', (10, [3, 5]), False, False), 'FE2_f2_C0': ('FE0_f0', (14, [0, 1]), False, False), 'FE2_f0_C1': ('FE0_f0', (9, [4, 5]), False, False), 'FE2_f0_C0_D01': ('FE2_f0_C0_D01', (7, [0, 2]), False, False), 'FE3_f1_C1': ('FE1_f0', (20, [6, 8, 10]), False, False), 'FE3_f1_C0': ('FE1_f0', (19, [0, 2, 4]), False, False), 'FE2_f0_C0': ('FE0_f0', (6, [1, 2]), False, False), 'FE2_f2_C1_D01': ('FE2_f0_C0_D01', (10, [3, 5]), False, False), 'FE2_f1_C0_D10': ('FE2_f0_C0_D01', (8, [0, 1]), False, False), 'FE1_f2': ('FE1_f0', (5, [0, 1, 5]), False, False), 'FE1_f1': ('FE1_f0', (4, [0, 2, 4]), False, False), 'FE1_f0': ('FE1_f0', (3, [1, 2, 3]), False, False), 'FE3_f2_C0': ('FE1_f0', (22, [0, 1, 5]), False, False), 'FE2_f2_C0_D01': ('FE2_f0_C0_D01', (7, [0, 2]), False, False), 'FE3_f2_C2': ('FE0_f0', (24, [12, 13]), False, False), 'FE2_f0_C1_D10': ('FE2_f0_C0_D01', (11, [3, 4]), False, False), 'FE2_f1_C1_D10': ('FE2_f0_C0_D01', (11, [3, 4]), False, False), 'FE3_f1_C2': ('FE0_f0', (21, [12, 14]), False, False), 'FE2_f2_C1': ('FE0_f0', (15, [3, 4]), False, False), 'FE2_f0_C0_D10': ('FE2_f0_C0_D01', (8, [0, 1]), False, False), 'FE2_f2_C1_D10': ('FE2_f0_C0_D01', (11, [3, 4]), False, False), 'FE3_f2_C1': ('FE1_f0', (23, [6, 7, 11]), False, False), 'FE2_f1_C0_D01': ('FE2_f0_C0_D01', (7, [0, 2]), False, False), 'FE2_f1_C0': ('FE0_f0', (12, [0, 2]), False, False), 'FE2_f1_C1': ('FE0_f0', (13, [3, 5]), False, False), 'FE3_f0_C2': ('FE0_f0', (18, [13, 14]), False, False), 'FE3_f0_C0': ('FE1_f0', (16, [1, 2, 3]), False, False), 'FE3_f0_C1': ('FE1_f0', (17, [7, 8, 9]), False, False)} + Transforming exterior facet integral 0 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming exterior facet integral 1 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming exterior facet integral 2 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00538 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00377 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0043 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00349 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00404 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00329 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00452 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00345 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00551 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00733 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00578 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0128 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0104 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00784 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00598 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0077 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00605 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0129 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0111 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00997 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00633 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0109 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0111 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0197 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0165 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0119 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0102 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0109 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00884 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0123 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00715 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0097 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00881 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00951 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00661 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00926 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00677 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0157 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00621 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00821 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00584 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00815 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00559 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00777 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00534 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00701 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00585 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00742 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0053 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00672 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00523 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0078 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00608 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00858 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00721 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0175 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0149 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0112 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00831 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0145 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.013 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.012 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0072 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0107 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00666 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.0104 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00767 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.012 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00575 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00727 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0054 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00741 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0071 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00788 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00566 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00768 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.0065 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00714 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 225 entries computed in 0.00662 seconds + Shape of reference tensor: (1, 15, 15) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + 390 entries computed in 0.00692 seconds + Shape of reference tensor: (1, 15, 26) + Primary multi index: rank = 1 dims = [1] indices = [[0]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + Internal multi index: rank = 1 dims = [3] indices = [[0], [1], [2]] + Secondary multi index: rank = 2 dims = [15, 26] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [0, 15], [0, 16], [0, 17], [0, 18], [0, 19], [0, 20], [0, 21], [0, 22], [0, 23], [0, 24], [0, 25], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18], [1, 19], [1, 20], [1, 21], [1, 22], [1, 23], [1, 24], [1, 25], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [2, 15], [2, 16], [2, 17], [2, 18], [2, 19], [2, 20], [2, 21], [2, 22], [2, 23], [2, 24], [2, 25], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [3, 15], [3, 16], [3, 17], [3, 18], [3, 19], [3, 20], [3, 21], [3, 22], [3, 23], [3, 24], [3, 25], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [4, 15], [4, 16], [4, 17], [4, 18], [4, 19], [4, 20], [4, 21], [4, 22], [4, 23], [4, 24], [4, 25], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [5, 15], [5, 16], [5, 17], [5, 18], [5, 19], [5, 20], [5, 21], [5, 22], [5, 23], [5, 24], [5, 25], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [6, 15], [6, 16], [6, 17], [6, 18], [6, 19], [6, 20], [6, 21], [6, 22], [6, 23], [6, 24], [6, 25], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [7, 15], [7, 16], [7, 17], [7, 18], [7, 19], [7, 20], [7, 21], [7, 22], [7, 23], [7, 24], [7, 25], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [8, 15], [8, 16], [8, 17], [8, 18], [8, 19], [8, 20], [8, 21], [8, 22], [8, 23], [8, 24], [8, 25], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [9, 15], [9, 16], [9, 17], [9, 18], [9, 19], [9, 20], [9, 21], [9, 22], [9, 23], [9, 24], [9, 25], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [10, 15], [10, 16], [10, 17], [10, 18], [10, 19], [10, 20], [10, 21], [10, 22], [10, 23], [10, 24], [10, 25], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [11, 15], [11, 16], [11, 17], [11, 18], [11, 19], [11, 20], [11, 21], [11, 22], [11, 23], [11, 24], [11, 25], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [12, 15], [12, 16], [12, 17], [12, 18], [12, 19], [12, 20], [12, 21], [12, 22], [12, 23], [12, 24], [12, 25], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [13, 15], [13, 16], [13, 17], [13, 18], [13, 19], [13, 20], [13, 21], [13, 22], [13, 23], [13, 24], [13, 25], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14], [14, 15], [14, 16], [14, 17], [14, 18], [14, 19], [14, 20], [14, 21], [14, 22], [14, 23], [14, 24], [14, 25]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00506 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00385 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00366 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00368 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00422 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00358 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00352 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 6750 entries computed in 0.00363 seconds + Shape of reference tensor: (15, 15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [15, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1], [13, 0], [13, 1], [14, 0], [14, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.0037 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00405 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 900 entries computed in 0.00337 seconds + Shape of reference tensor: (15, 15, 1, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 900 entries computed in 0.00387 seconds + Shape of reference tensor: (15, 15, 1, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 900 entries computed in 0.00734 seconds + Shape of reference tensor: (15, 15, 1, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + Reusing element from cache + 900 entries computed in 0.0052 seconds + Shape of reference tensor: (15, 15, 1, 2, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 3 dims = [1, 2, 2] indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00437 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 450 entries computed in 0.00494 seconds + Shape of reference tensor: (15, 15, 2) + Primary multi index: rank = 2 dims = [15, 15] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 12], [0, 13], [0, 14], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [1, 14], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [2, 12], [2, 13], [2, 14], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [3, 12], [3, 13], [3, 14], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [4, 11], [4, 12], [4, 13], [4, 14], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [5, 12], [5, 13], [5, 14], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [6, 11], [6, 12], [6, 13], [6, 14], [7, 0], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [7, 9], [7, 10], [7, 11], [7, 12], [7, 13], [7, 14], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], [8, 11], [8, 12], [8, 13], [8, 14], [9, 0], [9, 1], [9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7], [9, 8], [9, 9], [9, 10], [9, 11], [9, 12], [9, 13], [9, 14], [10, 0], [10, 1], [10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8], [10, 9], [10, 10], [10, 11], [10, 12], [10, 13], [10, 14], [11, 0], [11, 1], [11, 2], [11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8], [11, 9], [11, 10], [11, 11], [11, 12], [11, 13], [11, 14], [12, 0], [12, 1], [12, 2], [12, 3], [12, 4], [12, 5], [12, 6], [12, 7], [12, 8], [12, 9], [12, 10], [12, 11], [12, 12], [12, 13], [12, 14], [13, 0], [13, 1], [13, 2], [13, 3], [13, 4], [13, 5], [13, 6], [13, 7], [13, 8], [13, 9], [13, 10], [13, 11], [13, 12], [13, 13], [13, 14], [14, 0], [14, 1], [14, 2], [14, 3], [14, 4], [14, 5], [14, 6], [14, 7], [14, 8], [14, 9], [14, 10], [14, 11], [14, 12], [14, 13], [14, 14]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [2] indices = [[0], [1]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {7: {FiniteElement('Real', Domain(Cell('triangle', 2), label=None, data=None), 0, quad_scheme=None): {None: {None: {(0, 0): array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.33333333, 0.10128651, 0.10128651, 0.79742699, 0.47014206, + 0.47014206, 0.05971587], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.33333333, 0.79742699, 0.10128651, 0.10128651, 0.05971587, + 0.47014206, 0.47014206], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.33333333, 0.10128651, 0.79742699, 0.10128651, 0.47014206, + 0.05971587, 0.47014206], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.10128651, 0.10128651, 0.79742699, 0.47014206, + 0.47014206, 0.05971587]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.79742699, 0.10128651, 0.10128651, 0.05971587, + 0.47014206, 0.47014206]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.10128651, 0.79742699, 0.10128651, 0.47014206, + 0.05971587, 0.47014206]]])}}}, MixedElement(*[VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, dim=2, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {None: {(0, 1): array([[[ -3.33333333e-01, 5.94853971e-01, 5.94853971e-01, + -2.18970794e+00, -8.80568256e-01, -8.80568256e-01, + 7.61136513e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 8.32667268e-17, 2.22044605e-16, -2.22044605e-16, + 5.55111512e-17, 1.52655666e-16, -2.77555756e-16, + 9.71445147e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 3.33333333e-01, -5.94853971e-01, 2.18970794e+00, + -5.94853971e-01, 8.80568256e-01, -7.61136513e-01, + 8.80568256e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.33333333e+00, 3.18970794e+00, 4.05146029e-01, + 4.05146029e-01, 2.38863487e-01, 1.88056826e+00, + 1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -1.66533454e-16, 4.44089210e-16, -2.78456191e+00, + 2.78456191e+00, 3.33066907e-16, 1.64170477e+00, + -1.64170477e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -1.33333333e+00, -3.18970794e+00, -4.05146029e-01, + -4.05146029e-01, -2.38863487e-01, -1.88056826e+00, + -1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -3.33333333e-01, 5.94853971e-01, 5.94853971e-01, + -2.18970794e+00, -8.80568256e-01, -8.80568256e-01, + 7.61136513e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 8.32667268e-17, 2.22044605e-16, -2.22044605e-16, + 5.55111512e-17, 1.52655666e-16, -2.77555756e-16, + 9.71445147e-17], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 3.33333333e-01, -5.94853971e-01, 2.18970794e+00, + -5.94853971e-01, 8.80568256e-01, -7.61136513e-01, + 8.80568256e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.33333333e+00, 3.18970794e+00, 4.05146029e-01, + 4.05146029e-01, 2.38863487e-01, 1.88056826e+00, + 1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.66533454e-16, 4.44089210e-16, -2.78456191e+00, + 2.78456191e+00, 3.33066907e-16, 1.64170477e+00, + -1.64170477e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.33333333e+00, -3.18970794e+00, -4.05146029e-01, + -4.05146029e-01, -2.38863487e-01, -1.88056826e+00, + -1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]]]), (1, 0): array([[[ -3.33333333e-01, 5.94853971e-01, 5.94853971e-01, + -2.18970794e+00, -8.80568256e-01, -8.80568256e-01, + 7.61136513e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 3.33333333e-01, 2.18970794e+00, -5.94853971e-01, + -5.94853971e-01, -7.61136513e-01, 8.80568256e-01, + 8.80568256e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 1.33333333e+00, 4.05146029e-01, 3.18970794e+00, + 4.05146029e-01, 1.88056826e+00, 2.38863487e-01, + 1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -1.33333333e+00, -4.05146029e-01, -3.18970794e+00, + -4.05146029e-01, -1.88056826e+00, -2.38863487e-01, + -1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ -2.15331488e-16, -2.78456191e+00, -4.37374128e-16, + 2.78456191e+00, 1.64170477e+00, -4.36972564e-16, + -1.64170477e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -3.33333333e-01, 5.94853971e-01, 5.94853971e-01, + -2.18970794e+00, -8.80568256e-01, -8.80568256e-01, + 7.61136513e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 3.33333333e-01, 2.18970794e+00, -5.94853971e-01, + -5.94853971e-01, -7.61136513e-01, 8.80568256e-01, + 8.80568256e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.33333333e+00, 4.05146029e-01, 3.18970794e+00, + 4.05146029e-01, 1.88056826e+00, 2.38863487e-01, + 1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.33333333e+00, -4.05146029e-01, -3.18970794e+00, + -4.05146029e-01, -1.88056826e+00, -2.38863487e-01, + -1.88056826e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -2.15331488e-16, -2.78456191e+00, -4.37374128e-16, + 2.78456191e+00, 1.64170477e+00, -4.36972564e-16, + -1.64170477e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00, -1.00000000e+00, -1.00000000e+00, + -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, + 1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00]]]), (0, 0): array([[[-0.11111111, -0.08076859, -0.08076859, 0.47435261, -0.02807494, + -0.02807494, -0.0525839 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[-0.11111111, 0.47435261, -0.08076859, -0.08076859, -0.0525839 , + -0.02807494, -0.02807494], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[-0.11111111, -0.08076859, 0.47435261, -0.08076859, -0.02807494, + -0.0525839 , -0.02807494], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.44444444, 0.32307438, 0.32307438, 0.04103583, 0.11229977, + 0.11229977, 0.88413424], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.44444444, 0.04103583, 0.32307438, 0.32307438, 0.88413424, + 0.11229977, 0.11229977], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0.44444444, 0.32307438, 0.04103583, 0.32307438, 0.11229977, + 0.88413424, 0.11229977], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.11111111, -0.08076859, -0.08076859, 0.47435261, -0.02807494, + -0.02807494, -0.0525839 ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.11111111, 0.47435261, -0.08076859, -0.08076859, -0.0525839 , + -0.02807494, -0.02807494], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [-0.11111111, -0.08076859, 0.47435261, -0.08076859, -0.02807494, + -0.0525839 , -0.02807494], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.44444444, 0.32307438, 0.32307438, 0.04103583, 0.11229977, + 0.11229977, 0.88413424], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.44444444, 0.04103583, 0.32307438, 0.32307438, 0.88413424, + 0.11229977, 0.11229977], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.44444444, 0.32307438, 0.04103583, 0.32307438, 0.11229977, + 0.88413424, 0.11229977], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.10128651, 0.10128651, 0.79742699, 0.47014206, + 0.47014206, 0.05971587]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.79742699, 0.10128651, 0.10128651, 0.05971587, + 0.47014206, 0.47014206]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. ], + [ 0.33333333, 0.10128651, 0.79742699, 0.10128651, 0.47014206, + 0.05971587, 0.47014206]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0': array([[-0.11111111, -0.11111111, -0.11111111, 0.44444444, 0.44444444, + 0.44444444, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.08076859, 0.47435261, -0.08076859, 0.32307438, 0.04103583, + 0.32307438, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.08076859, -0.08076859, 0.47435261, 0.32307438, 0.32307438, + 0.04103583, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.47435261, -0.08076859, -0.08076859, 0.04103583, 0.32307438, + 0.32307438, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02807494, -0.0525839 , -0.02807494, 0.11229977, 0.88413424, + 0.11229977, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02807494, -0.02807494, -0.0525839 , 0.11229977, 0.11229977, + 0.88413424, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.0525839 , -0.02807494, -0.02807494, 0.88413424, 0.11229977, + 0.11229977, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11111111, -0.11111111, -0.11111111, 0.44444444, + 0.44444444, 0.44444444, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08076859, 0.47435261, -0.08076859, 0.32307438, + 0.04103583, 0.32307438, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08076859, -0.08076859, 0.47435261, 0.32307438, + 0.32307438, 0.04103583, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.47435261, -0.08076859, -0.08076859, 0.04103583, + 0.32307438, 0.32307438, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02807494, -0.0525839 , -0.02807494, 0.11229977, + 0.88413424, 0.11229977, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02807494, -0.02807494, -0.0525839 , 0.11229977, + 0.11229977, 0.88413424, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.0525839 , -0.02807494, -0.02807494, 0.88413424, + 0.11229977, 0.11229977, 0. , 0. , 0. ]]), 'FE1_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.33333333, 0.33333333, 0.33333333], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.10128651, 0.79742699, 0.10128651], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.10128651, 0.10128651, 0.79742699], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.79742699, 0.10128651, 0.10128651], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.47014206, 0.05971587, 0.47014206], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.47014206, 0.47014206, 0.05971587], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.05971587, 0.47014206, 0.47014206]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -3.33333333e-01, 3.33333333e-01, 0.00000000e+00, + 1.33333333e+00, -1.33333333e+00, -2.15331488e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, 2.18970794e+00, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, -2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, -5.94853971e-01, 0.00000000e+00, + 3.18970794e+00, -3.18970794e+00, -4.37374128e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.18970794e+00, -5.94853971e-01, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, 2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, -7.61136513e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, 1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, 8.80568256e-01, 0.00000000e+00, + 2.38863487e-01, -2.38863487e-01, -4.36972564e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.61136513e-01, 8.80568256e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, -1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C2_D01': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.]]), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -3.33333333e-01, 8.32667268e-17, 3.33333333e-01, + 1.33333333e+00, -1.66533454e-16, -1.33333333e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, 2.22044605e-16, -5.94853971e-01, + 3.18970794e+00, 4.44089210e-16, -3.18970794e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, -2.22044605e-16, 2.18970794e+00, + 4.05146029e-01, -2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.18970794e+00, 5.55111512e-17, -5.94853971e-01, + 4.05146029e-01, 2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, 1.52655666e-16, 8.80568256e-01, + 2.38863487e-01, 3.33066907e-16, -2.38863487e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, -2.77555756e-16, -7.61136513e-01, + 1.88056826e+00, 1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.61136513e-01, 9.71445147e-17, 8.80568256e-01, + 1.88056826e+00, -1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D01': array([[ -3.33333333e-01, 8.32667268e-17, 3.33333333e-01, + 1.33333333e+00, -1.66533454e-16, -1.33333333e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, 2.22044605e-16, -5.94853971e-01, + 3.18970794e+00, 4.44089210e-16, -3.18970794e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, -2.22044605e-16, 2.18970794e+00, + 4.05146029e-01, -2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.18970794e+00, 5.55111512e-17, -5.94853971e-01, + 4.05146029e-01, 2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, 1.52655666e-16, 8.80568256e-01, + 2.38863487e-01, 3.33066907e-16, -2.38863487e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, -2.77555756e-16, -7.61136513e-01, + 1.88056826e+00, 1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.61136513e-01, 9.71445147e-17, 8.80568256e-01, + 1.88056826e+00, -1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[ -3.33333333e-01, 3.33333333e-01, 0.00000000e+00, + 1.33333333e+00, -1.33333333e+00, -2.15331488e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, 2.18970794e+00, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, -2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, -5.94853971e-01, 0.00000000e+00, + 3.18970794e+00, -3.18970794e+00, -4.37374128e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.18970794e+00, -5.94853971e-01, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, 2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, -7.61136513e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, 1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, 8.80568256e-01, 0.00000000e+00, + 2.38863487e-01, -2.38863487e-01, -4.36972564e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.61136513e-01, 8.80568256e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, -1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333], + [ 0. , 0. , 0. , 0.10128651, 0.79742699, + 0.10128651], + [ 0. , 0. , 0. , 0.10128651, 0.10128651, + 0.79742699], + [ 0. , 0. , 0. , 0.79742699, 0.10128651, + 0.10128651], + [ 0. , 0. , 0. , 0.47014206, 0.05971587, + 0.47014206], + [ 0. , 0. , 0. , 0.47014206, 0.47014206, + 0.05971587], + [ 0. , 0. , 0. , 0.05971587, 0.47014206, + 0.47014206]]), 'FE0_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ], + [ 0.10128651, 0.79742699, 0.10128651, 0. , 0. , + 0. ], + [ 0.10128651, 0.10128651, 0.79742699, 0. , 0. , + 0. ], + [ 0.79742699, 0.10128651, 0.10128651, 0. , 0. , + 0. ], + [ 0.47014206, 0.05971587, 0.47014206, 0. , 0. , + 0. ], + [ 0.47014206, 0.47014206, 0.05971587, 0. , 0. , + 0. ], + [ 0.05971587, 0.47014206, 0.47014206, 0. , 0. , + 0. ]])} + + tables: {'FE0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0': array([[-0.11111111, -0.11111111, -0.11111111, 0.44444444, 0.44444444, + 0.44444444, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.08076859, 0.47435261, -0.08076859, 0.32307438, 0.04103583, + 0.32307438, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.08076859, -0.08076859, 0.47435261, 0.32307438, 0.32307438, + 0.04103583, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [ 0.47435261, -0.08076859, -0.08076859, 0.04103583, 0.32307438, + 0.32307438, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02807494, -0.0525839 , -0.02807494, 0.11229977, 0.88413424, + 0.11229977, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.02807494, -0.02807494, -0.0525839 , 0.11229977, 0.11229977, + 0.88413424, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ], + [-0.0525839 , -0.02807494, -0.02807494, 0.88413424, 0.11229977, + 0.11229977, 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , -0.11111111, -0.11111111, -0.11111111, 0.44444444, + 0.44444444, 0.44444444, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08076859, 0.47435261, -0.08076859, 0.32307438, + 0.04103583, 0.32307438, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.08076859, -0.08076859, 0.47435261, 0.32307438, + 0.32307438, 0.04103583, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0.47435261, -0.08076859, -0.08076859, 0.04103583, + 0.32307438, 0.32307438, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02807494, -0.0525839 , -0.02807494, 0.11229977, + 0.88413424, 0.11229977, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.02807494, -0.02807494, -0.0525839 , 0.11229977, + 0.11229977, 0.88413424, 0. , 0. , 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , -0.0525839 , -0.02807494, -0.02807494, 0.88413424, + 0.11229977, 0.11229977, 0. , 0. , 0. ]]), 'FE1_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.33333333, 0.33333333, 0.33333333], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.10128651, 0.79742699, 0.10128651], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.10128651, 0.10128651, 0.79742699], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.79742699, 0.10128651, 0.10128651], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.47014206, 0.05971587, 0.47014206], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.47014206, 0.47014206, 0.05971587], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.05971587, 0.47014206, 0.47014206]]), 'FE0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_C1_D10': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -3.33333333e-01, 3.33333333e-01, 0.00000000e+00, + 1.33333333e+00, -1.33333333e+00, -2.15331488e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, 2.18970794e+00, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, -2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, -5.94853971e-01, 0.00000000e+00, + 3.18970794e+00, -3.18970794e+00, -4.37374128e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.18970794e+00, -5.94853971e-01, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, 2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, -7.61136513e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, 1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, 8.80568256e-01, 0.00000000e+00, + 2.38863487e-01, -2.38863487e-01, -4.36972564e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.61136513e-01, 8.80568256e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, -1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C2_D10': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 1., 0.]]), 'FE0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C2_D01': array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.], + [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1., + 0., 1.]]), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -3.33333333e-01, 8.32667268e-17, 3.33333333e-01, + 1.33333333e+00, -1.66533454e-16, -1.33333333e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, 2.22044605e-16, -5.94853971e-01, + 3.18970794e+00, 4.44089210e-16, -3.18970794e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.94853971e-01, -2.22044605e-16, 2.18970794e+00, + 4.05146029e-01, -2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.18970794e+00, 5.55111512e-17, -5.94853971e-01, + 4.05146029e-01, 2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, 1.52655666e-16, 8.80568256e-01, + 2.38863487e-01, 3.33066907e-16, -2.38863487e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -8.80568256e-01, -2.77555756e-16, -7.61136513e-01, + 1.88056826e+00, 1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.61136513e-01, 9.71445147e-17, 8.80568256e-01, + 1.88056826e+00, -1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D01': array([[ -3.33333333e-01, 8.32667268e-17, 3.33333333e-01, + 1.33333333e+00, -1.66533454e-16, -1.33333333e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, 2.22044605e-16, -5.94853971e-01, + 3.18970794e+00, 4.44089210e-16, -3.18970794e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, -2.22044605e-16, 2.18970794e+00, + 4.05146029e-01, -2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.18970794e+00, 5.55111512e-17, -5.94853971e-01, + 4.05146029e-01, 2.78456191e+00, -4.05146029e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, 1.52655666e-16, 8.80568256e-01, + 2.38863487e-01, 3.33066907e-16, -2.38863487e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, -2.77555756e-16, -7.61136513e-01, + 1.88056826e+00, 1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.61136513e-01, 9.71445147e-17, 8.80568256e-01, + 1.88056826e+00, -1.64170477e+00, -1.88056826e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[ -3.33333333e-01, 3.33333333e-01, 0.00000000e+00, + 1.33333333e+00, -1.33333333e+00, -2.15331488e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, 2.18970794e+00, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, -2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.94853971e-01, -5.94853971e-01, 0.00000000e+00, + 3.18970794e+00, -3.18970794e+00, -4.37374128e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -2.18970794e+00, -5.94853971e-01, 0.00000000e+00, + 4.05146029e-01, -4.05146029e-01, 2.78456191e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, -7.61136513e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, 1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -8.80568256e-01, 8.80568256e-01, 0.00000000e+00, + 2.38863487e-01, -2.38863487e-01, -4.36972564e-16, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 7.61136513e-01, 8.80568256e-01, 0.00000000e+00, + 1.88056826e+00, -1.88056826e+00, -1.64170477e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE0_C1': array([[ 0. , 0. , 0. , 0.33333333, 0.33333333, + 0.33333333], + [ 0. , 0. , 0. , 0.10128651, 0.79742699, + 0.10128651], + [ 0. , 0. , 0. , 0.10128651, 0.10128651, + 0.79742699], + [ 0. , 0. , 0. , 0.79742699, 0.10128651, + 0.10128651], + [ 0. , 0. , 0. , 0.47014206, 0.05971587, + 0.47014206], + [ 0. , 0. , 0. , 0.47014206, 0.47014206, + 0.05971587], + [ 0. , 0. , 0. , 0.05971587, 0.47014206, + 0.47014206]]), 'FE0_C0': array([[ 0.33333333, 0.33333333, 0.33333333, 0. , 0. , + 0. ], + [ 0.10128651, 0.79742699, 0.10128651, 0. , 0. , + 0. ], + [ 0.10128651, 0.10128651, 0.79742699, 0. , 0. , + 0. ], + [ 0.79742699, 0.10128651, 0.10128651, 0. , 0. , + 0. ], + [ 0.47014206, 0.05971587, 0.47014206, 0. , 0. , + 0. ], + [ 0.47014206, 0.47014206, 0.05971587, 0. , 0. , + 0. ], + [ 0.05971587, 0.47014206, 0.47014206, 0. , 0. , + 0. ]])} + + name_map: {} + + inv_name_map: {'FE0_C1_D01': 'FE0_C1_D01', 'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C2': 'FE1_C2', 'FE0_C1_D10': 'FE0_C1_D10', 'FE1_C1_D10': 'FE1_C1_D10', 'FE1_C2_D10': 'FE1_C2_D10', 'FE0_C0_D10': 'FE0_C0_D10', 'FE0_C0_D01': 'FE0_C0_D01', 'FE2': 'FE2', 'FE1_C2_D01': 'FE1_C2_D01', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10', 'FE0_C1': 'FE0_C1', 'FE0_C0': 'FE0_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE1_C0': array([[-0.11111111, -0.11111111, -0.11111111, 0.44444444, 0.44444444, + 0.44444444], + [-0.08076859, 0.47435261, -0.08076859, 0.32307438, 0.04103583, + 0.32307438], + [-0.08076859, -0.08076859, 0.47435261, 0.32307438, 0.32307438, + 0.04103583], + [ 0.47435261, -0.08076859, -0.08076859, 0.04103583, 0.32307438, + 0.32307438], + [-0.02807494, -0.0525839 , -0.02807494, 0.11229977, 0.88413424, + 0.11229977], + [-0.02807494, -0.02807494, -0.0525839 , 0.11229977, 0.11229977, + 0.88413424], + [-0.0525839 , -0.02807494, -0.02807494, 0.88413424, 0.11229977, + 0.11229977]]), 'FE0_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]]), 'FE2': array([[1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0], + [1.0]], dtype=object), 'FE1_C0_D01': array([[-0.33333333, 0.33333333, 1.33333333, 0. , -1.33333333], + [ 0.59485397, -0.59485397, 3.18970794, 0. , -3.18970794], + [ 0.59485397, 2.18970794, 0.40514603, -2.78456191, -0.40514603], + [-2.18970794, -0.59485397, 0.40514603, 2.78456191, -0.40514603], + [-0.88056826, 0.88056826, 0.23886349, 0. , -0.23886349], + [-0.88056826, -0.76113651, 1.88056826, 1.64170477, -1.88056826], + [ 0.76113651, 0.88056826, 1.88056826, -1.64170477, -1.88056826]]), 'FE1_C0_D10': array([[-0.33333333, 0.33333333, 1.33333333, -1.33333333, 0. ], + [ 0.59485397, 2.18970794, 0.40514603, -0.40514603, -2.78456191], + [ 0.59485397, -0.59485397, 3.18970794, -3.18970794, 0. ], + [-2.18970794, -0.59485397, 0.40514603, -0.40514603, 2.78456191], + [-0.88056826, -0.76113651, 1.88056826, -1.88056826, 1.64170477], + [-0.88056826, 0.88056826, 0.23886349, -0.23886349, 0. ], + [ 0.76113651, 0.88056826, 1.88056826, -1.88056826, -1.64170477]]), 'FE0_C0': array([[ 0.33333333, 0.33333333, 0.33333333], + [ 0.10128651, 0.79742699, 0.10128651], + [ 0.10128651, 0.10128651, 0.79742699], + [ 0.79742699, 0.10128651, 0.10128651], + [ 0.47014206, 0.05971587, 0.47014206], + [ 0.47014206, 0.47014206, 0.05971587], + [ 0.05971587, 0.47014206, 0.47014206]])} + + QG-utils, psi_tables, name_map: + {'FE0_C1_D01': ('FE0_C0_D01', (4, [3, 5]), False, False), 'FE1_C0': ('FE1_C0', (6, [0, 1, 2, 3, 4, 5]), False, False), 'FE1_C1': ('FE1_C0', (9, [6, 7, 8, 9, 10, 11]), False, False), 'FE1_C2': ('FE0_C0', (12, [12, 13, 14]), False, False), 'FE0_C1_D10': ('FE0_C0_D01', (5, [3, 4]), False, False), 'FE1_C1_D10': ('FE1_C0_D10', (11, [6, 7, 9, 10, 11]), False, False), 'FE1_C2_D10': ('FE0_C0_D01', (14, [12, 13]), False, False), 'FE0_C0_D10': ('FE0_C0_D01', (2, [0, 1]), False, False), 'FE0_C0_D01': ('FE0_C0_D01', (1, [0, 2]), False, False), 'FE2': ('FE2', (), False, True), 'FE1_C2_D01': ('FE0_C0_D01', (13, [12, 14]), False, False), 'FE1_C1_D01': ('FE1_C0_D01', (10, [6, 8, 9, 10, 11]), False, False), 'FE1_C0_D01': ('FE1_C0_D01', (7, [0, 2, 3, 4, 5]), False, False), 'FE1_C0_D10': ('FE1_C0_D10', (8, [0, 1, 3, 4, 5]), False, False), 'FE0_C1': ('FE0_C0', (3, [3, 4, 5]), False, False), 'FE0_C0': ('FE0_C0', (0, [0, 1, 2]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {2: {FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {0: {(0, 0): array([[-2.0816681711721685e-17, 5.5511151231257827e-17], + [0.78867513459481287, 0.21132486540518719], + [0.21132486540518713, 0.78867513459481287]], dtype=object)}, 1: {(0, 0): array([[0.78867513459481287, 0.21132486540518719], + [-2.0816681711721685e-17, 5.5511151231257827e-17], + [0.21132486540518713, 0.78867513459481287]], dtype=object)}, 2: {(0, 0): array([[0.78867513459481287, 0.21132486540518716], + [0.21132486540518716, 0.78867513459481287], + [0.0, 0.0]], dtype=object)}}}, MixedElement(*[VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, dim=2, quad_scheme=None), FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None)], **{'value_shape': (3,) }): {None: {0: {(0, 0): array([[[ 2.77555756e-17, 4.16333634e-17], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 4.55341801e-01, -1.22008468e-01], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ -1.22008468e-01, 4.55341801e-01], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 6.66666667e-01, 6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ -1.38777878e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ -1.73472348e-17, -4.16333634e-17], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 2.77555756e-17, 4.16333634e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 4.55341801e-01, -1.22008468e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -1.22008468e-01, 4.55341801e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 6.66666667e-01, 6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -1.38777878e-17, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -1.73472348e-17, -4.16333634e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ -2.08166817e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ 7.88675135e-01, 2.11324865e-01]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 7.88675135e-01]]])}, 1: {(0, 0): array([[[ 4.55341801e-01, -1.22008468e-01], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 2.08166817e-17, 9.02056208e-17], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ -1.22008468e-01, 4.55341801e-01], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ -1.38777878e-17, -2.77555756e-17], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 6.66666667e-01, 6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ -1.73472348e-17, -4.16333634e-17], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 4.55341801e-01, -1.22008468e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 2.08166817e-17, 9.02056208e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -1.22008468e-01, 4.55341801e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -1.38777878e-17, -2.77555756e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 6.66666667e-01, 6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -1.73472348e-17, -4.16333634e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ 7.88675135e-01, 2.11324865e-01]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ -2.08166817e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 7.88675135e-01]]])}, 2: {(0, 0): array([[[ 4.55341801e-01, -1.22008468e-01], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ -1.22008468e-01, 4.55341801e-01], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 2.77555756e-17], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 6.66666667e-01, 6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 4.55341801e-01, -1.22008468e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -1.22008468e-01, 4.55341801e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 2.77555756e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, -5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 6.66666667e-01, 6.66666667e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ 7.88675135e-01, 2.11324865e-01]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 7.88675135e-01]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00]]])}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {0: {(0, 1): array([[[-1., -1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [ 1., 1.]]]), (1, 0): array([[[-1., -1.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 1., 1.]], + + [[ 0., 0.], + [ 0., 0.]]]), (0, 0): array([[[ -2.08166817e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 7.88675135e-01, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 2.11324865e-01, 7.88675135e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -2.08166817e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 7.88675135e-01, 2.11324865e-01]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 7.88675135e-01]]])}, 1: {(0, 1): array([[[-1., -1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [ 1., 1.]]]), (1, 0): array([[[-1., -1.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 1., 1.]], + + [[ 0., 0.], + [ 0., 0.]]]), (0, 0): array([[[ 7.88675135e-01, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ -2.08166817e-17, 5.55111512e-17], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 2.11324865e-01, 7.88675135e-01], + [ 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 7.88675135e-01, 2.11324865e-01]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ -2.08166817e-17, 5.55111512e-17]], + + [[ 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 7.88675135e-01]]])}, 2: {(0, 1): array([[[-1., -1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [ 1., 1.]]]), (1, 0): array([[[-1., -1.], + [ 0., 0.]], + + [[ 1., 1.], + [ 0., 0.]], + + [[ 0., 0.], + [ 0., 0.]], + + [[ 0., 0.], + [-1., -1.]], + + [[ 0., 0.], + [ 1., 1.]], + + [[ 0., 0.], + [ 0., 0.]]]), (0, 0): array([[[ 0.78867513, 0.21132487], + [ 0. , 0. ]], + + [[ 0.21132487, 0.78867513], + [ 0. , 0. ]], + + [[ 0. , 0. ], + [ 0. , 0. ]], + + [[ 0. , 0. ], + [ 0.78867513, 0.21132487]], + + [[ 0. , 0. ], + [ 0.21132487, 0.78867513]], + + [[ 0. , 0. ], + [ 0. , 0. ]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE0_f0': array([[-2.0816681711721685e-17, 0.78867513459481287, 0.21132486540518713], + [5.5511151231257827e-17, 0.21132486540518719, 0.78867513459481287]], dtype=object), 'FE0_f1': array([[0.78867513459481287, -2.0816681711721685e-17, 0.21132486540518713], + [0.21132486540518719, 5.5511151231257827e-17, 0.78867513459481287]], dtype=object), 'FE0_f2': array([[0.78867513459481287, 0.21132486540518716, 0.0], + [0.21132486540518716, 0.78867513459481287, 0.0]], dtype=object), 'FE1_f0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_f2_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_f1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_f2_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.55341801e-01, -1.22008468e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.22008468e-01, 4.55341801e-01, 0.00000000e+00, + 2.77555756e-17, -5.55111512e-17, 6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_f2_C0': array([[ 0.78867513, 0.21132487, 0. , 0. , 0. , + 0. ], + [ 0.21132487, 0.78867513, 0. , 0. , 0. , + 0. ]]), 'FE1_f2_C1': array([[ 0. , 0. , 0. , 0.78867513, 0.21132487, + 0. ], + [ 0. , 0. , 0. , 0.21132487, 0.78867513, + 0. ]]), 'FE2_f0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.08166817e-17, 7.88675135e-01, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 2.11324865e-01, 7.88675135e-01]]), 'FE2_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 4.55341801e-01, -1.22008468e-01, + 6.66666667e-01, -1.38777878e-17, -1.73472348e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, -1.22008468e-01, 4.55341801e-01, + 6.66666667e-01, -5.55111512e-17, -4.16333634e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f0_C0': array([[ 2.77555756e-17, 4.55341801e-01, -1.22008468e-01, + 6.66666667e-01, -1.38777878e-17, -1.73472348e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, -1.22008468e-01, 4.55341801e-01, + 6.66666667e-01, -5.55111512e-17, -4.16333634e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_f2_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_f0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_f1_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f0_C0': array([[ -2.08166817e-17, 7.88675135e-01, 2.11324865e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, 2.11324865e-01, 7.88675135e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.08166817e-17, 7.88675135e-01, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 2.11324865e-01, 7.88675135e-01]]), 'FE1_f2_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_f0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE1_f1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_f2_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE2_f2_C0': array([[ 4.55341801e-01, -1.22008468e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.22008468e-01, 4.55341801e-01, 0.00000000e+00, + 2.77555756e-17, -5.55111512e-17, 6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.78867513, 0.21132487, 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.21132487, 0.78867513, 0. ]]), 'FE2_f1_C0': array([[ 4.55341801e-01, 2.08166817e-17, -1.22008468e-01, + -1.38777878e-17, 6.66666667e-01, -1.73472348e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.22008468e-01, 9.02056208e-17, 4.55341801e-01, + -2.77555756e-17, 6.66666667e-01, -4.16333634e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.55341801e-01, 2.08166817e-17, -1.22008468e-01, + -1.38777878e-17, 6.66666667e-01, -1.73472348e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.22008468e-01, 9.02056208e-17, 4.55341801e-01, + -2.77555756e-17, 6.66666667e-01, -4.16333634e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.88675135e-01, -2.08166817e-17, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.11324865e-01, 5.55111512e-17, 7.88675135e-01]]), 'FE1_f0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.88675135e-01, -2.08166817e-17, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.11324865e-01, 5.55111512e-17, 7.88675135e-01]]), 'FE1_f1_C0': array([[ 7.88675135e-01, -2.08166817e-17, 2.11324865e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 5.55111512e-17, 7.88675135e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + tables: {'FE0_f0': array([[-2.0816681711721685e-17, 0.78867513459481287, 0.21132486540518713], + [5.5511151231257827e-17, 0.21132486540518719, 0.78867513459481287]], dtype=object), 'FE0_f1': array([[0.78867513459481287, -2.0816681711721685e-17, 0.21132486540518713], + [0.21132486540518719, 5.5511151231257827e-17, 0.78867513459481287]], dtype=object), 'FE0_f2': array([[0.78867513459481287, 0.21132486540518716, 0.0], + [0.21132486540518716, 0.78867513459481287, 0.0]], dtype=object), 'FE1_f0_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE2_f2_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.55341801e-01, -1.22008468e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.22008468e-01, 4.55341801e-01, 0.00000000e+00, + 2.77555756e-17, -5.55111512e-17, 6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_f2_C0': array([[ 0.78867513, 0.21132487, 0. , 0. , 0. , + 0. ], + [ 0.21132487, 0.78867513, 0. , 0. , 0. , + 0. ]]), 'FE1_f2_C1': array([[ 0. , 0. , 0. , 0.78867513, 0.21132487, + 0. ], + [ 0. , 0. , 0. , 0.21132487, 0.78867513, + 0. ]]), 'FE2_f0_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.08166817e-17, 7.88675135e-01, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 2.11324865e-01, 7.88675135e-01]]), 'FE2_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.77555756e-17, 4.55341801e-01, -1.22008468e-01, + 6.66666667e-01, -1.38777878e-17, -1.73472348e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.16333634e-17, -1.22008468e-01, 4.55341801e-01, + 6.66666667e-01, -5.55111512e-17, -4.16333634e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f0_C0': array([[ 2.77555756e-17, 4.55341801e-01, -1.22008468e-01, + 6.66666667e-01, -1.38777878e-17, -1.73472348e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 4.16333634e-17, -1.22008468e-01, 4.55341801e-01, + 6.66666667e-01, -5.55111512e-17, -4.16333634e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_f0_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]]), 'FE1_f0_C0': array([[ -2.08166817e-17, 7.88675135e-01, 2.11324865e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 5.55111512e-17, 2.11324865e-01, 7.88675135e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_f0_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -2.08166817e-17, 7.88675135e-01, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 5.55111512e-17, 2.11324865e-01, 7.88675135e-01]]), 'FE1_f0_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE2_f2_C0': array([[ 4.55341801e-01, -1.22008468e-01, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.22008468e-01, 4.55341801e-01, 0.00000000e+00, + 2.77555756e-17, -5.55111512e-17, 6.66666667e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f2_C2': array([[ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.78867513, 0.21132487, 0. ], + [ 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0. , 0. , 0. , + 0. , 0. , 0.21132487, 0.78867513, 0. ]]), 'FE2_f1_C0': array([[ 4.55341801e-01, 2.08166817e-17, -1.22008468e-01, + -1.38777878e-17, 6.66666667e-01, -1.73472348e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.22008468e-01, 9.02056208e-17, 4.55341801e-01, + -2.77555756e-17, 6.66666667e-01, -4.16333634e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 4.55341801e-01, 2.08166817e-17, -1.22008468e-01, + -1.38777878e-17, 6.66666667e-01, -1.73472348e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.22008468e-01, 9.02056208e-17, 4.55341801e-01, + -2.77555756e-17, 6.66666667e-01, -4.16333634e-17, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE2_f1_C2': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.88675135e-01, -2.08166817e-17, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.11324865e-01, 5.55111512e-17, 7.88675135e-01]]), 'FE1_f0_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_f1_C1': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 7.88675135e-01, -2.08166817e-17, 2.11324865e-01], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 2.11324865e-01, 5.55111512e-17, 7.88675135e-01]]), 'FE1_f1_C0': array([[ 7.88675135e-01, -2.08166817e-17, 2.11324865e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 2.11324865e-01, 5.55111512e-17, 7.88675135e-01, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} + + name_map: {'FE1_f0_C1_D10': ['FE1_f1_C1_D10', 'FE1_f2_C1_D10'], 'FE1_f0_C0_D01': ['FE1_f1_C0_D01', 'FE1_f2_C0_D01'], 'FE1_f0_C1_D01': ['FE1_f1_C1_D01', 'FE1_f2_C1_D01'], 'FE1_f0_C0_D10': ['FE1_f1_C0_D10', 'FE1_f2_C0_D10']} + + inv_name_map: {'FE0_f0': 'FE0_f0', 'FE1_f1_C0_D10': 'FE1_f0_C0_D10', 'FE0_f2': 'FE0_f2', 'FE1_f0_C1_D01': 'FE1_f0_C1_D01', 'FE1_f2_C1_D01': 'FE1_f0_C1_D01', 'FE1_f1_C1_D10': 'FE1_f0_C1_D10', 'FE1_f2_C0_D10': 'FE1_f0_C0_D10', 'FE1_f2_C0': 'FE1_f2_C0', 'FE1_f2_C1': 'FE1_f2_C1', 'FE2_f0_C2': 'FE2_f0_C2', 'FE2_f0_C1': 'FE2_f0_C1', 'FE2_f0_C0': 'FE2_f0_C0', 'FE1_f2_C0_D01': 'FE1_f0_C0_D01', 'FE0_f1': 'FE0_f1', 'FE1_f0_C0_D10': 'FE1_f0_C0_D10', 'FE1_f1_C0_D01': 'FE1_f0_C0_D01', 'FE1_f0_C0': 'FE1_f0_C0', 'FE1_f0_C1': 'FE1_f0_C1', 'FE1_f2_C1_D10': 'FE1_f0_C1_D10', 'FE1_f0_C1_D10': 'FE1_f0_C1_D10', 'FE1_f1_C1_D01': 'FE1_f0_C1_D01', 'FE2_f2_C1': 'FE2_f2_C1', 'FE2_f2_C0': 'FE2_f2_C0', 'FE2_f2_C2': 'FE2_f2_C2', 'FE2_f1_C0': 'FE2_f1_C0', 'FE2_f1_C1': 'FE2_f1_C1', 'FE2_f1_C2': 'FE2_f1_C2', 'FE1_f0_C0_D01': 'FE1_f0_C0_D01', 'FE1_f1_C1': 'FE1_f1_C1', 'FE1_f1_C0': 'FE1_f1_C0'} + + QG-utils, psi_tables, unique_tables: + {'FE0_f0': array([[0.78867513459481287, 0.21132486540518713], + [0.21132486540518719, 0.78867513459481287]], dtype=object), 'FE2_f0_C0': array([[ 0.4553418 , -0.12200847, 0.66666667], + [-0.12200847, 0.4553418 , 0.66666667]]), 'FE1_f0_C0_D01': array([[-1., 1.], + [-1., 1.]])} + + QG-utils, psi_tables, name_map: + {'FE0_f0': ('FE0_f0', (0, [1, 2]), False, False), 'FE1_f1_C0_D10': ('FE1_f0_C0_D01', (5, [0, 1]), False, False), 'FE0_f2': ('FE0_f0', (2, [0, 1]), False, False), 'FE1_f0_C1_D01': ('FE1_f0_C0_D01', (7, [3, 5]), False, False), 'FE1_f2_C1_D01': ('FE1_f0_C0_D01', (7, [3, 5]), False, False), 'FE1_f1_C1_D10': ('FE1_f0_C0_D01', (8, [3, 4]), False, False), 'FE1_f2_C0_D10': ('FE1_f0_C0_D01', (5, [0, 1]), False, False), 'FE1_f2_C0': ('FE0_f0', (11, [0, 1]), False, False), 'FE1_f2_C1': ('FE0_f0', (12, [3, 4]), False, False), 'FE2_f0_C2': ('FE0_f0', (15, [13, 14]), False, False), 'FE2_f0_C1': ('FE2_f0_C0', (14, [7, 8, 9]), False, False), 'FE2_f0_C0': ('FE2_f0_C0', (13, [1, 2, 3]), False, False), 'FE1_f2_C0_D01': ('FE1_f0_C0_D01', (4, [0, 2]), False, False), 'FE0_f1': ('FE0_f0', (1, [0, 2]), False, False), 'FE1_f0_C0_D10': ('FE1_f0_C0_D01', (5, [0, 1]), False, False), 'FE1_f1_C0_D01': ('FE1_f0_C0_D01', (4, [0, 2]), False, False), 'FE1_f0_C0': ('FE0_f0', (3, [1, 2]), False, False), 'FE1_f0_C1': ('FE0_f0', (6, [4, 5]), False, False), 'FE1_f2_C1_D10': ('FE1_f0_C0_D01', (8, [3, 4]), False, False), 'FE1_f0_C1_D10': ('FE1_f0_C0_D01', (8, [3, 4]), False, False), 'FE1_f1_C1_D01': ('FE1_f0_C0_D01', (7, [3, 5]), False, False), 'FE2_f2_C1': ('FE2_f0_C0', (20, [6, 7, 11]), False, False), 'FE2_f2_C0': ('FE2_f0_C0', (19, [0, 1, 5]), False, False), 'FE2_f2_C2': ('FE0_f0', (21, [12, 13]), False, False), 'FE2_f1_C0': ('FE2_f0_C0', (16, [0, 2, 4]), False, False), 'FE2_f1_C1': ('FE2_f0_C0', (17, [6, 8, 10]), False, False), 'FE2_f1_C2': ('FE0_f0', (18, [12, 14]), False, False), 'FE1_f0_C0_D01': ('FE1_f0_C0_D01', (4, [0, 2]), False, False), 'FE1_f1_C1': ('FE0_f0', (10, [3, 5]), False, False), 'FE1_f1_C0': ('FE0_f0', (9, [0, 2]), False, False)} + Transforming exterior facet integral 0 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming exterior facet integral 1 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Transforming exterior facet integral 2 + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 15 entries computed in 0.00195 seconds + Shape of reference tensor: (15,) + Primary multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 15 entries computed in 0.00188 seconds + Shape of reference tensor: (15,) + Primary multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + External multi index: rank = 0 dims = [] indices = [[]] + Precomputing integrals on reference element + Reusing element from cache + 15 entries computed in 0.00185 seconds + Shape of reference tensor: (15,) + Primary multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 1 dims = [15] indices = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]] + External multi index: rank = 0 dims = [] indices = [[]] + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 10.3426 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + Optimising expressions for cell integral + Optimising expressions for facet integral 0 + Optimising expressions for facet integral 1 + Optimising expressions for facet integral 2 + FErari not installed, skipping tensor optimizations + Optimising expressions for cell integral + Optimising expressions for facet integral 0 + Optimising expressions for facet integral 1 + Optimising expressions for facet integral 2 + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + Optimising expressions for cell integral + Optimising expressions for facet integral 0 + Optimising expressions for facet integral 1 + Optimising expressions for facet integral 2 + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + FErari not installed, skipping tensor optimizations + Optimising expressions for cell integral + Optimising expressions for facet integral 0 + Optimising expressions for facet integral 1 + Optimising expressions for facet integral 2 + FErari not installed, skipping tensor optimizations + +Compiler stage 3 finished in 0.048826 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 14 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: Y + Removing unused variable: X + Removing unused variable: C1 + Removing unused variable: C0 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 14 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: facet_area + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: facet_area + Removing unused variable: n1 + Removing unused variable: n0 + Removing unused variable: direction + Removing unused variable: det + Removing unused variable: dx1 + Removing unused variable: dx0 + Removing unused variable: v1 + Removing unused variable: v0 + Removing unused variable: edge_vertices + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: facet_area + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Removing unused variable: facet_area + Generating code for forms + +Compiler stage 4 finished in 3.10373 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.00614905 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./AdaptiveNavierStokes.h. + +Compiler stage 5 finished in 0.00775599 seconds. + +FFC finished in 13.7807 seconds. diff --git a/demo/undocumented/auto-adaptive-navier-stokes/cpp/main.cpp b/demo/undocumented/auto-adaptive-navier-stokes/cpp/main.cpp new file mode 100644 index 0000000..d9473b4 --- /dev/null +++ b/demo/undocumented/auto-adaptive-navier-stokes/cpp/main.cpp @@ -0,0 +1,130 @@ +// Copyright (C) 2010 Marie E. Rognes +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Anders Logg 2011 +// +// First added: 2010-08-19 +// Last changed: 2012-07-05 + +#include +#include "AdaptiveNavierStokes.h" + +using namespace dolfin; + +// No-slip boundary +class Noslip : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return ((x[1] < DOLFIN_EPS || x[1] > 1.0 - DOLFIN_EPS) || + (on_boundary && abs(x[0] - 1.5) < 0.1 + DOLFIN_EPS)); + } +}; + +// Subdomain on which goal function should be defined +class Outflow : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return x[0] > 4.0 - DOLFIN_EPS; + } +}; + +// Applied pressure (Neumann boundary condition) +class Pressure : public Expression +{ + void eval(Array& values, const Array& x) const + { + values[0] = (4.0 - x[0])/4.0; + } +}; + +int main() +{ + parameters["allow_extrapolation"] = true; + + // Create mesh and function space + Mesh mesh("../channel_with_flap.xml.gz"); + AdaptiveNavierStokes::BilinearForm::TrialSpace W(mesh); + + // Unknown + Function w(W); + + // Define boundary condition + Constant u0(0.0, 0.0); + Noslip noslip; + MeshFunction noslip_markers(mesh, mesh.topology().dim() - 1, 1); + noslip.mark(noslip_markers, 0); + SubSpace W0(W, 0); + DirichletBC bc(W0, u0, noslip_markers, 0); + + // Create variational formulation and assign coefficients + Constant nu(0.02); + AdaptiveNavierStokes::LinearForm F(W); + Pressure p0; + F.p0 = p0; + F.nu = nu; + F.w = w; + + // Initialize Jacobian dF + AdaptiveNavierStokes::BilinearForm dF(W, W); + dF.nu = nu; + dF.w = w; + + // Define goal functional + AdaptiveNavierStokes::GoalFunctional M(mesh); + M.w = w; + Outflow outflow; + MeshFunction outflow_markers(mesh, mesh.topology().dim()-1, 1); + outflow.mark(outflow_markers, 0); + M.ds = outflow_markers; + + // Define error tolerance + double tol = 1.e-5; + + // If no more control is wanted, do: + // solve(F == 0, w, bc, dF, tol, M); + // return 0; + + // Define variational problem from the variational form F, specify + // the unknown Function w and the boundary condition bc + NonlinearVariationalProblem pde(F, w, bc, dF); + + // Define solver + AdaptiveNonlinearVariationalSolver solver(pde, M); + + // Set (precomputed) reference in adaptive solver to evaluate + // quality of error estimates and adaptive refinement + solver.parameters["reference"] = 0.40863917; + + // Solve problem with goal-oriented error control to given tolerance + solver.solve(tol); + + // Show solver summary + solver.summary(); + + // Show all timings + list_timings(); + + // Plot solutions + Function solution = w.leaf_node(); + plot(solution[0], "Velocity on finest mesh"); + plot(solution[1], "Pressure on finest mesh"); + interactive(); + + return 0; +} diff --git a/demo/undocumented/auto-adaptive-navier-stokes/python/demo_auto-adaptive-navier-stokes.py b/demo/undocumented/auto-adaptive-navier-stokes/python/demo_auto-adaptive-navier-stokes.py new file mode 100644 index 0000000..c1c06d1 --- /dev/null +++ b/demo/undocumented/auto-adaptive-navier-stokes/python/demo_auto-adaptive-navier-stokes.py @@ -0,0 +1,115 @@ +# Copyright (C) 2010 Marie E. Rognes +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg 2011 +# +# First added: 2010 +# Last changed: 2011-10-04 + +from dolfin import * +import time + +class Noslip(SubDomain): + def inside(self, x, on_boundary): + return (x[1] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS) or \ + (on_boundary and abs(x[0] - 1.5) < 0.1 + DOLFIN_EPS) + +class Outflow(SubDomain): + def inside(self, x, on_boundary): + return x[0] > 4.0 - DOLFIN_EPS + +# Use compiler optimizations +parameters["form_compiler"]["cpp_optimize"] = True + +# Allow approximating values for points that may be generated outside +# of domain (because of numerical inaccuracies) +parameters["allow_extrapolation"] = True + +# Material parameters +nu = Constant(0.02) + +# Mesh +mesh = Mesh("../channel_with_flap.xml.gz") + +# Define function spaces (Taylor-Hood) +V = VectorFunctionSpace(mesh, "CG", 2) +Q = FunctionSpace(mesh, "CG", 1) +W = V * Q + +# Define unknown and test function(s) +(v, q) = TestFunctions(W) +w = Function(W) +(u, p) = (as_vector((w[0], w[1])), w[2]) + +# Prescribed pressure +p0 = Expression("(4.0 - x[0])/4.0") + +# Define variational forms +n = FacetNormal(mesh) +a = (nu*inner(grad(u), grad(v)) - div(v)*p + q*div(u))*dx() +a = a + inner(grad(u)*u, v)*dx() +L = - p0*dot(v, n)*ds() +F = a - L + +# Define boundary conditions +bc = DirichletBC(W.sub(0), Constant((0.0, 0.0)), Noslip()) + +# Create boundary subdomains +outflow = Outflow() +outflow_markers = MeshFunction("size_t", mesh, mesh.topology().dim() - 1) +outflow_markers.set_all(1) +outflow.mark(outflow_markers, 0) + +# Define new measure with associated subdomains +ds = Measure("ds")[outflow_markers] + +# Define goal +M = u[0]*ds(0) + +# Define error tolerance (with respect to goal) +tol = 1.e-05 + +# If no more control is wanted, do: +# solve(F == 0, w, bc, tol=tol, M=M) + +# Compute Jacobian form +J = derivative(F, w) + +# Define variational problem +pde = NonlinearVariationalProblem(F, w, bc, J) + +# Define solver +solver = AdaptiveNonlinearVariationalSolver(pde, M) + +# Set reference value +solver.parameters["reference"] = 0.40863917; + +# Solve to given tolerance +solver.solve(tol) + +# Show solver summary +solver.summary(); + +# Show all timings +list_timings() + +# Extract solutions on coarsest and finest mesh: +(u0, p0) = w.root_node().split() +(u1, p1) = w.leaf_node().split() +plot(p0, title="Pressure on initial mesh") +plot(p1, title="Pressure on final mesh") +interactive() diff --git a/demo/undocumented/block-matrix/cpp/CMakeLists.txt b/demo/undocumented/block-matrix/cpp/CMakeLists.txt new file mode 100644 index 0000000..720145f --- /dev/null +++ b/demo/undocumented/block-matrix/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_block-matrix) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/undocumented/block-matrix/cpp/StiffnessMatrix.h b/demo/undocumented/block-matrix/cpp/StiffnessMatrix.h new file mode 100644 index 0000000..d283646 --- /dev/null +++ b/demo/undocumented/block-matrix/cpp/StiffnessMatrix.h @@ -0,0 +1,2121 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __STIFFNESSMATRIX_H +#define __STIFFNESSMATRIX_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class stiffnessmatrix_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + stiffnessmatrix_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~stiffnessmatrix_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 3; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Compute value(s) + for (unsigned int r = 0; r < 3; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[2][1]; + for (unsigned int row = 0; row < 2; row++) + { + for (unsigned int col = 0; col < 1; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[2][2]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, -0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.288675134594813, -0.166666666666667}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[3] = {0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[1] *= std::sqrt(3.0); + + // Table(s) of coefficients + static const double coefficients0[3] = \ + {0.471404520791032, 0.0, 0.333333333333333}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[3][3] = \ + {{0.0, 0.0, 0.0}, + {4.89897948556636, 0.0, 0.0}, + {0.0, 0.0, 0.0}}; + + static const double dmats1[3][3] = \ + {{0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[2]; + for (unsigned int r = 0; r < 2; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[3][3] = \ + {{1.0, 0.0, 0.0}, + {0.0, 1.0, 0.0}, + {0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 3; t++) + { + for (unsigned int u = 0; u < 3; u++) + { + for (unsigned int tu = 0; tu < 3; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 3; s++) + { + for (unsigned int t = 0; t < 3; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 3; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 1) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[2]; + for (unsigned int r = 0; r < 2; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 3; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new stiffnessmatrix_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class stiffnessmatrix_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + stiffnessmatrix_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~stiffnessmatrix_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 1, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return false; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 3; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 2; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 0; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + dofs[0] = c.entity_indices[0][0]; + dofs[1] = c.entity_indices[0][1]; + dofs[2] = c.entity_indices[0][2]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new stiffnessmatrix_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stiffnessmatrix_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stiffnessmatrix_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stiffnessmatrix_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 11 + // Total number of operations (multiply-add pairs): 22 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = -0.5*G0_0_0 - 0.5*G0_1_0; + A[2] = -0.5*G0_0_1 - 0.5*G0_1_1; + A[3] = -0.5*G0_0_0 - 0.5*G0_0_1; + A[4] = 0.5*G0_0_0; + A[5] = 0.5*G0_0_1; + A[6] = -0.5*G0_1_0 - 0.5*G0_1_1; + A[7] = 0.5*G0_1_0; + A[8] = 0.5*G0_1_1; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class stiffnessmatrix_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + stiffnessmatrix_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~stiffnessmatrix_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W6[6] = {0.054975871827661, 0.054975871827661, 0.054975871827661, 0.111690794839005, 0.111690794839005, 0.111690794839005}; + // Quadrature points on the UFC reference element: (0.816847572980459, 0.091576213509771), (0.091576213509771, 0.816847572980459), (0.091576213509771, 0.091576213509771), (0.10810301816807, 0.445948490915965), (0.445948490915965, 0.10810301816807), (0.445948490915965, 0.445948490915965) + + // Values of basis functions at quadrature points. + static const double FE0[6][3] = \ + {{0.09157621350977, 0.816847572980459, 0.091576213509771}, + {0.0915762135097701, 0.0915762135097711, 0.816847572980459}, + {0.816847572980458, 0.091576213509771, 0.091576213509771}, + {0.445948490915965, 0.10810301816807, 0.445948490915965}, + {0.445948490915965, 0.445948490915965, 0.10810301816807}, + {0.10810301816807, 0.445948490915965, 0.445948490915965}}; + + static const double FEA6_f0[6][3] = \ + {{0.09157621350977, 0.816847572980459, 0.091576213509771}, + {0.0915762135097701, 0.091576213509771, 0.816847572980459}, + {0.816847572980458, 0.091576213509771, 0.091576213509771}, + {0.445948490915965, 0.10810301816807, 0.445948490915965}, + {0.445948490915965, 0.445948490915965, 0.10810301816807}, + {0.10810301816807, 0.445948490915965, 0.445948490915965}}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 3; r++) + { + A[r] = 0.0; + } // end loop over 'r' + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + + // Declare array to hold physical coordinate of quadrature point. + double X6[2]; + // Number of operations to compute element tensor for following IP loop = 114 + for (unsigned int ip = 0; ip < 6; ip++) + { + + // Compute physical coordinate of quadrature point, operations: 10. + X6[0] = FEA6_f0[ip][0]*vertex_coordinates[0] + FEA6_f0[ip][1]*vertex_coordinates[2] + FEA6_f0[ip][2]*vertex_coordinates[4]; + X6[1] = FEA6_f0[ip][0]*vertex_coordinates[1] + FEA6_f0[ip][1]*vertex_coordinates[3] + FEA6_f0[ip][2]*vertex_coordinates[5]; + + // Number of operations to compute ip constants: 3 + double I[1]; + // Number of operations: 3 + I[0] = W6[ip]*det*std::sin(X6[0]); + + + // Number of operations for primary indices: 6 + for (unsigned int j = 0; j < 3; j++) + { + // Number of operations to compute entry: 2 + A[j] += FE0[ip][j]*I[0]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stiffnessmatrix_form_0: public ufc::form +{ +public: + + /// Constructor + stiffnessmatrix_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stiffnessmatrix_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "996f902b81205976ede73587192186c9fd9b057164f0036bf925051e4ce236d3afa448345b6b3a7958f9c265483ba7f2701db77c9f0b497566f0fb97007140e6"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stiffnessmatrix_finite_element_0(); + break; + } + case 1: + { + return new stiffnessmatrix_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stiffnessmatrix_dofmap_0(); + break; + } + case 1: + { + return new stiffnessmatrix_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stiffnessmatrix_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class stiffnessmatrix_form_1: public ufc::form +{ +public: + + /// Constructor + stiffnessmatrix_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~stiffnessmatrix_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "56a4d96f30eed1418dd0bce6e6f2260bdc873ed65994e37c6b86cb669a9ea5e1b490f8e030c5c21578462a12ef579ef6603f936fd240b46f0923f1c3993bf793"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stiffnessmatrix_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new stiffnessmatrix_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new stiffnessmatrix_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace StiffnessMatrix +{ + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new stiffnessmatrix_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new stiffnessmatrix_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new stiffnessmatrix_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new stiffnessmatrix_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new stiffnessmatrix_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new stiffnessmatrix_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + + // Coefficients +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/undocumented/block-matrix/cpp/StiffnessMatrix.ufl b/demo/undocumented/block-matrix/cpp/StiffnessMatrix.ufl new file mode 100644 index 0000000..f2ca796 --- /dev/null +++ b/demo/undocumented/block-matrix/cpp/StiffnessMatrix.ufl @@ -0,0 +1,31 @@ +# Copyright (c) 2005-2006 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2005-06-05 +# Last changed: 2011-03-09 +# +# The bilinear form for a stiffness matrix (Poisson). + +element = FiniteElement("Lagrange", triangle, 1) + +x = SpatialCoordinate(triangle) + +u = TrialFunction(element) +v = TestFunction(element) + +a = dot(grad(u), grad(v))*dx +L = sin(x[0])*v*dx diff --git a/demo/undocumented/block-matrix/cpp/compile.log b/demo/undocumented/block-matrix/cpp/compile.log new file mode 100644 index 0000000..3126ba6 --- /dev/null +++ b/demo/undocumented/block-matrix/cpp/compile.log @@ -0,0 +1,356 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form StiffnessMatrix + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 0 + quadrature_degree: auto --> 0 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG1(?)' + Unique sub elements: 'CG1(?)' + + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal SpatialCoordinate. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 4 + quadrature_degree: auto --> 4 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0186269 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 36 entries computed in 0.000813 seconds + Shape of reference tensor: (3, 3, 2, 2) + Primary multi index: rank = 2 dims = [3, 3] indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {6: {FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, quad_scheme=None): {None: {None: {(0, 0): array([[0.091576213509770035, 0.091576213509770077, 0.81684757298045807, + 0.44594849091596506, 0.445948490915965, 0.10810301816807004], + [0.81684757298045907, 0.091576213509771076, 0.091576213509770979, + 0.10810301816807004, 0.445948490915965, 0.44594849091596506], + [0.091576213509770993, 0.81684757298045896, 0.091576213509770993, + 0.445948490915965, 0.10810301816807, 0.445948490915965]], dtype=object)}}}, VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]]]), (1, 0): array([[[-1., -1., -1., -1., -1., -1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 1., 1., 1., 1., 1., 1.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]], + + [[ 0., 0., 0., 0., 0., 0.], + [-1., -1., -1., -1., -1., -1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 1., 1., 1., 1., 1., 1.]], + + [[ 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0.]]]), (0, 0): array([[[ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0. , 0. , + 0. ]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0.44594849, 0.44594849, + 0.10810302]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0.10810302, 0.44594849, + 0.44594849]], + + [[ 0. , 0. , 0. , 0. , 0. , + 0. ], + [ 0.09157621, 0.81684757, 0.09157621, 0.44594849, 0.10810302, + 0.44594849]]])}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE1_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0': array([[0.091576213509770035, 0.81684757298045907, 0.091576213509770993], + [0.091576213509770077, 0.091576213509771076, 0.81684757298045896], + [0.81684757298045807, 0.091576213509770979, 0.091576213509770993], + [0.44594849091596506, 0.10810301816807004, 0.445948490915965], + [0.445948490915965, 0.445948490915965, 0.10810301816807], + [0.10810301816807004, 0.44594849091596506, 0.445948490915965]], dtype=object), 'FE1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + tables: {'FE1_C0': array([[ 0.09157621, 0.81684757, 0.09157621, 0. , 0. , + 0. ], + [ 0.09157621, 0.09157621, 0.81684757, 0. , 0. , + 0. ], + [ 0.81684757, 0.09157621, 0.09157621, 0. , 0. , + 0. ], + [ 0.44594849, 0.10810302, 0.44594849, 0. , 0. , + 0. ], + [ 0.44594849, 0.44594849, 0.10810302, 0. , 0. , + 0. ], + [ 0.10810302, 0.44594849, 0.44594849, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.09157621, 0.81684757, + 0.09157621], + [ 0. , 0. , 0. , 0.09157621, 0.09157621, + 0.81684757], + [ 0. , 0. , 0. , 0.81684757, 0.09157621, + 0.09157621], + [ 0. , 0. , 0. , 0.44594849, 0.10810302, + 0.44594849], + [ 0. , 0. , 0. , 0.44594849, 0.44594849, + 0.10810302], + [ 0. , 0. , 0. , 0.10810302, 0.44594849, + 0.44594849]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0': array([[0.091576213509770035, 0.81684757298045907, 0.091576213509770993], + [0.091576213509770077, 0.091576213509771076, 0.81684757298045896], + [0.81684757298045807, 0.091576213509770979, 0.091576213509770993], + [0.44594849091596506, 0.10810301816807004, 0.445948490915965], + [0.445948490915965, 0.445948490915965, 0.10810301816807], + [0.10810301816807004, 0.44594849091596506, 0.445948490915965]], dtype=object), 'FE1_C1_D01': array([[ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.], + [ 0., 0., 0., -1., 0., 1.]]), 'FE1_C0_D01': array([[-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.], + [-1., 0., 1., 0., 0., 0.]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + name_map: {} + + inv_name_map: {'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C1_D10': 'FE1_C1_D10', 'FE0': 'FE0', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE0': array([[0.091576213509770035, 0.81684757298045907, 0.091576213509770993], + [0.091576213509770077, 0.091576213509771076, 0.81684757298045896], + [0.81684757298045807, 0.091576213509770979, 0.091576213509770993], + [0.44594849091596506, 0.10810301816807004, 0.445948490915965], + [0.445948490915965, 0.445948490915965, 0.10810301816807], + [0.10810301816807004, 0.44594849091596506, 0.445948490915965]], dtype=object), 'FE1_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.], + [-1., 1.]])} + + QG-utils, psi_tables, name_map: + {'FE1_C0': ('FE0', (0, [0, 1, 2]), False, False), 'FE1_C1': ('FE0', (3, [3, 4, 5]), False, False), 'FE1_C1_D10': ('FE1_C0_D01', (5, [3, 4]), False, False), 'FE0': ('FE0', (), False, False), 'FE1_C1_D01': ('FE1_C0_D01', (4, [3, 5]), False, False), 'FE1_C0_D01': ('FE1_C0_D01', (1, [0, 2]), False, False), 'FE1_C0_D10': ('FE1_C0_D01', (2, [0, 1]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.064954 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.000379086 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp2 + Removing unused variable: tmp1 + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.042393 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000421047 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./StiffnessMatrix.h. + +Compiler stage 5 finished in 0.000554085 seconds. + +FFC finished in 0.127653 seconds. diff --git a/demo/undocumented/block-matrix/cpp/main.cpp b/demo/undocumented/block-matrix/cpp/main.cpp new file mode 100644 index 0000000..b216fb5 --- /dev/null +++ b/demo/undocumented/block-matrix/cpp/main.cpp @@ -0,0 +1,69 @@ +// Copyright (C) 2008 Kent-Andre Mardal +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Anders Logg, 2008. +// Modified by Garth N. Wells, 2010-2011. +// +// First added: 2008-12-12 +// Last changed: 2012-11-12 +// +// This demo illustrates basic usage of block matrices and vectors. + +#include +#include "StiffnessMatrix.h" + +using namespace dolfin; + +int main() +{ + // Create mesh + UnitSquareMesh mesh(32, 32); + + // Create a simple stiffness matrix and vector + StiffnessMatrix::FunctionSpace V(mesh); + + StiffnessMatrix::BilinearForm a(V, V); + std::shared_ptr A(new Matrix); + assemble(*A, a); + + StiffnessMatrix::LinearForm L(V); + std::shared_ptr x(new Vector); + assemble(*x, L); + + // Create a block matrix + BlockMatrix AA(2, 2); + AA.set_block(0, 0, A); + AA.set_block(1, 0, A); + AA.set_block(0, 1, A); + AA.set_block(1, 1, A); + + // Create block vector + BlockVector xx(2); + xx.set_block(0, x); + xx.set_block(1, x); + + // Create another block vector + std::shared_ptr y(new Vector); + A->init_vector(*y, 0); + BlockVector yy(2); + yy.set_block(0, y); + yy.set_block(1, y); + + // Multiply + AA.mult(xx, yy); + info("||Ax|| = %g", y->norm("l2")); +} diff --git a/demo/undocumented/block-matrix/python/demo_block-matrix.py b/demo/undocumented/block-matrix/python/demo_block-matrix.py new file mode 100644 index 0000000..9fddb81 --- /dev/null +++ b/demo/undocumented/block-matrix/python/demo_block-matrix.py @@ -0,0 +1,59 @@ +"""This demo illustrates basic usage of block matrices and vectors.""" + +# Copyright (C) 2008 Kent-Andre Mardal +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2008. +# +# First added: 2008-12-12 +# Last changed: 2012-11-12 + +from dolfin import * + +# Create a simple stiffness matrix and vector +mesh = UnitSquareMesh(32, 32) +V = FunctionSpace(mesh, "CG", 1) +u = TrialFunction(V) +v = TestFunction(V) +a = dot(grad(u), grad(v))*dx +A = assemble(a) +x0 = SpatialCoordinate(mesh)[0] +L = sin(x0)*v*dx +x = assemble(L) + +# Create a block matrix +AA = BlockMatrix(2, 2) +AA[0, 0] = A +AA[1, 0] = A +AA[0, 1] = A +AA[1, 1] = A + +# Create a block vector (that is compatible with A in parallel) +xx = BlockVector(2) +xx[0] = x +xx[1] = x + +# Create a another block vector (that is compatible with A in parallel) +y = Vector() +A.init_vector(y, 0) +yy = BlockVector(2) +yy[0] = y +yy[1] = y + +# Multiply +AA.mult(xx, yy) +print "||Ax|| =", y.norm("l2") diff --git a/demo/undocumented/built-in/cpp/CMakeLists.txt b/demo/undocumented/built-in/cpp/CMakeLists.txt new file mode 100644 index 0000000..f239470 --- /dev/null +++ b/demo/undocumented/built-in/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_built-in) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/undocumented/built-in/cpp/main.cpp b/demo/undocumented/built-in/cpp/main.cpp new file mode 100644 index 0000000..f2970b0 --- /dev/null +++ b/demo/undocumented/built-in/cpp/main.cpp @@ -0,0 +1,74 @@ +// Copyright (C) 2009 Kristian B. Oelgaard +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2009-09-29 +// Last changed: 2013-11-11 +// +// This demo illustrates the built-in mesh types. + +#include + +using namespace dolfin; + +int main() +{ + UnitIntervalMesh interval(20); + info("Plotting a UnitIntervalMesh"); + plot(interval, "Unit interval"); + + UnitSquareMesh square_default(10, 10); + info("Plotting a UnitSquareMesh"); + plot(square_default, "Unit square"); + + UnitSquareMesh square_left(10, 10, "left"); + info("Plotting a UnitSquareMesh"); + plot(square_left, "Unit square (left)"); + + UnitSquareMesh square_crossed(10, 10, "crossed"); + info("Plotting a UnitSquareMesh"); + plot(square_crossed, "Unit square (crossed)"); + + UnitSquareMesh square_right_left(10, 10, "right/left"); + info("Plotting a UnitSquareMesh"); + plot(square_right_left, "Unit square (right/left)"); + + RectangleMesh rectangle_default(0.0, 0.0, 10.0, 4.0, 10, 10); + info("Plotting a RectangleMesh"); + plot(rectangle_default, "Rectangle"); + + RectangleMesh rectangle_right_left(-3.0, 2.0, 7.0, 6.0, 10, 10, "right/left"); + info("Plotting a RectangleMesh"); + plot(rectangle_right_left, "Rectangle (right/left)"); + +#ifdef HAS_CGAL + CircleMesh circle_rotsumn(Point(0.0, 0.0), 1.0, 1.0/20); + info("Plotting a CircleMesh"); + plot(circle_rotsumn, "Unit circle"); +#endif + + UnitCubeMesh cube(10, 10, 10); + info("Plotting a UnitCubeMesh"); + plot(cube, "Unit cube"); + + BoxMesh box(0.0, 0.0, 0.0, 10.0, 4.0, 2.0, 10, 10, 10); + info("Plotting a BoxMesh"); + plot(box, "Box"); + + interactive(); + + return 0; +} diff --git a/demo/undocumented/built-in/python/demo_built-in.py b/demo/undocumented/built-in/python/demo_built-in.py new file mode 100644 index 0000000..d7a3d61 --- /dev/null +++ b/demo/undocumented/built-in/python/demo_built-in.py @@ -0,0 +1,69 @@ +"""This demo illustrates the built-in mesh types.""" + +# Copyright (C) 2008 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2008. +# Modified by Benjamin Kehlet 2012 +# +# First added: 2008-07-11 +# Last changed: 2012-11-12 + +from dolfin import * + +mesh = UnitIntervalMesh(10) +print "Plotting a UnitIntervalMesh" +plot(mesh, title="Unit interval") + +mesh = UnitSquareMesh(10, 10) +print "Plotting a UnitSquareMesh" +plot(mesh, title="Unit square") + +mesh = UnitSquareMesh(10, 10, "left") +print "Plotting a UnitSquareMesh" +plot(mesh, title="Unit square (left)") + +mesh = UnitSquareMesh(10, 10, "crossed") +print "Plotting a UnitSquareMesh" +plot(mesh, title="Unit square (crossed)") + +mesh = UnitSquareMesh(10, 10, "right/left") +print "Plotting a UnitSquareMesh" +plot(mesh, title="Unit square (right/left)") + +mesh = RectangleMesh(0.0, 0.0, 10.0, 4.0, 10, 10) +print "Plotting a RectangleMesh" +plot(mesh, title="Rectangle") + +mesh = RectangleMesh(-3.0, 2.0, 7.0, 6.0, 10, 10, "right/left") +print "Plotting a RectangleMesh" +plot(mesh, title="Rectangle (right/left)") + +if has_cgal(): + mesh = CircleMesh(Point(0.0, 0.0), 1.0, 1.0/20.0) + print "Plotting a CircleMesh" + plot(mesh, title="Unit circle") + +mesh = UnitCubeMesh(10, 10, 10) +print "Plotting a UnitCubeMesh" +plot(mesh, title="Unit cube") + +mesh = BoxMesh(0.0, 0.0, 0.0, 10.0, 4.0, 2.0, 10, 10, 10) +print "Plotting a BoxMesh" +plot(mesh, title="Box") + +interactive() diff --git a/demo/undocumented/collision-detection/python/demo_collision-detection.py b/demo/undocumented/collision-detection/python/demo_collision-detection.py new file mode 100644 index 0000000..c317478 --- /dev/null +++ b/demo/undocumented/collision-detection/python/demo_collision-detection.py @@ -0,0 +1,98 @@ +# Copyright (C) 2013 Anders Logg +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2013-09-02 +# Last changed: 2014-01-07 + +from dolfin import * + +if not has_cgal(): + print "DOLFIN must be compiled with CGAL to run this demo." + exit(0) + +# Some parameters +L = 10.0 +h = 0.1 +M = 64 +N = 32 +num_steps = 1000 +(x_B, y_B) = (0.75*L, 0.5*L) +(x_C, y_C) = (0.33*L, 0.75*L) +(dx_B, dy_B) = (2*h, h) +(dx_C, dy_C) = (h, 2*h) + +# Create meshes: a box and two circles +mesh_A = RectangleMesh(0, 0, L, L, M, M) +mesh_B = CircleMesh(Point(0.0, 0.0), 1.0, 1.0/N) +mesh_C = CircleMesh(Point(0.0, 0.0), 1.0, 1.0/N) + +# Displace circles to initial positions +mesh_B.translate(Point(x_B, y_B)) +mesh_C.translate(Point(x_C, y_C)) + +# Create mesh function for plotting +f = CellFunction("uint", mesh_A) + +# Build bounding box trees for background mesh +tree_A = BoundingBoxTree() +tree_A.build(mesh_A) + +# Create bounding box trees for circles +tree_B = BoundingBoxTree() +tree_C = BoundingBoxTree() + +# Loop over time steps +for n in range(num_steps): + + # Make it bounce + x_B += dx_B; y_B += dy_B + x_C += dx_C; y_C += dy_C + if x_B > L - 1.0 or x_B < 1.0: dx_B = -dx_B + if y_B > L - 1.0 or y_B < 1.0: dy_B = -dy_B + if x_C > L - 1.0 or x_C < 1.0: dx_C = -dx_C + if y_C > L - 1.0 or y_C < 1.0: dy_C = -dy_C + + # Translate circles + mesh_B.translate(Point(dx_B, dy_B)) + mesh_C.translate(Point(dx_C, dy_C)) + + # Rebuild trees + tree_B.build(mesh_B) + tree_C.build(mesh_C) + + # Compute collisions + entities_AB, entities_B = tree_A.compute_collisions(tree_B) + entities_AC, entities_C = tree_A.compute_collisions(tree_C) + entities_BC = set(entities_AB).intersection(set(entities_AC)) + + # Mark mesh function + f.set_all(0) + for i in entities_AB: + f.set_value(i, 1) + for i in entities_AC: + f.set_value(i, 2) + for i in entities_BC: + f.set_value(i, 3) + + # Plot + p = plot(f, wireframe=(n > num_steps / 2)) + #p.write_png("collision-detection-%.4d" % n) + +interactive() + +# Generate movie using +# ffmpeg -r 25 -b 1800 -i collision-detection-%04d.png collision-detection.mp4 diff --git a/demo/undocumented/coloring/cpp/CMakeLists.txt b/demo/undocumented/coloring/cpp/CMakeLists.txt new file mode 100644 index 0000000..cacc5c8 --- /dev/null +++ b/demo/undocumented/coloring/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_coloring) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/undocumented/coloring/cpp/main.cpp b/demo/undocumented/coloring/cpp/main.cpp new file mode 100644 index 0000000..6a5692a --- /dev/null +++ b/demo/undocumented/coloring/cpp/main.cpp @@ -0,0 +1,66 @@ +// Copyright (C) 2010-2011 Garth N. Wells +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// Modified by Anders Logg, 2010. +// +// First added: 2010-11-16 +// Last changed: 2012-11-12 +// +// This demo colors a given mesh entities such that entities with the +// same color are not neighbors. 'Neighbors' can be in the sense of shared +// vertices, edges or facets, or a user-provided tuple defintion. + +#include + +using namespace dolfin; + +int main() +{ + // Create mesh + UnitCubeMesh mesh(24, 24, 24); + + // Compute vertex-based coloring + mesh.color("vertex"); + const MeshFunction colors_vertex = MeshColoring::cell_colors(mesh, "vertex"); + plot(colors_vertex, "Vertex-based cell coloring"); + + // Compute edge-based coloring + mesh.color("edge"); + const CellFunction colors_edge = MeshColoring::cell_colors(mesh, "edge"); + plot(colors_edge, "Edge-based cell coloring"); + + // Compute facet-based coloring + mesh.color("facet"); + const CellFunction colors_facet = MeshColoring::cell_colors(mesh, "facet"); + plot(colors_facet, "Facet-based cell coloring"); + + // Compute facet-based coloring with distance 2 + std::vector coloring_type; + coloring_type.push_back(mesh.topology().dim()); + coloring_type.push_back(mesh.topology().dim() - 1); + coloring_type.push_back(mesh.topology().dim()); + coloring_type.push_back(mesh.topology().dim() - 1); + coloring_type.push_back(mesh.topology().dim()); + mesh.color(coloring_type); + const CellFunction colors_vertex_2 + = MeshColoring::cell_colors(mesh, coloring_type); + plot(colors_vertex_2, "Facet-based cell coloring with distance 2"); + + interactive(); + + return 0; +} diff --git a/demo/undocumented/coloring/python/demo_coloring.py b/demo/undocumented/coloring/python/demo_coloring.py new file mode 100644 index 0000000..c0668ad --- /dev/null +++ b/demo/undocumented/coloring/python/demo_coloring.py @@ -0,0 +1,52 @@ +"""This demo colors a given mesh entities such that entities with the +same color are not neighbors. 'Neighbors' can be in the sense of shared +vertices, edges or facets, or a user-provided tuple defintion""" + +# Copyright (C) 2010-2011 Garth N. Wells +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg, 2010. +# +# First added: 2010-11-16 +# Last changed: 2012-11-12 + +from dolfin import * + +# Create mesh +mesh = UnitCubeMesh(24, 24, 24) + +# Compute vertex-based coloring +mesh.color("vertex"); +colors = MeshColoring.cell_colors(mesh, "vertex") +plot(colors, title="Vertex-based cell coloring", interactive=True) + +# Compute edge-based coloring +mesh.color("edge"); +colors = MeshColoring.cell_colors(mesh, "edge") +plot(colors, title="Edge-based cell coloring", interactive=True) + +# Compute facet-based coloring +mesh.color("facet"); +colors = MeshColoring.cell_colors(mesh, "facet") +plot(colors, title="Facet-based cell coloring", interactive=True) + +# Compute facet-based coloring with distance 2 +dim = mesh.topology().dim() +coloring_type = (dim, dim - 1, dim, dim - 1, dim) +mesh.color(coloring_type); +colors = MeshColoring.cell_colors(mesh, coloring_type) +plot(colors, title="Facet-based cell coloring with distance 2", interactive=True) diff --git a/demo/undocumented/compiled-extension-module/cpp/README b/demo/undocumented/compiled-extension-module/cpp/README new file mode 100644 index 0000000..3a17715 --- /dev/null +++ b/demo/undocumented/compiled-extension-module/cpp/README @@ -0,0 +1,2 @@ +There is as yet no C++ version of this demo. +Please consider contributing the missing code. diff --git a/demo/undocumented/compiled-extension-module/python/Probe/Probe.cpp b/demo/undocumented/compiled-extension-module/python/Probe/Probe.cpp new file mode 100644 index 0000000..8f58e0e --- /dev/null +++ b/demo/undocumented/compiled-extension-module/python/Probe/Probe.cpp @@ -0,0 +1,138 @@ +// Copyright (C) 2013 Kent-Andre Mardal, Mikael Mortensen, Johan Hake +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2013-04-02 + +#include +#include +#include +#include +#include +#include +#include "Probe.h" + +using namespace dolfin; + +//---------------------------------------------------------------------------- +Probe::Probe(const Array& x, const FunctionSpace& V) + : _element(V.element()) +{ + const Mesh& mesh = *V.mesh(); + const std::size_t gdim = mesh.geometry().dim(); + + // Store position of probe + for (std::size_t i = 0; i < 3; i++) + _x[i] = (i < gdim ? x[i] : 0.0); + + // Compute in tensor (one for scalar function, . . .) + value_size_loc = 1; + for (uint i = 0; i < _element->value_rank(); i++) + value_size_loc *= _element->value_dimension(i); + + _probes.resize(value_size_loc); + + // Find the cell that contains probe + const Point point(gdim, x.data()); + std::shared_ptr tree = mesh.bounding_box_tree(); + const unsigned int id = tree->compute_first_entity_collision(point); + + // If the cell is on this process, then create an instance + // of the Probe class. Otherwise raise a dolfin_error. + if (id != std::numeric_limits::max()) + { + // Create cell that contains point + dolfin_cell.reset(new Cell(mesh, id)); + dolfin_cell->get_cell_data(ufc_cell); + dolfin_cell->get_vertex_coordinates(_vertex_coordinates); + + // Create work vector for basis + std::vector basis(value_size_loc); + + _coefficients.resize(_element->space_dimension()); + + // Create work vector for basis + _basis_matrix.resize(value_size_loc); + for (std::size_t i = 0; i < value_size_loc; ++i) + _basis_matrix[i].resize(_element->space_dimension()); + + for (std::size_t i = 0; i < _element->space_dimension(); ++i) + { + _element->evaluate_basis(i, basis.data(), x.data(), + _vertex_coordinates.data(), + dolfin_cell->orientation()); + for (std::size_t j = 0; j < value_size_loc; ++j) + _basis_matrix[j][i] = basis[j]; + } + } + else + dolfin_error("Probe.cpp","set probe","Probe is not found on processor"); +} +//---------------------------------------------------------------------------- +std::size_t Probe::value_size() const +{ + return value_size_loc; +} +//---------------------------------------------------------------------------- +std::size_t Probe::number_of_evaluations() const +{ + return _probes[0].size(); +} +//---------------------------------------------------------------------------- +void Probe::eval(const Function& u) +{ + // Restrict function to cell + u.restrict(&_coefficients[0], *_element, *dolfin_cell, + _vertex_coordinates.data(), ufc_cell); + + // Make room for one more evaluation + for (std::size_t j = 0; j < value_size_loc; j++) + _probes[j].push_back(0.0); + + const std::size_t n = _probes[0].size() - 1; + + // Compute linear combination + for (std::size_t i = 0; i < _element->space_dimension(); i++) + { + for (std::size_t j = 0; j < value_size_loc; j++) + _probes[j][n] += _coefficients[i]*_basis_matrix[j][i]; + } +} +//---------------------------------------------------------------------------- +void Probe::erase(std::size_t i) +{ + for (std::size_t j = 0; j < value_size_loc; j++) + _probes[j].erase(_probes[j].begin()+i); +} +//---------------------------------------------------------------------------- +void Probe::clear() +{ + for (std::size_t j = 0; j < value_size_loc; j++) + _probes[j].clear(); +} +//---------------------------------------------------------------------------- +std::vector Probe::get_probe(std::size_t i) const +{ + return _probes[i]; +} +//---------------------------------------------------------------------------- +std::vector Probe::coordinates() const +{ + std::vector x(3); + x.assign(_x, _x + 3); + return x; +} +//---------------------------------------------------------------------------- diff --git a/demo/undocumented/compiled-extension-module/python/Probe/Probe.h b/demo/undocumented/compiled-extension-module/python/Probe/Probe.h new file mode 100644 index 0000000..fd36075 --- /dev/null +++ b/demo/undocumented/compiled-extension-module/python/Probe/Probe.h @@ -0,0 +1,85 @@ +// Copyright (C) 2013 Kent-Andre Mardal, Mikael Mortensen, Johan Hake +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2013-04-02 + +#ifndef __PROBE_H +#define __PROBE_H + +#include +#include +#include + +namespace dolfin +{ + + class Cell; + class FiniteElement; + class Function; + class FunctionSpace; + template class Array; + + class Probe + { + + public: + + /// Constructor + Probe(const Array& x, const FunctionSpace& V); + + void eval(const Function& u); + + /// Return probe values for chosen value_size + std::vector get_probe(std::size_t i) const; + + std::size_t value_size() const; + + std::size_t number_of_evaluations() const; + + /// Return coordinates of probe + std::vector coordinates() const; + + /// Remove one instance of the probe + void erase(std::size_t i); + + /// Reset probe by removing all values + void clear(); + + private: + + std::vector > _basis_matrix; + + std::vector _coefficients; + + double _x[3]; + + std::shared_ptr _element; + + boost::scoped_ptr dolfin_cell; + + ufc::cell ufc_cell; + + std::vector _vertex_coordinates; + + std::size_t value_size_loc; + + std::vector > _probes; + + }; +} + +#endif diff --git a/demo/undocumented/compiled-extension-module/python/demo_compiled-extension-module.py b/demo/undocumented/compiled-extension-module/python/demo_compiled-extension-module.py new file mode 100644 index 0000000..c87ff8f --- /dev/null +++ b/demo/undocumented/compiled-extension-module/python/demo_compiled-extension-module.py @@ -0,0 +1,42 @@ +"This demo program demonstrates how to include additional C++ code in DOLFIN." + +# Copyright (C) 2013 Kent-Andre Mardal, Mikael Mortensen, Johan Hake +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# First added: 2013-04-02 + +from dolfin import * +import numpy +import os + +header_file = open("Probe/Probe.h") +code = "\n".join(header_file.readlines()) +compiled_module = compile_extension_module(code=code, source_directory="Probe", \ + sources=["Probe.cpp"], \ + include_dirs=[".", os.path.abspath("Probe")]) + +mesh = UnitCubeMesh(10, 10, 10) +V = FunctionSpace(mesh, 'CG', 1) + +x = numpy.array((0.5, 0.5, 0.5)) +probe = compiled_module.Probe(x, V) + +# Just create some random data to be used for probing +u0 = interpolate(Expression('x[0]'), V) +probe.eval(u0) +print "number of probes: ", probe.value_size() +print "value at first probe: ", probe.get_probe(0) diff --git a/demo/undocumented/conditional/cpp/CMakeLists.txt b/demo/undocumented/conditional/cpp/CMakeLists.txt new file mode 100644 index 0000000..e03320c --- /dev/null +++ b/demo/undocumented/conditional/cpp/CMakeLists.txt @@ -0,0 +1,40 @@ +# This file is automatically generated by running +# +# cmake/scripts/generate-cmakefiles +# +# Require CMake 2.8 +cmake_minimum_required(VERSION 2.8) + +set(PROJECT_NAME demo_conditional) +project(${PROJECT_NAME}) + +# Set verbose output while testing CMake +#set(CMAKE_VERBOSE_MAKEFILE 1) + +# Set CMake behavior +cmake_policy(SET CMP0004 OLD) + +# Get DOLFIN configuration data (DOLFINConfig.cmake must be in DOLFIN_CMAKE_CONFIG_PATH) +find_package(DOLFIN) + +# Default build type (can be overridden by user) +if (NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING + "Choose the type of build, options are: Debug MinSizeRel Release RelWithDebInfo." FORCE) +endif() + +# Compiler definitions +add_definitions(${DOLFIN_CXX_DEFINITIONS}) + +# Compiler flags +set(CMAKE_CXX_FLAGS "${DOLFIN_CXX_FLAGS} ${CMAKE_CXX_FLAGS}") + +# Include directories +include_directories(${DOLFIN_INCLUDE_DIRS}) +include_directories(SYSTEM ${DOLFIN_3RD_PARTY_INCLUDE_DIRS}) + +# Executable +add_executable(${PROJECT_NAME} main.cpp) + +# Target libraries +target_link_libraries(${PROJECT_NAME} ${DOLFIN_LIBRARIES} ${DOLFIN_3RD_PARTY_LIBRARIES}) diff --git a/demo/undocumented/conditional/cpp/Conditional.h b/demo/undocumented/conditional/cpp/Conditional.h new file mode 100644 index 0000000..7fcac2d --- /dev/null +++ b/demo/undocumented/conditional/cpp/Conditional.h @@ -0,0 +1,2876 @@ +// This code conforms with the UFC specification version 1.4.0 +// and was automatically generated by FFC version 1.4.0. +// +// This code was generated with the option '-l dolfin' and +// contains DOLFIN-specific wrappers that depend on DOLFIN. +// +// This code was generated with the following parameters: +// +// cache_dir: '' +// convert_exceptions_to_warnings: False +// cpp_optimize: True +// cpp_optimize_flags: '-O2' +// epsilon: 1e-14 +// error_control: False +// form_postfix: True +// format: 'dolfin' +// log_level: 10 +// log_prefix: '' +// no_ferari: True +// optimize: True +// output_dir: '.' +// precision: 15 +// quadrature_degree: 'auto' +// quadrature_rule: 'auto' +// representation: 'auto' +// restrict_keyword: '' +// split: False + +#ifndef __CONDITIONAL_H +#define __CONDITIONAL_H + +#include +#include +#include +#include + +/// This class defines the interface for a finite element. + +class conditional_finite_element_0: public ufc::finite_element +{ +public: + + /// Constructor + conditional_finite_element_0() : ufc::finite_element() + { + // Do nothing + } + + /// Destructor + virtual ~conditional_finite_element_0() + { + // Do nothing + } + + /// Return a string identifying the finite element + virtual const char* signature() const + { + return "FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return the cell shape + virtual ufc::shape cell_shape() const + { + return ufc::triangle; + } + + /// Return the topological dimension of the cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the finite element function space + virtual std::size_t space_dimension() const + { + return 6; + } + + /// Return the rank of the value space + virtual std::size_t value_rank() const + { + return 0; + } + + /// Return the dimension of the value space for axis i + virtual std::size_t value_dimension(std::size_t i) const + { + return 1; + } + + /// Evaluate basis function i at given point x in cell (actual implementation) + static void _evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Reset values + *values = 0.0; + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Compute value(s) + for (unsigned int r = 0; r < 6; r++) + { + *values += coefficients0[r]*basisvalues[r]; + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis(std::size_t i, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Helper variable to hold values of a single dof. + double dof_values = 0.0; + + // Loop dofs and call evaluate_basis + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis(r, &dof_values, x, vertex_coordinates, cell_orientation); + values[r] = dof_values; + } // end loop over 'r' + } + + /// Evaluate all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_all(double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Reset values. Assuming that values is always an array. + for (unsigned int r = 0; r < num_derivatives; r++) + { + values[r] = 0.0; + } // end loop over 'r' + + // Call evaluate_basis if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis(i, values, x, vertex_coordinates, cell_orientation); + return ; + } + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + + // Compute constants + const double C0 = vertex_coordinates[2] + vertex_coordinates[4]; + const double C1 = vertex_coordinates[3] + vertex_coordinates[5]; + + // Get coordinates and map to the reference (FIAT) element + double X = (J[1]*(C1 - 2.0*x[1]) + J[3]*(2.0*x[0] - C0)) / detJ; + double Y = (J[0]*(2.0*x[1] - C1) + J[2]*(C0 - 2.0*x[0])) / detJ; + + // Declare two dimensional array that holds combinations of derivatives and initialise + unsigned int combinations[4][2]; + for (unsigned int row = 0; row < 4; row++) + { + for (unsigned int col = 0; col < 2; col++) + combinations[row][col] = 0; + } + + // Generate combinations of derivatives + for (unsigned int row = 1; row < num_derivatives; row++) + { + for (unsigned int num = 0; num < row; num++) + { + for (unsigned int col = n-1; col+1 > 0; col--) + { + if (combinations[row][col] + 1 > 1) + combinations[row][col] = 0; + else + { + combinations[row][col] += 1; + break; + } + } + } + } + + // Compute inverse of Jacobian + const double Jinv[2][2] = {{K[0], K[1]}, {K[2], K[3]}}; + + // Declare transformation matrix + // Declare pointer to two dimensional array and initialise + double transform[4][4]; + for (unsigned int j = 0; j < num_derivatives; j++) + { + for (unsigned int k = 0; k < num_derivatives; k++) + transform[j][k] = 1; + } + + // Construct transformation matrix + for (unsigned int row = 0; row < num_derivatives; row++) + { + for (unsigned int col = 0; col < num_derivatives; col++) + { + for (unsigned int k = 0; k < n; k++) + transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; + } + } + switch (i) + { + case 0: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, -0.173205080756888, -0.1, 0.121716123890037, 0.0942809041582063, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 1: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.173205080756888, -0.1, 0.121716123890037, -0.0942809041582064, 0.0544331053951818}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 2: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.0, 0.0, 0.2, 0.0, 0.0, 0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 3: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.23094010767585, 0.133333333333333, 0.0, 0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 4: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, -0.23094010767585, 0.133333333333333, 0.0, -0.188561808316413, -0.163299316185545}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + case 5: + { + + // Array of basisvalues + double basisvalues[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + // Declare helper variables + double tmp0 = (1.0 + Y + 2.0*X)/2.0; + double tmp1 = (1.0 - Y)/2.0; + double tmp2 = tmp1*tmp1; + + // Compute basisvalues + basisvalues[0] = 1.0; + basisvalues[1] = tmp0; + basisvalues[3] = basisvalues[1]*1.5*tmp0 - basisvalues[0]*0.5*tmp2; + basisvalues[2] = basisvalues[0]*(0.5 + 1.5*Y); + basisvalues[4] = basisvalues[1]*(1.5 + 2.5*Y); + basisvalues[5] = basisvalues[2]*(0.111111111111111 + Y*1.66666666666667) - basisvalues[0]*0.555555555555556; + basisvalues[0] *= std::sqrt(0.5); + basisvalues[2] *= std::sqrt(1.0); + basisvalues[5] *= std::sqrt(1.5); + basisvalues[1] *= std::sqrt(3.0); + basisvalues[4] *= std::sqrt(4.5); + basisvalues[3] *= std::sqrt(7.5); + + // Table(s) of coefficients + static const double coefficients0[6] = \ + {0.471404520791032, 0.0, -0.266666666666667, -0.243432247780074, 0.0, 0.0544331053951817}; + + // Tables of derivatives of the polynomial base (transpose). + static const double dmats0[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.89897948556635, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 9.48683298050514, 0.0, 0.0, 0.0, 0.0}, + {4, 0.0, 7.07106781186548, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}}; + + static const double dmats1[6][6] = \ + {{0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.44948974278318, 0.0, 0.0, 0.0, 0.0, 0.0}, + {4.24264068711928, 0.0, 0.0, 0.0, 0.0, 0.0}, + {2.58198889747161, 4.74341649025257, -0.912870929175278, 0.0, 0.0, 0.0}, + {2.0, 6.12372435695795, 3.53553390593274, 0.0, 0.0, 0.0}, + {-2.3094010767585, 0.0, 8.16496580927726, 0.0, 0.0, 0.0}}; + + // Compute reference derivatives. + // Declare array of derivatives on FIAT element. + double derivatives[4]; + for (unsigned int r = 0; r < 4; r++) + { + derivatives[r] = 0.0; + } // end loop over 'r' + + // Declare derivative matrix (of polynomial basis). + double dmats[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Declare (auxiliary) derivative matrix (of polynomial basis). + double dmats_old[6][6] = \ + {{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, + {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}}; + + // Loop possible derivatives. + for (unsigned int r = 0; r < num_derivatives; r++) + { + // Resetting dmats values to compute next derivative. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats[t][u] = 0.0; + if (t == u) + { + dmats[t][u] = 1.0; + } + + } // end loop over 'u' + } // end loop over 't' + + // Looping derivative order to generate dmats. + for (unsigned int s = 0; s < n; s++) + { + // Updating dmats_old with new values and resetting dmats. + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + dmats_old[t][u] = dmats[t][u]; + dmats[t][u] = 0.0; + } // end loop over 'u' + } // end loop over 't' + + // Update dmats using an inner product. + if (combinations[r][s] == 0) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats0[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + if (combinations[r][s] == 1) + { + for (unsigned int t = 0; t < 6; t++) + { + for (unsigned int u = 0; u < 6; u++) + { + for (unsigned int tu = 0; tu < 6; tu++) + { + dmats[t][u] += dmats1[t][tu]*dmats_old[tu][u]; + } // end loop over 'tu' + } // end loop over 'u' + } // end loop over 't' + } + + } // end loop over 's' + for (unsigned int s = 0; s < 6; s++) + { + for (unsigned int t = 0; t < 6; t++) + { + derivatives[r] += coefficients0[s]*dmats[s][t]*basisvalues[t]; + } // end loop over 't' + } // end loop over 's' + } // end loop over 'r' + + // Transform derivatives back to physical element + for (unsigned int r = 0; r < num_derivatives; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r] += transform[r][s]*derivatives[s]; + } // end loop over 's' + } // end loop over 'r' + break; + } + } + + } + + /// Evaluate order n derivatives of basis function i at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives(std::size_t i, + std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives(i, n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (actual implementation) + static void _evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) + { + // Call evaluate_basis_all if order of derivatives is equal to zero. + if (n == 0) + { + _evaluate_basis_all(values, x, vertex_coordinates, cell_orientation); + return ; + } + + // Compute number of derivatives. + unsigned int num_derivatives = 1; + for (unsigned int r = 0; r < n; r++) + { + num_derivatives *= 2; + } // end loop over 'r' + + // Set values equal to zero. + for (unsigned int r = 0; r < 6; r++) + { + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = 0.0; + } // end loop over 's' + } // end loop over 'r' + + // If order of derivatives is greater than the maximum polynomial degree, return zeros. + if (n > 2) + { + return ; + } + + // Helper variable to hold values of a single dof. + double dof_values[4]; + for (unsigned int r = 0; r < 4; r++) + { + dof_values[r] = 0.0; + } // end loop over 'r' + + // Loop dofs and call evaluate_basis_derivatives. + for (unsigned int r = 0; r < 6; r++) + { + _evaluate_basis_derivatives(r, n, dof_values, x, vertex_coordinates, cell_orientation); + for (unsigned int s = 0; s < num_derivatives; s++) + { + values[r*num_derivatives + s] = dof_values[s]; + } // end loop over 's' + } // end loop over 'r' + } + + /// Evaluate order n derivatives of all basis functions at given point x in cell (non-static member function) + virtual void evaluate_basis_derivatives_all(std::size_t n, + double* values, + const double* x, + const double* vertex_coordinates, + int cell_orientation) const + { + _evaluate_basis_derivatives_all(n, values, x, vertex_coordinates, cell_orientation); + } + + /// Evaluate linear functional for dof i on the function f + virtual double evaluate_dof(std::size_t i, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + switch (i) + { + case 0: + { + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 1: + { + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 2: + { + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 3: + { + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 4: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + case 5: + { + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + return vals[0]; + break; + } + } + + return 0.0; + } + + /// Evaluate linear functionals for all dofs on the function f + virtual void evaluate_dofs(double* values, + const ufc::function& f, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Declare variables for result of evaluation + double vals[1]; + + // Declare variable for physical coordinates + double y[2]; + y[0] = vertex_coordinates[0]; + y[1] = vertex_coordinates[1]; + f.evaluate(vals, y, c); + values[0] = vals[0]; + y[0] = vertex_coordinates[2]; + y[1] = vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[1] = vals[0]; + y[0] = vertex_coordinates[4]; + y[1] = vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[2] = vals[0]; + y[0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[3] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + f.evaluate(vals, y, c); + values[4] = vals[0]; + y[0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + y[1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + f.evaluate(vals, y, c); + values[5] = vals[0]; + } + + /// Interpolate vertex values from dof values + virtual void interpolate_vertex_values(double* vertex_values, + const double* dof_values, + const double* vertex_coordinates, + int cell_orientation, + const ufc::cell& c) const + { + // Evaluate function and change variables + vertex_values[0] = dof_values[0]; + vertex_values[1] = dof_values[1]; + vertex_values[2] = dof_values[2]; + } + + /// Map coordinate xhat from reference cell to coordinate x in cell + virtual void map_from_reference_cell(double* x, + const double* xhat, + const ufc::cell& c) const + { + throw std::runtime_error("map_from_reference_cell not yet implemented."); + } + + /// Map from coordinate x in cell to coordinate xhat in reference cell + virtual void map_to_reference_cell(double* xhat, + const double* x, + const ufc::cell& c) const + { + throw std::runtime_error("map_to_reference_cell not yet implemented."); + } + + /// Return the number of sub elements (for a mixed element) + virtual std::size_t num_sub_elements() const + { + return 0; + } + + /// Create a new finite element for sub element i (for a mixed element) + virtual ufc::finite_element* create_sub_element(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::finite_element* create() const + { + return new conditional_finite_element_0(); + } + +}; + +/// This class defines the interface for a local-to-global mapping of +/// degrees of freedom (dofs). + +class conditional_dofmap_0: public ufc::dofmap +{ +public: + + /// Constructor + conditional_dofmap_0() : ufc::dofmap() + { + // Do nothing + } + + /// Destructor + virtual ~conditional_dofmap_0() + { + // Do nothing + } + + /// Return a string identifying the dofmap + virtual const char* signature() const + { + return "FFC dofmap for FiniteElement('Lagrange', Domain(Cell('triangle', 2)), 2, None)"; + } + + /// Return true iff mesh entities of topological dimension d are needed + virtual bool needs_mesh_entities(std::size_t d) const + { + switch (d) + { + case 0: + { + return true; + break; + } + case 1: + { + return true; + break; + } + case 2: + { + return false; + break; + } + } + + return false; + } + + /// Return the topological dimension of the associated cell shape + virtual std::size_t topological_dimension() const + { + return 2; + } + + /// Return the geometric dimension of the associated cell shape + virtual std::size_t geometric_dimension() const + { + return 2; + } + + /// Return the dimension of the global finite element function space + virtual std::size_t global_dimension(const std::vector& + num_global_entities) const + { + return num_global_entities[0] + num_global_entities[1]; + } + + /// Return the dimension of the local finite element function space for a cell + virtual std::size_t local_dimension() const + { + return 6; + } + + /// Return the number of dofs on each cell facet + virtual std::size_t num_facet_dofs() const + { + return 3; + } + + /// Return the number of dofs associated with each cell entity of dimension d + virtual std::size_t num_entity_dofs(std::size_t d) const + { + switch (d) + { + case 0: + { + return 1; + break; + } + case 1: + { + return 1; + break; + } + case 2: + { + return 0; + break; + } + } + + return 0; + } + + /// Tabulate the local-to-global mapping of dofs on a cell + virtual void tabulate_dofs(std::size_t* dofs, + const std::vector& num_global_entities, + const ufc::cell& c) const + { + unsigned int offset = 0; + dofs[0] = offset + c.entity_indices[0][0]; + dofs[1] = offset + c.entity_indices[0][1]; + dofs[2] = offset + c.entity_indices[0][2]; + offset += num_global_entities[0]; + dofs[3] = offset + c.entity_indices[1][0]; + dofs[4] = offset + c.entity_indices[1][1]; + dofs[5] = offset + c.entity_indices[1][2]; + offset += num_global_entities[1]; + } + + /// Tabulate the local-to-local mapping from facet dofs to cell dofs + virtual void tabulate_facet_dofs(std::size_t* dofs, + std::size_t facet) const + { + switch (facet) + { + case 0: + { + dofs[0] = 1; + dofs[1] = 2; + dofs[2] = 3; + break; + } + case 1: + { + dofs[0] = 0; + dofs[1] = 2; + dofs[2] = 4; + break; + } + case 2: + { + dofs[0] = 0; + dofs[1] = 1; + dofs[2] = 5; + break; + } + } + + } + + /// Tabulate the local-to-local mapping of dofs on entity (d, i) + virtual void tabulate_entity_dofs(std::size_t* dofs, + std::size_t d, std::size_t i) const + { + if (d > 2) + { + throw std::runtime_error("d is larger than dimension (2)"); + } + + switch (d) + { + case 0: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 0; + break; + } + case 1: + { + dofs[0] = 1; + break; + } + case 2: + { + dofs[0] = 2; + break; + } + } + + break; + } + case 1: + { + if (i > 2) + { + throw std::runtime_error("i is larger than number of entities (2)"); + } + + switch (i) + { + case 0: + { + dofs[0] = 3; + break; + } + case 1: + { + dofs[0] = 4; + break; + } + case 2: + { + dofs[0] = 5; + break; + } + } + + break; + } + case 2: + { + + break; + } + } + + } + + /// Tabulate the coordinates of all dofs on a cell + virtual void tabulate_coordinates(double** dof_coordinates, + const double* vertex_coordinates) const + { + dof_coordinates[0][0] = vertex_coordinates[0]; + dof_coordinates[0][1] = vertex_coordinates[1]; + dof_coordinates[1][0] = vertex_coordinates[2]; + dof_coordinates[1][1] = vertex_coordinates[3]; + dof_coordinates[2][0] = vertex_coordinates[4]; + dof_coordinates[2][1] = vertex_coordinates[5]; + dof_coordinates[3][0] = 0.5*vertex_coordinates[2] + 0.5*vertex_coordinates[4]; + dof_coordinates[3][1] = 0.5*vertex_coordinates[3] + 0.5*vertex_coordinates[5]; + dof_coordinates[4][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[4]; + dof_coordinates[4][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[5]; + dof_coordinates[5][0] = 0.5*vertex_coordinates[0] + 0.5*vertex_coordinates[2]; + dof_coordinates[5][1] = 0.5*vertex_coordinates[1] + 0.5*vertex_coordinates[3]; + } + + /// Return the number of sub dofmaps (for a mixed element) + virtual std::size_t num_sub_dofmaps() const + { + return 0; + } + + /// Create a new dofmap for sub dofmap i (for a mixed element) + virtual ufc::dofmap* create_sub_dofmap(std::size_t i) const + { + return 0; + } + + /// Create a new class instance + virtual ufc::dofmap* create() const + { + return new conditional_dofmap_0(); + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class conditional_cell_integral_0_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + conditional_cell_integral_0_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~conditional_cell_integral_0_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Number of operations (multiply-add pairs) for Jacobian data: 3 + // Number of operations (multiply-add pairs) for geometry tensor: 8 + // Number of operations (multiply-add pairs) for tensor contraction: 49 + // Total number of operations (multiply-add pairs): 60 + + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute geometry tensor + const double G0_0_0 = det*(K[0]*K[0] + K[1]*K[1]); + const double G0_0_1 = det*(K[0]*K[2] + K[1]*K[3]); + const double G0_1_0 = det*(K[2]*K[0] + K[3]*K[1]); + const double G0_1_1 = det*(K[2]*K[2] + K[3]*K[3]); + + // Compute element tensor + A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1; + A[1] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_1_0; + A[2] = 0.166666666666667*G0_0_1 + 0.166666666666667*G0_1_1; + A[3] = 0.0; + A[4] = -0.666666666666667*G0_0_1 - 0.666666666666667*G0_1_1; + A[5] = -0.666666666666667*G0_0_0 - 0.666666666666667*G0_1_0; + A[6] = 0.166666666666667*G0_0_0 + 0.166666666666667*G0_0_1; + A[7] = 0.5*G0_0_0; + A[8] = -0.166666666666667*G0_0_1; + A[9] = 0.666666666666666*G0_0_1; + A[10] = 0.0; + A[11] = -0.666666666666667*G0_0_0 - 0.666666666666666*G0_0_1; + A[12] = 0.166666666666667*G0_1_0 + 0.166666666666667*G0_1_1; + A[13] = -0.166666666666667*G0_1_0; + A[14] = 0.5*G0_1_1; + A[15] = 0.666666666666666*G0_1_0; + A[16] = -0.666666666666666*G0_1_0 - 0.666666666666666*G0_1_1; + A[17] = 0.0; + A[18] = 0.0; + A[19] = 0.666666666666666*G0_1_0; + A[20] = 0.666666666666666*G0_0_1; + A[21] = 1.33333333333333*G0_0_0 + 0.666666666666665*G0_0_1 + 0.666666666666665*G0_1_0 + 1.33333333333333*G0_1_1; + A[22] = -1.33333333333333*G0_0_0 - 0.666666666666666*G0_0_1 - 0.666666666666665*G0_1_0; + A[23] = -0.666666666666665*G0_0_1 - 0.666666666666667*G0_1_0 - 1.33333333333333*G0_1_1; + A[24] = -0.666666666666667*G0_1_0 - 0.666666666666667*G0_1_1; + A[25] = 0.0; + A[26] = -0.666666666666666*G0_0_1 - 0.666666666666666*G0_1_1; + A[27] = -1.33333333333333*G0_0_0 - 0.666666666666665*G0_0_1 - 0.666666666666666*G0_1_0; + A[28] = 1.33333333333333*G0_0_0 + 0.666666666666666*G0_0_1 + 0.666666666666666*G0_1_0 + 1.33333333333333*G0_1_1; + A[29] = 0.666666666666665*G0_0_1 + 0.666666666666667*G0_1_0; + A[30] = -0.666666666666667*G0_0_0 - 0.666666666666667*G0_0_1; + A[31] = -0.666666666666667*G0_0_0 - 0.666666666666666*G0_1_0; + A[32] = 0.0; + A[33] = -0.666666666666667*G0_0_1 - 0.666666666666665*G0_1_0 - 1.33333333333333*G0_1_1; + A[34] = 0.666666666666667*G0_0_1 + 0.666666666666665*G0_1_0; + A[35] = 1.33333333333333*G0_0_0 + 0.666666666666667*G0_0_1 + 0.666666666666667*G0_1_0 + 1.33333333333333*G0_1_1; + } + +}; + +/// This class defines the interface for the tabulation of the cell +/// tensor corresponding to the local contribution to a form from +/// the integral over a cell. + +class conditional_cell_integral_1_otherwise: public ufc::cell_integral +{ +public: + + /// Constructor + conditional_cell_integral_1_otherwise() : ufc::cell_integral() + { + // Do nothing + } + + /// Destructor + virtual ~conditional_cell_integral_1_otherwise() + { + // Do nothing + } + + /// Tabulate which form coefficients are used by this integral + virtual const std::vector & enabled_coefficients() const + { + static const std::vector enabled({}); + return enabled; + } + + /// Tabulate the tensor for the contribution from a local cell + virtual void tabulate_tensor(double* A, + const double * const * w, + const double* vertex_coordinates, + int cell_orientation) const + { + // Compute Jacobian + double J[4]; + compute_jacobian_triangle_2d(J, vertex_coordinates); + + // Compute Jacobian inverse and determinant + double K[4]; + double detJ; + compute_jacobian_inverse_triangle_2d(K, detJ, J); + + // Set scale factor + const double det = std::abs(detJ); + + // Compute cell volume + + + // Compute circumradius of triangle in 2D + + + // Array of quadrature weights. + static const double W3[3] = {0.166666666666667, 0.166666666666667, 0.166666666666667}; + // Quadrature points on the UFC reference element: (0.166666666666667, 0.166666666666667), (0.166666666666667, 0.666666666666667), (0.666666666666667, 0.166666666666667) + + // Values of basis functions at quadrature points. + static const double FE0[3][6] = \ + {{0.222222222222222, -0.111111111111111, -0.111111111111111, 0.111111111111111, 0.444444444444444, 0.444444444444444}, + {-0.111111111111111, -0.111111111111111, 0.222222222222222, 0.444444444444444, 0.444444444444444, 0.111111111111111}, + {-0.111111111111111, 0.222222222222222, -0.111111111111111, 0.444444444444444, 0.111111111111111, 0.444444444444444}}; + + static const double FEA3_f0[3][3] = \ + {{0.666666666666667, 0.166666666666667, 0.166666666666667}, + {0.166666666666667, 0.166666666666667, 0.666666666666667}, + {0.166666666666667, 0.666666666666667, 0.166666666666667}}; + + // Reset values in the element tensor. + for (unsigned int r = 0; r < 6; r++) + { + A[r] = 0.0; + } // end loop over 'r' + + // Compute element tensor using UFL quadrature representation + // Optimisations: ('eliminate zeros', True), ('ignore ones', True), ('ignore zero tables', True), ('optimisation', 'simplify_expressions'), ('remove zero terms', True) + + // Loop quadrature points for integral. + + // Declare array to hold physical coordinate of quadrature point. + double X3[2]; + // Number of operations to compute element tensor for following IP loop = 144 + for (unsigned int ip = 0; ip < 3; ip++) + { + + // Compute physical coordinate of quadrature point, operations: 10. + X3[0] = FEA3_f0[ip][0]*vertex_coordinates[0] + FEA3_f0[ip][1]*vertex_coordinates[2] + FEA3_f0[ip][2]*vertex_coordinates[4]; + X3[1] = FEA3_f0[ip][0]*vertex_coordinates[1] + FEA3_f0[ip][1]*vertex_coordinates[3] + FEA3_f0[ip][2]*vertex_coordinates[5]; + double C[7]; + // Compute conditional, operations: 1. + C[0] = ((X3[0] >= 0.55)) ? -1.0 : 0.0; + // Compute conditional, operations: 1. + C[1] = ((X3[0] <= 0.95)) ? C[0] : 0.0; + // Compute conditional, operations: 1. + C[2] = ((X3[1] >= 0.05)) ? C[1] : 0.0; + // Compute conditional, operations: 1. + C[3] = ((X3[1] <= 0.45)) ? C[2] : 0.0; + // Compute conditional, operations: 3. + C[4] = (((0.5 + X3[1] - X3[0]) >= 0.0)) ? C[3] : 0.0; + // Compute conditional, operations: 8. + C[5] = ((((X3[0]-0.33)*(X3[0]-0.33) + (X3[1]-0.67)*(X3[1]-0.67)) <= 0.015)) ? -1.0 : 5.0; + // Compute conditional, operations: 8. + C[6] = ((((X3[0]-0.33)*(X3[0]-0.33) + (X3[1]-0.67)*(X3[1]-0.67)) <= 0.025)) ? C[5] : 0.0; + + // Number of operations to compute ip constants: 3 + double I[1]; + // Number of operations: 3 + I[0] = W3[ip]*det*(C[4] + C[6]); + + + // Number of operations for primary indices: 12 + for (unsigned int j = 0; j < 6; j++) + { + // Number of operations to compute entry: 2 + A[j] += FE0[ip][j]*I[0]; + } // end loop over 'j' + } // end loop over 'ip' + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class conditional_form_0: public ufc::form +{ +public: + + /// Constructor + conditional_form_0() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~conditional_form_0() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "aae0a73595ace2836ec2cfac776b19ebe6bc264a8954a0a93986ca1a90118d4671958a14ba9141ef0d8adc0b7311a7d128634bedabdb1f15360fafef8ee30294"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 2; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new conditional_finite_element_0(); + break; + } + case 1: + { + return new conditional_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new conditional_dofmap_0(); + break; + } + case 1: + { + return new conditional_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new conditional_cell_integral_0_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +/// This class defines the interface for the assembly of the global +/// tensor corresponding to a form with r + n arguments, that is, a +/// mapping +/// +/// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R +/// +/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r +/// global tensor A is defined by +/// +/// A = a(V1, V2, ..., Vr, w1, w2, ..., wn), +/// +/// where each argument Vj represents the application to the +/// sequence of basis functions of Vj and w1, w2, ..., wn are given +/// fixed functions (coefficients). + +class conditional_form_1: public ufc::form +{ +public: + + /// Constructor + conditional_form_1() : ufc::form() + { + // Do nothing + } + + /// Destructor + virtual ~conditional_form_1() + { + // Do nothing + } + + /// Return a string identifying the form + virtual const char* signature() const + { + return "3453b5127284b4c30e749c06add915c9a3a259d8aa703bbe322077d7c1485356c4f834af56353aa279e23a82db3a7cca0b6a41aba22f2e65cf0c6bc1adfb1d90"; + } + + /// Return the rank of the global tensor (r) + virtual std::size_t rank() const + { + return 1; + } + + /// Return the number of coefficients (n) + virtual std::size_t num_coefficients() const + { + return 0; + } + + /// Return the number of cell domains + virtual std::size_t num_cell_domains() const + { + return 0; + } + + /// Return the number of exterior facet domains + virtual std::size_t num_exterior_facet_domains() const + { + return 0; + } + + /// Return the number of interior facet domains + virtual std::size_t num_interior_facet_domains() const + { + return 0; + } + + /// Return the number of point domains + virtual std::size_t num_point_domains() const + { + return 0; + } + + /// Return the number of custom domains + virtual std::size_t num_custom_domains() const + { + return 0; + } + + /// Return whether the form has any cell integrals + virtual bool has_cell_integrals() const + { + return true; + } + + /// Return whether the form has any exterior facet integrals + virtual bool has_exterior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any interior facet integrals + virtual bool has_interior_facet_integrals() const + { + return false; + } + + /// Return whether the form has any point integrals + virtual bool has_point_integrals() const + { + return false; + } + + /// Return whether the form has any custom integrals + virtual bool has_custom_integrals() const + { + return false; + } + + /// Create a new finite element for argument function i + virtual ufc::finite_element* create_finite_element(std::size_t i) const + { + switch (i) + { + case 0: + { + return new conditional_finite_element_0(); + break; + } + } + + return 0; + } + + /// Create a new dofmap for argument function i + virtual ufc::dofmap* create_dofmap(std::size_t i) const + { + switch (i) + { + case 0: + { + return new conditional_dofmap_0(); + break; + } + } + + return 0; + } + + /// Create a new cell integral on sub domain i + virtual ufc::cell_integral* create_cell_integral(std::size_t i) const + { + return 0; + } + + /// Create a new exterior facet integral on sub domain i + virtual ufc::exterior_facet_integral* create_exterior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new interior facet integral on sub domain i + virtual ufc::interior_facet_integral* create_interior_facet_integral(std::size_t i) const + { + return 0; + } + + /// Create a new point integral on sub domain i + virtual ufc::point_integral* create_point_integral(std::size_t i) const + { + return 0; + } + + /// Create a new custom integral on sub domain i + virtual ufc::custom_integral* create_custom_integral(std::size_t i) const + { + return 0; + } + + /// Create a new cell integral on everywhere else + virtual ufc::cell_integral* create_default_cell_integral() const + { + return new conditional_cell_integral_1_otherwise(); + } + + /// Create a new exterior facet integral on everywhere else + virtual ufc::exterior_facet_integral* create_default_exterior_facet_integral() const + { + return 0; + } + + /// Create a new interior facet integral on everywhere else + virtual ufc::interior_facet_integral* create_default_interior_facet_integral() const + { + return 0; + } + + /// Create a new point integral on everywhere else + virtual ufc::point_integral* create_default_point_integral() const + { + return 0; + } + + /// Create a new custom integral on everywhere else + virtual ufc::custom_integral* create_default_custom_integral() const + { + return 0; + } + +}; + +// DOLFIN wrappers + +// Standard library includes +#include + +// DOLFIN includes +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Conditional +{ + +class Form_a_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_0() + { + } + +}; + +class Form_a_FunctionSpace_1: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_a_FunctionSpace_1(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_a_FunctionSpace_1(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_a_FunctionSpace_1() + { + } + +}; + +class Form_a: public dolfin::Form +{ +public: + + // Constructor + Form_a(const dolfin::FunctionSpace& V1, const dolfin::FunctionSpace& V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + _function_spaces[1] = reference_to_no_delete_pointer(V1); + + _ufc_form = std::shared_ptr(new conditional_form_0()); + } + + // Constructor + Form_a(std::shared_ptr V1, std::shared_ptr V0): + dolfin::Form(2, 0) + { + _function_spaces[0] = V0; + _function_spaces[1] = V1; + + _ufc_form = std::shared_ptr(new conditional_form_0()); + } + + // Destructor + ~Form_a() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_a_FunctionSpace_0 TestSpace; + typedef Form_a_FunctionSpace_1 TrialSpace; + + // Coefficients +}; + +class Form_L_FunctionSpace_0: public dolfin::FunctionSpace +{ +public: + + //--- Constructors for standard function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), mesh))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), *mesh))) + { + // Do nothing + } + + //--- Constructors for constrained function space, 2 different versions --- + + // Create standard function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Mesh& mesh, const dolfin::SubDomain& constrained_domain): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), mesh, + dolfin::reference_to_no_delete_pointer(constrained_domain)))) + { + // Do nothing + } + + // Create standard function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr mesh, std::shared_ptr constrained_domain): + dolfin::FunctionSpace(mesh, + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), *mesh, constrained_domain))) + { + // Do nothing + } + + //--- Constructors for restricted function space, 2 different versions --- + + // Create restricted function space (reference version) + Form_L_FunctionSpace_0(const dolfin::Restriction& restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction.mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), + reference_to_no_delete_pointer(restriction)))) + { + // Do nothing + } + + // Create restricted function space (shared pointer version) + Form_L_FunctionSpace_0(std::shared_ptr restriction): + dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(restriction->mesh()), + std::shared_ptr(new dolfin::FiniteElement(std::shared_ptr(new conditional_finite_element_0()))), + std::shared_ptr(new dolfin::DofMap(std::shared_ptr(new conditional_dofmap_0()), + restriction))) + { + // Do nothing + } + + // Copy constructor + ~Form_L_FunctionSpace_0() + { + } + +}; + +class Form_L: public dolfin::Form +{ +public: + + // Constructor + Form_L(const dolfin::FunctionSpace& V0): + dolfin::Form(1, 0) + { + _function_spaces[0] = reference_to_no_delete_pointer(V0); + + _ufc_form = std::shared_ptr(new conditional_form_1()); + } + + // Constructor + Form_L(std::shared_ptr V0): + dolfin::Form(1, 0) + { + _function_spaces[0] = V0; + + _ufc_form = std::shared_ptr(new conditional_form_1()); + } + + // Destructor + ~Form_L() + {} + + /// Return the number of the coefficient with this name + virtual std::size_t coefficient_number(const std::string& name) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return 0; + } + + /// Return the name of the coefficient with this number + virtual std::string coefficient_name(std::size_t i) const + { + + dolfin::dolfin_error("generated code for class Form", + "access coefficient data", + "There are no coefficients"); + return "unnamed"; + } + + // Typedefs + typedef Form_L_FunctionSpace_0 TestSpace; + + // Coefficients +}; + +// Class typedefs +typedef Form_a BilinearForm; +typedef Form_a JacobianForm; +typedef Form_L LinearForm; +typedef Form_L ResidualForm; +typedef Form_a::TestSpace FunctionSpace; + +} + +#endif diff --git a/demo/undocumented/conditional/cpp/Conditional.ufl b/demo/undocumented/conditional/cpp/Conditional.ufl new file mode 100644 index 0000000..3991f0b --- /dev/null +++ b/demo/undocumented/conditional/cpp/Conditional.ufl @@ -0,0 +1,44 @@ +# Copyright (C) 2010 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# The bilinear form a(u, v) and linear form L(v) for +# Poisson's equation where spatial coordinates are used to define the source +# term. However, the source term is only active in a part of the domain and +# a Conditional is used to handle this. +# +# Compile this form with FFC: ffc -l dolfin Conditional.ufl + +element = FiniteElement("Lagrange", triangle, 2) + +u = TrialFunction(element) +v = TestFunction(element) + +x = SpatialCoordinate(triangle) +c0 = conditional(le( (x[0]-0.33)**2 + (x[1]-0.67)**2, 0.015), -1.0, 5.0) +c = conditional( le( (x[0]-0.33)**2 + (x[1]-0.67)**2, 0.025), c0, 0.0 ) + +t0 = conditional(ge( x[0], 0.55), -1.0, 0.0) +t1 = conditional(le( x[0], 0.95), t0, 0.0) +t2 = conditional(ge( x[1], 0.05), t1, 0.0) +t3 = conditional(le( x[1], 0.45), t2, 0.0) +t = conditional(ge( x[1] - x[0] - 0.05 + 0.55, 0.0), t3, 0.0) + +f = c + t + +a = inner(grad(u), grad(v))*dx +L = f*v*dx + diff --git a/demo/undocumented/conditional/cpp/compile.log b/demo/undocumented/conditional/cpp/compile.log new file mode 100644 index 0000000..a3bf40f --- /dev/null +++ b/demo/undocumented/conditional/cpp/compile.log @@ -0,0 +1,330 @@ +This is FFC, the FEniCS Form Compiler, version 1.4.0. +For further information, visit http://www.fenics.org/ffc/. + +Compiling form Conditional + +Compiler stage 1: Analyzing form(s) +----------------------------------- + + Name: 'a' + Geometric dimension: 2 + Rank: 2 + Arguments: '[v_0, v_1]' + Argument names: '[v, u]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG2(?)' + Unique sub elements: 'CG2(?)' + + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Estimated cost of tensor representation: 2 + representation: auto --> tensor + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + + Name: 'L' + Geometric dimension: 2 + Rank: 1 + Arguments: '[v_0]' + Argument names: '[v]' + Number of coefficients: 0 + Coefficients: '[]' + Coefficient names: '[]' + Unique elements: 'CG2(?)' + Unique sub elements: 'CG2(?)' + + Extracting monomial form representation from UFL form + Monomial extraction failed: No handler defined for terminal SpatialCoordinate. + Estimated cost of tensor representation: -1 + representation: auto --> quadrature + Selecting quadrature degree based on total polynomial degree of integrand: 2 + quadrature_degree: auto --> 2 + quadrature_rule: auto --> default + +Compiler stage 1 finished in 0.0246789 seconds. + +Compiler stage 2: Computing intermediate representation +------------------------------------------------------- + Computing representation of 1 elements + Reusing element from cache + Reusing element from cache + Computing representation of 1 dofmaps + Reusing element from cache + Computing representation of integrals + Computing tensor representation + Extracting monomial form representation from UFL form + Transforming monomial form to reference element + Reusing element from cache + Reusing element from cache + Precomputing integrals on reference element + Reusing element from cache + 144 entries computed in 0.00134 seconds + Shape of reference tensor: (6, 6, 2, 2) + Primary multi index: rank = 2 dims = [6, 6] indices = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + Internal multi index: rank = 0 dims = [] indices = [[]] + Secondary multi index: rank = 2 dims = [2, 2] indices = [[0, 0], [0, 1], [1, 0], [1, 1]] + External multi index: rank = 1 dims = [2] indices = [[0], [1]] + Reusing element from cache + Computing quadrature representation + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + + QG-utils, psi_tables: + {3: {VectorElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 1, dim=2, quad_scheme=None): {None: {None: {(0, 1): array([[[ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, -1.00000000e+00, -1.00000000e+00]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 0.00000000e+00, 1.11022302e-16, 1.11022302e-16]], + + [[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]]), (1, 0): array([[[-1., -1., -1.], + [ 0., 0., 0.]], + + [[ 1., 1., 1.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]], + + [[ 0., 0., 0.], + [-1., -1., -1.]], + + [[ 0., 0., 0.], + [ 1., 1., 1.]], + + [[ 0., 0., 0.], + [ 0., 0., 0.]]]), (0, 0): array([[[ 0.66666667, 0.16666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.16666667, 0.66666667], + [ 0. , 0. , 0. ]], + + [[ 0.16666667, 0.66666667, 0.16666667], + [ 0. , 0. , 0. ]], + + [[ 0. , 0. , 0. ], + [ 0.66666667, 0.16666667, 0.16666667]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.16666667, 0.66666667]], + + [[ 0. , 0. , 0. ], + [ 0.16666667, 0.66666667, 0.16666667]]])}}}, FiniteElement('Lagrange', Domain(Cell('triangle', 2), label=None, data=None), 2, quad_scheme=None): {None: {None: {(0, 0): array([[0.2222222222222224, -0.11111111111111106, -0.1111111111111111], + [-0.11111111111111109, -0.11111111111111105, 0.22222222222222213], + [-0.11111111111111106, 0.22222222222222224, -0.11111111111111105], + [0.11111111111111108, 0.44444444444444414, 0.44444444444444414], + [0.44444444444444425, 0.44444444444444448, 0.11111111111111113], + [0.44444444444444431, 0.11111111111111108, 0.44444444444444442]], dtype=object)}}}}} + + QG-utils, psi_tables, flat_tables: + {'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0': array([[0.2222222222222224, -0.11111111111111109, -0.11111111111111106, + 0.11111111111111108, 0.44444444444444425, 0.44444444444444431], + [-0.11111111111111106, -0.11111111111111105, 0.22222222222222224, + 0.44444444444444414, 0.44444444444444448, 0.11111111111111108], + [-0.1111111111111111, 0.22222222222222213, -0.11111111111111105, + 0.44444444444444414, 0.11111111111111113, 0.44444444444444442]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + tables: {'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.16666667, 0.66666667, 0. , 0. , + 0. ], + [ 0.16666667, 0.66666667, 0.16666667, 0. , 0. , + 0. ]]), 'FE1_C1': array([[ 0. , 0. , 0. , 0.66666667, 0.16666667, + 0.16666667], + [ 0. , 0. , 0. , 0.16666667, 0.16666667, + 0.66666667], + [ 0. , 0. , 0. , 0.16666667, 0.66666667, + 0.16666667]]), 'FE1_C1_D10': array([[ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.], + [ 0., 0., 0., -1., 1., 0.]]), 'FE0': array([[0.2222222222222224, -0.11111111111111109, -0.11111111111111106, + 0.11111111111111108, 0.44444444444444425, 0.44444444444444431], + [-0.11111111111111106, -0.11111111111111105, 0.22222222222222224, + 0.44444444444444414, 0.44444444444444448, 0.11111111111111108], + [-0.1111111111111111, 0.22222222222222213, -0.11111111111111105, + 0.44444444444444414, 0.11111111111111113, 0.44444444444444442]], dtype=object), 'FE1_C1_D01': array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 0.00000000e+00, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00], + [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + -1.00000000e+00, 1.11022302e-16, 1.00000000e+00]]), 'FE1_C0_D01': array([[ -1.00000000e+00, 0.00000000e+00, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], + [ -1.00000000e+00, 1.11022302e-16, 1.00000000e+00, + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]), 'FE1_C0_D10': array([[-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.], + [-1., 1., 0., 0., 0., 0.]])} + + name_map: {} + + inv_name_map: {'FE1_C0': 'FE1_C0', 'FE1_C1': 'FE1_C1', 'FE1_C1_D10': 'FE1_C1_D10', 'FE0': 'FE0', 'FE1_C1_D01': 'FE1_C1_D01', 'FE1_C0_D01': 'FE1_C0_D01', 'FE1_C0_D10': 'FE1_C0_D10'} + + QG-utils, psi_tables, unique_tables: + {'FE1_C0': array([[ 0.66666667, 0.16666667, 0.16666667], + [ 0.16666667, 0.16666667, 0.66666667], + [ 0.16666667, 0.66666667, 0.16666667]]), 'FE0': array([[0.2222222222222224, -0.11111111111111109, -0.11111111111111106, + 0.11111111111111108, 0.44444444444444425, 0.44444444444444431], + [-0.11111111111111106, -0.11111111111111105, 0.22222222222222224, + 0.44444444444444414, 0.44444444444444448, 0.11111111111111108], + [-0.1111111111111111, 0.22222222222222213, -0.11111111111111105, + 0.44444444444444414, 0.11111111111111113, 0.44444444444444442]], dtype=object), 'FE1_C0_D01': array([[-1., 1.], + [-1., 1.], + [-1., 1.]])} + + QG-utils, psi_tables, name_map: + {'FE1_C0': ('FE1_C0', (0, [0, 1, 2]), False, False), 'FE1_C1': ('FE1_C0', (3, [3, 4, 5]), False, False), 'FE1_C1_D10': ('FE1_C0_D01', (5, [3, 4]), False, False), 'FE0': ('FE0', (), False, False), 'FE1_C1_D01': ('FE1_C0_D01', (4, [3, 5]), False, False), 'FE1_C0_D01': ('FE1_C0_D01', (1, [0, 2]), False, False), 'FE1_C0_D10': ('FE1_C0_D01', (2, [0, 1]), False, False)} + Transforming cell integral + Reusing element from cache + Reusing element from cache + Reusing element from cache + Reusing element from cache + Computing representation of forms + +Compiler stage 2 finished in 0.0405431 seconds. + +Compiler stage 3: Optimizing intermediate representation +-------------------------------------------------------- + FErari not installed, skipping tensor optimizations + Optimising expressions for cell integral + +Compiler stage 3 finished in 0.000471115 seconds. + +Compiler stage 4: Generating code +--------------------------------- + Generating code for 1 element(s) + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Removing unused variable: tmp7 + Removing unused variable: tmp6 + Removing unused variable: tmp5 + Removing unused variable: tt + Removing unused variable: ss + Removing unused variable: rr + Generating code for 1 dofmap(s) + Generating code for integrals + Removing unused variable: circumradius + Removing unused variable: v0v1 + Removing unused variable: v0v2 + Removing unused variable: v1v2 + Removing unused variable: volume + Generating code for forms + +Compiler stage 4 finished in 0.0802341 seconds. + +Compiler stage 4.1: Generating additional wrapper code +------------------------------------------------------ + Generating wrapper code for DOLFIN + +Compiler stage 4.1 finished in 0.000437021 seconds. + +Compiler stage 5: Formatting code +--------------------------------- + Output written to ./Conditional.h. + +Compiler stage 5 finished in 0.000648975 seconds. + +FFC finished in 0.147328 seconds. diff --git a/demo/undocumented/conditional/cpp/main.cpp b/demo/undocumented/conditional/cpp/main.cpp new file mode 100644 index 0000000..efd3715 --- /dev/null +++ b/demo/undocumented/conditional/cpp/main.cpp @@ -0,0 +1,76 @@ +// Copyright (C) 2010 Kristian B. Oelgaard +// +// This file is part of DOLFIN. +// +// DOLFIN is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// DOLFIN is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with DOLFIN. If not, see . +// +// First added: 2010-07-23 +// Last changed: 2012-11-12 +// +// This demo program solves Poisson's equation +// +// - div grad u(x, y) = f(x, y) +// +// on the unit square with source f given by +// +// f(x, y) = -1.0 if (x - 0.33)^2 + (y - 0.67)^2 < 0.015 +// 5.0 if 0.015 < (x - 0.33)^2 + (y - 0.67)^2 < 0.025 +// -1.0 if (x,y) in triangle( (0.55, 0.05), (0.95, 0.45), (0.55, 0.45) ) +// 0.0 otherwise +// +// and homogeneous Dirichlet boundary conditions. + +#include +#include "Conditional.h" + +using namespace dolfin; + +// Sub domain for Dirichlet boundary condition +class DirichletBoundary : public SubDomain +{ + bool inside(const Array& x, bool on_boundary) const + { + return on_boundary; + } +}; + +int main() +{ + // Create mesh and function space + UnitSquareMesh mesh(64, 64); + Conditional::FunctionSpace V(mesh); + + // Define boundary condition + Constant u0(0.0); + DirichletBoundary boundary; + DirichletBC bc(V, u0, boundary); + + // Define variational problem + Conditional::BilinearForm a(V, V); + Conditional::LinearForm L(V); + + // Compute solution + Function u(V); + solve(a == L, u, bc); + + // Save solution in VTK format + File file("conditional.pvd"); + file << u; + + // Plot solution + plot(u); + interactive(); + + return 0; +} diff --git a/demo/undocumented/conditional/python/demo_conditional.py b/demo/undocumented/conditional/python/demo_conditional.py new file mode 100644 index 0000000..2e3b31d --- /dev/null +++ b/demo/undocumented/conditional/python/demo_conditional.py @@ -0,0 +1,77 @@ +"""This demo program solves Poisson's equation + + - div grad u(x, y) = f(x, y) + +on the unit square with source f given by + + f(x, y) = -1.0 if (x - 0.33)^2 + (y - 0.67)^2 < 0.015 + 5.0 if 0.015 < (x - 0.33)^2 + (y - 0.67)^2 < 0.025 + -1.0 if (x,y) in triangle( (0.55, 0.05), (0.95, 0.45), (0.55, 0.45) ) + 0.0 otherwise + +and homogeneous Dirichlet boundary conditions. +""" + +# Copyright (C) 2010 Kristian B. Oelgaard +# +# This file is part of DOLFIN. +# +# DOLFIN is free software: you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# DOLFIN is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with DOLFIN. If not, see . +# +# Modified by Anders Logg 2011 +# +# First added: 2010-07-23 +# Last changed: 2012-11-12 + +from dolfin import * + +# Create mesh and define function space +mesh = UnitSquareMesh(64, 64) +V = FunctionSpace(mesh, "CG", 2) + +# Define Dirichlet boundary (x = 0 or x = 1) +def boundary(x): + return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS or x[1] < DOLFIN_EPS or x[1] > 1.0 - DOLFIN_EPS + +# Define boundary condition +u0 = Constant(0.0) +bc = DirichletBC(V, u0, boundary) + +# Define variational problem +u = TrialFunction(V) +v = TestFunction(V) +x = SpatialCoordinate(mesh) + +c0 = conditional(le( (x[0]-0.33)**2 + (x[1]-0.67)**2, 0.015), -1.0, 5.0) +c = conditional( le( (x[0]-0.33)**2 + (x[1]-0.67)**2, 0.025), c0, 0.0 ) + +t0 = conditional(ge( x[0], 0.55), -1.0, 0.0) +t1 = conditional(le( x[0], 0.95), t0, 0.0) +t2 = conditional(ge( x[1], 0.05), t1, 0.0) +t3 = conditional(le( x[1], 0.45), t2, 0.0) +t = conditional(ge( x[1] - x[0] - 0.05 + 0.55, 0.0), t3, 0.0) +f = c + t +a = inner(grad(u), grad(v))*dx +L = f*v*dx + +# Compute solution +u = Function(V) +solve(a == L, u, bc) + +# Save solution in VTK format +file = File("conditional.pvd") +file << u + +# Plot solution +plot(u, interactive=True) diff --git a/demo/undocumented/contact-vi-snes/circle_yplane.geo b/demo/undocumented/contact-vi-snes/circle_yplane.geo new file mode 100644 index 0000000..ac9370c --- /dev/null +++ b/demo/undocumented/contact-vi-snes/circle_yplane.geo @@ -0,0 +1,15 @@ +// Gmsh input file for unit radius circle with mesh symmetry line on y-axis +cl__1 = 0.05; +Point(1) = {0, 1, 0, cl__1}; +Point(2) = {1, 0, 0, cl__1}; +Point(3) = {0, -1, 0, cl__1}; +Point(4) = {-1, 0, 0, cl__1}; +Point(6) = {0, 0, 0, cl__1}; +Circle(1) = {1, 6, 4}; +Circle(2) = {4, 6, 3}; +Circle(3) = {3, 6, 2}; +Circle(4) = {2, 6, 1}; +Line Loop(7) = {1, 2, 3, 4}; +Plane Surface(7) = {7}; +Line(8) = {1, 3}; +Line{8} In Surface {7}; \ No newline at end of file diff --git a/demo/undocumented/contact-vi-snes/circle_yplane.xml.gz b/demo/undocumented/contact-vi-snes/circle_yplane.xml.gz new file mode 100644 index 0000000000000000000000000000000000000000..db34cd29662168c05877bf9c26c07a9caa946a27 GIT binary patch literal 73289 zcmYJab9mg%_W;`1#-=fLW7}zrjcuoKW7{?xqm7NGX{^RPAj4XkixR+Bpg$+;u_xqA^}DmzI{+6VBV{ z+w<((GtS#f*F(wsG(VO$mAEdpp~HJ$bvmczb!fr+V8xd3!wRdp;|E zz3F@Hc)NakI+1wUSP6M>c{}2Gd+K|N3Ax94duV)n40#)pc)2Nld)R)xZwz@E?R(w` zdD?h;;CMSKetXObxlajsnti*^;e3_8rpoB+?|XqUeQbQYYz%oayQYHjK@QBs{!;`> z^?J+kcJ<%ljW$H`d6whutnc;l&HcLZm85Uy;9ZnW`@_-(dy zaHH|@>fohLuqpTf<+ZwxC8%jZ&*y7)o@JG|-^GSm$al`BM?IJJgG{jNTE}MVGfPN# zmW2LGtq=zzd-S=Z3yl$Lm;zs>rgSV*g;rhJ1!oqiNevTZ(FFPeMZvD4zXWyt20K(o z1;^_U)lO2;_c03=dtCSpxVJ;*3Z9QiJQ^zX&mxF=H4lB0db-r5E{JP|0YPK)ciJXZ zqZdsq+2*`{DLSuH%*70(b;iQMnhjiID-&0QlOf4TR97t7%l?yG-c(w#ze7RATJEyh zvE9Sk8(g`1O~gtWHpG@`vSwvL2{e{#qp1+HF|#W22&65`(tTDInP459ae=2v1^=av|j8l2NxGK6;8K@!G zRGGPA_YBW#fJQOrlK1P4x= z4fbT%N5K+=Sl(0f?0u6)oTjMPvo`h7R!ueL&;|GF90Bv&n#uYf!M(G2;nOFAf5hk! z_&KiT_F5^;xJp@a(Rd32TjV&&ioX1g5D8A2XUdH$(L`q>ZF=t`i>CQ>wU81lH-w4R z^BhMog`6q-N_miDi;0-e<)Si8uE(#Ly|uM)1s|s|pv-wehSSeLxlC9x%qnq_0Z$$Z z3jfUdHG6JaJijw35~*~_s_FTz|D)2sQThzw4=f=EVtHQEes`3sm{TFagixOKXHjDJmaf zfVCK-Sb^~g#>@+GMwRSC#`iW zY(2gVw|>C7mRTJ9*@+@FC^=o_N%+ey+zj*L2lrsvR? z7UY{r@{@O`9^p<7>V3-1*!{-{{|D!R!EgTuNBsZbQ;pd1tLJb}HZZoZtz11oTw8?6 zGNA~KLOIRht1_e4LovVlAH4JbhZ|CaLjDK;sEc9_`5!!P2~I!ge`=X}y<08{J@}77 zg$|1O%l{Azmcn>P#LWBZBwx6zh2KG8<~qX6t;X&j{GW@*cTV9 z1G7;IX5;_62Wk|dL`Y9M|0%l&r~e{i4#qm3Ws$tOg&G;NsE3%s)!Y^5j2ebKLMPOI zcNPO)4TB${HEO>fiaY)p20cRK)qY16Q0cL7}|DF3o$)Xq%A0B&vp4) zDbaWhEd4jDcVOuE2t`-J_kSfM3}g{~@$+Jclg)8GxL7QF?QY5NIjj6|ZnSnZTPv*i z{Yp&c#ncPNT=f;N?o+&Ki0Slrz?+ugRsH_IgRFvX90`!}wi4{;k#ULeC6$q*Sr)+u z`KBLCf-inI^lzxT0yh;BjhlNtE!2Ii0xy0`^cPu34>s*EJpTW~;Hsi!I*JB zsFUEmm5sq{&;5^dG556_|NlsTvl%2oi~ZN!0o!$b5uZayYYOZ}&9B;58rIC{R|>lh zS+6e4_lrMvPR#0A1)g=(-sTVqRnKzF!mL2zd21VSbu$(VU&7LF?yH-Oat%I)*~zy0 z97CBiHR8zXV!rmwos#fqd9>og37xc7>w@kw_ZCr)zqXLOcj{9&GAOk4)s4M)^nO@4 zLBl`eaAY?vpgy`mjJwV88n2#JOa12`jtHF$cLYGti%r#1&0lp;WA$bSOx18*LOw_8 zp9LOOt`H1=V~PQ~jUlbN6i^d@2Q$>Sn6?go!5H>BU`zg$^$TNK31|ID72Z=sZ615m z2c%b^@`mD`-JpieMcJ*5c!p)0&Ej4@5;UN$KG39_;oxPm(&q(s`G?*9zN0#IIe9Jf zJ%yfdg-a2<)poKrj|r`x2wl_VZPR14{KIHliIAC_azP*q3A^=A9}DK`Q%SE(z@+P= z1bO@1=>i!#KLkjCTV9;`o}j{cvlq6C-}>rr$i7u}7lTHgznx3n9gG|LNr2-YoGFf; z{Q`}D&!#(s7&oq^mQ;lB(s^F<1`;Zjs@V#1{L$*1y-=l#EbN1!aN3C$wL<9JlBY4y^3(5tuF z3RwJsc=xw*UQ6ayN_DNBx>Gz^`iUM%6<%%4;kpA=;A^6M4RefzqEP07Be;}3yyudr z6ytKb1Nh+Xdf@Y6iFq3Sr`;a{r1x!mg?*gcWAXdy!wUEq3W=W+Pd{7_!(X$~k1N_R zn10zv(I?_qfRKaca%5N1BdKmXAb-1ZhE<4_&~9ka{r76F<-h4_);B0skV3o+bK;F1 zqz2Sms#7`IWM1cMgAt6Z`?lxSk?tN)bwTouEnVRAmR0a0F!J%2(ts|@wZQmw&Co-F zlT#s=oe-O|FR|(}xJR&)a-6w0KO<0ahK<{}*E9o|$d_+>w35sqSz>eEM^+U-M&f~v z>4t>nXVaOo3ve8O>uZNquu0ZvbXu6SBTt$ICnW}#km|=qG^c9Y%-z-QJ(`X*wSl;o z?$p9LCg&r@u4qe)oam*KA&0aV!I`xf`o}YD@xlqZyGWID+Rv1G^v>_w84c*_4HQk% zd_~8wSX_GKLI#M$7nZ0n@?@l@*S0_ITw2WT_-5bF(XdV^_%JZs(=`M!ddp;d`hUYw`hT3gnCyX3p2d z8cTh?8SBzk1Dec}6z21L1VslfDWQCULUBlCb)G`GJPY()^j2w%zoZ4TtYeJ3$I23h zOF%igNGI?<^B?xRvO}7MflBA@Uxj4?_FKojUho(_;{cx+yXA+NL*An4WPX=Q=ME)a z+GnKFRr0M-iz_e&rJ;y&>sH-I3~w#Tq9s~u$eri|yQIZ)W!lrdC&&HIiy;NQyJWBFeX7v38&KSJ6%Jofi5J(ojy1+G?QVmbD~%2^IFlrlESoVG zn6^bG7)LYX*YIcc*M=+lK66-YUC2d&3B7yhm}O>;XiHRSL6WU2Gmy(pF}(KEw@|pr zDxZP~n^%54YmWefGxzO9(cSUKCAx2hSn2MH=Wf57-&69PpwkQOEhv4Q-}4s~Kn>Wd zqjUkQD#Uf{{dHQKo#nSiW16UE1It>jdZ2TNx-V0)SijGruol34fH0O9XcTvgKhIYmqDK8g9KBdpC{^4t9ZtPGRqqTPzJm?Jf zZ~Df;anLNi&o(;p3`d&ButsX4`-Nq?m}+tduf4$zpJ*d-B3!Y^|7ycGTRWv(A}dk9 zlkCj)KD~;u5}8@y72&0z7}GQbAA|njOUJ<%S&RqKQ8ZIo`|ERSTb~c!aZL3~)VYI( zkccqdgoCfif9!Xi=9QXE{$Uu`?-Yz+9}gS$p_|&+Ye?Z55L9f41}i?NQg3ACo6xfSKX| zbHp2~Br`P3MDl-(c9XWPn=JZ&jxSq*y-%A#F)rL<+&gIWJMPt!29|To+WQA~6Fn1K zbUS2`m-cgN`|8<*2A1xM?Mi8HZcy6s9#US#=3i1X`hp<@EGWxvmp_2X|H^;vPew}H zMgYa!NppZk8^r>PF(u4?81!l756&!k-QgZCMqV~iGYa0`vR2a4DL+NCp?WzGnjDp@ zuV6v9-zoT%SuFiOjHhw;%r|sAP*B%xaV8uycZVOKzT6JUbQV6cw`=ixf__JMk~1_M zG+B%xo71#$Q*M~+c5_YJ(}UwZ!IZsn{w1ZA1EoCL=hKkUkw#9EcA#J>>~pxH&$#`f z+>{6%FUlZRIqyu+Q*7=wHj%{MW@qyL#-y5t!C+NC0rxq9wG{dtICF)czCUs8O*fKV zY@Z>Ewgz!{m%?z6Byj+iT8z$*oKUjE?@|&kD132x|ALIwVJa^%&Z@sj{T5KW!jKgo)pUa0bnyRg^=;Kb6lq@^LZ+bFBJwh z`MpE0##SL8Pbz_sv$~~~G}bR^ldeZ!r=yI`vPt&Zj$j?m_(3jXO?UOu##D5LNFC)y zOCFro{CMjW422EP*iEhHw?EF64I5ATw7Rx%a4Z8Wmw-9a35VZ3zxO)RlPgKRaXtP9 zoe4Ig#mE47!)Y*@0>{I3U4)0FHOboc9I0|zYp-qPpMFszxe3x)r6GByp;YmmgfCx) z5%*dT`Vl72?1-MY*zF~{vn#4o*LLU1GLa2h?SgN$K4n(z%=fUHU!yFKoQ;-^c$=P} z8qDJFDd7){$0(c9mV$7`m`ajx@uA){+&G_Y<0KQl9`NCCx^kIu{xk3(=S7#}?B?pi z%>(&UkV=5`({L3`ulz>M$EMuq4dEg7g55~$iX=hJN{3M6ALQTDiIj-x4zvvJ(}8bN z-eIhG9C5F1og&sZ_)X^5ND(~c@_L|l&$nma(Cosc}N8zE;CKs{tS6a zKx}ZJ7%gkhtj|e@gF*&Fd8*Fam11M+*yw#x?^}GGbymBqJ2PlK3jiHQb>U>b$KfdPPn^E-Dw#Y_^`!^k1QzMj&6k)yU?n_*6mfIMq zbiM>eWVmP<-@>nLkIEY3SJ0*;=cPF$7u^1&(y51#{pZlqiajD5q$jxT(&muVq6B>P zq113-*R@>5`z&H03b%}RKG-JU6yVW#%Shfm1tW>*tQALS{5iZM*7PRLMt2&mi-otsaH-ep}yn(oeF zF8XbJFh^PNG62w5&te>VneF!eqxKq^z46O6D!VwmqiS_r^uiE))0CS$v&vr;_-7lYz8%BK7c0FfW;K;CdsSGfXyzE+cfZiiZ^aquj z?E@UZ;pAJnl0Vj`0w^Si}`C3N*fk?NI5&ZS4`<5_SdIT*W~ZwJv+Xj;xS{ELOwX{ zmqa2o#gwXk7~1laWfh0*Kc?sxF$OGBO!gG58bPl{nibj*mo-Ns@^x;M{-I0mK}XG& z0!sGmICL|t^}|a}ydtCwR9K4PW?K2DETifNzoScXgzVz*zMp~Rm2Y|qo!_U zc>Q^Ygi(iSm`VS+Ve&RjMSqR!DdHgjcO9!+Dxy?L<&4>vV^cj|YvJs}cGsRl`F$=% zv+&8blrLp})xLfFogNF+CpSNRC+aynFqT8YyNNv6Z-|g%C`83Wj9_~z*x0Jza&*TApbP z2HJdu2~Ji8x1g5Kh-5>Ynk@;4BldBtZa7KUeF?z@FhlXM#{glY-qF;2Wbg5RNJ9>f z-!FvYvy<~#X~T{gI`A%-m>I1he(DY^*pp@7&DSKKCjR;S<_4Iw&;j24D+26eR4k=|2bg z-Qyn%^5sL`G5>ad|9B4VycUt8@S>Z~DImm0M&w=a#)zIE6z&9SWFj6~deojTm5s1F zHmwQ>?YP!#orX5JHsPmjYm*B)0)%&H3(SFLBX#JDQ=4vZ?DT~`JV0N34kl|oXT~AGEiI2DH_tARBk0f>KtHq#+$_#x6~I&oP^KRmsnyQQ}K$^sjTaZ zePZcy;Y8c(Nczhc^Z?^{k`lV3-c}E54Za$>hA3G%pM#-@zcBySFJ*RpPK4#Gc3`J7 zw1P^@Ynh2ih!}lXGZrZc52nRvZ7Ssu3e0e*{Wt)8XArGQ+LkUJln?{+wmSm2rPN^j z;$hiZT@ap2>~K75dSF9*tU;$92K|O}J;bQZ`)W)3&QNj|^J_(9Zi7sDVHy$8RU??t zv+6KJO#auJ0LJPRSX_RR`QeagU#FA-CwT3!^I6XoD+(npY>vqfkIA~Q#AYDR z21E%6Oln%)53qQ}WW}dQCgT z$Vf5hwFOrt#t^3h8JrqtBpuRoz=~W~Xa1M)fOwVG^Qu1|*woX8L7s>-+n0X~b2z_s zLmd@jUDukVyGX-dPAO zN?m47oNZz-5zh>yJ!^6Mb?#qoXBU&(`E719QkksM%N?7R{^V$Kk02dQR!T8z!QDxQ zi>TE-!6NZ$RBtYs$F|UEaBNK5L#Zz#VKqQ8{xP#N*7K+ff_}KdAUd=}nnVJR5lP@@ z1WW!U`fAEXVkb(*Le@qvai)KTm*CGkI8fo)$q%6(aH1!0f0&=jx90OM;5pc?Unrk1 zDgD=T48|lUbUtvM=<(+54^?4Ql%jA+!B-SSkJjM3|J9jbX$FD?(w0cmNno)?fS zwPQowKv&H0@7xMQ45Smzu@1`m*^X%F!Kuz^XCg{WqfSfOtVALn75UE-A6mv^R1sT_ z@P0wGEvs|)fjF_!g;kYS)MT4s=Y2Hhj-L;2}$dSnu!a%;HLb;6M&EK-HjUxjYYBJJiL zGo*ZW#4k&nqfwXT7<@2T$ld)j%zU{tg}TtE)#J{BDAWjwU=fHa_{lYZT>sO7P85Tf zT~x!WT$im)11-a&i8{7@U47hHxVHj04p(7#U{|BlYJR;%Jo_E#tYULzbpz$^j85hW zsNG?}6yEhMg9OzPap@8|yWHL}8{Ro`U@w~hpd5y&)TB2tr-n6M{5;?>Bw32Miz6g& zo*1NccCwz#Gq87jG-2~{byymU9MX}nO+3zIEyPLs*kEGVyOG-p@-sS7FT3^CFz}0P z+#XOC7)(K`FPC^DPx_&kdg0D4D}&+6PfuP!gm{k?Jauv{iJbs?Gb68BQnC*&UKxTsA#4@s>3>J{L%I&iG5p zaVedT3c=)8bm!xxhqx(dyjq^_`v;*z&}TG?U>$yes7baTe53XYvmU?p#&Y_xRIg18 zJgLm6IRwi}4qAs%c62)51>!6p2OTnh0}0-D5OWbA(korETCN zwr*`o&qjS7PyZwtmj9`jY&1nAH+4eq>b>L-HZNcmdI>6yU5Ie;bB5>*2o76ZXh|DX z>fkkxG~mQ$g(;ocmm*Tx{Hr`5t0T)u(u=>GH5-u65ce{$VgBgZdG!dc2{4(LI!W;U zIXJ)$Ay0OTi*b=apFRYC`#pc1O}1YE);Hpm+!ZZSHr>U?SSD7vh^ODagimsdLlmOc z1x-mq%Q~b)IRK_%|4ItmN5-yY} zI7kM=5}*EAs_^$HWBjl#wYthxav~YBm`l1EIHV@YCI`4K_S_z8NQUi(I)!#;+8ad$ zt+*ncGmTj7IF?;5m3Vmy>l-?U({Kx&U#O;>6FF)U2haRr-m8UtGI>`br0ADe?5f4* z6JGHOBCcCK9!eo%yMyW`5c+0+Ka`(UnL&+F@z^FQ<*FbV>x*iB^cxUC5>sY1WQ+DQ z>_=BP_h?$%K>6`&+yW0c=J84BN3=?Hq%Yr(Q)!WGny>x);t{&w_R1DG@O2PJ|KS~a z7npE}ItX=oZuNoX>pWG2uE+yU0l{Qka3e-8&tMo8i=o#+d-A_SQ;6(D%Pc;+>?&D@ zdHtxX=R{#rm`AMXYy|axcjBu%@xInYk*oV+Cv?u(tMLY-moz^q_vsJ~rYn08`dnBLMU|H{dkiXnQ7aGALf>#ih$3SP_*7%^Z}#6y zVw%TGtBd0D>X103i2XrWRRyc)?7(huPT*e|k>J``xZV6COT^zSa~j)N@%0gBQXOfR z0U&|ta~50P#lfj^yf78R07}c)a`s`jzL%#QooSRugOgKd>9Jcqo$SmgmmTB?yc68& zsxDJFWUoS^3s6T}!It=K^SUvrjXpSJC@s!_sb#6MS~8;E`=o}Cz5W?melp)v(YO#e zP|&%DY}?DKINsjmhXG=p;S?g3S1VYyCcdo_?t;k@!Q~o6e{|(PWap@GBZ7E)fYAPn zF5m@@x2=8RildnY{}d8@!Zy)|e8voL?$OVH6`qF+#c-jyM&D*Wjfnk%=9g?pWnX-rS~V)`q!c=BA( z3}oOqNX*Lq0?YTpw+Dqtcky$CtAw{pwo>+WDmV-p%H3IFNOLPOc$2`Gxh{$Cse%_u zvV2XAl(p`T-G`{_VR=sKXL$h0r!ks6`tV6f5ua`Fe@Vv_2Y>T*cr<@42JcdjQq6{S z&?FIVv_<8b%UC06U>w0I!)~*lOx}-``MF3X)z|0F$>7PBo_XuYfri(>UVDGfMvYGe zs4LBgQ~vV&yF;DgQa)hb*Z(_ zhJN+M%OQlAUX^iY?sZB_*f$C+l50lA&}i!(^aNF>2DIBT>CavuH5}x3bv02j^cyK! z5@_pB2q((G-y~N|&0D!!RHoM4?vgZ}7bG$0@peyp@TzsvKmRd=$0;V}*mx%5Oi)p6 zSk~|sx*Jf?30h*+Kl0n@WHn?3JZ!++X~v{LY6|W^yIm5Kd9<<3mHD@z!RJ(HD{Ox- z4A0!^VQHyB4!~wzSPVtZa7(0t+?V4s7Q>N3wX`J8U9?BWPwgWi^ZwK?>n|VY!aV?2 z)}T8>&V2C)i*g~GgyLKb=L|eFK*hVl1ZgeM9r`}}mo>(p4M7w{*{tqkI^*HMGvQe` zW-(F_R;1Ykr<9U+Ka;T~P$b$VZEugJ2**%SMT}IB^F*Sv>>+p{njZod#n&P%{$&Sf z2IIHmg^lZ$x?r5p=UEz5$ID1S^_rPr7I{ho`Mwk&Sf}l((fg_zxR6! zDbG}|$eFdrMepo+=N_XoRE|Gj!;Z=P(9LyRg9gQAqPABinY(Sz2XW#&{7|QF1xaOQ zu*q(T)wuHQ6^*=eh5Lt@xi*_#M`;!YX3BgECC#7*BwX7uBcRaERS)B~%iz25BT~W4 zsHAjZ3=qY#P5*3(0#cGaON76gkWXFZA)YLW5Y&4)fnnTRBCT`B%v3s**}1$Q{cjc3{!mkS*sbcZ<7V9`(5ou%-lCLzccO}X}B7JU$cfted)|KAa|KjN%AP+)o z)ulOs=phc+I?J8yF8!G5YjCo`07CcI?)1-v4u@m&MUJ60)>(Nc z2;kRpRm(3=s}m^@dKN)!D{o;j*!dl7V|o9*D=N3Sp19woZeYghsBFHxGV2@ivSAAU`$Y+;Y_g&m;AAuCP)r?0<$-;+Ffjh#Ec<(IT>d$fpSA&Ybh zHc}!?%fZu{pfm!kkxQs)`KfRA*krgX;G;k<2i}-4K8jG3bz+ASF*XH= zlTF%+6ytI7H3?J)TM$i9FPWyVp1G%sf(DW6Zyc;3L=BN1w(+Mr(kXsUr8kjSL~OPD z^RWkWJP1881t0)8ozy=f8_%DOYb7!QW&Oe6Z+kM2I~ieA$yoyUHTt7$XK$&8qz&Ym z8>?=Ygm+Q6_u;eJ_rqB+4G;BRU@1~*Y3zHkS8MPbAm(fA@*MGTr#=tLH3%820s^jc z`V+13B1FEMZs-=GqgcO_w{T{_T~RSmx|kAit$&jf@e{Wrr*d>z zIOO_*a(iR$0ar;qiQROfX%l_F{r=9N+%m#HtO<6E?3R3J9|@x6`NpF}7|5tfWD7T9 zgvCgikc*e}2tFyZs+kkOEA%E5*me zwp&XfV&4wzkiSFs`HFdiL?6|)FU1GeR1N<3mbhboBt??5bg@)cswODVMUQ2C1S-1d zsDeg9=UD$z4+rza|9mF$cu`(K<;)hQ%J@uofJW99I`4=PBd{ao^zf`5?AiEQTVe*F zgJ_O!QaH}XUMV&YbW{=E^H8Ap!k(;iK$A)E6yHwX5F`k@lGIZl2`U%sGFfY_VAt>d{=xY@9nuNCkWm28^2wdN6b|LFFTjHJKnv` zr(#)_2U=a#L@?(T&!2DhoVPrn=GeZtjJ~)!9M>Lzlil)n>u||v2cd2xtR9tvCl#;8 z2MmINtx5?wS^}+#EG?DW$l-8&>LuRM>EaT5mtv$LAYwqD0q-W#fn8clUnqM5;hx+; zo2y8|7YirqGHbtIBx`QT+1m4V{e~CA?T$Gm|NGHb^w zz0IqYB-9lkCJ(JCPPEd@__9goe7tN#KoBzjh-{$#^j)d2K3)FqM>q|hzJgO3(F$0+ zZ#(`Nj4b!2|8dFA+vn-nxoz|d>g-scWDemm_>Xe@IMJbT^>~9~e;6uyar4htDH*s2@S5ytNT3xy(4mrS78z zX^=e&REsb~sM4qqeKb#=$CvlTou%+Nt=0u|#Vz1s`G*FU8AKo)4Ue-?g6*Q4cuW+O_J zV2=We1)~nw@%(bDiE$MLbABA0v{kI~UmC%4e;1~Zv%Dl9qfSzU;u*P<>nX58AD+*j4^4L*Sg#aD zWJtAz3+mYhTj7S4*$m|QDZ=?2{255ko6RrYA)t(}KTyn70Pu&kawmv6rTc|iw}smh z(=&m&Bbgp3#hdm~*8RX+{l`c)LwA5*$FXS_xd{n2=s+QKuX;_S1VG5S!*f1RS6Dn@ z;z9mk57!{XWQn;hOjS8~6)U8gzCW4L{ay9xlptD_#JQ*ip~i^VW@yavA)$2tu8MC~ zwV`M~i4G->rNo_v!T7sguD1nqfxOxNh|pRkj#xA}@Z&=N`l>7XwJd^uK61w!DZA<3 zztR|cA<_}^#bs7oc2{@*kG?O`%lYhr-3>(uSh8AGLvybmJ$~I2k=Ni0%BEWn0=^g) z7a_PKD4ZX#vO}I2WIOMha%Z6Df4i?Uh_nQ3UaaD$7B+HvIg4wa=H)=0ubp{c1#ifk%z30< zHn)hU&2r%Z0=xLi1=(6n9jFiaTds_VmY&HTR;zPJu(W7xflrEpZY}tQUyD-rhvXo& zC)yY2ShwJ^8z*>%2-Ec+R@heq5M9^%=cq2yRgHpWH`d%)zqNPBY+V>SGH!+h*(BzK z#}Lwtv#qmqR@dA9M9;eHz?mN6(Y(vp-*a&hc<=exuB-<_nT_Fv1buxAhpKhi7-DhJ zT)*+vJc25- zB7mD#%g0C&8lqyP0ntko#%9(D8(l_omi0)jJopvZ#n6cn9(E>>1z=2abx!CL(J&q| z7go70i=32M2`qT8vkjP-v&SS6MpIEP2vn&$M91t3t(TRK{v#u4LZ+&iA^&w2f#}zQ zhTCEMkCaFP^iM^6!<9P2t~1xa|HF_#5*&dPyCK?Sc|g=Z$z(QdfE=Wa73+6ZWj_+} zE(0g$19`pJS{YKtld}*5n_jznLOYD=U03E&(|9>Ij}|&fVUGl zv3v~H91i~?5tFbOJ@Fo1HnLmA^LYKEp<-3EPvemOz9(f*_J96*r^)PGAY%F2&(0LS zC)HdsrzEMW2@^g0Ae@uqfh&z?*uTgpr^Hl&64}@t%U8LL@l)YS*w31C6e#)n$QDH= z$9OgPKE-1VtqCIyWRKe03xbXl6P8ETCnM!N33=VYZ-<=N3rRh$ktcP|oJC z?>G&-Ft0d##sX+pY}d+SxSa{KyM9-l-O(Qn%Sw{*n=44Z=7~b3Wv6*#QB{7-} zX2XaYwhD|jdQx#&r6OZ`>vgl=+vB0P=l!YKHy8KCmgD#mrwak(VqIE=Ww4wZHyBg} zjEp3v;Yc<#sXOo_d?_3Eya!3id5epeC~wtDPBNCSQgH6jzTQ0efcL>Ns-%lkEHIJF59#`_SdfgTtVt_p=|k_FQon}H7VEF zkZ+Q!7iU~+-9zi6&BRYal4kgP|BzMiF^x|2cjj9Cuycw9(DJPk--SVgnp%ONrjb*% zg7Mg&6G+oHW2PbcZR~o5h0Yy=?cTq?>EMf@e0VSYru%#dZA+rK{Kke9+yvL#c+e$M zeGm#K{j#{h*IAO~k&<$KXiD}Y#35@*ovXBqq!$q@^ZKWo_mXhckQL`m01~P2Q@>Sb zeA~p&j8G`2VJzOO7r?dX2lYJ~t=VIx(-aUo*_Wai=?M1^F1DNSG6pPI+ZbaIs7Oj zpu#FN%Ys74*BwS?Xpzk;0l=hAA0}@gy9ys1i&|lt5A2|)!XSxeFb?dP;HAp@l)ArU z6|e#Kn}jEitd4*nk&}JdS_|1KTr#7lZXAj2Cp3fQm!8V&LX&=!#*ph6e@-aXK9>Ek z55#gxiRl>DF6;lfD$-xJl}O6`Ukg=n>TK6lu8#9h({C#*-Fu`6*WFwY>{h&`3mTV- z(Srt51FxFW^VL*yLtPHIVj<+8W=6xL{aI;*GI>;(3rZ+4T-D{}m;h&PJza#!qXzwn z=5H~Q5hou+FKC%y-}S&x^;a@_Jh-9pUVBb|SWz$G+bu@X$$#ytxeq&RH=i(ap0SMi zEYxFQrC%D8X`%N(BTRLK!Ae#B*UlkHCTBTcbb5@r856TP+;-zS#m63{WuRXZRegQB zahqiiw}+HBLF^P%G-TjCU%G3Ii$^e1NUtD$f|2fk>ZVO)Lh-ozeRPZH6n z)~e+n*xO}ASi>Z(Tb~`Gz6oG6OU0hVKXO0+=`?wg%g?|epzGO9w69f{Mj z87;4q0Ip(f~l=OQZ8M6$+cTr^b)nwDfc{x&AMwh0NXEFVoGX~x1Rd7#TF{Z)T zNUgO7iBjeIFI*g8#@;(j1GP(o7F{!!V6uRxIXNUT6z^-NN|I)7-U79>rnf(#@97{Kjrya+*w~nzyF&jfC4@)?$(hE#BgK>j93)>c;0)qe-xDe)dc*z zoE?F`5UaiLw>qP?PJaq_G}X}uPtAKdlJ3}?u_%1_WQ3BQm9wY_Dk_R3@j4Pbi4b{XAjnZaW#fBPmgH$G5tZV7LEG?9brY>eo)u!>xl z6jlzXm3fL3tH>vOTidb$*#eP0IO9X5gbQ#`mJwz-Z4DV|q4RZIQ-Y2Ne3I@R_dup0Xu zP^{>9HMT^_gNuQQc7)A(sxLL);YnE+A>9oJTi!SS4Iid1=KVMdj}ABw^a*e{L_l46 zrxzlav{8;|)i`gj7p?QuNn?GZCG9fDiMCz@B4!_jjYHfl<`613WXe#E=+`E)n8l{L z(Fk=S%(Z!A5?Azou~y`B?d0WctZNMsWu-MFGn~c{0tb0E?l>m?NrTQa+&{1dqo*=> zj-PTS9OCg7Q5e_2qRbC@_ncqi19O|_9lYo+Rb&Ib=bJc<$YNmTVXOE2@9-r=%9Eod z1iE811k=Gx#R;hne+(?=t$SE0b&=U=O~hlgf)wRiRer|Gqp}7SCfZ&EU-H-ob-Wl7IHtUCy7OhaHS5_`muYm+7P;lv*Vlerez2ia;MCmZ&P& zZqEV1?)^w@F=g(72&0`rTe6s8a>XQ59?o()qp@GHMf~lyIezbvZ?2R8M~l&0nXT@H z=YHnu16>A+XJ4z++{Rr$t6j=Q9@(_XT6}r6$Mv-rlrDnRs4NExyuu%vOK5zBwts6p zq-%Ij;_(1P_uTf+vyHGcY0acS zU~`+|zXmb(%N1q*C=*7)g}+0vMQzPb@X+*XM8IN?<{V-fi^^$5bW#7^>?9*-VchRm ze=8fgb?7<*YC63911NYQ5yru~dO%k1TOnfGkbW3NUzzkXlUF&8+7o@20(r&b=?>{u z;HDCX4&ipYd+Y%HX$*MPY@cRbT3yA8I?@(l4=Lw zZS)R@Sb6fz7I9$u0&B9*SIk|%x3Hdh6TgGVZ|MnC%>*s1-4qI_QQ|}dT&ijUh}z;i z>km&n%58raf#CHJm4Z#uF1+2cVFRCm7A-_Sj()^^tu)fC!H(0E^|Mr#>%8}J8soCl zausVJM~E&RKiFn#O-5MpjP;~-($_2=c9&hGy} zmN@Q-6jhTy{7?|~+e}iY+H!mgpVVU{VPxLeBnxSvA&ZhIM5z8fuk8LxkCE_z+~9@K zQ8r+4Os?_*HjmZWZIZDU;=q^gj36h}wK1q?F#pHVY?qs5b(bF%kv|~>YZBl_qvU)c zBKd2HN%VMlA(sMN=s0Hg{-ANZ6i$;0#!99%PRok^C1AIK0cxsOhPhFt>@Ona4b6^7Eu@JcjInJmVt|7@g+CF!o ztepU=h(Nuj`_Y-scDrOcbF^D&g?;I!?X!q%4f@cJv@0Hl^>ZV6=}`2| z-54lEW;8y2rYft(5$gvgsG;#{@e{Pq*X>&{>d!B057{D7l-V28_F)VLlDMsWx|!hI zJIob4mJd+xL=9)&h0UPlozXrt58n7TBf&l67 zbO9y=FAWy;Tdk%aIl{M$f3exSy4EWFEqcCFn^R7UL&75zBS!(WK)FMqN-N zB=X(HQLrrBvoePcyeaea{N)95GfKWM4D_-Gqo=n^hQ>RARZkN(+G>2-kTPUDeUC|a zSKEvO1?qS2*JFG!PgJpkL~M~F4JAF#LCUTGuYw8TXOdlYbRLW zRd8kga=_dGF{h=JhPQhh4)~1+p>n(Z2Z8m^$q0neXt#eg_Z7x7r}e0iOc^7;6NY0CyFB? zw%<+AvRx~}Ks

0`f4YDNHIt)+hveOYj?=|^u&@OtOm?I~OdJ{&N!qs#=WF_O8 zX=Gu8%1a%-?g?ked9r>MMWejX)i&?c4|gIG#Etw2hlcg(;QAba`-F{7Uco_xR~nOC zU^*o=H3O@^cDzpaDdDPsD{|LLHEQvu7b|nRgc(pzKj#Ewg#ay7TwTeJUa;7rf zR=tcNfz82^;E{d*yUH&06U6ayl?0KE2ixoIgbUStR%~dlAn3ERsqQ6gh6~kfMal_< zr*6_>ne|F8UKKML;6B;7OuS|pT+pS)m!aay7n`B0{s_@(Ml2%gxL#)C^r4CeP+vT6 zVf5`%G-l&g%lD$Yn#x8N0`gcTe)iL<*%*-cSp<{<4w)_bEJ0Ls?nnex?Cet2*0&!x z$_KE}eq3PAw9YyaGB<8y^`Dqh(u4>Rm2c&)mW*)oJzP={A+AQxHm^_onP}*kaoSkoVsSY7E z_Hv~=&8NP1R(&Rnjh{A>Nu?YA*d!CI#uhY!uz+D zV^1(%*^OWi9!0ogpwP?O4o2WGiH2{uaWan$&w3%(Yx1415Z5tjV-#NY*5OT|fg;9c zB7m+MEP_)Ta&jVao7hSmGFk~7Lh5JfqSs?)N(_3|AMvvAni6yAVwOj35Cf^7J-%xv zZ-AUAW<41Ssh>T})ANMvT!)eUpRhAZju-}E=#{Vy818?umf1wwpQ;yNympcWBR%A6 zNn4HW*hHo}BG`ZXfL6@`oN>ymz^^dPQqIGhA9P9vFclC3`YpW=NFtXtQsH~aC;tdW z{*K__IUh(O&-C;$RM&JHHXXqGy9$;Pui9S&gXB(fOidPzF$HMWoUH!P(^=C&OGrSa zI{leE<>O}o+I-f}lgPr**0gL+4w;t&%Y%XPJz5{}t(B#&9J2rbX z#kBr;B0_1YOFBj;EtF?76~r#rV0sP6BNwR70}l(f?^+6WGMGn(7pZ=Qv&hg15D{o~ zS=bzN4zWski4hTStJ#!uR5k-7K;E7YNlE~>7UsJYE9F=U{t|%lt#mchVnBXdg1YK0I#pGb%8grgBt=*r3&@y*t!}b zN8L+zbuf>p^kxeUk)r{Jp@=09zLB+scAq|KoQ}X>@uGIg3A5UIg~gcsRvbo621x~d zp&E!_^14rRMa6bQx@Q4z?7^Q;UcPaQR;C~Cg3w&!&qy~QyCI#m6J|}r1;-nkmw>2K zDh1FF^yuL=^AXU|q8q64c+0`}8cz5y?WnL&gzashtuvhZT`aKsQ9RQPM|Zw_~NDsv2%1xi%}EU{JJ=`5rDUh;nk zyB1>!LJ-!H_yhZI>^)o{dvi0n2Ao|*MG}&a5g=jlx+}``(eI7@V=+M+S5Wv@ws_w{ z4n1cz@EW&=KJb>?SrNV7STqaNz-#U;CpD8ZPX|BycqvZ!7^S`)m8}N z$S3B|fGyG;gz}%X6*cmdbkrMqk-4`T2_o!z3M|_=(fcp3{Bo3#S zZh}qz6Y$>5+s<2LX6#Cb_%|&TsFZ{I?yDs6xf@cH{DG))zEtDai?Hm)cB9~%cIfh@C9RuUbjfd!A0{W->!CeI2nAg) zg(#`I=p^rX(_Sx|K4)nOxAgCH9d=GVQUEq;twh9zMe5-V@Lb_W0ohn~le!F9lE*#J zgfd067lf#(F5?(t7Ra6Kuzt)#$*OFLL(*Y~;DE`05@>@@gTmHqR!H_ZWW{}ZXdbHQ zty#?u<}qqdZth0A5B~@|w=0H07>2F{#>TM!Vy#J#`lT+w33(8(>ECz7QiYM0L zdEOyQ(>Z92v;_q*Z_T2gGLXE6!Gt+$Kv3+vPL~BfWV2WfBM0|7uu2J^hTvrx+X{we&9P)L2(H-X@(r0sggi-zfS{0;peHY>X9m7fb@?$QyU=~yAnH(*Ck zzsloW>RpyB(mN-?cL5Z#8o{LVJDrJMvCyPsckfc}^XPgOokrpQ6d!BC858!ohm<0D3x{HB~h;)Ya>r{_itklX?KPe1NUinNoD zDnBX59`bvhplj#?Sgpt;rmtbsjE5s`&yD!?7E)EufCsH1!l|Hm0dqlU_*MqV&dFo; z)ARmDzz@B1VRwy3V+rjoMOKcz4nfGP)ErfSP3mS4_RURC0xmRbOtR_-{cfc_$rmzU z)a_s_mLDJ|^=Q31#bhcOal8xutx9m$Z)89{95=$Vj<^)8Ml?N%MYr)l4wbdt38(pU z8z3GU@ex>~Pu{lPN>5lU{6pBa9We~Tu$6!Wg!f;pbpjG!$^yQWOR;0U_*qob7Q5*Y z>^>F3YTl7~@d2mI0mI|CP*_dt<*+P}@xtZflOS=;YwoxNxwXhJ-Mivp9N3}2$D)Ir z{`++3f|O|$XO0&q@dbvI5RJRgEpkez#^=9d93c#cyt^Kc@G;5@s%a$Pr&QTF81qp88f^>GRuA3?fw@_ai1f;YIuR2Z_$99)=?otg@l@VC6M zntFIo%-G&rDWbNOumz)K-?*I-1v7~zj~6mCZg&j4-1Vko3C)ovs36_ z-1-&MyXs+sHTgxMgKUi`$9qwj0-PZ`)F@s$(}Ea=-*-q`Q|YXH?zR8T(-VFmtcFfS zPqS*IOv95qv3=0~nOi|$BOf#LQT5zz|lo}z#Oh4wWWP>2noWjlWd}Zls2{pZ~u($#n)+;}Ap2dvs)lsl3e&u;!@{cH=H-uGef_ zDdBk@u*T0TniZrRY0R5FLQPy}SfK@%VpnKD-d-jb?e!N-RjkJ@>7%d|2JsOh^Z;cAT86Ne@dEMnJH?QE8mw_y(Oyoc%eIJ|o*XN(0wKd{>8iKd@pP%~ zXU3PHR~&10mmMoGo?&GvtkG6r1frqSsxI!N8?2Sf+S$Oh5u_)%0n^7_NQWQ1CLF|# ztML0vXVR8HO)D4Gc&4&hd2?ui)I6`GJj>UWqT-Kfhshn{o;=}RVE(XA%cKH&ni0;- zufjMk!t-1^Uqgl+LJQl2BI4rSNre<9I71GLh`#DOWvoD-PE}|H(0!0% zrV^*w&gbC@(=dG#ZhB=0r}2Z2jr6RVNw4jL?+SwWB#r1I-)gTMtB*OV9h}B1%*%h` zB8@Nm_$f1t!7_EHw4UyUywA6aBcw@60Cup#an!4nyJhvt2dN{ag974Ik;N+@ALNz* zC@f_4@1L+MJC+~>ff>CL1%><*d&{`c^VORG<(z_jIoESIa2nUs2g0M|7?}XdDZY-# z8tq)P_`4|7tuTddmX64pVHN(9tflXGD4r>6^o;^eBb|&}a+>SC6&(3<05vDP?IWZh z)F;t_Uj*nrTf2ab-AgbIS2?6LpZ4vY{nIXL+%40A(~Pyi@wHYceY#ZoC|4gt&I3ET zZSs-_@mG4i=4|ar-(WK&+`qzCGjt>1IvP7Ra=R(R#DUUyIlv~Nu`K-4^RPFD>xb$>ngKvBLyS50>C!-H0!K=;GSS!#LW3HM=~_9(EpmouI0j2Pt`0K9|oY zF1$j|*jLqYzw1zag)Gy56JQ#Bo97oRArHSeFVun4?DlR=PJ!V-c>JgUq1Ohh(*sKw z!3!L06W-(uEAxpwN;7Kz<-lonS=-!r;_7|Uq?WHL_&~RTfB`WT8g~2vlJ!-jX+QX z5A-D768v_})u>gw?vg}sJHx%*SOOwanbD3*_{#0ym>8@XM2?bSy_DpB0Sq1zQmcN| z#+jtsx)DwEnzXO@36nDcuq%{$wm@z}WC`jkZz2THJ`cqN9qxj554uFyB|ZAN25S^G zn9Go)tE=_EnHG%v?!^)?d1=*wy7XvV2{9Z69L9qlD3$&nt)*tKN&<=6ZLUfOd$?Z# z4Ix}m_<2@cg7*ZT9kC`9!yFa+CHoQZQ-4Gru_heNnM|_@`BmxA-oJA*1ud#xQ2xj= z3PsMo#>p}TZO0^ftgLTLm0)D#_bp(4VoX z)kN}KQK@d(X0rn48pLDdgfuU_g}1qg2a~wfFqX#u=RSzJ5dty0IeVE`(K3{EYQzoXqiq=tK2ajv<$rAUMJ3Pt%1<&_GSl1T8KjbLU76ct4CG>1UB> z{FoJ#htySX4XE586OA7?_A=8Zgse>)eMi#40-C!;R3;uir~V+54i+Qm`e{x`USA?F zP?PjP+j((=!a)t8#szBf15cJE6muB4dFWf{#c9@NjH0GF9wDb5jvxjLL;ub0HMsSY zMj&QDOtIa9VrPSNdd6$GE9ijsSDT(PeLfmeofVU2Y$|7eG&y(=e|4&u0gds%i>RwY z4frY#sb)!|Z>c>$Rb!l1FH)(N#y(^=($8*&`3{KF6M!yWz)M~2!0Q>hX{Guh0M*n< z7qxJs{8A%sX$U>658@Ub=Zp`z!{$M1c6{g|SF}xREXW9!^=TfUW;bfMfEGOIx*VPe zue8Hz-H2Z#&pCPPN$P3l4d7h2xKrad)1DQ{n3@@ksp;T`EY}P9Ef&4!jNjLNBJ5fLi8D*qI$c z48kz9B`~M^Z)}&t5?@LKo=gG+TlUi_-Q4nFo*6l%jcf0c>sq7oNHCm?DfdBDpd&fYx}xre<#>#~j{-fX;nI~{=7er+ z@`=&Y-98ZDv9b1qd=JJZpX84%+lc<=k)(j^6ljjWVHlGn3JX5zsLEDPBVMQJp z*#xaFZE01ps;w!3F7 z`a1qU8a+YcwXyS#y?Z4lfVbJA4uFf}=+Tb4PL`*>ko5suadUKzw5RGn!mjMdVGxS7 z1ekaA-`EBlB)+r-gkdsZKqtEO@}Fk}`I&xRLTmU{)}v>DlZH^0@3XQcgKV^=y-3b{NxYi^_XD54`80YCR{=u>xt`IA7-KYmF%qe-53UnOyNj*g!hU#fsAu2}bY=9UT;p=@o#i4phlbLy10rd+z z){CWW)!Ql_0qn2tnYL5OLvXbNgwG z6#ep1IY3C#EvQfn&54B-DJcjPL%V)KLQ%GUB*jLJG^q$9c~x<>>^v`bL42APl3>mh z?FfM>9s$iqlL>KgOPL7$VNB<{tg=-~oIF`oakk}+Y~Sekcpjsl2q1r~z%uYlehp_d z?YfWoOZl4hg(J&IQA z%yPffW9Go0Br2r5uxjQ36Qn_o&Z|>k=uF;HK1|t$5AgRUjGAI zy%VP5O$={oq~S*EqsnVGqYL<=weBv_(%qLtC>o7BAmTO#>Z8)hh>F0s{ZrZh^5lv! znNcvRih#B-OQvhW^D-#fKLUWYFlXs|`pZ(TYv+Fg<til$^E$ z2cviAJtvyzUiGCY(XWGXnu+RZ(0{x{LBywFTdthiKCH`+2&F21f0R<#k}0XUwuI`e zs$fR5lGyKxYq_bK1QYoG2v9p4+e#8?X|f)?!rDB-QDpB6#-FJzwI5V3jQ|0@5)HYF zwDjh4Z)2+Zc1JKo*oE7(R1tKR-)!_Bbr{qXePjggGQ8B}qWcPJXRQH2xm&D*K6=*l zYijA-zeLqEHA%^i>3Ni|V;#Y2gK3lC~5|RdrX02U8Y9r+c5x7hh zoV{H=G&&Vk@S*E|yTwb^lP6pS2z8Np|+GvPbZ(1D- z?pk;BmPAvm1!_Uqn_kK7THNcfgJSkTPK-|`^1H6Iq%|F)2;E2EclMEV*W=hFd<+16Dzf~^zpbfI;Kv?A{QKL0{4!XrzA)7V|5=faBiqKEd0x#Udp7zONz_DE!YIh)cgZRpr~bLj&m8glp+f@MR~f*(rum16Hoj5&6$S$RTo!N< z5Z(A!fdAfvG`goxeh`tp^C#?zku4Quq*k<2zX`t%On6n4w|bbBXeAc7@%n8R>a#cc zF4n!tPL6jRqUOuk8C^>Zf`S#iACbnx@G7^|}9k(yOzW(7;SL+;e*H$mZ<4-}5fzS>m=?YP>vY9pud%jtar z)3rq0N`DN%66+Kkq}2$_PrnP54J@(x#c?K&!>yvf1@0jJRM2jME>}}l*XLDEpL=*2 zCYt(d4M$k&Fx zSpj1Umkd(ZFQ#^Lwr`amc*B8Bm~%RA_D?`C4O$#o&iy1V!xMJd{tyMG$-65BrL*LB z$)xCu9l?NIxTYt}pwqO+Y$JZPX(SWM$^UZ|V^iGG-yqqhF-V0xO^CHBSG$#(-z%_9 z11rUJLjMc^AJ33JB?+<(BS@2zps}Vz{|t=R2b(Z1D0{6nm%10==W#Jm+4WBpoJxS* z^~&^LZLpi7AiUaQ>?otNWT7Y=d`mPc7=gSOZl##`3IjrtRaPVK@FZxH=l^shA!my6sAe+PV-`Imqkoa;6SZ3HHV9PrGo^0BuKZSd~ zi>iiXk~4KK{EZ-{yb426)@C=_w33prR*06i6F3r@^{d0n^&e=&!lwrEO;Ge&!)PEF z2m0FYW*_;Zh|`f&?_D`;jdgTHdOkvKXVr?S0Cdw`m%mV8m%R=YF>5jJY{7g5cG(@O zI_fA_GGHc%GDu7FNDSU#e6L*vV9i%h=0dy>;4UZodtGAZSEZdkG^&{g!rPz4eBs!& zf~O8w2F+@$S6cXu%UPh!{Ap@dQ_ASl)HimAC?8K#G1;R*lzHX}TRw0CLP8Wm${vbU z{@8(1X%1s*qaD+D#x_rHJ6I7Ade!nc^pg3J6<{#B0(2Xa4UpDa{vz@Pj1$}w9rpVa zL-ef}a!mepYgKJFFq&YP*LPw6vLrR)*#;4nHf09vPmP*kLQqruN zfp(DIO{Q_Rq#uNaG?R`-*bty7_oe6mBQc-q;n#eEtpC)0*tZN!C&VAIhgoLCtqXeg)?Norj(4e%Zf)g08rgq{nWO-F2 zAD6!KgHSgI(!g{s9j4+K7NLb|wt@DLAEh z4WbUJJqE69w|^pVx67%#ayN-68~T!vjnS26^oB5I|nzl|qlG-CBcDoXr-Z}z!kVe9L#Gd5U z>fifEt_{L3v8gFAmkuyK)!#4Eu!pWAKjNS_Hr>6)m%1m>BBRP#AT5m}TynC?(6!^B zq||cwu*7!sbS@2+?g$vrbnNctwk<{7r|Z1LHJTlirtf9)lpUhfP431C&9zAKxr+rO zNTDyv$)O>v+IzB-KwG=?Y{R%n)AsinY6IC$+btq^T{3ghPuXh2?(xx(h`OB#&9fj$ zIJ^j3iS}%now-I+V0hZc^)iWS_hk|KHIn30^g+wBIV-@M`a}TEuh#^F@%6eq5&WMB z=w+_xu!gi6z4`;d=s$7QTl76~PdbQm*|5q6-_Cp{DYfl_2&17JN<~f`0MKI_e1yA( zL%HA)Iszy@(;LmXBOvvm>ppJLG$-*c9GT@6G!g*@w>|sEk=pScVud`73((_hwsA5` zts^Dm^#|VcL)aA^OAdpumW+vQ=)bWGdyC}vqiw*GaS}ivq(3LXjb>ff7?Zn}Q|i1; z+vtV+a-8rqD6M)>Mg`7hRy^cTHkGuRE~(KRXESq+d9g52d+r~%(8HM`rXOlz1@`mY z^tW*EHO>sma#?`Jc{It%4l?yw3#^jd?Tz_{DA`Lln$bM1l3Rp|4X4vLLP#=$9Re8; z399Y$P1Y}-8(TN54x;0*#0hVZ$?oC0CQ8}4_+~dMb*>AH9~XHQj#T?tPtqdl=n9-m zH1kvWf2Xd|kgn=yIUh1E(WFz%3AB)kn?I09z&~!=C4>Z#+VkIVKpcSa^aOWS1KVH$x#-umKm(ZH&Vx81x&gWXr9fK0{mYdq3M3p<%ENx@ z&nan@IwA4zJ#Ku91~*C3Hcn@jxAb#myU~oVqEN|qk;ZqCc!t%Jwo2Yx7Y)5fQ>*+5 z24k9`eHmlPGPu2HqEZ}E?lPxundY`wf&+a?nAA11Z@&i=JwVb(W$Ee*g$JYA zokURsI|j$CUeYI3$bJnvB{v28!JNq@{WaAv5jfSaE61}tS*!++W3g^x+C)a>>h1O7g1a=Jv0WNDi zVsnue!6E!U$O0sb+OKS$KINJH9=;~cW7_e}`8-e}ses=L-9(53_$HsIHh9`Mf5ISG z+01P`_WI(~J(n>p_wJ4$LclDdQReq5j#V?;jg0oU%zbFD$zK8;eg!fB85J^99-I{a zcOOX;uX$3mvG1GvoUpehPC1Qc%?H|^w9XOTui+rvt4TBZenMQW^x`*Cdh8N;P_lyZ z2j5=+m`cv`vJkheSojFAJ!$%yp5yCNf~9)+qX7b_Oo$Pi5`bX(1<3Vvc6l0-!g&9} z7Lx!Ryff+!wy*hT?mcYw0(EIRwrA?nJ``#$-*&Qz(3Q;|5r`aK1xxc0RN55X+GFRU zkCI~e2AP zr1_F2+I#y{PQ!9Qntk`Lkj?yuxH(7K%OfZv4M&a*n+CZu21QTHDk?yZow|XC(ArU8 z)-7K3GC#pUKYLmd`A0gXh=O!BrqfT|Y2eqiekIg-hJXaP30A3PzLJQ-NBm_Syw`VS z7R)O%Dk^|e5hh^RtmPn@k68~L6w(+5pS{6th-{S_@e{q`k(9)_Xf%cIb#Eg?^U9|V z6JSjkBl)bKN278<k|*?7-qxcyk(vx^*l1bCb^Tj^kGe4& zpytWApXB%uFSL*AA;lg-^JsU4MlZB}Ege=BYM1qMV@~`kcX;A(^NGd+ukF-%r=(<2 ziVKtGFOHBa(W+6-JPtFTVRV{k87H`bg1+jzU}$bLg3T$vl>evkqqQVV)AlkHjEL3^ zoZRRi6~M_23%bT-s?S4BDG5HpESeW^6cJhM^q=mTVpFzp-QnW71zt1IA*Y^&ydbAM*2Su7@-sd*VHl-8d-fB-^k2 zk=PCQZ&34wdu5P~7VIa zPVCu6-bUHb3(&IAXvWsDTRtrU-9mJ7Xre}NP*Z5O^gpFgQ25x+i}8742>UG#p7X>11qPE=I>?5X09-(bRwKP4OBG}g4hysnZmrHRw*d?zXuY0PP5CeU2~9pp%E$F>@4$ojf! zFkHRUUf^P0LSGP;>DOn#eSA8NgbtH{7+bHBr>=x)+?f3~J=x7O)&zA0a>SD?6#v;h zP4=U8syiQNO8Wt_%#0_G3T@UW$rjS6C%=+at8qJ9UBMZM2#m$kuQoJ(tNelMjphJG zjHQk2Vnd8jewn=;$RQ;pQ_@Oji$S!kpt*H=Tv5@Hj)+ENLj76@`ba}uS6Cke zIm`VL##`}wD}7#ODAaM*@GXqm*UWbe$q;iZ%KZ@ba!(nYLT&3t&$$6LWgY@)Mw183 z*c9WlLK(neFzLFcNbecW;itwYVC=}-gX95_4uY=Q}{NaeDC z@`p2}-f+AE=)A5#?dx=@st(G@W8uH$KO1aFT6SEvMyk+I@~!}7Vt09zhRoS(XH6ia zAF-4(fH9244fTs)JI-UO!uB{_EN3sN+5r8fNN`z`^uC0g-@QO#7u7_UMo&3@H(j8p z@N)Ap1yk;?(;7fN&Ppd}cn%#y%>Y)gSmWulEUkWukYh(EI?OtKE$C~dEK#jpjmm2PZYs+pOVy6ga`9ON$itS1h=6t}R4$j&&DcNUqP(;5BsR5*_Rs6wr< z;{PFvXQrk?u|r1Gd#sUj-}hy%W!C1Pvo*EnzI;Dw5P1cz|gH z`Yg#{!Qu<~U=q}Ij{R^EjvvoZR-a1tj=--)vryNr1S}A3Ih{9LlF7F&z!r+yb&ct#*&1YwUFg+`ZCk4UX%y!#?Y)eK%S#!JiLAo0x7y!H(^@uIDRW!@Fa zocn(hIkWYi&oF-kfpi?PCTg{()xBmW;Awn;q4Ik;YE4|H#wv5JmC9k-&Ixaf|01t! zWpLJK#+3b79Ia;fnch8>Y{FV2C|-|~z$@Eu<6KIX1iYiCfAXtP8D>f>GP5Sd>j$R{PH51v@wVLqzxK*r0aTq@rqnT4?oQ! z@}1|G2;lqpGpHlj4%$vi+Vy()hQy_Giz8TiT|3n}{JNhN9_TzPDMXYAD$I0p3!}(SUdb)~S z;6o;ugr!=140g&aQ}<@XY9iRHuY*RHT~C*lN6?&RMP8tMLp|?ZR*^xlW_VyBX0CH0 z>v`mn47>O~j^^x_g1xm0q^({H1L0>qL{Y8pZ1u7_xt3AAwjY0-M5!omG zwZ|d&7JJNw{t)n{X^ZY(mVvFH?sA7Cj4AshyNVFNfv0u-2+*x~ARbp9$WGM>?O+iG zer}IHY^&lJfc_uBxxCQmn{YTHua|*LG_i4-YDBxk8K%J`yhziMBN7{^Dc<5y&F!xN zJ-6-j_GN6Krb_s1psdFk@K>Xtja|ZdAd}LTP$_-A(&ffqI0!%Ehp=l)au|eRR|>Xb z@cl2gB^#uEsTc4}ftp~wE~PxSG-h^wh8L;Xv$`Y;uo$6HTMpnil1R;e!uw0x*L4m5 zHpJlf<7Cq1p5QfKmp(){Fz6GomMUD-mTzwq%acKT1%Z5B5@1_dmtV$Ua~yP=-PFCH zzO20t7aP-WukLH9sCu%v6{P ziIj`ri9mY_{P+>_%mp-0J~EPRb>#`ZNH)j@T8=o;GK2AZ3A)^KOn}GYoP>hv@D&C} zUt|>QX?)!pzuA`|K=o@~V$H|d%&mT%mfHd3mkprOtdI4tACSa^r zBR#28`P|VU=jJ(lv_H|TNAo5sye#8z|4eE zL7E;EbUypKtaXnx9G?8rZF)^ce)8k~W*R=@PCJYHLcZZ;t@k??AVsc^Bn9}wHRO)O zxnb30#P*cysS~N0`4Hca_gSNtCq?Z?fuOf}B2>9{2X-F9_m2um{L{cONg$|qNVj~a zDXE#kiCfu6xOLi#u23}J;7viG!o8i!ryx=jSy&E7HZSzhru5W~!I4S!K5T8yy^*%& z@qm>|JA5A6Q-j$zhe~GRc>v5dGxSLAr?tLBPZA@N6dPma?X2IQF z3lq|!OEWY)m;n27@3`Orce9rCQ=m!iixjpn%InkgNjB(Ok<_#lOyFuS{ZACO%h95k zvs2K)*mdBhKS<4K$8+O%v=yjeLq9{}7@0vb<7ZIALG3C@b@oK|!n(?sLOTFaxVCom z1VcAxVCH7$rJo8~cjz=gOYC>28m}vc7Fl^R-*7Xf@iQ_Z=J;w(L7 zzV=DHkY8^2Gp($xT=w5TVds`CK?uUo9o-TEk^OJ%jy+A{7qbDY`eh>tCqIa%R!Ys8 z>|rcS8mgb++24f(mM~~K7n`7eNK1{i4ZqL2m=#(rmt+2l*5GR!%nA)g9ce{mpWE2m z@NB~}zSK55>+EaGk0Nk0d?C|l*DfQUA7Qlp>l1)BLau`i7LcBZVVG~S9{6{^B2kX-s`D|m0RKgC1 zgX$f9#G+j~%_biGJ1~y?i1uAb;P@g1O&6O%1$OlXTypNvUX|n_hilk}AEZL`U{l0cPo17qiq7W7XNmep-T~f~NA*TcPUSmTq13PDG zTnJ-9hQwJxP|yDpc5O!v#2~CC1C}5CH+IL~BIVQbb58B zdu2-+jK zt6>pxYVb=H$Q=d%U4)DB%EZRoZ-y(hU@+y!>{cvF%rBooY|Zb664`KCO%1`RXJ|XyZC?Y>OwBlly>6AM;uCc< z`xQuK`w~2F6Y^N%74xk{sK zPj+kjpR9?R3L?{VlfaV+f)NGXR9=<~egESENikg7P-Q35~A*jv; z4LTF1zg*$;uMtGZ^ja;5ot^U!VOL@!APmDcIzihcbhVrQ2sC!3lgt7Y^v&ZZ2N*<)hm(`DdFr)G_N#0F z3+dD%4CtKpObg^%4&W-Hdf|Df%KR%2RZRT}oz7Xj;(g&$dWykxJqu$qL=Fy61;qQ; zv=fH0PXk~^=2XzVxWhnM_p;TdN!(y`x;mG8?8~Q?ksI4Ivl(h{4tiCJ;Dug^i`31I z7H-TXC)18JD%XE8OOWQZlvvvdV57u`NG^+QZJO4dQhrR3&r>3%toSq!<;00fxDa~X z%OaDB;?rcH(ohwD_49vMTl?cLHnjN3dP`rC{GF8z&3m-!)AS$2O)1^G6>PNBf!W4i z81z3V8pp%<)2G6aVIOFqrt;jue!8~AGo$}&u~{<9$2Fah_m8EZ)>H`+K7u5LdCzA@ zzu5-XVHB`6UnpdT?eo?54V_E4PcNB)M9^uWb|a(aepCEEHsX%oK0+UApPd_!&^H;n zmvSaXz?N)B=S8W`vu_YXk4(8-Y4e7}Q`O>q1viNY8Qb$bSS`RHDVnM|5E9OLyTj3qbnVNS1>q8BQgFeo;7B6iDnl%q&XZzv?aLg`!hjtj_m1%Oz zhS7r8=L=2*iDtIqm1*)EJ6PgS8U0%vkU9^{NE96Goxh@+OOG#KZS&3K+`n)+I)Qqf zaw!elcznS_dJ#_(6(!{^c)uZMRb1y&Igj>MTqZ?3_(}287}CdJaXs{9aN2#!Tzd}= zq(8u_ z`HV$Fz-QdCmKQW902}*k5h)mJ(qXK1YQ^g^lCz>mm~~^iRU6s8jgs*y1S4LfO9Q-kStmYYs5As1_{FX)%A*t1wnJyDK=zq0GA>)4 z$mE#o=_^{sKC2$){srGE*{1#*Knk73)}+f}-1VCwwwlAB{#u$_u2glA2DXZtHEdfa zM}6zQWCy@J&9K#)+hhKFoH`>8eI0@i=6^|)v^dBewac0Pe00j&ML4w?&dGl1&Cr%f8G18jS>9S&cdn z!-+m{W9*H34J(iV38R5$ls;%y)mBNmLL;$ajHc;2W@J{VmGfXUevo~y1gpaF!HchY zyKIm0l7l5m6lmekHlV{;F|KQ7H*QSeDD}g^o&bfyS@pe%0H>jSlUy1S+8KF z20~bh_YT4|QZt?)*=ApHi-YBt1M5<+fz%2cX*TsXGVjd9b~%y71=FmNqwO=xbXS~S z@3Bg5MF;pQ-@tI zda#{-;PLD%M+G=QjlVxTge5tyBRjr>xw%K-R%crc&vZ!~sL~EewdD??~?~}wjVj1aw_Qr?&McYrZ z^!zw0F8{OL$+iZf5Oq=R#}$%(7UqtAZeaWqc5YV^gdh-22}MBiPi&XAE&8h_0Z)&I z;aOf5#L|3Z=x2WkS9iKXAF+(~LS1LTsaYmbIw1ZqkJ9==f6*l668 zWMfx__ac44OWK;q17+C<$71}1_L5Ut>O6N-jwbh#pNBOjJwcp~mlS9HAUR>(&P{Vj z{%_S@^2CFG=e~YHUy-I=D&L@4J!1dy4Y0|Ken2@zVAPYZA@v2D^gW<$(7Q_2w(t+Y zK3L$fpG;Kn_A$A@))x#iq#N{OO^6AdZwGdh1|~SxP3IeIO7hA*q`@2oxP;QOIi3wl zY<>a+k%IEhKj^U1Jn@KWXhg2j4>&`634-$y)9nNIN!;VfijJ3-&120wuBpsX8mtow z61of?Fb!E`U>uz#GXN{<|HtubKpGkM34=Y92D|-zOK#7GpndxIP*fsd8dn^-b?XP1 z@hIhWf}X*pgx=GdLqNR~?Tu3V@UzGX=tbHzn8R|{UPw#-RSt-5gaF`?*i$%bPEFms zYd15k@&8wQU#{*)-r(IEAJX|#1l-&HBkbCeEe2uGmNY7f``_5T_B7yE`rmOnt*<}; zuTOn&gCrz-sK5mtcOQwi03?`e_oZ-8MTGPUUpC9MIS|beyAJ0IB0m z5G+O@9vMwOxQjtp2RO0%XOgg)zNOW-&Nho#YY&lx&HwJ~(vc3&UcA$jhWb0mF91P_ z6A0cMQ@;A(52b@#BB>rq2iY|f3wfX|R}jLoH8iPf&>@77-!5tcq1K^#n~clac?uiu zP>jK>7nYPY!K4;H{o5mN!(O-aAqfA3yAp3OAz#0bcaR=-I?o%l&g`J5H6f6+#?ff; zgM^n)2vaS9L~u?vUSN(o8i{-?d|bnVt!PHB;IS*0e_{^AgvD`gROjR?kNLN7%I>Q3}GaE76t`xc|lWp^!MUv)u#eh$#IeP5ynoq@DR& zJxH40pQ83>8wa!5UCeQo5RaWF%>pe-SbQvgkHcj=KD#!e)x%v~bVcrhjtaDb3F)<2J5g%{I<7&1c)k0khYO2-X!~RnUA% z)(=rX0X^n|<)VEbUf-sEC$Pz25yea{QjM`R)VpRUyVV?{0q3fM+2-Z&Y;N}nED0Q8kunE zS>J(mjWdVb=i6z~+ZGTj*`08Hk-k0wd$yFHL)o){Ae)!MbK-6HkVQ!yCp<-9XVwv( zkh@2jIzcLE>!Y`1y;HHt{vOWxL)f()Nf3g-ln_)f|HN*bk#6tfxCE@yodu;|zZP)Z z{|2+{6?xINC$;rC2C_NSVC;9#eoSY*iNzEsN@1O$u3o!*y9p~S#b&Y69OrqO)pA@v zc+D1630W3q6C|=P*05MXa|KU^!tM>LBSRnh~8YFX$H;%nJB1)b`CGj7;{$~L^D??Hn+S-$`bd_;vj^$*F`#XC;ZW7G@xSJkCGzA~XiZ`j zev$@1!Il5>uwiD6r6TneLSCj%e?kpEgk9Nn#2^f83DAZ5Z!E!v8RsLS0li&gqic>G zfnc;wO*(%&X+p*pbq1m zv9fOY7#x>m9;4s~oQf8+*YKrquwr$xbZEyAbv3DVA?omjZQXE9PdG_k^>M;UXXq0p zy^hnE$ZDDDrvS>A8FjYj6sVZBSvLg^eP=aViMlJMR~M1Qpk<9W@)#4FtA$ak|3uOO zi9cusK|8X2V2ZAoB* zm>~Tx#`d7wvRM5SXzFEbwdFI4l&I_RzzgZgYTDz_|CZ5KooS8`+R}PYeA(%OYWhWK z6%h#gF>(RiVS;&qiUb{NH2(PK1z-*P(mEyr5}4Qr+8{HIp5b z7xWp>D$-$fgx^#9A?)0)AO=Ao+7d)j=)bYm7zV#)8}Q_zg2LSS>cRahl~~r>-k7}> z1^=5Nb-(VI4=duLOJWFriosZluTQ_H1}qZ)jGYDbpb0fyx~u@DD3A!4U!Rx z6$w4*Hex7d(~v(S;C6g!&8Mb@sDGg1WQ6i^$F)gp^&~n(gNtJQ@~qLqxvj8)9gdr4 zyOa~><+$uo5wmmQnWx5P!^vk!?#1CpIvTxFb(!U=T2|<7fDYJrRo(?|#lsz%igmgG z=Gx}qj{wga>AiYxrl19Da}$aqcQQ?*l`FEy13CVjg5@JHY*vr_8R02< z7P8Q^RM?co==>d8MjGn_wPe#kd*&a*8P`kD5El}7Vm=y=xL%eu2PB*dz*4)fr5kjF zfqt1Qg^PEVeEGZ?{|=atZUA1+47jgf1kFQTF(Gk6eR}}}FR{{7y1^-SNVfu6=#!l6 zU7@D~Jn&FDFxDSo=XNDA2*c2p%vAcM`MQ9K#0&pY?2Rl2Q7pwya)fG`%fG|O$q zAB9mF6B6$bnG-~fAhE*!?NI5{j=E?QqQfTTh1JS!AQsv;E%C0yE$+(c2ib3;54ThP zm*(>LU$(|IF@p>FISBKm{^xDz#^CF-pg+Ik@RRGc$`3!4lE`f(Xc*ig2ZRkM zbjM`cgtb~>aD2#lbe2V_>-!_@N{%1~VOUFmgDv`RYzG1opLH7WgdoP5f_F3oLf9T&J0&%&2ZA^aX`0ag_}Rd zjnu4tJ|Hu-hf;NqbTAH=Yrxqq*Qy$_Oo!*!&;&-Sf;AJ5?xQ7<6`E1{H(Pc$rC_Ff z8(dasiWZ9)EHHBYA|$RU9$ekJ7iCH10v|YyEO59}D+LP#K&^jN2tG(Mz%ZTGiOEM! zRe_+IS2KDNvG(L?4Y~7g+Ar&=t`4^qCOHjHkz~jV%~8m(fbE?ItHn(hmta@Zj-kiv z3mh_&P4RF9_iSfpHCg*k`-C>~WjfT>)Qd~k<>ZR`Q9*rn6$@<~@NZ_#)qK~Nx~3MV z9c?=k-RT(Vsn7`_8d@#<%lqW>iVLnG+ju5nD%If)G)^igJ-a(kKb?obDFVpP zp~2a>H*t3AVIIw!TL{Si3J{<@3=+QWlkB9wd&*sca%=iCNFy^pP84MlR@1wHX5$3{ zw8x-l_>ZtFORgA%VK-`70$BIISf2@&_^ICoJd=&svX+(yD4J36RjN|fK0_THIZB>G zZYFd*1Q~8P6Kc-t;>7&RI{TWPks@j0@rKnQHmI1@iDXNVfa9lusaPhV`I8dhF`WL>MW z(V|tf1MFWOCYpe}MsC0}wAp_Jz)1xe2lOkecdyhAfjxI7F^E2n#_$`|1Bqh$bETh! zOwnMR@IW6`7b&EiK!cRpF&k|~#o|Sjn$Ox0_+!f732BQX5%Ws{ItLgQGh$m29nbOr z9|JRD2l1!oqdx-$FjA5QWQn$(i~JN#RNYptNGk{)pSqDFazcDk%G0A!7+O4^+2z1) zWL|#}5TXzupJQH}V<-Yg}{YXndM) zT*dztDu3LqFIv1{oh_u_$n?*TO2yafN_a?ItB|nrR|{A`5i5-o(B3nqv^($vjy(`r~^wv7$t_cpILg$fg187eieBUxM7Gv(<* z&c=q}W7>^XmmM%!E@?_^X5zLoIY{2zW7Pv-LHc;|57S`fHKPp5NTmo-^TD@yG+516 zq(X!^gl<0q8;BK|R__XBjy7D9mr2_Zb1v8+N=uH^#|__u?@R+qAFV!JNZPp4N4~k! zg0pVv%gfp<%8WrmgOTPV%XZ=HLNBn1j~UWwWv?X)m7RG?&L|=u!yg{99sy4q(Jq7? z3~O4Xu3kD2$%JpwYVp0bOY2{z5gei_L!~?$T9=}3P{@uuyLC3?HMojwjZXa~&^+$K zX!y9~m#jB|)c+#zJj;WM?kYZUx_r5C4`Z`Yth2NC`Id}Lo+UG%hBDH6XTJRbkaUIC z*YjwAf2>hfYd0@=8wQoK+BAk}KlbUJij2?_6iw=D{%GjKe9e6N`RcmEupG@B-0e&p zT6O(U0R9kmF1QiHAP~J$z-{-a^G~i4V<`MBYB{l&`4;*t?KcskeL4n@Tb-lO2s0Md(p>35YV?fBfSMg z;O%4vR+obrskV&$>xZkr+>Tc)+7z5$8XRq~^jtYAU=`r1l*G}2B{=hK#w=GLMAprX zjNIg=_Es1>Ba8kul{?5bM{~Q*b0WK;*x4&Hw{%q-=fsEiYqWehyB7 z_!z46WG5&($8Nq#yp7iq=W%;u6Ln_8RHCH4b|KWB8>L|=MCMHV@UDSZNO%46itII? zmZYI6pt_6g%B}9&*r!{G6Z+3<3O1C z`c6*Gy3(()nEo|w#Sl_cpYQlVuesjtqUWQDq^tBHIF z^rif@C#PQeqr8aF#=tXJ4Hn2vLdYuV9D#~l9NXKV7oTpJ{tsySOb^^ddnm6uQinPc zp;?^NYgu>T1S|a-FO+U)LpXLL^qWVAzDgM6pG$amOAhLL8K>UHs4T9OP&wvLuluD8 zual6-rz#^a-e4;=ciQr%VHUbqQ5Wx2Pl}rsb_d(gS5c5a^b@F7Y&qN23jnOIqAu2P zCy)K%{#=`kp<95Iuj#&>bpIC4fL76S{VJ|!J00X(*8{trUDqSrtclh^`qZ&0AG^^k zPJl&vFmp0%=o*=ZK2;@2pE%?Qr~Guft}Y80iwVB&MXJ$=HE|WI+zc?Z=R#(BB~GxR zh8%9zSQA|wIlu$1+9Kou7sR5FiO)UiSqD^>xf!O}7Emwdy7XX*tnFhL(7u(iqCOAib}`1ps{HCfv;N7 z%~?nPV&9%+UMfunY-tMQw=SH9L;x99-Ea-w2{jIM=@PoEvrVH>;zIFlsY0{!nqbx+tnmV@dUjxk%X3F*T$)-SDFEy{k+xJJ#iOEB!k{c4^{7QJ_>b z-3X2VsL*f7E=`#AH87h+Q?e<%3wKW+|F zP|H&4I0AuuGA)lwOE2%ZhOUi*%cAHCl@9Wui32!(d%F*{t^BZ2sgg|{cN>=GLFnLX zTcH@xKt7b`;*{zSMiWYl?UlPjG{4$g+aXU&s~ukiMcWP}rEs1yea;Xq z$GMGE+WTr&$3hOZm8<}{$QXqu%%0`E7diOz`l4mDhb>)Yo6$A}F+Uv*_7@bA(w}7T@SOMv_?$_p=W%6iRHGi5a zTv~OO(2sO}-B_iP?M@F@^Ul$LN)7%Dl}ZMTv}asYz|yWt9tt>VXVl0HL_tPpU06fL141s%1mUGPFewEyJOkQ3&gs1Xx2KAFq_l1p9`Y}ACno&(SZ}E8D zHX4UZubH0>B0aodxi#iu!|~(=^cpk**L+_gM;e)fN1{&12&iYx zQ*8ecc5PV}gCJ~2b5N_u{x>$oN7A3kEZ}l(TSOiqSxk=-;L*&%VNrm*>YTNtRIOAR z*?RCNwlqekehIi%`V=xDcQ(gwv7Iu=egLwWcu4YvX3qAw6a5vJ>ai{5KK&FZwx3Qh z$pB|lTI=aql=dSxiz z%GSJJ;u+E(gWbrF(p$%e^r6#WZq?Yl^Q+|j-s3tnajV9xx6d3Gm43+mq-IpD zaU6-1x9T`l^`9y`pc3-L1OZqdSHfrk+oXXBenLVUYDH-4)}%WJ+CBwZQW*;Xjqsu7 z$gOavrah#iD^Ae+R>WHtehIshDOP}ODWoVHmslKJRg;y? z3Z{@P-7;TA@L_a%`NFe)Rv`6kIpC@o8AY{07uR>eM25}}Z8mkU?WMe&0U>38g;?V3 zr=7hxWpiu=ALrX{Q9!pF;s)!$q1-YH42o(jp&$QE}Mgmf3^9H$$R^W>>`A zVso9P)yHW|#0o)%GmTScN)Pt_9uh0EgVXGfYfl&5ZKp=<=B!h%zAW;WQZCZBVQH=BNt1`ll#h9BVpU{?21{}MJbhc5ooZ7b70ff zg$;znNGy!l0L~0`IL68SAEM1KVP}x+Fbu-bD}e#qx&Os}Ne%L*`nzuGnWh;GNId$0 zUV6AjfEe2QCsS0W>7N=FXbZN9niWAKt3rO+V4P;IfDy2fES9AJKLKRtv0$y8s|Aid zls|_is#Fs+*+xDwI-s;~rM6%z-Dqi}g{cqi!>aYAt-Tc^FKujLl0m!bYVAJzd~Daf z)^-|MG?t({qQsx1TCp9Mn>Q`|P_5_FS0H=6}USEp=>`wTnx$c_s`3 zS~zO_Pudlg$IeBoTXpn%Bzk7iTI||NyP)b1__Km3+))fQJ6k1xpAbEg9oylWDz@R< zo1XNAjIOW0{-r}~nCH^hOh|Z5f^9X?j`Q?N9T9mXij2pWuq%b@ilW(u`tF9H2Q(#M zDu6J{3g?n`dfEilfcIK8V zBjXg_@i_tg@C#oiL!iA59-_Yr%^zWBmTXA~0?{oASRy-n%kRd4^egWMjIaj81oEu! zc{*CA6!no`G6803qM)vJOnvY8Dh*Aefg0GrL#4u}5O z)d0smRieJSw&((iwtKBqK6I1~oCwt)1qB+bcbNzF(eC9YoxuM;AHKqTqP)Ql zuU!~df*bkUtdZwebrei}d!bZo+vZvu{dO%)aaM*~a`li(Lr)M#8BX@|XToAj@kaGI*Y%^Y65L*0?A zIr>GO5>0;7QTXt7#flWzmG;I8CTez^*iT`%(k;6z@80-R062RN&`D&Lv*AZ4{7qnf z)(elD_Mt#IOnxQ^pCJ>J7O3HVJq2SFy4Q$mL?#7sRP89OE6DKyzKh8q&tM7 z0p{r%d-c5>Y0{@gr-Mp&JS%11mTo}FMRXy9JAY2-B(emy^RE;gCNW==Qc)%dHBWRX zxcBPf@a#Xo;#_RK4!IWKl`BVt%D602yQ{ndyG3{^EdxciE$n?f){GoV<9)EdbuCe* z&nj@!UsF{>6%cBcVZE-$yml_qY+gpk?BmgH9vX59zMx;6-?PQAQfQ_YaF=*YBBDtU6FXeXK77hhX? zzufRz4f5Ms!cTxf+NI>;XI*R5`3dbIy;7fK4DPvsH2U))9omkN2=GhCcY5#>cB8)h z^bFV3x(~THOj>4uD>r(0=%q9D6GEk262YiuqbL!1eS=tj2Koxpvd)j7z$-^n8g!5R z7d_x2c|n-b@7-|1uT@QIQalfhb=UR`-#+Y}%K2r1+IyTQxJ&o!j7z#>1)Kuuu}Dq8 z?N!L{$6G``b~!x5!L3H>i_D(Oep|^q$DHViLalRTjW#`_iYheYCze&wcoXuYZrfE(g^XVI1ha&r&4ETl(*|Vl{9^h}|F+HKF$-p|( zDnXwvjaLLw=Pwc{fnvWrbr>}HR*JuXz6htZDY5Q3Xk-kg6i3EX>vx?89N0?!udU1US7T7&+;R) zM{JW`56v^PW}17H`*{uyQs$aM^GrM5BagFhI1YOqmFgTW~=+a|SD~m(NXvs5y zU+jc;(-I7DC?zzh>;yr0B@`+!KAMByR0b|&gTJj5m@ftYhBa`e1`MS1PH>zkl1Fhn zHF9c~APD=cWQGfmqBwkyt?GLm#4C!;PxUmglj z&s<@4^ZQNKT&#E|9BOw3dBc&*#U=Y1lQG*A1a!C)QE4Z~lEUkG}o%$*p$qKML zbVKX#PNx5D108;lMm{r0$9&@T;z`Te0`l2(Es?UDL#pHas(?|AmyGWe9}_DqUas)2 zJ~MzucOVL-M-uF_N6heMGgj4}9&@SBD+D|kyl4x%CTR7*=4mpc-jUlOQ#L~~lk&+` zqDgc?jn%}PKKV$tG@qIaggG0T6$DqD3(#jN=;H1imCC_u(gO6E0U$DO-|vuEzTDYi zD7e7&sH7Rk%Zuj`r?JiE$8M%a_OBQIL)evNIS_)tE2+5P{Vz66D^;DJnhWquVgR9* z-v~~jDmu*6@x>uZP-$}r``Ds@Fy1tA1`WV#xu@Be{(MW7jY$UxT`o82*n_&a)mx+J zzfRJm(o|YV^hNgTG(Geom1b~!H{P6;j3k}iHjqB05k=^!&>5?u?K;B92*7GT5$2?+ zZ2;ClDZgoY`j!?oFCiTJ2}7L-85aGQxNDkd98>!vBA|JCsY)_{1FBsMSW$<|dEuC@ z3(em2PN+m$TheKEOmfs2tk8YI3g~4s@pAzeAF}(h0w1qKG`Nt^_GwAWgG zWXQcpD|+f41d>czE}pS_5^6d!T&lDOb9E0Lz|s0F=fi3gUt}o`lSd23J9;Pe~#GYA19J}sh zfzgv)Ll!`pX6a7y?PJb7R~UV)dI>zzghFxB*n03Omq`7?#tXzZ7wNkep-sI$k^r25 zy{e(>pq3KyS|7Cqd8R?U1}8Kka(({`*!2pS-;R}5q37s+uFzK9g#?jjt+xc&Va-^B zty*OPWg441vt$twg$IIKKSveD;z=xFw)+^w$AjuBPv%(<^zQMoMUW1~ULm4R7B!@r*IeMV=Y(A7n z?95m8V`f~zDY&K112w{(h1PSx*@IboYf=+EBEH)V={h(}U?;p2*6q|Rl=o(-%Mtz+lE@NbED4k&BLL?kb3%uH zlfiPkCGlAtN_Hgxr5K~T50z$()B)hLiCl0xM6VHi@Gsl_;61?js*R%GJ+{k{%En%&$7!YMbu>LbzgM8sUu zqo5H~=TaoooMtSfOtpHt*(aS%RFJDjHu@bF&-C#fJf{&{ywmbHmxa#EQ-`b5|Cqz1ru*$p%PkBCle*UGlJE$~37%jSz& z3eE51v<7&&r~B#Zi{D7hRII*_zDuo(59&w?w0SAuO`g{i{rNCj*gj~#m>X2^?cB*~38TH$rSI`YWTW^&^9g#U(97a`T^NWY^N87axblmCXO3hD=N(Td^7_7OdLSxGcG(*(q- zeY^afN92!mDKwXo+~!$1$oMvT0JTq`xm2*xnAlk+mOC18)!!e&t}MG@7zEy^Pi$K5 zf3XHvF#c$#2M8~*0GAdmj0ax31)$~L!Y?AMDiof>QZi~yZYzHtq_>ab9E5A1vYylI1Nlkl zW%yVd)=)CL!sdK`hlnO#jI$}y2CK#$q+Q|OETB1A3G6hpSqA?OJzXz@c0;9R5C>itTw)j7&s1!^Yyv`z&dOA4CkVYui_qETkB@}Axl$m#q|XC0Ij0l!|G_Ht>Z_u;}bnY1)Q zG1`LjHa4|Fbigw*XM>({E{W0~oguxG)(zxtW=baVj;2aU@UwtW8aY#5snGpQ3`!+% z>j)4#9_atz^tv{`j=*QML4mz5p;nRwMu!OpJmU&2(2y(m%nHFTBQj}zoQJN-L)1Pz zt(WPR!U4}9E+J*BrF2Z6Rl3!8;4`b~3@N0q^`m?y3*J8hpjiVuc`LWGk^hyy{D^PD zuI$Ky5CmqlB?^l9C$_~?y5|cMpqz_Q`uY_3;MayJtoHj&gkRb&&!$RzM(j)KHRzGt zW_=qb)s`I}_F76Y_m92pgjibv8 z&0>GXJmtJaO*!ij#FuT)eY9MTaZ$lYXtmD(vVkQu9)C*%qhcGB{hq_SW5iJ}f!T)A z5Q;PXip!!;JbEl48riAd4GshXk!_dCE+s-UpnGUc0*=9#m1-a*LSvhTXU8z*PQFGt zs!$>{+i1;1zp^JWSc%Z=y+G)`iHgfHXQbMQDN~>C{n&Pr}Ckxv3m1EAatU$}N=43RiX3#;O-$qdZO;V6d80M|aE#aTAYq7By z24O3agap`su`7MWu5=PzAgWS@pN*}y|3Rmz5nmjik$NJn$buSK6?4IOVxFZhFur|O z#xbPB@x3-zQ=qh8NLOyr45MsF5ynP3%Jq-Rg7J+eBtPZZ$AqMBkqOaUi5?maKdIlR z!Hs@e!X+B9fKJ44r#Iure{j^0ekK5DLz|w`jD5UMmqjD@`JF8I9Y2>N5TchfLu(jAy zxihc>T=~;GW~tK!WJ|nMXz&f*%M0j((wsyg`UaIH5(*#Z<>2(d)D&|Sglc#90|0%=CBVx5agMgZ-GZUdj{Qg2 zl^shA!myTXzy|tn?8Qlt^0Rskcs9o}u}+eH`{Of||A;VVRd_@0T*BUVeF~bs35&uK zHe36qTT>GQaTuC9O!j2umjSnWT=Tyt9E#?e(AMNNFwHUb%XBE3a^-!Ru{+fW4+|$I zpk#9g6FaO=C-^4m+c+FeeJ2{$+rAnmbp0Thb=J@tTd!cpW*C~}31^@07J%BAqn>l5H61+R3q%PRtR!q*gt0zD`^&N*uCO^7iDvj zqKU?BW;y`GXS+IrFMT+%lO|dq+h7c)>~~G0$A_aa!k}#?6 z>Iux=8|+(MHsCmY7C$io>vgW>MDHBplF()G(L0$YqL}lGq-wk-`X{JjVznIhy1L3U z(Dflr6U~}b{Ex%)cv;hzz6!P^Az}U|2RK24MnN0R#z#Zxvd#YpJJ)Q9K@bM-=$?vz zcK;i@gQJPRG8^#pVUZH}aw_vS^~;>>(jmZk^pm|6aZSf3>NL^V203D%RV6QIQdl^B z4FS3T1p3~cqzk z?8Bl}i>Cgr9M0I;s4u*a!`C`>PeG7)W`o0$ySa)ONKsGqvZ!IH)OD}0!GFq=r{PjK0g+?zyOmAymVtuJyjoDrddRT3ve2z-6@Jz zrr!j}03$I^4x9Bg@UQn{0u9jY^qtM!r?q*xF6S*Hkwp&AYo^`btI{B2Y$A(%&$wi{ zE1uM&Dw3w7G-Votj9hG@oj8<~tsA$3GEE#0wiTWNwFW7eMUp5!CI$^{oLcNBbTtbnf$GPirNrF_7Mp8whJ9sXZ;y+>MV#6>D0@0NK z8w2|<*1C!BB2^*_Ah&ffpX1S5sAD0NuEFil&h}VvE6(uXWze=pX)7(q5>`{3diO417<)=ViBWgH9h(XUO+Gl4$X09y4Iaw7CYc+fx zB#I|DQ(rqpj?}yD;Cjmc=G9F<6r3TwPtG2Vno-=kaJ+PWZ%I4O@YXFr{(+dS7NiFEBf}s)^U*(ci3qahq}F^=KQ~@{Y=SOjAzb`m5UWe{N8m7xL#XqOzGQ)L zFKy$|i^SX-4;15s0bT7VjF&yi74Y&JXFt$hjHdmEz;#?RfqA&Z-4|{{S~Y+drI2Sg zk8ce5of~eu(Q5d-;2$rl{VnaNTlTf5y!$A)7Sl2+JK~7`cZ2?=T2Y)dtic9J9>~KG zt^RAIs$wM!=(QUlwuOEFi*205 zQoiT`$~0}_Qjng$uZLDNF&d4tlRiUm3;mvKxdbyWM{bs1$@y;Jp#0&!QndXewY<*KXm;bYsKd^NSLv`)ZzG#ZX7ccb?Fz+5JeHBXofM{(Qu4Kj-bp>v)-L*ZQnOws!D_Og6sUV>f9w%3Ot1D}T zG!#cO4#035AMD++T;GKu>k7OhV<`eSdt6iGbwr6y%(ZL<*Wgs~2v6GR0T{jNA#%1M>~5vrEdfbY2I{d_@54kk+Dwx z9l$jljl6rF!}v^^pYzV^@}t>ss`7oX?uj3q^hy*EI(w`#GFg_=5p?sEv=+A?55`Ih zXbwAvaz~5 z=653VSo|mSeddc0KGXTEU9=^ym?p!y&mrb}gJK7=B4X4#3PO(Dw76(%=iCo=>;Zv7`S@=Mb6jeI2U0ogdXoOY+3% zh#t|jh4+O*gxa=9N+;88ON9K|ou=XDLEpVa_Tj}L;MpbnkFaaI5g3GFDWFL zdc{UM$+rL>E#zg#_G^vVIYgB^0}+^r=WG{dm`OSEE+2Q`N>*!_fyNQl-0I7zYjG~p z*hR6ff?2$q{t7__m<8^fn{({d^uwefO|yXo-Z}y5WnAfe$vv9F&gQr*&bQr_uH|V+ zbJ>TCqmQ*SpXnAiFH*&&$$n%j0KwADc*>=wKmTmqg-47kFt+PgRbO}3Q}a&*2La`U5gN0La{?TEy_ zqIGA1_mvgYC*+x^cPBW~%E4~wY5GSLIjw74rm=$#BGOwZlH&Gj0D+#du=M#A_q>8*n(F24>32hiOyzcX!@71b}rHQG+h z0(GserB4{}jkPLTJ`gOk(wDl>V;hKPyS+o053Oh(g|W{%1GL@Zp1x?m@}`36NbLh3r$VX zV9CJw-*gY%;x3vHw?w9aa>_;QW0^$E3o2DwU zBejOP^$Ddb3kfzh#45_pFblkCdibTCw-ZgW_i9-ti~02`>ZxNxuhLrW!ony`-)Ley zC(KI6s$X^iO2vqNIj2!?E&llrpj1HKDg&&}#<1G{*Ww1SQC2qy9KpPq zNg-(dYzaq`-{%%we@Oau;ocJI_z(wZnl;?!0tnlJD{>4PbBmOz$^|LgIww>5Km^xW zf62u$u!^{PXM|yO1Ohcn+vNw1+LhHs8z)jD5P`|xhvk#h-trdeN>9T<|F>zE``Yw6 z0#i1qC7n(Id3AYwXp0CuBggT`lmw|r4xS|&z>nZrUg0{M?3A7~Q|cki6JRuU3cfZ$ z+ZLx5sCR_`-#OtvD}YbC#PxeU1Y~UO4#$ONyV~#|4P~xzrSI#Y{aSNF5m0NFb=SB= zB|G(QcN51a!mtv(^u~7V(YPXYlMq`T+9g=zr=4a{GB>9JB7jN8^m+^+p1sYJ8#Fsm zc$}cy-Ryd?R83?HNRk%IAo{w6TgIAfsMo<3|k38z_9;f|7n{T z=_UUHh|@ty?AX@9j4(pur|-Z1PGKD)?*!#EzAisUzjbzc2i0XyZ}j@wt(IEWNJXT z;d~I_qhX`MHRxYKTk*aZ=MYKv9Nm`qHC(aF>fz-0+hdd^v2~EGSqA2* zWavWR+EagE<|Xe+Gr_nDr#MtIso?;FX+~w41PI%zetI8Lu>u`^D$AtDTT#)7K6EwB zWSX6EdXFaCD&G+%n@lj7=Jo3M0RD9j*}tr0e+av>Bnx2>c%!KZ36T3=Y(%BopNAJn zMYBMlmmeb_YM&7XaLQe>-l-Mzv8k6+qFrGFVla=L=W33A1a@lxzDiIa4V70P_t$>8 zJpo#<^`Q>zzw@T=^Kqlp{ZN{ZIdAK83ULT;hhxN}hdwC_%)!A)rezF5vTSW^6A#(Rd!55hCCeQ|thvm#3O04AjKMp0XrIK9PviP* z$VA{5QSL}nj}}hoPRvgksw8)?^wp2-Zud!;zqFhW7!z)r7(wR891ymLI;|5JwY^^m zN6?0L$1V7eBQZWcVbuWP6V3|)d!7uKEgI1s#mGuLk~tEO;+Q70wtt~IZIXnCDkjya z*X-YyMW#s`7D`iY-YoJ_ZE(Nb_>I;Zo_aNEG~I{E zBGGbcN;qW;-1oqCl%<%%Hgf&!hm_$zVdr)wF$lxZmN4K~|BdZJK;p|&Ksb|}46%`Q zg%z+p+C`Y?VxA#sQ&j5u?MbHbz;s1irDbIW{`gD;Ysec|x+(t-lyi&H80E>Caai@1 zo#I9l?x>Y=0dzH~{9b>@i^o0Sbs|vsFo~m^WTW^f(EM71+`YayRs%VB~*)tZjDw z*lD7}blHQ_;gEWPCu#E;k97x8XVhv>G$w5tgS!N(*-FW_ashe9Wc;F9TL2gP{|w4O z>u6-CIOF){RJ@N?mydC@ntdK`kkjYoO)M$1RI;Ptb#yaK&Fk=B_H3)4<15uL?(>`| z=Z3D;Kf%bN>43!Btr&76#_OlxC>aJp4WY-5vY2P}@mJhjnpjuG!-Pz7*UIY?*BhM! zgUGWs%8x_{A94LhUvZ)yiNoRfpj=0 zG&jixvXR!I)$B~e*Q=&X1)Emi~TMO`FVw-n3pD8@z%TmtNr$-9^&+ z=wQPCXV7l}hqin-n*^vL^DvaQo7fGy`>J3Dsuh`aS!7+gw`1b0k$E;@fKeNntX z&EwngY8KB5HAxxQZCx5#n!21G1^rvx+c30;T^c6itA~gW@9JuX#~!k9Nh=z6FwpLb z!b!MJbxx;CX&4+UqHXl%afKdwg~`a$cTR99d0y@5JzUd$@~f&bFr90RW?SEvzTO81 zXFSab{PmpR8NSGBK0oO+04W~GgCS^IW|od3GK)oISU_f0B_W3Fbeao`~(?rg~ZU~u2cFE(A3mm(xiV7RIkv7N#8Rwh>J!Is17Y;YnH@n;xd#T@IXFo zx&#lCwr6fZpk)X90WFEnAb9uzIqrKB*S4819RfP9Ipd;r_^vu*IsN3;!p=62mw z1m`}CU)>!-YwOp)ehU3Sk)9(GCyWnEo5v@daD_L=D_YLJ}~Nj%v%4 zfer5%C4N6a3oSlI;i$Xga~wQZ<630#RWf@ zYEGy&ztgxDKV4kp3FvEoKrUOX?0}qT=n!g#O$D((xBYSJa>x^ahEywGz+1HbIWuPjoj(Z5Vm#NX4*m5BR1>hbUtYFY@ll^}2f8B&G+&8JWkvJz@L+x6iE z9*J8Ud_C|ADXjHrdb)v95v-e+;1Kb}fjVX)g?3v(4WH=9(e7(Ye=d}agCe#@T47_PYL z=4*qOii&C(tx6@-1{u6d3NDhP`@Jk|y@c)nPI-}iIr9vJMD+gh)>BEiN z9xDmc5va&8^0(yZ!`Ir)>Zes)Em8o(4Ge+nqE&y9p@cJ!(rayW4GtXcvwjbkl3}2z zz3*~(0E1G_5lpDDaIB2{Xrmubk-EbL7(Wt>FKAc<$F|iiPMCx}ImBOsM%ESCnE3 zXw6lzt?tJRna3yt2(8891L?>0AVvP|5xgaWe}86IqrvmGVGS{js%J{u77R0o4UVb61vI>iajA&^Q>WUW(zW>FhA+eSDQD1<{0tr}_-Y1-X1C-9v=u7m-DLVW=9J2ysqyOZ@Se~PAV&(H z3))-A5jao0Uc*ZM5b=35MFg9R!K_9P6sfIf>&kYA%aHC`nu8YC6KahG_%7D5*t=Xo zAETkc!r+C~;#VE76Lo2&wToeh^rG~NQr?Mv&L@L4Hfc<2MB!zKdvfmPNNa9V7P5S= zhy|PdCA7Gn22l1@caaaZ{tmWToPm`V0EU<3ln>(P9>J9l(EsZw^W)ClD4_3Ywl@AM z0LmWomDXfU)1`V-S{KHbMNftS`qU5PW_m-DmOyBUS$p95ae6q-7oet6h<6RjDuQjd zUDE?mLa7-Qw0SBn&yngo!u*FD|0C=Svm^#V7<{9Bh@$5H7u&kk#2>TF1$;Bs7J=~P z!wQ;Ua6xIhDO}Io`3a53(GQ_$NjXobToQUqD=s*l8vJ0CDRaHcrzdT*Kr=P3-hY>r zTcb1H9BDd(#zELoWIkonsr`S=L6Q|TcW6b7qo6?7@*77J+b4vs2s$&zCJO(*LJ&4p zn)3oWE@zf6GkXY4c^$dThR#8rreDpktY}A-3^f@h6u{VU&rnJR+;fP zcplLZMZzV8ZS@e&o1w& zv~-5ffNiy0HieZ23?tXxqZ2Xi$Jy==U{W~G@&&btPFvz$on73wPQL+YGk*}wX8_4{ z-r&2{);aG0{XzwpGDBmPz*>HqhBEA`B!74ni8$|GLj1D`C;7{dnHs)%TtoOXR1xpJ z89T5&mnC3OGCnA`zK89~l0bbv(7$}0i*3X(3_~|6{Fk)*RnioUd&U(ANOOcpC@)EL_58mp6SMnNPEQK#AQma0%szRCX!kbU+=BwRJRB&#gsj_g85HE6Q@GkTj4^=&_gnfciGLE;}^% zGdwBR69c|YKFrnFqVd_O2j&kSmbrJUJ-+t&P7cd^QPvBk%V3OW2jzNDzatmhwOXon862nJo55 zC;1vcJ6ZBzjC~AdCLT_?(`nindLb9hPa|IiGRU>w)%(#}b!d(Z&BREH7hH17vLz!x zkk4MQ{(?`=`kKm%2=F*uYf=9es$b76v0TXxM0`TZ_-v7mDcH!aBLIXPHU?+340e^_ zA@kwYr0E0wHm{rFp#g50lbww5*Uq#U^vW^0E7+r%?Io-;I2t7Ra~C4{-gb>}viD9p zrcOw9Xl9~;oGtK%jcqa)I(a^elb2VH_Zz{t{t4juWGv!$g%gbDoOc-^|5{YXDTz={ zG^s#xG%fIgOk#*v+_o+@pL8+ez^Cgr? z7lq+QicH9r9AM{~Q#j0uVth2wQh$VVz&@xvHcK}DSkIXLh?|jDwGBeV24$d>!ix7u z`}v9+Bns@9jS<$+zaT1t?}cLEg6%a-{7*74At#&IpZ5;_Qsb$yM67G5t*uw6Gs{aypZAk)xFziYN`hfdiY-N?i{n&T_ z8E2F}(k97AQ0~UPmg@*P0E&A}rilZjUTMOl@V^^pG&x!)Q1C?QZLRD&Pf+~qwh}zD z6$M=VW^Vm|f&=rh@z$+a=qbiW1?P>nZf_PU-3O|4XmCVGL)DNQ&1L2C5n~-cq^-ga zY1WfQU?#8jVbtuw2$lN>)V2L#_=pp*cV^J>-5%2gQgX^m<;i_1E3Qco^k%oelQ^Nc zkHAaSz%sjncP#xkpoRq7Zlm!Nm``6HuYeLVS`H4(3bUqYB|l{tjkYK7l7cdIJX0TW z0thwPDM*teSUsibcL1Sg7B5A!2}iZ7P17f^(LR@Ack0;1+_c=3nIaG&*Ri_UjKAYi zy@!Y*wt%9`4QAn04*R5{P5tvrOi_9hje9Lt^az-?LGmtxV zXA4B$)pP;L5skyv`1iAbq%RF(Zr1pjgAYbWtT%5UMaS2~6x#+Wr}o0ct2G%OU#e$D zpn<5qOXBDCJkoX68gv>jCb}QOuIxHu7zDN?5aQ@8 zk6moVB)C0f|BolY1kx@Uz{D?Z6+qVZ3~N90LP?I|**g6>ZC&rthSH^YHj9t#DU?N9 zkGj95O7YB1fh$otUlcuVH|;lhF=;TTc$NvCOd6NbW|mse1Y~FbDxeI8XGTE%NnRo< z3w_}m!-s5W{Y7W+++1FguM{OgLfYT81_)#j1L{PNTtIpS_1Bb@$`n8mTZ>t1$0KcO zGThdd0rgt)t#WskHXPESX7>z?RX!z5eD@d}?KAl00$cR_p>@|PQJdWy`SBeMCFe3X zr}6nRy+kY0#9TA0yamS;orNdF0j;<6ZB9mmHxqI`t= z6>kcWmDi*6hfw|t#&{9B96j0m$PJDaw)-qu?MVgdjeeF}s%J)5lC}d>-}I)BswIm3 zYEqO-mGa~8z9Y&l4Q-|Yv>G%@h)=Aq83F;RvS#^E0P5a57sv?c@Qq^d3J+8*Oxphk zbTe-kdlq)ic5Uq1+!Cb^AoG$pVwB<5PdWmE6$=(Me~qQ0d~K0VZ{YqMNe2bWDBv2k zvrM!B9c8|tT3CBd2iEmpY4w+|Yq6CWgkdY;gzx@~y@rBa=}EZ-q8>eHuw(mw1)1Hu z6je-b*r~!<-vkBJw6>Hw@RTB6rPSxw?oVdcQmDL0A!>U#9%YuIfk2^1oFzJNuL5;(hZ@o z4h(UxKNgY=w5+yeo1rhWuy(csdTqZ?=dRe+3PCu$bLLhwF; zH0`JY{6kuEqGonIMxU!`N$+F;6Ap(9<#^rfj@3j>nKBr?0j5c;S?Dpk%}diCA=5Kh z|5%otD~&~3p5+y&p)rc;8#J0y)4MSwpy|bFH@2p+fLn?X!05ua+_|T~Pu-SNE`&~c#x^*a!C9ll^Hm@{Gf7fKLV)u^RFQSCe}r8NuEQVrf+Kd(kc#l(-7;Qjb$@Sd`8 zG@glAb;Nh7OSNFjDd^vtqrY{a(GX3eQ)EiVcIv-GZ{?N-0c@ukZ`wJ_+HaPMX)uk^ zppoZ}ac~Vw>CjbvN4$n!J9R1jx(oJ}6ytI!;bLS6Yl{KVg8Pq`z%|0f)KFIsmB*`> zJtKpBK!~nv0oX}cu{w9c)J*>Edp(%TN#1;wM*^heKH6!|KZtp|cc18A;u;2eE=%i zIFqtLr`_`vYzelUu*#;D4JD9NMt9+j{i}&oK7fXsHlTt0V1bVseYU~;(Kpm$ke{Bn z`u9`F@k?#3jj6HUItw49Q;;T~Ckmnw>=yMptpB!Ib|hzVFJwhl->-w^^_-ji?7$6F z+0HKe942(8&ovdO?sQ!)WL;k$bmps8_(#~e9ZL*@FtjBTV}tu|>|Q)U%9pl*o!LAb z5Yk~og^f-bUK+BTvl+)TCxbkrm`H)It=qZ{i}=`trX24a&?sD{yqgU>E3E8-Sh8$k zg6>m)Xb3xt91L|KaT@=>y!F4pyfA$cseM?*4w+zf>kLgN1Kww{*GS zh*wxhg8PrIs)sZ;IFA}Kn`&8#ja)A17WAAwAA54s(Mz%k>8P+UdJ*gc6I$pEw?x;u z1*o|_Vkxa+bs(x}nYta|kOuU;3mAP@tqjdVW}O`79SU+Z5kr-qfNFjY*av3K`dRi%f_KDZ^Cn&lgZi}e_~+yp<`q9ht%I2F9d(ADS%`W?|!$<<4d z%gxe_+08I$1@IlwREBACQPD{B^Wh*9 zPHlip=8sH;S{Df;x#@%oMoudEL$*P~{96uCKYjVFEw~iogGpyL8i9OuBILnSuJ~bW z`V7i#mK08H>XTp=Bt*+i;_Xaw9CGUv1{-$i1EJ*Y0cr}{6UvqXlS~3DrV}@1*Oyp)590#*DOyoWURZ$_1 zI1t$=vgANx-b<4=^O$IMh!H#U>)QlUeEB8p+L9y)LD-d)hsymgwo9)Bzp@8ts-~w! z2q970kBC^0NSfe1qUoqElm7~kAlGhE#qstDcjswdz^WLgvu#uT5&7bIUI0TLS!gHD zJ=nPp;m%*fBfNJ&<ek{X;gB%)9T z2#emgT*dM^3Fp!Gpwjyv3fyPLZ7#n-4bLyCy?5F&incd)4nlZ-QQ+cZ*5{D9X75KW zm;M*epr(vvQg2nR>(tEZlvh96{)PfKIk^qV@AE$Rl`ZTu$y@o~BRL>BgPA;g(*E*;=XYn?@@|K*)AYgm;62Xp~hTI(!Ij?%xvLn=b> zi>Bu^v3uyZwfz-`@KfzTe1@xZ4XWN?3C}DocDC$hw=5yN&UI4p_}ApXAd7;S?M;)N zrtmZ6PzLyOv%cP8`(n9im1#V`y0u_iAUExyn0@+w+le2-&M4V+5Qd>UdIJU<*#E{} zO=Bq^chm)xNfQ!4mXH1zfhfqJmfJ>k-ljuF{+_P00=!;Cf5m<7AHe2e*6b^(L{sPVd(Hn)k5zn6%?VtaJ-e2Z86>h|W`XS2UL5anS!<_ct8em=7-6!4{JhtBxH(me z&nKZbvBA1wumPk@-noP}{TwhKTbUTspxceXsV>{|EI`U_zG1iWO5sf$W$XGHAV7XO zTF(e^5Om;2@4VPZ)57+v4+bCDX42DOPmN|?bP{-P8>|ffCz*Ah0iZx)6P*2hlLJg? zk2ZqNmct*j>O|B(`*II-j;kBy0uoSq0-B@_Ya1U&uXOI*vp5&JrQd3nXW&h_DVw$0XY9Kc zYhLAg9dhP_cY5-aB7kNX)f zh8fvY@O1q%tU3Fc4}Y4C1S17<{xQ%&qvpoCOPO*z&w85JkDF9_4en-;P1qH426)M* zu_9Aw1lhdugF~BOI@eR&u0)N3FQbR%xw2U!9iexra}nNn8|x&c?V(FH(hJ|{ia)R5 zf?-d$5FHYf>#t{=1iRpMe30mr8*+drxz@OuaJpy^=ouwoO_Yp^GiSAnZ( zv*&^1ki!L%vv6evt)=v}jY|PP>zPePH+1*b24`HV%m;zo=5e>9^f_b=FV1z2koHWldGsS755nGI?sHEZ4#tEojE*c~3D_rp$B1gTJ zb3tRMqSw!>MteVs7^xfK-v!NQVf+0scc_FeSgN!}?VKzAka3YA`$X;TVatm79)d+M znH3(?jJ*)H;R;tjqbPmi=ooh;KbMfMK(%K#_`45X`TfXzm<2)VFJb3)B{2xY(3bE6 zaQbg-mjoofGzAPNWWvL?d^HYNYI$KB+BbeAg2UkX3L)f2RDd|9bXGr%?s4<}D^8(l zi4*k>=O|+T-*`#1ynsqmx5S6TJ+7RDhHOAYWa!@`{a7QBa+;Yaw|(R=F+vdc(L3Ez zJLmBHm;+IejmeVH2FdjDA|3RiX+EHDeulFPrpW|k_+aA$W1`HCkmS)z!Y4^<4+89A z0A++O_=SVJH=9GLKD;`E0llXDp*nf{WG!axA++{Yf7Z`%dC@pkZ`Jo%^GY)HNkKE3 zFA&<*6&L{5A~(xr8N5PPUOK0V0bGVO5kc!WV}U15N7K?dm7YZ6z?>aj{nHyzw>4$r zEG{n^GJNux(1lEyvw zK={3i5B&@`2Qul;G>~lRCB>*g${9WQf*$LOt)*piLCRUt!`RH}YpJPwk;p$jLHdgo zeOz+t{c)FP-rbcY}1mz5%Q0)E5Q*M1c6^t5s?3X zY(pzdlg-Y4z}SXbWG*Yo=FW&vUJg-vcPXXRW7Es)ZTPP)pENxE~{|FnS6(x?D*Jlk57^a^vx z3SE=2qk*F6W;&aDel^lY4Q)&u4+DOdG5Gus;QmLRAt~Kib zYO;IArMQcxG;JxE=CQ$S($*W={;qJSDY`&Qqo2Xefs5nfqk_U{B%`3)X<~GG@W^-; zdeB?vy&i#yVh7MYc{awM!9SD;1@gISh!{E#U!jS)ws9*O;s|WuO(Z~?*EjLbq}w4s z1^>L5yvy;G;@-<)fi!6=Irxi29L=^GL;AgHzQQWk!S}F`y`c`q7KEpp3(N#SjeZPP zcZ)9`JvaTX9fR=_;3moAYSQ(QH}NfW6KTtv-x6iAkl|}ikxRKiO)7_5L6VVQjznys z_RaEfI~%k8pNB&=(BpY61IgPvDr;j5c!SorZ$WQA5 ze<=seTHo{o1-T|e5l=gGf7X3)nVrqw0G=x$Ih7!i+-vPlEW1z-)Ns!1r%UBmVnzswpR&_KZT}U6dXUZw#as!- zjAeD(xIpW{rbNOyTIx{ncCbS-X#y&^>297>!@KEdSMyLx1Nf?iF3K`?d`Tog%Y%4L z65KT9DsH2LJ|SsG^Yb`+fI3Rl)zpvA;FM_)Le;@j&-us(CD*VdRALCx0%Pu8LIui< zH0IM*seGE&uEvp)XD8-UYW7a0hVE7BSy6`*Y*gEmmkgHUfU0yM(0PBwwh>U zvwJ(Q`Syb;2&;@-BE&-CA<11|>5rDvM5v5Jsx(A_b9x>8z^YAzDv{d<<#1B!HKJL& z8Hbfak{zL@&+^)g4{NvcuzIxxa`@g2g3o%02Y9SmIi?4Rz%0K>IlUtw$fcow$1T*3 z68q|*U!Wz;PLIl)Q1Vo$p!)T!a)7V)I-7i+2fr2%z-aq)ES+wp@73|G1}r zgk9OO#2^go=uH4ynEo4kOD0J9QVIyOS%~qWw zsU!R>*08OD2qAu6KE_Sco&|qb1Vtf{8k=UursiCJVFjljIPYCYn5L zkR?UNk9{bq$gr-e1&Tng@acR=J*9)dh~EhslxFugc3wKq=eyn*hY7Vi>?>$YgM}eM zM_t*&Q<5U-K|H$Z+i@tox7w(Ee(?DcW@=rH`v~9iiKId)N~$AAeR%_qyf9Ow(2#At zyh;}vU+|#+(2QpFQw`K#3X;0K3Ss1w336k7oM*Jqc4V@8xsflwuIhqjEU|gYCtn)T z(1Z9sfS?d!_{jE*Xm%}jO2a#AEV|%TT0}uW&|GG3`9R(t-`Vil8yFkog_$3C!oqI_ z4{QxcJ7q|VJI{!w->fLR0FPq-pJC)8{O=)30cwv4I4ID;1VzE zvJ{S(vX5KE40L7_Qaj;)0~?UZ*4d^}pKix(3~a;OGo$$@?257&20_@B6anG>7u)ER z^eel7Z?AO)l91Q~mttcxdO7Ud1XCDQx4r^fJEMI}%$A#jZ+b|YXMY9Er%wQY-xKHu zZuf{S(|XJgS1?U`@h90N&AMxPPyhbvojAa3;uac9!E&7_ST%> zSlnO5qMzfR=@cYQh;G=sOP?T%19&hz+o`YK<*t;kQ-8?`jf-pUzE0vt-&>#>H;mN; zk$q9bVp4C^XhqNpb$3#v(x_VtRBT+!*|OlL7cv_dp9v>wIL?-LhVyrc7?6mTE6Ghs zDw8YWWji6Q=!~OEz|a;vZSH_#w#=rNiUI6pC(=WSwqlBWR3|3J(sg`-! zbkerV`;UKufB*pSRzrE9-SiwV{TZ0nj6lVvkG-YWGqTBQY#42bXLBNf64o}lOA-b_ z_Pm@vCluYwN=pWcFsBo;Uy|&7!Q~sC;y5`~VQx*_d?k6v#S?5)A>8L!pOU^;im?ls(dEu&f zf2F>ioSH-H5OVaBCO>DQx@yt+v=v}vUxX}NAikg@C zd5Ez$abSnA*_?vkX=r8@Dd!xcdNaqsQLdbzX+$`aH3WPEjuUu)Ok;E zCNI1e+GnVVayA-6s+-_e7V`xTJX@rc>F3I7N>;JZg<{qHg*YDk+Ij_;%+Z>^O86?6jzp()f-TEtQ%_DL+kje<;h`nRE$QpXI)On=eYU z`9-q?Af1Kf1+c^goEt>{lr~>veWli@0c;+}Gy)t0#}sos3H16NxbQ)g!zo74J=s%o z*8mRK-*Cp>K@-AU`j9Fm&04k9Za3Oym!=;R5x5tRR?~>zT}OWwfbvO3g@9xo_hUH8 z>e)?Sf#tD%O7yf~)AGZ40~JgIHVivE%x9Uf$jujm820kX!Vs4n{E*G%R~dz2lU?kG z=5Z$MF1;2IHP5)Q2_8v%QiN2=At+t2kIVgkPhSa>?R*t~gk1@e!!QW@lCdoV|Nq#o zlUhn=XUPM~G-*n}y8f%64Vxm|%d}sk+bR(X2&u6lNe~Zg_V_rWzL6>2Kzjt%53W?L z{wZCKkZE)_@<)Xi13kEDZfQJ&9B!l&^g6y4N~NK*(dKV`2G}dKvs8Y zVr{e7OIj;j9`|Wv*0vBl5p|38eE6CZddx%a-85?}PeBo+RUl0Xx{rME*-A7XVbVTy z&W|@*Lb7;SpeufC&?Bn#Hbko^F*}5w#}3-2&6I0eog#u@e_ThbxSJDJ$cL~#BnUo_ zW|NHhWxNTad3_B;vMm?ST3S!W=|znq^&j7N+xmt)i}Q;_GG&5!z3d4 zdYK5mvCWkZwC4F=?wpqrkB2~-7?MTZpSpJe8>RaQk`1y2l#`CdT$>km2U1K(n7aIM zzN=Op@QvgU=~uTrynT)x{<2@^)Ceed&O3baR*~F{nW6%TkUdQvqcpSGPilRZE8{Z- zU~J0}?Utw&k4WV%VDc*LSOi>f*WV8LL)aN)K@5U0^h!XL>isV^L)E0KbUO>DwmwBj zKJNhrO>#K$=eS`?dWNruYUAEJbvr5pVVx)-iA-guQ+Q^HPJCB% z^vL|*uU(Gt(m@V{;dww4^|P*Xr4LFmN!c0$%egnx1E7Gt(9=8h_hMrXeILrO7x5Ms z%Z~C)r6QXg0MX-OEABMIAc-(^x+MeQqql$!2IA<79`zLH!=8!w)lcHDE`=r$qZtrX zEEvOP&5n6|{e{8RbHLuXa?VGRvEzk0r8F%ggW)4ETe)!yFbwEf+!O#d?9Z?hJ=W$+ z&w}gm_^2P;91`l&KVHLHk3Yh$>^fi&hHcab*f_BNVyzP_@ue=n%fVr+Yo5)+l7Ao!?iqy|qcYlWn_j zhzxg-n`7;)%A{y7eM~v{kKNfwE^hNnp3?h@qt`RmCFDky;5-aGF#;7`QOi1Qm`*Qy zWg}BI2%^B5Jlt$Btrg0Rri-3(I(yQvhlyhV*>-}j@(Jd}5oapUo(J3+*-h6)&jh*0 zg60U_3_J$cRvS^^O!^jGOo+Ohzbt1xohAvn*IOV3Z=^AlKBlJA_GF=gEz`N-|MC8U zMrV!?N_gsNgRB?!M0^|zuXK+a zS8(ps^Jz1a+tGvl0;A3bIrU{E$TmY6|Lo_Nuq!*37zSY-z3~wP?!U3OBti0*(tszs zIS`-&%DSb)G6t{=wOBtkd{Qc(alDFmTm)4Q0-Nn4b;Lz0tU z*pt9?N-BkIn5Ohfow&WMI!s05?w|h&JHsRkVGsu2Xa}%u`zK-L3rDZ`jeY8^_t1xG~MY&$Q zxv5RGe2JA5!tKRPzGEUDyz7_3Qi(J+LGdwjl^E||8VY%euP-3ySORg6e&}Nxt+yx#0`|nK7k@v!3t`x6u#Y~2D}cDr@>}`xNpH>Q zCk5ay5+v9^x2bEezB>X>VYtDLXT+iz;wDr6zd}%hJTj?>qmb%hpKEI+8-)C3HEDS< zwI8(n&Xu;-qYk0Y7&f(AwTs6z?2n}VOW2j*Mht_%F9m}Q{QqN(xA9D*sv)Qi)4m% zBw@Q1vM(?5mC>GqCG+V+bGOp^K^C~peWaTA;|Fu^dT?d2LZ21x{t3jEfa~yp?nWS9>7eA^KLG%-D}xefje@6R3>olI+zgRI_H7OQZ95bTb$%)~dRu-> z(YGsG2RvHVWBloqSnz%MU7jRe2)-Mx^ zu90RmJ|^V$+tr8_D54ooMuIt`y>(Jk`pXv}F?;fUl#*Nfp}pagK#gCHQjr}mnvsO< zGSEnJ_B0;AR6wz3+i}Mq+{sBVueh8kDW0G^$7~*y4 zemd}{4dc7L0_k3^6HhZ1@c{y`ZX~#@FJ(UvZCKe5j3T#n18D2gH^E@+*_2c*LvTb7 zear@FJ{H7DUeVfjRh2t(qK_=dhj-It04d5OCpIU{Q)bYm-wTJs)WV0HgGP!Rq1`o? z3FC4zO%!c29~{9Ad{oyzJoO*K&L~M@5Coz(+7bo9`(JEh61x4EA{U^>IEmQM4@6Mj z5J`|}IWM8ddqpWC7y-;2tb^9#y`FL-X`@-e1{s-eGwQVsS0-HknT(cK>qZRYTO{$D zU|X*tIDzfRLlbD(Hv+NFzYJMq^M-?>8)TQEB}3XL>7*(sc*W|_#Xq=nJ|RTP(eouL zOs1_wA3JGhFf{G5QL5T)o6O2rYC`$xh_E}u6R&WS_{vvm;>7lBkG?guw{xwJhY(o= zfCt-9CAn7K7WyJuJ)zPk0r%SAIS5bB!JfZWizXaNGdSygt;EjB-!o*l2ta)Ep?^t! z9_7jab=8Xi6+jm`|IyR^u@mG{*LH6N(AYc-Q5;KM-}GI64Qz0ae&j9XB3P%fVIYl- zuHdRm-4^VmosHlq;h3a+T}f#D7!>3c7dQ=90_tySd|AG9$F0V)G5E1gLw)kP+~lm) zjBI1Pe~+^#z&|2T92ZK{OIsZ5l`_DAxKFgfJ!76*@gacGN8@9m%jE&%zqVDYldpgl zsgs2IWfb9NT`uwvS|?Zs?(*t3*Vn~IorDHX>?MTQxHgE9O-u8IvsTkYgAU}$aRVPI zBxz@6ZSkr;Amh!bPt34?!p`i-VHk#?9qq`vNcP{@hLH*A3n{>waiqw+@PJVp=log= z*4K|nORTVI7#cj(qhU_mrbIfLUjXMuOTQ<8C(x)^yZSYaF1~$N(PaMht``V|v4ex! zj+7)VJoMixfGC~i_nFfOz%uP$j-htZ&Y<&)48W0+*w&vb3Tb@4+ORK(xx^PIOAybG zYrGiIQxqR7$0Ua9Ujbt5#|$m~S>lT?qDg-+-)>E&(?#D)WOEpeGMBD~2BOIAgHq~h zi03uEbnH^JvsB+W!0NNyU$Z`_ZKaL0vsHsG$p$E?;gb{ZuJ;1{nq84>aAeJ~yS8q$xY}Q@_Jt=t2jMS$AyD4D-?NK$OquivvTG zx_a#t;13R@!GbL^4)u#FF8|mMu1GikC+ys=BM4y_+7g(DMgNUuoh%YxN&|ED%ramk z`$~cDBU4T5enHBv84}kUrKcix+9Mks@;M-6E{)hIyrJD(y3Xtq9Oqu^x?VMxWb05w zlW-IyL&X8*ujP^42=Y_VR!Z4Uc}^|-Z(tRP&CdI?v^9LbT)P^A$*-+xlaA}PRO1V* z-hh~*gC0B=MAE5p`xO~WKJ4Omd2S+06wcTBu+Tt_nkp-*d@@lvy^aXc&N`DwKIhIP zOJ{F;BS1j4^q?5Z>)q!@aJH=*5J$30rHka!jG1~uYFKV8 zUx8h>ro5%4+GR4Du-jH;%q9dgU*lg$_4l~5lrB6YH9gtJmfu@;B~ke3SWGg-^LGFL zVi1>@mL4^RIixC61e8 zjgv~5@+KG$w9nkh5Y%exqNAp)VIG2s&wPnT$K3GqNSx*>=Z>T))z(Gg+2;~OE}yV| zt~>UT(d0oT-VBavlA@*a@?W+kNra15SA6@+FImhw4Bx`eARfwfP2)%*sXD)S(m)z%8PtlNqg(%mlti&a4Ll<`R z)O;bCkM=9j79Sc9T1gi}o#2k3%_X|28&7Rg6SbN$B5CE-y@uo)+p19||HAP$gRFiC zJGU%{K^TT^$&Uog{x>#tf-UApSwJ~GDJ9sJuK05V(C4bus{{wn>LKc&z5PHgO*4to z1bM?cDZ#sEfmlOV_?sMQ@9U#s5{-n^MtA%+WZ)Y8b!`YpA_V|EziUI*NIqd^Nwva8M=T0q~EK<}lXG8*YpRU(2g?B`Zv*2}{C1lh!s`-}<#eKzNSW zD(Tp&gpbkrV<4DDhJsS1J+~YDr4QuU)tJ+yF>f0}9yFXf5t!7h&eSuMWlxY7FS3`R zq`<|)I&vy$B)qUH2X0j`O{zpLO!Ws2hgZTxR%o-=s?gHx0{Sk_u7?C@bcKFt$HXx!#VO6vUC?&w z!mtLxsk*(Cg`cCn%q86$7dz&-H8#uMlPLcVy(e#+k}H2RGtA3U#NS z2iHf|5oa6#DsrR$k^`mU9aZkJ=|q}hMB@*kPssO=uw_dX!7={lkNpvLM#&L_FbusC z27=N3FV;FO5+6I-3oywf%f`lf@52H?QPMt8n>XG6kBNE#Cw6y1gu-H%KQ(M7Xv49R3l%%1X6XC^yO zzg3le5`Aj=e_wqcTBVo&azekT;-Lg5d4^?+@;|D6p#nr7ZY1}XqR0XbA?{gQf`UJ% zk=bjS3jQwG6py1Kc?a)90@%^~T|n)xhnxI7&a2v6d_)R^p!;#P5piC~Qt5UZaDuEf znT>T(#_ICg*ft=RkLG@KfD+71Je&JVQ`P^vuQ42ZuZu< z&!OU+)6Ck*bZ*C~%yOgHegl-MStl`9<;Cgg7TNK$j^u~1E4yMCgkdXj7$5sD)<+T~ zzSIHAYX}f*T^xai0i?H%{&m0hWuWVcv~dxxjk)&|1dZ1(PmF-*g_Z=8$7F1QyS_bL zqMBmVQVYiVE$zowcKJ;W*iW=WR^AT8S}InC@P#M_$0LpIY4MwWilC*RGj8)x*v6MD zCkDu~wfpSQxo1-6ZmDOX$eSWZxB4Y6>JoP=ifViq4O3?W<;XR=q884`yiT}&6e-&u zG9)5j2d&v&2_0`@CL8=qn-tYTE3!})?af$h2}>nKEue>4)Hlt>US@=@?H0oq%<#eU z){{B7dS@@EEjOvk&5c-#cCe@gitb`0$~>&hEnU%k3vx?>k5&ECp4HPp;o%%4 z@SoWBxw+uFy!^nLC%yIP7{D)SIrWbjY?#+=el(gvcZtOpahfou$BsM=yzSnrZ-9Qiu+;y-xDtw0z7Y$Cw3X*$5R93SjAYa6!?m{q3sPe6=k%Jv~1@8S9X0zp=( z^~04~!O`=Y#FDh7G0nq>m~nj6zONb3ohi6seI4~+o3|`mO&MgBro%8m?5iFwSWf*# z1$~Gi6R{n>32v z=T>82ALm`5ks#kv?emDm z>l{fw%`3s2RS_NMqkKd#puO{2JWr1vhT71JUP%sWJUOhp-cQvC+fCJ>zX5~8TIMBi zG=YY+q0_9>y{iuN_H)>D$e%jBkWW+b!`t3=#^-pKr{NMmD|9f+6nV7bWrie~hOW+g z$W~FE`clM!C&J9aY^D#zmdi>XxBUW;GMi4Dsz z5>)Xc?A($i20 zIVQvb_Ic9!>1v7+%@$hF$@y0Wr*j2^`6IA1w{hN3D(eE80z^y{mzwpx zXPz^$fJ=>O^A{8veWxUuKZ~#dy>UEHVqr3yJCwyTL9(ExbLA#4jT&K_^ufa1t6A!$?%`AGdhwW1c7Kuq9T%iVmCNK&&O>iU~SDJq7AQqEU+>dv|;Y@McF5Zg;&9= zOhJ}eF{RCrV;6-jgvD)Ev3+aJ;{bOW92TdW0^>B&@dzm1F>E&n{g4=^k-X_g9XrwM ztrQ!k4dXO3?Wbng+}vo060q?C&d_|eTER+PE)4m}PwGyytl^rS`t9*fw=_zWH6~x7 z$Ud4*Innx;B)gCcgx7Ewsp%h%@JyTUV`R$Htd)^h`yfc9^VBkGa zYM3^|OXQOMF(62s-&(wMflJLqH-V`a@#_`RelGy2=GjP>VO!)t>=Vwp#B32p?)}$_TiF ztn0zG*Ar;x}^O>e!0!$yDRB*(_ z$8GBYIgy%fOxHzlT6)31)KaEvH?$7RI*DQZ)HJc7*z$7Uji&8I{7AP2sh&QyIQuj( zlI_n>@Am7yarWls(OMl9@+ zuhLpXzyY#1``lL0aq{)Q77->*X83E5W8tu+RZ}+I{KGw?8!iD)^GpY%tnpfjl{TkYf=I zy5zmkprGQnV#c~uJ7gAZ&g-$%OE&(hWr4P4OBrR(h~^FQe|66MKo!IafK^y7a%YQm z`XZ%e7Hm!&WRh4P+4&yzpvg$2c~+;t9}%h2fi=v71rfjLW{cMIQergh%xFG8^?8r% z7+HcbVA7~N%n7R?r+p6Mv%dn9Vu8zh!8m}f>Us;|P8G@(YG3Gzm! zzMwk`>`B1CrK6(BDT@K?IFSpA{d+fCCp=l!Bi08y+H9k)4lTq-da8ugjAnDoIQaB* zh#@Wu{SbiWW}DcG0cp%#Duvz(5WCzjDMQ%XY;|VY@iB^?`DM7&`Xnc+=_6S~nwmA9 zG&%#s19zQz1;Duhp@!{C%)gL2+LA`&{scP>=ml#p+AzA)M2Rfyl4xFZ?$ie|fIJ&O z3cdSExKq;~1!*+j9`reo<;}OrijpY!bu&Dtp#?&|j{%{Fe+nAXXa*X&uRU*6uVPFc z@`HEeo5%h95_WD`5`-WO-IDk~-P){v3QLmuN-v-}cD)n=xfhYMv)U2rhJ2i;(L5hk zm|U%v`ACT3vgTt~q&e_8XbUa*$|tF+^4M`TnotMxacajY9owDjjK~{(jV5xcZUZdZ zZu;!SNg7Wi?>NPdakbL`Q0X<01M9cD_qf1a?bL(3paUSmZktAcrO*JcH2qHaq$MMJ z-`EuqCZ|hBfC=BM_TeRU!nd>zZq6d4(YI|o`|qmjq-@g1`O}r!$A_RQ{rcazfV4Sv zXjNsgwYK~ymk?0n*sSciCIepiZ#hszXslHfOdphfzmffPjpzuZf$U0`_$+;eNm7%y zf)Y*37xVbObX4Dpu9kd;X@Fu2_0HkkQN$UmBNVArM0z2!i5`=MEnffwx!W#_qhXvU(j%9k&Uo?fxyef7(Phxnz zh&2(xvu(dFcBGaCdrsX|VL43`x7?B0mE>i<6PJ1g5U~ODjV*t(+ET{W5oma3v=tvf z`<HyOY@Qj#R!b1sZ=Z8 zo53DIhTDV_clJ0rgpX~9jMw=qxEz6isoJl*;ofg&f>@U?X=gXh8xFj48oeXMOv9P} zBRtpX3#-8o#LpL_QqN^4O(&WBe)z*vGRdKzg02c@lx}9Q$`kVQBm)GAj`lQIq`S%c zts5k9!|QE&WRDs=gbn3W(G=4SwEfvE7Dto2-xaA zx6E_7_UO2wkPVylY=CVrwaV1ba0}Mr3$P=_DzTK>nd?NJwbMJXqP3r3P|?sMbOd!D zR_j8oIfEW012BBoXxc&tA;qj51K@0g`Iv}t9>NdYX?4&h{Ghe!zolcxwg~7Y*$U*2 z)SXq%Xqxs=!Fwq}2idW7$RAA_Z|t$EK{|9!84JE5m6eod z|J-L->~{s@vBm`o<2m1hx}GG4bQK(@aZ^Onp&efp^2?P$MHXL`1&jTJ3+5|;X>N%G zioG=m^n)MJyc$%Hy-j30kJzJ66l=|Ip<#auBf)i*wt@!I{bLc>A$u9*ieM<@ukCA6 z0cmnG(A*R9R2d+V(^YERAw$8pB_)ib8~*VoK31fDb5S-0BAae0JD?RiN0&p9D`dm6H3`8IWi>^re-KK9kVAah|7Y z-pyC%%qD#jx*%*^B~_;=M`^0`%S_SvzxDK7r>$I&4S=g!UZQ8~O!5=5((X*y1sjmB z-Q%b4Goxv|TrDUZocB1wKdP}m!mcFOf)E7W=tn^i?|-qcKCS8%t~(*dc7huCMj*>4 zIDmpZ`Jm1TL7Jv0s`m?h)>aF1&-re&_V1iv}(-4XPZuvz=jHcm$ zUfv}IMqk=fWI-G#cBjNHt_*q!sq>tyBb`w=4{wbnZC+E;4N@Iw9y=$=!n1^jCHxvx7HffwR)0 zeC5X*MKl)5b}9vL;Me<;8k#!9S*K{s&^4b0c$3O48109%K{M*RsFXxNeqDR}Jb|fh zQ%U&qlOUZ#~R^_x0 zG*k{}gb|Nvm|y=1JC_3pLJ)?w1fnSYH@539@x(OXVLrPINnVa(cq1h9+omdpztQrS zf;k%1@uax}nJO>&E_i@d(TkDi7z$3Tn5RDu1JT!_5N{p*jI$3pH6fNkR|VP?m!rY1 zN4tJ3zDPX7#%INt$+!>AZ$%(zxGj^1?sO@D%lDq@L?z&=7}pN4I=%xZXymuzMro$g z>%hLIF5~15_mA=G*3#Hf3NK;mi3wUhxEzgU#Q{6PAvX}TmYDe}mRTBSvCWPLR;5(PT?KHt zy#x%vU_93)=_74aY1#u+ltva#k94bUETwS(oaZ7nI$5tHKY`tb!Z>$VLH9#Xt1ka1 zkm%Fe(}C7;8DylPBx5g)3&qm{Nazf6q{E8|R*+KT!2^(3+r6YWlhCtGZMd3S#U%Uj zW|}JBZ2~JQYWZYlQq$*wI*q`l>}QnOirGi>z!Z;UbtB~SeCU@&ZAdR9n`v0wFpD#c zB^o)Rzz98yA7NK^Trms+TS9<9^xs&_$gutiuK~ue9LO=88IYd zxprPT4*S)s7`mjF7KFt8v6^OJvEhQ>nj0jj~sp?-tvC4{L`tEjiewE z&|isdWHURrLssDKPjns3Xi*l%eN`p zJEWqC+ zKj-wET5g96t!c-{1-n0g9|7w}-LTP`xM6ysV}xT6b~71h@~kk=3aI_EvmtT64c!UPTZhPpn=T2uu9}JQZH8^JrMp z_(4KTYT)UcdwHcY75RmMi(Vn~7lvPsVUl8dRAyMINsoNQDJ)-ZBg>JhAsUoEXI$ecU%T~jGHT~9m)vBP@!xq%&)LaTZ}m-B;8rO&5N1k}y~ z!900W>1VWM@MfQUf(qOywuO5uw`ildK z6(Dv0_2NGCEDv7!a$spDF6>W9iNLVVcy8lnS`d5Y#b2OFq;qC!Z~Yqb*7PBL!6V6T z*A)frY08WcW?Y6Onv60JTGPG5eL2@J^v^z7tbT@t6{6@|pB2<=&@uX;HBIuQ9dJEK z7Yma&)d6d)ExWLZh0xGCFglA(z}e3JzFj)?tMoOIP`b~UPN6FU3~NKj=t5DmbF)?8 zgUwXka;eL_izhmv9?~QD`a=|?oWqT<*)Uw#W9#CuV7BSbLY?9r-E0oM3yh0@=V{;Y zWDG7#Q`2Xm4>M1TGENx5 z@iqNh*F}ImX-|*y9STS21U3lM>@(!jgPHl}pYE@ouUG+1@l29Hs$MYLJ2Zt}!8yTK ztm>%!;q~JY$XzI25)(y!A5w{Tg~g@l=sXCtQQKqd7fJf-PTE!#6>Dq#*ahmDQCA|5 zG`s_yrc5q2%f4ul}^N`j3J_rKT+ zHP3DrDRO|YFb*pH`%-}yNZ&Fhn$ws+5xwjZ#xZ1gUU)j4jjVT)hF$4hkY&Y6IhgEr za)k?~Sqit_1Sm?<(_TSw$!UCF5XYvu(HL!Sf^eGPd!#052GO2cMkXvSxJr=$8WX&< z(WZc~>~-O%p`r9{lPUwUJadML?BYh+5ij^`8yrlE>~Q%PFY15JzNfse*nG_u)LTpJ7W` z!c;b8_KN@+Nk1~%_y6{U^((#$f@wBH*0FWT^V?*tF3<<&cEX0h+ z-U$Yi7s#=uST2WfRKqv(ejUj_`*bHMs?V0Lp?Gh-i%A!i2nnOc@kamcEQG14_#?62 z9*d8n?ft!B@=bH63nux9UQd#*JMxdPbGw2V1c7KvB2W8oY*!;pzDNU}O_r!Ia3@!Q zP%{R|;_T@`wre(RN+N=(Y_At70!x&jkDpMSQu4tso?%^|K4d$QIu1$Vj_+t2PMD{OgdiUvPN1hC+R~R?mF8>*D{JDB3hZe= z|9Fk%-j$g9gJIS}(a8E(U=`s>ytv>~q^7g9XDSM?XO#SrgO;>{w^={8DOy>L(+m_L zy~NMacQcAkm_{Y=Yj<9!<o*r=5KJ;LitCp647AK%r4fbYrlVxT3i`+YV%Kgi zT3cjwmOf&%1uhX6KL83xnIx8wsSYy(PPY{;k;bWshN zQ7gv_ylEB_7VxN~X03qm-l8LA!e@f6r13IBv7TIkruw=@1?igE*i_uwz*tTq;`PHbkNq}70y zc~N^ z5c6-%I>EIXVdsfEO~BtUR=`D=j3)kjCQZzk54Of8FKrb*JdqWT+?0YP{bLeRb4Hy_ zHK;D!SJKxl`OB+MeN;_|A>Sq0t!^!k%#)nMJR-;jyyb-h_fbR2g=C%PqRnGo!DB+N z0IjXh#uRzoUsg>t-aCIyXbtWFena=Q>9SPhh5Ar!+AF z)wy*r6}y2m^%}m25pbsoXBeB4{N6c3|B52IgMLo~xc*qq<8p)o*Qf6=bZOysM)$!w z%J0K)vtM9*X8DGbUwSjLMpM?=TVD)&yh}Z&7gRnzSmntPluKzil9PEh4y;hGWZ}~O znFHd-fH%$axoD6rE5Obg%^NR&nN$mEY)t2!>IfhMFNQYhfsw8Q$iji0s(dkes`eQLt_xEi%a;eTsQD=3rQmxJK5 z@rXx%ehE9XBZ)y6h-S2<6XE<5o5eP2zS;o{HO2=zUbmhsy=IqvoCl#P4onAWz8Q2N zQT#7-N>g2nUG7%!Ykh!avO;dQ;~H=fj;2FaHb4W9d^S~ zs9ALD%vP6#+tH+e&K(9B$8;Q49Q8>kYBazUTH&UC<^}w_vL~ybi3`SRQ6jR~a|B%DaVWs@*klM=Z$mjseKs3MqFb+c4 zoT7}Whjj%UM5Z|U@%&yY1Pq7b&lLIPhnq~IQzO#~Tm#Hbh3XelyD;t-_~2?u&Z_$q zzldgiLNN)WHZ!$mi19budS?4DOhulpIb1H0{H;0#HC2ZbA8>JQ6_8NWm|%rx_&Mua1fBg%x(E>GlMn50ZBUa@3p8+zHYC{em_5CA7m-9%!+(?XLg*2s@)Bhd~&I zUWtHh!u>C{afv1Nqv`>|q?3eV%hHqDhL=LKQl}!Aa5i+DOdH(16q?L_WJT4T(5+h| zetaL)E)8oir2OzpQNR2!+%O@UQx^ARdQ9 zXFEXQ`wDh~Kv0tHVe1m0Wl!CW=GR6$5Hbcn(H#=Ib&sNELa#A4eVo!)+M?p7sp2SOG8Ow2qN6Ga|xGOVDlr zfoz?klBlUoxaN?w>RBY*pCS$2j`V|6SKhasR#ojWk;@e}fXd zV{;ip{|Y*3c>IjrqbVStE{Gf@_KsA4_ou1^(nzCI{M?~pTTmES<)2O4=8vMxk1zCn*3d$}Q=l1iZ^TXYcl|3P{s_Ag90@`Y_$5&h z`2WXt*&eD)CQCnHCVkkT)b;&))JNYEUn-jHIez-*NV|$1m>7vU;(4a8{wYvKV|5LY zBU$8)`dIy4c&RrEn#kpJ49;)1`Zr0Lq4~v34#WU!PdQV@(mckoHF+CCE9>^7GPG+s zqz{H)c40lvr8cj94@Y;v3lrvOl{{*Ty0DFQ=@&VVg3? zO{s#JoCA9gj;P@*qjfAz1;Y>^*dE&d19-UzGfoLZnL?(KO8reR2MO&(;&tV7m1nh<&!7yZc?gk(G8q_z)^8vkE7HO#=DytH ztandQzY8Rpb7qJs-!I!>x}F6HHt8Y*d#BxpUg-y*NqL(DKFmGQ^4HM*MKEj={Wi_@ zt4*x8cy4uLxX!>9beU`>VDtkknx2he^nN>JyYDmmYruk>5tm6lp@pe^nGa4Mg?>H) zB~DH$TBirS5Sqn&p5oV}j>cNLyat0nwqQu$2r$dl(C=IVkl}#Seo7}dZ~=Xp9mc*K zKGE$?<)O%WbF$IExX0^k_|PLNjqdkr`$tIq!`B%lNf3fC^h%(Da{r5Mv%3(!a)7a> zt1TK0d8rj(#jZ9u3vLluzK1(v{6AdCmUm&AU{{i_a{#hMpRrFMSNiOYI{%FChQ9Fe z2F(AuC$JrqY7;Jf|0tCnku6|h#eX$NdiUpo5-9*dUqK+TIBllAB%18hAo~4{W|#lM z_*1kO`#jJoU%M3(14BU%E&gO3-Fq-TzE!4sAJE!nW8DBkdwr)Ty?7VnQu|eqyVEN2RfEWg3PU-U1 z4WwI)RA_GmpmEBn4;PK$t^y@KQw6Cm;OpRQIBW}(YDqgMUn93mFaddx$SmBv>&ub# z37(@GMAPH^OIHHT4`J7K#4rfMRx%h1*nhDW0#d%51#;=73D(2XY5{pY%z5?eKitl# zTvSnzXlkswHu04u{qb5=QjnO6^{x=Y^_gx?z)eJI4aJpp$7A z6_vv!VAsOawlSq)ttO|#7j7|)30CcC$5q{$r>@~P)9lU>7OI3fb8tQ~M&SfCc(n<8 zyb=yZI*UV_G%qVbWts4bE%5wNbQycagmwqhUQ5gGfMuIz(jLK@Vdx%jb& z9Ltxb@-3RSv3<%k)+c{Ou5Ump&3^)<0TJVTo^~u#KD$Vz8Mh>S1x1YOGmnyzhzOH{ zEL1l8@tL<(YL;I>cxH6+cMnK>rdZ20XvEu3K_t*Q1<#&O;##5!M&~V%51uogn-LJQ z_fUcE14KiXdz_$Nn&^@iMm3d3q?|kg+Psy;$p_`W`Z4z0oHJW1U3?>-N})5!=X;Jg z63sf-?|*sMUHu5VvSf#05OyUm7~}h2?3FY~{(0&Jm}%k?EVK*&kYnlozF?QzYKxvu zGL<(Uk5!lKZP$vXNa|^Nwt&O-?~+)-Bz1S-J#B4TgPN6Qp&yOp zIwdsST3jJTr6doN_@ldB&g_T>s>760bnT(z6ws_f7@mZiQ{^3 zlisUe!!G({b@$w^lmSl4+I7ICI~pT0l0IjtuL=i$f&%nYbN4*{94vq;SkleWX0%cq`rxSg@M{*r|pCZ>7xU54A4R^IeqR_!Sn zQJZ>R*&v%Wum(RBtaePF$y}!x`#y}vr1_u)?c%o9IC?Zf(Ffye_@Sq|OGUm%XTT7t zw8Kd7X-)U07$m}yDTU6EDxj?~r%OQtTdBvP9UGn>aJUCfWNh9F+nJa?hZd~*rJ(Ui zxoH)!xA%(z&Vb8?jG|Ut|4a>C`XUer*=+MLdTbl6*V973%qx|K9TF?>bQsW|x_3YG z%m&O~GdswqoVNUruq!zZ7zTkY0XjhaHx}a=rD(f|djjzaoe<5LA>u1iy&rT}$`rd zd#m^G6yJ0}c1t7e3%PUP;Mz27*TCc;8W?kgt z6Q@(%_*>Ha5OyuN4udf4N_jcIvX)N+*q<{wT0R51=`*YLMe(qryg>Sjjz8;s8RR0-XhJFOQ+*x53 z*H4s;fAk7^4Ss-?8jb;K0bIC%Cpr8JL(sy20A^jODs|*7^;7V3orXd7gm$?sTLak` z?COqWv!(}*ZkrS;D!`c33hn(JSy}y!qZ1V{fE31W9sBL`8B(Y5J|8h9;{sI;|zvu;Uj0sqjbG zxn)5J!Z3786eubC-`I%S#IMc7~Gq`ZzMo_XC~ z5+BYPXSE*_9w|I?uKGD}%^s$vtBA(L>0?_eMo_NHnhdSxA$)WFUATI+y9rJ|d?>bC zx_sav*>ehdVv~5R>(i`9;32z(a)MwZmg7{e-=lD2HB$BX5%Z-n@WTs#KX;@lc!;k?nWW>Dn*605aUV65$KKn?)(zYqO;QP;AsPNM^ zUA1ecV%8tKZZW`8Wm{FiNTyO8VY;rEEKbQaof5PqFE?%huf7HX?k({Ocfh|VCTv9i z^C~`wdvTr67q=g4)XOGxuo+I&*yA#NN3gQ?1ek2vbI9PVEl||$4)7IgKrNmPw)csr z)C(`9WH;lJG<%cGXN1y$hwMpnOj4kw6w6q|Yo$XPsn*=c7v`co7w%JgnDrGbB|!2I z7YCNIX{wm@ei%@>VN*X{=wu53b?peM{7k1`o@gmM_5FHEL#~Q6eVu(oMi)+^s7}d2 zu(Osu1@E&-BwETk>e5fp3mLFbd!WRnot3|y4bf$O6Jl$2oh+_rQof7pQ1&D2%B~}b zVNgq!4_PWL-DkWTgMPv^pf{&&0fGxZjfAfCS)X9pwzbTAldO6EY~+QGYX^A<$d~;p z7`16d%Gd%GV(O1Nyx2J+hh$kb^fvuA8Q6{ljFVW9w?JPnH^K3)>2&-En3Cu2`U<#2 zHs^`@PWPV)chh?=$r^_$^?>~jl3}E7whLKkgRYo4;X z3eq*J=!*k3)?F(~qtW5M&*D$dhw#;({9nNuTZ%ysmrck)4~K=7fo%3>Oz`-SUb;f3 zrR5@$hw-$WP2a+xaLbFuDkB%%Wp5V-Kgj&N)Sq9%&L{~&5Qd>wf)+}+|HXDuNcgH3 zU>p&FHhI~1+^Qv+76MU;gB%ySI zxuKVmkHGypa8xRT;1OFwvh*kqnQ6kVo|&;#(|W4Mgb6Nng)t8=!m{Vtw-D(}Ih~Kr zzaRBjF2aM|UnAe*iCeHmUr8^>5a;Z@h3=UgPW_ta%wQNhhp?a$k>QZGVvN($Htb3v zb}!?HWz+{b_q2*0vw^{`e3-sT_ImoXTV?; zo#w8hbjj%lom`feBYlsjTNC?-^eVp)!Oq`XqfSPkAaZsmBMYWTn#d(4aH`MTKos}? zq$62DANgELeb%q<$^BiV3P9xEIjjR zXe>e6R5v|lqZj<6dWXiccq5EwRjrPD;z!sOWl0Ewuq)XXN_w?D{SFQge+CaA&#J{j zLh_14L+XD$F{{Lvk_DY_Y84QIhbg}NwLv-QA*c58BA)&qjBw)2;0(Ia-vYT6spa?y zPbuMoQ_+A}TwIhR4&bAXvYtv7`^MQ`qTXkeYi)?pVDB z4RV&o57APo?NiF47P0zWsg)chcZ91@Vi)|mdY?~dadVM$C4Y`a#kDi~RRl=m4VuH; zBBej={sS#wh5%{&Gghq#gOZloTOuMb8t<=7sgFU+GR&vm`l4``8YD{cgF+jhm z0;2JpD4-H}D#-Xdw*G?*h{n$u>#7I_<5;}5L>mM~;}i&+rIDax);+widy(Tb-dWl; zoAs4{{fnuT)2{;g98UI&9N;=vP1#|#{9pt|<28BCFL*(l70s=q(*Lgmqq*G}qZ;rC zixJG)MlOtUxknbAXD{JNyftux(bF)qgQVSTOttU+UD$&S$wurNq^Vpl^{vUnw}PFH z#EJaivRm6%*aJ3Xr$XmNOPXGS4}@u^3LQZ3P}U4F#DBuh?Mi|W1fnVVM94p}Ra>k4 z*_r^xV>{h|P+b090U00b6diRUs-pk+Go66^XMD#|z^(B_x^>kD#T5_GF<*V|S|Lff zk2~l9?GjivIk-aT5<};`oZ<@0l|5nsv5o723+{zl?RZ5dP|<}>>^nPZn)PQ72}PRR zwWa4wnwrT2`bc)4h0-&|-5+Kyzf14QWrr+PxsONI0MYyOk|_EO zJ?p^z(dP~n9#a{BN`{%)C(Ydto0n?igdyl{1u%Aj==zQpsi|LiuQ7U&Ga#VO=@O%h!O?I zFdc_}mk>Ute!)(@60&IRvL-KeLC{$TmVM)BD&bNxV2DI#UC7=;<3X*z+UkR#GY(>& zu8orfzY#%V0lbm9lTJUs1K3tGStX0qh(zazrs%9|B;8OH3HNL7oQGH;w^~xCrdKfH zgqZuwnJjQE5(@UxeCW&L>}$rbuIm3@CjJOJqicsj7>2F{HV|w7#al) zu_a%Uqi}`zZHf??4wt^C-{`}S&?P-$aXlW&N!#J zJv~OhFVL1WD5D$GzBuQ%JeV_}pD;*yW^2ss>5pioFyWuSC4*?}VW=Z|=iupby^G1| zGVTJ2s@<^tfL@`@;-h^!>gy@=vFmASTzzJoDPl5OXB#xm$zvM5%;Hv8a@&&UWMw$@ zy{J4xZ>{XX0orTe`gF0Xuvd->?nbUx*4ENyD_9lSNLa-=nR^N7O&9sFs<2nN?#~md zxa`aH9y}N5U=mGKHu*j>t9ZVVZ4B>tw3iQ*-&_k&H1U=WKBDb-(zm z`v!hcTY3|NE~#l`AdW;gFYO|LGkX~ES>Ouj8~&_g2H=F-*K_I&3MBJm=q3l8)}D$b zI(|+DD2J>hK+M^TDZMgTpG-{Cp*-*c<=P)%=XNYH2*c2hcEH#M_utqqnILh0bPGr( z4+4&nj{Z#X1FW{uWCOF#=FGPC(OniNs&yj_LpC{zyEAoKcYa)&FYZFCILnP(&x=Oh z3r$q-dO$if;uBg_<}*El4%wq9=j<4c$<2!Elw0XDz)G`>uKHOEd1a}kgXI^Tw44G; znsIDMS5q;LCLxmg)v!Ie;pju(1@(`^uY`BQlPuSj_ysyk3RBvg>~d(GRb5sZV+3EH zfiqZ>|MwLrA=AcUf?i@!d)FT~_h@=JR?D)t6n{ES@?{1k6+v;#Q8R3Nm|iG?IG+QI z+s9j=9 zW-^A4W@;}QyV7+9Nf%8I#%(!RlI^qp84c^&{YBW;(HQm3rPOtJ-n0rL{{1MUx3x^} zY!m}&W==eXFJb3)B{2-b(3T8-LH~{Il8GgMDGhKYP6o_N*AM=~OZH2r=p@q2##;74 zWqGL^ei%Rra;zTQG<;=2{TacNuafNcB_;8;8K?v_?YuhM&l`A$zwR}nbHlP@bYn_ znJVOe_}IW5vKbrkzoNst1MH!ng1fH}KPg=7paiuZNXQ_geQnSV`cWyUX7Z5Dg$(Y# z9(qTWip(zya^@^!6TV?Y`z)>tgf0CWaEaVLxqrJCH1dCl4`Crm!ke6K?vvmP?H#gl zOo-Kv(ja~o2$DBL<<8ZrT=$B&9^7707uApmTNy6#*;A1$(SYu+DtqbDum=yjJnZG!-Evx zn{*~@P9^Umyb{P5htcJtG&SSM0r*s4=vW|@@n;E=&&n(1uCL3BF|MZ)i~fcIl23+U z5E*(?4a+f0_>SyQ8j-*lQB7cFJ%f?FT?W3{3qB3scRO0sm302)GH^m3AE$fFTR_C3 zLAP|vXx8rZj5TL=Mttx;vMp3*;trVBL7z^=yWa{pAxCtB>dkIWszy3qLQlI38)?6A zSE)UzkBmzjo;mWQiw6O<=eZ1$0vkbk+k23yi6w*yUBbg?_UFV$JYk!_CQInG#pQuC zyX=s_7!wsJ)5Pf_w8!FUU=-*J3HXh{_7PFg=issXltl%uy=Ju&W~6H zFE^}Jit5oy%izbnA^;@SI?Xwus2`iIVK%K|8(?sFN}fvteXE~}Mk@!gW1jFNDjM48 z0Xwxd1I@J(1R;j~RS`;#C}nO+x(B0{6#F z;17)K|h&pM2PkUEMwS%##cWe=u&ff{*2 z-E_h%lk2XeKLjZ74X6k{7Yha+&!CqV0SCD{I|r7uFIc{bdNcN97LVN=0E=)(3n-H1k+G3xsBK z0s30vfM@_3?$jG8$Gl_=LFZ^hHxx=``jUP+Zj{a&8H-yTv%QQ#RjC;0!`e~~w)G(X>O!~YGiV13dU=`LM>8p$r;ri)a1k2=zl5FHwZt$8 zLt6qbEd4k39+?>VXEY7?Byqd|(#6CUbipXlgdvVdI+M2HU4|%Q_SRNc$)me0mPYfWd0~126{vd{sw3q zw_!KX6UnH()&nv^OMJZ9JEaPlef9fH@b?iyPyio@t@lDF7vVcY^kEGPc>O?Oz{K)s zC^{MbS-(fQ2b1ClenLjT?Q!~bb@Ps8#^Q(V)sIGYe}@olxR-3B{{!qZnXv%(dR0ON zN%Kj6Ncd;&3#cD^UztF8vIvATTM&Y(gJV6Fr&>;RrmV89wU5&%s^k!A{2dxmv0Is3 zr8aP17IkBpWQ)%9#>_T_s03ephdt$)0#9GUH-SQ1?Z*h6eDubv7HDI(>6Nw}Gsy`# zECM2YhRVSu{gB!G=9v(Q`veMUEgnl;)tNuSt}IJ}5QJSx5Lxbjv1z+X;?JZnz^g@3 zLP)|cCO{t(F?nHG-7YMTt3NXlA^4s^e@5Ic1l2$+DSk|#L9@D~+RYkm1U1a~uYjgh zMBjY;s_?5AYwc6McaEH~{PHGW@O!1#H@OUHuBii<-tKJ2xBxCgA=?L?wugH4Mo5aa z$bh9`!n3Oihkj6z`v=B2XwA6(MGEx2k_K21P|U<~fZu@`O%5_(k#y+E&(QK!Q7rxp zJ%*jO;1+OfaUP4Dq7m{$(0q@p-SHiPK}(*e<#cFv<$(UmFmy*Adzt?u2rwU580#24 zcWb=GBO+j=&d$?*Ohh&ZkvfICh{8Ab717xkzn$C5d}l#O1kAi@wBJ>>{^1u3=5JxR zIe;XsZQ-VG<{}Z+)#I6nusVWK0U8(SEI9|})2s!g=MP0Bm&=q!ApF-1=e^C9uZHf? z{9i%Q_!;p`?0L64?@9L>Se;GlPd-qV zOTW@wna!9uv&v`rM@v}o3DWteKr)TF7XQw@-3s5z$v*|uG#hOExgBmh`8wZk(94x* zEs>xhF0RTb?W#0-oED%o+bZyI0B`pxzjco$XbeFz&1@m4aLAO)_AL17qL6o8Q}mT& zk#Z|c=PnuZ&1U%5q40;k305#UKn$jENKVv#*KUE%}WOHa@9a^ z&UW>;zl2>`mct+nyHN+T*yjEho45^9zLX2}LBnFKtxOP`UJD6M!^364;9p&@3w>Qu zO4A!>5glC2(7ZJxQWHT#^*GJ>GBfY`IY6XlM?=`>UJJPuSLLI}zzXsp;UxiScL(iy zlGxD2Jdv7lK#IydjUyr%_f`?Vz_f*qG?+Q=0?_(PK%|>13Uu zHD07~1~sMb;+X@;-cGc~vhh{4LeB!?E_<+aX42Dg<;(v7LH1Q&fJ$k8>wv$WVY+Y$ z+}M3g%%U~68}`|vwQ>A}tJ~t`hWe9xI%tR&KjCSHvS^~KRTjP_Nr;gL5_Nd-fv^rbhhg4$ZF~TnQ zUVT{wT9K3immcJ9X7;QWoU9;Ya~3^mX}%^IsrpevHO<(}HarkPQ7d#~+LHcKi#@y; zEr^=w(kU4vH!05Qr|_vU$f!%Vq{0295zY0u2(Bl|;In)PV0pR(Ao*`ljXb8Gfi!f! zyUHE7mzeAB)x+&2GyQnEzuzgVp}0@S+}9w5BE(9DiO#OX9@6+E0C zVS)RG!y4x~FN!P5x3LZ>Vu)q!cD&m z4M8QEJ3k8u@%8T+F<0$C#?fKOuX76(T*p}M0?U^i6b~-acx$NF*sdpkmeUk4ZG>SN zJ9$R5#AwDN)g*q8geHxeWeKQfF0{)fExLkeq&D8D9_p;?(F%FzJH;0SjbPJDlCvyVccP{(EuojOLkzxiBIvtY5Cqj9?2<# zw{Y;p_ZZ``pZ2_|tZjSW!_GxW<$X2;33^LfrqxZf%ko zf9`YxoW?2&%;SyVsApnO*C>-CmfN>oL>QEmowbuS&{hZYwe&~OtSg)!5sQ{(A>SPC?D<3x zCj$fDFUVEz2K0Q^$^*5JpD?8CaXE=J9YNKPd6-+ua>fG*GHijq(T6sCOnp(Del#Rf zdks_qmq~1fb4W9063U2{_(r_y^b~kMCNBNG8ya-*Y6*<+IP~`n)rcQ9#ula5flQh% z!p&dZuaYKF;;y zpP*btH&J{G=0u*dqwZrSjE66EwEBH=~Z?CMybN>XWhl4m$^s(t-f1Ej~Xh_M+#h18oq_J4#4EMyF# zQ=%8hJganGxFj)gD?n#uSC-p+WTK@Lu=wMJizwe)L9_O$0fGK(+pS&*UvWU zOnH@;ank3*?l`NCHAqD=l-^oQwlsEJ8JU&?s}@_W{`^pwhXlZWRMW(!*11;*cGhi) zj~b_7$UQe+np-gWFpjl|J=q3U(d(m=EI)J?`QW zmQRzvraj@x(txdie;g97(^~kyn+$Pe(_No)K1EehD*=Tk!mPd%E`QAwu&p;)Q@nJo zL9Dag2UVu_EE#RN!M8plTmMN)5V}!X(*~wzMV|YmRcx-^qFR}sfgY(V(wO7$Iu8>sElSxa@QggB+vZ+ z)~+e8l38nf+)5gJI{JIJrCe*Z01fS;S>$NvkJuc@Pp?ngC6o^)FGI%`N2jj+B+o2H zVeH4)mEcGYgTOD@fI0sEu^o3h6w*kw^MNRByMrm}xY48s(MEIzE*Q_OfFx+=?qvw) z7-qKiHM7xh3vd2lIi*_3h@#o!Fz7l+Hlp)q8CseRNxQz>mqwyv}wjN3UJ#V5jh6SIEOgcbq$$)~m)V zP08r-{g=(_^T(z;f%#16av*2ft6;@jfr1|-1RT*GUHYH!-^ViZ?MC1;p|1y_ei$Bn z9noHkjRa#GGGzXM!SRW1$?Qe{u2Ti4M@s?kF$1+2VjL+BCd2DY1fZ37Na(r;gS~<- z#JvV|qm|NJ(hw?y(beZsO5j@8SIBigF8m!Zz?QwCe%1STd7)6uXlg^_7GLJvmHj34Wm1@(orN!hY=k6~-%DU`;P{-c zeFJ$yqT&vez@$cp%$K3SRFV$Quu*Zd==Do6q>h%tvK4l$|Z8kx$PMxu>JD)=lD&$cNu{?rcrj@~ z;#bb~9d-p;5qSP#Qz@ifihkS5Z7F+2gug>cyCms<8+P)jrpMyp`g}u)1I(E2yaJxZd$)EO&d&Ww>24ixFf_ zUeD0bc+FydWlH^ao1oc1-4IE0vzUV6W5JW!h8N5EB;Y3AkxjW~Wsp-LD2xvE8 zZ==U8rN>5*e#~gl93P^9TTV9Qc%>@RW$*&TU4TXpodtXir9>z57b6$K`Y34Ku+`+x zL(}Eega0jU&jH$?O7)1EKf7*fxA@q}8Se zC_)_uN@Dx{89{0@vfHK{f`p`$!onGydWXj2dgOY^ z+!bOtK4#DrrX!8|!PNVSQJ?sy`sl^1I_U{#!Gsp;wj}VLIF-4tONkjpzjLKjH?T%Fy3J~MB(!BqF z-pIo4ruO%V>X;6^a2diR*DHEn8qE#S=f7*2E1@DrF9CBg8Z40MjJ1f#`s}cMTA4QuZ|8FBTjCP zq#rpLS63$NmE?UBy}hPc{|7kfXU!B^_&|4GHmqAWZqKYq!-=W%6;hpbgfwlIDod~m z-8=I7V3VFPYpBo`_9Zt$?eV$gWOpQu9JUEG-H+8ZKJhb9O?j-+-#*^YRY@|*;r)6K z7;mU_JcnC1>l~EjNuj?t(8K!oP(v-`XJjazq=x6%@M)hK2tKJqCLnkyc&fI`^bs8RLX}!lhGNtN7;lAI55X3I(O4hM!pqQj?;MM_-a9t~@@5}Ug`rBC z^)wt!S$A!92WS+`O-nQ(6niVw?Vaj3VU$MLu-l3`_vd7noy+7B&E5&cT@$_2y_W4V zLQgVbY{kP9(GN(uaWJWMW?0pH_Dv@)`Q`s^HVR8^q3j$4C7sPKi_6SAG)nzGOsRJl za+5LwE!vYeQJVu$vdYJsz|h$qS$1v_w<^KxNq**!urs=L7zSbJN;Y7F_h0Ni+C=h~ zx_o7XzpOwHb)26@ZCb$!&0C>zrXwqB-w2 z-M;}2nf`4@-$|~?!S2@=YW!@|tK_R`q~_v2bO)|B4F!5l8hk$A#_!|$g30^y1()vy zMVed}mVDc}T!ivjP^7`s*Tn-=`xvDcGwd>+af4d#De#kM(rcQmv$`ZhgDtl8wjWP| zXsMZu`DILQ^+R6)=SX5tY5;?1+W!}ZSl0$osRxK0Smn3gTa4V4Sfs6y;9TAGO~|eFbzNJ)Ux)uV9ZSqk4!& z>OT>biS}l3_vFyKxZ4ud5m$ufFgN?1K>rY(rrubn(WC?Ya$e}~>A|bA#0_dR6$_`g zgHr#$rqR~BV1y=fLFM@)>`bmChhZ3+k|l!_mD)t##V#ArWzY%msTRxJ@NscQ(`}pO z&!C#-0=o^Fk1}m^*TuHgArZ|r-|BGp-uvJgJl+&gon4B6H8g-8HWkMKI-4mX(paLy zTi-K4kcwN@6%{uv7nZk)0tBgukkLFX5$8i6F%d%Iwz&>?j3Qj&BZ!wvpZ6{YlFA2< zcL3G_Amm=jcLDUDdfg^K9e)NA=W5<$l7}B$LQ|Tgl&GN&&jR7t4|MWU9F<_pih*7)6RvF`~DX*R@U8Z}6Wh(CS` z4QW2M5vaP&15Rx^`P4e;YZZSVZ_$e}S z9)fmWE>$J%gl$A3iQY?XxIAPBq?A_(07V!O1;n7o8ufLOIEFrVlj(MAyZr^*CO>`E>BD<3jvaui;Z6NO*u z#X~g#N);fG)D6~!S)e{Z?MAvhkZBscTDhMDXo)lAU01DRUc&uOfXvy;LED+>+;~{d zf3@9=V9}^XSs1p z7*@qMnl1cLyl7oa9=}Q1NXMP_h~Ir0S!e)f``u4!8;L+`zhd`k()XqC)szjdB5X#l zt{}TllVezWEgs_as0gOge}$Yeu8K3nq)2@tz9O1fDtomuZa;3RNi7fOc{EOs@U`W!hXoEm}br5YW@$ z%&11U@^b$b;2Mg<+fm_#*8@}})}`_l^%g%)%EP``^#ZLkn@7>e3)K3b4v_W_>2MIC zPeJ)eF}*{O@iC9^TaZ!s5Ib%OiSOv?K#D#MV6my!wUg{@!BXX?e}r9&jm01gTZse= zbpOTfLLo-Fle+-o(Z0|){`|j!o$_L%WO=a+JNWIZ%Fui8gymE+HTOy6R7**;caZWo4K%7NTNt8)H{%k8Yu;}xCC0fU4J;G7&f&B{6> z)Y>C~BRIvcY3teIcE}m-m{V`zvfry$XOvs8uPso#&}nht>Dm$YM*2xyQkrRlhD1Hf z6Z~Tjgduy+OW&~-a&I)VEG|^j)J%^JKpiP+`XHdelP(T(-ukvx=@x={*`8rfYU227 zD&&Cuw_3~yT^#nPrY$g)l=r@S{RIK(A5pWhLD|&*h%-!PYYB1q--G-i?A)#-24NW5 z61EYK{u|qY1c{$@8t@4TV~<}~w*@Dk%3OPXCq>-a_4%iGdo}yB8&BcUX`$w;rwH-^ zYKRBkO>251FS;POz|e+(X+gs1(uS$|o8*<$I?PJ_A${)g@eEy;x|n!p#ujeL`OSzS z5cXtoeO%OxI`bDfFUTpw)fl1est*q*O&UYd)H|v?y{G9Ju3inP8H=^ixg$37MhPmz zcDrhDe(EMGQ=Vzf0Y{YPaLHcb)2Z5x=dyr!n>BUyDurJTVFbfleh3a%%n&&)ShQG} zoSr`d=g-h8r~mz|9M(@=9GsP!jj3>XD2-glUZzYejAP-!L%tSDrDQ^D`F)!5vI5lq z3@F<4+{HmRa&#uCP7$|V(@kFkOmk0QwCR3PB|U990ixzw=Y0|-f04{QKLx`!<|K0r zrnKT&l1?lLq7qUAe#j~36nT0ErrMK)(Cu1WR6Jp%gn|r1%LwNpA5}ZL(O>_}I znv`_M$JeBjECF$SE<}C#xKQ)rJqRSI+BEWoKd4({oR5unZuu0!(q=N$tr=(OaD`8k zh2nY0yo6~&Vo|?e1&4L4|KBV5nv*UJC~@ zf?o9Co4nCgtK!Hn4+Pt%fAj4p@5Junv@Az&&2N(@T5(qkZiHjzJ+4mJ2{qwq<{eu> z%rCq^C#)erdrk1(j*j8{(v7B8WL>Jt6XMyUzUCuzw5{oiq-u2uFgT;r1MXen1Gau3 zjVjMTp=e`W_K~g37-vxz7alp#XQRah8^m(u(fCU=8^t$OdVn|ysJ*Yad6(y{`3dNJ zy*0KnsDR58=3P_J)ojw4lMKEZ5@%#&!PF0!&iD2tBQ$Di!Cl8u(Kh3OP4*EPYFF9> zI2#U$_eAo?FbU!i6b_C@_w4037Vzk+6j!zxUknA{D!LcTtDi2;?RmW9|1@sdxj4i! zJlKaTjVbU*E9CkHD)MmH(##gI&9CY4lYDdamZM%{B~7ldxFGS#kCv}q^GDbj9Z3wr zFtjC%ZGro5?2b)r@#Pe-%t9s!MAFlveDPAU9&z`NN2)cpVN|4}A_P7eCQ;{XU#yQ#@b)_gveQJL;VMvuV3fP!dm?isnz^IXP)a28nq6yf6YLI z^^D9|iAmiO))TEE#ktqmWzkh73>tkx9jvA?z4V@7)wyZE43<#s?F8j-p^?vf<2qio z=Ij!X66OJMpyF~fJ}w2pka6WWl(^N=lS)CgW+?&bp~an;^J5u`E&c>w@@*?+xba?U zfshQTD%|#X?H_j^AqB;n;m$H*U&X$#UWWxEHKR&de(B4Cw8w7WG??YE(7Y>t#|at| zwU-Dmm7*2vJ|Cn>s>!W}iCH$Zr|l{OQmZ~*#T@+zesvu^Bm5C|WycbOFsvoOcmIv; z<0WhPOWQyu3<=n>j*CRP^q(pA;~n~wl)4uEkf;$7DqpaXxEdo*?TO*CblA zFdH#uyoS>~RHTK8cD4R;(`Kfu}qIX{G5*^z}X4C`pexop#aV@n8;vL7o7cpk_LI9S(R!1XQQ8@tes8ixHj zVIF-86lKFO>v@j%;qBwQY@k_p2!SWNCNPffLr#p`?Fh5Oc>xjQ`QzG;&}n>@L8Y7R z1l-94*Pr-DG!4%iJsN&LG-KSEOyfXkrsK!9V4kE{Ro%-02aJ z^xTT=PB|;+E8sM|Qw@Wi=r0vc6aYYTzd}z%HZH)1?hcNB2=1yu zN%fKZwGg!b3xqKkaWGx{z=%wnI(h&x?48*Wwo|X3lp^^@M5S#8w?cOZC{karHRUDdKJ*7EjukjgD+N-L`G*WjUCRGE!gBnNxh7RO=%?Qm=2E4M}x<{$+k!v{;hz-(HvGy3v?R!aSRY~PK>X2!y(F2gcni?A->O{ z{4VBX)Iq!voY0usI-^8@3&Ydjlp%8fYsCgsluABDb9#<&je}h7!-trXp*=fsw01JC zu{n52p1inE;2=NE*>ktlyDS#t0Y9gJ3gqMZe!AUH`7Q!_*qUJU0E?NNPvbeXO05S2 zVRp6H|Br+0^f3eoozpb68bs4SGgkL{j>B&BAw0bo6zzBgRL|_=pH>oNFM98>$xONe zB6jyL%ivGuctz+6I()Z!#N(Yb$P3CNE1Utg0=Q)%SkXpLEC@r&hS`$`E|+Ee96?@C z9Y7~XNhroo0lmjI>#Y9(dB-}+cL9h`K;~dc1WLk-KLf1Vj#<1iqJy|VEXaww)FcK045Ms@C|F+vv? z6O4T@_e62+%kV)7bzY6#QQHu5k6f4$(L_4Ne8wQ^`0V@}KPP_?(BbR6p;WHWH&i~D z2(W3QVQ)IHFJfS!qg#w^#NL z(5zOSm7c`A5BWo`lL!fqN4xNuwC<|&3eczM3|*ImsmgV#-ivpX#y*5yTb6|&4BHX~ zN?>cV`nf1H{fZ0Fqa2jBdHrfgR)EV9=ftYIj=fSE+fhS<)zgTG$D+GKc+`-d=E>n0 z`>P>M{~0`v>^k{PjQ|||-RI&40bj2q-{>K}*cw9p1WsZJb;L*v9q+oSagHGe$@Z4y zX_}}6;xm`{w%359;G&%tKoQNFwAAkHOx1UfrV&ecvby)=K5`EH{e9|WYA~CoCzeqQ zs?iygAWaFl&fX;H!!fTCK*tCVzSlMX zi2MdBt*AeiF)$hu?Kjif$ne(DE+9zLl5C?hs@)}Q3&zvf4L$G;*B#*a$>ETbeSk^C zJ_GQZ*ST$na#+`Qh~4P0D0;kr&PG#CF+mAUZHSI&1!HZ~m8O0MN@zIoS(LwgBpZSl z&1$PL8}amHI|KNm-e5XSxx>2${X5rNX&-CA-H5@E%CIckQ)XR3W05Bx!w1_}KL%)e4VIj*NtgmAr4)fh7g1|&FnT7Y)@KJZ&)C#%yJ@lZ z^`k93!OSx+so8iVQ{S1#^a0Dvv+(TF!^&BO>(_yakPqnGMHAL&;Efzj&F~w+d??L1 zsN(-Cu$bo5C*KGd;*aV2(>Mncl%w@QM+>siqhGRip;EFo+(!G#37Z!yILp0JbI;5| zy_Rknid+<{F?Dx3f{3{36>5511*vaE#hdDQ2o`x+=EDvRBk$;|D4O4gDK`ZzG;Bee z-s(`alROf%;It9?)(X14bhKEZUdYupwwG~tU;c7i!sx=z;0%28rFPauNarrBE^Kdw zbl3X3)1kC$0!GU#sj`!R@m7{X5}#l(P5%YB{XSdmGbFhITg)`d;2`hBoAS$_;Pi-A z&toXC2R8JRr~}es1qb;>@GvCJ1Z#3LnnmLiwZa!f9IctAToc=cJ!=RK$U_>IyzUrG z?#U_Gb=(F>(HsrmYnpw$fZUG`-o>cTYyUe@Za5~mGqo-nm!cVs0Nzy9Gntb0SwDoG z*^vYx3`0`_n?vNE*bY67MD2$r0g9?V43?~CS4d@>k1A)yd%LYWj>Ny!$~;RBJzxj7 zfh%~E4U~B{P7vVdC|$9b_aCs*04njXIW$B4mGTb%6@G;&;ZgAjGwE@G@Asf8&F5yN z&)(#cv7I+m;o39Q@i_*-C!)dDTtpGlMWJcgA#Rl&!$HUe2|1fbRtA=(Hxxizn&cEV z6lh&Hns)g;=u(4`qEiQRkW2Zog2*%#5N)Y47oav<@gR|A$mPCH$&CGG*p4_ZFij8Y zM4#uE+=7QKL6K)`N;Vv{A?|QRUo3(^;;&x)riD!~%()c*Q3T623Q@d~?^hLDgtn(2 zB%3~8#QL$9fK8tqb{rikVEg+*?vRMnl*fY!_gi4qE~Su8)9QN;-Ry?&U-l)@^g(E6 zoZ;I|pzzR6WD}O6m){Z%c`3%kM$=?9{O2n$o(u&mTr((eCq_M<=p#U%BkaCz{NV zT`Dg-w!ca)I`ue?oVNQh|cCL~+HjUlJGW@Y7k$ec_EL}eVu?rg%-L@^(u=PuH z$OJ(&p=XgQdP<-yRV|(yf<-He$1R%<8o5E=!+H_zV9qkkEYUN=?LDyZ)&DZ#N(_PSex}Lu}6aqC9>xrmkk)r(Oj z%4x)#B-v1Dt3L_quh^@vJDAc)%xrY%dcOs3$EXFgI#U`O1=OFvpZz9*jYf|x z)X`wHy_YX~OlAwSV1R~}h@rN819Enb6zrWnt|M+=lx8rx$7hnSNwQC|la8;z5NvPBEDxK-!`HX2VG}=moePe{APhrqw1RvHzW>EmY)f2eB_Cjrrlk;w z{oFvNqM)E$cI+^ELQZG!gyDnT)1^2@D{^b`qNKW*Kf)Q;53(oZqC|YPBkDw?NId~& zYkbfYM|)dm_d!Z)8R(+PJ*fj7*7alRIvTSPKAV^Nj%=V)CG?;89%)!}Y{mfZko{lK zMN{K0E{A|fna~74=%n zSD!|p#Q-4XtZwetpT31BqQ@d6M)3cfwBsxzA1t-w0LBE6!5q1O2mL4d%eIzPtj&EQ zrx{0()fcQi3+wg;4)kQszDwSwcRM4iBE1+gP7m?3(uffVw{J(&A^K3DvUS4_#x}Nd zjob)ITy*9G{6lW0e`H4yr=-73XG#)g!~b~9w>Otqj9`}o)a|;1)6Ty2$&e)=*r5rd zwd~59|IqY$x1)(BI2X2ayIeXj6i(e)keQdsSd`!0(g{Bv`u7x7B!xzH zik)A=&h0v45C)tF1}gn(vUZR7RZa|~0K{wDyM;6sE6_1Txd15dg= zISCIxyG0Sb`lWzvb8+B4bb>vJQou7x!{hsWEsWS5w(}?OnU!8d*8^B%^VY3eRI3-D zY;#hcq$!10uLy&)5A*fU;bAoP_vSw(5Y3rFoYy7+P1CAJL=??B?^EF6FHCmF>A&Sd z^D2DAyBNj!h0{z0WZ1OSXHSob%VVBeyU3T})iR%ty{^D&+Qf?`ZUa zUuMjM{dz*Iq9|S=#%v{U>r*}jJ`;_G(HaYDSpO)D?Dm|J(U3tpTK=33)La7<`Z)~1 zn`9`8rxac2wh@&5e+vB&c5b;2!Y~lsQb^+1-v7pKDc}>Sy2Ed!B0wRr$Mg94KQQ=$ z<#qWY-FVlbD>f%vlP+XVufF;vZ#Mnd5*~nQs_Z;ptu8ygsE^pupS_fokg92Su*Bi4 zZF1eYtZWOLOEPVGHP(GuY}U91^^7T17m3H&74mf7Ls`0>BvSnlWOQ|0X*(%|7i=Uh z0MKJwA5?*}-+8B8PRwPz^yA09KRo&B`jlfX)3#zE!6#fYv@#kmfjr1h*?<5?yWJ&Y znVdNObz*y6Mnoh-nHH!UZH^kzwbb=L>Y3hGy~UPMYbmrramIv0FsPV}@V!HKK~YJs z2|tVQnUjm552!%s>i9~;6SnsCxzJVHW^gtzILn1vS96mxf)j4`jbo2w*>x)yoYS3= zG1fb$I8iUA1m>9mgSB9u@9%PR%LD73YN_3b5gMBHm}qC53}~yZ?Q=+V$)U}}aL>Ic zEw=oz0a#P}`!K|wR2>=@a%iJ2l^Q2vu?4fRCvJ!kj_{dOgXC%pZU^{=03FE z@+=QfaIKY1v@=#j;P&}E<^X%uJ3Q$#u^9{x$FBNH%l_{Q-u?(Xm)wS85Q=W4J18Gx zKO6t=5uOtF;RVA*MPH!W;a&w$D~p8&^@C<_J{?KO3h))w%fFhv#g1_8bB2g`w5x znX=mP|1?9MKLBr!;9%%wZRP(s_MQkhDBRLcTv3G1aSM7PG(;{0oB@)3toio}+6y|; zR(U9%F|f^70nOKreLP3P0%!Rg!5UrzC@A78lf>S0gx%zB*aRn@NKG4`X-2y%qsg*3 znAhTKNQAAwzAV>}Z*F zj$;r3(-dQ1KnGQAoFE11%<@_-lb~W4{aKx)5V;Zo4(B_!|Fv-R@uh_K%od!tMpH4k ztnpb86dv14WgCcG8Cmj9V4JyXSubZvw5~jr=Q|Mqi+QsZRp3NNhLV$@4xTkXa-zu~ z)|8q$;ZR1y0Im*o5X74T;Op}W@VMPyf1hvn=kxXPdVJrnFaI!hHmMB*F%-T_PhdTb ze`e9c6dK5?g%EuH#?hNMI1E*G-sl@i`6L^R$??D5I_iG8-@dMw@7wQBJMVGWK7D>X znzGyRiPo`Ic08{hS?>P4I_<&%!~$Xgfe5n*OF}>pCZ-VtD11)BJ;FW0ON95+wq<#5xz#a5;)>WKtkApu(c{+ zg6Ow6KdB8MH6WFciHM#>$!wyN)@@yu7F zuvP~c7bX>s%32e@4ob?j$Mn+LHh}f*)`HH0;|@wIt=VtmI%fsJ&AdR8NufvNBt5pt;p^$yfVD9 zRS@PCh8}(hvO8?Z!@R=vLw1KLA6xlgVv*fpe9!C-8~8A@F!(U|qX9MSX!aoS%*xEtMp=3sDXG~+=9RX|C`lPF zHJ`}DGIOrXm!`+fC|W;THVQqXoFw&U%e>My;p7Ohck_u%EHk4Dvv+RiuDA2G!?yG| za;%_f@#^|?$t&mCe${_(zES40AQl@BXK7Fcq&@f2RufBM?KlfNctci;gykn}%o?TqFTrep z?`dC6OohEg#(HHS?=>d$RE1&j4K{B_W)v`eOht-0v+!67P0D^$p=8c0yfP}1n8Z>Q zhRqja=Yrcn41~}txtq$s{V&#P%V0HHi5$Qqync*7NQsMN!$6otNI_#(W_G)y46&y< zqIDCQ*KOGL(UDUD8*DPMJKjM~1q>-{-qGuAI@YrB`E;P_B|olP!n03IbF zPCd9Xx6BKo!oNa{D!G$@(LNe89{N>1H1QWr?s1~hD^=N@1dKV5D(zB-m`d-2U^KmS z-{xq!|I4$~Fu63j93}TySE=ky2*&B$f1|G%?K+j-$-!uP>DH~IrII@#7)`E@lHajE zoSgxR12GH(zZ7SC3I6}b4jPZl(o$XT0Ty1YIH4M7saWrlf#uK_UDA1|8|z+Tuq^jx zZQbl%eCArt&2nybCrc{UyF_7m>5G(hj&_W7FKJkod$Trgb}!bsL}6LZ&F+M)`~2Ha zqf*{YMX!VR!n3+`ta}N=vfP`sd9!=5&Ls`Ya&C4fQ!3WG1Y*h0Jg0h6T{_miWMb#i z5AN;B<$GkTc`uO%?B3Ds{7AZ5P zwJ{0VDG!xT%8!r*U4oSC-MrQp^I9+STK}3CIKo(;=4A<-ATB%4lHgr2c^n)Wd$=yy znO998bin}Ik~r~@pLMqDW_La-v~)b76=Y^iN?_18m{<^-h2Wrf#M<_F z5Ybr(5Yp!9#pCfHqO%YnBtmGnv;_xjaYFkKoY20ZaPiBj9o;w#!!Q`0 ziB=O`_h0OQ!2AUyIIz6|WavS%oAN^&>2nSzCuo8j>51YxYa>T!(i6rt(4ez9a*QU_ z5$tIC$?E6;g?T-v9iTvGcH}%wh@l1xT;=;+w3i#7ek^>n5t^A@dXhaYcI zxX8hp%!hXQa``?eu7$%jL5NU0Yx;>>;c!h5qBZTX6j2b#37c$pcKLGoJ}C1!53~i3 z*wR_jS0;2GXABRTuSteG5*|5f)8adXl=>>)2gQLtVU8YXEKf~8ahx5u3CvT|4!3Hw zJaXoy;%kJ+`YPWC#esJ2COA&{mapk2jm^UyQA@!Z?!UYE%e$b9b+15yPKD&wBNDbTN&*piN zAxC{=>dG*CNwGcvn~uOn%_w_CF*Z${-4BrROUWJJFbu*l0Q^$TQd0i^u}PC`BD&7( z0~G`s=zQA!Ioiv*6Drb9g|}&y4VcU6NLK3!`~iWvlcjY6Hwm0JX#}%5gnl-gN3zn! zv{VMy>Ude@X&U`~h3TA*^=TRlDYhkMLWgKyfV29br8{6s2jQLIyB@PPw(VR}=zP^f zpGl{VQ7c5is1Bj;$Ws?FDUs~H&fLsWJmQH0IBBs77}tSmDr9g{+9bQ@=-SM>7j|tz zg{o;2{LepdR7EOaIJN~T7}`noO`Y4fT_2d+O_Nu&RogasV00(N_FC7;Gd7HspcN|B zw*?wTtjkm>+qJ(;V~5j-OOxjJE=06g+I<{jsoL6g<4|IUA!qoW~D^oZVL^9=p08^XA;# zk`M@CAb2Gih3Ne+=7*IIF6!VOU@5XB!(%#L)phAdRqySDsw)k>*4s~2x9unC>8%yf z_bDh{?#JBeI#CZwSFcU*9;g4oCT!t7(bopP2i`TMvRy7Z+u*yX^B5&wcDZP61FU*| zuKfHpQ24H;>-V_EA93B5xW=it=y4lAV@MssP&o-;$=xWrRDeJ z>*B8KQX`!qj^OIf*<$uttmO38~digT9pYwRoi`$%~=b|$| z;d9HeJUkcI`Sn=0a2tOtQojib%)gG+eoiiz$S&3G*dX?!Jep#_g}G6mwsSHziaJjP zvSWkbFNr2}n`0Sk!;259E{|;zB!yZ<*m)hNuhe7UF{M|v@>Gmp19|pl+ z(OyITIatWH7s($4A|P*RKW`CUl$?tVgFp;JSLzukx&0TbRO*+0U2b$sAr77YCWSLFvN-&qHzA;5W#t8=M&|O?`I5g%uZ(`PSi8T-$c)lQw6D1 zm%M&re;e0XPmk+}iM#dpyiUFz+x7c4u)_yk9@vp>zYnCb`&T3yWy=quvAfp^piy{! z&3b|t?Q9;Z$a>1AAD0}^>n5-B6$i)9$mp0{1@=~7d{kI|le@s)>f<&4qs+*dI$JyN z*Y!u4-IWcFj!Dz$DvvB3*7neKFt7`Jv?4w#Oh5P#cT+XZofpht`58l1)7(qfCpNEQ ze-Ho0OBZM*P!y1TKbdQkyQ#XF=ACMG{bUSPFx>?!SCK-MZ9hSw7K@{b)loHap||f~ zx1I>|oXz!>>lR4t8LV6O`~(ww9G8zjepKG+XJ50*=%ZMo(L1h!M7ts9!ITMilL|IR4E_#0;`H8X|HCH4* zLHiFPKS!L&zy%ZwS_U9F9FYBlS?EaNfc76s%jiKW2XK(rVLc0^c*@2Zv7ZxJieBp? zvu~mub-i%Ni91iNi#by=01pv*aOCCbY(iP* zh91?i1Tj&p{I|0n9?RTh2*8;SIeCv&#(I&oU$pA;$lx^XKR7y0v3%AOW5HDjq)f{42bTOX|r*2cMF9C)PQ(;g!cmKXMzr?mOhuztD>Mq6nGQ_ZE!{KnyZT#@R z1kyF6oI$YMjr?%I3`wJ)G=j)?MQH{n%t+A!$TwoNs~A0)VFK40Ioin4uAJNK(?0^r z_*zQ0p1uc5%+OO>N_P+6m7f}1F_+TiNrxe*e05vQ`RR$=Ew6f&oPGKC@sigc9>~pH zFL|v8@oj;6UMc916$&>jKwVd|Vg^&!jAck&Lst0e>yvth)HQI0p2Ev)@oJ&3~_B3k%)9M8ICB7RL79-YtoMnpzn9 ze=JWe#H;?%(3^87DoKEPawcK<*^rP1I0>t(#IJ-EWoV&Q$nygB`dNJ1eKNG*chV~6 zc^F!FEDt{fG zZ=@Mj()>9?J9^^!vs#ZwxMN?o9tV}bi^mo>?7s1p{XU$X z0dB+~3?oN3f2>l~o#oPNP5Xd5VM2(_4Dh1ZhV|n=7`7?y7xs@Wx%uOJ&>-$V zP!%DD9c(nHgWe&j&?sh~!RN2P{-+(tMN&bsG|5gl;H_H8HUWQ*OU0v;(mpP*pV|}7 zNw>KA=8#mZH*rx#w9;<^{=~yW+u6doWXr=-*e|5~2FgL1hqumeiu?u6Z<&W<%T+7= zrq~}xqd^ek*iB1uKg=Q@Ft{C#)@C@ho{HOkI@&sR+*06AYEejt4sTLv#iE4z$%l^n z`gXEewK{Zy{cht`k3qle{ml^?%r}>&XaR#6wOSuKp?){r!-5m$URB>ejAe^gEI1*w zRx3m&+|O}oE_8x?5Z8RPC(yI^xccU3YR1prZ%f8skx*2fp}T z=(pEw494?%Q|SA7wUHC!YHy$wl@mh{d^uP9t z$K-QS0n4w4ewok3I~oSkvdKA-|L}_!4$>-pE<33Z{ZDaqnuo%95f|!TuP0_c#O0UM z#~J(jJuc-j`+Gm~|Bim{cVat*2KG-x?6u#}FCW&}@5He)vGz`!=zqMMcgGTHSi+Aj z;xu=$m}B?!EWaF%GtZuq6|nc0wfCo{-Ej=Ndd+%G`X=gM`|@K7mScaGpU1>;)*mmh zK{5_oV}61GZY=aIE?>Pw0UldiA4up#{!?63ulol1xVqbD;2^rXhng148zkyq^9E5m zKBOOu8zl0da08sSh1Ir}-=IFw-O5J;2T@v&P0tL&Yu+GA%ON{k+#od(k90^gU$WZT zTS21#HEEN_tK`J?QNk{EgV0G_*v3~K$#ObVFAOmS6+T91WOqCz# zE8&pU@WaaLZ3EmuSY*X#fh=&4=zj$qL;(k(j>jHn)W6~lLLJUz9ebXU{~9;IA}dU( zvcN&2{}pf$1ssGr9($Zo|H>g7>TtfSW6v}4ABK3*8C9bXkUh}of1Ou7U&`lsq5fgo zZDakCmk+02H`-ahqprcpgIi0F!V~xm-idr|6+rIo=Z2T?E)o%RBm2td3hO(&u8nsoG<6da)a9kO#zbK^vJN0|bY-5r_>2VHYVdq+V7GGe?D zHaGr`&QC#@K>Iu75#zeedU9T?N5R|(OrGU{VShQY)l=peG2RH98%1eHMQI&Zbk-um z`3G<|9jHZ$^BZiAE|EGQvvH8F*%$v;Zur3o?rR05NlM5Mo#TF~pfpJd{X+$1PEb@n zLifPpV^n1MJIjq_X5{Cn3$*!0@sd8tTHKRldboJiY8-*=|Cd} z#pVB+>M|n6<|Lz`SyNvQV&vs;lv$ADw+B#_*JEUMYgUMH8of#9&g>>3owp=h zmyVv6IGL0L>p*%8Y|o>glml6tVBm*&^pkQRL=NBXCF z_;*Te{}vyY5}JoIeWdU^r!|`e)j*Ikf?qi@n`Mg`1?51%e|MER(+S=F&>HerM%fMb zz-zzmh9>+~$H&nyyO0*>7I+_~+4Y`}kQlglM}U)UX0eU{zc@#NVj#?NJ?sEBItR) z{XsrBTG>e8E-QN637?HqyL#~JAHt$-D3I0gkH2dow_!l0DEewMe74QU&yvW?I(IIG zD?5*(bkFec#3{gj;>hkDFgrXf^ThGJ)?>SupC+37_tNup9)U0% z@0E|^G6RI+crWr_L>O9U){$JUXbm$*F~>FvC|+(X{rLL&`#AYOE;CsA@kZWl*4r)8 zjv5?r5nWwA)qSFCg94hMs=6Y&#;`C9sJbG$Qa;7mj%EQMf#GsRYmHKl3!{K4o^G}6 zo|#CiX~Tf3+IG)OuYixKqIds;*bJ{4NOfnQbqhSbeBFV4|f2NE_WqBYO z&MO-lhjzeQGey156XTsFfHj|#ozZmzF$e@}x^PR5{u|2|gM3QfDh>F7jU}rtWmctWCP0AR21 zx_=pvXbWdtz?t0lwM`_f^m#pRm9NFQP#%kX5{29gk8;=eED58elIP_^N}2n_WtkD> z^|~Pzjnu>-HTHg(Z~=v9JMW23UiNp#1{|bjZm>XC)VB}lPxK@fq{h}yzR{CdkeYM! zMA(1}QnRBcWsw@;19o0PUO8Wn&#TLsyg+J-yy_q?CPE_2HnFjn5h^5IMs-nf3U0#e4@0lzyN#s&Vg5OfNx! zwb6}}Ud+Ru$d7NZK=|>)KwADf9QE>2Wk_9bH5n?2jt4)66Uia-&ueH8KOTvEPQE+to8;B9AA**Cz9jahJb7j*c;^dnY=$L&5+~A zW2jB!jO6&mM9|M31!`CBQ5Hi%=~19|{nMi?z(A;7Uwf2D?OKnk$4N;tTbw!B<77Qv zCr00!vn$A97=&S8DzJLv{~sIDuv3v%Zg=a2h@=6cI8J{5Yfm#yd`TZR`SYG;oT#R+ zZWgBk(ZIl|7#hY5hRs{&y`nHNgW-TudGC=sYLgQM{v zo0*Zu1d_8(){%(=ezHd8zGVah z9yBT^rm-3&QedPsdb!OBL`^A;UJ@nHr!+tyu=U`o)itFt^sGt5whYY#_$TQR(sRpH7~s^97<$KIy`16fNomsc*Ig6xG# zG*EUX4W_B!7T(N)0?C4Ds<%bgsjws%2n*B<55)KcHsl{)%W3~oc1B4I!XOa6k`{`| z{V!H$beELqK>qp@#wCdfeF6`L?)A)DDj1avWlPdcDjE=#3{^|MWkO{{f!#ZEIl|+# zryqWs*c*FuT{(I)IbL14b^c0U%*24RsB3sx6c=+x%i#McRoqZdGwIy`6i|`dqqv}6 zqi;L8d)R!KZDiOIV%vSza|gAETajU=p8T8QRwD&;_v{h3R{R4DNL`Lw{~VO+Vp~8Y zEh%!Jbn`A&>0So~R5#;otbD8Ib_903jTKL>!BBbxk_LLwXX^Tti#{7!;N+gM=yO4r z1^j5JR z#J{`e=pScibOa#?#L$*dxUBZy*nMq+h!eB{hX@1cCT~Bme*vy%bvqQ@mUk9gl?Lh! zj!a!xh9iTuKvdx z3hpnPy{Z+>uR|{A$QRA|;tvFyEktmC=6ta&+s-?J|Dw!dU}Lk2va=7Gz9?Kg(7#2Z8<9h<^nV0 z)09Z=vO;z_XEm@Xk=$j4wEbL&(nL@XcOy`t${eahm93j z-#EJ`+`up)$91SwvT>Gye9>jP`)%IPHNKMOsjGpSPjLe0s_PbOK4Aw2wyyvfGGqpp z+gHL240NN15tr&rGDkf>__<-^r8=|B!3SUVqbK~pFn-9m4mBPx!|?OWb*SO+wJ0l0 z6Lw%2linftFV|t&dz-u|6n_)Ka?#ab_NMtZJxuEC?9UJEzz~p;fXM3v)w)>fj6i5j z4i!2#!XS6X?jA1aGb^3T?LA=#h70=4Qs>Y*e3pT7)AjgA*ZEe}@Z#)@k|PFT7%X$8yYaRD>$rptB5I~O|2m(5XfkCB!gDW&C)kbUbGefL%&5S-KVlBM-bw_ zu`W>7YdLiv$`iy21!a2(*@rdMWeP&|M+g8%GIOmyQkEdZe%rnTy83dIm{k^g(`A40y)gF4*%{y<48t(+OIyim`2WX1 z0^5aAx$uBZjh01fE{?yxND0ll!A4ZMphi_ONCk_Hs4CTsLv$XD) zoqtquLB*xIQTuvaq=Gt6$r53VD<6mXEKh_nF4c`V0S9uySNh0b@>m}60*N3#%s1ag zykg>LL#Wr{4??aC=UPY_*hB;Ejch)U>yL1ty^(FEVICL(3djSgeWPNnw4)lXzH`M-ShhV@b}5ay+`^1{}5>=JW9)fv50r1?V5j&M3)Y z5Qd>wYKRHy{V%rtsGliKSIGq!7>ohSlD-Fu#bh?}QyMgVc#m0u2Bw5gAn=04>}xu* zr z`{;oixRVWwJJ~MFmI^Si7k83y4zi(@tr6tF(yQIp?ecoHLMjw&sTy!6z1qW$)7R~q z^=gkB+w~4-{F}0~IG}h9ONCOo2Iiv|ir2usNw%+8i3J7}uknD*QsDOR@$-qDz$3qd zo(O`V_TTu4=aH-ZgP*`7zkr`8p}-BZ(L~7SE7`^}o`L*yrYm{7{M8Xi;B+N#-+!Iv zC)8IH!yp%4H!)OOO)#UMnHbtL0TS5HObja*+T;urnA6FsHClb%oI#DuoKNn;Kq{YP$7c#ViW_D=TH%XoR~K=LXA|Y z!32OX4dpk)v4MEuS&t_KbNKzt#XL$x?KkWL=bTDJ?W=(-nXJ?$h>Qf_Num3IZF4S) zfuJWv^7y=%kFfNlq8bRo*|B`X^5a4F>qS=RLQjgkPEV@QPxPe7C-kHmJkNjVNuS?k zKZIkP#=4*`D`vYq*QKBcav)30whVUh^H>U^V9d4*cG)}6PkB4zJTsw=a`Mpq*5=cT zJ%Xs-4qb1RPPgUT1yL}l=`_xaXeuXPRGl|xXOx663Oc0o2*)oag{6KV*E90N8k03$z)lH}z z`}=|*NE0f@bzfUQN4Z9h>%QhDl!ZD=kYK=A6hm;d+N>oAmH@#JL2$I#Y|oZjeqad` z9NCC+GfZjMSd^eZ1wjem3?=5VAVDR;S$}(SCpSjm-86~K+{q_*a&u6;qe2nnZL>*) ziJHjKamzp=IuC+;Spsf>2{K?xkgw=R9{oDX zH3;$*{mLV8!w307kwDn1O68VZ_ij;Z<_yHm)1DitbCEiOmB(w%ox?BmJqDovSjBJY6 zZE?=6@`fmO)qNn=wYl~3Q3T0>12jT)?1w>EEcdR+T6S|Gzg6#DzS4b!0mSVs!bwLzgW@mb(1cKh1Co3r;mt> zzH*IYF_<-_M*FRQuc-q46X6^?6ZJb;n!jx&tjYiyD?v1Bd$T>cz5oVX`!)>gYfknQ zjQ$7nIN3ZJ6Ya{`&hB;+CjNqlvE7D+%qoJaI^W*}7Y z;P&!$jz(uLp+>2bxfz-Iw{))lg}vSWI$D%9KiBKl5O_PdW6VC- z%he~EH^&#v_ltd6h>}!n8y0da3)Ipkamdb#E7alWTnPnk<{13J?q@^N8`)(<`WXKL zV}}#J7LZYjFh#NxaI7eu_bYa-6pn!FGVkKoA3-sE-Ay^9`)dpF!k6iB9C&rg6kM2==0t0Qrvg;H{?* z=3E$iiT2I|^`*^X`Y2&!dMvHs#}|HpSE@_rG+5;0^7`h@UpE>XihVP`^f^6*%j>zm zEYkGy1mHJLv!TTHWaWp9JmIMk=k&wopnNtp_5N2BfA!s>wjslo?FBT(-?c%ed}oBD zV~U8UbS@Us_Sh+y-yB60?@Xyp-p-ewBhR6SvsOe-WIm`}gheda>pcf!Iu0LaUx6ENCG*JIvfd;UDq(CvDpL*$jY~Y;(qkYA!0f`hi5zz#VxV_cuzR+hJE35yiQg+;?{{9Z-aQwADb`5@EJU5 zOulb3u@>8YhWl4lJCjW6hECoNQi?Os@oEGLU+AAaMc!1*oSP<=dp(s-ZNpZt$HpS^h4PCs?JeD<29a|eHUg(>H(&O3 z09sB`W$36!zgfcxnVOhXxsS}%mG^CsI(>6ZmvS+kTcEdkCL8Qvs;_0ig~+E1Lk0E< zhhETVJ&#gPdmnciG#{o*UbJF@k^hY)PSX}s1n!54CXHN6z=FB9n}w6Dn`zTqTCW3X8@&?)hFLkRpf~w zu{rXB@0nNEKKr2C8#eY7;QOfw6j}6+Dh)+B~bZKBto~ zjbwWAugWjCrA`uYpkY(@O~^l6bIRYR0*keUdEp3sj7GA3u2K6~GHmW^>@O_Sp2LKg zA}><_d$GCg>sY;D<>Hh5;=fqpF27aR{l_-b#g&_SIDtl}eid)8rO(re@I-M|$1c3o zl4vJUd@u1$E`kn}VaDISrk&0kyr-IfW+$L{%l`}yO7rmv4l#={9N!SgFW8w2xxiZ0 zKCnKzMX~@9VK&6J%+5tGgAup~(#0J3snS!zql5hg1BXjoZ>osTHk(}0>>>h($2{H_ z1jym2zf811zt_0hQT8#f1Y#f?QEf35qm2ETH>s;h?ZpRpwLD%&lO356cI)=O+dW8Q zx;9y37t|j99zzhK!G+A>&W~^~^Icqz|s-kt5Byt7+?~aNj?l`JC#I6gFP;hZFG(@!@SZXLLc&}q@>O+?*#YH zV1v+vD63;gWrnq!`u{uBM)kqB`@^8OgN>d*mqK;@3Choo&SEJvbDAM! zfI)4&!DUPAfxs*J?(LUd>=V5LrvT=Cy2QT=%(X*lwV~ux7X9&Q6QRo&gN+CcR2at5 zM$FGfo2_V#RBXv;MeDO5%6t+=zL{T&TpEpuB18totHI@RrNKKJ!ty-38;jZkm<4tz zRD-LS6D8MJa$5fmHYQLQ`9R5IKcc|PNH$gpPYE>hTm0?0fTSTZzBa@y4!mDB=aw+U zN=kj^j2^^Caj$7YDauZw$W)(H0KRymd`VbWA%3Ury}al-D)k$-uad_`Mk`$r2{PnQ z@Wy#h0(XRvTYaq5z#j3(5~Ce|ycs^_6ME5GLFDJf4eL|HMjt>oG z!ZaQjGdLV|?cb|Y(pfP~_#Er=)V=$oA|ny5S7j@(sDBnW(<`ZhzXGF?RweIJC09t) zgUiI5RjYD}FX-Yk7t4Flgpl4gA(_$EcoPGdQdAAw`Ni1pJbd7$Do!R9GHkQacoM3>7f89{{Sy5cdIl2YH>dqj>bK06T zDcBd^V~R{xPa?>lw9HFD?aHsQmh!$2mMBy4=~`)3UEOUZ+5K83!q-h~!_+dnWQwr; zCGmX#`tF2};0NX~z_5Y^L!Hle(ke9kcTOep9IYXNrONM>r7L za}qYz(|i1>F)xFfMcFO1fF>f9LUN9~mxQ%8J8HKk$T1!e7V%NlkxT~UHApj{f ztH_3bcu$ThK;6_uoduVFQA{VUl4@t>7@1$%bkb%G@?VXRAVLT{OqD}Z=y)HTvv${V z!h5-iBAm}17wnypBOsZ;27R`i>k8rJZ^>-5wX2w_jZpbe zZ^lqFf$M(wLPU@j_@}FDM&+16ECmZp$j%X)tD0N&PNEzD0)AFlR=Hey`1V_;6INXJ>X)!64mMll?>R33w0OAAWwa*G|fXSm3FL z@1aPY3H!|}u5cRJ1$@20G#W=^+=+M<{Kj0(4#Dix&S*h4wU{REzn<^$5MQ`xIjHje z@cGm)ue(F%D2gVc+3%aVTJ)q4*cq@LA7Bt1JhuBa1Tv3-I}i>x!sXV_z5KQK5O}E| zQb!yjgL;Q5k*0C!YC6AQxk=?)*V00Yxm?lm-FB zOO`KFE$x_*S?BPe)2oL$|D8vBXNCGJU2)aWHF`d_G3$@M+LKQLiH~QYKg^HCaEN35 z3wX_lbFosXm~h>8!az%mlA8O+@;0%+Vh*!FLpDN=#Ey*EUPcKLgGv?F20EavLtH0X z;3RzuUHZyLE{aP*CmOWX0EwmC_1~tq4%KdJ36fI@Yhbwpo34J5)90K^ET(59i)dri zc$EVnQS2YPOOq@_lRF|;_`sfum1ff=)Ov>-YZ#Jv<1fFnl0H{A*xsYomzGCzoi+^B zB4-$LSR#h5g^mHT^(k*ZM@EirJWh6`?1y_}#-=Eq5q+5Yyk-F-xsVri^C8`8^ zqO*!DDJq({`VYjgL{+JS2jddc`0itP`C|P~Pwxts@tk>41hvj8PucT8A@RGiC;YzE zP~v966=QgSD>p*u$(CyTwCb#3ovv71oXdpg>)&Aw7yI&XsxYNEeeTM{Cw;X=JQBFI z^a9_{FlPoy_qKHXZ4H!(LB|7RA?8`Fvfq zgMT6O9_1GVy<2`%EyEBn4~*zhQl&hoU$UoawoiiTc%)!RfN|oQxf5haXue1~j7pdX zQN0MyrAA2gd=8DFu+$0&7DMXq*+tMid#9Kku=S?uuzLysFimnC(jQ@CmCa9l&K$M7 zy=cOD^z)BXuZ#1dz07EvE>wZUw1*PJ?;u*KlcBSagZ-z6G;5Sd?0=UUx;FfDmMNJ< zI62z;N?T-TRw2;WYS^PrT@^dtiBoWb)M^&6q2Xws5*qK;yHRpN(J(`jc~3EE4R7s4e&_HAdt3NZ2CpI#W z=##I6!d4Pz_W?Wt=ZK0HZ93wUZ{boyi=TAmmtk;&hF!{Jl5dFaZB{-| z&T>RVB5&^)ab8ew34lHca~2tIcls2B_WM)JwMU4LcE!5#Wf6o)$=RZj}$-L$t6~E z(wY;#l=+0MIe`%eWe}51S{Lyf?2UJ5vVLN@Yo)&;L4j{|w0Tf}tp$k52Qy&cg?IP* z+;7_8;Drb~FTISpzfa&`WyFGDC~97d5V$1sYg7HdNlH%`v%wu@jL*3cVLc3Em78*M z8r09n$bX7gxLNpdOJp-w*mlmhwsgck$H)0)aVcJc!Wv>Ww&Ax>H%DUh+`<0jU%c?` zrvL8_H#g^#UIntRyp6@pduGlf*PR07~7);Sw{-_nc$zL$l)&mghm+R+D5I3ehr?tZiZulgzViDSu zzZPAf-a?3fk}%a_?=h&J>wY5WIN#G&YxE`cEmgYFlV+Hfj)`K0Bb*{K&$tFBD#k^>uJnejJ;|P9T zMYUHbP$2DV*s*nXz7}pn57bbeclh`od`b=xSL?0W6xHXtW!wY_qie zjGB0Hs+o+XI^J$C!D)~I^2c>L2fwcq$H+VJ)HBYPdLP-!!a%455E3iUVK}Gwsh2?g zk-xFyL^;<-Gq)UlC;q5eQUsOixim7&hxFfW6ISE*(X^w#@xzr3)%asc>S^VP)u8V~ zeo69=es9@D0x^`0l{W$i`UO1M(nGp~R?PJoJ=a zKW5hsAAdJxr)nfF>_=xVe)PPsc`gi^(SROq`&#(G-Vnhol|&DYAXJwrAd%$-h@IYPQ@x`?Bg3wLXoOOZ-B@2e<0ZW!c%xz zH`1t5mTyXLoC4#Z z^h^|i^(b&+vmwTz*ge%No^QeB{3yGLb2JbuETYRb8r#jiqj= z3Lx#59>0t1;_QPn>uKM-9x5eq4!nd&2eExL&VDZ+y(tj@KXz|1aj1VFpxn#tLDYL2 zY0^?L{uE?W*PZi*YJ!(vEyFzvzWno>od zw(nHcQ38idZBir;->7o%D}elB$(o^4&catYK?p*q3c7pFyX^46XKR~v<)Q8PPTOds zzyD15FUT$N=}&w3gd36yj7R;tLhjDevGyr~ovJdY@q3zPIut_SBrlseiaJjD(UPYwFPI&xWTi5+t7#LXHJo zHbZo())Qm(S{9UAy$*nvWHDx~#? zh8aFQTi$7uDDL#DOVlhpTUx6{WQC}f^l54Jwuv*Jji>LRiik{>Fhr5p)9t6F zU@WlojJty;vUM-Ab=DJ&_^z0ZT6ENPDefwYJ9RPECYqejdBwPe~sVY^5eN zp+ij{5^iOhO^iA+F7Xp%ltmtptoGDg(BO-&!@31nTQ$pGRn# zztBd@2r^4NUCrc+|1uOyHiSGZT%A}giDQSa2oIhpHr`T9PC|u?6NMCN%>>bZ99Bsz zLh@bkYtRcRO6Fmf`_>L04tUQfP*?|wqYf56f&&aHo z;%u$+^6tM1mdzl9zm=6FBH}jztjGjmuB?QBfnpE=H#nN{C(X7v`~wJf0%GC*C}N|g zj=m3^A$0Nn10{D?AzysJT)jF>Cp9;yW=oi4x)Vwjm9k~dFfZ)UW6V(S9WvxLE}W-9 z+U6xCRhs+rB>=dKSzorbr zCe-)V6(jcozG)H8v}xo4A*D$9D^NgXccopy_@^;R~92oR!tRVgbK_^Ki zLnewoBO}=hXX^s8-U`2YQrU~D`AItXr&vIDbSIQjwnZOM5Y8a%w$e=WE~EdUU%6Gz zy0{4>6i@#q*DqzD4frcfkIrd~xZFv3N^*B_g62s2k;?l(E6CXY_HGWlkcdK!rur0s z(t13gN>Aax`D)Gc8Yy{gHuYA7SuEnfV8W%ugNc0?L_{MxBeX0eZPh7%!<$C=+JF(s zb4VIX?*J%#eI&;?ED;MEBXY;>k;M1SLKhS!X!~4hYPR_gx+=ay3e0P$knl2WP7B~q zPnRaKE55JMEla}gwDnc4k~{*W@BGTSKWN%SOnL#4y@s#ri1xlm&xyXed8xCKbUr+k zV};HGIcIIC1TI~}_rSUlhB51i^CTxX+By4mYNRoT?_as%bM~EbTy37SzjCp8Xe2N) zPHoG17r#j}-6oDUwa<``2tE_NylyO8$M4ph3NbzH<1U@6D7Y%Ck-Zw&-7B~zJR!N( zL;l|7k{$S>lG2DeXEJ559Gn?PlW#?_;f|ifXfQ}az$$6>qyIuxQ@#cKAt_Le!a)n* zFF|tJSXOnlfo;X}Id^(j{*Tog{K4u~RZqBkBRmGK589AiKneUE$Y`%W_qs?MEx!AB z75IwI3t$`DtB}FH7{G>kRAE%&_6nH&avk-BQ{#aJCUpp%^UH=s>ynWKl^6$&gk-lY z4ZezAe!&J{8=5x1fU&WdXXsr*Qmx|85nAjPx^KpI{okJ%i1FM{eS?maKB+QK63JJQ1#21?jQ9kNV-4QIE?oO<+>kNM7%vA=OHwcpu}H->^ce{54EwP&$*9CS`qH+YSH&3b3j%|j;^QvPu?^&7H@N+?Zb5ff9FK^59YLy(n$PSc;YRDAluJ7#O-~Vg<>n73&n8KdJbmid|91$z4&+==;k^7YZG64>rKnU+kZrj&F60%@2(ykvty? z4H-Zuqp$mOk0gQ{&m0BIwNRhv#5fuJg38{{SbvhVSd?^?OHVEQJs_;gTRq`YJntj4 zxA_>-EdXC2MGeCC*X~AwioNeH$6;ftMa%^57MxUCNHxW6Y{HyCBo6HyZqd;lAhV&d z@8kRoSHn(XJvCkY&>R#6L*weCFq7BlBKRQ^4E!dCz=AU=+VEOm<{J7Pl^=?p903iW zuxS8TFBcmmOQMkc5qy|ov4v>v{p(M{8&R&WLW85$V^?XP)z^~5^E2Rz?oEgv0fJ!K z?!n>6i_p>Xl;o2s76%ren&nfIj&bv?b@IkF6l=3f-ulk2s7L^+)+M9kpZHeBLQCD; zZfMqaxZz2c(#az1f8C3Bw@c2S3L^CftI853ePeDmcD{#{B?d8WgXNAw<-S#jP4rbi zO3>D;=a#p)vymF0|+Tz#QeXr8uG4QrbJw-~$MGR>Y?vGBLVE zMyOPZHP6QNx^rJ7x+~v!9(;7O5lXkZQwYtvd}Y?vFMDQKwkK zKX}nTi9dqvItrA=lAx7xk1Hv>JX!d2X~xozP=1nnh*aUma&F{rDZ0w`%X@crtNov7qDS=_ru%*Hspu@c zXf{X~N`6=hXE{_@Xs^R9u{jiif@`eoyn1!VD|xFTgh|1UND#tP=1KGb2xjHAGW?=W z0K~Y@gc|m?Y7$1VHwti7sCmI-2OBz&Q_{14!e>4bifdMH9P zHakG~lmk3MO5asXE6Q{!_fblLKV{%V6`$C(u!OBjMo2jn9(M4~PwLMbMa5Qv%HHf{ zQERQNrFR+&2isr6QL_l^&p+O)>+}5#g_GM7*gS%p%gsp-c&(b$U3Ia>HN87Busk(2 zn%Cjnu{zda^5u%xwHU;#jQ5g^dyv>x$0;_DiTR60h7VIFu zrpuiwL+vs&D{zAzJ=NUofoQ>Ob|qJhxvw85ml6l!sSX+CC+ff@f+Siir*W%aPlQ%| zA;U8_U#7LcRUw1EzR&XsxF+lWtLfRXP7&Sy257tT)IXiI|MMkV73oldhfgcWO zO^cA5KI|31@V23-C@sI&eX6^KmP%I&7X-{n7ZR9GssbyYeV zr}H=7h4{H}`gqiTFbK#g5Uk)+f7qIXxrO9JUnXu5`%SLD8h6%3pKC^nfY5b~ilkrN zeEnT1@0U1h*o#|09xVuip~pqW5nNomQCw>*TtnD_`(ec$(y)dfyO(KJIjXro|F}nq zT*T0WyD@e1!e%bxT-AGjp1xVj+UiR;iD1R!J^R_36%SS|ip#Og_25O80~ZO9H>=@u z;9DeVtdL($4Ln+)pE&EYhAlMeKaF%NahB&$0>@ynI^-~-=xr-#x=A|J&0|wcw z5DZUI8?l;-2F19Dz0COlUA0)|pO`h*>@Y2*SvqinS+S|jgN11>3tt+_ue{wSpKzjA z94B$ks*Frj2oI{SU$Tk(n>*-wa5|iFX~86|bUh;9wjEvvw8TX}04R>>vc>qIXqSR; zT}2{ctTuPbt}!0hdZE#_L_lB@C@X5S%>60nYu5a7ONg|pE8nyR+{^5&htwljMhp8w ziHKcasi^s79OHp*jj?t{BM00+_yUlU*?2X)Q#}}EGnzP@zGzHmq~7tl$9+09|Dqv< z;O@`mhm*{8r@OL#xX@?xwafQSb!F+lMN8N2uT8*1g6uq$*5C~w0y9w^zIKK968i+O zH40y=OC{2D*{s%;g>Gi{od${B_9k9dMCL9&2$ORKXxkh=BEopsFml8dV(F*3XS;%6 zL5o&$;m&p3zl?9rjuuqUwEPhmm1jpmYOJ(M;vMi9)`NnRG(MIiNr*Br^o4vH7VPy{B3X1nHNYyHUf6`{i$R*C^{3)#+?(lVdDd$oir8}Wv z#CMl@JQ43{e5nsMX{CzNVmRisGllf<^>BPiM7AT9`jcohc3$zC+$ajFlJ0$1sZvK zoOj781L#&F8DBZoqTo)S(-$#ETa|6+=!%}`o6k5 zJCicxi?NGbOA(x}iTzHFqJqrOq+Q=-gX{aT9dBrnfB|bcQn9^uFD@1}4}9zKe_pgc z$zWJv_8A)oBJ&aBe{(b{s0)%^tD-EzNJ zN2B#mjqx;2!6PKghX4K2xebiwTxyPr?#fwr7!)4r7DB6JU5!ZUqr>pjcRc@*{*S9!+8`m^x96aobBMPI>l{%?S#acHmmPllMOxW zl!BY!{|oD@ZjKDf@eqT!BQ)=a;@{dvm(R|sYAgfT6QFChpl=&x@vW|t1zwSN4uH@r zPgIKjefN)FR&EwX?C`?qKeEX)n)*Ih@Dv(X3iDAFed(&Fc1Xxc(3fUAIjyQ+G~-#Q zBf4{Q@GH9L`iznkLX(KWohB#20o4&`p(UX?gM{F`nwkJWgSsX+!iDGOmJoGnDe+jl z!uG<2=1=U-_gE8x!6yj$f=&$}PxN^6yj)T?k{%$|T0M2ew*0unv1R>jNWp49@Q~z^ z*FjyZ`AZ;6AA6B^=)(K6DhKb{iZ^ zB!}>yG_i1bJoTp4JybI>hoCj-gNHGPauGleSlw%wLoQ+=u;0*!#y!|rO{6h0ouH}{&48hb zY8vZ7Z1sJ4(sSzS;kG&VqMi@&B^BiutL=#pa#TQ+p7pj&AOU-<2K2)fk>ClKAa*~5 zEAQc%ae7!3^RP+-O62W@E2|EUds=IdpxWK~aW4FIn2Drhc}Q^k3j7qyaws@+Bp-ri za#w)8cW|S4zcWVHxC;sy_gr=WhopUqOfaFF52afEZha8f?3e8JMu$#6_ejrTv?62l z-Hcl0U|u69Q&2hXeQDXEVE|)~>Jc0dT|w^ksr+cg>bhk8plSfrsE*j3R1JAWDv9Gb zq|(s?HF$Zexgqc%^|N8=M-I?B-5H_5Js5JOo?uLus}H!oygolzgZ;E|OD0j<@Ho&l zO`+am;w)M3`EE3z-lFu9Ank1U=+MrL->o@>aenu*32dCi$DUbjh;?`##>ehk85XQv zk!{E0;+|pdxy=w`)02~^3@B@RQ(k4xQzpyQFGR_1w9qiZmS3VjJ-1vdcWaBt z^)U5|PdB^Zr=9U%PYV%t1qUNmFI_!qrcs)vz(Ba3PprBqtIybbdq{|85kKZy&i8sl zugGA0Q!VYI-lPMYM`u6pQzki6y9LXwdSjUAOl!%mI~p#Jj*OV{Y9b}fdYZfUn5dn} zhzRLZz+Vk6r~VZ~3jY12B`WRl9n8}eR#4$uAo5!V1iSaanR(e{kEm9&KZS9S0iW>B z^NjjE3rI1qhEWHv=-Ssd>J!W@D96#2J6${TY?uVXQr7gj_4MQCvq$)=hm(%l6RL7- zw1SbMO_`boiXv$AL+JW;S2}0--l(!gqk!0dNJq`oYb6t>#st6yx~tnR+G4r~?O$!} z<_7TL?A|=wtYcFwCouvCzUYka3pa+;*jWwan=jooIK360Sf2Pr7s-!*J`Ttkzf(4wMza6%~1qH~EdnAqB(DX|tQ3EZvvIdh{R2Rovr z@m|cuaM{wj1z3iTIC7_2ffIz{Ar^bBl{`LyLY5chF|=JoU3ed;-^K9`FTavwPwY`4*-40Kb@{5N4_-2 zWAS_XKhw%QJ2&^?46uMAi~iYMJDZVIvfbknf?6pQh7&!j5#zQ|kRL0_%v2r2~^w9t*%u20`-K^?TOP$#J5fH_v%YzFz3mvCDkjS$ZwFzlBCi?Y-h-<9B>o3;xi}NK_2%G8eN%lkm3~ti z-C`>Vs}etAD+&I7ehRu@ml49nY=-e`!=6e4zQ|7iw|vWyrwjkF|4ATwUW9Vp^;g9f zSU|e%d?hS=s}aHQ?^m1yrcr26fHmJL<84GR1bmgA5iJjb)+o_nAxz8pzn?xDiSovI zoYU&mhyj;Mo2kwIhv2oF*;kM3p0d_CQYr8P>+Jnp+V|3P^x$}#G11w3Y6@mPo=WMg z^ky&H`cu4=#0DTShI!CA@emp6sC~pAU?M&-8e)V9y8Tb|lHDe51h0yx-y zn@wT^e~U-n)Xg7GBssS_()Xs@EP>NrkT;K98>Be#eKH zd{FWXAy|gb4l<5L7Lr`%GAX0KKHYOZ`f)jDGKv_+J?o&lC5*=mX;d8nh!003=en*) zA1yWOuCQVsBu}Dc@})0Tmi)6tq&5fN^eRQ-viE`>oAw_#sq`-S{b6_{L7mhykxNV6 zUP-5AG}{R^4f`G}@_Je|FDe)mi9=IEmdAddM5y$eV^LKH!Rm;!rI?WKiY=0=w@&mr z*V7=yuuGbwrlBVd1v7IZrJyEF471aUUCA5RC#+Wj`-L2+;p7Dv$O~6oR=kfJWtP#< zg03W2#|hidkQNKbSypoA%Py7LDY2|NryST8bCQxW35ecV>Id7yUodOPa?xi68%?; zC98}AJ68I_fyg?7r{0d>PnYrT*Jc$L)&7X10vF?i@!QEELiXDc{v8i7#|9t zXH^uMqWAZu(u&p+b$mNakQ7ElF#m9P+>-?PujTP$e2PkcO)e=DX1oN^KA)se?P{sF zJWnj-P_{g?9VOf=QBquJOTgj@$#)`umKvwTNqcKN2IN{gpnZw zU0t?!mO?6=2vYk=whGv-Oop;iCNJcSXuAo}Zpjupp zZ+P91n9K!l56P9|9anY&Xz~<3zfUYU17+YX*C!*P`Uz4pUg&GbBxVJH@=n6mOqc8hF{UyaPxJWFw{NO52UO=g5w zg+F`<#1y=}-3X&oMG*hSU3kTKp9d{Zu1{Ssf#Vq2Es>5|<&I&4H8Y=fAcvxnDkk-y zW16nGgl*hpc_UVu&2C$SadOf*xVADGtQ|6q*L6QpTO&s)OH@(RqKV-7nQ`Ofy^7s~ zIaml6|GP!qm*;7#r}hZmrsech%WYAt7;;WuoC}jwOJ}$ZM1=UDJ=(p@Pd2oPFaEAf zX_n6Asc?wCB2&8({=u45-@mLGB8dm*GTa8ptmK#M8x<|c#}QaXHu4wH{2{5cG&O&- zp%Fpv{oVK1iOyBtpp~e~v{SmeI_~jRO&6TvWmv#ooMc4W%xk%5qR)=huZc3mUjJ^g z$C|h%VFYmvcyP?Y1hw7(a~iA53075;3ENwddZhd2|yzYgucAM*Z8Jfr1?jT_uIWZ_nYT$}VV#S9o|L$tA39g8}-i#PGHJwLLGtG0vPJ=sQpI%q+4ptAU zS$xDNzB#2#7;FfgbHcvE`bI8jPk%hv056BqB_(-v#l%{LXJkP0phuR+egm!*gy6biA3drSC0v$Ch5=nUgOZ~pM*&iy?~ z+w?2CqW_D;62G-o$lX>1r^>cZNp$&5xHc3WnUIRecxCkatFiSM3q!Cva6-0I6bf<^ zM$`;WIKvd08x?@>qAKvcprgZ0nw)tJWvS2!fz}BpHre?}_bM~5;twcr!jxwQTcVHt zhm@-?1@{XYDo)y=!Z4{5r%$Iau{kLa6G4Y}oYn_wj@bW?5cO|OAFa(!iY8qbW69{u zM}x>dNBqkaMpi>`|B%F02za3#qkcpJ*$*bI4`bG{*i&V*U#rFLGZvXjasz%)GLfpf z%J>q4pWp+I7E?9qcQFfP3A5%$rIObtpY{t;A;o`-{H`IPR#%I%Mw7L0k>W&fehhHx zSMTvHYE97!r((|me1$bsCoP7^hiE*0gPxk!%$z8zBFaGc4z=7HcdvD{DN#TGS?cgf z{^CT0-e`jk^cnrP?9CLno0s64tCr^An_4;R-(? zq`iVnIr{r&N#b)@g7nqmONj&mKeb?F%uscg(QXPYJ#FwzT)xwt0*w zd0o1%`~4>XaFG2e8rpy60psp9O7fPFxnxdiEXVMSb)O+QGyxJUVc^)!(` zc}+dYCOV%ztx6jWi=Xp|q?camabMG?0j@f%zq$*!;JJh6nNGt&g0Hkwm|3ATy~N=0(tpHP$~ z@99aWiGD1iwWNM&SppLw(W7(6h{dPoy-vr+EzSLoC>lml#(m`LmTGN1py+CpVU+nK zy)PCuM!jd*dk9ugD^$yS`)wzBMGV1sEGJk0+j6e^gQ+<`K^RAR-{c3XsP0x8($RcI zz6j7M@{NHRoBeCw3GE}eG43U7KxBxPe54aYS&v>uT9iBqal%c@G{<-JM4%mcbDn6E z=fIlbfx`Cthh2xP306pumM(G8$?F%Mikj&ubCGWtl;&vSus7FJ(@YSeDUaw&0}@jx z5g8^H8{nkLRA;i=Z(&uQZ#88k)}*e%Sef+^AUCtwQW7S`Qw6 z=%D1Ze~nEs!lUs0qhxaq{FpZ5n5y`y<3a22wSs5r&`+? zPP7gcDahi_`Rm;6|Hn@G2v&HY?M$eDc{fdE^sHW^ZCS;nSHAQY*`Zl1te zQCXD6zi^Ts=i#&hcK%+V()&ZvO&kkWKKWy7pF5NWGy6Bg6A7SBWxGcA0GJYa`8^q6 zK6fqxAHe1J&GI+L)s{O61;cI?h_RnwKoHoo;Lh`~qtzbdaWK57U*1CnP1)_TYg;?; zy;#wfMyS9sg*Jw=-0lQvXI`2}9DX9q;x$Ma3iMr9(wZYTbACa1Xy#Y7S*Iaq!mJ9+G@BZ+9cgTh73@}!v4f_T{e)8AhAM0$uAalJ!kTNC=#QWk4pt@ z%Lnn`W^~3CAx`@VuKaqGpfjWiE|S-%-u($fsU3yEUZ-YXal|k9@5`2mC~%n)Ag-T& zH=zknRNpo~96)jU{&TffuZsB z5k;(&ZHp-2#i`KN60#!|?&na$GfUIj+NM`E!Sz)y+J@#c5ewt{bMfut|FLvV;gN3L z7LIM(w$-t1+qP|YY&#v>NyoO`v2E+r{-1NT#zoy!)rU3L9CN%t#Y_U?M*)P*Se6Q2 zPOXZbgoWI@1>J|^O%am5B}l7n8mQ)1pKfE4g~30k0sV4i2QJxoW^35WdGN4E$}AA{yz@G$51eKh(;toS@aMVXstk)7=%$&yam{up>2SZgdaeQx#T}pBi8xm|zz0 z#ytxT23rs!IeQQYlWI_*CzKo86bTfFlQQ4J8H>H77#FiZ38yD#Q`g^@YyH3rB}lWZOqjc1#N@| z$XU+LnCXx5CPPK;g+U2L(M}zVA5~W?S%eXiJNd6AM1Yt2DxM7S8sQLxfZ7ZvIMhve zqqE2sy?i>*@*=#EeFw;xb-*!s7$eC_rnunsc3(~L;-Le!QIH`FX4ga zYCwc#gkRrkr8Z$$Pw+96$wp&j|2N&mjSvJQ-icN=g1P_in8)wq8!64elzE2`987AL zqp^(l$h%HX24w<{-hrk+)A7GkBywtCoR2AMe)espYQiletSBnFqnrHTV8|-IVw!3c zFX+j1xMOZ>Ps9JBvqL2ykn*xOkgi)FihG8DoK4r7Rtb@Qo`OqSieur!uSQ;^=KfgV zf=Pzh3_VS(An0D>FjFPeYP6>9w(@YyDr5mK^zpZrry|i`9#u=q1$y((uu&xx9si~6 z-h2qpf~0>4seN7&eJ~&dIUIediEIy5m3=bztp78^fna(_UtfL-SzlYWA3cCectm&dSV^If+LVn>MNjOF}^ePhN zi=QkvIH0AJ;u*=AV{gP;EqEDd4;H=2gYD)EJ?Up}r5_uN0r8q^W6r(s*6lh$KD3Y# z)$QI9j;*?z6y?Kue&PtQ_rMZlQ%UZ;LItTmqu1ySwKv_Z+tOwcEUeiSA$!9iufEFG z)%b~`9d4CKK9(EJ<6!;#6ZbFdvl*{E$dpZuQ%hWb%_H z9g%Y&ql}rq$4I7e-cDo*1wl1tntCn3r1lq}WD8)IxEA?DVe%-o$AlfIQ(Cj5pbpf? zFIn>@nD+@Rrr==~lAEhiJWX&nL*Ao93FQfYtk#tX|AsdE(AO`pO%R;metwd8CYUAMxhwPXC|B>QNd-^U(O$Pm&pLObx0> zAVtC-4BuYRbY=HXCByWeL*-73W0yJsUFi^HB^2^`-6WYtc1hCAXkCSaBwP3eNv_u$ z@^xQU!!LdXE~AB-7V38J`<~)mjBsF^VlzjXt0>T}3zqg$1n177zX+h}ij|2ZoXu(F zmgC_#FcY65m&D29KYJp~q6wH}>zY>eCO1#BaG)!&wD9h>P%c!!Lfjx$Opl~gE>K9S zo4?*0jDnUjnXoE$q9#Qki9-HU;$8zpxbn6o{M;%rmr0|@>CF_L=~ zE$1&<5jEp5H`v-TK>W%Zoh_t85)-yXCjP?OQ1^91n=jeO0>tp5r?UrjoMsj&fbeRN zd0I7|)}wFC&G;>Blp0uq0?}&bfxZKunA(3x2BcY5ziEqFA{%c0p)lGFn04(ocE)KV zq=!)mz%W#4$FG?DvAfpBb<5g$p~zBF!U%$@o)Vd^Rol211P1(38~4_=M(b&97utmV z2~#4rLBz;N>K~xtj{^i-0euPnt7lP`vlA^fz8G1EwcUqJ(zWXiQx;)1slFIwLXDQP zvE26MCTxPh3v%vEN^I|1Ohc=Y;PE0PU)X8)z2-7Yl5C9VM8Neu8%2CeP$hzuXNU0Y z0JzwFm=-gPFr!{z251<)clfqFCed+ZgG{$$%p;DHg8P)7vWLfPh_+&IPWmBDL{)Vp zNQwGkW%#CUg8VakOZH1-|l1N??I$y;7*-yFAy1;8HYP8oZnE$_DmpBouuu69Q#>~#Aa zBmkjZCZw)VvI&)O8cx&PVR`euJPIaM`Boe~eDn9h9z=tXB$!Z*R(`=F-v7A5qi34* z!e_()XGiWs_SIy;;HjSiuG~AfP~iMo(*KH$>n}=7KmZzcE?2*eje8NSjry8#Kk0aS0(m|O@r8`=^(o@p z;XlUlsNpq^(FF?17G^=lPl`D#*f$H`T z%yV{=%Os#(9dw#D0;Tla+whiAE3@G*X%2ix3dtwfU&DB^)<}tx`*!VaA~z&Yf-CGM z@6`f#^;N?+yG$u%Hb$=>R{Cg}?}c8Y7z$+QH&|uKcm5Yf#MigKL#)@R%cxqQG6R0> zqs`Ht;*Oc=+B?F5`CIb87rZk>gj#ALwp`G%60-tbN8M1k^Nbuix` z(cpjS>;FYqYV*iu1IC01v#(%ykP#F`6;qp;z5Mkh^JMnbG!Zl~ywDq=mPZZIp~Kxb z@VgX6l+~BePA}uGNR**tu{W>RYDqYn4HOPIE8~T4rxTxq>+%;4L`=7!dZbNPv9vgY z9T*$&pmRn+$6Y!|E#L1viM*^uYU&lI$P}LPHzCGR(FjB2I=Q2UTI?5u7UNY=-uU(9 zND7`aTCbIp?P;U>p5t%&Gmq`RH8m|<|432K76$zdW`zeBax+d7_k-ox3OT)M zNi_6^$dF|hLJuPy|A2f|D2B|PGk^1TMC`}a6-)+UMD$3GIy?j*3`HOy#k#HX7vv_$ zuVP?iY)9=ETaRns1S};9y;XG!EG5xLfi6dAv*^U4?jWxdzKvZsN8#Dq|0Y~dc$7>Z zBObSGT0+eh6}-9&G|s4g8ncP^oCQTA^niSOwrRGV&MDU;wQix(jlkL&DqE?WZCrqrH{mOVZOP>!Jx6w1sSHx}&G&7aLgn+<9${5LJ{DzX)dH7X@M!+y zW)hChi70Ei#jZ#GgqmKT6EbxaIrC-b4kWWt13$0mO!Iz^dQJ4jiYG1mHpLS|$(NUE zK6gNc7avt(|G1K+zY;`x3pk~nMAuoYyH!62x|O2fjeFq*Z0>SY9ujYkNF)`)Fx6P5YcZpr+KjW_64Xs&rE{qk@+E0( zFXZ-^bTFhF@}`+VtmCXOHBGOGzsK)A&d2=n^QmXC%1CxO%87NG)@%|8e8R{CFkiW) zJcj~Hl=K(xImH5o7*;?c*uw=H3+IQj2BtwAIR1^wpxQ`t`mnKG6v2NmU)*mHO@r>x zO^sq&>DR$qITDgjUpz_S>{a3Tc4M;G-1TdOyp1{9Ha)Yvc3#Kq@@KWA_iJEWv3sx2 z`2SgD!tbPp?_fJtvHEH5Ul!(1buU8?FP$$I3goq4rjlX+|2FUUH6_VSI!wX>wIL{< z_gfMZ5`tJjS4d)Ai%)WY$FyQ1j9)xiP&WMNo+&L=cQ3)mSILol8xgS!q_$@xjL(z% zHjG{soBTPr)Kvt4*#HR`Q@s=bx4NOKvy{&MB@nDrTc)v=LT`xi!XSez;5+kli1@?B ze74*3L+vFF^xd4IX8R}flgg4X7M$Uq9~f5GaP3ixo7vGnd1nzGr0(fz^14LFdxX0% zuS1V@qcIDHNYtyH=e>cbClK#h~ zbE5sU_+V!L**$DO8j&n~WBpD{K1jnQJsV<_jRVZFEj{~n)U!Slb{P&~`HXn9ZRH=jL|Cr`Z|%At zhRfWD*%|bpwYWxV^D9pz0MC&>KOYmN480DjD*1h=k}07{IG(3!fLK5uWGEiDswjbo zV2%*FyS<*K7J0vs|Lh^nYG%QjGl_aJr}WA!3-VDS?K#6rpXzFI9eo!-xh-HM*CL+y z5pd_x>n~$V?&d2{%3P_0fV0)t#H8M?CwKU{8Z|$O#I;&WYP)&bNLSBp3~2`>=dL2w ziK8dCojs~~z~B`e{Q^n(^b9taD*?0PE6_rFgUbRNyM|*po2{RwNN`615jsRX|7@%P;IvofBRA0S0m{#Nr%fEt%H zNDV+Q6CL~9^LVF`k4kv1n;DS0kC7ZF)0IWlVh_ug%tLMmrzo=KT|7piuMuE?yj}NW zGR73J(4qoHaeuYB^>AM}?HJ7Og}VXV^C^RXH1IiEC3fgNz`hmofwnjs$30Memx#&9 zIzQjv3X-dxlj5^R(f@I@L}fO#S1CY8VIUlA?2r3&9)Fag)|y0j;-ge3&UBXBrMTmx zQ=}qkqU+{4iK=9XC?;vkLuDO$Wg2H>?YlOA|7pfkOO9aWKb%oQa(s7ZOq|vzA0t9u zajdyM4kuBLI*Z}KTl5hQCsU4il`ZgKGUSD&Xs9D{u&*h*tw=zRFvBmS{Oa|sc|iO< zXo%J0;`NQqo#w9%xv+cCq3kOvn6oMo3a-&WK2d^Gd6!z{2-t;C9F?u9Y7M$QJO>H4 z2x5{;?TaQP9{626s_4l*i}(Ujf4Py{2NGFS0wx0W@y&Cf2oGD=PWvfjgl=#A9MM*f znJh67gj>JPB8Jn_O;JklA_kCMhCyJ)AQ&;pS` z3V?q%$OIr?vyCzz0BTmym0K=X+!DS%u?@E9lHziMbV-|+bV(VoE2|H*hZfrY-aBsb z1bGrkYlG4JsN(lR^ze1)Z#unb{q{7%aij$jht;(Q!`JRK&q<&K@@HNwKZ6WVHfdYX zF{{td90A|&CzVwoZHk0JK0@m!+-84vZ+?))cHh8igGXQUt=n|qLwa4_v$rX>Pn#Xy zOhE(*(!V+C?rm(w$diP6{I!?%N-L(z&?Uf!6W17K3K*w`Yz)vERDT)hZzG-%*=r;3 zBw#<0PvM3y8hgGV651?ZY4y{~S8<~VAL85bi})ssmPaNN0TgnJp$qi7L2;%5Uo}c{ z4)1r%+1e4kuAQ1>|F}pF*`Q{DZ#?8L^BmP#Xsh@aE{$0aPxd9&e&KmdS$Lme~;v7n%WHimPfr@dCA< zSU4iFUpD#3mcv@j{-4YSU!7k7mXK1?5D}DUT?vJ7`_FKzJL{Jupb3FkfL=^8=lbBI zmint8umyP*%1`$OZHVukRl%>ikYCxy5XR#A?usmQca(gqq?Cy)2F{c|+Z2Q_y(oc+ zB>@$?O&lrszA`Z=XRN(HV3S?kBA8GibCh+Ow1^Y_f$H{7_95~V{@96a%EYh^xx1e? zjx9d+H(;OMndolk68Dz^7kjrDpkh9e@7dku2wGh={|FfK7e#1C4ucEWi=F=&rCLy{ zJ8&h86qbr4<#SUms`8K4JvG6y;yF*h;TVp9k*Unw&MgORfl&+*C$x_EiqsAxR!g4# zv2KAOY$pK@$&;X8rl}p-NlT}{IaMq%&qh*4p^- z`Ly`4;8XGSTlm)3{t|QfyIpj$Q2VWNC`_0y6Cxhv@K0-lY%ikdH`pw1h29f7@~dZ| z=dsk4^g_`x>Y1sJa#vD|#Pb6RSWCp+zZREk5X5JT1a4+Kfb5C*ifq2~BII}5?(?2Qkxlay2J;eWKL;jO z!u49S5^4YVsd7d$s6DmRPl5`i6|beAuY!1gk=+&A#<_16lsQuSZW7oneWZ}gH+qsr zMXX09`))tj-*Ef`1qS2pG29{g;RG6u_y-dO1`_#vP?t(hW^?%mvlUMiNZx|njteK7 z<#Q3F5X8nhP4CMvLIFR!48k7EhOa)Kg9ke*7sX#C33jH#mX^X?<9Y8i?eUy?_bnAU z&z9xV9;qTF<#jt$$&uQNNt0vw$4SF8U7)lX~fi#F@BLu?;GVpv|W zDCQw1mUtUA5Q1axiYIB&L@_zCX(1BB%eBRGV!sK z&xCWSN;~5B_r$!L5I>I{+SzaaVrtzOCxN7XPzoB9J?GK_2z+DwY2-x5Xpr#%RN&vb zdGsd|iQ{DkYrk{6ZNV($dOrJDT-4QO_-dg$aSSQ?wTkO!_W^C4@=raYeeN2H3<-~? z9?S&K`pS+f4UjPi6hv(|M{UM`4NL;=5wX3KY!Dxc?zP;2UNT(Ig61MG!0|@bCl4)v zf>3XbfM0q3Itk#b6*MoM%$1_*DZ{v)Dxc%1Sz^MqyCl2`IiCq2LJ)GZe*$&fmaicC zv%JR*Maj%)O?2$>$^SFtwdXh_B}S50utQvlGRBBlRGD=D?5|VUnLn#&u;acmzJkXI zxua??MkS+4g)Fvll#tj&hL%3+IPGkrbhs6Ungw3Dx_ zZ;x)qjg@Kq=?lh+m0)8S|1J#XEppIh86ikkZLq{L*L71Q(~J*wOkhGTfrTf+!%zl7 z6>3i)RPFDF-IE`x5$56-3=Q+uZ9{40s5n$xqkW&RF>Vn=`_oZJiGEKb>taF}5D#kP zxU^Tn0JKPVklbAi;FM!>ji=p7otyy|98y|X1pb$l-_NMFU={ZhFom63+Nw4OIR>_$ zkTkjF2a5*dFO`p$?ngx)kHb7?Oj%dE%SX^yR1oL61*0)Re^pGkXEiDLWm?W0mju?CaKhaB6 z%20iy#i*c}vpwnp+)4#;5G?t2@X6}SV}FtKrXRG&7|B@#aJo1UD`K<1QnL^=$JDIh znM5ON^-Iz$B`I5g2=Wh4Btqc+u!uA)k7h00FlS6m4VmB8DU%c}P}BYFCb3Vz8&VXNOM31Cu@BK^N;^uo< zV$KNLi~RW><5~tdP6x!)0>TVH!pH&s!IB#HN+#$VV4^Z>DWatp9|~QxAe$fSW#94r z%Z;0mIyZKM#t6bWui|UlU+x6YCB%w9gTCYQ9-rUp*7+{ezp4t^E%Mnf*br%KU2`!j z*-0a3c)^6)o1&ekE$K|p=$68~;r%3}_fwA~ETfBBoVNW?$pW|i{@g05r(D_A){D@CENs3p^V`Gb2N$QG^ ziJ+d#gfh8r2@@<%th9CTYov;frtFF)H;jlnQ(f7ziAws9S~vx?cB)lsAvwN`p*Ht> zoGVr5t$E#NnF!Skp+cv*a|!f=jqi{xWa`k5 zLa)*?mJ(*H%T+4YqxwH7xsl4=&=6(>22OT0F){OPCcdRkGfA%Y$Oo*wA8l(;d;>k_ z%hU6-Tyh0iS2*V!`Lx+8oX&;swYzXdQkT?x&SQGS!X^v`_2i#k-V}WxF%B3AC-&e4*n%-j$cThl64-v58QkcrwG#M#n+4p!(zCE<>0o1}znsnr z*I0ds1v~E+O?gLi*5~UV#y#y1N#Y2i!>3LEX1?^aAC8KgYzW1cV`m!p*LEz8hQ!IU zvh)IT9?)@>se_^pS1{Mt48t{Kn&kWg%2gWL_rxq|N^>A1Km+E4UD85pKm*~wW6-n+ zl(*u{db=ve9dE77NLb|rnN;(1r-=~OZ^K$2t8=lzURGU z?mlYa_HgIcTqzY{={eHhY3bqV9WE8!#%1Gp#oJ}+<);eB(Gx-#V1oNl&Ps~|lrcm# z?wvr=Bk;t_(G_T&-tIkuPx-87?(Sh(;=U>t79J*lVuWJ;)*l2l?ii1jNVDAvIlCT9 z8C|UPL5|O7od}h_frbgi=>o+9!32uc0)@#44xQ%g=<3#IMVw;!B}^B=sw2LbAJK<# zNN!6j+iMLTM>A-K5Jf#~-r61fUVaPvZH0)@+oIplV|~y1P9*kf-(ubTmK)THy>u{O zM=NEzP0T4E%>&GEX-$qFnw7W(b9N=UK3$OKG|&+FgUx$^8YkBs_MvcuXux}c;ZH-A z3|oLKnEASyxSlQ4vZK~5u%27VrrrYdT|N;{;|a0DnE<1fCt##V1xdmKaq{Yo_d{1d z7)u0DI6tlhAZ^&T8#dj>e#?LCY89pD(6iaxr~cuXF(^78;OJ01@WDIG3U3+BdOj$V~yf9N@au!Dhc^bv<@i5zK?I!&K*IbEmW7Cnu6!%6(s-6tut2S znGDr1EFZW^#)%$$eKo4adw`%D?OYKz3Zs)-$aBjjc?gS?BxXH!&VB6hu>RdM|-*9J$f($)ow0iRX6Q5s-`c4$Lr>ln0$uQ-#u zD`*j;Ho^WU!oh93qrHCTRXEJ1c|LG(w2gWH{|&YyD&^<@E#C%D_u%GV+jJ6a2xai+NLR!7Gg zXh`67Yc3D(z0HAa>2~$O&c$J2wDy&d0q`4nO!$5;-sgkjM9yq_+~z88w>NV1_ogT= zqMFXnBvS}g%jL3XZW^IRQ01zgUJ6(`@(AUbj#aj%7KOJZj+1{jI2+0nFDKjo>4P2I zCBb6Mq&&jMoJLHpB@h_+LD2(X%SiCZE=I?N>RA2s(i#G!+I4fxjmsT(_X+I+jZ>Nb0yG0^@k4I%i-%9qRj~&>ZLpf%8sb z3X>>r3k?qWVB_hKk6B?132lseZ~@!0116+_K1QLOYYM=&L8^?U*4tX>C9uF& zIx)oLLxlVmMk`OWlUGDd4VgrbIwj4F-=)Dg5wkXARJAepH~R0t4&T;cJtpaBqAz8cvob)<%XQKvz?EgZ4YP~6{19QT z+JHh&o+R`HWCaz$u*7oWW-0K3=3p7nnR2ltYJPHSJ!ee(xVHq8tH(Zld8(2m%0yhw zwnE;dRHSkKrF{3;Kuxx#Z;AXENHIl^!FsOqdFpTbQ5SF(5L8aat#NxQPC1q{=onK9 z8F9Ch8%FarB$qH@K-e&y$huGPfx|rf9x+@fE#u;X(;G8hs=>gZLMVV4NO;;k0mTF) zW*1S7JkZs98-P9ly34S0}1m*L041v%Y+XyVVBut*%=AR4j0%Z&6Uy z%fKwcM-8VTq{2Lot#UUe&2!C$N1An7kGk+|Lz-17cWJ7{IESPEn{2jG{UKh?igr+c z%|5Etzt#{(Ir+Y87bnpac&^z-G`sc*AVvq=;`m1(l~VnAy@Pak=o%5;LUiwNRA&8n zbS6%r%3YcYF{l-CCX~*j^Fo@kV|#H!lz|e~#A!-(=jEYUW{OwLd*+Rl5j3{pXjQy7 z74jk#GB$dBO*N|u$3eWZu;G||O085t`^ua{pEyeWtgx9r27F8_(Kk7O08M0CoXVj7 z#2^`E;#ZB-)@Vt}OD~1l8Y}YO0&yGX{;B(5K!yjnB)|i4DWe|U47jxa)_@^yW%3u~ ztW(8`3nRKsv0>?q6ggPd7iAr2yUc^bQ$*L3EOwK{NL-f>#Fj%B`p)qF&#mdPX_@$fn06$MDUx-qgy~{qcb?GK`bO`_V0eaO#74<} z5W*DG>|txOQLyy;HD4MWVPrB`ri6Z3MrnBc6gnND{$}ZB;jxz^I?)j4q?5A!*5GU#vj2F%CE;rR2h%#@Cc4EH;?S7DAt z*3s7hzUz7eci=xZD&GONl7k#H$w_>M>_{7PYfiz3a{m;IF08PosK`!KhZoqDr56o( z*-S+9R4+Z{2?mTcw%{;eB(cGn3YU~4Z%=y2(BBpahv!DU|3%cgDQX+(N1dA-WnUCtsN(Oc^ z(R1;d1As5V+KVP*|B^vOgR+#;Fd0 zSam-!$KRcBUE&6k$gWHD<+99v6(7e#aWvZ^TBs`dB(zcV*`G{ft1S^2rsXQ(w)$x$ z`C6iD+lkpV6slRafgdq6!@D7(rjkqVU5o@;i;YNMjX;c)Rw`g<>$}O-W-=VC8!o{4hY{8P8 zXm$(W$sF(HmfzoN(^{8L5JZ`ar>#GQ2R(LMpU`?W*@HAEs5}?P_^#2NJN9~Mb{&0* zvCR0KH{tY{`8V0ev7zkpTqp#;eTrLk$;zF2ru|;$+w5tS9^jym!~LIXvZXUVEN$fr z7ok-$YeD)!G%6r^{&svCVCdsx-rDySZ%q$W9e^C(5w_gI*yO~)5;eV3&&9w>h7JVR z4nn7PVb)=;;o#ywP4l)4A+l#6t*TzQL($)fz*7vdOSR%km`Fw+9wPdJtH)E0zI;x# z-$p@ChC;#AjuyMge1@7 z&g%88L5Ts^34sJK3LWT0>K{SZ5GKC~_8-9vF3p8ENC|2MPnYZE&zI>JIE!GPjz8;g znI@8MlrPcb)8|RYfu?NZ-36Adnk<#Imiol-Tf$42q9Q+FV6p#Bbv9@5%@(IRc)dryhX??N`Glkb<7KTb@1F2c;B))}FETCr-km7@I& zjrA>{g|`Oq_tvLF6~=u3tW{by6fYonK*H@sHWK}MZczPqSdo1K44z2t`jE4C$y->^ zxHgSgsA}jl7fCGI&4N(~8;kXa%gBx+d!Nl9zrv7(QPv43W}0K~4p)^z&M7NhK-TGB z@FX5{J^${vxTV_{GGy{N3Np^ZehN;1RN7oZd3rRNpiiz_bGZ`9c^D!%at4A-34ev9 z3@XPV<(3!9ym0ZK(;4~DeBKG)g~WSZCX8# zVz=ynmc6|J))GF|p|pR0?u)N3j4)s^9tPdE3ad=EA|NBY!fHvlWraA;Lu*NXT@rUT z{aTR^hvd+)aiMD~VD@0)%}6fgT%q8-lrk|^bT2U3LK!4Qqq+CqM;>;a7WQG=gGVQ$ zSY(I&0#M$o7un-e=gQ`Y;9Y}oe~wpPROT|Ew~*$#sege2U|LvE{!&8q-#;d9Binf< zR;UDm;l&)#9fz+RWGGF9b-ky?Kd#jQ^UKh#mW$Hj#gmIq$CL&KpqLTsMGT=Op_WL`lp%3YqYPLciYO^r^qE_36H0g>N*~$@b^QVvq~9$flGiY1U@wkUlf>AC0GkNKS(K+ z{bGTnVs;lw`Wg!L#0;E@i%wC9X9g#FVrGb34eT^erkt1cBIuFivz&c28TfS11ZdwD z=ux5hjunibwr)Gs5B_r2T1YxNVr}PCocZ*0P+bG@$TjDX6@9Sjgg^ti9`n&L+M%HP z_HScGN|Iz$koA^Ne^H13(rASNejSSAyOQ+Q_TK2tEA5oc9UNbN@TmCX}(&+w(Mx4s|83c+wyeLcF4eG0&&3qGbd zF9rYnn6NtiLnd;52e#R;OOp1v`38PGH%4lGct+7V3a;Oxn#ZFqs;T$$^Rt4_#JGXj zBcv)CKi6!kVN^f@x_HN7vCCru`V>=6vE+aQBAm}3Aa>J?_$Fg`LH~G&PVv^gM*Hp< zIij#xYbO0hemJ ztD>-BRE^cBG>Z-?v&WGSx(Iw3?=31J5$ulBv+h1UR~ZO=FCt_Nit^ z!TyqIP1ZdjAmreH32JDLwiJv7(6O(gx#DdL#jrqB3{_I)Kk)L0PYpP%MrGa-D#>k< z_R=T*^DD9$6?fTltfUrObR#OZGQ(bCgITu1-Yvy^nkt;ZTxu~ihT|B;q#GwXsubJ$K~O^(}LP&s)f3wny&YSU{yJnLme;) z#oc!nX-v0I(m8zZUvUKnX$HR=&)l(bRHb$)>T!Wf?(Aw zt)10Y&UWifZ88fvGO%RYX;4^>bd)*|MDUvyOQur~rkOAZOk=H_`K~@&bTL_Mr$(8rDMS#C6i-{E zrzLWE_v9C!G-%7sdyf=@wHH#&@^cFA^u%kOmCuB5qxoo_v3fJ?c$S?)MO;w{BB&vC zKnXA#9$%T{`Y7)hnWHH@B`y6l(5h(_vj?4#Uh^Ps(QQ`>79=={RTXsiELx;spb%#$vwKIy5^pht4CtxzsiF&x)}|9G{Dr{Ifs;-6`z;Fma# z-e6I=C>{*I7fTzlDI8^wg|IcW3ricA5GN+hK_rX{%UU~FJHJFUTr${tF|~`dlAUsl z=KdOEC6+k_cbaFg)?tZTZsL1|VunN6HNPO;pr4nYcsU~3B|FwBihR{~Q!<(s|6y=I z*!02cME4@U-tleI-rhgCQBTP0=p0_{Qrp8ITw(RAsV#WYXnQTlqn2J<*(6M13ba06 z+2kX?{8Y6((^MJo&(Vv52ZSH$K#w_veqq|EEpzObLjgLu%4+Se9|UTMJ+MON807=e z!7I7I`#wq;K@)T^+8)OdO>ck8`Vfk&!s%rn?D51+h-2vj3Q?9npXkU8-$C zaJVol-xnut@G9R6NGw1cWlAd@Hf<-fL2xwftM7UDQ4h@o{R%T`T0`J6Tg$x99diy; zJ)WLXsPu?Fan#uTC}9zLFmhX$uV0^i9{|?1EV1G6Lp+r~hn*HQZyX)wG=xWG*MR%2PSAl?TD^qUGVTYsS8iDY7;Fq_7nmHKXgP715au#50$P z|6OXoF>&AB#mR)7Y`*M0blxZpsj@W+oEgpTC7`CAQ8{o4in(+WhzU5t8e)P1bQZ<> zB7c4~Es_S-%h4YKS-4q>D{|UaD{@A;-{m2v#(9_{>@u|W)`5<|BHvIvOCGR+@8|{9 ziEx1XIp)art*X715y}^>s^7mpEUS4qrJC#u&HPZSW&qQD`O&~6|H^ghGC3B=m_l*g z%!(CKASK&D>FZ!c|>^9zE>z@uT zLhn|!IByFJFzOQlO3v^g1CSy^K+U-!(rpg4Gy|Ez^GHNy@$_8sdI&c>P>HG$2>X^1 zEZ|e0GmF0qHFocOepCGE5H|<4v?Nq)R?7+&z#*yPSv0~DdBh^ppFfPoPFCNLWhk?E z)j@mhT^&IHOUt@ya&OuMP>iU2t?Dz-!zkty-nQ_3X#qLogVU{ygTWJVPYD6pR=Aj| zyJ`R?2rNzKoCPysbv!H$cb)W{#g{}2tgeSOPxoSbMy>FH@|?x!*|DW=Fh8v2M@1oT zJc(%Uv5E+{=dy5R=@l041o7MqTMDP$N$isK?wDQh5)D@K0kx1deeObrt*~`2Z>hNV z%`qtFgi(1*Fx9OlD~^Vxv=x_e*aSMV%|glo(-1>0ZAWs&ibHXx&EWVv5$%gWF?wiW zL{@w;{p6G-1E68<*pliV6RgBI%ccO!-B+~laCHm_<|JZ<3K6`Ona6_$WN&TEqzsOz z&LJ`ll#e_9yZ4IUr*sCQ?+9XAUdwbnFR+r=S#>cwHQ>cuR z&_=%J&Oa2d8@kyHm3uM|BHU*iC$Yx>q7*;j?6U`MjFAuYND-nlpoC8@^Hk9Fp|a!JKMi|M#L{J|OST5pLecCDYnoHj`z`ZCRA^e&noR#Qfp+pbEg$eyO)fvhH`b7n18ICA1# zgEJu$`h4T@OG9~?Q3MgV-ghXSpH#QNh`%XEmP7kHO-Hb!L|W;Efrzt7eFMZeGt&nl z47fIF(XB1l0~!L(qV&K;rxAe$fGg!w2Du*g#zt zGAR@Se7KKOP%V{{bA7|)xu->^1~=y|cUG4m`}7lTx=(KC|4rLO`KNEP!+0dK^VIzm zOEySVu#3>L!!&_}x6=az>_b-&Y)vSMB`&k??&+@oYZH?qn4PV%^;d*`v?Hej4Evl+ zjW9mqUHfsI7cOR3aSQ`RkuR#rkz<0ulr z;Pw#%YLqEMbUy#|aj6ReC8D$ZYnaoBw}7DEOs*)yUoD-8xiIEu8G0zCa;Ehh%-CC9 zZ;N^V1c6M!aEKW0ssnZ0BF2+Mb<_KA9ndtWsn6fNM)TrqIR^UVJJxTa_VV?^1r}}r zF(8GKp{@4ucWMZ(UdTH>U^1Ht>@poo(n+RgE2Bo+bKRM;R#%}w$E4YUs3fZ+eNF1jbp;fJBB!1_k<64&SY zXCPk=L>$Bd=556DaryArG<9bwkd3mLc=H%pVR(~9`&niGUanSk!!5OT??}y< z=8D?tt4%Gs2-VN+r$IvT;gby)zv|=0P`o={%i~9=qIoLhrBK9DsO;?~!#4X_Ew|+} z7`4kT`Mmbd&8?@hi}JOXXWMB6xT@<)Oy9o;hKEzksA5cI#YEq2H&J?$B>s(w?NT+G zw|@FK!(dsBr5~9yC!oA*WOdnycJAY{x8nC_%A0;v*`FoBNn}>4RF261Bx$%BQC^?w zhWjl>5Z;RAd)~>@{|Tl83hD*Nv;Ut+-9$iwmc-VG2vWB zOArC1fS3akh zWGa4FG`MX6Pn5N=4bbN4IPZSn?YmD~wCxDT8GD>fbXpn2RHIth0R7YKUM#Z?Dh-y2 zd~q#?2|j=~SpGVw7Ov+DL+LqPo`{~ukd^R|DgZm!=WYs;d)&Zzu`&TMvbg0p4)nZk zCgOXK2``Zoj|J+9ID#)}mS7WHW%jA6Fk~~bnH5MOV}ZT9d0Dt{GkHNB%zA}EfYy+d z)Hq3GwiPlZxdQ#Y8K1q$jq0?oR#AH2m#<2#Z^6(+Dz~+{<;+h=qRy-1#h!L9$JaI3Q{F%iB)&Wh6 zKOpAN>qV0Ka%4RA)~r--^UNg)@rqK32G38y)mBPb8R6eJJx*rZ%M8Lk3y8Pcs%Vqt z5O_GGr6Z0UZzeMS0%lzk2XsTWhYxvI`gMml92T`X9q~2l|BsXpI4WyEV$Xha+ z(i7}>TyQoekOH}ifg``*Oozk|Zj)N*bxOs#3uF&Lhl3*Wg(~}n5nUYpsuC?|(uG`o z_@o#Bez9@=|N2i3%5VTq@Qb0kyv$kEHY{U*QrkS}Ia30&k*$*KDzXpid|3<9w!-C8f=xEP)!|pB5ucJoYN2N&~_8kcf7^#SvR*5(&Ls7BaKSXHoM{n zQ$4fM4@X!e5p-{yF{0A7y~}yqYq9x(tj+d7VV>=4f~-S?;43PutxqeN1a$VxD%gLr zA=qk1!1VczOl9I*c7eY`COjy$H-;p^JsogS#1DT{G_=!WMpTzT|V`T+rl_+;_9DjdFaX*YO)S2JBOglig zwIO^^JRvj=s}_@;W&06CSE6=}wsB`$-^wH{(9aILdzItBnGP>z+N0DktkHOk50e70 zcxM;Y@~3|t3>h!Jj^+30)C*(4d+wW~h$)$R_i^up3y~eFqqv~Qu`rgSss>_Y6}Ldc zEyR?F$la&i%%;PFo|JG}c$hxRGAAgXrKKy~M*e=6g{bmK-^UoL9sOCT_~>|slR8-E zO_C%>R20-yR%b%5X8u{?x>)T-TPL#tvxaC;%HUo@C}hLwz80{E6wSreDdx+`OXTe1Hm&K~yaDv<%Utw5As6I;@e9 z3M$i^W#49>8XP}iAzP{&{gjJX9b$#q#ML1CYcUGlPa`46Q z!cRWDkFv(&SHwn+n*@?#Rgi3ZNz0;a;U$?SVHr23JV~gem`LMp!ISq!H+@k)ZjxxN zTV`IZAS*J*Lc!1Q8zoF-22G~JPZ?~7Iwsl|-+_FPGN8XqhJA#@M}pe4A;Lg5TNTNB zQbxj{!Z=6WiC}g&zKuuY^rwx~T5^7*iT^z(>z7~YNPRBRmJ7(4{So&8+_Gr6I}1V2wgfl zA$S_14u-ewQ+0KvaFXy!W0Vz6F9UXb!gGp7xL*?KUq)*2mO2SxMWD)cbZFC`0ammx z7YMXVOL!G92}~?%BV0>$*s&0vJqEzHYq zh3xY&XaYq9#-@IFfMCKt2K2?e$sd808Lg%nvek`OAS^~AL)yR00oY|22hPk7$l5GL zMxP0WJR_l_ud~rho+th19(KL%V)zs!X&XWw`a3bGv(A;K2gzLSw^?pAgx$^9L4Ay& z;Nr2+1E_e)%dQCWvQx7zjP^=+%kF+~20gGzlqgLg&D$VkS0nszXuYKoZ$8?v0!P3vuQMVt0E6JQY{stRTUM4$V-J=J7I(S z5~W_rE=4Xi+->$~wj0O1{C;X0E&B-Q^hS&opcX^0yP=OX&E_oLqwSnL_zO|d%wxz` zMqwfpOTGN2nQ<1{z#%nXs&mC_0zgXk_w{XCBJSG&l{lHPdZ~VcC8&B~d%be@NANGxEn+!pq zSoVg#{`y>vY6Al(KXI8!uCGVkOr4z$_kMd8R=|g64+$toQBHX5q49^-7j`(vA8oQa z2Q#;rdYzb6f&yX!Qkad{OXx)~ZLmBjm9zmo&q=zu;;N)g5vLL1(}a@Pvl-h5G{pJr zR?)xn&$AgSY;1qj^f#&FYB`c?)x% zRH65fnP-&wuH}LKQ-PNlAmZKXJ)iSLjaxns-cdd^KM7C&4L0OWnl;&KwUYbXU%yNa zGZ>rd(EtYYTrx~?+D-3TYEQ=LMNLN$ETOPDBWVkPSV30c^~wN)&n17)V=ZR#Bnjg% z@aktuKWrTFMapOa?GYS8fmtvG)~ouBMYr z`RhQ^48VL;da2D&pvjsqIApa2V;8&bsOp^_wl1R#dc7f92Gn28jBEFblQ#;qT1+w8 zso0!!f>;{T&Ajlozf=dBZE9Q|!%!N6fA%?14!~R(19NyN0`dLSM6XN8ow61Rg09JT zVx5{U7hoIPRf`OJ5w8{wBz8@+dgFUS)%87MCQX$BmDU;t1LYfW3$}eTfJS{7kFvB7 zovb1yY6PnfEMjM${9P)-c(OX4{uFj;$tQ2#GmTuOIrfl_AU=VLV?27o_I*(6gHjyC zbNGmQGDu#fE3JVMGl4z6vq@J^U1o)~yvdgP8M}LV5Ladv&kTT zjF=YkX3>6m^gO(ivF`e@&%m0kH760@=oC}OFeo~ zLmsgpmSi7R^fmEb3UV*ntLkMW)EvKZ7c51BEG9Wk>rgTZNja9Kj?@_mzSu+pLgU7t>|LqbkQ z=a_)ob=!Ybg6YX8Ddf6_)}BrG1uJw9tXbtas~DoZs)5N=v2JJM9y1x?roXS27OvA5 z0(PIakZ}SpgR9H44!WQ)dx6JsJ$!+ptF_%{_JpnO^?&(62k4SD|I;ORDrs(zZT%P! zR=2?7ON|f+{2A9fC#m-qt~X}zjwYgv%~$Db#;7Zv#wCc{Y?jMkN6kaY1Kta2KoQZ8 zG_WFkbO_GbT}EZnk1c3-jU%4Doh|esCbb#vkH`Xo2V&`b`y!J^6;d?zou)@c^~fB4 zy>dc{k^GRWUMJ(p4%$4Fb7908>Rwam9%7Up5M=6Sy(i~EohNb=k< zbN|R!Hg7?|zHiR@mnC=xVDms&fsB%uz2{gl_m4gO6mm@5AY&pM9nxau7WA~MCi zaInO^n7T)sUl?CEaE*|NsEA~X5`PF-I4RPKM*0~f`IAB7mS_` zc=^YhW9fN{+n#WGN%bb;v6u3hw>X_!_HAAk@9m<(`y?5PFO!qe`8$_szwvOW|CbS1 z6R)&SX_Tl5g5b+l0P_MoJ{Tp5!s6r7rD+LAmIRpa-b;CkX$f1_m@WvX^0DS1p(i_X zA6S7r&Mm_-Bx63xrHjMvS{41=)Bsaaxw?3d1F5`3BR4|9fXz9uvxU3GZJmX+LL>Yn zWRtlqnIrR;>yr-vazhFQ*x%_$TA>5P%Ga|G%!M}rkaZ*o&B1Y`1V1y?%k4o=S4e+< z^&lCR7UpmxFtMt-F)Ld4JTLDH!^wWW!$mTx@2{UN`MKa===TibCJX3Nz>e9U=*d(w zZBJN6(FpR$PBX1)ns+Xx69Q|5PQ#3m@fp_gm5Z2BjNf7Dkzga`dBZ8V{iWyw1m?P} zcLMppcyGliJN~)JE{?%mhKnN| zce=Fhrxg5hxBf>;z$uBkDO5GTdZcu~*G{LrT+G|#S#)H;RM`*dIQ>IWpga$-wF6q$ z|1U)70~oat(3B{BoTMLiDS|9hmLZRj|K(2VGfe^A0TTfh^r9YuH0F3=IFpcYRi5@Q zzRMzXhZnuE7C*qMX)zzoa;w$C z&pX>kk1?LBq9CFdR5cUA1lsZ3XDAo(y-fZ)vt;&MfLjK8c*(GqyTYNsU)6^$h&rsi z$|HaC)&kKmakj35t+t$)z8t8$$W68O*_>12JPI4lZGPTy&R5m`yeRf|Z?`0SgO_c7 z!uO;}8T?@9{?dJB(D71kn8m_GEtBY&0i<^$g1yU@;zGN@!a%~@EosE_d*a2-+oF9H zI?egYub)p<)Gl8aAwJpGw|1~u#}{zRJ7TYYXz3i}W?r#T<90L+j^R=3cd_x>%{#~P zjIj=BV%@MRvs78)d@>cT>xaB!^3noP8dDTmuSQsi6En|YfPvf3lB_=W9r;{SZiFCV z1p$Tm3<-~tdqu~VT4wbOuA!nQdMc*Nzo3r6YF4JmwWz*ORI91Ko6dV8q_)#GgkOCAd=^#&#Z~zcoS<7dQbN^>?L7yJuZ);YT;m-_W14ZpeseBr}?|Nc{p??#qE#ZD?^_ahE}xJ`kgaGh5! zugVm;9U}T}Cs38DHfMktZ`VIl^{vTtiB{#(DoZeEp|`Le(s@r)l|oEYjQNLdecMeS zUT_li&Z)UWZs^HSj<%3(G&~K1{+|if3V?2$ZPjK%cmifP1AO}7js=K<9s&e#L)3^$ z_Pu;ZHY*)=f)%V8`Kf6IA-(lr-u)syGUZV>fLeG4-c1PF5_D>rclzFZqs0w#Ov6h{p~2AdCf743XnfJ5od=hrPs(Mx zdjupIxNS=*CcGTJ`i(KO%OVVf*c@vM8SNaQzyKy+y>Is5~Tq~0i8$f zqZ}ZmoSmtZ+wHoRTlq$Ec0295G?|K)29ldcKGjuX+V;H}jai+OSh$9&el<-)n6`o7 zA3-%u;D}AJPzHc$PM4oI^o`5oYsAL}jH|abZ-llsn)72YIV1LO_*a1Y=*+1;A;QD*qhFxoMq04AC%7_5AGuEDn#U6!l{iWG%aP8zG zbO4uj_e6>%0R%Mb;!Qy2#djhU zc5xM1{$ByqBVejz6c2$y1?M=(AQhNCPo^V%l?S5afRs+uBOMwJBMNLHCz@*3MfK?!gAF{1$X*SKl<&w9pjI)*ebiPv?@~YeG}IGI}yvaOH5TXl`!#M5z^*mOG5eKDV5INqSX7E zG{H$1(r*vQ0ad~(J3i%Qs%SaeoY4`}@lEG@ah#pXDXmo4PHmv+^T!Gj(yeIJ`1%>0 zF;ZvD82<1>o;P+;+p~GjJEu*faHVfWaS6lY^g*4x2B}D1CSY#%p#M9+$J(NG&Kh1g z-=`xkWa@IC@(+7|Oi9)U@OZLR@@#kpntFVA zK?-W6`2EMWsCy(T_eG8|s!^`-5-8My*E-m`iXtYTFT|M+tk4VW9jBl|9ADl9Hzl&> z`7p%q@rLTp5~1Z&ErYyaXdhp{QQ(8mz3SLUUvjU)n{k{!{Ok|V;I(9E)v_}Rtaa9P z*23!>K?EvH7ahG+09+(GtN6xLU}sbgzC5S>RhIL0`0fYu zD5iQIT*I<86CtMhPNoqog_lFXLKGcBpVEy?fp+|hfn4{P4kP=>)6c}ue4G_Fv)!?x z?ZD62Lj2x0?#2-#lvbJdK+MHp+pk# zvyzQQikCfTo^7u5@|&xTz}O*b*|m1Watt3{77>e5qVAj@eTjzE3ThW+4bDEP@QO6O zQly!M1I?4_w+#=PHB0mR>JKx_fpAT)ScR7M)()I(db%FeW{Jnd3%I3bx8VcMjw$F1 zjUj_Cg3BT8ncuW4tYpDDU9TbcFasX(;u< zgx#u3&1Ln)oXq}Ck?YdgOUiPLp+nTl!%}r>6pv1VRVe6Ub((MnmhCz4T9~TWIlu`J zHEPDS&mZ0{v4b_f{x<;F2?8K9<=?`cQ{s>Bl?=J@p~~GaJrR~dRI|Up$y_{77b9!g z0#|d@os&1rS56g|t|JiQgpR^lR(OP&2%7p7B7jfKaR*HoKF*9}AAh-=s4 zeT^!7ufwu84n^0(GnAFWVoi}6HbZlTNXxjMv4a|3{belouthI)X~cyf-2?(H_GtZl ztF@q1BbMR3-C(vLm9DE6E{7FDMb1+mj(xc(x%BUV$~U`vD16t&sTuk)te(@b2US9i=H`7Wp6YK4Y^v_O0dF~ z&tgM|Cdo)}pA}UD;L7a(gH-n<5dHxWRa=TstJXd`VB;W3DnE}7lZ$u>xUpT-mNpFj ziBJf$UpG;h7-+)PbuGb#H54RTL)nIxzYJ}$Bn08>n)s{BsAm4J# z_`A@8xpfvYew`CBFG1mkYLfdg8Y|z39w5PVv{f1qeHF_b7~Bzfsq>+3%EBa~i!# zbfMU}d9$x^xmAQKXm|MMW`D6P5(Z+$1aht05`Srjr|`9|iWuybet75=v~ zxdQ9;KX|W#z&HsU^Y^V5`7~8)#646aYi(5GZ}?Ap04yCTfD!2vrK;@hCpLS0JPC;6 zn18OW$l}_jlg|6VjOJtpgC?Rvx8D{onb^|$_c8;j|Ge*XOa&IX$}xx16rv9(Z~jRs zwaQtaVdVhF>zY)3#&;Bc4|;4hTD~y+Zq2+ZmvC{zc(>VZYv5_DB8)idUI0-*u{b=I zS>JUG1fHmwAbc3Y74BX5{EG|Lrae@$dJz#CTww5A%5WO^ zYEXhoYxEW!E3ft4-OrV1q-%L}W6-Z00LidC2go;z8W|=PgE}~>i_x{?5z$orKat=- zkBV|UfcRwXN|SHwa`1~#91V{p2tj5YGzz?ILttU%urmDa$VxNDd4FFO!gL!2VckkI zN88wHMfz2Hp!jgS7(~iOnf`fiq1|Vj%x#@m^c3Hpm($8onH-3%ptO+&+RBX5F$YpC z)Pm6i6yXzm0P`#6qb7RqpX=rt1I^H1&cbpOv@TZ2}Y;CXU3 zc)b19gD28DJdFLL=N=2?5N8lYC}h15F3T>?EoFT7Z1@r|WBU_~36^p$Wu z#nintWm2x%1=Ww1q4PvuSk=vM-ED$oed5=#nzlQP!)Pss~-At^BWDd?Dt%q#$!PV5-(hx&QTzL35~K4RhBG;^nDTcxu8GN;excnj@iIk zK}GW=s!!W(m%tO<>6%jto@DG`9vk)qq`Kd>Gjxn1-Ms*9Q*Ehj8$!8NFv0%$-7sJ+ zkiIo#cv!m6Fb}rrvdI+XK}Sh6bU}0 zEti*oUW1dDAjhBO{d{&&HE}ffKBvI;&*$>OstpEV7bqE1I~!iTKVE0QW`@Zkb1qx8 zz_*V^phF^f_Li9LZ+Z)?mwboBDCNyAGe_?dZFLdckJBRPtn?Cy31@mHC_y&5W#$eb z)B@$db&e9O#?ueMCLgV&CVu~ypCJ~Hv4jL+hzNlxM`iGk<{7HrTW}zw1kjQpD}{LV zFCaSp3$N7+;JJt9g+qMfwS4EjCQdnK+KVBR&?Wyt0|@MuKNopV&CfDJnsNHag$tt7 z*;oGSYjD|QH%@eO^H#KhGh$AxxSJxOt~wLMJ*x(`D#r<@q&=&8F*u{I7-Y5K*Yts0 z7jj;=uavo^Z9r{Y>O1+iDSy5zCB$NtCt1x-67Ppg=o}4a4`3LE-|AIO<5o9UCYNVtg`qEQ^j4~e}z*khJj~#IHl(0 z6_L>&N1cGn86|YmGCAfojA>&u5Z99n8Bb|rED+t`~fl~euV50FGT z4}~)=5U&bkyCYa2hjAil4$Y_~SfJ%s^x7;IoDb#$5v_G^GxOr2 zcvm;{48G3*Xx2aNGPs2m&ey1>cdGAvOfOw1+nE}mRRAwZTT*bV>t|T!f#SMg(&z^y zh(1y!|9FrJA>K6pTLI~AB!^Jo1`!rwFh|0Xm~oL2SikjPN?Y2 zM%r)BNUI?kWQ{^ZpX$nXzn_1f(hA8Pqk*6d-kfR+1gL1vogG15nz%kTDED}F4KYw~; z>YeHAs0~w7is$ajc6`!PeoY>2;1R`U0o^mZ$}N88dwBc#vE;wok9p=fd4FRF&oTs z;qEN5vH9Hm~6MA5zVjU1AU z5A-rp;;+M5#Z^t6`K8*dJI`}<5Nb&*byZLCZIf_p*@x)At#k5{Q-a)b1Hpe&#S`A5A=nGc~#aAFkb9UoWOx%zTx9^DU9RB>`CIj&8uafJ@055M~UoxB) zzUj}fM)`4_u+kN{g6JZaqwbfn5YJDz=b=oQy}N{`PlcpMJt1fx>G=|A_nH^A>_X&> zq5fDseYfC{2OzZXV8iB)kC0=B#?>px+l8&N*cKFFNHZ4_N`f7E6z(T0al};iofssvFHHq_lfX(Le7ix)1^R zbatxAXieLeTId$D-5(f#Zqbz%TuiSX0U2P{1Wu2~*z<1R%OFma$UlrIN5B$aTo+tW z`tFltJ9*!DS%Dq2Ne+{mx|?_;o&@FePFv=!B$@YZfdGTBty+=br$@;gA9`P#Y5tg3%yjDFuy7FDvKn$hE8QWcFsl1 z2nx$8C=Uu_yLbD4;!3~)QBZ+q1scuz&&W=w$IVg`Vh7Nz3<^<*2)!$n4}!+*O!||4 zMAFv6G{=h*xpx|Iu{2dInxZ`Sz&%(d$mKe^&HK(Fb#!$eE_VUiggCDI%&|2?YquB7 zZy~eX0cSx)^Qgb(vjYeOGHQxd3L5!{1+M`p#pvuM^N{nM24uTwgz|-m1&i*uIOTD# zLY!lX&=2ZaNZsh4_SpoywVc==TD?gRf3Uxd&ZPTV1e5dsasG`%l4F4x2QSz&%z`q7 z?qUfB8L;QIp8kYDKPZom>qP!)u5l`&0RzAH@=^N)<0 zqLgV~Njh1A#ol8K8Eg2cZ>shnOdAyee3UvivyoG$exm+E=M5ZMf7j5UfNK9kb4zv` z1Zbg&$SwJyKnx5kT$xqZdG`d!23l*`|Ed6Mk$qKKY0ZmJ8TMQdX=;Hr5&qeXH3Cz0 zJwR0EfQ|*B(-DBXXx<;QAv1@sph66WMe$~+6${ByPqdnzCK&U%E)xZ7P4v~B8SbuM zguO*k@HqU89~*!=k+Zc^A1*uH>gvRto4KZ9b4xiyo-Pl?6j9JXGnjX$E^!tyf#8pK z`&rr55cm-kHpNP)ua_b9m<0YDzN+w;1;nK(q(7W@an6$E$GO>#rZ5Rll;|qRyCUxr zPST22#`2*CLj}dSGq$P5^Pwss1oQwACoCk<-!_gxiMW}INd$fiuFRxp|8t&gMqj8W z!Tnqv>=r%mBUm$;J@FsCuweO?#I_ELv8cCKKKS$ z$WH-cm?+nMQS~kjIL1WF%4yh zYi;%C@4~@K4ESb5imS_n2~3MzRbw`6FZJ3=4>?$M=|n9|OYYBV!MfQW zVJWZs*;A(-q0MojfA6QiKqe#~%;*HGTddq)%uc%~F!OFeVxH#1!OLdcLKF(%B zG9=t0I4O{ojRyFJRM}#!5IhZp8$-(~#$IuugYU2rnN;KNQc*Lkdrn579hAuIVq;3k zSV5i^Cze^i-A>?|hE zg6}S@`E?+{3DYd%6w~1m7Wj|;7FS$1N!uC&pla`25WPSAkL1HH$?*?{&yV*o2_0mA z6$uPURfL!8Cc*m*!&EF=Hpg#-?)e^O<6~2ifTw9Hq|fT5UPQSxs5*#DA+t?NE?CD< zu7uPEB~7+e__lth?z;(1mvr@6j8>;?PE+d##GY2p2X(!&_<)0&-%}b7wZmWKpIE=? zDVKXzr-S+00Adyd9E2Qt?i!-s0UCEXO|OVJlY^&l>ihKyD&Ur4PH_Zd7$w^Hdc^Q! zs2K$zq|up6$3!rMmaK)8Kn_BGED6u{bD0!*v-vj|!+tXzaob>OIMmvvd+03+ve6yW zMA1MJ8}JcH40?%HceX4LcBz8C#S56Ai3-lCl7qyZQU87v8*Y{gMO(_GjJ4cA4b$?0 zVJ4prCsgMJ_9(bJJ=x~CSHw=eQe`+I6JxdvZ@xnb&SA1>2qbN3zFi5~(IEc+l+qmy7z8O2TL^?Nt` z^*0e0{vW*cHp>#;`h$Tsvl1;gd({l8!fiMEFIHt3apSpkm+t;hov|gCKt$4e={LrG z9+0j+%!|JrLgU5A8|>2zSOy%&3sBcb7Xk5@Dh3=>^JglfXAb61!W9KKM_?r4K}$n* zUIFvt)(*mBYfS92j3=nV^s<}D1%erRM`7bRjYz-XPG5`plm372KH)$Q(6-tpjSeNXhA5v*V!ZC`L{~dPw)n7iis_%g}MrSsT-jvrkpo11=ca8%q^^>ozGd zQ9P>X?aTQ6_=q%*6xnHuI~j21iITGW2Kus7^1*V1Wtgw-c_8zJO_?4730Oam4BSB4 zA*zIAzp^8$hh;CB3L_{O_^0)+q&&!!0mD4$(<#D=Vz3GN^H(Y6ltY)j)RE?71^s5b zm9%o8l^Xzg{%LCD2Mzu~ANwiIeh%VB{j6bS@LeObi3|~%;cywDd&G9});CSN-7yMf z;-ELMjbkX-S&y_j0QfRbxB)J>H!0bSwoO3%4*_g$qlA2(D==7C2?D|i>oD!9vm^dV zS0ZNpDOyb)m*-WyHiQS(A7G3wnC9d)ZKkb{Of|D97If0nHM>eOoOjLU0O_UoCNUDx zRC`N$QCt8>;4g0yn)3`gN$dAG6<io^Ksd@29!YIYlWp^SiTMt(RO=jd z?)>3MNLvnxrcB-%2JQ2`=z}%qgwyma#edhnYXB}guJziC>shusP`S-7nBxJpVer~K z(zbFB-GjzP{&H}w{a6hyh|x(JzCGZ|*ZAwqF3N#sA3jeK?6Iyt1q(CcnTI!fY*S1s z3U=6|e=#;*jSh7*{PR)YPV7&RJu#yD=D+Rxcg(#jm47*LtDT3BU||S*E?xk<*DscG zu;6(nz(rOY8m72#bZVzCl`(JZEEi}VSdP+A^;$L3rcV%rOX86ITg8XOpOYG_0~i7& zjablLMbF59*uRt9dSb%yEh0Y8`Mt*=UEvGoy5f>Rx1LX^*jBUb)yJ=bZNs=rJQMVK zq*f`jvkCNNq}B?gY3Z2$9th^0{Tnqghv*qlsik(>%bQ^&k^4wmgV_u=bKIMHQz>Qv zK86-qgy=TAL}0>fI{k_q4q>~niJ;uUnh32jb%uHZ6{e*AO*KM7xd zg|b8C?bGM+6-*3(o%BZ<0m0?0x8B=M!t>3gPz#uGY>*TOR@(Op>;VMx6ZuJV_!-S( zP#PLsGFOp9*?nZJrEfkJ=_1W9@QG=4mOFcZt&fiYYdyr6+0l{#wFPH0f5rwp+o42X zllK*u`Cd4YV=cm#Bkw+J^lWz;7ZGp5FnNGD#lQc2efH@tESQ} zFn9$e@8g@`9_!QZ&B9Xyw1P77tQ(}e7ER}~ORkQLvM&;sz4eAEIE$c3SR?5;%<9JHk3hHMYLufbJj?`a?C9H*Myd*>xKG`C{DOKpKk!&o_<2ovip8 z`-O@+#WxR%OlnF`wX;Y_h#K;+Jp*wpIo;3cmX?s~Ejt}9fraXH_^B>tWw^8Ff^jan z1o^llBAh;wm$qMTGTinbSjjG9Np?T%*|(HvOx4u0SSB_eNsWW~nq;0#40E@sbD?3b;r|>6!bNIPQ2&vmxc@y0> z65U1y^h_N$8CraG@IHP<5o`!vr)fl2^nyC^l!TxqxsJ1@CMHnN-Xzg zKpj$m{-ghywg*U{@ZC4&rFfrgX7E~F@oapu`a1*yk zo<9eKi;~+;*;pt1T~Sn5Jm($B?TQUbFJc?(G%`oHm{1}AlT!}ON6f$P0Rrzwf?p`M zd~pI7o9ZnU+SDS0mzouD2txNS2@?uwWY3`!KwD!f5P^Bi4(@1rEB0AahVDz^UIBjG z(TNfH2amaoP-Ps~62mI@BOKRd$O`JO*76@BJN!=^#vftdiaDY5wHa1r2!TIU#aq9eF?XmsG&pfs3FDef(x>Q5y)WxH?! zxOj%dupyjlNBm>5(Q88tCQiTime;}pRV6y{yK!)FTuyZ0pPM%8%1GkHX)Ahm0LIt< zv=XAVM){q4|1Aq}A(YJfb^73<>xb-ry&6prR@}$h?^u_~@5WJq|Dpt%H%BYxN7@3O zPN3}4r{}z4CslM~!@Nj6wSb`HUB4#}E69Psf8|ONDXT}>K2`XJeX?wH3N{vJT-BJ1 zi{|DkIPoHerZgKJkwa3@_b$N2l|+cUw2_(q&>{=Y_oI_^h(|L4v5{IZCeIT`{ac*t zu*8I!LWwXX>77!RaqS+!Eu4swQno^qubG}yC;IhW_N`#zC7i@9Mz69uXEd0RO^jK= zB57)f$$7@EVmf*pZar6V<9Lt8*snLMtkB4J%tOEnUb72!NradKa>(4iPgS;_6JFNG zZyTNgEtahtUQk~*i>nLFb zm`xK;;ue;V?HP!VlC2tr`h6Aku; z?gtjUNP%`@li}atO%Zw%6B16RVxo9Pj7G+DzT}GG13tb>&U3yYC#U!B_D87O=-7vU zJ;Q2^ZB`0;e=SPNj+XS!Y*oql`s5y(ARE!dJ*%Q}z~;#dwSfH9Ez*DG)a(cHficD| z?ENneI7lBWM5o*`l?~tw7Br|Yb)h}~e#@643<&tbOLIfULAeCJxS;r8`6=&R%dyOb z;6H8YeEU&Lep$kQ%TjUuR~MLZpI|9nhK@&hKxW&jKyg5Zj(4_=VL?Y`E34{|S9USu znOSi$?&(=hjq$E(a$8M|?=bFJnIvec^5`PuWY zWk}JQP(Gs)t&`S|0tR>~o4ZqHYy4G__iXK%3f1Mo^INixREqmMMa8YrVru0hx)>-`m^=i1^^-B&gxV54xEO46&n2L?4z~P)h4x=>pDumgKtuead|qF24+;mRo!*C}Za6$l6=_638!lQ} zctXJ=Yo{RopbeOwD34_<7`Xj<3{aFA%MVg zuy(nulPYBmWoT!3jS`qtc#UsC*h`YG!VtnoqQZRyu?COGF#h8#e8iiM;BRD41VI8` zP}Zcz7@U!rWJAbL^Dwy1k-J!JOeUWd?uZa}%8{99s~rFRDxOh)IwzeK?N7O4gE zuXqErO=c~`9xP+gjbe=7fDB)(HAOKI!GPrkpS8|?IK8F`)^P~ z_up8x6d`DZ5oUc8g$7Y@N>7v~9|dUV2GL5FIw$20_QCzq4?7n!Nq}bOPTI^*^1r|| zp$^L-rvA)Ql_J`{rx#5rIXY2gtk9zpY%8x67!>2G^hDW%7Ni|0p#n#B(>%kD%5MQB zhvv#zHl+vJIy@@q!Y<*_2Kyf)Ij<=RKXY}C6axibC)&|nZhVJm5`F2UO!+ND=27;wy zf!N$K1Q=?~S_AJ>Scxvd$s8{f&Z9FBR2I!6 zi>kDEDKdilvutVhO8*v=F@FxJn=k_@nFNn3L}A*eN|Jw<_)N=%%v0|*`hRMK&f?XT z;hZbJ#mD&R;Pf>X=e01HFObQaB}6`UhW50OL592ziy<3V5aJ zlH8f{`0SoN_p5P+gbiMmlTF2XCz|tkax5bv*||9}A(|qB2^E8p@>Oq@SX#vGDK5jm zu1HX$)4|*>$QhBOQi75;u41mFc(yP+$g<%RytW^th5Rr)_OTecz($N}hX)~M_ayf~>F}(<+{{6#P-9J3^k1Um|laOpi zQRj?r=$l^;k<;!swYRwA$n?&<1nS!;q+4g?e7SwZfACA#k}_Wj*_o1F({T{gO=Q>} zhf+$Ie0|gIf~_VsaNE56un^8aKjtVrPcHEKMg~PZFp}CL6x2D21#{nV_Mced*55tsXni<#oEBKP1vWHOM%$flWtw?zp3?kw zrX$~+Q2tSNzg6)TnD!ie`0|4yFvVz8VrVuj0SnseEM}UZ6pI9WvZixm9z9ZfnO@iQMcBK(cjYHFP2>;Hg4GJ>?R%G=NW^xsy1f_s;d2-e}b z=?WtF4DHk*<)?{ADBo84^vFp%?HRM53!H28Vd0WDi`{vx;~n4kT@V14nx-155oyLB zk+XDE`x;)Bbbl%}shuW85U4sXcXzS6o>+ObUX0~F=$A=vy77s+WR2=JN5H4y1*2Bl zE{Nuc=2h=dPQ7U{)5-IyLD#oYuyn4U3PTD(K0k)sR`(?~y*DwPh+DX$+A6WUozd+% zEt}W?6o2;rLKB?k&yI{m;uXc6qdPds=EEQ#(<>|QcHrzYDH_mz8ZOsOwC#MybQ@8! zuZwxNYy2G&qFLevLKnBWHAY!oF|u$R8KiMlv7`M_Q!I@rtg z-5s?pRI`=fL1nmsnnMGSNW#29+G!%&F%Z2IN>$&+OUI1(x}bxr?y9`1;q!C5ZK4Ba zd;nUQQsC*Psv);zJ-nuW`b;7M8~XuOug#;@bkF+K@R+lJ@ST5jZ7e^FEpvx=W*i?O z0BR++K^z;W&b9Z1%+K7P;}z?N?k=61gHf80dTT|oM*O=0^pT5GrL1kqU^SmyDn|>z zsd9T-qft$e(GWo-1iC7GeH)w^hZVEWzipgve>?}wD!bN)Xf)p*zgGMG!igxPLw<#K zhsDSXEm{;xP(RvM_82rQY9x{)d4Ph_SPxBvOnIMN|6N(Y3rnln})cGB=CN9-`o z8~iD(Th`&kz5td}afN`*KT11pfK&wN16t_6O12-`;shVG~YU{Vbv`y4= za6{-D)Cw>J#jUlMJ;;%d4l+NE0E*-qP%pps$LWCC!ec#981Zr?%x8Y47n~$ z2z{`llXv_mAoG%oU!eIJ5Q`@A`S6KrWB${tSw_Ev)_VLErM+Dx6{9P9;Pvq(RLW`$5k#3s4_p*6SPUy0&q?K z(#6L(>Kep$LoW>D{RBz8D#VRPd@HEb9Wd_U^C}S2MUpa-8K-cNHHi1S)B1>Q#|Pr#{9v#~KUDM{)m2Ph3MaVk*)?RBfwcCSX8MK)hhU{Ud4h zidD*Y)0RQ3?6CR!_9jq^#Z~osLrToc=5~dqRb+4D3CGjPT~ZqFH~V^; zQhxL2Q){izdEF8~7G*!AZsKZfnCW)2H9#8VQ>Isz=Eh z-S$HE_T37spr{JQZm=EII)8kHN!fBx5B#cuz~4PktUQ{c9K3z{NkkA9jlKkg7AU?y zi$qbN(YIEnW#Zac`Wj65t_@+Horm6S zd-u>hv?D*KFFr4wKkp3q1M{a>?VPQZt(HxF$S_u;C|o_xYv;4trQJn(C(#VRzeB-I zpry;hEzt(A(G}c~^mW6wZht-PgK`u>93|dMiLq=xC^bgiBW^mlN#+_d$z2EjeDy%% z$M6=S6pg!#0<9^e4fx3rvzIEXcR~eWXK@xQ?T<#eE0q(m0E{LX{TZmwa_kb}_v7Q7 z7bUi)a%?B3t!dudyb;g6W5yovqn{s!u0a*1vcZP`?su~l)d3VxjJLm0q3Lb0$wlT) z`~-#)W^wc7%TV=3;Z9;9&#QG~?=}eB^6t)2q5D2si3y1|i<+hnjX+vH%JBXw8|Vd}tv9@-Wjwm&d=R2~ zZohl+LG#mTa582}7-cbI%qoVX{d4DumJ*I`z_A;nlr56ws^U^hC@xJHABXjZ^b#6B zQalG!BUE{%92&3hjArJ)^CHiJ2jr9U-HT{&skb8w2MsLZo-eJwv*3`$k;V~(r9j8d zMY_EuRn2HGME$`Lctr$kl_ya-DSZaps;#~3TbTs%C5W*qX^d9fW`ai>S+T-pq~Di~ z)KZuQjSI5GHyBw>AO6V-K*9AsOG$=~>zKo&oMZ4)XS8ga^Z8yAE!?5;&Z2jU&bu=Z zw5(D&yx;xExJ*3F6-yi{WuXDesTA?rgTj$lEJscg6oSmM6 z;()`zXaAk0nOn|Ub*LLPJN;EzXPylj+0}<@ck$GL6po;5vJx!@$)C#ul5~>Mm=ITK ztGcU#Kbal%Vd)rdy5+m{1gA2dVZZM)p=s64!}==xJo%ho3N+Vp{cUFXz&OXq=#1BcrN4gqqFX zOnJQ)eB6YI=7d2!{`x6EIcHGzszfd4ueyHFzh<=x2GDy`O!y|oSE!$KMa zQZ@1EsIunxDgOug5ur^C9@Pb0ht_~$!SyUTc;{Q%v(%@#^@WCkBZiWkV#BsU2r!mN z%BmRleP9tbgelT?HvqtJUOL>%NRXEGfIC7Yg0MuOx^>(wJBfi5a$f#gFIw#&WS~ z?86W#%Z)Qfye7T!l@F4Co!B@Vt6nHGPHG| z^MjAD`}^?x@*fW{{w2{7PKCQ_H6#@*TA#(8iSiZZwEN$^B_eCG0SDFptvheowb6qk zZ_i56gYjdH^`CyFJey&#s|hU8gVTt*%0y3we8@()<}+mi*|^&~WPHFj6p7rE6P5|i zZn*G`OYMA>eCeRZCHjC0VpV#wTH7Ot)Cpg-{4JAP@Bx{q zWA-`IU3PV?)QWv$<*wNEy=?+$@dJ`FMTQGcG};>lpVp2>2L!c#EHm*f#_VV6;`jk^ z=#F+Thk>(Q;QF1nL7=@<#A3Zuqw)=5n6LclF&dSjJWB_c_9NNQK|lHE#g2y+Wr@5b{$mV~e_V@VCs!Ph(D=2Yz+>!=3S{-Q{7P|SLA1W~mP z!5>Z;Pfsw9y>ao2C!CV|d*_r;8x*A-_ty0yS~q8Gg&aFy1y@nIb5!0 zJ8}~)&IvCPosdRriz2BmI1t}E$8a@fQSf>vS+0ivC+dR?338rcFN4zYE2diQCL5=t zc^F!XXCIUO-~=s8)4K)pMK4kx>vRp}?-Lp;l+f8)EqQPz*4|)SndF+Kh#!-*PFof~ zHXQiU3S3w0rn5)Y^oZ`Q)UFvVnlW_wJ+lSgZD3aenEMVwFQJjGzYc921vArK%0O#R`$A@yL1EYn=T#E$lzK*A}FqpFg@0GPut#o=~L?gC1 zq+-(PO{j^+B6upgt$&Ob$tm~ zHsLqi=3eO>ftmVk^om-iCjNPuGYPiaqZd;zSV+e@LC|=yO7AMWgh;=Y$=Y>j`kQ5Een>FLn6${bvF z+r%J)rQFtk)}sRU2kU75lEzy{E0qV#bq=d2fNs-Cb0yA=6iyvuDn!s_4-C&-fq;Uf z*G{kURSVWogtWDLo&t~CPe6Ve47)DoIZn_VNt>fxN_BBD(y)Dhm<O;|<#bd;~T9ySK0TSfThlXq{!Ibc&{+yUa8Hi2;r3ASlcV4Z$tuaS*<)N>1YB$}cJvRVN4+{DeIT zh0tUUf(c@#q+t)^Yj|YB;#u$xdXC6Yd&PuyrSowWOH+}ag9|-N2nPE#Rz&mpidSI^h8=~`Zpe7E>lN?bZ#R{KP>hC@DD{sFkZS`=>h3u>T{C>5-sc{_N5z7E3LV`` zSJgs>f<7JA+3a95wSN~;4%Gh#e)GxdZpVuj3Zil1-BUoL=I)s3X{WG6hGQ=jKkPcC z(;Zw!MY}V;Tl38M-(`9+A;XHsO{sP$U0r{LF#Jn;;*rr~EMarKVMOIpY-@``ks}^} z&_!|<$Ud!GBFECzW%V8MREiYZJ!ki26nP*+ThG?}9O*FBVX4~b_!sBa|DD1bI=}>} z^N=|<@#hV9%>{JJ+)26f4bqdLkK$H@XD&Is>Tj`lxG+Yl+!H9S+*N!O8J-=DeJ?_@)7`7})vN6&Na{D{5VYMOfyY2NQ|Rh#3G=glbM8ZjzF^ zj%}gP3BQh+4ct=^Zo~|l4Sei_BXXM7r-5!0;a$X^K{k&w9KjmxH7V)+q?k=jImGa7 zimHRG#o{^ZzSoy!2eL;0g-YXia;+J4N2Z*87I*e`E*<#;o8HCx9M_&TJ_6$c2#LG6 zO}}{AR1g$n<&blk+gM3nu7epCE8k(MsroBQb|M ze>tU{12QNY7JU8QJKcyTK*v8wi6DvwXCUL1?*`)5gzGm_&b+~4h-}ba(%K7B@b_t% z&s&KRpa-0hPDYfL9QZjA+K9x7!HS2T=jDJ=< zvi|*ain4ybQ2WNKTrH;}*2J5I(O(`7P7;_m=p-AJ|!fiUQE65A}0X)rYoiZ}E^ zuqzI?@F9OiAyTBnURq#QLZE2(5glJzivaulB*hx5V6W_Z)Wx}t$cZcne6=x=DwBk- zg@ug{WCkjK7t7B-k(6Ab<+6DX90De4$o?C0>y8SR0VT0~w;Hq$igx@9Kis3dwwf8< z@KMX6=BDHMO?i#83DdXoDw-|{@2o~-z=z^?UN7iF#SOyJHcLpBQtXPxN^^D;*)Y^S zudM@|@{$}>VI>lV4XH!rPuN@KDtlWjCtu2$6)5DXZOf!Mi8ox5%8NbGM6uid_^$p6 z6A3_Rk{34{gzsWUPDTFKv#PwLiS(^U4tQP-T~^^2l+_)9vG|Ej)A7-cKt=siK1i8j z$z^g?zi`+UOLk}(#?{x}KeA>cuV!Kfx}#yGAU|ybx}y-}<<@Z($ZlWCX!O<`0Cn#^ z<~4=!iRuY+1)(iwxomMymj;@d`rRcgYeU6or}mlfdhq{(DFJ1~jkzYIF+ln2dIyfceEj z31E{#nwGOP5t}`nFS?Zhm~K2{vlY{LZbKIL(|Bml+S0zir|~k2)?xo!?chmETATFl z&i+t!15dD~Xw(dK7j%A|MPYo~U!>}$%4RmUnn4WKpJNqxR;?6~IorI6%@=$xSI;j@ z+5SfP6Pj1l-k0>Ng?GVLMGbO%q ze5G2VJZWZU{l-XRT%;UQQLU_4{GA(tE7Cz*afyLtg2Z)-V5j(AlWGrDPgJJt&)1wC z9egT`vKd&#wE4*<*Kf{1fS!CK2lTi04lO?;_uq!0=lh!%RsM>B1Iq1!BD%DIyGF34 z0hK?GsQI_FI^d>%IJVtoV~G_g!!Y3#@>B5mvwqZlyJ#QMGJ+5km;FB+M;niakiPyRJPN`_!##u~~y>(HNX> zacg$vOh~DN%`o8#v~6vPfHIU*-^jv2R=sD5#sQqxsyHGq`KLs}clr~@72vr&MHS$x zn9NEBYFvrDezpT~6)>)E80}UjFiX|ggApDfIo;QB*dr9Wq+7^rFWS4#k5kUxj4TLY~~Pp>7OdShd)#v;#VZ& zA9^r*v2b`7o*~wV=yYMA<>V=RtEueIwRde8*<|(zF?&WZk~w^tLkZ|q=z`|0m7@B< zEa`$4qf_AC9ax+0RTUWk6ibk$*t&43?MwsdtgS(OmZ3_=Em%U?H}i=B(X%uszhXml zr<+%pRjws#j(?f@Qt5|TOf2gzF(){4IpV9m6iQa&`vOEmBr6BfwVDu?_kQuf?aUXd zE5lXiuyYIcef3_Enw=PfoRI)_Gi(V}T>?^e5RiwlTnuXnKm-|X$h&8Jk$iud+ zK}MHbt>GLw@}m%e>_W&UO>pt#e5Z4k_;t=?TSFXXdE^n5Y;(?{gHzUU&$gg+ehb$n zW8KSmEJqAi)^q*C_E-S$RR1APYOR!pg89*Grc{Hfl;}+h(eD;#v~KnZr{8KWsG+Ft zdPpZUzYXD?vzu%pp7<$fSXpI4ADWN(#q}C08gPsrNnCOvzsu1W2NRvB0plG@&mj4O z0n#cZWCapivYEXunM*o4F-}Gdgc>N|=&hVws`8>HmWt_um@QA#hU-#rG^_`?z| z@`8}K#6Kh-259f6E?+B!cRVwmvdM&)5qnejEUU9j>w6LKlRNMZ4f4iK+JAgLR$TiC zZhV=hN@@D_lHUCN>%gbU7CP`}vxnG*ur&Zwr7?z!qPdquBm8GjT0~WUrQn3Si@w6$ zpLhdR;pt|DH~lD4DH!66D_X$iTziBKCA}HiSS|TVI4?Fgl;LmgBZGiQcS1_KL2K?hA80#5 zLfusR&{$A)E+))x-ppctmW=3S)%&?HTd`O~ZD+Qi4Ux1yQH)7V0iLW_LZ3nnWJTv? zKT|_1*3Zjq!q+boXyhct+QQNXN}^2k{I}lbi=DDwQFQIBZ5!LN{leZhNV#Mh!AVNJ zQlP~mX3y2;v`F8&`?pN_-xBF^-vadOps_&Rp@eX*EKR5;%HeU~0NN*6oRhftBCb7uS8)^@&l^ zzRh;I+-eqc$P$U}bV|q5u62(ZuBzmGX3g;TzEagfjzN;kZx5OD6)Y4F-IJqc6=mBJ zr!-kPzMD~#y2WH*iuf#K?jsTkWgxg0)C%e+YfBZ>-t=wkD{bq_iWwMoIHi)haF1l0 z$?xz$78>!Rmukf^-9&w&=rkq$*1{L6eRyu5qgTPZVZQ@6Otd4@^I8ocTr{C;E=fs?9_kF5F0%fU{W|TXc zXr38Zp$qj}v01+;0DZMYHSU|0?p_<*W~3_R8#m3|tZS0h4n}}2hHDZBvGsZ@R2gMQ z8C8uzW?`W0A=o8!L;kM_x{lR{zR&dAaQ#utZj-M7=!T1426Eh|0G7G>FVdNrQy5Sj zRRIS$Eb}{yJE=ztdbz|pIQK>8GQJ4OA4 zAVTP>OyrG3UxshDN`ab|6HFhiNpT0pDN1!YC~4jFDnYO(pby(s2XQ?Hr?xa_$q#N=!M=zJLm7B$odUzeS^CC^Jnx+PAGqIpwfg=z_xaV^hBadBjlr$G2pZ?2PYEu*Um9_ zc@V(};JP7o{b1&511ozW4{dTRhS6M6%`4>g%YO88=xYB5%edinG{&I0r_|Cjex|e7 z49H`r2xLo5cXtmivZOxsotW66TcY}Izax=)cuV9-;7S;A|CFH(&fh+pw^v>@>C)?+ zO^a{krG$2(lXw^>xP&>4D*4C#MroazeUz+(=9SN=9<8i$Bl8=ea-kL)?X09WgNaU` z{|Eo*9}JV~%+_aNc~0rvIljV?F9y>Hkhk7~-g9D!#6c!Hhm^tMedzMdujKac0?Sj> zJH!Zd!&8)Fj>AOP&TgE;x!hVRndpD+`A+bcU&1Xjj0###b{`_)v1KI%@UDsyYacfz zo&7ADWiHJBR_!fWUNUFskSBPLfys`{g8{yYyqNzB^E-sE1;|{e_jJQWAE}u7Ym3NT zm@9)G8Fob4@J~vjt%a~;aaQpy_*s3ysh9S| zGu7qneLgGl*NTLcx9&BeyGi0sY7qpT(8rTwwhwDHNYC5qIuVHwKzcPIicXQ;#Nyk& zEA`z(M;t7+s8rm9l&i5IyFdp%7LvV$*!&?E>DTw1-)+%tEZOF75b|Yv;sw&%EqKMc zys}Q9Dvb-q3IYo`Z(Oe@g^u zfYr4GLw5GR#5vxJio>iruz??vW%VDv(!0%YUF1biP>KYT7E!>AMoL!h9K(1)Y<{-F z`Au$P8bhj@dfE-aXyD<_9g&|@_IcqO&i9h>()CWs$E}SN!ETdYXj^9G$9N+}A<1r@ zIS79#|K1GGC?+t=8}bzH#6Bsoxn1$GTJH;d`e9;+x4Sw@JQ(Chx)%NUh}PA&+@2^o z*Z#4Q;E;>3jW8o+6Y&toL_Lv?f8%i22NQXu~0Z9WCgK3$(kz+6Ix4Cpx3eAEjz>od3dw!cf&U%~wHlEgTBd&EKX& zSw^hL1ZFJG?&d%J2sFeF;G67eGCx4Ukn^^&2hj>9=g9Vk%+H5OZ(fDIN!2XgZuU=FfVxea2#{W)bcsnjl@Mppes;4E zmDBHP`M3{KyV_(db&@%_KA6L;0yBsa9jE`QeGz$BD7`VIc~Ve#SnBvQcvB`2>4Rzl z>KNgQaUYJ${(W=op?7lb-h|WTrJqEaIK0NmM@X~GeCW4aHe$QcRmTX^J zRSc+L)}i{IErfeict}ZgK(UcB=svS)V$(lw+(esR=WQOf?^&&awwnhb|BXNQ z<$`7Onx;xw%`Vm~w-s-y^iJcY82z+mmDdXN==77ov62lMzqb2GPkObPG>jn0>jY)YxKrADpOqd%REsvCEsS_IxzS zn0uEqB@HFJ(9$#|)rN{_+Wjlz270m#f-wa?3Qg5Fbkm^BVn1~1s3K8zA8XxQXfx4e z6e;tBv<|6Fl<;L z9nRXGRCv~!SX9hi1FN5p)jF@gm2j-Q<|5j&y@#m*l9JOUbeYC z=AtYS+?yW9tzxrPbWhQuqe%rhU^mR{v$6o!6}K8Wu)=bBJPBrt4_rUy4^dEi95!pi z^z-;NF78&sd2!(Ux%5%&lwkQo(?=Qoeb@~&j=Jc65gCV=OaHGyRQmNlMFe0Rdg9Jy zE`k;C`QXaJ6+KfPqO#A#*R)ma^gtC|?Nj7+-9KjUKt{)@%aeUkDOG-E24%k zrFNFDDjYT+*18jKE4$Yc5+r9iar>YQb4lyRIB^%8jW2Qu-~og$m9ms4UBZCX1*leH z$o_p|S&2IX&fo5e`cYr#6~_7#5x&^`>He=OI-kn|jd}VxP@mZd8^ZQ!5@WI^I)XB4 zg`lehOhTo_C2a}zIWxJ1*8WMMN&GL=ehh0GfZ_G-M~}Y*xX2>h()uPIM!BDyrl3(E z&b#A$dJajIZk|ydUCsJyvcLAg#X$&N6zoiMzPxS=^^8ZPu_O1O@JFrS4Xkr3~WaCuc!SRL)(72m57 z(mGXF$E!z6$Kwhp=|@jR3|$*SwHd=HMK^p30?Fw+n&RO?J0{Z07&%EWnl^eCd+0?G zjSE5hCBqF4>J0y(sKgTc5cj2_+Ze8Cq>;qZdjEN1E0U8aKc1L`LN$dgSG=&{PdGHL z7J^a2-%N&;cr)tTtkoUM%%hBq%cSr3Wv>Ps?|}c@O+j9<{{ZUN2_VOatfr}~9QaMx z@0N@;jJAS@$_iNy8Y>9N$MFOm+FOvy2EYsiNo!11l_M@;U|B)L*`3-^DoSG)^pFx; z>dVV-7%)Y>+*cV?uBAfkv9u@aHOWJ5jwWTD^~xh0(a-5-F=+&1J$rP@-I8uT17h*Q zf}6dV1*FFDBnDrhGe>v?Gf#yIEt7U>AP0ptxsNNh&6FkCm>DW6o!T!?wGM|H7*R&s z;)491J$xLp;)qKffN16iUSO4C^tjHX^X6gf;hzkxqoxS zd2nfS^6#9O4MLS8CzZYDi#<@9GxpEL{}eyplLyf8w;qCG9^mxh>$RjnRVzJq<>*>5 z(tE2x#V~53x#RsurGJu>SkQnT;y=dWn9am>N3rMfm$tB0!?zWslPA#x9aqHS-rq9Z zg^MmdB5yW1O@%g$Ze5bxNS@mfdot{^5ig21x_9^FJ*qcdioTr3$1s2*#ZE_txUZ&X zri{kDf$F(_-Rwq0QqG)&?KzByw;BSP%*zn!!2nq4M@KvEb4oYy{a?De8_37q-z$)W zXl?6lz;_UJZMo*I8*`=5L%PtuIo5ooFX}jO$zzRZ?&1qOPMJrg*Et z!;_W`18yf_o#bMg^-O_@F;}R6xmz?@$y+~Q&TYhMMt&S|E0=DmuMh@7puS1l^peJ> z{aNqK@l-yZeG;*`h9Fs@9^?jdg@`@Kj8yNo&0L@N=`fps=A`WoPQ0tOAn2R>4P zQ9pnUBhK~aYfTIWNsnIXE)#Nbs*?rd6l93SIR@4y7t+>8x59%}QkX6=PiE<~RDhQ{ zfExLRcpAJ)wG17tV&aA78nhU=wjYD-r6RB9dIT#`UNmx+aUj02o^Rv2bQYyvjocw6 z4a{|zb6fLVB?t3_?4spgAp}*lFttm%&R!rs@cr8-ksgC6uE+@t_;6qzWCwh2gYPNZ z_kWOv$CV>4f6t&iW07g(ryT-g9MwM|%D#T{YgjFnmtWC#4<*2|RS4-G6nd0m*42cP zZ(*8&K6h|h)QD0<0^O|V7bl0T`Ji;R!2wG;MHEPqg*6rw&&^4@b5A?Sbfk-jn8B2> zdD-N89@l6r9j+%ZSMiu{rRVunT*D34`^mKWL!SjA!siQc#sQR-!Ue3I@y*Waj)47rgFC~`qav$6l zkd;j{SugD;;+I!wRzNkFOw(Ot6{$w;2H}UR{p6Gns-F*p#487Y-Jz(T6R5mJUv*KK zc4PP-!A}J6a(S(OF7C`fKzd`eZos#gz7H0S(yVmFWsvcOIo!9zS#yutw6HdmX3xCn zy4*H^F&~y%_ip3g0?xT(TyO=IBomLTlzG|_8fROFXdGdNW&WP6A}qqFqJ3hOwrxJN z(tept)o#0RqG&l=;fx=_XLddx$EYc-;xVqZ&v)Rk@<`1q-P@BW%wq*1+;Z*e~r@+S+X*0leWYD zs4uc1QJ}hesD}tIrWw+8aLupuq9D3GXKCiw$&H^@IRuePZge;?pF;JgZoIZKsgja>w@wHC-&gjUEMKHp2u zL%WGWn|II&>&dQmfgF?w!$t9)0DuOu&j8!x->YS=3agNCnB~YVCTVVksIUQJ>HaSQ z3D_^*c<|4^hw?^3JCXsETgj(Hq0+U>vstz$r99dm8=mjf6a#DEaJ(zG2X7+GJ4f!*JyPy>A_5MC5q=cx zPROve94P<+&%R6zj~+qSzwh`X9LlEOrvBxm;)aAMifsdB3aCl8y?$%AIVY z?XM!5Ry+Sob`g&>q0#wU?Wo44iLT$!p98d_uc#}nCsDIKn_k1;m4yotd5{I@B!bR% z3ZExN`%;c9hO&}!nfT^ey=%0+(iZ+ZWm2wFV;=^K?0oY{*@bRYOhKN^Md-*yV&y+e z?5oGeM)vyABrZHr3FhOLkosI;rSd*?T>F5Fqyzj-pQ$vPuT)*)C)qc_!G!RVgyNxh z7B+{NhBTDmqH&(}qN@aQvZlhaXEDeSp<;xOxA3c8kIZ8$E6>czYuAk*CtY5+oaXO& z2@@4Z$9j&y%bhW(zL_`xWXb5OeL)|$EOOrra>t!A&&}ylv;7}9!xIpMTgL9VQ^8z- zs>4M8Z1-zZV&$3U13&)Cp{5I21VmmxK8j;pAbDCBW9%#j`8rh5cQD!r4Yf825xNIN zIutlv42_0v#yS)@`{I)RR7MON*)iF4O#a1J1aTFsLSXMH6Ba8ee|}BXr^sDZylRJ; z_0x?;yN{3ia3v(hduDA}B`=Scn7h5^<_n9t1$Si))xsk1FDod7k|D`;diN9eeIeXH z`JHNkIKQmr5BdddRpAmY21bs3~Jo!tlta2VElvd)ip5aje>{ zK3Vj3YI6Ho$c^0yhKUlEN9Y~ERui#nLM{o)tn=s1EuiF*{zLJGH^g?^Ug^e4*Rq9i zDwq#XehX2uZfYi-enn*YRBlkrh#Wquj6iTPPOU}=VQwEHt{?0$+Gftwy#g$}Fx0$T z`Rf-L6&*y=^}XA#!xOn$Uak)6F+}Vof`fQv6I5e%!N0$ZZV$hOpN3qw&7$nkLS|9 z=4^}NdbrvpC^FM>bDx%<3Ai(7e;> z84^xf9pQVwYT54C-g*eH>sTf|R>)}%9twYh!W(;MAk(p0j>m?TJ}`Vxtnti09WYKz z1dzS__1}uBI-!C2ol!8+DlogYR#t81Mg8i<^|8rNZ%2;Y>8j23(bdq*+L*~MC6VVj z7p5v!!PZm2?r%kV{csMfqod^5i^A@z_^$j$9VC7)zH3g$!yt~fsqaLyxDA7EMKQ69gRDA0X%ap2#*{VL9dUI;!}gbui`&> zScDF!e5Y6Ph+ge@(LiP1(GUo|Y9*BOjCnRQc9N99nJby6CMET@ z1Aj$IpY>9qZ);x1<4BwQzq;)wRP@?!kB|601tC&VPvcAYR~$~d{Y0J-@(VY_&uy)M z-rCeRga1iiLEPDkZ2vzl5T{FhX{1y{an>mks-liw*XxT{%25*vDWCr;KL`a=WzQOP zd{4?6UfeQ8}pu?tTgU#N#2H2#B?;D zYSG>5g*q48H$IHi^A`1mmDKQQTlI|xw-Tdnf%(?`DN_aUDzZ4K)}g`?g^Lt})KuRK ztoY_HZ`;RO7~k&QBc2n*2h43`K-3=Khl9JS^OBp0A&y0^81=mtYS zp!gfo&xF2c#m=#PA*DGL;{f1P3NaJb)$_&o%#LPZYHQ67Ftu>KviPSOKy$y2Ja%(s zV60NiBII{5D7;l1rT)s_{=8d;KAC8QS#2~8t@LPwPj8FgfEB=g3Jgck370?fjzsm& zgSGDnRz{!Z7*P;bD7Xqy-rMpURG7spSm;oEi^|T``$DOwV~`HB0r#lq#~a119M!)> z`6K)!`>-+H|JJR^3#;XGDZxXYL%g$-udx=5P(s0U-z~6q_sef6Q^PT(;Q6*+N6M1_nVET zFHeLaBUYG=`6WgyRXufpLGfMjW^`_oSo~0->lC)oSy=HMr3(GrP@h>PPJUN;0byqK zU54V=`<{WEa#0pqTWJ95%uHXn5gt@9!!jk?e+{#xH&WiDem$_WR45^cc!$6aA>iW& z#J>VmUgESOx3*cZ{0Sy$9yo+&d@!{!)iCbv#csSBPYNac&C(;u_Qp{Mh9CeO6+=*4 ziWY|FCiFgF|978@@rzr@`vd#HHKt|LYwGc$MQ~muHpP6;jqGz+J3_{+Z?B@1IF|1N zwN~ObcyR#5t#1x9+}Y=ZFoB_C9^6@c$T2T@HzI4B5tfWSVN&^1bVW_>ryfeHKk6?3z zYi}*E<}eY4f5K(VPz3&DvJjWlb2pInbaT>S*Ou`@ST6!6aoe=jVpZ36gY;;jgy%ll z)netJ_%3f5V0(juj*}|N5k@XT{PL}68g~~}JO97E#S*n0Bi?-5wS`C_1*cI6bQ2xIgRly@GhK)yi__;l8qdnostMzyr`7B4GK2VkJe^Z?C0!e> zW81ckj&0kvZQDu5wr!goJLwo5+jesH_m6YVRn1XVS9?^|9_w9mK66hP2R)@uPVnMW zj16otj`b=7OL92bXD^+EjDtBLl2WAtFRWS!y2N^+RFTV-En_nXF6gm@V9t|YZhNFN z^)FN~4q`=RcLyxG4j^_*?7h*Y*w}P@5+Km%$VL>AMF`oGE;8djFjOdBTF?#L2}uP{ z)y+kNdxLp77nXdLAXyFtLn232l7;(6mP}VPOHo=4IYqa`=|~7#e?#Cemz81#diNO& zg$O2u2P;1NpAAowJlCK6LW(FyvPV55= zI5wU~;)#)mI667X#m95+aK5JW3I3rfVYKErgXR3KaTYT@2p-{--FGM^dPP$CWm51a z^YeRItR>#5hx6HSZYqMAdji5Qz!>be>66HG#xB+7ldSTPcT)N zuo=(@kTnba)T9C>xw6r6Mw*$^JgxfOlW|sY{ahG9FVfB#%vB#hrd;xM0ljX%_^vj| z6~e~Ulh#^w?A?pUCCQhm`)g*vSTu>1MA2#{zW+N9J50CycT?amMxq&^?>Cnvft+06 z|IAsS{Y#;yrGU(0nLOTl5_%V6ftKuGWz<(OTD`Cz4I+G~8`&`-$=RBq<``4z0R%}B zdr<;nb^sy#Z)j~1UYazMKj~hd+`pXsn4(%bm(ktvtyd$ojdiG<2z60_m+BC2Kq$LV zC_y5rOA1shR$u0|#4D07z`N26e>220%r_qAiIl_socT=>E4(VeI*1&tmE+wn1aJdN z=Q<7(;=lj0<%)dMsMW!>IRIa}v9IZa$fhL81a9I7UTrRDW0eHABx$lIUC+|{f=Xx` ztyfU2+<>R5CaAMVa(}!u0e0z=<7{uHcd{D$^?Z8VDasNF^7N`4720OKjk`z_*~5IA z+*T$S=%WbDP%5)7+r=?C=D-%&y8J=$-%lg!ej?qoKJ)xd)M`LOFGG*GA0h zE2x=W$n6D1Qpk%ur&Y;y$3(wg(j=^zJ^FgL2gY%QR+YhVB}$K5IlMXC#KhG&Jx+J8 z2BiDfr|C`-ZH}99Iy-swJv@C71t%k-dnG(^IY_pPF2SYpA068vy(3X*w^zgg#N>l} zpUSa06DgXrZdNtQL)EW0S2$m}31P3@6A`yt{G7NTMf`8k#!JB_Sg+zC+UZuMB)xH5 zu@I(bQ_ONMhJ{i~B!~$HhEQu6KSJS)pQBV3n4t?3H=kh}&KW1dD$oP9>N<8N!?is} z|I=kjtsPu~w*$rVYmn2(t@ zz8GoQ)^jua)l;h2tu^wkftKAq<(ebLVX}^VRR{}0pW1!vS0A8zgy2pVt!l$z%o@y! zD*TPli7ESF%tV@DrIHBoqChN`xl^+o!$7L*u&Dq+TXk0-6~PSQYqQ(YuY%)5@p!(! zcYQkRhn$I;gYFtu5Y$l5(1>(+Em-rlw!@XFh`#nfa6R&q{Pz>!l30$oWiU*-QIxeX;LM zX>M=A) z4i9>X>Wsu9%XVv$wLC_avzJMZ-Tnx=t3r@8o7W7e_W_vmoCPQ(sKtXHc#ImfBMxR0 z<{+jx8NnWCtXB7x+jcNEt`wL24W0egsX?ekrnGb2^kNWB{H7n1(K;G z?Y@mW-I^D()3qAwD_w9R9$OW=iRxM@U688`E!$lay1`> z0e1w>tz4Alhwwm4JuEiNs_lBs*0rL@R2R;nbqI^*Y8uFrHtUJK- zz^KSx^>KIkP2LK2dt~v#SSaB%j1SupQ!>F#4uK~Y+E2vT#buXaKV&eGjy@LO#L8U+ z04*BIAVM3yJ6wKc@IWZWL1c)ElhfJihZmu9%cYmlwsHFQzuD~;3ABjlQ*;QZS&{pZ zN4k$o2Ok#6B3&gQqKYPWV(38}JY+gRJ%ql&(rDAzAVEDa`AJo@Nr~O%JINaC69nGo zL(_0uXjJEut%e`c4xY`Z^zJ+pA0TLdADMg5$IT2-vl0q0!3>Z~Q$B^Vvk#|TG;};qY zZN1mt@J4_Cpm45C{%jODeg7@QL6zmruyC^!ogWxwTC398q9nF_3IjwC1Mwf>vm^)N zZpPB7{Qnwjk^T#SlQlvCj0^sXGWLbTXFx|a^Q?GH`5R7$i44c~RK=~CHNCJ}{0f~c z?ZTPWy)Fl_jT>yp)ppmR*Sel2qswm}4^~VDo~#_g_2j8IP}~nmTM*k}hX_EqrAZx} zklUQx7r+yI{Z96wNsnxtRgGZpEbT%OWhVBV1{Kh5p1Zz7(>SuBC`OG6!6KJ9o}Fm>kA2sAtZ{6cuG7Bgv*6x>B++IzXrQ=%|yGI=fOh zz+JX9R|;-d9P}y+UeMZQ;DOg-+c@-p!LSi7N^Zz9DB@u_;I>`*EUN=l(_gxU0Ytv?^QM2Q7TyfYW?#)+*pd7IRslGo zp57PUC~)iUJn2Co&S|IFO3s+mz_?H&ayw<}E3z^7F%(d%nKwg#FvK0m((Dx+*^`!F z4<@Kati3qUFfFbKVG{@<-Xx64DJa3KnYy}wl^jPF9l)d~{573!htsnT3xCw>OP^CX z;+G~Yvi>jHFJEl*M0jRT=LdIJoj%@=ie3wzAMHbpRI7D4LU|)g?XYIHbAV^yP$UWs zN??^|>{ZmzN4n#@8!O7~O&W9>U;qWT1*R6}8)A+@T)}dPfMU#|^ zWFY;UF5!~ModMY(`Zw=Uo^2RNeP93WD;I|6XLAe<_Bgqs(dkHBfSVCI^J5_Wr6=wf zWq99ETm)@F&1{!xc<;R{Zf^fYcmC@`7=!P%_Kr=Uw_h|*KtIg_2T~I$?2d_sU?sdJ zRD9^7>_e-Rr@dr+=)SC3%(%dK=!vs3B;m{@*$++rQfw1zR}c|ckflsfjO9=4b_9!y z5^5tbNnZOt5TclgWw14cAvTt#%2Qny^;#!L8gLWgp8-?3?Et<8mpwvEHKsS_eZqxK zy9m4a{`sOwh|Pk46+%PYXxmeRL=Usm%mcB1lPmL+^Q;bH|A7B>7qO}G&1OS1;buVo zYS3sCq>gzxh<1E6*c}~WS{TlpY9pa8-C=HxcCFauSynn*VYOh`=~u}^Aa_oVq1lP? zq1Y^%Y=6VlL9^EGo9Q<)RMr3~)Abts!^oz4MO75b`#F!FHU9(!fRgN`U;V?V5IqUD zjEvY}Vq%Q=*g>RLT6KMMRLDa@hqdg=L*lbb5&8>nr@F~LS#ZX0kLGlmaCl*4DZS_zDIR1RuROObyo!JBlV~?$kgQs>2S5 z4VgHrys%Xl`{p45Cv@yBmtMDBcn~3AFbhCo0tT~kt}cL;m%y8J`*_MAIEHi)mdwYs z0B2M!cfM7&kDwK3lNGMIpLigMUnUe1DIw1319CxVA5Ljh8@V4klwQh3r#ls%)`21= zDWP;7K8yqgF-Q8Vr;uA+Dv~a!G;RVtv0+EC=vemvNz@p`wI$IlP68&CLeNVfc+hL1 zJReeMqF{OwR;iv5CutCa8A!%pg9J7>ukx*18Aduz-%9CvaU8v{j4iT|_^&mZF$^i& zRLubU0gTKInjoR`HIh{IH434>TRoEGZZ_ z8aKJ^e@COBZiJn8gk~BkBTP^sb*jaq$N%9jL1x`k^@$XGvtxw zmP(+0__9t&xJs3h?PJ#JK#$IENK#Vq) zLff1JL|G&FO*Ob$NHXCJ;!68KeGPFaVp?o}Oc9Zo&Qd2sbaYC4Otf0!J-wlppjwIN zeX*kzp<)y6E8Aenb}~LbQWLIh5rS)@8>6X*<_XUKG@E4DCF0|u#9bel{WB{!CQPeY zwz;b%Qi)^hfc`PNnb1<9KT!HzvVnC6JpxaEG|+0e7DfX-y>Toxn4SS-M|^XWhT@gVJ8M+ab5^>Pr2 znwSR#`m1UgqlnvAoF5h99FV)X;kr3|T5}QitIYe`(5aMv!^Qe;TF#AWLdTTNBIE|q zyI}k~Y{9+CMMUNlHqf$|`v=Apc%gt}( zFT;93&y}gZE$`=6-M09VL&q4C z&ytWQ>8od6MC9IhC$cXuekg~N##&L)Fcuqw3(ehYix`J^>{O1oB@fwBZ2EL%L|X_R zYk6Nz?gBC>F_fr}6nM0B%g^Y2qDeXz3urn-hDfm%7{TlkbmQ}{48%Xr$~9MAVyk?% z9*yp}Z-qksuFQ#a704vk&I$OqJAFia zpc?iltqa6nngrfKyfBuNRvetb~5ne77VkL)MY zW2GZNSD>%cdo;v2JWmHkRdO34N&7441iW)NO<*B3%fX%6sP*TED-3hFoze)i;O`b^ zc;NrV4k=9D7i&_SY$N$K$>a3k7QKX3d0Fg-c^ayRCg`Xkd7a|o*FX`sM|U(_gJAAE|$5ZZ5o6v&8>mYYsxI0dbO!2ZNLv^#0W>lt~D#8y@Rl{qpX} zCgz_a=T_~4gn0cJ><#!S)+;;VBC$JUkH$vti~r78>C_`yoOlB|g8%HMf`mdn8`K0? zM?s)uGYk+Lj0X|E%kCgsJnP}l6{0jVVpO>!re^qc7iI~$YH4EG2A&R_EzouI%Mx{M z`MI!-i=S39YraSC%Qvg-6U7YP?8#n_{=vC1t?NAlAq zq=im+H*b_DcthJ-vtWENB-jO2JW*H{>10M8$K}>7)H77<cy@ zq1PlT?|K9YfDQTnnnsFQ*DF-{Bo*nXC?a!&iJFu!6!1;L2vU($RUaMBPYg?y_!!Km z#7&BjDc<1$l}l(M_3HRVad-L!%Gw~7nJu}$U;{MyL)yTbHG2?-9scoaE27zD&*#xYV2i%d8vR=gTwg)_g?l7lLoqLg9s*~f;sNq8m+i2ilj zjPZ)jWSjbkJ*ZSziv!hV6ZoYL{`l6CI7g2ho=m%%ax<2;`=xZSSvN^;=B;q@(XO|a z5%az+TK3|4yjf=-q-a)dj|}Q8pS!~h1MF2$x1F9xB=jPgi>D`izSTa?IwW%pPcsby zJ@`>fbI0z6{UB5_j4GtzrX}@(!l;_=74X|Fe!s=d>Xfl z!fZ~ui(={i3;y>ymm~D>JlpKPWlgy(lldTq)rd30t;#fny4eXx0PsEtWaKr@Zjj*E zA{WQ_CrZJCrNYY+k!MJXR@H-{!Z58^Q%bu8G=^sX&zv%F0}x#D1Z>6Tj|tMd;k#hx!BBHMJ^1mZ-N?Sr2m5_#Z8(ILD`F7d-;%yv{o^ZVKy6O zZ=$d+9xxHr2V-gyzEGZX+AYXMi8G0o`$zElN{R&z41bOZ>B_;{i0JftYiA3b4#xC_ z@Su}qxzxkYG~W~EL{hS1LING&7BU%mVIip|u;AiEi=9)Z!e=HFi~F;pl0C%g z+9NSPYMx@U|02`+)NU7n0DO%<8LyYkjUa+z856b%DH(m@Xi~0`DLZ;qf*w)v@rEG2 z?35xCL&-@K9nODBTzc9C6A{%d#Z3M8Mjg;g3tfQm+bFg641W50uu99Dh23?>^dxoH z;ud)|Zhhti;7YF{w;gc2JiZqxvhvwDNxVIoa9P|IOu!^&RDwvgf&!WF^hjSIBjU{7 z48MZD%YYJ8zOzFM)!P(ovC70b3osMe#3$#)bu9aaf;;Nish0cAPcQXE-4HX&#ChF1 z-$PjoG?p2*=q4|to!W8v)I5-$<1zH8G|z0i7o2I!7{UR5fmk4qsy|Z5?@_L4bcdXd z7EJlQKrtUU7f4$qsk9c~vx8tN{cc#O|(-`)w0-ie=v_WdiF@ly2M{>v{%%)0rf)M|JiSmufSP1xiLdJtLOC=EArwf5c9(yS`;lZccB-PJR|+$^8keVXYs0-+8G* zg+)>(8}o-w{OY|2CbLWg!sa9{g-ON;(1b(c=^lw24Xc^1(??*gd7d zx`46A;rLBY7x@doffJ#sguz=&mCD}KzTLav0k7SLza_DA`#ea!(DNu$2Qm+rV`Osx z3iRcOSAfQ(zKFVc1w@c zbPBG|WQ}G&I|REGAsE8)C|zJK3STl#?bz0%v?Fwy2l4}#09NPyieg?>(o+e~pUUJi+_ahc}TWc4@IZ<#jSo@B_H@xIdsb*87cqPcZa#Rbgm z4kb|?q@qw;s-<~e>w*}<<+M5F3?^6s8Vb>N=j>=ya}#xDjdC1IOwop9vncV{J%Jp( zL1X~AUWZyRWD9`!piJu!H2w?Dd1!-g6qLe=I3c8Ag5jXL>`Bx#oKZ@P)wMtrErYJd z9v5(iCIqVo7Q-tIjno)Za2Hi!O&%z?Ua6K31ahQbjVHL}3^q8OWsS=me2hbdrKMsg zk8I1=NRBW~t-FGVh@dx{;xwZN>UKZWBF3~%DWa!H5JR?~M4fbzPm|<1rJvZaOMk`q zFW5`B@0dPHuJ-|BbC>><@zqj4Z72epaC?gVZv9ZdZ5T5K?HHzFLfh|^DF-e*E*m&M zoZwITp6Rb&I;usgEOSrH->rgA;B}DI%wpvrReEZMAQ>CzrT&H>P}@ zBzM4MccWmlT(gp_IfrD-N+0W}eZcRS{{bE#jA1i^M|gt+AML*^sDGm#C8wASPQ z`xghS$WK#Ky3PSBM!Ajq$_(%qkWpee)2UmCI(6{^V6)M779c%jOTo+|K_UgAZsBq^ z7L|i=lmNP5c12LHPc&}1sAAVM1A_h__$4C$&-w2cTW^nZmKgTrh=MkGzwMTZ<;wbf z*T17H)TD7U9X&}g`+Grb|HgB9fyM4F2WY+%V^I1jIo%D>f5yciF9o5vG?I#>iz)95 zROZDw-uX3iPN}*UUXIR7o_c+mzzM)r1T{pQFlChv=J>~{TmfQAhzZ;k>y<%#GMfry{zLP&5B#U0wt0E{4iybBCb#0aOiQ(R9u{sWAPOJnU$4=z^^ zw>P5}fgs|VMF^gop8*w7M2@0@cq~1cyA__xKN&hp$)mQH5?f_z{3WjW|hQ|-Nzk=w*{t?;<0@=?pio!QiPR5vm#QgK1A0@Y&%$&mW0(lIZYN1n*%st%b z0i!HHR(%V;RB+)lU$89Z*dZv%m$0PZ#2)M)_&&%Tb*_`<&;fmq8+;86d+uGhWwZOJ z(ei-)o>l*DEo~s$Z;nS)8&#&!u+7`Fpw#YoB1K&UwMM9#j~AEY1x(5jk_Pjjd$dTB zhR3rw{(bIu_=x=~@(hPzF{opjE1fN2Cd4R_KTy+wi;{CAuS9bv3l zgz|f=(fzJLlvMa-(XB?W_a5~g4tk-9BzVGKvOzcY+VbcKI7pUD5DXW(3q43y3we+Y z!aB3Nc!?6oKIcqCT6MB@frCY+HMWoVNp#0$1zhe9^#GPDvxEBIZk&81Cl#u#Hhaz`H)SVHvo^>~{hKK9HN$WAgEXn0Eg# zAL)qt22da40^qJ=;wbu;t#a0xJ;eGeRSH~G&PR*ngJ$_uPw;{GXUajoIA`AC47R_# zhVoBF@)Zd0vU@vo9{AE&?O$S=Sp|i$z>Ig(sg4TXe#Y=pW$21@KY*}8auNRal3k!$ z*xI`*^DJPjnG57ENNIOFOPZ0?`sJdK^iM!ydbo?WGvCpaH~FWHiyrxzyR6&z-9#dM zI@$g1Imb2KA;R$jw?l>PF2VmXJl2819=-Jf{`nejxm|0oMpQe(zI6`&B8hvwNWV@c^4vraf9Uj z7{q#PXl?z$r$NEz3%ohv%Q5;Ya)FaZH8jZg^IHOkQdZ3TxRIjmzl<9A7iYiF-ghshZ2^12yV7mc z;5Yr6q@`P>g(xksL?S3WuLS-YE}KwrkJ=Sv$M$HG5Zg}886U-pv0`Buzv|T8Wf^@v z3d*_NR)Y2=a_WquDq04cT%+yK#n{LDem6Ewx`+q9PZigf74(*pgIew_xbs1`vYN zZQ#-ecWEIKB{d{sL;JJ02@pcnyp63Z;bstmlwP&irVA1%v)&zXg_=oxp+wys9KaLD zJ?vAg-Vz+AV*Ho*pA&?&pEMHWktWq8v$RQr%+77m5T6Mk8_0GNo2Lk~;t z!QWSqU}|942+sx@f!|9R`kQ(fG)g7|Lf!FgSzz-81iS&{MfbG7t=?T!)*G}A>Sxm| zH|=R~4IpjaQ9Xnf4i~d6jzZ&lCP&Yz^zS#xw%-}}0zw&%Rw6DZ2{26-4*5+rO182l z5IVPxDvQ0%EJ-#J9b0C-BpxRdM1Qf{Uq;TEt0-}}TH)61I%YY!IT1Y)S3EF2+)-3` z!CP~A5~f%>k1SIgQ!l|zMhbKt6o9&s=oy^)yA7+sU@L9wTl%Y=i$+b7Af+5@l**TE z$`ri;2V=~T6;!aVu!|QF00m>H$H%tD7G@6r-h?BnXl!Htm2CLrsnB97sHp$&m7o_@ zM8g1O8~F`Tg;nJfb& zYw%B$?^AtUUnIy;K6%CYJ%;Jl+Ys}bD13vB3Q;S$&j2IC~uTZ{touPAn@CYE^K23b@w6m(J-~4?QAiwU+u6dh1DgWxWU!qx^H3)T>2~I&&B8rG(@!GIuup1 zkYnCxe&Xc3AtvM=b!Ag`V~o-${Jx5^neu)=?j1CoHLe`?t#SFV9f!TKvRDp1cMUR3a!9!eX?gAQlV}D{MXSNP2t(WR<7H=*uJ( z93E0k8J(Q;Q1wa99o<>s4S9;aTUYUXs$bMWkEwVnNMyDE!-<3P%d`SI+}L9U*3OeF z9H)l6yZN7KMW;Y0u}~$-=z;Mq;UpM#IKMqaz$&yKx_vnL`2G#|9*pA-+=oWApQ4Dn zGn{!vr?ADP09MBQAa>1LVU+M6nw-JK5x#j_@gk#K&v=aJxe^gf5khH)adI0(|0H<5 zN&9iKn8J8zcViK=q>=fECZ6YAhV^-0#1i+NCM9cqFZdOmt3D<7S0l654=c?u_HzXJ z`-qLNtyO#oY@8Dv_&y6cv#_c^nvi1feJ92Ala;78VUe%4#|Xh0Hk07+xsd5Z!+Yy$^*xmngD$5c zJ%MLo1E&pz%|vUk8(S;?dmy)iF3){u#?+b-UX24dc^*vb(@>Yh|TUs?K-skG{#Zw zEk=RxqxbS)hL2|40<2yaiB+2+eIDSvR+&;66&oRS8Qma$YyDaDj@+QA%?I`=z-Zkr z3xx%5?)fCPZdNLv6%`Ws5lOf!t1i{mNy19`&7ntcwv6+X2n?1x+aMv)!cX+PiVtSO zZ{Kz;EMT?!uY$)T4e6AC%AWQxyH+qZ!XwGyI>_1+k|9M-!y2P}%&yu9Dvhh&xXdOi ztIlo4cpyLJjS$oV=XDD<*3Qw7%}!VXaYL=x!UWnsT%Mq%njV}(KF=okM8r>KaC4#> zGj;bwnGgQLMA^|>PXU(&;Im+^;dJ< z>Q;NyU5OJgBNw57N>}hj^xYP*fp-C{btj}RzT7ReL#Q&9a2mvNn_&TxWc*{2KD$ z*a$a5zhH~SY5AZ5t zpG$Nk%8Y*D6%ez_6G8YrXJ{UbA(}?hOJZ#EJZz>ptS~QBT>O~V?T1OUUm%3Ey4&m) zG2j4d6Le?c@#<1cq9+?7jAHb6sy_OW#j%RSFSBT%NQxMdIww(5XTKIpmlzU3IHAJ| z8ZsJq(o~AnJ`0cY0152tm!zE>LJrIz=Qhw+NpBeod{WKlJKS9z$Y%{$Gcn6rXX%_M z6R1B9Nl32F`_eB-nai*@LW$n#Ro*!5f}r4H2GB81Yay)F9+yLC+*kGn3@l1mr~~`Q zEQW{rkj0gXes8&{fl7T9MyLavUiGiAw&i({gBb)&R}JtKb1@RqaM*V>fErOkN7B=+ zbsaG3gyyAmVn1m8#Id6&ZA7Bhz_AvBZO zQyj!dRH&%!i^2o(?)5FVj!ndc6fAfv6McIABal|DbJeM<9ON6Qtf7Tgw!RZ5-AO#) zW-JNDM1*#Zw43!g6xseJ6|^W>#dCABBsmgWQWs6IcVi7ka`^NQX1Cs;z|V3G02L?&>@snV>_ZLyKj-y(b>=-#*$ zSPdqI2EeE`rMG6pOk(+*Mjo-AtU11x)yCBfkLfWzp1v7MVHoa~#az!UjcTYN$^yDs zk=biiUG$W)z}wtWBpHPGhzDt}z9*^3#}Z?MkxKspdWS-qSqJ``M((D=kf8xgno`xb zat*1jgpvD2!GlpQgwSlNxNrnV`dq{yg^M{U6Xn33g(Yjt7r{5Am0#Ju>Jn71J?H+} zi>SWr0+TA&#|?9&NE7MK91;G`0qsEiN?50qFCL%<+Y#In$RCYlZf@JUYL~#ic2egs z2@-*x%EnCcVm-HNP^aJJ)c5}unK;rEL;_yy*uAKV=o`JW-eOF#I4zh))ld@)u`$#g z`VUfBibYEO!tIw1Nf!M@RzV53Zsv&>#pjm|aP*2+X$lt1;Nfc<*52dA)6HUZR+!q1N zuK0j?g*SPYpa@`UzEhuiVr5I-D_A0#Ac(j5I8PfG3v@;R!_D0jD^jf?cibQK7}xn{ z{NqI`B9Vx}u5hg#p_yNGEv(CzgvLaVE50s>Sp>OVeYDG&AXPzhpPEi=i`eIw$fO>q z9?aw`qQ@vKZ{dZPcFA1*6n&SOcBv!^R-l%%izoJ=Q@q1YumqX^U=a=6fHqO{f|Wr| z$uUI|rK5$dS0@;}6mZ36Yg=(djJ9ArY^5^)!VfwGTiaCRVo8B!Iq%i5_iSHTpi;Hl z)^c@Tql~?D}68oxwQcf|N(Ep6Q#gf3AZMneY|in_F$HfDGc@ z$rVMnb(G{6MR!%}ovizq18x@UXJT6+bj(EA5zOsU_%YnbQYmvvL67Y$#CBG;DJXHR zZa=(`C*$oP$|_=@s|eCR*ifcA12PC85Xt{3Cg9gq#qWdv+{6$ZnNSZR6ao#R?v_>H zk?5%JwvyQtH7$ttb6S9HUcyA!f~XLIz2F3uTS4Y4D3p6G@cJGUMLHyPs>w1PQL>_k zPP;IkMi|h!66S%^C`<i6I<`%hqEMzfKnCA}U+~hT3~mf3RF!PL){9VY3<8)_Ot?7`)efyB`4bA%hY^iq@wt z6$U)j+nKQvTDYEpc>Zb80|#&fid6bWN?8;Tie>NTpouuNf`i9&Rb>%F^~D4oZ- zJNwQUPDBhRg8+%A+eNP5fp9)c6;?VoZsU;xA|HMsgFUhiM)~I{R}rQ$nHb|UbZP?# z#CcN%Ra3oj-Xa8Y+-&aV?I4;WulJnIIR#8)O{+V-dW<$Gj9*EEsAzifVe8?(sGi)P z?*{t4pnihCIG%RcglvRflg?HBS7RjVt1AwY6$k^wDARi-|*8ZgcYRp~}=yTD}SOk*|R zk`*r|%H+xsG_hA`L7*Z5-_XcW_%PU;jGK({^~RFazr&k1$<`Zz33 z(k}nY&eD@}lAHbDb`uIo$o`GX?FPb%kuats>vMZt3H117kQRUU>Sjb3bKDaV`dEmj zw8Kw=1BH?gP8RJ_An`kPti!LLk}(Jzj`G@XX|e4HGe<#yMA59L*-zzTU4@uTCqpM_ z=M*MLeYPL+vn&{<=2F8oEMwR{D_4J>8Wxv}4+Bb2!&UlE`1%Sc7;_2WR;OAhsUEGAmr>dqgb8>U#aN7kFQu7K1_nfzch5O z_=VAR>Fl7Lj$e1TJ6{0iR8e#Gnx&(1H@5yXH-A_b&zt1-xGueTyHb7_;#|UV{PV7l z!4kDNo_%H>Ojg9QnWEz~gK0R==@75xicTkH7uxCUusjUAAK2~9GN=B9D+~GBaII;c zu3SH55ljJm-4{&A-@zd^ME7tX&Pp!6hr2ip868$L2wB`2OLtEbU&WWY4*xyEJxL*V zHa{cpqPp`~$WJsuS!JFiz=?b=PpJ?q%YK~2fe-6Xz4e%RKX_O`5SEo_`TzbOMX18ex%I8b?a%{lVaZg278<7jJTyD`vsc}xlv z_CLamJDPWwu^)VcVZ~z@pRLU)`0)!Sx?7OPtR$k`tqx>jyVBWp6O|XkZP1QMvMxl5 z8=R|LV4oJLa-hSSCjrNvu;>7=V@ne1!^gwSREuy5W#hsMd1dMeEvhQi4y;OHr-kx` zsGFaV|2%SZ%z)O;C6c0lKgKtH8S@OYf{2P12W#|X8J_{fr%-(NJO|z`IA(;7FChfE zKRs`&g2YzxTbJ8&uz5S?Xkq!G1gQ6afj1^cD8ur+0^2H9(h6n_EbWKBk#T${i3y8) zdL(Cc_LjqvItkElAeBOg1?3AXw}=r<Bma3y;naVCY@aLmvWV@5MH3LI4S)DTFiN z^kMp{-JuM%@`iJ%CA!`Xsv0mHUEb)dR*hnw9XxPfTUIR}HgP3|_@Y@GMs)V9?h+!G zuRzMMXb_xZlj7;C+SQ2IqWs!o)E=7p*vSPpeHHa{1&m-fZ~r@)N|S%-VTQT(u5`3` z)Y6#*HGgB{%<}M35RGVur^UMNLg$>V6{yYgZn4isQTnj(Oz~3QBN6F1Lx8%&^VDh@ z=7-Og=9{CZ5K==Lgy(1&c-E?3YGCA4n5CSBJ&r=iV8mPittAYc2q6H{1`4OVF<>lF zhvu2go_cu=PKRg>%|sX=v}!m)b4tV(RyP>^6=~m#$+EqAHzX<0uT@B0mxUu2;qT9C zPNP#ut!p<0WO>-72Tq}u9>9xP8zt~``3+rs+YBoa%G$*aG zX;KSzD+;ZuO&b8jD^+P+YYp@=7Kxz|9@Z5tOpWDhrddI&e4(9Zv^UvdHqJ<@T?gV4 zGV$VymlLX*IqeRqpTS!)>G8JVxM@TSFI-jBFi3TTp<{)ljLy-n=f9pFlH4f{k=p=I zp#8vUC{Qvq^up$8NnTIx%s*(vSr3v6(gq`IB>CMRw2wD5_Q-ay(1v+?r?Yy%*A$h2 z(1xD1{}^mbBI!=pKKAkX2tC2IRulI#sDnmHTF_VUv3dRx)8rx)_n%iOlfC0VyU4Zd zez|QE{Uq>^rqL_b`l5HqC+;?XU~HY|Y$dnSifl=W(uz$u#O!ERR0<1B5zJ^7wleCF z9B}WsDs5XL9_9{opA^ixw+~3YsCwJgd$IiKkY{v4w}k_TtMyKcf66a`$`a*Dtnxol zpoHrc(j%Ps5YF+Pb*GWc4j8wfy<;V+(+z=$o(jNZRT_`qKtw&1O8B6@KrKaC`=RgX zyZi$S(jDI#sQLjZBG~qXyxZ8_j(2&Sx#TRJSfo7i7D_D^&N~CxTJjc~@lHEbE2x$_ zUgEr=qv(F$pfeprf?ob16y2DRILkC+-=SJS6v;QptKBMhxtidH%$)&!?EyF%A^SX# z7Bb53&q<28gWYI5(7%Ma=QeP(6LUpf^IAPo6uakeV6aGne{0G7)3W>`UNw2|PE-f{ zfYQ-kjwAAg_3$vDd^*0e|MI__{~t021qK-4W7^0}Yo}kM@CIVlf?(_4W@^qzLHqat ziOi-vy+rBiD`?I>6_x&unN3G!ZRL)S(j8n{WZk6d%e5oXU|MiaRw_BJ>5X{k)JKcwu z;yX-q#|WG&f22r~pvfD-vX-s)iOe%m2$Dub(QnYz0s@<(@Wr36p!+rn+={NDFHaQ; ztA3BPMMxej&)3{OKyGX{ZwaA1duba2wFGG^0l=?OP7x(_aeT*5h!>+;I!{=42F5Pu z>LvS`0b@EtFQBm_Lg$jpJ-_X2;iJz%nw%to3PFJ^(7MqUya=q*ardwsfG`-6DG{$Q zCffUj2u;;66A=c!zJrIPL4%pL77UTEnm%d^3eL+M>%{BlX;NlyOnp~hT%9#RIG5rM zcv@+Kb{=MFZ6h6wn6|G~Ff_^!w~4TL%$gNLlFf6KIG<=rXX^(rd+z6iKnabsUq^|^ z;S--iyAbGPd055bAN|R_!?&>7P~?N681_mFH;a?iag>?$nv&QbLtW= zwG%D!_9qMHr+o=lJhihcYTKZh&z5ev=ZA158hD@+igdz$QF8U15J`oaV7>cKQVAk< zR2alcM;Z`Gu|Be)l#Rfz0q@>bzGncqd>VjV0=hsiG&y|s&Ef7Q;0uu|?amRnA3i@A z&-x(@tqA-Bcz63@A(RTsiFx4n_YPQ_JX4mtA0 zu3amPEydKOgL4$`WmM7G7D4}mcyO|ICkt{kh&uqpM05)78Z%_3D!B-s13P_VRamF8 z2B*tno6p9zn;YkOe>b1$>g280oNS27sRWtzW?r(-)>ZmWW>GBI!MwMht`rvZi>@kF zn=krD*=x+lmflJX0@)=HBGJ`$6BqKfN%;%Tx7e2j^1K+BSPfcjPXoJv`_G841Q#6_ zyeI-ipgptH7!)+N{7;qe6+$3PXl^v58!0oN90l~gTg+9NlNk^Z#n$Zo_VoK^`2%fj z3U4voDYpzTC4{@cXUsqL&}F#R( ze_jrs;gh_13_3|LA&Wo7&U;%GI=_SjVOOLZVYp&-%R{lx2pewuqj?U)Um6vWC!6G8w7WZ zp*&?;s3X14zKVBj>X8qmB{I>}eXHlbYn8B>5-J0)5<1pd%FlEtY`Qf`bH(#;m<*dy z-dGs!?riY4N71@S_H*y|YQ}kv<@0=5?uS~ixx*iV7ON9~w!fDzo6+s^jd0dHD==9` z*lS2$pPIB4nh>>=2qFjCw5R{s_FTc2P0J&TsCsZ}lfaagj#OfXU>hD}(Y9%ObopE1 zqU1%DYy(gXEh4txjKx)PQMveO~@pUPU~--mf`A#=1|SLS^Vd zrVQ5%`R-KCkXQ*g?Vf->Yr`Ij0mBEX|FNnmH2;J0P#AuILT6)YvZxMsJ=d0=hyP83 z0tzy_77V!h#h|C-tBYerNKXjPA20LAHPWiw=`8O{xs9ztu-ySZOMGgxa8R%amyQsp zrU*j<=Wu4WeV8!2nreW%;qqnnmLvu}+pBXOHLmJm~X&LP;c!LPd zD0`8HRT|f~>!qD`(^T9lq*zeZ9E{XC%Nt23Vjipl&2}v=6*5CF2@brzr zk#*tL9ow8>V%yHd_QdAIwr$(&I1^)HYhv3I+s5tpe)!XS)#<9!UDeg6_Fm5dNs8h4 zw3$*QT^%!m&*e9Zz#2dqc_g90|#PU%=Qvpvi z8`p-v=JDG^&|xP`m$IRP{hN16UGA0e)t<{MHHf9_O+AagwbT;CfKLNE!Eo{W^&&^D zDf4#TJq?+8Dl41)xO%{LBbrNmMkSdgCy`8gW?qm|F4R((K{xHW$dyHWMSbY?LCptY z8vY;GPE!#C>QVT}RNroq_v=Go4ulQ-eLmM=F-ty6i5ZFKB!aO0sDQmZ_%kvg$Nr5p z+xuHa=^kXrdSO#F2;E7@ z@pZTDrdIty@JTpTUKT&%hQQ(FCHGozo&9!A@`<%m0305hHH;r7_rk0tcoC5#8l4vI zWV-U&lTv$wpU-yhip%AG8R}5zQ7mxUs(w&RC#Ps+phcz_M%FvaPhG|S7Cu)3#QO6F zF6k{ihbk>IZ-bw$y+h3)GH(`%Y;Ia4syR~*9_mg-Yg8dr{}$;!-)ml=vZXvrvgrp$ z>;pE(a?+A*@y`x$582=vt6 ze0-!#5YS>VXH+{brwA!mUuKG-l%^D9#6FBNV*I==Hd)be3sIdGTVy%aaf32^N;4{H z6eTZvLOc=9{4?kcy}thQML3ho(uDOzxhDi)`QV!;6Z1MVy0UmUj_o7mn>=xHi+$r0 z*efXrVu0~z?1eM_TNm~N@ZdaV!~Ky($-C$30f_(r8X%oekw!xa{Q>CtkZnPf{Xo}> zL)<-RG2T0Y_Ltv(?=HeLZ`o%K{z%b&*~dGOm5A4p=veDH?riX$Jsr*9xY*YrB{w6F z)=Rx`GD4wp++mM;Mk5e{`D?Zy8M+{Beu}NvqI8{O=WRyQgSG>D17QK|q&wsVmhEql zKq}7V*l}?`b(o>zfstTRyfH3s1?t+K^|mFGL&{tyCJgR~Z^%$)pn20laCMjht zIH-zB3JiK9kR2qBjQ0t@AaqI;Y z%}u!A!Qx#{PEnP1a)_22d?csvg|e%7hZ&>|O>sfEr%|GyXge`e`zYz{uN=0=TxhR+ zr*1Pzt%3Rs4Z5{VovJCoCYF^#4=rW(RcYSQ1W#&};y(^uPo6|Li8>NL6i$$G&iEtx z7m2^JfV8*i&}6<}PG z22}s}*QM_jV=D7M$DnrMQ5HfbLx1-vt=4CO6L4bVTzDR>mUYV;ujXx+a{C;$#lwOY zd8PY9vue2yO=9c8u2WM}Vzgl&k#KmbjTaOB?F~oU^DNrhl9}mO3`R{!NCKzAorFot zcc)dnA8+-fI|<`%&#>I$Qa8DlS+jiLoS%K~M2pb}Ys#@#<%6x$5*$62w=fxk!pV)q z6*VSgs?U`K_{;T~NsP2UYH_ZF-bd#$pecpXO8W3D^nZ~j`1M-CL+4gwM4cf$ zZVtua2)x>X$53nG_M82@l54Tqg)N(dk{thD0+?WXfCWVxTnC|3=Ys?d68Xt=y8E_ziw;$z~IE*)bg| zvGkiXj&B8DGGm6ca}kp(>xuSJHJ+wQYoHG3vsJn30x5E1Zr5bY0*-uBM!MDr4gx8M z^dA7uo2ykM4Rk8Y@VhGNEm6rh-9P398tCA^Ymmvq@1on21&%y;_57ZWoi85dPT}vz zuprw&8T$-9ZWl^$FBUS;`q6fjqO7y5!bZ$ z-p7SxG6JPUeK4k%6>`ia@-sCAIz@f1Mzv4vk=Rb7WGh845DBC>_l``ka|NY$X2Ej; zvyuc26N6-=&Yuxnt2z+_1i>m(;U=&vrj3XaOs)y?Z5*)!qRpRxmiqQ`s!>x|x4vGls1YY5h z7cC|PXvR)n-XSI)k4Ya?rUi;k=>|s(+PyAGXtMYCoT(|9OnF1-1Rpo5>neH5?3QGa zmme!Cvx#VdCyj23;(9N1IBtrI;#jT+wZAvVzdXWxmCpsMch#^qmTx`%v7zxKN} z|LIIny#_zGe;ie0{5r$&pe+bX;ZFs-&L|6F9E;|?WKZAQT!#Mx@djMx{ud3i^R~V; z8BZX?57^#r!RZYUL4MfUZh_bd>JM*lmMubsHabqje3N?Wsef~novY{FfzH^oprhc~ zx7JChTHhBlbu7LS5V$FCt-=9qQ@6>wm1R2--aTiZzu&~-sde07!qo|Tp;kDy`n}QX z$((r5b+boAV^=elus^VI)YEpK-`{bOa%h*F(sO19AkDd|`6@CuR$g%W$~$POb&iw^ zS3=Uon!MYoz`c@Nyp~Q5=Z1R5t#Bb}OHU3HhP|LLSM>}6`w7E%ATnS^`?)ptpo7SnL zLUKEpc^p?#G@wr${7s>SqnsoYki*&h$P)Uqfdk_l$!uDT$yw#g*km;Erf7}l1Ga1y zMFz3IE>%Xw57gaI%va}4qnH6z#7zw8W{i63XJ&SZR*;5O zO!fquptWi~eJ+v;>i}8zO$bI4xMoGblXZnEZflz$70V`h-BLm!x<38H{(8~B(K6?S zz$R&FZ?|5M44x0fI6@>cRgt8cf;Yfw@6miKMG8k;@!OMc$#D*8$z{OX zr`9Y@qJn}EUbXsypj)a@NMX_&xw#fVF!=edE;s?r-Ie1EOdYb_)I7t6P ze3y4o>cx79H54010vqXHM4@q8d(|Gss_RhrWAv~^YP_Ffb%nj2Gw`#5E5`+>hJBth z{GVbk64hs_W4Q65o)je@?)X)^o++gv^Ql>ZSE~LB%Me}Zk7A?K_5e>)i>9g=c;B*Ct z5*qSpmwWAEmJdkrgiKDf`cj?IE0WL`76FI&m9@;rh%*i%cOTf4o7hOBziE+&F;I!< z?G#=2)A^71tR3>uy%$-kuJR4fUmnyJ^fS8l@wNZV$+|M^r;#hu3la;2k%-5~@Ssv$ zp$97hj>N*Xizb%E206z46SAbaW!Kc2gvS?DEMe^VoS>t55TF1V&d*zoaG{GBq<75j zw>1UjI!h+WL-2YnIGV)I!6s%mm&4-28~hG03B*;OV^SYJ7QgR^qA?_`{#`=H<#-zW zxqC#aBWrlCXP9<+q*A2KyKB#@WoA9SUmQ-(oAAwVKtrZT6Ha;B zZqKS{zS`>AZQpLm)oZ=oTJrXb?~5)07i)fX;f$yH`~|}#i>Uh7w56F5ulJt3a8rm2 z2ZAPM#`DznjFK4s>d=8pn0)`Gv)in63}YFa4f+-M$vllXyA66{@6n0e3c2opYi*A$ zF^!K*%q1u4?)Zuj=!(0~v<v|EgD*m4A`gF@oSGLP#(&u|KtZ#805Yuvluu| z#A$^#7N6Umh+sp6glfmAihdQ@P3n7GhpA7fI!2zj$@(#rcB%;r#H5;1f!a50|6tAq zZ(~n32Ex*(m~b6LtfuTowK;FAR*F1Mj*5cu^_A+~w4lc0h*}KVa=_H$Cq#Mi>?4$6 ztd7>t(o2|tRCP|Mgjk6hOxCtFoQ?^}J-NKj*3|O>R%g5ibhb@SOoB;H5L8Jy$LR6= z**81(jy@UW%#TdU=2O%d^@{}R@4ksb3i_l|E5Eg=-)>E}eRmY-d?=)#mOe4^E#TjW z>NI#Q;Aa{7VgnNZztST*mED=b<%}lp^cA;ThJR>mA@@IoZvQ>I3W>r6E36hTvz=Ar z&mhu6etXq-Dq1)LgLrWiXTp0i3Zt{La|~G}=~5v*8{b@CV=7vjmWRxo#Be!lUg0}wC^}&G(*!87Z3fjJgepO-XPlI?=o&Y@wjL~pE znm|G@x^kD7@rl0GRy(u72!aI`!Fdh#Sm0^wI9sgvvSH zBI2SaEk7|9-N#6t z&ve7QwjFKGG1^Xa%9pb$nB(GAA^=XweMhIsQ2q=&=(qQ=xY7?=zcqojFZ!mXD@Y~x zKi+m9>j%Vs%IFh~u7mU*bIvCp2=!b%Dq-471N zScKu|kOxh{&#Nm(pgWPABJY`(RO6U|vaneGO`%6o}_sQQ8bp4}+G zOU&Cl`3|sV=b}!@e-JRuC<0#hL#|!1{%EQVsg-Lz?C{H$^yYT538-E z%Ld`B@Hh(FKx}<#=5XV*vz;6G&utxdEoU!!U!N)IkfOfIwp4|i1B^+B|B%iDRKo7a}uEj{@0+~^Cn6;qTWgu174p62*p%6 zW4!3Gk=JRgJ^lkTTzr>bwl-t&ElWZh>RX&{tSTmO9AnYM{M6}p1KNMks50N}!KSK` zM&J#F|C;!Rw_E{!fQ zaD0M;xvqAG-U*KEu#bNyu%DtF$2fCgx$Hs$lD!u6_7o0OG|}96!#zKcJ%s?1oFuAX7 zKD`&gge_3U(GbAq3IGItlqw)rh#yeYoaO^ydil+QNU((AE=Rk7XlLn-bpH|RMg~rC zETF=0#`MOaR{9+QArmC9LvJSf|1HqGhMJZ$xV<XBWw==qzTMxW)$k&g|q?u;_vk?VPOt1@S zi?Do2AFV3k4q!CrHD!K!8Si9=zUsv-##@09bXSc0s_fyDOuFOz!d&SELc{Rg5 z5R^FuP1o;tVAqF`sbDU?8_7EA)$fo}lRp)7dPbr&zSw1eahg3NGVaa!pS3q~*FjX~ z*g-v_H$R>cLH42rChV{Hslzq{dcT6R$YPNL1ihzXQc?3CTP?FjwbGA^R>r_aZF4Rj zKd0KNmvib*r(lkaG53rN-HRg?ocKR#yiWtCqokrb=a;(m_>$Oh;y zk&8Sq=y-m^Goh<4gFg*hQ%R$vn6sJX#|c;dE zV$cEf6i}nhRO6{Z_URo{GPQ00g|wx-1B%kzy9oKVS)3gdN)M!KwL_r7GuUZAAmkPV z3R&!RJ59zobw8+Cls3$a!YofX6#v>Bl}~K_o9-32w9)))>r~|jRr}-`S^J5T-BS0A zxUEyxtpn4s2;~uYZXu}ciaTwACI;C3CyQTUPp`e7`})F(K1Jmj)d^#pF}wwFi76C}Y3k+A?yEbgn6YQC>4w+k&?hs%x^`cJZJKdG@<%5-l zaTtQdUOJqkhp0b{bsjddnt|u+#=>1Sz{P_V?S%`xl2HF?YU}B8eftW@${H?+zT2rt=acV|VFRZ6!czMo8RQ#c9i>TeGgE0uGT<3?%h3ez1NMrpiO=WhdoH9~Q0gHdn- z(!rb|Tmz^l9NT7!%Y?VGyh(7&=Su!Vx{MQ@p3C4Qmjz9fxNdNH2eVVZ*}Poo0f+i5 zXZ(lt0P5OXf4QAOETPM_sS9YKd{<;9eg%fw0&ug?_5rHgGB*v>K-TK(xc+cs_aRqk zMuktv=;`pO;6g~C(bT0^I@ z8Iy*PRM*M(8NM7@ug?RmvqOH5tI~nu4u<}44wzN8w%jRb+*KTTIJrUn*GhIS3xRd; zMbsg?V9d$2@}0O)0x_rrHiNKRsy6_leIPs_a(5m<(C!wFsC4&xR1Cb&PEbb0zGVKa z5XwBgm@?cxi}9E0D)&ZA5&EdfpqtQ#ZMc;MtHcv@L8X5oK86c~5{`sBz_1Ol5IXw- zzoQi+l}5wh$WkQHh(tS{kXD6@2GgMFiB7g>CKa7eT7cE=C_~-lFy>Ln z5y@Ay&Cb~eFv4cC9hEN0Wu(E`Z;9ac-+uND5;4H(4lIV*kyPXnRNEPDzJNk3BJDd{N0cX6((Z}5FUsEU`w%?lNiB#82h^UaCEETLG33- z?MAPAbOlw6$1}3U+Cn}7(1!=hCp0MO)sT5gGc@*c>AwZKzA;oTJrT?g+Rx_Uj=8Am zL8oQbyb9>4r3W5FyDZlDZa{s)XW&R7xH!8A%?Z;$mUkXGhqpQi?8K`Uo zFaoD!Yx%QB3q{^^hzSf+ikX8;QEk#=?<;%H3!Q#@6!lEDF-RQ3+T;m1uXFk6>2vF2 zxt_ES7sI)B2B6awoY8-i85!b9kez3Kwr(AbVF4nvdFn0nvf7R%i42J`X(jD>DEn@ID;TF9h= zG&Jtc-lb2Bh`vvF3BaqsNmSR)gfjKap;T5l!(%Dm8OSj*7K<7NinTBnU3msMq?+}% z#3nf(ALE&#h0!qhcV9eHnPwXq>NT0w=*6<8O<1T1bD;#&&I?JEe(T2aQ+a1VVPBqV zHiT;xEH}dRK+KV47!W%H{J-|=O;a_`Sz)f9Vzp3|J#^qw5k9+F&PYs=yXvsjyTAAX zdA7eg7FJ*}w|mGPMxMUph-oV1C$L$DPpB~;z4Ruqg+WMeB5fnNqn}Jd2J}{(2bLfi zoD2$a*cIe3HGh>e8FK(`8sww6A>vzpulHC^)mxDC%*Y8;^6_c6A$qW5aE4gp2Dy~X zo8bmAtJ!&r~guYNnc*;3{-1~ z`aXnZ9aWgHr!XA8O`D_vzKYA1^_353h7s& z)CU?9SRWcMOH-AjFjp4_>|9!mQ3e!P`XJP8OOmlnb4S2YNsx(`c@7K9X?m1>pJt1) zP0nDJAp3$&GVU*{=)h~z{vd|-#Y=hT0Jn; zh67VT3tU0k2fk3g`Jlc;IS-1+#302ZD{l$Dm;zqLFeE9JRb;$z*#cSTxztiDA9LLG z7ESeKK{LyHAPV@12)?`2*C#i`xgf!hpNhxaFvuF0~a)~T;b!FuR`>(vex zDsw7~j~;sIDf%`@12Yx~3XVQboe4?-`6B&W>?5pO9>51Jg%UFb!F%`Z?~%YsKP7k6 zG}-PG1>ri=y3n}&A@yZLDm1|VHK9?;&7VQ}cGaP2pOvZ3EvGNbnynOr)@@m}S#zW0 zSDHHkznyrvB!+D^Jl|p%_XPqB%Iv>BS1(Egm5LcQly_Zh3!~wuT)yAaO?~nk=~4D_ zHW8XD&R%3V3^o&8bsJSg5#6rkgA31FdUNT1Q22d6`J+0?pIyhhzGkdw<5Lo+U!G z%im{UhaoL-3cf!yt^15VGZt#nO}gZZe7SBnf`~wOa=0Yz(!XHA{7}yw|NA!0cr0JJ zyJTN2L|1mR3a858-9%39#;gWaUa?7_L@DQ-Fsn*lHL1exa5yHLZNpJA$jo zRE#L;xnP@adjr!uT6(<}nAOg~>@F-|F;>tCLV)%jXO2_KJ)#3j0<;v>EV5Z~vmzju z9_uliZyWiO$i%Tn3njVOhyS^Z^)Va6Jy4fM_v?27g5-2-(zB|AHY8m|DO>NC37eph zQwazO^wuTC_)qT35bnSdeNo|m5HU4K@y zWk{ZhLId6%0dJhs-YZgzl#YF|t!`}@#A=2avUO|h$iO*(fjy%W4|Wg(Y5^@7fQ5EJ zfQ|MxAS4=LFj1$X>?UWhR0c|`J=F_uy020uRjd%YA>|*>Qk|1e{kuopoc2AaV`_yN zv0uo6q8D=R1IN0g@`<{%&or<+zJPV*DZUqC`ghuCm=H;cOEBoPw8PtZdRO72S0!A~ zUqxyy-sqBq!Qq7i$r%jlODMW!Tp5kzy(r)65c14SDFSQS4oS5tUqOh$Mb4;GVRB$5 zfQ389xC(le+c{||Un%cmgVmtrv~q)nut{llafY6s<(e`a*MM{=WeNbS%`h==!5T{C zZxRP&zY3K{%2%`_{z5$s5Uh)-95;k6q~t8A<~p8XoFrZtEM;d54#X$8m@A@5Bprm% zG!>vQ4k%Fr3utZ5lZ!0w^)G)dS@{o=Ljh{SZ>p)N>h|BIh)qw(rG&uAgu$1_{R6#) z!5^(N-I9LC{-I1|Y55g{)Ux1Vqw>u}Xt=i5=(yPJEZOnxI`(6~`3qzgv(YQ}0ery)ryPivq z@RB>;-N6q6?r}oVLGNyv=v+L1r@aMSg8d;V&`AjgF43h(wzf zZvggdq;0tH6-ke0U(utWYZSkG3;lT*p?j<4x~~R#ke8pv^*~hmdMp)G-9dOd77niO z**uuMr>(r=8=&C_mGQh+bt`-Vx4JU0p=Z3A@tSdOdC7^in6GQlcg zG6+APm)d?}mZ8r=8J?=n5JoZr94oJCpKFd=5CWjj%zmze9V-&5*gZT%lyoSra{cAo zlX@-=CRta0L6K_1K-8*UkoP|LfowzM81{Q1tJi(&#!>N*vb+BLuTO9KYH|f`lHktU zYI0^DRq=(2TgXNzhZ{eO#_I(#In(cYK0KKv!JJ$KCs44dXss#!?G31mYwEY>+Hh|F zBRF2lAhM?Bz7jc8GRpnFkflf+7VH{!s_e`B>@Yp*LNl2^x=(cF!C3ydJr^uv02;tG z$c2s67O#|KI0Tp}o6VS-a_39?h12_rdz-7rC6npEp6%7zrT@~g8`_7^`7Eh4elMaB zBXx@N1#6Y5ps;cK%Q$`0Zem>vKn6&&NjVZhm(IlgKoGWmX|hHA_`tRW4p)tnK&u=wKL zFY0tD_&z&We>Z<2B`%q8Qy5O=zZ-3lG1e31mvP^W)9Rt`?jZdew}w3aY6iFSsgFj8 zkat;JJ7zJUywL8W7s-+xC=-H`WFP+mdGp_~d#5GU_T0t4^|gINU=HY>f60T`^k2cv zYfQI6?BVWc0r?AY-6%pLKrHb^cmi|4`Y9A|=|2n0?@cP!3MMrp>A0dUVXD_niT+UW zVJa46J%Kpqn_N!s5KInaS3y)~XxWU;y2?#On=apE%;M;x)EAzH{N__TbTF&SuVin} z&V<5L0m^$^0n3%*8vqvzw8G;}Bq2*QJ-`|3dp_pM4Z$wnXZZOhdp_Cl?l#L6(rO3) zv0M8)^GMy}im+SN7Rd!wYDuZQxIUV2huhy5fS~ULK%4C7fw2m@7D^=dlEgcN8 zjuN^uXfi>aIhhqxyAdL|LB6)Cic;nrM2n26Y`Pgxrk&h+Qa2=xv!R8^C8X#smaW?A z)_-6sZPT z!1U3jNf}~b{9sd6h~oka}5HW8(Edp`sd9^T)m|*si zh`uEdp0E?!KZirak>j>KQ7^)sk1x^f5K3FBS7NLzrwG?!^Iu8H2xHHs2rKPJ)C;EQ z@LXQh97dmCWPN4Ccj?)5du1`%KW_VMEWSk^+-};=z%QA~<43EcU)Tk!6Js5(xhVxw^G9IkHuy*BcWSk(j#J)P2aSuB)D%*bj-&^> z11I%jGg`-zh5#xV+Nbq?~HaR*{=!|eTAa6tD6 zMojf2Kunqx?|oQl@t*ez*r!}fZe+7~Hj(qx{=*|2`nsh%&x%s$sKQE1kppArUiIy# zd_fj`!u_3IFATva;8i|#JX{S0xJ{g;zUrg-Fk{=>%@Tfi)esqG2Vr{0(o$8J1*$Uu z8#DLu8L$X&>R)F1SGY#hEr_JVDf1V0021D5xCHHOjmlTVpQfZRP2#+YIk4ZNyu8$m zAlVP}i=N&?*bu_^SzE61z*Ow-vbyU1T|TP=;GG zf4~ujqo&ES(a88i?C0|W$+OJe^(*xP5dxH+V~eqLDLtl(xK4eel2qw(c%!u}XqsuH z5tZ#B3$k8eX-gN%*LU>vYt~7WXMTS){UQsdjH;ukB!vTZRTRNey&3oja0F{$7DAg^ z*`KBXRxSaV7k+RFwCIhSbOG2@!Fow2;037{NWFKJ8uSjol|sUAR2~L-3h)Y5P}Xu_ zMn6Aj?EWgr!q`qh=z@q7pxF?odAR0S5`i-c1yX;(Go+$>BOgQPf8F=8hdK4_!7 zoNH6fKuUzO8h=0h2&&P7-;DqN2@SmP79i6wXSIVy^=8rqggRj%xMSV4&`-8@Uz0zB zY^N6mae1o@2RLp&2`@M&)rnZQ{zfSHqyRevO*@m(PcSvUUQF`?+X+}qcDdXU|zsO+!qy;z~hHhcDXfXxMO2*p{ z<6RnOH*@4Re#@6u)f>=*y;b|8P$?Hy5HG29nyZ-!(Kn$nYfqwnC{)LnMev2mzEP5{ ze^XJj3ER}bDV5;s&uZU*a?92*O zNB6PQzex)fk*Owch1j(Iijc%!P(b1u zUI%znhyd!Y6lOVLcIga(wxPPrdsopJqpr>y*-J#}Ok~SjD|@Odz7NBVcLt`V-VF!s znX!+|vfhrh>Qe5`PjhLQ1%N6tZRFFlbqN7A1Lh+jKep3JiD?)b1k`vm(VsW2hf+yI z4e&j%ajcwydB^9)%I(7DvOtyNi93~DTdxyn{h|Xz+XW;+Fa7k^g_RxPkt)*`Y34)_ELvup4l#SCPI1J9Sr-+Y*fjZ7Hl6^t_tN zNnl7&p;i)Yrm~1@m}+Oz-we?}nQ2U?P+k-~>HxmELMxvc3oX+4OYl9YhC-p!`|^(% zmoa+y^JB)jiaasiir-YV21cG{ur?RyP2O{vE9F53G2k7t%fasmm?VUwo}tA}yr5+~34ni?P#o z>PL6O=FoMBGhH`ex$e@{D#yy<+E8y`0qs@w`B9R!!Gf8)rwwihL) zqIXNVw(qSSry@LAKtErqRrMTR2c-GA82Tu`)BOXR4RsfpU?OzLSbRx(MRm0wkAcf|A4G@D%1 z2lCQ9$i6FYgOwV3eZ+y{4ruMn0pkEYf7Sh@CeCMw@RViE9WwV~8_X)YLeVm1kRD$L z86m#(qgv(VmhF7ai-IvXQEmls8Y z*RMJfV4A$m$n+l^IvDKw!u0DP>{;4lUs0>geZt=y4Tk#+_f_<#=A^1GeeF;}xXq)% zEKm*API$@=JuPIU2gk&fBt2Lgk<&7qEA8Z_{1|WZPt0&0wN97*+9NEYV`7}mJfX0B zH#*eXlw-#als@CH${x5{_^Wt&cs(srvH(R5W#W>o%zDnratSZzb!PQ6Ydy4k$yadKjKFG$3}4MGqMDV zGPV7&tUZINMbi8SCSZN@#cqL=Xh)2ggg0k1ma^RT{gRH6yUh$*-!y{2({Tn~@vXM?<424h?>Ld*P| zp0npMQz(gKaB;@xVLoAPFn#QYqJCq;2=-Pz>+g>8Z3n=s_f10audo~xGDR!)o z&9~;J8zZcUj_V%MTO-EsPG@Xuc)s<@^E-alK~9ZpsD-u;;3py4Jm(?!BKaWN> zgf}@6yM;YepY4znwL4Y%h8i}3zizsZKL9gW;=z>=+>t#nB=pfoQuAgwbgH;g`m;=Y z$#&>Ob6rsX{2NCF^`FX)u*r?3@Fp*QxP~ayb&a4u`19^Ld<-$9(TWUl%HC)6N3K-R z-ufQ60C-Sn6P(CF`Wp`z@8wa}KGe?Khc4gK-+c{e8u}Zm9#999FoJC9K3C$_i zaQ|wtdvh&=-VisqPyo>;+X-(z0L@l=0)TT4AdNO35cFolZ!R0?IV|)~`W&mc;4&db z_@8uLP@HMZzIm-HAB2rSujlZJKWsvN#Xe3z$A?$dF|sdsYh&d+gc4N%Uls2%;IVS! zcioMI9=bMu+$9Sgx}aNSZb5UPpVN>!pYrKR(SH!iifY#J+V#_UkjjCd3E`Qz41Wh0 zS<$}J_$RjbO;ztYG_@jVR(3l8&B;45CqTY{=1ojlFliL7x1pQ2L37vJ*q{e6{>sZe z&$FcX6;J!i^sPpD@vVFcKqLVLk15XJdOdD3-c2gbEiN>OFe1R0yYz36j`r-SY!P-3AoZsjF76$`d51A^aL!$f#3{BD>|=)J!au2% zXjQ;g1uvWaf(tp^yF&?ls_BskS@;m%>H3Ee$c`hNL#VKs>X>D{XOjTyi>Qm6VYzcp zv$!0a&_0|YLT0$4%eAGs=()~?vuwy3eqTL2BtBi;hTvR zitAHVHzZZ#zLc^-iq(Sq*EKIsd;pyUF%YYBXQWqIsly__bES`I5aUV4FuLc zs_u(2O*d3|q`Uk2BWi>lzDX2bzW90rL*~s$U5h1WBpw#bmh!K{OQM7v(m5U&78u%9 z(O|EfEM(j+W`^b|l41*KRx4qD4>a=mjU0I2JH8a^EAQS4$mo9JfD|0-%!mWMOls;@ zvtM7Dft;jB)49#QLd=20QgWxQge8;5&q(P8twQ*+_<*zUFG|L)nTV^o-|_vPYwni$ zV6K)=Y?qcVippwk2FOf^GGs164^SWDJ{6crl_XJ&J)tnkXfl=RmzkEKcz1pB0<=MF z`FDMNShJGBJ$3EdW>rX$*Kyvj&RDUl_R=!9iUwAKc>P{pl1&-O1 zM`rDj!-eKqzs7N{>VUsW_?K_%PPJnEjLkdaOm}uMhUQGq{IMXse>YVghV*fS)LN~4 zvX8_~UL_lhV6g<@a?g>G*- z2P%9zlo;RM zZHPlm$5sj~d1v5o56CFD10M{ldHzEL(6~63k}m!MV4U;N2F%9d!VvBU@otcvIw~~~ zdnF`ZIm8VDT|0-nqYR7A+Q0+tuKz$oscrKjtBFlT zUa}Bx$MeOFHtWH}F;dS*v%u~$j^8ngz&=c3lhSu5{+a!u)`Vb*gS) z?oyokIrOf|M&1+gQgUsLLAcC70+Bkx!U~Ku3zrv06<9+2BFo4a;4=cteW9>bd8&Xm zPjZ+>q7A5UXu|=pnU&hBa+y+xRw5wIt=6SeoAAC&q3l!K^Hdx3kK0ww$NGuOgV)7nc4R!jj0irP zi5f`=(j2L%ZMC`TjDn{TCBFaN?Ks+bsGwa`!LlmB{}6#PK9S)PL|810#+045>B^&L zkjboD#ibT6mYwR1lSU0opT(6%lZey63`=iVt=Y~Kr!5&w&ocowN_bfoB*(>0!7^Pe zTKdd&L3_}t#>e5)OwLVZdus@3Z_*RW5G>;T4q(qJ8Nh2KmDC2a#FY$R+F6?>lWTK{ zYUOk9ZP%cmc+`eV@K!HVzn#Y-#;Gn*C+t1<|2y^j?+=orL_M+uUKNI1Q5|ZOKL`CR z_&-%zFZ(u8@Zra15kv7Q@ zPBhAt-{Ayrlu@n~U~7F>k^$NT?}C5{?&p&RMm>N&;X69us9hEHoc7dW)6JNrPk|F3 ztH1LRgRPHIkP~fv&h7^b#yNa{r#Y!=&%gDx8zMo!GlB@8{<6GhzkdjV5040fytu7| zgtRC6x;y_WJ69JYPFx)W&0mwKOV#HY7_a3F40)Et*w~j#kO*U~@DN{R%zpz(T1phK zp7p`zDvWjDyWInHDp{Y2uiZw~{0gX1hvdZS={MVnsL{ochLwE8s5@d=;WUC-*x!Zz zl?7y6nr7caZCFIc5IwPfTd(6*r<6YmvehK8E~N>dbdxx+8`E~@`xq9Lcu8B3Jlw-w zAt?1gps+rf`n#h(Y1GiK!vAeyE6owEq8(X(k9Q#No;2#>?|3k1r2c;j$YkJ}Kx+Bd zdLtmZ@)5X&y*3v%-(#kf*CV#P{!+2I(e2)Xba1&Hz^b;ANqG}6A@0ie&t<(W62#<5 zl8~)Cv~tFJ5bi#*s;XRVWJz=)uRDZf+Z-*qNS0FtDcjk}BS@y=Dq-R@x( zCGV;w%x~*;w|}1a>C=6^E0Vg8Pf8<;X>A=Xu0^fvVo}`OJXEB+f} zn>2-uNn{SX3|-bI7^&DWw?z14l_`ik-QsbTV`-KrIXovZDM>^va-%Tmbh$K}64-(E6m z>wUpbljBC4>~G9>t3gSQ_M2g4!WgwnroUWg_g>hu3baAL{k2M$^OOVO63BJk4zYgC zeq}d3yG&cj!Ci&N^1)6j!#7%iOwKE!teL^;g>&J7O)a+rnG7+@bs3h!1Zy3;E+nUe zi*yR5IxlgpPFq`)90#aqDNlX~r1^R$OJDuRcR?6Vam`k&9%r(Ljw!Cd+Ep|zehI(d>LDq_~DY1%?_tyX>XRZ&C?X7zL+gykwN zw5~E9xqRGk`V_1iWc|*QSq`RVhalE6-d~z7qr92`m2H_SZU25DgO|`J^C1?rJQdEl z5q6OVhy#a9iJ!NbLOgbvoG>cmj_6tvn! zs2+VRxr0VkQfxIUG_Tq@3y*oC7HOe|zXJPds1yOKWu>E6h=lSP>P=@6N|V}z%n3QY zR_>S@+LOxwT`c-28RpwdUYA`qQU`K)Dd^vd1%U)X|iAH?zFB$)ic@*Z-blGhq!3BB2;CAx8Ac&|tAFJ1HH$ zv(V=rH2Kt_Q2zYW4$~lUR8=PNE>pPy^GaelCh<-_in#&b>v(tlt0QG)+lNVvr(j#` z_8p%Y2H$k@HRQF+BtoYmny{&qJawO*367~Df0Z%dH1pL`NotHObF$~s^xP`+XlZPI zqW>EkTdk(_;xWPkY3yQ@Z!>ghjMgvRb=m!H$nRS!m zUIh~jpnCqdMsz-65zLOR-DkYV__Co5cQwhS=ijiDH^;kj*~O#B)sgGcWFXwqJi2 zX3%GG!bp-sdyT-+!hMYyr4Vg|{GAjoo0+mz!n!1*tr$~Z(RDP1dK#f10`4b8h|_j+ zB#!D~LKk=9%D=SuL%tYfj%ZwpAzCuu$MEO{^6a}SAt)uUb2ctY zEN>g{ZBoU4#^>NLt)9KNW{__;BrzNDj_C>~{Q1aTo*=R7D5nAD^9MYlT>^1o9eE%A zE?qv)CJ)bI`7B4#i+`Ru@=`-3e&PCC!P#o}R#|Qe-zvA&LZ~yADc*fql0k88G2K52HAuHX zMJhP$$G8ON?omtPo*+Rs)4nsJiPUZUM+p2nmCSEb&|J9$KRqocUw3)n29_F;+h_NX z`9%w@(|Gyo_COWXS$~(_kZVr|9&$$X3`1m5Pv=SSHas;&RH6A%f>J_ozAM!BUus=( zmm;cE{1vqrm{ZO_hM=dc*{7mCY|_{9#ZhK)UQEYUxY!x<@+M>DHd^XSvGbVeW1?8gT<0lwW=U_$}roYeZKx-9v3zGm?PaJ9(_mLj7gvPG|KLf#(FW@6) z1W8bFArp8x(wo2jeN1?SrrgJkoBTbGMV_mGNdHob)`)6S)PH*2#LaN>Zmxsxteoor zw&a#WuCIh^?;jXV>Ie?5;kTgIa_7yvD3N9#ada4Th+?B`264m4n-P zei>Vl;+x~cp*bC@C1B_Vo=+4Y40Oz!M67s3pUTP7e;qHo+EKx6xJ#)+s*rf~QXjOZ z@uF^4iv^U>Tk?-2ebiL{(U~Jq0$)DFcW>S)*Wo`r?#@WGexZ7JM1%J6XA{HgR79J_ z)cK+V8ZH}jKw?U~=WxkCU%}D+bY>Hv;^{a7=wn4$Q~gT*{mrS0tW#(dHRls91h!9b z{_oW7!BWZ8)~aJ=yl@DpTa@0PE^dD9VgKotP+LyEg z{UqJkI)L^4)JVBU)+`xyG9KZSc$M$db_z?EELIii7w01VP7% zk*C5_^SfV)(Bye8dmO(9Vgv>ZQG?G68Llz-m!LJPpV2Pe!m2gVdg?wP@di0M3XxEP za0fYFMFE*A6^8ExND6GIa2g`lvlXVK+`;n|=F_gL5cL&i$pQD&c3ggE29;(jV7K0J7mlyM)E2Qj z&mo*{)^obs0l?@l>|@^{2lzoI3Azo%mXnbhP>a7_?1wp@e6itHPSgtbWK2DSOz6L` zw&_`2@G5m?B0t?Uo*5X-hJu6*_0Aq1S&DFB*K>z6%GKA7^6EPp>IKX9J5eR#n~aJ& zaYO-%TLnfh4}y!i9pKaKyE$<kR$1=H$hYo{bd1$$0)6)vuLP5yUyO(OxM$c|jXC3zxp~PZ7NG--aE+tTDWkE`^1{^LtXI&ojx$OlvjRE4#* z_UHk&08Ii_;pD2(+A#N*AOP(n6P!iQr_}W?yjRn4YwjKHv4(ARSr;7xKY$=hhiALo zhOwcBzK{vuC|P0f+=>+jzP{^LPl5pJ>&=z#)=(}E1a3xn5M#Qwwgk8IBt#q0NNlCX zuUq>0?fA<+c(ah-el`RZ;ra zN?G+kFUozdj;crKKZ^)JPx9SnT@@c)W3)!qzFNxlK7K(L>Yww81}XVR6o*>*6O-^A z;E;Ap5(_0IEZ6V?#YObVGt?G=CN0}8DJ&04c~F$TWrM0b(bHgk(pU$HzVQhFxq}2j z&ll*_XEJhr;jQ_eUKs{GJ?!AxrcLAGle%)F84_Qqapi?rltrFP}1oT7Ot$_ z8;4ALT({z%+DL5|)N;2p&^Q5O+eVK(v-cL)R#oKsmx9Vq?e#~5~OFrVO8JV=|0pNib18>^JBu$4z zw5skQyh=#C?*opCP*Ksk;5WH^JDGywASB!gRh9)8pO`O`Vt6h#X>r&VpXZBE$8lL> z5rc+|Dtfwd5&f*nt<%XN?e!+6KQ<4Db7-tr5!!}6!YBmIFj>_KR~99x!oG68UVmk6 zRxbElqYJfM5QW2!C%0Vz>9H!7mBi}Z((OaDsez^o-e-o4T+w}N5 z+x&b7maZXT1GAL5Q}sZef|YTlPYw)c2F9UyW1NE%5`_JNv)oxfnt;}-_|9p9H0#|` zeQATizr4xk4u-p; zgG|O2340WPIpo4!l#9^=pc!X20Jiq5z%breuCg{~14qUkY7gaSBhrdXWg$@MjLbi& zaV7F{^+(GKYFiC3%9#7Gtp@&3|Am;;IM7~~-)nLYa({dDpl)i6?+}62sTE*^Ayg9P zSljQ+$U&E%bW%udgH}=)ucng35g94j%ZUf4h*n9hoYyxLe17!veQ&0Rn(e-|#7O^E zf1Pn0jMD>#Mi&4J0uESa-EfN69TO820VfI_B8G$^z>lUY78$_{{@j{#7M;QYWF%n>#S$zqn3(flTLLk`lW+UVp3hIuT6dfGf^ETGgS4Mw7&^bSI*V8k`w$L@ zr9Sl{AyMG1|J{6Ch4=)a3UA&2dzgQFc&QZ})Db4)P8HM>51vd@puD2g5T_xduM#Ct69=)ZrEZzHO0y=sJO+JrxA~afw3b00MndVBem( z52L7;z5A_#U(7GhjYcDXf(?#Vgmt0EaR{5P=tRJdS`e86&Tp(RK`4+?5UGNC5iYYR zXCO(`FF~3L6=bjc=wX%bl`7i~6Ew>Yv){Sx+v=7sK7#u_G0vHU4}GI9m{d*7V+d^0 zza#y{;2<@`<`6=jUxBqmh~8=%@NLh(Ld5n0vrY$J4O*=dd8<=uQ`+V4%4OnKH^Z$J6^v7(lCtbFt52 z&uiq1ToO>^5ga2De$$OB`hhOr>y^~eb}c0oTe8gEH5$B|_1H2-_6GjLRLivM?H7Xn zhYQ^(Z*6K;vV(JjgsJ#ho#<-b(yQ?f`-^hGkJCJ40XInQrSG4G(b-Z9g!Hac9qo~# zg=ekh*FOzSBPb{4iGo3W#gymU0mB`-P_Y4S7uSyXvIq8tkZe2iCGT{N4AiY`AhQ$y z4>}q?KSlojrFeCEGdKQNGbHN1smip1r}uY#8Vg%;36!$)hsh!QxXX0yf{BMMroYf#S=g5=YL37ra!1UGCUW8@wmAI z{xV&T8xJC9T0!Ci)tPpU2jXN$a*2S77rZdt$`#`~gPm~SWZse^&KEl&!US@L`ciSA zBPWsTdp43GejtxCO6AiazbZhIAC5_N^*DX$(11WlH41}$*U8u1X-(lN{@Y&gC+M)B z)Z$rWA+UVrF|@`3NM8`sG~m791uG*mr}tjv#0KL**KKlKed9uxfIck<|FzRYh*>od zFWvX6SZi|sRCtYRY1Gc7o%nEyq2{Lb&EjNlbq)0BAvN`z33m9@*R(PQFZkwkU@rcc zdsG|oo4O;1*`YwYgh6~@w86m)GB7&Cnxkf8@=k1n@8IKb_C9&C8Z~D*muw1{?=yJP ztLlub-;3-O9o|y1iCY$W%*xVpKBfdifmwdAXp zJAxR!$26<@q4KzL86jWuABtmlm6l-A6WZ(nGF}H9=KKXnr-MSV67znsOIp)2Ui^~1 zh{B)wN{(|`!jS7uci@SDoDC&Z`BLs%-fwU?NCq`?xh&-wEPk%pm(l(`KUy@#X{(Uj zl;yU;4tp+S0jNU+4BT&czUQm`W?ndJZEm1PhKcZD$ML88lY?g#f8RZuRdW~XhA+{4 zTX3lrk6xc)4gj|V^Jo7iB9uy6}TqhV?BQF8Gzmr5Ee!;aO+~Nd{%e_T!)EMmQ z`Mmh<`tj{^40O(Jq#Nhw|iplLXg-wIJFJH@M_H-GOhRcp-Q!YmnT^xtAP*d zH4y-#U((2SzU&tqz+Pqap1Kub`7M;QLHy_l8}U?`41XA{r2ML3(+ zKMKCmXEOhM`;NEL$T>0BhS-KozKSl#%7u_k(uFW(amg)Rv*D@ld{M?6*3Ap&uR>Mn z1LZx;fAvY^tSxQ>B2VW|VD_G9lV5~j^OGdMT2t05alwmgS1%qFANLZk*h5CF6f)fr z3iO)Q7s3*U)bCc$g_7-uII{q}t(-Z4(WS;LfSG8O9eg9lCp7AtW``KlWsN-kntb-S z$%XW_l!?cnh6-54Q#*s3&Afp1ll`VSUpy{wq{8EKQc6`ZqQmkQ>-(r&=46C)8#}x0 z@|N;%IaA(rHjx3pq|Aclx1R zLSK;7C#0=`;hKJ!b2pfTFE%$^RV-5Oti;wFG$`GIl^sEfNA5I?${Ccy-#hrXFbbQ0 zc0E8eL!Fx0CPvzlJ;G_}W&J|FT!b7QONI9kdAJ@8aQ1ZIMd)Wem6P9S$3K9dT8dC% zA_#gd{vp1g9%tsqu;*4NG+B~;{uxP+*j*^a9lB@@%DyYwvW%V&e$W2!ov`fCKEjoG zEaDubz!eix@{E{6P%`DzxAR+)8Sk+TbfHQY+}^j~@f~T?OdN;md#bJ_4mw##bY$RR zEcX!2fKsUHl^5@vQ{47e80-X6%C4lDUbCWRJuCFK+^kY-U4m*Ug}=tpig6txV%4K|lzz!#jiTpu{26 zS}b}|rKeOHEs`&`0hQL(<0+DUGEyYV8#^#(5(=B@$1z*}{qx?%XD%^r*W;t^Rq~UB zb*bxhxlOts7v7s#RXxJ<^CKC(SEsiZr^H)9#qcZ)JH;K~MM%kAARYy2=}Zm?}A z-7q#}_6f!RZxF+a^B`g;c3^}2nlmYnCVSKRbO;gfHK_r~1a2E@X zO(afIOm&5N-Zpb1)iazSQ=dIN7%Zom1^(nnDW=RXanP5arXY8z{_*&m7q(atqJEq% zVZOB2n1|TYiFIy2uFyHmIFYnhn+Th-GI!sTHxHs9EHTkz`k*poGXCaCeJXS*u8rS-ckDPb=oeqng+*cagm%)g-&a)-i)?SCVO!{jGIp`V!3p@@HlLV3|~AWj}VwGnr6t0nxSVF%s_dt zAP#-j_Ln%mymRwSK2$yI ze3+ihf+&?c?Ct`54YUxoThp`}9F23z5CfZxQtojeRy$$>bFxb_?Fk}){ETmCFU zwAvhcd0l<(sgcIdGTidIy4UFJ3csSFtemG-#j%U4%CF_mNgIpeO?j_FB!Pj5YG(yZ z+CuVk;!jmuc6R757$t2VT;T0I>p?e7`Hx%w&t-8=ymcP8M6+VI1ELC1=OqKa-*RUU z)nx1|WGH;OnkGO9u{9jy0l=2?8_A`nHIaYJt`!in?H{HOE(0~eNDV!7QhYKy(z?ZC zVJ6v&JosXQobV!lw+BW=GXuge3O);96F@UeBs}43^HQooF_4%a#GaC9my@>(3v$8{ zwQQDOJ;&w}ia!n}mJTHb+97mnd)uC_PjGbfvdyym+TP?Uk|+T^u2e&H9o~t<+UI)3%HWfctNK5Z>QY!q!Wo_ z;u-RO$$#sUxba6|mJPTaXKa@Zm?X zG`c7v3#*g-9bn0>N0bzV=KI=!Hbr$4Win5=_P}}qj*X}KC;NLVM|tkv@iB5u(UB|X zz+{P@z|6`MjoO$vWVCMZfVU2Ki8_7GC-PWj<%O?534P1P`M%D|yKwz2F>uER?OY7U zHgU(u94=rbCK}?64v`t=IP&{=W!k3dR9-jZ?EBl3Sf>ykJ>+|xa-fJimy{q1Xpap& zU!Yt}M1z^+>mx6%4d9mMjua6CHbMFA3F?gw>`CdOvRLtsuCK@~i`B2m*1WrU0`*ZY zQtSAoc|g`wxK-gYPYlrzw;Ne+E)Uf`aP-*Aq!LCw2v42HVG+&vKFNaO|2)(^z1 z^icA_wEz0anODL-QMwb=o0I1MTISuc2B89h_#d`?KML30_@Bh#jHsi=`Zx_5)>)EX z%7#BF+C33GwR%cbColiPN<;`g9B9^0<@`P7PI{b7Z2@A9QREWp*gOmA?j#sqxz*WO zZ15x#KQr|YZ+8tqu`E4vK3@SNc=Be}eJk8{k{TDU{=*^z?>j*8@CA~zMCZ6m(=ZHB zUM$GG?FBCD1Wev!Nti@Nw;*`_;j-kHo^Zhgl8kyT4bkp_-?Z0fqsbqT(1LLPCmy~b z8AwJ?&E0qy#(W^qs`6N%d)sTFiKCcX$?~c^|Jxxr5X!zxpXafFyDF3T^dT4!NDDRy zzDoIJTSvVtN6A_+$cg!Nl1Njb>p8bJQ%jR*6I!z@z-8o{ycF{RcyT(576o&*GBi=t z^?^Uu(t`^0FhpeMLT%dKR0XCl%-;efCLy%E=aM1*dV4_TFA4oXfU0fgF3UL67yca@ zQ37fnwqswJVvr}hf7G-RZOS+!zFpiQ(wWpesNE~1ogwI#D!Ht%?JOkYuvbR{AvG_& z6SdM465ocNana8ad~K!Y)2|dYXZ(%#TSUH00TJ^XieVbEh94UlH&kNpiK&`c<#4E7 zmMjb}bsxaHe*U=ippc0JACoM#OBUv& z_2Af&-v~Pi;mfD@zI>^>KqTiH2x7z@A9S!4N|5uPW?VV<7$+hjMKS5c>*bU2>PW;=wO!7aoQ2EKUsm6Z8luu3s}y-#Z zj|$J2mD0r0e2Z=NxiSW=dP3aYFKEHmIzXw7mdH&UWMnWKv%YNF*V_>|>k|`}RWneY z$M@kpi4DKU(fF0;_ud}K-{t#{KV1W??2q-sC%X5fn?6fRSwyxQ7#2ZRe~5HKJX3mp z7gc2vbeI-GoZSiI{|ru*Bo6X1AxHfR$y7NqNzfrsMcX*@Jiw^ye($#q47o+9#mLWr z^rih*X^+YqeR3Q^Fj?9UXF0zk(dy;CnRgahlFrN!Xq9XuigXq(T(s~P5=&U;!z zvVV4iV{P|XT3kegaHuLtH+_4+L%6q3g8owR^!8ay2DOV<5T|q}Sc73gG`l$Dh7Swv z9OyYAntCYJ*V{Q6=<0k2RW_+QT$OIFs#FhkR&^OW`{Y)wIrLw3ava7i|X7D)Ls4)Hah6eS~&kt2!^hJv5 zS8__mnZ==PA>u}NP8n0g^ItBN_O&%giLJ^b^JdL7h}8eVo78ql&S0s%UYArk>7)DW zySfT{6{~W?E+I{zbB8{XCzWoxFTGyuHfMJ&n#Vn zyHHma!Mg~M#+wC>W9jgW);u1!kLLQw$8S~M`T1Z%ks?p2t@~ffO^?BvC9!>H9N$iw z=(|>K+GD>nYUmSn{i~rUwdJYVIzYcLmJ4>GP>CL3MG>FCsSNY~NOB-ZFBOaAYY2Lx zhgy+~G0c1@vP`ZVQAHiKP-YIa@u-=9rEMcgme1FR+MAAb<_z|TaF3_ z^c?|Gt(lB-|0-aeMuHos<Q2w3gv z)$!Qzt(4mWa>2!T>}Br!>^#txIgEG6ibtqWZ!KWa(^O0sR`O z#%b79rI|Qj4efs4luV!y%mf2&{X#Ag-LuYN=9I(8Nv)P18@MUiK7E!Rd){$4ba$wb zYP;s6a^4}J)i9D!LKr$u7V7v^XiI8UukIGs!cyTKl8x9#E#LI0A1Z^%{mpI&ECrsz zF2@j=Tve7ioWaOh3I^M-u0Q+0MsB+yegdk=9oUi**Q-OP>k#*=sjtBu{EO82#~!ws zRpY7s02U)EFK9>+(XAn?MR7Ili_Ny9z4ts9Q0Ha9RmA-ZKJwUZ2~SjQAxnX62q~!$ zB+uIUk>>WVfd0IF=lz0Y6D6gRBy|*a(<&IW0by09e^#qr;2JejXKVGZfS!7|A_qX^ z`d?T3E#VWF*v65gnu|TEg98g=C=bv-G@ARsomH`N>TI#A|HBnO6*k#%G_@@l?Ek8Q zsGq><-m*fL<&NcVEJ^;$bBB%u~|X88u>z z9vpA2ol@?KLrRcRkGuu+ zSYj{1D4@!T*g+V*MUW@IbM`2BB?!KFCFJTHU3+6ZS3YN-dYwUWNf~bK@@(F7LV-hl z)~$SqPLO-6iVyJjE_gEHN#=X%!!nNXnlo?+>*S4Rzg(|op>Bl;n`*~q$0s)a)Ff5)Y-e20FMQlm4;m2 zX-TNszO$x`QJmVSAw7?U2oW5Q#q4I`Y00%&6S083UV@!7SiS`k&y9z{aNG7DhTkwB z;3jAV9XtL?GA-p5&8tB$scLQi9;LA>AjMPC4rs!1?6GL@h1VI;%Xml`3>si z6GvAQ+C~>@w# z7WGIt!Wz`CP(wRYvM7p5T~p~n$)+U5Ibi%r-eGd4nLW5uLrO_9bs2Aid{HkXSM$Hb z>5KIcM)Utsi%8G_$_yF&1w1n^@0^-ZGP0k5`KXD_jb>~TReIT0H+BNQ{7u!ai-g^l!0IWnl~+P0=MoXUTME1?8Csir{2P#pXJq?+ zB6QNQrhlAw-r#dCB=1&!L9cnC%&$_n|F=DQj(;|{T-%LzrTTGCb%3>Ti6L;NYgVb0 zmgrJI@NILonZ;qgFr5l{KHl8N*k zmbOd?w5i%O*bj?Al%M|`Xu%A)i`TxR^@E%j{W7_t^ADw(&HWMrcl1Ywn1S@R6Yk5F zDiBW99wUXw6%_KdMZHc;-5YWdbahwh6yRJ=C~&ys$4Owt?H6U7DIf3vgu1yn8w~g_u^c`Hbm4m zV13KC-2PQmvj0(y(TzqgEUwmBx{L@=CuP#mMUZR~f5p|UNLIe-T?(-4);Y=kDlH$- zuu)}n%FVA!KXCDJpLNqaVt71sC$P6Wg?BarTXjEU=5#w_pAJZL)whj6d zeV|%`k6T~(Ylr1n&VZ^CIHB0I!$N<>s>0X53d*)UV2vAE{6UrWNq>b2E4uvi~ze~iD zXZjh?j!Cz|q?yE$AKS{Z8EmdeGrNm1IVbzd+C;l3=-G7gA&}&@A`ebbw?e}!>|OH5 zhl(d$GipC8#%c++#QmS=HyU{$^+S!F#3>ZIs`m_sccHNSmM2w(VkmE=hWgo+ak?#T zZ00hJvMZCybvbZjiM4`z{krIK+7`ANKNl?=P^7uNjHEm3#V#H2rwtHO4VXBNZ+IaI!Pk~3hr z=>WgJ&fv1;2f-7$K0e%o75p-9T6Mg+qK}USlO5m3?%r1Pe1LQSB1Y~KHc)lo=57AS z#!H%Wi$B}%py%E8)5h~!e<5Eb1oBO7`x(Bnu0nZEm1S%BPh^q7NngtS%O6sR_ZM*y zFHJ21xpd;x@M>;HUj!skdYIxIFW_#>B-OglN{?46cc<58Ru@Gm;%??k6$G-Ga@t7` zPRsRnSmXG2pDiej?^6nQF8|5PRzuz(dpZG-h-5~olmWl$pq^H_V^dBfbm#sjp2dpb zXX7v}@)2ZT(YVBsKkq{xjcLf&v;W4pD>y_Mut^l$Jw@$I6rdRinPnwqF8kNV|TnNa})kCoi8L9Kpi7`U^ zU<+h<*FVAi=bi$1lwq^8VR$*11pBVng7@81ajy(|qSeg0o?>3|%*pCbRGBx z;5R%xq>?r>;He|P<2?>2LwN%Nkoyy+U9C5`j^z#Q5y@EUC?N+XrHoPt^yrx22O%Vu zhMcnKdjGgftmUXEydD6gs~&`AFz&BdNv9@_E>^dO`~3%Mw}vq*71dA~O0-(#@0@K@ z+R_ZigyJ}3xo+uG?Y}^)HdQPYP7MWajUctM6ik(nk~rM5eATI&DlzGW++G3~jN0lt z_jp4||C;KqwMZkL)0%qFj0Xi6u=nK_H89`3_!{oYgdu%lkT%hE z_B^#*iX@Knh?+SUix!W^HX{fyZ5NW)=Fb9py9raMt~@agYzFp?xR94* z(dLfb6pFp8S4RtU4G55>s$S11CJ(It4ky1ht$>2Q!su2VWl|oPbsH(hzm69$!!?=@ z|9oDK)vogMtv6E(s0*^d2U~~ihxVcsNXwr_3=#6U0!|`Eo0twGY#((S{|tFI{3N0Wzr2GtB1x*F3au8SYhK$a_HHO_io}@0 zzxrw&|03>ky$qT$9K^X#WYUGXPvj8{{5KFUO94&Ga8L=Tvd?X(nB_8;1~!mAke9!R z7#v_0k&7sHxC_2remfK@3L$9q3n{AzC89YBz+wdaWQ~D9U6nJg;N*nt#6`68gdA*;6Lp8;F zp|#)@0yHs3^L3~bqhMRJqV0}l z=Rot`;Qc;vN!rR^qcvq`isbm|4jKNrvm-Jw zo^vhl=x!!}lV>`ZHJY|VH$3?f7sOY$ugRX`|N6aSo+;%4#A0|ttjOq(WIV3V3ZIt} z#+xbHVT>lkz*@?m&Ytq{SQSY53Xa32Me7$q@lU#{@Ou6jmfPa{QjD`FWIW%i@=1O< z00g_w@zHhIG!$mOZH6YLq=x4`k<-pi?4zpn&+v6;a{-y{af88}Lpg8U?=^_pyyE^y z-_ONBoQMoJr!!l+YMb=F)lu3Guh^eVOX!>do%8&D{pOReNUz}f zbPQW}m~;%~JyDI6a5SV_n*4@&+iQx#+s>6FPB?WV5qfXCtL$propJruv$IXzw+@%* z@EG0mnesbu>>oRdI}r=Iybtfwt)jN`Z4$_7@cM!r{oAWW3z;^bggC_CM>IC^e5>J^ zg8zQUr}+eU1RA~+)a+SjC>R_z&EEa$6FvqHB7>LhK*D@~)){QFbj{5u|IglRN+rKN z606#V9>m+_%Xs!BpBS(F1wv3E!Tz@Y3=(Kt40N}{f1H+t%8760t6_SovE zA=w&lOMaOCQ-@cAMxY2v81=hHs(@6_;^7oI?y%}m&nnY$wuQKEk|p_~4K2bMeD$t@ zW;r+;{7Z2hb+{_zr!SD3cGU{^|Jr$u?(0z{55W zdBbb)&kE&D?oHFkhbY!4$kLeY;z?9S>}k+%C0&bl*ACmC=HL_;-;aalo_C4Tk6|`N zFdDR1kqQ7t*mT=f4icXoV} z`Qa)*uTs@;;*g#H9pR&G{rpXj7AOQ%BYZh`&AJl;3Oxu0)j$|kC!**{8&+Q)*FX$c zVWP@k^i=Yjx`%z7>8?M_65H_y#CIk6tp|TaZWX?*@(Cne_0xYnXe1 z<-!jPiVed*sSbQU^r21n zyJ}9g`7QXfD_&An|MZ`yAnL~gPFej8Z-xvl8QD+KG0(ZM9NTjQ_(+Etqtt>q&B5V@9l{tW~|>Tgn{r zWOy95Y_`=-MDtERZjYm0Ps_42B^q03Xs&$Py9)Or8xuSVs9xwhT9k1seK-q_q&sQC zk3r}XzkWeFr}VAfcSCPYcWZU2sg}4)3ulKJKE@mN=P^Kww){pkCPdJL5F3}?}=aTJ>J$3WQ_hq zv}Dwo!V#k4MAda)^y>%prKOWamu6;9UZ+MrqJ;2=%;1sA@K5$LneoPW4H`a-uI^$v z_ri4lGm*#lq*1;pBp&faqnBO+RX2O?e~{npRz#b(pS+9Oh#zDA0n!~!a>v(jVR!LV zQqJ~zePP*){8c4MsmqgGe{L7xooL*3|GG}u?9hFM`|0n35OL*;(S@MtbrbZ~apy3S zfNFjKP5Y3Cb^P?-3&i;X7m~gomWIARks6P@^Mt?}3uoWJGw9hgV(srKunWnv3P$-_ zB>3aRrA8C|O~*L?*DaThCyP|sbb>F^aIK7Y7cX9H{UOgn>B=_Vh0gHBVGrM~<8ypv zcj_ClfYXr1Ta%-_FbyVk&{>T!s;j-iLD#LD*ky>%Mr4QYH@9j&>5tWqwnGZfm3{9V zUc=)cpQEPQ>zm$+57>rrKLqW7^@{=19C2YIgob%TUx!a9pYk!V?67NjBK-W=k*d`d@gf@k7UC@SyyG=yx%$g*%vB^9NHYAYTE<#BA zAoktO%&sa2TdXGjtby5gyX>%V{e7967<5!9WV+Qt@|d&}us&>v7kk&){Qae)M#6hd z+QA^_q3hHve?nu6pwMuol~DS17&GVL3Rr}^;g3FAvk4}4jHs5_!7~0BJa;ipYi@JH z`?gz#gce02@!EqhkBANq#%LXB@WUhWaVO*xhw)LI%97d7(!R(eg`33)qFk-Z z_O}pb=$`6g<7;poU>ngwYj9;TItW&2xaKlKlQN)D&ru%Rax5)4fL6Z%#I)zkMi&EO z1S0v{@-;taX%GFQ0D%MxI1$iIKGS8`!o70_j9_-yyIOw$SQL3`?)(Suy_ z>)*h9ULPIlTz}&{s{ZYU5{Kgsc6?I!uJB7ajs(-%Fl+ZKUqst(R{W?J+3Nzuh0Gfb zwcPgS=v&wp4@>WCppQ13Z`b}*33~kGBYy= zn&L!ouN1c^?ui?mfH;2i`TqX9c*E=P=FNGXbME`T?&~6dg%@v@4&B(C5@uk322*c) zd;@+8OjoU_{aHj^O)3~Ra;w@lNjRKcxA|)YE);mhxlhi z+(oeqJ8>bs$4#P-AO(xiklDDr>5E4ZXK|^B1lzpFA}LtI`NE2+n{n$w|5;o$zzK+q zQC*hf22`_faHTQ$TZpJ@_m*ueooEY87U|TF&$7-G3T)E73*2s*FATv{9WWU?@3Ppn zb@Ni$Yd{kco$Oxs93bT$<`HV@vcc5MH3Yy1W`X;t!-JGZybQn@Hoo|8D=7}S@gUA& zCyAd-I7?uZ(L3s&pa;6d}4ZOKu?+P`eBP}jv|+?p7JG9-~8BXLm9mHoXa-a_VB<;o1RYRFj$1n zcCth73k}Y?0ao5G@HpIztM}%;3K{PdJ}dTn8;z$2c%gWL!-CwsbO@Mkoa*w-m45n8 z_ts7Nk*3ya=W&GYE#W|MI2^bC`OIv$cRZLLO z2?GtI0x|orN&ZUU35cn34SQh!zbAX+wlR?zn!k9`dERzmv)2AYsHOz{!JqQ)gaHZ3 z9#ggU<(#{7&|$ux!3$=~9Cy1=8zk)&eUq>VEYKU<3D5=CT1*M#xQPKOuFMt<+@$Z0Je{pS~UvQ-}Y zwxOHm0p?Tcg&Q&WR^dkHA%CbsMu#^!!CxdHUtXu<8Dg8c;^Jp>m_mmnF9~_^v&Kgs zz>g*$*4$47Lzm4YAzDbxGF6bVcqc2htyaE%zf~(DG5-o#ll#T#97MdfJe(laHdxSq zfh*>t8!v%3@?IFtYFMm9+&&4fMrs}to>V&DEcrUm%+I@=se&7Hw`--vH}qH1#n_%u zR0vm={zj>wYjehTzpn(|PrZZPnjPMS-_38KGM#=j9B+Ix|M}hgytZL*QELRKRywniX8aVpnYX}^bUS_M5rWs=iAw2_r((((G(f!Dit$u0nj?v zkr=Lu|KxABOo?-)%yfNFz!{3F(^Z!f88?GX+1ZXD>=pg4ngkI;N|T4}!jjZPW^ zZ}{qBPiK!#HeoeiS+;+gd|@(@L`QcVtnsUWf{kPXSTgBoCOk|y>-m+7Jc0O1o()lD zUL{{*J;_aYUUh~v`(M>R0Qhd4N1hijc>Q%@)Q;q`nQ1_F_;t@Zum<4j(62R+`<(Vd zBS>DRJ~boKrq}hyp+ZpS@FF(wL!qc+r#n_o+s8LT1@Z*tu2@sMtHyESdK&0sJbk|6 zjQ~4b^LB`PxImwM=iq}-4na05RX$Za^KM%J=i};s7v9^Zs!U12z(*%M_Z+8pct7o2 z3!EFFF#Ef?c$pnY`Y2Uhk8)=5{INaqvE+hJ=+FO>9%Qs(6C5%5hLy4^(&HMFr z8PTu&N6!Y|dkfsYV_ac~{pYg{>2eZlL#pn~#zI0cdD}qr`1h zU5%cOjOPvPXk%06@E=NSp>&`q_btN; z!rKsegq6-9cyJDbvfeDVL$k^8DRf1dAv>bJYe5?ioM1S;a(MD zoDcN0Ff27mN7c{Ds24eCHy8~O&#no{d0fOKMPNt3LuxZ;y7kO{w;hX~92mUcQp`c2 zdxOi<)>IB3EkU_LWV~uVCyZ#A+mtN*Zd$- znLEyMw#vu^_7#;9-1`Yj>Kk0Isg<6wV})=5!l&G}aba3-Fw?nJzsZwI0F@8KR4Sve zviBTWj`=$}f_Bka;p!zjThF^qxDF=RAZt}F%6dIV5&hQxEgLVtfGc|T3j|dE9L)C$ z@GGT??V5#7y`Z3XRdcH}({HD@Z0oSs4>xk(!Ebzhr&;T>W476Q)yev@+K@Um$jQ3; z9n+5H_6O!uWyM`8YrD@hsi=MWt(~8wR9BVp#;35T1*Avje}<1HV1ldST;z$(~K7Mwxd^}~xu7v zkX25B4UHF&a_2)_ksC1HDP*=kX(lhAV|6@h3k3=&2;6w3Bqzm+Zxf-s_>%mq76Nf7$K+a_#=H z7WJp%gcxr~IlLczLLa`1Ef|HD_~h0eS=EkOjeAs^^2cdq6Y$Q{G@uS&g!B6&;+sgZ zm$|Hk#%w?zJ#A{H`9#26}0eVXdqe`fg|+xL_$Gx;Xqvqp!XKKYg^_|)WakG2U476R`%g6|W6xHn@fSiTP z&^?D)VSAj}dL27xfin4vV*F?y8ZPET^JvvFiV*W@(&wEnwv~z&`_1WJ*n+yE5|Tyi zPv`nXe~G&}vwSvoOedQ;c`q_$bXcZe){X9-NQCPk_-fr1EQhqx#hJ0A%ChYY#2ur0AexLDJ1B3x{32|Fz8m|CuSOtG<9?pH3^bfRJJzXj);@+>2Rq0k2D{w`g&Ym@8vdV4kT5d zk<`1Qxs#Cy_L$@BZ3KY6r+v}b%3uyZ9&Nf4h+Mo9TaRB8nibDgR}3&-;+X%aBobuz zAX`OGEwt^#f?;B03+`jBJWPbBhSJkyN(%^;fn6ViSRFJ;^Qmir^|p`qK7!V+=)F|> z5!kgW6Bc2r`7(eP+!)$cEVfx!HeDXln&Tbhk6E=!U>60TPVatrO6Q~*J@X=BqHG)yxsTUX25i$Nf1^y!;dQ7%$M*b~I zelyRz_g91U-dE?mNpk&8*74gQR}SoSCKacVKUlunMm_C$WgqJ4M2EWeMpz=@xYV(* zfvl6yiv(V*XWOYP{j-d-<^G>(M8X(~YHk^obYyj?c|EvYhx+cj#tj7HjM=Zi`d$K`wdUFpPyh>RzDqWr z&{yaYYOwlK(mtcNaAakV88pP(2Os4mtPAlWUczyHv5#V*2OZlw3v-{?NxzhDG1bf% zJvFsDe@kx@%wDed;DVy-PpNvAXIhYo%Wkzh(QmjP9&$U=7Ea-{S+UVTA9>g*XW;Iz zB)iZaIZE8cD)oTx!I1`r`ad+3z(*Mr(OIyfocSrijwG@kRsfHtR01WU60|_MDi+X0G1d5@GWJ}-y2fwm^Zo$paj1K_gQM0 zSGMwdeRgb0t=vq<6{qx};B}PFU-WaDUBf4a@XfVmH^^(@0W+nTJwMTxTep2|zm&t5 z{Y0-lQ=wb?=NezPs(Qc%s9U>%YjjiU_(54V+z3p=GF4NXU^lJ(M;;-??F?=#Ky~&{4b*{+Z}ZS`6p~VvKaGofYOB}P9p=4 zlUcEyEjk-M>I9{;C|z5_hksBepb;6Om+2i(g7QO)AH{Yz28-uvHt$KbwbzfeAL+*e z$eYh&;q41k{F}Mv4?p{dV5a$z=Cqj3FLifjpzI+aWq3!A9l+ePciVKlVD|4!p`$bx8occ$)>+O6?V4ZP9MJ#{Z! zlH{9tS}u0C`pAG5|J(}}iV_d-V0yQjHrCM)sMj+|*7v1JMe@iX08lA~~}Z*{NBU^e_fbuzPgPoe4RWPEh^Jl#r7E-<401&=p4CImmgZqxH?nf?zXsArAt`)YAdgS5vts|WWcf6`M3 zZg5bv+T~0_MMwen#qrP>q*ijE=k%>3$uc}^p;nXO+nSCpA` zCCX#CR5dfw>i?S8=l78-K$6ASz7yJeZ6m-f*pPRXD&p1f>GX!yZ!%iCGlG)n2#M_O zwUY^|053Vr$=k}*tzqRU0v$(ac9k&zLz5y0JI&Wy)bN;PRGxZY{mwF4jiSN<^l?_GCYA2;-%MRb`EHc$ z%Ze6WK^x9Kvklp;cQCBt+|MZ>U^TRIMI)JKtjz(AjF#w+Ox*{Bjl^Wzzsm~e|9dxR zAw%E&5t{P45OJI3&j2>f13jz-hTMVLZQ<49Dt4fQqJ5b`9uwB$&JPBhXkd}LKK zM-*Q^euH>&uy z1x@haCl(G=*{x{#j}Jh(AnhEFvJd@)Kfk^Pk^4bA9-nBy%)DQpUOJogj-=YEpViHy z&FGqFcpF(X_Wqt()olNs+hynbW@&pOZtDhS>aF^1xrHKHV7+Uc(9M{-+ZeO1Q1?&t_ib2vg zW&4r>4KbHXU~04Wumu2tH^AJl;oTYGW#Bp;v(5 z&jB4ub$%EpZT5gGd&6m>m`%`|v82W#v$$HSSi|~#Cv=b!dm_A}coXQIt?3#<>*>^f z2_2}HN5Y~EGl~fNm9!r5WhKr4{W+{zrtayga?BqI3hrgSfQK_Y4L2bhR$B#z-dv#= z|GmQxmg2|b8m^ut~bzt4*d z;-*y|sgynU&Fw49O5&(!kWyG<$wOU&UvC*Nv}iNpcDyIE=exu1{Mm2v9CqFhPvZXS zcs8nc)}D@wxGjl-k8h(=QVXo^$FF4IoHpitJC*xy)NfhUDF(=B7k=!W^I;aNb!ROd zJN{TZc&;ZbqlLG(voMDH?X$6jOg@?>TpR!jm9O`URm^C3C_AEVY`YlP!0~Dl#h=Vt zFWtI+BmFX>`^!|4y@q!<*0yT zEL=1Xvj-`*MB2@vyg-OH;U7ah=xlrOqdnw>7#Qz*!p%`=9QaEqL1f>sdDJDmeuR>E zQcVV)4&vEwKg@B&g0xsBqM6FN-~!)=`ihl1o&zJK`zM9l(`?^9oRKP1#z7k&=|gSx zd);hC$~m`x?Ire?i=^!pX~U#{8X4~-MztRWH?yBR$JpK&um7iXz48wbqGQUwxDL zuko=#U*4TFsa0018JB_1^`im9`zE4|#cn~RW%va>Ji91Y@W18#WUBh{zfLL9buL#x zpO39f8E&MyKGD_hPImy7S{A1Q_2tKfXx9RYXGrHZqpSU2H@t8?fU^1Do6xe-g@$La zfaNyD<+IUv(Cw_{`OqCnLWJRO$X*jXk#vM?fxGM`wmyFApApHsOZ$9GEIg7ZfW>BN zd);L|<8U$Nx_cJc`6GOk$=s=pY%RS%_-3jfMdL#} zz89%q=CjIq#S}KG0U2Hn;5v|*rPi`3PukE~%sZPjbmHf?|F&7Xf+GE`-tFmzobRbDnZ2`pQ%%LuV-_l&yzH zEv?Z+9K3-W^sct*619Kkco{os9z*ZBF=hd;BOoObSqxjFZ~`aJMsLP!-AUa^d(jD_VkH8eA3=Z-UhQ4-E91}k%s`STOu-mL%1bnjbT0DFY-JtP5JR(|%5;Q@Dt~w0* zzW?Dw?mYQt+3~vRF|TJr&4%f5{GiT=mf#9pHX+&O`v;tv|Mn;>sYnZSL=*^87??NS z9QrgPC5x^oe8&DYTVT>M1{9$nK4(4pTwVF~IiOGYBY_vbe6Ks;RVk1{V&$&)`$_i< z#X~dzA!hGCEqibdP{UJJM}8rZ>F*L90wC13d=m7hG2n=QnWV_~x6d;p-bci1%yKod z2rvEOORS(|%6W%SczJx@QO2P*d=qz0I&}-5gf-KqUXXHP{X)tbAiN83l`^uVC}1+l z0|-SUOPgA**8f)9CUjc$<3aus7wip$%3?piiR2C!cb^dm*BNi3+O^vH2f9W?Vr)z2 z88e45-%vUfA;GlA)UjFV*7t92#lWL{eplWiNVRnNPNRpAhtVQGWk>NA?`@vu8N7iF zxCJQw;t6X>X5Y< zK(=edQ|L;&2XMZ744j(70M#* zM64)@EXS)+ke@qEH>RYi=+hy4Uy=OU>DL@K-V@-3^O~M}^Xr_6LT7J}rd=;*KRj`O zRVi#0?bz!ja>?K0yf|W!43`U0^&BouB+-1PuCYSUu!^ns+d~EmAV)_BwN?YjsD*oP z8%@u8kODctJ#X&vu3Wk^npF(qWT5-fH;#+F5)|*uv?4b$(@dey<{hOKb4QjG6c<2! zY5It{7%#i4%&O=6!uaa0jH?mVUC3hTk~?2ipXkS5n!CmvL5622G5mn0YtV!`0Imzwz|Cax+84$Sbg=nO_d;8v%^_->lAxj<$&y*l;VMo zQ%S)i1EY&q4D9Q?1rt2o3&-NoFhDc4v=BLVFJ^BoTQsn!Zz>*)T|o; zVEaQ>lN*r@0F0$j-vrue72r4TB+8CjuiQ+~) zBils&mYrCtw~k~(`xo*ANCZ_GbN#8ec6Zs&9OoEGF80zImz+yN!>xp>GoM#${Ujjg z{LH4rql*!E%nG!)+zY5*);D1~JJ;$*L=f-TT^|>rJ(_o&bj)pY!$bKcYN#jJ1Z+nZj`K5PiuF#+|I>I-JXJ*{;1Doc9e04Wl5_p@l~BH7h%RPnpGx8%b!;h@~L)3QD8v< zZMQKcLc9P8mOk(2T+*rEL$CL<0l|M}>cVu+Iy?zM=L_i>09Q%RV%H(ySkaPc3r*U=)f9IaZ$>Yp0TCg)vpr@P67J55!+aiGa`cP^~if~B_C6wnl z1X9QP*&RUIN1cC!h~_r#0-E=w+IZQQS}g9^(3^G;d%n2mLROATbR_2akDbEyad=y+^>vj=7&mUR{qBFEOwG^w=e;F16d)_81}zA3rfRb1rODo&Fxv3D#T`*XXyKo^=oKnL&N`SUYu%`kLFgE*{wOH za=;WZ?N3@d!zzDrq41Q$_nJ3AOfH*l;}JS<+IIcU$scVGCBNMXwOBQ~yCHMR1_ya| zgl^lCrruv1^wuMEcnzmsp#lDTi%7${zu>J6|7-oFZpJ&9ukBqP>E(CaJ80e>jQ%{+ zQ{wZzjws1q`W{S1b%*aW{VFC#*s6xnm?c)n*?Q}=^Q-G=Qz2r zgZ7AZtTFrdVbME_BCTtiVr>^!dDl_mTo9e!y}b3XgJ;L_mjW03R1%42%Ihjn5#+ zOhpcgAqZCEi_22UWI31OI0iK5Lcs##4s;{Tpyj}y;I3!|%{O@YulHVNM77r$@enri zgHt*_f5GqbY{oMPfmN}>(1`oSGeupD&%K9DfkK4men`8Xxr?+2CkjDx_f#`n-~e=I znox~PWoWr^yb=zL2*_UK$agv`@U5Ysrq?Z0USD9YtH5-V>x9_)On?qD>WdONLd$Q% zh#GaMj$T*k8pW&aWw51U$Qy3MX6!yK?#!=qr;0IG!GlMqZGz}0663%R`H#Ph zJ@;9Qk}7FWy>PKEgqOPSwR(zzE*#^V7yA_ha(B00+d{w&q*v&Hh<` zP*4~mfwXfsa@w{=!Fgk){VqgwS4Th%>$s~U6YSmxvFLWQ*wst zP7LNlS^)IO;|!*~(7znFnKF3h->gN}j}(_8X##ASi)TKyT)pDdIsU`DaXpZ=Y?<66 zuB%kn9nOJN+(`s1rfZ5Vmoes%89@X#a%0sW5`Q_(4r%7+s0T;6V)J5!%;t? zCZO_?A?>Wz#Bu$wm~;9Tv+VhsEfp2Pg$6j)%J^o~8xi1fJCxDk85yf3?uy60nZZMX7(RJ4C_zHks14b)--F5HG7=E^`mvqh1qc+aZywe$ITT<%%PRV0wG_0Aot+t4zmSNE3IAEbupE$M^1X*;|!odr)j3 ztHg!f;5@pO_0XzH+#*)ygF%6e+fmMzol#;WcSt`X*!jk9Vb-=H5Ch#-=da>W`7enP z%}955>K4c#7y9g90o2&tJnvr|4!rUZJBn(3vG&z4N;x%AaTm(G)MlZr!XeU+;u$h$ zvK0=G^M(YMpe))8xAcnnv4d}qm_a3Xb}X>b@GbBW4Rs2*Ex?q&Iu&{6Jd+Xef#)xu z$MZ}D>*0^U&{lbsXI%$M5MAX@kTPEKaAP(yxXJnW>+$kS5jnKUI1sD#scoedh`o*S^|BDt-I-`cJt)vQ z$O^Jm7fZdq9x6D;97gUMtuCm_0C2P!TyJ- zgxiJPPiC)%BLi7QFT6x_bm8S>bHCsD!WXdEC{uqEwZ0Q&uAuZVED6Hp9*^<4@$kd8 z`whC(PB6c}xr~HY4o*hz<;07eNbd#uuK|cguP|a-dh~tYwBce6@Q|D@#&*K6-5Vt* z2hrz3Bw_=L2OsH?shufebzlZ_G4*1af-`eTwlU24>GwJP#Xl~oj9bq>%KOUl1Aq+{5#%SyNFjANjJ7l8BhR1 zLe%+thsb?nj79rGy;XX`q;@t8^&wJwt59;_17u@`;BGgmm>3z`XRL!4Hd}O1dsUVt zJ+=RqZWA}f@sw_>ONg)9phbkzZ9s&IwqS$kd;_ZP#xvY%3l`g6IJg|RMbuTTE!>)$ ziZsq{4oX39bi_jjNEEQ6yVmz!<=5YAaRRrU(sn_g1=UvhY;k@~@ANhVvw5v?vi>&@ihtm=2RMWykUUco6cjc+)}9L0FE}#%uohwZR4x!adcybMZnJO z9klIq^oh~PR4{Yw#<5$Q2CpUvL)>Ovc@(<0pTPs}uv^UDuUG#LF}b;V2LrC+vVo`1 zzWp}2{wUsxC=q0}{|$T_apxr1eJmz0PHVlO531JPlT+p+Q~7oJE=}qSGmdXt?Lv0c z+WVH1)D$cx>w05O&@X>hHfI-z5GT0Z^lv~IKdMf-dwhFA|x!uGgjokfO5TVznkhU|exl zNk7)q9GW3*DUIM|>94X+meI01M77QUFa_NWm6+|steOi>8vb;6 zYaz%VEKg5Bz!U~D58D;Cq3Wc6G8go)W?tC!$lwnrG#`bhec3xX%zT>|vxHRp^n!tL z1+ymaDiLw;#zElxb@Kwpf$y(tHzy4TQ6hzL_Wh(M)N3L7yZsL)n+efl@8gW~3mD)| z@;S&K`oFI=@mmk^?SUJNd+~y57d8Zu9r&$pGD}D{P%6oK(l&v8C+SlGp|dvD0oY>y z1FU66(HWt~L?QnXn?9#3bL}wEIsOc!9=KS2v#7G4ty?VFH*`9eD;>0b^V$ql?J%*2 zjoCOy)@Ked4U4=w9XWI6!^xe)#OGP2X9RDZ42PPO3n1`3g0_lW75UDxW${K-=*9{M zAbA<-h^?GC6CiCr=_%_hazMoGcBr&pHggYL_%zR_^P8fd1=}X8 z>Za)LkIf2S37k<;+(mC|n?db29;F8B)1(w};tF1;f?l!OBp0FN|03E3h4Ub22fg@d zedbg*bTx#+P-l8oGo@RYKI*1txacSCH(kE~`hWT8z43C@7m?kkT5j!Tp5!3xRk67= zA|r4QyE7G-$r9U-N{cW(0x7CGHU88{!e>1}nz+B8`gzx3r15@MZcWWy2Z7i&@v|pZ z-Zc5wRZn}(M8uFY5Ybxef?l1@Pu#qE3j0SVC+Q215Asuz8BK(<;HmLbxjW$Q%vUV2 z0dUc2)4&dYCdhsyG)7%Wk1m`$)0G|)8xw%4zNYZC?~=b;#~f7O=9cSm*-t4gn^VW= zRaqRpY?T`X)bM@|ff0n8SlWL{|{(yV_9yR%WG7hi*Xz5I>%75nh zJAEH&-ZVnG|-a zxlmBeC7i&qA4NeV&8fIwe?Z^hi>gA8)v>j($k(wwkG-)*C1}Fes&*gyMwRbX;dNf6 zeB#EQj{xxP{04(ohT;Jj!3%%p#stt_9j=Aiv?FH@mK`cL65D z^q5@7{}XDoI>WKg6tz!q%5s|bFr4C2diP`Wz9e$|12SGie3RF;$x?TFvRnf6or5ZE z++M9U17+#vd@))T!QipY;L=&ReMIYQzp>ihMVoWTESr}OE)FhIIbLy45b`-!J}?Dm zIl0zD;QWhLw1v{2N1=xQqI2aU#_KEkKT3E4&+y?(<7z8spy62!Z&hBc5Q`mF3CK%@H zLN0K8L@SENu|f!3q%&GqI} zC`#j7A|Y!6Vq;phY|nQJti7y93G)ALp@%w>kDChA-#n96fsC(~|3hLeGYL0TSdmJG zg^kMY?Jq8f?It>S={@y?EMy!vsMRxBI9Hgb&iBVpQ|?nvLW(k7>k>G9%{;SiTn{++ zU|+c{I_bitKk^1oW>6_)|E_byjCz!FtmH6R9BItFl>e%ve~jVx%e(HocecyKrt5z= zztEjqykCWrY%(pnrR3QAxSuw`y?jm`qCek$r~!DvG*~aBBzBs^RqmtRBO`>i3A!_H z3M+ZI%0$E{PjHpN{8FOkWz5KPo)E(hW{xwYUV8Kp)uFwO)4fo#gS(^s(lr>Nrd&7jNMuX6 zavr%SlBs!1G{CjKZBasTitmJp^4ZYgXeln6QSp`1pq;mD>Rqrt_ngl~C)I74N549>8h8OefRn(`k9n_8Az z9_>)Omv2rz-?RNZFX$_ec6knX7qmD(-;zbnI+>pV(`m~uh8cT{On%+@w|0_&dBoqN zOge}rC*%AR^AlQEqN~%tV+$J$i=!unJgBGCcfYN~83$JXU`E{jgDj)7Wb@6~!Fi1n zl|=*r7?2Y@wcE*p563Vg-0D8r$ekx2sP?FdX+sTwl1-Ry&5V?1aM$|j4PB=uTY>=! z&0aw=x~c0JDiJXwMO|5b=5*ZB{AmYTw8r6#J^mz(_1M#o=iEGX2c^?#ie>cmH1|=M(zw(c4;s_iFlJ+CYQlf`sG^yneh z-8w`;?a?pK!qeI&auJO>G5x8a1<}8570gY&PY(SZ=yejq!{O#!amPvU{pv3VI#zpp z4k@?EfAyv0_49)_xUIWMiJ`Z$S1P>r8ijCDTZvLXuD~~6N?Pdh!8<;U*BGg4dfH2D z%0Y`fH)HmQMPrOjC(axGQX(KTk=c$WWA{G=Shk}+4B z{QRWD@7^aE!=>C}n&}RDPUm;8PHTd3cYC1wD~6EXKB!qg7p5>$tV%9967NoqG-U}7 z=parvYQtTo#N*`;K;6kZ2)2_!-nce(=NphZzmvji2`k-%ustH00hzn@gHH51RD9)M zVs9^%CBCO%eqlihRmKh9ZmLOE3Q&>+zz3|)&)I9heO#F3?bj`>v<-RMQ$GWy0oY&p zhKSOpBgIO zbfF@W0ULN45Iuc!lVb&1S6VSWqBCo&+}rr2Lf%;Syi6(#TTT9C@)3XR-DC6*XovYB zEk^rd0d>gem1Vo}Hio3<$ zXw^o*WR{^RJ%h8Sx+XdE!J1UBQ-{jdKf!0&8vyi?pyby}dIIzH4^prhy%?baeidPUPX;IDdWLK|+bjg>61Wo*uo}@ z07yjedhDFY;6{|~Ey|q$hpWo_g}wS4ky$}qTDkzlw*HUyu`bf> z<)A6liv#VMU8BCLe{xyy0>8I`kdqG6OQbuX&`56 z$bkuM_xL6`l;fDMri?s4=jhG7w06GKewJVt(spjLYr`=1Dn=)<4{EOL^v7D6*VcQf zG=9{RA!EDIU@vaCm*%ik{j{CMA~$eY87Ag?Y2VD1*4v0lC=O{G{j5ah3*5+1#7>t@ zcM9%WwTz1N7X1jms{EVmUsSl{CRFzMO)DG%Q;V%>KiocFO38K*U42jABZli~XbFmO zFzJh6*DpU5>Q7qzF3&jXy1ZOEBk=LOTG{-%MRUVHn`3*ChJH@~I;F88@99KsXOr+i z7ekHGAEEaq)VJN9NE;sM8wdCIUO4tyUc8ujN8Jg^3eoESb44>^z~r^QqAZR0YMuL< z9yX3RIWzej*^!Clt!@8qCS;KPpp}4+=Adm5A<$(Y8{`X*xX%V^@;!%xfX!)7{%*YD zzIE}OT`bK$WW&mZ%WO-jo9z%Z?Tsb#gU-+0Eu}`E(_3(k^Uz`xQuN~u%uNy9`%~?~ z{mUXux#@#+MUfYi%MP4+FUzc7ofVVAJQvcn4nx&zpu`*X6lqrYwOh1B%r+D}oQWZ} z-vbYO!qMhfLKVi1^6eL$$Yt`UrE2h#q1m*qwmjc7J}4`-2>{yKz)&iJF}dFC_jf@7 zmY21C=5~MK$xe*olu;kN4?aTG^IYDm~Dd&TWqcur)2;QcGGTvvfW^J69 zMg;|ZuicR4t1$_;3VXMn({6wf_7}To~ zO2)Y9MDYzWvdUkq#qxzZ73NcQY#MB*t;_Qk>iQgfAhS5%3@v)ek)3!xBfV2|zqc%Y z5Yg?tHabPM)g`r`o-%gh+az?+z5ARmrYm+PU?PjmGhqo&P!~4K!YoEdqy`mR3M*o@ z%(fHuwL&FsY~GS3-bPiLG~{`5z?yqJ8jQ_qom>=F!OlB_n$;Kg&dqQJA-W7+?SV{dQPNBLAo7~%WNGc z;6`nyaFm+j$LxvYCm#i|w8Vnq_<0C8osvw=o8qhbwDvQHhiy6w=`IY7ym@!R*k1mK znSbu|;2=rQrt;Gi>4|V>O(x-XHRs{frv-f`UHNC^Y73A>8#0J0ZY=r47c@a@YN>?K ztWI+MEBpY*(lnyTR6jBEM2KRbc0?QiA__C7luHfiiQ}WUCmY4OQ)t6^Q^_VuB&7WR z#w^F3PeN zEfF~DE_11T-CKzZhJ0ZgRhN@zqxTAY?;+(bws`w5`~YXTx!{81T*Vwiy3$=m$<|Um zwISfbkFJh4JR|(uyG=O!=(s%F)UTM3_EuSrpYG57b2k7}PTw0c4ATF^HJ<~VDh3VL z=v6(g=r<&P-x6%8kn`f?+A^KLQ1bW?Vi~7lWG>dE87C@r2;OH%oRe&d+7UETJm6U< z^!;tUW3+R3k8#Ji8%kMrUq>yM^=VpWWZm@NY#y}Z_W$9uc`$PtnLqW$E0G}^lS&ZH z@(me%@=4#t@lVQjJXf8|>h&8Ziwa)1qT$YNySfT5*-Ls|Sfv8?_SGA9M#mnRvP!+D z{T>#n{$at;%26o!7+T{Bb>SFzps+qZeAZk1z%)`tJ=KiEw|%GW-z1pXK|bX%>?sJR9Hx;<(OnszoC+o%AsPLJm^B{7&v^F zd3*;xInUk7Q_-in0FQ;>OXwr4{|mKvJ15(B1X&GOFwGs+nWVoUBg_1@i#yFv5^}1| z)lo08cr3DkW;}}8e9Uz#HbAe2@aPaZobpDTaw3;MQcg1BIdS65+HX~ z3-Lj<95_+*aon6tv6q{Vi4|TN;*WVls!&ud}GP|qd8K| z)}xefK~zg3@wsLLK@@FYs$)MXl|~haLbXVxdDht;>$9)>5yd2~>~MT?W-`uupJ6@m z)!C|=3C*1|&OCLKR2VILeyZR-XluBIn@8v1V;mWsJN};v1Ewcx@Ukx$;n&^!_I~Se z9y#*hE$4`=#**Eq1mnCTM-Yj( zn}+N)#@N4f=<3VT>Oi#!J2s5gR?``;(Be|O`_BPBf%3+Awk7BWO^W_jf_DP!j+JFy z`>@(}b6V4UOjhI%@ocW@i3!*D^OrZn=B29YN>l~RdAh<*vWr8&wo4}9qYf*G&2Ujz05(PGsKG-#dv8%x-gckjCDRHT4s zXQCNY<3=p2ak#LLcv2TXXE&w)E9rHZ97OdO_zw#|0Fr|w?|j^g8n$jQMvT(w zN0%oNK_Dba4LPrgyTuy)IKfS*kHROWAUKUO{Ca@|Hwt_j|HW8+Z z2nfy&6O=0v2Ug+wC(gN4a(eFPX*IxeZz_7Av*?a_=RZCG0N0Sss2uaiiFOM)TyPywF|n!T)> zAsMot{szecfU1{b5q9q7%=p8AnP=NbhrjEpVOtlo{n4eC0W-JS+fC$M_*BCdp(mDd zTE9O$JyG{vHgxW%Eg*JDv@Aw*x>19WJh?{Js+SZ-MvkY zKA!qlEJ{m|o+YT-!WSW)9yK3ZdBHfPBcn`nyw{--onX0g4N`3z#p$%}o(5U*MvXtO zF8u;ebKfAmVEn+OlI!X-Nn3B222%?OxVn6fUdt;Fm#iYE{wD`a9=q*8JLyDHmm{aE zltb<6@9u&BRbneY8?qzIHU}0Fg3GmyI!tf(P8WOGT`<2N1ii<&-UlLG)+(*8F?^J~ zctyDQ$W;QQWq;xBJtY?Iy>FC<9^Qcqk2Maga7g0Yp6UX#ejQHZcOKLqH4y~_23HAy z!Y;2n(|dIXO-)#HctBCtPT#qnojY~1TeLZ8usE5E9r^o%{C=qJPML1K*BiWE9|P|= zJy~oB$|b+JyWXymdjCG8&UesGNy`4YyJ!J{wR^OO`Fi*z*YM|nWKl{Pr+y-soy$Ww zi1rql`&QEDqiqi?=QsH!rS-zmXRnXrLG>>tw5w~43{bI$rhAu5*1xY;jcMc6%qMjw zDPwKdD~AcZ2(}t++@lPiSCD8iiYkf8NL2~it3tkCST~zsZrZ37vtv5ic<9-#^=|fZ zz*@~nv~Qa=BiBk8*2`8{%Bytc^@IShO52HTU=Q!BC)hGeK63kHu$Zf54?w#sy$nCX z2F<9o8Ocj+?%jbCGww84M=P$}AjJN)d?%}@5rkODD3`AWP8C+u&%7ogM}x`&-&xYA zbxORc4*pi~Ep8y9daneCl-~fjS=bS1L|QpmCI2POOVKSf%u6r7`}3`(j0Qsb;4OK( z+9@~X2PixB+KCi#0;JLZ_cXL$uXBfMt3TN5`jHT-V(VSDOz*{`BGPD3EpblXEHi0e z?Gl!gfzp;+X6d7_yza>wh+t#3Ok{FhF|5rHyU4%7vHzjVS29b)ttjP4G)gS04?4+M zJ#nW@>`8OkrTP)SDo*(8W+M;jHZ|ayva%?GY9a^<+W+r9*F>kGOU_*tnM3SPKk5=hqQTLO`cM~AhFc#9-{1BP$M+LGyNwhC7>h;i;6KzFj|8- zXD)~kb0aXTFkK=^@5ERbF12u#AvMlZrN6I^*8F!Pbl&tTOFfhM_ERT=6`|Z5Z;n*_ zd;F6rE?7IRqEtgQwvBfUCa~(f9luB7PYfs#5dW(=jn>(%@hakjGVjJ01+hu_ijgD1 zdy6%THZT52$dXyB0HVF{iV%~!+=RU|8Odrr3@fVXu32zNY`IRXGwPbmqgECq6eakv zPH~1+J?bwko_;oHoUaw%Ubt|=z@=dL^6_E5h^^}6+g3_JM()Cm<}!?v8b`2n+1>PabAbm+XC{zsD*v(O_hp& zoZZN*i~RZp07xZpp!dRa?|E873Gh4g>*91jXJkVo9L+=7b8>G`vEE58qq3rtg7nsX z+UB=Y#l7U_1in|vm9nF8vA9ox1!AfO5xCn_(``-turQpH+k1M;3|q5j$FJ|!7K67u z2h7&glubpxV0ZiGimK#%&!dU~!_9D^U_T+QKtie9{%@6Z2<$d>thGLOcWuCx*jf*~ zpTS~Jma1H-&fm8zs8@Y-qJ1l@u~+pZ-;1#mxw2^aMLN=={C4Q3DmPq?vmdFE$nMtCU{uMEu7hwcJ)hAl;CLZpvPPQ6MvoWk( zp*cJy)q3kP9JqTJO8xp7(!!twpeEG4P+9h>IcrIMXv1a+@;I35;w_MWBA`MsR^Bs7 zVsk6e^cK+SFj2-y$)HI(Knei$`9j~->9ATj$x=}322^9 z&A><)_2r2DbJQcN%)!t{c-g}>$Igo)`XVD?y~q43d$Z=ep6YHThCHJ)7)@Qk(ggdp zdDVyQjSuMK>DXmosbMg(-}6u*lJc7Drd73E6Qj)d3wAfR%i`K=&$tA4&b}IbsfX4U z+50YhW9EI3=m~MT%W)4=jazH-Eu*_}*%!30Ka-f7fCfpPtaoAJX5Q?$!Ub|&NuHsb z@m~nChx%}VoD(#XhEd*L2;u9F6+Xz~XIc9$F?%s2_b1`oz{_OHE|Zlt&zV3b)?-R7 z>$~LLwnpVsDj^ew7dZW9=|@IxCE--@OKY&Rxgq=AJq;~_`B>En!r3561Hf*I0P4Tp zAIqE>05M<9vFXxW=*c*1E^ zOkEh_k(6&%&eVKNKtH4o_TxqP)O@vci2V73G3NR%1G9$iRvG(J&C@YG#I2%%LMZj^ z^FYba*S?-AYCqg}zpDe3OR265W5w!cududohoZGY7FRUS8cMLkFSJs!%$Z{({VNVG1 z-quYMyP{lvXA#Y0&N^w)sAxSJvl2sPlfn>`acg<4o#fO9MK`C0q6F?QmH53x7*|uu zgl|qdxGuX;R9v+rw!wPYP!e~M_B>`e0Q5I|aA|8Rkmv_R%6FTP>zrT|Ow^rq&A5Uw zezjM19=mO{DFl8F^O3CjdoICVymdLY`)cC-+jovOi8DKky8xwONB%hbP z&{Xp9J{Pci?&fATtBbAC^A|kh=$L~SW7_DRqYNAAsueej8xrJJg?|$;pQ{THOWKx$ zwN1VwQcdauIL9q8g3>7$|xXg(5w!!SQHXFQE4Y9 zdBo)I4boy4RVeu^a9iUU{L#-_XGf4AYGArg+Edg$HCyY2C3ot#@D!QLOfsh{%`&oN92D9$d+ z?EB5%nQ?O;&0fi#p8Ut7$?Fu@H~%SrcW+#KN(TU_e!WHKhs#x%=^Mm6zq;CbAizX1 z^)cPOazNC3iSNqZQts`m+EiYL2V6f+;yUu{RoN+6s`kJwvbR@p?5cm&OKlqV2$I|b zD!1(4;%e+zf|J>)iPmWO$jh5BSZH4|o~9k6^1XBNO^g-k642uCy8p zA2j}Bas1C~dn@tAoqxOIqdB4YuNIY6Nbbf9%-}rj{kw9{Tm0 zK=Da{1tNd{SIJRLiRMg1Eftz^&@S_z<)w%bh2ILeWL0oYoKz3W^Y{LGhyMGGfE#I& z!Wx(N(H2x#Vt4W;`x%j?y8*TK!eSrseaB<@TW=1IGB8$HQkU~6`{h0&_U!LIqE(~N zIMBHp&|PmdBg@B^WnsL2aSMcHy;bFC>{V7tn`}T$jph=(RC9H;!m$A$B|J)}(kLLT zxohJ3j!pN^rEAM7*$w{bYpR;nX!!eCH@`P6j&qB7Bk<+%FiqV!HINRc)B+JGt*fyq zrRZ4%VCy_@l3ut`TQUI8;VOGOHRgwHjLnTyFO#Rb7f{IBcVG$Ft#7lv{{R!$Hfy{x) z>Lot%48xt1VfW)+c=hxT#uLA^h-Z*>E69f}@x`u=EvU53s+nxbopkHK-gIP2?sKlLX~8)Q0|d5_BX&rsTX+gcxAD~)i_df5k0vR99A$5DV`Prb?cS2 zno>KU^bUT5(4JQ7bqwr!pK%zjaylsmM#~a(A_Cn2RV?Z&D1r~r9|f~lQFh_=WbUHC z7hVk2mjM*-@qkrB9$*s_r?=1jsF%TJEE`Y%PF_?!0q^6Eg={pv6-o{pPreNFCZHP2 z?oagcS*>NP7H?Ca;0^XhrM^wIIT_G4nz$Ox#HT1+&_9RMYG(zad_jwx^_3+eW=>UF}qsq*?wRrEJdNa-auQdeP zMtXyD3j>v<@75Z$6D*qr+0tKTu=@=ijp@Pyf!L9MboYOdlgKFd+B56XKbNM-6iQs7=l>j;eKMb5KayDkOQPp{h{xq`eI=?s*@p_WzRQ;Ii=DX+nJ5^&3 zs+syx^MV~|#ElZoaT^IFygAzM)!i+NmDITwwM2R8Rwg(r#;ty)*wY3R>gkTe-OyVhH6f| zK_?V?w6aFAxfv{p_15hiDF;Y*aqC4U6HaK(Uvf%yb=p*=UL=ga0Z^X5tGH9%+(*a05K%;(NYV)xKNgKFMv009~z10Nk#q#^Db5P>@Qsj{YWsD;J)Mul_%>p5=}-w5yq=jTPA7+IrRL75Hw8W1KRxFghEW@rF@tr<_U2o@~nv9c*Q{h zGX(q#6VDBkTsdj#)kWF6ZSdEPHgBi|``B%DeluRmMd3(K#rImz3r!boHrJmvhh7#L zlHQCL7LBrBFvAXCk$#$`Vy;HT2q{9uW++ zNK2EP2vd|6_u9+S0$fO5dk=FP)?I849@yA>i`(>j)9SrBbPYor?S^%uT3}}Yoc!JY ztn^Rz*KvPypim>Xh-X}-P8a{vb+fcSO+Y@fo6H5YNkJkG31@~6)|>gs^;KcoM!S^& zTY|C6Z0oNmf;D;XN1M-ayE##@@VUP*%-I{a`{KfLZh3-kUsJ90sW418Ij^*8?z1>< zInPy9%Rfa@HTjq0_pr7XUCG+p#m`fiv@^IuVQ6cDftEK z4=F!or0NVaR0RQT;6vXrUVewdMSGcvskFLns; z0;nRhL0}kodrTI!^dk2Qmntb#rHHo;6NCL^S;(7FZQGqz#M=)g>zdv}njGqISGh!4 z*4YB3UuX#rFY)z8Je?smlv9Q)`#Vu(8ii`tjg3RK-!Tj*ai?-@IKAV-eb7DZ>*Dn^ zV(pskqaJy!1hy>$4y2drpEGH$gk1ZN4tE~8OFaV>$`7-kf5(E_eLAn1OI-{^cbm|U z6}L=N`TU*j@VEP1ByUl!+u%~LoVr@ScSloThpAL_rz+o}hvQIecZGns`VmmwdE1zY z<@YakD%!NDG08nl9Y^pEjshoEJ*Q^}CB}*idl=#g6>^Lr3KT-N0@*^x;W!n}6Xe6f z@jiSPWg|$`k!cC~vbSaO_Ao4n+jyIDKq%?fCX|q$(nZ7YaFp7AV^MBzJn6(mPYb(+ z$O31>+{f{0n)tM{W&1bo_>Q!*+ZFVajo-5A_QnM}s}ePmwy>$a2@VevG}!l?Lx^z$ zD7Y@;1C`4Ym>--}G)F+&1Ep`6=7B!%(BpU$_RT9@jb@|9>;r_v*wm1!a=d73EoxK8 z1}AOT)B`q7ZvYU}6739Ln>Iw8|VK4oseF zUz9!B1bWDoAfInf{KRTMu-VRDpd0u^P;Q%OS~;|fJ80<2$n{qh>wUXvb@6SIa#>$* z!pObH8J`8SH>9pc2>setjgX%U%MtLCahb4xKz{4%2W@l8Dv|lwMXlMUIwA3*_9>=n4otFvU&GXE0q zQ+X=r@uy#4pJ`ZymesCNbG&V9eY-1XNhU?b&;zjzUIFLs1Z5-YCyqy{t;pUvz&5RzHrA#@#Gq`- ztI}8WVM$5q4h;|ZRT1L{%M|%SHoy!SW%b|rZ$>YEMgjp5NBtPx@$UC98c~Kv!IL*Q zs}-t0SGcfvV*em*??Ki@$#m?wyZ1tOhoOYfFcKC2FQs z^YP_N;{hE_prUmpdaNrPqAOnc{L&Nz3=VkaO!ph$Lo;w@Twp&vGR}K(GBF!)xoViW9f4j)$^NKK6@o> z#7&Lu%`%izW?rz;^0u;YowQX@f`V- zTTkGe8c77TX0|7+%oel>^hzA!SMFT^G_5RY55oXWg%PjMLQ3qog;Daow>qV&NQ#bd%tis_}$vy`@T<%u<#`nV|QD7!oqjrarf#{fqyVHh%u^rmH7`@ zVFt=K+Ni6()g9mmThBVE_g_dm+GWVL@0NWT*bddVy59UC)nSz(dD)UE3Z{Kz-w&vrCv|O7&_;V@fKq18in+ zv^8Riga;DgHz;EtD5efcct%+ODsRThy zHV?s2OEbOQ_y_>gFSvNA2{OK3cSJ1gb*(d}k`$}!x_q76BG~jTYw8GZs$MRlxm3ZY zIcMzZSuv!5wBEP23R5t>xh>@+2j0^$t^<$Q^`59g7KOJtgi0>{@*304d8f?@&SSNy zgTSNCuA7cDYG7deh0Xd3Eu_ZwR8aEV$;Le{wIme~yuI~r!(vgeD>w0TW=8_O z5VPh>YuWG)jWTc#`_>8D_2803zMCn<^Ji6e_uk}La<$I9c@^kv7(*9hSpOL!E_Ifw zDBUo<$#^uzU9mtP+2u;=3EM??GCeODS7n3KG-4~I-E(>O5>Dp4u;{KSwNW$Yw{k`D z?$wA@Q2$JYH=;lDEOP48sEuZ!$`?laZb8ih^k(eG=!8Y9fxhMNO{hxRD)2$a8sI0+ zYmo8~Eb&<&)qY_`{5(Li-;F2Uq9zq6K*evQ~~^Mon=m5tIC=uZ|Gf>rh0vt!BGWtjP#Lew`?4{S7$RxlXLGjZm865VdCoAMrU=rws#xmB$f!DI8Y~ZQ>}D{ z{vJ5Pqqh3krcd6x2%dqxS-keBhL?@kT^n)5M8Xl_`1u^0ol*Qh!^YG@!tbRs4JDBV zJ-&Mjl`pTReEbHk%!YnJqbizW3|6Ag$T6X1S4Upp3m1-A@#nUsuX;UX_IIAygHzhZMSP_*gAr4A2UT%BoA=yk3p3V z8tBC{|jpLM#N>a}W08;pW)E*@f zNuc*HDx1j|*|ADzU>l}h_n%Q`IOX%4`uNVpHK~~9MIc~Yn+m;(C2W(^smmr_*Hqqs% zoS6dWoXqXG-AGyH%=h0=!|;nX%@tc?Qrvr&BDOYVKA~Q-PJN@u3hsA(-$qAc+wLB9 znPj;E_m{+=>Jn7aS4N`3jSlOnQq!(%EU zP{pEbYW@-5^JqAH36Wm*2(%@Wjp{+J`0hT7q3SthfC(vK zd|lb?;1SIqxXz-b^7sXFC|v~q^n`_XUt#P+*T>yZeS!duJywv(-ykQV=$t$RktRKM zJ%=o{k8XCvJupbNepdkj+DtJ|fQ|KGnhi!`qVjX;cR0>3^7L1DI!g3i0wrS0qo++p z+0zmOqqTr4l(%guvsWHc0t0{AA&U zo}$Mz*RaXzwM=civw5+nXezoE(fR21#W;@Fz4aamo%k{(viDnnq5_bLih10J3tC`r zw=K=&XMIN6`W_2yPYh}zPFC{vOu0?nLKnb0Tw0no=MIF3Rz;7kRJ~#*hz_!q6v0=h zLbaLufJXFyh0eEWUbWyJma}nhBT@T5GPt!y;U>;-%kPlx-YI0*M0&^Xgw3K3^b9tl zbCP8lNh*GDdM-SUwi7i8qqe@j!^k#37;wFyeIU-rHVY*`vw9V2V)aI0mwgucv$(NQ z?ZW~jypn+gZH%$RGih*WNjlV5_ok)C7zo*i8FVf7GeM5_gUh(560Sk~BFeTCn|xfj zyGS<&xKV3$Hemfzth_!Re@*8B&;v8#WwG`K_dD46dh=tMG!DF#miG?1Djv6DwPzs{dm*Ps#Pmgnuo^?^ zkH!dQM#r4XMvl#|n`p*n(Y*mZI7K2MkVr6}(Ky<~;z|>0KK!9@V-VBmKc9c&Cp`Hg6toH#xEGp zp~Bc*Bz)hD(9j}L<8blbti7^TcP6|brZOt6cGZ1rHDvEHrZRdjfl|#bzjhzt@+ZRo zREFY`X|7u@LUCM49lMYcR^62R_c1c}M^^Pm&&_);Q8SwMknz{22vf>KWr)wbKwtR+)E)cZ;zViIUMfu=%vo=f{EXoKXfc+?bQx z3}=;*Jod{-I)@u2n({FTsOO8&qlk$HG}p--kdyWgiH>1nj}L8sf7UXseRPW;81aS% zGKhJnli)Hb=x!r&7VSxFSSXTbOL-SVs%wY+--_8Sl_a5H*=2H5A$y)z6wK5JeWWhr z|ELy&{aD9|F-*$(lBx|=XQaG8Z|SFW<3=UcOg?Bk z%x*)~-i4FMQiS{YvM~o71R=Y5BuO0$8wa0l9Th9#Z6<_~)tUX=h^^D5L-$bxANU@9 z88yIocTS7--bw0e+rn0$Fyq%i^Ie-w+;UM^wU60j9AF1Iflfk(Uo**W#NVWvPO(Xv zMh>0~PoF%O^lc}JQqosjMmhfea~7s3Hz9%K@(fWYeU_wd!N^&q&<{`itv;{+3{LQu zB%jw~S}T`1ksA>{F#Vur7rR&ZbH}mSDEga~%SYr-Iw7FYR%0(;aXD z|E{xE$5l-dbl%AJYD^ZSh$4SUYlk~#a34W}h8d_afSCBWhh1AvwYR@H)6AJ?kN_sT zqgkXkNKb0@<{0PfWQ3E44fe_IFV~&f)l2_K$A6zb%5w*rwtfwx=5KGnm>%Xm75Zdj zc51j;S?Zf)d{RtuE+e~!IYw8tgy6o+JJZafztlg`#nZgldXRfZ$g(ia@5e%zioEv) z)OQH{&!6tezq%3oXyp`{%v;)IbN9BJfga5aTEScX?Fq&oWCX;uH}wiGe_oz%Mky+M zycg*F%i#)cx6fj+**Y6QuzQvE8WdaV1w6U)OR~;3NjqxGg&j34HA*s&+X-vMW!mlB zOgn6{HaDd%(8jpjy3Y@Ez_pLL@c}b zwL>*LLfyoD&3>1!CPmDwFvL6j?JU=qDh`&xv|LlOT~E@1UW=RfE5>+$KB+u??&VT* z3Fy{NzDNp>t2>LGWLr%8`n9lwL4xnTttzT2ZfA5}3l?|(MYJEQ%7G(ZcG@Lzl{Af} zixrzIdM?d=t`m!%kOgkof2k zk_y1iGh1%lWq;*A$EhBu%4E1KwhPsJZNlFuStytH(*bjipJ6`3U(Rb7#F}z1qA#Av zHtG+ZKeJmz1Y2g5sQtN|V}7~Sn=(C%9Uiu^_o@o?c<pqR)mk33)H1 z{c_S%v@Y|0aaezrUN4azvVz%zRHQuW;yW>FXEU+nWYO1g*BtIJP!Hbrn7BQxx?r{K z0sK+`DhdJb>+;k@#aT`}@&(xS4Lx=>J42Z58cIF-Io_~2+E z^||;n^3(3}o1QD?`&07r--edV@3+UeZK4~vugfM&#wZDF8*nf5W1 z?Yd!S^cBbH9cm0~7;rgCSLWpg|w1Ia8nLn@aBQk`P z+{&M4Xr;l}(MaH3f2Tk?zsnuw&38Ih0uj&}Urv#h85@#jnJd!N!r}GuzhX3}p=>rv zhTNX*vP{RhA*itAY-Q2~f$Y3_Zz{Su64uXk%{r!{?cCWLWyzxVQhaFj`jK=&x?uU^ z>Y^!RCJk%ozhPotbkpG(Vsc(JU-a9pzz=!pAAYZIXGNF;BUYqi zr;jZCMvN_;^7gEx5WKM`I;y0SR{s8*f*uBtL9Me~-;7v?UVmrm*+YdLrMY2cKcOvj zvf*#L~<$Dhzai(%e@@o(P zSNW|<8WB_gGDan(c~u0eMP5qN8-AU8Hh}R;Ap9lmY;`(V3O9k^ zjhdVk*&S)hf1qp3Q#RQ??L&U5Y}Q=h9rd4kK7!3s>C5%~WD(Uc;LUp{0UYe4#iVzk zExrRsmt(DDTIzP801HcNTm@C=7-NX<8hTt$fL&d=wOu@?{%@#feLITgFjj{9EB>TY zjPCtIN8AM^It4{km~QRBV(F8YM`-cb(kBA39f8FPO`?;-++n)6M;4kH-Tvl*H{wxE zjMbyJ{8Y;D|0_Uz{vU=gUe@vw3d--okv{FO=bG(H6?VVL_Cn3(B7lr-cka;O#V@oQ zx4QvU1?VmDYog&FdWrD=LY)`f+dc*%^z(fX9KeBr-kWxKRXpOQ=Bdxj;M@Cb&w6(J z))RpegP8buY_JVodvts1_T<*}p9ccHD-m2v7yJjDcK$@aHxKv|Epm(w!R+>`jnJTS z#bB<)s9tueaxKsOj)@~A9V$2DGHL5!so@5Jb+c{ITyDScb(EH*gwd8!^s%f}O{c2u ze&M52$7E;|`#3pE3RfM;#Gd1%r+Zb<(;9WLTo{ElBPeCRdPQ5Kr z8^c|~fC~Igw-(Y~_jD{w)=xWv$_0;`pgDP`O{4FD~~GLERIoYz1Srbi;tmgv|a27HkDu>&ZQ_wEs63gR^`gM@Tql zuV+LD6odK%clIq&d1g6fRLrYAN=RN+blTokjMmQNg+Y?FEh-K>wS8}S|AiXHwz<0a z*3BD)zMMPgx$0V_`ss#C?X-}%e8_dM3!$#VO`&J3s_90?K5cTfZ4)FKn6m3|hL31d z<3ZK7!6W20<}<)vIt}FP%20L0`wY&2uig*689L(+?!DrQQquKMZ~evwZyfxabzdE5 z4ptTrr0kIg{zco3MIBQaboc|~r4ZRU2{33zD2dGztsQHi{(DXc#}G@>oC!qVpL>9a z+!G%xQ2BA=BnnKNT$+b2 zyH%eQPN!f6rBq0oRe78-iHFh`Y~-m=41V1+K0eROpNlsw(^d@w=_by^>LR(AJs3L%yC*B z#oZW1&EpXF^DBO+GdS(6+Vlyl?#Tk$$XPvg`8(RI@{C!pzFC^3(ur?h)9t}-b=0aF z>4BbAP%r_LAA?wT#(s`^PhnlQ8_h}I0F}?ph~R&t=B7uh9%s?Rc^%Kpn8PeT>>tZS zS8qL#JcjuF0W%qm@Xbk(YE;PRztVE};W24EwDGRd1d2B|TyWH9VcXZ%LGSAgwao$~ zxEmOZxBvM*D13D2WoCYTPP!@#W+^W0ZdUZ7SjF9}0cWwPes?P#&i1CCXkeUjX#wrj zPrNT(eTMfpv=Wr#UZUR{rh2cMa$#i^t$q_JuvaoDHCf)N#9?lSH_hV(O1S~@f&w=b zTff|W+HUOjdDRpVS~h=k6umxu6TauIz<;AI8FVbrXz*ggyFi8wto&5{SRm|#SJ?Bj zv0BPILhY5-brh9W1;0z16TY z=bah@Bm>g$MQIsr^6r&0C{O#I3DvA_wVt6HOb9WUzS-0q_;+dc+&<+3qBg$DLL;qq z8pR@21eA^E)+F5p-67D%(7LN4SEWXhM1H3_JjT85He&G{c37D1`$qi4e`ocY;(oDe zZrFj^-#m1q>wKT@!Ul_^D$ypna$9|)EIw){Z&N=t}y07bbNn*1?j5tpvp7=a-JOziQes@p*-mRJy;wFA7 ztNDw9eA1NV4!+5F3jWXi4GrDHvOGJ}szrXkSN0ns&|nnJbM&-kI)#%2K&1HVbGwDt z@k7IEI{c);Ea6TA!{iS5cD-<-AV+TI)&I1pD_JwuO z-h$ivNoHrExG?jF{WoA?PQG&FY%c19p;}#qOY?g!SW2`q{5_=9K(|?96H%(X!-{%YDY)=Rr&VfJnr9C@ zRhAaCR+Jh}EHl?W^cYTluvoltkOEng=qSu3mli$XQgP`HyN2PC2k~i_yVdsZ>dA1D z#rDv>BMK9tFBA9`=Qxhhsx(u-AbMoJ;TmKFQe0C{*9SVOSGy*gAC z>HG+r+|3W0nQ9GZ2HU7~brya=u^r1Zfc6E|jtWiHQSPo4ccAWIriB;oVeVT6C%`a0 z3+-ck4x+%dZ~MN$op>5HQ=3muGloHK0H>*{pL1=-d6-&H=`C!lV}TvaKl0y{{UEF; zEN&asEiC?MnSlB5;LwLL+ZT0jI={jj7y9W!b&uZ-2rWEOMn6Liny8T(HoAHyhx4Px z;l=3i^#r%u>57?QzIjkA8AcdC$_#tSX_csDL`93~YMf3m07O^wEbgn1-VVVpzZbW;Au5~@X|hakyOr})J2O@t)S>H%;g+_HUVI7( zC>Nxn&8#yIv$qFE zzE)_=py;Q53=ik0W(HiJ2@PB5zt^K#_xA+pyY-HuVJ+oA7zbqjbvi?CYYTq+9 z*$giNK(*rcJsG7k_YL&j9@gLhAV|JSLBGPGdEtPw=JvQ(BC*z3B}q3{xLT7}zWQIK_vFXD%cD+YIfayCZi-~R>#8a%G0?ZP@`%vV{#S~ zS6->XsO1<@_i1odaI!gk+5n}ao_`ZG;9ETwwI7uc&4MU<*ugBxquNm3f0nG!2@yKQ z@wi*QJO_MHF>R`E_D+*?&JI^_(F|Bt=V=*Gh)~aVoL)>CXgL`CJQfTD*q@+%H=wmUZn`nM#|Kb*O6I*J#yw~?jg*TWcI8|7D~MNKzryTtN%#LJ#*jy|peQeHk4%YbGCx6az_iOivd zC;?ZbDd_4@dnUQP7R*SBfwkhH*mmZg~BcD zGm5Z6&zyc@4dDev+_ztw*fo7C(RO+N0i(sO#Ol~~POSMZdo;?l$l);ecrHtg!wxPx z9ndP9s>Xpl@mj3?*8gf_@bAo5ti^J2mS*(0r!cE#<~c}kviR}R>g|F3*H~`gc!;a5 zW3@n6kxt=-xGrPVF^`m_uc6&T6P|MUxJz%ElkA`2a= zRXts|b0YA&Fnje&W$+RcD28@WDwGI<$o{u$(NnF;_=j(gjueYGPuYjy+V`xOL|p%A0mEvpBy;FemW#ftxgLQGg_(8#$8 z&)B@Zrr?qo+z+7;`&WwQ9o@3jZsb2((RF8f zP6cJc4!x!Tk9EhO=}#5fi9*7N==%-D*#uc(QjMW%D?<9P<{hY1_`9DDLiblliAY!9 z*PQyuv-+c&vvGtt#CPH_b@ z%L)`jhXpEEjT6`_i=pdSXJnSWMS@qNpIe|#!luCKN#Ad^J(~Tho%`$q9qRmyfReA` zHDN{Y=K@46qx5kCr|B%EsQr~s8NCiQMo;D&L3nS;WcJ zg(+h#^6pHfGKM~ARpZ$rtmK6v(HXD13pQ-D6q0P<&1xBS5|zh{=wzkT=kGkKHm?zZ+v#)MVhz ziC|-YJUr&dZ&RzddMM|AW;ixMm!`P+uJf!i*-~l#w>1wqi--> zrT)RG^Td!-;n(p79f#g$uRr^(an8*?TXtxIm;P$Cjc~~|_X{T^>V17-@!JN(DD|`N zz75o)sxI=*@o^q{#FocsAp*N6T13^nctm|K;?INIBR5DMjtdhSAIM7;dv&M<4Fyhh zYjenRtTjH64#!gkwzv;=@zuMCq-GZ5L-fKqoct0RNPS?z4QRRe3C1}u3mv40(MpLD zHXSCX&n5w8>iU}F$VrM)XkqNDqjwo6DPv}9j>r>^E|mFkK_xLjewbpFvSDo=J6-#e0a6jD}p(=Fc-UXhtag z5EvU@q~L**U1e($OezqR^E#gN2ibl{e{Lfuw7b1vu*Q7VWcBT z@?=YqexzjUG$*Qi=8<$+f5PF`u&d9k3Qa zP3nxy{_eP}!$5@8L&vq~0;6baxsU$%>yiQ{oOiZt^5IjvRv_woVSi?4(t}y`QD=G@ z^w!K$v87B~Ez$~!TQg_zlZ6-YVlV7KzelU{>?kbUWZ9In;7+(G7xX4Y`|ETxm-7RX zeekiibLbuQCiN~;zH-d?jmRTtMP5*s6F>6$5NgqMOz!{45PI{vSF~!6}ijiU)p%un%$JNbHv&nru z4cuYk`ZW@=hB{I^qP1~Ui4Uk%!&*wJepCu}xK2yo(kH@AX*z0(kk9A{V{T$%#aP|`q zrIr$*4$Qrmggzz~j`=s`SffJA>-)B^f*y*b+KnQuWlqqM2bshc28I#j0TVcf&0bNy zJO=V-X?;43NnKFt3TSd*>W_D&IFe9&sD2H zq)r93>xn5-NFT?H{MQHVaH6f1VCnbOAa)YRDe{V3*g}%`i>1<8%ZZ`Sh3_?T7_iyP z=){K9`%BMTP)nz9iL7OGT95Tswk}u4bE@mmTb@|fz#&x~F==)UW8Dhpr!_DOM-WHmUAP3AHbj#@AW+q^_4p-)D%0%?*V>x7`m-&#L^k|#u5NlyQUpo3}If>&Kn z+ifn8gzk6-*f;%5xu8JvJA4)7qT;=F-5N;Ljuj5#6vsUBoDO=Oai_>~EOjvXs+@1J zDe9+0;lih)S&@V$sK_)eUKp+@l`z|P6%Z5YY`IwQPSYmdlj!vrF@km{O8UdRNX}Vw zSxUq7xw(aW{$^-r@s-e#%*A${*m@-N(rL-1$;I>F`cy*S#_SEi<_D&{+r;O+E;I(q z>@kW_#(~EK1UYuwBq;*#H*GZJmW=k{;&2lu1wGm0UA|9F^fO*Z??~BPlKK!1Nef@@ z0+f((<>-2dJ@%s@65c=eP3N`h;alP0iTzjz70IJEJa5z@nq#u;>KYvjRPDD zolMOO4yQHzEt1n;fr|+R>1Dp9U`dJ0s4%}khE9$sdDf%fuN}34SOUe^PxX?u*K5~1 z(cMmtV$!)xkxbOv!4b~o;APQ;WbF;5*wfG}BB_&xpnc5d`Su{_%6Hm5Oa}Q9-biOh zx91z9Pa!iVaMsV-)=ov_T#qBBs;b6Qx4?sM*@*BTxz|WpM$T7dK<4@}G%LtQS!QBd zCv&Dud|FA$iQLzKSa)gs24gS7a4f}9fZThdeH(>X;o4!CnLHzAx4>xQOGb4_LGySk zVfS~pKuIFDE7tOgV+u*FiWW(Sw@DJ&c8is z8+>C-CM-!L5sT*>(inkF1x{gP+_`h_GMAfh$#~%b+FZ$Y-vaU6)a2HIjhpaO#Pgv` z?9NM~6a#Lf`8xJhog}ZsVzE%z_I!&TsRpL4@AE<3YHucgaz7?%{-7b@MkTo(72Shq`3dd}f5fc#C8(4omHQtF5ppUkn=61wOG;Xo z*)ZS(^+_F0?r^L86Z9(Xr2@X`A_aXbY{%QVp!oVED*gmnO!hnKER;-YsqZ?mnOEls z6>WIqyh!6RnpwykycFR_2JNkTOW1-1^Igl4U&M zPlR32lI6ryZIYiY>s&kibn!&UI#gyyZX0{8^)z05QVy~F#pFDM>F0^1&6?_TKqp{a z`l*m#=kg^Yf>;d8t>3j73;rYi06->nO&KzK{2aIHwgTI{VW&ysj2b&J* z=~d&~blg?Qmus5`Ud4jCj~6DaR`Es$==KncGM$1jEjk^kTFC0S*m!koh(+_n?GXd8 z=9NGC_S{QT97lyvy)nlZrE2W8;uR4>bt3|?&jZz$bHAN5iBe^66Ex?;(7lA86R!_` zXaOLxTc(PmGnA=z0DMIGp!N0fvS~@EX(2(Vg4W|k1X3B{~J716K!VNyN z6@TU$8*9**Qr^(w(=tX)Z_n@_%IR-HfH(>!t(Oq&oWU7H}nddJ?szCu{qSrdhU_%~s)?NGn zU9CZ6r#kelB%iiP0AsTSz--ebS0Spr2E;!7=ITfr)v6VFbNALzyt6HOwv<5$lwJ8- z&|ky-H4VuVULeX^PE+Wv0WM#*Oy}0Zj!G$c#!B1rfYep1-rM|*z2nZaHL=ijdevHQ zH_I0@TBGMNyDc!v0w$J}lTj%f9?y%;e! zN={WPjtiqTMyeq<9y)!AO&)4qBzUL&UTOn351*6U&oAjR}FvWxp`J$R$k;(kR_~7>{J&o#J=+-A#fxw z%#3YdPXyu7$f^x=VNP(@4CMH=`A=|9g%$Zi24^eKmWkQlck&{Qn0rIJ2*gPb3i_N^ z$ZxgsG?m#S+h)SGuyeN7=brrm8AxPP(45+)FOuo8jY8V#4{&t-Go(G0*E%@OHrqM2&>v?9&hzt~(nAhE-1|9jz92t1qvnP+>f>F{IUx#H<&MPj6 zhIh5P=ggm?kCSNzR=rKX5A%F*%^Ehe2Qk-#meHq7^ii4@H7$6pkgx#}7XISU5|8EN zTf+V+xHBTqf{L%7Dj4ASt(9y1&@N|(J*&c@FS2fTk?NWO3fQVDmZWVjfiYG9@d^9v zQ@<#av~ZF)U0;`iy`P7Gg^=kQ1H~eCcxlm73Wq^?IdXIuGp?l#CSU^-HQ(duoY0hDISgwl|RglG0AK4zpuGH|> z?FwGbvxma`7Y(&1Lk>&p<}1sRD8}{;*S+)k6+dd(q=-|#bA)=OoShncD?L)Tb6$*!=zq6fXuD^` zsPyO)Dz~BDXk^A*ba!K9388l|yu~`ETc@*ZIY{7N7&+8a_*pb?c&@|M#4{Jfn-LHZ zoq~YqB6cmigRZC}R-t40*Zs>-d^_e+dtMWuEaYmjz5tgl`ZaZYVn(>56gf8fU%~|0 zI#x*l0_W`x$4eX-`FDM_HYx`c-{U(qaM)-T$^m?RZ~SksqdR70IL8^2o(ta~RI5oW zXU#%0?#(zR6!vS__+v9kB^~Mq$kv0Tn{twS<4(K5Rx^VM3VSmn2Or77BpER(dRc3u z!S%ne*k3xq-8HB88(gpMUNZgV{o1HQ?S5xaDSq>kwql;WzSx(znUi_oZpIr0;9|a% znq2+|gEGjM=(twNa+~)oTcA?}>P~*7yXDU(=~@Scz~$v$zS1bmMbMcJ`I=unnlmW1 zgtKNFQ>c?BUJCJsa8q+lGpRgTJ8LkvXPPY%_uwzOXW2ARghA=U`gZg(I&~_xnbp;2 zi(eiy_#3(dDNg9_63C1Eer)4vm#%&Cw@}ENsWDJ4c&l@oJRfrf>8>B*^;f7MqYw)+ z$muqjLG+E=5V(TrV_UmBL2%c05w4COzC-?bak}JIJEs@Bj{XrxP3nXD(h0wz##)3; z5yM4-MJ{@#BBMbXX+teJ76zW+0L9+WBfig|Ztt-(|E4zn$ zEVCt&X0nb%FQY*RNCyTF=&&LXay>2qV}5d?5iFUeQ1ougAU(n~m8WUaS*tPb=v_|3 znI&O?Q>5>n{Nv-GG02b%|i=Q1YKUY7$iSiLmZ&*&~!9~+_+{U&>dlB zSZ;>2%&YF_b8Zc{8I)yb>%6*Am=eGeioYR7@=C5KO+Z!$@f~K1{66Ba%uN+x-a^Y!af2gA z?-U|f_unyAYV265L?{P(7L=SIqXxG~0BSJm(TQNHU$1R%1Ya5|x}uv_gTpseb<;BC zr%OmbAiO?XIyUHW#8+w8Und4VP$fe}*J}%V$Qu)GPy2k!v0bK@bq2lH9vTjV`L$kc z-`2_lG_^}l7g@(7a7q#HrX)M^^k)t7wigvU9Jd!=!@WAx%P>gbEi4iiR=U>}RWY#37<&3-hmqB(>`T%`T&9^q`l`rE^>vAmlvRqN%P`b~v3(GlVQEZJg_gM6xa(+c=6i zyf&G#bQNi;i4CPGLL?f<=U6{wcpP%8lMKh~oYBkGTBJc%$3@XN1$*MJCAWzT-D z;6>9ycMucp!XBFKdBv|}>GF2g>-9rof%mr2FN7|LX zTUXwKPKC4kql>im0ic90FYwpf6K4?r^3VCj@qFZA@7lSP$^%sK{luj=M(=lsBSNY&^OBA;OooX z@MygQ|4hPT=eh7=lf<1Yl4;_9{ZpB!M1D2+hN19QyUt4H-;Wa6AAprYv|*lBNWq1$ zm(r9;fK)V?yvq!KO7S@}*CPtbg1KzLc9q}9J_zsAcYeHKfF#H&U!%a36UB*&QaW|6 z5*Z#y!tX*`Cs`#HVSA_wpd982Hwt-CTrf!2O$Q#8>x%>kwo3A1Zhetn@?s@udQ$Th zC4CAHKNZ~oGC3NSN$eq*9+`WF!U7pI*duRVJo?W;NeD>2zx$|)pI%jKjZs=NCG2B} z=X_HI#}YaxA>+6>E1^)P}xe*!6!$lGZbQ*`agEspqmITwDLxNoD_ z1$Z6V-_N4es6sT5(sQ8=u;I1BW14T!Bs6+IDcd2&2~)KImg)(58d9LL=^ejs<4){5 zRt9d;xkBKHgg7Cv6DBZc&`vqcZ}a^4Iw49xcj3aN2GvPgJ6p1Z{NipZ+{-IJuPJBh z2Ce)0CaIEgKE!912yfz4SHxzF91d5f67P-iiHowf+}ytZ?ms$U!M|^4L(yb-u^+|C zA{j+d&1c#=_ACdpnEh8iyL!CxutO!)(EX&Qh-1gb{bcWB1@pdhdBl2TN7vD#!8akL zm3j|Id}mHL>54dsP_6zmlzfK>UJpBM5^DqFN4+ytc2~PRW!hqTmIUBa!$0(d^g?iUEJl$&#iTGmEi)o%1*x=!w5xWmHvN1NPS zrp_nMLIwU;v9~=|ZUK$G3$oKm>}PV9UOdeU^}46iF@vRV5aK?#OTTZkX7DN~)FLP( z0rwcySaYTrUs?`A|LC#2I#QZ3nQHGiHP1Ukf;vw9+Ru*5DI_#4g*Jn-8tT=|)*4#s z8CTHL+7(pdR51mZR|CDnL==QjP>*<;H2fI@&6$xQ_NR*Bn*vLLBKOKq6CDkWW|FFs$wiuMHi2s2FcwrD- zs5{QkX9?noJ8Cm71IrYXpC*DSw-)$kuFi?JZeZMH@(-i3(^72xFcz4Wibs`?lLY(F z?lVvR6~T*1h6lelXjLoM23d}aI}mrnz5XcG@f=tNwJUBI1>>VnhV3h|Yv?<6-a`&u z?FT!dr2*|Qd&{VZ5%aX7Xl2#SOWTc}LyJF)&2E98$b~tfGyp+RtldEyxOgkOfL}wA z1Z@WwXA2$0IaCrJQ=#pRQgLdrhDC1Cka%Dla=T=8CtKyW*lRV?vkwp!go$(oH5|pV zhVF^W;0CN*^s#`I>yss&jW6JjGvUX}ewNyhz4+IpB=kS*2XUP#Xu2`$8X^5(@JY*TnC(zpHq-}6Y_RJ|NhU!44amW}i+9yBtvjzlERu=F!m zA=vI9a+1$31o7{oE%@dAzmB=|yh>5({gZ%jc)lxUrYP*E=kM}s_hR9!nsdF#m=kMW zlWgI_h1&}Tvggb`wp$tHHQh7ZKz$Kdy?^@Woq57Ta?1BMb)hMDcg!f+QNRH-B#ph|A5Q64Sn@z$Oh(N$g<^66g=fg#2**Giv1!nH!@uxG$ z+*N=Zd@<6}Gg$LbZbXD$fd1_R?s9hhKX}YxjatdI}TcxO6Z=+B)l!v-g>us)|Ss$*gto) ziyg$*16^p^=tDKIw{4dID5l_m#Y6(fnAm)<(3_m_o{uN`MIxMjD>&Bq=eax1SGxM= z?4O%g)*W0^o966-`oKMoBA)uxQFB}OZR9PRzSJ#$;j5*~BorLdOhjKqe@$a6rR0l` zcm`NI4TP>YKw_m8K5tK=zEa$<%Ov8u-OJ`DFE>#3z4RYaYtOuiEvbFEISI zg112hp|Yqz@7|F-((2djW3jb-ai?z?Zy zn`xN@i=*lYUu}OP)~bihiOX_b6|9!R#ZjUPr*MS%V|EY?iaS1Lm%;1_`(tMOF5_uh zg4FSkLc%2?VYjr_CQ(8qB03(iCi8f0TQG&IC(;CO~-yFO;At}y~t&HQ@(NwH*l1$@{%TSqgVtv|7}FP3h`RV zWn41bzOaxZ)>8mp1x9Qc!&SV0Q6@*p)-v*eCM$jx*)thR?B>SdkRj-w_;I_6fhW8B z5j6Gq+D98)pX4ePaBN@Y(+8f6WG*lO34?i7@}M!Td5eVmMuOjfblWiw3B{^WHC*4C zy9gG3)aw7Q8YkBf&a41&&`EvQ^X#SZTbWRrn7!4NThpV7I~sjB3U!a zJ-H!p4C4BgvtIZ2$qzA9W7gl%fDIHgIR**$l5Zy*o4aY!J()})fE}johIhT&{6Iw1 z$QUHv`?hUedd}9`>U82WV}k#xTpfoHTtgKG<0Qz?{&X-4Z_f0v^ zIeVv`m+p%V@}%1YxMlgn(c)T|F0etsz=vI%()fVc ziK@2E?c6YCSGU*fg8f&Cn!rbFJ};!67uTQBbUt8Lv=ZXIlWAXDI2PLw0>I6Jr7Lk| zly!qnKHe>G{P5VByjzPcWB>L!%BnCb##SPLtz`{|gX>KZE6pxAbND|n;q`%7wp!9=~>vN zgdM$(IQQT3HlcmjfCGGDL21)ziQGnNjJm(-&#EyBe)n#WH?J0_8&47hYA!*%j+?9f z<_Ih|iz`7^teA9QFgCpOkSVfU%FFpD{4`#N6P^20yZ$uhSNIvu>x0}hT_UY-&9Oh= zUJLBAu)hgVeX^ij3r#K|&}G0NH%*Ld1~NLr&Z^McEoyxgsyfJ7aQ!sN&8@Dl#~6_L z$z2$xIek7tZ&|cjzG&fFE0Yd2wp4KGMFV;y)bsuWwT_J;BU2LpYT+Y_^5)vpg&4wneZ6ti;StudnY+wbMmls`2{bvyjvHb!bFbneH%g zo$ir=hwr`Tdbkwgb8_IKHA#Qda-lkG$DA!BE$Fs?>jOYph&=~HBXhNB}y-rv}^mF4wa6lS0 zC4vad0{uxGbk=R*+>J-Y;FbF@>6`TwJ#gys{PAuvm0Z#UZn3$u|7uc>w zjg$^OLZ0EQZa~&|}zPZI)^_XRtV;8bEaA8gG6_COeUF7w)q7nC#2Lc@t-?LFG z;SViM$q!tD9^1`AEmxT${Jn&_8}m_r0;HQ6Lu-?Mho+$J=q9)>zra(o%E`?Hn;6sB zY1R&1qhO;yAo$+Fizwxbn(2y=f!u-o3&OXe8}zwD9&Dj!_kEMb>YopaeRGV4^)Tw% z_KDrq#7PJAu{!mc9f(tZWZm*&j7H`sQS$korbS3C5!m|%Tp7#{l(-xtteKr}+h5S_ zo#&<6@xZ2zc)!%?m*t3v)%F-KcYa5GS<0SC;_MA*J-8i)dkmA&Hn0Gz5bhAf)TAc} zci7^sEOS>2Vitduh4k{LC%t2M{ln42DyV@lSMxHmUP`ClcPrg`%KlLZ=Yc3{qpSvj zZ>eO%jKI$il2hD6!#1!V0FMyh#5F(>FYA#bD#WFJoqyUz&!45D_&k>2Q%V7&@;I&z zOC{~B@ZHMUxxa999yVmZ(&y0yTU0P=l&tysap@b6%$|ktv|SUKw;WVT&2DH$C2oiJ zt1tB-B!aPlqliXt`dV;cO$FH85ep7%s-_cZ5_=-Yzl&25`S{Gw^eiIQF+y1}zwu*x z1Ls<@;gZr=%3JPWJUgwlEY3YZX+7PBC~Br%e80UOMoJ@fiS_^Z_r6;tZ@I~7N|qV! zQrpCq2!oEJ@t#Vq5dS_KDYDMdctU7#n>DmgyJSD}4xr|4HOT+Nn@B5Je7yRp-y@+z zv-JC}2Jn=jzGTbnL&1#5k6hD;p76xj0xs-G&9F27u}xVD>p-u{7FZ*UcTEWYmS+!g z2WZEHXyV^W$gN*$;1mOCI5J#VOHQ4>XYp%IRLt9EL65oy*zIQlav9)qG5MY5cN+g{ z`GEDoGj5)8D?QOt`$K-Ih=>IvLnO6+Q3aHQV4=P* zf%Ya-q!%lmTEoNMi9Guj0wEgy0q1n!?2Ig!bi1jWW+(cYDhJ*}`g`Ly&GODQPIe9F zj$N>{ibo~Bf*9E%wC1=ZyO+-bvxNnu;qH?Hnvh4yg-x`Jo_NU2E0G5=n|e>THHsxb z@bk^_=`i89EsTP_+6~YAge6#k9P4uvBv41%7+bdj7?B+2p^K!OFJ3%l7b>t|f7@)Az|; z=cN5KJEmh$UcrYduD#DdY|g@S(43!czhYy`6LhX(xO=tpd^zVbjojC)X>}R4c;MnS8-I&#tkWfaI?Xsl1*7UDPZIbb%teNKHjD?`vyJO_plhy1Qj(O3_YU%)4K18c9Ej7EfvfdK5 zO!%=xSqn!m4WQPMPXZsp(pC7$@!_Rb+(fe>)1)`eKdqb``}27@s-#&W^%Pc&9iwEr z=}MySE(mz8^ou&5vk|Kui9ubQ7d3!hC1eLR&mC2_8!*(4L~9d=_!BGj5xL9$Lhw5o zi1d3It9V2mV1~wX+OsENB!&IcMg}()e=HH+)+>@$XyKF@tG(Rfg_w%m;w|VW(!B6& zr9m((kp3=Hr2LxkuO{i!(@d@CsLrA1BFid*t9MyC5se=j9+Fx5&QPF|6dsuzUxtqn z>lDQmj?ml76;TH&K!K8NsVf{wyyynszV9B*R^LD$ed&9kV;Kf=y%ON! z?Zt1g3DXO0&>{r7rP@S?=xGco`$)681fEDocnA~mDv+8Cw@dIyVf9Yz`i$LrMEO##OLqLZc*D`Xr@G*v{)KU`J5kV>W~(0Dr&?CJp}_HP5O=F zjo@>0dOMoJ2gL0OzoGfnRBZXd6glX!-A*SPc7|{PUzfk5`8Sm`VBd#-6oOAZoEl%N zE~G%3DZ;#RW1LI^ObQ$f>6{tcWKQt(vJq86^?3I)zgi5`4!$xB_J1+|9%Xy{uJEK+ z{2cW3-}cKF!7*}{jyF>1&cT`bNP3@kVf)XZmkj!_-Di8_SHjLHU(9|{$`-DrznX_g zI>2>VuMP=gb|0QvWqs*99b6U>d(ofeLl=J}GOVXs2&SMtRyObGi(Do?8OaS%z}@~| zwHc@~J#t9 zeK6i}a8USv>s@z^n1J;z)l#HXKz0M@wjzCYTL+w++Cpj`g*2en4Nj9R}V1tXC`_*i}aqbYRb6s^%Og ztJOlU!bt8)ePW?rv6gq2`uYv+5$aGmAw}K0iNcD4R)QVJ;y{0&9<>wVA84p{F;bq@ z{(ID=nq!{&WZ`fLF41b1+X3c3F5-5zlaZnehx(9sy)%Nk82Y|OZcLyjG@Q%HqQ;Yr zu`pPwVVkG6?r#HP6J2aK)n+_1%9&{4U0WBIagu5`#kz^Ua~gMrjLu$JM4m?NjlZ_E z|B+Fc4m0C~*gk0#L{ok!spmFY2p!D2LPdz~W{5_F=QK=4-zzlvrZOVko9qt$o^Z3lCnu@4L!^EX}y zm9hT9misFt)p7FAEHvlWtG%3e=9);Fc>c{mEd!g+Pxj?wBOiq&ZOb1&)n%>E{p)a* z?9$iCSfBg5^=YIQa9`E76q|TG_Ks@zo1pqrMj1=0Z5d5uK6)q70Rhzh!VXC4VRGng z%!mJ<9ryi$an}iu9moCreo?Qs!`!8BO%)2n^9+g?ALBXvmeGHZHyQNDN01-E@vKq5 zd|>)k$vRkH!Bcj`IJZ&Xp>ruAx=^tUGqT#EP_+^b^CGTTZ?h*}Njnt8Kn|Pu`1tSS zRn1ugcFsav>BZ2?LwRCrG_$1}mos|c;Ze!v_zc)GdYgAUDmh@QjTv18&Y@J8=2>kF zwv5Msp*5T)0Q{vh^;3eB&(2D!gjn@TK$#%RoQ+(f*amDsjxdVl@3DWhB!IWrZDLZmKhY-Q;)<4} z;O2B(J1D8k`j^mVWMOM8%CASjC>9ivAr=}#(RG>CWkh^p(YeAFBBT6QpYrOVm3>o7 zSYI%-7Whb)j2!I-pn9egfCTHMt>{Gn#2FA&JPT+BuZ`2f)jSljJeO}i^mB-@&G|s{ z{64`)WC>p{r^y6pHJiB2^8`Rv0$=AeY-6}ae{S?PqPr@mZf(pFs;o+b9diypT4WId zUj-;z#aem2G(yegiqwF%N@vshuS4_@%rY~~V2uzVsgRgVf@*{Rwx&0WS%O%3z`DW; zftc>XT}U0DpZVdLtU&FCdkqUOc+FL)oU`55Sc}MA(fNUfUsL!^`bPUUvh*EeH=hxZ ze6sQ#BY27@Fh3WXWUuOXge2MLE6wtjc;q{q$dlFAVDCc*NtdWet-84EJ=W(tGvQ%s zry@T40qfy9+$VE9)N$|fB#+Xc5Z<0@U}wKTtc6yA6F9=5m-?(jrH|(I43X{a4ONJ> zBiuv_r}INdAG9&MOHUl3;#wjjwTB>oGCsK zB?qlHot|J@4mw=0HKc(Bi$3~g>c#CEE-HG_?xils7fp7-eyt(powGc2!~WM;H30Q- z6Y(Y!i9VL{hYzW9Vm~GA>h;&e9xtOC6)J!lc&Rg-Pfi7YK1rh9)pKjwNZ-?_i)?GZ}kV z4|>Y`N%HFE{vN4b$-TdX0t=#_hJV4}8dU!(J*V_J$Nr|z|CACtIh%`P|MJIuG_BGQ zUS?RP@=r!0-kQgsB_ZQ7N_KZ0#A|!FjT-YSppIK6rm?B6udBVb3BL(#tjjm1s~mw- z_hphrs7cvmG*L8iRmlqV8tP>~h!1-(bY|8@!0q?fp<*Nfcr5eYgag~TJf1_BLkd?*0g!ZxivTtee_s(S>^*Kw6?=1Ci87HWB0DUXKHvBjL zVlw`x8+=sG;hI|eQYFK)Ks}r_dD&Ls{}J`y@oYWrA2;4s(Nfe~sjaGLYi}`&qOH|M z%%pZJReOYp+FHA62St_E2qm^CDt3$__9kk@7Gm6|pYQK?-+!IgBjRHWsM7J7?Fzmd!pk&)J<)_wg=0c>0sctg3(Ua zzk*Es8jza?0r9bEU&3~|w}iX2X)c|ElZe_`nie3rxR$)7kL`8tPIbXd)M+nRI$#Wr zCc`zcAC87^RQkqtdg=F|g*NTLD(=7pKh$8d6Yu4zL67>iR^k3oDQf9&&{a}sqvCC= z=7``P=BqpLRHPq?T&%PzsSlc}a?}@_PgfQDzH0{FjVJiIHYwpf?o0o*NG)Pm#w;KQ zN@ull(0RGWfxGm=$zd%L*C@p&Eg$UNa1y{*==}N1swOVD=O_8Ow|EtED{#y2FR;$>@BSrx%mL) z9wtG5XtCR`zo~q=)pT1x+_)N}?DNGkZroz?+aMuQD*lp`kZ_()?^iZNi4=&Vu^S|M zQRpVZnTkr*)8ha%b(Q8l+IhwL<1R)U;?Tc)6;G6 zPeMdww6Kf4*r2|&t1Pr33G=9l)n@t$^dx?63#~e&zI@RxK&+x{crTsyks_j*VDbmX z`(OzxpjdQ?sOZ5aK~H2~e-Dn|$LzhqOO4`D49Bv-MtRll%c23}#|s8~5rEqRn5hM> zy5oi`#Iu`RckU?b)44me|7gj-9pP(Ja2%H`+nJvHti~YC8V{ow0P#i~X z;X<51vv$mpc{`u(Z0<+leqVr0vvyn8TVK}{n3{tKoE9Yy_*ObHEg9r(i7&!CR-EVL z@Iwf*LLP=bDKq5`*fzHh#`ekKFw}{*w(zC$FPO-&8iHFlT(?@}FwBdjD6LZ0!7gea zXarH78_>qRN+8hj-dPiT&Ar~4^(PV`rfR_z^U1N>m)Cu0Ma3c=mooWSpcU*cJfgMv zHDQhjh}yotD{Z*9x3J2e&slm1x$nRS$S3xu*N(=!rj4Xp-68ip)U#zo30FQGne(?k zU(oPpm(Df!b<&Db=$o4*!cX zvcK8CxolOemWp%=EqQio$-f!WM)>z>G0Jrny?vgE+!%KJ=DVkSsX%Lzu~(Gw>nH{SKva`rAGh^OsreABE{xj;bEuJ%XLISPMx8LLCaP`_n3s0TM& zlrq1KF`qJh0w|vH&#OqWX?HQ}d-S`>A<&GK9iEi0rT)W94J+lPRXe#s+oD@t9FUhK z!WreaKn^{kBv;rb<^|Z= z?-Ihf*loIqTD5ujZpKWIDn|j5_QYI6&0*Q++Wh%zp2LtCDV*ZA@+^=Up`w>PG@NLO z^#9&HB6>P=6($}y4dug^iqUFbkFOMeB+R&LY0n4_jH*u!3YkrFZ+5W{k8oly7 zxu8RPsgUq(g?zDw^p%sx?d~8li6> z?7^#A`1ie^bHCQufTxYL%I8M_X|jTUG@WrMqUXd`sb@)NC+;cVjbw-$TES7#w6WU$Q%csVtq?ZM*-4OhH%I{r zKv)3dZI)LfRG@PJTk6EabEC4>uR}8iV}$EvjBZ#oZrhx6@Tqv$Jwx1*KcvxsDaG8e!N zUSF$P{yqR4r}57-Ks@Z6cRHG?dQps=r`EiNkbQqhyMkpmJ+VP2G;n8LRd^38p!wm- zLZIwOBiX#S^0S(7)E}vl`xH$59>@$8>tL?57Df6$qWckC*~^cix9CP7wvcNIQ=nSp!6G0KV@W07L`QE_=`?XHcT7feNBr(Y=g#fttLsqXl zoSBr{j;6Y~3HoL-Se6}_3uou&zf->l3svp1W<<1%0+ev2aw~*z>Aj(XywdQ^9uYR) zqbq88%JRN;mdK5mTJhDpV>YGyO(r~oA|4yPdhiYrkARGn`~;-4J@2)8t2W;%$(>gZ znoJt*a`erxzJ=V_feHKY+K4w4w)zGGa6@ln+PFO2CtX77^#UU~kFrv8!$W1}UXx68jNX}zoOz!!NV z)clvDqgj-nGu`IEJcP#&pbERzDHj_Z5Qp74$;d~$-R z_ETVXtJ||Uw`C@8zIml?4*iznCEwUw?8Z9C&KfFG!mxBGpT#*hZoY~F*SHSVqr-icH#(8jaQ z9M1|qRflDxyQ)h2=ALO*YCDUdt0yUcpcX&kRE`Q-_N@#wOFR}k(RA%r8q1wiNPNH- zhr*r!*H$HeXOGPgUEZC{M)^#Nt0THm@&BKOP1pP{5#v6?`ghOFv66zjF+ctT0<&T< zMh*IrVDSKuZS{pgEtAHt61tFYV6^;Ncg)mWoSzx#?)i9bExMsWE>3>uKZuB`+VMN> z*PHcR>=c&K zy(U6*96M~V)){g58#bX6omAt$#QlY{g8w?YaX`PDw^LH_vf zjeXF(1&5`=6?EpVQg&5-Lzf(ycP_hOlz2_Q4%oS7+|r`lLHw{SjgM#N)P2LatMiy< zo~bW7d44^1>np*&&izKh_emX-0|vNawjK0Rz!hD6)SAO&#DfMlK*8LR(`VP4Y?5T% zN;{AKGO~yhIqjE|hzsN>FylPt2SE%y`5g>jOj`kWkdE4f~ zf67iz`)aA5if(I2svz5y9KJ0b@csF3p5Fznua{RH6BL1x6tfL`b9Iwovfb(Bk?et3 z@|69FALup1Z?kT9GT_t~2?suyD+2IUC>W{rkNTXAmaI(h5yizH z1qrAA?({!uL?)j}r0j~j{USM9jdr}9G1WnSh_GByhcqY%Z+?6cIDj@_KVMZfpH$}F z?<9jsZVB5=+wuOSa_vao=1tXLzCiR8XFs}EHn@6J?f<)#XxFTt-L%Lr^;R-n zT6cjyLO)kdjE`u$%eRA>Ib-kIgh(q=oPpbdVq(g*uCQS<*biHzNeu{JtR%FeCA6?j zA1K{b@SavjQBLG2{$}*6-Y#3anU9q5{~AUzD}r!`5H*02y@_IYdlh|K(*Ke|mc+x< zOogmd2$lo3o>ai@vrOq1$>zv}fP$Ie4%Zspqn;fm?G}5@QSN3JCU%aYH#|j{jvjg) zetW@^#8m6HY<^h&&W|sq=Qpy1Jxcn)rvxG?>7oO!N}1z<+G5(aC4X}VT;%wbe6e(G z!cw?OP?5f2L{?(JFq$C^#n_n8wYbNhSRRf_w0rC6y-%wnLhOiWcy$fbZnNH``nmnw zMbGyxKc6%S9bi>q@t8?4+#R3PDbm-S$)e%XReI~H&2^f9$F>H003W5bw7(>c5qXP+ zahUN6;{0N0y=@t>py8Ela|CG!#uB}JdU-*VOUJ@R%24Vy)7bXALj4t!tva*2{>@;u z9E;{Phjp_X?$!aH+AXIa*!I~_6Zq{I6i+c**D1Y4QAqYMj|j+`f|2O4^=QiXE%zQR zh~>CTi@Jo*Jxk8LaXX0}_j$-d?M-;?LgR8`3dNvIPGfoLlAkk`(KK#S=}W<{MB2S^ zT(z2^x-`PzQVLs-miKYO9Bkf#Z;tolpnSAhA0~X;?{BS;j$rkzcYYhO+r>mBIzJV$ z-K0FqV{%oV9oF4b9m4{JOEMj49=_;CED80bbKyjp%v#9l5!a%h^Sa-Gcl`2Ajo|Kw zaY+~Y@e>BzN*S$9TGfI4_*f6GHy*}Yx3%-%4ZD?!JC~09e`cZ}E_t8}(Z|=%JexL8 zeMQj8ZUb9B!cW#(K{{haNF7=_3J$*aU{mz!N~wK1YPBtKI$QCuo~gG0T0*Tpw z0v5k{52k*0#Ndf?PU~tvy&+UgX~0`NH!=Us9j3ImOB?#$VI|SC{4NeZQ`Tu^#x$Db zO^pO81!?QInBe^#C#&CasXjI?oM9*TR|xOqq?>-c`8_Fd+_1FW^f3hatRGzhK0)Ie zpwr5i#c6^gCjE^j=)lmN62XRvMShZWoj}G*MTrA~&6a6*LA3b#c-dnG4y&AZmyQAJ z+{Ek8((feC(QX|zZ#cU@rR;uIcWOwfuTPWky0Em#ctA)$dQLk#b$VoTWoBgsZO`+o zQ?Llaw0hwSl#4Qc)G>%vX(V@)OSI{RqxVtcqeyjp>2Dgq!%=brO9L1T4DXMwd{O#C zotyqcHkpO;QrCM0vq+cb7ZJu%dZAJN1*xpemHLI>4loSZLuB9N&YRBJ)8EosR;X;g z3&b1ljWg)@{f%Nj9n(8!7jWnMRU#drES2IwR~-z=_&f1o3N8?M1EHLW>=?~d*wH=q zrmNpIRJS9`EFFs%^yCnB8oWXFgYakQsm0IR4YJXDFFKlPZ_k`d9A90+&mo=pNx!)H zNG*EJkw+9$sfovDkEZz%T0Lm1iWd&i!A4&^n!F>n?<%+HSx5~!o?Tn`O2|#oGMfI+ zUuX`}hIH04LV_dnG|_^4`u(tp)VNL7`NDqKRU$P|Icrs%Qw3to?oRShFutV_{#ZKN zzA!b~T~N+{0yBB8MwWV;TE+a0T>-9}gz!BSaNA8gDFM=6$gbYvia;FQwZ=i5#Q%J} zkuh}RlaO0a?tC1)tR8VQW2WC?EEjFCbswXPeMA#b;>PH@rQOxV{c4V%gnh)}apCU- z4lAF3oTmd`7TN<|v{#nAif})N6>qD2FMmfexL?WCJ;9o<03`ou+Lkp~X}Ii|VEL6B z`mQn!GixC0ZAJ;aJI6@UkqP89oe;fsOJW_Se2h}4WJ*#KeZn-GN}MgOYVl`<=yaKd zVXIiDi?*a&%nZ7kF8Ow-`XzGkYloWU^=JGBy6L3-cz?)}Hs9NEhk28m7+4ar`#|Wbclf2& z(GIO|Gu$U#F-U{pkzOTGP(Q~Y`UBGANndC{iS^9Dib6!zJrPPQ)-5lU(Be1fBuZ#t z8)1PB?fl?c`wJ8em;TRc05j(VZ23X#6(V&(-F#5y?=*BZa3fU{(0(*e!%K(=xPe_` zTor?dsI{gx?7FupIA%SC=#dZ$4dZ^|zC>V_Cq?)4YrCXc+$(^7Zfj??!c4_K2mCDB}3e*o=BoAd>sqY-m;t0LTXYH=2y40?Ff8ENy4I`d z@K}DMvE`xL=MW!5myJZ`A^8RTz3|iVgU&1CBBKbQ*G&f`afcT7ACZc#;EpOk3xu-tUh8pAJF1Uzr=q z1;+AC0h!m*X(Eqr^zE3;>=SjTV(6o)fo7O3(zyE|r4CrHZ=`W`OdZ*0bTV8fVzi-k ze7)Ft)pNHxbi+)XW7yG&t}Dbpp3kL$@$6<*mQG3IY{s>i65?ev)jU5_)r{F3UcpUv zKI_foZ}?NSpRM1Ufxd(r@8`H4{RLM=rr8FQqYi`~y&EqIVHY0}J&Js-AF@Ha9Zw%~ zk1sl3ikI_+TI%DNBfLSAFPQtClDh~(@>JrT(r>MAKK48_XWg{6DD=?uRS#254#>`X z<$#2O>s?!)Xf4gU4WaXqh`Y)mf|oVf!_Pk5pc^|sm&zQQvZEcks$kSuNIke0Ci*+K z*naadSC)e-q^M$H0Ia)-;xQY+D!GG{i?PQY=-#FEr%>ncz)Ob>CZwFfv==66r*@4I zpOl1lf8DRhCi5O6q|f3|1QQ2!Y9G_v-?zOA*iKV-YH#i+rAlRuxY+cFt`=!dvc6@L zQ$(w7LVS%Q>j8uP-!K#b+1bKsf$M6~4(tV$+jPHmn9~I8>FTueL(vRX*D9eCk{(sO zXT}j@)Efkwee}n%CD*E3ywaydHr`9H_9nVb!t=FA{3)YTZq`WisrgUKko3aJ*yS?I zfu(lQijjd1cV{=n838u62dm=kDs&M{@5Qq;)6A%t)E>BPy3g~cSduSj`+$fWc=*Qa zK+hc$hI3V&laWqf%*T)s5Br`7Wj*k6cLmDtu;&nvY5}VbgawxlHthRr){GZvmqQ15 zc6{3 zirjaBy*^*J#vdr}bR%??e6&{h1Jg*46dwVs@)Owirr*M(SHd{XG;|vn%-;5T2#WK_ ziD+;j_FXBzjVg~m6>RYCSHF)o+`f_iN1YBml>{#Er879SRfMyuE;>)C%J0WD2jC@l zQnto}@N95n^3%yoA0|jqL)~|I4ae@zq7{CZ7QSse3Hb2nVGAtolgIpv>OVWzy5QSK z8r2oPG$1wgiWUC8D98TD1==Y*0RK6^zS}XF>_%pJ;p_bO&sQ;-ZuQ0D@)=%K<^ThL z9?=3T{dlkhG`G*TEU$V>S6}#4^dM2OoM_g=zi{#N$DiP=LLq4VpC@oUnyTamyeYX6 zWPF;Rben9R6yR0D^k9nFb?|r;eR3A$cKMti-sBzPmU=Tr(y3X|fp7K(&}5ge{VD+- z*<_UTYf3&#=^CHHu}|_-2+5fGn1p(sp8G!r0IS4a;@k8LTRxC)9yQb-l)^&k$UMOc z&P==YsksX`9X84LM*{$fqUAND2Tr56pbAec#F_6>SBU)NbvJ{)E3Oa`XkMu)SQgpg zK4AUNNVS>p<3uMhL(wDz`=L0(auF13d}wg#)ZYMm(B@K&UFc$oCMO;8fZw@fEf$Zv zE*&g`=DNaoci04Y`#EssHovKkZwR=>(eAO?mZ^WGZ*rG?{BCaMBGZc?p%1e#m;cF; zJ69{^n^2h(AKE0ZJ+%0lPtG~xnn0s!XRixQytjTZnk*aliBH;ZQ7`KbgVp;SUGW1< zC*KQX9K9Mm-@}CapQv3Ph@G*045iPu+MLRgns3BA!KeA&rVPd0=WyQLfxAr*@ZZ_Qf;%S^pbw~n82+6aW zP~hI2Sxu$BC>)(|O0TnrY3b0P69JYzH?kznWy0z@s_RHAkZRi3{ZY%Vo3ED$En-(1 z>S+->)~@s)1Dt24RA&?8_^=;5l9xd&=M)v#@R5wwPE%inNt$l;o5`YeSfEo9+%tpn zqU2|_lM8$ImVv|p#)v%${mPpA^j9GwERKDQ;9c`Ehnr3MOG>k`=pH7gfkpbuKBIHU zAHX;8>0*h`YY~#2GJAWF6d_P*KB8e-as=5<*8N{c>tB?wp5~)}b=$nP-68uV|DZ>u zcQ0}EY>(75*DT9K_t<8kG&?KMVjN_&5=zsN5wtab^#p88Q3`PWM4~!39>)5LfC~a2 zq78g&`AKreISyOyB3?5eRq2j%gdq6Nut8Yg_?>iL5F8D{Tt#+NJi3_)juzt<7o+qY zURv002_YqcqqA>{&vdsa%40=V;>M{1K`za<^W9CA^k+-;HYXD+n4**z(nr5%c{C5u z22;AzuZqKC8@>|WNtzt>D6+{2e4S9iSBq@Zs}D*6k&P#1xt}Wu%QNvR&53n1ZoVxxm?WGvz=X zJB`Y;hy@53m(dStaQy&fAlIre_SQ2cN;|l_%8q7vz+P~ zdbMi5#!2wvp*uIb=_Qit7vT4vcW4V*^4>~#74u?StXh)tUbp|s@x!Gf^PK@MUX9kQ zhR15-KshrwTov9cb4?}K4tSK$rH1LaBJa;eee`o~PG?4C2h(Gzi#f)aYC98KsTHUS zsF-Y@p`CXwIQKdBJ-Y+HK!9x=skFj!12LZhpY6i>rjxXC48v-Cw1ZvtWtEMlx}vwg zIO=7g+h7kIqW!&*k1J0yJr2BjvN8+8`F!7RN-Y1aYj1ZN=~3{X#LTLt%6ZHzoXK7) z@oQ>V50f~Egr={(*`VB=@Bi=hQ2>c@*N-<+E89b>K6&Oaml&j2d8{V1b~{jgL4tTJ zaQ+4+Y`zw?8%%jn+>3|RZ*D)W$pYtU^CqT_Eb`i;Kle$M2oqqPs$GzKzbo4_CKs3- ziNV}b|6qF5yFh}v$v3G!F;B&8kOyUC0xduL6Zzq{%W#21uLZWWH#e=uIr{t-b->GdxZ7R34amd!LoC{0fV z(^7ut;@^CLd|lgmg|<>`nuReKeG1P)h{oYmKK>M+#^i*Usje~w_bD@PI+MrC$?)H{kb-vi)zrntvv){<{T*-7Ov*WN(?a@7#&u*K5>0?jhi34p>c)pTp z!0xTEWjxH`smxyEF+Xgx!GY%cxs%e`C;W#3+V9;JUZLCP^FaTGm2W^_sC{%^fP!(Y zoEO-~tP@(EZ4Zn~timS#s~#wNo#;7|e{BBOxbpG+cglXor}6Fdv5TGg;MP&f5yS!) z{YLPmM~rY8NXi+G-pCLxdq#hD60U}_in`i%>zd_bgWYI~#6f6!)F_?fO+`*gdH3uF z+rL^Ych7XN%%%okgtjm_#0hJ}#F9M=B*}Q=+FbW|8#X@*nNL;i}x5sFk@~E+`T}a>7E}LL z-3ndHItzNr4Qw`fI17`(JH5U{jJ`FGXohm7{{jg-g31O3cHyZNZ2m>l($NsM0mD{O zU4U)dgoFFVJKS8%%dIoz@L&}|$(MD>Irs4a6hl)2RaY zvkLmPj>mHVY0RDAANUO{dW^aVXlBG+$~6I#33vU!U3|+O+%M{ORNGOwv52j4)%NTw zOzvO%F4EuK2w?Z+5BE4&F|34I&xS=F>`6LkU4$spLL!5N(FY>zyB`25wkkY-T42&T zPncl^%k6NVEPdFFn0Pt>vWkT4#3 zL+E({cTz#W?EvA2&VoR0CKu^=-vDqEJpw#1TY3gp>bK70tn!nke3I_Z(2D-l%eyXo zpq#vlx_bUd-LHE9clu`K^JAMq(4(Wr8#m6c#`kvpbCO%>w_~+2XNQ8fMFBDA%vkwU z|F;$!QQ(km-j8hr8q{7|z_J!q^W0Y|tUOFj_WDOiJDJ@_)34)&nthKqvWxIQvHWYG zM5FE-v#s#QwDi+YI4fKYVj63aic-k)Rkj=cgExbVEc&(1FzH3cc#ic}#eLvgz62E0 zo6?a^fI90j3{}t+59R9a0PUa!aXC{*=WV8gO)f4{y!hI2i|FypYMZZt&=qsxMqR~B z_sz>^81nP!E49~4k$CtSfbaiB1HAtR0bwwIHr2=S0{u!~{?4GjO&#{iru~R73dvOP zqTgsJH(m0~dKRX9Xe|_2%b0BfaI5xH*0$c%G1;y(jDjhcJ>x9G zQuo>EJLLdYY}K{KPF8C^X7NVUwpt5eo*__sRQEE03k$fVsT09}JC~RjU%8XV@2l3T z1piumhH`|0<8Dd99~osCih6dO)Zg6b^@5voV(6e2l?sHVHy=#gJe)KYb+eLRE01M# z_ZIq-&6n8Ii4EPr?=RbD=An`<)5i?0UnWP*5*5kguk(yTH_Kj!BNPKJVNHBYWwq3{ zq9r%WP~~0H|77ZB8N1BlFQznZ7vdr$_DE6~9E(S({8U{ezcb|B!Zc4$s?Bkixo|dK z$9iYGGWvA=msuF%k^X<`uA*?J4;R*ZhwdA(VTVr5w%kR#uXdO2%+;Gl@fv`ZJ{dIq zM59)9h#ogrW_h!;PIV=(#DL#Xv#V&*mzp*U6byE)U_3`v6u4gZG+KXiey|jJc>R#@ zsX33pa$xti%ZHPQ+4F13iVkXif&C+i&RoRcXg14LHp;Sp20e$kwbR%{H2$KI-{pdi zI@U-`8YmcH%XCBSp`)s76p$mSoFOZj^;}mF?H-U4*k3rgq_Bf2zA0Ne^-uJ_-g@w= zQ8vcHW~vxp16oqJ$hW1mu&k*3%;qRGV`1GcEJG&lGuS0T_6eN&FiCf?qv4}_>^DAX zS?@it9$JLcc3I#PyHT62U7T?#M;{*_^BmkreKB0^DDSMz7dY}l)c|nev!c`FRqdGK zMiX?Ftc`=>klvpa#cpavlb%bivEtgDQ33k@)Y(Jd#(VY2-1OG$-uXlK`hg;UNGOgM z6Y1vT!a5xA=+^m8&vABK_@249x8Py0a6qok`KfAAFT0oc%QhOFyU?QZavR+1tSE$G zTXcCvN>ldSKpLtTF80uaXeHqyv~v*dI*+erZODV?=DbrWffCUGoGyHFwkkQ8PFk?5-t4O)`q=e zMQd|j33)VZxGBX%o98LAy1B^v;sgu==<3Onwja+wZ9?$1c#ehBwOhE!mJYQrWY3{s z^da#Hdj$>wZ6WKA)}YN1h)jQ~bKgr0e0;ZfJ&Lm)9FuRyI2s3Z>|Fjyn{8cfn^$+lnfdgKkkwm0E~&JaTlXx0qxZDb zu-2kFR$QwQC-2J<5bIEMz}EHl2mVA~8>+w(@;LK$VuYe>(}7AgI8;%f*pyKRv6SBW zTp>C?F#41pd+X+;boHqaXIr z6xq58tocn!Bd~n8<`k}@utf-V(~gvBp$DSw7x>@x1U#yFuZAL~x`wZG&Rsfwn$5Yu z^{I(X{0r0m_Z)9Ne7%xFbmuj63i})^kpp7Ht|y0&jcW34H%+azwtkzw(0S6HH%YWe zvR)x;BE^VGs^+_8n$RUJJojy*yw`%SseK}}Up>Vrp)7kpeAbQjRtuoyHqPjn6@ zR%tsaFGK_8OzzS`h_Uk0!$TEts8&7<~<@-0b^VFnS&aECQvH`H4XRmfi3xN3gMWGkgdpZXV_c zVp`8zcm~`m?R^SVvc6+yGIE%Kp@DmGjz36;-_|#KYb9<#Gl;4Wvab_E)w+EdKcF+M z-wv|;V~)!D|B=u0}ZYH{xn zy86I7BItK7Pf5GKi=viKAaCY}PmRkO>ol(v`|qr{V4cdVHgr_{;FrX!$C zwkYx%Yi_Ce%!7CjK!M-ZuYx`)2T4uPoMMdo60)>it1^o{-ekQvGB7MX>942K5j%#Z zeYjO3R}tMG&Et3rD)LX>f+pr+!Vmb*<>cbgkImOw`-dK!jd#~pDeLT7Hjv=Dfr`ph zqM-nYBI^T9CUCB8g3=EdM(H76;_l)H%d$TcK9A%h;;kmiP#a9q`<)b7!<6)B)W z=@vhK0?dBi-j0VO7b!d+LhhgdUy=Owk^^TL?*(cj&JYRVH^oMXT7wvLkVcZJQG(mO zk~P(zS+^HHtvyeDa<@Iz?TxdY>QxnyestzeaR=9PUz5AeC2on1)LiZ=L=_S3JPIZZ z(bFuZd%G;4Vq)qy3^{n?-vkCs)dg(If3vljvZMJt`U zF~gx*+;fCjPBa}CC)|jCN4e*4b&hmhD~;-xO%~NM;aLAh!py~`-H#{cO-8XDq{zdq zu%nwDT80&jo5Kb%d$2eY0%zY$QW^L!!B7^$DlcoZ@r<3cqsL1f9C1>#wX{AS3wZrU zpS(xW0(>H-$j|e<1)dkPryyK{e!h-jUa^;+stJ{I9|mi2x@tvS8yW%&2xU7|9?wIn z+2FYE$-AltDhn^yEYsaqJp5SBN3+#TLKAqd9>J>5_R1lw@6HBR0E5)fE$y4b@Bnce+b;; zIEEI>FHP%n^8Zf{w!F*1f52zo#1`k3Zo7k3B4fNZ%ELjtu(*A<*v;yl^SjHp;X;}Q zBTk2~CX|&%EWk;nbYtKDN40SdObR;N`n(@VZ*==sX}u#%p8yNbNTI+_+* z-3sxuK5Ih`kawt>k>ajXB5&e()t?HHuir18Enk@;d~*apda)ZN`E$PY*ZuY37Rx)w zW&;&4g-z=(0VNH;2L)cwuMD#~_7OiUtP57Lo7T8aUccGr7`Na(pkr+Bi&+Sgr<)|0 z*!wiEP#{L#sdLv!Bm|XdT?#bdL(rE$ zm;oJlfAufk!(UW=ZbmLfYM2n94nm|Tov2Rw?f4>GQ0Lm4m(xG`F8HrxvMj#M)DfG~ z`=cz}F}A7(mBAbIpNV%f8YyIdXTqbBlvFvNYuBu1zI^hct zS}1#jK?r><-{&qGLl*%TQNJf|=~YA|p&53nf>m7=(xygVpc$k0`&Q$bZ1>c>jQH=T zM0->wQm9YIQ;<`vY{y}>P@^#DaXvBYu+s}2g80^5Q*hxJqjWwmK3N|ea7MiyPkH;P zr=E!jjgZN>3)M4uvI>b{e~CMH2J(N9k8PDxjs=_K+bWAsf68{D1I9AliDgru^3Y2r^^)&o=&8$X2KP>`H^C?H@z9uLtgee`7Mh4&ND#wtmAHIYSQ>rEb9 zmQZ8Ww6czX)@@lR1vlEwZ0j$5u#>=?{h(4v_RY~svcpLf%`RqVu}$}|DR`rkYe$Q* z5_EELv2%^QLgQD$PLje(W88(|l&quv{HO za`GqJ;_2YVWv5a=9Fn8eJqUZI*FDl52)kKILIwLEERY?vR)b>}AgLmGVrqA?WLtj* z#s>boJOU>mRnzaE#X;wRZy)6m=|&efsh)}D$K%{iK7>uvS;55y%l1sISGs^e4YoI? ze#P;`@Lk?u^l+{D%z)ynJ-oJh1dn)2p+{JGt03@jB$b*S`SD)#Q6sd5zz+H&QB0_X z`aUG*K}~;n{AYC(T#CY?5`i?CxSX@+=n$Wh7lB?_6Qa`XhjEf_;`<(c3{M-BISVN--Jy_uNJYYl)I!a@KzsU31N>qDc=u2C0z<Nu=+0pgkHUOVlA7I$blX6Td+R0L_YYwo({{X4_kj*zL zG_$MP9kV)**cgw;Y1s!dhoVU)@8(OkL?oQtz2C|f98ArxzVHqi*uK}T0rhWFB!4zz z-wk%#x|i`gvaip(;E(m;cwAb#!v7mjGw?L;e@&rRV1|qy@$1a8&gQ{0FG{L9{>C?& zc)KeV_;%2a!R!D_Ma_p|D^A&fnQuFOHd z?lHJ+R>9}#lcZ|FUyAlhCC_{m4~J(;2cPjfP)``sEy0$a_NtmQ8sCLx_#>2F zX7aXaCC4SH98U4BO;oU_uxr%Ft3>&dVQJcze8LwqP&j4w4ydwYZk}cj-GWa&CuZD7 zVo9-RE&uW^CWI>+F8wymV?bt`C z_X%}9t7iMF=dq!ZaaVV$vNaA7v5XxlnYTKWc!O`#-6|{4yRRaNKscTo-mW$pv#Fm;V#JZhi zSA(N-u)xDlqm6#=gzIXTFzt(o%})svRTpTfh^O3Bf&$gf@qwQ7LrU@z^dTpC7A?e! z?+&r|z0!&R4u-@sp{oLdWDN;m*%mZLfDQGsuuY_y=oUfkB>pA|piTYDZ z`kXssnGc@9q_IA0%!OXuNX!E1n#@@LGMi zs9Z2TYLuh^S8U8--zqss;rs)w?~_&1zptI~I#j~R$&N2Ent_~KFthxsfPFs;E`}Ju z?^Yy~&uwWB_rkb}pCiZ(7rFc5QVCV*lOzN1B8e(yZBm_ z@|ecTh0tAIh8O@Y5q4^ISB=NC1}|QmN+|vNCn$_Q&*zPy%iZ1hkSw6sE*7AqBc7H@ z_=Xdk&&Qz%xQ7cic8vFT<7qi>O4F*wXc)<+#dIR)4bG}V_Llxf8MMBo$U?1becpCI zX_5Ed%YeG~f}&3>DFIEfUI@Z;%$2GG@mc=7#`@dqFp{QFq8DU6O`01_P9=8aZd)Q)7ABe-k`Y$S5TDQ( zMB73%gTd@3$DD2MRm;qB_Viz`n!LSmx8K!y=?ow4d3$1*|2Txm!3RTfvTe(P z^NR4bfpJ&qrP}Dc&zSaiwx*Pv0(^ZzSPTAh^NrJw3`W==<%eA9g!wt+POvjEJOW$> z^}npl@md*EM49tDiEeAuo%n7wr9s0n?S-qSV=}9++dumjbLGJBtt2|;Tm46x4^zwY zd-3&~s+@Na)gM*9Uklgsobo4wa)5Q6vl(}G$A9@C+x+g+s4JxrN==QZ`R+yRe`aB- zT~HvL*{BNcj-yPQUxQb+8^3Yx0+sOpU)qV}`_5CNksnT3B00lKfv23Ta`&$BQckU+ zuvMv6{1)F(tlZ=-uQkjJT_&9un0yx7$vNjc9k4<9bE-BH-e}f&2*jx!mdmdj?BwYR z_T5AlG4Q3GtUTM(8rao_uGR9Jeu_cXf0FY)BSoDh^bmI@pMI$?^2pX&_IRe}P)>as z-wzXZ-1)1ox2qi@Q`-+KkP+*>xuicGy#B}x&C`Q+7jm)FMXCs%k7!o6w68YWQW$}q z4wn18o#9{D)<0m(A-wyi_NJvi7c)aa07fIVLi$`PRgVSU0h4mHKNEm#@vdX;s~`5< zYVKa2KVf|xu89^q&Ux%&ueQUwr=^L`EY)V4$Mhx|I>m&){yW^g zlnVNOi;$jn+FA?QxF}79UcQ_Q#dH z>>NnbeNIoi;T?yZ^{S^tPUz>%i?M*4j_TZ9;=$E5=kxP&lREooPeK>vqR6cq`lwWr zDfzuRjwt6X{Rdsz2RqTODcA9hb>w68WlZ;^9!K}XyvU_tf$#(V6{}~h9&{wRJ~b2; z7UB^HQ8rP35mS;qiR96MXrp;7)N4H22%cupQj(?@=4_+x7Y~2OFnF`EZ_K zH+VoSqQ~)bht8x&C*hyB{P)Js=Q+KmKk5a}+c2JcTkg%IoL9}BuK4ImMo28fsLwx9 zJhozsLjw(V{j-go-fW@ijy*h6i7K;;49R^?*HiY#Z;PMZ;vT7X{O{%wwpO{=#i*Ti zl83f#c&Dl9x)Z;psYcf5NqlF~$*|;Bn87NGCOTiujekh9rtDKAaZ&-{)!I@alIoSX zZ+_;C1lXdGQl&u1XJ8~PRPxG0^vkfpe`vY(5e1>rvF%F_$7!yIr=3?t9=7CDQ#Myd zJgF*-GnIr#Gj*%K(Wf}Au)iJ%Y=Hb&LsSN~Np!eS% zC}&mRi>SE{J-#AtU>WJdCnFDdEGy!m^b&|0j2xxH)}5Lt1-#D(^$0b1lDlf`Te&aK|?~}@?Ia9YVR#S&G=%FX~@g@o8n>QXEtg?->oY^ zaDq(yJ}REfX#_2lF#ff;=kwad5Y?x%$vy-cryp%Q0$$!$Uz6htj@@(oRr(*g;`O#6 zhrVAvJSg>Y+R@0Q(tY|vg5VX0AM0}zBfV~6Fd){yt9#eo;x9%@9|FA=I2+s%w@o&C zLFV=?X_KIBa$(=COdoU>TK+}i+LQWo1Wp|SIigJ24*s<43`DZ@z|g4VJ#e#3fMWfn zJ3t-jAYbW={XZCz!hd#!%}jfib7jth4+kpuo@8lq?o0U_=rxOUuNm-F5Gq5#$v;V( zUdt2un@`M-b&lm-Y_ZdbjIiS<3Pub%rJ(jc^U+ZYa^qq3Y>n_l@Vg)%U$N<7!w7fn z>R;a@Cb!x}T1IYL`WScI+#2UN?{+tz4FsLQlzWM&v-!ZISfzrEBq%dYFERIbZXeU> zCGzr@v*!+4zhHU(9!~=W@fSZMa`2s7c19?wt=?xy!Wn$#G!n{2KD3tKtcNm>98Ud% zE1{Ln`MyhuY=NnKo$dQlq}JZYK4SC3N@5Q?ZhAfh!d1XKVM?@Wq8tI^V{@qT&xj-m z#pnSe-Cx!%C*iH^r=H2KsggsWy+3YSuM|Ce1P@b*PhB!9+BKay1lcxK9pl2rrB&Kz z_QBWDVnfMuAe(o$UwHtY2BkUvCj0>q3a})9?H?a4*4Y?;Dp6&P;jIuGO>IJ6H4!kS z(SAHgzm|WE!Q{XS|7=H?eYxHOhBay? zq^W@ac^>qw6o+`*y#Ba6|oT;Da{Bb$WU>c;PrFCk0*h?i(mQFyW?|vZ&rwR-c2NBq3tte`qO4Gs9ngY)`ze&)yZ^Ry~{=7 zyB2@XuKQZOF@&2|nXOD$_z9Sc_>4Hc0dIO>tJ5zRS|e+zOgo zGFR?Z&dRNs3oWzKa^S*=;NGF;z&%miAgG`?ey7jx`u^j2F5n!FTyVzo-1qBdzG|t# z|4KXro7E*>i8IRha5?{Oj!4MQO|&r38c&IP?^e(wS`Hz)q^;*$`+$#nx*t3O@~Chr zqKfvKuAB)U07&W3r$Yt*J&pv6r3IFD>-?I?3k}A+OeMQgIzgT80Qo3uFjOp1`_4vX z1Z)x9GE0(233G*{2C^TV*qO7A=$ivGY2F>qxw{6YPI#HusZmjrWW>)Uc-!!Z=N1C2 zfBYl3(p&81a~lvCQoq%Q-U`AkqTvJZfuufQ{$hp`p+j(}=YH{<_4gJJN9CxDK!~-87d~XN44xi|~c^ad^9c_7NzHR(YT2s&y z^S4&|jd;aD*A~l-Cu5rkcoEGgQ*LPy&B$bHZ%0q=0duq=$Phuq&(jm7st5_`{9k3r z=$@s&I5hV}88Uu1r3lpi=4R80J7CNE4O68kwLjL1`MwIkur)7$t?f874#JdHxHeW^ zakf+X#+I`MXT}F}V%>2@UaTF}yOrYM8PR|G{a7{aE*n4th1*l6xLtUFb@2zOx8vUhCKH$OF5lR`noMU*=-ckZ&=D=i5`e>`s0aD8xzFT05WyPbL#1W!)Tm%4k-?9#IRMjs3kPq-r-{q=Z} zj)(qoyLjQYsP^qSrB;j&;g#xDQ=PNY59jJxvAf!iA)iB8YIM2io18$LQ_i``ye41a z`w8pDR7C3)J{4*n`Ehrs$iaBjQrzW^iZ|M)|D276!P~ZO3niVY_P@1r>PyPF>4he_ z`-Fm_9ujeUvr=7B8AQqQYWyu z!E9guRk|H@kqxG_biIN8jcns!=($c46c}ee6Kc_0wu?##Y^V~v?0NDB}B0hDlO zj}a8x`AvlbICcpBpnt6m^Eu!_gyt%sgU&D=UA`N8WV6S7)|a0#?xr3qtCSRwuAvdY zYx|mF3mV+o^ABY;=>B&^;El*NaT&b744m2?TIA$8q)cLiAIN@GX|xUvFs84Rx?P@Y z%?XJ|-yN-HU9xVTWnX)dBkvMv&3T=`d{G}w-kOZ?fXVXL*)hZP(14ax;{(qTimP3n zv_+9=20To>!oj^hmn>6KY(FAX9q;T9q^Y&{G<61X{;S4ftd#Og;^?8sDC3X*fPbVg zHhh0#3n{P4ubq>M}mlv8I#r$Jd&;8GOe z0EPW32{r;~wM`+(9k<1%m|6K2a<7MQOMj(KBjqMIg|X1P#D*Dp=_`VJf;0Xn4fh*X z4?<>jCV%O4Sa{_PLsvfT zky04EAcG$>u)&aAFBy6~iS+J0nfQby!R_&noU^@N|4PzfGf^^kHxd>&!DQj|Vz=?? zlFouF=<(m>2cn)b9sC&`t(>yK66LE>i<w zOx_@~N!x?}0O?@e<#)M#&em3T7TjjDi`LCzxg9ebQruGQQc-?8;#EM%!8nj%`$j+( zFgaPN+_R%ygCDnjJSF)>8Uu1T+4Sb3S-ds{57!AQjAycaEN(mr5OaCy&-od{cx9O= zdgppt^aUuS&qK&^>H@9~qe%|Y3myn+WVmi8whasY6`%3Pw!Hs=8NSBzG3MG-y&t5k zlZHV38naovAKr)GhA%SC&(Hn{dOtYJTe+R+8$09)T=RL@B9>y>u5@V#qNjMG?2Qj^Fu@qh9ZbobRLxmV zsoqB^*7_p$34{IUmDvW(oi3stE#Bv4F#}B!9tRrl#P_f)zca49)UFV~d}7mUi@hC7 zhHuq=PT2o>K>=a9Kz=r(5Js-e(J%6MIX&kUXY#qJ%V|Y~M-iev($*WEBtDD(Yirf3 zmMD(!{)K_{suf(%?-*}qD6XynJ+Q`m=c8UOr&`NLHw4oQAKvhOd!5;+N?)TQ`}F=uTwmSUkyZ36vP%+H5!T% z@hXG%Mfe~6v|#s=%xJZdLWxhg{hA$wT4hop*yS-D<{7f_1c=zPF}7v=_Hdi{qUbp- zY$uwtUC5<(d-+KacK16h+w>&@)`dZCLqvND{;dyZpPm@jh}?f++t|rXgS)}6b;$o7 zP_x7T7f(!341lt&{ZcNx^f{#2>5>{@zUaB>z6^iiXYCjbmd{7`mZA_w{F7#vsOA;h zs83kaeP9osgH88cIWSr{WP{C0=%tsRF+dls%h5Z?qidwmQEU_M@=`r%SZ1#%Ok-Tl zuEuVSP;pDsy^G+#;qY1|nDe-{dUo>{;4X~4;&91TDMd*+?~fLkfdTfFJn#tJB8|gI zve}$}pKDPrbE@JvZm*4_3SsMh?w65#!sNq6_%Br-{+3^=>G(|r9RXeb2`$^ot^D?Q zmRX!)@BT0oFE+9lzQqLtf6bx3s(@=rHNL)l;7iK3SHEEX??>RN8Q_?xu+s_w!|@sFjc4x5s8`k{G-AW0friGSs$ zAAhae<#q2H`SPPDeO(CpxTg@IB`u>`m~Dq-8xS`6B9-xjWiW2<>F!ql=-hjROD}_S z(KxR{D+9nUD3ojM87}Y{%VLSE92r}r)(KQKN>rZ?PVpbDjD-#;~p(6TL^Y0)Zap(YhS>y-fQN*|bKyPS|k z9_%&+F^?gwV%tTVNqemF)(Wg(%1C;>QME}Fv~iIqqh?0J$v` zdc$VZDsqS9k_Qp{{Vj>bAYd(g5(3zg;nPL0+Bk;kai!my?GLlmg&kq`oX7WOBs4`tU zV{`s&NY~J{&SOnuN0;3tmkS+xUm+miyNxc3u zn-^YxL%U9iszqB(#~t`#Isy{ff;R48RCmv-)791U;Tur~Pmz+#$pc>d_mq`W=D3zc zczphQfl-|o`{HzFWZ&L4GDQ=Wbck}Ne2DX2`SkA~d z5Y7DzseM9x9R0A16mN;IQH+!+l=lsg?#~tZDA^sVwUHV7#qdyW+V+CwFA)iJozjjS9 zf2)CCtvesuXF97fixKoC`zfi5yqEg_^aG^?LhnJ{P%wLg3U-?GS8B6 zx+Yk$j-ndx#^02gq|lD`89qDGo4~I(PM7H#HL1WwI~$LZ#!RT~(Y49_UbE5cBQvqU z%Iz1Yjn?rLjT6VmS5=iIcHa9-Dz~z!^3qOT;`FG91fmOcD&w>!zdMFDj5V>DD47k6 zHT`)sQ&V>is%FQ+W;x{`i_E@|vu^F_EiHyj$JhC;*Lz7f&Ru?WADWI=p`8+hHa(m0 zPj`okVY!3SFQ9^TpVrp>aS0(V#%cT)qa!9w?oRXl=H_3!y}ou&6fK(Odw<}pCbQpD zZ@KW!W+Rs@AlCOxQe+HOyX$^muCQEfowC6tx$ut{;jj2fZb_OziXorie2Pw_)?{o* zXT6T+`viW?PuY6OfVx&2dHR&z?xFOZU#w{T$lC!vX1`wPj&iK_nXyeh{Oa3bn-`89 zmzf5Rrow7>I(@Rc)f>RJn!qgxI``M)Ae$z}6Em?4uP=9?^bRXhLMmjD#cE#OsWjE@ zl@BVO-g;*8I|-Ikug>Ad($y}8{)~^mD)<=4@7Z!(UDglF;r-)h@W~ygv354#<=ZE> zVrdNri32N*9)ZJ-cZdjEIb`HQ)veZ&QgXwV=4W@#3W!=kvV1zLt*bn;__xY=Dwo808--gzxF}!uO)r}_<6_KTJ)WYukia%3h&#m??Q}U zL4U9v(_0HGtq4Gx#@4LSxL}Z?`-0J}qXF_Q*R);u%DcfXi<5s@?`(=}p$Nq%oS9Sd z-2Dn?Lpi@+e*9V=of;n6wyQ6~99(?`*WaX#g7s8zcto{o7kX8N`{7#ibR!f*V+G?d z#1L0=G#Zwb5AD+r^&r`8aUgb9W724(K!Lwn4h{SBi`hX24QEzG44K~8F-Db2-vvpo zd2e&PS!LcrvCP~Z?&&ELEZxAziwMv}D`ACWk9a9zuBtO-8@zI)4*M!O8M~(-h{udN zm*LlT9ZuykhZ$lFg43UQlb7&zkgL_pG;otQNHmt}Gz1>%%cx+;c4TIo)^wHO#-@6b zf{Hzhs12kAL2Ai`Pd%Fa_r91?wr>0K-)rw>*+PlOeZ9yM_x0Z}{4|h~)Gsl{?G7+M zM?gW|mmTJzR|cI= z$=XrA3zhJDCV{bI88I}`=jin^{`@sXqm)1A+H&T>uM|!Zx0g8@vm3u8#ND39l%Jc@g_8#!ju9DIv$TrP5j7QU! zTje`~c2z0Uq7*qktX3&3rY|&;Dju5BE5B}jvN!_(qPBETW~32B+#pDY zJM*0<4n2I%n6iffsFP&Z%VYrG>Go*e&bEn-kfiazX^jMvq$Ji7i$Lo0$K!4Y!+=Z5 z`9?h~;Cx^aLoNP%5(G(hKf_B&6m?Yr)w=Ac5gHG2Z-PCCoA)roa3QpLK*SHIrpajT|*HLg=i4K5-HAJFGUyYIcOlkkmH zpBn4V4^xV)9*HTJZv+mFHnUkSPHe&x45c^^op25slhH@*q1G+?N0rwPP&^(PdxGt# z0|yOI2P#DVi>5fc{FkhCB#P8}D5zGZ*gs_-TFii?PFDqs-_z7x5;3Xt9BXM7n9Z>o zvTGRe7|U-Fs;F72Fo;$K&ws?2s85wOZK%=Td{a#(IXbwErlM}zS-_+qF+qLtTjgt; z6X(9Dmvzz1``_FOu5BPrcMhocPeo#lr!Q2)7m=Yu@*oU3IU-G>0dodv4<&5#+14?Swk4sQ-IX$`OM;oe0D zHAQKbl0+RGrRYR@wTY?UM-CEGRO3@ zUXhly8%t(ms>1XnF_L_QfIUeKovXnN(Or5Ez@aUu8gpCU{}C7eXAZqEei|@`=3ajF zHFfD|L*k=i@f&4-%#wEGOx2X1b2e{HIsP=%ywH2Ix9LNJ4m7h-@D=Ky9jdj|-YR%$ z6#kkFM^0cO2yextuN>dO9gW-y+&w`(Rl@4Bd$-VthJFjR`2#*rIW;+pzi)fgPx8wL zAa2{LV1>F_Uta%C5Px<^^mmV5Vr!SB70&x@WC3DgR-`4b)6m%Yiirtiuu&_g{L$9! zH@#{Rp07cG5O29BXtKxb#k$6S!E=Y;K>A4sZK>W;ll@z>p*FN!nHCM3j=Ou{wI`zc ztFJDY0a<-J?MfL6kAj8u;aHt}frqrgaSoR#%KwK+nI z6P;o^lF2ac4xA&yySScsuivqd(R&UVOozdHnX9wK$2HFNNz+j_h;yw6+741R9bf*nX%l3roZ%15EdJ$m1iwY3w4;gjKQ<#YtpEDPal#Y+-kh^pkA+KJPTx@W zjyy~ojUtZ zwpaVWYD=-BNUI`~@Tj8VwEP{H{zP9q8v`7m-+C3R)$awQ!@qwJ!m=X>(4W-omV5yW zpAtoN64=`K!td*DX<9H8Q%`wqb$RqI0JnS8>gWdlg3YvsSgmxy?{^1N({ELV-B)9S} ziKwnh^H@5m9N+krh} zH!nMOW`->~-wA5tE3Zn*p6A}Su$mnuHS+*qOD5T~r<$bs25td_#vQ2*sdI7FyG#Pk z&#!jMr8Rq}aZwJ_KPY+)nG|Ih_VCQa6!EPDMh16gC|2w>%pw4 zDGvVrX3sYAxbOk7RPZt*v8A??bT@XqHj&f?Eaxo4W*VY`JENvWr<1x!i7#6%&A+e# zw*%3KCU7ZJc`kKdll@5fy>979*O6YcSOVVDL8Ifw9$A7WLgdW@!TvU@ zU8ic>#|8EMtWOq4c(E2Gxk&oTS1uTycC?1s^-d@Yw(Gvw~QZ%s7Guy?272H`PPa!<%TBsd+w_S zeKlV0uD!jdD)jUT)%ZGVX&NJP}#ej#lUzE+H_fdaG zyLJWw{Q37dGipIz!>xA<&QSR%aFZwO5x*x{!j%9J>&q)I0GV<~cJ$-2Iz;~~A zNauK*_=P~P2ydG0s8o*t5IojO>w-Gd-u7p#xIVAznok6Do#&;Mqq5V$w4oD;kK3J z@Tp=|Zq*I>#t2iivwQ>g$BIgq|@g-WQZ=aB8~}pBccg--*(O4f`=3R zstchv5%NcKYJ_Yi3)b?>BT%v3h(&ldyx3ScxE&Ss2RYnmjI&(RAJP>iC(7gNSgPcx zRvQ`?kAKUDH6!F+3dKcRW?#6p^y$N*DsRF<3qr0eNOz9-Ngd@7P@nea1x5M9j*sp# zQj(^8*RMW7=RgamHSO{C#}$ir@l1{Wof<6Cfvt)ks#9rrhXgm~Y1_0*Yc)TQRt6Rz znKdI1V%J)V@@RN|eBEgF!xoi`|NaF7RTGPObI=lwK!tm4$o!uD3UpFv zrlb%{^krZ3q{H6#SuN;DjlB$Ex%z}Jf}(ldp2}+}+z*rZVslmWM(2)4P}F%)M(o!s zR5Ohh_ucb{DCf@o1x6AE5}okjM(F-!t&uN=h5Cojj}~08Kh;_$Q~8E?DC`n`(1|vq zb*~&7*&1J91GVqIwkO+)D4pNNJ5>6{Ii1PpQ$q&#*O-tMKSuW+)BXB_%@z#fiQ9+E z1ivE}SJF&EnxKI#h(nDa?MU>o_}8;fo&PT^?~n(sIj+T|&$cgRt<9PE-z8x;NRBR5 zbl=>)S1iFuzC6;l9BBkDbg;9J@u%&)lBWS&ka^#c;=9+LCv?@e^iO%uQ;^`>XAf75JQ48(O0~OK%qy>6o^Q z`t8A+W7UQ6X^`IQ*%=7l2#o&<0g? zTKzm8v7>QC>huLgRV4pCT*A)*fDtIpx+k>0_(^4sF@8UUB@j~h0drm{q?qPutOYCB z_8c|ur#Dl$6*s*;D=9v@?e?m}(l&XKV-pTLu&z;kc3|Cjj1u!>7C*FZ40fer|2x3j z@gc40$K%tkKeqA+_7ZWpr2&PjE^qD_7>fp`E%q5_gqu13+Ev&rz-rpiO-qo}VnAV2Y8qM7i zs+vvxa={L#2%zS5Bh-+BQ4nE=UV9+7s7PZ^2Eie=CsVqM;D|fB`0+|#lr>}3r_HT6 z=KGfEq&e}m33=@k1{fOuU<%fJlI`>_38z?cK2Q8+FuB0q;Iix5FTNI|9MG z_d$@uq(H&YJyD6B#DyBN?q~UwLKs~%CS!6e6}}GF)1~TYv6cC({$_t&F^c~Po%mIF zpSm=+ZB9pJ*Zn>*h!{`Ow+fzToLI_j3XPz0dE#P%H{$EXWI&w0dMhxtX>DuprbqQQ zL4(MPrf6W0UwE@=E^GczWLHQ08}7)uK%}L0fNo|t3Sej@W?45Vd%+lRJ3odGT>YUD)+IWUk zcP^Ts8!jw#s~mrS_A)zg1a1-s zjT}Ta+iQT;rj67t6^aH_O+TvC^8UP5*go~X?CzDm4lI12PqtEmtX1qedA~+01-Wq) zF_0A@3uIGQeb@@>Sl*c7&2Ss;VVrP_EU7vd0EtF=m#?0w1H!LLZmKn|KV%fU`J z@A=Er%TSg=U%g*qaNEC=s=?{dc3ecx7c$;`aGc}s^+m?v7OIaW_TkUusI5Ai$GfPQ z3)sv2Q#i9?cAp1K0Hc1AAsH^jQDfC@R;*@sAd}D2mnL9Fl-(P*eVh=WE0103jV_n2 zABJ~jBuxHJoAFu_ommrm$sW*2K>h__46Q!7L;$%Uu1?4sa15K-1b%Pv6bso7u0xmV z%#Pnfg-d?P4ebn5-r}1(SH%-)WitE~ZR>NvLC<_%*K)MToJU`@{a6-!9D~x#KKJ{| zsO4Sqt#{g6vOVVe_|F=+E;e3mD<;-q+xNSmN|RAN~^!iQ+j*Sd10-HGfJJSVdXk{59e^ojvEC_cS@-7thwr#>?O#TZ3){D;(KO_ui zwR8F0X33yg=o z{s4jy8*=ImXFtG-%%~Wzd?;SQ_G0ueH(Rna%`HhF5-Mkx0s*i;XzZp}x>rrdU@7Ba zH-s2O>q+!dz>=YCSaygbUb@c{N0%o0p|O2l@t!3!kPaVD&S|(|+-#3Czq(87L{~{W zH{J7>&fG?8Hlw>K!*Sy-_TdF(syKXHs9o^Y4y49}};XDqfS4A`C z^C^;)OHYM~88V^~`=e`K+$)8uR3N&Zhz=ko574-l|1ULbT~ zBm-zrG#6+&dmOwhzNp~I-9<|KmIS%VhgeIb`Q=PB*RqBb|45|Ki~EV05kxls&d$K~ z%YTjT;Q|#V@y{1*c5-zHA{Gq;^sc{0CNchUyu)LtD;6 z7q25kVy=oYA6Y*D)3FyDVOP=|$d|cgWgI%vJeQ;bEW+=VqS1!&nCQRv3L&!HBB4ViLGkxFd8J{7ZjAPK$xaO0MJddX# zTmxsM%#y@@`bW2jwI~9f&J^Y2`?iF}qA$*G(s$km^xtr3$baS~F)gI(ZyZOfYI1n% z*SWo91Ea^dQ&bQEbJL;O7bqXCX|VUfy?P-hhd)#H4`w1a04oPNJ~wRvJTotKyHhJ? zD8$INeUyPyP(cyVKEGx03M0#LyyJmt+|xq+$K#Dtj%73*1+)?%s-+dFxM^?ds%pdl zPY7o8*}eMILWo>K{qkiwE*pv6J6Qa`ZkQNr6CBVI83~L!y-8hxVXuN82)Mjtgi20% z71&Dh#@D(60FW}r*V`3j1(Iz--O;J?>?KezqZVy>JSE$mmsZw@OgQs7@4p6k6{ z#VYPyyR5Y)rL}fnvBv5nIG5lV*=Z@ka;l&`xWSsD z9r4f3_+|wawq~!!Lq(<1z;K#9c&4sCzn5Mj26Xu~J}us~ZLdJ#v&#SPe8Jnd4oHd< znjK%<`qOY%`})Z2wW{NeZeO&zDB*Hb$HcM-$YC)FcR2jAx0|s93*1D0F0wLR5NKEt zshG$>u`wJ%Q7uT0KQ|&J3-KR! zU4Qua)i8x@_>}A%jeBn6m`hSaB_Xegp3^V@q@}BHzT~X5r}i;)R2`swCp0&0&g0K` zN$fp)J5^scsCLmyLisiamcr=^=N0^%^gXn1+V-h%)tZKg*uy zGp&4^1tSri<8E4svWWk)KI;g{gu#8t>K**=Og>f}sRIs;aKS&WQoQ|e()lA#l@!xu z5|8GFP%iQ;-b`dR-`T5y7~6aMZ>ysO1oUBV++fXxj&xZ2>uSYuJeuRp_@3+KfD^0Q%+!gO7~@Fr+mLVRGbPqDBLT>%rN6h1sA3gqrccH9>9cwc(q+4i zX^*X{A=yH~+b~%9HQhIzJ(_j+eQ}lGH_q3OPoq6K)GUEm)A&BE#5^KAqq^?u_T{I)(pOs2$bK`~3M| z^})fG4e9;T$#X_LIN_neECHjm>Uj=YFKKD|-gd6czBP}Y*wom1u9~lZSA&1+EVTYU zTEcxL#rQ(>nH~!XFtiX&}&BES2`I?{W(+XCB(0FbVCTg>qQb&*aODnS2xANgm%btdcn7+0UIucyGm@lXm^4yZL0S zL?^Bt=wjs|7dD+>OPq^%u&*vd(^p%?mnEc=!|iY4(teF32NullLmYv3`tG!w9?1h zLS+=Tk}H~a|BCj@?2|xRBs5ESYI!l9eVLsY`UInhWMBS{tqy>Y&F$~TEc}F)6nWq5 z;JSSm`kqXha6jUyNkyNZ89Ph>CY2t%X8;d$;|HdrlF=#!>={oo+{sRu$ilL z$Cb+{KU+oluXOtc41VFpRkw5&F2e`%Irgf(m0`cjt75d87NU~|oFL=|RcV?>P*$9Fv55|&^?juhIv4n;eY zBlXdlhbYRk%u&1_MB{n&MUn)9Ya1!m!A*oJN1HK;P2(FO#r~bW{5Ot-wUj#=2ZTC8 zUpw`tF-(BA@Hr^xtVmwQBZ zacaj7i2i*jEa#`#NMKRFy4cDVTufPwNWi3-s78`HqS2Y{StGTforRD!9jNOn%5C>! z?ASz{#=uW#4>SqJ2Evs%vE1j4I80_Djsn9WtMUPU$HzMxIhk6_jux}PYu-XFnD`}v zgqY2NPaBmWrlTjlzQ)@`{2I!*-hM2dyYv)kWh;0#AodqNnMK(-s$k$E=zKm9fjK08 zej)GHq!wdwukZ!o>9Zq~dQTKr)5UvBF5%Qf52;pYHcFR%%RoK5sSHmpM zs5HJXzBzVtc;F-%o?rgRM%VbwTX)>a1#+KySFZ4h`?82uPyWDmV0RKby#b~~_P z5ZrdbV|sv&5*`OGR&~d1cWa8aU>gJGqKA-rQ0?QbuC9HyJP>3Ho=+#(9ky+1m0ZB_ z4@aYeBdtdyTg43)fH}Tp=S?^hmdW8zX6ZW@cGqg|;aDvJkTKrfew0p;rD07a#Ly2@ ze`l`Om7j8!ky#*Kxj%J5U-RvjB{?ztNQ=wZY7USo-j10J*!W>!HhU6u0Mq|cu8rhS zn|*hz7u@}G?xevEatch=`%5?bwijJ63VxxZnP!&UTikPK~4Hq&>@#HK8 zN7#F4p!V6TLqciHMy7A&JJLA5RIsx72|BUoefAWWIf#Ub@yt3| z{y>^U9{qC9lMdpnJ>fh_Db&%qm5R*nzWS$0~QZ(wvqPy#HSQ>f>=9i z529#6#^u5ASzS#21t^>D(KlK4ctj9rFQ)yis0BaK&0#dvpd#JIGjyY!(GKgCX@kpq z;~(P%AI}G8V_1c;=9xj!-4(j2tiQn0f>rFm18M*t9vyx;tLjw1St z1}jRvLUPI-wtvT^W33hR=1b&<+oqMp^X;k+4kG*Zfs^c15yx8mga!Z&zxYY%4=VV?8^Bq z{jZt#$6Fc7tQfmUHDhA%BxRv(jE?{?n(vbJn4;2wD~H|0r{E8Q0lQ2|_pT{#`0Nd+ z^j~U4rx1eKwG5vQ!!vx7(FyN<%Cwk?21iMITn?X#feQkQLwwCrlQpO^o)0TC`XF?} zRAoQf{F}G(9^NEW(qI3ZcVZ~yPz%UUyI8!?Qj1j6#Z@d<-vZHpXH-lCDzPIIq%gEX z2i#_$(P` zvuQ?p6(G4&BaYX3GziRnE^8+mmg;?ps!78pAx)b{jr8cLjpY+Y$REbj%=H37*1RZB zdocW338o-b6@HMnZutrjKV7N27`h6~QGZR!@Ke}3o?vUF2j@)$OAAsGGzv#(;rwNCXIj&d9Q-yK zBo_jhYl-?pM=T*^JCxsGsiI(j;q@NgFAv*N{S>}3mm!%F+0xse_|Jgl9#8-6 z-8<21spm0gkwHC~UVFVHs4oz44tqz;p`@!z9^K)A<-xTE6~iM8EAqE?B=<>U;w1`I zjAM_VS`g{ysLZJa$8XjB4oxBIvCb#}33S-(4-$7X)4M{$- zIBlMs`}>&u>5W#WpdvwxGVMUp?|H#Po4Fa^aN~Na(N)K*=+0&Gg9c-7+7lfhFvlig z2=2=#emJox!57Ij+QrZh@;ngiNXvsxL^(X1Cw@iJv0q3kL$JbwTl=i56CQjt?T)^O zYU!tP7%{Q!X2S>OEAW)9eI3}p?I1z>a(2A|u8^kwEPq{-QcH`C_N+U~wB|(?>0(yV zdI6#yAVb+4`SvuW`L~;DP+Z_Eqb}X*@Zidq604}x<3bij!RW1z7bMszkoCNmg|o-2 z&KnB{=QTMk+BLgNn4^K)3M=Q9lK?_Roh!KbqwEy(S^GiPpz-=*j;aHug^Tys&5*%O z@7?}uIjccX3Ym#lioNN`LQm`>O(bz;&(r>JulF@s?j5fy-$tN3=Y-?-%yr`w3*tJ_ zq+9FAZa~yI>Q76Zzszh)oJt#if3ZD?f*k+q1@p2J}As9?uI_lbl^T3 zZfPE~xH38)B#7ga$qg7-5J;^mU-FR_$ekx(sgGt!a#FMoE?(f5lV=?U*0mP^}mIaE}+T=f0~-1je!^nJbQ`o$$fg z(LmBLHKt+wCCI-NHHNBs^>D_e0RbWu^U!zl=U>y$Q|Qiqqd9s?nf``OB^`Js*T_f|JBGj4LIjUUodo_IidNVSr-O z^~8rV z9Fe!R&Z*<4-D$%0WY;irT}O&1dUae|Nya!<=k-OhNW#%`gYBS2B<5vA=u2{1C7}`(V#pT87b1W+=A^AGwG+B}J zVa|-4i!pMRLr$q2Mw+uZn;hnB&gWB3vpEbK?yKK@-+%4>Fx$1q9=opV^Lf8tujeaS zR7j>WpIp8`)6tUoJ(9RrbU$h?&?%-- zBRr<+Ze#gn=OsL{oEHEf^s#dJ*Pe!!=hHy-@Ge~Qc+F<0x%sVn8yinjE{cPb0hPvp zsy7ss+J?=&%iSVJm8obutuMa;OfeMc zwKw;V+2u3pe@FIYasXAn0hFrOgz6>ZTBBZW(?`#~sRyUyfAPxq7jbmBlB_MY8y+AY zSps?6kxU&;g0J^U(j7yxcRtHKOT>FvH!H`Bd?INymRWREf&DtGSe93~hx4D^kJ(il z18b%@I#RW&pSB;W-AD2Bp0P<@t$jNJf&uSDsLItg@>~g6Jvk5$l)#vQcUe|0zZ*iH z=4~>0a9s@MI@acMzj<~BHOs}^Urj!y;k+Dg<&Qrt4i_YeGzibZi3`ub1o~zCB~?}* zV*XyNeE>KHBe&0@R}<{oInvx&KawxjBvjadlM|>vArf=dK91)?q}q>d*t^OFXFZQ$T@!O`dv0=$PZoK?eUYqqiUH78k=l0fs=>c zOve+f2wzrcmdr|!%>C?&HWPltnlA2HYfF#OPnM1cb|$HA+C4qW-nl#IbcPo_Jqljg zynRIi(e)wrFQib4%N+kfw^s^|{I{SwF`1k7MY@)QNunwt-(mT1S9=f-uawvK+8J+_(rd6m^>n0Cd`e zA1szmgC|W9^1ro`X-}c;L`z<+m6hM*pQ6A6sX;Dw4K#JUoxe`5il$Xu3Vk z&{J>6H}x_4UOmu7_cuSG)4DC`(c|f`(k!#+e!e@%^=;wRT`&*O<>#Hj2}BZP!u&?o z@Rq79v(T5Q8E|tg>n!v%!r6;f45I}V{8gyd+@tq*T(9n;_$h($bR_FUZjZs(Jp{wy zIZv-r8yjT!ol$~-zrJF!`%OS#hx46nBEX;poMI*4gvU>$BChnfm>x-Ue*D-r`1{j| z=8l@s(TTvfEbk^dzGSP>ThzFcAU;)2zA5E{`(HFh<)lw&YBH>e^Rq;wrj=f@3*- ze0Xr~S?n%QY4&pqy`xJhMtQ2|@HcAVN4{s5VZ5+}0Z%lG&+;F_&w|p?^QijMA4P{k zd8lw@Lc?#JXT{KEoIlb94B=g4dZ)hRcC3nHw){}D+dzAQ=hKeGXHijnC8&mjC5Kpj zLbME?ES-30@H&Hgt?u!i*+SV~72ZD4mph{<*PV zXTC&E)uVoiUXFDZ-FE=KeV4}pf*rrH?_TCjquR-DUih24>oLlinXV0fQa*)8e( zTPhOO6Z6%ff4yVZ2xnh}Yvoo1)mKuds^*1)df0lw$->7OQa;i)7bQ}Yn=^jT38ip9 zV*GX+HmF4^ncm-q!JqW=3+>lP4xl({vDOwn(E^#n3_hJZ5vBCC!fo|JNhe((l&SCq zm+xL>lE>&TH6NT%uc-MPYkA9oB@NFx1yZsYxtcMk#p#3-;InD0|FN{jcun%M1ugjo z!n`E!04O!4hF4JhCqS}QQf7F$`%ahSOV>L`oyjwoV2j7s-Se8XRxr<3BE-DE4Wz(F zIyISQ$BqA@ZX0vH)?;ASoLje?)tJ5fTF)xG&wTpjCT-;xqVEEaNkJ;orp9m>DpYnsM2VhK5AyQo)oS(QqIa1r%5|SlfA-^(J(V^$-Ge+4`3HNjvGL{8 z^@oM9i^_E#1NabF@lZ3$T=f$zu3VR{(LI=vW6fhYD{%P&XO~juIX!x~ldlbimuAPw z~45-v@du8)2L;i`sRGC!R?n^$Hq}*dv^>NS z?B_B-F7BGuM>x7&5&JA~1feX_*!Pmkp+GNwqP0kchGmv*@7iyk)lI-(=G||gcwsBq zXyw`p#nXn83DuiH8It`h+&9gF3{e1V&gDcOC9XyBnGnW#zxATfnt$uZOSb+i$A=WF z#ek(uuZiISbUAkFv&o@Z$z~4qEd_`$pVPb&3M7?*_&%?k2^I}oMy#hhH;{wrUp`@!4lj6{g4Wlz4{t5sfV2iy2=fxCOYP97=cRnQ1x#%j)F#J_8 z5~v5Auoy}1Or*aKTB0#gTj3DAv7jj+5yL1*Af6Aycu5|7XT@mQK=)V1o@B`$3eb6K zO?oXy!Wuhamw-|=JYOJPQ{vtpx@cskX+l55BEs^~9C}t%MN#O0K~FH|%!{tdz78M% z$SHhu%i&dDqwQapy8kHCs&&Uj7Jck9G$APEoOYXEX4GIYmx z;)@9Rg8r0|Tw82w=^`g>JqL=wh8>66UqS2 zo8J%vRL*|=AfK|V+~aXvH~!gZbizNb@BlqD8{Y#Cy!GPZ!l#nP)-@XKLv+RZbAnPk@deyQT%N3-rmGp95o?TrQf8G->i+? zwiMi1|qQi75uVFCX!{w^lwB zGwucR_Qd2iK3FROX%kpx(DPLPb=dQNRR$>5>y|GM_9_d{~#-Ak@gkCnSf-mkI`bHcN9_C##yDP zTyDDSR0~VX6UK^-tQ6w3t?KZhU`5dmioZzj_Z8@Mm+0+1h6A)vhxp8O zRpK9Mu8P|N_y1R3fsW4Ar1*4N(>5OPG}I3h$UI4S>Ae@X1%6SL+b(CRkI=LFX1%|V zmJsQ)9r2)H3DTXRQa$wJVTw)99{`*-_4mK8+E88ReT{7gJ!(1+buHT7wKp#&YiO_0 zsJvgL$v`okU3-^Lj&^Bq5><^KAq~pZ~o`sKGmO-?D<=>Lo?eWsSZM`w0fV(T@ zhSVPeg5fG<0h3(sTn8F?zdQn)?ERs+yu7*cv#LZ>v5-8SVJJ+^@T^E>zhnrcHr2a2 zY&o#24vA`*v6Tuqt)&5J)n9M7Dpzaw$uUd3h997TLD=n2fS)?Y`!55DO$4~7P1rrk z4SV*)`?YVecnDPWi_zi_KhIat6^jCFOouB@Xd5hG$Fv_O5wk=vJ`g~P+0y2@T-XAu zm1b~sW{5!5m`$WIIMz?VPrI3HX>s_heSZkwa@84^b!3e9>?Sx_RKm+AdnZ2!-nq2w zV{EkXjJKW-u;q0Y`E&KOB8?|j^n*~o-KLK?Doci=l51QClV8k+~jJX2Zm%ac()Lyw^N?R(yqsK%_3o9nY; zvj)%y%^w1{L|ZuXCO1QUmDSXtPx{u9>CIxSWNYWt-mb_m#P!xYD=vvhMS?Yz=y=GD zif>&pm46FvZ}p}9EePI4YY(1g=u7o}PqW@w&DRbq(JWidXQM1W8|N4UhPP!Ym*uaV z2012NdcdD9^qD1EjDn zX8xs_XW(JHd*n$S_-%GVX(<1}TzzFx-#mqq{9j%SB|fk-jX*Ga6=ReQ9X31`!Y(ae znh@1gtj{>Wzf!-2I2TJYR6v}o4DjXh-S)(Mf711g(v-1#`-~44zgqm4{Y`zJ8;)~! z^+n%DHlaRxn#D6&A`n;n|AsPdhugqJJiH$K^*Nqa_d&jnH2Ke=kd&zc@x0_-K*Xqo zHbhLVDLhN6NNaI2guQxul?#Q-J-X`UZWO!U(2 zeSDa0VDR}6)N?-3po3D*Lx^pGZzbd(>|8qz)I2@C5D|PkOJlaLleJ~(?$jltnZ8bT zAiRf6r{wOM1HN`)bKvJj#;la8q^CU1 zhMIp^-QXVYFTY!>bQZpSzGRVxq8u?PfOwPP?J`LB#;-te!w{%GU6Be|);Z4k{}Sf{ z7VC7tgY>1+I&aW<1qESqmS=lGJt#rz@kkvOee0-SMX~VkpWeG9Kq_{NX}rARkZ{JR z)?*5*ltqkt0I86#9dKTkRtGa)J6zib%~?GBVq204|4yB2!DO#r;Jp5Bp+$gWw5H4o zbN!@;v&%)yZ1?FZ9Q|i?d}6y~k;UQfUfA~rlf2=lzWh3`MiMuxl_k%z zaeSB=w-hGnR%l?TF z)x66QuqCE(<;~G!pEsAkxHYB--Y0(&a#He3@Y-fS6jGp!{eb`1SXT}t3}jAd?bk`Q zxs!7Hq=^;Qg2vmRt@BWcFrF z)S8SLzOXv+^fv=ptu2Et;vN_NjHK?W3Cd=ehofRZgk3jb$CI^Xt7W*FK-is&X915{ zYyPp*8Q5$VW7-@o*93wh{Qi3G>z=y&v zVWIDOI0Gb3JL!Zj&%5e$_~kcVkG*+;f118pr0_wQfcw`x-X&GOCu&2V*k+>Y1@A&E zwu*35NPlyg@0|BEUCa+NUrPOl;4xO(*Elq7uV%}=qV_S~zhs8yyWr~+yGxDJ17OQ_ zEu$a_>VfnOi}&HgLlksJ!0Nl;_>WJykr_MuL2aqs^UC>=RDng!!y6r5Sf4AW?80j5 z%(}MEcDW@^wyoxkG5JS`WHlF#p(uR}>-)d>X}EAk#Uk8%HZgO988FR-8ZYQy9SbU_ zcxHXOjx@67iy>n2ja zGxgE%3+UCZj(g4UaRvH56*X|3DZ!E^7rw#}icfju@ake4s=i&{f8m5=?9z zt1*`Wv>Ro&ub6b4C?tdX#eH#ac*p2iV)rNK8N8i z#Gk}^fC`N)b_kDK~|wMs_#>?dnY&pC;zEH%SnTD?El2Ns{%T5MQUgeX({Bi-zce0Sm! zlzjd1#Y|_=1ysyn)F(ofsHcc_w4!Z4V^bc+Do9S4v-fWHn`LQ08ZOM)0K7Huf06Zz zqpusRIJpVJClj6<#g=8!oyr+w-aoTo&5v#pZX8$)4J@1mcJg-CoA(l9Jgh-S4)RjQ zumDK-){xAM(7r=7ypALH+5urr#h;3ff>lr6thSZOVfS1#&DDJoYP ztd^2XPT^6uWjX7#nBpKU;e7l2ojlx(I}>0tE}FBE9{?s#Gq3cs%4;;uV?`DxU3BHb zg~|`@aP_fwN7q?iejhWm1Nfr6n0<$0)YjwQVruVT`0z!^FB5T49taG)0 z=rCggPhMMs`Jf64iB1ja)m-xk`EUF73)ZgJEjRXafF&3pgq>+LL=AH?}V2I z{hq;{x)1lsGiMd{yTk>4Rl&x+xGL{NWR^uy_N>0z3>-__w=;&?>XB{O^|diZoJ^SP zl;pc;2&SD(U|(P**Fk&nw)W0u{#G49AAu+Rk!W^3rqEsXJ%dhtti;+l}CskOro%)JMm+_w6CuYaPVbbzxlgYrsMbl#kE zpKra0utsek=U95kbRkCyWY14ILvH1;coh9z2>fsj%1(PJ2#OZf@+xqI?b#Z4ea;(9 zTG#|zx^DKv!m9wSFiNrIVy60pmf{O8C{LWOgwDET~= z53gNUu7#xqHXfnleRmXRA@renJFM^aRv*(P5i>%?U;l^Ei3kO6H!yB!oHl}QG%ZnF!9X+DUNhEDkJu0^FWFNhuJ;yPO)c~sSVqwAu`2v*$Rl9 zx+<>SwmbY?g^1yj{z1XRjAr#hCamOf91#>6#6nQ}xd@YkbgM^tpQ+6&cJF}Jgra3e zH;oKp`>fvvZ51A9WpPJCjn5iTdYX1YCgg$|ce#+YWz?P=eqB13QH(hyM!837&Q^RmUfN&;vU=}|(dg3DEt?E`AmHaBxiAeW7?~X&b`rlaq<`tY62Z<> z5DU+V9MfiN1n*+M#fFaN(Fd$;hh-+uCG{n`4okyUfZb1cE$BOm*57@iv?08T_Wazq zb6#&0D~>z+9?-bbFw^vm3h#Ceq#WHY{k77-nL>^GR3sksZMxdSvTi*GPwy1t3ZK+f z1v<6jK?&b1wRBce=3U&~EsOq@_^;U2J*B-sr-fbVHR8a=Q(M6pOmelU%?wvV^-kZP zdYOBr^TkLKI6|gBG3Kfn;&An=R-hF^darX8q%LbIe25@{zu9uE#Vc?FNh~WotUq-$ z_t5;TKSevP>Y5Y7%O6i$KlUCRLwzQQd2Y#VQ?fGfEF^eAX=cvJPoh)d0ccGSOd0u~ zS^3e8i@C<84}*cIisKyIEoX-g%MUvf%(*@HQ-v8P>RL`r?_ZKDbm9K%f~nKP%$y6tTEQUD~EYOmpoTUpk#uW0cZ-2&QZf@+CHq!?Pu{JPd|}ciN;1(?N3} z%**6-?+)ob41wzl*Ae7hCi>j-hpfggzc@~!M7j@(t`4RZgjl~p(;Gy_b#E+ zsa$&H=w#zx_x~k*3y=kL`R48^Cq-mVOop286Ktb%DYnLo|4s1XBOQTy<=+O#@i*XE zwz_rytzjqt8q#`j94@53w7NCJHW=Cu8|n1lLqp9c!}8cU$tP$X#e0&AxPh~YVBy-D zl4933RuG3uwtRL1(e}Q5f>n^yK!9#X_A}Yu4#!7dQ6p+m{Vyt3Ug4)|M&*VA1Xi@;`w_nj0nce>ji?#l5519qOtmv7?>RO_%MUdgub^m&(|pHYW% zRvhNRUE{y6bDE1HR+N?^&DUN}(*rEo8w@~}CH&8mC&04kpv-9@F_xW7!{qi{yZKgC zB+$+tmD zWoF}u`5r7RFoZIZQqMF+CxLqE%WY4QlUiH-S}E#B`k?7`2R&V0W#6xnK_ie-oh|(S zE!_dSkzVj|nR1J#rAV7b(5#z!;ck7IEZ_6u<3Bq>c5^1I0Lw9m$~R*qf~@qTux z&HYFYGNFhRyFIK8)?+C(YuB}o5Zx^&WVspI)J`wse^yJxe>LHpBV_B;vCm@h+V(l(y+ zG=VTBc1^tD`9k4CQ>gehs69X{f@qixcDXaK`d(!X)^AGq3wx{n_V;MtamHH$))XI_ zrBb9VA}$(xb9bEvVHs7c%%+udlspH2=3516jHa|+XRQPsfyGm$;R-)L{;ZK<{UEZrc#yv zhTFoMlDd!3Pp-w0avmP%5T*XLT?>TID`iU#9^{S2>nZu^@les#M;!J z{t_fv;9dOsA&6%d=q1)(uD%$mkWOHyIsp!_P9FdpA*PH^D(3^w+D*~(84=&*Et;a( zKGHRA(T4S%3L%A0O;y^kxga_n?7&gK1M&%sC0&=kyGB%Q_3PiTGPzZ*zALAuiV?M; z1oy{Pxq03l1Ao_a{-W7qExgN`Wr+Cg!ICw`E7&o9ag4(Vgb^F({BDmnA0X&(4VDaZ zTDc_>9v``HsydT074ca!kyeea3IG1Wf@OxRfWA2X2ml>0#!x@qVg)h|R~_Crc$Pv{ zjKPPi=IfpY*KhhG_i)D0pqoU%hSZ*l9b~RKej*4jooc9KOF1+$qw(Y(>Y@sDNrm{HU6g%N?G>+yzlsQseWW|SkS(0;yGX80HOpb2mhl3MrXLCsxRlir1r|M_o1oLT`PtyDJ4?>A z4LPp%fblbYs^sZ?$+}|^&8_PEKB2{5MJ^$;P(|Bb?~aLOyj$l}L4!bk-VSN1(yQGG zX6PO4(3`iGW;^ULPi$|W;NN8w)VrTleLmHG9i%xuT7O+IKlluvm~}T}bzvqUp&Xi_ zS^1>$Alz-#w{6S?;o~GA8|&?~nv4A}xhij~#|sa=*R7m#+OTVm@;{r~H2=Tr!<4LZ z+zBlwQlrlqTy7>AfxTb9W|EmB9IADjp)(scdujxZKq!^tLkG(vfJQ(;ry6f>8B>7# z0t|$uLqv^s9JJ2-f~vKc_5K%Zm^bwh`3r`q%KI^Uj|fZvzbo`tGtL7OQAy`P9Yhtm{NeVF5S5(ZAYu(rT7hR#OqAi#~80*Vq#fv zxhfD5@AQud4@NycymNTUxp4}ZcPGbx`k%j4!%Vz!wEWEtwIdia1-0q>J%X{X&&Xl` zz)?zamI2VIB7E&xtbaHj06@-Pe6W0;#NylXQ%o2638Fk-+CvLm`&g~&hjtuRLvjF{ z%?ExvXMnkjX1xW!w2Hh60Vms`6vbt2SZ(Om<8j8{PM+TX8SDw zi6mCE#P2mvXpMV4N$9M+RaBv#)P&+E38v+}?~>&{g`|icqn3Jz|fK(UBdu zomW$Mhz{*r0eR)TQ@D>IB`cU03zUV(F+Nu!R3I z8#yjEZ2pEEF4#9>IEaE*p?)fJK_Ti67G(Gj@`*b{4_A5)n8Ag?8R9RWoMA`Jo4HBel2B*)2Yl zkZX9G85jDSC76i{eI7ZKzuvH5= zx~fFLRNG{HN`bfp$ZAxZK3yzr`mbrlT$d4hyMVKlMl>rX+x%utRG`zY@}F(H41H~} zYlxe!P;_lQXvj;bV0AyA~M~1*w@K$|rk_l!@Ir(qEe%8h41l zRi?Ms(z2_T*>L??ncjcmbnZ#os3$+^r>^9h-V!FGXt7}pZxKgpTw1&;eXbBeK44}j zg)40W$ea-kkA?D=&ag&5l434{zp*~94xRrvhH+@8_B{Kmct%FLfmZp#a zX8L`ghQ2C^u(~qa*(g8U-x1fxKDh6UXF^hhjbBd*qSDVdNJ|CdVKVp;@FD-S2!fYN z$(qr-s=3mo7Z~fg_lKrr&Zet&uAo5ljZZ& zThw3RLeevG$@b;2yqp&*9JS#%2uzg9DEX?Oka)r)D%s*&a}Rf;_EldKkUpJrV##_~j0#aHD&71udyLP$#OiCb z*HiZ!v!>mBlxsVawrm=9WDS?tSn*PSh`fTk+zH0)(1_EHuu5zHt`Pi6x3Q81;IQAo zCAd^KwKX?kEzVqDfZJb_D4F_FMqd9F}4$#A>!QWe6r;#@ov6*F{AQ(YFb4~2IrRt6RuBQ(@UUynB) zgv6hi$ZHpM zx!o2|E?Gl5FM$jEJ-BQ=o>$cpUa;p((;M@hVPp&TChQ5IK!`cw#2Rxzi~TeQTRJgS zw4^_qztbp3%3;wOIqdqFx8k787dioD!_K=VIzQPe|G0QXi_QTunsj0UeAJtOH@8K9 z<6fSv*krkDaqy|)u@)bQKwMzx?S1AgsL7WGpn7`edv`)z-*B(~+?!xlFA{19&5~Hf zg$a_blWuV{Vx@ogBwBU{euDOgE^Xl}U77sienSMbMqqMCarL6P-tp=owmUJbpTtm4~tZgJI0! zbSq=3-HV)6XY|zj7kg8;V}McWeO5La_O%di>kL#3SL#F2-5X_UMo_B@nLXew#us1b zPfhK`DF-j1yj)#BG!5*RGc|W_$4vSd-C+M%@AS90>B#hcaOb32CPyNC{x0j$7;3b& z_3Xd?KK>mCZ7BsFgPl8wT{L?P15#t~qsm+Ro(9$7&LdOz&LvoCws1fm2(n==wXzxq zHX4nl@ck=R{O>Nc_@s6iuL0Gc`|GwuQaHH28c~2XL#OtS%A)opE)+ zg26TqRN!J$%Ci^MCfpaynw9N(BD@QdEq2diI0E5fLV|M^-6$TXRn>RVJT&O_pcpsY zxF4{ospk0K#!&BA$n`AR>D7FJSjk(j^NiXO_D)z|>@fzW0wB$Ep}&HZZ6vo2mwJ$K zY%&Mx z(24EACvQHoj!elZNSk}c8|YLB>+c_Qk9^E9kNdRAc6YDzYtR7b&R_N(`~tU{TcQd$ znuH@RaR0yT4_2*!qBPLHlxm^#TY<2iAGE5$$u&;*SwZX@Et%{;R^xm-(@c)zzA*Ly zVtZXqYgFYX;k^cKddI;Z{Z3DF5%N3CT@rHeR_^o(qs7OTECi%@u~f((wRvyLjOTvf z)+ehQ)R8!C_U%u}v*e-(b5qB|8a&7TC@WItI1c3t zGV^f1EoG|;v#VTNN~xb3J39oA*ZdRDJoG3S!_fiquAe_KV1}qz+ABy6$1=jPnvu%P zpU6Pa$ypw|@^^g8cY&&R9kt|Y9qvqlsyIPXSo!j+2JrEOX24_7%%yODZ?19jT7H5+ zm4&S`f?#Ys9VK9q>Et2WTT_>Z;$K1U)8#3k0vlPG5v}zI%FBgFan0Xzjckq`k0JgS zSM^n&7Q?yR?hN1`?B6Iq$Wfpbc3z!}qykBq3gHvi*E>H6{^Fv{IW%;95A4|uCn{$8 zW=bI<14<+`sn;$vvdG~%Pu&f1r#Bl#M=cM#Ih4xmafGLV$VPLHK>oIg>1wmvft@tM zCq>Z+A;I{qm;oQ&=X+=a&6x<54!^Z{QP771E!{nI0-sgCurlaj7i(Jj@4Ze3(8JRW zv^7&Zi#sTRXkC0#ZYe!VrU1&g%b#ytd^48v{!08=kR$6vn1$zq<6zxI>1&g>P6Qp4 z;ZoLsoT7nn`^&P&RnOfu)wjF#w+*{KAsU4PGK@z@jzlE*)`{Xc?9aD+d zID3!lYMpZeI=Tjy@iXxduFQH8hIP9nO$I=X@tQt=2~mdj?2h~>_$_U8y!yht-C*mx zwi^i$&x{ElqJfwFNPi2CsOL|=Y!IdfJkuX3ADN8N;^eh zFC{cUpp*Ch3ivCg^6iK*3DRXd;F;f%%Mnn|Q@eCj!+f=Hy?Ta4 zFf(v-@wa>U_22T_Zdfx+$Ao9UyWv2sK_C5~M+)H2ArO(6cyY*bwx5supH9LAHV zEj|5X!eXnO2STEo1M&x*F?DrG6AF8Fcvi%-BS9Vb)+Ojoh;GXmO~+%*l#phmV3F30 z@X@)hBVfhhi(I0q=HC&36%uHqYoE;Ik+vA&PPEmQ{Ys*F4sV`sht*AxmJElP+hLp19#={I-1=H%Wfs* zqsLt3VSYyrnVAUsqfcM^bibmem*hPVewMzy(WYIC^<6&;W<#dqfrFG^nOq zMm^YJ^>c{n%aJp)0F#y{XZj}yKCcZ4R|`O)l8h(rCx zF^F)p9 za~kyor}gK1E<oZ~L}vVC<&|K(nzu1O7wR-UBxgOY|EWL$v|T%V$va z_U@sNg6{3J3T~yM;tv2_Pvb$dBA)#^FI>MBDOI}y6A^zq&#&l&6`E98kho9!4#c-!DYp95T)%lCxhU&CgUt@M% zFTk2by=O26-pl*R+SEH)q)Y|HU<)!@I}kQlVU1be)b)VyrW0i#P9#qlCT|ARWBesx zI^Xu)Fay;gfwzynL)uwInT!@i3`?;uPDsCM+_naeB8XyA z;80ah2&3lVKsNn@jwKAx94t9yvuKz07)pR|8J~URbnc{?_|DGFE43B1(-`DI;^FOR zH`|uf{M&*NrUHxcr$Cz873x)ursFdt+TdN^y%JmXxU?t1x0XJ;AbNL}Z}zHlnLV%K z8o=i=nhdk1jawHeo~5k#j6$i^reoWtq53CrbwQ1%)+1G{>Qm_G0a3Gar3vV`C|Qty5dTw(TZ#W@pdua;^Mn6n#7c9@zWKm7G_X_0 z|9z85hH5@};yiRf;1^d4JM`IK^^Ol}g)Ijr_~ zdyt+>8UsAi=88>T)rH%xfXQrbUaDhGI@_m8dQ4z3W; z#dtbsLxtsDBmxni8Fw$wgy+LqM6THMhNqJ!(cP>X&q zzy#L?F7U-l$ROl!`qh)ied*1{;>RCfIy~QF=QoTDez(bQpuXgqzf z6b~xTI@o~W?2aIIt%F~ri!OFx_o~*6*>pn)%z;|*lTbx z5kYpxWVEXNR(5kkP0w-d|0(CgWob4f6R%=}%cL!_35(%7YL?fr_xMS@GWmT!e0mk# z^ij-zVfQR$+tBb&wk^C(l_8osCSAI9pcg zw-sF>+vUUs@Ng{rLNt>l0K(Dahf(CC&&-Zzq}!>QR=n4q2pnvDAQs#x|2M0#a?D_# z0KgJ~o%{cZ)OjGgpz@~-y?C#`0!i4Y?Ew&BInulf`h@&_>fx${!f{X<{f@h?h=x7J z=wFrn?k3R6m|u35W#hAS1_nHVjSJccW%PmzqJ%pw<_C2`tizaAaB&^)tX#`t=Mfq( zkfkdzLtcRGC=otI49>%zD=meWC+sV*V4`rfqrQ-sDPNL@T*Vj@++z@xx%BtFO?eJd zH%~N^1fKanB%OOalkfk>D@h_MVa`eN$@!3&W2LBsB$nfx#d1Egku#Z7avqYTa#(22 zoAV)uIh*sDId6``9DaA--(S17Js#VAKOXmeU)S}1zh2MR?D^ir{B4iIz~CL;tYaoC z1tsvwm?Cm?UI0m@wc0;mn$Ll9**S-^Z5udg7j3L}lZ&qv1aEZ5Z>z=1vP*9DXK$zJ z%op3>yo>|J6Sn*L-ql~N+d$1pRVk9=#E;9f+0>`N2Rd*1IxkvrOfiDnd`%M$h#&e) zAj$#qiXq$p+5A$#&xaQl0b*}b^@wg$!+KHvf3Ytv=5e6ko(_Yyt1k|JNQkJt&#Ck? z>oOf@qO-drt$QJsM{*?Q6q6^Er3hM|7P3&4(wwUbX*hin@4FdJHR_silogioQ9m1t zQTK_C;uN#zo;n?jJTxk7fgu9 zf5DAyR z;>Owz!-sp+ zxdrv}W+r$+3FQ8L0pWO0!M)wr96uP7dHLrFCIkqO^QPVK29@Oi-CDswPt=mz!g9DC zwe5|Bywl|Xti$0_r2u@mbM9@P@x7*0FgUA-qL^zex;QNYNx&K}tHnl07i@x)4C&5z z{N&`gMe)=Q(nv?MRC-9#^qzt%P@*)$9yLpmslUv4HTG358i5tM`uq5?e0d??r~lxbf~%PmIZd+e9BDA0A4a~Y6L z;T^U}mv8DV4PNM{(?4KM?e6-Efx&=6;jM(_t^l$(^W~X8$@kSHfzz4y;u-Y|pW9q4 zqp6;nnQeN%#F5opH_dU{4a3Th#rK2{xfg8wMvoyy!r1)HZ|_eFE@Azzke&duj!(7~ znZD~29XC|;5OW%=JIgDuPCMVBdkTdGAjN19eilh_erQkD?BFW(EX z1LDkP0GIOf54u$~YEa{V^{ct@rtHzUeP$%D1_;fQ+XjH*NmUt|4hdvO5em~XOpKHt z=z*4$ei0g2C0OSLfPY?k70{jbJyKm*c_iDbfFHvKhXsCLI-?XodZ{f4$A0E2_^1Rq zb!2C>8zqg>9NBqll{I^Uf?^wI6h6CSh{v3)aD!eVBxK6L!IExF2f6<>>LhR7#Q7Gm zAF6%5!$g(vQr$cP-%$Q*dTz++>9h03C0=uypgwoG!;gTDff52dEU6esUYn7A;sCoR zJ~j^_GPJP!G{X|ylczxEnD+f`zk(dzaUVv-a=i_y8EQFee2sbwr&LF8*Zuy@C6B6M z^=oIZ&OC4q6gXZILXym=nDuT?kNL*VD1Zm24{adpw44-6jb4rA+it4+>Pwr$^ z`_5D$z5_yee8h?E_wef8zhL82gA9&4tBq=MlkF@SST~QQ&JGZd#6(WOMh9rCQTA|^ ze*U56`xZsywulCCc3A8OzmBriC3t(C0oW+Zuj>P|kj4P|s_$wJjY@l8nS9BDU8M6Z znH?eZ2x>c=2SnwX>0{igW&-nBkZMfkv zC`gf#+XiB8#h+Amv`<`dv`bMvj4xP|bTG>hs;XWfaMn200Bjl)({0$Ij#KSq$jKPL zqE81%z38|D#DGlbF!mzf7VsDHS@AwJn*Uqlna_rZg%|0CC8*>pU{VQLqZt}uZU*v4 z)Hq#{O{CT7{B0}$B~@)u=5ZTn38T}>f7WMdJ^dp6;XXNWdx=rY{2f3gGBB7z-4AMY z(wd1teU=l_x<$%KMj0(Oj8tq39L_$u~! zJ2S_m*IkB+uX6USrd)<9LA&Q-&cMs%#y}U)I5X=G-9}i6Q@GG`Ni+|hLABtj&W*L& z7u7PntWLy5Nj8u6{P1n>wN>MmHT$nQ|5QP8j3JWOOzAI3{XLD|%UxBzIk5cpoNGJ1 z`MS5S=%LER5@8_fSvj#!lY{P%yCkc6HSJP~Lvu3;TYkwzdMmuw=f2%W57AGHleyA* z*zak-Prcv(&=+T=3>r3+^<%w2zFnzDfD(QZ*7nA3v5O(F;1}ne)xzd7X}7q(7x;!h z?g>3o`#A9q}R@ZSh-5RX}^^|Sn~Ie#}qd4|8u$Ktm?=i+>n zME_H0)yPvknC@&W8s}CLeHVI1L%8*z$U4H|MzICZ=yK zFlPEXJZ6{haoksHTAQ8D!uplv4nl9mX%m+t54tC z&aBpi`>V&8BHd$uB|DAhm|-1KH?tiiLk)=FF1~YthoU-4zQMg%L`A zWV5t2+b2_OWtYJ5KqAfec;fp4E|l#vW<&Tkt$KtG(bhbK337b($WQ&LVxCzfOYx6Y(J zExC;=|K+XoYjHVub9b{Et@UqIJT+NK`mh^Ms(K#hGIjmP3GV~FrD~TGsDtDP_qzUS zO3Li|1Ib~bR^C|#bsV+Oa11=z9kvtrMAS!eVVnIu+5DEW^;9?QSsV>>>xxAsS}Px} zB=q@z8rwNt-LcN0B>jCiy!|Y)PZH)i;vE+3A&~larl+jjbk?r1^Bpw=yez>9T z7dwz(@Ufuwy5ek*ef@`ar64BMOK?B^pdK8Qc50{Cf$WHfh9@S_S5pu@q!ZYxb zvdkainz$*s^DE-IvbF8BCN8uu9g!C?K?2EA{SL?aeC3s2kl&682mbxF)q~YJ*1j@D zb1YbJFf6YUor!P^3;8*5ZNBX7z^pkQQ6#x)YMiU;2O=I73pC29lS~1Um4?O3%AC2~ zw$HJbWi^x@zR+m?0se~;;JuY6@VML6=R;`EBN~r(xof=UoSa`W0oL~(v$_nFD$}YH z$_^U;xD`oeXvJ%V@5f~-@+iIG$wDC<8d+I2ru&k=%J&H3DP1av!l zKw>i_h?LvrED0@Held`59fp>C;Bg*|JV9BR>-b(wh>HI!b@`CLQy}u?#YK?MTwUxB zn~oB`#^&ip&$c0rcvLxOk_Q+h~fK|+GJFzcNo#|y`ZY~{$J=jRjH*} z6s%_3voUpD!yi5rDm5y^4&_zfcmEux91yB7o$LW6T4sR zAEQ!JHI7j2?7IN@KkC(`oIgft**^-`s{9;I|3eN}c`5m(aOAp4qbLA4I7}DJk*=x$ z+EOc?RU54c53l`_$D#7MrPd3!&GlF_cY0GBDxzwAEEN(!t!VTQ90Eg3q*jZ)j-|Aa z;7R%|)?bSg^rwW6=vQLC*2eG{?jFZlgg=r3nFgT7Kn1;zDOB<@Rj`e_9Y7?d`TSug zrmbe^d=reedf4!JB!vq5$?n+|%iRn5Z;O2o6FZtPvX{~uU7R!1!C-=z`)~F!)=SO# zJot3(#wnn)`6S?lcfPTzt&8}+E3paM*hTz+8y+Fd?%=j>9w}Vd8*8!S2`ELY zMUkwgAX)2ckwOZ`fRtwImrd>1UtWvEx?--m{qnnX3HSzuKq=U8sZ#uYRhsMIyR+l3d9V(qwyGC1Ea7 z?8bAU2EK-Kcg>O}4cU(x<-NV=@cysfTHJ~L5du~x$#u&sD{=1$V! zVt7Kd!85rlf!3>Txy>w|cy^`#AGPp-QCL+2q%mwG5R`^KIcx-EGBUknS^b1^l}v$6w@UKMpa`sc^_*4DNrs|Oo1>|qS%jp~n&s4sS|$r? z)5#gno2M9dln` z1(}p>*MC?3ep+YXx*QZ2RQcP08&HY_Z|#zNUVDjy|1Bo5nmYAuUMRr3q@UOIM9Lw; z6cVZNtNo%3DZKz6=^tKJNXYE_T!Qacgj@Y7+6%5Lm(oOzN{>VfPxB^HV51}k2^&ex zm&+8bCH`yzFL-%dy^d6&eyTVe8hzESuFH&O-XpAU)i21kQ6r})g}s$NkdB~fg?z0+ zcf#XOWjcU`oW{1`te&kUsqXWHoHE%=2LbX|Lc7;Zb$c`XF)CNm&Ft=hMZdoVw@+-V zzxkD18C5z@CI_&>UiCez9Q-3O4PYAXNxp~S-i}`xTw5NM9(Dur;atr$TSJtCGLT!l zqT(E^J(fUTUCXncudVGWVQY1qF-}hwUI~-vQ3Ul|uIu2>AlPL?oquGt!v#?EXvMvQ zNf|$jZv@B0>qHFky(-A`AU3TXFltpFvgInfLsaV4_r3$$L;;|XQTuv9$oZ`0%Adb& zYR3_#_19?I@)Mt}7N7qCVVP!?LSs#IUZLk|`XR4%B++84`f$jpb|oxvW=aMvt3Kzj zx1MlCYLy34Rz3vFYwZQEMl(@xup4I4zg{5 z8LC^Bq|qwmLPuS)R$b7(N?z1#rO2}&=i5`HPP52y@NSxU*|l~^cmjntt1+Cw@7Jz8 zbMLb1!qvdXyYbWyH8;pY3n!TW4PQ@*e43!&e=u)fl`#eKXZYjP$UJ)ZiL#U98NHq7 zXH~1?vnbLK$yYj&;(w5;l}$Y1eBSfXcjN84N05-hL<++}s->BT&(|gd7%pY&Ce%yd z%$@(GA;D>BqG1x&S`VC+QbjcrasW3R)cSB4)>hh9h+(b;2YG3B!BmH5^)zI>`DA)$ zJ9ozZW|VD6!FU45OEVGgk*c3f8Lj{&jhfddZ&Ikx^@fqxX)00d*Yv*e*na|JydywW zXwSAwRvjphdvr``Ww{S%tunyY_}CZOInDgJ zI-r!AbM*6=aatdRQQ9ZG+ZX0X#m})Fal>VwRq48~KHjicDR|_k-A zO~F3i4YH|k8?c8c=rPp~U^O@+z-AyAzr$~%R|59_m>uISdRB6H9vpRqWzlTH{NF{y z;N136{Yey7f03h(QTI)jte2X3W(Ss{gE}Zn#z4pNtF7W)OyB-Aj6`Rff2&L8Xyq8R zQs*uGWP#)dqC9-t6D-z)d0C>BtiACXer!of*1b^Uztd<*&d*~NSJedq(H840>Q=VR z_tcLVN%*te^$9nTOF^LOy!wl;Nr6^Lobv9@!NO(d83ONcf>d$t|7lt?Rfgn2m~5if zrN{o}yjkL>8~vuI6Ci*zEarSW0n_8c%#2)h{M-+%nHkaJvT;SSw`t4GiEAwR+n#f+ z=uhIci~yj5>B_HH_?L>!CyJVJ2JDIkwjWw2e{mc=9$M?ZJ~^LYc*NG0O{}`q7?SHL z?$Mr>m(A@?uwEy#9u(mxqP3Ydo6bO!^6V!VA>S)k&#XND{C2}9?VKD3KGk5*RDHR^ zWKb)ADLuk8_CULrO;kRd(J^R*ATB?3nTvZXvvsF9qaz3Ihx#XA%NO2Rqv->SmQgJ`dM#ap zqM}QvLo@knt4~1bzE);=bq4OL9-q!U1(3dt2jQi4`v-Xd1Ol*kf~s$%rT{&&fIB8E z{meG!nO@V=-sub~nd$kNEvatm3kIkip|@vw}j2eSZhO z?d|VSfeGc&uoB=I>7IS$27I1j#wAM_{2kAbLF?$G&MVD(N8+Gd&QV*w6A%m6uK)55 zFuzG`37B4QuIw)Gm>rK*vKA6a9gBF(M?-H#M9B=Bz3a<=zsLJuOPDhkcKE9fhv&_f zrUB7o<}kBP(;Oe4bTC@jI}8uDiw}}qCJb)*FaH zHHLQ`TrZa~ySmI`U#=eQXxWGc+MmDb{3d%RgiVsFB()T+W>qZR+Msy1>bL=7{{FG} z8S=>J;0p38Uv@L0h;S;e$if}|_*$gd&z2KF&;M2F<;nAW>^Y0OmmazJEaGzP7Iz9l zs9RXAnS!F;7)vx4Wqv|Ka_v69cJryxW}APE(Pykv$H|CxX8mg?c2F1vZNQB4LLLg? z#%NpN@JqgSXuYTx=V7l1{`<_NK8lx2P8}in>bEnj&;lgEC?zKLa{Lu!VRwGf167Zj2&IM-`4in z@ABnlsfl_Q?&O&DqA@>+*E)F?)I3eIL2sME&2DtnPO__D<&dGfv2(<1Zr`{SqIc|& zW~{)<$&f0L)qA>Sgi}%Xt-ssTjrUdTRNU8CJ86Y1o z(X??gp-fY#CbY(iAbw;p!LzPeb8X7~Jbm`HZ6jO0-FDDG>fWhQ&fb^+x@0u`8JfP$|x(b5(de}_hoX>5Hj80%yGw1`UV&8-+#k0 zEkKPAoBZ}QC#Qq*gTC%;nIL@znii;eE@ngEAxgFhi}z*7+z+`yxpsv4|Ka1nc9yq& z71H-Z9tTEFp^6Z5Eu&S7|5SqH7Y*8yKw#j821o9PF-P$aN-w%#8;c;n4RLV>w`b8J zo303TpBs=VD`_-m0FT9l)s>wT-3X;sgyziNO(2a%ER>Y$=h&TY>wsu?Olf^w(P6~r zHoo=7js4XB2xb9C-`UF zSzU6)+F0XqqjBfSLjYl9gC8F>GCAQT*oD%$=J83N*y}Dks%*Wh4fSPJUEoCVjndr7 zm9@Y>LMy+8CH7Scp*xNu%`%X!%D#E*CRR%9>T~Hkx|X$@uHA>1bJ-xKJJ(yaoxgmJ zTgD_*|2IVrb1xEEv)U)jU4_aM{8qn;qb&NFM>Vjh`JHQq^InIfl3p0muPRCRN6MN8 zAbkT7{lGy|C-D}jwZ%8B|G1?z{FiC^M1Fn<11?E9L!TyLsd-w?h#wCXv!P->SNfl8 zQtQ_%X%g2%pWO96z!dOlWq!RFJtSGIqf;|N^$Um&p&k(ew z*(6eVXVLo$gM6mZuKU95(&3IqZX+PF6fiQEx`^G88u@ z^F7Sd9=Xy{seceA1DOfs=DxvoOFgFPYsMkO|7}p|tvoQ9Uh1S*SJ#{Q2!vF`tWJD*VeY z%gJ>T6BTONk+lHMEv3$=*4PtB_*?%arWE|y2#5xdF0^C#V4uUpj=nG-roKJd*`r1n0GRbdaH_6VA@oOnFnBnb; zTw9A=zH66vY_#*{y|xj!yHISfb8&`l#jhPPIqLbst&_aw)j=3t@c9Oz#*v6W%`?67I z?m}>)#X9Tl;MqpTH*hL9auvpswZ2~A?93XYn2vA^R-7hhX5)wS z)>c^N0aZu61z?z(Nx5+GAMWirjrh=*lLg;z%O|>=A&9uefOZwNWCjiTu6Vu9ls> zw{(8GVFv6lxWhi&q(Xi!CEPCMvVwF~_0Vk?=?oLV{9Ok6R401Zt(fqsz<6ujVb|?@ zko(uFz*rUcH$&}ydv>uj79sOne_d}MH}p+tG%G((jw{~sDpnDc#2!iIT5HyiAm8DXvSg_h`Ih1iVoOmBMXl zpGLY)`3mWPc&46bA2PItz)2Q&rkN*`A34YR0uLmZV=%lpEpsiE&z!bilCcgz&W zgxX!erMCQ89i1QqNO9dfUgSckchzHKlbJyfpx`D#k#vI8X)~}RlcD{NPTt6Vz(t8W zU-zIg=v4vXy6o((@$|(#Wo*vlh{_Rv?(T-jO&b5rmMMXf>F^TbKW2{9FxTPkQ0spu zV|(fbwV_g-J_2+*MstEl35I}Lg=u9a9)}M<@K{GHh*T=!HO)n(ChlK|7|vU%ghpa# z&KM>B?sDfavmG%RnE%!K#Gc=K1B69M383zN{C*$@l|%gs%Rze=xmn$J@Brx)w2jn@DZa5xKGBOTs&hP;SM73q%@Js+z`Y(q0*lE(TZBPto9AO{E| z_l2idf2rf#mlNA&Lwx5ullp{omN4h#UT{~uD6PHf^hO%Z+NQ-g?|SU*E$q?|MDUg|JhyD%3bzQp%=c@!r}Ik7R-C*c?4O7^VYM?Lr&O4$P}(-F1B0 z&xc^i4IZU>>M{Y4S$_2D6?tPbQ|eFgw=^kh{Ww;Cck61#{X_2IhfIezKaWN-bDTW^ zDMo`o+eI>im!nF{-nQcOKSpr>t_caaPc@iK-C2}Eci*8{ z4ZwDxrM&*}mL&CqzVZ9eR_zzB|FoSbBMf4}&nEWr2cgS^tmUEW9@t)Vm>JD1Gq$pB z|4v-3Retm*DM=mvxLO_Oqb8+NFeS+u;%nWI;naC*q-rZ|5c|Aujc4z6o8WZL@?ygL zCz6lqTqMU7&5zWL*Hp?JmzwZD072xyE|bzA$o41^Pd~ zGbj{$^OouIS)AkR5HZJ2>uATpPeF>a>nm!#pTIQ(tv%Fur$MqX`k~Dt=D++!2*=(WFhWl^`MS{h8Ys)Hgk#!G3sK zJuz$kpq*Wc6XB5u-{MV7=X~dpsZ{DFzV7&4o$yycPj82M!m578z1^-K_dKTf%LZc^ zZR?IIvW0-ZTmcGGO#OWjE_KA#iX-=Vl6k6T0VccJgAnG*#YPS9%Ox{3PF3VSo*BiP z$oVM|pDg{hRFYXk7vVd^B_17C?mo*}xY+sESkOy#$Q_v&5ce2YPcXaAc)j*^SHNR1 z1WTI#HZ8Dkvy@mS^84R}F5xLfdvs=%@n=|FFtdv{(&g9V&m*z-U#sITcq4P=R&KXS z`zPK7@i@N*q$%d_=h%%vYh`RJdft|gqC?*$dKHvGYQ8_cK*VG!_q~jMgT&FxqiL%^ zGiKke=en}Lh8DnMK%FmeU*Pa0iwB@Cl!W4Ywf8@uMyMt8X7aM&bn;xW4OU~+tsyFJvm#_CvIe$PM~S2_Jli}K_RF0OSd zU8it9KnHbw?&Hif3yNTXi*x-!)IQ@TBDjy^SN1%HQVT#o(Kaz@7NPo9ub~;{p$=}$ z0-lTdsE3;t{N8z-+}B;qI;+XZYmkd|;)AC~Zje7#&pl_IG7Gvv6(>4KAYwhxf|01m z8wZ;HZ2Bm<<<{kzPhxk6fL-M=G*R4^EzK07GRuGS!YnGj^IdIuObTHZfRJ4xx^%(qD)DsLMwFS@BkZQ4-C zUAMc>ub#ve-cj+xCAU`8fNR319t5AXmjVB#+wFiDz56F0nKXhW8&%SA4~hy(j6(#g zg2`hl&2oeJ{_$O|<*z3nQW{}3-qjvdeIE^a<4*z%=ncIyuyK|nbd~O{^Zniw@>nm-=&5BUM*M@z}?L}rAyZDK7mx1t|^W{$u&e}TulzpwJu0W+ev>ts_eqgA%TlsTu zng?6XR(4wuUcWYzhbD28iAH2Zt%{1W_)U|MS?Y;P&&xDV-K$eiUU>{ZMh`VgXwjKX z(p-HXhgW9tD_WA62tli5`%5tA5SHjval)(qRm4YNMVM<`+P>xv^-9WY z1^%IT3$Z(^+;wV7$E~lA))fyPqp|)Mp`Ck>zD{U9M#F_KR-?zpp%Sl4$Fhu(D>qFX zP%~UX?c3Mt-dM&M9%L-g@f@n(H>u1GiE@N%&7aOIE0lAU$y#6^)DC~6Y#L-7$Mz}s zyO89rcbG*A?l{~(=4HX|^RkyX23BPtOgd$2Mf?3WW&>nXfK05>BBQJL=euK9YE|zn z4QvYGVRE+L`u&O!tn<;OFikh$83ef?pa^)2#S)*)-WNjcuSNFnAoQ z^2)1^bBcRKe|wtGKp&%0!KBHB>3p?yqC zAK+r2I4|Erd>?$@zG`s`R~`wzykP|W#gNhG{Sdw}bGGEA`PUs?MQXh-AifO%w2oN1 z;$ln=@lLI2x1iDLG3vW-c)Cv>i{uBv#Vp@RZ20V;c&mUz0iRoY9N#Hw-?{z^U(dab ziLY2Y-5Y88yo!?iBk&04b%!+1H5=2n@HG4F8Del*U$9-i(DP24R%L$KgY;iQJrdGV@{+rXY=6{Z1 zA!bvGNr7bhu%%i7>R4C>QDnn#=#}H#LG>fQ_HEXNTzj8s{>cqnA76nt(|S#n3ho+D ze>`|j9^TV+WdE zX?V9enDZZwZCQ7ycHsZhumpwXKwi97O9!5Kx#c}P_7EcgoBr;89)0+OU}{V_YTuIT=o*uqmPut(d___d81=#f!+)Idi+AYFwgWl=cUDBAQ)G)i*N;NAO!dDP%{16 zE>Nw|yL=7QGF8YP&Dk@yU=B}UP7}3ta%Znbn z|MPZrL8Kz2?icX8L*y;wBWJ%6%6#yq7wiQ`!zd``-Mjjh#^fYF18lthv6Pr9= zBETSg)D3l}9m?Q>g~Y^(HDbB&7>c6Mh;mNl$Dg#=hvDvr9dgU3?wYlDFfRr$B)vV1 zo~O3c+mfB$965`wQor+c;02#s0-+X=U~>*Yl5|(rUip_F+x)uU(??%U65dCHs|Ua9 z?C@~XI*HG~Jf)^DBCI*+DiOAeyixAQ1{hPFVn^lS!Y(twjkuOREwkJD&8fz^uJmki zAXEo-@aF}R9;%7YZ!lU8TKv(x(51%v?!oJ}d`iXReF{4qi^CaebZ=02!B(H~%LgjtxR{Am^Ej}` z^b{$}?1iqtZ2*pYb4vIK^RAQ*1L9vBwthMwfA`=dEK^TGY?b0W-f3Vc zYWn18u-{UXuWp@_%ZrC)i=Iwn-jkS}r0Wa4vYp@Ko2P2npKH0KWt#k%t5`u#(v`Vs zmG!dfZt(tvHT>O~0k1YgX{k222lxz7*P>1v3ujTO#DS3yZb{{%;%KCtPwb(QEM?V} z6WYCa+BQL3tkgva5dNwVSx+7N@m2_pG3BA7@VID|xv3v%*E_HuK+44P{DQpWn4#2v zMt^l6kjx`RdnWEj84wt+PTDp3qx`}2)-&$F|2})ClLLQTU6t@xO6fo~rFjB()8@~B-1pyZ`Kq{1n z=$Ky?mL=$7bH~mftnF%3Vea>j5NPWjso@8HMHf`k%dD=FLuU(Ot_DICrqgim3dyNW z4Fz({hv)aj0`zsKSiy$H07lE;f!alRjiI)5grb#>Y0YeS?}hfqU5jL(>6WORuK1>B zw~?~EUa*XDH^I&aseE4VYvmNiK5)y8Hp?<8)F5&{Mqge1V_N;LG2R)9^i~^zBr0duR(R%W6CPMqHqx zuK`en?Zgu3)|0Q%3e&wMYhXX3Lr=&{xbq=ylRCQ1U?&JZy^V8rk!;zrw-oul!^eJ> zzn-_!wZ5aMQt$N~Kp!MHq?Rrc^ z8_{{bv~rG7*ix1{=MVdoRqC5QRLJNO&Pz0Q;=fr0uXf&Zbl!ucn7H3rj-VKS2Z>LkT!X~Z7b256@ArKjqd_^ zmu1kO$R%v%FIT+BCE+pt4&lbhZP)@MmC@L~Exd>68&ar~sw8|`6M%;cC*Kn)Gi!nA zd8&NxrIyxNDO6<&n~6xd+j&pI#O1D%l0On!AJu(iS8CtH5117o96k#PwA&kq6AhQ+?RpBuj}4X!Q3|@X`z;A}yRn*^ zaoS=xcc|U#3BJ1~?;IGD?;T@mKu>GEo(~_s>xSspKDgxjHHs3H_M_4K=Ib?5nqiLr z!b|_}4A5+S(n*yf9Xwtw?chJ8^X0&e&6Dv_8Sg0xFwk@2RwC5gH;%J9U4bwY4P6Rs z71q7Fo6D95xjnN(v~OlMVvLQ=2kE!tNBO1Hv&VmbSlM-Jfz2zCk3~l&984p0bIaCF z8kmMw(<%wy%ZM5+Fx5kR9Z9+H-p?>?+fXur=?I1G%gX^zs+VVfQi-T}Oxn65Kot)= zBQyf@2(7Fo=+ak+n`O*xpekv4+0W>|&nvW#ftGVt_LQCHB%NV#$zLI7ZoLweouCol z=JbwY;3Y5j`Vf63@&jkl zSp31aE$de-oxMzJX#vo6%)9?06s5M!cah>TXc` zWDG5DH;OT-{(vz%b_TZ6XOw9tD2q$42-#{NY~oGnYj>)9*%ikAONe-x_0A+Cpogb5 z&0h2v!@Tn!(^R_5$*KI>v&me&S45rVUUzGkG)^4brd-I;6^EhT$jC#?bEX4jAMMjM zmC(BV-BCyw8s+QGaS5Q7j+NP&JyeZ8Y_DQe(ds7H2IXZ2pd+f7r?9z)Mh!bZjq1`l zGn4e72QazAyBQ{o+YEd1R4-R_3rmJ_kE9(>Q}2C-K*w3udw#p&Fe5xTztt}C!75UM z#qo0pJN|e~;{A^vXtYe?P+dBDh=?TqH7=0qZ_rC=fRL|o9LhSZ54qo1^ z(Z{m?7G}D>Oou9q^xq74m4OOqAKgi8A=oNzg`M*9lv?{t-U!@~rKV6G(NVCOR7>9N zGzdehTsx23_O+dO#c9`|jF)~OJ3B8nXbp|y&F|+7GTto>kgXSHVWWz5SD@W@{d9@l zhJ%!M|BaqiMqgfioQq>W9jjN&*4Kc&3HTf`y++0?>TvbVM3A$>XCrib3EI0a6FEkA z?FW89!s?Qz5U(`IcR#Yx}$C$^8+_FtJcd{7i z6GRUS4HZ2gbKHYxMrOy`AWV8+gFF5cu=;(+g-YtgMlYsmt^j9nCTkP=mwj2mV# ziP>bm*|l{>4*1Fwa2aJ$URMq;w10H+G+dL(rf5G&r?mN3Ebqkl$9&aU*wtxLvv;HM z)s+i9DM8Z?IdtaYDdw{`cT?%1ohQpaY!a0DpEC$5EN;nTnUCF5TX=fW``9lhnbkpg z%Pcid5WX>|bg8WEVa@G5gFe5PO>!DeLIISmwz{(%U=9}m*!Kr{=I`lF&q@-<{7`qX zUeq9#h}-p3lUq9#+w47Rg|;%6r`i1+yY@9wQl>Lv1P{#nw}2pPukA};3|_ev8v1QO zUhK}-L?lVGkD=YPzW{nx_q#He|6a@gGHch{V}F=Q@l!^#Z~p_YM;+lYYzyxXSnidH>L!{OWG2@Fb0lt0i<@3K`D%_cdcwbbC>)jRro zer?w*lh{ue=*o=X10rL3Iq1xveAT|Uz6|^v)F2zxK0u3|&rILjw**=Yjs zN_xh6QM3|QB~F42D8rrlrvg5X+ja6RULUDA>FkG4SeF)~S=;-Q^AO!=EVGN$`+7Tv z(|VdWGZ?&6G^=-xVQmGm5Jhc3KC`rcfGE(PgQd8|FO&MFCDa67 zXP~dzYloPujTo{q-`KYkBU8Un92Yd)#Upe?4q=qq%nopo+Rim~v0ci$B8ggK2tA8f zZt~Jt)OU47t{pxTJs!ANy4dE%4AyxC#W3};M(r>)k>k55zAV3opHHTbx;n)hF7agn zEw&dnfr;qp^)cHx`XWSfK9bPT`InOQvN9_9y$8S!GUDk%?6f;3Ncra$U>q8ZbF$xt zm>_@pw)>D~VM%%dI_mL)UPXj2S0Up~5FW?)k4s9bR1d>hy<3%fjA55|I;S*cN&q-XvRqgcOdN|I0W6KLk7faIv;JkaAzA_iyyjlh)DL%3c9beJ!bdtfyn89+cjo zw2$HryWxYM7-~)n#y5nsu!N-bh_Y20&Yajx!7X*pE&HEemW#2pz39 zW?16GU<-T@}Sd6n=gbn{OCc^(^xin#sT%L4lWD8LTsMV4TFv)A7 zW|~*8iBZp`_!t=ZIewdx@*&ZQ^6J|a$t!EzqvW_Qg4NITXANCH`E)GBeZ`c z;x01y11yFvXvyB6iIc=W{7`G{@RuhbKx~P!c;>Y=y=0c5RIvps;H~*=S}|2W zp}ljHo7`fT?UFvUdn`FGA|KR+AYO6fDTQhdNBEBgOVt$LiV*c_mlGpQJyoddbK68u zc0~qyI{`eKQjjca;|ZGg5#Ds2VD_%+JhSiradaMzRQ>-SuM}lg${wlkDP)gpR+7p} z%62ai=_cbE*SsMlLS(OyQN|5j^Sal_=GrdTxb`)#Yu;;Jzw`b51Gwip=e*v}*Yo*! zQc4VX{49H5ly6hT5^Ku~F+D*p94T&U**m0jr>l{?8JrWy%=S)wPx;xy>G2e_?sm$X zB{r~_e$A(GQNVLYyywFx<;{Avpk@-HC)B8}ndn4r0+shuX}LIrO;)YAs-@ebWg~t! zGqLwCM4c3ZN|U@4rY})9mdk9hN#HIsP+_BnRH|1$o zh=TYl`ABSYk~^1eos4Oy5gb>F7iRAt@Q?4oFU!g>kmT@G;TN61`)0jgrCYS^@Q^C?hmO8L~~%2I`v0- zK&rfz>^?7Ms7F~m4w=~Sq`GIBR8@`Bs!#yi#d;7iz7y1}Xdo_sv-pDykH@(!E0AWU zOt{XTv|zH!BhF=qZ?*vQO@#pMS{ z)Qv4azfP|2@;y42&GUA1nUuiT+5f!Y7&Somy!qqRU)3vL)E6|H-mNSd$NDKR1l_}F?{-kx|Hus7+el46rxhpp54G>M zt?u;wo?2$>~vW#{xOO1B4wGnxc$FL6Nqa9?^qU|6u|gdS~q9#`{nBT zg_|J)ujR4Xo8_YZh{FsQS2%A=dtXERNd<=r%(BJjLhox2yvQ1~4{bAJ8W!83=DSXG z8X(1CzcRY2YUf^XiYY;AR5qIfvZB_&b%*TYroLe5>J?e;jI`@Lrst40aQmk0qL93L zVRcGG_K|@;p1X_^kB-X z59F>cwMJO@clVdH2KlVgX*>RpmTv{5kUSuP##5~HKt4arF2gsxmi}%^pOO5b0*g=k zBPZ>rN|~jJ;fpG`YhqaH%&S&4kDl*prTmu#^1I+ZQ<0M}cXuv;)FZ%)s869C(s%r>5Cc5n?`eUfiPt=pkI=E; z`uzi8`7QO^hgB_q*G03=rCx*^a(=z}m2Reoe05JHZTHjlb@(J7P;$n^<<>|%h)X{p zL}q#WIcsHPK8OL($LFz+{+uNNgqtVhFJr~N0q=5<$Q9YPv5i&y!S6%V@MiJ9x9?rw zG4DdfgG!7v;k~uh05P~cYvwMadf4m&rU$RNd)?!T_-h{kI>}-;ZGG^FLZ-YEG&#@+ zDxu+&r^ztbXb9(jhVtO|g{!3D9yO;BkajulbVUu)gKx{1W_7$13P)VMb7~z0k7ci2 zu1~Jv>HQqG3-yt8>^%FAFJ-ahI^~_u@z9J&%Ye&c=^tF0T5gXD$n0=tyX8kLLfg6; zX&Jw0t{jD$HuVo>{K51lv zVYaKjQ|v+S8I6$K-Qu+iEj7>l^cx~52-e+V!`P6Z(s$0ZFUJ^kpJiHQyN)5dS$QYt z1JK8v4WK2FR@{E+L}X*qL*V@D8}R%s^=QD?yTO#|aqanFy7d{ht338TW{4JdmSfaY ztfeXdQ4+SuZ^Bf;%2E=kdf~sfr>2hxAo-x(n-`7<0ly)wre&5zlR#Rh_x8c8Wqscr zEsq%yCCA)|K_V%UU$KAsx|#7|K|bUFlislO7*j6+$$ zTi(-Twj5KacX(=<7nI}wlBOSt-TyW1-w?ad^2wu2Sv^db`FoeillpEi?aEias$KGS zJ)1r!+gd=X6c4}!bIfuTe)a;mOX&?N@1=rNn;VvAOAR*EUETf*#oQ{T7M&htzBd~S zf=6UlTIb-qw0&C!Gz6q7Q;^sDPO>5+MAtThVAI=0zgT9*`9`rGadHI}0&{4waYuDDl!niqLc+)p5otKB+ zuy4z=^d0f^JAFEIXV;Sau3pY9#Y@kr?FUfA#%oL7PA}QSu!e&-lGR%-b1=50F20iN z#osef?Nr9=M&sknm{XP@90amvvmBOqNl+6zoHP0{x@5MGqe11Ob1~ zjQSsp^^qB~7Skryy!h($E0=sQ*PpAOSZTPvuuBLpBbt@ax7X{yL;NddJM`$JSH3ig zlcy)|2I;$%|G5UGBBJu^$Y0kO3&m0)>3^bBT^EGr%2dk#wF^L;m{{$jWYd>X;{JOs zL4;Cz`%i3D7t9jw(~sSd!Ch@oQmr&8z(o1~9iXNI4i;C4pjCHuX_k&S*ItGVQ%yy{ zl%Q3WuJQo%$ckfYtMja|^DykHkjG$gv3zNhvyfrdnBT_EpT~&FfP&>$b@iMQGi(OO zXDH#6k7|5S_PxaU$`HT`@tcV)e`zW=SV}p z`{oogTTdtCL3R$Avk(I%WvphPfJiQ_;SXl14rCoH&@&{M@N*UbZS z@ff)_qIr*tBi*|hqhXu>cc}!Bl4yCYzbrh{P-am(vGpM zHih+Mf92G0b+aq90@mchb3SA_QARR~O6QLHo~CR%d3T5fu+#-C)eF_dy`P6`q7)tA1-7>TttxR)Ms=>O-Q?Uht@D#`Kcq{DAJ2CvY1;TjB~a3VZgDj;A&w^SXk zKPC@~B=1B6DMjz?DW{oQ&CH!uprM&ZjhjCLSf-E%FA1DBoW3^8*_s!*XnXJe?eK{w z*PiNVd;`-Sq7~VbtJ+{pF&=7&bXPKX*tdPfp|)yiS5Ob2pRuCyk}b*Wy0|;C$jrIa z83VDM9M7IJY?4c+yV|QmWxX2vb{fgMAXi^gO*4M;3pOsToZVnI6{>H^CPT5N&lo~W zd(fUsOq7p>oJ=)nqOAcx&6~u>^$NT7qjlDk-`jv8w!7KN?2Ro zW#{sBK4kxPpzbN21OtcqNJ?9~RQo10rma7o^itq;(tt|S-2RMKD%Fl}p(Wz2SfI9d zIBNe}dwL34ujXs>-SBl0)x(N=RNYlyN?p5H61X|Qz0X2)?ZkXg`_o1GUz>>gjsKbB zxvriA%(6a3Zz@)wMIePgkDYUN6FBPJ_=zDk1ny@-%9rtE0$!C`z9-T*T4Mec{j8y@ zmIF>!`tEuj>oXmD1p+TDF<<_yPvd;M?7Nx};elZcD%tgH>^upNG!)?q&|j7Qlk=ai z*l#xs>oL76@KcoRmq{b5a>~K@Se3zFNoMP@vUU4akwVh@cL~i>Jg>&ucab{K#{F6< zyVIKLwvd_RX^XsCi0jLDV$f{gy(Kjc?s=+~fePetW=nw7RoCnW35s%)gG$wQa!b}qy&e6-+Rb%#?BNZjUi zk{3X|P*MSqsMjzrE)cqaH)~uN(n?{=h5JU)4XMpOfgr;@!G(W(0^b~)54XDlYxbF2 z_7Pqw6mk=^eTm`asDAds3--l8U+ln>R$;zhid>jKy0ZZj5{nyohfAL?p1!3J(x>0` zWEyOgt-I`^j0N00$`I=ZN??AMZ0Bz@@2m_#6F=%A3rj($qpVg%Qdq;rGV8#K07X{K z&%x{+h(dU(^$1*G2l(Y;^CR!{=3xP6_F_9NzbF_OW`?})ba5U0$ninvi*-^ODF7iS5Ym^nlp~6 zt-ipLG3G*j>%kZWyNRV_sZ)4#D-2}lxcv}>CvEuqgP$cw)L*&%$>^BNy^}PW+&H~3}euY8%)nN-k{$Ih=64!8U_8) zgI3U?xH<6Jy1^Id!}|DU_HoHgn|M5b;P%A&W_ z;~_}>&;}o^%iiwe+g}-hi^PP1Ck3LZzXmmW(Zn4gBx4g5wimY}L;@}arEa$ROV^mn z`E@7-WoT5wpH7#- zz-iPg#iW1O{=6BLR?&U+Wn$e?}WI?UGE{o&EpEW#r({qVN5FtB+Bq)1D@xsnwl;9kqf#S5E z$$7D4J!-~bvet&Z>XxMQP^Pl5Z^xS3Am{s|MW20i@1{LqPl# zaZ-NS3(~3OLdGCVmQQSxlEO_vj48qHFeo2u)Xp(93mxf|?+`tjw}`?jS;X>7zsR*& z!A&&$G`Zhi=>J!aZ%Ac`f>#>#*6WqtPVM4l31rvM3dPjEj%8;Ok3i}e(XFPvM?HeL zgCyV>wk%HcbxmR_q|GmHJ^I6q|Ho6Dzxd{~mHd;lZ<)a16Z}L+;dZ&bR{P*_md{0- zR^fa5^9bHrw|Ue_NZ%*Mx2ACBpMUK#|+ANmR;V7 z**OE`8**Z~i+!BW_;!%VZ8}C2>)~v%UMcM+)SRl38bToi19eO++D)Locd=x|NIeYkIBxU=HGCe2pl<%bxJ@ytG{gDnw?fi}jm(MHW z@~+G}9@oOeAyt0BENn@Mt7d;8Tul7?rl3ibg<|Pj{z|5$x;(``B&wAT~Z+D5m3kFHYOlUbJ(JCI;Q-)e+5eH+>Fn#~=Fya1Lc zz2?42F+Uuow%H^iTyjyo>+leX=sd^6=fDe>`Jc>XmpfSw8}CoQikv?RxXQ%J_UH=# z)zhV3fL~jXB?X%YIz*U{Qdn8Bi2;PDag@tU>y zH;xf+%q^18w70yq619Po;XjJ}aU~as_&}@o^X3JPgLU{#KX6Q7Chj04J9PRP<(fBr z(Ed6dWv|H3LX=9GTbYDV;>6QhJEJdx^L0B_sDmt_cL~M2CBlv@=Q%(JS}_tx8wN&y z9#FO=WJ2>r@kw>$VswDj94129GtTN271}*+20Ql)SuuK_o08e?17Wf89gRqhaCtkd zgRL6gI-e$NT_IEF?Vc+BX^_FLuWFmS3bOl930W`V^Of}BEvHl8i9)NaN?t7dW> zX?006?5^q;2cEW=bjSrE$@p9i9p&VvgNkX(U6hS@-v}XXZOW8~dh#CYv8umZ`pCeJ z2S$DfDK1NoyOsU6EZG<`Qi9<5v9i*$X-S92uLWl0b8Ic~mkg=|S7H1b13@TT5V zFIN32mhTb_T?Qpux)akT+rOQvFb14~2N=w#^BfZXL2VngmHy7Gy_m+Q?o^I(x;0)P z&ia=Q;wv^gJ$=ToHp8!%vQ4j%H4Nl56eOf^9_X1R7Xe2N2>5{Zhp5kyf6jTK!L zFc~trbh=d%eN4E(B!EcxudMIoyN@LS#Wy%}0^ap!Da}UX=0sX-E_pC?A`R@8KFpxP zjBmrl0t|PqqN7*?U06KBcRMas-}pZL8_0W{u61=a(4*+&fS-E!DACC+=jc+ z4xDR)As)9u9)RBisB|*_Vg9{3E99ovoAH|w*lZmHBHm{Z4lSZ?><*;izdUF?R817M zz-@K}vLB#WTwXT+h6UILW4-@~F{T}a#5!j}xA0k%#eZTha_Fx9TBZZkT1eREHmL#K z>YPeuct>rY;3X?iZRPK8IO^*UC~CW3M@6iYI}+(}n8Brdx3lqE0i#s72@IH)F!+%{ z2AOpEW5HnTeq32nw0m!(!1VJ*ZFW!c1>qkv=aWqGTD3pCDe^GA%+y&s!NrkUQWDOl z)sd&dDrFG|nHWX}$GFZRSX*4Lr{U)gI-7jcVQG2UpIhr9tj;7*GZzE0?SNJR;0GQI zEwjW%KK|G5(*A<1oojL#8Jd=WtLHWf&Jvi~e?-#E2uk#I(KmnnT0?OAsoEyXN#GVS ze2oD)U;7Kl)9)b+EkuRXbrHgpIDh{`NOr$2V!@SPkqP0le&8LimhDqP>#ax`8dJM> z&}HQ3QE_DeY3PJNW461*{Rz5NYe3_#w}dQ!(?~LBWuy|vMqV|iChp%#V0<2OO%4uT z$>0RKoMBus7|M*)mJCjfeOKSJH80h5q1%N?mmAg-nwOW7pD4#yUkMq!^Mjfnn<$Ad zSt>yVRov=auS@gY?0G;EtOa~HRwrcJo+YI0!|ZseJmpmvE*htMsalIKRewCR)tCOQF0w%xX!_GCIm>aeT$ZQ~lMfM4nE6WfCC zV$s~Sj6F z&*=bleATPP~7m( zR6A-03c^<5r0LE(^Xqter*Fz6l#?yq%kVQ&r|*$#Z_T0b>3?eV0ugqXFG4z%X5xS# zM)Af{deLvfI9~J7H<5cXTI!q4n~L|JKqQ23qhCDp?<&|S=`2a&n{h}g5Y!9jy3+`4 zkK}%xW5kJZId)}&yC@zDY!Dwq(pS_aq>bF?Y6dO~f5{urVmu_gZFR@`C6M2^EosB0 z(3SxQl~vo*kwB^NVncvgqg=P@Q8@lvhQ^+Tsx#odp^5Ze&`mxt>q_n^O1=4=O7nV- zm<=;8+;OSIn)jVk>KIZOZ)gGTjf22Je-Ez+jQ+iOGoES8dn@AR{txqFBjQB&S*DERyKXoN1Eg$ zKv<^B$67pwaQy0FXOL1`n^pmwxM|8_Yz9)pgKc$Lil|nIVM4w^5Mbcr2o3{Bna2VH zc<<(oPYlyN*9;4R7Q6{=yr1-O6^EmC#E{SAE{X!1`znq!VYsb%lR{%`I4T1?v8^=^ zZZPIbo%N45I#K2l+t&a!$(Qi=^DsmN9VM9?mdaR~u_yRASGTp%Pk?P%Gj^ZTmA~(O z6hoP@nUZ=XQ4;MK9Tbz>=U-}>LlW#M9UOb`;zxDvV|H{lB@G1QB>8+J=GhHwcd5dH z-WhAp-+_0iopPf$IzU+4_y5h18h=Z88dxdm^+dL6is^5?$E^%%E^KPleGMx^`>=ee zUB*Q>FSA`bwd7fsrF@>~2a+1fSLmqS!E=zQ#t6}jOp_*UF4WPePy;2-hg9nX=HGbr zMf|P5lrXOP*0`S4Brf^tHj+N@8=7z;pzf!&k-z~epLwjYjllg}g}qkAKgkL`oj)u5 z!$-EO|8nsjYFD+$4yRnFF_&@lB#6UGtiPr4HVCVYQ*_wzFRjI zqJ@|aKCxyc`hh11j*7%;%oz3h4k4t{tDotKM~|G}#Jf|=UGjXdzpcj-54D_xdaKi6 z0DksCN|fp%nG?yjYue{D2Uwu=K3rx5#AV68n?Qqu=(Pc;8g7t2uP0h?pLJ;B;N>j; zbsXkjpPdwqbGw0mahN5mncP`9lds|Tk#Dnq_&De!YtLsf>A0TDSDYd%v1Q}iktc&& z{)$)HITDL1^~Lz91}eZ^=G%Q%*vmHe18(_9^yAyEoeH_k4C)UTal<#xK@XprD3u0o z>7=zw;% z7!Vc}gHOEOV!J6nn0HYl@MXm`^EZjA8fV}x--0X2bJIDQ%71%YeS;bpkG>)pI$`GP+ffd=pCl2;_0&l7uNtSkEqD%W$Eur@EW@$Y*s4vp`QTI*qS zN;Q3?M0H5i$^Bx3W(<}qW+GD<#PPt)ZI|$h`qzpb&i)2WE1k*kxTo*8>EZGQyfy+m z36Lv3pXXF+$_x0YYXoB;)Z>gn~4VI&Mv` zjWkEfu&*^~uDKqbbn^~H(b4c6jGD^NkcYZ2u zSSa}p5r})#7c?GiFGYsSm>#i0!Q-{Pe-iO8mvl4=EAOMTuLy_zxKQIoX3!{X=XX`B zawEZZEj{Gg+S=c7-z)h;wn8qxzq*jA4`&wXEnZE@OF@I6kY1<~Y8!J1uD9!{BB=&Z ztm|8u+D^mskuvm?1aP{Wp~y-(X+3G6R-2Q4p#H6FC=czGaz~{+u?4G@~$0VqZj*tf?hgew|aW(%?f^^{Q6)QP*eORh&vwNR3!=eq)C^^s&?jXgRs_=(_)r zgU|-8nK^Kywkti@m%Z+zjLOd7-YdO>+c51g{OC!sO5OU#hnd_}imVmRc5b+Rx{8dU z0SHc(!$AFM@@UX`q|Jha41q*sa*!;0)Jo=?}+ zTq!;1_Pw`wCqwJNV^!8|d+{8&zW@0>Z^2ec<%|O%a6KuAgyP6Yc{v+*U1`z|mzO$(E|O7)^qVGkDEM3{_#NgfQZp4$&X$p_xAu0o z=qS9U*jq8{ z0lI!c1i#I#p1Pw*Nm9uxAvqXM%;(LIOX|4)i3{v}UB%g-!=!ChV7rSb7>C059{s0e zH+l5Uvq%>MY(vEx6)0N)rygdzwTz))$V(SEb{>EnRyg*u1}m2rNaxX2%Mrh9UF8;! z6dlhTLSe^o04EsWfde-HgVI;P>-Q~w>D4tZlf2q9&!o@2!N&?hZV|aRx;!c8>4cHa zD`!cc0&H<7`RWdf+X-HV99#OgZvD3m^j*>5YUeUT_PmR*-mt|!gB^0W0HPK)THfB% z1dai@gnNw!zU~o?t}Wkmqpa#8N`b#zd*SnBIQA9=FP1enJ|jG?p*jvNKOns4Cl;z4 z*UNH%XqcZS%cqN;&yF&@*B^27K4_T{X22w6tvRJ159a4^1}?VK{kSlkG6@v?OX>Vd z|H*)jc{KDmeVSl6-R_1lZs=X@&L9f?l5{FO15see@;|(_ynSpYTRp=FE8-Wdrc|I;TQgt-2+Z38vL-`QV*D7y_Oz97mlkb#JL5ubQUB$MQ>t;T=iTIA zeFG2KZY`l?iX3kFYfm%-8ru}@V2nF(`%AWw#u13#cRSeXM?(d2D?P{W?l2=W>i0bZ z4bTkyb0z)(@gH-ExF`qjs7XCsZvTSm7ddRwdm+;4e@1O3*GC@~&M0Hf;3CatgOFJQ zZg4@hz*@@5@8s!AOQt!#G8`_2cgDIZ*#oSj>bS%%O?nE`(k$(`egH_jg}j3)p$yP2 z>@HE4?GOZS^6wEg3fowZG~EY$9DZWc(xT8tX8C|wom%AFxN@{1f4L=w~d$ZRa!}{q#!((ITwH+w!s{EPG{0% zno|?#mOKyKN)v_l1_RF_N}FQ$Rm_I+G{=Kup-o?(37hX%t&CXOwcTAp4U;_->da!E z%!1~S8vOItwF$`IDW51xFmmJx4n%h%TQ&qi&x#LrC7JT_Ka^3TSHOK=mBiM5i!;1DqvH5 zdpYye<(~L1frGUC&c~5S-q^*jlz3@}O3q;0e}mX)#`56Pi23!`~Bdlaaoxc-PgJ-W`?0G#Fb&Znp z5NYFvS~T?LQN94;xXE#_AJ_rnfOo|oeCp8Vvf!c_`fVDq0N4bL&W7~e7huZ5rBhKL zdO%k=HYIl!0T3m>ofMYXrrYxnd5fqZ3C{)1Wkd!Up+9=_G|N@N;&uKCFQg&~tN~xb z8cvUVI*l)}O1)yYU(?1hS=A3+WSwuHC<#4A%7eH+oS+uAw$P)M$kPH05-QtwCnb#( zK)k8@D7fvn6bEku7yE%E_2vbv$Qmj($)dNxdvgCN;*^UHR4M{kLmAfN7rJSGPfpw8 zcr-YIKg}`>DS1Kp)JT$aYCTCP5W1MTUZ`2(#QK-$*IjG4hs`*>>$mZKnc0$aH?O7N zv*KUh_-53RU#g1|eP9^{tt|hoWS=Jn;w@IA<{t`a4VC5H>Wr`$s^!YKzo;lUH~mfG z1x`L55@qx^pEj_@loa$OBH(QmZ-adWUNul3-qCdI-JzB9{t<~ExW>D2oeJbof{)7o zY=H3v3|dYz$xz&3NJPLy^r?!)YHYv-$7+EXs}BuItujIzTI_G$VYnC{HnrLs413~G zlsFdGrXPKt0}&Zn|EVwhGfQ8CQ(vp>{d*oG?!O@_Y#}K$&pQC^{IcoZIr&4${cym< zi`_3`^Wz}^M9lg=fp;(v?Ki*#5b8wThle=N)L@*2?jfM&oW#C zvIA$Xza7d42{H;-&WJ$%>>^t#{Q^+42$Tsj^0C8?dO4-eWr?%RW&|)RH;YP6W-k4tOPie>tfp1Y`5o(UG4AT*P)#my}szW+8WLnda?AjVGP$k zc;Um>%y9Bn=wDd**Z=i2KHG|Y2JCR}8*B05B^s+(c#@+M%x|`mP#K&>2#-5q;5BrN z9azju_X23=As}3MTq9*X-OxOzRokJxzwTUoP&jTP3pq+!d6+fA`d7@W=0neuULYE_ z6QEncMHi@SwJnq+af=-l$GT4cx8~dcg2^0U#e4%~(Ea~?sjaO`Ahu$}k3uayuL=CR zJ}g7<+eqf$*qJClfmk{`zD7uqLs(~mSb*LL33$3rKNvc^rmJrJdaXC+SR;y{0-?qLLV z+2iAnKA&QmpoGAL@q32@MipGJMYycO3}f?8zD^9$Z)0`1Lpc@Qu)@ukGK0r#841*` zJj03g;HTBKIf80Ga7}P*E^`28KtN3X91J;k&Je)T7(SDpfBEw3rsl^q=J+=oduSv| zYFtiv|ID6QbLVq$?)@~g{&1hgkGB*V5IHGGLE1Y#h=M7~0cnX`WMw1Egi%+Y{y;a*LwfUq)-Q#&eLPWq$ zy4xlt6M3P*g>9#6E0SQQcdFUBJ~)PPxa&*oTjpIMwm4)jkgnBy5cO+&kR-t>y?W_r zk`ocr54F>}Wb+^-85EjT-=R&GvB@xaXJjx~dDU;jZl80U)oO}9sQduw)o^#004`cQ zN343uwO`vI?TLA6M9y7CEij;0s}O(aw~sd0{DcPni`RGm7O@`vBRyHT^yyj1OMo&U z6lHWx&_dKUI!b+^&R-~%wI7;gL`vUwms&$D$G#0`Gct&0y0uHVG=Y-ke*Q-3^&d0o zhJAb2bi(abUAWTIa$EVl3U z3ebIoZe^}ZP}*}*qXPGL45IxbjF2zvafnI7PkULuJT?>qvklb>N5GvI&J4B$5K?0w z2y-^P6$fiibKxv>AZl|)hFM4saCeTc6i}G(xf=K0eKG_7jr7T!Yk0y zM+a3SWfT8Q2B42usJvq5ROA8?*EU&+~n8Wcp^ReM5<4L z|J4wS`Gf7N^9O-t`4Nx}ueYps{fAN(nUSqgOxZ(tUU8uxhKSOL_R|@*A>Woy?xeT# zCg+sA-U z&Ysh7{4o)vdLh6D8rTtJ`DcfH!a5BfzXO|{jpumtfyc*F9p{G{>U-d?%m&WMZKx>x zmQ!8tXwVj=@36~>E*Xng_q6j?qn)^h|*J*OVVmMHyTXj zMO81zY6Vn_*Tpz5S4nhkMQ0ZC8yqW@e1>7-4}&7@Ks&-Mwoqn__XaEScD3)!kh(CA zY79`L&BS^4y>`ZA$jI0o!ZrT4Jy2*LRF^EY{ZE2cZCKd1+inb;T0gY2wcKZ27rkzN zZS(#_xUdV=~(dJPd z*oeY6Gp+Zt|9E~Z!f?`s?Q9eLg&7eq{}mYh7uCYLuRsDVjcN@?DGq43eS($tB7{Aq zAcoq?dBzk%c-4tHX=FljaCZ5Bn;1o;TgNKQ${eFdMTvSC76$`|- zW)o_stiBV1j}J5F^SFpbCWQS5cj;a&&C#A~JBX%&`K#;Rjudk{2Q`)6#!+QYSH2F; zp=3M8AL?~K!1s9WTOLCBQU+av$pstSJ^k@4>;odp{2dq8s(Z2SbcCj4>^^oAx2zo{$?=qysZhE zZ8*B(F#iX&mlci~r6@nGxZU1nVx8JKbn3_?t-f2rB=EEBxU421Fzr?N-3Dz6CmV$j z#%+W~-|#+-+!IG^i8}2RhSgXUYexK&Y>prMwu4b6TqViDsCqK?)hZ&W>HC z>I>a0?xLv=o;liw;K`o~&$wPZ$@9q(s{9(|`XUGgKh~?Axdc8EW>h+d3zgV}&zcV5 zqCsrveEq}{G^m!FIe4dJLH%ealiO|R*}d2YK}{@| z{Wdb(h9!h;g%(Cs8|vHO02<+vbb=*rOA!Ecg>tN$Y1pCL2cfRb#KnAv>K}^C^HxRQ zMza#<(>dvu`<-gtH-TZ$Csu7z%KN|6d_}Ah>;GUm1}c)kB*JQL(b7SGzJl^$A1#Vb zERF~kYS1LbZ0a9G@g8Eh!yAJH<9^+g^O8^5Ebbb?r;dh6jUOW3Z_V zr=Lb5sh8?Di;dicx&RkD>94yV%g*bZf%ICq7>;t536WXtuLjcnZKtaWj{W5F;EVWga^bT453 zt-_P0GE)jFVRE+(TxQ^t$XK~7`HVwMbq6K#NxWBD4T{Q!R z^aMm`CHuslbt*~+Sj7oGn|T_AcPM|Jv?JF2XD1f}&&Z1&9rfZd;@m;8%T=F5oxau? zpvyiPOd_9qygk7G*HlUJni!@`LWiOE{Vp4%os+~xzGRQVd#l=Iq4d{3?a|3c7B=PZ=!17CGlXHY$J8+i z+O}!_Rg+0j>|YpL?_ifo6ktJor+3iKMDBW%A$qC-Hs8&WcMQzIgD;W3A3>X?+zvAU zW$1!@$Z`MkQg2d8Jy|XA@3wRK+Ko-{GAi>3It8vkf48&1SuAw9(jSd(Owgx!juKty zNB2r%q)XfTjw44hNv(83@y@zkynam!?zs4$Hm*I>N%(uF1v8+CJwiHkZ|4FvePQv+ z!S_>-_qr9@xGEg${c6ANH(9U*vD0p4*$^S5Fu?q*84NFY-2Cb`$&Y_$WOX5N-VQx$ z!M5b#Ofh(NfEq>`Hf)j%*ulYg`bMWzjMdaGileV-eK^tvr#wi6RV&LEb8R(CQtopojU;zh*Ql8te&^V2#eb zhxRsf%nhctXKg=|#Q|GW_3TAZk#fb}^u29p=z)giPgkq{nu#HEJ(8vnc-R2MYsm2t z<2|4&ER)%rj#N|R3v^*3ewZt02`wk*Z9^IEwLOHffhSm_QIAhe#IN2%sGfYPfaBD@x1;={L;;O^6vp(#x$LlgzA3$?`h%VcT7Pt;u#H2L6B|G zo6(#Snj7w)BDSvprlmq%RvR3bUSZ8Awyiy-7q?ifHDR-Xt<#0}2mb?a-TdcH0b&fr zZ*~~3UpMeS`)FuJB@3c^bb}tqNB#REXhU=-+Oh-f#wRd!72Hj~yCeo$Y_;F@pot{B zxmIGftPew9mLO{e2WVpgZkBY=XjiRq341`si6fuT|Dit0&g#Deqw;k&nryuu*7-a6)Ag z$Rt@BTPe;3R*T=f0(_B!ynJ8=QFKxXmMyl@B-?ZK+gCrMAQ#A3=NnV2u1Et?!$M&r zhWkT)YSEBU2Z!%$z_&}nANg#;!)xvZb!@H9#%u31&mOlO#NE2yTpBI#i?3_zyuFQ+ zOS0J?d1~pFC(?yeFf90%*@xHAKB(di9$(7Bq2GI^C{$%!yKBkIiH!cIgU9^PMZyz&Efa@ zeE<0U>9(60o7d~Qp4a1XzvBG5% zb<5xeaszuq`SrKeI=lZ<{W}al+-5z{&IXE{^BGU(sn+hIkx2-8b3A#x8i)W+0Ot6nmVvQwci_#*Q_}N&m_Y zB0fUPvh|;7HYTS*D5Z09g~J0Y>Hk3iPHMu-ZfvWc!y=GB{Malj3%%VqBmK1n0C19= zv>(Umx8-es_)%0BSRTH!UA(PtTodKL9S+buVgbeKV#1v8rC#8}{#^M#ZQ|9TcP&fS zEw$Sp5A=z@+tTpO%Jq?*nYi+3TB+TQj{^grTGKPT{~E)=h{-LTlpdo4$Zo#8cOH+0C3)aU@U%@RY)~^OZStplETcsWjl>I!W>sU7>dZBGkUzdN4 zjt$EzpsXb%?Q;?IF8E6L5L7dwG0#U$o&^RtSqIP?HxYzJ11s z$R?^#-Ew3PrNaKbbo2`e1*-|5TQs#9ZSsH$DtFOb@R|;rA8NhZc4E9Lrz3B$vkYg` zs@TFjQuubj_ee%Amg6gP|H-Qg=U`*3wrHYN?XTlE{S)m+h>m?T;Fm${*WBnboremR zz3uLYfQBD!H%vfo5mrxBE53;ip2WQAp0MQAoT9XTYEJFBbOhnU;)4Vi`dnYA07Tu$ zltY|Pe6UaksQYX|h@jA1p*7nmD$2Nr-&H2!n5ETsh624V)O7H_rdlL7W8fl~c8*2< zGZ3nTq)DZ_E6rC6J-$>aUA{#cll)XFCi||(MD;>IASUY1VI1r_2*#~+| zIpC9prh+hBuDNQVsA2JFY$kIqJ)K*J=74lyDQBEl-KJ2 z1z%VZ9l9!e5-Mkzw&>qfFp$P|b1HRE##W1qf4WId{##8oamMP#vQ}_e%9=)ZXhS!d@+SJ70kd0lU5<1yXB^s;pOaxbBgzD%M&f{Z>F(-VZ!0V zcp*@@h_CoTSTAqto+ogh*97b6Kk*F~ZkqVaZ4*hwg{i&g{_sA-Pnb57hw5&@I5|qn zPKxZ$++%n26-@PKCWBGSC|Ef!W^9@E${PHTwt*Rrv!c%>%&Xj>Yx;EF+ zyTk4|IGo8n=MdD<={k9ZHdAHw#d*FLAI9(IwbrQ`ni&d(5@@%;iit9kRFFXCQ!&9e zL&m&*!uvB?B~rwDX|5(_|M%7Ytg^oc%fdSr2g?;gXNXImL5n1R*L;$1DK$8#cA2wT zDtE<2Zi)~-_ljEA9l^T*S5iRk$Q3_ifH`&Z#d5E0Xf@EG={^9Uq+wKJfBP}>j=%OX zVHa;`kzIJKMDaVs$h#|@Wj9r;=ugJH5UNCpK$HvB<;AL>f|=RZfVNxbVQoYMp$ucZ z)8K;pY}$FKnBgTU_((3JtARkuKWQ$D3HX`O>(mJ>am=sjl^!c3p1-=lO%2uMy<)3T z{Tw|xj9JQxZ&(8>i1!X?{s=)Gd@9$aj`X#F(9N%CGbcs6KOH*8BB7^k5HaW(TK07< zoQg<2hktbx`r~uSjV)$C?Xc#%FBK-V@Vo#BSu%H}LUZ~%*t>{NXqMtFsj^~22CSKe z+RLFV4yf+O;pf$^qazT+8Reny4bFf`vr<{RVpICYo(AcUMzQ!w(-?a!nAzb(KPoGg ze?djcLBehRvi8nEuOwk`rB)NLwDIWljrsVL0 zMh4st`|APfyHEMog?5uY{ueQCZ%7jBeO%>eYp>nT?h_~BSzD7tsu?rYQCoEVnCyf< zZ&Hrss*k4$I*6-m2dFuZu%TYRaJg_Q{zFosf$RhfM#fhN4_qpFLw22naK^4J5HLn= zl_Kai`P3yr2^@ZSzWxkEf(l|9yrm>i``U&N`9k*a-m8EKQ@talF0%II0G9*)tBCN$ z^CRM~hkyB{h4rb}s(1gAyzcEJLT{WN8=c$BoD(^s4}N%f zGWH|A)91EaH@xRSVOn)fYUodtZS$7M*Bx8BX=Kn`OBIuc(H>|3#-)_8?68W3$Eh?k z_0P!!e|ENXS}Gv=HO}xooX(VC-FVh=Cq4o*V-w`Xm(^m_T4TJ3WM&&RBTLWf*IsxE zZtz48fm3HYQzRQ3g2)pYn_4IG{IUOBw7)bktJ}_3Mhw4+n~1SGI|HPBH#%yL|Fl3t zXEY48@^@)Jb5EAGbX~9i@8C60QSB*k{n7k-55aw2)&J&G4Ya3MU3Xg+$9`)2Y0^Yw zk-y&_{Src?=fYg7`OOmT(1PIy9cv8laBZm|GK%a^)H9Yz_-0lYi|{~alQKEVsze6U zkJad?dTZ824QwCf$C$t(#_WqvCheVMrTHES{yPs9rFlA|u^j#lYE}ih)kj#$gpQ|X zUe68H*Jm3@00lw&07&i1{VCi`7#^jY_h&nlB z^k)V3AE@!LPjVf^$nG*hGE6_EzIv{@cl}cLp!Hg_IXkY{9D!YZ8t# z0V?JERqC_w`h=zFMo8#jR9$ES5P8hmnrbS>`7lgV|mS?}p{r_nr@c1Hk1 zimNeO8YjBMd%X!c;a+mTt8DHj(Ze$v~fauOnx}$9wgQ+70ao zD8v~0!Ha19(9JGM(`>-l3_{eW%XG;@cRKNW`KEffmz>h{MHiJi5aQQ+57i}7e z7{(@B*aULY(_#BdDE|hCv*Ds;H(in9v6{h8h6$LmcF}70XFidBu+X4|CISMY!;tvH zV$UwBciszSi1x(7R{a)JzlVQS=slF5cQov~PW6#L>f#Y{oTDlXqIYT{ZUa~Z7QT%< z$M)t{$vSMm^}@d3f)aZMP+7a7f1#~UZvHR5dN=DFr8zn6`2x3G1)t<&`G)U#2pMvn z@xVQnMvU>CvV9nK_(538V-X;fgvtHZl(GHse`-%{h_uW?hqY&aqu&~IF?tlByvC9JlxL_V&UblKZGf*H6ogS~Y{waEW)`Jnwk4i6 z9s3ysVMw#ade{-N1(WyEJ621-cg(CW{brkoA9!!?zOE*|Ry&lc*+`c-^?US0VT)@! z(av|4DjXd+#BfX(){0#e;DnWKq6GGjpwv?0245~l;=fb4q-^#zvsKk$uKtq{B4IJw-Mi^zZHdeGrAM1x2iwt4zX zTdiJrm};fO3EQ?U3;HCuFE+;^_gG>aq%ROTIasG&tq`!lWaIFKPxuNjudHC3t~@<` znvN5X)A3H!Oaa@^%k7Kz;U51;-WjD>G)_Ect5xv4|@8QTO=G1)()WeZV)d zR25*e8hkn&O^9XUC*I`hJ3*pY_beqE%1s}vQ6A}hf>`ODT&C)3c zzg$OdTd;g|gSro;sQB$bn9Mj(iw81|Usc6hH8Ra}6|J2-d$BiqUH)ceTfLfgVS~F% zWdT25(OJj7JXh|5T>N?U0%DqsO*^^GDp7QArftl-f>}8wz-U+`oNneFy->?7WY7~} zvpZh}e!FEljquNG4Oq{{C?OsN;Z(~Oqn=VRqvSywia^$Yf7RD`ilflbriH;@9*16k zqop!_m&^}phSOP+g=dE$n}6As8@|jpMDzGl){%1$4(te4JDP~QH&BC4G!giqezMU+rl zJ!zkXt$>4+Irsqh{l)6*Y>KX@k$0}yPgY*Di)V~cC&C)YKBbLAS{^DVNszsNgH~JG zM==Z*V;w=TYY0#LyH0kW!jrs|$BmikrV)kfeIpHGD#poMpbTyfnA0?wgH^8!)KI=> z+*Or?s(!iIrMk4gGT!_Z?$jn-s6yxeAsrbYact&&7XOnlx){sOgUog$vQXYRt?dlj z#gX$yOfJ%pk@dY+rMHBL8;#wKe)$`MU<@ZQGy<9ccWRPanhB83-$MdQ==-8c232Ii zXk`Xk&e&CknUR0MP=+`^(M~YeX#B_k#(brhQ#{pHBJUU|+8jJw$FzAmEgc9T|v zC3*(F(3v_XU%j9n zUN5Oad(1T1XKq>;HVQBfll;_Yrh_xEKgn*j3-j^q8FQ|pnnMmmWZlX9Rp~wCym6bX7Wqn)Zsq#JdD72j;6pINkFqxHrTsDeBBfPx`!| zLvCeILpk1gHFU1EdN+h%3`agay#R(dswn%StaiQ&4_qc9BUO_x6a-U5blRxadYiQf;D;P3rLHoBM2+JfczZwcUm96hgI)v9i<| z(#s;C9gDe2Z;}fb9XYAN?NO=ijdF9d(~#6qIRM*>D%3`zG+m8FfK?8u}qs*St`*}vzJlfVGSsKNg~YVu3__KBuyi3 z7O$ab4iZ+^kN4JsLeoDz*g*;0c;7Pu6sbkIM0o4!MW7xT6;lKQr^4KZg-@~D7reT1 zqIzfAB_nKwdFyT=afm^+k&<}H6Q|JPyGO_s49eIUg;Q0svBO?cT|Cmr(f-Yi2Xc*G zCVOjj4iBlS2umJF@o8QrzwBGkJqxX5};) zNfL{JWLHMcn4-*}O2&Pll2F#2+#As{`w0fdsC$UkiW_IVD8j@!yd5&-8-Lc`gD?IX znhuk4QlVSzshZSWZc0>GK>x+!ub7Q(p&O?NMFt%m%P9j-Y@%=YO4NTXOBK9V>B?#u z3jDSV)}@=Tb@)Qm^;R(GWzMktfxh?A^4J{U2^TtQYh^N&?T`LP2w`cHx?*ujQ7q<| z3u2V&_1tLICh$8^+H*%CaizYH;wqSKw2|KV@*^8S{zas=1G(gc z{ld^y^%ZM&E-H8@*N?=X0cJ);in(~GTrq1YPS{5#Z9&&&mbDHJ@3(fR&vEi_S(M_L zrKG0Wc{22In^o2I*}K<){%>XyYWPqpObpQiVb-0Qd0bYkc`8d6UN#Et)+%;mv?j6! zV(Qo2$+=9bKELXWr@4$5$jZ0a@_@1FigUKK)XCjDen5$BgzTXhh`3B&+|rHWzG!_j z`P%cR4J%p6Ldlu;XYH89S{&Hj2XqneLZbe6Fy9~O@Os>cx6#Le;ZwmumBSS-^3&qE z*)53N=JUTtHL~R3lM#mFrq;t&bD6^4G^5O1{}6hULwCI+dGplhUnv0Os+Ak4UT({^ z?0xKdgyd+tWLjpBgQtbuci3mA931uM?vOAW*nE?6c%06fMx)!o2Zhwbt4v42T+PP( zDjNt9^n0%(WNB}669n8qZZTY2!nDOa{|Ajz8ELa@#bJ1PUoPHgnGQiln4Dx(E(oku!bi*67hd3pwK zZ#s_Y_^BEEi}@EjV)G;8O^Rwg6?qmBRyX&HtJJn#`DErrm)4x4;ELv-Be5yWeKKgy z5(b^V4+Q~B%aK<2`rjyfunyasmH>axI21=LJoCa(jA^J_FH!A*Di%@o5bIZ^Aeg+* z(nNW- ze6wMH1sj!)lwlGirMvrp1wc3E3hh>u|5I7%QRn6>P;TY|{1R6`%;^!&d$zmeL^^k# zoY;P5p7P*EnE?mW*UaNnTyk+cx4LUfzuFc=$ZU`X?Y=Ktdhn; z@S3yjTgS3=W3u}&Xn(@oFY|%kj{7+Loax@~Wl?^W3u2r3#TfXW8NyQe0=}uoyp@la z8dB-on&GFv3N%x#!amFkMDQb`AE~WhrUwlDT?vRTlZt1%MCzGM0nW`p^Z3N$&zQAzh|SZ(y~)hHLpcpIw;CP zXB`;?DjhL0JEFUA4%`i*Wd_`S;uP}q6) zy85XdReUH=ODhE~?28Fs7KnMoU%QRbTxc}`m`@8TgNhw^n_JQu$(rLeSWSb9l1 z8Huo04K}_eKA2R6pYebF)7c=pea*$ue*&pneF|ALZGsJIV{2Sy$*~R> z)NETd4l=6-qeF7js3Ff#2fYvrwA#Q5A5IGd9W=|>lQ#I(P%Kk(cyP1yY3`Jii2kdw zXQ;&bWAj{ay52Y@2;bVEoo_V9 z=|`Od;A0h)PaZK0xU0;?ANqv*yJc7h17Pl%GH%$Fx&KDlFR<|U<4;49P2uZ@Ec0P4 z5REi2kge;xC#hT!_$9y)C9$~&jX7RYRzq_0zBb~|Wx1(Qj|ztU!^nt?0eVe{jt zzz}Zi6(qsQHRimfGMR<-wLu~0LI+hX4%|SyX*a|q>U4PXlKP6wKC+FeQK9h-f5zV% zjW>2&TRyjIxR?!%Hk|CfI8l9Z68Ya#IP3<{Ud~pUWl(!ub<({Baab~5ehUNyXG5Z% zzDB+7W+LP`Q}2C0n)$UbX=}_ZHoTkt-zT-j*YF$(JVyXWsmqYrQOvHyW9_T1`oL?w zZvmRKZe;9P^O-2_;vK;-dOM9b#-uoMPa&?SnGkzu#Y|0(ULU~~1gJ5cHok`9vb;A~ zbhZa!fzqh@OYT;$Y}AB1ZA(rn<`B&`VbaZ#CH&wM(n)PWRo4cjoBnR+1@Cbaa{;+w zCo)an;x0AVl0DwrshRYU-%OTq+)XPai56nM51bR;?ESy&@cYLMxKp8iYmDlDOF`*k zR!Pzkzm3~0dV^w}R1h7Z52z^r*^Cq6(8xO^Bz>ZD*ch^vU^op95-4xB+&Nw0!k5txq#Rf+gvR@$HdViIDI(C|WNd zlo862Yhtnjp^OmFmOTRbJZj>==SdFS)X4qO+qx9$z8eFgi{dAOf*seRZ-MDAy^RBz z8rO8uYEMwrvXdmsN8x2VV>x9-Vp3Z{ZNBP)FjzDx;hVil3|_<-`#5gSq8i z7+;fTd-C9@ri03Q&1fDb@u3pK@$1eY=_B1+;506AO=i|+%n_F8;n=CLpb%iw@3?Ou zI`=!;1CWQXI79}ea2|h%_t)NkS5Tz|gI1s0am6s86W0-XCm)!bayboJQ|`5BU`r}$ z+xOV>+MkSmjqW|(-O~CNxVSa40y+H~sbJ^u)m#|BpNre2oX4MVLGEneC9|vBFWma} z{JX>UUv8}8<4llpI$kOI!NzMy)2NyFu&|eumz(ta>z0mN+bfWo_1f!nX*Jrph$dDr zUphxA=R=ce%`U;qM1I*o!@TY-m-46<7mtIiLvWYES+JiSE7m=BY!0W zReM};o}nv=Z~@HcK3LKYKTk;rqGxXGKC24GhdOW2JE&fznF zZNMHoOt#5cD*#v$pf{wsSGW=bdRj(}8M<}1=bbz4a>Ts$M2o32hJr;Z&~G(bA&G$f z=?>jy2|`Pm+Sy`vkk|p)s(E3Pj6LKOA^(7WNpPgMOhKvfAqD(1<1A2vWnpL@zm}eO z8t^IpSJDTmUiz6oSN?u@pJm{M!7-bhpr9!CNX5>KJo9NYVBiW!Jze8NDRaitVTT#(bR*}g*IYm) z?2FzH)T@Dci3LO-*c`-D&bUZ>t83Y+Ay`ThqDv4kDRv(RAq!~?9>S`@ch`QkT3jX1 zOz+mmM(ZLp+zuxC5HMS8%LjR??$=P2VOk6C@YH6&&)t$faWMw5U9aJw&u-t5MzA3P zpXyMTHbn?dnCbMD&E!u6m+urAIw7Vy@SOTWzL$` znklm8kDd-}mhZhco8z8CWr;+E0j1xFEo}HIjlJe^0=NNd5_dKu-n0d`MZo}ev+0y6 zMV9u*fJgun{{?hR~7P-BJD0VFt@oAh)3* zXk(p{q`n^}$K%J>=n0kyZgEgkO4i>&n-QUl1L4!25Hgb_ERqjUv|~_o6_x_aMdPrf zw{~*GW&^xllo08ePRhV)4#}NGE&nCBAFJQ!V*W_O^J6ox01x)r&>z0=rJ`^B@V`T( z-)CzE_Jh#}y!5M$2Zj6$ZfVLqN!nhMKhgyA(TIgTsdI?=KX`_kKTY#(MaLaF5%7k} z&h^j|GPC+hF0N)?ocTO!MPT5iM$b3&n_T{(1-}MOndg3_N9d}&%b~h;xjbl0{FIsO z7`x6nS|@ZtQg2zt{6WW|9ZY);1GmLdNrEXU z6VB`Id-(_pa(bebUgUr&9;*fBBZhR$df6~m@hDdIAOv(o_LGYXgE5!ixkq^v44!5B z;8}3cy%1grtpg$nKplsq?bdkuUiB}W#q7ErSC25;r_k#{U`pGvy74oA*VOi8klxWu z-S2zrJIo?IM9#`_hv(SK#}L`$aNg6NJAeyHq~xq@acb1$6O_E1VNm`TLZ;n-w%DN= zO$hqS#yJy6f@VDUY~6W#n$T1rH|7H#z|WyBp=V+kZMMK9NJDMA!zu53Pt#5BJwIx& z#|Tolp#R5CqvRT42qf!icp!W_Yy$n4;wucHKu1CrUaS7yAAp;s550I zJi?SLL&fNaCA-;mUI%TX7U(*zHVtRuS<#3tX2e`?!5zSvu{O6`x^vpob#kZqV4w{R zcmGo4{INhtG-=Oo2ULD+m7nO5kHhR-{3}a6vtEpjaDM2v>b|!##w35Rdv~;VBcFs+ zul4FuvRwKS&dE}RT5RR6vMutL0DT}`9fYtk#O(0M?EPhs47*H;N%_fpQmYy_P{Cdh~bEi5>b)*!1 zh$)G}zNV}F^pI%uBI;G2{(SA_-E+xM1t%-y@}8;6lB(LK5yDDv{n$9AX_%s#Xc;aF z!?BI|$p3_LHhKOM;Zs3%W+tE0?&!tvzRN0R2kkmBFD#b{8Z=&*J6u3Z&^WKl-#h@@x{CWG99l;aLA&=|q(|-ak2FO}Qh*EQdPG(4~JYFkC{%(O!I0e*1 zQQNxq8m`a$?{2<_2lO7Dm+?{z6w2J!o~~PyztZ-Y`m(jF3P5V@Yxm*rn#zqa-@Ngm zRd8sz?ndKZW(y9*!-VZq&MvcUkw?UlMCb+iRF4lM3(GKv4Bk4CLSc5nOe@4V#X*5%p%(}U1FP0mPZiZjh0 z3BO-U03i+%dr{4!Aju}k@3@HmFs>m(iG2?VqMzG686~cw&mafz0E9Vm{6Y_PR?#Cf=Z>j4ax)&h1yh3!wqfzuYxr0F)j3dnseV+Z%v zW<+u4olMVhy#-Zvr`9VdGa8=eqYd(~#$z4{ znOO-0mld&C#1CUUt2ad(9^%Rr|EIOGU~g29YM$dKR-cl@0F~OiPkbSP-1Tt}GVc1F zcE0&FoO_jvwd#viYampJ6kGM@cr(L6folLT`b{=HMT8oNZF2T`==%jk8xCB*?*03} zWt{1jWA&B+pLm@Jio?FgyDapOqFSW4D9o-BUM|1sKB-F@3=A!K!YDkAM+2KHzh_xh zP3-7T58jS9|BDnFBB2s#*nzZq)S>=QGE33w@VKnIl(-KN*^{h1sa-aZ?pIJ69=|B~ zC}KgPD0~(?-^c_{X0#Oj8%_?+L z28SOOzfG3(0YkFTli%kaDa0M;HX`g8$NI=dFkI->lNpbkv)ao37%ow---y+c_kvAZ z(ia~Ph09GY{{^Iks+9V;YF(;xezAaqZSPp$mJOu%uQX?EYW{z@%cYo# zy3@}4PHp6}sXt@PzaC%V9wI;=xE7;U?XdS!-PPh$8CaHXs$Rg|HAfpldutm4%?AUmo58eyo^pQ*ELyDVR2+Z zf-|+49kUDQfdrWIs(05zJTia8Jbks8~;v{V3X<_QX`}78P4cS&nb}XYX=ZeFZckS7E8WN(OBL zPyRv(`UQi+MKcOV8g0ch)WjhbhRU(=3VN`!>F-^du&@jZq;Tlu=Zj5phtldOmLgahN06z2X6zED_B zSlMGBjx0_+f!A+J(u8*JQQt9>8E<%u2i52gfmT9^vh4V^pDG-CM^olsxPnme6G5i> z#F!EH>bNnNI}S2{X{f)+nW9{(_m*b+9V~8IT!oMESXTCx)ID;0ipW?uc4q>I9m24J zt!9+E8!k^+8{0h~N(tV~z-)KH6fpjwU9_8zX|{PR|9W4(s8xH!p3<<*82>xDH(u>B zvOsbhX(cXHj``~IbRFqY58>%zR73Hk&wF^I17)HQW_xelBfjrBG)s1crW!aCTuF6P z1SY!br;s)V%O?jw$ua{F{Ki}FxJudl@Rz_glzs%$6;T!@`W?XnnCvqx&!bYz(U^Z`R!2d2yoOu&3|EORH`Eva6;r|GK;`SrIV<8( zb{v3g2RW@`UN+M@bj;DUi#88GE1Q~V_$YNXL?6X1oHZEVr~vMVU%}oivh3-4Gqflw zO9Ci7@qzU#55?s;!gXvivH$DFV$+Wl)6!+3N_TI5G+TV)p#L-$#}cUOdMAxx&G7ZF^Q@ZwmF7OCA- z;Qe7UAm6fcfU9mXviabPq(ZNaKx%Y|b73!n^`n22%*E5A7tQqC>=CCUqz-Rij-{e| z&7(B{d7hXYLmjJ=LzfiD|!W_Efdv7}Q4U?1Zf*r|lw2r&48@OU8tY81?EI7&U!7i&2{<=>?i=e#7Qv7rE%L_S)Yp%w%jy2MTU-1%v z%t0X5_E+cndQ51x(SuziQ*>s~!1r@}ZuLGNm&Cd9zht?DjhUj4bMScYGO_93(U}o$ zYnP6YPbgnx2ZfKnRh6}2un`Lm=%Ry}*Jxn-`IP~}8eQP3>mV=8UMFN=YS38Vm1Cm5 z?HeE%o+)Jan(QRT`x3Aul47{%HZNVio}9RqM*$zIEH)koM|Zr`U+xRwG{ELaAlDC)n>LN$9N5zfL@AXA8gU|OpUeKg`J z%bw+I)ET8@$B}I_iw!MVbnX$-y9_7{iox{$ZGl#V@i_PQ*~PHToxlV%&zk_J*xhJ* zR7**I)xt7j!b0(7)$l;546{XQZG0)5d#@OMqAB?3*guRS+pAQgG(_tJhieN&$$2*@ zTlDJ%NLc=E4(WTLVV6#s#F*k6gcgI@l`KBSLpNNZB+QzG@*}>eiQNL^5y1ZMMa^iq zh%bZbZJ0H^;=;0K98ro2(MaYLxR%y1yyQ;Aj0Qpvv&#g|lvJ}=n8k(ipRI?;`va(s8QZ5Mo!;8oZO}X-Lw^{|1*`! zxBj0+EtPh)C`-3tv(N2*sFfA=9l{93PL=c6G2Y|Uwc>UFB86)N6SVuOW~71D&D$!r zVCatd6(}(y$^SctAc^HY+X+(Jjy8Nj*IHspRreZc!m!aqF>tyMADXG(6iuhLn%pi1 zGq-bRWjW3XDd1*fBWbXf)0~GGqRGW<%+F$A4|qLOR>)i+A3rd8WwH%%^qcvYq?yX= z)j2PJI1AS1ko-B|Z<)&SL8r#jJHBgZt`nqwgr~i<66i1&;Rj&m=ePuT=1PCVI{Q@~ zd->tUfA1~GBxyxtZq8P4a!sCBGfYI?z%J8yvnnP1;Rk;VT2ivgG3VLd5Q!Hc(+KIhyeS?cu+=OxsGe>?#+BGsn89cId|a@G;rC;qXDI)Jr94a`ERtPcUS!e<}c42 zViBS|uVP!5KiQl=axem4OrZi~dR)9H$G4-6<=jJH9cCQcnkV4N>{sf5AqUawL z+rR%l|I5%0AZ!5?aVCqKd=619*GGrf?{_P+5ntZ&fooXJvatb*YGqXnaPH*W$3GZU z3FzXjhQp##OIZZ9OqDLU&8=&lKTVxZ$G15oy9d6jPweG;B*o1M*71C;>};CmP&|S` zDpBvJ++J_~rrpFh7e>Sg^6_4kU5qcIO1VehV)q$Wd1i0ok?=F<7IHGm2JsgAfPfRzCy?{S;Y#|Kk@L(LX41Qp; z56jREn5g?48c*I8Cj1yn(m+_)GE|MvcF7PNudgF}KZTd_i(~he=ah#bI8t{#DW?J` zp!O7U9nRcOzN+DW=4d6PARl<_{d#lL!EJ~2tuR2qr|v89RwZmF6YT}Kt{A#_9L(AT z(4LcD1ELpfbL=t$MVm6bnq3}r3^$UZ-+tFb84K3*3e;&dnK=ZE3<-1nn(-3Y$ze1s zqIDU*b;t|At9O0Q&G3cq$d_w~a{VvJvSpX4~{?J!|kN+@E|X<*=Tg_>}QxdzadcxblCIn^&)h=eBg74Mm7eyL5PZRJ+=^EJQN@bXNAiX4ru zTy*kVAd#VVXCa*5U~>-F>hHx4{6|ZjbX#NP>$`345I$!|!~Ivhb3U8DJkgloCw8lw zGPHrsdrf~&{;9ECWBGVVUuK}JDL>=Vr=*Za-dey~F?Urmld!9Hp5|Bw?w^;Zr5jeb z{UZcPTMLrVeH-h|v_OjRF8NZxc7~mFPmEO-M|!L#d|RlA^td7CAa?f1xY$2-_5ls) zL4hYVEv|Mc>SV^!`PcZf&niG<%m9?NCwjK3mDkFDKkmqqmT~HBf8G)*Onz2=8h4DG zV;yW29DC65rBj3s0aU7n2q-?&b|Vb#G`l(c*8Y>M!=5OTm>`M1JR2{)=2rGxN^~8Q zx*OoIo_&W|WupzOV?XSw23A1GFS3OL-vmoOfj)x2@qAdv+WtQ}pG4SCpVM$T#{q>4 z{4Mbo#!s!xuXi3=Q2yrmM3I{dDduKZ|Mji<;Y%j=;i6S+m6hm&C%#qff|w28=OOIXn-ra||2zo42kJxQ4GG(*7~*4~o?kFpn`_qu;LZm& zdE`d@M;CV$`BoN35K6UR*{9{_g4lFykPGDDE@MfjQmXLc|4RRNrITzgpiXe zp~{{>nAlOridlGn;q9ZO&8mTz=sbq^x}UaXMBi@zJn5gJkT5^`BYfSNLaUlr5Efov zOa~R7B~DdpY+`p@!!~a$_w@BA9u(%G~5}Cz~DNQ(B z)GvE*EMw`;TSGOIqVR8c2Gc!U&#Vdy?Qg}zF!oMUmLR>Z_dcYyer!*HB!sfqPk4Wy zz^zjCX%Rvey8}6fFld*;U+T>GgVf;DiX~RYD(XxNf*5_kI;_UGto*OWjQT9IGsB-l zaJvMiT5rMbW6&GnT5sXEi(IftD_In9YAsR|Sg!jS8c}_7eE^-dHvX1ABV<-Nt4iy- zpg45FCGV5Bthr_q1y_`#rB>vi;op;TK+Bq*eJb9&skXJhiCk ztv>;0$GhLuDo#krba^TEik|H4R(o#7EtPac9+EbUB*OVV8sN@BWW$LvKevjn>3;+S%hm3#;O+w?}}+3 z)({j`%W{t?gbhK1Ig4`?+*Li!ndq%;(e2%$A3l)z*N+paDv&}aPyEo#U=ZA%rQibG z()Mc1Di(PzXWbniv5@l-r8J;i+6b#jb(A@iJOz%5wf<=2FV=+~leTEN0US@Nx7BK0 z!>HDa^sA>cE+lz!W6+49b5-%ynbfrwM5#r+xT9(XLna`$$qwb;1xA{~AJ zA~Msmi@5TEOWQhX?2anIBB%2R`@ggckaO)Oa5F_ZQmrCiNX>bbUTe1)`k?H6bBb^f zInNNNrja--_E1ky4cWOpz$K>Y_koLwDmuc)8X%#!VH{e0F8YFk$T5K^&lv5`%{;?E z{1F!E!q-^6(%g4sDR^2HL3;x)RViGI_bOj-E`;nXQVO^=ftE8q*AW$rN|A;~rA;bfS5chwT9C6D=krvzRaDzwoZ>)Dz=l zfI2sQ11g)PlNg9P_zG15NFP1tozO0~DS;Gj!rV&0(K-tbSv1GH21*B0>;P^*rcdFe zU=>$m_9t{bsi#~Led*u4pVH=%W%z+`o!6G6m5r5_o(d3l|Nq#DJC82|oJ9E#OA+}m z$!cHBv_fsf4pNHKyu*w>G)E9V7Xl*p;^O)ny4Vb_|16kKX5h%vLx#UMn-6;K%^q!h zF{J(%ppG$P2W@bvtd$*(DuEaMRM0Wo}B& zH)-|?$)Gl~rEz+d5vLR9@LzJ7o3~q%N`lEzd&2EbV*GA7!27A5NYXDnj4N4<)az># zr3yP_7g#Lv`>vTNpf@HVo6h3`%nR;+NoHthEd7_?bM7+&UBo+(K%vUoY(AGaZt#!T zF0%p53hssh6QDv?1x=s`$daqYh4M}TU_v-*ghvV+UmNGV;A8&K*)Tq4P@l+ z$+&5n-38R_Q+1o$V-DhxW@npjWF4w?A|9@l@(Z3(U%C5lXHP4T5Za!H3-w3e(zB0E zc4Aw`CR+MADlNAbOixRC>(XF4upP$|A0EPUxP;7x64>S0{J&s1B8EN-=+*$L6TpN% zdeb5;53Dc^xVW>{U(CaAzP$g@swvX~Pv5}AA=5n))B39ZxNwSv20ac?chRU6Mgc;R?R`+cD?0kJzlal{r|h@rPQ-tL9|D6Sl}YIDfKoba7w& zWiz3?V>mZuEJe=;p#qcYKOU{2Yp&)~!r|MUmJoX}KFIGk&~=RHQToz=j5&u1umvR} zZ97=qRJ2|3X?-XQ72BO1DSLsTpn@EHi-xnlR0r7xMvCdhl(0S^&UY)sJIx2g$e0x^n@0$L%(^qcj-or!@ zO;6&wo+$_Q`XcSw;%o@nRlI(#gx^4U|B?ZT(>YITh-4ELPJ_ci^5 z=P7OGQsJEDtVBJZYNAc~R|at~xzYq~>q5$V(Rq00wXzN@Ph?;tyeo>1&22NOKl z*+Ind7Qc78#_fiN|HpWey7KA8%_lF{n=5Q}p+h!zav^7gmULRq`Z1A_BsR3F zhDw~ziu=aOofFu}LXB$VN!X21NJDbsIQ6OJP3w-hW~2GWsr5_gp`Q)TtE_N!o*p|x ztBX9|4Uu!2D*)L4^tH6VF9DoiqW5K1`AL+?suRv}6sRTRFzzk?rCvyCPJc`FmUj!* zFMFKT(0axx&@x>6ox1fGcv&vFXU$-F9x3wPZN;AXOzZsy0JXI*4kW;=+Wk8F=&qqFl#AYLqham+7;B-I-^yIPH zT!yAhU&{q$fhR z(w+8Zo(%o#i{*8%H42iR1X%3x@BVfPVO6@6mcV`?Ywp*a$4|rv>^|GZ$PI0^{k2)(owmPtNhH9@@}%vl#iA$}edXjM(V)s!%QHL6mFV~A<)Tyb zEB1wmU<2e7M!vF0$LqZu=JMP*8!%s&N9%SvlmD63>1a64s0PVyX}a6?;3I%%#S1#7 zWyM#d65x}!DAvoM>5+oqRt`?jRpUb>oev0LH3K31bnZRSYQxh^+|sON_B$>-Oc~X2 zoke}+%#f)i6^3mgL>`%yiSsG{cxIA$?zH~^C7+@>WOHuo>Q0|9@mc8s(j>i91NR9) zu{hUV4U)P(KRRW_LSJ|*euuw6=A*|yM(Xzg5sE1!Tc>~2lLXdDgxp^!ra|gLXV8(n z2vYcczq>^9&tA1gNnYy1pLqP8a+SRo+qE6!u4g1Tp$;;?K}2uJ1nLV1n|6YgDHeRw zyA{Uyac)|`2+;e{QlM&%!!_AkH}>S?Ar=JsnrrhpL8m>;s5HFz-jLkSkY>-Xt%}&t zOO|)tA2+mOmW1K%5n^w*|J#WQZT4I~1BF_7v4>9at;++X7|~?M7#YbGrv}zN5b}n% zFo+zh=Z*h_IvP@-y!*>~#4;sC5T>tjLEl+s9I^qjl9l*OUt%7P5V zHh_N##RyjR#{bfbHpM6X607OcfE!uzW>if`h`NR(o@jgZ#SRhuBz)(4Uh>%9jF{Mu z&{Ckz)Y1GLUj09g&OMN+|NrBaqH^n#qFmF3%KhG4D@C~`xwBPdv|Ms$LlP?YMD9YU zTt>`&=6*MKbKfxLZfw|W_?_?XPycM}%sKD(`}KT29s`Aib74eLnOTU-)`p0`b2Fj| z_tCiGC;P8j$4gxJyWCeb5<>4t_9T?cYV9Tmu5H2J*e}X}zC)riPR6tX-+Ihx(fgF+ z*qNsl3w6a6J8Xad=3JQfV;)-(uX?!ZihJ@x=&}_bq=Sp8TuVbq^1I;_Nw30!szCYM z{Z{OCa4CDkMr|YKlzwLGfaJRSs?&B{!Ik6QJi|q-z%FiAs;Y*}{O;+a9LNB|h@#&{LD^pVT+WTxVy`c~Q)SJVu;#otqRB1&-v_ z5;*+QD3BbJbVpcz_b_>6kTxtCjatn(cUM@x-uecQVotnoj=#au)~juUf*3Bp&b68w z(5DekmkgtJ0jR?rbP^q2?H~~?Y@oQkRfCh?udcgCz{2wuw>o?1;Axl&#bd`!g`PUg zSmlO7y#V%B>p)`Tvx@*S_c=?y*^Wse`?WLi#A@HlEEsU(DE!=k35@&YAhn4?up4`D zr1Qm0iVK5mZfQ-Mc*eb$>fep^_3eb z!#)Q890@3mW$({S>wQDk*%=lWLxC=Z90^j%Gl>+agH6;2t?qi>nCVCikW2l@$R(hz z#g~HAtBgYF5^-^==?%R2W(+^r*6 zsq-Mg0Wu!cZ@lKH+NEK*3~N)driy>vHCF;mulwnvIzom)F2AZS)|)ejRnc5o$X_u@ z>#_dohZwF!t8W(%tmpP=$R%sCb^MmJd}xKg%kbG*U5fQmWh4VsviPw9N!Ip}iiqfO z&)0w6a}KOFx7kNx2g7j`^i#ERLAH?pWsjxn_<+QB{KJE**@zcneD^~JD&Mf!)jD2Jx$h;M(P~tgJxE?87OTZyHOjH|i8K1(1fi?9xC* zE_OYEIoYkK>@oAJXlrs+o3KgfoS`l8_({<_(U)-%nnc>j?H=(sh3|fhCLV9EOU>N= z?`C~C>iu2>BrmBWw_6{(O{kkBd--m@Zw~!azq3dE`Oi=GZs0}<=uh8T=Xh4;_7A@LX!`ZoLe-iMS=YMtGa`CMaxTP8Vs(#d7iIf3@&PCMexvQDk8w#n6ccHMaA~M zqsQQlRAa0Q&6=9*q8nLO4tTynj{s~w^vMyfOk;u1P*#G1!lGG1t(@rkAHNv+6`Bs) z9!kpXKQJ%#+Cg=k$S!{vS|PB{Sq-uSo`4b`L{)YyLSw*PN0WM*`E*5E$0M7c6Ahjg zn)ifg8>iWliFXE8hK#VKk%%1y5*0{bEd`mxQ4^>vzZe2XQ%BAH^B+pry)bfLifQH^=DDDSNzY(+1s<)Bkf)>G6M(RH-nu68o1WUrnP-}D zO@~ScQ%AGF@?e|0%C4fh{4A zF4q7epg4sg(;%Cx;Q(hFmoq$geV=L))N$d!TK?<}ac|K;7h{sJ1hO7N>4wSxY{dPu z;Hkz}gm33IoP9{OS@z{ZIZ}!(I;0y9)tB(Ah z_UoiW3jQA@auvP?%Wx^%oD9`$G^p`YGmp>@H{Z_}|Jv^ycZ&|+OIfK>((KEoGC01^H!&_Z6vKnO!q^%z3OpMqS_&YOY zR@3bSuA~N3DCn)AaP~E8*Zj zF7hkAhcc|EcA{F@!r7xN^}6Pvb+sGIfgABQ4J)Murjp;@8;_7?zY6EGqJWHR?<{U? z)5^uJ&tbicDj=^3oY%@~eKDGovg!2)TF36RA&uF>m;aj;Fa*JfzFM|FP3 zrPZ}^g3&CKwhZg?dI~)PG8lFWXtCSedoP41u={>7++Z);V}GBp9oU>&E5UHIaIsz* z8z?Jq-P0U|>lr9H9n?9rtV4Kg=X9G>7({?2SWDB8iJ8->+kh}WJ17k#W}D!RUxDwU6xgD62 zcx-h4o!z%rqaHXxYt67d$3Nn8^MD;(%gki-s4B_Z%7@6*KQ zCw1>%``Gc&Z>ER)6@dO#Yr^TWC#4Cu^*NzGmTPL_+l`mYh7 zp}}>Bp94BXogzDYr0^04;*Ngsy!&gH`n?lK&ei7IZg1`Lf10a1td2en#J}D8B~Z2u z z%LvN-Uc4(F1^S>2hL`QfXa%)k89SEUi|HoI*Ftw%0#n^EOH$yBG2Pa={XM&eSjhUy!YR7o`q;>7J*KtYh6Kbw6uGm`6 zL8g3XA;@_x%}W5J!1pxLa8n;QO?)s>b4`WglpIx$wUreQ`wCp5ssYg-TU3o$zjQ^~(YjJ$LIxr3^m0!rg(tb!`z(44Cr@gs zsr`a2aD~tjP^)^e*^bZ(k$UaJy-Z!XPBMQwr^dNA$6)rXxoFQ5Z}aud&2PbtAw343 zKNv1caiQh9bI7n`Gl%gX<>MDc3M;`j9kUGfD$4y9jRss z<4L2E&wExKFZ9RSZ28f*J)K1Yc;5)`j6Du6JxrJQHr;XEm_$ol(=mG2+BPr-6Hj?i zo@-;L&Z_%wf7!g$?N4qGbJ_FOTC*Ff_t?Wn7Ui}RJ+{qelMlENn+&1{U|ru{C=|Nl zb&G%UT|S!p;v>KBJ8#C_f!Z2_0f$Dj617O*%lNVo7)-Yun zH`U*Ki>wUEIQQyH8L^-ovnP^S{0M2+v6e96(N!}UNikeoTxk2fv)vW>iacE|QI)dZ zciz|Uta`ClfxaYk#b!JYs5p zudZSzb8$wiNT>8dVxn3N;c1Y|6WII_jaYI8Zl>jZw-sS+UIN1hw~-u93%w7JQsl0VIGvL>rs%H52Ox=A&v2aAoJOQW5g!E=>R`?;wJmPPPYp2dB}5Sq$06?kkd1hNh;skhW{_w3H$8w_5=lpVkr_jH@&=+}q!l zmQ4yM^TMX+CAT0`iCfRciX++V*Fg$kwb1J|3Y_wXb49>`U&9`JC8t0^AxVLksP;j3iRc%(5c8CX+7$s3K$l6L!@L4X3u4`mk54=>xrX_Gu6 z9*`rE-Jc83`xtP`{{oD;NzJSzMWyN;4`1>ui)8hO)?A4-l+(*$+xzgL$X~^{+1jj< zcKO#0Fk4ho>Q@ z-HYYeraDf@6g;qmXO;HIM!&?HiQk&-W8M_Ld6^FCvAgEb!{K?UsV*7}??H(5>(SzL z8{YsvhIhhr&CtQ!pDNFYqAglRjPT{<4Cu~G30*w+BW1zHJBlKH8WPF3w{|3YSu^aZ zrWk3%Ux-`rd?JnkQ09^r{uj=XXdAn+39v>*zC=7`UzdlUWO3nmkkpxN`T9`C(DRIX zScq`KdclXb1S7k!2zByD8B0<}&aB$ur#;lVC7TBQiJ#C)`eld}Cr^-3SL{0{uSn)( zbA(n`x{yy%}A2YcR9uD*4sB>JC@V@`>;K1<_umSDED@ z#9!lcAVS^p@|%HrS=yQ+L510pPf3`F2*Ep2?VEv&OS-MqJm=U1+pQX7HJ3fZP1(0` zIr{Ma_=gKirL1=o8KqF|_i>SrWU8VvUd;jET>SGODdGAR>i)c_ak2{WiowdG49y6p zwc>Y9mWsBEaF8#mdY|YZxqYeifxP2pTZ2!tP>jwNBh~nz`FSt~8td0hjHsEl3C`T@ znf=RyM=n@N`gL~Mx^4@IV8u5B|K}3?upoPurAg*NqcSiroK%~)`U6_&W&4|d>t>NJ zG`K>VdM^1tXuYUCSim0;MwVe09A;XyGpA#v&CkCZT255j4k*2v^QEtpOa2YeF!d5M z)_@l3S7BdR0<^QP=UnQwEp0JHMdub_gBAr?^JTGeDw=?oSeO{7%rpKTB!lQ&IZpNJ zoBmF_D=^!M+vI^4Y(<1FzBkGx*yCTk#h|GqJUHHi&6nRL&O`%ty$2nxGUI}Fj^SsJv3DTsb#-5?vabG_ ztc_h8beSVt$jG%xFwh6E!AoL-zZA6cox$uXhi{Mi%=gYS#yr4`AMK>R!$%A3vz`PO zSk|(>?RfX`6>cs1g$}72%_*y+EofJ;R_E8oiJg07ovW0|!Y@C@M9|#k$$b-V@fpxn zAB}Z&1;5Th1z+wrul@7Qu$}B$`G_3tOh+0hF>sgS63!TSW%Fa?h zTn!TUPd<|P%Rg0SA!4acfLoMK8_b+H%1$a4Fxfusvji9c&{qof>mp3u7Y%*^6r5jv zm77+dyHh@3NSThHmTyN7O~+o(o;RX;JsKVT=I?#|_Lf9t$s3Q$TbcKpvW5p?p0lgT z)A2lfcaziUlOiD3U>~Xv)p}>KhxMans<*28dtIFoWRm z&hOJs6!G+sp-ZGd?a0?Ek^7*+2bjygg|AXl_{oE(l)sdbya)Ev{DlnXDp|A~mkx^5 z!?*)&{M*M7LS(VA0eQPl_w8>%y?Ji2Pi5{gR!?P;PX*%}4fKc0UP8<|$K4NL;^o|& zB?|_ZKxN2(NgE&~zf3};CrM&cgP9ZVq>vHx-G&lJ6RzrRaX>JVn z;tY0X1*ud4)KN_vvbD*)v>{lry#2E#P|BSWYR0_)sadKrL0BLeah?%i;^TUUs|6U0 zJb%}P8$D7Pd;T}~)!9c!YZgyGnh4@M{-aM`MhXNK3sDu>(dJ}WqUyiF;`(>KC9vje zp9x@ zz`kd=%PY26ETlheL(Y^&El=g!`*_#d0z{JG$7s)zprAe$Wx$bv-qtyz(7{gEj_Lqz+ey0dGspTLK(| z89h(?fCFbD&l!gVVV}uEXs1o%^^9KfZ8K;}0Rg2`v z88YMASma~M4Q5fNNbS|P!7*oKq9rd39)A=m);ro4KuSSvd9CtJk<=2(CU-T2C#F1~ zz1c9|F^q%Qq`Cd;ZaCw<#3P~-f}6ZCb@eaa-=VOnn0zm7`tjqKkW<)tfEuI~7M`VG z1lMGP*JZe&_6IUlJ#i4f?es3h91B<0pY8gq)Li(@HNOT5?RQu4@XF6B0BICr(LFdl z;|so@(PgC{w1EJ@b}{9=fg97by=Ib^)at`q-ikq;V_Nez0}fB$itW3s0S#~I`rm0m zbMZwt4kp=Wx*iK@a8*z+RQ4>OsSgyZF0f!OS-vJ5i@@@}zRz3r!m{Puy#8vtq@!W% ze)+?-`?0Rr9s@-QCTbtl;zYpj9VI)208W^2%)$G6-rv+$FMK{mk9{Hqtv35CvFlDT zn$qi*akK2w?bk6ZMtzqxat~3xc^R2lCl4W^A|MIZCm!+VCf-6GdW(rtp=&SU;j=1# zPm*!2(1OOSWZKf*!Ar|HY%YFnwU@!=Y4I_b>M#?@A%j>P5&Mr1@K%iWwdd%D-~;Wt z6uzcTt7}62-W%yR=pLZPy1K0DG08W(YC?mgGRKEjB%;n>WV?EK)rmQo*VNt^Ai_10 zRR%r4bjOlV{u7#x72Jc!H?GTeHS;dB#^c@c+;k5NFK4@L)`uTrOw^gWDFkRwapp^A zc{|c*(^k*xL#s{hBAroQ;G!-WW}Ze|?WUuMPdJ<2mqSGV1a={dTOQn{OslEhzg2tg zX!2mS&ycwpt@Iy4dr8!@@}Ugk9?$Iql*3#@Vac|FOo7(yAy6HEU~~uwxIjcKD@%5By9d>}MZkO4VcE_pC9%H^$ZN>G#uC{% z-|<~}VbtIwJ7pAYHpe5i*oc76-qm>W@#NcHVRraOgcSeUhG2Q~8gM&3!{#jQ80&Ni z?Xl$0puCwZQ`M=UbviWAEK>u~8!35jrbI}?y-CGqkUlY-2O`BL)UicYd znT_L5U$RhZPw<@N3Xp#UEG!Dm_F8`ZC?e>aE~6je@;ke z8FgdJpeQeJKJ-6e5e|YVArP|u7K{F6TZ!n9(hJ*P%>M^ZsNZf5n8uhpj#$hE+Dt&y zUOSHZdgPLK_-F>JppI!;?#j|!@b8>6XVJX*c~(8ly>lvhL|8CwaX^hcdQeqK+p;d( z!adpe0p~h$lJI+UDWKTD2Q+-`Mw^x8vhW3U;vjPdvdkmaB}w)K5IxP2@q%Ow3jaU) z)7t+h5gxqzAKdj&I#uQD-9u+zyT@lvzF$vK=|>Ha8vmy8%qZ7f_g3AH)Lgm)=1(MzTqC8W z+#0L2q`;HineVzA7rk#nvEHGx*1Bv576&qb635oT=vyYrNYjA(UPv(qykboDV{@|7 zZYu6BEMII|ZAGqtl2Hvn_a1brZ(Ip5kA`t<%O$Q{uavKK(YBbP!TR-ernw~Y8ft*@ zvNl@Rd3ZZhSO=NgrmbVFnVd-axo1e?r_bgtx&gi;E{qaKoO!6C`vL^&-)O=+<1W!*ZPojYemH+dMLobYHsPYF( zfmWZQt>p-KwXF-3Np3J1w~z?&Yf|etWF%7NR|>FlSm(a_O4fRpl}p4xcdRUM00IGB z9Y8{Qmt5f+B5$Bc)4&3MK*Cw{@d|Km?`W;z_buoeAK5Sd)`goNj*)GG@{~f#o*Fn& z4qjoRl|)4~fgTx)Hzl`NK}@z%qnvyVPnY`&I|6PEd*Kr<*8=y`vA*ge^r;Bz@5~L3 z(6!ru5d{AV(UtG`HYOWia;bqW?RNQgC;OnE&JIlA*yl^AiL$Y0X8d6$N|lXqxEObX zbH+9vVq>RSz?`C<8k+cDP|8{_!ZwT2JDF@A|;>T%`P&NX%97r8|!?RS_0b+PSlJ{^jhLt;OScWtW z1hQWCzp5m-%^z0jD36^!nDmhw=5O}6we^H_b*nbE&-Zj1hu?`p9|$?QcjTSAsr{Zz zg$;^~!3YQN2o_6Dd#SepTN!N~TTEu?$>YS?)bZX?pPlZ7a&vdt##1C&7R>=I?4N@{ zKgcqSN7yvb*MpqY)-#CY^fHWQ+}$?dHqH|n!k!5O*cI6pZ_{HFfGkd^l<}K4KVA85 z=bigw-xYw*x=ftSc5};GrljA8$$R8J4{&L-=&5gRJicrs#EGd)m>a68`vGvLRy5=x z0;%x_C`>9}gPDkEl8S0p`PLjx{+K3q+@8;D*g~{77&Ac$sm@=Wqp&3A@N@t33*SKZ z5(k&57Kss2y2J}CwUOuEB4nu6)!a&zn9}wS8ibLCUR);JIlYkfwipbc@lzy)GtFQ% zraf{HfoYLk1yix$>~hQiV4HKt$P4hG&8^agie7HiQ9R*8*_f< z6=Iu0+WWdByeK+p_SuWYUQ^>M{;@SN`eXEFEz$na1cj_#oL}t@W^e?N{@PkEaqgzX4|gO2rKIM)cB?WmMbs?x8ncsv9PgJ@gRY}{V4Z*Q2J zlZ!EB#l0yKA$3*VUpUh?J%ZF^rC;wMFS!Z{ToJQtw_g2k0+St~LRXVGQuKRy3(dPU z;SgT`T;U3-2CL%fu^qqGo?hRH`!>3vu<}Ar4j@ce|DaoZ!<$S0jA8(*+Gyz#fx|*W zA!vKb=W4%Kx&wBfe)M*o`M!g)fu+`TKj7>-_#jF4U6{u zi!|7SDni_VK&hXLuvOkpmis@wwMJN1gozK(BakC!e>JW)(*w*09Up##LoME6wNHE3 zT@@rhgcNE*FQr-@FsA-Ei)NmhB@>)?_${j_n-rztdyOLS1*4`e#gb^;QY*Lrpe`~` zc=)$-Q%&Va&z;EV;M?h_?pkj7vo(e2>b2x{J8N%`nei>t08JXPWhHl8yPZPEYub!% zSqP2K&1AT<*O!sClOU5N&ZL^LKSBgl{E$POeQCcCDBU`;VUG-bc;hlz&i-D1XOI@r z8(aTtMh|Lepjh_O)9=Hqc1>S*K$k4l0o+_dEcEVb{Q_ET z?C%t9-<|)yafTT`Zglf`3qRI+zkbJ*UxFfQguiKn%%B-czuB!~Yq{#Ns=EX84$px; zmhN~+bq=UA_k5*GslvkMYir7c26)JcAaCqJ(WQ%@Ehod&8(uSJ`s z_3nKS=LYdn%w;bqPc)tUfqyl+Sc^k-JK(BvyRF!bUc!n@h$f#cY;?Bd5+VA1DnO+~ zEWOG9$s$hP?N$bN12T`Y_&i2jvXx(Dc0ie${RlXB=`2K#@j>u!R-kJrt>Y8ivo|!( zRGjE2hyx_*PAMa?rc8KC==WvR>t(6>Gg)-na|$ZGL*YeBDJH5u{}D0_CNw=*w$daR zUJ}=h90iBHk(;y12$zup{_KUOL$fsrz|6V$Wykd89_J##?BF!8-fhivg_OhS4Qf_YH?jG@o zHuxMygii&{$p=$kSD^+nWbL^YTb8AZd#7Qni{sSVm33K@akb|`oeuuon~!Ra<@@!DgC^*mpVI^a zo6k=+K7y>V2uW0#2!Si+Q7JpxNl4@JU}qM9oejaa3i3?vv#6wmSrd|-9; zw{%}$06bu)1e{in_|hJ?_eTofQR2IQ`}(=XgYEjHav3IS@k^f*M$Lb-Wq=PT?9a#< z#cZ+}QY!Y$NJo!gsc90rKO6~M-oYEUc(~AAPU%ba+CbLO3suNO)YNG=(|ErgO=1Uy z__*KGe~FygU$b5wS~j9fNQ`&&4-%&pWYXPVPJs1T+}Im@e(rNF89YTkx#G*C1Y!66 z_ec{I;6Z{EVzqU+@9VlrlPh!EE+94p{kjJ@cdOj_ujsVlj;?^2`G{~g6Jo86H!4}I9cvI>tw3qTT%;O43UUcSo2O2|s1_{6 zPswpv;?=s*^?Mx+m;3$1`k#R5LtZ*z`r*EB_I|Pf3SMsNq$^%IGxZZ)atZbr6F1SQ z;`)Fb=-3RJ5^;3%hI*c^ni-**~xgd^t16gO8pdEx%O)Xg% z`Q>Zn-=SDss;{F4>ftTEJFmvr(R=p>jPw|5=roN#fK9sGHy!h`W+%$D3s4Gfs&Fl~ zwYWrnWUN>daX$4cp7h0~lL;0fCD(wNI&aj9_o-l``9Fh0Fr?7ldq^Qh6_xGAcJ(6v zQge=PsT-wXiGvyTx?zmDjPq`urM?V)gxoa<4!Jy?0R$boQjmuvL5+2BJZz`o9%;OT zgfPjJd)2~@u9SoHqa_;2DP?FM7TYv|&#}dp_cyLZb_SLnHiHwft8M z@c$aEg(7*!leteno}c{pL?~?v)U_ph6x)jfFHGI=knwF8fEf?Q8f|a2Ny|6fprD}5 z_d*Z<8!3zlhpcS{VTHEbQQ*2(aeQxv;8G9_v?a`SkK>uVG^FAu$qH6vwggK6rn@0$ zoiBCx@4LU^10O~6HkP-ySQS3jvcCFhd5Rn!UJkrRKQCnovB{HUoc#;O_5SVZT9IMF z@o0dHBT2I4qtY{O^$=F$>;V{CdSf<+lgCKQ3cx)B6WzG|>3>d2hX&d#qfSm4?<>BA zL<(8Wi?Rvo`CI7B64H5rX`Wi|8EB;XSYmj-=@1O0hHd{5ZrrrWQUOlm!Qbfp90u)C zi-@T%b!hW6=0WbsD`vb!E02rM2ArQjrQ=LrHdI=t!R3b_>L!ROEE?EaxCQa_70mr7 zSKo3=SpL9XtVU^B2vf6ntXYUVOp28uHbRr+yNmYmIo1ri z{Xb#As|#OCJ~6hNjv|%JQgwgnDOsJk6B8DFoM@$EFW2(oz+x4a5>dOD23IE^e+`R0 zTkXW>D>ke8VkJx^Q0nT%jR;TcwLzL_XhDYRa5>WP$fxOs+I3HnPDLHYhpOH`Iry>K z&HdNNfPlMFj>+9=Y6sS2m*`$!HrUQX@cp023=7P@zw@v3qM^+^lz3GNqJip!XfFqz z5?orf5YG*Q2K4)^=k>!Oa;UT4x1WsY?u>KwNz81n;N3?C4Vnd06q6)BDbj`1HslWa zx3AXQcni(0t`AzT){&?7B=qZ*3CpbD*Z!_s`>Q6AHDgrW$X{sakKUa_VX1rm7?3Yj zgWHM~4CF&!qg6BA?U7q?AviI%FHFUF#sGVewyxBUk)Q$emU4&6-yM;aeHKC1dY=z< zHiZcLpX`nMF-M6^{mkYGX*v9C~z>XkX6jZ#1c-n z_IRuaajzU$x#TsZD-}_q2P(wu-g8tCWl2GO=ytzw;ZBT5b?FGLy|>qD z5da~XnzE2CHGIj@FAT?2-r|YzT{o^^j;edAL;e>9WDy0TfDW>(dq;e0dYo=KC6^2X zPJS<4B5kX;%!gb~pO%9vjKv+`GV8Z`7MbEzfma!K12!JZ+^D`{Pq=(_<{mJKP7oB) zP-$2T%nZT!2%C2&3pswO;91kcMr0B~xa%aV4NmfOO+%GVtv*SfvL)>9rbISH`D@%*bNK z>LA16lAHU$i`d|oHYsvjW!3mdc!y=(AFhe3k*Y+ULq0_Q#UJlfmvJ5{x;jQNqk)|$Do(!g6d@t0*$&LYpp-1)^FKa)x!)k)sxCd1Z1H7m6pkM zLk@b7qSEsS5WL(lSA)W@e zP8)lKE_JdKsLAqhf>X^fBE-bVf)B_)k)g!&tuEw@9RK#%6AQoFXA0~`?ODCjMsl|a zAm%dg0!N!X8)I(A?O`*oJ8srAhM{9oV+_sZb0eCcGWVYNsR^+gUE_xpZq+`#w+pAk zy3~29ekQR8SR2w{5lejQ+yQFG!+)^t50O$tH=LO#Qk2z6WiLAqS6MXso7;+WVgf+K z2Jc96EhgIZKh8SknG;v0IM}VSRzqlhE&!N+KC`E#2QrRo1ONk@!2k1&+wNfjzVVtK z0orQ5`knpf`l+UrGQ2u^CzE2%SH4oz6{b<(*C~|r7&6`Q2N<);LF&3*r4;T2MQUXi zv15`nlXHi;pD~>l*TH~9x&-1OJZ-(bWx9V$`!#i*^PFma9%M>)6JmkupSbaHkLDYc zYNM73_li@~a@}n;A6vwfMiM>?j;bhz!SaGIIRO#dr@lr0rl!8r z#GI(_C-rjX27Y{=RAcx7}y&YByji)K3n~4e;Fn&I5XB_aL=Y& za=0VVHB5NvVcP2SObTx4_0bhSll~)-umgUo+?+yoaZSEaS%Fb3Oi3%^=yd8DOOV&o zeiQ=~CKC*==BPH&ZsGxk+<9#^Wwvm8Y;TJ?d$J^ z7u8(T6E@J{NMjf*=^O*#2i_dMHCH1L*n4MMO+5euNsoORe7Tp{t@hEA++iRez=J;} zlPz`;Va&BnP!pc8)_Ws$knG<0=S$J`;N?quWFJ9)Z!(ku}C?;>7##8^Y z%*G9P?)Rqo4vs^0SrPeG%{3V#8dqMD{~=wV|bv z6^4~1csEWN(Rl2}8P=6)GVQK;7P2#ZEu31!ZUsrCc)eui`fzYoo2`Ju+$Oz-XVkF) zka#JH?{M0O!HTJ2ixC{b&5n#OTCWHw@*~LlK+t$L5{)Dq5ozDbKB<_`pyegvAaxT+ zSD*9DN~H0_Xl!$Fa{RE{(V+cpsH7c8le@Q*JdINLh*MSg_k%b6c(P+6lUTu#?bmqA%@(iTQ=DRPMlnVJQ@vMoP(n`H#0N4_+}%01!< zEOGX--+fO77FTt9{fU}A*M67E!z1$F!8tEai-ObAf2kmz>D6A;e<+Nu{ZFz5XZ@ZH zuZ=x4(XK{j#|V2gOIbHWyx;Hpv=7AMSyPV;wL+jcCQBOJ-N&(tlSS@=%hQ`b;8eV& zrXX4_{WSltkTdUwFZvo~0OYZnQc8Q58qG~0r zT|GnX-vP|+@NWQbg%4vAHFZ`&!HABEIf$CF_0coqt6RDY(y25Ux0-3}F49hV4u%Y?eEDrVxKoN| z4><&~nD1_czxp2vmR<+Y>fAf+OK{iMPw5DD8c8O^ZrP9G{VyG_BlCA)$lw}HLfVss z%1ksRk%-fIR#;VjN?3iZM(nuIX^FjEQjn~UWjy?$%!tqokY1V201b82D^j%8ljr|; zuZ2ozYqr2*N|iB%+K0^~rSC+X^f*}{c(TdYqp0k=TO0av)X&G^e;1I3OcZtTpt`|X z=;%|+r@|LOQj)Ds%b0;3wIJe63~!99(A(?U^<2;xs@!(1RK{?Ht^nh0vo@DHF1yIj z^7Y~fZlj?RfX0Y(LQ2$Nb%A?Zd>Vs7?n}{iJFSqqL43=gkdqgb-#V%lGWBxQd+Y`? zov&^Az2s`pS7R=|(7@~I8f?K*Mc*xqSD@Sz0~+~$okJzJF_rIujns)R7#}b+Ij2DO zqMfxNRB|=b0L=;XBiIFWif4CV+mX+C7z8yCmhn*_4=#c2>_)nn8~*GdrX{%-?@Nh~ zS!z$?eE#{1*{<(zxyNRPtRADL10Zd zR!!H)*~9ELr{XgZ_OUYZezeWjcs0=3H^kb1Gh1D|#@64r2yoc>|0Q`Q?^%#)#`m4% zbe;inI&Y;tKE%e~Be~q2DpSoTYHF|$dsjrIGG4fNesd&@jB?6-{X}19&(sH-%ib@V z`zal^fSGCXETUOgUDN%GP!rnp^+8y0XgS<-W)s-)zq9af8%@@3XtK~&IQ+ZFk4U|P z;f>`y=+HGckLalw0Q`YpW7DMi&Unq593_X=^rqDq^lABI!Wx*WnJMk!K|(-jcH8u) zh+aL;`shSHeR5<%XMy!di65*E{P3uX(@5Bi54)J5Q5NjPzD)nkt~PlpZAV{$IrLU~ zSRblX?uj?vDJJXJ(cE(XIKL7yM-;nt;2)*5yRuEb3PpOm?|c^{J7xAe*2^Z}?{V`N zdMRs;*r>|?V;$q)V7pA?pWwx#e(AFm&b&l1M1WJ-bq)`}%?5y^9{rP|1G&sokzCOg zYn=#h44B9RS|btXIhymGgaf+0rB0Sv;}U+i@v@ zZN!Yw8SI8_Wc}q@+b8Az@qB7ZKbrosGbdF&UOIU1W-Kj(h%gpS)2{-z#_j{^&O;QN@8W>m z8lMo4u!qZr`oO5Wx;A#}G5%cb^rya`fgk3av~?SJH{ydDi0ijWb)g8Cw@0rVvPx~I z1}o=87gmaFQbasbxccuBajq+3hs2Ry*M({6#cm{ti*~$JHDw!pd6(Qbp2J*J!+fKwPQ|U|Mj@JZ~g4 z0%<93!tG(T4KtO-ORUdr#ug~nv^*u}v``M@62nFJF=R^baQ#OTC|zTTFZhG>VPz=k zCo(X=$9e2hknrOX1*D;$to~HP;mOGqH-YjU)lP3Ungtkvk)J!QYPpeubLHw7x}nc- zKW<$6-3#09h)UbSy-q@coBRM%rtf0eb3EQJ_!7y*co#KtVq`yB#bMW+Tg!pEX_tO~ z6x5E+qTx+-@h`PmHubKgFR3O{OlRfx!z$c*XFxJcxxC?QWJc_|ILVh&@%e(j*vAF5 zx%jSzhQ|s5GvM%R8zRsPE2xhgsI$QKtf)PtSd-0Gn>UWu=ZWv*Eu^y?Ws@%nYkV!^ z4JeG9aAOfC)eCARR}*9JU|DLe&wu_^uImxBTxHgCtNJOwrtAB~tXU0g#@UKmv>7y( zkWBkbY?@Xe|97>m214HI$_OU9DfDpUwsSD!x>$ISJ{B+De``9jiS&2rI?BXVj3iG% zTsO8KPo@x*0nGzh|J&~y%;S#K=Fy_LD}DKgCtkITJ@5cA;6(?|p?7;*dRs*%l10A$ z4d4<6|3RD$tSAp})s{}z{!+q{WC=5pr0%D=$uIW_#f&JEM13$mL%Dvg4r&&ic3GBf zbPN%~zM%CMv%}7KMa&6)d*XZ>~i-V{ATIp2Do2{jS1rb@sPDhMBYj3j`050CGmIGL3tSaJCQU!S?KE ze3=`y1Poe&4Bwjycr@f9X3kIEb|iPgiqYg&ZATem%{TR8n=RTZ&>pgG<7UEc@Oz4r zX*%8bjMR^wY-cw?U-GRy4M(Qeyk3t=u>FbcJ6;`X<_gum+KUs*e6SN|S*u{R1%Tgg zw4D%Au?@0!8AiHvSxNNW3Az;P{<>@bf%Ri`m4TXq!33@Y6pOO9Hh>wL_t;}tTDWCe zokxhh6~Yg<0{wj(j}|~`f^>+_5eBA*YJX5q=40nirIzJ({yOpc7y^se*WoU2#p_6@ z1SA{K%wN}jE_);$Zk84o(VOB~pjIE?uq5B17^K^Wla~M3*&wypa}{m&4bT}ZeN=$1 z7&ZL~tXnD`STaJ!bt7E+{M$`QBfnUe=lhy^D`)vU#SJO3X$oxUmI)ppO5I~17r>&7 zQYcSeMwx0h{OJ{V`=Q5Q$0L{K($_Hq5CdWDLU<0Z(v!PpN zJpru9;UYZ_K)FeX=n(67Spf!*PAI$)DTanQ!(s6Vg*XWwZoqi~BroEK^jz6|rPQ#Bj@F zUrMPlf|i9%8Q>#9kLmO}F6yLK%=lUzr*Dw(p8x+4Ue*7F-Ukp~tu0$XV#G|@&HQP_ zF8D;)&1+ZSnFWK$YX`7b_@xx}07oSQXi-qHC>!jyYKrt55dOXGZbuSb`;V4%fg^zG z6SaKZ``*3E!%K6QYTrD5?~teLCFcuL6le#m&l#@Ce^S!DcU`|~T|9&NWzIb!49p3<%p8Ne#|F)a}Si*++G=KVD2*vU%OB z5YXkHh5D@L#r8S!$i_``K5%a7vR&H>-DHvYCzD*GGkiX0$;nKV^b_2qbjsF6W7XrA zV;4@Nn_uMH(+Z7afi5L`sm?!smp>?r*&$Ugvg3sXzkY-oE~6rHV1X@gd&9_@$N^YB zZq7^)i?=HP;JWV}gCQ|McUX;ZFEfuEREJ&lb9O1kF#|EQafj@dqM4muOG{%Mh`p)E}v$}_EJXJf@r z-Zapo+3Hd_V+Kf89Hgr>bj4=zkAi98p;-m83~6T;H>2=2_=pz(3URb zuFq&7x9d`4+kN%w4ouw@P1*2l(T3>9cmTf=W5y9=d&{rTzr>syOc_Z5`JQQ8`+&pnA~QmFKYk6~AdoZ&IWWY9Eo^pO!+P@mTW@iPUp#-O{+;~WsiThZ+Q5#; zQo$p}rE7tq5G2I=)bdiLyAB=Zf%+5(2j^IO{ zvy$@|<0tZ7kvGs&Un7=bFopW&AkPE!2XS>^MQiY!ZsiJ__GQX=bV$5bdtcl`Pepqj zd+*~Spt%n?-)otA)II+XZR#V(=q3;HJg#Tn;tgWYJoV&NVl%9=Wg@5A{*36Qusi4X`pnx^bBmG+&;RD3@ZE)j^>1%MICdU{E zJy7#fB+H)d%HiwN+KbUTJp$$tN4)ERgR=zxbzMzITMEK60dT-i)%|eXFFxwH)cnW! ztWfvYzIzVC$O4rX`QrbYJi!M z+;S={l7p0O;ETtyW$NS*lgYpi0t$n!_6XjVJbdcRpj(CXl2OgP4|lBBWwXn|#F5O) zARuoHRz5Uq&!8xT2c1Md7m-uIoaMLv&R0pK<$47{9^n7-H=>*EOxpq^caEh6%?p*X zTAK?ZS@o{#sLdGpqfQ`Eqm=_nKC35A$Tk4xl%K+9xEHjsw`{Xy&>7DA5ZEQu3iii1R|TVcu{VD+Fe zp*jW)PG>U9Ll*qtMYa93t2;cOd_VzU_>!l!C*gTr|Y-s|3p3Yu|>#3ANOgH9W@(h zb}=`~dh*$5WBAP{f7*O#v$?mIRw0oa^S&0i@{V%pd9c z)3`T5*QfV5*-Tm-3)zhg*9jQk!thMW9r{z3g^G5%C|NgLmd6U-`Wsl$1Q>CdzjyrW zX)Th9gz?6P92opU>uJqsN$jI&U>=AaZwgyOmJ}5$@W-#a68Um`rm&6M zxiS+*uui<0-$}=$vbR;HuNAt~;L`7Lc@a#eLvHIJ37??=PxQJ*8#h8uTyA>LHE?VX z*x+9~$fBK5@h&v;hVG<+=E~P5Fy)Zu$q_(gWCqpa+vo#ags^%`LdIRU+uE-{-;^_v z3wT}1#w8xtlNzkE$jWf3XJw8a>Z;cUwm5NACrY6|i==3{bk_^wER2&p8s%H!Z^pC! zVG;^|<>|7MfxtW6+iSPck0M(753e*B(70QO*AbZ$@F>Wqv`Mp2{w(mHjrF@(-4@ie z8o$IblRU35L1TjMjXYh_q>?PYmuLv|3rUTxM zdrE3BNP%>u5d1%!0x)0RG5bY+?E$p<)NU4?WA7^AJoR0+`+Nd|_$67WY#G`CS=lI{+NY|1^a~x%+J}9wQVlaP(mhE^CQRN$Nen^CjWL;N% zxQu#or1$$SX#^d^9Pj#@a*t&WLmpKk2*m`p8MOBgynF)tGZzr7C(AG&+z$@(vU~K2 zSjQ^<9K^uK(>3xAv^}TT1paZH`ZtQRhHCgkyklCo&Y;$R-SgARuq}B}Pm%&_TneTe=ksp2J&bf6PgxDH+bbVI!rX@ zx9F`Lk)ThuuO%N+)hV1yV@g-{?)0GXGh$}bU#AP!HWx)ML9Ox@M`JiSbvgsU`bdXP zJyN%;4t=`3WB)cXt|ncddAA0EYNK!ic2HdW`te{A_De;M81r^xyKBXH^(ENhf^zvb zUaNb>T2c=*RbI?)PyqUqV)G|nnU&CK_UQD-{{n0*M z>lLK#_{^6GIOvcNw@!(Ub~oxcg)=2~aa z7uYn47-aDdB=uB2ncmdybk^HAq@1OoH~xp{hQrr(y#rm zfeA)uE?_bnQywc`K7sKqP-8~zbEg7@0kRDbPsPR04wFLe_{S8oNMGcjo8`I`>Q zdDs#&8!4i+bc}%0L(29Zck0dyXaN00Uq`&@HDfXCP~v+(L*y`(a<1M>chFAgU_K0% zeZCaRcJJtG+RyWhaSseD6u-1I7P)Ggi%K>NCbZrK`S-_P)RiV)0VEoYE}7P#Q*%>d zG?e_qu;7%8?qMax7^mIRL)V7B{otIAy?2(>R_;J=h^BnCS)5YiEI!Injp9O#yy4iZ zaR+z9k%JXbfxe8`%50&85++_5PH+B>_@B#m;NMuPCFaEH8q+@lZ_f+-k?NY{%LY z>{O5lqy8ZwVQ%$te{k=-Okqr6XoSZ-;L%%e6$Kb&t5Q1@UC4NIou^>7dj6|5H$%_g zzO*T|jan9+0QSti9z2Nk6>Sbz947>iL$w&pAS})ol?IqTbSCGDg=k%zR*Tx>r zz)*Yi8_fzr)&YM;co8n^LAxZGAD6|g7ACJM-t0atY%eV-k{*WC;+*C%syNh*b_9w; zhOlFNf{xy9RKeG_tk809HeHEsdx_*&3w02B5~|;+hDkdSYlJ;quaxrE1EeK z{A3LW1l@sQi!qR4?{dQrbdqecM=Uf^cJ+Mwa|A@1%>M4x;v#S|Y&nf9@;HDJ`SKxv z=Zc9E`q+0f=Gq2h)Pj=u1zYpnXt7f|^X>wA^zfRXhkx?$v1}gyN|ft(AZ~O}=3bN7 z4vKpD4dqcqw2Sx`t$oxmY-1{s1DkWAUnrDVxPl+53*J-r&$)u&=?;*bK?F-QUrpTs zX8gZv3bR}3FS&I5!MV_wbXN1lKFa-S0{|j~AMdcKir?z1_y%ydHg7I3S4te-Np>i< z&A;i%bt9kQTdl6D|98$}*>J!i89vUr-zB>ba>4j2JWDV8g{#VEA7gAz^FBKAckyVOvU!BsJG(?)dY;)9`0C>c& z{(JfYH4kk60m=fksLjhnIk}1dChxPe@7K$!7dP43aDhLM*HcXv#LD;dUmgCm;bB^? zOv0&UgrM`Viop46(MN)U&qo6v#qO9ALeAkCN>(zlsi?%`>?w^+D-%}iLF{JgE zrv178v+?KE%Y61IdIBoOd>&xR{q^d?ns{zARX=HpTj|K5I9vECB#9?ui&!Xoe~Xq1VZ>~2>x~IY zKu(=dpgsI_lfvYOD}nZZjWX}ceVhCAJ<&ON&vKcoJ6d+~u9eq4>+d#m1yZoS$!)*kOqDQxRtSZeKl6PCdHQF^yHtbwZcVH5f^SWamGH-D)EJP@1{j%fW(lR&GhEHPx3~1{blTkgOEUp$}9(8wC zOG8cx?FKY;wjc<$MwDZPf=ZSP`JUE^!bUrBJTQz zYfCc&694egOg>BLHVN@0!e?PJ0;aS1w`k`5vx6LpwGeITa`1+oc)bNpET!{8xL|1! z(qu)(pJS$Lv`j%7bDh!(uf=`TG8UKg9U#>MJ!&}LlUga*oxzx|zeo`LN5o#o(dG|h z#-Z|&X3U}1Brlm$Xdm%)_*!rmenvij_!bwLD?-~ogiuLxe@%`u{hSsi8Uly?(?o^8OlU^*-I z;9zbgE_F7&&^ZaCLX6C$d}6Dmtsom};-SIG|mRl6FGk24K!i8{btO^exHd zq_F&FzqlVzxm^G*t?tB^3ex>m>kNR=rZ1w;%52Y>+gUl!9FM#4JnPjyEH@{r6$%+vAP6me<9XW|`d4(TRESpZ~<%#qwUq)6EUL#Pek1{4+FH%=6=kJ}_L@g_%h0jlx zTd7Gju2cOqH*#j(C26n}LQUwALW@^jo8Mq73a`y;b%f{0~}gh>h;_nhQ~8pnQ~<5=}a}+>7A|?=l9U zMLV+es1{6p62><9QfXcn`g8IjbNy0H zbt0KJS73bT>ljbq2_0g1%Wf1>BD z=*~t$f$A3}B=0K1VNe{j;IBdQu$fHrps5dbg>Z#SS~}V^NpBt|gT&olTp;tbWB8b6 z?jb>4M_+x3>Jf{8TK;;WBFzk$XfLC(GiYe4+YNaPWN2EJ_ zmLLWlHR5qsA^bxBE?iY71;WOF0HVuQ)io0zi;I^|gXidnA$$yB2mk8GV*W=g{C%UU zazPI5=@L2uj@C1#_BV-ddG1F#na@4Vvu!yN#hwsO${^H8Xt8Qum__pK`Ieg-@+fdzY;h2ICW!-Mf{4L?rOp8EY9L_Kc<-}HJ}ZFD}M!F;ZePykhH zD2wCZn;GV*-nYvGDmINvR}(UUj&|Ri2;vJd*{7U!9l19kW%J55_y5E4RSR(t;-f^cJ-=Bj&bh5!1Y% zy|}n^=rn>9WT<;OXv?F>C~uw^JQ^`x)H0Q;r5D^KeuJ>m>l^NswG0z-)H4cTO`$)| zaqGwOCB$_zIC2yEIW}*N2`;Gpk68Dnm1~j7KXEv#{@<@Ec_(fV|9yv_?)h2Ub z5~K$xCO#BN2Db{JB|+}s>Sliiv0*{q9(1Nv@Ov3(Zg1FnK+z`*KMlYnWkfBI5ozC( z>1P8gZ6eX*F2hZtdE-=T}0|d-w#~N)LF2f0$aPWqNsve$RmfXK^7%U=)v0CMPq_>P}uP~j5 zt*_ocNMZ$L8ibH2L7RL#Acv(e0Qe20%On2#mxiNz2Yji0vwi*X;I)Vs5bA}V#%A&u zo^Ki!ci?IER~qM`fq+L0ou*kLg}?lw0}RX7*uaz8mn_ORa^AFCNeQN(b3=o+<&{$@ zrUh&2?ZiJU+UoT}+g$}SgT2H;b&(QDsHtPrW_#K4#2n{1z$8_}Q&V=Q(_PU&L*>?-cht3NR!fsPakDV~ zjFH=Ob=_ol<58b)AqAO|B&R=>lM$J*XP`pe(mC)}X~@EpAXOk07X_R*1!g^dzW~04 z<>{^1*Cv_I&EDTT{qA?Lc87Ezu|6!GC8E0{1?F@>(XV^)k*$<^6S$#aO+>SbsaHV!BD$*G@gVF*eVL!7fjBE zto(_pe<4Ub*zn=0VOk)qenG8fEZL`gUb<*xd5`Kaa#FY#x4iztQcDi6Y2`hiYUv0t z`~`*EhEN!{Sz_ds85JSwm*)2ylj?h}#h=1i(vII`Dw(S`D-Z>SXS5CE_foAGl>Lx{U=5(msQXSv7)Ban;M?NK zAjud}O@-A==(N8Sv}uDm(m(pnuQEyMXN*nx?t96za*-+0MmyvD`|+3RwgSC?riU|a zH@Ps$E|pg{nf%g;=DOlLhz8q!LVDGdMG(cLL=qkUug=&I0c01IiaCsya zJ*MX^IcGN+zeqkgeF8{m*U*lRZUnBwBgi-?X2pMzCogP9%&&$p*u$e#-i^c@$wdme#@2n2IK8s25oXAcz>h2dTR<`^p1S3>z_8R(do$*0<`u%T^o|q zZVBi)Por{Cl@Le}$}U=b=24^G>LtIIi%N|np?dR=zhC!^gq6BKYPDh9ZVBYrQEt%{ zl@FU-y`c{}fV{JT3>Nq4UiUj>b+hNSHmBx@RIV&gq8;VGk`MEoy^ze;0Aa0{Ud`sn zekg)X_9-BaJC3Ns)@vR%*xyE8iGuQwKak{km%A=O^|dQIdWbgD8Or&kCB*4%k;zB% zICL{n>;Tpslb4dWs=dy0hWgsSD{dd#^anntl{!i8CQkpZUqv9gaDd1jOdQ>{0`&V^ z$$%5^B>o-ishy*Q$`o_i^gYFHSxNr*TW|0E4LEEqlS%b^7h;4Vqd{>2<(<#+B3#oP zJ#})FB(`mOe2Q%#@amWWE}_OSX}a%Ulq=`QyH#S)riR?xy)F1U_PGltk`EdGIqkR6 zhgbpu_uE#H$ZME%l>y!-ruO$fK7dy#|h0zogtr5~~-D6bfzQ|T>jYbe90d`ea; z;zNsV4RWN*EF*LM|F+Z$(^MXld*Q;0M&_mgOL1$v z>%ICyD&aF$+O7J_+M8w6FgM=fX~@3-5OC~ABHt;@xC0%BPICzlj2-GY&Ev9P^d1E+ z8cbFeDnZ*pW1k~ZG~4hVyfuu(dV+jpx|^g|DL3D@O-nD$FgA0E%x8nMTav+DPC0Mp z?XNZfTcR9*uZx{zB@eFJOi^O;^lOsm?HTH0|lD1ijYB%C9mWjPATOE6iUpXTJ{=d_^h z`t<1;jOn|90kw-)wswKa=vd`9R1o%8~k(^2!pGK}sRrx|dT=TijMp^_k`5 zEZaY`p}i=!7JXoZuh)o~CRaZ5f723yQc@x2h}p8$C{WFGBJ@i|G2AV9_mQ3)u)k^V z@n0dRhw!lA1is0a&*4YZPUo9y6Z}DyB)|uYxIa^3@g~zRtY1o?{j{k~*0-u*A~(HK zY~zLGT%r?7Rn$=(@0h0)p)`EZ2PG6O?d))TJOJR+W*g7LC-zzQTp85_x(f%mg-%5?>vch0o&!fF>E00$kG_~Yg&WJH0lMOXYEda(M*(c==S_7b+yvjvv#u$(ie?oippwguv2_G6I3U$wIKKSK z^{U;!>Q`ybl>piZP&jJzIurUIt?We;ORG-Hym+SBl(jWMCk6eih%y{bKcB<}LV(4qwFzdCc8!t!x;*MSSQFQYG^w|O%*yPN2q z1W|Ajr;!@NOngDmmZ7(aY8UnVY81{X(6M(es1m{3ofQz+lbhiDVwZw4VK0|E<1rUr zJFW(&jbBU%dmj55adp)**o;wD^qH!{X2c#?P&k;D z0-g*PeWDPUbVEE zho&a7zQ>O>Nos1h>2zY*v%pWAv*PN+M{7VYhD~VWsp-;!YTX6}ZY+Bg6eqdxli?ky z?cNsRC9s7TbRU_VzA`KauoCra2)-AH9?&&u;5yKC^T)KW}1sV zcKh8iDr07|&yo4Kc=I}d&v+Npg4OC$FehXSV@%Q85lb`C!A)h`A`AH`ppcZa#6Y#} zR(8amlhOd=M~Am!j_P6uOwM{m35IU2JdnrDMQ_+64@;&3R)-cSWyMqCbynQN*v;T>6gcM!Z$k(0!(xa{8^lZ( zq{Yg<2HLfkJm>~*`|0z901!zwKaN$+@|*(KT=hCevE-~W0`;i`X#C2$ST86F9+yQf zQ&K!#_bA5Aot04?$2LBE1E0avg;|x1S*dHQJT%O-T88BZo9-7YBu>K$KCaGR>J$E> z3G0ZfvHx#tFU6*0?;Q%+c8vg2BRYG&VfDI3wE7GPm_Zzy44}L@v+DElG zewh9`Yc)VZfm~-$!_d`@U6njka6v2M3vA$px_=w@6y{>jm_?I_Dcn z$p+?o6I#Gu;8>^a+4rH)m$p&>HyQG!SgS6H+F_oi`j)Eo$B*qv?KI`x?UQ4<$qg@ z5l(8;oY-GlZK|X9e&V8`7A`^l8{OKHuRyC(ix?=8NG)6n$|^nHnW6Ims$aJihki0L zx5()5!n^HQ@++pLhEhDKMKn}>9=oFK7i44&cn}5?TY9DrIS ztNHQlj2pT>(?J#F)W=?&vre;-w&BrSF{M;r*rmUP(qr_lO{Av(3b;OcczHF)ZQgm- z5&h~tAYJtzufNx5qGl(h>hx47Y_>#ma0SyDo&H~ZAUuQC>Du| zP+%)2lRxqU4Tp9`&-BSF;?(^gq1#%_+m-`PF;G(Z1p@k$3r>C=FQ-5rJ;kBjq}kXs zkXD?*&&mo^QN^J;-+l(aO8HF|9#HSV6yVzAndGnqT9>3c^#7ecW@7!PzWN3pe|P`A zNdK#4SorvHqK2X03OPvb#qmhos2lSbb6Dq9$zyN}?64W;l{*+*>v%_s95MYt&_F(& z(`o#1V6U(o=xep|p(^Ow7w%Bv=qL7z@QWwNt|i)a;H|$wa=BwGx9(nVXzm31DwGnI zo+~do8^(PDVzuo^s@K6~+6_z9P_WB-)a3reaKU1)ThD$3_&ZWtvP&8-T#rz9J=~Y^ z)a;&=XDmpdQ+3gx*{EKfd2XmH*&w}O?erFxS-bUIieh_S*{Yg0!ZbrEp6x zX4EK*Qkl!@Z?|kFK=3eODLF0D;X^4MM?{64VolFF7@@8U)hDkC`LWUr1bZ~Xh;>I_ zXFXoUJ-K>#2UUg0X@Upx!xDmFNX_miZhmyHc~aIWLBG)=^i*U ztxxVe0ltH>*O{vAdtT2g8tW4*>s4wguBnNI@R~Qzk=LX2ydJt@Jz=A{HcT@pEuBtF!-Z=&~aZO+UA>H@jW!zSFh-FNs)O^$HNm z+*;iK)p~trFO=NZwFe<`n4&@JrhGz>3|Yhknui@ZB6_ifqBI~=H>9Tz<>WhNq#UIf zo)hr71oA}mE(XzD6B`J!5n5C5`M9_~Mz9c)F%Cv7?`PPyj-kVee^hs9Kc+5dHnb5S zwF~)eO=qee1MZEbiRqrr^Lz2nFNivF8+i+3d@DoA99U~b;^;z7yJ$*%k=3Lvf-{H7 z8RSxgblE}4233Zyyd^3Ufo$!ZSyM@fazn1}!MKjoti2iJCz|K**I9nyp5lAZpXxD8 z?fLT0GG`B3LpF#YJI9xk7r9smKmOSAX*lZ0IZgRk%>x%2xPRl+n|_!~5>Q{c82?It zUeE09(kYzpdBHe)i}MJV#9Jn<&?c**n9dg-IMORcId2Y-ya1-mQ`^{R(F7TE-jTCC zRO*}2Ng6h5R~-_xu#*~{_kG4jnr5je9w?Zu+b0%PRz2aCBhW!{efD{0>@Sz@#?jcfu3iwM+@0sg{dJjO}g<(jS-Q!RZ zK-?4c43(1ED@!6z6p}baw%pyk;H#E4-AAXO5b)yF3)pRUNom2DJTNXHo1EYed-W;q z7XbA^fV=ZQ*>&f3d>DOyJsVmf_WvIds?LjqvN4U6|m&2?8+z5H=q6W0+M z52?UZ)#Uo#@G+JC&JOVReS+@PuWpw3;h5?vI)I&4IQo{rso>Lyv$Ug5-;#HVMbWib z@J+!8e}s3sPXDFpnl_v|Ls(!O6xoZifIny2#;bgg^WpdXW0OCxNR95wEkYm`2Aon%O+lyL% z=>Cj6eO6)VKb)RkzA;*Ex9*9w!4<<)JYVTTm=ftLAFsL8;<5s$Uq$;{8~oZNeH?)E z$b;a_QDuH(>wxS2UH(&B@5>)8Sw^h~tiSeGWP=--g=bzHHtoPr+lN9R`wk<OxX| zqYpRB5(#;$Uvd_9@HA0dW$qoGaSQi5rt9cZ{6nqc-XShgPi*Hcg1z)nfzWp?q|c(M zcJlsNjq=AE*O-<&^D0IV&8HH}3bI{ZFStK~)+Pfa7-ebrk3kg_POm>hr>~@kM`^}D z8+P{+Yw!3sb7Gh)tiN{{9StIFUGDf?Kv*M{GNN1PI)e@O!7X&DDTv^ zU|G)eE=%{H1qmWwCUKg}-#l~AH*&{PqsF#W!t1SpcsPGO)3Pz3(H}Jl$*KlYXM5X^ zde0jRyDi;7yz$r>&s^eGl2m8p?yLx?e|U_mqc}%T9X^2GWZNJ2SR8x+UUlyEs;ki} z$5Uw)AGmCi(AUE&8AL@|26}0i)TFvqsIZ_9gZ}L*U|KS}=~wW=fl)QcUr>FVoq;(E zN~hcJBw(?XsF@v<{mm6WeU6eS_bNem`szMst_6GG`a_H#MdRtT?WzThYz+K7oM>{+ zgmF{cN2PT?UhVuhQ(ZE^2O;DQ*;>SA6FdF)=3#@jineGzW{!(J*UM^>s)G1TN*l_C zFnJPNhpM+WPGc73dY!_4)c#QIzt^*3zHPE&S^Zg+^iDH%0)#eYzJafMTD&2p#)F$$m$dCT&6YgHn^pX;vbi&b}q=y2jq!p-1= zc;v3P0{PCUeqQGba|epmeTAD39}3Jj>FpQC z)mQ_7ijdg-(Q6vo3{%Z{pS-hzSP<(THCF)j0e>Tdl~OsiH8j6gK2Ll|RA;pEyX*p4Jrl0n&CW$a<4R2a*8qmRh)BnDf@L)*^pz_d|Hj((yx0{ zEA|O;%>kqShgHUmD9gUAoZT#>a~>TVqIPNdPSjxk;1gkY&A+`_cfd75j-D;L+Ub7f zMG@M!1~!Te!unMwmt}JzGZEXCHl$=y$Gh zwa+#=gsH9uC)tL2NEC5j+_5ZigACa6S@bN}ON~riu_|JLyG(VDo)YzRIDlq8Tq|eO zyR(cciDAnbf?MBh(cQRZvs1x2hZl6S_wkgJHx76H)PZ}#WAYbe_b1bB1j5QBej7b$ z{W~4S0gpRMoNEXCo(BDlj3-QbppFLVF2S9uAL;KosxfW20+Fj!OC^}^xEPXrXU;{l z)qhfl7dYXOa4~hnZ`jYzF4DW>Qkaz}2oD#PbXtB<6l;o^vKyMi?G9UZ;J~##V z9&k?;9$nqTXT&GEf!)1>w!g3pM$ia=HI4=YwFU}eNyvH0u|1amXdN-?G16u3#CJJ!~LZJyD$gWEBVHD!1&5( z5J=8!{jt5+YfVD~y@*1A5gSEDX{~AGjY)B|YmIB(N6=sFwhM1cAToBdI50;tk$!E)}P{%8*07EhZ45p+)> zr%GI0D_s@R;l&=JEwH`h>D)29y$r|O3;n3Z{uaN6cYRXOmcgfN{w`7zm*ySsf^!L$ zQ%mOs2VyL;7IEAmmzrUq{pdfdMHtezJS^e_iqAY?TR}P&ZT$)PXdxHT+RWAGqimDS zDcbv1|D&}THdssj-@pF9%RqNDPt^3$OA~&E_3@`s*qe7)zv$TY(}PUQz;SZ;=d0@@ zX{7hA4m7@3^< z6AP=U#3TRn@!;>gelg=;9c%<1Ek_5Y8oh8jZpSMgKed1M&p_i}Q|4FgV@G?fHl=e> znw#NY)CHVyhc^y2%ZmgRhcwsz^ed+|VL#Bn5wtSo1+F~rKK>MW_|jM}Fl6n{-|*v= zn*7YYG5p?Er#&I)hVAIM*$8T`LysRRxq=>mjR7(^>pN)=A?(NTYq7xu8PZkTrA}j{ zR^dzWYs?i9cb^hk!>kZ%TMV|e`?`NaA#18l4Etw?O8Ls)?|b%83h5mN7h^Xw+EX@q zEZTjt(?z5@+wP7fdG3t!_Hye5@GsOm^#mDUZ%`(ScMLoJO zbBybC$)SMY*YxcE{pp`gr`EXpd%EukV6}qwkLGjYRgjgrfhQ_AQuzyuiUefyPB7;w z$A9F1ql)UxUnb=SxO@zh=MGNA@!{Nx%zn3UyqRB#ElqeJF)}&tQHoCUFoOrrDtpCG z%9Ts#L7T$s^?Hzev1>2NgSEb6^oG+BtaC;%|2H(PuV!#SzGFAIOIu99k1L#n;+P*IYTAGa6G7;)@TL1O#Bn+e)w@kB;-9Kh}rUN)S0>lVa#JCqzC z8=Md@)8v`DWj=gXR*oJGlMPB4VA{+Uy^iI_^I^qJXpq`^a+g>L(FVl@cI0=kA03xQ)Ukq43UOTht zRVE^Z_c|_p>1`<9C12J7v!#XXepRWLox`bjZLS@obI>%SS0B7wFnrt0RYg*`?~>nM zWf#8Ehv~t8ND}FQ;OhuH=?}fV68+P8Hc;Awf}Z@(7i@D_WE(ggCERrE-Tf2;+hB5& zQaSY~wWR^rX67Dh8TAl+0vTZ>%E{RDW;{BH86714SqR*pab{F+E2dd?XJ5sAoByD> zJW&z`A{th%Eqtv5AcxgKTh=!tpi+;ZH^(?|qUceo&t88^T3 zLp^nqv+MS?GRRR4`aY5{6(WjrMHeqHg?=u)5olJIvAIAA<#P_DXRdVJSiB2X%**O+)2n)Gc3pg1 zd}q8_zawaOuHPLia3OfT5P$aLo(fi)5ON=&_4u2;_}qHU#}{!MIdz!Mo^$v^k)X9d zK7->hE9QWXn-DNF{;i4^Lb!7;qqvX>UBo|wk5(YKG!C%h*bsaF=s{YD@+%|UjZGzo zq0JD?if6+m;5}ZlE9GTnOciZc%r+jTn_SyM3DWNLZ#-#-%Pc{T<8PGWDFHUj<%uro z&l~(T=cvXl{3y-)VNfB~pY*j!mC2!o-0gOB8Eoc3gNpq@y_cyFcq@4Q4rFlX7ux6( zv1&fAZI2nIGG}izvU9IM=Z}YR$`YqIsOVJ)*ju@<&!u+D)7Nwv<<0#eZ_$!={NNAH`cY45no9QgW?$JeL7qhAtWkQjfH5UaC{WgUK^j-Czlrsh zo~?R>^~Kl27bmKQX%u4Kxj!p*aad+ah1oYUItsDR1vT37xf;N(IUn3yU=1(aUGRbI zb>s07NMRcn@-R)};IZ-aAYSRW&Z72JF5j3n(xul&TK;qLQAuz8cMoT+?U4B{n^Zr85Lu;L2_?CVEzoI4V0t|< z^!?uGoh6q1+AARSqXY=Q?%%lYw-BU^w(lFAWlQ{lmB8L|-g-*XvNVoHzywU)pGOn` z&X;V?aXI1o(7k7~TH_ghhBd_9_`Kcavj=1si6c?BGrhwVM(+mdfm10ZvnRGh`&W7S ze8MuykW|+)FDpnlv|R@l_3aIq%CrXxe-Q%N^Qa-R=tt2jbGK(90Ig=LmLmk^@aWl> z78&g53VyHNauZShHbybFu z_4t|oe7KaqxwiQIeW$IeWT=&)X`8$62PM`2v`Q&Nn<2qD_sQNP4ku_e^3a(74{xUb zOZcZue){;+nUW+~Hck&C7jS=A`r=rT7v;sMBwbHstJ2VS3h2^oPq0hNS82j|#`MMuU!d<3>|SYxhVzJsmt#tkOL;I4LNdiDbcIUNbgZy zjoJ5m{v4w`YY{(%DR)=~ppfqD_kth8co8RYO%xcaMfR=2YEA7}H%gUV_>eXH@9z9O zJ)I7ldeoO^hkNiV_Yz|~+oD*XxOED5w;i!=Nsa1Swp@C)1?c`%D5n59|MSvfsE z;VH#~5`*w;09#q4$5FK_vHc=hC5t6qVyVgZ*8>#0jFSSC?kbLW`p?b@*iD{4cxsSa zd-U?mufGa6xl%2fzp=LA=JtH3?p`l#M2>S`9Q6B+wW=oasfWt?OU}UPo~Ql}p0Yra(iJl^0~HUrw_h}*n>$r zLRBrfFrmwLkT=UNCM7)hD6L-Rh8{I*E_*Oa8gj5Vyr2~T+FCdXU7fUTY3d(3{Z(Yy zi4{7L@dyy>77UVS);5WTNlh=g_RFgrW|1xg4sG-G1)Cn&<^C>20@>_!_XX=AE;U47 zHbdBV(39WlyB}r~Wq(qgb8so`1;@M?XfJfO#cIveEV1k&Z9FcdsYs5oE04jcpLSJ@ zTdGJv4`?H<&>s(O>wk+l61ApqI*igZJHvuIMuouF)$8 zw5W$k&xgZhI7f1?pAk+WI~jcgoU_?Bl+G5jqq9Su5Ax}Imh-J)dVY@Il#D8x?SQvc z2v&on3%v&{R&{se?LHlKP;W92(dQk7ZjPV)_03HvQbKmE>-q-8( zeEOk7y!Yp--QM(_eH&mNy&aHG=BG-z)Df{JssW`4uzPoFK}tv`SxW z%f=L3s)Nh|)v*b}i#TU(c2TNSndYSh)n7>&zk<{(4Q&g*!hd&9L?BTcck;$*Ju~~hr=CI^Y)H!OzMeHjdqoH^=%9HILR^{EBDeFEl z0byS5hfXm{CCRcI!`YiPh8sa*HBx~t1Pw^x3ED2MlWK8rKJG5Szd#VaK<*Jc^#wfH z4NAzpO9RdsXNwkDkJTnvw5zXy_GXzfe(DSChV`%gD0UU^V*;SSrv(6njqiNOjY-{m zXL!%AV9K*U6Wb|wGNETc>#VceS=MHs}Y{i5M*fH#6;Ls?RGXpq-@s+9^rC;eiQ&1)hdCF?)+SpWeUjHIA4aZ9Sm~# zr#vU0X2rjNuN{kQoFk}8a8LCdp>k?B<1CgB*>#L&kvacLBDUYwtVSU-BLiC?lhd5} z14TT4(X#9rG>@0OUr(>Kc|O9BcugsvjlG4Hm`@tJ4I*^i4VpAvd+C2PRjLktR7oO# z#1&i?MQgTYZVVZ_7jXG!Y?zs@OGPbttzt7fIvV&&LRR7;BA-i?rnL3aldemEif6X~ zbs1X=z~jOE9s9R=aw?OcJ;0IN6li(&b9iO>fScZ2x60)}4#)IpnNUauFT;8i)d3Rn z<`qXDn!^i)X1vj=+uZ-+5X#K9^bP4VoBv}g%bUslj^Z`R{#~|)Cx0-cTt*)eQ#9!2 z!vPs~p2n``nL)NJ`L45xd(hG}&B*CmO@Xf7bL_Qh#I>aRBR`{fq_4jv4tLt-*+%zS zNxdRYEh0y?^HxZv^U3-rf>6wo-B-rJ<@$~X8u@?Nj1{>K`UCTR|9JcFSXl%8Y&sJz zZ`zD7oyE4$VekynHgR~>N)jp!Fy&E}K*||(<5=aqcwbZ2D$j-BtEzZ=%-II{^aj!L zWkN+Pm5!Z;8S7>UZujE0;G!Hg6mbnGrZFdSZhEo*3weU@qp+tgAMaHYrI9B$iyC zjbsY6H0bV^thTyzp~a|0TmYCLkKK{Py?HtshogOPh8s8c=VgO+wcU!4C;RJ9oH!Bv z%TWliLY1up?(jafReeN18P0CLbq6Q;hNrY{tsZnmvRy5LQ`eMtKJA2}#D+ z{Who5_Z^5=L}DnWdQ|2DZCurZdM)B4K5Kmzf>TSz&VM$$?AZS`oC;EsE%b zUR=q-d-{$UCvse%kIc#R4d9QkQ0cnth~PI5q#`oQs89|G~~J6~4}!+8GuTXIK#u14t$gFW*63LH`pyrIX2Yoiw6dA@Sw& zdGTek8o(MacF=p~^Q{#ru_4Dg-YiV!R{Ilap)2s5IC7I-UUUiFZ*e_aa52ZepkVLf z{r8K=#v_&PoIH_od%ni8AKN2c=oxBs^h2c&73qW*a>oaPPLHJ44xuyYQ~|vr{n_~3 z&(u$<4617vtKLQNU!Dha0bQ@hQ3KtBVeGf?+8}?IeI_2Mq%pDoO_2XfG+RVjs<4qU zBnk9N`&qJL6y_NIHX#G=5U!Pf3YMUCs50^G#->fQS2y7dwr(}b z@0YB3ZWSz}rgfH99yap#&*JtIhQ6M!K>esL&h{SV5X{+Cm)a3*ose>8a_{~`JD3Ul zk%8^MZ7}D1WiFz7ZcX6?^$@3Mk`3K#+{v}HP-!xWzvv6aqTFVWf^kU#yN{?ocriQZdGW% zG4X0A^AlOguClC|pFtDYPbptB%}TC{N>z+wWy5#?77R%`uB_@6dN+dL4;DD^L~Cw9 zi^dbBPoi<Wp<*qd(EbQKH;_mGj`4|XX>wzbL{7AZUo-d@RYnx$oz zmS{Lqaxz-3O0l|x)Tk39jux}qR2jj`H+up`PeQHCx{+$Ar}DDTCdX(!ep{j-4Tn3? zwQl*1%tay)aQ$F5IwNEI`3KU#G+Aqc2M^c{WQe*SSdDj2<55>OYVKW0H#NBY#^nad zKhQk-SY4^r-CS)H3{_P*Pss3>%uv(<^jfzj*W-8BnK7*&IdZH^{0FK(^ zAXG|k@|L+=KSD~tQ>Kj(PS(7vjN6WFbT8VzjjdTJ$|#D&WIKMw7grxMa#b7E87O8F241~f`*R*#=HI`Ap!tNk){hSl7FTKI;_5LuQLI4DT+1l*sA&Vh zBcW7vT)v$!T)G*>PeW2s8zNI@UFo(T--US+O&|)74S&9c*xmJI*hkGt&suO14`)C2 z;!ygH1B>%XA#M<^1B;&knu~Ed^fpp;=+!-cayVL{6!tM*U|FWA^z$s8Mb^{fM@H&9 zF)wyG*S;b*RXh_KyUg_GxVii!rt2>pDdeWU+WygxRGY4^1f=WN>E|s>8Ikur6P@!W z7T4RgC6mMmZ2_3UTfBVkeki7~H*=`os@MqPR|vrQWR`VFkRK zx`o-?>NgL2jTZSgpw4z+MTDatn_;Ef(J9p?1l#|VD@zfRaP(aj*iQ8E$!QaK7O+D5 zac7a^t_lL+gOdQ)%1pG22ra8?9*ali8U7XPb0I;1yIDAM#2;dC~o z)~%0pS!S$7c$dKQ&2Pb zvZ^`-+yY7jqMsHmU9CWdQmX)6VM&SIvbY+%T<0sMMp7@!Wamwn!;&P(es)-Olfdm< z4~D(QPONKdPT2Bs%L?n3;hMW@2AzGP(U)6K9uB0|xn5KH{b2m=Z2@<0s>}ramzVq2 z3KwahN62tauu4e=Kf;80T=gq^Ex&o0TijqzHEZ&{!DYbMTA@)?+ghV$S@dJ$byM0{ z=iZK5+L1_#`y4Y4L^Kk7~zQ0^F>9#BdgXY?@e6Z*-_ZsY*Q(HE9*#BY$6&+V`x)y(( z+jURERJ?1gJE*gv*yX6PL*w!x-3N<+U7sYiW97}Rt#`dM=p_4~Z-U2G@xou}{bww40?|N*Du^MtDC_a2q?mw^s=N5=`f>RhIxkx7 zzXZvJYK_Ik@^PCn8Yi8g+{(048Z3A;yW%K=-n0-Xsb+}QVX7Ki3#cqRg}ll!nUQ=K zdpHLgI$vHpc?%e1WUs&V-?UYr_%h~aMzXvP{BmCl zEM;R!y-#F-mUO#nxmcEQF9(C6P+FC|=J5F2{aK8Mjlwj(+} z)-?sslB}*-!=Rt~3J+ba{`6$OgF9ycgd_=J%c^Q^nKhcEeH?Fsc^L(WA&l82TV7jI zyD0j?VdLCV0t;mIu3$W;ZS^E$SWzL#a~1y$70}v1KQBj-VaQa*;gA2-HC9$E0xziaoTP<$Y;cG zk=%Dp=z+Y4H8>BqJ=#?^2p;cB-aEY>CFvz7OD&lA*H2%GcLoMi!qFkv+jVPKwtkA3 zRjcnbtt?eDrf%?$)XLkd_IWikuRI+1DWZ0hm{?!?Ibhc5PA4v!G6{c2|0N^yAc)8^ zk5$MUsR?jSxi30IK16}XvmmD6?%AsdmzkM&E-mjRr*~2^0(JIE|5oVve#4I9C%BZ0 zNYstijE_$%Xp@M|aF9xL?R^q4Ea(D;bR)7C0F&*1;JtH*awq5rbr{XP5>fv{go-wf zr5Mlj7|Rn8sN>1}M}mUcf`REa3>gpRu}S<0%&<;>RS3>c!J zSAJ{_sR`gqDvyH9)l4IDA=7wuTTjE&gBjpYf3H}rO!l<(($PauFJ{#teqT3{Gf<|O zje$(%-Y)Ck1BG9~3up=M;)oeYT)o0Aj1OlXwEA>Bg3w)k-p>Po>|X|EYc7snQdBo_ z!K@&&zYiYN(=|tm4>ZG{JE2-IW6p=x2I7Z!wU5k82#M?NiS;T*?;bjT{i9DOq2XT} zZZAf`enM;t7@clv1?EYgygkfesa(Yy(&zn=OGXjJ2-(+SEhx&0l?)t77qhTJm+b2s#^#flEnUpSp?2km^8DzZOT3qosd z`%=};4=|satUulq@`xX}O~tmn_WMQVRK=r+*G~Uc;gVlsa4&W@6is9+#r_Gft9@ef zrvnOz(LuV;T_q;QyG(jh3WV2VL7H1K8CEalxVc{2wFK6G#!u9rRR7; zpcgrpyf5_gNGMi4R|~8=dx>R*j^01DS0grP^J*@X90*b0nYg6}hz|Z(#z_775f*?v z$8B~9%~I1?N!T1QR)cZv1=O&+({Hl!3B$JQ_h9{e92WL(?58q}Gwa|>9F1Kft?#5r zfyz`9=;N&#SHYRiMPodn$!8NE97RK>j{ANLa)BLlmMu+3i){U(pcJ!XYD?iy0t+Uv zOs;yOVu$94%9cI8o6iulAX*@wtdZB3z%8w_^VB&TuRL{M+P~ZjYn{NUxPK*%D|TUt{EOC3Aa&0GF5s9Bwo3COsX`IJt+z7pzICS(S0~ckSIgT}y|9s$( zd8-7h=l4y%SMJ07+Z`-dB`wOhv>&Z7*UzY2+|x)pmB`K@+%%wLJrtq0O4IoNmMD-O{= zf^jPV4N@$!En_6&DEr7#G^N|eJGZ>)+q{iz{o>EhRzxG_28B+W*conh1Z$b1=64dA zKSw^@3bLh?y^W#<&;(##ULucY2kiZFjD~SxFaN$dxkPr@m==4xoiUT46&54By)lnV z7HSUeh$44*TeQ2~S%nchMclTW@3P=(b=HnsOfxbIrh#tEwBP1CQ))u_-`Bv&GKV6Q zLcI|T-v8Qt7q-StL3Nu5AO#+vSG60tE$Sh7h{|>8GS`x>9~_559l4QZ1`e`-Jj7pn z9<_3I@a93N;O2C}F7)Tn@sj9~0oRj!q>IB5qw=SAv#Fd$J_>3#ox#YDQdlInmycv< z)nF%~n^h~b5od#3d@76FtJvV&#se2lEgIrFk!4+jpROKFYO%i%K33o}hd>xCROc+?AKbPH~+)_UM8v`AJ*5gB8p51%ceB*%P!%@J|mrcj!#pLzlJlSP$ z>e-5n_qY)o$wB|RpjOwk)f{wZk29}8bU*|z6iHR7(I|6x?9|iy2RThGPIR0QscZX3 znY_afISM3AO;>DF(c>LV>=nu8m7<3_{B`TN-0n1h=Mz9c)#>Dzr#BBPgL&sbL;lNp zAM4+W@LD_yHo%N7XJ@9ksf5WjV`qKEM_Jgu$S&WIxPH|AIz46W5UEwM6!<;{tG9*Z zr!M~*#6kS4KVV3a*v;wQjt^M9KPS1)8oxV2F+REu6k%3=kLUnmlhY!l5pz^sX$m*nnDo|7-VyT5<-IRE>%kNYwKB=YgY(Y zJ>)KPofLDpz4C|6|6Q=qwaBT}i2GHyP0jV0o(g^16uLfAjoFsBZl>I&W=)I_o}XPC z$G&q{-ML)*cV$$yHn{-EQ_RZlHcaeCR_&P`3UQae9t$^O+Iv3J$+3X_N^fdyHy<)s zy|c9xnGHp?-T}S&mn!fWSw1;Z&%33`3a_~aMUfbp&m9jARaO0~LbqRM7wo=p4B*y_ z_RRM3C~wPu26$LUK{{vil|iu1R!ZbrvhORKuLNEMyYu5VZlBkRR<3tGqB6_fbir9H zD^*36b-g!OMY#};$;K>!caYI09kR1QB&g1WyWlHE5-72AuRTf&cMnsriv{j?_KZkS zjcUc@Q15xUD$0J$Hn+ z+NBk0S#hR+qbNd~i7n}meRi-*SW%N1>oPWUn|F18y|nt*3L;sRztzM=H__r?&G=2)G24v39)!?k}d6LTIqh$)hRF=<O5}%;yn#qpL=h)!;n6m$3=9GT1Yp`!xISe{-9&6;JkU z0_fh{6Fn@S1;KD9-7>K=BhY8mMo|%1xT&tfijA^=Va!tmuFV?iFg<5_pK#h@5R&`o zcSq)_JBuXh#oUG9EsZ}|`L=WS7jlm$Ll{TdHnEby+8(tmIo{VZAFS#PzTcjwNm6jF zKHs%-4_%~+*uTIf8qRoV{VI--nZ2xmzry=6MycGs8*Ug--oTrCn~2~~C3lt9dA<(` zmVf?YnQ4CC3G0{FQO};RJMpJ~Q4QHADRKTdfWq~8B+c|w0DMeP!#+YgPzLD|?(==H ztSMWq1d`uzd%$?I>%vibpVE}Bnc};hhQ(WHyxP-p$hKr7)lbjSQ++=ZGq7V1Qr{PqfIGaH-J~8h1!&(!(9F|3uDBYjq(T=SI)_4v9PM z_5hK2#|0BcHOF0j@#i6k&3@yl&dj?cWFyFChCJEuc@Jj8lplDFF19lUNAafEUskjk^C9OsHd z1a}z#eQ2B@HSqErh*90tJ;5_svguvG5_VSL;YhUyer_mPVarfR!?wY%NwhGTILM#` zZTq%9(=Tz;VPh%`&n*iUh8xv zOsIo)0Hr97^~2h`#B#Sk86Ul+!~z#kE`4EjKKlmN&Dg4@$E#EAk?)531391pb8CFsVoDh-3Wg8UnHHSO0ht@SWQkLCmSCYW8eQr<;9P<=ly_ ztPzjpAn(?cuJ(tnEHCYvpj)OvJfqWY??+_F$)HB@H+lI!J$U2;_0iz2c`sO0+y zKFYDrLYluWfav%8&%YiMY*F{m4)7z-qK9rt4fID5nvNBen21P2U;*4RwYFO9{pM=k zM@>EjGoOrNcAb>0+p-_HgX$fvvo5Cp;H0ta{B~>5)W_Mp@_avtHEHaBR6=j@ulRSo zFc|fOVIX#RCE)qlc$!%xV23+X9dhY>DEMp)EBQ43{uMuQ;gmm{j4vK^?&1GWIO$kZ9F^Qx2+Zxd|QXO{v3^c;26aP7!@<8?pZM6 z5>iY)VtkrK4)D!~O|KOM?Id);57y#Cj1)V2ElQbB0WoNl`qga5nIZkpDuu7NGuEZk zQ&T+dO2ehFv<+_Y=zp2cBkWptprvG$_sN%i^-o5M?luCSzFpQ@Mb*DqaL{VTonV($ z6#iCG(Q~W9*{frVDm?BZ$r|OaM?lY4ku!JOoaF3#L@i3wRd8J>{iU?IflD0Cp3wX~u;O?pzjJ{BC`x z%EM||FEP#P>$(%jZpuU4EWYk-o_+V;K?9Xic2jXU7EWHLQV#)7;`j}q`{wn1*+z6W zSSG$Y8JDIVJA$u_5LP?GHS=PFA= z;3ldf_1*eDjj!apCHQdiVWIHshz2D;0>h;j8$cR6tXjMKnxv!wYMn5ecc?jISNI-7 z($dw&1UPopdCs(^v(Q)-Qu6mp45&Niuxq{JeOCcx7{32 zrp2a2;fP4p=p0n}Tz~dt@ZN-RDnjz7p*vVo9}POXF{HKK z8df2v>v`>*^-4<2yX(NqCvaTVPDJjh3b*^j)$l}<9!kjrXlxl5xak9A?IPG-h<)ND zzr0&<0$~)~V^BKaWShgii&2N1Gk={0%6sRK{5@A zoSW{6;q?UpH9B#uyU(|ZryMZbdF1yIyU$7%C-Gt)T%X_)#{Y~07U602Lj%}wOzO!d z3D2E^%E>qg9SAvf8Zno%eJSc?sI0W@iv@4C$6H<#mY-9e+g{C<;1qmEUoTc}LBgK* z2cd_K`FYe$a5=>%qwQD&A}cWU>zT*u$nS(fLZpM z9n1!DCgbFGM^^F7o%(3_<^@93SIl-@KKZRo*^+ChhTi zYanB45oB$Hm)S8b{V=A37m5#(;(NP~4J}=JR?>JfeAl_;#WXTu(BLE7#pMvHs1LOq z%AJq+b~II?#MIaqTk_f0*cxD)wpCdH6?CzQ&rdR_Qe!vcW;xwI3DmuRf9;CqE<#!N zguF2NHBs4bYBgIJ(T^?`o$zjH8vaQJ{13bDFyN-!@%LjY=I+j!%Xd+_mKBx%vqE}& zg0#8vVmgYmRp?FywtoNa)#56X^Zol}HqTw)sFs6Y-+abz({$d8S~w!-A=)zN%5Y@j zU---~UeDsSN)X$TNgsc~0vM+A1<4x7tPUmQxM3({y4jb0KIZ@UB2PJ2pvcX)M%5~P z>n;U313qZA26tUG5qm>CJ--;a(RE?HvF%LJ&vGF*&21=n~}Jg#CXRf5twk&SxmWiU1qeuQevK_r?^kxF9F{}y)poSOp0v-DP*ACA z46lK1Wt}$HQ~)^;(=kJpRC=;I2>V@l$s(Fy35}0p3^;zZ4NNV$r~gYwSwvlv#sgcQ z(GQA_QNJ9e-us}8tp~_d;}+PUP~@&<=WP#r(BUMvWCfWkcuqD<70;mu6IT4ybe{*_ z>03CqBxEtJFtC;rZMjTE~$j22h{AOp#2D!tLOx1maqyQ0K#dG?F#iYzXWk4TBh>OGAadS3z3 z67!t^Ql#o%Hj>gxHPcBvVOqI@KPO-iOic}cH~9TNW8QnDaQt@S{BGx0h05O#gC*+U z_R--yE}Y8dQirN(QMTNAG(-K9$Kq&GVl}Hkj(M#*ngn8nYcGK-Nqxq1AYt(2;l=S>3{2t>L~fo!EXo;^2PI}M8rOuRiA`k9 ztXefeUkjY>PeDDol&Rt9)Bq}LkGNCeR&RpnUci#NbA0So!HQvk(g*q#GV2~LQks)@}M%9j`d~!^oeg0<1a4+yR55{ z|A_p?8}}Ifmrim1kY>+i&1x@g4Q8eq%4SuXOlADDMg*rP&cJ;K#m@P2%p>{n3i0&% zb5_Sr?h(sq!yLH}BE$i;JR+8hdS|d%o@8iu8~a`AxS-J$;wd%N1csS; z18JS!#iZP^6?Fv?Q#j%R*Uj4d1;VFB!HaBpK=%Ck2YlW6+PZ8PPwyJ>7E|WZ8*ErpR>9XD4dUK0?M^^-Q?7ozBKdq*WQ>Moge@O4m!%H{)gt8OzeLX zx@Sg`0xX0NZ&jM0x59llU?}3rwHdhNu6~t)UURX;{M2YR`A+Uxa!0J)ELt*6G`oV_ z3+oiPR}%-(p8%!mSjelbZVAvQNl( zn0Aqus4b%#`-e;MNFHDEC5x$nNb;o6wkdru3(-VA*Y_(#C-16h-hSN}2hx1A$XRBw z!C;BDF=3;BBBaV_q#S^u^2z@VKXsCkDw(Hg0u`K&$tFSGqsi7eu5-Y%#qRQH{g&(J zA)6#{aj)F&veSE0R(d4sF0`XvCA30%DHxZ1vTln2+q%Aha%WTQdj&KpC{~P)^l$a% zk!-30qVv!iUwecJlsT(`|C{XVDrxL}ATlyR-HTUcIs_Sg2Lc6V)i!FfyqHxLmbfQh zkd3lklG*WawuVV0n&b^UVN4b-EwT5|$gF|=<_VrTg-b1f8*%P{KkYQQq%^eSrGZP; z@tG@KbP)&rC+cHivtC<VFzW%3IQSmTwsbQ`B>!2mp9&Xwa%lE-dYJni zeyJKFw*4`E0I0g2bRR9{*SS#5z3s^edesVNbP(_?&1X4${#9dg_29DqW>>D95f0iV zq;Pb#vfX7M;~!q8LoiU(NkF!dAzBSG1l^Q=5ROrpfSnJJFHw%}0e;)B+5Ns+mJ4gY zXiL>L_eB$~-`Ea(pVI%XFTAflZMTKnvM&)W@8!EIn|C{@ZxD8(Lo>{g(2i@S3+NkS z3Ae~{51RAFKl4A!N{XBW>xu--F$~y`sjOdaB(1I;uI2wr-I3S{UL1Sh$Bm;FP;W*MY)~p;eWYnF=I7z23%W1h+Ta?7LF`Vq=qMOTjTX zWtu7MbcML{I=#Ds5xFG!xR|%!_$4uo_&-gp;WO+2mtoU`7 zG-GGR4=JTO@aG)!IAHBRAg}%o0ffSilhIb z6L#NTW#`F#t9Tf0+_f{UezUk@E-1K?F?XPLXR;^dX#aWmR8+21cD+PH)yEFSp&!XP z)*H%Kf+Q*&3=cV4BCVAme7?_*;v+r6Au0XjmwpoIR?^t2#fxq#>kWGmh8j@=s+oVR z9AuMdCVws$Y*J*#Yx9mtSd$GH$@d5MyyI{`uhR2~-O|ocyVKEmId2=Ov|+4k|LXnK zoB+=q%WRWFo9-ewIlUO}%3kSu(L!aVi#ltt&+Xf}MmLB>Zx*b|1ny-# zygyDW$jJ-?N|ZO`BXXSHYPkR^@YfW z73w6U4%s7nJuPn zcz=q-0V?&xQ-9la@7vVIgbSiH<@ngvkhjYb%@@4|&);DU!6LdxCBQMRhf()-O!_$E zH~P9~oPe%=bWr?qT?&qLvuEm88@hv9;CWZaE}G}aMA(A5FvH)q7|@d`a|CdDZh+_C zyL}y2@Fmph`$-e0ch;|!qJ_j6WptweQ*;i(QQ+3 zc*a(oC%uvhsm1+e8mxR}WN0GW1kfOUjQ;|8<#8vrv5vfGmUHM$Q~o}?zSPiB6#wz8 zMmkB*O#`6wCHDaNX{)BQsm*YJ=5G+U^|3GLf_m*}Pl}+ds%-;SzAMMAAMgpX?Y?`R zM$w$$8CPO?B;%Eqb>^%Hu!<`7gc%MRyUz@Gg8;5AgZ*5YKRbuQDki(yOIGdnwapwl0g5=uAytlnDM%!Bxw;ZLe9))DC> z(nbT|4dS~9hvOz^q}dfZr8stb zOr%PE-wisHP)M&tC)$5CXb_E`pCs-z>As=}WMI`%=htXV{!E`NOh^r>nc0(g!yhJQ zkqI0d*tl7v2ZBvRukw6V?(DMxC647yH-q5)#x63X>6$7o*kIOR*(JMztDb$agGTIb>CGin979*X zgU~nArp8K7zpHYq=lb1z-XFD<75KTqO$~2wvet5vwpz+8hBx}KkSwDK5*gRxVI{xRZJS(&R?A$U3@PBwVwHtx>rws7j zKV6p|-((z(n>*XZTd-92)(NNa38VvV4H@2p z*>v!!=ylus(L<_6l?~k?P)B#w9EA@Dll%) ziP`|A@Gu^(@w;n$ilW8(Kt}C&Q8fB+Z*wt3=P|q(cHSb!!@UfhEs&v#=gx(X|I6w= zFsDZB#qIebGBewj@x9EAK0djjCL>RsK!kuqj`5R=`yF%oUOWhqW@Hd}ylg*k@o9U> zpLIT3x}OozCYP;Rdj*xI_L7DAP(m@s8B?)8`4nxIM~0d{yW*|%$CI3ar9)gxH` z2m>7Xh77fzI%haKt{DEBh7M_U#a=%^6(a=O-vOreR`x%a+;-o+tzfSW>_-{O_%r{L zJ^9BaMDvVU~}){Yc>1k>lORcBhH_k;mtN0r?0L)PQ9Y0>^FAZzw#HxXD}$Y zr0Btv`Yyp2vV=BtkK{BfUcfZ+s%XANr)GQMx;_nd)Wwi>v@jbg%H}szwx{~hngIT) zWHyg@V?NJ)c7}ny_N}jUW(!2J$*)k0BD1R2Cy?5D;7zLM#XjDG8mt8^ZVgTt)|@;l zNAf#N^_~$F=hJ>JVjh+kv2J{cYpj167kfd(gw@EQCsGkUO80v*08l%c z=v`?olmxIAIK*~QLqy}B@5**8Bay~|y>Yk?GZ*WSBgsO$sJ1ts41-FjVcBtWLOMr! z`p;;2YzeUa`J_6vVt>^U-utVRd2w$@dmt_Yz-m_GFIe3;Z*dW0OFiM%ef!5Xu_@A% z&WZasPyDysf+CNy##K!}{V?a)PVC7W0tRbi=Mw)7kZWwV#b`rV9{0(IK|w~dg41_A zFrPPyb&$tO+8Ai>+16{pUdGKRARaFFER!H+w(Nb5yuO0^Gy8I)pok&@)bRpK<0L1s zKSkAF^9~!c-UQd5>uIStxo0un6m}bMAJ7iye>4wfb@>8oAI>hF?P7m2$Wr-yW*OUZ zaF>_>GDW4(Iw&hWdgRA_{!U%6Z+WkOWK{7y^iv5d`KSsEy}VoUZunj)zjPm&R=bx) z?g{F(WKBeJQZ}dH7tmdthb2IfaHniv5>vb-B#J3k^BRJa-mZUrcCGy;xEQq>oO2yE zxB2`XAvBUUmIiZkxQzqAS$eZUf{moSJr=u0QlFHLftAic;&hiSI2=5_(|lX}aXwbx zQ#l$nvk}fJ%L7DE=V78a85+OSQ-cr+%KHTsfXHnAyP$d#oSid~NH4_l_;u*RCrYP( zNn!H`0+RKO7hjP0Sk~m0kXpP97Jl1~uDiImwSiZ|;Y8FJk-B1Ha>E5*NNUufu)MB*^*|Ef%$QMZW6x|iy`%!xACL?X5_#wh8 z<^>K36C8kP3J&xiWJ#IkTle z>RDI^*!93UP7Pl&dND4_?cZbe*UbEF^MO+Cy?Uh%+h4!M`2LP<}eO#9?KPQkHn*wp-h`cg&3$xLfB( zKfzrVj4@JDeVfm9Ve(@xL9h-g*w)sf>e*IvQ6*`$(zbGkwj0_ zerLDe95@IO^_-jW^vd3(cS6UrD(K#ly)tU7Ro8h@V@H3WXsUsWmJ2r_8Xg9;1^ql| z{V%Nc{~~moY#^+*_s}o=pM+kY*%{%FZG{T4_jfKlN)|%G_L){o09JW)wTWjL7`405 ze9hOSlQFwCxKq&oZ=+oQ+j$f{pS{f?9Xh8PHtPnMn5J^^KcwWFNna&t2~%4$ZRW<$ zPOAH5mQOkX(E=3jrm@K07!ZPO;q{kGma@2K9bk5>Ja#x(Bo4OO z9T9`Nnf`ag;hGWU+}j?9I9}963hFMu7_~fXb-JDE1b8NEJ~2q%W7WNWXp;!0nopTI zWW`dRQE-b7-#UEU(R9@hiWijio1CZ@tDb1mXKGN8+EHEz!w$t{=d}PcBkGURQGOFJ z+dyLzbbYXHXN$MHSD>?`Y-+!ZB*ltinA6b%$`gx z@ZYSiNOpvaKv2_=m07rak)@&9;L!zO*Dz*~dEiUPP>Br-Xn}Y3XAnvoMb!R=EI<5% z>*jeghX?i=53oYU!5X!&hP{v;;qin)T(VL0SY3O6`|#yCvZufw6hk&LIq>@1HKmYu7wqkLUey zzu)dT^Uah7GT@&R^Air}s_*M}#n|OlJ-L^1Yb9%OP;K~pRTvUY-cu#LYy35Ze;STd zzX$HQ*%XgHchIjHf62his*nkQrP=e;)V`-&tB|X^p`88xn~D`DSWL{^n`rk=u%XZX<*&Gl`W0E zE?7`QinsF@i;+AfXCeDt`y|5$P0_)^xZmJ`DjXrW^xc^JQ{KQ7ghV=a-DYB95#TpD z8CI>$V3YNghHAgCIL0j$z|IfIPsvl@n zERP^Jv1{Fj7o|rGaJ^Of^;Mkc@z41>!$au2TA$15U&43)E^!}@L%8vs3gYHFdIIuH zX3P4v=*iR#R%O5bD=1jpagXEC!hhrD1zRBKc23CvxY2&8o(H+mWP2E&J-op?y}Lp& zUn1GIN~L*htZ+d$b4@o8ftDVT5`g)GIE)=w`1He^Vae>vQ9c=Y75?6IkWu%~{QDBK ztSUP(sm5!0J7OJvo6C-$Qim62#3E-t%2Lp9p`p+5RqJ$8_MG9qC1uonEtk#ZUjGpN zN2CIo@N^l~U9OuTDc3$;;@+I|dKmyY{1wt(#Nly(39(_FV?Ivn zhbinY{=4+7kQiv_Jt!%YW7=h60FX68TGRkQ!Du|De5_k~&tOu$>DS*(AU5pLl0U4k zw8+k*)~@bY^^r}>=f$qc0sk(vzppw+$LPy#6m17OmMUIW7ijCl@9$MW$P-FR7gC_` z+S5#^(-MSF9suI&6HeHKC{`I8b)d38WM-wJT6k!>ak5N$Z1lAB4i@MuXzu`8xN{{Z zV>SCuqEWR7Ayx&abjC3F)u=1oq|Tp^rq0~~$|uah?M%nRV8#=W<-u7(6FWseHt^4` zbI<|>z20gj>n}b8gkUb*UV1UEnxUNwC?a``cbvPU7ac!B&*VjX|tq3tuzCnjB%fae57k~$SplLMkx z$?l5s3c+0`X=eskvaFRUpcW0F-t@Za*TwfjH<^q=<30gJ(CnuvYo3GG!9Z2J|7RnI zC1<08RS<$~x=N<;3#B_gS^sbx-{N)eP^<0uQJ8#o2T45roBz0UOOLoUgYyo<>LRD}37mfioFX4w z`kdSJ{r&6H)6QxGbSsnaCcO%WX_PXl5Of&nv=eKbBX2%uxj5;me>V@Q9 zKyz~xywWirVIDV`gs6H{9~osy0hWNdsG)=)L;aQbJ}pEx=ScAS#w9g-bA~~2$}_|y zw<6h^HDt@Qv?5XbsgB+Pfh({Kebe=U86Hv02+bv9GZNGfUjK48>eifZ+*u=0{!s+s z<}hanct)S!n@BX}JkiAo9wNPg+H1|gRxJ1#!9RKiOU*^f$rx`H7nUFDG zkgeGKzz`NtGXx-DU-S>ugbki=OS|Vtc^bse8XTLYjyFIbw5t~mLCxeYzuMs-{N~0um2wjW04b3xUnZ#}A{j z=QQA2QZ{bfQA{-s-bHoZ|NRAR2Jg2E!-BE~{{r4hRQONblp zj5zGcVmcVdL~eUoa+0rSe0Ju1q^VYP*b!P|))a!9G* z`_z3a{2WiyeuYIq8n*xajHan)8R?f}4~a>{Xp0TsB7JYL$2nVzw`t1J0q-x9t4$8d zYQ?iiyu?=aa`Y~$&uB(wqt}MLJ8)qes;th}z%jEIwv`GWAw#8qD^%^x(w>PQe%S;5 zK3AwrmYGb$%_AsJ@YL$j@t1B`Yw*@PY0)EWRcvf6uP0`F>JoIvLCnL{^UfZBVDPw% zUmE?{w*uy-Y5>7}mT87gTgn_Ksy?6qSJ@@of4&&)VcjT2bxn)Mh4AM96zy{O{Y$RQ zLU(!(aOU4%&1HG>yqP&u`K#X%bNy8A0JtVPV%+Q!0uAIYvpa z|7DFU+M^73i3%=+M=hAGCcz<{oW^9-vHdvii~n?7O!@fGvlQx7jI_Yd!*5!7U0Qed zFxscj>`2sozGKz#{TiWwoEKYn{`>=B)u^~YfK@7ukQJ{6bP3#*$A9O794?m*1I9St z*zE&Nr9FcI^Rp|#^L7!q3#TpvHp0nq7WO*-#*y~FWftvZ4#rpU2Wa)Su+BrfuLF0X zK-&DKbv*BRV0aNVpr!#+d-hHD>}vV%=rj4BSSI^52D%iz;`Xwe8B{sazKv4v80%{x z%VY*wKyK`VjiNhV=Yq>5>{2SeGnyA7v_f3Pt4ew|+APbMr7dQtD5qs=P=OvS%;efC zs>9MJ;P4PDn6AzhC^b3TZ?wODJLy)1X#uvpYHYbYz0cxsSq`g6UHN5di#Jftmd-o! zEp^BIK27V$Ra?45$!*K15TZvs2ywllcJpZfOVh8x@DodwJ7#iyeNEzaB2}k};NF?k z!cEQrmMFCd^T4v{1-*v+V-9on;{B_mUR_Iyp7|WVab^(?ssORxc<$d5fl=AxzP_Lk z!uZTlf>z@WqVDcCTQNgvhKcflK|-=l>~aNWYDDPiq#r9xl3L8l1mn%3Uq?`lEllv*&k6#<5=Ew*cC#jW?F|U9yJF$ zhYa33bVCMXY-MhBW5ROUz*{ZG??o1#ln#A4Dyr^#9cIY! zkJnRwMU@Hngx9$_;qG2K?oI>eq7e@e&Cq;9c`ZnJ%W~5PdOKW-zWRK3xygwacnK7# z5y@FzTXl7a0d(%=Xn35?Gk=H3rm*+!z$f>)gG=#U7~EnBE6z8no_o+j1wa4JBAH^| zMY-PQw=y!b&3b9QbFJjKeB0gM`Y!6Ue(WT!qKhJZG^}c5zKUc4hZx%hj>)Xr$!%Ql zo9O>w-352e4S}$ubrmidbOUB#r;v%URy(z$h}NJ`tlVks`byOEZzD4iL2)4fl>MVf z2(T*w`aoqa(f<*B@s)lWH|Er8`7Z&lhHCEU2kNREYh3_sW3R%!(CV zLH~vrE^r;cJ(yn;p;j0@sve+J8eLQz1{UDsi!qRZzfj2{L`(Lo(>%Ya9(<;{XWzThHXA*;cGNPqWb00oXtocKTh^y8jy;#mI| z#BN4v^9|Phah*W*LuHcg9!j(-V5jUoXF>egt(D~!p;;@>AOlL=TxojKUKawS*)xk- zg$^?|OJ}9Vh`uR1X%T6dQTVf1uz8G!&-(~^?L>3_O;)n?9jTah2WT#3M=6xY|?dDu<`pPs&) z%fq9nK5x&T&|^Ky^mz_~$Ne;imj&w4m+G`ken6^bT@(T_Hf2^XH#$)&6j^;QYJ{Y= z<=CD20?a|P*=3CN%5L(_8R0#YBGFEj4Xx@PQMl)cM-^w56wG;kcQ6|di{$s(2`!%) zE-E7(*N#W4j!q!c?CzG@257JnSb@Qjv~~LCaV;ab;k2G~6q`CA?XBO)J@Zp`u%!VO zBasy)67-18{SMI3CO~|W!vI#DUoG@Suw^Z~Y}W$PRT2|oy!r4uf_?@-F&su#$amTP z50SiiMu&cC_k|^9MC`@ExbfJ_^D$V}4OQcJhuZU5w+VJT@moY3=14B$+N%xJm(BW= z#@{8T<)z4N+=hzg7KT4#U^ApKh$ql>%U{BlBQYtrPr-<|oMkdYGgDCcy5#rBY#?_@ zSX?s$#7jhFaD;=cMjEuU+wQzoy^ED^Fr4oa+8(9N) znuePOgYqtts;~QS)Vb}MF}Q^$R$Ou0Zoc?1QjZk=O{5`V(K*1#j)Si-vAGK@xjJ1E z^s1E+^yXX_kWauG?g@*S zUG(pY^hZ6PM#O>H2z&%(nw^0P=T5cEgwWMK?A`u1d3-%p+vbBn*CE=}VB0#Q%@6Ue z&EXQ(l5J>hkg>5`8!}ZE^;3C0pIDn=Cnw}VLe&rTar$7$W3{E;TYSu!-an0U zuRAtCiRbU~#poRJ>F{kZavpY1J`_qE@Qa~z!KKu1UR@$a*Lr|txdL7DD#We<6D!W6 zTrrsUqMneamZbamlyT=R45xy#?6piTfGSQbz;G!1x}6hAFDGCYR}&#g6Xs6h{S%ZO zWO4{ook<(%R%Vs>ALIA7@Vd2pBUy(pw4+s2$oK5C{~7bopZ?`}B_nox+IdZ4JFUTV zz3}+V-*++n)G976ByhIedR1~-`nW4Ji7 zo5nW~9eiGki26!M7Rh)QZzzyK&G_ymOrQF~)vzD0KXPZ2=frZu-@I0YC$g3~P^>qg ztc^R;EIP24)ZNA;9 z2rx%%{i3W&4s2Q3^c0ctvD}w@%u?X{cGt4@rUewuJ9I9SP(Caz=)*~!j#FE=x9KvbjFSjp9$__o(4c<91i%WLGqO|wRun-*b0Gq?nxWSl4OY5QwVG)g@d0ICmj3gInP$X23K@$2cvold>6N&|M>ZFm z#)mKdv$Aa2$NnbJITY*3$t#A@<&(us6Ys9 z!VokTH@A>Bxp>Bp0L$v@jTmYl`T>(nl;I0u(M@cr7CwQer| zT-%JY<~>1mWIN0_Q{D7lW1jKP{I;A6y$o?wr9qGY60$|Oju zt@jEdVhPH04D!Bh0?q4TOKd^*qltFgvrJxEckS8U4#zQ@QD&;1pN)I{ai_c;*`IC1 zO4X_%4Ap#;qiV2Na(qZY9n|OaH?JY?*M=GoorV7n zZgR9`?WkqCW*|Z7q8~pz&697nJ(dVATLhHUrhY;EH*t^eJ9R^{=?`{h`JU^YJYUU) zgIQz6t!t)E>=5Jf^*y96Ys+6vkyk?$YAjUzsOAuritUyt69?PbAukop*2Js_limyOjz?Up;Q zc%!&Ba+bF1O=)A@Cu%rV$;6q|N{+E5#ux+|UoR~nLz(b_X zxb`H^-AXH|dZac-j(j0Vu^+sFN3(NIq93;|Ru5ebl-XqlygBkG6pM0scge0l03}X+ z-OO~=QE21YuW3_15(8g&nbj=ETrY#5S_$wA=#WoXCY?peLv;;6w5Y=!&-lS*^g8Za zA<^Qg)i5QTLmG>MDG0)v#KZa5>7EApMihK2p!M!UTF~U_ew^b*bfs6n?WOZ!SiNpK((=3|B6oC8j*v5-&o@Y7W0EvOl2gh;X7BPK-2DPx@@4 z3N_lgr!??F!$;nP`qzs!*NLd+ykMoF+F zw}!Lvz?;h0LM#;y*?_41JxPZ;4`Qlkesgt_bqtdhF|uWs5$-x<7K>AtM&u`5ze+|u z@J%@AWafz1DSUCo-%!_4l)oxYldkoACt34k3vSEebTylF9*9j7GG^wNO)>k!9W}p# zm(G_zdLl3GQGD5bF33$V+!(tTFF_h({n|dI(0U7 zay}9dg=P)-yep4jRVk_rTWj?pBk#_AR(rm$>B0_zMIJ$gtnW&zw0)Cz3Ldrt814DD z0Qkj6FmsGBfDN3^mQpKtsxgYb@5mA*T)nqj_xd$_j@pmFGbyAn!7RbG9T6`O^ zf^v%Q!NWfsU+(CWA!9H2;eM>X>T1^0g7EerU1yf%+$YQ1*N}2ZSM90!-H_vlz-kop zetb8H8O!cVx%U)DpKgMDd*I6gczdUdJTr$aOR(>3>#otd8chQs{p9?%uIh2Y*o*0t z5@Oax(u6GFGG*kQ=j1*8HKZ#batVpHuf#?g_&RQFV_VO-?tLsY=N>R%0`jy%dUM_J zE4jQIio*p7rz+kMDI7Heh}Zo|O`jgg5$Jg9+7XgfPZ;vbS?`r_ANWzy2c?~unzNyJ zdc!OVN3MrO_SKBNU_IViEO3848l{f3`A#sC%JN&O8ZmB$lo+5ZtBfn-b1m6JbU#HJ zWUIWA=Xbg~GNntUj3TF|%TiP3OVK+}N_Hd3F|Rvm{+H6U7O;yzXp1WCLUkLcP}?^7 zNMWyhY~*GUpzEJu{x1#(NxV=FRPU{^ZRxZRQ$u653$00s{XSB2FmHkO%_Z}b?FwM= z?|5&P?R=oK)wkl|{y>9)R`G%2AZoYZ{P|X=J5`!P3_lXp{|<&qd65MYH?mSTD;8b?GP}1$_8M zUboL--MHf5GyCI7ahnG@dQ_;@pPx4^p_-IYGHPw{V4t z#{+8nT-{YjD2MF+&yA=*;!?Zu5r(!Wad8jXj80QF-|22Jh&YXdOjretL`mx{HFgNd z8|mfGSSh^3#gH;kfA+~wb!=3T0TpTn&DeHNihc?6;4xWjl!mpWuYC*n@ht@T@dP6u znVu1;EBf(*L~YxDD`~~>KY=c?eYf<2vC4vSGxPEfhy+WYe*07}^VO(o`?3?^98TAx zr5mophX7aGIwwK$T_vAdQgDzNDJvWLUmgg^fPy~&^7FXi7Y$KohsrHRg_F=i zeel}Vd;VK$y-hx7HO5L>~|0T<4lpi2%GRRus_GvN4=SzCM zLwqhT=a^xhzl&JQ2c0)bCc#~Guq!8AstnqbtU}N=MINjlN^_Wd2!; zN$&Z^vJ3T|wb=;`mQo2pZkuL6gmn`?e660#B_dRj8PEjA`YnTYZl%xnouLX#;<|8} z%D=>Z)%6Bw<{=9r3lpb7-C6sAKj`rzr%*yH?l5kPv(a@va;8}E+RV8E%gv>2 zW^xSgu~XqLiCaf}X3wd@gHh6_JC?f)<#|Kc^&6=>p?u>^wGF^`G;8DDgq7PP?n5M1 zcH{as4Q<$oE{tHSj^->?AcvT|IZUt|9H!Cz$z|nN_c-YBOcY=p_{iNv52(lz7+rNn zo>i+XNkpZQ(w7VInG+><$&UX7ce(o$O;$2*oep(CX%*`2O^OMAXg`E48Bn~G1_bOY zd{$Z$sN2rfxO%Z2Ic>p-drS?qO2MJrG z>A|E%-2D*%(T<+d42lHayeAl+yT3X6AVrDlK=Oo^A0UHtagjzW)!_@aF=FNp@FnoBlbIy~}Rjj^}v^zbMn#J?0zIh^tjEkn|M%L<*}rc4FQoDo@x11C75e_~>v=$|oMPFuO4@dFeZ_(+3yXuUl~Jyg>!~8z zy*&)5Q?5QD>-Vw4Xt(88a4J+}lBU@E^vJt>^lK*yOwdrRDw#lzk7jWI4FF2`b73)) z_obCfaS?;@f-48yPuFK5Fd%R9~dGAWZ1-NUXWAfOXLwzONou@!kY%K`>SM@|# zSNZ$u9MjHOw=`8tp?s}}RHzqWTD|KE6PHw*h$wYx!1HP?@|;jfOZ4p_34B!lxWzl3 zlwnbcBj|8u-%aDMOA@AKOH zqFsm>`nvxea5CI=L4D@S35sOkNNk3-e22a(7xcHdb)?_}aEHyT2IPQkZ!yr^NvPWPXJHRXSsn z$7gVEM7M++-JMJq!Tj=wY>#notpfZc)}A8&-M>VwQbzlL=RjVCP;~d5PecZhZRx~+ z6Jsd>t;nY;6`?7ZJ(o`J@q{2F((KI|OYP%c(DYxeyDHdZA^N!(cQya5!I3X>B8tP( zYjxLg|Ek;9e#N%1sb&WL=F)X+^cqb)3Tj_73U5m!LnGdJ^2~kep5y8OKWzuGbKf7} z8C|~XSQ-X<(!@N+U`(I#=vW_#egIYt=QUP*PPnV)@0ts%Iepr+TTr$2M~n>R5+Doi zyw?f2ndS2}_TpS7*}R~av|1}lx1590F1A1Coj4xu2>1X|{n5+rJ=4)$=6P*@tkmCw z{E;f-6eT5Y#06FzgzF`pZ|d`{y~*69)SZ9~=X0ZA8kBnikVklvCyhV(JL>XFgzUZ? zk<8aS`8m-XYw{Md%`MOx?v*Wp#vc|EDe|6-A_F<*tNbbsiu_4vlmRwVE7sVs_;lY$!N8V zyuddSK>2Ica(Yge=w#G8Ia_rC9nD`(n)ZE<^@XprN1)T3W5q09#v=$G8r-$@ZkAqt~&nLM#Wwsl8 z>?AM*xfT)F_DyP^zf&1p2ySvCrjyMaJ9B2p58235>W;EayTN4!2WOC5z4~wW9!CG^ zpWW7v4mds$GQQ?R6&tWA|I>LZ(wy&rQ5U-g$`taa^Lp&)gbnh9I3XK(1anbxo4wv zj4Li$(7Ih}WTIG_O4(#-?U9^fi2HIMa-E!>K@|g{kFu&ukueVM@K@oZ(N*#-u0Zi2 zKGoYpd;3&Ka_FU2&4p|Cgl@!}dt4#P`rAs9oc5+>eDLpJUG_CgSS8+rMplN|ClLne zZ!k)UuC~fz58IXP$xttflm84iMi;qR9S$>;^B7`79+xDOp!4YHrkHXXozNA964Gk#gHkPw5_RvFf#^?Alq%LqVNAVNN0@ zsr(-0_?z+*UF6lt<_KL%YgQSZ=V}n3TOUhnu6Q@nb9)Y3)%HSMJPS|j;o z8i!UsD4E$BOYWi^r5*R4Syo7rzFy5{HOMl5UbXf8VqX@bZIi^gLZ-9mZZu^M1xU zeBomrBj+9}xqVzE&b8$!Pc7qv;4-0^pla=EDBAXG#^OPNt{d>E8n6A}a~@fCa)KK9 zuaIN<6X2UF|Js%EVykIFz++fsNbs3MDExy;p}}WU9uGVH51noEe3Z5<4q8fUD=S--PkX_jCYgJ`ORXnI?CNh*R}M( z16{dWJ=-S0G{nvmPoB;o{W^*r%@T$)`S0_;t<2usz138`{qXJjRo189yg1H4t_w>G zo>2adS)vAUg4Y?5&sq((_PYA8)hecYT-vdLsxYbGF4=n&0Qu4>u^(>6ZsS@AKerf7 zkl&XZkoBTYsoJjGIwl5;8!SW`eEiee?L`9$iW z=`2}+HWCh}>~)^hDGtiLzmZu07rX_J~SW-X5*HwUwCsGx@8lro4uHVZ7+ft|8 zRgQcEs^0wu5Whhcg84)50q0fmp`~2-()46svQ-*0Mk$SZ4$ zqwD;v4|p#^^qT(@a1LC*x`R!*I?-pI=M{LLJkc%D*BoXSngz0k7Yax4NkuDM9l@bk zw=bvfvQZ7cA7_p*+-X#L5*y9=f^lT+0+ZSh)-8(XreDPHOS5dh?}K`WwDJI31qb55 z@wPrhzp1|4Dt&ht-*WyC<*`zAN3ahRanJkSKn;tLa4$Pp6|!W_c!j*w0yVHpLY##m&fTuA8VQ zXr+5qzte;Jz6F>4{ydFJvvVk)HuSVm(>VA|EY%J{p323vA5XpeE3fF#^{aw^_Q_NC zwEblhx|o+%88z)}QjJ=_$D_LhfkAuuTlxn6)hVp6vS+`f|G*0`icTAjEEfaNK9|_o zgLmVy^S3o(P_a#erY@uWPYHEDD3d^cn7O*%lj)5`HM8aVgogIFkFnISmb*L9-rm!@ zq?+rLgnh{-rNcCT((A;e`7Bi+DhC>jx~NjrSK3+(A;(+247Nl>ejsWH4yZch$R}1* zBwd63mD$wLT}3?*66nkCma}|Y(|`)x{u@?$VS-JjGO_|tXMGoxCDhA?Lx2`0@Ac#N zLSG6+;HXI1!ROL$SKxK`{C>H|5lbVa%eIX?bYe~4YUT&GXlbk@Rmk^z`5)Tuv4hNi z^JLstWl7i3qjL!pqUV1dvzfhX8MKvZWaEwldg<Zk1trJ@WMBZ#3g7A(2XT{2}`Imq=FfB2JO`%Pk`H)n#5}m^jF0*9y zK=^omBvZeuHytl6$6TKMeDb?yF5~Ked(-Lb^DP3tybo?dROcmbk$godOC1&uCi%%# zj;}+6l8E)wU2UJ>QnazY{vhxDWAwIWBJ!$$=o2beA1qR!I0gwO!@TEMh@a;>uLQd0 zww<3PXvYPr(6S!Y+?GQmfkHo$R;M2#3#w!{WRh3ji?7RsJpv+3I3CMG`ESU0t=;U@~iLBu_4Ac1zRQ~W1Jxj4VS%+}-F zehK#EneSaCwpN)-vjtpBj^dLc71a^}I=5Zo7~{`qWl@Q9RwYwZ!b=6bAH7SEZfX9O zTn27Jc4={AglR3?Z}lT2ywrf2qKp=Wm1!M-#P}ApYZ)FikTKqMe`p-o=!JtkZQb4^ zd@0zxnuZ0x8XDO5P|(#5q4p&0b5~MP#C-CFqjNSf@5-<_3gAz~IF?bg=Ap`V&;V z^W-+Cgkl8&<)a`sulBob^utche_GiZPmDe(tfPM(Yq%niRNDVJr0Xk%+K=4#T;NM= z`nk76g@ORfiI7!G^k{*jQAk|s-(dyXoFCk~B?QUXnIu^ChrjTA^i!ZS3R#vl#xdZ+ z?hr3Q>%?Q-n!*^du8H}o(K~{K#qJ3{ybjwrpoZx_cM4!)Fwy7D*Du&*8WI-ex0qh! zOgWj<99?FTIrs#Im1K%9EsBhgW=QkGsn1T{HJ3(eO=jU3g{qn+5`a$0wYUzxFJPU!*#m(*jV*AqJ2v$!{Q-PX25CB zQmsCpaqgT-fBwC}4|K}R*(Fg{2h#y%+=sYsL8fcwpQY^l%`T`dRry83nJi|f@#Snl zsvLF;d&O9TadDQLlaC}2Q&knx1@x*yp*bY*<-`1J$7J{xI%lkwrA}-O)i#+AXMtVt za&4N?;y=x_0O5#xSi~u6x&7z$f$XT0sb?3E?@nKz0G-r8U5#Xy{igg;TF6sJ!&tCt z`j~0uZm5zOo3u`=)$CIL$L?bnyAcK3Y?(LQsx3;VgVhJ^9nEuH%%4Lt^yS^xVtu$K7K z!9fEQom-BNN)9Z}fe1ym#w>B=>qC_BhmZz{dL`c;gYWjQ=%VY&cz*Qa+01MEg3tD-Lu`0r#H7Z_#mH zVBuBMC@?fs==}-rFOjxn$~pz3?p&2UU0KEf?5xDLpMHh8a&rP*7D!Oxd^#@k1y{Qk zc$ZnkY$>s!Kt`&nGg}K(gbsQN8^lQYk0jA8OJcw~Bm7O>s)IyQ)etll_s4}3cdTb< zk%z6m^HCNzEK{jGe_g&C$=(?fm$K&HocVX;b0pnlq=G5KFcAWa2dSFQY7U(Pf6b2m zuLbLo*-gf`j;HOG5Va)7QgbdF^~1euk9k zmAc`zxGL7Duuohr9n*%ecKE$d5^@@C3xH4pjLIKhG&WZ_9`}lhjL{VVA&T8Ia#i(K zP?APp!Dl%V+qj;tpp36cG~VIxc(0UgSqfXxI_r?!7g^dsnt(sjX_I#C${!AZXn{1T zI#)HU4&w+<6Cu486KmQ9LOTNw>G2G1FULB#j>}*K<+~9I%?hx?xHA{4SgNEkHqiE7zZr3c6a+EnPP{&E-xXp3@scHAlN)BDQSSs2|D zIPNb3{y`fF&FSuwXyM_Ny4w%c&6~p>a?#*IE?Yrc-2%w#A|Um!S|P?#rN$?dcfY4X@x#VztOD7>yLJLw z(py^AJJ79Ii^D1P!%(pL_!I#x-@tTgBExIElL3J9hBDvtTsw3IU$GvTFHlqowVz13 z>aLYucJnZe>@}4AG7w@m0O+|(dK;*MAL6Ne4f1bI_7sXSQ>T!ML zRxF4%jBokqr6Qx<4@@GB)3$!rZq{m2>Do3eg2s^PmcL!dr*9v3<6<9&7^vytZ>&JJ!cs$_a9VzRTD|uL(^}RfW5Oyz#mS_|Gy?NxQB*hi4N)o}6dj9T; zHrI8zBL&rRxHNz$3$0u^CRRFnPoN`z?ipn zeh{=LaCasy0luZ+?MyaBj;5#U$!cOB#-(c%L5HHH!m1H&(+e8Gnap#4v$^fMMA1>&%%_192_Uu}4n1eo*t)~8l$ENt4DB#xBT3;RzZYK|5+**rx5XDxS?_)3Gk zO(N~MjM{gGoXvZ5dnjF*QZZ$sN`E@2v>tEmb>QE1bzXxBV$9{@{TI3A6kp2I@Gn?q z@1KyZKZ|P&Zuh1JnvBN>D~9Z@1-yDNzH=uh_gD2Amctu9I)>~qR`;{tj&Gm?w;8* z(}{9iUE7qMca>Cc`wp?%c$fFIW=BbKW4Pl>KN*L%{)==CO-(cyDpkDYbTuhhs`M)t z6aU~~LMIh^hmJDM%2+mAot7|r4TX&*`(TiM0 zp|HZ8dI=goVDr2C#sHp9AF(E15Tcv;kvx>l^i8i-_ z_J~=4qr}2`f@h7=^Y1VN23dKSCT^Yc7n)BIV$bjEYNE@z?Exs9&XLIa!*T( z?Y1Uas$^-1V`-D`>~ww6sk!s4f;%4;tJmk=?FEDx{{ODjKoq&AeHaJuj* zCi8+rBLq~_!~9sIn^@9J|9~~H9TCtuyV;-n*dgA7;KToDn@Sh zd#nK9Ctt&kd!4$59RVYUfQ^A+1`zQt1b0V?TAiGBT9)q0I?2YYF~x|P*z0}oY8t$W zThvW(TEp5SyVKd(caG!1QaF)QyK9ZVUpH~Hr$Q7LbJP<4K2%tMx*)9s^ZuMiC+C}( z0Xxd50)OX#?F?DZ`3@*->u6)0bl2_ch@`=h<(TLCh}*kr7WF0JJKxB?eX58}M)38d zH1p#ip_PK>9g@WY;aP}JAg_vBY>xNSZQ1z()b_G`tMNtn>xkX#1==+bQ==)^LI6G0 zp#kw)&q{=V1V#OsaBXbRMO3Ip;cq^~^ce}D}qxG*y>a{#vpj- zA}`ZQ9*-T&lpn?S3#Cr)kygXwqcp>u3*hUjINjDWZ6g16cab&8ap`1(#!Dh^Q&HxpHx6h)51y1WIA4n?ZdOZCv9&(0%;Z(F2R&4Y6;K%3dI(N z5E?kzD~FP$K3~A-Z+TJB5$wO!4J)(R^}eN^BMzoLV$odIsKqPdSD~CLRvtkJHA2EP zW!e%LP&6H}Y;7~b9;7^z0Zyt?BS#y}?jlKJ2&;5paJsJ?^#{t6{w>;IF)1XMnZD|j zylBCzjbI))Rx(4p!%&a#vZ^!N#_=v?(yEdUOOXH`f4oGf(x;YpRU0KAib(@B9uP`~Io*{r5#cOH+{f+9bY?}kDRR?I57QE0m0q(h`%Y2E0oz@Lq z8PC0++R}dV*u?cMHEEm`D_hlWn_ITp+FJ~-LN&Z#6}s$AT~b2kn+@dc#84%8k78%) zI5iJ5XF_Ti8V}N_bIawv_xQjpH8%pcWG8#)gRJU8n`kt^JR%AT<^7avwu2i71m%}$ z!Rqmh83K|#&mz_mj`VPYH#No0zthS&{q{5lXsv-?DI>Db{xK|uo=x>Q87LF}e!=Y7`A=lLdc^kvXP*yL)>wRK% zMX%7(2c#;}_ocp3p{4UcDxCgITfdDbDB%%gu!r9xNbZ92EVdhCLPb?2PAYaeU70j* ztIKagW^;XvKvZfsCGWH455SFl{fMjF^$RsEh@T_V{CuZP(ytwQ47OeE?IeyZy$e5H zFdm|2sWV1EV8httrDE>U>g)#vK)~)V;TYsvzWe_0aATJ{{=DjOfF)1@)09E{?x#l1EmQ))r?q{xqidqaAn#7>G z8X-=MI&K39Yd6@=J=l9v(0dMc8twdYPN7(qOM2+flYckih$IHdy{St{pO1r|2+7qx zjsTbNYg_Gwhz6e_APV7IDm*?`q2&|&?1Etiz_FPgGcp!?d9uEH#j9V%OWh+)-gG3^Y2FP++zI(Ax{69J^ zpK6wr0>(13?GyUc*6C+n|LQJYm4JwATS~C3^>1O$Z~I>X%s|B9H;Q3kJI`43*|NsA2Lb58^D-Dvp9qUv=nUx~*5IJ=0V~-{W~v7KWb$Km+B-k|SL6?~B6)O=qxnaP;?D(_0WPO~p#0Ig**G0b)Tqf3o za)YA2h7y}O7NkuNlmG4~aE8)ntSwvR5fM5{Pr~ad27b0Ji?1UrP@AAbcN^*0h`vLHhDA#BTdhN$F~vjgZ2?bf z`xKgeyWi35?CL4TO;Tb@6pnpq2g}WL7V|d^U&Z!%D&~{+^Rdo-Czk6oAH|ji)Iu{K zBjv{J%Qqh!jvY)V`9>$qfeKLyX!3PXS(xN_RN?c&5$h8@%l~L2e{Wq=M_#7t1`y)o zW0wX@Q7;=BFK7?qD>{!R;2Sb?1g@f%7ajpsd(5*vByl{?3IR9mPTUy#R&){hK41v?5 z4UVYzZ>Ywz)%`cXxALqFQ(s26^%L!UqC8J-(xAWk+zPr6?6xH zE-zO9qAS^!+~7kSk#f(Gug6p=x_aJ%H3gDKYY&Z?ToQ!Lilew0XSX9YN~e6=rVmti zZcc>Gai8A@FVkm@JR9e4{4)!#f>@rUPeBIQYn_kZivC!%AZ|fsK>Q0ZLqwNVZh~mH z2L|X*<;*VVqwkyhu4AV2lv@mP3`l!R#^gw(9o>2fejrvTd`~%DRj6i8NU6=D2>d+* z=0z=VC8YYt2jrPcF;VMGy0ALNgDRbq_0g?vmWZ1pc&8JTn~(R0G#K7VOX29c+H%8T z>jT%}2(-U*=eR0ytUJXyb6@*fKGeRL{RG9*aKE9gwu|13qn0k9tMD(hok3CY>*`;v zb!=|T^um(JM(7Md;1HH{EcAzU^kzYY<>JM{L>kDXt$w9)*_}}3mazHqwZBYMBITx6 zp~)_(uc(}xu6KA3A)TxYQc{qw0^f3>8PSP6**8Z%jew>US?*E%?W+E6w(0i2$AF~^ zKOnX(hpnwO|C;#YQC4pw0#9EZVj>=rM%V(bRu}GIGH{~RYxd*ci94SBLid>J>1LEK%%dTI($IOa9M~SzOtMD~;DMiw&3WSiwn zp`tH*VD`zHF+qJcJ!!^Zo+bHUNIkhksVT9q;?cnOh?AFIlE(sCF#fpo$T0DTK71{( z###=!J7K7#&6~3h#{$ZM2c=#TVTDrw*oj;XF2GV?mpRY|D_gKq6!icvvj1-9!!G)# zRLH|glPHXbLr{GF0eT`pR|OO4?L?;ffp=7}G=uV6dh&;mXJ7sVmQkL;A}V+-MY$f| z9AqPqD$6aoILD^4Fg(f33DK}AJrmhgUvfS^d+1p#2SnEI@D zs&YMY#k@JhhWgV{n7+^t*resZCMHV}J;#9k{7kuEbXBv(GqXPUJW~ku>E2C=Q~n|B z5gn3^SEM1@p?+^_WG=*P;oWuH1Wf^M0zni=-kudxw@GB6=27t}V_ZF~*InwL7aa>o zl>4SL@N`O)7~Ad4qa-NHjI&;?EG6^6`w}Ls{u))cQRB~bV(NCk{rW_4kui`Xsj9w6 z`J&*E&CiwK9jTy~!XJ}OkoGU$DoO(hsy&UWZx!3op6obB_qtq}p-WG-sBOzehURe( z{~YiP$xHLXPfErYL>AMWjMc23{75^6>$|i%+KVbOyOqGSlhACDt%4J2%QU77mYZv^ zPBxm3lmgM+R&S5IffjzNg4tNUir3?E6!#~HWC2EM3$SHG(m?LO3nr-=*3@e+mX_#@C0j6l0dgx!-hSsyuhyOT%P+8lM;KsUvoVAU`sK z|Ler52RR7PeLp`h)6?>uKn?egoLzY7psly{Pt)_Xlum#>fFqzJR@G`cHe|Xa3?C#* zHMeATE#bV2bnjT0p<)>4;cn15#wiog-(qm|2kH=h)s~0{lDgD``zP`>B5n zb4#znpkT^Glfv;NT8fm?T6g+{kes2dCkd&qjlZwzyV8G_KE;o{g!`UY49BUTztb*h z#h#4UDj)Z*2Z>dZ+)DO3i%otkt(x8HyWKecu{w22)s!L^TyDn}S~nNqB&+ym&(Hlx zr`C*V(s52n)Ri| z-oVfSG&3#dl}8#`=3S}2C2}sRL({5768^cX`8pylD@sE6$(#5_kYc9`TBNWocTGZp z0bO-(pLdMdt}sJ=_NfJH_mai+X2KA+aD$cve=L>x7wBJ))gK9s14VY5{R+Qj%~TVh zTYziiR+4nxzUqVjHto?uP@G?gBm>n#!rP_MbxOnwx;M9V#VEIKj!!j+(*_^2CqTdxq;4x0fULkRY>TcjaHLf;) zvl95DDbW(|+X~(Z9PSAmTJl{=hA&n>CjQLGTY&9bl?wiopMd40uk6Lrb3fA@EHeLB z8HLQR-+9QdR}H(*!2tZ0JzJzFY$nfLuoFU7cM2kbY-K$3vp-TbWA}JB_!3K5$SHS#YCy?ONXYx3?8NeD$BGD)?*jq*;vE3Q`5avnz|3z{(wE9 zbd-{k!}v=}7E4cS*KQ#7F}#0It?&_m$gjh(~j(*QSbU<;+L$} zcEkIG<2BaL3y@=T;54eZ&r;k#KSv1&y5}RN)?c`>Z6Kc;Z}SI`K#;D6o^M3Rxt-Ly z*oXyO0t`9Ub}i@bJ8MrMW{YntkFlz;+Z|wNc6h#^!YSNHKERqeK)<`2V|2N9@Q-cV zIa&vLB`Y8=-yDNjDEuIv{nsKE96toMV=>6V-w5d>_CjY(=+z2*V(eSEQ!4tC!v#+! z(_A`}*ED)TMLkF{Ny*isU~IucC(#@r_mr2@Op0x^O53Rm14i*%e-$1e;o#Qhk{jUV zA6ljAlMmnbd1OW?(GGlhacqL%}Qo{ec|AgOn7o=m)hJ5pZ zU`~$|lZJ{AIz>+d8Rrgu9jUXORJLy(Z;9$V2fu)uLZ(18qhm$j0s`;LX=y(*mob$W zML-0I#vgQ&?#TQc8YB^G%!I6R8_JmdyFge6vP~VssU_MKLbzlvg|lH7Dg*0U(=R0GzUDp6^jNVt~v*Y6bkPJGyjRF z7q79^JbT}8v^dm-`5GDb4Xzc?JfUUa{$=d+waw=j4bE>KqLsY)APl&viasfzfB;z55H*>7@l5{#J zO@r5}s__rsu6-@>6@Gv&_BdsR|E7JU1?+3eGj-_b{xUR;&^mpQj&vIYavcQF(( zpJoO|2GOs(XDPUYdHoQWssya@c(%xrTEu{GlL4Xs6f*T&iru@D6lKI~vFwwZHbrgl z{bbW62CWKn-Jws90U5f3l`N@(`Q7hP+li?oFqGvn&K@CQ&}&3f=?0wBynA7{EM>T-HUKMH!bOWPehbgp%~;O;Lz8{I^W?s7 zF4DiMP)B$;-o9bMab}Ol!_ON(`6MKXmP*H=M_ket0a?&zz{{L+GEQbORVr0rl*$(v& z8+v=<6}g_>C0tMy*(Hh*TXQnkT9+Kn23pw@Q#`;N4cpLf%VPD}KE?h=92AadBhf1o6Chu@Bdgjy5A zs0sSsjLuY7i4H1MXs;pot}hcxytI2=M(iN@So5`qC4I3XE)#)7QJ`L^sw@_v#!YLngfw#y=Rn{3>D>o>SRhlx&nX{( z^pIDY3wVqSP1p;xY{v#`{k3id`ldX#{BhS0R-@dHuF$4CNBo;%6RR*Q0{MT+QlER~ z$Xr8%u2jeHb&f&qCl9oSO&7MjdKpZ`=du5)K@Gn$nn4bgU<~B8?2P#6FI}IGVl%m0 zXPDe_GqzV&)*%+@L`}oG)fE6%QnSs$7O+WbeCFWS6~)z2HjM812B_>tQMP~mE<%@3 zmHZkVO-)x_99S?<-rD(qU9c~HjC6{%h;z+T;tW{?B4tshULnsOGnb7hgA>kB8Rvr- zv-MldhEd*OU0A^|X}s`{razvzx^cPs{D*l~6i@j;aEV5clh^*Mcixhg3`?p%xEwPTSj47DuHok*fg&RE>)W3g#{ahdD-dXC}R!P(K#o^SA6 z{8CjJ7`?=L8KT?`&zg6)y*#E%8Bu~Wr8b9vI?)Ap+cb`_<%PWSMM1}vs-Pr*k=R$k z?69D#N_cq{eRR19RqE9&cX*56Famj|Kajh0gD0MhCN7&V3pbx-YDnCeh`s8nyMSzm zpJk+UPiYo@vogwU8lSs1V;}(^p@vNP92pzDHq(3Lkach^V4Fs(EY<|F!}oND?i5w; ztp+!B8ESU++? zStFzyv0Y&Z2YdhP-D)M@IGzZQKy;1Pk>Ug58cfGPReG1Ha{h*0D8IYIu@{%;$8*_r?#B@SJ+6Pr3GLy4 z9-7+VqS(84pU<$ zRGW)P_2%J*e|kbQ&C^0P&)82M3pL53>U`Lv#-$63>0k?YKH{Q4AkJ8&ufoL%=od7` zvGrHky`W&#|NOZBd;WIwKa1WCDq~#R`*&}g^-OiUn!#l8sPppsDMb{Vzu=S`$;F+kRcW#j9) z`sUaJ>VjK%EHm&<-maEX5EdFz+`wr#VL@xxd9|0M3$e>b-D(I>E% z3#Ok|uJr_dfzfyfswJoEm%wM1Rt8FC7y>Kv_No20KW)l%+hi=NDDDDe->5=CPS?2zlu&Ad$+^O#!QTcmA zW_+V-YO5?BnLQn5qj;X=)3x8z@mtftvfo$pgba6n*-~utY{c#8^$NCJ>pUriYZ^IY z0addz((|5)^tP`u+X;Z}nHE9B@{F3?Ruibp|26UKxMpK>%T`}$(h-%bMtXCwOf@34 z?eNYB!o*mhtCt{vzj)4I@ht8aAgwXY9<&j^<-vZI)l#r$BxAY}Yw+xwr?tp*DWBVZ*DMB7v$Fjd&(6tk!nF_c0!| zC1~L5aI6vU64upJsMTnBzFBgeG70LQ$SrhqAHVvCDK_l%QPI!#=oEWa;A2a<`Brs2 zUr6a1B1cErL^wuKFm>c|=Xa9nDazh@cSje{E%;6?#|3+ymNi2LE_F_Cvv%_I@3Y!V zEmJ1H>R;T7HK(YBL^=Y@SYy{dhrS-ghaQRW=33&oO&w8o-s4HownpN=l}6W18t6}^ zXx}69kdMJ1Bn90RhxI=JcR3_39{ogv*Pg83e-shB_JkUu z94$CVBATA!02X9q`L$2hw|wqRitE)Rlxm)T~Eqfoo4s%qUVH$kgx_S4msG|w!WdY zya`&4{$F&8VAoQuciu%9BTb1g%X*_-ol=x(e^mx_T0C8v6_=X&FOtWCdfINbC>|O~ zRo&sEc`(^*miHOQCH~I)eeS`e0$I>xLV95ucxT_l#f$!Z#}}s2a%ZDQPb87$o_okJDIAaOsP7VyXn9p58;eE z9m}W-tcL@vSth{9)DXuX=Qsys)Ux{}p9cMF{1994$L85GzQoWqlip%d4jJeq2xJzI z3kJ$wFzrIUz+MhG^$5h)9WC@pomBfB#~RVa$hs?F++cK|>|L1j@{qPR&tc z@!XcAXzjt^t>;P`s;kUfJBmGoh8_2)v!~I}1h^(YVV8Y^ZK=Bnxs=Y*2U}q57Yj=D zQOAfr+@CZ{jIB8h-NpJs@KV3RD#NsuIB@!y2Km9UuOsQP;I+>{0Mh*}kb2B9c|n0W0rHH2C)?r^b-Ak8@Ixl9d?%*}cKEyu3jAN*n%Tp-)!?CoCSzDDe&i zbDM4Jbd-#w-yN4it9LgT`6`{4XvF)9ZK2Eza^R4tg<{kK`73TVi{jL4^KBVhdW)8M z#tXkw-Gc6)%?ymM?Y^`Sy?)j)Te1b$a*12U&YlP!6dR4`cKV91@2r29A>RGr(wOL*mc4a9Oaj(d z>nch+&(Uoc!!`|vIW1}IlIKxn3nstV8CNnC{RdRS&I!i)R!4ydyEloLmKZBN8 ze3tvq3j1cfAvR5#;Bv~wuTZ)9TZ|ztajmeHRK#It-=iI>3E?!)@M?=*Uts0X1`_il z{uXq~Cd|Z~9%QF3wTu*0evhVotqsu`hZt0v)oGb+<|5lgH0tKESD(O-HkD3Sx>|Z$ z@BEa*rTwGD`n7DnNj2e=LH}ho@l%t{{8iC5w7(+K#KwQO0qj*GQ9~`<;FYV@VGJPL zc2*khfWWp3J5gSlsqvV`YYj%T44c0|@w!W{9>t*c&QB7Zr-;D_AlU&**dK`o8GaBk zr!f$~DOED}gr8y5B_N2d7SNAOX38f+`W9H)A5gi%AvjTL^XVQ88t*;ySw>>(?;GQv z$Q5UIY&y6HbHCI28juFjw(9!?EXIHTZU|5O4WpcdK6&+2wkm6`iOajv?Xx!WY#1z? zk`J=fpoaH-ctjoJ5+hvNgPnzgJP)=P37~Y}A;=WJiNY}p`+yFHk6@E{Ui2EvkM3OE ziaifZhty;!pGvf-XPQ_LXk|E@eD1TtEg~#?`cck}MhP-E;RTyN5o$}^ERFJ3-Z6VM zu_QMY=9i@1p`M8A-)k2(zadD&YvCyAvf&tC{d5KPC7B75H-Mt_NXV4aX&YF^7Xu*r zf7O4^PWq;;<~GJ*S~?ACeK+IM4`l7sAMiMbE8lHcF>eb9?%}lIE1tIHFCn#rG&-+^-0FL&|M|${5Od(-r3Aycqz}xm+zUD6|wu)jj zk|bR<9P)*)X84oZkU_ zu)uJRxw5VMS9c25?f{ZcP5X=YSQ*fKF4Rk;hhaFxTOkomHa35N`-b~QD}mG>KYK6) z^&M`7aM#X{4u#dubB%)f^lzk>^il4Eh{+J?D>4&o>$gIlAHzb`pmwkIkyjXOpyRR! z^94b|%IrLs9|L3fa0o51{*!%x6y(ZiyfE?S#~?>wRMsDWhW;GNO`^ zGG-TTvJl6scYfs{w|yO$PsJ~N{=8yx5mLv3t8WI5C7|V}2^lAq=ZBWzSU~ZNPaLvC z*D>m)G{bZT8d&_iOX&GtT|$=7#`Bdd1Pz#2Oqmn~xi;$*va4F++6WNV6Vn_mqoZ6O zEhUrQOUT!L9|~|Xe16eKufnl3`>$m=@2MU{a+S2!&ZSHIsr@J@zno5YdJ{PDx*M^( zd|2O7h3m?4(mUzx2_?F@&;#?-+~|Yc(r#X_acwn0Z(238zA98CF^S2N8?Tp}*E_v7 z6DHMUyokaJ&9hCXSstT1xDDq~J_VZX^koCSk03={{K?kO;icA}A4ABA0kfag!9U6 zDuLspWr4ilv80IOkNf<3#B);dNzOCo6Agm~YS!b6mmx4qYY&76iBD#M^^>LlpcJAO zH<>cf(wN?dJ<2Q?BQN28qpa9MP}ds0;wn(&ro1Y0bF{6lqQccGPNW=8;vP>?2cgl} zmJLVN6Q4+l1SVJxz@D_u&%=&(_n+VPU8+ZtW$xfTrgHf)zio5-&zrZKp0ASPps&eR zculc`&ic+X?SFi;Uz}jcyt72$Rv?vnOXX@4klH*qa6oA z#HG!Rr1^(nGv|uiogUs6gXi~&*m5x6!O!|BPwL_?gRo9J3k?H!^(OC{!vnt=alaXS z+SWQ^*@`I#`#Z2J#*I0q_|wRXO_U4gz&UBu$jx8Q zMH$7BZ=ImLcX){q$%Pw68F(y{PZxV;`$ZOUV16G|k~%TtUn=htLpSmg|BcpWw-~%? zY?08gbULr4cD|yO=-cHQcydd|e%?SiZug2ouuOc7(5??IA-%g_eRi{KP8!-zWc1mY zJexF&_9N_Kd^Aiw5*I35V*eP-g^vkz_knkQ2u#kK*lxgW?~sD6HeS_Y02aBds9Cd=oTP4h;0aZt_ZXIkxkxiU5Wtaa^&35`c)blrVHq^hE*<` zFvj+n2m5Y^X6?QQM(DH!2fHcQz1=V9O6u5N1%*`M0k>^(j{th`*23;u(o3w}`fexK zb0>C-tm)!kMAF{B)i7mJ+wZk}O<9#g1A9Gu_fwEo`ECY7cxKO8ZV>aGpBx=4auL?cjw=51ezO*fyu*-NH~+y3l;F(yR!CFtdegE6S%Y6*k|A&A69$s z2REPa`=J-U!viqJRTNFoB_n)Tji-cA_mZiXEqL3J<|O$N*{0Zcd&Y?mm0(;@hUbCo z_5yw8Z%Yra{B4$y8nik-?>zdG%X2Txvy%VI~^)UnL(bBmEiMW=X(dH3Ak=*u`=}%Axc@mK zHvxGauV>qs=x3j225M6yeC_gc3gM4pPjAd(wWaB%n4(d~m&TfS0ggV2pOjVISKTQi97?Qt1Za{q-_*ls+-_3LtqGO zNxV)mm7eJA2+`W6C`TROT%7Di7HZ_|QVGGrAR-2-YWw}Cn(E8oCZl5*Zb3Kug@=q` z2*6w{+3RgqSjQJanp(434QMh#o?kQqB8#=ag9;k}X zD-t5hfp;#jG>xh6y50AU?webpSCsH(sj=-===a-pwHs80gy{Ze8x8OyVAan1dR}_( zva~6OMBi5u@qTEunNS8cnP)PsimNljBUvBwgk|!Me$ppEJv<_e+}! znYZ%(dRJh$gSP9!<7uc|!KIq|@WK;)#odT4IUifC-nk@->CsWjYvQw2|2b3#=nkPuCo(0~W^tW1&Gx|@)`VrAY{XA(eqmC-(7UKxU9;$ZKu|H0YYu#N33<=( zSDgOkhVQ%Ut#i-?k8D?|U&U!>T$Y326Q@lI#^ z+}g9rq}e@N&j=Ig13GBntDx;84^645?!NVman#?7S$%8eohqjSOJLyCEhC|2eA*DL z`hif|gH+voEs@O0 z7Q%dct?c(kkh+>O?n2=ZvO!p5taA4jxV-MsT)NNIaWyXB?7lFB{PTkV@{ixfB5WAH z3A4C#Suxsn_>YUd&!PHe;!*BQ$LyO}lR+*X1kUwJAuma$vdh`f7k>KQvgmE>EW27? zT|RQrTM=ivhl*Eak?D`Mt?n7Js)CSng}o*Z#l1=glx$VB2;T@{+6?S=_cLlcKZU8p zz)Q++lP=aP6JSH#HcangWtZ$!fbI}I=Cp2|@FavYDBT);Upepp#*NRS#dOf;?ef_p zhF={y$XJOy`M5W?HOjH3w)^w>E*VizcM;z!yc_DHpqCuiDh;yBJ1Mh+)LQKIoDCqE=CpZxH3iO!COAv}^G&`3riy{A_osx3y*XlWHq=XZW=5N!Gae z2VptTiD^R_!nvBLtk-QCeWdPHqwBYr@4CwQzbyZY(@%JOU}a`C?1w~QM-7XHbdJXT#9A>RA0FEA0iXAk)7 zh&}g;JXL~;OviNWf#PPEj^nV|?$`+I3E$g@aoYwkTP(bVX`vX%qDM2o3K77J<`q|0& z8$eFVtaR8q&n{0g^^vRQ}k$x%n2Z6vf?mv~u}$%Sr8}?u{k*r?7OxM(4M^^Vg-MMHvAvy849{fjF9NFBrxCI#a= zcM@kHzEotZc zl^SvnW`~&T#JC#e=RoW9BQHPPzYbV zMQ6Tw8F^^OUQ9>9a(kZCvmL7X5#ysjTDBxqC!S84q;vo~Nwrh2Hbdbdtl#%ADT?4S zSp1?)p9x&IWmNV>-3w*(r}lQr1bT~W~lZ7Dx59gG6yyEeuB6C63Y5>rz0*Xqx|0|?=FH)Uf4Pr zeeUx!3M;YT=+bZ$uV{6b=^#V#7H<45qKmgQCJDzV=ldW~%*RQo=2DG)#o{et|6F%| z{Hsax$m>3RCoj>efPXBH8#g2p@_dk{fFFD+B$%AD$Qk=6qfPaNN>R!Z&A@{;@d-~T z^O4t`dhrln{dtq73bD6~dPnQl$QR=N@g=NNs%=A-H3gs#~6Gt58Sx! z(EKL}`q%hiU7 z*SZuMG4&#Omyr(<*=)d7Z zxCum&)S^6B*r2n=RozGntBcBV=eb81o(q9aIX2sSF^L_`>#U!!d(pfDIQ`O{@*`{t zt~rUUWW65*6+4+MOHLaUnO9cH;2C%fnVJu}r}XFVl4!agZ-bHP4AfNb-0R)fyk6NF zZ(vo{2GO5;F1=Y3$@A;MN=CMTvpp4|nBS;z6(&fIzdrU1>Ro$EZRtNyOJm%O%c(Q; zcjqsUWzJJ$>_-LHvy)J<>AZV>tpkCa0JFtsyJ1fu#zlwT*|qz9y!Rzw;#l;$D!GmJ zK1qPzW#vN*XHQH0QVcUNOw)P{`1Xu*9Rx>#{1asmHzZxpBL3k?>~E{ifgrF**H<6h z!hEJr`JM7LB%_KtEAcn^k||DO=dxNY5kBmg(xE@^9wb(8%kQURMi$g@ebQCfSOxXj zR`g8K{;v~Rf5Y8t)}$Kan}cicO?f=v7L9@f`Ds^=ZVXgx|4Gvvi_$doi$Yj5h_t(Q zP`CaEVc?9JzJCO_3)vRhL#+p1*t^;Xc|GCV>1!iWAG0XyUDIO3c8020Qx4YP4R0#J zC`-?c6e%m%c-hrTRKSmpjaCrLZkxMbK11*Cp(L*r;HwP+Lf`wW0EQELR2eZ3Ng1v^ z+(8Zu@0y6OJ7JVMsMunvAZZs1Qv$U1<_JpM!fjBAZRaDGn3g) zmvNKmmUgjkc-O4FZ$?baCA3D zy~X~Z!p;M|^pVii#hD8FqUPpc1Xyi@oq#d@W$*RNY#PrfXY3-+%{p&0eRN^J5}8~j zJiC9s?~))PdPp61{cz=&>WU@zfv$Zjw2fUpod_ImVhk8X;nK9OH6L?ViDXqNeAcz% zXP64!f$1#c zPS(OZoJtq3>btxoq0+6naN8P!_3_lV_h1zPRfBKMF;m6^wkk0wNN=fGNTHmMDVN^` zCrdNacAX?2+@f)^)QDeW)&5w! zOEz6@)j#a-R*s>}&Lc!TW+O(fOI)>kH-oG_aQ-EtHdeUQP_3?-*$44(=1Fa0ka($j ziaNm3P?-Ki%LWW5^zVHKoshL%b;~jJ2zEp$C>?frAcuVF-H}qpzk-|@VqXj+NkB@M zkx@3?6dw;??l-2w%$$wSzA60RTXgpE1e|bMz@ndD6fy;0v z&WSV1tlC#lVLA~Yq@U)kl6CRnmE(0yFqt)d;mT7FQIKWqN8~-7t+ZA5vzVS_Cyc2I z(e}@-Fb@lFWD6%-!1iD80p2;d7v$S@5ABt0(V{$;>JfmEi{l=fbVnqd@?uET5N=z- zlTLUbTnNXoS&TZ6-{sw5pH@Kfea51ChSJiBvx-7As+o+Cf&(Df9X;>|7^sj~B111uT3?Pb?F=^pej+7rc7F8B*}`H(+Q|AU0^4GL~Z$0gyM99@d@JB4SnLe}+886e@BN%AS?qBTDJtdR&G+RPI z0a@|lAz|sqDRK3cZuU`pQ6>l2MICq$JkN1JP>kG-jnlHs98pf0K1fe|hI}1ls!e|@ z-pwoXjIc4*|6?;I&?7|1um7vD%dL!T!@!iN*=86ULKo8|S0lDyo_$sJ^ywQ?2uVv9h{feqa3%n zdVF~imO(?YZ}q<0lvwXIUJ_a%HLe<(N@W>g>`LPwojbMxtU{t0aMRD| zL~oVGHd6E&tC#Rx89<1wkJ(A#L737vj1T>#neYtSgNOmegLoazcv8|g9a1A(AZCT> z{11^ShS{a~Cg#aJH#KA@SYdpTf5M`s8Yqfl1T@u8FTk|(o0#2a#4!qllq@D@lZ}hO z3gWc&?!IHr?$i8Ic}wn$ZUip0BcL^*;wxG{%7kkcpYhICr)K1B)83Q3HZHJ*_UKX0E%nNehD zdsunTq~PhV^A7i00X9}aG*b`fn?Lp~m}g-e(Nh@zzX0K_TKx=Vs6>sct{ixT%>mK! z|8xK2zmI}RQr$f+!{C))5wn}TL|3%(Iz^9)n5tg#?Ok6D@eVVn*TvYdRtywJu! z&5|V38yjZ+%u)*$c>6C{$>$3Y{b2dY6rO9NB95!|i}5`vw##kQk^ZR9f#VC>z8i8C zp*;R#07c+i0k&ZFj&4nT7pf2Wy9XYnmGb?%Bi;;xEDPuq{j7BzUh?HBz5pR_Wfbl+ z#EhDDoQ(xIEw=$q4(&Ix8N{bSPTFCSVWFkRp4{I0u`G%U`jc&YHs0ugmFXcoO2A;N zDU05Mi!bE%+$Zt8NNGD3Ku{)~m9KN>ymvBu5t#tAYric% z^#T`t6Wk&zgA7D%?dMvG~;8Na$14CyKZo;ovELoV*!I2weVGF@fniX3Kse<#YFMR zi}&)|({wrfz6p?)&dV~?3Pa5@>en)QVjmkj&j+}5gJ~rqK4#@v?$qyEQ2T5*E4%Yp zkfs+~xj5e3Z(^H%A8aPJVALThCVoilc3hi|Rmfbd$N*kmNKlrUV&9(3ga{BiPhiy( z^fzq!yx%x4th-9IN?FtddCHXrj9|{6dkM-j0B1?_?zpU{001pJ+~DHN%B@S9e9C1S zv9!iS_n|Bkl^)LpkwUfD{Qk16YaDLY$1o~>4L@Jl&mcOKKpO&oTeEQJG1owr z^tDhyd{^@GpXENsg zCsPt)UF>J0%N00lqrCSyRt)U7@M7Rsq{bOqy8dU2ESk7me+DwzhAXX9Tr*bg7gn@kz6iogE)a9rbEx!zDWG_5bno7npx?dTIBuO4 zuMv2oe70CL*qZ;dr82v!nUjh~^4KR- z%kN4QBU9MZE@Y_C=&?QVwqPZJjPAzm=J9Gyg;R>Sxni3k%D$AikUl0di z>W#L*e;q+%A@s8gcSMlmR?fvAAVo?iZx+??s>`Dn`e6Ah{5{umDB3ua*L?2Zin;>R z*H#iMT!aF3OSa!P&2&04Ck{C=61H~^RxSmJ)lI_X!sX)8rC!vhlVYkP*MjQt&y;aL zr+*ej+ZpJ*BYZN{YC{Hg=cojAL+w={cv!uM!x(yks-h4c-P8F4^QcI1&@`s)P0TZK zQ3m8&K({y#M8v3qN=^j9Czp&Qk)dbb6HY$oB&K29Uf{Be5{L)ah%LWTfHDGYR`h?iA!jY|D&d&#j-lqqfS}Kb4^~&+3FsGv1r=n zfe{s>ubrpXkR`>zkJNnc2tBu66|3pI8}j}Yjk3*s3)1ca+{*ZCipv=Lw;q>1DErjm zy8Y)zoi!qx@_tT5rNehSqa2&061+W|RL&xNgUW&Ymj}1D?^RQkAokK(T^-)8=H;F4`^UbZmKsi+^50h5mLGGvQJGaO-^6wZH zkR=G)rM~J-(FcFj68nf-dGWfv)9o$y2d+~x%_H^g{tDWtFH|uGm9#j5{0r)Y<}O88 zuc6XOevY&LN4gfEI}!mafU|EP`~`97Qj9}FSb+O-Q+sVhugQ-eq zxkYp~_J`OL4*TN_LQUPC#Zv$1JnSUqm((fhk+*gtGx!ZKN&`aMQ2`&q!A`9zKe9Rh zA4%sP&h-Dk@sEVcsSe&}95UybW30$2IW~kOIV>@9oI}pc zAuMy4^PD%#VK)5UpYQKam&+Z=-Ou}e+{8f`=Jbu6>{VNWrD|~94w2W{`NQ~4 zF1fRt?6S(o5xv34N$S%M4Z3;6+h1QnXo)r>LKAQ2v$SDHvd# zMrk!s5sMdJp^7h_z!Lz;XtB@Opu>iqF!NBZHAideR~BG>PJdV$j_J?k=(Is$p~hAS zs?8i%if40zawpa@#acMPU5{h*2IjQM=LaxT4>+0U&!%_jT6o#8CdT?#^#r|D*Cx{d z6}rSiWg$s=p%7k}$?1*xm050u&5V*}J*oWPU5nQ}$mavjL`!&o*`?vtbNBd_=0Y4Mc?@2@RuQsI3&<j?QMiQ&P7^ITnnv4R_A~W$hj!RbgBQ(~MI_L=s0A(F;BG+fvHDY8h z*L%vK5AQhNm*0OR4omj01_FVGtf=chy}G^xUGr-!!>*#?aK-QHM|zpsn*J&WM4Q>o z$E-Iwyee%ak?x7f<(+PTTvBJWG*k6&*6*JJYh1PhRu#rnJTBQ_0lq*knyKV;KGNXzlyAH(&1ThlLP4%c!xNnQ83&-+Re>&`l{ zj8bileO&9>Y1!77BEGiUECzV}jHh4Byc3;#-V1xKW6)Kh<~#(T zaj67>gJSnQ7LxCCg(3gm5WIB5#MuA~z{%fF-q(fI+yhU4y0}eTLc883om6=Fcx9;< z6UCt{3!kJukYU_4)LDFU9r8RTfwe4Q1|#NpHqSYxB?}{i1Wugs`hvXW(w_I93j+0@ zW7ES;qOvYsF`oyqRG8ZAzcKajyWel-|F{*JgX~>W-F-jik6@ogzF!T6cEjf( zUo3t{L)eZ4d$ZG?9`Pl8d*a&#X;&UpV#RVn9Lml|KoCJS%P%(-RSN~~>wx0K@|IWE$kVXcN%s+jM1Yucf1y;K>;4 zI@~D<>Yq*tdP{jpjR-DHFS z|HC9ypS<{f?6^I%MqSi-$fS5z0h;}BE9Q!!bS zabO8!M-7INkO~>M?Jgo@=5>0{q@5lOXLmjIEG*@yB=<_O$^gl-NI*mCKmoecaIIgQj3rwou!e?tQblDp+4&aMyd=7r-RK-USQ6WLbb{m>A3K!M zouWQ=i{0YB{C+4G9~tDfuv)>jjB_Lol$?Lx}QrhCO?d-IKVw6t}wN z{GRV4$vVWru;TV(o192?_pK&z*v_hG%?wQQrL_j!aR!6T7YX_v6(3kyZdwvp`i?cf-!In)VAqzKZfG`B|&- z8uc1i>fVJTqCiHo338!fbV>V6$hyTYY;=*XGan2X&u9ABWD_qX?>%^bSUH+W(3h!Q zB;_2;kJkK{43=(wkM*QgiB&~W2_H(C%6zwhwm~O@aKT&c`aY{QR3Us*K2HLFc6@#@ z|28p0Q)fTHt2#*ipwVrz7pm&!+Xr*-KudR?2J#r_*J`fRZbNSg&0}J(h_{<>7Mxu( zsvVv?CcMzsFqZ&OFH_FG313PPuqgswc3tZ<^+ku-0G5bz*DABrd#r|GgK7pjhsC-; z;@wE~1+mIIKY9u~fh@H`%t-QDnMy29e5?kzhr9zT07;|Fx3nJ`;9XOkAMay;6& z(Ia5H5;>Bk;jD6mmHU!qiBqU0ZIryL-TYG|;^{^PkS$vFQ=Q7E6Z2H!{gfEv)83;ljHvr1>{lMt&_Tj5jBnjF?|NjUNa$W0+&136ZwR2 z*JJQd=L$&ftjx5XQ7ShqFy^^El9>rwW0K9v1_< zJcIf0wI^ldgHezYe*&RXAb`a;I%(@>Lnf(bK!^A36h&C7?*<-{N|0 zEe(7D?&Ni<7&6RL<{Kv)1eQ?2+W=OrIl+89jg5TP{dnVgCC9~ds-A~n&a;5zGYOx^ z`W+j5wlhe4xXOjh>luVB)ccNOt-xwN%KdOcPzjHq-uz1`v{No-GJrWQvyehe3@UIz zs~^sN?sq(N$TR(O)1yuM@w^Af;rf#AQVWdW6YVx;d2W&-f;r4zoA@C5pZ&NXK->@T zes7(d$crJy{R)dcs~nw?N;|fh`^tHLLz}RWrPm8feifUh^m&1GW7uU8ds;ekMKT|G ztj@}#A}+q?X;{f8krY!DgotY?gsTe4IB9zozErAco>jXdVA9k6vd8X8AaK%u|QOS<_ zB(s~L`s?v&h^-_0j$y2iM@>S-`{T0#>uvpKJeswG!BK<{aIq~G=Q3_qiH9>-ujd>W ztxl8t+&B)1`uQRA=f#;Lc^)E^1}gF2e9OORtr;}2JZYP?AK6{(QKqi-9$u_~E8moV z7&(`^1cSZh1Ru?|NCmjp2PI$Ppag=>_YTxR!M<+~Z_xGBSJePd15Cl7v<>C`dJ1C^ zs!OW*!NIz_w(!0V5cE6$NX~h)p*DB_na0|NQg5YqXQ{8`Q*9P`g85~pwRNt6`Nm@a z>rL6b-c~tKJRZ_0!TRN11{;^iBU#k!<_tHpP9UiGu!$48nB8tRb(+a25ZyUy`J*)I zbFk|Z5L`a$09D8Ir7?)SaTlA%Fkhz$rQV7=}!tCosT4kK+v|9rD=ck-+fBt*{ z>o0UA_ciW9*_eqT@FB}*R6Od*SRhYp4J zv=4|kph`^X#b^!(7qUa7Lv{^=u&~)3idJBX>um!jE_-YmD>h-o!>gBFUF=y|k~(?* zY~dny|J@mck*frk$L)vE@y=hrDdjl_52XdQ3NUsqTk=eDx<4XhroaZQ=39vpsw}JM z36ztIam+T_oXW$QP{!r-W&mc`(SO&t>H8l$G)cq$*DEPe>tB~wkGxlaRKaY0X5fXZ z$eZnA)=OAra;7+1cyTfdNRMJ023Ef%A88|=zg{VJ(&dn|cdWX{oIyNU2*#il|I!nJ z!Ku1)zNJCE%Wq$mk1dY?9QHeyr{Vp-tv9;gU(J{PUP^E?9u8*U(kY4C&-O2z@VGsI zm^d~7g@AGi@=pmZsy{hQ z`YjUKl(<4Fs~|EP!TC+<@3J$3@HQC?DgcfIxHCR%r@I&U>zfoW*}WdmS$FHqb43VWl&u2&41OgpCni9OI{s^Z=1lQiuLAIgvss2oJ_AprYcRjd^W2PpG! zk;dI`2fcy60!^V^834d5h8*Eg>WA_8k=mr#wJS0zDY3{Ec?`foN4FGcQI4dtdGIX8 z&d1|@IOa4{rYkaOC426Qxa2NKTCsh1_W0AVI+S`M%@xtt8tpWJ@j%XapziPy97$%3hjwL7Kk z+l;ZGbo^37zk)e4Llh~u{Zzs$ak16>K@nzF=WYmxuWoTgWQy~8t*2;v#hx1E(}}d+ zyd3{1ZZY!4rHyY&nLl8NIpba{+eBS(1)T1_dU1?!>bK(8c<+jt%1t_4>;D zExO$GRlB0oCLXmvjDn;VaNH2vd1m5Ep8`k7YQb9WDB(lRV-Zr-Kdllc$j!xv7k0%T zZfq!!rPz*-G#Z(jMBet4jHhG*9$6;8u@P-B_s9)f+uyAG!g~=|9X~9sY824+E&=LB zZ--7}qjc#9mt_pC8CMco(m#EEEZr(&OxMRFevqP^31f7Nhr9y;>x(^YgGWYQrT_hT zb667ETx2sEzOs&DF5w2sl|()S{X->QLQE6LyQp&Ihw=ZLH~)z60rMv0Rbcl=zwewk zyLg_LztqkeGkIP0{#cR@OK24Pl&MgwRP-JJwA@N23~#nxVY*$7IJ$`Yr4DckKG*nG8hskZUh8J_pP8Mg#{D0=4yWHN$LID>GR-V&;;*0 z19T=UN{c>J#1GjE@@vgsQ<}98UF*tFMq{^LEbC(G|6vA4^O)NqjW)cg3#s)Vd+6({ z-9Hri9C+3h97u*3y8x@q`r02epSI(du)*V74-5r;ojA`lq>?kC=&acPd}VhnKipk; z1<>Rk{|@rexh8MdbV_t6FF+UDUB=p@vT;**9V=Dl^B$%9hi+{A8FR1rQvkzw|DRMp z!+ApcV%gnS37<<2GNZ+<=Lti4AWzYAyL@=i8;PyXA+wE|A3)frsr1PKG0Q)%D$w;j zy;CXpnksEn@5L^+*F_G>qh%N?USRtqJ;CB@EEOmma}>k5=jNXxBN7_bf}U%-u=eB+ zf`H2O<`drGt=H1?xz~#Z2u`TF6Kc}P%3O%$_p1y?b9#;0-_!lSO zaj>woJOA?e>pwueb>W-D5=wx9Kq*Kw6XArz5#!^f+>&}eFGnSLkt67zj4scRPMqms zE^u!;3xNEB3ff7481$S-a_;k4fQhagZi1Tbf2n z+ss)yTX|V#zr>H8J&IvSIkQ;6Ci>-`o!$N=>m6}jN9KYO6{q{xA$7;3$^0KmI&rgE&Z_TQ zu{v@+`}rGxw0#NLXQP2hQOBntHokpHgL}W_tlv!?pBQ_$CF%geUDaj7+qk}!c+C$e zDwN*N2MQf!qd~Xc_#~Md8@@1-rSY0PttC~AX}Tds&uAh=C5wB);<`d*!%4-3>WXiP)g==wR=7# z=%y>Y)_cSO=8Bo$m+g|~k{u>vJn4DBFkh$~B#8o6+Wu#0FW&OXCcz{iBN=;!!IZ9{ z0lAv$57KH2insWD@u#;E$J6~OtfZE2(7C+1W~0ZtmB)d(f20MNV*xb43bu>ff$2nj%q8vaDmACd)(HTD*XbL z$*NE18?n|vD|3XbKT2K2%iUkFQFkaE^~CMQ{!}gpoM_?p3YOtJk7V{pR$R|CL@u)2 zQNML1^`7Ab1^jgmz1qzL638YqSKCADgH$xUpL?!OLp}v+CPOsxb9kLLPGDYIfIm`x zb8U)ZpgZtMA-YQKkG4NR@MdqXGG8nbiUTZ#+K7h;CR!r zxt{_P%%u~Ja#S1l0M}*Sv#kdmE!7rTfjnA+JnU6{A~$*$h6jaO;Ct5cy;ym)^qWSD zPbA-7gh_iQTfay+Awt!T#8~6w5S~3FVUEXOrRE$wKY5xJwTbcp7VH6*YI|%qI2R}Q z|Fx*U2V~fsnt)o=@q{<(DQ4Hpc2B&uxEA?}8JvSzkNrALvQ$st+W0|*bv@{KveQ>? z;lIl!!FPm=%s3c}bzGC_v|aD*e`VmSrc})xXG$ZqAbKY#6Yx~e1?Jv7Y&()1AJT6m z5{rtp%f)%Bv-F})iBc7aveh>b4fWtH_tv)@Yxvr7b>&C$HDdHvFO9g zt^aOee-K`zu$z-wyzqpGx}oVCsnW)Ke}FIOy{gTT%i}V*pC+ELB#d^KtiHhIw{(~N zn=P2QKJ#xzp;Bw(s#(YxLJZ}1qv=F%a;)bI;66s2N9g|CFYc8jXPav|dS8GeSkzag z)mF*ArJK{f=z2J&ItI@W<>wU|4V0K~8pw!-?*Um-%jLMa;~1#P@GneESAZ~mdeRAVkj2sVj4{CVH9u4mO|zSK|pDH^%DM`OO1C#&a? zX~%vanLwBgbiU;#5N0cI9|9!e%iQxBBf%v#x1vtIIXkYKz?VQZFD#h43xs(WFX2&hOINvwyxZ z6aZRg-$59ivEOkyncPCyo0T2rd*}MK=<&~cCz21boVy&tM{mlX)7_MpDCWK=6l6!#%;kO0qyb~R8D zyJ2&!zvwYMbvHl?@H|v=XwA>%gf;@J*i;cou9Jf@GX=}LKtl{KwfNdyxk6jnu#|Kx z`oElwyG&p8^4i1V2aQ$3@b1Y+UoNJ#``>30FJW#`yx#7uqW=uQYzLGR3Z*iTV#btdCCQhg5WU7a3Ar*G%4JuXFy0NNX&n*Wo3ZL#uXKA>EU>@2QZ+7DSy!{lh#(z(+H z?dP-W`)L*9HadH#KNHiRUin<8`#_FB1v}}Gu*LJ%k{SS4j{KW9T8D@({gPmDxtczG zCco7+BtTa&nPP>}{IT2{hg)ts31Kj_KhDRTLb~sT&gRhblpy1TPkRPQY#*q&Hxk}_ zXkoYJIa`@u)i059^&M4XBu{F`=QO^6(uN1saB63mIE%X75-d(AK9UfUi@NS~Z40Kr z%+M6AE*?w6abT$|f{i*?oi6&_WZ5$rCFHT;rmfwz{vy1AC5uVFtGzv5%h3D!jvQ{Z z@rR356O0cd?R$WB)#hTH-Yag_F<^xd+v^xKBUYWJ3eLvTdpVKOFC{|5guR|SZ#51O z@cCUAV_y+CtV8*yJH12JFDZ*aVM?C~gF&1#D54=j&!ZrB zr@YItgKy*4dTD^|8Q<}#9@*AHEH<(8XxL077nV`|3?R`0KWc+RmQI(z!Ap7}jS6#X zz?h7H9DT>=gr38_KWbs)&0sugIX+10s#Ag5_N%71;%Yl7=&rweL$DdvCeV67Ah~KZ zB2C|pN3FGq)A3ER1JEOSxM6NX_t{cdgdK1H;;LUQ34jK<^U?z>bpL346WjpM%{5!b zrIDV9HyZcbZHhp8R=%ng0j8n{Fhx(*C(@|X2Jd+yLvddSA41zcNLWcvi70Z2d*|c4 zUh{MnKiBkkq!A$y{W0owhT>Ej1o3zjO1hj$)B2tks;N`Xc}y%qGaq?|Z*1s8tb*KM z`4sn+i1;RJm1;lsHFA>B&)&CvcYERY9U8G}6Sk7simF)njo3`AA+!|L6bfRd_#H4n z#UFiQv#EyhA#bT)0;YWpoOT6u8$h<4=Dd>0fXWtS&UC%}ndomFnABpGvq2zNtbr;H zEQgp25B3Bzh3{=q_Q3N+Vj&AjX73|AoYn2*;Jptqw?ayjDicYXC!a6$2-%?HA z8ol-sNHTE;#am+CKm}d@tJqtF$KB0;rU(ZUI;~-Y7jFvdMNOioCE+Ch@j8;uH(bk& zV}eF7%RKYfu6)HP0mxCniD~xCIdGAqhs&a9GPBZgL^UX?yV}7C+Ot6*CNx%gS&R{O zyXyL6<%B+0m>IO{9ktDI(*EHW&-qKJecV&pI}B4uuQwY79XV=G(m?#Uh`$6iXPz*M zx`4lrBuu|cFS_nU1`gTNBFEg@hjqM38LD8ncX|o}I?TB#!A`dltQ54$ABL8$I{Gz? zXI%sRyW07ovX{H0SMwvh7b%43x;%?+Osu?-diy5+OugiBBudz zf^v8JxeG2f*j;rKH6J-6v5p2;K^T-5ZYslB&Qbf#{gnf-k^bMAonvDp3A}$VB6Ma! zw;AjN--!N=$#NWSYm)59#M?wc8SS=b_e`t7%yPE)aER-VW0ez=|=c?LPYd5J%0{Q}9YajR6c>Ru7AkX%?9E+M?hQH zgLjX0Q@?}S-9J1W=e-ow#In1wMsi5xrb)9V>M#b8QrX(3PO^U#04!I!pmF5ea$IlC4sQ zwFN+)TB2`5I#oWM1$V$DM$IEl>o^auUNr4g+pK)3iI z^vl5D^Rec$HjbC%2q4u4*g{Hkz5tLe_ES575vMaapK$rYGXM7D2xbz=H7Dwctl~Mz zhSos#fd+ly-fih|2yOP~_h{ZoHt_O$V;-uA$zr*DD!S)`_@5e?X^ip3;{fX7XR;2r zodF2HtA!8lHFCCWfW>bOnF$lfUUcYW#v9ijUkZutn1 zOwu~GWy^)$Z=Vz2DrG;ti<)D|Ef8X!R>MO+%6u3^J3rZIWhwSxghZl$`nVbO!3J;S zDTsD|c*cHQoKEm-+_PS~JNW7z2$tmhO?38ah@@)RAC54Tk)Pdtk*BlCV1~@55JX92 zthk$7r80|+7bK!=aZ#jO`5C?@Yxd*^gw3IT-E0Za@j=eJT*EuV#w%^`eOi*Ve`3nb z06h1TO30pP6J4?w2-?~hF7Acpf7y#u&~d8BK1b?0{fR}vECySH)|SkUPzp-H3>;Bq z0H4Y&Xa0E^*~Vgp^}a}8q4M}5`-`QN&l!%h|Jl#n7|(7OsD>WixfCU}`8VV^L;%?t z`Cc=y(QQNQL1_Fzw6j$F{4yk;My*KlD3GjRe{-@#q6xye@XxDVvK*{FNy9f@xayt@h`dEMjL za*bl=TNCS}9}QPQO#?Ff3b>qDUO?)Ep*G5}7ZPUExU_9-B>vNKi3o^!*BSWEpndkl zJ%ZF~YRS_rtW){SPSI1ZYW*#d)yPAiWtS`cX#t6M8~vKx+xvZ%L3Yj0o@5hJ>&ky! z{zDjKf$RBi+aOLXU%)IOW^g3hhvsY6OHzZtK$>swfqK1ASPQ?KV-Hzfiv-i$nyT(s z8uY^k;c67ocgp6|h>wiKhQ_5^OW`E-F<6uY-)OIt$bHl4CqJc5?lq$&Xz!$%xfx4F zG)djgAJc&W+PO8-lsjW-PDhvP`K&Ghn-mt0-#1U4#J!1=oH>?&eHpEITJ~X?X8w8{w1nYz0FoP+fpPIOW<}(iLCl(mA8I1^sio14wjx@{uRVmR_s(b`Y$Q~ zuJ~eA+6>XF37g2aX%6hTWH3n&u|s+sn9GokI!*^sUHw8rD*J}i_$|0sCNX_sD7|9;yh7%(Yq!at^r1OV53Uh<^A$WE3k zQ4-Ol;@AoyF z0MOj_eN}D-H}lDtmiLcMg>b$Lo^p56@ob@g2M`I2mab}EyS+~q2R3zx82{Ef#)Si9 zaR@IDpJU<8?b8`gT%!oHaN#;r4Xwe!kLvDo*hsP7Q@@tOA;Y{gh(JbD;HjHTbF$W# zTuj?>vHE^7z;!E|aL3WZ7>rG#!SlkM$2J^fH?rrOl;Y*DViSQ7KbC}7I+=( zT(EQ-q$mVNuTjR{={)|3!Om*u`(NE|JWxKZm0r1}S7traLKIKaRhl&XIxT$I%iR&ceXTw5X^u z3e&78QekiR7hU4o8&9%y9^Sn^S&k-M#5FwV(0JQc(wc6NQ+@!$$ZIt|M%6!y1G7ND z%_m~CE{g~A&6#k~-wvl0E_@{15=Nq!iGipXKl9deMLq9SixkImRFgMHc}74(vJu-) zHNs7_llJwSMb4<08Ea;}oIubeV?~};7IJZyCtD5@q?j&~n5%I?7ybF`cmE#Fl{OyH z#Ck7q$+zD)?a{_nlLyQEt>h<{Q{EoCow)CN@_2o@K4A@GOpX7dX6>R?mn_``+x+`W zOBzRbTyg>emYM3_=jqrz*HwZai?nrL5BAx*;n^{gb0i3OTtYUqo51tr?2%3oFS3-0 z+`J0gDptjdBi%)oQ0XIn8sX8Y-uyHy2jiZD1IyuK1F$nM#84r~G#5iWsX*BH{oxoH z_?j~!WIQueY?gd7+b)Zkw(Y$LT7nIFCe(wbfk9;L{lCQL6#j(F%h&#)ijhI4^OcPqcb+w_9EjCj=D$}Q92mOx}6P$u%RO0Xr~Z}f&rxl8vq z=%)r^Rs}eqbcg)-z1bvsXtozQy3wlyo@C^ zV+mz)@eo)BJm4&A?3?uC&0o9_a>miz|M>;aot{8_FPX)6zI3DfCW+SO=kusw=bEUF z_78#yNh6QK8wL8C4GIPn{>;n(nD9nwWcYtI))oS9H|vOPu;av?!oqO2de?*Ma)F)3 z$jkoTR{K>9uTisx4$}O_$o2jwtsSL6%!50a(y2tWgx1Z4uIpjbB_`?!p}Vbrh5p{; zioE4jV9)iJ0fcT#6TUqzfHt}DjkAbvBuK0}R_R-Fnp|pN>op5`w%Dlr($-4mxL?-^ zsLPvaR1fHkZ?7Eym%!(9wGjKDeKn3?=*8Pb!^T_oh;V~H zPu(|-ggfrz@AtDc7lC$3DUkOKN)j?*kABa{B-H1XWr*cqae#Leo1ogKPx8YTdWn=T z8MBAT-v-@L+kb=Pw9=zYtyep*54&+UjH(-HFz+QRKk0_t!%VIV-Br*PJ_4T+zzU-cn?(FD9mkL%2a-ULKP6rx6n&hWMQ~oQQ?oPh;eMEcJTg$d4*# z7@ACL_yKePv*frgjqCdZF0yZdGK)S{(K)g3f4i+Y<2!%l>~*VD;Sn^Odgkf;a(3;g zR;ok$D2x<8lZNv;99@0;z8@re-1BbzQONr4jnqXYX(VY=yZS4uxKb@5DGg)@$Msmt z==OiZxjH-i!8evYtww-jnJRe1>eN(_JMdXhD*D1nAdaggzLbEEeYrJz@VOQJLzYMv zH$P%DbXb_Oq_%0I$q^#=5-2RK3yHin@As_cQ*vIsd)y<(^frlm2dVpgMhbC@9xR53 zKPD#*_Hgx7{CtzJJTcx&Xff{pjXNVUwXz9-^vyyzl+D6ZGf)*BwSkuHbJA0O9NXCI z7C+LjypS|;PS`tYIFfm5SjBayn2u@iRs)i6f}(E#7Zs#vS-tMKE&U{tJ^GD*xLc%& zu>+Z&%=hhB5sm2hwM$vxu=1T+B5?$*f2Pa}#&GjgqPW^E*J=53{Xyok7+gTV4Ln3C=r z!PM+K0)cL5|0h|j&YTo6P&SX@@iQ5PLxqhq7?bqL<2x8JFUkNFF{I$5^=~+2{7H|h zR_#1qoxElRoY2Sa%P(9T2AT9#e)N1AI{&R7eE4(=#@Sd|uHC2IHMNGX22z$)zpsEg zmCSaN6%Ec&6IGLwXc-Tu*M0CjG@F-&y?3JB4p-$sYpMq!`mG$n?ED26V%xwyhE^lL1e;ej! zUy|wB6x6@bpU8#&F01B7S}AF3G+@NdPf2cM<<1zmk#se{`J(?*danO%|F0X^O(Z)% zt}5P`LXFBGCBu{PNM_IE^Da!L)VG@5bSeX;`;)J}tT#W9|k4Y`+Zy=v; zzE@aNrAa;j-^RqBNjulRuy8x_GJ7uTMe)5^d^;yi;@jcufzXc?);Fx-}^VrKt>0UK4XuXIKicdeP zcs{Ip?6;(pqe?yJ;Qd0~aK#Q;CvE?|z%f2MD;W=EHh*tv zn$Vfa=AJ5uNMHA5vm+OkGc(MW^RSE_x_3YV?MKOzDZ;Pvl)*2NJnu~L$FED_B&wUNGl5RYc$FWZID$&@4F%k^K&jpt2CcY^J8M6Q-uZu<6PYhMr9C(YMhESTJnk%qPh)}R>L-HTqO;v^x z5R+F#j=p=d8i2Ri6u8?%W%xd-zt3NPpLmoVtmArZM!?9qGkVXd4yWvk=HcCE+QvKoIT{ zJM!^s#cpdpuY7x+G7{`_VQt7dlA&@nA7eG0 zzT+KTx&Z4uCB$I&l60zQs@Ecfj-@8Tu1O2v>NZU{53moME{Ev6{zFh%f#!zD1@n!r zfWC#MY#%=K{?yeY>vLug5~eJm(`qj4Rj(?jwFgK-p{Ao;4PmS~v|<4!*=nBffmeCv zYjveR9y$AZ3J99B|2hK<{Dz^_uaXVNZH>PR`}y=*o_#*SJ#^JCyPAg;28U1lRG{m% z`#a(+lw|_xDdVrSft{B>k6GKMp1^p_1ziqLmiqOgAWvl3>$%P5hc#RKXt3P&;#F{l zuL}6(pCS+uBX$!nK6_)9#eW4LKjw;F{}r>Qt9gXB$5~LI0Tj0zhC?-fwk#;eFh(rA z+ay}ikaG)WdZ4m{4KJJip&P*@I(39)!bhsPP2ryjA@)5+-d3_zMooGqzp}`z3Tq)a z)5`{KQ8Z$BVa>p`0i_(9V?xDWjPZt~(?%b(ui!Z?J(@SoGvOi8y(xAUHBAH zWw)=`Gk8xgNDd@>8)(EhxJ?3vm$xretaDp7dv0a|dsSX`Dk7Wmo;$WdfSPFVwyhP- zY?4?XMl54z-+lEn^^Y@gs9sF?32y)_oZ-}mZ7g$ZIIDcAU_n*gAiGOH&z_w_08jz> z(5(V~(1vK`wh8WGh`a6K@2;KNt;w#7{u}5hLcCzec%;#;y}WwXkP7j|v zu+hSwmm9)416=N^Bu_TMsyXQc?_JAgL%m3jsiYF5U!nT-;QY?#8LRO+lNR`j_1>yM zLW`>oWNLpT#?-^>F7Q8ns1ZKQFPS4;D8HX>{LD(jV~M{z@G@x&HYbv7A=To7N1v{@ zI7|zw8PpP`C1%xk9GtNpf2 z&K$QC2u?aZ%yF8C;>2i=>TJ5o@7_qK`84te*vzWlVvqk>6uJ=52m(h=0Q(joZa(y| zau*OE9uq3wajW=vf=<6pvXV&>6^FH@WE>n`-@I;w>$n7_6B~bt+~Ah*81~R+%#zVU zk=ea`v50>nV+YOE7r9@_`r^;%GL|~9epUk8#B+s@cBVn3*OTdyX!@I+2OlZ~w6piC zWX9{4km>DU%>me$1nH-T>2Aj@j9he&rZZF#qp7VcWV=vG{q(EXQi1*XWR{!zCpGuQGc$L`Kt@Ey2{~0{f~~ zWUzbFm@utQ`IG3E*aXU72nt@4d~$=l;A_z9adKT)MXsFa-0AAG)hjN*tj%CBYEnAZXDW2b z=r?g}67WRDbe>4<0T|TEG*7zfVg;U2Od|?PKovPwW!;$7U4+@IU|KUt=pX$732~|d z9^cgdpU^BPRuZ0n+hwuA;?8?HP9$cWFbWh{acTk)fda`{eK9x8G zRiPWTdnP~__fW2BLlV~QHYifpqV(jlo*MH@;Q(y&5jTDgo~h%TyQ%AOgheF;-IQM6 z|7My?7)`;c@hWIcI~fh+v^Lr^w5Q7DCCt0@Ohy+o!OIUVyfhe@z3e6%ojcMLmRy40 z3+(hcOQ}5-Y0TG9Igo)ND(R>HU;5Wvf}7&A$_DNvikL-~5B0)S0cHPP;UyX|=@6=} zBQ%C1qOrsoMR9a4?V|r*s!fo4VQAhT=>z$Q=PH_;Q4mI(h~kT#=E@gdcYg=FOL&!T ze)u9-^|a9G4yGYv6YYXas^^*OvrC$|<}ImuE2C>eZ5FnS9kh%Oafu5RiaX;B<=6SA zf_H*{h|^KHqLxS_swxC=FFsF~seYmQf%8*#MKCx*DAH>*51&yVIx~`}8s>4?Vh|=X zLDL-YN!LEaD69h_&lM0rNTxl!^`{*`;?Lbc6*6yJ_JcgOp1x=^^k>z^E1ycLZVT#G zn#Za&jvpqoLOxEmnDgQ7DvL4bdj5*_&v1u}*4?)-eT5ka>AI(f8`DDXc!hYc?!|Mw z?pf$z3v$2FLHsB~0h4l{cq(%>NREPZqE?t?JlodVu^k8!THPF2)HUtaWeZ$h0(Nr~ zN#;yZE3IBl;>2_9sDRG7%j#*7_;y)*_C8QDtUZJ9!AmV+gHQwaFs=WPY{*6?jk~dA zS`ctp`|}xBHQ1rK5Oq&Nvv5-)4$>pEttf^g&%+%|#DM~V>mibm)jX3&4xtY)R~>Gt zn<_bXtNh$%;RXFIru}&3y$D2ybGNaH{ch4=32LILQ^Hd;2Yzs*rmj_Q=7rf? ztqF@IZ4G{|7Ywe(4v%clP0*JxVq)wr0_pYpim?>}M~M2E`D(CHfh~jKU+RlrUPacE z1FJ)4->fF%ZD>rF#dw{Mj%BN9phdvP944Z8inUqc+^ae2al+1*XYHVG!wn(-+>5y6 zK*4VS>i9)km!b5-b?`^!aGaXW0zL=U5Oi+%_!;b#<{ryx(ZwLUB2MMK44)6Y=GK=U zdWrxwL!URORba-&?z;SdPRBrSaBsLtE+>({m`SYbAopGaU>|Qkud6VzZDJu*N{?aD zngbnHlizCJJEht9h*s=JBvu49&^s?VW~bWGiGZT z>D=R){Qv*|DM^L&PB|amQdE-j`BW(?q>|GdM$VSw8s460e9cpm(6|PoT!ZM>j^xI;mOj}ScpQcBOkTw(~ADpXVM2qc#a7`Ht3Z1^|d&|rFOYYX?M{p2pC0j%1N2<6Mh zK%O5@#%`ghYNyCATyGZ52k_D+-gRZJoa$a&4TPNG3TnL~+9i@iYl8Bc{=V;m<_YHZ zbBoh|>O-{xq-*hO^+MNKkKjGL>Ftj1`D!Ivbjz)6#wZz6_DE|RR*YgLrb>8k5QHbG zYcaoz2K&~r29QS-TwJ~aC=p-v(DZNvci_a66R9lpgy`jMJI*hh2v>R>c@Myi8-G*@rB4EJ1J`CWURLoU7FCNE9{WwYp zh_6x|EaD8)xgALGkKjES_&Bct=)}89sXJnk;lX=PR~gkj7-cqc+;T20p_qh$6ll{Z zAU=yc1;0b1GpHLn9#1KtEm!^-4iH8;@^$9=WBPOcH_!6$Ei6Gg`<)8V| zi(9Vlg;M{J7eQ2VJ$X>+R(gD#?|w7`>Cpee*qNw=B#)6qc$(h?SAgZRs)DfxQOARy zCH1zMse&%(qXaLi$l#0Kak%fI#xuVNYF8B~0?}7TD=wyqwQ$Og28isFl zaJUpYZ7Jh6c5V9h4*E4~hxYD`J8QF!YdC@c#ONb*3wW%u8$+YI403XJ!55oSHee!5 zwM4dz+@vg-9drfpOFkdpIk&*B&&LzoIvG`seoM;ETO&S$9Dhun*Ep+%2xu6I4`K>9;K$A_EU4YNqvqnQhO`3*5k>wKg)BdIfNt7w$Q z|N0MAXOCVRH#Wg%G$0G7Qe$ju6J4}*=6ZR9Jra5}muOns4`cg(z&vvKeZ8Wi|G`^+ zg?U602fZ2gAa&Tg42*0Jq@S$gsLdN(<~-R107&ThS%@V8pVNZm3&%3_!Dj$Sv}u1& zJy4b+H=?uT{mg(daW4rAiHnNEAeCAgQfr|narJgt@wrx4856%nr~6{!NpRquI}JJ~|h4Qh*T!U)9Qp;u3s+;`uwlXQG% z{}x?UHB8L$7dZYOAmI;uNW#Hm^>mho2kBx`qH5-xmsllbIkbZemjgcpe6v?;CYGX~ z)?F3Q40>^rd`fr)!Y1N^LBBsMBV4N43<(llyf*vuuhpLKXdaf_?fwn5{05Bgb)QFj z5m1?ef3oi-%?Glw9e|wXey0>m<_Ihv-}aqenAbRzoW1^3Eqh&azpr0-8u^}}SBzf` z{Kboqbsf&KweLaM9Qj)vuB-^w?grST8EIdGb#%c__j>caeWtuE*F_2w)iSW$b}GGb z5<-^qy@d^q=Td-aEx16U;y;VNVCmj& zWUQF~`!5j#!zqV;Luz0Wn^jP&?RtH^$4aLFJwc|9Z#d7`oNoVxFNBMWVYmf?ZDqp3 z>yU4O1ZB^HisyYkEj~^>+{p@a%YSyZbwP{_QC)8>YPPiTzNt~-Cx9>n92o1?FsS;; zwz9h;e2L)erLfEGSizaEa-9gNI^X$$vI9=%El#9-!iC{xXD_$^IdGXOF05dv|r#aU9Fl zCZDT9PVqvrZDziE8rR8M zI@O)?=mqyPJ5qqqfv;A7DqiEu;&_!6J;IZ(J1^6S@A3W@C5}eM+vjvx?3I4v%*=t16d8V zxqkB2pUP{9yAp5MWR^iRAAjAz5Ub*C9i3Vi%Fn*3<48^GwWvBSLn1|62oi>&*}L1s z-2vo;IsH?!QlBkMV8cwE0K{lq%I;RCcriNh#|3M%@oc)7&k)}O?mR3C5$CRbh75QW zDCi(XrKg%+&Q4VIx4D##k1T?LNqC$3qV|IiD4Styrn&%rU_Db7*jfy>TfYkAtd0i? z4>uZ)jQ5*Gok+f{a_8EbQ|RY6js+*V7cqSz)tpN=K3@7&Fu45AMV%Jj{|jwybCLKh zWl&?#7ImV$i{R=1slhZ2?2IJKNk!Hv_UUQoPzc()-v<@Yd-}pAbO^Wf`0svmv_7PK zYhhMptwh-D!uoIDc5N^yM;AL%iZKk+y|n`gNH_@`uibssG%zp|h1hfeR=zI)=+xOC zw{iQ~SC!Q&8gE!X$~V7zfWCjxAfavO)r|9^R;zB|zN!l0_Vj=s@%Hh=yP||A+8i@% zlKJLzNYyAxV_%``<|;nuT&TyF^BF74r~SVNNKz{oPRUseF08yd6W-?7(~H?AKBHF9!Hu#{G+?2WP3mUbo|$rlk ziEc!s=4Iv4qX0wS#8Q}4IF^BZTE{v?NU1`wGKDOL%i_Jt;;$iHG`&Rmns(kl6DxCx zQDILE#z$1lFDb9@LqZ*6LjS*Ne135ZP>pM*J%YHMq()Z3xJ$QRyxvF;Vn#1zmhQSq z?<5E}Jqb%*raY2@g(u+r30ODpThaqOR}{bA7xDEUDVbsnyhAmD9-GT&?rPXl z0HXypfi1X~XEEZUgxO(_o2?v{>A8r?Dmq+gDSe{-xfL3kLD+(;Vc*rG`39u|q!4inKI-8!*_#^$I_BY|`>Rq}Q zs{>BS{9W-dmuIVr3dplYI3?{1j(_jMDDQLhavvwaB(KH=cZ1n+Z7ZP#@@y{4LR}{B z_|IgLlE)5VsG3$#@GKV$=W0%|Ix6r9wT9Sg9cc?~VPMMzP*}c!!`4i4qRonBL6pnQ zjA9(Go#dC^=l|DSSCH*kki z+n?2>#@$d;XGyp12&th?fnS0Raj!&nwn#!ah0mfx_~shGsQg~aG9{-HsQI}sC>*BF zy5e{0)RQZ#d&VN>$KsmUdzp8MXjbU20hBW7^O+`nIn-O@Tsz+B^;)3z_t3TbDRQZ&`BkeOm(f{23%PYZ%-qP`GkNC9UtgNF`Yj zALTxZlpy_%L&2KLM2v0RC9pCcU7%qa%dCt`ZYOCyWQV`Q3%Bz3#z9jGF_u4#LP!aL zQRNJ%>Ux#t^S4xsI7BU!t6xFIoK76G%F0 zo@)f8D6MPq8#oOK24G*j!rT`N#^trtpbb#bXZxu$!)h&B)kJjs1;}hXY;~~+l=rXJcA?Cq9HAYf=e4vRn(4O2j~XDP z$KNiEZVabgr5gRl__yYMeT#ODbg7iQ2+bdz-hMRBe_f8FRhD8P_Uc>RJS%D?JK*SlxLDZo8!_|brw!Tl-wv0^<9vR$ixgBQ~(WEgCpKWjeww~p{- zK6&ZR&)DVC_grCM!E9E^0ZU8cAZW|R=R)vg7vgddR34?=g&Ltk{uowKD6FBTT9oN< zu$BFG^A`5+-_Se1=Ni|JCSuc@8QOy&edFr~GfeabU!XF)Io()OxJ6gFs8F$=vtqqQ za?ckRfbg*NwE#8ez5>5}R;w(ge|!71BW}N1A_s)G?72}NFh|HJ1|t1e`C@NB*#!D^ zXs?fLduPc{a+*;`iwBDR??h#Yr_OMVt5uZqj*|$Y2G3=J`Ukws-rE0?G*nFlH}=s+ zu<@0?&Dmhn-de%uR_NBtCT)C!j=6Z~q30ye+=$|Hkai$rE(4j7>!uU}41)^VQ%Dl{v_$~6_ z%3Q+>7l9pd7a~wY&c22I>5!qh7Pb8a=(fliGm+e{=pTmXH+3!M>({18l7yDUq